
; ~ : " ! , ~ • • 4- - to _ :,>,

~"'IT"";.TflT'; *,,~
, - - - - ~

. - • • ~ • ~ .. IT' - .. ,~; . . , ..
• :.,.'. ~ .. • > ,.:. ~.

I

--0-

I
I
I

-l-I-
f-I-I-

-1-1-

I-

I- !
i I
I I
I
I
I I-d ~ ~

~ ::-=-r ~T

+ + +
. I I -+

PROGRAMMING SERIES

STEP·BY·STEP
PROGRAMMING

COMMODORE
64

THE OK SCREEN·SHOT PROGRAMMING SERIES
Never has there been a more urgent need for a series of well·produced,
straightforward, practical guides to learning to use a computer. It is in
response to this demand that The DK Screen-Shot Programming Series
has been created. It is a completely new concept in the field of
teach·yourse~ computing. And rt Is the first comprehensive library of
highly illustrated, machine-specific, step-by·step programming manuals.

BDDKS ABOUT THE COMMODORE 64
This is Book Two in a series of unique step-by-step guides to
programming the Commodore 64. Together with ITs companion volumes,
IT will build up into a se~-contained teaching course that begins with the
basic principles of programming and progresses - via more sophisti
cated techniques and routines - to an advanced level.

ALSO AVAILABLE IN THIS SERIES
Step-by-Step Programming for the ZX Spectrum

Step-by·Step Programming for the BBC Micro
Step-by·Step Programming for the Acorn Bectron

Step-by-Step Programr1)ing for the Apple lie
Step-by-Step Programming for the IBM PCjr

PHILCORNES
After taking a BA in Mathematics and Computing Phil Cornes has been
involved in system development of computer-based education at Brrtish
Telecom's National Tra ining College. He has been a part-time technical
author since 1978, and has become a regular contributor to personal
computer magazines such as Personal Computer World, Computing
Today and Electronics Today International. He has written a book and a
large number of articles on programming and using the Commodore 64.

I
1-

1-

I n
I I

I
1-1-,- f- I-rl

I

I I
1 1 I

Dr<~ ~ \
~Q~S1fujt

~ PROGRAMMING SERIES

STEP-BY-STEP I

~\ PROGRAMMING [---- r-- r--

\~~ COMMODORE -,-

~: 64 r-

~ 't
.\1 1 1 1 1 I I 1 1 1 1 1 1 1 1 1 I 1 I 1

\\ PHILCORNES I I

I
.\ 1 I I

.\ I I
,\
\

\\ r
I -J- I - -I

\ .
\1
.\

~
,

~rJ /
L I 1 V

r-t- 1 ~.~ I V
""" I/V.~ :..oJ~ ,..,r-

I I"" 1/ 0
b~

GUILD PUBLISHING LONDON 1-~t7V • I
L I I -'-1 LllJ I J
j j I I j J V

/

CONTENTS
L-------~~f__--------

THE COMMODORE 64

L-------~~f__--------
INSIDE THE COMPUTER

L--------~f------------'I I ~f--------~
SETTING UP COMPUTER

CALCULATIONS

L-------~~f__--------
WRITING YOUR

FIRST PROGRAM

L--------[§Jf__----------'
DISPLAYING

PROGRAM LISTINGS

'------1~I----' ~ii~-~~~. ~
L
____ ~~lO 1______ STARTING OFF 5 .. ::::::~:::-:~::::.--== ---............................ --.. ~--.. '1'.'1111_* ___ •• ",***

...... ~ __ IIt-•• _ ~ ..

THE COMMODORE '-------l0f------" •••••• --.-... -~

KEYBOARD KEYING IN COLOR '--- ----l01------"

The DK Screeo-Shot Programming
Series was conceived, edited and
designed by Dorling Kinders1ey
Limited, 9 Henrietta Street, Covent
Garden, London WC2E SPS.

Designer Hugh Schermuly
Photography Vincent Oliver
Series Editor David Burnie
Series Art Editor Peter Luff
Managing Editor Alan Buckingham

First published in Great Britain in 1984
by Dorling Kinders1ey Limited,
9 Henrietta Street, Covent Garden,
London WC2E 8PS.

Copyright © 1984 by Dorling
Kindersley Limited, London

This edition published 1984 by Book Club
Associates by arrangement with Darling
Kindersley Limited, 9 Henrietta Street,
Covent Garden, London WC2E BPS.
The term Commodore is a trade mark of
Commodore Business Machines, Inc.

CORRECTING
MISTAKES

All rights reserved. No pan of this
publication may be reproduced, stored L ____ ---1iz6l, _ _ __ ---'
in a retrieval system, or transmitted in L:J--
any fonn or by any means, eJectronic, COMPUTER
mechanical, photocopying, recording,
or otherwise, without the prior written CONVERSATIONS
permission of the copyright owner.

British Library Cataloguing
in Publication Data

Comes, Phil
Step-by-step programming for the
Commodore 64. Bk. I
I. Commodore 64 (Computer)-

Programming
I. Title
001.64'2 QA76.S.C64

ISBN O-S63IS-040-X

Typesetting by The Letter Box
Company (Woking) Limited, Woking,
Surrey, England
Reproduction by Reproco1or Llovet
S.A. , Barcelona, Spain
Printed and bound in Italy by
A. Mondadori, Verona

L-------~~f--------~
WRITING

PROGRAM LOOPS

L..--D-EC-IS-II~I-PO-I-NT-...-JI I PROGRA~NG WITH I ~I -H-INTS--I~ TIPS

PROGRAMMING SPRITES 0f---
'----___�~ HOW TO KEEP YOUR

POKE AND PEEK PROGRAMS

~ ~f--~
L..-_--1~ SPRITE GRIDS

KEYBOARD GRAPHICS

~~-UN-D---IA~rSPE-It-CI-At~ ~I··I··I .. I"·I· ·I· .. I .. I·· 1·· ·I"~·
. EFFECIS U

LTH-E-SC-R-I~I-M-E-M-O-Ry-I~NO-TES-,~c~rRD-S-A-N-D...-J ~I·I··I··I"I· ·I··I··I"I· ·I··I··I"~·
MUSIC

'---------I~r----'

:: .:: i: : :::::: :: : :: : :: :::: :
• • •• II • •• • • • • , ' • II • I· • • , , •
I " • II • •• • • • • ' •• II • " " " •
I I •• II • •• • • • • • •• • 1 • 11 ' 1 ' " •
• • • • II • • • • • • • • •• •• • It ' I t • •
I I •• II • • • • • • • • •• II • ,, , ' " ..
I I •• II • • • • • • • • •• II • , .o ,
• • ••• II • •• • • • • • •• II
I I •• II • • • • • • • • •• II
I I " • II • • • • • • • ' •• II
I I " • II • •• • • • • • •• II • , • • • Ir-. .. ,

UNPREDICTABLE '-------'-_----I~
PROGRAMS SCREEN Mf-EM-O-R-Y~

'---_----I~ I ~I ====j~f---_ CODES
ANIMATION WRITING

'---_ ___1r4()l SUBROUTINES ~I-__ ---.J

u ASCII

I I " • II • •• • • • • • •• II
' 1 •• II • • • • • • • • •• II • • ' 1, ., • •
" •• II • •• • • • • ' I • II , ' __ _ • II _ '*

USING A DATA BANK 1 CHARACTER SET

L..----I~r----' ~ ~I-_ _ ...-J

USING A DATA BANK 2 GLOSSARY

'---_---1~ I 8f------ -,
INTRODUCING SPRITES L--___ _ _ ----.J INDEX

THE
COMMODORE 64

computer
These include

sound synthesis on three channels, low- and high
resolution graphics in 16 colors, and high-resolution
animation using small mobile object blocks called
sprites. Once you have mastered the Commodore's
simple dialect of the BASIC programming language,
you will find that your Commodore will provide you
with many hours of interest and entertainment.

Sockets and connectors
If you face the Commodore's keyboard, the sockets that
enable you to connect it to other devices lie on the right
hand side and along the back panel of the computer.
Turn the computer around and take a look at the back
panel. From left to right the Commodore has a number
of input and output sockets. First is the cartridge slot,
into which pre-programmed Read Only Memory
(ROM) program cartridges can be inserted. Cartridges
are available for a range of uses like games, utilities and
extra programming languages. The next three sockets
are concerned with feeding television picture signals
out to the screen. The first of these allows adjustment of
the television channel used by the Commodore. The
second is the UHF socket which provides a signal which
can be fed straight into your television's aerial socket. If
you have a Commodore video monitor, you will need to
use the third socket which outputs an audio and color
video signal. (All the photographs in this book were
taken using displays produced on a Commodore
monitor.)

Next in line is the serial port through which the
Commodore printer and the Commodore disk drive
unit are connected. This is followed by the cassette
interface which is used to link up the special
Commodore C2N digital cassette recorder. Finally, on
the right is the user port. This is used mainly for
interface circuits such as a modem (modulator
demodulator for telephone transmissions) or an RS232
communications cartridge.

The list of connectors does not stop there. If you rurn
the computer around and look at the right-hand side
panel you will see a switch and some more connecting
sockets. Working from the front to the back, the first
rwo connectors are the games or control ports. These
accept analog or non-digital inputs from devices such as
light pens, games paddles and joysticks. The signals are
then converted into digital form to control programs.
Next to the control ports is the main power on/off
switch, and finally comes the power socket itself.

OolOff switch When the
computer is switched on,
the red power light on the
keyboard indicates that it
is ready for use.

Cootrol ports The two
control ports can each
accept a light pen, games
paddle or joystick.

~ -~ ~-_ . ---_"oil •

Cartridge slot The
Commodore can handle
several extra languages
and utility programs in
Read Only Memory
(ROM) cartridges. These
are insened imo this slot.

AudiolVideo port A
color video monitor can
be connected through
this socket, which
provides high-quality
sound and picrure
signals.

Serial port Interfaces for
the standard serial printer
and Commodore 1541
disk drive are provided
via this socket.

Channel selector This
allows some adjustment
to be made to the
television channel used
by the computer.
Normally no adjustment
of this control is needed.

Cassette interface Th.is
connects the Commodore
to the special C2N
cassette recorder for
program and data file
storage.

User port The
Commodore can be used
to control various
peripherals througb the
user port including a
Centronics printer and
other parallel devices.

-- --------------- - --

INSIDE THE
COMPUTER

The Commodore 64 is constructed on two circuit
boards. The first carries the keyboard (see pages lO
ll), while the second is the main board, which covers
the whole Boor of the case. The top shell of the case is
designed to be removable, allowing the main board to
be exantined in detail.

The board contains the same basic elements which
every personal computer uses - a microprocessor,
various types of memory and input/output chips. The
microprocessor (CPU) chip does all the computer's
calculations and controls the activities of the rest of the
machine. The Commodore 64 uses a type 6510 CPU.
The computer's memory is divided into two main types
- Random Access Memory (RAM) and Read Only
Memory (ROM). RAM is also called "volatile memory"
because its contents are lost when the power is
interrupted. RAM is a temporary memory store;
information is held there only while the power is on.
ROM on the other hand is a permanent memory. The
instructions it contains are not erased by the computer
being turned off.

BASIC and machine code
The computer's working languages are composed
entirely of electronic pulses . The counting system that
the computer's circuits use is based on only two
numbers, 0 and I, where 0 is represented by "of!" (no
pulse) and I by "on" (pulse present). This system is
called binary code. In common with most personal
computers, the Commodore deals with binary data in
groups of eight binary digits (bits) at a time. Each group
of eight bits (a bit is a single 0 or I) is called a "byte".
The data in each byte of memory represent a single
character or symbol on the keyboard. The Commodore
64 contains 64K of RAM and 16K of ROM. The "K"
stands for kilobyte (IK= 1024 bytes).

The Commodore is most easily programmed with the
"high-level" language BASIC. The BASIC on the
Commodore is fairly compact, and it occupies only 8K
of ROM. This means that some of the facilities of the
machine have to be accessed in a fairly general way
instead of by using specific BASIC keywords. Before
the computer can act on the instructions you give it in
BASIC it must first translate them into machine code,
the language that the CPU understands. BASIC is
therefore slower than machine code but has the
advantage of being much easier to understand. When
the computer is switched on, it automatically selects the
program in the BASIC ROM. This program is called
the BASIC interpreter.

8

The microchip
command chain All
the chips within the
Commodore form an
electronic chain of
command, with the
CPU performing all of
the executive tasks.
The rest of the chips,
including the RAMs

Keyboard/user port
chips The Commodore
uses two 6526 Complex
Interface Adapter (CIA)
parallel control chips [0

interface the keyboard to
the computer and to
provide user port
facilities.

Random Access
Memory (RAM) Eight
RAM chips provide 64K
of storage for all the
programming
information that the
computer is given after
being switched on.

and ROMs, act as
temporary or
permanent
information storage
systems. These supply
the CPU with the
instructions it needs to
carry out the
computer's functions .

BASIC and KERNAL
ROMs The BASIC
ROM contains the
instructions necessary to
rum programs into a
form that the computer's
most imponant chip, the
CPU, can understand.
The KERNAL ROM
provides instructions for
communication with
peripherals.

Video Interface Circuit
(VIC) The VIC chip
controls all the
Commodore's low- and
high-resolution graphics,
including color and
sprites.

CeDtral Processing Unit
(CPU) The executive
part of the computer.
This microprocessor
carries out all the
calculations and controls
the activities of the rest of
the computer, using
infonnarion and
programs contained in
both ROM and RAM.

Voltage regulator This
prevents cbanges in the
power supply voltage
disrupting the activities
of the computer.

Sound Interface Device
(SID) The SID chip
provides a complete
three-channel sound
synthesizer with sound
envelope control and
four separate sound
waveforms.

9

Phase Alternation Line
(PAL) encoder This
converts the stream of
data produced by the
computer into a high
frequency signal that can
be fed into a television
set.

Power socket This is the
. Commodore's low·

voltage input point.

Power supply This part
of me computer converts
the low-voltage
alternating current (AC)
coming into thecompmer
from the transformer
into direct current (DC)

.which can be used by the
computer's circuitry.

THE
COMMODORE

KEYBOARD
The Commodore has a high-qua1ity keyboard which is
equally suitable for one-finger programming or fast
touch-typing. It looks very similar to a typewriter
keyboard, but the central block of ordinary letter and
number keys is surrounded by a number of extra keys
not found on a typewriter. The keys on the board can be
split by function into three groups - the central block
with numbers and letters on them, the surrounding
dark-coloured keys, and the four light-colored keys to
the right of the main block.

Character keys
When one of the central block of keys is pressed it
produces a character on the screen. You can use these
keys to type in words that the computer will recognize
as commands, or information that you want the
computer to use while it is running a program. You will
notice that as well as having letters or numbers printed
on them, these keys also have symbols or words printed
on their front faces . The symbols are a set of graphics
characters that can be made to appear on the screen,
taking the place of the letters. The number keys control
the colors, and can be used to change the colors of words
and graphics as you type. Full descriptions of how to
use these graphics characters and color controls are
given later in this book.

Cursor and editing keys
On the right-hand side of the main block of keys there
are four special keys that control the movement of the
screen cursor and allow editing. The Commodore
enables programs to be edited and corrected in a very
flexible way. Any lines of a program to be edited or
corrected are first listed on the screen, and then picked
out by using the two keys labeled CRSR, which are in
the bottom right-hand comer of the keyboard. The
INSTIDEL (INSerT/DELete) key, at the top right
hand comer ofthe keyboard, can then be used to insert
and delete characters. The CLRlHOME key clears the
screen and moves the cursor to the top left comer.

Function keys
If you press one of the four light brown keys to the right
of the main block nothing appears to happen. This is
because the Commodore function keys are designed to
be used from within a program, and perform no action
under normal circumstances.

10

RUN/STOP This key stops a program
that has been set running, and shows
where the program has been stopped.

CTRL This key has a similar function to
the Commodore key; it allows access to
the eight colors marked on the number
keys 1-8. It can also be used with the 9
and 0 keys to produce "reversed"
characters.

Com.mod.o~ key The main function of
this key is to allow access (with the
number keys 1-8) to the second set of
colors available on the Commodore. It is
used with Lencr keys to produce any of a
set of graphics characters on the screen.

I _ "'to: - -- .. ----&.- .- - ;0..

Number keys As well as producing the
numbers 0-9, these keys can also be used
in conjunction with the CTRL and
Commodore keys to give access to any of
16 colors .

RETURN The Commodore will not
respond to most commands unless they
are followed by pressing lhiskey. It is
roughly equivalent to a typewriter's
carriage return .

RESTORE When used with the RUNI
STOP key, this resets the computer to
produce a clear screen.

Space bar This works exactly like the
space bar on an ordinary typewriter.

SHIFT and SHIFT LOCK
These keys allow access to a set of
graphics characters on the letter keys,
and, when used in combination with the
Commodore key. will change a display
from one character set to the other.

11

CLRIHOME This is one of the
Commodore"s four cursor control keys.
Pressing it on its own will make the cursor
home to the top left corner of the screen.
Pressing this key at the same time as the
SHIFT key gives a method of clearing the
screen from the keyboard.

INSTIDEL This key is used forprogram
editing. On its own it backspaces the
cursor and deletes characters on the
screen. Used with the SHIFf key it bas
the opposite effect and opens up a gap in
a line and inserts spaces.

Func:tiOD keys These four keys can be
used with the SHIff key to provide eight
key combinations that can be detected
within a program and used to provide
controUed functions.

Cursor control keys These two keys,
used in conjunction with the SIDFrkey,
allow the cursor to be moved in any
direction around the screen. This facility
is needed when you are editing pans of a
program.

12

SETTING UP
Setting up the Commodore is a two-part operation.
First, you need to connect the computer up to its
peripherals, and then you need to adjust your television
or monitor to get the best results on the screen. The first
part is easy - the second can take a little longer.

The system as supplied comprises the main keyboard
unit, which also contains all of the computer's
electronics, a power supply transformer and an aerial
lead to connect the computer to a television set.

The power supply transformer has two leads. The
DIN plug should be connected with the computer
power socket which is on the right-hand side of the case.
The other lead is the power lead which should be
plugged into a wall socket. Now, if you are using a
television, unplug the aerial lead and replace it with the
Commodore television lead. The other end of this
should be plugged into the UHF TV socket on the
computer's rear panel. If you are using a Commodore
monitor, connect this through the audio/video port.

When you switch on the computer at the power
switch, the red power indicator light at the top right of
the keyboard should come on.

If you are using a television, switch on and select a
spare channel. (It helps if you can keep a channel
permanently allocated to the computer.)

Tuning in
When the computer is switched on, it produces a screen
signal that you should be able to receive · on your
television set. Mter some experimentation with the
tuning controls, you should see this display - or one
similar - on your screen:

COMMODORE SCREEN DISPLAY

If you can't get this display at all, you probably have not
connected the computer up properly. Check all the
leads and connections again.

If you are using a color television, you should see a color
display like the one shown. If the colors seem very
different, try fine-tuning the set. When a television is
slightly out of tune, it may produce a sharp black-and
white picture with no indication that color signals are
being produced. If you have a monitor, it will be tuned
already. Adjustment of the controls will enable you to
select the best color settings.

Sometimes with a television, the display will not be
centered properly . You can correct this by using the
normal horizontal and vertical hold adjustment
controls. Remember also that the Commodore has no
built-in loudspeaker. Instead it uses the loudspeaker in
the television or monitor. When you come to writing
programs that produce sound, check that the volume
control on your set is turned up so that any sounds
which the computer produces are audible.

You will notice when you have set up the computer
that its initial display contains the line:

38911 BASIC BYTES FREE

This number tells you how much memory space there is
inside the computer that can be used to store BASIC
programs and the data that these programs operate on.
A byte of memory will hold one character - a letter or
symbol. As you begin programming, memory will start
being used (although the screen display will not register
this). Because your programs are only held in memory
for as long as the power is on, the computer will always
have the same number of bytes free every time you
switch on.

Commodore color combinations
In addition to the light and dark blue colors seen on the
initial display, the Commodore is capable of producing
many other colors. There are 16 colors in total, giving
you a very large number of color combinations that can
be displayed on the screen. As you will soon find, some
of these - particularly combinations of strong colors -
look very good. Combinations which use just the pale
colors often prove less successful. Some color
combinations may produce "fringing", or shadowing
which makes any text on the screen difficult to read.
This is not a result of faulty tuning, and the best way to
get around the problem is to change to other colors. The
color combinations in this book will give you an idea of
some colors which go together well.

Connecting peripherals
Peripherals are items of equipment such as cassette
recorders, disk drives and printers that you can connect
to your machine. Apart from display screens, there are
many different peripherals available for the

1--.

~ ________ . 13
Commodore. The one you are likely to use most often is
a Commodore cassette recorder or Commodore disk
drive, both of which are used to store and play back
programs. Commodore produces cassette recorders and
disk drives that are specifically designed for use with
your computer. A disk drive performs just the same
function as a cassette recorder but, as well as saving and
loading programs faster, it has almost immediate access
to any program on a disk without having to carry out a
search from the beginning, as a cassette recorder does.
This reduction in access time is very useful if you want

to record and play back programs frequently . Using a
cassette recorder and a disk drive is covered in detail on
page 58.

In general, when you are making plug-socket
connections, never force a plug into a socket if you feel
any resistance. You may be trying to push a plug into
the wrong socket. If not, check that there is no debris
inside the socket, and make sure that none of the pins is
bent. When you want to disconnect a plug, never pull it
out by the lead - you may put enough strain on a wire or
connection inside the plug to break it.

J

Coloring listings and displays The
Commodore's lighr and dark blue
screen display can be switched to
other colors either directly, using the
keyboard color controls, or indirectly,
by programming color changes.
Program listings wiU normally appear
in the two shades of blue.

In order to make the programs in
this book as clear as possible, the
compmer has been programmed to
show the listings in white on black (the
method for doing this is described on
page 32). This will have no effect on
your programs; you can enter them in
any color you want.

(:: eomtT'Odore - 1541
-- - --- -

14

STARTING OFF
Having set up your Commodore, you may already have
given in to the temptation to tap a few keys to see what
happens. If not, tty it - you can't do any damage. In
most cases, pressing a key causes the symbol on the key
top to appear on the screen.

But having successfully got the computer to display
something, you will then want to know how to remove
it. The simplest method is to hold SHIFT and press
CLR (the second key from the right on the top row).
This erases anything on the screen. To reset the
computer so that any commands that you may have
given it are lost from its memory it is easy to turn the
computer off and on again. But be careful, because this
ean irretrievably erase a carefully written program.

Another way of clearing the screen is to type PRINT
CHR$(I47) then press the RETURN key.

Giving exactly the right instructions
It is important to remember that the computer will only
obey instructions that are exactly correct . If you type in
PRINT CHR$(147) and RETURN the screen will
clear. But if you type in, for example, PRINT
CHRS(l47), you will just get an error message, one of
many that the computer has stored in its permanent
memory. This is because the computer does not
understand what you have typed. This is how the
computer responds to incorrect instructions:

So if during the following pages your computer refuses
to obey your instructions, make sure you have not given
it a command that it cannot recognize.

Starting to PRINT on the screen
Now clear the screen and type in this line:

PRINT 6

If you press the RETURN key after this, the number 6
will appear on the next line of the screen. The computer
has responded to your command. PRINT has nothing
to do with ink and paper - it just tells the computer to
display something on the television screen. Try using
the same command in the same way with other
numbers. It doesn't matter whether you leave a space
between PRINT and the number for neatness, or not.
The computer can still understand the instruction:

PRINT WITH NUMBERS

What has happened is that the computer has been
hunting in its memory for a "variable" called AGE, and

because it cannot find one, it creates it and gives it the
value zero. This value is what you then see PRINTed on
the screen.

What is a variable?
Without clearing the screen now type in the instruction
in a different way:

PRINT "AGE"

This time the computer makes the correct response - it
PRINTs AGE on the next line of the screen. You have
just discovered that to the computer AGE (on its own)
and "AGE" (inside quotation marks) mean two totally
different things. The computer treats any letter or
group of letters on their own as a variable. A variable is
simply a label identifying a number stored in the
computer's memory.

Now you should be able to see why PRINT AGE had
unexpected results. The computer read AGE not as a
word but as a labelfor a slot in its memory. It looked for
a number called AGE, but because you haven't used the
computer's memory yet, it couldn't find one.

Numeric and string variables
To make PRINT AGE more comprehensible to the
computer, give AGE a value. Try this (press the
RETURN key at the end of each line):

Now AGE is labeling something, the number 14. LET
is a command which gives a label and a value to a slot in
the memory. Every time you ask the computer to
PRINT AGE, it will display the last value entered.
"AGE" is called a string, while AGE, which always
represents a number, is called a numeric variable.

The computer displays everything put inside
quotation marks exactly as you type it. Try it. You can
use any characters on the keyboard - letters, numbers,
mathematical symbols and punctuation marks - as long
as the PRINT command doesn't go over two lines:

- - ~--- --

15 .------~~.". ~ ~

The characters between the quotation marks make up a
string. In the same way as a number is stored in the
computer and labeled by a numeric variable, a string is
stored and labeled by a string variable. String variables
always end in a dollar sign. A$, NUMBER$, PRICE$
and CITY$ are all string variables. In the line:

LET CITY$="NEW YORK"

for example, CITY$ is a string variable and NEW
YORK is the string it labels. Clear the screen again and
then type the above line on the keyboard. If you type:

PRINTCITY$

the computer will then reveal the contents of the string
variable CITY$. As with numeric variables, the
command LET allows you to put a string into the
computer's memory. Again, the computer will
remember only the last version of the string labeled by
a partiCUlar variable in its memory, so you can change
CITY$ as often as you like:

16

KEYING IN COLOR
One of the Commodore 64's outstanding features is its
ability to produce dazzling color. The machine can
display 16 colors and these can all be accessed directly
from the keyboard, that is, without a program being
needed. On these two pages, you will learn how to
change the color of text on the screen. As you will see,
there are quite a number of different ways of doing this.

When you switch the computer on, the display is blue
and light blue, or cyan. Many of the illustrations in this
book show white text on a black background, which is
easier to read than the normal display. You will see how
to produce white text in a moment, but if you also want
to change the screen to black, type in:

POKE 53280,0:POKE 53281,0

and then press RETURN. You will find out how these
commands work on pages 32-33.

Changing colors from the keyboard
If you look at the Commodore keyboard you will see 8
colors lettered onto the fronts of number keys 1 to 8.
These keys are used in conjunction with the CTRL key
(furthest left on the second row) to select 8 of the 16
available colors. Try a few simple exercises. Press and
hold the CTRL key, and then press the key marked
BLK (the 1 key). You will notice that the flashing
cursor on the screen has changed to black and that
anything you now type also appears in black. Similarly,
if any other number key is pressed with the CTRL key
then the cursor color will change to that shown on the
number key. This screen shows a series of colors
selected with the CTRL key (the solid circle is selected
by pressing SmFT and Q):

The other colors that are available on the Commodore
are selected in the same way, but with the key marked

C= (the Commodore key) instead ofCTRL. The next
screen shows some of these colors, and the table
following it shows you how to access them:

Numberkey Colorproduced
with CTRL key withC=key
Black Orange
White Brown
Red Ligbtred
Cyan Dark gray
Purple Medium gray
Green Light green
Blue Light blue
Yellow Light gray

Changing colors with control symbols
As well as using the Commodore's colors directly, you
can also put special control symbols in a string using the
command LET. Doing this prevents the color changes
from occurring until you tell the computer to PRINT

The keys used to enter the special control symbols are
the same ones you have been using in the direct mode
the number keys with CTRL or C=. But as you can see,
what appears within the string with this method bears
no relation to the color chosen. Each control symbol is
just one of the many graphics characters that are
permanently programmed into the Commodore.
Although it is quite easy to key in color symbols,
copying them in from a listing can be more difficult. In
order to avoid any confusion with color changes in the
programs in this book, we shall often use a third way of
changing colors, one which uses numeric "character
codes".

Changing colors with character codes
Inside the Commodore a special code called ASCII
(American Standard Code for Information
Interchange) is used to represent a set of characters that
can be PRINTed on the screen. So, for example, the
capital letter A in ASCII is represented by the number
65, B by the number 66 and so on. A complete list of
these codes is given on page 61. But as well as
representing aU of the PRINTable characters, ASCII
codes also activate operations such as cursor movement,
line changing and character color controls. In
Commodore BASIC there is a special keyword that can
be used with PRINT to produce a character or
operation if its ASCII code is given. This is CHR$. You
have come across this already in PRINT CHR$(147),
which clears the screen.

As you can see from the table on this page, the ASCII
color codes do not form a continuous series. However,
despite these drawbacks, with CHR$ there is less
chance of errors creeping into programs as you copy
them, because numbers are much easier to deal with
than graphics symbols. This is the text color-changing

17

method that will be used most often in this book. If you
want to use other color control methods, the programs
will work just as well. Here are some CHR$ color
changes:

Using CHR$ in strings
In the same way as you can use LET to type color
control codes into a string, so you can also type in CHR$
codes. Again, they only work after PRINT:

COLORING WITH LET AND CHR$

LET AS=:CHRS(lSS) +CHR$(30)+·
READY.
PRINT AS
R£ADY.

LET BS:::CHRS(31) "+CHRS(lSS)
READY.
PRINT BS
R[(tOY.

PRIHT A5+8$..

- , , . ASCII COLOR CODES
The CHR$ command can be used with ASCII codes directly or in
programs to produce the colors that are accessed with the CTRL or
Commodore keys.

Color ASCII code Color ASCUcode
Black CHR$(I44) Orange CHR$(129)
White CHR$(5) Brown CHR$(149)
Red CHR$(28) Light red CHR$(150)
Cyan CHR$(159) Darkgray CHR$(151)
Purple CHR$(156) Medium gray CHR$(152)
Green CHR$(30) Light green CHR$(153)
Blue CHR$(31) Light blue CHR$(154)
Yellow CHR$(l58) Light gray CHR$(155)
Reverse on CHR$(18) Reverse off CHR$(l46)

18

COMPUTER CALCULATIONS·
The PRINT command is not limited just to displaying
characters on the screen. You can also use it in
conjunction with the four mathematical functions -
addition, subtraction, multiplication and division - to
perform calculations that you can follow on your
screen.

Let's take addition first. The plus sign is on the fifth
key in from the right on the top row. To add two
numbers together, simply use PRINT followed by the
calculation. Subtraction is carried out in the same way.
The minus sign, which doubles as a hyphen when used
in text, is next to the plus key. The screen below shows
simple additions and subtractions, the bottom screen
shows multiplications and divisions:

Multiplication is carried out, not with the familiar x
but with an asterisk, *. The asterisk is just under the
minus key. Division uses the oblique stroke, I, next to

the right SHIFT key. In 24/8, for example, the left
hand number is divided by the right-hand number. As
you can see in the second screen, when a division
produces a recurring result, as in 84/4.5, the computer
gives a nine-figure answer.

Calculating exponents and square roots
In addition to these familiar math functions, you can
mUltiply a figure by itself a specified number of times
(called exponentiation), and find out square roots. For
example, 2' is equivalent to 2 multiplied by itself three
times, in other words 8. The keyboard cannot produce
superscripts like the 3 in 2', so you have to use the up
arrow (r) symbol below the CLR key. 2' is keyed into
the computer as 2 r 3. Here are some examples:

The computer also allows you to find out the square root
of a number. This time there isn't a single key that
carries out the calculation; instead you have to rype in
the command like this:

PRINT SQR(2)

Make sure that you use the round brackets on the
number keys 8 and 9, and not the square brackets to the
left of the RETURN key. Because the brackets are the
upper of the two symbols on the key-tops the SHIFT
key must be pressed with the bracket keys in order to
select the upper characters. When you press RETURN
after keying in this line, the computer will PRINT out
the answer. However, if you try this command with a
minus number, the computer will produce an error
message to let you know that you have asked for a
mathematical impossibility.

How to specify a sequence of calculations
You can carry out a number of different cal uJations

using the same PRINT command. Try it with just
addition and subtraction first. You will discover that
the machine's memory seems inexhaustible:

MULTIPLE CALCULATIONS

PRINT 3+11+2-1.9+15+0.5
29.6

R£At)Y .

PRINT 48-42"'16-2
20

READY.

PRJ"T 11 . 007+0 . 089-1 . 2+37 . 5-J.2
46 . 196

READY.

P ~l~~o 1 2 00 + 3 5 70 - 2500+96010

IEAOY.

