
AN ADVANCED GUIDE
By Shaffer t!l Shaffer Applied Research t!l Development

-

COMMODORE 64
COLOR GRAPHICS:

AN ADVANCED GUIDE

By:
Shaffer & Shaffer Applied Research

& Development

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company
Reston, Virginia

ACKNOWLEDGEMENTS

Special thanks and appreciation are extended to Penelope Semrau
for developing the instructional concepts and graphic designs, to Jeffrey Young for
creating the Commodore 64 advanced color graphics tool kit, and to Tamara L.
Sullivan for writing the manuscript. This development team was supported by
Sandra Locke, who produced the artwork; and Andrew Whitman, who tested and
edited the manuscript. Thanks also goes to Kathy Planton for her contributions in
the typing of the manuscript. All of us hope you'll enjoy learning more about the
Commodore 64.

General Editor
Robert P. Wells, Ph.D.

Graphics Production
Estela Montesinos
Steve Gunn

ISBN 0-8359-0787-2

Daniel N. Shaffer
President,
Shaffer & Shaffer,
Applied Research &
Development, Inc.

Copyright 1984 ~ Arrays, Inc.!The Book Division. All rights reserved. Printed in
the United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior written
permission of Arrays, Inc.

Commodore 64 is a registered trademark of Commodore Business Machines. The
use of trademarks or other designations is for reference purposes only.

INTRODUCTION
What You Should Know
How to Use This Book

TABLE OF CONTENTS

What You Can Expect to Learn

CHAPTER 1: SETTING UP THE PROGRAM

The Joy of Machine Language
Entering the First Tools
Plotting Points and Lines
The Zap Routine
Summary

CHAPTER 2: WORKING WITH SHAPES

Defining Shapes
Entering Data Lists in the Program
Retrieving and Drawing Your Shapes
Multi-Color
Clip a Shape
Summary

CHAPTER 3: PAINTING SHAPES

Painting Simple Shapes
Painting in Multi-Color
Storing Paint Points
Summary

CHAPTER 4: TRANSLATING SHAPES

Test Plotting Your Shapes
Duplicating Shapes
Painting While Translating
Summary

CHAPTER 5: SCALING SHAPES

U sing the Cartesian Coordinate System
The Mathematics of Scaling
Anchoring Shapes for Orientation
Scaling Tips and Problems
Design Ideas
Summary

CHAPTER 6: ROTATING SHAPES

Simple Rotation Techniques
Overcoming Aspect Ratio Problems
Planning the Results of Rotation
The Mathematics of Rotation
More Design Ideas
Summary

5
5
6
7

11

11
22
28
32
35

37

38
42
45
54
61
69

73

76
83
87
98

103
103
111
124
132

139

140
144
151
163
169
175

179
184
191
194
199
203
207

CHAPTER 7: MAKING AND MOVING SPRITES
Introduction to Sprites
Special Features of Sprites
Drawing and Placing the Spacecraft Sprite
Animating the Spacecraft Sprite
Summary
Summary of Sprite Features

CHAPTER 8: ADVANCED SPRITE GRAPHICS

Introduction to the Interrupt System
Making and Moving Action Sprites
Collision Detection
Scoring and Special Effects
Summary

APPENDIX A: Additional Programs
APPENDIX B: Rotation Math

APPENDIX C: Bibliography

APPENDIX D: Machine Language Listing

APPENDIX E: Design Grids

APPENDIX F: Color Charts

APPENDIX G: Tool Kit Reference Card

211
211
217
224
242
245
246

251
251
253
266
274
284

287
290
293
294
306

309

INTRODUCTION
Welcome to the world of Commodore 64 advanced graphics-a dynamic world of

colors, imagination, intrigue, and, of course, fun. The fact that you purchased an
advanced book suggests that you are already familiar with computer art, or the
Commodore 64, or both. As we explain later in this section, some prior computer
experience will be necessary.

If you got this book to learn advanced programming techniques for color
graphics, you will appreciate the programs covered in these chapters. Program
ming code that can rotate, scale, and translate (move) images on the screen has been
included for use in both simple and complex compositions. Also included are
instructions on creating multi-colored images, as well as advanced methods of
sprite manipulation. Carefully planned lessons will help you understand how and
when you should use each new-found skill. The result will be pictures for school,
work, entertainment-anything.

If your interest lies in l.earning more on the use of colors, tones, repetition,
patterns, and other artistic techniques, you won't be disappointed. We've provided
you with useful tips, suggestions, and facts to help you effectively put your ideas on
the screen. This includes over 30 sketched designs illustrating how you can better
take advantage of each graphic concept introduced.

The idea of this book is to go one step beyond the technical aspects of computer
art. After answering the question "How can I rotate a figure?", it is just as impor
tant to answer the question "What can I do with rotation?" Exactly what doors are
opened once the programs have been entered? That is what you will explore in the
coming chapters.

What You Should Know
In order to write an advanced book, we've made some assumptions about the

experience level of our readers. If you have already gone through our Commodore
64 Color Graphics: A Beginner's Guide, you are ready for this book.

If not, the first requirement is that you have a good feel for the Commodore 64
keyboard and its collection of special keys. In this text, special keys are printed in
boldface to distinquish them from the rest of the text. So, for example, when you
read "Press the RETURN key," you know to press the key marked RETURN on
your keyboard (do not type R-E-T-U-R-N).

Your programming skills do not have to be extensive, but should include a
first-hand knowledge of each item listed below (recommended reading is listed in
the right-hand column):

-variables (e.g., A, B$, T%)
-PRINT statement
-GOTO statement
-GOSUB/RETURN statements

Commodore 64 User's Guide

95-103,112-113
23-29,123-124

32-34,120
120,124

5

6

Commodore 64 User's Guide

-GET statement
-POKE statement
-IF/THEN statements
-REM statement
-computer memory
-arrays (computer lists)
-FOR/NEXT loops
-SAVE statement (saving programs)
-LOAD statement

47-48,119-120
60-61

37-39,120-121
124

2-4,62-65,142
95-103

39-40,43-45,119,121-122
21,116

18-20,115

Finally, you should have some experience with high resolution graphics. You
should know about foreground/background colors, screen color blocks, screen
memory versus color memory, and the X, Y coordinate system. If you need a review
of beginner's graphics, try our Commodore 64 Color Graphics: A Beginner's
Guide, or the Commodore 64 Programmer's Reference Guide.

How to Use This Book
To use this book, you will need the following equipment:

-A Commodore 64 computer;
-A video monitor or TV screen (preferably color);
-A Commodore 64 disk drive with a properly formatted diskette, or a cassette

recorder for the Commodore 64 with a blank cassette tape; and
-Some graph paper to work out your own designs (optional).

Each time you sit down to use this book, you should be at your computer. All
equipment should be properly set up and turned on. Information on connecting
your computer and monitor is provided in the Commodore 64 User's Guide. Disk
drive installation is covered in the manual(s) provided with the disk drive itself.
(This manual also covers formatting a diskette.) When the system is turned on, your
screen should display" COMMODORE 64 BASIC V2 " at the top. Only
then will you be ready to begin a session with this book.

A "session" can be as long or a short as you like. That is the beauty of working
with programs. At the end of each session, simply save the current form of your
program. You can then turn the computer off and take a nap, watch TV, or visit
your friends. Later, you can easily return to your work by loading the program back
into memory, and then picking up in the chapter where you left off.

Each chapter ends at a logical breaking point. This makes it easy for you to read a
chapter, SAVE your program, take a break, and then continue later. For this reason,
we ask you to SAVE your program at the end of each chapter. When you begin
reading the next chapter, you are asked to LOAD the program back into memory.
As a general rule, it is a good idea to SAVE and LOAD your program whenever
instructed.

The general format of each chapter is as follows:

-New graphics and design concepts are introduced;

-New program lines are typed;
- The program is RUN and discussed in depth;
-Any additional design ideas and sketches are introduced where appropriate;
-All key technical and artistic points are summarized.

In the chapters, each programming technique is packaged as a useful subroutine
"tool" that can be inserted and used in any picture-drawing program you create. In
fact, by the end of Chapter 8 you will have a complete "tool kit" containing over 20
graphics subroutines. Need to draw a line? No problem. Just pick up the DRAW A
LINE tool, specify where you want the line drawn, and the job is done. (This will
become clear in Chapter 1.)

Another important aspect of this book is that it concentrates on teaching how
pictures can be drawn on the Commodore 64. Often, knowing why things work is
not essential to creating the picture.

Think of using your radio. You may not care why it works, just how it works
(where the switch is). Beginning in Chapter 1, any "why" that is not necessary to
understand has been placed in a box. These technical descriptions can be read or
passed over, as you please. Passing over a technical description will in no way keep
you from learning how to create your graphics displays.

As a final comment, practice what you learn before moving on from one chapter
to the next, and do not skip chapters. If you have difficulty with some of the
material, read through it again and re-try each example you are given. It will be
through repetition that your skills are retained and refined.

What You Can Expect to Learn
This book sets out to accomplish two things:

(I) Provide you with advanced programmi ng techniques for color graphics; and

(2) Show you how and where these techniques can be applied to produce more
professional looking pieces of artwork.

To accomplish the first of these goals, you will learn how to:

-plot points and lines·
-store and retrieve shapes
-draw shapes
-paint shapes
-translate shapes
-rotate shapes
-scale shapes

If you already have experience making and moving sprites but want to learn
more about them, we also cover connecting sprites to joysticks, and sprite collision
detection. Sprites are small, arcade-like figures that can move around on your
screen. The ability to create moving designs is just one of the advantages computer
art has over sketchpads and canvases.

GThese are beginninggrapbics concepts, and are not discussed in as much detail as the others.

7

8

To give you an idea of what some of this means, consider the two basic shapes
, sketched below.

By rotating the petal shape, you arrive at a flower:

By scaling the center piece, you change the appearance of the flower:

By scaling the petals instead, you achieve another form of the flower:

Finally, by translating all of the flower types, you arrive at a floral display:

To meet the second objective, teaching art concepts, we gave special considera
tion to those art ideas that related specifically to our programs. Some of the topics
discussed include:

-patterns
-repetition
-tone or "value" variation
-the illusion of depth
-the use of horizon lines
-variety through scaling
-using shapes to create other shapes
-the effect of shape placement/size.

For most people, drawing does not come naturally. Fortunately, there are most
specific guidelines, "tricks of the trade" if you will, that are easy to learn, under-

9

10

stand and apply. For example, you will see how a "horizon line" can significantly
add to the feeling of depth in a picture. You will learn about "negative space," and
why it is an important consideration in each of your designs. These and other
simple facts about design control are discussed and illustrated as you proceed
through the chapters.

Chapter One

SETTING UP THE PROGRAM
In order to work on advanced graphics, you have to start with some basic

graphics tools. As fundamental as "plot a point" might be, there really can be no
advanced graphics without it. In this chapter, we will set you up with tools that can
do the following:

-"turn on" graphics mode
-"turn off" graphics mode
-clear the graphics screen and set the background color
-plot a point
-plot a line
-erase the main routine

There are several approaches to placing these tools in a program. We have taken
the approach of creating a subroutine for each. This saves you the trouble of
re-typing them every time you need one in your program. Instead, you set a few
variables and insert a COSUB. By the end of this book you will have a whole range
of subroutine tools, ranging from the very simple to the very complex. The "main
routine" of your program will vary from picture to picture, but the subroutines will
remain the same.

We also chose to take advantage of machine language. If you've ever written
BASIC programs that draw pictures, you are no doubt aware of the time it can take
to run the finished program. This is beca use BASIC is not a language the computer
immediately understands. Instead, it must first "translate" each BASIC statement
into machinge language. Only then can it carry out the instructions it finds.

We felt that the time it takes to convert BASIC into machine language was too
long for an advanced book. So, in the next section, you will enter some machine
language as data statements to streamline and speed up a few of the slower tools.
The result will be dramatic.

You will find that the main thrust of this chapter is to set you up for advanced
graphics. This involves getting some beginning graphics programming and some
machine language typing out of the way.

The Joy of Machine Language

This section's title expresses a mixture of both admiration and sarcasm. There's
no doubt about it, nothing beats machine language for speed. Unfortunately, it is
not nearly as simple to learn or understand as it is fast. This section does not
attempt to explain any part of machine language to you. Instead, you will learn
what to type, why it will help you, and how to check it.

11

12

1 SETTING UP THE PROGRAM

You will perform three steps to enter the machine language data. The steps are:

(I) Enter a small program to help you type the machine language.

(2) Entering the machine language data.

(3) Enter a program that double-checks the machine language for accuracy.

Initially, this may seem like a lot of work. However, spending 45 minutes of
typing time now can save you hours of plotting time in the future. To instill
enough incentive to get you through the next few pages, we have provided the
picture below. You may need to flip back to it from time to time to keep yourself
going. This relatively simple picture took 28 minutes to plot using BASIC alone,
while taking only 41 seconds to plot using machine language.

The HELPER Program

Several hundred numbers need to be accurately POKEd into memory. This,
needless to say, is quite a task. In addition, there will be many occasions when you
need to PEEK into memory to check your entries, more typing.

To aid you in this process, we provide a HELPER program on page 13 that will
do all of the repetitious typing for you. This will save you time and also reduce the
possibility of typing errors. In addition, the HELPER program produces a "check
number" after every eight pieces of data are entered. By comparing this number to
one in our text, you can check to make sure you are entering the data correctly.

SETTING UP THE PROGRAM 1

You will be told to SAVE this HELPER program after typing it. Be prepared
with a formatted diskette or blank tape on hand. When you are ready, read the listof
instructions below and then type the HELPER program on your Commodore.

-If you own a machine language monitor program that is easy to use and you
understand how it works, you may use it instead of the HELPER program. If
you don't know what a machine language monitor program is, it probably
won 't help you.

-Type slowly: accuracy is far more important than speed.

- Type in lower-case. This makes it easier to spot errors. To change to lower-
case, hold down a SHIFT key and press C= (located on the lower, left-hand side
of your keyboard).

-If you have trouble seeing your typing, press CTRL and 2 at the same time.
This changes your typing to white.

-If you have a habit of typing oh's for zeroes, or small L's for ones, you must
break that habit now. The computer expects numbers typed where numbers
are intended.

-Carefully check over your typing when you are done.

Begin typing:

2000 REl-1 :::::: HELPER PRCX;RAM
2010 PRlllI' ClfR$(147} CHR$(18} SPC(15} "HELPER"
2020 A$="": nwur "MEM/DATA"; A$: IF A$="" THEN END
2030 1=0: J=7: GOSUB 4030: REM GET ADDR
2040 ADDR=T: IF T<49152 OR T>50504 TI~ PRll1r

"ERROR. TRY AGAIN.": oo:ro 2020
2050 IF I.EN(A$} = 28 '!HEN 3070: REM ffiKER
2060 IF IEt1(A$}>4 TIfEN PRINT "ERROR. TRY AGAIN.":GOI'O 2020
2070 CK=0
2080 FOR I = 0 'ID 7
2090 PRINT II ";

3000 P%=PEEK(ADDR+I): CK=CK+P%
3010 PH% = P%/16: PL% = P%-PH%*16
3020 IF PH%>9 THEN H1%=PH%+7
3030 IF PL%>9 THEN PL%=PL%+7
3040 PRINT ClfR$ (PH%+48) CHR$ (PL%+48) ;
3050 NEXT I:PRllIT:PRINT"StM FOR 'IBIS IDV:" CK:PRn1r
3060 roro 2020
3070 CK=0
3080 FOR J = 0 'ID 7
3090 GOSUB 4030: CK=CK + T
4000 roKE AD+J,T
4010 NEXT J: PRINI'"StM FDR TIUS Ra-v:" CK: PRINI'
4020 roro 2020
4030 T=0

13

14

1 SETTING UP THE PROGRAM

4040 1=1+1
4050 IF I>LEtHA$) AND J=7 THEN RETURN
4060 A~(MID$(A$,I»
4070 IF A=32 'IHEN RETURN
4080 A~+48*(A<58)
4090 A~+55*(A>64)
5000 IF A<0 OR. A> 15 'lHEN PRINT"ERROR. TRY

AGAIN.":GOrO 2020
5010 T=!I'*16+A
5020 roro 4040

Carefully double-check your typing when you are done, and then SAVE this
program under the name "HELPER". After saving any program, always use the
VERIFY command to make sure that the program did get saved. A summary of the
SAVE, VERIFY, LOAD, and LIST commands is given below.

To SAVE on disk, type:
To SAVE on tape, type:

To VERIFY on disk, type:
To VERIFY on tape, type:

To LOAD from disk, type:
To LOAD from tape, type:

·T 0 re-SA VE a program
on disk, type:
to re-SAVE on tape:

SAVE "filename" ,8
SA VE "filename", I

VERIFY "filename" ,8
VERIFY "filename", I

LOAD "filename",8
LOAD "filename",}

SAVE "@O:filename",8
N / A. Save the revised pro
gram at the end of the tape.

• The @O command is one that allows you to erase and replace a program on diskette,
using the same filename. This command has a history of problems, and we therefore do not
recommend using it. An alternative is to re-name each modified or corrected program with a
filename similar to the original program (i.e., "HELPER", "HELPER. I ", "HELPER.2",
etc.).

To use the above commands now, be sure to replace "filename" with
"HELPER" (including quotes). When working with programs of your own,
filename can be replaced with any 16-character name you wish to assign to the
program.

If you are working with a cassette recorder, you will have to make use of your
COUNTER with every SAVE, VERIFY, and LOAD command. In addition, the
screen will present you with several messages as the commands are executed (e.g.,
PRESS PLAY AND RECORD). Follow the screen's instructions at all times. If
nothing seems to be happening, try pressing C=. This keypress is necessary at
certain times in the LOAD and VERIFY commands.

With the HELPER program safely stored on disk/ tape, you can now try it out to
see just exactly how helpful it is.

SETTING UP THE PROGRAM 1

Entering the Machine Language

You need to enter the machine language data blocks that begin on page 16. Each
row in a block contains the following:

-A memory location (e.g., COOO);
-Several pieces of data (e.g., 80, 40, 20, 10, etc.);
-A shaded number.

What you need to do is POKE the data from each row into a set of eight memory
locations, beginning with the memory location given in the row. (The shaded
number is a "typing checker," and will be explained later.)

Normally, you would have to type many, many POKE statements to accomplish
this job. Because of the HELPER program, all you need to do is type the numbers
themselves. To get started, LOAD and RUN the HELPER program.

NOTE: We will now describe what should happen on your screen with the
HELPER program. If anything else happens, STOP the program. Search for
and correct all typing errors. Then re-run the HELPER program.

Your screen will clear, and the title "HELPER" will be centered at the top.
Benea th this, the message "MEM/ DA T A" will be prin ted. This message stands for
" Memory Location/Data," and it directs you to begin entering the first memory
location and corresponding eight pieces of data. Look at the first row of your data
blocks:

C000 80 40 20 10 08 04 02 01

To enter this row into the HELPER program, type it exactly as it is shown,
except for the shaded number 255. Be sure to put a space between each piece of data.
Use the cursor con trol keys to back up and correct errors whenever necessary. When
you've correctly entered this row, press RETURN.

Next you will see the message "SUM FOR THIS ROW: 255.-" 255 is an important
number. Compare it to the shaded number in our text for this row. You will see that
the shaded number and the SUM FOR THIS ROW number match (or should).
This is how you can find out if you've typed a row correctly. Whenever the
computer displays a different SUM than the shaded one in our book, you have made
a typing error in that row. To correct it, simply re-type the entire row at the next
" MEM/ DATA" prompt. The new information will over-write (erase and replace)
the incorrect information.

Now type each row of each block into the program. You must enter the data
blocks one complete row at a time, followed by a press of the RETURN key. If you
want to re-check a line, type the memory location only (remember, this is the first
number on each row), and press RETURN. The computer will then display each
number you typed for that row, in the same order you typed them. Most impor
tantly, check each row sum against our pre-calculated shaded sum.

To stop the HELPER program, press RETURN at a "MEM/DATA" prompt
before entering any information. If you decide to stop midway through the
machine language program lines, be sure to read the "Taking a Break" section that

15

16

1 SET11NG UP THE PROGRAM

follows the machine language data. Before you resume typing after a break, be sure
to read the "Picking Up Where You Left Off' section on the next page. The "Taking
a Break" section discusses how to save your work. As a precaution, we recommend
saving your work at the end of each data block.

Note: The HELPER program has a few built-in error checking devices. It
does not check for every posssible error-only a few of the more obvious ones.
If the message "ERROR. TRY AGAIN." appears at any time, you should
re-tvpe the row you last typed into the program.

Block #1 Checker Values

C000 80 40 20 10 08 04 02 01
COO8 C0 30 OC 03 213 Fl B7 SA
C010 8D 21 00 0A 0A 0A 0A 18
C018 65 65 A0 44 A2 04 213 27
C020 C0 A9 00 A0 60 A2 20 84
C028 FC A0 00 84 FB 91 FB C8
C030 00 FB E6 FC CA 00 F6 60
C038 A9 00 85 FC AD 3E 03 48
C040 29 F8 85 FB 0A 26 FC 0A
C048 26 FC 65 FB 90 02 E6 FC
C0513 0A 26 FC 0A 26 FC 0A 26
C058 FC 85 FB AD 3C 03 29 F8
C060 65 FB 85 FB 85 FD AD 3D
C068 03 65 FC 48 4t\ 66 FD 4t\
C1370 66 FD 4t\ 66 FD 18 85 FE
C078 68 69 60 85 Fe 68 29 07

Block #2

C080 65 ill 90 02 E6 FC 85 FB
C088 AD r 03 29 07 AE 44 03
C090 F0 03 4t\ 09 138 AA BD 00
C098 C0 8D 48 03 60 A0 00 OC
C0A0 47 133 AD 3F 03 09 F0 CD
C0A8 21 00 F0 6A A9 44 18 65
C0B0 FE 85 FE AD 44 03 00 0B
C0B8 20 17 Cl 213 20 Cl AD 48
COC0 03 00 50 20 17 Cl 8l\ 29
COC8 F0 8D 45 03 4t\ 4A 4A 4A
C000 CD 3F 133 F0 0A 09 F0 CD
C0D8 21 00 00 0A 20 20 Cl AD
C0E0 48 03 29 55 00 2D AD 46
C0E8 03 CD 3F 03 F0 0F 09 F0
C0F0 CD 21 00 00 0F AD 3F 03
C0F8 0D 45 03 91 FD AD 48 03

~:.

i!~ii~
)i~ i:
*(I;,~£

iil~~M I
i;~:~ ;

? +3§4~
)·529 '

I
~-t··· 778)
•.•• 008 ·~
; 7.3:1;)

SETTING UP THE PROGRAM 1

Block #3

CI00 29 AA 00 0F A9 94 18 65
C108 FE 85 FE AD 3F 03 91 FD
Cl 10 AD 48 03 8D 47 03 60 Bl
Cl 18 FD AA 29 0F 8D 46 03 60
C120 AD 3F 03 W\ W\ M W\ 0D
C128 46 03 91 FD 60 A2 4E 2C
Cl30 A2 53 2C A2 58 2C A2 62
Cl38 2C A2 67 A0 03 4C D4 BB
CI40 A9 4E 2C A9 53 2C A9 67
CI48 A0 03 4C A2 BB 20 39 Cl
Cl 50 20 F7 B7 A6 14 A4 15 8E < 97'i~
Cl 58 49 03 OC 4A 03 60 20 FD

I C160 AE 20 EB B7 8E 3E 03 A6
CI68 14 A4 15 8E X 03 OC 3D
Cl 70 03 C9 A4 F0 IF 20 Fl B7
Cl 78 8E 3F 03 20 Fl B7 BE 44

Block #4

C180 03 20 38 C0 20 9D C0 AD
CI88 48 03 49 FF 31 FB 0D 47
CI90 03 91 FB 60 20 73 00 20
C198 SA AD 20 0F OC AC 3C 03
ClM AD 3D 03 20 91 B3 20 2D
ClA8 Cl 20 53 B8 20 33 Cl 46
ClB0 66 20 4D Cl 20 Fl B7 SA
ClB8 A8 20 A2 B3 20 0F OC AC
CIC0 3E 03 20 A2 83 20 30 Cl
CIC8 20 53 B8 20 36 Cl 46 66
Cl00 A9 67 A0 03 20 5B BC 30
Cl00 0B 20 2B OC 00 03 4C 75
ClE0 Cl 20 4D Cl 20 46 Cl A9
ClE8 58 A0 03 20 0F BB 20 33
ClF0 Cl 20 46 Cl A9 62 A0 03
ClF8 20 0F BB 20 36 Cl 20 Fl

Block #5

C200 B7 8E 3F 03 20 Fl B7 8E
C208 44 03 20 81 Cl 20 40 Cl
C210 A9 58 A0 03 20 67 B8 20
C218 2B OC 30 37 20 2D Cl 20

17

1 SETTING UP THE PROGRAM

Block #5 (cont.)

C220 F7 B7 AS 14 A6 15 8D 3C 1003
C228 03 BE 3D 03 20 43 Cl A9 ···· 670

C230 62 A0 03 20 67 B8 20 2B 655
C238 OC 30 18 20 30 Cl 20 F7 812
C240 B7 A5 14 8D 3E 03 CE 49 853 ..
C248 03 00 BF CE 4A 03 10 Bl\ ... 887
C250 4C 81 Cl 60 20 FD AE 20 .985
C258 EB B7 BE 3E 03 A6 14 A4 975 '
C260 15 8E 3C 03 OC 3D 03 20 462
C268 Fl B7 BE 3F 03 SA. 09 F0 1019
C270 CD 21 00 00 04 20 Fl B7 .1114 •
C278 60 20 Fl B7 SA. F0 08 AD ,1111

Block #6

C280 3C 03 29 FE 8D 3C 03 8E (' 704
C288 44 03 E8 8E 40 03 A0 00 612 ·,
C290 OC 43 03 A9 00 8D 42 03 589
C298 8D 41 03 AD 3C 03 00 05 658 ..
C2A0 CD 3D 03 F0 20 38 ED 40 898
C2A8 03 8D 3C 03 B0 03 CE 3D 653
C2B0 03 20 43 C3 F0 E5 18 AD · 963 ·
C2B8 3C 03 6D 40 03 8D 3C 03 44)
C2C0 90 1213 EE 3D 1213 EE 3E 03 752
C2C8 20 43 C3 00 0B AD 41 03 754
C200 00 0B 20 4E C3 A9 fin 2C 738
C200 A9 00 8D 41 03 CE 3E 03 649 :
C2E0 CE 3E 03 20 43 C3 00 0B 784
C2E8 AD 42 03 00 0B 20 4E C3 766
C2F0 A9 1211 2C A9 00 8D 42 03 593
C2F8 EE 3E 03 20 81 Cl AD 3C 890

Block #7

C300 03 18 6D 40 03 8D 3C 03 407
C308 AD 3D 03 69 00 AD 3D 03 547
C310 F0 29 AD 3C 03 C9 40 90 926
C318 22 AE 43 03 F0 2F CA BD 956
C320 00 CB 8D 3D 03 BD 00 CA 799
C328 8D 3C 03 BD 00 C9 8D 3E 797
C330 03 CE 43 03 C9 C8 B0 E1 lOO1
C338 4C 93 C2 20 43 C3 00 D9 ;1136
C340 4C C5 C2 20 38 C0 A0 00 }.9Q$\

18

SETTING UPlHE PROGRAM 1

C348 Bl FB 20 48 03 60 AE 43 ~i;'~~ ; C350 03 AD 3E 03 90 00 C9 AD
C358 r 03 90 00 CA AD 3D 03 ~> pS9i
C360 9D 00 CB EE 43 03 60 20 i.:}7961
C368 Fl B7 BE 4B 03 20 Fl B7 "1100.
C370 eA 48 20 Fl B7 BE 4C 03 i.~~ C378 20 Fl B7 BE 50 03 20 Fl

Block #8

C300 B7 BE 5E 03 20 Fl B7 BE ;~~ :.
C388 5F 03 20 Fl B7 68 Pel 10 i ~;~ . C390 A9 7F 8D 0D OC BE 07 OC
C398 A9 C9 80 14 03 A9 C3 80 :'1039,

::.:: ';'::"':, ..
C3A0 15 03 A2 11 A0 82 BE 0F

~~: C3A8 OC OC 0D OC 60 A9 7F 80
C3B0 0D OC A9 31 80 14 03 A9 794 .
C3B8 FA 8D 15 03 A2 08 A0 81 T 85a ~
C3C0 00 E4 20 A8 C4 AE 50 03 ;ti02· ..
C3C8 F0 53 AD 15 00 29 04 00 !' 97S;
c300 20 AD 60 03 29 10 00 45 :·'· 651 i

C300 AD 15 00 09 04 80 15 D0 ~;l~~~ C3E0 AD 10 00 29 FB 80 10 D0
C3E8 29 01 0A. eJA. 0D 10 D0 80 ;.'~

C3F0 10 00 AD 00 00 80 04 D0 ':', 958
C3F8 AD 01 D0 80 05 00 eA A2 ' lQ~6 .

Block #9

C400 04 A0 05 20 lA C5 AD 10 613
C408 D0 29 04 0D 04 00 Pel 05 ... 723
C410 AD 05 00 00 08 AD 15 D0 '1004 ·
C418 29 FB 8D 15 D0 AD 60 03 934
C420 A2 00 A0 07 20 lA C5 AD :. 157
C428 4C 03 Pel 62 AE 5E 03 F0 "928;
C430 53 AD 15 D0 29 08 D0 20 ~• 787
C438 AD 61 03 29 10 D0 45 AD ii 7€30
C440 15 D0 09 08 8D 15 D0 AD ;789 .
C448 10 00 29 F7 80 10 00 29 ·!i: C450 02 eJA. eJA. 0D 10 D0 80 10
C458 00 AD 02 00 80 06 D0 AD U19
C460 03 D0 8D 07 D0 eA A2 06 J 9-t~ .
C468 A0 04 20 lA C5 AD 10 D0 :.f3J;6
C470 29 08 0D 06 D0 Pel 05 AD ····· 694 :
C478 07 D0 00 08 AD 15 D0 29 874)

19

1 SETTlNG UP THE PROGRAM

Block #10

C480 F7 8D 15 D0 AD 61 03 A2
C488 02 A0 06 20 lA C5 AE 5F
C490 03 F0 08 SA. A2 08 A0 03
C498 20 lA C5 AD 0D OC 29 01
C4A0 F0 03 4C 31 FA 4C BC FE
C4A8 AD 4B 03 00 0D AD 01 OC
C4B0 8D 60 03 AD 00 OC 8D 61
C4B8 03 60 A9 00 AA A8 8D 00
C4C0 OC AD 01 OC A9 FD 20 F6
C4C8 C4 A9 FB 20 D9 C4 A0 01
C400 A2 03 A9 BF 20 F6 C4 A9
C4D8 DF 8D 00 OC AD 01 Ie 09
C4E0 C9 A2 07 DD 0A C5 F0 04
C4E8 CA 10 F8 60 BD 12 C5 39
C4F0 60 03 99 60 03 60 8D 00
C4F8 OC AD 01 OC 3D 00 C0 00

BLOCK #11

C500 03 A9 0F 2C A9 IF 99 60
C508 03 60 FD EF FB DF F9 EB
C510 DD CF lE If) lB 17 ill lD
C518 lE If) 4A B0 03 DE 01 D0
C520 4A B0 03 FE 01 00 4A 00
C528 12 BD 00 00 00 09 AD 10
C530 00 59 00 C0 8D 10 00 DE
C538 00 00 60 4A B0 0E FE 00
C540 00 00 09 AD 10 00 59 00
C548 C0 8D 10 00 60 00 00 00

Taking a Break/ Finishing Up

If your eyes grow weary, your throat dry and parched, and you want to take a
break, save your work. We recommend saving your work at the end of every block
you type. That way, should you make a mistake in the saving process, you can load
the last saved version into memory and then re-type only one block. You must save
your work after typing the final data block.

Saving machine language data is done in a special way, because you are not
saving a "normal" file. Again, if you save the machine language incorrectly, you
will probably lose anything that was not saved at an earlier time. Save your work
carefully.

Cassette tape recorder users should prepare the recorder as when saving any other
file, then move the cursor to a free line and very carefully type:

20

SETTlNG UP THE PROGRAM 1

SYS57812 I filename",1:POKE174,80:POKI:l75,197:POKE193,0
:POKEl94,192:SYS62954

filename can be replaced with any 16-character name you desire. You should use
filenames like "ML.I", "ML.2", "ML.3", etc. each time you save the machine
language at the end of a data block. The final name should be "M/L" (which stands
for Machine Language), as that is how we will refer to it in this text.

Type the above as one command, typing no extra spaces between words and
letters. The computer will wrap your typing around to the second line after the first
one is filled. Just continue typing when this happens. When you are sure you have
typed this line correctly, press RETURN.

Disk drive users should follow the same procedures, but type this command
instead:

SYS57812"filename",8:POKE174,80:POKE175,197:POKE193,0
:POKEl94,192:SYS62954

Picking Up Where You Left Ofr

To get back to work, LOAD the "MIL" file back into the computer's memory.
You can do this in the same manner as any other file, except you must attach", I " to
the end of the LOAD command. For disk drive users, this would be: LOAD
"M/L",8,l. For cassette tape users, this would be: LOAD "M/L",I,l. Type NEW
and press RETURN after the "MIL" file has been properly loaded.

IMPORTANT: You must type NEW and press RETURN after loading the
"MIL" file into memory with the keyboard. This will reset the computer's
pointers, which direct it to the location of your BASIC program. You will
later type a program that automatically loads the "MIL" file into memory.
There is no need to reset the pointers from within a BASIC program. You
only need to type NEW after loading the "MIL" file with the keyboard.

You should next check to make sure that the "MIL" file was properly saved, and
thus is correctly loaded in memory. The only way to do this is to LOAD and RUN
the HELPER program. Then, randomly check 5 to 10 rows of data you entered
before you last saved "MIL". To check a row, type only the first number in the row
(the memory location), and then press RETURN. The data for that row will be
displayed, and can be compared to our printed data blocks.

When everything checks out, use the HELPER program to finish entering the
data blocks.

The Final Check

Because it is essential that the machine language be entered and saved properly,
we are providing one final check. The program shown below will look at the
memory locations containing the "MI L" file and test each data block. Any block
containing an error will be reported to you. You should then re-Ioad the HELPER
program and check each row in that block. Re-type any rows containing errors.

Type NEW and press RETURN to clear out any old program. Then, begin
typing below:

21

22

1 SETTING UP THE PROGRAM

1 1=49152 :R=1
2 T=0
3 FOR J=I TO 1+127
4 T=T-PEEK(J)*(J<50509)
5 NEXT
6 READS: IFS<>T THEN PRINT II ERROR IN BlOCK"R:END
7 I=I+128:PRn'JT I BlCCKI R"IS 0K":R=R+l:IFR>11 '!HEN .ElID
8 ooro 2
10 DATA 15494,13405,13567,12697,13656,11506,13622
11 DA~ 14447,13025,15192,8817

When you are finished, save this program under "CHECKER", and then run it.
This program looks at the machine language data blocks you have placed in
memory with the HELPER program, and determines if each data block (as a
whole) has been entered correctly. The message "BLOCK #X IS OK" should
appear for Block #1 through Block #11. If the message "ERROR IN BLOCK #X"
ever appears, you will need to check and re-type one or more rows in the block
number given. (This assumes, of course, that the CHECKER program has no
typing errors.)

Do not continue in this book until this final check has been met. When it has,
save the "MIL" file in the manner discussed above.

Entering the First Tools

Now the fun begins. The first three subroutines are shown below. One subrou
tine turns graphics on, another turns graphics off, and still another sets the screen
to a background color, Clear out any previous program from memory (type NEW
and press RETURN), then type the subroutines:

1 ooro 1000
10 RE}1:::::::GRAPHICS
11 IF MU THEN POKE 53270,216
12 POKE 53265,59
13 roKE 53272,29
14 POKE 56576,198
15 RETURN
20 REM:::::::TEXT
21 POKE 53270,200
22 POKE 53265,27
23 POKE 53272,21
24 roKE 56576,199
25 RETURN
30 REM:::::::CLEAR HIRES/MULTI
31 SYS 49164,C
32 XL=0: XH=319: YL=0: YH=I99
33 RETURN

SETTING UP THE PROGRAM 1

To see if you entered them correctly, add these main routine lines that call each
subroutine when a specific key is pressed:

1000 REM::::::::::::::::::::::::::
1001 REM MAIN IDurINE
1002 REM::::::::::::::::::::::::::
1010 PRINI' "PRESS ANY KEY 'IO BEGIN:"
1020 GIIT A$
1030 IF A$="G" THEN OOSUB 10
1040 IF A$="T" THEtJ OOSUB 20
1050 IF A$="C" THEN C=INT(RND(1)*16): OOSUB 30
1090 CDTO 1020

Your new subroutines count on the "MIL" file being in memory. A convenient
way to ensure this is to have the program look for the machine language in
memory. If the machine language is not found, then the program should load the
"MIL" file into memory. (Be sure that a diskltape containing the "MIL" file is in
your disk drivelcassette player when using this technique.)

Disk drive users should add this line to the program:

o IF PEEK(49152) <> 128 THEN WAD "M/L" , 8,1

Cassette recorder users should add this line instead:

o IF PEEK(49152) <> 128 'IHEN !.DAD "M/L",l,l

Notice that the file with the specific name of "MIL" will be loaded by this
program line. Be sure to change this program line if you find you need to correct
and re-save the "MIL" file under a different filename. The program line would
remain the same, except that "MIL" would be replaced with the new filename.

RUN the program to see how you did.

IMPORTANT: If the program does not operate as described below, the
problem could either be in the program itself or in the "MIL" file. It might be
that the most current version of your "MIL" file was saved incorrectly. The
best approach is to stop this program and check it over carefully for typing
errors. Correct any you find and try again. If you can find no typing errors,
save this program under the filename "GRAPHICS". Then, LOAD and
RUN the "CHECKER" program to test the "MIL" file in memory. If any
data blocks are in error, you will need to run the "HELPER" program to
correct them. Then, SAVE the corrected "MIL" file, re-Ioad the "GRA
PHICS" program (changing line 0 if you re-named the corrected "MIL" file),
and try again (whew!).

The first thing your new program will do is check for the "MIL" file in memory.
If it is not found, the program will load it. Cassette recorder users will need to press
PLA Y and C= as the need arises.

Once the "MIL" file is loaded, your program causes the message "PRESS ANY
KEY TO BEGIN:" to appear at the bottom of your screen. Press G. You should

23

24

1 SETTING UP THE PROGRAM

immediately be placed in Graphics mode. If you screen is showing colors, either in
what appears to be a pattern, or just rough, jagged lines, you are in graphics mode.
If you don't get this pattern on your screen, press RUN/STOP and tap RESTORE.
You will return to text mode and can check the subroutine at line 10 for errors.

Next, press C to see the screen colors change to one uniform color (the back
ground color). We can't tell you what color your screen will display, because the
program selects a random color each time C is pressed. The subroutine at line 30
sets the screen's background color to the one your program has randomly selected,
and then changes all foreground pixels to background pixels.

IMPORTANT: The background color of the graphics screen and the back
ground color of the text screen are always the same. If you change the
background of the text screen, the background color of the graphics screen
changes to the same color. Likewise, if you change the background color of
the graphics screen, the background color of the text screen changes. This is
important because the Commodore will display your text screen letters in
light blue, unless specifically directed otherwise. If you give the graphics
screen a light blue background, the text screen will have a light blue back
ground, and you will not be able to see your program listing when you return
to text mode.

Always change the cursor to white (press CTRL and 2 at the same time) before
.tunning a program where light blue will be used as the background color. From
that point on, all text letters will be displayed in white, which is easily visible on a
lightblue background color.

For now, you can change the screen's background color by pressing C one or
more times, until a color other than light blue is generated.

Finally, press T to return to Text mode. The text should again be displayed on
the screen. (If not, press RUN/STOP and tap RESTORE. Check the subroutine at
line 20.)

Your program contains an endless loop, and is thus still running. Press RUN/
STOP to get out of the loop. Then, add the program lines below that provide a
more graceful escape from the program. These lines allow you to return to text
mode from the program any time you press - (the top, left key on your keyboard).

1040 IF A$ = "~" THEN OOSUB 20: HID

Practice with your program if you like. Pressing C will continually generate a
new background color for the screen (bearing in mind that the same color can be
randomly generated twice in a row). Pressing G still takes you to graphics mode,
but you must press - now to get back to text mode and END the program.

When you are done, press - to return to text mode.

Let's briefly go over the program. Line 0 loads "M/L", in the event it hasn ' t been
already. Line I bypasses the subroutines, sending the computer directly to your
main routine. Lines 1010 through 2060 form an endless loop that examines keys
being pressed on the keyboard. When a keypress of G, - or C is observed, the
appropriate subroutine is called.

SETTING UP THE PROGRAM 1

The subroutine at line 10 takes you into the graphics mode. This is usually one of
the first subroutines called in a picture-drawing program. The subroutine at line 20
returns you to text mode, and is usually called based on a certain condition being
met (such as a keypress of - occurring). The last subroutine at line 30 clears any
image off of the graphics screen, meanwhile setting aU pixels to a common
background color. This color is determined by the variable C. In addition, line 32
sets the values of four variables (XL, XH, YL, and YH). These variables need to be
set in preparation for tools coming in later chapters, and will be explained in detail
at that time.

In your program, C is set to a random number between 0 and 15 each time line
1050 is gone through. Coincidentally, there are 16 color codes, numbered 0 through
15, from which to choose. The color codes and their corresponding colors are
shown below.

CX>I.OR CODE

Black 0
White 1
Red 2
Cyan 3
Purple 4
Green 5
Blue 6
YellON 7
Orange 8
BrONn 9
Red 10
Gray 1 11
Gray 2 12
Green 2 13
Blue 2 14
Gray 3 15

(This list is also provided in the appendices for quick reference.)

The colors white and light grey cannot be used as the background color on some
monitors. This is because of the strong contrast they create with the other available
colors. Foreground images (those images and shapes you draw on top of the
background color) will be drawn in black when the contrast is too great for the
monitor to handle.

You will also find that some lines are plotted in a rainbow of colors, and that
some colors do not remain constant from day to day. Usually, adjusting your
monitor's color, tint, and contrast will help bring in a sharper picture.

Your three new subroutines are the foundation on which you will build your tool
kit. Below are three tool boxes, one for each of the subroutines. Take the time to
read each "What it Does" and "Example Use" discussion. "Technical Descrip-

25

26

1 SETTING UP THE PROGRAM

tions" are provided for those readers who want more technical information on a
subroutine. These can be passed over if you wish.

TOOL 10 ::::::: GRAPHICS

10 REJ.1.:::::::GRAPHICS
11 IF MU '!HEN roKE 53270,216
12 roKE 53265,59
13 R)KE 53272,29
14 roKE 56576,198
15 RErURtl

What It Does: This tool turns on the graphics mode, allowing you to
create and display artwork on your Commodore 64. Although not yet
discussed, setting the variable MU to 1 (MU=l) before calling this tool
will produce multi-color graphics. Re-setting MU back to 0 will return
you to high resolution graphics.

Example Use: To use this tool, you only need a GOSUB 10 statement
in your main routine. If the sole purpose of your program is to draw a
picture, this GOSUB statement should be one of the first statements in
your program.

Technical Description: This subroutine changes the memory loca
tions in the Commodore's VIC II Chip. This chip contains the set of
memory locations that control what is viewed on your monitor.

Memory location 53270 controls the multi-color graphics capability
of the computer. If the variable MU has been set to 1, then line II will
POKE the value 216 into this memory location. This enables multi
color. If MU is set to 0, this POKE statement will be skipped over.

Memory location 53265 controls whether the computer displays text
or graphics. Code 59, which is being POKEd in this location, has the
computer display graphics on the screen.

Memory location 53272 controls where the graphics "pixel patterns"
are stored within a bank. (Pixel patterns specify which pixels are fore
ground color and which pixels are background colored.) POKEing code
29 into this location makes sure the pixel patterns are not placed in the
same memory locations used to store the graphics colors.

Memory location 56576 controls which bank the computer uses to
store and retrieve graphics pixel patterns and color codes. The Commo
dore has four banks, each of which have 16K of memory. POKEing 198
into memory location 56576 tells the computer to use bank I to store and
retrieve graphics information. This is necessary to keep other informa
tion, like a program listing, from interfering with your picture codes.

SETTING UP THE PROGRAM 1

TOOL 20 ::::::: TEXT

20 REM:::::::TEXT
21 roKE 532713,200
22 POKE 53265,27
23 POKE 53272, 21
24 POKE 56576, 19q
25 RETURN

What It Does: This tool turns off the graphics mode, taking you back
to regular text.

Example Use: To use this tool, you need a GOSUB 20 statement in
your program. For controlled use, you should establish a condition that
must be met before this subroutine is called. In our program, the
condition is that the - key be pressed.

Technical Description: This subroutine restores the memory loca
tions which were changed by Tool 10 (GRAPHICS). Doing this will
return you to text mode. Notice that the same 4 memory locations
(53270,53265,53272, and 56576) are used by each tool. For a complete
explanation of the purpose of these memory locations, refer to the
Technical Description for Tool 10.

TOOL 30 ::::::: CLEAR HIRES/MULTI

30 REM:::::::CLEAR HIRES/MULTI
31 SYS 49164,C
32 XL=0: XH=319: YL=0: YH=199
33 RETURN

What It Does: This tool clears the graphics screen, whether you are
working in high resolution or multi-color (not discussed yet). All
images are cleared off, and the entire screen is set to the color indicated
by C's current value.

In addition, four variables get set. XL (X-Low) is set to 0, XH (X
High)is set to319, YL(Y-Low) isset toO, and YH (Y-High) is set to 199.
These parameters describe your screen's left, right, top, and bottom
boundaries. Later, these variables will be used by a CLIP A SHAPE tool
to determine the rectangular screen area where plotting is allowed.

Example Use: To use this tool, you need both a GOSUB 30 statement
in your main routine and a line that specifies C's intended value. C's
value determines the color setting of your screen. See the color chart
listed earlier in this chapter for the list of available colors and their
corresponding color codes.

Technical Description: This subroutine calls a machine language

27

28

1 SElTING UP THE PROGRAM

tool to clear and set the graphics screen to a solid color. Memory
locations 24576-32575 control the pixel patterns displayed on the gra
phics screen. The machine language will POKE a 0 into each of these
memory locations, setting zero pixels to the foreground color. This, by
default, changes all pixels to the background color.

Memory locations 17408-18407 control the foreground and background
colors of the high-resolution screen. Memory location 53281 controls the
background color of the multi-color screen. This subroutine POKEs C's
current value into all of these memory locations (17408-18407, and
53281), setting the background color of both graphics screens. NOTE:
The text screen uses memory location 53281 to store its background
color also. Thus, the background color of the text screen is automatically
changed to C's current value whenever this tool is called.

This tool was done in machine language beacuse BASIC is painfully
slow at performing this task. See the appendices for a commented listing
of the machine language program.

Plotting Points and Lines

These next tools put you into the real world of graphics. The ability to plot
points and lines is, of course, invaluable to anyone trying to draw using the
Commodore. Their importance, however, goes further. You will later discover that
each advanced tool depends on the ability to call on these basic tools.

The PLOT A POINT and PLOT A LINE tools follow. Type them into your
program now.

40 REM:::::::PLOT A POINT
41 SYS 49502,X,Y,C,MU
42 RETURN
50 REM:::::::PLOT A lJ}m
51 SYS 49502,X1,Y1 TO X2,Y2,C,MU
52 RETURN

These tools are short enough that they can be easily double-checked. But the real
test lies in using them. The PLOT A POINT tool requires an X (column) and Y
(row) location of the point to plol. In addition, C's value must be changed to a new
color, so that the plotted point can be seen. Enter these main routine lines:

1060 C=0
1070 IF A$="P" THEN X=RND(1)*320:Y=RND(1)*200: roSUB 40

Line 1060 resets the color variable to 0 (black). This is so the test points and lines
will be visible when plotted. Line 1070 will randomly plot a point on your screen
each time P is pressed. The screen has 320 columns, from X=O to X=319. This line
sets the X coordinate to a random value between 0 and 320. Your screen also

SETTING UP THE PROGRAM 1

contains 200 rows, from Y=O to Y=199. This line sets the Y coordinate to a random
value between 0 and 200.

To test the PLOT A LINE subroutine, add this line to your program:

1080 IF A$="L" THEN Xl=160:Y1=99:X2=RND(1)*320:Y2=RND
(1)*200:GOSUB 50

When specifying a line to plot, you must indicate the two points that should be
connected by the line. This is done by usingXI,Yl and X2,Y2 notations. Line 1080
sets the Xl,Yl point at 160,99, but randomly selects a X2,Y2 position. The result
will be an interesting selection of plotted lines, all stemming from the center point
of your screen.

RUN the program to begin the test.

The program has not changed significantly-just a few enhancements tacked on
to the end. Press G to view the graphics screen. If necessary, press C to set the
screen's background color. You want to make sure that the background color is
light enough to see the points and lines as you plot them. If your screen is set to a
dark color, keep pressing C until a light color appears.

Test the PLOT A POINT subroutine by pressing P. Lean forward, squint, adjust
your spectacles, and you should see a tiny plotted point. Press P several times,
watching as random points get plotted around the screen.

Test the PLOT A LINE subroutine by pressing L. Beginning at the center area of
your screen, a line will be plotted outward. This line may be of any length, and may
go in any direction. Continue to press L, and watch as a starburst begins to develop.
Pay particular attention to the speed with which the lines are plotted. The DRAW
A LINE tool is using the "MIL" data you typed earlier to achieve this high speed.
(If the program does not react each time you press P or L, keep in mind that you
might be plotting over the top of a previously plotted point or line.)

If you press C, the screen will clear, and a new background color will appear. Try
a starburst with the new color.

That completes the new subroutine tests. Press C until a color other than light
blue is generated for the background. Then press - to return to text mode. If you
had any problems, check your new main routine lines, and the new subroutines.

You will need to save these tools before continuing. Save them under the
filename "GRAPHICS I ".

The next section gives you a ZAP routine. Its function will be to erase (ZAP!) your
main routine upon command. This enables you to keep all subroutine tools in
memory and begin drawing a new picture at any time.

TOOL 40:::::::PLOT A POINT

40 REM:::::: :PIDI' A mINT
41 SYS 49502,X,Y,C,MU
42 RETURN

29

30

1 SET11NG UP THE PROGRAM

What It Does: This tool plots a point on the graphics screen. The
point will be plotted at the last X,Y location given in the program. If no
values for X and Yare assigned in the program, then the point wiJI be
plotted at 0,0. The color used to plot the point will be determined by C's
current value.

Example Use: You must set three variables before calling this tool
with a COSUB 40 statement. C must be set to the desired color code. X
and Y must be set to the vertical and horizontal locations of the point to
plot. Example program lines for plotting a single point are:

1060 C=2
1070 X=10: Y=50: OOSUB 40

Technical Description: The PLOT A POINT subroutine was done in
machine language in order to speed up the process. This same machine
language routine is also used by the PLOT A LINE and PAINT A
SHAPE subroutines. This section of machine language is the main
section affected by the use of multi-color. If MU = I (Multi-color is
enabled), then special operations must be performed to deal with the
double width pixels and the extra color capability. The PLOT A
LINE and PAINT A SHAPE tools will essentially ignore MU and let the
PLOT A POINT tool handle this extra work.

How Plot A Point Handles Multi-Color

When Tool 10 turns on Multi-Color(MU = I), the computer uses a 160
x 200 resolution screen. The high resolution screen is 320 x 200 pixels.
This means that the pixels are twice as wide in Multi-Color as they are in
high resolution. In other words, the pixels are two bits wide. A two bit
pixel has four possible states:

(I) 0 0
(2) 0 I
(3) I 0
(4) 1 1

Remember, we cannot see the two bits in Multi-Color. We see only
one pixel. The point of having four possible states is to allow more
colors:

(I) 0 0 is background color
(2) 0 I is foreground # I
(3) lOis foreground # 2
(4) 1 1 is foreground # 3

When the graphics screen is cleared, all the pixels are changed to the
specified background color. However, not only will your graphics
screen be changed to the specified background color, your text screen
will be changed as well. Thus, if you changed your graphics back
ground to black, then your text background will also be black when you
return to text mode.

SETTING UP THE PROGRAM 1

All 1,000 color blocks on the graphics screen must share the same
background color. However, the three foreground color "slots" (0 I, I 0,
and I 1) and the colors associated with those "slots," can change from
color block to color block. Thus, if you desire to plot a "red" pixel point
against a light-blue background, and no other plotted pixel occurs
within that color block, then "red" will be automatically assigned to the
first foreground color position (i.e., 0 I will be POKEd into the proper
bit pair for the given X,Y position). If, however, you have previously
plotted " green" pixels within that color block, then "red" will be
assigned to the second foreground color position (i.e., I 0). If both
"green" and "white" had been previously plotted within that color
block, then "red" will be assigned to the third foreground color position
(i .e., I I). If three colors had been previously plotted within the color
block before you plotted your "red" point, then "red" would automati
cally "bump" the color which previously appeared in the third fore
ground color position, or I I, and all pixels which had been previously
plotted in that color would be changed to "red."

A commented listing of the machine language used by this book can
be found in the appendices.

TOOL 50 ::::::: PLOT A LINE

50 REM:::::: :PLOr A LINE
51 SYS 49502, Xl, Yl 'ID X2, Y2, C,MO
52 RETURN

What It Does: This tool plots a line from a given Xl,Yl point to a
given X2,Y2 point. This line is plotted in the color represented by C's
current value.

Example Use: Five variables must be set before calling this tool with a
GOSUB 50. C must be set to the desired plotting color. Xl and Yl must
be set to the vertical and horizontal locations of the starting point for the
line to plot. X2 and Y2 must be set to the vertical and horizontal
locations of the ending point for the line to plot. Example program lines
that plot a line are:

1080 C=7
1090 X1=10: Yl=50
1100 X2=100: Y2=50: GOSUB 50

Technical Description: Tool 50 was also written in machine lan
guage because it so slow in BASIC. Yet, even our machine language
version is not as fast as it could be because we wanted to minimize the
typing required at the start of this book.

There is a point concerning Multi-Color which we must mention
here. The Multi -Color resolution is 160 x 200 pixels, while high resolu-

31

32

1 SETTING UP THE PROGRAM

tion is 320 x 200 pixels. Normally, we design our pictures on a 320 x 200
grid. However, if we used such a grid to design Multi-color pictures, all
pixels from X = 160 to X = 319 would be lost. This means that we would
have to completely redesign our shape in order to work in Multi-Color.

Tool 50 resolves this dilemma. By setting MU = to I, we have indicated
that we are working in Multi-Color. Tool 50 will then automatically
divide all of the program's X coordinates by two. Thus X = 319 becomes
X = 159.5. When our point is plotted, this "X" coordinate will be
automatically rounded down to "159", and our problem is solved.

Notice that this "rounding down" method affects our picture, but
only to a very slight degree. If we try to plot X = 150 and X = 151 (15012 =
75, and 151/2 = 75.5), then only X = 75 will be plotted. This causes only a
slight variance, however, and your shapes should still be accurately
drawn.

The Zap Routine

The ZAP routine is longer than the subroutines you have entered so far, and must
be typed with the utmost care. Many things can go wrong if this routine is entered
incorrectly and then run. Be especially careful of line 172 (A=256: B=2049: C= I 003).
Make sure you set C equal to 1003 and no other number. As you type, each line too
long to fit across your screen will automatically wrap around to the next line for
your convenience.

170 REM:::::::ZAP!
171 ffiSUB 20:PRINT"OO YOU KNCM WHAT YOU ARE WING?":END
172 A=256: B=2049: C=1003
173 IF PEEK(B+2)+A*PEEK(B+3»=C THEN 176
174 B=PEEK(B)~*PEEK(B+l):ON ABS(B<>0) GOTO 173:END
175 A=256: B=PEEK(251)~*PEEK(252)
176 IF PEEK(B+l)=0 THEN END
177 PRINI' CliR$(147) PEEK(B+2)~*PEEK(B+3): PRlln'''roro 175"
178 IDKE 251, B-INr(B/A)*A: IDKE 252,B/A
179 IDKE 631,19: IDKE 632,13: IDKE 633,13: IDKE 198,3: END

After typing and carefully re-checking each line in this routine, you should test
it. If you have not yet saved your program, now is be an extremely opportune time
to do so.

The ZAP routine is meant to be executed by itself from outside the program. It
should never be called from within the main routine, as its purpose is to erase the
main routine. Line 171 helps prevent an accidental erasure of your main routine. If
thi~ tool is ever called by a GOSUB 170 statement, line 171 will return you to text
mode, print "DO YOU KNOW WHAT YOU ARE DOING?" on the screen, and
end the program. We did this because it is far too easy to type GOSUB 170 in the
main routine, when perhaps only GOSUB 70 was intended.

SElTING UP THE PROGRAM 1

Typing RUN 172 outside the program will execute this routine properly (skip
ping over line 171 entirely). The ZAP routine will then delete your main routine
lines, beginning at line 1003. Line 179 contains an END statement, which stops the
computer from executing any lines past that one. Test the ZAP routine by moving
the cursor to a free, blank screen line and typing:

RUN 172
First, the screen should clear. Then, in the top left-hand corner you will see

several flashing items. At the top, the line numbers you are deleting will flash by.
Beneath this, the words "GOTO 175" and "READY." will flash on and off. When
the computer has completed the ZAP request, the blinking cursor will re-appear.

LIST your program to see what happened. You should find that all of your
subroutines still remain. What will be missing is the main routine (lines 1003 and
higher). Compare your program to that shown below to make sure you didn't zap
any necessary tools.

0IF PEEK(49152)<>128 THEN WAD "M/L",8,1
1 <DI'O 1000
10 REM:::::::GRAPHICS
11 IF MU '!HEN roKE 53270,216
12 roKE 53265, 59
13 roKE 53272,29
14 roKE 56576,198
15 RETURN
20 REM:::::::TEXT
21 RJKE 53270,200
22 roKE 53265,27
23 roKE 53272, 21
24 roKE 56576,199
25 RETURN
30 REM:::::::CLEAR HIRES/MULTI
31 SYS 49164,C
32 XL=0: XH=319: YL=0: YH=I99
33 RETURN
40 ~1:::::::PLOT A roINT
41 SYS 49502,X,Y,C,MU
42 RETURN
50 REM:::::: : PLOT A LINE
51 SYS 49502, XI, Yl 'ill X2, Y2,C,MU
52 RETURN
170 RDM:::::::ZAPI
171 msUB 20:PRllJT"OO YOU ~rM WHAT YOU ARE ron1G?":END
172 A=256: 8=2049: C=1003
173 IF PEEK(B+2)~*PEEK(B+3»=C THEN 176
174 B=PEEK(B)+A*PEF.J«B+l) :(1.1 ABS(B<>0) ooro 173:END
175 A=256: B=PEEK(251)+A*PEEK(252)

33

34

1 SETTING UP THE PROGRAM

176 IF PEEK(B+l)=0 'IHEN END
177 PRINT QfR$(147) PEEK(B+2)+A*PEEK(B+3): PRINI'''GaI'O 175"
178 POKE 251, B-INT(B/A)*A: POKE 252,B/A
179 POKE 631,19: POKE 632,13: POKE 633,13: POKE 198,3: END
1000 REM::::::::::::::::::::::::::
1001 REM MAIN IDurINE
1002 REM::::::::::::::::::::::::::

If the computer did not respond as described above, or some of your subroutine
lines are now missing, check each line in the ZAP routine. Re-type any that have
mistakes, as well as any other subroutine lines that were erroneously erased. If all
else fails, load the GRAPHICSl file into memory, and re-enter the ZAP routine.
You must test this routine and correct any errors before continuing to next chapter.

This tool is discussed in greater detail in the tool box below. It is only important
for you to understand why this tool is of benefit (it can quickly erase any main
routine of any size, leaving all subroutines in memory), and how to use it (type
RUN 172 RETURN).

TOOL 170:::::::ZAP!

170 REM:::::::ZAPI
171 OOSUB 20: PRINI'''IX) YOU KNa'l WHAT YOU ARE

COING?" : END
172 A=256: B=2049: C=1003
173 IF PEEK(B+2)+A*PEEK(B+3) >=C 'IHEN 176
174 B=PEEK(B)+A*PEEK(B+1):ON ABS(B<>0)

GO'ID 173:END
175 A=256: B=PEEK(251)+A*PEEK(252)
176 IF PEEK (B+ 1) =0 'IHEN END
177 PRll·IT CHR$(147) PEEK(B+2)+A*PEEK(B+3):

PRDIT"caro 175"
178 POKE 251, B-INT(B/A)*A: POKE 252,B/A
179 POKE 631,19: POKE 632,13: POKE 633,13:

POKE 198,3: END

What It Does: This routine will erase all lines of your main routine. It
will, however, leave each of your subroutine tools untouched, so you
can use them to draw a different picture.

Example Use: You need to have a GOTO statement positioned
somewhere before the ZAP routine begins. This allows you to run your
program whenever necessary, without executing the ZAP routine.
When you do want to erase the main routine, type RUN 172 RETURN.
Mistakenly typing RUN 170 or GOSUB 170 will take you to text mode,
where a warning message will be printed on the screen.

Technical Description: This routine is very unusual, and too com-

SETTING UP THE PROGRAM 1

plex to explain here. Its value outweighed omitting it entirely, so it is
included with only the following general explanation of its workings.

Normally, to delete a set of lines from your program, it is necessary to
type each line number and press RETURN. If there are many lines to be
deleted (as there will soon be in your main routine), this could take some
time to do.

One alternative is to use a program that prints each line number on
the screen, pausing to let you press RETURN after each one. Even
better, why not have the program press RETURN for you? This is
exactly what happens when you use the ZAP routine. Note, however
that this routine is actually a small program within your larger pro
gram. That is why it is executed by typing RUN.

Summary

You have successfully completed the "setup" portion of this book. Using your
current collection of tools, you can display an assortment of drawings and designs
on the screen. Stick figures, geometric art, and dot designs can be easily created. Best
of all, you are prepared for advanced material.

Some key points to remember about your new tools are:

-C determines the color of everything. Whenever you need to work with a new
color, change C's value.

-Any time you specify a point or a line to be plotted, you must also have a
GOSUB statement.

-Use the ZAP routine with caution. As a general rule, save your program before
running the ZAP routine. You may be very glad you did.

SA VE your set of tools under the filename "CHAPTER 1". Then, spend some
time practicing with them. As an incentive, and to start your ideas £lowing, we have
provided the exercise program below. This program is a little too complex to
explain at the end of a chapter. However, since you have worked hard to get here, we
thought it would be good to give you an exercise that produced something slightly
complex, colorful, and vibrant. If you have a good understanding of FOR/ NEXT
loops, and the X,Y relationship, you may be able to follow the program easy
enough.

Run the ZAP routine (by typing RUN 172 RETURN), and then begin typing:

2000 OOSUB 10: C=15: 00SUB30
2010 FOR K = 0 'ill 99 STEP 3
2020 Xl=0: Y1=0
2030 Y2=K: X2=160-K*1.6: C=2: 00SUB50
2040 Y1=199
3000 Y2=199-Y2: C=5: OOSUB50

35

36

1 SETTING UP THE PROGRAM

3010 Xl=319
3020 X2=319-X2: 0=8: OOSUB50
3030 Yl=0
3040 Y2=199-Y2: C=6: OOSUB50
4000 NEXT K
5000 Xl=159: Yl=10
5010 X2=305: Y2=100: C=10: GOSUB50
5020 X2=319-X2: msUB50
5030 Yl=l99-Yl: GOSUB50
5040 X2=319-X2: OOSUB50
5050 FOR P = 0 'ID 3000: NEXT P
6000 RUN

This program will draw the design shown earlier in this chapter-the one taking
only 41 seconds to plot with machine language. Refer to the picture on page 12 to
see if your program is running properly.

You can quickly modify this program in several ways to change the design. You
can increase/decrease the STEP value of K in line 2010 (e.g., STEP 2). You can
change the various color codes assigned to C. You can even change the retangular
centerpiece to any other design that comes to mind. Have funl

Chapter Two

WORKING WITH SHAPES
Shapes are the essence of all computer art. Whether you are drawing pictures,

plotting graphs, creating games, or simply trying your hand at this unique form of
artwork, you need to work with shapes. In this chapter you will learn how to define,
retrieve, clip, and draw shapes. In addition, you will learn a little about
multi-color.

A technique involving DATA statements is used to define a shape. If you have
defined shapes with DATA statements before, you may be tempted to skip over
portions of this chapter. Please don't. With few exceptions, the steps to defining a
shape will be new to you. At a minimum, read the "What It Does" and "Example
Use" sections of each tool box.

If you aren't familiar with defining shapes, you may be wondering exactly what
we mean. That is, since you can already PLOT A POINT and PLOT A LINE, you
have the necessary tools to draw any shape that you may require. However, defining
a shape is a little different than plotting it point-by-point or line-by-line. When you
define a shape, you describe it as a single, whole object. A shape described as one
object can be moved, copied, and rotated with a minimum of effort. If, instead, you
enter a shape as a series of plotted points and lines, each point and line must be dealt
with individually whenever a global change to the shape is necessary (for example,
rotating the entire shape). This can become a very tedious task.

Think of plotting a complex shape, like a brick building, line-by-line. If you
later wanted to move this shape to a new screen position, you might be facing hours
of work. Now consider if this same shape could be handled like a single plotted line.
Adjustments would rever:t from hours to only minutes.

Once you define a shape, it can be retrieved each time you want to work with it.
This is done using a RETRIEVE A SHAPE tool, which reads the shape's descrip
tion into memory. More specifically, this tool will search through an entire list of
shape descriptions, retrieving only the shape you choose. Thus, you can have a
"library" of various shapes, each of which can be easily searched for and re-used
within the same picture.

Another tool that will be introduced in this chapter is CLIP A SHAPE. This tool
looks at the shape to draw, and determines if any part of it falls outside of the X and
Y coordinate ranges. If so, those parts are "clipped" off. This helps ensure that all
plotting remains within the visible screen area. Accidentally plotting off the screen
can cause the computer to "freeze up." When you begin working with translation,
scaling and rotation, you won't always know where a shape is going to end up on
(or off) the screen. This clipping tool will become very valuable to you then.

After defining, retrieving and clipping your shape, the DRAW A SHAPE tool
will place it on the screen.

Load the "CHAPTER I" program into memory, get out your graph paper, and
begin.

37

38

Defining Shapes
The very first step to defining a shape is picking a shape. This is not always easy;

but until you've decided on the object of your attention, you can't go much further.

Look around you. What should you draw? Suppose you start with something
familiar-say, something within eyesight. Still, what will you choose? A good idea
is to walk around the room, observing everything at different angles. Search for
small , isolated areas that interest you. Are you in your bedroom? Try the chair with
the shirt hanging on the back. At the office? What about the floor lamp and the
vinyl recliner next to it?

Another good idea is to look through books and magazines for designs. When
you find one you like, trace it. As long as you don't sell, publish or otherwise
publicize it, you can trace and use any design you like. This method is not
uncreative, either, as you still have the freedom to choose the colors used in each
section of the design. Some professionals feel that tracing helps you gain an
understanding of how other artists use lines, angles and curves to create successful
images. This mayor may not be true. It doesn't really matter; tracing and plotting a
nice design can be great fun.

Finally, be sure to choose a design that appeals to you, remembering not to take
on too much. You can always add to the design later.

When you've identified what you want to draw, sketch it on graph paper. This
should be in a rectangular area that is fony blocks across and twenty-five blocks
high (corresponding to the screen's color blocks). You might try lightly pencil
sketching the design first. That way, you can erase and rearrange the shapes until
you're completely satisfied with the placement of each.

Another approach is to loosely tear the shapes out of construction paper
nothing fancy, just the general form of each object. Next, try arranging them on
paper: chair in front of bed; chair beside bed; chair on top of bed; bed on top of
chair, etc. When you find an arrangement that you like, draw it on your graph
paper.

