

SpeedWriter,,
© 1984, CodeWriter Corporation

HIGH-SPEED COMPILER SYSTEM
FOR THE COMMODORE 64 COMPUTER

BY
DAVID HUGHES

CodeWriter.
V Corporation

TABLE OF CONTENTS

1. Introduction 1

1.2 Purpose of this manual 2
1.3 How to use this manual 2
1.4 Major benefits of SpeedWriter 5

2. Installation 6

2.1 Contents 6

3. Main features of SpeedWriter 6

3.1 Requirements 6
3.2 The compilation process 6
3.3 The run-time library 7
3.4 Combining Basic and machine code 8
3.5 Extensions to Basic 8

4. Operations of SpeedWriter 9

4.1 How to run the compiler 9
4.2 Compilation options 10
4.3 Function keys 11
4.4 Compilation 12

4.4.1 Allversion 12
4.5 Compilation statistics 12
4.6 Termination Options 13
4.7 Operation of compiled programs 13
4.8 Making copies of compiled programs 14
4.9 Special operation features 14
4.10 Troubleshooting 16

5. Making the most of SpeedWriter 18

5.1 Acheiving the best performance 18
5.2 High speed sprite movement 19
5.3 Improved programming style 20
5.4 Utilizing the extra memory 21

6. Compiler directives 22

6.1 List of directives 22
6.2 Integer conversion directives 22
6.3 Special integer mode 24
6.4 Variablelist positioning 24
6.5 Disabling the stop key 25
6.6 Special POKE mode 26
6.7 Inhibiting warning messages 27

7. Cheining and Overlaying programs 28

7.1 Chaining without sharing variables 28
7.2 Chaining with sharing variables 28

8. Information for users of machine code with Basic 30

8.1 Variable list and array list formats 31
8.2 Memory Map 31
8.3 Garbage Collection 32
8 .4 Types of extension handled by the compiler 33

9. Errors 33

9.1 Pass 1 errors 34
9.2 Pass 2 errors 34
9.3 Run-time errors 35
9.4 Warnings 36

Appendices 37

A. What is a compiler? 38
B. Error numbers 39

DTL-BASIC 64 Release I - known problems 40

N O T IC E OF IN T E R N A T IO N A L C O P Y R IG H T A N D L IC E N S IN G D T L -C O M P IL E R

COPYRIGHT

(c) Copyright by D rive Technology Ltd. A ll rights reserved.

This manual contains proprietary information which is protected by
copyright. Copying of this manual or the transm itting of information
contained herein by any means whatsoever whether mechanical, electrical or
electronically is strictly forbidden. Users are reminded that a condition
of purchase is the acceptance that copyright rests with D rive Tehnology
Ltd. and that full responsibility rests with the registered user to
protect such copyright.

LICENSING POLICIES

Drive Technology Lts. grants the registered user the right to distribute
the compiled programs produced by SPEEDWRITER (D T L -B A S IC 64) without
payment of royalties provided that the following copyright notice is
clearly included in the distribution media:

"parts of this product are copyrighted by Drive Technology Ltd., 1983"

For parties interested in high volume distribution of proprietary programs
compiled under SPEEDWRITER (D T L -B A S IC 64), contact CODEWRITER
Corporation for further information.

NOTICE

Drive Technology Ltd. shall not be liable for any loss or damage resulting
from the use of SPEEDWRITER (D T L -B A S IC 64) or for incidental or
consequential damages in connection with the furnishing, performance, or
use of this product.

Drive Technology Ltd. reserves the right to alter this product without
notice and without the obligation to notify any person of such
alterations.

CodeWriter Corporation W O R LD W ID E P U B L IS H E R S
7847 North CaldwellAvenue
Niles. IL 60648 Dataview Lim ited

Radix House
(312)470-0700 East Street, Colchester
Telex 756942 Essex, C01 2XB, England

Telex 987562 C O C H A C
© CodeWriter Corporation, 1984

COPYRIGHT

SpeedWriter is a registered trademark of CodeWriter Corporation and
is based upon a product copyrighted by Drive Technology Ltd.

The distribution and sale of this product is intended for the use of the
original purchaser only. Lawful users of this program are hereby
licensed only to read the program from its medium into memory of a
computer solelyfor the purpose of executing the program Duplicating,
copying, selling or otherwise distributing this product is a violation of
the law.

The manual is copyrighted and all rights reserved. This document may
not. in whole or in part, be copied, photcopied, reproduced, translated
or reduced to any electronic medium or machine readable form without
prior consent, in writing, from the author or its agents.

DISCLAIMER

CodeWriter Corporation makes no warranties, either express or
implied, with respect to the program described herin, its quality,
performance, merchantability, or fitness for any particular purpose.
This program is sold "as is " The entire risk as to its quality and
performance is with the buyer (and not the creator of the program,
CodeWriter, their distributors, or their retailers) assumes the entire
cost of all necessary servicing, repair or correction and any incidental
or consequential damages.

In no event will CodeWriter Corporation be liable for direct, indirect,
incidental or consequential damages resulting from any defect in the
program even If It has been advised of the possibility of such damages.
Some laws do not allow the exclusion or limitation of implied warranties
or liabilities for incidental or consequential damages, so the above
limitation or exclusion may not apply.

1. Introduction

SPEEDWRITER is a B A S IC compiler for the C B M 64.
The programs originate in the United Kingdom and are
improved and upgraded versions of D T L B A S IC C O M P IL E R ,
developed for Commodore business computers.

The function of a compiler is to convert a program from
its source form (ie. the form in which it is written)
into a more efficient form that can run much faster
than the original.

SPEEDWRITER has been specially optimized for the C B M 64
and it not only makes every B A S IC program a lot faster
but will also make each program significantly smaller,
except for programs with only a few lines.

SPEEDWRITER ;s iooo/0 compatible with C B M 64 B A S IC . This
means that any existing B A S IC program can be compiled
without any alteration, to produce a program that
peforms exactly the same, and yet is much faster and
requires less memory and disk space.

SPEEDWRITER is designed so that it can be used by
people with no programming knowledge to compile
existing programs. Yet for more experienced users, a
range of facilities is provided to enable the full
potential of the C B M 64 to be realized.

Note: A more detailed description of the differences
between a compiler and an interpreter is given in
Appendix A.

1

Purpose of this manual.

How to use this

Important
Note

Standard
Program s

Chaining

SP E E D
Improvements

Errors

This manual describes how to use and operate all the
versions of SPEEDWRITER

No attempt is made to teach B A S IC programming or to
define the B A S IC language. This is not necessary due to
the high level of compatability with the B A S IC
interpreter in the C B M 64.

manual.

This manual is intended for use both by programmers and
by non-programmers.

Before using the compiler, all users should read
chapters 2, 3, and 4 which cover installation, main
features and operation.

It is especially important that the user notes the
potential problem of disk corruption that can occur
when the replace option is used with the SA V E command
(see section 4.10). This is a problem in the D O S in the
disk drive and has nothing to do with the compiler.
However, if the compiler is used on a corrupt disk then
it may appear that the compiler is not working
correctly. Therefore, avoid using the replace option
with SAVE.

If the program to be compiled is a single program
consisting solely of standard B A S IC , i.e. not involving
any machine code and does not chain to any other
program then the remaining chapters can be left until
they are required.

If two or more programs are chained together then
chapter 7 should be read before compiling; sim ilarly,
if extentions to B A S IC or machine code are involved
then refer to chapter 8.

Chapter 5 explains how to get the greatest benefit from
SPEEDWRITER

It is important to realize that, whatever SP E E D
improvement is achieved by compiling a program without

any alteration, it is almost certain that significant
additional improvements can be gained by making slight
changes. Often, this only involves the addition of a
single compiler D IR E C T IV E at the front of the program.
The reasons for this are given in chapter 5. Chapter 6
describes directives that are available. A compiler
directive is an instruction to the compiler stored
within the source program.

If any errors occur while compiling or running compiled
programs then refer to chapter 9.

