

COMPUTED

Commodors

Collection
VOLUME TWO

n
One of the ABC Publishing Companies

^«, Greensboro, North Carolina

The following articles were originally published in COMPUTE! magazine, copyright

1984, COMPUTE! Publications, Inc.: 'The Mozart Machine" (January); "Sound

Shaper" (March); "Trident" (March); "1540/1541 Disk Housekeeping" (April); "Jack

pot" (August); "ML Tracer" (August); "Canyon Runner" (October); "Chess"

(December).

The following articles were originally published in COMPUTEl's Gazette, copyright

1984, COMPUTE! Publications, Inc.: "LIST Freezer" (January); "Homonym Practice"

(February); "VIC Piano" (February); "The Indexer" (original title: "VICreations: The

Indexer," March); "French Tutor" (April); "Making Calendars" (April); "Memo

Writer" (May); "Up or Down?" (original title: "The Beginner's Corner: Teaching Music

with Computers," May); "File Copier" (June); "Data Files for the VIC and 64" (orig

inal title: "Tape Data Files for VIC and 64/' June); "Therapy" (June); "Color Chart"

(original title: "Power BASIC: Color Chart," July); "Robot Math" (July); "Cursor GET

for the VIC and 64" (September); "Learning to Count" (September); "SpeedScript Cus-

tomizer" (September).

The following article was originally published in VIC Games for Kids and 64 Games for

Kids, copyright 1984, COMPUTE! Publications, Inc.: "Build a Quiz."

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-70-1

10 987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is one of the ABC Publishing Companies and is not associated with any

manufacturer of personal computers. Commodore 64 and VIC-20 are trademarks of

Commodore Electronics Limited.

H

n Table of Contents

Foreword vii

Chapter 1. Games 1

Chess

John Krause 3

Jackpot

Rick Rothstein 21

VIC and 64 Versions by Kevin Mykytyn

-* Nirrad's Labyrinth

Darrin Mossor 30

-* Trident

G O. Dickerson 40

64 Version by Kevin Martin

Canyon Runner

Vic Neale 50

64 Version by Kevin Mykytyn

Chapter 2. Education 65

Learning to Count

William W. Braun 67

- Robot Math

p- Bob Stewart 73

\ Homonym Practice

1—Michael A. Tyborski 82
French Tutor

Michael Quigley 88

"- Up or Down?

C Regena 100

-=- Build a Quiz

Clark and Kathy Kidd 105

Chapter 3. Applications 115

SpeedScript Customizer

/. Blake Lambert 117

Memo Writer

Mark R. Brown 129

Making Calendars

Paul C.Liu 140

Therapy

Steven Rubio 156

"The Indexer

Dan Carmichael 162

Chapter 4. Graphics and Sound 167

VIC Hi-Res Sketchpad

Anthony T. Beville 169

SDA: A Sprite Design Aid for the Commodore 64

Karl Dittman 171

Multichar

John S. Graves 177

The Magic Pointer

C. D. Lane 183

Sound Shaper

Steven Kaye 189

VIC Piano

Brad Bascom 192

The Mozart Machine

Donald J. Eddington 196

VIC and 64 Translations by Gregg Peele

Chapter 5. Utilities and Programming Aids 203

Color Chart

Sheldon Leemon 205

Cursor GET for the VIC and 64

David Mills 208

File Copier

Martin Engert 211

1540/1541 Disk Housekeeping

Michael Maione 213

ML Tracer

Thomas G. Gordon 219

VIC and 64 Versions by Tim Victor

LIST Freezer

Doug Ferguson 226

REFMAP: A Cross-Reference Map Utility for the Expanded

VIC

Kenneth D. Day 228

Data Files for the VIC and 64

Brian Prescott 232

n

n

r—| Appendices 237

A: A Beginner's Guide to Typing In Programs 239

B: How to Type In Programs 241

J—I C: The Automatic Proofreader 243

D: Using the Machine Language Editor: MLX 247

E: Screen Location Table (VIC) 254

r~j F: Screen Location Table (64) 255

■- -' G: Screen Color Memory Table (VIC) 256
H: Screen Color Memory Table (64) 257

I: Screen Color Codes 258

J: Screen and Border Colors (VIC Only) 259

K: ASCII Codes 260

L: Screen Codes 264

M: VIC Keycodes 266

N: Commodore 64 Keycodes 267

Index 269

n

n

1

Foreword

Since their introduction in the early 1980s, the VIC and the 64

have earned well-deserved reputations as top-notch personal

computers. Now, with COMPUTE's Commodore Collection, Vol

ume 2, you'll be able to enjoy your Commodore computer sys-

tern even more.

Do you like exciting games? For muscle-flexing action,

climb into the cockpit of "Canyon Runner" and guide a high-

performance aircraft through a twisting, rocky chasm. Or play

the odds and go for the payoff in "Jackpot." Like something

that challenges your mind? Then "Chess," a sophisticated

program that allows you to play against the computer, is just

for you.

Would you like to use your VIC or 64 as an educational

tool? "Homonym Practice" and "French Tutor" can sharpen

language skills, and "Robot Math" adds unexpected excite

ment to basic math. "Up or Down?" turns your computer into

a music tutor. There's also "Build a Quiz," an impressive tool

in itself, that lets you create multiple-choice quizzes on any

subject you choose.

Applications? They're here, too. "Memo Writer" turns

your VIC or 64 into a mini word processor. "The Indexer" al

lows you to catalog just about anything, while "The Mozart

Machine" leaves no doubt that your machine is a composer as

well as a computer. You're sure to enjoy "Making Calendars,"

a program that creates calendars for any year you specify, and

a session of "Therapy" may reveal some surprising things

about your personality and outlook on life.

Programmers, too, will find this book worthwhile. "SDA: A

Sprite Design Aid for the Commodore 64" greatly simplifies the

task of creating complex sprites. "Color Chart" makes it easy

to select text and background colors when designing your own

programs. You'll also learn how to trace execution in machine

language programs, how to add a cursor to GET statements,

and how to create tape data files. The list goes on and on.

Every program in this book has been thoroughly tested,

and each article contains complete and easy-to-follow program

listings. All you have to do is type them in—a job that's

greatly simplified by "The Automatic Proofreader" and "MLX,"

two valuable program-entry aids that are also included.

Vll

U

U

COMPUTERS Commodore Collection, Volume 2 has been , ,

created with every VIC-20 or Commodore 64 user in mind. LJ

Whether you're a BASIC beginner or an experienced ML pro

grammer, this book is certain to give you many pleasant hours , >

at the keyboard. j 1

LJ

Vlll

u

LJ

LJ

LJ

U

Chess
John Krause

Try to outwit your computer with this fasty multilevel

chess game for the VIC (with 8K expansion) or for the

64* A joystick is required.

During the late eighteenth century, the world was amazed

by a particular machine that had the astonishing ability

to play a good game of chess. It entertained royalty and

played well enough to defeat that master tactician Napoleon.

Hundreds of people paid to play it—until it was discovered

that a human was hidden inside the machine.

A chess-playing machine remained only a dream until the

late 1950s, when the first computer chess game was played.

Now, the World Computer Championship—held every three

years since 1974—attracts almost as much publicity as the hu

man championship matches.

Why has there been so much interest in machines that

play games? One reason is that chess can be used to measure

a computer's intelligence. Chess is easy to play but difficult to

master—so difficult, in fact, that some experts believe that a

computer would have to be almost as intelligent as a human

to become world champion.

Of course, another reason is that chess is just plain fun,

but not if you can't find an opponent. To be an entertaining

opponent, a computer chess game should be fast, easy to use,

and capable of playing at several different skill levels. "Chess"

has all these features and more. Although it's really no match

for the very best commercial chess games, it has managed to

defeat even these giants on rare occasions.

Typing It In
Both the VIC and 64 versions load in two parts. Commodore

64 users should type in Program 1 and save it. Then type in

Program 2 and save it with the name CHESS2.

The VIC version needs at least 8K of expansion memory.

VIC users should make the following changes in Program 1

before saving and then type in Program 3 and save it with the

name CHESS2.

1: Games

5 POKE56,60:POKE55,0:CLR :rem 171

20 IPK<>79727THENPRINTMERROR IN DATA":STOP:rem 129

55 POKE6656,0:POKE44,26:NEW :rem 85

140 DATA11,173,20,145,205,127,63,144,18,141,127,63

,140,128,63 :rem 222

If you are using tape instead of disk, change the 8 to a 1

in line 40 of Program 1. Make sure that the second part is

saved immediately after the first part on the tape. To run

either version, simply load and run the first part. The second

part will load and run automatically.

Joystick Input
After running the program, you will be asked to specify sev

eral play options. First, choose among five skill levels. Then

you can decide whether to start a new game or set up some

previous position. Finally, decide whether to play against the

computer (you can have either white or black pieces) or watch

it play against itself.

All of these options will be discussed in greater detail

later, but for now, type 1 at each prompt. This puts you in

command of the white pieces versus the computer on level 1,

the easiest level.

The first time the program is run, you need to wait a few

seconds while the computer gets itself in order. Then the

board will be displayed with your pieces on the bottom of the

screen and the computer's pieces on the top. You should see a

frame around the square in the lower-left corner of the board

(the VIC version uses a blinking square). This is the cursor

which takes the place of your hand to move pieces around the

board.

Use the joystick (plugged into port 2 on the 64) to move

the cursor to the piece you wish to move. Press and release

the joystick button. Then move the cursor to the square you

want to move to and tap the button again. Your piece moves

to the new square and the computer responds almost instantly

with its move.

Changing the Position
Did you make a stupid move? No problem. One of the most

exciting features of Chess is the player's ability to change the

position by adding or deleting pieces. I decided to add this

feature after having played several games in which I was able

H
Games: 1

to gradually maneuver into a superior position, only to throw

it all away by making a bad blunder.

A piece of either color can be deleted by positioning the

cursor on the piece and pressing the space bar. To add a piece

or change a piece to a different one, move the cursor to the

appropriate square and press P, N, B, R, Q, or K for pawn,

knight, bishop, rook, queen, or king, respectively. This will

put one of your pieces on the square. To add one of the

computer's pieces, hold down SHIFT plus the appropriate key

as described above.

To take back a move, use the editing keys to delete your

piece and put it back on its original square. Don't forget to

take back the computer's move, too.

The editing feature also enables you to make special

moves which cannot be made with the joystick alone (for ex

ample, castling and en passant captures). Castling can be

accomplished by deleting the king and putting it on its new

square, and then moving the rook as you normally would

with the joystick.

Although you can make these special moves, the com

puter will never castle or capture en passant. Due to their

complexity, these moves were not included in its thinking

routine.

The computer will always make a legal move, but it

doesn't check to see that you do the same. You are free to

move any of your pieces to any square you wish without so

much as a contemptuous buzz from the computer. If you're an

experienced player, that shouldn't pose a problem. If you're a

beginner, however, you should familiarize yourself with the

basic rules of chess lest you end up playing some weird muta-

tion that bears little resemblance to the real game. On the

other hand, if you like to cheat, it does make it easier.

When a pawn reaches the other side of the board, it's

automatically promoted to a queen. If you would rather have

a knight, bishop, or rook, you can easily make the change

using the editing keys.

Checkmate
The computer thinks by analyzing thousands of possible

moves and countermoves and choosing what it considers to be

the best one, based on the relative value of the pieces. Most

positions offer several moves which are equally good, in

1: Games

which case the computer chooses one at random. That random

factor insures that every game will be different, and makes for

varied and interesting play.

Play continues until one side is either checkmated or

stalemated. The computer will then stop play and indicate

which side has won.

There are a few quirks in the way the computer deter

mines whether checkmate has occurred. On levels 3 through

5, it announces checkmate prematurely. When this happens,

the computer has determined that it's impossible to avoid

checkmate on the next move or two, assuming both sides

make the best moves.

Also, the computer doesn't know the subtle difference be

tween checkmate and stalemate. Consequently, when stale

mate occurs, it will announce checkmate even though the

game is a draw. Since the computer tries as hard as it can to

checkmate its opponent, it will also try to achieve stalemate,

possibly forcing a draw when it could have won. Fortunately,

this rarely happens because the conditions for stalemate exist

only in unusual circumstances (for instance, when one side

has only the king remaining).

When your king is in check (not checkmate), the com

puter won't give you any hint that this situation exists. So be

extra careful that you don't leave your king in check or move

into check. Otherwise, your king would be in check during the

computer's turn to move—a highly unorthodox (if not illegal)

position. The computer's reply to such a position is unpredict

able, but it usually announces checkmate, forcing you to re

start the game.

In any case, when the computer announces checkmate,

press the joystick button to start a new game. If you want to

try out some of the other play options without waiting for

checkmate, you can start a new game at any time by pressing

RUN/STOP-RESTORE and running the program again.

Play Options
When you choose the black pieces, the board will be inverted

so that you still play from the bottom. Since the player with

the white pieces always moves first, you must wait for the

computer to move before you will be allowed to make your

first move.

If you become mentally exhausted after several bouts

Games: 1

against the computer, give your brain a rest and watch the

computer play itself. When you select this option, just set the

joystick aside and sit back and watch the action. Beginners

will find that this offers an excellent way to learn some good

strategies to use against the computer.

You don't have to begin a game from the starting po

sition. If you choose the option to set up a position, an empty

board will be displayed, and you can use the editing keys to

place pieces on the board in any position you choose. When

the position is set up, the computer will start thinking after

you make your first move.

This feature is especially useful for continuing a previous

game or creating a problem for the computer to solve. It also

allows you to experiment with hypothetical or downright

ridiculous positions. Live out your fantasy by giving yourself

ten queens versus the computer's lone king! The position

doesn't even have to be a legal one. You could invent your

own type of chess by giving each side two kings, for example,

although the computer may get confused trying to determine

when checkmate has occurred.

One of the advantages of a computer opponent over a

human one is that you can tell the computer exactly how hard

you want it to try to beat you—and it will obediently play at

that level of difficulty. That can be important, because it's

no fun if you always lose or if you win almost effortlessly

every time.

You have five skill levels to choose from. The difference

between one level and another is the number of future moves

that the computer evaluates before making a move of its own.

On level 1, for example, it looks two moves ahead (its move

and your reply). Each succeeding level looks ahead one more

move than the previous level.

But smarter play on higher levels doesn't come without a

price. The further ahead the computer looks, the more moves

it must examine and the more time it needs to think. The

thinking time per move varies from one second on level 1 to

about two hours on level 5.

Here's a rundown of the five levels:

Level 1 (Beginner). Thinking time: one second. Looks

ahead two moves. Fast but dumb.

Level 2 (Intermediate). Thinking time: five seconds.

1: Games

Looks ahead three moves. Provides a reasonable challenge for

impatient players.

Level 3 (Tournament). Thinking time: two minutes.

Looks ahead four moves. Since the usual time limit for tour

nament play is 40 moves in two hours, an average of three

minutes per move, this level is best suited for serious players.

Level 4 (Mate in two moves). Thinking time: 30 minutes.

Looks ahead five moves. Capable of solving most mate-in-two

problems.

Level 5 (Postal chess). Thinking time: two hours. Looks

ahead six moves. Simulates postal chess, which has no time

limit.

The thinking times given here are average times. The ac

tual times may range from half to twice the average time,

depending on the position.

Level 4 can be used to solve mate-in-two problems such

as those published in many newspapers. Just select the follow

ing options: level 4, set up position, computer versus itself.

Enter the position using the editing keys, and then make a do-

nothing move by positioning the cursor over a white piece and

pressing the joystick button twice. After several minutes of

deep thought, the computer should respond by moving one of

the white pieces (the solution) and announcing checkmate.

The only mate-in-two problems that the computer cannot

solve are those which involve castling, en passant captures, or

pawn promotion.

How It Thinks
You've probably heard the story that if a monkey spent long

enough at a typewriter, it would eventually type the complete

works of Shakespeare. Theoretically, that is indeed possible—

given enough time. But even at a brisk typing speed of 50

words per minute, it would take that poor monkey billions of

years just to come up with "To be, or not to be/'

But if you substitute a high-speed computer for the mon

key, such a technique becomes a practical method of imitating

intelligence. In effect, this program does just that by using

a popular trial-and-error technique known as the minimax

algorithm.

The computer looks at the present board position and

mentally moves the pieces through all the possible combina

tions of future moves and countermoves up to a certain point,

8

I

Games: 1

say three moves ahead. For each combination, it calculates a

score based on which pieces were captured during the

combination. Each piece is worth a certain number of points

depending on its general importance: 1 point for a pawn, 3 for

a knight or bishop, 5 for a rook, 9 for a queen, and 46 for a

king. (Of course, since you lose the game if your king cannot

escape capture, the value of a king is actually infinite, but 46

is high enough as far as the computer is concerned.)

After the best combination has been found, the com

puter's best move in the present position is simply the first

move in the combination. The problem has been reduced from

analyzing a chess position to finding the maximum and mini

mum of a series of numbers, which is much better suited for a

computer.

Like most algorithms based on trial and error, this one re

quires sifting through an enormous number of combinations to

find the best one. Fortunately, a few tricks can be used to

bring this number down to a manageable size. This algorithm

uses one called alpha-beta cutoff. It makes the computer search

more intelligently, giving it the seemingly paradoxical ability

to find the best move without looking at all the possible

combinations. On level 5, for example, instead of having to

search through roughly 2 billion combinations, it looks at only

50 million.

Even so, it would take BASIC from now till Christmas to

generate that many combinations. That's why I programmed

the algorithm in machine language. To generate all the pos

sible combinations of moves, I used an advanced program

ming technique known as recursion in which a subroutine calls

itself. Capable of analyzing about 5000 combinations per sec-

ond, this routine provides a moderate challenge at a reason

able playing speed.

Program L VIC and 64 Loader

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C.

10 FORI=15449TO16200:READJ:POKEI,J:K=K+J:NEXT

:rem 52

20 IFKO79786THENPRINT"ERROR IN DATA11: STOP:rem 134

30 POKE631,13:POKE632,13:POKE633,13:POKE198,3

X :rem 79

PRINTM{CLR}{3 DOWN}LOAD"CHR$(34) "CHESS».PRGIICH

R$(34)",8 :rem 78

50 PRINT11 {5 DOWN} RUN{HOME} :rem 113

^ 4

1: Games

60 DATA21,12,248,237,235,244,8,19,10,11,1,247,246,

245,255 :rem 34

70 DATA9,11,247,245,9,10,1,246,255,46,9,5,3,3,1

:rem 46

80 DATA0,1,3,3,5,9,46,120,169,192,141,128,63,162,0

:rem 187

90 DATA142,127,63,202,142,126,63,76,97,61,189,108,

63,24,125 :rem 152

100 DATA116,63,72,168,185,136,63,188,108,63,153,13

6.63.104.168 :rem 48

110 DATA189,76,63,153,136,63,24,105,6,168,174,73,6

3,169,0 :rem 56

120 DATA157,129,63,174,126,63,185,113,60,56,253,12

9.63.168.169 :rem 55

130 DATA192,157,129,63,152,224,0,208,34,221,128,63

,48,28,208 :rem 190

140 DATA11,173,4,220,205,127,63,144,18,141,127,63,

140,128,63 :rem 170

150 DATA173,108,63,141,124,63,173,116,63,141,125,6

3,96,221,128 :rem 29

160 DATA63,48,250,240,248,152,157,128,63,189,75,63

,24,105,6 :rem 155

170 DATA168,185,113,60,56,253,128,63,221,127,63,48

,59,224,1 :rem 150

180 DATA240,221,221,127,63,240,50,96,189,108,63,24

,125,116,63 :rem 235

190 DATA141,75,63,168,185,136,63,172,74,63,208,6,2

01,1,16 :rem 48

200 DATA192,48,8,201,0,48,186,201,7,240,182,157,76

,63,201 :rem 35

210 DATA6, 240,4,201,250, 208,12 ,169,46,157 ,128,63 ,1

04,104,104 :rem 166

220 DATA104,76,229,61,188,108,63,185,136,63,172,75

,63,153,136 :rem 2

230 DATA63,188,108,63,169,0,153,136,63,236,73,63,2

08,3,76 :rem 55

240 DATA144,60,232,142,126,63,169,20,157,108,63,16 j j
9,16,56,237 :rem 246 ^

250 DATA74,63,141,74,63,254,108,63,188,108,63,185,
136,63,201 :rem 203 .

260 DATA7,240,86,172,74,63,240,4,201,0,16,77,192,0 M
#208 :rem 139

270 DATA4,201,1,48,69,201,0,16,9,188,108,63,169,0,

56 :rem 47 j I

280 DATA249,136,63,201,1,208,6,32,5,62 ,76,222 ,61,2 LJ
01 #2 srem 131

290 DATA208,6,32,192,62,76,222,61,201,3,208,6,32,2
18#62 srem 190) {

300 DATA76,222,61,201,4,208,6,32,230,62,76,222,61, ^
201#5 srem 170

10 u

Games: 1

310 DATA208,6, 32,242,62,76, 222,61,32,47,63,76,222,

61,189 :rem 250

320 DATA108,63,201,98,48,150,224,0,240,16,169,16,5

6,237,74 :rem 93

330 DATA63,141,74,63,202,142,126,63,76,144,60,173,

124,63,24 :rem 133

340 DATA109,125,63,141,125,63 ,88,96,173, 74,63 ,208,

89,189,108 :rem 223

350 DATA63,24,105,10,168,185,136,63,208,36,169,10,

157,116,63 :rem 194

360 DATA32,21,61,189,108,63,201,31,48,21,201,39,16

,17,24 :rem 232

370 DATA105,20,168,185,136,63,208,8,169,20,157,116

,63,32,21 :rem 142

380 DATA61,189,108,63,24,105,9,168,185,136,63,16,8

,169,9 :rem 21

390 DATA157,116,63,32,21,61,189,108,63,24,105,11,1

68,185,136 :rem 196

400 DATA63,16,8,169,11,157,116,63,32,21,61,96,189,

108,63 :rem 0

410 DATA56,233,10,168,185,136,63,208,36,169,246,15

7,116,63,32 :rem 253

420 DATA21,61,189,108,63,201,81,48,21,201,89,16,17

,56,233 :rem 39

430 DATA20,168,185,136,63,208,8,169,236,157,116,63

,32,21,61 :rem 149

440 DATA189,108,63,56,233,9,168,169,0,217,136,63,1

6,8,169 :rem 69

450 DATA247,157,116,63,32,21,61,189,108,63,56,233,

11,168,169 :rem 205

460 DATA0,217,136,63,16,8,169,245,157,116,63,32,21

,61,96 :rem 255

470 DATA169,0,157,84,63,168,185,89,60,157,116,63,3

2,21,61 :rem 64

480 DATA254,84,63,188,84,63,192,8,48,237,96,169,4,

157,100 :rem 81

490 DATA63,169,0,157,84,63,240,22,169,8,157,100,63

,169,4 :rem 7

500 DATA157,84,63,208,10,169,8,157,100,63,169,0,15

7,84,63 :rem 53

510 DATA168,185,105,60,157,116,63,157,92,63,32,21,

61,189,108 :rem 202

520 DATA63,24,125,116,63,168,185,136,63,208,13,189

,116,63,24 :rem 200

530 DATA125,92,63,157,116,63,76,6,63,254,84,63,189

#84,63 :rem 23

540 DATA221,100,63,48,206,96,169,0,157,84,63,168,1

85,97,60 :rem 114

550 DATA157,116,63,32,21,61,254,84,63,188,84,63,19

2,8,48 :rem 15

560 DATA237,96 :rem 236

11

1: Games

Program 2. 64 Chess (Main Program)

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix G

10 POKE53280,9:POKE53281,9:POKE53272,21:POKE53249,

0 :rem 143

20 PRINTCHR$(14)"{CLR}{DOWN}{WHT}"TAB(18)"CHESS"
:rem 94

30 PRINTTAB(15)"{DOWN}{CYN}JOHN KRAUSE" :rem 108

40 FORI=16256TO16263:POKEI,192:NEXT :rem 109

50 FORI=16264TO16383:POKEI,7:NEXT :rem 11

60 FORI=16285TO16362:READJ:POKEI,J:NEXT :rem 191

70 FORI=54272TO54296:POKEI,0:NEXT :rem 12

80 POKE54296,15:POKE54273,34:POKE54277,10 :rem 51

90 POKE53282,8:POKE53283,1 :rem 203

100 POKE2040,14:POKE53287,7:POKE53277,1:POKE53271,

1 :rem 130

110 D$=" PNBRQKPNBRQK" :rem 23

120 PRINT"{2 DOWN}tYEL}ENTER SKILL LEVEL (1-5)"

:rem 253

130 GETA$:IFA$=""THEN130 :rem 75

140 IFVAL(A$)=0ORVAL(A$)>5THEN130 :rem 154

150 POKE16201,VAL(A$) :rem 132

160 PRINT"{DOWN}{RVS}1{OFF} NEW GAME OR {RVS}2

{OFF} SET UP POSITION?" :rem 142

170 GETE$:IFE$=""THEN170 :rem 91

180 IFVAL(E$)=0ORVAL(E$)>2THEN170 :rem 167

190 PRINT"{DOWN}COMPUTER VS. {RVS}l{OFF} YOU OR

{RVS}2{OFF} ITSELF?" :rem 145

200 GETA$:IFA$=""THEN200 :rem 71

210 IFVAL(A$)=0ORVAL(A$)>2THEN200 :rem 147

220 POKE16202,0:B$="2":IFA$="2"THENPOKE16202,16:B$

="1":GOTO260 :rem 151

230 PRINT"{DOWN}YOU HAVE THE {RVS}l{OFF} WHITE OR
{SPACE}{RVS}2{OFF} BLACK PIECES?" :rem 27

240 GETB$:IFB$=""THEN240 :rem 81

250 IFVAL(B$)=0ORVAL(B$)>2THEN240 :rem 157

260 IFPEEK(12288)O60THENGOSUB380 :rem 204
270 GOSUB490 :rem 182

280 IFA$="1"ANDB$="1"THEN320 :rem 239

290 IFE$="2"THENGOSUB690:POKE53269,0 :rem 98

300 GOTO330 :rem 98

310 IFA$="2"THEN330 :rem 0

320 GOSUB690:POKE53269,0:POKE16202,0 :rem 66

330 SYS15486:IFPEEK(16256)<229ANDPEEK(16256)>150TH
ENI=0:GOTO1070 :rem 250

340 J=PEEK(16252)+16264:R=INT(j/l0-1628.5):C=J-162
85-10*R:GOSUB930 :rem 153

350 J=PEEK(16253)+16264:R=INT(J/10-1628.5):C=J-162
85-10*R:GOSUB980 :rem 160

12

H

Games: 1

360 IFPEEK(16256) <99ANDPEEK{ 16256)>27THENI=1 :GOTO1

070 :rem 101

370 GOTO310 :rem 103

380 PRINT"{DOWN}{CYN}PLEASE WAIT..." :rem 21

390 POKE56334,0:POKE1,51 :rem 88

400 FORI=0TO431:POKEI+12288,PEEK(1+53248):NEXT

:rem 227

410 POKE1,55:POKE56334,1 :rem 86

420 FORI=12792TO12799:POKEI,85:NEXT :rem 123

430 FORI=0TO383:READJ:POKE12800+1,J :rem 99

440 POKE13184+I,JOR85 :rem 192

450 POKE13568+I#JAND170 : rem 36

460 POKE13952+I,(JAND170)OR(255-JAND85):NEXT

:rem 49

470 FORI=896TO922:READJ:POKEI,J:NEXT :rem 48

480 FORI=923TO958:POKEI,0:NEXTiRETURN :rem 145

490 POKE53272,29:POKE53270#216 :rem 149

500 PRINT"{CLR}{2 DOWN}"TAB(14)"{CYN}LEVEL"PEEK(16
201) :rem 115

510 PRINTllH3fl;:IFB$="l"THEN530 :rem 203

520 POKE53283,0:PRINT"g23";:POKE16288,6:POKE16289,

5:POKE16358,250:POKE16359,251 :rem 18

530 IFE$="1"THEN560 :rem 12

540 FORI=0TO7:FORJ=0TO7:POKE16285+10*I+J,0:NEXT:NE

XT :rem 243

550 PRINT:GOSUB1170:GOSUB1170:GOTO680 :rem 62

560 PRINT"{DOWN} {RVS}HIJK{OFF}HIJK{RVS}@ABC{OFF}

{SHIFT-SPACE}iK3Bl3BT3{RVS}XYZT{OFF}PQRSgU3BO3
@EF3XYZ+" :rem 57

570 PRINT5Tn'RVS}LMNO{OFF}LMNO{RVS}DEFG{OFF}i@3BG3
g3E3{}]t{}i'

:rem 202

580 print" *abcEa3Ee3Br3Ew3*abcBa3Ee3Er3Ew3*abcEa3
EE3ER3EWgABCEA3EE3ER3EW?r" :*renTl58

590 print" defg1h3Ej3El3Ey3defgEh3Ej3El3Ey3defgEh3
EJ3EL3EYlDEFGEH3EJ3EL3EYjir" Trim 31

600 GOSUB1170 :rem 223

610 C$=CHR$(34):PRINT" {RVS}PQRS 1"C$"#PQRS 1"C$"#
PQRS 1"C$"#PQRS i1^?"*" Trem 229

620 PRINT" {RVSTTUVW$%&ITUVW$%&'TUVW$%&'TUVW$%&>>1
trem 43

630 PRINT" {RVS}89:;XYZ+0123gA3EE3ER3EW3HIJK
{SHIFT-SPACE}gK3HI?T3()*+E£3£EN3EQ3irT7im 76

640 PRINT" {RVS}<=>?E-l-tE*34567gH3BJ3BL3BY3LMNO
E@3EG3E+3EM3,-./gD3Tz3Es3EP3" :renT238

650 IFB$="1"THENRETURN :rem 81

660 PRINT"{HOME}{4 DOWN}"SPC(13)"g£3£gN3EQ3{RVS}
PQRS11 :rem 161

670 PRINTSPC(13)"{13 DOWN} {RVS}gU3EO3@EF3*ABC
{DOWN}" "Trim 245

13

1: Games

680 RETURN :rem 126

690 POKE53269,1 :rem 52

700 GETC$:IFC$=MIIORFTHEN780 :rem 68

710 N=0 :rem 83

720 IFMID$(D$,N+1,1)=C$THEN750 :rem 129

730 N=N+1:IFN<13THEN720 :rem 78

740 GOTO780 :rem 115
750 J=16285+C+10*R:IFN>6THENN=262-N :rem 249

760 IFNTHENGOSUB990:GOTO780 :rem 221
770 GOSUB940:FORI=0TO1:FORP=0TO3:POKEK+40*I+P,M:NE

XT:NEXT :rem 182

780 I=NOTPEEK(56320) :rem 140

790 R=R-SGN((IAND2)-(IAND1)) :rem 81

800 C=C+SGN((IAND8)-(IAND4)) :rem 50

810 IFR<0THENR=0 :rem 212

820 IFR>7THENR=7 :rem 229

830 IFC<0THENC=0 :rem 184

840 IFO7THENC=7 :rem 201

850 POKE53248,30+32*C:POKE53249,193-16*R :rem 167

860 IF(PEEK(56320)AND16)THEN700 :rem 244

870 J=16285+C+10*R :rem 162

880 IFFTHEN970 :rem 68

890 IFPEEK(J)=0ORPEEK(J)>6THEN700 :rem 248

900 F=1:GOSUB930 :rem 163

910 IF(PEEK(56320)AND16)THEN700 :rem 240

920 GOTO910 :rem 110

930 POKE54276,0:POKE54276,17 :rem 52

940 K=1745-80*R+4*C:N=PEEK(J):POKEJ,0 :rem 103

950 M=32:IF(R+C)/2-INT((R+C)/2)THENM=63 :rem 197
960 RETURN :rem 127

970 F=0 :rem 83

980 FORI=0TO1:FORP=0TO3:POKEK+40*I+P,M:NEXT:NEXT

:rem 98

990 K=1745-80*R+4*C :rem 216

1000 M=0:IF(R+C)/2-INT((R+C)/2)THENM=48 :rem 182

1010 IFR=0ANDN=255THENN=251 :rem 92

1020 IFR=7ANDN=1THENN=5 :rem 150

1030 IFN<7THENM=M+96 :rem 180

1040 POKEJ,N:IFN>6THENN=256-N :rem 21

1050 FORI=0TO1:FORJ=0TO3:POKEK+40*I+J# 56+M+8*N+4*I

+J:NEXT:NEXT :rem 51

1060 RETURN xrem 167

1070 IFPEEK(16202)THENI=I+1 :rem 34

1080 I=I+VAL(B$) : PRINT11 {DOWN} {CYN} CHECKMATE I

{2 SPACES}11; :rem 249
1090 IFl/2-INT(1/2)THENPRINT"BLACK WINS.":GOTO1110

:rem 24

1100 PRINT"WHITE WINS.11 :rem 131

1110 POKE54273#40:POKE54276#0:POKE54276#17 :rem 89
1120 FORI=0TO999:NEXT :rem 40

14

Games: 1

n

n

1130 POKE54273,20:POKE54276,0:POKE54276,17 :rem 89

1140 PRINT"PRESS JOYSTICK BUTTON." :rem 158

1150 IF(PEEK(56320)AND16)THEN1150 :rem 77

1160 RUN :rem 189

1170 FORI=1TO2:FORJ=1TO2 :rem 234

1180 PRINT11 ????{4 SPACES}????{4 SPACES}????

{4 SPACES}????{4 SPACES}" :rem 139
1190 NEXT:FORJ=1TO2 :rem 184

1200 PRINT"{5 SPACES}????{4 SPACES}????{4 SPACES}?
???{4 SPACES}????" :rem 132

1210 NEXT:NEXT:RETURN :rem 150

1220 DATA4,2,3,5,6,3,2,4,7,7,1,1,1,1,1,1,1,1,7

:rem 193

1230 DATA7,0,0,0,0,0,0,0,0,7,7,0,0,0,0,0,0,0,0,7

:rem 0

1240 DATA7,0,0,0,0,0,0,0,0,7,7,0,0,0,0,0,0,0,0,7

:rem 1

1250 DATA7,255,255,255,255,255,255,255,255,7

:rem 188

1260 DATA7,252,254,253,251,250,253,254,252 :rem 69

1270 DATA0,0,0,0,0,0,0,0 :rem 152

.1280 DATA0,0,0,3,15,15,3,15 :rem 65

1290 DATA0,0,0,192,240,240,192,240 :rem 164

1300 DATA0,0,0,0,0,0,0,0 :rem 146

1310 DATA0,0,0,0,0,0,0,0 :rem 147

1320 DATA3,3,15,63,63,0,0,0 :rem 66

1330 DATA192,192,240,252,252,0,0,0 :rem 165

1340 DATA0,0,0,0,0,0,0,0 :rem 15Gf

1350 DATA0,0,0,0,3,3,3,3 :rem 163

1360 DATA0,192,240,255,255,63,255,255 :rem 83

1370 DATA0,0,0,0,240,252,252,255 :rem 61

1380 DATA0,0,0,0,0,0,0,0 :rem 154

1390 DATA15,15,3,0,0,0,0,0 :rem 10

1400 DATA255,243,3,15,63,255,255,0 :rem 178

1410 DATA255,255,255,255,255,255,255,0 :rem 136

1420 DATA0,192,192,192,192,192,192,0 :rem 29

1430 DATA0,0,0,0,0,0,0,0 :rem 150

1440 DATA0,60,60,255,255,255,255,255 :rem 31

1450 DATA0,60,60,63,207,243,243,243 :rem 225

1460 DATA0,0,0,0,0,0,0,0 :rem 153

1470 DATA0,0,0,0,15,63,48,0 :rem 69,

1480 DATA63,48,63,48,255,252,0,0 :rem 90

1490 DATA252,12,252,12,255,63,0,0 :rem 121

1500 DATA0,0,0,0,240,252,12,0 :rem 150

1510 DATA0,3,3,3,0,0,0,0 :rem 158

1520 DATA0,207,207,255,192,255,255,255 :rem 132

1530 DATA0,243,243,255,3,255,255,255 :rem 2$

1540 DATA0,192,192,192,0,0,0,0 :rem 220

1550 DATA0,0,0,0,3,15;i5,0 :rem 8

1560 DATA255,255,255,192,255,255,255,0 :rem 142

15

1: Games

DATA0,48,48,48,48,252,252,

DATA0,0,0,0,48,48,192,192

DATA15,3,3,3,3,3,3,0

DATA255,0,255,252,255,0,25

DATA255.3.255.255.255.3.25

DATA0,0,0,15,63,63,63,15

DATA0,63,51,60,243,255,240,

DATA0,240,48,243,63,255,63,

DATA0,0,0,192,240,240,240,1

DATA15.3.3.3.3.3.3.0

DATA0,63,51,60,243,255,240,252

DATA0,240,48,243,63,255,63,255

DATA0,0,0,192,240,240,240,192

DATA15,3,3,3,3,3,3,0

DATA255,0,255,252,255,0,255,0

DATA255.3.255.255.255.3.255.0DATA255,3,255,255,255,3,255,0

DATA192,0,0,0,0,0,0,0

DATA255,255,192,192,0,192,192,0,1

DATA192,0,192,192,0,192,192,0,192

DATA192,0,192,192,0,192,255,255,1

:rem 38

:rem 212

:rem 123

:rem 192

:rem 193

:rem 231

:rem 224

:rem 178

:rem 188

:rem 7

:rem 179

:rem 230

:rem 243

:rem 160

:rem 223

:rem 177

:rem 187

:rem 6

:rem 235

:rem 128

:rem 237

Program 3. VIC Chess (Main Program)

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 POKE36879,138:POKE36869,194 :rem 172

20 PRINT"{CLR}{WHT}"TAB(8)"{DOWN}CHESS :rem 84

30 PRINT"{DOWN}{CYN}{5 SPACES}JOHN KRAUSE :rem 188

40 FORI=16256TO16263:POKEI,192:NEXT :rem 109

50 FORI=16264TO16383:POKEI,7:NEXT :rem 11

60 FORI=16285TO16362:READJ:POKEI,J:NEXT :rem 191

70 D$=M PNBRQKPNBRQK" :rem 236

80 PRINT"{2 DOWN]IYEL}SKILL LEVEL (1-5)? :rem 113

90 GETA$:IFA$=MIITHEN90 :rem 245

100 IFVAL(A$)=0ORVAL(A$)>5THEN90 :rem 107

110 POKE16201,VAL(A$) :rem 128

120 PRINT"{DOWN}{RVS}1{OFF} NEW GAME :rem 172

130 PRINT" {RVS}2{OFF} S3ET UP POSITION :rem 159
140 GETE$:IFE$=""THEN140 :rem 85

150 IFVAL(E$)=0ORVAL(E$)>2THEN140 :rem 161

160 PRINT"{DOWN}COMPUTER VS. :rem 29
170 PRINT"{RVSjlTOFF} YOU :rem 25
180 PRINT"{RVS}2{OFF} ITSELF :rem 229

190 GETA$:IFA$=""THEN190 :rem 87

200 IFVAL(A$)=0ORVAL(A$)>2THEN190 :rem 154
210 POKE16202,0:B$="2":IFA$="2"THENPOKE16202,16:B$

="1":GOTO270 :rem 151

220 PRINT"{DOWN}YOU HAVE THE :rem 214
230 PRINT"{RVSJlTOFF} WHITE PIECES :rem 83
240 PRINT"{RVS}2{OFF} BLACK PIECES :rem 49

u

u

u

u

u

16

H
Games: 1

n

250 GETB$:IFB$=MIITHEN250 :rem 83

260 IFVAL(B$)=0ORVAL(B$)>2THEN250 :rem 159

270 IFPEEK(5120)<>28THENGOSUB390 :rem 149

280 GOSUB460 :rem 180

290 IFA$="1"ANDB$=I'1"THEN330 : rem 241

300 IFE$="2"THENGOSUB660 :rem 137

310 GOTO340 :rem 100

320 IFA$="2"THEN340 :rem 2

330 GOSUB660:POKE16202,0 :rem 114

340 SYS15486:IFPEEK(16256)<229ANDPEEK(16256)>150TH

ENI=0:GOTO1120 :rem 247

350 J=PEEK(16252)+16264:R=INT(J/10-1628.5):C=J-162

85-10*R:GOSUB980 :rem 159

360 J=PEEK(16253)+16264:R=INT(J/10-1628.5):C=J-162

85-10*R:GOSUB1030 :rem 196

370 IFPEEK(16256)<99ANDPEEK(16256)>27THENI=1:G0T01

120 :rem 98

380 GOTO320 :rem 105

390 PRINT"{DOWN}{CYN}PLEASE WAIT... :rem 244

400 FORI=0TO431:POKE5120+I,PEEK(32768+1):NEXT

:rem 170

410 FORI=0TO223:READJ:POKE6224+I,J :rem 45

420 POKE5776+I,JOR85 :rem 150

430 POKE6000+I,JAND170 :rem 225

440 POKE5552+I,(JAND170)OR(255-JAND85):NEXT

:rem 252

450 RETURN : rem 121

460 POKE36869,205 :rero 156

470 PRINT"{CLR}{DOWN}{CYN}{7 SPACES}LEVEL"PEEK(162

01)"{DOWN}{WHT} :rem 207

480 POKE36878,15:POKE646,9:IFB$="l"THEN500:rem 128

490 POKE36878,31:POKE646,8:POKE16288,6:POKE16289,5
:POKE16358,250:POKE16359,251 :rem 233

500 IFE$=M1"THEN530 :rem 6

510 FORK=0TO70STEP10:FORJ=0TO7:POKE16285+K+J,0:NEX

T:NEXT :rem 54

520 GOSUB1210:GOSUB1210:RETURN :rem 115

530 PRINT"{3 SPACES}{RVS}Z£{OFF}Zg-3{RVS}VX{OFF}
E+li£l{RVS} ${OFF}TtSHIFT-SPACE}{RVS}RT{OFF}
BlH@iM :rem 16

540 PRINT"{3 SPACES}{RVS}[]{OFF}+-{RVS}WYtOFF}gM§
£{RVS}#%{OFF}g*§EK§{RVS}SU{OFF}gT§BGl":rem 34

550 PRINT"{3 SPACES}VX{RVS}NP{OFF}VX{RVS}NP{OFF}VX
{RVS}NP{OFF}yx{RVS}NP" :rem 1*53"

560 PRINT" {3 SPACES }WY{RVS}OQ{OFF}WY{RVS}OQ{OFF}WY
{RVS}OQ{OFF}WY{RVS}OQ" :rem 170

570 GOSUB1210 :rem 224

580 PRINT"{3 SPACES}gRlgHl:<gRlBH32<iRlBH§:<gRlgHl
:<" :rem 222

17

91

79

43

1: Games

590 PRINT" {'3 SPACES}gW§gJ3;=BWlBJl;=BWlBJ3;=BWlgJ§

;=" :rem 239

600 PRINT"{3 SPACES}FHgL3Bu3BD{RVS}BD{OFF}NP@gCi>*

EVHRVS}@" :rem 53

610 PRINT"{3 SPACES}GIgYiBO§CE{RVS}CE{OFF}0QiF§gX3

?AgB3{RVS}AM :rem 70

620 POKE4173,162 :rem

630 IFB$=M1"THENRETURN :rem

640 PRINT"{HOME}{3 DOWN}"SPC(9)"gN§BD§{RVS}t
:rem

650 PRINT"{13 DOWN}"SPC(9)"{RVS}FH{OFF}JL{DOWN}":R
ETURN :rem 240

660 GETC$:IFC$=""ORFTHEN740 :rem 69

670 N=0 :rem 88

680 IFMID$(D$,N+1,1)=C$THEN710 :rem 130

690 N=N+1:IFN<13THEN680 :rem 88

700 GOTO740 :rem 107

710 J=16285+C+10*R:IFN>6THENN=262-N :rera 245

720 IFNTHENGOSUB1040:GOTO740 :rem 248

730 GOSUB990:FORI=0TO1:FORP=0TO1:POKEK+22*P+I,M:NE

XT:NEXT :rem 181

740 POKE37154,127:I=PEEK(37152)AND128:J=(I=0)

:rem 2

750 POKE37154,255:I=PEEK(37151)

760 R=R+((IAND8)=0)-((IAND4)=0)

770 C=C+((IAND16)=0)-J

780 IFR<0THENR=0

790 IFR>7THENR=7

800 IFC<0THENC=0

810 IFO7THENC=7

820 I=4473-44*R+C+C

830 J=PEEK(I)

840 P=56:IFJ>106THENP=-P

850 POKEI,J+P:POKEI+22,J+P+1

860 POKEI+l,J+P+2:POKEI+23,J+P+3

870 FORP=0TO70:NEXT

880 POKEI,J:POKEI+22,J+1

890 POKEI+l,J+2:POKEI+23,J+3

900 FORP=0TO30:NEXT

910 IF(PEEK(37151)AND32)THEN660

920 J=16285+C+10*R

930 IFFTHEN1020

940 IFPEEK(J)=0ORPEEK(J)>6THEN660

950 F=1:GOSUB980

960 IF(PEEK(37151)AND32)THEN660

970 GOTO960

980 POKE36876,225

990 K=4473-44*R+C+C:N=PEEK(J):POKEJ,0

1000 M=54:IF(R+C)/2-INT((R+C)/2)THENM=110

1010 POKE36876,0:RETURN

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

206

152

149

218

235

181

198

223

225

181

148

:rem 81

:rem

:rem

198

161

:rem 94

:rem

:rem

:rem

188
244

158

:rem 99

:rem

:rem

:rem

:rem

:rem

:rem

249

173

249

120

163

125

:rem 21

:rem 117

u

LJ

LJ

U

18

Games: 1

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

F=0 :rem 118

FORI=0TO1:FORP=0TO1:POKEK+22*P+I,M:NEXT:NEXT

:rem 131

K=4473-44*R+C+C :rem 12

M=54:IF(R+C)/2-INT((R+C)/2)THENM=110 :rem 26

IFR=»0ANDN=255THENN=251 :rem 97

IFR=7ANDN=1THENN=5 :rem 155

IFN>7THENM=M+28 :rem 182

POKEJ,N:IFN>6THENN=256-N :rem 26

FORI=0TO1:FORJ=0TO1:POKEK+22*J+I,M+4*N+I+I+J:

NEXT:NEXT :rem 169

RETURN :rem 163

IFPEEK(16202)THENI=I+1 :rem 30

I=I+VAL(B$):PRINTM{DOWN}{CYN}CHECKMATEI ";

:rem 245

IFl/2-INT(l/2)THENPRINTMBLACK WINS.":G0T01160

:rem 25

PRINTMWHITE WINS." :rem 136

POKE36876,240:FORI=0TO500:NEXT :rem 79

POKE36876,195:FORI=0TO500:NEXT:POKE36876,0

:rem 44

PRINT" {UP}PRESS JOYSTICK BUTTON.11; :rem 110

IF(PEEK(37151)AND32)THEN1190 :rem 84

RUN :rem 184

FORK=1TO2:FORJ=1TO2 :rem 231

PRINT"{3 SPACES}g2

NEXT:FORJ=1TO2

PRINTM{3 SPACES}RRg2 SlRRg2

NEXT:NEXT:RETURN

DATA4,2,3,5,6,3,2,4,7

DATA7,1#1#1,1,1,1,1,1,7

DATA7#0#0#0#0#0,0#0#0#7

S§RRg2 S§RRg2 SjRR"

:rem 150

:rem 179

:rem 152

:rem 154

:rem 23

:rem 102

:rem 95

##,##,f,# :rem 96

DATA7,0,0,0,0,0,0,0,0,7 :rem 88

DATA7,0,0,0,0,0,0,0,0,7 :rem 89

DATA7,255,255,255,255,255,255,255,255,7

:rem 186

DATA7,252,254,253,251,250,253,254,252 :rem 67

DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 :rem 118

DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 :rem 119

DATA0,0,0,0,0,3,3,0,3,0,0,3,3,0,0,0 :rem 135

DATA0,0,0,0,192,240,240,192,240,192,192,240,2

40,0,0,0 :rem 39

DATA0,48,63,63,63,15,63,63,60,60,60,0,3,15,15

,0 :rem 26

DATA0,0,0,192,240,240,252,252,252,252,252,252

,252,252,252,0 :rem 100

19

u
1: Games

LJ

1400 DATA0,3,15,15,15,15,15,15,15,0,3,0,3,63,48,0 i i

:rem 107 LJ
1410 DATA0,48,204,204,204,204,252,252,252,0,240,0,

240,63,3,0 :rem 139

1420 DATA0,51,51,63,63,12,15,15,15,15,15,12,63,63, M
63,0 :rem 114

1430 DATA0,204,204,252,252,48,240,240,240,240,240,

48,252,252,252,0 :rem 197 < i

1440 DATA0,3,3,3,51,51,51,63,15,0,15,15,15,0,15,0 LJ
:rem 105

1450 DATA0,48,48,48,51,51,243,255,252,0,252,60,252

,0,252,0 :rem 71

1460 DATA0,0,3,0,12,63,63,63,63,0,15,15,15,0,15,0

:rem 107

1470 DATA0,192,240,192,204,63,255,255,255,0,252,60

,252,0,252,0 :rem 12

20

Jackpot
Original Program by Rick Rothstein

VIC and 64 Versions by Kevin Mykytyn

Now you can experience the thrill of playing slot ma

chines without the danger of losing your money. For the

unexpanded VIC or the Commodore 64*

Have you ever been to a casino in Las Vegas or Atlantic

City? If so, you were probably dumbstruck by the num

ber of slot machines waiting to take your money.

Those nefarious one-armed bandits dazzle you with bright

lights and promises of instant wealth, but people don't call

them bandits for nothing. A recent trip to Atlantic City—and

an unprofitable encounter with some of those machines—

prompted me to write "Jackpot/' It will give you a taste of ca

sino excitement without taking a bite out of your bank account.

Pulling the Lever
Colorful graphics are used to display a payout chart, your cur

rent monetary standing, and three large windows through

which cherries, limes, plums, bells, bars, or lucky sevens will

show. The shape displayed in each window is picked at ran

dom from 20-position wheels.

To play the VIC version, press the P key to pull the lever.

Three shapes will appear in the windows. If you win, your

total will be increased appropriately. If you lose, your total

will decrease by one dollar. Press E to end the game.

On the 64 version, press 1, 2, 3, or 4 to pull the lever.

Pressing 1 lets you give it a gentle tug; pressing 4 is the hard

est possible pull. Again, your winnings (or losses) will be re

flected in your total. As on the VIC, press E to end the game.

Changing the Odds
In the VIC version, the faces of the three wheels are numeri

cally represented in the DATA statements in lines 310-330. A

1 represents a bar. The number 2 is a seven; 3 is a bell; 4 is a

cherry; 5 is a lime; 6 is a plum; and 7 is a lemon. To change

the odds, simply change the numbers in the DATA state

ments. For example, if you change all the numbers to l's, you

will always come up with the triple bar.

21

1: Games

The Commodore 64 version uses a machine language sub

routine and colored sprites to produce a smooth spinning ef

fect. Six different sprites are used (two for each window), and

the result is remarkably realistic spinning. The different shapes

are displayed by changing the sprites' data pointers. You can

alter the odds by changing the numbers in the DATA state

ments in lines 155-165.

Program 1. Jackpot, VIC Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 POKE52,28:POKE56,28:POKE51,0:POKE55#0:GOSUB300

:rem 158

20 PRINT" {CLR}11; :FORA=1TO4:FORB=1TO22 :PRINT" @" ; :NE

XT:NEXT :rem 248

30 FORA=1TO2:PRINT"@@@@@@{2 SPACES}@@{2 SPACES}@@
[2 SPACES}@@@@@@";:NEXT :rem 141

40 FORA=1TO3:FORB=1TO22:PRINT"@M7:NEXT:NEXT:rem 32

50 PRINTBVBVB$" 100 "V$BVB$"{4 SPACES}50":PR
INTSVSVS$"{2 SPACES}50 "V$SVS$"{4 SPACES}
25" :rem 172

70 PRINTBEVBE?VBE"{2 SPACES}18 "VBEVBEVB

"{2 SPACES}10" :rem 101

80 PRINTCVCVC$"{2 SPACES}15 "V$CVC$"
{5 SPACES}5 ":PRINTVPVPVP"{2 SPACES}14 "V
PVPVB"{2 SPACES}10" :rem 158

95 PRINTLVLVL$"{2 SPACES}10 "V$C$"{7 SPACES}2"
:rem 59

100 A=RND(1):A$="":GETA$:IFA$<>"P"ANDA$<>"E"THEN10

0 :rem 75

110 IFA$="E"THENPRINT"{CLR}":POKE36869,240:END

:rem 43

115 T$="{D0WN}{2 SPACES}{UP}{2 LEFT}{2 SPACES}
{DOWN}":GOSUB210:GOSUB220:GOSUB220:PRINTY$"

{UP}{21 SPACES}" :rem 127

120 W=0:H=0:N=1:GOSUB200:GOSUB210:GOSUB260:N=2:GOS

UB200:GOSUB220:GOSUB260 :rem 10

140 N=3:GOSUB200:GOSUB220:GOSUB260 :rem 63

145 FORA=1TO24STEP2:H$=STR$(H):H$=RIGHT$(H$,(LEN(H

$)-l)) :rem 249

150 K=LEN(P$(A)):IFP$(A)=LEFT$(H$,K)THENW=VAL(P$(A

+1)) :rem 60

160 NEXT:IFW>0THENPRINTY$"{UP}{2 SPACES}YOU WIN"W-

1"DOLLARS":GOSUB280 :rem 187

170 TT=TT-l8lFTT>0THENTT$=STR$(TT)+"{2 SPACES}":PR

INTY$"{4 SPACES}TOTAL NOW "TT$;:POKE198r0:GOTO
100 s rem 145

180 PRINTY$"{UP}{4 SPACES}YOU ARE BROKE" :rem 192

22

Games: 1

190 PRINT11 {3 SPACESjPLAY AGAIN{2 SPACES}Y/N
:rem 18

195 GETA$:IFA$<>"Y"ANDA$<>"N"THEN195 : rem 59

197 IFA$=MY"THENTT=50:GOTO20 :rem 189

198 PRINT"{CLR}":END :rem 23

200 A=INT(RND(1)*17)+1:B=G%(N,A):T$=F$(B):H=H*10+B

: RETURN : rem 214

210 PRINT"{HOME}{4 DOWN}{6 RIGHT}"T$;:RETURN

:rem 54

220 PRINT"{UP}{2 RIGHT}"T$;:RETURN :rem 253
260 POKEV,150:FORA=1TO30:NEXT:POKEV,0:IFN<3THENFOR

A=1TORND(1)*200:NEXT :rem 210

270 RETURN :rem 121

280 FORQ=lTOW:TT=TT+l:TT$=STR$(TT)+"{2 SPACES}":PR

INTY$"{4 SPACES}TOTAL NOW "TT$;:POKEV1,220

:rem 220

290 FORA=1TO110-W:NEXT:POKEV1,0:NEXT:RETURN:rem 66

300 PRINT"{CLR}{3 DOWN}{2 SPACES}LOADING CHARACTER

S" :rem 8

305 DIMG%(3,17):FORA=1TO3:FORB=1TO17:READC:G%(A,B)

=C:NEXT:NEXT : rem 41

310 DATA1,2,3,4,5,6,7,5,7,3,4,5,6,7,3,2,3 :rem 231

320 DATA1,2,3,4,5,6,7,5,7,3,4,5,6,7,3,6,3 :rem 236

330 DATA1,2,3,4,5,6,7,5,7,3,4,5,6,7,3,2,3 :rem 233

340 DIMP$(24):FORA=1TO24:READP$(A):NEXT :rem 74

350 DATA4,3,44,6,444,16,555,11,661,11,666,15,331,1

1,333,19,22,26,222,51,11,51,111,101 :rem 103

400 A=7168:B=7679:C=25600:FORI=ATOB:POKEI,PEEK(I+C

):NEXT:POKE36869,255 :rem 199

410 READB:IFB=-1THEN430 :rem 95

420 FORI=0TO7:READC:POKE7168+B*8+I,C:NEXT:GOTO410

:rem 24

430 B$="{RED}%&{DOWN}{2 LEFT}'(":S$="{RED}l-{DOWN}

{2 LEFT}#$":L$="{GRN}t«{DOWN}{2 LEFT}>?":C$="
{RED}Z[{DOWN}{2 LEFT}:;":P$="{PUR}£]{DOWN}
{2 LEFT}<=" :rem 118

440 BE$="{YEL})*{DOWN}{2 LEFT}+,":LE$="{YEL}t«
{DOWN}{2 LEFT}>?":U$="{UP} ":V$="{UP}":Y$="
{HOME}{22 DOWN}" :rem 54

450 F$(1)=B$:F$(2)=S$:F$(3)=BE$:F$(4)=C$:F$(5)=L$:

F$(6)=P$:F$(7)=LE$:rem 177

490 POKE36878,15:V=36877:V1=36876:TT=50:RETURN

:rem 244

500 DATA26,0,0,0,1,2,4,8,28 :rem 64

501 DATA27,0,0,128,128,128,64,56,124 :rem 22

502 DATA28,0,0,0,3,15,31,63,63 :rem 218

503 DATA29,0,96,192,224,240,248,252,252 :rem 182

504 DATA30,0,0,0,0,7,31,63,127 :rem 212

505 DATA31,0,0,0,0,224,248,252,254 :rem 162

506 DATA33,0,0,15,15,0,0,0,0 :rem 103

23

1: Games

507 DATA45,0,0,248,248,24,48,96,192 :rem 248

508 DATA35,1,3,3,3,3,3,0,0 :rem 15

509 DATA36,128,0,0,0,0,0,0,0 :rem 108

510 DATA37,0,0,0,255,205,128,177,170 :rem 15

511 DATA38,0,0,0,255,179,1,153,85 :rem 128

512 DATA39,179,170,178,128,205,255,0,0 :rem 133

513 DATA40,217,85,85,1,179,255,0,0 :rem 185

514 DATA41,0,0,3,7,15,15,15,15 :rem 219

515 DATA42,0,0,128,192,224,224,224,224,43,15,15,31

,63,63,63,1,0 :rem 49

517 DATA44,224,224,240,248,248,248,128,0,58,62,127

,127,127,127,62,28,0 :rem 181

519 DATA59,254,254,254,254,124,56,0,0,60,63,63,63,

63,31,15,3,0 :rem 24

521 DATA61,252,252,252,252,248,240,224,0,62,255,12

7,63,31,7,0,0,0 :rem 151

523 DATA63,255,254,252,248,224,0,0,0,0,255,255,255

,255,255,255,255,255,-1 :rem 57

Program 2. Jackpot, 64 Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

5 PRINT"{CLR}";:POKE51,0:POKE55,0:POKE52,48:POKE56
,48:CLR:GOSUB 60 :rem 61

10 TT=50:S=54272:FORL=STOS+24:POKEL,0:NEXT:rem 135

15 POKES+1,112:POKES+5,9:POKES+15,208:POKES+24,15

:rem 119

20 POKES+8,150:POKES+12,8:POKES+13,0 :rem 94

25 PRINT"{CLR}";:FOR A=1TO5 :FORB=1TO40 :PRINT11 {RVS}

11; :NEXTB,A :rem 6

30 FOR B=1TO5:PRINT"{RVS}{9 SPACES}{OFF}{6 SPACES}
{RVS}{2 SPACES}{OFF}{6 SPACES}{RVS}{2 SPACES}
{OFF}{6 SPACES}{RVS}{9 SPACES}";:NEXT :rem 143

35 FORA=1TO5:FORB=1TO40:PRINT"{RVS} ";:NEXTB,A:POK
E53269,255 :rem 104

40 PRINT:PRINT"{RED} ({8 SPACES}2{4 SPACES}{RED}(
{SPACE}({6 SPACES}5{4 SPACES}{GRN}& & {RED}%
{3 SPACES}10" :rem 31

45 PRINT:PRINT"{GRN} &{SHIFT-SPACE}&{SHIFT-SPACE}&
{3 SPACES}10{4 SPACES}{YEL}&{SHIFT-SPACE}&
{SHIFT-SPACE}*{3 SPACES}10{4 SPACES}{PUR}'
{SHIFT-SPACE}1 {RED}%{3 SPACES}14" :rem 19

50 PRINT:PRINT"{PUR} '{SHIFT-SPACE}•{SHIFT-SPACE}'
{SHIFT-SPACE}{2 SPACES}14{4 SPACES}{RED}(
{SHIFT-SPACE}({SHIFT-SPACE}({3 SPACES}15
{4 SPACES}{YEL}#{SHIFT-SPACE}#{SHIFT-SPACE}
{RED}%{3 SPACES}18" :rem 91

24

Games: 1

55 PRINT2PRINTM{YEL} #{SHIFT-SPACE}#{SHIFT-SPACE}#
{3 SHIFT-SPACE}18{4 SPACES}{RED}${SHIFT-SPACE}$
{SHIFT-SPACE}${3 SPACES}50{4 SPACES}{RED}%
{SHIFT-SPACE}%{SHIFT-SPACE} % { 2 SPACES}100":GOTO
400 :rem 34

60 POKE 53281,1:POKE53275,255 :D$=" {HOME} {23 DOWN}11

:rem 233

65 PRINT"{3 DOWN}{BLK}{RVS}{11 RIGHTjONE ARMED BAN
DIT" :rem 77

70 PRINT "{2 DOWN} YOU WILL BEGIN WITH $50 AND TRY

TQ" :rem 46

75 PRINT11 {DOWN} {8 SPACES} TURN IT INTO A FORTUNE."
:rem 0

80 PRINT"{DOWN} IT WILL COST YOU $1 FOR EACH PULL.

11 :rem 13

85 PRINT"{DOWN} TO PULL THE HANDLE USE THE KEYS 1-

4." :rem 134

90 PRINT"{DOWN} THE HIGHER THE NUMBER, THE HARDER

{SPACE}THE :rem 15

95 PRINT" {DOWN} {13 SPACES}PULL WILL BE." :rem 122

100 PRINT"{DOWN} TO STOP THE GAME AT ANY TIME PRES

S (E)" :rem 38

105 PRINT"{2 DOWN} PLEASE WAIT WHILE I LOAD THE SP
RITES" :rem 101

110 DIM WIN$(24) :rem 53

115 FOR A=1TO24:READWIN$(A):NEXT :rem 169

120 DATACHERRY,2,CHERRYCHERRY,5,LIMELIMEBAR,10,LIM

ELIMELIME,10 :rem 9

125 DATAPLUMPLUMBAR,14,PLUMPLUMPLUM,14,BELLBELLBAR

,18 :rem 223

130 DATABELLBELLBELL,18,SEVENSEVENSEVEN,50,BARBARB

AR,100 :rem 72

135 DATALEMONLEMONLEMON,10,CHERRYCHERRYCHERRY,15

:rem 214

140 M=2047:NN=12288:OO=53248:S=54272:FORL=STOS+24:

POKEL, .: NEXT : rem 249

145 POKE S+5,9:POKES+6,0:POKES+24,15:POKES+1,120

:rem 16

150 FORI=49664TO49714:READB:B=B+239:POKEI,B:NEXT

:rem 177

155 DATA 4,2,3,7,5,6,7,6,3,1,5,5,7,4,6,7,6:rem 249

160 DATA l,2,5,4,5,6,7,4,3,7,5,6,7,2,6,7,3:rem 241

165 DATA l,2,3,4,5,6,7,7,3,4,5,6,7,5,6,7,4:rem 248

170 FORI=830TO833:POKEI,0:NEXT :rem 104

175 AA=15360:BB=15807:CC=12568:DD=12615 :rem 92

180 FOR A=AA TO BB:READB:IF B=>. THEN POKEA,B:GOTO

190 :rem 13

185 D=ABS(B)-1:FORC=. TO D:POKE A+C,.:NEXT:A=A+D

:rem 239

25

1: Games

190 NEXT :rem 217

195 POKE56334,PEEK(56334)AND254:POKE1,PEEK(1)AND25

1:FOR I=. TO M :rem 133

200 POKE NN+I,PEEK(OO+I):NEXT:POKE 1,PEEK(1)OR4:PO

KE56334,PEEK(56334)OR1 :rem 39

205 PRINT"{CLR}M:FOR I=CC TO DD:READB:POKE I,B:NEX

T :rem 132

210 POKE53272,(PEEK(53272)AND240)OR12 :rem 40

215 POKE53249,48:POKE53251,90:POKE53253,48:POKE532

55,90 :rem 105

220 POKE53257,48:POKE53259,90 :rem 103

225 FORQ=2041TO2045STEP2:POKEQ,240:NEXT :rem 166

230 POKE53248,97:POKE53250,97:POKE53252,160:POKE53

254,160:POKE53256,223 :rem 247

235 POKE53258,223:POKE53271,255:POKE53277,255

:rem 255

240 U=0:A=49152:B=49475:FORI=ATOB:READC::U=U+C:POK

EI,C:NEXT:IFU=38200THENRETURN :rem 11

245 PRINT "ERROR IN DATA STATEMENTS 645-8451":END

:rem 78

?50 FORA=679TO685:POKEA,INT(RND(1)*16)+1:NEXT

:rem 198

255 PRINTD$"{35 SPACES}":SYS 49152:POKE S+11,128

srem 35

260 SPIN$="":FORB=2041TO2045STEP2:Q=PEEK(B)-239

srem 5

265 ONQGOSUB365,370,375,380,385,390,395 :rem 98

270 NEXT:WIN=0 :rem 109

275 IFSPIN$="BARBARBAR"THENGOSUB 850 :rem 215

280 FORA=1TO24:L=LEN(WIN$(A)):IFLEFT$(SPIN$,L)=WIN

$(A)THENWIN=VAL(WIN$(A+1)) :rem 126
285 NEXT:TT=TT-1 :rem 3

290 IF WIN<>0THENPRINTD$"{10 SPACES}YOU WIN "WIN"

{SPACE}DOLLARS"; :rem 147
?95 IF WIN>5 THENPRINT"l"; :rem 236

300 IFWIN=0THEN325 :rem 70

305 POKE S,80:POKES+1,112*POKES+15,208 :rem 153 I I

310 PORTT=TT+1TOTT+WIN-1xPOKES+4,21:FORTD=1TO150-W !—'
IN:NEXT :rem 196

315 T$=STR$(TT):PRINTD$"{DOWN}{5 SPACES}YOUR TOTAL . ,
IS NOW "T$" DOLLARS{2 SPACES}"; :rem 83 M

320 POKES+4,20:FORT=1TO150:NEXT:NEXT:POKES+1,0:POK

ES+15,0 :rem 47

325 T$=STR$(TT):PRINTD$"{DOWN}{5 SPACESjYOUR TOTAL | l
IS NOW "T$" DOLLARS{2 SPACES}"; :rem 84 1 i

330 IF TT>0 THEN 360 :rem 3

335 PRINTD$"{8 SPACES}SORRY BUT YOU'RE BROKE"
:rem 140 I i

340 PRINT"{3 SPACES}DO YOU WANT TO PLAY AGAIN? L-J
{2 SPACES}Y/N{4 SPACES}"; :rem 187

26 U

Games: 1

n

n

n

n

345 GETA$:IFA$o"Y"ANDA$o"N"THEN345 :rem 53

350 IF A$="Y"THEN 10 :rem 246

355 POKE 53269,0:PRINT"{CLR}":END :rem 224

360 POKE 198,0:GOTO 400 :rem 205

365 SPIN$=SPIN$+"BAR":RETURN :rem 245

370 SPrN$=SPIN$+"SEVEN":RETURN :rem 157

375 SPIN$=SPIN$+MBELL":RETURN :rem 64

380 SPIN$=SPIN$+"CHERRY":RETURN :rem 234

385 SPIN$=SPIN$+"LIME":RETURN :rem 73

390 SPIN$=SPIN$+"PLUM":RETURN :rem 92

395 SPIN$=SPIN$+"LEMON":RETURN :rem.l58

400 GETA$:IFA$="E"THEN PRINT"{CLR}":POKE 53269,0 :E
ND :rem 63

405 A=RND(1) :rem 125

410 IF A$<"1" OR A$>"4" THEN 400 :rem 185

415 POKE 49238,VAL(A$):GOTO 250 :rem 162

420 DATA-12,255,255,255,204 :rem 90

425 DATA204,205,128,0,3,158,28,115 :rem 179

430 DATA209,34,73,209,34,73,158,62 :rem 195

435 DATA115,145,34,75,209,34,73,222 :rem 240

440 DATA34,73,128,0,3,153,153,179 :rem 136

445 DATA255,255,255,-22 :rem 160

450 DATA3,255,240,3,255,240,3 :rem 184

455 DATA0,112,0,0,224,0,1,192 :rem 165

460 DATA0,3,128,0,14,0,0,28 :rem 69

465 DATA0,0,56,0,0,112,0,0 :rem 12

470 DATA112,0,0,112,0,0,112,0 :rem 149

475 DATA0,112,-21,60 :rem 248

480 DATA0,0,255,0,1,255,128,3 :rem 177

485 DATA255,192,3,255,192,3,255,192 :rem 253

490 DATA3,255,192,3,255,192,3,255 :rem 144

495 DATA192,7,255,224,15,255,240,63 :rem 248

500 DATA255,252,127,255,254,127,255,254 :rem 186

505 DATA127,255,254,0,24,-18,48 :rem 37

510 DATA0,0,80,0,0,136,0,1 :rem 7

515 DATA4,0,2,2,0,2,1,240 :rem 218

520 DATA15,129,248,31,195,252,63,227 :rem 37

525 DATA252,63,227,252,063,225,248,63 :rem 89

530 DATA224,240,31,192,0,15,128,-27 :rem 219

535 DATA255,0,3,255,192,15 :rem 48

540 DATA255,240,31,255,248,63,255,252 :rem 85

545 DATA127,255,254,255,255,255,127,255 :rera 199

550 DATA254,63,255,252,31,255,248,15 :rem 37

555 DATA255,240,3,255,192,0,255,-16,255 :rem 178

560 DATA0,0,0,0,2,0,0,4 :rem 111

565 DATA0,0,8,0,0,60,0,0 :rem 172

570 DATA255,0,3,255,192,7,255,224 :rem 140

575 DATA15,255,240,15,255,240,15,255 :rem 33

580 DATA240,15,255,240,7,255,224,3 :rem 183

585 DATA255,192,0,255,0,0,60,-16,255,-10 :rem 208

27

1: Games

590 DATA255,0,3,255,192,15 :rem 49

595 DATA255,240,31,255,248,63,255,252 :rem 95

600 DATA127,255,254,255,255,255,127,255 :rem 191

605 DATA254,63,255,252,31,255,248,15 :rem 38

610 DATA255,240,3,255,192,0,255,-16,255 :rem 170

615 DATA24,60,60,60,126,255,255,24 :rem 185

620 DATA127,3,6,12,24,24,24,0 :rem 174

625 DATA0,255,129,255,255,129,255,0 :rem 243

630 DATA0,0,60,126,255,126,60,0 :rem 17

635 DATA4,8,60,126,255,126,60,0 :rem 34

640 DATA8,20,38,111,255,246,96,0 :rem 87

645 DATA169,0,141,176,2,141,177,2 :rem 138

650 DATA141,178,2,173,176,2,208,16 :rem 189

655 DATA206,167,2,208,11,173,168,2 :rem 190

660 DATA141,167,2,162,0,32,234,192 :rem 179

665 DATA173,177,2,208,16,206,169,2 :rem 198

670 DATA208,11,173,170,2,141,169,2 :rem 180

675 DATA162,4,32,234,192,173,178,2 :rem 196

680 DATA208,16,206,171,2,208,11,173 :rem 231

685 DATA172,2,141,171,2,162,8,32 :rem 84

690 DATA234,192,238,173,2,208,188,238 :rem 100

695 DATA61,3,173,61,3,201,2,208 :rem 32

700 DATA178,169,0,141,61,3,169,128 :rem 192

705 DATA141,11,212,238,168,2,208,5 :rem 180

710 DATA169,255,141,168,2,173,168,2 :rem 245

715 DATA201,112,144,22,173,176,2,208 :rem 20

720 DATA17,173,1,208,201,48,208,10 :rem 175

725 DATA169,129,141,11,212,169,1,141 :rem 28

730 DATA176,2,238,170,2,208,5,169 :rem 142

735 DATA255,141,170,2,173,170,2,201 :rem 225

740 DATA112,144,22,173,177,2,208,17 :rem 232

745 DATA173,5,208,201,48,208,10,169 :rem 242

750 DATA129,141,11,212,169,1,141,177 :rem 25

755 DATA2,238,172,2,208,5,169,255 :rem 149

760 DATA141,172,2,173,172,2,201,112 :rem 219

765 DATA144,22,173,178,2,208,17,173 :rem 247

770 DATA9,208,201,48,208,10,169,129 :rem 245

775 DATA141,11,212,169,1,141,178,2 :rem 183

780 DATA24,173,176,2,109,177,2,109 :rem 195

785 DATA178,2,201,3,240,3,76,11 2rem 34

790 DATA192,96,160,2,254,1,208,189 :rem 202

795 DATA1,208,201,130,208,62,169,194 :rem 37

800 DATA133,252,152,72,138,72,74,141 :rem 29

805 DATA80,3,74,170,189,65,193,133 :rem 202

810 DATA251,254,62,3,189,62,3,201 :rem 133

815 DATA17,208,5,169,0,157,62,3 :rem 43

820 DATA168,177,251,174,80,3,157,248 :rem 48
825 DATA7,56,233,240,168,185,58,193 :rem 4

830 DATA157,39,208,104,170,104,168,169 2rem 141
835 DATA48,157,1,208,232,232,136,208 2rem 36

28

n r ,
Games: 1

n

840 DATA179,96,2,2,7,2,5,4 :rem 48

845 DATA7,0,17,34 :rem 117

850 B=0:POKES+5,9:POKES+6,9 :rem 79

855 FORA=1TO130:POKE53281,A:POKE53280,256-A:B=-(B=

0):POKE53271,255-255*B :rem 56

860 POKE 53277,255-255*B:POKES+l,A:POKES+4,33:FORT

D=1TO20:POKES+4,32 :rem 220

865 FORTD=1TO20:NEXT:NEXT:POKES+4,32:POKES+1,0:POK

ES-992,6:POKES-991,1:RETURN :rem 153

n

n

I i

i i

n

n

29

Nirrad's Labyrinth
Darrin Mossor

Hidden gold, invisible trap doors, and a fearsome crea

ture named Boogens add excitement to this treasure-

hunting adventure for the unexpanded VIC or 64. A

joystick is required.

The legends leave no doubt about it: Centuries ago, the

evil wizard Nirrad stole all of the gold from your village.

