Published by Gambit Games for Commodore 64 G-Pascal owners.

Mail: G-Pascal NHews, P.O. Box 124, Ivanhoe, Victoria 3079. (Australia)

Phone: (03) 497 1283

Gambit Games is a trading name of Gammon & Gobbett Computer Services Proprietary Limited, a company incorporated in the State of Victoria.

VOLUME 1, NUMBER 1!

Welcome to the first edition of the
Commodore 64 G-Pascal News - the
newsletter for owners of Commodore 64
G-Pascal! This is an official publication of
Gambit Games for the support of G-Pascal
- in it we hope to achieve a number of
aims:

* To distribute information about how
to do various things in G-Pascal (such as
the bulletin board communication program
in this issue).

* To answer readers' queries,

* To expand on material in the G-Pascal
Manual that users feel is not clear or
explained in sufficient detail.

* To print letters and comments from
readers which may be of interest.

* To advise of other Gambit Games
products.

We would be particularly interested to
receive letters from users asking 'How do I
...' so that we can print the question and
reply. Hopefully this will increase
knowledge of the capabilities of (G-Pascal
to all users.

If you have a problem or a grumble
please let us know also - it may be the
result of a misunderstanding (perhaps a
confusing explanation in the User Manual) -
we would like to be able to clear them up
if possible.

Accompanying this issue is a free index
to the G-Pascal Manual.

Reprinted April 1984. Please address
correspondence to G-Pascal News, P.O. Box
124, Ivanhoe, Victoria 3079.

OTHER G-PASCAL PROGRAMS

Gambit Games now supplies on the
G-Pascal disk various programs written in
G-Pascal which will be of interest to
G-Pascal owners. Prior to serial number
7400 not all of the extra programs were
supplied. In this case, an 'update disk' is
available direct from Gambit Games for
$20. Details and an order form should be
enclosed with this copy of G-Pascal
News.

ADVENTURE GAME

This is a 784-line adventure program
written in G-Pascal. (A similar program for
the Apple G-Pascal appeared in August
1982 '"Your Computer' magazine). The game
is supplied in source code format ready for
you to load and compile.

The game is a complete adventure in its
own right, but is really intended as a basis
for your own ideas. The procedures
necessary for taking and dropping objects,
and moving from room to room are already
there. All you need is to incorporate your
ideas (room descriptions, new objects etc.)
The program is very easy to follow - it
makes extensive use of the CASE
statement for decision-making.

SPRITE EDITOR

This program makes it easy to create and
edit your own sprite shapes. It features a
large grid on which the sprite shape
appears, as well as the sprite in actual and
double size. You can move a cursor around
the grid with the keyboard or joystick and
easily turn dots on or off. Sprite shapes
can be saved to disk (or cassette) as a
t-sector file for later retrieval and re-use.
Also, the program (on request) will output
DEFINESPRITE statements for direct
incorporation into your G-Pascal program,
saving keying time and transcription
errors.

The source code is supplied so you can
examine and modify the program if you
wish.

SOUND EFFECTS EDITOR

This program allows you to experiment
with the synthesizer in your Commodore
64. It allows all three voices to have their
attributes changed at the touch of a key,
and played simultaneously or on their own.
The program is 'menu driven' for extreme
simplicity of use. It is not designed to
play a tune, rather experiment with single
sounds (such as an explosion, or gunshot

sound), for later incorporation into your
programs and games.

The source code is supplied so you can
examine and modify the program if you
wish.

RUNTIME SYSTEM

The runtime system (which is mentioned
in the User Manual) is ideal for those
G-Pascal owners who would like to develop
programs for sale, or for use in situations
where having to recompile each time is a
nuisance (such as educational software).

Use of the runtime system is
straightforward - you just compile your
program, save its P-codes to disk with the
(O)bject option in the Files Menu, and then
run the 'runtime create' program that is
supplied with the runtime system. It asks
for the name of your P-codes, attaches
them to a copy of the P-code interpreter,
and then saves the lot to disk or cassette
with a short automatic loading routine.

There is provision for one program under
the runtime system to load another and
transfer control to it when the first
program ends, thus effectively 'chaining'
from one program to the other. This would
be very handy for larger, menu-driven
systems.