Additional Notes

The following suggestions pertain to SpeedWriter version 2.0 and we
strongly recommend that you read and follow them to assure proper
working of SpeedWriter.

1) Problems can occur when using the VN directive if these steps are
not taken. If a program is compiled that has a VN directive, and that
program referes to variables or arrays that have not been used by any
other program that shares the same variable list, then a new variable
list will be created which has the wrong start address for the root
program.

The solution is to ensure that after compiling any program that has a
VN directive and which has been editied to use a new variable or array
(or which has not been compiled before), then re-compile the root
program after first editing it to refer to a new variable; eg simply add
a statement x1=0 (where xl has not previously been used). The new
variable will force the compiler to create a new variable list file with
the correct address.

2) Problems may be experienced when using the RS232 interface if
Garbage Collect (GC) occurs while there are characters in the RE232
buffers. The problem occurs because the fast 6C routine used by the
compiled program has to keep turning interrupts on and off. The RE232
driver routines rely upon time interrupts to control the baud rate. If
interrupts occur while there are characters in the buffer, then the
baud rate is likelyto be affected. The solution is to force the compiled
program to use the normal GC routine section 8.3 of the manual. The
followingcode will force the slow GC routine to be used:

poke41026,peek(41024):poke41027,peek(41025)

3) SYS statements are not 100% compatible with the interpreter.
The difference is that when the interpreter calls a machine code
routine via a SYS it first sets the registers A, X, and Y to the values
they held after the previous SYS call (or to zero if no previous SYS
call). In compiled programs this does not occur and the contents of
these registers is undefined.

This incompatibility does not matter in the vast majority of cases; the
only known situation in which it does matter is for a SYS 65520. This
routine sets the cursor position from the values in the X,Y registers
which under the interpreter will normally be zero (ie. SYS 65520
performs a HOME). In a compiled program a SYS 65520 will set X and
Y to non zero values (ie. the cursor will be set to the wrong position).
The solution is to not use SYS 65520; instead POKE 216 with 0 (ie.
set the x position) and POKE 211 with 0 (ie. set the Y position) and
then use SYS 58732.

3

4) The ABS function has no effect for integer variables when the value
is in certain ranges (eg. between -128 and -256). The solution is to
use floating point numbers when ABS is invoked or simply multiplyby
-1 if the value is less than zero.

5) Unpredictable results can result from setting Tl$ to the result of a
string expression. There is no problem setting Tit to a constant or to
the value of a variable; eg. Tl$ = LEFT(A$,6) will not always work, but
XX* = LEFT$(A$,6):TI$ =XX$ will always work.

6) Programs which alter the 6510 i/o port at location 1 and its data
direction register at location 0 will experience problems if constant
values are POKEd into these locations. The correct procedure is to
PEEK the existing value, set or dear the relevant bit, and poke the
result back. (eg. the dear CHAREN (to switch in character generator)
use POKE 1 ,PEEK(I) AND251.)

4

1.4 Major benefits of SPEEDWRITER

Fast

Compact

Protection

Compatible

Arithm etic

Machine Code

Extensions

Games and
Sprites

Professional

Garbage
Collection

M igration

* Compiled programs can run to up 55 times faster in
ideal situations - typical improvements are normally in
the range of 5 to 30 times faster.

* Compiled programs are between 50% and 80% of the
size of uncompiled programs which means not only that
there is more space for variables and arrays but that
programs will load faster and will need less disk
space.

* Compiled programs cannot be listed or altered.

* The compiler is totally compatible with all the
features of C B M 64 B A S IC meaning that a B A S IC program
can be compiled without alteration.

* The compiler provides true integer arithmetic as
well as floating point arithmetic.

* The compiler is compatible with existing machine
code routines, ie. where a B A S IC program uses separate
machine code then that code should work with the
compiled B A S IC program without alteration.

* The compiler can compile programs incorporating
extensions, to B A S IC ; ie. additional B A S IC statements
implemented by machine code in R O M or R A M .

* The compiler is especially effective for compiling
games programs involving graphics. This is because
special attention has been paid to making the
statements used to control sprites as fast as possible.
A special directive is available to facilitate fast
sprite movement (see sections 5.1 and 5.2).

* Great flexibility is offered to the programmer who
produces sophisticated suites of programs. For example,
the start address of the variable list can be defined
by the programmer, and, when chaining several programs
the variables may, or may not be, shared between the
separate programs as required by the programmer. By
sharing variables time can often be saved by not having
to re-load information from disk.

* SPEEDWRITER has its own garbage collection routine
which takes less than a second (on the interpreter)
programs involving a lot of string processing can
experience long delays due to the slow garbage
collection routine).

* A facility is provided to ease the transportation of
programs from other machines to the C B M 64. This
enables P E E K / P O K E addresses to be automatically
adjusted without changing situations, e.g. when a
program P O K E s data directly to the screen.

5

2. Installation of SPEEDWRITER

2.1 Contents

Your copy of SPEEDWRITER should consist of :

- a SPEEDWRITER compiler disk
- this manual

3. Main features of SPEEDWRITER

3.1 Requirem ents

SPEEDWRITER requires a standard Commodore 64
single disk drive.

The compiler can make use of a printer but one is not
essential.

Neither the compiler nor compiled programs use a R O M
cartridge so that the user is free to use cartridge
software together with compiler programs.

3.2 The compilation process

SPEEDWRITER is complementary to the C B M B A S IC
interpreter due to its total compatability. This means
that programs can for convenience be developed and
debugged on the interpreter and when working can be
compiled for maximum S P E E D and to reduce program size.

E rro r It is usual before compiling to make sure that the
Checking programs work on the interpreter. SPEEDWRITER does make

thorough checks for errors both at compile time (i.e.
while the program is being compiled) and at run-time
(i.e. when the compiled program is being run) but it is
more convenient to detect and correct errors on the
interpreter, rather than the compiler.

The compilation process involves :

Source - Copying the source file
F ile (i.e. the program to be compiled) on to the compiler disk

or copying the compiler files onto the program disk;

- Loading and running the compiler;

Telling the compiler the name of the source file; i.e.
the file containing the program to be compiled;

Telling the compiler the name of the object file; i.e.
the file to be created by the compiler to hold the
compiled program;

6

Two Pass
Process

Run Time

Program
Lim itations

Listing

Special
F ile

3.3 The run-time

Auto Load

8 K Bytes

Assembler

- Com pilation is a two pass process. On the first pass
the source file is read a line at a time and a sem i
compiled version of the program is written to a work-
file. On the second pass the work-file is read back,
additional information is added and the object file is
recreated. Note that for SPEEDWRITER the work-file is
held in memory in the area unused by B A S IC .

A fte r the compilation is complete the work-file is
deleted, and the object file may then be loaded and run,
or another program may be compiled.

Note that because the program is never totally held within
the compiler there is no lim it to the size of program
that can be compiled. Any program that w ill run on the
interpreter should be able to be compiled.

I f required, the compiler can produce a listing of the
program and/or a report of any errors found.

In addition to the compiled program the compiler produces
a file LN -nam e (where "nam e" is the name of the compiled
program). This file is not involved in running the
compiled program but is only needed if the program has
run-time errors (e.g. D IV ID E B Y Z E R O E R R O R) that were not
found before compilation — see chapter 9.

library

The run-time library (file R T L -6 4) is a set of machine
code routines that must be in memory when a compiled
program is run.

It is not necessary for the user to load this file as,
every time a compiled program runs, the program first
checks to see whether the run-time library is in memory
and, if it is not, then it will load the file
automatically from disk i.e. from wherever the program
was loaded. This means that the disk from which
the first compiled program is loaded after power up should
contain a copy of RTL-64 .

The run-time library is just less than 8K bytes in size
but in order to avoid using up the valuable space within
the B A S IC area, i.e. the 38K available to B A S IC , the run
time library is stored outside this area in some of the
R A M that would otherwise be unused.

Fo r the benefit of machine code programmers, the run-time
library is stored in the 8K from $AO O O to SB F F F which is
an area of R A M that cannot be directly accessed from
B A S IC . This leaves the 4K of accessible R A M at $C000
(i.e. R A M that can be accessed via S Y S ,P E E K and P O K E)
free for machine code and/or data (see sections 8.2 and
8.3).