You can enter the figures for each calculation in any
order at all, and the result will be the same.

However, when you add multiplication and division
to the chain of calculations, apparently odd things may
happen. Look at the next screen, and try the
calculations for yourself. Say you want to add two
numbers together and divide the result by 2. The order
in which the numbers are added should not make any
difference to the result, but it appears to do so:

IFFERENT RESULTS FROM THE SAME CALCULATION

If 3+ 4 is exactly the same as 4+ 3, then why should the
subsequent division by 2 produce different answers?
The reason is that the computer does not necessarily
carry out calculations in the order you key them in on
the screen. It performs exponentiation first, then
mUltiplication and division, and finally addition and
subtraction. So in PRINT 3+4/2, 4 is divided by 2
before 3 is added to the result. But in PRINT 4+ 3/2, 3

19 "1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I.x~,~

is divided by 2 before 4 is added to the result.
The problem you set the computer was to add two

numbers together and divide the result by 2. Neither of
these examples does this. But you can change the order
in which the computer performs calculations by using
pairs of round brackets again, as in the final two
examples on the screen. Here, the addition is carried
out first and then the result is divided by 2.

What are the computer's limits?
There are limits to the numbers that the computer can
handle, and these limits take two forms - size and
accuracy. The size limitation is unlikely to
inconvenience you. Numbers with a decimal point can
have any value in the range 1 x 1038 (l followed by 38
zeros) to -1 x 10" (-1 followed by 38 zeros). Integers
(whole numbers) can have any value from 32,767 to
-32,768.

The accuracy of these two types of numbers is also
handled in a slightly different way in each case.
Although numbers with decimals can be up to 1
followed by 38 zeros, the computer ouly memorizes the
first nine digits - the rest it sets at zero. This nine-figure
accuracy is adequate for most applications. Whole
numbers are stored with complete accuracy, so that
within its range the computer remembers whole
numbers with an accuracy better than 5 thousandths of
1 percent!

You may come across another of the computer's
quirks when dealing with very big numbers. The
Commodore does not display them in the way in which
you would type them on the keyboard. For example,
PRINT 1000000000000 produces lE+ 12 on the screen
(the E stands for exponent). This is simply a shorthand
way of displaying 1 x 1012 or I followed by 12 zeros, the
number you keyed in. Try entering some large numbers
and calculations using the PRINT command and see
the way the computer responds to them:

................. 20

WRITING YOUR FIRST PROGRAM
So far, you have given your Commodore commands to
which it has responded immediately. These commands
have been very simple - in many cases it would have
been quicker not to have used the computer at all.
However) commands on their own are not computer
programs. The computer reads each command, carries
it out, and then forgets it. A program on the other hand
is an orderly list of instructions which the computer can
store in its memory . It can carry them out as and when
you wish so that a long and complicated set of
instructions can be repeated at the touch of a button.

From single commands to program lines
Having found a task that you want your Commodore to
carry out, the next job is to write the program in steps
that the computer can understand. The Commodore,
like most personal computers, uses a computer
language called BASIC (Beginners' All-purpose
Symbolic Instruction Code). BASIC is an example of a
high-level language, a language composed of words and
symbols with which you, the user, are already familiar.
It is, therefore, one of the easiest computer
programming languages to learn - as you are about to
find out!

The essence of a program is that it is stored in the
computer's memory. The commands that you have
keyed into your computer so far can be turned into
programs simply by adding line numbers. Here is a
simple six-line program:

As you key the program in, you will notice that the
commands are not now carried out as soon as you press
the RETURN key. Instead the program is safely stored
in the computer's memory. It remains only to run it - by
typing RUN, and then RETURN - and to see what it
then produces on the screen.

How program lines are numbered
You may be wondering why the lines are numbered in
tens. When you are writing and testing programs, you
will frequently want to add extra lines. If the existing
lines are numbered 1, 2, 3, 4, and so on, there is
nowhere to put the new lines so that the computer
carries them out in the right order. In the previous
program, there is room to add extra lines numbered 0-
9, 11-19 and so on if necessary.

The program is still in memory, so to try the next one
switch off and on to reset the computer and erase the old
program. Then see what the following produces when
you key in the program and then type RUN:

Taking it from the top, what is a REM? REM is short
for REMark. The computer doesn't do anything with a
REM statement other than store it with the rest of the
program. But it's a useful device for titling or labeling
programs or lines, so that you can find them quickly. As
your programming abiliry grows, you will find REM
lines very valuable for reminding you how a particular
program works. Other people will also be able to follow
your programs more easily if there are periodical REM
statements to explain what you are doing or how the
program is structured.

PRINT CHR$(147) you have come across already.
It's a quick way of taking all the old unwanted
information off the screen. Lines 30 to 80 PRINT %
symbols in a frame around the text. They use the
command TAB to position the symbols along each line.
There are 40 character spaces per line, numbered from
o to 39. TAB works just like the tab space on a
typewriter, so that PRINT TAB(9) means that
PRINTing will begin at position number 9, instead of at
the left-hand edge of the screen. Lines 50 and 60
PRINT the text itself in the middle of the frame.

Why punctuation is important
The next program uses the techniques demonstrated on
pages 18-19. Switch off the power again for a second or
two before keying it in:

In eacb of the six calculations, the screen sbows the
calculation and the result. Tbe PRINT command at the
beginning of eacb program line produces a space (blank
line) before the following calculation is displayed on tbe
next line down.

The semi-colon is very important. It ensures that the
result is shown on the same line as, and immediately
following, the details of the calculation. Try the same
program with a comma, a colon and nothing at all
instead of the semi-colon. You'll quickly realize how
important punctuation is in compUler programming.
Correct spacing is also vital if you want to produce a
readable display when the computer PRINTs numbers
and strings following eacb other.

Tbe following program, which again combines some
calculations with PRINT, sbows how to plan a display.
It works out some conversions on screen:

21

How to write a flowchart
If a program is to RUN properly, it must carry out the
correct operations in the right order. Drawing a
flowchart is a useful way of outlining the steps involved
in making the computer perform a task. This flowchart
shows how to plan a program to add up all the numbers
from 1 to 1000. Each shape is a separate operation, and
the arrows connecting the shapes show the path that the
program is to follow . NUMBER and TOTAL can be
entered in a program as numeric variables. This
program contains two features which you will
encounter later - a program "loop" and a program
Hdecision point", which determines how many times
the loop will be carried out.

DRAWING A FLOWCHART

This chart shows all the steps needed
to program a computer to add together
all the numbers from 1 to 1000.

C~~~)
Terminator Signals beginning
and end of flowchart

Instruction Identifies each
separate operation

LETTOTAL~O

LET NUMBER
=NUMBER+I

~ ____ . 22 " ____ ~

DISPLAYING PROGRAM LISTINGS
As you start writing programs, you will often want to
refer back to check on something or perhaps alter it in
some way. In order to do that, you must be able to see
the program on the screen again after it has been RUN.
The Commodore allows you to look at anything you
have stored in its memory. In this case, you want to look
at the "program listing" - the program as you typed it
in.

If you've just switched the computer on again after a
short break, type in a program from a previous page and
RUN it to make sure that it's OK. The BASIC
command LIST is used to call up your program onto
the screen from the part of the memory where it is
currently stored. Here it is used with the first program
on page 20. The program has been keyed in, and then
followed by LIST:

Every time you press the RETURN key after writing a
program line, the line is stored in the RAM. The
program LISTing is an exact copy of all the lines that
the RAM currently holds. The program is not
permanently transferred from the RAM to the screen
by LIST - it's still held in the memory.

Moving around a LIST
LIST's capabilities don't end there. Key in the program
shown on the next screen. It incorporates a technique
that you haven't covered yet, but that's not important.
(Incidentally, if you want to RUN this program, press
the RETURN key after you type in your name.) Then,
to display the whole program listing again, type LIST.
Say you want to look at the first line of the program
only. You can do that by typing LIST 10. Perhaps you
only need to see a few lines of the whole program. Say
you want to look at lines 20 to 40. Try typing LIST 20-
40. You can see the results on the second screen:

LIST also lets you look at everything up to a certain line
number and everything from a certain line number to
the end of the program. Type in LIST -50 and LIST
20- and watch the effect in each case.

If you want to search a large block of program for a
particular line or lines the best way is to use LIST with
no line numbers which will cause the whole program to
"scroll" up the screen. The program will scroll rather
quickly but when you are approaching the section of the
listing containing the line you are trying to find you can
slow the scrolling down by pressing and holding the
CTRL key. This will allow you time to identify the
required line. When you have found it, the LIST
command can be aborted by pressing the STOP key.
You can then LIST the specific line so that it can be
examined. If necessary, it can then be edited using the
techniques that are explained on pages 24-25.

_ •••••••• _ 23

Using NEW to delete a program
Imagine you are starting a new program. Clear the
screen with SHIFT and CLR and then type in the first
line:

10 PRINT "SPACE PROBE PROGRAM"

and RUN it. Something odd happens. The last program
is still in memory. The computer carries out your new
line 10, but then goes on to RUN the old program,
because you haven' t erased it.

Up to now you have been switching the machine off
and on before entering a new program, but there are
bener ways of gening rid of old programs. One of them
is to use the BASIC keyword NEW. Type NEW, press
the RETURN key, then re-key in the new line 10. This
time the old. program appears to have gone for good. If
you tty to LIST any program after NEW, you will find
that all its lines will have disappeared:

Before using NEW, you should always be quite sure
that you want to erase the program currently in
memory. There is a way for getting a program back
after NEW (this is shown on page 57), but it is quite a
cumbersome process. In addition, it only works if you
have not begun to key in another program.

RUNning a program segment
Programs may be RUN partially, either with RUN
followed by a line number, or with the command
GOTO. You may be having trouble getting part of a
program to RUN properly . In a short program, it's just
as convenient to RUN the whole program as it is to
RUN only a part of it. But what if the troublesome part
that you want to experiment with and RUN over and
over again comes near the end of long program? It soon
becomes tiresome and time-wasting to have to watch
the first five minutts or so of the program unfold on the
screen every time you want to check on the suspect part
near the end. Suppose that in the square calculation

.. ----"'~~
program on page 20, you only want to check that it ~
RUNs from line 60 onward. Instead of using RUN, tty
typing RUN 60 and GOTO 60 and see what happens:

GOTO is one of the simplest and most useful
commands in the BASIC language. Used on its own -
without. a program line in front of it - GOTO makes the
computer go straight to a specified line and then RUN
the program from that point. But when GOTO is
actually part of a program, the results then become very
interesting. You can get an idea of what this command
can do simply by keying in two program lines:

10 PRINT "*";
20 GOTO 10

When you RUN it, your screen should look similar to
this, depending on which colors you have selected:

To halt the program, press the STOP key. If you are
puzzled about why this display has appeared, don't
worry. We will be returning to GOTO soon after ,you
have mastered a few more BASIC keywords.

................. M ~

CORRECTING MISTAKES
Computer programming is one pastime in which
mistakes are unavoidable. Programs very rarely work
satisfactorily first time, and the longer they are, the
more difficult it is to get them right. It's important to
realize that making mistakes and correcting them is
often an interesting part of program development. So,
don't ignore, hide or gloss over your mistakes - they are
an invaluable aid to learning how to get things right.

For instance, in a computer program you cannot alter
punctuation without completely changing the sense of
what you have written. As you saw on page 21, it will
have drastic results. To the computer, punctuation
means something very precise, and if you get it wrong,
a program may not work.

You can change a line in a program in two ways.
First, you can retype the line and press RETURN. The
new version automatically replaces the old one in the
computer's memory. However, if there is very little
wrong with a line, especially if it is a long line, it's a
waste of time to completely retype it. The alternative
way of making a change in this case is to use the cursor
keys to edit on screen.

To correct the spelling in line 30 to read:

30 PRINT" COMMODORE 64 ..

you could retype the line. But try using the screen
editor instead. First, type in the program and RUN it.
Now LIST the program on the screen. Pressing SHIFT
together with the CRSR key with the up and down
arrows on it will make the flashing cursor move up one

line. If you hold these two keys down the movement
will be repeated until the keys are released. If you press
the up/down CRSR key on its own without the SHIFT
key then the flashing cursor on the screen will move
down by one line. This function will also be repeated if
you continue to hold the key.

Using these facilities you should move the cursor on
the screen until it lies over the 3 of line30 (the line that
needs changing). Now using the left/right CRSR key
move the flashing cursor along line 30 until it lies over
the letter R in COMMORODE. You can then just type
in the correct letters and they will automatically replace
the old letters on the screen. Then press RETURN.

You can also insert extra spaces into a line in order to
fit in missing letters. To open up an extra space in a line
you should press the SHIFT key together with the key
marked INST/DEL (INserT/DELete) at the top right
of the keyboard. In this case, the letters RODE and the
closing quote at the end of the line would move one
place to the right. You can then enter an extra letter. In
order to tell the Commodore that you have finished
editing a line you must press RETURN with the
flashing cursor standing somewhere on the edited line.
If you do not press RETURN then the computer will
not make any of your changes to the program:

You will frequently want to add lines to a program after
you have written the first draft. Perhaps you forgot to
put PRINT CHR$(l47) at the beginning to start the
program off on a clear screen. You do not have to edit
any line numbers to do this. In the above program, for
example, you can enter the new first line by typing:

5 PRINT CHR$(l47)

As the computer executes BASIC instructions in line
number order, this line will be carried out first .

_ ••••••••• 25

First steps in bug-hunting
Mistakes in programs are called bugs, and the business
of getting rid of them, debugging. As you have
probably discovered, the Commodore helps a great deal
in debugging programs by examining what you type in
for errors in spelling and grammar or syntax . If it finds
any, it alerts you by displaying an error message on the
screen. You have already seen BAD SUBSCRIPT
ERROR and SYNTAX ERROR on page 14. In fact the
Commodore can display 28 different error messages.
You may have come across some of them if you have
made any mistakes in keying in any of the programs. In
most cases the error messages will even tell you which
lines of your program the errors are in. To correct an
error, LIST the appropriate part of the program and
edit it using the CRSR and INSTIDEL keys.

Here are some programs which will not work. Try
RUNning them and then checking the error messages
they produce on the table that follows . You should then
be able to find out which line is causing the problem in
each of the programs:

COMMODORE ERROR MESSAGES

These are some error messages that you may encounter when writing
your first programs.

Bad subscript
Specifically, this refers to an Uarray element" number out of range, but
you may get this message with a simple typing mislake (see page 14).

Break
A program has been halted because you have p=sed the RUN/STOP
key. The message will show where the program was interrupted.

Device DOt present
This will appear if you attempt to record or play back a program
without a tape recorder or disk drive connected (see page 58). It wiIJ
also appear if the disk drive is not switched on!

Division by zero
You have asked the computer to perform a calculation which includes
division by zero - a mathematical impossibility.

Fonnula too complex
This will appear if you write a calculation which has too many brackets
for the computer to work with .

megal quantity
A number that you have used with a function is outside a pennitted
range - SQR with a minus number. for example.

NEXT without FOR
This will appear when a FOR ... NEXT program loop incorrectly uses
two variables instead of one, or when FOR . .. NEXT loops are
incorrectly nested (see pages 28 and 56-57).

Overflow
A number produced by a calculation is too large (see page 19).

Redo from start
In a program using INPUT (see pages 26-27) you have keyed in a
character when the computer was instructed to expect a number. The
computer will now wait for a number.

String too long
A string that you have programmed the computer to produce exceeds
its capacity of255 characters.

?Syntax error
The computer cannot recognize what you have typed in.

Type mismatch
You have mixed U oumbers and strings (see pages 14-15).

26

COMPUTER CONVERSATIONS
In all the programs you have wrinen so far, you have
given the computer a set of instructions and then left it
to carry them out. Each program had just one outcome,
whicb was exactly the same every time the program was
RUN. But few real programs are like this; in a games
program, for example, the player feeds the computer
with new instructions every time the game RUNs. The
computer takes in these instructions during the course
of the game, changing the display in response to this
input of information.

Indeed, it is difficult to write a program of any
complexity without being able to interrupt the program
while it is RUNning to feed in new information.

The BASIC word INPUT is intended to deal with
this situation. It lets you carry on a conversation witb
the computer - you "talk" to it through tbe keyboard
and it "talks" to you through the screen.

The INPUT command makes the computer
remember information typed in on the keyboard, and
gives it a name - a numeric variable if the information is
a number, or a string variable if the information ismade
up of leners. Once the computer has labeled the
information, it can then be passed on to later parts of a
program. Here is an example of INPUT at work:

Questions from your computer
The program instructs the computer to display the
question WHAT IS YOUR NAME. Line 30 then puts
a question mark on the screen to indicate that the
coniputer is waiting for new information from you.
There's no need to burry - there isn't a time limit . The
computer will wait forever or until you type in the
information it needs, whichever comes first. Type in
your name and press the RETURN key.

Tbe INPUT line of the program takes your name and

labels it with the string variable NAME$. The dollar
sign shows that the computer bas been programmed to
expect one or more leners.

This program may look familiar to you. It's similar to
one that was featured on page 22 as an example of how
to use LIST. If you compare it with that example, you
will notice that INPUT can do the jobs done by two
lines in the first INPUT program here. It can cause the
question to be PRINTed and halt the program to await
your response. A question mark is automatically
PRINTed by INPUT - you don't have to type it in
yourself. The next two screens sbow how INPUT
works like PRINT. Note the semi·colon that appears
before NAME$ in line 20:

Using INPUT to gather numbers
You can also use INPUT to gather numbers as a
program is RUN. This bas many practical applications.

Consider, for example, the problem of converting
lengths, sizes or weights from one unit of measurement
into another. Tbe conversion is always the same - 2.54
centimeters to the inch, 0.3048 meters to the foot, 2.2
pounds to the kilogram and so on - but the numbers in
each new calculation are different. Here is a simple
conversion program for you to try out:

The program asks you how many miles you want to
convert to kilometers, waits for your reply, does the
calculation and then displays the result on the screen.
Because the INPUT line is expecting a number in
response to the question it asks, the variable it produces
is a numeric one.

Output formatting
You may notice that the output from the above program
appears on a single line, with the various numbers and
strings PRINTed fairly close together .

Now try editing line 40 above to change the semi
colons into commas:

27 .. ____ IIIIIIiI~~

Now the output spreads out onto two lines. This is
because the screen width is divided into four invisible
zones or columns. Each of these zones is 10 characters
wide. Using commas in the PRINT statement to
separate items to be output causes each item to appear
starting in a new zone. Keying in the examples on the
next screen makes this clear:

More about TAB
Although the computer will automatically poslUon
numbers and strings either close-spaced or in zones,you
are not limited to PRINTing them in this way. Indeed,
as you saw on page 20, you may start PRINTing
anywhere on a line using the BASIC function TAB.
This function is always followed by a number in
brackets which determines where an item will appear:

PRINT TAB(2);"TAB 2"

displays TAB 2 beginrtiog 2 spaces in from the left.
Here are some more examples of TAB in use:

28 _--------_

WRITING PROGRAM LOOPS
Computers are extremely good at doing lots of simple,
repetitive jobs very quickly. But if it is to do anything
involving repetition, a computer must have some way of
carrying out the same program or part of a program
more than once. On page 23 you came across a loop
using GOTO. Here it is in a slightly more complex loop
(line 10 simply sets up the colors):

If you RUN this program, you will quickly see the
disadvantage of using GOTO alone - the program is
never-ending. Press STOP to stop it. The screen will
show at which line number the program was stopped:

8
189
118
111
112
113
114
115
11G
117

tll
f~~
123
124
125
12G
127
128

~~~C~ . 1M 48 

l!l.'ll 
218 
228 
222 
224 

~~~ 
238

~~~ 
23G 
238 
248 

~~ 

;B 
254 
25G 

STOPPED LOOP 

How to exit from a loop 
The solution to these endless programs is the FOR ... 
NEXT loop. This allows you to set limits on how many 
times the loop is carried out. You can use it to PRlNT 
the same table as the first loop program: 

The FOR . . . NEXT loop both improves the program 
and shortens it by one line. Note that you don't have to 
set X equal to 1 or add 1 to it on each loop of the 
program now, because FOR ... NEXT takes care of 
this automatically. It starts off at line 30 by setting X 
equal to 1. Line 50 asks for the next value of X and so 
the program re-starts from line 30. This continues until 
X has a value of20, the maximum set by line 30. In this 
case, the program stops, because its last line is line 50. 

If necessary, the loop can be interrupted on each pass 
through to wait for new information. Try using INPUT 
in the middle of a FOR . . . NEXT loop: 

This program converts Faltrenheit temperatures into 
Centigrade. The FOR . . . NEXT loop beginrting at line 
10 sets a limit of five calculations, after which you will 
have to RUN the program again. The INPUT 
statement at line 40 stops the program until you type in 



.-________ . 29 
the Fahrenheit temperaruee you want to convert. Line 
50 then does the calculation and PRINTs the result. 

How to slow your programs down 
You might be confused by lines 60 and 70. They are to 
prevent the computer PRINTing and clearing results 
faster than you can read them. The two lines form a 
time delay to keep each result on the screen for a few 
seconds before continuing. This loop doesn't do 
anything other than divert the computer from the rest 
of the program. It is normally written as a single line: 

60 FOR A= I TO 5000: NEXT A 

You can even miss out the final A, as the Commodore 
will assume that the NEXT refers to the FOR that 
precedes it. In general, a colon can be used in this way 
to separate commands on a single line instead of writing 
them on a number of different lines. Putting one loop 
inside another like this is called "nesting" loops . When 
you nest loops in your own programs, make sure there 
is a NEXT for every FOR. 

How to round numbers off 
When you RUN the temperature conversion program 
try entering a temperature of32. The program tells you 
that 32 degrees Fahrenheit is equal to zero degrees 
Centigrade as you would expect. Next time the program 
asks for a temperature enter 34 degrees. The computer 
now tells you that 34 Fahrenheit is equal to 1.11111111 
Centigrade, splitting the word Centigrade over two 
lines and spoiling the display. But there is a way to 
prevent this problem. It is sufficiently accurate for most 
purposes if the answer is given just as a whole number 
of degrees which then does not take up so much room 
on the line. Try using the screen editor to replace the 
expression (TEMP-32)*5/9 in line 50 by the slightly 
more complex expression INT«TEMP- 32)*5/9). 
You'll find this will fix the problem: 

The number is more sensible and the display looks 
much better. INT, short for INTeger, converts a 
decimal number into a whole number. If the result is, 
for example, 1.11111111, adding INT changes that to 
I , an approximation that is quite accurate enough for 
most purposes. But when you use INT, remember that 
it always rounds numbers down. This can have a 
distorting effect with numbers that have large decimal 
fractions, as the next program shows: 

The first example is similar to the one you have already 
seen. The second example may seem a little surprising 
unless you remember that -4 is less than - 3.1 and that 
INT rounds downward. The last example gives the 
expected answer, but looking back at the conversion 
program it would be better if 2. 99 was rounded up to 3 
not rounded down to 2. This can be achieved if you 
modify line 50 again: 

By adding 0.5 to the temperature, you can ensure that 
INT produces the nearest whole number for each 
conversion. 



30 • ________ ~ 

DECISION-POINT PROGRAMMING 
On the previous two pages you saw how loops can be 
used to make a program carry out the same sequence of 
commands a number of times. If you want to carry out 
a calculation or put something on the screen 10 times for 
example, you could write: 

FOR A=l TO 10 . .. 
NEXT A 

But there is another way of doing this, by using an IF .. . 
THEN statement. Let's say you want to PRINT all the 
numbers from 1 to 10, together with their squares and 
cubes in a table. First, here is how you would do it with 
FOR ... NEXT: 

In the IF . .. THEN program which follows, line 10 sets 
up the color screen and line 30 PRINTs the table's 
heading as before. Line 60 is the first line of the loop -
it increases N by I on every pass round the loop. Line 
70 is the same PRINT statement used in the FOR . .. 

NEXT program. Line 80 is where the computer makes 
a decision as it examines N . The < symbol is 
mathematical shorthand for "less than". So, if N is less 
than 10, the computer is told to go around the program 
again from line 60 (note that GOTO can be left out). 
When N is 10 the program ends: 

Why use the IF .. . THEN loop? 
You might wonder what the point of this is, as the IF . .. 
THEN loop produces just the same results as the FOR 
... NEXT loop. The value of IF . . . THEN is that the 
computer can respond to any information that you 
INPUT during the program's operation by making a 
decision about it. Here is an example which shows this, 
by giving you a chance to test your skill at mental 
arithmetic (the new command RND in line 70 is 
explained on pages 52-53): 



Each time the computer sets the problem and waits for 
your answer, it is faced with two possible courses of 
action . If you type in a correct answer, the IF ... THEN 
statement at line 120 directs the computer to go, not to 
line 130, but to line 160 next - PRINTing a "correct" 
message and then setting another problem. If the 
answer is wrong, then the computer "falls through" the 
IF .. . THEN statement to line 130 and goes into the 
"wrong' routine. 

It is important to remember that there must also be 
something in the program to stop the wrong answer 
routine carrying on into the correct answer routine. In 
this case, it is line 150, which makes the computer 
PRINT out the problem again after a delay: 

MATH TEST DISPLAY ,.. 
???????????????????????????????????????m 

Ii??????'?????????'?'??"'''''?'???'''''''''''''' 

~fi;fli~i;lf;flifffiilllll~ll;ll;l~ll;l; .,.,.,?.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,?.,.,.,.,.,.,.,., .,.,., .,.,.,.,.,., 

~!11111illilllltltlll1111111111111~ltll~ 
???????????????????????????????????????? 
111111111111111111'111111111111111111111 
????'???''???????????717???''!??????????????? 

9*2_6 = 1 

Selecting the right condition 
When you use IF ... THEN, remember that there is a 
great variety of "conditions" which can follow the IF 
part of the statement. The programs on these pages 
have used either < or =, but this is only part of the 
complete range of symbols that the Commodore uses, as 
you can see from the table below. 

You might think that you can only use IF .. . THEN 
for comparing one number or numeric variable with 
another. However, this is not the case. The same set of 
conditions can be used with strings. A line like: 

30 IF A$="FRED" THEN ... 

at least makes some kind of sense. But what does the 
next line mean? 

30 IF A$>"FRED" THEN ... 

To answer this, you need to know how Commodore 
BASIC compares two strings. 

Putting words in order 
When the Commodore compares two strings, it takes 
the first character from each string and examines their 

31 
. . .. ~~ 

ASCII codes. The string whose first character ASCII 
code is biggest is considered to be "larger" than the 
other. This means that FRED would be larger than 
ALAN because the ASCII code for F is greater than the 
code for A. If the first characters of both strings are the 
same, then the second leners are taken and compared, 
and so on, until a difference is found. With two words 
like ON and ONLY, where all the letters they share are 
the same, the longer word is considered to be greater 
than the shorter word. Only when two words are 
identical does the computer decide that they are equal . 

If you look at the list of ASCII codes on page 61, you 
will see that the letters of the alphabet appear in order 
with codes from 65 to 90. This means that IF .. . THEN 
can be used to sort words into alphabetic order, as this 
program shows: 

IF .. . THEN CONDITIONS 
These symbols specify the kind of decision that tbecomputerwill make 
about what foUows an IF command. 

is equal to <> isnotequalro 

> is greater than < is less than 
>= is greater than or equal to < - is less than or equal to 



~ ________ • 32 

POKE AND PEEK 
On some microcomputers a lot of memory space is 
given over to the BASIC interpreter so that the machine 
understands a large vocabulary of BASIC keywords. 
With the Commodore, the BASIC vocabulary is fairly 
small, so that it uses up a minimum amount of memory 
space, allowing room for larger programs. However, 
you still need to be able to program the computer to 
produce graphics and sound, for example. Both these 
facilities are controlled in other machines by keywords 
such as COLOR, DRAW and SOUND, none of which 
work on the Commodore. Instead, graphics, sound and 
a wide range of other functions are carried out by two 
general-purpose keywords - POKE and PEEK. 

Using POKE to change colors 
The POKE command is used to put a number directly 
into a location in the Commodore's RAM. If you type in 
the following program, you can see the effect of 
changing the values in just two of these memory 
"addresses": 

When you RUN this program, you should see that the 
screen border and background change through a 
sequence of colors. In fact the program cycles through 
all the colors that the Commodore can display. The 
actual color changes themselves are controlled by the 

POKE COLOR CODES 

All the Commodore's 16 colors can be produced by POKE commands 
ending with color conuol codes. 

Color POKE code Color POKE code 
Black 0 Orange 8 
White 1 Brown 9 
Red 2 Light red 10 
Cyan 3 Dark graY II 
Pwple 4 Medium gray 12 
Green 5 Light green 13 
Blue 6 Light blue 14 
YeUow 7 Light gray 15 

two POKE statements in line 20. What this line does is 
to tell the computer to place or POKE the value of the 
variable C into the two memory locations 53280 and 
53281. The Commodore looks at the contents of these 
two particular memory addresses to tell it which border 
color to put on the screen (53280) and which 
background color to use (53281). The 16 different 
colors that can be used are numbered from 0 to 15. The 
FOR ... NEXT loop beginning at line 10 give.s the 
variable C values from 1 to 15, so that it runs through all 
the colors except black, which is o. 

The codes for all of the colors are shown on the table 
at the bottom of this page. You should now be able to 
see how POKE can be used to turn the screen black, as 
mentioned on page 16. To resiore the screen to its 
normal state after RUNning this program, press and 
hold the RUN/STOP key and at the same time press the 
RESTORE key (farthest right on the second row). 

With so many separate memory addresses available 
on the Commodore, you cannot get very far by 
POKEing values at random. At worst, this can make 
the computer "hang", meaning that it goes into a state 
from which you have to switch off power to recover 
control. Of course, you will also lose whatever is in the 
computer's memory at the time. But there are many 
addresses that you can usefully POKE values into, and 
indeed all sound functions on the Commodore are 
controlled in this way, as you will see later on in this 
book. 

Controlling key functions with POKE 
To see another example of POKE at work, try typing 
the POKEs on the following screen, holding down a 
letter key after you press RETURN each time (don't 
worry about the error message): 



As you may already have noticed, a few keys 
automatically repeat their function if they are held 
down. This is true for the space bar and the INST/DEL 
and CRSR keys. Key autorepeat, as this facility is 
known, can be very useful to have on the whole 
keyboard. Memory address 650 is the one that the 
Commodore uses to determine which keys the 
autorepeat will work on. If you POKE the value 128 
into location 650 then all the keys will autorepeat . The 
previous screen shows what happens if you hold down 
the A key. A value of 0 POKEd into the same address 
will restore the keyboard to normal. 

As a final example of POKE at work here is a program 
that will take an X and Y screen co-ordinate pair from 
you and then move the screen cursor to the position you 
have specified and PRINT a letter X: 

holds the cursor Y position and 
address 211 holds the current cursor X position. You 
will find this facility for moving the cursor around the 
screen very useful when you program animation . 

Looking into the memory with PEEK 
PEEK is a keyword which has exactly the opposite 
effect of POKE. So, for example, if you type: 

PRINT PEEK (650) 

the number PRINTed will tell you whether key 
autorepeat is switched on or not. The value will be 128 
if autorepeat is on for the whole keyboard, or 0 if it is 
just on for the editing keys and space bar. 

PEEK is widely used in Commodore programming 
for taking the numbers from memory locations, 
modifying them in some way, and then POKEing them 
back again. You can use a loop with PEEK to see the 
values in the Commodore's memory. The next program 
does this. It's an endless loop which will go through all 
the memory locations - this screen shows the listing and 
just the first few PEEKs: 

33 

very can carry out 
examining the Commodore's real-time "jiffy" clock. 
The jiffy clock is a 3-byte binary counter. When the 
computer is switched on the jiffy clock is set to 0 and 
incremented by one, sixty times per second, for as long 
as the machine remains on. 

The jiffy clock is stored at addresses 160, 161 and 
162. Location 162 changes the fastest, at sixty times per 
second. Location 161 changes the next fastest, every 
time the value in location 162 is incremented from 255 
back to 0 again. Finally, location 160 is incremented the 
slowest, every time the value in location 161 changes 
from 255 back to o. Using just location 162 on its own 
will allow the Commodore to count just over 4 seconds 
before the clock starts again. Using locations 162 and 
161 allows it a count of just over 18 minutes and with all 
three locations the machine can count to about three 
and a quarter days. You can see how PEEK can be used 
with the jiffy clock if you try out the next program, 
which times how long you take to answer a question: 



••••••••••• 34 

KEYBOARD GRAPHICS 
On page 17 you saw how characters and controls on the 
Commodore's keyboard are represented by ASCII code 
numbers inside the computer. You can use this coding 
system to make the Commodore display its "character 
set", that is, all the characters arranged in order of 
coding. Here is a program that PRINTs the characters 
with codes from 33 to 126: 

.~. -
~ ----~. - - ~ 

This program actually repeats the set four times, filling 
the screen. You can see from the chart of characters on 
page 61 that this program PRINTs about half the set, up 
to code 126, and misses out the control characters with 
codes from 0 to 32. 

The Commodore actually has two character sets. To 
see the second set you don't need another program. 
Mter RUNning the program above, just press the 
SHIFT and C= keys together. You should now see a 
character set which features capital letters with lower 
case letters as well: 

CHARACTER SET 2 

~---

--_- - _~_--=_ I _ _-_ _ 

As you can see from these two displays, in addition to 
the letters A to Z and the numbers 0 to 9, the 
Commodore has very useful sets of predefined 
characters . You can key these in either directly, or in a 
program with PRINT, just as you would with letters. 

If you look at the keyboard you will see that most of 
the keys have two of these graphics characters printed 
on the front of them. The right-hand one of the pair is 
accessed by holding the SHIFT key while the key with 
the required character on it is pressed. The left·hand 
character of the pair can be accessed in the same way bu t 
using the C= key instead of SHIFT. To get lower case 
letters, you should use the SHIFT and C= keys 
together to select the lower case character set. 

How to reverse the graphics symbols 
If you look at the keyboard, you will notice that the 
number keys 8 and 9 are marked RVS ON and RVS 
OFF. These keys enable you to produce the reverse of 
any character. To see this at work, press CTRL and 8, 
and then type in some characters on the screen. You will 
see that the text and screen colors are reversed, so that 
you get a character which is the inverse of the one 
normally produced. Pressing CTRL and 9 turns this off 
again. If you use CTRL and 8 within a string, it will 
appear as a reversed R control symbol. RVS ON and 
RVS OFF can alsO be activated with PRINT CHR$. 

The keyboard graphics characters are arranged in 
groups with lines of varying thickness. If you cannot see 
the particular character you want to complete a design, 
this may be because what you actually need to key in is 
the reverse of another character. One reversed 
character that is particularly useful is the space . This 
produces a solid text square which can be built up into 
areas of color on the screen. 



Designing with keyboard graphics 
You can use the Co=odore's graphics characters in 
programs to build up images on the screen. The 
following program uses only two of these characters, 
one shaped like a short capitallener T (line 50) and the 
other shaped like a capital T upside down (line 40). 
These two characters appear on the E and R keys: 

If you RUN it, the program produces a reasonably good 
representation of a wall. If you change to the lower case 
character set again, the program will still RUN 
perfectly well. But if you type in programs with the 
lower case character set you must remember to type in 
all the BASIC keywords in lower case - without the 
SHIFT key pressed - otherwise the program will not 
work. 

You can use the keyboard characters to build up 
other shapes on the screen by using loops. The next 
program, for example, produces a triangular stack of 
lines by PRINTing a series of characters. How many 
characters are PRINTed on each line is determined by 
the range of N: 

35 



~ ________ . 36 

THE SCREEN MEMORY 
Now you know something about the Commodore's 
character sets, you can move on to a method for putting 
characters on the screen which is much more versatile 
than PRINT CHR$. This new technique uses POKE to 
fix both a character and a color for any position on the 
display. 

Character and color maps 
The Commodore's screen can be thought of as being 
divided up into a grid on which characters are 
displayed. Insi4e the computer there are two areas of 
memory set aside for the positions on this grid - the 
screen memory map and the color memory map. The 
first remembers the character to be displayed at each 
position on the grid, and the second remembers its 
color. Character and color can both be fixed by POKE 
commands. 

Because the screen is divided into 25 lines of 40 
characters, a total of 1000 positions, the character and 
color maps are each 1000 locations long. The character 
map begins at location 1024 and forms a continuous 
block up to location 2023. Similarly, the color map runs 
from location 55296 to 56295. The following grid shows 
how these positions are arranged (the grid on page 60 
also gives the memory POKE numbers): 

To put a character on the screen in a program, you need 
a line like this: 

90 POKE 1464,81:POKE 55696,1 

This puts a character in screen line 10 at position 0 
across, that is at the left·hand edge. If you look up the 
character code, 81 , in the table on page 60, you will see 
it is a solid circle or ball . The second POKE sets the 
color. Without this the ball would be invisible because 
it would be PRINTed in the same color as the screen. 

You can see from the color table on page 32 that I , 
which appears at the end of this program line, is white. 

An easy way to set memory locations 
If you had to remember all these POKE numbers to use 
them each time in a program it would be a very lengthy 
process. However, knowing where the first locations in 
the two memory maps are, you can quickly work out the 
POKE number for any other point.IfY is the number 
of screen lines down, and X is the number of positions 
across, the following program line will produce a white 
ball at that position: 

40 POKE 1024+Y*4O+X,81:POKE 55296+ Y*4O+ X,1 

This will take any values of X (positions across) and Y 
(lines down) and produce the character, as long as the 
values are within the screen limits . By looping both X 
and Y you can produce characters allover the screen: 



................. 37 ................ ~ 

Now you can experiment by adding color. You could 
simply change from white to another color, but instead 
try altering the final character in line 40 so that it now 
reads: 

40 POKE 1024+Y*4O+X,81:POKE 552%+Y*4O+X,X 

Now the color depends on the position, so that it 
changes with every character. When X goes above 15, 
the computer starts the color series from the beginning 
again. The result is the same display as in the previous 
screen but this time with all the Commodore's colors: 

Using POKE for graphics 
By POKEing a character and color onto the screen, you 
can build up your own graphic displays. The following 
program allows you to draw designs on the screen. It's 
a simple sketch-pad listing that uses one of the text 
characters - an asterisk - to produce outline drawings. 
The program uses POKE to change a cursor position 
each time you key in an instruction: 

You can control the movement of the cursor with the U, 
D, L and R keys (for up, down, left and right 
respectively). Once you have selected the direction in 
which you want to move the cursor you should press 
RETURN. To take another step in the same direction, 
you need only press RETURN again. If you want to 
move the cursor several steps in any direction, the 
program is arranged so that it will autorepeat. This 
means that you only have to press and hold the 
RETURN key and the cursor will move rapidly in the 
last direction you have selected. To draw lines while 
moving the cursor enter an asterisk and press 
RETURN and then move the cursor in the normal way. 
To blank lines out again if you make a mistake enter a B 
and press RETURN and the cursor will then leave 
spaces behind it as it moves. The display is limited to 
the 40 x 25 character positions on the screen. Although 
the designs it can show are therefore at low resolution, 
it works quite quickly. Here is an example of the son of 
display you can produce: 

POKE GRAPHICS DISPLAY 



~ ••••••••• 38 

ANIMATION 
Animation consists of programming the computer to 
place a character on the screen and then move it in a 
series of small steps. There are two ways of doing this, 
using either POKE with PRINT, or POKE for 
position, character and color. Both methods use loops 
to change the position of the character in ways which 
you can specify. 

Here's a simple animation program which shows you 
some of the problems that have to be overcome when 
controlling movement: 

How to remove after-images and control speed 
The first thing you will notice when you RUN this 
program is that it doesn't do exactly what you want it to. 
It moves the character from left to right by changing the 
position of the cursor with POKE but it doesn't remove 
the old image first, because you haven't told the 
computer to do that. This means that on every move, 

you get left with a small part of the previous image 
which isn't deleted. In some programs you may want to 
retain these after-images for special effects but more 
often you will want to remove them. Another thing you 
may have noticed is the speed with which the object 
moves across the screen - it is far too fast for most 
purposes. Both of these problems can easily be cured by 
keying in the following lines with the first program still 
in memory: 

The space in line 50 erases the left-hand part of the 
image, while a delay loop slows the movement down. 

Vertical movement can be produced by the same 
method. This time the X co-ordinate is kept constant, 
while the Y co-ordinate is changed by a loop. You can 
make an object move upward with a line like this: 

50 POKE 214,24-Y:POKE 211,X 

As Y increases, the object is PRINTed higher and 
higher up the screen. To erase after-images, spaces 
must be PRINTed by moving the cursor back one space 
each move . 

How to program two-way motion 
So far you have seen animation that uses FOR 
NEXT to vary either the X or Y co-ordinates of an 
object, moving it in just one direction. This idea works 
well as far as it goes, but it is not much use where, for 
example, you want to bounce a ball from side to side 
across the screen. The easiest and probably one of the 
best ways of achieving this two-way motion is to have 
the program set up an extra variable in addition to the X 
and Y co-ordinate variables. These new variables hold 
the direction of movement of the object. The following 
program uses this technique with the variable DX to 
move a ball from side to side across the screen: 



.................... 39 

In this program, line 20 sets up the initial X and Y co
ordinates and also sets up the direction variable, DX, to 
start the movement off from left to right. Line 30 
positions the cursor at the current X and Y co-ordinates 
on the screen. Line 40 PRINTs the ball and also erases 
any previously drawn ball characters to the left or right 
of the current position by PRINTing spaces there. Line 
50 updates the X position by adding DX to it. 

Because DX is currently 1 this update increases X by 
I and thus moves the ball one place to the right. If DX 
had been -I then this same line would have moved the 
ball to the left by one place. Lines 70 and 80 reverse the 
ball 's direction if it is at the screen edge by changing the 
sign of DX from + I to -lor vice versa. 

Animation with POKE 
As well as using PRINT CHR$ to produce animation, 
you can also POKE characters from the graphics 
character set straight onto the screen, erasing them 
again to produce movement: 

In this program, a ball speeds around a rectangular 
track. The listing looks quite involved, but when fairly 
complex motion is required, POKE is actually an easier 
programming technique than PRINT CHR$, even 
though it means having to program color locations as 
well as character numbers. It is also easier to develop 
programs by changing POKE values. 

Lines 10 and 20 clear the screen and set the screen 
color to blue. Lines 30 to 90 now POKE a rectangular 
pattern of ball characters onto the screen again in dark 
blue. Lines 100 to 290 then change the color of each ball 
in turn, in a clockwise direction, from the dark blue 
background color to white, then, after a short delay, 
back to dark blue. If you type in the following line to 
change the screen color, this whole process then 
becomes visible: 

20 POKE 53280,6:POKE 53281,0 

When the change has been made, the display looks like 
this, with the white ball traveling around the blue track: 

COLOR TRACK DISPLAY 



~ .............. ~ 
USING A DATA BANK 1 

The data necessary for a program can be collected while 
it is RUNning by using INPUT, or alternatively can be 
written into the program itself. The commands used to 
store data are quite straightforward. Data is held in 
DATA statements and read by READ statements. This 
program shows you the technique at work: 

The information for the display is carried in line 40 in 
the form of 14 co-ordinates. Line 70 tells the computer 
to READ the DATA in line 40, and to understand the 
DATA as pairs of figures which the program will refer to 
as Y,X. Line SO tells the computer that there will be 
seven of these pairs altogether. 

With a program like this it is easy to enter new DATA 

to get the computer to PRINT a new map. Here are two 
sets of line changes and the maps they produce: 



r 

~ _________ . 41 

When you use DATA statements, it is imponant to tell 
the computer how much DATA there is to READ. Line 
60 in the constellation program shows you how to do 
this. It sets the limit for the number of pairs of co
ordinates that are stored in the DATA line, so when the 
computer has PRINTed the final star, it stops. If there 
was no FOR . . . NEXT loop controlling the READ 
command, the computer would run out of DATA. If 
this happened the program would end with an error 
message: 

? OUT OF DATA ERROR IN 70 

Storing numbers and words together 
Words, too, can be stored and read using DATA lines , 
and you can also store a mixture of both numbers and 
words - the names of friends and their phone numbers 
or birthdays, for example. This does present a problem 
though, because two different types of DATA are to be 
used, numbers and su:ings. But careful organization of 
the DATA and READ ·statements can get round this: 

This program holds a personal telephone list. Nam~ 
and telephone numbers are held in lines 20 to 40. Lines 
SO to 90 display the program title and then offer a choice 
of functions. If you type: 

I RETURN 

the program follows lines 190 to 270. You are first asked 
to enter an initial and a mune. 

If the computer finds that the name CENTRY$) that 
you type in is the same as one of the names (N AME$) in 
the DATA statements, it will give a new string 
(RESUL T$) the value of N AME$ plus a line of dots 
and the telephone number. If it does not find ENTRY$, 
RESULT$ is left unchanged at "Name not found" Cset 
by line 210), and that is PRINTed out at the end . 

Because you want to add the name, a line of dots and 
the telephone number together in line 240, the 
telephone number has to be treated as a string variable 
CN$) instead of the numeric variable CN) used in line 
ISO. If you were to substitute N for N$ in lines 230 and 
240, you would get back an error message: 

? TYPE MISMATCH ERROR IN 240 

because string and numeric variables cannot be added. 
You can extend this program to hold a much longer 

list of your own names and numbers by puttiog them 
into the DATA lines, and then altering the limits of the 
two loops at lines 140 and 220. To see the complete list 
if it is more than one screen long, press CTRL as the 
program display begins to slow down the scrolling. 

Line 270 uses a command which will be new to you
RESTORE. Without this, the program will RUN 
correctly only once - after this you will get an error 
message. You can find out why this happens on page 43. 



~""""""". 42 """"""""~ 
USING A DATA BANK 2 

On the Commodore, READing DATA can produce 
quite complex graphics when the DATA refers to 
keyboard graphics characters. On these two pages, you 
will see how you can store this sort of DATA most easily 
to produce static and animated displays . 

The following program uses DATA to store the 
details of a maze. It also features a new way of using 
GOTO: 

MAZE PROGRAM CODES 
In the maze program, grapbics are selected by short program character 
codes. 
Character Code aracter Code 
[I] 1 1:3 7 
8 [8 

Ei3 
U3 HJ 10 

EiJ 
E'J 

characters . Rather than use the ASCII codes for these 
characters in the DATA statements, the program gives 
each of the characters in the display a code of its own in 
the range 1 to 11. 

When a lot of DATA has to be stored, reducing the 
size of the DATA block like this can be very valuable. 
The only problem with this is that the DATA needs to 
be decoded before it can be used. In this case the 
program needs to tell the computer which character to 
PRINT for each of the codes. This is dealt with in lines 
40 and SO using the pair of commands, ON . .. GOTO. 

The variable M in line 40 is the one that contains the 
coded DATA just READ in line 30. Line 40 says that if 
the value of M is 1 then GOTO the first line number in 
the list of numbers following the GOTO. If the value of 
M is 2 then the computer will GOTO the second line 
number in the list and so on. If M has a value greater 
than the number of lines in the line number list then line 
40 is ignored and the computer moves on to line SO. 
This line subtracts 6 from M and then selects one of a 
new group of line numbers. 

Each of the lines specified in the ON ... GOTO 
statements PRINTs the correct graphics character, and 
then directs the computer to READ the next coded 
character for the maze: 

you 
can develop it for your own use. You can up quite 
complex shapes with the graphics characters including 
charts and tables (looping the PRINT lines helps to save 
space when you do this). 

The Commodore's cursor keys will let you move the 
cursor through the maze to find the way out. By using 
a series of different mazes in conjunction with a timing 
routine, you can develop this system of DATA storage 
to create a simple game: 



••••••••••• 43 

MAZE GAME DISPLAY 

Using DATA for animation 
Another graphics area in which READing DATA can 
be helpful is in storing a graphics shape which can then 
be used for animation. In order to be able to continually 
move the same DATA over and over again, you need to 
make use of the RESTORE statement. Here is a 
program which features this technique: 

The program uses an animation method similar to one 
on page 39, but here the program is arranged in a 
different order. Line 10 clears the screen and line 20 
sets up the colors. Line 30 sets up the initial values of 
the X and Y co-ordinates and the initial X and Y 
directions. Lines 40 to 70 perform the check for a co
ordinate out of range. Line 80 updates the X and Y co
ordinates with DX and DY and RESTOREs the DATA 
pointer (you'll see what this means in a moment). Lines 
100 and 120 READ the graphics DATA out of the 
DATA statement in line 150 and PRINT and color the 
graphic shape onto the screen. Line 130 gives a short 

How to reset the DATA pointer 
You can have any number of DATA statements 
anywhere in a listing. The Commodore treats them as 
though they are all joined together. Each time the 
computer comes across a READ command, it READs 
the next item of DATA in line. But what happens when 
the computer gets to the end of the DATA? 

In programs where the DATA is only used once, 
that's no problem. But if you want the computer to use 
the same DATA a number of times, you need to use 
RESTORE to tell the DATA pointer to point back to 
the beginning of the DATA again. That's why 
RESTORE was needed in the telephone list program on 
page 41, and in the previous program on this page. 
Here's another program which shows you how just a 
small amount of DATA can be used repeatedly to work 
out tax totals: 



~ ____ . 44 
INTRODUCING SPRITES 

As you will have discovered by now, producing text 
graphics using PRINT and POKE has its drawbacks 
chiefly that the screen resolution is rather limited. But 
the Commodore does have other methods of producing 
displays, and one of these, programming sprites, can 
give you much more detailed graphics for animation. 

Sprites, or MOBs (Mobile Object Blocks), are each 
about the size of9 ordinary text characters put together 
in a 3 x 3 block. You can program up to 8 different 
sprites to appear on the screen at once . The shape, 
position and color of the sprites is controlled by a special 
chip in the Commodore called the Video Interface 
Circuit, or VIC chip for short. To produce a sprite, all 
its details have to be POKEd into the relevant locations 
in this chip. 

Designing a sprite 
Each sprite is made up of 504 tiny picture elements 
("pixels" for short). These pixels are arranged in a 
rectangular pattern consisting of 21 rows with 24 pixels 
on each row. To make a sprite, you first need to sketch 
the design on a grid with one square for each pixel (you 
will find a blank grid for this on page 59). The design 
can be any shape you like as long as it fits inside the grid . 
One possible sprite layout - an airplane - has been filled 
in here ready for programming: 

USING A SPRITE GRID 
The sprite design is laid out on a sprite grid so that DATA values can be 
calculated. 

Bit DATA values 

~-. ~ 
~ , 
~ 

This information has to be POKEd into consecutive 
memory locations inside the computer where the VIC 
chip can "see" it and get at it. The easiest way to store 
this information is to put it in a series of DATA 
statements, and then make the program READ it and 
POKE it into the memory. In the following program, 
the DATA contains the pixel information for the 
airplane design. As yet, it does not contain any 
instructions for putting the sprite on the screen: 

Entering sprite DATA 
The first thing to notice about the program above is the 
technique used to arrive at the list of numbers in the 
DATA statements. This is where the numbers and titles 
in the blank spaces around the grid come in. Starting at 
the top left corner of the sprite design and working left 
to right across the top row, read the first 8 pixels and the 
numbers above them. In this row, the pixels in the 
right-hand half of the row are turned on, making up the 
wingtip, while those in the other half are turned off: 

lJIII~!~II!!!~iiiii~_ ADDING UP DATA BITS 

Each 8-row unit of spri[e pix~l~ is ent'7red i~ a program as a single 

Bit DATA value, 128 64 32 16 8 

Row 0 L-I --'--I-L--'----J_ Having designed your sprite you now need to transfer 
this information into the computer in a form that it can 
understand. Everything inside the Commodore is 
arranged in bytes, each made up of 8 binary digits or 
bits. Each pixel in a sprite is controlled by one bit, so it 
takes 2478= 3 bytes to control each complete row of the 
sprite, dictating which pixels are turned on or off. As 
there are 21 rows in a sprite, ittakes 3x 21=63 bytes to 
completely specify the pixels . 

8+4+2+ 1= 15=Byte DATA value 

Each 0 indicates a pixel that is not lit, while a 1 indicates 
one that is lit. The 8 column numbers then have to be 
added together to form a byte. Here the pixels are lit in 
the columns headed 8, 4, 2 and 1, so the byte total is 15. 
This is the first number in the DATA statements. You 



then move on to the next 8 pixels to the right, gradually 
working down through the grid. This gives a total of63 
DATA numbers . But because 63 is not a very 
convenient total for the computer to work with, a 64th 
byte has to be added . This is used just as "padding" -it 
does not actually specify anything, and is set to zero. 

Placing sprites in the memory 
The next thing the program does is to POKE the bytes 
into memory in line SO. In the standard Commodore 
memory map there is nowhere that is completely safe 
for sprite DATA storage. This program uses an area of 
the memory that is normally reserved for cassette input 
and output operations. It starts at location 1>28 but this 
is not a multiple of 64 so the program starts a bit higher 
at 832 (64 x 13). In fact there is room for up to 3 sprites 
in this area starting at memory locations 832, 896 and 
960. The FOR ... NEXT loop between lines 30 and 60 
READs each item of DATA, POKEing each into one of 