He hid it in leather bags in a huge, twisting, tortuous laby

rinth, and for each bag he also installed a hidden trap door to

trap unwary heroes. As if that was not enough, he created a

horrifying demon guard called Boogens whose only purpose in

life is to eat gullible adventurers.

For many generations, the triple threat of labyrinth, trap

doors, and Boogens has been more than enough to scare away

even the bravest of adventurers. But now you have discovered

a chilling secret: It is your destiny to recover the gold.

All you have to do is feel your way through the darkened

maze, with its walls that you can't even see until you bump

into them, while looking out for trap doors and dodging that

doggoned Boogens. The task seems hopeless.

But what good is a hero and adventurer without a hope

less task now and then?

Into the Labyrinth
When you run the program, you'll be asked how many bags

of gold you want to try for. Next, you will be given the option

of challenging the Boogens to double the value of your gold.

Then, when you've entered your choices, the screen will turn

blue while the computer builds the maze. It takes about 30

seconds for the VIC to create the labyrinth; the 64 takes

roughly a minute.

When construction is finished, the computer sounds a

tone to alert you. It places S at the start and an F at the finish,

and it shows you where the gold is. It also places the trap

doors and the walls, but you won't see those until it's too late!

When you have not challenged Boogens, the only pres

sure is to complete the maze and escape with as much gold as

possible. But if you choose to challenge Boogens, beware of

one thing. Although his incessant hopping appears to be ran-

30

Games: 1

n

n
dom, he possesses an uncanny ability to land on you at the

worst possible times.

The trap doors can be a help or a hindrance. Sometimes

one of them will teleport you to another part of the labyrinth

at the worst possible moment; at other times, you may have to

jump into one on purpose to reach a certain bag of gold or to

escape from Boogens.

You can choose to try for 99 bags of gold, but you had

better have a lot of free time if you do. It is extremely difficult

to get all 99 bags.

Loading the Game
The VIC version of Nirrad is in two parts. Program 1 loads the

special character set. After you type it in, save it before you

run it. Tape users should change the ,8 to ,1 in line 109. Save

Program 2 as LABYR.VIC2. Tape users should be sure to save

LABYR.VIC2 after Program 1.

The 64 version is a single program, but it should still be

saved before being run. To play the 64 version, plug your joy

stick into port 2.

Program 1. VIC Loader

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 PRINT"{CLR}":POKE36879,8 :rem 163

12 GOTO115 :rem 51

15 POKE36869,255 :rem 109

20 A$=M{2 RIGHT}{RVS}{CYN}NIRRAD'S LABYRINTH"
:rem 26

30 FORX=20TO1STEP-1 :rem 175

40 PRINT" {HOME}11; :FORY=1TOX:PRINT"{DOWN}"; :NEXTY:P
RINTA$:rem 187

45 PORZ=1TO10*X/2:NEXTZ :rem 210

50 PRINT"{CLR}":NEXTX :rem 154

55 PRINT"{2 RIGHT}{CYN}{RVSjNIRRAD1S LABYRINTH"
: rem 13

60 POKE36878,15:POKE36876,200:FORX=1TO700:NEXTX:PO

KE36876,0 :rem 49

65 B=7902:C=30720:M=4:G=1:S=36876 :rem 49

70 FORN=BTOB+19 :rem 149

78 POKEN-l,32:POKEN-3,32 :rem 131

80 POKEN,M:POKEN+C,5:POKEN-2,G:POKEN-2+C,4 :rem 81

82 POKES,240 :rem 174

85 FORP=1TO50:NEXTP :rem 227

87 POKESf0 :rem 77

90 NEXTN :rem 246

31

1: Games u

u

92 POKEN-l,32:POKEN-3,32 :rem 127

93 POKE36869,240 :rem 109 M
94 PRINTM{CLR}{2 RIGHT}{DOWN}{CYNjNIRRAD1S LABYRIN ^

TH11 :rem 162

108 POKE198,3:POKE631,13:POKE 632,13:POKE 633,13:P , i

RINT"{CLR}{BLK}{3 DOWN}LO";CHR$(34);"LABYR.VIC J 1
2"; :rem 107

109 PRINTCHR$(34);",8":PRINT "{5 DOWN}FORX=1TO5000

:NEXT":PRINT"{2 DOWN}RUN" :rem 211 II
110 PRINT" {3 DOWN}{CYN}{5 RIGHT}EXECUTING '—'

{BLK}{HOME}":END :rem 12

115 POKE52,28:POKE56,28:CLR :rem 72

120 FORX=7168TO7223:READA:POKEX,A:NEXTX :rem 236

130 FORX=7423TO7431:POKEX,0:NEXTX:CLR:GOTO15

:rem 52

200 DATA255,129,129,255,255,129,129,255,195,129,15

3,255,219,126,60,102,60,24,189 :rem 176

210 DATA231,231,189,24,60,255,195,165,153,153,165,

195,255,56,56,146,124,16 :rem 130

215 DATA 40,40,68,60,66,64,60,2 :rem 240

220 DATA66,60,0,126,64,64,120,64,64,64,0 :rem 214

Program 2, VIC Main Program

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

40 DATA-23,-22,-21,-1,0,1,21,22,23 :rem 124

44 DIMJS(2,2),A(3):POKE37139,0:DD=37154:PA=37137:P

B=37152 :rem 152

46 FORI=0TO2:FORJ=0TO2:READJS(J,I):NEXTJ,I:rem 196

50 SC=7680:CL=30720:CH=4:GB=1:V=36878:S=36876:POKE

V,15:BP=7703 :rem 86

55 A(0)=2:A(1)=-44:A(2)=-2:A(3)=44:WL=0:HL=32:A=SC

+23:POKE36879,27 :rem 79

60 PRINT"{CLR}{2 RIGHT}{GRNjNIRRAD1S LABYRINTH

{2 SPACES}[2 DOWN}{BLU}{2 SPACES}WELCOME, YE WH
O HAVE{DOWN}COME"; :rem 162

65 PRINT " TO CHOOSE YOUR{2 SPACES}{DOWN} FATE." i i

:rem 78 LJ
70 PRINT"{2 DOWN}{2 SPACES}HOW MUCH GOLD WILL

{2 SPACES}{DOWN}YOU TRY FOR NOW, BUT{2 SPACES}
{DOWN}REMEMBER YOU WILL HAVE" :rem 139 } I

80 PRINT"AN EQUAL NUMBER OF{DOWN}":INPUT"TRAPDOORS !—l
(1-99)";U$:U=VAL(U$) :rem 201

82 IFU<1ORU>99ORU<>INT(U)THEN60 :rem 247

88 PRINT"{CLR}{2 DOWN}{RED}WOULD YOU LIKE TO

{5 SPACES}{DOWN}CHALLENGE THE BOUNCING{DOWN}BOO
GENS TO DOUBLE THE" :rem 137

90 PRINT"{DOWN}VALUE OF YOUR GOLD?{3 SPACES}{DOWN}
(Y/N){BLU}" :rem 104

92 GETC$:IFC$=""THEN92 :rem 253

32

Games: 1

94 IFC$="Y"THENYG=1 :rem 122

120 POKE36869,255sPOKE36879,110sPRINTll{CLR}"; :FORI
=lTO22:PRINT"@@(a(a@(a@@@@@@@(a@@@@@@@ srem 179

125 NEXT I :rem 32

130 PRINT"{HOME}{WHT}{RVS}PLEASE BE PATIENT ...

{BLU}11 :rem 142
140 J=INT(RND(l)*4)sX=J :rem 53

150 B=A+A(J):IFPEEK(B)=WLTHENPOKEBfJ+lsPOKEA+A(J)/

2,HLsA=BsGOTO140 :rem 4

160 J=-(J+1)*(J<3):IFJ<>XTHEN150 srem 32

170 J=PEEK(A)sPOKEA,HLsIFJ<5THENA=A-A(J-l):GOTO140

:rem 33

190 PRINT11 {21 DOWN}@@@@@@@@@@@@@@@@@@@{WHT}F{BLU}@
{HOME}" :rem 77

200 PRINT11 {HOME}@{WHT}E{OFF}{BLU}@@@@@@@@@@@@@@@@@
@@@@» :rem 241

220 POKEBP,CHsPOKEBP+CL,5 :rem 34

225 TORR=lTO200sPOKES,200:NEXTR:POKES,0 :rem 210

230 FORW=1TOU*2 :rem 149

240 X=INT(RND(1)*21):Y=INT(RND(1)*22) :rem 90

250 IFPEEK(7680+22*Y+X)<>32THEN240 :rem 170

260 IFW/2<>INT(W/2)THENPOKESC+22*Y+X,2sPOKESC+22*Y

+X+CL,7sNEXTW :rem 181

265 POKESC+22.*Y+X,3:NEXTW : rem 38

270 IFYGTHENGOSUB600 :rem 13

275 POKEBP,CH:POKEBP+CL,5:GOSUB1000:PK=PEEK(BP+JSN

) :rem 215

300 IFPK=32THENBP=BP+JSN:FORR=1TO10:POKES,240:NEXT

RsPOKES,0sPOKEBP-JSN,32sGOTO270 :rem 251

310 IFPK=2THEN 315 :rem 245

312 GOTO 320 :rem 100

315 TR=TR+1:POKEBP,32:POKEBP+JSN+CL,6:BP=BP+JSN:FO

RR=200TO240:POKES,R :rem 157

317 NEXTRsPOKES,0:GOTO270 srem 80

320 IFPK=0THENPOKEBP+JSN+CL#1:FORR=1TO10:POKES,140

:NEXTRsPOKES,0 srem 142

330 IFPK=6THEN2000 srem 36

340 IFPK=1THEN3000 srem 33

350 IFPK=3THENPOKEBP+JSN+CLf2sX=INT(RND(l)*21)sY=I

NT(RND(l)*22)sPOKEBP#32sGOTO400 srem 225

360 GOTO270 srem 107

400 IFPEEK(SC+X+22*Y)=2THEN440 srem 250

405 IFPEEK(SC+X+22*Y)<>32THEN350 srem 111

410 POKEBP,32sPOKEBP+CL,6sFORR=160TO200sPOKES,RsNE

XTRsPOKE36879,62sFORR=lTO500sNEXTR srem 113

420 POKE36879,110sFORR=200TO160STEP-lsPOKES,RsNEXT

RsPOKES#0sBP=SC+X+22*YsGOTO270 srem 7

440 PORR=160TO200sPOKES/R:NEXTRsPOKE36879#62sFORR=

1TO500sNEXTRsPOKE36879,110 srem 9

33

1: Games u

u
450 FORR=200TO160STEP-1:POKES,RrNEXTR:POKES,0

:rem 146 | I

460 POKEBP,32:POKEBP+CL,6:FORR=200TO240:POKES,R:NE *—>

XTR:POKES,0:BP=SC+X+22*Y:GOTO270 :rem 219

600 IFRND(1)>.3THENRETURN : rem 57 , ,

605 POKEGS,32 :rem 245 | 1
610 X=INT(RND(1)*21):Y=INT(RND(1)*22):PS=SC+X+22*Y

:rem 160

615 IFPEEK(PS)=CHTHEN3000 :rem 254 | I

620 IFPEEK(PS)<>32THEN600 :rem 228 {—'

6 30 POKEPS,1:POKEPS+CL,4:FORR=1TO20:POKES,130:NEXT

R:POKES,0:GS=PS:RETURN :rem 1

1000 POKEDD,127:S3=-((PEEK(PB)AND128)=0):POKEDD#25

5 :rem 166

1010 P=PEEK(PA):Sl=-((PAND8)=0):S2=((PAND16)=0):S0

=((PAND4)=0) :rem 221

1020 FR=-((PAND32)=0):X1=S2+S3:Y1=S0+S1:JSN=JS(X1+

1,Y1+1):RETURN :rem 38

2000 POKE36879,62:POKE36869,240:PRINT"{CLR}"
:rem 111

2010 FORR=130TO240:POKES,R:NEXTR:POKES,0 :rem 35

2020 PRINT"{CLR}{2 DOWN}CONGRATULATIONS 1i YOU"

:rem 6

2025 PRINT "{DOWN}HAVE DONE WHAT FEW{4 SPACES}
{DOWN}OTHER MORTALS HAVE AT-{DOWN}TEMPTED. YO

U ALSO HAVE" :rem 72

2030 IFYGTHENPRINT"DEFEATED THE BOOGENS, {DOWN}AND

THEREFORE RECEIVE" :rem 203

2035 IFYGTHENPRINT"{DOWN}";TR*200;"GOLD PIECES.":G
OTO2050 :rem 109

2040 PRINTTR*100;"GOLD PIECES" :rem 18

2050 PRINT"{DOWN}WOULD YOU LIKE TO TRY{DOWN} AGAIN

?? (Y/N)" :rem 14
2080 GETD$:IFD$=""THEN2080 :rem 189

2090 IFD$="Y"THENPOKE36879,27:PRINT"{CLR}":RUN

:rem 109

2100 END :rem 154 . (

3000 POKEPS,1:POKEPS+CL,4:POKES,170:FORR=1TO400:NE { [
XTR:POKES,130:FORR=1TO400 :rem 15

3010 NEXTR:POKES,0 :rem 109

3015 POKE36869,240:PRINT"{CLR}":POKE36879,56 j j
:rem 121 t—1

3020 PRINT"{CLR}{4 DOWN}THE BOOGENS GOT YOU1I I

{DOWNjTOO BAD... TRY AGAIN?" :rem 151
3040 GETB$:IFB$=""THEN3040 :rem 179 I
3050 IFB$="N"THENEND :rem 146 '—'
3060 POKE36879,27:PRINT"{CLR}":RUN :rem 107

34

n

n

n

n

H

Games: 1

Program 3. Nirrad's Labyrinth, 64 Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

8 POKE53272,21 :rem 249

10 POKE52,48:POKE56,48:CLR:FORX=12288TO12288+55:RE

ADA:POKEX,A:NEXTX :rem 164

15 FORX=12544TO12551:POKEX,0:NEXTX :rem 113

20 DATA 255,129,129,255,255,129,129,255,195,129,15

3,255,219,126,60,102,60 :rem 32

25 DATA 24,189 :rem 181

30 DATA 231,231,189,24,60,255,195,165,153,153,165,

195,255,56,56,146,124,16 :rem 82

35 DATA 40,40 :rem 118

40 DATA 68,60,66,64,60,2,66,60,0,126,64,64,120,64,

64,64,0 :rem 240

50 SC=1024:CL=54272:CH=4:GB=1:BP=SC+81 :rem 163

52 Sl=54272 :rem 44

55 A(0)=2:A(1)=-80:A(2)=-2:A(3)=80:WL=0:HL=32:A=SC

+81:POKE53280,6:POKE53281,1 :rem 218

60 PRINT"{CLRj{GRN}{4 DOWN}{11 RIGHTJNIRRAD•S LABY

RINTH" :rem 82

62 PRINT"{3 DOWN}{BLU}{2 SPACES}WELCOME, YE WHO HA

VE COME TO CHOOSE" :rem 251

64 PRINT"{DOWN}{14 RIGHT}YOUR FATE." :rem 127

70 PRINT"{5 DOWN}HOW MANY BAGS OF GOLD WILL YOU TR

Y FOR?" :rem 226

72 PRINT"{2 RIGHT}{DOWN}REMEMBER, YOU GET THE SAME

NUMBER OF" :rem 66

74 INPUT"{DOWN}{8 RIGHT}OF TRAPDOORS (1-99)";A$
:rem 76

76 U=VAL(A$):IFU<1ORU>99THEN60 :rem 94

78 PRINT"{CLR}":PRINT"{3 DOWN}{2 RIGHTjYOU ARE LOO

KING FOR"U"BAGS OF GOLD." :rem 185

79 FOR ZZ=1TO2000:NEXT :rem 87

80 PRINT"{3 DOWN}{RED}WOULD YOU LIKE TO CHALLENGE

{SPACE}THE BOUNCING" :rem 145

85 PRINT"{2 RIGHTJBOOGENS TO DOUBLE THE VALUE OF Y

OUR" :rem 37

90 PRINTTAB(17);"{DOWN}GOLD?" :rem 123

92 GETC$:IFC$=""THEN92 :rem 253

95 PRINT"{CLR}":PRINT"{3 DOWN}I'M GOING TO CREATE

{SPACEjA SPECIAL LABYRINTH":FOR ZZ=1TO3000

:rem 48

97 NEXT :rem 175

99 PRINT"{CLR}":PRINT"{10 DOWN}{16 RIGHT}GOOD LUCK

!":FOR ZZ=1TO3000:NEXT :rem 246

110 IFC$="Y"THENYG=1 :rem 159

120 PRINT"{CLR}{BLU}":POKE53272,(PEEK(53272)AND240

)+12:POKE53280,6:POKE53281,6 :rem 10

125 PRINT;:POKE1024,2:POKE1024+CL,6 :rem 58

35

1: Games

130 FORI=1TO23

@@@@<a@@@@@u:NEXTI srem 199

135 P0KEA,5 srem 106
140 J=INT(RND(1)*4):X=J:GOSUB20000 :rem 225

152 B=A+A(J):IFPEEK(B)=WLTHENPOKEB,J+l:POKEA+A(J)/
2,HL:A=B:GOTO140 :rem 6

160 J=-(J+1)*(J<3):IFJ<>XTHEN152 :rem 34

170 J=PEEK(A):P0KEA,HL:IFJ<5THENA=A-A(J-l):GOTO140
:rem 33

195 POKESC+41,5:P0KESC+41+CL,1:POKE1981,6:P0KE1981

+CL,1:POKE1024+CL,6 :rem 56

200 HN=16:LN=195:DR=300:WF=17:GOSUB10000 :rem 67

230 FORW=1TOU*2 :rem 149

240 X=INT(RND(1)*38):Y=INT(RND(1)*22+1) :rem 190

250 IFPEEK(1024+40*Y+X)<>32THEN240 :rem 156

260 IFW/2<>INT(W/2)THENPOKESC+40*Y+X,2:POKESC+40*Y

+X+CL,7:NEXTW :rem 181

265 POKESC+40*Y+X,3:POKESC+40*Y+X+CL,6:NEXTW

:rem 214

270 IFYGTHENGOSUB600 :rem 13

275 POKEBP,CH:POKEBP+CL#5:GOSUB1000:PK=PEEK(BP+JN)

:rem 132

300 IFPK=32THENBP=BP+JN:POKEBP-JN,32 :rem 3

305 IFPK=32THENHN=33:LN=135:WF=17:DR=25:GOSUB10000

:GOTO270 :rem 29

310 IFPK=2THEN 312 :rem 242

311 GOTO 320 :rem 99

312 TR=TR+1:POKEBP,32:POKEBP+JN+CL,6:BP=BP+JN:FORR

=200TO240:GOSUB12000 :rem 103

320 IFPK=0THENPOKEBP+JN+CL,1:HN=67:LN=15:WF=17:DR=

15:GOSUB10000 :rem 129

330 IFPK=6THEN2000 . :rem 36

340 IFPK=1THEN3000 :rem 33

345 IFPK=3THEN350 :rem 253

346 GOTO270 :rem 111

350 IFPK=3THENPOKEBP+JN+CL,0:X=INT(RND(1)*38):Y=IN

T(RND(1)*22+1):POKEBP,32 :rem 233

360 IFPEEK(SC+X+40*Y)=2THENGD=1:GOTO410 :rem 104

400 IFPEEK(SC+X+40*Y)<>32THEN350 :rem 106

410 POKEBP,32:POKEBP+CL,0 :rem 248

415 GOSUB17000 :rem 18

420 POKE53281,15:FORR=1TO200:NEXTR:BP=SC+X+Y*40:G0

SUB17030 :rem 36

425 POKE53281#6 irem 47

430 IFGD=1THENTR=TR+1:GOSUB12000:GD=0 :rem 18

440 GOTO270 :rem 106

600 IFRND(1)>.3THENRETURN :rem 57

605 POKEGS,32 -rem 245

610 X=INT(RND(1)*38):Y=INT(RND(1)*22+l):PS=SC+X+40

*Y :rem 4

36

Games: 1

n

615 IFPEEK(PS)=CHTHEN3000 :rem 254

620 IFPEEK(PS)<>32THEN600 :rem 228

630 POKEPS,1:POKEPS+CL,4:GS=PS :rem 162

640 HN=8:LN=97:WF=33:DR=100:GOSUB10000 :rem 233

650 RETURN :rem 123

1000 JI=PEEK(56320)AND15 :rem 64

1035 IFJI=15THENJN=0 :rem 194

1040 IFJI=14THENJN=-40 :rem 30

1045 IFJI=6THENJN=-39 :rem 252

1050 IFJI=7THENJN=1 :rem 145

1055 IFJI=5THENJN=41 :rem 200

1060 IFJI=13THENJN=40 :rem 242

1065 IFJI=9THENJN=39 :rem 212

1070 IFJI=11THENJN=-1 :rem 235

1075 IFJI=10THENJN=-41 :rem 35

1080 RETURN :rem 169

1500 FORZZ=S1TOS1+23:POKEZZ,0:NEXT:RETURN :rem 229

2000 GOSUB18000:PRINTII{CLR}":POKE53281,1:POKE53272

,21 :rem 157

2020 PRINT"{CLR}{2 DOWN}{11 SPACES}CONGRATULATIONS
Hi" : rem 42

2025 PRINT"{DOWN}{4 RIGHTjYOU HAVE DONE WHAT FEW M

ORTALS " :rem 158

2027 PRINT"{DOWN}{11 RIGHT}HAVE ATTEMPTED."
:rem 230

2030 PRINT:PRINT"YOU ALSO HAVE";:IFYGTHENPRINTTR*2

00;"GOLD PIECES":GOTO2050 :rem 7

2040 PRINTTR*100;"GOLD PIECES" :rem 18

2050 PRINT"{DOWN}WOULD YOU LIKE TO TRY AGAIN?? (Y/
N)" :rem 253

2080 GETD$:IFD$=""THEN2080 :rem 189

2090 IFD$="Y"THENPOKE53272# 28:PRINT"{CLR}":RUN

: rem 96

2100 END :rem 154

3000 POKEPS,1:POKEPS+CL,4 :rem 24

3015 GOSUB16000:PRINT"{CLR}":POKE53281,1:POKE53272

,21 :rem 162

3020 PRINT"{CLR}{4 DOWN}THE BOOGENS GOT YOUlli

{7 LEFT}{2 DOWN}TOO BAD... TRY AGAIN?"

:rem 243

3040 GETB$:IFB$=""THEN3040 :rem 179

3050 IFB$="N"THENEND :rem 146

3060 PRINT"{CLR}":RUN :rem 92
10000 POKES1+24,15:POKES1+5,0:POKES1+6,248:POKES1+

4,WF:POKES1+1,HN:POKES1,LN :rem 91

10005 FORR=1TODR:NEXTR :rem 161

10010 FORZZ=SlTOSl+23:POKEZZ,0:NEXTZZ:RETURN

:rem 197

12000 HN=16:LN=195:HJ=21:LJ=31:HK=25:LK=30:WF=17:D

R=100 :rem 182

37

1: Games

12005 POKESl+24,15:P0KES1+5,0:P0KES1+6,248:P0KES1+

12,0:POKES1+13,248 :rem 172

12010 POKES1+19,0:POKES1+20,248:POKES1+4,WF:POKES1

+11,WF:POKES1+18,WF :rem 126

12015 P0KES1+1, HN:P0KES1,LN:POKES1+8,HJ:POKES1+7,L

J:POKES1+15,HK:POKES1+14,LK :rem 25

12020 FORR=1TODR:NEXTR :rem 160

12025 FORZZ=SlTOSl+23:POKEZZ,0:NEXTZZ:RETURN

:rem 205

13000 POKESl+24,15:POKES1+5,0:POKES1+6,248:POKES1+

4,WF:POKES1+1,HN:POKES1,LN :rem 94

13005 FORR=1TODR:NEXTR:RETURN :rem 190

14000 POKES1+1,HN:POKES1,LN :rem 121

14010 FORR=1TODR:NEXT:POKE53281,6 :rem 29

14020 RETURN :rem 215

15000 FORZZ=SlTOSl+23:POKEZZf0:NEXT: RETURN : rem 21

16000 HN=8:LN=97:HJ=8:LJ=225:HK=9:LK=104:WF=17:DR=

1000 :rem 154

16005 POKESl+24,15:POKES1+5,0:POKES1+6,248:POKES1+

12,0:POKES1+13,248 :rem 176

ij.6010 POKES1+19,0: POKES1+20,248 : POKES1+4, WF: POKES1

+11,33:POKES1+18,129 :rem 74

16015 POKES1+1,HN:POKES1,LN:POKES1+8,HJ:POKES1+7,L

J:POKES1+15,HK:POKES1+14,LK :rem 29

16020 FORR=1TODR:NEXTR :rem 164

16025 FORZZ=SlTOSl+23:POKEZZ,0:NEXTZZ:RETURN

:rem 209

17000 HN=16:LN=195:DR=.0001:WF=17 :rem 90

17010 POKES1+25,15:POKES1+5,0:POKES1+6,248:POKES1+

4,WF :rem 166

17020 FORHN=16TO42:FORLN=195TO196:POKES1+1,HN:POKE

S1,LN:NEXTLN,HN :rem 145

17025 FORZZ=SlTOSl+23:POKEZZ,0:NEXTZZ:RETURN

:rem 210

17030 POKES1+25,15:POKES1+5,0:POKES1+6,248:POKES1+

4,WF :rem 168

17035 FORHN=41TO8STEP-1:FORLN=195TO194STEP-1:POKES

1+1,HN:POKES1#LN:NEXTLN,HN :rem 153

17060 FORZZ=SlTOSl+23:POKEZZ,0:NEXT:RETURN :rem 29
18000 HN=7:LN=12:WF=17:DR=300:GOSUB19000 :rem 71

18005 HN=9:LN=104:HJ=0:LJ=0:WF=17:DR=300:GOSUB1900

0 :rem 246
18010 HN=0:LN=0:HJ=9:LJ=104:HK=12:LK=143:WF=17:DR=

750:GOSUB19000 :rem 14

18015 HN=15:LN=210:HJ=0:LJ=0:HK=0:LK=0:WF=17:DR=75

:GOSUB19000 srem 115

18020 HN=15:LN=210:HJ=12:LJ=143:DR=600:GOSUB19000

:rem 64

38

Games: 1

18025

18030

18035

18040

18045

18050

19000

19005

19010

19015

19020

20000

20010

FORYY=1TO4

HK=6:LK=71:DR=150:GOSUB19000

HK=4:LK=180:DR=150:GOSUB19000

NEXTYY

:rem 222

:rem 207

: rem 3

:rem 238

FORZZ=S1TOS1+23:POKEZZ,0:NEXT:RETURN :rem 33

RETURN :rem 222

POKES1+24,15:P0KES1+5,0:P0KES1+6,248:P0KES1+

12,0:POKES1+13,248 :rem 174

P0KES1+19,0:POKES1+20 , 248:P0KES1+4,WF:P0KES1

+11,WF:POKES1+18,WF :rem 137

POKES1+1,HN:POKES1,LN:POKES1+8,HJ:POKES1+7,L

J:POKES1+15,HK:POKES1+14,LK :rem 27

FORR=1TODR:NEXTR :rem 171

RETURN :rem 220

IFPEEK(1024+CL)=6THENPOKE1024+CL#7:RETURN

:rem 71

POKE1024+CL,6:RETURN :rem 31

n

n

39

Trident
Original Program by C. O. Dickerson

64 Version by Kevin Martin

Join the crew of the US.S. Trident and test your skills

in this exciting naval simulation for the Commodore

64. A joystick is required.

You are missile officer aboard the U.S.S. Trident, the

world's newest and most powerful nuclear submarine.

Suddenly, the Priority One Channel signals a red alert: The

enemy has launched an all-out attack.

Since you are hundreds of feet below the surface, you rely

solely on your computerized defense screen to show you what

is happening on the surface—and the picture isn't good. En

emy missiles are coming in waves, increasing in number and

speed with each new attack, and you must use every ounce of

skill you have to meet the massive assault. Your defensive

missiles can hover in ambush or rocket through the atmos

phere at twice the speed of anything the enemy can launch.

But even with such weapons at your disposal, you know that

lightning reflexes will be required to repel the attack.

Defensive Postures
You direct each of your defensive missiles to its target with a

joystick plugged into port 2. Once you destroy one of the en

emy missiles, the computer gets ready to launch another anti

missile. If you destroy all the incoming missiles in the attack

wave, you move on to a higher difficulty level in which the

speed of the incoming missiles is increased. If you are not

successful, you can start over by pressing the fire button. . \

In each game, you can select a level of difficulty, which Lj
determines the speed of the incoming missiles. Each successive

level challenges you with higher speeds. You have four > »

choices, which can be selected by pressing the appropriate I 1
function key:

fl: Beginner j [

f3: Intermediate i—'
f5: Advanced

(7: Expert J [

40

Games: 1

Typing In Trident
"Trident" is written entirely in machine language and must be

entered with "MLX," the machine language editor program

found in Appendix D. Be sure you read the MLX article and

understand how to use that program before you start typing

the data for Trident.

MLX requires that you input the starting and ending ad

dresses for your machine language. For Trident, use the

following addresses:

Starting address: 49152

Ending address: 51659

After typing in Trident, be sure to us the MLX Save option to

store a copy of your work on tape or disk.

After saving, you can load it back into the computer by

typing LOAD "TRIDENT",8,1 for disk or LOAD "TRI-

DENT",1,1 for tape. To run the program, type SYS 49152.

Trident

Be sure to

49152

49158

49164

49170

49176

49182

49188

49194

49200

49206

49212

49218

49224

49230

49236

49242

49248

49254

49260

49266

49272

49278

49284

49290

49296

49302

use "MLX" (Appendix

:032,041,197,

:032#208,169,

:208,169,060,

:169,147,032,

:030,208,169,

:003,169,144,

:160,000,185

:008,240,007

:200,076,038,

:133,252,169,

:160,000,177,

:240,012,032,

:252,208,243,

:062,192,169,

:208,169,200,

:141,250,007,

:141,252,007,

:169,201,141,

:000,162,000,

:232,224,015,

:015,141,039,

:141,000,208,

:001,208,169,

:208,169,135,

:169,002,141,

:004,141,041,

D) when entering this program.

169,000,141,068

011,141,033,088

141,132,003,213

210,255,173,236

000,141,120,180

032,210,255,075

071,201,201,086

153,000,050,244

192,169,138,093

197,133,253,167

252,201,000,082

210,255,230,021

230,253,076,054

063,141,021,214

141,248,007,033

141,251,007,119

141,253,007,129

249,007,169,014

157,000,208,123

208,248,169,186

208.169.146.070

zuo, z<*e, ±o?,

208,169,146,070

169,141,141,158

140,141,002,025

141,003,208,234

040,208,169,105

208,169,014,215

41

1: Games

49308

49314

49320

49326

49332

49338

49344

49350

49356

49362

49368

49374

49380

49386

49392

49398

49404

49410

49416

49422

49428

49434

49440

49446

49452

49458

49464

49470

49476

49482

49488

49494

49500

49506

49512

49518

49524

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49590

49596

49602

:141

:043

:208

:169

:011

:212

:173

:136

:003

:032

:005

:212

:032

:032

:032

:076

:142

:041

:208

:173

:016

:042

:001

:009

:208

:208

:224

:208

:141

:173

:000

:001

:000

: 174

:208

:173

:012

:228

:208

:003

:062

:129

:192

:197

:001

:201

:240

:000

:201

:001

,042,208

,208,169

,169,000

,255,141

,194,169

,169,128

,030,208

,196,169

,169,255

,154,196

,212,169

,169,033

,249,192

,249,192

,064,196

,228,192

,061,003

,008,208

,232,224

,016,208

,208,141

,193,173

,201,001

,208,001

,173,000

,039,174

,000,208

,041,254

,137,197

,016,208

,208,005

,232,142

,220,041

,001,208

,001,232

,000,220

,174,001

,208,001

,173,060

,032,060

,003,041

,197,201

,000,240

,201,000

,240,100

,000,208

,089,173

,240,082

,000,240

,208,032

,169,007

,013,141

,141,016

,062,003

,255,141

,141,018

,169,049

,254,141

,141,067

,169,017

,243,141

,141,004

,032,139

,032,193

,032,015

,141,060

,173,000

,039,174

,000,208

,009,001

,137,197

,016,208

,208,005

,202,142

,220,041

,000,208

,014,173

,141,016

,076,088

,041,001

,224,026

,000,208

,001,208

,202,224

,142,001

,041,002

,208,232

,202,142

,003,174

,195,096

,003,168

,000,208

,111,173

,208,022

,173,131

,011,192

,132,197

,185,129

,069,170

,173,137

,141,096

,044,012

,208,142

,032,068

,015,197

,212,042

,032,085

,066,136

,003,074

,141,151

,006,224

,212,225

,193,041

,194,102

,197,008

,003,178

,220,083

,000,216

,014,126

,141,050

,076,027

,041,187

,224,160

,000,088

,004,178

,202,113

,016,179

,208,162

,193,132

,201,202

,208,239

,173,074

,012,062

,054,193

,208,128

,208,242

,224,199

,001,136

,061,039

,173,181

,173,078

,033,146

,130,230

,192,210

,197,238

,002,016

,201,184

,197,247

,192,036

,197,174

u

u

! 1

u

42

Games: 1

49608

49614

49620

49626

49632

49638

49644

49650

49656

49662

49668

49674

49680

49686

49692

49698

49704

49710

49716

49722

49728

49734

49740

49746

49752

49758

49764

49770

49776

49782

49788

49794

49800

49806

49812

49818

49824

49830

49836

49842

49848

49854

49860

49866

49872

49878

49884

49890

49896

49902

:041

:138

:208

:195

:233

:201

:076

:129

,008,201,000,240,023,

,056,233,001,201,000,
010*7 171 TJ7 10*7 CM!

,056,233,001,201,000,067

,027,173,137,197,041,227

,141,137,197,138,056,058

,206,132,003,041,003,148

,063,003,170,160,000,047

,000,141,064,003,238,131

,003,206,064,003,153.014

g *^ ^^ ^^ j **^ ^r ^^ g ^» « ^^ g «■» ^^ ^i^ j m& m& *^r j m^ m ¥

,000,141,064,003,238,131

,003,206,064,003,153,014

,197,200,192,004,208,202

:069

:169

:137

:127

:169

:137

:169

:027

:015

:173

:067

:208

:208

:015

:208

:208

:063

:003

:003

:132

:201

:208

:208

•005,

:000,

:173,

:076,

,008,013,137,197,141,229

,197,173,027,212,041,101

,105,044,141,134,197,068

1,203,045,137,197,141,218

', 197,224,001,240,034,165

1,055,141,135,197,173,208

,212,041,127,105,067,179

,131,197,224,001,240,028

►,169,227,141,136,197,241

\.027,212,041,127,105,047

,141,132,197,224,000,129

1,005,169,007,141,021,181

1,224,001,208,005,169,195

»,141,021,208,224,002,25 3

t,005,169,031,141,021,223

,224,003,208,005,169,:
! 1^1 /7IO1 OOIO lOO tACLI '

43

1: Games

49908

49914

49920

49926

49932

49938

49944

49950

49956

49962

49968

49974

49980

49986

49992

49998

50004

$0010

$0016

50022

50028

50034

50040

50046

50052

50058

50064

50070

50076

50082

50088

50094

50100

50106

50112

50118

50124

50130

50136

50142

50148

50154

50160

50166

50172

50178

50184

50190

50196

50202

44

: 096,169,015,141,024,212,087

:169,010,141,132,003,162,053

:255.142,001,212,202,142,140

u

u

u

u

u

y

:208,241,169,000,141,024,005

:212,173,000,220,041,016,146

:208,249,104,104,104,104,107

:104,104,076,003,192,169,144

:146,141,000,208,169,141,051

:141,001,208,162,007,160,18 7

:035,024,032,240,255,206,050

u

LJ

Games: 1

50208

50214

50220

50226

50232

50238

50244

50250

50256

50262

50268

50274

50280

$0286

60292
?0298

50304

O0310

50316

O0322

$0328
50334

50340

50346

50352

50358

O0364

50370

50376

50382

50388

50394

50400

50406

50412

50418

50424

50430

50436

50442

50448

50454

50460

50466

50472

50478

50484

50490

50496

50502

:063,003,238,064,003,173,064

:063,003,024,105,048,032,057

:210,255,162,012,160,035,110

:024,032,240,255,173,064,070

:003,024,105,048,032,210,222

:255,096,165,197,201,004,212

:208,011,169,060,141,132,021

:003,169,049,032,136,196,147

:096,201,005,208,011,169,002

:042,141,132,003,169,050,111

:032,136,196,096,201,006,247

:208,011,169,035,141,132,026

:003,169,051,032,136,196,179

:096,201,003,208,011,169,030

:027,141,132,003,169,052,128

:032,136,196,096,173,141,128

:002,041,001,201,000,208,069

:247,096,141,082,003,162,097

:017,160,035,024,032,240,136

:255,173,082,003,032,210,133

:255,096,173,066,003,174,151

:067,003,024,105,002,144,247

:001,232,141,066,003,142,237

:067,003,173,062,003,074,040

:074,141,072,003,173,066,193

:003,174,067,003,024,109,050

:072,003,144,001,232,141,013

:066,003,142,067,003,162,125

:004,160,034,024,032,240,182

:255,173,067,003,174,066,176

:003,032,205,189,096,173,142

:076,

:208,

:199,

:156,

:096,

:144,

:173,

:003,

:060,

:000,

:200,

:174,

:096,

:169,

:011,

:032,

:016,

:000,

199,195,096

201,138,144

195,173,006

176,003,076

173,009,208

003,076,199

011,208,201

076,199,195

003,140,061

160,000,232

204,132,003

060,003,172

169,147,032

000,141,032

141,033,208

210,255,162

024,032,240

189,036,201

,173,004,199

,248,076,221

,208,201,194

,199,195,023

,201,133,044

,195,096,199

,151,176,156

,096,142,209

,003,162,189

,208,253,107

,208,247,254

,061,003,251

,210,255,181

,208,169,253

,169,154,000

,012,160,121

,255,162,025

201,000,185

45

1: Games

50508

50514

50520

50526

50532

50538

50544

50550

50556

50562

50568

50574

50580

50586

50592

50598

50604

50610

50616

50622

50628

50634

50640

50646

50652

50658

50664

50670
£0676
150682

50688

50694

50700

50706

50712

50718

50724

50730

50736

50742

50748

50754

50760

50766

50772

50778

50784

50790

50796

50802

46

: 240,007,232,032,210,255,

:076,071,197,162,021,160,

:007,024,032,240,255,162,
• OiOlOl 1QQ OlAA 0011 O0M OltXOl

:032,221,032,221,032,221,003

:032,221,032,221,032,221,009

••032,221,032,221,032,221,015

: 032,221,032,221,032,032,088

:083,067,079,082,069,032,192

:032,171,195,219,195,219,049

: 195,219,195,219,195,219,010

:195,219,195,219,195,219,016

:195,219,195,219,195,219,022

:195,219,195,219,195,219,028

:195,179,032,032,032,032,062

:032,032,032,032,032,221,203

:032,221,032,221,032,221,075

:032,221,032,221,032,221,081

:032,221,032,221,032,221,087

:032,221,032,221,032,221,093

:032,221,032,221,032,221,099

:032,032,032,032,032,032,050

Games: 1

50808 :032,032,032,171,195,219,033

50814 :195,219,195,219,195,219,088

50820 :195,219,195,219,195,219,094

50826 :195,219,195,219,195,219,100

50832 :19 5,219,195,219,195,219,106

50838 :195,219,195,179,077,073,064

50844 :083,083,073,076,069,083,111

50850 :032,221,032,221,032,221,153

50856 :032,221,032,221,032,221,159

&0862 :032,221,032 , 221,032,221,165
50868 :032,221,032,221,032,221,171

50874 :032,221,032,221,032,221,177

50880 :032,221,032,032,032,032,061

50886 :032,032,032,032,032,171,017

50892 :195,219,195,219,195,219,166

50898 :195,219,195,219,195,219,172

50904 :195,219,195,219,195,219,178

50910 :195,219,195,219,195,219,184

50916 :195,219,195,219,195,179,150

50922 :032,032,076,069,070,084,085

50928 :032,032,032,221,032,221,042

50934 :032,221,032,221,032,221,237

50940 :032,221,032,221,032,221,243

50946 :032,221,032,221,032,221,249

50952 :032,221,032,221,032,221,255

50958 :032,221,032,221,032,032,072

50964 :032,032,032,032,032,032,212

50970 2 032,171,195,219,195,219,033

50976 :195,219,195,219,195,219,250

50982 :195,219,195,219,195,219,000

00988 :195,219,195,219,195,219,006

50994 :195,219,195,219,195,219,012

$1000 -.195,179,032,032,032,032,046
51006 :032,032,032,032,032,221,187

51012 :032,221,032,221,032,221,059

51018 :032,221,032,221,032,221,065

51024 :032,221,032,221,032,221,071

51030 :032,221,032,221,032,221,077

51036 :032,221,032,221,032,221,083

51042 ?077,073,083,083,073,076,051

51048 :069,083,032,171,195,219,105

51054 :195,219,195,219,195,219,072

51060 :195,219,195,219,195,219,078

51066 :195,219,195,219,195,219,084

51072 :195,219,195,219,195,219,090

51078 -.195,219,195,179,032,032,218

51084 :032,032,032,032,032,032,076

51090 :032,221,032,221,032,221,137

51096 :032,221,032,221,032,221,143

51102 :032,221,032,221,032,221,149

47

1: Games

51108 :032,221,032,221,032,221,155

51114 :032,221,032,221,032,221,161

51120 :032,221,068,069,083,084,221

51126 :082,079,089,069,068,171,228

51132 :195,219,195,219,195,219,150

51138 :195,219,195,219,195,219,156

51144 :195,219,195,219,195,219,162

51150 :195,219,195,219,195,219,168

51156 :195,219,195,219,195,179,134
51162 :032,032,032,032,032,032,154

51168 :032,032,032,221,032,221,026

51174 :032,221,032,221,032,221,221

51180 :032,221,032,221,032,221,227

51186 1032,221,032,221,032,221,233

51192 :032,221,032,221,032,221,239

51198 :032,221,032,221,032,032,056

51204 :032,032,032,032,032,032,196
51210 :~032,171,195,219,195,219,017
51216 :195,219,195,219,195,219,234

51222 :195,219,195,219,195,219,240

51228 :195,219,195,219,195,219,246

51234 :195,219,195,219,195,219,252

51240 :195,179,032,032,076,069,111

51246 :086,069,076,032,032,221,050

51252 :032,221,032,221,032,221,043

51258 1032,221,032,221,032,221,049

51264 :032,221,032,221,032,221,055

51270 :032,221,032,221,032,221,061

51276 :032,221,032,221,032,221,067

51282 :032,032,032,032,032,032,018

51288 :032,032,032,171,195,219,001

51294 :195,219,195,219,195,219,056

51300 :195,219,195,219,195,219,062

51306 .-195,219,195,219,195,219,068

51312 :195,219,195,219,195,219,074

51318 :195,219,195,179,032,032,202

51324 :032,032,032,032,032,032,060

51330 :032,221,032,221,032,221,121

51336 :032,221,032,221,032,221,127

51342 :032,221,032,221,032,221,133

51348 :032,221,032,221,032,221,139

51354 :032,221,032,221,032,221,145

51360 :032,221,032,032,032,032,029

51366 :032,032,032,032,032,171,241

51378 -195^219!l95!219! 195',219^140
51384 :195,219,195,219,195,219,146

51390 :195,219,195,219,195,219,152

51396 :195,219,195,219,195,179,118

51402 :032,032,032,032,032,032,138

48

Games: 1

51408

51414

51420

51426

51432

51438

51444

5.1450

51456

51462

51468

51474

51480

51486

51492

51498

51504

51510

S1516

51522

51528

51534

51540

51546

51552

51558

51564

51570

51576

51582

51588

51594

51600

51606

51612

51618

51624

51630

51636

51642

51648

51654

:032,032

:032,221

:032,221

:032,221

:032,221

:032,221

:032,032

:032,173

:195,177

:195,177

:195,177

:195,177

:195,189

:032,032

:084,082

:084,000

:083,032

:032,066

:078,032

:084,065

:000,000

:000,000

:000,000

:000,000

:000,000

:000,000

:000,000

:000,000

:000,000

:000,000

:000,000

:127,254

:127,254

:127,254

:127,254

:127,254

:127,254

:127,254

:000,000

:000,000

: 000,000

:008,013

,032,221

,032,221

,032,221

,032,221

,032,221

,032,221

,032,032

,195,177

,195,177

,195,177

,195,177

,195,177

,032,032

,032,032

,073,068

,080,082

,070,073

,085,084

,084,079

,082,084

,224,000

,000,000

,000,000

,000,000

.000,000

000,000

000,000

000,000

,000,000

,000,000

,000,127

,000,127

,000,127

,000,127

,000,127

,000,127

,000,127

,000,000

,000,000

,000,000

,000,000

,013,013

,032,221,010

,032,221,205

,032,221,211

,032,221,217

,032,221,223

,032,032,040

,032,032,180

,195,177,175

,195,177,092

,195,177,098

,195,177,104

,195,177,110

,032,032,024

,032,000,190

,069,078,234

,069,083,184

,082,069,201

,084,079,228

,032,083,192

,000,224,093

,000,224,008

,000,000,078

,000,000,084

,000,000,090

,000,000,096

,000,000,102

,000,000,108

,000,000,114

,000,000,120

,000,000,126

,254,000,001

,254,000,132

,254,000,138

,254,000,144

,254,000,150

,254,000,156

,254,000,162

,000,000,043

,000,000,180

,000,000,186

,000,000,192

,013,013,015

49

u

Canyon Runner , ,
Original Program by Vic Neale

64 Version by Kevin Mykytyn

U

Pilot your craft between jagged canyon walls in this LJ

exciting arcade-style test of reflexes and nerve. For the

unexpanded VIC or the 64. , ,

TU
he nameplate stuck on the leather flying jacket reads

"Aileron Jones," but your friends all call you Al. When

you took the job as a pilot with Wilderness Air Freight, every

body said you were crazy. Why, they asked, would you risk

life and limb over the South American jungle for a steady

$117.63 a week? Maybe you do it for the view, which is

particularly choice on a clear day like today. There's not a hint

of haze, and you can see that unmapped canyon a few miles

to the north. Some day you'll have to explore it firsthand.

But not today. It's payday, and your check is waiting back

at the field. You scan your instruments; everything looks fine.

Ought to be landing in a couple of hours. You look at the fuel

gauge. Good shape there too.

Then you glance out the window, and—what's that? A

dark speck in the distance? You put the aircraft on autopilot

and break out binoculars. Carefully, you focus.

Your expression turns grim. Air pirates again—and this

time you're too far out to call for help. You can't outrun them;

they're bigger and faster. In fact, you've only got one advan

tage: maneuverability.

There's only one escape route: into the canyon.

Twists and Reflections (
In the VIC version of "Canyon Runner," you must pilot your Lj
craft through an ever-narrowing canyon cut through jagged

rock. Scattered dark chunks of loose stone stand in your

way—and your accelerator control is jammed! j^j
You'll need all your piloting skill just to handle your

wildly careening aircraft, but you've also got to contend with t

blinding flashes of multicolored sunlight reflected from the |_j

river below. It's enough to distract even the most skillful

pilots, but don't let the flashes of sunlight distract you. If your

mind wanders for even an instant.... \ i

50

1 Games: 1

n

n

n

The VIC version of Canyon Runner is in two parts. Type

in and save Program 1; then type in and save Program 2 using

the filename CR. Program 1 will load and run Program 2

automatically.

As printed, the program is ready for disk users to type in

and run. If you are using tape, be sure to change the device

number from 8 to 1 in line 50 of Program 1. Then save Pro-

gram 2 immediately following Program 1 on the tape. When

you load and run Program 1, leave the PLAY button de

pressed to load and run Program 2.

Scoring is straightforward. You get 10 points for every

second that you stay in the air. There are five distinct zones in

the canyon, and you get bonus points every time you make it

through one of them. You get 1000 points for the first zone,

2000 points for the second, and so on. A 5000-point bonus is

awarded every time you make it through one of the patches of

lights. If you make it through all five zones, you'll return to

Zone 1, but face an even tougher course.

Copter Vs. Copter
On the Commodore 64, Canyon Runner is a game for two

players. One player takes the role of the cargo pilot, while the

other pilots the pursuing pirate craft. Each must guide a high-

performance copter through a tortuous and ever-changing can

yon, aim and fire missiles, and avoid missiles fired by the

other craft.

This version is written entirely in machine language and

must be entered using the "MLX" program in Appendix D.

The starting address is 49152, and the ending address is

51720. To run the program, load it by filename followed by

,l,l (if you're using tape) or ,8,1 (if you're using disk). Then

type SYS 49152, press RETURN, and the game will begin.

The 64 version requires two joysticks and offers many op-

tions. For example, you can select the type of missile you want

to use by pressing A (for Altitude) or D (for Detonation). Alti

tude missiles always explode at the altitude at which they are

fired, while detonation missiles will change altitude as you

change the altitude of your copter.

To get the feel of the controls, you can press S and select

the solo flight option. It allows Player 1 to practice flying

through the canyon, although it does not fully enable the

51

1: Games

missile launcher. Note that even on the solo flight option,

both joysticks must be pushed forward to initiate play.

At the bottom left and bottom right of the screen are the

numbers 1-9. One number will be highlighted; it indicates the

present difficulty level. The lower the number, the more diffi

cult the course. Each player can select a difficulty level by

moving the joystick left or right.

Finally, by pressing 1, 2, or 3, you can adjust the width of

the canyon. Beginners should start with width 1, which is

comfortably wide. Width 2 is more narrow. Width 3 should be

reserved for experts, since it requires precision maneuvering.

Guide your copter using your joystick. Move it left or

right to go left or right. Pull back to climb, and push forward

to dive. A dual altimeter reveals the altitude of each copter.

Fire missiles by pressing the fire button on the joystick.

You'll hear the flight of the missile as a whistling sound, and

you'll see the cloud of smoke as the missile explodes. Special

sprite priorities are used to simulate explosions above and be

low the target.

Each player starts with five copters and an unlimited sup

ply of missiles. A copter is lost whenever it collides with the

canyon wall or runs into an opponent's missile. The first

player to run out of copters loses the game.

Program 1. Canyon Runner, VIC Loader

For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 POKE51,0:POKE55,0:POKE52,28:POKE56,28:CLR:P0KE3

6869,255 :rem 173

15 PRINTM{CLR}{9 DOWN}(4 RIGHTjCANYON RUNNER"

:rem 121

16 PRINT"{3 DOWN}{5 RIGHT}PLEASE WAIT{WHT}m

:rem 240

20 FORI=7168TO7679:POKEI,PEEK(1+25600):NEXT:rem 99

30 FORI=7384TO73992READA:POKEI,A:NEXT :rem 84

40 DATA 255,255,255,255,255,255,255,255,195,231,23
1,231,0,0,165,231 :rem 229

50 S$="LO"+CHR$(34) + MCRII+CHR$(34)+II,8:II+CHR$(131) :
REM CHANGE 8 TO 1 FOR TAPE USERS :rem 214

60 FORI=1TOLEN(S$):POKE630+I,ASC(MID$(S$,I)):NEXT:
P0KE198,I:END .rem 93

52

Games: 1

Program 2. Canyon Runner, VIC Main Program

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

5 SYS 65017:POKE36869,255 :rem 120
10 PRINTII{CLR}II:POKE36879,8:POKE36878,15:S5=36875:

S1=36877:C=30720:S2=36876 :rem 132

11 DEFFNR(X)=INT(RND(1)*X)+1:DEFFNP(X)=X+(PEEK(1)-

PEEK(2)):DIMB$(15),T%(5),P(7),L(7) :rem 0

20 FORX=OTO7:READL(X):NEXT :rem 203

40 FORX=1TO6:READC%(X):NEXT :rem 202

100 GOSUB815:FORX=828TO871:READA:POKEX,A:NEXT

:rem 136

110 FORX=1TO15:READB$(X):NEXT:FORX=1TO5:READT%(X):

NEXT :rem 214

115 PRINT"{CLR}{DOWN}ENTER LEVEL":PRINT"{2 DOWN}5
{SPACE}EASY..HARD 1" :rem 66

116 GETSK$:SK=VAL(SK$):IFSK>5ORSK<1THEN116:rem 146

120 B=0:P=7910:SC=0:S=7:X2=1:DL=SK*(15+(SK-5)):R=(

SK*4)+20:H=SK*5 :rem 171

130 PRINT" {CLR}"SPC(S)"{WHT}{RVS} READY{2 SPACES}11
:FORX=1TO21:PRINTSPC(S)B$(1):NEXT:POKEP,28:FOR

D=1TO1500 :rem 124

135 NEXT:TI$="000000" :rem 116

140 POKES5,128+(100-DL):POKES1,128+(100-DL):FORX=1

TO5 :rem 26

220 FORY1=1TO40:FORY=1TO5:J=X:J1=X:IFFNR(H)=1THENJ

l=((X*2)+3+FNR(2)) :rem 130

230 GOSUB780 :rem 180

270 IFPEEK(P)=32THEN630 :rem 88

280 TU=0:GOSUB810:NEXT :rem 124

?90 IFFNR(R)=1THENK=X:K1=K:GOTO400 :rem 117

305 TU=230:J=X:J1=X:FORY=1TO25:GOSUB800 :rem 186

310 IFPEEK(P)=32THEN630 :rem 83

315 GOSUB810 :rem 178

320 IFY=13ANDX=5THENJ1=1:TU=0:GOSUB760:S=S-4:IFS<2

THENS=2 :rem 115

325 IFY=13ANDX=5THENNEXT :rem 46

330 IFY=13THENJ1=J1+1:TU=0:GOSUB760:NEXT :rem 253
370 NEXT:R=R-5 :H=H-4:DL=DL-10: IFDL<0THENDL=0:R==10:

H=3:GOTO140 :rem 248

380 GOTO140 :rem 105

400 FORZ=1TO13:J=X:J1=X:GOSUB800 :rem 255
410 IFPEEK(P)=32THEN630 :rem 84

420 TU=240:GOSUB810:NEXT:POKES5,228:POKES1,228

:rem 76

430 FORZ1=1TO10:FORZ=KTO1STEP-1:J=Z:J1=Z:GOSUB780

:rem 172

470 IFPEEK(P)=32THEN630 :rem 90

480 POKEP,28:FORD=1TODL/2:NEXT:NEXT:K=4 :rem 0
490 FORZ=2TO5:J=Z:J1=Z:GOSUB780 :rem 229

53

1: Games

530 IFPEEK(P)=32THEN630 :rem 87
540 POKEP,28:FORD=1TODL/2:NEXT:NEXT:NEXT :rem 128

550 FORZ=4TOKl:IFS>INT((Z+ll)/2)THENS=S-2 :rem 11

560 IFS<INT((Z+11)/2)THENS=S+1 :rem 252

570 J=Z:J1==Z:GOSUB800 :rem 27

580 IFPEEK(P)=32THEN630 :rem 92

590 TU=0:GOSUB810:NEXT :rem 128

600 FORZ=1TO13:J=X:J1=X:GOSUB800 :rem 1

610 IFPEEK(P)=32THEN630 :rem 86

620 TU=240:GOSUB810:NEXT:SC=SC+5000 :rem 115

625 POKES5,128+(100-DL):POKES1,128+(100-DL):rem 99

627 POKEP+C,T%(X):POKEP,27:PRINTSPC(S)"{WHT}{RVS}B

ONUSM:POKEP,28:GOTO290 :rem 184

630 E$=TI$:POKES5,0:POKES1,0:POKES2,0:POKEP+C,2

:rem 101

640 FORX=180TO220STEP2:POKES2,X:FORD=1TO50:NEXT:NE

XT :rem 147

650 POKES2,0:FORX=0TO7:P(X)=P+L(X):POKEP,42:NEXT:P

OKES1,175 :rem 197

660 FORX=15TO7STEP-1:FORY=0TO7:POKEP(Y),46:P(Y)=P(

Y)+L(Y):POKEP(Y)+C,1:POKEP(Y),90:NEXT :rem 215

670 POKE36878,X:NEXT :rem 217

700 POKES1,0:POKE36878,15 :rem 177

710 S9=((VAL(MID$(E$,5,2)))+((VAL(MID$(E$,3,2)))*6

0)):SC=SC+(S9*10) :rem 234

720 PRINT"{CLR}{6 RIGHT} {CYN}GAME OVER11 :PRINT"

{2 DOWN}"S9"SEC. IN TUNNEL" :rem 19

722 PRINT"{2 DOWN}SCORE:"SC :rem 218

725 PRINT"{3 DOWN} FIRE BUTTON TO PLAY" :rem 125

726 PRINT"{DOWN}C TO CHANGE SKILL{5 SPACES}{DOWN}S
TO STOP" :rem 217

730 IF-((PEEK(37151)AND32)=0)=1THEN120 :rem 68

735 GETA$:IFA$="C"THEN115 :rem 156

740 IFA$o"S"THEN730 : rem 105

750 END :rem 115

760 POKEP+C,T%(J):POKEP,27:PRINTSPC(S)"{WHT}{RVS}B

ONUS":POKEP#28 :rem 154

770 B=B+1000:SC=SC+B:RETURN :rem 117

780 T=FNR(4):IFT<=2THENS=S+1:IFS>J+10THENS=S-2

:rem 114

790 IFT>=3THENS=S-l:IFS<2THENS=S+2 :rem 154

800 POKEP+C,T%(J):SYS828:POKEP,27:P=FNP(P):PRINTSP
C(S)B$(J1):RETURN :rem 215

810 POKEP,28:POKES2,TU:FORD=1TODL:NEXT:POKES2,0:RE

TURN :rem 84

815 FORD=1TO1500:NEXT:RETURN :rem 51

820 DATA-22,-21,1,23,22,21,-1,-23,28,159 :rem 183

830 DATA156,30,31,158,169,128,141,19,145,169,0,133
,1,133,2,169,127,141,34,145,162,119 :rem 141

54

Games: 1

840 DATA236,32,145,208,4,169,1,133,1,169,255,141,3

4,145,162,110,236,17,145,208,4,169 :rem 92

850 DATA1,133,2,96,"{BLU}[[[[[[[[","{GRN}[[[[[[[",
"{YEL}[[[[[[","{PUR}[[[[[","{RED}[[[[","{BLU}[
[[{2 SPACES}[[[" :rem 194

860 DATA"tBLU}[[[[[[","{GRN}[[[{OFF}{2 SPACES}[[

■V'{GRN}[{OFF}{2 SPACES}[[[[","{YEL}[[[{OFF}
{2 SPACES}[",M{YEL}[{OFF}{2 SPACES}[[[":rem 35

870 DATA"{PUR}[[[{OFF} [","{PUR}[{OFF} [[[","{RED}
[[[[","{RED}[{OFF} [[",6,5,7,4,2 :rem 172

Program 3, Canyon Runner, 64 Version

Be sure to use "MIX" (Appendix D) when entering this program.

49152 :076,181,195,169,019,141,013

49158 :017,208,169,127,141,013,169

49164 :220,169,032,141,020,003,085

49170 :169,192,141,021,003,169,201

49176 :129,141,013,220,141,026,182

49182 :208,096,169,001,141,025,158

49188 :208,173,018,208,201,255,075

49194 :208,042,169,212,141,018,064

49200 :208,173,242,002,208,008,121

49206 :169,007,141,242,002,032,135

49212 :160,193,173,017,208,041,084

49218 :120,013,242,002,141,017,089

49224 :208,206,242,002,173,013,148

49230 :220,041,001,208,021,076,133

49236 :188,254,169,255,141,018,085

49242 :208,173,017,208,041,120,089

49248 :009,007,141,017,208,076,042

49254 :076,192,206,167,002,240,217

49260 :003,076,050,193,169,006,093

^9266 :141,167,002,169,128,141,094

49272 :018,212,173,249,007,201,212

^9278 :243,208,021,169,240,141,124
49284 :249,007,174,167,003,208,172

49290 :003,141,250,007,169,129,069

49296 :141,018,212,076,161,192,176

49302 :238,249,007,174,167,003,220

49308 :208,003,238,250,007,173,011
49314 :000, 220,172 ,176,002 ,174,138

49320 :002,208,074,176,005,192,057

49326 :000,240,001,136,074,176,033

49332 :005,192,255,240,001,200,049

49338 :074,176,001,202,074,176,121

49344 :001,232,074,008,142,002,139

49350 :208,140,176,002,152,074,182

49356 :074,074,024,105,214,141,068

55

1: Games

49362 :011,208,040,176,005,169,051

49368 :001,141,192,002,173,001,214

49374 :220,172,177,002,174,004,203

49380 :208,074,176,005,192,000,115

49386 :240,001,136,074,176,005,098

49392 .-192,255,240,001,200,074,178

49398 :176,014,224,000,208,009,109

49404 :173,016,208,041,251,141,058

49410 :016,208,202,202,074,176,112

49416 :013,224,255,208,008,173,121

49422 :016,208,009,004,141,016,152

49428 :208,232,142,004,208,140,186

49434 :177,002,152,074,074,074,067

49440 :024,105,214,141,013,208,225

49446 :173,001,220,041,016,208,185

49452 :005,169,001,141,193,002,043

49458 :076,188,254,173,250,003,226

49464 :240,096,160,039,169,032,024

49470 :153,208,006,136,016,250,063

49476 :173,243,002,201,000,208,127

49482 :021,173,244,002,201,027,230

49488 :240,008,169,027,141,244,141

49494 :002,076,129,193,238,243,199

49500 :002,076,129,193,201,011,192

49506 :208,021,173,244,002,201,179

49512 ": 028,240,008 ,169 ,028 ,141, 206
49518 :244,002,076,129,193,206,192

49524 :243,002,076,129,193,173,164

49530 :027,212,016,205,076,100,246

49536 :193,173,244,002,172,243,131

49542 :002,153,208,006,153,224,112

49548 :006,174,245,002,200,202,201

49554 :208,252,153,208,006,153,102

49560 :224,006,169,001,141,250,175

49566 :003,096,169,040,133,251,082

49572 :169,004,133,252,169,000,123

49578 :133,253,169,004,133,254,092

49584 :162,018,160,039,177,251,215

49590 :145,253,136,016,249,024,237

49596 :169,040,101,251,133,251,109

49602 :165,252,105,000,133,252,077

49608 :024,169,040,101,253,133,152

49614 :253,165,254,105,000,133,092

49620 :254,202,208,218,032,053,155

49626 :193,096,173,064,003,208,187

49632 :042,173,192,002,208,003,076

49638 :076,215,194,173,011,208,083

49644 :141,080,003,169,255,141,001

49650 :001,212,141,168,002,169,167

49656 :017,141,004,212,169,017,040

U

U

LJ

U

LJ

56

Games: 1

n

49662

49668

49674

49680

49686

49692

49698

49704

49710

49716

49722

49728

49734

49740

49746

49752

49758

49764

49770

49776

49782

49788

49794

49800

49806

49812

49818

49824

49830

49836

49842

49848

49854

49860

49866

49872

49878

49884

49890

49896

49902

49908

49914

49920

49926

49932

49938

49944

49950

49956

:006

:003

:076

,005,

,212,

:201

:194

:169

:010

:006

:080

:173

:003

:173

:173

:008

:173

:003

:173

:173

:008

:173

:169

:145

:004

:009

:096

: 141

:173

:016

:212

:173

:178

:081

:212

:012

:212

:173

:008

:040

:169

:129

,177,

,001,
,040,

,169,

,129,

,141,

,005,

,212,

,003,

,013,

,205,

,004,

,016,

,173,

,016,

,013,

,205,

,004,

,016,

,173,

,016,

,004,

,000,

,003,

,240,

,016,

,198,

,003,

,064,

,000,

,008,

,016,

,208,

,173,

,193,

,195,

,003,

,141,

,011,
,212,

,169,

,097,

,195,

,212,

,240,

,060,

,141,

212,169

169,001

096,003

194,173

212,206

240,003

060,141

141,004

001,212

212,169

173,013

240,074

208,056

080,003

208,141

208,041

016,208

208,076

208,024

080,003

208,141

208,041

016,208

208,076

208,141

141,005

173,016

008,173

141,016

076,062

208,033

003,141

208,141

208,141

208,041

169,128

065,003

002,208

173,013

169,255

169,002

212,169

169,226

001,141

003,240

173,169

206,169

003,076

141,097

011,212

,226,141,124

,141,064,085

,240,003,016

,168,002,038

,168,002,240

,076,215,035

,096,003,185

,212,169,096

,169,017,084

,235,141,187

,208,205,107

,144,036,129

,237,128,117

,144,060,059

000,208,048

004,240,002

,009,001,253

,177,194,144

,109,128,249

,176,024,091

006,208,090

004,240,038

,009,008,040

,177,194,180

,008,208,116

,208,206,109

,208,041,228
,016,208,041

208,032,076

196,206,067

169,000,175

192,002,215

006,208,126

,096,003,025

,004,141,017

,141,004,106

,208,042,149

,003,076,107

,208,141,110

,141,008,121

,169,017,180

,017,141,167

,141,013,255

,065,003,079

,003,076,086

,002,141,075

,002,201,048

,178,195,244

,003,169,157

169,010,196

57

1: Games

49962 :141,008,212 ,169,017,141,218

49968 :012,212,169,235,141,013,062

49974 :212,173,011,208,205,081,176

49980 :003,240,060,144,029,173,197

49986 :011,208,056,237,129,003,198
49992 :205,081,003,144,046,173,212

49998 :002,208,141,000,208,173,042

50004 :016,208,041,254,141,016,248

50010 :208,076,151,195,173,011,136

50016 :208,024,109,129,003,205,006

50022 :081,003,176,017,173,002,042

50028 :208,141,006,208,173,016,092

50034 :208,041,247,141,016,208,207

50040 :076,151,195,173,002,208,157

50046 :141,008,208,173,016,208,112

50052 :041,239,141,016,208,169,178

50058 :000,141,003,208,206,144,072
50064 :003,032,181,198,076,062,184

50070 :196,206,097,003,208,022,114

50076 :169,000,141,065,003,141,163

50082 :193,002,141,000,208,141,079

50088 :006,208,141,008,208,169,140

50094 :128,141,011,212,076,181,155

50100 :197,120,165,001,041,251,187

50106 :133,001,160,000,185,000,153

50112 :208,153,000,048,185,000,018

50118 :209,153,000,049,185,000,026

50124 :210,153,000,050,185,000,034

50130 :211,153,000,051,185,000,042

50136 :212,153,000,052,185,000,050

50142 :213,153,000,053,185,000,058

50148 :214,153,000,054,185,000,066

50154 :215,153,000,055,200,208,041

50160 :205,165,001,009,004,133,245

50166 :001,088,160,000,185,134,046

50172 :200,153,000,060,185,134,216

50178 :201,153,000,061,200,208,057

50184 :241,160,015,185,118,200,159

50190 :153,216,048,136,016,247,062

50196 :169,003,141,128,003,141,093

50202 :129,003,169,000,141,033,245

50208 :208,169,147,032,210,255,029

50214 :024,162,010,160,000,032,170

50220 :240,255,169,001,141,033,115

50226 :208,076,041,198,169,005,235

50232 :141,144,003,141,145,003,121

50238 :169,125,141,001,208,141,079

50244 :007,208,141,009,208,141,014

50250 :015,212,169,000,141,167,010

50256 :003,141,016,208,169,240,089

58

u

u

u

u

u

u

u

u

Games: 1

50262

50268

50274

50280

50286

50292

50298

50304

50310

50316

50322

50328

50334

50340

50346

50352

50358

50364

50370

50376

50382

50388

50394

50400

50406

50412

50418

50424

50430

50436

50442

50448

50454

50460

50466

50472

50478

50484

50490

50496

50502

50508

50514

50520

50526

50532

50538

50544

50550

50556

:173

:017

:212

:173

:012

:005

:000

:032

:033

:003

:169

:162

:255

:030

:003

:169

:144

:210

:028

:169

:145

:210

:002

:169

:002

:208

:169

:000

:200

:128

:061

:169

:245

:007

:254

:208

:208

:169

:128

,249,

.017,

,208,

,169,

,193,

,065,

,097,

,001,
,000,

,008,

,011,
,024,

,141,

,250,

,220,

,141,

,210,

,208,

,032,

,022,

,020,

,160,

,171,

,032,

,043,

,003,

,255,

,032,

,043,

,003,

,255,

,169,

,070,

,208,

,141,

,003,

,006,

,160,

,208,

,061,

,169,

,244,

,141,

,141,

,253,

,007,

,141,

,169,

,001,
,141,

007,141,250

208,041,247

169,015,141

000,141,192

002,141,064

003,141,096

003,141,016

212,141,008

208,141,006

208,141,004

212,173,031

208,041,240

024,208,169

003,169,012

032,003,192

033,208,169

255,169,001

024,162,020

240,255,160

032,030,171

160,028,032

200,169,033

024,162,022

240,255,160

032,030,171

024,105,048

024,162,022

240,255,160

032,030,171

024,105,048

169,003,141

027,141,244

141,002,208

169,200,141

004,208,169

208,141,005

141,028,208

000,153,128

250,169,031

169,248,141

224,141,029

141,255,007

248,007,141

252,007,169

007,169,247

169,150,141

010,208,141

204,141,015

141,193,061

129,061,141

,007,113

,141,151

,024,160

,002,052

,003,142

,003,053

,208,216

,212,075

,208,070

,212,086

,208,154

,009,079

,000,200

,141,112

,169,023

,147,106

,141,222

,160,027

,200,060

,024,136

,240,080

,032,037

,160,019

,200,090

,173,080

,032,080

,160,051

,200,139

,173,104

,032,105

,243,007

,002,089

,141,241

,004,240

,125,121

,208,234

,169,255

,061,042

,141,033

,194,237

,208,134

,169,037

,251,091

,246,142

,141,028

,014,067

,012,058

,208,033

,169,084

,023,235

59

1: Games

50562

50568

50574

50580

50586

50592

50598

50604

50610

50616

50622

50628

50634

50640

$0646

60652
30658

50664

50670

30676
50682

50688

50694
50700

50706

50712

50718

50724

50730

50736

50742

50748

50754

50760

50766

50772

50778

50784

50790

50796

50802

50808

50814

50820

50826

50832

50838

50844

50850

50856

60

:208,169,

:141,045,

:046,208,

:208,141,

:208,169,

:169,005,

:255,141,

:208,206,

:076,220,

:041,002,

:208,141,

:141,003,

:032,181,

:173,031,

:019,169,

:169,245,

:145,003,

:062,196,

:028,032,

* 005,160,

:169,033,

:171,169,

:030,171,

:145,003,

:199,024,

:032,240,

:200,032,

:160,200,

:065,199,

:032,030,

:033,006,

:006,169,

:169,255,

:252,198,

:001,220,

-.006,032,

:196,138,

: 169,000,

:000,220,

:173,128,

:003,206,

:198,173,

:208,013,

:009,240,

:076,141,

:041,004,

:003,201,

:129,003,

:001,220,

:173,129,

000,141,044

208,169,007

169,015,141

042,208,141

002,141,040

141,041,208

167,002,173

178,003,208

193,173,031

240,020,173

008,208,169

208,206,144

198,076,062

208,041,004

,001,141,167

141,250,007

032,181,198

173,144,003

065,199,024

013,032,240

160,200,032

053,160,200

076,041,198

208,157,032

162,005,160

255,169,022

030,171,169

032,030,171

169,060,160

171,169,049

169,001,141

011,141,245

141,021,208

173,000,220

170,041,001

083,199,076

041,002,208

133,198,000

.041,004,208

.003,201,001

,128,003,076

,000,220,041

173,128,003

,003,238,128

198,173,001

208,013,173

001,240,172

076,071,198

041,008,208

003,201,009

,208,132

,141,079

,039,248

,043,163

,208,154

,169,125

,031,167

,003,210

,208,055

,002,150

,000,156

,003,133

,196,179

,240,137

,003,202

,206,214

,076,093

,208,250

,162,236

,255,181

,030,106

,032,017

,173,183

',065,110
,013,069

,160,134

,053,173

,032,149

,200,127

,141,128

,113,005

,002,122

,032,124

,013,160

,208,207

,054,022

,005,168

,173,001

,013,076

,240,086

,141,159

,008,248

,201,084

,003,241

,220,179

,129,200

,206,205

,173,038

,159,031

,240,155

u

u

u

u

u

u

u

U
I
]

D
1
1

I
I

.
D

;I
3
D

D

U
l
U
l

\
J
l
U
l
U
t

C
/
i
-
U
T
O
«
U
1
U
>
U
I
U
I
U
1
U
I
U
T
U
I
U
1
U
1
U
I
U
I
U
I
U
1
U
1
U
I
U
I
U
I
U
1
U
1
U
I
U
1
U
I
U
I
U
1
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
1
U
I
U
I
U
I
U
1
U
1
U
I
U
I

M
M
h
M
M
M
M
M
M
M
M
Q
G
)
G
k
G
)
Q
Q
Q
Q
Q
Q
Q
G
l
Q
Q
&
G
l
Q
G
l
G
k
G
>
O
Q
G
l

O
v
O
O
v
O
O
O
O
^
)
O
O
0
v
O
O
I
S
O
O
(
S
(
]

^
^
O
N
U
l
U
l
i
^
i
^
O
o
r
o
r
O
M
M
Q
v
^

:160 ,016 ,032,,240 r255 ,169,

:141 ,113
'900'

,024 ,162 ,013,

:251 rl41 ,021,,208 ,169 ,019,

:208 ,201 ,013,
803'

,010 ,169,

:113
900'

,169, ,141 ,021,

:032 ,003 ,200,,169 ,001 ,141,

:240 ,199 ,162,,081 ,160 ,003,

:024 ,162 ,160 ,003 ,032,

:141 ,021 ,208,,201 ,010 ,208,

:004 ,141 ,113, ,169 r255,

:160
803'

,032,,003 ,200 ,169,

:208

:018

Gtto OJGt tooo
,240,,199 ,162 r013,

,024,,162 ,011 rl60,

:169 ,051 ,141,,033 ,006 r201,

:010 ,169 ,007,,141 ,245 ,002,

:141 ,033 ,006,,201
800'

,208,

:009 ,141 ,245,,002 ,169 r050,

:006 ,201 ,010

:245
300'

,169, 049 ,141 ,033,

,169,

Gt Ul ON
,010i 169 ,011 ,141,

:021 ,003 165 ,203 ,201,

:141, ,003, 169 ,192,,141,

:003
880'

120 ,169 ,032,

:020,,003 rl69, 234,,141,,021,

1141,

:208,

GttO ro£>ON00
'803'

169,,049,,141,

'960'

120,,169,,000,

:162,
993'

,253,,136,

:128, 153,,179, 007,,160,,050,

:129,
£00

,185, 179,,007,,009,

Gt Gt VO
128

:172,,128

K-Gt UlGt OJOJ
154,,007,,172,

185,,154,,007,

:200, 169,
f960'

032,,030, 171,

:160, ,032, 240,
'993'

,160,

:032, 095,,199, 024, 162, 023,

:200, 169, 032,,030, 171,

:160, ,032, 240,
'993

160,

:032,
'990

,199, 024, 162, 023,

:000, 141,,004, 212, 096,

:206, 166,,003, 208, 169,

:212, 169,,000, 141, 208,

:004, 212,,169, 128, 141, 004,

:202, 208,,248, 169, 141,

:255, 160, 136, 208, 253,

:169, ,141, 166, 003, 162,

:120, 169, 141, 001, 212,

:212, 169,,237, 141,

:004, 212,

ON vO
017, 141, 005,

212,

:141, 008,,212, 169, 129, 141,

:152,

:198,

MtO ONOJ VO00
,000, 141, 001, 212,

129, 003, 076, 071,

5
l
H
N
)
N
)
H
I
S
)
I
O
H
H
(
S
H
t
O
t
v
)
M
H
t
0
(
O
(
0
N
)
H
6
)
t
0
(
S
)
H
l
S
)
H
K
}
N
)
G
H
H
i
0
H
S
H
5
)
t
O
Q
H
t
0
H
H
M
G
|
(
S
I
H
K
)
N
)
H
Q

^
^
O
J
^
U
l
V
O
i
^
^
O
O
O
N
O
^

o I CO

1: Games

51162

51168

51174

51180

51186

51192

51198

51204

51210

51216

51222

51228

51234

51240

51246

51252

51258

51264

51270

51276

51282

51288

51294

51300

51306

51312

51318

51324

51330

51336

51342

51348

51354

51360

51366

51372

51378

51384

51390

51396

51402

51408

51414

51420

51426

51432

51438

51444

51450

51456

62

:032,030,171,096,142,064,003

:194,140,065,194,142,078,031

:194,140,079,194,142,114,087

:194,140,115,194,096,142,111

:059,195,140,060,195,142,027

:073,195,140,074,195,142,061

:102,195,140,103,195,096,079

: 000 , 000 , 02b , 000 , 000 , 01b , Z J4

:000,255,000,190,000,000,129

:190,000,000,060,000,000,196

:060.000.000.060.000.000,072

,19Z,00J,255,19Z,0bD,19b

,085,003,255,192,003,099

,192,000,255,000,000,184

[,000,000,000,000,255,059

u

LJ

U

U

U

U

:060

:255

:255

:085

:255

:060

u

u

n

n

n

n

n

Games: 1

51462

51468

51474

51480

51486

51492

51498

51504

51510

51516

51522

51528

51534

51540

51546

51552

51558

51564

51570

51576

51582

51588

51594

51600

51606

51612

51618

51624

51630

51636

51642

51648

51654

51660

51666

51672

51678

51684

51690

51696

51702

51708

51714

:000,190

:000,060

:000,060

:000,060

:000,060

:000,060

:000,253

:003,215

:001,127

:020,255

:000,000

: 000,000

-.000,000

:000,000

1000,000

:000,080

:000,005

1000,003

: 192,003

:064,003

:020,000

:000,255

:222,003

:223,223

:024,001

:024,001

:024,001

:024,001

:024,001

:024,001

:024,001

:024,001

:000,000

:001,224

:003,249

:051,255

:255,255

:255,255

:111,249

:031,251

:001,240

:000,000

:000,000

,000,000

,000,000

,000,000

,000,000

,000,000

,020,000

,064,003

,192,003

,192,005

,000,080

,000,255

,190,000

,060,000

,060,000

,060,000

,060,000

,255,000

,095,192

,245,192

,255,080

,060,005

,255,255

,238,223

,238,192

,192,060

,192,060

,192,060

,192,060

,192,060

,192,060

,192,060

,255,255

,000,000

,000,003

,192,003

,240,127

,248,255

,240,247

,252,031

,238,000

,252,001

,000,000

,000,239

,190,000,130

060,000,132

060,000,138

060,000,144

,060,005,155

,255,080,195

,245,192,031

,095,192,236

,255,192,05ft

,060,000,21$
000,190,255

,000,060,066

000,060,198

000,060,204

000,060,210

,020,060,060

,001,127,234

,003,215,104

,003,253,234

,000,255,009

,000,000,211

,255,224,096

,223,224,247

,223,128,091

003,128,046

,003,128,052

,003,128,058

,003,128,064

,003,128,070

,003,128,076

,003,128,082

,255,239,197

,000,000,198

,240,000,160

,227,224,084

,255,248,112

,255,128,082

,255,248,192

,251,254,102

,249,254,239

,224,120,060

,000,000,252

,013,013,011

63

Chapter 2

Education

Learning to Count
William W. Braun

Designed for children in kindergarten through third

grade, this colorful program is easily tailored to your

childys needs and abilities.