When the design is complete, you are ready to define and describe the first shape.
Briefly, the shape's description will be read into memory and placed in two
"arrays," or computer lists. One list will describe the shape's points, and the other
list will describe the shape's lines. In order to do this, you must gather the
information for these two lists. Because your design is sketched on graph paper,
this can be done very easily.

We will use a rectangle as our example shape. Sketched on graph paper, this
shape might look like that shown below. Notice that for each endpoint (starting!
ending point of aline) we have clearly noted the X, Y coordinates.

Note: Throughout this book we will use graph paper examples similar to
the one that follows. Each square represents an 8 x 8 pixel block on your screen.
The numbers across the top represent the X location of every 8th pixel column.
The numbers down the side indicate the Y location of every 8th pixel row.
Marking your graph paper in this manner makes it easy to approximate the
X,Y location of any point. Notice that this grid is elongated to reflect the

WORKING WITH SHAPES 2

elongated screen pixels. All pixels are approximately 1.234 times higher than
they are wide. 1< 3>1

o
8

16

24

o 32

40

48

56

64

72

80

199 88

o 319

1111111111112
123445678890122345667890 X

o 8 6 4 2 086 4 2 0 8 6 4 208 642 086 4 2 0
8,~ 4/8

8, 1 47 31

Y
After sketching the shape, you assign a number to each of its endpoints. It doesn't

matter which endpoint is assigned which number. All that matters is that you start
with the number 0 (zero) and do not skip numbers. For the rectangle, this could be
done as follows: 1< 3>1

319
11 111111112

88901 223 4 5 6 6 7 890
~r,~~~~~~-F-r0~8~6r,4~2~0~8~6-r4-F2~0~8~6~4~2~0 ~

o

199

39

40

2 WORKING WITH SHAPES

Now you can gather the lists. On the first list, write down the X, Y coordinates for
each endpoint in the shape. This is done down columns: one column for X
coordinates, and one column for Y coordinates. Each row holds the X,Y coordi
nates of one endpoint. Again using the rectangle as our example, this point list
would look like this:

Point Data

x Y

Endpt #0 8 8
Endpt #1 47 8
Endpt #2 47 31
Endpt #3 8 31

Notice that the endpoints are listed in ascending order. That is, Endpoint #0 and
its coordinates are on the first row, Endpoint #1 and its coordinates are on the
second row, and so on. This is very important, as you will later see. The endpoints
must be listed from Endpoint #0 on up, and each must be listed in X,Y form (X
location before Y location).

That completes the information needed for the first list, which is called your
"point data" list. In complex shapes with many endpoints, this list could become
long. Always double-check your shape to make sure each endpoint has been duly
recorded on the list before continuing.

The point data list only describes your shape's endpoints, and can be thought of
as an empty "connect-the-dots" board. You also need a list that describes how those
endpoints are connected together to form the shape. You need a "line data" list, set
up in the following manner:

Line Data

"FROM" "TO"

Line #0 0 1
Line #1 1 2
Line #2 2 3
Line #3 3 0

All lines are plotted " from" one endpoint " to" another. All you need to do is
record the "from" and "to" endpoint numbers for each line in the shape you are
drawing. By looking at the endpoint numbers assigned on your first list, you can
easily record the endpoint numbers used by each line in the shape. This is how the
line data list above was compiled.

Notice that each line was assigned a number. These numbers must start at 0 for the
first line listed, and increase by one for each additional line. That completes the
information needed on the line data list.

Let 's see how the computer can use these two lists to DRA W A SHAPE. Looking
at the point data list, it finds each endpoint within the shape:

WORKING WITH SHAPES 2
1< >1
o 319

1 1 1 1 1 1 1 1 1 1 1 1 2
1 2 3 4 4 5 6 7 8 8 9 0 1 223 4 5 6 6 7 8 9 0

o 8 6 4 208 642 0 8 6 4 2 086 4 2 0 8 6 4 2 0
o
8 ..

16

24 ..
0 32

40

48

56

64

72

80

199 88

96

104

Y
This connect-the-dots board is easily filled in by looking at the line data list:

o

1< >1
0 319

1 1 1 1 1 1 1 1 1 1 1 1 2
1 2 3 4 4 5 6 7 8 8 9 0 1 223 4 5 6 6 7 8 9 0

0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 086 4 2 0 8 6 4 2 0
0

8~~~~~r+-r~+-~-+-r~~-+-r~~rT-r~

16

24

32

40

48

56

64

72

80

199 88

96

104

Y

X

X

41

42

2 WORKING WITH SHAPES

Look what happens if we keep the same point data, but change the line data to

this: Line Data

"FROM" "TO"

Line #0 0 1
Line #1 1 3
Line #2 3 2
Line #3 2 0

Even though the point data remained the same, the shape that is now described
by these data lists looks like this:

o
8

16

24

0
32

40

48

56

64

72

80

199 88

96

104

Y

1< ::-1
o 319

1111111111112
123445678890122345667890 X

o 8 6 4 2 086 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 420

""'~ ~,

><
.L
, "

Once you have gathered the two data lists, you are on your way. By entering these
lists into your main routine the shape can be retrieved, plotted, moved, and/or
duplicated simply by having the computer read each list. The next step is to enter
these lists into the program.

Entering Data Lists in the Program

You will enter the data lists into the main routine as DATA statements. Data
statements begin with the word DATA, and contain a succession of words and/or

WORKING WITH SHAPES 2

numbers, each separated by a comma. You need to enter DATA statements that
contain the following information, in the exact order as listed here:

(1) The name of your shape.

(2) The number of points in the shape (start counting at 0).

(3) The number of lines in the shape (start counting at 0).

(4) The point data.

(5) The line data.

To see how this is done, let's define the rectangle. First, type RUN 172 and press
RETURN to ZAP your current main routine. You will enter a new main routine
that draws shapes using DATA statements. Again, the point and line data lists for
our rectangle are:

Point Data

x y

Endpt #0 8 8
Endpt #l 47 8
Endpt #2 47 31
Endpt #3 8 31

Line Data

"FROM" uTO"

Line #0 0 1
Line #1 1 2
Line #2 2 3
Line #3 3 0

Add the main routine lines below that name this shape and give its count of
points and lines:

1003 REM: SHAPE LIBRARY
1004 REM:::::::::::::::::::::::::
1006 DA.TA "RECI'ANGLE", 3, 3

There are several things to notice about these new programming lines. First, a
REM statement has titled this section of the program SHAPE LIBRARY. This is
because lines 1006 through 1999 are going to be reserved for your "library" of
shapes. It is important that all shape descriptions be placed at the beginning of
your main routine, and that they remain grouped together. Setting aside approxi
mately 1,000 program lines dedicated to shape storage should be sufficient for almost
any picture.

Second, notice that the shape's name ("RECTANGLE") is the first data item
given within the DATA statements. The program will search for this name whenever
you retrieve the shape. If the name is not the first item listed, the RETRIEVE A
SHAPE tool will not be able to find the shape. Upper-case and lower-case matters

43

44

2 WORKING WITH SHAPES

when naming your shapes. If we were to name this shape "rectangle," we could
only retrieve it by searching for "rectangle" (as opposed to perhaps "RECTANGLE").
The name must be within quotes, but may be any length or construction you desire.

Give the shape's count of points and lines in the same DATA statement. These
values must immediately follow the shape's name, with the count of points given
before the count of lines. In addition, these values are "zero-based" values; that is,
the count starts at zero. Because our rectangle has a true count of four endpoints
(1-2-3-4), the zero-based count is three (0-1-2-3). Similarly, because the true count of
lines is four, the zero-based count of lines is three. It is very important to enter these
zero-based counts correctly.

The next DATA statement to enter contains the point data of our shape. Enter
this into your main routine:

1008 ~~ 8, 8, 47, 8, 47, 31, 8, 31

Look back at the point data list and compare it to the DATA statement above.
Al though the endpoint numbers (0, 1,2, and 3) are not typed into the program, you
can see how they are used to properly list each endpoint:

Endpt #0
X, Y
~

1008 ~TA 8, 8,

Endpt #1
X, Y

r • ,
47, 8,

Endpt #2
X, Y

, ,
47,31,

fudpt #3
X, Y

r "'\
8,31

When entering your point data, always put endpoint #O's coordinates first, then
endpoint # l's, then endpoint #2's, and so on. Also, be sure to list each X coordinate
before each Y coordinate, separating all the data with commas. The last data item
in any DATA statement should end without a comma.

Finally, enter the line data. For our rectangle, type this DATA statement:

1010 ~TA 0, 1, 1, 2, 2, 3, 3, 0

Notice how the line data is entered, beginning with line #0 and continuing
through line #3 :

Line #0
Fr,To,
,,-" ,

1010 ~TA 0, 1,

Line #1
Fr,To,
,,----.

1, 2,

Line #2
Fr,To,
~

2, 3,

Line #3
Fr,To
,---

3, 0

These three DATA statements completely define and describe our RECT AN
GLE shape. DATA statements can be a maximum of 2 screen lines in length,
making it necessary to break the data up for more complex shapes. As long as you
begin each line with the word DATA, and enter all the data in the proper order, you
should have no problems.

WORKING WITH SHAPES 2

Retrieving and Drawing Your Shapes

Currently, you shape is only defined in the main routine. To actually use it in a
picture, the DATA statements must be READ into memory. and then sorted into
points and lines. You accomplish this with the RETRIEVE A SHAPE tool.

This tool reads the point data into a P% array, and the line data into an L% array.
These arrays are "computer lists" forming temporary storage places for the shape's
description. Each time you retrieve a new shape, the previous shape description is
over-written, and thus erased.

When you retrieve a shape, the computer always begins reading at the very first
DATA statement in your program. DATA statements serve many purposes, and it
is possible that you might use them in your program for something other than
shape storage. That is why it is important that your shape data be placed at the very
beginning of your program. That way, they get read first whenever you call the
RETRIEVE A SHAPE tool.

When the computer reads shape data, it first makes a note of the shape's name. It
then looks to see how many points the shape has. Based on this number, the
computer fills the P% array with that many pairs of data items (X, Y). Next, it checks
to see how many lines the shape should have. Based on that, it places that number of
endpoint number pairs into the L% array. Finally, if this was indeed the shape to
retrieve, the computer stops. However, if this was not the shape to retrieve, the next
set of DATA statements is read into P% and L%-erasing the first set. This process
continues until the correct shape has been read into P% and L%.

Always make sure you have correctly given the number of points and lines for
each shape. Look at the diagram below to get an idea of what can go wrong if you
don't. In it, the shape is a "TRIANGLE", and it is noted as having four end poin ts
(0-1-2-3), and three lines (0-1-2). A triangle, of course, only has three endpoints.
Since the computer has no idea what a triangle is, one with four endpoints won't
stop it. Instead, it immediately reads four sets of data into P%.

1003 REM: SHAPE LIBRARY
1004 REM:::::::::::::::::::::::::
1006 DA.TA
1008 ffiTA
1010 DATA

5, 30
~~ __ ~1, 2, 2, 0

o
1
2
3

P%
10 10
15 30

5 30
o 1

Next, it tries to fill L%. Since there are suppose to be three lines in the shape, it
tries to place three sets of data items into L%. Findingonly two pairs of data left, the
program is abandoned and an OUT OF DATA ERROR occurs.

45

46

2 WORKING WITH SHAPES

1003 REM: SHAPE LIRRARY
1004 REM:::::::::::::::::::::::::
1006 IlP..TA "TRIANGLE", 3, 2
1008 IlP..TA 10, 10, 15, 30, ~' 30 r--
1010 IlP..TA 0, 1,11, 2, 2, ~

L%

0Eh2 1 2 0 OUT
2? OF

IlP..TA
ERROR

If you understate the number of points, not all of them will be placed in P%.
Instead, those not placed in P% are the first data items placed into L% when it is
filled. This will produce a distorted, if not totally unrecognizable, shape when
drawn.

Type the RETRIEVE A SHAPE subroutine into your program:

800 REM:::::::RETRIEVE A SHAPE
801 RES'IDRE
802 READ S$,ND,NL
803 FOR I = 0 'ill ND
804 READ P%(I,0),P%(I,1):P%(I,2)=1
805 l~ I
806 FOR I = 0 'ill NL
807 READ L%(I,0),L%(I,1)
808 t~ I
809 ON ABS(S$<>SE$)GCYI'O 802: RETURN

You need a way to test your RETRIEVE A SHAPE tool to see if you entered it
properly. One sure way is to try drawing the shape. Type the DRAW A SHAPE tool
below:

90 REM:::::::DRNW A SHAPE
92 FOR J = 0 'ill NL
93 El%=L%(J,0): E2%=L%(J,l)
94 Xl=P%(El%,0): Yl=P%(El%,l)
95 X2=P%(E2%,0): Y2=P%(E2%,1)
96 CDSUB 50
97 NEXT J
98 RE'l'lmN

Don't worry that there is no line numbered 91. You will be adding it in a later
chapter, when modifications to this tool will be necessary. For now, type the tool
exactly as shown.

Finally, add these main routine lines that get you into and out of graphics mode,
and then call upon the tools that will produce the rectangle:

2000 CDSUB 10: C=7: CDSUB 30
2010 REM::FIND/DRNW REC
2020 DIM P%(99,2), L%(99,1)

WORKING WITH SHAPES 2

2030 SE$=" RECI'ANGLEII : CDSUB 800
2040 C=2: msUB 90
6000 GEl' A$
6010 IF A$ ="~" THEN CDSUB 20: END
6020 <DI'O 6000

These lines will be explained in a moment. First RUN the program to check it. A
red rectangle on a yellow background screen should appear near the top left side of
your screen. Because you are using machine language to draw the points and lines,
this will happen quickly.

Stop the program by pressing -. If you had any problems, check the main
routine, and then the new subroutines. Make sure the program works properly
before continuing.

Let's go over the program now.

Line 2000 takes you into graphics mode. It then sets the color variable to a color
code of yellow, and sets all pixels to this yellow background color.

Line 2020 gives the DIMensions (sizes) of your point data list and your line data
list. You begin by assigning a name to each list. We have chosen the name "P" for
the Point data list, and "L" for the Line data list. The "%" tells the computer that
the lists will store integer values. It is important to dimension (set the dimensions
of) your lists one time in the program. When you do, always use the names Pi and
L~.

The numbers in parentheses are called subscripts. These tell the computer the
size of each list. The first number tells how many rows the list needs. This is a zero
based number, so the 99 for each list means they will both need 100 rows.

The second number tells how many columns each list will need. This is also a
zero-based number, so the I for L% means it will need two columns, and the 2 for P%
means it will need three columns. Although your Points list (P%) will never have
more than 2 columns, it must be dimensioned with 3 columns for technical reasons
(this is explained in a later chapter, when you have learned more about the
workings of the DRAW A SHAPE tool).

Given the size (dimensions) of each list, the computer will set aside enough
memory space to store them (no more and no less). That memory space will not be
used for anything else. If you specify that a list only needs 10 columns, and then
enter 11 columns worth of data, you will get a "BAD SUBSCRIPT ERROR"
because not enough memory space was set aside for 11 columns.

Obviously, our rectangle does not use 100 rows for either list (P% or L%). To find
out how many rows it does need, look back at the last endpoint number and last line
number on each list. The rectangle's last endpoint was #3, and last line was #3. So,
we could have dimensioned these lists as DIM P%(3,2),L%(3,l). The reason we
dimensioned them for 100 rows is very important: you can only dimension a list one
time in a program. The P% and L% lists will be used repeatedly for each shape you
draw in the program. Thus, the number of endpoints and lines will always be
changing. By setting P% and L% to 100 rows, most shape descriptions will fit on the
lists.

47

48

2 WORKING WITH SHAPES

What this DIM statement reduces to is this:

-You must have it in your program;
-You should only have it once;
- The 99's only need to be changed for shapes involving more than 100 points or

100 lines. Otherwise, enter DIM P%(99,2),L%(99,1) and forget about it.

Line 2030 sets the search variable SE$ to "REGr ANGLE". This variable must be
set to your shape's name in order to retrieve it. Immediately after that, Tool 800
RETRIEVE A SHAPE is called.

Line 2040 draws the shape once it has been retrieved. This is done by changing
the color so that the shape can be seen, and then calling Tool 90, DRAW A SHAPE.

The loop beginning at line 6000 allows you to exit from the graphics by pressing
-. This loop causes the computer to continually watch the keyboard, noting
keypresses as they occur. When you press the arrow key, the TEXT tool is called and
the program ENDs.

Try something different. Change your shape's line data to the following and
then RUN the program again:

1010 ~TA 0, 1, 1, 3, 3, 2, 2, 0

You will produce the straight-sided, hourglass figure discussed earlier. Try these
lines:

1006 ffiTA "RECTANGLE", 3, 5
1012 ~TA 0, 3, 1, 2

Notice that we had to change line 1006 to reflect the two new plotted lines we are
adding in line 1012.

RUN the program. You have a new figure-a rectangle with an X through it.
This shows another advantage of using DATA statements to store shape descrip
tions. Minor additions or changes to the data allows considerable flexibility to the
way a shape will finally appear on the screen.

Basic shapes, such as your rectangle, can be used to create interesting patterns.
Take the circle and square sketched below, for example .

•

WORKING WITH SHAPES 2
By repeating these shapes across your screen, an appealing abstract design can be

achieved:

•

Shapes can be irregular looking, like an ink blob or a bubbly cloud. They can be
organic and natural looking, like a leaf or a sea shell. Shapes can also be geometric
in appearance, as in the sketches above. Basic geometric shapes include the circle,
square, and triangle. Geometric shapes are simple figures made of lines that
connect at each end, but never cross over each other.

Change your rectangle data back so that it does define a rectangle:

1006 DATA II RECTANGLE II , 3, 3
1010 DATA 0, 1, 1, 2, 2, 3, 3, 0
1012

You should delete line 1012 entirely.

Now, enter these DATA statements into your SHAPE LIBRARY:

1020 DATA
1022 DATA
1024 DATA
1026 DA.TA
1028 mTA

IIllN-TRIANGLES II , 5, 5
30, 8,30,40,16,23
33, 8,33,40,47,23

0, 1, 1, 2, 2, 0
3, 4, 4, 5, 5, 3

These DATA statements define the two basic triangles sketched below. You have
entered them into the library as one shape; that is, they can only be retrieved
together since they are defined together.

49

50

2 WORKING WITH SHAPES

<1[>

Change your main routine as follows in order to plot the new shape:

2010 RDM::FIND/DRNW TRIS
2030 SE$="INV-TRIANLES": CDSUB 800
2040 C=0: OOSUB 90

R UN the program. The inverse triangles will be plotted in black on your screen.

Repeating and painting these two shapes creates an altogether different design
than that created by the circle/ square combination:

Shapes have different visual characteristics. For example, a circle, which is
continuously curved and smooth, is much different than the pointed lines and
angular directions of a triangle. A picture takes on different meaning depending on
the kind of shape used. When you repeat similar shapes across a picture, you
achieve a feeling of harmony.

In later chapters you will learn how to repeat a shape around the screen, as well as
how to paint in shapes with color. You might want to retrieve the "RECTAN
GLE" or "INV-TRIANGLES" shape to experiment with at that time.

Below are the tool boxes for Tools 90 and BOO. After that, we present a section on
multi-color.

WORKING WITH SHAPES 2

TOOL 90 ::::::: DRAW A SHAPE

90 REM:::::::DRAW A SHAPE
92 FOR J = 0 'TO NL
93 E1%=L%(J,0): E2%=L%(.J,l)
94 Xl=P%(E1%,0): Y1=P%(E1%,1)
95 X2=P%(E2%,0): Y2=P%(E2%,1)
96 CDSUB 50
97 NEXT J
98 RErURN

What It Does: This tool will draw the shape described in the P% and
L% arrays. These arrays are most easily filled with Tool 800. Thus, you
should always RETRIEVE A SHAPE (see next tool box) before drawing
it.

Example Use: To use this tool, three steps are necessary:

(I) The RETRIEVE A SHAPE tool must be used to fill P% and L%
with the proper shape description.

(2) You must set the color variable C to the desired plotting color.
(3) You need a GOSUB 90 statement to call this tool.
Technical Description: To draw a shape, use this loop:

FOR J = 0 TO NL

NL is the number of lines in the shape (O-based) as found by Tool 800.
Thus, this loop will process once for each line in the shape. The first
time through the loop, a line will be drawn between the points repre
sented by the first entry in the U; array:

L%(0,0), L%(0,I)

The second time through the loop, the second entry in the L% array is
used:

L%(1, 0), L%(l,I)

L%(J,O) and L%(J,I) are the two endpoints that determine the line to
plot (where J is replaced with a number by the loop). These endpoints
were previously stored in the P% array by the RETRIEVE A SHAPE
tool.

93 El%=L%(J,0): E2%=L%(J,1)

The program line above retrieves the two endpoint #'s of the current
line to draw.

94 Xl = P%(EI%,0):Yl=P%(EI%,I)
95 X2 = P%(E2%,0):Y2=P%(E2%,I)

These lines look at P% to find out the actual X, Y coordinates of each
retrieved endpoint number.

51

52

2 WORKING WITH SHAPES

That is all the information necessary to draw a line in the shape. Tool
50 is then called.

96 OOSUB 50
97 NEXT J

This is the bottom of the loop.

98 REI'URN

This returns the computer to the main routine once all lines in the
shape have been plotted.

TOOL 800 ::::::: RETRIEVE A SHAPE

800 RE}1:::::::RETRIEVE A SHAPE
801 RESTORE
802 READ S$,ND,NL:
803 FOR I = 0 'ID NO
804 READ P%(I,0),P%(I,1):P%(I,2)=1
805 NEXT I
806 FOR I = 0 'ID NL
807 READ L%(I,0),L%(I,1)
808 NEXT I
809 ON ABS(S$<>SE$)GCYfO 802: RETURN

What It Does: This tool fills the p~ and L~ arrays with the shape
description named by SE$. It is necessary to fill these arrays if a shape is
to be drawn, or later scaled, rotated, or translated.

Example Use: You must take several steps to use Tool 800:

(1) Draw the shape on graph paper.
(2) Assign a number to each endpoint, starting with Endpoint #0.
(3) Write down the X,Y coordinates of each endpoint, starting with

Endpoint #0. Do this in the following form:

Point Data

x Y

Endpt #0 8 8
Endpt #1 47 8
Endpt #2 47 31
Endpt #3 8 31

(4) Write down the "FROM" and "TO" endpoint numbers of each line
in the shape. Number these lines, beginning with Line#O, using the
following format:

WORKING WITH SHAPES 2

Line Data

"FROM" "TO"

Line #0 0 1
Line #l 1 2
Line #2 2 3
Line #3 3 0

(5) Within lines 1005-1999 (your Shape Library), insert a DATA
statement that names the shape, and gives its zero-based count of
points and lines. For example:

1005 mTA "ROCTANGLE", 3, 3

(6) Immediately following the above DATA statement, insert DATA
statement(s) that give the X, Y coordinates for each endpoint in the
shape. Be sure to enter Endpoint no's coordinates first, then End
point #l's, Endpoint #2's, etc. The X coordinate of an endpoint
should always come before the Y coordinate. Use this format:

Endpt.0 Endpt.1 Endpt.2 Endpt.3
~ r----'~~

1008 m~ 8, 8, 47, 8, 47, 31, 8, 31

(7) Immediately following your point data, insert your line data. This
will be DATA statements having the "FROM" and "TO" endpoint
numbers of each line to plot. Be sure to list Line no's endpoint
numbers first, then Line #I's, Line #2's, etc. The format for this is:

Line0 Line 1 Line 2 Line 3
~~~~ 

1010 DATA 0, 1, 1, 2, 2, 3, 3, 0 

(8) If this is the first shape your program is going to retrieve, you must 
dimension the ~ and U; arrays in the main routine. This can 
usually be done with a program line containing the following: 

2020 DIM P%(99,2), L%(99,1) 

If any shape in your program has more than 100 points, then you 
should change the 99 that follows ~ accordingly. If any shape has more 
than 100 lines, then you should change the 99 that follows U; 
accordingly. 

(9) Set the variable SE$ to the shape's name as listed in your DATA 
statements, and then call the RETRIEVE A SHAPE tool: 

2030 SE$="RECTANGLE": G'JSUB 800 

Technical Description: The computer has a "pointer" which keeps 
track of the data items that have already been read into memory by a 

53 



54 

2 WORKING WITH SHAPES 

READ statement. This pointer moves to each successive data item, as 
each one is read into memory. Thus, it is always "pointing" to the next 
data item to read. This is why, regardless of where a READ statement 
appears in your program, it will always read the first DATA items listed 
in the program, or pick up where the last READ statement left off. 

RESTORE is a basic command which resets the pointer to the begin
ning of the DA T A statements in your program. Thus, RESTORE is the 
key to the RETRIEVE A SHAPE subroutine, which needs to always 
begin searching for a specified shape from the beginning of the DATA 
statements. 

Line 802 retrieves the name, number of points, and number of lines of 
the specified shape in the DATA statement. If any of these data items 
are incorrect, the subroutine will not function properly. Lines 803 
through 805 read the correct number of points. Lines 806 through 808 
read the correct number of lines. Line 809 checks to make sure that the 
shape just retrieved matches the one requested in SE$. If the retrieved 
shape matches the requested shape, then the subroutine returns the 
computer to the main routine. If not, the subroutine goes to line 802 to 
get the next shape in the program. 

Multi-Color 
Until now, we have said very little about multi-color. However, you have had 

access to it for quite some time. By setting the variable MU to 1 (MU=l) before 
going into graphics mode, your picture will be displayed in multi-color. Change the 
following line in your program and RUN it: 

2000 MU=1: (])SUB 10: C=7: (])SUB 30 

Notice how the shapes have changed. Each sloping line is a little more rough and 
jagged. This is because multi-color cuts your vertical resolution in half. This 
means that every two pixel columns are now treated as one, producing a somewhat 
chunky effect any time you plot a diagonal line. 

That is the only disadvantage to consider when choosing between high resolu
tion graphics and multi-color. The advantage to using multi-color is the increased 
number of colors you can use per color block. Your screen is divided up into 1,000 
color blocks, as shown here: 



WORKING WITH SHAPES 2 

TOP OF SCREEN 
Col. # 

1 1111111122222222223333333333 X 
o 1 2 3 4 5 6 7 890 234 5 6 7 890 1 2 3 456 7 890 1 2 3 4 5 6 7 8 9 

Row # 0 1-+-+-+4I-+-+-+4I-+-+-+4I-+-+-+-f-+-+-+-+-+-+-I-+-t-+-1I-+-+-+4-+-+-+-l-+-+-+-l-l 

y 

COLOR BLOCK # = COL. # + ROW # 

MEM. LOC. = 17408 + COLOR BUX:K # 

COLOR MEMORY 
(The X, Y PIXEL POINTS grid we have been using throughout this book has 

been divided up imo these color memory blocks.) 

Using high resolution, you are able to have only one foreground color and one 
background color in each block. With multi-color, you can still have only one 
background color per block, but the limit on foreground colors jumps to three per 
block. This is substantial, and often necessary in more detailed designs. To give you 
an idea of how multi -color can be of use, add the program lines below: 

2001 C=l: X1=0: Yl=0 
2002 X2=319: Y2=199: (})SUB 50 
2003 C=2: Xl=160: Yl=0 

55 



56 

2 WORKING WITH SHAPES 

2004 X2=160: Y2=199: OOSUB 50 
2005 C=0: X1=319: Y1=0 
2006 X2=0: Y2=199: OOSUB 50 
2007 ooro 6000 

With MU still set equal to one, RUN the program. Three lines, each a different 
color, will be plotted through the center of your screen. 

Stop the program and change line 2000 back to: 

2000 OOSUB 10: C=7: OOSUB 30 
RUN the program again. You will quickly see the problem. The block in which 

the center point resides can only have two colors in high resolution graphics. The 
program, however, is trying to use four colors in it. Think how this gets resolved. 

There is one background color given in the program. This is allowed in high 
resolution, so it is used to paint the background. Next, the first line is plotted. 
Because two colors are permitted anywhere on the screen, this second color causes 
no problems. However, as each additional line is plotted, sections of lines running 
through the center block are changed to the current plotting color. This keeps the 
center block within the limit of one foreground and one background color. 

Try working with a more complex shape. To do this, you need to erase the main 
routine. This could be done by running the ZAP routine as is, but that would erase 
your library of shapes (the ZAP routine currently zaps all lines after line 1002). 
Fortunately, there is a way to modify the ZAP routine so that it begins zapping at a 
different line number. Change line 172 to this: 

172 A = 256: B = 2049: C = 2000 

The only change is that C = 1003 becomes C = 2000. Zapping will now take place 
beginning at line 2000. Type RUN 172 and press RETURN. Wait as lines 2000 and 
higher are deleted from the program. When the job is done, LIST your program to 
make sure no lines before 2000 were erased. If so, you will need to re-type them. 

The three sketches below show whole objects composed of many different lines 
and pieces. By grouping some of the more basic shapes together (triangles, squares, 
octagons, etc), you can form larger objects. These objects are viewed as whole 
shapes rather than separate pieces. 



WORKING WITH SHAPES 2 

The butterfly is a nice, angular object that will appear quite different in multi
color than in high resolution. Look at the butterfly sketched on our X,Y PIXEL 
POINTS grid: 

o 
8 

16 

24 

32 
0 40 

48 

56 

64 

72 

80 

199 88 

96 

104 

112 

120 

128 

136 

144 

152 

160 

168 

176 

184 

192 

/< 
o 319 TOP OF SCREEN 

111111111111222222222222233 
1 234 4 5 6 7 8 890 1 2 234 566 7 8 9 0 0 1 234 4 5 6 7 8 890 1 

086 4 208 6 4 208 6 420 864 2 0 8 6 4 2 086 4 208 6 4 2 0 8 642 

1 2 ~ ~14 10 

II Y'I 

" 1\ vV J I 
\ \ " I V 

\ \ r--. \ I ,/ V 
r--. 

0.2' ' ? ,/ Ii 
r--. H ~ 127 V- I 

1\ " I / ,/ I 
\ 8' ~ \ V- /. 
\ r-.. I;! ~CW' Y 

r-.. -f Y I 

" ,/ I 
9 Ii" ~I 8 

3 '\ 
". \ , 

~ 
I-t- """ 

II ..... ~ 1 

1 11 ,'0 ~ . ..... 
V \ ~ ." , ".~ 

...... , II ". 

....... \,....v 
3 

1 

x, Y PIXEL POINTS 

57 



58 

2 WORKING WITH SHAPES 

Each endpoint on the grid has been assigned a number, ranging from endpoint 
#0 through endpoint #41 . (Thus, there are 41 endpoints in our zero-based count.) If 
you were to total the number of lines, starting with line #0, you would find that 
there are 44 of them. Type the following program line to name the new shape and 
give its count of points and lines: 

1030 DATA "BUTI'ERFLY", 41, 44 
The point data follows. Before you begin typing it, notice how the data is neatly 

organized. All of the commas from one DATA statement to the next are carefully 
lined up. This was not done merely for appearance sake. Arranging DATA state
ments in this manner will actually help you locate typing errors. Since each DATA 
statement is of equal length, and each data item is spaced to line up with the one 
above it, you can easily see if a data item was added or omitted, or if a single digit 
was added/ omitted. Try entering the DATA statements exactly as shown here. 

1032 DATA 143, 71, 23, 7, 47,119 
1034 DATA 87,127, 63,143,127,167 
1036 DATA 151,103,143,103, 63, 63 
1038 DATA 63,103,135,111, 95,127 
1040 DATA 135,127,151, 87,159,191 
1042 DATA 167, 87,151, 79,159, 55 
1044 DATA 167, 79,143, 55,151, 55 
1046 DATA 151, 71,151, 47,135, 7 
1048 DATA 183, 7,167, 47,167, 55 
1050 DATA 175, 55,167, 71,175, 71 
1052 DATA 295, 7,271,119,231,127 
1054 DATA 255,143,191,167,167,103 
1056 DATA 175,103,255, 63,255,103 
1058 DATA lR3, Ill, lR3, 127,223,127 

Check your typing one final time for mistakes. Next, you need to type ~he line 
data. This has also been organized into neat columns. Type it just as listed: 

1060 DATA 0, 1, 1, 2, 2, 3, 3, 4 
1062 DATA 4, 5, 5, 6, 6, 0, 7, 8 
1064 DATA 8, 1, 8, 9, 9, 2, 9, 7 
1066 DATA 12,10,10,11,11,12,22,23 
1068 DATA 20,19,19,21,21,20,16,17 
1070 DATA 17,18,18,16,13,15,15,14 
1072 DATA 13,14,25,24,26,27,27,28 
1074 DATA 26,28,35,29,29,30,30,31 
1076 DATA 32,31,32,33,34,33,35,34 
1078 DATA 29,35,36,37,37,30,37,38 
1080 DATA 36,38,39,41,40,41,39,40 
1082 DATA 38,31 

That completes the butterfly's description. The main routine lines that will draw 
this shape should be typed as follows: 



WORKING WITH SHAPES 2 

2010 cn5UB 10: C=14: msUB 30 
2020 DIM P%(99,2), L%(99,1) 
2030 SE$="BUITERFLY": OOSUB 800 
2040 C=2: cn5UB 90 
6000 Gm' A$ 
6010 IF A$= "~" THEN OOSUB 20: END 
6020 ooro 6000 

Notice that we are going to paint the background a light blue (C=14 in line 2010). 
Recall that this will make the text "invisible" when we return to text mode, unless 
we change the color of the text letters in advance. Press CTRL and 2 at the same 
time to change the typing color. The computer will then display all text in white 
from now on. 

IMPORTANT: There will be times when you run a program that paints the 
background light blue, without first changing your text letters to white. On 
return to the text mode, the entire screen will be light blue (giving the 
appearance that you are still in the graphics mode). Type POKE 53281,1 
RETURN when this happens, and the text background will automatically 
change to white. 

Remember that this program may begin by loading "M/ L" when run, so be sure 
to have the appropriate disk/tape available. Although it is not necessary, it's a good 
idea to save your program before running it since so much typing is involved. Save 
it under any name you like, and then RUN the program. 

The butterfly should be quickly plotted in red across your screen. This interest
ing shape has many possibilities, and is one of the nicer additions to your library. 
Because it is made up of an assortment of smaller shapes, it will be a good design to 
experiment with in Chapter 3, where you learn how to paint shapes. 

If you have any difficulties, try pressing -- to return to text mode. If that doesn't 
work, press RUN/ STOP and carefully type GOSUB 20 RETURN (you won't be 
able to see your typing, so type carefully). Check the following list of possible 
problems/ solutions: 

Is there an Error Message on your text screen? 

-Ifan OUT OF DATA ERROR occurs, check the DATA statement in line 1030. 
Make sure the count of points and lines is correct. Another possibility is that 
you forgot one or more data items, or even an entire DATA statement. Finally, 
make sure you set SE$ to the correct shape name. Remember, upper
case/ lower-case counts when setting this variable to the shape named in the 
DATA statements. 

-If a BAD SUBSCRIPT ERROR occurs, check the DIM statement in line 2020. 
If that's okay, check over your data. 

-If a FILE NOT FOUND error occurs, you forgot to insert the disk/ tape 
containing your "M/ L" file. 

-If a SYNTAX ERROR occurs, the problem is probably in the line number 
given in the error message. However, if this error occurs in a DATA statement, 

59 



60 

2 WORKING WITH SHAPES 

then check the number of points and number of lines you gave for all shapes. 

Is the butterfly being plotted irregularly? 

-Check that your line data is connecting the right points together. 

-Check the DATA statement in line 1030. Make sure you have given the correct, 
zero-based count of points and lines. 

Was only one line plotted off course? 

-Check your line data (lines 1060 through 1082). One line may be plotted with 
an incorrect endpoint number. If that is not the problem, check your endpoint 
data. 

Was nothing plotted? 
-Check that C equals 2, and not 14, in line 2040. Also, check that tool 90 is called 

in this line. 

-Make sure that tool 800 was called in line 2030. 

When you have a long list of DATA statements that contain a typing error 
somewhere, a friend is always an asset. While you are looking at the DATA 
statements on the screen, have your friend read them out of our text (or, later, from 
your handwritten list) . This goes much faster than trying it on your own, and you 
usually spot the problem quicker. 

Once this program is working properly, try it out in multi-color. Add this line: 

2000 HU=l 
RUN the program. The butterfly should be plotted in the same location and 

color, but should appear a little chunkier and less refined. Stop the program, and 
delete line 2000. 

There is one more thing you should know about multi-color: you must keep the 
program in a continuous loop after drawing a multi-color picture. This is because 
the foreground color of the text screen is stored in the same memory location as the 
third foreground color of multi-color. The text screen sometimes scrolls a couple of 
lines after a program is completely finished executing. This will cause the third 
color of your multi-color picture to scroll up a few lines in the picture. Ending the 
program with a continuous loop (lines 6000 through 6020) keeps the computer 
from scrolling the text screen until you are ready to return to text mode. 

Multi-color is most useful in pictures having a concentration of colors that faU 
into one color block. In one short section we can't provide you with a main routine 
that would do justice to multi-color. As you work more and more with Commodore 
graphics, you will undoubtedly come across pictures that will only work in multi
color. By first sketching each picture on graph paper, within a 40 x 25 block area, 
you can determine ahead of time if multi-color will be necessary. If you draw a 
picture in high resolution graphics, and then run into a color block problem, try 
setting MU equal to 1. When you run the program again, you may find that the 
problem is eliminated. 



WORKING WITH SHAPES 2 

Because of the loss of vertical resolution, we will not use multi-color to any great 
extent again. Nevertheless, you can use it at any time simply by selling the MU 
variable equal to one before GOSUB 10. Your screen will be a little different than 
that described here, but you should be able to follow along easily enough. 

Clip a Shape 

The final tool for this chapter is the CLIP A SHAPE tool. Although not as 
exciting as some of the others, it is nonetheless just as important. This is a long 
tool, so type it carefully: 

70 REM:::::::CLIP A SHAPE 
71 81=0: 82=0 
72 IF X1< XL 'IHEtJ 81=1 
73 IF Xl> XH 'IHEtJ 81=2 
74 IF Y1> YH 'THEN 81=81+4 
75 IF Y1< YL 'THEN 81=81+8 
76 IF X2 < XL '!HEN 82=1 
77 IF X2> XI-! 'THEN 82=2 
78 IF Y2> YH 'lHEN S2=82+4 
79 IF Y2< YL 'IREtJ 82=82+8 
80 IF 81=0 NID 82=0 'lHEN 50 
81 IF 81 AND S2 'IHEN RETURN 
82 8=81: IF S=0 'IHEN 8 = 82 
83 IF 8 AlID 1 'IHEN Y=Y1+(Y2-Y1)*(XL-Xl)/(X2-Xl):X=XL:<lJI'O 87 
84 IF S AND 2 THEN Y=Y1+(Y2-Y1)*(XH-X1}/(X2-X1):X=XH:<lJI'O 87 
85 IF 8 AND 4 THEN X=X1+(X2-Xl)*(YH-Y1)/(Y2-Yl):Y=YH:<lJI'O 87 
86 IF 8 AND 8 THEN X=Xl+(X2-Xl)* (YL-Y1) /(Y2-Y1): Y=YL 
87 IF 8=81 'IHEN Xl=X: Y1=Y: rom 71 
88 X2=X: Y2=Y: rom 71 

Lines 81 through 84 will wrap around on your screen. Just keep typing when this 
happens. There are many X's, V's, Xl's, and YI 's, so be careful. It's very easy to mix 
up these variables. 

Before testing this tool, SAVE your program under "GRAPHICS2". This is 
important, because if you entered the tool incorrectly you could jam up the 
computer. In that event, the only sol ution would be to turn the compu ter off and 
then on again-losing any unsaved portions of your program. 

To test this tool, add yet another shape to your library. The shape shown below is 
larger, but similar, to the inverse triangles you ploued earlier. 

61 



62 

2 WORKING WITH SHAPES 

This shape makes a particularly allractive pattern when repeated across the 
screen in an overlapping fashion. When the shapes overlap, new shapes are created. 

By pulling apart this design, you can see that it is actually made with one simple 
shape-a triangle (see the sketch below). A simple shape like a triangle can be 
transformed by changing its size, its placement, and by rotating it to a new position. 



WORKING WITH SHAPES 2 

Although you don't yet have the tools to transform shapes in these ways, you 
should be getting an idea of how you can use your Shape Library in the future. 

Add this shape's data to your Shape Library: 

1090 ffiTA ISPLI'r-TRIANGLE", 3, 4 
1092 DATA 0, 0, 15, 23, 0, 47,-15, 23 
1094 ffiTA 0, 1, 1, 2, 2, 3, 3, 0 
1096 ffiTA 0, 2 

You may be wondering about the negative coordinate. This is necessary because 
we want to plot the shape partially off the screen, giving the CLIP A SHAPE tool 
an opportunity to clip something. Under normal circumstances, you should never 
intentionally plot off the screen. 

Change your main routine so that this shape is retrieved instead of the butterfly: 

2030 SE$=ISPLIT-TRIAr'K;LE": ensUB 800 

Finally, change line 96 in the DRAW A SHAPE tool so that it automatically calls 
the CLIP A SHAPE tool (the CLIP A SHAPE tool now calls the PLOT A LINE 
tool): 

96 OOSUB 70 
RUN the program. It will take a few moments to clip parts of the shape, and only 

the right side of the shape will finally be plotted. This will include the center 
dividing line (see sketch below). If the shape is plotted in this manner, with no 
visible side effects, you have probably entered this tool correctly. 

1 

2 

o 3 

4 

4 

5 

6 

7 

8 

199 8 

9 

1< »1 
o 319 

1111111111112 
1 2 3 4 4 5 678 890 1 2 2 345 6 6 7 8 9 0 X 

o 8 642 0 8 6 4 2 0 8 6 4 208 6 4 2 0 8 6 4 2 0 
l)\. 
8 

1\ 
6 

~ 
4 :r 
2 V 
°V 
1:1 

6 

4 

2 

0 

8 

6 

y 

63 



64 

2 WORKING WITH SHAPES 

To obtain more conclusive evidence that your tool is working, change the 
program lines back so that they retrieve the butterfly: 

2030 SE$="BUTI'ERFULY": OOSUB 800 

Next, you will change the clipping boundaries. Recall that in Chapter 1 you set 
the variables XL, XH, YL, and YH. This was done within Tool 30, on line 32. If 
you look at lines 72 through 79, and 83 through 86, you will find that these variables 
are used by the CLIP A SHAPE tool. The purpose of these variables is to establish 
the "clipping boundaries." XL (X-Low) and XH (X-High) define the left and right 
boundaries, in terms of an X coordinate. YL (Y-Low) and YH (Y-High) define the 
top and bottom boundaries, in terms of a Y coordinate. Change the variables as 
shown below: 

2035 REM::::::: SET VIEHItJG AREA 
2036 XL=144: XH=175 
2037 YL=56: YH=79 

The boundaries are now set so that any points outside of the X range of 144 (Low) 
to 175 (High), or outside the Y range of 56 (Low) to 79 (High) will be clipped. Thus, 
only the rectangular area outlined below will be used for plotting. Any part of the 
butterfly falling outside of this rectangle will be clipped. 

o 
8 

16 

24 

0 
32 

40 

48 

56 

64 

72 

80 

88 
199 

96 

104 

112 

120 

128 

136 

144 

152 

160 

168 

176 

184 

192 

1< :>1 
TOP OF SCREEN 

1111111111112 2 222222 2 22 2 233 
1 234 4 5 6 7 8 890 1 2 2 3 4 5 6 6 7 8 9 0 0 1 234 4 5 6 7 8 8 9 0 1 

o 8 6 4 208 6 4 208 6 4 208 6 4 208 6 4 2 0 8 6 4 2 0 8 6 4 2 0 864 2 

o 319 

-

Iv ... , Q 

x, Y PIXEL POINTS 



WORKING WITH SHAPES 2 
Run the program, and watch where clipping occurs now. 

There are many lines to clip, so be patient. If your final screen resembles the 
drawing below, you can be certain you entered the clipping tool properly. If the 
shape was clipped, but not as shown below, check that you set your boundaries 
correc tly in lines 2036 and 2037. Any other problems indicate an error in the tool. 

o 

199 -

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

0 

8 

6 

4 

2 

8 

6 

4 

2 

104 

112 

12 

12 

13 

14 

15 

180 

16 

17 

18 

19 

TOP OF SCREEN 
o 319 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 

12 3 4 4 5 6 7 8 8 9 0 1 2 2 3 4 566 789 001 2 3 4 4 5 6 7 8 8 9 0 1 
o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 08 6 4 208 6 4 2 0 8 6 4 2 0 8 6 4 2 08 6 4 2 

\ I I\V 
1\ 

x, Y PIXEL POINTS 
When your program clips properly, be sure to delete lines 2035 through 2037 

from your program. Keep in mind, though, that these variables can be re-set at any 
time to change the clipping boundaries to a new rectangular area. 

IMPORTANT: You must make sure XH is set to a higher value than XL, and 
that YH is set to a higher value than YL when setting these variables. 

Because Tool 90 (DRAW A SHAPE) automatically calls the CLIP A SHAPE 
tool, you don't have to worry about including a GOSUB 70 statement in your main 
routine. 

65 



66 

2 WORKING WITH SHAPES 

TOOL 70 ::::::: CLIP A SHAPE 

70 REM:::::::CLIP A SHAPE 
71 Sl~: S2~ 
72 IF Xl < XL '!HEN 81=1 
73 IF Xl> XII '!HEN 81=2 
74 IF Yl> YH '!HEN Sl=81+4 
75 IF Yl< YL '!HEN Sl=81+8 
76 IF X2< XL '!HEN S2=1 
77 IF X2> XH 'IHEl'1 S2=2 
78 IF Y2> YH '!HEN 82=82+4 
79 IF Y2< YL '!HEN 82=82+8 
80 IF 81~ AND S2~ 'llIDl 50 
81 IF 81 AND S2 '!HEN RETURN 
82 S=S1: IF ~ 'lllEN S=S2 
83 IF 8 AND 1 '!HEN Y=Yl+(Y2-Yl)* (XIrXl)/(X2-Xl) : X=XL: roro 87 
84 IF S AND 2 '!HEN Y=Yl+(Y2-Yl)*(XH-Xl)/(X2-Xl): X=XH: roro 87 
85 IF S AND 4 'IHEN X=Xl+(X2-Xl)*(YH-Yl)/(Y2-Yl): Y=YH: roro 87 
86 IF 8 AND 8 THEN X=Xl+(X2-Xl) * (YL-Yl)/(Y2-Yl) : Y=YL 
87 IF S=S1 '!HEN Xl=X: Yl=Y: roro 71 
88 X2=X: Y2=Y: roro 71 

What It Does: This tool will clip each line in the shape being drawn, 
so that any portion of it not falling on the screen is not ploued. 

Example Use: This tool is called with a GOSUB 70 statement after 
defining and retrieving a shape. This book has the DRAW A SHAPE 
tool call the CLIP A SHAPE tool automatically. Using this setup, you 
never have to worry about calling the CLIP A SHAPE tool. 

Technical DeSCription: This subroutine will "clip" a shape (one Hne 
at a time), until it lies only on the visible screen. The visible screen 
extends from X = 0 to 319 and Y = 0 to 199. As long as both endpoints of 
each line in the shape fall within this range, each corresponding line 
will be on the visible screen. 

In the chapters on rotation, scaling, and translation, we will see that it 
isn't always easy to estimate whether each line in a shape will fall within 
the visible screen area after the program is run. Therefore, we must 
check each line in the shape ahead of time, before it is drawn, trimming 
each one accordingly. 

The first step to clipping is to classify the endpoints of the line in the 
shape we are working on. The visible screen area is class O. If an 
endpoint is there, then its class is 0 also. If the endpoint is to the left of 
the visible screen, it will have a class of I. If it is to the right of the visible 
screen, it will have a class of 2. There are nine classifications in all, set up 
like this: 



WORKING WITH SHAPES 2 

I 
9 I 8 

I 
I '" 1 I (visible 
I screen) 
I 

5 I 
I 

Notice that: 

West = I (X<O) 
East = 2 (X>319) 
South = 4 (Y>199) 
North = 8 (Y<O) 

4 

10 

2 

6 

S.W. = South + West = 5 (X<O, Y>199) 
S.E. = South + East = 6 (X>319, Y>199) 
N.W. = North + West = 9 (X<O, Y<O) 
N.E. = North + East = 10 (X>319, Y<O) 

Lines 71-79 in this subroutine will classify each endpoint of the line 
being clipped. 

Once the endpoints are classified, a cou pIe of quick checks need to be 
performed. First, we must check whether both endpoints are class O. If 
so, then the line doesn't need to be clipped: it falls entirely on the visible 
screen. The line would hence be plotted by the computer and, if you are 
drawing a shape , the next line to plot is looked at and classified. 

When one or both endpoints of a line do not fall into class 0, a bit of 
Boolean Logic is used to see if the line falls entirely off of the visible 
screen. Suppose, for example, that one endpoint is in class 5 (SW), and 
the other is in class 6 (SE). If you look back at the classification diagram, 
you will see that there is no way a straight line can pass through the 
visible screen area if its endpoints fall into these classes. This is also the 
case when trying to connect a line hetween class 1 and class 9 or between 
class 2 and 10. When both endpoints are found to lie off the visible 
screen to start with, the whole line is clipped, and then the next line in the 
shape is looked at. 

There will be times when a line obviously needs to be clipped. Some 
lines need to be clipped several times before the line fans only on the 
visible screen. After a line is clipped once, it is sent back to be re
classified with its new endpoints. If the line is sti11 classified outside of 
area 0, it is re-clipped. This process continues until each endpoint gets a 
classification of 0, or the line is found to fall entirely off the screen. 

67 



68 

Here is an example of a line to clip: 

X=0 X=319 
I I 

~ II 8 I 10 
Y=0 ~ I 

--~1~~~1---0--~1:---2-
Y=l99 ~ 

------~------~I-----

5 4 I 6 
I 

The first time through the clipping loop, the line is clipped to the Y=O 
boundary: 

X=0 X=319 
I I 

9 I 8 I 10 
Y=0 I I 

~ 
I 

1 0 I 2 
Y=l99 I 

I 
5 4 I 6 

I 

The second time through the loop, the line is clipped to the X=O 
boundary, and can be plotted: 

X=0 X=319 
I I 

9 I 8 I 10 
Y=0 I I 

I I 
1 f\ 0 I 2 

Y=l99 I 
I I 

5 I 4 I 6 

I I 



WORKING WITH SHAPES 2 

Summary 

You have already learned in two chapters what might be the entire contents of a 
beginner's book. That's quite an accomplishment. To your credit, you can now: 

-enter and exit the graphics mode with ease 
-create both high resolution and multi-color displays 
-plot points and lines 
-define shapes with data statements 
-retrieve shapes for use with other tools 
-clip and draw shapes 

Some things to keep in mind about your new tools are: 

-The DATA statements that define your shape must accurately give the zero
based number of endpoints and number of lines. 

-A shape must be retrieved before it can be drawn. 

- When retrieving a shape, you must set SE$ to the exact name that the shape was 
given in the DATA statements. 

- When drawing a shape, C must be set to a color code representing the plotting 
color. 

- The program must place the computer in an "endless" loop after drawing a 
picture in multi-color. 

SA VE your program under the filename "CHAPTER 2". Then take the time to 
completely familiarize yourself with these new tools. To help you along, we have 
provided an exercise below. Try working through this exercise after saving the 
program, and before beginning Chapter 3. 

Exercise 

The truck shown earlier will be the shape you will now try to draw. It has been 
sketched on our X, Y PIXEL POINTS grid below. Beneath the sketch, you are given 
its Point data list and its Line data list. 

Enter the necessary DATA statements to define the truck shape. Begin on line 
1100, skipping line numbers as you go (1100, 1102, 1104, etc) to allow room for 
possible corrections later. 

69 



70 

2 WORKING WITH SHAPES 

0 

199 

1 ( :> 1 TOP OF SCREEN 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

128 

136 

144 

152 

160 

168 

176 

184 

192 

o 319 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 
1 234 4 5 6 7 8 890 1 2 2 3 4 5 6 6 7 8 9 0 0 1 2 3 4 4 5 6 7 8 890 1 

o 864 2 0 864 2 0 864 2 0 864 2 0 8 6 4 2 0 864 2 0 864 2 0 8 6 4 2 

IU n 
~ 

2 I ., 

11 3 

4 
1 4 I V 

1/ 1 71\ / 2 5 '\. 1/ 3 3 '\. 
IV 

/.. ~ ~ V r.... 
I ' <iO 3 " 

.n I ., 

'\ 7 V' 1'\ ~ 
1'\ 21 ov \ 2 8 / '\ 3 B6/ 

x, Y PIXEL POINTS 

In the main routine, change line 2010 so that C is set to 4 (Purple). Change line 
2030 to retrieve you new shape. Finally, change line 2040 so that C is set to 1 (white). 



WORKING WITH SHAPES 2 

Point Data List Line Data List 
X y FRa1 'ro 

Endpt.#0 8 16 I Line #0 0 1 
Endpt.#! 215 16 I Line#! 1 2 
EndEt.#2 215 40 I Line # 2 2 3 
Endpt.#3 271 40 I Line#3 3 4 
Endpt.#4 271 80 I Line #4 4 5 
Endpt.#5 303 80 I Line # 5 5 6 
Endpt.#6 303 119 I Line#6 6 7 
Endpt.#7 8 119 I Line#7 7 0 
Endpt.#8 24 24 I Line #8 8 9 
Endpt.#9 207 24 I Line #9 9 10 
Endpt.#!0 207 111 I Line#!0 10 11 
Endpt.#l1 24 111 I Line#11 11 8 
Endpt.#!2 216 48 I Line#!2 12 13 
Endpt.#13 263 48 I Line#13 13 14 
Endpt.#!4 263 79 I Line#!4 14 15 
Endpt.#!5 216 79 I Line#!5 15 12 
Endpt.#!6 40 120 I Line # 16 16 17 
Endpt.#!7 71 120 I Line#!7 17 18 
EndE!:.#!8 87 135 I Line # 18 18 19 
Endpt.#!9 87 151 I Line#!9 19 20 
Endpt..#20 71 167 I Line #20 20 21 
Endpt.#21 40 167 I Line#21 21 22 
Endpt.#22 24 151 I Line#22 22 23 
Endpt.#23 24 135 I Line#23 23 16 
Endpt.#24 104 120 I Line #24 24 25 
Endpt.#25 135 120 I Line#25 25 26 
Endpt.#26 151 135 I Line#26 26 27 
Endpt.#27 151 151 I Line#27 27 28 
Endpt.#28 135 167 I Line #28 28 29 
Endpt.#29 104 167 I Line#29 30 31 
Endpt.#30 88 151 I Line#30 31 24 
Endpt.#31 88 135 I Line#31 32 33 
Endpt.#32 240 120 I Line #32 33 34 
Endpt.#33 271 120 I Line#33 34 35 
EndEt.#34 287 135 I Line#34 35 36 
Endpt.#35 287 151 I Line#35 36 37 
Endpt.#36 271 167 I Line#36 37 38 
Endpt.#37 240 167 I Line#37 38 39 
Endpt.#38 224 151 I Line#38 39 32 
Endpt.#39 224 135 I Line#39 29 30 

71 



72 

2 WORKING WITH SHAPES 

The solution to this exercise is shown below. 

Solution 

1100 J1Z\TA "TRUCK", 39, 39 
1102 ~TA 8, 16,215, 16,215, 40 
1104 DATA 271, 40,271, 80,303, 80 
1106 DATA 303,119, 8,119, 24, 24 
1108 DATA 207, 24,207,111, 24,111 
1110 DATA 216, 48,263, 48,263, 79 
1112 DA~ 216, 79, 40,120, 71,120 
1114 DATA 87,135, 87,151, 71,167 
1116 DA~ 40,167, 24,151, 24,135 
1118 ~TA 104,120,135,120,151,135 
1120 DATA 151,151,135,167,104,167 
1122 DATA 88,151, 88,135,240,120 
1124 DATA 271,120,287,135,287,151 
1126 DATA 271,167,240,167,224,151 
1128 DATA 224, 135 
1130 DATA 0, 1, 1, 2, 2, 3, 3, 4 
1132 DATA 4, 5, 5, 6, 6, 7, 7, 0 
1134 DATA 8, 9, 9,10,10,11,11, 8 
1136 DATA 12, 13, 13, 14, 14, 15, 15, 12 
1138 DATA 16,17,17,18,18,19,19,20 
1140 DATA 20,21,21,22,22,23,23,16 
1142 DATA 24,25,25,26,26,27,27,28 
1144 ~TA 28,29,30,31,31,24,32,33 
1146 DATA 33,34,34,35,35,36,36,37 
1148 DATA 37,38,38,39,39,32,29,30 
2010 OOSUB 10: C=4: msUB 30 
2020 DH1 P% ( 99, 2), L% ( 99, 1) 
2030 SE$="TRUCK": OOSUB 800 
2040 C=1: OOSUB 90 
6000 GEl' A$ 
6010 IF A$="~" '!HEN CDSUB 20:END 
6020 wro 6000 



Chapter Three 

PAINTING SHAPES 
Bright, Vivid, Gorgeous, Rich, Exotic, Florid, Rainbowy, Kaleidoscopic. These 

are just some of the synonyms you can find listed in your thesaurus for the word 
"colorful. " 

Faded, Washed-Out, Dull, Toneless, Weak, Wan, Fallow, Ashen, Sickly. These 
are synonyms that can be found for the word "colorless." 

Notice how your mind reacts to the different lists of adjectives. Words like Bright, 
Vivid and Rich can actually perk you up, producing a lively, energetic feeling. On 
the other hand, reading words like Fallow, Ashen, and Sickly produces a somewhat 
hollow, dismal feeling. In the same way, colors (or the lack thereof) have a strong 
impact on what people feel when viewing your work. 

There is no set of rules regarding what colors will produce what effect and when. 
It usually depends both on the design itself and the person viewing it. One person 
might view a picture full of browns and yellows as dreary. Someone else might 
associate those same colors with the outdoors-light, sunny, airy. The point is that 
colors do matter. 

If you have painted shapes before, you have already seen the pleasing change that 
takes place as each color is added to the picture. Because your Commodore has a 
16-color display capability, you can experiment with a large assortment of color 
combinations before carefully choosing those that appeal to you most. 

If you only have a black and white monitor, don't give up on this chapter yet. A 
change in tone alone can significantly enhance the appearance of any design. Take 
the sketch below: 

A dark tone was applied to all the varied shapes in this sketch. Observe how these 
dark toned shapes were arranged and organized into a pattern. Although the 
individual shapes themselves are very different, the tone and pattern creates 
"order." This order also results from the balance between the light and dark shapes. 

73 



74 

3 PAINTING SHAPES 

In the next drawing, notice how the smaller triangles have been pronounced by 
their darker tones. This helps distinguish them from the rest of the picture, adding 
both depth and variety to the design. 

Look once again at the above sketch. Notice that the overlapping pattern is not 
consistent from one shape to the next. This tiny shift from the expected is another, 
more subtle method of adding variation to a design. 

Finally, contrast can be used to create different visual results. The following 
picture of a schoolhouse is constructed of many lines and shapes. The next step 
would be to fill these shapes in with color. When coloring shapes, you should give 
careful consideration to what you desire as a final image. 



PAINTING SHAPES 3 

In the design below, most of the shapes have been painted white. 

A totally new design can be achieved by reversing the white and black areas: 

Compare the results of the two sketches above. The first might represent the 
schoolhouse during the day, while the second might be a night scene. Or perhaps 
they are simply two different schoolhouses. Notice that certain shapes stand out 
with some colors, and recede into the distance with other colors. One thing is clear: 
the use of contrast can dramatically alter a drawing. 

With a little imagination (and a PAINT A SHAPE tool), you will soon be 
fashioning your own exotic, florid, and rainbowy displays I 

75 



76 

3 PAINTING SHAPES 

Painting Simple Shapes 

Load the "CHAPTER 2" program into memory. N ext, add the PAINT A SHAPE 
subroutine to your tool kit: 

60 REM:::::::PALNT A SHAPE 
62 SYS 49748,X,Y,C,MU 
63 RETURN 

A shape is made up of three or more plotted lines. These lines connect together at 
each end, forming an enclosed outline. Below is six-sided outline shape. 

o 
8 

16 

24 

0 32 

40 

48 

56 

64 

72 

80 

199 88 

96 

104 

112 

120 

Y 

1< 

o 319 

1 1 1 1 1 111 1 1 1 1 2 
1 234 4 5 6 7 8 890 1 223 4 566 7 8 9 0 X 

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 

v V 
V ~ 

/ 1/ 
"- " " '" "\ "\ 

The computer needs to know where the inside of this outline shape is in order to 
paint it. A computer is not as smart as some might think. It has no "eyes," and 
cannot look at the shape to find the inside area. You must direct the computer there. 
By giving the X,Y location of one pixel point inside the outline, you position the 
computer in the area to paint. 



PAlNnNG SHAPES 3 

In our six-sided shape, there are many pixel points that fall inside the outline. 
Although only one needs to be identified for painting purposes, several are shown 
below: 

o 
8 

16 

24 

0 32 

40 

48 

56 

64 

72 

80 

199 88 

96 

Y 

~<-------'::>~I 

o 319 
11 111111112 

123 445 678 890 1 2 2 3 4 5 6 6 7 890 
o 8 6 4 2 086 4 2 0 8 6 4 2 0 8 642 0 8 6 420 

v • / 
~ I-' V 

IL / 
I~ • • ~ 

"\. • "r'\.. , ., 

x 

A pixel point that falls on the outline instead of inside the outline should not be 
identified for painting: 

0 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

1< ::>1 
o 319 

1111111111112 
123 4 4 5 678 890 1 223 4 5 6 6 7 8 9 0 

o 8 642 086 420 8 6 4 2 0 8 6 4 2 0 8 6 420 

V / .. 
~V )~ 

~ / 
I"~ "",-

'" r'\.. 

" 1'\ 

y 

x 

77 



78 

3 PAINTING SHAPES 

Finally, identifying a pixel point that falls outside the outline will only serve to 
paint the outside area of the shape: 

0 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

IE 
o 

1 1 
1 2 344 5 6 7 8 890 1 

o 8 6 4 2 0 8 6 4 208 642 

t 

.1/ ,/ 
V V 

1L" / ". • 
1'\ I' 

• I\.. ~ 
l' ~ 
• I-

1 
1 y 

:;.1 

319 
1 1 

223 
086 

11111112 
4 5 6 6 7 8 9 0 
420 8 6 4 2 0 x 

Each pixel that falls inside your shape is a "paint point. " It is important that you 
correctly identify one of your shape's paint points prior to calling Tool 60. 

Once inside the shape, your new tool can begin painting every background pixel 
it contacts. (Note: If you start it off on a foreground pixel, it won't paint any thing
it will think it is done.) The computer paints in every direction. It will only quit 
painting in a certain direction when one of two things happens: 

(1) The edge of the screen is reached. 

(2) A foreground pixel is reached. 

Think of this as if you are painting with buckets of paint. The outline shape acts as 
a barrier or wall that will contain each color spilled inside it. If the outline is not 
completely enclosed, the paint will run out into the surrounding areas. In the 
diagram below, the small dot is the X,Y position where the paint originally gets 
"spilled." The arrows show how the PAINT A SHAPE tool paints inside, and then 
also outside the shape. Just as real paint flows outside of an open container, so too will 
your painting tool. 



o 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

PAINTING SHAPES 3 

1< )1 

o 319 

1111111111112 
123445678890122345667890 X 

o 8 6 4 2 0 864 2 0 864 208 6 4 208 6 4 2 0 
I .... 

I ..... 

I, 
I ...... 

~ I' .. ..... , , 

1I I V' 1I , 
r.... 

.... 
'" ..... 
...... 

Y 
That is basically all there is to painting shapes. In terms of programming, the 

main routine must: 

(1) RETRIEVE the shape (SE$="?": COSUB 800). 

(2) DRAW the shape (C=?:GOSUB 90). 

(3) Set the color variable to the desired painting color (C=?). 

(4) Give the X, Y location of one painqJoint within the shape to paint (X=?:Y=?). 

(5) Call the PAINT A SHAPE tool (GOSUB 60). 

Let's apply these five steps to the RECTANGLE stored in your library. Change 
the main routine as follows: 

2010 OOSUB 10:C=14: CDSUE 30 
2030 SE$="RECTANGLE": OOSUB 800 
2040 C=10: CDSUE 90 

79 



80 

3 PAINTING SHAPES 

The rectangle falls on the screen as shown below. Based on this, a paint point has 
been selected. 

o 

199 

0 

8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

0 

y 

1 2 3 4 
8 6 4 2 0 

1< 
o 

1 
4 5 6 7 8 8 9 0 
8 6 4 2 0 8 6 4 

>1 
319 

1 1 1 1 1 1 1 1 1 1 1 2 

x 1 2 2 3 4 5 6 6 7 8 9 0 
2 0 8 6 4 2 0 8 6 4 2 0 

U sing the X, Y coordina tes of the paint point, you can paint the rectangle. Add 
the following to your program: 

2050 X=32:Y=16: CDSUB 60 

RUN the program and watch how the shape is painted. Painting starts on the 
row where the paint point is located, and flows to the right until a "barrier" 
(outline) is met. The computer then moves into the next row and paints it. The 
painting stops when all background pixels within the shape have been painted. 

Press-to return to text mode. We can put a hole in the outline shape by 
making a couple of small changes to this shape's data. Change lines 1006, 1008 and 
1010 to the following: 

1006 D/\TA 
1008 D/\TA 
1010 ffiTA 

IROCTANGLE",4,3 
8, 8,47, 8,47,20,47,31, 
0, 1, 1, 2, 3, 4, 4, 0 

8,31 

This alters the shape's description: the bottom right-hand corner of the rectangle 
now is not closed. 



PAlNnNG SHAPES 3 

RUN the program. It's amazing the effect such a small change can have. Don't 
hold your breath to see how this one turns out. The computer will continue 
painting until the entire screen area is painted red. Press RUN/STOP and tap 
RESTORE to break out of the program. Now, change lines 1006-1010 back to their 
original contents: 

1006 Dt\TA "ROCTANGE", 3, 3, 
1008 Dt\TA 8, 8,47, 8,47,31, 8,31 
1010 DATA 0, 1, 1, 2, 2, 3, 3, 0 

Try another shape. Change lines 2030 and 2040 so that the INV-TRIANGLES 
shape is retrieved and drawn in black: 

2030 SE$=" INV=I'RIANGLES": OOSUB 800 
2040 C=0: CDSUB 90 

Lines 2050 and 2060 below will paint each side of this shape a different color: 

2050 X=28: Y=20: C=2: <DSUB 60 
2060 X=34: Y=20: C=8: <DSUB 60 

Again, RUN your program. The shape will be drawn, and then each side 
painted. The left side should be painted in red, and the right side in orange. These 
colors go particularly well together, and the light blue provides a nice background 
for them. 

Before you stop this program, look closely at the bottom two points of these 
triangles. They remain black (the drawing color) instead of being painted red and 
orange (the painting colors). Why? 

The PAINT A SHAPE tool only paints up to a shape's outline pixels, without 
directly painting the outline itself. However, if an outline pixel is located in a color 
block where painting takes place, it will automatically change to the new fore
ground color. 

Look at the diagram of our design below. Each painted color block has been 
shaded. Remember that only one foreground color can be put in each block. When 
the computer tried to paint a red foreground color in a block on the left, it ran into a 
problem: there were already some black outline (foreground) pixels in the block. 
To eliminate this problem, it simply changed the black pixels to the new fore
ground color of red. That, briefly, is how most of the outline pixels changed to the 
appropriate color. 

• 

81 



82 

3 PAINTING SHAPES 

o 

o 

1< >1 

o 319 

1111111111112 
123 4 4 5 6 7 8 8 9 0 1 2 2 3 4 566 7 8 9 0 X 

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 086 420 

8 11'.;.'.:II'I['a.Jtt~ 
16~i~tuln~tI-rtl-rtl-rtl-rt1-rti-rT 
24~-1\~~W~~~-+-+-r~+-~~-+-r~+-r-r;-+-r 
32~~~; ~ ,~M:na~~:~-+-}~+-~~-}~+-~~-}~+-~~ 

.U" 
40 • 
48 

56 

64 

72 

80 

199 88 

96 

104 

112 

120 

y 
Because the two bottom points are outside of any painted color block, they 

remained black after the shape was painted. There are two possible remedies to this 
problem. Press- to learn what they are. 

One way is to change the color the shape gets drawn in (line 2040). This works for 
a solid shape that only needs to be painted one color. You simply change line 2040 
so that you outline the shape in the same color you plan to paint it. 

Because ours is not a solid, single-colored shape, we must use a second method. 
We need to move those bottom points so that they fall in a color block where 
painting occurs. Change lines 1022 and 1024 so that the Y location of those points is 
moved up from row 40 to row 39: 

1022 ~T.A 30, 8,30,39,16,23 
1024 ~TA 33, 8,33,39,47,23 

RUN the program to see how well this "quick fix" worked. 

Color block problems will be your biggest obstacle if not taken into account 
during the design stage. Some simple guidelines for preparing to draw a picture on 
the Commodore are: 



PAlNllNG SHAPES 3 

(1) Sketch the entire picture on graph paper, similar to our X,Y PIXEL POINTS 
grid (see appendices for a copy). 

(2) Use light colored pens or pencils to shade in the desired colors. 

(3) Search each color block (grid block) for more than one foreground color. (If 
you are going to be using multi-color, look for more than three foreground 
colors per block.) 

You will have to adjust the picture in some way if you find color blocks with too 
many foreground colors. This typically involves moving a shape up, down, right or 
left, or adjusting its size. 

You might spend some time practicing with your new tool before going on to the 
next section. 

Painting in Multi-Color 

To use multi-color, you only need to set a single variable (MU). The difficulty, 
however, lies in determining when to use multi-color, as well as anticipating how it 
might affect your design. 

Coincidentally, you have a very good example design to work with-the but
terfly. The butterfly has many angles that cut through color blocks, thus causing 
problems in high resolution. 

Change line 2030 to retrieve the BUTTERFLY: 

2030 SE$="BmTERFLYI: <DSUB 800 

The butterfly design is again shown below. In each area to paint, a paint point 
has been identified. 

83 



84 

3 PAINTING SHAPES 

0 

199 

IE TOP OF SCREEN 
o 319 

111111111111222222222222233 
1 2 3 4 4 5 6 7 8 890 1 2 2 3 4 5 6 6 7 8 9 0 0 1 234 4 5 6 7 8 890 1 

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 864 208 6 4 2 
o 
8 , I / 

16 " 1\ / / 
24 \ I' I /' 
32 \ 1\ 5t: ~ 4 I' \ I I/V 2'p3 4W 
40 

~ i'- 1 18 15~ 1 ~" <; , 
,,- / 

48 IFi i'- I\. V V- I '), IQ 1~ 
56 1\ , • I 'r1 / I 
64 \ I' ,W\ / / 

i'- ~ 
1fo..j1 ~O 7 ,/ 72 

80 
RrAb i'- ,\.~ I./. I ~' ,/ I ') ~~ RI 

88 I'.... \ r IV' ' / I 
96 1 iL' II 

104 \ II 
V ,/"" II :\ " 1".00< 

112 

120 r--I-o. ,/ ........ 1-'" 
128 

/ h ~ o~ 1:1[) I 1\ 9~ ;lC 
136 V \ ~ 
144 ....... r-." ,/ ...... 
152 

" I \ ...... v 
160 ............. \ ....... 
168 

176 

184 

192 

x, Y PIXEL POINTS 

These paint points can be easily transferred lO the program in the form of X,Y 
locations (see program listing below). After each new paint point has been estab
lished, a GOSUB 60 calls the paint routine. The color variable (C) is set to a new 
color code whenever necessary. Add these lines to your program now: 

2050 X=56: Y=40: C=12: OOSUE 60 
2060 X=263: OOSUB 60 
2070 X=40: Y=48: OOSUB 60 
2080 X=279: OOSUB 60 
2090 X=80: Y=80: C=8: OOSUB 60 
2100 X=239: OOSUB 60 
2110 X=120: Y=120: OOSUB 60 
2120 X=199: OOSUB 60 
2130 X=160: Y=96: C=0: OOSUB 60 
2140 Y=72: OOSUB 60 
2150 X=148: Y=58: C=2: OOSUB 60 
2160 X=170: OOSUB 60 



PAlNnNG SHAPES 3 

Notice that whenever the Y location remains constant from one paint point to 

the next, Y does not have to be set the second time. For example, the first paint point 
identified in the program is 56,40 (X=56:Y=40). The next paint point identified is 
263,40 (X=253:Y=40). Since Y does not change from the first paint point to the 
second, Y is only set the first time. This same idea applies to the X location, which 
remains constant from line 2130 to line 2140. 

RUN this program in high resolution to see what happens. Wait as the entire 
shape fills in with various colors. When the butterfly's eyes fill in with red, the 
painting is complete. 

Beautiful? Hardly. Two obvious problems exist with this design painted in high 
resolution. First, bits and pieces of the outline weren't painted. Unfortunately, 
there is no "quick fix" for this one. You can't draw the butterfly in the painting 
color because there's more than one painting color. You can't move the bits and 
pieces inside painted color blocks, because there's no easy way to figure out the X, Y 
locations of those bits and pieces. 

Another problem (again related to color blocks) is the chunky, block-like 
appearance of the orange wing areas. This problem results from trying to plot two 
colors (beige and orange) within the same color blocks. Notice that this problem 
occurs only where there are sloping lines. 

Press - to get back to the program. Change line 2010 so that MU equals I 
before calling the graphics tool: 

2010 MU=l: ensUB 10: C=14: <n>UB 30 

R UN the program to see if this helped. Beautiful? This time, yes. The colors all 
fall into place in multi-color. You've lost some vertical resolution, but gained 
much more in return. 

There is still one problem, however, not taken care of by multi-color: the outline. 
Note that it is no longer randomly painted here and there; instead, it isn't painted at 
all. This is because multi-color permits three foreground colors in each color block. 
Since the design never violates this limit, all colors are used exactly where they are 
put. 

It is not always undesirable to have a shape outlined in black, but often it is. The 
only way to get around this problem is to store each section of the design (e.g., each 
area to paint) as a shape by itself. This allows you to retrieve the section, draw it in 
its painting color, and then paint it in the same color. In the case of the butterfly, for 
example, the orange triangle on the top left side could be stored as a shape by itself. 
Later, it could be retrieved, drawn in orange, and then painted in orange. If this 
were done for each shape within the butterfly, you solve the outline problem. 

We are not going to take the time here to section-out the butterfly. The important 
thing is to understand how multi-color can be of help, and where it can present 
problems. As we've mentioned, color blocks can be your greatest single design 
problem-especially where sloping lines are concerned. 

Keep the butterfly on your screen, and examine for a moment the paint colors we 
chose. The orange is from the warm family of colors, while the blue is from the cool 

85 



86 

3 PAINTING SHAPES 

family of colors. If you look at the chart below, you will see that these two colors are 
directly opposite each other on the color wheel. Opposite colors are called "com
plements." Usually, when two complementary colors are used in equal propor
tions, they cancel each other out-producing a calmer looking design. Although 
we have not used these two colors in equal proportions, we have inserted a neutral 
color (beige) between the two. This heightens the neutrality of the design, again 
producing a greater calmness. 

ORANGE 

BLUE 

Warm and Cool Complements 

Red and Green 
Orange and Blue 
Yellow and Purple 

Press~to return to text mode. Next, change the following two lines in your 
program and R UN it: 

2040 C=5: cn;UB 90 
2130 X=160: Y=96: C=5: OOSUB 60 

Not exactly something to hang on your wall, is it? Several problems can be found 
with this color selection. First, the green blends and meshes too much with the 
background color. A haziness appears that almost strains the eyes; it is compunded 
by the overall brightness of the colors. The orange color now dominates the screen, 
and makes the triangles appear on top of the wings instead of as a part of them. 
Finally, the eyes are being unnecessarily emphasized with the red color. 

Choosing an attractive color combination will often be a matter of trying out 
several on the screen to see how they look. Unpleasant surprises, like that on your 
screen now, are bound to occur. If you have worked with colors for a long time, you 
may be able to visualize them before you put them on the screen. For many people, 
however, much of the selection will be through the process of trial and error. 

We suggest trying some of your own color combinations now. Try a blue, purple 
and cyan combination. Work with the shape's outline. (The color chart is listed in 



PAINTING SHAPES 3 

the appendices for quick reference.) As you discover combinations that you like, 
try to analyze why they appeal to you. Think, too, about the combinations you 
don't like. Through experience, you will begin to remember those combinations 
that particularly appeal to your tastes. 

Storing Paint Points 

You have learned what a paint point is, and how to identify it in the program 
(X=?:Y=?). This relatively simple task enables you to paint the inside area of a 
plotted shape. This is not the end to your painting lesson, though. In fact, if you 
skipped ahead to any other chapter, you would soon find yourself at a loss concern
ing painting. To see what we mean, look at some of the paint points in this 
rectangle: 

0 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

1< >1 
o 319 

1111111111112 
123445678890122345667890 X 

o 8 6 4 2 0 8 6 4 208 6 4 2 0 8 6 4 2 086 4 2 0 

• • 
• • I. 

• • 
• • 

y 

87 



88 

3 PAlNllNG SHAPES 

Now, consider the upcoming chapter on scaling. In it, you will learn of a tool 
that can automatically scale a shape. Without going into detail, let us show you 
what happens when you scale this rectangle to half its height: 

0 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

1< ;:.1 

o 319 

1111111111112 
1 234 4 5 6 7 8 8 9 0 1 2 2 3 4 5 6 6 789 0 

o 8 6 4 2 0 8 6 420 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 

• • 
• • • 

-, • 
• • 

y 

x 

Notice that most of the original paint points now fall outside the shape
rendering them useless for painting purposes. Whereas the original rectangle could 
be painted by identifying the point at 82,42, the scaled rectangle cannot. 

In this particular example, a paint point still can be easily identified. However, it 
won't be easy to do so in every case. F or example, consider scaling the butterfly to 
half its height. It's difficult to visualize exactly how the butterfly would fall on the 
screen after it was scaled. Even harder to judge is where the new paint points would 
be located. 

The solution is to define each paint point within the shape's D A T A statements. As 
part of the shape's description, the paint points will be scaled, rotated, and moved 
with the rest of the shape. 

A simple exercise shows how this works. Let's draw and paint an octagon. Take 
the time, if you like, to SAVE your current program under any file name except 
CHAPTER 3. Then, change line 172 to the following: 



PAlNllNG SHAPES 3 

172 A=256: 8=2049: 0=1006 
We are going to ZAP the Shape Library because it has become too bulky and 

cumbersome to use. Move the cursor to a free, blank line and type: 

RUN 172 

Press RETURN. When the zapping stops and the cursor reappears, LIST your 
program. Make sure that only the program lines after 1004 have been deleted. 

As you learned in the last chapter, the first step in drawing a shape is to sketch it 
on an X, Y PIXEL POINTS grid, noting the coordinates of each endpoint. This is 
still necessary, but you must now also identify each paint point as well: 

0 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

1< 0)1 

o 319 

1111111111112 
12344 5 678 890 1 2 2 3 4 566 7 8 9 0 

o 8 6 4 2 086 420 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 

56 16 ~9 16 

~ "' ", h " /'f" .... i'-
I" ." 6 .4) 
1-' 

,,, I.c: .c: ~ >'1, ~ ... 
,~ 1- - ...... V-

I'.. ./ 

" ./ 
56 71 7~ ,7 

y 

x 

89 



90 

3 PAlNnNG SHAPES 

The next step is to number each endpoint, starling with #0: 

o 
8 

16 

24 

o 32 

40 

48 

56 

64 

72 

80 

199 88 

96 

104 

112 

120 

1< >1 
o 319 

1111111111112 
123445678890122345667890 X 

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 864 2 0 8 6 4 2 0 

( 1 

V "' 
L-r ./ 

~ r..... " 

i ~ 

" ...... V r'" 
~ V , 

y 
Once all endpoints have been numbered, you then number the paint points. 

Your paint points will be stored in the same array as your endpoints (P%), and so 
they are numbered together with the endpoints. Since the octagon's endpoints are 
numbered 0 through 7, its first and only paint point is numbered 8: 



0 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

PAINTING SHAPES 3 
IE >1 

o 319 

1111111111112 
123 4 4 5 6 7 8 890 1 2 2 3 4 566 7 8 9 0 X 

o 8 6 4 2 0 8 6 4 2 0 8 6 4 208 6 4 2 086 4 2 0 

) 

/ '" /" ~ n ... 
8 

"' ........ ~V 
v 

r-... 
~ ./ 

5 4 

I y 
With this information, you can write both the Point data list and the Line data 

list· 

Point Data List 

X y Line Data List 

Endpt #0 56 16 
"FROM" "TO" 

Endpt #1 79 16 Line #0 0 1 
Endpt #2 103 32 Line #1 1 2 
Endpt #3 103 55 Line #2 2 3 
Endpt #4 79 71 Line #3 3 4 
Endpt #5 56 71 Line #4 4 5 
Endpt #6 32 55 Line #5 5 6 
Endpt #7 32 32 Line #6 6 7 
Endpt #8 64 40 Line #7 7 0 

You can see that the Point data list includes both endpoints and paint points, all 
in consecutive order. The Line data list never uses point#8, so that point is free to be 
used as a paint point. 

To translate all of this into program lines, type the following: 

91 



92 

3 PAINTING SHAPES 

1005 DIM P%(99,2), L%(99,1) 
1006 IlP.TA "OCrAOON" ,8,7 

Line 1005 dimensions ~ and U. (This DIM statement can appear anywhere in the 
program, provided it appears before the first GOSUB 800). The next line assigns a 
name to the shape: "OCTAGON". In addition, the zero-based count of points 
(endpoints and paint points), and the zero-based count of lines is given. 

Next, enter the Point data: 

1008 IlP.TA 56, 16, 79, 16,103, 32 
1010 ~TA 103, 55, 79, 71, 56, 71 
1012 mTA 32, 55, 32, 32, 64, 40 

Enter this data exactly as you are accustomed. The X,Y coordinates of Endpoint 
#0 start the DATA statements off. Then Endpoint #1 's coordinates, Endpoint #2's 
coordinates, etc. Because these DATA statements must include all points, Paint 
Point #8's coordinates follow Endpoint #7's coordinates. That completes the first 
set of data. 

The Line data is entered in the usual fashion: 
1014 IlP.TA 0, 1, 1, 2, 2, 3, 3, 4 
1016 ~TA 4, 5, 5, 6, 6, 7, 7, 0 

To draw and paint this shape, enter the following main routine lines: 

2000 msllB 10: C=14: msUB 30 
2010 SE$="OC1'AGON": msUB 800 
2020 C=6: OOSUB 90 
2030 PP=8: GOSUB 60 
6000 GFJI' A$ 
6010 IF A$ = "~" THEN GOSUB 20: END 
6020 roro 6000 

The shape is retrieved and drawn with Tools 800 and 90. Next, it is painted. 
However, instead of specifying an X, Y location inside the octagon, specify the 
number of the paint point as found on your point list (PP=8). 

You need to modify the PAINT A SHAPE tool to take advantage of this new 
concept. Add line 61 as follows: 

61 X=P%(PP,0): Y=P%(PP,I): LF X<0 OR Y<0 OR X>319 OR 
Y> 199 'IHm RETURN 

This program will change the graphics background screen to light blue, so you 
must first change the text color to white (press CTRL and 2 at the same time). Then, 
R UN the program to see the modified tool at work. 

Pre-defined paint points do not have to be listed at the end of the point data. For 
example, the sixth coordinate set could identify our shape's paint point, with the 
last two endpoint coordinates following it. Setting PP to 6 would then correctly 
find the paint point when the time came to pain t the shape. You will make it easier 
on yourself if you keep your endpoints grouped together and your paint points 



PAINTING SHAPES 3 

grouped together. Stick to the convention of endpoints, followed by paint points. 

This small exercise did not discuss shapes having more than one paint point, so 
let's try one more example: 

o 
8 

16 

24 

32 
0 40 

48 

56 

64 

72 

80 

8B 
199 

96 

104 

112 

120 

128 

136 

144 

152 

160 

1~ 
176 

184 

192 

IE TOP OF SCREEN 
111111111111222222222222233 

1 234 4 5 6 788 901 2 2 3 4 5 6 6 789 001 234 4 5 6 7 889 0 1 
o 8 6 4 2 0 8 6 4 208 6 4 2 0 864 2 0 864 2 0 8 6 4 208 6 4 208 6 4 2 

o 319 

2 

/ 

8 
5 0 6 14 

a 
€2 8~ 

0 1 5 1 ~ 5 

6S 
5 2 5 6 4 5 

3 0 4: 4 4 a 
aD ah 

77 ~f 75 5 3 15· 7 

3 1 4 5 ~ ~ 

2 4 2 t8 
1 2 1 6 I! 0 1 ~ 53 

0 1 72 7 7 7~ 715 
1 3 1 7 1 1 2~ 5 2 9 03 43 

. 6~ 

7 6 

6 

x, Y PIXEL POINTS 
This design is made up of 68 endpoints, 18 paint points, and 60 lines. Notice that 

we have numbered the endpoints from 0 through 67, and the paint points from 68 
through 85. 

ZAP your main routine in order to begin fresh (type RUN 172 and press 
RETURN), and then add these lines: 

1008 mTA "BUILDING", 85, 59 
The 68 endpoints, with 18 paint points added to it, gives a true point countof 86. 

Converting this to a zero-based count, we arrive at 85. The 60 lines renders a 
zero-based count of 59. Thus the point and line count for our "BUILDING" shape 
is 85,59. 

Now enter the endpoint data: 

1'310 mTA 0, 64, 144, 64, 144, 8 
1012 m~ 263, 8,263, 80,319, 80 
1014 DA~ 319,175, 0,175, 0,168 

9 

93 



94 

3 PAINTING SHAPES 

1016 mom 319,168, 8,168, 8,128 
1018 mTA 39,128, 39,168, 48,168 
1020 mTA 48,128, 79,128, 79,168 
1022 mTA 88,168, 88,128,119,128 
1024 mTA 119,168,152,168,152,120 
1026 mTA 191,120,191,168,216,168 
1028 mTA 210,120,255,120,255,168 
1030 mom 264,168,264,128,279,128 
1032 mTA 279,168,296,168,296,128 
1034 mTA 311,128,311,168, 8,111 
1036 mTA 8, 80, 31, 80, 31,111 
1038 mTA 48,111, 48, 80, 71, 80 
1040 mTA 71,111, 88,111, 88, 80 
1042 mTA Ill, 80,111,111,160,103 
1044 rnom 160, 72,191, 72,191,103 
1046 mTA 216,103,216, 72,247, 72 
1048 mTA 247,103,160, 63,160, 32 
1050 mTA 191, 32,191, 63,216, 63 
1052 mTA 216, 32,247, 32,247, 63 
1054 mTA 136, 63,136, 16 

To make sure that the paint points are placed in the Point array, they must 
directly follow the endpoints. Type them as: 

1056 mTA 160, 198, 160, 172, 24, 152 
1058 mTA 60, 152, 100, 152, 172, 152 
1060 mTA 235, 152, 271, 152, 304, 152 
1062 mTA 20, 96, 60, 96, 100, 96 
1064 mTA 175, 88, 232, 88, 175, 44 
1066 m'm 232, 44, 139, 40, 202, 24 

Finally, add the line data: 

1070 mom 0, 1, 1, 2, 2, 3, 3, 4 
1072 mTA 4, 5, 5, 6, 6, 7, 7, 0 
1074 mTA 8, 9,10,11,11,12,12,13 
1076 mTA 14,15,15,16,16,17,18,19 
1078 mTA 19,20,20,21,22,23,23,24 
1080 mom 24,25,26,27,27,28,28,29 
1082 mTA 30,31,31,32,32,33,34,35 
1084 mTA 35,36,36,37,38,39,39,40 
1086 ~TA 40,41,41,38,42,43,43,44 
1088 mTA 44,45,45,42,46,47,47,48 
1090 m'm 48,49,49,46,50,51,51,52 
1092 mTA 52,53,53,50,54,55,55,56 
1094 mTA 56,57,57,54,58,59,59,60 
1096 mTA 60,61,61,58,62,63,63,64 
1098 mom 64,65,65,62,66,67,67, 2 



PAJNnNG SHAPES 3 

That was a lot of typing, so review it carefully. Start by glancing over the line 
numbers. There should be one for every even number after 1004. Check LO make sure 
that the data items are all lined up correctly. If one program line is longer or shorter 
than the others, it probably contains a typing error. 

Type the main routine lines below that retrieve and draw the building: 

2000 OOSUB 10: C=14: GOSUB 30 
2100 REM::DRAW BUILDING 
2110 SE$ = "BUILDING": GOSUB 800 
2120 C=1: GOSUB 90 
6000 Gill' A$ 
6010 IFA$=" ~" 'IHEt~ GOSUB 20: END 
6020 <DI'O 6000 

The program lines that set the paint point variable (PP) and call Tool 60 are 
shown below. If you glance back at our sketch of this design, you will see exactly 
where each of these paint points falls within the building. Go ahead and add them to 
your program, and then RUN it. 

2200 RIM: :PAllIT' BUILDING 
2210 PP=68: C=11: GOSUB 60 
2220 PP=69: ·C=12: GOSUB 60 
2230 PP=70: C=6: GOSUB 60 
2240 PP=71: GOSUB 60 
2250 PP=72: C=5: GOSUB 60 
2260 PP=73: C=9: GOSUB 60 
2270 PP=74: GOSUB 60 
2280 PP=75: C=6: GOSUB 60 
2290 PP=76: C=0: GOSUB 60 
2300 PP=77: GOSUB 60 
2310 PP=78: C=4: GOSUB 60 
2320 PP=79: GOSUB 60 
2330 PP--OO: C=0: GOSUB 60 
2340 PP=81: C=9: GOSUB 60 
2350 PP=82: C=6: GOSUB 60 
2360 PP--83: C=0: GOSUB 60 
2370 PP--84: C=12: GOSUB 60 
2380 PP=85: C=15: GOSUB 60 

Wait a few minutes for the entire design to be plotted and painted. When it is 
complete, take a few moments to study it. 

Note: If you are having any problems with this design, refer back to page 
xx. Although the line numbers have changed since then, the basic problems/ 
solutions have not. 

Several different colors have been used in this composition. The colors appear to 
be randomly selected because, LO some extent, they were. Starting with a mixture of 
colors allows you to test the visual effect each lends to the design . One obvious effect 
is that the darker windows appear to bein rooms having a smaller light source. The 

95 



96 

3 PAINTING SHAPES 

brighter, pastel colors, on the other hand, almost give the rooms a glowing look. 

Observe also how the windows are of different sizes and placements. In the 
middle row of windows, the two on the right have been placed slightly higher than 
those on the left. Don't be surprised if you did not notice this until now. The 
human mind strives to maintain a degree of balance and order in all that it takes in 
visually. For this reason, it will often project balance into a design. Windows that 
are placed or sized slightly differently are often perceived as being identical. Look at 
the lower roofs at either side of the building. The lower roof on the right side is, at 
first, perceived as being the same height as the lower roof on the left side. It is only 
upon close inspection that this illusion becomes clear. 

In the same way, the mind searches for balance in color. You can achieve color 
balance in several ways. One type of balance was displayed with the butterfly. In 
that example, balance and neutrality were achieved through contrasting colors. 

You reach another type of balance by distributing colors proportionally. If one 
color does not quite seem to fit your design, don't discard it too quickly. It may be 
that there is too little or too much of it. Try adding some more of it to the design. As 
backwards as this might sound, it has been known to work. In fact, this "propor
tional" color balancing can even be carried into your living room. Has that orange 
loveseat always bothered you? Try adding orange somewhere-else in the room. You 
might be pleasantly surprised at the results. 

Finally, notice how the vanishing line adds perspective to the picture. Perspec
tive is the three-dimensional representation of images as they would normally 
appear to the eye. By simulating the angle formed by the front and left sides of the 
building, a truer image is formed. 

The sketch below offers another good design for testing and comparing different 
colors together. 

D 
D 



PAINTING SHAPES 3 

Although the sketch is in black and white, this design places squares of various 
colors on several different background colors. You can test and compare nine 
foreground/background combinations at the same time. Some important consid
erations are: 

Do the colors look nice together? 
Do the colors run together or create a line where they meet? 
Is there too much contrast between the colors? 
Is there too little contrast between the colors? 
Does one color dominate the other? 
Do the colors clash? 

Some color combinations produce blurred images, while others create a sharp, 
distinct contrast among the shapes. Contrast can be achieved through the use of 
light and dark colors, or warm and cool colors. The warm color family includes 
yellow, orange and red. The cool colors are blue, green and violet. Using yellow 
and violet together creates contrast. 

TOOL 60 ::::::: PAINT A SHAPE 

60 REM:::::::PAINT A SHAPE 
61 X=P%(PP,0): Y=P%(PP,1): IF X<0 OR Y<0 OR 

X>319 OR Y>199 THEN RETURN 
62 SYS 49748,X,Y,C,MU 
63 REI'URN 

What It Does: This tool can paint any completely enclosed (outlined) 
shape already drawn on the screen. 

Example Use: The steps to painting a shape outside its DATA statements 
are: 

(1) Draw the outline shape. 

(2) Set C to the desired painting color (C=?). 

(3) Give the X,Y location of one paint point within the shape to paint 
(X=?: Y=?). 

(4) Call the paint tool, skipping over lines 60 and 61 (GOSUB 62). 

To define a shape's paint inside its DATA statements: 

(1) Sketch the shape on a grid and number its Endpoints (#0, #1, 
#2, ... #N). 

(2) Locate each paint point on the sketch, and number them as a 
continuation of the endpoints (#M ... #X). 

(3) Write down your Point data, from Endpoint #0 thru Paint Point 
#X. 

(4) Write down your Line data. 

97 



98 

3 PAlNllNG SHAPES 

(5) Enter your Point and Line data into the program as DATA 
statements. Do this as explained in Chapter 2. 

(6) Retrieve and draw the shape on the screen using Tools 800 and 90. 

(7) Set C to the paint color (C=?). 

(8) Set PP to the paint point within the area you are going to paint 
(PP=?). 

(9) Call the paint tool (GOSUB 60). 

Technical Description: This subroutine starts at the specified paint 
point and invisibly races to the left until it hits either the edge of the 
shape or the screen boundary. It then plots a straight line to the right 
until it hits the other side of the shape or the screen boundary. Along the 
way it looks up and down for any "interesting" points. An "interesting" 
point is an unplotted point which lies just to the right of a plotted point. 
The subroutine saves these interesting points for later. 

When it has painted all the way to the right edge of the shape, it 
retrieves the last interesting point it saved. Starting at that point, it then 
races to the left again, repeating the search for more interesting points. It 
paints this row, moving right, just as it had the previous row. This 
process continues until it runs out of interesting points to save and has 
retrieved all the ones it has saved. 

Surprisingly, this is all it takes to fill an object. The secret is keeping 
track of the interesting points. This process can be very intriguing to 
watch when painting irregular shapes. The PAINT A SHAPE routine 
seems to miss some sections of the shape, only to fill in those sections at 
the last possible instant. (See the machine language listing in the 
appendices for more information on this tool.) 

Summary 

Painting is a necessary skill to acquire in any graphics endeavor. Before you 
begin painting, you should consider any color block problems that might be 
created by your design. If multi-color would remedy the problem, set MU=I before 
the GOSUB 10 statement. 

As you paint, consider the proportional balance of your colors. Check for colors 
that seem to dominate the screen, or colors that seem to get lost in the crowd. Also, 
consider the balance between the light colors and dark colors. Artists often turn 
their work upsidedown and sideways to make sure that a proper balance has been 
established. Instead of jeopardizing your monitor, tilt your head this way and that 
way to view your pictures from different angles. 



PAlNnNG SHAPES 3 

Decide ahead of time if you need to pre-define your paint points. You can't do 
any harm by listing paint points in the DATA statements, and you will probably be 
glad you did. However, if you decide to paint an area not defined in the data 
statements, simply set X and Y, and call the paint tool with a GOSUB 62. 

Save your program under the filename "CHAPTER 3" before moving on to the 
exercise. 

Exercise 

This exercise is a little tough. Try it on your own; but if you get too frustrated, 
skip directly to the solution. The clown design shown below needs to be outlined in 
black, and then painted with the indicated color codes: 

o 

199 

o 
6 

16 

24 

32 

40 

46 

56 

64 

72 

60 

88 

96 

104 

112 

120 

128 

13 

144 

15 

160 

168 

17 

164 

19 

6 

2 

6 

2 

1< TOP OF SCREEN 
o 319 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 

123 4 4 5 6 7 8 890 I 2 2 3 4 5 6 6 7 8 9 0 0 1 2 3 4 4 567 8 890 1 
o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 864 2 0 8 6 4 2 0 8 6 4 2 

8 8 
4 

1\ V 
1\ 1\ V It 
~ 1'\ V lL 

1p 
I' V 

x, Y PIXEL POINTS 

99 



100 

3 PAINnNG SHAPES 

Below we have the same sketch, but with the endpoints and paint points 
numbered for you: 

a 
8 

16 

24 

a 32 

40 

48 

56 

64 

72 

80 

88 
199 

96 

104 

112 

120 

128 

136 

144 

152 

160 

168 

176 

184 

192 

IE >1 TOP OF SCREEN 
111111111111222222222222233 

123 4 4 5 6 7 8 890 1 2 234 566 7 8 9 a a 1 234 4 5 6 ~ 8 8 9 a 1 
086 4 2 a 8 6 4 2 a 8 6 4 2 a 8 6 4 2 a 8 6 4 2 a 8 6 4 2 a 8 6 4 2 a 8 6 4 2 

a 319 

'" 9 0 1 3 _ . . " 
1""1" 4~ 

5 ~ 121 

In 1 2 
.:1 IL 2~ 

P 1\ V ~ 

1\ 1\ V IJ 
I\. 1\1'0 I2W 

b [!). 

~!! II: 5 

!\ 7 6[f 

x, Y PIXEL POINTS 

There is a color block problem with the mouth that needs to be solved. Also, the 
coordinates of points 35 and 36 can only be found through trial and error. 

This design can be painted in high resolution, but it will take some thinking to 
figure out how. We are using a difficult example for the exercise to show you that 
the improbable is not necessarily the impossible. The solution is shown below. Our 
point coordinates may not match yours exactly, which is fine. 

Solution 

You were provided one hint to the color block solution-there was no paint point 
given within the clown's face, while one was given in the background area (at 
56,48). This is because the clown's face will use the background color (15), enabling 
you to use a foreground color to draw the mouth. Thus, the blue "background" area 
is actually painted like any other shape. Look at the solution below, particularly line 
2010, where the background color is set. Line 2040 uses paint point 40 to paint in the 
light-blue area behind the clown. 



1140 D.l\'I7\ 1I~1", 47,34 
1142 D.l\'I7\ Ill, 31,208, 31,208, 87 
1144 D.l\TA 224, 87,224,104,216,104 
1146 D.l\TA 183,144,136,144,103,104 
1148 D.l\TA 95,104, 95, 87,111, 87 
1150 D.l\TA 128, 48,143, 48,143, 71 
1152 D.l\TA 128, 71,128, 56,143, 56 
1154 D.l\TA 176, 48,191, 48,191, 71 
1156 D.l\TA 176, 71,176, 56,191, 56 
1158 D.l\TA 152, 80,167, 80,167, 95 
1160 D.l\TA 152, 95,199, 96,175,119 
1162 D.l\TA 144,119,120, 96,208, 40 
1164 D.l\TA 239, 40,239,127,197,127 
1166 D.l\TA 121,127, 80,127, 80, 40 
1168 ~TA Ill, 40 
1170 D.l\TA 56, 48, 96, 48,224, 48 
1172 D.l\TA 136, 50,184, 50,136, 64 
1174 D.l\TA 184, 64,160, 88 
1176 D.l\TA 0, 1, 1, 2, 2, 3, 3, 4 
1178 D.l\TA 4, 5, 5, 6, 6, 7, 7, 8 
1180 D.l\TA 8, 9, 9,10,10,11,11, 0 
1182 D.l\TA 12,13,13,14,14,15,15,12 
1184 D.l\TA 18,19,19,20,20,21,21,18 
1186 D.l\TA 16,17,22,23,24,25,25,26 
1188 D.l\TA 26,27,27,24,28,29,29,30 
1190 D.l\TA 30,31,32,33,33,34,34,35 
1192 D.l\TA 36,37,37,38,38,39 
2000 OOSUB 10: C=15: OOSUB 30 
2010 SE$ = "CLa'm": cnSUB 800 
2020 C=0: GOSUB 90 
2030 PP--40: C=14: OOSUB 60 
2040 PP=41: C=8: CDSUB 60 
2050 PP--42: aASUB 60 
2060 PP--43: C=1: GOSUB 60 
2070 PP=44: OOSUB 60 
2080 PP=45: C=6: cnSUB 60 
2090 PP--46: OOSUB 60 
2100 PP--47: C=2: OOSUB 60 

PAINTING SHAPES 3 

101 



102 



Chapter Four 

TRANSLATING SHAPES 
This chapter introduces the first of three transformation tools. The word trans

form means to change the form or appearance. When you transform a shape, you 
change its appearance as plotted on the screen. The computer's capacity to store 
and retrieve information, coupled with its lightning speed, makes shape transfor
mation quick and easy. 

The ability to transform shapes is unique to computer art, and is one of the 
greatest benefits computer art has over the more traditional methods of drawing 
and painting. The realm of experimentation, once limited by the time required to 
re-paint an image, has expanded in a way never before imagined. Using oil paints, 
for example, you could not easily move a figure from the left of the canvas to the 
right-you must paint over the original figure and then completely re-paint it in 
the new position. With this chapter's TRANSLATE A SHAPE tool, you can easily 
move a figure. 

Translate, as used here, means to move from one place to another. When you 
translate a shape, you plot it at a new screen location. The purpose of such a tool is 
two-fold. First, it provides an easy way to "test plot" a shape on the screen. You can 
plot a shape, see where it falls in your picture, and then easily adjust the program if 
the shape needs to be moved in any particular direction. Up to this point, the only 
way to move a shape would be to re-define its coordinates within the DATA 
statements. With your new tool, only one X and one Y adjustment is required to 
re-plot an entire shape in a new location. 

The second important feature of this tool is its ability to duplicate a shape. Once 
you've defined a shape with DATA statements, this new tool can duplicate it as 
often as you like, anywhere on the screen. To duplicate the shape, all you need to do 
is specify where you want the duplicate(s) to appear. 

To set up for this chapter, load CHAPTER 3's program into memory. Next, 
check that line 172 has C set to 1008, and then run the ZAP routine. Finally, enter 
the necessary program lines that allow you to enter and exit high resolution 
graphics: 

2000 OOSUB 10: <:=2: GJSUB 30 
6000 GEl' A$ 
6010 IF A$ = II~II THEN OOSUB 20: ElID 
6020 rom 6000 

Test Plotting Your Shapes 

The TRANSLATE A SHAPE tool affords you the freedom to plot a shape in 
several different screen locations before deciding on its final placement. Remember 
that your shapes are currently described as single, whole objects. Because of this, 

103 



104 

4 TRANSLATING SHAPES 

your new tool will only need to know how far horizontally (left or right), and how 
far vertically (up or down) you want a shape to be moved. With these two pieces of 
information, the tool can take any shape, of any size, and re-plot it where 
instructed. 

Transformation tools, like TRANSLATE A SHAPE, require several small 
"supporting" tools to help get their various tasks done. A simply analogy will help 
to explain this. Suppose you have been hired as the head cake-froster at a neighbor
hood bakery. The cakes are pre-made, and your only task is to mix up various 
frostings and apply them to the cakes. Six steps are involved in frosting a single 
cake: 

(I) Wash out your mixing bowl. 

(2) Wash out your measuring cup (you only have one). 

(3) Determine the first (or next) ingredient needed in the frosing mix and place it 
in the measuring cup. 

(4) Pour the current contents of the measuring cup into the mixing bowl, and stir 
up the ingredients. 

(5) Steps 2 through 4 are completed for each ingredient. 

(6) When all ingredients have been combined together and sufficiently stirred, 
apply the frosting to the cake. 

Admittedly, this analogy has its flaws. It does, however, serve its purpose. 

For each step above, except step 5, there is a corresponding tool to be added to 

your tool kit. The cake to be frosted is equivalent to the shape you want to 
transform. The frosting in the mixing bowl is equivalent to the combined list of 
transformations (e.g., translate, scale, rotate) to be applied to the shape. Each 
ingredient represents an individual transformation request (e.g., translate). 

The new tools will use matrices to hold and combine your transformation 
specifications. The word "matrix" is a mathematical term for a two-dimensional 
array. Two such matrices are required for transformations. One matrix, called the 
C Matrix, will be used as the "mixing bowl," and will hold the current list of 
transformations you have requested. The other matrix, called the T Matrix, will be 
used as the "measuring cup" to hold the last, single transformation request. 

Below is the first tool you need to type. This tool, called CLEAR C MATRIX, 
will wash out your "mixing bowl" so that a new transformation recipe can be 
mixed. This tool needs to be called at the beginning of your program, as well as 
each time you want to apply a new set of transformations to one of your shapes. 

110 RIM::::::: ClFAR C HA.TRIX 
III FOR 1=0 10 2: FDR J=0 'ill 2 
112 C(I,J)=ABS(I=J) 
113 NIDIT J, I 
114 REI'URN 

The next tool to enter, shown below, is called CLEAR T MATRIX. This tool 
cleans out the "measuring cup" to prepare it for a new transformation ingredient. 



TRANSLAnNG SHAPES 4 

As you will see in a moment, this tool is called from within the TRANSLATE A 
SHAPE tool. 

120 REM:::::::CLEAR T MATRIX 
121 FOR 1=0 'ill 2: FOR J=0 'ill 2 
122 T(I,J)~S(I=J) 
123 NEXT J,I 
124 REI'URN 

This third tool is your TRANSLATE A SHAPE tool. Its task is to place your 
translation request into the measuring cup (T Matrix). Notice that the first thing it 
does is call Tool 120, to ensure that the measuring cup has first been properly 
cleaned out. 

140 REM:::::::TRANSLATE A SHAPE 
141 OOSUB 120 
142 T(2,0)=XT: T(2,1)=YT 
143 <DID 130 

Next, the COMBINE MATRICES tool. This tool takes the transformation 
ingredient out of the measuring cup (T Matrix), places it into the mixing bowl (C 
Matrix), and stirs up the ingredients. This tool, as you can see in program line 143, 
is called after the computer completes Tool 140's task. 