The runtime system includes permission
to distribute the combined runtime system

and P-codes under specified
circumstances.
HINTS

LOADING/SAVING FILES

To avoid errors when loading or saving
files from within your program, make sure
that all sprites are inactive. This is a
hardware limitation - active sprites cause
additional memory accesses, thus slowing
down the processor, possibly allowing it to
get out of synchronization with the disk
drive or cassette player.

INSERTING BLANK LINES

To insert blank lines in your G-Pascal
program just type SHIFT/SPACE (i.e. space
while pressing the shift key) and then press
RETURN.

CHANGING EDITOR COLOURS

If you don't like the blue background to
the Editor, patch byte $9B78 to a number
from O to 15 which represents the colour
you desire. If you don't like the white
letters that the Editor uses, patch byte
$8CD9 to the following: 5 - white, 28 -

red, 30 - green, 31 - blue. For example, the
following program will change the default
system colours to green letters on a black
background:

begin memc [$9B781 == 0;
memc [$8CP9] := 30 end.

(This patch only applies to G-Pascal
Versions 3.0 and 3.1).

JOYSTICK PROBLEM

Users of Version 3.0 G-Pascal may
experience unexpected 'Break ...' messages
in programs that access the joystick
frequently (or the paddle fire buttons) by
using the JOYSTICK function. This may
occur if the keys 'X', 'V', 'N', comma or
CRSR up/down are pressed. To correct
this problem the following statement should
be executed (once) by the program before
referring to the joystick:

memc [$A80B1 := $7F;

Note: this applies only to Version 3.0
G-Pascal users.

SAVING PROGRAMS TO DISK

Contrary to what earlier versions of the
user Manual may state on pages 40 and 41
('File Handling' chapter) saving a program
to disk with the same name as one already
there will not replace the existing program,
instead a 'file exists' error will occur. To
replace an existing program we suggest you
delete the existing file first, then save the
new one. i.e. enter 'D' (for DOS), then:
sO:filename (to scratch the file). It is
sound practice to keep more than one copy
of your programs, in case a disk or cassette
error occurs when reading that program
back in later. We suggest numbering
successive versions of your programs, so
you might save an adventure game as:
ADVENTURE I, ADVENTURE 2,
ADVENTURE 3 and so on. Later, if the
disk is filling up, you can delete the older
(lowest numbered) versions.

MEMORY ALLOCATION WITH IEEE

G-Pascal owners who are using IEEE disk
drives may experience memory allocation
problems. This is because G-Pascal moves
$2E to memory location 1 (6510
input/output register) which disables Basic,
but enables the Kernal ROM. If you wish

the Kernal ROM to be disabled (because
special disk software resides in RAM
instead), then you must patch location
$9BC5 to $2C, by entering and running the
following program before accessing the
disks:

begin memc [$9BC5]1 := $2C end.

You should only enter this program if you
believe you meet the above conditions.
This patch is for Version 3.0 and 3.1 -
please contact Gambit Games if you have a
different version and you have this
problem. i

SQUARE ROOTS CALCULATIONS

It is sometimes handy in programs to be
able to calculate the square root of a
number, for example the distance between
two points (the hypotenuse of the triangle)
is calculated by taking the square root of
the sum of the squares of the distances
between them in the X and Y directions.
The program on the right calculates integer
square roots. It illustrates how you can
improve the accuracy of calculations
involving integer arithmetic by appropriate
'scaling’. In other words, the square root of
2 is the same as the square root of 200
divided by 10.

TERMINAL COMMUNICATION PROGRAM

The program over the page is designed to
allow your Commodore 64 to act as a 'full
duplex' terminal, when connected to
another computer via a modem.

For correct operation an RS232 interface
should be plugged into the user port of the
Commodore (these are available from
Commodore dealers for around $45). Then a
suitable cable is connected between the
RS232 interface and a modem, which is
connected to the phone line.

The program would be suitable for
communicating with the 'Source', the
'Beginning', MICOM's CBBS (Computerised
Bulletin Board Service) and so on. To
convert the program to half-duplex
operation (so that what you type is echoed
on the screen immediately), just add the
statement:

WRITE (CHR(X));

between lines 70 and 71.