the memory locations after 832. When you RUN the 
program now, you should see the sprite appear: 

45 

Within the Commodore's memory there are 8 locations 
which are used as signposts to tell the computer where 
the DATA for sprites has been stored. There is one byte 
for each sprite. As a single byte can hold any number 
from 0 to 255, this means that there are 256 possible 
locations that sprite DATA can start at. The starting 
location for the DATA for this sprite is specified by line 
70. It directs the computerto the 13th block of64 bytes, 
in other words the memory location 832. 

You can see how color is controlled if you change line 
80 to: 

80 POKE53287,7 

If you then RUN the program, you should see the 
change in the display: 

Line the the sprite, while line 
100 POKEs a number into the location which turns 
sprites on and off. Line II 0 activates two memory 
locations which control the size of sprites. The two 
POKEs in this line make the sprite take up four times 
the amount of space on the screen that it would 
otherwise occupy. 

You will find out more about how to use these 
different control locations on the next twO pages. You 
will also find out how to make this program simpler - so 
before turning over, either SAVE your program on tape 
or disk (page 58 will tell you how to do this), or make 
sure that it's held in memory. 

Why sprites don't work like text 
Because sprites are under the control of the VIC chip, 
they don' t behave in the same way as the text 
characters. You will find that if you RUN the program 
on this page, you cannot erase the sprite with SHIFT 
and CLR, and even if you LIST the program, the sprite 
will stay in the same position on the screen instead of 
scrolling upward. To get rid of the sprite you need to 
use the RUN/STOP and RESTORE keys. 



................. % 

PROGRAMMING WITH SPRITES 
When you are programming sprites, you can find 
yourself writing lines that use a number of rather 
unmemorable POKE addresses for the VIC chip. But 
because the addresses in this chip run in a sequence 
from a lowest value of 53248 upward, you can avoid this 
problem by giving a variable the value 53248, and then 
using the variable instead of the number. You could do 
this with the program from the previous two pages by 
first putting in this line: 

5 LET V=53248 

This enables you to refer to any locations in the VIC 
chip in terms of V plus a one- or two-digit number. This 
makes sprite programs a lot easier to interpret. With 
this method, the sprite program from the previous 
pages now looks like this: 

Adding color to sprites 
You can make sprites appear in any of the 
Commodore's 16 colors. As you saw on the previous 
page, it is just a matter of inserting a color control 
number with a POKE statement that colors a specific 
sprite. The color numbers are the same as those shown 

SETrING SPRITE COLORS 
Sprite colors are controlled individually by a color code POKEd into a 
VIC color location. This table gives both VIC locations (V= VIC base 
address) and color codes . 

Sprite VIC eotor Color Color Color Color 
number location code code 

0 V+39. Black 0 Oran e 8 
I V+40 White Brown 9 
2 V+4 1 Red Li hrred 10 
3 V+42 Can Dark ra II 
4 V+43 Pur Ie Medium fa 12 
5 V+44. Green Li ht en 13 
6 V+45 Blue Li blblue 14 
7 V+46. Yellow Light gray 15 

on page 32 for use with POKE. The POKE location 
depends on the number of the sprite. For sprite 0 it is 
V+39(asin line 80), for sprite litis V+40, and so on. 

Positioning and moving sprites 
If you look at the single sprite program again, you will 
see this line: 

90 POKEV,50:POKEV+I,100:POKEV+16,0 

This controls where the sprite appears on the screen. V 
sets the horizontal position and V + I the vertical 
position. Using two single bytes for a sprite allows you 
to place it in 256 positions vertically and 256 positions 
horizontally. But there are actually more than 256 
positions across the screen - 512 in fact, so a 9th bit is 
required to completely specify the position of a sprite. 
Instead of giving an extra byte to each sprite to store this 
information, all 8 extra bits are combined and stored in 
a single VIC register byte, V + 16. In this extra byte, bit 
o is for sprite 0, bit 1 for sprite I and so on. 

SPRITE POSITION CONTROLS 
The horizontal and vertical position of each sprite is controlled by a 
separate VIC location. 

Sprite 
Dumber 

Horizontal (X) 
VIC location 

V+O. 
V+2. 
V+4. 
V+6. 
V+8. 
V+lO. 
V+12. 
V+14. 

Vertical(Y) 
VIC location 

V+I. 
V+3. 
V+5. 
V+7. 
V+9. 
V+Jl. 
V+B. 
V+15. 

All horizontal positions outside 24 to 343 and vertical 
positions outside 30 to 229 are off the screen. The 
position numbers are arranged in this way so that 
sprites can be scrolled smoothly on' and off the screen in 
any direction. This does mean that positioning a sprite 
on the screen so that it fits a background can be rather 
tricky - an outline of how the sprite co-ordinates work 
is given on page 59. 

Once you know how to position a sprite, it is an easy 
matter to change this position with a FOR ... NEXT 
loop. All that remains is to turn the sprite on. In the 
single sprite program that is done by line 100. Only one 
bit is needed to turn a sprite on and off, and again, the 
separate bits for all 8 sprites are combined and put in 
one VIC register, V+21. For example, if you had 8 
sprites, and you wanted some to be off and some to be 
on at one point in a program, you would work out the 
POKE number by adding together bits like this: 



.................... 47 

TURNING SPRITES ON AND OFF 

Sprite number 128 64 32 16 

Bitva!ue l o • o 1 0 ~ 

Status OFF ON OFF OFF ON ON OFF ON 
Tota! byte value =VIC+ZI,77 

By the same technique, you can expand sprites both 
horizontally and vertically, to twice their original 
dimensions in both directions. V + 29 holds the bits that 
iostruct horizontal expansion, while V + 23 controls 
vertical expansion. You can see from this that line 110 
in the siogle sprite program expands sprite 0 (which has 
a bit value of I) io both directions. 

A two-sprite program with animation 
To show you how to produce more than one sprite 
simultaneously, here is a program that creates two 
sprites. First, the sprites are drawn out on grids: 

DOUBLE SPRITE PROGRAM DESIGNS 

This tiroe there needs to be twice as much DATA, 
coding 128 bytes altogether with two redundant bytes at 
the end of each section. Separate iostructions are also 
needed for positioning and coloriog the two sprites. 
Horizontal and vertical enlargements are carried out by 
putting a valueof3 into V+23 and V+29. The program 
also makes the two sprites move at different speeds: 

Lioe 80 controls the sprites' initial positions and the 
variables DO and DI io line 90 control the iodividual 
directions and speeds of the sprites: 



48 _--------. 

SOUND AND SPECIAL EFFECTS 
The Commodore is equipped with one of the most 
sophisticated sound synthesizer facilities available on 
any home microcomputer. Sound can make all the 
difference to your programs, whether it is just a simple 
bleep to prompt you to enter an INPUT, or a series of 
realistic sound effects which add excitement and 
interest to your games. The Commodore does not have 
a single command like SOUND, but instead uses the 
multi-purpose command POKE. 

The SID chip 
All the sounds on the Commodore are created by a 
single integrated circuit or chip known as the SID 
(Sound Interface Device). The SID chip contains all the 
circuitry needed to provide three separate sound 
channels, each of which can be used to produce musical 
notes, noises or sound effects. The computer 
communicates with the SID chip via a block of 29 
memory locations, starting at location 54272. 

In all the following sound programs the 29 memory 
locations are referred to as S+N, where S is 54272 (the 
base address) and N is the SID register number from 0 
to 28. For example, memory location 54296, whose 
main function is as the SID chip master volume control, 
is shown as S + 24. This is the same system as you saw 
with sprite programming. The simpler numbering is 
easier to remember, and you are also less likely to make 
mistakes in entering your programs from a listing. 

Simple sound programs 
To program sound you need to POKE values for master 
volume, volume change or "envelope", frequency and 
waveform. All these details have to be sent to the SID 
chip. Here to start off is a program which produces the 
sound of a siren - a loop made up of two notes: 

(If you RUN this program and no sound is produced, 
check the volume control on your television or 
monitor.) 

Line 300 sets the variable S to 54272, and then sets 
S+24, the master volume, to maximum. The range of 
volume values runs from 0 (off) to 15 (maximum). Line 
310 sets up something called the envelope shape. This 
controls the way that a sound's volume changes as the 
note progresses from start to finish . Real sounds don't 
simply start then stop; they grow and then fade, and the 
envelope controls these changes. The first half of 
envelope shape can have any value from 0 to 15 - the 
higher the number, the slower the change. 

The SID chip is also capable of producing sounds 
with four different waveform shapes, any of which you 
can select. 

SOUND WAVEFORM SHAPES 

A waveform shape is selected by POKEing the relevanr "alue into a 
channel waveform location. 

TRIANGULAR 
(16) 

SAWTOOTH 
(32) 

RECTANGULAR 
(64) 

RANDOM NOISE 
(128) 

Each of these waveforms is given a numeric value. One 
of these values needs to be POKEd into the waveform 
and channel location of each channel you wish to sound, 
to tell the SID which waveform to play for that channel. 
Lines 330 and 380 POKE values into this location. Line 
330 starts the channel off with a sawtooth waveform and 
line 380 stops it. You should always make sure that the 
start values are one greater than the chosen waveform 
values. 

To hear the effect of changing waveforms try 
modifying the siren program by typing in the following 
two lines which change the waveform from a sawtooth 
wave (32) to a triangular wave (16): 



330 POKE S+4,17 
380 POKE S+4, 16 

The frequency or pitch of the two tones of the siren is 
controlled by lines 340 and 360. Note that you need two 
POKEs for each pitch. You will find out more about 
frequency values in music programming on the next 
two pages . Lines 350 and 370 control the durations of 
the notes by using simple delay loops. 

This program produces the sound of a volley of 
machine-gun fire. The envelope shape for each shot is 
controlled by line 40 which is set so that the volume of 
the random noise rises quickly to its maximum level and 
then decays away fairly fast to about half volume before 
slowly dying away altogether. Now try the following 
program: 

49 

This produces the sound of a laser cannon firing and 
shows the effect of changing the frequency of the sound 
rapidly, from high to low, while it is playing. This effect 
is created by line 140 which changes the frequency 
within the FOR ... NEXT loop. 

Finally, here are two programs that produce very 
different effects. The first is a piercing electronic bird 
call, while the second is the sound of an engine slowly 
coming to a halt (press RUN/STOP and RESTORE 
when you've heard enough of them!): 

To specify a sound, the following controls for each channel must be 
POKEd inm the SID chip. 

Function Channel 

Note frequency (low vaJue) S+O, S+7, S+14, 
Note frequency (high value) S+!, S+8 , S+15, 
Sguarewave pulse width Qowvalue) S+2, S+9, S+16, 
Sguarewave pulse width (high value) S+3, S+10, S+17, 
Waveform/main channel comrol S+4, S+l1, S+18, 
Envelope shape (attack/decay) S+5, S+12, S+19, 
Envelope shape (sustain/release) S+6, S+13, S+20, 
Filter mode/master volume S+24, S+24, S+24, 



so 

NOTES CHORDS AND MUSIC 
All the sound programs you have tried so far have been 
created on channel l. You could have just as easily 
chosen channels 2 or 3. But the Commodore is not 
Iimi[ed [0 playing just one channel a[ a time. With the 
right program you can make i[ play chords - a number 
of simultaneous no[es- and these can be putlogether [0 

produce harmonies. 
To playa single sequence of notes on one channel all 

you have to do is enter a list of lines that POKEs note 
values into [he frequency control register pair. Here is 
an example program for channel I: 

This method works well, but you can quickly see that it 
would take several screens of listing for a tune of any 
length. A beller solution is to store the frequency or 
pilch values in DATA statements and have a short 
program to READ and play the notes. Here's the same 
tune, with slight modifications: 

There are three DATA values in this program for each 
note, two for the frequency and one for [he duration. If 
the "high" frequency is 0 then the program will produce 
a silence and if i[ is negative then this will END the 
program, simply terminating i[ without PRINTing a 
line number. 

Once you have entered this program, playing any 
tune is just a maller of carefully converting each note in 
the tune into its equivalent high- and low-frequency 
values and putting them along with a duration into the 
DATA statements. 

How to play chords 
With channel I, you can only play single notes, but by 
using all three channels you can play chords: 

Try RUNning [he program and listen [0 the result. The 
chord builds up [0 three notes playing at the same time, 
the maximum number that can be played together. This 
enables you [0 play any tune where up [0 three notes 
need [0 be la ed simultaneously. 

ING TOGETHER CHANNELS 
The chord program adds together three channels to produce a harmony. 

I Channel3 

I Channel 2 

Channell 

TIME 560 1000 1500 2000 2500 3000 
(T loop duration) 

Programming sheet music 
The next program is a chord version of [he program to 
READ notes from DATA statements. The musical 



score below shows the notes that have been written into 
the program. When you are trying this, remember that 
"tied" notes are continuous, so that if they 3re of the 
same pitch you can treat them as one note by combining 
their durations. 

How the music program works 
An important fact to remember when programming 
music on the Commodore is that once the SID chip has 
been instructed to produce a sound on a particular 
channel, it will continue to do so until the sound is 
turned off, or until a new sound is programmed on that 
channel. In the music program here, the DATA values 
again control frequency and duration, but this time 
they control channel as well . If you look at line 130, you 
will see a series of nine numbers. The first of each group 
of three is READ as a channel number, and this is 
followed by the high- and low-frequency values for a 
note in the first chord. 

If you now look at line 140, you will see that thefirsl 
figure is O. Line 70 lells the computer that after 
READing a zero, it will Ireal the nexI number as the 
length of time during which il stays in a delay loop. In 
this case the next number is 160, so the computer waits 
FOR T=I TO 160 before il goes on to READ the next 
DATA number, which resets channel 2. 

51 



52 

UNPREDICTABLE PROGRAMS 
Although computers generally work with precise 
information, doing exactly what you tell them to do, 
most computer games are based to some extent on 
chance. If you want to make something happen at an 
unpredictable time, or if dice are to be thrown or coins 
tossed, you can't tell the computer what results to 
produce every time or the element of chance would 
disappear. The way to build chance into a program is to 
use RND. You will already have come across this 
command - it was used to produce a series of random 
numbers for example in the math test program on pages 
30-31. RND, as you have probably guessed, stands for 
RaNDom. It allows you to generate random numbers 
up to a maximum that you can set. You can then use 
these numbers to produce unpredictable sequences. 
The following program uses RND to PRINT a series of 
random numbers. The numbers selected by the 
program are all decimal fractions: 

This uses RND(O) in line llO to generate random 
numbers between 0 and 0.999999999, while lines 30 to 
90 set up a border of asterisks to frame the numbers. 
Very small numbers include the E symbol that you 
came across on page 19. Normally, as each new number 
is PRINTed, it automatically erases the last number -
simply by PRINTing on top of it. However, when 
something like E-4 appears, it is not automatically 
erased. Line 140 has therefore been written into the 
program to take care of that. 

Although RND is called the random function, this is 
not strictly true. More correctly, it is known as a 
"pseudorandom" function, one which produces results 
according to set patterns. Which particular pattern is 
produced by RND(O) is determined by the time that has 
elapsed since the computer was switched on. Since 
there are so many different possible values for this, the 
numbers produced are for most purposes completely 
random. 

Producing random whole numbers 
If you now replace line llO with: 

llO PRINT INT(RND(O)*lO); 

and RUN the program again, you will notice an 
immediate change in the display. The numbers are no 
longer decimal fractions, in fact there's no decimal 
point at all. Instead, the program is generating whole 
numbers between 0 and 9 inclusive - a much more 
useful result for programs. INT, which you came across 
on page 29, rounds the random number produced down 
to the nearest whole number or integer. By using RND, 
it is quite easy to get the Commodore to simulate 
throwing dice or tossing coins. Here is a program which 
selects random numbers to imitate coin throws: 



As a tossed coin can have only one of two values - heads 
or tails - line 40 produces a random number that is 
either 1 or 2. Heads are represented by 1 and tails by 2. 
COIN$ represents the result of the current throw. If 
A=l, then COIN$ becomes HEADS and line 60 is by
passed. If A=2, the computer decides that the 
condition in line 50 is not true, and so it goes on to set 
COIN$ to TAILS in line 60. The FOR ... NEXT loop 
using the variable Q, in line 80, produces a short pause 
between each throw: 

How random is a random program? 
It is possible to write a program that will show you just 
how random RND is. If you use RND to toss an 
electronic "coin" 100 times, you should get roughly 50 
heads and 50 tails each time. You can actually test to see 
if this is true. Key in this program by amending the coin 
toss program. When you RUN it, the computer will 
PRINT totals showing how close to 50:50 the heads and 
tails are each time the program is carried out: 

53 

----~. ~ 
Using random effects in graphics programs 
You can produce some fascinating effects with RND by 
incorporating it in graphics programs, so that the 
computer is instructed to draw random graphics 
characters at random positions on the screen. If you 
then make the computer repeat this a number of times 
by using FOR ... NEXT, you can build up a complete 
graphics pattern which will be different every time the 
program is RUN. This program uses RND in this way. 
Line 40 chooses a random text color, and lines 50 and 60 
pick two random X and Y co-ordinates: 

Line 70 looks more complicated than it really is. Using 
the formula you saw first on page 36, it POKEs a 
character and color at the screen position X, Y. This 
time, the character can be either a diamond or a cross 
the selection is made every time by 90+ RND(I)*2 
which picks the character code. You can use this 
program as a basis for producing a whole range of 
different displays by altering character and color 
settings: 

RANDOM GRAPHICS DISPLAY 



................. 54 ................ . 

WRITING SUBROUTINES 
You will often want to use the same few lines of a 
program again and again to carry out the same 
calculation or to display the same group of characters on 
the screen. To avoid writing out the same lines time 
after time (and using up too much of the computer's 
memory) you could branch off to frequently used 
sections of the program with GOTO. However, the use 
of GOTO is frowned on by many programmers. Using 
it carelessly can rum your programs into untidy mazes 
that are impossible to understand or debug. 

The easiest program to analyze and debug is one that 
is written methotlically in blocks or modules, each of 
which you can test independently of the other, if 
problems arise. If you look up the listing of a good 
games program in a magazine, for example, you will 
find that it works something like this: 

MAIN PROGRAM SUBROUTINES 

Set up screeD display 

Time delay A 
PRINT program instructions Timede1ayB 

Dis la A 
Start program pbase 1 TimedeJa A 

Display A 
Increase game speed phase 2 

Time delay B 

Dis la B Switch to more difficult game Timedela C 

DispiayC 
Hnal screen display 

Dis la D 

How to use a subro.utine 
With the Commodore, frequently used blocks of 
programs can be "set aside" as subroutines . 
Subroutines are set up using the command GOSUB. 
This command allows you to branch off from the main 
program to the subroutine and then rerurn to the main 
program again . The command looks like this: 

50 GOSUB 500 

Here the main program RUNs normally until it reaches 
line SO, which makes the computer jump to a 
subroutine at line 500. After it has been through the 
subroutine, it automatically returns to the main 
program at line 60 - the one after the line where it left. 
The subroutine must be ended by the word RETURN. 
Without it, the computer will not go back to the correct 
point in the main program. 

You can use GOSUB in almost any program where 

the computer has to repeat an operation. The next 
program produces a temperature conversion chart, 
using three types of measurement, Centigrade, 
Fahrenheit and Kelvin. The subroutine at lines 90 to 
110 makes the computer PRINT out a line on the table 
and then RETURN to line 70. The command END at 
line 80 stops the main program carrying on into the 
subroutine. If you miss out END, the computer will 
reach the RETURN command at line 110. It would 
then produce an error message because it had 
encountered a RETURN without its own GOSUB. You 
will also notice here that the subroutine is actually 
inside a FOR . .. NEXT loop, so it is "called" each time 
the Centigrade temperarure is increased by the NEXT 
command. There is a new command - STEP - in line 
SO. This makes the loop increase C in jumps of 10 
instead of 1. STEP does not always have to be a whole 
number (it can even be negative): 

c ~ K 
----- -------------- ------ ----------

- 48 
- 38 
- 28 
- >8 
o 
~8 

~g 
~ 
¥S 
U 
J.89 

HB 

- 40 
- 22 
- 4 

~i 
S8 
8S 
~O" 
H2 
HO 
,-S8 
~1g ..... 
Hi 



~ ________ . ss 
In this program, the subroutine is not actually saving 
any space. However, if you extended the program to 
carry out other functions, the subroutine could be 
"called" again as often as you wanted - saving both 
space and memory. 

Setting up "menu" displays with GOSUB 
In many programs, you are initially given a "menu" or 
choice of options to select. This choice is often 
programmed by using GOSUB. When you enter your 
selection, the program goes to the appropriate 
subroutine and sets up the display for the game or 
function that you have picked. 

Here is a simple listing that shows how you can do 
this. The program can set up either of two basic 
displays. The displays are produced by a subroutine
which colors are used depends on your INPUT 
following line 20. In this program, a keyboard character 
group moves across the screen. If you were using it in a 
real games program, you could call the subroutine as 
often as you wanted: 

-------------

~ 
GOSUB is a particularly useful command for many ~ 
games programs in which a tune is played over and over 
again. Instead of repeatedly typing the listing for the 
tune, you can simply write it once, and then enter a 
GOSUB command, followed by the appropriate line 
number, each time you want to repeat the tune. 

Using GOSUB with animation 
As you will have discovered wben learning about simple 
graphics, writing programs that involve animation can 
be very time-consuming, particularly if you want 
several characters to move. GOSUB is particularly 
useful in programming animation: 

Here is a program whicb PRINTs a target - three 
graphics symbols - on the ground, and whicb then 
PRINTs a succession of aliens falling from random 
points at the top of the screen. If one of the aliens then 
hits the target, line 100 directs the computer to the 
subroutine at line 500, producing a series of flashing 
colors before tbe program resumes again: 



_ •••••••• _ 56 

HINTS AND TIPS 
When you are learning to program your Commodore, 
you will probably have come across a number of ways of 
improving your technique by trial and error. However, 
there are some methods of saving time or sorting out 
problems which, although simple and effective, are not 
necessarily obvious. On these two pages you will find 
some "tricks" which will help you to produce programs 
that are well organized and bug-free. 

Using REM as a marker or mask 
Because the command REM makes the computer 
ignore anything that follows it in a line, it can be used in 
labeling and testing parts of a program. On page 20 you 
saw how REM can be used in the first line of a program 
to sbow you what the program does. You can also use 
REM lines throughout a program to remind you what 
eacb of the parts does, and the longer a program is, the 
more helpful this becomes. 

However, when a program gets really long, it is 
sometimes difficult to pick out REM lines among all the 
others. One way you can draw attention to them is by 
following REM with some symbols which clearly stand 
out from the rest of the program. Here is one way of 
doing this: 

When you read through this program, the REM lines 
are visible at a glance. 

REM also has a use in program development. You 
will often want to test a program to see what happens if 
certain lines are left out. This may be because part of the 
program takes a long time to RUN, or produces a sound 
that you don't want to hear time and time again! 

You can skip part of a program by using GOTO or 
RUN followed by a line number, but this won' t help if 
you just want to miss out a few lines in the middle. The 
way to deal with this problem without resorting to 

deleting and losing the lines altogether is to insert a 
REM command at the beginning of each line you want 
to skip. This will mask or "disable" the lines, as the 
computer will ignore all the commands following each 
REM. Here is a program in which this has been done: 

LINES MASKED WITH REM 

How to check nested loops 
When you use a number ofloops in a program, it is easy 
to get the loops tangled up so that the program does not 
produce the result you want. But there is an easy way of 
checking if loops are "nested" without overlapping. 

You do this by connecting up the beginning and 
ending of each loop with a line . Here is a program with 
nested loops, showing how these connecting lines 
should fit inside each other. There are three 
FOR ... NEXT loops, two contained within the main 
loop between lines 20 and 90: 



When you have connected up every FOR with its 
NEXT, you should find that none of your lines overlaps 
any other. If any does, you have wrongly nested loops, 
and the chances are that your program will not work 
correctly. Of course you can't draw lines on the screen 
itself, but this method can be used on a program layout 
or a printed listing. 

Useful debugging techniques 
Although the Commodore has a large repertoire of error 
messages which will alert you to any incorrect lines in a 
program, often a program will RUN without any 
hitches, only to produce a result entirely different to the 
one you had in mind. How then do you go about finding 
the source of the problem? 

As you have just seen, you can use REMs to mask 
parts of a program, or you can link loops to check that 
they are nested properly. But if that doesn't help, you 
can often track down the problem by giving each 
variable in a program one set value, instead of allowing 
it to go through many. 

Imagine that you have a graphics program which uses 
the command RND to produce a display which is built 
up by looping. If it does not work in the way you expect, 
you can take out the RND, and instead use a number. 
You can then work out what effect this number should 
have when the program is RUN. Now take out the lines 
that start and terminate the loop (you can use REM for 
this). If the result of a single RUN through is not what 
you predicted, the display should give you some idea of 
where your program is going "wrong": 

Above is the random graphics program from page 53, 
edited so that the random variables in lines 40 to 60 are 
fixed . The original lines are still kept in, but are 
disabled by REMs. The loop between lines 30 and 80 is 
also disabled by a pair of REMs so the program only 
PRINTs once . 

If the program is RUN, you can check whether or not 

57 

the program has done what was expected, and if not, it 
is now much easier to work backward to the source of 
the problem. You can use this technique in any 
program which uses variables. By substituting a single 
value for each variable, you can check your expected 
result with the result when the program is RUN. 

Don' t forget that the STOP key can be very helpful in 
telling you how far the computer has got through a 
program. If you RUN a program which either seems to 
do nothing, or gets stuck at a certain point, the STOP 
key will tell you where the hold-up lies. If you then 
LIST the program, you will often be able to identify the 
problem with the line identified by STOP and correct it 
so that the program works. 

How to recover lost programs 
Finally, if you do much programming sooner or later 
you will probably lose a listing by accidentally typing 
NEW before you SAVE it. However, you don't have to 
start programming all over again. The following screen 
shows a short sequence of direct commands for 
program recovery (CLR means press SHIFT +CLR): 

This works because when you type NEW, BASIC does 
not actually erase the program listing from memory. All 
that happens is that several pointers that tell BASIC 
where the program starts and where to store all its 
variables are reset to values that make BASIC think that 
there's no program in memory. Your old program 
actually remains in RAM until you start a new one. 

The first two lines on the screen sort out where in 
memory the deleted program ends. This is stored in 
memory at locations 174 and 175 . The rest of the 
commands copy this address back into the pointers that 
were lost when NEW was keyed in. The pointers at 
locations 45/46 and 47/48 are used to tell BASIC where 
its list of variables starts and the pointer at locations 491 
50 is used by BASIC to mark the position in memory 
where its string space ends. 



S8 ;~ .... --.. 
ff HOW TO KEEP YOUR PROGRAMS 

Whatever you type into your Commodore is only stored 
in the computer's memory for as long as the power is on. 
When you switch off, your program disappears . 
Obviously, you can' t type in every program you want to 
use each time you switch on. Fortunately the 
Commodore offers rwo ways to store programs by using 
either a cassene recorder or disk drive. 

The Commodore cassette recorder is a very simple 
machine to use because it is designed specifically for 
storing Commodore programs, and all its controls are 
permanently set to receive the computer's signals. The 
disk system allows you to carry out more complex data 
handling, but at the Simplest level, it uses just the same 
commands as the cassette recorder. 

Program storage commands 
Programs are recorded onto tape or disk and played 
back again using the commands SAVE and LOAD . 
You can try these out with any program in this book. 
Type a listing into the computer and then RUN the 
program to make sure that it contains no typing errors. 
Then decide on a filename for the program not more 
than 16 characters long. Now type in SAVE 
"FILENAME" , using the name you have chosen. If 
you are using a disk, type SAVE "FILENAME",S. 
When you press RETURN, the process begins: 

With a tape system, SAVEing starts when you press 
RECORD and PLAY. With a disk system, you do not 
have to do anything further after keying in the SAVE 
command. When the computer has SAVEd the 
program, the READY message will appear. Your 
program should now be stored. 

.How to check tapes and disks 
It is always a good idea to check that the program you 

have just SAVEd is in fact stored correctly. To do this 
you type the command VERIFY followed by the 
filename (and ,8 if you are using a disk system) and 
press RETURN. If you are using tapes, when the 
computer finds a program on the tape it will PRINT the 
filename. To get the computer to VERIFY the 
program, press the C = key (this is not necessary for disk 
systems). Now the computer will compare the SAVEd 
program with the one in its memory. If there are any 
differences, a VERIFY ERROR message will show you 
that the SAVEd program has been stored incorrectly. 

Playing programs back 
If you now type NEW, you can rry recalling a program. 
Type in LOAD "FILENAME" (again add ,8 for disks). 
The program will now be LOADed into the computer 
ready for RUNning. With a disk, the drive will 
automatically move to the blocks where the program 
has been stored. With a tape system, it helps to use the 
counter to move to the right part of the tape first: 

If you type in LOAD "$" ,8 with a disk system, the 
computer will LOAD the disk's directory . Typing 
LIST will then enable you to see the filenames of all the 
programs on the disk. 

LOADing from inside a program 
There is a way by which you can make one program 
RUN another (this is known as "chaining") . If you use 
the LOAD command as part of a program line, the 
computer will LOAD the program specified and then 
go on to RUN it. With this technique you can link a 
number of programs together. However, if you do this 
you should remember that values of variables in any 
previous programs will remain in memory. This does 
not happen when LOAD is used outside a program. 



59 

SPRITE GRIDS 
Commodore sprites are each composed of21 rows of24 I These can then be entered as DATA in a program. After 
pixels, each pixel being controlled by a single bit in a pencilling in a design on the grid, add up the bit values 
POKE statement. You can use the grid below to design for each group of eight pixels on a row. You can then 
your own sprites and work out their POKE values. record the totals in the columns on the right. 

8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 DATA values 
128 64 32 16 128 64 32 16 8 U8 64 32 16, 4 2 , 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Horizontal co-ordina(c 
Positioning sprites 0 23 24 343 344 511 
Sprite position co-ordinates can have any value 0 r=--=-r-:--,------ ------==,.::-:-'----_=_=; 
from {}-255 vertically or {}-511 borizontally. 
However, only a part of this range is actually visible 29 
on the screen. The diagram on the right shows how 30 i--- f--i------------/------j 
these co-ordinates relate to the screen. The central 
panel is the visible area on the screen. This extends ~ 
from 24 to 343 horizontally and 30 to 229 vertically. 'E 
This means that you can move sprites on and off the ~ 
screen smoothly. Ii 

Because vertical position runs from 0 to 255, it ." 
can be controlled by a single byte of information. ~ 
Horizontal position, on tbe other hand, needs two 
bytes if the whole of the range from 0 to 511 

Screen area 

LJSprite 

(=2x255) is to be used. If you want a sprite to 229 f----t-------------f------i 
continue moving past horizontal position 255, the 230 
V + 16 location must be turned on for the sprite 
concerned. 255 "-__ "-_____________ "-__ -----' 



jIIIIII ________ . 60 
SCREEN MEMORY CODES 

At text resolution, every point on the Commodore 
screen can be accessed using the POKE command. This 
allows you to put characters in any color onto the screen 
at specified positions. Two separate POKE commands 

Screen memory 1024 55296 
and color memory 1064 55336 

1104 55376 

are needed - one to specify the character that is to 
appear at a screen position, and another to set its color. 
The grid below shows how the screen memory and color 
memory locations are selected. 

10 20 30 

To find out the two 1144 5541 6 
memory locations of 1184 55456 
any point on the 1224 55496 

1264 55536 
screen, first find out 1304 55576 
the row POKE values. 1344 55616 

The complete screen 1384 55656 
1424 55696 

and color memory 1464 55736 
1504 55776 

__ to 

locations can then be 
determined by adding 

1544 55816 
1584 55856 

the column number to 1624 55896 

each POKE value. 1664 55936 
1704 55976 

I 20 

Once you have deter- 1744 56016 

mined these two 1784 56056 
1824 56096 

numbers, you can add 1864 56136 
a character and color 1904 56176 

value. 1944 562 16 
1984 56256 

Character POKE values Character codes are POKEd together with the screen 
The chart below shows the POKE values for the memory values. Values from 128 to 255 produce the 
Commodore's upper case and lower case characters. reverse images of the characters shown here. 

0 2 3 4 5 6 7 8 9 

0 @ A a B b C c D d E e F f G g H h I 
to J K k L M ill N n 0 0 p p Q q R r S s 
20 T U u V v W w X x Y y Z z [ £ ] 
30 t ~ SPACE # $ % & 
40 ( ) * + 0 
50 2 3 4 5 6 7 8 9 
60 < > ? E3 [il A rn B 8 c :J D 1-, E 
70 Q F []] G [] H 5J I G J EJ K 0 L ISl M 2J N 0 0 
80 0 p .Q Q R [!] S [JJ T ca U Zl V Dw ~ X OJ y 
90 [E z EI3 [] rn [!!J t1l ~~ SPACE IJ .. D 

100 0 0 II 0 • 1I!l~ [] [E c:. [::J 
110 5J 0 ca ~ Ea BJ 0 [J [] 0 
120 ~ ~ 0 [2] .:J ~ EJJ ~ ~ 



61 

ASCII CHARACTER SET 
The ASCII character set forms a single sequence of range are used differently by different machines. On 
characters and control functions that can be accessed by the Commodore these control a range of functions like 
the command CHR$. The ASCII system provides a color settings and represent keyboard graphics 
standard digital coding for computer characters. The characters. The ASCII code for each character only uses 
codes from 33 to 127 represent the same characters on 7 bits of a byte, leaving room for an eighth bit for 
almost all microcomputers, while the codes outside this "parity checking" , or transmission error monitoring. 

0 I 2 3 4 5 6 7 8 9 

0 White Disables Enables 
SHIFr+C= StuFT+C= 

10 RETURN 
Lower Cursor RVSON CLR 
case down HOME 

20 INSTIDEL Red I"ursor 
right 

30 Green Blue SPACE ! " # $ % & 
40 ( ) * + , - / 0 1 
50 2 3 4 5 6 7 8 9 ; 
60 < = > ? @ A B C D E 
70 F G H I J K L M N 0 
80 P Q R S T U V W X Y 
90 Z [ £ ] t ~ El [tJ rn El 

100 El El Q [JJ [] 5J G 2J 0 ~ 
110 IZl D 0 • D [!] 0 ca ~ D 
120 ~ [] [!] EI3 IJ rn [ITJ ~ Orange 

130 
Function Function Function Function Function Function Function 
key I key 2 key 3 key 4 keyS key 6 key ? 

140 Function SHIFr + Upper Black Cursor RVSOFF CLR INSTIDEL Brown keyS RETURN case up HOME 

150 
Light Light Medium Light Light Dark Purple Cursor Yellow Cyan 
red gray gray green blue gray left 

160 SPACE IJ ~ D 0 0 II 0 6iiQl ~ 
170 [J [E c. [13 5J D [l3 ~ 53 BJ 
180 D IJ [J 0 ~ ~ 0 ~ ~ E!J 
190 ~ ~ El [tJ rn El El El Q [JJ 
200 [] 5J G 2J 0 ~ IZl D 0 • 210 0 [!] 0 ca ~ D ~ OJ [!] EI3 
220 IJ rn [ITJ ~ SPACE IJ ~ 0 D 0 
230 II 0 6iiQl ~ 0 [E c. [13 5J D 
