

COMPUTER'S

Commodor

Collection
VOLUME ONE

n COMPUTErPublicationsjnc©
One of the ABC Publishing Companies ^^^^

H Greensboro, North Carolina
VIC-20 and Commodore 64 are trademarks of Commodore Electronics, Ltd.

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections

107 and 108 of the United States Copyright Act without the permission of the copyright

owner is unlawful.

Printed in the United States of America

ISBN 0-942386-55-8

10987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is one of the ABC Publishing Companies, and is not associated with any manu

facturer of personal computers. Commodore 64 and VIC-20 are trademarks of Com

modore Electronics Limited.

Contents

Foreword vii

Chapter 1. Games 1

Hang Glider

Alan Keyser 3

Reaction

Jeff Sprague (64 Version Translated by Gregg Peele) 10

Text Adventure Basics

B. A. Miller 15

Nim

George Trepal 23

Save the King

Andy Hayes (64 Formatter by Charles Brannon) 26

Chapter 2. Education 35

Spider Math

Lee Levitt 37

Merry-Go-Match

Griff and Sheila Johnson

(64 Translation by David Florance) 41

Hatch It

Neil Murray 50

Puzzle Solver

Steve Gibson 58

Chapter 3. Applications 65

File Cabinet

Mike Webster 67

3-D Clock

Bosco Tsang 74

General-Purpose Bar Chart Routine

Sal Raciti (64 Translation by David Florance) 78

Advertiser

Robert Lykins 86

Chapter 4. Programming Aids 91

Remarkable REMs

Louis F. Sander 93

Programming the 64's Function Keys

James Quinby 96

iii

Calculated GOTO for the VIC and 64

Louis Buscaslia-Zeppa 102

PRINT AT for Commodore Computers

David Johnson 104

Fast Sort

Bill Pfeifer 108

Commodore Data Handling Workshop

John Fisher

Part 1. Super Shell Sort for the VIC and 64 112

Part 2. Relative Files 121

Part 3. Searching for Data 129

Chapter 5. Graphics and Sound 135

Creating Multicolor Graphics on the VIC

Daryl Biberdorf 137

Super Expander Graphics

Dave Needham 143

Multicolor Sprites for the Commodore 64

Gary Robinson 145

Character Editor for the Commodore 64

Larry Chiger 151

Commodore 64 Sound Editor

Daniel L Riegel 159

12-Tone Matrix Generator

Gregg Peele 164

Chapter 6. Utilities 169

Quick Delete

W. M. Shockley 171

Formatting Numbers

Larry D. Moody 173

Numeric Keypad

Ronnie Isbel 178

Auto Save/Scratch

Robert Jones 180

Appendices 185

A: A Beginner's Guide To Typing In Programs 187

B: How to Type In Programs 189

C: Screen Location Table (VIC) 191

Screen Location Table (64) 192

IV

n

n

p| D: Screen Color Memory Table (VIC) 193

Screen Color Memory Table (64) 194

<—] E: Screen Color Codes 195

F: Screen and Border Colors (VIC Only) 196

r-i G: ASCII Codes 197

H: Screen Codes 201

I: VIC Keycodes 203

Commodore 64 Keycodes 204

J: The Automatic Proofreader 205

Index 207

H

n

n

n

Foreword

Welcome to COMPUTEI's Commodore Collection, Volume 1. It's

packed with articles (all published here for the first time) that are

designed to make your Commodore computer more useful and

exciting than ever before. Fascinating games, versatile educational

programs, and practical applications — this book has them all.

Have you ever explored an abandoned castle? "Save the

King," a fascinating three-dimensional adventure game, gives

you the opportunity.

Is your youngster learning the multiplication tables? "Spider

Math" can help.

Do you have a record collection or program library that you

would like to catalog? With "File Cabinet" there's nothing to it.

Programmers, too, will find this book extremely useful. Do

you need to design a custom character set using multicolor char

acters? This book shows you how. You'll learn how to turn your

Commodore into a numeric keypad, how to automatically format

columns of numbers, even how to add a PRINT AT command to

your BASIC repertoire.

Whether you're a novice or an expert, this book is sure to be

of great value — and you don't have to be a computer technician

to use it. Each program has been thoroughly tested, and all are

ready to run. Just type them in. But if you do want to modify a

listing, that's easy too. In fact, many of the articles include specific

instructions to help you customize the routines to suit your

particular needs.

You'll enjoy COMPUTEI's Commodore Collection, Volume 1. But

just as important, you'll use it again and again.

Vll

Hang Glider
Alan Keyser

Tired ofwearing out yourfingers playing keyboard

games? Break out yourjoystick and get readyfor

"Hang Glider" a challenging arcade-style gamefor the un-

expanded VIC or the Commodore 64.

For Homer Propless, hang glider ace, it starts like any other Fri

day. A few laps around the track, a big steak for lunch, then off to

the desert to ride the afternoon thermals.

His friends Rupert and Roscoe help him launch his glider off

Stack Mesa, and it isn't long till Homer is soaring far above the

desert terrain. From an altitude of 500 feet he has quite a view,

too. On his left he can see the mountains, almost a hundred miles

away. On his right is the blue expanse of a huge lake. And straight

ahead... what?

Giant green pterodactyls are making off with his friends!

That's right: Flying pterodactyls have kidnapped not only

Rupert and Roscoe but the entire population of Palm Springs.

Now it's all up to Homer. Using his trusty blue hang glider, he

must rescue the captives from the backs of the giant birds, which

are at this very moment escaping across the lake. Can he do it?

Only if he's careful — and only with your help.

Use your joystick to guide Homer's hang glider right, left,

and up. If you get too low, glide into the thermal updraft at the

right of the screen. Be careful, though. If you collide with a bird,

run into the side of a mesa, or crash into the lake, it's all over.

You'll start each round with six hang gliders. Every time you

rescue one of the captives, you'll get 100 points; every time you

crash, you'll lose one of your gliders. The score is displayed on

the screen, and the game is over when all six gliders are gone.

Palm Springs is counting on you.

Program L Hang Glider, VIC Version

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

1 PRINT"{CLR}M :rem 149

10 POKE56,28:POKE52,28:CLR :rem 18

20 FORI=7168TO7679:POKEI,PEEK(1+25600):NEXTI

:rem 172

50 FORI=7448TO7551:READJ:POKEI,J:NEXTI :rem 168

60 POKE36869f255 :rem 109

65 DIMB(2,2):A=4 :rem 84

1: Games

70 POKE36879,29:SP=1:X=16:Y=l:Xl=-2:Yl=l:PL=32:C0=

30720:NI=1:FS=240 :rem 179

80 GOSUB800 :rem 128

90 GOTO500 :rem 55

100 POKE37154,127:D=(PEEK(37137)AND28)OR(PEEK(3715

2)AND128) irem 38

110 IFD=156ANDX<17THENY1=1 :rem 52

115 IFD=156ANDPEEK(L+22)=44THENX1=0:Y1=0 :rem 98

120 IFD=152THENY1=-2:SP=SP-1:FS=FS+1 :rem 176

130 IFD=28THENX1=2:Y1=1:SP=SP+1:FS=246 :rem 44

140 IFD=140THENX1=-2:Y1=1:SP=SP+1:FS=246 :rem 133

150 IFD=148THENY1=2:SP=SP+1:FS=FS+1:RETURN:rem 163

151 REM ***SP>3ALLOWED ABOVE*** :rem 0

160 IFSP>3THENSP=3 :rem 124

165 IFSP<0THENY1=2:SP=0 :rem 172

170 RETURN :rem 120

200 IFNI=1THENNI=2:GOTO205 :rem 101

202 IFNI=2THENNI=1 :rem 93

205 I=NI irem 180

210 IFB(I,0)>0THEN250 :rem 142

220 B(I,l)=INT(RND(l)*10)+5 :rem 151

225 IFPEEK(B(I,1)*22+7684)<>32THEN220 :rem 11

230 B(I,0)=4 :rem 62

240 6(1,2)=! :rem 62

250 BL=7680+B(I,0)+B(I,1)*22 :rem 140

255 POKEBL,32:POKEBL-1, 32:POKEBL-2,32:POKEBL-23,32

:rem 209

260 B(I,0)=B(I,0)+1:IFRND(1)>.9THENB(I,1)=B(I,1)+1

:rem 175

265 BL=7680+B(I,0)+B(I,1)*22 :rem 146

270 IFPEEK(BL)O32ANDPEEK(BL)<>35THENB(I/0)=0:GOTO

295 :rem 171

275 IFPEEK(BL)=35ORPEEK(BL-1)=35ORPEEK(BL-2)=35THE

N400 :rem 234

280 IFPEEK(BL-23)=35ANDB(1,2)=1THENSCO=SCO+100:B(I

,2)=0:GOSUB300 :rem 255

285 POKEBL,39:POKEBL+CO,5:POKEBL-1,37:POKEBL-1+CO,

5:POKEBL-2,38:POKEBL-2+CO,5 :rem 200

290 IFB(1,2)=lTHENPOKEBL-23,36:POKEBL-23+CO,2

:rem 137

295 IFRND(1)>.9THENGOSUB370 :rem 131

299 RETURN :rem 132

300 POKE36876,232:FORQ=1TO100:NEXTQ:POKE36876,240:

FORQ=1TO200:NEXTQ:POKE36876,0 :rem 92

310 PL=32:RETURN :rem 236

370 FORQ=220TO250:POKE36876#Q:NEXT:FORQ=250TO230ST

EP-1:POKE36876,Q:NEXTQ:POKE36876,0 :rem 243

375 RETURN :rem 127

400 REM DIE :rem 74

4

1: Games

410 POKE36877,220:FORL=15TO0STEP-1:POKE36878,L:FOR

M=1TO100:NEXTM,L :rem 79

420 A=A-1:IFA<-1THEN460 :rem 32

450 GOTO70 :rem 57

460 PRINT" {CLR} {8 DOWN}{6 RIGHT}PLAY AGAIN?" ; rem 9

470 GETA$:IFA$=""THEN470

480 IFA$o"Y"THENEND

490 CLR:GOTO65

500 GOSUB200

501 GOSUB100

:rem 89

:rem 173

:rem 92

:rem 167

:rem 167

502 IFFS>240ANDD<>152ANDD<>148THENFS=FS-1 :rem 230

503 POKE36877,FS

510 POKEL,PL

520 X=X+X1:Y=Y+Y1

530 IFX>21THENX=X-22

535 IFX<0THENX=22+X

540 IFY>21THEN400

545 IFY<1THENY=1

550 Ll=7680+X+Y*22

555 PL=PEEK(L1)

560 IFPL>39ANDPL<43ANDD=156THEN700

570 IFPL=44THEN400

580 IFPL>36ANDPL<40THEN400

590 IFPLO36THEN670

600 SCO=SCO+100:GOSUB300

:rem 155

:rem 217

:rem 22

:rem 205

:rem 155

:rem 229

irem 233

:rem 190

:rem 107

:rem 56

:rem 47

:rem 65

:rem 120

:rem 166

610 FORI=1TO2:IFL1=7657+(B(I,0)+B(I,1)*22)THENB(I,

2)=0

620 NEXTI

670 POKELl,35:POKELl+30720,6

675 L=L1

679 PRINT"{HOME}{BLK}{5 RIGHT}";SCO

680 GOTO500

700 L1=L1-22:X1=0:Y1=0

710 IFY>0THENY=Y-1

720 IFLK7702THENLl=Ll+22

730 PL=PEEK(L1):IFPL=35THENPL=PEEK(Ll+22)

740 POKEL1/35:L=L1

750 GOTO680

800 L=7720:PRINT"{CLR}"

810 FORI=7790TO8164STEP22:POKEI,44:POKEI+1

1+30720,0:POKEI+30721,0:NEXTI

820 FORI=8166TO8185:POKEI,43:POKEI+30720,6

:rem 226

:rem 32

:rem 76

:rem 168

:rem 203

:rem 108

rem 192

rem 106

rem 166

rem 250

:rem 27

rem 115

rem 143

44:POKE

:rem 8

NEXTI

:rem 151

830 FORI=8084TO8172STEP22:FORJ=0TO2:POKEI+J,44:POK

EI+J+30720,0:NEXTJ,I :rem 59

840 FORI=8159TO7719STEP-22:POKEI,40:POKEI+1,41:POK

EI+2,42:FORJ=0TO2:POKEJ+I+30720,6 :rem 7

845 NEXTJ,I :rem 159

850 FORI=7691TO7691+A:POKEI,47:POKEI+30720,0:NEXT:

IFA=-1THENPOKE7691,32 :rem 41

1: Games

860 FORI=38415TO38421:POKEI,6:NEXT :rem 66

870 POKE7695,45:POKE7701,46:FORI=7696TO7700:POKEI,

44:NEXT :rem 191

880 PRINT"{HOME}{RVS}{BLK}SCORE: {OFF}11 : rem 110
885 POKE36878,15:POKE36877,240 :rem 176

890 RETURN :rem 129

1000 DATA0,0,102,153,0,24,24,0 :rem 199

1010 DATA56,60,24,16,24,20,18,16 :rem 70

1020 DATA60,126,255,255,222,56,112,192 :rem 121

1030 DATA31,31,31,15,3,0,0,0 :rem 103

1040 DATA12,11,156,240,112,32,0,0 :rem 99

1050 DATA192,96,24,199,96,24,7,0 :rem 100

1060 DATA0,0,0,195,60,0,195,60 :rem 223

1070 DATA3,6,24,227,6,24,224,0 :rem 228

1080 DATA0,34,119,255,255,255,255,255 :rem 85

1090 DATA255,255,255,255,255,255,255,255 :rem 248

1100 DATA31,127,63,127,255,127,63,31 :rem 20

1110 DATA240,252,224,192,240,248,224,192 :rem 220

1120 DATA24,60,126,255,126,36,0,0 :rem 117

Program 2« Hang Glider, 64 Version

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

1 POKE53281,1:POKE53280,14:PRINT"!

{9 DOWN}"?TAB(16);"GLIDER" :rem 18

2 PRINT"{2 DOWN}";TAB(9)"{RVS}REDEFINING CHARACTER

S{OFF}" :rem 100

14 POKE52,48:POKE56,48:CLR :rem 26

16 POKE56334,PEEK(56334)AND254 :rem 176

18 POKEI,PEEK(1)AND251 :rem 7

20 FORI=0TO1095:POKEI+12288,PEEK(I+53248):NEXT

:rem 232

22 POKEI,PEEK(1)OR4 :rem 108

24 POKE56334,PEEK(56334)OR1 srem 19

50 FORI=12568TO12671:READJ:POKEI,J:NEXTI :rem 6

60 POKE53272,(PEEK(53272)AND240)OR29 :rem 3

63 PRINT"{CLR}":POKE53281,0:POKE53280,0:FORT=1TO20

00:NEXT srem 29

65 DIMB(2,2):A=4 :rem 84

70 POKE53280,3:POKE53281,1:SP=1:X=16:Y=1:Xl=+2:Y1=

1:PL=32:CO=54272:NI=1:FS=240 :rem 59

80 CV=54272:FORGL=CV TO CV+24:POKE GL,0:NEXT

:rem 106

85 POKECV+24,15:POKECV+19,72:POKECV+20,129:POKECV+

14,50 :rem 254

90 GOSUB800:GOTO500 :rem 137

100 POKE56579,127:D=15-(PEEK(56320)AND15) :rem 228

110 IFD=0ANDX<17THENY1=1 :rem 200

115 IFD=0ANDPEEK(L+40)=44THENX1=0:Y1=0 :rem 246

1: Games

120 IFD=1THENY1=-2:SP=SP-1:FS=FS+1 :rem 73

130 IFD=8THENX1=2:Y1=1:SP=SP+1:FS=246 :rem 250

140 IFD=4THENX1=-2:Y1=1:SP=SP+1:FS=246 :rem 36

150 IFD=2THENY1=2:SP=SP+1:FS=FS+1:RETURN :rem 56

151 REM ***SP>3ALL0WED ABOVE*** :rem 0

160 IFSP>3THENSP=3 :rem 124

165 IFSP<0THENY1=2:SP=0 :rem 172

170 RETURN :rem 120

200 IFNI=1THENNI=2:GOTO205 :rem 101

202 IFNI=2THENNI=1 :rem 93

205 I=NI :rem 180

210 IFB(I,0)>0THEN250 :rem 142

220 B(I,l)=INT(RND(l)*10)+5 :rem 151

225 IFPEEK(B(I,1)*40+1028)<>32THEN220 :rem 253

230 B(I,0)=6 :rem 64

240 B(I,2)=1 :rem 62

250 BL=1024+B(I,0)+B(I,1)*40 :rem 126

255 POKEBL,32:POKEBL-1,32:POKEBL-2,32:POKEBL-41,32

:rem 209

260 B(I,0)=B(I,0)+1:IFRND(1)>.9THENB(I,1)=B(I,1)+1

:rem 175

265 BL=1024+B(I,0)+B(I,1)*40 :rem 132

270 IFPEEK(BL)<>32ANDPEEK(BL)<>35THENB(I,0)=0:GOTO

295 :rem 171

275 IFPEEK(BL)=35ORPEEK(BL-1)=35ORPEEK(BL-2)=35THE

N400 :rem 234

280 IFPEEK(BL-40)=35ANDB(1,2)=1THENSCO=SCO+100:B(I

,2)=0:GOSUB300 trem 254

285 POKEBL,39:POKEBL+CO# 5:POKEBL-1,37:POKEBL-1+CO,

5:POKEBL-2,38:POKEBL-2+CO,5 :rem 200

290 IFB(1,2)=1THENPOKEBL-41,36:POKEBL-41+CO,2

:rem 137

295 IFRND(1)>.9THENGOSUB370 :rem 131

299 RETURN :rem 132

300 POKECV+18,33 :rem 129

305 POKECV+15,45:POKECV+18,32 :rem 173

310 FORT=1TO150:NEXT :rem 239

315 POKECV+15,69:POKECV+18,17 :rem 183

320 FORT=1TO250:NEXT :rem 241

325 POKECV+18,16 :rem 137

330 PL=32:RETURN :rem 238

370 POKECV+18,17 :rem 138

375 FORT=44TO83:POKECV+15,T:NEXT :rem 25

380 FORT=84TO45STEP-1:POKECV+15,T:NEXT :rem 177

385 POKECV+18,16 :rem 143

390 POKECV+18,8:RETURN :rem 118

400 REM DIE :rem 74

410 GOSUB370 :rem 175

420 A=A-1:IFA<-1THEN460 :rem 32

1: Games

450

460

470

480

490

500

501

502

510

520

530

535

540

545

550

555

560

570

580

590

600

610

620

670

675

679

680

700

710

720

730

740

750

800

805

810

820

830

840

845

850

860

GOTO70 :rem 57

PRINTM{CLR}{8 DOWN} {6 RIGHT}PLAY AGAIN?M:rem 9

GETA$:IFA$=""THEN470 :rem 89

IFA$<>"Y"THENPOKE53272,21:POKECV+15,0:END

:rem 151

CLR:GOTO65 :rem 92

GOSUB200 :rem 167

GOSUB100 :rem 167

IFFS>240ANDD<>152ANDD<>148THENFS=FS-1 :rem 230

POKEL,PL

X=X+X1:Y=Y+Y1

IFX>39THENX=X-40

IFX<0THENX=40+X

IFY>24THEN400

IFY<1THENY=1

Ll=1024+X+Y*40

PL=PEEK(L1)

IFPL> 39ANDPL< 43ANDD=0THEN700

IFPL=44THEN400

IFPL>36ANDPL<40THEN400

IFPLO36THEN670

SCO=SCO+100:GOSUB300

:rem 217

:rem 22

:rem 214

:rem 155

:rem 232

:rem 233

:rem 176

:rem 107

:rem 204

:rem 47

:rem 65

:rem 120

:rem 166

FORI=1TO2:IFL1=1001+(B(I,0)+B(I,1)*40)THENB(I,

2)=0 :rem 203

NEXTI :rem 32

POKELl,35:POKELl+54272,6 :rem 84

L=L1 :rem 168

PRINT" {HOME} {BLK} {5 RIGHT}11? SCO : rem 203

GOTO500 :rem 108

L1=L1-40:X1=0:Y1=0 :rem 192

IFY>0THENY=Y-1 :rem 106

IFLK1064THENLl=Ll+40 :rem 161

PL=PEEK(L1):IFPL=35THENPL=PEEK(Ll+40) :rem 250

POKEL1,35:L=L1 :rem 27

GOTO680 :rem 115

L=1100:PRINTM{CLR}M :rem 129

FORI=1224TO1984STEP40:FORJ=0TO2 :rem 153

POKEI+J,44:POKEI+1+J,44:POKEI+J+54272,0:POKEI+

J+54273,0:NEXTJ,I :rem 206

FORI=1988TO2023:POKEI,43:POKEI+54272,6:NEXTI

:rem 149

FORI=1832TO1992STEP40:FORJ=0TO2:POKEI+J,44:POK

EI+J+54272,0:NEXTJ,I :rem 64

FORI=1979TO1099STEP-40:POKEI,40:POKEI+1,41:POK

EI+2,42 :rem 168

FORJ=0TO2:POKEJ+I+54272,6:NEXTJ,I :rem 4

FORI=1035TO1035+A:POKEI,47:POKEI+54272,0:NEXT:

IFA=-1THENPOKE1035,32 :rem 7

FORI=55296TO55335:POKEI,6:NEXT :rem 75

1: Games

870 POKE1039,45:POKE1063,46:FORI=1040TO1061:POKEI,

44:NEXT :rem 143

880 PRINT"{HOME}{BLK}SCORE:11 : rem 202

885 POKE54296,15 :rem 112

890 RETURN :rem 129

1000 DATA0,0,102,153,0,24,24,0 :rem 199

1010 DATA56,60,24,16,24,20,18,16 :rem 70

1020 DATA60,126,255,255,222,56,112,192 :rem 121

1030 DATA31,31,31,15,3,0,0,0 :rem 103

1040 DATA12,11,156,240,112,32,0,0 :rem 99

1050 DATA192,96,24,199,96,24,7,0 :rem 100

1060 DATA0,0,0,195,60,0,195,60 :rem 223

1070 DATA3,6,24,227,6,24,224,0 :rem 228

1080 DATA0,34,119,255,255,255,255,255 :rem 85

1090 DATA255,255,255,255,255,255,255,255 :rem 248

1100 DATA31,127,63,127,255,127,63,31 :rem 20

1110 DATA240,252,224,192,240,248,224,192 :rem 220

1120 DATA24,60,126,255,126,36,0,0 :rem 117

Reaction
JeffSprague

64 Version Translated by Gregg Peele

T? eacti°n"zs an ^citing arcade-style game that will
l\sharpen your reflexes and give you hours ofchal

lengingfun. Written for the unexpanded VIC or the 64, it

is a good example ofwhat a short program can do.

Are you tired of games where your sole duty is to manipulate a

passive dot eater around the screen? If so, "Reaction" is the game

for you. It lets you move a dot eater, all right — but this dot eater

has a mind of its own.

Game play is straightforward. Use your joystick to control a

large white brick as it races around the screen. The object is to run

over each of the hollow squares while avoiding those that are solid.

It sounds simple, but there are a couple of catches. Wherever

the white brick goes, it leaves a solid wall behind it. You cannot

run into one of those walls or you will be destroyed. In addition,

once the white brick has started moving, it cannot be stopped.

You can only control its direction, using your joystick.

When you run the program, you will be asked to select the

desired difficulty level (1-20). Level 1 puts one solid and one

hollow square on the screen, level 2 yields two solid and two

hollow squares, and so on. For free practice rounds, add 100 to

the desired level. For instance, if you wanted a practice round

with five hollow bricks, you would enter 105 when the prompt

asks for difficulty level.

This program, which uses a machine language routine to

read the joystick, is extremely fast. As a result, most players will

find it very hard to clear level 5. You can slow it down by adding

the following line:

160FORI =1TOH:NEXT

Let H be any number from 2 to 100, depending on how much you

want to slow things down. High numbers produce the greatest

decrease in speed.

Program L Reaction, VIC Version

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

10 PRINT"{CLR}{WHT}":POKE36879,14:POKE36878,15:POK

E36869f255:POKE56,28:008031000 :rem 6

99 REM LINE 100-200 ARE THE MAIN LOOP*** :rem 100

10

1: Games

100 POKEX,A:SYSJOY:OM=M:IFD(PEEK(E)-B)=.THENM=OM:G

OTO120 :rem 94

110 M=D(PEEK(E)-B) :rem 219

120 X=X+M:IFX<CORX>DTHENX=X-M:M=. :rem 155

130 P=PEEK(X):IF(P=AANDM<>.)ORP=ETHEN500 :rem 214

135 POKEG,. :rem 105

140 IFP=.THENDE=DE+E:POKEG,250:IFDE=STHEN400

:rem 229

150 IFP=FTHEN300 :rem 186

200 GOTO 100 srem 92

300 REM HIT PRIZE :rem 230

400 REM WIN ROUTINE*** :rem 10

410 GOSUB610 :rem 172

420 FORI=160TO220STEP5:FORJ=ITOI+30:POKEG,J:NEXT:N

EXT:POKEG,. :rem 207

430 PRINT"{2 DOWN}{WHT}YOU WON!":PRINT"{DOWN}{RED}
PREPARE FOR LEVEL ";S+1:S=S+1 :rem 170

440 FORI=1TO3000:NEXT:GOSUB1110:GOTO100 :rem 150

500 REM LOSE ROUTINE** : rem 38

510 GOSUB610 :rem 173

520 FORI=220TO127STEP-.5:POKEG,I:NEXT :rem 63

530 PRINT"{DOWN}{WHT}YOU DIDN'T COMPLETE{3 SPACES}
LEVEL ";S;"•" :rem 34

535 PRINT" {DOWN}" ;DE/S*100;"%" : rem 36

540 PRINT"{DOWN}PREPARE TO RETURN..." :rem 151

550 FORI=1TO4000:NEXT:GOSUB1110:GOTO100 :rem 153

610 PRINT"{CLR}{WHT}":POKE36869,240:PRINT"

{6 SPACES}REACTION" :rem 155

620 REM :rem 124

630 RETURN :rem 121

1000 REM GAME SET-UP** :rem 209

1005 DATA169,127,141,34,145,173,32,145,41,128,133,

0,173,31,145,41,28,133,1,169,255 :rem 238

1010 DATA 141,34,145,165,0,74,74,74,74,133,0,165,1

,74,74,101,0,133,1,96 :rem 146

1020 FORI=840TO880:READP:POKEI,P:NEXT:REM READ JOY

STICK ROUTINE*** :rem 170

1030 DATA0,0,1,0,0,0,-1,0,22,-22,0 :rem 106

1040 FORI=0TO10:READD(I):NEXT :rem 19

1050 X=7932:A=3:B=5:C=7724:D=8185:JOY=840:E=1:F=2:

G=36876 :rem 213

1052 FORI=7192TO7199:POKEI,255:NEXT :rem 120

1054 DATA0,60,36,36,36,60,0,0,0,60,60,60,60,60,0,0

:rem 157

1056 FORI=7168TO7183:READP:POKEI,P:NEXT :rem 210

1058 FORI=7424TO7431:POKEI,.:NEXT :rem 3

1060 PRINT"{HOME}" :rem 171

1070 PRINT"{2 DOWN}{GRN}{RVS}USE THE JOYSTICK TO

{4 SPACES}MOVE AROUND THE PLAY- FIELD."

:rem 79

11

1: Games

1080 PRINTM{CYN}{DOWN}{RVS}HIT THE {OFF}@{RVS}'S W

HILE TRY-ING TO AVOID THE {OFF}A{RVS}'S."

:rem 135

1090 PRINT"{DOWN}{YEL}{RVS}DIFFICULTY (1-20)";:INP

UTS :rem 184

1100 IFS<1ORS>20THENE=32:S=S-100 :rem 150

1110 PRINT"{CLR}":POKE36869,255:DE=.:OM=.:M=.

:rem 201

1120 FORI=1TOS:POKEINT(460*RND(1)+C),E:NEXT:FORI=1

TOS:POKEINT(460*RND(1)+C),.:NEXT:E=1 :rem 74

1130 PRINT"{HOME}{RVS}{GRN}REACTION" :rem 46
1140 IFPEEK(A)=.THENA=A+1:GOTO1140 :rem 250

1200 RETURN :rem 163

Program 2. Reaction, 64 Version

Refer to 'The Automatic Proofreader" (Appendix]) before typing this program in.

5 POKE53281,0:POKE53280,12 :rem 189

10 PRINT"{CLR}{WHT}":POKE56,48:PRINT"{8 DOWN}
{10 RIGHT}ENTERING CHARACTERS":GOSUB1000

:rem 162

99 REM LINE 100-200 ARE THE MAIN LOOP*** :rem 100

100 POKE53272,29:POKEX+54272f1:POKEX,A:OM=M:IF41-P

EEK(2)=.THENM=OM:GOTO120 :rem 254

110 M=41-PEEK(2) :rem 86

120 X=X+M:IFX<CORX>DTHENX=X-M:M=. :rem 155

130 P=PEEK(X):IF(P=AANDM<>.)ORP=ETHEN500 :rem 214

135 POKEG,. :rem 105

140 IFP=.THENDE=DE+E:POKEG,250:IFDE=STHEN400

:rem 229

150 IFP=FTHEN300 :rem 186

200 GOTO 100 :rem 92

300 REM HIT PRIZE :rem 230

400 REM WIN ROUTINE*** :rem 10

410 GOSUB610 :rem 172

420 FORI=160TO220STEP5:FORJ=ITOI+30:POKEG,J:NEXT:N

EXT:POKEG,.:POKE53272,21 :rem 202

430 PRINT"{2 DOWN}{WHT}{5 DOWN}{15 RIGHT}YOU WON!"

:rem 169

435 PRINT"{DOWN}{WHT}{3 DOWN}{10 RIGHTjPREPARE FOR

LEVEL ";S+1:S=S+1 :rem 169

440 FORI=1TO3000:NEXT:POKE53272,29:GOSUB1110:GOTO1

00 :rem 153

500 REM LOSE ROUTINE** :rem 38

510 GOSUB610 :rem 173

520 FORI=220TO127STEP-.5:POKEG,I:NEXT :rem 63

530 PRINT" {DOWN} {WHT} {6 DOV7N}{5 RIGHTjYOU DIDN'T C

OMPLETE LEVEL ";S;"{LEFT}." : rem 182

12

1: Games

535 PRINT"{DOWN}{12 RIGHT}PERCENTAGE";INT(DE/S*100

) • ll%" :rem 154

540 PRINT"{DOWN}{10 RIGHT}PREPARE TO RETURN..."
:rem 185

550 FORI=1TO4000:NEXT:POKE53272,29:GOSUB1110:GOTO1

00 :rem 156

610 PRINT"{CLR}{WHT}":POKE53272,21:PRINT"{5 DOWN}

{15 SPACES}REACTION" :rem 176

620 REM :rem 124

630 RETURN :rem 121

1000 REM GAME SET-UP** :rem 209

1010 POKE56334,PEEK(56334)AND254 :rem 11

1015 POKE1,PEEK(1)AND251 :rem 101

1020 FOR 1= 1024 TO 1536:POKEI+12288,PEEK(1+53248)
:NEXT :rem 224

1025 POKE1,PEEK(1)OR4:POKE56334,PEEK(56334)OR1

:rem 183

1050 X=1482:A=3:B=5:C=1064:D=2023:E=1:F=2 :rem 230

1052 FORI=12288+24TO12288+31:POKEI,255:NEXT

:rem 245

1054 DATA0,60,36,36,36,60,0,0,0,60,60,60,60,60,0,0

:rem 157

1056 FORI=12288TO12288+15:READP:POKEI,P:NEXT

:rem 196

1058 FORI=12288+256TO12288+256+7:POKEI,.:NEXT:GOSU

B 1300:SYS49152 :rem 27

1060 PRINT"{CLR}":POKE53272,29 :rem 46

1070 PRINT"{5 DOWN}{PUR}{RVS}{11 RIGHTjUSE THE JOY

STICK TO" :rem 105

1075 PRINT11 {2 DOWN]{PUR}{6 RIGHT} {RVS } MOVE AROUND
{SPACEJTHE PLAY- FIELD." :rem 242

1080 PRINT"{GRN}{2 DOV7N} {RVS} {11 RIGHT}HIT THE
{OFF}@{RVS}fS WHILE" : rem 200

1085 PRINT"{2 DOWN}{9 RIGHT}{RVS}TRYING TO AVOID T

HE {OFF}A{RVS}'S." :rem 57

1090 PRINT"{10 RIGHT}{DOWN}{YEL}{RVS}DIFFICULTY (1

-20)";:INPUTS :rem 218

1100 IFS<1ORS>20THENE=32:S=S-100 :rem 150

1110 PRINT"{CLR}":DE=.:OM=.:M=. :rem 136

1120 FORI=1TOS:Q=INT(959*RND(1)+C):POKEQ+54272,1:P

OKEQ,E:NEXT :rem 235

1125 FORI=1TOS:Q=INT(959*RND(1)+C):POKEQ+54272,1:P

OKEQ,.:NEXT:E=1 :rem 198

1130 PRINT"{HOME}{RVS}{GRN}REACTION" :rem 46

1140 IFPEEK(A)=.THENA=A+1:GOTO1140 :rem 250

1200 RETURN :rem 163

1300 1=49152 :rem 79

1310 READ B:IF B=256 THEN RETURN

1320 POKE I,B:1=1+1:GOTO 1310

:rem 23

:rem 73

13

1: Games

1330 DATA 120,169,13,141,20,3,169

1340 DATA 192,141,21,3,88,96,173

1350 DATA 0,220,41,15,73,15,168

1360 DATA 185,29,192,133,2,76,49

1370 DATA 234,41,81,1,41,42,41

1380 DATA 41,41,40,256

:rem

:rem

:rem

: rem

:rem

: rem

75

44

233

52

181

53

LJ

U

U

S |

{ 1

u

u

14

u

LJ

U

U

U

LJ

Text Adventure Basics
B.A. Miller

Text adventures let you combine computer and imagina

tion to create captivating role-playing games. This art

icle presents a simple text adventure called "Old West" and

describes techniques that you can use to write adventure

games ofyour own. It will run on the VIC (with at least 8K

expansion) or on the 64.

You've ridden hard all day, returning from your mine, and all you

have to show for it is an empty wallet and a golden tan. You're

tired, broke, and discouraged.

And then you come to the town.

It's not much to look at, even as ghost towns go, but a poster

nailed to the post office door catches your eye. You step closer to

read it:

''WANTED ALIVE - BLACK BART! $1000 REWARD"

A thousand dollars, eh? That's better than you did with the

gold. But where could this Black Bart be? There's no one else around.

And then you hear a horse. You have a sudden feeling: An

adventure is about to begin.

Adventure games can be among the most exciting computer

games you'll find. A typical adventure will create a world, give

you the rules by which it works, and then set you on your own to

solve a mystery or find a treasure using common sense and your

own ingenuity.

"Old West" places you in a seemingly deserted western town

and offers a $1000 reward if you can find (and capture alive) the

elusive Black Bart. You suspect that Bart is hiding somewhere in

the town, but you'll have to use your wits to locate and capture him.

But Old West is more than a western version of hide and

seek. It's an example of how an adventure game is written, and by

studying the program you'll learn what you need to write adven

ture games of your own.

Creating Your Own Adventure Game
The following paragraphs outline basic steps taken to develop a

game like Old West. They will give you a quick overview of

adventure programming techniques, and by reading this discus

sion and studying the programs, you'll be well on your way to

creating adventure games of your own.

15

1: Games

Make a map. The first step in designing an adventure game is

to map out the complete adventure. Then assign numbers to each

room/list the objects that can be found in each room, and note

from what directions you may enter and leave each room. Since

Old West is a simple adventure, it has only ten rooms. In addi

tion, there are only four possible directions of movement (north,

south, east, and west). A complete map is shown in Figure 1.

Figure 1. Room Map

8

General Store

Bobbypin

Sack of Cement

7

Dusty Street

Hoi

(Si

(

E'

•se Trough
Bucket

\iny Star)

Water)

9

Saloon

Whiskey

N

s

3

Jail

Sink

(Water)

E' k W
\ f

2

Sheriffs Office

Desk

(Key)

Ey

N

S

^ wl

Dusty Street

Poster

c N

Windov

4

t i
Dusty

Street Beh

Jail

E; ' W

5

ina

f

6

Street

Corner

10

Back Room

Black Bart

16

1: Games

Construct a move matrix. The move matrix shows how each

room connects with the others. The matrix for Old West is shown

in Figure 2. Starting points are listed along the left, and directions

are listed across the top. For example, if you start at room 1 (row 1)

and want to move north (column 1), you can look at the row

1-column 1 intersection to see where you will end up. In this case,

you would be in room 7.

Figure 2. Move Matrix

Direction of Movement

N(l) S(2) E(3) W(4)

1 '
2

3

4

Room 5

6

7

8

9

10

Entries can be thought of as having the form M(a,b) = c,

where a is the room where you start, b is the direction of move

ment, and c is the room where you end up. The entry M(l,2)=6

means that if you start at room 1 (dusty street) and GO SOUTH

(direction 2), you will end up in room 6 (street corner). Similarly,

the entry M(6,3)=5 means that if you GO EAST from room 6, you

will land in room 5.

Notice that the move matrix contains zeros/nonzero num

bers, and nonzero numbers in parentheses. Zeros indicate moves

that cannot be made, perhaps because the rooms do not connect.

Nonzero numbers represent moves that can be made at any time.

Nonzero numbers in parentheses are set to zero at the start of the

game but represent conditional moves that can eventually be

made. For example, M(2,3) (moving from the sheriffs office to the

jail) is initially set to zero, since you have not yet found the key to

the jail. However, once the key has been found and the jail has

been unlocked, M(2,3) is set to 3 (so you can move from the

sheriffs office to the jail), and M(3,4) is set to 2 (so you can go from

the jail to the office).

17

7

0

0

3

(4)

1

0

0

0

0

6

0

(4)

5

0

0

1

0

0

0

2

(3)

0

0

0

5

8

0

7

9

0

1

(2)

0

6

0

9

7

(10)

0

1: Games

The (4) at M(3,2) and M(5,l) means that you can get to room 4,

the window, but not by going N, S, E, or W. The command GO

WINDOW gets you in and out of the window. Similarly, GO

ROOM allows you to pass from room 9 (the saloon) to room 10

(the room in back). Program lines 650-680 read in the room de

scriptions, and lines 620-640 read in the move matrix.

Describe objects in rooms. The next step is to describe each

object and to note where it is located. Be careful to match every

thing up! I use the common technique of assigning a two-letter

abbreviation to each object. Lines 500-512 describe each object,

line 570 stores the abbreviation for each in the long string N$, and

lines 600-610 record the room where each object originally ap

pears. For example, the wanted poster (PO) is in room 1 and the

desk (DE) is in room 2. Hidden objects like the key are given room

number 50, which doesn't exist, so they will not appear until the

room number is changed. When the desk drawer is opened, for

instance, the value for the key L(17) will be set to 2, making it ap

pear in the office.

To make an object disappear (for example, to DRINK some

thing), L(object) is set to 50. To carry an object, L(object) becomes

zero. To drop an object, L(N) = L. N is the noun representing the

object, and L is always the current room location. By clustering

movable objects together (8 N19 if movable), one IF statement can

decide if the player can take that object.

Select action verbs. Action verbs allow the player to take

action within the game. In Old West, allowable action verbs are

listed in V$ (line 560) by their first two letters. GO, TAKE, GET,

PICK, OPEN, and PUT are some allowable verbs. Each is

matched with a GOTO in line 300. An input string (OPEN JAIL,

for instance) is decoded by subroutine 1000-1045 into A$ =OP and

B$=JA. Lines 150-170 then convert A$ into a value V=5 and B$

into N=6, the relative positions of OP and JA in V$ and N$. Line

300 uses V=5 to GOTO 480, the OPEN routine.

Establish switches. To tell if certain conditions have

occurred, switches Cl (mixed cement), Kl (found key), Wl (have

water), and SI (sleeping Black Bart) are used. The remainder of

the program is made up of IF statements, which compare and act

on the conditions previously established.

18

1: Games

Old West for VIC and 64
Refer to 'The Automatic Proofreader" (Appendix J) before typing this program in.

100 PRINTCHR$(147):C1=0:K1=0:L1=0:B1=0:W1=0:J1=0:S

1=0 :rem 4

110 DIM N$(19),L(26),M(10,4),R$(10) :rem 169

120 GOSUB 500:L=1:PRINT"I HEAR A RASPING NOISE":PO

RTD=1 TO 1000:NEXT TD :rem 127

125 PRINT"I HEAR A HORSEl":FOR TD=1TO300:NEXTTD

:rem 35

126 PRINT:FORCY=1TO10:PRINT"{2 SPACES}CLOPPITY":FO

RTD=1TO200:NEXTTD:NEXTCY :rem 86

127 FOR TD=1TO1000:NEXT TD:PRINT :rem 195

130 GOSUB 700 :rem 171

135 IFM(4,2)<>0ORL(13)<>3THEN140 : rem 21

136 PRINT"{CLR}":PRINT"YOU CAUGHT BLACK BART 1"

:rem 105

137 PRINT"THE REWARD IS YOURS!" :rem 113

138 END :rem 115

140 PRINT:PRINT"TELL ME WHAT TO DO":GOSUB 1000

:rem 213

145 IF S=1THENS=0:GOTO140 :rem 225

150 FOR I = 1 TO LEN(V$)STEP2 :rem 239

160 IF MID$(V$,I,2)=A$THENV=(I+1)/2:GOTO200

:rem 130

170 NEXTI :rem 32

180 PRINT"I DON'T KNOW HOW TO DO THAT":GOTO140

:rem 171

200 IF B$=""THEN 300 :rem 202

210 FOR I=1TOLEN(N$)STEP2 :rem 228

220 IF MID$(N$,I,2)<>B$THEN 230 :rem 91

225 N=(I+l)/2 :rem 123

227 IFN=21THENN=9 :rem 11

229 GOTO300 :rem 105

230 NEXTI :rem 29

300 ON V GOTO 350,400,400,450,480,800,800,830,130,

800,900,980,950 :rem 147

309 REM UNLOCK DRAWER{2 SPACES}DESK OR CELL

:rem 249

310 IF N=6ANDL(17)=0ANDL=2THENJ1=1:M(2,3)=3:GOSUB1

150:M(3,4)=2:GOTO130 :rem 10

320 PRINT"CAN'T DO THAT YET" :rem 105

330 GOTO130 :rem 99

350 IFN<>7 ANDN< 22 THEN380 :rem 177

355 IF N=7 ANDM(4,2)<>0AND(L=5ORL=3)THENL=4:GOTO13

0 :rem 205

360 IFM(L,N-21)=0THEN395 :rem 89

370 L=M(L,N-21):GOTO130 :rem 30

380 IF N<>4 OR LO7THEN 385 : rem 147

19

1: Games

381 PRINT"SPLASH—I'M ALL WET";L(18)=7 :rem 204

382 IFL(11)=50THENPRINT"I FOUND SOMETHING":L(11)=7

:GOTO130 :rem 244

385 IFN=5 ANDL=9THENL=10:GOTO130 :rem 164

395 PRINT"CAN'T GO THAT WAY":GOTO130 :rem 126

400 IFO=4THENPRINT"GO TOO MUCH—TAKE INVENTORY" :G

OTO140 :rem 31

405 IFN=14THEN425 :rem 226

410 IFL(N)<>LTHENPRINT"I DON'T SEE IT HERE":GOTO14

0 :rem 32

420 IFN<8ORN>19THENPRINT"CAN'T TAKE THAT":GOTO140

:rem 41

425 IFN=14ANDL<>2ANDL(16)<>0 THENPRINT"CAN'T DO TH

AT YET":GOTO140 :rem 113

430 IFN=14ANDL=2THENN$(3)="SINK FULL OF WATER":W1=

1:GOTO130 :rem 1

435 IFN=14ANDL(16)=0THENN$(16)="BUCKET OF WATER":W

1=1:GOTO130 :rem 70

440 IF N=13AND Sl=l THEN 444 :rem 166

441 IFNO13THEN444 : rem 31

442 PRINT"BLACK BART GETS MADI" .-PRINT"HE DRAWS HIS

REVOLVERI" :rem 170

443 PRINT"THAT'S THE END":END :rem 224

444 IFN=13ANDL(11)O0THENPRINT"CAN'T DO THAT YET":

GOTO140 :rem 161

445 PRINT"OKAY":C=C+1:L(N)=0:GOTO140 :rem 149

450 IFL1=1THENPRINT"IT'S NOT LOCKED":GOTO140RUN

:rem 202

460 IFL=2ANDL(9)=0ANDL1=0AND(N=2ORN=20ORN=26)THEN4

65 :rem 136

462 GOTO470 :rem 112

465 L1=1:K1=1:PRINT"OKAY":N$(2)="UNLOCKED DESK"

:rem 25

470 GOTO140 :rem 105

480 IFNO2ANDN<>20ANDN<>26THENPRINT"CANIT":GOTO140

:rem 122

490 IFK1=1ANDL=2ANDL(17)=50THENL(17)=2:GOTO495

:rem 214

492 PRINT"CAN'T":GOTO140 :rem 197 i i

495 PRINT"OKAY—THERE'S SOMETHING IN THERE":GOTO14 L~J
0 :rem 184 ((

500 FORI=1TO19:READN$(I):NEXTI :rem 100 LJ

510 DATAPOSTER,DESK WITH LOCKED DRAWER,SINK,HORSE

{SPACE}TROUGH,ROOM IN BACK :rem 139 [_J

511 DATA JAIL CELL-LOCKED,EMPTY WINDOW,BARS, BOBBY

PIN,SACK OF CEMENT :rem 215 { |

512 DATA SHINY STAR,BOTTLE OF ELIXIR,BLACK BART, W l—'

ATER,WATER,BUCKET,KEY :rem 222

514 DATA WATER,EMPTY WINDOW :rem 202 LJ

20 U

1: Games

550 V1$="NSEW" :rem 3

560 V$="GOTAGEPIOPPUDRMILOGISWFIREUNM :rem 244

570 N$="PODESITRROJAWIBABOCESTWHBLWAWABUKEWAWIDRPI

NOSOEAWELO" :rem 239

600 FORI=1TO19:READL(I):NEXTI :rem 63

610 DATA 1,2,3,7,9,2,3,5,8,8,50,9,10,50,11,7,50,11

,5 :rem 210

620 FORI=1TO10:FORJ=1TO4:READM(I,J):NEXTJ:NEXTI

:rem 34

630 DATA 7,6,2,,,,,1,,,,0,3,5,,,0,,,6 :rem 197

640 DATA 1,,5,,,1,8,9,,,,7,,,7,,,,9, :rem 167

650 FORI=1TO10:READR$(I):NEXTI :rem 101

660 DATA DUSTY STREET,OFFICE,JAIL,WINDOW,DUSTY STR

EET BEHIND JAIL :rem 180

670 DATA STREET CORNER,DUSTY STREET,GENERAL STORE,

SALOON,ROOM IN BACK :rem 179

675 R$(2)="SHERIFF'S H+R$(2) :rem 193

680 RETURN : rem 126

700 PRINTMI AM IN A "R$(L) :rem 42

710 PRINT"I SEE "; :rem 202

720 FOR I = 1 TO 19 :rem 68

730 IF L(I)=L THEN PRINTN$(I);" ";:S=1 :rem 21

740 NEXT I :rem 35

750 IF S=0 THENPRINT"NOTHING SPECIAL" :rem 3

760 IF S=l THEN PRINT:S=0 :rem 163

765 IF L=0THENRETURN :rem 249

770 PRINT"OBVIOUS EXITS ARE "; :rem 54

775 FORI=1TO4:IFM(L,I)=0THEN785 :rem 128

780 PRINTMID$(V1$,I,1)+" "; :rem 162

785 NEXTI:PRINT :rem 243

790 RETURN :rem 128

800 IFN=10ORN=8THEN830 :rem 65

805 IFN=12ANDS1=0THEN870 :rem 172

810 IFL(N)=0THENL(N)=L:C=C-1:PRINT"OKAY":GOTO130

:rem 196

820 PRINT"!1M NOT CARRYING IT":GOTO140 :rem 29

830 PRINT"WHERE":INPUT C$:rem 24

840 IFLEFT?(C$,2)<>"SI"ANDLEFT$(C$,2)<>"WA"ANDLEFT

$(C$,2)o"BU"THEN 845 :rem 213

842 IFW1=1ANDN=10ANDL(10)=0THEN850 :rem 236

843 GOTO847 :rem 123

845 IFLEFT$(C$,2)="WI"ANDL(8)=0ANDC1=1ANDL=4ANDN=8

THEN860 :rem 115

847 PRINT"CAN'T DO THAT YET":GOTO140 :rem 127

850 PRINT"OKAY.{2 SPACESjlT'S MIXED":C1=1:L(10)=50

:C=C-1 :rem 175

855 IFLEFT$(C$,2)="BU"THENN$(16)="BUCKET OF CEMENT

MIXTURE":GOTO130 :rem 204

856 N$(15)="CEMENT MIXTURE":L(15)=L:GOTO130 :rem 4

21

1: Games

860 PRINT"0KAY":N$(7) ="BARRED WINDOW" :L=3 :M(4, 2)=0

:L(8)=50:C=C-1: GOTO130 :rem 192

870 IFL(12)<>0THEN847 :rem 170

875 IFA$o"GI"THEN900 : rem 174

876 IFLO10THEN847 :rem 45

880 L(12)=50:PRINT"BLACK BART GULPS{6 SPACES}ELIXI
R AND IMMEDIATELYFALLS ASLEEP" :rem 94

890 S1=1:C=C-1:N$(13)="SLEEPING "+N$(13):GOTO140

:rem 129

900 IFN=12ANDL(12)=0THENL(12)=50:PRINT"GLUG GLUG G

LUG":C=C-1:GOTO140 :rem 34

910 IFN=12 THENPRINT"CAN'T DO THAT YET":GOTO140

:rem 34

920 PRINT"CAN'T DRINK THAT":GOTO140 :rem 106

950 IFNO1ORL<>1THENPRINT"CANIT":GOTO140 :rem 19

960 PRINT"WANTED ALIVE-BLACK BARTi $1000 REWARD"

jrem 34

970 GOTO140 :rem 110

980 IFN<>3ORLO3THENPRINT"CANIT":GOTO140 srem 26

990 PRINT"HOW";:INPUTC$:rem 205

995 IFLEFT$(C$,2)="WA"THENL(14)=3:W1=1 :rem 133

996 GOTO130 srem 117

1000 INPUT A$:B$="" :rem 215

1005 IF LEFT$(A$,2)="QU"THENEND :rem 229

1010 IFLEN(A$)=1THEN1060 :rem 74

1020 FORI=1TOLEN(A$) :rem 153

1030 IFMID$(A$,I,1)=" "AND LEN(A$)>I+1THENB$=MID$(

A$,I+1,2):GOTO1045 :rem 151

1040 NEXTI srem 77

1045 A$=LEFT$(A$,2):RETURN :rem 233

1060 IFA$o"I"THEN1100 :rem 179

1070 PRINT"I'M CARRYING ";:T=L:L=0:GOSUB720:rem 77

1080 L=T:S=1:RETURN :rem 187

1100 FORI=1TO4 srem 55

1110 IFA$<>MID$(V1$,I,1)THEN1130 srem 241

1120 A$="GO":B$=MID$(N$,2*1+41,2):RETURN :rem 183

1130 NEXTI srem 77
1140 PRINT"CAN'T DO THAT":S=1:RETURN :rem 189

1150 N$(6)="OPEN JAIL CELL":RETURN :rem 205

22

Nim
George Trepal

"X Tim" is a game that you cannot win — unless you're

IN the computer! Use it to amaze and impress your
friends; the program runs on either the VIC or the 64.

Suppose someone said, "Let's play a game. I have 21 objects here,

and on each turn we can take away one, two, or three of them.

The person left with the last object loses. Since I'm a good sport,

111 let you go first."