7

3.4 Com bining B A S IC and machine code

3.5 Extensions

How it
Works

Many B A S IC programs utilize machine code subroutines to
perform tasks that are not possible or are d ifficult in
B A S IC . With the greatly improved performance provided by
SPEEDWRITER it is possible to replace many machine code

routines with B A S IC code.

However, there w ill always be situations where some
machine code is desireable. SPEEDWRITER has been
especially designed to ensure that in the vast majority
of cases machine code that works with a B A S IC program on
the interpreter will also work without alteration with
the compiled program. This is possible because the
compile preserves precisely the same format for page
zero, the variable list, the array list and string
storage etc.

This means that machine code for example, searches the
variable list for a particular variable or sorts a string
array will still work with a program compiled by SPEED
WRITER

Further details are given in chapter 8.

B A S IC

One very useful feature of C B M machines is the way that
it is possible for additional features to be added to
B A S IC by means of machine code routines either in R O M or
R A M .

SPEEDWRITER has features that enable programs using such
extensions to be compiled and run successfully even
though the compiler does not know the details of the
extensions. This means that programmers are free to use
extensions to B A S IC and are still able to obtain all the
benefits of compilation.

This is possible because as the compiler checks the
syntax of a statement and if it cannot recognize the
first character of the statement (i.e. if the character
does not start with either a legal keyword or an
alphabetic character), then it assumes that the statement
is valid and is an extension to standard B A S IC .

The compiler embeds the text of the extension statement
in the compiled program exactly as it occurs in the
source program. Then it precedes it by a special code and
follows it by a SY S call to the run-time library at the
time the program is executed. Next, the run-time library
detects the special code, sets up the page zero pointers
to the extension statement and calls the interpreter to
process it.

Now the interpreter processes the statement just as
though it was in a normal program and invokes the
additional machine code to implement the statement. When
the machine code routine returns control, the interpreter
obeys the SY S call and re-enters the run-time library.

8

The whole process works because the machine code finds
the variable and arrays lists, etc. exactly as it
expects.

See chapter 8 for further information as to how
extensions (and SY S calls with parameters) are handled.

4. Operation of SPEEDWRITER

4.1 How to run the compiler

4.1.1 D isk versions.

The compiler disk actually contains two separate
compilers; one for single drive disk units (eg. the
1540 or 1541 units) and one for dual drive disk unit*
(eg. the 4040). The dual drive compiler w ill work with
drives attached to the serial port or with drives
attached via an IEEE -488 cartridge.

When the dual drive compiler is used then the compiler
disk must be in drive 0 and the program to be compiled
must be on the disk in drive one.

There are two ways of using the single drive compiler.
The first is to copy the program to be compiled onto
the same disk compiler (ie. by use of L O A D and SA V E
commands). The second is to load and run the compiler
and then remove the compiler disk and replace it with
the disk holding the program to be compiled.

If there are a number of programs on the disk it it
worth checking that sufficient free space exists for
the compiled program and for the work-files used by
the compiler. These files will be deleted at the end
of the compilation but will require space until then.
A s a rough guide the free space available should be at
least • equal to the size of the source file for th*
dual drive compiler and at least twice the size of the
source file for the single drive compiler.

It is possible to find the amont of free space by
displaying the disk directory, ie. type the commands

L O A D "$",8

and when R E A D Y is displayed, type

L IST

the size of each file and the free space on the disk
are given in terms of the number of blocks (a block is
256 bytes).

I f there is not enough free space some files w ill have
to be deleted (after being copied to other disks).

9

TYPE: LOAD"*".8 , I

* S y ste m C on fig u ra t io n *

Are you using -

One or two single d r ive s....... s

A dual drive sy ste m c

Enter the correct response □

There will be a pause while the two files (R T L -6 4 and
either D T L -B A S IC -M C or D T L -B A S IC -M C E) containing
machine code are loaded into memory.

I f this is the first time that the compiler has been
run since powering up the machine then there will be a
further delay while the file "D T L -B A S IC -M C " is loaded.
Once you have used the compiler and the machine has
not been turned off, the files R T L -6 4 and D T L -B A S IC -M C
will remain in memory (in the area unused by B A S IC)
and w ill not have to be re-loaded when the compiler is
run again.

4.2 Com pilation options

The compiler will display the following list of
options

source file ? :
object file ? :
print source ? :
print stats ? :
run identity ? :

plus a set of commands selected by the function keys.

Each option field that is input is terminated by
R E T U R N or F I (function key 1).

10

Starting up Type the exact name of the source file

Print Options

Statistics

4.3 Function keys

D irectory

Restart

Change
Diskettes

Ex it

Type the name of the object file (the file to be
compiled).

Unless you wish to print, the compilation may be
started by pressing F3.

I f printing is required then change the relevant "n '"s
to "y '"s .

If "print source ? " is "y " then the whole program will
be printed during the compilation.

If "print errors ? " is "y " then any error messages
will also be printed.

If "print stats ? " is "y " then at the end of the
compilation some statistics w ill be printed giving the
relative sizes of the source and object files (these
are always displayed).

If any printing is selected the contents of "run
identity" w ill be printed at the start of the listing
to serve as an identification, eg. it may be
convenient to put in the date or time etc. so that
when several listings of the same program are kept
then the correct sequence can be determined. The "run
identity" field can be left blank if required.

A s mentioned earlier, F I moves you to the next option.
If there are no more options and it is pressed,
compilation w ill start.

Alternatively, as soon as both the source and object
files have been named, F3 can be used to start the
compilation immediately.

If the user cannot remember the name of the
source file then F5 can be used on the disk based
versions to display the directory of all the program
files saved on the disk.

If it is realized that an option has been input
incorrectly then F2 can be used to go back to the
beginning.

If it is discovered that the wrong disk is being used
then F4 can be used to allow the disk to be changed
without reloading the compiler. Note that the new disk
should contain at least the file D T L -B A S IC -M C , as this
will be re-loaded from disk.

F6 can be used to exit from the compiler without
performing a compilation.

11

4.4 Com pilation

4.4.1 A ll versions

A s the compilation begins, if any printing is to be
performed the compiler checks that the printer is
ready. If it is not, the message

P R IN T E R * * * * * * *

is flashed on the screen. The user can either select
the printer or press space to continue without
printing.

Printer Note Note that on some machines there is a problem with the
V IC 1515 printer that causes the system to hang up. If
this occurs then it is necessary to turn off the
printer and turn it back on again. A t least one line
of printing may be lost because of this.

During compilation the progress is recorded on the
screen by displaying the number of the line being
processed.

Error If the compiler detects any errors in the source
Messages program an error message w ill be displayed either on

the screen or on the printer. If a number of errors
are found and the screen becomes full of error
messages, the compilation will pause so that the lines
in error may be noted before compilation resumes.

Warning A s well as error messages, it is possible for warning
Messages messages to be displayed. These occur when the

compiler believes that it has detected an extension to
B A S IC but may have found a syntax error. The reason
for this is explained in section 9.4

A t the end of the compilation, a count of the number
of error and warning messages are displayed and the
compilation statistics are displayed or printed.

4.5 Compilation Statistics

The compilation statistics produced at the end of the
compilation give the sizes of:

- the source program
- the object program
- the object file

12

The sizes are given reported in bytes, blocks and the
number of bytes in the last block (a block is 256
bytes), e.g.:

S O U R C E P R O G R A M S IZE - 4253 (16,157)

So, 4253 bytes is 16 blocks plus 157 bytes (which
would require 17 blocks of disk space).

The program sizes are the amounts of memory occupied
when the program is run. The two sizes can be compared
to see what size reduction has been achieved.

Finding The object file size exceeds the object program size
Variables because this file normally holds both the program and

the variable list. By comparing the file size with the
program size, the size of the variable list can be
determined. Note that the variable list holds all the
normal variables but not the arrays. The arrays are
created dynamically at run-time.