240 [l3 ~ 53 BJ D IJ [J 0 ~ ~ 
250 0 ~ ~ E!J ~ [ITJ 



GLOSSARY 
Enlnes in bold type are BASIC keywords. 

ASCII 
American Standard Code for Information Interchange; 
the character coding system used by the Commodore. 

BASIC 
Beginners' All-purpose Symbolic Instruction Code; 
the most commonly used high-level programming 
language. 

Binary 
A counting system used by computers based on only 
two numbers - 0 and L 

Bit 
A binary digit - 0 or 1. 

~ 
A group of eight bits. 

Qjp 
A single package containing a complete electronic 
circuit. Also called an integrated circuit (IC). 

CHRS 
Converts an ASCII code into the character it represents. 

CPU 
Central Processing Unit. Normally contained in a 
single chip called a microprocessor, this carries out the 
computer's arithmetic and controls operations in the 
rest of the computer. 

Cursor 
A flashing symbol on the screen, showing where the 
next character will appear. 

DATA 
The computer treats whatever follows DATA as 
information that may be needed later in the program. 
Used in conjunction with READ. 

Debugging 
The process of ridding a program of errors or bugs. 

END 
Halts a program. (See also STOP.) 

Envelope 
The change in amplitude (volume) of a note while it is 
playing. Envelope shapes are selected with POKE. 

62. _________ _ 
L,--J 

Filename 
A name given to a program or set of data to enable 
storage and recall on a tape or disk. 

Flowchart 
A diagrammatic representation of the steps necessary 
to solve a problem. 

FOR ••• NEXT 
A loop which repeats a sequence of program statements 
a specified number of times. 

GOSUB 
Makes the program jump to a subroutine beginning at 
the line number following the command. The 
subroutine must always be terminated by RETURN. 

GOTO 
Makes a program jump to the line number following 
the command. 

Hardware 
The physical machinery of a computer system, as 
distinct from the programs (software) that make it do 
useful work. 

IF .. . THEN 
Prompts the computer to take a particular course of 
action only if the condition specified is detected. 

INPUT 
Instructs the computer to wait for some data from the 
keyboard which is then used in a program. 

INT 
Converts a number with a decimal fraction into a whole 
number by rounding down. 

Interface 
The hardware and software connection between a 
computer and another piece of equipment. 

K 
Abbreviation of kilobyte (1024 bytes). 

Lll 
Assigns a value to a variable. The use of LET is optional 
on the Commodore. 

LIST 
Makes the computer display the program currently in 
its memory. 



LOAD 
Transfers a program from a tape or disk into the 
computer's memory. The program is identified by a 
filename. 

~ 
A sequence of program statements which is executed 
repeatedly or until a specified condition is satisfied. 

NEW 
Removes a program from the computer's memory. 

ON .. . GOTOIGOSUB 
Makes a program jump to one of a number of 
statements or subroutines depending on the value of a 
variable . 

PEEK 
Reads the numeric value in a specified memory 
location. 

POKE 
Puts a numeric value into a specified memory location. 

PRINT 
Makes whatever follows appear on the screen. 

RAM 
Random Access Memory (volatile memory). A memory 
whose contents are erased when the power is switched 
off. (See also ROM.) 

READ 
Instructs the computer to take information from a 
DATA statement. 

REM 
Enables the programmer to add remarks to a program. 
The computer ignores whatever follows REM in a 
program statement. 

RESTORE 
Resets the computer to READ the first item in a DATA 
list. 

RETURN 
Terminates a subroutine. (See also GOSUB.) 

RND 
Produces numbers at random within specified limits. 

ROM 
Read Only Memory (non-volatile memory). A memory 
which is programmed permanently by the 
manufacturer and whose contents can only be read by 
rhe user's computer. 

63 _---------

SAVE 
Records a program currently in memory onto a tape or 
disk. The program is identified by a filename . 

SID 
Sound Interface Device; the chip used by the 
Commodore to produce sound. 

Software 
Computer programs. 

Sprite 
A mobile object block that is defined using POKE. 

SQR 
Produces the square root of the number that follows it. 

Statement 
An instruction in a program. There may be more than 
one statement in each program line. 

STEP 
Sets the step size in a FOR ... !l!EXT loop. 

STOP 
Halts a program and PRINTs out the line number in 
which it appears. 

String 
A sequence of characters treated as a single item
someone's name, for instance. 

Subroutine 
A part of a program that can be called when necessary, 
to produce a particular display or carry out a number of 
calculations repeatedly, for example. 

Syntax 
Rules governing the way statements must be put 
together in a computer language. 

TAB 
Positions text along a line. 

Variable 
A labeled slot in the computer's memory in which 
information can be stored and retrieved later in a 
program. 

VERIFY 
Checks that a program has been recorded correctly on a 
tape or disk using SAVE. 

VIC 
Video Interface Circuit; the chip responsible for 
controlling sprites. 



64 
'-,--J 

INDEX Nested loops 56-7 Serial port 6, 7 
NEW23,57 Sening up 12- 13 
Notes 50 SHIFT 11 

Main entries are given in Editing 24 Numbers 26-7 , 41 SID (Sound Interface 
bold type - keys 20 - random 52-3 Device), 9, 48 

END 50 Numeric variables 15 Sockets 6-7 
Addition 18 Envelope 48 Sound 48-9, 50--1 
Alphabetic sort 31 Error messages 14, 25, ON ... GOTO/GOSUB Special effects 48-9 
Animation 38-9, 43 , 47, 41,57 42 Sprites 44-5 , 59 

55 Exponents, Output formatting 27 - programming with 
ASCII 17, 31,34,42 mathematical 18 46-7 

PEEK 32, 33 SQR 18 
BASIC 6, 8, 20 Filename 58 Peripherals , connecting STEP 54 
BASIC ROM 8 Flowcharts 21 6,12-13 STOP 23, 28, 57 
Bits 62 FOR .. . NEXT 28, 30, Phase Alternation Line Storage 40-3,58 
Bugs see Debugging 38,41,56-7,62 (PAL) encoder 9 Strings and string 
Bytes 8 Function keys 10 Pixels 44 variables 15 

POKE 32-3 Subroutines 54-5 
Calculations 18-19 GOSUB54-5 - animation 38, 39 Subtraction 18 
Cartridge slot 6, 7 GOTO 23 , 28 , 42, 54, 56 - color change 32 
Cassett.e interface 6, 7 Graphics, animated - graphic displays 36 TAB 20, 27 
Cassette recorders 13, 58 38-9, 43,47, 55 - key functions and Television receivers 6, 7, 
Channel selector 7 - grid 36 32-3 12 
Characters, ASCrr 61 - keyboard 34-5 - for sound 48-9 Tuning in 12 
- codes 60 - sprites 44-5, 46-7,59 - sprites 44, 45, 46, 59 
- grids 36 see also Color - values 60 UHF sockets 6, 7,10,12 
- keys 10 Power supply 6, 9, 58 Unpredictable programs 
- POKE values 60 IF" . THEN 30--1 PRINT 14, 18, 26, 27, 52- 3 
- sets 34 INPUT 26-7, 40 44 User port 6, 7 

Chips 8 INST/DEL 10, II PRINT CHR$14, 17, 
Chords 50 INT29 20, 36,39 Variables 14, 15 
CHR$17,61 Interface 6, 12 Printers 13 VERIFY 58 
Clock, jiffy 33 Program listings 22-3 VIC (Video Interface 
CLRlHOME 10, II Jiffy clock 33 Punctuation 21, 24 Circuit) 8, 44, 45, 46 
Color, combinations 12 Voltage regulator 9 
- keying in 16-17 KERNALROM8 RAM (Random Access 
- map 36 Key functions 32-3 Memory) 8 
- POKE and PEEK Keyboard 10--11 Random programs 52-3 

32- 3 Keyboard graphics 34-5 READ 40, 41 , 42 
- sprites 46 REM 20, 56 

Commodore key 1O LET 15 RESTORE 11, 32, 41, 
Control ports 6 Line numbering 20 43, 45 
Conversations 26-7 LIST 22-3, 57 RETURN 11 Acknowledgments 
Corrections 24-5 LOAD 58 Reverse characters 34 Dorling Kindersley would 
CPU (Central Processing Loops 2 1,28-9, 30--1, 56 RND52-3 specially like to thank lao 

Unit) 9 Lost programs 57 ROM (Read Only Graham for his significant 
CTRLIO Memory) 6, 7, 8 contribution to this series. 

Cursor 10, 11, 33 Machine code 8 Rounding numbers off Thanks are also due to Philip 
Memory 33, 45 29 Freebrey and Paul Rubert 

DATA 40-1, 42- 3, 44-5 - screen 36-7 RUN 20, 23 , 26, 56, 57, for technical asssistance, to 
Fred Gill for checking the 

Data banks 40--3 Menus 55 58 text, and to Richard Bird for 
Debugging 25,57 Microprocessor 8 RUN/STOP 10,45 preparing the index. 
Decision points 21, 30--1 MOBs (Mobile Object RVS 34 Commodore Business 
Disk drive 3, 58 Blocks) see Sprites Machines (UK) Ltd kindly 
D ivision 18 Multiplication 18 SAVE 58 helped in the supply of 

Music 50 Screen memory 36-7, 60 equipment. 



I I I I 

,I I I I I 

I(Dfl<~ I 

. Q(lM,eJ(!:11uit 
I 

I PROGRAMMING SERIES 

, STEp· BY ·STEP 
PROGRAMMING 

I 

COMMODORE 
64 i 

I I 
I I THE OK SCREEN-SHOT PROGRAMMING SERIES 

I Never has there been a more urgent need for a series of well·produced, 
straightforward, practical guides to leaming to use a computer. It is in 
response to this demand that The DK Screen·Shot Programming Series 
has been created. It is a completely new concept in the field of 
teach-yourself computing. And it is the first comprehensive library of 
highly illustrated, machine·specific, step·by-step programming manuals. 

BOOKS ABOUT THE COMMODORE 64 

I 
This is Book One in.. series of unique step·by·step guides to 
programming the Commodore 64. Together with its companion volumes, 
it will build up into a self-contained teaching course that begins with the 
basic principles of programming, and progresses - via more sophisti· 
cated techniques and routines - to an advanced level. 

ALSO AVAILABLE IN THIS SERIES 
I 

Step· by-Step Programming for the 1:t. Spectrum 
Step-by-Step Programming for the BBC Micro 

Step-by·Step Programming for the Acorn Electron 
Step·by-Step Programming for the Apple lie 
Step-by-Step Programming for the IBM PCjr 

I PHILCORNES 

/ After taking a BA in Mathematics and Computing, Ph il Carries has been 

I 
involved in system development of computer·based education at British 
Telecom's National Training College. He has been a part·time technical 
autho< since 1978, and has become a regular contributor to personal V computer magazines such as Personal Computer World, Computing 

v~O 
Today and Electronics Today International. He has written a book and a 
large number of articles on programming and using the Commodore 64. 

~ / 1/ ~ 
I 

1--pV ~. I 

11 1 1 1 111111111111111 / ~ 
I I I I I I I I I I I I I I I I I I I I / ~ 

/ ' 





-l? Dfl(~ 
\ 

~ Q(t)(£e.II-
~ PROGRAMMING SERIES 

STEP·SY·STEP ~\ PROGRAMMING l-I-l- I 
I , l-I-

COMMODORE l-t-

~: 64 ......... k-

~ ,\ 
_L l I I I I I I I I I I 

\ PHILCORNES 
, \ ., 
,\ 
.\ 

\- I 

\ 
,\ 

\ 
.\ 

~) 1/ . .-- 1/ 
_c::: r~r- l;,or=- 1// 0 .... "- f.-'F 

,....-r I""'''' +7Y~~ I", i~ 

GUILD PUBLISHING LONDON 
I I I I I I I I I V ~ 
1 1 1 1 1 1 1 1 1 1/ 

/ 



L-____ ~~~------~I I ~~------~ 
I-----------j SCANNING DRAWING LINES 
CONTENTS 

L------10 THE KEYBOARD ~I--_~ 
DEFINING AND USING L-_ -I1J2l CURVES AND CIRCLES 

FUNCTIONS L:J 
BIT MASKING @]~_--l 

L-----ICD I ~I ---IG FILLING SHAPES 
EXTENDING HIGH RESOLUTION 

BASIC DECISIONS 

The D K Screen-Shot Programming 
Series was conceived, edited and 
designed by Dorling Kindersley 
Limited, 9 Henrietta Street, Covent 
Garden, London WC2E 8PS. 

Designer Roger Priddy 
Photography Vincent Oliver 
Series Editor David Burnie 
Series Art Editor Peter Luff 
Managing Editor Alan Buckingham 

First published in Great Britain in 1984 
by Dorling Kindersley Limited, 
9 Henrietta Street, Covent Garden, 
London WC2E 8PS. 

Copyright © 1984 by Dor1ing 
Kindersley Limited, London 

This edition published 1984 by Book Club 
Associates by ammgement with Dorling 
Kindersley Limited, 9 Henrietta Street, 
Covent Garden, London WCZE 8PS. 

The term Commodore is a trade mark of 
Commodore Business Machines, Inc. 

1-
'i:~ ' __ .D . . -. _ .. 

• ~_.""Ill ll .. ~.~~ --

, .. - --- -

. .. -----
L-______ ~~~------~ 

POINT GRAPHICS 

All rights reserved. No part of this 
publication may be reproduced, stored 
in a retrieval system, or transmitted in 
any form or by any means, electronic, 
mechanical, photocopying, recording, 
or otherwise, without the prior written 
permission of the copyright owner. 

British Library Cataloguing 
in Publication Data 

Comes, Phil 
Step-by-step programming for the 
Commodore 64. Bk. 2 
1. Commodore 64 (Computer)--

Programming 
J. Title 
001.64'2 QA76.8.C64 

ISBN 0-86318-041-8 

Typesetting by The Letter Box 
Company (Woking) Limited, Woking, 
Surrey, England 
Reproduction by Reprocolor Llovet 
S.A. , Barcelona, Spain 
Printed and bound in Italy by 
A. Mondadori, Verona 

,J~ 
.--' -
~ 

L-____ ~~~------~ 
NATURAL GRAPHICS 

L-____ ~~~ ______ ~ 
DESIGNING 

CHARACTERS 

L-______ ~~~------~ 
ADVANCED 

SPRITEMAKING 

L-______ ~~~------~ 
SPRITE ANIMATION 



L---~Bf----' 
,-------1~I---------' SHAPING SOUND r-----1GI_--------' 

OVERLAPS L--_-----'~I---------' TRACING ERRORS 
AND COLLISIONS ADVANCED ~ 

SOUND EFFECTS HINTS ANDI-T-IPS------' 

1 Bt----" 
WORKING WITH WORDS 

,-----------j[BI------, '---------1Bf-----' 

PIE CHARTS WRITING GAMES 1 
AND GRAPHS 

r----i,;l I ~I---
'------~I---------'I '----W-R-ITI---1NG GAMES 2 fIE~~~llilfl.1EMl 

BARCHARTS 
r--~-----, .-------10f-_----' 

HIGH-RESOLUTION 
AND SPRITE GRIDS 

'----------'~I-----' 
CHARACTER SETS 

'------@]f--
GLOSSARY 

'---------101-----' ,--------i~f----'I ,----I ---1[;]1-----' 
GRAPHICS WRITING GAMES 3 INDEX 

WITH GRAVITY 



6 

DEFINING AND USING FUNCTIONS 
All computers feature a range of built-in functions, 
commands that can be used to transform one number 
into another in a specific way . Functions produce a 
result that can be used later in a program. SQR (SQuare 
Root) and INT (INTeger) are two examples of 
functions that are pre-programmed on the 
Commodore. When you use these commands, they take 
a number and operate on it to produce another number. 

The range of built-in functions on the Commodore is 
quite wide, but if you want to use a function that does 
not appear in the Commodore's BASIC, you don't have 
to rype out the instructions every time. The 
Commodore allows you to program it to carry out 
specific sequences of calculations. These sequences or 
functions are "called" by the command FN (FunctioN) 
and are defined by the command DEF FN (DEFine 
FunctioN), 

How to write functions for your programs 
To use a function, you must first define what it is going 
to do. That is done with a defining statement. For 
instance: 

120 DEF FNA(X)=4*X+36 

defines a function called "A". The number that a 
function operates on is known as its argument . In this 
case the argument of the function is X. The function 
takes whatever value of X it is given, multiplies it by 4, 
and then adds 36. If in a program you wanted to put the 
number 10 into this function, you would do so by using 
the keyword FN like this: 

200 PRINT FNA(IO) 

This would PRINT the value of the function when lOis 
substituted for X, which is 4*10+36, or 76. 

Once a function has been defined in a program, you 
can use it and its argument just like any other number 
or numeric variable. For example, you can add, 
subtract, divide and multiply functions and their 
arguments together, and even make functions work on 
numbers that are themselves functions. Unless you are 
doing mathematical research you are unlikely to get this 
far, but for more straightforward tasks functions are 
easy to use and helpful in making programs simpler. 

What can functions do? 
The following program shows a simple way in which 
you can put functions to work to produce a numerical 
result which is then PRINTed. It takes the distance of 
a star measured in light years and then converts it into 
'a distance measured in miles. The function that actually 
does the conversion is defined in line 50. It mUltiplies 
the number it is given by 5.88: 

Going to the trouble of using a function here might 
seem a bit unnecessary, and in fact it's unlikely that you 
would use FN in such a simple program. But imagine 
what would happen if you wanted to do the calculation 
a number of times at different places in the same 
program, and with different numbers. It is then that the 
user-defined function really comes into its own. When 
the function is long and complicated, defining it just 
once enables you to make calculation lines much 
simpler to write and check. FN is very much like a one
command subroutine that deals only with numbers. 

Because an expression containing FN actually 
represents a number, you can use it to replace any kind 
of complex calculation. When you write your own 
functions, you are in effect giving the computer 
functions that its resident programming language, 
BASIC, doesn't already have - extending the 
capabilities ofthe language. 



Using functions in a calculation sequence 
Imagine that you want to calculate the cost of something 
that is sold by area - perhaps carpets to cover the floors 
of a house. You would need to multiply the length and 
width of each room to get its area, and then mUltiply 
that by the cost of the floor covering per unit area. If you 
called the length and the width X and Y, and the cost 
per unit area Z, then the cost per room would be worked 
out by: 

(X*Y)*Z 

In the next program, the cost for each room is calculated 
by a function. It is defined in line JO as function C. This 
function is used rigbt at the end of the program in lines 
340 and 350, after values for X and Y have been 
supplied, together with the value for cost per unit area, 
P, which is asked for by line 50: 

Lines 70 to 290 set up a graphics display which 
produces the outline of a room, and then wait for you to 
key in values for width and length (you can use any 
units you like, as long as you also use them for the unit 

7 .. ----~~~ 
area price) . Once you have entered the two figures, the ~ 
program INPUTs the values and then clears the screen. 

The next display takes the cost per unit area - square 
yard, square meter or whatever you have used - and 
then uses it to tell you what it would cost to cover the 
room. As well as using the function C to produce this, 
it uses it again in line 350 to update the running total. 
The program passes around this loop once for eacb 
room in turn. After each pass you will find that the 
TOTAL COST line in the second display will be 
updated to show the running total of all the costs 
calculated: 

CARPET COSTER DISPLAYS 

You can define a function at any point in a program, 
although tbe line containing the function definition 
must be carried out before the function can be used . 
This means tbat it is usually best to put your function 
definitions near to the beginning of your programs. In 
the carpet coster program, using a function makes lines 
340 and 350 simpler; with really complex calculations 
functions are essential for making programs easy to 
understand. 



EXTENDING BASIC DECISIONS 
The BASIC keywords IF and THEN let a program 
operate in one way until the condition specified by the 
IF statement is encountered. When this happens, the 
program is then triggered to follow another course of 
action. But the capabilities ofIF ... THEN do not stop 
at making a straightforward "yes" or uno" decision. By 
combining IF ... THEN with the keywords AND and 
OR you can make the commands tackle much more 
complicated situations. 

Because BASIC is designed to reflect how words are 
used in ordinary language, you can use IF .. . THEN 
just as you would when describing a set of conditions to 
someone. Here is a program which shows how you can 
take IF .. . THEN decision-making to a more advanced 
level: 

Lines 40 to 140 simply set up the display - an orange 
outline box in the middle of the screen. Lines 160 and 
170 specify the starting position and direction for a ball 

Ca keyboard graphics character) inside the box. To make 
the ball appear to move, line 200 continually produces 
new cowordinates. 

After this happens, lines 230 and 240 check whether 
the ball has reached any of the box's walls . They 
examine the ball's position to see if the row number is 
one below the box lid or one above the box bottom, or 
if its column number is one more than the left side or 
one less than the right side. If any of these conditions is 
met, lines 230 and 240 reverse the ball's vertical or 
horizontal motion, whichever is necessary. 

How to add decisions together 
You can now move on a stage further from the previous 
program to see how more conditions can be 
incorporated in an IF ... THEN statement. The next 
program uses AND to test whether or not a series of 
statements are true all at the same time: 



This program is very similar to the first one, except that 
now there are two sets of lines that PRINT a graphics 
ball at changing row and column numbers. And in this 
program, each of the balls starts at a random co
ordinate which is defined in lines 140 and 160. The balls 
are then animated by lines 180 to 380. This display 
shows what happens if you delete the erasing statements 
in lines 190 and 210: 

The second ball is made to set off in a different direction 
from the first and at a slightly different vertical speed, 
so that the two balls have a greater chance of meeting. 
Otherwise, they would just follow eacb other around 
the box in the same tracks. Line 320 is the one in which 
the computer makes a multiple decision about the 
position of both balls. Without this line, when the balls 
met, they would just carry on through each other as if 
nothing had happened. This isn't a very convincing 
simulation of what would really occur, so line 320 
decides whether the balls are close enough together to 
have collided. The line includes an IF ... THEN 
decision with three ANDs to see if X I and X2 are 
sufficiently close together, and then if Y 1 and Y2 are 
also within the same limits. It does this by taking X2, 
for example, and then deciding whether it is smaller or 
equal to XI + I and simultaneously greater or equal to 
XI-I. 

If all these conditions are met, then it means that the 
two balls are either occupying the same position or are 
at adjacent positions, in which case they can be assumed 
to have collided. A bleep is sounded and then the whole 
process starts again. 

IF . .. THEN in games programming 
So, as you've just seen, IF ... THEN is very useful if you 
want to know whether or not two characters are 
occupying the same screen location. This is often used 
in programs in which one character is "shot down" by 
another: 

9 

This program PRINTs a fire-base at the bottom of the 
screen. It fires upward arrows at a horizontal target that 
repeatedly flies across the screen. Line 180 checks 
whether the screen co-ordinates of the upward arrow 
are the same as those of the target. If they are, the 
program jumps right back to line 10 and begins again. 
If not, it jumps back to line 70 and moves all the 
characters on one space. Line 130 checks whether the 
upward arrow has reached the top of the screen, and 
line 120 checks whether the target has reached the right 
edge. 

When you RUN the program, you should find that 
the fire-base's arrow scores a direct hit on the horizontal 
target's fourth pass across the screen. This happens 
because the program is working with fixed figures. If 
instead you use the following line: 

60 X=INT(RND(0)*10+1):Y=19 

the results become unpredictable and will change with 
each RUN: 

FIRE· BASE DISPLAY 



10 • ________ ~ 

SCANNING THE KEYBOARD 
To key in new information while a program is RUNning 
you have - until now - used the command INPUT. 
With INPUT you must press RETURN after keying 
the information in. This technique has its 
disadvantages. Even when you know that it's necessary 
to use RETURN, you can occasionally forget, and 
using two keys in sequence also slows programs down. 
It is much more useful if you make the Commodore 
respond without waiting for you to press RETURN, 
just as arcade machines respond every time you press a 
button. To make the Commodore do this, you can use 
the keyword GET. 

How the computer recognizes characters 
As you may have found OUt from Book I, all the 
symbols that the Commodore recognizes are stored as 
code numbers from 0 to 255, according to the ASCII 
(American Standard Code for Information 
Interchange) system. The computer uses this coding 
system every time you INPUT a number or string, to 
determine its content. There's a complete ASCII chart 
on page 61 , but you can quickly get the computer to 
PRINT the numbers and letters with their codes by 
keying this in: 

10 FOR N =48 TO 90 
20 PRINT N;" - ";CHR$(N), 
30 NEXTN 

A partial ASCII chart then appears on the screen: 

ASCII CODE CHART 

The next program uses the two BASIC commands GET 
and ASC to respond when you press character keys by 
taking the character's code, changing it and then 
PRINTing the character specified by the new code. The 
result is a keyboard encoder which produces a coded 
message as you type: 

In this program line 20 PRINTs a heading, and then 
line 30 uses GET to scan the keyboard. Any character 
that is entered by a key-press when the scan takes place 
is labeled with the variable A$. If you don't press a key 
during this time, then the variable is given a zero value. 
The second part of line 30 tests to see if the variable has 
a zero value, and if it has, the program loops back again 
so that in effect the keyboard is continually scanned. 

When the computer detects a key-press, program 
control is passed to line 40. If the key pressed is not a 
letter, lines 40 and 50 pass control to line 90 which just 
PRINTs the character detected. If the key-press is a 
letter, line 60 converts this character to its ASCII 
number using the ASC command (this works like 
CHR$ in reverse). It then makes this the value of the 
variable A. Lines 70 and 80 then operate on A to encode 
it into a new letter, and then convert it back to a 
character, A$, which is PRINTed by line 90. 

This program seems to PRINT nonsense when you 
type a message into it. There's not much point in a code 
that can't be decoded, and you can quickly turn your 
program into a decoder by changing the following three 
lines: 

20 PRINT "TYPE DECODER" 
60 A=ASQA$)-2 
70 IF A<65 THEN A=A+26 

To see this at work, try keying in the following when the 
decoder program is RUNning: 

VJKU KU C VGUV OGUUCIG 

How to make the function keys work 
As well as using GET to scan for the letter and number 
keys, you can also use it to find out if any of the function 



keys have been pressed, because each of these keys has 
an ASCII value although normally they do not PRINT 
anything on the screen. The ASCII values of the 
function keys range from 133 to 140, as this program 
will demonstrate when you RUN it: 

Every time you press one of the function keys, its 
identity appears on the screen. This may not seem very 
useful, but it actually shows you how these keys can be 
used in programming. If you use GET you can make the 
function keys control programmed operations. You can 
have a total of eight separate functions from, for 
example, color setting to sprite animation. 

Testing your reactions with GET 
The Commodore's "jiffy" clock, detailed in Book I, is 
a three-byte counter that is incremented 60 times per 
second to keep a record of the time elapsed since the 
computer is switched on. Also built into the 
Commodore are some simple facilities that enable you 
to access the clock and use the numbers that it stores. 
Try this direct command: 

PRINTTI 

What you see when you do this is a number that tells 
you how many sixtieths of a second have elapsed since 
you started up the computer. Now type in another line: 

PRINTTI$ 

This time what is PRINTed is the same information but 
converted into hours, minutes and seconds, with two 
digits for each. So 013000, for example, means that it is 
exactly I V, hours since you started using the computer. 
As well as being able to read the clock in these two ways, 
you can also reset it to zero, or indeed any other number 
you want, by this kind of command: 

TI$ = "000000" 

This sets the clock to zero. 

11 

YO" = "" GET'" __ """ .h' ... ,~ 
time the speed of anything during a program. g:,~~~ 
the simplest ways of doing this is in a reaction test 
program. Here's one that produces a random lener and 
then times how long it takes you to find and press the 
key that it has selected: 

Lines 10 to 60 clear the screen, PRINT the program 
title on the screen, give a two-second pause and then the 
game begins. Line 70 generates a random letter. This is 
done by CHR$ which converts a randomly generated 
number from 65 to 90 into a single character that 
becomes A$. Lines 90 to 110 PRINT a message asking 
you to locate the random letter and set the clock to zero. 
When you press the right key, the value of the clock is 
read and PRINTed by line ISO. The calculation: 

INTCTI/0.6)/100 

is used to convert the time to seconds and cut the answer 
to two figures after the decimal point. If you can get a 
time score below 0.5 seconds, you're probably a touch
typist! 



12 

BIT MASKING 
On page 8, you encountered two new keywords, AND result in every bit position where there is a 1 bit in both 
and OR, and you saw there how they can be used in of the numbers being compared. The OR operator puts 
decision-making. But there is more to AND and OR a I bit in the result in every position where there is a I 
than this. They are actually both examples of "logical bit in either of the two numbers being compared. 
operators", keywords that combine a pair of numbers in To take an example, if you want to set bit 4 in a byte 
special ways. To understand how the Commodore is to a value of I without affecting the rest of the byte, you 
programmed to produce high-resolution graphics could make the computer do it like this: 
involving plotting points or drawing lines, you will need 

200 BYTE=BYTE OR 16 to know how to use AND and OR to transform 
numbers into patterns on the screen. The decimal value of bit 4 is 16 (2 i 4). If the byte has a 

When you PEEK a value from a register, you can value of say, 164, the line will work like this: 
simply treat its byte as a single number, disregarding HOW OR WORKS 
the fact that it is actually 8 separate binary bits. 
Similarly, you can POKE a whole byte into a register so The OR function gives a result bit of J when either or both bits it is 

that all the bits that the register previously held are lost working on have a value of l. 

from memory. These techniques are fine for some Bit number 7 6 5 4 3 2 I 0 
applications, but fairly soon you will find that you want BYTE= I64= I I I 0 II I 0 I 0 11 1 0 I 0 I 
to set or reset a single bit within the memory without 

16= I 0 I 0 I 0 II I 0 I 0 I 0 I 0 I OR 
changing all the other bits in its byte. With the 
Commodore, this is a crucial part of advanced RESULT= l l l o II II I 0 II I 0 I 0 I 
programming. To do it, you need to use AND and OR 
in a technique called "bit masking" . Bit 4, which was originally 0 or "off" , is now 1 or "on", 

How to make a Commodore alter a single bit 
while the rest of the byte is unchanged. 

Converting the numbers to binary makes the effect of 
You may remember from Book I that V+21 (where V the OR function quite easy to follow. If you convert it 
is the VIC chip base address of 53248) is the register that back to decimal, it gives 164 OR 16=180, a result that 
controls which of 8 sprites are switched on and which you can check by getting the computer to PRINT it out . 
are switched off. In general, to set or " turn on" any specific bites) in a 

byte you need to OR the byte with the number that has 
SPRITE CONTROL BITS the required bit or bits set. Conversely, to reset or "tum 

Each sprite is turned on or ofCby a single bit in register V+ 21 of the off' given bites) in a byte, you need to AND the byte 
VIC chip. with 255 minus the number that has the required bit or 

bits set. So, taking the previous result of 180, if you 

Bit Sprite controlled Decimal value 
wanted to reset bit 5 you would need to AND 180 with 

number by bit of bit the value 255-32=223: 
0 0 I I I 2 HOW AND WORKS 

2 2 4 The AND function gives a result bit of 1 only when both bits ir is 

3 3 8 working on have a value of 1. 

4 4 16 
5 5 32 Bit number 7 6 5 4 3 2 I 0 
6 6 64 BYTE=180= I I 1 0 II II 10 II 1 0 10 I 7 7 128 

255-32=223 = I I II 10 II II II II II l AND 

RESULT= I I 1 0 10 II 10 II 1 0 10 I 
In order to be able to control the individual sprites 
independently, you need to control the individual bits 
of the V + 21 register, turning them on or off in a Turning sprites on and off 
program. So much for the theory. To see how AND and OR can 

This is where the AND and OR operators come in. be used in a program, try out the following listing. It 
These rwo operators work by comparing two numbers uses VIC chip location V + 21 together with INPUTs 
bit by bit and producing results based on the from the keyboard to turn 8 sprites on and off 
comparisons. The AND operator puts a I bit in the instantaneously as you choose: 



Seeing computer logic at work 
The next program allows you to see the calculations that 
bit masking carries out, this time PRINTed on the 
screen. When you RUN it, you are asked for three 

13 

INPUTs. The first is the choice of AND or OR 
operator, and the other two are ,the numbers that the 
chosen 'operator is to operate on. The program then 
converts your decimal numbers into binary, performs 
the operation and converts the result back into decimal: 

AND/OR CALCULATOR PROGRAM 

This program uses a function at line 510 which will be 
new to you. This is SGN, and it is in the line that 
converts from decimal into binary. The decimal 
number is contained in variable V and the binary bit 
number to be PRINTed is in the variable C. The 
expression: 

VAND (2 j C) 

takes the Cth bit from the value of V . If the Cth bitis set 
to 1 then 2 j C is returned. If the Cth bit is reset to 0 
then the value 0 is returned. 2 t C and 0 then need to be 
translated into 1 and 0 for PRINTing. This is where 
SGN comes in. It returns the value 1 if its argument is 
positive, -I if it is negative and 0 if it is O. In this 
program it therefore only returns two answers, 0 and I: 

AND/OR CALCULATOR DISPLAY 



14 _---------

HIGH RESOLUTION 
In all the graphics you have seen so far, the displays 
have used only predefined characters in low (text) 
resolution, or sprites. But as well as these two graphics 
modes, the Commodore also has a very powerful high
resolution graphics facility. Now you have seen how bit 
masking works you will be able to set up the high
resolution screen; io the followiog pages you will see 
how to use it. 

Screen layout 
The Commodore's high-resolution graphics screen is 
based on a rectangular grid of 64000 individually 
controllable pixels, or picture elements. These are laid 
out as 200 rows with 320 pixels on each row. (A 
complete high-resolution screen grid is shown on page 
58.) Each pixel on the screen requires a single bit in 
memory to control it. If the bit is set to I, then the pixel 
is lit, while if it is reset to 0, the pixel goes blank. At I 
bit each, the 64000 pixels require 64000/8 or 8000 bytes 
of memoty. These 8000 bytes of memory are controlled 
by the VIC chip, the same chip that controls sprites. 

To produce high-resolution graphics, you need to 
take over an 8oo0-byte chunk of memory. 
Unfortunately, the best area of memory for this is 
already used for storiog your BASIC programs. 
However, they don't have to be stored here, and you 
can easily make the BASIC ROM store them 
somewhere else. 

How to move the BASIC storage area 
Rearranging program storage is quite simple, as the 
followiog screen shows. (If you do have any problems at 
all with high resolution, just press RUNISTOP and 
RESTORE together. This will return you to low 
resolution so you can check your programs for bugs.) 

MOVING PROGRAM STORAGE 

It is very important to remember that before you start 
working on programs with high-resolution graphics 
you must type io this series of commands. If you don't, 
your programs may well "crash" J because the computer 
will try to store your programs and high-resolution 
graphics in the same place. 

All the rest of the programs io this book are written 
assuruing that you have already keyed io these 
commands. 

One further poiot to note here is that this sequence 
must be typed io as direct commands, not as part of a 
program. Because the commands move several memory 
pointers that BASIC uses, if you key io the commands 
as a program, BASIC will not know where the rest of the 
program is. 

Now to continue. All of the facilities for high
resolution graphics that follow in this book will use one 
or more of a series of subroutines. You will encounter 
these as you go along; they all have non-overlappiog line 
numbers so that they may all be used as one program. If 
you store them together on a tape or disk, you will be 
able to call any of the subroutines as required. 

You can add each successive subroutine to the stack 
you have SAVEd by keying it io, LOADiog the stack 
accumulated so far, and then pressiog RETURN with 
the cursor at each of the new subroutine's lines. This 
will combine the two programs. Don't LIST the stack 
of subroutines before you do this or the new one will 
scroll irretrievably off your screen. 

How to clear out the memory 
The first pair of subroutines needed to set up the high
resolution screen tells the VIC chip where to find the 
high-resolution graphics memory, and how to clear the 
screen by emptyiog part of the memory: 

CLEARING THE MEMORY (SUBROUTINES 1- 2) 



Lines 100 and 110 tell the VIC chip to use the high
resolution display mode and tell it that the 8000 bytes of 
memory for this start at location 8192. The other 

. subroutine starts at line 200. Lines 200 and 210 clear tbe 
screen by POKEing zeros into every bit in the 8000 
bytes. Lines 220 and 230 then go through another 1000-
byte block of memory from location 1024 to 2023 
setting each byte to the value of a variable called COL. 
This block stores the display codes of the ordinary 
characters and predefined graphics shapes that appear 
on the screen. In high-resolution mode this block of 
memory has a new function. It determines the colors 
used to draw the pixels. Having 1000 bytes of color 
memory and 8000 bytes of pixel memory means tha t 
each byte of color memory controls the foreground and 
background color for 8 bytes of pixel memory. 

In each byte of color memory bits 4-7 control the 
foreground color of an 8x8 pixel block, while bits 0-3 
control its background color. By POKEing selected 
numbers into the color memory with the variable COL 
you can create any foreground and background color 
combination. 

HIGH RESOLUTION COLOUR CODES 

To select any of these combinations, two color codes must be added 
together and POKEd into the screen memory. 

Color Foreground code Background code 
Black 0 0 
While 16 I 
Red 32 2 
Cyan 48 3 
Purple 64 4 
Green 80 
Blue 96 
Yellow 112 
Orange 128 
Brown 144 9 
Ligblred 160 10 
Dark gray 176 11 
Medium gray 192 12 
Lighcgreen 208 13 
Light blue 224 14 
Ligbtgray 240 15 

If you wanted to draw in white on a red background, the 
color combination would be 16+2, or 18. This value 
then needs to be POKEd into all 1000 locations of color 
memory. This is what lines 220 and 230 of the previous 
program do. Clearing the memory and setting up color 
is quite time-consuming, with 9000 separate POKEs to 
be carried out. The only way you can speed this up is to 
use machine code, so an alternative to the BASIC 
subroutine is shown at the end of this page. The next 
screen shows the process in BASIC; if you use machine 
code, clearing happens so quickly that you won't see 
this display: 

IS 