Reasonable enough, you'd decide, so you'd give it a try.

You would lose.

You would try again, and lose again, over and over until you

finally got tired.

That's the game of "Nim."

If you know the secret, there is no way you can lose at Nim.

The key is to let the other player go first (how thoughtful!) and

then to take a number of objects that, added to the number taken

by your opponent, equals four. Each complete turn will thus

remove four objects. Note that 21 divided by 4 leaves a remainder

of 1; by letting your opponent go first, you guarantee that he will

be stuck with the remainder. You can use any number that leaves

such a remainder when divided by four, and the results will

always be the same.

The program is straightforward. Lines 120-190 contain the

computer's responses, which are chosen randomly to add life to

the game. Line 200 actually starts the game, by setting S equal to

21. To make things even more entertaining, you could modify the

program to use a different S each time the game is played; simply

generate a random number, multiply by four, and add one to get a

suitable value.

Line 320 initiates play. Line 340 clears the keyboard buffer,

and line 370 GETs N$, the number string that is your guess. It is

not necessary to press return after typing in your guess. Line 380

checks for keyboard input. If nothing has been typed, it loops

back and looks again until something does come in.

Line 400 checks to make sure that the number entered is 1,2,

or 3; line 420 makes sure that no decimal numbers have been

entered. Once a number has been accepted, lines 440-460 display

the guess and the number of objects remaining.

Lines 480-500 are included to make game play even more life

like. They introduce a variable delay which can last from less than

23

1: Games

a second to several seconds, and they give the appearance that

the computer is agonizing over its next choice. Most players inter

pret a short delay as "Gee, I made a dumb move, and the com

puter didn't even have to think/' A long delay usually has the

opposite effect, even though the delays are completely random.

Lines 510-600 generate the computer's next guess, display it

on the screen, tell you how many objects the computer took, and

remind you how many objects remain. If more than one object re

mains, line 630 returns you to line 320. If only one remains, line

610 initiates the YOU LOSE routine. The rest of the program re

sets things for another game.

Though this is a bare-bones sort of game, it definitely has the

capacity to drive people right up the walls. Unleash it the next

time someone tries to tell you that a computer is just a boxful of

wires and solder.

Nim for VIC and 64
Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

120 REM COMPUTER RESPONSES :rera 168

130 W$(1)=MI THINK I'LL TAKE" :rem 6

140 W$(2)="THIS TIME I WANT" :rem 254

150 W$(3)="I HAVE TAKEN" :rem 246

160 W$(4)="IILL HAVE" :rem 68

170 W$(5)="I TOOK" :rem 160

180 W$(6)="LET ME HAVE" :rem 183

190 W$(7)="THIS TIME GIVE ME" :rem 66

200 S=21 :rem 133

210 PRINT"{CLR}LET'S PLAY THE GAME OF" :rem 28

220 PRINT"NIM.{2 SPACES}WE START WITH 21" :rem 64

230 PRINT"THINGS.{2 SPACESjEACH TURN WE" :rem 87

240 PRINT"CAN TAKE AWAY ONE,TWO," :rem 196

250 PRINT"OR THREE THINGS." :rem 124

260 PRINT :rem 37

270 PRINT"THE ONE WHO HAS TO" :rem 154

280 PRINT"TAKE THE LAST THING" :rem 31

290 PRINT"LOSES THE GAME." :rem 27

300 PRINT :rem 32

310 PRINT"YOU GET TO GO FIRST!" :rem 36

320 PRItfT"HOW MANY DO YOU WANT?" :rem 146

330 REM CLEAR KEYBOARD BUFFER :rem 236

340 POKE 198,0 :rem 196

350 REM GET NUMBER & MAKE SURE :rem 168

360 REM IT IS 1,2, OR 3 :rem 69

370 GET N$:rem 236

380 IF N$="" THEN 370 :rem 230

390 N = ASC(N$) - 48 : rem 90

24

LJ

U

LJ

400

1: Games

IF N<1 OR N>3 THEN PRINT"NO 1 YOU CAN TAKE ONLY

1,2, OR 3l":GOTO 370 :rem 239

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

REM CHECK FOR DECIMAL NUMBERS

IF N <> INT(N) THEN PRINT "NOI

{SPACE}OR 31"

PRINT

PRINT"YOU TOOK";N

PRINT S;"-";N"=";S-N

S=S-N

REM THINKING LOOP

RN=INT(RND(1)*3500) + 300

FOR J= 1 TO RN

NEXT J

IF N = 1 THEN R = 3

IF N = 2 THEN R = 2

IF N = 3 THEN R = 1

PRINT

REM GET RESPONSE

RN=INT(RND(1)*7) + 1

PRINT W$(RN);R

PRINT

PRINT S;"-";R;"=";S-R

S=S-R

IFS=1 THEN 640

PRINT

GOTO320

PRINT

PRINT"YOU HAVE TO TAKE THE"

PRINT"LAST ONE SO YOU LOSE I"

PRINT

PRINT"TO PLAY AGAIN PRESS"

PRINT"THE 'A' KEY."

GET A$

IF A$ = "" THEN 700

IF A$ <> "A" THEN 700

GOTO 200

:rem 201

USE ONLY 1, 2,

:rem 20

: rem 36

:rem 44

:rem 56

:rem 248

:rem 21

:rem 203

:rem 127

:rem 30

:rem 210

:rem 211

:rem 212

:rem 38

:rem 205

:rem 215

:rem 34

:rem 42

:rem 128

:rem 248

:rem 176

:rem 37

:rem 103

:rem 39

:rem 54

:rem 118

:rem 42

:rem 53

:rem 247

:rem 220

:rem 211

:rem 82

:rem 101

25

Save the King
Andy Hayes

64 Formatter by Charles Brannon

ave the King" is a realtime adventure game that

shozvs what you can do when you combine the chal

lenge ofa text adventure with the excitement ofcomputer

graphics. Versions are includedfor the VIC (with at least

3K expansion) andfor the 64. A screen formatter is also in

cluded, to better utilize the 64's 40-column display

It's Celebration Day, and the crowd is exuberant. Thousands fill

the castle square, awaiting the State of the Kingdom address.

But where is the king? He should have arrived an hour ago.

His speech is scheduled for six o'clock — just ten minutes away—

no one knows what the holdup could be.

No one but you.

You're chief of castle security, and you've just gotten word

that the king has been kidnapped. According to the ransom note,

he's hidden somewhere in that abandoned castle just outside

town. Members of a rival political faction are holding him pris

oner — and according to the laws of the land, he must abdicate

the throne if he doesn't appear promptly at the appointed hour.

Can you save the king in time? By yourself, you wouldn't

have a chance. But as luck would have it, you just happen to have

a computerized map of the very castle where the king is being

held. If you can pull off the rescue, it will mean good times for the

kingdom and rich rewards for yourself. And if you fail? Some

things are better not talked about at all.

You've got ten minutes. Good luck!

"Save the King" is an exciting realtime adventure game that

combines vivid text with three-dimensional graphics. Your com

puter not only tells you what you're seeing, but shows you each

room too. You view each room from the south, and all doors are

clearly visible. If there's a door behind you (on the south wall),

the word SOUTH will appear on the right side of the screen.

Type this program carefully. Pay particular attention to the

characters in brackets; if you need help, refer to Appendix B,

"How to Type In Programs." Be careful when typing the DACA

statements, too, so that you do not inadvertently leave out a word

or a comma.

26

1: Games

This program recognizes five commands: GO, GET, READ,

USE, and I. Use GO in combination with a direction (GO EAST,

GO WEST, and so on) to move through the castle's rooms. READ

lets you read the written word, as in READ BOOK. GET allows

you to pick up objects (GET KNIFE) that you might find along the

way, and USE (USE KEY) helps you put those objects to work.

Note that USE distinguishes between singular and plural nouns;

for instance, you cannot USE KEYS if you have only found one

key.

The final command, I, gives you an inventory of what you're

carrying. You'll refer to it often. It is particularly useful as

the game progresses, when you're more likely to forget what

you've gathered.

To use the program on the 64, first type in and save the main

listing. Then type in and save the following lines:

100 PRINT "{CLR}{4 SPACES}{RVS}22 COLUMN PRINT FOR

MATTER FOR 64":PRINT :rem 146

110 PRINT "READING DATA" :rem 119

120 FORI=828TO881:READA:CK=CK+A:POKEI,A:NEXT:POKE1

79,883 AND 255 :rem 92

130 IF CK<> 6032 THEN PRINT "ERROR IN DATA: CHECK

{SPACE}TYPING.":END :rem 227

140 PRINT"{DOWN}BEFORE....":SYS 828:PRINT"AFTER...

" :rem 196

150 PRINT "{DOWN}PRESS RUN/STOP-RESTORE";:PRINT"TO

REGAIN 40 COLUMNS" :rem 228

160 PRINT "{DOWN}ENTER {RVS}SYS 828{OFF} TO":PRINT

"REACTIVATE, IF":PRINT"NECESSARY." :rem 115

170 PRINT "{DOWN}DO NOT EDIT ANY":PRINT"LINES WHIL

E IN 22 COL-UMN MODE." :rem 84

1000 DATA169,71,141,38,3,169,3,141 :rem 180

1010 DATA39,3,96,72,152,72,138,72 :rem 141

1020 DATA56,32,240,255,192,9,176,3 :rem 185

1030 DATA76,100,3,192,31,144,15,169 :rem 226

1040 DATA13,32,202,241,56,32,240,255 :rem 9

1050 DATA160,9,24,32,240,255,104,170 :rem 14

1060 DATA104,168,104,76,202,241 :rem 30

Type RUN and hit RETURN. Finally, LOAD and RUN "Save

the King/7

As you explore the castle in search of the king, you might find

it helpful to sketch a rough map on a piece of old parchment.

Lacking parchment, note paper will do just fine. Just don't get so

caught up in your artwork that you let time get away. Remember,

youVe only got ten minutes.

27

1: Games

Save the King for VIC and 64
Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

100 PRINT"{CLR}":POKE53281,1:POKE53280,6 :rem 139
110 DIM GE$(5,3),D$(5,3),R$(5,3),W%(5,3),X%(5,3),Y

%(5,3),Z%(5,3),E%(5,3) :rem 182

120 GOSUB1190 :rem 222

130 FORX=0TO5:FORY=0TO3:E%(X,Y)=1:NEXTY,X :rem 107

140 X=0:Y=0 :rem 90

150 TI$="000000" :rem 248

160 IFA>2THEN660 :rem 162

170 GOSUB930 :rem 180

180 IFW%(X,Y)=1THENGOSUB1050 :rem 181

190 IFY%(X,Y)=1THENGOSUB1110 :rem 181

200 IFZ%(X,Y)=1THENGOSUB1150 :rem 178

210 IFX%(X,Y)=1THENPRINT"{HOME}{DOWN}{14 RIGHTjSOU

TH" :rem 136

:rem 213

:rem 0

:rem 141

:rem 40

:rem 123

:rem 113

:rem 199

:rem 16

:rem 210

:rem 178

:rem 75

:rem 127

irem 203

:rem 218

:rem 11

:rem 159

:rem 163

:rem 164

220 IFG=1THENG=0:RETURN

230 GOSUB880:PRINTII{PUR}IIR$(X,Y)

240 PRINT"{BLK}"D$(X,Y)

250 IFE%(X,Y)=1THENPRINT"{GRN}"GE$(X, Y)

260 INPUT"{BLU}YOUR COMMAND";C$

270 FORI=1TOLEN(C$)

280 D$=MID$(C$,I,1)

290 IFD$=" "THENA=I:GOTO310

300 NEXT

310 A$=LEFT$(C$,I)

320 B$=MID$(C$,I):A=0

330 IFA$="GO "THENA=1

340 IFA$="GET "THENA=2

350 IFA$="USE "THENA=3

360 IFA$="READ "THENA=4

370 IFA$="I"THENGOSUB800

380 IFA=0THEN480

390 IFA>1THEN460

400 IFA=1THENIFB$=" NORTH"ANDW%(XfY)=lTHENX=X+l:GO

TO170 :rem 112

410 IFA=1THENIFB$=" SOUTH"ANDX%(X,Y)=1THENX=X-1:GO

TO170 :rem 124

420 IFA=1THENIFB$=" WEST"ANDY%(X,Y)=1THENY=Y+1:GOT

0170 :rem 46

430 IFA=1THENIFB$=" EAST"ANDZ%(X,Y)=1THENY=Y-1:GOT

0170 :rem 28

440 IFB$<>" WEST"ANDB$<>" EAST"ANDB$<>" SOUTH"ANDB

$<>" NORTH"THEN840 :rem 137

450 G=1:GOSUB170:GOSUB880:PRINT"HOW ARE GOING TO G

ET{2 SPACES}THROUGH THE WALL?" :rem 51

455 GOTO 500 :rem 108

460 IFA>2THEN660 :rem 165

470 IFA=2THENGOTO520 :rem 217

28

1: Games

480 G=1:GOSUB170:GOSUB880:PRINT"I DONT KNOW HOW TO

11 :rem 86

490 PRINTA$"SOMETHING." :rem 175

500 FORT=1TO2500:NEXT :rem 33

510 GOTO170 :rem 103

520 IFB$=" KEY"ANDX=2ANDY=3ANDE%(X,Y)=1THENU=U+1:E

$(U)="GOLD KEY":F=1:NK=NK+1 :rem 67

530 IFB$=" CHEESE"ANDX=2ANDY=1ANDE%(X,Y)=1THENU=U+

1:E$(U)="PIECE OF CHEESE":F=1 :rem 154

540 IFB$=" CHALK"ANDX=4ANDY=1ANDE%(X,Y)=1THENU=U+1

:E$(U)="PIECE OF CHALK":F=1 :rem 9

550 IFB$=" BOOK"ANDX=4ANDY=3ANDE%(X,Y)=1THENU=U+1:

E$(U)="BOOK":F=1 :rem 161

560 IFB$=" KNIFE"ANDX==1ANDY=1ANDE% (X,Y)=1THENU=U+1

:E$(U)="KNIFE":F=1 :rem 33
570 IFB$=" BEETLE"ANDX=5ANDY=3ANDE%(X,Y)=1THENU=U+

1:E$(U)="BEETLE":F=1 :rem 176

580 IFB$=" BAT"ANDX=3ANDY=1ANDE%(X,Y)=1THENU=U+1:E

$(U)="BAT":F=1 :rem 249

590 IFB$=" KEY"ANDX=3ANDY=0ANDE%(X,Y)=1THENU=U+1:E

$(U)="SILVER KEY":F=1:NK=NK+1 :rem 247

600 IFF=1THENE$=E$(U):F=0:GOTO640 :rem 183

610 IFB$=" BAT"ORB$=" BEETLE"ORB$=" KNIFE"THEN870

:rem 224

615 IFB$=" BOOK"ORB$=" CHALK"ORB$=" CHEESE"THEN870

:rem 43

620 GOTO850 :rem 110

630 G=1:GOSUB170:GOSUB880:PRINT"YOU CAN'T DO THAT I

":GOTO500 :rem 60

640 G=1:GOSUB170:GOSUB880:PRINT"YOU HAVE A":E%(X,Y

)=0 :rem 167

650 PRINTE$:GOTO500 :rem 153

660 IFA>3THEN710 :rem 164

670 IFA$="USE "ANDB$=" KEYS"ANDX=5ANDY=1THEN890

:rem 252

680 IFA$="USE "ANDB$=" KEYS"ANDX<>5ANDY<>1THEN700

:rem 109

690 G=1:GOSUB170:GOSUB880:PRINT"I DONT KNOW HOW TO

{4 SPACES}"A$"A"B$:GOTO500 :rem 177

700 G=1:GOSUB170:GOSUB880:PRINT"WHERE ARE THE LOCK

S?":GOTO500 :rem 250

710 FORI=1TO10 :rem 58

720 GOTO780 :rem 113

730 IFE$(I)="BOOK"THEN760 :rem 164

740 NEXT :rem 218

750 G=1:GOSUB170:GOSUB880:PRINT"YOU HAVE NO BOOK!"

:GOTO500 :rem 26

760 PRINT"{CLR}FIND THE LOCK AND MAKESURE YOU HAVE

BOTH OF THE KEYS 1":FORT=1TO5000 :rem 200

29

1: Games

770 NEXT:GOTO170 :rem 232

780 IFB$<>" BOOKMTHEN690 :rem 75

790 GOTO730 :rem 115

800 PRINT"{CLR}{RVS}{PUR}{6 SPACES}INVENTORY

{7 SPACES}11 :rem 120
810 PRINT"{BLK}YOU NOW HAVE..{RED}" :rem 135
820 FORI=1TO10:PRINTE$(I):NEXT :rem 127

830 PRINT"{DOWN}{BLK}KEY ANY KEY":POKE198,0:WAIT19
8,1:GOTO170 :rem 167

840 G=1:GOSUB170:GOSUB880:PRINT"I DONT KNOW WHAT A

":PRINTB$" IS":GOTO500 :rem 79

850 IFB$=" KEY"THEN870 :rem 202

860 GOTO630 :rem 112

870 G=1:GOSUB170:GOSUB880:PRINT"{BLK}I SEE NO"B$:G

OTO500 :rem 204

880 PRINT " {HOME } {14 DOWN } { BLK } " ; : RETURN : rem 87

890 IFNK<2THENG=1:GOSUB170:GOSUB880:PRINT"YOU DON1

T HAVE ENOUGH KEYS":GOTO500 :rem 89

900 PRINT"{CLR}THERE IS THE KING TIEDTO A CHAIR. Y

OU UNTIE HIM AND YOUR MISSION." :rem 140

910 PRINT"IS COMPLETE":END :rem 113

920 PRINT"{CLR}{BLK}SORRY, TIME IS UP. YOULOSE1":E

ND :rem 90

930 PRINT"{CLR}{RVS}{BLU}{13 SPACES}{OFF}":rem 195

940 IFTI$>"001000"THEN920 :rem 90

950 FORI=1TO11:PRINT"{RVS} {OFF}{11 SPACES}{RVS}
{OFF}":NEXT :rem 13

960 PRINT"{RVS}{13 SPACES}{OFF}" :rem 20

970 PRINT"{HOME}{DOWN}{RIGHT}M{9 SPACES}N" :rem 77

980 PRINT"{2 RIGHT}M{7 SPACEsTn" :rem 71
990 PRINT"{3 RIGHT}Mg5 @§N" :rem 153

1000 FORI=1TO5:PRINT"{3 RIGHT}|Mi{RVS}{5 SPACES}
{OFF}gG3":NEXT :rem 2

1010 PRINT"{3 RIGHT}Ng5 TiM" :rem 180

1020 PRINT"{2 RIGHT}N{7 SPACES}M" :rem 105

1030 PRINT"{RIGHT}N{9 SPACES}M" :rem 77

1040 RETURN :rem 165

1050 PRINT"{HOME}{5 DOWN}{5 RIGHT}|2 U|" :rem 0

1060 PRINT"{5 RIGHT}{2 SPACES}" :rem 41

1070 PRINT"{5 RIGHT}{2 SPACES}" :rem 42

1080 PRINT"{5 RIGHT}{2 SPACES}" :rem 43

1090 PRINT"{5 RIGHT}{2 SPACES}" :rem 44

1100 RETURN :rem 162

1110 PRINT"{HOME}{4 DOWN}{RIGHT}gMiM" :rem 124

1120 FORI=1TO5:PRINT"{RIGHT}gM^fRVST {OFF}":NEXT
:rem 38

1130 PRINT"{RIGHT}gM3" :rem 90

1140 RETURN :rem 166

1150 PRINT"{HOME}{4 DOWN}{10 RIGHT}N&G3H :rem 132

30

1: Games

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

FORI=1TO5:PRINT"{10 RIGHT}{RVSj {OFF}gG§":NEX

T :rem 45

PRINT"{11 RIGHT }|G>|" :rem 126
RETURN :rem 170

FORI=0TO5 :rem 64

FORJ=0TO3 :rem 55

READD$(I,J) :rem 88

READR$(I,J) :rem 103

READW%(I,J) :rem 110

READX%(I,J) :rem 112

READY%(I,J) :rem 114

READZ%(I,J) :rem 116

READGE$(I,J) :rem 166

NEXTJ,I :rem 201

RETURN :rem 172

DATAIT IS VERY DARK BUT{3 SPACES}THERE ARE TO
RCHES ON{2 SPACES}THE WALLS :rem 211

DATAYOUR ARE IN THE ENTRY :rem 16

DATA1,0,1,0 :rem 38

DATA" " :rem 37

DATATHE ROOM IS COVERED{3 SPACES}WITH ABOUT 1

1' OF DUST :rem 175

DATAYOU ARE IN THE MEETINGROOM. :rem 164

:rem 42

:rem 41

DATATHERE IS A SKELETON ONTHE FLOOR. :rem 206

DATAYOU ARE IN A 2 WAY{4 SPACES}HALLWAY.

:rem 247

:rem 37

:rem 36

:rem 37

DATAYOU ARE IN AN EMPTY{3 SPACES}PANTRY.

:rem 120

DATA1,0,0,1 :rem 41

DATAYOU SEE A CAN OF SOUP :rem 173

DATAYOU JUST STEPPED ON A MOUSE :rem 164

DATAYOU ARE IN A HALLWAY :rem 165

DATA1,1,0,0 :rem 45

DATA" " :rem 44

DATATHE REMAINS OF A LARGETABLE ARE IN THE

{6 SPACES}CORNER. THEY'RE BURNED. :rem 166

DATAYOU ARE IN THE DINING ROOM. :rem 82

DATA1,1,0,0 :rem 40

DATAYOU SEE A KNIFE :rem 107

DATATHE ROOM HAS NO SOURCEOF LIGHT VISIBLE; Y

ET YOU CAN SEE FINE. :rem 136

DATA YOU ARE IN THE LIVING ROOM :rem 56

DATA1,1,1,0 :rem 45

DATA" " :rem 43

DATA1,0,0,1

DATA" "

DATA1,0,1,0

DATA" "

DATA" "

31

1: Games

1580 DATAYOU SEE LOTS OF STUFF.NONE OF IT HAS ANY

{4 SPACES}VALUE TO YOU. :rem 192

1590 DATAYOU ARE IN THE STORAGEROOM. :rem 182

1600 DATA0,1,0,1 :rem 39

1610 DATA" " :rem 38

1620 DATATHE{2 SPACES}SINK{2 SPACES}IS FULL OF POT

ATO CHIPS. AT LEASTTHEY LOOK LIKE CHIPS.

:rem 32

1630 DATAYOU ARE IN A BATHROOM. :rem 27

1640 DATA0,1,1,0 :rem 43

1650 DATA" " :rem 42

1660 DATATHE FLOOR IS COATED{3 SPACES}WITH A WAX T
YPE SUB-{2 SPACES}STANCE. :rem 72

1670 DATAYOU ARE IN THE KITCHEN :rem 59

1680 DATA0,1,1,1 :rem 48

1690 DATAYOU SEE A PIECE OF{4 SPACES}CHEESE.
:rem 219

1700 DATA" " :rem 38

1710 DATAYOU ARE IN A 4 WAY{4 SPACES}HALLWAY.
:rem 245

1720 DATA1,1,1,1 :rem 44

1730 DATA" " :rem 41

1740 DATAIT IS VERY COLD. :rem 181

1750 DATAYOU ARE IN A BEDROOM. :rem 202

1760 DATA0,0,0,1 :rem 45

1770 DATAON THE BED IS A GOLD{2 SPACES}KEY :rem 30

1780 DATATHE DESK IS PAINTED{3 SPACES}SILVER AND G
OLD. :rem 143

1790 DATAYOU ARE IN THE STUDY. :rem 255

1800 DATA0,0,1,0 :rem 40

1810 DATAON THE FLOOR IS A{5 SPACES}SILVER KEY.
:rem 173

1820 DATATHE ROOM IS ABOUT 25* HIGH. :rem 246

1830 DATAYOU ARE IN THE BELFRY. srem 37

1840 DATA1,0,0,1 :rem 45

1850 DATAYOU SEE A BAT FLYING{2 SPACES}ABOVE YOU
:rem 13

1860 DATATHE ROOM HAS A NASTY{2 SPACES}ODOR TO IT.
YOU COME{2 SPACES}VERY CLOSE TO THROWINGUP!

:rem 13

1870 DATAYOU ARE IN A HALLWAY. :rem 215

1880 DATA0,1,1,0 :rem 49

1890 DATA" " :rem 48

1900 DATATHERE ARE MANY NICE{3 SPACES}PAINTINGS BU

T NOTHING OF VALUE. :rem 119

1910 DATAYOU ARE IN THE HOUSE{2 SPACES}MUSEUM.

:rem 192

1920 DATA1,0,0,1 :rem 44

1930 DATA" " :rem 43

32

1: Games

1940

1950

I960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

DATATHE WALLS ARE PAINTED PURPLE AND YELLOW.

:rem 222

DATAYOU ARE IN A BEDROOM. :rem 204

DATA0,0,1,0 :rem 47

DATA" " :rem 47

DATAYOU SEE MANY ANIMAL{3 SPACES}HEADS. THE O

WNER IS{3 SPACES}A HUNTER. :rem 141

DATAYOU ARE IN THE DISPLAYROOM. :rein 187

DATA1,1,0,1 :rem 35

DATAYOU SEE A PIECE OF{4 SPACES}CHALK.
:rem 132

DATA" " :rem 34

DATAYOU ARE IN A BEDROOM. :rem 194

:rem 38

:rem 37

:rem 29

:rem 89

:rem 43

:rem 89

:rem 33

:rem 34

: rem 36

:rem 36

DATATHE EAST WALL DOOR IS LOCKED. THERE ARE T

WO KEYHOLES. :rem 171

DATA" " :rem 38

DATA0,1,1,0 :rem 41

DATA" " :rem 40

DATATHE AIR IS VERY WARM. :rem 233

DATAYOU ARE IN A HALLWAY. :rem 211

:rem 36

:rem 35

:rem 36

:rem 24

:rem 39

DATA"YOU SEE A BEETLE IN{3 SPACES}THE BATHTUB
:rem 129

DATA1,0,1,0

DATA" "

DATA THE ROOM SMELLS NICE.

DATAYOU1RE IN THE LIBRARY.

DATA1,1,0,1

DATAYOU SEE A BOOK.

DATA" "

DATA" "

DATA0,0,1,0

DATA" "

DATA0,1,0,1

DATA" "

DATA" "

DATAYOU ARE IN A BATHROOM.

DATA0,1,0,0

33

n

n Spider Math
Lee Levitt

Your Commodore computer makes an ideal tutor. This

program lets your unexpanded VIC teach basic math

operations, using exciting graphics and sound to make the

learningfun.

"Spider Math" is an educational game that features sound,

custom characters, and a variety of colors. It was designed to

make math drills fun, and it can be easily customized to match

the skills of any child.

The game was developed so that my six-year-old son could

improve his math skills without becoming frustrated over exces

sively difficult problems. It allows you to choose addition, sub

traction, multiplication, or division; you also have the option of

setting either of the two numbers in the problems to a maximum

value, to a specific number, or to a multiple of a specific number.

For instance, suppose your child is trying to learn the "times

three" multiplication tables. After selecting multiplication, simply

specify the first number as a 3. Then, if you set the second num

ber to 12, all of the problems will be in the range 3 x 1 to 3 x 12. If

you enter 0 (not just RETURN) in response to the prompts, the

numbers chosen will automatically range up to 99.

When the game begins, seven random problems appear on

the screen, and a custom character (a spider) begins to climb the

column beneath the first problem. The spider can be set to any of

nine speeds. If the child answers the problem correctly before the

spider reaches the top of the column, a happy face appears. But if

the answer is incorrect, or if no answer is given in time, a trail of

spider clones appears. The correct answer is then displayed

under the problem, the incorrect answer appears at the bottom of

,—I the spider column, and points are deducted from the score. Each

1 ' spider clone costs two points from a perfect score of 100.
— After completing a screen, hit the space bar to display the

' score. To play again with different problems but the same set-
— tings, press the S key. Press D to change the settings for a com-

' pletely new game.

Game Notes
I—* When playing the game, enter all answers as two-digit numbers.

1 You do not need to hit RETURN. After the first digit is entered,

H . 37

2: Education

you have approximately one second to enter the second digit. If

you wait longer than that, you will have to reenter the complete

number.

To select addition or subtraction, press the + or - key. To

select multiplication, press the letter X, which is more familiar

than * to most children. For division, press %.

Spider Math

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

1 GOTO500 :rem 255

2 FORI=7706TO7716:POKEI,60:FORX=0TO200:NEXT:POKEI,

160:NEXT:PRINTM{CLR}+ - X %":DI=2 :rem 90

3 DEF FNA(X)=INT(RND(1)*X) :rem 225

4 GETA$:IFA$="-MTHENXY=-1:GOTO10 :rem 164

6 IFA$="+MTHENXY=1:GOTO10 :rem 248

7 IFA$="%"THENXY=2:GOTO10 :rem 244

8 IFN0TA$=MXMTHEN4 :rem 89

10 GOSUB250:GOSUB250:XX=0:PRINTH{CLR}{DOWN}SPIDER

{SPACE}SPEED? (1-9)" :rem 46

12 GETA$:IFA$=IIHTHEN12 :rem 233

13 NN=VAL(A$):IFNN<1ORNN>9THEN12 :rem 238

16 SP=NN*100:POKE36879,13:POKE36881,128:XX=XX+1:IF

XX=1THENCT=0 :rem 47

17 PRINT"{CLR}":P=-1:Q=FNA(5)+1:OS=30720:DD=DI

:rem 17

18 BX=99:FORX=7681TO7699STEPDD+1 :rem 224

19 P=P+1 :rem 163

20 BE=FNA(12):IFABS(BE-BX)<4THEN20 :rem 238

24 BX=BE:Y=X+22*BE:Z=Y+22:LN=Z+22:AS=LN+22:SN=Z-1:

A(P)=BE+4:XX=99:YY=99 :rem 86

26 IFNOTQ1=0THENXX=Q1+1 :rem 209

28 IFNOTQ2=0THENYY=Q2+1 :rem 215

29 IFAC=0ORML=1THENA=FNA(XX) :rem 22

30 IFML=0ORAC=0THEN32 :rem 30

31 IF(XY=10RXY=-l)ANDNOTA/AC=INT(A/AC)THEN29

:rem 15

32 IFAD=0ORMM=1THENB=FNA(YY) :rem 21

34 IFMM=0ORAD=0THEN36 :rem 40

35 IF(XY=1ORXY=-1)ANDNOTB/AD=INT(B/AD)THEN32

:rem 17

36 IFXY=2ANDB=0THEN32 :rem 46

37 IFXY=0THENC=A*B:GOTO42 :rem 76

38 IFNOTXY=2THEN41 :rem 159

39 IFXY=2THENC=A/B:IFNOTC=INT(A/B)THEN29 :rem 62
40 GOTO42 :rem 3

41 C=A+(B*XY) :rem 191

42 G(P)=C:IFO99THEN29 :rem 36

43 IFC<1THEN29 :rem 64

38

2: Education

44 X(P)=0 :reni 206
52 CL=FNA(7):IFCL=0THEN52 :rem 235
53 POKESN+OS,CL:POKELN+OS,CL :rem 75

58 GX=A:GY=B:GOSUB200:A=B:Y=Z:GOSUB200:POKELN,61:A

=GX:B=GY:POKELN+1,61:POKELN+1+OS,CL :rem 190

62 IFXY=1THENPOKESN,43 :rem 168

63 IFXY=-1THENPOKESN#45 :rem 216

64 IFXY=0THENPOKESN,214 :rem 217

65 IFXY=2THENPOKESN,59 :rem 179

66 NEXTX :rem 3

67 FORT=128TO24STEP-1:POKE36881,T:FORP=1TO15:NEXTP

:NEXTT :rem 148

68 X=0 :rem 51

69 Y=21 :rem 104

71 Y=Y-1:K=7681+((DD+1)*X)+(22*Y):POKEK,60:GOTO800

:rem 52

77 FORTX=0TOSP:NEXT:POKEK,160:IFY=A(X)THEN81

:rem 133

80 GOTO71 :rem 9

81 POKEK,160:A=G(X):Y=K-22:GOSUB200:N=0:GOTO910

:rem 72

86 X=X+1:IFX<7THEN69 :rem 233

87 GETA$:IFA$=""THEN87 :rem 1

88 POKE36869,240:POKE36879,27:PRINT"{CLR}SCORE IS

{SPACE}11 100-(CT*2) :rem 56
92 PRINT" {DOWN}S,D,N?" :rem 201

93 GETA$:IFA$=""THEN93 : rem 251

94 IFA$="D"THENCLR:GOTO1 :rem 218

95 IFA$="S"THENXX=0:POKE36869,255:POKE36879,13:IFX

Y=0ORXY=2THENA=AC :rem 166

97 IFA$="S"THEN16 :rem 206

103 END :rem 107

200 AA=INT(A/10)+48:AB=A-((AA-48)*10)+48:IFAA=48TH

ENAA=32 :rem 131

206 POKEY,AA:POKEY+1,AB:POKEY+OS,CL:POKEY+1+OS,CL:

RETURN :rem 165

250 PRINT"{CLR}CONSTANT NUMBER"TM+1 :rem 43

251 INPUTA$:IFA$=""THEN251 :rem 3

252 IFTM=1THEN256 :rem 3

253 AC=VAL(A$):A=AC:IFA<0THEN251 :rem 109

254 TM=TM+1:IFNOTAC=0THENGOSUB280 :rem 106

255 KX=KX+1:RETURN :rem 149

256 AD=VAL(A$):B=AD:IFB<0THEN251 :rem 116

257 IFNOTAD=0THENGOSUB280 :rem 89

260 IFAC=0OR(ML=1AND(XY=1ORXY=-1))THENGOSUB270

:rem 137

263 IFAD=0OR(MM=1AND(XY=-1ORXY=1))THENGOSUB275

:rem 147

264 IFNOTAC=0ANDNOTAD=0THENRETURN :rem 210

265 RETURN :rem 125

39

2: Education

270 PRINT"{CLRjMAX. 1ST #?" :rem 75

271 INPUTA$:IFA$=""THEN271 :rem 7

272 Q1=VAL(A$):RETURN :rem 13

275 PRINT"{CLR}MAX, 2ND #?" :rem 60

276 INPUTA$:IFA$=""THEN277 :rem 18

277 Q2=VAL(A$):RETURN :rem 19

280 IFXY=0ORXY=2THENRETURN :rem 23

281 PRINT"{2 DOWN}MULTIPLE?" :rem 57

282 GETA$:IFA$=""THEN282 :rem 91

284 IFA$="N"THENRETURN :rem 112

286 IFKX=0THENML=1 :rem 117

287 IFKX=1THENMM=1 :rem 120

288 RETURN :rem 130

500 PRINT"{CLR}":POKE52,29:POKE56,29:CLR :rem 230

505 PRINTSPC(5)"SPIDER MATH" :rem 200

510 FORI=7168TO7679:POKEI,PEEK(1+25600):NEXT

:rem 151

530 POKE36869,255:FORI=7648TO7648+7:READA:POKEI,A:

NEXT :rem 44

540 DATA129,153,102,60,255,60,66,66 :rem 239

550 FORI=7664TO7664+7:READA:POKEI,A:NEXT :rem 233

560 DATA60,66,165,129,165,153,66,60 :rem 250

562 FORI=7656TO7656+7:READA:POKEI,A:NEXT :rem 238

563 DATA0,0,0,255,0,0,0,0 :rem 216

564 FORI=7640TO7640+7:READA:POKEI,A:NEXT:GOTO2

:rem 135

565 DATA0,24,0,255,0,24,0,0 :rem 70

800 GETB$:IFB$=""THEN77 :rem 43

810 N=VAL(B$):TH=Tl/60 :rem 3

811 GETC$:IFNOTC$=""THEN819 :rem 84

812 TJ=TI/60:IFTJ-TH<1THEN811 :rem 14

813 GOTO77 :rem 67

819 N1=VAL(C$):N=N*10+N1 :rem 65

820 IFN<1ORN>99THEN77 :rem 32

825 IFN=G(X)THEN931 :rem 117

910 Y=7681+(3*X)+(22*(A(X)-1)):A=G(X):GOSUB200

:rem 206

911 FORM=KTO8121+(3*X)STEP22:CT=CT+1 :rem 152

912 POKE36878,15:POKE36877,220:FORO=15TO0STEP-1:NE

XTO:POKE36877,60:POKE36878,60 :rem 2

921 POKEM,60:NEXT:A=N:Y=M+22 :rem 213

922 GOSUB200:GOTO935 :rem 195

931 POKEKr62:POKE36878,15:FORL=lTO3:FORM=250TO240S

TEP-1:POKE36876,M :rem 108

932 NEXT:NEXT:POKE36878,60:POKE36876,60 :rem 106

933 A=G(X):Y=7681+((DD+1)*X)+(22*(A(X)-1)):GOSUB20

0 :rem 213

935 Y=A(X):GOTO86 :rem 2

40

Merry-GoMatch
Griff and Sheila Johnson

64 Translation by David Florance

A ny educational program should attract and hold a

l\child's interest. "Merry-Go-Match" does just that,
through the use ofcolorful graphics, exciting sounds, and

dynamic visual displays. Versions are included for the un-

expanded VIC andfor the 64.

Educational programs are of little value if they do not hold the

child's interest. "Merry-Go-Match" is similar to the familiar TV

game Concentration. Designed for young children, it gives practice

in number, letter, and word recognition. Few programs hold the

interest of children and encourage them to play again and again,

but this one has been enjoyed by our preschooler time after time.

Two-, three-, and four-letter words may be used in this game, or

you can substitute single letters, numbers, or graphic symbols.

Eight pairs of matching words are randomly arranged and

hidden behind 16 colored and numbered squares, and the object

is to locate each pair. The player is asked to make a first choice by

pressing the number of a square, followed by RETURN, which

reveals the word behind that particular square. If the player's

second choice then produces a match, the computer sounds a

high tone and colors both squares cyan to match the border. If the

two do not match, the computer sounds a low tone and both

words are replaced by the numbered squares.

Play continues until all matches are completed. When all

pairs of matching words have been located, the phrase YOU DID

IT! appears on the screen, and the computer plays a short series

of random musical notes. It also displays the number of guesses

required to complete the game and offers the option of playing

again.

Whenyou run this program, the computer will start by

counting down from 16 to 0. That tells you that it is randomly

arranging the pairs of words. Sometimes the countdown will go

quickly; at other times it may take several seconds. In any case,

when the countdown reaches 0 the game will begin.

41

2: Education

Program Description

Lines

5-10 Read words

15-30 Arrange words in random order

40-65 Draw border

70-80 Draw numbered squares

85-97 Ask for first guess

100-113 Ask for second guess

395 Data for color of squares

401-499 Data for words, letters, numbers, or graphic symbols

500-530 Redraw colored squares after incorrect guess

600-650 Draw cyan squares to replace matched words

1000-1030 Subroutine to reveal words behind squares

Program 1. Merry-Go-Match, VIC Version

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

0 DIMC (17), K$ (16), D$ (16), A$ (16), B (16) :FORI=1TO16 : R

EADK$(I):NEXT :rem 206

1 FORI=1TO17:READC(I):NEXT

2 FORI=1TO16:READB(I):NEXT

3 SC=?30720

5 FORI=1TO8:REM READS WORDS

6 GS=0

10 READA$(I):A$(I+8)=A$(I):NEXT

12 PRINT"PLEASE STAND BY WHILE I

O "

15 FORI=1TO16:REM ARRANGES WORDS IN RANDOM ORDER

:rem 226

17 PRINTTAB(8);17-I

20 J=INT(RND(X)*16+1):IFA$(J)="0"THEN20

25 D$(I)=A$(J)

30 A$(J)="0":NEXT:PRINTTAB(8);0

32 FOR I=1TO800:NEXT

35 PRINT"{CLR}"

40 FORI=1TO22:REM DRAWS BORDER

45 POKE7702-1+I,102:POKE7702+SC-1 +1,0

50 POKE7702+I*22,102:POKE7702+SC+I*22,0

55 POKE8164+I,102:POKE8164+SC+I,0

60 POKE7723+I*22,102:POKE7723+SC+I*22,0

65 NEXT

70 FORM=1TO16:FORJ=0TO4:FORI=0TO4

75 POKE7725+B(M)+I+J*22,160:POKE7725+SC+B(M)+I+J*2

2,C(M) :rem 67

80 NEXTI:NEXTJ:PRINT"{HOME}"SPC((B(M)+1)/2)SPC(B(M

)/2)SPC(90)K$(M):NEXTM :rem 225

42

:rem 134

:rem 133

:rem 2

:rem 202

:rem 61

:rem 205

COUNT DOWN TO ZER

:rem 105

:rem 110

:rem 170

:rem 166

:rem 31

:rem 183

:rem 204

:rem 102

:rem 33

:rem 125

:rem 108

:rem 132

:rem 170

:rem 112

2: Education

85 FORI=0TO21:POKE7680+I,160:POKE7680+SC+I,1:NEXT:

INPUT"{HOME} FIRST GUESS{3 SPACES}";G$:rem 164

90 IFVAL(G$)<10RVAL(G$)>16THEN 85 :rem 133

91 G1=VAL(G$) :rem 190

93 IFD$(G1)="0"THEN85 :rem 121

95 M=G1 :rem 112

97 GOSUB1000 :rem 177

100 FORI=0TO21:POKE7680+I,160:POKE7680+SC+I,1:NEXT

:INPUT"{HOME}SECOND GUESS";G$:rem 252

110 IFVAL(G$)<1ORVAL(G$)>16THEN100 :rem 210

111 G2=VAL(G$) :rem 232

113 IFD$(G2)="0"ORG1=G2THEN100 :rem 150

120 GS=GS+1:M=G2:GOSUB1000 :rem 24

130 IFD$(G1)=D$(G2)THEN200 :rem 132

140 PRINT"{HOME}NO MATCH{9 SPACES}":FORI=1TO1000:N

EXT:POKE36878,15:POKE36874,135 :rem 125

141 FORK=1TO1000:NEXT:POKE36878,0:POKE36874,0

:rem 185

150 GOSUB500 :rem 171

195 GOTO85 :rem 69

200 PRINT"{HOME}MATCH{13 SPACES}":FORI=1TO1000:NEX

T:POKE36878,15:POKE36876,240 :rem 220

201 FORK=1TO1000:NEXT:POKE36878,0:POKE36876,0:GOSU

B600 :rem 8

210 D$(G1)="0":D$(G2)="0" :rem 146

220 FORI=1TO16 :rem 60

230 IFD$(I)o"0"THEN85 :rem 176

240 NEXT :rem 213

245 PRINT"{10 D0WN}{4 RIGHTjllYOU DID IT1I":PRINT"

{DOWN}{5 RIGHT}"GS" GUESSES" :rem 35

246 POKE36878,15:FORI=lTO100:Y=INT(RND(l)*50+200)

:rem 55

247 POKE36876,Y:FORJ=1TO50:NEXTJ:NEXTI:POKE36878,0

:POKE36876,0 :rem 109

250 GOTO300 :rem 99

300 FORI=0TO21:POKE7680+I,160:POKE7680+SC+I,1:NEXT

:PRINT"{HOME}PLAY AGAIN" :rem 168

305 GETX$:IFX$="Y"THEN5 :rem 119

310 IFX$<>"N"THEN305{19 SPACES} :rem 114

320 PRINT"{CLR}BYE":END :rem 234

390 DATA1, 2, 3,4, 5,6, 7, 8,9,10,11,12,13,14,15,16

:rem 227

395 DATA6 ,4,5,6,4,5,6,4,5,6,4,5,6,4,5,6,3:REM DAT

A FOR COLOR OF SQUARES :rem 86

396 DATA0 ,5,10,15 ,110,115,120,125,220,225,230,23

5,330,335,340,345 :rem 144

400 REM ADD WORDS IN LINES 401TO499 :rem 192

420 DATASAT,HIT,FAT,FAN,HAT,SUN,PIG,POT,PAN:rem 18

430 DATATOP,BAT,CAR,MAN,EAR,LIP,SIT,TOO :rem 0

43

2: Education

440 DATAHOT, RUN,YOU,MAN,TOP,FOR,ONE, JAR :rem 56

450 DATABED,RAT,CAT,DOG,ALL,SIP,POP,MOM :rem 232

455 DATA STOP,TOPS,LOOK,BOOK,RICE,NICE,TREE,FREE

:rem 108

460 DATA"Z/', "X11, "A" , "S", "Q", "W", "+", "V" : rem 167

500 M=G1:REM IF NO MATCH REPLACES COLORED SQUARES

:rem 201

510 FORJ=0TO4:FORI=0TO4 :rem 185

520 POKE7725+B(M)+I+J*22,160:POKE7725+SC+B(M)+I+J*

22,C(M) :rem 110

530 NEXTI:NEXTJ:PRINTM{HOME}"SPC((B(M)+1)/2)SPC(B(

M)/2)SPC(90)M :rem 139

540 IFM=G2THEN560 :rem 245

550 M=G2:GOTO510 :rem 166

560 RETURN :rem 123

600 M=G1:REM IF WORDS MATCH COLORS SQUARES CYN

:rem 33

610 FORJ=0TO4:FORI=0TO4 :rem 186

620 POKE7725+B(M)+I+J*22,160:POKE7725+SC+B(M)+I+J*

22,3:NEXTI:NEXTJ :rem 70

640 IFM=G2THEN660 :rem 247

650 M=G2:GOTO610 :rem 168

655 POKE36878,15:POKE36876,225:FORK=1TO1000:NEXT:P

OKE36876,0:POKE36878,0 :rem 12

660 RETURN :rem 124

1000 FORJ=0TO4:FORI=0TO4:REM REVEALS WORD BEHIND S

QUARE :rem 203

1010 POKE7725+B(M)+I+J*22,160:POKE7725+SC+B(M)+I+J

*22,1:NEXTI:NEXTJ :rem 110

1020 PRINTM{HOME}MSPC((B(M)+1)/2)SPC(B(M)/2)SPC(90

)D$(M) :rem 234

1030 RETURN :rem 164

Program 2* Merry-Go-Match, 64 Version

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

10 SC=1024:CS=53281:CB=53280:CM=55296:CV=54272:ES=

1984:EM=56256 :rem 37

15 PRINT"{CLR}{BLU}":POKECS,7:POKECB,7:PRINTSPC(24

0)TAB(5) :rem 141

17 PRINT"M ERRY-GO-MATCH " :rem 37

18 PRINTSPC(240)TAB(11)"{RVS}PRESS ANY KEY{OFF}"

:rem 147

19 GETDX1$:IF DX1$=""THEN19 :rem 15

20 DIMK$(16),Cl(16),D$(16),A$(16),X(80),Y(80)

:rem 203

30 FORI=1TO16:READK$(I):NEXT:FORI=1TO16:READC1(I):

NEXT :rem 162

40 FORT=1TO80:READX(T):NEXT :rem 228

44

2: Education

50 FORT=1TO80:READY(T):NEXT :rem 230

90 FORI=1TO8:REM READS WORDS :rem 254

92 GS=0 :rem 114

94 READA$(I):A$(1+8)=A$(I):NEXT:POKECS,14:POKECB,1

:PRINT"{WHT}" :rem 196

96 PRINT"{CLR}"SPC(80)TAB(4) :rem 206

98 PRINT"PLEASE STAND BY WHILE{19 SPACES}I COUNT D

OWN TO ZERO " :rem 119

100 FORI=1TO16:REM ARRANGES WORDS IN RANDOM ORDER

:rem 13

110 PRINTTAB(8);17-I :rem 152

120 J=INT(RND(X)*16+1):IFA$(J)="0"THEN120 :rem 12

125 D$(I)=A$(J) :rem 215

130 A$(J)="0":NEXT:PRINTTAB(8);0 :rem 80

140 FOR I=1TO800:NEXT :rem 231

270 PRINT"{CLR}{WHT}":POKECS,6:POKECB,6 :rem 179

280 FORH=1TO40:FORT=SC+X(H)TOSC+Y(H):POKET+CV,14:P

OKET,160:NEXT:NEXT :rem 124

290 FORH=41TO80:FORT=SC+X(H)TOSC+Y(H):POKET+CV,4:P

OKET,160:NEXT:NEXT :rem 132

400 F$="{HOMEj{2 DOWN}11 :rem 180

412 X=10:Y=40 :rem 193

414 FORT=1TO4 :rem 25

420 FORR=XTOYSTEP10:PRINTF$TAB(3)SPC(R-10);K$(R/10

):NEXT :rem 246

430 X=X+40:Y=Y+40:F$=F$+"{4 DOWN}" :rem 201

440 NEXT:IFTRTHENPRINTF$:PRINT"{3 DOWN}{22 SPACES}
":GOTO580 :rem 186

500 FORD=SC+2TOSC+35 :rem 188

510 POKED+CV,0:POKED,102:NEXT :rem 14

520 FORD=SC+2TOES-121STEP40 :rem 142

530 POKED+CV,0:POKED,102:NEXT :rem 16

540 FORD=SC+35TOES-84STEP40 :rem 158

550 POKED+CV,0:POKED,102:NEXT :rem 18

560 FORD=ES-118TOES-86 :rem 56

570 POKED+CV,0:POKED,102:NEXT :rem 20

580 SG=1:PRINTF$:rem 214

582 IFTR<1THENTR=0 :rem 131

685 INPUT"{3 DOWNjFIRST GUESS{3 SPACES}";G$:rem 95

690 IFVAL(G$)<1ORVAL(G$)>16THEN 580 :rem 235

691 G1=VAL(G$) :rem 244

693 IFD$(G1)="0"THEN 580 :rem 223

695 SB=G1 :rem 238

697 GOSUB800 :rem 190

700 SG=2:PRINTF$:INPUT"{3 DOWN}SECOND GUESS

{6 SPACES}";G$:TR=TR+1 :rem 26

705 IFVAL(G$)<1ORVAL(G$)>16THEN 700 :rem 226

710 G2=VAL(G$) :rem 237

715 IFD$(G2)="0"ORG1=G2THEN 700 :rem 164

45

2: Education

720 SB=G2:GOSUB800 :rem 54

730 IFD$(G1)=D$(G2)THEN20000 :rem 234

740 GOSUB2000:PRINTF$:PRINTH{3 DOWN}NO MATCH

{17 SPACES}":FORI=1TO1000:NEXT :rem 11

744 SG=3:GOSUB800 :rem 251

745 IFDITHENSB=G1:GOSUB800 :rem 135

750 GOTO400 :rem 105

800 C1=6:C2=6 :rem 161

801 IFSG=1THENQ=G1 :rem 101

802 IFSG=2THENQ=G2 :rem 104

803 IFSG=3THENC1=14:C2=4:DI=1 :rem 206

804 IFSG=4 THEN Cl=3:C2=3:DI=1 :rem 157

805 ONSBGOTO810,820,830,840,850,860,870,880,890,90

0,910,920,930,940,950,960 :rem 101

810 FORH=1TO5:FORT=SC+X(H)TOSC+Y(H):POKET,160:POKE

T+CV,C1:NEXT:NEXT :rem 91

815 IFSG<3THENPRINT"{HOME}{WHT}{3 DOWN} "TAB (3) ; "

[2 SPACES}"D$(Q) :rem 101

817 GOTO 990 :rem 123

820 FORH=41TO45:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C2:NEXT:NEXT :rem 197

825 IFSG<3THENPRINT"{HOME}{WHT}{3 DOWN}"TAB(11);"

[2 SPACES}"D$(Q) :rem 149

827 GOTO 990 :rem 124

830 FORH=6TO10:FORT=SC+X(H)TOSC+Y(H):POKET,160:POK

ET+CV,C1:NEXT:NEXT :rem 142

835 IFSG<3THENPRINT"{HOME}{WHT}{3 DOWN}"TAB(20);"

{2 SPACES}"D$(Q) :rem 150

837 GOTO 990 :rem 125

840 FORH=46TO50:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C2:NEXT:NEXT :rem 200

845 IFSG<3THENPRINT"{HOME}{WHT}{3 DOWN}"TAB(28);"

{2 SPACES}"D$(Q) :rem 159

847 GOTO 990 :rem 126

850 FORH=51TO55:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C2:NEXT:NEXT :rem 202

855 IFSG<3THENPRINT"{HOME}{WHT}{8 DOWN}"TAB(3);"

{2 SPACES}"D$(Q) :rem 190

857 GOTO 990 :rem 127

860 FORH=11TO15:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C1:NEXT:NEXT :rem 194

865 IFSG<3THENPRINT"{HOME}{WHT}{8 DOWN}"TAB(11);"

{2 SPACES}"D$(Q) :rem 238

867 GOTO 990 :rem 128

870 FORH=56TO60:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C2:NEXT:NEXT :rem 205

875 IFSG<3THENPRINT"{HOME}{WHT}{8 DOWN}"TAB(20);"

{2 SPACES}"D$(Q) :rem 239

877 GOTO 990 :rem 129

46

! I 2: Education

ri 880 FORH=16TO20:FORT=SC+X(H)TOSC+Y(H):POKET,160:P0

' J KET+CV,C1:NEXT:NEXT :rem 197
885 IFSG<3THENPRINTM{HOME}{WHT}{8 DOWN}"TAB(28);"