4.6 Term ination Options

If any errors were detected during compilation then the
object file is not created and the source file w ill have
to be edited to correct the errors before it can be
compiled.

I f there were no errors the user has three options:

- Press key "C " to compile another program;

- Press key " L " to load and run the program that has just
been compiled.

- Press any other key to exit from the compiler;

4.7 Operation of compiled programs

Operation of compiled programs is identical to that
for uncompiled programs, i.e. compiled programs are
simply L O A D E D and R U N just like uncompiled programs.

Compiled programs should perform exactly like
uncompiled programs - if they do not then refer to
section 4.10

13

The first time a compiled program is run after the 64
has been turned on there w ill be a delay while it
loads the file "R T L -6 4 ". Each subsequent time that a
compiled program is run no delay will occur because
the program will detect that R T L -6 4 is already in
memory.

Note C O N T cannot be used with compiled programs. SY S 2061
should be used.

When a compiled program is stopped, variables and
array elements can be displayed (for debugging) as
with interpreted programs.

4.8 Making copies of compiled programs

If it is required to move a compiled program to
another disk use L O A D and SAVE, just the same as for
uncompiled programs, e.g.

LO A D "p rogram name",8

change disk.......

SAVE"program name",8

Note that a compiled program should not be SA V E D after
it has been run. Do not forget that a copy of "R T L -6 4 "
is normally needed on each disk containing compiled
programs.

4.9 Special Operation Features

There are two special features designed to make the
operation of the compiler even easier.

14

Autom atic
object
file name

Compilation
of several
programs

Control
file

The first is invoked if the source file name has the
last four characters equal to "-src ". In this case the
object file name will be generated automatically, e.g.

if the source file name is

"abcd-src"

then the compiler will call the object file

"abed"

This feature can best be used by renaming all source
files to have the "-s rc " suffix as this will ensure
that the compiled programs will then have the name
that the user is fam iliar with. This is especially
useful when program chaining is used (i.e. when one
program L O A D S another program). Otherwise, the L O A D
statement within the program would have to be altered.

The second special feature is available only on the
disk based versions and can be used when a number of
programs on the same disk are to be compiled. Rather
than compiling each program separately a control file
can be used to give the compiler a list of the
programs to be compiled. The programs will then be
compiled without any further action by the user.

A control file is a normal file that has the last four
characters equal to "-con", e.g. "com pile-con".

A control file is created and edited in the same
manner as a program file and consists simply of a list
of file names. Each file name should be on a separate
line and the first character of each line should be a
quote character (").

The first file name should be the name of the first
source file to be compiled and the second file name
should be the name of the corresponding object file.
The next file name should be the name of the second
source file to compile and so on....

If the "-s rc " option is used then the object file name
is omitted.

eg. A typical control file could be -

10 " f i le l "
20 "c f i le l"
30 "file2 "
40 "c file2 "
50 "te st-src "
(the trailing quote on each line is optional)

In this case three complications w ill occur, i.e.

" f i le l " will be compiled to give "c f i le l "
"file2 " w ill be compiled to give "c file2 "
"te st-src " will be compiled to give "te st"

15

Error To start the compilation, the name of the control file
detection should be given instead of the source file name. The

printing options selected will apply to all complications.
I f a printer is available then it is recommended that the
option to print errors should be selected to ensure
that any errors are not lost.

A. 10 Trouble shooting

If a compiled program does not appear to be running
exactly like the interpreted version it is likely that
the Special Integer mode must be selected. This is
done by means of the SI directive which is explained
in more detail in section 6.3.

Premature If the compiler stops during compilation and the
Stop 1515 printer is in use, refer to section 4.4.1.

Special
Integer
Mode

V L or R O If a compiled program using either the V L or R O
file directive at the start of the program crashes when

run, check that the V L file is present on the disk (or
tape). Check also that the V L file has not been
renamed.

If a program using a V L file does not work after being
copied onto a disk then check that the first variable
in the proqram has only a single character name
(see section 6.4).

A compiled program should not be SA V E D to create a new
copy once it has been R U N .

D O S errors If the compiler stops during a compilation on the 1540
or 1541 drives with a "N O C H A N N E L S E R R O R ", or halts
with an error indicated on the disk drive, the reason
is actually a read or write error. The wrong error
message is due to a bug in the D O S within the disk
drive. That means that when an error occurs then if
further characters are read or written before a test
for an error is made then the wrong error message is
generated. The compiler cannot check for an error
after every character is read or written because this
would slow down disk i/o by a factor of three or four.

16

Avoid the
replace
option

Patches

Loading

Pokes

If the "N O C H A N N E L S E R R O R " occurs on a drive that
normally does not give any trouble then it is likely
to be for one of two reasons. The first is that it is
simply a bad disk that should be replaced by one of
better quality. The second reason is that the disk may
have been written on a different drive (eg. a 4040)
that is apparently compatible. A lthough such disks can
be read on a 1540 or 1541 they do appear to be more
susceptible to errors than ones written on the same
drive. I f this is the case, make a new copy of the
disk on the drive upon which the compilation is to
take place.

The 1541 can also damage files on occasion so take
care to have copies of all files and use V A L ID A T E
frequently to ensure that the disk is in a good state.
If a program becomes damaged then perform a
V A L ID A T E and copy the file from a backup. Avoid
using the replace option ((§) with the SA V E command as
its repeated use can cause problems. Instead, when
editing a program, S C R A T C H the old copy and use SA VE
without replace to create the new file.

Some B A S IC programs are "patched" in a special way by
the programmer so that after loading they will run
automatically, i.e. without R U N being typed. Such a
program cannot be compiled directly but if the un
patched program is compiled then it ought to be
possible to apply the patch to the compiled program.

Uncompiled programs can load compiled programs but it
is not possible for a compiled program to directly
load and run an uncompiled program via a L O A D
statement within a compiled program. However, this
will work if the L O A D statement is obeyed outside the
program. One way of doing this is shown in the
following sequence which w ill load the uncompiled
program "TEST ".

1000 PRINT"<clsXhom e>LOAD "CI-R$(34),rTEST"Ct-R$(34)",8"
1010 P O K E 198,6:REM SET B U F F E R L E N G T H
1020 D A T A 19,13,82,85,78,13:REM <hom e><cr>RUN<cr>
1030 F O R I= lto 6 :R E A D X :PO K E630 + I , X : N E X T
1040 NEW

<cls> is the clear screen character
<home> is the home character

Some Basic programs P O K E the address of the start of
variables (45,46 decimal) to move the variables higher
up the memory, such P O K E S are not necessary in
compiled programs and may cause the program not to
work (see section 6.4 and chapter 7).

17

5. Making the most of SPEEDWRITER

5.1 Achieving the best performance

Any program that has been compiled without any
alteration to the source file w ill run significantly
faster than on the interpreter. However, it is very
likely that by making one or two simple changes
con sid e rab le add it iona l im p rovem ents can be
achieved.

Integer The reason for this is that SPEEDWRITER supports
A rithm etic integer arithm etic as well as floating point

arithmetic. Integer operations are used for all
operations when both operands are integers. This
applies to all arithmetic, logical and relational
operations.

Integer arithmetic is many times faster than
floating point, and to achieve the best performance
as much use of integer arithmetic should be made as
possible.

It is important to realize that, although the
interpreter supports integer variables it does not
do any integer arithmetic. A ll integers are
converted to floating point before any arithmetic
operation. Tor this reason few existing programs
make extensive use of integers.

Obviously, when writing new programs that are to be
compiled, integers should be used as often as
possible.

C S and C E In order to save a user the trouble of having to
D irectives work through and edit an existing program to change

real variables to integers, SPEEDWRITER provides a
way of automatically changing either all variables
to integers or certain specified variables. This is
achieved by means of the C S and C E directives which
are described fully in the next chapter.