HIGH RESOLUTION DURING SETTING UP 

Now that you have got a program that can move the 
BASIC storage area, switch the VIC chip to high 
resolution, clear the screen and set its colors, you are 
ready to add some further subroutines that will make 
the computer produce graphics. For safety, you should 
SAVE the subroutines so far. If you don't do this, don't 
type NEW before moving on! 

Setting up high resolution with machine code 

The screen below shows a machine code alternati\'e to 
the BASIC high-resolution subroutine 2. Its numbering 
is fully compatible with all the high-resolution 
subroutines in this book, so you can key it in as a single 
self-contained unit without having to understand how it 
works. 

The listing here is actually a BASIC program which 
calls a machine code operation by using the command 
SYS. The DATA statements are used to POKE 
numbers into a particular set of locations, and these set 
up the high-resolution screen. Once the machine code 
has been carried out, the computer returns to 
functioning in BASIC as before. 

SUBROUTINE 2 (MACHINE CODE 



16 ••••••••• _ 

POINT GRAPHICS 
On all microcomputers, graphics are produced by 
lighting up a specified series of pixels. To light an 
individual pixel with the Commodore, you need to 
work out which of the 8000 memory locations controls 
the pixel you want to light, and then which bit within 
that location's byte needs to be set to I . 

Because the 64000 pixels are arranged in 200 rows of 
320 columns, any pixel on the screen can be specified by 
a row and column number - just as a text position can. 
The pixels are usually numbered from 0-319 across and 
from 0-199 down, so the lowe.st pixel number (8192) is 
at the lOp left corner of the screen . 

HIGH-RESOLUTION LOCATIONS 
The high-resolution screen has a total of 64000 separately controlled 
points, running from 0 to 319 horizontally and from 0 to 199 
vertically. This chart shows the bytes that control just the top left 
area of the screen (a fuj i rid a ars on a e 58 . 

Horizomal co-ordinate ,., 8·15 1~23 14-)1 312·319 

8192 8200 8lIlS 82 16 8504 

8193 8201 8209 8217 8505 

8l9.J 8,., 8210 8218 8506 

~ 8"3 8203 8211 8219 8507 

.S 8196 .204 8212 8220 8508 

~ 8197 820S 8213 821 1 85" 
8 "98 8206 ~214 8122 SSlO 

~ "99 82')7 8215 8213 85 11 

>! 8512 8520 8528 85,. .,,' 
8513 8521 85,. 8537 8823 

10 8514 8512 "'" 8538 882' 

199 IS879 15887 15895 15903 161\11 

If you had to store all the information for the complete 
screen so that you could look up the required byte, a 
huge amount of memory would be needed. 
Fortunately, you can avoid this by using two equations. 
The first equation tells you which byte the pixel is in, 
given its co-ordinates, and the second gives you a bit 
mask value. You can take this value to set a particular 
bit to I by using the bit masking techniques from pages 
12-13. The two equations are ready for use in the next 
set of subroutines. You should key this set into your 
computer and then LOAD the first set from page 14. 
You can then merge the two sets by using the RETURN 
key to re-enter each line in the new set. 

You don't have to understand exactly how these 
subroutines work. They're just a set of calculations for 
identifying bits and turning them on and off as 
required. The point plotter lets you plot pixels with 
program loops instead of individual POKEs: 

The point ploner contains three separate 
subroutines. The first one, starting at line 300, 
calculates the byte and the mask values for the pixel at 
screen co-ordinates LX,L Y. This subroutine is called 
by the two other subroutines. The first one at line 400 
uses these calculations, and the value of the variable 
COL, to plot or light the pixel at LX,LY in the chosen 
color. The last subroutine in the program starts at line 
500. This unplots or turns off the pixel. 

At this point, it will again help if you SAVE these 
subroutines after adding them to the previous two, as 
they will be used frequently on the following pages. 

Using plotting in graphics 
So, assuming that your Commodore now has a total of 
five separate subroutines in memory, type in and RUN 
the following program which brings them into action: 

DRAWING PARALLEL LIKES 



Line 10 sets up the high-resolution screen. Line 20 sets 
COL to 18 to produce white lines on a red background, 
and also clears the screen. Line 50 calls the subroutine 
that plots a pixel and this is contained inside a double set 
of FOR ... NEXT loops in lines 30 to 70. These two 
loops generate the values for LX and L Y so that the 
program draws five horizontal lines made up of 
individual pixels: 

PARALLEL LINE DISPLAY 

The END statement in line 80 is needed as all of the 
subroutines follow this program. Without END the 
program would RUN on into them, disrupting the 
result. 

The next program shows how you can link lines up by 
using these subroutines. This time, lines are ploned 
vertically and diagonally as well. 

As the program is longer than nine lines, it will not fit 
into the space below the subroutines as the last one did. 
To overcome this problem, the program is written with 
higher line numbers than the subroutines, starting at 
line 1000: 

17 

How to change STEP in a loop 
You will probably have noticed that the previous 
programs all draw lines by plorting a series of points in 
adjacent pixels. This is done by using FOR ... NEXT 
loops. You can modify these programs so that instead of 
producing solid lines, they produce dotted ones. This is 
done by setting a STEP size so that the program skips 
some of the pixels. You can see this in the triangle 
program if you make the following line changes: 

1030 FOR LY=SOTO ISO STEP 5 
1060 FOR LX=50 TO ISO STEP 5 
1080 FOR C= ISO TO 50 STEP -5 

Now you can see that the display is made up of 
individual pixels, each 5 units apart (you can use this 
technique to plot stippling inside shapes). Otherwise, 
the outline is the same: 

: .... . . . . . ..... . ... :. 

Because the program now has only one-fIfth as many 
pixels to plot, it RUNs considerably faster . 



18 

DRAWING LINES 
Now you know how to plot pixels on the screen, you can 
draw lines and simple shapes by using FOR ... NEXT 
loops. However, using the techniques decribed on the 
previous two pages, you can only draw lines vertically, 
horizontally or diagonally at 4S degrees. To produce 
graphics, you need a way of drawing lines at any angle. 
This is what you are going 10 find out about next - a 
subroutine that can draw a line between any pair of co
ordinates on the screen. 

The drawing subroutine 
The basic subroutine for drawing lines appears in the 
screen below. You should add this to the subroutine 
program you have on tape or disk, so that you now have 
six subroutines altogether: 

Don't worry if you can't understand the lines here. The 
subroutine is simply a collection of equations that work 
out where a line of pixels should be plotted . It uses two 
sets of co-ordinates, LX,LY and NX,NY, and draws a 
line from the last co-ordinate position to the new one. It 
also updates the last LX and L Y variables, making 
them equal NX and NY so that another line may be 
drawn, starting from the position where the previous 
one finished. 

The keyword ABS which appears in lines 600 and 610 
gives the absolute value of any number or numeric 
variable that follows it. In this subroutine it has the 
effect of making any value of NX-LX or NY-LY 
positive, so the program can use positive figures to 
produce lines. 

Pin and string patterns 
Now that you have all six subroutines available, try 

adding thefollowing lines, and then RUN the complete 
program to see the display appear: 

Producing this kind of pattern is quite straightforward 
because there is a simple mathematica!link between the 
end points of the various lines. If you vary the numbers 
used, the display changes. But what if you want to draw 
something that doesn' t fit a simple equation - a space 
shutde, for example? For this, you need a subroutine 
that draws lines that you can specify individually to give 
any shape you want. 

A high-resolution line machine 
You can use the same method for storing line 
information as you would use for storing notes in a 
sound program - READing a section of DATA. In the 
next program, the DATA has been written in to produce 
a design. You can think of this program as producing an 
imaginary "pen". As with a rea! pen, it lets you lift it up 
from the screen, put it back again, or move it in either 
up or down positions: 



The program also gives you the option of changing the 
colour of the "ink", and again this is controlled by 
numbers in the DATA statements, which change the 
value of the variable COL. 

How the line machine works 
In this program, all the numbers in the DATA 
statements are split into pairs. If both the numbers are 
greater than or equal to zero, then the pen is moved in 
a straight line to the position specified by the pair of 
numbers. If the pen is down, then a line will appear. 

For all other options, the first of the pair of DATA 
numbers is -1. The second number then tells the 
computer what to do. If the second number is 1, the pen 
is moved down onto the screen. If it is 0, the pen goes 
up. If the number if negative, the number that follows 
the minus sign fixes the variable COL, and hence the 
ink color. Finally, if the second value is 2, the program 
finishes by going into an endless loop in line 1070. The 
program terminates like this so that the display will not 
be spoiled by the READY message appearing on the 

19 

Remember that to LIST the program to make changes 
if there are any errors in your version, you will have to 
return to the low-resolution display. You can do this by 
pressing the RUN/STOP and RESTORE keys 
simultaneously, resetting the Commodore to its state 
before the program was carried out. 

How to change the size of a display 
You can alter the line machine program so that it 
produces the same display but at a different size. Try 
keying these lines into the program: 

600 NX=Nx/2: NY=NY/2 : GT=ABS(NX-LX) 
1090 IFPEN=O THEN LX=Nx/2 : LY=NY/2 
: GOTO 1030 



~ ________ • 20 

CURVES AND CIRCLES 
Now that you know how to tackle graphics with straight 
lines, you can get your computer to draw some curves 
and circles. On the Commodore, there's no CIRCLE 
command to help you here, instead you need two new 
keywords, SIN and COS. Using these two commands 
you can produce some spectacular graphics with quite 
shon programs. 

How the Commodore draws a circle 
If you sketch out part of a circle, you can relate each 
point on the circle to an angle at the circle's center. 

CIRCLE CO-ORDINATES 

Point on circle 

You can write the distances X and Y in another way, as 
multiples of the angle and SIN or COS. Every angle has 
its own value of SIN and COS, and you can write the co
ordinates of any point on the circle like this: 

R*COS(A),R*SIN(A) 

Once you know this, you can stan your Commodore on 
curves and circles. The next program produces a circle 
with a radius of 80 pixels. Remember to shift BASIC (if 
you haven't done so already) and LOAD the six high
resolution graphics subroutines before you RUN it: 

CIRCLE PLOITING PROGRAM 

Why computers don't work with degrees 
In this first program, the angle has to vary from 0 to a 
full circle, which is 360 degrees. But as you will 
probably have noticed, there's no mention of 360 in the 
program - instead the loop runs from 0 to 2*1T, with an 
odd-looking STEP value of 1T/120. The reason for this is 
that the Commodore doesn't use degrees at all. Instead 
it measures angles in radians, just a different but more 
logical way of doing the same thing. A full-circle angle 
of 360 degrees is exactly equivalent to 2*11 radians. 

The sym bol1T (pronounced "pi") is a Greek lener that 
is produced on the Commodore by pressing SHIFT and 
the key next to RESTORE. It's an important 
mathematical constant, which has a value of 
3.14159265 . . . (you can see this by keying in PRINT 1T). 
This figure is the ratio of the length of a circle' s 
circumference to its diameter. All you need to 
remember is that there are 2*7T radians in a circle, so 
that 1T12 radians are a quarter of a circle, 1T14 an eighth 
and so on. 

The aU·purpose circle subroutine 
You can now add another subroutine to the six that you 
already have so your Commodore can produce any 
circles you want. The subroutine is very similar to the 
previous program, except that instead of just plotting 
points around a circle, it draws lines between them to 
produce a complete outline. 

This new subroutine begins at line 700. To use it, you 
need to give the computer three numbers. These are the 
values of the co-ordinates for the center of the circle, 
XC and YC, and the length, in pixels, of the circle's 
radius, RAD: 



for use later. Your set of high-resolution graphics 
subroutines is now nearly complete. 

Pattern design with the circle subroutine 
If you select the co-ordinates of a circle's center at 
random, you can make the computer build up patterns: 

Lines 1020 and 1030 produce a pair of X and Y co
ordinates at random so that neither is within 50 pixels of 
the screen edges. It is set like this so that the program 
can then draw circles up to a radius of 40. The loop at 
lines 1040 to 1060 repeatedly draws circles with the 
same center, but with gradually increasing radii. Line 
1060 starts the whole process off again but with a new 
pair of random co-ordinates. 

You can try altering the maximum radius of the circle 
and the STEP size between radii by changing the 
figures in line 1040 to: 

1040 FOR RAD= 10 TO 40 STEP 6 

or even STEP 3, which draws smaller and tighter 
patterns. 

21 .............. ~~ 
Programming wandering curves ~ 
When you keyed in the circle subroutine, you might 
have thought that it seemed more complicated than 
really necessary. You would have been quite right. In 
fact, not only is this subroutine capable of drawing 
circles, but it can also draw arcs, or parts of circles. To 
use this subroutine to draw an arc, you need to give the 
computer values for XC, YC and RAD just as for 
circles, but you also need to specify values for two extra 
variables, Al and AZ. These extra variables control the 
start and finish angles that the arc will be drawn 
between. These angles are measured in radians working 
clockwise from the positive X axis. When you use the 
subroutine to draw arcs you need to call it with GOSUB 
710 instead of GOSUB 700. 

Here is a program that uses GOSUB 710 to draw 
semicircles at random, each of which can go up, down, 
left or right across the screen. It does this by picking a 
random number froni 1 to 4 inclusive, and then using 
this number to set the direction in which the semicircle 
will be drawn: 



~ ________ . 22 
FILLING SHAPES 

So far YoU have built up quite a comprehensive graphics 
"toolkit" in the form of subroutines that will plot and 
draw a range of shapes. Now you can finish off the set by 
adding a last one which fills in the shapes you can draw 
with the others. The subroutine you'll use here can 
work with almost any closed shape to fill it with solid 
color. The word "closed" means that the shape must be 
bounded by a completely unbroken line of lit pixels - a 
dotted circle, for example, can't be filled in this way, 
but a drawn one can. 

The shape-filling subroutine 
To start you off, here is the subroutine which you 
should add to your stack of seven: 

To use this routine, you need to set two variables, FX 
and FY. These are any co-ordinates within the area that 
you wantto fill- it doesn't matter where in the area they 
are. You can then call the subroutine with GOSUB 800 

and it will fill in the area you have selected. 
Now for a word of warning. By this stage, you will 

have seen that the Commodore plots and draws quite 
slowly with BASIC. The filling routine is no faster than 
the drawing routine, and because there are so many 
more pixels to deal with, shape filling takes a long time. 
However, as you will see, the resul ts make the waiting 
worthwhile. 

How the shape filler works 
Although the shape filler looks complicated, what it 
actually does is quite simple. Lines 810 and 820 move 
the position of the variable FX to the left from its 
starting point until the computer finds a boundary. 
Lines 830 to 890 then move back from left to right, 
plotting pixels as they go to fill in a horizontal line. 
While pixels are being plotted from left to right, lines 
850 to 890 are also checking the pixels above and below 
to see if they will have to be plotted later. 

IT pixels need to be plotted above and below the 
current line, then the co-ordinates of the left-hand ends 
of these lines of pixels will be stored by program lines 
940 to 960. The co-ordinates are put into an "array", a 
method for storing information so that each item can be 
retrieved separately (arrays are explained on pages 52-
53). When the end of the current line has been reached 
(that is, when the routine has encountered a boundary 
line on the right), a pair of X,Y co-ordinates is 
recovered from the array and the process begins again, 
starting from these new co-ordinates. 

To see the shape filler in action, key the following 
program onto the end of the completed set of eight 
graphics subroutines, and then RUN it. Remember as 
usual that you will need to shift BASIC if you haven't 
done so already: 



In this program, line 1000 sets the foreground color to 
yellow and the background to blue, switches the 
machine to high resolution and clears the screen. Lines 
1010 to 1040 use the six lines of DATA at the end of the 
program as co-ordinate pairs and draw the outline ofthe 
lunar lander. Line 1050 then sets FX and FY to a point 
within the outline. Line 1060 is only included to 
prevent text messages spoiling the display at the end. 

Filling in the space shuttle display 
The next program takes the space shuttle from page 19, 
fills it in and then adds a moon to it (this is programmed 
by lines 1120 to 11 50). The co-ordinates between lines 
1110 and 1116 determine which parts of the shuttle are 
to be filled in. In this program, there are four co
ordinate pairs specified - one for the crew's observation 
window, two for the wings and one for the tail. The 
moon filling is specified by line 1160. It's drawn in a 
different ink color, set in line 1120. Again, the program 
finishes with an endless loop: 

23 

Here are two displays of the shuttle filler in action. In 
the first one, the fill is still under way, in the second, it's 
complete: 



••••••••••• 24 

NATURAL GRAPHICS 
On pages 20-21 , you saw how the Commodore's BASIC 
commands SIN and COS can produce circles and arcs. 
These are not the only uses to which you can put these 
two functions. If you take a look back at the first 
program on page 20, the one that plotted a circle with 
dots, you can make just a few small changes to produce 
quite different results. To do this you will need all the 
eight high-resolution subroutines again, so if they are 
not already in memory, LOAD them into your 
com~uter before you start. 

How to throw a circle out of step 
The circle program on page 20 produces a circle because 
the X and Y co-ordinates vary in exactly opposite ways. 
When X is zero, Y is at its maximum value and vice 
versa. What happens if you deliberately make them 
vary at different rates? Make just one change to the 
program - alter the angle after the SIN command by 
changing line 1030 to: 

1030 LY=80*SIN(Z*A)+ 100 

Here's the display it produces (you can set the colors to 
any combination you like): 

This shape is called a "Lissajous figure" after the 
French physicist who first investigated them. The 
number of loops in the display depends on how many 
times the angle after SIN has been multiplied. 

You can adapt the circle program to produce an 
infinite variery of results like this. Here's another way of 
changing it: 

1010 FOR A=O TO 2*1T/720 
1030 L Y =80*SIN(5*A)+ 100 

This time the angle has been multiplied by 5, as you can 
tell by looking at the display: 

LISSAJOUS FIGURE DISPLAY 

Programming some complex curves 
Now you can make a different sort of change to the 
program. Try keying in these lines: 

1010 R = O: FOR A=O to 2* Tf STEP 1T/480 
1020 LX=(R*COS(A)*R*SIN(0.5*A))+ 160 
1030 LY=8*R*SIN(A)+100 

Here's what it looks like if you RUN it after changing 
colors as well: 

program will continue drawing if you increase the 
range of angle values. The next program roughly 
doubles the range. It also increases the RUNning speed 
by drawing short lines instead of plotting individual 
points. Each new position calculated is the starting 
point for the line to be drawn on the next pass around 
the FOR ... NEXT loop: 



You can experiment with this program to produce a 
whole variery of more complicated sbapes. Here's one 
which has a long RUNning time: 

25 ••••••••••• 

This design is produced by changing colors again, and 
by altering lines 1030 and 1040 so that they now read: 

1030 FOR A=O.OOI TO 1000 STEP 0.1 
1040 I=R*COS(A)*SIN(0.98*A) 

Here SIN and COS are working on very slightly 
different angles. The shape starts off by being quite 
open, but very gradually the computer mls it in until it 
becomes the filled ball on the previous screen. The 
patterns it produces as it develops are just as interesting 
as the fmal design itself. Again, you can try changing 
these two new lines to produce different shapes. 

How to draw a graph of SIN and COS 
As a final example of natural graphics, here is a program 
which actually shows you how the values of SIN and 
COS vary against each other for angles between 0 and 2* 
"radians - 0 on the left-hand side and 2*" on the right. 
The values of SIN and COS both vary between -I and 
+ I; in this program they are exaggerated so that you 
can see the variation more easily: 



26 . ________ _ 
DESIGNING CHARACTERS 

If you look closely at the screen, you can see the pixel 
pattern that makes up each symbol or character. Each 
of the characters is made by displaying a different 
arrangement of pixels wi thin an 8 x 8 grid. The letter X, 
for example, looks like this: 

SINGLE CHARACTER 

These pixel patterns are stored in an area of ROM so 
that the character pattern is ready for use as soon as the 
Commodore is switched on. Inside this "character 
generator" ROM, each character pixel is represented by 
a single bit of memory. An 8 x 8 grid therefore needs 8 
bytes of memory, so that an entire character set of 256 
items takes up 2K (2048 bytes). With the Commodore, 
you can design your own characters, replacing the 
whole set if you want to. 

How to change the character patterns 
Given that all the pixel patterns are stored in ROM, you 
may be wondering how you can change them at all. 
What you have to do is point the Commodore to a 
different location when it is looking for the pixel pattern 
information. If you tell the Commodore to get the 
patterns from RAM instead of ROM, you can then 
POKE in your own characters. Trus is fairly easy to do. 
However, if you do this, your Commodore will "forget" 
all its built-in characters. So if you want it to remember 
some of them, you have to copy the characters you want 
to keep, such as the numbers and letters, from ROM 
into RAM before you switch over. 

The next program takes copies of 64 characters - the 
numbers and letters - from ROM into RAM, and then 
switches the macrune to using the RAM characters. 
You'll notice that the RAM characters are stored from 
location 2048 upward . This number should be familiar 
to you by now - it's the location that BASIC normally 
uses for its programs, so that you will have to move the 
bottom of BASIC as described on page 14 before you 
RUN the program. 
Because the computer has to transfer a total of 512 bytes 
to new memory locations, it takes a few seconds before 
the process is complete and the selected ROM 
characters are stored in the specified area of RAM: 

When you RUN this, you should soon be able to tell if 
it is working because the normal block cursor, wruch is 
not copied from ROM to RAM, will be replaced by a 
f1aslllng dot pattern. 

Making and storing your own symbols 
Say you want to put a small symbol on the screen - a 
rocket for a space game. The first thing you need to do 
is draw the character. It's the same technique as 
designing a sprite, but much simpler. 

SINGLE CHARACTER DESIGN 

~!\ues."'""""" E:liL.. ~l! 
16+8+4 = 28 
16+8+ 4 = 28 
32+ 16+8+4+ 2 = 62 
64+32+ 16+ 8+ 4+2+ 1=127 

As usual, each pixel is either ICon" or "off', and this is 
shown by filling in the squares. 

To convert this to a sequence of bytes for storage, you 
need to take each row of 8 pixels in turn, and add their 
values to form a single byte. Following this procedure, 
the single character is converted into 8 bytes. 

These now need to be PO KEd into memory onto the 
end of the existing character data. The best characters 
to redefine are the srufted characters, SHIFT A to 
SHIFT Z. To add the rocket design to the character set, 
type the following lines onto the end of the previous 
program: 



When you RUN this program you will see the current 
CHR$(97) character appear on the screen, and after a 
short time it will change to the one that you have just 
defined, the rocket. 

Adding your own characters together 
The first thing you will notice is that the rocket is 
extremely small. This is because it only occupies the 
same amount of space as a single letter on the screen. 
But although user-defined characters are based on an 
8x8 grid, there is no reason why your designs should 
not cover more than one grid, so you can make them any 
size or shape you want. Here's a more complex design: 

MULTI·CHARACTER DESIGN 

27 .................. .. 

DATA DATA 
totals totals 

9 

9 

9 

5 

I 

I 

9 

I 

39 

37 

3 

5 
39 
37 

47 

6 

2 

32 

128 64 32 16 g 4 2 I 128 64 32 16 8 4 2 I 
144 

144 

228 

180 

148 

204 
228 

164 

228 

160 

228 
164 

244 

188 
4 

This program assumes that the first program to place 
the ROM characters into RAM has already been RUN. 
It is also written so that the rocket can be positioned 
anywhere on the screen by changing the values of X and 
Yon line 240. These values control the position used to 
display CHR$(97), the top left part of the rocket. 

Because there is room to defme a complete set of 256 
characters if you want to, you can draw up more than 
one completely new alphabet and still have enough 
memory locations left to keep the Commodore's pre
programmed letter and number symbols. 

USER·DEFINED LETTERS 

BBB 



28 

ADVANCED SPRITEMAKING 
A standard sprite is 24x21 pixels, but can be expanded 
by a factor of 2 in both borizontal and vertical 
directions. This means that a fully expanded sprite 
occupies 48x42 pixels, a fourfold increase in area. 
These variations in size do not mean that you have to 
put extra DATA into the program -locations V + 23 and 
V + 29 do all the work for you. 

V + 29 controls expansion horizontally, and V + 23 
controls expansion vertically. The bits in both these 
bytes each control a separate sprite, so that to expand 
sprite 0, you would need to set bit ° in either or both 
locations to I. For sprite I, you would need to set bit I, 
and so on. So for sprite 0, expansion in both directions 
would be activated by: . 

POKE V+23,I:POKE V+29,1 

To expand sprite I, you would need to set bit I. This bit 
has a numeric value of 2, so to expand sprite I in both 
directions you would need to POKE a value of 2 into 
both locations. To expand a combination of sprites, you 
simply add all the POKE values together. POKE 
V + 23,3 would expand both sprites ° and I vertically. 

When you use either of these expansion locations, all 
that changes is the size that a pixel is plotted. This 
means that when you enlarge a sprite, you don't get any 
increase in resolution. The sprite will be larger but 
coarser. The next program allows you to compare all the 
possible expansions. It stores sprites in the area 
normally used by BASIC, so before you key it in, you 
will need to move the BASIC storage area by the 
method shown on page 14. 

The program makes sprites 0, 1,2 and 3 all from the 
same DATA. Next the program gives each sprite one of 
the four different sizes available. The first screen is the 
sprite control section: 

The second screen shows the sprite DATA which is 
used four times to make up the display: 

SPRITE MUL TI·COLOR BIT VALUES 
Each pair of pixels in a sprite row is treated as one unit. By using the 
bit values in this table for each pair, you can set the pair to any of 
four colors, each controlled by a different register. 

Bit pair value 

00 

01 

10 

11 

Register controlling pixel 
pair color 

Screen color 
regiSler (53281) 
SporemuJti-color 
register 1 (V + 37) 
Normal sprite color 
registers (V +39- V +46) 
Sprite multi-color 
register 2 (V + 38) 



MULTI-COLOR SPRITE DESIGNS 
Here two muJti-coior sprites have been drawn up and their DATA 
vaJues calculated. The bit value for each pair of pixels is set by using 
the system shown in the table on the previous page. 

Programming multi-color sprites 
In addition to the enlarging that is available with 
sprites, you can also make up a sprite with a mixture of 
colors. Here's a listing which produces the sprites 
shown above: 

29 .................... . 

As you have already seen, a single color sprite has a 
horizontal resolution of 24 pixels. If you use the multi
color facility, the horizontal resolution drops to 12. 
This does not mean that the sprites drop to half width, 
because each of the pixels in a multi-color sprite is 
displayed twice as wide on the screen. 

In a normal sprite each bit controls one pixel on the 
screen. In a multi-color sprite, each pair of bits in the bit 
pattern controls the color of one pair of pixels on the 
screen. If a pair of bits has the binary value 00, then the 
pixels on the screen will be transparent, allowing the 
background to show through. If the pair has the value 
10, then the normal sprite color register is used to 
determine the pixels' color. The difference comes when 
a pair of bits has the value 01 or II, because then the 
color of the pixels is taken from one of two special multi
color registers at VIC locations V + 37 and V + 38. This 
means that each sprite can contain up to four colors. 

Here is the display that the multi-color sprite 
program produces: 



30 

SPRITE ANIMATION 
When you are programming sprites, you need to decide 
where to put the sprite DATA in the Commodore's 
memory. As you may have seen in Book I, there is 
enough space for three sprites in the Commodore's 
cassette input/output buffer starling at locations 832, 
896 and 960. This area can only be used if you don't 
want to use the cassette at the same time that the sprite 
program is RUNning, and if you don't want to use more 
than three sprites at the same time. However, there are 
places in the Commodore's memory where you can 
stor.much more sprite DATA than this. You used one 
of these areas on the previous two pages by moving the 
BASIC storage area from its normal position. 

Where to store sprites 
By making a large section of memory available for 
holding your sprites, you can store enough information 
to program 32 of them from locations 2048 upward -
four times as many sprites as you can have on the screen 
at once. This means that you can have a large store of 
sprite shapes that can be called on very quickly with 
interesting results. 

To see what you can do with this, here is a single 
sprite design and a program which puts the DATA into 
the memory area in which BASIC is normally held. 
Once you understand how this sort of program works, 
you can try one which modifies the sprite as it moves : 

CRAB SPRITE DESIGN 

Bit values 

~ :b :::: £ ....... _ ~ ::; :::: :e .. 1" ... _ ~ ::; ::::: ::!< .., ...... _ DATA values 
HI 192 

, '" ". 31 2..a 

" 
153 S4 

'11 2SS 

" m '" IS m '" , .. 
" 

,., 
6l m m 

m m 
m 

" m 

'" so 12676 , ~ 

Because the program uses the space normally occupied 
by BASIC, remember to shift the BASIC storage area 
before keying it in (if you've forgotten how to do this, 
look back at page 14). When you RUN the program 



Ways to change sprite shapes 
Now it is possible to get some action into the sprite itself 
as well as moving it around. You can do this by setting 
up two or more sprite areas in memory so that they 
contain images of the same sprite in different positions. 
Locations 2040 to 2047 tell the Commodore's VIC chip 
where in memory it can find the sprite DATA for sprites 
o to 7. All you need to do to make a sprite change shape 
is to switch the VIC chip quickly around a sequence of 
images. It's like making a cartoon with numbers instead 
of with pencil and paper. It is done by POKEing the 
memory location controlling where the VIC chip gets a 
sprite's DATA from with a sequence of numbers that 
point to different sets of sprite DATA. 

Here is an example which shows you how this is 
done. Staying with the crab sprite, you can define some 
more versions of it . The designs at the bottom of this 
page show the crab with its claws in different positions. 
Having looked at these designs, you can then key in the 
program which uses this DATA to animate the crab. 

One thing you should notice here is that the program 
does not contain the complete set of DATA for the three 
different versions of the crab. This is because most of 
the DATA for each design is the same, so to store all the 
DATA would waste a lot of memory . Instead, only the 
top four lines of each crab are stored separately. 

ANIMATED SPRITE DESIGNS 

~ ; :; ~ ... ... .. _ !:j ;l ::t ~ ..... _ ~ :s ~ ~ .. .. .. _ DATA values 
J 114 0 

, '" 
JO 10J 1.111 
JI Itj 

M 0 "'1 
~ IH IN 

IU ~ 

'II 2SS 1J.4 

" "' " "' 

"' '" IH l5J 141 

JI :w 1" 
IOJ lSS DO 

'" '" ~ ~ . . . . 
~ ~ ~ !!! ........ _ ~ :s :::r ~ ..... _. _ ~ :s ~ :!! _ .. '" _ DATA values 

'" ,. ,. 
'" " . .. . . ,. '" ,~ '" " " " ,ft 

" "' ,. 
" "' 
6J lSi lSl 

'" '" 
JI n~ 1" 

'" m ,. '" 
~ I~ 7lS 

" • U 

31 



32 • ________ ~ 

OVERLAPS AND COLLISIONS 
What happens when a sprite moves into a position on 
the screen already occupied by something else? If you 
have RUN a sprite program while leaving text on the 
screen, you will probably have found that the sprite 
seems to "float" over the text, covering it up but not 
erasing it. On the other hand when two sprites meet, the 
results can be much more varied. 

Setting overlaps with sprite priorities 
On the Commodore you can tell the computer how to 
overlap sprites.and background, and you can also make 
it take specified action if it detects a collision. 

When two sprites meet, there is a simple rule which 
controls which is "in front" and which is "behind". The 
lower-numbered sprite will always appear to pass in 
front of the higher-numbered one. This gives sprite 0 
the highest priority while sprite 7 has the lowest. This 
means that if, for example, sprite 2 meets sprite 4, sprite 
2 will appear to pass in front of sprite 4. So sprite/sprite 
priorities are just a matter of careful choice of sprite 
numbers. 

When a sprite meets a background object, the 
situation is a little different. The memory location 
53275 (or V+27 in the VIC chip) controls the sprite
background display priorities. Each bit controls the 
priority for one sprite - bit 0 controlling sprite 0, bit I 
sprite I and so on. If you set a bit to I in this byte, then 
in a collision the corresponding sprite will pass behind 
any background it encounters. Conversely, if a bit is 
reset to 0, then its sprite will pass in front of any 
background object. 

You can use these techniques to set up some 
interesting effects. The following program shows sprite 
priorities at work. It creates a situation which is 
impossible in reality but easy with sprites: 

In this program there are two sprites, 0 and I . Sprite 0 
has priority. What makes the program interesting is the 



way that the priorities are set up between the sprites and 
the background. Sprite I has priority over the 
background, while sprite 0 is made to move behind it, 
creating a strange effect on the screen. 

Detecting collisions on the screen 
The other important facility provided by the 
Commodore with moving sprites is collision detection. 
The computer considers a collision to have occurred if 
any lit pixel in a moving sprite is drawn at the same 
screen position as a lit pixel from any other object. This 
means that for programs with missiles and targets for 
example, it doesn't matter how complex the missile or 
target shapes are - the programming does not get any 
more involved. 

There are two types of collision possible on the 
screen, one where a sprite hits another sprite and one 
where a sprite hits a background object. Both these 
situations are dealt with in much the same way, with 
individual bits being set within the VIC chip registers to 
"flag" the fact that a collision has taken place. 

Two VIC registers are involved in this, V + 30 and 
V + 31. The first detects sprite/sprite collisions, and the 
second detects spriteJbackground collisions. Both of 
these two registers are split into individual bits, each 
controlling one sprite in the usual way. To start off with, 
the VIC chip resets these registers to zero, and then 
when any collisions take place, the appropriate bits are 
set to I, and the byte is held like that until the VIC 
register is read with PEEK, which resets it back to zero. 

This means that your software has a chance to detect 
any collision, no matter how momentary it may be. 
However, you should remember that reading the 
registers always resets them to zero, so the best thing to 
do is to read the values into a variable so that you don't 
lose a value before you have finished with it. The next 
program is similar to the last one except that this time it 
detects and signals collisions: 

33 

Every time the two sprites collide, the computer 
PRINTs an asterisk. Eventually the asterisks will scroll 
up the screen, creating a continuous "collision": 



34 

PIE CHARTS AND GRAPHS 
Computer graphics are ideal for displaying information 
that you can take in at a glance, and one of the most 
easily understood displays that the Commodore can 
produce is a pie chart. Pie charts are particularly good 
for showing the relative sizes of numhers, or how 
different items make up parts of a whole. 

Starting off a pie chart program 
To produce a pie chart, the first job is to draw a circle. 
You can then put in the edges that mark off the "slices". 
In the following program, one right-angled slice is 
drawn in a circle. To make the Commodore produce a 
circle you need to use high resolution, so before you 
RUN this program remember that you need to move 
the BASIC area (see page 14) and then LOAD the 
complete set of eight graphics subroutines, which you 
should have on tape or disk. Here's the simple pie chart 
program that calls these routines: 

The program draws a circle at the center of the screen 
(co-ordinates 160,100). Line 1050 then draws the first 
radius from the right to the center. Line 1060 then 
draws the second radius straight up to form the slice. 

Adding more slices to the chart 
You could go on from this to add lines to draw further 
slices and so build up the chart, but this sort of program 
wouldn't really be much use. A fixed pie chart program 
can only ever give you the same display. What is much 