130 REM:::::: :ca1BINE M1\TRICES 
131 FOR 1=0 'ill 2: FOR J=0 'ill 2 
132 W(I,J) = C(I,J) 
133 NEXT J, I 
134 FOR S=0 'ill 2: FOR J=0 'ill 2 
135 C(S,J)=0 
136 FCR 1=0 'ill 2 
137 C(S,J)=C(S,J)TW(S,I)*T(I,J) 
138 NEXT I,J, S 
139 RETURN 

The final step, applying the frosting to the cake, is done with the APPLY 
TRANSFORMS tool below. This tool will take the current list of transformations 
found in the C matrix and apply it to the Point data list stored in P%. 

100 REM:::::: :APPLY TRAl'lSFORr-1S 
101 FOR S=0 'ill NO: FOR J=0 'ill 2 
102 R%(S,J)=0 
103 FOR 1=0 'ill 2 
104 R%(S,J)=R%(S,J) + P%(S,I)*C(I,J) 
105 NEXT I,J,S 
106 RETURN 

An important thing to know about the APPLY tool is that the newly transformed 
Point list is not returned to your ~ array. Instead, it is placed in an R~ array. The 

105 



106 

4 TRANSLATING SHAPES 

"R" stands for Replica, and this array will hold a transformed replica (copy) of your 
shape's Point data list. As the transformations are applied to each point in ~, the 
newly transformed points are placed in R~ for drawing and painting purposes. 

This leads us to a couple of final adjustments to your tool box. First, some 
changes to the DRAW A SHAPE tool you've been using. Line 91 needs to be added 
so that Tool 100 is called when needed. In addition, lines 94 and 95 need to be 
corrected, so that a replica of the shape's Point list is used, rather than the Point list. 
Make the following addition/alterations to Tool 90: 

91 OOSUB 100 
94 Xl=R%(E1%,0): Y1=R%(E1%,1) 
95 X2=R%(E2%,0): Y2=R%(E2%,1) 

Finally, the PAINT A SHAPE tool needs to be amended. Currently, this tool will 
retrieve paint points from the P% array. However, now you will be translating the 
points in your Point data list. The newly transformed points, including all paint 
points, will be stored in an R% array. Thus, we now want this tool to retrieve all 
paint points from the R% array. Change line 61 to the following: 

61 X=R%(PP,0): Y=R%(PP,l): IF X<0 OR Y<0 OR X>319 
OR Y>199 THEN RETURN 

That completes this chapter's contribution to your tool kit. The chart below 
gives a brief description of your new tools, together with the "frosting analogy" as 
it applies to each. As we begin using these new tools to create designs, you may want 
to refer to this chart as a reminder of how transformations are accomplished. 

TOOL BRIEF DESCRIPTION "FROST CAKE" ANALOGY 

110 Clears out C matrix, setting it Cleans out mixing bowl, get-
CLEAR up to hold a list of transfonns. ting it ready for next frosting 
C MATRIX mix. 

120 Clears out T matrix, setting it Cleans out measuring cup, 
CLEAR up to hold the next transform getting it ready for next 
T MATRIX request. ingredient. 

140 Places translate request into Places next ingredient into 
TRANSLATE the T matrix. measuring cup. 
A SHAPE 

130 Mathematically combines T Pours measuring cup into 
COMBINE and C matrices, placing results mixing bowl and stirs up 
MATRICES back into C matrix. contents. 

100 Applies the C matrix to the Places the frosting on your 
APPLY points listed in PZ, placing cake. 
TRANSFORMS resulting points into R~. 



TRANSLAnNG SHAPES 4 

Most of the above information is simply that-information. Out of the five new 
and two modified tools just entered, you need never think about any except: 

(I) Tool 110 (CLEAR C MATRIX). 

(2) Tool 140 (TRANSLATE A SHAPE). 

(3) Tool 90 (DRAW A SHAPE). 

(4) Tool 60 (PAINT A SHAPE). 

The rest of your new tools are "support" tools. Support tools are called by the 
main tools as needed. If you were to glance through your tool box, you would find 
that: 

-Tool 120 (CLEAR T MATRIX) is called by Tool 140 
-Tool 130 (COMBINE MATRICES) is called by Tool 140 
- Tool 100 (APPLY TRANSFORMS) is called by Tool 90 

(Now, forget about tools 100, 120, and 130. There will never be an occasion where 
you will have to think about them or call them.) 

With the tools in place, you are ready to put them to use. The first step is to 
dimension all of the arrays/ matrices. This includes the following: 

-the P% array (Point data list; dimensioned as usual) 
-the L% array (Line data list; dimensioned as usual) 
-the R% array (Replica array; dimensioned same as P%) 
-the T matrix (holds the current transformation; always dimensioned for three 

rows and three columns} 
-the C matrix (holds complete list of transformations; always dimensioned for 

three rows and three columns) 
-the W matrix (a temporary storage place for the contents of the C matrix while 

some matrix multiplication is done; always dimensioned for three rows and 
three columns) 

Each of these arrays must be dimensioned once, but no more than once. Because 
of this restriction, it is not possible to dimension an array inside a subroutine. If, for 
example, the C matrix were dimensioned inside Tool 110, the program would try to 
dimension the C matrix each time Tool 110 was called. This would result in the 
program failing. Change line 1005 so that it will once and for all dimension the six 
required arrays: 

1005 DIM P%(99,2), L%(99,1), R%(99,2), T(2,2), C(2,2), W(2,2) 

The design you will work with is a simple quilting pattern, shown on the grid 
below. If you have an interest in quilting, this new tool works wonders with 
geometric patterns, and will prove a terrific design aide when planning your next 
quilt. (This is also true for tiling, stained glass, needlepoint, or any other design
oriented craft where repetitive patterns are often used.) 

107 



108 

4 TRANSLAnNG SHAPES 

0 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

1< ::>1 

o 319 

1111111111112 
1 2 3 4 4 5 6 7 8 8 9 0 1 2 2 345 6 6 7 8 9 0 

o 8 642 0 8 6 4 2 0 8 6 420 8 6 4 2 0 8 6 4 2 0 ~ o 

it I \ r: 

I " / ~ 
I ~ \ / 

( \ V 
I) 

y 

x 

Although all of the endpoints have been appropriately numbered in the quilt 
design, no paint points have been identified. This is fine. You only need to identify 
paint points in shapes you plan to paint. We will not be painting this particular 
design. 

The DATA statements that define this quilt design are given below. Type them 
into your Shape Library, then double-check your typing for accuracy: 

1008 ffiTA "OOIUr [ESIGN", 7, 7 
1010 ~TA 24, 0,39,16,24,31, 8,16 
1012 ~TA 16, 8,31, 8,31,23,16,23 
1014 ffiTA 0, 1, 1, 2, 2, 3, 3, 0 
1016 ffiTA 4, 5, 5, 6, 6, 7, 7, 4 

Finally, add the following main routine lines that will plot this shape on the 
screen: 

2010 SE$="OOILT reSIGN": OOSUB 800 
2020 OOSUB 110 
2030 C=I: ensUB 90 

Notice that line 2020 calls the CLEAR C MATRIX tool. This matrix must be 
properly set at the beginning of each picture-drawing program. 



TRANSLAnNG SHAPES 4 

Take the time to RUN the program. If the quilt design is plotted in white in the 
upper left-hand comer of the screen, press - to return to text mode. 

If you are having any problems, check the new subroutines and then the DATA 
statements. Correct any mistakes before continuing. 

Now that you have seen where this shape is normally plotted, let's learn how to 
move it to other screen locations. First, specify where the shape is to be moved. This 
is done with "offset" values. Offset values specify how far a shape should be moved 
along the X axis (XT=?), and how far it should be moved along the Y axis (YT=?). 
Assigning XT (X-Translate) a value other than 0 will move the shape right (+ XT) 
or left (-XT). If you set XT=5 and then call Tool 140 (TRANSLATE A SHAPE), the 
C matrix will be set to move a shape 5 pixels to the right. If you set XT equal to -5 
and then call Tool 140, the C matrix will be set to move a shape 5 pixels to the left. 

By the same token, assigning a value to the variable YT (Y -Translate) will move 
your shape up (-YT) or down (+YT) the screen. For example, setting YT equal to 
-56 and then calling Tool 140 moves your shape up 56 pixel rows. Setting YT equal 
to positive (+) 56 moves it down 56 pixel rows. 

Tryout this idea by modifying your program as follows: 
2030 XT=100: YT=50: GOSUB 140 
2040 C=1: GOSUB 90 

When you RUN the program, you will find that the shape has been moved 100 
columns to the right, and 50 rows down. In essence, each X coordinate in your 
shape's DATA statements had 100 added to it (the value assigned to XT), and each Y 
coordinate had the value 50 added to it (the value assigned to YT). 

Change line 2030 to try another location: 

2030 XT=296: YT=16: GOSUB 140 
RUN the program. As you probably guessed, the shape is plotted partially off the 

screen. Because you have a clipping tool, there is no danger of the "unseen" points 
ever really being plotted. 

A shape's placement is an important consideration in your artwork. As you 
maneuver a shape around the screen, you will find that different visual effects 
occur. This can be shown with the black square sketched below. 

109 



llO 

4 TRANSLATING SHAPES 

The square is centered in the drawing area. Sketched in a predictable location, it 
would probably arouse little interest from passers-by. The centered square is a 
calm, unquestioned beginning to a composition. However, if you place that same 
square against the border, you raise the question of why it was placed there: 

The square now seems to "peek" around the edge of the drawing area. Because it 
has been placed higher on the drawing board, it appears further back in space than 
before. 

As demonstrated in the next sketch, placing a shape flush against the border 
creates tension. This tension is the result of your mind's interpretation of how the 
shape and border interact. In this particular design, the diamond can be interpreted 
as "resting" against the border. You have the impression that the shape is being 
pulled to the left by gravity, only to be stopped by the border. . 

Take some time, if you like, to try your own offset values. You might also want to 
take this opportunity to experiment with the PAINT A SHAPE tool. To do so, add 
paint points to your DATA statements and adjust the count of points in line 1008. 
(Don't delete this shape from your library or load another program. The quilt 
design is needed in the next section.) 



TRANSLAllNG SHAPES 4 

Duplicating Shapes 

It is fairly easy to understand how to duplicate shapes across and around the 
screen area. To copy a shape, all you need to do is specify where the copy should go 
(using XT and YT), and then draw the shape (COSUB 90). Each time you offset a 
shape and draw it, a new copy will appear on the screen. As we discuss this use of the 
TRANSLATE A SHAPE tool, you will need to keep in mind one important rule 
about offsetting shapes: 

Until you clear the C Matrix (COSUB 110) of any transformations it is storing, 
the XT and YT values will offset a shape relative to the last place it was located. 

This will become clear in the next exercise. Currently, your program is set to do the 
following: 

-Retrieve the quilt design (line 2010) 
-Clear the C Matrix for a new set of transformations (line 2020) 
-Offset the last location of the shape by 296 columns and 16 rows (line 2030) 
-Draw the shape (line 2040) 

Before the computer reads program line 2030, the shape is located at its origin 
(i.e., the original drawing location as described in the DATA statements). Once it 
reads line 2030, the computer translates the shape according to the XT and YT 
offset values. If the shape were translated again, but without clearing the C matrix 
first, it would be translated away from the location to which it was last translated. 
Until the C matrix is cleared, translating a shape will move it away from the last 
location to which it was moved. If you clear out the C matrix, the shape will again 
be translated away from its origin. 

Look at the program lines below. These lines move your shape again, but 
without clearing the C matrix first. Notice that the shape will be drawn (COSUB 
90) at its new location. This will result in plotting two copies of the quilt design on 
the screen. Add these lines to your program and RUN it. 

2050 XT=-192: YT=64:GOSUB 140 
2060 ensUB 90 

The diagram below shows how the offset values were used to place each copy of 
the shape on your screen. In step one on the diagram, the shape is translated relative 
to the origin (last place it was located). It is translated according to the values of XT 
and YT. In step two, the new offset values are added to the old ones because the C 
matrix was never cleared out. This offsets the shape from the last place it was 
located, as opposed to its actual origin. 

111 



112 

4 TRANSLAnNG SHAPES 

o 
8 

16 

24 

32 
0 40 

48 

56 

64 

72 

80 

IE ;.1 

o 319 TOP OF SCREEN 
111111111111222222222222233 

1 2 3 4 4 5 6 7 8 8 9 0 1 223 4 5 6 6 7 8 9 0 0 1 234 4 5 6 7 8 8 9 0 1 
086 4 2 0 8 6 4 2 0 864 2 0 8 6 4 2 0 8 6 4 2 086 4 2 0 8 6 4 2 086 4 2 

/1\ 
1/ i\ X- , 2~ 
1\ I = 1 L 

"'\/ ~ ...... V 
S~! 1)4 '5 I 1 f\. 

Dr gi" r- "'\ 
( 10 rcw ) 

T I= 4 

I \ 
/\ \ I 

199 88 / 1\ I 

96 "\ V X -lb 
104 '\/ 
112 

120 

128 

136 

144 

152 

160 

168 

176 S a pe I ar 51 I d t~ 'ic a·11' 'tt 
184 cl ~2 i 9 Ih ~ v rni Ir x af a I a fi 5 Ir ~r 51 ~fpl 
192 

x, Y PIXEL POINTS 
Obviously, the XT and YT values are cumulative, This means that each time you 

assign a value to XT and call Tool 140, that value is added on to any past value XT 
had. The same idea is true for YT. These variables will continue to accumulate 
until you clear out the C matrix. In our current example, XT is first set to 296 and 
YT is set to 16. Once that transformation is complete, XT and YT are re-set in 
preparation for the next transformation. The cumulation of these variables produ
ces the following values for the second transformation: 

XT equals 296 (old value) -192 (new value) = 112 
YT equals 16 (old value) + 64 (new value) = 80 

By making XT = New ~T + Old XT, and YT = New YT + Old YT, shapes are 
moved away from their last location, and not necessarily their origin. 

Change program lines 2050 and 2060 as shown below, adding program line 2070: 

2050 ensUE 110 
2060 XT=120: YT=120: ensUE 140 
2070 ensUB 90 

R UN the program. In this exercise, both copies of the shape will be offset relative 



TRANSLAnNG SHAPES 4 

to the origin because the C matrix was cleared before each new translation. Press 
- to see what we mean. 

Look at the diagram below. In it, you are shown how clearing the C matrix 
changes the "starting location" from which each copy of the quilt design is 
translated. Each time the C matrix is cleared with a GOSUB 110, the XT and YT 
values are also cleared from the C matrix. 

o 
B 

16 

24 

32 
0 40 

48 

56 

64 

72 

80 

199 88 

96 

104 

112 

120 

128 

136 

144 

152 

160 

168 

176 

184 

192 

IE >1 

o 319 TOP OF SCREEN 
111111111111222222222222233 

1 234 4 5 6 7 8 8 9 0 1 223 4 5 6 6 7 8 900 1 234 4 5 6 7 B 8 9 0 1 
o B 6 4 2 0 8 642 0 8 6 4 2 0 8 6 4 2 0 8 6 4 208 6 4 2 0 8 6 4 2 0 B 6 4 2 

Ijf\ 

1/ i\ x ~~E 
1'\ l/ YT = 1~ I IL 

I'\l/ L-- I V 
S abE S I 1 1'\ 

( ribi I"' 1'\ 

I-
k- ; 1 0 I( 12 IJ 

t-

ILl' 
1/ 1\ 

+-1- T= 20 +-1-,.. [\ V 
[\11 

Shf 101 t a s latec t1 i e l ~ it 
( : r oa ri Ie ~IEja ec l t IBfpr '48 h tr nlil tipr 

x, Y PIXEL POINTS 
Delete lines 2010 through 2070 from your progam (do this by hand, and not with 

the ZAP routine, to retain lines 6000 through 6020). You need to get a better feel for 
what this new tool can accomplish. This can be shown wi th the following program 
lines: 

2100 REM:::::::RETRIEVE OJILT rESIGN 
2110 SE$="QUILT rESIGn": <DSUB 800 
2200 REM:::::::CLEAR C MAT & SEI' mWR 
2210 <DSUB 110: 0=1 
2300 REM:::::::TRANSLATION LOOP 
2310 <DSUB 90 
2320 XI'=24 

113 



114 

4 TRANSlATING SHAPES 

2330 FOR H=1 TO 11 
2340 OOSUB 140 
2350 OOSUB 90 
2360 tEXT M 

This program is set up to draw the shape at line 2310, and then begin a loop that 
will execute eleven times. Each time the loop is executed, the shape is translated 
along the X axis 24 places (XT is set at 24 and never changed). Each time the shape 
is translated, it is also drawn. The result will be 12 copies of the shape plotted across 
the screen. RUN the program. 

The quilt design is 32 pixels wide. By translating it only 24 pixels to the right 
each time, you create an overlapping effect. This produces new, smaller shapes at 
the areas where the overlapping occurs. Your screen will display the following 
when the program is finished: 

When the twelve copies are complete, stop the program and list lines 2100-2360. 
The main point of interest is that GOSUB 110 only appears once. This keeps XT set 
at 24, thus compounding the offset location of your shape by twenty-four places 
each time the loop is processed. If line 2340 contained both GOSUB 140 and 
GOSUB 110, the shape would be drawn eleven times in the exact same offset 
location: 

If you find your are having problems drawing or translating a shape, check the 
following: 

-Check your DATA statements for accuracy. 



TRANSlAnNG SHAPES 4 

-Check to make sure GOSUB 110 is entered where necessary (this is an easy one 
to forget-a GOSUB 110 must appear at the beginning of the program). 

-Make sure a DIM statement is dimensioning all 6 arrays (P%, L%, R%, T, C and 
W) as required. 

-Make sure the color variable (C) has been changed to a drawing color after the 
background is painted. 

-Look for zeroes typed as oh's, and ones typed as el's. 

-Check that all necessary variables have been set before each tool is called (SE$, 
C, XT, YT, etc.) 

If you ever find that only one point in your shape is plotted, you probably forgot 
to clear the C matrix. Remember: even if you don't transform a shape, you must 
clear the C matrix out at least once before the new DRAW A SHAPE tool can work 
properly. 

Just for fun, let's add another loop that copies the design down the screen as well 
as across. Add the following program lines and then RUN the program again: 

2305 FOR L=1 'It) 8 
2370 XT=-264: YT=24: GOSUB 140 
23813 YT==0: NEXT L 

After a few minutes you should see a finished quilt. The overlapping that occurs 
between each column and each row produces smaller, unplanned shapes. This 
makes for a much more intricate and interesting pattern. 

115 



116 

4 TRANSlAnNG SHAPES 

Stop the program so that we can discuss the addition of the "L" loop. This loop 
complicates the program, but it can be understood with a little thought. Lines 2305 
and 2380 create the L loop, which is set to process eight times. Within this loop, the 
M loop-which draws a row of quilt patterns-is present. Once the first row has 
been drawn, line 2370 translates the shape back along the X axis 264 places to the 
left (-XT). This moves the shape back to the beginning of a row. Because YT is set 
to 24, the shape is moved down the screen twenty-four places (starting another 
row). Finally, line 2380 returns YT to 0 and calls for the next L. YT has to be 
returned to 0 to keep the shape from moving down the screen each time line 2340 is 
executed. (This might better be understood if you removed "YT=O" from line 2380 
and ran the program again.) 

Type: GOSUB 10 and press RETURN. The quilt again should be displayed on 
the screen. What you are viewing is an example of "repetition." Repetition is the 
translation of a shape at regular intervals. On your screen, each shape is spaced at 
an equal distance from the other shapes surrounding it. Using the same shape 
throughout the picture produces harmony and order in the arrangement. The 
geometric character of the shapes also reinforces this harmonic relationship. 

Variations can occur in a repetitive pattern by making slight changes in the 
surrounding space. In the design sketched below, the space between the shapes 
progressively increases toward the top. Although the spacing between the shapes 
varies, it is a planned, regular, and predictable arrangement. 



TRANSLAnNG SHAPES 4 

The shapes in the next sketch are arranged in a logical, sequential order. The 
composition is symmetrically balanced, as both sides of the picture are similar. 

I 

I 
I 

I 
I 

Another example of translation is shown in the use of squares below. This 
arrangement is also sequential and orderly, and the spacing regular and predicta
ble. This type of organization, in which both sides of the picture are equal, is called 
"formal balance." There's a visual cohesion and unity in this kind of composition. 
Variety has been provided by the change in light and dark color values. 

__ DODD 
__ DODD 
DD •• DD 
00 __ 00 
DODD •• 
DODD •• 

You can use these designs as a starting base for many, many other designs to 
come. For more design ideas, try your local library and neighborhood book stores. 
Some of the best designs have already been figured out for you. All you need to do is 
look for them. Pay particular attention to designs using repetition-the TRANS
LATE A SHAPE tool is ideal for them. 

If you'd like to spend some time practicing, follow these steps: 

(I) At the beginning of the program, clear the C matrix (GOSUB 110). 

(2) Retrieve the shape to translate (SE$="?": GOSUB 800). 

(3) If necessary, set the color variable to a drawing color (C=?). 

(4) If the shape is to be offset from its origin, insert a GOSUB 110 statement to 

117 



118 

4 TRANSLATING SHAPES 

clear the C matrix. (This is not necessary if no transformations have taken 
place since step one above). 

(5) Set the variable XT to the distance right (XT=+?) or left (XT=-?) you want the 
shape moved. Set the variable YT to the distance up (YT=-?) or down (YT=+?) 
you want the shape moved. 

(6) Call the TRANSLATE A SHAPE tool (GOSUB 140). 

(7) Draw the newly located shape (GOSUB 90). 

This chapter's tool boxes follow . The first three tool boxes discuss those tools 
that you have to call (Tools 90, 110, and 140) from within the main routine. The 
tool boxes for your supporting tools then follow. 

TOOL 90:::::::DRA W A SHAPE-MODIFIED 

90 REM ::::::: rnNv A 9iAPE 
91 OOSUB 100 
92 FOR J = 0 'ill NL 
93 E1%=L%(J,0): E2%=L%(J,l) 
94 Xl=R%(E1%,0): Y1=R%(E1%,1) 
95 X2=R%(E2%,0): Y2=R%(E2%,1) 
96 CDSUB 70 
97 NEXT J 
98 REI'URN 

What It Does: This tool begins by calling on Tool 100 to have any 
transformation requests applied to the shape to be drawn. The trans
formed shape is placed in R% and L%, and drawn from there. Because 
Tool 100 (which applies the C matrix to your shape) is called on, you 
must be certain that the C matrix is set to transform (or not transform) 
your shape appropriately. The shape to be drawn will be plotted in the 
color specified by the variable C's most current value. 

Example Use: To draw a shape, three basic steps are necessary: 

(I) The shape must be defined in DATA statements, and retrieved 
with Tool 800. To retrieve a shape, all arrays (P%, L%, R%, T, C 
and W) need to be properly dimensioned. 

(2) The variable C must be set to a color code between 0 and 15 (see the 
color chart listed in the appendices) . Be sure the color to draw is 
different from the screen's background color. 

(3) A GOSUB 90 statement is necessary to call this tool. 

Program lines similar to the following will draw the shape stored in R~ 
and L%: 

1006 DIM P%(99,2), L%(99,1), R%(99,2), 
T(2,2), C(2,2), W(2,2) 

2130 C=l: CDSUE 90 



TRANSLAnNG SHAPES 4 

Technical Description: This modified tool works almostly exactly the 
same as the original Tool 90 worked. One change, however, is the added 
GOSUB 100 in line 91. This GOSUB applies the C matrix to the P% 
array, with the resulting points being placed in the R% array. Also, a 
change had to be made in lines 94 and 95 so that the shape's points were 
retrieved from the R% array for drawing purposes. 

Earlier in the book we told you that the P% (and now R %) array had to 
be dimensioned with three columns for "technical reasons." You are 
now equipped with enough information to learn why this is so. The P% 
array is multiplied with the C matrix by Tool 130 (COMBINE 
MATRICES). This C matrix has three rows. To multiply two matrices 
together, one of the matrices must have the same number of columns as 
the other matrix has rows. Thus, the P% array needs three columns. The 
R% array must also have three columns, since it will be storing the 
results of the transformation. 

TOOL llO:::::::CLEAR C MATRIX 

110 REM:::::::CLEAR C MATRIX 
III FOR 1=0 'It> 2: FOR J=0 'It> 2 
112 C(I,J)=ABS(I=J) 
113 NEXT J, I 
114 REI'URN 

What It Does: This tool clears the C matrix, setting it up for a list of 
transformation requests. This matrix must be set up for transformations 
at the very beginning of your program. If it is not set properly, your 
shapes cannot be drawn with the new DRAW A SHAPE tool. In addi
tion, the C matrix must be cleared each time you want to begin trans
forming a new shape, or each time you want to transform the original 
shape of one that has already been transformed. 

Example Use: This tool should be called from within the main 
routine by a GOSUB 110 statement. Again, it must be called each time 
the C matrix needs to be set back to "empty." Because this tool uses a 
matrix, the C matrix must be dimensioned somewhere within the main 
routine. This can be done at the beginning of your Shape Library, at 
line 1005. This DIM statement should be in the form of: DIM C(2,2). 

Technical Description: When the C matrix is "clearned," its values 
are set to identify. The matrix form of the C array then looks like this: 

o 
1 

2 

o 

o 
o 

C Matrix 
2 

o 

o 

119 



120 

4 TRANSLATING SHAPES 

Matrix identity is defined as the state of the matrix before transforma
tions have taken place. Matrix identity is always achieved by I's in a 
diagonal pattern running from the upper left-hand corner to the lower 
right-hand corner of the matrix, and setting all other cells to zero. 

The C and T matrices are mathematically combined each time a 
transformation is requested. Any time you multiply a matrix (for exam
ple, the T matrix) by a matrix set to identify (for example, the C matrix), 
you will arrive at the same matrix you started with (i.e., the T matrix). 

TOOL 140:::::::TRANSLATE A SHAPE 

140 REM:::::::TRANSLATE A SHAPE 
141 OOSUB 120 
142 T(2,0)=XT: T(2,1)=YT 
143 <DID 130 

What It Does: This tool takes your transformation specifications and 
places them in the T matrix for use later by Tool 130 (COMBINE 
MATRICES). Transformations can not be placed directly into the C 
matrix, but must be mathematically placed there, one at a time, by using 
a temporary "storage" matrix. In this book, the T matrix is used as a 
temporary storage area. 

Example Use: To translate a shape, you must have this subroutine 
tool and four supporting tools (Tools 100, 110, 120, and 130), as well as a 
modified DRAW A SHAPE tool (see Tool 90's tool box). All matrices 
and arrays required by the supporting tools must be dimensioned 
appropriately (arrays/matrices ~, L~, ~, T, C, and W). 

Two offset variables (XT and YT) must be set to specify where the 
shape is to be moved. The value assigned to XT will determine how far 
left (-XT) or right (+ XT) the shape is to be moved. The value assigned to 
YT will determine how far up (-YT) or down (+YT) the shape is to be 
moved. A GOSUB 140 statement will transform the shape. You will also 
need a GOSUB 90 statement to draw the shape on your screen. This can 
all be done in the form: 

2110 OOSUB 110 
2120 XT=50: YT=25: aASUB 140 
2130 C=1: GOSUB 90 

Tool 110 must be called before transforming and drawing a shape. 

The XT and YT variables will offset a shape from the last location it 
was translated to. If a shape has never been translated, the values will 
offset the shape from its origin (i.e., the original location as described in 
the DATA statements). To clear out the C Matrix, so that a shape is 
again offset from its origin, a GOSUB 110 statement is necessary before 
calling the translate tool. 



TRANSLAnNG SHAPES 4 

You should always clear out the C matrix before translating a new 
shape. The stored list of transformations in the C matrix will continue 
to apply to each shape you transform, until you specifically clear out 
this matrix with a GOSUB 110 statement. 

Technical Description:To store an XT and YT translation, it is 
necessary to clear out the T matrix. XT and YT can then be placed in 
their proper positions in the T matrix, so that they can later be applied 
to the C matrix. When the XT and YT translations have been placed in 
the T matrix, the T matrix looks like this: 

T Matrix 
0 1 2 

0 1 0 0 

1 0 0 

2 XT YT 

The following tool boxes deal with "supporting" tools. Tools of this type are 
called automatically by "main" tools-they need never, and should never, be called 
by you. 

TOOL lOO:::::::APPLY TRANSFORMS 

100 Rfl.1:::::: :APPLY TRANSFORMS 
101 FOR S=0 10 NO: FOR J=0 10 2 
102 R%(S,J)=0 
103 FOR 1=0 10 2 
104 R%(S,J)=R%(S,J) + P%(S,1)*C(I,J) 
105 NEXT I,J,S 
106 REI'URN 

What It Does: This tool will apply all transformations stored in the C 
matrix to the list of points stored in P%. The resulting list of points is 
then placed in R% for use by the DRAW A SHAPE tool. 

Example Use: This tool is automatically called by Tool 90 (DRAW A 
SHAPE). 

Technical Description: The P% array can be thought of as a matrix 
with many rows. Since it is a matrix, it can be multiplied by the C 
matrix, with the results being placed in R%. (See COMBINE MATRI
CES tool box for information on matrix multiplication.) That is what 
this tool does. The shape stored in R% is the shape that is then drawn. 

121 



122 

4 TRANSLATING SHAPES 

TOOL 120:::::::CLEAR T MATRIX 

120 REM:::::::CLEAR T MhTRIX 
121 FOR 1=0 'ID 2: FOR J=0 'ID 2 
122 T(I,J)=ABS(I=J) 
123 1.JIDIT J, I 
124 ReI'URN 

What it Does: This tool clears the T matrix, which holds one trans
formation request at a time. This matrix must be cleared out before a 
new transportation request can be stored in it. 

Example Use: This tool is automatically called by the TRANSLATE 
A SHAPE tool. You will find in later chapters that the other transforma
tion tools also call this CLEAR T MATRIX tool automatically. Your 
main routin, however, must dimension the T matrix once (and only 
once) for three rows and three columns. To dimension the T matrix, the 
main routine should contain a program line set up in the form of:DIM 
T(2,2). 

Technical Description: The T matrix is cleared in the same manner 
and for the same reason as the C matrix. It is set to "identity." In this 
state, the T matrix looks like this: 

T Matrix 
0 1 2 

0 

I 

1 0 0 

0 0 

2 I 0 0 

TOOL 130:::::::COMBINE MATRICES 
130 REM:::::::OOMBlNE MATRICF~ 
l31 FOR 1=0 'ID 2: FOR J=0 'ID 2 
132 W(I,J) = C(I,J) 
133 HEXT J,1 
134 FOR S=0 'ID 2: FOR J=0 'ID 2 
135 C(S,J)=0 
l36 FCR 1=0 'ID 2 
137 C(S,J)=C(S,J)~v(S,1)*T(1,J) 
l38 NEXT I,J, S 
l39 ReI'IJRN 

What It Does: This tool will take the current transformation request, 
stored in the T matrix, and mathematically combine it with the list of 
transformations already stored in the C matrix. The resulting updated 
list of transformations is placed back into the C matrix for use by Tool 
100 APPLY TRANSFORM. 



TRANSLATING SHAPES 4 

Example Use: This tool is an extension of the TRANSLATE A 
SHAPE tool, and is accessed by a GOTO 130 statement at the end of the 
translate tool. You will find in later chapters that each transformation 
tool sends the computer directly to this tool. 

Technical Description: The C matrix is temporarily stored in a W 
matrix while matrix multiplication takes place. Once this is done, the W 
matrix and the T matrix are multiplied together, and the results are 
returned to the C matrix. 

The T matrix is composed of three rows and three columns, and 
resembJes this: 

o 
I 

2 

o 
T(O,O) 

T(O,l) 

T(2,O) 

T Matrix 

T(O,I) 

T(l,l) 

T(2,1) 

The W matrix looks like this: 

o 
I 

2 

o 
W(O,O) 

W(O,I) 

W(2,O) 

W Matrix 

W(O,I) 

W(l,l) 

W(2,1) 

2 

T(O,2) 

T(I,2) 

T(2,2) 

2 

W(O,2) 

W(I,2) 

W(2,2) 

There is a standard formula for multiplying two matrices together. 
Assuming that we want to combine matrices T and W, the formula is as 
follows: 

o 2 

T(O,O)W(O,O) T(O,O)W(O,l) T(O,O)W(O,2) 
o +T(O,I)W(l ,O) +T(O,I)W(l,l) +T(O,1)W(l,2) 

+T(O,2)W(2,O) +T(O,2)W(2,1) +T(O,2)W(2,2) 

T(l,O)W(O,O) T(I,O)W(O,I) T(I,O)W(O,2) 
+T(l,I)W(l,O) +T(I,I)W(l,l) +T(I,I)W(I,2) 
+T(l,2)W(2,O) +T(I,2)W(2,1) +T(I,2)W(2,2) 

T(2,O)W(O,O) T(2,O)W(O,I) T(2,O)W(O,2) 
2 +T(2,I)W(I,O) +T(2,l)W(l,l) +T(2,I)W(l,2) 

+T(2,2)W(2,O) +T(2,2)W(2,1) +T(2,2)W(2,2) 

Notice that the only change in the T array subscripts occurs in the 
columns of the new matrix; and the only change in the W array sub
scripts occurs in the rows of the new matrix. This shows that the 
multiplication can be easily implemented by placing the subscripts in a 
loop structure. 

123 



124 

4 TRANSLATING SHAPES 

Painting While Translating 

Learning to paint in the midst of transforming a shape is really quite easy. The 
trick is to quit transforming long enough to paint the most recent form of the 
shape. In the case of the quilt pattern, for example, the program needs to paint the 
design immediately following each occasion it is drawn. 

A "color bar" on the grid below has been translated at regular intervals across 
the screen. Painting each translated version of the bar using several different colors 
can produce a beautiful finished drawing, as you will see in a moment. 

o 
8 

16 

24 

32 
0 40 

48 

56 

64 

72 

80 

88 
199 

96 

104 

112 

120 

128 

136 

144 

152 

160 

168 

176 

184 

192 

1< :>1 TOP OF SCREEN 
o 319 111111111111222222222222233 

1 234 4 5 6 7 8 8 9 0 1 2 2 3 4 5 6 6 7 8 9 001 2 3 4 4 5 6 7 8 890 1 
o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 

68911111122222 
40612467902457 

28406284062 

X, Y PIXEL POINTS 

I 

2 3 3 
8 0 1 
849 

Make sure that this chapter's program, as developed so far, is in memory. Next, 
change line 172 so that C=IOI8; then RUN the ZAP routine. Finally, re-insert lines 
6000, 6010, and 6020 that call Tool 20 when the - key is pressed. 

The DATA statements that describe the color bar are shown below. Notice where 
the bar is originally located. Its top left endpointis described as point 1,1. Looking 
back at the grid for this design, you will find that the first plotted color bar will not 



TRANSlAnNG SHAPES 4 

appear anywhere near point 1,1. This is because the original bar, as described in the 
DATA statements below, is never plotted. 

Hns ffiTA 
1020 DA.TA 
1022 DA.TA 
1024 DA.TA 

"COIDR BZ\R", 4,3 
1, 1, 15, 1, 15,201, 1,201 
2, 2 
0, 1, 1, 2, 2, 3, 3, 0 

Line 1022 describes the single paint point that is necessary to paint this shape. 
The paint point (at location 2,2) had to be selected with some care. The shape is 
going to be translated so that parts of it fall below the visible screen. The clipping 
tool will then go into action and "clip" all the points outside of the screen. We had 
to be careful to choose a paint point that, for this particular design, was not on 
going to be clipped afterthe shape was translated. We chose one in the shape's top 
left corner, which we will always keep on the screen. 

The next section of program lines does several things. Take a moment to try and 
deciper it. Then, add them to your program. 

2000 OOSUB 10: C=11: CDSUB 30 
2100 REM:::::::RETRIEVE BAR SHAPE 
2110 SE$="COIDR BZ\R": msuB S00 
2200 REM:::::::CLFJ\R C MAT 
2210 <DSUB 110 
2300 REM:::::::TRANS,DRNN,PAINT Lgr BAR 
2310 xr=63: YI'=IA3: OOSUB 140 
2320 C=7: GJSUB 90: PP=4: OOSUB 60 

Briefiy, lines 2100-2210 retrieve the shape and set the system up for drawing (by 
clearing the C matrix). Line 2310 translates the bar 63 pixel locations along the X 
axis, and down the Y axis 183 pixel locations. This is the starting position of the 
series of bars to plot. After calling the translate tool (140), the shape is drawn (Tool 
90). Before doing anything else to the bar, it is painted. 

The bar is painted by setting the painting variable (PP) to 4. This pinpoints the 
fifth set of coordinates in the shape's Point data list. This paint point, because it is 
defined in the DATA statements, has been transformed along with the rest of the 
shape. You don ' t need to know or care where it is now. All you need to do is identify 
its location on the Point list. Calling the painting tool (60) results in painting the 
first translated bar. 

The final section of program lines (below) will translate the color bar 15 more 
times, each time stopping to draw and paint it with a new color. Add these lines to 
the program also: 

2330 REM:::::::SET XT AND FINISH BARS 
2340 xr=16: "Yr= -8: msUB 140 
2350 C=6: msUB 90: OOSUB 60 
2360 YT=-16: msUB 140 
2370 C=5: msUB 90: mSUB 60 
2380 GJSUB 140 
2390 C=2: OOSUB 90: OOSUB 60 

125 



126 

4 TRANSLATING SHAPES 

2400 YT--40: GJSUB 140 
2410 C=14: GOSUB 90: GOSUB 60 
2420 YT=-16: GOSUB 140 
2430 C=8: GOSUB 90: GOSUB 60 
2440 YT--40: GOSUB 140 
2450 C=7: GOSUB 90: GOSUB 60 
2460 YT=-24: GOSUB 140 
2470 C=2: GOSUB 90: GOSUB 60 
2480 GOSUB 140 
2490 C=8: GOSUB 90: GOSUB 60 
2500 Y'I'=0: GOSUB 140 
2510 C=14: GOSUB 90: GOSUB 60 
2520 YT=39: GOSUB 140 
2530 C=5: GOSUB 90: GOSUB 60 
2540 YT=-24: GOSUB 140 
2550 C=6: GOSUB 90: GOSUR 60 
2560 YT--40: GOSUB 140 
2570 C=4: GOSUB 90: GOSUB 60 
2580 YT=24: GOSUB 140 
2590 C=2: GOSUB 90: GOSUB 60 
2600 GOSUB 140 
2610 C=7: GOSUB 90: GOSUB 60 
2620 YT=-24: GOSUB 140 
2630 C=8: GOSUB 90: GOSUB 60 

In line 2340, XT is set to 16 and is never changed again. This enables each color 
bar to be translated 16 pixel locations to the right of the last one drawn. Because the 
C matrix is not cleared during all of this, the number of columns to translate the 
shape from its origin keeps increasing by 16 each time Tool 140 is called. 

YT, on the other hand, changes for almost every copy of the shape. This situates 
each copy at a different horizontal level than those immediately around it. Again, 
because the C matrix stores all of the transformations, each YT will move the shape 
relative to the last copy of the shape that was drawn. 

RUN the program to see the results. 

Depending on your monitor, and how well it is adjusted, the screen should 
display a cluster of color bars, each one displayed as a brilliant, sharp color. 

From a design point of view, the bars clustered together appear as a single, whole 
object rather than individual, separate shapes. The composition is asymmetrically 
balanced-the bars are more on the right side-yet it appears to be in balance. This 
is because there is an equal amount of background area counterbalancing the 
"weight" of the shapes. 

The "weight" of objects, which we will speak of further, is visually estimated, 
primarily based on a shape's size in relation to everything else in the design. When 
the foreground shapes have the same weight (take up an equal amount of space) as 
the background area, you achieve a balance. 



TRANSLAllNG SHAPES 4 

The bright, sharp colors of the bars make them appear to be on top of the 
background. This is because of the contrast existing between the variety in colors 
used for the bars and the solid colored background. As the opportunities arise, you 
should experiment wi th the use of contrast to make certain objects stand out among 
others. 

Return to text mode and again examine the program. Translating objects is easy 
if you know how. However, it is easy to forget how XT and YT compound when the 
C matrix is not cleared. It's just as easy to forget to set the C matrix in the first place. 
You should spend a little more time practicing with this tool than you did with 
tools in the past. 

Start out small. Take a simple shape, like as a square, and sketch a design. Then 
map out on paper the most efficient way to get the design on the screen. Finally, 
enter the necessary program lines and RUN the program. If it doesn't work as 
planned, take the time to figure out why. 

One idea to start you off is shown below. This sketch, which can be plotted with 
relative ease, expresses a sense of activity. This activity is suggested by the variety of 
tones used throughout the picture. Its composition is a scattering of light, medium, 
and dark tones . Although the tones are varied, the spacing is regular. The rectangu
lar shapes are evenly spaced apart for balance at uninterrupted steps. 

127 



128 

4 TRANSLAnNG SHAPES 

• • • • • 0 
•• __ 0_ 
0 __ 0 __ 
_ 0_00_ D __ ._D _.0 •• _ 

We suggest a planned disorganization of shapes in the next design. Even though 
the space is irregular, there still appears to be a sense of order and unity. The order 
results from the equal distribution of tones, and the horizontal arrangement 
(ordering) of the same geometric shape . 

• D • • BlTIli3 
~ 

• 

• • --D .. 
• 

D 
• • -111l_ 

• • 
The opposite of a balanced, orderly arrangement is a disorderly and unexpected 

arrangement. Disorder, irregular spacing, and random placement of shapes can be 
illustrated as follows: 

D 

-



TRANSLAnNG SHAPES 4 

The spacing in our next sketch is irregular and uneven. Although there is much 
variety by the spacing, order is maintained by the repeating shapes. The space 
surrounding the shapes creates its own kind of shape-a negative shape. Even 
though the space is not a "real" shape, it appears as one . 

•••••••••• •••• e •••• 
••• • •• .. . .- .. • •••• •• • • ••• • .e •••••••• 

Take a look at the two shapes sketched below. It is not clear from the design 
which shape is closer than the other. Each appears to float in space. 

129 



130 

4 TRANSLATING SHAPES 

By adding a horizon line, we achieve a sense of depth. Which of the two shapes 
below appears closer to you now? The distance of a shape can change depending on 
where it is placed in relation to the horizon line. The shape drawn higher in the 
picture seems farther away. 

Now which shape is closer? Shapes which are of similar size and are placed at 
similar vertical positions have simi liar distances in space. Since the depth is not 
indicated by the design, these shapes reside in what is called "flat" space. 



TRANSLATING SHAPES 4 

Now we have placed the same two shapes on top of a horizon line (see below). 
They look as if they are sitting on top of a table. The horizon line, as used here, does 
not effectively indicate depth. You have no idea how far or how near these shapes 
are suppose to be. 

Look how effectively the horizon line in our next sketch creates a feeling of 
distance. This distance is even more distinct because the shapes are overlapping. 
Overlapping shapes and the use of a horizon line are just two ways to represent 
depth in a picture. 

131 



132 

4 TRANSLATING SHAPES 

The horizon line can be drawn in many ways, as shown below. Here, the horizon 
repeats the shape of the foreground triangles. This repetition unifies the shapes 
that make up the picture. 

In our final sketch, the horizon line intensifies the direction of the arrow. 
Tension is created at the point where the arrow and horizon line meet. 

Summary 

Congratulations! You deserve it. In case you haven't taken stock lately, let us 
quickly review the graphics capabilities you have now mastered: 

-turning high resolution "on and off" 
-clearing the high resolution screen 
-plotting points 
-plotting lines 
-defining shapes 
-retrieving shapes 
-drawing shapes 
-clipping shapes 
-painting shapes 
-translating shapes 



TRANSLAnNG SHAPES 4 

That's a lot of new information. Before practicing or moving on to the next 
chapter, take the time to save your program under the filename "CHAPTER 4". 

With this chapter's TRANSLATE A SHAPE tool and its collection of "support
ing" tools, you are on your way to creating complex graphics displays with 
minimal effort. By using it as a "test plotter," you can test the appearance of your 
shape at various screen locations before deciding on its final placement. With the 
ability to duplicate shapes, you can repeat a pattern at regular or irregular intervals 
simply by setting offset values, calling Tool 140, and calling Tool 90. 

The steps to moving and copying a shape are outlined below. You should have 
no problems using your new tool if you follow them carefully. 

(I) At the beginning of the program, clear the C matrix (GOSUB 110). 

(2) Retrieve the shape to translate. 

(3) If necessary, set the color variable (C) to a drawing color. 

(4) If the shape is to be offset from its origin, insert a GOSUB 110 statement to 
clear the C matrix. (This is not necessary if no transformations have taken 
place since step one above). 

(5) Set the variable XT to the distance right (+ XT) or left (-XT) you want to move 
the shape. Set the variable YT tot he distance up (-YT) or down (+ YT) you 
want the shape moved. 

(6) Call the TRANSLATE A SHAPE tool (GOSUB 140). 

(7) Draw the newly located shape (GOSUB 90). 

(8) If you want to paint the shape, do it immediately by setting the painting 
variable (PP) and calling the PAINT A SHAPE tool (GOSUB 60). 

What follows is a checklist of those "easy to forget but terribly important things 
to do" concering your new tools: 

-Has the C matrix been cleared at the beginning of your program? (It should 
be.) 

-Has the C matrix been cleared of any past, unneeded transformations in 
preparation for the one you are working on? (If you want to transform the 
original shape, it should be.) 

-Have you cleared the C matrix when it should, in fact, be accumulating the list 
of transformations you have entered? (If you want to transform a transformed 
shape, it shouldn't be.) 

-Is your shape set to be drawn in a color other than the one used for your 
background? (It should be.) 

-Have you modified your point or line list, and, if so, have you changed the 
DATA statement that gi ves the count of points and lines in your shape? (You 
should.) 

- When using loops to perform multiple transformations, does GOSUB 140 fall 
within the loop? (It should.) 

-Are your shape's paint points going to be "clipped" because of the location to 
which the shape will be transformed? (You probably don't want them to be.) 

133 



134 

4 TRANSLATING SHAPES 

This checklist does not consider every possible area of omission, but it's a good 
place to start when things go awry. If you are having problems, don't assume that 
you have done everything correctly and that the computer is acting up. If your 
shape does not get translated as expected, look to make sure that you have a GOSUB 
110 or a GOSUB 140 statement where needed in the program. Even things as basic 
as setting the color variable to a drawing/ painting color can and will be forgotten. 
Take the time to check over each area of your program. Follow through each line, 
mapping out in your mind how the computer will respond to each program line it 
comes to. 

There are two exercises for this chapter, given below. You are ready for tougher 
problems and less discussion of the answers at this point. For this reason, these 
exercises outline what you need to do, and are then followed by one solution 
program (although there could be several). We offer no discussion on the solution 
program. 

Exercise 1 

Write down a Point data list and Line data list for the "shape" drawn on the grid 
below. The Point list should have twenty endpoints, numbered 0 through 19. In 
addition, add four paint points, numbered 20 through 23, to paint the four outer 

0 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

1< 

o 319 

1111111111112 
123 4 4 5 6 7 8 8 901 2 234 566 789 0 

086 4 2 0 8 6 4 2 0 8 6 420 864 208 6 4 2 0 

~ / 

IL \ 

y 

x 



TRANSLAnNG SHAPES 4 

squares created by the design (paint point 10, lOis located in one of the four squares 
to which we refer). The Line data list for this shape should describe fourteen lines, 
numbered 0 through 13. 

Using Gray 2 as the background color, and yellow for the foreground color, 
repeat this shape five times across your screen in eight different rows. The repeated 
shapes should meet at every corner, but never overlap. As you draw each shape, 
paint the four squares within it (paint in yellow). You may name the shape any 
name you like. In the solution, we use the name CROSS-PATCH. 

Solution I 

1026 mTA "CROSS-PA~", 23, 13 
1028 mTA 16, 0,20, 0,23, 0,39,16 
1030 mTA 39,20,39,23,23,39,20,39 
1032 mTA 16,39, 0,23, 0,20, 0,16 
1034 mTA 7, 7,32, 7,32,32, 7,32 
1036 DATA 0, 0,39, 0,39,39, 0,39 
1038 mTA 10,10,28,10,28,28,10,28 
1040 mTA 0, 8, 1, 7, 2, 6, 3,11 
1042 mTA 4,10, 5, 9,12,13,13,14 
1044 mTA 14,15,15,12,12,16,13,17 
1046 mTA 14,18,15,19 
2000 GOSUB 10: C=11: GOSUB 30 

135 



136 

4 TRANSLATING SHAPES 

2010 SE$="CROSS-PA'ICH": <DSUB 800 
2020 GOSUB 110: 0=7 
2030 FOR L=1 'IO 5 
2040 FOR M= 1 'IO 8 
2050 GOSUB 90 
2060 PP=20: GOSUB 60 
2070 PP=21: GOSUB 60 
2080 PP=22: GOSUB 60 
2090 PP=23: GOSUB 60 
3000 xr--40: GOSUB 140 
3010 NE)IT M 
3020 XI'=-320: YT=40: <DSUB 140 
3030 Y'I'=0: NExr L 

Exercise 2 

The next design has perspective; that is, it creates the illusion of three dimen
sions. In this exercise, you need to fill your screen with this shape. Use Gray 2 as the 
background color, and Blue (color code 6) as the foreground color. The shapes 
should overlap one column and one row (thus, just touching each other). Offset the 
very first shape, setting XT=-lS and YT=-l O. As you repeat this shape, paint the top 
section in Blue. 

0 

199 

1< >1 
o 319 

1111111111112 
1 2 3 4 4 5 678 8 9 0 1 2 234 566 7 8 9 0 

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 864 208 642 0 
o 
c ~ 1 ....... r.. 3 ~ 4 

I""'-
......... ~ V 8 

~ ,.,.. ~ 5 16 

24 Iq It 
~ I'-.. /' ~ I 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

y 

x 



TRANSlAnNG SHAPES 4 

Because the endpoint coordinates of this design cannot easily be determined by 
looking at the grid, we provide the Point data list below. Although no paint point 
is shown on the grid above, one has been identified in this Point list. 

Endpt. #0 
Endpt. #1 
Endpt. #2 
Endpt. #3 
Endpt. #4 
Endpt. #5 
Endpt. #6 
Endpt. #7 
Endpt. #8 
Endpt. #9 
Endpt. #10 
Endpt. #11 
Endpt. #12 
Paint Point 

Point Data List 

#13 

0, 6 
11, 0 
24, 5 
35, 0 
47, 6 
47,18 
35,23 
35,35 
24,40 
11,35 
11,23 
0,18 

24,15 
24., 14 

When the design is complete, add program lines that will draw a border around 
the outer edges of the high resolution screen (plotting area). 

Solution 2 

137 



138 

4 TRANSLAnNG SHAPES 

1048 [\l\TA "3-D SHAPE", 13, 14 
1050 [\l\TA 0, 6,11, 0,24, 5,35, 0 
1052 [\l\TA 47, 6,47,18,35,23,35,35 
1054 [\l\TA 24,40,11,35,11,23, 0,18 
1056 [\l\TA 24,15,24,14 
1058 [\l\TA 0, 1, 1, 2, 2, 3, 3, 4 
1060 ~TA 4, 5, 5, 6, 6, 7, 7, 8 
1062 [\l\TA 8, 9, 9,10,10,11,11, 0 
1064 DATA 0,12,12, 4,12, 8 
2000 ensUB 10: C=12: OOSUB 30 
2010 SE$ = "3-D SHAPE": ensUB 800 
2020 REM::::SETUP FOR FIRST SHAPE 
2030 ensUB 110: C=6 
2040 XT=-18: Yr=-10: msUB 140 
2050 'YT=0::REM RE-SEI' Y OFFSET 
2060 REM:::: TRANS/DRAW/PAINT LOOPS 
2070 FOR L=1 'IO 6 
2080 FOR H=1 'IO 8 
2090 ensUB 90: PP=13: ensUB 60 
3000 XI'=4 7: ensUE 140 
3010 NEXT M 
3020 XT=-376: YT=35: GOSUB 140 
3030 'YT=0: NEXT L 
3040 REM::::::: DRAW OORDF..R 
3050 Xl=0: Yl=0: X2=319: Y2=0: ensUB 50 
3060 Xl=319: Y1=199: GOSUB 50 
3070 X2=0: Y2=199: GOSUB 50 
3080 Xl=0: Y1=0: GOSUB 50 



Chapter Five 

SCALING SHAPES 
Scaling is one of the harder graphic concepts to learn. This is said not in an 

attempt to discourage you, but rather to prepare you for a lesson that requires more 
patience and perseverance than those before it. The hardest part of scaling is 
knowing in advance where your shape is going to end up on the screen. With 
careful attention and planning, though, you can become very adept with this 
chapter's SCALE A SHAPE tool. 

Scaling is a type of transformation, as it will physically change the appearance of 
your shape. The main use of scaling is to be able to "stretch" and "shrink" your 
shapes, horizontally and/or vertically. This is done through the use of scale factors. 
A scale factor is a value that specifies by how much you want to scale a shape. A 
scale factor of 2 indicates that you want the shape scaled to twice its size. A scale 
factor of .5 means you want the shape scaled to half its size. 

The question then arises as to whether you want the shape scaled in height or in 
width. You control this by using variables. Assigning a scale factor to XS (X-Scale) 
means you want the shape scaled along its X axis. This will scale the shape's width. 
Assigning a scale factor to YS (Y -Scale) means you want the shape scaled along its Y 
axis. This will scale the shape's height. Thus, if YS=5 and XS=2, your shape will be 
scaled to five times its current height, and two times its current width. 

There are two immediate uses for such a tool. The first is that scaling shapes 
creates new shapes. This can add considerable variety to a design. Draw one man, 
and you can scale him to form tall men, short men, wide men, lean men, tall and 
lean men, tall and wide men, short and lean men, and so forth. In fact, scaling one 
shape can create so many different shapes, that a design can be formed in its 
entirety. One common example is that of a square scaled to an increasingly smaller 
size. The result is an interesting tunnel of "infinite" squares. 

A second application for scaling is that shapes used in one design can be scaled up 
or down for use in other designs. Whenever you start work on a new picture you can 
"sort" through your library of shapes, retrieve a few of the more interesting or 
applicable ones, and then scale them to the necessary size. 

There is no trick to knowing what happens to a shape that is scaled. Scaling in the 
X direction (XS) alters the width of the shape. Scaling in the Y direction (YS) alters 
the height of the shape. A scale factor that is greater than 1 (>1) will increase the 
shape's height/width. A scale factor that is less than 1 «1) will decrease the shape's 
height/width. If the C matrix is cleared out, scaling will affect the original form of 
the shape. If the C matrix is storing a set of transforms, scaling will alter the current 
form of the shape. 

The trick to scaling, as mentioned, is knowing where the scaled shape will end up 
on the screen. To understand this, you will need to learn a little more about the X,Y 
coordinate system you have been using-the Cartesian coordinate system. 

139 



140 

5 SCALING SHAPES 

U sing the Cartesian Coordinate System 

The Cartesian coordinate system is universally used for displaying data graph
ically. Sometime before the completion of high school most students will be 
confronted with this system of measurement. Although it can be set up to represent 
three-dimensional space (height, width and depth), we are only concerned here 
with this system as based on two-dimensional space (height and width) . 

In this system, there are two axes that run perpendicular to each other: the X axis 
and the Y axis. Together, they form a "plane," or flat surface, that cuts through 
space. Planes, such as this, theoretically run forever in all four directions. 

The point at which the X axis and Y axis intersect can be thought of as the anchor 
point of the plane. When units of measurement are applied to the plane, this anchor 
point has a measure ofO. Units running along theX axis increase (+) as they move to 
the right of the anchor, and decrease (-) as they move to its left. Units running along 
the Y axis increase as they move above the anchor point, and decrease as they move 
below the anchor: 

Y+ 

x- x+ 

y-



SCAUNG SHAPES 5 

Assuming that each unit has a measure of 1, this could be demonstrated as: 
y 

4 

3 

2 

1 
-4 -3 -2 -1 o 1 2 3 4 X 

-1 

-2 

-3 

-4 

The values indicated along an axis (e.g., 0,1,2,3 ... ) mark off even increments, 
and are called "tick marks." This term stems from the ticking of a clock, which 
marks off even increments of time. 

Any point that lies on the plane can be identified by its X,Y coordinates. The X 
coordinate is the point's position along the X axis, and the Y coordinate is the point's 
position along the Y axis. Together, they form the X, Y coordinates of the point. You 
are by now very familiar with the use of X, Y notations to specify points: 

y 

4.... --- - -, 3,4 

3 

-3.2 t - - - - - - 2 
I 
I I 1 

I 

-4 -;3 -2 -1 0 1 2 ~ 4 

I I 

-1.-1 '-- -t- ------~ 3.5. - 1 

-2 

-3 

-4 

X 

In fact, by now you should be comfortable with this coordinate system. You have 
been using a modified version of it all along to describe the points and lines that 
make up your two-dimensional shapes. 

141 



142 

5 SCAUNG SHAPES 

There are two main differences between the Cartesian coordinate system and 
the Commodore coordinate system. First, the direction in which the Y axis in
creases/decreases is reversed from one system to the other: 

CARTESIAN COMMODORE 
Y+ Y-

X- ~--------~-------,. X+ X- ~--------~--------~ X+ 

Y+ 

Second, while a true plane is said to be indefinite, with an infinite number of 
points making up each section of it, the Commodore has a limited number of points 
along each axis. There is no point at location 3,8.2; neither is there one at 5.9,7. 
There are only points at each integer location. Because of this limitation, the 
Commodore will round fractional coordinates down to the their nearest integer 
representation. 

To scale a line on the Cartesian system, its length is increased/decreased by the 
scale factor. The length is determined by the number of units the line encompasses. 
A line drawn from point 1,0 to 6,0, for example, is 5 units in length: 

0 1 2 3 4 5 6 7 8 

I I I I I I I I ~x 

'-y-J 1 unit, 2 tick marks 
\. ) 

V 
5 units, 6 tick marks 

Notice that each "tick mark" (1,2,3, ... 6) is not a unit. If it were, then the line 
would be 6 units long. Instead, the distance between each marker is a unit. Scaling 
this line to two times its length produces the following line: 

0 1 2 3 4 5 6 7 8 9 10 11 12 

I I I I I I I I I I I I I .. 
~ 1 unit 

\ ) 
V 

10 units, 11 tick marks 

The line now has twice the length it previously had. 

The same ideas are true on the Commodore. A line's length is determined by the 
number of units it encompasses. A unit is not the same thing as a pixel. A unit is the 
distance between two pixels. Drawing the same line (from 1,0 to 6,0) on the 
Commodore produces the following: 



SCAUNG SHAPES 5 

012345678 

o •••••• 0 0 .X 
'-v--' 1 unit, 2 pixels 

\ ) 
V 

5 units, 6 pixels 

This line, although made up of 6 pixels, has a length of 5. Scaling it to twice its 
length gives you a line that is 10 units in length: 

o 2 3 4 5 6 7 8 9 10 11 12 

0 ••••••••••• 0 ~ 
1 unit, 2 pixels '-v--' 

\~------------~~------------~) V 
10 units, 11 pixels 

Since a line is scaled according to its length in units, it follows that a shape is 
scaled in the same manner. Take, for example, the square shape below. It is a 4 pixel 
by 4 pixel shape. However, since scaling deals in units and not pixels, we must look 
at its measurement in terms of units. This shape is 3 units by 3 units. 

3 Units 

· . . . 
· 1 
• J • · . . . 

3 Units 

Scaling the height of this shape increases the number of units along its Y axis. If 
this shape were scaled to three times its height, the new shape will have three times 
as many units along the Y axis: 

3 Units 

· . . . 

Y Scale 9 Units 

• • 

· . . . 
In the same way, scaling the shape's width increases the number of units along its 

X axis. The shape above, when scaled three times in width, becomes: 

143 



144 

5 SCAUNG SHAPES 

9 Units 

f . . . . . . . 
• 

• 
• 9 Units 

• 

• · . . . . . . . . . 
X Scale 

Think for a moment about how scaling changed this shape. We started with a 
square that was 4 pixels by 4 pixels. After scaling its height and width by three, we 
arrived at a square that was 10 pixels by 10 pixels. If scaling dealt in pixels and not 
units, this scaled shape would have been 12 pixels by 12 pixels in size. Since scaling 
does not work in this fashion, you cannot multiply the scale factor by the number of 
pixels to obtain a scaled height/width. 

With this basic understanding of scaling, you are ready to begin working with 
some simple exercises. As you do, the mathematics behind scaling will be 
explained. 

The Mathematics of Scaling 

The math involved in scaling is simple in and of itself. The reason the math 
works, however, is not always obvious. To help you through this necessary topic, 
we will use the square diagrammed below. 

o 
8 

16 

24 

o 32 

40 

48 

56 

64 

1< 
o 

1 1 
1 2 3 4 4 5 6 7 8 8 9 0 1 

086 4 2 0 8 6 4 2 0 8 6 4 2 
u. ,l lu 

1,2j , , rJ 

Y 

>1 
319 

1 1 1 
223 
086 

1 1 1 1 1 112 
4 5 6 6 7 890 
42086 420 x 



SCALING SHAPES 5 

Take the time now to LOAD your "CHAPTER 4" file. Next, change line 172 so 
that C equals 1008, and run the ZAP routine. Finally, enter the SCALE A SHAPE 
tool as follows : 

150 REM:::::::SCALE A SHAPE 
151 ensUB 120 
152 XS=XS-(XS=0): YS=YS-(YS=0) 
153 T(0,0)=XS: T(l,l)=YS 
154 ooro 130 

Compare this new tool with your TRANSLA TE A SHAPE tool at line 140. They 
are almost identical. The only difference is that the values for XS and YS will be 
stored at different locations in the T matrix than the values for XT and YT. 

The following program lines define, retrieve, and draw the square. Type them 
into your program. 

1008 D.l\.TA "SQUARE", 3,3 
1010 ~TA 0, 0,31, 0,31,23, 0,23 
1012 ~TA 0, 1, 1, 2, 2, 3, 3, 0 
2000 OOSUB 10: C=7: OOSUB 30 
2010 SE$="SCUARE": OOSUB 800 
2020 OOSUB 110 
2030 C=2: OOSUB 90 
6000 GE:I' A$ 
6010 IF A$="~" THEN ensUE 20: END 
6020 <DID 6000 

R UN the program to view the original form of this shape. It should appear in the 
top left comer' of your screen. Press --to return to text mode. By adding two 
simple program lines, you will create a new shape. Program lines 2040 and 2050 
(below) will draw a square that is twice as high and twice as wide as the original 
square: 

2040 XS=2: YS=2: G'JSUB 150 
2050 ensUB 90 

R UN the program again to see both versions of this shape. Notice that the scaled 
square is situated in the same comer area as the unscaled square. Obviously, 
because it has been scaled to a larger size, it projects farther right and down than the 
original shape. Return to text mode. 

Let's try scaling down to a smaller size. Add program lines 2060 and 2070, as 
shown below, to scale the shape by 2/10ths its height and width. Notice that we said 
by 2/lOths and not to 2/lOths. There's a difference. RUN the program to see what 
we mean. 

2060 XS=.8: YS=.8: ensUE 150 
2070 OOSUB 90 

Was the shape scaled as you expected? Scaling a shape by 2/10ths (i.e., .8) 
produces a smaller but almost equal shape. If you look at your screen, you will find 

145 



146 

5 SCAUNG SHAPES 

that the newly added square is larger than the original square. Take a moment to 
think why this happened. 

As you may have guessed, the C matrix needed to be cleared with a GOSUB llO 
in order to scale the original square. Since this matrix held a transformed shape, the 
shape that was scaled was the previously transformed shape. Look again at your 
screen, and you will find that the newest shape is approximately 2/10ths sma]]er in 
height and width than the largest square. 

Add a line number 2055 containing GOSUB llO, and RUN the program. This 
time, your final square is 2/10ths smaller than the original square. Here's how all of 
this works. 

Scaling is accomplished by altering each endpoint in the shape to scale. Once the 
endpoints have been moved to their scaled positions, the Line data in L~ can 
connect them to form the scaled shape. 

On the grid below we have outlined the square as defined in your DATA 
statements, and the same square scaled to twice the height and width. It is imme
diately apparent that the scaled square does not have twice the number of pixels in 
height and width as the smaller one. It does, however, have twice the number of 
units in height and width. 

0 

199 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

1< 0)1 

o 319 

1111111111112 
1234456 7 8 8 9 0 1 2 234 566 7 8 9 0 

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 208 6 4 2 0 
00 ~. ,u 132. 

0.~3 I" , ,~ 

u, 1"0 P'"'. ~o 

y 

x 



SCAUNG SHAPES 5 

The number of units in a plotted line is equal to # OF PIXELS -1. This is true for 
any line in any shape. To increase a shape's number of units (scale up), the shape's 
endpoints must be moved farther apart. To decrease a shape's number of units 
(scale down), the shape's endpoints must be moved closer together. When scaling a 
shape's width, the endpoints must be moved farther apart or closer together 
horizontally (along the X axis). When scaling a shape's height, the endpoints must 
be moved farther apart or closer together vertically (along the Y axis). 

Look at the last grid again. The top line in the original square runs from 0,0 to 
31,0. This covers 32 pixels, or 31 units. On scaling the square "up," this line runs 
from 0,0 to 62,0. This covers 63 pixels, or 62 units. Thus, the number of units 
doubles-from 31 to 62-exactly as it should . 

The formula used to scale the endpoints of a shape is: 

Old X 0 XS = New X 
Old Y 0 YS = New Y 

That's it. No other math is necessary. Look once more at the last grid. Notice that 
if you multiply each X coordinate and each Y coordinate in the smaller square by 
two, you arrive at the endpoints for the larger, scaled square. This can be shown as 
follows: 

Endpoint #0: 

Endpoint #1: 

Endpoint #2: 

Endpoint #3: 

Old X (0) 0 xs (2) 
Old Y (0) 0 YS (2) 
Scaled Endpoint #0 

Old X (31) 0 xs (2) 
Old Y (0) 0 YS (2) 
Scaled Endpoint #1 

Old X (31) 0 XS (2) 
Old Y (23) 0 YS (2) 
Scaled Endpoint #2 
Old X (0) 0 XS (2) 

Old Y (23) 0 YS (2) 
Scaled Endpoint #3 

= New X (0) 
= New Y (0) 
= 0,0 

= New X (62) 
= New Y (0) 
= 62,0 

= New X (62) 
= New Y (46) 
= 62,46 

= New X (0) 
= New X (46) 
= 0,46 

There is only one exception to this method of scaling. If either variable (XS or YS) 
is set to 0, the computer will not multiply the associated coordinates by O. Instead, it 
will set that variable (XS or YS) to 1, and then perform the necessary multiplication. 

This safeguarding allows you to forget to set XS or YS with no significant impact 
on your shape. As you probably know, all variables are set to zero by the computer 
at the beginning of each program execution. Suppose you wanted to scale a shape 
to two times its width, while leaving its height unchanged. If you set XS to two, and 
then caUed the SCALE A SHAPE tool, YS would still be set at zero. This means that 
every Y coordinate in the shape would be multiplied by zero, which results in each 
Y coordinate becoming zero. This would transform your shape into a straight line 
along the X axis. By having the subroutine automatically change XS or YS to one if 
they are found to be set to zero, this mishap is bypassed. 

Let's change your shape's DATA statements to define a different square. See if 

147 



148 

5 SCALING SHAPES 

you can make the necessary adjustments to line 1010 to describe the shape below: 

o 
8 

16 

24 

0 32 

40 

48 

56 

64 

72 

80 

199 88 

96 

104 

112 

120 

Y 

1< ::>1 
o 319 

1111111111112 
123445678890122345667890 X 

o 8 6 4 2 0 8 6 4 208 6 4 2 0 864 208 642 0 

0 1<> 10 

11F;l n , ,,\' I ?"\ 

The DATA statement that will define the new shape is: 

1010 ~TA 16, 8,31, 8,31,23,16,23 

Make sure your program line 1010 is the same as that above. Delete lines 2055, 
2060 and 2070, and R UN the program. The new square will be plotted; then it will 
be scaled to twice its height and width, and plotted again. 

Watch this time as the scaled square is plotted to the right and below the original 
square. The scaled shape is not, as before, situated in the same general location as 
the unsealed shape. The reason lies in the mathematics of scaling. Press -to 
return to text mode. Examine the DATA statements for this shape. 

Let's apply the scaling formula to the four endpoints in this shape: 

Endpoint #0: Old X (16) 0 XS (2) = New X (32) 
Old Y (8) 0 YS (2) = New Y (16) 

NEW ENDPOINT #0: 32,16 

Endpoint #1: Old X (31) 0 XS (2) = New X (62) 
Old Y (8) 0 YS (2) = New Y (16) 

NEW ENDPOINT #1: 62,16 



SCAUNG SHAPES 5 

Endpoint #2: Old X (31) 0 XS (2) = New X (62) 
Old Y (23) 0 YS (2) = New Y (46) 

NEW ENDPOINT #2: 62,46 
Endpoint #3: Old X (16) 0 XS (2) = New X (32) 

Old Y (23) 0 YS (2) = New Y (46) 
NEW ENDPOINT #3: 32,46 

The important thing to note is that none of these endpoints started out on an axis. 
When an endpoint rests on one or both axes, it is anchored. This means that it will 
remain on that axis, even after the scaling multiplication is applied to it. The reason 
is simple. By resting on the X axis, it has an X coordinate of 0. Multiplying this by 
any X scale factor still produces an X coordinate of 0, leaving it on the X axis. The 
same is true if it rested on the Y axis. This new square we are working with has no 
endpoints anchored on an axis. When the scale factors are applied to the endpoints, 
all of them are increased accordingly. Changing a coordinate (either by increasing 
its value or decreasing it) will move the coordinate. 

Change the scale factors to the following: 

2040 XS=8: YS=8: GJSUB 150 

R UN the program. You will find that the gap between your original square and 
your scaled square has widened. Return to text mode, and change the scale factors 
once more: 

2040 XS=.5: YS=.5: CDSUB 150 

See if you can anticipate where the scaled shape will appear this time. After 
you've formulated a guess, RUN the program to see if you are correct. 

Scale factors of less than one will reduce the value of your coordinates. In the 
current example, all endpoints were multiplied by .5, which is the same thing as 
dividing them by two. This decreases their value, bringing them closer to point 0,0. 

Let's add a FOR/NEXT loop to scale this shape several times. Add the following 
lines: 

2035 FOR F = 1 TO 4 
2060 NEXT F 

Before running the program, change line 2040 to set the scale factors to two, as 
follows: 

2040 XS=2: YS=2: OOSUB 150 

RUN the program. The square will be plotted five different times . Each new 
square will be twice as high and twice as wide as the preceding one. The final 
square will be so large that it is only partially on the screen. 

How would you change the program to prevent scaling at such a rapid rate? That 
is, how could you scale the original shape several times, each time just a little larger 
than the time before? One necessary addition is a program line clearing out the C 
matrix. This will allow you to work with the original shape during each loop 
through the scaling process. Add program line 2055 as shown below: 

2055 OOSUB 110 

149 



150 

5 SCALING SHAPES 

This change alone, however, isnot enough. RUN the program to see why. Notice 
that after the shape is drawn, scaled, and re-drawn, nothing else seems to happen. 
There is something happening, though. The shape is being scaled to the same size 
and drawn over four times. Return to text mode. 

If you mentally follow the program through, you will find that three major steps 
take place within the loop: 

(1) The original shape is scaled by XS=2: YS=2. 

(2) The scaled shape is drawn. 

(3) The C matrix clears, and you return to step one. 

What you need is a way to gradually increase the scale factors in order to draw 
new shapes. This can be done using another variable. We will use the variable SS 
(Scaling-Step) to increase our XS and YS variables each time the loop is processed. 
Change the following program lines: 

2020 SS=2: GOSUB 110 
2040 xs=ss: ys=ss: ensUB 150 
2060 Ss=ss + . 5: t:JE)IT F 

R UN the program. This time, scaling occurs at a much slower rate. Each time 
through the loop, the scale factors are increased by .5. This scales the original shape 
by 2, 2.5, 3, and 3.5. When five squares have been plotted on the screen, press - to 
return to text mode. 

Spend some time trying out your own scale factors. Change the DATA state
ments to describe a different shape and scale it. Try translating the shape as you 
scale it. Use loops to scale shapes over and over again. Be careful of using loops that 
don't clear the C matrix, though. Each time through the loop, the translate and scale 
variables will increase. If the loop processes enough times, the values for these 
variables can become so large that you generate an ILLEGAL VALUE or ILLE
GAL QUANTITY error. 

Another area to be careful of lies in the use of variables. At this point, several of 
the more than 2,000 available variable names are being used specifically by the 
subroutine tools. It is important that you do not use these variables accidently for 
any other purpose (for example, in FOR/NEXT loops). The current list of varia
bles used by your tools is: 

C 
SI 
YI 

EI% 
S2 
Y2 

E2% 
X 

YH 

I 
Xl 
YL 

J 
X2 
YS 

MU 
XH 
YT 

ND 
XL 

NL 
XS 

pp 

XT 
S 
Y 

Finally, be sure that you set all necessary variables before calling a tool. Even if 
you simply want a variable set to zero, be sure to set it in the program. Don't count 
on it automatically being set to zero, for you may be forgetting a place in the 
program where you set the variable to some other value. 



SCALING SHAPES 5 

Anchoring Shapes for Orientation 

We need to discuss how to anchor your shapes before scaling them. When a 
shape is defined on or around point 0,0, it is anchored. This means it will remain in 
that same general location after it has been scaled. To see how this is possible, 
examine the drawing below. 

COMMODORE COORDINATE SYSTEM 

-319 -150 

I 
I 
I 

99 : 

I 

199 ' 

y 

-199 

-99 

Vis ible 
Screen 
Area 

I 
I 
I 
I 
I ________ .J 

You see that the X axis falls along the top row of screen pixels. The Y axis falls down 
the left column of screen pixels. The anchor point (0,0) is then situated in the top left 
comer of your screen. The rest of the coordinates, including those that fall outside 
of the visible screen area, fall into their respective locations. 

You may question whether the Commodore really has points at -150,0 or 0,-199. 
Actually, it doesn't. However, in order to keep a shape within certain boundaries as 
that shape is scaled, it will be necessary to use the "off-screen" pixel locations 
anyway. As long as you never attempt to plot off the screen (which the CLIP A 
SHAPE tool prevents you from doing), points outside of the visible screen can be 
"simulated" and used whenever necessary. 

To clarify this, we use the grid below. Take a good look at it, for this grid will 
become something of a constant fixture for the next few chapters. The shaded areas 
represent pixel points that fall outside the visible screen. The unshaded area 
represents the top left comer of your screen (not the entire screen area.) Across 
both the top and bottom of the grid you will find the X location of every 8th pixel 
column. Down the left and right edges, you are given the Y location of every 8th 
pixel row. 

151 



152 

5 SCALING SHAPES 

y 

~ 

~ 

9 

1 

73 

~ 5 

57 

9 

1 

4 

4 

~ 

25 

17 

-9 

-1 
0 

8 

16 

24 

32 

40 

48 

56 

64 

72 

eo 
BB 

96 

x 
-x, -y 
-1-1-1 -1 -1 -1 -1 
543221 0~~~~~~44~~~ 

5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 -9 - 1 

1 1 1 1 1 1 1 9~~ 7~ 54-4~ 2 1 9 1 
543221079135791357 
3579135 

-X, +y 

D 
D 

OFF-SCREEN 
LOCATIONS 

VISIBLE 
SCREEN AREA 

+x, -y 
1 1 1 1 1 1 

123 4 4 5 6 7 8 8 9 0 2 2 345 
g 8 6 4 2 0 6 6 4 208 6 4 208 6 4 2 

081 2 3 4 4 5 6 788 9 1 1 1 1 1 1 1 
642086420860122345 

4208642 

+X,+y 

VIsmLE SCREEN 

~ 9 

~ 

-7 3 

5 ~ 

5 

4 

4 

~ 

-2 

-1 

-9 

-1 
0 

8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

9 6 

Why is this expanded coordinate system necessary? The answer can be found in 
the properties of positive and negative numbers. One such property is that a 
number remains the same sign (+/-) if you multiply it by a positive number. This 
means that as long as you use positive scale factors, a negative coordinate will 
remain negative, and a positive coordinate will remain positive. Look at the grid 
below. On the grid we have outlined the four distinct X,Y sections: (A) -X,-Y; (B) 
+X,-Y; (C) -X,+Y; and (D) +X,+Y. 



y 

1 

73 

-6 

~ 

~ 

~ 

~ 

5 

7 

9 

1 

3 

25 

17 

-9 

1 
0 

8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

x 
-x, -y 
-1-1-1-1 -1-1-1 
5432210~~~~~~~~~~~ 
3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 -9-1 

1,.. ..... 

II 
1\ I'" 

1,.. ..... 

II ~ 
, 

1\ J 
1/ 

1 1 1 1 1 1 1 9~~ 7~~-4~~ 2 1--1l-1 
543221079135791357 
3579135 

-X,+Y 

SCAUNG SHAPES 5 

+x, -y 
1 1 1 1 1 1 1 

123445678 8 901 223 4 5 
o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 642 

~ 

." 
./ 

0812344567889111 1 1 1 1 
6 4 2 0 8 6 4 208 601 2 2 3 4 5 

420 884 2 

+X,+y 
y 

VIsmLE SCREEN 

~ 9 

~ 

-7 

~ 

~ 

~ 

-2 

-1 

9 

1 

-33 

5 

7 

~ 

-1 
If 
8 

16 

24 

32 

40 

~ 

56 

64 

72 

80 

88 

96 

An endpoint that lies in section (A) above will always remain in that section if 
scaled by a positive factor. An endpoint found in section (B) will remain in section 
(B) if scaled by a positive scale factor. This idea is also true of sections (C) and (D), 
Endpoints cannot be moved from one section to another with a positive scale 
factor. 

Now look at the next grid. On it, several endpoints have been plotted in each of 
the four available sections. The arrows from each endpoint locate where the 
endpoint would move were it to be scaled with scale factors of XS=3 and YS=3. 
Notice that each endpoint moves away from the anchor point at 0,0, but never 
moves from one section to the next. 

153 



154 

5 SCAUNG SHAPES 

~ 

~1 

-73 

-05 

~7 

--49 

--41 

-33 

Y 
-25 

-'7 --~,O 
-, 

o -2E 0 

8 

'6 
24 

32 

~ 

48 

~ V 

x 
le 24,-147 

+X, -Y 
, 1 1 1 , , 
, 223 4 5 
20864 2 

~ 

~ 

-7 3 

-05 

~ 7 

--4 9 

--4 

-33 

-2 , 7 

9 
-, 
0 

8 

'" '6 
6 , 7 2\ 

32 
r+~-r~V~~~~-r_~P+' I,~, p~++~rr~-H~, a-rr~-r++~~~~~ 
~~+-~~+-~~+-F4~+-~~1r~~+-~1~~+-~~+-~~+-~~~48 

r+~~~r+~r+~-r~-r~-a++-r++~~I,~-r++-r++-r++-r~~ 

. ~'2;tL'r~rl/:~ -t=:::~!:+:~ ---j~~-:t+~:-r~= -~:t-:~ -t=~::~!:+:~ -I~:-:t +~:--t~= -~:t-:~ -r=~_:~t-!:+:~ -I~:-:t:T.'~:--t~=r~:t-:~ -t=~::~!:+:~ ---j~~-:t+~:-r~=:""~t-t-I-,,:~ -t.~~::~!:+:~ ---j~~-:t+~:--t~= -~:t-:~ -r=~-I:~I-!:+:~ -I~:-l ~ 
I ;;;;" 1 1 1 , , -9 ~ ~ -7 -0 ~ --4 --4 -3 2 , 9 1 0 8 1 2 3 4 4 5 6 1 8 8 9 1 , , 1 1 1 , 

• 5 4 3 2 2 , 079 , 3 5 791 357 6 4 2 0 8 6 4 2 0 B 601 2 2 3 4 5 
-192,108 3 5 7 9 , 3 5 75,105 4 2 0 8 6 4 2 

-X, +Y +X,+Y 

VIsmLEsCREEN 



Y 

SCALING SHAPES 5 

Scaling with fractions (for example, XS=.5: YS=.5) produces a similiar result: 

9 

1 

73 

-ll 5 

-5 7 

--4 9 

--4 1 

33 

25 

17 

-9 

-1 
0 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

x 
-x, -y 
-1 -1-1 -1 -1 -1 -1 

5 4 3 2 2 1 0-9-ll-ll-7-ll-5--4--4-3-2-1 
35791 3 5 791 3 5 7 9 1 3 5 7 -9-1 

- 0 3 
'1- -~ , ~J 

r--
• I~ 

- 1 - 8 -
-

4~. 2 
V-

- 0 2 32. i4 

• 
II 

-p4 6~ 

1 
1 234 4 5 6 7 8 890 

+x, -y 
1 1 1 1 
234 5 

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 

II 

• 5 31 
,0 - 10V 

~ 

,11 5 3 
.- , I" .. 

' ~ " )t I' 

I ~ ,u"" 

~ 
E,3 

\ 