PI {2 SPACES}"D$(Q) :rem 248
887 GOTO 990 :rem 130

fI 890 FORH=21TO25:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C1:NEXT:NEXT :rem 199

895 IFSG<3THENPRINT"{HOME}{WHT}{13 DOWN}"TAB(3);"
{2 SPACES}"D$(Q) :rem 23

897 GOTO 990 :rem 131

900 FORH=61TO65:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C2:NEXT:NEXT :rem 200

905 IFSG<3THENPRINT"{HOME}{WHT}{13 DOWN}"TAB(11);"

{2 SPACES}"D$(Q) :rem 62

907 GOTO 990 :rem 123

910 FORH=26TO30:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C1:NEXT:NEXT :rem 193

915 IFSG<3THENPRINT"{HOME}{WHT}{13 DOWN}"TAB(20);"
{2 SPACES}"D$(Q) :rem 63

917 GOTO 990 :rem 124

920 FORH=66TO70:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C2:NEXT:NEXT :rem 203

925 IFSG<3THENPRINT"{HOME}{WHT}{13 DOWN}"TAB(28);"

{2 SPACES}"D$(Q) :rem 72

927 GOTO 990 :rem 125

930 FORH=71TO75:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C2:NEXT:NEXT :rem 205

935 IFSG<3THENPRINT"{HOME}{WHT}{18 DOWN}"TAB(3);"

{2 SPACES}"D$(Q) :rem 103

937 GOTO 990 :rem 126

940 FORH=31TO35:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C1:NEXT:NEXT :rem 197

945 IFSG<3THENPRINT"{HOME}{WHT}{18 DOWN}"TAB(11);"

{2 SPACES}"D$(Q) :rem 151

947 GOTO 990 :rem 127

950 FORH=76TO80:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

KET+CV,C2:NEXT:NEXT :rem 208

955 IFSG<3THENPRINT"{HOME}{WHT}{18 DOWN}"TAB(20);"

f*"! [2 SPACES} "D$(Q) :rem 152

957 GOTO 990 :rem 128

p-| 960 FORH=36TO40:FORT=SC+X(H)TOSC+Y(H):POKET,160:PO

1 KET+CV,C1:NEXT:NEXT :rem 200
965 IFSG<3THENPRINT"{HOME}{WHT}{18 DOWN}"TAB(28);"

H {2 SPACES}"D$(Q) :rem 161
990 RETURN :rem 130

|—| 1640 DATA1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

:rem 18

.—I 1660 DATA14,4,14,4,14,4,14,4,14,4,14,4,14,4,14,4

1 i :rem 67

n 47

2: Education

2000 FORL=CVTOCV+24:POKEL,0:NEXT :rem 34

2005 POKECV+24,15 :rem 178

2010 POKECV+5,128 ;rem 178

2020 POKECV+6,128 :rem 180

2030 POKECV+1,3 :rem 72

2040 POKECV,5 :rem 239

2050 POKECV+4,33 :rem 128

2060 FORT=1TO1100:NEXT :rem 79

2070 POKECV+4,32 :rem 129

2080 RETURN :rem 170

2500 FORL=CVTOCV+24:POKEL#0:NEXT :rem 39

2510 POKECV+24,15 :rem 179

2520 POKECV+19,72 :rem 187

2530 POKECV+20,129 :rem 231

2540 POKECV+18,33 :rem 185

2550 FORT=lTO75:D=INT(RND(l)*198)+3 :rem 11

2560 POKEOH-15,D:POKECV+14,50:POKECV+18,17:rem 227

2570 NEXT :rem 13

2580 POKECV+18,32:RETURN :rem 214

4000 DATA 43,83,123,163,203,59,99,139,179,219

:rem 187

4010 DATA 251,291,331,371,411,267,307,347,387,427

:rem 125

4020 DATA 443,483,523,563,603,459,499,539,579,619

:rem 165

4030 DATA 651,691,731,771,811,667,707,747,787,827

:rem 167

4040 DATA 51,91,131,171,211,67,107,147,187,227

:rem 220

4050 DATA 243,283,323,363,403,259,299,339,379,419

:rem 148

4060 DATA 451,491,531,571,611,467,507,547,587,627

:rem 150

4080 DATA 643,683,723,763,803,659,699,739,779,819

:rem 191

4090 DATA 50,90,130,170,210,66,106,146,186,226

:rem 215

4100 DATA 258,298,338,378,418,274,314,354,394,434

:rem 150

4110 DATA 450,490,530,570,610,466,506,546,586,626

:rem 136

4120 DATA 658,698,738,778,818,674,714,754,794,834

:rem 192

4130 DATA 58,98,138,178,218,74,114,154,194,234

:rem 245

4140 DATA 250,290,330,370,410,266,306,346,386,426

:rem 119

4150 DATA 458,498,538,578,618,474,514,554,594,634

:rem 175

48

2: Education

4160 DATA 650,690,730,770,810,666,706,746,786,826

:rem 161

4500 REM ADD WORDS :rem 5

4510 DATAHOT,RUN,YOU,MAN,TOP,FOR,ONE,JAR :rem 106

4520 DATABED,RAT,CAT,DOG,ALL,SIP,POP,MOM :rem 26

4530 DATA STOP,TOPS,LOOK,BOOK,RICE,NICE,TREE,FREE

:rem 154

4540 DATASAT,HIT,FAT,FAN,HAT,SUN,PIG,POT,PAN

:rem 73

4550 DATA"Z/', "X" , "A", "S", "Q" , "W", "+", "V" :rem 219

5000 FORJ=0TO4:FORI=0TO4:REM REVEALS WORD BEHIND S

QUARE :rem 207

5010 POKE7725+B(M)+I+J*22,160:POKE7725+SC+B(M)+I+J

*22,1:NEXTI:NEXTJ :rem 114

5020 PRINT"{HOME}"SPC((B(M)+1)/2)SPC(B(M)/2)SPC(90

) trera 232

5030 RETURN :rem 168

20000 GOSUB2500:PRINTF$:PRINT"{3 DOWN}{YEL}MATCH I
{19 SPACES}{WHT}":FORK=1TO1000:NEXT :rem 144

20005 SG=4:GOSUB800:IFDITHENSB=Gl:GOSUB800:rem 117

20010 D$(G1)=H0":D$(G2)="0" :rem 242

20020 FORI=1TO16 :rem 156

20030 IFD$(I)o"0"THEN400 :rem 55

20040 NEXT irem 53

20045 PRINT"{CLR}"SPC(160)TAB(ll)"liYOU DID ITU":

PRINTSPC(120)TAB(12)TR" GUESSES" :rem 15

20055 PRINTSPC(80)TAB(12)"{RVS}PRESS RETURN{OFF}"
:rem 8

20056 FORL=CVTOCV+24:POKEL,0:NEXT :rem 93

20057 POKECV+24,15:POKECV+19,72:POKECV,129:POKECV+

18,33 :rem 7

20058 D=105:FORT=1TO7:D=D+1:POKECV+15,D:POKECV+14,

5:POKECV+18,33 :rem 76

20060 NEXT :rem 55

20065 GETRS$:IFRS$<>CHR$(13)THEN20045 :rem 146

20075 POKECV+18,32:POKECV+24,0 :rem 218

30000 PRINT" { CLR} { WHT } " : POKECS, 2 : POKECB, 1: PRINTSPC

(160)TAB(11)"PLAY AGAIN?" :rem 60

30010 GETRP$:IF RP$="" THEN 30010 :rem 205

30020 IF RP$=CHR$(89)THENRUN :rem 110

49

Hatch It
Neil Murray

Hatch It" gives preschoolers a delightful introduction

to computers — and since it is a no-lose game, the

experience will always be a good one. Versions are included

for the unexpanded VIC and the 64.

"Hatch It" was developed to provide musical and graphic enter

tainment for young children. The game evolved to satisfy my

three-year-old son's demand for continuous music and my

own desire for a program that asks the player to create rather

than destroy.

In Hatch It, the child identifies with a smiley character named

Sunny, whose job is to hatch the eggs that appear on the screen.

To start the game, the child types in his or her name and then

chooses either the keyboard or the joystick for moving Sunny

around the screen. Each time Sunny arrives at (and hatches) an

egg, a butterfly flaps up, a spider drifts down, or an inchworm

crawls away. The bugs come in different colors and move at differ

ent speeds. There is no score, but when all the eggs have been

hatched, the music changes from "Alouette" to "Frere Jacques/7

the screen clears, and an enlarged Sunny blinks his blue eyes and

congratulates the player. The child will need your help to start the

game, especially the first time.

This game offers a choice of joystick or keyboard control, and

I suggest that you encourage the child to try both. In my experi

ence, young children want to use the joystick, but find it frus

trating to manipulate. The keyboard is less intriguing but often

proves more satisfying. Here are the control keys and their

functions:

< — move left

> — move right

A — move up

Z —move down

The program uses a machine language wedge inserted into

the VICs interrupt routine, so the only way to shut off the pro

gram is to press the RUN/STOP and RESTORE keys.

Music

Lines 350-430 load locations 830-996 of the VICs cassette buffer

with a machine language wedge that allows two different songs to

50

2: Education

be played at different times during the game. The wedge is a

modified version of the ''VIC Musician" (COMPUTE!, July 1983).

Initially, a SYS 830 tells the wedge to look for "Alouette" be

ginning at RAM location 7552 ($1D8O), while a SYS 842 tells it to

look for "Frere Jacques" starting at location 933 ($3A5) in the tape

buffer. Then the wedge cuts the volume on the last two cycles of

each note, which has the effect of separating successive notes

from each other.

Making It Fit
Each note of each song requires two data entries, one for the note

and one for the duration, so it was difficult to squeeze Hatch It

into an unexpanded VIC. However, two memory-saving tricks

saved the day. The VIC requires at least 512 bytes (locations 7168

to 7679 in this case) to be set aside for a special character set, but

since the program doesn't keep score, the last hundred-odd bytes

of this block (which includes the numbers) are never put to use. It

was therefore possible to POKE the data for "Alouette" into the

128-byte block that runs from locations 7552 to 7679.

The other trick was the substitution of relational operations

for IF-THEN statements. WhenBASIC evaluates relations such as

(X=25), it assigns them a value of 0 if false and a value of -1 if

true. This enables the programmer to include parenthetic rela

tions as factors in equations. For example, line 230 instructs the

BASIC interpreter to choose alternate POKE values for the

variable CH so that the butterfly character appears to flap its

wings. Normally, one might use three lines of code to swap back

and forth between POKE values of 29 and 30:

230 IF CH=29 THEN CH=30: GOTO 240

235 IF CH=30 THEN CH=29

240 GOSUB 280: GOTO 220

But using the 0 and -1 values from tests of the variable CH,

it's possible to substitute a one-line formula:

230 CH = CH + (CH=30) - (CH=29) : GOSUB 280: GOTO
{SPACE}220

When CH has a value of 29, then (CH=30) is false (has a

value of 0) and (CH=29) is true (has a value of -1). Therefore,

CH = 29 + 0 - (-1) = 30, precisely the change needed.

51

2: Education

Hatch It on the Expanded VIC
Two steps are required to run this program on an expanded

VIC. Before typing or loading the program, enter POKE 44,33:

POKE 8448,00 in direct mode and hit RETURN to move the start

of BASIC high enough to protect the screen and the special char

acter set. Second, delete line 10 of the listing and replace it with

the following:

10 POKE 648,30:POKE36866,150sPOKE36869,240:PRINTCH
R$(147)

A word of caution: Do not try to run Hatch It with the Super

Expander cartridge plugged in. The Super Expander has its own

special interrupt program that will render the program voiceless.

Program 1. Hatch It, VIC Version

Refer to "TheAutomatic Proofreader" (Appendix]) before typing this program in.

10 POKE52,28:POKE56,28 :rem 247

20 CD=30720:DIMH%(3):H%(0)=1:H%(1)=-1:H%(2)=22:H%(
3)=22sW=-l srem 68

30 PRINTCHR?(147)TAB(51)CHR$(18)"HATCHITI":PRINT:I

NPUT"NAME";N$:PRINT:PRINT"HI, "N$"l" :rem 154

40 PRINT:INPUT"J=JOY, K=KEYS";JK$:JK=l-(JK$="J"):P

RINT:PRINT"PLEASE WAIT...." :rem 20

50 GOSUB350 :rem 125

60 POKE36864,4:POKE36869,255:POKE36879,13 :rem 75

70 GOSUB340:FORI=7704TO8144STEP22:Z=INT(RND(1)*19)

:POKEI+Z+CD,6:POKEI+Z,42:NEXT :rem 159

80 NP=7933+(PEEK(7933)<>32):GOSUB150 :rem 16

90 ONJKGOSUB160,180:NP=OP+DP:PK=PEEK(NP):IFNP<7681

ORNP>8185ORPK=0THEN90 :rem 29

100 IFPK=32THENPOKEOP,32sGOSUB150sGOTO90 :rem 23

110 OL=NPsOC=34:POKEOP,32:GOSUB150 :rem 97

120 HC=INT(RND(1)*5)+1:H=INT(RND(1)* 3)+1:ONHGOSUB2

40,210,240 :rem 136

130 CT=CT+1:IFCT=21THENCT=0:GOSUB290:GOTO70

:rem 189

140 GOTO90 :rem 55

150 POKENP+CD,7:POKENP,34:OP=NP:RETURN srem 224

160 GETA$sIFA$=""THEN160 srem 81

161 A=ASC(A$)sIF AO44ANDAO46ANDAO65ANDAO90THEN

160 :rem 61

170 DP=(A=44)-(A=46)+22*(A=65)-22*(A=90):RETURN

srem 6

180 POKE37154,127:J3=-((PEEK(37152)AND128)=0):POKE

37154,255sP=PEEK(37137) srem 31

190 Jl=-((PAND8)=0)sJ2=((PAND16)=0)sJ0=((PAND4)=0)

sDP=J2+J3+22*(J0+Jl)sIFDP=0THEN180 srem 183

52

2: Education

200 FORT=1TO80:NEXT:RETURN :rem 217

210 T=INT(RND(1)*200)+10:W=-W:CH=29 :rem 205

220 NL=OL+W:IFPEEK(NL)=0THENPOKEOL,32:RETURN

:rem 114

230 CH=CH+(CH=30)-(CH=29):GOSUB280:GOTO220:rem 155

240 HI=H-2:CH=29+2*HI:T=INT(RND(1)*20)+15 :rem 26

250 Z=INT(RND(l)*4):NL=0L+HI*H%(Z):PK=PEEK(NL):IFN

L<7681ORNL>8185THENPOKEOL,32:RETURN :rem 98

260 IFPKO32THEN250 :rem 103

270 CH=CH+(CH=28)-(CH=27):GOSUB280:GOTO250:rem 167

280 POKEOL,OC:0C=32:POKENL+CD,HC:POKENL, CH:OL=NL:F

ORI=1TOT:NEXT:RETURN :rem 196

290 SYS842:GOSUB340:PRINTTAB(67)CHR$(156)"SUPER, "

N$Ili"TAB(141)CHR$(158)ll@@@ia11 : rem 155

300 PRINTTAB(8)M@@@@@@"SPC(16)II@ @@ @"SPC(15) "@@@@

@@@@nSPC(14)"@@ @@ @@"SPC(15)"@@{2 SPACES}@@"

:rem 72

310 PRINTTAB(9)"@@@@"SPC(16)II@@@{2 SPACES}@@@" :POK

E7953+CD,6:POKE7956+CD,6 :rem 213

320 FORI=1TO34:POKE7953,42:POKE7956,42:FORT=1TO200

:NEXTT :rem 203

330 POKE7953,32:POKE7956,32:FORT=1TO200:NEXTT:NEXT

I:SYS830:RETURN :rem 152

340 PRINTCHR$(147):FORI=7680TO8164STEP22rPOKEI+CD,

5:POKEI#0:NEXT:RETURN :rem 10

350 FORI=830TO996:READJ:POKEI#J:NEXT :rem 44

360 DATA120,169,128,133,0,169,29,133,1,76,83,3,120

,169,165,133,0,169,3,133,1,169,5,141 :rem 182

370 DATA60,3,169,6,141,61,3,169,105,141,20,3,169,3

,141,21,3,88,96,72,152,72,206,61,3 :rem 78

380 DATA173,61,3,201,3,16,37,201,0,240,6,110,14,14

4,76,155,3,172,60,3,200 :rem 16

390 DATA177,0,141,61,3,200,177,0,201,1,240,17,141,

12,144,169,15,141,14,144,140,60,3,104 :rem 187

400 DATA168,104,76,191,234,160,255,208,243 :rem 73

410 DATA30,215,30,219,30,223,30,215,30,219,30,223,

30,215,30,223,30,225,60,228,30,223 :rem 32

420 DATA30,225,60,228,15,228,15,231,15,228,15,225,

30,223,30,215,15,228,15,231,15,228 :rem 62

430 DATA15,225,30,223,30,215,30,215,30,201,60,215,

30,215,30,201,60,215,1,1 :rem 41

440 FORI=7168TO7529:POKEI,PEEK(1+25600):NEXT

:rem 147

450 FORI=1TO7:READJ:FORX=JTOJ+7:READY:POKEX,Y:NEXT

:NEXT :rem 231

460 DATA7168,255,255,255,255,255,255,255,255

:rem 202

470 DATA7384,0,129,90,102,126,90,24,36 :rem 132

480 DATA7392,0,24,0,255,126,90,24,0 :rem 229

53

2: Education

490 DATA7400,0,0,0,0,0,60,102,195 : rem 106

500 DATA7408,0,0,0,24,60,36,102,66 :rem 166

510 DATA7416,0,0,56,68,170,170,170,170 :rem 123

520 DATA7440,60,126,90,255,219,102,60,102 :rem 12

530 FORI=7552TO7633:READJ:POKEI,J:NEXT:SYS830

:rem 99

540 DATA45,217,15,221,30,225,30,225,22,221,7,217,2

2,221,7,225,30,217,30,203,45,217 :rem 208

550 DATA15,221,30,225,30,225,22,221,7,217,22,221,7

,225,60,217,22,203,7,203,22,217 :rem 153

560 DATA7,215,22,217,7,225,30,229,22,229,7,232, 22,

229,7,227,22,225,7,221,30,217,22,229 :rem 175

570 DATA7,229,30,229,22,151,7,151,30,151,120,229,1

,1:RETURN :rem 53

Program 2. Hatch It, 64 Version

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

100 PRINT"{CLR}" :rem 245

110 POKE56,48:CLR :rem 223

120 SC=1024:EC=1984:CS=53281:CB=53280:CV=54272:EM=

56295:JS=56320 :rem 76

130 NJ=0:N=l:E=8:S=2:WE=4:NE=16:NW=16:SE=16:SW=16:

FB=16:ES=2023 :rem 244

132 POKECS,13:POKECB,0:PRINT"{BLK}{5 DOWN}

{12 RIGHT}{RVS}H A T C H I T{OFF}M :rem 42

134 PRINT "{3 DOWN}{RIGHT}PLEASE WAIT 70 SECONDS W

HILE WE11 :rem 51

135 PRINT"{3 DOWN}{5 RIGHT}REDEFINE THE CHARACTER

{SPACE}SET.11 ' :rem 248

140 DIMH%(3):H%(0)=1:H%(1)=-l:H%(2)=22:H%(3)=22:W=

-1 :rem 125

150 POKE56334,PEEK(56334)AND254 :rem 223

160 POKEI,PEEK(1)AND251 :rem 53

170 FORI=0TO4095:POKEI+12288,PEEK(1+53248):NEXT

:rem 33

180 POKEI,PEEK(1)OR4 :rem 161

190 POKE56334,PEEK(56334)OR1 :rem 71

200 PRINT"{CLR}"TAB(51)CHR$(18)"HATCHITI":PRINT:IN

PUT "NAME ";N$: PRINT : rem 19

205 PRINT "HI, "N$"l" :rem 252

210 PRINT:INPUT"J=JOY, K=KEYS";JK$:JK=l-(JK$="J"):

PRINT:PRINT"PLEASE WAIT...." :rem 67

220 FORI=1TO7:READJ:FORX=JTOJ+7:READY:POKEX,Y:NEXT

:NEXT :rem 226

230 POKE53272,29 :rem 94

240 POKECS,0:POKECB,5 :rem 6

250 GOSUB600:FORI=SC+42TO1946STEP40:Z=INT(RND(1)*3

7):POKEI+Z+CV,6:POKEI+Z,42 :rem 191

54

2: Education

260 NEXT:GOSUB790:SYS49152 :rem 111

270 NP=1444+(PEEK(1444)<>32):GOSUB340 :rem 48

280 ONJKGOSUB350,680:NP=OP+DP:PK=PEEK(NP):IFNP<102

5ORNP>2022ORPK=0THEN280 :rem 103

290 IFPK=32THEN POKEOP,32:GOSUB340:GOTO280 :rem 83

300 OL=NP:OC=34:POKEOP,32:GOSUB340 :rem 99

310 HC=INT(RND(1)* 5)+1:H=INT(RND(1)* 3)+1:ONHGOSUB4

50,420,450 :rem 146

320 CT=CT+1:IFCT=21THENCT=0:GOSUB520:GOTO250

:rem 234

330 GOTO280 :rem 105

340 POKENP+CV,7:POKENP,34:OP=NP:RETURN :rem 243

350 GETA$:IFA$=""ORA$=CHR$(17)ORA$=CHR$(29)THEN350

:rem 80

360 A=ASC(A$) :IFA<>44ANDA<>46ANDAO65ANDA<>90THEN3

50 :rem 63

370 DP=(A=44)-(A=46)+40*(A=65)-40*(A=90):RETURN

:rem 8

400 IFDP=0THEN380 :rem 238

410 FORT=1TO80:NEXT:RETURN :rem 220

420 T=INT(RND(1)*200)+10:W=-W:CH=29 :rem 208

430 NL=OL+W:IFPEEK(NL)=0THENPOKEOL,32:RETURN

:rem 117

440 CH=CH+(CH=30)-(CH=29):GOSUB500:GOTO430:rem 156

450 HI=H-2:CH=29+2*HI:T=INT(RND(1)*20)+15 :rem 29

460 Z=INT(RND(1)*4):NL=OL+HI*H%(Z):PK=PEEK(NL)

:rem 253

470 IFNL<1025ORNL>2022THENRETURN :rem 22

480 IFPKO32THEN460 : rem 110

490 CH=CH+(CH=28)-(CH=27):GOSUB500:GOTO460:rem 169

500 POKEOL,OC:OC=02:POKENL+CV,HC:POKENL,CH:OL=NL:F

ORI=1TOT:NEXT:RETURN :rem 209

520 GOSUB600:POKE840,1:SYS49152 :rem 77

522 PRINT"{CLR}":PRINTTAB(2)CHR$(156)"SUPER, "N$M!
HTAB(255)CHR$(158)ll@(a(a@'1 :rem 218

530 PRINTTAB(14)M@@@@@@MSPC(34)"@ @@ @"SPC(33)"@@@
@@@@@"SPC(32)M@(a @@ @@» .rem 153

540 PRINTSPC(14)"@@{2 SPACES}@@" :rem 6

550 PRINTTAB(15)M@@@(a"SPC(34)"<a@<a{2 SPACES}@@@" :P0
KE1399+CV,6:POKE1402+CV,6 :rem 22

560 FORI=1TO34:POKE1399,42:POKE1402,42:FORT=1TO200

:NEXTT :rem 187

570 POKE1399,32:POKE1402,32:FORT=1TO200:NEXTT:NEXT

I :rem 154

590 RETURN : rem 126

600 PRINT"{CLR}":FORI=SC TO EC STEP 40:POKEI+CV,5:
POKEI,0:NEXT:RETURN :rem 122

610 DATA 12288,255,255,255,255,255,255,255,255

:rem 246

55

2: Education

620 DATA 12504,0,129,90,102,126,90,24,36 :rem 167

630 DATA 12512,0,24,0,255,126,90,24,36 :rem 65

640 DATA 12520,0,0,0,0,0,60,102,195 :rem 150

650 DATA 12528,0,0,0,24,60,36,102,66 :rem 219

660 DATA 12536,0,0,56,68,170,170,170,170 :rem 176

670 DATA 12560,60,126,90,255,219,102,60,102:rem 65

680 D3=15-PEEK(JS)AND15:IF D3=NJ THEN D1=0:D2=0

:rem 116

690 IF D3=N{2 SPACES}THEN D1=0:D2=-1

700 IF D3=NE THEN X=0:Y=0

710 IF D3=E{2 SPACES}THEN Dl=l:D2=0

720 IF D3=SE THEN X=0:Y=0

730 IF D3=S{2 SPACES}THEN D1=0:D2=1

740 IF D3=SW THEN X=0:Y=0

750 IF D3=WE THEN D1=-1:D2=0

760 IF D3=NW THEN X=0:Y=0

770 DP=D1+40*D2:IFDP=0THEN680

780 RETURN

790 1=49152

800 CK=0

802 READ A:IF A=256 THEN 1460

805 CK=CK+A

810 POKE I,A:1=1+1:GOTO 802

820 DATA 169,0,160,24,136,153,0

830 DATA 212,208,250,169,15,141,24

840 DATA 212,169,18,141,5,212,169

850 DATA 241,141,6,212,120,169,91

860 DATA 141,20,3,169,192,141,21

870 DATA 3,88,173,72,3,240,18

880 DATA 169,204,141,64,3,169,192

890 DATA 141,65,3,169,0,141,255

900 DATA 207,76,75,192,169,75,141

910 DATA 64,3,169,193,141,65,3

920 DATA 169,0,141,255,207,173,64

930 DATA 3,133,253,173,65,3,133

940 DATA 254,169,5,141,254,207,96

950 DATA 174,62,3,173,253,207,208

960 DATA 60,169,5,141,254,207,173

970 DATA 255,207,208,26,160,0,177

980 DATA 253,201,255,240,74,141,0

990 DATA 212,200,177,253,141,1,212

1000 DATA 169,17,141,4,212,200,177

1010 DATA 253,170,202,240,11,169,1

1020 DATA 141,255,207,142,62,3,76

1030 DATA 49,234,169,16,141,4,212

1040 DATA 169,1,141,253,207,206,254

1050 DATA 207,240,3,76,49,234,169

1060 DATA 0,141,253,207,141,255,207

1070 DATA 24,165,253,105,3,133,253

:rem 140

:rem 97

:rem 79

:rem 104

:rem 95

:rem 124

:rem 215

:rem 121

:rem 170

:rem 127

:rem 43

:rem 147

:rem 213

zrem 98

:rem 240

:rem 236

:rem 133

:rem 92

:rem 84

:rem 32

:rem 154

:rem 103

:rem 249

:rem 107

:rem 202

:rem 93

:rem 242

:rem 104

:rem 95

:rem 97

:rem 95

:rem 83

:rem 128

:rem 123

:rem 115

:rem 79

:rem 82

:rem 180

:rem 93

:rem 173

:rem 128

56

2: Education

1080 DATA 169,0,101,254,133,254,76 :rem 135

1090 DATA 49,234,173,64,3,133,253 :rem 91

1100 DATA 173,65,3,133,254,76,49,234 :rem 238

1110 REM MUSIC DATA :rem 66

1120 DATA 0,0,20,30,25,30 :rem 169

1130 DATA 49,28,10,165,31,20,165 :rem 29

1140 DATA 31,20,49,28,10,30,25 :rem 176

1150 DATA 10,49,28,10,165,31,10 :rem 227

1160 DATA 30,25,20,209,18,20,30 :rem 223

1170 DATA 25,30,49,28,10,165,31 :rem 237

1180 DATA 20,165,31,20,49,28,10 :rem 232

1190 DATA 30,25,10,49,28,10,165 :rem 236

1200 DATA 31,10,30,25,40,0,0 :rem 56

1210 DATA 10,30,25,10,49,28,10 :rem 170

1220 DATA 165,31,10,135,33,10,162 :rem 65

1230 DATA 37,10,162,37,10,162,37 :rem 26

1240 DATA 20,162,37,10,62,42,10 :rem 222

1250 DATA 162,37,10,135,33,10,165 :rem 74

1260 DATA 31,10,48,28,10,30,25 :rem 177

1270 DATA 20,162,37,10,162,37,10 :rem 22

1280 DATA 162,37,20,209,18,10,209 :rem 82

1290 DATA 18,10,209,18,20,162,37 :rem 33

1300 DATA 80,255,0,0,10,30,25 :rem 117

1310 DATA 20,49,28,20,165,31,20 :rem 228

1320 DATA 30,25,20,30,25,20,49 :rem 173

1330 DATA 28,20,165,31,20,30,25 :rem 225

1340 DATA 20,165,31,20,135,33,20 :rem 15

1350 DATA 162,37,40,0,0,5,165 :rem 131

1360 DATA 31,20,135,33,20,162,37 :rem 22

1370 DATA 40,0,0,5,167,37,10 :rem 79

1380 DATA 62,42,10,167,37,10,135 :rem 31

1390 DATA 33,10,165,31,20,30,25 :rem 226

1400 DATA 20,167,37,10,62,42,10 :rem 225

1410 DATA 167,37,10,135,33,10,165 :rem 77

1420 DATA 31,20,30,25,20,30,25 :rem 165

1430 DATA 20,209,18,20,30,25,40 :rem 224

1440 DATA 0,0,10,30,25,20,209 :rem 115

1450 DATA 18,20,30,25,40,255,256 :rem 30

1460 IF CK=39469 THEN RETURN :rem 67

1470 PRINT M{CLR}{WHT}ERROR IN DATA LINES 820 TO 1

450":STOP :rem 114

57

Puzzle Solver
Steve Gibson

Hidden word puzzles have always been popular educa

tional tools, but there are usually two or three words

that you just can't find. "Puzzle Solver" lets your Com

modore computer track them dawn; it will run on the VIC

with at least 3K expansion or on the Commodore 64.

If you enjoy solving puzzles, you're probably familiar with the so-

called "word find7' puzzles commonly found in newspapers and

magazines. They consist of a square matrix of letters in which

several words are hidden. The words may be present in any

configuration, including up, down, left, right, or diagonally. In a

large matrix, words can be difficult to find, particularly those that

are leftward, upward, or diagonal.

"Puzzle Solver" finds such words. It locates them after you

enter the matrix and word list. Matrix size is limited to 50 x 50 let

ters (line 100). The program will run on any Commodore com

puter with sufficient memory; it occupies 5048 bytes of memory,

without variables.

Puzzle Solver makes good use of the string-handling capabil

ities of BASIC. The program works by searching through the

matrix for the first letter of a string (a word in the word list), using

lines 188-210. When found, the program determines if there is

enough room in the matrix for the string in the "northern" (up

ward) direction without going beyond the top boundary of the

matrix (lines 226-264). If there is, the next letter of the string is

compared to the next letter in the matrix in the northern direc

tion. This continues until the entire string is found in the

northern direction or until a mismatch between string and matrix

occurs. When a mismatch occurs, a similar search is started in the

northeastern direction. Continued mismatches cause the pro

gram to ultimately look in all eight directions (N, NE, E, SE, S,

SW, W, NW) until the string is found (lines 268-344). If it isn't, the

program locates the next letter in the matrix that matches the first

letter in the string, and the process begins all over again.

Once all strings have been searched for, the results can either

be listed to the screen or printed. If the screen option is chosen,

the matrix will appear on the screen with words in the list

sequentially highlighted in reverse video (lines 396-454). If the

matrix contains more columns than your screen, the program will

58

2: Education

give you the option of listing the X-Y coordinates of the starting

and ending letters of the words in the word list. These same

coordinates will be printed when the PRINT option is chosen.

When running the program, you are first asked how many

screen columns to use for your computer. Answer with 22 for the

VIC or 40 for the 64. The next question concerns the size of the

matrix; answer with the number of letters on a side.

The program then asks you to input the rows of the matrix

(that is, the letters in the horizontal direction). It is very important

that you enter the bottom row first. Do not start with the top row.

You'll be asked the number of hidden strings; then, following

the prompts, type the strings in. You'll have a chance to correct

errors. Finally, after all questions are answered, the program will

search for the strings in the matrix. It will keep you updated on

which string is being searched for; when it is through, the output

options will be presented.

The printer output option (lines 456-482) is set up for a stan

dard Commodore printer (device 4). You may have to modify

these lines if you have a non-Commodore printer.

Puzzle Solver for VIC and 64

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

100 DIMXB(50),YB(50),XE(50),YE(50),ST$(50),R$(50)

:rem 60

102 GOTO112 :rem 96

104 rem**********SUBROUTINES********** :rem 36

106 PRINTCHR$(18)MID$(R$(CT),KK,1)CHR$(146);:RETUR

N :rem 237

108 PRINTMID$(R$(CT),KK,1);:RETURN :rem 71

110 REM**********END SUBROUTINES***** :rem 38

112 PRINTCHR$(147)"INPUT SCREEN COLUMNS ON YOUR CO

MPUTER - EG. 22 OR 40" :rem 111

114 INPUTSS :rem 204

116 REM**********INPUT ROUTINE******* :rem 252

118 FORCT=1TO50:XB(CT)=0:YB(CT)=0:XE(CT)=0:YE(CT)=

0:NEXTCT:PRINTCHR$(147) :rem 255

120 INPUT"MATRIX SIZE";MS :rem 82

122 FORCT=1TOMS :rem 196

124 PRINT"INPUT ROW "CT" COUNTING FROM BOTTOM OF M

ATRIX : " :rem 223

126 INPUTR$.(CT) :rem 135

128 IFLEN(R$(CT))<>MSTHENPRINT"IMPROPER ENTRY RE-"

;:GOTO124 :rem 219

130 NEXTCT :rem 106

132 PRINT"DO YOU WANT TO CHANGE A ROW - Y/N"
;rem 182

59

2: Education

134 GETYN$: IFYN$=""THEN134

136 IFYN$<>"NMANDYN$<>"Y"THEN132

138 IFYN$=MN"THEN148

140 INPUT"WHICH ROWM;RN

142 PRINT"INPUT ROW "RN

144 INPUTR$(RN)

146 GOTO132

:rem 31

:rem 122

:rem 145

:rem 175

:rem 144

:rem 144

:rem 106

148 PRINT"{CLR}HOW MANY STRINGS TO FIND":INPUTNS

:rem 125

150 FORCT=1TONS :rem 198

152 PRINT"INPUT STRING "CT :rem 103

154 INPUTST$(CT) :rem 221

156 TS$=IMI :rem 232

158 FORCO=1TOLEN(ST$(CT)) :rem 11

160 IFASC(MID$(ST$(CT),CO,1))=32THEN164 :rem 215

162 TS$=TS$+MID$(ST$(CT),CO,1) :rem 180

164 NEXTCO :rem 108

166 ST$(CT)=TS$:rem 88

168 NEXTCT :rem 117

170 PRINT"DO YOU WANT TO CHANGE A STRING - Y/N"
:rem 151

172 GETYN$:IFYN$=""THEN172 :rem 35

174 IFYN$<>"N"ANDYN$<>"Y"THEN170 :rem 126

176 IFYN$="N"THEN186 :rem 149

178 INPUT"WHICH STRING ";SN :rem 154

180 PRINT"INPUT STRING "SN :rem 114

182 INPUTST$(SN) :rem 232

184 GOTO170 :rem 110

186 REM**********GET MATCHING LETTER IN MATRIX

srem 142

188 PRINTCHR$(147):REM CLEAR HOME :rem 202

190 SV=0:RO=1:LE=0 srem 49

192 SV=SV+1:PRINT"SEARCHING FOR "ST$(SV) :rem 210

194 FL$=LEFT$(ST$(SV),1) :rem 83

196 LE=LE+1 :rem 91

198 RL$=MID$(R$(RO),LE,1) :rem 114

200 IFFL$=RL$THEN214 :rem 156

202 IFLEOMSTHEN196 : rem 157

204 IFRO<>MSTHENLE=0:RO=RO+1:GOTO196 :rem 53

206 PRINT"FIRST LETTER OF STRING "ST$(SV)" NOT FOU

ND IN ANY ROW" :rem 26

208 IFSV=NSTHENGOTO362 :rem 179

210 LE=0:RO=0:GOTO192 :rem 232

212 REM**********MATRIX SEARCH ROUTINE :rem 206

214 FORTT=1TO8 :rem 111

216 FORCT=0TOLEN(ST$(SV))-1 :rem 122

218 SV$=MID$(ST$(SV),CT+1,1) :rem 53

220 IFCT>0THENONTTGOTO270,280,290,300,310,320,330,

340 :rem 192

60

2: Education

222 ONTTGOTO226,230,236,240,246,250,256,260:rem 16

224 REM CHECK IF LENGTH OF STRING WILL EXCEED MATR

IX BOUNDRIES :rem 253

226 IFLEN(ST$(SV))>MS+1-ROTHENNEXTTT :rem 60

228 GOTO270 :rem 110

230 IFRO>LEANDLEN(ST$(SV))>MS+1-ROTHENNEXTTT

:rem 122

232 IFLE>=ROANDLEN(ST$(SV))>MS+1-LETHENNEXTTT

:rem 169

234 GOTO280 :rem 108

236 IFLEN(ST$(SV))>MS+1-LETHENNEXTTT :rem 45

238 GOTO290 :rem 113

240 IFLE+RO<=MS+1ANDLEN(ST$(SV))>ROTHENNEXTTT

:rem 180

242 IFLE+RO>MSANDLEN(ST$(SV))>MS-LE+1THENNEXTTT

:rem 56

244 GOTO300 :rem 102

246 IFLEN(ST$(SV))>ROTHENNEXTTT :rem 21

248 GOTO310 :rem 107

250 IFRO > LEANDLEN(ST$(SV))>LETHENNEXTTT :rem 67

252 IFRO<=LEANDLEN(ST$(SV))>ROTHENNEXTTT :rem 144

254 GOTO320 :rem 105

256 IFLEN(ST$(SV))>LETHENNEXTTT :rem 6

258 GOTO330 :rem 110

260 IFLE+RO<=MS+1ANDLEN(ST$(SV))>LETHEN354 :rem 91

262 IFLE+RO>MS+1ANDLEN(ST$(SV))>MS-RO+1THEN354

:rem 91

264 GOTO340 :rem 108

266 REM CHECK ALL DIRECTIONS FOR STRING :rem 107

268 REM LOOK NORTH :rem 68

270 IFSV$<>MID$(R$(RO+CT),LE,1)THENNEXTTT :rem 24

272 NEXTCT :rem 113

274 XE(SV)=LE:YE(SV)=RO+LEN(ST$(SV))-1 :rem 48

276 GOTO348 :rem 119

278 REM LOOK NORTH EAST :rem 114

280 IFSV$<>MID$(R$(RO+CT),LE+CT,1)THENNEXTTT

:rem 219

282 NEXTCT :rem 114

284 XE(SV)=LE+LEN(ST$(SV))-1:YE(SV)=RO+LEN(ST$(SV)

)-l :rem 175
286 GOTO348 :rem 120

288 REM LOOK EAST :rem 232

290 IFSV$<>MID$(R$(RO),LE+CT,1)THENNEXTTT :rem 26

292 NEXTCT :rem 115

294 XE(SV)=LE+LEN(ST$(SV))-lsYE(SV)=RO srem 50

296 GOTO348 :rem 121

298 REM LOOK SOUTH EAST :rem 124

300 IFSV$<>MID$(R$(RO-CT),LE+CT,1)THENNEXTTT

:rem 214

61

2: Education

302 NEXTCT :rem 107

304 XE(SV)=LE+LEN(ST$(SV))-1:YE(SV)=RO-LEN(ST$(SV)

)+l :rem 168

306 GOTO348 :rem 113

308 REM LOOK SOUTH :rem 71

310 IFSV$<>MID$(R$(RO-CT),LE,1)THENNEXTTT :rem 21

312 NEXTCT :rem 108

314 XE(SV)=LE:YE(SV)=RO-LEN(ST$(SV))+1 :rem 43

316 GOTO348 :rem 114

318 REM LOOK SOUTH WEST :rem 139

320 IFSV$<>MID$(R$(RO-CT),LE-CT,1)THENNEXTTT

:rem 218

322 NEXTCT :rem 109

324 XE(SV)=LE-LEN(ST$(SV))+1:YE(SV)=RO-LEN(ST$(SV)

)+l :rem 170

326 GOTO348 :rem 115

328 REM LOOK WEST :rem 249

330 IFSV$<>MID$(R$(RO),LE-CT,1)THENNEXTTT :rem 23

332 NEXTCT :rem 110

334 XE(SV)=LE-LEN(ST$(SV))+1:YE(SV)=RO :rem 45

336 GOTO348 :rem 116

338 REM LOOK NORTH WEST :rem 133

340 IFSV$<>MID$(R$(RO+CT),LE-CT,1)THEN354 :rem 143

342 NEXTCT :rem 111

344 XE(SV)=LE-LEN(ST$(SV))+1:YE(SV)=RO+LEN(ST$(SV)

)-l :rem 172

346 REM**********END MATRIX SEARCH ROUTINE:rem 173

348 XB(SV)=LE:YB(SV)=RO:PRINT"FOUND "ST$(SV):PRINT

:rem 193

350 IFSV=NSTHEN362 :rem 120

352 LE=0:RO=1:GOTO192 :rem 240

354 IFLE=MSANDRO=MSTHENPRINT"NOT FOUND":IFSV=NSTHE

N362 :rem 113

356 IFLE=MSANDRO=MSTHENLE=0:RO=1:GOTO192 :rem 113

358 IFLE=MSTHENLE=0:RO=RO+1:GOTO196 :rem 242

360 GOTO196 :rem 114

362 PRINT:PRINT"OUTPUT TO PRINTER OR SCREEN OR NEX

T PUZZLE OR END - P/S/N/E ?" :rem 189

364 GETSP$:IFSP$=""THEN364 :rem 33

366 IFSP$<>"S"ANDSP$<>IIPIIANDSP$<>"NIIANDSP$<>"E"THE

N362 :rem 187

368 IFSP$="P"THENCD=1:GOTO458 :rem 0

370 IFSP$="N"THEN118 :rem 136

372 IFSP$="E"THENEND :rem 190

374 IFMS<=SSTHEN386 :rem 188

376 PRINT"MATRIX OVERSIZE FOR SCREEN" :rem 100

378 PRINT"WOULD YOU RATHER SEE THE STRING COORDINA

TES - Y/N ?" :rem 211

380 GETYN$:IFYN$=""THEN380 :rem 37

62

2: Education

382 IFYN$<>"Y"ANDYN$<>IIN"THEN376 :rem 135

384 IFYN$="Y"THENPRINTCHR$(147):CD=0:GOTO458

:rem 191

386 FORTT=1TONS :rem 226

388 PRINT:PRINT"PRESS ANY KEY TO SEE MCHR$(18)ST$(

TT)CHR$(146) :rem 133

390 GETAK$:IFAK$=""THEN390 :rem 241

392 IFXB(TT)=0THENPRINTST$(TT)M NOT FOUND":G0T0452

:rem 108

394 PRINTCHR$(147) :rem 27

395 REM**********ROUTINE TO PRINT REVERSE VIDEO

:rem 18

396 FORCT=MSTO1STEP-1 :rem 107

398 IFYB(TT)<CTANDYE(TT)<CTTHENPRINTR$(CT);:GOTO45

0 :rem 56

400 IFYB(TT)>CTANDYE(TT)>CTTHENPRINTR$(CT);:GOTO45
0 :rem 44

402 IFYB(TT)=YE(TT)THEN430 :rem 83

404 IFXB(TT)=XE(TT)THEN442 :rem 86

406 FORKK=1TOMS :rem 200

408 IFXB(TT)>XE(TT)THEN418 :rem 94

410 IFKK>XE(TT)ORKK<XB(TT)THENGOSUB108:GOTO426

:rem 235

412 IFYB(TT)<YE(TT)ANDKK=XE(TT)-(YE(TT)-CT)THENGOS

UB106:GOTO426 :rem 247

414 IFYB(TT)>YE(TT)ANDKK=XE(TT)+(YE(TT)-CT)THENGOS

UB106:GOTO426 :rem 249

416 GOSUB108:GOTO426 :rem 195

418 IFKK>XB(TT)ORKK<XE(TT)THENGOSUB108:GOTO426

:rem 243

420 IFYB(TT)<YE(TT)ANDKK=XB(TT)+(YB(TT)-CT)THENGOS

UB106:GOTO426 :rem 238

422 IFYB(TT)>YE(TT)ANDKK=XB(TT)-(YB(TT)-CT)THENGOS

UB106:GOTO426 :rem 244

424 GOSUB108 :rem 179

426 NEXTKK :rem 113

428 GOTO450 :rem 112

430 FORKK=1TOMS :rem 197
432 IFXB(TT)>XE(TT)AND(KK>XB(TT)ORKK<XE(TT))THENGO

SUB108:GOTO438 :rem 125

434 IFXB(TT)<XE(TT)AND(KK<XB(TT)ORKK>XE(TT))THENGO

SUB108:GOTO438 :rem 125

436 GOSUB106 :rem 180

438 NEXTKK :rem 116

440 GOTO450 :rem 106

442 FORKK=1TOMS :rem 200

444 IFKK=XB(TT)THENGOSUB106:GOTO448 :rem 234

446 GOSUB108 :rem 183

448 NEXTKK :rem 117

63

2: Education

450 PRINT:NEXTCT :rem 54

452 NEXTTT :rem 130

454 GOTO362 :rem 113

456 REM**********PRINT ROUTINE****** :rem 214

458 IFCD=1THENOPEN4,4:CMD4 :rem 92

460 FORCT=1TONS :rem 202

462 PRINT:PRINT"STRING - "ST$(CT) :rem 235

464 IFXB(CT)=0THENPRINT"STRING NOT FOUND":G0T0478

:rem 118

466 PRINT .-PRINT "BEGINNING LETTER" : rem 153

468 PRINTMX,Y COORDINATES = "XB(CT)","YB(CT)

:rem 61

470 PRINT:PRINT"ENDING LETTER" :rem 184

472 PRINT"X,Y COORDINATES = "XE(CT)","YE(CT)

:rem 62

474 IFCD=K0THENPRINT:PRINT"PRESS ANY KEY TO CONTIN

UE" :rem 154

476 IFCD=0THENGETAK$:IFAK$=""THEN476 :rem 173

477 IFNS=1THEN480 :rem 11

478 NEXTCT :rem 121

480 IFCD=1THENPRINT#4:CLOSE4 :rem 23

482 GOTO362 :rem 114

64

File Cabinet
Mike Webster

Everyone has something to catalog: a record collection, a

library, a stack of twelve dozen program disks. The

following program lets your VIC ar 64 handle thefiling

chores for you.

"File Cabinet" is designed as a general-purpose program for data

storage and retrieval. It can be easily modified to suit your needs.

As presented here, the program features six functions — ADD,

REVIEW, FIND, CHANGE, DELETE, and SAVE - and the

amount of data that can be stored is dependent only on the length

of each entry and on the amount of free memory available.

The program provides you with five different INPUTs per

entry. For the sake of clarity, each of the INPUTs will be called a

category, and each group of five categories will be called a page.

You can use File Cabinet to catalog your record collection,

your program files, or anything else you might want to recall or

search by category. One good application might be for cataloging

your personal library. In that case, a typical entry page could in

clude a book's title, its author or publisher, the type of book, and

two notations describing the material covered in the book. For ex

ample, one page might look like this:

COMPUTED FIRST BOOKOFVIC

COMPUTE!

REFERENCE

PROGRAMMING

GAMES

Another entry could resemble this one:

MACHINE LANGUAGE FORBEGINNERS

RICHARD MANSFIELD

REFERENCE

PROGRAMMING

MACHINE LANGUAGE

If you want to make a null entry for a category, use an

asterisk. That eliminates the possibility of any carryover from the

previous page. You can use up to 42 characters per page entry;

any more than that will not store in the DAIA statements.

To see how File Cabinet works, type in the two examples

given above. You can then FIND either one by entering any of the

appropriate categories. For instance, telling the computer to FIND

67

3: Applications

games will turn up First Book ofVIC Similarly, telling it to FIND

"programming" will call both First Book ofVIC and Machine

Languagefor Beginners to the screen. They will be displayed one at

a time; to bring up the next one, just hit RETURN. Using the

same approach, you could locate every book in your library that

was written by Richard Mansfield or every book that dealt with

the VIC.

The crunched program occupies almost 1900 bytes of RAM. A

page entry containing 25 characters fills about 36 bytes, and a

page entry with the maximum of 42 characters fills about 53 bytes.

Thus, an unexpanded VIC will hold about fifty-one 25-character

pages or thirty-two 42-character pages. With 3K expansion, the

VIC can handle one hundred thirty-three 25-character pages or
ninety 42-character pages. If you have the 8K expander, the capac

ity increases even further to two hundred seventy-five

25-character pages and one hundred eighty-seven 42-character

pages. The Commodore 64, of course, will hold substantially more.

To customize the program for your own needs, you may wish

to change the number of categories per page. In the VIC version

you can do this by modifying seven areas of the program: INPUT

(lines 75-95); DAIA (line 120); FIND (lines 155-173); CHANGE

(lines 210-230); READ (line 505); SCREEN DISPLAY (lines

520-540); and DAIA (line 60000).

Be sure to crunch the program lines when you type this pro

gram in. Do not leave unneeded spaces, and abbreviate com

mands (? for PRINT, for example) wherever possible. Otherwise,

some lines may not fit.