A ll the user has to do is work through the program
and decide which variables should be floating point;
i.e. any variables which may hold a value greater
than 32767 or less than -32767, or, which needs to
hold numbers with a fractional part, cannot be
integers. A ll other numeric variables can be
converted to integers and the speed of improvement
can, in some cases, be dramatic.

s Peed The overall speed improvements that can be achieved
Improvements can vary considerably between different programs.

There are three main reasons for this:

18

1.) When a program is perform ing I/O (input/output)
the program can spend most of its time waiting for
the peripheral, e.g. disk drive or printer. This
waiting time can be so great that even if the
statement processing time is many times faster, the
overall speed improvement will be not nearly so
great.

2.) The performance of a program on the interpreter
depends tremendously upon how the program is
written. For example, a routine at the front of a
large program can run several times faster than a
sim ilar routine at the end of the program. When
compiled, both routines will take the same time, but
the re la t iv e speed up fa c to rs w ill va ry
considerably.

3.) Some programs have to do a lot of floating point
arithmetic, e.g. statistical programs and programs
making extensive use of the trig functions (S IN ,
C O S, etc.) and cannot make as much use of integers
as normally possible. However, there will almost
always be some variables that can be converted, e.g.
variables used to access arrays.

5.2 H igh speed S P R IT E movement

Games and One common situation where high performance is
Graphics required is when moving sprites in game and graphics

applications, or when P O K E in g characters directly to
the screen. It is worthwhile paying particular
attention to the P O K E statements involved and
especially those that are obeyed many times.

For example a typical statement might be

P O K E G + 3, Y P

where G could hold 53248 (the address of the display
chip)

Such a statement could be moving a sprite and may be
in a F O R loop, and will probably be obeyed many
times. In a compiled program the time for the
floating point addition will far exceed the time to
do the P O K E . A far faster version would be to place
a statement outside the loop such as

G A = G + 3

and change the statement in the loop to

P O K E G A , Y P %

19

However, this is still not as fast as can be
achieved because G A is a floating point variable.
Each time the statement is obeyed it has to be
converted to integer, which again takes much longer
than the PO KE. G A cannot simply be made integer
because 53248 is too big. SPEEDWRITER has a feature
to overcome this problem called special poke mode
which is controlled by the SP and N P directives
(described in section 6.6)

Special Poke mode enables an offset to be applied to
all subsequent P O K E S and P E E K S . In this case the
offset w ill be 53248 so that each P O K E can now use
an integer.

This means the earlier statement can become -

G A % = 3

outside the loop and

P O K E G A % ,Y P %

Inside the loop.

Such minor changes can have a dramatic effect on the
performance of programs making extensive use of
P E E K S and P O K E S .

Stop Key Note also that disabling the stop key can also give
a small additional performance improvement - see
section 6.5.

Improved programming style

One benefit of using SPEEDWRITER which is not
immediately obvious is that it is possible to write
programs that are easier to understand and to
modify.

The reason for this is that in order to get the
best performance on the interpreter it is necessary
to employ techniques that are bad programming
practice. For example:

- Not using many R E M statements;

- Using each variable for many tasks (to reduce the
time spent searching the variable list);

- Putting several statements on each line (to reduce
the time spent searching for line numbers);

- Placing the most frequently used statements at the
front of the program.

Better
Programm ing
Techniques

Special Poke
Mode

These techniques (and others) can speed an interpre
ted program somewhat, but they can become almost
imcomprehensible to follow.

If a program is to be compiled, then none of these
techniques are necessary and the programmer can
concentrate upon producing well structured, clearly
understandable programs. This saves programming time
from the beg inn ing and m akes subsequent
modifications much easier.

5.4 U tiliz ing the extra memory

When a program is compiled the reduction in size of
the program can be considerable. This means that it
is often worthwhile to increase the size of the
arrays to utilize the extra space or to keep more
information in memory in order to reduce the amount
of disk I/O required.

Out of However, it is always convenient to be able to run
Memory error the same program on the interpreter when debugging.

If arrays are larger or if there are more arrays,
then an "put of memory error" is possible. A simple
way around this is to make the program detect
whether it is compiled or not compiled and to act
accordingly.

The way to do this is to check the first byte of the
first line of the program. In a compiled program
this byte will always be a SY S token (158 decimal),
e.g.

Place the following statement near the start of the
program -

C P % = 0 : IF P E E K (2053) = 158 T H E N C P % = 1

C P % can then be tested easily when required, e.g.

A % = 1000 : IF C P % <> 0 T H E N A % = 2000
D IM X (A %)

21

6. Com piler D irectives.

A compiler directive is an instruction to the compiler
stored within the source file. The directives take the
form of a R E M statement so that a program containing
directives may still be run on the interpreter. The
format of a directive is

R E M * * <directive id> <directive text>

This format has been chosen to minimize the chance that
an existing R E M will be seen as a directive by the
compiler.

<directive id> is a two character identifier.

<directive text> is additional information (not always
present) - see the individual directive descriptions.

Use at the Most directives can only occur at the start of the
Beginning program (i.e. before any non R E M statements) and will be

ignored elsewhere in the program. However, some
directives can occur anywhere in the program and these
are indicated by an asterisk (*) in the list below.

6.1 L ist of directives.

D irective Name

C S Convert Specified (for integer conversion)
C E Convert Excluding (for integer conversion)
SI Special Integer Mode
VL Variable L ist Address
R O Root program (for chaining)
V N Variable name file (for chaining)
D S D isable Stop key*
ES Enable Stop key*
SP Special Poke mode*
N P Normal Poke mode*
NW No warning messages

The directives R O and VN are described in chapter 7.

6.2 Integer conversion directives

These directives are used to tell the compiler which
floating point variables and arrays are to be treated as
integers.

C S means Convert all the Specified variables to integers

C E means Convert all the floating point variables to
integers excluding those listed in the directive.

22

Error
Messages

Note

Integer
"F o r "
Variables

The C S or C E should be followed by a list of variable
names in brackets with the names separated by commas,
e.g.

R E M * * C S (A 1 ,Z Z ,X 2 ,X 3)

means convert all references to the names A1 ,Z Z ,X 2 ,X3
to integer, i.e. the program will be compiled as though
the variables were A 1 % ,Z Z % ,X 2 % ,X 3 % .

R E M * * C E (11,12,13)

means convert all floating point variables to integers
except I I , 12 and 13.

R E M * * C E O

means convert all floating point variables with no
exceptions.

Note that both arrays and variables are converted, e.g.
in the first example if there is a variable A1 and an
array A l , then both will be converted.

The compiler will generate an error message if an
integer already exists with the same name as a converted
variable. In such a case, it is possible to specify that
the variable name is to be changed during conversion,
e.g.

R E M * * C S (X ,Y = > Y Y % ,Z)

will convert X and Z to X % and Z % respectively; but Y
w ill be converted to Y Y % .

R E M * * C E (A ,B = > B 1 % ,C)

will convert all variables except A and C; B w ill be
converted and will become B l% .

When changing names during conversion, the first
character of the two names must be the same;

C S and C E directives cannot both be used in the same
program. There may be more than one C S or C E directive
in a program, but the number of name variables cannot
exceed 128.

Even for new programs there may be a need to use the CS
or C E directives, because the interpreter does not allow
integer F O R variables, even though in most programs F O R
variables only hold integers. If it is required to debug
the program on the interpreter, floating point variables
must be used in F O R statements. When the program is
compiled then C S or C E statements can be used to convert
the F O R variables to integers. This will enable the best
performance to be obtained.

23

6.3 Special Integer Mode

Special integer mode is selected by the directive

R E M * * SI

This mode only affects the result of division and
exponentiation operations on integer operands.

The reason for this directive is that the compiler
cannot always be sure what the programmer intends for
these operators, when both operands are integer. This is
because the normal action for the compiler to take when
both operands are integer is to perform an integer
operation. A s has already been exlained, such operations
are much faster than floating point. With most integer
operations there is no problem, but for divide and
exponentiation the result can have a fractional part.

Consider the statement

A % = B % / 2 * 4

now if B % = 3 and integer division is used the answer
w ill be 4, but if floating point division is used the
answer will be 6.