more useful is a program which responds to the 
numbers you key in: 

In this program lines 1000 to 1040 sort out how many 
slices need to be drawn on the pie cbart and how big 
each slice needs to be. You can specify all these values. 
In line 1020 you will see the command DIM. This sets 
up something called an array, which is a way of holding 



and retrieving information easily. Arrays are explained 
in full on pages 52- 53. From the information held in the 
array, the program calculates the angle of each slice. 
This calculation and the actual drawing are carried out 
by lines 1070 to 1130 (because the chart is shown in high 
resolution, you can't PRINT any labels on it). 

Putting information into graphs 
Pie charts are useful for showing how something is split 
up; graphs, on the other hand, show how two separate 
sets of data are related. Here's a simple Commodore 
graph display. It's produced in low (text) resolution, so 
that unlike the pie chart display, it can be labeled, and 
it is also created more quickly: 

35 

The two sets of information are contained in the DATA 
in lines 190 and 200. Lines 30 to 140 draw and label the 
two axes of the graph. The loop that follows READs 10 
pairs of values from the DATA statements and uses 
these as co-ordinates for plotting points. 

Programming a high-resolution graph plotter 
The fixed graph display is quite coarse, because it uses 
the low-resolution screen which only gives 504 
character positions within the graph's area of 28 
columns by 18 rows. For a more detailed graph, you 
need to go to high resolution (using the high-resolution 
subroutines). The next program does this, again 
working with information held as DATA. The program 
takes longer to RUN, but the display is more precise: 

HlGH·RESOLUTION GRAPH PROGRAM 

You can easily adapt this program so that instead of 
using DATA already built in, it accepts your INPUT 
values before drawing the graph - JUSt like the variable 
pie chart program - so that you can see information 
displayed as a graph in a few seconds. 



~""""""". 36 """"""""~ 
BARCHARTS 

Having seen how your Commodore can produce high-
resolution pie charts and graphs, you can now add a 
third way of showing information graphically, by using 
a low-resolution bar chart. 

In bar charts data is displayed not as single points, 
but as columns whose height depends on the size or 
level of the item shown. They are frequently used to 
show changes in currency values, votes in elections and 
so on, and you can easily make your Commodore use 
them to show personal data in an instant graphic way. 

Writing a bar chart program 
Because a bar chart is really an adapted graph, you can 
use much the same programming techniques to 
produce one. The main difference is that instead of 
plotting a single point when fed with co-ordinates, the 
program must PRINT a column. With the 
Commodore, columns are most easily made up with the 
graphics square, using PRINT CHR$(l8), and you can 
then add some color for clarity. The next program does 
this by using information which you can INPUT. 
Because it uses the low-resolution screen, the chart can 
also be labeled without any problem: 

The Y (vertical) axis is drawn by lines 30 to 50 in the 
same position as for the first graph on page 35 . The 
PRINT statement at line 70 labels the X (horizontal) 
axis with the numbers I to 12, which could represent 
the months of the year. The program produces bars that 
are two graphics squares wide. If you want to increase 
the numberofbars that you can show on each chart, you 
can reduce the width of each one to a single square. But 
if you do this, remember that you will also have to alter 
the PRINTing positions to make the bars appear the 
right distance apart. Here is the double-square program 
in action, showing it in two different colors: 

Adding charts together 
The first charts can show just one list of items. But it is 
possible to reorganize them so that they can display 
more than one set of information. You may for instance 
want to see both maximum and minimum figures like 
temperatures on the same chart. You don't have to 
rewrite the first program. A few additions will do: 

105 FOR N=I TO 2 
115 IF N=2 THEN PRINT CHR$(158) 
195 NEXTN 

This RUNs as before until you have finished keying in 
the first set of data. It then sets N to 2 and PRINTs 
columns of yellow squares instead of magenta ones. 
Your second set of data must be generally smaller than 
the first set, otherwise the magenta chart will be 
completely overwritten by the yellow one: 



You can extend this to any number of overlapping 
charts by increasing the upper limit of the FOR ... 
NEXT loop in line lOS, and then by adding extra lines 
of program between lines 110 and 120 to change color. 
Here's a chart which shows four sets of information: 

Improving your charts with alternating color 
One of the problems with charts that have a single color 
for each set of data is that you cannot distinguish 
individual bars, making it difficult to relate each bar 
height to scale on the bottom axis. You can get around 
this by using two different colors again, but this time by 
alternating them as the bars are PRINTed. It's then 
quite easy to see which bar relates to which figure on the 
X axis. 

The following program is an adaptation of the simple 
bar chart . If you take out the lines that make it show 
more than one set of data, you can then edit it to 
produce a display with alternating colors. 

Instead of having the color fixed, it's now controlled 

37 ••••••••• _ 

by the variable A. A loop is used in conjunction with IF 
... THEN to set the dtawing color to either blue or red. 
You can use this type of color-changing loop with as 
many colors as you like. Here is the program and some 
of the displays that it can produce: 



~ •••••••••• 38 

GRAPHICS WITH GRAVITY 
On pages 24-25 you saw how the Commodore can 
produce "narural" graphics, shapes that you can 
sometimes see in the natural world. To make these 
shapes you can simply experiment with the graphics 
subroutines and see what happens. But if you want the 
computer to simulate something moving in a realistic 
way, an understanding of how it moves in real life will 
help you a great deal in programming the same 
movement on the computer screen . 

How the Commodore starts a ball falling 
On pages 8-9 IF . .. THEN was used to "bounce" a ball 
in straight lines moving at a constant speed. However, 
a ball doesn't move in straight lines. On the screen 
below is a short program to demonstrate how you could 
begin simulating a more realistic fall (the display 
beneath it includes after-images nortDally deleted by 
the frrst statement in line 80): 

Falling objects are influenced by several forces -
gravity, air resistance, surface friction and something 
called the "coefficient of restitution" - which make 
them move in a complex way. However, you don't have 
to be a physicist to write a more realistic program than 
this. If you drop a ball, it falls to the ground and 
bounces up again, and that's all you need to know to get 
a ball bouncing on the screen. 

Programming movement in two directions 
In the simple fall program, line 50 PRINTs the ball near 
the top of the screen. After a 2-second pause, the ball 
starts to move downward. Line 80 erases it, the row 
number is then increased by I and last the ball is 
PRINTed again. If- you RUN this program, you will 
find that although the ball is indeed falling to the 
bottom of the screen, its movement doesn't look very 
realistic. The program also ends abruptly when the ball 
reaches the bottom of the screen . The next program 
improves the display considerably by making the ball 
move sideways as well: 

The variable H represents the change in horizontal 
position and V the change in vertical position. On each 
loop, V is added to the row number and H to the column 
number. Now it's easy to modify the motion in any 
direction. For instance, you can make the ball bounce 
by adding: 

85 IFC<I ORC>38THENH=-H 
86 IFR<! OR R>22 THEN V= -V 

You have seen these techniques using AND and OR 
with IF ... THEN before, so these two lines should 
present you with no problems. If you take out the lines 
which erase the ball as it moves, you will now see a 
display like this: 



Computer-controUed gravity 
Although the ball bounces around the screen it doesn't 
yet look completely realistic. The reason for this is that 
there is no gravity acting on it. You can add a "force" 
like gravity that pulls in any direction, or that even 
changes direction during a program's RUN. Gravity 
acts downward, so, as the ball moves from the top to the 
bottom of the screen it should accelerate. When it 

·bounces bac" up, it should slow down until it falls back 
again. The next program imitates this: 

In this program, the gravity factor is written in at line 
120. The addition of 0.2 to V means that the change in 
R - the vertical position - is no longer constant . I[ 
increases on each loop, speeding the ball up. 

When the ball hits the bottom of [he screen a sound 
is proauced, and the ball 's direction is reversed by line 
170. V then becomes negative, repeatedly decreasing 
the row number. The added gravity factor at line 120 
makes V less and less negative, slowing down the 

39 

upward progress of the ball until irs vertical movement 
ceases, V becomes positive again, and the ball begins [0 

move downward once more. 
This display shows how the ball moves with this 

program (again, this is what you will see if you stop the 
computer deleting the after-images by masking line 110 
with a REM command): 

ball bounces around as but as i[ does so, it 
doesn't reach the same height on each bounce. Its 
height is gradually decreasing, although its horizontal 
movement remains the same. The result of this is a 
rough example of a curve known as a parabola. 
Eventually the hall will reach the bottom of the screen 
when the program goes into an endless loop. 

In just the same way as you can influence vertical 
movement by "gravity", you can alter the horizontal 
movement as well. This gives the impression of an 
object that is not only falling under gravity, but which 
is also being blown along by a strong wind . 

Simulating gravity w;'h high resolution 
The curve tliat the ball igakes in the gravity program 
isn't very smooth becaus~ the ball is a text character, 
and there are only 40 x 25 possible positions that i[ can 
be shown at. If you want to produce smoother 
bouncing, you can experiment with plotting high
resolution ball tracks instead. This will produce a single 
point at a graphics co-ordinate pair, allowing much 
smoother movement curving over a 320 x 200 high
resolution display. 

To do this, however, you would have to modify the 
program so that the low-resolution co-ordinates in all 
[he lines were converted [0 high-resolution co
ordinates. If you refer to the grid on page 58, you 
shouldn't find this [00 difficult. Being in high 
resolution, the program will work more slowly than [he 
original one, although the curves produced will be more 
realistic. 



_ •••••••• _ 40 

SHAPING SOUND 
As you may have seen in Book 1, the Commodore has a 
sound facility that is unusually powerful, allowing you 
to produce a wide range of notes and sound effects. The 
Sound Interface Device, or SID chip, can do a lot more 
than just producing a sound at a particular frequency. 
Here you will find out more about ho,,: to control the 
profile of a sound, a characteristic that is known as the 
sound "envelope" or ADSR. 

How a sound changes during playing 
The envelope shape of a sound or note is a graph which 
shows how the volume changes as the sound progresses 
from start to finish. On the Commodore there are four 
parameters that can be varied to shape volume. These 
are called Attack, Decay, Sustain and Release (ADSR). 

THE "SHAPE" OF A TYPICAL SOUND 

Maximum 
level 

Sustain level 

Zero level 

VOLUME 

Attack Decay Sustain Release 
TIME 

Attack is the time taken from the start for the volume to 
reach its maximum. This can be anything from 2 
milliseconds to 8 seconds. Decay is the part of the sound 
from the end of the attack period to the time that the 

ADSRRANGES 

This table shows the effect of all me settings from 0-15 on each of the 
ADSR parameters. 

Attack Decay Sustain Release 
time time level time 

Setting (sec.) (sec.) (%) (sec.) 

0 0.002 0.006 0 0.006 
1 0.008 0.024 7 0.024 
2 0.016 0.048 13 0.048 
3 0.024 0.072 20 0.072 
4 0.038 0.114 27 0.114 
5 0.056 0.168 33 0.168 
6 0.068 0.204 40 0.204 
7 0.08 0.24 47 0.24 
8 0.1 0.3 53 0.3 
9 0.25 0.75 60 0.75 

10 0.5 1.5 67 1.5 
11 0.8 2.4 73 2.4 
12 3 80 3 
13 9 87 9 
14 15 93 15 
15 24 100 24 

sound reaches its sustain level. The decay time can be 
between 6 milliseconds and 24 seconds. Sustain is 
different from the other three parameters in that it is not 
a time but a volume level, expressed as a fraction of the 
maximum value reached at the end of the attack phase . 
A value of 0 indicates that the sound will decay to a 
sustain level of 0, and a value of IS indicates that the 
sustain value will be the same as the maximum level, so 
that the sound does not decay at all. The sustain level is 
maintained by the SID chip until the sound is switched 
off. Release is the length of time taken for the volume to 
decay from its sustain value to nothing, and this can 
range from 6 milliseconds to 24 seconds. To program all 
these, you need to select the appropriate ADSR 
settings. 

Here is a program which demonstrates the effect that 
the ADSR settings have. It plays a simple tune, 
changing the ADSR settings each time: 



~ ________ . 41 
Programming a sound profile 
Each of the three sound channels on the Commodore 
has two registers associated with it to control ADSR. 
Attack and decay are together in one SID chip register, 
and sustain and release are together in the other. 

ADSR REGISTERS 

Each register is made up from two half-bytes or nibbles. These 
control separate features oC the sound. 

SID register Sound ADSR function 
(S~ 54272) channel high nibble low nibble 
8+ 5 I Attack Decay 
S+ 6 I Sustain Release 
8+ 12 2 Attack Decay 
8+ 13 2 Sustain Release 
8+19 3 Attack Decay 
8+ 20 3 Sqstain Release 

The SID chip registers are split into two equal parts, 
each fOUI bits long. Attack, decay, sustain and release 
are all controlled by one of these "nibbles". Having four 
bits gives a total of 16 possible settings . Decay and 
release are set by the low nibbles. So a setting of 10, for 
example, means a nibble value of 10. Attack and sustain 
however are set by the high nibbles. For them, a value 
of 10 would mean a nibble value of 160. 

ADSRVALUES 

Decay and release are contTolled by low-value nibbles, so the setting 
number and nibble values have the same range (0-15). Anack and 
sustain are controlled by high-value nibbles and so have (0 be 
converted from the setting numbers between 0 and 15. 

Setting Attack/Sustain DecaylRclease 
value value 

0 
16 
32 
48 
64 
80 
96 

112 
128 
144 

10 160 10 
11 176 II 
12 192 12 
13 208 13 
14 224 14 
15 140 15 

Suppose that you wanted to program a sound which had 
an attack parameter setting of 6 and a decay setting of 
II, using sound channel 2. From the table above you 

can see that an attack setting of 6 has a value of96, and 
a decay setting of II has a value ofll. 

HOW ONE BYTE CONTROLS TWO PARAMETERS 

By adding together the values for two nibbles in a specific byte, you 
can make ODe ADSR byte control two separate features of a sound. 

ATTACK nibble DECAY nibble 

ATTACK nibble value~96 DECAY nibble value~ II 

Total ATTACKIDECAY byte value~ 107 

Adding these values together gives 107 which is the 
value to POKE into SID register S+ 12 - the register 
which controls attack and decay on sound channel 2. 

Here's a program which shows you the variety of 
sounds these settings can produce. It allows you to 
control waveform and ADSR as a tune is played: 



42 

ADVANCED SOUND EFFECTS 
You are now ready to take a look at some of the As you can see from this, any filtering that is done 
Commodore's more advanced sound facilities, simultaneously affects the output of aU three channels. 
including filtering and ring modulation. These There are three different types of filter available within 
techniques can be quite tricky to master, and you can the SIn chip and they can be used either individually or 
only become fully familiar with them through many in combination. They are known as low pass, band pass 
hours of practice. The details on these rwo pages will and high pass filters. Each of the filters has a "cut-off" 
point you in the right direction, and from there you can frequency, which is the point in the frequency range 
make your own way by experimentation. With all the where the filter starts to become effective cutting out 
facilities of the SIn chip behind you, this can lead to parts of the sound. 
many hours of discovery. 

SOUND FILTER PROFILES 

Filtering a sound effect Volume Cut-off 
Except for the purest sound tones (called sine wave 

/ sounds), all sounds are made up of many frequencies. 
One of these frequencies, called thefundamental, is the 
dominant one which gives the sound its pitch. The 
others are multiples of this frequency and are called Frequency 
harmonics. The second harmonic has twice the High pass filter 
frequency of the fundamental, the third harmonic three 
times the frequency and so on. 

The characteristics of a sound can be changed 
dramatically by altering the volume levels of just a few Volume 

l of the harmonics in the sound, and within the SIn chip 
this job can be done by filters. The output from each 
channel is first set up by the tone and waveform 
settings. This output is then modified by the AnSR 
which is brought in at the mixing stage. The outputs Frequency 
from all three channels are then put through a filtering Low pass filter 
and master volume control to give the final sound. 

HOW SOUND IS MIXED AND FILTERED 

AUXERI }-

Volume 

1 

Cut-off 
Tones} 

/i\ waveform I 

~ I 
• Frequency ADSRI 

Band pass filter 

TODes! 

I ~ ·~tTERING The filters themselves are controlled by bits stored in 
waveform 2 MIXER 2 ---+ d master four registers within the SIn chip, S+21 to S+24. 

olumecontro S+2l and S+ 22 contain an ll-bit number, three bits in 

~ 
AUDIO OUTPUT location S+21 and eight in location S+22, which 

I 
controls the cut-off frequency in the range 30Hz to 

ADSR2 12kHz. S + 23 controls which sound channels will be 
filtered (low 3 bits) and how steeply the filters will be cut 
off (high 4 bits), and S+24 controls which filters will be 
switched on and also the master volume level. 

Tones! MlXER3 The next programs generate white noise from a 
waveform 3 sound channel and then apply the band pass filter to this 

B~ 
output, changing the cut-off frequency so that you can 
hear the effect on the sound: 



..................... 43 

Changing sounds with ring modulation 
Ring modulation is a process by which the triangular 
waveform output of a selected sound channel is 
replaced by a modulated combination of it and the 
output from the next channel. So, for example, 
selecting ring modulation on channel I will replace the 
channel I triangular output by a ring modulated 
combination of channels I and 2. Ring modulation on 
channel 2 works on channels 2 and 3. 

You can select this effect by setting the third bit in the 
channel's control register. To do this, you need to use 
bit masking. The third bit has a decimal value of 4, so 
to turn it on, you will need toPOKEa value using OR 4 

RING MODULATION REGISTERS 

Channel Control register 

2+4 
S+ 11 
S+18 

so that only this bit is set. This line will do it: 

POKE S+CR,PEEK(S+CR) OR 4 

Here CR is the SID chip control register number for the 
required channel. AND will turn the same bit off: 

POKE S+CR,PEEK(S+CR) AND 2S1 

Watch out for this simple bug 
When you're working with sound programs, you may 
find that some of them just don't seem to work, even 
though the listings look perfect. Your problem here 
might be that a previous sound. program has POKEd 
register(s) in the SID chip that are interfering with your 
new program. If this does happen, the best thing to do 
is briefly switch off the computer to clear out the SID 
chip, and then key the new program in again. 



............ « .......... ~ 

WORKING WITH WORDS 
Until now, you have treated strings - or words that 
make up strings - as indivisible units. Some of the 
programs so far have added strings together, but none 
of them have "looked inside" the quotation marks that 
begin and end every string to work on the characters 
that are there. With the Commodore you can take 
strings apart and reassemble their characters in a 
number of different ways. This means that you can 
program the computer to take out part of a word or 
group of words and examine it - a process that can be 
very useful. 

Like most computers that work with BASIC, the 
Commodore has a family of commands that can be used 
to manipulate strings. Some of the most useful are 
LEFT$, RIGHT$ and MID$. They are used to pick 
out the first, last or middle character of a string 
respectively . 

The special technique here is in line 50, where a LEFT$ 
command appears as part of a string expression. For 
each value of N, line 50 PRINTs a string N characters 
long, from the first character, C, to the Nth character. 
So, the first line contains the string "C", the second line 
"CO" and so on, until N equals the length of the string 
that is set. With this program you can use any string
a group of words, numbers or other symbols; it's best if 
the value of N is not more than one screen line (40 
characters). If you use a different string, make sure that 
the maximum value of N in line 40 is the same as the 
length of your string. Here's the display that the string 
slicer produces with line 20 set as above: 

You can use this kind of technique to pick out strings 
that all begin with the same letter or word, and then 
perhaps PRINT them out in a series of lists . 

An opposite effect is just as easy to produce. Try 
adding this to the first program: 

70 FORN=1 TO 18 
SO PRINT TAB(S); RIGHT$(A$,19- N) 
90 NEXTN 

Now, as N increases from 1 to IS, the length of the 
string PRINTed decreases from IS characters to only 1, 
as letters are sliced away from the left. 



As you can see from the display this produces, you 
aren't limited to dealing with the first N characters of a 
string. In fact, you can take any consecutive group of 
characters from a word or sentence. In this program line 
60 works in the Same way as line 50 of the first slicing 
program. Line 90 forms a string of 6 characters from 
characters 8 to 14 out of the middle of A$ . Finally, line 
120 forms a third string from the last six characters. 
Although these three "substrings" are formed from 
parts of A$, A$ itself is still intact. This lets you take a 
group of words and pick out any of them for use on their 
own in a program. 

Word games with string commands 
The next program shows how you can use these 
methods of handling words in a game. It's a 
computerized "hangman" word-guessing contest in 
which one player enters a word and the other has to 
guess it; the computer PRINTs letters guessed correctly 
in their right positions in the word, and also lets you try 
guessing the whole thing: 

45 
.~~ .............. ~~~ 

Lines 10 to 60 PRINT the title frame. When a frien~~ 
has typed in the test string that you will have to guess, 
line 80 calculates the lengtb of this test string using the 
command LEN, and sets the score (S) to zero. 

The program now has to PRINT symbols on the 
screen to represent the letters in the test string. As you 
guess the letters, any correctly guessed letters will 
replace these symbols. Also, to allow for test phrases 
rather than just words, the positions of the spaces 
between the words are shown. Line 110 PRINTs 
hyphens to represent the characters. Line 90 uses the 
value of P to work out where the characters that 
represent the test string should be PRINTed so tbat 
they lie in the middle of the line (a similar effect is 
incorporated in word-processing programs). 

If you want to guess the wbole word or phrase instead 
of keying in individual letters (you can do this at any 
point in the game), press 1. The program jumps to line 
180. The word or phrase that you type in (T$) is 
compared to the stored string (A$). Then a 
"CORRECT" frame is PRINTed or if the guess is 
wrong, a u-WRONG-" frame is PRINTed. When a 
single letter is tried, lines 150 to 170 compare it to each 
cbaracter of the stored string in tum. If the guess is 
correct, the letter is PRINTed in the appropriate 
position in the display. 

You can easily limit the number of guesses by adding 
the commands: 

IF S>N THEN STOP 

after the statements where the score S is calculated. If 
you make a mistake in keying in the program, it can be 
difficult to interrupt using the STOP and RESTORE 
keys, so to make this easier, add one extra line to check 
the value of T$: 

145 IF T$="2" THEN STOP 

To stop the program at any point, simply press 2. 



........... % .......... ~ 

WRITING GAMES 1 
The next six pages will take you through writing a 
games program, showing you how to put all the phases 
together to build up a complete listing. Writing a games 
program requires some careful planning before you 
actually stan writing lines. To begin with, you need to 
decide what sort of game you want. Many games 
combine your acquired skill with an element of chance 
(the roll of dice, the turn of a card and so on), and many 
have a number of different phases of play. 

To plan a game, it's best to start by drawing a rough 
sketch of the screen display, marking the colors and 
positions of any fixed characters or patterns. You'll 
want to refer back to this as you write your program. 

Next, you can draw up a flowchart showing the 
program steps and the order in which they will appear 
in the program. It isn' t necessary to draw a detailed 
chart - a list of steps connected with arrows to show the 
order should be sufficient. A complete games program 
will be more complicated than anything you've written 
so far, so it is worth spending some time designing a 
program before you key it in. 

Keying in the first phase of the game 
With the game on this page, the planning stage has been 
completed, and you can now key in the first phase of 
what will be a two-stage program. The listing that 
follows is for a practical game - one that anyone should 
be able to play without any prior knowledge of the game 
or the computer. Below is the first screen of the 
program. This first phase of the game involves shooting 
at a moving spacecraft. As the program contains some 
user-defined characters and sprites, remember to move 
the BASIC program area out of the way by using the 
technique on page 14 to make room for them before you 
key the program in: 

The program gives you a laser base which you can move 
left or right with the Z and X keys. You can fire, but 
only straight up the screen. A number of spacecraft 
approach you one by one, and you must destroy them to 
carry on. The program will stan after you type RUN 
and then press any key. However, because it has a lot of 
DATA to POKE, it takes a little time to get started on 
screen. Don't assume that your listing is wrong if 
nothing appears for a few seconds. 

PHASE I VARIABLES 

The first phase of the game uses a total of 16 variables to control 
graphics and record hits on the target . 

Variable 
A 
C$ 
F 
H 
L,M 

N,P 
Q 
R,C 

S 
SC 
T 
X,Y 

Function 
Sets spacecraft direction 
Holds characters entered by player 
Records total number of laser strikes 
Flags successful laser strikes on target 
Fix row and column co-ordinates aflaser 
base 
General variables 
Records the number of times laser fired 
Fix row and column co-ordinates of 
spacecraft 
SlD chip base address 
Holds score for this phase 
Sets delay loops 
Control co-ordinates of laser beam 
(I=righ" - 1= lof,) 

The second screen of the program contains a number 
of lines which direct the computer to make decisions 
and then direct the computer to later subroutines. You 
will notice that as you go through the listing the line 
numbers sometimes jump by more than 10. This is 
because it's simpler to identify subroutines this way: 

PHASE 1 SCREEN 2 



..................... 47 

Lines 290 and 300 let you move the laser base to either 
side with keys Z and X, and lines 310 and 320 stop it 
moving out of the screen. The laser moves one place for 
every key-press. If you key in POKE 650,128 as a direct 
command at the end of the listing, this will enable you 
to autorepeat the movement by holding the keys down. 

If you press the M key, the program jumps to the 
"fire" routine at line 500. This PRINTs a line of user
defined characters. If the subroutine records a hit, the 
program begins a new attack. 

Lines 350 and 360 control the movement of the 
spacecraft, Lines 370 and 380 make the program jump 
to the enemy attack routine at line 600 once in every 10 
spacecraft moves . This is done by picking a random 
number from I to 10; only one of these numbers - 3 -
will trigger the attack routine. Line 390 continues the 
same attack by jumping back to line 230. 

The subroutine section 
Finally, here is the last part of the program. It contains 
a pair of subroutines and the DATA for the graphics. 
Lines 510 to 560 draw and "undraw" the laser beam 
using the character defined in screen I. If M is in the 
range from C-I to C+ I then the laser has hit its target . 
Lines 600 to 700 control the return fire from the 
spacecraft. Ifit lands on the laser base, an explosion will 
sound and the Q value of your score will be altered. 

Lines 400 and 410 calculate the score and end this 
phase of the program. The score is based on the time 
you take to complete the program, the number of times 
you nre the laser, and the number of direct hits. The 
score isn't actually used here, but it will appear later on 
as you develop the program. 

Once you have typed in the listing on the following 
screens, SAVE iton a tape or disk before you RUN it so 
that if you have made any errors in keying, you will not 
lose the program if the machine "hangs", and you will 
be ready to combine it with the next phase. 

Here is the program in action. In the first display the 
laser is firing at the spacecraft, while in the second you 
can see the spacecraft retaliating: 



~ •••••••••• 48 

WRITING GAMES 2 
In the second phase of the program, the scene changes 
from the air to the sea as a ship tries to depth-charge a 
moving submarine. Again, your aim is to hit the enemy 
to produce the best score. The scoring instructions are 
still not used in this phase, but are ready to be brought 
into operation when you key in the last phase of the 
game, linking up the firstlWo pans. 

You should type all three screens of listing for this 
phase on top of the program you SAVEd for phase 1. 
Remember once again to SAVE the combined program 
on a disk or tape before you RUN it. Because there are 
a large number of bytes POKEd into memory by the 
program, any typing mistakes that you make can 
POKE DATA into fa tal places! 

As before, the program uses a number of variables to 
control movement and subroutines. 

PHASE 2 VARIABLES 

The second pbase uses a total of 6 variables to control movement and 
record hiLS. 

Variable 
B,D 

C 
F 

U,E 

Function 
Submarine row and column co-ordinarcs 
(B=row, D=column) 
Fixes column position of ship 
Flag for "deplh·charge dropped" 
(I =dropped, O=notdropped) 
Depth-charge row and column co-ordinates 
(U = row, E=column) 

Setting the scene 
The first section of the program produces a colored 
screen and sets up sprites for the ship and submarine: 

PHASE 2 SCREEN I 

Don't worry for a moment about line 165 - you'll find 
out why it is included on the next page. Lines 1075 to 
1080 PRINT a light blue sky over the dark blue sea. 
Line 1110 sets the column position for the ship and lines 
1130 to 1190 control its movement across the water. 

The aim of this game is to hit the submarine. The M 
key controls the release of the ship's depth-charges. 
The ship is also maneuverable, again being controlled 
by the Z and X keys . All these functions are controlled 
by a GET statement in line 1130 for a rapid response. 

The ship always starts off in the middle of the screen. 
The position of your enemy is less predictable. Lines 
1110 and 1120 set the random starting point for the 
submarine. It may appear at almost any position . 

The main program and its subroutines 
The second part of the listing contains most of the main 
program, together with a number of subroutines: 



.................... ~ 
Line 1210 makes the program jump to the depth-charge 
routine at line 1300 if you have pressed M. The score, S, 
is also adjusted every time a depth-charge is dropped. 
The score is related to the time that has passed by using 
the jiffy clock in line 1500. Lines 1230 to 1260 control 
the movement and the appearance of the submarine. 
Line 1270 continues the program by returning it to line 
1130 to check the keyboard for key-presses. 

Lines 1300 to 1420 make the depth-charge travel 
down the screen. If the charge reaches the bottom of the 
screen, lines 1380 to 1420 reset F to its original value 
(zero) and then return to the main program. However, 
if the position of the depth-charge coincides with any 
position occupied by the submarine (sprite collision 
detection in line 1370) then the attack is terminated and 
a new one started. 

You will notice that when you RUN the program 
only one depth-charge can be released at a time. ifF has 
been set to I by line 1220, when a depth-charge is 
dropped, line 1210 stops you from dropping another 
one until F is once again equal to zero. This will be true 
either when the charge reaches the bottom of the screen 
(line 1330) or when it hits the submarine (line 1380). 

Lines 1600 to 1770 contain all the DATA necessary to 
program the sprites. The final two lines contain DATA 
which codes user-defined characters. The first 
character is the depth-charge. The second character is 
not used, but is available if you want to experiment with 
it. If you replace the reversed square character in line 
1080 with CHR$(103) you will see a background of 
waves instead of solid sky . These waves are made up 
from single curved characters to give the impression of 
the water's surface. All the DATA in lines 1600 to 1810 
is POKEd into memory by the loop of commands in 
lines 1000 to 1060. 

Here is a sequence of displays from the game; in the 
final screen the submarine has been hit, making it 
change color: 

The continuing scoring routine 
The time is once again used to calculate the score at the 
end of the game. If you want to check that the program 
is working properly, you can PRINT out your score for 
phase 2 with the following line: 

1510 PRINT "PHASE 2 SCORE=";SC 

Line 165 is included in this program to branch around 
the phase I program in memory. In the final version, 
you'll be taking out this line and adding some extra 
statements to combine the scores obtained in the two 
phases of the game. If you are really familiar with how 
the two phases work, you might like to look at the 
ranges of the score values they produce. Then see if you 
can think of a way to combine these so that they 
contribute to about half the overall score. 

When you have made sure that the phase 2 program 
works you will be ready to link the two phases together 
and key in some playing instructions, making the games 
a single functional program. 



50 

WRITING GAMES 3 
Now that you have keyed in and SAVEd the first two 
phases of the game, you are ready to add the game 
instructions and complete the part of the program 
which will produce your score. The extra line, 165, that 
you added to phase 2, now needs to be removed for the 
final version, so delete it now before moving on. 

Adding the game instructions 
If you RUN the program with the first two phases, you 
will find that although it's theoretically one program, it 
still behaves as two separate units. When you are 
writing games in phases like this, you will need to do a 
little tailoring to the final program to make it RUN 
through properly. 

Linking the two phases is easily done. Change line 
410 to: 

410 POKE V+21,0:GOTO 2200 

That's not a mistake, even though the sub-sinker 
program begins at line 1000. It's to allow you some 
space to add game instructions starting from line 2200. 
The new line 410 also turns off the sprites that are used 
in the first game. 

Now you can go right back to the beginning and start 
the program off with a title frame containing all the 
instructions the player will need . The keys that control 
the objects moving on the screen need to be listed. You 
also need to tell the player how to stan the game, 
bearing in mind that by the time the message appears, 
the program that comains the game will already be 
RUNning. 

The next screen shows the instructions which appear 
before the first game. Line 5 makes the program jump 
over the two games to the instructions, and line 2140 
makes the program go back to the beginning: 

Lines 2000 to 2120 PRINT the game title, and explain 
its controls. Instead of the program clearing the display 
after a time interval, it waits for a period that is 
controlled by a GET command. Line 2130 stops the 
computer from going any further by looping back on 
itself. This carries on until you enter a string which is 
not null- in other words, until you press any key. The 
condition for repeating line 2130 is then broken, and 
the program then goes to line 10, which clears the 
screen and starts the game: 

You can now key in the instructions for the second 
phase of the game. These work in the same way, and are 
activated at the end of the first phase by line 410. Again, 
GET is used to allow you to start the game only when 
you are ready. When you press any key, the program 
jumps to line 1000 which POKEs sprite DATA, and 
then the screen is cleared: 



You can of course use any keys you want to specify 
movement as long as you change them throughout the 
program. Now neither phase of the game will start unril 
you are ready and press a key to begin. 

Completing the scoring routine 
Firstly, you need to add a routine to produce the score 
at the beginning of the program. The final score of the 
second phase is retained: 

1500 LET SC=SC+TI 

However, if you have played the two games 
independently and typed PRINT SC afterwards, you 
will have noticed that the first phase of the game yields 
a result ranging from - 20 or so to several hundreds or 
several thousands. The results of the two games need to 
be roughly the same size. You can achieve this by 
multiplying the running score total in line 400 by 100. 

400 LETSC=100*(TI/300+Qt 2-10*F) 

This line is a good test of your understanding of the 
variables from pages 46-491 To make the presentation 
of the score more interesting, you can add a few lines to 
turn this purely numerical score into a ranking. This is 
quite a useful technique in games programs, because it 
gives a new player some idea of how the program rates 
his or her skill. It's much better than a purely numerical 
result which gives you no idea how your score compares 
with the complete range that the program is likely to 