~~~~~~~-9-ll-ll~-ll-5--4--4-3~~-9~0 8 1 2 3 4 4 5 6 7 8 891 1 1 1 1 1 1 
5432 1079135791357
3579 35

-x, +y

6 4 2 0 8 6 4 2 0 8 601 2 234 5
4208642

+x,+y
v

VISIBLE SCREEN

-ll 9

-ll

-7

-ll 5

-5

--4

--4

-3

-2

-1

-9

-1
0

8

16

24

32

40

48

56

64

72

80

88

96

155

156

5 SCALING SHAPES

All of the "motion" centers around point 0,0. The endpoints remain within their
sections, moving closer to or farther away from this anchor point. Since endpoints
(or any points) remain within their respective sections, a shape defined around 0,0
will remain within its general location after scaling. To see how this works, look at
the shape defined around 0,0 below:

y

9

1

73

57

~

~

~

9

1

25

17

-9

-1
0

8

16

24

32

40

48

56

64

72

80

88

96

x
-x, -y
-1-1-1-1-1-1-1
543221 0~~~~~~~~~4~
3 5 7 9 1 3 579 1 3 5 791 3 5 7~-1

1/ ...
j

'{
Ib ... ~

1
1 2 3 4 4 5 6 7 8 8 9 0

+x, -y
1 1 1 1
2 3 4 5

o 8 6 4 2 086 4 2 0 8 6 4 208 6 4 2

V
1\

1/

\

~I-"

"" \
\
~

-1-1-1-1-1-1-1~~~ 7~ 5~~~-2-1~ 10 8 1 2 3 4 4 5 8 7 8 8 9 1 1 1 1 1 1 1
543221079135791357
3 579 1 3 5

-x, +y

6 4 2 0 B 6 4 2 0 8 601 2 234 5
4208642

+x,+y

VISIBLE SCREEN

~ 9

~

-7 3

~

-5

~

~

-3 3

5 2

1

~

-1
0

8

16

24

32

40

48

56

64

72

80

88

96

SCAUNG SHAPES 5

Scaling this to twice its height and width will move the endpoints away from
point 0,0:

y

x
-X,-Y
-1-1-1-1 -1-1-1
543221 O~~~~~~44~~~
3 5 7 9 1 357 9 1 3 5 7 9 1 3 5 7~-1

1

73

7 I r...
r-.

1

25 If
17 If
~ II
-1 I

0

8

16

24 If -I-~
32 V 1-1-'
401L 10-
48

56

64

72

80

88

96

~~~~~~~~~~~~~44~~~~~ 
54322 1 079 1 357 9 1 357 
3 5 791 3 5 

-x, +y 

1 
1 2 3 4 4 5 6 7 8 8 9 0 

+x,-y 
1 1 1 1 
2 3 4 5 

o 8 6 4 2 0 8 6 4 2 0 864 2 0 8 642 

.I 
II 

10 8 

./1\ 
./ \ 

1.1 
./ 1\ 

, 
\ 

1\ , 
1\ ... I' 

1\ , \ 
I' 

~\ 
~ 

123445678891111111 
6420864 2 0 B 6 0 1 2 2 3 4 5 

4208642 

+X,+Y 

VISIBLE SCREEN 

~ 

1 

3 

~ 

-7 

~ 

~ 7 

49 

1 

-33 

5 

-4 

-2 

-1 

9 

-1 

1

0 

8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

157 



158 

5 SCALING SHAPES 

If, instead, the shape were scaled to half the height and width, the endpoints 
would be drawn closer to point 0,0: 

9 

1 

73 

5 

7 

9 

1 

y 25 

17 

-9 

-1 
0 

8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

x 
-x, -y 
-1 -1 -1 -1 -1-1 -1 

5 4 3 2 2 1 0--9-a-a 7-a-5-4-4-3-2 1 - -
3 5 791 3 5 7 9 1 3 5 7 9 1 3 5 7--9-1 

/ ~ 
/ 

~ 

~~~~~~~--9-a-a~-a-5-4-4-3~~--9~ 
5 432 2 1 079 1 3 5 791 357
3 5 7 9 1 3 5

-x, +y

1
1 234 4 5 6 7 8 8 9 0

+x, -y
1 1 1 1
2 3 4 5

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2

"
1\ ...

l

o 8 1 234 4 567 889 1 1 1 1 1 1 1
6 4 2 0 8 6 4 2 0 8 6 0 223 4 5

4 06642

+X,+y

VIsmLE SCREEN

-a

-a

-7

-5

-4

-2

-49

1

-33

5

-1

--9

-1
0

8

16

24

32

40

48

56

64

72

80

88

96

SCALING SHAPES 5

Any shape falling into all four sections of the grid will be anchored. Scaling it up
or down in either direction will not move it away from this location. The new shape
may be taller, shorter, thinner, and/or wider, but it will still be situated around 0,0.
The best possible anchor position is to locate a shape's center-most point at 0,0. This
allows scaling to occur equally in all directions. If a shape's center-most point is at
0,0 before scaling, the scaled shape's center-most point will also be at 0,0.

Once the shape has been scaled to the desired size, it can be moved into view
with your TRANSLATE A SHAPE tool. Let's try this out on the following shape:

9

1

73

7

9

1

33

y 25

17

9

1
0

8

16

24

32

40

48

56

64

72

60

68

96

x
-x, -y
-1 -1 -1 -1 -1 -1 -1
543221 O~~~~~~~~~4~
3 5 791 3 5 7 9 1 3 5 7 9 1 3 5 7 -9-1

~~ l4

-~ , ,1'1

1 1 1 1 1-1 1 9~~ 7~~~~~ 2 1 ~-1
5 4 322 1 079 1 3 5 7 9 1 357
3579135

-x, +y

+x, -y
1 1 1 1 1 1 1

1 2 3 4 4 5 6 788 901 2 2 3 4 5
o 8 6 4 2 0 8 6 4 208 6 4 2 0 8 6 4 2

-

3' ,

o 8 1 2 3 4 4 5 6 788 9 1 1 1 1 1 1 1
6 4 2 0 8 6 4 2 0 8 6 0 1 2 2 345

4 2 0 8 6 4 2

+x, +y
v

VIsmLE SCREEN

~

~

-7

~

~

~

~

-33

5 2

1

~

1
0

6

16

24

32

40

48

56

64

72

60

68

96

This shape is sixty-three pixels wide, by nine pixels high. Because is has an odd
number of pixels in both height and width, it has a single center point that can be
(and is) positioned at point 0,0.

Notice that this shape does not fall into color blocks exactly the same from
section to section. For instance, the point at -31,4 is closer to the center of its color
block than the point at 31,-4. Shouldn't they fall into opposite but equal positions?

Opposite values fall differently into color blocks because the X and Y axes

159

160

5 SCALING SHAPES

occupy space in the color blocks. Thus, the grouping of negative coordinates in a
color block (e.g., -9 through -1) will always be one higher in absolute value than the
grouping of positive coordinates in a color block (e.g., 0 through 8).

Now, back to our shape. Defining a shape that uses off-screen coordinates is
done just as you might expect. The coordinates are entered into the program as
DA T A statements. If you have added any shapes to your program between line
numbers 1014 and 1020, delete them now. Then, add the following:

1014 ffiTA "SCALF:: SHAPE", 3, 3
1016 mTA -31,-4,31,-4,31, 4
1018 DATI\. -31, 4
1020 DATA 0, 1, 1, 2, 2, 3, 3, 0

Again, as long as the off-screen coordinates are never plotted, using them to define
a shape will cause no problems.

Below are program lines that will retrieve, translate, and then draw this shape on
the visible screen. If necessary, run the ZAP routine to rid your program of any
extraneous program lines. (Be sure that C is set equal to 2000 in line 172 first.) Then,
enter/modify lines 2000 and higher so that they contain the following:

2000 OOSUE 10: C=7: OOSUB 30
2010 POKE 53280,C
202121 SE$="SCALE SHAPE": OOSUB 800
2030 OOSUB 110
2040 C=6
2050 XT=159: YT=99: OOSUB 140
2060 OOSUB 90
6000 GEl' A$
6010 IF A$ = "~" THEN OOSUB 20: ElID
602121 roro 6000

Line 2010 POKEs the background color (C's current value) into a special
memory location. This memory location, 53280, controls the border color sur
rounding your high resolution screen. Line 2050 moves the shape to the center of
the screen. Knowing that the center of this shape is originally defined at 0,0,
translating it 159 columns to the right and 99 rows down will approximately center
it on your screen (your screen has no single center point).

RUN the program.

The program should draw this rectangle, in blue, at the center of your screen. In
addition, the border color will match the background color of yellow.

Note: At this stage, there are many problems possible with your program
due to typing errors. The more complex the subroutines, the more you need
to be wary. For this reason, we have devoted the next section in this chapter
entirely to helping you use this new tool. As part of this effort, we discuss
locating those hard-to-find program bugs. If you have problems scaling, now
or later, turn to the section called Scaling Tips and Problems for help.

SCAUNG SHAPES 5

Press - to return to your program. We are going to add a loop to the program that
does several things. First it will translate the current shape to the center of the screen,
drawing it there. Next, it will retrieve the original shape and scale it. Each time
through the loop, the XS and YS variables will increase by a factor of 1.2. This loop
will process ten times, producing ten versions of the shape.
times, drawing eighteen versions of the scaled shape.

Add these lines to your program:

2045 FOR L = 1 'ID 10
2070 OOSUB 110
2080 XS=XS*I.2: YS=YS*I.2: OOSUB 150
2090 NEXT L

Notice that each time the loop is processed, line 2080 will increase the scale
factors by one-fifth of their current value. Since the subroutine automatically sets
XS and YS to one instead of zero, the first time through the loop the object remains
simply an unscaled shape. At the bottom of the loop, the scale factors are increased,
and the loop is repeated. RUN the program.

Gradually, your picture will build into a tunnel of rectangles extending inward.
Or is it two stairwells, each one stepping deeper and deeper into the heart of the
computer? No, it's a pyramid-like structure drawn as if viewed from above.

Actually, this illusion-creating design can be viewed in any of these ways. There
is no true hint as to how the artist wants it to be viewed. (Although its probably safe
to say that it was meant to be viewed in all three ways.) Creating illusions of depth is
easy with your SCALE A SHAPE tool. Ordinarily, objects appear progressively
smaller as they move off into the distance. Scaling a shape over and over again,
increasing the scale factors each time, suggests this change in distance.

Return to your program and list lines 2000-2090. The most important thing to
learn here is the necessity of anchoring your shapes. This shape was scaled ten
different times. If it had not been anchored, you would have needed a hand
calculator to determine the location of each scaled shape. You would then have had
to translate each scaled shape the appropriate distance in X and in Y to place it at the
center of the screen. Here, we cleared out the C matrix each time. This meant that
each scaling affected the original shape-which was an anchored shape.

This brings us to one final point. If you have scaled and translated a shape, and
you want to work with its current form, don't clear the C matrix to re-anchor it.
Instead, translate the shape back over point 0,0. This usually can be done with
XT=-XT: YT=-YT: GOSUB 140. This merely reverses the translation you last
performed-usually the translation that moved the shape away from 0,0 in the first
place.

From now on, any shape you create should be defined around point 0,0. Even if
you don't intend to scale it. There is always the possibility that you will rotate it, or
even scale it for use in another design.

Before continuing, take the time to save this chapter's program. Save it under the
filename "CHAPTER 5".

161

162

5 SCAUNG SHAPES

At this point, you have several options. You should begin by practicing with the
program you have. Change line 2050 so that the shape is translated to different
locations. Also, change line 2080, increasing (or decreasing) the scale factors at
different rates. Now is the time to make mistakes and learn from them.

The next section deals with the tricks and problems of scaling, as well as common
program bugs. If you are having problems with your program, or merely have an
interest in the subject matter, read through this section. A section on design ideas
specifically for scaling follows. If you have an itch to put your new tool to work,
skip directly to the designs. When you're ready to be put to the test, flip to the
Summary. In it you will find an exercise that will challenge your knowledge of the
SCALE A SHAPE tool.

TOOL ISO ::::::: SCALE A SHAPE
150 REM:::::::SCALE A SHAPE
151 OOSUB 120
152 XS=XS-(XS~): YS=YS-(YS~)
153 T(0,0)=XS: T(l,l)=YS
154 CDI'O 130

What It Does: This tool can "expand" or "shrink" your shapes along
the X and/or Y axis.

Example Use: Two variables must be set before caHing this tool with
a GOSUB 150 statement. The variable XS (X-Scale) should be set to the
desired X scale factor. The variable YS (Y-Scale) should be set to the
desired Y scale factor.

Scale factors increase/decrease the number of units in a shape's
height or width. (The distance from one pixel point to the next is
equivalent to a unit.) A scale factor greater than one (>1) will increase
the number of units in a shape's height/width. A scale factor of less than
one «1) will decrease the number of units in a shape's height/width.

This tool will scale the current form of your shape if the C matrix is not
cleared first with a GOSUB 110 statement.

An example program line for scaling a shape's height by two and
width by one-half is:

2040 XS=.5: YS=2: msUB 150

Technical Description: SCALE A SHAPE is similar to TRANSLATE
A SHAPE, except that the T matrix takes the following form:

o
1

2

o
xs
o
o

T Matrix
2

o o
YS o
o

SCAUNG SHAPES 5

Scaling Tips and Problems

This section covers two separate but indirectly related topics:

(I) Common Program Problems and Possible Answers; and
(2) Using Negative Scale Factors

The thread that ties these topics together is their non-crucial but nonetheless
helpful nature. The absence of either one of these topics does not prevent you from
furthering your expertise in scaling or in graphics. However, each has a value of its
own that was deemed worthy of some discussion.

Topic 1 is self-explanatory: program bugs. Because this topic is so extensive, we
will address only the more common mistakes. We assume that you've entered the
subroutine tools correctly, and that the problem lies in the main routine. Make sure
our assumption is correct before searching for an answer here.

Topic 2 covers the interesting possibilities presented by negative scale factors.
This discussion is not comprehensive, but serves only to point you in directions not
developed earlier in the chapter.

Common Program Problems and Possible Answers

There are three things you need to do whenever your program fails. First, you
need to get back to text mode without erasing the text screen. Don't attempt this
with the RUN/STOP and RESTORE keys (RESTORE will erase the text screen).
Instead, press -.

If the - key does not return you to text mode, very carefully type: COSUB 20
and press RETURN. You won't be able to see the letters you type, so type
carefully. This should take you back to your program listing (try this two or three
times before giving up and using RUN/STOP and RESTORE).

REMEMBER: If your program set the screen's background color to light
blue, the text screen may be a solid, light blue color. It will appear as if you are
still in high resolution graphics, when you are actually viewing your program.
To remedy this problem, change the cursor color to white and then type:
POKE 53281,6 RETURN.

The second step is to convert your program listing to lower-case. You can easily
do this by pressing C= and SHIFT at the same time. Don't be too skeptical of the
benefits of this move. Many typing errors that are hard to find in upper-case are
easily spotted in a lower-case program listing.

The third step is to look for an error message. Error messages are extremely
valuable because they give the line number where the computer experienced
problems. This is not to say that the error will be in that line number. It could be that
you are given an OUT OF OAT A ERROR IN 804, when the problem is in a DATA
statement in line 1020. The line number is a clue to the problem, though, and is the
first place you should check.

As a quick checklist, make sure the C matrix has been cleared prior to retrieving a
new shape in the program. Make sure that all necessary variables are set before

163

164

5 SCAUNG SHAPES

each COSUB statement. Often, variables will be holding values carried over from a
previous shape. Thus, it is important to set all variables that a subroutine uses
before calling it. Finally, remember that a minimum of five steps are necessary to
draw and paint any shape:

(I) The shape must be defined in data statements.
(2) The shape must be retrieved (SE$="?": COSUB BOO).
(3) C must be set to a drawing color (C=?) .
(4) The DRAW A SHAPE tool must be called (COSUB 90).
(5) The PAINT A SHAPE tool must be called (COSUB 60).

If the shape is defined around point 0,0, it must also be translated to a more visible
area.