On the interpreter the answer will be 6, because all
operations are floating point. For compiled programs in
normal integer mode the answer will be 4 because in most
situations when using integers the programmer expects
integer operations and..... they are much faster.

Note However, occasionally this can cause the compiled
program to work differently than the uncompiled program.
In such cases the use of special integer mode will
overcome the problem, i.e. it w ill force the compiler to
always use floating point arithmetic for division and
exponentiation.

6.4 Variable list positioning

Norm ally, the compiler places the variable list
immediately behind the program, and the variable list is
loaded together with the program from the object file.

In some situations there may be a need to position the
variable list higher in the memory in order to leave
space between the end of the program and the start of
variables. Such space could be used for SP R IT E data.

24

V L The V L D irective can be used to achieve this and takes
the form

Pokes

Chaining
R O

Note

6.5 D isabling

R E M * * V L <size>

where <size> is the size in bytes of the area between
the start of the program and the start of the variable
list. On the Commodore 64 a B A S IC program starts at
address 2049 ($0801 in hex). For example, if the
directive

R E M VL 15000

is used, then the variable list w ill be placed at
absolute addresses 15000 + 2049, which is 17049. I f the
program occupies 10450 bytes (obtained from the
compilation statistics) then the free space between the
program and the variable list will be 15000 - 10450, ie.
4550 bytes.

When the V L directive is used, the variable list will be
stored in a separate file called "V L -A B C D "; where "A B C D "
is the name of the program. The first time the program
is run the V L file w ill be automatically loaded to the
correct address. On subsequent runs of the program the
file w ill not be loaded since the program will detect
that it already exists in memory.

Some programs utilize P O K E S to location 45 and/or 46 to
set the address of the variable list. Such P O K E S are
redundant in compiled programs. If a program does P O K E
different values to 45 and 46 from those set by the
compiled program then problems are likely to occur.

If a program is involved in chaining and shares
variables with other programs, then the VL directive
should not be used because the R O directive achieves the
same result.

Note that a problem can occur when copying a VL file to
another disk. When the VL file is L O A D E D to
memory prior to a SAVE, the system can damage the file.
This occurs because it thinks the VL file is a program.
The problem will not occur if the first used variable in
the program has a single character name.

the stop key

The directive

R E M * * DS

disables the Stop key, while

25

R E M * * ES

enables the Stop key.

When a program is R U N the stop key is initially enabled.

Faster Program s run slightly faster with the stop key disabled.

In the interpreter, the stop key is tested on every
statement. Fo r compiled programs, in order to save time,
the stop key is only tested on N E X T and IF statements.

When a program uses L O A D to chain in another program, or
to load some machine code, etc. it is a good idea to
disable the stop key for the duration of the load
because if stop is pressed in the middle of a load then
the program will probably not be able to be restarted
with S Y S 2061 (the compiled version of C O N T).

6.6 Special Poke mode

Special poke mode allows an automatic adjustment of P O K E
(and P E E K) addresses from those specified in the
program. There are a variety of situations where this
can be convenient, e.g.

- To avoid the use of floating point and thus improve
performance (see 5.2 for an example of this)

- When a program has been developed on another machine
for which the P O K E addresses are different. This is most
likely to be useful in programs that make many P O K E S to
the screen area which is at $8000 on most other C B M
machines but is at address $0400 on the 64.

Special poke mode is enabled by the directive

R E M * * SP

and disabled by

R E M * * N P

Enabling Before enabling the mode it is necessary to define the
adjustments to be made. This is done by P O K E in g a value
(while in normal mode) to location 41028. When special
poke mode is enabled this value w ill be exclusive-ORed
with the high byte of the address used in any P O K E or
P E E K statements.

26

For example the statement:

P O K E 41028,208

sets the value to 208 ($D0 in hex). Now since the
display chip starts at address 53248 ($D000 in hex) then
when the special mode is enabled by

R E M * * SP

a subsequent P O K E such as

P O K E 3 ,Y P %

will actually write Y P % to 53248 + 3 ($D003).

Example A s another example, suppose a program written on another
machine with the screen at $8000 hex was to be run on
the 64 (where the screen is at $0400), and the program
P O K E s information directly at the screen.

To handle this case the special poke mode value should
be $84 (132 in decimal). This is because the result of
exclusive-O R ing $80 w ith $84 is $04. The easy way to
think of it is, a bit set to one in the poke mode value
inverts the corresponding bit in the address, while a
zero leaves the corresponding bit the same.

Therefore, in order for the P O K E statements to work on
the 64, all that is necessary to do is

P O K E 41028,132
R E M * * SP

at the start of the program after a P O K E is required to
select the color desired.

.7 Inhibiting warning messages

When a program uses extensions to B A S IC (see section
3.5), for each extension a warning message is normally
generated. Such warnings can be inhibited by the use of
the directive

R E M * * NW

27

7. Chaining Program s

The term "chaining" is used to describe the practice
where one program loads another program on top of
itself by means of the L O A D statement. A fte r the load
the new program runs automatically.

If a set of programs that utilize chaining are to be
compiled then the programs can either be compiled to
share variables or not to share variables.

Sharing Sharing variables occurs when a program is written
Variables to access variables set up by a previous program,

i.e. the variables and arrays are preserved when the
program is changed.

Some chained programs do not share variables and in
such cases each program w ill normally start with a
C L R statement to get rid of the existing variables.

Poke Values One common practice when chaining is for the first
program in the chain to P O K E values into locations 45
and 46 which hold a pointer at the start of
variables. This is done to leave space for later
programs in the chain which are larger than the
first. Such P O K E S are not necessary for compiled
programs, and may in fact cause the program not to
run. In such cases, the statements can either be
removed or made conditional upon whether the program
is compiled or not by using the technique described
in section 5.4.

7.1 Chaining without shared variables

In this case no special action is necessary save
possibly removing some P O K E S as mentioned above.

Each program is simply compiled as normal and each
object file will contain its own variable list as
well as the compiled program.

7.2 Chaining with shared variables

R O and VN If variables are to be shared then the use of the
directives R O and V N are necessary. This is so that
when each program is compiled the compiler can be
made aware of the variables used in the other
programs.

The first program in the chain should start with the
directive

R E M * * R O <size> * *

28

Note

V L file

Restrictions

Where the function of <size> is the same as for the
VL directive (see section 6.4 — all points made
about V L also apply to R O), i.e. it defines the size
of the largest program in the chain and thus the
position for the variable list. Note that it is a
good idea for the value of <size> to exceed the
largest program size by a certain amount to allow for
program modifications.

The R O directive tells the compiler that it is
compiling the root program of a chain and that at the
end of the compilation, a VN file w ill be created
which records all the variable and array names used
and the addresses allocated to them. A V L file will
also be created holding the variable list.

The name of the V N file w ill be "VN -<nam e>" where
<name> is the name of the root program.

A ll the other programs involved in the chaining that
are to share variables should start with the
directive

R E M * * VN "<nam e>" * *

where <name> is the name of the compiled root
program.

The effect of the VN directive is to cause the
compiler to read in the specified VN file containing
all the variable names and addresses.

A t the end of that compilation, if the program used
any new variable names, a new VN file will be created
that includes the new names.

When the root program is run the V L file will be
loaded to the address defined by the R O directive.
The program may then be overwritten by other programs
as many times as required and each will share the
same variable list that will remain in memory the
whole time.

Note that there is one restriction to programs that
contain the R O and VN directive, and this is that
D IM statements must exist for all arrays that are
dimensioned in that program, i.e. arrays without D IM
statements w ill not be automatically dimensioned to
nave 11 elements. The compiler will not give an error
message for any array which does not have a D IM
statement and which did not occur in the VN file read
in at the start of the compilation.

29

Sum mary To summarize, the first program in the chain should
include a directive such as

R E M * * R O 22000

where the largest object program in the chain does
not exceed 22000 bytes. A ll other programs that may
be chained and share variables should include a
directive

R E M * * VN "M E N U " * *

where "M E N U " is the root name.