Program 1. File Cabinet, VIC Version

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

7 POKE36879,47:PRINT"{YEL}11 : rem 183

10 PRINT"{CLR}":PRINTTAB(31)"{RVS}MENU :rem 129

15 PRINTTAB(47)"{RVS}A";"{OFF}DD NEW ENTRIES"SPC(5

1)II{RVS}R";II{OFF}EVIEW ALL ENTRIES :rem 97
20 PRINTTAB(47)"{RVS}Fn;M{OFF}lND AN ENTRY"SPC(53)

"{RVS}CII;"{OFF}HANGE AN ENTRY" : rem 248

25 PRINTSPC(47)"{RVS}D"7"{OFF}ELETE AN ENTRY"SPC(2

2)TAB(47)"{RVS}S";"{OFF}AVE PROGRAM :rem 139

30 GETA$:IFA$=""THEN30 :rem 233

35 IFA$="A"THEN70 :rem 180

40 IFA$="R"THEN130 :rem 238

45 IFA$="F"THEN150 :rem 233

50 IFA$="C"THEN190 :rem 230

55 IFA$="D"THEN240 :rem 232

60 IFA$="S"THEN360 :rem 246

68

3: Applications

65 GOTO30 :rem 7

H 70 GOSUB500:LN=256*PEEK(64)+PEEK(63)-1 :rem 156
75 PRINT"{CLR}":PRINTSPC(22):INPUTA$:rem 97

P] 80 PRINTSPC(22):INPUTB$:rem 192

85 PRINTSPC(22):INPUTC$:rem 198

♦—i 90 PRINTSPC(22):INPUTD$:rem 195

1 { 95 PRINTSPC(22):INPUTE$:rem 201
100 GOSUB575:PRINT"{CLR}" :rem 80

105 PRINTSPC(178)"DEPRESS {RVS}RETURN{OFF} KEY":PR

INTSPC(24)"TO SAVE INFORMATION" :rem 129

110 PRINT"§22 13" :rem 79

115 PRINTSPC(24)"DEPRESS {RVS}RETURN{OFF} KEY":PRI

NTSPC(27)"TO CONTINUE" :rem 59

120 PRINT"{CLR}{3 DOWN}"LN"DATA"A$","B$","C$","D$"

,"E$","LN:PRINT"{WHT} RUN10{BLU}" :rem 116

125 PRINT"{7 UP}":END :rem 113

130 GOSUB500 :rem 169

135 IFA$="END"THENGOSUB590:GOTO10 :rem 6

140 IFA$<>"END"THENGOSUB515:GOSUB505:GOTO135

irem 200

150 PRINT"{CLR}FIND":PRINT"i4 Ul":INPUTFF$

0 :rem 207

155 IFFF$=A$THENGOSUB515

160 IFFF$=B$THENGOSUB515

165 IFFF$=C$THENGOSUB515

170 IFFF$=D$THENGOSUB515

173 IFFF$=E$THENGOSUB515

GOSUB50

rem 198

rem 195

rem 201

rem 198

rem 202

175 IFA$="END"THENGOSUB590 :rem 54

180 GOSUB505:GOTO155 :rem 193

190 PRINT"{CLR}ENTRY # TO BE CHANGED":INPUTCC:GOSU

B500 :rem 102

195 IFLN=0THENGOSUB590 :rem 130

200 IFCC<>LNTHENGOSUB505:GOTO195 :rem 22

205 IFCC=LNTHENPRINT"{CLR}" :rem 22

210 PRINTA$:INPUTA$:rem 180

215 PRINTB$:INPUTB$:rem 187

220 PRINTC$:INPUTC$:rem 185

225 PRINTD$:INPUTD$:rem 192

H 230 PRINTE$:INPUTE$:rem 190
235 GOTO100 :rem 100

p| 240 PRINT"{CLR}ENTER ITEM NUMBER":PRINTSPC(22)"TO

- l {SPACE}BE DELETED" :rem 55
„ 245 PRINT:INPUTI:LN=I :rem 149

(J 250 PRINT"{CLR}":FORI=1TO8:PRINT:NEXT :rem 238

252 PRINTTAB(2)"DEPRESS {RVS}RETURN{OFF} KEY":PRIN

P| TSPC(25)"TO DELETE ENTRY" :rem 216
255 PRINT"g22 O|" :rem 83

r-i 260 PRINTSPC(24) "DEPRESS { RVS } RETURN{OFF} KEY":PRI
1 s NTSPC(27)"TO CONTINUE :rem 26

n 69

3: Applications

270 PRINTCHR$(19)CHR$(17)CHR$(17)CHR$(17)LN:PRINT"

{WHT} RUN10{BLU}" :rem 47

275 PRINT"{5 UP}" :rem 68

280 END :rem 113

360 POKE36879,25:PRINTII{CLR}{BLK}"SPC(150)"

{7 RIGHT }{ RVS }T{ OFF}APE {2 SPACES}0R{2 SPACES}

{RVS}D{OFF}ISK?" :rem 243

361 GOTO1000 :rem 148

365 END :rem 117

500 RESTORE :rem 185

505 READA$,B$,C$,D$,E$,LN :rem 47

510 RETURN :rem 118

515 PRINT"{CLR}ENTRY #"LN :rem 78

520 PRINTSPC(22)A$:rem 36

525 PRINTSPC(22)B$:rem 42

530 PRINTSPC(22)C$:rem 39

535 PRINTSPC(22)D$:rem 45

540 PRINTSPC(22)E$:rem 42

545 PRINTSPC (22)"{RVS} PRESS 'C TO CONTINUE11: PRINT

SPC(22)"{RVS}PRESS 'M' FOR MENU" :rem 62

550 GETCM$:IFCM$=""THEN550 :rem 245

555 IFCM$="C"THEN570 :rem 113

560 IFCM$="M"THEN10 :rem 60

565 GOTO550 :rem 115

570 RETURN :rem 124

575 PRINTTAB(44)"{RVS}PRESS KEY TO CONTINUE"

:rem 146

580 GETZ$:IFZ$=""THEN580 :rem 14:

585 RETURN :rem 130

590 PRINTCHR?(147):FORI=1TO4:PRINTCHR?(17) NEXT:PR

rem 204

rem 178

rem 199

rem 179

rem 187

rem 149

rem 138

1110 INPUT"FILENAME";F$:rem 125

INT"{3 SPACES}ENTRY NOT FOUND"

595 GOSUB575:GOTO10:RETURN

1000 GETR$:IFR$=""THEN1000

1010 IFR$=CHR$(84)THEN1100

1015 IFR$=CHR$(68)THEN1200

1020 GOTO 360

1100 PRINT"{CLR}"SPC(134)TAB(2);

1120 PRINT"{CLR}"SPC(110)

1125 PRINT"PRESS {RVS}RETURN{OFF}"SPC(208)

rem 241

rem 124

1130 PRINT"SA";:PRINTCHR$(34);:PRINTF$;:PRINTCHR$(

34); :rem 199

1140 PRINT"{HOME}{12 DOWN}":END :rem 135

1200 PRINT"{CLR}"SPC(134)TAB(2); :rem 139

1210 INPUT"FILENAME";F$:rem 126

1220 PRINT"{CLR}"SPC(110) :rem 242

1225 PRINT"PRESS {RVS}RETURN{OFF}"SPC(208):rem 125

1230 PRINT"SA";:PRINTCHR$(34);:PRINTF$;:PRINTCHR$(

34);",8"?r :rem 112

70

3: Applications

1240 PRINT"{HOME}{12 DOWN}":END :rem 136

59998 DATAENTRY2,A,C,D,Er 59998 :rem 247

59999 DATAENTRY1,A,B,C,D, 59999 :rem 245

60000 DATAEND,END,END,END,END,0 : rem 79

Program 2* File Cabinet, 64 Version

Refer to 'The Automatic Proofreader" (Appendix]) before typing this program in.

1 CS=53281:CB=53280 :rem 11

9 POKECS,2:POKECB,7 :rem 173

10 PRINT"{CLR}{YEL}";SPC(120)TAB(14)"{RVSjMENU

:rem 94

12 PRINTSPC(80)?TAB(6)"{RVS}Am;"{OFF}DD NEW ENTRIE
S"SPC(105)"{RVS}R";"{OFF}EVIEW ALL ENTRIES

:rem 51

14 PRINTSPC(80)TAB(6)"{RVS}F";"{OFF}IND AN ENTRY"S

PC(107)"{RVS}CM7"{OFF}HANGE AN ENTRY" :rem 149

16 PRINTSPC(80)TAB(6)M{RVS}DII;"{OFF}ELETE AN ENTRY

"SPC(105)"{RVS}S";"{OFF}AVE PROGRAM" :rem 167

30 GETA$:IFA$=""THEN30 :rem 233

35 IFA$="A"THEN70 :rem 180

40 IFA$="R"THEN130 :rem 238

45 IFA$="F"THEN150 :rem 233

50 IFA$="C"THEN190 :rem 230

55 IFA$="D"THEN240 :rem 232

60 IFA$="S"THEN360 :rem 246

65 GOTO30 :rem 7

70 GOSUB500:LN=256*PEEK(64)+PEEK(63)-1 :rem 156

75 PRINT"{CLR}":PRINTSPC(40):INPUTA$:rem 97
80 PRINTSPC(40):INPUTB$:rem 192

85 PRINTSPC(40):INPUTC$:rem 198
90 PRINTSPC(40):INPUTD$:rem 195

95 PRINTSPC(40):INPUTE$:rem 201

100 GOSUB575:PRINT"{CLR}" :rem 80

105 PRINTSPC(250)"DEPRESS {RVS}RETURN{OFF} KEY":PR
INTSPC(50)"TO SAVE INFORMATION" :rem 119

110 PRINTTAB(2)"g35 13" :rem 227

115 PRINTSPC(50)"DEPRESS {RVS}RETURN{OFF} KEY":PRI
NTSPC(50)"TO CONTINUE" :rem 54

120 PRINT"{CLR}{3 DOWN}"LN"DATA"A$", "B$"#"C$","D$"

,"E$","LN:PRINT"{WHT} RUN10{BLU}" :rem 116

125 PRINT"{7 UP}":END :rem 113

130 GOSUB500 :rem 169

135 IFA$="END"THENGOSUB590:GOTO10 :rem 6

140 IFA$o"END"THENGOSUB515:GOSUB505:GOTO135

:rem 200

150 PRINT"{CLRjFIND":PRINT"g4 U|":INPUTFF$:GOSUB
500 :rem 207

155 IFFF$=A$THENGOSUB515 :rem 198

71

3: Applications

160 IFFF$=B$THENGOSUB515 :rem 195

165 IFFF$=C$THENGOSUB515 :rem 201

170 IFFF$=D$THENGOSUB515 :rem 198

173 IFFF$=E$THENGOSUB515 :rem 202

175 IFA$="END"THENGOSUB590 :rem 54

180 GOSUB505:GOTO155 :rem 193

190 PRINT"{CLR}ENTRY # TO BE CHANGED":INPUTCC:GOSU

B500 :rem 102

195 IFLN=0THENGOSUB590 :rem 130

200 IFCC<>LNTHENGOSUB505:GOTO195 :rem 22

205 IFCC=LNTHENPRINT"{CLR}" :rem 22

210 PRINTA$:INPUTA$:rem 180

215 PRINTB$:INPUTB$:rem 187

220 PRINTC$:INPUTC$:rem 185

225 PRINTD$:INPUTD$:rem 192

230 PRINTER:INPUTE$:rem 190

235 GOTO100 :rem 100

240 PRINT"{CLR}ENTER ITEM NUMBER TO BE DELETED"

:rem 145

245 PRINT:INPUTI:LN=I :rem 149

250 PRINT"{CLR}" :rem 251

251 PRINTSPC(250)"DEPRESS {RVS}RETURN{OFF} KEY":PR

INTSPC(50)"TO DELETE ENTRY" :rem 73

255 PRINTTAB(2)"[c35 I|" : rem 237

260 PRINTSPC(50)"DEPRESS {RVS}RETURN{OFF} KEY":PRI

NTSPC(50)"TO CONTINUE :rem 21

270 PRINTCHR$(19)CHR$(17)CHR$(17)CHR$(17)LN:PRINT"

{WHT} RUN10{BLU}" :rem 47

275 PRINT"{5 UP}" :rem 68

280 END :rem 113

360 POKECB,11:POKECS,15:PRINT"{CLR}{BLK}"SPC(160)"

{7 RIGHT}{RVS}T{OFF}APE{2 SPACES}OR{2 SPACES}
{RVS}D{OFF}ISK?" :rem 244

361 GOTO1000 :rem 148

365 END :rem 117

500 RESTORE :rem 185

505 READA$,B$,C$,D$,E$,LN :rem 47

510 RETURN :rem 118

515 PRINT"{CLR}ENTRY #"LN :rem 78

520 PRINTSPC(40)A$:rem 36

525 PRINTSPC(40)B$:rem 42

530 PRINTSPC(40)C$ srem 39

535 PRINTSPC(40)D$:rem 45

540 PRINTSPC(40)E$:rem 42

545 PRINTSPC(40)"{RVS}PRESS 'C TO CONTINUE":PRINT

SPC(40)"{RVS}PRESS 'M1 FOR MENU" :rem 62

550 GETCM$:IFCM$=""THEN550 :rem 245

555 IFCM$="C"THEN570 :rem 113

560 IFCM$="MIITHEN10 : rem 60

72

3: Applications

565

570

575

GOTO550

RETURN

PRINTTAB(10)"{RVS}PRESS KEY TO

:rem 115

:rem 124

CONTINUE"

:rem 139

580 GETZ$:IFZ$=""THEN580 :rem 143

585 RETURN :rem 130

590 PRINTCHR$(147):FORI=1TO4:PRINTCHR$(17):NEXT

:rem 194

593 PRINTTAB(10)M{3 SPACES}ENTRY NOT FOUND":GOSUB5

75:GOTO10 :rem 41

595 RETURN :rem 131

1000 GETR$:IFR$=""THEN1000 :rem 199

1010 IFR$=CHR$(84)THEN1100 :rem 179

1015 IFR$=CHR$(68)THEN1200 :rem 187

1020 GOTO 360 :rem 149

1100 PRINT"{CLR}"SPC(160)TAB(2); :rem 137

1110 INPUT"FILENAME";F$:rem 125

1120 PRINT"{CLR}"SPC(120) :rem 242

1125 PRINT"PRESS {RVS}RETURN{OFF}"SPC(228):rem 126

1130 PRINT"SA";:PRINTCHR$(34);:PRINTF$;:PRINTCHR$(

34); :rem 199

1140 PRINT"{HOME}{6 DOWN}":END :rem 33

1200 PRINT"{CLR}"SPC(160)TAB(2); :rem 138

1210 INPUT"FILENAME";F$:rem 126

1220 PRINT"{CLR}"SPC(120) :rem 243

1225 PRINT"PRESS {RVS}RETURN{OFF}"SPC(228):rem 127

1230 PRINT"SA";:PRINTCHR$(34);:PRINTF$;:PRINTCHR$(

34);:PRINT",8" :rem 55

1240 PRINT"{HOME}{6 DOWN}":END :rem 34

59998 DATAENTRY2,A,C,D,E, 59998 :rem 247

59999 DATAENTRY1,A,B,C,D, 59999 :rem 245

60000 DATAEND,END,END,END,END,0 :rem 79

73

3-D Clock
Bosco Tsang

What time is it? With this program, and your un-

expanded VIC or 64, you may never have to

ask again.

One of the more interesting features of a Commodore computer is

its internal clock. The computer keeps time in hours, minutes,

and seconds, and "3-D Clock" converts that time into an impres

sive three-dimensional screen display.

The primary display, which shows only hours and minutes,

is made up of Commodore graphics characters. For those who are

not satisfied without seconds, a smaller clock in the lower right-

hand corner of the screen displays seconds too.

To use the 3-D clock, type in and run the program. You'll be

asked to enter the correct hour and minute. Then, when you

press the fl key, the screen will display the time. The clock will

run until you interrupt the program or turn off your computer.

Program 1.3-D Clock, VIC Version

Refer to 'The Automatic Proofreader" (Appendix J) before typing this program in.

10 DATA"{RVS}{BLK}£{2 SPACES}{DOWN}{3 LEFT}

{RIGHT} {DOWN}{3 LEFT} {RIGHT} {DOWN}{3 LEFT}
{RIGHT} {DOWN}{3 LEFT}{2 SPACES}{OFF}£":rem 60

20 DATA"{RVS}£ {DOWN}{LEFT} {DOWN}{LEFT} {DOWN}

{LEFT} {DOWN}{2 LEFT}£ {OFF}£" :rem 180

30 DATA"{RVS}£{2 SPACESJTdOWN}{LEFT} {DOWN}
{3 LEFT}£ TOFF}£{RVS}{DOWN}{3 LEFT} {DOWN}

{LEFT}{2 SPACEST{OFF}£" :rem 217
40 DATAM{RVS}£{2 SPACESJTdOWN}{LEFT} {DOWN}

{2 LEFT}{2 SPACES}{DOWN}{LEFT} {DOWN}{3 LEFT}£

{OFF}£" :rem 240

50 DATA"{RVS}£{RIGHT}£{DOWN}{3 LEFT} {RIGHT}

{DOWN}{3 LEFT}{3 SPACES}{DOWN}{LEFT} {DOWN}

{LEFT}{OFF}£" :rem 200

60 DATA"{RVS}£ {OFF}£{RVS}{DOWN}{3 LEFT} {DOWN}
{LEFT}{3 SPACES}{DOWN}{LEFT} {DOWN}{3 LEFT}£
{OFF}£" :rem 220

70 DATA"TRVS}£ {OFF}£{RVS}{DOWN}{3 LEFT} {DOWN}

{LEFT}{3 SPACES}{DOWN}{3 LEFT} {RIGHT} {DOWN}

{3 LEFT}{2 SPACES}{OFF}£" :rem 139

80 DATAH{RVS}£{2 SPACES}{DOWN}{LEFT} {DOWN}{LEFT}

{DOWN}{LEFT} {DOWN}{LEFT}{OFF}£" :rem 116

74

3: Applications

90 DATA"{RVS}£{2 SPACES}{DOWN}{3 LEFT} {RIGHT}

{DOWN}{3 LEFT}{3 SPACES}{DOWN}{3 LEFT} {RIGHT}
{SPACE}{DOWN}{3 LEFT}{2 SPACES}{OFF}£" :rem 151

100 DATA"{RVS}£{2 SPACES}{DOWN}{3 LEFT} {RIGHT}

{DOWN}{3 LEFT}{3 SPACES}{DOWN}{LEFT} {DOWN}
{LEFT}{OFF}£" :rem 46

110 DATA"{DOWN} {RVS} {2 DOWN}{LEFT} " :rem 210

120 CLR:DIMA$(9),M$(10):FORT=0TO9:READA$(T):NEXT:R

EADPU$:rem 124

130 PRINT"{CLR}{BLK}{4 SPACES}STEREO CLOCK"

srem 198

145 S1$="{HOME}{20 DOWN}{8 RIGHT}":SC$=LEFT$(Sl$,8

) :rem 239

150 J2=60:J3=60:J4=60:J5=60:J6=60:J7=60 :rem 129

260 PRINT"{BLU}ENTER THE PRESENT TIME" :rem 55

270 INPUT"{DOWN}HOUR";HO:IFHO<0ORHO>12THEN270
:rem 251

275 HO$=RIGHT$(STR$(HO),2):IFHO<10THENHO$="0"+RIGH

T$(HO$,1) :rem 186

280 INPUT"{DOWNjMIN.";MEsIFME<0ORME>59THEN280
:rem 205

285 ME$=RIGHT$(STR$(ME),2):IFME<10THENME$="0"+RIGH

T$(ME$,1) srem 162

290 PT$=HO$+ME$:PRINT"{DOWN}HIT Fl KEY TO START"

:rem 206

300 GETA$:IFA$o"{Fl}"THEN300 : rem 11

310 TI$=PT$+"00":PRINT"{CLR}":CV=30720 :rem 211

312 POKE 7866+CV,0:POKE7866,160:POKE7910+CV,0:POKE

7910,160 :rem 30

320 T2$=TI$:IFLEFT$(T2$,2)="13"THENTI$="010000":T2

$=TI$:rem 7

330 T=2sJ= VAL(MID$(T2$,1,1))sIF JOJ2 THEN J2=J:G

OSUB 500 :rem 139

340 T=6:J=VAL(MID$(T2$,2,1)) : IF JOJ3THEN J3=J:GOS

UB 500 :rem 147

350 T=12:J=VAL(MID$(T2$,3,1)):IF J<>J4THENJ4=J:GOS

UB 500 :rem 196

355 T= 16:J=VAL(MID$(T2$,4,1)):IFJ<>J5THENJ5=J:GOS

UB 500 srem 208

370 GOTO320 :rem 104

500 PRINTS1$LEFT$(T2$,2)":"MID$(T2$,3,2)" :rem 200

510 PRINTSC$TAB(T)"{3 SPACES}{DOWN}{3 LEFT}

{3 SPACES}{DOWN}{3 LEFT}{3 SPACES}{DOWN}

{3 LEFT}{3 SPACES}{DOWN}{3 LEFT}{3 SPACES}"
:rem 61

520 PRINTSC$TAB(T)A$(J):RETURN srem 116

75

3: Applications

Program 2.3-D Clock, 64 Version

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

10 DATA"{RVS}{BLK}£{2 SPACES}{DOWN}{3 LEFT}
{RIGHT} {DOWN}{3 LEFT} {RIGHT} {DOWN}{3 LEFT}

{RIGHT} {DOWN}{3 LEFT}{2 SPACES}{OFF}£" :rem 60

20 DATA"{RVS}£ {DOWN}{LEFT} {DOWN}{LEFT} {DOWN}
{LEFT} {DOWN}{2 LEFT}£ {OFF}£" :rem 180

30 DATA"{RVS}£{2 SPACES}TdOWN}{LEFT} {DOWN}
{3 LEFT}£ TOFF}£{RVS}{DOWN}{3 LEFT} {DOWN}

{LEFT}{2 SPACEST{OFF}£" :rem 217
40 DATA"{RVS}£{2 SPACESJTDOWN}{LEFT} {DOWN}

{2 LEFT}{2 SPACES}{DOWN}{LEFT} {DOWN}{3 LEFT}£

{OFF}£" :rem 240

50 DATAM{RVS}£{RIGHT}£{DOWN}{3 LEFT} {RIGHT}
{DOWN}{3 LEFT}{3 SPACES}{DOWN}{LEFT} {DOWN}
{LEFT}{OFF} £" :rem 200

60 DATA"{RVS}£ {OFF}£{RVS}{DOWN}{3 LEFT} {DOWN}
{LEFT}{3 SPACES}{DOWN}{LEFT} {DOWN}{3 LEFT}£

{OFF}£" :rem 220

70 DATAHTRVS}£ {OFF}£{RVS}{DOWN}{3 LEFT} {DOWN}
{LEFT}{3 SPACES}{DOWN}{3 LEFT} {RIGHT} {DOWN}

{3 LEFT}{2 SPACES}{OFF}£" :rem 139

80 DATA"{RVS}£{2 SPACES}{DOWN}{LEFT} {DOWN}{LEFT}

{DOWN}{LEFT} {DOWN}{LEFT}{OFF}£" :rem 116

90 DATA"{RVS}£{2 SPACES}{DOWN}{3 LEFT} {RIGHT}
{DOWN}{3 LEFT}{3 SPACES}{DOWN}{3 LEFT} {RIGHT}

{SPACE}{DOWN}{3 LEFT}{2 SPACES}{OFF}£"2rem 151
100 DATA"{RVS}£{2 SPACES}{DOWN}{3 LEFT} {RIGHT}

{DOWN}{3 LEFT}{3 SPACES}{DOWN}{LEFT} {DOWN}

{LEFT}{OFF}£" :rem 46

110 DATA"{DOWN} {RVS} {2 DOWN}{LEFT} " :rem 210

120 CLR:DIMA$(9),M$(10):FORT=0TO9:READA$(T):NEXT:R

EADPU$:rem 124

122 CV=54272:CS=53281:CB=53280:SC=1024:CM=55296

:rem 99

125 POKECS#1 :rem 186

130 PRINT"{CLR}{BLK}{4 SPACES}STEREO CLOCK"

:rem 198

145 S1$="{HOME}{20 DOWN}{15 RIGHT}":SC$=LEFT$(Sl$,

8) :rem 186

150 J2=60:J3=60:J4=60:J5=60:J6=60:J7=60 :rem 129

260 PRINT"{BLU}ENTER THE PRESENT TIME" :rem 55

270 INPUT"{DOWN}HOUR";HO:IFHO<0ORHO>12THEN270

:rem 251

275 HO$=RIGHT$(STR$(HO),2):IFHO<10THENHO$="0"+RIGH

T$(HO$/1) :rem 186

280 INPUT"{DOWN}MIN.";ME:IFME<0ORME>59THEN280

:rem 205

76

3: Applications

283 INPUT"{DOWN}SEC.";SE:IFSE<0ORSE>59THEN283

:rem 220

284 SE$=RIGHT$(STR$(SE),2):IFSE<10THENSE$="0"+RIGH

T$(SE$,1) :rem 191

285 ME$=RIGHT$(STR$(ME),2)sIFME<10THENME$="0"+RIGH

T$(ME$,1) :rem 162

290 PT$=HO$+ME$+SE$:PRINT"{DOWN}HIT Fl KEY TO STAR

T" :rem 181

300 GETA$:IFA$o"{Fl}"THEN300 : rem 11
310 TI$=PT$sPRINT"{CLR}" :rem 248

312 POKE1358+CV,0sPOKE1358,160sPOKE1368+CV,0sPOKEl

368,160 srem 12

314 POKE1438+CV,0:POKE1438,160:POKE1448+CV,0:POKE1

448,160 :ren 10

320 T2$=TI$sIFLEFT$(T2$,2)="13"THENTI$="010000"sT2

$=TI$ srem 7

330 T=6sJ= VAL(MID$(T2$,1,1)) s IF JOJ2 THEN J2=JsG

OSUB 500 srem 143

340 T=10sJ=VAL(MID$(T2$,2,l)) s IF JOJ3THEN J3=JsGO

SUB 500 srem 190

350 T= 16sJ=VAL(MID$(T2$,3,l))sIF J<>J4THENJ4=JsGO

SUB 500 srem 200

355 T= 20sJ=VAL(MID$(T2$,4,l))sIFJ<>J5THENJ5=JsGOS

UB 500 srem 203

360 T= 26sJ=VAL(MID$(T2$,5,l))sIF J<>J6THENJ6=JsGO

SUB 500 srem 208

365 T= 30sJ=VAL(MID$(T2$,6,l))sIF J<>J7THENJ7=JsGO

SUB 500 srem 211

370 GOTO320 srem 104

500 PRINTS1$LEFT$(T2$,2)"s"MID$(T2$,3,2)"s"RIGHT$(

T2$#2) srem 31

510 PRINTSC$TAB(T)"{3 SPACES}{DOWN}{3 LEFT}

{3 SPACES}{DOWN} {3 LEFT} {3 SPACES}{DOWN}
{3 LEFT}{3 SPACES}{DOWN}{3 LEFT}{3 SPACES}"

srem 61

520 PRINTSC$TAB(T)A$(J)sRETURN srem 116

77

General-Purpose
Bar Chart Routine
Sal Raciti

64 Translation by David Florance

rT^his versatile bar chart routine can be adapted to your

1 programs to give any set ofdata exciting visual appeal
It runs on the VIC or the 64.

Many computer applications produce numerical outputs, and for

some applications a simple listing of those numbers is all you'll

need. But in many cases a set of numbers will have the greatest

meaning if they are represented graphically.

This subroutine, designed to be appended to your own pro

grams, plots values on a multicolor bar graph. The subroutine

tests to see if the values are all positive, all negative, or both posi

tive and negative, and selects a plotting format accordingly. In

addition, it scales all values so that they will fit on the screen.

Note that several variables are used:

HH The number of bars to be displayed, up to a maximum of 16. Row

1 will be printed at the bottom of the graph.

XX$ The title of the graph, which may also be displayed in reverse

video. Maximum length is limited to 20 characters.

ZZ$ Bar labels. A maximum of 16 two-character labels is allowed.

The length of ZZ$ should equal 2*HH; for single character labels,

make one of the two characters a space.

B(N) Bar values. N ranges from 1 to HH. These values may be

positive, negative or both. Note that the elements of B(N) can

either be read in from DATA statements or computed in an ex

pression that is tied to N (for instance, WW=N*3.7).

Once values have been assigned to these variables, the bar

chart subroutine can be called at any time. Lines 10000-10160

locate the maximum positive and negative values of B(N). Those

values are assigned to variables ZZ and YY, respectively, and

allow lines 10180-10355 to calculate an appropriate scale factor (not

to exceed 10,000,000).

To determine the scale factor, ZZ and YY are first evaluated to

find the power of 10t(XX) that would simultaneously make

ZZ/10tXX<10and YY/10tXX> -10. Ibr instance, if ZZ=9000and

YY =-100 then XX would equal 3. Then, since the printed X-axis

will be calibrated only from -1 to 1, line 10480 calculates the

78

3: Applications

actual scale factor as 10 t(XX+1) and prints the result on

the screen.

Lines 10360-10380 then scale the values. Each B(N) is divided

by lO^XX (instead of byW(XX+1), since the X-axis ranges from 1

to -1 instead of from 10 to -10).

Lines 10520-10540 print the appropriate X axis on the

screen. If ZZ or YY equals 0 (that is, if the X-axis is calibrated from

-1 to 0 or from 0 to 1), then each horizontal division is given two

character spaces. Otherwise (if there are both positive and nega

tive values for B(N)), the X-axis will be calibrated from -1

through 0 to 1, and each horizontal division will be given one

character space. Lines 10560-10800 then print the appropriate X-

axis labels; the Y-axis is printed by lines 10840-10920.

Line 10940 selects the value of SS to scale (for printing pur

poses) the values of B(N). If bar values are all positive or all nega

tive, that value is 2. If B(N) takes on both positive and negative

values, a value of 1 is used.

Lines 10960-11460 form a loop that prints the bars. Bars are

made up of whole reverse spaces (CHR$(32)) and partial reverse

spaces (CHR$(180), CHR$(161), or CHR$(170)). The row location

of each bar is determined by lines 10970-10972, and the loop is

repeated once for each bar. If B(N) equals zero, that Ijar location is

skipped by line 11082 or 11084. Bar colors are determined by lines

11070 and 11080, and bar labels are printed by lines 11480-11700.

The string variables used in this subroutine are XX$, YY$, and

ZZ$. Numeric variables used are B(N), N, and LL through ZZ. Be

extremely careful if you use one of these variables in your main

program, or you may get some startling results.

To see how this subroutine works, type in the demonstration

program (one version works on either the VIC or the 64) and add

the appropriate version of the bar graph subroutine.

Program 1. Bar Chart Demo
Refer to "TheAutomatic Proofreader" (Appendix J) before typing this program in.

5 DIM B(16):PRINT"{CLR}" : rem 167

7 POKE 53280,6:POKE53281,1 :rem 147

10 FOR N=1TO 16 :rem 14

20 WW=+N*N*3.6 :rem 255

30 B(N)=WW :rem 47

40 HH=N :rem 127

45 NEXTN :rem 246

50 XX$=M{RVS} COMPUTE! BOOKS {OFF}11 : rem 26

55 ZZ$="Y1Y2Y3Y4Y5Y6Y7Y8Y9Y0Y1Y2Y3Y4Y5Y6" : rem 149

60 GOSUB10000 :rem 215

70 GOTO 70 :rem 7

79

3: Applications

This particular demonstration calculates bar values using an

expression. In this case, all values are positive; to see how the

routine handles negative numbers, change line 20 to read

YIW=5*(-1.2)tN. You can use any expression that you wish,

and the subroutine will automatically scale and plot the values

for you.

To display a known set of values, you can read in bar values

from DAJA statements. For example, change line 20 in the demon

stration program to:

20 READWW

and add a line with 16 items of data, for instance:

100 DATA 112,276,164,301,184,427,200,358,199,495,256,143,460,382,234,105

Remember that your scaling factor can be no larger than

10,000,000. To see what happens when you introduce numbers

that are too big, let WW=Nt N. That gives WW a maximum

value of 16tl6, or roughly 1.8447*10 H9 — just a bit beyond accep

table scaling range!

Program 2. General-Purpose Bar Charts, VIC Version

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

10000 REM BARCHART : rem 28

10020 WW=0:XX=0:YY=0:ZZ=0 :rern 25

10040 FORN=1TOHH ;rem 203

10060 IFB(N)>=0ANDB(N)>ZZTHENZZ=B(N) :rem 185

10080 IFB(N)<0ANDB(N)<YYTHENYY=B(N) :rem 118

10160 NEXTN :rem 133

10180 IFZZ>10THENZZ=ZZ/10:WW=WW+1 :rem 111

10200 IFZZ>10GOTO10180 :rem 8

10220 IFYY<-10THENYY=YY/10:XX=XX+1 :rem 147

10240 IFYY<-10GOTO10220 :rem 48

10253 IFYY=0THENXX=WW :rern 115

10280 IFZZ<=10ANDZZ>0THENZZ=ZZ*10:WW=WW-1 :rem 157

10300 IFZZ<10ANDZZ>0GOTO10280 :rem 253

10310 IFYY>=-10ANDYY<0THENYY=YY*10:XX=XX-l:rem 192

10320 IFYY>-10ANDYY<0GOTO10310 :rem 34

10330 IFZZ>10THENWW=WW+1 :rem 253

10340 IFYY<-10THENXX=XX+1 :rem 43

10352 IFZZ=0THENXX=XX :rem 119

10353 IFYY=0THENXX=WW :rem 116

10354 IFZZ<>0ANDYYO0ANDWW>XXTHENXX=WW :rem 82

10355 IFZZ=0ANDYY=0THENWW=-1:XX=-1 :rem 157

10360 FORN=lTOHH:B(N)=B(N)/(10tXX) :rem 248

10380 NEXTN :rem 137

10400 N=LEN(XX$) :rem 132

10410 PRINT" {BLU}11; :rem 33

80

3: Applications

10420

10430

10435

10440

10460

10480

10520

10530

10535

10540

10560

10600

10620

10640

10660

10680

10720

10760

10800

10840

10860

10880

10900

10910

10911

10920

10940

10960

10970

10971

10972

10980

11020

11040

11045

11050

11060

11070

11075

11080

11082

PRINT"{CLR}"7iIFN>20THENPRINT"TITLE TOO LONG

1":GOTO11720 :rem 128

IFHH>16ORHH<1THENPRINT"NO. OF BARS INCORRECT

1":GOTO11720 :rem 26

IFXX>6THENPRINT"SCALE FACT. TOO LARGEi":GOTO

11720 :rem 80

N=INT((22-N)/2) :rem 81

PRINTSPC(N)XX$:rem 225

PRINT"{RVS}SCALE FACTOR{OFF}"10t(XX+1):PRINT

"{16 DOWN}"SPC(2) :rem 57

FORN=1TO20 :rem 160

IFZZ=0ORYY=0THENPRINTCHR$(111)CHR$(112 b

+1

IFZZ <>0ANDYY< >0THENPRINTCHR$(ill)

NEXTN

IFZZ=0ANDYY=0GOTO10680

IFZZ=0GOTO10720

IFYY=0GOTO10800

PRINTSPC(1)"-1"SPC(17)"+1";

GOTO10840

PRINT"{HOME}{4 DOWN}NO BAR CHART VALUES I

TO11720 :rem

PRINTSPC(1)"-1"SPC(18)"0"7

GOTO10840

PRINTSPC(2)"0"SPC(17)"+l";

PRINT"{HOME}{DOWN}"
NN=12:RR=165:IFZZ=0THENNN=21:RR=167

IFYY=0THENNN=2:RR=165

FORN=1TO16

IFNN< > 21THENPRINTSPC(NN)CHR$(RR)

IFNN=21THENPRINTSPC(21)CHR$(167);

NEXTN

SS=1:IFYY=0ORZZ=0THENSS=2

FORN=1TOHH

PRINT"{HOME}";

FORLL=1TO18-N:PRINT"{DOWN}"7

NEXTLL

IFB(N)=0GOTO11460

UU=B(N)*SS

IFB(N)<0THENTT=-UU-INT(-UU):UU=-UU

MM=0

IFZZO0ANDYYO0THENMM=1

IFB(N)> 0THENTT=UU-INT(UU)

IFN/2-INT(N/2)=0THENPRINT"{RED}fi7
IFN/2-INT(N/2)<> 0THENPRINT"{YEL}"7

FORQQ=1TOINT(UU)

IFSS=2ANDUU<1ANDB(N)>=0THENPP

N=N

154

246

135

214

218

217

:rem

:rem

:rem

:rem

:rem

: rem

:rem 12

:rem 51

:GO

106

:rem 224

:rem 52

:rem 221

:rem 242

: rem 0

:rem 160

:rem 167

:rem 136

:rem 72

:rem 137

:rem 0

:rem 214

:rem 32

:rem 205

:rem 218

:rem 20

:rem 140

:rem 245

:rem 2

:rem 74

:rem 167

:rem 19

:rem 215

:rem 122

1:GOTO11170

:rem 147

11083 IFSS=2ANDUU<1ANDB(N)<0THENPP=22:GOTO11170

:rem 136

81

3: Applications

11084 IFSS=1ANDUU<1ANDB(N)>=0THENPP=11:GOTO11170

:rem 197

11085 IFSS=1ANDUU<1ANDB(N)<0THENPP=12:GOTO11170

:rem 136

11086 PRINT"{RVS}"; :rem 30
11100 IFYY=0THENPRINTSPC(1+QQ)CHR$(32):PP=1+QQ

:rem 94

11120 IFZZ=0THENPRINTSPC(22-QQ)CHR$(32):PP=22-QQ

:rem 204

11140 IFMM=1ANDB(N)>=0THENPRINTSPC(11+QQ)CHR$(32):

PP=11+QQ :rem 12

11160 IFMM=1ANDB(N)<0THENPRINTSPC(12-QQ)CHR$(32):P

P=12-QQ :rem 213

11170 PRINT11 {HOME}11; : rem 25
11172 FORLL=1TO18-N:PRINT"{DOWN}"; :rem 199

11173 NEXTLL :rem 212

11180 NEXTQQ :rem 220

11185 PRINT"{OFF}"; :rem 158

11200 IFTT>=.12ANDTT<.37THENTT=2 :rem 204

11220 IFTT>=.37ANDTT<.62THENTT=3 :rem 212

11240 IFTT>=.62ANDTT<.87THENTT=4 :rem 220

11260 IFTT>=.87ANDTT<=1THENTT=5 :rem 183

11285 IFB(N)>=0GOTO11300 :rem 74

11295 IFB(N)<0GOTO11380 :rem 20

11300 IFTT=2THENPRINTSPC(PP+1)CHR$(180) :rem 117

11320 IFTT=3THENPRINTSPC(PP+1)CHR$(161) :rem 119

11340 IFTT=4THENPRINTSPC(PP+1)"{RVS}"CHR$(170)"

{OFF}" :rem 166

11350 IFTT=5THENPRINTSPC(PP+1)"{RVS}"CHR$(32)"

{OFF}" :rem 117

11370 GOTO11460 :rem 49

11380 IFTT=2THENPRINTSPC(PP-1)CHR$(170) :rem 126

11400 IFTT=3THENPRINTSPC(PP-1)"{RVS}"CHR$(161)"

{OFF}" :rem 164

11420 IFTT=4THENPRINTSPC(PP-1)"{RVS}"CHR$(180)"

{OFF}" :rem 168

11430 IFTT=5THENPRINTSPC(PP-1)"{RVS}"CHR$(32)"

{OFF}" :rem 118

11460 NEXTN :rem 137

11480 PRINT"{BLU}", :rem 26

11500 PRINT"{HOME}"; :rem 22

11560 FORN=18TO1STEP-1 :rem 70

11565 IFN>HHTHENPRINT"{DOWN}"; :rem 249
11580 IFN<=HHTHENYY$=MID$(ZZ$,2*N-1,2) :rem 224

11590 IFN<=HHTHENPRINTYY$SPC(20); :rem 76

11640 NEXTN :rem 137

11660 PRINT"{HOME}"; :rem 29
11680 FORN=1TO20:PRINT"{DOWN}"; :rem 255
11700 NEXTN :rem 134

11720 RETURN :rem 219

82

3: Applications

Program 3* General-Purpose Bar Chart, 64 Version

Refer to 'The Automatic Proofreader" (Appendix]) before typing this program in.

10000 REM******BARCHART :rem 24

10020 WW=0:XX=0:YY=0:ZZ=0 :rem 25

10040 FORN=1TOHH :rem 203

10060 IFB(N)>=0ANDB(N)>ZZTHENZZ=B(N) :rem 185

10080 IFB(N)<0ANDB(N)<YYTHENYY=B(N) :rem 118

10160 NEXTN :rem 133

10180 IFZZ>10THENZZ=ZZ/10:WW=WW+1 :rem 111

10200 IFZZ>10GOTO10180 :rem 8

10220 IFYY<-10THENYY=YY/10:XX=XX+1 :rem 147

10240 IFYY<-10GOTO10220 :rem 48

10253 IFYY=0THENXX=WW :rem 115

10280 IFZZ<=10ANDZZ>0THENZZ=ZZ*10:WW=WW-1 :rem 157

10300 IFZZ<10ANDZZ>0GOTO10280 :rem 253

10310 IFYY>=-10ANDYY<0THENYY=YY*10:XX=XX-l:rem 192

10320 IFYY>-10ANDYY<0GOTO10310 :rem 34

10330 IFZZ>10THENWW=WW+1 :rem 253

10340 IFYY<-10THENXX=XX+1 :rem 43

10352 IFZZ=0THENXX=XX :rem 119

10353 IFYY=0THENXX=WW :rem 116

10354 IFZZ<>0ANDYYO0ANDWW>XXTHENXX=WW : rem 82

10355 IFZZ=0ANDYY=0THENWW=-1:XX=-1 :rem 157

10360 FORN=lTOHH:B(N)=B(N)/(10tXX) :rem 248

10380 NEXTN :rem 137

10400 N=LEN(XX$) :rem 132

10410 PRINT" {BLU}11; : rem 33
10420 PRINT"{CLR}";:IFN>20THENPRINT"TITLE TOO LONG

1":GOTO11720 :rem 128

10430 IFHH>16ORHH<1THENPRINT"NO. OF BARS INCORRECT

!":GOTO11720 :rem 26

10435 IFXX>6THENPRINT"SCALE FACT. TOO LARGE!":GOTO

11720 :rem 80

10440 N=INT((22-N)/2) :rem 81

10460 PRINTSPC(17)XX$:rem 251

10480 PRINT"{RVS}{7 RIGHT}SCALE FACTOR{OFF}"10t(XX

+1):PRINT"{16 DOWN}"SPC(9) :rem 11

10520 FORN=1TO20 :rem 160

10530 IFZZ=0ORYY=0THENPRINTCHR$(111)CHR$(112);:N=N

+1 :rem 154

10535 IFZZ<>0ANDYY<>0THENPRINTCHR$(111); :rem 246

10540 NEXTN :rem 135

10560 IFZZ=0ANDYY=0GOTO10680 :rem 214

10600 IFZZ=0GOTO10720 :rem 218

10620 IFYY=0GOTO10800 :rem 217

10640 PRINTSPC(19)"-1"SPC(9)"0"SPC(8)"+1" : rem 190

10660 GOTO10840 :rem 51

10680 PRINT"{HOME}{4 DOWN}NO BAR CHART VALUES!":GO

TO11720 :rem 106

83

3: Applications

10720 PRINTSPC(19)"-1"SPC(18)"0"; srem 25

10760 GOTO10840 :rem 52

10800 PRINTSPC(20)"0"SPC(18)"+1"; :rem 14

10840 PRINT" {HOME} {DOWN}11 :rem 242

10860 NN=12:RR=165:IFZZ=0THENNN=21sRR=167 irem 0

10880 IFYY=0THENNN=2:RR=165 :rem 160

10900 FORN=1TO16 :rem 167

10910 IFNN<>40THENPRINTM{7 RIGHT}MSPC(NN)CHR$(RR)

:rem 152

10911 IFNN=40THENPRINT"{7 RIGHT}"SPC(40)CHR$(167);

srem 89

10920 NEXTN :rem 137

10940 SS=1:IFYY=0ORZZ=0THENSS=2 :rem 0

10960 FORN=1TOHH :rem 214

10970 PRINT"{HOME}"; :rem 32

10.971 FORLL=1TO18-N:PRINT"{DOWN}"; : rem 205
10972 NEXTLL :rem 218

10980 IFB(N)=0GOTO11460 :rem 20

11020 UU=B(N)*SS :rem 140

11040 IFB(N)<0THENTT=-UU-INT(-UU)sUU=-UU :rem 245

11045 MM=0 srem 2

11050 IFZZO0ANDYY<>0THENMM=1 srem 74

11060 IFB(N)>0THENTT=UU-INT(UU) srem 167

11070 IFN/2-INT(N/2)=0THENPRINT"{RED}"; srem 19

11075 IFN/2-INT(N/2)<>0THENPRINT"{YEL}"; srem 215

11080 FORQQ=1TOINT(UU) srem 122

11082 IFSS=2ANDUU<lANDB(N)>=0THENPP=lsGOTO11170

srem 147

11083 IFSS=2ANDUU<lANDB(N)<0THENPP=22sGOTO11170

srem 136

11084 IFSS=lANDUU<lANDB(N)>=0THENPP=llsGOTO11170

srem 197

11085 IFSS=lANDUU<lANDB(N)<0THENPP=12sGOTO11170

srem 136

11086 PRINT"{RVS}"; srem 30

11100 IFYY=0THENPRINT"{7 RIGHT}"SPC(1+QQ)CHR$(32)s

PP=1+QQ srem 109

11120 IFZZ=0THENPRINT"{7 RIGHT}"SPC(22-QQ)CHR$(32)

sPP=22-QQ srem 219

11140 IFMM=1ANDB(N)>=0THENPRINT"{7 RIGHT}"SPC(11+Q

Q)CHR$(32)sPP=ll+QQ srem 27

11160 IFMM=1ANDB(N)<0THENPRINT"{7 RIGHT}"SPC(12-QQ

)CHR$(32)sPP=12-QQ srem 228

11170 PRINT"{HOME}"; srem 25

11172 FORLL=1TO18-NsPRINT"{DOWN}"; srem 199

11173 NEXTLL srem 212

11180 NEXTQQ srem 220

11185 PRINT"{OFF}"; srem 158

11200 IFTT>=.12ANDTT<.37THENTT=2 srem 204

84

3: Applications

11220

11240

11260

11285

11295

11300

11320

IFTT>=.37ANDTT<.62THENTT=3

IFTT>=.62ANDTT<.87THENTT=4

IFTT>=.87ANDTT<=1THENTT=5

IFB(N)>=0GOTO11300

IFB(N)<0GOTO11380

{7

:rem 212

:rem 220

:rem 183

:rem 74

:rem 20

IFTT=2THENPRINT"{7 RIGHT}"SPC(PP+1)CHR$(180)
:rem 132

IFTT=3THENPRINT"{7 RIGHT}MSPC(PP+1)CHR$(161)

:rem 134

RIGHT}"SPC(PP+1)"{RVS}"CH
:rem 181

RIGHT}"SPC(PP+1)"{RVS}"CH
:rem 132

:rem 49

IFTT=2THENPRINT"{7 RIGHT}"SPC(PP-1)CHR$(170)

:rem 141

IFTT=3THENPRINT"{7 RIGHT}"SPC(PP-1)"{RVS}"CH
:rem 179

{7 RIGHT}"SPC(PP-1)"{RVS}"CH

:rem 183

11340 IFTT=4THENPRINT

R$(170)"{OFF}"

11350 IFTT=5THENPRINT"{7

R$(32)"{OFF}"

11370 GOTO11460

11380

11400

R$(161)"{0FF}"
11420 IFTT=4THENPRINT

R$(180)"{OFF}
11430 IFTT=5THENPRINT"{7 RIGHT}"SPC(PP-1)"{RVS}"CH

R$(32)"{OFF}" :rem 133

11460 NEXTN :rem 137

11480 PRINT"{BLU}", :rem 26

11500 PRINT"{HOME}"; :rem 22

11560 FORN=18TO1STEP-1 :rem 70
11565 IFN>HHTHENPRINT"{DOWN}"; :rem 249

11580 IFN<=HHTHENYY$=MID$(ZZ$,2*N-1,2) :rem 224

11590 IFN<=HHTHENPRINTYY$SPC(38); :rem 85

11640 NEXTN :rem 137

11660 PRINT"{HOME}"; :rem 29

11680 FORN=1TO20:PRINT"{DOWN}"; :rem 255
11700 NEXTN :rem 134
11720 RETURN :rem 219

85

Advertiser
Robert Lykins

Ifyou're a business person, you recognize your computer's
lvalue as a bookkeeping orfile-managing tool But have
you thought ofusing it for marketing? "Advertiser" turns

any VIC or 64 into a computer-controlled marquee that's

easily adaptable to any promotion.

A 22- or 40-column display, like that of the VIC or 64, is some

times considered less desirable than the 80-column displays

found on more expensive computers. However, the larger char

acters of the Commodore displays are indisputably easier to read,

particularly from a distance. That can be quite an asset for certain

uses, particularly in advertising.

The following program is an example of the advertising

potential of your computer. A large TV screen, placed behind a

properly shaded window, provides an effective display medium.

The displayed words are easily changed, giving Madison Avenue

flexibility at a hometown price.

The display is composed of a moving, marquee-style line

(B$); a flashing, large-lettered word (A$); and a seven-line capac

ity box (C$ array). Line 500 controls the speed of the display.

The marquee string, B$, can contain up to 255 characters, but

concatenation (string addition) becomes necessary since a pro

gram line will accommodate a total of only 88 characters. The pro

gramming involved is not complex. Simply insert lines for addi

tional strings (such as Bl$, B2$, and B3$) between lines 130 and

140. Then, in a final line, add them together as follows:

139 B$ = B$ + Bl$ + B2$ + B3$

Because of its length, line 130 must be typed with no space

after the line number. The cursor must be returned to the state

ment with a cursor key before hitting RETURN or an error will

occur.

Line 470 in the VIC version, which produces the right-to-left

movement of the marquee, also requires special attention. The

problem is that the DELete character ({ DEL}) cannot be printed

while in the normal quote mode. Try it and you will delete the

previously typed character. You must close the quotes after typing

the {RIGHT} character, move the cursor one space to the left so

that it rests on the quotation marks, and then type an INSert

86

3: Applications

(SHIFT-DELete). Now hit the DELete key and a reverse-video T

should appear. That is the symbol for the DELete character in a

PRINT statement. Then move the cursor to the right of the quota

tion marks and finish the line.

When you list line 470, don't be alarmed to find that the

{ RIGHT} character and the {DEL} character are missing. Unlike

the other control characters, the DELETE executes on listing. Both

it and the {RIGHT} character are still in the line; however, you

will have to retype them if you make subsequent changes to the

line. There is no {DEL} character in line 470 of the 64 version.

The flashing, large-lettered word, A$, may consist of up to

five letters. The sample program uses the word CAFE. An alter

nate choice might be the word SALE. Line 220 causes the word to

print in the multicolor mode so that line 480 will make it flash in

changing auxiliary colors. Changing the symbol that makes up

the letters of the word in line 300 will change the shape and color

of the letters. Many interesting variations are possible, and you

can try reverse-video characters, too.

The remaining portion of the display consists of seven lines

enclosed in a box on the lower part of the screen. The box is

drawn in lines 370 through 410. Refer to Appendix B, "How to

Type In Programs," for information on the special characters

used.

The display lines are defined by the C$ array in lines 140

through 200. In this example, the second, fourth, and sixth lines

are empty strings, but they can easily be filled to display more in

formation. The lines should consist of no more than 18 characters

each, excluding control characters; closed quotes are not necessary.

Since control characters affect the LENgth of the string, you

may sometimes need to add one or two {RIGHT} characters in

order to maintain centering. If, for example, you want the string

in line 140 to print as white, you would add a {WHT} control

character after the {RVS} character. However, that will make the

line print to the left one space. To counter this, you should also

add a { RIGHT} character. Each two characters in the string will

move the print position one space left of center. This is accom

plished in line 590.