Teaching programs are sometimes broad in scope and

appropriate for only one learning level. However,

"Learning to Count" allows the parent or instructor to tailor

the tutor to the child. Colorful graphics and exciting sound

make it entertaining as well as educational.

Selecting a Range
When you run the program, you're first asked to input a num

ber from 1 to 4 to set the range of objects to be counted.

Choosing the lowest range displays a random number of ob

jects from 2 to 10, while the highest level gives groups rang

ing from 2 to 50 objects.

The child is asked to count the objects and type in the

number. A correct answer is rewarded with a smiling face and

short melody. A wrong answer elicits a SORRY! TRY AGAIN

response. After three wrong responses, the correct answer is

given.

The program continues until a zero is typed. That allows

the parent or instructor to control the length of the program or

to move to a higher level. When a zero is entered, the screen

displays the number of tries, the number right, and the num

ber wrong. Then, after a short graphics display, the program

asks if you want to continue and at what level.

Countable Graphics
The objects counted by the child include some of the special

graphics characters, such as hearts and crosses. They're dis

played in various colors and accompanied by a short tone. The

DATA statements at the end of the program contain the codes

for the characters, colors, and tones in groups of three.

Learning to Count can easily be modified or enhanced

with custom characters. You can also include custom graphics

or sound subroutines as rewards for correct answers.

67

2: Education

Program 1, Learning to Count, VIC Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

8 Z=7680:V=36878:S1=36876:BC=36879:COL=30720:S2=36

874 :rem 240

9 PRINTCHR$(147):POKEV,15:POKE808,114 :rem 208

15 POKE214,7:PRINT:POKE211,4:PRINT"{PUR}LEARN TO C

OUNT{BLU}M:POKE214,17:PRINT:POKE211,6 :rem 209

25 FORI=0TO21:READA,B,C:POKEZ+I,A:POKEZ+I+COL,B:PO

KES1,C:FORT=1TO75:NEXT:POKES1,0 :rem 224

30 IFC=236THENRESTORE :rem 96

35 NEXT :rem 167

40 FORI=0TO21:READA,B,C:POKEZ+484+I,A:POKEZ+484+I+

COL#B:POKES1,C:FORT=1TO75 :rem 177

42 NEXT:POKE S1,0 :rem 238

45 IFC=236THENRESTORE :rem 102

50 NEXT :rem 164

55 FORI=0TO22:READA,B,C:POKEZ+22*I,A:POKEZ+22*I+CO

L,B:POKES1,C:FORT=1TO75:NEXT:POKES1,0 :rem 0

60 IFC=236THENRESTORE :rem 99

61 NEXT :rem 166

62 FORI=0TO22:READA,B,C:POKEZ+21+22*I,A:POKEZ+21+2

2*I+COL,B:POKES1,C :rem 102

63 FORT=1TO 75:NEXT:POKE S1,0 :rem 227

64 IFC=236THENRESTORE :rem 103

65 NEXT:FORT=1TO2500:NEXT :rem 112

70 PRINTCHR$(147):PRINT"{DOWN}{PUR}{2 SPACES}{RVS}

LEARN TO COUNT{OFF}{BLK} CAN":PRINT"{DOWN}
{2 SPACES}HELP YOU LEARN TO :rem 115

71 PRINT"{DOWN}{2 SPACES}COUNT UP TO 50.":PRINT"

{3 DOWN}{2 SPACES}PRESS {RVS}l{OFF}# {RVS}2
{OFF}, {RVS}3{OFF}# OR {RVS}4{OFF}." :rem 38

75 PRINT"{2 DOWN}{3 SPACES}UP TO 10 {RVS}l{OFF}"
:PRINT"{DOWN}{3 SPACES}UP TO 25 {RVS}2{OFF}":
PRINT"{DOWN}{3 SPACES}UP TO 35 {RVS}3{OFF}"

:rem 182

76 PRINT"{DOWN}{3 SPACES}UP TO 50 {RVS}4{OFF}
{2 RIGHT}{3 UP}{BLU}"7 :rem 162

77 GETD$:IFD$=""THEN77 :rem 5

78 ONVAL(D$)GOTO81,82,83,84 :rem 15

79 GOTO77 :rem 23

81 DL=10:GOTO100 :rem 155

82 DL=25:GOTO100 :rem 162

83 DL=35:GOTO100 :rem 164

84 DL=50 :rem 158

100 POKEV,15:R=0:W=0:N=0:POKEBC,27:X=DL:PRINTCHR$(

147) :rem 43
?06 A=(INT(X*RND(l)))*2:IFA/2+l=lTHEN206 :rem 227
210 N=N+1:RESTORE:SC=7834 :rem 9

68

Education: 2

220 PORH=0TOASTEP2:C=0:READL,M,K:IFK=236THENRESTOR

E srera 61

230 POKESC+H,L:POKESC+COL+H#M:POKES1#K:FORT=1TO75:

NEXT:POKES1,0:FORT=1TO350:NEXT :rem 232

232 IFH=20ANDL=38THENSC=SC+22 :rem 251

233 IFH=42THENSC=SC+22 :rem 57

234 IFH=64THENSC=SC+22 :rem 62

235 IFH=86THENSC=SC+22 :rem 67

236 IFH=108THENSC=SC+22 :rem 111

237 NEXT :rem 219

243 POKE214,19:PRINT:POKE211,0:PRINTMENTER {RVS}0

{OFF} OR A LETTER TOSTART OVER. :rem 157

244 PRINT"{HOME}M:FORT=0TO110:PRINT" ";:NEXT:PRINT

11 {HOME}11: INPUT "HOW MANY";Y$:rem 91

245 Y=VAL(Y$):IFY=0THENN=N-1:GOTO3000 :rem 13

260 IFVAL(Y$)=A/2+lTHENGOSUB1000:R=R+l:PRINTCHR$(1

47):GOTO206 :rem 186

270 C=C+1:IFC=2THEN2500 :rem 41

280 PRINT"{HOME}{3 DOWN}{2 SPACES}{RVS}WRONG! TRY
{SPACE}AGAIN.":GOSUB500:FORT=1TO900:NEXT:GOTO2

44 :rem 242

500 POKES2,128:FORT=0TO300:NEXT:POKES2,0:RETURN

:rem 5

1000 U=INT(RND(1)*3)+1:W=INT(RND(1)*8)+24:POKEBC,W

:ONUGOSUB1200,2000,1200:PRINTCHR$(31) :rem 75
1001 PRINTCHR$(147):RETURN :rem 87

1200 PRINT"{CLR}":PRINTCHR$(U+155):Q=INT(RND(1)*61

)+161::FORT=0TO205:PRINTCHR$(Q);:NEXT:rem 141

1201 PRINT"{RED}RIGHT I"CHR$(U+155)?:FORT=0TO249:PR

INTCHR$(Q);:NEXT:GOSUB2006:RETURN :rem 214

2000 PRINT"{CLR}{DOWN}{BLK}{2 SPACES}QQQQQ
{8 SPACES}QQQQQ":PRINT" Q{5 SPACESJQ

{6 SPACES}Q{5 SPACES}Q" :rem 64

2001 PRINT"{BLUT{3 SPACES)J3 +1{10 SPACES}g3 +§":P
RINT"{3 SPACES}|3 +§{10 SPACES}g3 +1":PRINT"
{3 SPACES}|3 +!{10 SPACES}g3 +§" :rem 117

2002 PRINT"{4 DOWN}{9 SPACES}|4 +1{18 SPACES}g4 +1
{18 SPACES}14 +!" :rem 161

2003 PRINT"{PUR} |+§{18 SPACES}§+§{2 SPACES}g+§

{18 SPACES }g+jj{ 3 SPACES }g+§{ 16 SPACES }g+§
{5 SPACES}g+§"; :rem 247

2004 PRINT"{14 SPACES}g+§{7 SPACES }g+l {DOWN} g-h§

{DOWN}g+1{DOWN}g8 +3{UP}g+§{UP}g+§{UP}g+§
{BLU}" :rem 86

2005 REM CORRECT ANSWER TUNE :rem 201

2006 Q=INT(RND(1)*2)+36875:FORH=235TO241:POKEQ,H:F

ORT=1TO125:NEXT:NEXT :rem 68

2007 FORH=241TO235STEP-1:POKEQ#H:FORT=1TO125:NEXT:

NEXT:POKEQ,0:POKEBC#27:RETURN :rem 148

69

2: Education

0
2500 GOSUB5000:PRINT"{3 DOWN} SORRYl WRONG AGAIN! (,

:rem 246 | j
2501 PRINT"{3 SPACES}THERE WERE11;A/2+1" {2 UP}M:GOS

UB500 :FORT=0TO2000 :NEXT: PRINTCHR$ (147):GOTO20

6 :rem 178 I I
3000 PRINT "{CLR}{GRN}IISPC(178)MYOU HAD: ";N; "TRIES '—'

:PRINT"Q{10 SPACES}";R;"RIGHT" :rem 183

3002 PRINT"{DOWN}{2 RIGHT}{8 SPACES}" :rem 225
3005 PORT=1TO4000:NEXT:PRINTCHR?(31):GOTO25 j [

:rem 168

5000 PRINT"{CLR}{2 SPACES}QQQQQ{8 SPACES}QQQQQ":PR
INT" Q{5 SPACES}Q{6 SPACES}Q{5 SPACESTO^

:rem 162

5001 PRINT"{BLK}{3 SPACES}g3 +1(10 SPACES}g3 +1":P
RINT"{3 SPACES}g3 +§{10 SPACES}g3 +1":PRINT"
{3 SPACES}g3 +§{10 SPACES}g3 +§" :rem 233

5002 PRINT"{2 DOWN}{9 SPACES}g4 +§{18 SPACES}g4 +3
{18 SPACES}g4 +3":PRINT:PRINT :rem 16

5003 PRINT"{9 SPACES}g4 +1":PRINT"{8 SPACES}g+3
{4 SPACES}g+i":PRINT"{7 SPACES}g+§{6 SPACES}
i+§ :rem 189

5004 PRINT"{6 SPACES}g+§{8 SPACES}g+§":PRINT"
{5 SPACES}g+§{10 SPACES}g+l":PRINT"{4 SPACES}
g+§{l2 SPACES}g+§{BLU}":RETURN :rem 205

8999 REM :rem 199

9000 DATA81,0,219,65,2,221,83,3,223,90,4,225,88,5,

227,90,6,228,102,7,229,42,0,231,35,2 :rem 169
9001 DATA232,36,3,233,38,4,235,0,5,236 :rem 116

Program 2. Learning to Count, 64 Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

28 POKE788,52:POKE53281,0:POKE53280,0:S=54272

:rem 48

30 PRINT"{CLR}{12 DOWN}"TAB(11)"{WHT}LEARNING TO C

OUNT" :rem 226

35 FORL=STOS+24:POKEL,O:NEXT:POKES+5,14:POKES+9,24 , (

0:POKES+24,15:HF=S+1:LF=S :rem 217 lJ
40 Z=1024:C=0:COL=S:DL(1)=10:DL(2)=25:DL(3)=35:DL(

4)=50 :rem 19

50 FORI=0TO39:READA:READB:POKEZ+I,A:POKEZ+I+COL,B:] |

GOSUB5000:FORT=1TO75:NEXT :rem 124 <-J

52 IFB=5THENRESTORE :rem 253

53 NEXT :rem 167

54 FORI=0TO39:READA:READB:POKEZ+960+I,A:POKEZ+960+ M

I+COL,B:GOSUB5000 :rem 169

55 FORT=1TO75:NEXT:IFB=5THENRESTORE :rem 107

56 NEXT :rem 170

57 FORI=0TO24:READA:READB:POKEZ+40*I,A:POKEZ+40*I+

COL,B:GOSUB5000 :rem 46

70

Education: 2

n

n

n

n

H

n

n

58 FORT=1TO75:NEXT:IFB=5THENRESTORE :rem 110

59 NEXT :rem 173
60 FORI=0TO24:READA:READB:POKEZ+39+40*I,A:POKEZ+39

+40*I+COLL,B:GOSUB5000 :rem 162
61 FORT=1TO75:NEXT:IFB=5THENRESTORE :rem 104

62 NEXT:FORT=1TO2500:NEXT :rem 109

70 PRINTCHR$(147):PRINT"{2 DOWN}{4 SPACES}{RVS}LEA
RNING TO COUNT{OFF} CAN HELP YOU" :rem 39

72 PRINT11 {DOWN} {4 SPACESjLEARN TO COUNT UP TO 50."
:rem 196

73 PRINT"{3 DOWN}{4 SPACES}ENTER {RVS}l{OFF},
{RVS}2{OFF}, {RVS}3{OFF}, OR {RVS}4{OFF}."

:rem 153

75 PRINT"{4 DOWN}{5 SPACESjUP TO 10 {RVS}l{OFF}"
:PRINT"{DOWN}{5 SPACESjUP TO 25 {RVS}2{OFF}"

:rem 174

76 PRINT"{DOWN}{5 SPACES}UP TO 35 {RVS}3{OFF}":P
RINTM{DOWN}{5 SPACES}UP TO 50 {RVS}4{OFF}
{2 RIGHT} {3 UP}11; :rem 173

80 INPUTD$:D=VAL(D$):IFD<1ORD>4THEN70 :rem 30

100 R=0:W=0:N=0:X=DL(D):PRINT"{CLR}" :rem 213

206 A=(INT(X*RND(l)))*2:IFA/2+l=lTHEN206 :rem 227

210 N=N+1:RESTORE:SCR=1304 :rem 77

220 FORH=0TOASTEP2:C=0 :rem 108

225 READL:M=INT(RND(0)*15)+1 :rem 82

226 IFL=5THENRESTORE :rem 58

230 POKESCR+H,L:POKESCR+COL+H,M:FORT=1TO75:NEXT:GO

SUB5000:FORT=1TO350:NEXT :rem 94

232 IFH=39THENSCR=SCR+80 :rem 230

238 NEXT :rem 220

239 PRINT"{19 DOWN}{10 SPACESjENTER {RVS}0{OFF} TO
START OVER-M:POKE198#0 :rem 6

240 PRINT"{HOME}{2 DOWN}{16 SPACES}";:INPUT"{HOME}

{2 DOWN}{2 SPACES}HOW MANY";Y$:rem 245
245 IFY$="0"THENN=N-1:GOTO3000 :rem 244

250 Y=VAL(Y$) :rem 222

260 IFY=H/2THENGOSUB2000:R=R+1:PRINTCHR$(147):GOTO

206 :rem 14

270 C=C+1:IFC=3THENGOTO2500 :rem 99

280 PRINT"{HOME}{3 DOWN}{RVS}SORRY1 TRY AGAIN.":FO
RT=1TO1700:NEXT:GOSUB4000:GOTO240 :rem 94

2000 PRINT"{CLR}{4 DOWN}{WHT}"TAB(6)"{4 SPACES}QQQ
QQ{8 SPACES}QQQQQ " :renT59

2001 PRINTTAB(6)"13 SPACES}Q{5 SPACES}Q{6 SPACESjQ

{5 SPACESjQ" :rem 54
2002 PRINTTAB(6T"{BLU}{5 SPACES}g3 +3{10 SPACES}

§3 +§{2 SPACES}" :rem 246
2003 PRINTTAB(6)"{5 SPACES}g3 +§{10 SPACES}g3 +1

{6 DOWN}" :rem 62

71

2: Education

u

2004 PRINTTAB(6)"{RED}{11 SPACES}g4 +§{8 SPACES}11 , ,
:rem 169 | j

2005 PRINTTAB(6)"{CYN}{2 SPACES}g+H7 SPACES}{RED}
g4 +1{8 SPACES}{CYN}§+3" :rem 52

2006 PRINTTAB(6)"{2 SPACES} g+jj {20 SPACES}g+3" |)
:rem 67 ■•—'

2007 PRINTTAB(6)M{3 SPACES}g+§{18 SPACES}g+l M

:rem 68 (

2008 PRINTTAB(6)"{4 SPACES}g+l{16 SPACES}g+§ Lj

{2 SPACES}11 :rem 69

2009 PRINTTAB(6)"{5 SPACES}g+1{14 SPACES}g+§

{3 SPACES}11 :rem 70

2010 PRINTTAB(6)"{6 SPACES}g+§{12 SPACES}g+§

{4 SPACES}11 :rem 62

2011 PRINTTAB(6)"{7 SPACES}g12 +§{4 SPACES}{WHT} "
:rem 192

2020 GOSUB5010:RETURN :rem 36

2500 PRINT"{CLR}{10 DOWN}"TAB(16)"{RVS}WRONG 1{OFF}

:rem 250

2510 PRINT11 {2 DOWN}flTAB(9)M{RVS}THERE WERE";H/2;M
{LEFT} OBJECTS {OFF}11 :rem 185

2520 FORT=1TO800:NEXT:FORT=1TO3500:NEXT:PRINTCHR$(

147):W=W+1:GOTO206 :rem 46

3000 PRINT "{CLR}{10 DOWN}"TAB(10)"YOU HAD:";N;"TR
IES:PRINT"Q"TAB(18);R;"RIGHT" :rem 134

3010 PRINT"{DOWN}{2 RIGHT}"TAB(18);W;"WRONG":FORT=
1TO4000:NEXT:RESTORE:GOTO50 :rem 8

4000 PRINT"{HOME}{3 DOWN}{20 SPACES}";rRETURN

:rem 48

5000 POKES+4,17:POKEHF,INT(RND(0)*50)+80:POKELF,25

0:POKES+4#16:RETURN :rem 166

5010 POKES+4,17:FORM=70TO116STEP2:POKEHF,M:POKELF,

INT(M/2):FORDL=1TO40:NEXT :rem 22

5020 NEXT :POKES+4,16: RETURN : rem 206

9000 DATA81,1,65,2,83,3,90,4,88,5,90,6,102,7,42,1,

35,2,36,3,38,4,1,5 :rem 41

72

n

n

n Robot Math
Bob Stewart

n

r-i Arithmetic becomes an exciting visual delight when

■> children use this educational program. For the un~

expanded VIC or the 64.

Although the popular use of computers in schools and

homes has created a barrage of educational software,

much of it fails to take into account many factors which make

a learning program truly valuable. Is the program flexible? Is it

easy to use? Are there options for children of various levels?

And perhaps most importantly, is it fun for the child? "Robot

Math" answers each of these questions with yes.

Easy*to-Use Menus
Robot Math is designed to let students practice addition or

subtraction problems involving numbers of up to six digits.

When entering answers, students should start with the

rightmost digit of the answer, just as they would on paper. For

instance, consider the following problem:

123

+456

579

When typing in the answer, the student would enter the 9

first, then the 7, and finally the 5. When the no-carry option is

selected, that format gives students a chance to practice math

problem solving while getting ready for carrying; when the

carry option is chosen, it makes it easy to learn the principles

of carrying.

After typing in and running the program, you'll see the

main menu on your screen. Cursor up or down to choose one

of the menu items: operation (+ or —); number of digits (up

to six); carry/borrow (yes or no); and number of problems (up

to nine).

Simply press RETURN to change the operation or

carry/borrow options after you've cursored to those items.

You can also change the number of digits or number of prob

lems. When you're satisfied with the menu choices, press B to

begin.

73

2: Education

The Rambling Robot
After the first problem is presented, the timer begins. The

problem number appears at the upper-right corner of the

screen, directly across from a robot. A limited time and no

more than three tries are allowed for each problem. A correct

answer is rewarded by the robot, who toddles across the

screen and introduces the next problem by updating the

number.

If time runs out or if three incorrect answers are entered,

the right answer is revealed and a new problem is shown. You

can return to the menu at any time by pressing M, or you can

delete any digits in your answer with the DELete key.

A Tight Fit
In the VIC version, very little memory is available after the

program is run. In fact, you'll need to use abbreviations to get

some of the lines to fit. In line 9, for instance, use-the abbrevi

ation T SHIFT-H for THEN.

The program is self-modifying. This means that once you

have configured the program with the menu and have entered

the drill mode by pressing B, you may interrupt the program

using RUN/STOP and then save the program along with the

selections you've made. This self-modifying feature is pro

vided by lines 75 and 76; they change the data contained in

line 91 by printing a new line 91 on the screen in white letters

(which aren't visible) followed by the command RUN1.

Line 76 POKEs three RETURNS (CHR$(13)) into the key

board buffer, followed by an END. The program is actually

stopped by the END statement, which then causes BASIC to

look into the keyboard buffer for further instructions. The first

RETURN encountered by BASIC enters the new version of

line 91 previously placed on the screen by line 75. The second

RETURN skips one line, and the third enters the RUN1 com

mand just as if you entered it from the keyboard. This causes

the program to start at the beginning.

Program 1. Robot Math, VIC Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

1 READP1$,P2,P3$,P4:GOTO62 :rem 254

2 POKEB,0:POKEB+1,0:POKEB+2,0:POKEB+4,0:RETURN

:rem 70

3 POKEB+4,15:POKEB+1/I80:F0RM=lT0C:NEXT:G0T02

:rem 65

74

Education: 2

n

n
4 F=INT(RND(1)*9):RETURN :rem 214

5 POKED,3:POKED+1,3:POKEB+4,15:FORL=99TO255:POKEB+

2,L:POKEB,L:NEXT:GOSUB2:GOTO92 :rem 76

6 POKEB+4,15:P0KEB+2,160:FORM=1TO400:NEXT:G0T02

:rem 148

7 PRINTM$;" {RVS}{GRN}PRESS RTN TO CHANGE":RETURN

:rem 200

8 PRINTM$;"{5 SPACES}{RVS}{RED}ENTER DIGIT{OFF}

{4 SPACES}":RETURN :rem 126

9 IFF>5THENL=126:IFF>9THENL=108:M=1:IFF>30THENL=90

:M=0:IFF>50THENL=108:M=1:IFF>99THENF=0 :rem 252

10 POKEE,L:POKEE+1,L:POKED+21,M:POKED+24,M:GOTO36

:rem 22

11 PRINT"{HOME}":PRINTTAB(L);M$;O$;:GOSUB3:PRINTN$
:RETURN :rem 86

12 M$=" Ng2 TlM {DOWN}{6 LEFT} MZZN {DOWN}{6 LEFT}
gF§L@gD§ {DOWN}{6 LEFT} £gQ!Ewfg*§ {DOWN}

{6 LEFT}{2 SPACES}OP{2 SPACES}{DOWN}{6 LEFT}
{RVS}£{2 SPACES}g*TTOFF} " :rem 222

13 N$="{6 LEFT} WWWW ":O$="{DOWN}{6 LEFT} ZZZZ ":B
=36874:READP1$,P2,P3$,P4:POKEB+5,30:POKE649,1

:rem 170

14 PRINT"{CLR}{9 DOWN}{RVS}{GRN} M=MENU DEL=ER
ASE {HOME}":L8=48:POKE143,PEEK(162):GOTO92

:rem 72

15 POKE651,255:PRINT"{HOME}":R=38649:S=7929:Y=P2:D

=38446:E=7726:IFP1$="-"ORP2=1ORP2>3THENY=2
:rem 115

16 FORI=P2TO1STEP-1:A(I)=0:S(I)=0:FORK=1TOY:GOSUB3
:GOSUB4 :rem 139

17 A(I)=A(I)+F:S(I)=S(I)-F :rem 144

18 M=(K*22)+I:POKER+M,4:POKES+M,F+48:IFK=1THENL1=F
:rem 18

19 NEXT:IFP1$="-"THENGOSUB57:GOTO21 :rem 182
20 L=A(I):N=9:GOTO22 :rem 155

21 S(I)=S(I)+2*L1:L=S(I):N=0 :rem 35

22 GOSUB49:A(I)=L :rem 239

23 NEXTI :rem 237

24 FORK=1TOY:FORI=1TOP2 :rem 255

25 M=K*22+I:IFPEEK(S+M)>48THEN28 :rem 139
26 IFI=P2THENV=1 :rem 242

27 POKES+M,32:NEXT :rem 109

28 NEXTK:IFV=1THENV=0:GOTO15 :rem 76

29 A=0:U=-1:FORI=P2TO1STEP-1:U=U+1:IFP1$=H-"THENA=

A+S(I)*10tU:GOTO31 :rem 142
30 A=A+A(I)*10tU :rem 102
31 NEXT :rem 163

32 A=INT(A):L2=0:IFA<0THEN15 :rem 144

33 PRINT"{11 DOWN}":FORI=2TOY:PRINTTAB(7);P1$:NEXT
:POKE160,0:POKE161,0:POKE162,0 :rem 93

75

2: Education

34 PRINT11 {4 UP} M :FORK=0TOP2 :PRINTTAB(7+K) ; "

{3 DOWN}C{DOWN}{LEFT} {5 UP}M:NEXT :rem 135
35 PRINTM{3 DOWN}":U=LEN(STR$(A))-2:I=0:L1=0:FORK=

P2TOP2-USTEP-1 :rem 246
36 FORM=6TO8:POKEM+E+154,ASC(MID$(TI$,M-2))+128:NE

XT:IFTI?=n000400nTHENGOSUB6:GOTO46 :rem 66

37 GETA$:IFA$=""THENL=124:F=F+1:GOTO9 :rem 184

38 IFASC(A$)=20THENPRINTTAB(7);M{7 SPACES}11;"

{5 UP}":GOTO35 :rem 239

39 IFA$="M"THENPOKEB+5,27:GOTO62 :rem 158

40 IFA$<"0"ORA$>"9"THEN37 :rem 98

41 Ll=INT(Ll+VAL(A$)*10tD:I =I+l:PRINTTAB(7+K);A$:

PRINT"{2 UP}":NEXT :rem 21

42 IFL1=ATHENGOSUB5 :rem 212

43 IFL1OATHENG0SUB6 : rem 19

44 L2=L2+1:IFL2>2THEN46 :rem 77

45 PRINT"{2 UP}":GOTO34 :rem 54

46 V=0:AN$=STR$(A):L=LEN(AN$):IFL>P2+1THENV=1

:rem 208

47 IFL-KP2THENV=L-1-P2 : rem 125

48 PRINTTAB(8-V)7"{RVS}";MID$(AN$,2,8):FORK=1TO350

0:NEXT:GOTO15 :rem 3

49 IFP3$="N"ANDP1$="+"THEN52 :rem 44

50 GOSUB4:X=1:IFL<N+FTHEN54 :rem 193

51 RETURN :rem 70

52 IFL>NTHENX=-1:GOTO54 :rem 204

53 RETURN :rem 72

54 L=0:FORK=1TOY:M=(K*22)+I:F=PEEK(S+M)+X:IFF<48TH

ENF=48 :rem 176

55 IFF>57THENF=57 :rem 7

56 POKES+M,F:L=L+(F-48):NEXT:GOTO49 :rem 154

57 IFP3$="N"THEN60 :rem 6

58 IFI=1ORF>=L1THENRETURN :rem 161

59 GOTO61 :rem 14

60 IFF<L1THENRETURN :rem 3

61 POKES+M,Ll+48:POKES+M-22 #F+48:S(I) =(-F)-Ll:L1=F

: RETURN :rem 149

62 M$="{HOME}{16 DOWN}":PRINT"{CLR}{3 DOWN}OPERATI

ON (+/-).... ";P1$:rem 111
63 PRINT"{DOWN}# DIGITS (MAX=6)...";P2:PRINT"CARRY

/BORROW M;P3$:rem 221

64 PRINT"{DOWN}* PROBLEMS (MAX=9).";P4:PRINT"

{DOWN}{4 SPACES}EEEEEEEEEEEEEE :rem 45

65 GOSUB7:PRINT"{3 DOWN}I5 SPACES}{CYN}{RVS}(B TO
{SPACE}BEGIN)";"{GRN}{HOME}SELECT:USE CRSR(UP/D

N){BLK} :rem 162

66 M=7746 :rem 206

67 IFM1=7878THENM=7746 :rem 38

68 FORI=MTOM+20:POKEI,PEEK(I)+128:NEXT :rem 129

69 GETA$:IFA$=""THEN69:A=A+128:POKEI,A:NEXT:rem 88

76

Education: 2

n

n

n

70 IFVAL(A$)<10ANDVAL(A$)>0THEN82 :rem 159

71 IFA$="+"ORA$="-"ORA$="Y"ORA$="N"ORPEEK(197)=15T

HENA$="1":GOTO82 :rem 239

72 IFA$="{DOWN}"THEN77 :rem 140

73 IFA$="{UP}"THEN81 :rem 8

74 IFA$o"B"THEN69 : rem 253

75 PRINTM{WHT}{CLR}{3 D0WN}91 DATA11 ;P1$; " , " ;P2 ; " , "
;P3$;",";P4:PRINT"RUN12"?"{HOME} : rem 158

76 :POKE198,3:POKE631,13:POKE632,13:POKE633,13:END

:rem 164

77 M2=M2-1:K=44 :rem 49

78 M=M+K:FORI=M-KTOM-K+20:POKEI,PEEK(I)-128:NEXT:I

FM>7878THENM=7746 :rem 190

79 IFM<7746THENM=7878 :rem 247

80 ON(M-7702)/44GOSUB7,8,7,8:GOTO67 :rem 249

81 M2=M2-1:K=-44:GOTO78 :rem 59

82 ON(M-7746)/44GOTO85,87,90:IFPl$="+"THENPl$="-":

GOTO84 :rem 146

83 Pl$="+M :rem 188

84 POKEM+20,ASC(PI$)+128:GOTO69 :rem 22

85 IFVAL(A$)>6THENA$="6" :rem 84

86 P2=VAL(A$):POKEM+20,P2+176:GOTO69 :rem 98

87 IFP3$="N"THENP3$="Y":GOTO89 :rem 8

88 P3$="N" :rem 230

89 POKEM+20,64+ASC(P3$):GOTO69 :rem 236

90 P4=VAL(A$):POKEM+20,P4+176:GOTO69 :rem 97

91 DATA-# 3 ,Y, 2 :rem 243

92 C=*0 :PRINT" {HOME } {BLK} " :FORL=0TO15 :GOSUB11 :NEXT
:rem 65

93 FORL=14TO0STEP-1:GOSUB11:NEXT:PRINT"{BLK}M:C=40

:rem 252

94 L8=L8+1:M=34816+8*L8:PRINT"{HOME}M:IFL8-48>P4TH
EN98 :rem 79

95 FORM1=MTOM+6:X=PEEK(M1):FORL=1TO7:C=32:X=X*2:IF

X>255THENX=X-256:C=L8 :rem 231

96 PRINTTAB(13)ll{CYN}li;CHR$(C); :NEXT:PRINT" {BLK} " :
NEXT:IFL8-48>P4THEN98 :rem 75

97 GOTO15 :rem 15

98 POKEB+5f27:PRINTll{CLR}ll;SPC(176);ll{RVS}PLAY ANO
THER GAME (Y/N){ OFF}" : rem 48

99 GETZ$:IFZ$=""OR(Z$<>"Y"ANDZ$o"N")THEN99:rem 29
100 IFZ$="N"THENEND :rem 115

101 RUN1 :rem 184

Program 2. Robot Math, 64 Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 PRINT"{CLR}":POKE53281,1:POKE53280,5:READP1$,P2
,P3$,P4:GOTO710 :rem 145

12 READP1$,P2,P3$,P4:B=54272 :rem 18

77

2: Education

15 FORI=BTOB+24:POKEI,0:NEXT:VO=B+24:AD=B+5:SR=AD+

1:HF=B+1:LF=B:POKEAD,20 :rem 6

16 POKESR,200:SO=B+4:GOTO130 :rem 186

20 POKESO,32:RETURN :rem 222

30 POKEHF,50:POKELF,40:POKESO,33:FORM=1TOC:NEXT:GO

TO20 :rem 233

40 F=INT(RND(1)*9):RETURN :rem 6

50 POKESO,33:FORL=99TO255:POKEHF,L:POKELF,50:NEXT:

GOSUB20:GOTO1050 :rem 236

60 POKESO,33:POKEHF,60:POKELF,50:FORM=1TO400:NEXT:

GOTO20 :rem 63

70 PRINTM$;"{8 SPACES}{RVS}{BLU}PRESS RETURN TO CH

ANGE":RETURN :rem 229

80 PRINTM$;"{13 SPACES}{RVS}{BLU}ENTER DIGIT{OFF}

{8 SPACES}":RETURN :rem 177

90 IFF>5THENL=126:IFF>9THENL=108:M=1:IFF>30THENL=9

0:M=0:IFF>50THENL=108:M=1 :rem 139

100 IFF>99THENF=0 :rem 248

110 POKEE,L:POKEE+1,L:GOTO430 :rem 10

120 PRINT" {HOME}11 :PRINTTAB(L);M$;O$; :POKEVO,15 :GOS
UB30:POKEVO#O:PRINTN$:RETURN :rem 224

«130 POKE649,1:M$=" Ng2 T|M {DOWN}{6 LEFT} MZZN

{DOWN} {6 LEFT} ?F3L@iDi {DOWN} {6 LEFT} £[CQ§
§W3g*§ {DOWN}{6 LEFT}{2 SPACES}OP" :rem 141

~ 140 M$=M$+"{2 SPACES}{DOWN}{6 LEFT}~TRVS}£
{2 SPACES}g*3{OFF} " :rem 14

150 N$=M{6 LEFT} WWWW ":O$="{DOWN}{6 LEFT} ZZZZ "

:rem 232

160 PRINT"{CLR}{9 DOWN}{RVS}{GRN} M=MENU
DEL=ERASE {OFF}{HOME}" :rem 181

165 POKE214,23:PRINT:POKE211#15 :rem 73

170 L8=48:POKE143,PEEK(162):GOTO1050 :rem 58

180 POKE651,255:PRINTM{HOME}":R=54272:S=1561:Y=P2:

E=1106:RW=16:WR=RW-4:POKEVO,15 :rem 213

190 IFP2=3THENRW=17:WR=RW-5 :rem 195

200 IFP1$=M-MORP2=1ORP2>3THENY=2 :rem 144

210 POKE214#RW:PRINT:POKE211,17:PRINTM{7 SPACES}11

:rem 145

220 FORI=P2TO1STEP-1:A(I)=0:S(I)=0:FORK=1TOY:GOSUB

30:GOSUB40 :rem 24

230 A(I)=A(I)+F:S(I)=S(I)-F :rem 189

240 M=(K*40)+I:POKER+S+M,0:POKES+M#F+48:IFK=1THENL

1=F :rem 185

250 NEXT:IFP1$=M-"THENGOSUB660:GOTO270 :rem 73

260 L=A(I):N=9:GOTO280 :rem 7

270 S<I)=S(I)+2*LlrL=S{I)iN=& :rem 89

280 GOSUB580:A(I)=L :rem 85

290 NEXTI :rem 35

300 FORK=1TOY:FORI=1TOP2 :rem 44

310 M=K*40+I:IFPEEK(S+M)>48THEN340 :rem 229

78

I—I

Education: 2

n

M

320 IFI=P2THENV=1 :rem 31

330 POKES+M,32:NEXT :rem 154

340 NEXTK:IFV=1THENV=0:GOTO180 :rem 172

350 A=0:U=-1:FORI=P2TO1STEP-1:U=U+1:IFP1$="-MTHENA

=A+S(I)*10tU:GOTO370 : rem 241

360 A=A+A(I)*10tU :rem 156
370 NEXT :rem 217

380 A=INT(A):L2=0:IFA<0THEN180 :rem 249

390 FORI=2TOY:POKE214,WR+I:PRINT:POKE211,17:PRINTM

{BLK}"P1$:NEXT :rem 145

400 POKE160,0:POKE161,0:POKE162,0 :rem 113

410 PORK=0TOP2:POKE214,RW-1:PRINT:POKE211,17+K:PRI

NT"C":NEXT :rem 161

420 U=LEN(STR$(A))-2:1=0:L1=0:FORK=P2TOP2-USTEP-1

:rem 230

430 FORM=15TO17:POKEM+E+R+280,0:POKEM+E+280,ASC(MI

D$(TI$,M-11))+128:NEXT :rem 211

440 IFTI$=M000400"THENGOSUB60:GOTO550 :rem 175

450 GETA$:IFA$=""THENL=124:F=F+1:GOTO90 : rem 23

460 IFASC(A$)=20THENPOKE214,RW:PRINT:POKE211,17:PR

INT"{7 SPACES}H:GOTO420 :rem 139
470 IFA$=MM"THEN710 :rem 36

480 IFA$<fl0MORA$>ll9MTHEN440 :rem 200

490 PRINT"{DOWN}ll:Ll=INT(Ll+VAL(A$)*10tl):I=I+l
:rem 135

500 POKE214,RW:PRINT:P0KE211,17+K:PRINTA$:NEXT

:rem 163

510 IFL1=ATHENGOTO50 :rem 237

520 IFL1OATHENGOSUB60 :rem 115

530 L2=L2+1:IFL2>2THEN550 :rem 173

540 GOTO410 :rem 103

550 V=0:AN$=STR$(A):L=LEN(AN$):IFL>P2+1THENV=1

:rem 0

560 IFL-KP2THENV=L-1-P2 : rem 173

570 POKE214,RW: PRINT:P0KE211 # 18-V:PRINT" {RVS}11;MID

$(AN$,2,8):FORK=1TO3500:NEXT :rem 237
575 GOTO 180 :rem 115

580 IFP3$=MNIIANDP1$=" + IITHEN610 : rem 140

590 GOSUB40:X=1:IFL<N+FTHEN630 :rem 90

600 RETURN :rem 118

610 IFL>NTHENX=-1:GOTO630 :rem 44

620 RETURN : rem 120

630 L=0:FORK=1TOY:M=(K*40)+I:F=PEEK(S+M)+X:IFF<48T

HENF=48 :rem 224

640 IFF>57THENF=57 :rem 55

650 POKES+M,F:L=L+(F-48):NEXT:GOTO580 :rem 250

660 IFP3$=flNnTHEN690 :rem 111

670 IFI=1ORF>=L1THENRETURN :rem 209

680 GOTO700 :rem 110

690 IFF<L1THENRETURN : rem 60

79

2: Education

700 POKES+M,L1+48:POKES+M-40,F+48:S(I)=(-F)-L1:L1=
F: RETURN : rem 197

710 M$="{HOME}{16 DOWN}11 :rem 173

720 PRINT"{CLR}{BLK}{3 DOWN}{8 RIGHT}OPERATION (+/
-).... ";P1$:rem 201

730 PRINT11 {DOWN} {8 RIGHT}# DIGITS (MAX=6) . • . " ;P2
:rem 60

740 PRINT11 { DOWN} {8 RIGHT } CARRY/BORROW " ; P3$
:rem 20

750 PRINT"{DOWN}{8 RIGHT}* PROBLEMS (MAX=9).";P4
:rem 135

760 PRINT"{DOWN}{8 RIGHT}{4 SPACES}EEEEEEEEEEEEEE
:rem 11

770 GOSUB70:PRINTM{3 DOWN} {8 RIGHT}{4 SPACES}
{BLU}{RVS}(B TO BEGIN)"; :rem 178

780 PRINT"{GRN}{HOME}{8 RIGHT}SELECT:USE CRSR(UP/D
N){BLK}" :rem 241

790 M=1152 :rem 243

800 IFM1=1392THENM=1152 :rem 51

810 FORI=MTOM+20:X=PEEK(I):POKEI,X+128:NEXT

:rem 211

820 GETA$:IFA$=""THEN820 :rem 87

830 IFVAL(A$)<10ANDVAL(A$)>0THEN950 :rem 7

840 IFA$=" + "ORA$="-IIORA$="Y"ORA$="N"ORPEEK(197)=1T

HENA$="1":GOTO950 :rem 34

850 IFA$="{DOWN}"THEN900 :rem 235

860 IFA$="{UP}"THEN940 :rem 112

870 IFA$o"B"THEN820 : rem 92

880 PRINT"{WHT}{CLR}{3 DOWN}1040 DATA";P1$;",";P2;

",";P3$;",";P4:PRINT"RUN12";"{HOME}" :rem 79
890 :POKE198,3:POKE631,13:POKE632,13:POKE633 #13:EN

D :rem 216

900 M2=M2-1:K=80 :rem 92

910 M=M+K:FORI=M-KTOM-K+20:X=PEEK(I):POKEI,X-128:N

EXT:IFM>1392THENM=1152 :rem 242

920 IFM<1152THENM=1392 :rem 4

930 ON(M-1064)/80GOSUB70#80#70#80:GOTO800 :rem 19
940 M2=M2-1:K=-80:GOTO910 :rem 154

950 ON(M-1152)/80GOTO980,1000,1030 :IFPl$=ft +"THENPl

$=»-"sGOTO970 :rem 204

960 Pl$="+" srem 240

970 POKEM+20,ASC(P1$)+128:GOTO820 :rem 117

980 IFVAL(A$)>6THENA$="6" :rem 136
990 P2=VAL(A$):POKEM+20,P2+176:GOTO820 :rem 193

1000 IFP3$="N"THENP3$="Y":GOTO1020 :rem 172

1010 P3$="N" srem 56

1020 POKEM+20,64+ASC(P3$):GOTO820 :rem 105

1030 P4=VAL(A$):POKEM+20,P4+176:GOTO820 :rem 231
1040 DATA-, 2 ,N# 2 :rem 66

80

Education: 2

n

1050 C=0:PRINT"{HOME}{BLK}":FORL=0TO34:GOSUB120:NE

II XT :rem 206

1060 FORL=33TO0STEP-1:GOSUB120:NEXT:PRINT"{BLU}":C
=40 :rem 24

r—| 1070 POKE56334,PEEK(56334)AND254:POKE1,PEEK(1)AND2

' i 51 :rem 233
1080 L8=L8+1:IFL8-48>P4THEN1120 :rem 5

1090 M=53247+8*L8:PRINT"{HOME}11; :rem 195

fl 1100 FORM1=MTOM+7:X=PEEK(M1):FORL=1TO7:C=32:X=X*2:
IFX>255THENX=X-256:C=209 :rem 83

1110 PRINTTAB(30)"{BLK}"CHR$(C);:NEXT:PRINT"

{7 LEFT}{DOWN}";:NEXT :rem 19
1120 POKE1,PEEK(1)OR4:POKE56334,PEEK(56334)OR1

:rem 179

1130 IFL8-48>P4THEN1150 :rem 41

1140 GOTO180 :rem 152

1150 PRINT"{CLR}":POKE214,12:PRINT:POKE211#4

:rem 222

1155 PRINT"{RVS}{BLK}HOW ABOUT ANOTHER GAME (Y/N)?

{OFF}" :rem 203

1160 GETZ$:IFZ$="ilOR(Z$<>MY"ANDZ$<>"N")THEN1160

:rem 201

1170 IFZ$="Y"THENRESTORE:CLR:GOTO10 :rem 242

1180 END :rem 161

81

Homonym Practice
Michael A. Tyborski

This educational program, designed by a schoolteacher,

drills young people on the use of homonyms. It works

on both the unexpanded VIO20 and Commodore 64.

A screen reformatter is included for the 64.

My VIC-20 computer is used in a crowded fifth-grade

classroom. Since I am busy teaching, I need programs

that do not require teacher assistance. To meet this need, I

have developed "Homonym Practice" and other educational

programs.

Homonym Practice drills students on the homonyms to,

two, and too and on there, their, and they're. It also illustrates

some of the features that enhance such programs. A standard

format allows students to easily work with any one of a series

of such programs I have written.

Friendly Features
Push-button reset is the most important feature. It involves

checking the f1 special function key whenever the keyboard is

read. If pressed, the program restarts for the next student. This

allows many students to use the program without supervision.

In addition, function key f3 turns the program into a

learning guide. It recalls examples of properly used hom

onyms. This is done by the subroutine at line 42. The student

can press RETURN to continue the drill. For this type of les

son, the student must type in the correct answer—a feature

that helps students learn spelling too.

Unfortunately, typing is an error-prone activity. That

made it necessary to use the simulated INPUT routine in lines

29-35. It uses the GET statement to ignore unwanted keys

and prevents data entry errors from crashing the program. It

even lets students type in apostrophes without using the

SHIFT key.

The name entry routine (lines 2-9) also uses the GET

statement. It capitalizes the student's name even if the SHIFT

key was not used.

Lines 10-20 display directions on a series of screens. It

uses more memory, but it's definitely worth it. The subroutine

82

Education: 2

n

at line 51 holds the text on the screen until the student presses

a key.

r-n Random But Not Repetitious
1 I This program is a tight fit in an unexpanded VIC. Be sure not

to type any extra spaces, or you may run out of memory.

nThis program allows for 16 sentences for each set of hom

onyms. The first version of the program used random selec

tion. Unfortunately, many repeats occurred. The present

method provides better results. It starts at a random point in

the list and walks through it in a read-two-skip-one pattern.

This assures no repeats in a lesson, and few repeats in any

two consecutive lessons. These features have made Homonym

Practice an effective classroom aid.

Commodore 64 Notes
The same program (Program 1) works on both the VIC-20 and

Commodore 64. However, because the VIC has a 22-column

screen and the Commodore 64 supports 40 columns, the

screen formatting will appear to be messed up on the 64.

To avoid that problem, Commodore 64 users should type

in Program 2. This is a 22-column screen formatter that allows

the 64 to emulate the VIC screen. It creates a machine lan

guage program which forces the 64 to PRINT within 22 col

umns; in addition, it centers the image for an attractive display

and automatically handles line wraparound. VIC users should

not type in Program 2.

This screen formatter first appeared in the November

1983 issue of COMPUTE!'s Gazette, with the text-adventure

game "Martian Prisoner." If you typed in the formatter for

Martian Prisoner, you needn't type it again for Homonym

Practice.

Save Program 2 before running it for the first time. When

you type RUN, it activates itself. If you ever need to reactivate

it (after pressing RUN/STOP-RESTORE, for instance), enter

SYS 828.

To use the screen formatter, first load and run it. Then

type NEW and load the main program.

83

2: Education '—'

U

Program !• Homonym Practice for the VIC and 64

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C. \ |

2 PRINTCHR$(14):CT$="1":PRINTm{CLR}{DOWN}HI, I'M M

S. ENGLISH.11, "{DOWN} WHAT'S YOUR NAME?{4 DOWN}11
irem 226 I I

3 GETC$:IFC$=""THEN3 :rem 141 —'
4 N$=CHR$(ASC(C$)OR128) :rem 0

5 PRINTN$; :rem 111 . {

6 GETC$:IFC$=""THEN6 :rem 147 | I
7 IFASC(C$)=13THENN$=N$+"{4 SPACES}":GOTO10

:rem 137

8 IFASC(C$)=133THEN2 :rem 139

9 N$=N$+C$:PRINTC$;:GOTO6 :rem 254

10 PRINT"{CLR}{DOWN} HI, ";N$:PRINT"{3 DOWN} TODAY
WE'LL PRACTICE":PRINT"{DOWN} SOME HOMONYMS."

zrem 157

11 GOSUB 51:PRINT "{CLR}{DOWN} WOULD YOU LIKE TO",
"{DOWN} PRACTICE USING","{2 DOWN}{2 SPACESjl) T
O{2 SPACES}TWO"; :rem 221

12 PRINT"{2 SPACES}TOO","{3 DOWN} OR",,"{3 DOWN}
{2 SPACES}2) THERE{3 SPACES}THEIR {DOWN}
{11 SPACES}THEY'RE" :rem 145

13 PRINTTAB(12)"{2 DOWN}? "; :rem 92
14 GET CH$:IF CH$=""THEN14 :rem 129

15 PRINT CH$:GOSUB51:PRINT"{CLR}{DOWN} ^F YOU WANT

TO SEE","{DOWN} EXAMPLES"; :rem 82

16 PRINT" OF EACH","{DOWN} WORD USED IN A","{DOWN}
SENTENCE," :rem 166

17 PRINT"{DOWN} JUST PRESS THE","{DOWN} BROWN BUTT

ON","{DOWN} MARKED {RVS} F3 {OFF} .":GOSUB51
:rem 131

18 PRINT"{CLR}{DOWN} YOU MAY USE THE","{DOWN} BROW
N {RVS} F3 {OFF} BUTTON","{DOWN} ANYTIME YOU NE

ED IT." :rem 142

19 GOSUB51:PRINT"{CLR}{DOWN} YOU MUST TYPE ","
{DOWN} THE WORD THAT","{DOWN} GOES IN THE *** .

:rem 169

20 PRINT"{3 DOWN} PRESS {RVS} RETURN {OFF}","

{DOWN} AFTER EACH ANSWER.":GOSUB51 :rem 25

21 SC=0:G=0:S=INT((RND(l)*10)+2) :rem 249

22 W=S:IFASC(CH$)=50THENW=S+16 :rem 53

23 RESTORE:FORT=1TOW:READA$,B$:NEXTT :rem 128

24 READA$,B$:S=S+1:IFS>17THENS=1:GOTO22 :rem 123

25 C=C+1:IFO2THENC=0:GOTO24 :rem 186

26 IFASC(C$)=134THENGOSUB42 2rem 112

27 PRINT"{CLR}{5 DOWN}";A$:rem 194
28 PRINT"{HOME}{14 DOWN}{4 SPACES}*** = "; :rem 50

29 GET C$:IF C$=""THEN 29 :rem 253

30 IFASC(C$)=55THENC$="'" :rem 102

84

Education: 2

31 IFASC(C$)=13THEN36 :rem 187

32 IFASC(C$)=133THEN2 :rem 184

33 IFASC(C$)=134THEN26 :rem 240

34 IFASC(C$)=20THENAN$=LEFT$(AN$,LEN(AN$)-1):PRINT

C$;:GOTO29 :rem 74

35 PRINTC$;:AN$=AN$+C$:GOTO29 :rem 228

36 IFAN$=B$THENPRINTM{HOME}{DOWN}VERY GOOD, M;N$:S
C=SC+l:FORT=lTO800:NEXTT:AN$=llir:GOTO39 :rem 113

37 PRINT"{HOME}{DOWN}£ORRY, TRY AGAIN.":AN$="M:SC=

SC-1 :rem 166

38 PRINT" {HOME} {14 DOWN} {19 SPACES}11 :GOTO28:rem 26

39 G=G+1:IFG<10THEN24 :rem 213

40 PRINT"{CLR}{DOWN} ";N$:PRINT"{2 DOWN} YOU GOT "
SC" RIGHT11/1 {DOWN} {2 SPACES}OUT OF TEN."

:rem 149

41 PRINT" {4 t)OWN}{3 SPACES }THAT' S { 2 SPACES}11; 100-(
(10-SC)*10);"%":GOSUB51:GOTO 2 :rem 88

42 IFASC(CH$)=50THEN47 :rem 8

43 PRINT"{CLR}{DOWN} TWO",,"{DOWN}{4 SPACESjl HAVE
TWO TOYS." :rem 231

44 PRINT"{2 DOWN} TOO",,"{DOWN}{4 SPACES}HE ATE TO
O MUCH." :rem 46

45 PRINT"{2 DOWN} TOO",,"{DOWN}{4 SPACESU WANT SO
ME,TOO." :rem 126

46 PRINT"{2 DOWN} TO",,"{DOWN}{4 SPACESjGO TO THE
{SPACE}STORE.","{DOWN}{4 SPACES}I WANT TO SEE I
T.":GOTO50 :rem 169

47 PRINT"{CLR}{2 DOWN} THERE",,"{DOWN}{4 SPACES}TH
E BOOK IS OVER{10 SPACES}THERE. " : rem 72

48 PRINT"{2 DOWN} THEIR",,"{DOWN}{4 SPACES}THEY LO
ST THEIR{12 SPACES}HATS." Trem 94

49 PRINT"{2 DOWN} THEY1RE",,"{DOWN}{4 SPACESJTHEY1
RE GOING HOME{8 SPACES}NOW." :rem 60

50 AN$="":GOSUB51:RETURN :rem 211

51 PRINT"{HOME}{21 DOWN}{4 SPACES}{RVS} PRESS RETU
RN {OFF}{2 SPACES}" trem 192

52 GETT$:IFT$=""THEN52 :rem 23

53 IFASC(T$)=134THENGOSUB42 irem 129

54 IFASC(T$)=133THEN2 trem 205

55 RETURN :rem 74

56 DATA1,1 :rem 19

57 DATA"THAT'S WAY *** MUCH 1",TOO :rem 208

58 DATA",I HAD *** MUCH TO EAT{2 SPACES} {DOWN}LAST

{SPACE}NIGHT.",TOO :rem 148
59 DATA"WE1RE GOING *** FASTI",TOO :rem 5

60 DATA"LET'S GO OVER *** MY{2 SPACES}{DOWN} HOUSE

• M,TO :rem 43
61 DATA"MARY WANTS *** COME {4 SPACES} {DOWN} OVER H

ERE.",TO :rem 27

11 ' 85

2: Education

62 DATAM:E DON'T KNOW HOW ***{2 SPACES}{DOWN} DO TH

IS ONE.11,TO :rem 81

63 DATA"PETER THINKS THAT IT 'S {DOWN} *** FAR TO W

ALK.",TOO :rem 102

64 DATA"THERE ARE *** TIGERS{2 SPACES}{DOWN} IN TH

E ZOO.",TWO :rem 185

65 DATA"WHAT IS *** TIMES{5 SPACES}{DOWN} SIXTY-PO

UR?."#TWO :rem 199

66 DATA"WHERE IS TRUDY GOING{3 SPACES}{DOWN}*** LO
OK FOR IT?",TO :rem 67

67 DATA"LATONIA WOULD LIKE{4 SPACES}{DOWN} SOME IC
E CREAM, ***.",TOO :rem 119

68 DATA"LITTLE JIM CAN COME{3 SPACES}{DOWN} ALONG,

***.""*, TOO :rem 232

69 DATA"][HOPE THERE WON'T{4 SPACES}{DOWN} BE ***
{SPACE}MANY.",TOO :rem 64

70 DATA"HOW MUCH WOULD ***{4 SPACES} {'DOWN} HAMBURG
ERS COST?",TWO zrem 8

71 DATA"THIS WORK IS *** HARD {DOWN} FOR ALISA.",T
00 "" :rem 40

72 DATA"CAN MARK GO TO THE {4 SPACES }{DOWN} PARTY,

{SPACE}*** ?",T00 :rem 134

73 DATA"ARE THOSE YOUR BOOKS{2 SPACES}{DOWN} OVER
{SPACE}***?",THERE :rem 30

74 DATA"CAN WE PLAY AT ***{4 SPACES}{DOWN} HOUSE?"
,THEIR :rem 124

75 DATA"I'M SURE THAT *** NOT {DOWN} HOME YET.",TH
EY'RE :rem 100

76 DATA"THE CHILDREN PUT ***{2 SPACES}{DOWN} BOOKS
AWAY.",THEIR :rem 131

77 DATA"TOM AND J3UE SAID ***{2 SPACES}{DOWN} COMIN

G LATER.", THEY "RE _ _ :rem 179

78 DATA"THE BOYS LOST ***{5 SPACES}{DOWN} BALL.",T

HEIR :rem 45

79 DATA"IS KIM SURE THAT ***{2 SPACES}{DOWN} COMIN

G TONIGHT?", THEY'RE : rem 135

80 DATA"IS *** A DRAGON IN{4 SPACES}{DOWN} THE CLO i I
SET?", THERE :rem 146 v—)

81 DATA"CAN YOU SEE *** BIG{3 SPACES}{DOWN} BLUE E

YES?",THEIR :rem 153 < i

82 DATA"BILL AND TOM ARE 0N{3 SPACES} {DOWN} *** WA ! |
Y.",THEIR :rem 121

83 DATA'VI THINK THAT *** T00{2 SPACES} {DOWN} HIGH

{SPACE} TO REACH.", THEY'RE : rem 58 II

84 DATA"THE BOYS LEFT ***{5 SPACES}{DOWN} JUNK ALL (—S
OVER1",THEIR :rem 56

85 DATA"LOOK OVER ***.",THERE :rem 12

86 DATA"^ THINK *** GONE. ",THEY• RE :rem 12 [|
87 DATA"GIVE ME *** ADDRESS.",THEIR :rem 100

86 u

Education: 2

88 DATA"CAN MOLLY TAKE ***{4 SPACES}{DOWN} PLACE?"

,THEIR :rem 45

89 DATA1,1 :rem 25

91 RETURN :rem 74

Program 2: 64 Screen Formatter

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

100 PRINT "{CLR}{4 SPACES}{RVS}22-COLUMN PRINT FOR

MATTER FOR C64":PRINT :rem 2

110 PRINT "READING DATA" :rem 119

120 FORI=828TO881:READA:CK=CK+A:POKEI,A:NEXT:POKEI

79,883AND255 :rem 92

130 IF CKO6032 THEN PRINT "ERROR IN DATA:CHECK TY

PING.":END :rem 227

140 PRINT"{DOWN}BEFORE...":SYS 828:PRINT"AFTER..."

:rem 150

150 PRINT "{DOWNjPRESS RUN/STOP-RESTORE";:PRINT"TO

REGAIN 40 COLUMNS" :rem 228

160 PRINT "{DOWN}ENTER {RVS}SYS 828{OFF} TO":PRINT

"REACTIVATE, IF":PRINT"NECESSARY." :rem 115

170 PRINT "{DOWN}DO NOT EDIT ANY":PRINT"LINES WHIL

E IN 22 COL-UMN MODE." :rem 84

1000 DATA169,71,141,38,3,169,3,141 :rem 180

1010 DATA39,3,96,72,152,72,138,72 :rem 141

1020 DATA56,32,240,255,192,9,176,3 :rem 185

1030 DATA76,100,3,192,31,144,15,169 :rem 226

1040 DATA13,32,202,241,56,32,240,255 :rem 9

1050 DATA160,9,24,32,240,255,104,170 :rem 14

1060 DATA104,168,104,76,202,241 :rem 30

87

French Tutor
Michael Quigley

"French Tutor" is a helpful study aid designed for

students who are learning or strengthening French

vocabulary and translation skills. For the VIC or 64*

With two children studying French in elementary school,

one of my reasons for buying the VIC-20 was to cre

ate some French instructional programs. "French Tutor" was

suggested by Steve Steinberg's "Language Lab" (COMPUTE!,

July 1982), which provided for both vocabulary drill and

translation practice.

Dummy Words and Custom Accents
It was relatively easy to adapt to the VIC, with a few minor

modifications. For example, a dummy word (XX) is needed as

the last item in the DATA statements to prevent the program

from running out of DATA if a particular word is not in the

list.

Another modification involves the use of accents, which

Language Lab did not include. The solution was to create the

accents with programmable characters, as described in "Cus

tom Characters for the VIC" by David Malmberg (COM-

PUTEl's First Book of VIC).

In addition to the familiar accented vowels, this program

includes some which are used less frequently—the umlauted e

(as in Nofl), u (as in Safil), and o (for words of German ori

gin). Also included are the combined oe for words like ceuvre

and ce as in Caesar.

Language Drills
The program is made up of four sections: a French-to-English

vocabulary drill, an English-to-French vocabulary drill, a

French-to-English translator, and an English-to-French trans

lator. Because of the VIC's memory restraints, there are only

101 words (most of which employ accents and are no longer

than five letters). With memory expansion, that total could be

increased, although that will necessitate relocating the pro

grammable characters if more than 8K of additional RAM is

added.

88

Education: 2

If you do have more memory and decide to expand the

list of words, make the corresponding change in line 43 of

Program 2 (line 1610 in Program 3 for the 64), the line that

randomly selects the words. If desired, the selection process

can be changed so that words will not be repeated.

Typing In the Programs
Since Program 2 almost fills the unexpanded VIC, do not in

clude unnecessary spaces when typing it in. In addition, in or

der to make some lines fit, you will have to use abbreviated

keywords. PRINT becomes ?, GOSUB becomes GO followed

by SHIFT-S, DATA becomes D SHIFT-A, and so on. In

particular, lines 1, 3, 4, 5, 60 and 62 require abbreviations.

Adding Words
The maximum number of words allowed for each vocabulary

drill is nine. This is because the computer recognizes only the

first integer with the GET A$ statement in line 10, which

doesn't require the user to hit the RETURN key. In other

words, if you should type in 20 words, the computer would

see it as two words. In order to increase that number to 10 or

more, eliminate the question mark from line 9. Also, delete

lines 10-11 and 18-20 and replace them with the following:

10 INPUTN:IFN<1THEN10

11 IFCO=NTHEN14

18 INPUTN:IFN<1THEN10

20 IFCO=NTHEN14

That will allow numbers larger than nine to be used, but you

will have to press RETURN after the number is typed in.