Several error messages are listed below. Possible reasons for the message are
given beneath each one. This list is only intended as a guide, and does not consider
every possible problem or solution. Other program problems are discussed immedi
ately following these error messages.

BAD SUBSCRIPT ERROR

.Check to see if you have a DIM statement in line 1006 to create arrays P~, R~, L~,
T, C, and W .

.If you are working with a complex shape of over 100 endpoints and/or lines, you
need to dimension P~, R~ and/or L~ to a larger size .

. Check your Shape Library. Make sure you have correctly given each shape's
count of points and lines. Then, make sure those points and lines have all been
entered.

DO YOU KNOW WHAT YOU ARE DOING?

.Somewhere in your program you have a COSUB 170 statement or a COTO 170
statement. This sends the computer to the ZAP routine. If you continue, you will
erase your main routine. Check each COSUB and COTO statement.

FILE NOT FOUND ERROR IN 0

. Your machine language was not in memory, so program line 0 tried to load file
"M/L". The "M/L" file was not found on your disk/tape, producing this message.
Copy your "M/L" file onto this disk/tape, or copy this program onto a disk/tape
that already contains the "M/L" file .

ILLEGAL VALUE or ILLEGAL QUANTITY ERROR

.Somewhere you have used or are trying to store a value larger than the computer
can hold. First, check the variables in your program. Type a question mark (?),
followed by the variable you want to check (?X), and press RETURN. The
computer will dispJay the current value it is storing for that variable. Check every
variable. For floating point variables (e.g, X, Y, Xl, PP, etc.), the computer can
store very large numbers. Loops, however, can increase the value of a variable at a
surprising rate. If the computer displays a variable's value in scientific notation
(e.g., 3.7698E+23), you are probably looking at the source of the problem.

SCAUNG SHAPES 5

.Integer variables (e.g., R%, UJ, P%) can only hold whole numbers between -32768
and +32767. Your endpoints could be scaled or translated to such an extent that they
surpass these limits. To check the contents of an array, like R%, type:
?R%(O ,O),R%(O ,1). Replace the asterisks (0) with the endpoint number you want to
check. To check endpoint number 5, type: ?M(5,0),R%(5,1) . The computer will
display two numbers. The first number will be the X coordinate of the endpoint.
The second one will be the Y coordinate. If you are checking L%, the first number
will be the "from" endpoint number, and the second will be the "to" endpoint
number.

OUT OF DATA ERROR

.Check to see if you've made a typing error in the name SE$ is set to .

. Count the number of points and lines in the shape you are retrieving, as well as
those before it. Make sure the number of points and lines in a shape matches the
count of points and lines given in the shape's very first DATA statement.

SYNT AX ERROR

.This is a generic error code that identifies any error for which a "customized"
error code is not available. Often, the error will be in the line number given in the
error message. With this error code, you can only start looking.

Error messages can indicate a typing error, or an error in logic. Check for typing
errors first:

.Have you typed the variables correctly? It is very easy to type X2 instead of XS,
Y1 instead of Y2, XT instead of YT, etc. Look closely. Are they all correct?

.Have lower-case L's (1) been typed in place of ones (1) or capital o's (0) typed in
place of zeroes (0). This is a very common typing mistake.

As a final checklist, glance through the titles of symptoms below. Hopefully,
you'll find your answers there.

SHAPE NEVER GETS PLOTTED ON THE SCREEN
.Did you retrieve the shape?

.Did you set the color variable (C) to a drawing color?

.Did you include a GOSUB 90?

.Is the shape somewhere off of the screen, needing to be translated to a visible
area? (Look at the contents of R% to find out.)

.Was the shape unanchored and then scaled off of the screen? (Again, look at the
contents of R%.)

.Is one tiny pixel plotted, but nothing else? (You probably forgot a GOSUB 110 at
the beginning of the program.)

SHAPE IS NOT BEING PAINTED PROPERLY

.Has the color variable (C) been set to a color other than that used for the
background?

.If you are not using a predefined paint point, did you insert GOSUB 62 as
needed (not GOSUB 6O)? Did you set X and Y to a point that is definitely inside the
shape?

165

166

5 SCAUNG SHAPES

.Are you using a predefined paint point? If so, did you insert GOSUB 60 in the
main routine? Have you set PP to the correct point number from your data list?

.Does the paint point fall inside your shape, or on it? (Make sure it falls inside the
shape.)

.Is the shape being painted in polka dots? (The color variable is probably set to
some number less than 0 or greater than 16. Change it to a correct color code.)

.Are you painting in multi-color? (See next topic.)

MULTI-COLOR IS NOT WORKING PROPERLY
.Are small portions of the screen showing incorrect colors? (Your program is

probably not in an endless loop, which is necessary in multi-color.)

.Does the computer begin painting to the left of your shape instead of inside it, as
planned? (In multi-color, a paint point can become part of the outline shape if it is
too close to the left side of the shape. This is because every two pixel columns are
treated as one. If your paint point is adjacent to the shape's left edge, try moving it
one column to the right, and one row down.)

Using Negative Scale Factors
Using negative scale factors creates mirror images of your shapes. This is a

valuable tool for many designs, and is not something normal scaling or rotation can
do. A negative YS value will reverse the shape from top to bottom (plot it upside
down) . A negative XS value will reverse the shape from right to left. Other than
this, the shape will be scaled up or down to the same size the positive scale factor
would have scaled it. If XS=-2 and YS=-.5, the shape will be flipped horizontally
and vertically. At the same time, it will be scaled to twice the width and half the
height.

To understand how this works, recall that if you multiply a number by a negative
value, the product will have the opposite sign (+ / -) of the number with which you
started. From this you can see that an XS scale factor of -1 simply reverses the signs
of every X coordinate in the shape. A YS scale factor of -1 reverses the signs of every
Y coordinate in the shape. By reversing the signs, an equal but opposite shape is
drawn on the other side of the axis.

Using values other than -1 (e.g., -2, -3, -6) will reverse the coordinate signs and
increase/decrease their values. This will scale them appropriately.

Through experimentation with negative scale factors, you should be able to
implement them easily enough. To start you out, we are providing a simple
practice program that works with the following shape:

y

~

~

9

1

73

~ 5

57

9

1

25

17

~

-1
0

8

16

24

32

40

48

56

64

72

80

8B

96

x
-x, -y
-1 -1 -1 -1-1 -1 -1
543221 O~~~~~~~~~~~

SCAUNG SHAPES 5

+x,-y
1 1 1 1 1 1 1

1 234 4 5 6 768 901 2 234 5
3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 ~-1 o 8 6 420 8 6 4 208 6 420 8 6 4 2

-
[tI
IL~

77

~~~~~~~~~~~~~~~~~~~~ ~ 8 
5 4 3 2 2 1 079 1 3 5 7 9 1 357 
3 5 7 9 1 3 5 

-X, +y 

f,f 

1234456 7 6 8 9 1 1 1 1 1 1 1 
6 4 206 6 4 2 0 8 6 0 1 223 4 5 

4206642 

+X,+y 

VISIBLE SCREEN 

~ 

~ 

-7 3 

~ 

-5 

~ 

~ 

2 

1 

1 

~ 

5 

7 

9 

-1 
0 

6 

16 

24 

32 

40 

48 

56 

64 

72 

80 

8B 

96 

Set C equal to 1008 in line 172, and run the ZAP routine. Next, enter the program 
below and RUN it. As the program runs, pay careful attention to how many versions 
of the triangle are plotted (there will be four). When you return to the program 
listing, glance over it so see how the scale factors were used to produce the design. 
(A picture of what this program will draw if typed correctly can be found below 
the program listing.) 

1016 Ql\TA "MIRROR IMAGE", 3, 2 
1018 ~TA -7,-7, 7, 7,-7, 7,-2, 2 
1020 Ql\TA 0, 1, 1, 2, 2, 0 
2000 OOSUB 10: 0=6: OOSUB 30 
2010 SE$="MIRROR IMAGE": OOSUB 800 
2020 C=3: PP=3: OOSUB 110 
2030 YT=10: FOR L=1 'IO 3 
2040 OOSUB 7000 
2050 YS=-I: XS=1 
2060 YT=YT+15: GOSUB 7000 

167 



168 

5 SCAUNG SHAPES 

2070 YS=1: XS=-1 
2080 YT=YT+20: GOSUB 7000 
2090 YS=-1: XS=-1 
3000 YT=YT+15: GOSUB 7000 
3010 XS=1: YS=1 
3020 YT=YT+20: NEXT L 
6000 GEl' A$ 
6010 IF A$ = "<_" '!HEN GOSUB 20: END 
6020 roro 6000 
7000 FOR XT=16 TO 319 STEP 16 
7010 GOSUB 150: GOSUB 140 
7020 GOSUB 90: GOSUB 60 
7030 GOSUB 110: tJEXI' XI' 
7040 RETURN 



SCAUNG SHAPES 5 

Design Ideas 

The purpose of scaling is to alter a shape's height/width to create a better, 
different, or more realistic design. The sketches for this chapter are meant to help 
you realize the potential of scaling. 

The shape in the first sketch can be considered "small" because of its size in 
proportion to its surroundings. It is surrounded by lots of space. 

The square in the next sketch is regarded as "large" because it exists in a small 
amount of surrounding space. The relationship of an object to its surroundings will 
change as the scale (proportion) of that object changes. 

The small square has been translated below so that it resides partially out of the 
picture. The surrounding space completely dominates this picture. There is more 
background space than the space taken up by foreground objects. 

169 



170 

5 SCALING SHAPES 

This same translated shape has been scaled to a larger size in the next sketch. The 
large square does not dominate the picture because it has been placed mostly 
outside of the picture. A large object can appear less dominant, depending on 
where is it positioned in the picture. All objects in a picture are compared visually to 
each other, as well as to the surrounding space and the border. 

Scale can be thought of as an object's "weight," or its proportion in relation to the 
rest of the picture. The objects in the next picture suggest light weight and small 
size when compared to the surrounding field of space. 

o 



SCAUNG SHAPES 5 

When the proportions of objects change, their "weights" also change. Look at the 
sketch below. It uses the same objects as in the previous sketch, but not the same 
proportions. Notice that each object appears to have a visual weight as compared 
to the other objects. For example, the black ball looks heavier than the small square. 
In the previous sketch, the black ball seemed to be small and light. In this sketch, 
the ball dominates the picture. 

Our next sketch contains several scaled versions of the same triangle. Each object 
appears to be placed in space. There's a sense of distance and depth. A sense of 
depth can be achieved by reducing the size of objects that are to recede back into 
space. The horizon line intensifies the feeling of distance. 

A rectangular shape has been scaled and translated in the design below. The 
scaling provides some variety in this repetitive composition. The rectangle is 
continually scaled vertically along its Y axis, while the X scale remains the same. 
The spacing between the translated shape also remains the same. 

171 



172 

5 SCALING SHAPES 

L------II L-I _----II ..... 1 _ .......... 1 1'--_-' 

,------,I I II I 1,-------, 
I II 1 1 IIL.....---...I 

DOIID 
DDDD 

Although the size varies in the next sketch, spacing is consistent and regular. The 
arrangement of shapes is orderly and balanced. The shapes seem,to recede back 
into space, gradually reducing in size toward the middle. 

The next sketch, in contrast, is irregular in order and spacing, There's variety in 
it's use of space and the placement of each shape. The shapes appear to "float" in a 
flat space. A sense of depth is not evident in this picture, 

• •• 
••• 

" , , , 
•• 



SCAUNG SHAPES 5 

In the following sketch, there is once again variety in the size and placement of 
shapes. Order is maintained through the repetition of the same shape throughout 
the picture. A pattern develops from this orderly arrangement of shapes. 

J c=: 
tJ 

I 
J 

The shape sizes are varied a great deal in the next picture. Some shapes are scaled 
up vertically, whereas others are scaled up horizontally. This complex arrangement 
emphasizes an unexpected, irregular order. 

I 
-

r--
D [ 0 D 

- L....-

I 

A rectangle has been carefully scaled and translated over and over again to create 
the interesting composition below. The clear, white spaces interspersed between 
the rectangles are perceived as the foreground shapes. Shapes such as these are 
called "negative shapes." Negative shapes, like the moon shapes in this design, are 
not physically defined with points and lines (like the rectangles). 

173 



174 

5 SCAUNG SHAPES 

-

Below you see results of the calculated scaling and translation of a rectangle to 
create a building design. Variation appears both in the size of the shapes and their 
tones. The outline shapes contrast with the solid colored shapes. A pattern or logical 
order can be seen in the arrangement of the shapes . 

• 1. II •••• I ••••• 
••• 1.1 •• 11 ••••• . __ .------

The jets in the next sketch illustrate the scaling and translation of one object. The 
smaller jet at the bottom appears further away in space. The basic jet shape is a 
collection of many shapes put together. 



SCAUNG SHAPES 5 

The final sketch shows how new shapes can be made by combining other shapes. 
The planets and spacecraft were composed from smaller shapes (like circles and 
squares) that were carefully scaled and translated. Notice how the large fore
ground planet has been placed partially off of the screen. A sense of depth is 
created by the varying sizes of each planet. 

'. '.-

G 
~ 

o 
o 

Summary 

You are at the close of yet another chapter, and have added a SCALE A SHAPE 
tool to your graphics tool kit. At the beginning of this chapter we stated, "Scaling is 
one of the harder graphics concepts to learn." Looking back on your experience 
thus far with scaling, this opening statement may sound a bit exaggerated to you. 
Or, perhaps you feel it wasn't a firm enough warning. Either way, you have come 
through it and are ready to move on. Before you do, however, you will of course 
want to prove your skill by working through this chapter's exercise. As you do, keep 
in mind the following: 

-Scaling in the X direction (XS) alters the width of a shape. 
-Scaling in the Y direction (YS) alters the height of a shape. 

-A shape's height = # Pixels in Height -l. 
-A shape's width = # Pixels in Width-l. 

-A scale factor greater than one (>1) increases the height/width of the shape. 
-A scale factor less than one «1) decreases the height/width of the shape. 

-A negative XS scale factor flips the shape horizontally. 
-A negative YS scale factor flips the shape vertically. 

- To scale the original shape, the C matrix must be cleared. 
- To scale the current form of the shape, the C matrix must be left alone. 

- T 0 anchor a shape, it must be defined around point 0,0. 

- Tore-anchor a translated shape, either the C matrix must be cleared out, or the 
shape should be translated back over 0,0. 

175 



176 

5 SCAUNG SHAPES 

_ The mathematics of scaling will transform each endpoint as follows: 

Old X 0 xs = New X 
Old Y 0 YS = New Y 

NEW ENDPOINT = New X,New Y 

Exercise 

Enter DATA statements that define the shape sketch on our grid below. 

y 

~ 

~ 

9 

1 

73 

~ 

-5 7 

-49 

-4 1 

-33 

25 

17 

-9 

1 
0 

8 

18 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

X 
-x,, -y 
-I -1 -I -1-1 - 1 - 1 

5 4 3 2 2 1 0-9~~-7~-5-4-4-3-2-1 
3 5 7 9 I 3 5 7 9 1 3 5 791 357-9 - 10 

, ( 
1\ 

Ir 

~~~~~~~-9~~~~-5-4-4-3~~-9~0 
543221079135791357
3579135

-x,+y

+X, -y
I I I 1 1 I

12344 5 6 788 9 0 223 4 5
8 6 4 2 0 8 6 4 208 6 4 2 0 8 642

l
J

f1

:J

8 I 2 3 4 4 5 6 7 8 8 9 1 1 1 1 1 1 1
6 420 8 6 4 2 0 8 601 223 4 5

4208642

+x,+y
v

VISIBLE SCREEN

~ 9

~

-7

-5

-49

-4

33 -
-2

-1

9

- I
0

8

16

24

32

40

48

56

64

72

80

88

96

To help you in your endeavor, we have enlarged this figure and numbered the
endpoints (see below). Notice that the endpoint numbers jump from one side of the
Y axis to the other. This makes determining the coordinates easier. Endpoints 0 and
1 have opposite X locations (-4 and 4), and the same Y locations (-32) . Endpoints 2
and 3 have opposite X locations (-8 and 8), and the same Y locations (-28). This is
true for each set of even and odd endpoints.

-25

-17

-9

-1
o

8

16

24

-9

pO
12

16

~

24 _

28

-9

/ 0

2

t 6

· V

4

20

26

SCAUNG SHAPES 5

-1 0 8

1'"

3

t:

7 /

.,
11 ,

13

15

17

22 23 21 ~

27

30 31

-1 0 8

r-5

29

-25

-17

-9

-1
o

8

16

24

After you've defined this shape, scale it to several different widths and heights,
drawing it as you go. An example program is given for the solution.

(Note: Translation and Scaling take time. It will take several seconds before each
shape is drawn. Please be patient.)

177

178

5 SCAUNG SHAPES

Solution

1016 DA.TA "BILL",31,29
1018 DA.~ -4,-32, 4,-32, -8,-28,
1020 DA.~ -8,-24, 8,-24, -4,-20,
1022 DA.~ -4,-16, 4,-16,-11,-16,
1024 DA.TA -13,-13, 13,-13, -9, -9,
1026 DA.~ -13, 3, 13, 3,-11, 6,
1028 DA.~ -8, 6, 8, 6, -1, 8,
1030 DA.~ -12, 27, 12, 27, -8, 27,
1032 DA.TA -12, 31, 12, 31, -1, 31,
1034 DA.TA 0, 1, 1, 3, 3, 5, 5, 7
1036 DA.TA 7, 9, 9,11,11,13,13,17
1038 DA.TA 17,19,19,21,15,27,27,25
1040 DA.~ 25,29,29,31,31,23,23,22
1042 DA.TA 22,30,30,28,28,24,24,26
1044 DA.TA 26,14,20,18,18,16,16,12
1046 DA.TA 12,10,10, 8, 8, 6, 6: 4
1048 DA.TA 4, 2, 2, 0
2000 OOSUB 10: C=6: OOSUB 30
2010 SE$="BILL": OOSUB 800
2020 REM::::DRAW BILL
2030 C=l: OOSUB 110
2040 XT=30: YT=150: GOSUB 140
2050 OOSUB 90
2060 REM::::DRAW BILL'S DA.D
2070 OOSUB 110
2000 XS=l. 5: YS=1: OOSUB 150
2090 XT=70: YT=150: GOSUB 140
3000 OOSUB 90
3010 REM::::DRAW BILL'S SON
3020 XT=-XT: YT=-YT: OOSUB 140
3030 XS=l: YS=.5: OOSUB 150
3040 XT=120: Yl'=166: OOSUB 140
3050 OOSUB 90

8,-28
4,-20

11,-16
8, -8

11, 6
1, 8
8, 27
1, 31

3060 REM:::: DRAW BILL'S B-BAlI. FRIEND
3070 OOSUB 110
3000 XS=~8: YS=2: OOSUB 150
3090 XI'=15Q: Yl'=119: OOSUB 140
4000 OOSUB 90
4010 Rn1::::DRAW BILL'S F-BALL FRIEND
4020 OOSUB 110
4030 XS=4: YS=2.5: OOSUB 150
4040 XT=246: Yl'=104: OOSUB 140
4050 OOSUB 90
6000 GEl' A$
60113 IF A$ = "<-" THEN OOSUB 20: mo
6020 ooro 6000

Chapter Six

ROT ATING SHAPES
Rotation is the turning of an object on or around a central location. If you've

ever watched a windmill turning in the breeze, you've witnessed rotation. If you've
ever spun a child's top, you've put rotation into motion. If you've ever twirled on a
swivel chair or ridden on a merry-go-round, then you have also rotated.

The examples above are examples of three-dimensional shapes rotating. You,
however, are working with two-dimensional shapes. Two-dimensional rotation is
difficult to illustrate wi th real life examples because there are no two-dimensional
shapes to be found in real life. Since this is the case, we'll ask you to use your
imagination as we work though an example of two-dimensional rotation.

Imagine, if you will, that your screen has a large "drawing wheel" attached it to,
like the one diagrammed below. Notice that this drawing wheel is approximately
four times larger than the screen, and is attached by a small pin running through its
center point. This pin sticks into point 0,0 on the screen.

Let's assume that you draw the stick figure below on your drawing wheel. The
stick figure is located near the center of the screen area, and appears to be standing
on level ground.

179

180

6 ROTATING SHAPES

This is where the fun starts. Watch what happens when you rotate the drawing
wheel slightly to the left. The picture below shows the stick figure tilted at an angle,
and he appears to be walking uphill.

Just the opposite impression occurs when you rotate the wheel to the right. The
figure then appears to be walking downhill:

Notice that the shape itself never changes form, as might happen in three
dimensional rotation. Instead, it simply moves along a circular path to a new
screen position. If you were to turn the wheel completely around, the stick figure
would return to its original position.

Now let's assume that you decide to draw another shape. You start with a "clean"
drawing wheel, again with its center pinned to point 0,0 on the screen. This time,
you draw an airplane that is centered over 0,0, like the one shown here:

ROTAnNG SHAPES 6

You find that rotating the drawing wheel this time merely turns the airplane in
its place:

181

182

6 ROTAnNG SHAPES

Although you won't be drawing your shapes on a drawing wheel, as here, the
same general principles apply when you rotate shapes on your computer screen.
Your shapes will rotate around point 0,0 in the same manner that we've seen in
these "drawing wheel" examples.

Keep in mind that the computer retrieves a shape and then transforms its
endpoints. When we discussed translation in Chapter 4, you saw that the shape's
endpoints were translated to a new location, and then connected by the lines
described in L%. Chapter 5 showed how a shape's endpoints were scaled to a new
location, and then connected by the lines described in L%. As we study rotation, you
will see that each endpoint is individually rotated around point 0,0, and then
connected by the lines described in L%.

Let's look at that drawing wheel one more time. In the sketch below, the wheel is
shown with its center at 0,0. Three other points have been drawn at different
locations on the wheel. The screen was left out of this sketch so that the paths of
each point could be seen more easily.

The rotation path of each point is shown by arrows. Notice that each point follows
a perfect circular path around 0,0 when the wheel is turned. This path will be the
same whether the wheel is turned to the left or to the right. The basic idea behind
rotation is that a point always stays the same distance from 0,0 as it moves around
this anchor point. The only way this is possible is for the point to move along an
imaginary circule centered at 0,0.

We will refer to a shape's "rotation path" frequently during the course of this
chapter. This path is the imaginary circle the shape will follow as its "drawing
wheel" turns. If you have problems determining the circular path a shape will take,
think about the drawing wheel. Also, keep in mind that only the shape's endpoints
are being rotated. This will be of particular help when you are dealing with a shape
that is drawn over O,O-like the airplane shown earlier. Shapes drawn around 0,0
have no specific path that you can readily imagine. Recalling that each endpoint
has its own circular path may be helpful.

A few designs incorporating rotation will best demonstrate the usefulness of such
a tool. The sketch below, for example, was created by rotating and translating a

ROTAT1NG SHAPES 6

small square. Observe how the squares seem to radiate from the center of the design.
The squares are lined up like the spokes to a whee]. The center-the hub-has been
carefully located to the left of the screen's center for the purpose of variety.

A flower arrangement can be produced from a few scaled, rotated and translated
shapes, as shown here:

Similarly, the shrubbery in our landscape design was also created by utilizing
scaling and rotation. Each shrub is a complete rotation of one crooked line. The
crooked line is scaled up and down for various versions of the shrub.

183

184

6 ROTAnNG SHAPES

Any design or object that can be made by repeating a shape along a circular path
is perfect for the ROTATE A SHAPE tool. Stars, snowflakes, and sun rays are just a
few examples. Take a moment or two to come up with your own "rotation
oriented" shapes and designs. Make a note of any that you might like to try .

LOAD the "CHAPTER 5" program into memory before continuing. Then list
line 172 and make sure it has C set to 1008 (C=1008). RUN the ZAP routine.

Simple Rotation Techniques

You now understand that rotation moves a shape along an imaginary circular
path. This circular path has its center at 0,0 and runs through the shape. You can
change the circular path of rotation by translating the shape to a different "starting
position." This is the same principle used when a compass rotates a pencil to draw
a circle.

To draw a circle with a compass, you first place the compass point on the paper
where the center of the circle should be. You then spread the pencil away from the
center point, depending on the size of the circle you desire, and rotate the compass
around the central point.

The ROTATE A SHAPE tool will rotate your shape in the same fashion. The
further away from 0,0 the shape is located, the larger the circular path on which it
will be rotated. The closer the shape is to 0,0, the smaller the circular path it will
take. The tool itself handles all of the mathematics necessary to peform the
rotation.

ROTAllNG SHAPES 6

The ROT ATE A SHAPE tool is shown below. Note that in line 162, the symbol
for pi ("17") is used. This symbol can be typed by holding down a SHIFT key while
pressing t (located to the left of RESTORE.) Add this tool to your program now:

160 REM:::::::ROTATE A SHAPE
161 OOSUB 120
162 RD=RO/360*2* 1T
163 T(0,0)=COS(RD): T(0,1)=sn~(RD)/1.23
164 T(1,0)=-SIN(RD)*1.23: T(l,l)=COS(RD)
165 rom 130

You need to specify four things in the main routine when you want to rotate a
shape. Those four things are:

(1) The shape you want to rotate;
(2) The "starting position" of the shape;
(3) How far you want the shape rotated; and
(4) In which direction you want it rotated.

Step I is satisfied by retrieving the desired shape with the RETRIEVE A SHAPE
tool. Step 2 is accomplished with the TRANSLATE A SHAPE tool. Again, the
starting position of the shape will determine how large the circle of rotatation is. If
the shape is defined around 0,0, you may need to translate it to a new starting
position. Steps (3) and (4) are both handled by assigning a value to the variable RO
("ROtate").

The value you assign to RO indicates how many degrees you would like the
shape rotated. The term "degree" has it roots in the early studies of the earth's
rotation around the sun. It was found that the earth took approximately 360 days
(one year) to travel the complete orbit. From these early discoveries in astronomy, it
was established that every circle has 360 degrees.

Degrees, then, do not describe physical distance in the same manner as miles,
inches, kilometers or centimeters do. Thirty degrees along one circle might be two
inches in length, while thirty degrees along another circle might be six inches in
length. Nevertheless, degrees can be used as an accurate measurement of the
direction and distance you want a shape rotated.

Since a full circle has 360 degrees, setting RO equal to 360 will rotate your shape
entirely around its rotation path. This would bring it back to its starting position.
Setting RO equal to 180 will rotate the shape halfway around its rotation path. The
shape will rotate a quarter way around its rotation path if RO is set to 90, and an
eighth of the way around its rotation path if RO is set to 45.

Now you know how to control the distance a shape is rotated (Step 3). The final
step is to specify in which direction the shape is to be rotated. A shape can be
rotated to the right or to the left, as the imaginary "drawing wheel" has shown.
Positive degrees of rotation (RO=+?) will rotate the shape to the right:

185

186

6 ROTATING SHAPES

Negative degrees of rotation (RO=-?) will rotate the shape to the left:

You can thus complete both steps 3 and 4 by correctly setting the RO variable.

We will demonstrate how the ROTATE A SHAPE tool works by using the moon
shape sketched below.

a

16

24

32
0 40

46

56

64

72

80

199 66

96

104

11 2

120

126

136

144

152

160

166

176

164

192

ROTAnNG SHAPES 6

i""1(----- - ;>1

319 TOP OF SCREEN
I I I I I I I I 1 I I 122 22 22222222233

I 234 4 5 6 7 8 8 9 a I 2 2 3 4 5 6 6 7 8 9 a a I 2 34 4 5 6 7 8 8 9 a I
066 4 2 a 6 6 4 2 a 6 6 4 2 a 6 6 4 2 a 664 2 a 864 206 6 4 2 a 664 2

v """ / /. "
11 ' ':

~
t i'-.. ~

x, Y PIXEL POINTS

Point #11 is a paint point that will be used to fill the moon in with color. We have
not anchored the moon around 0,0, and so it will rotate in a large circular path
around the anchor point. Add the defining DATA statements as follows:

1008 rnTA 1I~1I,11,10
1010 ~TA 112, 79,136, 80,119, 88
1012 ~TA Ill, 96,111,119,120,127
1014 ~TA 137,136,111,136, 99,130
1016 ~TA 96,119, 96, 96,104,104
1018 ~TA 0, 1, 1, 2, 2, 3, 3, 4
1020 ~TA 4, 5, 5, 6, 6, 7, 7, 8
1022 ~TA 8, 9, 9,10,10, 0

We will begin by drawing the shape and painting it. Next, we will rotate the
moon -2 degrees (turning the drawing wheel to the left), and draw it again. This,
along with our usual set of graphics tasks, is accomplished by adding the following
main routine lines to your program:

187

188

6 ROTAnNG SHAPES

2000 OOSUB 10: C=11: OOSUB 30
2010 POKE 53280,C
2020 SE$="MCX)N": OOSUB 800
2030 C=7: OOSUB 110
2040 OOSUB 90: PP=l1: OOSUB 60
2050 RO = -2
2070 OOSUB 160: OOSUB 90
6000 GEl' A$
6010 IF A$ = "<-" THEN OOSUB 20: END
6020 ooro 6000

RUN the program.

Your screen should turn a dark grey, including the border that surrounds the
high resolution drawing area. The moon will then be plotted and painted in a
bright yellow (you may need to adjust your monitor to achieve this color). The
rotated moon will be drawn a few moments later.

What has happened is that the original endpoints have been rotated two degrees
in a circular path to the left. This moves them up a little bit on the screen. The
distance that two degrees covers is based on the rotation path of the shape. The
rotation circle is divided into 360 small arcs, and the endpoints are moved the
distance of two arcs.

Return to text mode.

The next program lines you will enter create a loop. This loop will process
twenty-seven times, each time rotating the moon shape -2 degrees and then drawing
it. Type these lines:

2060 FOR L = 1 'TO 27
2080 NEXT L

RUN the program again. The moon will rotate counterclockwise, and be re
drawn for every two degrees of rotation. Soon, you will begin to see an actual circle
being formed by the top left edges of all the moons. You are drawing the rotation
path of this shape with the shape itself. Press -, and the computer will return to
text mode when the twenty-eighth moon has been drawn.

You can easily reverse the direction of rotation by setting RO equal to a positive
value. Add program lines 2090 through 3030 to your program:

2090 msUB 1H'l
3000 RO = 2
3010 FOR L = 1 'ill 20
3020 msUB 160: msUB 90
3030 NEXT L

You may already know what these new program lines will do. Program line 2090
clears the C matrix so that we can again work with the original (unrotated) shape.
Line 3000 sets RO to a positive value, moving the rotation in a clockwise direction
instead of counterclockwise. Finally, lines 3010 through 3030 rotate and draw the
moon twenty different times in this new direction.

ROTAllNG SHAPES 6

RUN the program.

You will need to wait as the first portion of the program executes as before. The
new section of program lines will begin executing after the twenty-eighth moon
has been drawn. When this happens, the circular path will be picked up at the
original moon and taken in the opposite direction. The design pictured below
should be plotted on your screen.

Leave the finished design on your screen for a moment as we perform a few
mental calculations. We started by rotating the moon twenty-seven different times,
each time moving it two degrees counterclockwise:

27 .. 2 degrees = 54 degrees counterclockwise

Next, we took the original shape and rotated it twenty times clockwise, still
moving it two degrees each time:

20 .. 2 degrees = 40 degrees clockwise

This means that the shape was rotated and drawn a total of 94 degrees:

54 counterclockwise + 40 clockwise = 94 total degrees

Since a full circle is a span of 360 degrees, our finished design should be just a
little larger than a quarter of a circle (94 / 360 = .27). You can see that it is by looking
at your screen.

Modify lines 2040 and 2090 as follows:

189

190

6 ROTATING SHAPES

2040 ensUB 90
2090 CDSUB 110: OOSUB 140

Add program line 2035, as well as lines 3040 through 3070:

2035 FOR V = 1 TO 3
3040 OOSUB 110
3050 IF V=l 'IHEN)IT=150: Yr=-10: OOSUB 140: C=2
3060 IF V=2 'IHEN)IT=-50: Yr=-50: ensUB 140: C=1
3070 NE)IT V

RUN the program a final time. This program will draw three versions of the
moon wheel, each in a differen t color. The center, yellow wheel will be drawn first.
Next, a larger red wheel will be drawn to the right side of the screen. Finally, a white
inner wheel will be drawn close to the screen origin. The result should look like the
following:

Note how the smallest wheel (the wheel closest to 0,0) appears to be packed more
solidly with shapes. The larger, outside wheel seems to be more spread out, less
condensed. This is because we have plotted the same number of moons on two very
different sized circles. The larger the circle, the more spread out the shapes become.
The smaller the circle, the more compressed the design will be. We would need to
plot moons more often (say, every .50 degrees) on the larger wheel to obtain the
same density as the smallest wheel.

ROTAnNG SHAPES 6
Return to text mode and list lines 2035 through 3070 on your screen. The first

item of note is in line 2090. This line calls the translation tool, but without first
giving an XT or YT value. Since you don't set XT and YT, they are automatically
set to 0 by the computer. The shape is then translated 0 columns in X, and 0 rows in
Y (keeping it in the same place).

The V loop will be processed three times, once for each wheel to be drawn. The
first time through the loop we don't want the shape translated. We do, however,
want it translated to different locations the second and third time through the loop.
Line 3050 translates the shape the required distance for the first loop. Notice,
though, that after drawing twenty-seven translated moons in the first L loop (lines
2060-2080), the C matrix is cleared. This means we must translate the shape again
for the second L loop. XT and YT are already set to the necessary offset values, so
Tool 140 is called. This same process is used for the third and final V loop.

Spend some time practicing with your new tool. You should try changing the
degrees of rotation, working with both positive and negative degrees. Translate the
shape to new "starting positions" before each rotation loop. (Make sure that one
wheel does not interfere with another wheel's color blocks if different colored
wheels are to be drawn.)

Refer back to Chapter 5 with any program problems you encounter. You might
not be able to see a rotated shape being drawn if you've translated/rotated it off the
screen. Other than that, no new problems should crop up.

Overcoming Aspect Ratio Problems

We pointed out very early in the book that we would be using graph paper that
had elongated boxes (boxes that are higher than they are wide). We created this
special graph paper to correspond with the elongated pixels on your screen. The
ratio of a pixel's height to its width is called the screen's aspect ratio. This ratio will
vary from screen to screen, but it is always approximately 1.23 to 1 (1.23: I).

This unbalanced aspect ratio causes a problem for anyone trying to use regular
graph paper to work out designs. A shape drawn on regular graph paper will
always be slightly elongated when plotted on the screen.

Take the two triangles below, for example. The triangle on the left is drawn on
regular graph paper. The triangle on the right is what the first triangle will look
like when plotted on the screen.

191

192

6 ROTAnNG SHAPES

SCREEN

A tracing of each triangle, placed on top of each other, reveals the significant
difference the screen's aspect ratio can make:

We recommend that you use copies of our grid when you draw your own designs.
We are aware that this will not always be possible. Fortunately, there is a way to use
graph paper effectively when planning your designs. There will be a slight loss of
accuracy with this method-about 1I200th of a percent-but this loss is obviously
not going to make a significant difference on the screen.

The sketch below shows a piece of graph paper that has a screen grid drawn on it.
This screen grid is 1.25 times higher than it is wide. This is accomplished by using
five blocks in height to every four blocks in width. The result is a screen grid whose
aspect ratio is 5 to 4, which is the same as 1.25 to 1 (5/4 = 1.25).

ROTAllNG SHAPES 6

~ I

-
IV 1'- '

Itl

~ "

"

~:

The large blocks on the grid can represent any block of pixels you desire. If you
want them to represent a 20 x 20 block of pixels, that's fine. The important thing is
that they represent the same number of pixels in height as in width.

The color blocks are no longer defined when you modify graph paper in this
way. Color blocks are always eight pixels by eight pixels. Rearranging your

193

194

6 ROTAnNG SHAPES

drawing area on graph paper will not change that fact. Again, use our specially
designed paper whenever possible. Our special graph paper keeps color blocks and
aspect ratios in mind. You should modify graph paper as described above only
when a copier is not readily available.

Planning the Results of Rotation

Rotation can be a difficult thing to plan for in a design, and equally difficult to
control through the program. The idea of rotating shapes in imaginary locations
off the screen is not an easy concept to grasp. The rotation tool will always remain
somewhat of a mystery, though, if you do not learn to effectively use offscreen
pixels to define and rotate your shapes.

List line 172 and set C equal to 2000 (we'll keep the moon shape so that your
library of shapes starts to build from now on). RUN the ZAP routine.

We are going to take you through the steps necessary to draw this design on your

screen:

o
8

18

24

32

40

48

56

64

72

80

199 88

96

104

112

120

128

136

144

152

160

168

176

184

192

IE ' 1

o 319 TOP OF SCREEN
I I I I I I I I I I I 1222222222222233

I 234 456 788 9 0 I 2 2 3 4 5 6 6 7 8 9 001 234 4 5 6 7 8 890 I
o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 086 4 2 0 8 6 4 202 864

l'~ ""
rI ll 1\).- rI v II

1'1\. "'~ IJ II I\. i.-'v 1'.2 V
I\. ~,....; t--.. I) '" 1\ P c;; r)

l.'1' I' I} ~ at P'J;ji' rJ
C\ r-. I";if... 1/ 1/ ~ ""v 1/

L'l\ r-. t\ ""II' "" ~ II
~ 1\ "-DC ~l.- IV r-.

~ ~ til 1\ ~ 1.1. II'.rl
1\ r-..!J r-.. 7 f-IJ II

1/
1\ [l; II"'- ~

+- IIIIIii ""t- ""+--
,..

~ J..;;~
.loll! l'Io. l.-

II If' It. I...iI "'l' II' I'
r"'ii

I) v 17' [.,j'" 1/ I\r-., 1' 1\
v V I' ~ Iol ~

" r) ~ ~ bC~ ['\ I-'
It rJ ~ III\. " 1\1\.

1/ ~ ~ V N t--1I5. "'- 1\1\
II i.-"~ n II ~ r\

IV, ~~~ t..1o-1t': ' I bI ~ ~'
:lj.;'~ '\ I~ II V I'~ l'

I£Jv Dc ~ II I,..,.. 1/1 1'~1\

x, Y PIXEL POINTS

ROTATING SHAPES 6

If you were to dissect this design, you would find that it was created by rota ting
and translating a single arrow many times. There are three "rings" of arrows, each
ring made up of eight arrows rotated 45 degrees apart from each other.

We will start by rotating and drawing the inner ring of arrows. The original
arrow will be defined so that it falls just left of 0,0 (see the drawing below). This
arrow will be translated 159 columns right, and 99 columns down. This situates the
arrow just left of the center screen, where it will be drawn. That arrow will then be
translated back next to 0,0, where it will be rotated 45 degrees. The rotated
arrow will then be moved to the center of the screen and drawn. This translate,
rotate, translate and draw process will continue until all eight arrows have been
drawn.

9

1

73

5

57

--4 9

--4 1

33

y 25

17

-9

-1
0

8

16

24

32

40

48

56

64

72

eo
BB

96

x
-x, -y
- 1-1-1-1-1-1 - 1
5432210~~~~~~44~~~
3 5 7 9 1 3 5 7 9 1 357 9 1 3 5 7-9-1

~

" II
~
f'" V

~ ~
I~~ l\

I ~"", I"
J...-~ l'

I~

_ 1- "-
""""t-- ~

I' ~
~ I-'

I~ 1/
IJI;II V
r,; ~

V:: kl--
~

Y 1\

+x, -y
1 1 1 1 1 1 1

1 2 344 5 678 8 901 2 2 3 4 5
086 4 2 0 8 6 4 2 08 6 4 2 0 8 6 4 2

-'
J...-'iL

li ~ ~
\

I'
ILl'"

k' v~
V

V 171'
V

I-
t-

j--t""

I" 1Ji-'
1'\ 1\

I" ~l'
~

r-j-,I
1'l I'

V ,...
I'
~

I
\ II

11111 1 1~~~7~~44~~ 1~ 1
54322 1 079 1 3 5 7 9 1 357
3 5 7 9 1 -3 5

-x, +y

o 8 123445678891111 11 1
6 4 208 6 420 8 601 2 2 3 4 5

4 2 0 8 6 4 2

+x, +y
v

VIsmLE SCREEN

~

-7 3

~

~

--4

--4

--3

- 2

- 1

-9
- 1
0

8

16

24

32

40

48

56

64

7 2

eo
BB

96

195

196

6 ROTAnNG SHAPES

The DATA statements below will define the arrow at the proper starting posi-
tion. Type them into your program.

1024 rnTA "ARRCW", 5, 5
1026 rnTA -151, 0,-65,-12,-80,-44
1028 rnTA -16, 0, -80, 44, -65, 12
1030 rnTA 0, 1, 1, 2, 2, 3, 3, 4
1032 rnTA 4, 5, 5, 0

The next set of program lines set the program up for graphics and retrieve the
arrow shape:

2000 OOSUB 10: C=6: mSUB 30
2010 POKE 53280,C
2020 SE$="ARRCM": OOSUB 800
2030 C=l: OOSUB 110
6000 GET A$
6010 IF A$ = "<-" THEtJ msUB 20: END
6020 ooro 6000

Finally, the following program lines provide the information needed to draw a
ring of arrows around the center area of the screen:

2060 XT=159: YT=99: CDSUB 140
2070 OOSUB 90
2080 FOR V = 1 'ID 7
2090 XI'=-XT: YI'=-YT: OOSUB 140
3000 R0=45: OOSUB 160
3010 XT=-XT: YT=-YT: OOSUB 140
3020 OOSUB 90
3030 NEXT V

This program will be easier to understand after you've watched it in action, so
take the time to RUN it now. One at a time, the arrows should be plotted. Each will
appear to point at the very center of the screen. The eighth arrow will complete the
circle made by the program, and your screen will display the following:

ROTAnNG SHAPES 6

Return to text mode and list lines 2000 and higher. Lines 2090, 3000, 3010, and
3020 do most of the work. For each V loop, these lines will:

(1) Translate the arrow back to its last position around 0,0 (line 2090 reverses the
translation that moved the arrow to the center screen);

(2) Rotate the shape 45 degrees more around 0,0 (line 3000);

(3) Translate the arrow back to the center screen and draw it (lines 3010 and
3020).

Suppose the translations had been left out of this program. If you had merely
rotated each arrow 45 degrees around 0,0, and then drawn the arrow, for a total of
seven times, the resulting ring would have been drawn around 0,0 instead of around
159,99. Since the program always translated the shape 159 columns right and 99
rows down, you moved the entire ring to the center of the screen.

The next program lines you will enter create an L loop. This loop will draw three
rings of eight arrows, each ring a little larger than the one before. These are the
program lines to add:

2040 FOR L = 1 'IO 3
2050)IT=M: YT~: OOSUB 140
3040 OOSUB 110
3050 M = M-24: NEXT L

197

198

6 ROTAllNG SHAPES

RUN the program. The first ringof arrows will be redrawn as before. After that, a
new ring, and then another, follow. Each ring is slightly larger than the one before.
The program will be finished when the following design is displayed:

Return to text mode and list lines 2040 and higher on the screen. The L loop
executed three times. The first time through the loop, the shape was translated °
along the X axis (M is set to 0) and ° along the Y. This left it at its original starting
position. The ring of eight arrows was created from that starting position.

The variable M was set to -24 when the first loop was completed. Thus, at the
beginning of the second loop, the arrow was translated -24 pixels on the X axis, and ° pixels on the Y axis. This new starting position was used to create the second ring
of arrows.

The variable M was then set to -48 (M =-24-24) at the end of the second loop. This
set the third loop up to translate the arrow to its third and final starting position.
The third ring of arrows was drawn from that new position.

That completes this chapter's discussion and exercises concerning rotation.
There is much more that can, and should, be explored with this new tool that space
prohibits us from covering. We cannot emphasize enough the knowledge that can
be gained through practice. Draw shapes, translate them, scale them, and rotate
them. Draw shapes on the screen, off the screen, and around 0,0. Rotate shapes with
negative degrees and positive degrees. Paint your shapes. Paint with and without
pre-defined paint points. (The center area of this arrow design can be painted with
a program line 3060 setting X=159, Y=99, and a GOSUB 62.)

ROTATING SHAPES 6

The next section discusses the mathematics involved in rotation, if you are
interested. The tool box for ROTATE A SHAPE is presented there, followed by the
design ideas relating to rotation, and the summary section.

The Mathematics of Rotation

The math behind rotation is more complicated than the math behind translation
or scaling. To begin with, rotation can be performed on polar coordinates more
easily than it call be on Cartesian coordinates. This means that the Cartesian
coordinates of your shape must first be converted to their polar equivalents. The
rest of this section is devoted to a discussion of polar coordinates, and how those
coordinates are used with your ROTATE A SHAPE tool.

Note: We will discuss the rotation of a single point as we explain polar
coordinates and rotation in general. A rotated shape is produced by rotating
its endpoints, and then connecting those endpoints in the manner described
in the L% array.

The polar coordinate system is another method of describing and displaying data
graphically. It is used to describe the same points that the Cartesian system does,
but in a different manner. This system is based on two-dimensional space, and
cannot be used to describe a three-dimensional object.

There is only one axis in the polar coordinate system. This axis lies on a plane,
beginning at point 0, and runs horizontally to the right:

o •• --------~)

Any point that lies on the plane can be located and described in terms of the
radius and angle it creates. The radius is the distance between the point and the
origin (Point 0):

An angle is formed by the intersection of the axis and the point's radius line (the
line that connects the point to the origin). The size of the angle is measured in terms
of degrees. The size is equal to the number of degrees between the axis and radius
line.

199

200

6 ROTATING SHAPES

I
(

\

/

"'"

o AXIS LINE

)
Each point has its own unique combination of radius length and angle degrees.

Many points have the same radius (forming a circle around point 0), and many
points have the same angle (forming a line that extends out from point 0), but no
two points share the same radius and angle.

Let's suppose we wanted to rotate the point plotted above (Radius = 5, Degrees in
Angle = 45) 25 degrees. What new polar coordinate would we arrive at?

A point, no matter where it is rotated, retains the same radius. Rotating a point
with a radius of 5 produces a point with a radius of 5. It is the angle, then, that
changes in a rotated point. Look at the next diagram:

/
(

\
~ /

/

Degrees in
New
Ang le =
45 + 25 = 70

Notice that by adding the degrees of the original point (45) to the degrees of
rotation desired (25), you arrive at the degrees that the rotated point will have (70).
This gives you all the information necessary to describe the new point in polar
coordinates: Radius = 5, Degrees in Angle = 70.

We should point out that the direction of rotation is reversed on your screen. In
polar coordinates, rotating a point 25 degrees will rotate it counterclockwise

ROTAnNG SHAPES 6
around 0,0. The opposite is true on your screen. This was done to correspond to the
reversed Y axis in Cartesian coordinates.

We can begin explaining the math now. The formulas we use are all given an
"Equation #" for reference throughout the discussion. Basic trigonometry func
tions (Sine and Cosine) are used without explanation. A description of each
variable used in the equations is as follows:

X= X coordinate of original point
Y= Y coordinate of original point
X' = X coordinate of rotated point
Y' = Y coordinate of rotated point
R= Radius of X, Y
DI = Degrees of Angle created by X,Y
D2 = Degrees of rotation desired

The first formulas to examine are those that convert polar coordinates to Carte
sian coordinates:

R·COS(DI) = X
R·SIN(Dl) = Y

[Equation # 1]
[Equation #2]

These formulas are explained in greater detail in the appendices. You will need
to trust us at this point that they are correct.

Based on Equations #1 and #2, we can arrive at similar equations that describe the
point after it has been rotated. We know that the new point will have the same
radius . We also know that the new point will have an angle equal to D I plus the
desired degrees of rotation (D2). This gives us the following formulas:

R ·COS(D 1+ D2) = X'
R·SIN(Dl+D2) = Y'

[Equation #3]
[Equation #4]

Now let's turn our focus on the formula for X' (Equation #3). This equation can
be rewritten as:

[Equation #5]

Equation #3 and Equation #5 will always produce the same results (given the same
values for each variable). Each is just a different way of expressing the same
mathematical procedure. A more detailed explanation of this conversion is given in
the appendices.

The variable R in Equation #5 can be distributed as follows:

X' = R·COS(Dl)·COS(D2) -R·SIN(Dl)·SIN(D2) [Equation #6]

Look closely at Equation #6. You will see that Equation #1 (R*COS(Dl» and
Equation #2 (R ·SIN(D I» are a part of this equation. Since Equation #1 is equal to
X, and Equation #2 is equal to Y, the variables can replace portions of the Equation
#6 as follows:

X' = X·COS(D2) -Y·SIN(D2) [Equation #7]

The values for X, Y and D2 are known values, so we can now solve for the value of
X' .

201

202

6 ROTATING SHAPES

The next coordinate to find is Y' (the Y coordinate of a rotated point). Again, the
formula that will yield this value is:

Y' = R·COS(Dl+D2) [Equation #8]

This formula can be re-wriuen as follows:

Y' = R·[SIN(Dl)·COS(D2) + COS(Dl)·SIN(D2)] [Equation #9]

Distributing the R variable throughout produces:

Y' = R·SIN(Dl)·COS(D2) + R·COS(Dl)·SIN(D2) [Equation #10]

This formula also contains Equations #1 and #2. Substituting their equivalents
(X and Y) in the formula gives us:

Y' = Y·COS(D2) + X·SIN(D2) [Equation #11]

This formula can be solved by inserting the known variable values for Y, X and
D2.

There is one more thing, however, that we had to account for in our ROTATE A
SHAPE tool: an adjustment for the screen's aspect ratio. The aspect ratio, as
discussed in the previous section, is the ratio of a pixel's height to its width. Pixels
are approximately 1.23 times higher than they are wide. This means that a horizon
tal line of 10 pixels is shorter in length than a vertical line of 10 pixels. If we were to
rotate a horizontal line 90 degrees, keeping it the same number of pixels in length,
we would end up with a line that was physically longer than the one we started
with. This can cause many shapes LO become misshapen.

Our formulas must include an adjustment so that, as a shape rotates, it does not
become elongated. The final formulas, which include the adjustment for the
screen's aspect ratio, are:

X' = X (COS(D2)) - Y (SIN(D2)) • 1.23
Y' = Y (COS(D2)) + X (SIN(D2)) / 1.23

TOOL 160 ::::::: ROTATE A SHAPE

160 REM:::::::ROTATE A SHAPE
161 OOSUB 120
162 RD=RO/360*2* Tr

163 T(0,0)=COS(RD): T(0,1)=Sll1(RD)/1.23
164 T(1,0)=-Slll(RD)*1.23: T(l,l)=COS(RD)
165 rom 130

What It Does: This tool will rotate a shape a specified number of
degrees. The shape will rotate around 0,0, rotating in a clockwise
direction for positive degrees, and rotating in a counterclockwise direc
tion for negative degrees.

Example Use: The single variable that must be set to use this LOol is
RO. This variable should be set to the number of rotation degrees
desired (e.g., RO=45). This should be followed immediately with a
GOSUB 160 statement.

ROTATING SHAPES 6

The shape that was last retrieved by Tool 800 will be rotated. It will be
rotated around 0,0 according to its current position on/ off the screen.
Clearing out the C matrix with a GOSUB 110 statement will ensure that
the original form of the shape is rotated.

Technical Description: Rotation is similar to the other transforma
tion tools, except the T matrix looks like this:

o
1

2

o
COS(O)

-SIN (0)

0

T Matrix
1 2

SIN (0) 0

COS(O) 0

0 1

Since the aspect ratio of the TV picture becomes a factor when a shape
is rotated, we have adjusted this matrix so the shape's size is adjusted as it
rotates. The adjusted T matrix looks like this:

o
1

2

T Matrix
o 1

COS(O) SIN (0)/1.23

-SIN(O) °1.23 COS(O)

0 0

More Design Ideas

2

0

0

1

The sketches we will be showing here combine translation, scaling, and rotation
techniques. These three transformation tools take three time-consuming tasks, that
together require considerable expertise in math, and turn them into commands to
the computer in the form of GOSUB statements.

New shapes can be made from different shapes. A triangle ~s scaled, rotated and
translated in order to compose the sculptural-looking design that folJows. This
design appears to be folded, like a paper model. It suggests depth and dimension.

203

204

6 ROTAnNG SHAPES

In the next sketch, a triangle has been scaled, rotated and translated to create a
pattern. The previous sketch resembled the depth found in folded paper. This
design emphasizes the linear qualities of shapes.

A new look to the last design can be achieved by coloring some of the shapes. The
pattern is distinctly visible as a combination of solid shapes (see below). This
characteristic is different than the linear features found above. The coloring here
emphasizes the contrast between light and dark.

ROTAnNG SHAPES 6

An African mask can be made from a few basic shapes, such as a circle and a
triangle. These basic shapes have been scaled into new shapes in the next picture.
For example, a circle was scaled to make the oval shape. Transforming and
combining shapes can result in entirely new and intriguing designs. In this picture,
the same mask is translated, rotated and scaled into different sizes. The rotation
provides variation in the arrangement.

Each of the linear shapes below expresses a visual direction. Each shape directs
the movement of our eyes, like a pointed arrow. The shapes appear to be floating in
a flat space: no sense of depth is indicated. The overall design is arranged in a
well-organized fashion.

The arrow shapes in the following sketch are intentionally placed to direct
attention to the middle of the screen. A diamond pattern is created at the center
where the shapes overlap. The design is structured and carefully arranged.

205

206

6 ROTATING SHAPES

In the next picture, a tension occurs at the points where the angular, directional
lines meet the vertical lines. The directional lines appear to be active and alive
compared to the calm nature of the vertical lines. A sensation of attraction and
repulsion is created by the direction of the lines.

In contrast to the above, the next composition demonstrates chaos, tension and
disorganization. There seems to be greater tension and activity where the shapes
repeat and overlap. The placement of shapes appears to be random.

ROTAnNG SHAPES 6

Rotating, scaling and translating an arrow created the busy composition shown
next. The arrangement of shapes is a random placement, with lines pointing in
every direction. The resulting composition is busy with activity.

Summary

Congratulations! You have just completed what might be called "Part I" of this
advanced graphics book. Your tool kit is now complete-containing all the
advanced tools that don't deal directly with sprites. The basic tools, such as DRAW
A SHAPE and PAINT A SHAPE, should be becoming second nature to you. The
transformation tools (translate, scale, and rotate) take a little more practice, but in
time will be just as easy to control and use as PLOT A LINE.

This chapter dealt specifically with rotation. You learned that two-dimensional
rotation can be used to move a shape along a circular path. The exact path of
movement was determined by the shape's relation to the screen's origin (0,0).

A shape that rests on 0,0 turns in place, pivoting around the origin. A shape that
was unanchored (i.e., point 0,0 was not a part of it), would rotate around 0,0 in a
complete and perfect circle. The distance the shape rotates depends on the number
of degrees specified by the value of the variable RO.

One degree is 1I360th of the circular rotation path of the shape. If you set RO to
360, the shape will be rotated the entire distance around 0,0, placing it back where it
started. Setting RO to 180 will rotate the shape half way around the circle. Sim
ilarly, setting RO to 90 will rotate the shape a quarter of the full distance; and
setting RO to 45 will rotate the shape an eighth of the full distance.

The direction of rotation (clockwise vs. counterclockwise) is determined by the
sign (+ or -) of RO's value. If you assign RO positive degrees (RO=+?), then rotation
will be clockwise. If you assign RO negative degrees, then rotation will be
counterclockwise.

007

208

6 ROTAnNG SHAPES

Refer to the above as you take on this chapter's exercise challenge. First SAVE
your program under the filename "CHAPTER 6."

Exercise

Define the shape drawn below with DATA statements. In the main routine,
begin by scaling the shape three times in height and three times in width. Next,
create a loop that:

(1) Rotates the shape 15 degrees counterclockwise;
(2) Translates the shape to the center of the screen;
(3) Draws the shape;
(4) Translates the shape back around 0,0.

Cause this loop to execute 12 different times. You may draw in any colors you
wish. We have chosen purple (4) as the background color, and white (1) as the
foreground color.

-8 9

-8 ,
73

-8 5

-.5 7

-<19

-<I ,
-33

25

17
y

-9

-,
a
8

'8

24

32

40

48

56

84

72

80

88

96

x
-x, -y
-, -, -, -, -, -, -,

5 4 3 2 2 , 0-9-8-8-7-8-5-<1-<1-3-2-'
3 5 7 9 , 3 5 7 9 , 3 5 7 9 , 3 5 7 -9-'

/i'
/

+x,-y
, "",

, 2 3 4 4 5 6 7 8 8 9 a 223 4 5
a 8 6 4 2 a 8 6 4 2 a 8 6 4 2 a 8 6 4 2

,

11''\
1'\ !:I n

\ 11''' V
'\1/

- 3 hE

, , , , ,-, '-9-8-8-7-8-5-<1-<1-3-2-'-9-'
54322'07913579'357
3 5 7 9 , 3 5

-X, +y

/
~, IE

a 8 , 2 3 4 4 5 6 7 8 8 9 , 1 , , 1 1 1
6 4 2 a 8 6 4 2 a 8 6 a , 223 4 5

4 2 a 8 6 4 2

+X,+Y

VISIBLE SCREEN

-8 9 , -8

-7 3

-8

5

-<I 9 , -<I

-3 3

-2 ,
-9

-,
a
8

'6

24

32

40

48

56

64

72

80

88

96

ROTAnNG SHAPES 6

Solution

A solution program is shown below, followed by a picture of the design intended.

1034 uz\TA "SHAPE",5,5
1036 uz\TA -23,-16, 23,-16, 39, 0
1038 uz\TA 23, 16,-23, 16,-39, 0
1040 uz\TA 0, 3, 4, 1, 1, 2, 2, 3
1042 uz\TA 4, 5, 5, 0
2000 (l)SUB 10: C--4: OOSUB 30
2010 SE$="SHAPE": OOSUB 800
2020 POKE 532A0,C
2030 OOSUB 110: 0=1
2040 :XS=3: YS=3: OOSUB 150
2050 FOR L = 1 'ID 12
2060 RO=-15: GOSUB 160
2070 XT=159: YT=99: GOSUB 140
2080 OOSUB 90
2090 XT=-XI': YT=-YT: OOSUB 140
3000 NEXT L

209

210

You can enhance the design by painting some of the new shapes created during
the rotation. These shapes cannot be painted until the design is complete (try
painting as you go and you'll see what we mean). Modify the program as follows,
and then RUN it:

1034 Dl\TA "SHAPE", 7, 5
1039 DA~ -37, 0, 37, 0
2050 FOR L = 1 TO 24
2085 IF L>12 'IHEN PP=6: CDSUB 60: PP=7: OOSUB 60

Chapters 7 and 8 deal in sprite graphics. Sprites are small movable figures that
add animation to your designs. Chapter 7 covers "beginning" sprite concepts (how to
create, move and place sprites). You should read this chapter, even if you are already
familiar with sprite graphics, because Chapter 8 relies on Chapter 7's program.

Chapter 8 deals with more advanced sprite features, such as sprite collision detec
tion and sprite joystick/keyboard control. If you've ever had a secret desire to create
the next best-selling video game for the Commodore 64, you won't want to miss this
chapter.

Finally, you are at a point where the appendices can be of real value to you.
Perhaps the most immediate benefit will be gained from the SAVE PICTURE and
PRINT PICTURE subroutine tools provided in these appendices. Color charts
and design grids have also been placed there for easy access.

Chapter 7

MAKING AND MOVING SPRITES
This chapter will teach you about about sprite graphics-one of the most

exciting and easy-to-use graphic techniques yet. Sprites are small plotted objects or
cartoon-like figures that can be moved around on the screen. They are exciting
because they add animation to your picture. They are easy to create and manipulate
because almost all of the work is handled by GOSUB statements. This chapter takes
you step-by-step through the process of making and moving a spacecraft sprite across
your picture.

Begin by LOADing the program "CHAPTER 6". Then, set C=1008 in line 172,
and RUN the ZAP routine.

If you have the Commodore 64 Programmer's Reference Guide or the User's
Guide, then you have probably read the chapter covering sprites. In these books, a
hot air balloon sprite is moved on the screen by running the corresponding BASIC
program. In the next section, you will find out not only what a sprite is and how to
make one, but, also, all of the exciting features of sprites.

Introduction to Sprites

W hat is a Sprite?

A sprite is like one of the little moving figures on a video arcade screen. It is a small
shape that can be moved on the screen to create a cartoon-like picture of animation.
"Animation" means that the picture shows movement. The versatility of sprites
makes them different from any other shape you have previously plotted.

Think of a sprite as a small cut-out figure which can be moved around the screen
independently of any other figure already in the picture. It can move up, down,
right, left, and diagonally. It can move behind other objects or in front of them. It
can fade off or onto the screen. It can even move into a color block with no adverse
affect on that portion of your picture. Each sprite is a separate, individual image
which acts independently of any other plotted shape, line, point, or even other
sprite.

You can design, paint, enlarge, and move your sprites. In this chapler, you will
by moving a spacecraft sprite across your picture. All the special features of sprites
will be covered in detail. The next section discusses the various stages in designing a
sprite. If you have worked with the hot air balloon sprite in the User's Guide, you
will see that the spacecraft sprite is made in the same way.

Designing a Sprite

Designing a sprite is similar to drawing and designing your main picture. It is
done on a grid (graph sheet), where each little square represents one pixel. Sprites
must be designed within a block of 504 pixels. This block of pixels, called a "Sprite
Design Grid," is 24 pixels wide and 21 pixels high (24 x 21 = 504 pixels). The sprite's
image-what it will look like-is defined inside this grid. Let's take a look at one
such grid already shaded for our spacecraft sprite.

211

212

7 MAKING AND MOVING SPRITES

SPRITE DESIGN GRID DATA STATEMENTS
(TOP)

A B C
SUM J SUM J SUM 1 1 1 BASIC DATA OF OF OF 263 1 2 63 1 263 1

842 6 842 1 8 4 2 6 8 4 2 1 8 4 2 6 8 4 2 1 LINE # ABC
ROW # 0 1010 cv.TA 0 o 0

1 1012 cv.TA 0 '--0-'----0

2 1014 cv.TA 0 '--16-'----0
3 1016 cv.TA 0 '----SS-'----O
4 1018 cv.TA 0 '----SS-'---O
5 1020 cv.TA 0 '----SS-'-----O-
6 1022 cv.TA 0 '----SS-'-----O-
7 1024 cv.TA 0 '~'-----O-
8 1026 cv.TA 1 '187'-----0-
9 1028 cv.TA 3 '255'~
0 f· l' k- 1030 cv.TA 3 '255'~
1 I i, li r·o 1032 cv.TA 15 '~'~

2 6!. 1034 cv.TA 252 '---:rn-'~
3 1036 cv.TA 252 '----ss-'~
4 1038 cv.TA 128 '~.~

5 1040 cv.TA 128 '----s6'---"2
6 1042 .cv.TA 0 '-----SS-' -------0-
7 1044 cv.TA 0

'--_.,-----;;--

,~, 0
8 1046 cv.TA 0 ,~, -------4-
9 1048 cv.TA 0 146 0

20 1050 cv.TA 0 '-146-'-------0-
,- ---,-

16318421 16318421 16318421
2 4 2 6 2 4 2 6 2 4 2 6
8 8 8

A sprite is originally designed on a Sprite Design Grid, (The Appendix contains
a blank Sprite Design Grid to make copies of when designing your own sprites,)
The first step in designing a sprite is to lightly pencil sketch an outline of it on the
Sprite Design Grid. Make sure that the grid pattern shows through your sketch.
Then, lightly shade the squares inside the sprite sketch. It's easiest to outline the
shape first, and then shade in the squares. Two important rules to keep in mind
when designing a sprite are:

(I) Each square on the grid represents one pixel on your screen, so your design
should not cut through any squares. If your sprite 's design falls into a square,
shade in the entire square.

(2) A sprite can be only one color. The spacecraft sprite, for example, will be solid
yellow.

A sprite can be displayed on the multi-color screen, but only in one color. There
is a way to create multi-colored sprites, but this book will not be addressing that
topic.

Once the sprite has been sketched and shaded, DATA statements that describe the
sprite should be gathered. This is the only part to making and moving sprites that
will take much concentration at all. Pay careful attention to the next few
paragraphs.

Look at the top of the Sprite Design Grid as illuslrated below. This grid is
divided up vertically (up and down) into three sections. These sections are labeled

MAKING AND MOVING SPRITES 7

A, Band C. Each section contains 8 pixel columns. For each section, the columns
are numbered: 128,64, 32, 16, 8, 4, 2 and I.

SPRITE DESIGN GRID
(TOP)

A B C
1 1 1
2 6 3 1 2 6 3 1 2 6 3 1
8 4 2 6 8 421 8 4 2 6 8 4 2 1 8 4 2 6 8 421

These numbers are the key to gathering the necessary data statements. Each
number shows the value assigned to each shaded pixel in its column. Thus, each

shaded pixel in the first column has a value of 128. Look back to the spacecraft
design. For the first column this would involve the pixels in row 12 through 15. Each
of these four pixels has a value of 128. Each shaded pixel in the second column has a
value of 64. The shaded pixels in the third column each have a value of 32. And so on.
Notice our emphasis on each shaded pixel-we are not talking about an entire column
having a value of 128 or 64 or 32 or whatever. Also notice our emphasis on shaded
pixels. If a square (pixel) is not shaded, it has a value of zero (0) because it is not a
part of the sprite.

For each row in the grid, you must compute three totals using these values. First,
you must total the values for the 8 squares in section A. Next, you must total the
values for the 8 squares in section B. Finally, you must total the values for the 8
squares in section C. These three totals are written to the right of each row, under
SUM OF A, SUM OF B and SUM OF C.

These "sums" are your data. Each horizontal row in the grid is equal to three
separate pieces of data that the computer can read. The computer will know how to

define the sprite from these data sums. Instead of figuring out 504 different
numbers for the 504 individual pixels, you only have to determine 63 numbers (21
rows x 3 data sums = 63). Later, these data sums are typed into the program as data
statements.

Using the design for the spacecraft sprite, let's see how the 63 data sums were
found.

213

214

7 MAKING AND MOVING SPRITES

ROW #

SPRITE DESIGN GRID

(TOP)

A

1 6 3 1 8 4
2 4 2 6
8

B c

16318421
2 4 2 6
8

DATA STATEMENTS

First, it helps to line up a piece of paper along the row you are summing. Each
row is numbered on the left side of the grid, from row 0 to row 20. Again, for each
row there will be 3 sums-SUM OF A pixels, SUM OF B pixels, and SUM OF C
pixels. Each sum is the sum of only the shaded pixels in sections A, B or C. Looking
at these three sections in row 0, you can see that all three are blank . A blank section
is unshaded. The sum for any blank section is zero (0). On the right side of the grid
are 3 areas called SUM OF A, SUM OF B and SUM of C:

DATA STATEMENTS

SUM SUM SUM
BASIC DATA OF OF OF
LINE # A B C

1010 DATA 0 0 0 , ,
DATA , ,
DATA , ,
DATA , ,
DATA

, ,

MAKING AND MOVING SPRITES 7

On the same row as the pixels just added (row 0), you would write down a lero (0)
as the total for each section.

Sliding the paper down a row, the values for the next row are summed. Again you
find that all three sections in this row for the spacecraft sprite are blank. Thus, a 0 is
noted as the sum for A, Band C at the end of row 1.

Moving down to row 2, you find that there is now a shaded pixel to sum. Section
A of row 2 is empty, so its sum is O. Section B of this row, however, has a single
shaded pixel. This pixel is in a column that has a value of 16. Since there are no
other shaded pixels to sum up in this section, the sum of section B (row 2) is 16.
Section C, being entirely unshaded, has a sum of O. The sums for row 2, then, are 0
for SUM OF A, 16 for SUM OF B, and 0 for SUM OF C.