87

3: Applications

Program 1. Advertiser, VIC Version

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

100 REM VIC ADVERTISING :rem 151

110 PRINT"{CLR} :rem 212

120 A$="CAFE :rem 102

130 B$="HUNGRY? THIRSTY? FROM SNACKS TO FULL DINNE

RS, COMPUTER MALL CAFE IS THE SPOT, " :rem 174

140 C$(l)=

150 C$(2)=

160 C$(3)=

170 C$(4)=

180 C$(5)=

190 C$(6)=

200 C$(7)=

{RVS}TODAYfS SPECIAL :rem 235

:rem 223

{RVS}HAMBURGER, FRIES, :rem 97

:rem 227

{RVS}AND SHAKE :rem 54

:rem 231

•{RVS}$2.75 :rem 226

210 D$="{HOME}{13 DOWN} :rem 74

220 POKE646,9 :rem 200

230 FORA=1TOLEN(A$) :rem 99

240 B=ASC(MID$(A$,A,l))-64 :rem 82

250 FORC=0TO7 :rem 8

260 D=PEEK(32768+B*8+C) :rem 214

270 E=64 :rem 133

280 FORF=0TO7 :rem 14

290 IFD<ETHEN320 :rem 179

300 PRINT"{HOME}"TAB(110+C*22)SPC(12-LEN(A$)*2+F/2

+G)"Q :rem 28

310 D=D-E :rem 203

320 E=E/2 srem 189

330 NEXT :rem 213

340 NEXT :rem 214

350 G=G+4 :rem 194

360 NEXT :rem 216

370 PRINT" {DOWN} {WHT} Ogl8 T5|P :rem 116

380 FORL=1TO7 :rem 22

390 PRINT" £G3{18 SPACES}gM| :rem 151

400 NEXT :rem 211

410 PRINT" Li 18 @31 :rem 82

420 FORA=2TO7 :rem 7

430 POKE36879,8+A :rem 167

440 FORB=1TO2 :rem 4

450 GOSUB560 :rem 180

460 FORC=1TOLEN(B$) :rem 107

470 PRINT"{HOME}{2 DOWN}{RVS}{WHT}{RIGHT}{DEL}"SPC

(21)MID$(B$,C,1) :rem 4

480 POKE36878#16*(INT(D/l0)+2) :rem 86

490 D=D+1:IFD=60THEND=0 :rem 78

500 FORL=1TO60 :rem 63

510 NEXT :rem 213

520 NEXT :rem 214

i \

f! 3: Applications

n
530 NEXT :rem 215

H 540 NEXT :rem 216
550 GOTO420 :rem 105

ri 560 PRINTD$:rem 144

570 FORL=1TO7 :rem 23

I—. 580 POKE646,INT(RND(l)*6)+2 :rem 247

• (590 PRINTTAB(12-LEN(C$(L))/2)C$(L) ;rem 124
600 NEXT :rem 213

610 RETURN srem 119

Program 2. Advertiser, 64 Version

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

100 DIMCH(3,7):IR=56334:CC=646:S=54272:BK=53281:BO

=53280:CR=53248 :rem 130

110 PRINTM{CLR}II;CHR$(142);CHR$(8) : rem 223
120 DATA3,1,6,5:REM "CAFE" :rem 113

130 B$="HUNGRY? THIRSTY? FROM SNACKS TO FULL DINNE

RS, COMPUTER MALL CAFE HITS" :rem 245

135 B$=B$+" THE SPOT. {40 SPACES}11 : rem 102

140 C$(1)="{RVS}TODAYIS SPECIAL :rem 235
150 C$(2)=" :rem 223

160 C$(3)="{RVS}HAMBURGER, FRIES, :rem 97
170 C$(4)=" :rem 227

180 C$(5)="{RVS}AND SHAKE :rem 54

190 C$(6)=" :rem 231

200 C$(7)="{RVS}$2.75 :rem 226

210 D$="{HOME}{15 DOWN}" :rem 142

220 POKECC,12 :rem 216

230 POKEIR# PEEK(IR)AND254:POKE1,PEEK(1)AND251

:rem 226

240 FORJ=0TO3 sREADAsFORI=0TO7 sCH(J,I)=PEEK(CR+A*8+

I):NEXTI,J :rem 233

250 POKE1,PEEK(l)OR4sPOKEIR,PEEK(IR)ORl :rem 178

260 FORK=0TO3:PRINT"{HOME}{5 DOWN}";TAB(1+10*K);

:rem 80

270 FORJ=0TO7:FORI*=7TO0STEP-l:IF(CH(K,J)AND2tD = (2

I—I Tl)THENPRINT"QH;:GOTO290 :rem 64
PRINT" "; srem 166

NEXTI:PRINTCHR$(141);TAB(l+10*K);:NEXTJ/KsPRIN

T :rem 163

PRINT"{DOWN}{WHT}{9 RIGHT} Ogl8 T|P :rem 121

FORL=1TO7 :rem 22

PRINT"{9 RIGHT} gG|{l8 SPACES}gM| :rem 156
NEXT :rem 211

PRINT" {9 RIGHT} L|cl8 @3£ :rem 87
FORA=2TO7 srem 7

POKEBK,0:POKEBO,0+A srem 113

89

n

n

n

i S

n

280

290

370

380

390

400

410

420

430

3: Applications

440 FORB=1TO2 :rem 4

450 GOSUB560 :rem 180

455 PRINT" {HOME} {2 DOWN} {RVS} {WHT} {40 SPACES}11
:rem 187

460 FORC=1TOLEN(B$) :rem 107

465 I=40-C:IFK0THENI=0 :rem 92

468 E=l:IFO40THENE=C-40 : rem 136

470 PRINT" {HOME} {2 DOV7N} {RVS} {WHT} "SPC(I)MID$ (B$,E

,40-1); :rem 159

480 POKE53270,PEEK(53270)OR16:POKE53282,(INT(D/10)

):POKE53283,(INT(D/10))

490 D=D+1:IFD=80THEND=0

500 FORL=1TO60

510 NEXT

520 NEXT

530 NEXT

540 NEXT

550 GOTO420

560 PRINTD?

570 FORL=1TO7

580 POKECC,INT(RND(l)*6)+2

590 PRINTTAB(21-LEN(C$(L))/2)C$(L)

600 NEXT

610 RETURN

:rem 108

:rem 80

:rem 63

:rem 213

:rem 214

:rem 215

:rem 216

:rem 105

:rem 144

:rem 23

:rem 221

:rem 124

:rem 213

:rem 119

90

Remarkable REMs
Louis E Sander

YVJould you like to dress up yourREMs? Here is a

W routine for the VIC or 64 that will let you create
REM statements centered inside custom borders — and

they will list without line numbers or the keyword REM.

This routine dramatically sets off REM statements, highlighting

them and enhancing the readability of your program listings.

With minor modifications, the program works on both the VIC-20

and the Commodore 64. However, the REM and line number

suppression features may not work with all printers.

Follow these instructions when typing in the program:

1. The {SHIFT-SPACE} characters in lines 63820,63840, and

63860 are obtained by holding down the SHIFT key while

typing the space bar.

2. For VIC-20s, the WIDTH in line 63800 should equal 22. For

Commodore 64s, WIDTH should equal 40.

To use this subroutine, append it to a program and type in

RUN 63800. Following the prompts, enter the line number for the

first REMark statement and the character or characters you'd like

to see repeated as a border. Then type in up to six lines of remarks,

with each line having fewer characters than your screen width.

When youVe entered your last REMark, respond to the next

prompt by pressing RETURN. The program will then clear the

screen and print a number of program lines, which will be REM

statements containing a group of reverse-video T's. Notice that

they're consecutively numbered from the starting line you

selected above, and observe that your border entry has been

repeated to fill an entire screen line.

If the lines look good to you, HOME your cursor and press

RETURN once for each line. That enters them into your program.

If you want more than one set of remarks, RUN 63800 again and

enter a different starting line number. When you've entered your

last remark, you can delete lines 63800 and up. Then, when you

list your main program, your special REMarks will appear as de

scribed above, suitably impressing everyone who sees them and

making them much easier to spot.

Despite its apparent complexity, the program is really quite

simple. The computer interprets those reverse-video T's as

DELetes. When they are listed, they wipe out what was printed

93

4: Programming Aids

before them, namely the line numbers and REM keywords. If

your printer responds to DELetes, your printed listings will be

just like those on the screen; if it doesn't, you'll see the line

numbers, the REMs, and maybe even the T's on your printed

listings.

There are a few cautions to be observed when entering your

borders and remarks. Since REMs can't contain SHIFTed char

acters, you can't use graphics or lowercase letters in your borders

or your remarks. In addition, since INPUT statements won't

handle commas or colons, you can't use those characters either,

unless you put them in after the program lines are listed on the

screen.

It's hard to delete or change your special REM lines, because

their line numbers are invisible, but lines 63930-63990 solve the

problem. When you RUN 63930, these lines go through all the

REMs in memory, changing the DELetes to British pound signs

(£). The process takes several seconds. But when it's finished,

the REMs will list in the normal way and you can make all the

changes you'd like. When you're finished, another RUN 63930

will restore the DELetes, and the line numbers and REMs will

again be invisible.

This little program is a lot of fun to use, and it gives your

listings a professional look as well as an air of mystery. I hope you

will have as much fun with it as I have.

Remarkable REMs for VIC and 64

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

100 REM ** REMARKABLE REMARK MAKER ** :rem 37

120 REM{4 SPACES}SEE REM STATEMENTS FOR :rem 39

122 REM{2 SPACES}CHANGES FOR OTHER MACHINES:rem 35

124 REM :rem 123

63800 WIDTH=40:SP$="{10 SPACES}":FORI=1TO2:SP$=SP$

+SP$:NEXT :rem 193

63805 REM ** IN LINE 63800, SET WIDTH=NUMBER OF CH

ARACTERS ON ONE SCREEN LINE :rem 120

63810 INPUT"{CLR}1ST LN#";LN:LN=INT(LN):IFLN<0ORLN
>63999THEN63810 :rem 71

63815 REM ** IN LINES 63820-63860, ALL SPACES MUST

BE SHIFTED SPACES :rem 226

63820 INPUT"{DOWN} BORDER{4 SHIFT-SPACE}{4 LEFTI

ES :FORJ=1TOWI/LEN(B$)+l :A$=A$+B$:NEXT

:rem 195

63830 A$=LEFT$(A$,WI-l):RE$(l)=A$:RE$(8)=A$:rem 14

63840 FORI=2TO7:INPUT"{DOWN} REMARK{3 SHIFT-SPACE}
{3 LEFT}";RE$(I) :rem 166

94

4: Programming Aids

63850 IFLEN(RE$(I))>WITHENPRINT"{RVS}MAXilWI"{LEFT}

CHARACTERS I11:1=1-1:NEXT : rem 82

63860 IFRE$(I)="{SHIFT-SPACE}"THENRE$(I)=RE$(8):RE

$(8)="M:LL=LN+I-1:I=7:GOTO63880 :rem 254

63870 LL=LN+I:RE$(I)=LEFT$(SP$,WI/2-LEN(RE$(I))/2)
+RE$(I) :rem 222

63880 NEXT:PRINT"{CLR}";:LN=LN-1:FORI=1TO8:LN=LN+1

:IFRE$(I)=""THENI=8:NEXT:END :rem 250

63890 ND=7:IFLN>9THENND=8:IFLN>99THENND=9:IFLN>999

THENND=10:IFLN>9999THENND=11 :rem 250

63900 A$="REMM+CHR$(34)+CHR$(34)+CHR$(20)+CHR$(18)

+LEFT$("TTTTTTTTTTT",ND-1) :rem 32

63910 A$=A$+CHR$(146)+RE$(I):PRINTLN;A$:NEXT

:rem 28

63920 END :rem 219

63930 SB=43:I=PEEK(SB)+256*PEEK(SB+1):REM ** RUN 6

3930 TO HIDE OR UNHIDE :rem 233

63940 J=PEEK(I)+256*PEEK(I+1):IFPEEK(I+4)=143ANDPE

EK(I+5)=34THENGOSUB63970 :rem 99

63950 IFPEEK(J)=0ANDPEEK(J+1)=0THENEND :rem 37

63960 I=J:GOTO63940 :rem 81

63970 FORK=I+6TOI+17:IFPEEK(K)=20THENPOKEK,92:GOTO

63990 :rem 136

63980 IFPEEK(K)=92THENPOKEK,20 :rem 57

63990 NEXT:RETURN :rem 100

95

Programming the 64's

Function Keys
James Quinby

Byusing your Commodore'sfunction keys, you can

simplify many editing and programming tasks.

This program allows Commodore 64 users to program the eight

function keys and to use them outside the realm of a BASIC pro

gram. This is especially useful during program development. For

example, let's say you're writing an application program in

BASIC. In the normal course of writing and debugging a pro

gram, you probably find that you enter certain commands many

times. For instance, I find myself constantly typing PRINT PEEK,

LIST, GOSUB, and RUN to name a few. This key definer will

allow you to program the function keys so that any sequence of

commands will be executed with a single keystroke.

How Ifs Done

The method used here was derived from a previous COMPUTE!

article ("Programming VIC's Function Keys," by Jim Wilcox,

November 1982). It uses a BASIC program to supply the key defi

nitions and to load the necessary machine language.

The bulk of the machine language operates on the same prin

ciple as the "wedge." Every 1/60 second, the machine scans for an

IRQ interrupt. You can take advantage of that by altering the stan

dard vectored address to wedge in your own routine. That

routine checks the last keystroke for f1 through f8, and if no func

tion key was pressed it vectors back to the standard IRQ handler.

If no function key is detected, then the appropriate key definition

(ASCII string) is plucked from a table (which you set up using the

program) and sent to the screen. The text will be placed at the cur

rent cursor location, so the user can either continue typing, hit

RETURN, or have it executed automatically.

The remaining machine code provides a convenient means

for activating and deactivating the function keys. This small rou

tine can be invoked by a SYS, and it simply repoints the IRQ

vector, wedging in or wedging out the new interrupt handler.

The new interrupt wedge is located at $C000, and the IRQ re-

setter is located at $02A7. Normally, both of these areas are un-

96

H

f"7 4: Programming Aids

touched by BASIC. Function key definitions are located in a vari

able length table after the new interrupt wedge. Since the length

of the table cannot be determined until after the keys have been

defined, the program will let you know the highest used byte.

This value is typically in the neighborhood of 49500.

Loading the Key Definition Table Program
You must first decide how to define your function keys. Key defi

nitions are contained in lines 20-90 of the program listing. I sug

gest defining each key with some often-used BASIC command(s)

that you don't like typing repetitively. Alternatively, choose some

command sequence that is used infrequently but easily forgotten.

Guidelines for defining the keys are as follows:

1. Each key definition is subject to the standard DAIA state

ment syntax rules.

2. Every definition must be enclosed within quotes.

3. The back arrow (<-) can be used to cause an automatic

RETURN when the function key is pressed. If you don't

use the back arrow, you must hit RETURN after pressing

the function key to cause the command to be entered. The

key definitions are arranged in sequential order; the first

DAIA statement defines fl, the second defines f2, etc.

4. Null keys can be defined by using a null key definition

DAIA statement (that is, DAIA " ").

5. If a REM appears within the quotes, it will appear on the

screen when its key is entered.

6. Use the BASIC keyword abbreviations for long command

sequences to squeeze more in.

7. All eight function keys must be defined, even if some are

null.

Once you've chosen your key definitions, type in the attached

program and replace statements 20 through 90 with your defini

tions. SAVE, and then RUN, the program. As the key definitions

are being interpreted and saved, you will see them appear on the

screen. During a slight pause, the two machine language pro

grams will be POKEd and checksummed. A checksum error will

halt the program and print an error message. In this case, you

should double-check the DAIA statements in lines 520-710.

Upon successful loading, the border should turn green, indi

cating that the function keys are active. Now try each function

key, and its corresponding definition should appear on the

97

4: Programming Aids

screen. If the last character in a definition is a <-, then the com

mand will be executed. If not, you can continue typing to com

plete the command or hit RETURN yourself. Please note that you

are now free to clear memory (type NEW) and enter any program

you wish. The function keys will maintain their special operation.

Precautions

Wedging a routine into the IRQ interrupt process can be tricky

business, especially if the pointers are reset from BASIC using

POKEs. For that reason, the short machine language program at

location $02A7 (679) is provided. If you should reset the computer

using RUN/STOP-RESTORE, you'll notice that the function keys

cease to function, since the system reset will restore the IRQ

vector to its original value. However, you can easily reactivate the

keys by calling the IRQ resetter with:

SYS679

The border will once more turn green, indicating that the func

tion keys are again active. A second SYS 679 will deactivate the

keys and turn the border red. You must deactivate the keys if you

load a different routine at $C000; failure to do so will probably

lock up the computer.

A note on border colors: If you don't like green for keys-on

and red for keys-off, you can change them to suit your own prefer

ence. Line 570 contains the standard color code for green (5) and

line 590 contains that for red (2). Modify those codes however you

wish. Beware, though, that the checksum for this DAIA state

ment group will then have to be adjusted.

In the listing given here, the following functions are defined:

fl: LIST command; no autoRETURN

f2: RUN command; no autoRETURN

f3: LIST program to printer; no autoRETURN

f4: CLOSE printer after LIST; no autoRETURN

f5: In-memory program merge; no autoRETURN

f6: Second step in program merge; no autoRETURN

f7: PRINT PEEK; no autoRETURN

f8: Set screen colors; autoRETURN

Notice that I avoid autoRETURNs, since I don't trust my

memory. I prefer to see each command before it is executed. If I

hit the wrong function key, I can always delete the line.

The definitions for fl, f2, f7, and f8 are self-explanatory. The

4: Programming Aids

definition for f3 contains the three commands, in abbreviated for

mat, to OPEN the printer, CMD to it, and LIST a program. Typing

f4 (shift-f3) will CLOSE the printer. The definition for f5 contains

all the commands to perform an in-memory program merge,

computing the ending address of the program currently in

memory and resetting BASIC start-of-program pointers to that

address. The commands in f6 (shift-f5) will again reset BASIC

pointers, only this time to the start of the first program. Together,

f5 and f6 let you combine, or merge, two programs by simply

hitting two keys.

Since it's easy to define the function keys with this BASIC

program, you may want to make several copies, each defining a

different set of keys. For example, the set discussed here could be

used to facilitate program editing functions. Another set could

supply SID chip POKE locations and let you fill in the blanks

where appropriate. The same thing could be used for the VIC-II

chip locations, making sprite programming easier.

Programmable Function Keys for the 64
Refer to 'The Automatic Proofreader" (Appendix]) before typing this program in.

10 REM DEFINE-PF-KEYS-HERE : rem 182

20 DATA"LIST" :rem 252

30 DATA"RUNM :rem 182

40 DATA"0P4,4:CMD4:LI/l:REM->LIST TO PRINTER

:rem 146

45 REM IE: "OPEN4,4:CMD4:LIST" :rem 215

50 DATA"PR4:CL04":REM->CLOSE PRINTER AFTER LIST

:rem 182

55 REM IE: MPRINT#4:CL0SE4H :rem 34

60 DATA"X=(PE(45)+256*PE(46))-2:HH=INT(X/256):LL=X

-256*HH:PO43,LL:PO44,HH" :rem 237

65 REM IE:"X=(PEEK(45)+256*PEEK(46))-2:HH=INT(X/25

6):LL=X-256*HH: :rem 187

66 REM (CONT'D) ... POKE43,LL:POKE44,HH" :rem 211

70 DATA"PO43,1:PO44,8":REM~>RESET AFTER MERGE

:rem 187

75 REM IE:"POKE43,1:POKE44,8" :rem 132

80 DATA"PRINT PEEK(" :rem 160

90 DATA"PO53280,2:PO53281,12:PO646,7{2 SPACES}:REM

=>SET SCREEN COLORS-*" : rem 3

100 REM

:rem 246

110 REM +++ C-64 FUNCTION KEY DEFINITION +++

:rem 138

120 REM

:rem 248

99

4: Programming Aids

130 REM NOTE: IF YOU HIT 'RUN/STOP' 'RESTORE1 YO

U WILL LOSE THE PFKEYSi :rem 70

140 REM TO GET THEM BACK WITHOUT RELOADING, ENTE

R THE FOLLOWING: :rem 1

150 REM{2 SPACES}SYS 679 :rem 31

160 GOSUB470: REM- DEFINE PFK ASC VALUES :rem 48

170 LB=110:POKE251,LB:POKE253,LB:REM- SAVE FOR NEW

INTERR. ROUTINE :rem 224

180 HB=192:POKE252,HB:POKE254,HB:REM-{5 SPACES}DIT

TO :rem 61

190 : :rem 212

200 PRINT CHR$(147)/"DEFINING F-KEYS AS FOLLOWS:11

:rem 115

210 ADDR=(LB+256*HB) :rem 70

220 FOR PFK=1 TO 8 :rem 165

230 READ PF$: REM- GET A PFKEY DEF. :rem 83

240 PRINT"PF"PFK "="PF$:rem 25

250 LP=LEN(PF$) :rem 90

260 POKEADDR#FK(PFK):IFLP=0THEN330 :rem 104

270 : :rem 211

280 FORI=1 TO LP:ADDR=ADDR+1 :rem 128

290 C$=MID$ (PF$, 1,1) : IFC$="-«"THENC$=CHR$ (13)

:rem 179

300 POKEADDR,ASC(C$) :rem 152

310 NEXTI :rem 28

320 : :rem 207

330 ADDR=ADDR+1 :rem 101

340 NEXT PFK :rem 183

350 POKEADDR,0 :rem 62

360 : :rem 211

370 GOSUB520: REM LOAD IRQ RESETTER :rem 208

380 IF CK<> 3958THENPRINT"{RVS}BAD CHECKSUM IN FIR

ST GROUP OF DATA STMTS.":END :rem 108

390 : :rem 214

400 GOSUB620: REM LOAD NEW I.H. :rem 72

410 IF CK<> 14512THENPRINT"{RVS}BAD CHECKSUM IN SE
COND GROUP OF DATA STMTS.":END :rem 190

420 : :rem 208

430 SYS679{2 SPACES}: REM REPOINT IRQ VECTOR

:rem 193

440 PRINT"{RVS}PF KEYS ACTIVATED; LAST BYTE USED"A

DDR :rem 209

450 END :rem 112

460 : :rem 212

470 REM PFKEY ASCII VALUES SUBRTN :rem 156

480 FK(1)=133: FK(2)=137: FK(3)=134: FK(4)=138

:rem 246

490 FK(5)=135: FK(6)=139: FK(7)=136: FK(8)=140

: rem 6

100

4: Programming Aids

500 RETURN :rem 117

510 : :rem 208

520 REM POKE IRQ RESETTER :rem 139

530 CK=0 :rem 147

540 FORI=1TO41:READA:POKE678+I#A:CK=CK+A:NEXT

:rem 61

550 RETURN : rem 122

560 DATA120,173,20,3,240,18,169,0,141,20,3,169,192

,141,21,3,169 :rem 58

570 DATA 5 : REM GREEN BORDER? CODE :rem 83

580 DATA141, 32, 208, 76, 206, 2,169, 49,141, 20, 3,169, 23

4,141,21,3,169 :rem 128

590 DATA 2 : REM RED BORDER CODE :rem 188

600 DATA141,32,208,88,96 :rem 212

610 : :rem 209

620 REM SUBR. TO POKE NEW INTERRUPT{3 SPACES}HAN

DLER :rem 244

630 CK=0 :rem 148

640 FORI=49152TO49261:READB:POKEI,B:CK=CK+B:NEXT

:rem 230

650 RETURN :rem 123

660 DATA165,2,240,51,160,0,177,251,32,91,192,176,4

,201,0,208,15,169,0,133,2 :rem 135

670 DATA165,253,133,251,165,254,133,252,76,49,234,

166,198,177,251,157,119,2 :rem 194

680 DATA230,198,32,103,192,165,198,201,11,144,212,

230,2,76,49,234,165,215,32 :rem 208

690 DATA91,192,176,3,76,49,234,165,8,41,1,208,247,

160,0,177,251,197,215,208 :rem 185

700 DATA6,32,103,192,76,6,192,32,103,192,76,73,192

,201,133,144,6,201,141,176 :rem 199

710 DATA2,56,96,24,96,230,251,208,2,230,252,96

:rem 13

101

Calculated GOTO

for the VIC and 64
Louis Buscaslia-Zeppa

Commodore's dynamic keyboard lets you simulate

input without ever touching a key. This routine,

which runs on any VIC or 64, takes advantage of that fea

ture to calculate GOTO statements within a BASICprogram.

When using your VIC, you must type in complete commands

before the computer will respond. Right?

Wrong. The VIC has a ten-character keyboard buffer (loca

tions 631-640) that is used by the GET command, and you can

POKE values into that buffer that can be used as if they were

typed in.

This program lets you calculate a value, POKE it into the key

board buffer, and PEEK into the buffer to use the value as a GOTO

line number. The loop index X is used in line 25 to calculate the

GOTO number. Line 30 or 35 prints GOTO and a line number on

the screen. Note that Z, the GOTO line number, may be a

numeric literal (line 30) or an expression (line 35). The GOTO

command itself is printed in the screen color, making it invisible;

to see what is happening, change the color indicated in the literal.

Lines 40-45 place three CURSORUP commands (145) and a

RETURN (13) into the keyboard buffer. POKE 198,4 tells the com

puter how many characters are in the buffer.

To execute the END statement in line 45, the computer skips a

line, prints READY, sets the cursor, and goes looking to see what's

in the buffer. Then it executes three CURSOR UPs, covering the

GOTO statement, and one RETURN. The GOTO statement is

then executed with the calculated line number. After the gone-to

line has been executed, GOTO 50 (line 35) sends control back into

the loop.

Calculated GOSUBs can also be used but require a slightly

different approach. Using RETURN from the printed statement

will not work, because it's not in the program itself. Instead, the

statement must contain a GOTO that will jump back into the loop.

For a demonstration, delete line 30 and remove the REM in line

35. Lines 200-240, along with line 35, will let you set up a calcu

lated GOSUB.

VIC owners may be puzzled by the POKEs in line 10. They

102

4: Programming Aids

are used to get screen colors when the program is run on the 64;

on the VIC, however, they are meaningless and will be ignored by

the computer. They can be removed with no ill effect.

Calculated GOTO for VIC and 64

Refer to 'The Automatic Proofreader" (Appendix J) before typing this program in.

10 PRINT"{CLR}":POKE53281,1:POKE53280,3 :rem 88

20 FORX=0TO4 :rem 229

25 Z=100+(X*10) :rem 238

30 PRINT"{WHT}GOTO";Z :rem 7
35 REM PRINT"{WHT}GOSUB";Z+100;":GOTO50" :rem 74
40 POKE631/145 :rem 243

41 POKE632,145 :rem 245

42 POKE633,145 :rem 247

44 POKE634,13 :rem 196

45 POKE198,4:END :rem 171

50 FORY=1TO1000:NEXTY :rem 73

60 NEXTX:END :rem 14

100 PRINT"{BLK}100":GOTO50 :rem 91

110 PRINT"{BLK}110":GOTO50 :rem 93

120 PRINT"{BLK}120":GOTO50 :rem 95

130 PRINT"{BLK}130":GOTO50 :rem 97

140 PRINT"{BLK}140":GOTO50 :rem 99

200 PRINT"{BLK}200":RETURN :rem 159

210 PRINT"{BLK}210":RETURN :rem 161

220 PRINT"{BLK}220":RETURN :rem 163

230 PRINT"{BLK}230":RETURN :rem 165

240 PRINT"{BLK}240":RETURN :rem 167

103

PRINT AT for

Commodore Computers
David Johnson

Manyversions ofBASIC have a statement called

PRINTATor PRINT©. With this routine you can

simulate that command on the VIC or 64.

It is often convenient to print a message, such as SETTING UP

MAP, at a particular location on the screen. For instance, you

might want to begin that message on row 20, column 3. Using

Commodore BASIC, the statement would look like this:

10 PRINT "{HOME} { 20 DOWN} {3 RIGHT} SETTING UP

MAP"

It works, but typing 20 cursor downs and 3 cursor rights is a lot of

work. With several such statements, even the best program could

become very bulky and hard to handle.

However, by using PLOT (one of the Kernal routines) and a

very short machine language program, you can simulate the

much shorter PRINT @ statement. Using PRINT AT, the above

command would be entered like this:

10 PRINT @ 20,3;"SETTING UP MAP"

As you can see, PRINT @ is much easier to use.

Programs 1 and 2 provide you with a PRINT @ command for

your computer. The programs reside in an unused area of RAM,

so you can save or load from tape without disturbing them.

Here is how the programs work:

Line

10 Read machine language from DAIA statements and put

into memory.

20-180 Provide a demonstration of the program.

1000 The two POKE statements set up the row (PR) and

column (PC) positions, SYS679 executes the machine

language program, and RETURN sends control back to

the main body of the program.

1010 This is the machine language program in DAIA

statements.

104

4: Programming Aids

Here is what the machine language program does:

LDX #0 ;set up the row coordinate

LDY #0 ;set up the column coordinate

CLC ;clear carry flag, cause PLOT to

;position cursor

JSR $FFF0 ;jump to Kernal routine PLOT to

;position the cursor

RTS ;return to BASIC

To use the routine in your own programs, add lines 10,1000,

and 1010 (renumber them if you wish). After reading in the

machine language data, you can position the cursor at any time

by setting the variable PR equal to the row to which you wish the

cursor to move and setting PC equal to the desired column.

When using this subroutine, remember that rows and col

umns are numbered starting at the upper left corner of the

screen, beginning with zero. For the VIC, the row limits (PR) are 0

and 22 and the column limits (PC) are 0 and 21. For the 64, row

limits are 0 and 24 and column limits are 0 and 39.

On both computers, a PRINT statement that ends on the last

column of a row will cause a carriage return and linefeed. To pre

vent this, place a semicolon at the end of the PRINT statement (as

in line 110). However, this will not help if a PRINT statement ends

in the lower right corner of the screen. In that case, a carriage

return and linefeed will occur no matter what. To avoid the prob

lem, simply do not print in the lower right corner of the screen.

Note that if the carry flag is set instead of cleared, the X and Y

registers will contain the present position of the cursor. This may

be useful in games or at other times when you want to find out

exactly where the cursor is positioned. To do this, you can add

this program:

SEC ;set carry flag

JSR $FFF0 ;jump to PLOT and find cursor position

STX $02B0 ;store row in 688

STY $O2B1 ;store column in 689

RTS ;return to BASIC

To use this cursor locator and the PRINT @ program together,

type in Program 3 which works on both the VIC-20 and 64. Line

3000 contains the DAIA for the PRINT XT routine and line 3010

contains the cursor locator routine. Enter row and column num

bers, following the prompts, and an asterisk will appear. When

105

4: Programming Aids

the program prints out the current cursor position (line 110), the

column number will be one more than what you typed in line 20.

This is because the cursor has advanced one position after

printing the asterisk.

Now that you have a PRINT @ statement to add to your

BASIC, try experimenting with it. The sample program is very

simple and does not begin to explore its capabilities.

Program L PRINT AT, VIC Version

Refer to 'The Automatic Proofreader" (Appendix]) before typing this program in.

10 FORM=679TO687:READA:POKEM,A:NEXTM :rem 64

20 PRINTCHR$(147) :rem 221

30 FORT=1TO500:NEXT :rem 189

40 PR=10:PC=8:GOSUB1000 :rem 97

50 PRINT"MIDDLE" :rem 229

60 FORT=1TO800:NEXT :rem 195

70 PR=0:PC=0:GOSUB1000 :rem 43

80 PRINT"UPPER LEFT :rem 240

90 FORT=1TO800:NEXT :rem 198

100 PR=22:PC=10:GOSUB1000 :rem 186

110 PRINT"LOWER RIGHT{LEFT}"; :rem 66

120 FORT=1TO800:NEXT :rem 240

130 PR=0:PC=11:GOSUB1000 :rem 138

140 PRINT"UPPER RIGHT"; :rem 171

150 FORT=1TO800:NEXT :rem 243

160 PR=22:PC=0:GOSUB1000 :rem 143

170 PRINT"LOWER LEFT"; :rem 88

180 FORT=1TO800:NEXT :rem 246

190 GOTO20 :rem 53

1000 POKE680,PR:POKE682,PC:SYS679:RETURN :rem 29

1010 DATA 162,0,160,0,24,32,240,255,96 :rem 56

Program 2. PRINT AT, 64 Version

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

10 FORM=679TO687:READA:POKEM,A:NEXTM

20 PRINTCHR$(147)

30 FORT=1TO500:NEXT

40 PR=12:PC=17:GOSUB1000

50 PRINT"MIDDLE"

60 FORT=1TO500:NEXT

70 PR=0:PC=0:GOSUB1000

80 PRINT"UPPER LEFT"

90 FORT=1TO500:NEXT

100 PR=24:PC=28:GOSUB1000

110 PRINT"LOWER RIGHT";

120 FORT=1TO500:NEXT

:rem 64

rem 221

rem 189

rem 147

rem 229

rem 192

:rem 43

rem 240

:rem 195

rem 197

:rem 165

rem 237

106

4: Programming Aids

130 PR=0:PC=29:GOSUB1000 :rem 147

140 PRINT"UPPER RIGHT"; :rem 171

150 FORT=1TO500:NEXT :rem 240

160 PR=24:PC=0:GOSUB1000 :rem 145

170 PRINT"LOWER LEFT"; :rem 88

180 FORT=1TO500:NEXT :rem 243

190 GOTO20 :rem 53

1000 POKE680,PR:POKE682,PC:SYS679:RETURN :rem 29

1010 DATA 162,0,160,0,24,32,240,255,96 :rem 56

Program 3, Demonstration

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

lid FOR M=679 TO 700:READ A:POKE M,A:NEXT M :rem 50

20 INPUT"{CLR}ROW";PR:INPUT"COLUMN";PC :rem 72

30 GOSUB 1000 :rem 164

40 PRINT "*"; :rem 154

50 GET A$:IF A$="" THEN 50 :rem 237

100 GOSUB 2000 :rem 211

110 PRINT"ROW,COLUMN=";PR;",";PC; :rem 35

120 GET A$:IF A$="" THEN 120 :rem 73

130 GOTO 20 :rem 47

1000 POKE 680,PR:POKE682,PC:SYS 679:RETURN :rem 29

2000 SYS 690:PR=PEEK(688):PC=PEEK(689):RETURN

:rem 214

3000 DATA 162,0,160,0,24,32,240,255,96 :rem 57

3010 DATA 0,0,56,32,240,255,142,176,2,140,177,2,96

:rem 140

107

Fast Sort
Bill Pfeifer

It is often convenient to be able to sort lists ofstring data.

With this program your VIC or 64 can make short work

oflong lists.

The machine language bubble-sort algorithm written for the Atari

by Ronald and Lynn Marcuse (COMPUTE!, March 1982) is an

unusually versatile and flexible utility. It can be run, with minor

changes on Commodore computers. A version of this utility was

presented for PET/CBM computers by Richard Mansfield in

COMPUTE!, May 1982.

These routines will run on the Commodore 64 or any VIC-20.

They incorporate information from the above articles and include

additional routines to insure proper data entry and string

manipulation.

The two critical prerequisites demanded by this utility are sat

isfied by these routines, namely: (1) equal-length records and (2)

continuous files with no extraneous strings interrupting the in

dividual records.

Using Fast Sort
The first few lines of the program are specific to disk-based or

tape-based systems. Enter the appropriate lines. Line 5, for disk-

based systems, stores the machine language (ML) part of the pro

gram in the cassette buffer. Skip over lines 10 and 15 and continue

entering the program at line 20. If your system uses tape for data

storage, begin entering the program at line 10. Lines 10 and 15 sec

tion off a portion of high memory for the sort, and readjust the

pointers accordingly.

One word of caution for tape users: Lines 10 and 15 assume

that there are no cartridges or programs present which use ML

"wedges" (such as the VIC Super Expander or a Toolkit or Pro

grammer's Aid). These wedges usually change the pointers at

memory locations 51 and 55 from zero to some other value. If a

wedge is present, lines 10 and 15 will probably have to be

rewritten.

There is another option for 64 owners using tape: use line 5

instead of lines 10 and 15, but give ML the value 49152 (this is free

RAM above BASIC ROM). Such a version will work on the 64, but

will not run on the VIC.

108

4: Programming Aids

After entering the lines which apply to your system, enter the

program beginning with line 20, the BASIC loader. Line 25

defines the formulas used to POKE the string addresses into

memory for use by the sort routine. Lines 30 to 60 comprise the

ML program in the form of DAIA statements.

Lines 65 and 70 initialize the record counter, input the file

name and the number of letters per record, and set up a string of

spaces equal to the length of the record.

Line 74 (or line 76) determines the maximum number of

records that can be held in memory, based on the size of the

records, CE. Line 74 is for the VIC-20 only; line 76 is for the Com

modore 64. Use only the line that applies to your computer. Line

80 DIMensions A$ to the maximum number of records. You don't

have to use every element, but the array is DIMensioned to

handle them just in case.

The next section (lines 85 to 120) is a monitor which sees to it

that all records entered into the array are of equal length. If a

record is entered with less than the specified number of char

acters per entry (CE), the monitor adds the necessary number of

spaces. If it is too long, the monitor tells you how many characters

to delete and prints out the record so you can make adjustments

using the screen editor. To get out of the data entry section, just

hit RETURN following the next entry prompt. At that point, you

would probably want to go to a menu (to select a CORRECT,

REVIEW, or DELETE routine), but for this example, the program

goes directly to the sort setup routine, lines 125 to 160.

The first function of the setup routine is to position the

records into one continuous block, with no foreign bytes to foul

things up. This should be done every time the sort routine is

called, so that a changed array (with corrected, added, or deleted

elements) is written into a fresh block of memory. Immediately

following the array positioning, the array pointers are read and

stored for use by the sort.

The routine's second function is to determine the sort

OPTIONS, or the user's preferences as to how the array is

arranged. First select an ascending (A-Z) or descending (Z-A)

direction, then define the sort key. The sort key is that section of

the record which will be considered in the actual sorting process.

It can be the whole record or any portion of it. The default values

are the first and last characters. Just hit RETURN to keep these

values, or enter different numbers if you so desire. These parame

ters are then passed to the sort routine and the utility is called.

109

4: Programming Aids

The next section, lines 165 and 170, prints out the sorted ele

ments of the array, along with their element numbers. Again, you

may prefer to go to a menu before printing the records.

Lines 175 to 190 comprise a minimenu to allow you to resort

the records (using a different sort key, a different sort direction, or

both) or to end the program.

The last section returns the memory pointers to their original

values, if they were adjusted at the beginning of the program.

This is not absolutely necessary, but it does return full RAM to

BASIC when you are through with the program.

I suggest that you type in, save, and run this program before

you incorporate it into a file program of your own. Enter a list of

names and phone numbers, for example, and then sort the records

using different values for the sort key. This will give you a feel for

the flexibility and potential application of the sort utility and will

help you in writing programs which use it to the best advantage.

With proper handling of string data before it is sorted, this

machine language utility makes short work of long lists and is

vastly superior to its BASIC counterpart. The slight extra attention

required for its use is a small price to pay for the tremendous gain

in speed and efficiency.

Fast Sort for VIC and 64

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

5 M=PEEK(56):ML=828:REM THIS LINE FOR DISK SYSTEMS

-RESUME CODE ENTRY AT LINE 20 : rem 228

10 M=PEEK(56):POKE51,140:POKE52,M-1:POKE55,140:POK

E56,M-1 :rem 66

15 POKE2,M:CLR:M=PEEK(2):ML=(M-1)*256+142:REM LINE

S 10 & 15 FOR TAPE SYSTEMS :rem 43

20 FORI=MLTOML+112:READZ:POKEI,Z:NEXT :rem 196

25 DEFFNLM(X)=X-(INT(X/256)*256):DEFFNHM(X)=INT(X/

256) :rem 190

30 DATA169,0,133,80,133,81,162,1,165,249,133,251,1

65,250,133,252,24,165 :rem 209

35 DATA251,133,247,101,82,133,251,165,252,133,248,

105,0,133,252,164,78,165 :rem 107

40 DATA2,240,10,177,251,209,247,144,44,240,12,176,

19,177,251,209,247,144 :rem 12

45 DATA13,240,2,176,30,200,196,79,240,227,176,23,1

44,223,169,1,133,80 :rem 114

50 DATA164,82,136,177,251,72,177,247,145,251,104,1

45,247,192,0,208,241,232 :rem 120

55 DATA224,0,208,2,230,81,228,253,208,172,165,254,

197,81,208,166,165,80 :rem 232

110

4: Programming Aids

60 DATA201,0,208,144,96 :rem 149

65 R$=CHR$ (13):Z=-1:INPUT" {CLRjFILE NAME" ;F$.-INPUT

"{DOWN}# OF LETTERS/ENTRY";CE :rem 8

70 S$="":FORI=1TOCE:S$=S$+" ":NEXT :rem 175

74 Q=INT(FRE(X)/(CE+7)): REM THIS LINE FOR COMMODO

RE VIC-20 ONLY :rem 226

76 Q=INT((FRE(X)+65536)/(CE+7)): REM THIS LINE FOR

COMMODORE 64 ONLY :rem 98

80 DIMA$(Q) :rem 73

85 GOSUB90:ONXGOTO85,125 :rem 239

90 X=1:PRINT"{DOWN}#"Z+2"OF"Q:X$="":INPUTX$:IFX$="

"THENX=2:RETURN :rem 162

95 IFLEN(X$)<>CETHENGOSUB105 :rem 240

100 Z=Z+1:A$(Z)=X$:RETURN :rem 251

105 CH=LEN(X$):IFCH<CETHENX$=X$+LEFT$(S$,(CE-CH)):

RETURN :rem 159

110 PRINT"{DOWN}{RVS}DELETE"CH-CE"LETTER(S){OFF}"

:rem 195

115 PRINT"{DOWN}#mZ+2:PRINT"{2 SPACES}"X$;:FORK=1T

OCH+2:PRINT"{LEFT}"?:NEXTK :rem 33

120 INPUTX$:CH=LEN(X$) : ON-(CHoCE)GOTO105 : RETURN

:rem 24

125 PRINT"{DOWN}POSITIONING RECORDS..":FORI=0TOZ:A

$(I)=A$(I):NEXT :rem 253

130 S1=PEEK(51):S2=PEEK(52):POKE247,SI:POKE248,S2

:rem 120

135 HD=S2*256+S1+CE:POKE82,CE:POKE249,SI:POKE250,S

2 :rem 0

140 L=FNLM(HD):H=FNHM(HD):POKE251,L:POKE252,H:HD=Z

+1 :rem 149

145 LO=FNLM(HD):HI=FNHM(HD):POKE253,LO:POKE254,HI:

F=1:LL=CE :rem 154

150 PRINT"{DOWN}{RVS}SORT OPTIONS:{OFF}":INPUT"

{DOWN}{RVS}A{OFF}SCENDG/{RVS}D{OFF}ESCENDG";X$

:U=1:IFX$="D"THENU=0 :rem 65

155 INPUT"{DOWN}START KEY (CHAR#)";F:F=F-1:INPUT"

{DOWN}END KEY (CHAR#)";LL:LL=LL-1 :rem 180

160 ON-(LL>CE)GOTO155:POKE2,U:POKE78,F:POKE79,LL:P

RINT"{DOWN}SORTING..":SYSML :rem 87

165 FORI=0TOZ:PRINTI+1:PRINTA$(I)"{DOWN}" :rem 189

170 FORT=1TO500:NEXT:NEXT :rem 107

175 PRINT"{DOWN}{RVS}1{OFF}-RE SORT;{RVS}2{OFF}-EN

D" :rem 117

180 GETX$:ON-(X$="")GOTO180 :rem 25

185 IFX$="1"GOTO125 :rem 44

190 IFX$o"2"GOTO180 : rem 103

195 IFM=PEEK(56)THENEND :rem 159

200 POKE51,0:POKE55,0:POKE52,M:POKE56,M:CLR:rem 99

111

Commodore

Data Handling Workshop
John Fisher

Part 1. Super Shell Sort for the VIC and 64

Y'our Commodore computer is an efficient data handler.

This article describes a sophisticated sorting system for

the VIC (with at least 8K expansion) or the 64.

All sorting routines written in BASIC suffer the same limitation.

At some point in the sorting process a substitution routine is in

voked, and the value of one element is swapped with the value of

another. This is illustrated in the following three lines:

100 WORK$ = A$(HI)

110 A$(HI) = A$(LO)

120 A$(LO) = WORK$

To do the swap, you have to move the contents of three strings.

This movement, combined with the garbage collection, inevitably

results in very slow sorts.

The machine language sorting routine presented here speeds

up the substitution process by swapping the pointers to the

strings instead of the strings themselves. Combined with the effi

ciency of the shell sort algorithm, that produces a very useful

tool. This is particularly true since these programs will tailor the

machine language to any usable memory location on the VIC-20

or the Commodore 64.

Program 1 is the driver program for the BASIC loader (Pro

gram 2). It first determines where you want the machine lan

guage routine located. You have three choices: at the top, at the

bottom, or external to BASIC memory. On the VIC-20 place the

code at the top of memory; however, if you have 3K expansion in

addition to 8K or more of memory expansion, then you may want

to locate it at the beginning of the 3K area (address 1024), external

to BASIC memory. If you have a Commodore 64, consider locating

the routine external to BASIC memory, starting at address 49152

(the 4K ofRAM just beyond the BASIC ROM).

As written, the driver will load the second program from disk

(device 8). To load from tape, change the assignment of DA in line

105 from 8 to 1 (1 is the device number for tape). For the autoload

112

4: Programming Aids

feature to work properly with tape, you must save Program 2

immediately following Program 1 on the same tape, and you

must leave the PLAY button depressed after Program 1 is loaded.

VIC owners using tape will need to add two additional cursor-

down characters in front of the RUN in line 260; Commodore 64

tape users should add one additional cursor down. For either

disk or tape, be sure that the program name (PN$) in line 110 of

Program 1 matches the name under which you saved Program 2.

Program 2 is the BASIC loader for the machine language sort

ing routine and will take a few moments to run. Using the

address in locations 252 and 251 (placed there by Program 1), this

program tailors the machine language (ML) to the location you re

quested. Before actually loading the ML into memory, the pro

gram performs a checksum against each line from 500 through

635. That should help to isolate any typing errors to a specific line.

As soon as the checksumming is completed, the ML is loaded

into memory. To repeat this task each time you wanted to use this

sort routine would be very wasteful. It would be much better to

load only the ML, now that it has been tailored to your needs, and

that is the function of Program 3. This program allows the ML to

be saved to disk or tape. Then the code may be loaded at any time

without the need for a BASIC loader. Note that to save the ML to

tape, the first four numbers on line 1050 should be changed from

169,1,162,8 to 169,1,162,1. For Program 3 to work properly, you

must not turn off or reset the computer between running Pro

grams 1 and 2 and running Program 3.

Program 4 should show you how to put this ML to work.

Note that it is necessary to modify Program 4 to reflect the loca

tion of the ML.

Immediately after running Program 3, type:

PRINT PEEK(251),PEEK(252)

and record the values. For example, if you have a VIC with 8K ex

pansion and you located the ML at the top of memory, the values

you should get are 64 and 62. For Program 4 to work properly, add

the following line:

105 POKE 251,64:POKE 252,62

If you have a Commodore 64 and you located the ML in the free

RAM above BASIC ROM, the values you should get when you

PEEK locations 251 and 252 are 0 and 192, so you should add the

following line to Program 4:

105 POKE 251,0:POKE 252,192

113

4: Programming Aids

The values will vary for other configurations, but in any case, you

should change line 105 to reflect the values for your ML. If you

located the ML at the bottom of memory or external to BASIC

memory, you must also delete line 120. This line should be used

only if your ML is located at the top of memory.

Make sure that the program name in line 135 of Program 4

matches the name you specified when you saved the machine

language with Program 3. Also, if you are loading the ML from

tape instead of disk, youll need to change the ,8,1 in line 135 to

,1,1. The value of N in line 150 may have to be changed, too,

depending on the amount of memory available. On a 16K

VIC-20, an array size of 1000 takes a few minutes to build and sort,

so be patient.

Once the sort has completed, the program will wait until the

fl key is pressed. Then the sorted contents of the array will be dis

played one screen at a time. You might have noticed that element

zero of the array is not referenced. That is because the sort will not

touch it, so it is available for your own use.

Lines 100-135 prepare the system and load the ML. Once the

LOAD instruction is completed, the program restarts at line 100.

To keep the program out of an infinite loop, a flag indicates if the

ML has already been loaded. If so, then the program continues at

line 145. Lines 145-190 build the array to be sorted. The subroutine

at line 295 (called from 200) determines the following addresses:

50 The address to place the ASCII value of the first

character of the array name.

51 The address to place the ASCII value of the second

character of the array name, or a value of 128 if the array

name is only one character in length.

52 The address to locate the low byte of the number of

elements to be sorted.

53 The address to locate the high byte of the number of

elements to be sorted.

54 The address into which the completion code will be

returned by the sort routine.

SRT The starting address of the sort routine.

Lines 200-220 handle preparation for the machine language sort,

which is called in line 225. Lines 235 and 240 check the error code

returned by the sorting routine. The possible error codes that

might be returned are as follows:

114

4: Programming Aids

0 No errors occurred.

1 The array could not be found (check the values placed

in locations SO and SI).

2 An attempt was made to sort a multidimensional array

(for example, A$(x,y)).

Finally, lines 255-280 display the contents of the array.