produce. 

This ranking feature is very often used in a whole 
range of programs. Even though adding these little 
extra touches is fairly simple, it is these small additions 
to the main sequence that can make the difference 
hetween an average program and one that you can be 
really proud of. Here's the scoring section and one of 
the displays it produces after the complete game has 
been played: 

51 

Lines 2440 to 2480 divide the scores up into bands, each 
of which is assigned to a rank. A series of IF ... THEN 
lines decides where your score comes in the ranking. 
You can change the cut -off scores for each band to make 
the games easier or harder (if you' re feeling amhitious 
you can actually program this as a difficulty option). 

You have now completed a two-phase game with 
instructions, action and a scoring routine. Although the 
two phases used on these pages are relatively simple, the 
way that they are combined can be used to build up 
games of your own that are much more complex. You 
can use this multi-phase technique to put together a 
number of sub-programs, each written and tested 
independently. The only restriction on this is the size of 
the computer's memory, but unless you are combining 
long programs, you shouldn't have any problems. 

All you need now is practice . The best way to get this, 
as a beginner, is to take an existing program such as the 
one you have seen over the last six pages, arid then to 
customize it in your own way. 



52 . ________ ~ 

FILING DATA WITH ARRAYS 
An array is a way of storing a collection of facts and/or 
figures in the computer's memory in the form of a table, 
so that you can locate any item in the table without 
having to go through all the others first. Each item in an 
array is specified by one or more numbers. In the 
following array, each item is given a pair of co-ordinates 
which identify it and nothing else: 

I 2 3 5 

FRED KATE JOHN JANE ALAN JUDY 

100 250 840 125 223 691 

This is a 6x2 array, so-called because it has 6 columns 
by 2 rows . Item (1,1) is 250, item (2,0) is JOHN, and so 
on. Because two numbers are needed to identify each 
item, this array is known as a two-dimensional array. If 
it was composed of only one row of names or numbers, 
it would need only one number to identify each item 
and so it would be a one-dimensional array. The BASIC 
keyword DIM is used to tell the computer how big an 
array is to be, by specifying the largest subscript (the 
highest position) in each dimension of the array . 

Here line 50 tells the computer that the array M$ has 12 
, entries (notice that array subscript numbers start at 0 so 

the array elements are numbered 0 to 11). This program 
PRINTs out a list of the months of the year given in 
lines 10 to 40. Although there are easier ways of doing 
this, later on in a program you may want to match up a 
month with other information or the result of 
calculations. Using this listing, you can pick out any 
month by using M$(N) where N is the month number. 

When the program is RUN, the display it' should 
produce looks like this - a month chart ready for more 
information: 

Writing tables with arrays 
Now you can build upon this calendar array program to 
make it do something useful. Add a second array, a 
numeric array, so that you can list some totals or values 
against each month: 

The table now has two headings. You don't have to 
PRINT all the members of the string array - M$(N) -
before moving on to select the numeric array - R(N). 
Line 170 takes one item from each array. As these are to 
be PRINTed on consecutive rows of the screen, they 
can be easily idenrified by relating them to the row 
number. For each value of N, M$(N) and R(N) are 
PRINTed at different TAB positions along row (N + 5): 



Adding an extra dimension 
Once you have understood the rainfall program, you 
can be more ambitious by constructing a much more 
complicated table. In the financial planning program 
below, the columns in the display are interrelated and 
you have the option of changing some of the 
information displayed by keying in a new tax rate. 

Lines 10 and 20 contain the DATA for the first part of 
the array, a series of prices, and line 30 the DATA for a 
second part - a series of quantities. Line 40 contains 
some co-ordinates which will be used later in the 
program. Lines 50 to 80 dimension the 9x2 array and 
READ in its DATA. Lines 210 to 370 simply DRAW 
the grid of lines that frames the DATA. The co
ordinates of the bottom ends of the vertical lines are 
stored in line 40 and ate used in a 7 x I array. 

The DATA is PRINTed in the grid by lines 120 to 
200. It is PRINTed every line from rows 6 to 14 (this is 
set by line 130): 

53 • _______ ~ 

The last two items PRINTed by lines 180 and 190 look 
particularly complex. If the subtotal was 8.25, the tax 
would be calculated as 0.15*8.25=1.2375 - too many 
decimal places. To solve that, the tax is multiplied by 
100, the INTeger value of it is taken (removing all the 
decimal places) and it is divided by 100 again. The 
0.005 is added to ensure that the final figure is rounded 
down to the nearest unit to fit into the table. 

Lines 380 and 390 invite you to enter a new tax rate. 
If you do and press RETURN, all the figures in the 
table that use the tax rate are recalculated. This instant 
recalculation facility is the principle behind a type of 
financial planning program called a spreadsheet. 
Interrelated columns of figures representing income, 
raw materialJproduction costs, overheads and so on can 
be entered. Then the effects of changing one or more of 
these parameters can be observed as all the totals are 
recalculated throughout the display (you can also 
modify this sort of program so that the initial 
information for the table can be INPUT): 



S4 _--------_ 

TRACING ERRORS 
Even when you plan a program meticulously and take 
every care when keying it in, you may still find that it 
refuses to RUN properly. On these two pages you can 
take a look at how to debug a program. You've seen the 
program before, it's the word-game program from page 
4S, but this time it has eight serious bugs in it. It's as if 
the program has been written and keyed in hurriedly so 
that it will not work. Don't cheat by looking back at the 
earlier program! See if by checking the listing any ofthe 
bugs become obvious to you then see if what you think 
is wrong is corrected on these two pages. 

Trying a test RUN 
When you RUN a bugged program, you'll discover its 
bugs in two ways. Firstly, any lines that don't make 
sense to the computer will produce error messages, and 
secondly problems in structure or detail will show up in 
the way it RUNs: 

When YQu try to RUN the program, you'll find that the 
title frame comes up and then you are asked to enter a 
word. Throughout this debugging session, try keying 
in "TRACING ERRORS" - this will enable you to get 
the same results as the ones shown here. 

When you key these two words in, you'll find that 
you get an error message straightaway: 

?NEXT WITHOUT FOR ERROR IN 110 

This means that the program stopped when it 
encountered something that it didn't understand in line 
110. If you LIST 7a-140, you will see that a NEXT 
statement containing the variable M appears in line 11 O. 
Looking back through the program for a matching 
FOR statement reveals that the FOR in line 90 uses the 
variable N and not M. Between these statements, you 
can see that the variable N appears, suggesting that this 
is the correct one and that M is a mistake in keying in. 
To make the loop work properly, change NEXT M to 
NEXT N. Now try the l'rogram again: 

This time, the title frame and the test string entry work 
properly, but the title frame stays on the screen when the 
next phase of the game starts. That's easily dealt with by 
adding: 

PRINT CHR$(147) 

to the start of line 70. 
Another problem that you can see with the display 

above is that the characters PRINTed to represent the 
two words all seem to have appeared in the same 
position. 

Looking carefully around the loop that PRINTs 
these characters, you might notice that their X position 
is determined by PO KE in line 90. You can see that the 
value POKEd is the constant value of the variable P, 



whereas you would expect the value to vary with the 
value of N. You can make it do this by changing the 
value PO KEd in line 90 from P to P + N . 

How to track down more bugs 
Now when you RUN the program, as soon as you key in 
your first guess at a letter, you will get another error 
message: 

?TYPE MISMATCH ERROR IN 150 

This means that a number or numeric expression was 
found in a position in a line where a string value or 
expression was expected, or vice versa . LIST the line in 
the error message, and you will find that it uses the 
LEN function. The job of this function is to return the 
length of the string contained within its brackets. If you 
now look at the contents of the brackets you will see the 
variable A. This is numeric and not string, and so you 
have found the cause of another problem. To cure it, 
replace A by A$, and try the program again: 

This time, the program allows you to enter the two 
guesses T and R before it crashes again, this time with 
the message: 

?ILLEGAL QUANTITY ERROR IN 160 

This message is given when a parameter has gone out of 
the range of a command. Add to this the fact that the 
display shows the guesses T and R PRINTed in the 
wrong positions and in reverse order, and you will have 
good reason to suspect that the POKE in line 160 is the 
cause ofthe problem. To check this, getthe computerto 
PRINT the value being POKEd: 

PRINTP-N 

You should find that this gives a negative result, which 
is certainly illegal as a value to be POKEd. As the letters 
are being PRINTed in the wrong direction, the value of 
N should be added to P and not subtracted: 

55 

You should now see that when you enter T and R as 
guesses, the letters are entered on the screen in the 
correct horizontal positions and are PRINTed in the 
right order. Unfortunately, you will have uncovered 
another bug - multiple occurrences of a letter are not 
PRINTed on the same line. It looks as though a 
RETURN is being put in after each character. 

This bug is easy to track down to the PRINT 
statement at the end of line 160, which should terminate 
with a semi-colon to suppress RETURN. 

RUNning the program again after correcting this 
produces results that are fine as you key in the letters T, 
R, A and C, but when you key in the letter I, the 
program stops asking for letter guesses and asks you to 
try for a whole word guess. According to the 
instructions, this should only happen if you key in the 
number 1 as a letter guess. But the number I and the 
letter I look very similar, and as you'll see if you check 
line 130, the programmer has got them the wrong way 
around, a fault which is easily corrected. 

The final bug is fairly straightforward. When you 
enter some letter guesses and then try to guess the whole 
thing, the program should tell you whether the guess is 
right or wrong. But the last bug doesn't allow this 
message to stay on the screen long enough for you to 
read it. To cure this last problem, increase the time 
delay loop ih line 230 from 5 to 5000. Now you can 
check with the program on page 45 to confirm that the 
two programs now RUN in the same way. 

Ways to avoid writing bugged programs 
As you develop your own programs, constant checking 
should prevent all but a few bugs from slipping into the 
final listing. When you're testing a program that you've 
written, put it through all the situations that it will meet 
in use, particularly testing any numerical limits. If it's 
supposed to have safeguards to stop it crashing in some 
circumstances, test them too. 



56 _ ••••••••• _ 

HINTS AND TIPS 
One of the biggest problems that you have probably 
come across during this book is typing listings. It's very 
c1ifficult to get a listing fully correct the first time. 
Normally this shows up in an error message, but when 
you are using high resolution, error messages are 
unreadable. Your program stops, and all you can see of 
the error message is a row of colored squares . What can 
you do to find out what is wrong? 

Because the area of memory that usually holds text now 
holds the color memory, you can't get letters on the 
high-resolution screen. The normal way to go back to 
the text resolution c1isplay is with RUN STOP and 

RESTORE. However, this results in the screen being 
cleared so the error message c1isappears as well, leaving 
you no wiser as to why your program crashed. What you 
need is a method of switching from high resolution back 
to text resolution without clearing the screen. You can 
do this by entering the following commands directly 
after the error message has appeared. First, key in this 
line: 

POKE 53272,PEEK(53272) AND 247 

The screen should immediately fill up with a c1isplay 
like this: 

Now key in a second line of POKEs to bring the error 
message onto the screen: 

POKE 53265,PEEK(53265) AND 223 

This screen shows what you should see next: 

THE ERROR REVEALED 



As you can see, this does work. However, there is one 
problem. The two sets of POKEs are rather complex 
and you have to type them into the machine "blind", as 
you cannot see what you are typing on the screen. 

A better solution is to accept the fact that you will 
probably make mistakes while developing programs, 
but prepare for them in advance. What you do is to key 
in the previous two lines, plus an END statement, into 
your high-resolution graphics subroutines. It's done 
like this: 

20 POKE 53272,PEEK(53272) AND 247 
30 POKE 53265,PEEK(53265) AND 223 
40 END 

Then if your high-resolution graphics program crashes, 
all you need to do is type in GOTO 20 and the error 
message will appear. 

How to make RESTORE more useful 
One facility which is absent from the Commodore's 
BASIC repertoire is the ability to RESTORE the 
machine's DATA pointer to any given DATA statement 
in a program. For example, you can't type: 

10 RESTORE 50 

meaning "reset the DATA pointer to the beginning of 
line 50 rather than the first line of DATA in the 
program". This facility can be vety useful where a lot of 
text messages are to be stored, such as in an accounts 
program or an adventure game, and need to be accessed 
quickly. The big advantage of this is that no memoty 
space is needed to hold the DATA other than in the 
DATA statements in the program. You don't need to 
dimension an array to READ the DATA into, because it 
can be READ straight from the DATA statements. 

The following screen gives a subroutine listing, 
starting at line 5000, which will POKE a short machine 
code routine into a free area of the computer's memoty: 

MACHINE CODE RESTORE ROUTINE 

57 

This block only needs to be carried out once in a 
program. It contains instructions to get the computer to 
change the DATA pointer to the next DATA statement 
in use. 

The next screen shows a short subroutine which uses 
this block of machine code to produce the effect of 
RESTOREing to a line number: 

The entry point for this subroutine is at line 5500. You 
can set the variable RN to the line number you wish to 
RESTORE to and then make the computer GOSUB 
5500. 

Where to store machine code subroutines 
As you have just seen, it is often helpful to access a short 
piece of machine code from within a BASIC program. 
Usually, this is done with the BASIC keyword SYS. 
This is followed by a number which is the address in 
memoty of the start of the machine code routine. The 
SYS keyword is vety like the BASIC statement 
GOSUB, in that after the machine code routine, the 
program goes back to the statement following SYS. To 
make sure that the program returns to the correct point, 
the machine code routine must end with the machine 
code equivalent of RETURN, which is RTS (ReTurn 
from Subroutine). This instruction has a decimal value 
of 96, which can be seen at the end of a machine code 
DATA list. 

When you want to use machine code subroutines as 
part of your BASIC programs, one of the problems 
which you may encounter is deciding where in memoty 
to locate the bytes that make up the machine code. On 
the Commodore this problem is easy to solve. There is 
a RAM area from addresses 49152 to 53247, that is 4K 
In all , which is available for machine code and which is 
unused by anything else within the computer. This area 
is ideal for storing machine code subroutines. The 
RESTORE subroutine on the left is located in this 
"safe" area of memory. 



••••••••••• 58 

HIGH-RESOLUTION GRIDS 
The two grids here enable you to identify the high
resolution memory location for any pixel or group of 
pixels on the screen. The first grid has two sets of 
numbers along each side. The innermost numbers are 
simple horizontal and vertical co-ordinates. The 
outermost numbers allow you to work out memory 

locations for each square on the grid. The pixels in each 
square are controlled by eight consecutive locations in 
the memory. To find the number of the lowest location 
in the sequence of eight, add together the horizontal 
and vertical location numbers on the grid. You can then 
move on to the 8 x 8 grid below it. 

How to set individual pixels 
Once you have established which 
eight memory locations control 
the square you have picked out, 
you can then POKE values into 
them to light individual pixels. 
Each memory location controls 
just one row of pixels, so working 
downward from the top of the 
square, there are eight separate 
locations involved. In the grid on 
the right, just six pixels in line 2 
are .being set. To do this, you 
would have to work out the 
location that starts the square, 
using the grid above, and then add 
2 to it. This gives you the right 
location for line 2. Then you need 

to add up the pixel values -
128+64+32+8+2+1 in this 
example - and POKE them into 
this memory location . If you 
wanted to light pixels in more than 
one row of this square, you would 
need to POKE more than one 
location. 

Working out high-resolution 
memory locations like this is a 
useful way of getting to know 
exactly how the Commodore 
operates in high resolution. If you 
try it out, it will give you an idea of 
how the high-resolution sub
routines featured earlier in this 
book actually function. 



59 

SPRITE GRIDS 
Commodore sprites are each composed of 21 rows of24 1 These can then be entered as DATA in a program. After 
pixels, each pixel being controlled by a single bit in a pencilling in a design on the grid, add up the bit values 
POKE statement. You can use the grid below to design for each group of eight pixels on a row. You can then 
your own sprites and work out their POKE values. record the totals in the columns on the right. 

9 10 II 12 !3 14 15 16 17 18 19 20 21 22 23 

128 64 32 16 U864 II M 8 4 1 U864 II M 8 2 
DATA values 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

20 

How.ontal co-ordinate 
Positioning sprites 23 24 343344 511 
Sprite position co-ordinates can have any value 
from 0-25S vertically or O-SII horizontally . 
However, only a pari of this range is actually visible 
on the screen. The diagram on the right shows how 
these co-ordinates relate to the screen. The central 
panel is the visible area on the screeD. This extends ~ 
from 24 to 343 horizontally and 30 to 229 vertically. ~ 
This means that you can move sprites on and off the ~ 
screen smoothly. 11 

29~ __ -+ ___ ~ ____________________ r-____ ~ 
30 

Scrccn area 

LJSprite 

Because vertical position runs from 0 to 255, it 'e 
can be controlled by a single byte Of information. ~ 
Horizontal position, on the other hand, needs two 
bytes if the whole of the range from 0 to S II 
(=2x2SS) is to be used. If you want a sprite to 
continue moving past horizontal position 25S, the 

229~ __ -4 ________________________ +-____ ~ 
230 

V + 16 location must be turned on for the sprite 
concerned. 255L-__ -J ________________________ L-____ ~ 



••••••••••• 60 

SCREEN MEMORY CODES 
At text resolution, every point on the Commodore 
screen can be accessed using the PO KE command. This 
allows you to put characters in any color onto the screen 
at specified positions. Two separate POKE commands 

Screen memory 102' 55296 
and color memory 1064 55336 

11 04 55376 
To find out the two 11 44 55416 
memory locations of 1184 55456 

any point on the 122' 55496 
1264 55535 

screen, first find out 1304 55576 
the row POKE values. 1344 55616 

1384 55656 

are needed - one to specify the character that is to 
appear at a screen position, and another to set its color. 
The grid below shows how the screen memory and color 
memory locations are selected. 

10 20 30 

The complete screen 1424 55696 
and color memory 1464 55736 

locations can then be 1504 55776 
1544 55816 

determined by adding 1584 55856 

the column number to 1624 55896 
1664 55936 

each POKE value. 1704 55976 
Once you have deter- 1744 560 16 

mined these two 1784 56056 
1824 56096 

_.10 
rumaiIIIIiIJimil

20 
numbers, you can add 1864 56136 

a character and color 190< 56176 
1944 56216 

value. 1984 56256 IT±±±±± 24 

Character POKE values Character codes are POKEd together with the screen 
The chart below shows the POKE values for the memory values. Values from 128 to 255 produce the 
Commodore's upper case and lower case characters. reverse images of the characters shown here. 

0 2 3 4 6 7 8 9 

0 @ A a B b C c D d E e F f G g H h I 
10 J K k L M m N n 0 0 p p Q q R r S s 
20 T t U U V v W w X x Y y Z z [ £ ] 
30 i ~ SPACE " # $ % & 
40 ( ) * + 0 
50 2 3 4 5 6 7 8 9 
60 < > ? El [iJ A OJ B 8 c a D D E 
70 Q F [JJ G OJ H 5J I [Sj J EJ K 0 L LSl M [Zj N D 0 
80 D p .Q Q R [!J S [] T ca U ~ V Dw ~ X OJ y 
90 [!] z Ell IJ OJ rm ~ ["IIII[I~ SPACE IJ .. 0 

100 0 0 II 0 ~ ~~ [] [8 Gl [g 
110 5J D ca f:g 53 BJ 0 [] [] 0 
120 ~ \;;;;l 0 0 IiJ ~ El ~ ~ 



~ ____ . 61 " ____ • 
ASCII CHARACTER SET 

The ASCII character set forms a single sequence of 
characters and control functions that can be accessed by 
the command CHR$. The ASCII system provides a 
standard digital coding for computer characters. The 
codes from 33 to 127 represent the same characters on 
almost all microcomputers, while the codes outside this 

o 2 3 4 

range are used differently by different machines . On 
the Commodore these control a range of functions like 
color serrings and represent keyboard graphics 
characters. The ASCII code for each character only uses 
7 bits of a byte, leaving room for an eighth bit for 
"parity checking", or transmission error monitoring. 

5 6 7 8 9 

o Wh;IC ri::~s+c-~Hi'iiT+c~ 
10 ~----~-----+------rRE--T-UR--N~~---r--+------+----~~~-~-n-r--~R~v~s~o2N~~2~~~~~E~ 
~----~-----+------~----~~---+------~----~~---+------~C~~~o~r~ 

20 INST/DEL Red nghl 

30 Grecn Blue SPACE 

* 

Purple Cursor 
lefl 

o 
EJ3 
.-J 
EJ 
o 
[l] 

o 
[g 

D 

& 
o 

D 
N 
X 
rn 
o 
~ 

1 

E 
o 
y 

B 
ISJ 
D 

Yellow Cyan 

~ ~ 
ttl [] 
~ I:J 
Id [] 
o • 
[!] ffi 
D 0 
5J 0 
~ ~ 



GLOSSARY 
Entries in bold type are BASIC keywords. 

ABS 
Gives the absolute value of a number. 

AND 
Combines two conditions or numbers, giving a result of 
I ouly if both conditions or numbers have a value of I. 

ASC 
Gives the ASCII code of a character. 

ASCII 
American Standard Code for Information Interchange; 
the character coding system used by the Commodore. 

BASIC 
Beginners' All-purpose Symbolic Instruction Code; 
the most commonly used high-level programming 
language. 

Binary 
A counting system used by computers based on only 
two numbers - 0 and I. 

Bit 
A binary digit - 0 or I. 

~ 
A group of eight bits. 

~ 
A single package containing a complete electronic 
circnit. Also called an integrated circuit (IC). 

CURS 
Converts an ASCII code into the character it represents. 

COS 
Gives the cosine of an angle. 

CPU 
Central Processing Unit. Normally contained in a 
single chip called a microprocessor, this carries out the 
computer's arithmetic and controls operations in the 
rest of the computer. 

Cursor 
A flashing symbol on the screen, showing where the 
next character will appear. 

DATA 
The computer treats whatever follows DATA as 
information that may be needed later in the program. 
Used in conjunction with READ. 

62 
'--,-I 

Debugging 
The process of ridding a program of errors or bugs. 

DEFFN 
Defines a function. 

DIM 
Informs the computer about the size of an array. 

END 
Halts a program. (See also STOP. ) 

Envelope 
The change in amplitude (volume) of a note while it is 
playing. Envelope shapes are selected with POKE. 

Filename 
A name given to a program or set of data to enable 
storage and recall on a tape or disk. 

FN 
Indicates that the variable following represents a 
function. (See also DEF FN.) 

FOR . . . NEXT 
A loop which repeats a sequence of program statements 
a specified number of times. 

GOSUB 
Makes the program jump to a subroutine beginning at 
the line number following the command. The 
subroutine must always be terminated by RETURN. 

GOTO 
Makes a program jump to the line number following 
the command. 

IF ... TUEN 
Prompts the computer to take a particular course of 
action only if the condition specified is detected. 

INPUT 
Instructs the computer to wait for some data from the 
keyboard which is then used in a program. 

INT 
Converts a number with a decimal fraction into a whole 
number by rounding down. 

K 
Abbreviation of kilobyte (1024 bytes). 

LEFTS 
Forms a string from the left-hand part of another string. 

LET 
Assigns a value to a variable. The use of LET is optional 
on the Commodore. 



LEN 
Counts the number of characters in a string. 

LIST 
Makes the computer display the program currently in 
its memory. 

LOAD 
Transfers a program from a tape or disk into the 
computer's memory. The program is identified by a 
filename. 

~ 
A sequence of program statements which is executed 
repeatedly or until a specified condition is satisfied . 

MID$ 
Forms a string from the middle part of apother string. 

NEW 
Removes a program from the computer's memory. 

ON .. . GOTO/GOSUB 
Makes a program jump to one of a number of 
sratements or subroutines depending on the value of a 
variable. 

OR 
Combines two conditions or numbers, giving a result of 
I if either of the conditions or numbers has a value of I. 

PEEK 
Reads the numeric value in a specified memory 
location. 

POKE 
Puts a numeric value into a specified memory location. 

PRINT 
Makes whatever follows appear on the screen. 

READ 
Instructs the computer to take information from a 
DATA statement. 

REM 
Enables the programmer to add remarks to a program. 
The computer ignores whatever follows REM in a 
program statement. 

RESTORE 
Resets the computer to READ the first item in a DATA 
list. 

RETURN 
Terminates a subroutine. (See also GOSUB.) 

RIGHTS 
Forms a string from the right-hand part of another 
string. 

63 

RND 
Produces numhers at random within specified limits. 

SAVE 
Records a program currently in memory onto a tape or 
disk. The program is identified by a filename. 

SGN 
Tests the sign of a number. 

SID 
Sound Interface Device; the chip used by the 
Commodore to produce sound. 

SIN 
Gives the sine of an angle. 

Sprite 
A mobile object block that is defined using POKE. 

~ 
Produces the square root of the number that follows it. 

STEP 
Sets the step size in a FOR . . . NEXT loop. 

STOP 
Halts a program and PRINTs out the line number in 
which it appears. 

String 
A sequence of characters treated as a single item
someone's name, for instance . 

Subroutine 
A part of a program that can be called when necessary, 
to produce a particular display or carry out a number of 
calculations repeatedly, for example. 

SYS 
Gives the starting I~cation of a machine code program. 

TAB 
Positions text along a line. 

Variable 
A labeled slot in the computer's memory in which 
information can be stored and retrieved later in a 
program. 

VERIFY 
Checks that a program has been recorded correctly on a 
tape or disk using SAVE. 

VIC 
Video Interface Circuit; the chip responsible for 
controlling sprites. 



64 
'-,---' 

INDEX - pie chans 34-5 Screen memory codes 60 
- plotting 16- 17 Shape filling 22-3 
- point 16-17 SID (Sound Interface 

Main entries are given in DATA 18-19,57 - writing games 47 Device) 40, 41, 42, 43 
bold type Debugging 54-5 see also Sprites SIN 20-1, 24 

Decoder programs 10 Gravity, simulation 3S-9 - graph of25 
ADSR (Attack, Decay, Defining statements 6 Sine wave sound 42 

Sustain and Release) DIM 52-3 High resolution 14-15 Size of display 19 
40-1,42 Displays, high- - bugs 56-7 Sound 40-1 

AND 8-9, 12-13 resolution 14-15 - drawing lines 18-19 - advanced effects 42-3 
Animation, sprites 30- 1 - size 19 - locations 16- 17 - bugs 43 
Arrays 52-3 see also Graphics Hints and tips 56-7 - filtered 42 
ASCIO Dotted lines 17 - ring modulation 43 
ASCII 10-11 Drawing, circles and IF . . . THEN 8-9 Sprites, animation 30-1 
- character set 61 curves 20-1 INPUT 10 - collisions 32-3 

- lines 18-19 INT6 - control bits 12 
Bar charts 36-7 - expanding 28 
BASIC 22, 26, 57 Encoder programs 10 Jiffy clock II - multi-color 2S-9 
- storage area 14 Error messages 54-5, 56 - overlaps 32 

Bit masking 12-13 Errors 54-5 Keyboard encoders 10 - storage 30 
Bouncing ball programs see also Bugs SQR6 
S-9,3S-9 LEFT$44 STEP 17 

Bugs 14 Filtered sound 42 Lines, drawing 18-19 Storage, machine code 
- avoiding 55 Flowcharts 46 Lissajous figure 24 - subroutines 57 
- in high resolution FN6 Listings, typing 56 - rearranging 14 

56-7 FOR . . . NEXT 17 Logical operators 12 - sprites 30 
- sound 43 Function keys 10-11 Loops 17 Strings 44-5 

see also Debugging Functions 6-7 - cutting up 44 
- built-in 6 Machine code, storing SYS 57 

Calculations, using - writing 6 subroutines 57 
functions 6-7 Memory, clearing 14-15 Tables 52-3 

Characters, ASCII set, Games programming - screen 60 
61 46-51 MlD$44 VIC (Video Interface 
- designing 26-7 - adding instructions Circuit) 12, 14-15,32, 
- multi-character 50--1 OR 8, 12-13 33 

design 27 -IF .. . THENin9 Overlaps 32-3 
- POKE values 60 - planning 46 Wandering curves 21 

Charts, bar 36-7 - scoring routines 49, Parallel lines 16-17 Word games 45 
- pie 34-5 51 Patterns 21 Words 44-5 

Circles 20--1 GET 10 PEEK 12 
Clocks 11 GOSUB57 Pie charts 34-5 
Collisions 22-3 Pixels 16- 17, 26, 28-9 
Color, bar charts 37 Graphics 35 Point graphics 16-17 
- high-resolution 14- - bar charts 36-7 POKE 12, 57 

15 - character design 26-7 - values for characters Acknowledgments 
- memory codes 60 - changing size 19 60 Dorling Kindersley would 
- multi-color sprites - circles 20-1 specially like to thank Ian 

2S-9 - curves 20-1 RAM 57 Graham for his significant 

Columns 36 - filling shapes 22-3 Reaction test programs contribution to this series. 

COS 20-1, 24 - graphs 35 11 Thanks are also due to Fred 

- graph of25 - gravity simulation RESTORE 57 
Gill for checking the text 

Crashed programs 54-5 3S-9 RETURN 10 
and to Richard Bird for 
preparing the index. 

Curves 20-1 - high-resolution 14- RIGHT$44 Commodore Business 
- complex 24-5 15 Ring modulation 43 Machines (UK) Ltd kindly 
- wandering 21 - lines 18-19 ROM 26 helped in the supply of 

- natural 24-5 RTS57 equipment. 



The original and exciting new teach-yourself programming 
course for Commodore 64 owners. 

Over 300 unique screen-shot photographs of program 
listings and programs in action-showing on the page exactly 

what appears on the screen. 

Packed full of programming tips and techniques, reference 
charts and tables, and advice on how to getthe most out of 

your Commodore 64. 

CONTENTS INCLUDE 
Setting up and starting off. Inside your computer. Screen 

layout and how to control it • Computer conversations 
• Programming with sprites. Animation. Special effects 
• Compiling a data bank. High-resolution programming 

• Curves and circles. 'Natural' graphics. Designing your own 
characters. Sprite animation, overlaps and collisions. Pies 

and slices. Bars and graphs. A guide to writing games 
• Shaping sound 

. :: . 


	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_001
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_002
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_003
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_004
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_005
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_006
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_007
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_008
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_009
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_010
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_011
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_012
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_013
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_014
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_015
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_016
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_017
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_018
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_019
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_020
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_021
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_022
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_023
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_024
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_025
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_026
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_027
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_028
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_029
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_030
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_031
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_032
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_033
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_034
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_035
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_036
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_037
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_038
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_039
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_040
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_041
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_042
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_043
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_044
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_045
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_046
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_047
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_048
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_049
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_050
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_051
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_052
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_053
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_054
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_055
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_056
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_057
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_058
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_059
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_060
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_061
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_062
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_063
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_064
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_065
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_066
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_067
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_068
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_070
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_071
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_072
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_073
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_074
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_075
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_076
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_077
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_078
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_079
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_080
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_081
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_082
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_083
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_084
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_085
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_086
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_087
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_088
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_089
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_090
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_091
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_092
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_093
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_094
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_096
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_097
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_098
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_099
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_100
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_101
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_102
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_103
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_104
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_105
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_106
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_107
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_108
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_109
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_110
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_111
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_112
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_113
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_114
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_115
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_116
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_117
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_118
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_119
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_120
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_121
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_122
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_123
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_124
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_125
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_126
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_127
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_128
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_129
	Step By Step Programming C64 Omnibus Edition Book 1 & 2_Page_130