Let's try a more difficult row. Look at row II. Section A of row II contains four
shaded pixels. These pixels fall into columns that have values of 8,4,2, and 1. The
SUM OF A for this row is equal to 8 + 4 + 2 + I, or IS. All eight pixels in section Bare
shaded for row 11. The SUM OF B is the sum of all eight column values (128 + 64
+32 + 16 + 8 + 4 + 2 + I). This sum is 255. Finally, section C of row 11 has only its first
three pixels shaded. These pixels have values of 128, 64, and 32. The SUM OF C =
128 + 64 + 32 = 224.

This straightforward and easy data collection method is used for each sum of
each row, down through the grid. A blank section always has a sum of zero, and an
entirely shaded section always has a sum of 255.

It's important that each sum is added correctly and written by the appropriate
row. When you later enter the program to draw the sprite, these sums will be typed
as data statements and will tell the computer exactly how the sprite should look.

In your Commodore 64 User's Guide you will notice that the data for the balloon
sprite is derived in the same way. Following is an example illustrating the balloon
and its data.

215

216

7 MAKING AND MOVING SPRITES

ROW #

SPRITE DESIGN GRID

(TOP)

A B C

16318421
2 4 2 6
8

DATA STATEMENTS

BASIC
LINE

Note the unshaded pixels inside the balloon. These unshaded pixels will display
portions of the main picture as the balloon travels across the screen. These pixels
are like "windows" in which you can see the underneath images. Through them,
you can see other shapes within the picture, other sprites (if you have more in the
picture), and the background color. This see-through effect is a truly unique
feature of sprites.

At anyone time you can have up to eight sprites in the same picture. Each sprite
is independent of anything else in the picture, including other sprites. Each sprite
can be a different shape, and so there can be up to eight different sets of data. Sprites
can also be the same shape, in which case the same data statements are used.

In order for the computer to keep track of the sprites in your picture, each one is
labeled. This label is called a sprite pointer and is a number from 0 to 7. The sprite
pointer "points" to the place in memory where its sprite's data is stored. Our
program reserves eight special locations in memory for storing sprite data.

Once a sprite is defined, it can be colored with one of the sixteen available sprite
colors. It can also be enlarged, erased and re-positioned, erased entirely, and even
guided around the screen. There can be up to eight sprites on the screen at one time,
each of which can be a different shape, size, and color.

MAKING AND MOVING SPRITES 7

Special Features of Sprites
Sprites have several features which are available only to them. This list of

features includes:

-define/retrieve sprite.
-turn on/ turn off
-X expand/ X unexpand
- Y expand/ Y unexpand
-combined X and Y expand
-sprite priority over a sprite
-sprite priority over a shape/ shape priority over a sprite
-sprite color
-place sprite at X, Y screen location
-move sprite from Xl ,Yl to X2,Y2

Although this list needs some explaining, you get the idea of how much control
you have over sprites. These features come in packages called (what else?) subrou
tine tools. In fact, you will be adding 12 more tools to your tool kit before this
chapter is over. Don ' t worry. The tools are very short, and will save you a great deal
of repetitious work that might otherwise be required without them. A complete
discussion of each sprite feature follows.

Define/ Retrieve Sprite
To create a sprite, you must first define what it looks like. This is done by

entering data statements describing, row-by-row, which pixels should be painted
in order to form the sprite. The data statements are read and stored in memory.

Turn On / Turn Off
Once a sprite is defined, it must be "turned on." This feature turns on the

appearance of a sprite. Note that a sprite must be placed on the screen (see "Place
Sprite At X,Y") in order to see it once it is on. Thus, there are three steps to viewing
a sprite: defining it, turning it on, and placing it on the screen. To make a sprite
disappear from the picture, you would use the "turn off" feature. Turning a sprite
on and off is like flipping a light switch. Some interesting visual effects like
flashing and blinking can be achieved by alternating between these features.

X Expand /X Unexpand
The "X expand" feature doubles the width of the sprite. This is done by

duplicating each column in the sprite. The duplicate columns are then alternated
with the originals to produce the wider sprite. To understand this better, look at the
two diagrams below. The first one shows a sprite in its original form as designed on
the sprite grid. The second diagram shows how the columns are duplicated on the
screen. (The lightly shaded columns are only shaded as such to point them out as
the duplicates. When expanding a sprite, all pixels are plotted in the exact same
color.) Notice how the original sprite below does not use the first 2 columns of the
sprite grid. When the sprite is made wider, those first 2 columns (even though
empty) are duplicated along with the others.

217

7 MAKING AND MOVING SPRITES

SPRITE DESIGN GRID DATA STATEMENTS

(TOP)

A B C SUM I SUM I SUM 1 1 1 BASIC DATA 0: ~ ~ I~ 6 3 1 263 1 ~n~8421 42684 2 1 8 4 2 6 8 4 2 1 LINE (;
ROW # 0

1 ~
2 ~
3 ~ ~I", .-
4 ~ .. -
5 .. -
6 .. -
7 t. '
8

9

10

11

12

1

14

15

16

17 -.-
18

19

20

1~:~~8421~:~~84211~:~~8421
6 8 8

218

MAKING AND MOVING SPRITES 7
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

0123456 7a92.1F3~ 5~7r!9012 3 4 5 6 7 a 9 0 1 2 3 4 5 6 7 a 9

0
x

-1
r- r-

2
r- r-
..... - f-

3
f-

4

5 r- - r-

6
r-

7
r-

a f- -
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

y

The "X unexpand" feature removes all the duplicate columns, and thus returns
the sprite to its original size. X expand is useful in adding variety to a picture that
contains otherwise identical sprites.

219

220

7 MAKING AND MOVING SPRITES

Y Expandl Y Un expand
When "expanded" in Y's direction, a sprite's height doubles in size. Each row of

pixels in the sprite is duplicated. Taking the X expanded sprite in the last diagram,
a Y expand would result in:

1 111 1 1 111 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
0123456 7 8 9 0 1 234 5 6 7 8 9 0 1 234 5 6 7 8 9 0 1 2 3 4 5 6 789

0 r t::j t ·~, ~ ~~I I:i~ ~ I~
x

1

2

3

E 9~ ~ I~_---4 ~lft~
5

6 - r~ ~~_~_I~~
7

~ I~ ~ I···~II 8 I:~- ~
9

~-= .. IIG~ 10

11

~-~ 12

13

14 r:! [~: 1-.11 l'.! r;1i r,,,:
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 J
y

The "Y unexpand" feature removes the duplicated rows, and thus changes a Y
expanded sprite back to its original height.

Combined X and Y Expand
By combining X expand and Y expand, a sprite will double in both width and

height. The sprite would resume its original size when both the X unexpand and
the Y unexpand features are selected.

Sprite Priority Over a Sprite
A sprite can be made to appear in front of another sprite in a picture. For

example, when two moving sprites cross paths, one will appear to pass in front of

MAKING AND MOVING SPRITES 7

the other. This sprite, the one passing in front, is said to have greater screen
"priority" than the other. Priority determines the order in which the sprites will
stack up visually on the screen. This priority is determined by each sprite's number.
The sprite having the lower number will always have priority over a sprite with a
higher number. For example, Sprite 0 has top priority and will always appear in
front of other sprites on the screen. Sprite 4 has priority over Sprites 5 -7. Sprite 7 has
no priority in relation to the other sprites.

Overlapping is particularly successful when the front sprite is defined with an
opening or window. Through this window the sprite behind can be seen. Sprite
priori ty should be considered when developing your animation designs, and before
you enter the program.

Sprite Priority Over a Shape / Shape Priority Over a Sprite
If you use the "Sprite Priority Over a Shape" feature for the spacecraft sprite,

then the spacecraft will appear in front of any other shapes in the picture. This type
of sprite priority determines whether a sprite is displayed in front of or behind
other plotted shapes. It is an effective feature when used with a sprite that has a
"window" in it. As the sprite moves, you will see other shapes and the background
color through this hole. If you use the "Shape Priority Over a Sprite" feature, then the
sprite would appear behind any other plotted object on the screen.

NOTE: A sprite always has priority over the background colors of the screen.
When in or passing through a color block, the sprite will always show up in
place of any background pixels it comes across.

Sprite Color
The "Sprite Color" paints a sprite with a solid color. It paints the shaded pixels

in the Sprite Design Grid which were changed to data values. All pixels in the
sprite will be displayed in the same color.

A color code should be individually assigned for each sprite, even if all eight
sprites are the same color. (If a sprite is not assigned a color in the program, it will
automatically be assigned the color black.) There are sixteen sprite colors and color
codes (0 through IS):

o black
I white
2 red
3 cyan

4 purple
5 green
6 blue
7 yellow

8 orange
9 brown
10 lite red
II dark grey

12 medium grey
13 lite green
14 lite blue
IS lite grey

Each sprite's color is independent of any other color block in the picture. It will
not influence or change the colors used to plot points, lines or shapes. A sprite can
only change the color of a pixel if it passes over it, and has priority over it.

Place Sprite At X,Y
Once you define and turn on "a sprite, you must place it on the screen. A sprite

can be placed anywhere on the screen. In fact, sprites can even be placed partially or
fully off of the screen.

You place a sprite by specifying where the sprite's origin should be positioned on

221

222

7 MAKING AND MOVING SPRITES

the screen. An origin is simply a point of reference. The screen's origin, as you
know, is always the pixel at 0,0. A sprite's origin is always the pixel represented by
the top left square on the Sprite Design Grid. Recall that data statements will be
entered describing all 504 squares on this grid. If you specify where the sprite's
origin square should be placed (even if its not actually a part of the sprite), the
computer can easily position the rest of the squares accordingly.

To position the origin, an X and a Y value are given in the program. This
produces an X,Y coordinate, which is where the origin gets positioned on the
screen. X defines the horizontal placement of the origin, and Y defines its vertical
placement. Think of a sprite as a piece of paper being pulled around by its origin
pixel.

When the origin is re-positioned, the image of the sprite is moved accordingly.
Following is an example of two sprites placed on the screen. The boxes around
each represent the "invisible" grid the sprite was drawn on. The small dot in each
box represents the origin square. The sprite in the top, left-hand screen corner has
its origin positioned at 0,0. The second sprite has been centered in the screen. To do
this, its origin has been placed at position 148,90.

160
0~2~3 ___________ 14_8 ____ 1_72 ______________ ~319

20

90
100

110

199
148 172

160

90
100

110

Think of this as if the whole sprite grid will be placed on the screen. The grid will
be pulled and moved whenever you re-position the origin square.

MAKING AND MOVING SPRITES 7

Move Sprite From XI,YI to X2,Y2
You can move a sprite vertically, horizontally and diagonally across the screen.

This means you keep the sprite on the screen at all times, but move it from one
location to the next. Its path of movement is like a straight line. To move a sprite,
you specify an Xl, Y I location and an X2, Y2 location. The sprite's origin is then
positioned at the XI,YI location,and it moves in a straight path to the X2,Y2
location. As it does, the rest of the sprite follows. For example, the sprite could
start where Xl=40 and Yl=80, and travel across to where X2=200 and Y2=80. As
shown below, it 's the sprite's origin that is moved along the linear path .

• XI,YI

Sprites can travel in any direction-from left to right, right to left, top to bottom,
bottom to the top, and diagonally. The sprite moves in a straight line between the
starting (X I, Y 1) and ending (X2, Y2) points specified.

When moving a sprite, you can control its speed of movement-how fast it
travels. This is not exactly in miles per hour, but sprites can move at a pretty good
clip. The rate of speed is expressed numerically by assigning a value to "SD." This
value tells the computer how many pixels to skip between each sprite placement. As
the sprite moves across the screen, it is actually being erased and re-drawn elsewhere
many times over. If SD is set to 10, the computer erases and re-draws the sprite every
10 pixels. When trying out different speeds, be careful. The higher the speed, the
more jerky the sprite's movement appears.

With this method of movement, two sprites can not be moved at the same time.
To move two sprites concurrently, you would have to alternate between them,

223

224

7 MAKING AND MOVING SPRITES

creating a loop that erases and then places each one a little bit farther over each
time.

In the next section you will have the opportunity to tryout these special sprite
features. With some practice, you will soon be designing all kinds of interesting
animations on your Commodore.

Drawing and Placing the Spacecraft Sprite

You are going to create the spacecraft shown earlier, and then experiment with it
using the various sprite features we discussed. Start by typing the "setup" portion
of your program as follows :

2000 OOSUB 10: C=ll: (l)8UB 30
2010 POKE 53280,C
6000 GEl' A$
6010 IF A4 = II +--" THEN OOSUB 20: END
6020 ooro 6000

Next, type in the data statements that define the spacecraft:

1008 D.l\TA 1CRAPl'1", 31, (3

1010 DATA 0, 0, 0
1012 D.l\TA 0, 0, 0
1014 DATA 0, 16, 0
1016 DATA 0, S6, 0
1018 DATA 0, 56, ~

1020 DATA 0, 56, 0
1022 DATA 0, 56, 0
1024 DATA 0, 56, 0
1026 DATA 1,187, 0
1028 DATA 3,255,128
1030 D.l\TA 3,255,128
1032 DATA 15,255,224
1034 DATA 252,124,126
1036 DATA 252, 56,126
1038 DATA 128, 56, 2
1040 D.l\TA 128, 56, 2
1042 DATA 0, 56, 0
1044 DATA 0, 56, 0
1046 D.l\TA 0,124, 0
104R D.l\TA 0,146, 0
1050 f)l\TA 0,140, 12'
1052 DATA • , • I

MAKING AND MOVING SPRITES 7

Notice that the sprite description is placed in the Shape Library. Your shape
DATA statements and your sprite DATA statements can and should be grouped
together in this location.

The sprite is named "CRAFT I " in line 1008. This name is necessary as a search
parameter for retrieving the sprite later. The sprite is initially retrieved with Tool
800 and placed in the P% array. This is only a temporary arrangement, and the
sprite description is later moved to an appropriate memory location for sprite data.

Recall that the RETRIEVE A SHAPE tool searches for a name, followed by a
count of points, followed by a count of lines. Each point count represents two data
items (X and Y), and each line count represents two data items ("from" and "to").
This tool will expect a count of points and lines, even when retrieving a sprite.

In order to have all 63 sprite data values read into P%, you must enter the count of
points as 31. (Anything less than 31 would read in too few data values.) If the count
of points is entered as 31, then thirty-two pairs of data items will be read into P%.
Thirty-two pairs (that is, 64 data items) is enough to get the entire sprite description
read into P%. The only problem is that an OUT OF DATA error will occur if only
63 data items are present when the computer expects 64.

We solve this problem through the use of a "dummy value," which is read into
P% along with the rest of the sprite data. However, once it is read into P%, it is
promptly forgotten and never used again. We have chosen a period (". ") to be our
dummy value. We call it a "value" because a period is equal to the value zero. You
will find this first dummy value tacked to the end of our sprite data, at the
beginning of line 1052.

It doesn't matter if any data is read into L%. Unfortunately, the lowest count of
lines that we can give is O. This is a zero-based count, which means we are saying we
have one line. A line is comprised of two data items ("from" and "to"), so two more
dummy values must be tacked onto the sprite's data. This accounts for the two other
periods in line 1052.

Let's briefly recap this.

Line 1008 begins the sprite description, starting with the sprite's name
("CRAFT I "). Next, the point count of 31 will cause 64 data values to be read into
P%. The line count of 0 will cause 2 data values to be read into L%.

Lines 1010 through 1050 give the data values that describe the spacecraft sprite.
The data values were taken directly from the Sprite Design Grid. The data values of
row 0 on the grid are entered first (line 1010), the data values of row I on the grid
second (line 1012), and so on, until all data on the grid has been entered. Three
dummy values (line 1052) ensure that an OUT OF DATA error will not occur due
to an odd number of sprite data values, and the lack of any data to place in L%.

You should always make sure the count of points and count of lines are 31 and 0,
respectively, when describing a sprite. The data values that follow should be a
row-by-row replica of the data values written on the Sprite Design Grid. The order
in which you enter the values of each row is important: SUM OF A, SUM OF B, and
then SUM OF C.

225

226

7 MAKING AND MOVING SPRITES

Finally, you must end the sprite's description with three dummy values. We used
a period (which is equivalent to 0) for each dummy value because it stands out in
the program. If an OUT OF DATA error were to occur, you could easily check the
sprite's last three data values to see if they are all periods.

The RETRIEVE A SPRITE subroutine is given below. Type it into your
program.

810 RE11::::::: RE'I'RIEVB A. SPRI'rE
811 GOSllB 800
812 FOR I = 0 TO 31
813 POKE 16384 + 64*SP + I*2,P%(I,0)
814 POKE 16385 + 64*SP + I*2,P%(I,1)
815 NEXT I
816 POKE 18424+SP,SP
817 RETURN

The next several sprite subroutines control the appearance of a sprite. Sub
routines 180 and 190 control whether a sprite is "on" or "off" in memory. Subrou
tines 200 and 210 determine whether the sprite is displayed at its normal width or at
an expanded width. Subroutines 220 and 230 control whether the sprite will be
displayed at its normal height or at an expanded height. Add these tools to your
program now.

180 REM:::::: :TURN eN SPRITE SP
181 POKE 53269,PEEK(53269)OR 2tsP
182 RETURN
190 REM:::::::TURtl OFF SPRITE SP
191 POKE 53269,PEEK(53269)ArID(255-2fsp)
192 RETURN
200 REM::::::: X EXPArID SPRITE SP
201 POKE 53277,PEEK(53277)OR 2tsP
202 RIITURN
210 REM:::::::X UNEXPAlID SPRITE SP
211 POKE 53277, PEEK(53277)AtID(255-2tsP)
212 RETURN
220 REM:::::::Y EXPAND SPRITE SP
221 POKE 53271,PEEK(53271)OR 2tsP
222 RETURN
230 REM::::::: Y (l.1EXPAtID SPRITE SP
231 POKE 53271,PEEK(53271)AND(255-2fsp)
232 RETURN

Next come the tools that determine shape versus sprite priority. Tool 240 causes a
specified sprite to appear in front of all foreground shapes. Tool 250 causes all
shapes to appear in front of a specified sprite. Type these tools now.

240 REM:::::::SP PRIORITY OVER SHAPE
241 POKE 53275,PEEK(53275)AND(255-2tsP)

MAKING AND MOVING SPRITES 7

242 RETURN
250 REM:::::::SHAPE PRIORITY OVER SP
251 POKE 53275,PEEK(53275)OR 2tSP
252 RETURN

The last tools to enter control sprite color and sprite placement. Again, any sprite
that is not assigned a specific color will be painted black. Any sprite that is not
positioned on the screen will not be visible when turned on. Add these tools to your
tool kit.

260 REM:::::: : SET SP 'ID mLOR C
261 roKE 53287+SP,C
262 RETURt~
270 REM:::::::PLACE SP AT X,Y
271 XX=X+24: YY=Y+50: Z%=XX/256
272 v=XX-Z% * 256: H=53248+SP*2
273 WW=53264
274 PR=ARS((PEEK(l'M)AND2iSP) <>0)
275 W=PEEK (lWl)AtID (255-2iSP)OR(2isp*Z%)
276 IF PR<>Z% THEN OOSUB 190
277 POKE W, V: POKE WiI, W: OOSUB 180
278 POKE 53249+SP*2,YY
279 RETURN

That completes the tools for now. The main routine lines which implement
these tools are given below. We have included many REM ("remark") statements in
this main routine to help you follow what is going on. Type these lines now.

2020 SP=0: REM HIGH SP PRIORITY
2030 SE$="CRAFI'1": OOSUB 810
2040 OOSUB 180: REM TURN CN
2050 GOSUB 200: REM WIDEN
2060 OOSUB 220: REl1 HEIGHTEN
2070 CDSUB 240: REM SP OVER SHAPES
2080 C=7: OOSUB 260: REM COLOR
2090 X=147:Y=89: GOSUB 270:REM PLACE

We will discuss these lines momentarily. First, RUN the program to examine the
fruits of your effort-a sprite spacecraft.

The sprite should be approximately centered on the screen. It will be yellow in
color, against a blackish background screen. This spacecraft should resemble in
every detail the one sketched earlier on our Sprite Design Grid, except that the
sprite on your screen will be twice as high and twice as wide as that on the grid.

If a few pieces of the sprite have been placed incorrectly, you have probably
entered one or more incorrect data values. An OUT OF DATA error, found only by
returning to text mode, would also suggest a typing mistake in the data statements.
Look for errors in the subroutines if any other problems crop up. Do not continue
until your program runs properly.

227

228

7 MAKING AND MOVING SPRITES

Return to text mode. Notice that a distorted version of your sprite remains on the
screen, even after you've returned to the program listing. This is because the sprite
was not "turned off" within the program by a GOSUB 190 statement. Sprites must
be turned off to be completely erased from the screen. Move the cursor to an empty
line and type: GOSUB 190. Press RETURN. The sprite indicated by SP's current
value (SP=O) will be turned off. This, of course, is the spacecraft sprite.

List lines 2020 through 2090 on your screen. There are five steps that you must
complete any time you wish to see a sprite on the screen. They are:

(I) The sprite must be assigned a sprite pointer number (SP=?). This determines
its priority in relation to all other sprites that are or might be placed in the
picture.

(2) The sprite's description must be retrieved (SE$="?": GOSUB 810).

(3) The sprite must be turned on (GOSUB 180).

(4) The sprite must be assigned a color (C=?: GOSUB 260).

(5) The sprite must be placed on the screen (X=?: Y=?: GOSUB 270).

Step (1) is accomplished wi th program line 2020. Setting the val ue of SP does two
things. First, it determines the priority of the next sprite retrieved (if any). This is
the sprite's priority in relation to all the other sprites. When two sprites are placed
at the same screen location, the sprite with the lowest sprite number (SP) appears in
front of the other.

Second, the current value of SP determines which sprite will be affected by the
various sprite features that are called upon. The sprite that is being "pointed at" by
SP will be the sprite turned on/ off, painted, heightened, etc, as each sprite tool is
called.

Step (2) is accomplished by line 2030 in your program. The description retrieved
here determines what the current sprite will look like. The current sprite is the one
being pointed at by SP. You can retrieve the same description for as many of the
eight sprites as you desire. You will need to remember, though, to change SP
whenever necessary. For example, suppose we left SP set to 0, and then retrieved a
second sprite description that looked like a planet. That would cause the computer
to erase our spacecraft description for Sprite #0 and replace it with a planet
description. We would not have created a second sprite.

You need to turn on a sprite (GOSUB 180) after retrieving it. This step causes the
computer to display the sprite at its current position. Program line 2040 turns on
your spacecraft sprite in memory.

The color of the spacecraft is assigned in line 2080. This color can be set at any
time, but should most often be done before positioning the sprite on the screen.

Finally, step (5) is executed by line 2090 in your program. This places the sprite
on the visible screen. The sprite's origin will be placed at the X, Y location given by
X's current value and Y's current value. We placed the origin at 147,89 (approxi
mately centering the sprite).

The other sprite features are not essential to viewing a sprite on the screen, but
they are nonetheless worthwhile. Program line 2050 calls the X EXPAND subrou-

MAKING AND MOVING SPRITES 7

tine. This produces a sprite that is twice its normal (defined) width. Program line
2060 calls the Y EXPAND subroutine. This produces a sprite that is twice its
normal heigh t.

The last feature called by this program is the SP PRIORITY OVER SHAPE tool
(GOSUB 240). This tool is necessary in the event a sprite is placed at the same
location as a foreground shape. Calling this tool ensures that the sprite has priori ty
over the shape, and thus appears in front of it. You can give all sprites priority over
spapes, some sprites priority over shapes, or no sprites priority over shapes. This is
all determined by the sprite being pointed at, and the tool that is called.

Let's adda foreground shape to the picture to see this priority tool in action. Add
the following to your program:

1054 DA'rn "PLANET", 2, 0
11356 ~TA 50, -4, 50, 4,48, '"
1058 DA.TA 0, 1
2100 REM:::::::DRAW PLANET
2110 SE$=" PLANET": (})SUB 800
2120 C=13: GOSUB 110
2130 YT=180: XT=55: GOSUB 140
2140 CDSUB 90
2150 FOR L = 1 'ID 36
2160 YT=-YT: ~)cr': CDSUB 140
2170 RO=10: GOSUB 160
2180 YT=-YT: ~xr: <DSUB 140
2190 CDSUB 90: NEXT L
2200 REM::::::: PATIIT' fLANET
2210 PP=2: CDSUB 60

Modify line 2090 so that the sprite will be placed in the same location as the
planet:

2090 X=30:Y=155: GOSUB 270:RtM PIACE

RUN the program. The sprite is almost instantly placed in the screen's lower
left-hand corner. Next, a green planet should gradually be added to the picture.
This planet is formed by rotating and drawing a small line thirty-six different
times. (The combination of rotating and translating is a bit time-consuming.
Please be patient.) The planet will be painted after it has been completely drawn.

The sprite will appear as if it is in front of the planet. This is because it has been
given priority over all foreground shapes it encounters.

Sprites and shapes are very different compositions, and they are treated differ
ently by the computer. The PAINT A SHAPE routine painted the planet as if the
sprite were not even there. Notice that even the color blocks went undisturbed by
the appearance of two foreground colors in the same area.

Return to text mode and change line 2090 back to:

2090 X=147:Y=89: OOSUB 270:REM PIACE

229

230

7 MAKING AND MOVING SPRITES

The program lines below use the same sprite DATA statements to define a new
sprite, Sprite #1. Add these lines to your program.

2300 REM:::::::PLACE SECOND SPRITE
2310 SP=l: REM ASSIGN SP #
2320 SE$="CRAFTl": OOSUB 810
2330 OOSUB 180
2340 C=l: OOSUB 260
2350 X=275: Y=50: OOSUB 270

So that the graphics screen is not erased by a GOSUB 30, and so that the planet is
not unnecessarily re-drawn, modify line 2000 and add line 2105 as follows:

2000 OOSUB 10: C=11: REM OOSUB 30
2105 rom 2300

RUN the program. A second, smaller spacecraft will be placed in the top right
section of the screen. It is smaller only because it is displayed exactly as defined in
the DATA statements (i .e., it is not expanded in height or width).

Return to text mode again, and list lines 2300 through 2350 on the screen.

Line 2310 sets SP to a new value of I. This means that any further sprite
subroutines that are called will effect Sprite #1, and not Sprite #0. In addition, it
means that any sprite description that is retrieved will be used to describe Sprite #1 .
Program line 2320 retrieves the description intended for this sprite. It is the same
description that was retrieved for Sprite #0.

TOOL 810 ::::::: RETRIEVE A SPRITE

810 REM:::::::RETRIEVE A SPRITE
811 CDSUB 800
812 FOR I = 0 'ID 31
813 POKE 16384 + 64*SP + I*2,P%(I,0)
814 POKE 16385 + 64*SP + I*2,P%(I,1)
815 NEXT I
816 POKE lA424+SP,SP
817 RETURN

What It Does: This tool retrieves a sprite description. The description
named by SU (SE$="?") will be the one retrieved. It will be read into P%
and will define the sprite you have specified by SP's current value.

Up to eight sprites can be defined in memory. Each one must be given
its own Sprite Pointer number. The priority of one sprite over another
sprite is determined by the sprite numbers. The lower the sprite number,
the greater screen priority the sprite will have. Sprite #0 will appear in
front of all other sprites it encounters. Sprite #3 will appear in front of
Sprites 4, 5, 6, and 7. Sprite #7 has no screen priority, and will be placed
behind any other sprite it meets.

MAKING AND MOVING SPRITES 7

Example Use: You will need to take the following steps to define a
sprite in memory:

(l) Draw the sprite on the "Sprite Design Grid."
(2) Add up the three sums (A,B,C) for the shaded pixels in each row of

the grid.
(3) The sprite's name and point/ line counts should be typed as a

DA T A statement in the Shape Library. The name may be any
construction you desire, but must be within quotes. The count of
points should immediately follow the name, and should always be
31. Next, the count of lines should be given as O.

(4) There will be three data values for each ofthe 21 rows on the Sprite
Design Grid. These data values should be typed into the Shape
Library (beneath the line giving the sprite's name) as DATA
statements. They should be typed in the same order as they are
listed on the grid.

(5) The last DATA statement from the Sprite Design Grid should be
followed by a "dummy" DATA statement. This DATA statement
will have three dummy values, and can simply contain:DATA.,.,.

(6) In the main routine, set SP to the sprite number you wish to assign
the sprite you are retrieving (SP=?). In addition, set SE$ to the
"NAME" of the sprite description to retrieve.

(7) Call the RETRIEVE A SPRITE tool (GOSUB 810).

Technical Description: Sprite data is typed into the program much as
you type shape data into the program. This setup allows us to search for
sprites at the beginning of the DATA statements, without doing any
special processing in order to skip over shape data.

Line 811 calls the RETRIEVE A SHAPE tool to retrieve the sprite
data, since that tool already searches for a specified section of data.
Doing this will place the sprite data in the P% array. Lines 812 through
815 then take the sprite data in the P% array and store it in a memory
block set aside for that specific sprite.

Line 816 sets up a pointer for the sprite. This pointer "points" to the
data that describes the sprite just read into memory.

Each sprite is given a sixty-four byte block of memory, located at the
beginningof Bank 1. Sprite 0 gets Block 0, Sprite 1 gets Block 1, etc. This
number corresponds to the Sprite Pointer used in line 816.

TOOL 180 ::::::: TURN ON SPRITE SP

180 REM:::::::TURN ON SPRITE SP
181 POKE 53269,PEEK(53269)OR 2tSP
182 RerURN

What It Does; This tool turns on a sprite's description in memory. The

231

232

7 MAKING AND MOVING SPRITES

sprite that is turned on will be the sprite specified by SP's current value.
A sprite must be retrieved (Too] 810), turned on (Tool 180), and
positioned (Tool 270) in order to be seen on the screen.

Example Use: SP must be set to the sprite number to turn on (SP;?). A
COSUB 180 statement will then tum on the sprite. If the sprite has been
placed on the screen, turning it on wiJl make it appear.

Technical Description: First, let's define a new term: register. Most
memory locations are simply storage areas for numbers. A register is a
special memory location which performs a special function. The
number which is stored in a register can cause very dramatic results. For
example, the subroutines at lines 20 and 30 turn on and off high
resolution graphics. The memory locations used by those subroutines
are examples of registers.

The subroutine lines from 180 to 252 will change some register
numbers to manipulate sprites. Some registers affect only one sprite.
Other registers affect all eight sprites. The color subroutine at line 260
controls the color for each sprite. This is an example of a subroutine
where each sprite has its own register. The subroutines from 180 to 252
are examples of registers which affect all eight sprites. To understand
this, let's look at a register. Each register has eight "bits" which are
numbered 0-7 from right to left.

7 6 5 4 ' 3 2 1

Each one of the eight possible sprites is given a bit to control it. Sprite
o gets bit 0, Sprite I gets bit I, and so on. Each bit can contain either a 0 or
a l. This setup works great for certain sprite features Which have only
two possible states, such as on or off, and expanded or unexpanded.
Either state is determined by the value of the bit.

Register 53269 determines which sprites the computer should cur
rently be working with. A bit flipped to I means the features and
placement of the corresponding sprite are in effect. All 53269 bits
flipped to 0 tell the computer not to display or compile those associate
sprites. To change the sprite bits, we need a command that tells the
computer something like:

CHANGE BIT 5 IN REGISTER 53269 TO 0
or

CHANGE BIT 3 IN REGISTER 53269 TO I

Unfortunately, there is no such command. We can, however, simulate
these lines with real BASIC statements.

POKE REGISTER #=, PEEK (REGISTER #=) OR 2't'BIT

(BIT = 0 'IO 7)

MAKING AND MOVING SPRITES 7

Using Form #1 above, we can turn the specified bit to a 1, while
leaving all other bits alone.

POKE REGISTER #, PEEK (REGISTER #) AND (255 - 21'BIT)

Using Form #2 above, we can turn the specified bit to a 0, while
leaving all other bits alone.

The subroutines from 180 to 252 each contain a BASIC statement
similar to one of the BASIC forms above, depending upon the desired
state of the register. Notice that the program lines use "SP" (abbrevia
tion for sprite) instead of "BIT," since they are the same (Sprite 0 = Bit 0,
Sprite 1 = Bit 1, etc.)

The opposite of "turning on" a sprite is turning it "off," which makes it vanish
from the viewing screen. LIST lines 190-192. Tool 190 will erase a sprite as easy as
you tum one one. All that is needed is the sprite to erase (SP=?) and a GOSUB 190
statement. This tool is described in the following tool box.

TOOL 140:::::::TURN OFF SPRITE

190 ~1:::::::TURN OFF SPRITE SP
191 POKE 53269,PEEK(53269)A1ID(255-2tSP)
192 RErURN

Whatlt Does: This tool removes ("turns off") a sprite from the screen.

Example Use: To use this tool, you need to specify the sprite to turn
off by setting SP to the correct sprite number (0-7). This should be
followed by a GOSUB 190 statement.

Technical Description: This subroutine uses the second form of the
statements introduced in the "turn on sprite" tool box. If you are not
familiar with the material in that tool box, please review it before
proceeding.

This subroutine sets a bit to O. Doing this to the appropriate register
and correct bit will turn the specified sprite off. This is the opposite of
the previous subroutine, where the bit was set to 1 to turn on the sprite.
The statement to turn the bit off is in this form :

R)KE REGISTER #, PEEK (REGISTER #) AND (255 - 2tsP)

Recall that SP is the bit/ sprite number to be switched off (0-7).

Notice that the register used in this subroutine and in the previous
subroutine is the same: 53269. Register 53269 has the special function of
turning sprites "on" and "off."

Since Tool 180 turns on a sprite, and tool 190 turns off a sprite, you can create a
flashing sprite by alternating the use of these tools with the same sprite. The sprite
will appear, disappear, appear, and disappear in rapid succession. This technique

233

234

7 MAKING AND MOVING SPRITES

could be applied to images of fire, or the flaming exhaust behind a rocket ship. It
could also be used for a blinking red stop light or for twinkling stars in a night
scene.

Add the following program lines to your program:

2400 SP=0
2410 CDSUB 190: IID1 'l'URN OFF
2420 FOR I = 1 'TO 50: NEXT I
2430 msUB 180: mM TURN a.:r
2440 ooro 2410

These lines create an endless loop that will turn Sprite #0 off, count to 50, and
then turn Sprite #0 back on again.

RUN the program. After both sprites are placed on the screen, Sprite #0 will
begin flashing. It will flash ata rapid rate, and will continue to do so until you press
RUN/STOP. Press RUN/STOP and tap RESTORE to return to text mode.

An important thing to notice is that sprites can be controlled almost entirely by
GOSUB statements. Very few variables need to be set. Your biggest chore is
remembering which tool does what. All of the tools are listed on a cut-out card at
the back of this book, so this task does not amount to much.

Delete lines 2400, 2410, 2420, 2430 and 2440.

Sprite #0 is currently set to display at twice its defined height and width. Sprite # I
is set to display at the normal height and width. The next two program lines will
change Sprite #0 so that only its height is expanded, and Sprite # I so that its width is
expanded.

Try these new lines out by entering them and running the program:

2050 CDSUB 210: ffil.l X UNEXP
2335 CDSUB 200: RD1 X EXP

The yellow spacecraft should be appear tall and narrow. The white spacecraft
should appear short and fat. The expand/unexpand tools are similar in effect to
your SCALE A SHAPE tool. The major difference is that sprites can only be
"scaled" up one size in height, and up one size in width. Also, a sprite cannot be
"scaled" down to a size smaller than its original size as defined in the DATA
statements.

Program line 2060, below, calls upon the Y UNEXPAND SPRITE to return
Sprite #0 to its original height. Change this program line as shown, and run the
program:

2060 CDSUB 230: RIM Y UffiXP

Each sprite's size is individually controlled. Tools 200 and 210 control the
expansion or contraction of a sprite's width. Tools 220 and 230 control the expan
sion/contraction of a sprite's height. The sprite whose number is represented by
SP's current value is the sprite whose size will be affected by these four tools.

MAKING AND MOVING SPRITES 7

TOOL 200:::::::X EXPAND SPRITE

200 REM::::::: X r::xPAtID SPRITE SP
201 POKE 53277,PEEK(53277)OR 2tSP
2132 RErURN

What It Does: This tool enlarges a sprite's width to twice its size.

Example Use: To use this tool, you must be sure SP is set equal to the
sprite number of the sprite to enlarge (SP=?). Follow this with a COSUB
200 statement.

Technical Description: This subroutine uses register 53277. This
register controls the expansion and contraction of a sprite's width. Each
sprite can either be normal size, or expanded in the X direction. If the bit
in this register is equal to 0, then the corresponding sprite will be
normal width . If the bit is equal to I, then the sprite's width will be
expanded.

This tool uses Form # I to turn bits to ones. This will immediately
expand that specified sprite in the X direction. A sprite does not need to
be on when you expand it.

TOOL 210:::::::X UNEXPAND SPRITE

210 REM:::::::X UNEXPAND SPRITE SP
211 POKE 53277,PEEK(53277)AND(255-2tSP)
212 RETURN

What It Does: This tool changes an expanded or enlarged sprite back
to its original width. This tool will not affect a sprite which was not
previously expanded with Tool 200.

Example Use: To use this tool, you need to set SP equal to the sprite
number to expand, and then insert a COSUB 210 statement.

Technical Description: This subroutine is the opposite of the X
expand subroutine (Tool 200). It uses Form #2 of the statement intro
duced in the "TURN ON SPRITE SP" technical description. In regis
ter 53277, turning a bit to 0 will restore the sprite specified by SP's
current value to its normal width.

TOOL 220:::::::Y EXPAND SPRITE

220 REM::::::: Y EXPAND SPRITE SP
221 POKE 53271,PEEK(53271)OR 2tSP
222 RETURN

What It Does: When this tool is used. a sprite's height doubles in size.

235

236

7 MAKING AND MOVING SPRITES

This is done by duplicating each row of pixels in the sprite, starting with
the top row. Nothing occurs when this tool is used on a sprite that is
already expanded in the direction of Y.

Example Use: To use this tool, you must set SP equal to the sprite
number that is to be made taller. Then, insert a GOSUB 220 in the main
routine.

Technical Description: This tool is identical to the " X EXPAND
SPRITE" tool, except register 53271 controls height. This subroutine
flips the appropriate bit ("SP"), which causes the computer to double
the sprite's height by duplicating each of its rows.

TOOL 230:::::::Y UNEXPAND SPRITE SP

230 ruM:::::::Y UNEXPAtID SPRITE SP
231 POKE 53271,PEEK(53271)AND(255-2tSP)
232 RETURN

What It Does: The use of the "Y Unexpand" tool changes the height
of a "Y expanded" sprite back to its original size as defined in the data
statements. Nothing happens when this tool is used for a sprite that is
already set to its original height.

Example Use: To use this tool, you will need to set SP equal to the
appropriate sprite number (0-7), and then type a COSUB 230 statement
into the main routine.

Technical Description: This tool is identical to the "X UNEXPAND
SPRITE," except that register 53271 controls a sprite's height. This tool
flips the appropriate bit ("SP"), which has the computer display the
sprite at its original height.

You have already seen what happens when a sprite has priority over shapes. The
yellow spacecraft had such priority, and was placed in front of the green planet.
What would happen if the priority were reversed? To find out, delete line 2105 so
that the planet will again be drawn, and then modify the program as follows:

2000 cn3UB 10: C=ll: OOSUB 30
2070 cn3UB 250: REM SHAPE OVER SP
2090 X=95:Y=175: OOSUB 270:REM PlACE

Line 2070 gives all foreground shapes (in this case, the planet) priority over
Sprite #0 (the yellow spacecraft). Line 2090 moves the yellow spacecraft so that is
placed partially on the planet. RUN the program.

Watch carefully as the planet is painted. The PAINT A SHAPE routine will
paint right over top of the sprite. This is because the sprite has a lower screen
priority than the foreground pixels that are painted.

You should decide the priority of your sprites ahead of time. Decide how the
sprites should stack up on the screen (sprite versus sprite priority), and then assign

MAKING AND MOVING SPRITES 7

each an appropriate sprite number. Next, decide which sprites should have priority
over shapes, and which sprites should not have priority over shapes. A GOSUB 240
statement or a GOSUB 250 statement ought to be given for each individual sprite
you create.

TOOL 240:::::::SPRITE PRIORITY OVER SHAPE

240 REM::::::: SP PRIORITY OVER SHAPE
241 POKE 53275,PEEK(53275)AND(255-2fSp)
242 REmJRN

What It Does: When a sprite has priority over shapes, it is displayed
completely in front of any shape it falls on. This tool is fun to use with
sprites having holes in them, because you can see the shapes through the
hole.

Example Use: To use this tool, you will need to set SP equal to the
appropriate sprite number. Then type a GOSUB 240 statement into
your main routine.

Technical Description: This subroutine uses Form #2 to turn bits to O.
Register 53275 determines which sprites will have screen priority over
shapes. Those sprites whose bit is set to 0 will have this priority.

TOOL 250:::::::SHAPE PRIORITY OVER SPRITE

250 REM:::::::SHAPE PRIORITY OVER SP
251 POKE 53275,PEEK(53275)OR 2tSP
252 REmJRN

What It Does: This tool gives priority to the shapes over a specified
sprite (SP=?). When a sprite and any shape are placed at the same
location, the sprite will not show up wherever the shape's foreground
pixels fall.

Example Use: To use this tool, you will need to set SP equal to the
number of the sprite in question. Then type a GOSUB 250 statement in
your main routine.

Technical Description: Register 53275 controls sprite/ shape priority .
If a bit is set to I , then the corresponding sprite will appear to move
behind shapes drawn on the screen (such as the ship or the land). If the
bit is set to 0, then the corresponding sprite will move in front of those
shapes. (Again, "shape" refers to foreground pixels.)

To have a sprite appear behind shapes, you must use Form #1 of the
statements introduced in the "TURN ON SPRITE" technical box.

237

23B

7 MAKING AND MOVING SPRITES

Next, we can experiment with the various sprite colors. Modify program lines
2080 and 2340 as follows:

2080 C=0: CDSUB 260
2340 C=8: CDSUB 260

Re-insert program line 2105, and modify 2000 so that the computer is sent past
the planet-drawing portion of your program:

2000 CDSUB 10: C=ll: REM CDSUB 30
2105 roro 2300

RUN the program. The first sprite should be displayed in black. A black sprite
on a dark-grey background shows up well. Sprite #1 will be painted orange. This is
because C was set to 8 before the SET SP TO COLOR C tool was called.

Return to text mode and experiment with your own sprite colors. The tool box
for this sprite feature is given below.

TOOL 260:::::::SET SPRITE TO COLOR C

260 REM:::::::SET SP 'IO mWR C
261 POKE 53287+SP,C
262 RETURN

What It Does: This tool paints a sprite with the color specified by C's
current value.

Example Use: To use this tool, first enter a program line that sets SP
equal to the correct sprite number. Then, enter a program line that sets
C to the appropriate sprite color code (0-15). Finally, call this subrou
tine with a GOSUB 260 statement.

Technical Description: This subroutine is different than the previous
sprite subroutines because each sprite has its own color register. The
number stored in a sprite's color register is determined by C's current
value, and represents one of 16 different available sprite colors.

All 8 registers are placed sequentially, so any of them can be found by
adding the sprite number (0-7) to the first register (53287).

The final feature in your program is the PLACE SP AT X, Y. This tool will place
a sprite's origin at the X,Y pixel specified by the current values of X and Y. There is
no "clip a sprite" tool, so the origin cannot be placed at all offscreen locations. A
sprite can, however, be placed partially or fully off the screen if you adhere to these
X and Y ranges:

X placement must be greater than or equal to -24 and less than or equal to 487
Y placement must be greater than or equal to -50 and less than or equal to 205

The Sprite Design Grid is only twenty-four pixels wide, so this X range will
allow any sized sprite to be placed completely off the screen to the right. However,
there is only enough room (-I to -24) off the screen's left side to hold an X

MAKING AND MOVING SPRITES 7

Unexpanded sprite. A sprite whose width has been expanded can never be fully
placed off the left side of the screen.

The sprite design grid is only twenty-one pixels high, so any spite (expanded or
not) can be placed off the top or off the boltom of the screen.

Try this out by changing the following program lines:

2090 X=-23: Y=-50: GOSUB 270
2350 X=-23: Y=50: GOSUB 270

RUN the program. Sprite #0 should not appear at all, and Sprite #1 should be
only partially displayed. When you later begin animating your sprites (which you
will do in the next section), the ability to start a sprite off the screen and then move it
into the viewing area will be a good feature to have. Return to your program listing.

At this point we have covered all of the basic sprite features except MOVE SP
FROM Xl,Yl TO X2,Y2. A section on this form of sprite animation follows the
tool box below. Before going on to that section, take some time to experiment with
the sprite tools you just learned. All tools are called with a GOSUB statement, and
will affect the sprite indicated by SP's current value. The only other variables to set
are SE$ (before calling Tool 810), C (before calling Tool 260), and X and Y (before
calling Tool 270).

TOOL 270:::::::PLACE SPRITE AT X,Y

270 REM:::::::PLACE SP AT X,Y
271 XX=X+24: YY=Y+50: Z%=XX/256
272 v=XX-Z% * 256: ~r-53248+6P*2
273 ~v=53264
274 PR=ABS«PEFjK(WW)AND2iSP)<>0)
275 VV=PEEK(WW)Al1D(255-2iSP)OR(2fsp*Z%)
276 IF PR<>Z% THEN GOSUB 190
277 OOKE W, V: OOKE Wil, VV: GOSUB 180
278 OOKE 53249+SP*2,YY
279 RETURN

What It Does: This tool places the sprite's origin at a specified X,Y
screen location. The origin is the top left square on the sprite's Sprite
Design Grid. After placing the origin at the X, Y location, the computer
can place the rest of the sprite in its relative location. This tool must be
used each time a sprite is defined and turned on, or you will not be able
to see it on the screen.

Example Use: You need to first set SP equal to number of the sprite
that you wish to place on the screen. This would be followed by a main
routine line in the form of:

X=#: Y=#: COSUB 270

In this line, the first "#" should be replaced with an X position for the
origin. This value must be between -24 and 487 (inclusive). The second

239

240

7 MAKING AND MOVING SPRITES

"#" should be replaced with a Y position for the origin. This value must
be between -50 and 205 (inclusive). The sprite's origin is placed on (or
off) the screen at this X, Y coordinate.

Technical Description: You know from the text how to position a
sprite on the screen. We stated that the X position could range from -24
to 487, and the Y position could range from -50 to 205. Actually, a sprite
has its own set of coordinates. The screen's 0,0 pixel is a sprite's 24,50
pixel. A sprite's 0,0 pixel is a screen's -24,-50 pixel. This can be dia
grammed as follows:

o (X) 511

o 24 343 511
O ~.~~.--------------~---.-' O

50 - - - +' --------1

SCREEN

249
255 ~.~--------------------~. 255

'"'-------------.."r------"/
SPRITE AREA

o

1
y

J
255

In order to maintain a consistency between screen and sprite coordi
nates, the subroutine at 270 will accept screen coordinate values (X=?:
Y=?) and will convert them to sprite coordinate values (X=X+24:
Y=Y+50). Line 271 does this for you:

271 XX=X+24: YY=Y+50: Z%=XX/256

Once again, you will use registers to place sprites. One register con
trols the X coordinate of the sprite 's position. Another controls the Y
coordinate of the sprite's position. Each sprite has its own set of X
position and Y position registers. Changing the values in these registers
will change the placement of the corresponding sprite.

Each memory location can contain a number between 0 and 255.
Since a register is just a specialized memory location, it has this same
restriction. This works out perfectly, since the Y position can range
from 0 to 255. The X position, however, presents a problem because it
can range from 0 to 51!. If that register were a little bigger, it could
handle numbers beyond 255. To sol~e this problem, another register is
added. Each one of the 8 sprites will use I bit from it. Sprite 0 gets bit 0,
Sprite I gets bit I, etc. The computer will then pretend that these bits
have been added to the X position registers to make them bigger. With
this added bit, the X position register can handle numbers from 0 -511.
You cannot, however, POKE the whole number 511 into the X position
register. You must break it into two pieces. One piece will go into the

MAKING AND MOVING SPRITES 7

sprite's X position register, and the other piece will go into the register
that is shared with the other sprites. If the position number is less than
or equal to 255, then the bit in the shared register should be O. If the
number is greater than 255, then the bit in the shared register should be
1. Turning this bit to a I means you can subtract ,256 from the actual
position and store this result in the X position register.

Z% = XX/256

On this line, the "Z% = XX/256" decides whether the bit in the shared
register should be a 0 or a l.

272 v=XX-Z% * 256: ~v=53248+SP*2

Line 272 subtracts 256 from the X position if the result of Z% was
equal to l. It also finds the proper register number for the specified
sprite 's X position.

273 WW=53264

In line 273, WW is the memory location of the register which is shared
by all the sprites.

274 PR=ABS«PEEK(WW)AND2iSP)<>0)
275 VV=PEEK(WW)~1D(255-2iSP)OR(2isP*Z%)

Line 274 looks at the X position of the sprite. If it is on the left of the
imaginary boundary at 255, then PR is set to O. If it is on the right of the
boundary, then PR will be set to l. This is used to see if the boundary is
crossed.

A sprite cannot move horizontally as easily as vertically. When you try
to move the sprite past X position 255, a strange thing happens. At the
instant it crosses this imaginary border, it will momentarily appear
somewhere else on the screen . This happens every time the sprite is
moved from one side of this imaginary border (boundary) to the other.
The best solution for this problem is to switch off the sprite just before
you change the X position registers. This way you will not see the flash.

Line 275 looks at the current contents of the memory location to make
sure the other sprites controlled by this register are not disturbed. The
bit which controls the current sprite is set toO by the "AND (255 -2ISP)."
This technique was explained in the "TURN ON SPRITE SP" and
"TURN OFF SPRITE SP" tool boxes. The "OR (2ISP·Z)" resembles
Form #1, which turns on the bit. The bit is turned on , however, only if Z
equals I (i .e., the X position is greaterthan 255). Multiplying 21SP by Z
will result in the bit being set or not.

276 IF PR<>Z% THEN OOSUB 190

241

242

7 MAKING AND MOVING SPRITES

In this line, Z% tells us which side of the boundary the sprite is moving
into. IE Z%=O, then it will be leEt of the boundary (imaginary border
0-255). If Z%=l, then it will be right of the boundary (256-511). The
variable PR keeps track of where the sprite is currently. If the current
section is not equal to the section to be moved into, then y~u want to
switch off the sprite for a moment. GOSUB 190 will do this~\

277 OOKE W, V: OOKE Wll, W: ensUB 180

Line 277 changes the X position and turns the sprite back on with a
GOSUBI80.

278 OOKE 53249+SP*2,YY

Finally, line 278 changes the Y position value to the new position.

Animating The Spacecraft Sprite

Now, the section you've been waiting for: sprite animation. This type of anima
tion concerns moving a sprite on, around, and off the visible screen area. The sprite
will remain visible at all times, while moving in a linear path from Point A to Point
B.

You must first add the MOVE SPRITE subroutine to your tool kit. Type it as
follows:

280 REM: :r10VE SP FRa1 Xl, Yl 'IO X2, Y2
281 DX=X2-Xl: !JY=Y2-Yl
282 L=ABS(DX): IF ABS(DY) >L mIEN I.;:::ABS(DY)
283 IF L>0 mIEN XI~X/L: YI=DY/L
284 X=Xl: Y=Yl: SD=SDtABS(SD=0)
285 FOR I = 0 'IO L srEP SD
286 ensUB 270
287 X=X+XI*SD: Y=Y+YI*SD
288 NEXT I
289 RETURN

There is surprisingly little involved in the movement of a sprite. You need only
set four variables (XI=?: YI=?: X2=?: Y2=?), caU the new tool (GOSUB 280), and the
sprite will be moved accordingly. You can see how this is done by changing line
2090 and adding line 2095:

2090 Xl=50: Y1=25: X2=285: Y2=25: SD=5
2095 ensUB 200: roro 2095

Check your typing, and then RUN the program. After a moment, you should see
the black spacecraft travel across the screen, from left to right. Each time the
spacecraft completes its journey across the screen, it momentarily disappears, and

MAKING AND MOVING SPRITES 7
then reappears on the screen's left side again. The trip across the screen then
repeats. No other sprites will appear on the screen.

The program is in an endless loop, so you must press RUN/STOP and tap
RESTORE to break out of it. List lines 2090 and 2095 on your screen.

The spacecraft's movement starts with its origin placed at XI,YI (50,25). The
movement continues in a straight path to the X2,Y2 point (285,25). It is the sprite's
origin (upper left-hand grid square) that follows the straight line from Xl,YI to
X2, Y2. The remainder of the sprite is moved relative to this origin. A sprite can be
moved horizontally, vertically, and diagonally.

The speed at which the sprite moves is determined by the value of the variable SD
(SpeeD). This variable was set at the end of line 2090 in your program (SD=5). The
number assigned to SD specifies how many pixels to skip over between each
placement of the sprite as it travels from Xl,YI to X2,Y2. To move a sprite, the
computer simply places it on the screen, erases it, moves it over SD number of
pixels, places it, erases it, moves it over SD number of pixels, and so on. This
happens very fast, and continues until the destination point is reached.

The first thing line 2095 does is call the MOVE SPRITE subroutine. This tool
will move the last sprite pointed to in the program along the linear path specified
by the last Xl,Yl and X2,Y2 values given in the program.

The second part of the line 2095 (GOTO 2095) repeatedly moves the sprite across
the screen. This GOTO statement continually sends the computer back to the
beginning of line 2095, which calls the MOVE SPRITE tool, and in turn moves the
sprite from Xl,YI to X2,Y2.

Let's experiment wi th the path and speed of movemen t. The speed is currently set
to 5. This means that five pixels will be skipped between each placement of the
sprite. Change the program so that the speed is increased to 20. In addition, change
the path of movement so that the sprite starts off the screen's left edge, moves
horizontally across the screen, and moves off the screen's right edge. Type the
following:

2090 Xl=-24: Yl=25: X2=320: Y2=25: 80=20

Before running this program, list line 2050. Make sure that it calls Tool 210 (X
UNEXPAND SPRITE SP). RUN the program. The spacecraft should move onto
the screen from the left side, move across the screen, and then move off the screen on
the right side. Its movement will be jerky. This is due to the increased speed. The
sprite is only being placed every twenty pixel locations instead of every five. This
moves the sprite across the screen quicker, but the extra space between each sprite
placement is more easily detected by the eye.

Return to the program (RUN/STOP-RESTORE) and modify it as follows:

2050 CDSUB 200: REM X EXP
2090 Xl=-24: Yl=25: X2=320: Y2=199: 80=2

RUN the program and watch for any new or unexpected events.
The sprite, which was expanded in width, does not start its journey completely

off the left side of the screen. This is because the sprite now takes up forty-eight

243

244

7 MAKING AND MOVING SPRITES

pixel columns in width, and we can only move twenty-four of those pixels (-I to
-24) off the screen.

The movement of the sprite will be slower than before, and jagged. The slower
movement is due to a decrease in the speed variable. The jagged movement is due to
the requested path of movement. The sprite's origin is moving along the straightest
path from XI,YI to X2,Y2. This path is not a truly straight line, since there is no
straight path from -24,25 to 320,199. Always consider where a plotted line would
appear between the XI,YI and X2,Y2 path. This imagined line is the exact path the
sprite's origin will take.

Try moving the sprite along a vertical path:

2090 Xl=159: Yl=200: X2=159: Y2=-30: SD=3

Here we will be moving the sprite from bottom to top. RUN the program, and
the sprite will move up through the screen and off the top edge.

Below is the tool box for the MOVE SPRITE subroutine.

TOOL 280:::::::MOVE SPRITE FROM XI,YI TO X2,Y2

280 REM: :MOVE SP .FRa1 Xl, Yl 'ill X2, Y2
281 DX=X2-Xl: DY=Y2-Yl
282 ~S(DX):IF ARS(DY»L THEN ~(DY)
283 IF L>0 THEtl XI=DX/L: YI=DY/L
284 X=Xl: Y=Yl: SD=SD+-ABS(Sf}=0)
285 FOR I = '" TO L Sl'EP SD
286 CDSUB 270
287 X=X+XI*SD: Y=Y+YI*SD
288 NEXT I
289 RETURN

What It Does: This tool will move a sprite along a straight path,
starting at XI,YI and ending at X2,Y2. The path can be diagonal,
vertical or horizontal. It is the sprite's origin that follows the path. The
speed at which the sprite travels is controlled by setting the variable SD.
We recommend that the speed be kept within 1-5.

Example Use:

(I) Set SP equal to the sprite number of the sprite to move (SP=?).

(2) Provide the starting (XI=?: Y I=?) and ending (X2=?, Y2=?)
locations for the path of movement to be made by the sprite's
origin. The sprite will move in a straight line, from XI,YI to
X2,Y2.

(3) Enter a number for the speed (SD=?). The higher the number, the
faster the speed.

(4) Follow all the above with a GOSUB 280.

MAKING AND MOVING SPRITES 7
Technical Description: This subroutine should look familiar to you. It
is very similar to the " PLOT A LINE" subroutine. Instead of plotting a
line from XI,YI to X2,Y2, however, you want to move a sprite from
Xl,Yl to X2,Y2. To do this, you use the same variables but send the
computer to the PLACE A SPRITE subroutine instead of the PLOT A

POINT subroutine. To speed things up, we added a new variable: SP
(speed). A speed of 1 is the "normal" speed. If the speed is between 0
and 1, then the sprite will go slower. If the speed is greater than 1, then
the sprite will go faster. What is actually happening is the sprite is skipping
over several pixels as the speed increases. If the speed gets too fast, the
sprite will move in a jerking motion . At moderate speeds, however, this
is not noticeable.

In line 284, SO = so + ABS(SO = 0) makes sure that the value of SO is
not zero. A value of zero would cause problems when using this subrou
tine. If SO does equal zero, this statement will set it equal to l.

287 X=X+XI*SO: Y=Y+YI *SD

This statement is identical to the corresponding statement in the line
drawing routine, except that the X increment (XI) and the Y increment
(YI) are multiplied by the speed. This will make the sprite skip over
some of the steps as its travels, thus speeding things up.

285 FOR I = 0 TO L STEP SD

In this statement, "STEP SO" is a new addition. It causes the loop
index I to be increased by the value of SO each time it completes a loop,
instead of the usual increment of I. This accounts for the change in the
X and Y increments. This change allows the sprite to skip over some
steps, reducing the number of repetitions necessary to complete the
journey.

Summary
We hope you've enjoyed this chapter introducing you to sprites. Although there

is much more to learn in this area of computer graphics (some of which is covered
in the final chapter), you can now create, place and move up to eight sprites within
your picture.

Oon' tlook upon sprites as a means to animation alone. There are many other
equally good reasons to create a sprite figure rather than a foreground shape figure.
To name just a few:

-sprites can be placed on the screen faster than foreground shapes;
-sprites do not disturb the color blocks they are placed in;
-sprites can change colors faster than foreground shapes;
-sprites can "flash" (on/ off loop); and
-sprite priority can be used to create interesting visual effects.

245

246

7 MAKING AND MOVING SPRITES

So you see, there is much more to sprite graphics than the ability to move sprites
around the screen-although movement is a significant feature.

Below is a brief review of the steps required in making a sprite. These steps are
followed with a short description of the various sprite features, and then this
chapter's exercise. Wait until the exercise is complete before saving the program
under "CHAPTER 7".

The procedure used for making a sprite is:

(I) Design the sprite on the "Sprite Design Grid" by lightly sketching in an
outline of its shape. Then, shade the squares inside this outline. In designing
a sprite, consider having "holes" or blank spaces inside the sprite shape.

(2) Add up the data sums (A,B,C) for the three areas in each row of the design.
Write down these sums on the lines alongside the "Sprite Design Grid." A
blank section of 8 squares has a sum of o. An entirely shaded section of 8
squares has a sum of 255.

(3) Enter a DATA statement in the Shape Library that names the sprite, gives a
point count of 31, and gives a line count of O. The name may be any
construction, but must be within quotes. An example data statement would
be: 1008 DATA "CRAITl",31,0

(4) Following the above DATA statement, enter the twenty-one rows of data from
the Sprite Design Grid. These should be entered as DATA statements, in the
same order as listed on the grid.

(5) Assign the sprite a sprite pointer number in the main routine. This is done by
setting the variable SP to a value between 0 and 7. One sprite's priority over
other sprites is determined by its pointer number. The lower a sprite's
number, the greater sprite priority it has.

(6) Select the sprite's color by setting C to a color code between 0 and 15, and then
calling Tool 260.

(7) Retrieve the sprite with a GOSUB 810 statement.

(8) Type in the desired GOSUB statements to call various sprite features. (A
complete list of all sprite features is given below.)

(9) Place the sprite by setting X and Y to the desired X, Y placement of the sprite's
origin. Follow this with a GOSUB 270.

Summary of Sprite Features

Here we list the various sprite features and give a brief explanation of each. For a
more thorough discussion of any sprite feature, refer to the beginning of this
chapter.

SP=O: SE$="SPRITE NAME": GOSUB 810
This line first sets the sprite's pointer number (SP=O). The sprite number determines

sprite priority. Next, the search variable (SE$) is set to the sprite's name, as given in
its defining DATA statements. Finally, COSUB 810 calls the RETRIEVE SPRITE
tool.

MAKING AND MOVING SPRITES 7

GOSUB 180
This line "turns on" a sprite. If the sprite has not been placed on the screen,
you won't be able to see it after turning it on.

GOSUB 190
This tool "turns off" a sprite so that it disappears from the screen.

GOSUB 200
The sprite's width is doubled in size with Tool 200.

GOSUB 210
This tool is used with a sprite whose width has been doubled with tool 200.
This tool will return the sprite to its normal width.

GOSUB 220
The sprite's height is doubled in size with Tool 220.

GOSUB 230
This tool is used with a sprite whose height has been doubled with tool 220
This tool will return the sprite to its normal height.

GOSUB 240
This tool gives a sprite priority over all foreground pixels in any shape. The
sprite will be displayed in front of any shape which is placed at the same
location.

GOSUB250
Tool 250 allows any shape in the picture to have priority over the sprite.
When the sprite and a shape appear in the same screen location, the shape will
be in front of the sprite.

C=7: GOSUB 260
Tool 260 sets the sprite to the color determined by C's value. There are 16
different sprite colors (0-15). Each sprite can be only one color.

X=232: Y=lO: GOSUB 270
In this line, the X and Y values for positioning the sprite on the screen are
given. This X,Y pixel point determines the screen location for the sprite's
origin. The rest of the sprite is then positioned relative to the origin. Tool 270
actually places the sprite on the screen at the given X,Y values.

XI=O: YI=lO: X2=319: Y2=1O: SD=5
To move a sprite in a straight line, the starting and ending points for this line
are given. XI ,Y I are for the coordinate values for the starting point. X2, Y2 are
the coordinate values for the ending point. These values determine the path of
movement. A sprite can move in any straight direction. It is, however, the
sprite's origin that will move along the path from XI, Yl to X2, Y2. The rest of
the sprite moves along with the origin. SD indicates the rate of speed for
moving the sprite. A higher number for SD means the sprite will travel faster.

GOSUB 280
Tool 280 uses the given Xl, Y I and X2,Y2 coordinate values to move the sprite
in a straight line.

247

248

7 MAKING AND MOVING SPRITES

Exercise

This chapter's challenge is to figure out the necessary DATA statements for the
spacecraft designed below. Write the data values on the grid itself, if you like, or on
a separate piece of paper. Then, enter the data beginning with:

1060 DATA "CRAFT2",31,0

Try placing and moving both CRAFTI and CRAFT2 on the screen. The
required DATA statements, and a sample program, are given under "Solution."

ROW #

IMPORTANT: SAVE your program when you have entered a solution to
CRAFT2 that works properly. Use the filename "CHAPTER 7".

SPRITE DESIGN GRID

(TOP)

A B C
1 1 1

263 1 n~~842 1 .~ ~ ~ ~ 8 4 21 ~~8 4 21
0 RI r::;
1 II rIl 171
2 ilajllE. t-
3

4 Ii.
5 l,
8

7 td~
e
9

1C "'1
11

1.

1~ b (g
1~

15 ~,

1E

17 ~
1!