For the 64 version, delete the question mark and (MAX. 9)

from line 1270. In addition, delete lines 1280-1290 and

1360-1380 and replace them as follows:

1280 INPUTN:IFN<1THEN1280

1290 IFCO=NTHEN1320

1360 INPUTN:IFN<1THEN1280

1380 IFCO=NTHEN1320

VIC French Tutor is in two parts. Program 1 will automatically

load and run Program 2. Tape users should type in and save

Program 1, then type in and save Program 2 as the next pro

gram on the tape. To make the VIC version work with a disk

89

2: Education
u

u

drive, give Program 2 the name "F". Then, in Program 1, de- j j

lete line 555 and make the following changes: '—'
390 IFA$="N"THENPOKE36869,255:GOTO560 :rem 163

580 POKE7993,34:POKE7994,6:POKE7995,34:POKE7996,44 | |

:POKE7997,56 :rem 121 <—I
590 POKE198,1:POKE631,131:END :rem 161

Program 1. VIC French Tutor, Part 1: Redefined I—*
Characters

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 POKE36879#237 srem 105

20 PRINT"{CLR}{4 RIGHT}{4 DOWN}{BLK}MCHR$(122)
:rem 245

30 FORT=1TO8 srem 231
40 PRINTTAB(4)"{BLK}"CHR$(125)"{BLU}{RVS}

{4 SPACES}{WHT}{4 SPACES}{RED}{4 SPACES}"
:rem 161

50 NEXT :rem 164

60 PRINTTAB(4)"{BLK}"CHR$(125) :rem 13

70 PRINTTAB(4)"{BLK}"CHR$(125) :rem 14

80 S1=36876:V=36878:POKEV,10 :rem 96

90 READN,D srem 67

100 IFN=-2THEN170 :rem 209

110 POKES1,(ABS(N)) :rem 55

120 FORT=1TO(ABS(D)) :rem 155

130 NEXTT srem 39

140 POKES1,0 :rem 164

150 FORN=1TO20:NEXTN :rem 5

160 GOTO90 :rem 57

170 FORT=1TO2000:NEXTT srem 115

180 GOTO210 srem 101

190 DATA-201,-125,-201,-187,-201,-62,-215,-250,-21

5,-250,-219,-250,-219,-250,-228,-375 :rem 112

200 DATA-223,-125,-215,-1000,-2 :rem 247

210 POKE36879,26:PRINTH{CLR}{BLK}{9 DOWN}"TAB(6)"V j j
IC FRENCH":PRINTTAB(7)"TUTORIAL" :rem 70

220 PRINTTAB(7)Mg8 T|" srem 220

230 PRINT"{7 DOWN}{RIGHT}DEFINING CHARACTERS" , ,

:rem 30 1 |
260 X=PEEK(56)-2:POKE52,X:POKE56,X:POKE51,PEEK(55)

:CLR :rem 15

270 CS=256*PEEK(52)+PEEK(51) srem 23 j |

280 FORI=CSTOCS+511:POKEI,PEEK(I+32768-CS):NEXT l—'
:rem 166

290 READX srem 15 ,

300 IFX=-1THEN370 srem 222 j J
310 IFX<0THEN290 srem 177

320 FORI=XTOX+7:READJ :rem 87

90 u

Education: 2

330 IFJ<0THEN320 :rem 159

340 POKEI,J:NEXT :rem 254

350 GOTO290 :rem 108

370 PRINT" {CLRHBLK} {10 DOWN} "SPC(5) "INSTRUCTIONS?

":PRINT:PRINTSPC(7)"{RED}Y{BLK}ES OR {RED}N

{BLK}Om :rem 163

380 GETA$:IFA$o"N"ANDA$<>"Y"THEN380 :rem 51

390 IFA$="N"THENPOKE36869,255:GOTO555 :rem 167

400 PRINT"{CLR}{BLK}{6 DOWNjlN ORDER TO CREATE","F

RENCH ACCENTS IN","THIS PROGRAM, CERTAIN"

:rem 8

410 PRINT"LETTERS HAVE BEEN","RE-DEFINED USING","P

ROGRAMMABLE","CHARACTERS•" :rem 215

420 PRINT:PRINT"PRESS {RED}C{BLK} TO CONTINUE."
:rem 224

430 GETA$:IFA$o"C"THEN430 :rem 209

440 PRINT"{CLR}{DOWN}{BLK}THE FRENCH CHARACTERS":P

RINT"ARE {BLU}BLUE{BLK}, THEIR VIC"; :rem 147

450 PRINT"{3 SPACES}EQUIVALENTS {GRN}GREEN{BLK}. "

:PRINT :rem 207

460 POKE36869,255 :rem 161

470 PRINTTAB(4)"{BLU}« {BLK}{RVS}= {GRN}*{OFF}"SPC

(4)"{BLU}# {BLK}{RVS}= {GRN}#" :rem 69

480 PRINT:PRINTTAB(4)"{BLU}$ {BLK}{RVS}= {GRN}$
{OFF}"SPC(4)"{BLU}% {BLK}{RVS}= {GRN}%"

:rem 155

490 PRINT:PRINTTAB(4)"{BLU}& {BLK}{RVS}= {GRN}&
{OFF}"SPC(4)"{BLU}+ {BLK}{RVS}= {GRN}+"

:rem 172

500 PRINT:PRINTTAB(4)"{BLU}£ {BLK}{RVS}= {GRN}£
{OFF}"SPC(4)"{BLU}@ {BLK}{RVS}= {GRN}@":rem 58

510 PRINT:PRINTTAB(4)"{BLU}* {BLK}{RVS}= {GRN}*

{OFF}"SPC(4)"{BLU}t {BLK}{RVS}= {GRN}t":rem 19
520 PRINT:PRINTTAB(4)"{BLU}[{BLK}{RVS}= {GRN}C

{OFF}"SPC(4)"{BLU}] {BLK}{RVS}= {GRN}]"
:rem 116

PI 530 PRINT:PRINTTAB(4)"{BLU}= {BLK}{RVS}= {GRN}=
11 {OFF}"SPC(4)"{BLU}< {BLK}{RVS}= {GRN}<"

:rem 247

P^ 535 PRINT:PRINTTAB(4)"{BLU}> {BLK}{RVS}= {GRN}>
| 1 {OFF}"SPC(4)"{BLU}/ {BLK}{RVS}= {GRN}/"

:rem 228

540 PRINT:PRINT"{BLK}PRESS {RED}C{BLK} TO CONTINUE
." :rem 115

550 GETA$:IFA$o"C"THEN550 :rem 215

555 POKE36879#237 :rem 167

-— 560 PRINT"{CLR}{8 DOWN}{2 RIGHT}{BLK}ONE MOMENT PL

|I EASE." :rem 235
570 PRINT:PRINTTAB(6)"UN MOMENT,":PRINTTAB(3)"S1IL

VOUS PLA]T.{WHT}" :rem 180

n 91

2: Education

580 POKE198,5:POKE631,78 2POKE632,69:POKE633,87:POK

E634,13:POKE635,131:END :rem 27

600 DATA7168,8,16,126,64,126,64,126,0 :rera 84

620 DATA7384,24,36,0,60,66,66,60,0 :rem 187

630 DATA7392,28,34,64,64,34,28,8,16 :rem 253

640 DATA7400,8,20,0,62,8,8,62,0 :rem 25

650 DATA7408,16,8,126,64,126,64,126,0 :rem 86

660 DATA7416,30,40,72,78,72,40,30,0 :rem 231

670 DATA7448,16,8,66,66,66,66,60,0 :rem 211

680 DATA7456,24,36,0,66,66,66,60,0 :rem 199

690 DATA7464,36,0,60,66,66,66,60,0 :rem 199

695 DATA7472,30,40,72,126,72,72,78,0 :rem 44

700 DATA7504,16,8,60,66,126,66,66,0 :rem 243

720 DATA7512,24,36,0,60,66,126,66,0 :rem 232

725 DATA7544,36,0,66,66,66,66,60,0 :rem 203

730 DATA7648,36,0,126,64,126,64,126,0 :rem 85

740 DATA7656,24,36,126,64,126,64,126,0 :rem 139

750 DATA7664,20,0,62,8,8,8,62,0 :rem 39

760 DATA-1 :rem 21

Program 2. VIC French Tutor, Part 2: Vocabulary Drill

and Translator

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

1 POKE36879,27:PRINT"{CLR}":L$="PRENCHII2K$="ENGLIS

H":R$="{23 SPACES}":POKE36869,240 :rem 37

2 PRINT"{CLR}{BLU}{RVS}"R$"ENTER DESIRED NUMBER"R$

:rem 62

3 PRINT:PRINT"{GRN}1){BLK} "L$" TO "K$SPC(5)"VOCAB

ULARY DRILL":PRINT:PRINT"{GRN}2) {BLK}"K$" TO "L

$SPC(5)"VOCABULARY"; :rem 60

4 PRINT" DRILL":PRINT:PRINT"{GRN}3) {BLK}"L$" TO "

K$SPC(5)"TRANSLATOR":PRINT:PRINT"{GRN}4) {BLK}"K
$" TO "L$SPC(5)"TRANSLATOR" :rem 53

5 PRINT:PRINT:PRINT"{3 RIGHT}{RVS}{CYN}PUSH {RED}R
ETURN{CYN} AFTER"SPC(5)m EACH WORD INPUT "SPC(5)

" IN THIS PROGRAM {OFF}" :rem 159
6 GETMQ$:IFVAL(MQ$)<1ORVAL(MQ$)>4THEN6 :rem 114

8 POKE36869,255:ONVAL(MQ$)GOTO9,18,27,35 :rem 60

9 CO=0:SC=0:PRINT"{CLR}{BLK}{DOWN}HOW MANY WORDS?"

:rem 165

10 GETA$:IFVAL(A$)<1THEN10 :rem 5

11 LETN=VAL(A$):IFCO=NTHEN14 :rem 229

12 PRINT"{CLR}{DOWN}{GRN}TRANSLATE":PRINT"INTO "K$
; :rem 147

13 PRINT"{HOME}{2 DOWN}{RED}"TAB(13)CO+1"{LEFT} OF
"N:GOSUB43 :rem 229

14 IFCO=NTHENGOSUB44:GOTO9 :rem 212

15 PRINT"{HOME}{BLK}{5 DOWN}"W$;:INPUTT$:rem 39

U

u

u

u

LJ

92

Education: 2

16 IFT$=E$THENSC=SC+1:CO=CO+1:PRINT"{BLU}CORRECT":

FORL=1TO1500:NEXTL:GOTO11 :rem 25

17 IFT$<>E$THENCO=CO+1:PRINT"{BLUjWRONGl IT'S
{PUR}";E$:FORT=1TO1500:NEXTT:GOTO11 :rem 91

18 CO=0:SC=0:PRINT"{CLR}{BLK}{DOWN}HOW MANY WORDS?
:rem 213

19 GETA$:IFVAL(A$)<1THEN19 :rem 23

20 LETN=VAL(A$):IFCO=NTHEN23 :rem 229

21 PRINT"{CLR}{DOWN}{GRN}TRANSLATE":PRINT"INTO "L$

; :rem 148

22 PRINT"{HOME}{2 DOWN}{RED}"TAB(13)CO+1"{LEFT} OF
"N:GOSUB43 :rem 229

23 IFCO=NTHENGOSUB44:GOTO18 :rem 4

24 PRINT"{HOME}{BLK}{5 DOWN}"E$;:INPUTT$:rem 21

i5 IFT$=W$THENSC=SC+1:CO=CO+1:PRINT"{BLU}CORRECT":

FORL=1TO1500:NEXTL:GOTO20 irem 43

26 IFT$<>W$THENCO=CO+1:PRINT"{BLUjWRONGl IT'S

{PUR}";W$:FORT=1TO1500:NEXTT:GOTO20 :rem 127

27 PRINT"{CLR}{DOWN}{BLKjENTER "L$" WORD{5 SPACES}
OR {GRN}M{BLK} TO GO TO MENU" :rem 137

28 X$="XX":PRINT"{BLK}":INPUTT$:rem 244

29 IFT$="M"THENRUN :rem 100

30 READE$,W$:rem 143

31 IFW$=T$THENPRINT"{2 RIGHT}{BLU}"E$:FORT=1TO1500

:NEXTT:PRINT:RESTORE:GOTO27 :rem 255

32 IFW$=X$THENPRINT"{2 RIGHT}{BLU}TRY AGAIN.":REST

ORE:GOTO28 :rem 73

33 IFE$<>T$THEN30 :rem 226

34 PRINT"{BLU}{2 RIGHT}TRY AGAIN.":RESTORE:GOTO28
:rem 89

35 PRINT"{CLR}{DOWN}{BLK}ENTER "K$" WORD{4 SPACES}
OR {GRN}M{BLK} TO GO TO MENU" :rem 135

36 X$="XX":PRINT"{BLK}":INPUTT$:rem 243

37 IFT$="M"THENRUN :rem 99

38 READE$,W$ srem 151

39 IFE$=T$THENPRINT"{2 RIGHT}{BLU}"W$:FORT=1TO1500
:NEXTT:PRINT:RESTORE:GOTO35 :rem 6

40 IFE$=X$THENPRINT"{2 RIGHT}{BLU}TRY AGAIN.":REST
ORE:GOTO36 :rem 53

41 IFWOTTHEN38 :rem 251

42 PRINT"{BLU}{2 RIGHTjTRY AGAIN.":RESTORE:GOTO36
:rem 87

43 X=INT(RND(1)*101)+1:RESTORE:FORM=1TOX:READE$,W$
:NEXTM:RETURN :rem 49

44 PRINT:PRINT"{CLR}{BLK}{4 DOWN}OUT OF";N;"WORDS
{SPACE}YOU {3 RIGHT}HAVE CORRECTLY"SPC(8)"TRANS
LATED";SC;"{LEFT}." .rem 122

45 PRINT:PRINT"YOUR SCORE IS";INT((SC/N)*100);SPC(
6)"PER CENT." :rem 41

93

2: Education

46 PRINT:PRINT"GO AGAIN?"$PRINT"{DOWN}{2 RIGHT}

{RED}Y{BLK} - YES":PRINT"{DOWN}{2 RIGHT}{RED}M

{SPACE} {BLK}- RETURN tfo MENU" :rem 228

47 GETQ$:IFQ$<>"Y"ANDQ$<>"M"THEN47 :rem 2

48 IFQ$="Y"THENRETURN :rem 89

49 IFQ$="M"THENRUN :rem 99

51 DATASUMMER,@T@,APPLE,POMME,HERE,ICI,THERE,L*,NE

ST,NID :rem 165

52 DATAHOUSE, MAI SON, FARM, FERME,WHERE, O# , SAME, M=ME,

BOX,BO]TE,FRENCH,FRAN£AIS,CAKE,G+TEAU :rem 7

53 DATACOW,VACHE, HORSE,CHEVAL, BIRD, OISEAU, CHRISTMA

S,NO<L,EGG,«UF,EYE,-«IL,WORK,«UVRE :rem 132

54 DATACOST ,CO$T ,TASTE,GO$T# RATHER,PLUT[T,BELIEVE,

CRO] RE, HEAD, T=TE, BEAST, B=TE, KEY, CL@ :rem 154

55 DATANAME,NOM,YES,OUI,NO,NON,NOSE,NEZ,COFFEE,CAF

@,BOY,GAR£ON,DAY,JOUR,CASTLE,CH+TEAU :rem 217

56 DATABLACK, NOIR, BLUE, BLEU, RED, ROUGE, GREEN, VERT,W

HITE,BLANC,PURPLE,VIOLET,YELLOW,JAUNE :rem 144

57 DATAFEBRUARY,F@VRIER,KNOT,N^UD,TASK,T+CHE,PUPIL

,@LtVE,PASTE,P+TE,FOREST,FOR=T,OR,OU :rem 100
58 DATACHOIR,CH«UR,BONE,OS,BEAR,OURS,GOAT,CHtVRE,C

ITY,CIT@,NUT,NOIX,MOON,LUNE,BEEF,B«UF :rem 148

59 DATAFATHER,PtRE,MOTHER,MfRE,BABY,B@B@,FAIRY,F@E

, IRON, FER,FIRE,FEU,WINDOW,FEN=TRE : rem 48

60 DATARULE,RtGLE,RICE,RIZ,CORN,MA>S,MASTER,MA]TRE
,WHEAT,BL@,VERY,TRtS,SOON,T[T,WINE,VIN :rem 37

61 DATALIFE, VIE, JUNE, JUIN, TAIL, QUEUE, FOOT, PIED, ARM

, BRAS,WORD,MOT, LEG,JAMBE,CHILD, ENFANT : rem 21

62 DATASTRONG,FORT,BUILD,B+TIR,AT,*,SWORD,@P@E,FIN

GER,DOIGT,HEART,C«UR,SKY,CIEL,BEAK,BEC :rem 61

63 DATAHOUSE,MAISON,DOOR,PORTE,SOAP,SAVON,CUT,COUP

,LIP,LtVRE,SCHOOL,@COLE,SUN,SOLEIL* :rera 10
64 DATAMILK,LAIT,TEA,TH@,WATER,EAU,ARROW,FLtCHE,EN

D,FIN,AUNT,TANTE,TOOTH,DENT,XX,XX :rem 79

Program 3. French Tutor, 64 Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

100 DATA SUMMER, @T@,APPLE,POMME,HERE, ICI,THERE,L*,

NEST,NID :rem 208

110 DATAHOUSE, MAISON,FARM,FERME,WHERE,O#, SAME,M=ME

,BOX,BO]TE :rem 183

120 DATAFRENCH,FRAN£AIS,CAKE,G+TEAU :rem 252

130 DATACOW, VACHE, HORSE, CHEVAL, BIRD, 01SEAU, CHRISTM

AS,NO<L :rem 32

140 DATAEGG,«UF,EYE,«IL,WORK,-«UVRE :rem 19
150 DATACOST,CO$T,TASTE,GO$T,RATHER,PLUT[T,BELIEVE

,CRO]RE :rem 68

160 DATAHEAD,T=TE,BEAST,B=TE,KEY,CL@ :rem 8

94

n

n

n

n

n

Education: 2

170 DATANAME, NOM, YES, OUI,NO,NON, NOSE,NEZ, COFFEE, CA

F@,BOY,GAR£ON :rem 152

180 DATA DAY,JOUR,CASTLE,CH+TEAU :rem 246

190 DATABLACK,NOIR,BLUE,BLEU,RED,ROUGE,GREEN,VERT,

WHITE,BLANC :rem 21

200 DATAPURPLE,VIOLET,YELLOW,JAUNE :rem 42

210 DATAFEBRUARY, F@VRIER, KNOT, N«UD, TASK, T+CHE, PUPI

L,@LtVE :rem 98

220 DATAPASTE,P+TE,FOREST,FOR=T,OR,OU :rem 171

230 DATACHOIR,CH«UR,BONE,OS,BEAR,OURS,GOAT,CHtVRE
:rem 19

240 DATACITY,CIT@,NUT,NOIX,MOON,LUNE,BEEF,B-«UF

:rem 45

250 DATAFATHER,PtRE,MOTHER, MtRE,BABY,B@B@,FAIRY,F@

E,IRON :rem 193

260 DATAFER,FIRE,FEU,WINDOW,FEN=TRE :rem 30

270 DATARULE,RtGLE,RICE,RIZ,CORN,MA>S,MASTER,MA]TR

E,WHEAT,BL@ :rem 81

280 DATAVERY,TRtS,SOON,T[T,WINE,VIN :rem 143

290 DATALIFE,VIE,JUNE,JUIN,TAIL,QUEUE,FOOT,PIED,AR

M,BRAS :rem 190

300 DATAWORD,MOT,LEG,JAMBE,CHILD,ENFANT :rem 12

310 DATASTRONG,FORT,BUILD,B+TIR,AT,*,SWORD,@P@E,FI

NGER,DOIGT : rem 179

320 DATAHEART,C«UR,SKY,CIEL,BEAK,BEC :rem 57

330 DATAHOUSE,MAISON,DOOR,PORTE,SOAP,SAVON,CUT,COU

P,LIP,LtVRE :rem 158

340 DATASCHOOL,@COLE,SUN,SOLEIL :rem 30

350 DATAMILK,LAIT,TEA,TH@,WATER,EAU,ARROW,FLtCHE,E

ND,FIN,AUNT,TANTE :rem 180

360 DATATOOTH,DENT,XX,XX :rem 80

365 POKE53280,6 :rem 49

370 POKE53281,12:CH=54272:FORT=CHTOCH+24:POKET,0:N

EXT:PRINTCHR$(142) :rem 159

375 POKECH+24,15 :rem 124

380 POKECH+5,17:POKECH+6,241:POKECH,100 :rem 18

390 PRINTM{CLR}{8 RIGHT}{6 DOWN}{BLK}MCHR$(122)
:rem 197

400 FORT=1TO10 :rem 65

410 PRINTTAB(8)"{BLK}"CHR$(125)"{BLU}{RVS}
{8 SPACES} {WHT} {8 SPACES}{RED}{8 SPACES}11

:rem 214

420 NEXT :rem 213

430 PRINTTAB(8)"{BLK}"CHR$(125) :rem 66
440 PRINTTAB(8)M{BLK}MCHR$(125) :rem 67
450 FORT=0TO1STEP 0 :READA$:IF A$=MXXMTHENT=1:READ

A$:rem 71

451 NEXT :rem 217

460 READN,D :rem 116

470 IFD=-2THEN560 :rem 212

95

2: Education

480 POKECH+l,(ABS(N)):POKECH+4,33 :rem 137

490 FORT=1TO(ABS(D)):NEXT :rem 30

510 POKECH+4,32 :rem 64

520 FORN=1TO20:NEXTN :rem 6

530 GOTO460 :rem 107

560 PRINTCHR$(14):GOTO590 :rem 240

570 DATA-16,-125,-16,-187,-16,-62,-22,-250,-22,-25

0,-25,-250,-25,-250,-33,-375 :rem 230

580 DATA-28,-93,-22,-375,-2,-2 :rem 222

590 PRINT" {CLRHBLK} {11 DOWN} "TAB (15) "64 FRENCH
{DOWN} " :PRINTTAB (15) "TUTORIAL" : rem 93

600 PRINTTAB(15)"g8 T§" :rem 13

603 IFPEEK(12288)=8THENFORII=1TO2500:NEXT:GOTO740

:rem 31

605 PRINT"{3 DOWN}{3 RIGHT}PLEASE WAIT...DEFINING

{SPACE}CHARACTERS" :rem 19

610 PRINT:PRINT :rem 235

620 X=48:POKE56,X :rem 241

630 CS=12288 :rem 113

640 POKE56334,PEEK(56334)AND254:POKE1,PEEK(1)AND25

1 :rem 187

650 FORI=CSTOCS+4095:POKEI,PEEK(1+40960):NEXT

:rem 24

660 READX :rem 16

670 IFX=-1THEN740 :rem 233

680 IFX<0THEN660 :rem 188

690 FORI=XTOX+7:READJ :rem 97

700 IFJ<0THEN690 :rem 170

710 POKEI+5120,J:NEXT :rem 242

720 POKE1,PEEK(1)OR4:POKE56334,PEEK(56334)OR1

:rem 136

730 GOTO660 :rem 111

740 PRINT"{CLR}{BLK}{10 DOWN}"SPC(13)"INSTRUCTIONS

?{DOWN}":PRINTSPC(15)"{RVS}Y{OFF}ES OR {RVS}N
{OFF}O" :rem 188

750 GETA$:IFA$o"N"ANDA$o"Y"THEN750 :rem 53

760 IFA$="N"THEN1150 :rem 86

770 PRINT"{CLR}{BLK}{6 DOWN} {2 RIGHT}IN ORDER TO C
REATE FRENCH ACCENTS IN{DOWN}" :rem 123

780 PRINT"{8 RIGHT}THIS PROGRAM, CERTAIN{DOWN}"

:rem 235

790 PRINT"{2 RIGHT}LETTERS HAVE BEEN RE-DEFINED US

ING{DOWN}" :rem 86

800 PRINT"{8 RIGHT}PROGRAMMABLE CHARACTERS.{DOWN}"

:rem 233

810 PRINT"{10 RIGHT}{5 DOWN}PRESS {RVS}C{OFF} TO C

ONTINUE." :rem 139

820 GETA$:IFA$o"C"THEN820 :rem 215

830 PRINT"{CLR}{DOWN}{4 RIGHT}{BLK}THE FRENCH CHAR
ACTERS ARE BLACK," :rem 236

96

u

Education: 2

840 PRINT"{4 RIGHT}THEIR 64 EQUIVALENTS ARE {WHT}W
HITE{BLK}.{2 DOWN}" :rem 86

850 POKE53272,29 srem 102
860 PRINTTAB(12)'U {RVS}={OFF} {RVS}{WHT}«{OFF}

{BLK}"SPC(4)"# {RVS}={OFF} {RVS}{WHT}#{OFF}

{BLK}" srem 225
870 PRINT:PRINTTAB(12)"$ {RVS}={OFF} {RVS}{WHT}$

{OFF}{BLK}"SPC(4)"% {RVS}={OFF} {RVS}{WHT}%
{OFF}{BLK}" srem 55

880 PRINT:PRINTTAB(12)"& {RVS}={OFF} {RVS}{WHT}&
{OFF}{BLK}"SPC(4)lf+ {RVS}={OFF} {RVS}{WHT}+
{OFF}{BLK}" srem 72

890 PRINT:PRINTTAB(12)"£ {RVS}={OFF} {RVS}{WHT}£
{OFF}{BLK}"SPC(4)"@ {RVS}={OFF} {RVS}{WHT}@
{OFF}{BLK}" srem 223

900 PRINT:PRINTTAB(12)"* {RVS}={OFF} {RVS}{WHT}*
{OFF}{BLK}"SPC(4)"t {RVS}={OFF} {RVS}{WHT}t
{OFF}{BLK}" srem 175

910 PRINT:PRINTTAB(12)"[{RVS}={OFF} {RVS}{WHT}[
{OFF}{BLK}"SPC(4)"] {RVS}={OFF} {RVS}{WHT}]
{OFF}{BLK}" srem 16

920 PRINT:PRINTTAB(12)"= {RVS}={OFF} {RVS}{WHT}=
{OFF}{BLK}"SPC(4)"< {RVS}={OFF} {RVS}{WHT}<
{OFF}{BLK}" :rem 147

930 PRINT:PRINTTAB(12)"> {RVS}={OFF} {RVS}{WHT}>
{OFF}{BLK}"SPC(4)"/ {RVS}={OFF} {RVS}{WHT}/
{OFF} {BLK}'1 :rem 124

940 PRINTTAB(9)"{2 DOWN}{BLK}PRESS {RVS}C{OFF} TO
{SPACE}CONTINUE." :rem 43

950 GETA$:IFA$o"C"THEN950 :rem 223

952 DATA7168,8#16,126,64,126,64,126,0 :rem 94

960 DATA7384,24,36,0,60,66,66,60,0 :rem 194

965 DATA7392,28,34,64,64,34,28,8,16 :rem 8

970 DATA7400,8,20,0,62,8,8,62,0 :rem 31

975 DATA7408,16,8,126,64,126,64,126,0 :rem 96

980 DATA7416,30,40,72,78,72,40,30,0 :rem 236

985 DATA7448,16,8,66,66,66,66,60,0 :rem 220

990 DATA7456,24,36,0,66,66,66,60,0 :rem 203

995 DATA7464,36,0,60,66,66,66,60,0 :rem 207

1000 DATA7472,30,40,72,126,72,72,78,0 :rem 73

1005 DATA7504,16,8,60,66,126,66,66,0 :rem 34

1015 DATA7512,24,36,0,60,66,126,66,0 :rem 22

1020 DATA7544,36,0,66,66,66,66,60,0 :rem 240

1025 DATA7648,36,0,126,64,126,64,126,0 :rem 131

1030 DATA7656,24,36,126,64,126,64,126,0 :rem 180

1035 DATA7664,34,0,62,8,8,8,62,0 :rem 89

1040 DATA-1 :rem 61

1150 POKE53272,29:CLR:RESTORE :rem 9

1160 PRINT"{CLR}":L$="FRENCH":K$="ENGLISH" :rem 65
1165 R$="{23 SPACES}" :rem 196

97

2: Education

u

1170 POKE53280,7 :rem 93 ,

1180 PRINT"{CLR}{DOWN}{WHT}{RVS}"SPC(10)"ENTER DES [\
IRED NUMBER" :rem 121

1190 PRINT"{2 DOWN}{WHT}1){BLK} "L$" TO "K$" {WHT}

-{BLK} VOCABULARY DRILL" :rem 232 | I
1200 PRINT"{2 DOWN}{WHT}2) {BLK}"K$" TO "L$" {WHT} *—'

-{BLK} VOCABULARY DRILL" :rem 225
1210 PRINT"{2 DOWN}{WHT}3) {BLK}"L$" TO "K$" {WHT}

-{BLK} TRANSLATOR" :rem 126
1220 PRINT"{2 DOWN}{WHT}4) {BLK}"K$" TO "L$" {WHT}

-{BLK} TRANSLATOR" :rem 128
1225 PRINT"{2 DOWN}{WHT}5) {BLK}END THE PROGRAM"

:rem 128

1230 PRINT"{4 DOWN}{3 RIGHT}{RVS}{WHT}PUSH {BLK}RE
TURN{WHT} AFTER EACH WORD INPUT{DOWN}";

:rem 153

1240 PRINTSPC(16)"IN THIS PROGRAM" :rem 29

1250 GETMQ$:IFVAL(MQ$)<1ORVAL(MQ$)>5THEN1250

:rem 151

1255 IFVAL(MQ$)=5THENSYS2048 :rem 192

1260 POKE53272,29:ONVAL(MQ$)GOTO1270,1360,1450,153

0 :rem 67

1270 CO=0:SC=0:PRINT"{CLR}{BLK}{3 DOWN}{4 RIGHTjHO
W MANY WORDS? (MAX. 9)" :rem 106

1280 GETA$:IFVAL(A$)<1THEN1280 :rem 217
1290 N=VAL(A$):IFCO=NTHEN1320 :rem 203

1300 PRINT"{CLR}{4 DOWN}{3 RIGHT}TRANSLATE":PRINT"
{3 RIGHT}INTO "K$:rem 124

1310 PRINT"{2 UP}"TAB(24)CO+1"{LEFT} OF"N:GOSUB161
0 :rem 122

1320 IFCO=NTHENGOSUB1620:GOTO1270 :rem 39

1330 PRINT"{3 DOWN}{7 RIGHT}"W$;:INPUTT$:rem 142
_1340 IFT$=E$THENSC=SC+l:Cp=_CO+l:PRINT"{7 RIGHT}

{2 DOWN}{WHT}CORRECT i{BLK}":FORL=1TO2E2:NEXT

L :rem 12

1345 IFT$=E$THENT$="":GOTO1290 :rem 225

1350 CO=CO+1:PRINT"{7 RIGHT}{2 DOWN}{WHT}WRONG I
{2 SPACES}lT*S {BLK}";E$:FORT=1TO1500:NEXTT:G

OTO1290 :rem 212

1360 CO=0:SC=0:PRINT"{CLR}{BLK}{3 DOWN}{4 RIGHT}HO
W MANY WORDS?{SHIFT-SPACE}(MAX, 9)" :rem 10

1370 GETA$:IFVAL(A$)<1THEN1370 :rem 217

1380 LETN=VAL(A$):IFCO=NTHEN1410 :rem 176
1390 PRINT"{CLR}{4 DOWN}{3 RIGHT}TRANSLATE":PRINT"

{3 RIGHT}INTO "L$; :rem 193
1400 PRINT"{UP}"TAB(24)CO+1"{LEFT} OF"N:GOSUB1610

:rem 233

1410 IFCO=NTHENGOSUB1620:GOTO1360 :rem 39

98

Education: 2

1420 PRINTM{3 DOWN}{7 RIGHT}"E$;:INPUTT$:rem 124
1430 IFT$=W$THENSC=SC+1:CO=CO+1:PRINT"{WHT}

{2 DOWN}{7 RIGHTjCORRECT 1{BLK}":FORL=1TO1500

:NEXTL :rem 59

1435 IFT$=W$THEN1380 :rem 135

1440 CO=CO+1:PRINT"{WHT}{2 DOWN}{7 RIGHT}WRONG I I
T'S {BLK}m;W$:FORT=1TO1500:NEXTT:GOTO1380

:rem 230

1450 PRINT"{CLR}{DOWN}{RIGHT}{BLK}ENTER "L$" WORD

{SPACEjOR {RVS}M{OFF} TO GO TO MENU" :rem 253

1460 X$="XX":PRINT"{DOWN}{RIGHT}M;:INPUTT$:rem 46

1470 IFT$="M"THEN1160 :rem 152

1480 READE$,W$:rem 249

1490 IFW$=T$THENPRINT"{DOWN}{2 RIGHT}"E$:FORT=1TO1

500:NEXTT:PRINT:RESTORE:GOTO1450 :rem 188

1500 IFW$=X$THENPRINT"{DOWN}{2 RIGHTjTRY AGAIN.":R

ESTORE:GOTO1460 :rem 253

1510 IFE$<>T$THEN1480 :rem 173

1520 PRINT"{DOWN}{2 RIGHTjTRY AGAIN.":RESTORE:GOTO

1460 :rem 13

1530 PRINT"{CLR}{DOWN}{RIGHT}{BLK}ENTER "K$" WORD

{SPACEJOR {RVS}M{OFF} TO GO TO MENU" :rem 251
1540 X$="XX":PRINT"{DOWN}{RIGHT}";:INPUTT$:rem 45

1550 IFT$="M"THEN1170 :rem 152

1560 READE$,W$:rem 248

1570 IFE$=T$THENPRINT"{DOWN}{2 RIGHT}"W$:FORT=1TO1

500:NEXTT:PRINT:RESTORE:GOTO1530 :rem 186

1580 IFE$=X$THENPRINT"{DOWN}{2 RIGHTjTRY AGAIN.":R

ESTORE:GOTO1540 :rem 242

1590 IFW$<>T$THEN1560 :rem 198

1600 PRINT"{DOWN}{2 RIGHTjTRY AGAIN.":RESTORE:GOTO

1540 :rem 11

1610 X=INT(RND(1)*101)+1:RESTORE:FORM=1TOX:READE$,

W$:NEXTM:RETURN :rem 146

1620 PRINT:PRINT"{CLR}{BLK}{4 DOWN}{3 RIGHT}OUT OF

";N;"WORDS, YOU HAVE CORRECTLY" :rem 71

1625 PRINT"{12 RIGHT}TRANSLATED";SC;"{LEFT}."
:rem 8

1630 PRINT:PRINT"{6 RIGHT}YOUR SCORE IS";INT((SC/N

)*100);"PER CENT." :rem 203

1640 PRINTTAB(15)"{2 DOWN}GO AGAIN?" :rem 129

1645 PRINT"{DOWN}"TAB(16)"{RVS}Y{OFF} - YES":PRINT
"{DOWN}"TAB(11)"{RVS}^{OFF} - RETURN TO MENU"

:rem 96

1650 GETQ$:IFQ$o"Y"ANDQ$o"M"THEN1650 :rem 196

1660 IFQ$="Y"THENRETURN :rem 186

1670 IFQ$="M"THEN1170 :rem 152

99

Up or Down?

U

u
C. Regena

LJ

"Up or Down" is a program designed to help beginning | j

music students learn to read music. It illustrates sev* {—'
eral ways that sound can be used to enhance a pro

gram. For the unexpanded VIC or 64. '

One of the most valuable applications of Commodore

sound is in the field of educational programming. This

music tutorial takes advantage of the excellent sound capabili

ties of the VIC and 64 to help beginning students learn to read

musical notation.

Up or Down?
This program is designed for students who are just beginning

to read music. The notes are shown on a musical staff, and the

student is asked whether the second note is higher, lower, or

the same as the first note. In other words, to get from the first

note to the second one, do you step up, step down, or stay

where you are?

The student is asked to press f1 for up, f3 for no change,

or f5 for down. Ten problems are included in each drill. After

each correct answer, both notes are played. Incorrect answers

produce the "uh-oh" sound. At the end of the drill, the stu

dent's score is displayed, along with the option to try again.

How It Works
This explanation covers both the VIC and 64 versions of the

program.

Line 10 branches past subroutines. Line 10 in the 64 ver- j j

sion also POKEs 53281,1 to change to a white screen.

Lines 20-40 contain several subroutines. Lines 20-26

print the message to PRESS RETURN, then wait for the stu- I j

dent to respond before continuing the program. s—l

Line 30 is a short delay for playing tones for the audible

prompt and the "uh-oh" sound for an incorrect response. Line] j

40 is a delay used in playing the notes shown after the stu

dent has pressed the correct answer. The notes are played so

the student can hear as well as see the interval. ! {

Lines 100-130 print the title and instruction screen. Line {—
140 defines L$ for use in printing the musical staff. To type

I i

ioo LJ

Education: 2

this line, use SHIFT and * to get a horizontal line. For the VIC

type 22 lines, and for the 64 type 40 of them.

Lines 150-160 define the tone numbers for playing the

notes. The numbers are read in as an array. Two numbers are

necessary for each tone in the 64 version.

Line 170 defines the B array. The three numbers are the

ASCII codes of the keys fl, f3, and f5. Line 175 POKEs values

necessary to play music. Line 180 calls the subroutine to wait

for the student.

Lines 190-380 present the quiz of ten problems. SC is the

score. Line 200 prints the musical staff. Note that a blank line

is printed after L$, because L$ ends in the last column. You

should see five horizontal lines with blank lines between them

if you have typed L$ correctly.

Line 210 chooses a random number for the first note.

There are nine possible positions, so INT(9*RND(0)) chooses a

number from 0 to 8. PI is the screen memory location cal

culated, so line 220 can POKE a red circle (representing the

note) in the chosen position. Similarly, lines 230-240 choose

the second note.

Line 250 calculates the answer. The SGN function returns

a value of +1, 0, or — 1, depending on whether the number is

positive, zero, or negative. Subtracting N2 from Nl determines

whether the second note is up from, the same as, or down

from the first note. I added 2 to the SGN to get an answer (A).

B(A) will be the ASCII code of the correct function key

pressed. Line 250 also sets a flag FL to zero.

Line 260 plays the audible prompt (a short, high-pitched

tone). Lines 270-290 then receive the student's answer,

accepting only the fl, f3, and f5 keys.

Line 300 checks the key pressed. If the answer is in

correct, FL is set to 1, the computer plays an "uh-oh" sound,

and the program branches back to line 280 for another an

swer. If the answer is correct, then lines 350-360 play the

notes shown, and line 370 increments the score (if this is the

first response).

After ten problems, line 390 prints the score. Although a

student must get the correct answer for the program to con

tinue, the score reflects only those answers that were correct

on the first try.

101

2: Education

Lines 400-420 give the student the option to try the drill

again, and the program branches appropriately. Line 430

clears the screen and ends the program.

Other Possibilities
There are many ways that your Commodore computer could

be used to teach musical skills. For instance, a program could i |

be developed to teach the difference between half steps and ^-J
whole steps or to teach the names of chords. Programs could

also teach chord inversions or types of chords, and the com

puter could then play the chords (a note at a time or together)

to reinforce the learning. There are dozens of possibilities.

Music composition can also be enjoyable on the com

puter. I have seen several programs for nonprogrammers in

which a student designs a line by choosing notes and rests

and placing them on the staff; then the computer plays what

the student composed. You could create similar programs to

play one or several notes at a time, allowing even non-

composers to experiment with creating musical lines.

These are just a few ideas for using the music capabilities

of computers. I'm sure you have other ideas ready to try.

Program 1. Up or Down?, VIC Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

5 REM STEPPING UP OR DOWN :rem 1

10 GOTO 100 :rem 43

20 PRINT"{DOWN}{BLK}PRESS RETURN{BLU}" :rem 96

22 GETA$:IFA$=IIMTHEN22 : rem 235

24 IF ASC(A$)<>13THEN22 :rem 243

26 RETURN :rem 72

30 FOR D=l TO 80:NEXT D:POKE S,0:RETURN :rem 246

40 FOR D=l TO 500:NEXT D:POKE S,0:RETURN :rem 36 (' .

100 PRINT"{CLR}{BLU}":PRINT"STEPPING UP OR DOWN" LJ
:rem 7

110 PRINT"{2 DOWN}TWO NOTES ARE SHOWN.":PRINT"FROM

THE FIRST ONE," :rem 83 { |

120 PRINT"DO YOU GO UP, GO DOWN":PRINT"OR STAY THE <—J

SAME":PRINT"TO PLAY THE SECOND?" :rem 221

130 PRINT"{DOWN}PRESS{2 SPACES}F1 FOR UP":PRINTTAB . ,

(7)"F3 FOR SAME":PRINTTAB(7)"F5 FOR DOWN" Lj
:rem 250

140 l$="**********************" :rem 6

150 FOR 1=0TO8:READF(I):NEXT :rem 189 i j

160 DATA 232,231,228,225,223,219,215,209,207 I—<
:rem 114

102 LJ

Education: 2

170 B(1)=135:B(2)=134:B(3)=133 :rem 218

175 POKE 36878,15:S=36876 :rem 70

180 GOSUB20 :rem 123

190 SC=0:POR T=l TO 10 :rem 132

200 PRINT"{CLR}{4 DOWN}{BLK}":FOR I=1TO5:PRINTL$:N

EXT :rem 42

210 N1=INT(9*RND(0)):P1=7796+N1*22 :rem 96

220 POKE P1,81:POKE Pl+30720,2 :rem 72

230 N2=INT(9*RND(0)):P2=7802+N2*22 :rem 89

240 POKE P2,81:POKE P2+30720,2 :rem 76

250 A=SGN(N1-N2)+2:FL=0 :rem 16

260 POKE S,237:GOSUB 30 :rem 255

270 PRINT"{3 DOWN}{BLU}F1{2 SPACES}UP":PRINT"F3
{2 SPACES}SAME":PRINT"F5{2 SPACES}DOWN":rem 64

280 GET A$:IF A$=""THEN 280 :rem 87

290 IF ASC(A$)<133 OR ASC(A$)>135 THEN 280 :rem 88

300 IF ASC(A$)=B(A) THEN 350 :rem 135

310 FL=1:POKE S,159:GOSUB 30 :rem 56

320 POKE S,135:GOSUB 30:GOTO 280 :rem 6

350 POKE S,F(N1):GOSUB 40 :rem 122

360 POKE S,F(N2):GOSUB 40 :rem 124

370 IF FL=0 THEN SC=SC+l :rem 28

380 NEXT T :rem 46

390 PRINT "{2 DOWN}SCORE = ";SC;"OUT OF 10"

:rem 134

400 PRINT "{DOWN}{BLK}TRY AGAIN? (Y/N)" :rem 203
410 GET A$:IF A$="Y" THEN 190 :rem 171

420 IF A$o"N" THEN 410 : rem 90

430 PRINT"{CLR}{BLU}":END :rem 43

Program 2, Up or Down?, 64 Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

5 REM STEPPING UP OR DOWN :rem 1

10 POKE53281,1:GOTO 100 :rem 244

20 PRINT"{DOWN}{GRN}PRESS RETURN{BLU}" :rem 238
22 GETA$:IFA$=""THEN22 :rem 235

24 IF ASC(A$)<>13THEN22 :rem 243

26 RETURN :rem 72

30 FORD=15TO1STEP-1:POKEW,33:POKEW+20,D:FORL=1TO80
:NEXT:POKE W,0:NEXT:RETURN 2rem 188

35 POKE 54296,15:POKE W,33:FOR D=l TO 125:NEXT:POK
E W,0:RETURN : rem 66

40 POKE 54296,15 :POKE W,33:FOR D=l TO 500 :NEXT D:P
OKE W,0: RETURN :rem 127

100 PRINT"{CLR}{BLU}":PRINTTAB(10)"STEPPING UP OR
{SPACE}DOWN" :rem 144

!] 110 PRINT"{2 DOWNjYOU WILL SEE TWO NOTES.":PRINT"F
ROM THE FIRST ONE, DO YOU MOVE UP," :rem 150

103

n

n

2: Education

120 PRINT"MOVE DOWN, OR STAY THE SAME TO PLAY THE

{SPACE}SECOND NOTE?" :rem 211

130 PRINT"{DOWN}PRESS[2 SPACES}F1 FOR UP":PRINTTAB
(7)"F3 FOR SAME":PRINTTAB(7)"F5 FOR DOWN"

:rem 250

140 L$s=M**

:rem 134

150 FOR I=0TO8:READHF(I),LF(I):NEXT :rem 93

160 DATA 44,193,42,62,37,162,33,135,31,165,28,49,2

5,30,22,96,21,31 :rem 173

170 B(1)=135:B(2)=134:B(3)=133 :rem 218

175 V1=54273:V2=54272:W=54276:POKE 54277,64:POKE 5

4278,128 :rem 129

180 GOSUB20 :rem 123

190 SC=0:FOR T=l TO 10 :rem 132

200 PRINT"{CLR}{5 DOWN}{BLK}":FOR I=1TO5:PRINTL$:N

EXT :rem 59

210 N1=INT(9*RND(0)):P1=1280+N1*40 :rem 78

220 POKE PI,81tPOKE Pl+54272,2 :rem 80

230 N2=INT(9*RND(0)):P2=1287+N2*40 :rem 90

240 POKE P2,81:POKE P2+54272,2 :rem 84

250 A=SGN(N1-N2)+2:FL=0 :rem 16

260 POKE VI,56:POKE V2,99:GOSUB 30 :rem 145

270 PRINT"{3 DOWN}{BLU}F1{2 SPACES}UP":PRINT"F3
{2 SPACES}SAME":PRINT"F5{2 SPACES}DOWN":rem 64

280 GET A$:IF A$=""THEN 280 :rem 87

290 IF ASC(A$)<133 OR ASC(A$)>135 THEN 280 :rem 88

300 IF ASC(A$)=B(A) THEN 350 :rem 135

310 FL=1:POKE V1,10:POKE V2,143:GOSUB 35 :rem 232

320 POKE VI,8:POKE V2,97:GOSUB 35:GOTO 280:rem 107

350 POKE V1,HF(N1):POKE V2,LF(N1):GOSUB 40:rem 117

360 POKE V1,HF(N2):POKE V2,LF(N2):GOSUB 40:rem 120

370 IF FL=0 THEN SC=SC+l :rem 28

380 NEXT T :rem 46

390 PRINT "{2 DOWN}SCORE = ";SC;"OUT OF 10"

:rem 134

400 PRINT "{DOWN}{GRN}TRY AGAIN? (Y/N)" :rem 89

410 GET A$:IF A$="Y" THEN 190 :rem 171

420 IF A$o"N" THEN 410 : rem 90

430 PRINT"{CLR}{BLU}":END :rem 43

104

Build a Quiz
Clark and Kathy Kidd

"Build a Quiz" makes it easy to create multiple'choice

tests on any subject you choose. For any VIC or 64-

v 4 LJ uild a Quiz" is a versatile educational tool that turns
JD your VIC or 64 into a tutor in virtually any subject

you choose. It lets you create a quiz on any subject and then

save it to tape or disk.

Assume that your child isn't doing well in civics and that

there's a big test coming up. You can create a sample test

covering anything from the U.S. Constitution to your local

government, using multiple-choice, true/false, fill-in-the-blank

questions, or any combination thereof.

On the Commodore 64, to save to tape or disk, simply

connect your tape drive or disk drive and press the appro

priate buttons when the program instructs you to do so. On

the VIC, however, you'll need to change the value of DV in

line 100 of the VIC version to reflect the storage device you're

using. If your system includes a disk drive, change DV to 8.

That signifies that you will be reading from and writing to de

vice 8, the disk drive. For VIC tape operation, DV should

equal 1.

You are then asked if you want to create a new quiz or

answer the questions from an existing quiz. Creating a new

quiz is a simple process involving naming the quiz, choosing

the type of question for each question, writing the questions,

and providing the correct answers.

The computer will prompt you at each step, asking for the

question and then for the answer. For instance, when you

write a multiple-choice question, you'll be asked to give four

possible answers. After all four have been typed in, the com

puter will ask you to show the correct answer by pressing A,

B, C, or D on the keyboard.

You can write as many questions as you like, or you can

quit by pressing 4. At that point you'll return to the initial

screen and can save the program by pressing 3.

Later you can load the program and take the quiz by typ

ing in the quiz name. The questions you entered will be dis-

105

2: Education

played in the order in which they were typed. Correct answers

are greeted with a musical tone, while incorrect answers are

noted by a buzzing sound and a black screen.

When the quiz is completed, your final score—including

the number of questions asked, the number correct, and your

percentile score—is shown. If you want, you can continue

with another quiz or write a new one.

Build a Quiz is a valuable educational tool, but it can be a

lot of fun too. For instance, it's ideal for trivia games. But

however you decide to use it, it's sure to make teaching—and

learning—more fun than ever before.

Program 1. Build a Quiz, VIC Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

1 REM VIC BUILD A QUIZ :rem 241

100 POKE36879#190:Z$=CHR$(13):DV=1 :rem 132

120 M=4*(PEEK(36866)AND128)+64*(PEEK(36869)AND120)

:C=37888+4*(PEEK(36866)AND128) :rem 80

200 PRINT"{BLK}{CLR}{D0WN}{5 SPACES}{RVS}BUILD A Q
UIZ{OFF}M :rem 53

210 PRINT"{DOWN}OPTION 1 OF THIS{6 SPACES}PROGRAM
{SPACE}WILL BUILD A{2 SPACES}QUIZ AND WRITE IT

TO" :rem 52

215 PRINT"TAPE OR DISK." :rem 141

220 PRINT"{DOWN}OPTION 2 ALLOWS YOU TOTEST YOURSEL
F WITH A{2 SPACES}PREVIOUSLY WRITTEN{4 SPACES}

QUIZ." :rem 239

230 PRINT"{2 DOWN} ENTER OPTION:" :rem 25

240 PRINT"{DOWN} {RVS}l{OFF} CREATE A QUIZ":PRINT"

{DOWN} {RVS}2{OFF} TAKE A QUIZ":PRINT"{DOWN}
{RVS}3{OFF} END PROGRAM" :rem 14

250 GETX$:IFX$=""THEN250 :rem 127

260 X=VAL(X$):ONXGOTO300,700#280 :rem 97

270 GOTO250 :rem 105

280 POKE36879,27:PRINT"{CLR}":END :rem 30

300 NQ=0:GOSUB7500 :rem 37

310 OPEN9,DV,1,QN$:GOSUB6500 :rem 150

320 NQ=NQ+1:PRINT"{CLR}{DOWN} ENTER QUESTION TYPE:

{2 DOWN}" :rem 175
330 PRINT"{DOWN} {RVS}l{OFF} TRUE/FALSE":PRINT"

{DOWN} {RVS}2{OFF} MULTIPLE CHOICE":PRINT"

{DOWN} {RVS}3{OFF} COMPLETION" :rem 29
340 PRINT"{DOWN} {RVS}4{OFF} (ALL DONE)" :rem 161

350 GETX$:IFX$=""THEN350 :rem 129

360 IFX$="4"THEN550 :rem 34

106

H

n

n

Education: 2

n

365 IFX$<II1"ORX$>"31ITHEN350 : rem 243

370 GOSUB6500:PRINTM{CLR} QUESTION #";NQ; :rem 51

380 X=VAL(X$):ONXGOTO400,450,500 :rem 98

390 GOTO350 :rem 109

fl 400 PRINT"(T/F)":O=88:L=66:GOSUB8000:GOSUB6500
:rem 235

410 PRINTM{8 DOWN} ENTER {RVS}t{OFF} OR {RVS}F

{OFF}" :rem 239
420 GETX$:IFX?=""THEN420 :rem 125

430 IFX$o"T"ANDX$o"F"THEN420 :rem 204

440 GOSUB6500:GOTO320 :rem 235

450 PRINT"(M.C.)":O=44:L=66:GOSUB8000:GOSUB6500:PR

INT"{5 DOWN}A.":O=135:L=63:GOSUB8000 :rem 231

460 GOSUB6500:PRINT"{3 DOWN}B.":0=223:GOSUB8000:G0
SUB6500:PRINT"{3 DOWN}C.":0=311:GOSUB8000

:rem 131

470 GOSUB6500:PRINT"{3 DOWN}D.":0=399:GOSUB8000:G0
SUB6500 :rem 8

480 PRINT"{2 DOWN}{2 SPACES}(PRESS {RVSJa{OFF},
{RVS}B{OFF},{RVS}C{OFF} OR {RVS}D{OFF})";

:rem 59

485 GETX$:IFX$=""THEN485 :rem 147

490 IFX$<"A"ORX$>"D"THEN485 :rem 28

495 GOSUB6500:GOTO320 :rem 245

500 PRINT"(COMP.)":0=66:L=69:GOSUB8000:GOSUB6500:P

RINT"{7 DOWN}ENTER CORRECT ANSWER" :rem 97

510 0=242:L=63:GOSUB8000:GOSUB6500:GOTO320:rem 245

550 GOSUB6500:CLOSE9:GOTO200 :rem 211

700 GOSUB7500 :rem 227

730 OPEN9,DV,0,QN$:GOSUB6600 :rem 156

740 IFLEN(X$)>21THEN760 :rem 67

750 A$=" "+X$:X$=A$+" M:GOTO740 :rem 254

760 PRINT"{CLR}{2 DOWN}":FORX=1TO10:PRINTX$;:PRINT
" ":NEXTX:GOSUB7000:FORX=1TO1000:NEXTX :rem 5

770 NQ=0:CQ=0 :rem 229

800 GOSUB6600 :rem 228

810 IFX$="4"THEN2000 :rem 74

820 IFX$<"1"ORX$>"3"THEN800 :rem 239

830 NQ=NQ+1:X=VAL(X$) :rem 241

840 PRINT"{CLR} QUESTION #";NQ :rem 117
850 ONXGOTO900,1000,1100 :rem 63

860 GOTO800 :rem 111

900 GOSUB6600:PRINT"{DOWN}";X$:rem 184
910 PRINT"{2 DOWN} ENTER {RVSJt{OFF} FOR TRUE"

:rem 42

920 PRINT"{2 DOWN} ENTER {RVS}F{OFF} FOR FALSE"

:rem 72

930 GOSUB6600 :rem 232

940 GETA$:IFA$=""THEN940 :rem 93

950 IFA$o"T"ANDA$o"F"THEN940 : rem 172

107

2: Education

960 IFX$<>A$THEN1200 :rem 123

970 GOTO1300 :rem 157

1000 GOSUB6600:PRINT"{DOWN}ll;X$:GOSUB6600:PRINTtl

{DOWNjA. ";X$:GOSUB6700 :rem 47

1010 GOSUB6600:PRINT"B. ";X$:GOSUB6700:GOSUB6600:P

RINT"C. M;X$:GOSUB6700 :rem 7

1020 GOSUB6600:PRINTMD. ";X$:GOSUB6700:GOSUB6600

:rem 80

1030 PRINT"{3 SPACESjENTER {RVS}A{OFF},{RVS}b{OFF}

1040

1050

1060

1070

1100

1110

1120

1130

1140

1200

1210

1300

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

6500

6600

6610

6620

6630

6640

6650

,{RVS}C{OFF} OR {RVS}D{OFF}";

GETA$:IFA$=""THEN1040

IFA$<"A"ORA$>IID"THEN1040

IFX$<>A$THEN1200

GOTO1300

GOSUB6600

PRINT"{DOWN}";X$:GOSUB6600

INPUT"{3 DOWN}";A$

IFX$<>A$THEN1200

GOTO1300

GOSUB7200:PRINT"{CLR}{DOWN} ANSWER =

FORX=1TO1500:NEXTX:GOTO800

CQ=CQ+1:GOSUB7000:GOTO800

PRINT"{CLR}{DOWN}{6 SPACES}{RVS}QUI2

{off}"

PRINT" {2 DOWN} # QUESTIONS =";NQ

PRINT"{2 DOWN} # CORRECT{3 SPACES}="

IFNQ=0THENNQ=1

X=INT((CQ*100)/NQ)

:rem 225

:rem 173

:rem 59

:rem 163

:rem 197

:rem 14

:rem 226

:rem 107

:rem 161

:rem 195

= ";X$

:rem 127

:rem 182

:rem 17

\ OVERI

:rem 129

:rem 187

';CQ

:rem 248

:rem 156

:rem 5

PRINT"{2 DOWN} YOUR SCORE{2 SPACES}=";X;"

{LEFT}%" :rem 150

PRINT"{3 DOWN}{3 SPACES}(PRESS ANY KEY)"

CLOSE 9

GETX$:IFX$=""THEN2080

GOTO200

PRINT#9,X$;Z$;:RETURN

X$=""

GET#9,QQ$

IFQQ$=""THEN6610

IFASC(QQ$)=13THENRETURN

X$=X$+QQ$

GOTO6610

:rem 123

:rem 120

:rem 229

:rem 150

:rem 106

:rem 201

:rem 251

:rem 160

:rem 252

:rem 246

:rem 215

6700 X=LEN(X$):IFX=19ORX=41ORX=63THENRETURN:rem 31

6710 PRINT"{SHIFT-SPACE}":RETURN :rem 89
7000 POKE36878,15:FORX=110TO190STEP16 2POKE36879,X:

POKE36875,X+30:FORY=1TO100:NEXTY,X :rem 184

7010 POKE36878,0:POKE36875,0:RETURN :rem 79

108

Education: 2

7200 POKE36879,8:POKE36878,15:POKE36874,130:FORX=1

TO500:NEXTX :rem 157

7210 POKE36879,190:POKE36878,0:POKE36874,0:RETURN

:rem 144

7500 PRINT"{CLR}{3 DOWN}{3 SPACESjENTER QUIZ NAME:

": PRINT "{DOWN} {4 SPACES} (1-22 LETTERS)11

:rem 215

7510 O=176:L=23:GOSUB8000:IFLEN(X$)>22THEN7500

:rem 179

7520 QN$=X$:IFLEN(X$)>11THENQN$=LEFT$(X$,11)

:rem 56

7530 QN$="QUIZ/H+QN$: rein 121

7540 PRINT"{6 DOWN}{2 SPACES}PREPARE TAPE/DISK":PR
INT"{2 SPACES}THEN PRESS {RVS}RETURN{OFF}"

:rem 229

7550 GETE$:IFE$=""THEN7550 :rem 205

7560 IFASC(E$)<>13THEN7550 :rem 208

7570 RETURN :rem 179

8000 X$="":POKEM+O,160:POKEC+O,0 :rem 58

8010 GETY$:IFY$=""THEN8010 :rem 229

8020 X=ASC(Y$):IFX=13THEN8150 :rem 195

8030 IFX=20THEN8100 :rem 73

8040 Y=LEN(X$):X$=X$+Y$:IFX>63THENX=X-64 :rem 160

8050 POKEM+O+Y,X:POKEC+O+Y,0:POKEM+O+Y+1,160:POKEC

+O+Y+1,0:IFLEN(X$)<LTHEN8010 :rem 251

8060 GOTO8150 :rem 213

8100 Y=LEN(X$):IFY<1THEN8010 :rem 146

8110 POKEM+O+Y,32:POKEC+O+Y,1:POKEM+O+Y-1,160:POKE

C+O+Y-1,0 :rem 21

8120 Y?=LEFT$(X$,Y-1):X$=Y$:GOTO8010 :rem 48

8150 Y=LEN(X$):POKEM+O+Y,32:POKEC+O+Y,1:RETURN
:rem 118

Program 2. Build a Quiz, 64 Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

1 REM BUILD A QUIZ :rem 15

100 DI=8:TA=1:REM ** DEVICE NUMBERS ** :rem 98

110 VC=53248:POKEVC+32,0:POKEVC+33,11:PRINTCHR?(14

7)

120 Z$=CHR$(13):DP=0:PS=0

130 DIM NT%(30)

140 MC=54272:FORX=MCTO54296:POKEX,0:NEXTX

150 FORX=0TO30:READZ:NT%(X)=Z:NEXTX

160 M=((PEEK(53272)AND240)/16)*1024
170 C=55296

200 PRINT"{WHT}{2 DOWN} {RVS}{6 SPACESjB U I L D

{4 SPACES}A{4 SPACES}Q U I Z{7 SPACES}{OFF}"
:rem 40

210 PRINT"{2 DOWN} OPTION 1 OF THIS PROGRAM WILL B

UILD A" :rem 94

:rem 50

:rem 137

:rem 233

:rem 71

:rem 10

:rem 44

:rem 35

109

2: Education

LJ

460 A$=X$:PRINT"{2 DOWN} B.":O=524:GOSUB8000:B$=X$

:rem 145

110

u

215 PRINT11 QUIZ AND SAVE IT ON TAPE OR DISK."

:rem 18 j j

220 PRINT "{2 DOWN} OPTION 2 LETS YOU RECALL AN EX
ISTING" :rem 116

225 PRINT" QUIZ AND TEST YOURSELF.11 :rem 109

227 GOSUB9000 :rem 228

230 PRINTM{2 DOWN}{3 SPACES}ENTER OPTION:" :rem 25
240 PRINT"{DOWN}{3 SPACES}{RVS}l{OFF} CREATE A QUI

Z":PRINT"{DOWN}{3 SPACES}{RVS}2{OFF} TAKE A QU II
IZ" :rem 44 '—'

245 PRINT"{DOWN}{3 SPACES}{RVS}3{OFF} END PROGRAM"
:rem 67

250 GETX$:IFX$=""THEN250 :rem 127

260 X=VAL(X$):ONXGOTO300,700,280 :rem 97

270 GOTO250 :rem 105

280 PS=0:GOSUB9000:PRINTCHR$(147) :rem 226

290 END :rem 114

300 NQ=0:GOSUB9200:GOSUB7500:PRINTCHR$(147):rem 95

310 OPEN9,DV,1,QN$:PRINTCHR$(147):PRINT#9,X$;Z$;

:rem 133

320 NQ=NQ+1:PRINT"{CLR}{2 DOWN}{3 SPACES}ENTER QUE
STION TYPE:{2 DOWN}" :rem 192

330 PRINT"{2 DOWN}{3 SPACES}{RVS}1{OFF} TRUE/FALSE

":PRINT"{2 DOWN}{3 SPACES}{RVS}2{OFF} MULTIPLE
CHOICE" :rem 82

335 PRINT"{2 DOWN}{3 SPACES}{RVS}3{OFF} COMPLETION

11 :rem 95

340 PRINT"{2 DOWN}{3 SPACES}{RVS}4{OFF} (ALL DONE)
:rem 178

350 GETX$:IFX$=""THEN350 :rem 129

360 IFX$="4"THENT$=X$:GOTO550 :rem 198

365 IFX$<"1"ORX$>"3"THEN350 :rem 243

370 PRINT"{CLR}{DOWN}{3 SPACES}QUESTION #";NQ;
:rem 191

380 X=VAL(X$):T$=X$:ONXGOTO400,450,500 :rem 205

390 GOTO350 :rem 109

400 PRINT"(TRUE/FALSE)":O=240:L=80:GOSUB8000:A$=X$ j |
:rem 241 I—I

410 PRINT"{10 DOWN}{3 SPACES}ENTER CORRECT ANSWER
{SPACE}({RVS}T{OFF} OR {RVS}F{OFF})" :rem 68

420 GETX$:IFX$=""THEN420 :rem 125 I I

430 IFX$<>"T"ANDX$o"F"THEN420 :rem 204 '—'
435 PRINTCHR$(147) :rem 23

440 PRINT#9,T$;Z$;A$;Z$;X$;Z$7:GOTO320 :rem 234 , ,
450 PRINT"(MULTIPLE CHOICE)":O=240:L=80:GOSUB8000 | [

:rem 219

455 Q$=X$:PRINT"{8 DOWN} A.":O=404:L=76:GOSUB8000

:rem 222 I I

u

n

n

n

n

n

Education: 2

n

n

n

n

n

465 PRINT"{2 DOWN} C.":0=644:GOSUB8000:C$=X$
:rem 67

470 PRINT"{2 DOWN} D.":0=764:GOSUB8000:D$=X$
:rem 68

480 PRINT"{3 DOWN}{4 SPACES}ENTER CORRECT ANSWER (
{RVS}A{OFF},{RVS}B{OFF},{RVS}C{OFF} OR {RVS}D
{OFF})" :rem 228

485 GETX$:IFX$=""THEN485 :rem 147

490 IFX$<"A"0RX$>"D"THEN485 : rem 28

495 PRINTCHR$(147) :rem 29
497 PRINT#9,T$7Z$;Q$;Z$;A$;Z$;B$;Z$7C$7Z$;D$;Z$;X$

;Z$; :rem 104

499 GOTO320 :rem 116

500 PRINT"(COMPLETION)":0=240:L=80:GOSUB8000:Q$=X$

:rem 34

505 PRINT"{10 DOWN}{3 SPACESjENTER CORRECT ANSWER:
:rem 175

510 0=600:L=80:GOSUB8000 :rem 101

520 PRINTCHR$(147) :rem 18

530 PRINT#9,T$7Z$;Q$7Z$;X$;Z$; :rem 242

540 GOTO320 :rem 103

550 PRINTCHR$(147) :rem 21

560 PRINT#9,T$;Z$; :rem 28

570 CL0SE9 :rem 75

580 GOTO200 :rem 104

700 GOSUB9200:GOSUB7500:PRINTCHR$(147) :rem 29

730 OPEN9,DV,0,QN$:GOSUB6000 :rem 150

740 IFLEN(X$)>39THEN760 :rem 76

750 A$=" "+X$:X$=A$+" ":GOTO740 :rem 254

760 PRINT"{CLR}{2 DOWN}":FORX=1TO11:PRINTX$;2PRINT

11 ":NEXTX:GOSUB7000:FORX=1TO1500:NEXTX :rem 11

770 PRINTCHR$(147):NQ=0:CQ=0

800 INPUT#9,X$

810 IFX$="4"THEN2000

820 IFX$<"1"ORX$>"3"THEN800

830 NQ=NQ+1:X=VAL(X$)

850 ONXGOTO900,1000,1100

860 GOTO800

900 GOSUB6000:Q$=X$:GOSUB6000:R$=X$

902 PRINT"{CLR}{DOWN}{3 SPACES}QUESTION #•

:rem 154

:rem 44

2 rem 74

:rem 239

:rem 241

:rem 63

:rem 111

:rem 48

;NQ

:rem 133

904 PRINT"{3 DOWN}";Q$:rem 81

910 PRINT"{4 DOWN}{3 SPACESjENTER {RVS}T{OFF} FOR
{SPACE}TRUE" srem 76

920 PRINT"{2 DOWN}{3 SPACESjENTER {RVS}F{OFF} FOR
{SPACE}FALSE" srem 72

940 GETA$2lFA$=""THEN940 :rem 93

950 IFA$<>"T"ANDA$onF"THEN940 :rem 172

960 IFA$<>R$THEN1200 : rem 117
970 GOTO1300 :rem 157

111

2: Education

1000

1002

1006

1008

1010

1020

1030

1040

1050

1060

1070

1100

1102

1110

1120

1130

1140

GOSUB6000:Q$=X$:GOSUB6000:A$=X$:GOSUB6000:B$=

X$:GOSUB6000:C$=X$

GOSUB6000:D$=X$:GOSUB6000:R$=X$

PRINT"{CLR}{DOWN}{3 SPACES}QUESTION

PRINT"{3 DOWN}";Q$:PRINT"{2 DOWN} A.

A$:GOSUB6700

:rem

:ren

#";NQ

:rem

250

i 77

177

. ";A$:X$=

:rem

PRINT" B. ";B$:X$=B$:GOSUB6700:PRINT" C. "

:X$=C$:GOSUB6700

PRINT" D. ";D$:X$=D$:GOSUB6700

:rem

: rem

PRINT"{12 SPACESjENTER {RVS}A{OFF},{RVS}B

{off},{rvs}c{off} or {rvs}d{off}"

GETA$:IFA$=""THEN1040

IFA$<"A"ORA$>"D"THEN1040

IFAORTHEN1200

GOTO1300

GOSUB6000:Q$=X$:GOSUB6000:R$=X$

PRINT"{CLR}{DOWN}{3 SPACES}QUESTION

PRINT"{3 DOWN}";Q$

0=480:L=80:GOSUB8000

IFX$<>R$THEN1200

GOTO1300

:rem

:rem

:rem

:rem

:rem

:rem

#M;NQ

:rem

:rem

:rem

:rem

:rem

152

7C$

131

139

166

173

59

157

197

89

174

119

153

178

195

1200 GOSUB7200:PRINT"{CLR}{3 DOWN}CORRECT ANSWER:

{3 DOWN}":PRINTR$:rem 105
1210 FORX=1TO1500:NEXTX:PRINTCHR$(147):GOTO800

:rem 107

1300 CQ=CQ+1:GOSUB7000 :rem 6

1310 PRINTCHR$(147) :rem 64

1320 GOTO800 :rem 151

2000 PRINT"{CLR}{2 DOWN}{15 SPACES}{RVS}QUIZ 0VER1

{OFF}" :rem 146

2010 PRINT"{2 DOWN}{3 SPACESjNUMBER OF QUESTIONS =

";NQ :rem 246

2020 PRINT"{2 DOWN}{3 SPACESjNUMBER CORRECT

{6 SPACES}=";CQ :rem 158

2030 IFNQ=0THENNQ=1 :rem 156

2040 X=INT((CQ*100)/NQ) :rem 5

2050 PRINT"{2 DOWN}{3 SPACES}YOUR SCORE{10 SPACES}
=";X7"{LEFT}%" :rem 150

2060 PRINT"{3 DOWN}{12 SPACES}(PRESS ANY KEY)"
:rem 123

2070 GETX$:IFX$=""THEN2070 :rem 227

2080 PRINTCHR$(147) :rem 69

2090 CLOSE 9 :rem 122

2100 GOTO200 :rem 142

6000 X$="" :rem 195

6010 GET#9,R$:rem 165

6020 IFR$=""THEN6010 :rem 68

6030 IFASC(R$)=13THEN6060 :rem 146

112

n

n

n

n

n! !

n

—■)

1)

!—■■)

i \

n

6040

6050

6060

6700

6710

6720

7000

7010

7020

7030

7040

7050

7060

7200

7210

7220

7230

7240

7250

7500

7510

7520

7530

7540

7550

7560

7570

8000

8010

8020

8030

8040

8050

8060

8100

8110

8120

8150

8160

9000

]

X$=X$+R$

GOTO6010

RETURN

X=LEN(X$):IFX=36ORX=76THEN6720

PRINT"{SHIFT-SPACE}"

RETURN

Education: 2

:rem 160

:rem 203

:rem 172

:rem 118

:rem 63

:rem 175

POKEMC+0,0:POKEMC+1,0:POKEMC+5,15:POKEMC+6,15

:POKEMC+24,10

F0RX=2T011

POKEVC+3 3,X:POKEMC+1,X* 5:POKEMC+4,3 3

FORY=1TO50:NEXTY

POKEMC+4,32:FORY=1TO10:NEXTY,X

POKEMC+24,0

RETURN

:rem 220

:rem 123

:rem 200

:rem 82

:rem 188

:rem 120

:rem 173

POKEMC+0,0:POKEMC+1,30:POKEMC+4,33:POKEMC+5,1

5:POKEMC+6,15

POKEVC+33,0:POKEMC+24,10

FORX=1TO500:NEXTX

POKEMC+4,32:FORX=1TO20:NEXTX

POKEMC+24 # 0:POKEVC+3 3,11

RETURN

:rem 228

:rem 150

:rem 129

:rem 56

:rem 154

:rem 174

PRINT"{CLR}{3 DOWN}{3 SPACESjENTER QUIZ NAME:
":PRINTH{DOWN}{3 SPACES}(1-37 LETTERS)"

:rem 221

0=323:L=38:GOSUB8000:IFLEN(X$)>37THEN7500

QN$=X$:IFLEN(X$)>11THENQN$=LEFT$(X$,

QN$="QUIZ/"+QN$

:rem 185

11)
:rem 56

:rem 121

PRINT"{6 DOWN}{3 SPACES}PREPARE ";DV$:PRINT"

{DOWN}{3 SPACES}THEN PRESS {RVS}RETURN{OFF}"

GETE$:IFE$=""THEN7550

IFASC(E$)<>13THEN7550

RETURN

X$="":POKEM+O,160:POKEC+O,1

GETY$:IFY$=""THEN8010

X=ASC(Y$):IFX=13THEN8150

IFX=20THEN8100

Y=LEN(X$):X$=X$+Y$:IFX>63THENX=X-64

POKEM+O+Y,X:POKEC+O+Y,1:POKEM+O+Y+1,

+O+Y+1,1:IFLEN(X$)<LTHEN8010

GOTO8150

Y=LEN(X$):IFY<1THEN8010

:rem 107

:rem 205

trem 208

:rem 179

:rem 59

:rem 229

:rem 195

:rem 73

:rem 160

,160:POKEC

:rem 253

:rem 213

:rem 146

POKEM+0+Y,32:POKEC+0+Y,11:POKEM+O+Y-1,160:POK

EC+O+Y-1,1

Y$=LEFT$(X$,Y-1):X$=Y$:GOTO8010

Y=LEN(X$):POKEM+0+Y,32:POKEC+0+Y,11

RETURN

IFPS=1THEN9080

trem 71

:rem 48

:rem 141

:rem 175

:rem 105

113

2: Education u

u

9005 POKEMC+0,0:POKEMC+1,0:POKEMC+5,79:POKEMC+6,12

9:POKEMC+24,15 :rem 40 } j
9010 FORX=0TO30 :rem 124

9020 Y=INT(NT%(X)/256) :rem 217

9030 POKEMC+0,NT%(X)-(Y*256) :rem 32 i)

9040 POKEMC+1,Y:POKEMC+4,17 :rem 89 I—1
9050 FORY=1TO70:NEXTY :rem 88

9060 POKEMC+4,16:FORY=1TO10:NEXTY,X :rem 194

9070 POKEMC+24,0:PS=1 :rem 199 [i
9080 RETURN :rem 177 —'
9200 IFDP=1THEN9280 :rem 94

9205 PRINTCHR$(147);"{4 DOWN} DO YOU WANT TO USE D

ISK OR TAPE FOR11 : rem 69

9210 PRINT"{DOWN} SAVING/LOADING QUIZZES?" :rem 29

9220 PRINT"{5 DOWN} ENTER tRVS}D{OFF} OR {RVS}T
{OFF}" :rem 242

9230 GETX$:IFX$=""THEN9230 :rem 237

9240 IFX$="D"THENDV=DI:DV$="DISK":GOTO9270 :rem 27

9250 IFX$="T"THENDV=TA:DV$="TAPE":GOTO9270 : rem 51

9260 GOTO9230 :rem 216

9270 DP=1 :rem 212

9280 RETURN :rem 179

9900 DATA6430,6430,6430,4817,8101,8101,8101,6430,6

430,8101,9634,9634 :rem 121

9910 DATA8583,8101,7217,0,7217,8101,8583,8583,8101

,7217 :rera 2

9920 DATA8101,6430,6430,8101,7217,4817,6069,7217,6

430 :rem 148

114

Ghapter 3

Applications

SpeedScript Customizer
J. Blake Lambert

SpeedScript is a full-featured word processor for the

VIC and 64 which appeared in COMPUTED Sec

ond Book of Commodore 64 and COMPUTED

Third Book of VIC. Many SpeedScript users would

like to change its default settings and formatting com*

mands to suit their own preferences^ and this short pro

gram shows how. It lets you modify SpeedScript with

any values you choosey creating a new version that can

be saved to tape or disk. For the VIC (with at least 8K

expansion) and the 64-

If you use SpeedScript with a VIC or 64, "SpeedScript Cus

tomizer" may be a real timesaver. It lets you predefine

background and character color; left, right, top, and bottom

margins; page length; and line spacing. It also lets you select

single sheet or fanfold (continuous pinfeed) paper. You can

also change or add values for the predefined formatting codes

used for printing. In addition, it fixes the new page command

in SpeedScript 1.0 (January 1984) and corrects an error in the

predefined values of the version of SpeedScript printed in

COMPUTERS Second Book of Commodore 64.

Using the Customizer will let you make personalized

copies of SpeedScript For example, you may prefer to print

single-spaced documents with margins at 10 and 70, using single

sheets of paper. You may also need to send special codes to your

printer to access all of its features. SpeedScript allows you to as

sign formatting codes at the beginning of a document, but you

have to define them every time you want to use them.

It's possible to set up format files and save them if you

like. However, it is simpler to use the Customizer to save your

personalized version(s) of the program. The values can be re

defined just as before; you're only changing the default values

that SpeedScript thinks are "normal." You could, for example,

have one version of SpeedScript for writing business letters,

one for personal letters, and another for writing reports.

How to Use SpeedScript Customizer
First, type in and save Programs 1 and 2. Be sure that you

name Program 2 "CUST.SS". Then load and run Program 1,

117

3: Applications

the Customizer Boot, which automatically loads and runs Pro

gram 2. The Customizer will prompt you to insert a version of

SpeedScript and then ask for its filename. Type in the filename

of the SpeedScript version on your tape or disk and press RE

TURN. Press D (for disk) or T (for tape) at the prompt. When

loading is complete, your screen will show which version

was found. That message is followed by the color selection

screen.

Not all monitors have perfect picture resolution. Thus it's

nice to be able to select the color of the background and char

acters, which SpeedScript allows with the CTRL-B and CTRL-L

commands. But if you CLEAR ALL TEXT, the program returns

to the default colors (the colors that were there when you first

ran the program). The color selection screen in the Customizer

allows you to flip through the background colors with the f1

key and through the character colors with the f3 key.

That allows you to select any color combination you

want. For instance, some people like to use a dark gray or

blaca background with light green characters, to emulate a

green screen monitor. When you find a combination that suits

you, press RETURN.

Changing Default Values
After you've set the letter and background colors, another

menu appears. It asks you to enter the default values. If you

choose not to change a setting, simply press RETURN and the

original default will remain unaltered.

Here are a few tips on setting the values correctly.

Left margin. Sets the default value for SpeedScript's [1]

function (obtained by holding down the CTRL key and press

ing the £ key, then pressing 1). The left margin sets the dis

tance (number of spaces) from the left edge of the page to the

point where the first character is printed. It should be at least

1. For a one-inch margin with normal (pica, ten characters per

inch) type, set this value to 10. With other print sizes, multiply

the margin width you want (in inches) by the number of

characters per inch.

Right margin. Sets the default value for the [r] function.

This is the preferred distance from the last character on a line

to the right edge of the paper, subtracted from the number 80.

You can also think of this as the left margin plus the number

118

n
Applications: 3

n

p*[of characters per line. With 8-1/2-inch-wide paper and [1] set

' at 10, make [r] 70 to get a one-inch right margin.
Page length. This value has no corresponding function in

SpeedScript. It is the number of lines that you want to fit on a

page, and it is preset at 66 (since most printers print six lines

per inch and standard paper is 11 inches long). If you want to

use nonstandard stationery or legal-size paper, change the

value accordingly (inches of length multiplied by six).

Some printers and interfaces allow you to change the

spacing between lines to print eight lines per inch. Once

you've set the printer into that mode (you may have to flip a

switch on the interface or send a special code to the printer),

change the page-length value in SpeedScript to 88 (lines per

inch times length of paper in inches). Remember to change the

bottom margin, too.

Top margin. Sets the default for [t], the number of blank

lines at the top of the page. Should be 5 or more.

Bottom margin. Sets the [b] default. This is the page length

minus the number of lines you would like at the bottom of the

page. You can think of this as the top margin added to the

number of lines you want to print. It should be 58 or less

when using standard paper; it should always be at least 8 less

than the page length.

Spacing. SpeedScript's [s] function. Use a 1 for single-

spacing between lines of text, a 2 for double-spacing, and so

forth.

Paper style selection. Works like the [w] command. Answer

0 and SpeedScript will wait for you to press RETURN after

printing each page of text. That makes it easy to use single

sheets of paper. The default value, 1, signals continuous

pinfeed paper, but you can still use the [w] command when

you wish.

Other Options
The user-definable reverse-video numbers can also be preset

in this section of the program. The first four probably should

not be redefined. If you often share files with friends, you

should consider standardizing your use of predefined num

bers. Well give some tips on setting the user-definable codes

in a moment.

After setting the values, the program will ask if you wish

to continue or rerun. Check the values and press R if you find

119

3: Applications

any errors; that will cause the program to start over from the

beginning. Otherwise, press C to continue, and enter the

filename you want to use for your new customized version of

SpeedScript. Then press RETURN. I j

Make sure to give the new SpeedScript a unique name, so '—■
you'll know which version to load later on. SpeedScript Cus-

tomizer doesn't allow the SAVE with Replace option, so you | >

can't destroy the original SpeedScript while using the Cus- (—'
tomizer. Remember that no matter what version you use, the

default values can still be changed using the CTRL-£ com

mands in SpeedScript.

When the program finishes, it resets the BASIC pointers

and saves your modified SpeedScript If all goes well, the pro

gram will automatically run your new version. Disk users

should check the error channel by pressing the up-arrow key

while holding down CTRL, then pressing RETURN.

Next, look at the directory using SpeedScript's CTRL-4

command. Tape users can recover from errors (for example, if

RECORD was not down during the SAVE) by pressing

RUN/STOP-RESTORE and typing SAVE "new filename",1

followed by RETURN.

If the program does not execute properly, remember to

turn the computer off and then on again before doing other

programming. That will reset the memory pointers to prevent

problems and free up the memory space used by the

Customizer.

How SpeedScript Customizer Works
When you use the Customizer, you actually have two pro

grams in memory at the same time and use one program to

modify the other. This technique is described in COMPUTEl's \ j

Mapping the Commodore 64. '—'
Program 1 (line 8) determines whether the computer in

use is a VIC or 64 by using the Kernal SCREEN routine. It j i

checks the number of columns (22 for a VIC and 40 for a 64) <—'
and adjusts the start of BASIC to a point above where

SpeedScript normally resides in memory. The boot program j »

prints the necessary commands on the screen, then fills the *—>

keyboard buffer (a small area of memory that temporarily

stores character information) with a HOME character, two RE- j |

TURNs, an exclamation point, and the code for LOAD and I—>
RUN. Because of the exclamation point, the computer ignores

120 Lj

Applications: 3

the LOAD command and performs the RUN. That is how it

automatically loads and runs Program 2.

The Customizer again checks which computer is in use

and sets the values of several variables. Line 50 of Program 2

loads SpeedScript into its usual place in memory. That explains

the extra ,1 at the end of the LOAD command. The computer

ignores SpeedScript, though, since it is below the current start

of BASIC.

Next, it tests to see which version of SpeedScript is cur

rently in memory (by PEEKing a designated memory location).

It then tells you what it has found (lines 56-64). Lines 66-86

handle the default color selection, and INPUT statements al

low you to change the normal values for print formatting

(lines 88-122).

To make the program work with all versions of Speed-

Script, Program 2 contains its own definition tables. Three of

these tables are located in lines 128-132. Depending on what

version of SpeedScript is in memory, one of these tables will be

used to point to the location in SpeedScript that holds the

background color (BL), letter color (LL), and the start of

SpeedScript's definition table (DT). Line 134 POKEs these loca

tions with the values you have assigned in Customizer.

Should future versions of SpeedScript become available,

the pointers in the Customizer can be changed so that it will

modify the new versions. A simple machine language monitor,

a BASIC PEEKing loop, or even an MLX listing would be

enough to find the definition table; just look for consecutive

memory locations that hold 5, 75, 66, 5, 58, 2, 1, 27, 14, 15,

18, 0, 0, 0, 0, 0 (the values that are predefined). The variable

DT in the Customizer would need to be set equal to the mem

ory location that holds the first value (5) in the list above. The

locations referenced by the variables BL and LL might need to

be readjusted, as well.