8. Inform ation for users of machine code with B A S IC

Many Basic programs utilize machine code. The machine
code may be held in R A M or R O M (eg. it may take the form
of a plug in cartridge). In general such machine code
will work unchanged with programs compiled by D T L -B A S IC -
64. This chapter aims to provide enough information so
that a programmer using machine code together with B A S IC
can ensure that the program works as intended.

There are several ways of getting machine code into
memory, eg.

- loading from a file to $C000 - $CFFF ;
- loading from a file to top of B A S IC memory;
- via a plug in R O M chip;
- via a P O K E statements from code stored in D A T A
statements to an area outside the program;

via P O K E statements from code stored in D A T A
statements to an area within the program (eg. to a R E M
statement);

O f all these techniques, problems are only likely with
the last one (because R E M statements are removed by the
compiler). Machine code must be stored outside of the
compiled program.

30

Variable list and array list formats.

Variable
Order

Array
Order

Memory

Many machine code routines access the variable and array
lists to pass data to and from a B A S IC program. SPEED
WRITER creates lists in exactly the same format and uses
the same page zero pointers as the interpreter. This
means that the machine code routines should work without
alteration.

There are just a couple of things to watch out for.

The first, is that it is possible for the order of
variables in the list to differ from the order of
variables when the program is run under the
interpreter. The variables w ill be in the order that
they occur in the source listing rather than the order
in which they are referenced at run-time.

The second point concerns the array list. Again, the
order of entries may be different and there w ill be one
additional array. This will be the first array in the
list and its name consists of two null characters so
that a routine searching for a particular array will
work correctly.

The extra array is used by the compiler to keep track of
the addresses of the rest of the arrays as they are
created (because their sizes are not always known at
compile time) and consists of a 4 byte header plus 2
bytes for each array used in the program.

Map

The area of R A M used by compiled programs is:

Addresses

$0000 to $0800

$0800 to $9FFF

$A000 to $B FFF

$C000 to $ FF F F

Use

Same as interpreter

H o ld s the com piled
variable list, array
s t r i n g s o r g a n i z e d
interpreter

p rog ram ,
list and
a s f o r

Holds the run-time library (loaded
from file R T L -64)

Used by garbage collection (see
note next page)

8.3 Garbage Collection

Garbage collection is the process of reorganizing the
string storage to recover unused space. The G C routine
in R O M can be very slow.

The run-time library contains its own G C routine that is
very fast. This routine works by copying all the strings
out of the string area to the normally unused R O M area
at $C000 to $ FFFF , and then copying the string back in a
collected form.

This means that if a program uses machine code located
in the G C area there is a possibility of it being
overwritten. Whether this happens depends upon the
maximum amount of space that may be required by the
program to hold strings and where the machine code
routines are located.

12K byte
string
lim it

If you are not sure whether some machine code may be
overwritten by GC, the machine code can be protected by
adjusting the pointers used by the G C routine. These
pointers are

$AQ40,41 - address of start of G C area

$A042,43 - address of end (top) of G C area

If G C finds that there is not enough space for all the
strings then it will make several passes collecting a
portion of the strings each time. In such a case the
time for G C will increase a little but will still be
many times faster than the G C routine in R O M . Note that
the area defined by the two pointers above must be at
least 512 bytes in size otherwise the G C routine in R O M
will be used. This last point means that if an add on
product requires all the R A M from $C000 to $ F F F F then a
compiled program will still work correctly provided
that it sets the size of the G C area (v ia the two
pointers described above) to less than 512 bytes.

Note that a machine code routine entered by a SY S call
cannot directly access the two pointers, as, on entry to
the routine the B A S IC interpreter w ill be mapped into
$A000 to $ B FFF instead of the run-time library. The
routine will have to adjust the 6510 memory management
registers itself, or alternatively the pointers can be
set from Basic (Basic P E E K and P O K E s access the run-time
library rather than the interpreter.)

The G C routine works from the top of memory down.
Therefore, if the routines are put in the block $C000 to
$ C FFF , as long as the size of all the strings do not
exceed 12K bytes there w ill be no problems.

32

Note Note that a machine code routine entered by a SY S call
cannot directly access the two pointers above, as on
entry to the routine the B A S IC interpreter will be
mapped into $A000 to $B FFF instead of the run-time
library. The routine w ill have to adjust the 6510 memory
management registers themselves or alternatively, the
pointers can be set from B A S IC (B A S IC P E E K S and P O K E S
access the run-time library rather than the interpre
ter.)

8.4 Types of extension handled by the compiler.

There are three ways in which extensions are added to
B A S IC and A L L w ill work with SPEEDWRITER . The three
techniques are:

1.) Additional statement type starting with a non-
alphanumeric character.

2.) Additional statement types starting with an unused
token (i.e. with a new keyword).

3.) S Y S calls with parameters i.e. additional
parameters following the address that are processed by
the machine code routine.

Restrictions The only restriction on the use of extentions is that
they should not include a colon character (":") other
than at the end of the statement. A lso if an extension
based on additional keywords is used, then listings
produced by the compiler w ill not print the new keywords
correctly.

9. Errors

The compiler performs exhaustive checks while compiling
a program and reports all errors found. Errors can be
found during both Pass 1 and Pass 2. In addition,
further checks are made while the compiled program is
run to detect errors that cannot be found at compile
time.

33

Note

9.1

If any compile time errors occur then the object file is
deleted by the compiler to ensure that the errors are
corrected before the compiled program is run.

There are three types of errors that can occur.

Pass 1 errors;

Pass 2 errors;

Run-T im e errors.

In addition warning messages can occur during Pass 1

Pass 1 errors.

Syntax
Checks

Note

Pass 1 detects most errors because it checks the syntax
of each statement. When an error is detected an error
message is output following the line at which the error
was detected. The message contains an error number and
also indicates the position in the line at which the
error was detected.

Note that the error may be before the point indicated.
This is because an error cannot always be detected
immediately, e.g. in an expression, a m issing bracket
w ill normally not be apparent until the end of the
expression.

Appendix B contains a full list of the error numbers and
their meanings.

Pass 2 Errors

Undefined The main errors that can be found during Pass 2 are
Line undefined line numbers; i.e. a G O TO or G O SU B to a line
Numbers number that does not exist.

The error message is simply the line number containing
the error followed by a "U " to indicate that an
undefined line number is referenced from that line, e.g.

23510 U

34

Error 41

.3 Run-Tim e

Run-Tim e
Error
Difference

Error
Locate

Note

In addition, at the end of pass 2 an error 41 can occur
if it is found that an array is used in a program
containing a VN or R O directive for which no D IM
statement has been compiled (see section 7.2).

errors.

When a compiled program runs, the run-time library
continually checks for errors and the follow ing errors
can occur.

- N E X T W ITH O U T F O R
- R E T U R N W ITH O U T GO SUB
- O UT O F D A T A
- IL L E G A L Q U A N T IT Y
- O V E R F LO W
- O U T O F M E M O R Y
- B A D S U B S C R IP T
- R E D IM 'D A R R A Y
- D IV IS IO N B Y Z ER O
- S T R IN G TO O L O N G
- F IL E D A T A

The above error messages are the same as those used by
the interpreter. The interpreter detects additional
errors not in the above list (e.g. syntax errors) but
the compiler w ill find these errors at compile time.

The meaning of the above errors are exactly the same as
for the interpreter errors. Therefore, refer to the
Commodore manual if the meaning is unclear.

The difference between run-time errors from compiled
programs and from interpreted programs is that
the compiled program gives the address of the statement

containing the error rather than its line number. A
special program called E R R O R L O C A T E is provided to
enable the line number to be found.

The procedure is

- Make a note of the address of the error

- Load and run E R R O R L O C A T E

- When requested, key in the program name (i.e. the name
of the object file) and later the address of the error.

E R R O R L O C A T E will display the line number of the
statement containing the error.

Note that the above procedure will only work if the LN
file for that program exists on the disk.