To use this sorting routine to order your own data, you would

substitute for N in line 150 the number of items of data you wish

to enter, then delete lines 165-190 in Program 4 and add your own

input routine. For example, you could use the following lines:

165 FOR 1=1 TO N

170 PRINT "ITEM #";N;:INPUT A$

175 A$(I)=A$

180 NEXT

Program 1« Driver

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

100 REM SHELL SORT DRIVER PROGRAM :rem 25

105 SL=448:DA=8 :rem 70

110 PN$="SORT 2" :rem 79

115 REM MAIN MENU :rem 213

120 PRINT"{CLR}{2 SPACES}SHELL SORT SETUP":PRINT

:rem 15

125 PRINT"RESERVE MEMORY FOR":PRINT"SORT ROUTINE A

T:":PRINT :rem 84

130 PRINT"{2 SPACES}1-TOP" :rem 182

135 PRINT"{2 SPACESJ2-BOTTOM" :rem 158

140 PRINT"{2 SPACES}3-EXTERNAL" :rem 41

145 PRINT"{2 SPACESJ4-EXIT" :rem 6

150 A=4:PRINT:PRINT :rem 214

155 INPUT" OPTION";A :rem 196

160 ON A GOTO 185,200,215,175 :rem 151

165 GOTO 155 :rem 112

170 REM EXIT :rem 182

175 PRINT"{CLR}":END :rem 18

180 REM TOP OF MEMORY :rem 222

185 N=PEEK(56)*256+PEEK(55)-SL :rem 168

190 M=N:GOTO 235 :rem 127

195 REM BOTTOM OF MEMORY :rem 198

200 M=PEEK(44)*256+PEEK(43)-1 :rem 39

205 N=M+SL+1:GOTO 235 :rem 162

210 REM OUTSIDE OF MEMORY :rem 2

215 M=0:PRINT:PRINT :rem 224

220 INPUT" ADDRESS";M :rem 246

225 IF M=0 THEN 120 :rem 164

115

4: Programming Aids

:rem 104

:rem 85

:rem 82

:rem 180

:rem 154

CHR$(34);PN$;CHR$(34

:rem 163

230 REM COMMON ROUTINE

235 H1=INT(N/256):L1=N-H1*256

240 H2=INT(M/256):L2=M-H2*256

245 POKE 251,L2:POKE 252,H2

250 REM LOAD COMMAND

255 PRINT"{CLR}{3 DOV7N}LOAD "

);\M;DA

260 PRINT"{4 DOWN}RUN{HOME}"; :rem 240

265 FOR 1=631 TO 633:POKE I,13:NEXT:POKE 198,3

:rem 8

270 REM FIX POINTERS :rem 216

275 IF A=l THEN 290 :rem 166

280 IF A=2 THEN 295 : rem 168

285 NEW :rem 137

290 POKE 56,HI:POKE 55,L1:NEW :rem 122

295 POKE 44,HI:POKE 43,LI:POKE N,0:NEW :rem 140

Program 2. BASIC Loader

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

100 REM SHELL SORT BASIC LOADER :rem 78

105 DIM C3%(11),C2%(16),CK(27) :rem 176

110 REM READ DATA irem 172

115 FOR 1=0 TO 11:READ C3%(I):NEXT :rem 61

120 FOR 1=0 TO 16:READ C2%(I):NEXT :rem 61

125 FOR 1=0 TO 27:READ CK(I):NEXT :rem 56

130 REM CHECK FOR ERRORS IN DATA :rem 75

135 FOR 1=0 TO 27:CK=0 :rem 119

140 FOR J=l TO 16:READ A:CK=CK+A:NEXT :rem 77

145 C1=CK(I)-CK:IF C1=0 THEN 160 :rem 158

150 PRINT"ERROR IN LINE";500+1*5 :rem 83

155 C2=C2+1 :rem 30

160 NEXT :rem 214

165 IF C2 THEN STOP :rem 21

170 RESTORE:FOR 1=1 TO 57:READ A:NEXT :rem 179

175 REM BASIC LOADER :rem 154

180 ML=PEEK(252)*256+PEEK(251):CL=ML :rem 29

185 PRINT"{CLR}{DOWN}LOADING MACHINE LANGUAGE":PRI

NT:PRINT :rem 216

190 READ A :rem 247

195 REM 3 BYTE OPCODE :rem 164

200 1=0 :rem 72

:rem 217

:rem 152

:rem 205

:rem 166

:rem 60

:rem 72

:rem 97

205 IF I>11 THEN 245

210 IF A=C3%(I) THEN 220

215 1=1+1:GOTO 205

220 READ LO:READ HI:ADDR=HI*256+LO+ML

225 HI=INT(ADDR/256):LO=ADDR-HI*256
230 POKE CL+0,A:POKE CL+1,LO:POKE CL+2,HI

235 CL=CL+3:GOTO 290

116

4: Programming Aids

240 REM 2 BYTE OPCODE :rem 154

245 1=0 :rem 81

250 IF I>16 THEN 280

255 IF A=C2%(I) THEN 265

260 1=1+1:GOTO 250

265 READ B:POKE CL+0,A:POKE CL+1,B

270 CL=CL+2:GOTO 290

275 REM 1 BYTE OPCODE

280 POKE CLfA:CL=CL+l

285 REM CHECK LENGTH

290 LN=CL-ML:IF LN<448 THEN PRINT11 {UP}" ;LN
0

295 PRINT:PRINT"DONE ..."

300 END

rem 221

rem 169

rem 205

rem 125

:rem 95

rem 161

rem 182

rem 163

GOTO 19

rem 121

rem 232

rem 106

400 REM 3 BYTE OPCODES :rem 236

410 DATA 32,76,78,109,110,140,141,172,173,205,237,

238 :rem 48

420 REM 2 BYTE OPCODES :rem 237

430 DATA 16,41,48,105,133,144,145,160,162,165,169,

176,177,197,201,208,240 :rem 22

440 REM CHECKSUMS :rem 34

450 DATA 0,793,1290,1723,1382,1337,1721,1078,1260,

1206,1043 :rem 104

460 DATA 923,969,1259,1478,1534,1553,1306,1592,156

7,1242 :rem 253

470 DATA 1652,1439,1451,1573,1700,1487,1829

:rem 103

490 REM MACHINE LANGUAGE DATA :rem 212

500 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 srem 67

505 DATA 0,0,0,173,0,0,41,127,141,0,0,173,1,0,9,12

8 :rem 152

510 DATA 141,1,0,169,0,141,4,0,165,47,133,71,165,4

8,133,72 :rem 19

515 DATA 160,0,177,71,205,0,0,208,8,200,177,71,205

,1,0,240 :rem 7

520 DATA 42,160,2,177,71,141,5,0,200,177,71,141,6,

0,24,165 srem 13

525 DATA 71,109,5,0,133,71,165,72,109,6,0,133,72,1

97,50,144 :rem 84

530 DATA 207,240,205,169,1,141,4,0,76,64,1,160,4,1

77,71,201 :rem 68

535 DATA 1,240,8,169,2,141,4,0,76,64,1,24,165,71,1

05,7 :rem 85

540 DATA 133,71,165,72,105,0,133,72,173,2,0,141,17

,0,173,3 :rem 10

545 DATA 0,141,18,0,173,18,0,208,12,173,17,0,240,4

,201,1 :rem 157

550 DATA 208,3,76,64,1,78,18,0,110,17,0,56,173,2,0

,237 :rem 83

117

4: Programming Aids

555 DATA 17,0,141,15,0,173,3,0,237,18,0,141,16,0,1

62,0 :rem 58

560 DATA 138,141,8,0,141,9,0,173,17,0,141,10,0,173

,18,0 :rem 112

565 DATA 141,11,0,238,8,0,208,3,238,9,0,173,9,0,20

5,16 :rem 80

570 DATA 0,240,4,176,85,144,10,173,8,0,205,15,0,24

0,2,176 :rem 223

575 DATA 73,238,10,0,208,3,238,11,0,160,3,165,71,1

33,88,133 :rem 79

580 DATA 90,165,72,133,89,133,91,24,165,88,109,8,0

,133,88,165 :rem 217

585 DATA 89,109,9,0,133,89,24,165,90,109,10,0,133,

90,165,91 :rem 104

590 DATA 109,11,0,133,91,136,208,223,32,65,1,173,7

,0,240,163 :rem 119

595 DATA 48,161,32,176,1,162,1,76,211,0,138,208,12

9,76,148,0 :rem 144

600 DATA 96,160,0,140,7,0,177,88,141,12,0,177,90,1

41,13,0 :rem 224

605 DATA 200,152,205,12,0,240,2,176,15,205,13,0,24

0,25,144,23 :rem 143

610 DATA 169,1,141,7,0,76,175,1,205,13,0,240,2,176

,64,169 :rem 233

615 DATA 255,141,7,0,76,175,1,140,5,0,160,1,177,88

,133,92 :rem 241

620 DATA 200,177,88,133,93,172,5,0,136,177,92,141,

14,0,140,5 :rem 130

625 DATA 0,160,1,177,90,133,92,200,177,90,133,93,1

72,5,0,177 :rem 136

630 DATA 92,200,205,14,0,208,3,76,80,1,144,180,76,

111,1,96 :rem 21

635 DATA 160,2,177,88,72,177,90,145,88,104,145,90,

136,16,243,96 :rem 64

Program 3* ML Saver

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

1000 REM MACHINE LANGUAGE SAVE :rem 13

1005 E0=PEEK(252)*256+PEEK(251)+448 :rem 82

1010 El=INT(E0/256):E2=E0-E1*256 :rem 191

1015 POKE 254,E1:POKE 253,E2 :rem 217

1020 ML=680:NN=719 :rem 235

1025 FOR J=0 TO 31:READ T:POKE ML+J,T:NEXT:rem 135

1030 PRINT"FILENAME TO USE":INPUT N$:rem 162

1035 L=LEN(N$):POKE 2,L :rem 7

1040 FOR J=l TO L:POKE NN+J,ASC(MID$(N$,J,1)):NEXT

: rem 46

1045 SYS ML:END :rem 115

118

4: Programming Aids

1050 DATA 169,1,162,8,160,1,32,186 :rem 130

1055 DATA 255,165,2,162,208,160,2,32 :rem 228

1060 DATA 189,255,169,128,133,157,169,251 :rem 250

1065 DATA 166,253,164,254,32,216,255,96 :rem 144

Program 4« Demonstration

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

100 REM SORT TEST :rem 253

105 POKE 251,64:POKE 252,62 :rem 137

110 ON FLAG GOTO 145 :rem 28

115 REM SET THE TOP OF MEMORY :rem 169

120 POKE 56,PEEK(252):POKE 55,PEEK(251):CLR

:rem 144

125 FLAG=1 :rem 32

130 REM LOAD SORTING SUBROUTINE :rem 206

135 LOAD "SORT/ML",8,1 :rem 206

140 REM BUILD{2 SPACES}THE TEST ARRAY :rem 137

145 CLR :rem 123

150 N=100:DIM A$(N+1) :rem 38

155 TI$="000000" :rem 253

160 PRINT"{CLRjBUILD":PRINT"ARRAY> ";TI$:rem 47

165 FOR 1=1 TO N :rem 43

170 N1=INT(RND(0)*5+5):A$="" :rem 212

175 FOR J=l TO Nl : rem 94

180 Rl=RND(0)*26+65 :rem 230

185 A$=A$+CHR$(R1) :rem 165

190 NEXT J:A$(I)=A$:NEXT I :rem 192

195 PRINT:PRINT "SORT" :rem 127

200 GOSUB 295 :rem 178

205 POKE S0,65:POKE SI,128 :rem 148

210 N2=INT(N/256):N1=N-N2*256 :rem 94

215 POKE S3,N2:POKE S2,N1 :rem 146

220 PRINT:PRINT "BEGIN> ";TI$:rem 203

225 SYS SRT :rem 145

230 PRINT:PRINT "DONE > ";TI$:rem 141

235 EC=PEEK(S4) :rem 92

240 GOSUB 325 :rem 176

245 PRINT:PRINT "ERROR> ";E$:rem 159

250 GOSUB 310 :rem 171

255 FOR 1=1 TO N STEP 40 : rem 203

260 PRINT "{CLR}11; : rem 55

265 J=I+39:S=2 : rem 0

270 FOR K=I TO J STEP S:IF K>N THEN 290 : rem 55

275 PRINT A$(K),A$(K+1) :rem 181

280 NEXT K:GOSUB 310:NEXT I :rem 52

285 PRINT "{CLR}"; :rem 62

290 END :rem 114

295 S0=PEEK(251)+PEEK(252)*256 :rem 111

119

4: Programming Aids

300 Sl=S0+l:S2=S0+2:S3=S0+3:S4=S0+4 :rem 205

305 SRT=S0+19:RETURN :rem 0

310 PRINT"{HOME}{21 DOWNjFl KEY>" :rem 123

315 GET A$:IF A$<>CHR$(133) THEN 315 :rem 55

320 RETURN :rem 117

325 ON EC+1 GOTO 335,340,345 :rem 122

330 E$="UNKNOWN":RETURN :rem 202

335 E$="NONE":RETURN :rem 207

340 E$="NO ARRAY":RETURN :rem 183

345 E$="MULTI-DIMEN.":RETURN :rem 243

Part 2* Relative Files

This article examines how the relative file capability of

the VIC 1540 or 1541 disk drive can be used to expand

the potential ofyour VIC-20 or Commodore 64.

The 1540 owner's manual suggests that although the disk drive

could use a relative file format, the VIC-20 could not. Actually,

that is only partially correct. The owner's manual for the 1541 ad

mitted that with a little more programming, relative files could be

accessed. While the manual did provide some simple examples,

it did not fully illustrate the strengths and weaknesses of

relative files.

This might be a good time to describe some of the features

and vocabulary of Commodore disk drives. One very common

feature of Commodore drives is that they are intelligent devices.

That is, they contain microprocessors with their own operating

systems. Such operating systems are called the Disk Operating

System (DOS). What makes the Commodore arrangement un

usual, however, is that DOS resides in memory located within the

disk drive unit itself. Most other manufacturers place DOS within

the controlling computer. On computers with limited memory,

that can be quite a disadvantage, but Commodore's design per

mits a more flexible approach.

All disk operations, such as file OPENs and CLOSEs, require

that some commands be passed to DOS. Usually these com

mands are transparent to the programmer. With the relative file

format, it is necessary to communicate directly with DOS from

the program level.

Before getting into the programming of relative files, it may be

helpful to describe some of their characteristics. A relative file is a

120

4: Programming Aids

collection of records which have the following characteristics:

• Have a fixed maximum record length for the entire file,

which is defined when the file is created.

• Have an absolute maximum record length of 254 bytes, in

cluding the mandatory carriage return as end-of-file

marker. This value may not be exceeded, even at file-create

time.

• Can be randomly accessed by informing DOS (via the com

mand channel) which record number is to be accessed (for

either input or output).

• Can be sequentially accessed, since the DOS automatically

positions to the next record after a carriage return has been

received or sent. Additionally, when the file is first opened,

it is positioned at the first record in the file.

You may be thinking that these attributes remind you of an

array on the disk. If so, you are correct. However, with the disk

drive you can access far more data than could be maintained at

one time in memory— and that is the basic strength and weak

ness of relative files. The strength is the amount of data that can

be accessed, while the weakness is that accessing data requires

communication with DOS from your BASIC program.

With that in mind, let's look at the next problem. On my disk

drive, I learned through hard experience that the process of

scratching (deleting) a disk file tends to leave DOS in chaos. If a

relative file is then created or extended, the chances are that the

relative file will walk all over the contents of the disk. All that is re

quired to avoid this problem is that prior to creating or extending

any relative file, you issue the UI or U9 command. This will reset

DOS to the power-up condition. It is a quick and safe way to be

certain that everything is in order within DOS. Prior to issuing

the command, just be certain that all open files are closed, with

the natural exception of the command channel.

Program 5 illustrates the steps necessary to create a relative

file. The U9 command in line 30 insures that DOS is in its power-

up condition. The ,L added to the filename in line 50 tells DOS

that this is to be a relative file. The variable LN is used to assign

the record length. Line 60 shows how the CHR$ equivalent of the

length must be added to the filename under which the file is

opened. Once the file has been opened with this record length,

the length cannot be changed.

Lines 110-130 create 100 records for the file, consisting simply

of the word RECORD and a number from 1 to 100. Notice that

121

4: Programming Aids

although the record length was specified to be 25 characters, it is

not necessary to use all 25. Trying to use more than 25, however,

would cause a DOS Error 51, Overflow In Record.

To store your own data in a relative file, you would replace

these lines with your own input routine. You might read the data

from the keyboard via INPUT statements, read it from an array, or

perhaps even read it from DA3A statements.

The subroutine at line 200 is used to check for error messages

from DOS. Error number 0 indicates that no problems were

encountered. Error 73, DOS Mismatch Error, is also ignored be

cause it can sometimes appear after the power-up vector (U9).

Note that the DOS messages are read on file number 1, which

was opened with a secondary address of 15, which is the DOS

command channel.

Once the record size has been specified and the relative file

opened, DOS is able to build the necessary structures to ran

domly access any of the records in the file. To select a particular

record, it is necessary to send the P (Position) command to DOS.

The P command has the following format:

PRINT#/i/e, "P";CHR$(sa +96);CHR$(/o);CHR$(/ii);

CHR$(o/f)

where:

• sa is the secondary address on which the relative file has

been opened. DOS expects that 96 be added to this value.

• lo is the low byte of the record number.

• hi is the high byte of the record number.

• off is the optional offset within the record at which the

next I/O request is to start.

Program 6 demonstrates this by reading through the file in re

verse sequence. Lines 10-90 are the same as in Program 5. Line 110

sets up the decreasing loop, and line 120 converts the record num

ber to high-byte/low-byte format, line 140 illustrates the Position

command to select the proper record, and line 160 shows how the

selected record is read. Note that in line 140 we are sending the

command to file number 1, because that is the file which is

opened with a secondary address of 15, the DOS command chan

nel. The 2+ 96 in the P command is because the relative file was

opened in line 80 with a secondary address of 2. In line 160, we

are reading the data from file number 2, which is the channel

open to the relative file itself.

Extending a relative file is as simple as loading the file. The

122

4: Programming Aids

only difference is that the program must first position to the

record number to be output. If this record does not already exist,

then a DOS Error 50 (Record Not Present) will be generated. That

is quite acceptable, since the file is being extended.

Once the file is positioned, the output sequence may con

tinue as normal. Program 7 should help to clarify this process.

To allow for quick access to any record within the file, DOS

maintains sector blocks. Figure 1 presents the layout of a single

directory entry. Figure 2 is a layout for a single sector block. Note

that each sector block contains the track and sector for all of the

six possible sector blocks, which allows rapid access to the neces

sary data. Essentially, the data within these sector blocks are the

contents of the first two bytes of each sector within the file. That is

the link information to the next sector. Thus, DOS can rapidly

access the proper position in the disk without a sequential read-

through of the file.

This accounts for the speed of relative files. Naturally, from

the sector level, DOS is capable of calculating the offset to the pro

per record.

There is one additional consideration when using relative

files. Due to the overhead in DOS, if a relative file is open, then

only one sequential file may be open at the same time. The file

may be opened for Read or Write processing. This is probably the

greatest limitation of the 1540 and 1541 relative file format. There

are ways around it, but they tend to be cumbersome.

Speed and random access do not come without some cost. In

particular, these limitations are:

• Fixed length records, which tends to waste your disk space.

• A maximum of 720 records per file.

• A maximum of 254 bytes per record, including the carriage

return which must be present as an end of file marker. All

values greater will result in DOS Error 51 (Overflow In

Record).

• One additional sector is required for every 120 blocks

within the relative file. These extra sectors are used as the

sector blocks for the file.

• Only one other file may be open on the disk, as long as the

relative file remains open.

In spite of these limits, relative files are well justified, due to

their speed and potential.

123

4: Programming Aids

Figure L A Single Directory Entry

Byte

00

1-2

3-18

19-20

21

22-27

28-29

Description

File Type: $80 — Deleted

$81 —Sequential

$82 —Program

$83-User

$84 —Relative

Track and sector of the first data block within the file.

Filename

Relative file only:

Track and sector of the first

sector block for the file.

Relative file only:

Record size including the carriage

return. Maximum 254 bytes.

Unused for relative files.

Number of blocks (sectors) in the file.

This is stored in low-byte/

high-byte format.

124

4: Programming Aids

Figure 1

Byte

0-1

2

3

4-15

16-255

I. A Single Sector Block

Description

Track and sector to the next sector

block for the file.

Current sector block number. All

values are within 0 and 5.

Record size (maximum254 bytes).

Track and sector (2 bytes each) of

all of the sector blocks for the

relative file.

Track and sector information (2

bytes each) for 120 sectors within

this file. Note the first sector

block contains the first 120

pointers, the second the next 120

sector pointers, etc.

Program 5* Relative Files

Refer to "TheAutomatic Proofreader" (Appendix J) before typing this program in.

10 REM RELATIVE FILE WRITER :rem 158

20 REM{2 SPACES}OPEN COMMAND CHANNEL :rem 112

30 OPEN 1,8,15,"U9":GOSUB 200 :rem 6

40 REM BUILD FILENAME :rem 249

50 FI$="RELFILE,L,":LN=25 :rem 184

60 FI$=FI$+CHR$(LN) :rem 32

70 REM OPEN{2 SPACES}RELATIVE FILE :rem 249

80 OPEN 2,8,2,FI$:rem 109

90 GOSUB 200 :rem 123

100 REM WRITE THE FILE :rem 1

110 FORI=1 TO 100 srem 100

120 PRINT#2,MRECORDM;STR$(I)7CHR$(13); :rem 194

130 NEXT I :rem 28

140 REM CLOSE FILES :rem 98

125

4: Programming Aids

^ CLOSE 2:CLOSE 1:END :rem 48

200 REM CHECK FOR DISK ERRORS :rem 195

210 INPUT#1,EN,ET$,ET,ES :rem 168

220 IF EN=0 OR EN=73 THEN 240 :rem 195

230 PRINT EN;ET$;ET;ES:STOP :rem 212

240 RETURN :rem 118

Program 6. Reading in Reverse Sequence

Refer to 'The Automatic Proofreader" (Appendix J) before typing this program in.

10 REM RELATIVE FILE READER :rem 116

20 REM{2 SPACES}OPEN COMMAND CHANNEL :rem 112

30 OPEN 1,8,15,"U9":GOSUB 200 :rem 6

40 REM BUILD FILENAME :rem 249

50 FI$=MRELFILE,L,":LN=25 :rem 184

60 FI$=FI$+CHR$(LN) :rem 32

70 REM OPEN{2 SPACES}RELATIVE FILE :rem 249

80 OPEN 2,8,2,FI$:rem 109

90 GOSUB 200 :rem 123

100 REM READ THE FILE BACKWARDS :rem 36

110 FORI=100TO1STEP-1 :rem 254

120 HI=INT(1/256):LO=I-HI*256 :rem 146

130 REM POSITION TO THE DESIRED RECORD :rem 48

140 PRINT#1,IIP";CHR$(2+96);CHR$(LO);CHR$(HI)7

: rem 16

150 GOSUB 200 :rem 168

160 INPUT#2,A$:rem 13

170 PRINT " ";I;A$:NEXT I :rem 79

180 REM CLOSE FILES :rem 102

190 CLOSE 2:CLOSE 1:END :rem 52

200 REM CHECK FOR DISK ERRORS :rem 195

210 INPUT#1,EN,ET$,ET,ES :rem 168

220 IF EN=0 OR EN=73 THEN 240 :rem 195

230 PRINT EN;ET$;ET;ES:STOP :rem 212

240 RETURN :rem 118

Program 7. Extending a Relative File

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

10 REM EXTENDING RELATIVE FILES :rem 186

20 REM OPEN COMMAND CHANNEL :rem 112

30 OPEN 1,8,15,"U9":GOSUB 300 :rem 7

40 REM BUILD FILENAME :rem 249

50 FI$="RELFILE,L,":LN=25 :rem 184

60 FI$=FI$+CHR$(LN) :rem 32

70 REM OPEN RELATIVE FILE :rem 249

80 OPEN 2,8,2,FI$:rem 109

90 GOSUB 300 :rem 124

100 REM READ THE LAST RECORD :rem 101

126

4: Programming Aids

110 PRINT#1,"P";CHR$(2+96);CHR$(100);CHR$(0);

:rem 162

120 GOSUB 300 :rem 166

130 PRINT#2,"UPDATED";CHR$(13); :rem 25

140 REM EXTEND BEYOND RECORD #100 :rem 117

150 PRINT#1,"P"7CHR$(2+96);CHR$(200);CHR$(0);

:rem 167

160 PRINT#2,"EXTENDED";CHR$(13); :rem 102

170 PRINT#1#"P";CHR$(2+96);CHR$(1);CHR$(0);:rem 72

180 GOSUB 300 :rem 172

190 REM READ BACK EXTENDED FILE :rem 28

200 FORI=1 TO 200 srem 101

210 INPUT#2,A$:rem 9

220 PRINT " ";I;A$:rem 137

230 NEXT I :rem 29

240 REM CLOSE FILES :rem 99

250 CLOSE 2:CLOSE 1:END :rem 49

300 REM CHECK FOR DISK ERRORS :rem 196

310 INPUT#1,EN,ET$,ET,ES :rem 169

320 IF EN=0 OR EN=50 OR EN=73 THEN 340 :rem 155

330 PRINT EN;ET$;ET;ES:STOP , :rem 213

340 RETURN :rem 119

Part 3* Searching for Data

Question: How do you retrieve data that you have

entered into your computer? That may sound silly —

after all, ifyou put it in you should be able to get it out —

but experience has shown that data retrieval can be one of

the biggest problems for programmers.

It is possible to lose information, but it is also possible to make

your computer work hard to find it.

One of the easiest approaches, of course, is to read informa

tion sequentially until you find some sort of match (for example,

looking at the last names in a name and address file). This is an

excellent approach for a limited amount of information because

the programming involved is quite simple. Unfortunately, when

the number of records you have to read increases, so does the

time it takes to do the necessary search operations and

comparisons.

The next logical step in this process might be to divide the file

into smaller units as the amount of data increases. Again, this is

127

4: Programming Aids

actually a viable approach as long as the time it takes to find any

given record does not exceed tolerable limits.

This division forces some structure onto the data that you are

storing, thus adding to the complexity of the programming. But

the fact that you are adding structure does not necessarily imply

that the program should greatly increase in size. In fact, it is

usually quite simple to reduce the structure to a very unassuming

algorithm. For example, assume that you want to place all records

beginning with the letters A through D into one file, those

starting with E through H into a second file, and so on. Start by

matching letters with numbers:

A-0

B-1

C-2

D-3

E-4

F-5

G-6

H-7

I

J -

8

- 9

K-10

L--11

M-12

N-

O

P

-13

-14

-15

Note that all you have done is arrange the letters in the same se

quence that you'll store them in a file. Note, too, that if you divide

any of those numbers by four and ignore the remainder, the result

will be a value between zero and six. To express it in BASIC:

110FI = INT(X/4)

The next problem is to convert each letter into one of the 26

values. Looking up the ASCII values of the letters A through Z,

you'll discover that they have respective values of 65 through 90.

To place those values within our required range, simply subtract

65 from the ASCII value. If the record resides in LN$, then your

BASIC code might read:

100X = ASC(LN$)-65

That works great until someone uses a strange character, such as a

space, at the beginning of the string. But there is a way out of that

problem too. All you have to do is make a slight adjustment to the

program. The results might be as follows:

100 X = ASC(LN$) - 65

110 FI = INT(X/4) + 1

120 ON FI GOTO 150,200,250,300,350,400,450

130 PRINT "INVALID LAST NAME..."

140 STOP

As you can see, by adding one to the value obtained in line 110,

you are able to use some simple BASIC constructs to allow for

human error. Note that this approach permits most tape files to

expand to surprisingly large proportions.

128

n

H 4: Programming Aids

Yet even this approach rapidly reaches the time limit barrier.

Splitting the file into smaller and smaller segments soon requires

more programming overhead than the technique returns to the

user. However, if you are willing to force a little more structure

onto your data, you can increase the speed even more. In particu

lar, if the data are sorted, it becomes possible to apply the binary

search algorithm to the data. This is true regardless of the storage

media; the only difference is that the relative file format of the

Commodore disk lends itself quite well to a binary search.

Why is it called a binary search? Because the algorithm works

by attempting to split the file into two portions — one that might

contain the record, and one that can not contain it. This continues

until the record is located or no match is found. The middle ele

ment of the file is checked first; if a match is found, the search

completes. If not, that record is checked to see if it is higher or

lower in value than the target. If it is higher, the upper half of the

file is eliminated from the search. Next, a new middle point

(within the lower portion of the file) is chosen. Again, the check is

made to determine if the record has been found. If not, the

splitting continues until the record is located.

This might seem like a great deal of work, but in the worst

case a file containing 512 records would require only nine compar

isons to locate the record or determine that it does not exist. The

way this can be calculated is

100 CC = LOG(RC) / LOG(2)

where RC is the record count and CC is the comparison count.

This is opposed to reading the file sequentially, which would re

quire, on the average, that half of the total records be compared.

Using the previous example, that would be an average of 256

comparisons to find a single record. Thus the binary search

would only require approximately 4 percent of the comparisons

that a sequential search requires.

Obviously, by applying just a little bit of structure to your file,

it is possible to rapidly and accurately access any of the records

within the file.

Program 8 shows how to apply these techniques to an array

in memory. It generates an array of 512 elements (lines 170-220),

then randomly chooses a possible element (lines 230-260) and

searches the array for a match.

Program 9 illustrates how the binary search may be applied to

relative files. The example program builds a relative file, selects a

129

4: Programming Aids

random element, and searches for it. The program as presented

creates a new file each time it is run. To do multiple searches on

the same file, delete line 220 after the first time the program is run.

As an example of how to modify Program 9 to work on your

own data files, you can use it to search the file you created with

Programs 6 and 7 from Part 2. Change the filename in line 180

from BINFILE to RELFILE, and change the value of the record

length (LN) in line 120 from 5 to 25. You'll need to set the highest

record number (HR) in line 120 to 100 for the original file created

with Program 6, or to 200 if you extended the file with Program 7.

Next, delete lines 210-260 and add these lines:

210 REM SELECT RECORD TO SEARCH FOR

220 INPUT "RECORD TO SEARCH FOR";N

230 TR$="RECORD" + STR$(N)

YouTl discover that there are some records that the binary

search won't be able to find. The reason is that this file is in

numerical, rather than alphabetical, order. For example, if you try

a binary search for RECORD 6, the algorithm will try to find that

record between RECORD 59 and RECORD 60, which is where

RECORD 6 should appear alphabetically. This illustrates the im

portance of correctly sorting any files on which you wish to per

form a binary search.

Perhaps you can now see how this three-part article ties to

gether. To effectively manage a large assortment of data such as a

mailing list, a recipe file, or an inventory record, you would enter

the data into memory, sort it into order (as shown in Part 1), and

store it in a relative file (as shown in Part 2). You could then re

trieve any item of the data whenever required simply by using the

binary search technique described here.

Program 8. Binary Search

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

100 REM BINARY SEARCH :rem 240

110 REM DEFINE VARS. :rem 139

120 LR=1:HR=512 :rem 72

130 RC=HR-LR :rem 203

140 MR=INT(RC/2)+LR :rem 108

150 TC=LOG(HR)/LOG(2) :rem 203

160 TC=INT(TC+.999) :rem 66

170 REM BUILD ARRAY :rem 107

180 PRINT"{CLR}BUILDING ARRAY":PRINT :rem 145

190 DIM A$(HR) :rem 196

200 FOR 1=1 TO HR :rem 109

210 A$(I)=RIGHT$(("{2 SPACES}"+STR$(1*2)),4)

130 :rem 245

n

H 4: Programming Aids

— 220 NEXT I :rem 28

H 230 REM RANDOM NUMBER GENERATION :rem 239
240 TR$="{2 SPACES}"+STR$(INT(RND(0)*HR*2))srem 59

PI 250 TR$=RIGHT$(TR$,4)
260 PRINT"TARGET="7TR$:PRINT

|—| 270 REM BEGIN BINARY SEARCH

280 MC=MC+1

290 PRINT HLO=";A$(LR),

300 PRINT "HI=M;A$(HR),

310 PRINT nMR=H;A$(MR)

320 IF A$(MR)=TR$ THEN 460

330 IF A$(MR)>TR$ THEN 370

340 REM MOVE UP LR

350 LR=MR:GOTO 390

360 REM MOVE DOWN HR

370 HR=MR

380 REM SET UP NEXT SEARCH

390 RC=HR-LR:IF RC=1 THEN 430

400 MR=INT(RC/2)+LR

410 GOTO 280

420 REM RECORD DOES NOT EXIST

430 PRINT:PRINT TR$;" NOT FOUND"

440 GOTO 470

450 REM RECORD FOUND

460 PRINT:PRINT TR$;" FOUND"

470 PRINT"AFTER";MC;"ATTEMPTS":PRINT

480 PRINT"MAX. OF";TC;"ATTEMPTS"

490 END

Program 9. Searching Relative Files

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

100 REM BINARY SEARCH FOR RELATIVE FILES :rem 166

110 REM DEFINE VARS. :rem 139

120 LR=1:HR=512:LN=5 :rem 142

130 RC=HR-LR :rem 203

140 MR=INT(RC/2)+LR :rem 108

150 TC=LOG(HR)/LOG(2) :rem 203

f—| 160 TC=INT(TC+.999) :rem 66

170 REM OPEN RELATIVE FILE :rem 42

p-1 180 FI$="BINFILE,L,"+CHR$(LN) :rem 129

! -I 190 OPEN 1,8,15, "U9":GOSUB 700 : rem 66
200 OPEN 2,8,2,FI$:GOSUB 700 :rem 232

R 210 REM CREATE FILE :rem 75
220 GOSUB 600 :rem 170

pi 230 REM RANDOM NUMBER GENERATION :rem 239

240 TR$="{2 SPACES}"+STR$(INT(RND(0)*HR*2)):rem 59

— 250 TR$=RIGHT$(TR$,LN-1) :rem 127

Li 260 PRINT"TARGET=";TR$:PRINT :rem 57

:rem 187

:rem 57

:rem 93

irem 83

:rem

:rem

srem

255

233

209

:rem 73

:rem 75

:rem 245

: rem 33

: rem 134

: rem 16

:rem 5

: rem

srem

srem

: rem

srem

srem

srem

srem

101

107

104

226

161

108

184

179

srem 97

srem

srem

217

116

n 131

4: Programming Aids

270

280

285

290

295

300

305

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

600

610

620

630

640

650

660

670

700

710

720

730

740

REM BEGIN BINARY SEARCH

MC=MC+1

RN=LR:GOSUB 500

PRINT "LO=M;A$,

RN=HR:GOSUB 500

PRINT "HI="?A$,

RN=MR:GOSUB 500

PRINT "MR="7A$

IF A$=TR$ THEN 460

IF A$>TR$ THEN 370

REM MOVE UP LR

LR=MR:GOTO 390

REM MOVE DOWN HR

HR=MR

REM SET UP NEXT SEARCH

RC=HR-LR:IF RC=1 THEN 430

MR=INT(RC/2)+LR

GOTO 280

REM RECORD DOES NOT EXIST

PRINT:PRINT TR$;" NOT FOUND "

GOTO 470

REM RECORD FOUND

PRINTsPRINT TR$;M FOUND "

PRINT"AFTER";MC;"ATTEMPTS":PRINT

PRINT"MAX. OF";TC;"ATTEMPTS"

CLOSE 2:CLOSE 1:END

REM READ A RECORD

HI=INT(RN/256):LO=RN-HI*256

PRINT#1,"P";CHR$(2+96);CHR$(LO);

GOSUB 700

A$= ""

GET#2,B$sIF ST THEN 570

A$=A$+B$:GOTO 550

GET#2,B$

RETURN

REM BUILD ARRAY

PRINT"{CLRjCREATING FILE":PRINT

FOR 1=1 TO HR

T$="{2 SPACES}"+STR$(I*2)
T$=RIGHT$(T$,LN-1)+CHR$(13)

PRINT#2,T$;

NEXT I

RETURN

REM CHECK FOR DISK ERRORS

INPUT#1,EN,ET$,ET,ES

IF EN=0 OR EN=73 THEN 740

PRINT EN;ET$;ET;ES:STOP

RETURN

srem 93

:rem 83

:rem 105

:rem 16

:rem 102

:rem 254

:rem 99

:rem 225

:rem 89

:rem 91

:rem 245

:rem 33

:rem 134

:rem 16

: rem 5

srem 101

:rem 107

srem 104

\rem 226

srem 161

srem 108

srem 184

srem 179

srem 97

srem 217

srem 55

srem 149

:rem 67

CHR$(HI);

srem 18

:rem 175

:rem 127

:rem 156

:rem 64

:rem 99

:rem 125

:rem 105

srem 47

:rem 115

srem 208

:rem 191

srem 92

:rem 36

:rem 125

:rem 200

:rem 173

:rem 205

:rem 217

srem 123

132

u

u

u

u

Creating Multicolor Graphics
on the VIC
Daryl Bibeidorf

\ Multicolor characters add excitement to your VIC pro-

IVlgrams, and this article will help you understand how
they work. A multicolor character editor is included too.

These programs will run on any VIC.

Multicolor characters can be a puzzling, if not frustrating, part of

the VIC-20's graphics features. But once you understand the

basics, multicolor graphics are much easier to handle. This article

introduces you to the subject and presents a character editor to

aid in designing multicolor characters.

A multicolor character is, quite simply, a character which can

be made up of as many as four colors at the same time. Such char

acters can add a great deal of excitement to graphics displays.

There is a price to be paid, however: In a multicolor character,

each pixel doubles in size. That halves horizontal resolution, but

it provides the extra bit needed to define the character's colors.

The pattern of bits within the pair determines the color dis

played by the pair. If both bits are on, that pixel's color will be the

auxiliary color, set in the auxiliary color register (36878). If the first

bit is on and the second is off, the color will be that of the screen

border (location 36879). If the first bit is off and the second is on,

the color will be determined by the contents of the color memory

location for the character's screen position (38400 to 38905). If

both bits are off, the color will be that of the background, also set

in location 36879.

The auxiliary color is determined in location 36878, the same

one used as a volume control for the VIC's sound. The upper four

bits (7-4) control the auxiliary color, while the lower four bits (3-0)

determine volume. The following commands will maintain a con

stant volume and let you set the auxiliary color to whatever you

choose:

POKE 36878, N*16 OR (PEEK(36878) AND 15)

N is a number chosen from Table 1 for the color you want.

135

5: Graphics and Sound

Table 1- VIC Auxiliary Color Codes

Black 0 Orange 8

White 1 Light Orange 9

Red 2 Pink 10

Cyan 3 Light Cyan 11

Purple 4 Light Purple 12

Green 5 Light Green 13

Blue 6 Light Blue 14

Yellow 7 Light Yellow 15

The character color of a multicolor character is determined by

the character's specific location on the screen. This color is con

trolled by locations 38400 to 38905, the area for character color

memory. Table 2 lists eight numbers with a corresponding color

for each. By POKEing one of these numbers into the appropriate

location in color memory, the character color is set for multicolor

mode.

Table 2, VIC Screen Location Color Codes For Multicolor Mode

Black 8 Purple 12

White 9 Green 13

Red 10 Blue 14

Cyan 11 Yellow 15

The character's screen (transparent) and border colors are

controlled jointly by location 36879. This register is the easiest one

to set, mainly because all of the work has already been done for

you. In Appendix F, all of the possible screen and border colors

are listed. Just POKE your chosen color combination into location

36879.

It is possible to design multicolor characters by hand, but it's

easier to let the computer do the tedious work for you. The multi

color character editor described here was designed to do just that,

and it is especially helpful because it lets you visualize your char

acters as you create them.

When typing in the character editor program, you should use

the abbreviated PRINT command (?) in all lines that contain

PRINT statements. Otherwise, those lines may exceed the maxi

mum allowable line length of 88 characters.

When the character editor is run, a menu will appear in the

upper left of the screen, and a grid representing an enlarged ver

sion of the character you are editing will form in the upper right.

The character being edited will appear normal size in the lower

136

5: Graphics and Sound

left. In the lower right you'll get a list of the four different pixel

patterns and their associated colors.

The I, M, J, and K keys move the yellow cursor over the grid.

To turn on a pixel, press the + key. To turn off a pixel, press the -

key. Press the back-arrow key to clear the grid and clear out any

characters in memory. To select a character to edit, press the S key

and use the + and - keys to page through the 64 characters avail

able to you. If you forget which character you are editing, press

the W key, which acts as a toggle between the two character sets.

PressW again to return to the edit mode.

The D option lets you save the character being edited as a data

file on cassette. When you choose this option, the prompt SURE?

will appear in the upper left corner of the screen. Answer Y or N.

The L option lets you load that data file back into memory for fur

ther editing. Again, the SURE? prompt will appear and should be

answered Y or N. Press Q to abort the program.

To incorporate a custom character into your own programs,

first S/WE the character file with the D command. Then LOAD

Program 2, RUN it, and answer all prompts. It loads the

previously created data file and converts it into a program that can

be saved in the usual manner. The program fragment thus created

can be read into your BASIC program with the following line:

xxxx READN:IFNTHENFORN=NTON+7:READX:POKEN,

X:NEXT:GOTOxxxx

The four x/s represent a line number. The x's at the end of the line

must be the same as those at the beginning.

Program 1* Multicolor Characters for the VIC

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

30 POKE52,28:POKE56,28:CLR :rem 20

40 FORI=7168TO7679:POKEI,PEEK(1+25600):NEXT:GOSUB

{SPACE}29000:POKE650,128 :rem 229

70 GETK$:IFK$="I"THENUD=-1:GOSUB28000 :rem 207

80 IFK$=MMMTHENUD=1:GOSUB28000 :rem 30

90 IFK$=MJ"THENLR=-1:GOSUB28100 :rem 79

100 IFK$=MK"THENLR=1:GOSUB28100 :rem 75

110 IFK$=" + IITHENGOSUB28200 : rem 231

120 IFK$="-"THENGOSUB28200 :rem 234

130 IFK$="D"THENGOSUB26000 :rem 254

140 IFK$="SMTHENGOSUB27000:GOSUB24000 :rem 191

150 IFK$="V'THEN155 :rem 62

152 GOTO 160 :rem 104

155 F0RI=CMT0CM+7:POKEI,0:NEXT:FORI=1TO8:FORJ=1TO8

:CD%(I,J)=0:NEXTJ,I:GOSUB31000 :rem 100

137

5: Graphics and Sound

160 IFK$="Q"THENPRINT"{CLR}":POKE36869,240:PRINT"
{BLU}";:POKE650#0:END :rem 11

180 IFK$="W"THENOO=-OO:GOSUB23000 :rem 243

190 IFK$="L"THENGOSUB22000 : rem 8

200 GOTO70 :rem 50

22000 INPUT" {HOME} {RVS}{BLU}SURE";A$:IFA$="N"THENP
RINT"{HOME}{RVS}{10 SPACES}";:RETURN :rem 98

22010 POKE36869,240:INPUT"{CLR}{2 DOWN}FILENAME";F

$:PRINT"{DOWN}{RED}INSERT TAPE AND":PRINT"PR
ESS {RVS}SPACE" :rem 191

22020 WAIT197,32,0:OPEN1,1,0,F$:INPUT#1,CM,CH:FORI

=1TO8:LK=0:FORJ=1TO8: :rem 21

22030 INPUT#1,X:CD%(I,J)=X:LK=LK+X:NEXTJ:POKECM-1+

I,LK:NEXTI:CLOSE1 :rem 6

22040 GOSUB30000:RETURN :rem 133

23000 IFOO=-1THENPOKE36869,240:POKECC,6 :rem 62

23010 IFOO=1THENPOKE36869,255:POKECC,15 :rem 72

23020 RETURN :rem 215

24000 FORI=1TO8:FORJ=1TO8:CD%(I,J)=0:NEXTJ,I:GOSUB

31000:W=7722:FORJ=0TO7:LK=0:FORI=0TO7

:rem 173

24010 IF (PEEK(CM+J)AND(2TD)THENPOKEW-1, 209 :CD%(J+

1,8-I)=2tl :rem 14
24020 NEXTI:W=W+22:NEXTJ: RETURN : rem 17

26000 INPUT"{HOME}{BLU}{RVS}SURE";A$:IFA$="N"THENP

RINT"{HOME}{RVS}{10 SPACES}";:RETURN:rem 102
26007 POKE36869,240:INPUT"{CLR}{BLU}{DOWN} FILENAM

E";F$:rem 183

26008 PRINT"{DOWN}{RED} INSERT TAPE AND":PRINT" PR

ESS {RVS}SPACE":WAIT197,32,0:OPEN1,1,1,F$:

:rem 10

26010 PRINT#1,CM:PRINT*1,CH:FORI=1TO8::FORJ=1TO8:P

RINT#1,CD%(I,J):NEXTJ,I :rem 68

26020 CLOSElsPOKE 36869,255:GOSUB30000:RETURN

:rem 169

27000 POKE36879,26:GETK$:IFK$="+"THENCH=CH+1:IFCH>

63THENCH=0 :rem 58

27010 IFK$="-"THENCH=CH-1:IFCH<0THENCH=63 :rem 166

27020 IFK$=CHR$(13)THEN27040 :rem 24

27030 POKECL,CH+128:POKECC,6:GOTO27000 :rem 244

27040 POKECL,CH:CM=7168+8*CH:POKE36879,SC:RETURN

:rem 189

28000 VP=VP+UD:PRINT"{HOME}";:FORI=1TOVP-UD:PRINT"

{DOWN}";:NEXT :rem 87

28005 IFCD%(VP-UD,HP)THENPRINTTAB(12+HP)"{RVS}

{BLK}Q":GOTO28020 :rem 235

28010 PRINTTAB(12+HP)"{BLK}{RVS}." :rem 234

28020 IFVP<1THENVP=8 :rem 232

28025 IFVP>8THENVP=1 :rem 239

138

5: Graphics and Sound

28030 PRINT"{HOME}H;:FORI=1TOVP:PRINT"{DOWN}";:NEX

T :rem 13

28035 IFCD%(VP,HP)THENPRINTTAB(12+HP)"{RVS}{YEL}Q"

:GOTO28050 :rem 57

28040 PRINTTAB(12+HP)"{RVS}{YEL}•" :rem 251

28050 RETURN :rem 223

28100 HP=HP+LR:PRINT"{HOME}"; :FORI=1TOVP:PRINT"

{DOWN}";:NEXT :rem 123

28120 IFCD%(VP,HP-LR)THENPRINTTAB(12+HP-LR)"{RVS}

{BLK}Q":GOTO28140 :rem 188

28130 PRINTTAB(12+HP-LR)"{RVS}{BLK}." :rem 184

28140 IFHP<1THENHP=8 :rem 207

28143 IFHP>8THENHP=1 :rem 212

28145 PRINT"{HOME}";:FORI=1TOVP:PRINT"{DOWN}";:NEX

T :rem 20

28147 IFCD%(VP,HP)THENPRINTTAB(12+HP)"{RVS}{YEL}Q"

:GOTO28160 :rem 63

28150 PRINTTAB(12+HP)"{RVS}{YEL}." :rem 253

28160 RETURN :rem 225

28200 IFK$="+"THEN28205 :rem 214

28203 GOTO 28210 :rem 53

28205 PRINT"{HOME}";:FORI=1TOVP:PRINT"{DOWN}";:NEX

T:PRINTTAB(12+HP)"{RVS}{YEL}Q":CD%(VP,HP)=2t
(8-HP) :rem 167

28210 IFK$="-"THENPRINT"{HOME}";:FORT=1TOVP:PRINT"

{DOWN}";:NEXT:PRINTTAB(12+HP)"{RVS}{YEL}.":C

D%(VP,HP)=0 :rem 56

28220 LK=0:FORI=1TO8:LK=LK+CD%(VP,I):NEXT:POKECM-1

+VP,LK:POKECL,CH:POKECC,15:RETURN :rem 75

29000 HP=1:VP=1:PN=209:PF=174:FORI=1TO8:FORJ=1TO8:

DC%(I,J)=0:NEXTJ,I:CL=8057:CC=38777 :rem 145

29010 CH=0:CM=7168:SC=27:00=1 :rem 141

30000 PRINT"{CLR}":POKE36869,255:GOSUB31000:rem 70

30010 PRINT"{HOME}{16 D0WN}{2 SPACES}{RVS}{GRN}gAU

*gS3":PRINT"{2 SPACES}{RVS}z -":PRINT"

T2 SPACES} {RVS} gZi*gX;3M : rem 84
30020 PRINT"{HOME}{DOWN}TRVS}{3 SPACES}{CYN}MENU":

PRINT"{RVS} {RED}EEEEEEEE" :rem 49

30030 PRINT"{RVS}{BLK} I=UP":PRINT"{RVS}{CYN} M=DO
WN":PRINT"{RVS}{RED} J=LEFT":PRINT"{RVS}
{PUR} K=RIGHT" srem 188

30040 PRINT"{RVS}{BLU} +=DOT ON":PRINT"{RVS}{PUR}
{SPACE}-=DOT OFF" :rem 202

30045 PRINT"{RVS}{RED} W=WHICH" :rem 2

30050 PRINT"{RVS}{BLK} S=SELECT":PRINT"{RVS}{YEL}
{ SPACE } D=DATA" : PRINT " { RVS } {GRN } -*=WIPE"

:rem 29

30055 PRINT"{RVS}{BLU} L=LOAD":PRINT"{RVS}{CYN} Q=
QUIT" :rem 53

139

5: Graphics and Sound

30060 PRINT" {DOWN}IISPC(9)"{RVS}{BLK} .Q{RED}={BLK}C

HARACTER":PRINTSPC(9)"{RVS}Q.{RED}={BLKjBORD

ER" :rem 217

30070 PRINTSPC(9)"{RVS}..{RED}={BLK}SCREEN":PRINTS
PC(9)"{RVS}QQ{RED}={BLK}AUXILIARYh:POKECL,CH

:POKECC,15 :rem 82

30080 GOSUB24000:RETURN :rem 139

31000 PRINT11 {HOME } " : FORI=0TO7 : PRINTTAB(13) " {RVS }
{BLK} {BLU}":NEXT:RETURN : rem 228

Program 2, Listing Generator

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

40 PRINT"{CLR}{DOWN}{RIGHT}{RED}INSERT TAPE AND":P

RINT" PRESS {RVS}SPACE":WAIT197,32,0 :rem 247

50 LR$="9000 READN:IFNTHENFORN=NTON+7:READX:POKEN,

X:NEXT:GOTO9000":PP$="9010 DATA" :rem 53

60 OPEN1,1,0:INPUT#1,CM:PP$=PP$+STR$(CM):INPUT#1,C

H:FORI=1TO8:N=0:FORJ=1TO8:INPUT#1,X: :rem 145

70 N=N+X:NEXT:PP$=PP$+","+STR$(N):NEXT:CLOSE1:PRIN

T"{CLR}{5 DOWN}"LR$:PP$=PP$+",0" :rem 150

80 PRINTPP$:FORI=1TO10:READA:POKE630+I,A:NEXT:POKE

198,10:END :rem 49

90 DATA19,78,69,87,13,13,13,13,13,13 :rem 30

140

Super Expander Graphics
Dave Needham

' I he Super Expander cartridge adds exciting graphics

1 commands to the VIC-20's repertoire. These enter
taining routines demonstrate some of those commands and

can be customized to produce a variety ofeffects.

Here are two short programs that take advantage of some of the

capabilities of Commodore's Super Expander for the VIC-20.

The first program draws a three-dimensional box and rotates

it through 90 degrees, using BASICs trigonometric functions.

Line 20 sets the trig parameters, in radians, and lines 30-95 define

the corners of the front face of the cube. The front face rotates

around the coordinates 350,550; the rest of the cube tags along

behind.

The second program demonstrates the Super Expander's

drawing abilities, generating a spiral by continually expanding

small segments of a circle. You can change the size and density of

the spiral by varying the numbers in line 10.

Program L Rotating Box

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

10 GRAPHIC2:COLOR0,3,1,1 :rem 147

20 FORA=.8TO2.34STEP.07 :rem 104

30 Xl=350+ COS(A)*212 :rem 34

40 X2=350- COS(A)*212 :rem 38

50 Yl=550+ SIN(A)*212 :rem 44

60 Y2=550- SIN(A)*212 :rem 48

70 X3=350+ SIN(A)*212 :rem 45

80 Y3=550+ COS(A)*212 :rem 44

90 X4=350- SIN(A)*212 :rem 50

95 Y4=550- COS(A)*212 :rem 53

97 SCNCLR :rem 53

100 DRAW1,XI,Y2TOX4,Y4TOX2,Y1TOX3,Y3TOX1,Y2

:rem 240

110 DRAW1,X1,Y2TO Xl+100,Y2-100TO X4+100 ,Y4-100TO

X4,Y4 :rem 4

120 DRAW1,X3,Y3TO X3+100, Y3-100 TO X2+100, Yl-100

TOX2,Y1 :rem 1

130 DRAW1,X4+100, Y4-100 TO X2+100, Yl-100 :rem 59

140 DRAW1,Xl+100, Y2-100 TO X3+100, Y3-100 :rem 58

900 FORM=1TO100:NEXT :rem 232

910 NEXTA :rem 26

141

u

5: Graphics and Sound I—>

u

Program 2. Expanding Spiral [_|
Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

2 GRAPHIC2:REGION0 :rem 144 LJ
5 m=0 :rem 239

10 FOR 1=30 TO 700 STEP 5 :rem 220 |_|

30 CIRCLEl,500,500,I,I,M,M+5 : rein 4

40 M=M+5:IFM=100THENM=0 :rem 104

50 NEXTI 2rem 237

LJ

LJ

142

Multicolor Sprites for

the Commodore 64
Gary Robinson

With this graphics utility, it's easy to create impres

sive multicolor sprites on your Commodore 64.

While it is entirely possible to construct multicolored sprites

using pencil and paper, why anyone would want to is a mystery

to me. It's far easier to let the computer do it for you.

The accompanying program is a sprite definition utility for

the Commodore 64. It lets you create a multicolored sprite on the

screen and it also generates the numbers needed to define your

sprite block for later use in BASIC programs.

Multicolored sprites on the Commodore 64 work in much the

same manner as single-colored sprites. However, there are a

couple of differences. Obviously, each multicolored sprite can

contain up to four colors. In addition, the horizontal resolution of

multicolored sprites is half that of a single-colored sprite. How

ever, once constructed, both multicolored and single-colored

sprites are activated and moved in the same way.

Multicolored sprites have a lower horizontal resolution be

cause each sprite element is defined by a pair of bits rather than

by a single bit. Each bit-pair can take on one of four values (00,01,

10, or 11), and each pair defines a given element color. Bit-pair 00

is the screen background, or transparent, color. Pair 01 is defined

by the contents of sprite multicolor register 0 (53285, $D025). Pair

10 is defined by the contents of the appropriate sprite color regis

ter (53287-53294, $D027-$D02E), and pair 11 is defined by the con

tents of sprite multicolor register 1 (53286, $D026).

To use the multicolor sprite editor to create your own sprites,

type in and run the program. The first thing you will see on your

screen is a blue rectangle. The area within this rectangle is the

sprite definition area where you will define the shape and color of

the sprite. The area to the right will be used to display both the

sprite you create and the numbers defining the sprite block.

Below the sprite definition area, three numbered blocks ap

pear. Initially, the number 2 is displayed with a reverse field. This

indicates that any element defined will be white. A different ele

ment color may be selected by pressing f7.