Line 150 of Program 2 determines which table should be

used for POKEing the BASIC pointers to the right values

before saving the modified version of SpeedScript When a

SAVE is performed in BASIC, the start address of the block of

memory to be saved is contained in locations 43 and 44 (in

standard low-byte/high-byte form). The top of the block to be

saved is one position below the value contained in locations

45 and 46 (called the start-of-BASIC variables, stored in the

same format).

121

LJ
3: Applications

u

Lines 160-168 print the statements to perform the POKEs i j

and to save and run the new SpeedScript; they also fill the I—>
keyboard buffer with a HOME character, three RETURNS, an

exclamation point, and the code for LOAD and RUN. The i j

Customizer vanishes from sight as it is replaced by Speed- '—]
Script (Actually, it's still high in memory but is unavailable for

use.) jj

More on Sending Printer Codes
One of the biggest benefits of using SpeedScript Customizer is

that it lets you incorporate specific printer codes. Most printer

codes are easy to send and are listed in printer and interface

manuals. Gemini Star and Epson (Graftrax) owners, for example,

can send the ESCape code (CTRL-£ 1, represented in this ar

ticle by [1]) followed by a 4, in the text of the SpeedScript file

on the screen, to cause the printer to print in italics. To turn

the italics print off, send [1]5. Some interfaces, including the

Tymac Connection, require sending the ESCape code twice

when using emulation mode. (If you have problems, refer to

your printer/interface manual.)

Some printer features require three codes to be sent, how

ever. On the Gemini Star, for example, the code that triggers

continuous underlining is ESC —1. But sending this to

SpeedScript as [1]—1 doesn't work. To send the codes properly,

you need only define a reverse-video number to the value 1.

Since [1] is already used by SpeedScript, use [8] instead. From

within SpeedScript, this would be [8]=1 (the Customizer al

lows you to set default values for the reverse-video numbers,

so they don't have to be defined on the screen). Then, simply

insert [1]—[8] immediately before the text you wish to

underline.

Now let's turn it off. The code sequence for turning off

the Gemini's continuous underline feature is ESC-0. Unless it

is defined otherwise, the default value of [9] in SpeedScript is

zero. Thus, you should place the characters [l]-[9] on the

screen after the word or phrase you want underlined.

Any three-character code sequence can be sent in this

manner to the printer, so the Gemini's foreign character sets

can be accessed by SpeedScript The table lists printer codes for

the Gemini; if you have another printer, refer to your manual.

SpeedScript can even be used with letter-quality printers if you

122

Applications: 3

redefine the codes to match those that the interface and

printer will accept.

SpeedScript Formats to Access Selected Gemini and

Epson Features

(This table uses these preset values in addition to the predefinec

fault settings: [5] = 20 [8] = 1 [9] = 0.)

[2]

[3]

[«:
[5]

[1

1

i
i
i

i

I
l

i

i
i

i
I

i

i

i

i
i

*

**

4

5

E

F

G

H

O

S[8]

S[9]

T

U[8]

U[9]

W[8]

W[9]

Y[8]

-[8]

-PI

enlarged (double-width) print (cleared when a carriage

turn character is sent)

condensed print (use [5] instead with some interfaces)*

pica print

cancel enlarged print (use [3] instead with some

interfaces)**

italics on*

italics off*

emphasized on*

emphasized off*

double-strike on*

double-strike off*

disable skip-over perforation

subscripts on

superscripts on

sub/superscripts and unidirectional printing off

unidirectional printing on

unidirectional off

double-wide printing on (alternate method, not cleared

a cariage return character)

double-wide printing off (alternate method)

enable buzzer

disable buzzer

underline on

underline off

Indicates this command works for Epson Graftrax.

Some

Ide-

re-

*

by

interfaces, notably CARDCO and XETEC, swap these two

codes, CHR$(15) and CHR$(20).

To access foreign character sets, send [1]7[7] after setting

[7] to one of the following values:

0 = American 4 = French

1 = British 5 = Swedish

2 = German 6 = Italian

3 = Danish 7 = Spanish

123

3: Applications
u

LJ

Some printers use DIP switches to invoke foreign charac- j |

ter sets, so they won't take these codes. In those cases, simply ^J
flip the right switches and you're through.

After you've selected the desired character set, you may i

obtain some of the special characters from the keyboard. Oth- '—l
ers will require the use of the user-definable reverse-video

numbers in SpeedScript Check your printer manual and the | I

Commodore ASCII chart in the Programmer's Reference Guide l—*
and experiment. For example, with the Spanish character set

activated, a closed bracket (]) on the screen would cause an in

verted question mark to be printed on a Gemini printer.

Even when you're using the normal character set, symbols

obtained by pressing the Commodore logo key will cause the

printer's (or the interface's) characters to be printed. In that

way, you can access a number of graphics and special charac

ters (most of the printer's characters with ASCII codes

161-191) from within SpeedScript Just compare the ASCII

charts in the printer and computer manuals.

Other features are available by defining the reverse-video

numbers. For example, to have the printer backspace one

character (allowing you to print accent marks), simply define a

reverse-video number as 8. Some printer/interface combina

tions will interpret this value as a graphics command, so con

sult your manual and define the number as you need it. Then,

whenever SpeedScript finds the reverse-video number in the

text, it will backspace. Similarly, to activate the printer's in

ternal buzzer during a printout, you could define one of the

reverse-video numbers as 7 and place the defined number in

the text wherever you wish, even in the footer.

If you get confused about the codes, remember to check

your manuals. If things don't work right, keep trying. Note, \ >

too, that some printer functions will not work while others are LJ
in effect. For example, some printers will not print superscripts

in the emphasized mode, but will automatically double-strike j j

the superscript data. If you can't get signals through the inter- *—'
face at first, try using SpeedScript's CTRL-P command and

resetting the secondary address to the interface's transparent \ i

(no ASCII correction) mode. In most cases, once the printer is '—*
set it will stay in that mode until you send codes to change it

(or until you turn the power off). I

124 u

Applications: 3

n

n

One final note: Whenever you want to include a memo

about a file, use a SHIFT-SPACE (hold down SHIFT and type

a space) to separate the filename from the memo. For example,

you may want to save a note about City League Baseball with

the name CLB and have a note in the directory that says

SPDSCR (to indicate it is a SpeedScript file) too. In SpeedScript

enter the filename as below:

SAVE:CLB{SHIFT-SPACE}SPDSCR

A small dot will appear where the {SHIFT-SPACE} was en

tered). Assuming that it is four blocks long, the file will LIST

in the directory as follows:

4 "CLB"SPDSCR PRG

You can then load the file with the short name (CLB) or the

long name (CLB{SHIFT-SPACE}SPDSCR). This trick can also

be used when saving a BASIC program. For example, you

could produce the same directory entry by entering the follow

ing line in BASIC immediate mode:

SA\re"CLB{SHIFT*SPACE}SPDSCR",8

Program 1. SpeedScript Customizer, Boot Program

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

2 DN=8:PRINT"{CLR} BOOT: {RVS}D{OFF}lSK OR {RVSjT
{OFFjAPE" :rem 131

4 GETZ$:IFZ$="T"THENDN=1:GOTO8 :rem 136

6 IFZ$<>HD"THEN4 :rem 168

8 SYS65517:IFPEEK(781)=22THENPRINTfl{CLR}POKE44,39:

POKE256*39,0:NEW":GOTO12 :rem 115

10 IFPEEK(781)=40THENPRINT"{CLR}POKE44,48:POKE256*
48,0 :NEW : rem 99

12 PRINT" {2 DOWN}LOADiiCHR$(34)mCUST.SShCHR$(34)'',m
DN :rem 65

14 PORI=631TO635:READN:POKEI,N:NEXT:POKE198,5

:rem 98

16 DATA19,13,13,33,131 : rem 94

Program 2. SpeedScript Customizer, Main Program

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

1 IFFL=1THEN52 :rem 86

10 GOTO16 :rem 1

12 PRINT II{CLR}"X$II{RVS} SPEEDSCRIPT CUSTOMIZER{OFF}

11 :rem 6

14 RETURN :rem 69

125

3: Applications

16 LC=0:BC=1:C$="VIC":P0=129:P1=4674:P2=132:P3=145

:SYS65517 :rem 216

18 IFPEEK(781)=40THENC$="C64":X=1:P1=2062:P2=103:P

3=106 :rem 211

20 DIMV(20):PRINTCHR$(14):PRINTCHR$(8):IFXTHENX$=M

{9 SPACES}11 :rem 97

22 G0SUB12 :rem 71

24 PRINTX$"{2 DOWN}CUSTOMIZER WILL NOT" :rem 147

26 PRINTX$"DESTROY THE SOURCE " :rem 145

28 PRINTX$"COPY OF SPEEDISCRIPT." :rem 251

30 printx$"{downInsert source disk{2 spaces}"

:rem 18

32 PRINTX$"OR TAPE VERSION OF :rem 22

34 PRINTX$"SPEED£CRIPT 1.0 OR" :rem 42

36 PRINTX$"2.0 FOR {RVS}"C$"{OFF}. :rem 136

38 PRINTX$"{DOWN}ENTER SOURCE FILENAME." :rem 7
40 PRINTX$?:INPUTnNAME";NF$:rem 74
42 PRINTX$"{DOWN}{RVS}D{OFF}ISK OR {RVS}T{OFF}APE?

11 :rem 65

44 GETZ$:IFZ$o"D"ANDZ$o"T"THEN44 : rem 9

46 IFZ$="T"THEND$="{RVS}TAPE{OFF}":DN=1 :rem 108

48 IFZ$="D"THEND$="{RVS}DISK{OFF}":DN=8 :rem 102

50 FL=1:LOADNF$,DN,1 :rem 146

52 IFXTHENLC=11:BC=12:POKE53280,BC:POKE53281,BC

:rem 67

54 POKE646,LC:IFX=0THENPOKE36879,25 :rera 131

56 PE=PEEK(P1) irem 52

57IFPE=P2ORPE=P0THENV$="V1":V=1:IFXANDPEEK(3585)=2

7THENPOKE5755,133 :rem 205

58 IFPE=P3THENV$="V2":V=2 :rem 2

60 IFPE<>P0ANDPEOP2ANDPEOP3THENPRINT"READ ERROR.

":FORI=1TO2000:NEXT:RUN :rem 134

62 IFP1=4674THENV=3 :rem 127

64 PRINTX$"{DOWN}{RVS}"C$" SPEEDSCRIPT {RVS}"V$:FO

RI=1TO2000:NEXTI:PRINTII{CLR}" : rem 244

66 PRINT"{HOME}"X$"{RVS}£PEEDSCRIPT CUSTOMIZER

{OFF}" :rem 143

68 PRINTX$"{DOWN}{RVS}F1{OFF} CHANGES BACKGROUND"

:rem 192

70 PRINTX$"{DOWN}{RVS}F3{OFF} CHANGES LETTERS"
:rem 254

72 PRINTX$"{DOWN}{RVS}RETURN{OFF} SETS THE COLORS
:rem 27

74 PRINTX$"AS DEFAULT COLORS. :rem 47

76 GETZ$:IFZ$=CHR$(133)THENBC=BC+1AND15:IFX=1THENP

OKE53281fBC:POKE53280,BC :rem 0

78 IFZ$=CHR$(133)ANDX=0THENBP=(BCANDI5)*16+(BCAND7

)+8:POKE36879#BP :rem 126

80 IFZ$=CHR$(133)THENFORI=0TO200:NEXT:GOTO76

:rem 245

126

n

n

Applications: 3

n

82 IFZ$=CHR$(134)THENLC=LC+1AND15:IFX=0THENLC=LCAN

D7 :rem 223

84 IFZ$=CHR$(134)THENPOKE646,LC:GOTO66 :rem 56

86 IFZ$<>CHR$(13)THEN76 :rem 71
88 G0SUB12 :rem 83

90 PRINTX$"ORIGINAL DEFAULT{3 SPACES}" :rem 144

92 PRINTX?"SETTINGS ARE LISTED " :rem 198

94 PRINTX$" BELOW:11 :rem 109

96 PRINTX$;:INPUT"LEFT MARGIN{7 SPACES}5{3 LEFT}";
V(0) 2rem 200

98 PRINTX$;:INPUT"RIGHT MARGIN{6 SPACES}75{4 LEFT}
";V(1) :rem 242

100 PRINTX$;:INPUT"PAGE LENGTH{7 SPACES}66{4 LEFT}
"•V(2) :rem 182

102 PRINTX$;:INPUT"TOP MARGIN{8 SPACES}5{3 LEFT}";
V(3) :rem 183

104 PRINTX$;:INPUT"BOTTOM MARGIN{5 SPACES}58
{4 LEFT}";V(4) :rem 113

106 PRINTX$;:INPUT"SPACING{11 SPACES}2{3 LEFT}";V(
5) :rem 14

108 PRINTX$;:INPUT"FANFOLD(N=0/Y=1){2 SPACES}1
{3 LEFT}";V(6) :rem 7

110 FORI=lTO9:READJ$:K=I+6 :rem 60

112 PRINTX$"[CTRL] £ "I" ={4 SPACES}"J$;:INPUT"
{4 LEFT}"TvTK) :rem 76

114 NEXTI :rem 30

116 DATA27,14,15,18,00,00,00,00,00 :rem 143

118 PRINTX$"{RVS}C{OFF}ONTINUE OR {RVS}R{OFF}ERUN.
" :rem 239

120 GETZ$:IFZ$="R"THENRUN :rem 47

122 IFZ$o"C"THEN120 :rem 101

124 GOSUB12 :rem 122

126 PRINTX$;:INPUT"{DOWN}NEW FILENAME" ;NF$:rem 154
128 IFV=1THENBL=2408:LL=2417:DT=5200 :rem 105

130 IFV=2THENBL=2411:LL=2425:DT=5275 :rem 104

132 IFV=3THENBL=4979:LL=5031:DT=7750 :rem 124

134 POKEBL,BC:POKELL,LC:FORI=0TO15:POKEDT+I,V(I):N

EXTI :rem 245

136 IFDN=1THENPRINTX$"{DOWN}{RVS}PRESS STOP ON TAP

E{OFF}" :rem 116

138 PRINTX$"{DOWN}INSERT DESTINATION{2 SPACES}"
:rem 145

140 PRINTXD" TO HOLD" :rem 20

142 PRINTX$"MODIFIED J5PEEDSCRIPT" :rem 107

144 PRINTX$"AND PRESS {RVSTRETURN{OFF}." :rem 248
146 GETZ$:IFZ$<>CHR$(13)ANDZ$OCHR$(141)THEN146

:rem 237

148 IFX=0ANDV$="V2"THENV=4 :rem 61

150 ONVGOSUB152,154,156,158:GOTO160 :rem 3

152 HS=8:LE=162:HE=27:RETURN :rem 208

i I 127

n

n

u
3: Applications

u

154 HS=8:LE=0:HE=40: RETURN irem 100 , j

156 HS=18:LE=108:HE=37:RETURN : rem 6 LJ
158 HS=18:LE=8:HE=38:RETURN :rem 168

160 PRINTH{CLR}PO43,1:PO44,"HS" :rem 136

162 PRINT" {2 DOWN}PO45,"nLEll:PO46,"HE" :rem 179 1
164 PRINT"{2 D0WN}SAVE"CHR$(33)NF$CHR$(34)'VDN ^

:rem 233

166 DATA19,13,13,13,33,131 :rem 36 , .

168 POKE198,6:FORI=631TO636:READN:POKEI,N:NEXT \ 1
:rem 158

u

LJ

U

128 LJ

Memo Writer
Mark R. Brown

Here's a mini word processor that's handy for memos,

notes, or lists. Versions are included for the un*

expanded VIC and for the 64.

^^/m emo Writer" is a simple text-processing program
XVJL written in BASIC. It allows you to edit text using

the INST/DEL, CLR/HOME, and cursor control keys. Once

you have filled the screen with text, you may send it to disk

or to your printer. Since Memo Writer is written in BASIC,

you can easily customize it to suit yourself.

Memo Writer is screen-oriented. This means that you

work with only one screen of text at a time. The program will

prevent you from doing anything which would cause the

screen to scroll while you are typing, since that would cause

you to lose some of your work. In addition to the normal

editing keys and function keys, the 64 version makes use of

CTRL key combinations to give you additional control over

the text.

VIC Memo
Since you are limited to one screen of text, the VIC version of

the program prevents you from doing almost anything that

would cause scrolling. However, there is one exception: If you

use the INST key to insert characters on the bottom line, the

screen will scroll, so avoid this if possible.

The function keys are used for tabs and for selecting print

options. You can choose single- or double-spacing and ex

panded or normal print sizes. There are no set margins, but

the tabs can be used to move the left margin.

When creating your memos, you can type in either upper

case only (the default mode) or in upper- and lowercase (by

pressing the Commodore key and the SHIFT key). The PRINT

subroutine PEEKs to see which shift mode you're in and sends

the proper control characters to the printer.

You can save about half the work of typing in the program

if you leave out line 9 and lines 500-780 and refer to the pro

gram listing for instructions. Line 500 sets the background and

border colors; they can be changed to match your preference.

129

3: Applications

LJ

The start-of-line markers help you keep track of where , i

you are on an 80-column line. Don't forget to erase them LJ
before you print or they'll appear in your printed output. You

can eliminate or modify them in line 800. . ^

A side effect of having repeating keys is a possible in- lJ
consistency when selecting (toggling) between uppercase and

lowercase. That may be an aggravation. To turn off this func- , ,

tion, delete POKE 650,128 in line 10. LJ
There are a couple of tricks in the input routine. POKE

204,0 in line 10 turns the cursor on. Normally you wouldn't

have one during a GET and PRINT sequence. POKE 205,3 in

line 40 sets the cursor-blink countdown timer to a short count,

to even out the timing jerks caused by the GET loop in line

20. Without this, typing is not smooth at all. WAIT 207,1 in

line 40 waits for the cursor to blink off before printing and

keeps the PRINT statement from leaving reverse characters

during the cursor-blink phase.

The PEEKs in lines 35 and 50 check to see if you are on

the last screen line, and keep you from doing anything which

would cause the screen to scroll. It should be fairly easy to

add any special features you want. This program supports the

full graphics character set, but of course it will print properly

only on a Commodore-compatible printer. Those with other

printers may need to make some changes in the control codes

in order to make Memo Writer compatible.

You will be unable to use quotes on the VIC version of

Memo Writer. To do so could cause problems if you tried to

use the cursor keys within the quotes.

64 Memo
In addition to the standard Commodore 64 screen-editing s .

functions, the following commands are available on the 64 1 j
version of this program:

fl Tab 5 spaces. \ i

il Send text to the printer using the format you've specified. Unless i—I
you specify otherwise before pressing f2, it will assume you want

normal, single-spaced output.

£3 Print single-spaced text.

f4 Print double-spaced text.

f5 Turn off key repeat.

f6 Turn on key repeat.

f7 Print normal-sized text.

f8 Print expanded text.

130

n
Applications: 3

n

f^ For the following commands you must hold down the
CTRL key and then press the next key indicated.

CTRL D. Remove the caret (>) marks from the display.

f*! Whenever you clear the screen, a line of carets appears on the

— left-hand side. This helps you to keep track of where the 80-

column lines start on the Commodore 64's 40-line display. If

f^l you don't want them there, CTRL D will get rid of them. Any
PRINT command (f2) will automatically eliminate them.

CTRL G. GET a screen of text from disk. Whenever you

use GET or PUT, the status line will disappear from the bot

tom of the screen and you will be asked to input a filename

(15 characters or less). After you have entered the filename,

the status line will be restored.

CTRL P. PUT the screen of text currently displayed to

disk. You will be asked for a filename.

CTRL C. COPY this screen of text to the buffer in memory.

There is a buffer in memory which can hold one screen's

worth of text. The COPY command will copy what is on the

screen into the memory buffer, overwriting whatever was in

the buffer to start with. You can also copy a screen to the

buffer if you want to save it while you GET and look at a

screen from disk.

CRTL X. SWAP the displayed screen of text with the text

screen in memory, so you can work on two screens at once.

The border color will change from blue to red to remind you

which screen you currently have displayed.

CTRL Y. YANK the text screen from memory onto the

screen. YANK copies the buffer memory to the screen without

erasing the buffer's contents.

Other features. The 64 version of Memo Writer will not go

f—} into quote mode or insert mode, so you can use quotation

1 j marks or the insert key without affecting the cursor keys. In

addition, since the status line is at the bottom of the screen,

you don't have to worry about the odd system lock-up bug

that is sometimes encountered when trying to insert or delete

characters on the last screen line. However, deleting text on

the last available screen line can disturb the status line display.

Screens of text are saved to disk as screen code program

files, which makes them disk compatible with SpeedScript files.

This means you can read short SpeedScript files with Memo

Writer (and short Memo Writer files with SpeedScript). This

131

3: Applications

will work if you indent two spaces at the beginning of the text.

The two programs are not, however, printer-output compat

ible. You can't just load files from one into the other and send

them to the printer without substantial modification.

Unlike SpeedScript, Memo Writer has no built-in DOS

commands. However, it is compatible with the DOS wedge.

Load and run the DOS wedge program first, and then load

and run Memo Writer. When you need to perform a DOS-

related operation, just use the RUN/STOP key to stop the pro

gram, then use the wedge. Run Memo Writer when you are

through with disk operations. If you are in the middle of

editing a screen of text when you need to use the wedge,

remember to save a copy of the screen in progress so you can

load it back in and pick up where you left off.

The files you create with Memo Writer are only IK long,

but they can be concatenated (joined together) to make longer

files for use by SpeedScript or terminal programs by using the

DOS COPY command. Consult your 1541 manual for the

specifics on concatenating files.

The status line. At the bottom of the screen is the status

line, which keeps you informed of what is going on. The mes

sage in the middle identifies disk, print, and buffer memory

operations. Since it is often difficult to know if anything is ac

tually going on when one of these operations is in progress,

there is a flashing arrow after the message to reassure you that

the program has not crashed. The symbols on the right side of

the status line tell you whether you have selected single- or

double-spacing (1 or 2), normal or expanded print (N or E),

and if the key repeat is on or off (+ or —). When you select a

disk GET or PUT operation, the status line temporarily dis

appears while you input a filename.

Program 1. Memo Writer, VIC Version

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C.

9 GOSUB500 / :rem 78

10 GOSUB800:POKE650,128:SP=1:POKE204,0 :rem 234

20 GETA$:IFA$=IMITHEN20LIST10 :rem 132

21 IFA$=CHR$(20)ANDPEEK(210)=31ANDPEEK(209)>205THE

NA$=CHR$(157)+CHR$(32)+CHR$(157) :rem 58
22 IFA$=CHR$(34)THEN20 :rem 223

132

Applications: 3

23 IFA$=CHR$(13)ANDPEEK(210)=31ANDPEEK(209)>205THE

N20 :rem 19

25 IFA$="{CLR}"THENPOKE204,1:GOSUB800:POKE204,0:A$
=""sGOTO20 :rem 98

30 IFASC(A$)<141ANDASC(A$)>132THENGOSUB100:rem 197

32 IFA$=MIITHEN20 : rem 107

35 IFASC(A$)=13AND(PEEK(210)=31)AND(PEEK(209)>226)

THEN20 :rem 145

40 POKE205,3:WAIT207,1:PRINTA$; :rem 85

50 IFPEEK(210)=31AND(PEEK(209)+PEEK(211)>227)THENP

OKE205,3:WAIT207,1:PRINT"{UP}"; :rem 113
60 GOTO20 :rem 1

100 X=0 ;rem 86

110 IFA$="{Fl}"THENX=5 :rem 133

120 IFA$="{F3}"THENX=10 :rem 179

130 IFA$="{F5}MTHENX=15 :rem 186
140 IFA$="{F7}"THENX=20 :rem 184
150 IFA$="{F2}"THENX=25 : rem 191

160 IFX>0THENA$= "" :FORQ=1TOX:A$=A$+" {RIGHT}" :NEXTQ
: RETURN : rem 141

170 IFA$="{F4}"THENIFSP=1THENSP=2:POKE8164,178:RET
URN :rem 201

175 IFA$="{F4}"THENSP=1:POKE8164,177:RETURN
:rem 253

180 IFA$="{F6}"THENG1=7640:TF=14:RW=11:CL=40:REM E
XPANDED :rem 23

190 IFA$="{F8}"THENG1=7600:TF=15:RW=5:CL=80:REM NO
RMAL :rem 109

200 A$="" :rem 120

210 GOSUB60000 :rem 9

220 RETURN : rem 116

500 POKE 36879,9 :rem 58

510 PRINT"{CLR}{RVS}{WHT}{4 DOWN}{5 RIGHTjMEMO WRI
TER" :rem 241

530 PRINT"{2 DOWN}{2 RIGHT}THIS IS A SCREEN-"
:rem 199

540 PRINT"{4 RIGHT}ORIENTED WORD" :rem 116
545 PRINT"{2 RIGHT}PROCESSING PROGRAM" :rem 190

550 PRINT"{2 RIGHTjUSING THE VIC-20'S" :rem 247
560 PRINT"{RIGHT}OWN BUILT-IN EDITING" :rem 197

570 PRINT"{5 RIGHT}CAPABILITIES." :rem 150
590 PRINT"{4 DOWN}{5 RIGHT}{RVS}HIT ANY KEY.{OFF}"

<:rem 204

600 POKE198f0 :rem 195

610 GETA$:IFA$=""THEN610 :rem 81

620 PRINT"{CLR}{4 DOWN}{2 RIGHT}Fl,F3,F5,F7,F2-TAB
" :rem 142

630 PRINT"IN INCREMENTS OF FIVE" : rem 184

645 PRINT"{DOWN}{4 RIGHT}F4-SET SINGLE" :rem 74

133

3: Applications
LJ

647 PRINT"{2 RIGHT}0R DOUBLE SPACING" : rem 13

650 PRINT"{DOWN}{2 RIGHT}F6-PRINT EXPANDED":rem 54

660 PRINT"{5 RIGHT}CHARACTERS" :rem 222
670 PRINT" {DOWN} {3 RIGHT}F8-PRINTS NORMAL" : rem 42

682 PRINT"{4 DOWN}{5 RIGHT}{RVS}HIT ANY KEY"
:rem 14

683 POKE198,0 srem 206

685 GETA$:IFA$=""THEN685 :rem 105

690 PRINT"{CLR}{3 DOWN}{3 RIGHT}ALL EDITING KEYS"
:rem 166

695 PRINT"{4 RIGHTjWORK AS NORMAL," :rem 183

700 PRINT"{DOWN}{2 RIGHT}TEXT CANNOT SCROLL"
:rem 138

705 PRINT"{3 SPACESjPAST THE END OF" :rem 242

707 PRINT"{5 SPACES}THE SCREEN." :rem 62
710 PRINT"{DOWNjYOU MAY USE CURSOR-UP" :rem 251

715 PRINT"OR CURSOR-DOWN MODE."; :rem 224

720 PRINT"{DOWN}{4 RIGHTjTHE PRINT ROUTINE"
:rem 131

730 PRINT"{2 RIGHTjWILL AUTOMATICALLY" :rem 182

740 PRINT"{2 RIGHT}SET THE PRINT MODE" :rem 37

745 PRINT"{6 RIGHT}CORRECTLY." :rem 4

750 PRINT"{2 DOWN} {RVSjHIT ANY KEY TO BEGIN{OFF}"

:rem 241

770 GETA$:IFA$=""THEN770 :rem 95

780 POKE198,0:RETURN :rem 230

800 PRINT"{CLR}{RVS}>{OFF}";:FORI=1TO5:PRINTSPC(79

)">";:NEXTI :rem 182

805 PRINT:PRINT:PRINT:PRINT"{18 SPACES}END ";

:rem 213

810 PRINT" g4 YltRVSjMEMO WRITER{OFF}§5 Y1{HOME}";
:rem 214

820 RETURN : rem 122

60000 REM :rem 218

60004 G1$=CHR$(145) :rem 191

60010 G1$=G1$+CHR$(TF) :rem 131

60020 OPEN4,4:WAIT207,1:POKE204,255 :rem 234

60030 FORG0=0TORW:G0$=G1$:G1=G1+CL :rem 223

60040 FORG2=G1TOG1+(CL-1):G3=PEEK(G2) :rem 115

60050 IFG3>128THENG3=G3-128:G4=1:G0$=G0$+CHR$(18)

:rem 187

60060 IF(G3>0)*(G3<32)THENG3=G3+64:GOTO60100

:rem 185

60070 IF(G3>31)*(G3<64)THEN60100 :rem 186

60080 IF(G3>63)*(G3<96)THENG3=G3+128:GOTO60100

:rem 47

60090 IF(G3>95)*(G3<128)THENG3=G3+64:GOTO60100

:rem 48

60100 G0$=G0$+CHR$(G3) :rem 97

134

Applications: 3

60110 IFG4=1THENG0$=G0$+CHR$(146):G4=0 :rem 76

60120 NEXTG2:PRINT#4,G0$:IFSP=2THENPRINT#4:rem 132

60130 NEXTG0:CLOSE4:POKE204,0 :rem 239

60140 RETURN :rem 219

^ Program 2. Memo Writer, 64 Version

; I
You will need to abbreviate a keyword in order to make line 800 fit. For example, you

can type ? instead of PRINT.

For error-free program entry, be sure to use 'The Automatic Proofreader/' Appendix C.

10 GOSUB500 :rem 118

19 REM:::::::::INITIALIZATION :rem 128

20 POKE204,0:POKE198,0:POKE56,155:CLR:SC=1024:BF=3

9936:SN=1 :rem 202

25 POKE648,156:GOSUB800:POKE648,4 :rem 189

30 GOSUB800 :rem 123

39 REM:::::::::MAIN LOOP :rem 185

40 GETA$:IFA$=H"THEN40 :rem 235

45 IFA$=CHR$(16)THENGOSUB450:GOTO40 :rem 114

47 IFA$=CHR$(7)THENGOSUB400:GOTO40 :rem 63

50 IFA$="{CLR}"THEN30 :rem 255

52 IFA$=CHR$(4)THENGOSUB200:GOTO40 :rem 54

55 IFA$=CHR$(24)THENGOSUB900:GOTO40 :rem 114

57 IFA$=CHR$(3)THENGOSUB850zGOTO40 :rem 69

60 IFA$=CHR$(25)THENGOSUB950:GOTO40 :rem 116

65 IFASC(A$)<141THENIFASC(A$)>132THENGOSUB100:IFA$

=MIITHEN40 :rem 250

70 POKE205,3:WAIT207,1:PRINTA$; :rem 88

80 IFPEEK(214)=24THENA$="{UP}"zGOTO70 :rem 39

90 POKE216,0:POKE212,0:POKE213,79:GOTO40 :rem 89

99 REM:::::::::FUNCTION KEYS : rem 2

100 ON(ASC(A$)-132)GOTO110,120,130,140,150,160,170

,180:A$="":RETURN :rem 34

110 A$="{5 RIGHT}11:RETURN :rem 35

!""| 120 SP=1:POKE2021,177: RETURN : rem 183
- 130 POKE650,0:POKE2022,173:RETURN :rem 202

140 TF=15:RW=11:CL=80:POKE2023,142:RETURN :rem 207

p^ 150 GOTO230 :rem 100

J t 160 SP=2:POKE2021,178:RETURN :rem 189
170 POKE650,128:POKE2022,171:RETURN :rem 55

180 TF=14:RW=23:CL=40:POKE2023,133:RETURN :rem 209

r™l 199 REM::::::::CLEAR > FROM DISPLAY :rem 70
' 200 FORZ=1024TO1904STEP80 :rem 236

210 IF(PEEK(Z)AND127)=62THENPOKEZ,32 :rem 158

,-—> 220 NEXTZ: RETURN : rem 71

! I 229 REM::::::::DUMP TO PRINTER :rem 78

230 A$="":B$="{RVS} PRINTING t{LEFT}":GOSUB280
:rem 104

n 135

u
3: Applications

LJ

240 GOSUB200:GOSUB60000 :rem 88 s^\

249 REM::::::::RESTORE MESSAGE : rem 124 ^ |
250 B$="{RVS}MEMO WRITER{HOME}{OFF}M:GOSUB280

:rem 148

260 RETURN :rem 120 j |
279 REM::::::::PRINT MESSAGE :rem 232 u
280 POKE205,3:WAIT207,1:POKE214,23:PRINT:POKE211,1

4:PRINTB$;:RETURN :rem 140 , .

299 REM::::::::PRINT CENTERED :rem 47 J J
300 PRINTTAB(20-LEN(B$)/2);B$:RETURN :rem 137

309 REM::::::::"HIT KEY" ROUTINE :rem 136

310 POKE214,22:PRINT :rem 177

320 B$="{2 SPACES}{RVS} HIT ANY KEY TO CONTINUE

{OFF}":GOSUB300 :rem 43

330 POKE198,0 *rem 195
340 GETA$:IFA$=""THEN340 :rem 81

350 RETURN :rem 120

399 REM::::::::INPUT DISK FILE :rem 52

400 GOSUB1000:OPEN1,8,8,FI$:rem 25

405 B$="{RVS} FROM DISKttLEFT}":GOSUB280 :rem 64
410 FORZ=0TO959 :rem 141

420 GET#1,A$:IFA$=""THEN420 :rem 207

425 IFST>0THENIFST<>64THEN495 :rem 89

430 POKESC+Z,ASC(A$):NEXTZ :rem 109

440 CLOSE1:B$="{RVS}MEMO WRITER{HOME}{OFF}":GOSUB2
80:RETURN :rem 144

449 REM::::::::OUTPUT DISK FILE :rem 145

450 GOSUB1000:OPEN1,8,8,"@0:"+FI$+",P,W" :rem 165

455 B$="{RVS}{2 SPACES}TO DISK ttLEFT}":GOSUB280
:rem 180

460 FORZ=0TO959 :rem 146

470 PRINT#1,CHR$(PEEK(SC+Z)); :rem 198

475 IFST>0THEN495 :rem 21

480 NEXTZ :rem 53

490 CLOSE1:B$="{RVS}MEMO WRITER{HOME}{OFF}":GOSUB2

80:RETURN :rem 149

494 REM::::::::DISK ERROR :rem 10

495 B$="{RVS}{RED}{3 SPACES}ERROR{3 SPACES}{WHT}":
GOSUB280 :rem 154

496 FORZ=1TO100:POKE54296,15:POKE54296,0:NEXTZ:GOT

0490 :rem 61
499 REM::::::::INSTRUCTIONS :rem 15

500 POKE53281,0:POKE53280,2:PRINTCHR$(142):rem 156
505 PRINT"{CLR}{WHT}{2 DOWN}";:FORZ=1TO7:READB$:G0 j |

SUB300:NEXTZ :rem 255 \y

510 DATA "{3 SPACES}{RVS}{10 SPACES}MEMO WRITER
{9 SPACES}{DOWN}11 :rem 34

520 DATA " BY MARK R. BROWN{DOWN}" :rem 212 1 j
530 DATA "THIS IS A SCREEN-ORIENTED" :rem 82 ^
540 DATA "WORD PROCESSING PROGRAM" :rem 72

136 ! !

Applications: 3

550 DATA "USING THE COMMODORE-64IS" :rem 21

560 DATA "OWN BUILT-IN EDITING" :rem 53

570 DATA "CAPABILITIES." :rem 146

590 GOSUB310 irem 178

f~! 600 PRINT"{CLR}";:B$="{RVS} MEMO WRITER CONTROL KE

1 * YS {OFF}":GOSUB300 :rem 175
605 PRINT"{DOWN}{2 RIGHT}{RVS}KEY{OFF} {RVSjSYMBOL

^ {OFF} {RVS}FUNCTION{OFF}" :rem 200

[(610 PRINT"{3 RIGHT}F1{8 SPACESjTAB FIVE SPACES"
:rem 246

615 PRINT"{3 RIGHT}F2{8 SPACES}DUMP TO PRINTER"
:rem 57

620 PRINT"{3 RIGHT}F3{3 SPACES}{RVS}1{OFF}

{4 SPACES}SINGLE SPACE TO PRINTER" :rem 3

630 PRINT"{3 RIGHT}F4{3 SPACES}{RVS}2{OFF}
{4 SPACES}DOUBLE SPACE TO PRINTER" :rem 255

640 PRINT"{3 RIGHT}F5{3 SPACES}{RVS}-{OFF}

{4 SPACES}KEY REPEAT OFF" :rem 147
650 PRINT"{3 RIGHT}F6{3 SPACES}{RVS}+{OFF}

{4 SPACES}KEY REPEAT ON" :rem 85
660 PRINT"{3 RIGHT}F7{3 SPACES}{RVS}N{OFF}

{4 SPACESJNORMAL PRINT TO PRINTER" :rem 80
670 PRINT"{3 RIGHT}F8{3 SPACES}{RVS}E{OFF}

{4 SPACES}EXPANDED PRINT TO PRINTER" :rem 201
673 PRINT"CTRL-D{7 SPACES}CLEAR > MARKS FROM DISPL

AY" :rem 132

675 PRINTHCTRL-P{7 SPACESjPUT SCREEN TO DISK"

:rem 172

680 PRINT"CTRL-G{7 SPACES}GET SCREEN FROM DISK"
:rem 23

685 PRINT"CTRL-C{7 SPACESjCOPY SCREEN TO MEMORY"
:rem 144

690 PRINT"CTRL-X{7 SPACES}SWAP SCREEN WITH MEMORY"
:rem 58

695 PRINT"CTRL-Y{7 SPACES}YANK SCREEN FROM MEMORY"

:rem 48

f—> 697 PRINT"{3 RIGHT}{4 SPACES}{RED}{RVS}{3 SPACES}
! 1 {OFF}{WHT}{3 SPACES}SCREEN ONE DISPLAYED"

:rem 212

699 PRINT"{3 RIGHT}{4 SPACES}{BLU}{RVS}{3 SPACES}
I! {OFF}{WHT}{3 SPACESjSCREEN TWO DISPLAYED{DOWN}

:rem 2

700 FORZ=1TO3:READB$:GOSUB300:NEXT :rem 158

n710 DATA "TEXT CANNOT SCROLL PAST END OF SCREEN."

:rem 95

720 DATA "YOU MAY TYPE IN UPPERCASE OR" :rem 253

730 DATA "LOWERCASE MODE." :rem 240

f1^ 740 GOSUB310 :rem 175
750 RETURN :rem 124

137

3: Applications

799 REM::::::::CLEAR SCREEN : rem 132

800 POKE205,3:WAIT207,1:P0KE646,1:PRINTCHR$(14):P0

KE53281,1:PRINT"{CLR}";:POKE53281,0 :rem 112

805 PRINT"{0FF}>";:F0RX=lT011:PRINT"{2 DOWN} {LEFT}

> " ; :NEXTX: PRINT : rem 64

810 PRINT" {DOWN} g 14 Y>|{RVS}MEMO WRITER{OFF} §14 Y|

{HOME}11; :rem 124

820 SP=1:POKE2021,177:POKE650,0:POKE2022,173

srem 250

830 G1=944:TF=15:RW=11:CL=80:POKE2023,142 :rem 75

840 POKE56295,1:RETURN :rem 77

849 REM::::::::COPY SCREEN TO MEMORY :rem 208

850 B$="{RVS}{2 SPACES}COPYING t{LEFT}{OFF}":GOSUB
280 :rem 144

860 FORZ=0TO959 :rem 150

870 POKEBF+Z,PEEK(SC+Z) :rem 152

880 NEXT :rem 223

890 GOTO995 :rem 129
899 REM::::::::SWAP SCREEN AND MEMORY :rem 5

900 B$="{RVS} SWAPPING t{LEFT}{OFF}M:GOSUB280
:rem 220

910 FORZ=0TO959 :rem 146

920 Q=PEEK(BF+Z):POKEBF+Z,PEEK(SC+Z):POKESC+Z,Q

:rem 224

930 NEXT :rem 219

940 GOTO990 :rem 120

949 REM::::::::YANK MEMORY TO SCREEN :rem 201

950 B$="{RVS} YANK MEM t{OFF}{LEFT}":GOSUB280

:rem 138

960 FORZ=0TO959 :rem 151

970 POKESC+Z,PEEK(BF+Z) :rem 153

980 NEXT:GOTO995 :rem 250

990 IFSN=2THENSN=1:POKE53280,2:GOTO995 :rem 98

993 SN=2:POKE53280,6 :rem 130

995 B$="{RVS}MEMO WRITER{HOME}{OFF}":GOSUB280:RETU

RN :rem 190

999 REM::::::::GET DISK FILENAME :rem 171

1000 TP$=IIM:FI$="":POKE205,3:WAIT207,1 :rem 60

1010 FORZ=1983TO2023 :rem 127

1020 TP$=TP$+CHR$(PEEK(Z)):POKEZ,32 :rem 49

1030 NEXTZ :rem 93

1040 POKE205,3:WAIT207,1:POKE214,23:PRINT:PRINT"

{RVS} FILENAME: {OFF}11; :rem 12

1050 GETA$:IFA$="MTHEN1050 :rem 175

1060 IFA$=CHR$(13)THEN1090 :rem 167
1070 IFASC(A$)>31THENIFASC(A$)<129THENPRINTA$;:FI$

=FI$+A$:rem 114

1075 IFASC(A$)=20THENA$="":Q=LEN(FI$) : IFQTHENFI$=L

EFT$(FI$#Q-1):PRINTCHR$(20); :rem 101

1085 GOTO1050 :rem 205

138

Applications: 3

1090 FI$=LEFT$(FI$,15) :rem 159

1100 WAIT207,1:FORZ=1TO41 :rem 222

1110 POKE1982+Z,ASC(MID$(TP$,Z,1)) :rem 153

1120 NEXTZ :rem 93

1130 RETURN :rem 165

59999 REM::::::SCREEN DUMP TO PRINTER :rem 22

60000 Q=PEEK(53272):IFQ=21THENG1$=CHR$(145):GOTO60

010 :rem 21

60005 G1$=CHR$(17) :rem 142

60010 G1$=G1$+CHR$(TF):IFTF=15THENG1=944:GOTO60020

:rem 121

60015 Gl=984 :rem 86

60020 OPEN4#4 :rem 190

60030 FORG0=0TORW:G0$=G1$:G1=G1+CL :rem 223

60040 FORG2=G1TOG1+(CL-1):G3=PEEK(G2) :rem 115

60050 IFG3>128THENG3=G3-128:G4=1:G0$=G0$+CHR$(18)

:rem 187

60060 IF(G3>0)*(G3<32)THENG3=G3+64:GOTO60100

:rem 185

60070 IF(G3>31)*(G3<64)THEN60100 :rem 186

60080 IF(G3>63)*(G3<96)THENG3=G3+128:GOTO60100

:rem 47

60090 IF(G3>95)*(G3<128)THENG3=G3+64:GOTO60100

:rem 48

60100 G0$=G0$+CHR$(G3) :rem 97

60110 IFG4=1THENG0$=G0$+CHR$(146):G4=0 :rem 76

60120 NEXTG2:PRINT#4,G0$:IFSP=2THENPRINT#4:rem 132

60130 NEXTG0:CLOSE4 :rem 148

60140 RETURN :rem 219

H 139

Making Calendars
Paul C. Liu

Put your printer to good use by making a full set of

calendars. These four programs will give you a screen

calendar, a wall calendar, and an appointment caV

endar, as well as one that shows the year at a glance.

For the VIC-20 and Commodore 64. On the VIC, 8K

expansion may be required.

One practical use for a computer with a printer is making

your own calendars. Here are four calendar-making pro

grams written for the VIC or 64, three of which require the

use of a printer. Since the programs are written entirely in

BASIC without PEEKs or POKEs, they can be easily adapted

for other computers or non-Commodore printers.

What Day Was It?
In calendar making, it is essential to know the correct day of

the week for any given date. If you let Dl be the day of the

week (Dl = l for Sunday, Dl=2 for Monday, and so on), and

let M, D, and Y be the month, day, and year, then Dl can be

calculated as follows:

Dl=D^T(2,6-(M-2)-0.2)+D+Y-1900+INT((Y-1900)/4)

Dl=Dl+INT(19/4)-2*19

Dl =D1 -INT(Dl/7)*7 +1

Two modifications have to be used with the above

formulation. Whenever M is 1 or 2, you have to add 12 to M

and decrement Y by 1. In other words, the months January

and February are thought of as the thirteenth and fourteenth

months of the previous year. In addition, when M is equal to

4 or 9, the calculated value of Dl has to be increased by 1.

Good for More Than a Century
This algorithm performs flawlessly for the twentieth and

twenty-first centuries, up to the year 2100. If you want to go

beyond that, you can make further modifications by reducing

Dl by 1 after March 2100 (and repeating that every 100

years). Why? Because century years like 2100 and 2200 (that

140

n
Applications: 3

n

r-| are not divisible by 400) are not leap years, even though the

1 ■ -' algorithm treats them as if they are.
The programs may be modified, using changes like the

f—| one described above, to make them accurate for the next five

1 centuries—provided, of course, that the current calendar sys
tem is not reformed. The last calendar reform was in 1752.

A Monthly Calendar
Once you know the day of the week for the given date, the

rest of the calendar-making task is just a matter of setting up

and getting the proper format and display.

Program 1 will display a monthly calendar on the screen.

In this and the other programs, the computer will briefly ex

plain what the program does and then ask you to input the

month and year of the calendar you wish to see. The numbers

should be separated by a comma, and the year should be the

full four digits (1984, not 84). After you press RETURN, the

appropriate monthly calendar will be displayed on the screen.

Program 2 will give you a copy of what you see on the

screen in the first program by printing it on your printer in en

larged form. This is a long program (it requires 8K memory

expansion on the VIC) because it contains a set of enlarged

numbers and characters, together with a bank of subroutines

required to use them. The result is a calendar you can hang on

the wall.

Program 3 also gives you a printed monthly calendar, but

in a different format. It tabulates the days of the month as a

list. It can serve as an appointment calendar for your desk,

with room for short notes each day. Along with the regular

date, you are told what day of the year it is. This program

Pi runs on the VIC without memory expansion.

A Year on a Page
Program 4 will give you all 12 months of the year printed on

one sheet. The message "Happy New Year" is at the top of

the calendar, but you can put a different message there by

modifying the text in line 7. This program will run on the un-

expanded VIC.

In Programs 2, 3, and 4, after you input the month and

year as requested, the computer prompts you to turn on the

printer. Before you do this, you should set the perforation of

the printing paper over the starting position of the print head

141

u
3: Applications

u

so that the calendar will appear entirely on one sheet of paper. j j

The programs are written for the Commodore 1515 and 1525 '—r
printers. Other printers may require modifications to the

program. j^J

Program !♦ Monthly Screen Calendar
For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C. j j

80 DIMM$(12):FORI=1TO12:READM$(I):NEXTI :rem 104 '—'
90 SYS65517:A=PEEK(781):IFA=40THENPOKE53281,1

:rem 167

100 PRINTM{CLR}{3 DOWN}{2 RIGHT}THIS IS A PROGRAM"

:PRINT"{6 RIGHT}TO SHOW A" :rem 109

105 PRINT"{3 RIGHT}{PUR}MONTHLY CALENDAR{BLU}":PRI
NT"{4 RIGHTjON THE SCREEN" :rem 155

110 PRINT"{2 DOWN}{2 RIGHT}PLEASE TYPE IN THE":PRI

NT"{3 RIGHT}{RED}MONTH{BLU} AND {RED}YEAR{BLU}

11 :rem 149

111 PRINT"{RIGHT}THAT YOU WISH TO SEE":PRINT"

{DOWN}{2 RIGHT}(EXAMPLE: {RED}12#1983{BLU})

{PUR}{2 DOWN}" :rem 180
130 PRINT"{5 RIGHT}";:INPUTM0,Y:PRINT"{2 DOWN}

{5 RIGHT}{PUR}THANK YOUI{BLU}{DOWN}":FORI=1TO8

00:NEXT :rem 167

292 IFM0=1ORM0=3ORM0=5ORM0=7ORM0=8ORM0=10ORM0=12TH

ENE1=31 :rem 26

293 IFM0=4ORM0=6ORM0=9ORM0=11THENE1=30 :rem 66

294 IFM0=2ANDY/4<>INT(Y/4)THENE1=28 :rem 103

295 IFM0=2ANDY/4=INT(Y/4)THENGOSUB1400 :rem 83
297 PRINT"{CLR}{DOWN}{RIGHT}{RED}";M$(M0);" ";Y;"

{BLU}" :rem 123
298 GOSUB1350:IFA=40THENPRINT :rem 83

300 PRINT"{2 RIGHT}{RED}S{BLU}{2 RIGHT}M{2 RIGHT}T
{2 RIGHT}W{2 RIGHT}T{2 RIGHT}F{2 RIGHT}S"

:rem 109

305 GOSUB1360 :rem 226

310 D=1:GOSUB1050 :rem 198

320 IFD1=7THENFORI=1TO19:PRINT"{RIGHT}";:NEXT:PRIN
TD:IFA=40THENPRINT :rem 53

321 IFD1=7THEN330 :rem 211

322 IFD1==6THENFORI=1TO16: PRINT "{RIGHT}";:NEXT:PRIN
TD;:GOTO330 :rem 16

323 IFD1=5THENFORI=1TO13:PRINT"{RIGHT}";:NEXT:PRIN
TD?:GOTO330 . Srem 13

324 IFD1=4THENFORI=1TO10:PRINT"{RIGHT}";:NEXT:PRIN
TD;:GOTO330 :rem 10

325 IFD1=3THENFORI=1TO7:PRINT"{RIGHT}";:NEXT:PRINT
D;:GOTO330 .rem 224

142

n

n

Applications: 3

n

n
332 IFD1=1ANDD>9THENPRINT"{RED}" ;D; M {BLU}

326 IFD1=2THENFORI=1TO4:PRINT" {RIGHT}11; :NEXT:PRINT
D;:GOTO330 :rem 221

327 IFD1=1THENPRINT"{RIGHT}{RED}";D;"{BLU}";:GOTO3
30 :rem 168

330 FORD=2TOE1:GOSUB1050 :rem 201

331 IFD1=1ANDD<=9THENPRINTM{RIGHT}{RED}";D;"{BLU}"
?:GOTO345 :rem 114

;:GOTO34

:rem 27

:rem 215

:rem 105

:rem 210

:rem 12

:rem 105

:rem 133

:rem 32

22THENPRINT"

:rem 57

:rem 70

:rem 221

:rem 246

:rem 165

:rem 80

:rem 23

:rem 47

333

334

335

340

341

345

346

1045

1046

1047

1048

1049

1050

1060

1080

1100

5

IFD1=7THEN340

IFD<=9THENPRINTD;:GOTO345

PRINT" {LEFT}11;D; :GOTO345

IFD>9THENPRINT"{LEFT}"?D:GOTO345

PRINTD

IFA=40ANDD1=7THENPRINT

NEXTD

PRINT:PRINT:FL=1:GOSUB1350:IFA=

{3 UP}"
PRINT "{3 DOWN}ANOTHER?(Y/N)"

GET R$:IF R$="" THEN 1047

IF R$=CHR$(89) THEN RUN

END

IFM0=1THENM0=13:Y=Y-1:GOTO1080

IFM0=2THENM0=14:Y=Y-1

M=M0-2

Dl=INT(2.6*M-0.2)+D+Y-1900+INT((Y-1900)/4)

:rem 207

1150 Dl=Dl+INT(19/4)-2*19 :rem 21

1200 Dl=Dl-INT(Dl/7)*7+l :rem 235

1210 IFM0=4ORM0=9THEND1=D1+1 :rem 135

1230 IFM0=13THENM0=1:Y=Y+1:GOTO1245 :rem 81

1240 IFM0=14THENM0=2:Y=Y+1:D1=D1+1 :rem 210

1244 IFD1=8THEND1=1 :rem 86

1245 IF(Y=2100ANDM0>=3)OR(Y>2100)THEND1=D1-1:IFD1=

0THEND1=7 :rem 198

1247 IF(Y=2200ANDM0>=3)OR(Y>2200)THEND1=D1-1:IFD1=

0THEND1=7 :rera 202

1249 IF(Y=2300ANDM0>=3)OR(Y>2300)THEND1=D1-1:IFD1=

0THEND1=7 :rem 206

1250 RETURN :rem 168

1350 IFFL=0THENPRINT:FORI=1TO22:PRINT"*II7 :NEXT:PRI
NT: RETURN :rem 188

1355 IFD1=7THENPRINT"{3 UP}":FORI=1TO22:PRINT"*"?:

NEXT:PRINT"{UP}":RETURN :rem 119

1358 FORI=1TO22:PRINT"*"7:NEXT:PRINT"{UP}":RETURN
:rem 21

1360 PRINT"{2 SPACES}gT3{2 SPACES}gT§{2 SPACES}|T§
{2 SPACES}gTl{2 SPACES}gT§{2 SPACES}|Tl
{2 SPACES}gT§":RETURN :rem 42

143

3: Applications

1400 IF(Y/100=INT(Y/100))AND(Y/400<>INT(Y/400))THE

NE1=28:GOTO1410 :rem 231

1405 El=29 :rem 232

1410 RETURN :rem 166

1420 DATA"{3 SPACES}JANUARY","{3 SPACES}FEBRUARY",

11 {4 SPACES }MARCH"," {4 SPACES}APRIL" :rem 210

1430 DATA" {5 SPACES }MAY" , " {5 SPACES} JUNE" , "

{5 SPACES}JULY","{4 SPACES}AUGUST" srem 172

1440 DATA"{2 SPACES}SEPTEMBER","{3 SPACES}OCTOBER"

,"{3 SPACES}NOVEMBER","{3 SPACES}DECEMBER"

:rem 193

Program 2, Monthly Calendar Printer

For error-free program entry, be sure to use 'The Automatic Proofreader/' Appendix C

1 GOTO10 srem 203

5 E1=1:E2=1:E3=1:E4=1:E5=1:E6=1:E7=1 :rem 226

6 GOSUBll09$D8=D7-lsRETURN :rem 103

10 OPEN1,4:SYS65517:A=PEEK(781)*IFA=40THENPOKE5328

1,1 :rem 156

20 GOSUB4000:GOSUB3200:PRINT#1,"" :rem 176

30 ONM0GOSUB3010,3020,3030,3040,3050,3060,3070,308

0,3090,3100,3110,3120 :rem 56

40 PRINT#1,"":PRINT#1,"":GOSUB1610:GOSUB1650:GOSUB

1660 :rem 207

80 OND9GOSUB1811,1821,1831,1841,1851,1861,1871

:rem 172

99 PRINT#1,MII:PRINT#1,MI1

100 G1=D8

105 G=GlsGOSUB1720sDl=D$El=E

110 G2=G+1:G=G2:GOSUB1720:D2=D:E2=E

115 G3=G+1:G=G3:GOSUB1720:D3=D:E3=E

120 G4=G+l:G=G4:GOSUB1720:D4=DsE4«E

125 G5=G+lsG=G5sGOSUB1720sD5=DsE5=E

130 G6=G+lsG=G6$GOSUB1720$D6=DsE6=E

135 G7=G+lsG=G7sGOSUB1720:D7=DsE7=E

140 G1=G7+1:GOSUB1109:PRINT#1,

E9THEN105

155 PRINT#1,"M

1000 GOTO5000

1109 GOSUB2000:X=E1:X1=D1:GOSUBll000

1120 X=E2sXl=D2sGOSUB11000

1130 X=E3:X1=D3:GOSUB11000

1140 X=E4:X1=D4:GOSUB11000

1150 X=E5:X1=D5:GOSUB11000

1160 X=E6:X1=D6:GOSUB11000

1170 X=E7:X1=D7:FL=1:GOSUB11000

1209 GOSUB2000:X=E1:X1=D1:GOSUB12000 :rem 117

1220 X=E2:X1=D2:GOSUB12000 :rem 244

1230 X=E3:X1=D3:GOSUB12000 :rem 247

:rem 78

:rem 194

:rem 120

:rem 10

:rem 19

:rem 19

:rem 28

jrem 28

:rem 37

:PRINT#1,IMI:IFG1<=

srem 188

srem 236

srem 191

srem 115

srem 242

srem 245

srem 248

srem 251

srem 254

srem 59

144

n
Applications: 3

n

1240

1250

1260

1270

1309

1320

1330

1340

1350

1360

1370

1409

1420

1430

1440

1450

1460

1470

1509

1520

1530

1540

1550

1560

1570

1600

1610

1611

1612

1613

1614

1615

1616

1620

1621

1622

1623

1624

X=E4:X1=D4:GOSUB12000 :rem 250

X=E5:X1=D5:GOSUB12000 :rem 253

X=E6:XI=D6sGOSUBl2000 :rem 0

X=E7:X1=D7:FL=1:GOSUB12000 :rem 61

GOSUB2000:X=E1:X1=D1:GOSUB13000 :rem 119

X=E2:X1=D2:GOSUB13000 :rem 246

X=E3:X1=D3:GOSUB13000 :rem 249

X=E4:X1=D4:GOSUB13000 :rem 252

X=E5:X1=D5:GOSUB13000 :rem 255

X=E6:X1=D6:GOSUB13000 :rem 2

X=E7:X1=D7:FL=1:GOSUB13000 :rem 63

GOSUB2000:X=E1:X1=D1:GOSUB14000 :rem 121

X=E2:X1=D2:GOSUB14000 :rem 248

X=E3:X1=D3:GOSUB14000 :rem 251

X=E4:X1=D4:GOSUB14000 :rem 254

X=E5:X1=D5:GOSUB14000 :rem 1

X=E6:X1=D6:GOSUB14000 :rem 4

X=E7:X1=D7:FL=1:GOSUB14000 :rem 65

GOSUB2000:X=E1:X1=D1:GOSUB15000 :rem 123

X=E2:X1=D2:GOSUB15000 :rem 250

X=E3:X1=D3:GOSUB15000 :rem 253

X=E4:X1=D4:GOSUB15000 :rem 0

X=E5:X1=D5:GOSUB15000 :rexn 3

X=E6:X1=D6:GOSUB15000 :rem 6

X=E7:X1=D7:FL=1:GOSUBl5000 :rem 67

RETURN :rem 167

PRINT#1,"{5 SPACES}";:PRINT*1,CHR$(14)"SUN";:
PRINT#1,CHR$(15)"{5 SPACES}"; :rem 69
PRINT#1,CHR$(14)"MON";:PRINT#1,CHR$(15)"

{5 SPACES}"; :rem 116
PRINT#1,CHR$(14)"TUE";:PRINT#1 ,CHR$(15)"

{5 SPACES}"; :rem 121

PRINT*1,CHR$(14)"WED";:PRINT*1,CHR$(15)"

{5 SPACES}"; :rem 108

PRINT#1#CHR$(14)"THU";:PRINT#1#CHR$(15)"

{5 SPACES}"; :rem 126

PRINT#1#CHR$(14)"FRI";:PRINT#1#CHR$(15)"

{5 SPACES}"; :rem 111

PRINT#1#CHR$(14)"SAT":PRINT#1#CHR$(15)" "

:rem 1

PRINT#1,"{5 SPACES}";:PRINT*1,CHR$(14)" ";:

PRINT#1,CHR$(15)"{5 SPACES}"; :rem 215
PRINT#1,CHR$(14)" ";:PRINT#1,CHR$(15)"

{5 SPACES}"; :rem 18

PRINT#1,CHR$(14)" ";:PRINT#1,CHR$(15)"

{5 SPACES}"; :rem 19
PRINT#1,CHR$(14)" ";:PRINT#1,CHR$(15)"

{5 SPACES}"; :rem 20
PRINT#1,CHR$ (14) " " ; :PRINT#1 f CHR$ (15) "

{5 SPACES}"; :rem 21

145

3: Applications

LI

1625 PRINT*1,CHR$(14)" ";:PRINT#1,CHR$(15)" , .

{5 SPACES}11; :rem 22 , >

1626 PRINT#1,CHR$(14)M ":PRINT#1,CHR$(15)" "iRET

URN :rem 187

1650 IPM0=1ORM0=3ORM0=5ORM0=7ORM0=8ORM0=10ORM0=12T j I

HENE9=31 :rem 81 '—'
1652 IFM0=4ORM0=6ORM0=9ORM0=11THENE9=30 :rem 122

1654 IFM0=2ANDY/4<>INT(Y/4)THENE9=28 :rem 160 , ,

1656 IFM0=2ANDY/4=INT(Y/4)THENE9=29 :rem 102 j j
1658 RETURN :rem 180

1660 IFM0=1THENM0=13:Y=Y-1:GOTO1670 :rem 92

1665 IFM0=2THENM0=14:Y=Y-1 :rem 34

1670 M=M0-2 :rem 52

1675 D9=INT(2.6*M-0.2)+D+Y-1900+INT((Y-1900)/4)
:rem 232

1680 D9=D9+INT(19/4)-2*19 :rem 45
1685 D9=D9-INT(D9/7)*7+l srem 20

1690 IFM0=4ORM0=9THEND9=D9+1 :rem 163

1695 IFM0=13THENM0=ltY=Y+l:GOTO1710 :rem 93

1700 IFM0=14THENM0=2:Y=Y+1:D9=D9+1 :rem 227

1705 IFD9=8THEND9=1 :rem 104

1710 IF(Y=2100ANDM0>=3)OR(Y>2100)THEND9=D9-1:IFD9=
0THEND9=7 :rem 227

1711 IF(Y=2200ANDM0>=3)OR(Y>2200)THEND9=D9-1:IFD9=
0THEND9=7 :rem 230

1712 IF(Y=2300ANDM0>=3)OR(Y>2300)THEND9=D9-1:IFD9=
0THEND9=7 :rem 233

1715 RETURN :rem 174

1720 IFG>E9THENGOTO1740 :rem 144

1722 IFG<10THENGOTO1742 :rem 117

1726 IFG>=10ANDG<20THENGOTO1746 :rem 116

1728 IFG>=20ANDG<30THENGOTO1748 :rem 122

1730 IFG>=30THENGOTO1750 :rem 180

1740 D=1:E=1:GOTO1755 :rem 176

1742 D=G+2:E=1:GOTO1755 :rem 37

1746 D=G-10+2:E=2:GOTO1755 :rem 184

1748 D=G-20+2:E=3:GOTO1755 :rem 188

1750 D=G-30+2:E=4 :rem 114

1755 RETURN :rem 178

1811 Dl=l:D2=3:D3=4:D4=5:D5=6:D6=7:D7=8:G0SUB5:RET

URN :rem 149

1821 Dl=l:D2=l:D3=3:D4=4:D5=5:D6=6:D7=7:G0SUB5:RET

URN :rem 143

1831 Dl=l:D2=l:D3=l:D4=3:D5=4:D6=5:D7=6:G0SUB5:RET

URN :rem 138

1841 Dl=l:D2=l:D3=l:D4=l:D5=3:D6=4:D7=5:G0SUB5:RET

URN :rem 134

1851 Dl=l:D2=l:D3=l:D4=l:D5=l:D6=3:D7=4:G0SUB5:RET

URN :rem 131

146

Applications: 3

1861

1871

2000

2001

2002

2003

2004

2005

2011

2012

2013

2014

2015

2021

2022

2023

2024

2025

2031

2032

2033

2034

2035

2041

2042

2043

2044

2045

2051

2052

2053

2054

2055

2061

2062

2063

2064

2065

2071

2072

2073

2074

2075

2081

2082

2083

2084

D1=1:D2=

URN

D1=3:D2

URN

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT*1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1#

PRINTU,

PRINT#1#

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT*1,

PRINT#1,

PRINT*1,

PRINT#1,

PRINT#1,

PRINT#1#

PRINT#1,

PRINT#1,

PRINT#1#

PRINT#1#

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT*1,

PRINT#1,

PRINT#1,

PRINT#1,

PRINT#1,

:1:D3=1:D4=1:D5=1:D6=1:D7=3:GOSUB5:RET

:rem 129

-4:D3=5:D4=6:D5=7:D6=8:D7=9:G0SUB5:RET

:rem 163

"{4 SPACES}";:RETURN

" g2 +1 ";:RETURN

"g+1{2 SPACES}g+1";:RETURN

"g+1{2 SPACES}g+1";:RETURN

"g+l{2 SPACES}g+1";:RETURN

" g2 +1 ";:RETURN

11 g+1 {2 SPACES}" ;:RETURN

" g+1{2 SPACES}";:RETURN

" g+1{2 SPACES}";:RETURN

11 g+1 {2 SPACES}" ;:RETURN

" g+1{2 SPACES}";:RETURN

" g2 +1 ";:RETURN

"g+1{2 SPACES}g+1";:RETURN

"{2 SPACES}g+1 ";:RETURN

11 g+1 { 2 SPACES } " ; : RETURN
"g4 +1";:RETURN

11 g 3 +1 ";:RETURN

"{3 SPACES}g+1";:RETURN
11 g2 +1 ";:RETURN

"{3 SPACES}g+1";:RETURN

11 g 3 +1 "; : RETURN

"{2 SPACES}g+1 ";:RETURN

" g2 +1 ";:RETURN

"g+1 g+1 ";:RETURN

"g4 +1";:RETURN

"{2 SPACES}g+1 ";:RETURN

"g4 +1";:RETURN

"g+1{3 SPACES}";:RETURN

"g3 +1 ";:RETURN

11 { 3 SPACES } g+1" ; : RETURN

"g3 +1 ";:RETURN

11 g2 +1 ";:RETURN

"g+1{3 SPACES}";:RETURN

11 g 3 +1 ";: RETURN

"g+1{2 SPACES}g+1";:RETURN
" g2 +1 ";:RETURN

11 g 4 +1"; : RETURN

"{3 SPACES}g+1";:RETURN
"{2 SPACES}g+1 ";:RETURN

11 g+1 {2 SPACES}";:RETURN

" g+1{2 SPACES}";:RETURN
" g2 +1 ";:RETURN

"g+1{2 SPACES}g+1";:RETURN
" g2 +1 ";:RETURN

11 g+1 {2 SPACES}g+1 ";:RETURN

:rem

:rem 104

:rem 181

:rem 182

:rem 183

:rem 184

:rem 185

:rem 16

:rem 17

:rem 18

:rem 19

:rem 20

:rem 183

:rem 184

:rem 19

:rem 20

:rem 7

:rem 94

:rem 19

:rem 186

:rem 21

:rem 98

:rem 19

:rem 186

:rem 187

:rem 8

:rem 23

:rem 6

:rem 21

:rem 98

:rem 23

:rem 100

:rem 187

:rem 22

:rem 99

:rem 190

:rem 191

:rem 8

:rem 23

:rem 24

:rem 25

:rem 26

:rem 189

:rem 190

:rem 191

:rem 192

147

3: Applications

2085

2091

2092

2093

2094

2095

2111

2112

2113

2114

2115

3010

3011

3012

3013

3014

3015

3020

PRINT#1,M g2 +3 H;:RETURN :rem 193

PRINT#1,M |2 +3 M;xRETURN :rem 190
PRINT#1,M|+i{2 SPACES}g+3";:RETURN :rem 191
PRINT#1,M |3 +3";xRETURN :rem 102

PRINT#1,M{3 SPACES}g+1";xRETURN :rem 27

PRINT#1," 12 +1 M;:RETURN :rem 194

PRINT#1,M{2 SPACES}g+3 M;:RETURN :rem 17

PRINT#1,"{2 SPACES}g+3 M;xRETURN xrem 18
PRINT#1,M{2 SPACES}|+3 ";:RETURN :rem 19

PRINT#1,M{2 SPACES}g+3 M;xRETURN :rem 20

PRINT#1,M{2 SPACESlE+3 M;xRETURN :rem 21
GOSUB2000xPRINT*1," g3 +3(3 SPACES}§3 +3
{2 SPACES}g+3{3 SPACES}g+3" *rem 193
GOSUB2000xPRINT#l,"{2 SPACES}g+3{3 SPACES}g+3
{3 SPACES}g+3 g2 +3(2 SPACES}g+3M :rem 118
GOSUB2000:PRINT#1,"{2 SPACES}g+3{3 SPACES}g+3
{3 SPACES}g+3 g+3 g+3 g+3M Jrem 119
GOSUB2000xPRINT#l,lfg+3 g+3 {3 SPACES }g5 +3 g+3
[2 SPACES}g2 +3" :rem 16

GOSUB2000:PRINT#l,Ng3 +3(3 SPACES}g+3
{3 SPACES}g+3 g+3{3 SPACES}g+311 :rem 31
RETURN xrem 169

GOSUB2000:PRINT#l,Mg5 +3 g5 +3 g4 +3 "
:rem 166

GOSUB2000:PRINT#l,Ng+3{5 SPACES}g+3(5 SPACES}

g+3(3 SPACES}g+3

3021

g3(}g3
3022 GOSUB2000:PRINT#l,Ng3 +3(3 SPACES}g4 +3

{ }

3023

3024

:rem 43

S0:

{2 SPACES}§4 +3

GOSUB2000:PRINT#l

:rem 182

#g+3{5 SPACES}g+3{5 SPACES}

g+3{3 SPACES}g+3M xrem 45
GOSUB2000:PRINT#l,Mg+3{5 SPACES}§5 +3 g4 +3 "

xrem 18

3025 RETURN :rem 170

3030 GOSUB2000:PRINT#l,"g+3{3 SPACES}g+3{2 SPACES}
g3 +3(2 SPACES}§4 +3 " :rem 105

3031 GOSUB2000:PRINT#l,Mg2 +3 g2 +3 g+3{3 SPACES}
g+3 g+3{3 SPACES}g+3" :rem 196

3032 GOSUB2000:PRINT*1,"g+3 g+3 g+3 g+3(3 SPACES}
g+3 g4 +3 " :rem 107

3033 GOSUB2000:PRINT#l,l>g+3 g+3 g+3 g5 +3 g+3
{2 SPACES}g+3 " xrem 18

3034 GOSUB2000:PRINT#l#Ng+3{3 SPACES}g+3 g+3
{3 SPACES}g+3 g+3{3 SPACES}g+311 xrem 123

3035 RETURN xrem 171

3040 GOSUB2000xPRINT*1," g3 +3{2 SPACES}g4 +3

{2 SPACES}g4 +3 " xrem 182
3041 GOSUB2000xPRINT#l,Ng+3{3 SPACES}g+§ g+3

{3 SPACES}g+3 g+3{3 SPACES}g+3M xrem 121
3042 GOSUB2000xPRINT#l,Ng+3{3 SPACES}g+3 g4 +3

{2 SPACES}g4 +3 " xrem 18

148 u

Applications: 3

3043 GOSUB2000:PRINT*1,"I5 +3 g+3 {5 SPACES}g+3
{2 SPACES}g+3 " :rem 199

3044 GOSUB2000xPRINT#l,"g+3{3 SPACES}g+3 g+3
{5 SPACES}g+3{3 SPACES}i+lM :rem 214

3045 RETURN :rem 172

3050 GOSUB2000xPRINT#l,Mg+3{3 SPACES}g+l{2 SPACES}

g3 +3(2 SPACES}g+3{3 SPACES}g+3" :rem 31
3051 GOSUB2000xPRINT#l,"g2 +3 g2 +3 g+3(3 SPACES}

g+3 1+3(3 SPACES}g+3" :rem 198
3052 GOSUB2000:PRINT*l,Mg+§ g+3 g+3 g+3 {3 SPACES}

g+3 {2 SPACES}g+3 g+3 " srem 33
3053 GOSUB2000:PRINT*l,Mg+! g+3 g+3 g5 +3

{3 SPACES}g+l{2 SPACES}" :rem 110
3054 GOSUB2000xPRINT#l,"g+3{3 SPACES}g+3 g+3

{3 SPACES}g+l{3 SPACES}g+§{2 SPACES}"xrem 215
3055 RETURN :rem 173

3060 GOSUB2000:PRINT*1#" g3 +3(2 SPACES}g+l

{3 SPACES}g+3 g+l{3 SPACES}g+§" :rem 32
3061 GOSUB2000:PRINT#l,n{2 SPACES}g+l(3 SPACES}g+|

{3 SPACES}g+3 g2 +3(2 SPACES}g+3" :rem 123
3062 GOSUB2000:PRINT*1,M{2 SPACES}§+§{3 SPACES}g+3

{3 SPACES }g+3 g+3 g+3 g+311 :rem 124
3063 GOSUB2000:PRINT#l#Mg+3 g+3{3 SPACES}g+3

{3 SPACES}g+3 g+3(2 SPACES}§2 +3" :rem 35
3064 GOSUB2000:PRINT#l,Mg3 +3(4 SPACES}g3 +3

{2 SPACES}g+3{3 SPACES}g+3" xrem 202
3065 RETURN srem 174

3070 GOSUB2000:PRINT#1,tf g3 +3(2 SPACES}g+3

{3 SPACES}g+3 g+3(4 SPACES}11 :rem 123
3071 GOSUB2000:PRINT#1#"{2 SPACES}g+3{3 SPACES}g+3

{3 SPACES}g+3 g+3U SPACES}" :rem 48
3072 GOSUB2000:PRINT#1,"{2 SPACES}g+3{3 SPACES}g+3

{3 SPACES}g+3 g+3{4 SPACES}" :rem 49
3073 GOSUB2000:PRINT#l#"g+3 g+3{3 SPACES}g+3

{3 SPACES}g+3 g+3{4 SPACES}" :rem 216
3074 GOSUB2000:PRINT#l,"g3 +3{4 SPACES}g3 +3

{2 SPACES}g5 +3" :rem 189
3075 RETURN xrem 175

3080 GOSUB2000:PRINT#1," g3 +3(2 SPACES}g-f§

{3 SPACES}g+3{2 SPACES}g3 +3 " :rem 200
3081 GOSUB2000:BRINT#l,"g+3{3 SPACES}g+3 g+3

{3 SPACES}g+3 g+3{4 SPACES}" xrem 215
3082 GOSUB2000sPRINT#l#"g+3{3 SPACES}g+3 g+3

{3 SPACES}g+3 g+3{2 SPACES}g2 +3" :rem 36
3083 GOSUB2000:PRINT#l,"g5 +3 g+3(3 SPACES}g+3 g+3