Y
OV NOUVIS~WN=

NWWWWWOWNNNNANNNDNDRNND - cd e ad ol el -
CWVPHAUWUN=20VOONOIITNETUWN=2000NSWN -

37
38
39
40
41
42
43
I
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

(* Program to demonstrate how to

obtain square roots in

G-Pascal. to improve accuracy,

output from sqrt is 128 times

the actual result. for the

correct result, divide by 128

{or shift right 6 times).
*)
VAR j, k : INTEGER ;

FUNCTION sqgrt (x J;

(* *)

VAR sq, a, b, i : INTEGER ;
BEGIN

IF x = 0 THEN

sgrt := 0
ELSE
BEGIN
x 2= x SHL 12;
sqg := ABS (x);
a == x;
b :=0;
i = 0;
WHILE a <> b DO
BEGIN
b := sq / a;
a := (a + b) SHR 1; (* divide by 2 *)
i =19+ 1;
IF i > 4 THEN
BEGIN
i = 0;
IF ABS (a - b) < 2 THEN
a:=hb
END
END ;
sqrt = a
END
END ; (% sqrt *)
(* *
(* Program starts here - display

square roots of first 200

numbers to 2 decimal places
*)

BEGIN
FOR k = 0 TO 200 po
BEGIN
j :=(sgrt (k) * 100) SHR 6;
WRITE (" sqrt(", k, ™) =",
i /100, ".");
IF j MOD 100 < 10 THEN
WRITE ("0™);
WRITELN (3 MOD 100)
END
END .

)

1
2
3
A
5
6
7
3

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

{* program to access bulletin boards *)

(* Author: Nick Gammon *)

CONST

cr = 13;

tf = 10;
home = 147;
true = 1;
false = 0;
areg = $2b2;
xreg = $2b3;
yreg = $2b4;

setlfs = $ffba;
setnam = $ffbd;
openit = $ffc(;

VAR name : ARRAY [1]1 OF CHAR ;
input = CHAR ;

PROCEDURE open_rs232 file;

(************************)

BEGIN
MEMC [$f8] 2= $c1; (x buffer *)
MEMC [$fal := $c2; (* buffer %)
MEMC [aregl := 2;
MEMC [xregl := 2; (% RS232 %)
MEMC LCyregl := 2;
CALL (setlfs);
MEMC [aregl := 2;
MEMC [xregl == ADDRESS (namel11);
MEMC [yregl = ADDRESS (namel1J) SHR 8;
CALL (setnam);
CALL (openit)

END ;

FUNCTION from_modem;

(kkkhkichhhdhhkhhkxhk)
BEGIN
GET (2);
from_modem := GETKEY ;
GET (D)
END

PROCEDURE display_char (x);
(kkhkEhkkhkhkhhkhkhkhkhkhkhhkthkihhkk)

BEGIN
(* Reverse upper/lower case %)

IF (x >= $61) AND
(x <= $7a) THEN
x 2= x =~ $20

ELSE

IF (x >= "a") AND
(x <= "z") THEN
x = x + $20;

59
60
61
62
63
64
65
66
67
63
69
70
71
72
73
74
75
76
77
78
79
80
81
82
33
84
85
86
87
88
89
90
91
92
93
94
95
96
97
28
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

(* Only display if printable *)

IF ((x >=" ")
AND (x <= $7f))
OR (x = cr)
OR (x = Lf) THEN
WRITE (CHR (x))
END ;

PROCEDURE to_modem (x);
(Rkkhkdkhhkhhhkhkhhhhkikk)
BEGIN

PUT (2);

WRITE (CHR (x));

PUT (D)
END ;

(x first set up the file name
as per the RS232 paramters *)

name [1]1 ::= 6; (%
name [01 := 0; (%
open_rs232 file;

300 baud *)
3~Line *)

(* now that the file is open ,
loop reading characters from
the modem and displaying them
on the screen. At the same time
get characters from the
keyboard and send them to the

modenm.
*)

WRITE (CHR (home));
REPEAT

(* process input from the modem.

{0 means none)
*)

input := from_modem;
IF input <> 0 THEN
display_char (input);

(* process input from the keyboard

{0 means none).
%)

input := GETKEY ;
IF input <> 0 THEN
to_mecdem (input)
UNTIL false

END .