Once the cursor appears in the sprite definition area (it takes

143

5: Graphics and Sound

a few seconds), the cursor control keys maybe used to position . .

the cursor. The cursor will exhibit full wraparound characteristics. •—'
Pressing the space bar will cause the element under the cursor to . ,

take on the selected color. The cursor will then advance one ele- '—'
ment in the direction of last motion. If this motion seems awk- ^ ,

ward, change line 530 to a REM statement to suppress any cursor (—i
movement after a SPACE. The cursor control keys and SPACE

keys will repeat if held down. To erase an element, use SHIFT

and SPACE simultaneously.

As mentioned before, f7 is used to select the current color

from the three available. The colors actually used are controlled

by the 1,2, and 3 keys. Successive use of either of these keys will

cause the corresponding color block to rotate through the 16 avail

able colors. This operation also alters the contents of the sprite

color registers, and thus alters the color of the displayed sprite. By

combining f7 and the 1,2, and 3 keys, you have full control over

which color goes where in your sprite.

Once you have defined the sprite, press fl. The cursor will

disappear, and a series of digits will appear to the right of the

sprite definition area. These 63 numbers, taken rowwise, can be

used in a BASIC DAIA statement to set up a sprite block. Once

they have been generated, the cursor will return and further

operations may continue. Function f3 is used to display the sprite

you have created. Function f5 will alternately expand or shrink

the displayed sprite.

While the sprite is being displayed, its color composition may

be altered with the 1,2, and 3 keys. While this action keeps the

sprite color consistent with the current color selection, the colors

within the sprite definition area will not be altered. To update the

color distribution within the sprite definition area, use f8. When

f8 is invoked, the cursor will disappear and each element within

the sprite definition area will be updated to reflect the current

color set. When you're through, press E to exit the program. > {

In summary, the procedure used to create a multicolored *—J
sprite with this utility is as follows: I ,

1. Select the colors to be used with the 1,2, and 3 keys. ^
2. Define the shape of the sprite within the sprite definition j ,

area. Use f7 to select colors. l—'

3. Use fl to generate the data for the sprite block. I ,

4. Then use f3 to display the sprite you have created. ^—J
5. Modify the colors of the displayed sprite as desired with i ,

the 1,2, and 3 keys. t—'

144 LJ

5: Graphics and Sound

r-j 6. Update the colors within the sprite definition area by using

f8.

p"| 7. Return to step 2 if further modification is desired.

Below is a list of control functions:

PI SPACE/ Sets or resets an element within the sprite
SHIFT SPACE definition area

f1 Generates sprite block data

f3 Displays the generated sprite

f5 Expands/shrinks displayed sprite

f7 Selects current color

f8 Updates colors in sprite definition area

1 Rotates color block # 1 — Sprite multicolor register 0

(53285, $D025)

2 Rotates color block #2 — sprite color register

(53287-53294, $D027-$D02E)

3 Rotates color block #3 — Sprite multicolor register 1

(53286, $D026)

E Ends the editor program

While this program does not save sprite blocks on tape or

allow multiple sprite definitions, it does let you quickly and easily

get a sprite up on the screen.

Multicolor Sprite Editor for the 64

Refer to 'The Automatic Proofreader" (Appendix]) before typing this program in.

5 DIM V%(63):POKE 53280,6:L=1106 :rem 156

10 PRINT "{CLR}":CO(1)=0:CO(2)=1:CO(3)=3:CC=2

:rem 44

20 FOR 1=1066 TO 1089:POKE I,111:POKE 1+880,119

:rem 198

21 NEXT :rem 162

25 FOR 1=55338 TO 55362:POKE I,14:P0KE 1+880,14:NE

XT :rem 78

30 FOR 1=1105 TO 1905 STEP 40:POKE I,106:POKE 1+25

,116:NEXT :rem 159

_, 40 FOR 1=55377 TO 56177 STEP 40:POKE I,14:POKE 1+2

' -1 5,14:NEXT :rem 186
41 POKE 56260,1:POKE 56262,0:POKE 56263,0:POKE 562

PI 67,1:POKE 56269,1 :rem 43
42 POKE 56270,1:POKE 56274,1:POKE 56276,3:POKE 562

f—j 77,3 :rem 105

43 POKE 1988,49:P0KE 1990,160:POKE 1991,160:POKE 1

—, 995,178:POKE 1997,160 :rem 27

I 44 POKE 1998,160:POKE 2002,51:POKE 2004,160:POKE 2
005,160 :rem 217

~1 50 POKE 2040,192:POKE 2041,193 : rem 27
55 FOR 1=31106 TO 31929:POKE I,0:NEXT :rem 4

1 145

5: Graphics and Sound

60 FOR 1=12288 TO 12414:POKE I,0:NEXT :rem 254

70 FOR 1=12288 TO 12311 STEP 3:POKE 1,1:POKE 1+1,1

28:NEXT :rem 64

75 POKE 53264,2:POKE 53250,17:POKE 53251,138

:rem 42

76 POKE 53271,0:POKE 53277,0 :rem 199

80 POKE 12297,254:POKE 12300,254:POKE 12298,127:PO

KE 12301,127 :rem 228

90 POKE 53287,14:POKE 53288,1:POKE 53285,0:POKE 53

286,3 :rem 158

100 X=40:Y=66:POKE 53248,X:POKE 53249,Y :rem 174

110 POKE 53269,3:F=1 :rem 23

120 GET K$:IF K$=n" THEN 120 :rem 93

121 IF K$="E" THEN PRINT "{UP}M:POKE 53269,0:END
:rem 200

122 IF K$="{F3}H THEN 2000 :rem 139

125 IF K$="{F1}M THEN 1000 :rem 140

126 IF K$="{F5}" THEN 3000 :rem 145

127 IF K$="{F7}"THEN 4000 :rem 148

128 IF K$=M1" THEN 5000 :rem 63

129 IF K$=n2" THEN 6000 :rem 66

130 IF K$="3" THEN 7000 :rem 60

131 IF K$="{F8}" THEN 9000 :rem 152

138 IF K$<>"{RIGHT}" THEN 200 :rem 54

140 X=X+16:IF X>224 THEN X=40:Y=Y+8:IF Y> 226 THEN

Y=66 :rem 234

150 POKE 53248,X:POKE 53249,Y:F=1 :rem 50

160 GOTO 120{14 SPACES} :rem 99

200 IF K$o"{LEFT}" THEN 300 :rem 173

210 X=X-16:IF X<40 THEN X=216:Y=Y-8:IF Y< 66 THEN

{SPACE}Y=226 :rem 233

220 POKE 53248,X:POKE 53249,Y:F=2 :rem 49

230 GOTO 120 :rem 97

300 IF K$<>"{DOWN}" THEN 400 :rem 35
310 Y=Y+8:IF Y>226 THEN Y=66:X=X+16:IF X> 224 THEN

X=40 :rem 233

320 POKE 53248,X:POKE 53249,Y:F=3 :rem 51

330 GOTO 120 :rem 98

400 IF K$<>"{UPj" THEN 500 :rem 165
410 Y=Y-8:IF Y<66 THEN Y=226:X=X-16:IF X< 40 THEN

{SPACE}X=216 :rem 235

420 POKE 53248,X:POKE 53249,Y:F=4 :rem 53

430 GOTO 120 :rem 99

500 L=1106+5*(Y-66)+(X-40)/8 :rem 127

510 IF K$<>" " THEN 520 :rem 24

515 POKE L+54272,CO(CC):POKE L+54273,CO(CC):POKE 3

0000+L,CC :rem 217

516 POKE L,160:POKE L+l,160:GOTO 530 :rem 185

520 IF ASC(K$)<>160 THEN 530 :rem 149

146

5: Graphics and Sound

525 POKE L,32:POKE L+1,32:POKE L+30000,0 :rem 121

530 ON F GOTO 140,210,310,410 :rem 137

540 GOTO 120 :rem 101

1000 N=l :rem 125

1010 POKE 53269,0 :rem 86

1020 PRINT "{HOME}{DOWN}" :rem 184

1050 FOR 1=1 TO 63:V%(I)=0:NEXT :rem 165

1100 FOR 1=1106 TO 1906 STEP 40 :rem 10

1200 FOR J=0 TO 2 :rem 54

1300 FOR K=0 TO 3 :rem 57

1400 V5=PEEK(30000+1+8*J+2*K):V%(N+J)=V%(N+J)+V5*2

t(6-2*K) :rem 115

1500 NEXT :rem 5

1600 NEXT :rem 6

1605 FOR M=0 TO 2 :rem 66

1610 A$(M)="{2 SPACES}":IF V%(N+M)> 9 THEN A$(M)="

:rem 209

1620 IF V%(N+M)>99 THEN A$(M)="" :rem 77

1630 NEXT{17 SPACES} :rem 9

1640 PRINT TAB(27)A$(0)+STR$(V%(N))TAB(29)A$(1)+ST

R$(V%(N+1)); :rem 70

1650 PRINT TAB(33)A$(2)+STR$(V%(N+2)) :rem 223

1700 N=N+3 :rem 255

1800 NEXT :rem 8

1850 POKE 53269,1 :rem 99

1900 GOTO 120 :rem 150

2000 POKE 53269,0:POKE 53276,2 :rem 36

2100 FOR 1=1132 TO 1142 :rem 98

2200 FOR J=0 TO 800 STEP 40 :rem 61

2300 POKE I+J,32 :rem 67

2400 NEXT :rem 5

2500 NEXT :rem 6

2600 FOR 1=1 TO 63:POKE 12351+1,V%(I):NEXT :rem 5

2700 POKE 53269,2 :rem 95

2800 GOTO 110 :rem 149

3000 POKE 53271,2+2*(PEEK(53271)=2) :rem 17

3100 POKE 53277,2+2*(PEEK(53277)=2) :rem 30

3200 GOTO 120 :rem 145

4000 CC=CC+1:IF CO3 THEN CC=1 :rem 76

4005 IF CC=1 THEN POKE 1988,177:POKE 2002,51:GOTO

{SPACE}120 :rem 20

4006 IF CC=2 THEN POKE 1988,49:POKE 1995,178:GOTO

{SPACE}120 :rem 50

4007 POKE 1995,50:POKE 2002,179:GOTO 120 :rem 99

4010 GOTO 120 :rem 145

5000 CO(1)=CO(1)+1:IF CO(1)>15 THEN CO(1)=0
:rem 183

5100 POKE 56262,CO(1):POKE 56263,CO(1) :rem 233

5105 POKE 53285,CO(1) :rem 65

147

u

5: Graphics and Sound LJ

u

5200 GOTO 120 :rem 147 , <

6000 CO(2)=CO(2)+1:IF CO(2)>15 THEN CO(2)=0 1—»
:rem 188

6100 POKE 56269,00(2):POKE 56270,00(2) srem 241 LJ
6105 POKE 53288,C0(2) :rem 70

6200 GOTO 120 :rem 148] (

7000 CO(3)=CO(3)+1:IF CO(3)>15 THEN CO(3)=0 L"'
:rem 193

7100 POKE 56276,00(3):POKE 56277,C0(3) :rem 249

7105 POKE 53286,C0(3) :rem 70

7200 GOTO 120 :rem 149

9000 POKE 53269,2 :rem 95

9001 FOR Ql=l TO 3:FOR Q=1106 TO 1988 STEP 2

:rem 217

9200 IF PEEK(Q+30000)=Q1 THEN POKE 54272+Q,CO(Ql):

POKE 54273+Q,CO(Ql) :rem 232

9205 NEXT Q :rem 96

9206 NEXT Ql :rem 146

9207 POKE 53269,3 :rem 105

9300 GOTO 120 :rem 152

148

Character Editor for the

Commodore 64
Larry Chiger

Haveyou ever needed italicized letters or wished for a

few characters of Old English script? This character

editor lets you create any custom character you need — in

as many as four colors per character. A disk drive is re

quired to load and store character definitions from this

program.

This program lets you easily create custom characters on the

Commodore 64. Any of the 256 characters in either character set

can be customized.

To begin, type in the program, save it, then run it. The default

character set is copied into memory starting at decimal address

12288, setting the top of memory at that point to allow for instant

display of modified characters.

Select fl to choose the character you want to modify and

follow the onscreen prompts. To obtain a character in reverse

video, press CTRL-9 (RVS ON), as you would normally, at the

prompt for character choice. To turn off reverse video, press

CTRL-0 (RVS OFF). Press RETURN to continue.

The next prompt asks if you would like the character dis

played in the grid. Displaying is useful if you're only slightly

modifying a character. Selecting a new character automatically

erases the display grid. This is accomplished by line 1003 of the

program. If this line is removed, the display grid will not be

erased after choosing fl. This can be useful if you would like to

assign the same character image to more than one key. Just draw

the image and store it, select a new character with f1 (but do not

display it in the grid), and then store that character.

While working on a character in the display grid, press the

Commodore and SHIFT keys to draw, but press the Commodore

key alone to erase.

Type f2 to display the completed character in actual size. This

can be used while making small adjustments on the working

character to obtain the best possible results.

This program uses the back-arrow key (<-) memory location

to store the byte representations of a character while it is being

worked on. If you want the back arrow to be itself or some other

149

5: Graphics and Sound

character, it must be designed last before you save the entire set to

disk. LJ
Type f3 to store the character, as it appears in the display grid,

to its proper location in memory. This also records the character LJ
for later storage to disk. If the character is represented onscreen,

all of those characters onscreen will change to reflect the char- LJ
acter's new form.

Type f4 to erase the display grid.

Type f5 to select the multicolor mode, bringing a new menu

to the screen. This lets the user select a new background color and

choose colors for the character. The colors will be displayed only

in the character located under ACTUAL SIZE, and color informa

tion is stored to disk when the character set is saved (see program

lines 6020-6021 and 6080-6095). Turning multicolor OFF returns

the displayed character to its previous form.

Type f6 to save the completed or partially completed char

acter set to disk. The user is prompted to name this new character

set, thus enabling many different character sets to be stored on

the same disk. If a file by the same name already exists, the user is

so informed and given the choice to write over it or return to

menu.

Type £7 to load a character set from the disk. If no file exists by

the name the user has supplied, the user is given a choice of

supplying another name or returning to the menu.

A note about loading a character set. Only those characters

that were modified and stored are read into memory. If other

characters had been modified previously, they would not be

affected. For example, suppose that the characters A, B, and C

were modified and saved to disk under the name MODABC. At a

later session, the characters C, D, and E were modified, and the

character set MODABC was again loaded into memory. The

result: Characters A, B, and C would appear as they did in

MODABC, while the characters D and E would appear in their

newly modified form. All other characters would remain the LJ
same.

One advantage of this character generator is that once an old LJ

character set is loaded from the disk, it can be modified and re-

saved. Characters that were previously modified can be re- LJ
modified, and new characters can be added. However, if new

characters are created and a character set is then loaded from the LJ
disk and saved, only the characters in the most recent loaded set

are saved. The newly created characters are lost. LJ

150
LJ

5: Graphics and Sound

This problem can be avoided in one of two ways. You can first

load the character set that you wish to modify, and then modify

new characters and resave the set. Alternatively, if you have

already modified characters and loaded an old character set from

the disk, you can follow these steps for each newly modified

character:

1. Select fl.

2. Select a newly modified character and display it in the grid.

3. Select f3.

The £7 key has another use. Once you have developed a new

character set, you need a way to load it into memory for other use.

Typing f7 runs the character generator program and loads the

character set. After completing this process, f8 will end the pro

gram with the character set in place.

Sometimes, the placement of the character set as 12288 can be

an inconvenience. You might want to modify lines 800-840 (set

ting up a new character base) and lines 7000-7090 (loading a char

acter set from the disk) for use in your own programs.

Character Editor for the 64

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

4 PRINTCHR$(142):PRINTCHR$(8):POKE649,1 :rem 100

10 PRINT"{CLR}":PRINT"PLEASE WAIT 1 MINUTE"

srem 194

20 GOTO800 :rem 51

29 PRINT"{CLR}":POKE214,0:PRINT jrem 242

30 PRINT"{UP}{RVS}CHIGER'S CHARACTER GENERATOR"

:rem 55

40 PRINTTAB(30);"g8 Oi" :rem 195

50 PRINTTAB(29);"gL3H;SPC(8);"gJ3" :rem 152

60 PRINT"{RVS}F1.{OFF} PICK NEW CHAR";TAB(29);"

gLill;SPC(8);"|Ji11 : rem 144

65 PRINT"{RVS}F2.{OFF} DISPLAY CHAR";TAB(29);"

gL3";SPC(8);"gJ3" :rem 155

70 PRINT"{RVS}F3.{OFF} STORE NEW CHAR";TAB(29);"

EL3";SPC(8);"gJi" :rem 249

75 PRINT"{RVS}F4.{OFF} NEW SCREEN";TAB(29);"gL^"

;SPC(8);"gJ3" :rem 20

80 PRINT"{RVS}F5.{OFF} MULTICOLOR ON/OFF";TAB(29);

"gLin;SPC(8);"gJ3" :rem 24

85 PRINT"{RVS}F6.{OFF} SAVE CHAR SET TO DISK";TAB(

29);"gL3H;SPC(8);"gJ3" :rem 116

90 PRINT"{RVS}F7.{OFF} LOAD CHAR SET FROM DISK";TA

B(29);"gL3";SPC(8);"gJ3" : rem 243

95 PRINT"{RVS}F8.{OFF} QUIT";TAB(30);"g8 Y3"

:rem 207

151

LJ

5: Graphics and Sound LJ

LJ
110 PRINTTAB(31)"{DOWN}ACTUAL" :rem 186

120 PRINTTAB(32)"SIZE" :rem 44 M

130 PRINTTAB(31)"g6 Y|" :rem 59

300 REM DRAWING MOVEMENT & FUNCTIONS :rem 205 (f

305 CP=1134 :rem 49 l~»
306 IFPEEK(CP)<>160THENT=PEEK(CP) :rem 11

307 POKECP,160 :rem 31 LJ
310 K=PEEK(197):C=PEEK(653) :rem 1

320 IFK=7ANDC=0THENPOKECP,T:CP=CP+40:1FCP>1453THEN

CP=CP-320 :rem 190

330 IFK=7ANDC=1THENPOKECP,T:CP=CP-40:IFCP<1102THEN

CP=CP+320 :rem 181

340 IFK=2ANDC=1THENPOKECP,T:CP=CP-1:IFPEEK(CP)=118

THENCP=CP+8 :rem 110

350 IFK=2ANDC=0THENPOKECP,T:CP=CP+1:IFPEEK(CP)=117

THENCP=CP-8 :rem 109

370 IFC=3THENK=2:C=0:T=35:GOTO350 :rem 237

380 IFC=2ANDK=64THENK=2:C=0:T=32:GOTO350 :rem 175

400 IFK=4ANDC<>1THENPOKECP,T:GOSUB1000 :rem 140

410 IFK=4ANDC=1THENPOKECP,T:GOSUB2000 :rem 81

420 IFK=5ANDC<>1THENPOKECP,T:GOSUB3000 :rem 145

430 IFK=5ANDC=1THENPOKECP,T:GOSUB4000 :rem 86

440 IFK=6ANDC<>1THENPOKECP,T:GOSUB5000 :rem 150

450 IFK=6ANDC=1THENPOKECP,T:GOTO6000 :rem 20

460 IFK=3ANDC<>1THENPOKECP,T:GOSUB7000 :rem 151

465 IFK=3ANDC=1THENPOKECP,T:GOTO8000 :rem 25

480 GOTO306 :rem 110

800 REM COPY CHARACTERS TO 12288 ROUTINE :rem 101

805 POKE52,48:POKE56,48:CLR:REM SET TOP OF MEM TO

{SPACE}12288 :rem 107

810 AD=12288:REM AD IS ADDRESS OF NEW CHAR RAM

:rem 34

815 POKE56334,PEEK(56334)AND254:REM TURN OFF INTER

RUPTS :rem 73

820 POKE1,PEEK(1)AND251:REM SWITCH OUT I/O SWITCH

{SPACE}IN CHAR ROM :rem 92

825 FORI=0TO4095:POKEI+AD,PEEK(1+53248):NEXT

:rem 168

830 POKEl,PEEK(l)0R4:REM SWITCH IN I/O :rem 241

835 POKE56334,PEEK(56334)OR1:REM TURN ON INTERRUPT

S :rem 113

840 POKE53272,(PEEK(53272)AND240)OR12:REM CHANGE L

OC OF CHAR MEMORY :rem 95

850 DIMCO$(15):FORX=0TO15:READA$:CO$(X)=A$:NEXT

:rem 66

860 DATA"BLACK{3 SPACES}"#"WHITE{3 SPACES}","RED

{5 SPACES}","CYAN{4 SPACES}","PURPLE{2 SPACES}

" :rem 120

152

5: Graphics and Sound

863 DATA"GREEN{3 SPACES}","BLUE{4 SPACES}","YELLOW
{2 SPACES}","ORANGE{2 SPACES}","BROWN
{3 SPACES}","LT RED{2 SPACES}" :rem 99

865 DATA"GRAY l{2 SPACES}","GRAY 2{2 SPACES}","LT

{SPACE}GREEN","LT BLUE ","GRAY 3{3 SPACES}"

:rem 201

DIMSC(511):N%=0:Z$="#" :rem 118

GOTO29 :rem 61

REM PICK NEW CHAR :rem 212

A=32:GOSUB1230 :rem 39

POKE214,16:PRINT :rem 230

PRINT"IF CHAR DESIRED IS IN LOWER CASE SET,"

:rem 48

PRINT"THEN PRESS LOGO & SHIFT." :rem 87

PRINT"OTHERWISE PRESS SPACE BAR" :rem 33

K=PEEK(197):C=PEEK(653) :rem 48

IFC=3THENBA=2048:PRINTCHR$(14):GOTO1060

:rem 123

IFK=60THENBA=0:PRINTCHR$(142):GOTO1060:rem 75

GOTO1020 :rem 194

POKE214,16:PRINT :rem 231

PRINT"{38 SPACES}" :rem 153

PRINT"{38 SPACES}" :rem 154

PRINT"{38 SPACES}" :rem 155

POKE214,16:PRINT:PRINT"CHARACTER ?" :rem 194

GETCH$:POKE1717,160:FORI=0TO150:NEXT:POKE1717

870

900

1000

1003

1005

1010

1015

1016

1020

1030

1040

1050

1060

1070

1071

1072

1073

1076

1078

1079

1080

1085

1086

1087

1088

1090

1095

1100

1110

1115

1120

1122

1130

1135

1140

1230

1270

,32:IFCH$=""THEN1076

IFCH$=CHR$(13)THEN1090

IFCH$="{OFF}"THENRV=0

IFCH$="{RVS}"THENRV=1

POKE214,16:PRINT

IFRV=1THENPRINTTAB(12)

1088

PRINTTAB(12);CH$

CH=PEEK(1716):GOTO1076

PRINTCHR$(146):PRINTCHR$(142)

RV=0:POKE214,16:PRINT:PRINT"{23

:rem 162

:rem 250

:rem 102

:rem 223

:rem 238

{RVS}"CH$"{OFF}":GOTO

:rem 21

:rem 210

:rem 31

:rem 244

SPACES}"

:rem 73

FORI=0TO7:POKE12536+I,PEEK(CH*8+12288+BA+I):N

EXT :rem 113

POKE214,16:PRINT :rem 227

INPUT"DISPLAY CHARACTER IN GRID";A$:rem 156

POKE214,16:PRINT :rem 228

PRINT"{37 SPACES}" :rem 151

A=CH:IFBA<>0THENA=256+CH :rem 196

BA=CH*8+BA :rem 37

IFLEFT$(A$,1)="N"THENRETURN :rem 149

B=12288+8*A:POKE214,1:PRINT :rem 60

FORJ=0TO7:X=PEEK(B+J)/128:PRINTTAB(30);

:rem 149

153

5: Graphics and Sound

1300 FORK=1TO8:X%=X:X=(X-X%)*2:PRINTCHR$(32+X%*3);

:rem 199

1310 NEXT:PRINT:NEXT :rem 68

1320 RETURN :rem 166

2000 REM DISPLAY CHARACTER WORKING ON :rem 7

2010 FORI=0TO7:TE=0:FORJ=0TO-7STEP-1 :rem 243

2015 IFPEEK(1141+I*40+J)<>35THEN2025 :rem 229

2020 TE=TE+2tABS(J) :rem 95

2025 NEXT:POKE12536+I,TE:NEXT :rem 36

2040 POKE55970,1:POKE1698,31:RETURN :rem 71

3000 REM STORE NEW CHAR :rem 60

3010 N%=N%+1 :rem 67

3020 FORI=0TO7:TE=0:FORJ=0TO-7STEP-1 :rem 245

3025 IFPEEK(1141+I*40+J)<>35THEN3035 :rem 233

3030 TE=TE+2|ABS(J) :rem 97

3035 NEXT:POKE12288+BA+I,TE:NEXT :rem 216

3110 FORI=0TON%-1:IFSC(I)=BATHENN%=N%-1:RETURN

:rem 89

3120 NEXT:SC(N%)=BA:RETURN :rem 115

4000 REM CLEAR GRID :rem 53

4010 A=32:GOSUB1230 :rem 40

4020 FORI=0TO7:POKE12536+I,0:NEXT :rem 240

4030 RETURN :rem 167

5000 REM MULTICOLOR MODE ON/OFF :rem 127

5010 DP=55970 :rem 161

5020 POKE214,17:PRINT :rem 232

5030 INPUT"MULTICOLOR {RVS}ON{OFF} OR {RVS}OFF

{OFF}";A$:rem 167

5035 IFA$o"OFF"GOTO5040 :rem 92

5036 POKE53270,PEEK(53270)AND239 :rem 18

5037 POKEDP,((PEEK(DP)AND240)ORPEEK(55296)AND7)

:rem 255

5038 POKE214,17:PRINT:PRINT"{25 SPACES}":RETURN

srem 22

5040 POKEDP,PEEK(DP)OR8 :rem 155

5042 POKE53270,PEEK(53270)OR16 :rem 166

5050 POKE214,17:PRINT :rem 235

5055 PRINT"USE{2 SPACES}{RVSjFl{OFF} BACKGROUND CO

LOR 00" :rem 103

5060 PRINT"USE{2 SPACES}{RVS}F3{OFF} BACKGROUND CO

LOR 01" :rem 102

5065 PRINT"USE{2 SPACES}{RVS}F5{OFF} BACKGROUND CO
LOR 10" :rem 109

5070 PRINT"USE{2 SPACES}{RVS}F7{OFF} BACKGROUND CO

LOR 11" :rem 108

5075 PRINT"USE{2 SPACES}{RVS}F2{OFF} EXIT WITH CUR
RENT COLORS" :rem 22

5095 F1=PEEK(53281)AND15:F3=PEEK(53282)AND15

:rem 220

154

5: Graphics and Sound

5096 F5=PEEK(53283)AND15:F7=PEEK(DP)AND7 :rem 72

5100 POKE214,17:PRINT :rem 231

5101 PRINTTAB(28);CO$(F1):POKE53281.fi :rem 174

5102 PRINTTAB(28);CO$(F3):POKE53282#F3 :rem 180

5103 PRINTTAB(28);CO$(F5):POKE53283,F5 :rem 186

5104 PRINTTAB(28);CO$(F7):POKEDP#F7OR8:GOTO5110

:rem 97

5110 GETA$:IFA$=""GOTO5110 : rem 187

5120 IFA$="{F1}"THENF1=F1+1:IFF1>15THENF1=0:GOTO51
00 :rem 168

5130 IFA$="{F3}"THENF3=F3+1:IFF3>15THENF3=0:GOTO51

00 :rem 178

5140 IFA$="{F5}"THENF5=F5+1:IFF5>15THENF5=0:GOTO51

00 :rem 188

5150 IFA$="{F7}"THENF7=F7+1:IFF7>7THENF7=0:GOTO510

0 :rem 151

5160 IFA$o"{F2}"THEN5100 : rem 252

5162 POKE214,16:PRINT:FORI=0TO5 :rem 157

5163 PRINT"{37 SPACES}":NEXT:RETURN :rem 51

6000 REM SAVE CHAR SET TO DISK : rem 177

6010 PRINT"{CLR}":INPUT"ARE YOU SURE";A$:rem 237

6015 IFLEFT$(A$,1)="N"THEN29 :rem 38

6020 B0%=PEEK(53281):B1%=PEEK(53282):B2%=PEEK(5328

3) :rem 41

6021 CC%=PEEK(DP)AND15:MC%=PEEK(53270) :rem 151

6030 OPEN15,8,15 :rem 87

6035 INPUT"CHARACTER SET NAME";CN$:rem 44

6040 OPEN2,8,2,CN$+",S,W" :rem 66

6043 GOSUB6500 :rem 24

6045 IFAAO 63ANDAAO0THENGOTO6600 : rem 246

6050 IFAA=0GOTO6080 :rem 80

6055 PRINT"CHAR SET ALREADY EXISTS ON DISK,"

:rem 129

6060 INPUT"WRITE OVER IT";A$:rem 164

6065 IFLEFT$(A$,1)="N"THENCL0SE2:CL0SE15:GOTO29

:rem 92

6070 CLOSE2:OPEN2,8,2,lt@0:"+CN$+",S,W" : rem 64

6080 PRINT#2,N%;Z$;B0%;Z$;B1%;Z$;B2%;Z$;CC%7Z$7MC%

:rem 59

6085 FORI=0TON% :rem 134

6087 D=SC(I)+12288 :rem 182

6090 PRINT#2#SC(l)7Z$PEEK(D)Z$PEEK(D+l)Z$PEEK(D+2)

Z$PEEK(D+3)Z$PEEK(D+4) :rem 214

6091 PRINT#2 # PEEK(D+5)Z$PEEK(D+6)Z$PEEK(D+7)

:rem 43

6095 NEXT :rem 19

6100 CLOSE2:CLOSE15 :rem 133

6110 GOTO29 :rem 108

6500 INPUT#15/AA,BB$,CC/DD :rem 204

155

5: Graphics and Sound

6510 RETURN :rem 172

6600 PRINTAA;BB$;CC;DD :rem 66

6610 CLOSE2:CLOSE15:STOP :rem 11

7000 REM READ CHAR SET FROM DISK :rem 48

7005 OPEN15,8,15 :rem 90

7010 PRINT"{CLR}":INPUT"CHARACTER SET NAME";CN$

:rem 196

7020 OPEN2,8,2,"@0:"+CN$+",S,R" : rem 85

7025 GOSUB6500 :rem 25

7030 IFAAO62ANDAAO0THENGOTO6600 :rem 240

7035 IFAA=0GOTO7060 :rem 83

7040 PRINT"CHAR SET NOT FOUND":INPUT"ANOTHER";A$

:rem 210

7045 IFLEFT$(A$,1)="N"THENCLOSE2:CLOSE15:GOTO29

:rem 91

7050 CLOSE2:GOTO7010 :rem 175

7060 INPUT#2,N%,B0%,B1%,B2%,CC%,MC% :rem 85

7065 POKE53281,B0%:POKE53282,Bl%:POKE53283,B3%:POK

E55970,CC% :rem 118

7066 POKE53270,MC% :rem 228

7070 FORI=0TON% :rem 129

7075 INPUT#2,SC(I),C0,C1,C2,C3,C4 :rem 57

7076 INPUT#2,C5,C6,C7 :rem 168

7077 D=SC(I)+12288 :rem 182

7080 POKED,C0:POKED+1,Cl:POKED+2,C2:POKED+3,C3:POK

ED+4,C4 :rem 145

7081 POKED+5,C5:POKED+6,C6:POKED+7,C7 :rem 175

7085 NEXT :rem 19

7090 CLOSE2:CLOSE15 :rem 142

7095 GOTO29 :rem 121

8000 REM QUIT srem 239

8010 PRINTCHR$(9) :rem 225

8015 POKE649,10 :rem 45

8020 END :rem 161

156

Commodore 64 Sound Editor
Daniel L.Riegel

rTJianks to its Sound Interface Device (SID), your

I Commodore 64 can produce many sounds not possible
on other home computers. But it takes patience to coax the

right sounds from SID. This sound editor will make it

easier to explore your 64's audio capabilities.

While most home computers use only frequency and duration

settings to produce sound or music, the Commodore 64 adds

other parameters to shape, modulate, and filter the resulting out

put. This sound editor gives you control over those parameters,

making it much easier to become familiar with them or to experi

ment with various combinations.

Though the SID chip has three voices, which can act inde

pendently or in combination, a single register (54296) controls the

volume of all three voices. It must be set from 1 to 15 for sounds to

be heard; the sound editor described here uses the maximum vol

ume setting (15).

Four parameters determine the nature of any sound that you

hear: attack, decay, sustain, and release (ADSR). The attack rate

specifies the time allowed to reach maximum volume, as deter

mined by the value at 54296. A value of 0 produces a very short

attack time, while 15 yields the longest attack time. Explosions or

percussion instruments, for instance, would have low attack time

values.

The decay rate determines the time allowed for the volume to

fall from a maximum value to some lower value that will be

sustained. As with attack, a value of 0 is very short, while a value

of 15 is long. Similarly, the sustain parameter determines the vol

ume that is maintained until the release phase begins.

The release rate parameter determines how fast the volume

falls to 0 from the sustain volume level. A value of 0 produces a

very quick release, while a value of 15 produces a release that is

very slow.

Each voice has a gate that is used to initiate the attack phase

(when the gate is set to 1) and initiate the release phase (when it is

set to 0). Duration is the amount of time between setting that gate

to 1 and resetting it to 0. This sound editor measures duration in

intervals of 1/60 second. A duration of 60 produces a sound last

ing one second, a duration of 6 produces a sound lasting 0.1 second,

157

5: Graphics and Sound

and so on. The duration must be long enough to allow attack and

decay to complete before the voice is reset; otherwise, distortion

may occur. For that reason, very short sounds usually require

ADSR values of 0,0,15, and 0, combined with short durations.

The SID chip can produce eight octaves, designated 0

through 7. The "Sound Editor" dynamically generates and stores

tone settings for octave 7, using its highest note (B) as a base. The

octave is divided into 12 tones, and each tone's frequency is

21 (1/12) lower than the next higher tone. For instance,

C=C#/2t(l/12).

The frequency of any tone is half that of the same note in the

next higher octave (OCTAVE 6=OCTAVE 7/2). Therefore, the

Sound Editor can generate the scale for any octave N (where N is

0-7) using the formula OCTAVE N=OCTAVE 7/21 (7 - N). This

saves memory by eliminating the need for an array of 96 fre

quency settings to define eight octaves of 12 tones each.

A sound's waveform determines its harmonic content, or

color. SID provides triangle (17), sawtooth (33), pulse (65), and

noise (129) waveforms. These waveforms can yield sounds of

many different qualities, and the best way to learn about them is

to experiment with the Sound Editor.

When the pulse waveform is selected, you will need to

specify a value for pulse width (0-4095). Jbr instance, a value of

2048 produces a square wave, which results in a clear, hollow

sound.

Other values produce sounds with different feels. For ex

ample, a waveform value of 19 synchronizes the frequencies of

voices 1 and 3 to produce complex harmonic structures. Value 21

modulates voice 1 with voice 3 to produce ringing sounds (bells,

gongs). In such cases the Sound Editor uses note C for voice 3's

frequency, picking a frequency that is one octave lower than that

specified for voice 1.

The Sound Editor is easy to use. First, enter the various

parameters that define the desired sound. Then, referring to the

menu, choose one of the four options, using the appropriate

function key. The BASIC option lists BASIC code that produces

the sound for note C of the octave selected. The CHANGE option

allows the parameters to be modified to produce a different

sound. The SCALE option plays the 12 tones of the octave speci

fied. The QUIT option terminates the program.

158

5: Graphics and Sound

save it toAfter you have typed in the Sound Editor program,

disk or tape and try the combinations given in Table 1.

Table L Sample Parameters for 64 Sound Editor

Sound Attack Decay Sustain Release Waveform Pulse Width

Trumpet 6 0 8 0 33 N/A

Violin

Xylophone

Piano

Flute

Harpsichord

Organ

Clarinet

Chimes

10

0

0

9

0

0

8

0

8

9

9

10

9

0

4

11

10

0

0

0

0

15

8

0

9

0

9

0

0

0

0

9

33

17

65

17

33

17

17

19

N/A

N/A

1000

N/A

N/A

N/A

N/A

N/A

Commodore 64 Sound Editor

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

100 REM SOUND EDITOR :rem 197

110 PRINT"{CLR}","SOUND EDITOR{3 DOWN}" :rem 233

115 DIMF(11):F(11)=64814:FORF=10TO0STEP-1:F(F)=INT

(l/2+F(F+l)/2t(l/l2)):NEXT :rem 37
120 SD=54272:V=SD+24:FORI=SDTOV:POKEI,0:NEXT:POKEV

,15 :rem 111

130 DIMN$(11):N$(0)="C ":N$(1)="C#":N$(2)="D ":N$(

3)="D#n:N$(4)="E ":N$(5)="F " :rem 149

140 N$(6)="F#":N$(7)="G ":N$(8)="G#M:N$(9)="A ":N$

(10)="A#":N$(11)="B ":GOTO200 :rem 246

150 PRINT"{HOME}{2 DOWN}ENTER OPTION [Fl] BASIC

{2 SPACES}[F3] CHANGE" :rem 91

152 PRINT"{13 RIGHT}[F5] SCALE{2 SPACES}[F7] QUIT"

:rem 245

153 GETOP$:IFOP$=""THEN153 :rem 17

155 IFOP$="{F7}"THENPRINT"{CLR}";:POKEV,0:END

:rem 240

160 IFOP$="{F3}"THEN200 :rem 177

165 IFOP$="{F1}"THEN500 :rem 184

168 IFOP$="{F5}"THEN400 :rem 188

170 GOTO150 :rem 103

200 INPUT"{DOWN}ENTER{2 SPACES}ATTACK VALUE (0-15)

11; A :rem 186

205 IFA<0ORA>15THENPRINT"{3 UP}":GOTO200 :rem 17

210 INPUT"ENTER{3 SPACES}DECAY VALUE (0-15)";D
:rem 91

215 IFD<0ORD>15THENPRINT"{2 UP}":GOTO210 :rem 136

220 POKESD+5,A*16+D :rem 39

230 INPUT"ENTER SUSTAIN VALUE (0-15)";S :rem 45

235 IFS<0ORS>15THENPRINT"{2 UP}":GOTO230 :rem 170

159

5: Graphics and Sound

240 INPUT"ENTER RELEASE VALUE (0-15)";R :rem 7

245 IFR<0ORR>15THENPRINT"{2 UP}":GOTO240 :rem 170

250 POKESD+6,S*16+R :rem 75

260 INPUT"ENTER{2 SPACES}OCTAVE VALUE{2 SPACES}(0-

7)";0C :rem 219

261 IFOC<0OROO7THENPRINT"{2 UP}":GOTO260 :rem 251

280 INPUT"ENTER DURATION LOOP{2 SPACES}VALUE";DU

:rem 221

285 IFDU<1THENPRINT"{2 UP} " .-GOTO280 : rem 99

290 INPUT"ENTER WAVEFORM 17 19 21 33 65 129";W

:rem 136

294 RS=0:H3=0:L3=0:IFW=19ORW=21THENRS=1 :rem 154

295 IFRS=1THENSC=INT(F(0)/2t(8-OC)):H3=INT(SC/256)

:L3=SC-H3*256 :rem 217

296 POKESD+15,H3:POKESD+14,L3 :rem 218

300 IFW=65THEN310 :rem 228

303 PRINT"{38 SPACES}":GOTO150 :rem 112

310 INPUT"ENTER PULSE WIDTH VALUE (0-4095)";PW

:rem 206

315 IFPW<0ORPW>4095THENPRINT"{2 UP}":GOTO310

:rem 188

320 PH=INT(PW/256):PL=PW-PH*256 :rem 95

330 POKESD+2,PL:POKESD+3,PH:GOTO150 :rem 172

400 FORF=0TOll:SC=INT(F(F)/2t(7-OC)):X=INT(SC/256)

:POKESD+1,X:POKESD,SC-256*X :rem 186

410 TD=TI+DU:POKE53280,F:PRINT"{HOME}{23 DOWN}

{3 RIGHT}";N$(F):POKESD+4,W :rem 202

420 IFTKTDTHEN420 :rem 91

430 POKESD+4,W-l:NEXT:POKESD+4,0:POKE53280,14:PRIN

T"{UP}{5 SPACES}":GOTO150 :rem 114
500 PRINT"{HOME}{14 DOWN}10 SD=54272:V=SD+24"

:rem 149

502 PRINT"15 FORI=SDTOV:POKEI,0:NEXT:POKEV,15"

:rem 163

504 SC=INT(F(0)/2t(7-OC)) :rem 117

505 H=INT(SC/256):L=SC-256*H :rem 82
510 PRINT"20 POKESD,";MID$(STR$(L),2);":POKESD+1,"

;MID$(STR$(H),2);"{4 SPACES}" :rem 129
520 PRINT"30 POKESD+5#";MID$(STR$(16*A+D)#2);

:rem 239

525 PRINT":POKESD+6#";MID$(STR$(16*S+R),2);"

{6 SPACES}" :rem 48
530 IFW=65THENGOSUB630 :rem 110

535 IFRS=1THENGOSUB650 :rem 137

540 PRINT"40 TD=TI+";MID$(STR$(DU),2);":POKESD+4#"

;MID$(STR$(W),2);"{9 SPACES}" :rem 144
545 PRINT"50 IFTKTDTHEN50{ 17 SPACES}" :rem 104

550 PRINT"60 POKESD+4,0{20 SPACES}" :rem 82

560 PRINT"{26 SPACES}" :rem 108

160

n

LJ 5: Graphics and Sound

600 GOTO150 : rem 101

630 PRINT"35 POKESD+2,";MID$(STR$(PL),2); :rem 78

640 PRINT":POKESD+3,";MID$(STR$(PH),2);"

{10 SPACES}":RETURN :rem 124

650 PRINT"35 POKESD+15f";MID$(STR$(H3),2); :rem 99

660 PRINT":POKESD+14#";MID$(STR$(L3),2);11

{7 SPACES}11:RETURN :rem 151

n

n

H

H 161

u

12Tone Matrix Generator u
Gregg Peek U

u

Despite its relatively limited memory, the unexpanded •—'
VIC can handle some rather sophisticated assign- .

ments. Here is onefrom modern music theory: a tone row •—'

generatorfor 12-tone music.

If you are a musician, you may be familiar with 12-tone music.

Simply put, it is a decidedly modern form of music based on a

nonrepeating sequence of 12 musical tones.

The basic sequence of 12 tones is called a tone row. The 12-tone

composer takes that sequence, inverts and transposes it, mixes

those variations with the original tone row, and ends up with a

12-tone composition.

It sounds complex, and it is. But with this program the VIC

can take care of a lot of the bookkeeping, generating the inver

sions and transpositions of any tone row that you enter. The re

sult is a matrix of tones that can be used as a quick reference for

the teacher or composer of 12-tone music. As an added bonus,

the program will also sound the tone row to give you an idea of

how the piece might sound.

Because this program was written for use on a black-and-

white television, no color has been added. In addition, to take

best advantage of the VICs 22-column screen, only sharps and

natural tones have been represented. Sharps are represented by

reverse letters.

The original tone row can be generated randomly by the pro

gram, or you can create and enter your own tone row. In any case,

the computer will produce all possible transpositions of the tones

and all possible inversions of those transpositions. They will be

displayed in matrix form.

This program is of great interest to the serious musician; it

may also be useful in a college-level music theory class. But

whether musician or not, you're certain to be fascinated by this

journey into the realm of modern music — courtesy of your un-

expanded but unintimidated VIC.

TwelveTone Matrix Generator

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

1 REM"MATRIX" :rem 46

2 PRINT" {CLR}11 :rem 150

3 CLR :rem 20

162

5: Graphics and Sound

5 DIMX(14) :rem 29

6 GOTO2000 :rem 49

7 PRINT"ENTER THE NOTES FOR YOUR ROW. DO NOT REPEA

T NOTES." :rem 72

8 PRINT"CHOOSE FROM C,C#,D,D#,E,F,F#,G,G#,A,A# AND

B.{2 SPACES}ENTER NOTE AND HIT RETURN11 :rem 227

9 FORY=1TO12 :rem 237

10 INPUTA$:IFA$="C"THENX(Y)=1 :rem 231

15 IFA$="C#"THENX(Y)=2 :rem 225

20 IFA$="D"THENX(Y)=3 :rem 188

25 IFA$="D#liTHENX(Y)=4 :rem 229

30 IFA$="E"THENX(Y)=5 :rem 192

35 IFA$="F"THENX(Y)=6 :rem 199

40 IFA$="F#"THENX(Y)=7 :rem 231

45 IFA$="G"THENX(Y)=8 :rem 203

50 IFA$=MG#MTHENX(Y)=9 :rem 235

55 IFA$="A"THENX(Y)=10 :rem 239

60 IFA$="A#"THENX(Y)=11 :rem 15

65 IFA$="B"THENX(Y)=12 :rem 243

66 IFX(Y)==0THENPRINT "INVALID ENTRY START 0VER":G0T

06000 :rem 6

80 FORBC=1TO12 :rem 72

85 IFBC<YANDX(BC)=X(Y)THENPRINT"INVALID ENTRY STAR

T OVER":GOTO6000 :rem 242

88 NEXTBC :rem 52

99 NEXTY :rem 10

100 PRINT"{CLR}" :rem 245

200 FORG=1TO12 :rem 52

1000 IFX(G)=1THENPRINT"C"; ;rem 44

1010 IFX(G)=2THENPRINT"{RVS}C{OFF}"; :rem 210

1020 IFX(G)=3THENPRINT"D"; :rem 49

1030 IFX(G)=4THENPRINT"{RVS}D{OFF}"7 :rem 215

1040 IFX(G)=5THENPRINT"EM7 :rem 54

1050 IFX(G)=6THENPRINT"F"; :rem 57

1060 IFX(G)=7THENPRINT"{RVS}F{0FF}"; :rem 223

1070 IFX(G)=8THENPRINT"G"; :rem 62

1080 IFX(G)=9THENPRINT"{RVS}G{0FF}"; :rem 228

1090 IFX(G)=10THENPRINT"A"; :rem 99

1100 IFX(G)=11THENPRINT"{RVS}A{OFF}"; :rem 0

1110 IFX(G)=12THENPRINT"B"; :rem 95

1118 NEXTG :rem 81

1119 PRINT" " :rem 157

1120 REM DIFFERENCE ROW :rem 107

1150 DIMZ(13) :rem 176

1200 Z(10)=X(11)-X(1) :rem 30

1201 Z(1)=-1*(X(2)-X(1)) :rem 152

1210 Z(2)=-1*(X(3)-X(1)) :rem 154

1220 Z(3)=-1*(X(4)-X(1)) :rem 157

1240 Z(4)=-1*(X(5)-X(1)) :rem 161

163

5: Graphics and Sound

1250

1260

1270

1280

1290

1292

1294

1296

1298

1300

1305

1310

1320

1330

1340

1350

1400

1410

1420

1430

1440

1445

1450

1460

1470

1480

1490

1510

1520

1530

1540

1600

1603

1605

1610

1620

1630

1640

1650

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

Z(5)=-1*(X(6)-X(1))

Z(6)=-1*(X(7)-X(1))

Z(7)=-1*(X(8)-X(1))

Z(8)=-1*(X(9)-X(1))

Z(9)=-1*(X(10)-X(1))

Z(10)=-1*(X(11)-X(1))

Z(11)=-1*(X(12)-X(1))

Z(12)=-1*(X(1)-X(12))

Z(13)=-1*(X(2)-X(1))

REM INVERTED ROW

DIMI(13)

FORJ=1TO13

LETI(J)=X(1)+Z(J)

REM IFI(J)>12THENI(J)=I(J)-12

REM IFI(J)<1THENI(J)=I(J)+12

NEXTJ

REM POINT DIFFERENCE ROW

DIMD(13)

FORE=1TO11

D(1)=X(2)-X(1)

D(2)=X(3)-X(1)

D(3)=X(4)-X(1)

D(4)=X(5)-X(1)

D(5)=X(6)-X(1)

D(6)=X(7)-X(1)

D(7)=X(8)-X(1)

D(8)=X(9)-X(1)

D(9)=X(10)-X(1)

D(10)=X(11)-X(1)

D(11)=X(12)-X(1)

NEXTE

REM FINAL ROW

DIMK(12)

FORF=1TO11

FOR H=1TO12

IFH=1THENK(1)=I(F)

IFH>1THENK(H)=K(1)+D(H-1)

IFK(H)>12THENK(H)=K(H)-12

IFK(H)<1 THENK(H)=K(H)+12

IFK(H)=lTHENPRINTnC";

IFK(H)=2THENPRINT"{RVS}C{OFF}";

IFK(H)=3THENPRINT"DM;

IFK(H)=4THENPRINT"{RVS}D{OFF}";
IFK(H)=5THENPRINTHE";

IFK(H)=6THENPRINTnF";

IFK(H)=7THENPRINT"{RVS}F{OFF}";

IFK(H)=8THENPRINT"G";

IFK(H)=9THENPRINT"{RVS}G{OFF}M;

IFK(H)=10THENPRINT"AH;

:rem 164

:rem 167

:rem 170

:rem 173

:rem 215

:rem 2

:rem 6

:rem 9

:rem 219

:rem 1

:rera 161

:rem 107

:rem 198

:rem 131

:rem 78

:rem 82

:rem 246

:rem 153

:rem 102

:rem 173

:rem 176

:rem 183

:rem 181

:rem 184

:rem 187

:rem 190

:rem 193

:rem 227

:rem 13

:rem 16

:rem 78

:rem 13

:rem 163

:rem 108

:rem 107

:rem 39

:rem 147

:rem 163

:rem 110

:rem 44

:rem 210

:rem 49

:rem 215

:rem 54

:rem 57

:rem 223

:rem 62

:rem 228

:rem 99

164

5: Graphics and Sound

1670

1671

1675

1676

1680

1685

1690

1695

1696

1700

2000

2001

2010

2020

2025

2027

2030

2040

2050

2060

2070

2080

4990

4999

5000

5010

5020

5021

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5050

5060

5070

IFK(H)=11THENPRINTII{RVS}A{OFF}";

IFK(H)=12THENPRINT"B";

NEXTH

PRINT" "

NEXTF

PRINT

:rem 0

:rem 95

:rem 90

:rem 165

:rem 84

:rem 97

PRINT"ONLY NATURALS AND{5 SPACES}SHARPS ARE R

EPRESENTED"

PRINT"SHARPS ARE

PRINT" {RVS}REVERSE{OFF} FIELD NOTES

GOTO4990

:rem 10

:rem 45
it

•

:rem 130

:rem 215

PRINT"{CLR}WOULD YOU LIKE THE{4 SPACES}COMPUT

ER TO PRODUCE{3 SPACES}A ROW? ENTER

{3 SPACES}";

PRINT"THEN PRESS RETURN"

INPUTQ$

IFQ$="N"THENPRINT"{CLR}":GOTO7

FORY=1TO12

IFQ$o"Y"THEN2000

X(Y)=INT(12*RND(0))+1

FORBC=1TO12

IFBC<YANDX(BC)=X(Y)THENGOTO2030

NEXTBC

NEXTY

GOTO100

PRINT"LISTEN TO THE ORIGINAL ROW"

FORL=1TO13

V=36878

W=36875

Y OR N

:rem 81

:rem 48

:rem 200

:rem 212

:rem 125

:rem 215

:rem 142

:rem 166

:rem 221

:rem 140

:rem 97

:rem 148

:rem 71

:rem 135

:rem 104

:rem 103

C=195:CS=199:D=201:DS=203:E=207:F=209:FS=212:

G=215:GS=217 :rem 218

A=219:AS=221:B=223:FORY=1TO12:IFY=1THENPOKEV,

15

IFX(L)=1THENPOKEW,C

IFX(L)=2THENPOKEW# CS

IFX(L)=3THENPOKEW,D

IFX(L)=4THENPOKEW,DS

IFX(L)=5THENPOKEW,E

IFX(L)=6THENPOKEW,F

IFX(L)=7THENPOKEW,FS

IFX(L)=8THENPOKEW, G

IFX(L)=9THENPOKEW,GS

IFX(L)=10THENPOKEW,A

IFX(L)=11THENPOKEW,AS

IFX(L)=12THENPOKEW,B

FOREF=1TO900:NEXTEF

IFL=13THENPOKE36878,0

NEXTL

:rem 150

:rem 222

:rem 51

:rem 227

:rem 56

:rem 232

:rem 235

:rem 64

:rem 240

:rem 69

:rem 21

:rem 97

:rem 17

:rem 234

:rem 17

:rem 87

165

u

5: Graphics and Sound [_j

u
5080 PRINT"{CLR}DO YOU WANT ANOTHER{4 SPACES}ROW?