{3 SPACES}g+3" xrem 113
3084 GOSUB2000xPRINT#l,"g+3{3 SPACES}g+3{2 SPACES}

g3 +3(3 SPACES}g3 +3 " xrem 204
3085 RETURN xrem 176

3090 GOSUB2000xPRINT*1," g4 +3 g5 +3 g4 +3 "xrem 7

149

3: Applications

3091 GOSUB2000:PRINT#1,"§+§{5 SPACES}g+3(5 SPACES}
B+3{3 SPACES} g+31' :rem 50

3092 GOSUB2000:PRINT*I,11 13 +§{2 SPACES}g4 +3
{2 SPACES}|4 +3 " :rem 189

3093 GOSUB2000:PRINT#1,M{4 SPACES}g+3 g+3
{5 SPACES}g+3{4 SPACES}11 :rem 142

3094 GOSUB2000:PRINT#l,Mi4 +§{2 SPACES}g5 +3 g+3
{4 SPACES}11 :rem 25

3095 RETURN :rem 177

3100 GOSUB2000:PRINT*1," g3 +3{3 SPACES}|3 +3
{2 SPACES}|5 +3" :rem 179

3101 GOSUB2000:PRINT#l,Mg+3{3 SPACES}g+3 g+3
{3 SPACES}g+3(3 SPACES}g+3{2 SPACES}":rem 208

3102 GOSUB2000:PRINT#l,Mg+3{3 SPACES}g+3 g+3
{7 SPACES}g+3{2 SPACES}11 :rem 43

3103 GOSUB2000:PRINT#l,"g+3(3 SPACES}g+3 g+3
{3 SPACES}g+3{3 SPACES}g+3{2 SPACES}":rem 210

3104 GOSUB2000:PRINT*1," g3 +3{3 SPACES}g3 +3
{4 SPACES}g+3 {2 SPACES}11 jrem 31

3105 RETURN :rem 169

3110 GOSUB2000:PRINT#l,"g+3{3 SPACES}g+3{2 SPACES}

g3 +3(2 SPACES}g+3{3 SPACES}g+311 :rem 28
3111 GOSUB2000:PRINT#l,Mg2 +3{2 SPACES}g+3 g+3

{3 SPACES}g+3 g+3{3 SPACES}g+311 :rem 29
3112 GOSUB2000:PRINT#l,Mg+3 g+3 g+3 g+3{3 SPACES}

g+3 g+3{3 SPACES}g+3" :rem 30
3113 GOSUB2000:PRINT*l,Mg+3{2 SPACES}g2 +3 g+3

{3 SPACES}g+3{2 SPACES}g+3 g+3 " :rem 31
3114 GOSUB2000:PRINT#l,Mg+3{3 SPACES}g+3{2 SPACES}

g3 +3{4 SPACES}g+3{2 SPACES}11 :rem 122
3115 RETURN irem 170

3120 GOSUB2000:PRINT*l,Mg4 +3(2 SPACES}g5 +3
{2 SPACES}g3 +3 " :rem 91

3121 GOSUB2000:PRINT#l,Mg+3{3 SPACES}g+3 g+3

{5 SPACES}g+3{3 SPACES}g+3" :rem 210
3122 GOSUB2000:PRINT#l,"g+3{3 SPACES}g+3 g4 +3

{2 SPACES}g+3{4 SPACES}11 :rem 31
3123 GOSUB2000:PRINT#l#Mg+3{3 SPACES}g+3 g+3

{5 SPACES}g+3{3 SPACES}g+3" :rem 212
3124 GOSUB2000:PRINT#l,Mg4 +3(2 SPACES}g5 +3

{2 SPACES}g3 +3 " :rem 95
3125 RETURN trem 171

3200 I1=INT(Y/1000):J1=Y-I1*1000:I2=INT(J1/100)*J2
=J1-I2*100:I3=INT(J2/10) :rem 83

3210 I4=J2-I3*10 :rem 48

3211 IPI2=0THENI2=10 trem 134

3212 IFI3=0THENI3=10 :rem 137

3213 IPI4=0THENI4=10 :rem 140

3214 GOSUB2000:X=I1:GOSUB6000:GOSUB2000:X=I2:GOSUB
6000:GOSUB2000:X=I3:GOSUB6000 :rem 98

150

Applications: 3

3215 GOSUB2000:X=I4:FL=1:GOSUB6000 :rem 19

3314 GOSUB2000:X=I1:GOSUB7000:GOSUB2000:X=I2:GOSUB

7000:GOSUB2000:X=I3:GOSUB7000 :rem 102

3315 GOSUB2000:X=I4:FL=1:GOSUB7000 :rem 21

3414 GOSUB2000:X=I1:GOSUB8000:GOSUB2000:X=I2:GOSUB

8000:GOSUB2000:X=I3:GOSUB8000 :rem 106

3415 GOSUB2000:X=I4:FL=1:GOSUB8000 :rem 23

3514 GOSUB2000:X=I1:GOSUB9000:GOSUB2000:X=I2:GOSUB

9000:GOSUB2000:X=I3:GOSUB9000 :rem 110

3515 GOSUB2000:X=I4:FL=1:GOSUB9000 :rem 25

3614 GOSUB2000:X=I1:GOSUB10000:GOSUB2000:X=I2:GOSU

B10000:GOSUB2000:X=I3 :rem 60

3615 GOSUB10000:GOSUB2000:X=I4:FL=1:GOSUB10000:RET

URN :rem 7

4000 PRINT"{CLR}{DOWN}{2 SPACES}THIS IS A PROGRAM"
:PRINT"{5 RIGHTjTO PRINT A" :rem 115

4020 PRINT"{2 SPACES}{PUR}MONTHLY CALENDAR{BLU}":P
RINT"{3 RIGHT}ON THE PRINTER" :rem 187

4030 PRINT"{DOWN}{2 RIGHTjPLEASE TYPE IN THE":PRIN
T"{3 RIGHT}{RED}MONTH{BLU} AND {RED}YEAR{BLU}

:rem 185

4035 PRINT" THAT YOU WISH TO SEE":PRINT"{2 SPACES}

(EXAMPLE: {RED}12,1983{BLU}){PUR}{DOWN}":PRIN
TTAB(5); :rem 211

4060 INPUTM0,Y :rem 92

4080 PRINT"{2 DOWN}{2 SPACES}{BLU}THANK YOUl NOW—
":PRINT" PLEASE {PURjTURN ON{BLU} THE" : rem 7

4085 PRINT"PRINTER AND THEN TYPE":PRINTTAB(8)"

{PUR}OK{DOWN}":INPUTR$:rem 252
4110 IFR$o"OK"THEN4080 : rem 30

4130 PRINT"{BLU}PRINTING{DOWN}":FORI=1TO800:NEXT:R
ETURN :rem 218

4999 PRINT#1,CHR$(15)" " :rem 232

5000 GOSUB1620 :rem 14

5001 CLOSE1:END :rem 126

6000 ONXGOSUB2011,2021,2031,2041,2051,2061,2071,20

81.2091.2001 :rem 146

6010 IFFL<>1THENPRINT#1," ";:RETURN :rem 104

6020 PRINT#1,"":FL=0:RETURN :rem 108

7000 ONXGOSUB2012 # 2022,2032,2042,2052,2062,2072,20

82.2092.2002 :rem 157

7010 IFFLolTHENPRINTU," ";:RETURN 2 rem 105

7020 PRINT#1,"":FL=0:RETURN :rem 109

8000 ONXGOSUB2013,2023,2033,2043,2053,2063,2073,20

83.2093.2003 :rem 168

8010 IFFL<>1THENPRINT#1," ";:RETURN :rem 106

8020 PRINT#1,"":FL=0:RETURN :rem 110

9000 ONXGOSUB2014,2024,2034,2044,2054,2064,2074,20
84.2094.2004 :rem 179

9010 IFFL<>1THENPRINT#1," ";:RETURN :rem 107

151

3: Applications

9020 PRINT#1,"":FL=0:RETURN :rem 111

10000 ONXGOSUB2015,2025,2035,2045,2055,2065,2075,2

085,2095,2005 :rem 229

10010 IFFL<>1THENPRINT#1," ";:RETURN :rem 147

10020 PRINT#1,"":FL=0:RETURN :rem 151

11000 ONXGOSUB2000,2111,2021,2031:PRINT#1," ";

:rem 195

11010 ONX1GOSUB2000,2001,2011,2021,2031,2041,2051,

2061.2071.2081.2091 :rem 222

11020 IFFL<>1THENPRINT#1,"{2 SPACES}";:RETURN
:rem 149

11030 FL=0:PRINT#l,IIMsRETURN :rem 153

12000 ONXGOSUB2000,2112,2022,2032:PRINT#1,M

:rem 199

12010 ONX1GOSUB2000,2002,2012,2022,2032,2042,2052,

2062.2072.2082.2092 :rem 233

12020 IFFL<>1THENPRINT#1,M{2 SPACES}";:RETURN

:rem 150

12030 FL=0:PRINT*I,1111:RETURN :rem 154

13000 ONXGOSUB2000,2113,2023,2033:PRINT#1,M ";

:rem 203

13010 ONX1GOSUB2000,2003,2013,2023,2033,2043,2053,

2063.2073.2083.2093 :rem 244

13020 IFFL<>1THENPRINT#1,M{2 SPACES}";:RETURN
:rem 151

13030 FL=0:PRINT#1,MM:RETURN :rem 155

14000 ONXGOSUB2000,2114,2024,2034:PRINT#1," ";

:rem 207

14010 ONX1GOSUB2000,2004,2014,2024,2034,2044,2054,

2064.2074.2084.2094 :rem 255

14020 IFFL<>1THENPRINT#1,M{2 SPACES}";:RETURN

:rem 152

14030 FL=0:PRINT#l,Mli:RETURN :rem 156

15000 ONXGOSUB2000,2115,2025,2035:PRINT*1," ";

:rem 211

15010 ONX1GOSUB2000,2005,2015,2025,2035,2045,2055,

2065.2075.2085.2095 :rem 10

15020 IFFL<>1THENPRINT#1,"{2 SPACES}";:RETURN

:rem 153

15030 FL=0:PRINT*I,1111:RETURN :rem 157

Program 3* Monthly Appointment Calendar Printer

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

80 DIMM$ (12), W$ (7) :FORI=1TO12 : READM$ (I) :NEXTI: FORI

=1TO7:READW$(I):NEXTI :rem 118

90 SYS65517:A=PEEK(781):IFA=40THENPOKE53281,1

:rem 167

100 PRINT"{CLR}{DOWN}{2 SPACES}THIS IS A PROGRAM":

PRINT" {6 RIGHT}TO SHOW A" : rem 17

152

Applications: 3

n

105 PRINT11 {2 RIGHT} {PUR}MONTHLY CALENDAR*BLU} " :PRI
NT"{3 RIGHT}ON THE PRINTER!DOWN}11 :rem 214

110 PRINT"{RIGHT}PLEASE TYPE IN THE":PRINT"

{3 RIGHT}{RED}MONTH{BLU} AND {RED}YEAR{BLU}"
:rem 86

111 PRINT"THAT YOU WISH TO SEE" : PRINT" { RIGHT} (EXAM
PLE: {RED}12,1983{BLU}){PUR}{2 DOWN}" :rem 105

120 PRINTTAB(5);:INPUTM0,Y :rem 132

130 PRINT"{2 DOWN}{2 SPACES}{BLU}THANK YOU1 NOW—"

:PRINT" PLEASE {PUR}TURN ON{BLU} THE" :rem 207

131 PRINT"PRINTER AND THEN TYPE":PRINTTAB(9)"{PUR}
OK{DOWN}":INPUTR$:rem 193

151 IFR$o"OK"THEN130 :rem 183

154 PRINT"{BLU}PRINTING{DOWN}":FORI=1TO800:NEXT:GO

SUB1292:OPEN1,4 :rem 23

202 PRINT#1,CHR$(14)"{3 SPACES}";M$(M0);" ";Y:GOSU

B1600:GOSUB1700:FORD=1TOE1:J1=J1+1 :rem 225

210 GOSUB1050:IFD<10THENG$=" " :rem 158

213 IFD>=10THENG$="" :rem 96

214 IFD1=1THENPRINT#1,CHR$(15)"{3 SPACES}"W$(Dl);C

HR$(14)G$;"{RVS}"D"{OFF}";CHR$(15)"(";J1;")"
:rem 71

215 IFD1=1THENGOSUB1600 :rem 128

217 IFD1=1THENGOTO220 :rem 8

219 PRINT#1,CHR$(15)"{3 SPACES}"W$(D1);CHR$(14)G$;

D;CHR$(15)"(";Jl;")":GOSUB1600 : rem 0

220 NEXTD :rem 23

1000 CLOSE1:END :rem 121

1050 IFM0=1THENM0=13:Y=Y-1:GOTO1080 :rem 80

1060 IFM0=2THENM0=14:Y=Y-1 :rem 23

1080 M=M0-2 :rem 47

1100 Dl=INT(2.6*M-0.2)+D+Y-1900+INT((Y-1900)/4)

:rem 207

1150 Dl=Dl+INT(19/4)-2*19 :rem 21

1200 Dl=Dl-INT(Dl/7)*7+l :rem 235

1210 IFM0=4ORM0=9THEND1=D1+1 :rem 135

1230 IFM0=13THENM0=1:Y=Y+1:GOTO1245 :rem 81

1240 IFM0=14THENM0=2:Y=Y+1:D1=D1+1 :rem 210

1244 IFD1=8THEND1=1 :rem 86

1245 IF(Y=2100ANDM0>=3)OR(Y>2100)THEND1=D1-1:IFD1=

0THEND1=7 :rem 198

1247 IF(Y=2200ANDM0>=3)OR(Y>2200)THEND1=D1-1:IFD1=

0THEND1=7 :rem 202

1249 IF(Y=2300ANDM0>=3)OR(Y>2300)THEND1=D1-1:IFD1=

0THEND1=7 :rem 206

1250 RETURN :rem 168

1292 IFM0=1ORM0=3ORM0=5ORM0=7ORM0=8ORM0=10ORM0=12T

HENE1=31 :rem 75

1293 IFM0=4ORM0=6ORM0=9ORM0=11THENE1=30 :rem 115

1294 IFM0=2ANDY/4<>INT(Y/4)THENE1=28 :rem 152

153

3: Applications

1295 IFM0=2ANDY/4=INT(Y/4)THENGOSUB1400 :rem 132

1296 RETURN :rem 178

1400 IP(Y/100=INT(Y/100))AND(Y/400<>INT(Y/400))THE

NE1=28:GOTO1410 :rem 231

1405 El=29 irem 232

1410 RETURN :rem 166

1600 FORI=1TO20:PRINT#1,CHR$(15)" ";:NEXTI:rem 170

1605 FORK=1TO18:PRINT#1,".";" M;M ";:NEXTK:PRINT#1

, "." :rem 231

1610 RETURN :rem 168

1700 IFM0=*1THENJ1=0 :rem 89

1702 IFM0=2THENJ1=31 :rem 144

1704 IFM0=3THENJ1=59 :rem 157

1706 IFM0=4THENJ1=90 :rem 155

1707 IFM0=5THENJ1=120 :rem 199

1709 IFM0=6THENJ1=151 :rem 206

1711 IFM0=7THENJ1=181 :rem 203

1713 IFM0=8THENJ1=212 :rem 201

1715 IFM0=9THENJ1=243 :rem 208

1717 IFM0=10THENJ1=273 :rem 253

1719 IFM0=11THENJ1=304 :rem 251

1721 IFM0=12THENJ1=334 :rem 248

1723 IFY/4<>INT(Y/4)THENGOTO1730 :rem 189

1725 IF(Y/100=INT(Y/100))AND(Y/400<>INT(Y/400))THE
NGOTO1730 :rem 159

1727 IF(Y/4=INT(Y/4))AND(M0>=3)THENJ1=J1+I:rem 175
1730 RETURN :rem 171

2000 DATA "{2 SPACES}JANUARY11,11 FEBRUARY",11

{4 SPACES}MARCH","{4 SPACES}APRIL","
{6 SPACES}MAY" :rem 36

2010 DATA M{5 SPACES}JUNE",11 {5 SPACES}JULY","
13 SPACES }AUGUST", "SEPTEMBER", " { 2 SPACES }OCTO
BER" :rem 229

2020 DATA " NOVEMBER"," DECEMBER" :rem 39

2030 DATA "{4 SPACES}{RVS}SUNDAY{OFF}","{4 SPACES}
MONDAY", " { 3 SPACES }TUESDAY" , " WEDNESDAY11, "
{2 SPACES}THURSDAY" •rem 90

2040 DATA "{4 SPACES}FRIDAY","[2 SPACES}SATURDAY"

:rem 192

Program 4. Yearly Calendar Printer

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C

3 SYS65517 :A=PEEK(781) :IFA=40THENPOKE53281,1

:rem 113

5 OPEN1,4:DIMW4(3):GOSUB1510:I=1:J=2 :rem 128

7 PRINT#1,CHR$(14)SPC(13)"HAPPY NEW YEAR ";Y:PRINT

#1 :rem 38

10 PRINT#1,CHR$(14)SPC(8)"JANUARY"SPC(13)"FEBRUARY

:rem 49

154

n

n

Applications: 3

12 GOSUB1009:GOSUB1000:GOSUB1012:C0=6:GOSUB1019:G0

SUB1000:GOSUB1022 2rem 69

15 M0=I:M8=1:GOSUB292:GOSUB20:GOTO35 :rem 228

20 D=1:GOSUB1050:W2=8-D1:W4(M8)=W2+1:GOSUB321

:rem 123

22 IFD1=7THENGOTO30 :rem 167

25 FORD=2TOW2:GOSUB1050:GOSUB331:NEXTD :rem 187

30 RETURN :rem 67

35 GOSUB990:M0=J:M8=2:GOSUB292:GOSUB20 :rem 105

44 W3=l :rem 96

45 M0=I:M8=1:GOSUB292:GOSUB200 :rem 60

46 IFW4(2)=9THENPRINT#1,CHR$(15)SPC(1); :rem 20

50 GOSUB991:M0=J:M8=2:GOSUB292:GOSUB200 :rem 151

56 IFW3=1ANDW4(1)>9THENPRINT#1,CHR$(15)SPC(0);

:rem 223

57 IFW3=1ANDW4(1)<10THENPRINT#1,CHR$(15)SPC(1)7

:rem 7

58 IFW3=4ANDW4(2)>30THENPRINT#1,CHR$(15)SPC(0);

:rem 15

65 W3=W3+1 :rem 24

70 IFW3<C0THENGOTO45 :rem 0

71 PRINT#1," " :rem 185

72 IFI=1THENGOTO86 :rem 133

73 IFI=3THENGOTO96 :rem 137

74 IFI=5THENGOTO106 :rem 180

75 IFI=7THENGOTO116 :rem 184

76 IFI=9THENGOTO126 :rem 188

77 IFI=11THENGOTO199 :rem 240

86 PRINT#1,CHR$(14)SPC(9)"MARCH"SPC(16)"APRIL"

:rem 171

88 I=3:J=4:GOTO12 :rem 244

96 PRINT#1,CHR$(14)SPC(10)"MAY"SPC(17)"JUNE"

irem 11

98 I=5:J=6:GOTO12 :rem 249

106 PRINT#1,CHR$(14)SPC(9)"JULY"SPC(16)"AUGUST"

:rem 14

108 I=7:J=8:GOTO12 :rem 37

116 PRINT#1,CHR$(14)SPC(7)"SEPTEMBER"SPC(13)"OCTOB

ER" :rem 162

118 I=9:J=10:GOTO12 :rem 81

126 PRINT#1,CHR$(14)SPC(7)"NOVEMBER"SPC(13)"DECEMB

ER" :rem 131

128 I=11:J=12:GOTO12 :rem 125

199 PRINT#1,CHR$(15)SPC(1):CLOSE1:END :rem 194

155

Therapy
Steven Rubio

It'll never replace Freud, but "Therapy" may just cure I j

your blues. For the Commodore 64* l '

There is something fascinating about carrying on a seem- I j

ingly reasonable conversation with a machine. I still

remember the thrill when I first learned my computer could

ask me a question (WHAT IS YOUR NAME?) and remember

the answer. That thrill is what prompted me to write

"Therapy."

A Smarter Therapist
Therapy is a program that illustrates some of the basics of arti

ficial intelligence. Eliza, the computer psychotherapist, is prob

ably the most famous of all artificial intelligence programs.

Written in LISP by Joseph Weizenbaum in 1966, Eliza has

been run on computers of all sizes and types (including home

computers programmed in BASIC) ever since.

Why another version of Eliza? When written in BASIC,

Eliza is extremely slow, taking as much as ten seconds to re

spond to your comments. It seemed to me that Eliza was a bit

stand-offish for a therapist; sometimes, it seemed rather dumb

too.

The problem is that Eliza tries for too much. BASIC

searches for 50 keywords and 100 responses slow Eliza

down—and in its attempt to give meaningful responses to all

of the user's statements, it consumes a lot of time for only

occasional (if spectacular) success.

That is all right, since Weizenbaum never intended the M

program to substitute for actual therapy. But when showing

off your computer to friends at your next get-together, it might

be fun to have a program to demonstrate your machine's I I

"intelligence" beyond a shadow of a doubt. Therapy is such a *—
program. Load it up and run it the next time someone asks

you what your computer can really do. J I

156 u

Applications: 3

Therapy

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

100 PRINTCHR?(142)CHR$(8)CHR$(30):POKE53281,0:POKE

53280,0:GOSUB1230:POKE198,0 :rem 188

105 Q=0:QD=0 :rem 144

110 PRINTCHR$(147);"HELLO. I'M DR. ROM. WHAT'S YOU

R NAME?11 :rem 40

115 GOSUB1160:A$=P1$:PRINT :rem 39

120 PRINT"IN ONE WORD, M;A$;", ":PRINT"WHAT IS YOUR

PROBLEM?":GOSUB1160:B$=P1$:rem 14

130 PRINT:PRINTB$;M...?":PRINT:PRINT"CAN YOU TELL

{SPACE}ME MORE?" :rem 108

140 GOSUB1160:GOSUB900 :rem 48

150 PRINT:PRINT"I UNDERSTAND ";B$;" IS DIFFICULT":

PRINT"FOR YOU." :rem 226

160 GOSUB1160:IFP1$="NO"THENPRINT"MAYBE I'M NOT QU

ITE UNDERSTANDING ..." :rem 111

170 PRINT:PRINT"CAN YOU BE MORE SPECIFIC? HOW IS":

PRINTB$;" A PROBLEM FOR YOU?" :rem 233

180 GOSUB1160:GOSUB900 :rem 52

190 PRINT:PRINT"HOW DOES THIS MAKE YOU FEEL, ";A$;

"?":GOSUB1160:C$=P1$:rem 73

200 PRINTCHR$(147) :rem 13

205 PRINT"SO WHAT YOU'RE SAYING, ";A$;",":PRINT"IS

THAT YOUR PROBLEM WITH ";B$:rem 80

210 PRINT"IS MAKING YOU FEEL ";C$;"•":GOSUB1160

:rem 161

220 PRINT:PRINT"CAN YOU ELABORATE ON YOUR FEELINGS

?":GOSUB1160:GOSUB900 :rem 215

230 PRINT:PRINT"HAS THIS BEEN A PROBLEM FOR YOU BE

FORE? (YES OR NO)":GOSUB1160 :rem 133

240 IFPl$o"NO"THEN260 :rem 236

250 PRINT"I SEE. THEN THIS NEW SITUATION MUST BE

{2 SPACES}DIFFICULT FOR YOU.":GOTO320 :rem 81
260 PRINT:PRINT"DID YOU ALSO FEEL ";C$;" THEN?"

:rem 216

270 GOSUB1160:PRINT"TELL ME MORE." :rem 16

280 GOSUB1160:GOSUB900 :rem 53

290 PRINTCHR$(147)"I THINK WE HAVE SOMETHING HERE.

DO YOU(2 SPACES}SEE A PATTERN?" :rem 236
300 GOSUB1160:PRINT:PRINT"GO ON..." :rem 106

310 GOSUB1160:PRINT:PRINT"THIS SOUNDS DIFFICULT FO
R YOU.":GOSUB1160 :rem 240

320 PRINT:PRINT"DO YOU HAVE A PLAN TO DEAL WITH TH

IS{4 SPACES}CURRENT SITUATION?" :rem 156
330 PRINT"YES OR NO.":GOSUB1160 srem 70

340 IFPl$o"YES"THEN350 • rem 65

343 PRINT"DO YOU THINK THIS PLAN WILL BE":PRINT"SU
CCESSFUL?":GOTO360 :rem 241

157

3: Applications

350 PRINTiPRINT"WHY DON'T YOU MAKE A LIST OF POSSI

BLE{3 SPACES}SOLUTIONS, THEN." :rem 107

360 GOSUBl160:GOSUB900 :rem 52

370 FORT=1TO500:NEXTT:PRINTCHR$(147) : rein 253

380 PRINT"OKAY# WHAT SINGLE WORD BEST DESCRIBES"

:rem 192

385 PRINT"HOW YOU ARE FEELING RIGHT NOW?" :rem 223

390 GOSUB1160:D$=P1$::PRINT:PRINTD$;"...?":rem 224

400 GOSUBl160:GOSUB900:PRINT :rem 246

410 PRINT11!1 M THINKING OF DOING SOMETHING HERE.

{3 SPACES}LET'S TRY SOME WORD"; :rem 142
430 PRINT" ASSOCIATION":PRINT"AND SEE WHERE IT LEA

DS US." :rem 183

440 PRINT"WHAT DO YOU THINKCYES OR NO)?11:GOSUBl 160
:rem 236

450 IFP1$="YES"THEN490 :rem 11

460 PRINT:PRINT"YOU SEEM TO BE HAVING SOME PROBLEM

S WITHTHIS." :rem 122

470 PRINT"CAN YOU TELL ME ABOUT IT?":GOSUB1160:IFP

1$="NO"THEN840 :rem 46

480 PRINT:PRINT"I REALLY THINK A WORD ASSOCIATION

{SPACE}WOULD BE USEFUL RIGHT NOW." :rem 4

490 PRINT:PRINT"LET'S DO IT." :rem 242

500 PRINT"I'LL SAY A WORD. YOU SAY THE FIRST WORD

{SPACE}THAT COMES TO YOUR MIND." :rem 133

510 REM ***WORD ASSOCIATION*** :rem 239
520 FORT=1TO5000:NEXTT:PRINTCHR$(147);"DOG":PRINT:

GOSUBl160 :rem 204

530 PRINT:PRINT"DRINK":PRINT:GOSUB1160 :rem 241

540 PRINT:PRINT"HOME":PRINT:GOSUB1160:E$=P1$

:rem 40

550 PRINT:PRINTB$:PRINT:GOSUB1160:F$=P1$:rem 35

560 PRINT:PRINT"FEELINGS":PRINT:GOSUB1160 :rem 201

570 PRINT:PRINT"FUN":PRINT:GOSUB1160:G$=P1$

:rem 237

580 PRINT:PRINT"MOM":PRINT:GOSUB1160:I$=P1$

:rem 240

590 PRINT:PRINTC$:PRINT:GOSUB1160:J$=P1$:rem 44

600 FORT=1TO1000:NEXTT:PRINTCHR$(147) :rem 37

610 PRINT"I NOTICED WHEN I SAID HOME":PRINT"THAT Y

OU SAID ";E$;"." :rem 39

620 PRINT"DOES THIS SOMEHOW REFLECT HOW YOU FEEL

{2 SPACES}ABOUT YOURSELF?" :rem 45

630 PRINT"YES OR NO" :GOSUB1160: IFPl$o"YES"THEN650

:rem 2

640 PRINT:PRINT"IN WHAT WAY?":GOSUBl160:GOSUB900

:rem 2

650 PRINT:PRINT"HOW DOES THIS RELATE TO YOUR PROBL

EM":PRINT"WITH ";B$:rem 44

158

Applications: 3

660 GOSUB1160:GOSUB900:PRINT:PRINT"WHEN I SAID M;B

$;" YOU SAID ";F$:rem 136

670 PRINT"WHAT DO YOU THINK THIS MEANS?":GOSUBl160

:GOSUB900 :rem 112

680 PRINTI PRINT"ARE YOU DISTRESSED? DO YOU WANT A
{7 SPACES}TISSUE?":GOSUB1160 :rem 237

690 IFP1$<>"YES"THEN710 :rem 73

700 PRINT"HERE.":FORT=1TO1000:NEXTT :rem 206

710 PRINT:PRINT"IT'S INTERESTING THAT WHEN I SAID

{SPACE}FUN,{2 SPACES}YOU SAID ";G$:rem 57
720 GOSUB1160:GOSUB900:PRINTCHR$(147);"HMMMM..."

:rem 110

730 PRINT: PRINT "IT SEEMS TO ME, ";A$;V :rem 248

735 PRINT"THAT THIS ALL TIES IN TO YOUR PROBLEM"

:rem 129

740 PRINT"WITH "; B$:rem 73

750 GOSUB1160:GOTO770 :rem 245

760 REM ***DREAMS*** :rem 57

770 PRINT:PRINT"LET'S TRY A DIFFERENT": PRINT "APPRO

ACH,";A$:rem 145

780 PRINT"TELL ME ABOUT ONE OF YOUR DREAMS.":GOSUB

1160:GOSUB1040:IFQD=1THEN840 :rem 246

790 PRINT:PRINT"HOW WOULD YOU DESCRIBE YOUR FEELIN

GS{4 SPACES}IN THE DREAM?" :rem 171

795 GOSUB 1160 :rem 237

800 PRINT:PRINT"DID THE DREAM HAVE ANYTHING TO DO

{SPACE}WITH{2 SPACES}";I$:rem 235

810 GOSUB1160:FORT=1TO1000:NEXTT :rem 245

820 REM ***ALL DONE*** :rem 121

830 PRINT:PRINT"I THINK WE'RE MOVING IN A

{15 SPACES}GOOD DIRECTION.":PRINT :rem 187
840 PRINT"WE'VE DISCUSSED YOUR PROBLEM WITH":PRINT

B$;" AND HOW THIS MAKES YOU :rem 255

850 PRINT"FEEL ";C$;";" :rem 230

860 PRINT"AND DISCUSSED SOME POSSIBLE SOLUTIONS."

:rem 124

870 PRINT:PRINT"I SEE YOUR TIME IS UP.{18 SPACES}S

EE YOU NEXT WEEK." :rem 189

880 END :rem 119

890 REM ***KEYWORDS*** :rem 249

900 IFQ>0THENRETURN :rem 246

910 FORJ=lTOLEN(Pl$)-5 :rem 19

920 IFMID$(P1$,J,5)<>" FUN "THEN930 :rem 103

925 PRINT:PRINT"WHAT ARE YOUR FEELINGS ABOUT FUN?"

:GOTO950 :rem 148

930 NEXTJ :rem 37

940 RETURN : rem 125

950 GOSUB1160:Q=1:PRINT:PRINT"THESE FEELINGS SEEM
{SPACE}IMPORTANT." :rem 141

960 GOSUB1160:RETURN :rem 1

159

LJ
3: Applications

1040 REM ***DREAM KEYWORD SEARCH*** :rem 233 t i

1050 FORJ=lTOLEN(Pl$)-7 :rem 65 LJ
1060 IFMID$(P1$,J,7)=" DON'T "THEN1120 :rem 243

1070 NEXTJ :rem 81

1080 FORJ=lTOLEN(Pl$)-6 :rem 67 | |
1090 IFMID$(P1$,J,6)=" DONT "THEN1120 :rem 206 '—'
1100 NEXTJ :rem 75

1110 RETURN :rem 163 , j

1120 PRINTCHR$(147)MWHY DO YOU SUPPOSE THAT IS?":G | j

OSUB1160:GOSUB900 :rem 27

1130 PRINT"THIS MAY BE SOMETHING THAT WE'LL WANT"

:rem 176

1140 PRINT"TO DISCUSS LATER. WE MAY FIND THAT IT"

:rem 112

1150 PRINT"RELATES TO YOUR PROBLEM WITH ";B$:QD=1:

RETURN :rem 223

1160 REM ***COMMODORE PUNCTUATION INPUT*** 2rem 55

1170 Pl$="" srem 239

1180 GETP2$:IFP2$=""THEN1180 :rem 57

1190 PRINTP2$; •rem 57

1200 IFP2$=CHR$(13)THENRETURN :rem 250

1210 P1$=P1$+P2$ srem 28

1220 GOTO1180 :rem 200

1230 REM ***INTRODUCTION*** :rem 72

1240 PRINTCHR$(147); TAB (15) "THERAPY" :rem 108

1250 PRINT:PRINT"WOULD YOU LIKE AN INTRODUCTION (Y

/N)" :rem 101

1260 GETQ$:IFQ$o"Y"ANDQ$<>"N"THEN1260 :rem 191

1270 IFQ$="N"THENRETURN :rem 172

1280 PRINTCHR$(147);"WELCOME TO YOUR THERAPY SESSI

ON. DR. ROM"; :rem 31

1285 PRINT"WILL BE WITH YOU IN A "; :rem 172

1290 PRINT"MOMENT. WHILE YOU ARE WAITING, HERE ARE

SOME HELPFUL" :rem 104

1300 PRINT"SUGGESTIONS ON HOW TO GET THE MOST OUT

{2 SPACES}OF YOUR THERAPY SESSION." srem 109

1305 PRINT:PRINT srem 29

1310 PRINT"AS WITH MOST THINGS IN LIFE, WITH

{7 SPACES}THERAPY, THE MORE YOU "; srem 42

1320 PRINT"PUT IN, THE MORE[2 SPACES}YOU GET OUT.

{SPACE}YOU MAY FIND IT FUN "; srem 48

1322 PRINT "TO TRY AND TRIP "; srem 136

1330 PRINT"UP THE DOCTOR; MAKE FUN OF HIS GRAMMAR,

OR INSULT HIM MERCILESSLY." srem 175

1340 PRINT"{DOWN}HOWEVER, EVEN THOUGH THIS IS A PA
RLOR{3 SPACES}GAME, YOU MAY STILL FIND ";

srem 230

1350 PRINT"YOURSELF HAVINGINTERESTING, AND EVEN IM

PORTANT," srem 51

160

Applications: 3

0

n

n

1360 PRINT"INSIGHTS. THIS WILL ONLY HAPPEN IF YOU

{2 SPACES}TRY YOUR BEST TO UTILIZE ";:rem 172
1370 PRINT"THIS SESSION ASAN ENJOYABLE WAY TO MULL

OVER THE" :rem 159

1380 PRINT"PROBLEMS AND PEEVES OF LIFE." :rera 127

1390 PRINT:PRINT:PRINTCHR$(18)"HIT ANY KEY TO CONT

INUE" :rem 165

1400 POKE198,0:WAIT198,1 :rem 96

1410 PRINTCHR$(147):PRINT:PRINT"I SEE THE DOCTOR I

S IN NOW." :rem 58

1420 PRINT:PRINT:PRINT"TO TALK TO DR. ROM, JUST TY

PE IN YOUR" :rem 228

1430 PRINT"RESPONSE; AND HIT ";CHR$(18);"RETURN";C

HR$(146);" WHEN YOU ARE" :rem 254

1440 PRINT"FINISHED.":PRINT:PRINT:PRINT"ENJOY YOUR

THERAPY SESSION." :rem 238

1450 PRINTSPC(240);CHR$(18);"HIT ANY KEY TO BEGIN"

:rem 87

1460 POKE198,0:WAIT198,1:RETURN :rem 128

D

0

D

ti

in 161

u

The Indexer
Dan Carmichael

U

Designed to provide an indexing system for articles in ; j

COMPUTERS Gazette, this program can be used for a *—'

variety of purposes. It runs on any VTC-20 and the

Commodore 64- ((

If you're like many computer hobbyists, you keep your back

issues of COMPUTE! and COMPUTE'S Gazette. There's a

wealth of reference material in each issue. The only problem is

remembering just which issue contains that article you so des

perately need.

"The Indexer" is a small data base program that allows

you to keep an index of any articles or books that are of in

terest to you. It stores such information as the magazine (or

book) name, subject matter, article title, month and year of

issue, page number, and type of computer the article applies

to. It can also search for that article by subject, article name,

magazine name, and type of computer.

Storing Data in the Program
The Indexer is machine-independent. In other words, it does not

rely on a peripheral device such as a tape cassette or disk

drive. Information is read into the program from DATA state

ments and is stored within the program in an array. If you

study it carefully, you'll see some useful array and table look

up techniques.

Each DATA statement you enter must include the follow

ing six elements, in order, and each entry should be separated

from the others by a comma., pVghou JIao^a V
DATA magazine narrTe, article title, Subject, month, yea/, page
number, type of computer^j^

Be careful w'fien entering the DATA statements. A mis
placed or forgotten comma will cause errors when the pro

gram is run. Be sure not to use commas or colons when typing

in the article titles.

How to Use The Indexer
Type in the program (be careful with all cursor control charac

ters) and save it to tape or disk before running. The five

DATA statements at the end of the program are optional, in-

162

n
Applications: 3

n

fS eluded only as examples of the DATA statement format. If you

J wish to begin your own data base, you can replace the DATA
statements from line 901 on.

f*l Each time you add or delete DATA statements from the

- program, change the value of the variable N in line 900. This

variable represents the exact number of DATA statements in-

j"*^ eluded. If you number consecutively, beginning at line 901, it

' -! will be easy to figure out how many DATA statements there
are. Anytime you update your program, you should save a

copy to tape or disk.

Once the program is running, you'll be prompted to select

the target of your search. You can search for article subject,

article name, name of magazine, or type of computer. To start

the search, press the indicated function key. You'll then be

asked for the target of your search. Just enter the search

keyword, press RETURN, and the program will search the

table for you.

If you're using the program with an unexpanded VIC,

memory may become a problem as you add DATA statements.

String arrays—the kind used in this program to store data—

use a lot of memory. In addition, each of the DATA state

ments takes up six bytes, plus one byte per character. If you

accumulate a lot of data, an expander cartridge will come in

handy.

Tips for Data Entry
Subject: Your searches will usually be done by article subject,

so keep this category as broad as possible. For example, let's

say you want to index various articles about game paddles.

Enter all of them with the subject "paddles," even if some are

f-1? about drawing with paddles and others about using them in

' (games. That way, when you enter "paddles" as the target of
your search, the index of all articles on this subject will be

pi displayed.

■ Spelling: Watch your spelling, and be consistent with your

subject category names. For example, don't enter one subject

p-\ as "paddle" and another as "paddles." The computer will see

'. -■ these as two completely different categories.

Memory: As stated before, The Indexer can use a lot of

r"S memory, so you might want to abbreviate article titles. For

' ■ example, this article could be entered as "Indexer" or as "Ind."

Although this program was written as an article index, it

n - 163

3: Applications

u

can be adapted for other uses. The data base has six elements , i

and can search by any of four variables. It could be easily LJ
adapted for other uses, such as a birthday reminder or an elec

tronic phone book. The applications are up to you. i ,

uJ
The Indexer for VIC and 64

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix G , ,

1 REM REMEMBER TO CHNG{2 SPACES}"N", LINE #900 WHE { 1
N{3 SPACES}ADDING/DELETING DATA{2 SPACES}STATEME
NTS :rem 63

10 PRINT"{CLR}{BLU}{DOWN} DO YOU WISH TO SEE THE M
ENU?": PRINT "{DOWN} (PRESS Y OR N)11 : rem 215

20 POKE53280,3:POKE53281,1:POKE646,6 :rem 38

21 GETY$:IFY$=""THEN21 :rem 25

25 IFY$="Y"THEN800 :rem 20

29 PRINT"{3 DOWN}{5 SPACES}LOADING DATABASE•..PLEA

SE WAIT.":GOSUB900 :rem 156

30 S=0:PRINT"{CLR}{DOWN} ENTER SEARCH"TAB(33)"

{GRN}PRESS":PRINT"{BLU} ARGUMENT"TAB(33)"{GRN}F

-KEY" -klepkoH-e ^vnfcer :rem 92
print"{blu}{2 down} article subject"tab(35)"

{GRN}1" -f>W<.i vnawi^ :rem 177
36 PRINT"{BLU}{DOWN} ARTICLE NAME"TAB(35)"{GRN}3"

/tf«o~f v*wvC- :rem 180
\ PRINT"{BLU}{DOWN} MAGAZINE; NAME"TAB(35)"{GRN}5"

* » f> c^rfg :rem 255
138 PRINT"{BLU}{DOWN} TYPE OF COMPUTER"TAB(35)"

{GRN}7" :rem 219
39 PRINT"{BLU}{DOWN} END PROGRAM"TAB(35)"{GRN}8"

:rem 134

40 GETX$:rem 192

41 IFX$="{F1}"THENS=3 :rem 104
42 IFX$="{F3}"THENS=2 srem 105

43 IFX$="{F5}"THENS=1 srem 106
44 IFX$="{F7}"THENS=6 :rem 113
45 IFX$="{F8}"THENPRINT"{CLR}{DOWN} END PROGRAM":C

LR:END :rem 64

46 IFS=0THEN40 : rem 76

60 PRINT"{CLR}{DOWN} ENTER SUBJECT OF SEARCH:
{2 DOWN}":INPUTS? 2rem 81

65 FORZ=1TON:IFA$(Z#S)=S$THENGOSUB300 :rem 89
70 NEXTZ :rem 0

75 PRINT"{CLR}{DOWN} END OF DATA OR{DOWN}":PRINT"
{SPACE}SUBJECT NOT FOUND{DOWN}" :rem 178

76 PRINT" (CHECK SPELLING){2 DOWN}" :rem 109

77 GOSUB600:GOTO30 :rem 90 i

300 PRINT"{CLR}{GRN} SUBJECT FOUND:{2 DOWN}":PRINT ! J
"{YEL}MAGAZINE:{BLU}":PRINTA$(Zfl) :rem 127

164 LJ

Applications: 3

n

n

305 PRINT" { DOWN} { YEL}jARTICLE£ { BLU} " : PRINTA$ (Z, 2)

^fidty&ff :rem 170

310 PRINT"tDOWN}{YEL}SUBJKCTj{BLU}ll:PRINTA$(Z#3) :P
RINT" {DOWN} { YEIJbS^^.U } " : PRINTA? (Z, 4)

315 PRINT"{DOWN}{YEL}PAGE NO.:{BLU}":PRINTA$(Z,5)

ijp ?0<ls> srem 146
320 PRINT"{DOWN}{YEL}COMPUTER:{BLU}":PRINTA$(Z#6)

:rem 22

330 GOSUB600:RETURN :rem 198

600 PRINT"{GRN}{DOWN} (PRESS RETURN){BLU}":rem 115
601 GETY$:IFY$=""THEN601 :rem 129

602 RETURN : rem 120

"800 PRINT"{CLR}{GRN}{DOWN} RECORD FORMAT:":PRINT"
{DOWN } {BLU } 1) MAGAZINE NAME 2- la$\ ^^ : rem 239

805 PRINT" {DOWN}2) NAME OF ARTICLE Ut **^ : rem 114
810 PRINT " {DOWN} 3) SUBJECT? OF ARTICLJE " : PRINJIi * ft*

{DOWN} 4) MONTH. YEAR" <*£Q'if<* , —~' """Trem 222
815 PRINT" {DOWN}5 ^^AQB^NO.11!PRINT"{DOWN)6) TYPE O

F COMPUTER" & % cuj'^^' :rem 135
820 PRINT" {YEL} {2 DOM} SEPARATE EACH ENTRY BY A C

OMMA{BLU}" :rem 139

830 GOSUB600 :rem 177

840 PRINT"{CLR}{DOWN}WHEN PROMPTED TO ENTER SEARCH

ARGUMENT" :rem 232

850 PRINT"{DOWN}PRESS F KEY FOR DESIRED FUNCTION"
:rem 136

860 GOSUB600 :rem 180

870 PRINT"{CLR}{DOWN}WHEN PROMPTED TO ENTER SUBJEC

T OF" :rem 119

880 PRINT"{DOWN}SEARCH, ENTER NAME, THEN PRESS RET

URN." :rem 249

885 GOSUB600 :rem 187

890 GOTO10 :rem 59

900 N=5:DIMA$(N#6):FORR=1TON:FORC=1TO6:READA$(R, C)

:NEXTC:NEXTR:RETURN :rem 190

901 DATAGAZETTE,DO YOU NEED A CASSETTE RECORDER,CA
SSETTE,7.83,28,ALL :rem 178

902 DATAGAZETTE,COMMODORE64 VIDEO UPDATE,VIDEO,7.8

3,40,64 :rem 3

903 DATAGAZETTE,INSIDE VIEW JIMMY HUEY,INTERVIEW,7

.83,49,ALL :rem 49

90/4 DATAGAZETTE,SKYDIVER,GAME,7.83,52,ALL :rem 66\
905 DATAGAZETTE,COMPUTING FOR KIDS ADVENTURES,EDUC

ATION,7.83,34,ALL :rem 29

165

Chapter 4

Graphics

andSound

H

H VIC Hi-Res Sketchpad
Anthony T. Beville

"Hi-Res Sketchpad" lets you create interesting drawings

and pictures^ using your joystick to draw on a 128 X

— 128 bit screen. For the unexpanded VIC.

With this program, you will be able to create simple pic

tures using your VIC and a joystick.

When the program is run, you are asked to set screen,

border, and line colors. Then a drawing window and a blink

ing pixel will appear. The joystick controls the pixel's move

ment; pressing the fire button will leave behind a line.

If you want to clear the screen, press C. When you want

to quit, press Q and the screen and memory will be set back to

normal.

I got the idea for a high-resolution sketch program from

Paul Schatz's article "High-Resolution Plotting" in COM-

PUTEl's First Book of VIC. Basically, the program works by fill

ing the screen with programmable characters and then

redefining them based on the joystick movement.

While this program won't let you create any complex

masterpieces, it will let you have fun just doodling. If you

have a printer capable of printing redefined characters, you

might want to add C. D. Lane's "Printing the Screen" routine

from COMPUTE'S First Book of VIC to save your creation.

Hi-Res Sketchpad for the VIC

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 POKE52,22:POKE56,22:CLR:PRINTCHR$(147) :rem 187

20 INPUT "LINE COLOR(1-8)";LC:IFLO8ORLC<1THEN20

:rem 138

30 INPUT "SCREEN COLOR(1-8) " ; SC: IFSO8ORSC<1THEN30

:rem 57

40 INPUT"BORDER COLOR(1-8)11; BC:IFBC>8ORBC<1THEN40

:rem 6

50 LC=LC-l:BC=BC-l:POKE36879,SC*16-8+BC :rem 223

60 POKE36869,208:POKE648,22:FORJ=217TO228:POKEJ,15

0:NEXT:FORJ=229TO250:POKEJ,151:NEXT :rem 227

70 POKE36864,11:POKE36865,34:POKE36866,144:POKE368

67,32:POKE36869,222 :rem 181

80 PORI=0TO255:POKE5632+I,I:POKE38400+I,LC:NEXT

:rem 118

85 X=64:Y=64 :rem 166

169

4: Graphics and Sound
u

L!

90 FORI=6144TO8191:POKEI,0:NEXT :rem 162 i i

100 GOSUB500:DX=0:DY=0:IFJ0THENDX=1 :rem 169 1 !
110 IFJ1THENDY=1 :rem 214

120 IFJ2THENDX=-1 :rem 4

130 IFJ3THENDY=-1 :rem 7 [|
140 X=DX+X:Y=DY+Y : rem 58 u-J
150 A=INT(Y/8)*16+INT(X/8) :rem 199

160 B=(Y/8-INT(Y/8))*8:C=6144+8*A+B :rem 118 (,

170 D=7-(X-INT(X/8)*8):POKEC,PEEK(C)OR(2tD) :rem 7 | 1
180 IFFB=0THENPOKEC#PEEK(C)-(2tD) :rem 245
190 A$=M":GETA$:rem 255

200 IFA$="CMTHEN90 :rem 226

210 IFA$="Q"THEN220 :rem 28

215 GOTO100 :rem 98

220 POKE36864,5:POKE36865,25:POKE36866,150:POKE368

67,46:POKE36869,208:POKE36879,27 :rem 202

230 PRINTCHR$(147):POKE52,30:POKE56,30:END:rem 227

500 POKE37154,127:P=PEEK(37152)AND128:J0=-(P=0)

:rem 103

510 POKE37154#255:P=PEEK(37151):Jl=-((PAND8)=0)

:rem 88

520 J2=-((PAND16)=0):J3=-((PAND4)=0) :rem 157

530 FB=-((PAND32)=0):RETURN :rem 59

170

U

u

Lj

U

U

SDA: A Sprite Design Aid

for the Commodore 64
Karl Dittman

"Sprite Design Aid" is a useful graphics utility that

allows you to create sprites by drawing on the screen

with your joystick. The resulting sprites can then be

saved, and later modified, if desired.

* * ^^ prite Design Aid" lets Commodore 64 users create
^5 complex sprites by drawing directly on the screen.

The program then reads the screen and calculates the values

that define the sprite. The sprite appears on the screen, and

the programmer has the option of saving the data for later use

or modification.

Using Sprite Design Aid
After you load and run the program and review the instruction

screen, press any key to enter the main program. A red box

with a cursor will appear, and you are ready to design your

sprite.

Draw your sprite using a joystick plugged into port 2. To

erase any part of your sprite, press the fire button as you

move the cursor.

When you're finished, press any key. The sprite DATA

statements will be calculated and displayed and can then be

saved on disk under any filename you assign.

The screen will be saved in a sequential file using the

name you assign followed by "SC". The program uses the

"SC" file to recreate the sprite whenever you wish to make

changes; it's transparent to the user. One word of warning:

When using a second disk to save your sprites, be sure that it

has a different disk ID than your main program disk.

If you feel that you will not want to change your sprite,

then the "SC" file can be deleted. Once deleted, however,

your sprite cannot be re-created by this program. If in doubt,

leave it intact.

171

4: Graphics and Sound

Using the DATA
To use sprite DATA saved on disk, include the following

statements in your program (preferably at the beginning):

10 DIM Sl(62): REM ARRAY USED TO STORE THE

SPRITE DATA STATEMENTS

20 OPEN 2,8,2,"SPRITE": REM (YOUR ASSIGNED FILE

NAME)

30 FOR S=0 TO 62 : INPUT #2,S1(S): NEXT S

40 CLOSE 2

If more than one sprite is used, then DIMension arrays

S2, S3, and so on as required. You will also have to change

the filename in line 20 and the array name in line 30 for every

array used to contain sprite DATA.

Additional statements can be added between lines 30 and

40 for each sprite used. After the array has been loaded, it is

used instead of the DATA statements and corresponding READ.

How the Program Works

Line(s)

15-115 Read screen and assign sprite DATA values.

120-128 Capture screen in array SS for storage on disk.

200-275 Display sprite as it will appear in program.

280-299 Disk file SAVE routine.

500-730 Joystick movement and sprite design.

800-1000 Subroutine to print instructions.

2000-2075 Subroutine to load array SS to recall previously designed

sprite for modification.

3000-3110 Subroutine to bring previously saved sprite back to the

screen.

SDA, A Sprite Design Aid for the Commodore 64

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

1 POKE53280,1:POKE53281,1:GOSUB800 :rem 218

2 DIMS(64),SS(504):PRINT"{CLR}":GOSUB2000 :rem 240
4 PRINT"{CLR}M:BD=102:FORI=1028TO1868STEP40:POKEI,

BD:POKEI+54272,10:NEXT :rem 255

5 FORI=1908TO1933:POKEI,BD:POKEI+54272,10:NEXT

:rem 50

6 FORI=1933TO1052STEP-40:POKEI,BD:POKEI+54272,10:N

EXT :rem 246

9 FORI=1052TO1028STEP-1:POKEI,BD:POKEI+54272,10:NE

XT :rem 193

172

n

H

n

Graphics and Sound: 4

n

10 PRINTCHR$(144);M{HOME}": FORI=1TO21:PRINTI:NEXT

:rem 210

12 PRINT:PRINT"PRESS ANY KEY WHEN SPRITE IS COMPLE

TE." srem 133

13 IF LEFT$(A$,1)="Y" THEN GOSUB3000 :rem 161

14 GOSUB500:DIMY3(64) srem 213

15 X=1076 srem 201
20 FORI=XTOX-7STEP-1 :rem 32

30 IFPEEK(I)<>32THENY=2t(X-I) :rem 4
40 IFPEEK(I)<>32THEN Y2=Y2+Y :rem 151
50 NEXTI srem 237
60 Y3(T2)=Y2:Y2=0 srem 195
70 T2=T2+1 srem 12

80 C=C+1 srem i35

90 IFC<>3THENX=X+8:GOTO 115 srem 113

100 X=X+24 srem 15

105 LN=LN+1 :rem 99

108 PRINT" {HOME}11 :rem 125

109 FOR I=1TO22:PRINT"{DOWN}";:NEXT:PRINT"I'M WORK

ING PLEASE WAIT " :rem 228

110 C=0 :rem 66

115 IF X<1932THEN20 :rem 26

120 T2=0:X=1069 :rem 37

122 FORI=XTOX+23 :rem 229

123 T2=T2+1 :rem 59

124 IFPEEK(I)<>32THENSS(T2)=1 :rem 222

125 IFPEEK(I)=32THENSS(T2)=0 :rem 161

127 NEXT I :rem 34

128 X=X+40 : IFT2<504THEN122 :rem 255

129 PRINT" {CLR}11 :rem 0
;:FOR I=0TO10:PRINT Y3(I);:NEXT:P

:rem 253

135 PRINT "DATA ";:FOR 1=11TO20:PRINT Y3(I);:NEXT:

PRINT :rem 53

140 PRINT "DATA ";:FOR I=21TO30:PRINT Y3(I);:NEXT:

:rem 51

;:FOR I=31TO40:PRINT Y3(I);:NEXT:

:rem 58

150 PRINT "DATA ";:FOR I=41TO50:PRINT Y3(I);:NEXT:

PRINT :rem 56

155 PRINT "DATA ";:FOR 1=51TO62:PRINT Y3(I);:NEXT:

:rem 65

srem 31

206 PRINT"THE SPRITE YOU HAVE JUST DESIGNED WILL

{2 SPACES}LOOK LIKE THIS." :rem 195

210 V=53248 :rem 44

220 POKEV+21,0 :rem 3

230 T=13sM=T*64 :rem 54

240 POKE V,160:POKEV+1,200 :rem 183

130 PRINT "DATA

RINT

PRINT

145 PRINT "DATA

PRINT

PRINT

200 PRINT

173

4: Graphics and Sound

250 POKEV+23,1:POKEV+29,1

260 POKEV+39,2

265 POKE 2040,T

270 POKEV+21,1

275 FORI=0TO62:POKE832+I,Y3(I):NEXT

:rem 187

:rem 18

:rem 18

:rem 9

:rem 139

280 PRINT:PRINT"DO YOU WISH TO SAVE THE SPRITE ON

{SPACE}DISK{2 SPACES}(Y OR N)m : INPUT K$
:rem 33

281 IF LEFT$(K$,1)="N" THEN GOTO 299 :rem 113

282 PRINT"{CLR}"B$:PRINT"ENTER FILE NAME OF SAVED

{SPACE}SPRITE ": INPUT N$:N2$=N$:rem 216

283 PRINT "DO YOU WISH TO REPLACE AN EXISTING FILE

11: INPUT A$:rem 33

284 IF LEFT$(K$,1)="Y"THENGOSUB3400 :rem 233

285 OPEN15,8,15 :rem 45

290 IFLEFT$(A$,1)="Y"THENOPEN 2,8,2,"@0:"+N$+",S,W

11 :rem 227

292 INPUT#15,A,B$:rem 181

294 IFLEFT$(A$,1)="N"THENOPEN 2,8,2,"0:"+N$+",S,W"

:rem 156

295 INPUT#15,A,B$:rem 184

296 IFA=63THENCLOSE2:CLOSE15:GOTO282 :rem 19

297 FOR I=0TO62: PRINT#2,Y3(I):NEXT :rem 49

298 CLOSE2:CLOSE15 :rem 97

299 FOR I=0TO62:POKE832+If0:NEXT :rem 155

300 GOTO 3500 :rem 148

500 X=1524:J=56320:B=160 :rem 7

510 POKEX,81 :rem 178

520 X2=X :rem 182

525 LETB=0 :rem 48

526 S2=PEEK(56320)AND15 :rem 14

527 A=-((PEEK(56320)AND16)=0) :rem 8

530 IFS2=6ANDPEEK(X-39)<>BDTHENX=(X-39):GOTO610

:rem 105

540 IFS2=5ANDPEEK(X+41)<>BDTHENX=(X+41):GOTO610

:rem 87

550 IFS2=10ANDPEEK(X-41)<>BDTHENX=(X-41):GOTO610

:rem 136

560 IFS2=9ANDPEEK(X+39)<>BDTHENX=(X+39):GOTO610

:rem 107

570 IFS2=7ANDPEEK(X+1)OBDTHENX=X+1:GOTO610

:rem 163

580 IF S2=14 THEN X=X-40:GOTO610 :rem 10

590 IF S2=13 THEN X=X+40:GOTO610 :rem 8

600 IFS2=11ANDPEEK(X-1)<>BDTHENX=X-1 :rem 194

610 IFX>1909 AND X<=1932 THEN X=X-40 :rem 175

620 IF X>1029 AND X<1052 THEN X=X+40 :rem 99

630 IF X<1069 THEN X=1069 :rem 32

640 IF X>1892 THEN X=1892 :rem 43

650 POKEX,160 :rem 229

174

u

u

u

u

u

u

u

u

u

Graphics and Sound: 4

660 IFAol THENPOKEX2+54272,A :rem 155

670 POKEX+54272,14 :rem 228

680 IF A=l THENPOKEX,32 :rem 35

690 GETA$:IFA$<>MIITHEN730 :rem 153

720 GOTO 520 2rem 105

730 RETURN :rem 122

800 PRINT"{CLR}{BLK}M;"{12 SPACES}SPRITE DESIGN AI

D" :rem 106

806 PRINT"THIS PROGRAM ALLOWS YOU TO USE A "

:rem 95

808 PRINT"JOYSTICK TO DESIGN SPRITES.":PRINT

:rem 93

810 PRINT"MOVE YOUR JOYSTICK IN ANY DIRECTION TO"

:rem 35

811 PRINTnDRAW SPRITE DESIRED. IF YOU NEED TO M

:rem 233

820 PRINT"ERASE ANY PART OF THE PICTURE THEN HOLD"

:rem 226

830 PRINT"THE FIRE BUTTON DOWN AS YOU DRAW.":PRINT

:rem 59

850 PRINT"PRESS RETURN WHEN YOUR SPRITE IS"

:rem 207

851 PRINT"FINISHED.{2 SPACES}THE COMMODORE WILL TH

EN" :rem 212

860 PRINT"GENERATE THE DATA STATEMENTS FOR THE":PR

INT"SPRITE YOU DESIGNED." :rem 213

870 PRINT:PRINT"YOU CAN SAVE THE DATA STATEMENTS O

N" :rem 213

875 PRINT"DISK BY ANSWERING 'Y' WHEN ASKED IF YOU"

:rem 182

880 PRINT"WOULD LIKE TO SAVE YOUR SPRITE ON DISK."

:PRINT :rem 214

890 PRINT"YOU CAN RECALL THE SPRITE AT ANOTHER

{4 SPACES}TIME WHENEVER YOU NEED TO ";:rem 220

900 PRINT"USE IT.":PRINT :rem 233

980 PRINTCHR$(31)"PRESS ANY KEY TO BEGIN.":rem 188

990 GETA$:IFA$=""THEN990 :rem 103

1000 RETURN :rem 161

2000 PRINT "WOULD YOU LIKE TO CHANGE A SPRITE NOW"

:rem 149

2010 PRINT"STORED ON DISK (NO IS ASSUMED)":A$="N":

INPUTA? srem 102

2020 IF LEFT$(A$,1)="N" THEN RETURN :rem 147

2030 PRINT"ENTER THE NAME OF THE SPRITE DISK FILE"

:INPUT N$:N2$=N$:N$=N$+"SC" :rem 215

2040 OPEN15,8,15 :rem 84

2050 OPEN2,8,2,"0:"+N$+",S,R" :rem 208

2055 INPUT#15,A,B$:IFA<>62THEN2060 :rem 199

175

4: Graphics and Sound

2056 IFA=62THENPRINT"{CLR}{4 DOWN}FILE NOT FOUND "
:PRINT"{2 SPACES}PRESS ANY KEY TO START OVER

:rem 90

2057 GETA$:IFA$=""THEN2057 :rem 191

2058 CLR:RUN2 :rem 17

2060 FORI=1TO504:INPUT#2,SS(I):NEXT :rem 166

2070 CLOSE2:CLOSE15 :rem 135

2075 RETURN :rem 174

3000 X=1069 :rem 40

3010 FORI=XTOX+23 :rem 20

3011 T2=T2+1 :rem 106

3012 IFSS(T2)=1THEN POKEI,160 :rem 170

3015 IFSS(T2)=1THEN POKEI+54272,0 :rem 117

3020 IFSS(T2)=0THEN POKEI,32 :rem 118

3030 NEXT I :rem 78

3040 X=X+40 :rem 67

3050 IFT2<504THEN3010 :rem 165

3100 T2=0:C=0 :rem 161

3110 RETURN :rem 165

3400 OPEN15,8,15 :rem 85

3410 N$=N$+"SC" :rem 238

3420 IFLEFT$(A$,1)="Y"THENOPEN 2,8,2,"@0:"+N$+",S,

W" :rem 17

3430 INPUT#15,A,B$:rem 226

3440 IFLEFT$(A$,1)="N"THENOPEN 2,8,2,"0:"+N$+",S,W

:rem 200

3450 INPUT#15,A,B$:rem 228

3460 IFA=63THENCLOSE2:CLOSE15:GOTO282 :rem 63

3470 FORI=1TO504:PRINT#2,SS(I):NEXT :rem 169

3480 CLOSE2:CLOSE15 :rem 141

3485 N$=N2$:rem 39

3490 RETURN : rem 176

3500 INPUT "WOULD YOU LIKE TO DRAW ANOTHER SPRITE"

;A$:rem 162
3510 IF LEFT$(A$,1)="Y"THENCLR :RUN2 :rem 5

3520 END :rem 161

176

Multichar
John S. Graves

r-^l How; would you like a multicolor character editor that

! I offers high-resolution characters, joystick control, and
many other options—all on your unexpandedVIC?

<•—1 Look no further. Here it is.

Designing multicolor or high-resolution characters on your

VIC is easy if you let the computer do the dirty work.

"Multichar" is a menu-driven BASIC program for the un-

expanded VIC which helps you design 16X16,16X8, and

8X8 custom characters. You design the character in a large

plotting area on the screen, using the joystick. The character is

simultaneously displayed in actual size below the plotting

area, while the values you need to generate it are displayed to

the side.

Entering the Program
To fit Multichar into the unexpanded VIC, the program had

to be "crunched" by using BASIC statement abbreviations

and eliminating spaces and remarks. Some lines are more

than 88 characters long and will not execute unless abbrevi

ations are used. Refer to your owner's manual for a list of the

abbreviations.

Integer arrays are used instead of floating-point arrays to

minimize variable storage requirements. IF statements are lo

cated, whenever possible, at the end of a line to avoid sacrific

ing a whole line for one logical statement, and colons are

extensively used to combine statements on one line. Only 32

free bytes remain after the program has allocated storage for

variables and character generation. Unfortunately, this isn't

enough for an additional line to allow an eloquent exit from

the program; you must press the RUN/STOP key to stop

execution.

Make sure you use upper- and lowercase letters when you

type in the color selection menu (lines 37-42). Otherwise, the

menu will be unreadable when the program runs in multicolor

mode.

177

4: Graphics and Sound

Multicolor Mode
Each character in multicolor mode may contain four colors

(screen, border, auxiliary, and character color). Since 16 X 16

characters are actually made up of four 8X8 characters, you

can choose a different character color for each quadrant,

resulting in a 16 X 16 character that contains seven colors.

Screen, border, and auxiliary colors are set by the color

selection menu, which appears after you press M for multi

color mode. Character colors should be set for each quadrant

when the large display area appears. You may choose the

same character color for different quadrants.

A function key is referenced at each corner of the large

display. Press the key for the quadrant you want and then

press a number (1-8) to set the character color.

Once you've set all the colors, you're ready to be creative.

The joystick moves the cursor, which represents a pixel. In

multicolor mode the cursor is double-wide, since it takes two

bits to define the color of a pixel. Press B, C, or A to turn on

the pixel in the border, character, or auxiliary color. Press S to

turn off the pixel by changing its color to the screen color. As

you turn on pixels they will appear at 8X magnification on

the large display, and at actual size on the small display be

low. The values you will need to generate the custom charac

ter in your own program or game are calculated automatically

and appear as you turn on a pixel.

The first eight numbers on the left define the upper left-

hand 8X8 quadrant. The next eight numbers on the left define

the lower left-hand quadrant. Numbers for the two right-hand

quadrants appear on the right.

High-Resolution Mode
The VIC's high-resolution mode allows only two colors per

8X8 character (screen and character). You lose two colors,

but the horizontal resolution is twice that of multicolor mode.

As before, you may set the character color for each quadrant

to a different value. That will give you a 16 X 16 five-color

(counting screen color) character.

Instead of using the keyboard to turn on a pixel, you

simply press the fire button on the joystick. If you want to

turn off a pixel, position the cursor over it and press the fire

button again.

178

Graphics and Sound: 4

How the Program Works
The following program outline should help you understand

the program's logic and structure.

Line(s)

1-2 Protect upper 512 bytes of BASIC area for RAM character

memory. Initialize variables.

3-8 Joystick subroutine.

10-21 Subroutine to calculate character memory values for custom

characters and generate small, actual-size display.

24-31 Set character colors subroutine. Press fl, f3, f5, or i7 fol

lowed by 1 to 8 to set the character color for each 8X8

quadrant.

32-35 Main menu to select multicolor or high-resolution mode.

37-49 Color selection menu for multicolor mode. Uses joystick

subroutine.

50-56 Set screen, border, and auxiliary colors based on menu.

57-58 Transfer characters A-? from ROM to RAM. Assign @ to

cursor. Transfer character-color bar symbols, CHR$(239) and

CHR$(247), to CHR$(27) and CHR$(29) locations in RAM.

Change character memory starting address to RAM location

7168.

59-61 Draw the large 8X magnified display. Draw auxiliary color

bar at top of screen if in multicolor mode.

62-75 Multicolor design mode. Calls joystick subroutine. Press B,

C, or A to turn on a pixel in border, character, or auxiliary

color. Press S to turn off the pixel. Calls calculation

subroutine.

80-86 High-resolution mode using joystick and calculation sub

routines. Press Q to return to the mode selection menu.

Multichar

Tor error-free program entry, be sure to use "The Automatic Proofreader," Appendix C

1 POKE52,28:POKE56,28:CLR:DD=37154:PA=37137:PB=371

52:C=30720:POKE37139,0 :rem 127

2 POKE646 , 6:POKE36879,29:POKE36869,240:SC=1:BD=6:G

OTO32 :rem 248

3 POKEDD,127:S3=-((PEEK(PB)AND128)=0):POKEDD,255:P

=PEEK(PA):Sl=-((PAND8)=0):S2=((PAND16)=0):rem 13

4 S0=((PAND4)=0):FR=-((PAND32)=0):X=X+(S2+S3)*DX:Y

=Y+S0+S1:IFX<0THENX=0 : rem 211

5 IFX>XMTHENX=XM :rem 104

6 IFY<0THENY=0 :rem 127

7 IFY>YMTHENY=YM :rem 110

8 L=X+Y*22+LI:RETURN :rem 5

10 N=0:IFX>7THENLI=7758 :rem 142

179

4: Graphics and Sound

U

11 IFX>7ANDS=-1THENLI=7757 :rem 90

12 FORI=7TO0STEPS:Z=ABS(l-7)+Y*22+LI:PC=PEEK(Z+C)A ! (

ND15:IFS=-1THEN15 :rem 173 '—'
13 IFPC=AUTHENN=N+2t(I-l)+2tl:GOTO16 : rem 242

14 IFPC=BDTHENN=N+2t(I-l):GOTO16 :rem 223 , ,
15 IFPC=C%(1)ORPC=C%(2)ORPC=C%(3)ORPC=C%(4)THENN=N | |

+2tl :rem 210
16 NEXT:IFX<8THENPOKE7488+Y,N:P=7748 :rem 19

17 IFX>7THENPOKE7504+Y,N:P=7767 :rem 146 j j

18 FORI=0TO2:POKEP+Y*22-1,32:NEXT:N$=STR$(N):LN=LE <—!
N(N$) :rem 126

19 FORI=0TOLN-2:POKEP+Y*22-I,VAL(MID$(N$,LN-I,1))+

48:POKEP+Y*22-I+C,BD:NEXT:POKE8130,40 :rem 212

20 POKE8152,41:POKE8131,42:POKE8153,43:POKE38850,C

%(1)+E:POKE38872,C%(3)+E:POKE38851,C%(2)+E

:rem 116

21 POKE38873,C%(4)+E:RETURN :rem 66

23 IFG$="C"THEN28 :rem 188

24 IFG1=67THEN28 :rem 176

25 GETGG$:IFGG$=""THEN25 :rem 139

26 C%(G1-132)=ASC(GG$)-49:FORI=38447TO38453:POKEI,

C%(1):POKEI+9,C%(2):POKEI+374,C%(3) :rem 240

27 POKEI+383,C%(4):NEXT:GOTO31 :rem 19

28 CK=C%(1):IFX>7ANDY<8THENCK=C%(2) :rem 58

29 IFX<8ANDY>7THENCK=C%(3) :rem 77

30 IFX>7ANDY>7THENCK=C%(4) :rem 71
31 RETURN :rem 68

32 PRINT11 {CLR}":PRINT: PRINT: PRINT : rem 30

33 PRINT" SELECT MODE":PRINT:PRINT:PRINT:PRINT" M

{SPACE}- MULTICOLOR":PRINT:PRINT:PRINT:PRINT" H

- HIGH RESOLUTION" :rem 9

34 GETG$:IFG$=""THEN34 :rem 253

35 IFG$=IIH"THENPRINT"{CLR}II:GOTO57 :rem 157

37 PRINT"{CLR}"CHR$(14):PRINT:PRINTSPC(17)"S

{SHIFT-SPACE}B{SHIFT-SPACE}A"SPC(17)"C

{SHIFT-SPACE}D{SHIFT-SPACE}U"SPC(17)"R
{ SHIFT-SPACE } R{ SHIFT-SPACE })CSELECT "SPC (6) " {RVS } i i

{BLK}BLK {OFFTtBLU} . . ."; :rem 12 I—I
38 PRINT"SCREEN#"SPC(5)"WHT{2 SPACES}- . .BORDER,&

MSPC(4)"{RVS}{RED}RED~l0FF}{BLU} . . .AUXILIARY

"SPC(3)"{RVS}{CYN}CYN {OFF}{BLU} . . -";:rem 79 jI
39 PRINT"COLORS"SPC(eTnTRVSjtPUR}PUR {OFF}{BLU} .

{SPACE}. ."SPC(12)"{RVS}{GRN}GRN {OFF}{BLU} . .

.MOVE (@)"SPC(4)"{RVS}BLU {OFFT • • .M;:reinl3 i (
40 prTnt"with"spc(8)"{rvs}Tyel}yel {off}{blu} . . I—)

{SPACE}.JOYSTICK"SPC(4)"ORN{2 SPACES}.
{3 SPACES } . "SPC (12) "L0RNT3 SPACES}."; :rem 19

41 PRINT"PICK COLORS PINK .{3 SPACES}.WITH BUTTON
{SPACETLCYN .{3 SPACES}."SPC(12)"LPUR .

{3 SPACEST^PRESS C"SPC(5)"LGRN"; :rem 82

180

Graphics and Sound: 4

n

n

n

n

n

42 PRINT" .{3 SPACES}.TO CONTINUE LBLU .{3 SPACES}
."SPC(12)"LYEL .{3 SPACES}."; :rem 209

45 DX=1:LI=7807:XM^4:YM=15 :rem 40

46 GOSUB3:CUC=PEEK(L):CC=PEEK(L+C):POKEL,122:POKEL

+C,0:FORI=1TO50:NEXT:POKEL,CUC:POKEL+C,CC:GETGG

$:rem 9

47 IFGG$="C"THEN50 :rem 4

48 IFFR=0THEN46 :rem 153

49 POKEL,122:GOTO46 :rem 134

50 FORX=0TOXMSTEP2:FORY=0TOYM:L=X+Y*22+LI:IFPEEK(L

)<>122THENNEXTY :rem 69

51 IFX=0THENSC=Y :rem 21

52 IFX=2THENBD=Y :rem 8

53 IFX=4THENAU=Y :rem 27

56 NEXTX:POKE36879,SC*16+BD+8:POKE36878,AU*16:PRIN

T"{CLR}":FORI=38469TO38814:POKEI,SC:NEXT

:rem 154

57 PRINT"{HOME}"CHR$(142):FORI=7176TO7679:POKEI,PE

EK(1+25600):NEXT:FORI=7488TO7519:POKEI,0:NEXT

:rem 245

58 FORI=7168TO7175:POKEI,255:POKEI+216,PEEK(1+2751

2):POKEI+232,PEEK(1+27576):NEXT:POKE646,BD:POKE

36869,255 :rem 56

59 PRINT:PRINT" Fl[[[[[[[{2 SPACES}[[[[[[[F3":FORI

=0TO15:PRINT:11=1*22+7748 :rem 124

60 POKEII,48:POKEII+C,BD:POKEI1+19,48:POKEII+19+C,

BD:NEXT:PRINT" F5]]]]]]]{2 SPACES}]]]]]]]F7":IF

G$="H"THEN80 :rem 216

61 FORI=7680TO7701:POKEI,0:POKEI+C,9 .-NEXT :rem 39

62 DX=2 :LI=7750 :XM=14 :YM=15 :GOSUB3 :CUC=PEEK(L) :CC=

PEEK(L+C):POKEL+C,BD:POKEL-1+C,BD 2 POKEL,0:POKEL

-1/0 srem 12

63 FORI=1TO60:NEXT:POKEL-1,CUC:POKEL,CUC:POKEL-1+C

,CC:POKEL+C,CC:GETG$:IFG$=""THEN62 :rem 56

64 POKEL,0:POKEL-1,0:POKEL+C,BD:POKEL-1+C,BD:CK=SC

:IFG$="B"THENCK=BD :rem 202

65 IFG$="A"THENCK=AU :rem 183

66 G1=ASC(G$) :IFG1>132ANDGK137ORG1=67THENGOSUB24

:rem 195

73 IFG$="Q"THEN1 .rem 150

74 POKEL+C,CK:POKEL-1+C,CK:S=-2:IFCK=SCTHENPOKEL,3

2:POKEL-1,32 :rem 123

75 E=8:GOSUB10:GOTO62 :rem 28

80 DX=1:LI=7749:XM=15:YM=15:GOSUB3:CUC=PEEK(L):CC=
PEEK(L+C):POKEL+C,0:POKEL,0 :rem 28

81 FORI=1TO40:NEXT:POKEL,CUC:POKEL+C,CC:GETG$:IFG$
=""THENG$="0" :rem 157

82 IFG$="Q"THEN1 .rem 150

83 Gl=ASC(G$):IFGl>132ANDGK137THENGOSUB24:rem 255
84 IFFR=0THEN80 .rem 151

181

4: Graphics and Sound

85 G1=67:GOSUB24:POKEL,0:POKEL+C,CK:S=-1:IFCUC=0TH .

ENPOKEL,32:POKEL+C,1 :rem 145] |
86 E=0:GOSUB10:GOTO80 :rem 22

182

u

The Magic Pointer
C. D. Lane

"The Magic Pointer" is a machine language (ML) pro

gram that lets VIC users place a movable pointer onto

the screen. The pointer can be moved about with the

joystick. For any VIC.