35

Warnings

Extension
to B A S IC

No Warning
D irective

Warning messages occur when the compiler has detected an
extension to B A S IC (see section 3.5) to notify the user
that an extension has been found. The reason for doing
this is that if a syntax error occurs at the start of a
statement the compiler will treat it as an extension to
B A S IC rather than an error (there is no way that the
compiler could separate the two cases). Therefore, if
warnings occur for lines on which the programmer did not
use an extension, then an error must exist.

Warning messages can be directed to either the screen or
the printer along with any error messages. A count of
the warning messages is output at the end of the
compilation.

If a program frequently uses extensions to B A S IC then
many warnings will occur. In such cases the programmer
may not require them. Warning messages can be turned
o ff by use of the "N o Warning" directive at the start
of the program. In this case no warning messages will be
produced but a count will still be generated (see
section 6.7).

Appendix A

What is a Com piler?

This appendix tries to outline the main differences between a compiler
and an interpreter.

Interpreter vs. Com piler - Resu lts are what Count

The first point to realize is that a compiler and interpreter are trying
to achieve the same end i.e., they are both trying to provide a consistent
and logical format for implementing a program. They both have to perform a
sim ilar set of tasks. It is just that these tasks are performed at
different times.

The Components of Running a Program

Consider what has to be done to "run " a program. A program consists of a
set of statements or instructions. Each statement is simply a sequence of
text characters. The program is intended by the programmer to define an
algorithm, i.e. it defines how a problem is to be solved or how a
particular task is to be performed. The algorithm is defined in terms that
are meaningful to the programmer but not very meaningful to the computer,
i.e. in terms of variables, operators, functions, line numbers, etc.

The main tasks that have to be performed on each statement before a
program can be run are

1.) The type of the statement must be recognized.

2.) The syntax of the statement must be checked.

3.) For each variable name detected the list of variables must be
searched to see if the variable has been allocated an address.
If not, an address must be allocated.

4.) For each reference to a line number (in G O TO or GO SUB
statements) the address of the line must be determined.

5.) For each expression the operator priority rules have to be
applied (including taking into account any brackets) in order
to determine the order of evaluating the expression.

6.) Any non-executable parts of the program such as spaces or
comments (R E M statements in B A S IC) must be ignored.

7.) Finally, the statement has to be obeyed.

Compare and Contrast

Both compilers and interpreters have to perform all the above tasks (and
others). The difference is evidenced when the tasks are performed. This is
significant because most statements in a program are executed more than
once and often many times.

37

Appendix A

An interpreter performs the above tasks every time a statement is
executed. This means that the same work may be repeated many times. Such
repetition is obviously wasteful and can be very time consuming, e.g. a
large program can have several hundred variables requiring long searches
every time a variable is referenced.

A compiler avoids such wasteful repetition by processing a program and
converting it to a different form.

In this way each of tasks 1 through 6 are performed only once for each
statement and only task 7 must be performed repeatedly. Tasks 1 to 6 are
performed when the program is compiled and only task 7 need be performed
every time the program is run.

The Com piler has two Form s - Source and Object

With an interpreter a program exists only in one form, i.e. the text that
the programmer has written. A compiler has two distint forms:

1.) The text form

2.) The converted form

To distinguish between the two the text form is normally called the
source code and the converted form the object (or binary) code.

The object code for a statement normally contains addresses where the
source code has variable names and/or line numbers. Sim ilarly, expressions
are normally re-ordered to cater to operator priority and brackets, etc.
Also all redundant information such as spaces, R E M S , line numbers, etc.
are omitted. Moreover, complex statements are normally broken down into a
number of simple steps.

Sum mary

It should be clear from the preceding that by pre-processing (i.e.
compiling) a program a compiler can make the program run much faster. But
obviously, the compilation process takes time. The advantage of an
interpreter is that when a program is being frequently changed (e.g. when
it is being debugged or modified) the source can be simply edited and the
program re-run. With a compiler the program must first be re-compiled
before a change can be tested. These two techniques are thus
complementary; interpreters are best during the program development phase
but once a program is working, a compiler is superior because it gives the
best overall program performance.

A Note on SPEEDWRITER

You will notice that the SpeedWriter manual makes occasional references to
D T L -B A S IC . D T L -B A S IC , as the original program is known (and as is
listed on your media), is owned and copyrighted by
Drive Technology Ltd. (David Hughes, designer,) and published worldwide by
Dataview, Ltd. Both firms are located in the United Kingdom.

SpeedWriter, is an enhanced version of D T L -B A S IC and is available under
this name in the United States. SpeedWriter is a trademark of CODEWRITER
Corporation and is protected under U.S. trade laws.

38

Appendix B

Erro r Numbers

E R R O R C A U S E O F
N U M B E R E R R O R

1 syntax error
2 wrong type of operand
3 no "T O " where one expected
4 illegal array subscript
5 no ") " where one expected
6 no " (" where one expected
7 no ", " where one expected
8 no where one expected
9 no "T H E N " or "G O T O " where one expected
10 no "G O T O " or "G O SU B " where one expected
11 no "F N " where one expected
12 constant too big (either > 225 or < 0)
13 expression too complex

(shouldn't occur if program is O K on interpreter)
14 syntax error in expression
15 too many ") " 's
16 illegal operator in string expression
17 type m ismatch
18 illegal statement type (C O N T or L IST)
19 program too big

(shouldn't occur for disk based versions if program is O K
on interpreter)

20 a function name must be real
22 F O R variable cannot be an array element
23 wrong number of subscripts
24 integer too big
25 negative number illegal
26 cannot set ST, TI, DS, or DS$
27 function variable must be real
28 no function where one expected
29 no operator or separator where one expected
30 type m ismatch in relational expression
31 no line number where one expected
32 no operand where one expected
33 illegal C S or C E statement
34 bracket m issing from C S or C E statement
35 too many conversion variables (> 128)
36 error in C S or CE; no or "=> " after name
37 error in C S or CE; no " % " where one expected
38 converted name clash in C S or C E
40 no "= " where one expected
41 default array found in overlay
42 too much D A T A text (maximum amount of D A T A text is

approximately 8500 bytes for the disk versions

39

D T L -B A S IC 64 Release 1 - known problems

1. The compiler (both disk and tape versions) will report a syntax
error for P R IN T statements that contain T A B or SP C functions when the
closing bracket is followed by an alphanumeric character, eg. the
statement

100 P R IN T T A B (8)A $

would generate an error message.

The solution is to use a after the T A B or SP C functions, eg.

100 P R IN T T A B (8);A $

would compile without an error message.

This problem w ill be corrected in the next release of the compiler.

2. I f the compiler stops during compilation with a "N O C H A N N E L S
E R R O R ", the reason is actually a read or write error. This is due to a bug
in the 1541 D O S which means that when an error occurs then if further
characters are read or written after the error (ie. before a test for an
error is made) then the wrong error message is generated. The compiler
cannot check for an error after every character is read or written because
this slows down the disk i/o by a factor of three or four.

If the "N O C H A N N E L S E R R O R " occurs it is likely to be for one of two
reasons. The first is that it is simply a bad disk that should be replaced
by a disk of better quality. The second reason is that the disk may have
been written on a different drive (eg. a 4040) that is apparently
compatible. Although such disks can be read by a 1541 they do appear to be
more susceptible to errors than ones written on a 1541.

3. Problems will occur when trying to O P E N a channel to the RS232
port. A fte r such an O P EN the operating system performs a C L R which
confuses the compiled program and causes it to restart at the first line
of the program with some of the page zero pointers damaged.

This problem w ill be cured in the next release of the compiler. In release
1 the problem can be overcome by the addition of two lines at the front of
the program, eg. the program

10 A P = 128
20 O P EN A P ,2 ,3 ,C H R $ (7)+ C H R $ (0)
30 <rest of program>

will not run correctly when compiled. However. When the following two
lines are added then it will run;

1 IF AP=0 T H E N F O R 1=0 TO 5:PO KE 736+1,P E E K (45 + I):N E X T :G O T 0 10
2 IF AP=128 T H E N F O R I=QT05: P O K E 4 5 + I,P E E K (7 36 + I):N E X T :G O T 0 30

40