{SPACE}ENTER Y OR N " :rem 9 LJ
5082 PRINT"THEN PRESS RETURN" :rem 60

5085 INPUTJ$:IFJ$="Y"THENGOTO1 :rem 122 I I

5086 IFJ$o"N"THENGOTO5080 : rem 17

5090 END :rem 165 j .

6000 FORN=1TO2000:NEXTN:GOTO1 :rem 57 L-'

LJ

U

U

U

166 LJ

Quick Delete
W.M.Shockley

This helpful utility lets you automatically delete a

block oflines from your programs. It will run equally

well on the VIC or 64.

If you have ever had to delete a large number of lines from a pro

gram, you know how tedious it can be to remove them one at a

time. "Quick Delete" is a six-line program that will let you delete

them quickly and easily. Type in and SJWE the program. Then

LIST it and LOAD your own program. Move the cursor up to the

first line of the Quick Delete routine, and press RETURN to ap

pend each line to your program.

Type RUN 60000 and you will be prompted to enter the first

and last line numbers of the block you want deleted. Type in

those numbers, and the routine will delete them and all lines in

between.

Quick Delete uses the dynamic keyboard technique. Lines

60000 and 60010 ask you for the starting and ending lines. Line

60020 prints the number of the line currently being deleted, and

line 60030 increments the line number and checks to see if the

ending line number has been reached. Line 60040 prints a line

that will be executed in direct mode after the program ends. Just

before it ends, though, line 60050 simulates pressing the

RETURN key twice by POKEing two 13's (the ASCII code for

RETURN) into the keyboard buffer and POKEing location 198

with the number of keys pressed. These RETURNS will be

executed immediately after the program ends.

The line number to be deleted is printed on the screen on the

same row that the cursor will be on when the program ends.

When the first RETURN is executed, that line will be deleted just

as if you typed the line number and hit RETURN yourself. The

second RETURN then enters the other line that was printed.

Since all variables are cleared when a line is deleted, this line

first restores the variables to the values they had when they were

printed on the screen. Then the GOTO 60020 command con

tinues the program to delete the next line.

For short programs, this utility will not be very useful. If you

have only a few lines to delete, it is easier to handle them

manually On longer programs, however, it will definitely be of

use.

169

6: Utilities

Quick Delete for VIC and 64

Refer to "The Automatic Proofreader" (Appendix]) before typing this program in.

60000 INPUT "{CLR}STARTING LINE";SL :rem 203
60010 INPUT "{CLR}ENDING LINE";EL :rem 7
60020 PRINT"{CLR}{3 DOWN}"SL :rem 46

60030 SL=SL+1:IF EL=SL -2 THEN END :rem 107

60040 PRINT"SL="SL":EL="EL":GOTO 60020{HOME}"

:rem 229

60050 POKE631,13:POKE632,13:POKE198,2 :rem 81

LJ

U

U

LJ

LJ

170 Li

Formatting Numbers
Larry D. Moody

T lave you ever tried to print columns ofnumbers only

LLtofind that they line up under the leftmost character

— or that they don't line up at all? You can use the twofor

matting routines described here to round offnumbers,

organize them into columns, and make them easier to read.

Both will run on the VIC or 64.

People are creatures of habit. They're used to seeing columns of

numbers right justified, and they expect to see dollars-and-cents

figures with aligned decimal points and two digits to the right of

the decimal.

Unfortunately, neither the Commodore 64 nor the VIC-20

has the commands necessary to format columns of numbers in

the traditional way. Both computers ignore trailing zeros and

would print $500.00 as $500, and neither will automatically

break large numbers into groups of three digits separated by

commas (#,###,### or #,###,###.00).

You can use these routines to give your 64 or VIC these cap

abilities. Both routines will accurately handle positive and nega

tive numbers of up to nine significant digits.

The routines use line numbers that do not overlap and that

allow both to be used in a single program. In addition, the line

numbers are high enough to be added to all but the longest pro

grams without requiring any renumbering.

The following variables are used:

Numeric Alphanumeric

Fl F$

F2 F0$

F3 Fl$

F4 F2$

F5

F7

You should reserve these variables for use by the formatting

routines. Otherwise, serious errors may result.

How the Routines Work
Integer Format. This routine (Program 1) accepts as input any

number in decimal form. It can be either a real number or an in

teger, and it can be positive or negative.

171

6: Utilities

The program rounds the number to the closest integer — 57s

are rounded up; 4's are rounded down. The resulting number is

then converted into a string of alphanumeric characters and

broken down into groups of three digits separated by commas.

The formatted string F$ and its length F3 are available when you

return to the main program.

Dollars and Cents. This routine (Program 2) is funda

mentally similar to the previous one, except that it returns a

string with two digits to the right of the decimal point and a

dollar sign ($) as the leftmost character. The formatted string F$

and its length F3 are available whenyou return to the main

program.

Using the Routines
Both listings include extra lines (lines 10-95) to demonstrate how

the routines work. Type in and RUN the complete listings to get

a feel for what the routines can do, but delete lines 10-95 before

including them in your programs. Note that actual screen for

matting is done outside the number formatting routines. You

can use either or both in your programs, and the result will be

number columns that are easier to read and understand.

Program L Integer Formatter for VIC and 64
Refer to "TheAutomatic Proofreader" (Appendix]) before typing this program in.

10 REM LINES 10-95 ILLUSTRATE THE :rem 45

20 REM{4 SPACESjUSE OF THIS SUBROUTINE IN :rem 167
30 REM{4 SPACES}A PROGRAM. :rem 206
35 REM{4 SPACESjOUTPUT IS TO MONITOR OR TV.:rem 29
40 FOR 1=1 TO 20 :rem 7

50 PRINT"UNFORMATTED FORMATTED" :rem 37

55 PRINT"=========== =========•• srem 255

60 FOR 1=1 TO 20 :rem 9

65 N=(RND(l)-.5)*2*10t(INT(RND(l)*5)) :rem 212
70 REM :rem 24

75 F1=N :GOSUB 51410 :N$=F$:T1=F3 :rem 235

80 PRINT N;TAB(20-T1)N$:rem 44

85 REM srem 30

90 NEXT I :rem 241

95 END srem 69

51400 REM "INTEGER # FORMAT" LDM : rem 97

51401 REM{3 SPACES}FORMATS NUMBERS TO PRINT:rem 71
51402 REM{3 SPACESjRIGHT JUSTIFIED.{2 SPACES}THIS

:rem 107

51404 REM{3 SPACES}SUB-RTN WILL HANDLE NUMBERS

:rem 237

172 LJ

6: Utilities

51406 REM{4 SPACES}<={2 SPACES}999,999,999.9
{2 SPACES}AND :rem 240

51408 REM{4 SPACES}>= -999,999,999.9 :rem 78
51409 REM :rem 231

51410 Fl=INT(Fl+.5) :REM{3 SPACES}ROUNDOFF #

:rem 148

51415 REM{2 SPACES}DELETE BLANK AT LEFT OF STR$

:rem 113

51420 F0$=STR$(F1) :rem 184

51430 F4=LEN(F0$)-1 :rem 220

51435 F0$=RIGHT$(F0$,F4) :rem 12

51440 F2$="" :rem 27

51445 IF F4<4 THEN F2$=F0$:GOTO 51510 :rem 141

51450 REM{3 SPACES}SEPARATE INTO GROUPS OF:rem 231
51455 REM{3 SPACES}THREE DIGITS, USING COMMAS

:rem 150

51460 F5=INT((F4+2)/3)-l :REM{2 SPACES}* OF ,'S

:rem 88

51470 FOR F3=l TO F5 :rem 237

51480 F2$='V+MID$(F0$,F4+1-3*F3,3)+F2$:rem 138

51485 NEXT F3 :rem 191

51490 F3=F3-1 :rem 144

51500 F2$=LEFT$(F0$,F4-3*F3)+F2$:rem 126

51510 Fl$="" :rem 24

51515 REM{3 SPACES}CHECK FOR NEGATIVE VALUE

:rem 250

51520 IF FK0 THEN Fl$="-" :rem 231

51525 REM{3 SPACES}ASSEMBLE FINAL STR$:rem 185

51530 F$=F1$+F2$:rem 7

51535 REM{3 SPACES JLENGTH OF COMPLETED STR$
:rem 248

51540 F3=LEN(F$) :rem 79

51550 RETURN :rem 224

Program 2. Dollars and Cents Formatter for VIC and 64

Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

10 REM LINES 10-95 ILLUSTRATE THE :rem 45

20 REM{4 SPACES}USE OF THIS SUBROUTINE IN :rem 167
30 REM{4 SPACES}A PROGRAM. :rem 206

35 REM{4 SPACESjOUTPUT IS TO MONITOR OR TV.:rem 29
40 FOR 1=1 TO 20 :rem 7

50 PRINT "UNFORMATTED {2 SPACES} FORMATTED11 : rem 37

55 PRINT"==========={2 SPACES}=========" :rem 255

60 FOR 1=1 TO 20 :rem 9

65 N=(RND(l))*2*10t(INT(RND(l)*4)) :rem 67
70 REM :rem 75

75 F1=N :GOSUB 51000 :N$=F$:T1=F3 :rem 230

173

6: Utilities

80 PRINT N;TAB(21-T1)N$:rem 45

85 REM :rem 81

90 NEXT I :rem 241

95 END :rem 69

51000 REM :rem 218

51001 REM{3 SPACES}REFORMATS fFl' TO RIGHT:rem 116

51002 REM{3 SPACES}JUSTIFIED DOLLARS & CENTS.

srem 101

51004 REM{3 SPACES}SUB-RTN WILL HANDLE NUMBERS

:rem 233

51005 REM{5 SPACES}<={2 SPACES}$9,999,999.99
{3 SPACES}AND :rem 214

51006 REM{5 SPACES}>= $-9,999,999.99 :rem 51

51007 REM :rem 225

51008 REM{3 SPACES}ROUND THE AMOUNT TO PENNY.

:rem 122

51010 Fl=INT(Fl*100+.5)/l00 :rem 103
51020 F0$=MH :F$="" :rem 56

51040 IF F1=0 GOTO 51060 :rem 162

51050 IF FK1 AND Fl>-1 THEN F0$=M0" :rem 206

51060 F1$=STR$(F1) :rem 185

51070 REM{2 SPACES}DELETE BLANK AT LEFT OF STR$

:rem 110

51080 F2=LEN(F1$)-1 :rem 220

51090 F1$=MID$(F1$#2#F2) :rem 195

51100 REM{3 SPACES}FIND LOC OF DECIMAL POINT.

:rem 22

51105 FOR F7=l TO F2 :rem 233

51110 F2$=MID$(F1$,F7,1) :F3=F7 :rem 46

51125 IF F2$=H." GOTO 51150 :rem 13

51130 NEXT F7 srem 182

51132 REM{3 SPACESjlF NO DIGITS RIGHT OF '.'

:rem 95

51133 REM{3 SPACESjTHEN PUT ' 00' THERE. srem 93
51140 F$=".00H sGOTO 51155 srem 232

51145 REM{3 SPACES}IF NO PENNIES DIGIT, THEN

srem 238

51146 REM{3 SPACES}PUT A ZERO THERE. srem 5

51150 IF F3=F2-1 THEN F$="0" srem 97

51152 REM{3 SPACES}ASSEMBLE INTERMEDIATE STRING

srem 128

51155 F$=F0$+F1$+F$ sF4=LEN(F$) srem 40

51160 F0$=LEFT$(F$,F4-3) srem 228

51165 F1$=RIGHT$(F$,3) srem 150

51170 F3$="," sF2$=llM srem 159

51175 F4=LEN(F0$) srem 132

51180 IF F4<4 THEN F2$=F0$ sGOTO 51250 srem 138

51190 F5=INT((F4+2)/3)-l :REM # OF ','S srem 127

51195 REM{3 SPACES}SEPARATE INTO GROUPS OFsrem 237

174

i \

n 6: Utilities

_ 51196 REM{3 SPACES}THREE DIGITS WITH COMMAS.

}\ :rem 80

51200 FOR F7=l TO F5 :rem 232
n 51210 F2$=F3$+MID$(F0$,F4+1-3*F7,3)+F2$:rem 178

51220 NEXT F7 : rem 182

p-^ 51230 F7=F7-1 :rem 144

1 l 51235 REM{3 SPACES}ADD ON LEFTMOST GROUP OF
:rem 218

51236 REM{3 SPACES}DIGITS. :rem 215

51240 F2$=LEFT$(F0$,F4-3*F7)+F2$:rem 131

51245 REM{3 SPACES}CHECK FOR NEGATIVE VALUE
:rem 250

51250 F3$="$" :IF FK0 THEN F3$="$-" :rem 137

51255 REM{3 SPACES}ASSEMBE FINAL STR$:rem 109

51260 F$=F3$+F2$+F1$:rem 207

51270 REM{3 SPACES}LENGTH OF COMPLETED STR$
:rem 244

51280 F3=LEN(F$) :rem 80

51290 RETURN :rem 225

n

n

n

n 175

Numeric Keypad
Ronnie Isbel

A numeric keypad would be a welcome accessoryfor

many Commodore users. Use this short program to

redefine keys on your VIC or 64 and customize a keypad of

your own.

Here is a simple program that you can use to give your Com

modore computer a numeric keypad. Plug-in keypads are avail

able. But experience with data entry operators has shown that

separate keypads waste a lot of hand and head motion, particu

larly when working with alphanumeric data, so I designed a

numeric keypad routine that would use existing keys on the

Commodore keyboard.

This program uses the keys M, J, K, L, U, 1,0,7,8, and 9 for

the digits 0 through 9. However, by redefining other keys, it is

easy to customize your keypad in any way that you desire. You

could define 1,2, and 3 across the top, for example, or you could

even define a keypad on the left side of the keyboard. Left

handers, rejoice!

To make labels for your keys, use a dime as a template to draw

ten circles on a white adhesive address label. Write the new

values for each key inside one of the circles; then cut them out

and stick them on the keys. You can remove or rearrange the

labels at any time.

This is written as a general-purpose routine to be added to

the end of your own programs. Whenyou want to use the

keypad, type in GOSUB 50000. Following the GOSUB, equate the

subroutine's variable name (VA) to your own variable name.

Finally, do not use $, the comma, or the period, or you'll get the

message EXTRA IGNORED.

Numeric Keypad for VIC and 64
Refer to 'The Automatic Proofreader" (Appendix]) before typing this program in.

10 GOSUB50000

20 NN=VA

30 PRINTNN

40 GOTO10

50000 REM{2 SPACES}INTEGER NUMERIC KEYPAD

50005 IF W > 1 GOTO 50020

50006 W = 1

50010 DIM VO$(16)

:rem 214

:rem 210

:rem 140

:rem 254

jrem 184

:rem 212

:rem 21

:rem 81

176

6: Utilities

n

50020 FOR W=0TO16:VO$(W) = " M:NEXTW

50025 INPUT VA$: VL = LEN(VA$)

50030 FOR V = 1 TO VL

50035 VX$ = MID$(VA$,V,1)

50040 IFVX$=ll7"ORVX$="lflTHEN VO$(V) = M7'

50050 IFVX$=1I8"ORVX$=II("THEN VO$(V)="8'

50060 IFVX$="9"ORVX$=")"THEN VO$(V)="9

50070 IFVX$="U"ORVX$="U"THEN VO$(V)="4

50080 IFVX$="I"ORVX$="r'THEN VO$(V) = "5

50090 IFVX$=MOIIORVX$=I1O"THEN VO$(V)="6

50100 IFVX$="J"ORVX$="JIITHEN VO$(V)="1

50110 IFVX$="K"ORVX$="K"THEN VO$(V)="2

50120 IFVX$="L"ORVX$="LIITHEN VO$(V)=M3

50130 IFVX$=I1M"ORVX$="MIITHEN VO$(V)="0

50140 IFVX$=", HORVX$=M<"THEN VO$(V) = ".

50150 NEXT V

50160 FOR V = 0 TO VL

50170 VO$(16) = VO$(16)+VO$(V)

50180 NEXT V

50190 VA = VAL(VO$(16))

50200 REM YOUR INPUT IS COMING BACK TO

{SPACE}USE = TO YOUR NAME.

50210 RETURN

:rem 167

:rem 75

:rem 232

:rem 245

1 :rem 132

1 :rem 136

:rem 140

1 :rem 80

:rem 58

:rem 72

1 :rem 49

1 :rem 53

:rem 57

1 :rem 57

1 :rem 134

:rem 144

:rem 235

:rem 215

:rem 147

:rem 136

YOU IN VA.

:rem 139

:rem 216

177

Auto Save/Scratch
Robert Jones

Experienced VIC and 64 programmers dofrequent

SAVEs when writing or debugging a program. Use this

routine to simplify the process and keep trad: ofwhat

you've done.

"Auto Save/Scratch," written for the VIC-20 or Commodore 64,

will save you a lot of time. Like many utilities, it was developed to

get rid of a bug. I always save every half-hour or so, first to disk 1

and then to disk 2, but after swapping several times I found that I

had lost my end-of-program marker. The program was still on

both copies of the disk, but I got it back only at the cost of time

that I could not afford to lose. The solution turned out to be to use

different version numbers for each SA^E, and that was the birth

of Auto Save/Scratch.

This routine will let you save any program with a simple RUN

10000. As it saves the program, it also saves a unique version

number in front of the name, and since each name starts with a

different version number, you can load any version using short

wild card commands. For instance, to load the fifth version, you

would only have to type in LOAD "05*",8.

If you use this utility, you'll find that you have many versions

of your program on the same disk at one time. Thus, if you de

velop a bug in one version, you can return to an earlier version to

get yourself out of trouble.

Auto Save/Scratch remembers what your last version was

named. To automatically scratch earlier versions, simply select

option 2 from the menu. You will be asked for the first and last

versions that you want to scratch (you have to enter only the ver

sion numbers, not the whole name), and you don't even have to

look to see what versions are on that particular disk. If you tell the

computer to scratch a version that is not there, it will ignore the

mistake and automatically continue until it has deleted all the ver

sions you told it to scratch. So you can keep track of what is going

on, it will also display the version number and name every time it
scratches or saves.

The listing includes a number ofREM statements, but you

can leave them out when you type in the program. There are no
jumps to REM lines.

Using this routine is straightforward. When you get ready to

178

6: Utilities

write a program, LOAD Auto Save/Scratch, type the name you

want to use in line 10000 (don't use more than 13 characters and

spaces), and go ahead with your programming. When you are

ready to save a copy of what you've done, just type RUN 10000

and press RETURN. The program is menu-driven, so all you have

to do is follow the directions on the screen to save your program

as often as you wish.

Auto Save/Scratch for VIC and 64
Refer to "The Automatic Proofreader" (Appendix J) before typing this program in.

10000 XN$="PROGRAM{2 SPACES}NAME" :rem 117

10010 REM{2 SPACES}NOT OVER 13 CHARACTERS OR SPACE

S IN NAME :rem 95

10020 PRINT CHR$(147) :rem 110

10030 REM{2 SPACES}CHR$(147) CLEARS THE SCREEN

:rem 33

10040 FOR X=l TO 10:PRINT:NEXT :rem 230

10050 REM{2 SPACES}MOVE DOWN 10 LINES :rem 37

10060 PRINT"l{2 SPACES}SAVE THIS PROGRAM":PRINT

:rem 63

10070 PRINT"2{2 SPACES}SCRATCH OLD VERSION" .-PRINT

:rem 207

10080 PRINT"3{2 SPACES}EXIT":PRINT :rem 254

10090 FOR X=l TO 10:GET XX$:NEXT :rem 18

10100 REM{2 SPACES}EMPTY BUFFER :rem 31

10110 X$="":GET X$:IF X$="" GOTO 10110 :rem 120

10120 X=VAL(X$):IF X<1 OR X>3 GOTO 10090 :rem 100

10130 ON X GOTO 10160,10480,10140 :rem 102

10140 PRINT CHR$(147):END :rem 130

10150 REM **********[2 SPACES}SAVE ROUTINE

{2 SPACES}********** :rem 120

10160 OPEN15,8,15,"I0" :rem 111

10170 REM{2 SPACES}INITIALIZE THE DISK :rem 219

10180 XZ$="0:"+XN$+" #,S,R":OPEN2,8/2,XZ$:rem 161

10190 REM{2 SPACES}XZ$ IS THE NAME OF A FILE THAT

{SPACE}HOLDS THE LAST VERSION NUMBER:rem 165

10200 INPUT#2,X:CLOSE2:CLOSE15 :rem 84

10210 REM{2 SPACES}GET THE LAST VERSION NUMBER AND

CLOSE THE FILE :rem 6

10220 XZ$="@0:"+XN$+" #,S,W":OPEN2,8,2,XZ$:rem 225

10230 REM{2 SPACES}OPENS A CHANNEL TO SAVE THE NEW

VERSION NUMBER :rem 37

10240 PRINT#2,X+1:CLOSE2:X$=STR$(X):IF X<10 THEN X

$="0"+RIGHT$(X$,l) :rem 101

10250 REM{2 SPACES}SAVE THE NEW VERSION NUMBER AND

SET X$ TO VERSION NUMBER TO BE SAVED:rem 47

10260 X$=RIGHT$(X$,2):X$="@0:"+X$+" "+XN$:rem 107

179

6: Utilities

10270 REM{2 SPACES}X$ IS THE NAME OF THE PROGRAM V

ERSION YOU ARE ABOUT TO SAVE :rem 206

10280 PRINT"SAVING":PRINT RIGHT$(X$,(LEN(X$)-3))

:rem 83

10290 SAVE X$,8 :rem 11

10300 REM{2 SPACES}SAVE THE PROGRAM VERSION:rem 38

10310 VERIFY X$,8 :rem 170

10320 REM{2 SPACES}IT IS NOT NECESSARY TO VERIFY T

HE SAVE BUT IT MAKES ME FEEL BETTER :rem 166

10330 CLOSE 15 :rem 211

10340 OPEN15,8,15,"V0" :rem 124

10350 REM{2 SPACES}************{2 SPACES}CAUTION

{2 SPACES}************ :rem 224

10360 REM{2 SPACES}LINE # 10340 VALIDATES THE DISK

:rem 202

10370 REM THE VIC-1541 DISK DRIVE USER'S MANUAL ST

ATES THAT YOU :rem 184

10380 REM{2 SPACES}SHOULD NEVER VALIDATE A DISK TH

AT HOLDS RANDOM FILES :rem 196

10390 REM{2 SPACES}IF THE DISK HOLDS RANDOM FILES

{SPACE}DELETE LINE # 10340 - 10430 :rem 69

10430 CLOSE15 :rem 212

10440 PRINT:PRINT"DONE — PRESS ANY KEY" :rem 111

10450 X$="":GET X$:IF X$="" GOTO 10450 :rem 134

10460 GOTO 10000 :rem 37

10470 REM{3 SPACES}****** SCRATCH OLD VERSIONS

:rem 60

10480 PRINT CHR$(147) :rem 120

10490 REM{2 SPACES}CHR$(147) CLEARS THE SCREEN

:rem 43

10500 FOR X=l TO 10:PRINT:NEXT :rem 231

10510 REM{2 SPACES}MOVE DOWN 10 LINES :rem 38

10520 PRINT"ENTER VERSION NUMBER":PRINT :rem 253

10530 PRINT"FIRST ONE TO SCRATCH":INPUT XF:PRINT

:rem 14

10540 PRINT"LAST ONE TO SCRATCH":INPUT XL:PRINT

:rem 193

10550 OPEN15,8,15,"10" :rem 114

10560 REM{2 SPACES}INITIALIZE THE DISK :rem 222

10570 PRINT"SCRATCHED" :rem 95

10580 FOR X=XF TO XL:X$=STR$(X):IF X<10 THEN X$="0

"+RIGHT$(X$,1) :rem 41

10590 REM{2 SPACES}SET UP LOOP TO SCRATCH THEM AND
SET X$ TO THE VERSION NUMBER :rem 53

10600 X$=RIGHT$(X$,2):X$="S0:"+X$+" "+XN$:rem 124

10610 REM{2 SPACES}X$ IS THE NAME OF THE PROGRAM V

ERSION YOU ARE ABOUT TO SCRATCH :rem 165

10620 CLOSE15:OPEN15,8,15,X$:rem 69

10630 REM{2 SPACES}SCRATCH IT :rem 131

LJ

LJ

U

LJ

U

LJ

180

6: Utilities

10640 CL0SE15 :rem 215

10650 PRINT RIGHT$(X$,(LEN(X$)-3)) :rem 129

10660 REM{2 SPACES}PRINT NAME OF ONE SCRATCHED

:rem 151

10670 NEXT :rem 61

10680 GOTO 10330:END :rem 64

181

A: Appendix

A Beginner's Guide to

Typing In Programs

What Is a Program?
A computer cannot perform any task by itself. Like a car without

gas, a computer has potential, but without a program, it isn't going

anywhere. Most of the programs published in COMPUTE! Books

are written in a computer language called BASIC. BASIC is easy to

learn and is built into all VIC-20s and Commodore 64s.

BASIC Programs
This book includes programs for both the VIC and 64. To start out,

type in only programs written for your machine, e.g., "VIC Ver

sion" if you have a VIC-20.

Computers can be picky. Unlike the English language, which

is full of ambiguities, BASIC usually has only one "right way" of

stating something. Every letter, character, or number is significant.

A common mistake is substituting a letter such as O for the

numeral 0, a lowercase 1 for the numeral 1, or an uppercase B for

the numeral 8. Also, you must enter all punctuation such as

colons and commas just as they appear in the listing. Spacing can

be important. To be safe, type in the listings exactly as they appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces, such

as {DOWN}. Anything within a set of braces is a special char

acter or characters that cannot easily be listed on a printer. When

you come across such a special statement, refer to "How to Type In

Programs" (Appendix B).

AboutDATA Statements
Some programs contain a section or sections of DAIA statements.

These lines provide information needed by the program. Some

DAIA statements contain actual programs (called machine lan

guage); others contain graphics codes. These lines are especially

sensitive to errors.

185

A: Appendix

If a single number in any one DAIA statement is mistyped,

your machine could lock up, or crash. The keyboard and STOP

keymay seem dead, and the screen may go blank. Don't panic —

no damage is done. To regain control, you have to turn off your

computer, then turn it back on. This will erase whatever program

was in memory, so always save a copy ofyour program before you run

it. If your computer crashes, you can load the program and look

for your mistake.

Sometimes a mistyped DAIA statement will cause an error

message when the program is run. The error message may refer

to the program line that READs the data. The error is still in the

DATA statements, though.

Get to Know Your Machine
You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use to

store and retrieve programs from tape or disk. You'll want to save a

copy of your program, so that you won't have to type it in every

time you want to use it. Learn to use your machine's editing func

tions. How do you change a line if you made a mistake? You can

always retype the line, but you at least need to know how to back

space. Do you know how to enter reverse video, lowercase, and

control characters? It's all explained in your computer's manuals.

A Quick Review
1. Type in the program a line at a time, in order. Press RETURN at

the end of each line. Use backspace or the back arrow to correct

mistakes.

2. Check the line you've typed against the line in the magazine.

You can check the entire program again if you get an error when

you run the program.

3. Make sure you've entered statements in braces as the

appropriate control key (see "How to Type In Programs").

186

B: Appendix

How to Type In Programs

Many of the programs in this book contain special control char

acters (cursor control, color keys, reverse video, etc.). To make it

easy to know exactly what to type when entering one of these

programs into your computer, we have established the following

listing conventions.

Generally, any VIC-20 or Commodore 64 program listings

will contain words within braces which spell out any special char

acters: { DOWN} would mean to press the cursor down key. {5

SPACES} would mean to press the space bar five times.

To indicate that a key should be shifted (hold down the SHIFT

key while pressing the other key), the key would be underlined in

our listings. For example, S would mean to type the S key while

holding the SHIFT key. This would appear on your screen as a

"heart" symbol. If you find an underlined key enclosed in braces

(e.g., {10 N}), you should type the key as many times as indi

cated (in our example, you would enter ten shifted NTs).

If a key is enclosed in special brackets, |< >], you should hold

down the Commodore key while pressing the key inside the special

brackets. (The Commodore key is the key in the lower left corner

of the keyboard.) Again, if the key is preceded by a number, you

should press the key as many times as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed in

braces. These characters can be entered on the Commodore 64 by

holding down the CTRL key while typing the letter in the braces.

For example, {A} would indicate that you should press CTRL-A.

You should never have to enter such a character on the VIC-20.

About the quote mode: You know that you can move the cursor

around the screen with the CRSR keys. Sometimes a programmer

will want to move the cursor under program control. That's why

you see all the {LEFT} 's, { HOME } 's, and {BLU} 's in our pro

grams. The only way the computer can tell the difference be

tween direct and programmed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you

are in the quote mode. If you type something and then try to

change it by moving the cursor left, you'll only get a bunch of

reverse-video lines. These are the symbols for cursor left. The

only editing key that isn't programmable is the DEL key; you can

187

B: Appendix

still use DEL to back up and edit the line. Once you type another

quote, you are out of quote mode.

You also go into quote mode when you INSeiT spaces into a

line. In any case, the easiest way to get out of quote mode is to just

press RETURN. You'll then be out of quote mode and you can

cursor up to the mistyped line and fix it.

Use the following table when entering cursor and color

control keys:

When You

Read:

ICLR}

{HOME}

{UP}

{DOWN}

{LEFT}

{RIGHT}

{RVS}

{OFF}

tBLK)

{WHT}

{RED}

{CYN}

{PUR}

(GRN)

{BLU}

{YEL}

Press: See:

CLR/HOME

CLR/HOME

SHIFT CRSR

When You

Read: Press: See:

188

u

u

u

u

u

LJ

n

h

n

n

n

n

C: Appendix

Screen Location Table (VIC)

Row

0 7680(4096)
7702

7724

7746

7768

5 7790

7812

7834

7856

7878

10 7900

7922

4118)

4140)
4162)

4316)
4338

15

20

22

7944(4360

7966 4382

7988(4404
8010 (4426

8032(4448
8054(4470

8076 (4492
8098(4514)

8120 (4536)
8142 (4558)
8164 (4580)

10 15 20

Column

Note: Numbers in parentheses are for VICs with 8K or more of

memory expansion.

H

n 189

C: Appendix

Screen Location Table (64)

Row

0 1024
1064

1104

1144

1184

D 1224

1264

1304

1344

._ 1384

10 1424
1464

1504

1544

15 1624
1664

1704

1744

20 1824
1864

1904

_ . 1944

24 1984

10 15 20

Column

25 30 35 39

190

n

n

n

n

D: Appendix

Screen Color Memory Table

(VIC)

Row

38400(37888)

38422(37910)

38444(37932)

38466(37954)

38488

5 38510

38532

38554

38576

38598

10

15

20

22

37976)

37998)

38020)

38042)

38064)

38086)

38620 38108)

38642(38130)

38664(38152)

38686(38174)

38708 (38196)

38730 (38218)

38752(38240)

38774 (38262)

38796 (38284)

38818 (38306)

38840(38328)

38862(38350)
38884(38372)

10

Column

15 20

Note: Numbers in parentheses are for VICs with 8K or more of

memory expansion.

n

n

n

n

n 191

D: Appendix

Screen Color Memory Table (64)

Row

0 55296
55336

55376

55416

55456

D 55496

55536

55576

55616

55656

1U 55696
55736

55776

55816

55856

15 55896
55936

55976

56016

56056

2U 560%
56136

56176

56216

24 56256

10 15 20 25 30 35 39

Column

192

E: Appendix

Screen Color Codes

Color:

Code:

Black

0

White

1

Red

2

Cyan

3

Purple

4

Green

5

Blue

6

Yellow

7

Additional Color Codes for 64

Color:

Code:

Orange

8

Brown

9

Light

Red

10

Dark

Gray

11

Medium

Gray

12

Light

Green

13

Light

Blue

14

Light

Gray

15

193

F: Appendix

Screen and Border Colors

(VIC Only)

Border

Screen

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Light Orange

Pink

Light Cyan

Light Purple

Light Green

Light Blue

Light Yellow

Black

8

24

40

56

72

88

104

120

136

152

168

184

200

216

232

248

White

9

25

41

57

73

89

105

121

137

153

169

185

201

217

233

249

Red

10

26

42

58

74

90

106

122

138

154

170

186

202

218

234

250

Cyan

11

27

43

59

75

91

107

123

139

155

171

187

203

219

235

251

Purple

12

28

44

60

76

92

108

124

140

156

172

188

204

220

236

252

Green

13

29

45

61

77

93

109

125

141

157

173

189

205

221

237

253

Blue

14

30

46

62

78

94

110

126

142

158

174

190

206

222

238

254

Yellow

15

31

47

63

79

95

HI

127

143

159

175

191

207

223

239

255

To set screen and border colors, select the desired combination from

the table above and POKE the corresponding value into location 36879.

194

ASCII Codes

G: Appendix

ASCII

5

8

9

13

14

17

18

19

20

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Character

WHITE

DISABLE

SHIFT-COMMODORE

ENABLE

SHIFT-COMMODORE

RETURN

LOWERCASE

CURSOR DOWN

REVERSE VIDEO ON

HOME

DELETE

RED

CURSOR RIGHT

GREEN

BLUE

SPACE

i

n

#

$

%

&

(

) •
*

+

r

—

1

0

1

ASCII

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Character

2

3

4

5

6

7

8

9

/

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

195

G: Appendix

ASCII

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

HI

112

113

114

115

116

117

118

119

Character

S

T

U

V

w

X

Y

Z

£

t

B

m
B
B
□

D

I]

H

0

□
H
D

D
Q

ASCII

120

121

122

123

124

125

126

127

129

133

134

135

136

137

138

139

140

141

142

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Character

a

u

u

u

u

LJ

LJ

ORANGE

fl

£3

£5

£7

f2

f4

£6

£8

SHIFT-RETURN

UPPERCASE

BLACK

CURSOR UP

REVERSE VIDEO OFF

CLEAR SCREEN

INSERT

BROWN

LIGHT RED

GRAY 1

GRAY 2

LIGHT GREEN

LIGHT BLUE

GRAY 3

PURPLE

CURSOR LEFT

YELLOW

CYAN

SHIFT-SPACE

c

u

u

u

196 u

G: Appendix

ASCII

162

163

164

165

166

167

168

169

170

171

172

173

174

F5

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Character

Q
□
D
□

□

B
□

E
a
eg
ED
u

H
H

G
C

□
U

a
o
a
H

H
B

m
B
B
□

D

Asai

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

Character

■ * ■

□

D
S
0
□
□

D

D

m

a
SPACE

c
u
□
D
□

a
Q
B
a

E
a

197

G: Appendix

ASCII

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Character

U

U

u

U

u

LJ

Notes:

1.0-4,6-7,10-12,15-16,21-27,128-132,143, and 149-155 have no effect.

2.192-223 same as 96-127; 224-254 same as 160-190; 255 same as 126.

u

LJ

LJ

198 U

H: Appendix

Screen Codes

n

n

n

n

POKE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Uppercase and

Full Graphics Set

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

[

£

]

t

Lower- and

Uppercase

@

a

b

c

d

e

f

g

h

i

i
k

1

m

n

o

P

q
r

s

t

u

V

w

X

y

z

[

£

]

t

POKE

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Uppercase and

Full Graphics Set

<-

Lower- and

Uppercase

<-

-space-

!

#

$

%

&

'

(

)

*

+

-

/

0

1

2

3

4

5

6

7

8

9

;

<

=

1

"

#

$

%

&

(

)
*

+

.

/

0

1

2

3

4

5

6

7

8

9

;

<

=

n 199

H: Appendix

POKE

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Uppercase and Lower- and

Full Graphics Set Uppercase

B

m
B
B
□

D
a

□

D

0

a

□

a
H

c
m

B
A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

m

Uppercase and Lower- and

POKE Full Graphics Set Uppercase

99 n n
ioo D D
101 □ □

102 B B
103 □ a
104 Q Q
105 B B
106 ID ID
107 E E
108 Q
109 E
no ED
in -

112 H
113 H
"4 H

ii5 ED

116 D

117

120

121

122

123

124

125

126

127

n
a
U
□

B
S

E
Q
E
El
U
B
H

B
ED
□

C
a

n
n
U
0

El
H
B
B

128-255 reverse video of
0-127

-space-

■J I
y u

u

LJ

200 U

VIC Keycodes

I: Appendix

Key

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

1

2

3

4

5

Keycode

17

35

34

18

49

42

19

43

12

20

44

21

36

28

52

13

48

10

41

50

51

27

9

26

11

33

0

56

1

57

2

Key

6

7

8

9

0

+

—

£

CLR/HOME

INST/DEL

<-

@
*

t

RETURN

/

/

CRSR tl

CRSR £
fl

f3

£5
f7

SPACE

RUN/STOP

NO KEY

PRESSED

Keycode

58

3

59

4

60

5

61

6

62

7

8

53

14

54

45

22

46

15

29

37

30

31

23

39

47

55

63

32

24

64

The keycode is the number found at location 197 for the current key being pressed. Try

this one-line program:

10 PRINT PEEK <197):GOTO 10

Values Stored at Location 653

Code Key(s) pressed

0 (No key pressed)

1 SHIFT

2 Commodore

3 SHIFT and Commodore

4 CTRL

5 SHIFT and CTRL

6 Commodore and CTRL

7 SHIFT Commodore, and CTRL

201

I: Appendix

Commodore 64 Keycodes

Key

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

z

1

2

3

4

5

Keycode

10

28

20

18

14

21

26

29

33

34

37

42

36

39

38

41

62

17

13

22

30

31

9

23

25

12

56

59

8

11

16

Key

6

7

8

9

0

+

—

CLR/HOME

INST/DEL

@
*

•

=

RETURN

CRSRT4

CRSR?

fl

f3

£5

il

SPACE

RUN/STOP

NO KEY

PRESSED

Keycode

19

24

27

32

35

40

43

48

51

0

57

46

49

54

45

50

53

1

47

44

55

7

2

4

5

6

3

60

63

64

The keycode is the number found at location 197 for the current key being pressed. Try

this one-line program:

10 PRINT PEEK (197):GOTO 10

Values Stored at Location 653

Code Key(s) pressed

0 (No key pressed)

1 SHIFT

2 Commodore

3 SHIFT and Commodore

4 CTRL

5 SHIFT and CTRL

6 Commodore and CTRL

7 SHIFT, Commodore, and CTRL

202

J: Appendix

The Automatic Proofreader

"The Automatic Proofreader'' will help you type in program

listings without typing mistakes. It is a short error-checking pro

gram that hides itself in memory. When activated, it lets you

know immediately after typing a line from a program listing if you

have made a mistake. Please read these instructions carefully be

fore typing any programs.

Preparing the Proofreader

1. Using the listing below, type in the Proofreader. The same

program works on both the VIC-20 and Commodore 64. Be very

careful when entering the DAIA statements — don't type an 1 in

stead of a 1, an O instead of a 0, extra commas, etc.

2. Save the Proofreader on tape or disk at least twice before

running it for the first time. This is very important because the

Proofreader erases this part of itself when you first type RUN.

3. After the Proofreader is saved, type RUN. It will check it

self for typing errors in the DAIA statements and warn you if

there's a mistake. Correct any errors and save the corrected ver

sion. Keep a copy in a safe place — you'll need it again and again,

every time you enter a program from this book.

4. When a correct version of the Proofreader is run, it

activates itself. You are now ready to enter a program listing. If

you press RUN/STOP-RESTORE, the Proofreader is disabled. To

reactivate it, just type the command SYS 886 and press RETURN.

Using the Proofreader
All VIC and 64 listings in this book have a checksum number

appended to the end of each line, for example, :rem 123. Don't

enter this statement when typing in a program. It is just for your infor

mation. The rem makes the number harmless if someone does

type it in. It will, however, use up memory if you enter it, and it

will confuse the Proofreader, even if you entered the rest of the

line correctly.

When you type in a line from a program listing and press

RETURN, the Proofreader displays a number at the top of your

screen. This checksum number must match the checksum number in the

printed listing. If it doesn't, it means you typed the line differently

203

J: Appendix

from the way it is listed. Immediately recheck your typing.

Remember, don't type the rem statement with the checksum

number; it is published only so you can check it against the

number which appears on your screen.

The Proofreader is not picky with spaces. It will not notice

extra spaces or missing ones. This is for your convenience, since

spacing is generally not important. But occasionally proper spac

ing is important, so be extra careful with spaces, since the Proof

reader will catch practically everything else that can go wrong.

There's another thing to watch out for: If you enter the line by

using abbreviations for commands, the checksum will not match

up. But there is a way to make the Proofreader check it. After

entering the line, LIST it. This eliminates the abbreviations. Then

move the cursor up to the line and press RETURN. It should

now match the checksum. You can check whole groups of lines

this way.

Special Tape SAVE Instructions
When you're done typing a listing, you must disable the Proof

reader before saving the program on tape. Disable the Proof

reader by pressing RUN/STOP-RESTORE (hold down the RUN/

STOP key and sharply hit the RESTORE key). This procedure is

not necessary for disk S^WEs, but you must disable the Proofreader

this way before a tape SjWE.

S^WE to tape erases the Proofreader from memory, so you'll

have to load and run it again if you want to type another listing.

SAVE to disk does not erase the Proofreader.

Hidden Perils
The Proofreader's home in the VIC and 64 is not a very safe

haven. Since the cassette buffer is wiped out during tape opera

tions, you need to disable the Proofreader with RUN/STOP-

RESTORE before you save your program. This applies only to

tape use. Disk users have nothing to worry about.

Not so for VIC and 64 owners with tape drives. What if you

type in a program in several sittings? The next day, you come to

your computer, load and run the Proofreader, then try to load the

partially completed program so you can add to it. But since the

Proofreader is trying to hide in the cassette buffer, it is wiped out!

What you need is a way to load the Proofreader after you've

loaded the partial program. The problem is, a tape load to the

buffer destroys what it's supposed to load.

204

J: Appendix

After you type in and run the Proofreader, enter the fol

lowing lines in direct mode (without line numbers) exactly as shown:

A$="PROOFREADER.T": B$="{10 SPACES}": FOR X = 1 TO

4: A$=A$+B$: NEXTX

FOR X = 886 TO 1018: A$=A$+CHR$(PEEK(X)): NEXTX

OPEN 1,1,1,A$:CLOSE1

After you enter the last line, you will be asked to PRESS

RECORD & PLAY on your cassette recorder. Put this program at

the beginning of a new tape. This gives you a new way to load the

Proofreader. Anytime you want to bring the Proofreader into

memory without disturbing anything else, put the cassette in the

tape drive, rewind, and enter:

OPEN1:CLOSE1

You can now start the Proofreader by typing SYS 886. To test

this, PRINT PEEK(886) should return the number 173. If it does

not, repeat the steps above, making sure that A$ ("PROOF

READER.!1") contains 13 characters and that B$ contains 10 spaces.

You can now reload the Proofreader into memory whenever

LOAD or SiWE destroys it, restoring your personal typing helper.

Automatic Proofreader for VIC and 64

100 PRINT"{CLR}PLEASE WAIT•..":FORI=886TO1018:READ

A:CK=CK+A:POKEI,A:NEXT

110 IF CKO17539 THEN PRINT" {DOWN}YOU MADE AN ERRO

R":PRINT"IN DATA STATEMENTS.":END

120 SYS886:PRINTfl{CLR}{2 DOWN}PROOFREADER ACTIVATE

D.":NEW

886 DATA 173,036,003,201,150,208

892 DATA 001,096,141,151,003,173

898 DATA 037,003,141,152,003,169

904 DATA 150,141,036,003,169,003

910 DATA 141,037,003,169,000,133

916 DATA 254,096,032,087,241,133

922 DATA 251,134,252,132,253,008

928 DATA 201,013,240,017,201,032

934 DATA 240,005,024,101,254,133

940 DATA 254,165,251,166,252,164

946 DATA 253,040,096,169,013,032

952 DATA 210,255,165,214,141,251

958 DATA 003,206,251,003,169,000

964 DATA 133,216,169,019,032,210

970 DATA 255,169,018,032,210,255

205

u

J: Appendix LJ

u
976 DATA 169,058,032,210,255,166

982 DATA 254,169,000,133,254,172 LJ
988 DATA 151,003,192,087,208,006

994 DATA 032,205,189,076,235,003 LJ

1000 DATA 032,205,221,169,032,032

1006 DATA 210,255,032,210,255,173 i (

1012 DATA 251,003,133,214,076,173 °
1018 DATA 003

LJ

LJ

LJ

LJ

LJ

206 LJ

Index

"Advertiser" program 86-90

arrays 121

ASCII codes 128, 171

table 197-200

attack 159

"Auto Save/Scratch for VIC and 64"

program 180-83

"Automatic Proofreader" program 205-8

auxiliary color (VIC-20) 137, 138

bar charts 78-85

"Bar Chart Demo" program 79

binary data search 129—31

program 132-33

sorted data essential 130

bit-pairs, multicolor sprites and 145

border color 137, 138, 196

braces 187

"Calculated GOTO for VIC and 64"

program 102-3

cassette buffer 50-51, 108

"Character Editor for the 64" program

151-58

character set 152

CLOSE statement 120

color memory 137

command channel, DOS 122

"Commodore 64 Sound Editor" program

159-63

cursor position, locating 105

DATA statements 187-88

decay 159

delete character 86-87

disk drives, Commodore 120

disk operating system (see DOS)

DOS (disk operating system) 120-23

directory chart 124

dynamic keyboard technique 171

education 35-64

end-of-program marker 180

"Expanding Spiral" program 144

"Fast Sort" program 108-11

prerequisites 108

wedges and 108-9

1541 Disk Drive 120

"File Cabinet" program 67-73

frequency 160

function keys, direct mode and 96-101

redefining 97-99

garbage collection 112

gate (sound) 159-60

"General-Purpose Bar Chart" routine

78-85

GOSUB statement, calculated 102-3

GOTO statement, calculated 102-3

"Hang Glider" program 3-9

"Hatch It" program 50-57

IRQ interrupt 96

resetting 98

Kernal 104

keyboard buffer 102

keycodes (64) 204

keycodes (VIC) 203

long lines, typing 86

memory conservation 51-52

merging programs 98-99

"Merry-Go-Match" program 41-49

modulation, sound 160

move matrix 17-18

multicolor characters 137

"Multicolor Characters for the VIC"

program 137-42

multicolor graphics 137-42

multicolor mode 87, 137-39

"Multicolor Sprite Editor for the 64"

program 145-50

multiplication tables 37

"Nim" program 23-25

noise waveform 160

numbers, formatting 173-77

programs 174-77

"Numeric Keypad" program 178-79

octave 160

offset (relative files) 122

"Old West" program 15-22

ON statement 128

OPEN statement 120

P (Position) command 122

partitioned data search 127-28

PEEK function 102

pixel 137, 139

POKE command 102

PRINT AT command 104-7

"PRINT AT for Commodore Computers"

program 104-7

pulse waveform 160

pulse width 160

"Puzzle Solver" program 58-64

non-Commodore printers and 59

207

"Quick Delete" program 171-72

quote mode, delete character and 86-87

RAM 104

"Reaction" program 10-14

record length, relative files and 121-22

relative files 120-27

advantages and disadvantages 123

defined 120-21

offset 122

program 125-27, 131-32

record length fixed 121

secondary address and 122

sequential file restrictions 123

release 159

"Remarkable REM" program 93-95

REM statement

causing computer action 93-94

customizing 93-95

"Rotating Box" program 143-44

"Save the King" program 26-33

sawtooth waveform 160

screen codes 201-2

screen color 138, 195, 196

screen color memory table (64) 194

screen color memory table (VIC) 193

screen location table (64) 192

screen location table (VIC) 191

searching for data 127-32

secondary address (relative files) 122

sector blocks, DOS 123, 125

chart 125

sequential data search 127

sequential files 123

SID (Sound Interface Device) chip

159-161

sorting routines, BASIC, limitations of

112

Sound Interface Device (see SID)

"Spider Math" program 37-40

sprites, multicolored 145-47

bit-pairs and 145

sprites, single-colored 145

strings 58

Super Expander Cartridge 52, 143-44

"Super Shell Sort for VIC and 64"

program 112-20

sustain 159

SYS command 96

text adventure 15-33

designing 16-18

"3-D Clock" program 74-77

triangle waveform 160

"12-Tone Matrix Generator" program

64-68

typing in programs 189-90

VIC-20 Super Expander Cartridge (see

Super Expander Cartridge)

voices 159

waveform 160

wedge, machine language 50, 96

word-find puzzles 58

U

u

u

u

u

LJ

U

U

U

i i

u

208

n

r~] Notes

D

D

n

n

n

n

n

n

n

u

Notes {J

u

u

u

u

u

u

u

u

u

u

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!

Magazine. Use this form to order your subscription to
COMPUTE!.

For Fastest Service,

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 5406

Greensboro. NC 27403

My Computer Is:

□ Commodore 64 DTI-99/4A □ Timex/Sinclair QVIC-20 □ PET
□ Radio Shack Color Computer □ Apple □ Atari □ Other

D Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

$30 Canada
$42 Europe, Australia, New Zealand/Air Delivery
$52 Middle East North Africa, Central America/Air Mail
$72 Elsewhere/Air Mail
$30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money

Order, or charge card.

□ Payment Enclosed □ VISA

□ MasterCard □ American Express

Ace t. No. Expires /

COMPUTE! Books
P.O. Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out order directly from COMPUTE!

For Fastest Service

Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title

Machine Language for Beginners

Home Energy Applications

COMPUTED First Book of VIC

COMPUTED Second Book of VIC

COMPUTED First Book of VIC Games

COMPUTED First Book of 64

COMPUTED First Book of Atari

COMPUTED Second Book of Atari

COMPUTED First Book of Atari Graphics

COMPUTED First Book of Atari Games

Mapping The Atari

Inside Atari DOS

The Atari BASIC Sourcebook

Programmer's Reference Guide for TI-99/4A

COMPUTED First Book of Tl Games

Every Kid's First Book of Robots and Computers

. The Beginner's Guide to Buying A Personal

Computer

Price

$14.95*

$14.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$14.95*

$19.95*

$12.95*

$14.95*

$12.95*

$ 4.95t

$ 3.95t

Total

' Add $2 shipping and handling Outside US add $5 air mail; $2

surface mail

t'Add $1 shipping and handling. Outside US add $5 air mail; $2

surface mail

Please add shipping and handling for each book

ordered.

Total enclosed or to be charged.

All orders must be prepaid (money order, check, or charge). All

payments must be in US funds. NC residents add 4% sales tax.

□ Payment enclosed Please charge my: □ VISA □ MasterCard

□ American Express Acc't, No. Expires /

Name

Address

City State

Country

Allow 4-5 weeks for delivery.

If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of

COMPUTE!^ Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

computer
P.O. Box 5406

Greensboro, NC 27403

My computer is:

n Commodore 64
02

]VIC-20 □ Other.

□ $20 One Year US Subscription
□ $36 Two Year US Subscription

□ $54 Three Year US Subscription

Subscription rates outside the US:

□ $25 Canada
□ $45 Air Mail Delivery
□ $25 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank International Money

Order, or charge card, Your subscription will begin with the next avail

able issue. Please allow 4-6 weeks for delivery of first issue. Subscription

prices subject to change at any time.

□ Payment Enclosed

□ MasterCard

Acct. No.

□ VISA

□ American Express

Expires

The COMPUTEl's Gazette subscriber list is made available to carefully screened organiza

tions with a product or service which may be of interest to our readers. If you prefer not to

receive such mailings, please check this box □.