This program creates a movable pointer that can be

manipulated without significantly affecting BASIC. The

position of the pointer can be polled by pressing the fire but

ton, so that BASIC can PEEK it. Since the pointer itself is in

visible to BASIC, PEEKing the screen will not find it and you

do not have to worry about overwriting it (or it overwriting

your screen).

Grabbing IRQ
This invisibility is achieved by making the VIC execute "The

Magic Pointer" ML routine along with its own IRQ routine.

About 60 times a second, the 6502 microprocessor interrupts

what it's doing (such as running your BASIC program) to per

form the IRQ routine that scans the keyboard, increments the

system clock, and does other necessary background tasks. An

other kind of interrupt, termed BRK, occurs when you hit

RUN/STOP and RESTORE.

When either of these interrupts occurs, the 6502 first

pushes the return address and status register onto the stack.

Then execution is transferred to a ROM routine whose address

is contained in memory locations $FFFE/FFFF. This routine

saves the contents of the A, X, and Y registers by pushing

j—| them onto the stack. Next, it copies the saved status register

' from the stack to the X register in order to test the BRK bit

and determine if it was an IRQ or BRK interrupt. Based on

P"! that test, the routine then jumps to one of two routines whose

addresses are contained in RAM memory locations $0314/0315

(IRQ) or $0316/0317 (BRK). It is there that you are able to
r"l grab the beginning of the interrupt.

Each of these address-holding locations (vectors) normally

points to another routine in ROM. For BRK, it is a routine that

p") resets the VIC and returns to the READY state. For IRQ, it is a

routine that performs the background tasks.

In order to add your own routine to the IRQ task list, you

I I 183

4: Graphics and Sound

must first disable all interrupts with SEI, and then change the

RAM vector at $0314/0315 to point to your routine. When

your routine is finished, it must jump to the IRQ routine in

ROM, in order for the VIC to perform its necessary functions.

If all goes well, your routine will execute automatically, 60

times a second, along with every IRQ interrupt.

Intercepting the beginning of the interrupt is fairly

straightforward, since the path to the routine goes through

RAM. But if you wish to add a routine following the system

functions, you must grab the end (tail) of the interrupt—and

that is another trick entirely.

After the ROM routine is finished, the A, X, and Y reg

isters are restored and an RTI is done. All this is done in

ROM, so how do you take control once more at the end of the

interrupt? If you recall how the interrupt began, the return ad

dress and the status register were pushed onto the stack

(which is in RAM). So if you change the return address on the

stack when you have the head of the interrupt, you can make

it relurn to your own routine when finished.

To do this, you don't have to change what is on the stack.

Instead, you simply push a new return address onto the stack,

on top of the return address which the interrupt already

placed there. The new address is the beginning of your tail-

end routine. Stack items are processed in last-in, first-out

(LIFO) order. Thus, when RTI is performed at the end of the

ROM routine, the VIC will pull your new address from the

stack, and execute your routine before doing anything else.

When your routine ends with a second RTI, it will pull the old

address from the stack, and return you to the original

environment.

First, push the new return address, high byte first. Next

push your current status register, even though you may not

need it on return. When the interrupt starts, further interrupts

are disabled. They will be enabled again when RTI restores

the original status register. Since two RTIs will now be per

formed, you don't want the first one turning on interrupts

before you're done. Thus, you have it restore the current sta

tus register (which has interrupts off).

Finally, you push three single bytes onto the stack. These

are just dummy bytes, needed because the ROM routine will

end by pulling three bytes from the stack to restore the A, X,

and Y registers. You don't care what those registers contain

184

Graphics and Sound: 4

when your new routine starts, but the dummy bytes must be

put on the stack to keep everything straight. That is all you

have to do in order to make the ROM interrupt routine return

to your tail-end routine.

When your routine ends, it must restore the original A, X,

and Y registers from the stack and do an RTI. That will cause

the VIC to pull the original address from the stack, returning

you to where you were before all this began. Magic Pointer

uses both of the techniques described above, to wedge one ML

routine in at the head of the IRQ interrupt, and a second at

the tail.

Running Magic Pointer
The Magic Pointer BASIC loader program will load the routine

into the highest page of memory and protect that page from

BASIC. The loader also calculates the location of the screen

and POKEs the appropriate bytes in the Magic Pointer routine.

Therefore, the program will work in a VIC with any amount

of memory.

Since the joystick is polled 60 times a second, the pointer

is quite responsive. In fact, it can be thought of as a software

light pen, since you can point to arbitrary positions on the

screen and let BASIC know when you pick a position.

When you run the BASIC loader program, you should see

the following:

READY.

RUN

INIT = SYS(7440)

SOFTWARE REGS = 7424

DONE

READY,

The numbers displayed depend on the amount of memory in

your computer; the ones shown are for an unexpanded VIC. If

the program detects an error in the DATA statements, it will

print an error message and the suspect line number.

To start the pointer, do a SYS to the address of INIT. To

kill the pointer hold STOP and RESTORE or reset the IRQ

interrupt vector as described above.

If all is in order, once you have done a SYS to INIT, you

will be back at the READY prompt and there will be an arrow

(t) in the middle of the screen. You should be able to move

185

4: Graphics and Sound

the arrow around with the joystick. Try LISTing the program

and moving the arrow about the screen as the listing scrolls

by. You should be able to do so without affecting the listing at

all, except for a slight decrease in speed. That is due to the

fact that there is a slight delay when the pointer is on the

screen—necessary in order to keep the arrow from blinking

out completely. You will notice that it gets a bit fuzzy every

few seconds, since it is constantly being turned on and off.

The first six locations of the routine are software registers.

The first holds the character that will be placed on the screen;

the next holds the color of the pointer. If this location is

POKEd with a value of 128 or more, the color of the pointer

will not be set and the pointer will take on the colors of what

ever is on the screen.

The third and fourth locations are the pointer's row and

column locations when the fire button was last pressed. The

next two locations are the actual row and column of the

pointer. The position of the pointer can be adjusted by

POKEing values into these locations. Since the pointer routine

and BASIC run in two different time frames, you needn't

worry about confusing the routine by POKEing these registers.

The location of the software registers is printed out when the

BASIC loader is run.

A Demonstration Program
The second listing is a BASIC program that runs at the same

time as the Magic Pointer. This program partitions the VIC's

screen into three parts: a drawing area (the canvas), a band of

color (the color palette), and (at the bottom) a display of the

graphic character set (the character palette).

To use the demonstration program, Program 2, type it in

and save it. Load and run Program 1, the Magic Pointer pro

gram, but do not do a SYS to initiate it. Instead, load and run

Program 2.

You will have the symbol @ in the middle of the canvas.

You can go down to the character palette and use the fire but

ton to select any character you wish, changing the pointer to

that character. If you then go up to the canvas and select a

location (by pressing the fire button again), then that character

will be deposited where you indicate.

To select a color, move the cursor to the chosen color and

press the fire button. You can also select a character from the

186

Graphics and Sound: 4

canvas, and the cursor will become that character and color

while the character will be erased. Note that the demonstra

tion program reads the position of the pointer but does not

have anything to do with moving it.

The idea behind putting the Magic Pointer on the IRQ

interrupt is to make the pointing to and picking up of objects

appear to be a hardware feature for use from BASIC. A more

ambitious challenge would be to implement software sprites

(independently moving characters), with features like auto

matic collision detection, that would be invisible to BASIC'S

manipulations of the screen.

Program 1* Magic Pointer for the VIC

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 M=PEEK(52)-1:POKE52,M:POKE56,M:POKE51,0:POKE55,

0:CLR:M=PEEK(52):B=M*256:PC=0 :rem 217

20 H$="10":GOSUB90:PRINTIIINIT = SYS("D+BM) " , "SOFTW

ARE REGS =";B :rem 90
30 V=36866:S=(PEEK(V)/64AND2)+(PEEK(V+3)/4AND28):C

=148+(PEEK(V)/64AND2) :rem 11

40 Q=0:FORK=lTO16:READH$:IFH$=ltENDllTHENPRINT"DONEtl

:POKEB+13,S:POKEB+15,C:END :rem 240

50 IFH$="**"THEND=M:GOTO70 :rem 12

60 GOSUB90:Q=Q+D :rem 215

70 POKEPC+B,D:PC=PC+1:NEXT:READD:IFD=QGOTO40

:rem 74

80 PRINT "ERROR IN LINE11; (PC/1. 6)+90 :STOP : rem 121

90 D=0:FORI=1TOLEN(H$):J=ASC(MID$(H$,I,1))-48:D=16

*D+J+(J>9)*7:NEXT:RETURN :rem 118

100 DATA 1E,00,0B,0B,0B,0B,00,00,00,00,00,00,00,1E

,00,96,254 :rem 137

110 DATA 78,AD,15,03,8D,DA,**,A9,**,8D,15,03,AD,14

,03,8D,1347 :rem 41

120 DATA D9,**,A9,29,8D,14,03,58,60,A2,05,B5,22,9D

,06,**,1320 :rem 234

130 DATA BD,0C,**,95,22,CA,10,F3,AC,04,**,C0,0C,30

,04,E6,1507 :rem 28

140 DATA 23,E6,25,B9,FD,ED,18,6D,05,**,90,04,E6,23

,E6,25,1795 :rem 69

150 DATA 85,22,85,24,A0,00,Bl,22,85,26,AD,00,**,91

,22,B1,1407 :rem 215

160 DATA 24,85,27,AD,01,**,30,02,91,24,A9,00,8D,13
,91,AE,1261 :rem 240

170 DATA 05,**,F0,0A,A9,10,2C,11,91,D0,03,CE,05,**

,E0,15,1313 :rem 233

180 DATA 10,0D,A9,7F,8D,22,91,2C,20,91,30,03,EE,05
,**,A9,1329 :rem 28

187

4: Graphics and Sound

190 DATA FF,8D/22,91,AE,04#**,F0,0A,A9,04,2C,11,91

,D0,03,1593 :rem 55

200 DATA CE,04,**,E0,16,10,0A,A9,08,2C,11,91,D0,03

,EE,04,1318 :rem 15

210 DATA **,A9/20,2C,11,91,D0,0C,AD,04,**/8D,02,**

,AD,05,1125 :rem 231

220 DATA **,8D,03,**,A0,02,CC,04,90,D0,FB,88,D0,F8

,A9,**,1878 . :rem 31

230 DATA 48,A9,DB,48,08,48,48,48,4C,BF,EA,A0,00,2C

,01,**,1462 :rem 64

240 DATA 30,04,A5,27,91,24,A5,26,91,22,A2,05,BD,06

,**,95,1330 :rem 223

250 DATA 22,CA,10,F8,68,A8,68,AA,68,40,END:rem 176

Program 2, Magic Pointer Demo

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C.

10 V=36866:S=4*(PEEK(V)AND128):C=37888+S:S=S+64*(P

EEK(V+3)AND112) :rem 188

20 P=PEEK(52)*256:Y=PEEK(P+2):X=PEEK(P+3):L=330:R=

L+44 :rem 122

30 S$=CHR$(18)+" "+CHR$(146):PRINTCHR$(147);:U=371

37:Q=22 :rem 70

40 FORI=0TO501:IFKLTHENPRINT" ";:GOTO70 :rem 233

50 IFI>=RTHENPRINT" ";:POKES+I,I-R:GOTO70 :rem 67

60 PRINTS?;:POKEC+I,((I-L)-2*(I>(L+Q)))AND7

:rem 217

70 NEXT:POKEP,0:SYS(P+16) :rem 39

80 0Y=Y:0X=X:WAITU,32,32:WAITU,32:Y=PEEK(P+4):X=PE

EK(P+5):IFOY=YANDOX=XGOTO30 :rem 248

90 Z=Y*Q+X:J=S+Z:K=C+Z:I=PEEK(J):IFZ>=LGOTO130

:rem 177

100 IFI=32THENM=A:GOTO120 :rem 11

110 A=I:B=PEEK(K):M=32:POKEP,A:POKEP+1,BAND7

:rem 175

120 POKEJ,M:POKEK,B:GOTO80 :rem 130

130 IFZ>=RTHENA=I:POKEP,A:GOTO80 :rem 65

140 B=PEEK(K):POKEP+1,BAND7:GOTO80 :rem 61

188

n

Sound Shaper
Steven Kaye

"Sound Shaper" manipulates volume and frequency to

give your Commodore a smoothery more musical

sound. For the unexpanded VIC or the 64*

ffne °* ^e ma*n differences between the sound capabili-
^J ties of the Commodore 64 and the VIC is the shape of
the sound's waveform. The VIC produces only square waves.

One microsecond the sound is off, the next it's on. This abrupt

onset of sound produces comparatively nonmusical tones that

sound unlike any acoustic instrument.

The Commodore 64, on the other hand, can simulate

musical instruments by controlling the waveshape of the

sound produced. Instead of turning the sound on and off

abruptly, it can increase and decrease the amplitude (volume)

more gradually under control of the programmer. It is im

portant to bear in mind that the rise-fall time is still on the

order of fractions of milliseconds, but it is not instantaneous,

as is the case with the VIC. It is this programmable rise-fall

time that allows the Commodore 64 to sound more like a tra

ditional acoustic instrument.

You cannot control the actual waveshape of sounds on

the VIC, but you can simulate waveshaping by modulating the

volume. The first part of Program 1 demonstrates a simple

application of this technique. It plays the entire frequency

range for one of the VIC's four voices.

First, the program asks for two inputs, the rise time and

the fall time. Values between .5 and 10 seem to work best.

Then the frequency value is POKEd into the appropriate reg-

ister (line 140). Two separate FOR-NEXT loops (lines 150 and

180) control the rise and fall times. As the volume varies be-

tween 0 and 15, the input variables control the rate of volume

change. Experiment with different rise-fall time values to see

what sounds you can produce.

Frequency manipulation can also be used to produce

unique effects. The second part of Program 1 shows how to

produce an echo effect by rapidly alternating a frequency with

its complementary frequency.

Again, you move through the frequency scale. Line 270

applies the amplitude modulation technique described above.

4: Graphics and Sound

Lines 280 and 300 POKE the frequency (and then the fre

quency subtracted from 383) into the appropriate voice

register.

The first time through the loop, voice 2 (36875) is POKEd

with 128 and then rapidly alternated with 255 (255=383-128)

while the sound fades as variable DB decreases. The timing

loops in 290 and 310, as well as the step value in line 270, can

be manipulated to increase or decrease the reverberation ef

fect. Voice 2 was chosen for the example, but any of the four

voices can be used to produce interesting sounds.

64 Sound Shaper
Since the Commodore 64 already has a programmable sound

envelope, Program 2 is included to make the SID chip more

accessible. By changing values entered for attack, decay, sus

tain, and release, you can control the shape of the sounds pro

duced by the program. The second part of the program produces

an echo effect very similar to the effect produced in the VIC

version. The parameters set in the first part are also used for

the sounds produced in the second part.

Program 1. VIC Sound Shaper

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

40 PRINT"{CLR}{9 DOWN}HTAB(2)"{RVS}SHAPING{OFF}

{RVS}VIC{OFF} {RVS}SOUNDS{OFF}" :rem 179

45 FOR T=l TO 1500:NEXT :rem 244

50 PRINT"{CLR}{7 DOWN}{6 RIGHT}SHAPED (1)" :rem 37

55 PRINTTAB(9);"{DOWN}OR":PRINTTAB(7)"{DOWN}ECHO (

2)" :rem 166

60 PRINT"{4 DOWN}{9 RIGHT}";:INPUT 1$:IFVAL(1$)<1O

R VAL(I$)>2THEN50 :rem 15

70 ONVAL(I$)GOTO100,240 :rem 49

100 REM*** THIS PART PRODUCES "SHAPED" MUSICAL NOT

ES*** :rem 213

110 PRINT "{3 DOWN}{2 RIGHTjRISE AND FALL TIME"
:rem 36

115 PRINT"VALUES MUST EXCEED 0" :rem 95

116 INPUT R,D:IF (R=0)OR(D=0) THEN 116 :rem 45

120 V=36878:S=36875 :rem 13

130 FOR F=128 TO 255 STEP3 :rem 71

140 POKE S,F :rem 137

150 FOR DB=0 TO 15 STEP 5/R :rem 107

160 POKE V,DB :rem 206

170 NEXT :rem 215

180 FOR DB=15 TO 0 STEP -5/D :rem 141

190

Graphics and Sound: 4

190 POKE V,DB :rem 209

200 NEXT :rem 209

210 FORT=1 TO 50:NEXT :rem 189

220 NEXT :rem 211

230 POKE V,0:END :rem 135

240 REM*** THIS PART CREATES AN ECHO EFFECT***
:rem 71

250 V=36878:S=36875 :rem 17

260 FOR P=128 TO 255 STEP 3 :rem 85

270 FOR DB=15 TO 1 STEP -.5 :rem 73

280 POKE V,DB:POKE S,P :rem 9

290 FOR T=l TO 10:NEXT :rem 193

300 POKE S,383-P :rem 92

310 FOR J=l TO 10:NEXT :rem 176

320 NEXTzNEXT :rem 77

330 POKE V,0 :rem 119

Program 2. 64 Sound Shaper
For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C.

15 PRINT"{CLR}SET PARAMETERS FOR SOUND AND ECHO"
:rem 12

20 CHIP » 54272 :rem 199

22 FOR T=CHIP TO CHIP + 24 : POKET,0:NEXT :rem 234

30 INPUT "ATTACK RATE (0-15) "; AT$:AT=VAL(AT$) :IF A

T<0 OR AT>15 THEN 30 :rem 82

40 INPUT "DECAY RATE (0-15)";DE$:DE=VAL(DE$):IF DE

<0 OR DE>15THEN 40 :rem 198

50 INPUT "SUSTAIN VOLUME (0-15)";SU$:SU=VAL(SU$):I

F SUS<0OR SU>15THEN50 :rem 35

60 INPUT "RELEASE RATE(0-15)";RE$:RE=VAL(RE$):IF R

E<0ORRE>15THEN60 irem 171

80 POKECHIP+24,15:POKECHIP+5,16*AT+DE :rem 209

90 POKECHIP+6,16*SU+RE :rem 68

100 FOR T= 20{2 SPACES}TO 80 STEP 5:POKECHIP+4,17
:rem 103

110 POKECHIP,50:POKECHIP+1,T :rem 223

115 FORJ= 1 TO 500+1.7tAT+1.7tDE:NEXTJ :rem 141
120 POKECHIP+4#16:FORH=lTO2tRE:NEXT:NEXT srem 107
200 FOR T= 20 TO 80 STEP 5 :rem 232

210 FOR DB = 15 TO 1STEP -.5 :rem 67

215 PRINT"{HOME}{5 DOWN}*ECHO*{6 LEFT}{7 SPACES}"
:rem 242

220 POKECHIP+4,17:POKECHIP+24,DB:POKECHIP+1,T:FORP

=1TO10:NEXT srem 111

230 POKECHIP+1,100-T:FORJ=1TO10:NEXT:NEXT:NEXT

:rem 202

240 POKECHIP+4,16 :rem 219

191

VIC Piano
Brad Bascom

Turn your computer keyboard into a piano keyboard

with this easy-to-use program for the unexpanded VIC.

The VIC has three musical voices. To make them play,

just calculate the number to POKE, set up the durations,

and turn the sound on and off. It works beautifully.

But it's programming, not playing. What if you want to sit

down at the computer and pick out melodies, the way you can

with a piano or organ? Typing something like POKE 36876,207

for each separate note isn't exactly recreational music.

Easy Melodies
"VIC Piano" lets you use the top two rows of your keyboard,

as if they were the keys on the piano. Just type in the pro

gram, save it to disk or tape, and then type in RUN.

You'll see almost two octaves of a piano keyboard, from

G to E, with white and black keys. Below the piano keys are

the VIC keys to press to play that note. Even more helpful is

the white dot that appears directly under the picture of the

key that was last pressed. It follows along as fast as you can

play, allowing you to pick out melodies without looking at the

VIC keyboard at all.

When you play a note, it will continue to sound until you

play the next note. If you want a musical rest (silence) press

any key that does not represent a note. The dot will jump to

the lower-left corner of the screen and the sound will stop un

til you press another note.

Sometimes, if you play very quickly, you'll get ahead of

the program. The keyboard buffer will come to your aid—the

VIC can keep track of up to ten notes at a time. However,

you'll find it's pretty hard to play fast enough to use up that

buffer.

You may notice that some of the pitches aren't exact. That

can't be helped, since the numbers the VIC understands do

not correspond to the regular music scale. The VIC under

stands numbers that represent sound frequencies, and the

numbering system does not always have an exact equivalent

on the musical scale. So don't tune your piano to your VIC!

192

Graphics and Sound: 4

How the Program Works
For each key you press, VIC Piano must decide several things:

1. Does the key represent a valid note?

2. Where on the screen should the dot be placed, showing

which note is being played?

3. What frequency number should be POKEd into the sound

register at 36876?

That can be quite complicated, and if the program had to

test each time for every possible note, it would run very

slowly.

Fortunately, with careful design, the program can run

very quickly, even in BASIC. How? The placement of the dot

is easiest. The piano keys are displayed on the screen so that

each of the 22 notes can be clearly represented by a character

on the VIC's 22-character line. All you need to do is determine

the starting address of the row just under the piano keys. In the

unexpanded VIC, that address is 7900. Each keypress will cause

the dot to be displayed at 7900 plus the left-to-right order of

that note. G, the lowest note, is 0, so that the dot character

(screen code 81) will be POKEd into 7900 + 0. The highest

note, high E, is in the twenty-first column, so that when high

E is played, the dot character is POKEd into 7900 + 21.

Slightly more difficult is the calculation of the frequency

to be played. For instance, the notes G, G#, A, and A# have

POKE values of 175, 179, 183, and 187. So far, all the notes

are four steps apart. But high C#, D, D#, and E have values of

227, 228, 229, and 231. There's no regular mathematical

relationship between the notes' order and their POKE values.

The answer is to use arrays for both values. The screen

offsets from 0 to 21 are in the array J(n). The sound POKE val

ues from 175 to 231 are in the array N(n). Both occur in ex

actly the same order, so that when the note N(x) is played, the

dot will be displayed at 7900+J(x).

What will be the index into the arrays? That is provided

by the ASCII value of the key the user presses. That way you

won't have to use IF statements to set the sound and screen

POKE values. You can just use the arrays J(n) and N(n), with

the keypress value as the index n. In BASIC, it couldn't be any

faster.

Get the ASCII character of the key pressed with the state

ment GET A$. Each ASCII character has a numeric value,

193

4: Graphics and Sound

which is found using the function ASC(A$). If the key pressed

was Q, for instance, the value of ASC(A$) would be 81; if W is

pressed, the value of ASC(A$) would be 87.

For the 22 VIC keys used as musical keys, the lowest

value of A$ that would play a note is 42, and the highest is

94. Since values lower than 42 and higher than 94 can never

play a note, simply leave them out of the array. DIMension

both arrays with DIM J(55),N(55). Then, when you GET A$,

you'll say X=ASC(A$)-42. That means that if the * (asterisk)

key (42) is pressed, X will equal 0, and if the up-arrow key

(94) is pressed, X will equal 52.

That's just what the program does. In line 160, the pro

gram DIMs N(55),J(55). Then in line 180, it READs the values

of the arrays. Each pair of numbers in the DATA statements

starting at 800 represents the ASCII value of a key and the

sound register POKE value for the corresponding note. The

locations in which the dot appears are numbered in the same

order, from 0 to 21, so the loop FOR 1=0 TO 21 yields the

right values for the screen POKEs. In one pass through the

loop, then, you have given every valid note an ASCII value

(the subscript or index number), a sound POKE value N(n),

and a screen POKE value J(n).

What about the leftover values of N(n) and J(n)? Line 170

puts 0 in every element of N(n) and 264 in every element of

J(n). By default, every possible key value will have the effect

of the space bar (a rest). Then, when the note values are

initialized in line 180, all the elements that are not valid notes

will be rests.

Because of all this setup, initialization takes a few sec

onds. However, the extra time spent in setting up makes the

program itself run very quickly. The main loop is from 400 to

480, only eight short lines. Line 400 GETs the value of A$. If

no key is pressed (A$=""), the line keeps looping back on it

self until a key is pressed.

Lines 10-190 set up the screen and initialize the arrays

and variables. Lines 800-830 are the DATA statements. Each

pair of numbers is an ASCII value and its corresponding

sound POKE value. The true ASCII values (instead of the

ASCII values minus 42) are in the DATA statements, so it will

be easier to see which character is paired with each sound

POKE value.

194

Graphics and Sound: 4

VIC Piano

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C

10 POKE36879,106:PRINT"{CLR}{BLK}11; :rem 205

12 PRINT" {RVSHYEL} {6 SPACES}VIC{2 SPACES}PIANO

{28 SPACES}"; rrem 120

20 PRINT"{RVS}{WHT}G{BLK} {WHT}a{BLK} {WHT}BC{BLK}
{wht}d{blk} {wht}ef{blk} {wht}g{blk} {wht}a

{BLK} {WHT}Bc(bLK} {WHT}D{BLK} {WHTlE"; :rem 52
25 FORT=1TO4 :rem 231

30 PRINT" {RVSHWHT} {BLK} {WHT} {BLK} {WHT} gG§

{BLK} {WHT} {BLK} {WHT} gG§{BLK} {WHT} {BLK}

{WHT} {BLK} {WHT} gGlfBLK} {WHT} {BLK} {WHT} ";
:rem 178

40 NEXTT rrem 247

50 FORT=1TO3 :rem 228

60 PRINT"{RVS}{WHT} z - iG3z - §Giz - - gG3z z

{OFF}"; :rem 207

70 NEXT :rem 166

75 PRINT"{DOWN}{WHT} 2 3{2 SPACES}5 6{2 SPACES}8 9
0{2 SPACES}- £ "; 2rem 136

80 PRINT"Q W ER T YU I O P@ * ?"; :rem 101

100 PRINT"{5 DOWN}"; :rem 242

110 PRINT"PLAY EACH NOTE BY THE CHARACTERS ABOVE."

; :rem 18

120 PRINT"PRESS{2 SPACES}SPACE BAR TO REST."

rrem 65

160 DIM N(55),J(55) rrem 171

170 FOR 1=0 TO 55rJ(I)=264rN(I)=0rNEXT IrXX=55

rrem 27

180 FOR 1=0 TO 21rREAD K,MrJ(K-42)=IrN(K-42)=MrNEX

T I rrem 146

190 POKE36878,15 rrem 107

400 GETA$rIFA$=""THEN400 rrem 75

420 X=ASC(A$)-42rIF X<0 OR X>55 THEN X=55 rrem 167

430 POKE7900+J(XX),32 rrem 157

440 POKE36876#0 •rem 49

450 POKE36876,N(X) :rem 249

460 XX=X :rem 223

470 POKE7900+J(X),81 :rem 77

480 GOTO400 rrem 105

800 DATA 81,175,50,179,87,183,51,187 rrem 3

810 DATA 69,191,82,195,53,198,84,201,54,204rrem 90

820 DATA 89,207,85,210,56,212,73,215,57,217,79,219
#48,221 srem 15

830 DATA 80,223,64,225,45,227,42,228,92,229,94,231
rrem 172

195

The Mozart Machine
Original Program by Donald J. Eddington

VIC and 64 Translations by Gregg Peele

Using the techniques described here, your computer can

compose music with this special technique. The com

positions are unmistakably Mozartian in style. For the

unexpanded VIC or the 64*

If you've ever gone through the steps required to make your

VIC or 64 play a particular piece of music, you realize that

it can be a major programming task. But to make your com

puter actually write music is an even more difficult challenge.

How can you turn your Commodore into a composer?

First, you've got to find a way to work with POKEs and

DATA statements to actually create the measures of music. In

addition, you need to be able to READ the values in different

orders so that the songs will be different each time the pro

gram is run.

Unfortunately, the commonly used string manipulation

methods won't work very well for such applications. In fact,

they quickly yield a tangled mess. You could, of course, write

each measure as a series of POKEs (for note, duration, and

next note) for every possible note—but you'll probably find it

too long and repetitive.

Array Referencing
One of the best ways around that problem is to use a tech

nique called array referencing. First, to create measures of

music, set up an array of all variables and reference them by

subscript into a POKE loop. This program requires 14 vari-

ations on nine variables to make the music. A random number

generator is used to make the song different every time the

program is run. A Mozartian flavor results from a deliberate

shortening of the low notes and varying the length of the high

notes.

To keep the music from becoming totally random, DATA

statements select the measures according to their underlying

tonality—tonic, subdominant, dominant, or supertonic. In

addition, the program provides for cadence measures every

four measures and for a final ending chord for each tune.

196

Graphics and Sound: 4

Entertainment and Education
This program does not copy any of Mozart's music; instead, it

imitates Mozart's style. You might want to introduce some

alternative composition rules and stylistic ideas and come up

with a mechanical composer of your own. How about a Pink

Floyd machine or a Bartok machine? Using this program as a

starting point, you and your computer will soon be composing

in a variety of styles.

Program 1. Mozart Maker, VIC Version

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C.

10 DIMX(14,9) :rem 174

25 POKE36879,8 :rem 11

30 PRINT"{CLR}{2 DOWN}{RIGHT}{WHT}WELCOME 1 I AM VI
CLANG AMAZIUS MOZART." :rem 56

35 PRINT"{DOWN}I PLAY SONGS LIKE THE CHILD PRODIGY
,WOLFGANG AMADEUS MOZART MIGHT HAVE DONE."

:rem 42

40 PRINT"{2 DOWNjMOZART LIVED FROM 1756TO 1791 AND

WROTE OVER626 WORKS IN 31 YEARS." :rem 165

45 FOR TD=1TO3000:NEXTTD :rem 205

50 PRINT"{DOWN}{RED}THE 5 PIECES YOU HEAR ARE BEIN
G WRITTEN BY{2 SPACES}THE COMPUTER AS YOU

{3 SPACES}LISTEN1" :rem 37

90 FORT=1TO14:FORTT=1TO9:READX:X(T,TT)=X+212:NEXTT

T.-NEXTT :rem 41

91 DATA3,11,11,11,11,16,16,11,1, 3 ,11,16,11,16,13 ,1

6,11,16,3,11,13,11,16,13,16,11,16 :rem 205

92 DATA3,13,16,13,19,22,19,23,13,3,13,19,13,19,16,

19,13,13,3,19,13,13,3,19,19,13,3 :rem 203

93 DATA7 ,13 ,16,13,22 ,16,16,13 ,7,0,7 ,16, 7,13,11,16,

7,13,7,19,22,13,16,13,16,11,7 :rem 50

94 DATA7,13,11,13,7,11,19,13,7,7,13,11,13,7,11,19,

13,13,3,11,13,11,16,16,16,16,16 :rem 136

95 DATA0,16,13,7,7,7,16,7,7,3,19,16,13,13,13,19,13

,13 :rem 75

100 REM SET VOICE NUMBERS,AND{2 SPACES}SPEED VALUE

:rem 224

120 K=36875:L=36876:P=175 :rem 93

130 POKE36878,12 :rem 98

160 REM SET SELECTED{2 SPACES}MEASURE BY DATA NUMB

ER srem 64

170 DATA1,3,6,2,1,4,6,2,3,4,1,5,1,4,6,7,1,4,6,2,1,

3,6,9 :rem 126

172 DATA 1,1,4,5,1,4,6,2,3,4,1,5,1,4,1,5,1,4,6,9

:rem 252

197

4: Graphics and Sound

174 DATA 1,4,6,2,3,6,1,5,1,4,6,7,3,4,6,2,1.4,3,7,1

,4,6,9 srem 138

176 DATA 1,4,3,7,1,6,4,5,6,3,6,2,4,6,1,5,1,4,6,9

:rem 16

178 DATA 1,4,3,7,6,3,6,2,4,6,1,5,1,3,6,7,3,6,1,5,1

,4,6,9,8 :rem 246

180 READRR srem 89

190 IFRR=1THEN300 :rem 253

200 IFRR=2THENY=12:GOTO1010 srem 145

210 IFRR=3THEN310 srem 249

220 IFRR=4THEN320 srem 252

230 IFRR=5THENY=14:GOTO1010 srem 153

240 IFRR=6THEN330 srem 1

250 IFRR=7THENY=13:GOTO1010 :rem 156

260 IFRR=8THEN500 srem 4

270 IFRR=9THEN1500 srem 55

300 Y=1:X=RND(1):IFX<.35THENY=3 :rem 122

301 IFX>.75THENY=2 srem 74

302 GOTO1010 :rem 144

310. Y=10:IFRND(1)<.4THENY=11:GOTO1010 :rem 180

320 Y=4:X=RND(1):IFX<.35THENY=5 :rem 129

321 IFX>.75THENY=6 :rem 80

322 GOTO1010 :rem 146

330 Y=7:X=RND(1):IFX<.35THENY=8 :rem 136

331 IFX>.75THENY=9 :rem 84

332 GOTO1010 :rem 147

500 PRINT"{CLR}{DOWN}{YEL}WELL,THAT'S ALL—HOPE

{4 SPACES}YOU LIKED ITU" : rem 87

510 PRINT" {DOWN}RUN IT AGAIN—AND HEAR FIVE MORE S

ONGSll":END srera 241

900 REM FOLLOWING ARE THE MUSIC MEASURES THAT VICL

ANG USES TO MAKETHE WHOLE TUNE :rem 159

1010 POKEK,X(Y,1):POKEL,X(Y,2):FORT=1TOP:NEXT:POKE

K,0:POKEL,X(Y,3):FORT=1TOP:NEXT :rem 248

1020 POKEK,X(Y,4):POKEL,X(Y,5):FORT=1TOP:NEXT:POKE

K,0:POKEL,X(Y,6) :FORT=1TOP .-NEXT : rem 2

1030 POKEK,X(Y,7):POKEL,X(Y,8):FORT=1TOP:NEXT:POKE

K,0:POKEL,X(Y,9):FORT=1TOP :rem 147

1035 NEXT:GOTO 160 :rem 18

1500 POKE36876,235:POKE36875,239:POKE36874,235:FOR

T=1TO1200:NEXT :rem 6

1510 POKE36874,0:POKE36875,0:POKE36876,0:FORT=1TO2

000:NEXT:GOTO160 :rem 206

u

198 U

Graphics and Sound: 4

r*-) Program 2* Mozart Maker, 64 Version

I I For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

100 DIMH(14,9),L(14,9) :rem 97

|—i 101 FORT=54272TO54272+24:POKET,0:NEXT :rem 216

i I 102 POKE54296,15 :rem 94
d103 FORT=54272+5TO54272+24STEP7sPOKET,17:POKET+1,2

44:NEXT :rem 196

j| 110 POKE53281,7:POKE53280,5 :rem 243

120 PRINT"{CLR}{2 DOWN}{RIGHT}{WHT}WELCOME I I AM 6
4CLANG AMAZIUS MOZART." :rem 51

130 PRINT"{DOWN}{2 SPACESjl PLAY SONGS LIKE THE CH
ILD PRODIGY," :rem 51

135 PRINT"WOLFGANG AMADEUS MOZART MIGHT HAVE DONE"

:rem 95

140 PRINT"{2 DOWN}MOZART LIVED FROM 1756 TO 1791 A
ND WROTE"; :rem 244

145 PRINT"{6 SPACES}OVER 626 WORKS IN 31 YEARS"

:rem 90

150 PRINT"{DOWN}{BLK}{4 SPACESjTHE 5 PIECES YOU HE
AR ARE BEING" :rem 49

155 PRINT" COMPOSED BY THE COMPUTER AS YOU LISTEN"

:rem 17

160 FORT=1TO2000:NEXT :rem 30

170 POKE53281,5:POKE53280,7 :rem 249

180 FORT=1TO14:FORTT=1TO9:READH,L:H(T,TT)=H:L(T,TT

)=L:NEXTTT:NEXTT :rem 105

190 DATA12,143,31,165,31,165,15,210,31,165,37,162,

18,209,31,165,14,24 :rem 102

200 DATA12,143,31,165,37,162,15,210,37,162,33,135,

18,209,31,165,18,209 :rem 153

210 DATA12,143,31,165,33,135,15,210,37,162,33,135,

18,209,31,165,18,209 :rem 150

220 DATA12,143,33,135,37,162,16,195,42,62,50,60,21

,31,50,60,16,195 :rem 206

230 DATA12 ,143 , 33 ,135 ,42 ,62 ,16,195 ,42 ,62, 37,162 , 21

r—| ,31,33,135,16,195 :rem 6

j ! 240 DATA12,143,42,62,33,135,16,195,25,30,84,125,21
,31,33,135,12,143 :rem 249

250 DATA14,24,33,135,37,162,16,195,50,60,37,162,18

,209,33,135,12,143 :rem 60

260 DATA14,24,28,49,37,162,14,24,33,135,31,165,18,
209,28,49,16,195 srem 238

270 DATA14,24,42,62,50,60,16,195,37,162,33,135,18,
209,31,165,14,24 srem 218

280 DATA14,24,33,135,31,165,16,195,28,49,31,165,21
,31,33,135,14,24 :rem 216

290 DATA14,24,33,135,31,165,16,195,28,49,31,165,21
,31,33,135,16,195 srem 20

H

n

H

M 199

4: Graphics and Sound

300 DATA12 ,143 , 31,165 , 33 ,135 ,15 , 210, 37 ,162 , 37 ,162 ,

18,209,37,162,18,209 :rem 157

310 DATA 12,143,37,162,33,135,14,24,28,49,28,49,18

,209,28,49,14,24 :rem 182

320 DATA12,143,42,62,37,162,16,195,33,135,33,135,2

1,31,33,135,16,195 :rem 55

330 REM SET VOICE NUMBERS,AND{2 SPACES}SPEED VALUE
:rem 229

340 K=54272:P=175:W=K+4 :rem 255

350 POKE54296,15 :rem 99

360 REM SET SELECTED{2 SPACES}MEASURE BY DATA NUMB

ER s rem 66

370 DATA1,3,6,2,1,4,6,2,3,4,1,5,1,4,6,7,1,4,6,2,1,

3,6,9 :rem 128

380 DATA 1,1,4,5,1,4,6,2,3,4,1,5,1,4,1,5,1,4,6,9

:rem 253

390 DATA 1,4,6,2,3,6,1,5,1,4,6,7,3,4,6,2,1,4,3,7,1

,4,6,9 :rem 138

400 DATA 1,4,3,7,1,6,4,5,6,3,6,2,4,6,1,5,1,4,6,9

:rem 6

410 DATA 1,4,3,7,6,3,6,2,4,6,1,5,1,3,6,7,3,6,1,5,1

,4,6,9,8 :rem 235

420 READRR :rem 86

425 ON RR GOTO520,426,550,560,427,590,428,620,1000

: rem 15

426 Y=12:GOTO650 :rem 163

427 Y=14:GOTO650 :rem 166

428 Y=13:GOTO650 :rem 166

520 Y=1:X=RND(1):IFX<.35THENY=3 :rem 126

530 IFX>.75THENY=2 :rem 78

540 GOTO650 :rem 109

550 Y=10:IFRND(0)<.4THENY=11:GOTO650 :rem 146

560 Y=4:X=RND(1):IFX<.35THENY=5 :rem 135

570 IFX>.75THENY=6 :rem 86

580 GOTO650 :rem 113

590 Y=7:X=RND(1):IFX<.35THENY=8 :rem 144

600 IFX>.75THENY=9 :rem 83

610 GOTO650 :rem 107

620 PRINT"{CLR}{DOWN}{BLU}{2 SPACES}WELL,THAT'S AL

L--HOPE YOU LIKED ITU" : rem 219

625 POKE53281,1 irem 44

630 PRINT"{DOWN}RUN IT AGAIN—AND HEAR FIVE MORE S

ONGS iI":END :rem 244

640 REM FOLLOWING ARE THE MEASURES THAT 64CLANG US

ES TO MAKE THE WHOLE TUNE :rem 234

650 POKEW,17:POKEK,L(Y,1):POKEK+1,H(Y,1):POKEK+7,L

(Y,2):POKEK+8,H(Y,2) :rem 156

655 POKEW+7,17:FORQ=1TOP:NEXT:POKEW,16 :rem 187

200

Graphics and Sound: 4

n

n

n

n

n

660 P0KEK,L(Y,3):POKEK+1,H(Y,3):FORT=1TOP:NEXT

:rem 115

670 POKEW,17:POKEK,L(Y,4):POKEK+1,H(Y,4):POKEK+7,L

(Y,5):POKEK+8,H(Y,5) :rem 170

675 POKEW+7,17:FORQ=1TOP:NEXT:POKEW,16 :rem 189

680 POKEK,L(Y,6):POKEK+1,H(Y,6):FORT=1TOP:NEXT

:rem 123

690 POKEW,17:POKEK,L(Y,7):POKEK+1,H(Y,7):P0KEK+7,L

(Y,8):POKEK+8,H(Y,8) :rem 184

695 POKEW+7,17:FORQ=1TOP:NEXT:POKEW,16 :rem 191

700 POKEK,L(Y,9):POKEK+1,H(Y,9):FORT=1TOP:NEXT:GOT

0370 :rem 135

1000 POKEK,143:POKEK+1,12:POKEK+7,165:POKEK+8,31:P

OKEK+14#30:POKEK+15#25 :rem 206

1010 POKEW,17:P0KEW+7,17:P0KEW+14,17:FORT=1TO2000:

NEXT:POKEW,16:POKEW+7,16 :rem 63

1020 POKEW+14,16:GOTO370 :rem 121

201

Chapter 5

Utilities and

Programming

Aids

n

r-, Color Chart
Sheldon Leemon

n

rl Check out all the possible combinations of character

1 colors and background colors with "Color Chart/' For

the unexpanded VIC and Commodore 64.

One of the nicest things about color graphics on the VIC

and 64 is that you can choose the color of each charac

ter that you print. This allows you to place many different,

colored text statements on the same screen at one time. When

you begin to design a screen with more than one text color,

however, you may run into a problem. Many text colors do

not show up well against certain background colors.

Most programmers use trial and error to discover which

text color goes well with which background color. But

wouldn't it be nice if you could see all of the combinations on

the screen at one time? Then you could see which combina

tions would work best.

The two programs accompanying this article, one for the

VIC and one for the 64, do just that. The VIC version has 16

rows of eight characters each. The top row has a black back

ground (color 0), and each subsequent row has a different

background color with a higher color value. The column at the

extreme left has a black text character, and each subsequent

column has a different color text character with a higher color

value.

The 64 version is the same, except that there are eight

additional text colors, 16 columns, and a total of 256 color

combinations.

m

Using the Computer's Speed
How is it possible to show more than one background color

on the screen at one time? After all, the background color is

determined by the value in a memory location called the color

register (the 64 uses location 53281, while the VIC uses loca

tion 36879). Since those registers can hold only one number at

a time, the only way to have more than one background color

at a time is to change the value of this register in the middle

of the display.

205

5: Utilities and Programming Aids

To understand how this is done, you have to know some

thing about how a picture is displayed on your TV. An elec

tron beam called a raster starts at the top-left corner of the

screen and moves in a horizontal line from left to right. As

this beam moves, it lights up appropriate parts of the screen

line. When it gets to the end of a line, it goes back to the left

side, drops down slightly, and starts all over again.

It takes about two hundred of these lines to complete

your computer display, and the raster scans all of these lines

60 times every second. If you tell it the exact instant to change

the background color, it can do so after part of the screen has

already been drawn.

Interrupting the Raster Scan
Both the VIC and 64 have a raster register. This is a memory

location which holds the number of the line which is currently

being scanned. The short machine language program in each

of the examples simply waits for a particular line at the top to

be scanned. When that happens, it changes the background

color and waits for a few more lines to be scanned before

changing the background color again. When all of the changes

are done, it goes back to the beginning.

Type the program in carefully, and save it before you run

it. The program will loop continuously, displaying all of the

color combinations available to you. See which combination

you think will be the best for your particular program, make a

note of it, and then press RUN/STOP-RESTORE to break out

of the program.

Program 1. Color Chart, VIC Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 FOR ADRES=828TO 874:READ DATTA:POKE ADRES,DATTA

:NEXT ADRES :rem 250

20 PRINT CHR$(147):A=PEEK(648)*256:FOR I=A TO A+51

2:POKE 1,160-.NEXT I : rem 58

30 PRINT:FOR 1=0 TO 15:PRINT:PRINT TAB(7);:FOR J=0

TO 7 :rem 170

40 POKE 646,J:PRINTCHR$(J+48);:NEXT J,I:PRINT:PRIN

T :rem 164

50 POKE 646,1:PRINTCHR$(18)7"THIS CHART SHOWS ALL

{2 SPACES}"; :rem 228

60 PRINT"COMBINATIONS OF LETTER"; :rem 93

70 PRINT"AND BACKGROUND COLORS"; :rem 248

80 SYS828 :rem 9

206

n

n

n

n

Utilities and Programming Aids: 5

828 DATA 169, 41, 133, 251, 169, 9 : rem 165

834 DATA 141, 15, 144, 162, 15, 120 :rem 188

840 DATA 173, 4, 144, 197, 251, 208 :rem 205

846 DATA 249, 173, 15, 144, 24, 105 :rem 205

852 DATA 16, 234, 234, 234, 234, 234 : rem 249

I 858 DATA 234, 234, 141, 15, 144, 165 :rem 254

864 DATA 251, 24, 105, 4, 133, 251 : rem 143

870 DATA 202, 16, 223, 48, 209 :rem 2

Program 2, Color Chart, 64 Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

40 FOR 1=49152 TO 49188: READ A: POKE I,A: NEXT:PO

KE 53280,11 :rem 175

50 PRINT CHR$(147):FOR 1=1024 TO 1+1000: POKE 1,16

0: POKE 1+54272,11:NEXTI :rem 204

60 FOR 1=0 TO 15: FOR J=0 TO 15 :rem 237

70 P=1196+(40*I)+J: POKE P,J+1: POKE P+54272,J: NE

XT J,I irem 174

80 PRINT TAB(15)CHR$(5)"COLOR CHART":FOR 1=1 TO 19

:PRINT:NEXT :rem 100

85 PRINT"THIS CHART SHOWS ALL COMBINATIONS OF

{3 SPACES}" :rem 112

86 PRINT "FOREGROUND AND BACKGROUND COLORS.

{6 SPACES}" :rem 237

87 PRINT "FOREGROUND INCREASES FROM LEFT TO RIGHT"

:rem 88

88 PRINT "BACKGROUND INCREASES FROM TOP TO BOTTOM"

; :rem 152

90 SYS 12*4096 :rem 200

100 DATA 169,90,133,251,169,0,141,33,208,162,15,12

0 :rem 191

105 DATA 173,17,208,48,251,173,18,208 :rem 35

110 DATA 197,251,208,249,238,33,208,24,105,8,133,2

51,202,16,233,48,219 :rem 121

207

Cursor GET for the VIC

and 64
David Mills

This practical subroutine lets you create a cursor for

use during GET routines. For any VIC or 64*

In many cases, it makes more sense to use GET instead of

INPUT when asking a user for information. The GET com

mand is more flexible and gives you greater control over the

characters that are entered.

But there is a drawback. INPUT gives you a blinking

cursor, which you don't have with GET. However, because the

cursor is often convenient (and sometimes essential), this sub

routine was developed to provide a cursor while using the

GET statement for input.

Look at this short program to see why a cursor can be

important.

10 FOR K=l TO 30 :rem 7

20 GET A$: IF A$="" GOTO 20 : rem 241

30 PRINT A$;: NEXT K :rem 84

When you run this program, the computer will GET and

print 30 keystrokes. Notice that the cursor has vanished. But

the vanishing cursor can create problems if you include key

strokes such as cursor movement, RETURNS, DELETES, and

so on in your input. In those cases, it is very easy to forget

where the cursor is. The only way to find out is to start typing

and see where the letters appear on the screen.

Creating a Cursor
The short subroutines given below will provide VIC and 64

users with a blinking cursor during GET routines. The sub

routine is invisible to the host program, even when embedded

within it, because its first statement sends the host program

around the subroutine. Also, to minimize the chance of inter

ference with any other program, the subroutine uses variables

starting with X. That makes it even safer to use as long as you

avoid such variables in your main program.

The subroutine is called by using GOSUB 1102, and on

return A$ will hold the character from the GET statement.

208

Utilities and Programming Aids: 5

n

In lines 1102-1104, XL% is set to the memory address of

the screen cursor. In line 1104, XC is set to the color memory

address, and the program automatically compensates for dif

ferent memory sizes in the VIC. In line 1105 the current color

(PEEK(646)) is put in the color memory, XO% is set to the

character at the cursor, and XT% and XQ% are set up for the

blinking process. In line 1106, XT% is reversed and POKEd

into the cursor position on the screen. Then XQ% is reset

for the next blink, and a FOR-NEXT loop that actually gets the

character is started.

If something has been typed in, line 1107 resets the

screen and returns. Otherwise, the FOR-NEXT loop continues

in line 1108. When the loop is complete, the screen character

is reversed again and the process repeats.

You can remove the REMs except in line 1109. Line 1101

directs the host program to line 1109, and if you remove that

REM then line 1109 vanishes and you will get an execution

error.

Program !• Cursor GET, VIC Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 GOSUB1102:PRINTA$;:GOTO10:REM THIS IS THE "HOST

11 PROGRAM :rem 77

1101 GOTO1109:REM GET WITH CURSOR BLINK :rem 79

1102 XL%=PEEK(211) :rem 212

1103 IFXL%>21THENXL%=XL%-22:GOTO1103 :rem 133

1104 XL%=XL%+PEEK(214)*22+4096:XC=33792+XL%:IFPEEK

(210)>20THENXC=XC+512:XL%=XL%+3 584 :rem 70

1105 POKEXC,PEEK(646):XO%=PEEK(XL%):XT%=XO%;XQ%=12

8:IFXO%>127THENXQ%=-XQ% :rem 235

1106 XT%=XT%+XQ%:POKEXL%,XT%:XQ%=-XQ%:FORXR=1TO60:

REM CHANGING 60 CHANGES BLINK SPEED :rem 238

1107 GETA$: IFA$o""THENPOKEXL%,XO%: RETURN : rem 51

1108 NEXT XR:GOTO1106 :rem 238

1109 REM :rem 175

Program 2* Cursor GET, 64 Version

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 GOSUB1102:PRINTA$;:GOTO10:REM THIS IS THE "HOST

11 PROGRAM :rem 77

1101 GOTO1109:REM GET WITH CURSOR BLINK :rem 79

1102 XL%=PEEK(211) :rem 212

1103 IFXL%>39THENXL%=XL%-40:GOTO1103 :rem 142

1104 XL%=XL%+PEEK(214)*40+1024:XC=54272+XL%:rem 87

209

5: Utilities and Programming Aids

U

1105 POKEXC,PEEK(646):XO%=PEEK(XL%):XT%=XO%:XQ%=12

8:IFXO%>127THENXQ%=-XQ% :rem 235 I I
1106 XT%=XT%+XQ%:POKEXL% ,XT%:XQ%=-XQ%:FORXR=1TO60:

REM CHANGES SPEED :rem 217

1107 GETA$:IFA$<>M"THENPOKEXL%,XO%:RETURN :rem 51 \ \

1108 NEXT XR:GOTO1106 :rem 238 i 1
1109 REM :rem 175

U

u

u

210

U

U

n

n File Copier
Martin Engert

n"File Copier" is a BASIC utility that lets you transfer

files from one disk to another, using a single drive,

without worrying about starting addresses or machine

i—I language. For any VTC-20 or Commodore 64*

File Copier" can help those who want to copy sequen

tial or program files from one disk to another but

have only'a single disk drive and no machine language mon

itor. Since the program is written in BASIC, it's a bit slow. But

one advantage of this program is that you don't have to know

the initial address or length of the program to be transferred.

File Copier works on both the VIC-20 and Commodore

64. The program first resets the top-of-BASIC pointers to re

serve IK of memory for itself. The remaining memory is used

to store your file temporarily. VIC users should make sure

enough memory is available for this purpose before running

the program; any amount of expansion memory can be added

if necessary.

Each byte of the file is read from disk using the GET#

command and POKEd into free memory. Then you insert the

new disk and the program writes these bytes onto it using

PRINT*. After the file is copied, the top-of-BASIC pointers are

restored to normal.

Screen instructions are provided within the program for

easier use.

File Copy for VIC and 64

I [For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 POKE251,PEEK(52) : rem 49

20 POKE52,PEEK(44)+4:POKE56,PEEK(52):CLR :rem 89

PI 30 PRINT"{CLR}RUN THIS PROGRAM TO" :rem 175
- ' 40 PRINT"COPY A PROGRAM OR" :rem 106

50 PRINT"SEQUENTIAL FILE FROM" :rem 133

60 PRINT"ONE DISK (THE SOURCE" :rem 30

70 PRINT"DISK) TO ANOTHER (THE" :rem 73

80 PRINT"DESTINATION DISK)." :rem 253

90 PRINT"INSERT SOURCE DISK." :rem 57

100 M=256*PEEK(52) :rem 191

110 OPEN15,8,15 :rem 32

211

5: Utilities and Programming Aids

120 PRINT"WHAT IS THE NAME OF" : rem 203

130 PRINT"THE FILE OR PROGRAM":INPUTF$:rem 83

140 T$="P":PRINT"WHAT IS THE FILE TYPE" :rem 252

150 PRINT"(P FOR PROGRAM, S FOR" :rem 68

160 PRINT"FILE)" :rem 177

170 INPUTT$:rem 160

180 OPEN2,8,2,F$+","+T$+",R" :rem 128

190 INPUT#15,E,E$,X,X:IFE<>0THENPRINTE$:CLOSE2:GOT

0120 :rem 134

200 GET#2,A$:IFA$=""THENA$=CHR$(0) :rem 90

210 POKEM+J,ASC(A$):J=J+1:IFST=0THEN200 :rem 66

220 CL0SE2 :rem 60

230 PRINT"INSERT DESTINATION" :rem 125

240 PRINT"DISK AND PRESS {RVSjRETURN" :rem 228

250 PRINT"TO COPY." :rem 116

260 GETC$:IFC$<>CHR$(13)THEN260 :rem 6

270 PRINT"PRESS {RVS}RETURN{OFF} IF YOU" :rem 7

280 PRINT"WANT TO KEEP THE NAME" :rem 111

290 PRINTF? :rem 146

300 INPUT"FILE NAME ";F$:rem 77

310 OPEN2,8,2,F$+","+T$+",W" :rem 128

320 INPUT#15,E,E$,X,X:IFE<>0THENPRINTE$:CLOSE2:GOT
0300 :rem 129

330 FORK=0TOJ-1:PRINT*2,CHR$(PEEK(M+K));:NEXT

:rem 7

340 CLOSE2:CLOSE15 : rem 85

350 POKE52,PEEK(251):POKE56,PEEK(251):CLR :rem 145

LJ

LJ

U

U

212

n

n 1540/1541 Disk
Housekeeping

' l Michael Maione

n
This simple utility will help you clean up the clutter on

Pi your 1540 or 1541 disk drive. For any VIC or Com
modore 64*

If you experiment with different programming techniques

and save each enchancement along the way, your disks

tend to get cluttered with outdated routines. This short pro

gram will help with your disk housekeeping chores.

Type in the program, save it, and then give it a try. To

prevent a disaster, practice first on a disk that does not hold

any important programs or files.

Scratching and Unscratching Files
If you choose the Scratch option, a portion of the disk direc

tory will be displayed—just enough to fit comfortably on the

VIC screen along with the query "Scratch program?" If you do

not wish to scratch any of the programs listed, press the N

key and another portion of the directory will be presented. Re

peat this procedure until you find the file you want.

To scratch a file on the list, press the Y key. Then, type in

the name of the file to be scratched and press RETURN. The

file will be scratched automatically, and the program will re

start from the beginning. Continue this process until all un

wanted files have been removed from the disk.

r^ When the entire disk directory has been presented, you

i | can end the program by pressing the N key in response to the

scratch question.

If the Unscratch option is chosen, the program collects all

free blocks off the disk and displays the names of any pre

viously scratched files. You are then prompted with a

scratched file. Enter Y to unscratch it. Sometimes the file will

be partially scrambled because other files have been written

over part of it. In that case, a message is displayed indicating

that the file cannot be recovered.

213

5: Utilities and Programming Aids

Abbreviated Directory Listing
Lines 10-40 set the screen color, display the title, and begin

the program. Lines 50-190 read eight filenames from the disk

directory and print them to the screen. The file sizes and types

have been eliminated from the screen display to make it

clearer and more concise.

Lines 200-240 branch, depending on whether or not you

wish to scratch a file. Line 250 ends the program when all

files have been displayed and the N key is pressed. Line 260

returns to the directory for more filenames.

Line 270 gets the filename which is to be scratched and

ends the program if you accidentally hit RETURN before you

type a filename.

The subroutine in lines 340-380 examines the filename

you enter. If the filename is longer than ten characters, it

abbreviates the name and adds an asterisk (*) to the end. This

is done so that the filename and the scratch command to

gether will not be longer than one VIC screen line.

Finally, lines 290-330 use the dynamic keyboard tech

nique to scratch the file and run the program again from the

beginning.

Use PRINT# Abbreviation
The Scratch portion of the program runs on both the VIC (any

memory configuration) and 64. Since the line length of the 64

screen is 40 characters, abbreviating the filename when it is

longer than 10 characters should not be necessary. You may

wish to modify or simply eliminate the subroutine in lines

340-380. Commodore 64 users who wish to display more than

eight filenames on the screen at one time can adjust line 190

accordingly.

If you are using a VIC, be sure to abbreviate the com

mand PRINT# (by using P SHDFT-R) in line 310, to insure that

the filename and the command together do not exceed the 22-

character line length of the VIC screen. If they are too long,

the RETURNS which are POKEd into memory in line 330 will

not be entered properly when the END statement is reached.

With a little experimentation, VIC users should be able to

eliminate the necessity for the subroutine which abbreviates

214

Utilities and Programming Aids: 5

n

j ^ .

i .

n

170

180

190

200

210

220

230

240

the longer filenames. Try using branch statements and a sec

ond routine for printing the OPEN, scratch, RUN, and cursor

up instructions in lines 290-330. Also try adding lines to vali

date the disk and reorganize the directory. Finally, add a few

lines to read the error channel and to make the program more

complete.

Disk Housekeeping

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

0 REM IF YOU HAVE AN UNEXPANDED VIC, DELETE 10, 11

, AND 400-10020 :rem 162

10 DIMA(255),C%(77,28),D%(l)fT%(224,l),S%(224,l),L

%(224),R%(77) :rem 38

11 D%(0)=58:D%(1)=42:Z$=CHR$(0):B$=CHR$(3):D$="0"

:rem 234

20 PRINTH{CLR}{6 DOWN}{8 SPACES}SCRATCH":PRINT

:rem 251

30 PRINT"{6 DOWN}S=SCRATCH, U=UNSCRATCH"

40 GETQ$:IFQ$=MMTHEN40

45 IFQ$="UnTHEN400

46 IFQ$o"S"THEN40

50 PRINT"{CLR}{DOWN}{RVS}DISK"
60 OPEN1,8,0,"$0"

70 N$=CHR$(0)

80 GET#1,A$,A$

90 F$="":B=0:GET#1,A$,A$

95 IFC=0THENPRINT"{RVS}";

100 IFA$=""THENX=1:GOTO200

110 GET#1,A$,B$

120 PRINTTAB(5);

130 GET#1,A$

140 IFA$=""THENPRINT:A=A+1:GOTO190

150 IFA$=CHR$(34)THENB=1:A$=""

160 IFB=1THENF$=F$+A$:PRINTA$;

IFLEN(F$)>16THENC=C+1:GOTO90

GOTO130

IFA<8THEN90

PRINT"SCRATCH PROGRAM? Y/N"

GETZ?:IFZ$=""THEN210

IFZ$="Y"THEN270

IFZ$="N"THEN250

GOTO210

IFX=1THENCLOSE1:GOTO390

260 PRINT"{CLR}{2 DOWN}":A=0:GOTO90

270 CLOSE1:INPUT"{DOWN}WHICH
ENEND

280 GOSUB340

290 PRINT"{CLR}{8 DOWN}"

:rem 155

:rem 11

:rem 6

:rem 18

:rem 23

:rem 77

:rem 152

:rem 190

:rem 205

:rem 250

:rem 0

:rem 233

:rem 184

:rem 89

:rem 40

:rem 127

:rem 13

:rem 144

:rem 102

:rem 118

:rem 152

:rem 123

:rem 67

:rem 55

:rem 98

:rem 209

:rem 226

PROGRAM";P$:IFP$="nTH

:rem 9 3

:rem 177

:rem 135

215

5: Utilities and Programming Aids

300 PRINT"OPENl5,8,15" :rem 242

310 PRINT"{2 DOWN}PR15,"CHR$(34)"S0:"X$CHR$(34)"

:rem 76

320 PRINT"{2 DOWN}RUN"2PRINT"{10 UP}" :rem 50
330 POKE631,13:POKE632,13:POKE633,13:POKE198,3:END

:rem 147

340 FORA4=1TOLEN(P$):R$=MID$(P$,A4,1) :rem 86

350 X$=X$+R$:rem 110

360 NEXT :rem 216

370 IFLEN(X$)>10THENX$=LEFT$(X$,10)+"*" :rem 158

380 RETURN :rem 123

390 CLOSE15:RUN :rem 167

400 PRINT"{3 DOWN}LOADING FREE SECTORS":OPEN15,8,1

5,"I"+D$:GOSUB3020 :rem 110

410 OPEN3,8,3,"$"+D$:GOSUB3020 :rem 99

420 A0=1:GET#3,A$:A=ASC(A$+Z$) :rem 100

430 READA1:IFA=A1THEN470 :rem 168

440 F%=F%+1:IFF%=3THEN510 :rem 112

450 READA1:IFA1=0THEN430 :rem 149

460 GOTO450 :rem 108

470 READA1:IFA1=0THEN490 :rem 157

480 READB1:FORJ=A0TOA1:R%(J)=B1:NEXTJ:A0=J:GOTO470

:rem 88

490 IFA=1ORA=65THEND1=1:T9=35:S9=3:D9=18 :rem 118

500 IFA=67THEND1=257:T9=77:S9=4:D9=39 :rem 151

510 IFT9=0THENCLOSE3:PRINT"?? DISK NOT RECOGNIZED

{SPACE}??":STOP :rem 132

520 FORJ=1TOD1:GET#3,A$:NEXTJ :rem 18

530 FORJ=1TOT9:T1=0 :rem 147

540 IFJ=51THENGET#3,A$,A$,A$,A$:rem 190

550 GET#3,A$:C=ASC(A$+Z$) :rem 81

560 K1=0:FORK=0TOS9-1:GET#3,A?:A=ASC(A$+Z$)

:rem 217

570 FORL=0TO7:A%=A/2:D1=A-A%*2:IFKK=R%(J)THENC%(J

,K1)=D1 :rem 13

580 A=A%:T1=T1+D1:K1=K1+1:NEXTL,K : rem 169

590 NEXTJ :rem 39

600 CLOSE3 :rem 63

610 OPEN2,8,2,"#0":GOSUB3020 :rem 255

900 K=0:PRINT"{CLR}LOOKING FOR SCRATCHED":PRINT"FI

LES..." :rem 130

910 T=D9:S=1 :rem 163

920 GOSUB 2000 :rem 221

930 FORD=2TO255STEP32:IFA(D)O0ORA(D+1)=0THEN980

:rem 111

940 IFK=0THENPRINT"DO YOU WANT TO RECOVER:"

:rem 161

950 GETX$:FORK=D+3TOD+18:PRINTCHR$(A(K));:NEXTK:PR

INT"? "; :rem 58

960 GETX$:IFX$<>llY"ANDX$o"N"THEN960 : rem 128

216

Utilities and Programming Aids: 5

970 PRINTX$rIFX$="Y"THEN1010 :rem 185

980 NEXTD :rem 36

990 T=A(0)rS=A(l)rIFT=D9THEN920 :rem 35

1000 PRINT"THAT'S ALL ":GOTO1270 :rem 83

1010 T6=T:S6=S:D6=D:T=A(D+1):S=A(D+2):L%(0)=A(D+28

)+A(D+29)*256:L%=0 :rem 169

1020 GETX$rPRINT"IS THIS FILE:11 :rem 88

1030 PRINT" 1. SEQUENTIAL" :rem 239

1040 PRINT" 2. PROGRAM" :rem 14

1050 PRINT" 3. USR" :rem 242

1060 IFA(D+19)=0THEN1080 :rem 38

1070 PRINT" 4. RELATIVE" :rem 87

1080 PRINT"{2 SPACES}WHICH NUMBER? "; :rem 80
1090 GETX$rIFX$=""THEN1090 :rem 229

1100 X=ASC(X$)-48rIFX<lORX>4GOTO1090 :rem 144
1110 PRINTX$:X=X+128 :rem 185

1120 IFX=132THENT%(0,1)=A(D+19):S%(0,1)=A(D+20):IF

T%(0,1)=0THEN1020 :rem 91

1130 IFT>T9ORS<0THENT=0 :rem 195

1140 IFT<1ORS>R%(T)THENPRINT" BAD CHAINl":GOTO1260

:rem 235

1150 IFC%(T,S)=0THENPRINT" ALLOCATED BLOCKSI":GOTO

1260 :rem 243

1160 GOSUB3000:L%=L%+1 :rem 192

1170 FORJ=0TO1:PRINT#15,"M-R";CHR$(J);B$:GET#15,A$
:rem 115

1180 A(J)=ASC(A$+Z$)rNEXTJ :rem 220

1190 T4=T:S4=S:T=A(0):S=A(1)2lFT<>0THEN1130:rem 10
1200 T=T%(0,1):S=S%(0,1)rT%(0,1)=0r IFTO0THEN1130

:rem 132

1210 IFL%OL%(0)THENPRINT" INCORRECT BLOCK COUNT I"

2GOTO1260 rrem 42

1220 T=T6:S=S6:D=D6 rrem 104

1230 GOSUB 3000 rrem 9

1240 PRINT*15,"M-W";CHR$(D);B$;CHR$(1);CHR$(X)

2rem 51

1250 PRINT#15,"U2 22 ,";D$;T;S 2GOSUB3020 2GOTO1300

rrem 227

1260 PRINT"SORRY - IT WON'T WORK" 2rem 181

1270 CLOSE2 rrem 114

1300 CLOSE22PRINT#15,"V0":CLOSE15rFORQW=lTO10000rN

EXT:RUN rrem 59

2000 REM GRAB FULL DISK BLOCK rrem 139

2010 GOSUB3000 rrem 6

2020 FORJ=0TO255 rPRINT*15,"M-R";CHR$(J);B$ rGET#15,

A$ rrem 217

2030 A(J)=ASC(A$+Z$)rNEXTJrRETURN rrem 241

3000 REM READ BLOAD rrem 37

3010 PRINT#15#"B-R"2;VAL(D$);T7S rrem 49

3020 REM GET ERROR STATUS rrem 247

217

5: Utilities and Programming Aids

3030 INPUT#15,E,E$,E1,E2 :rem 42

3040 IFE<>0THENPRINT"{RVS}DISK ERROR:{OFF}"E;E$,El | \
;E2 :rem 21

3050 RETURN :rem 168

10000 DATA 1,17,20,24,19,30,17,35,16,0 :rem 44] |

10010 DATA 65,17,20,24,18,30,17,35,16,0 :rem 102 <—'

10020 DATA 67,39,28,53,26,64,24,77,22,0 :rem 126

LJ

U

U

218

n

n

n

n

ML Tracer
Original Program by Thomas G. Gordon

VIC and 64 Versions by Tim Victor

Debugging machine language can be a trying expe

rience; trying to study a program in ROM can be just

as frustrating, even with a disassembler. Here's a util

ity that will help you solve both problems: a single-step

ML tracer for the VIC or 64-

Anyone who has ever worked with machine language

knows how helpful it can be to single-step through a

program. "ML Tracer" allows you to step through a machine

language routine one event at a time and print out the con

tents of all microprocessor registers after each instruction. It

also allows you to follow all branches, jumps, and returns. The

program will display the address, opcode, mnemonic, and op

erand of each instruction.

When ML Tracer is run, there will be a ten-second delay

while the DATA statements are read. You'll then be asked for

the hex address of the ML program you wish to examine.

You can change the contents of any register before each

instruction is executed. Press A for the accumulator, X for the

X register, Y for the Y register, S for the stack pointer, P for

the processor status register, or I for the instruction pointer

(program counter). When you're through loading registers,

press RETURN once more to execute the next instruction.

Hexadecimal numbers are used for all input and output. If

you enter an address as a one-, two-, or three-digit hexadeci

mal number, zeros will be added on the left to make a four-

digit number. If too many digits are entered, the rightmost

four digits will be used. The same applies to changing the

value in a register. The number that you enter will be con

verted to a two-digit hexadecimal number using the same

rules.

The Execution Subroutine
The program is written mostly in BASIC but contains two ma

chine language subroutines. The first, the initialization sub

routine, copies the lowest three pages (768 bytes) of RAM,

which are used by BASIC, to a location above the BASIC pro

gram. The other, the execution subroutine, exchanges the two

219

5: Utilities and Programming Aids

three-page blocks of data, loads all the registers with their

saved values, then executes one instruction (which has been

POKEd in from BASIC). When the instruction has been exe

cuted, the registers are saved and BASIC'S original lower three j »

pages of memory are restored. i—\

Lines 10000-10031 contain four-character extended

mnemonics for the 6502's instruction set. The fourth character i »

is a tag code identifying the addressing mode of the instruc- I—i
tion. In lines 110-120, the mode is identified and the proper

subroutine is called.

There are several instructions which cannot be allowed to

execute in the machine language subroutine. If any control

transfer instructions (JMP, JSR, RTS, RTI, or a conditional

branch) should be executed, control would not be properly re

turned to the BASIC program. These instructions are simulated

in BASIC instead, so that they appear to execute successfully.

The SEI and CLI instructions are ignored, since interrupts are

always disabled during the execution subroutine.

How Does It Work?
The simplest way to see how the program works is to trace

through an example. Suppose the instruction LDA #$20 re

sides at addresses $03C0-$03Cl. For this instruction, the

extended mnemonic is LDAB, where LDA stands for LoaD

Accumulator, and B is the tag code for immediate addressing.

The hexadecimal representation for LDA immediate is $A9,

which is equivalent to decimal 169.

Line 50, the top of the main loop, calls the keyboard

pause routine at line 7000, which also handles changing reg

isters. In line 55, the variable C is loaded with 169 by PEEK-

ing the memory addressed by B, the instruction pointer. The

value of B, 960 in this example, is then converted to hexadeci

mal characters in line 2000 and PRINTed.

In line 60, NOP instructions are POKEd into the execution

routine to take up space after one- or two-byte instructions.

The hexadecimal value of the opcode is printed next; then the

mnemonic is retrieved from the array R$(). If the mnemonic is

a blank, this instruction is undefined and an error message is

displayed. Otherwise, the standard (three-character) mnemonic

220

Utilities and Programming Aids: 5

is PRINTed, the opcode is POKEd into the execution routine

at OP, and the program counter is incremented to 961.

The ASCII code for B is 66, so the ON GOSUB in line 120

transfers control to line 400. Here, the symbol for the address

ing mode is printed. The one-byte operand routine, at line

3000, PEEKs location 961, pointed to by the program counter.

This number is POKEd into OP+1, then converted to hexa

decimal and PRINTed. After incrementing the program

counter to point to the start of the next instruction, a RETURN

is executed at line 3000.

At line 5000, the execution routine is SYSed, the contents

of the registers are displayed, and control passes back to line

120. Here, a GOTO 50 takes us back to the top of the loop,

where the instruction at $3C2 will be executed.

The Benefits of Tracing
You will find that this program is most useful for testing small

ML programs, such as those called as subroutines from BASIC.

It's also good for examining sections of larger programs when

you're not sure how a particular routine works. If you're learn

ing machine language, you'll find that the register display is

an enormous help in understanding the effects and side effects

of each instruction, especially the bits (flags) of the processor

status register.

Do be careful, though. Any program is vulnerable when

dealing with something as powerful as machine language, and

this one is no exception. There are more ways to kill a BASIC

program from ML than anyone can name in one sitting, so al

ways be conscientious about saving your programs. After you

type this one in, save it before you even think about running

it. One typographical error could cause the program to erase

itself, or at least lock up the computer.

There are also some ML programs that this tracer can't

follow, such as those which disconnect the keyboard or video

display (whether intentionally or accidentally). But if every

thing is saved on disk or tape (for real security, take the disk

or cassette out of the drive), you can experiment as much as

you want. Then, if disaster strikes, all you have to do is turn

the computer off and reload the program.

221

5: Utilities and Programming Aids

ML Tracer for the VIC and 64

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C.

10 GOSUB6000 :rem 167

35 POKEA,0:POKEX,0:POKEY,0:POKEP,52:POKES,255

:rem 63

40 PRINT"START ADDRESS (HEX)";:H$="C000":INPUTH$

:rem 106

45 H?=RIGHT?(H?,4)xGOSUBl500:B=D:PRINT"ANY KEY TO

{SPACE}STEP" :rem 9

50 GOSUB7000:D=FRE(0) :rem 197

55 PRINT:C=PEEK(B):D=B:GOSUB2000:PRINTH?" ";

:rem 148

60 POKEOP+l,234:POKEOP+2,234 :rem 127

70 D=C:GOSUB2000:PRINTRIGHT$(H$,2)" "; :rem 170

80 IFR$(C) = ""THENPRINTIIINVALID OPCODE"iPRINT:GOTO3

5

90 R$=LEFT$(R$(C),3):PRINTR$" ";:POKEOP,C:B=B+1

trem 175

100 IFR$="BRK"THENPRINT:GOTO35

110 U?=RIGHT?(R?(C),1):IFU?=" "THENGOSUB200:GOTO50

:rem 126

120 ONASC(U$)-64GOSUB300,400,500 , 600,700,800,900,1

000,1100,1200,1300:GOTO50

rem 229

rem 141

rem 156

199 REM{4 SPACES}>IMPLIED MODE< :rem 42

200 IFR?="RTS"THENGOSUB4000:B=D:GOSUB4000:B=D*256+

B+1:GOSUB5005:RETURN :rem 42

203 IFR$o"RTI"THEN208 : rem 16

205 GOSUB4000:POKEP,D:GOSUB4000:B=D:GOSUB4000:B=D*

256+B:GOSUB5005:RETURN :rem 204

208 IFR$="SEI"ORR$="CLIHTHENGOSUB5005:RETURN:rem 4

210 GOSUB5000:RETURN :rem 242

299 REM{4 SPACES}>ABSOLUTE MODE< :rem 134

300 PRINT"?";:GOSUB2500 :rem 68

310 IFR?="JMP"THENB=PEEK(OP+1)+PEEK(OP+2)*256:GOSU

B5005:RETURN :rem 34

320 IFR$o"JSR"THEN340 1 rem 13

330 B=B-l:D=INT(B/256):GOSUB3500:D=B-INT(B/256)*25
6:GOSUB3500 :rem 249

335 B=PEEK(OP+1)+PEEK(OP+2)*256:GOSUB5005:RETURN
:rem 141

340 GOSUB5000:RETURN :rem 246

399 REM{4 SPACES}>IMMEDIATE MODE< :rem 18 3
400 PRINT"#$";:GOSUB3000:GOSUB5000:RETURN :rem 253

499 REM{4 SPACES}>ZERO PAGE MODE< :rem 134
500 PRINT"?";:GOSUB3000:GOSUB5000:RETURN :rem 219

599 REM{4 SPACES}>ABSOLUTE,X< :rem 232

600 PRINT"?";:GOSUB2500:PRINT",X";:GOSUB5000:RETUR

N :rem 170

699 REM{4 SPACES}>ABSOLUTE#Y< :rem 234

222

Utilities and Programming Aids: 5

700

799

800

899

900

999

1000

1099

1100

1199

1200

1210

1220

1230

1299

1300

1310

1499

1500

1999

2000

2005

2499

2500

2999

3000

3499

3500

3505

3510

3999

4000

4005

4010

PRINT"$"7:GOSUB2500:PRINT"#Y";:GOSUB5000:RETUR

N :rem 172

REM{4 SPACES}>(INDIRECT,X)< :rem 46

PRINT"($";:GOSUB3000:PRINT",X)"7:GOSUB5000:RET

:rem 249

SPACES}>(INDIRECT),Y<

•($"7:GOSUB3000:PRINT")

URN

REM{4

PRINT

URN

REM{4

rY"|

SPACES}>ZERO PAGE,X<

PRINT"$"?:GOSUB3000:PRINT"

RN

REM{3 SPACES}>ZERO PAGE,Y<

PRINT"$"?:GOSUB3000:PRINT"

RN

REM{3 SPACES}>RELATIVE JUMP<

PRINT "TO "7 :D=PEEK(B) :B=B+1:D=

=B+D:B1=D

:BM=

: rem 48

:GOSUB5000:RET

:rem 251

:rem 234

X"7:GOSUB5000:RETU

:rem 209

:rem 19

Y"?:GOSUB5000:RETU

:rem 211

:rem 202

D+(D>127)*256:D

:rem 52

GOSUB2000:PRINT"$"H$;:BM=BM(INT(C/64)):BC=BMA

NDPEEK(P) :rem 254

IFBC=(INT(C/32)AND1)*BMTHENB=B1 :rem 88

GOSUB5005:RETURN :rem 42

REM{3 SPACES}>INDIRECT JUMP< :rem 193
PRINT"(";:GOSUB2500:PRINT")";:B=PEEK(OP+1)+PE

EK(OP+2)*256 :rem 118

B=PEEK(B)+PEEK(B+1)*256:GOSUB5005:RETURN

:rem 160

REM{3 SPACES}> HEX TO DEC < :rem 137

D=0:FORI=1TOLEN(H$):J=ASC(MID$(H$,I,1))-48:D=

D*H+J+7*(J>9):NEXT:RETURN :rem 180

REM{3 SPACES}> DEC TO HEX < :rem 142

H$="":FORI=1TO4:E=INT(D/H):J=D-E*H:H$=CHR$(J+

48-7*(J>9))+H$:D=E:NEXT :rem 192

RETURN :rem 167

REM{3 SPACES}> 2BYTE OPERAND < :rem 165

D=PEEK(B+l):POKEOP+2,D:GOSUB2000:PRINTRIGHT$(
H$,2);:GOSUB3000:B=B+1:RETURN :rem 90

REM{3 SPACES}> 1BYTE OPERAND < :rem 169
D=PEEK(B):POKEOP+1,D:GOSUB2000:PRINTRIGHT$(H$

,2);:B=B+l:RETURN :rem 124

REM{3 SPACES}> PUSH < :rem 119

J=PEEK(S):POKEML+512+J,D :rem 194

IFJ=0THENPRINT: PRINT "WARNING: STACK OVERFLOW11

:J=256 :rem 114

POKES,J-l:RETURN :rem 57

REM{3 SPACES}> POP < :rem 43

J=PEEK(S):D=PEEK(ML+513+J) :rem 23

IFJ=255THENPRINT:PRINT"WARNING: STACK UNDERFL

OW":J=-1 :rem 221

POKES,J+1:RETURN :rem 51

223

5: Utilities and Programming Aids

4999 REM{3 SPACES}> EXECUTE ONE INSTRUCTION <
:rem 148

5000 SYSML+23 :rem 237

5005 PRINT:FORK=0TO4:D=PEEK(A+K):GOSUB2000:rem 107

5010 PRINTMID$(" A= X= Y= S= P=",3*K+1,3);:PRINTRI

GHT$(H$,2);:NEXT:PRINT:RETURN :rem 143

5999 REM{3 SPACES}> INITIAL STUFF < :rem 208

6000 ML=2*4096+8*256 :rem 245

6001 A=ML+240:X=A+1:Y=X+1:S=Y+1:P=S+1:H=16:OP=ML+9

2 :rem 239

6002 DIMR$(255):DIMBM(3):FORI=0TO3:READB:BM(I)=B:N

EXT :rem 204

6003 FORT=0TO255:READR$(T):NEXT :rera 154

6004 READR$:IFR$<>"END"THENPRINT"ERROR IN OPCODES"

:PRINT"CHECK FOR TYPOIS":END :rem 133

6005 1=0:FORT=MLTOML+164:READB:POKET,B:I=I+B:NEXT

:rem 128

6008 IFK>17737THENPRINT"ERROR IN ML DATA" :PRINT"C

HECK FOR TYPO'S'^END :rem 36

6010 SYSML :rem 95

6015 PRINT"{CLR}{7 DOWN}{5 RIGHT}6502 ML TRACER

{4 DOWN}" :rem 163

6020 RETURN :rem 168

6999 REM{2 SPACES}> PAUSE < :rem 189

7000 GETA$:IFA$=""THEN7000 :rem 177

7010 IFA$="I"THEND=B:L=4:GOSUB7100:B=D:GOTO7000

:rem 40

7020 IFA$="A"THEND=PEEK(A):L=2:GOSUB7100:POKEA,D:G

OTO7000 :rem 177

7030 IFA$="X"THEND=PEEK(X):L=2:GOSUB7100:POKEX,D:G

OTO7000 :rem 247

7040 IFA$="Y"THEND=PEEK(Y):L=2:GOSUB7100:POKEY,D:G

OTO7000 :rem 251

7050 IFA$="S"THEND=PEEK(S):L=2:GOSUB7100:POKES,D:G
OTO7000 :rem 234

7060 IFA$="P"THEND=PEEK(P):L=2:GOSUB7100:POKEP,D:G

OTO7000 :rem 226

7070 RETURN :rem 174

7100 PRINTA$"=";:GOSUB2000:INPUTH$:H$=RIGHT$(H$,L)
:GOSUB1500:RETURN :rem 124

9000 DATA128,64,1,2 :rem 207

10000 DATABRK ,ORAF,,,,ORAC,ASLC, :rem 142

10001 DATAPHP ,ORAB,ASL ,,,ORAA,ASLA, :rem 112

10002 DATABPLJ,ORAG,,,,ORAH,ASLH, :rem 228

10003 DATACLC ,ORAE,,,,ORAD,ASLD, :rem 133

10004 DATAJSRA,ANDF,,,BITC,ANDC,ROLC, :rem 244

10005 DATAPLP ,ANDB,ROL ,,BITA,ANDA,ROLA, :rem 148

10006 DATABMIJ,ANDG,,,,ANDH,ROLH, :rem 209

10007 DATASEC ,ANDE,,,,AMDD,ROLD, :rem 128

10008 DATARTI ,EORF,,,,EORC,LSRC, :rem 191

224

Utilities and Programming Aids: 5

n

n

10009 DATAPHA ,EORB,LSR ,,JMPA,EORA,LSRA, :rem 187

10010 DATABVCJ,EORG,,,,EORH,LSRH, :rem 249

10011 DATACLI ,EORE,,,,EORD,LSRD, :rem 163

10012 DATARTS ,ADCF,,,,ADCC,RORC, :rem 138

10013 DATAPLA ,ADCB,ROR ,,JMPK,ADCA,RORA, :rem 140

10014 DATABVSJ,ADCG,,,,ADCH,RORH, :rem 211

10015 DATASEI ,ADCE,,,,ADCD,RORD, :rem 118

10016 DATA,STAF,,,STYC,STAC,STXC, :rem 36

10017 DATADEY , ,TXA ,,STYA,STAA#STXA, :rem 192

10018 DATABCCJ,STAG,,,STYH, STAH,STXI, :rem 73

10019 DATATYA ,STAE,TXS tftSTADit :rem 143

10020 DATALDYB,LDAF,LDXB#,LDYC,LDAC,LDXC, :rem 24

10021 DATATAY ,LDAB,TAX ,,LDYA,LDAA,LDXA, :rem 149

10022 DATABCSJ,LDAG###LDYH,LDAH#LDXI, :rem 248

10023 DATACLV #LDAE#TSX ,,LDYD,LDAD,LDXE, :rem 173

10024 DATACPYB,CMPF,,,CPYC,CMPC,DECC, :rem 250

10025 DATAINY #CMPB,DEX ,,CPYA,CMPA,DECA# :rem 148

10026 DATABNEJ,CMPG,,,,CMPH,DECH, :rem 201

10027 DATACLD ,CMPE#,,,CMPD,DECD# :rem 116

10028 DATACPXB,SBCF,,,CPXCfSBCC#INCC# :rem 250

10029 DATAINX #SBCB#NOP ,#CPXA#SBCA,INCA, :rem 160

10030 DATABEQJ,SBCG,,,,SBCI,INCI, :rem 199

10031 DATASED ,SBCE,,,#SBCD#INCD, :rem 118

10032 DATAEND :rem 231

20000 DATA162,0,181,0,157,0,41,189 :rem 167

20001 DATA0,1,157,0,42,189,0,2 :rem 217

20002 DATA157,0,43,232,208,236,96,120 :rem 68

20003 DATA162,0,181,0,168,189,0,41 :rem 172

20004 DATA149,0,152,157,0,41,189,0 :rem 174

20005 DATA1,168,189,0,42,157,0,1 :rem 75

20006 DATA152,157,0,42,189,0,2,168 :rem 180

20007 DATA189,0,43,157,0,2,152,157 :rem 180

20008 DATA0,43,232,208,213,186,138,174 :rem 125

20009 DATA243,40,154,141,243,40,172,242 :rem 165

20010 DATA40,174,241,40,173,244,40,72 :rem 62

20011 DATA173,240,40,40,234,234,234,8 :rem 62

20012 DATA141,240,40,104,141,244,40,142 :rem 147

20013 DATA241,40,140,242,40,186,138,174 :rem 167

20014 DATA243,40,154,141,243,40,162,0 :rem 56

20015 DATA181,0,168,189,0,41,149,0 :rem 180

20016 DATA152,157,0,41,189,0,1,168 :rem 179

20017 DATA189,0,42,157,0,1,152,157 :rem 179

20018 DATA0,42,189,0,2,168,189,0 :rem 84

20019 DATA43,157,0,2,152,157,0,43 :rem 124

20020 DATA232,208,213,88,96 :rem 100

! \

225

u

LIST Freezer
Doug Ferguson

u

This very short routine will prove indispensable. It < I

allows you to pause or freeze a program listing on your i 1
monitor screen. For any VIC or 64.

The VIC-20 and Commodore 64 would greatly benefit 1—1
from some way to pause listings oh the screen. When

you're writing or debugging a program, especially if you lack a

printer, you can waste a lot of time typing LIST again and

again just to get a look at your BASIC code.

"LIST Freezer" is an elegant solution to the problem. It

patches directly into the LIST routine in ROM without inter

fering with anything else. Once it's activated, there is never

any need to turn it off. It also eliminates the screen ripple ef

fect seen in some other LIST pause routines.

The LIST Freezer
Start by typing in, saving, and then running LIST Freezer. Be

cause it destroys the BASIC loader part of itself in line 80, be

sure to save it before typing RUN for the first time. Then, load

a BASIC program and give it a try.

To use LIST Freezer, list any BASIC program and hold

down the SHIFT key. The listing will pause. To freeze it en

tirely and free your hands, press SHIFT LOCK. You can restart

the listing at any time by releasing SHIFT or SHIFT LOCK.

Technical Details
Here's how it works. Line 20 sets the low-byte/high-byte

address of a machine language routine at the top of RAM. On t- \

either the VIC or the 64, the routine occupies 23 bytes of *—'

memory.

Line 30 redefines the computer's memory size to protect j \

the routine from BASIC programming. It also moves the LIST '—j

vector at memory addresses 774-775 ($0306-$0307) to reroute

the indirect jump to ROM (address $A717 in the 64 or $C717 i i

in the VIC). LJ
The remaining lines create the patch routine at the top of

RAM. line 50 adjusts the patch to work on either the VIC or 64. j" >

Notice that the program assumes the normal LIST vector <—\
at power-up; line 20 thus prevents you from accidentally trying

226 LJ

n
Utilities and Programming Aids: 5

H

r**-> to activate the routine more than once while the power is on.

• J Also note that the routine clears out the keyboard buffer
when activated. Actually this was necessary only for the VIC.

|—I However, it causes no harm on the 64 and was left in to make

' ! the routine universal.

^ LIST Freezer for the VIC and 64

i (For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C.

20 L=232:H=PEEK(56)-1:Q=PEEK(775):IF Q<167 THEN 80

:rem 236

30 POKE 55,L:POKE 51#L:POKE 56,H:POKE 52,H:POKE 77

4,L:POKE 775,H :rem 74

40 FOR X=L+H*256 TO X+21:READ D.-POKE X,D:NEXT

:rem 51

50 POKE X,Q :rem 105

60 DATA 72,152,72,32,159,255,169,1,44,141,2,208,24

6 :rem 209

70 DATA 169,0,133,198,104,168,104,76,26 :rem 136

80 NEW :rem 82

227

u

REFMAP: A Cross- u

Reference Map Utility for

the Expanded VIC U
Kenneth D. Day

"REFMAP" is a cross-reference map utility written in I—I
6502 machine language for any VIC with 3K or more

memory expansion.

* * 13 EFMAP" is a useful utility for any BASIC programmer.
XvWh lld b SYS d h dl

y y pg

called by a SYS command giving the decimal

entry address of the routine, the program prints an alphabet

ized list of all variables and functions in any current BASIC

program, as well as the numbers of the lines in which they

appear.

The utility is particularly useful for debugging your own

programs or modifying another person's work. If the BASIC

program has been crunched to save memory, or if the program

is quite long, this utility can save a programmer from a rather

tedious and eye-straining task.

When you run this program, a relocating BASIC loader

will locate the utility at the top of available memory and tell

you how to call it (for example, with SYS 12288).

Once loaded, the machine language program occupies

only 983 bytes. However, the relocating loader program is too

large to run within the memory of an unexpanded VIC-20.

Display Format
REFMAP provides an alphabetical listing of the names of air { [
variables and functions within the current BASIC program and

also the line numbers of the line in which the variables or

functions occur. For example, assume that the following jJ
BASIC program has been stored in memory:

10 INPUT X,Y

20 Z=X+Y

30 PRINT X

40 PRINT Y

50 PRINT Z,X

60 END

228 LJ

Utilities and Programming Aids: 5

n

n
Calling REFMAP would result in the following information

being written to the screen:

REFMAP

X 10 20 30

Y

Z

50

10

20

20

50

m^mm •"- ■*•'*' —-+* T'v/

READY.

If there is more output than can be printed on the screen

at one time, READY will not appear at the bottom of the

screen. To display the next page, press RETURN.

The sorting sequence for variable names takes the follow

ing order:

<blank> $ % () 0-9 A-Z

While blanks are not really part of a variable name, variable

names are treated as if they were four characters long. For

every character less than four in the actual variable name, a

blank is added on the end. This assures that shorter names

will occur alphabetically before longer names.

The left and right parentheses are not part of any variable

name, but are added onto the ends of the names of arrays and

functions. An array named N2% will appear in the display as

N2%(in order to distinguish it from a nonarray variable by

the same name. That makes the program think that three-

character array names are four characters long.

Names of functions are displayed with a right parenthesis

on the end, so that a function named FNA would appear as

A). This is an improvement over many other cross-reference

map utilities since it eliminates confusion of arrays and func

tion names.

Program 1. REFMAP

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C.

6 L=PEEK(644) *256+PEEK(643) -983 :POKE644, INT (L/256)

:POKE643,L-PEEK(644)*256 :rem 182

7 FORI=56TO52STEP-2:POKEI,PEEK(644):POKEI-1,PEEK(6

43):NEXT :rem 110

8 PRINT"{CLR}LOADING REFMAP INTO{3 SPACES}MEMORY"
:rem 104

9 P=L+16:FORI=1TO25:READS$:FORJ=1TO40?C$sLEFT$(S$,

2):S$=RIGHT$(S$,80-J*2):V=0 :rem 66

10 IFLEFT$(C$,1)="X"THEN14 :rem 193

229

5: Utilities and Programming Aids

11 D1=ASC(LEFT$(C$,1)):D2=ASC(RIGHT$(C$,1))
:rem 108

12 V=-(D1>64)*(D1-55)*16+-(D1<65)*(D1-48)*16+-(D2>

64)*(D2-55)+-(D2<65)*(D2-48) :rem 39

13 POKEP,V:P=P+1:NEXT:NEXT :rem 202

14 P=P-1:IFP=L+22THEN20 :rem 98

15 IFPEEK(P)<48ORPEEK(P)>51THEN14 :rem 2

16 IFP=L+141ORP=L+151ORP=L+161ORP=L+171ORP=L+181OR

P=L+191ORP=L+201ORP=L+211THEN14 :rem 203

17 IFP=L+300ORP=L+406ORP=L+409ORP=L+410ORP=L+414OR

P=L+418ORP=L+440ORP=L+473THEN14 :rem 221

18 IFP=L+474ORP=L+482ORP=L+486ORP=L+732ORP=L+816OR

P=L+99THEN14 :rem 85

19 V=PEEK(P)*256+PEEK(P-l)+L-12288:POKEP,INT(V/256

):POKEP-1,V-PEEK(P)*256:P=P-1:GOTO14 :rem 101

20 L=L+22:PRINT"{CLR}TYPE ";"{RVS}SYSH;L;"{OFFjTO
{SPACE}USE":NEW:END :rem 147

51 DATA50414D464552A2018628A2018629A99320D2FFA91DA

20820D2FFCAD0FAA206BD0F3020D2FFCAD0F7 :rem 93

52 DATAA90D20D2FF20D2FF38A52DE52BC902D00160A9408D0

430A9208D05308D06308D0730A95A8D08308D :rem 20

53 DATA0930A9308D0A308D0B30A52B8526A52C8527A000B12

68D0030C8B1268D0130C8C8C820EF32B06BAD :rem 255

54 DATA0430CD0C303020D0F1AD0530CD0D303016D0E7AD063

0CD0E30300CD0DDAD0730CD0F30300210D3AD :rem 12

55 DATA0830CD0C3030CBD01EAD0930CD0D3030C1D014AD0A3

0CD0E3030B7D00AAD0B30CD0F3030ADF0ABAD :rem 118

56 DATA0C308D0830AD0D308D0930AD0E308D0A30AD0F308D0

B301890BDAD0430CD0C30D019AD0530CD0D30 :rem 44

57 DATAD011AD0630CD0E30D009AD0730CD0F30D00160AD083

08D0430AD09308D0530AD0A308D0630AD0B30 :rem 240

58 DATA8D0730C930F00BA2008E0C3020F1314C5A306020D83

2AD043020D2FFAD053020D2FFAD063020D2FF :rem 3

59 DATAAD073020D2FFA99DA20420D2FFCAD0FA60C8B126C92

2D002C860C900D0F360C8B126C93AD002C860 irem 107

60 DATAC900D0F360AD00308526AD01308527A003B12699003

08810F8A00460C9003057C930300EC93A3008 :rem 118

61 DATAC941304BC95A10471860C924F0FAC925F0F6C928D02

2C00730EE8888AE0C30F00188B126C8C8AE0C :rem 78

62 DATA30F001C8C9A5F004A928D0D4A929D0D0C9303013C95

B100FC93A3004C9413007C8B126C900D0BB38 :rem 7

63 DATA60E629A628E001F00BA2018628A90D20D2FFE629203

B31A52B8526A52C8527A003B1269900308810 :rem 194

64 DATAF8A004B126C98FD00E207D31AD0130D0F2A90D20D2F

F60C922D0062061311890E2C98ED006206F31 :rem 8

65 DATA1890D8C900F0DACD0430F006C8B1261890CBC8B126D

00DAE0530E020D0C32083331890BDAE0530E0 :rem 28

66 DATA20F00E209431CD0530F05C20AA311890A4209431B0E

020AA31189097C8B12620AA31C900D00AAE06 :rem 193

230

n

n

H

n

n

Utilities and Programming Aids: 5

67 DATA30E020D08C1890C6AE0630E020F008CD0630F00A189

0DB20AA3190D6B0B0C8B126D009AE0730E020 :rem 247

68 DATAD0A7F0A2AE0730E020D006C928D097F098C928D094F

08FA929CD0530F088D0ACA629E014301020E4 :rem 55

69 DATAFFC900F0F9A99320D2FFA200862960A9208D0C308D0

D308D0E308D0F30B126C98FF020C983D00620 :rem 60

70 DATA6F311890F0C9001004C81890E8C922D006206131189

0DEC900D00A207D31AD0130D0D23860C8C941 :rem 184

71 DATA30CBC95B10C78D0C30B126C8C900D00318901920943

1900218608D0D30C928F0F7C929F0F3B126C8 :rem 244

72 DATAC900D00B207D3118AD0130D001386020AA31B0158D0

E30C928F00EB126C900F008C928D0048D0F30 :rem 203

73 DATAC8186020D832A629D003203B31A628E001D00AA91DA

20420D2FFCAD0FAE628A528C904D006A20186 :rem 11

74 DATA28E629AD0330AC02302091D320DDDDBD0001C900F00

3E8D0F6A00688CAD0FCA92020D2FF88D0FAA0 :rem 107

75 DATA01A900201ECB60XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX srem 52

n

n

n

H 231

Data Files for the VIC

and 64
Brian Prescott

You can give yourself more free memory by storing files

on tape or disk. The programs presented here show you

how to set up, write to, and read from either tape or

disk files. For any VIC or 64.

Beginning programmers often balk at handling files with

the Datassette. But some serious applications require the

use of the same data in more than one program or require the

use of several sets of data with the same program. Such situa

tions call for data files.

Here's a trio of simple programs that create data files,

read them back, and display the contents. Not only will they

help you grasp the techniques involved, but you can also use

them to create files or incorporate them into your own programs.

Program 1 and Program 2 create data files. Program 3

reads the files and prints the contents to the screen. Each pro

gram can be used with either tape or disk. Tape users should

omit the REMs from line 247 in Program 1, line 195 in Pro- —\

gram 2, and line 372 in Program 3. Disk users should remove \
the REMs from line 245 in Program 1, line 590 in Program 2,

and line 370 in Program 3.

Program 1 prompts you for each item. It then writes the

items onto a data file. This method is convenient. But if an in

correct entry is typed in and stored, the only way to correct it

is to create a new file. That means you have to enter all the

data again. (i

Program 2 solves the problem but is slightly less conve- 1—I
nient to use. First load the program, then add DATA state

ments at lines 540-570. Running the program creates the files. . j
LJ

Creating a File
The programs are fairly straightforward, but a few comments i i

are in order. The first program asks you for the number of i—»
items to be in the file and DIMensions a string array to hold

them. Be sure to dimension the array to the number of data i i

entries plus one. You're then asked for a filename. It's best to I—I
use a name that identifies the file. Using "+1" as the filename

232 LJ

Utilities and Programming Aids: 5

n

nends the program. After the array is filled and the file written

to tape or disk, the program displays the contents on the

screen. You could modify the program to allow display and

rn possible editing before the file is created.

■ ' The second program does the same job in a slightly dif

ferent way. The data lines must be organized properly to

j—| avoid problems. The first data item will be read as the

U filename, so be sure the filename is the first item entered. To
signal the end of a file, use — 1. This is included at the end of

the DATA statements. You can create several files at one time,

as you can see from the data included. To signal the end of

data, use +1. That stops the program.

To see what's on the files, load and run Program 3. If

you're using tape, you can ask for any file, but be sure to re

wind the tape to some point before the starting point of the

file you want.

Opening, Filling, and Closing Files
A data file is like a desk drawer. First you open it, then you

put something in or take something out, and then you close it.

In the first two programs you will see the statement

OPEN 1,1,1, "filename". The three numbers following OPEN

serve three different purposes. The first is the file number.

You can pick any number from 1 to 127, but 1 is most com

monly used. The second is the device number. Tape drives are

always device number 1, and single disk drives are always de

vice number 8. The last number is the secondary address,

which is important for tape files. A 1 here means "write to the

tape file." Thus, OPEN 1,1,1 tells the computer to open file

number 1 on the cassette drive for writing.

|—I Once a file is opened, you can print to it. In the first two

1 ' programs, you will see PRINT#1, data. PRINT* works like
PRINT, except that a question mark (?) cannot be used as an

I—i abbreviation. Use P SHIFT-R instead, followed by the file

1 ' number. In addition, you have to put a comma between the
file number and the data you are writing. After you finish

r-i writing the file, CLOSE it.

' I Opening a file for reading is similar, except that the
secondary address is zero. After the file is open, you can

INPUT# or GET# from it. You can read and write any type of

data—floating-point numbers, integers, or strings.

Since the size of a data file can vary, it is advisable to

n

n 233

5: Utilities and Programming Aids

indicate how long the file is or where it ends. One method is

to PRINT* the number of records as the first item in the file.

This is best when you are setting up arrays. The computer

reads the first number in the file, then DIMensions the array.

Another way to mark the length of a file is to make up an

end-of-file marker. In the sample programs, " —l" acts as the

marker.

Tape Files on a Disk Drive?
Knowing the basics of tape files is helpful even if you decide

to buy a disk drive. There are a variety of ways to store infor

mation on a disk; one of them is very similar to tape files.

Sequential disk files store information in the order it is re

ceived (tape files are always sequential). To transfer infor

mation from tape to disk, simply open the tape file for

reading, open a sequential disk file for writing, and then input

the data from tape, print it to the disk, input more, print more,

and so on until you reach the end of the file.

Program 1* Keyboard Data File Maker

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

200 REM{11 SPACES}* FILES WRITTEN * :rem 106

210 REM{11 SPACES}* FROM KEYBOARD * :rem 80

215 CLR :rem 121

220 INPUT"{CLR}{5 DOWN}NO. OF ITEMS IN FILE";N
:rem 114

225 DIMW$(N+1) :rera 233

230 INPUT"{DOWN}FILENAME";NAME?:IFNAME$="+1"THEN E

ND : rem 44

240 PRINT"{DOWN}ON THE PROMPT,":PRINT"TYPE EACH IT

EM,":PRINT"FOLLOWED BY {RVS}RETURN{OFF}"
.^-^ :rem 67

245 &i2>OPENl,8,l,NAME$+",S,W" :rem 133 I I
247 REM OPEN1,1,1,NAME$:rem 15 '—'
250 FORX=1TON:INPUTW$(X):PRINT#1,W$(X):IFW$(X)<>"-

1"THEN NEXT :rem 5 , .

260 CLOSE1:FORX=0TON:PRINTW$(X):NEXT :rem 122 | \
265 PRINT"HIT ANY KEY" :rem 36

270 GETA$:IFA$=""THEN 270 :rem 85

280 GOTO200 :rem 101 I I

290 END ;rem 114 I—I

U

234 I—I

n

Utilities and Programming Aids: 5

(i

Program 2. Improved Tape Data File Maker

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix C.

500 REM{10 SPACES}* FILE WRITTEN * :rem 26

510 REM{10 SPACES}*{2 SPACES}FROM DATA{3 SPACES}*

:rem 23

520 REM :rem 123

540 DATAW21,DELIGHT.CHAPTER,FARTHER,BUILT,JOYFUL,S

TORIES :rem 11

541 D^TABOUGHT,SCARF,FILLED,SAILED,REMAIN :rem 186

550 DATACLOAK,PLACED,DRIVING,FEAST,STRONG,-1,W22,F

LYING :rem 64

551 DATASOMETIMES,HIGHWAY,SNOWING,CLOSING :rem 52

560 DATABEDTIME,PUSHED,BRUSHES,DREAMING,BOOKCASE,P

ULLED :rem 196

561 DATAAIRPLANE,BUYING,SPENDING,SKATED :rem 104

570 DATADECEMBER,-1,+1 :rem 255

580 READNAME$:R$=CHR$(13) :rem 161

585 IFNAME$="+1"THENGOTO650 :rem 86

590 J£EMT)OPEN1,8,1,NAME$+",S,W" : rem 136

595 ^EM OPEN1,1,1,NAME$:rem 21
600 READWRD$:PRINT#1,WRD$;R$:rem 204

620 IFWRD$o"-l"THEN600 :rem 25

630 CLOSE1 :rem 64

640 GOTO580 :rem 112

650 CLOSE1:END :rem 83

Program 3. File Reader

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix C.

300 REM{11 SPACES}*{4 SPACES}FILE{4 SPACES}*

jrem 235

310 REM{11 SPACES}*{3 SPACES}READER{3 SPACES}*

:rem 12 7

320 DIM W$(20) :rem 157

350 INPUT"{CLR}{8 DOWNjWHAT FILE";NAME$:rem 91

360 IFNAME$="+1"THEN END :rem 80

362 INPOT^'Jai^L^MANY ITEMS"; IT : rem 236

370^MjroR_pislc>OPENl,8,0,NAME$+",S,R11 : rem 144
372 REM FOR TAPE OPEN1,1,0,NAME$:rem 30

374 FOR X=l TO IT :rem 139

380 INPUT#1,W$(X) :rem 207

410 NEXT:CLOSE1:FOR X=l TO IT :rem 220

415 PRINT "ITEM # "X,W$(X):NEXT :rem 222

420 PRINT"ANOTHER FILE?" :rem 215

430 GETA$:IFA$=""THEN430 :rem 81

450 IF A$="Y" THEN RUN :rem 139

460 END srem 113

235

' Appendix A

n A Beginner's Guide to
n Typing In Programs

What Is a Program?
A computer cannot perform any task by itself. Like a car with-

p"! out gas, a computer has potential but without a program, it
isn't going anywhere. Most of the programs published in this

book are written in a computer language called BASIC. BASIC

is easy to learn and is built into all Commodore 64s.

BASIC Programs
This book includes programs for both the VIC and the 64. Be

sure that you type in only those programs written for your

machine; don't type in the 64 version if you have a VIC-20.

Computers can be picky. Unlike the English language,

which is full of ambiguities, BASIC usually has only one right

way of stating something. Every letter, character, or number is

significant. A common mistake is substituting a letter such as

O for the numeral 0, a lowercase 1 for the numeral 1, or an

uppercase B for the numeral 8. Also, you must enter all

punctuation, such as colons and commas, just as it appears in

the book. Spacing can be important. To be safe, type in the

listings exactly as they appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces,

such as {DOWN}. Anything within a set of braces is a special

character or characters that cannot easily be listed on a printer.

When you come across such a special statement, refer to

"How to Type In Programs" (Appendix B).

About DATA Statements
Some programs contain a section or sections of DATA state

ments. These lines provide information needed by the pro

gram. Some DATA statements contain actual programs (in

machine language), while others may contain graphics codes.

These lines are especially sensitive to errors.

If a single number in any one DATA statement is mis

typed, your machine could lock up or crash. The keyboard and

STOP key may seem dead, and the screen may go blank. But

239

Appendix A

u

don't panic. No damage has been done. To regain control, turn . .

off your computer and then turn it back on. This will erase I !
whatever program was in memory, so always save a copy of

your program before you run it. If your computer crashes, you ,

can load the program and look for your mistake. I
Sometimes a mistyped DATA statement will cause an

error message when the program is run. The error message , ,

may refer to the program line that READs the data. However, i 1
the error is still in the DATA statements.

Get to Know Your Machine
You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use

to store and retrieve programs from tape or disk. You'll want

to save a copy of your program, so that you won't have to

type it in every time you want to use it. Learn to use your ma

chine's editing functions. How do you change a line if you

made a mistake? You can always retype the line, but you

should at least know how to backspace. Do you know how to

enter reverse-video, lowercase, and control characters? It's all

explained in your manual.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read "The Auto

matic Proofreader" (Appendix C) before typing in any of the

programs in this book.

A Quick Review
1. Type in the program a line at a time, in order. Press RE

TURN at the end of each line. Use backspace or the back

arrow to correct mistakes.

2. Check the line you've typed against the line in the book.

You can check the entire program again if you get an error

when you run the program.

240

Appendix B

How to Type In Programs

Many of the programs in this book contain special control

p—j characters (cursor controls, color keys, reverse video, etc.). To

J make it easy to know exactly what to type when entering one
of these programs into your computer, we have established

p"| the following listing conventions.

' Generally, VIC or 64 program listings will contain words
within braces which spell out any special characters: {DOWN}

would mean to press the cursor down key. {5 SPACES} would

mean to press the space bar five times.

To indicate that a key should be shifted (hold down the

SHIFT key while pressing the other key), the key would be

underlined in our listings. For example, S would mean to

type the S key while holding the SHIFT key. This would ap

pear on your screen as a heart symbol. If you find an under

lined key enclosed in braces (for example, {10 N}), you should

type the key as many times as indicated. In that case, you

would enter ten shifted N's.

If a key is enclosed in special brackets, \< >\, you should

hold down the Commodore key while pressing the key inside

the special brackets. (The Commodore key is the key in the

lower-left corner of the keyboard.) Again, if the key is pre

ceded by a number, you should press the key as many times

as necessary.

Rarely, in programs for the 64, you'll see a solitary letter

of the alphabet enclosed in braces. These characters can be en

tered by holding down the CTRL key while typing the letter in

the braces. For example, {A} would indicate that you should

press CTRL-A. You should never have to enter such a charac-

r-) ter on the VIC.

Quote Mode
p—j You know that you can move the cursor around the screen

' with the CRSR keys. Sometimes a programmer will want to
move the cursor under program control. That's why you see

■—| all the {LEFT}'s, {HOME}'s, and {BLU}'s in our programs.

I The only way the computer can tell the difference between di
rect and programmed cursor control is the quote mode.

r-} Once you press the quote (the double quote, SHIFT-2),

1 { you are in the quote mode. If you type something and then try
to change it by moving the cursor left, you'll only get a bunch

n 241

Appendix B

of reverse-video lines. These are the symbols for cursor left.

The only editing key that isn't programmable is the DEL key;

you can still use DEL to back up and edit the line. Once you

type another quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces

into a line. In any case, the easiest way to get out of quote

mode is to just press RETURN. You'll then be out of quote

mode and you can cursor up to the mistyped line and fix it.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read "The Auto

matic Proofreader" (Appendix C) before typing in any of the

programs in this book.

Refer to the following table when entering cursor and

color control keys:

See:

When You

Read: Press: See:

COMMODORE 11 1 | Bljfl

COMMODORE [| 2 | |B

COMMODORE | FT]

U

u

u

LJ

242

Appendix C

The Automatic Proofreader
Charles Brannon

"The Automatic Proofreader" will help you type in program

listings without typing mistakes. It is a short error-checking

program that hides itself in memory. When activated, it lets

you know immediately after typing a line from a program list

ing if you have made a mistake. Please read these instructions

carefully before typing any programs in this book.

Preparing the Proofreader
1. Using the listing below, type in the Proofreader. Be very

careful when entering the DATA statements—don't type an

1 instead of a 1, an O instead of a 0, extra commas, etc.

2. Save the Proofreader on tape or disk at least twice before

running it for the first time. This is very important because

the Proofreader erases part of itself when you first type RUN.

3. After the Proofreader is saved, type RUN. It will check itself

for typing errors in the DATA statements and warn you if

there's a mistake. Correct any errors and save the corrected

version. Keep a copy in a safe place—you'll need it again

and again, every time you enter a program from this book,

COMPUTE'S Gazette or COMPUTE! magazine.

4. When a correct version of the Proofreader is run, it activates

itself. You are now ready to enter a program listing. If you

press RUN/STOP-RESTORE, the Proofreader is disabled.

To reactivate it, just type the command SYS 886 and press

RETURN.

Using the Proofreader
All listings in this book have a checksum number appended to

the end of each line, for example, :rem 123. Don't enter this

statement when typing in a program. It is just for your infor

mation. The rem makes the number harmless if someone does

type it in. It will, however, use up memory if you enter it, and

it will confuse the Proofreader, even if you entered the rest of

the line correctly.

When you type in a line from a program listing and press

RETURN, the Proofreader displays a number at the top of

your screen. This checksum number must match the checksum

number in the printed listing. If it doesn't, it means you typed

the line differently than the way it is listed. Immediately

243

Appendix C

recheck your typing. Remember, don't type the rem statement

with the checksum number; it is published only so you can

check it against the number which appears on your screen.

The Proofreader is not picky about spaces. It will not no- , .

tice extra spaces or missing ones. This is for your convenience, I 1
since spacing is generally not important. But occasionally

proper spacing is important, so be extra careful with spaces. (•

Due to the nature of a checksum, the Proofreader will not i 1
catch all errors. Since 1+3 + 5 = 3 + 1+5, the Proof

reader cannot catch errors of transposition. Thus, the Proof

reader will not notice if you type GOTO 385 where you mean

GOTO 835. In fact, you could type in the line in any order

and the Proofreader wouldn't notice. The Proofreader should

help you catch most typing mistakes, but keep this in mind if

a program that checks out with the Proofreader still seems to

have errors.

There's another thing to watch out for: If you enter the

line by using abbreviations for commands, the checksum will

not match up. But there is a way to make the Proofreader

check it. After entering the line, LIST it. This eliminates the

abbreviations. Then move the cursor up fo the line and press

RETURN. It should now match the checksum. You can check

whole groups of lines this way.

Special Tape SAVE Instructions
When you're through typing in a listing, you must disable the

Proofreader before saving the program on tape. Disable the

Proofreader by pressing RUN/STOP-RESTORE (hold down

the RUN/STOP key and sharply hit the RESTORE key). This

procedure is not necessary for disk SAVEs, but you must disable

the Proofreader this way before a tape SAVE.

SAVE to tape erases the Proofreader from memory, so

you'll have to load and run it again if you want to type an

other listing. SAVE to disk does not erase the Proofreader.

Hidden Perils
The Proofreader's home in memory is not a very safe haven.

Since the cassette buffer is wiped out during tape operations,

you need to disable the Proofreader with RUN/STOP-

RESTORE before you save your program. This applies only to j >

tape use. Disk users have nothing to worry about. LJ
Not so for 64 owners with tape drives. What if you type

244 LJ

Appendix C

in a program in several sittings? The next day, you come to

your computer, load and run the Proofreader, then try to load

the partially completed program so you can add to it. But since

the Proofreader is trying to hide in the cassette buffer, it is

wiped out!

What you need is a way to load the Proofreader after

you've loaded the partial program. The problem is, a tape

LOAD to the buffer destroys what it's supposed to load.

After you've typed in and run the Proofreader, enter the

following lines in direct mode (without line numbers) exactly

as shown:

A$="PROOFREADER/T": B$="{10 SPACES}": FORX = 1

TO 4: A$=A$+B$: NEXTX

FOR X = 886 TO 1018: A$=A$+CHR$ (PEEK(X)): NEXTX

OPEN 1, 1,1,A$:CLOSE1

After you enter the last line, you will be asked to press

record and play on your cassette recorder. Put this program at

the beginning of a new tape. This gives you a new way to load

the Proofreader. Anytime you want to bring the Proofreader

into memory without disturbing anything else, put the cassette

in the tape drive, rewind, and enter:

OPEN1:CLOSE1

You can now start the Proofreader by typing SYS 886. To

test this, PRINT PEEK (886) should return the number 173. If

it does not, repeat the steps above, making sure that A$

("PROOFREADERS") contains 13 characters and that B$ con

tains 10 spaces.

You can now reload the Proofreader into memory when

ever LOAD or SAVE destroys it, restoring your personal typing

helper.

The Automatic Proofreader

100 PRINT"{CLR}PLEASE WAIT...":FORI=886TO1018:READ

A:CK=CK+A:POKEI,A:NEXT

110 IF CK<>17539 THEN PRINT"{DOWN}YOU MADE AN ERRO

R":PRINT"IN DATA STATEMENTS.":END

120 SYS886:PRINT"{CLR}{2 DOWN}PROOFREADER ACTIVATE

D.":NEW

886 DATA 173,036,003,201,150,208

892 DATA 001,096,141,151,003,173

898 DATA 037,003,141,152,003,169

904 DATA 150,141,036,003,169,003

n
1 245

n

Appendix C

910 DATA 141,037,003,169,000,133

916 DATA 254,096,032,087,241,133

922 DATA 251,134,252,132,253,008

928 DATA 201,013,240,017,201,032

934 DATA 240,005,024,101,254,133

940 DATA 254,165,251,166,252,164

946 DATA 253,040,096,169,013,032

952 DATA 210,255,165,214,141,251

958 DATA 003,206,251,003,169,000

964 DATA 133,216,169,019,032,210

970 DATA 255,169,018,032,210,255

976 DATA 169,058,032,210,255,166

982 DATA 254,169,000,133,254,172

988 DATA 151,003,192,087,208,006

994 DATA 032,205,189,076,235,003

1000 DATA 032,205,221,169,032,032

1006 DATA 210,255,032,210,255,173

1012 DATA 251,003,133,214,076,173

1018 DATA 003

u

u

u

u

u

u

u

246

Appendix D

Using the Machine

Language Editor: MLX
By Charles Brannon

Remember the last time you typed in the BASIC loader for a

long machine language program? You typed in hundreds of

numbers and commas. Even then, you couldn't be sure if you

typed it in right. So you went back, proofread, tried to run

the program, crashed, went back again, proofread, corrected a

few typing errors, ran again, crashed again, rechecked your

typing

Frustrating, wasn't it?

Now, "MLX" comes to the rescue. MLX makes it easy to

enter all those long machine language programs with a mini

mum of fuss. It lets you enter the numbers from a special list

that looks similar to DATA statements, and it checks your

typing on a line-by-line basis. It won't let you enter illegal

characters when you should be typing numbers. It won't let

you enter numbers greater than 255. It will prevent you from

entering the numbers on the wrong line. In short, MLX will

make proofreading obsolete.

Tape or Disk Copies
In addition, MLX will generate a ready-to-use tape or disk

copy of your machine language program. You can then use

the LOAD command to read the program into the computer,

just like you would with a BASIC program. Specifically, you

enter LOAD "program name"',1,1 (for tape) or LOAD "program

name"',8,1 (for disk).

To start the program, you need to enter a SYS command

that tranfers control from BASIC to your machine language

program. The starting SYS will always be given in the article

which presents the machine language program in MLX format.

Using MLX

Type in and save MLX (you'll want to use it in the future).

When you're ready to type in the machine language program,

run MLX. MLX will ask you for two numbers: the starting ad

dress and the ending address. Then you'll get a prompt show

ing the specified starting address; that tells you to type in the

corresponding first line of the program.

247

Appendix D
u

u

Subsequent prompts will ask you to type in subsequent j [

lines from the MLX listing. Each line is six numbers plus a *—'
checksum. If you enter any of the six numbers wrong, or enter

the checksum wrong, the 64 will sound a buzzer and prompt \

you to reenter the entire line. If you enter the line correctly, a *—'

pleasant bell tone will sound and you may go on to enter the

next line. j I

A Special Editor
You are not using the normal 64 BASIC editor with MLX. For

example, it will only accept numbers as input. If you make a

typing error, press the INST/DEL key; the entire number is

deleted. You can press it as many times as necessary, back to

the start of the line. If you enter three-digit numbers as listed,

the computer automatically prints the comma and goes on to

accept the next number. If you enter less than three digits, you

can press either the space bar or RETURN key to advance to

the next number. The checksum automatically appears in re

verse video for emphasis.

To make it even easier to enter these numbers, MLX re

defines part of the keyboard as a numeric keypad (lines

581-584).

8 9

L) become (0 J (4) (5) (6

2)(3 ,

U
When testing it, I've found MLX to be an extremely easy

way to enter long listings. With the audio cues provided, you

don't even have to look at the screen if you're a touch-typist.

u

248 U

Appendix D

Done at Last!
When you get through typing, assuming you type your ma

chine language program all in one session, you can then save

the completed and bug-free program to tape or disk. Follow

the instructions displayed on the screen. If you get any error

messages while saving, you probably have a bad disk, a full

disk, or a typo in MIX Sorry, MLX can't check itself!

Command Control
What if you don't want to enter the whole program in one sit

ting? MLX lets you enter as much as you want, save the com

pleted portion, and then reload your work from tape or disk

when you want to continue. MLX recognizes these commands:

SHIFT-S: Save

SHIFTS: Load

SHIFTVN: New Address

SHIFT-D: Display

Hold down SHIFT while you press the appropriate key.

You will jump out of the line you've been typing, so I recom

mend you do it at a prompt. Use the Save command to store

what you've been working on. It will write the tape or disk

file as if you've finished. Remember what address you stop

on. Then, the next time you run MLX, answer all the prompts

as you did before and insert the disk or tape containing the

stored file. When you get the entry prompt, press SHIFT-L to

reload the file into memory. You'll then use the New Address

command (SHIFT-N) to resume typing.

New Address and Display
After you press SHIFT-N, enter the address where you pre-

ij viously stopped. The prompt will change and you can con
tinue typing. Always enter a New Address that matches up

^ with one of the line numbers in the special listing, or else the

} j checksums won't match up. You can use the Display com

mand to display a section of your typing. After you press

SHIFT-D, enter two addresses within the line number range of

f] the listing. You can stop the display by pressing any key.

^ Tricky Stuff
I ! You can use the Save and Load commands to make copies

of the complete machine language program. Use the Load

H 249

Appendix D

command to reload the tape or disk, then insert a new tape or * i

disk and use the Save command to create a new copy. I—1
One quirk about tapes made with the MLX Save com-

mand: When you load them, the message "FOUND program'' i j

may appear twice. The tape will load just fine, however. <—1
Programmers will find MLX to be an interesting program

which protects the user from most typing mistakes. Some . i

screen formatting techniques are also used. Most interesting is l 1
the use of ROM Kernal routines for loading and saving blocks

of memory. To use these routines, just POKE the starting ad

dress (low byte/high byte) into memory locations 251 and

252, and POKE the ending address into locations 254 and 255.

Any error code for the SAVE or LOAD can be found in loca

tion 253 (an error would be a code less than ten).

I hope you will find MLX to be a true labor-saving pro

gram. Since it has been tested by entering actual programs,

you can count on it as an aid for generating bug-free machine

language. Be sure to save MLX; it will be used for future

applications in other COMPUTE! books.

MLX

100 PRINT"{CLR}g63";CHR$(142);CHR$(8);:POKE53281,1
:POKE53280,1 :rem 67

101 POKE 788,52:REM DISABLE RUN/STOP :rem 119

110 PRINT"{RVS}{39 SPACES}"; :rem 176

120 PRINT"{RVS}{14 SPACES}{RIGHT}{OFF}g*§£{RVS}
{RIGHT} {RIGHT}{2 SPACES}g*§{OFF}g*3£tRVS}£
{RVS}{14 SPACES}"; :rem 250

130 PRINT"{RVS}{14 SPACES}{RIGHT} gG§{RIGHT}

{2 RIGHT} {OFF}£{RVS}£g*3{OFF}g*3{RVS}
{14 SPACES}"; :rem 35

140 PRINT"{RVS}{41 SPACES}" :rem 120

200 PRINT"{2 D0WN}{PUR}{BLK}{9 SPACES}MACHINE LANG \ >
UAGE EDITOR{5 DOWN}" :rem 6 I I

210 PRINT"g53{2 UP}STARTING ADDRESS?{8 SPACES}
{9 LEFT}"; :rem 143

215 INPUTS:F=1-F:C$=CHR$(31+119*F) :rem 166 I [

220 IFS<256OR(S>40960ANDS<49152)ORS>53247THENGOSUB l—'
3000:GOTO210 :rem 235

225 PRINT:PRINT:PRINT :rem 180 < ,

230 PRINT"g5l{2 UP}ENDING ADDRESS?{8 SPACES} J J
{9 LEFT}";:INPUTE:F=1-F:C$=CHR$(31+119*F)

:rem 20

240 IFE<256OR(E>40960ANDE<49152)ORE>53247THENGOSUB 1)

3000:GOTO230 :rem 183 U-J

250 LJ

n

n

Appendix D

250 IFE<STHENPRINTC$;"{RVS}ENDING < START

{2 SPACES}":GOSUB1000:GOTO 230 :rem 176

260 PRINT:PRINT:PRINT :rem 179

300 PRINT"{CLR}";CHR$(14):AD=S:POKEV+21,0 :rem 225

310 A=l:PRINTRIGHT?("0000"+MID$(STR$(AD),2),5);":"

; :rem 33

315 F0RJ=AT06 :rem 33

320 GOSUB570:IFN=-1THENJ=J+N:GOTO320 :rem 228

390 IFN=-211THEN 710 :rem 62

400 IFN=-204THEN 790 :rem 64

410 IFN=-206THENPRINT:INPUT"{DOWN}ENTER NEW ADDRES

S";ZZ :rem 44

415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"{RVS}OUT OF

{SPACE}RANGE":GOSUB1000:GOTO410 :rem 225
417 IFN=-206THENAD=ZZ:PRINT:GOTO310 :rem 238

420 IF No-196 THEN 480 : rem 133

430 PRINT:INPUT"DISPLAY:FROM";F:PRINT,"TO";:INPUTT

:rem 234

440 IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAST";S;"

{LEFT}, NOT MORE THAN";E:GOTO430 :rem 159
450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT$("0000"+MID$(S

TR$(I),2),5);":"; :rem 30

451 FORK=0TO5:N=PEEK(I+K):PRINTRIGHT$("00"+MID$(ST

R$(N),2),3);\"; :rem 66

460 GETA$:IFA$>""THENPRINT:PRINT:GOTO310 :rem 25

470 NEXTK:PRINTCHR$(20);:NEXTI:PRINT:PRINT:GOTO310

:rem 50

480 IFN<0 THEN PRINT:GOTO310 :rem 168

490 A(J)=N:NEXTJ :rem 199

500 CKSUM=AD-INT(AD/256)*256:FORI=1TO6:CKSUM=(CKSU

M+A(I))AND255:NEXT :rem 200

510 PRINTCHR$(18);:GOSUB570:PRINTCHR$(146); :rem 94

511 IFN=-1THENA=6:GOTO315 :rem 254

515 PRINTCHR$(20):IFN=CKSUMTHEN530 :rem 122

520 PRINT: PRINT "LINE ISNTERED WRONG : RE-ENTER" :PRI

NT:GOSUB1000:GOTO310 :rem 176

530 GOSUB2000 :rem 218

540 FORI=1TO6:POKEAD+I-1,A(I):NEXT:POKE54272,0?POK

E54273,0 :rem 227

550 AD=AD+6:IF AD<E THEN 310 :rem 212

560 GOTO 710 :rem 108

570 N=0:Z=0 :rem 88

580 PRINT"!£3"7 srem 81
581 GETA$:IFA$=""THEN581 :rem 95

582 AV=-(A$="M")-2*(A$=",")-3*(A$=".")-4*(A$="J")-

5*(A$="K")-6*(A$="L") :rem 41

583 AV=AV-7*(A$="U")-8*(A$="I")-9*(A$="O"):IFA$="H

"THENA$="0" :rem 134

584 IFAV>0THENA$=CHR$(48+AV) :rem 134

251

Appendix D

u

u
585 PRINTCHR$(20);:A=ASC(A$):IFA=13ORA=44ORA=32THE

N670 :rem 229

590 IFA>128THENN=-A: RETURN :rem 137

600 IFA<>20 THEN 630 :rem 10

610 GOSUB690:IFI=1ANDT=44THENN=-1:PRINT"{OFF} j j
{LEFT} {LEFT}";:GOTO690 :rem 62 '—)

620 GOTO570 :rem 109

630 IFA<48ORA>57THEN580 :rem 105 (,

640 PRINTA$;:N=N*10+A-48 :rem 106 [1
650 IFN>255 THEN A=20:GOSUB1000:GOTO600 :rem 229

660 Z=Z+1:IFZ<3THEN580 :rem 71

670 IFZ=0THENGOSUB1000:GOTO570 :rem 114

680 PRINT",";:RETURN :rem 240

690 S%=PEEK(209)+256*PEEK(210)+PEEK(211) :rem 149

691 FORI=1TO3:T=PEEK(S%-I) :rem 67

695 IFT<>44ANDTo58THENPOKES%-I,32:NEXT :rem 205

700 PRINTLEFT$("{3 LEFT}",I-1);:RETURN :rem 7

710 PRINT"{CLR}{RVS}*** SAVE ***{3 DOWN}" :rem 236

715 PRINT"{2 DOWN}(PRESS {RVS}RETURN{OFF} ALONE TO

CANCEL SAVE){DOWN}" :rem 106

720 F$="":INPUT"{DOWN} FILENAME";F$:IFF?=""THENPRI

NT:PRINT:GOTO310 :rem 71

730 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS}D

{OFFjlSK: (T/D)" :rem 228

740 GETA$:IFA$o"T"ANDA$o"D"THEN740 : rem 36

750 DV=1-7*(A?="D"):IFDV=8THENF$="0:"+F$:OPEN15,8,

15,"S"+F$:CLOSE15 :rem 212

760 T?=F?:ZK=PEEK(53)+256*PEEK(54)-LEN(T?):POKE782

,ZK/256 :rem 3
762 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T?):SYS65

469 :rem 109

763 POKE780,l:POKE781,DV:POKE782,l:SYS65466:rem 69

765 K=S:POKE254,K/256:POKE253,K-PEEK(254)*256:POKE

780,253 :rem 17

766 K=E+1:POKE782,K/256:POKE781,K-PEEK(782)*256:SY

S65496 :rem 235

770 IF(PEEK(783)AND1)OR(191ANDST)THEN780 :rem 111

775 PRINT"{DOWN}DONE.{DOWN}":GOTO310 :rem 113

780 PRINT"{DOWN}ERROR ON £AVE.{2 SPACES}TRY AGAIN.

":IFDV=1THEN720 :rem 171

781 OPEN15,8,15:INPUT#15,E1?,E2$:PRINTE1$;E2?:CLOS

E15:GOTO720 :rem 103

790 PRINT"{CLR}{RVS}*** LOAD ***{2 DOWN}" :rem 212

795 PRINT"{2 DOWN}(PRESS {RVS}RETURN{OFF} ALONE TO

CANCEL LOAD)" : rem 82

800 F$="":INPUT"{2 DOWN} FILENAME";F$:IFF$=""THENP

RINT:GOTO310 :rem 144

810 PRINT .-PRINT "{2 DOWN} {RVS }T{ OFF}APE OR {RVS}D
{OFFjlSK: (T/D)" :rem 227

252

Appendix D

n

n

820 GETA$:IFA$o"T"ANDA$<>"D"THEN820 :rem 34

830 DV=1-7*(A$="D"):IFDV=8THENF$="0:"+F$:rem 157

840 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256 :rem 2

841 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65

469 :rem 107

845 POKE780,l:POKE781,DV:POKE782,l:SYS65466:rem 70

850 POKE780,0:SYS65493 :rem 11

860 IF(PEEK(783)AND1)OR(191ANDST)THEN870 :rem 111

865 PRINT"{DOWN}DONE."iGOTO310 :rem 96

870 PRINT"{DOWN}ERROR ON LOAD.{2 SPACES}TRY AGAIN.

{DOWN}":IFDV=1THEN800 :rem 172
880 OPEN15,8,15:INPUT#15,E1$,E2$:PRINTE1$;E2$:CLOS

E15:GOTO800 :rem 102

1000 REM BUZZER :rem 135

1001 POKE54296,15:POKE54277,45:POKE54278,165

:rem 207

1002 POKE54276,33:POKE 54273,6:POKE54272,5 :rem 42

1003 FORT=1TO200:NEXT:POKE54276,32:POKE54273,0:POK

E54272,0:RETURN :rem 202

2000 REM BELL SOUND :rem 78

2001 POKE54296,15:POKE54277,0:POKE54278,247

:rem 152

2002 POKE 54276,17:POKE54273,40:POKE54272,0:rem 86

2003 TORT=1TO100:NEXT:POKE54276,16:RETURN :rem 57

3000 PRINTC$;"{RVS}NOT ZERO PAGE OR ROM":GOTO1000
:rem 89

H

n 253

Appendix E

Screen Location Table (VIC)

Row

0 7680(4096)

7702(4118)

7724(4140)

7746 (4162)

7768(4184)

5 7790(4206)

7812 (4228)
7834(4250)

7856(4272)

7878 (4294)

10 7900
7922

7944

7966

7988

15 8010

8032

8054

8076

20 8120

8142

22 8164

4316)
4338

4360
4382

4404

4426

4448

4470

4492)

4514)

4536)

4558)

4580)

u

u

LJ

U

0 5 10

Column

15 20

Note: Numbers in parentheses are for VICs with 8K or more of

memory expansion.

254

u

LJ

U

LJ

U

n

n

Appendix F

Screen Location Table (64)

n

Row

0 1024
1064

1104

1144

1184

0 1224

1264

1304

1344

10 1424
1464

1504

1544

15 1624
1664

1704

1744

20 1824
1864

1904

24 1984

10 15 20

Column

25 30 35 39

n

n
255

Appendix G

Screen Color Memory Table

(VIC)

Row

0 38400(37888)

38422(37910)

38444

38466

38488

5 38510

37932)

37954)

37976)

37998)

10

38532(38020
38554(38042
38576(38064

38598(38086'

38620

38642

38664

38686

15

20

;;
'38152

138174)
(3819638708

38730 (38218
38752(38240

38774 (38262

38796 (38284

38818 (38306

38840(38328

38862 38350
22 38884(38372)

u

u

u

u

u

5 10

Column

15 20

Note: Numbers in parentheses are for VICs with 8K or more of

memory expansion.

u

LJ

U

256 U

Appendix H

n

n

H

Screen Color Memory Table

(64)

Row

0 55296
55336

55376

55416

55456

5 55496
55536

55576

55616

„_ 55656

10 55696
55736

55776

55816

55856

JO 55896
55936

55976

56016

56056

233 56096
56136

56176

_, 56216

24 56256

10 15 20 25 30 35 39

Column

p

n

n 257

Appendix I

Screen Color Codes

Color:

Code:

Black

0

White

1

Red

2

Cyan

3

Purple

4

Green

5

Blue

6

Yellow

7

Additional Color Codes for 64

Color:

Code:

Orange Brown
Light

Red

10

Dark

Gray

11

Medium
Gray

12

Light
Green

13

Blue

14

Light
Gray

15

U

U

U

U

258

U

U

u

u

u

n

H

n

Appendix J

Screen and Border Colors

(VIC Only)

Border

Screen Black White Red Cyan Purple Green Blue Yellow

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Light Orange

Pink

Light Cyan

Light Purple

Light Green

Light Blue

Light Yellow

8

24

40

56

72

88

104

120

136

152

168

184

200

216

232

248

9

25

41

57

73

89

105

121

137

153

169

185

201

217

233

249

10

26

42

58

74

90

106

122

138

154

170

186

202

218

234

250

11

27

43

59

75

91

107

123

139

155

171

187

203

219

235

251

12

28

44

60

76

92

108

124

140

156

172

188

204

220

236

252

13

29

45

61

TJ

93

109

125

141

157

173

189

205

221

237

253

14

30

46

62

78

94

110

126

142

158

174

190

206

222

238

254

15

31

47

63

79

95

HI

127

143

159

175

191

207

223

239

255

To set screen and border colors, select the desired combination from

the table above and POKE the corresponding value into location 36879.

H

n
259

Appendix K

ASCII Codes

ASCI]

5

8

9

13

14

17

18

19

20

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

[CHARACTER

WHITE

DISABLE

SHIFT COMMODORE

ENABLE

SHIFT COMMODORE

RETURN

LOWERCASE

CURSOR DOWN

REVERSE-VIDEO ON

HOME

DELETE

RED

CURSOR RIGHT

GREEN

BLUE

SPACE

1

n

#

$
%

&

(

)
*

+

—

/

0

1

ASCII

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

CHARACTER

2

3

4

5

6

7

8

9

:

<

>

?

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

260

Appendix K

ASCII CHARACTER ASCII CHARACTER

83 S 120 0

84 T 121 O

85 U 122 B

86 V 123 EB
87 W 124 C

88 X 125 Q]
89 Y 126 0
90 Z 127 H
91 [129 ORANGE

92 £ 133 fl

93] 134 £3

94 f 135 £5

95 4- 136 £7

96 B 137 f2
97 H B8 f4
98 [JJ 139 £6

99 g 140 f8

100 g 141 SHIFTED RETURN

101 Q 142 UPPERCASE

102 p 144 BLACK

103 [[] 145 CURSOR UP

104 Q] 146 REVERSE-VIDEO OFF

105 □ 147 CLEAR SCREEN

106 Q 148 INSERT

107 □ 149 BROWN

108 D 150 LIGHT RED

109 S 151 GRAY 1
110 0 152 GRAY 2

HI □ 153 LIGHT GREEN

112 □ 154 LIGHT BLUE

113 H 155 GRAY 3
114 □ 156 PURPLE

115 B 157 CURSOR LEFT

116 D 158 YELLOW

117 Q 159 CYAN
118 IE 160 SHIFTED SPACE

119 D 161 C

261

Appendix K

ASCII

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

262

CHARACTER

n
D

a

E
a

■ ■ ■

D
C
a

□
n

a
■

H
B
B

m

B
B
□
B
D

Asai

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

CHARACTER

□

□
a

□

E

E
m

h
SPACE

E

n
D
□

a

a
ffi
a

B

U

u

u

u

u

u

u

u

u

u

Appendix K

ASCII

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

CHARACTER

a
u

B

EH
El
□

C
a

n
n
u

a

H
0
E

0-4, 6, 7-12, 15, 16, 21-27, 128,

130-132, and 143 are not used.

263

Appendix L

Screen Codes

POKE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Uppercase and

Full Graphics Set

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

z

[
£

]

t

Lower- and

Uppercase

@

a

b

c

d

e

f

g

h

i

j
k

1

m

n

o

P

q
r

s

t

u

V

w

X

y

z

[
£

]

r

POKE

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Uppercase and

Full Graphics Set

<-

Lower- and

Uppercase

«-

-space-

t

n

#

$

%

&

(

)
*

+

-

/

0

1

2

3

4

5

6

7

8

9

/

<

I

n

#

$

%

&

(

)
*

+

-

/

0

i

2

3

4

5

6

7

8

9

/

<

=

264

Appendix L

n

POKE

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Uppercase and Lower- and

Full Graphics Set Uppercase

B

□
D

□

□

D
S
0
□
□
■
□
H
D

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

z

ffl

-space-

E C
H B

POKE

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Uppercase and

Full Graphics Set

□
D
□

a
H

a
E

B

U

ra
H

ffl

c

n
n
u

C

H
B
s

Lower- and

Uppercase

□
□
□

a

E
a

y

H
H

ffl
D

C
a
n
n
u

y
3

EB

128-255 reverse-video of

0-127

265

Appendix M

VIC Keycodes

Key

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

1

2

3

4

5

Keycode

17

35

34

18

49

42

19

43

12

20

44

21

36

28

52

13

48

10

41

50

51

27

9

26

11

33

0

56

1

57

2

Key

6

7

8

9

0

+

—

£

CLR/HOME

INST/DEL

@
*

T

:

■ /

RETURN

/

CRSR U

CRSR £
fl

f3

f5

f7

SPACE

RUN/STOP

NO KEY

PRESSED

Keycode

58

3

59

4

60

5

61

6

62

7

8

53

14

54

45

22

46

15

29

37

30

31

23

39

47

55

63

32

24

64

The keycode is the number found at location 197 for the current key being pressed. Try
this one-line program:

10 PRINT PEEK (197):GOTO 10

Values Stored at Location 653

Code Key(s) pressed

0

1

2

3

4

5

6

7

(No key pressed)

SHIFT

Commodore

SHIFT and Commodore

CTRL

SHIFTand CTRL

Commodore and CTRL

SHIFT, Commodore, and CTRL

LJ

266
LJ

I S

n

Appendix N

Commodore 64 Keycodes

Key

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

z

1

2

3

4

5

Keycode

10

28

20

18

14

21

26

29

33

34

37

42

36

39

38

41

62

17

13

22

30

31

9

23

25

12

56

59

8

11

16

Key

6

7

8

9

0

+

_

CLR/HOME

INST/DEL

@
*

RETURN

#

CRSRTi

CRSR2

fl

f3

S

(7
SPACE

RUN/STOP

NO KEY

PRESSED

Keycode

19

24

27

32

35

40

43

48

51

0

57

46

49

54

45

50

53

1

47

44

55

7

2

4

5

6

3

60

63

64

The keycode is the number found at location 197 for the current key being pressed. Try

this one-line program:

10 PRINT PEEK (197):GOTO 10

Values Stored at Location 653

Code

0

1

2

3

4

5

6

7

Key(s) pressed

(No key pressed)

SHIFT

Commodore

SHIFT and Commodore

CTRL

SHIFT and CTRL

Commodore and CTRL

SHIFT, Commodore, and CTRL

n 267

Index

addressing mode 220

algorithms

for calendars 140

minimax 8-9

alpha-beta cutoff 9

amplitude. See volume

arrays 162

cross-reference and 229

files and 232

integer and floating-point 177

referencing 196

ASC function 194

ASCII codes 193-94, 260-63

"Automatic Proofreader, The" program

v, 243-46

background color 117, 205-6

BASIC computer language 129

BASIC program, cross-reference listing of

228-31

BRK interrupt 183

"Build a Quiz" program v, 105-14

calendars 140-55

algorithm 140

"Canyon Runner" program v, 50-63

character color 117, 205-6

characters, high-resolution 177-79

"Chess" program v, 3-20

CLI ML instruction 220

CLOSE statement, tape files and 233

color

background 117, 205-6

text 117, 205-6

"Color Chart" program v, 205-7

COMPUTB's First Book of VIC 169

COMPUTEl's Mapping the Commodore 64

120

concatenating files 132

cross-reference listing of BASIC program

228-31

crunching 177

"Cursor GET" program 208-10

custom characters 177-79

data base 162

DATA statements 239-40

data storage and 162-63

sprites and 172

Datassette 232

debugging machine language 219-21

DIM statement 194

disk

directory 214

files 213-15, 234

ID 171

"Disk Housekeeping" program 213-18

DOS wedge 132

education 67-113

educational software, concepts of 73

Eliza program 156

Epson printers 122-23

"File Copier" program 211-12

filenames 125

tape 232-33

"File Reader" program 232, 235

files, concatenating 132

floating-point arrays 177

foreign character sets 123-24

"French Tutor" program v, 88-99

frequency (sound) 189-90

Gemini printers 122-23

GET statement v, 130, 208-9

graphics characters 124

high-resolution characters 177-79

"Homonym Practice for the VIC and 64"

program v, 82-87

"Improved Tape Data File Maker"

program 232, 235

"Indexer, The" program v, 162-65

indexing 163-64

INPUT statement 208

integer arrays 177

intelligence, computer 3

interrupts, manipulating 183-85

IRQ interrupt 183-85, 187

"Jackpot" program v, 21-29

JMP ML instruction 220

joystick 4, 31, 40, 51-52, 169, 171, 178,

185-86

JSR ML instruction 220

keyboard buffer 120

"Keyboard Data File Maker" program

232, 234-35

keycodes (64) 267

keycodes (VIC) 266

"Learning to Count" program 67-72

LISP computer language 156

"LIST Freezer for the VIC and 64"

program 226-27

LIST vector 226

269

"Magic Pointer Demo" program 188

"Magic Pointer for the VIC" program

183-88

"Making Calendars" program v

"Memo Writer" program v, 129-39

operation 130-32

minimax algorithm 8-9

"ML Tracer" program 219-25

"MLX" program v, 247-53

"Monthly Calendar Printer" program

141, 144-52

"Monthly Screen Calendar" program

141, 142-44

"Mozart Machine, The" program v,

196-201

"Multichar" program 177-82

multicolor mode 178

music, reading 100-102

"Nirras's Labyrinth" program 30-39

NOP ML instruction 220

OPEN statement, tape files and 233

polling 185

PRINT statement 130

PRINT# statement 214, 233

printer codes 117, 122-24

programmable characters 88, 90-92,

177-79

quote mode 241-42

raster interrupt 206

READ statement 194

recursion 9

"REFMAP" program 228-31

registers, reading 219

repeating keys 130

"Robot Math" program v, 73-81

RTI ML instruction 184, 220

RTS ML instruction 220

scratching files 213

screen/border color table (VIC) 259

screen code files 131

screen codes 264-65

screen color codes 258

screen color memory table (64) 257

screen color memory table (VIC) 256

SCREEN Kernal routine 120

screen location table (64) 255

screen location table (VIC) 254

scrolling 129

"SDA: A Sprite Design Aid for the Com

modore 64" program v, 171-76

SEI ML instruction 184, 220

shift-space, filenames and 125

6502 microprocessor 183

"64 Screen Formatter" program (64) 83,

87

"64 Sound Shaper" program 189-90, 191

sound 189-201

differences VIC/64 189

sound register 193

"SpeedScript Customizer" program

117-28

future releases and 121

SpeedScript word processor

default values 118-19

sprites 171-72, 187

square waveform 189

stack 183-84

stalemate 6

status register 221

subroutine 9

tape files 232-34

text color 117,205-6

"Therapy" program v, 156-61

"Trident" program 40-49

typing in programs 239-42

unscratching files 213

"Up or Down?" program v, 100-104

variable storage, minimizing 177

vectors 183-84

list 226

"VIC Hi-Res Sketchpad" program

169-70

"VIC Piano" program 192-95

"VIC Sound Shaper" program 189-91

voices, musical 192

volume 189

Weizenbaum, Joseph 156

u

u

u

u

u

u

u

u

u

u

U Notes

n

n

n

n

n

n

n

n

n

Notes LI

u

u

u

u

u

u

u

u

u

'-' Notes

n

n

n

n

n

n

n

n

n

Notes <—I

u

u

u

u

L)

U

U

U

U

If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of

COMPUTE! Magazine. Use this form to order your

subscription to COMPUTE!.

For Fastest Service

Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 6406

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ TI-99/4A □ Timex/Sinclair □ VIC-20 □ PET

□ Radio Shack Color Computer □ Apple □ Atari □ Other

□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada
542 Europe, Australia, New Zeland/Air Delivery
$52 Middle East, North Africa, Central America/Air Mail
572 Elsewhere/Air Mail
$30 International Surface Mail (lengthy, unreliable delivery)

Name

Address ,

City State Zip

j—1 Country

Payment must be in US funds drawn on a US bank, international

money order, or charge card.

□ Payment Enclosed □ Visa

□ MasterCard □ American Express

Acct. No. Expires /

Your subscription will begin with the next available issue.

Please allow 4-6 weeks for delivery of first issue. Subscription

prices subject to change at any time.

74D199

If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of

COMPUTEI's Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!*

P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other.

□ $24 One Year US Subscription

□ $45 Two Year US Subscription

□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada
□ $45 Air Mail Delivery

□ $30 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US funds drawn on a US bank, international

money order, or charge card. Your subscription will begin with the

next available issue. Please allow 4-6 weeks for delivery of first issue.

Subscription prices subject to change at any time.

□ Payment Enclosed □ Visa

□ MasterCard □ American Express

Acct. No, Expires /

i j The COMPUTERS Gazette subscriber list Is made available to carefully screened
organizations with a product or service which may be of Interest to our readers. If you

prefer not to receive such mailings, please check this box a

J 1 74D199

• COMPUTE! Books
'- ' Ask your retailer for these COMPUTE! Books or order
% directly from COMPUTE!.

f*I Call toll free (in US) 800-334-0868 (in NC 919-275-
-v 9809) or write COMPUTE! Books, P.O. Box 5406,
' Greensboro, NC 27403.

n
r

—i

Quantity Title

All About the Commodore 64, Volume 1

COMPUTEI's First Book of Commodore 64

COMPUTED Second Book of Commodore 64

COMPUTED First Book of Commodore 64
Sound & Graphics

COMPUTEI's Reference Guide to
Commodore 64 Graphics

COMPI ITFI's Beginner's Guide to
Commodore 64 Sound

COMPIITFI's First Book of
Commodore 64 Games

COMPI ITFI's Second Book of
Commodore 64 Games

Commodore 64 Games for Kids

COMPIITFI's Commodore Collection, Volume 1

Commodore Peripherals: A User's Guide

Creating Arcade Games on the
Commodore 64

Machine 1 anguage Routines for the
Commodore 64

Mapping the Commodore 64

The VIC and 64 Tool Kit* BASIC

Machine 1 anguage for Beginners

The Second Book of Machine Language

Price* Total

$12 OS

$12.95

$12.95

$12.05

$12.05

$12.95

$12.95

$12.95

$12.95

$12.95

$ 9.95

$14.95

$14.95

$14.95

$16.95

$14.95

$14.95

•Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

Shipping A handling- $2.00/hAAlr

Total Davm<ftnt

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

NC residents add 4.5% sales tax.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date

Name

Address

City State Zip

•Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.