15

2C

I! 6 3 1 8 4 2 1 ~~26E421 16318421
I~ 4 2 6 2 4 2 8
8

1060 a\TA
1062 DATA
1064 DA.TA
1066 DA.TA
1068 ffiTA
1070 DA.TA
1072 DA.TA

8 8

Solution

"CRAFT2", 31, 0
1, 36,128
1, 36,128
0,255, 0

96, 24, 6
%, 24, 6

120, 24, 30

DATA STATEMENTS

~~~I~ ~TA 
SUM I SUM I SUM 0: 0: ~ 

~TA 

~TA 

~TA 

~TA 

~TA 

~ 
~TA 

~TA 

~TA 

~ 
~TA 

~ 
~TA 

~ 
~TA 

~TA 

~TA 

~TA 

~TA 

~"J)\ 

~TA 



MAKING AND MOVING SPRITES 7 

1074 DATA 24, 24, 24 
1076 DATA 30, 60,120 
1078 DATA 31,255,248 
1080 DATA 7,255,224 
1082 DATA 7,255,224 
1084 DATA 1,129,128 
1086 DATA 1,195,128 
1088 DATA 1,195,128 
1090 DATA 0,102, 0 
1092 DATA 0,126, 0 
1094 DATA 0, 60, 0 
1096 DATA 0, 60, 0 
1098 DATA 0, 24, 0 
1100 DATA 0, 24, 0 
1102 DATA 0, 24, 0 
1104 DATA • , • , 
2000 <DSUB 10: C=ll: GJSUB 30 
2010 FOKE 53280,C 
2020 SP=0: REM FIRST SP 
2030 SE$="CRAFT1": <DSUB 810 
2040 <DSUB 180: REM ell 
2050 <DSUB 200: REM WIDER 
2060 <DSUB 220: REM TAILER 
2070 <DSUB 240: REM SP OVER SHAPES 
2080 C=1: oo..SUB 260 
2090 X=1l0: Y=75: OOSUB 270 
2300 REM:::::::SEOOND SPRITE 
2310 SP=1: REM I..CWER SP PRIOR 
2320 SE$="CRAFT2": msUB 810 
2330 msUB 100 
2340 C=7: msUB 260 
2350 X=275: Y=75: GJSUB 270 

249 



250 



Chapter Eight 

ADVANCED SPRITE GRAPHICS 
Sprites, as you have seen already, are an interesting alternative to drawing 

foreground shapes. Sprites can move, flash, change colors, and reside in a color 
block already displaying a foreground color. There are many directions you can go 
with sprites, now that you understand what a sprite is and how to create one. In this 
chapter, we concentrate on controlling sprites. 

The first step is to learn to connect a sprite to the keyboard and to joysticks. This 
will allow you to control the movement of up to two sprites while the program is 
running. Under keyboard control, a sprite will move on the screen in one of four 
directions, depending on the key you press. Under joystick control, a sprite will 
move in the direction the joystick is positioned. We call a sprite that is connected to 
a joystick or the keyboard a player sprite. 

You will also learn how to control missile sprites and target sprites. A 
missile sprite can be shot from a player sprite. This is done either by pressing a key, 
or by pressing ajoystick button. The computer will note the key or button pressed, 
and will then shoot the correct missile sprite from the correct player sprite. 

A target sprite is more " passive" than the other sprite types. It is placed atan X,Y 
"starting position," and then sent off in one of eight directions. From that point on 
it is a moving target. It moves in a straight path until it reaches the screen's edge. 
The target then wraps back around to the opposite screen side, and moves across the 
screen again. This same journey is taken over and over again by the target sprite. 

You will also learn how to detect when a sprite has collided with a shape or 
sprite, and what visual effects you can create when it does. Finally, you willieam 
how to tum the Commodore's sound on and off, as well as keep one or two-player 
scoring totals. 

If all this sounds like you're headed for an arcade game, you 're right. The two 
spacecraft created in Chapter 7 will be turned into player sprites, and step-by-step 
instructions on creating your own video game will be given. 

Introduction to the Interrupt System 

Before we supply you with this chapter's collection of tools, you need to become 
acquainted with the term "interrupt system." Some of the advanced sprite features 
were entered as machine language data in Chapter I. This machine language 
makes use of the Commodore 64's interrupt system. 

An interrupt system contains a set of tasks that the computer performs over and 
over again during the course of one second. The Commodore 64 has three interrupt 
tasks: 

(1) Increment TI$ (this is a time clock); 
(2) Check to see if its time to flash the cursor (if so, the cursor flashes once); 

251 



252 

8 ADVANCED SPRITE GRAPHICS 

(3) Check the keyboard to see if a key has been pressed. 

Sixty times each second, the Commodore stops (interrupts) whatever it is doing, 
saves its place, and performs steps (1), (2) and (3) above. It performs these tasks at 
such an incredible speed that the person operating the compu ter is usually unaware 
that it is even happening. The flashing cursor and the computer's response to a 
keypress are the only hints that an interrupt has taken place. 

When the computer completes the standard interrupt tasks, it returns to whatever 
it was doing prior to the interrupt. The diagram below illustrates how the interrupt 
system operates during a program's execution. 

~. (3) 
(2) 

Stand-
Your ard 

BASIC (4) L Interrupt 
Program 

In step (1), the computer begins excuting the BASIC lines in your program. 
Then, when 1I60th of a second has passed, the computer temporarily abandons 
your program (step 2) and performs the three standard interrupt tasks (step 3). The 
program is returned to (step 4) as soon as the interrupt tasks have all been per
formed. Steps (2) through (4) are continually processed the entire time the 
computer is on. 

There is a way to add your own "customized" tasks to the interrupt system. This 
is what you did, unknowingly, in Chapter 1. Some of the machine language data 
entered in that chapter breaks into the Commodore's interrupt system and adds 
several customized tasks that deal with sprite graphics. 

Now you can control how often an interrupt occurs. You do this by assigning a 
value to the variable VE. The higher the value of VE, the longer the wait between 
interrupts. When an interrupt does occur, the list of customized interrupt tasks is 
processed first, before the standard interrupt tasks are. This can be diagrammed as 
follows: 

~ (3) 
(2) 

Your CustomlZ8d ( 
BASIC InterruptS I--

Program 
(6) Stand- } ard 

L- Interrupt 

4~ 
(5) 



ADVANCED SPRITE GRAPHICS 8 

Step (1) is where the computer begins executing the program. In step (2), the 
program is interrupted every nth of a second (according to the current value of VE). 
All customized interrupt tasks are processed at each interrupt (step 3). The compu
ter then looks at a clock (step 4) to see if it's time for the standard interrupt tasks. If 
1I60th of a second has passed since they were last performed, then the standard 
interrupt tasks are again executed (step 5). If it's not time for the standard interrupt 
commands, step (5) is skipped, and step (6) comes up. At step (6) the computer 
returns to the program, exactly where it was prior to the interrupt. 

You will learn how to "call" your cus tomized in terrupt commands in to action in 
the next section. There, too, you will learn more about the variable VE. The 
interrupt system is important in that it virtually allows two separate things (your 
BASIC program and your list of interrupt commands) to be performed simul
taneously-or so they will appear. You now know, though, that the computer is 
actually going back and forth between the two, running part of the program and all 
of the customized interrupts as it goes. 

Making and Moving Action Sprites 

The three sprite types discussed earlier (player sprites, missile sprites, and target 
sprites) can all be categorized as action sprites. An action sprite is one that is 
controlled through the customized interrupt commands, and involves movement 
of one kind or another. 

The first action sprites to create are the two player sprites. Begin by LOADing 
your "CHAPTER 7" program. Note: Chapter 7's exercise solution (lines 1060-
1104) must be a part of this program. If you did not complete Chapter 7's exercise, 
type the solution DATA statements from that exercise before continuing. 

Next, list line 172 and set Cequal to 2000 in it (we will be using the CRAFT 1 and 
CRAFT2 DATA statements to define our player sprites). RUN the ZAP routine. 

Many of the programming techniques we will use to create this chapter's game 
are already familiar to you. For example, you will enter three program lines that 
plot random points on the graphics screen. This will be done with the RND(I) 
command, which is a command we have used before. Any command that has been 
introduced before will be used here without any explanation, in an effort to keep 
this chapter's size reasonable. 

Type program lines 2000 through 2130, below, which set up the program for our 
game. These lines clear the graphics screen, set the background color, and also plot 
50 random "stars" across the dark sky. 

2000 REM:::::::SET UP PROGRAM 
2010 GOSUB 10: 0=11: GOSUB30 
2020 POKE 53280,C 
2100 REM:::::::STARS 
2110 C=l: FOR L = 1 TO 50 
2120 X=RND(1)*320: Y=RND(1)*200 
2130 msUB 40: NEXT L 

253 



254 

8 ADVANCED SPRITE GRAPHICS 

We are not going to use the planet in this program, primarily because of the time 
it takes to draw it. You may, however, prefer the wait over no planet at all. If you 
add the lines that draw and paint the planet (see Chapter 7 to find out what they 
were), use line numbers 2140 through 2162, every even line number. 

Controlling Player Sprites Through the Keyboard 

You now need to "set up" your player sprites. A player sprite is set up just as you 
learned in the previous chapter: 

(I) Assign the sprite a pointer number; 
(2) Apply all the sprite features you desire; 
(3) Color the sprite; 
(4) Place the sprite; 
(5) Turn on the sprite. 

Player sprites must be assigned a sprite pointer number of 0 or I. If you are only 
using one player sprite in your program, you must assign it sprite pointer #0. If you 
are using two player sprites, as we will here, then you must assign one SP #0, and 
oneSP#l. 

Type the program lines below to define two player sprites. Sprite #0 (lines 
2210-2230) will be defined with CRAFT I DATA statements. Sprite #1 (lines 2240-
2260) will be defined with CRAFT2 DATA statements. 

2200 Ra1:::::::SET UP PLAYER SPRITES 
2210 S1>=0: SE$=ICRAFI'I": OOSUB 810 
2220 C=0: OOSUB 260: OOSUB 240 
2230 X=179: Y=170: OOSUB 270: OOSUB 180 
2240 SP=I: SE$=" CRAFT2II : <nSUB 810 
2250 C=I: OOSUB 260: <nSUB 250 
2260 X=159: Y=20: OOSUB 270: <nSUB 180 

Notice that each sprite is given a color (C=?: GOSUB 260), given shape versus 
sprite priority (GOSUB 240 or GOSUB 250), placed on the screen (X=?: Y=?: 
GOSUB 270); and turned on (GOSUB 180). So far, this setup procedure is no 
different than one you might expect for a non-action sprite. To let the computer 
know that these are to be action sprites, you must add a new tool to your tool kit: 

290 REM:::HOOK UP ACTION SPRITES 
291 SYS 50023,KB,Pl,P2,255~1,255~12,255-T1,VE 
292 IlliTURN 

This tool does many things, one of which is to connect player sprites to the 
keyboard or to joysticks. We will begin by connecting Sprite #0 and Sprite #1 to the 
keyboard. Four variables must be set in order to do this: 

(1) VE = 

(2) KB = 

o to 65 (VElocity of travel; O=fastest, 
65=slowest) 

1 (hook up player sprites to KeyBoard) or 
o (hook up player sprites to joysticks) 



(3) PI 

(4) P2 

ADVANCED SPRITE GRAPHICS 8 

1 (use Sprite #0 as Player 1 action sprite) or 
o (use Sprite #0 as non-action sprite) 

1 (use Sprite #1 as Player 2 action sprite) or 
o (use Sprite #1 as non-action sprite) 

The variable VE stands for VElocity, or speed, and should be set to a speed code 
between 0 and 65. All action sprites travel at the same speed, as determined by the 
value of this variable. Keep in mind that zero is the fastest speed code, and sixty-five 
is the slowest. (You will find that the speed can be set to codes higher then sixty-five, 
but movement becomes incredibly slow when it is.) 

The variable KB stands for KeyBoard, and it is used to "enable" (KB=I) or 
"disable" (KB=O) the keyboard. When the keyboard is enabled, all player sprites 
will be under keyboard control. When the keyboard is disabled, all player sprites are 
under joystick control. 

The variable PI stands for Player #1, and represents one of two possible game 
players. When PI is set to 1, Player #1 is "enabled." This gives Player #1 joystick/ 
keyboard control over Sprite #0. Player #1 is "disabled" when PI is set to 0, and thus 
has no control over Sprite #0 (i.e., Sprite #0 is a non-action sprite). 

The type of control Player #1 will have depends on whether the keyboard is 
enabled (KB= 1), or the joysticks are enabled (KB=O). Sprite #0 is controlled by 
Joystick #1 when the joysticks are enabled. Sprite #0 is controlled by the left-hand 
control keys (explained below) when the keyboard is enabled. 

The variable P2 stands for Player #2, and represents the second of two possible 
game players. Setting P2=1 gives Player #2 keyboard/joystick control over Sprite 
# 1. Setting P2=O returns Sprite # 1 to a non -action spri teo Player #2 controls his/her 
sprite with Joystick #2 (if KB=O), or with the right-hand control keys (if KB=I). 

You may enable only Player #1, or both Player #1 and Player #2. You cannot 
enable Player #2 by itself. If Player #1 is disabled (i.e., Pl=O), all other action sprites 
are automatically disabled. 

The diagram below reviews how to set the variables that control your player 
sprites. 

SPRITE #0 

KB=O 

! Pl= l 

KB=l 

a\ 
i 

Left-hand 
Joystick 1 Keyboard Control 
Control I 

~'---------r--------~. 

KB=O 

SPRITE #1 

I P2= 1 

V KB=l 

L n.. 
Right-hand 

Joystick 2 Keyboard Control 
Control I 

~'---------r--------~. 

~------~t> GOSUB290 <J~------~ 

255 



256 

8 ADVANCED SPRITE GRAPHICS 

Compare the above chart with the program lines below. Line 2610 enables the 
keyboard and sets the speed of all action sprites to 15. Line 2620 enables Player # I 
and Player #2, turning Sprites 0 and I into action sprites. Finally, line 2630 follows 
all this with a GOSUB 290 to call the necessary HOOK UP ACTION SPRITES 
tool. 

2600 REM:::::::ENABLE ACTION SPRITES 
2610 KB=l: VE=lS 
2620 P1=1: P2=1 
2630 msUB 290 

Add these lines to your program, and then RUN it. 

The screen should tum a dark grey, and then 50 points will be randomly plotted 
in white (they may appear to be plotted in random colors). It will take several 
moments for the player sprites to be placed on the screen, at which time you will 
have keyboard control over them. 

What does it mean to have "keyboard control" over a sprite? It means that you 
can move the sprite while the program is running. You can move the sprite up, 
down, right, or left by the press of a single key. Each player (# I and #2) has his own 
set of five controlling keys: 

c:!] ~ 
Q[;] GO 

EtEi5J~
" -- ._- . -

-. ..;.:. ~. C -:'-:..~ 
.- ._.-- - -- • ' 06-- - -

- .~ ;;.. . - . . -
~ .. ~ - ---:-....: 

-- -----

Player #1 Keys Player #2 Keys 

Take Player #I 's position as we discuss moving Sprite #0. Begin by tapping the R 
key several times. The black spacecraft should jump towards the top of the screen 
each time you tap the key. Continue to tap this key until the sprite moves entirely 
off the top screen edge. Finally, hold the R key down, and watch as the black 
spacecraft re-appears at the bottom of the screen. 

IMPORTANT: An incorrectly running program could be the result of typing 
mistakes in the subroutine, typing mistakes in the main routine, or typing 
mistakes in your machine language. Check the subroutine and main rountine 
for errors first. If none are found, refer to Chapter I to refresh your memory on 
checking and correcting the machine language. You should find the error 
somewhere in blocks 7-11. 

Unless your program instructs otherwise, a player sprite will always wrap 
around the screen to the opposite edge when a direction key is held down for an 
extended period. Try holding down the C key, and the sprite will move in a 
downward motion. When the sprite crosses the bottom screen edge, it will wrap 



ADVANCED SPRITE GRAPHICS 8 

around to the top screen edge. Finally, try the D and F keys. They move Sprite #0 
horizontally. The list of Player #1 keyboard direction controls is as follows: 

Right F 
Down C 
Left D 
Up R 

The SHIFT keys are set up to function as "fire" buttons. They can shoot missile 
sprites outof the player sprites. You will learn more about the use of these keys after 
you create some missile sprites. 

You should experiment with all four of the Player #1 sprite directions now. If you 
lose your orientation and are not sure where the sprite is, hold down the R key for a 
few seconds, and then hold down the F key for a few seconds. Switch back and forth 
between these two keys until you see the sprite again (this should only take a 
moment). 

Player #2 (Sprite #1) can also be moved in four different directions. Press P to 
move the sprite up. Hold this key down, and the sprite will wrap around just as the 
other had. Tap the. key several times, and the white spacecraft takes severa] small 
leaps downward. Land: control this sprite's horizontal movement. The list of this 
sprite's keyboard direction controls is: 

Right 
Down 
Left L 
Up P 

Move both sprites to the same screen location, and test sprite versus sprite 
priority. You will find that Sprite #0 (the black spacecraft) appears on top of Sprite 
#1 (the white spacecraft). This is due to the sprite numbers. Sprite #0, having the 
lower sprite number, will always appear in front of Sprite #1. 

You should take about fifteen minutes to practice sprite keyboard control. It will 
take some time to become comfortable with this form of sprite movement, but, in 
time, you will. You should practice with different sprite velocities, too. Compare 
the difference between a velocity of 0 and a velocity of 65. Notice that it's harder to 
control your sprite's movement at faster speeds. 

It is a little more difficult returning to text mode than before. You will have to 
press RUN/ STOP and tap RESTORE, and you may have to do this several times. 
Later you will be adding the necessary loop that allows a more graceful exit out of 
graphics mode. The next paragraph discusses problems you could be encounter
ing. Generally speaking, there are few "hard to find " problems where sprites are 
concerned. 

If your sprites move, but not in the direction you specify: (1) make sure you are 
pressing the right key for the direction and sprite you desire; (2) make sure you set 
KB to I in the main routine. Both the keyboard and the joysticks are always 
"operating," and will move the player sprites. The keyboard, however, will only 
operate correctly when KB=I, and the joysticks will only operate correctly when 
KB=O. 

CffJ7 



258 

8 ADVANCED SPRITE GRAPHICS 

If you can't get your sprites to move at all, check lines 2620 and 2630. An easy 
error would be to call a subroutine other than 290 in line 2630. The only other 
possible problem areas are the subroutines, the machine language, or the computer 
itself. It is unlikely that you have come this far with machine language errors or a 
problem with your computer. 

Check your subroutines thoroughly. Don't just look at the ones typed in this 
chapter, look at each subroutine your program is currently using. It is not that hard 
to erase a subroutine line inadvertantly. All you have to do is start to type a line 
number (say, 221 to begin line 2210), change your mind about adding the line, and 
press RETURN. This simple act would delete line 221 from your subroutines. 

Controlling Player Sprites with Joysticks 

If you own one or more joysticks, you are probably eager to connect the player 
sprites to them. (If you don't own joysticks, continue to the next section where you 
will learn how to create and enable "missile" sprites.) You may have already 
figured out the one simple change that turns keyboard control into joystick control. 
Change line 2610 to the following: 

2610 KB=0: VE=15 
The value of KB is the only thing that changes from keyboard control to joystick 

control. The player sprites are set up the same, and all other variables (PI, P2, and 
VE) serve the same purpose from one control method to the other. Before running 
the program, check the following: 

(I) Is there a joystick connected to CONTROL PORT I on the right side of the 
Commodore 64 compu ter? This joys tick is considered Joystick # I, and it must 
be connected to Port I in order to operate Sprite #0. 

(2) Is there a joystick connected to CONTROL PORT 2 on the right side of the 
Commodore 64 computer? This joystick is considered Joystick #2, and it must 
be connected to Port 2 in order to operate Sprite #1.-

RUN the program. Wait as the stars are ploued and the spacecraft are placed. As 
soon as the second sprite appears, you are the master of the game. Pick up Joystick 
#1 and begin moving Sprite #0 around the screen. The sprite will move in the 
direction you push the joystick. If you become disoriented, and the sprite is 
somewhere off the visible screen, push the joystick in any diagonal direction. This 
should bring your sprite back on the screen. 

Joystick #2 (in Port 2) will operate the white spacecraft. Try moving it around the 
screen area as well. You should set VE to a speed that is comfortable for you, and 
spend a few minutes getting a feel for how the sprites respond to a change in the 
joystick direction. 

The rest of this chapter assumes you are using keyboard control (since every 
reader has a keyboard, but not every reader has a joystick). If you like, you can 
continue with KB set to 0, using your joysticks as the control mechanisms. Just 
ignore references to keyboard control keys from now on. 

-Joystick #2 is optional if you only intend to operate one player sprite. Joystick #1 is not 
optional when using joystick control on player sprites. 



ADVANCED SPRITE GRAPHICS 8 

Creating and Controlling Missile Sprites 

Your program can contain up to two missile sprites. Missile # 1 must be assigned 
sprite #2, and Missile #2 (if any) must be assigned sprite #3. Player #1 has control 
over Missile #1, and Player #2 has control over Missile #2. Set KB to 1 (enable 
keyboard) in line 2610 so that we may explore this new area of action sprites. 

The design of a missile sprite may be anything you wish. You can make the 
missiles resemble small spacecraft, a group of bullets, one long shaft-anything 
that fits on the Sprite Design Grid. We use the DATA statements below to describe 
each missile. These data statements describe a sprite made up of only three tiny 
points in a row. Add this missile shape to your library. 

1106 mTA "MISSlLE",31,0 
1108 mTA 0, 0, 0 
1110 DATA 0, 0, 0 
1112 D1\ 'I7\. 0, 0, 0 
1114 m'I7\. 0, 0, 0 
1116 mTA 0, 0, 0 
1118 D1\TA 0, 0, 0 
1120 mTA 0, 0, 0 
1122 mTA 0, 0, 0 
1124 m'I7\. 0, 24, 0 
1126 mTA 0, 0, 0 
1128 mTA 0, 24, 0 
1130 mTA 0, 0, 0 
1132 mTA 0, 24, 0 
1134 mTA 0, 0, 0 
1136 mTA 0, 0, 0 
1138 mTA 0, 0, 0 
1140 mTA 0, 0, 0 
1142 DATA 0, 0, 0 
1144 rnTA 0, 0, 0 
1146 mTA 0, 0, 0 
1148 DATA 0, 0, 0 
1150 DATA . , . , 

You set up a missile sprite in almost the same fashion as player sprites, except 
that you do not place it on the screen or turn it on. These two tasks are done 
automatically by the computer whenever the player presses the missile's fire but
ton. Each time a player presses his fire button, the computer: 

(l) Connects the missile to its player sprite; 
(2) Turns the missile on; and 
(3) Shoots it in a specified direction. 

The steps you have to take to set up a missile sprite are: 

(1) Set SP to a pointer number of 2 or 3; 
(2) Retrieve the missile description you desire; 

259 



260 

8 ADVANCED SPRITE GRAPHICS 

(3) Set the missile's color code (followed by GOSUB 260); 
(4) Call any other sprite features you want for the missile; and 
(5) Set the shape versus sprite priority for the missile. 

Enter the following program lines that take care of these steps for our missile 
sprites: 

2300 REM:::::::SET UP MISSILE SPRITES 
2310 SP=2: SE$=IMISSlLE": ensUB 810 
2320 C~: msUB 260: ensUB 240 
2330 SP=3: SE$="MISSlLE": ensUB 810 
2340 C=1: msUB 260: <DSUB 250 

There can be up to two missile sprites operating at one time: one for each player 
sprite. Each missile sprite may have its own set of DATA statements, or they can 
both use the same set of DATA statements. This depends on what you would like 
each missile to look like. Our program uses the same DATA statements to describe 
both of the missiles. 

A missile sprite must be "enabled" in order for it to be fired from a player sprite. 
Two variables are involved with enabling/disabling your missiles: MI and M2. 
Missile #1 is disabled when MI=O, and Missile #2 is disabled when M2=0. Again, a 
disabled sprite is simply a non-action, normal sprite. 

Enabling missile sprites is done a little differently than enabling player sprites. 
You enable a missile sprite by setting its variable to a direction code. This code tells 
the computer in which direction (one of eight) you want the missile sprite to travel 
when fired. The computer knows that if M I is assigned a direction code, you must 
want Missile #1 enabled. Likewise, if M2 is assigned a direction code, you want 
Missile #2 enabled. The eight possible shooting directions and their codes are 
diagrammed below. 

(UP) 
1 

(LEFT) 4 ... f-----HH------1~ 

2 
(DOWN) 

Direction Codes (M1 = ? : M2 = ?) 

8 (RIGHT) 



ADVANCED SPRITE GRAPHICS 8 
The eight shooting directions have codes ranging from one to ten. "Up" has a 

code of 1, "down" has a code of 2, "left" has a code of 4, and "righ t" has a code of 8 
(these are all powers of two). Diagonal direction codes are a result of adding vertical 
and horizontal codes together. Diagonally "up and to the right" (code 9) is the 
result of adding the codes for "up" and "right" together (I + 8 = 9). Diagonally 
"down and to the left" (code 6) is a result of adding the codes for "down" and "left" 
together (2 + 4 = 6). This principle is the same for the remaining two diagonal 
directions. 

Player #1 's sprite currently points upward. We, thus, want this player's missile to 
shoot upward. Setting Ml to I (Ml=l) before COSUB 290 will enable Missile #1 and 
point it in an upward direction. 

Player #2's sprite currently points downward. Its missile should then logically 
shoot downward. It will if you set M2 equal to 2 before calling Tool 290. 

Change line 2620 to the following: 

2620 PI=I: P2=1: MI=I: M2=2 

That's all that is required to set up and enable missile sprites. RUN the program. 

The computer must now plot the stars, place the player sprites, and then place 
the missile sprites. You will not be able to see the missile sprites as they are placed, 
but they won't become active until they are. Wait just a few moments after the 
spacecraft are on the screen, and then try pressing your fire buttons (SHIFT keys). 
The left-hand SHIFT key will fire the missile from Player #1 's sprite. The right
hand SHIFT key will fire the missile from Player #2's sprite. 

If you are using joysticks to control your sprites, the joystick button is the fire 
button. Use this button whenever we refer toa SHIFT key here. (Note: Joysticks can 
have more than one button. Press each one until you locate the fire button.) 

The missiles will fly quickly, so it will be hard to see exactly what they look like. 
They resemble three small bullets shooting from the spacecraft. Try holding down 
a SHIFT key to "rapid-fire" a missile. You will find that a player's first missile 
must travel off the screen before that player can fire another missile. Crab a friend 
or relative and try firing at each other. As yet, nothing will happen when you score a 
"hit," but you can see that the game is advancing quite rapidly. 

A missile sprite will move in a straight path until it reaches the screen edge. The 
"customized" interrupt commands cause the computer to turn that sprite off once it 
crosses the screen border. The missile sprite is then automatically turned on and 
placed with its player sprite the next time the appropriate fire button is pressed. 

Return to text mode and try changing a missile's direction and color. Also, you 
might enjoy replacing our "MISSILE" description with one of your own. 

A missile sprite can travel in only one direction. That direction is determined by 
the value of its corresponding variable (Ml or M2). The vertical/horizontal direc
tion codes are I (up), 2 (down), 4 (left), and 8 (right). Diagonal firing codes are 
found by adding the corresponding horizontal and vertical direction codes 
together. A missile is enabled whenever its variable has been set to a direction code, 

261 



262 

8 ADVANCED SPRITE GRAPHICS 

and Tool 290 IS called. (Again, if PI=O, all action sprites are automatically 
disabled.) 

Creating and Controlling a Target Sprite 

A target sprite is the last of the action sprites that can be added to your game. 
There can be only one target sprite, and it must have a sprite number of 4. A target 
sprite cannot shoot missiles, but it can get hit. This adds a twist to a two-player 
game, and an "opponent" to a one-player game. The target sprite we use looks like 
this: 

ROW # 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

20 

SPRITE DESIGN GRID 

(TOP) 

A B C 
1 1 1 
2 6 3 1 263 1 263 1 
6 4 2 6 8 4 2 1 8 4 268 4 2 1 8 4 2 684 2 1 

~ 

l" "'~ 
I.: '-, 

[< 

. ..., ~r • 
I; 

t.s' 
J I,:: 

1631842 116318421 16318421 
2 4 2 6 2 426 2 4 2 6 
8 8 8 

DATA STATEMENTS 

SUM I SUM I SUM 
BASIC DATA OF OF OF 
LINE # ABC 

DATA 0 o 0 
DATA 0 '--0-'-0 

DATA 0 '--0-'--0 

DATA 0 '--0-'--0 

DATA 0 '-----s2'--o 
DATA 0 '255'---0 

'-_.'--::-::--
DATA 1 ,~,~ 
DATA 3 ,~,~ 
DATA 7 ,~,~ 
DATA 7 ,~,~ 
DATA 127 o 254 
DATA 7 '255'224 
DATA 7 : 255 :~ 
DATA 3 ,~,~ 
DATA 1 ,~,~ 
DATA 0 255 0 

'-_.'---::--
DATA 0 ,~,~ 
DATA 0 o 0 
DATA 0 '--0-'---0-

DATA 0 '--0-'-0 

DATA 0 '--0-'---0 
,-_.,--=--

The DATA statements below must be added to your program to define this sprite: 

1152 DATA 
1154 mTA 
1156 mTA 
1158 mTA 
1160 mTA 
1162 Dl\TA 
1164 mTA 
1166 mTA 
1168 mTA 
1170 mTA 

ITARGEI'" , 31,0 

0, 0, ° 
0, O, ° 
0, 0, ° 
0, 0, ° 
0, 62, ° 
0,255, 0 
1,255,128 
3,255,192 
7,255,224 



1172 mTA 
1174 mTA 
1176 Dl\TA 
1178 DP.TA 
1180 Dl\TA 
1182 Dl\TA 
1184 Dl\TA 
1186 Dl\TA 
1188 DP.TA 
1190 mTA 
1192 mTA 
1194 Dl\TA 
1196 Dl\TA 

ADVANCED SPRITE GRAPHICS 8 

7,255,224 
127' 1 0,254 

7,255,224 
7,255,224 
3,255,192 
1,255,128 
0,255, '" 
0, 62, 0 
0, 0, 0 
0, 0, 0 
0, 0, 0 
0, 0, 0 
• I • , 

A target sprite is set up exactly as a player sprite is. The only difference is that a 
target sprite must be assigned a sprite number of 4. Add the program lines below 
that set up a target sprite in your program: 

2400 REM::::::: SET UP TARGET SPRITE 
2410 SP=4: SE$=ITARGEl'": OOSUB 81.0 
2420 C=7: msUB 260: CDSUB 240 
2430 X=159: Y=99: CDSUE 270: CDSUB 180 

Finally, you need to enable the target sprite. This is done by setting the variable 
TI to a direction code. A target sprite may travel in one of eight different directions. 
Not surprisingly, the list of eight target direction codes is the same as the list of 
missile direction codes: 

Up = I 
Up and Right = 9 

Right = 8 
Right and Down = 10 

Down = 2 
Down and Left = 6 

Left = 4 
Left and Up = 5 

Let's have the target move horizontally to the left (TI=4). Change line 2620 to the 
following: 

2620 Pl=l: P2=1: Ml=l: M2=2: Tl=4 

RUN the program. Now there are five different action sprites that must be placed 
on the screen before you have control. The last sprite will be the yellow target sprite. 
It will be placed near the center of the screen, and will immediately begin its travel 
leftward. 

This target sprite will continue to the left screen edge, and then wrap around 
back to the opposite side of the screen. It will then move across the screen again, and 
again, and again. Your "aim" is to shoot the target. This is not as easy as it looks. 

263 



264 

8 ADVANCED SPRITE GRAPHICS 

Try a few shoots. With practice, you will get the timing down and may need to 
speed up the game to increase the challenge. 

Change the target's direction in the main routine and RUN the program again. 
Be certain to try a diagonal direction, because the "wrap around" feature may not 
work as expected for this path of motion. 

That is all there is to creating and controlling a target sprite. Basically, you create 
a sprite, assign it sprite #4, set TI to a direction code, and call Tool 290. 

All three action sprite types have now been covered. These sprites are moved by 
"customized" commands that have been added to the Commodore 64's interrupt 
system. Sprites 5, 6, and 7 may be placed in the game, but they can only operate as 
normal, non-action sprites. 

Tool 290 executes the machine language necessary to put action sprites into 
motion. There are seven variables associated with this tool. These variables are 
reviewed in the tool box below, as well as at the end of the chapter. 

TOOL 290 ::::::: HOOK UP ACTION SPRITES 

290 REM:::HOOK UP ACTION SPRITES 
291 SYS 50023,KB,P1,P2,255411,255-M2,255-Tl,VE 
292 RETURN 

What It Does: This tool adds some "customized" commands to the 
Commodore 64's interrupt system. These commands allow you to turn 
Sprites #0 and #1 into "player sprites." A player sprite can be moved 
around the graphics screen under keyboard or joystick control. The 
value of variables PI and P2 determine whether Sprites #0 and #1 are 
player sprites. 

You can also turn Sprites #2 and #3 into "missile sprites." These 
sprites can be shot from your player sprites by the touch of a key or the 
press of a joystick button. Sprite #2 can be shot from Sprite #0, and Sprite 
#3 can be shot from Sprite #1. Variables MI and M2 enable/disable 
missile sprites. 

Finally, you can turn Sprite #4 into a target sprite. A target sprite is 
placed on the screen and sent along one of eight linear paths. The sprite 
makes the trip along this path over and over again, serving as a moving 
target for your players sprites. The variable TI enables/disables the 
target sprite. 

Example Use: Seven variables are checked by the computer when it calls 
Tool 290. These seven variables determine: (I) which action sprites are 
enabled; (2) the method of control you will have over the player sprites; 
(3) the direction of travel for the missile sprites and the target sprite; and 
(4), the speed at which all action sprites will travel. These variables are: 



ADVANCED SPRITE GRAPHICS 8 
KB : Stands for Keyboard. KB= I enables keyboard control. KB=O disables 

keyboard control (enabling the joysticks). 
VE : Stands for Velocity. Value can range from 0 (fastest) to 65 (slowest). 

PI : Stands for Player #1 and controls Sprite #0. P 1=0 disables all action 
sprites. PI=I connects Sprite #0 to Joystick III or the left-hand key 
controls. 

P2: Stands for Player #2 and controls Sprite #1. P2=0 disables Sprite #1, 
leaving ita non-action sprite. P2=1 connects Sprite #1 to Joystick #2 
or the right-hand control keys. 

Ml : Stands for Missile #1 and controls Sprite #2. Ml=O disables Sprite 
#2, leaving it a non-action sprite. Setting Ml to one of eight 
direction codes connects Sprite #2 to Sprite #0, making it a firing 
missile for Player #1. The direction code determines this missile's 
direction of fire. 

M2 : Stands for Missile #2 and controls Sprite #3. M2=0 disables Sprite 
#3, leaving it a non-action sprite. Setting M2 to one of eight 
direction codes connects Sprite #3 to Sprite #1, making it a firing 
missile for Player #2. The direction code determines this missile's 
direction of fire. 

Tl : Stands for Target #1 and controls Sprite #4. Tl=Odisables Sprite #4, 
leaving it a non-action sprite. Setting Tl to one of eight direction 
codes will enable the target sprite. It can then be placed on the 
screen at an X,Y position, and will travel in the direction of its 
"enable" code. It follows that linear path over and over again. 

Example program lines that will enable all action sprites, connect the 
player sprites to the keyboard, and set the speed at 15 are: 

2610 KB=1: VE=15 
2620 PI=I: P2=1: MI=I: M2=2: TI=4 
2630 OOSUB 290 

Technical Description: In order to better understand interrupts, let's 
look at a simple analogy. 

Fred Baker owns a bakery. The bakery has two ovens, and each oven 
has a timer with an alarm. From January through November Fred uses 
only one oven, in which he bakes one loaf at a time. He places the dough 
in oven "A," sets timer "A" for one hour, and then goes in the back room 
to do his bookkeeping. After one hour the timer reaches "0" and the 
alarm goes off. Fred then marks his place in his bookkeeping, shuts off 
the alarm, takes the bread out of the oven, and starts the process all over 
again. 

When December rolls around, however, Fred always gets a big order 
for Christmas cookies. He still bakes his usual amount of bread, but now 
he must use both ovens. Oven" A" is still used for bread, and oven "B" is 
now used for cookies. The cookies, however, only need to bake for 

265 



266 

8 ADVANCED SPRITE GRAPHICS 

twenty minutes, and therefore Fred sets timer "B" for twenty minutes. 
Realizing that baking three batches of cookies will take the same 
amount of time as baking one loaf of bread, Fred concludes that there is 
no need for both alarms to go off. Therefore, when he sets the timer for 
the bread, he sticks a \Yad of paper between the bell and the striker. 

Now when an alarm goes off, Fred knows that the cookies are done. 
He again marks his place, shuts off alarm "B," removes the cookies, puts 
in a fresh batch, and resets the timer. Fred also checks oven "A" to see if 
the bread timer has reached "0," and then proceeds to remove the bread 
if it has. 

H you are wondering what this has to do with interupts, the answer is: 
everything. Inside the Commodore are two timers. Timer "A" is at 
memory locations 56324 and 56325, and timer "B" is at memory loca
tions 56326 and 56327. Each timer owns a bit at location 56333. These 
two bits correspond to the "alarms" in our analogy. Normally, when an 
alarm is set, an interrupt occurs. It is possible, however, to "stick a wad 
of paper in" so the alarm goes off but an interrupt doesn't occur. 

The normal interrupt routine "bakes the bread," or in this case, 
increments TI$, flashes the cursor, and checks the keyboard. Our cus
tom interrupt, however, "bakes the cookies," or in this case, moves the 
action sprites. Since we want this to happen more frequently than the 
bread (normal alarm) we "stick a wad of paper" in timer "A," and check 
the timer after the action sprites have been moved. 

Collision Detection 

You are now going to add tools that make the game worth playing. These tools 
deal with sprite collisions. A collision occurs whenever two objects come together, 
normally with some amount of force. We are not concerned with the amount of 
force behind a sprite collision, only that a sprite has run into, bumped, or touched 
something. There are two types of sprite collisions: 

(l) Sprite-to-Sprite collisions; and 
(2) Sprite-to-Foreground collisions. 

You want to be able to detect Sprite-to-Sprite collisions in the event a missile 
sprite hits a player sprite, or a missile sprite hits the target sprite. H you can detect 
the exact instance such a collision occurs, you can have the computer respond 
appropriately (e.g., by adding points to a player's score). 

Detecting when a sprite touches a foreground shape allows greater flexibility and 
creativity in the design of the game. For example, you could have the player sprites 
"blow up" if they run into foreground shapes. You could even draw a border 
around the graphics screen, and deduct points from a player's score if he tries to 
travel off the screen. 



ADVANCED SPRITE GRAPHICS 8 

Sprite-to-Sprite Collisions 

Memory location 53278 holds the answer to whether or not a sprite has collided 
with another sprite. This location has seven little "slots," numbered 128,64,32, 16, 
8,4,2, and I. These slot numbers should look familiar. They are the same numbers 
assigned to each section on your Sprite Design Grid. All eight sprites have their 
own slot and slot number, as shown below: 

SLOT #: 1 128 1 64 1 _3
5
2_ 1 16 8 4 2 1 

SPRITE#:~ ___ 7 __ ~ ___ 6 __ +. ____ -+. ___ 4 __ ~ __ 3 __ ~ __ 2 __ ~ ____ -+ ___ O~ 

ACfION V AR.: L. _-__ - __ ,L. ____ --L ____ ---'-__ T;:..I"----'---_M:....:::.2---''--.:..;M;.:.I __ l...--''P..;:2 __ -'---'P:...::I'---J 

A sprite's slot number will "turn on" whenever it collides with another sprite. It 
takes two sprites to make a collision, so at least two slot numbers will always be on 
after a collision has taken place. For example, if sprites I and 4 collide, the 
following slots in memory location 53278 will be turned on: 

"ON" "ON" 

~ t 
SLOT #: 1128 64 32 16 8 4 2 1 

SPRITE#:r __ :...::7 __ ~--"6 __ +---"5 __ +---=4~~--=3 __ 1---=2~~--="---+ __ O"--~ 
ACfION VAR.: Tl M2 MI P2 PI 

'------'-------'------~----~----~--~~--~~-:...::~~ 

If you had the computer look (PEEK) into memory location 53278 after this 
collision, it would find a value of 18 there: 

16 (Sprite 4's slot) + 2 (Sprite I's slot) = 18 

In many instances, the ability to PEEK into this memory location provides you 
with enough information to decide what to do. For example, you could have a 
program line reading: IF PEEK(53278)=18 THEN ... (whatever you wanted to 
happen when sprites 1 and 4 collide). However, there will be times when more than 
two sprites collide at the same time. There will also be times when two separate 
collisions occur at the same time. These instances would cause several slots to be 
turned on at the same time, making it difficult for you to determine the exact 
collisions that took place. 

Suppose that you have variable Cl holding a count of Player #l's current score. 
You decide that if Player #1 hits Player #2, 25 points should be added to Player #1's 
score. You look at the above diagrams, see that Missile #1 has a slot value of 4, and 
Player #2 has a slot value of 2. Based on these two slot numbers, you insert the 
following program line into your program: 

2700 IF PEEK(53270)=6 THEN Cl=Cl+25 
Now, suppose that Missile #1 does hit Player #2, but, at the same time, Player #1 

runs into the target sprite. The computer would look into memory location 53278 
and find the following: 

W7 



268 

8 ADVANCED SPRITE GRAPHICS 

Collision - />. 

/ - -~~ 
SLOT II: 128 64 32 16 8 4 2 1 

SPRITE II: 7 6 5 4 3 2 1 0 
ACTION VAR.: -- -- -- Tl M2 Ml P2 PI 

16 + 4 + 2 + 1 = 23 

The value of this memory location would be 23 and not 6, so Player # I would lose 
ou t on his/her 25 poin ts-even though they did indeed hit Player #2' s ship. Clearly, 
there must be a way to see if two slots are turned on, ignoring any others that might 
also be. 

There is. A BASIC statement called" AND" compares the slots that are currently 
"on" to the slots you want to check. It then returns a value representing the 
"matching" slots found in the comparison. For example, you might have a pro
gram line that contains the following: 

IF (PEEK(53278) AND 6)=6 THEN Cl= Cl+25 

This tells the computer to check memory location 53278, compare the slots that 
are "on" to slots 4 and 2 (i.e., 6), and return the total value of any matches. The 
comparison is performed as follows: 

SLOTS ON: 1 128 64 32 16 8 4 2 1= 23 

SLOTS TO CHECK: I 128 64 32 16 8 4 2 1= 6 

MATCHES: \ 128 64 32 16 8 4 2 1 1= 6 

Because the returned value equals 6, the computer sets CI equal to CI + 25, as 
instructed by the program. 

Let's look at another example. Suppose you wanted to check to see if Missile #2 
collided with Player #1. This collision involves slots 8 and 1. You check for this 
with the following program line: 

IF (PEEK(53278) AND 9) = 9 THEN C2=C2+25 

The computer might make the necessary comparison and find this: 

SLOTS ON: \ 128 64 32 16 8 4 2 1 = 7 

SLOTS TO CHECK: 1 128 64 32 16 8 4 2 1 1= 9 

MATCHES: I 128 64 32 16 8 4 2 1= 



ADVANCED SPRITE GRAPHICS 8 

The returned value of "total matches" would be I, which does not equal 9. Player 
#2 's score would not be increased. 

The AND command is very simple to understand and use once you've seen it 
work several times. All you need to do is supply the correct total of the slot numbers 
you want to check. The rest of the formula stays the same from collision detection to 
collision detection. 

We have a COLLISION DETECTION tool that saves you the trouble of typing 
PEEK(53278) over and over again in your program. This tool will check memory 
location 53278 for you, and set the variable SS to the value of that memory location. 

Add this tool to your program now: 

300 REM::: COLLISION DETFX:TICN 
301 SS=PEEK(53278) 
302 SF=PEEK(53279) 
303 Rm'URN 

(Line 302 checks for Sprite-to-Foreground collisions, which is discussed later in the 
chapter.) 

You want the compu ter to be continuously checking for collisions, so that it will 
react each time one occurs. This is accomplished with a continuous loop. Type 
these program lines into your main routine: 

2700 REM:::::::GAME PLAY 
2710 OOSUB 300 
2900 ooro 2710 

Notice that the loop begins at line 2710, and jumps straight to 2900. Line 2710 
calls the COLLISION DETECTION subroutine. Upon returning from this tool 
SS holds the answer to whether one or more Sprite-to-Sprite collisions have 
occurred. Between lines 2710 and 2900, you may insert program lines that in
creasel decrease scores, explode spacecraft, or whatever else you deem appropriate 
for the collisions that have taken place. Then line 2900 returns the computer to line 
2710 to look for more collisions. 

There is one thing not yet addressed. The appropriate slots in memory location 
53278 will turn on each time a Sprite-to-Sprite collision occurs. However, once you 
have checked this memory location and found the collision, you must turn those 
slots back off. If you don't, each time you PEEK into that location, you will be told 
about that same collision. Poking a 0 into memory location 53278 will turn off all 
of its slots. Add this subroutine to your program: 

310 REM::::RESET COLLISION REGISTER 
311 POKE53278,0: POKE53279,0 
312 RETURN 

Now you are set. You have a subroutine that checks for collisions and a subrou
tine that resets the collision register. Let's add some main routine lines that flash 
the player sprites on and off whenever they get hit. Again, the slot numbers 
assigned to each sprite are: 

269 



270 

8 ADVANCED SPRITE GRAPHICS 

SLOT Ii: 1128 64 32 16 8 4 2 I 

SPRITE#: ~ __ ~7 __ ~_6~~ __ 5~~ __ 4~4-~3 __ 4-~2 __ +-~ __ +-~O~ 
ACfION V AR.: Tl M2 M1 P2 PI 

~ ____ ~ ____ ~ ____ ~~ __ ~~~~ __ ~-L~~~~~~ 

A collision between Missile #1 and Player #2 involves slots 4 and 2, totaling 6. A 
collision between Missile #2 and Player #1 involves slots 8 and I, totaling 9. The 
program lines below check for these two collisions and take the necessary action. 

2800 IF(SS AND 6)=6 THEN SP=I: ensUB 5000 
2810 IF(SS AND 9)=9 THEN SP=0: OOSUB 5000 
5000 REM:::::::COLLISION RESULT 
5020 FOR I = 1 'ID 25 
5030 OOSUB 190: ensUB 100 
5040 NEXT I 
5060 REI'URN 

Finally, add lines 5010 and 5050 so that memory location 53278 is reset before the 
loop is processed again, and the action sprites are all temporarily disabled while 
they flash: 

5010 Pl=0: ensUB 290 
5050 ensUB 310: Pl=l: ensUB 290 

RUN the program and play the game. You should find that each time a space
craft is hit by an opponent's missile, the spacecraft flashes on and off twenty-five 
times. The program doesn't check to see if the target sprite is hit, so nothing will 
happen when a missile collides with it. 

Return to text mode and list lines 2700 through 5060 on your screen. Briefly, line 
2710 checks the Sprite-to-Sprite collision register and places its total value in 
variable SS. Line 2800 checks SS to see if slots 4 and 2 (totaling 6) are turned on. If 
so, SP is set to 1 so that the correct sprite is affected, and a simple subroutine at 5000 
executes. This subroutine flashes sprite SP twenty-five times. 

Line 2810 checks SS to see if slots 8 and 1 (totaling 9) are turned on. If so, SP is set 
to 0 so that the correct sprite is affected, and the subroutine at 5000 is called. Notice 
that the last thing the loop at 5030 does is turn sprite SP on. If GOSUB 190 and 
GOSUB 180 were reversed here, the sprite that was hit would never be turned back 
on to continue the game. 

Let's add program lines that detect when the target has been hit. Lines 2820 and 
2830 check to see if either missile has hit the target. If so, SP is set to 4 (the target 
sprite), and the subroutine at 5000 is called. Add these program lines and run the 
program again. 

2820 IF(SS AND 24)=24 THEN SP=4: GOSUB 5000 
2830 IF(SS AND 20)=20 THEN SP=4: GOSUB 5000 

The game is identical, except that the target sprite now flashes when hit. Spend 
as much time as you like dodging and/or shooting your opponent, or taking pot 
shots at the target sprite. 



ADVANCED SPRITE GRAPHICS 8 

The game can be easily changed whenever you like. The important thing is 
summing the correct slot numbers. (Don't add up sprite numbers by accident.) 
Determine the slot numbers of the two sprites whose collision you want to watch 
for. Add the slot numbers together, and insert them in a program line similar to this 
(replacing "x" with the total obtained by the slot numbers): 

IF (SS AND x) = x THEN SP = ... 
Follow "SP =" with the sprite number that was hit, and then insert a GOSUB 5000 
statement. The subroutine at 5000 can be customized to perform any "collision 
result" that you like, and there are many things that can be done. For example, you 
might try having the subroutine: 

-disable all action sprites (Pl=O: GOSUB 290). 
-turn both missile sprites off (SP=2: GOSUB 190: SP=3: GOSUB 190) 
-flash the sprite that was hit twenty-five times (same as before) 
-enable all action sprites again (P I = 1: GOSUB 290) 

The missile sprites do not have to be (and should not be) turned back on. They 
will be automatically turned on by the press of the correct fire button. 

TOOL 300 ::::::: COLLISION DETECTION 

300 REM:: :COLLISION IEI'ECI'ION 
301 SS=PEEK(53278) 
302 SF=PEEK(53279) 
303 RIITURN 

W hat It Does: This tool PEEKs into two memory locations: 53278 and 
53279. The value of memory location 53278 is placed in variable SS, and 
the value of memory location 53279 is placed in variable SF. 

These two memory locations each have eight slots, numbered 128, 64, 
32, 16, 8, 4, 2, and I. Each sprite is assigned one slot from each memory 
location: 

Sprite 0 - Slot 1 
Sprite 1 - Slot 2 
Sprite 2 - Slot 4 
Sprite 3 - Slot 8 
Sprite 4 - Slot 16 
Sprite 5 - Slot 32 
Sprite 6 - Slot 64 
Sprite 7 - Slot 128 

Whenever a sprite collides with another sprite, its slot will be turned 
"on" in memory location 53278, thus increasing the value that will be 
found when PEEKing into that memory location. Whenever a sprite 
collides with a foreground shape, its slot will be turned "on" in memory 
location 53279, thus increasing the value of that memory location. You 

271 



272 

8 ADVANCED SPRITE GRAPHICS 

can, by continually checking these memory locations, see exactly when 
a sprite collides with another sprite or with a foreground shape. 

Example Use: This subroutine is called with a GOSUB 300 statement. 
You should place this GOSUB statement at the beginning of a loop that 
checks for specific collisions. A loop ensures that collisions are con
stantly monitored. Example program lines that form such a loop are: 

2710 CDSUB 300 
2800 IF(SS AND 24)=24 THEN SP=4: GOSUB 5000 
2810 ro:ro 2710 

Technical Description: Memory location 53278 is a special register 
that contains information about Sprite-to-Sprite collisons. Each sprite 
has one bit in this register. Any time a collision occurs between two 
sprites, the two bits corresponding to the two involved sprites are set to 
"1". 

Memory location 53279 is a similar register which contains informa
tion about Sprite-to-Foreground collisions. Any time a sprite collides 
with a foreground pixel, the bit corresponding to the involved sprite is 
set to "I" in this location. 

By checking these locations very quickly, we can detect a collision 
almost as soon as it happens. If, for some reason, we aren ' t checking 
quickly enough and a collision has occurred and ended before we can 
check it, that collision will still register in the proper memory location. 
This ensures that we will never miss a collision. 

Sprite-to-Foreground Collisions 

The COLLISION DETECTION tool checks two memory locations. The first 
location stores Sprite-to-Sprite collisions. The second location, 53279, stores 
Sprite-to-Foreground shape collisions. You won't be able to detect the exact fore
ground shape with which a sprite collides. You will, however, be able to detect the 
~xact sprite that has collided with a foreground shape. 

When a sprite collides with a foreground shape, its slot number is turned "on" in 
memory location 53279. The sprite slot numbers are the same as before, so all you 
need to do is compare the slot numbers with a new memory location. 

A GOSUB 300 statement will return the value of memory location 53279 for you. 
This value is stored in variable SF (Sprite-to-Foreground). You can compare this 
value to any sprite slot number and find out if that sprite collided with a foreground 
shape. You don't need to add slot numbers together when checking for foreground 
collisions. You aren't checking to see if two sprites collided with a foreground 
shape, only one. Thus, only one slot number needs to be considered in each AND 
statement. • 



ADVANCED SPRITE GRAPHICS 8 

Let 's draw a border around the graphics screen. This border will be considered a 
foreground shape by the computer, and memory location 53279 will be affected if a 
sprite crosses over it. The program lines that will draw this border are given below, 
replacing those that plot the stars. Delete the program lines that draw the planet, if 
you entered them. (If you leave the stars or the planet on the screen, Sprite-to
Foreground collisions will happen all the time.) 

2100 REM :::::: : DRAW IDRDER 
2110 C=7: X1=0: Y1=0 
2120 X2=319: Y2=0: OOSUB 50 
2130 X1=319: Yl=199: OOSUB 50 
2140 X2=0: Y2=199: msuB 50 
2150 Xl=0: Yl=0: OOSUB 50 

We know that the target sprite will constantly cross over this border, so it won 't 
be necessary to watch slot #16 to see when it turns on. We can, however, "penalize" 
the player sprites if they try to leave the screen. Player #l's sprite has a slot number 
of l. We should, therefore, watch register 53279 to see when slot I turns on. Player 
#2's sprite has a slot number of 2, so this slot must be watched also. Try to figure out 
what AND statements are necessary to check for these two Sprite-to-Foreground 
collisions. 

You're right if you came up with these program lines: 

2840 IF(SF AND 1)=1 'mEN SP=0: 
2850 IF(SF AND 2)=2 '!HEN SP=l: 

OOSUB 5000 
OOSUB 5000 

Type program lines 2840 and 2850 into your program. Next, type the following: 

2710 GOSUB 300: IF SS>0 OR SF>0 THEN 2800 
2720 <DI'O 2710 

This prevents the computer from reading lines 2800 through 2850 when it is 
evident that no collisions have taken place (Tool 300 returned a value of 0 for both 
collision registers). 

R UN the program. The stars are gone, and in their place a bright yellow border is 
plotted around the graphics area. This border is made up of foreground pixels, and 
is hence considered to be a foreground shape by the computer. Try "sneaking" a 
player off the screen. The sprite will be able to move off the edge, but not without 
first facing the consequences. It will flash as it tries to leave the screen, and again 
when it tries to return to the screen. 

Imagination is the biggest factor in successfully using Sprite-to-Sprite and 
Sprite-to-Foreground collisions. You should spend time designing foreground 
shapes that present obstacles to your players. For example, you might allow one 
player sprite to go unharmed when it collides with foreground objects, but blow up 
the other player sprite when it collides with foreground shapes. 

The " spri te priority over sha pes" feature is an even bigger consideration now. By 
setting this feature properly, you can permit one player (or both) the lUXUry of 

273 



274 

8 ADVANCED SPRITE GRAPHICS 

"hiding" behind foreground shapes as part of the game. The rewards, consequen
ces, and game strategy are all up to you-all we can provide are the tools to work 
with. 

Write the sprite slot numbers on a piece of scratch paper. On that same paper, 
write down the following: 

Sprite-to-Sprite Collisions: 
GOSUB 300 
IF (SS AND x ) = x THEN ... 
(where "x" equals total of two sprite slot numbers) 

Sprite-to-Foreground Collisions: 
GOSUB 300 
IF (SF AND x ) = x THEN .. , 
(where "x" equals slot number of sprite) 

Scoring and Special Effects 

The remaining tools in this chapter deal with the visual and audio effects that 
can be created when a collision occurs. There is not enough room in one chapter to 
cover all the possibilies; but we will show you enough to give you a good start. 

Game Suspension, Scoring, and Game Continuation 

The task of keeping a player's score is a relatively easy one, and can be handled in 
the main routine. We will assign each player a variable: Player #1 will have variable 
CI, and Player #2 will have variable C2. Every time a missile sprite collides with 
another sprite we will increase the value of one of these variables. 

The number of points awarded per hit can vary from game to game, or even from 
player to player. Generally, it's harder to hit an opponent than it is the target sprite. 
Let's start by awarding twenty-five points for hitting an opponent, and ten points 
for hitting the target. We'll also deduct points from any player who crosses the 
screen's border. Change lines 2800 through 2850 to the following: 

2800 IF(SS AND 6)=6 'IHEN C1=C1+25: SP=1: OOSUB 5000 
2810 IF(SS AND 9)=9 THEN C2=C2+25: SP=0: OOSUB 5000 
2820 IF(SS AND 24)=24 THEN C2=C2+10: SP=4: OOSUB 5000 
2830 IF(SS AND 20)=20 'IHEN C1=C1+10: SP=4: OOSUB 5000 
2840 IF(SB AND 1)=1 THEN C1=C1-15: SP=0: OOSUB 5000 
2850 IF(SB AND 2)=2 THEN C2=C2-15: SP=1: OOSUB 5000 

Increasing and decreasing the value of variables CI and C2 can easily keep track 
of the score. The next step is to make it easy for players to check the score. 

A tool called SUSPEND GAME will temporarily save the game being played and 
take the players to text mode. This tool can be "called" based on the condition that 
a particular key has been pressed. Once in text mode, the playing scores can be 
displayed on the screen. 



ADVANCED SPRITE GRAPHICS 8 

Another tool, called CONTINUE GAME, returns the players to the game exactly 
where they left off. This tool can be called based on the condition that any key is 
pressed. You will see how this works once you add the tools to your tool kit: 

320 REM:::::::SUSPEND GAME 
321 Pl=0: GOSUB 290: TP=PEEK(53269) 
322 FOKE 53269,0: mSUB20 
323 REmJRN 
330 REM:::::::CONTINUE GAME 
331 ensUB 10: POKE 53269,TP: Pl=l: OOSUB 290 
332 RETURN 

Look at the program lines below. The characters "CHR$( 133)" in line 2730 are 
codes representing the top function key (£1) on the right-hand side of your key
board. Every key on the keyboard has a CHR$ code to represent it. In line 2740, the 
CLR/HOME key is represented by "CHR$(147)." Add lines 2720 through 2790 to 
your program. 

2 720 GE:I' A$ 
2730 IF A$ <>CHR$(133) THEN 2710 
2740 ensUB 320: PRINT CHR$(147) 
2750 PRINT "PLAYER 1: "Cl: PRINT "PLAYER 2: "C2 
2760 PRINT: PRINl' "PRESS SIDP 'ID ooIT: OR" 
2770 PRINT "PRESS ANY KEY 'ID <XNrINUE." 
2780 GET' A$: IF A$= "" THEN 2780 
2790 msUB 330: GOTO 2710 

Think about what these program lines will do. Line 2720 checks the keyboard for 
a keypress. Line 2730 sends the computer back up to line 2710 if the fl key was not 
pressed. However, if fl was pressed, line 2740 is reached. This line suspends the game 
(GOSUB 320), and clears the text screen (PRINT CHR$(147)-or press the 
CLR/ HOME key). 

Lines 2750 through 2770 print general information on the text screen, as well as 
the current scores (Cl and C2). Line 2780 causes the computer to again check to see 
if a key is pressed. If no keys are pressed, line 2780 is read again. Line 2790 wiJ] only 
be read if a key (any key) is pressed. This line calls Tool 330, which returns the 
players to the game. 

RUN the program, and spend a few moments racking up points for each side. 
Remember: scores are increased by hitting an opponent or the target sprite, and 
scores are decreased by crossing the screen's border lines. Press the n key when you 
want to check the scores. 

The text screen should then be displayed, with a message giving scores for Player 
I and Player 2. In addition, a message stating how to return to the game (PRESS 
ANY KEY), or how to quit (PRESS RUN/ STOP) should be present. A press of the 
RUN/ STOP key wi)) return you to the program. A press of any other key will 
return you to your game. 

275 



276 

8 ADVANCED SPRITE GRAPHICS 

We choose to call the SUSPEND GAME tool based on a press of the fl key. You 
may change the condition to any other that you like. For instance, when one player 
reaches a certain number of points, you could automatically call this tool and 
display the scores (warning the underdog of his plight). 

You could also change what the computer does when this tool is called. For 
example, you could exit the game entirely instead of only temporarily. You could 
also display different messages on the text screen, depending on the score of each 
player (e.g., GOOD JOBI, BETTER LUCK NEXT TIME, PLAY AGAIN?, etc). 

TOOL 320 ::::::: SUSPEND GAME 

320 REM:::::::SUSPEND GAME 
321 Pl=0: GJSUB 290: TP=PEEK(53269) 
322 POKE 53269,0: QJSUB 20 
323 RETURN 

What It Does: This tool will save the current form of your action 
sprite game, and take you to text mode. The program will still be 
running, but you can display any messages or scores you want to on the 
text screen. Pressing RUN/STOP would end the program. 

Example Use: This tool should be called based on meeting a certain 
condition; that is, a specific keypress. We chose a press of the fl key (far 
right side of keyboard) as the condition for calling this tool. Example 
program lines that suspend the game based on a press of the fl key are: 

2720 GET A$ 
2730 IF A$ <> CHR$(133) THEN 2710 
2740 (])SUB 320 

Technical Description: PI =0: GOSUB 290 disables the action sprites. 
TP=PEEK(53269) saves the "sprite enable" byte. This allows the sprites 
which were turned off to be easily restored to their previous positions. 
POKE 53269,0 turns off all the sprites, and GOSUB 20 turns on the text 
screen. This routine allows the score to be displayed without ending the 
game. 

TOOL 330 ::::::: CONTINUE CAME 

330 REM::::: :CCNI'INUE GAME 
331 QJSUB 10: POKE 53269, TP: Pl=l: CDSUB 290 
332 RE1'URN 

What It Does; This tool allows you to resume a suspended game. It 
will take you from the text screen back to the game. The game will be set 
up exactly as it was left off. This tool only works while the program is 



ADVANCED SPRITE GRAPHICS 8 

running. Once the game and program are abandoned, you cannot return 
to the game where you left off. 

Example Use: This tool should be called based on the condition that 
any key on the keyboard is pressed. That way, players can easily return 
to their game. Before calling this tool, any scores or other messages 
should have been printed in the text screen for the players to see. 
Example program lines that would call this tool based on a press of any 
key are: 

2780 GEl' A$: IF A$="II THEN 2780 
2790 ensUB 330 

Technical Description: GOSUB 10 turns on the graphics screen. 
POKE 53269,TP restores the sprites which were turned off with the 
"suspend game" subroutine. PI=I: GOSUB 290 re-enables (i.e., turns 
on) the interrupt which was also turned off with the "suspend game" 
subroutine. 

Creating Sound 

There is much we could provide in the way of sound. Indeed, there are entire 
books written on the subject of creating and controlling sounds on the Commodore 
64. Unfortunately, the space we have to devote to this topic is not adequate to cover 
the whole subject. We knew that the video game wouldn't be the same without at 
least one noise, so, rather than skip the subject, we are going to give you tools that 
control one sound. This sound resembles an explosion. 

The SOUND ON and SOUND OFF tools are given below. Tool 340 activates an 
explosion noise when it is called. Tool 350 turns the explosion noise off. Add these 
tools to your tool box. 

340 REM:::::::SOUND CN 
341 POKE54273,2: POKE54277,255: POKE54278,255 
342 POKE54276,129: POKE54296,15 
343 RETURN 
350 REM:::::::SOUND OFF 
351 FOR 1=15 'ID 0 STEP-.l: POKE54296, I :NIDITI 
352 RETURN 

The only thing you need to do with these tools is decide the appropriate time to 
call each one. Obviously, the sound should be turned on after a significant collision 
has occurred. By "significant," we mean one deserving of consequences. The target 
sprite colliding with the foreground border is not a significant collision. However, 
Missile #1 colliding with Player #2 is definitely significant, and an explosion 
would be appropriate. 

The penalty of a significant collision is currently being handled by the subrou
tine at 5000. This subroutine will flash the wounded sprite on and off twenty-five 
times. It is during this period of flashing that the sound should be activated. Once 

277 



278 

8 ADVANCED SPRITE GRAPHICS 

the penalty has been paid, the flashing should stop, the sound should be turned off, 
and the game should continue running. Two short program lines will add this new 
aspect to the game: 

seas <nSUB 340 
5045 <DSUB 350 

Immediately after a significant collision has been found and subroutine 5000 
called, the explosion noise is activated. Then, the sprite that was hit flashes on and 
off. Finally, line 5045 turns the sound off before returning to the game (main 
routine). 

RUN the program; but before you start shooting, turn the volume down on your 
monitor. Otherwise, you and anyone else in the vicinity might be in for a rude 
surprise. 

Shoot at the target, adjusting the volume as you do. 

Advanced sprite features are generally no more complex to operate than inserting 
a eOSUB statement in the program. Hence, there are not many hints we can give 
you regarding program problems. If you are experiencing difficulties, make sure 
you are calling the right subroutine, and that the subroutine was typed correctly. 

TOOL 340 ::::::: SOUND ON 

340 REM:::::: : SOUND Cl'l 
341 POKE54273,2: POKE54277,255: POKE54278,255 
342 POKE54276,129: POKE54296,15 
343 Rm'URN 

What It Does: This tool will cause a sound to be emitted from the 
monitor connected to your Commodore 64. This sound will resemble a 
small explosion, and will remain "on" until Tool 350 is called. 

Example Use: A eOSUB 340 is all that is necessary to use this tool. It 
is a good idea to call this tool immediately following a significant 
collision. You should be prepared to adjust the volume on your monitor 
whenever you run a program that makes use of this tool. 

Technical Description: Memory location 54273 is used as your com
puter's sound frequency control. Putting a low number (e.g., "2") in 
this location will produce a deep "booming" sound, while putting a 
higher number in this location (e.g., "255") will produce a higher 
pitched "snapping" sound similar to a firecracker. 

Memory locations 54277 and 54278 are used to define the "envelope" 
of the sound. There are four parts to an envelope, and each memory 
location handles two of these parts. Those four parts are "attack," 
"decay," "sustain," and "release." 

"Attack" is the amount of time it takes the volume to go from 0 to 
maximum volume. "Decay" is the amount of time it takes to go from 



ADVANCED SPRITE GRAPHICS 8 

maximum volume to a specified intermediate volume level which lies 
between "0" volume and the maximum volume. "Sustain" is the speci
fied intermediate volume level, and "release" is the amount of time it 
takes to go from the specified "sustain" level to "0" volume. 

The memory locations are allocated in the following manner: 

54277 

7 6 5 I 4 I 3 I 2 1 0 

'" v "" ...... 
.,." 

v 

Attack Decay 
54278 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 
..... ,.,'-, " v v 

Sustain Release 

Memory location 54276 controls the waveform of the sound. There are 
four possible types of waveforms: 

v V 
TRIANGLE 

/1 ~ /1 ; 
Vv V 

SAWTOOTH 

nllnn 
J U U U L 

PULSE 

flU Dflr1 
D\JvVV 

NOISE 

The first three waveforms are used to simulate musical instruments. 
The last waveform, noise, is used to simulate special effects such as surf, 
explosions, jets, cars, etc. Since we are simulating the sound of a colli
sion, the "noise" waveform is of special interest to us. 

Memory location 54296 controls volume. By entering a value which 
ranges from 0 to IS in this location you can raise and lower the volume 
without adjusting the volume of your television. "0" volume is the 
lowest volume level, while "IS" is the maximum volume level. 

279 



280 

8 ADVANCED SPRITE GRAPHICS 

TOOL 350 ::::::: SOUND OFF 

350 REM:::::::SOUND OFF 
351 FOR 1=15 TO 0 STEP-.l: POKE54296,1: NEXT I 
352 RErURN 

What It Does: This tool will turn off the noise created by Tool 340. 

Example Use: A GOSUB 350 is all that is necessary to use this tool. 
Most often, this tool will be called at the end of an explosion just before 
returning the players to their game. 

Technical Description: This subroutine gradually lowers the volume 
of the sound after an explosion. This gives a more realistic, life-like 
quality to our explosions. 

Creating Crash Sprites 

This final section will show you how to make an explosion more visually 
exciting. You already have the "sound" of an explosion, and even the "flashing" 
effect of an explosion, but you are still in need of the "look" of an explosion. When 
the target sprite or a player sprite is hit by a missile, that sprite needs to be 
temporarily replaced with something that resembles an exploding spacecraft. 

That is what we will be doing here. In fact, we will be creating two "crash" 
sprites that, when alternating between the two, present a more accurate picture of 
an explosion. This will be handled by the final tool in this book: Tool 360 
COLLISION PENALTY. 

The COLLISION PENALTY tool provides a quick way to make a fancy explo
sion on the screen. You may choose to use it in some games, and not in others. You 
may even decide to add to this tool, making the penalty more severe for the 
unfortunate victim of a missile. In any event, this tool is handy and useful. It 
performs six different steps: 

(I) Disables all action sprites; 
(2) Turns on the explosion sound; 
(3) Flashes Sprites 5 and 6, alternating between the two, fifty times; 
(4) Turns off the sound; 
(5) Enables any action sprite it disabled in step (I); and 
(6) RETURNs the computer to the main routine (game). 

You can see that this takes care of much in the way of penalties for the players. 
Type this tool as follows: 

360 REM:::::::OOLL1S1ON PENALTY 
361 Pl=0: OOSUB 290: OOSUB 340 
362 FOR 1=1 'ID 50: POKEI8424+SP,5: POKEI8424+SP,6: NE)IT 

363 OOSUB 350: POKE 18424+SP,SP: Pl=l: OOSUB 290 
364 cn3UB 310 
365 RETURN 



ADVANCED SPRITE GRAPHla 8 

This tool makes use of Sprites 5 and 6. It will not place sprites 5 and 6 at the 
"scene of the accident," flashing them on and off when it does. Instead, it has the 
computer use these two descriptions to display the sprite that was hit. This is 
important, so we will go over it again. 

The computer continually looks at a sprite's DATA stored in memory as it places 
and moves the sprite around the screen. Take Sprite #0, for example. The program 
currently has the computer look at CRAFTI data to define this sprite. Now, 
suppose Sprite #0 is hit with a missile. Your new tool will redirect the computer, 
telling it to look at Sprite #5's data to define Sprite #0. This changes the appearance 
of Sprite #0 for a moment (it does not change the color of the sprite). Next, the tool 
has the computer look at Sprite #6's data to define Sprite #0. The appearance of 
Sprite #0 will again change. The computer is directed back and forth fifty times 
between Sprite 5's and Sprite 6's data to define the sprite that was hit. At the end of 
the subroutine, the sprite returns to its original form. 

The importance of all of this is that we are not locating the collision and moving 
Sprites 5 and 6 to it. Instead, we merely redefine what a sprite looks like, using the 
descriptions of Sprites 5 and 6 to do so. The explosion will always be the same color 
as the sprite that was hit, because it is the sprite that was hit. 

The DATA statements for our crash sprites follow. This involves a bit of typing, 
but the game is enhanced enough to justify the work. 

1198 mTA ICRASHl",31,0 
1200 mTA 0, 48, 3 
1202 ~TA 0, 60, 12 
1204 ~TA 60,195, 60 
1206 ~~ 51,240,204 
1208 ~TA 48, 48, 12 
1210 ~TA 240, 48, 60 
1212 ~TA 192, 60,204 
1214 ~TA 0,195,204 
1216 ~TA 204,204,204 
1218 ~TA 207, 63, 12 
1220 ~TA 3, 60,195 
1222 ~~ 3, 51,192 
1224 ~TA 51, 3,195 
1226 ~TA 51, 60, 60 
1228 ~TA 204,204, 12 
1230 ~~ 63, 12, 48 
1232 ~~ 194, 48, 48 
1234 ~~ 192, 48, 12 
1236 ~~ 255, 0, 12 
1238 ~TA 3, 15, 12 
1240 ~~ 3, 48,240 
1242 ~TA 0, 0, 0 

1244 ~TA 1CRASH2", 31, 0 
1246 DP..~ 0, 0, 0 
1248 ~~ 0, 0, ° 
1250 ~TA 0, 60, 0 
1252 DP..TA 12, 15, 48 
1254 DP..TA 15,207, 60 
1256 DP..~ 15,207,192 
1258 DP..~ 63,195, 48 
1260 DP..~ 255, 60, 48 
1262 DP..TA 51, 51, 48 
1264 DP..TA 48,192,240 
1266 DP..TA 252,195, 60 
1268 DATA 252,204, 63 
1270 DP..TA 204,252, 60 
1272 DP..TA 204,195,160 
1274 DP..TA 51, 51,240 
1276 DP..TA 0,243,160 
1278 DP..~ 61,207,160 
1280 DP..TA 63,207,240 
1282 DP..~ 0,255,240 
1284 DP..TA 0,240,240 
1286 DP..TA 0,207, 0 
1288 DP..~ 0 , 0 , 

281 



282 

8 ADVANCED SPRITE GRAPHICS 

You need to set up the crash sprites, but this only involves retrieving one as Sprite 
5, and the other as Sprite 6. The color and placement of these sprites do not matter, 
because these sprites are never placed on the screen. Their descriptions are needed 
by the tool, though, so they must be retrieved. Type the following: 

2500 REM:::::::SET UP CRASH SPRITES 
2510 SP=5: SE$="CRASH1": <n:>UB 810 
2520 SP=6: SE$=" CRASH2II : <n:>UB 810 

Finally, you must change the program so that Tool 360 is called each time a 
significant collision occurs. This involves lines 2800 through 2850: 

2800 IF(SS AND 6}=6 'IBEN Cl=Cl+25: SP=l: OOSUB 360 
2810 IF(SS AND 9)=9 'Ilillil' C2=C2+25: SP=0: OOSUB 360 
2820 IF(SS AND 24)=24 'IBEN C2=C2+10: SP=4: OOSUB 360 
2830 IF(SS AND 20)=20 THEN Cl=Cl+10: SP=4: GOSUB 360 
2840 IF(SB AND 1)=1 THEN Cl=C1-15: SP=0: OOSUB 360 
2850 IF(SB AND 2)=2 THEN C2=C2-15: SP=l: OOSUB 360 

The only change in the above lines is that GOSUB 5000 has been replaced with 
GOSUB 360. The custom subroutine at line 5000 may be erased entirely, or you may 
keep it for other purposes later. 

RUN the program. The COLLISION PENALTY tool is called each time a 
missile strikes a player sprite or the target sprite. At that time, the explosion sound 
will be turned on, and what appears to be a puff of smoke will £lash on the screen. 
This "smoke" is created by alternating between two "crash" descriptions for the 
sprite that was hit. Finally, the sound will turn off and the game will resume as 
before. 

That completes the "game construction tools" for this book. There are many, 
many things that can be done with these tools to increase the challenge and 
excitement of the game. Take a few moments to come up with design ideas to try 
out. For starters, you might: 

-modify the game for a single player 

-add foreground shapes for the players to hide behind (you must remove the 
penalty for colliding with foreground shapes if you do this) 

-provide "bonus points" to the player who hits the target sprite every 10th time 
it is hit 

-turn the player sprites "off" once in a while (they will still move and shoot
you just can't see where they are!) 

-increase the speed (VE variable) after one or both players achieve a certain 
score, or after the target sprite has been hit every "x" number of times 

-decrease the size or number of "bullets" in a missile as the game progresses 

-decrease the size of the target sprite as the game progresses (this entails retriev-
ing a new description for that sprite each time a switch is wanted). 

Most of these suggestions will involve a "counter" variable. For example, you 



ADVANCED SPRITE GRAPHICS 8 

might have "SC=SC+ I" in line 2860. Then, in line 2870, you could have "IF 
SC=lO THEN VE=VE-l: GOSUB 290: 3C=O". This would gradually increase the 
speed of the game. 

You could turn a player sprite "off" temporarily with a program line something 
like: "IF CI > 200 AND < 250 THEN SP=O: GOSUB 190". This could be followed 
on the next line with, say, "IF CI > 249 THEN SP=O; GOSUB 180". This would 
turn Player #1 's sprite off as soon as he reached a score greater than 200. This sprite 
would be invisible on the screen (still operating in every other respect) until Player 
#1 's score reached at least 250. 

Jot down ideas as they come to you. Some will be implausible or maybe even 
impossible, but many will be worth employing. We encourage you to take whatever 
time is needed to formulate, refine, and program your game features. The rewards 
are many. 

TOOL 360 ::::::: COLLISION PENALTY 

360 REM:::::::COLLISION ~~TY 
361 Pl=0: OOSUB 290: <DSUB 34'" 
362 FORI=1 'ID 50: roKEI8424+SP, 

5:POKEI8424+SP,6: t~ 
363 OOSUB 350: R:>KE 18424+SP,SP: Pl=l: <nruB 290 
364 OOSUB 310 
365 REI'URN 

What It Does: This tool performs all of the following: 

(1) Disables all action sprites; 
(2) Turns on the explosion sound; 
(3) Alternates displaying Sprite 5's and 6's description at the collision 

location, a total of fifty times; 
(4) Turns off the sound; 
(5) Enables any action sprite it disabled in step (I); and 
(6) RETURNs the computer to the main routine (game). 

Example Use: This tool is called with a GOSUB 360 statement. 
Usually, it will be called just after a significant collision has been 
detected. 

Technical Description: The secret to this tool can be found in lines 
362 and 363. Memory locations 18424 through 18431 hold the sprite 
pointers. Each of these memory locations "points" to the place in 
memory where a specific sprite's defining data has been stored. 

There are 256 "blocks" in Bank I (where we are storing our graphics 
data). These blocks are numbered 0 through 255. Although most of these 
blocks were already in use, the first eight blocks (numbered 0 -7) were 
free . This made it simple for our RETRIEVE A SPRITE tool to assign 

283 



284 

8 ADVANCED SPRITE GRAPHICS 

one block to each sprite: Sprite #0 is assigned Block #0, Sprite #1 is 
assigned Block #1, Sprite #2 is assigned Block #2, and so on. 

Memory locations 18424 through 18431 store which sprite is assigned 
which block number. Memory location 18424 stores the information 
that Sprite #O's data is in Block #0. Memory location 18425 stores the 
information that Sprite # I 's data is in Block # I. Memory location 18426 
stores the information that Sprite #2's data is stored in Blocks #2. And so 
on. 

By switching the block that one of these memory locations point to, we 
can quickly change the definition of a sprite. For example, by changing 
memory location 18424 (Sprite #O's pointer) so that it points to Block #6, 
we can redefine the appearance of Sprite #0: it will take on the appear
ance of Sprite #6. Likewise, by changing memory location 18427 (Sprite 
#3's pointer) so that it points to Block #7, we redefine the appearance of 
Sprite #3: it will take on the appearance of Sprite #7. 

You see that more than one memory location can point to the same 
block of data to define a sprite. In the COLLISION PENALTY tool, a 
"penalized" sprite's memory location will be changed so that it points 
to Block #5 (storing Sprite #5 's description), and then Block #6 (storing 
Sprite #6's description), alternating between the two fifty times. 

Summary 

Congratulations! You are now a graduate of our "class" on Commodore 64 
Advanced Graphics. We began in Chapter 1 by reviewing how to PLOT A POINT. 
Since then, you have mastered: 

-plotting lines (Tool 50) 
-retrieving shapes (Tool 800) 
-drawing shapes (Tool 90) 
-painting shapes (Tool 60) 
-clipping shapes (Tool 70) 
-translating shapes (Tool 140) 
-scaling shapes (Tool 150) 
-rotating shapes (Tool 160) 
-the complete list of beginning and advanced sprite graphics ... 

That was no small task. But by storing each new graphics technique as a 
subroutine "tool," you eliminate many of the repetitious and difficult program
ming chores. Take the time to save your final program under "CHAPTER 8", or 
"GAME". We then suggest you run the ZAP routine, and save the complete list of 
tools under the filename "TOOLKIT". 

We again remind you to browse through the appendices. You'll be glad you did. 
Also, a "Tool Kit Reference Card" can be found just inside the back cover. This 



ADVANCED SPRITE GRAPHICS 8 

card briefly reviews each tool, and is meant as a handy aid when you are program
ming your own artwork and arcade-like games. For a more thorough discussion of 
each tool, refer to chapter summaries and tool boxes. A review of this chapter's tools 
is given below. 

Tool 290 ::: Hook Up Action Sprites 

This tool is used to enable/disable action sprites, as well as to select a method of 
control (keyboard/joystick) and set the action sprite speed. Seven variables need to 
be set when this tool is called: 

VE 0 to 65 (VElocity of speed) 

KB = I (hook up player sprites to KeyBoard) or 
o (hook up player sprites to joystick) 

PI = I (use Sprite #0 as Player I action sprite) or 
o (use all sprites as non-action sprites) 

P2 = 1 (use Sprite #1 as Player 2 action sprite) or 
o (use Sprite #1 as non-action sprite) 

Ml = • (use Sprite #2 as Player I missile sprite, shooting 
it in the direction of ".") or 

o (use Sprite #2 as non-action sprite) 

M2 = • (use Sprite #3 as Player 2 missile sprite. shooting 
it in the direction of ".") or 

o (use Sprite #3 as non-action sprite) 

Tl = • (use Sprite #4 as target sprite, moving it in the 
direction of ".") or 

o (use Sprite #4 as non-action sprite) 

-The target sprite and the missile sprites are enabled by setting their variables to one of 
eight possible direction codes. The codes are: I (up). 2 (down), 4 (left), 8 (right), 9 (up/right), 
10 (down/right). 6 (down/Jeft), and 5 (up/Jeft). 

Action sprites must be "set up" before they are enabled. The target sprite and the 
player sprites are set up by: 

(I) Setting the sprite variable (SP=?); 

(2) Retrieving a sprite description (SU=?: GOSUB SIO); 

(3) Setting the sprite's color (C=?: GOSUB 260); 

(4) Calling any other sprite feature desired; 

(5) Placing the sprite on the screen (X=?: Y=?: GOSUB 270); 

(6) Turning the sprite "on" (GOSUB ISO). 

Missile sprites are set up by following only steps (I) through (4) above. 

The keys that are "active" under keyboard control are: 

Player # I: Player #2: 
UP: R P 

DOWN: C 
RIGHT: F 

LEFT: D L 

285 



286 

8 ADVANCED SPRITE GRAPHICS 

Tool 300 ::: Collision Detection 

This tool PEEKs memory location 53278 and places its value into variable SS 
(Sprite-to-Sprite collisions). In addition, it PEEKs memory location 53279 and 
places its value in variable SF (Sprite-to-Foreground collisions). 

You can check the val ue of SS to see if two specific slot numbers were on in 
location 53278 by using the following form of program line: 

IF (SS AND x) = x THEN .. . 

Replace "x" with the sum of the two sprite slot numbers to check. The eight sprite 
slot numbers are as follows: 

Slot 128 (Sprite #7) 
Slot 64 (Sprite #6) 
Slot 32 (Sprite #5) 
Slot 16 (Sprite #4) 
Slot 8 (Sprite #3) 
Slot 4 (Sprite #2) 
Slot 2 (Sprite #1) 
Slot 1 (Sprite #0) 

You can check the value of SS to see if two specific slot numbers are on in 
shape by using the following form of program line: 

IF (SF AND x) = x THEN ... 

Replace "x" with the slot number of the sprite to check. 

Tool3JO ::: Reset Collision Register 

This tool POKEs a 0 into both memory locations 53278 and 53279. It should be 
called just after all collisions have been checked for in the main routine. 

Tool 320 ::: Suspend Game 

This tool suspends the current form of the game, taking the players to text mode. 
The program is still running at this point. 

Tool 330 ::: Continue Game 

This tool returns the players to their game, exactly as they left off. 

Tool 340 ::: Sound On 

This too) activates one sound of the Commodore 64's. This sound resembles a 
small explosion. 

Tool 350 ::: Sound Off 

This tool turns off the sound created by calling Tool 340. 

Tool 360 ::: Collision Penalty 

This tool disables all player sprites, calls the Sound On tool, and begins flashing 
Sprite #5's and Sprite #6's descriptions at the collision location (alternating between 
the two). These sprite descriptions flash fifty times, and then the sound is turned 
off and the game resumed. 



APPENDIX A: 
ADDITIONAL PROGRAMS 

PRINT A PICTURE and SAVE A PICTURE are two separate programs which 
will be of great help to you. Because these are programs, and not tools, you will 
need to load and run each program before it can be used. 

Print a Picture 

The PRINT A PICTURE program will print a copy of the graphics screen to a 
VIC-1525 printer. If you have such a printer, type in this program as: 

100 OPENl,4: RA=24888 
110 A$=CHR$(15)-+CHR$(16)+"20 "-+CHR$(8) 
120 FORJ=ffi'045: IF(JAND7) >m'HEN M=BA-8 
130 BY=BA:PRnIT#l,A$~ 
140 Bl%=JAND7:B2%=8-Bl%:FOR K=0 TO 199 

. 150 T=PEEK(BY)*2"Bl%AND127 
160 B=INT(PEEK(BY+8)/2"B2%) 
1 70 PRINT#l, CHR.$ ( 128-+JI'+B); 
180 BY=BY+l:IF(KAND7)=7 THEN BY=BY+312 
190 NEXTK:PRINT#I:NEXTJ:CLOSEI 

Now, save these program lines under the filename "PRINTPIC". 

To use this program, take the following steps: 

(1) Connect the printer as described in the VIC-1525 User's Manual. 

(2) Check to be sure you have paper and that the printer is on. 

(3) Check to make sure there is a picture on the graphics screen. 

(4) Load "PRINTPI C" ,8 if you are using a disk drive, or "PRINTPIC",1 if you are 
using a cassette recorder. 

(5) Type: RUN and press RETURN. 

This program takes advantage of the VIC-1525 printer's graphics ability. By 
chopping the graphics screen into 7 x 7 pixel segments, this program can make the 
VIC-1525 print each segment as a character. When all of the sections are printed, 
you end up with a complete picture. 

Save a Picture 

The SAVE A PICTURE program is used to save a picture created by a graphics 
program. That picture can then be easily and quickly loaded into memory at any 
time. 

287 



288 

The program lines for the SAVE A PICTURE routine are shown below: 

100 lliPl1I'''ENI'ER FILENAME" ~FI$ 
110 INIUI'''ENI'ER 8 FOR DISK, OR 1 FOR CASSETI'E" ~DE 
120 SYS 57812 FI$+".PIC",DE 
130 POKE 174,64: POKE 175,127: POKE 193,0: POKE 194,96 
140 SYS 62954 
150 SYS 57812 FIL$+".mL1",DE 
160 POKE 174,232: roKE 175,71: roKE 193,0: POKE 194,68 
170 SYS 62954 
180 SYS 57812 FIL$+" • mL2 " ,DE 
190 POKE 174,232: POKE 175,219: POKE 193,0: POKE 194,216 
200 SYS 62954: END 

Now, save this program under the filename "SAVEPIC". 

To save a picture that currently resides in memory, simply load "SA VEPIC",8 if 
you own a disk drive, or "SAVEPIC",1 if you own a cassette recorder, and then 
type: RUN RETURN. 

The computer should respond with the prompt "ENTER FILENAME". You 
must enter the filename you want to attach to the picture. The name can be a 
maximum of twelve characters in length. An important thing to understand is that 
the computer will save your picture in three different files. The first file contains 
the pixel patterns that make up the picture. The second and third files contain the 
colors that make up the picture. Each picture will have a filename that begins with 
whatever you type now. However, your first file will have ".PIC" appended to the 
name, and the second and third files will have ".COLl" and ".COL2" appended to 
the name. 

Once you've entered the filename, the computer will respond with "ENTER 8 
FOR DISK, OR 1 FOR CASSETTE". If you are using a disk drive, enter 8. 
Otherwise, enter 1. From this point on the computer will prompt you as if you were 
saving a program. The prompts will be familiar, so respond to each in the usual 
manner. 

There will be no way to directly verify that your picture was stored on your 
disk/tape. The only way to find out is to go through the normal sequence of loading 
a picture. 

IMPORTANT: Loading picture files affects your program listings. Essentially, 
your computer loses its program "orientation" when a picture file is loaded. 
Whenever you load a picture you must carefully follow the instructions 
below. 

If you have a program in memory: 

(1) Save your program. 
(2) Load your picture as explained below. 
(3) Re-Ioad your program. 

If you do not have a program in memory: 

(1) Load your picture as explained below. 
(2) Type: NEW RETURN or load a program. 



To load the picture you must load three files, two for the picture's colors, and one 
for its pixel patterns. Do this in the following manner: 

Disk Drive Users Type: 
LOAD "FILENAME.PIC",8,1 
LOAD "FILENAME.COLl",8,1 
LOAD "FlLENAME.COL2",8,1 

Cassette Recorder Users Type: 
LOAD "FILENAME.PIC",1,! 
LOAD "FILENAME.COLl",1,1 
LOAD "FILENAME.COL2",1,1 

(Note: If you are using a cassette player, be sure to rewind the tape to a point 
before the picture begins.) 

The above files are loaded almost the same as program files, except that a ",1" 
needs to be appended to the end. The ",1" that you type at the end of your 
keystrokes tells the computer to load the picture on the screen instead of as a BASIC 
program. Thus, the" ,1" should be typed regardless of whether you are using a disk 
drive or a cassette player. 

After you enter the LOAD command for one of these files, the computer will 
respond as if you were loading a program file . Answer all prompts as you would 
when loading any other file. When all files have been loaded, type COSUB 10 
and press RETURN to see the picture. 

289 



290 

APPENDIXB: 
ROTATION MATH 

Rotating an object appears to be an almost magical capability. In fact, it is a fairly 
simply mathematical process. The key to understanding rotation lies in converting 
the points you wish to rotate from Cartesian to polar coordinates. We'll now 
demonstrate the steps you'll need to take in order to convert your points from the 
Cartesian to the polar system, rotate those points, and then convert your new points 
back to the Cartesian system. 

The following diagram shows a point "PI" as it would be displayed in the 
Cartesian coordinate system: 

Y, 
5 P, (x 
4 

3 
2 
1 

1 2 3 4 5 6 7 

Since PI is a real point on the grid, we know that it is a set distance from the 
origin. We will use the variable "r" to represent this distance, as shown in the 
diagram below. We won't measure that distance right now; but notice that we 
could if we wanted to do so. 

X, 

Notice also that there is a set angle between "r" and the X-axis. Well use the 
variable "AI" to represent this angle, as shown in the diagram below. 

y, 



You are now in the world of polar coordinates. We haven't calculated the 
components of our polar coordinate diagrams (Le., "r" and "AI "), but we know that 
those components can be measured. We can reformulate these components as a 
right triangle. The diagram shown below illustrates the concepts that we have been 
working with as they would be used in geometric and trigonometric functions: 

OPPOSITE 

ADJACENT 

From basic trigonometry we can conclude that: 

a=Al 
Hypotenuse = r 
Adjacent = Xl 
Opposite = Yl 

We can therefore conclude that: 

SIN Al = Yl/r and COS Al = Xl/r 

After multiplying by "r", we arrive at equations 1 and 2: 

(1) Yl = rSIN(Al) and (2) Xl = rCOS(Al) 

Notice that we now have a way to convert polar coordinates to Cartesian 
coordinates. We will save these equations until they are needed. 

If we wish to rotate point PI "A2" degrees to produce a resulting point "P2" at 
(X2, Y2), we can again use equations 1 and 2 to determine the proper X, Y Cartesian 
coordinates. The diagram shown below illustrates this process. 

Notice that "r" doesn't change, regardless of the rotation distance. Looking back 
at equation 1, if Yl = rSIN(Al), then we can conclude that Y2 = rSIN (AI + A2). 
Similarly, if Xl = rCOS(Al), then we can conclude that X2 = rCOS (AI + A2). 

It can be proven mathematically that: 

(3) SIN (AI + A2) = SIN(Al)COS(A2) + COS(Al)SIN(A2) 
and 

(4) COS (AI + A2) = COS(Al)COS(A2) -SIN(Al)SIN(A2) 

291 



292 

By combining what we know from equations I and 2 with the equations just 
presented, we can state that: 

X2 = rCOS(AI + A2) , and therefore 
X2 = r(COS(AI)COS(A2) -SIN(AI)SIN(A2)). 

By distributing the variable "r" across the equation, we can state that X2 = 
rCOS(AI)COS(A2) -rSIN(AI)SIN(A2). 

Similarly, we can state that: Y2 = rSIN(AI + A2), and by substituting equation 3 
for the expression SIN (AI + A2), we can conclude that: Y2 = r(SIN (AI)COS(A2) + 
COS(AI)SIN(A2)). 

By distributing the variable "r" across the equation we can state that Y2 = 
rSIN(AI)COS(A2) + rCOS(AI)SIN(A2) . 

If all this theory looks intimidatir...g to you, notice that, by using equations I and 2, 
we can substitute the variable "Xl" for the expression rCOS(AI), and the variable 
"n" for the expression rSIN (AI). Thus, by substituting our "PI" coordinate values 
for these expressions, our equations now read: 

X2 = XICOS(A2) -nSIN (A2) and 
Y2 = YICOS(A2) + XISIN(A2). 

We are ultimately solving for the "P2" coordinates (Le., X2,Y2). Since we know 
the coordinate values for "PI" ("Xl" and "YI" are known), and since we know the 
number of degrees that we want to rotate from "PI" ("A2" is known), then we now 
have all the information needed to solve for the Cartesian coordinate values for 
"X2" and "Y2". Notice that these equations have taken us through the cycle 
described at the beginning of this section-from Cartesian coordinates to polar 
coordinates and then back to Cartesian coordinates. 



APPENDIXC: 
BIBLIOGRAPHY 

DeSausmarez, M., Basic Design: The Dynamics of Visual Form, New York, NY: 
Reinhold Publishing Corporation, 1964 

Dondis, D.A., A Primer of Visual Literacy, Cambridge, MA: The M.I.T. Press, 
1973 

luen, Johannes, The Elements of Color, New York, NY: Van Reinhold Co., 1970 

McFee, J.K. and R.M. Degge, Art, Culture, and Environment, Dubuque, 10: 
Kendall / Hunt Publishing Co., 1977 

Sparkes, R., Teaching Art Basics, New York, NY: Watson-Guptill Publications, 
1973 

Wolchonok, L., The Art of Pictorial Composition, New York, NY: Dover Publi
cations, Inc., 1961 

293 



APPENDIXD: 
MACHINE LANGUAGE LISTING 

LIMEI LOC CODE LINE 

00001 0000 VARIABLES 
00002 0000 - $033C 
00003 033C ILO -00004 033C lHI -+$1 
00005 033C YFIX -+$2 
00006 033C C -+$3 
00007 033C XI -+$4 
00008 033C DOWN -+$5 
00009 033C UP = -+$6 
00010 033C STltPTR = -+$7 
00011 033C HU -+$8 
00012 033C Cl -+$9 
00013 033C C2 -+$A 
00014 033C ON -+$B 
00015 033C OFF -+$C 
00016 033C LLO -+$D 
00017 033C LHI = -+$E 
00018 033C ItEYEN = -+$F 
00019 033C ENl = -+$10 
00020 033C DIRl '" $035D 
00021 033C DIR2 $035E 
00022 033C DIR3 $035F 
00023 033C JOYl $0360 
00024 033C JOY2 $0361 
00025 033C VARHI $03 
00026 033C XFLOT $4E 
00027 033C !FLOT $53 
00028 033C DULOT = $58 
00029 033C DYFLOT = $62 
00030 033C LFLOT = $67 
00031 033C - = $COOO 
00032 COOO TABLE 
00033 COOO 80 • BYTE $80,$40,$20,$10 
00033 COOl 40 
00033 C002 20 
00033 C003 10 
000311 COOl! 08 • BYTE $08,$011, $02, $01 
00034 C005 04 
00034 C006 02 
00034 C007 01 
00035 C008 CO • BYTE $CO,$30,$OC,$03 
00035 C009 30 
00035 COOA OC 
00035 COOB 03 
00036 COOC .LIB UTILITY 
00037 COOC MACROS 
00038 COOC 
00039 COOC .MAC FlU 1 TRANSFER FIlED 
OOa.O COOC LDY ?1 ?1 (LO) 
00041 COOC LDA ?2 ?2 (HI) 
000112 COOC JSR $B391 TO FACll 
00043 COOC • MHO 
000114 COOC • MAC F2ADD iTRANSFER MEKORY 
000115 COOC LOA I?l iAT ?1 (LO) ?2 (HI) 
000116 COOC LDY I?2 iTO FACI2 
000117 COOC JSR $B867 iFACll=FACll + FACI2 
00048 COOC • MHO 
000119 COOC • HAC F2DIV TRANSFER MEMORY , 00050 COOC LDA I?1 AT ?1 (LO) ?2 (HI) 
00051 COOC LOY I?2 TO FACI2 
00052 COOC JSR $BBOF FACI1=FACI2/FACll 

294 



LIDI LOC CODE LINE 

00053 COOC .MND 
00054 COOC .MAC COKPAR ;COKPARE FACll TO 
00055 COOC LDA 111 ;HEHORY AT 11 (LO) 
00056 COOC LDY 112 12 (HI) 
00057 COOC JSR $BC5B 
00058 COOC .KND 
00059 COOC 
00060 COOC ROM ROUTINES 
00061 COOC 

, 
; 

00062 COOC F1F2 = $BCOF ;FACll TO FACI2 
00063 COOC F1FII = $B7n ;FACll TO FIXED 
00061! COOC BASFl = $AD81 ;BASIC TO FACll 
00065 COOC IFl = $B3A2 ;Y REGISTER TO FACll 
00066 COOC SUBT = $B853 ;PERFORK SUBTRACT 
00067 COOC EATCOM = UEFD ;EAr COHKA 
00068 COOC OEny = $B7EB ;GET 2 BYTE AND 1 BYTE 
00069 COOC GET! = $B7Fl ;GET 1 BYTE 
00070 COOC SONFl = $BC2B ;GET SIGN OF FACll 
00071 COOC CHRGET = $0073 ;GET CHARACTER FROM BASIC 
00072 COOC • END 
00073 COOC .LIB CLEAR2 
00071! COOC ; 
00075 COOC SCREEN ;SCREEN CLEAR 
00076 COOC 
00077 COOC 20 Fl B7 JSR $B7Fl ;GET C 
00078 COOF 8A TXA ;COLOR CHARACTER 
00079 COlO 8D 21 DO STA $D021 ;BACltGROUND 
00080 CO 13 01 lSL A ;-2 
00081 COlli OA ASL A ;-4 
00082 C015 OA ASL A ;-8 
00083 C016 OA ASL A ;-16 
00084 C017 18 CLC 
00085 C018 65 65 ADC $65 ;C=C+C-Hi 
00086 COlA AO III! LDY 1$411 ;SCREEN PAGE 
00087 CalC A2 all LDX 1$04 ;NUKBER OF PAGES 
00088 COlE 20 27 CO JSR FILL 
00089 C021 19 00 LDA 1$00 ;FILL CHARACTER 
00090 C023 10 60 LDY ,.60 ;SCREEN PAGE 
00091 C025 A2 20 LDX 1$20 ;NUKBER OF PAGES 
00092 can FILL ;FILL X PAGES 
00093 can 84 FC STY $FC ;AT Y LOCATION 
00094 C029 10 00 LDY ,.00 ;IIITH A 
00095 C02B 811 FB STY $FB 
00096 C02D FILHOR 
00097 C02D 91 FB STA (.FB),Y 
00098 C02F C8 INY 
00099 C030 DO FB BNE FILMOR 
00100 C032 B6 FC INC .FC 
00101 C0311 CA DEX 
00102 C035 DO F6 BNE FILMOR 
00103 C037 60 RTS 
0010l! C038 .END 
00105 C038 .LIB FIND2 
00106 C036 FIND ;FIND POINT ADDRESS 
00107 C036 A9 00 LDA ,.00 ;HIGH BYTE OF ADDRESS 
00108 C03A 85 FC STA .FC 
00109 C03C AD 3E 03 LDA YFrx ;GET Y COORDINATE 
00110 C03F 48 PHA 
00111 COIIO 29 F8 AND #Jlllll000 
00112 C042 85 FB STA $FB 
00113 C044 OA ASL A ;-2 
00114 C045 26 FC ROL $FC 
00115 C047 OA 1SL A ;-4 
00116 C048 26 FC ROL $FC 
00117 C04A 65 FB ADC $FB ;-5 
00118 C04C 90 02 BCC SKP 
00119 COilE E6 FC INC $FC 
00120 C050 SKP 

295 



LINEI LOC CODE LINE 
00121 C050 OA ASL A ;-10 
00122 C051 26 FC ROL $FC 
00123 C053 OA ASL A ;-20 
00124 C054 26 FC ROL $FC 
00125 C056 OA ASL A ;-40 
00126 CO 57 26 FC ROL $FC 
00127 C059 85 FB STA $FB ;(YAND248)-40 
00128 C05B AD 3C 03 LOA ILO 
00129 C05E 29 F8 AND "11111000 
00130 C060 65 FB ADC $FB ; (YAND248)-40+(IAND248) 
00131 C062 85 FB STA $FB ;PTR:PIIELS 
00132 c064 85 FD STA $FD ;PTR:COLORS 
00133 C066 AD 3D 03 LDA IHI 
00134 C069 65 FC ADC $FC 
00135 C06B 48 PHA 
00136 C06C 4A LSR A ;/2 
00137 C06D 66 FD ROR $FD 
00138 C06F 4A LSR A ;/4 
00139 C070 66 FD ROR $PD 
0011i0 C072 4A LSR A ;/8 
00141 C073 66 FD ROR $FD 
00142 C075 18 CLC 
00143 C076 85 FE STA $FE 
00 14 Ii C078 68 PLA 
00145 C079 69 60 ADC 1$60 ;PAGE $60 
00146 C07B 85 FC STA $FC 
00147 C07D 68 PLA 
00148 C07E 29 07 AND 1$07 
00149 C080 65 FB ADC $FB ;ADD BLOCK ROil 
00150 C082 90 02 BCC SKIP 
00151 C084 E6 FC INC $FC 
00152 c086 SKIP ;OET BLOCK COLUMN 
00153 C086 85 FB STA $FB 
00154 C08B AD 3C 03 LOA XLO 
00155 C08B 29 07 AND 1$07 
00156 C08D AE 44 03 LOX HU ;HULTI COLOR INDICATOR 
00157 C090 FO 03 BEQ OFFF ;NOT HULTICOLOR 
00158 C092 4A LSR A ;OET BIT PAIR 
00159 C093 09 08 ORA 1$08 
00160 C095 OFFF ;OET BIT(S) TO TURN OFF 
00161 C095 AA TAX 
00162 C096 BO 00 CO LOA TABLE,X ;BIT TABLE 
00163 C099 8D 48 03 STA OFF 
00164 C09C 60 RTS 
00165 C09D SETUP ;SET UP COLOR MEMORY 
00166 C09D AO 00 LOY 1$00 
00167 C09F 8C 47 03 STY ON ;SET BIT PAIR TO 0 
00168 COA2 AD 3F 03 LOA C ;OET COLOR 
00169 COA5 09 FO ORA UFO ;TURN ON HI NYBBLE 
00170 COA7 CD 21 DO CHP $D021 ;COHPARE TO BCKORND 
00171 COA! FO 6A BEQ DNE ;COLOR IS BCKORND 
00172 COAC A9 44 LOA '$44 ;PAOE $44 
00173 COAE 18 CLC ;PTR TO COLORS 1,2 
00171i COAF 65 FE ADC $FE 
00175 COBl 85 FE STA $FE 
00176 COB3 AD 44 03 LDA HU 
00177 COB6 DO OB BNE HLTI 
00178 COBB 20 17 Cl JSR OETCOL ;HIRES COLOR HANDLER 
00179 COBB 20 20 Cl JSR PUTCOL 
00180 COBE AD 48 03 LOA OFF 
00181 COCl DO 50 BHE ONN 
00182 COC3 HLTI ;HULTI COLOR HANDLER 
00183 COC3 20 17 Cl JSR OETCOL 
00184 COC6 8A TXA ;OET COLOR 1 
00185 COC7 29 FO AND UFO 
00186 COC9 8D 45 03 STA Cl ;SAVE COLOR 
00187 COCC 4A LSR A ;HOVE COLOR 1 TO LOIIER NYBLE 
00188 COCD 4A LSR A 
00189 COCE 4A LSR A 

296 



LINEI LOC CODE LINE 
00190 COCF 4A LSRA 
00191 CODO CD 3F 03 CMP C ;IS C : COLOR 1 
00192 COD3 FO OA BEQ C11SIT ;C AND COLOR 1 ARE SAKE 
00193 COD5 09 FO ORA UFO 
00194 COD7 CD 21 DO CMP $D021 ;HAS COLOR 1 BEEN USED? 
00195 CODA DO OA BNE TRIC2 ;TRY COLOR 2 
00196 CO DC 20 20 Cl JSR PUTCOL ;STORE C IN COLOR 1 
00197 CODF Cl1SIT ;GET ~ON· BIT FOR COLOR 1 
00198 CODF AD 48 03 LDA OFF 
00199 COE2 29 55 AND "01010101 
00200 COE4 DO 2D BNE aNN 
00201 COE6 TRYC2 
00202 coE6 AD 46 03 LDA C2 ;COLOR 2 
00203 C089 CD 3F 03 CMP C ;IS COLOR SAKE AS COLOR 2? 
00204 COEC FO OF BEQ C2ISIT ;COLORS HATCH 
00205 COEE 09 FO ORA I$FO ;HAS COLOR 2 BEEN USED? 
00206 COFO CD 21 DO CMP $D021 
00207 COF3 DO OF BNE TRYC3 ;YES, IT IS USED: FORCE COLOR 3 
00208 COF5 AD 3F 03 LDA C ;STORE C IN COLOR 2 
00209 COF8 OD 45 03 ORA Cl 
00210 COFB 91 FD STA ($FD),Y 
00211 COFD C2ISIT ;GET ·ON" BIT FOR COLOR 2 
00212 COFD AD 48 03 LDA OFF 
00213 Cl00 29 Ai AND "10101010 
00214 Cl02 DO OF BNE aNN ;FORCEO BRANCH 
00215 C104 TRYC3 ;FORCE IT IN COLOR3 
00216 C104 A9 94 LDA 1$94 ;COLOR RAM 
00217 Cl06 18 CLC 
00218 Cl07 65 FE AOC $FE 
00219 Cl09 65 FE STA $FE 
00220 Cl0B AO 3F 03 LDA C 
00221 Cl0E 91 FD STA (.FO),Y 
00222 Cll0 AD 48 03 LOA OFF 
00223 Cl13 ONN ;PlXEL(S) TO BE TURNEO ON 
00224 C113 80 47 03 STA ON 
00225 Cl16 ONE 
00226 C116 60 RTS 
00227 C117 GETCOL ;RETRIEVE COLOR 
00228 Cl17 Bl FO LOA (.FO) ,Y 
00229 Cl19 Ai TAl[ 
00230 CllA 29 OF AND I$OF 
00231 CllC 80 46 03 STA C2 
00232 CllF 60 RTS 
00233 C120 PUTCOL ;STOR8 COLOR IN MEMORY 
00234 C120 AD 3F 03 LDA C 
00235 C123 OA ASL A ;-2 
00236 C124 OA ASL A ;-4 
00237 C125 OA ASL A ;-8 
00238 C126 OA ASL A ;-16 
00239 C127 OD 46 03 ORA C2 
00240 C12A 91 FO STA (.FO),Y 
00241 C12C 60 RTS 
00241 C12D 
00242 C12D F1XFL ;FACl1 TO x FLOAT 
00243 C12D A2 4E LOX IXFLOT 
00244 C12F 2C • BYTE $2C 
00245 C130 FlYFL ;FACIl TO Y FLOAT 
00246 C130 A2 53 LDX IYFLOT 
00247 C132 2C • BYTE .2C 
00248 C133 Fl0XFL ;FACIl TO OX FLOAT 
00249 C133 A2 58 LDX lOXFLOT 
00250 C135 2C • BYTE .2C 
00251 C136 F10YFL ;FACI1 TO OY FLOAT 
00252 C136 A2 62 LDX IDYFLOT 
00253 C138 2C • BYTE $2C 
00254 C139 F1LFL ;FACl1 TO L FLOAT 
00255 C139 A2 67 LOX ILFLOT 
00256 C13B AO 03 LDY IVARHI 
0.0257 C13D 4C 04 BB JMP .BB04 

297 



LIn# LOC CODB LIIB 
00258 C140 XFLFl ;X FLOAT TO FACll 
00259 C140 A9 4E LDA IIFLOT 
00260 C142 2C • BYTE $2C 
00261 C143 YFLFl ;Y FLOAT TO FACll 
00262 C143 A9 53 LDA IYFLOT 
00263 C145 2C • BYTE '2C 
00264 C146 LFLFl ;L FLOAT TO FACll 
00265 C146 A9 67 LOA ILFLOT 
00266 C14S AO 03 LOY IVARHI 
00267 C14A 4C A2 BB JHP $BBA2 
00268 C140 F1L ;FACll TO L FIXED 
00269 C140 20 39 Cl JSR F1LFL 
00270 C150 20 F7 B7 JSR F1FIX 
00271 C153 A6 14 LOX $14 
00272 C155 A4 15 LOY '15 
00273 C157 8E 49 03 STX LLO 
00274 C15A 8C 4A 03 STY LHI 
00275 C150 60 RTS 
00276 C15E .LIB POINT2 
00277 C15E PLOT 
00278 C15E 20 FD AE JSR EATCOH ;EAT COHHA 
00279 C161 20 EB B7 JSR GETXY ;GET I,Y 
00280 C164 8E 3E 03 STX YFIX 
00281 C167 A6 14 LOX $14 
00282 C169 A4 15 LOY '15 ;GET X FIXED 
00283 C16B 8E 3C 03 STX XLO 
00284 C16E 8C 3D 03 STY XHI 
00285 C17l C9 A4 CHP I$A4 ; 'TO' TOKEN 
00286 C173 FO IF BEQ LINE ;LINE ROUTINE 
00287 C175 POINT 
00288 C175 20 Fl B7 JSR GETY ;GET C 
00289 C178 8E 3F 03 STX C 
00290 C17B 20 Fl B7 JSR GETY ;GET C 
00291 C17E 8E 44 03 STX HU 
00292 C181 PLOTIT 
00293 C181 20 38 CO JSR FIND ;FlNO PIXEL 
00294 C184 20 9D CO JSR SETUP ;FINO PIXEL 
00295 C187 AD 48 03 LOA OFF 
00296 C18A 49 FF EOR I$FF 
00297 C18C 31 FB AND ('FB), Y ;TURN OFF PIXEL 
00298 C18E OD 47 03 ORA ON 
00299 C191 91 FB STA ('FB),Y ;STORE COLOR 
00300 C193 60 RTS 
00301 C194 .END 
00302 C194 .LIB LINE2 
00303 C194 , 
00304 C194 LINE 
00305 C194 
00306 C194 20 73 00 JSR CHRGET ;EAT 'TO' 
00307 C197 20 8A AD JSR BASFl ;X2-)FACl 
00308 C19A 20 OF BC JSR F1F2 ;FAC1-)FAC2 
00309 C190 FlXFl XLO,XHI ;FlXEO-)FACl 
00314 CU6 20 20 Cl JSR F1XFL ;FAC1-)XFLOAT 
00315 C1A9 20 53 B8 JSR SUBT ; SUBTRACT 
00316 cac 20 33 Cl JSR Fl0IFL ;FAC1-)DXFLOAT 
00317 C1AF 46 66 LSR $66 ;ABS(FAC1) 
00318 C1Bl 20 40 Cl JSR F1L ;FAC1-)LFLOT 
00319 C1B4 ;FAC1-)FIXED 
00320 C1B4 20 Fl B7 JSR GET! ;EAT , & GET Y 
00321 C1B7 8A TXA 
00322 C1B8 AS TAY 
00323 C1B9 20 A2 B3 JSR YFl ;Y2-)FACl 
00324 C1BC 20 OF BC JSR F1F2 ;FAC1-)FAC2 
00325 C1BF AC 3E 03 LDY YFIX 
00326 C1C2 20 A2 B3 JSR YFl Y-)FACl 
00327 C1C5 20 30 Cl JSR F1YFL FAC1-)YFLOAT 
00328 C1C8 20 53 B8 JSR SUBT SUBTRACT 
00329 C1CB 20 36 Cl JSR Fl0YFL FAC1-)DYFLOAT 
00330 C1CE 46 66 LSR '66 ABS(OY) 

298 



LINEI LOC CODE LINE 
00331 CIDO COMPAR LFLOT,VARHI ;CMP FAC1-)HEH 
00336 C1D7 30 OB 8HI DNntES 
00337 C1D9 20 2B BC JSR SGNFI ;SGN(FACt) 
00338 CIDC DO 03 BNE LINEOK 
00339 CIDE 4C 75 Cl JMP POINT 
00340 C1El LINEOK 
00341 C1El 20 40 Cl JSR FIL ;FAC1-)LFLOAT 
00342 C1E4 DN'Il!ES 
00343 C1E4 20 46 Cl JSR LFLFI ;LFLOT-)FACI 
00344 C1E7 F2DIV DXFLOT,VARHI ;DIVIDE 
00349 C1EE 20 33 Cl JSR F1DXFL ;FAC1-)DXFLOAT 
00350 C1Fl 20 46 Cl JSR LFLFI ;LFLOT-)FACI 
00351 C1F4 F2DIV DYFLOT,VARHI ;DIVIDE 
00356 C1FB 20 36 Cl JSR FtDYFL ;F1Cl-)DYFLOAT 
00357 CIFE 20 Fl B7 JSR GETY ;GET C 
00358 C201 8E 3F 03 STI C 
00359 C204 20 Fl B7 JSR GET! ;GET HU 
00360 C207 8E 44 03 STX MU 
00361 C20A NEXT 
00362 C20A 20 81 Cl JSR PLOTIT 
00363 C20D 20 40 Cl JSR XFLFI ; XFLOT-)FAC 1 
00364 C210 F2ADD DXFLOT,VARHI 
00369 C217 20 2B BC JSR SGNFI 
00370 C2IA 30 37 BHI QUIT 
00371 C21C 20 20 Cl JSR FIXFL ;FAC1-)XFLOAT 
00372 C21F 20 F7 B7 JSR F1FII 
00373 C222 A5 14 LOA $14 
00374 C224 A6 15 LDI $15 
00375 C226 80 3C 03 STAXLO 
00376 C229 8E 3D 03 STX IHI 
00377 C22C 20 43 Cl JSR YFLFI ; YFLOT-)FAC 1 
00378 C22F F2ADD DYFLOT,VARHI 
00383 C236 20 2B BC JSR SGNFI 
00384 C239 30 18 8HI QUIT 
00385 C23B 20 30 Cl JSR F1YFL ;FAC1-)YFLOAT 
00386 C23E 20 F7 B7 JSR FIFIX 
00387 C241 A5 14 LDA $14 
00388 C243 80 3E 03 STA YFIX 
00389 C246 CE 49 03 DEC LLO 
00390 C249 DO BF BNE NEIT 
00391 C24B CE 4A 03 DEC LHI 
00392 C24E 10 BA BPL NEXT 
00393 C250 4c 81 Cl JHP PLOTIT 
00394 C253 QUIT 
00395 C253 60 RTS 
00396 C254 .END 
00397 C254 .LIB PAINT2 
00398 C254 PAINT ;PAINT A SHAPE 
00399 C254 20 FD AE JSR EATCOM ;EAT COMMA 
00400 C257 20 EB B7 JSR GETIY ;GET X AND Y 
00401 C25A 8E 3E 03 STX YFIX ;STORE Y 
00402 C25D A6 14 LOX $14 
00403 C25F A4 15 LOY $15 
00404 C261 8E 3C 03 STlXLO ;STORE I 
00405 c264 8C 3D 03 STY IHI 
00406 C267 20 Fl B7 JSR GETY ;GET COLOR 
00407 C26A 8E 3F 03 STI C ;STORE COLOR 
00408 c26D 8A TIA 
00409 C26E 09 FO ORA UFO 
00410 C270 CD 21 DO CMP $0021 ;TRYING TO FILL WITH BACKGROUND COLOR? 
00411 C273 DO 04 BNE GOON ;QUIT IF TRUE 
00412 C275 20 Fl B7 JSR GET! ;GRAB MU VARIABLE 
00413 C278 60 RTS 
00414 C279 GOON 
00415 C279 20 Fl B7 JSR GETY ;GET MULTI INDICATOR 
00416 C27C 8A TIA 
00417 C27D FO 08 BEQ START ;HIRES 
00418 C27F AD 3C 03 LDA XLO ; MULTI 
00419 C282 29 FE AND I$FE ;KNOCK OFF LSB 

299 



LINEI LOC CODE LINE 
00420 C284 80 3C 03 STA XLO 
00421 C287 START 
00422 C287 8E 44 03 STX MU 
00423 C28A E8 INX 
00424 C26B 8E 40 03 STX XI ;X STEP SIZE 
00425 C28E AO 00 LOY 1$00 ;SET UP STKPTR 
00426 C290 8C 43 03 STY STKPTR 
00427 C293 LOOP ;INITIALIZE INTERESTING POINT WATCHERS 
00428 C293 A9 00 LOA ,.00 
00429 C295 80 42 03 STA UP 
00430 C298 80 41 03 STA DOWN 
00431 C29B FINDIT ;FIND LEFT EDGE OR LEFT BOUNDRY 
00432 C29B AD 3C 03 LDA XLO 
00433 C29E DO 05 BNE FLOOP 
00434 C2AO CD 3D 03 CMP XHI 
00435 C2A3 FO 20 BEQ FILLIT ;FOUND LEFT BOUNDRY 
00436 C2A5 FLOOP ;STEP LEFT 
00437 C2A5 38 SEC 
00438 C2A6 ED 40 03 SBC XI 
00439 C2A9 8D 3C 03 STA XLO 
00440 C2AC BO 03 BCS L5 
00441 CUE CE 3D 03 DEC XHI 
00442 C2Bl L5 
00443 C2Bl 20 43 C3 JSR PEEK ;LOOK FOR EDGE OF SHAPE 
00444 C254 FO E5 BEQ FINDIT ;LOOK AGAIN 
00445 C2B6 18 CLC ;FOUND EDGE OF SHAPE 
00446 C2B7 AD 3C 03 LOA XLO ;STEP RIGHT 
00447 C2BA 6D 40 03 ADC II 
00448 C2BD 8D 3C 03 STA XLO 
00449 C2CO 90 03 BCC FILLIT 
00450 C2C2 EE 3D 03 INC XHI 
00451 C2C5 FILLIT 
00452 C2C5 EE 3E 03 INC YFIX ;LOOK DOWN 
00453 C2C8 20 43 C3 JSR PEEK 
00454 C2CB DO OB SNE L6 ;NOT INTERESTED 
00_55 C2CD AD "1 03 LOA DOWN ;CBEC' LAST POINT 
00_56 C2DO DO OB BIlE L7 iNOT INTERESTED 
00"57 C2D2 20 "E C3 JSR PUSH iSA'E INTERESTING POINT 
00"56 C2D5 A9 01 LOA ,.01 iLAST POINT WAS OFF 
00"59 C2D7 2C • BYTE .2C 
00"60 C2D6 L6 
00_61 C2D8 A9 00 LOA ,.00 iLAST POINT WAS ON 
00"62 C2DA 80 "1 03 STA DOWN 
001163 C2DD L7 
00_6" C2DD CE 3E 03 DEC YFIX iSTEP DOWN 
00lI65 C2J!O CE 3E 03 DEC YFIX 
00"66 C2B3 20 "3 C3 JSR PBBK iLOOI UP 
00_61 C2B6 DO OB BNE L8 iNOT INTERESTED 
00_68 C2B8 AD "2 03 LOA UP iCBECI LAST POINT 
001169 C2BB DO OB BIlE L9 i NOT INTERESTED 
00"10 C2ED 20 "E C3 JSR PUSH iSAYE INTERESTING POINT 
00"11 C2FO A9 01 LOA ,.01 ;LlST POINT WAS OFF 
00"12 C212 2C • BYTE $2C 
00_13 C2F3 L8 
00_7" C2F3 A9 00 LOA ,.00 ;LAST POINT WAS ON 
00_15 C2F5 8D "2 03 STA UP 
00_16 C2F8 L9 
00"11 C2F8 BE 3E 03 INC YFIX iSTEP DOWN 
001118 C2FB 20 81 Cl JSR PLOTIT iPLOT POINT 
00_19 C2FE AD 3C 03 LOA n.o ;STEP RIGHT 
00"80 C301 18 CLC 
00"81 C302 6D "0 03 &DC n 
00"82 C305 8D 3C 03 STA n.o 
00_83 C308 AD 3D 03 LOA XHI 
00_8" C30B 69 00 &DC ,.00 
00_85 C30D 8D 3D 03 STA XHI 
00"86 C310 PO 29 BBQ Lll ;CHHCI WRAP 
00U1 C312 AD 3C 03 LOA n.o 
00"88 C315 C9 "0 CMP ,."0 

300 



LINEI LOC CODE LINE 
00"89 1317 90 22 BCCL11 ;DIDNT REACH RIGHT BOUNDRY YET 
00"90 C319 Ll0 
001191 1319 AI! 11303 LOI SHPTR lOUT OF INTERESTING POINTS? 
001192 C31C FO 2F BEQ END ; YES 
00.\93 C31E Cl DEI ;POP INTERESTING POINT 
00119" C31F BD 00 CB LOA $eBOO,1 
001195 1322 8D 3D 03 STA !HI 
00"96 C325 BD 00 Cl LOA tC100,1 
001197 C328 8D 3C 03 STA no 
001198 C32B BD 00 C9 LOA tC900,1 
00"99 C32E 8D 3E 03 STA YFII 
00500 C331 CE 113 03 DEC SHPTR 
00501 C3311 C9 C8 CKP ItC8 ;CRECK Y BOUNDRY 
00502 C336 BO El BCS Ll0 ; POP ANOTHER 
00503 1338 "C 93 C2 JMP LOOP ;HAHDLB NEW INTERESTING POINT 
0050" C33B L11 
00505 C33B 20 113 C3 JSR PEEK ;RIGHT EDGE? 
00506 C33E DO D9 BIfE Ll0 ; YES: POP 
00507 C3110 IIC C5 C2 JMP FILLIT 
00508 13113 PEEK ;LOOK AT POINT 
00509 13"3 20 38 CO JSR FIND 
00510 C3116 AO 00 LOY ItoO 
00511 C3"8 Bl FB LOA (tFB),Y 
00512 C3U 2D 118 03 AND OFF 
00513 C3"D END 
005111 C311D 60 RTS 
00515 C3"E PUSH ;PUSH INTERESTING POINT 
00516 C3"E AI! 113 03 LOI SHPTR 
00517 1351 AD 3E 03 LOA YFII 
00518 C35_ 9D 00 C9 STA tC900,1 
00519 C357 AD 3C 03 LOA no 
00520 C351 9D 00 Cl STA tCAOO,1 
00521 C35D AD 3D 03 LOA IHI 
00522 C360 9D 00 CB STA tCBOO,1 
00523 C363 BE 113 03 INC SHPTR 
0052" C366 60 RTS 
00525 1367 • END 
00526 C367 • LIB IIISERT 
00527 C367 INSERT ;INSTALL INTERRUPT WEDGE 
00528 C367 20 Fl 81 JSR $81Fl ;GET 1 BYTE 
00529 C36A 8E liB 03 sn IEYEN ;KBYBOARD SWITCH 
00530 C36D 20 Fl 81 JSR $81Fl ;GET 1 BYTE 
00531 C370 8A TIl 
00532 C371 118 PHA :HASTER SWITCH 
00533 C372 20 Fl 81 JSR $81Fl :GET 1 BYTE 
005311 C375 8E IIC 03 sn ENI ;PLAYER 2 ENABLE 
00535 1378 20 Fl 81 JSR $81Fl ;GET 1 BYTE 
00536 C37B 8E 5D 03 sn DIRI :HISSLE 1 DIRECTION 
00537 C37E 20 Fl 81 JSR $81Fl ;GET 1 BYTE 
00538 C381 8E 5E 03 sn DIR2 :HISSLB 2 DIRECTION 
00539 C3M 20 Fl 81 JSR $81Fl :GET 1 BYTE 
005"0 C387 8E 5F 03 sn DIR3 ;TARGET DIRECTION 
005"1 C38A 20 Fl 81 JSR $81Fl ;GET 1 BYTE 
005"2 C38D 68 PLA 
005"3 C38B FO lD SEQ VDGOFF ;MASTER OFF 
0051111 C390 197F LOA "01111111 ;INTERlIUPT MASK 
005"5 1392 8D OD DC STA $ncOD ;DISABLB INTERRUPT 
005116 C395 8E 07 DC sn $ne07 ;TIMBR B (VELOCITY) 
005117 1398 19 C2 LOA I<WEDGE ;NEW WEDGE VECTOR 
005"8 C391 8D 111 03 STA $03111 ;IRQ VECTOR 
005"9 C39D 19 C3 LOA I>WEDGE ;NEW WEDGE VECTOR 
00550 C39F 8D 15 03 STI $0315 ;IRQ VECTOR 
00551 C312 12 11 LOI 1$11 ;START TIMER B 
00552 C3A11 AO 82 LOY 1$82 ;ENlBLE TIMER B INTERRUPT 
00553 C316 STORE 
0055" 1316 8E OF DC sn $DCOF ;TIMER B CONTROL 
00555 1319 8C OD DC sn $DCOD ;ENlBLE TIMER B INTERRUPT 
00556 C31C 60 RTS 
00557 C3AD VDOOFF 

301 



LINEI LOC CODE LINE 
00558 eJ1» 19 7F LDAI$7F ;INTERRUPT MAS( 

00559 C3AF 80 00 DC STA $DCOD ;DISABLE INTERRUPTS 
00560 eJB2 A9 31 LDA 1$31 ;ORIGINAL IRQ 
00561 eJlM 80 1~ 03 STA $031~ ;IRQ VECTOR 
00562 eJB7 19 EA LDA I$EA ;ORIGIIiAL IRQ 
00563 C3B9 80 15 03 STA $0315 ;IRQ VECTOR 
0056~ C3BC A2 08 LDII$08 ;START TIMER A 
00565 C3BE AO 81 LOY 1$81 ;ENABLE TIMER A INTERRUPT 
00566 C3CO DO E4 BNE STORE 
00567 C3C2 • END 
00568 C3C2 .LIB SPRITE 
00569 C3C2 WEDGE ;SPRITE 
00570 C3C2 20 A8 C4 JSR GETJOY ;GET PLAYER MOVEMENTS 
00571 C3C5 AE 50 03 LDX DIRl ;MISSLE 1 DIRECTION 
00572 C3C8 FO 53 BEQ MPl ;MISSLE 1 DISABLED 
00573 C3CA AD 15 DO LOA $0015 ;SPRITE ENABLE BYTE 
00574 C3CO 29 04 AND 1$04 ;SPRITE 4 BIT 
00575 C3CF DO 20 BNE HHl ;ALREADY IN MOTION 
00576 C3Dl AD 60 03 LOA JOYl ;CHECK FIREBUTTON 
00577 C3D4 29 10 AND 1$10 
00578 C3D6 DO 45 BNE MPl ;NOT FIRED 
00579 C3D8 AD 15 DO LDA $0015 ;TURN ON HISSLE 1 
00580 C3DB 09 04 ORA 1$04 
00581 C3DD 80 15 DO STA $0015 
00582 C3EO AD 10 DO LOA $0010 ;POSITION MISSLE 1 AT PLAYER 1 
00583 C3E3 29 FB AND I$FB 
00584 C3E5 80 10 DO STA $0010 
00585 C3E8 29 01 AND 1$01 
00586 C3EA OA ASL A 
00587 C3EB OA ASL A 
00588 C3EC 00 10 DO ORA $0010 
00589 C3EF 80 10 DO STA $0010 
00590 C3F2 AD 00 DO LOA $0000 
00591 C3F5 80 04 DO STA $0004 
00592 C3F8 AD 01 DO LOA $0001 
00593 C3FB 80 05 DO STA $0005 
00594 C3FE HHl ;HOVE MISSLE 
00595 C3FE 8A TXA ; DIRECTION 
00596 C3FF A2 04 LOX 1$04 
00597 C401 AO 05 LOY 1$05 
00598 C403 20 1A C5 JSR HOVE ;HOVE MISSLE 
00599 C406 AD 10 DO LOA $0010 ;X WRAP ? 
00600 c409 29 04 AND 1$04 
00601 C40B 00 04 DO ORA $0004 
00602 C40E FO 05 BEQ Hl0FF ;WRAP OCCURED 
00603 C410 AD 05 DO LOA $0005 ;Y WRAP? 
00604 C413 DO 08 BNE MPl ;NO WRAP OCCURED 
00605 C415 Hl0FF ;TURN OFF MISSLE 1 
00606 C415 AD 15 DO LOA $0015 ;SPRITE ENABLE BYTE 
00607 C418 29 FB AND I$FB 
00608 C41A 80 15 DO STA $0015 
00609 C41D HPl ;HOVE PLAYER 1 
00610 C41D AD 60 03 LOA JOYl ;GET HOVEMENT 
00611 Cli20 A2 00 LOX 1$00 
00612 C422 AO 07 LOY 1$07 
00613 C424 20 lA C5 JSR HOVE ; HOVE 
00614 C427 AD 4C 03 LOA ENl ;PLAYER 2 ENABLED ? 
00615 C42A FO 62 BEQ TARGET ;NOT ENABLED 
00616 C42C All 5E 03 LOX DIR2 ;HISSLE 2 DIRECTION 
00617 C42F FO 53 BEQ HP2 ;HISSLE 2 DISABLED 
00618 C431 AD 15 DO LOA $0015 ;SPRITE ENABLE BYTE 
00619 C434 29 08 AND 1$08 
00620 C436 DO 20 BNE HH2 ;ALREADY IN HOTION 
00621 C438 AD 61 03 LOA JOY2 ;CHECK FIREBUTTON 
00622 C43B 29 10 AND 1$10 
00623 C43D DO 45 BNE HP2 ;NOT FIRED 
00624 C43F AD 15 DO LOA $0015 ;TURN ON HISSLE 2 
00625 C442 09 08 ORA 1$08 
00626 C444 80 15 DO STA $0015 

302 



I.IDI LOC CODB LIJIE 

00627 C447 AD 10 DO LOA $0010 ;PLACE HISSLE 2 AT PLAYER 2 
00628 CliIjA 29 F7 AND I$F7 
00629 C4ljC 80 10 DO STA $0010 
00630 CliIiF 29 02 AND 1$02 
00631 C451 OA ASL A 
00632 Cli52 OA ASL A 
00633 C453 00 10 DO ORA $0010 
006311 Cli56 80 10 DO STA $0010 
00635 C459 AD 02 DO LOA $0002 
00636 Cli5C 80 06 DO STA $0006 
00637 ClI5F AD 03 DO LOA $0003 
00638 Cli62 80 07 DO STA $0007 
00639 C465 HH2 ;HOVE HISSLE 2 
00640 C465 8A TXA ;DIRECTION 
00641 C466 A2 06 LOX 1$06 
00642 ClI68 AO 04 LDY 1$04 
00643 Cli6A 20 1A C5 JSR HOVE ;HOVE HISSLE 2 
006411 C46D AD 10 DO LOA $0010 ;X IIRAP ? 
00645 ClI70 29 08 AND 1$08 
00646 C472 00 06 DO ORA $0006 
00647 C475 FO 05 BEQ H20FF ;X IIRAP 
00648 C477 AD 07 DO LOA $0007 ;Y IIRAP ? 
00649 C47A DO 08 BNE HP2 ;NO Y IIRAP 
00650 C47C H20FF ;TURN OFF HISSLE 2 
00651 Cli7C AD 15 DO LOA $0015 ;SPRITE ENABLE BYTE 
00652 Cli7F 29 F7 AND 1$F7 
00653 C481 80 15 DO STA $0015 
00654 C484 HP2 ;HOVE PLAYER 2 
00655 C484 AD 61 03 LOA JOY2 ;GET DIRECTION 
00656 Cli87 A2 02 LOX 1$02 
00657 C489 AO 06 LOY 1$06 
00658 Cli8B 20 lA C5 JSR HOVE ;HOVE PLAYER 2 
00659 C48E TARGET ; TARGET SPRITE 
00660 C48E AE 5F 03 LOX DIR3 ;TARGET DIRECTION 
00661 C491 FO 08 BEQ CHECK ;DISABLED 
00662 C493 8A TXA ; DIRECTION 
00663 C494 A2 08 LOX 1$08 
00664 Clj96 AO 03 LDY 1$03 
00665 Clj98 20 1A C5 JSR HOVE ;HOVE TARGET 
00666 C49B CHECK 
00667 C49B AD 00 DC LOA $DCOD ;OLD IRQ FLAG ? 
00668 C49E 29 01 AND 1$01 
00669 ClIAO FO 03 BEQ QUT ;NOT TIME FOR OLD IRQ 
00670 CliA2 IIC 31 EA JHP $EA3' ;OLD IRQ 
00671 CliA5 QUT 
00672 CliA5 4C BC FE JHP $FEBC ; END INTERRUPT 
00672 CU8 
00673 CIIA8 .LIB GETJOY 
00674 C4A8 GETJOY 
00675 CIIA8 AD 4B 03 LDA KEYEN KEYBOARD OR JOYSTICK 
00676 CIIAB DO 00 BNE GETKEY KEYBOARD 
00677 CliAD AD 01 DC LDA $DCOI GET JOY, 
00678 C4BO 80 60 03 STA JOYI 
00679 C4B3 AD 00 DC LOA $DCOO ;GET JOY2 
00680 C4B6 80 61 03 STA JOY2 
00681 C4B9 60 RTS 
00682 C4BA GETKEY ;KEYBOARD SCAN 
00683 C4BA A9 00 LOA 1$00 
00684 C4BC AA TAX ;LEFT SHIFT BITI (7-BIT) 
00685 C4BD A8 TAY ;JOYI INDEX 
00686 CIIBE 80 00 DC STA $DCOO 
00687 C4Cl AD 01 DC LOA $DCOI 
00688 C4CII A9 FD LDA I$FD ROll SELECT (253) 
00689 Clic6 20 F6 C4 JSR CHUIR CHECK BIT 7 OF ROll $FD 
00690 C4C9 A9 FB LOA I$FB ROll SELECT (251) 
00691 CIICB 20 09 C4 JSR CHKPLY CHECK LEFT PLAYER KEYS 
00692 CIICE AO 01 LDY 1$01 JOY2 INDEX 
00693 C4DO A2 03 LOX 1$03 RIGHT SHIFT BITI (7-BIT) 
00694 C4D2 A9 BF LOA I$BF ROll SELECT (191) 

303 



LINBf LOC CODE LINE 
00695 CIiDIi 20 F6 Cli JSR CHKFIR CHECK BIT Ii OF ROW $BF 
00696 CliD7 A9 OF LOA I$DF ROW SELECT (223) 
00697 C4D9 CHKPLY CHECK FOR PLAYER MOVEMENT 
00698 C4D9 80 00 DC STA $OCOO LATCH ROW SELECT 
00699 C40C AD 01 DC LOA $OCOl GET COLUMN 
00700 C40F 09 C9 ORA nll00l00l DISREGARD COLUMNS 
00701 C4El A2 07 LOX 1$07 CHECK 8 DIRECTIONS 
00702 CliE3 CMPl 
00703 C4E3 DO OA C5 CHP TBL1,X ;CHECK FOR VALID KEY COMBINATIONS 
00704 C4E6 FO 04 BEQ POK ;FOUND VALID KEYS 
00705 C4E8 CA DEX 
00706 CliE9 10 F8 BPL CMPl ;TRY ANOTHER COMBINATION 
00707 C4EB 60 RTS 
00708 C4EC POK ;STORE VALID MOVEMENT 
00709 C4EC BD 12 C5 LOA TBL2,X ;GET KEY TO JOY CONVERSION 
00710 C4EF 39 60 03 AND JOY1,Y ;OONT DISTURB FIRE INDICATOR 
00711 C4F2 99 60 03 STA JOY1, Y 
00712 C4F5 60 RTS 
00713 C4F6 CHKFIR 
00714 C4F6 80 00 DC STA $DCOO ;LATCH KEYBOARD ROW 
00715 C4F9 AD 01 DC LOA $DCOl ;GET COLUMN 
00716 c4FC 3D 00 CO AND TABLE,X ;CHECK FOR SHIFT KEY 
00717 C4FF DO 03 BNE SKIPP ;NOT PRESSED 
00718 C501 A9 OF LDA I$OF ;SET FIRE TO TRUE AND INIT MOVEMENT TO FALSE 
00719 C503 2C • BYTE $2C 
00720 C50ll SKIPP 
00721 C504 A9 lF LOA 1$1F ;SET FIRE TO FALSE AND INIT MOVEMENT TO FALSE 
00722 C506 99 60 03 STA JOY1,Y 
00723 C509 60 RTS 
00721i C50A TBLl ;VALID COLUMN COMBINATIONS 
00725 C50A FO • BYTE 253,239,251,223 
00725 C50B EF 
00725 C50C FB 
00725 C500 OF 
00726 C50E F9 • BYTE 249,235,221,207 
00726 C50F EB 
00726 C510 DO 
00726 C511 CF 
00727 C512 TBLl ;KEY TO JOY CONVERSIONS 
00728 C512 lE • BYTE .1E,.10,.1B,.17 
00728 C513 10 
00728 C514 1B 
00728 C515 17 
00729 C516 1E .BYTE $1E,.10,$1E,.10 
00729 C517 10 
00729 C518 lE 
00729 C519 10 
00730 C51A .END 
00731 C51A .LIB MOVE 
00732 C5U MOVE 
00733 C51A 4A LSR A ;CHECK FOR UP 
00734 C51B 50 03 BCS OWN ;NOT UP 
00735 C510 DE 01 DO DEC $0001 ,X ;SPRITE Y POSITION 
00736 C520 OWN 
00737 C520 4A LSR A ;CHECK FOR DOWN 
00738 C521 BO 03 BCS LEFT ;NOT DOWN 
00739 C523 FE 01 DO :tNC $0001 ,X ;SPRITE Y POSITION 
00740 C526 LEFT 
00741 C526 4A LSR A ;CHECK FOR LEFT 
00742 C527 50 12 BCS RIGHT ;NOT LEFT 
00743 C529 BD 00 DO LOA $OOOO,X ;SPRITE X POSITION LO 
00744 C52C DO 09 BNE DEC I ;NO X LO UNDERFLOW 
00745 C52E AD 10 DO LOA $0010 ;SWITCH SCREEN SECTIONS 
00746 C531 59 00 CO EOR TABLE,Y ;GET BIT 
00747 C534 80 10 DO STA $0010 
00748 C537 OECX 
00749 C537 DE 00 DO DEC $OOOO,X ;ADJUST X LO 
00750 C53A 60 RTS 
00751 C53B RIGHT 

304 



00752 C53B 41 LSR A CHECK FOR RIGHT 
00753 C53C 50 OE BCS RETURN NOT RIOHT 
00754 C53E FE 00 DO INC $0000,1 ADJUST I LO 
00755 C541 DO 09 BNE RETURN NOT OVERFLOW 
00756 C543 AD 10 DO LDA $0010 ADJUST X HI 
00757 C546 59 00 CO EOR TABLE,Y GET BIT 
00758 C5119 80 10 00 STA $0010 
00759 C54C RETURN 
00760 C54C 60 RTS 
00761 C5l1D .END 
00762 C54D .END 

ERRORS = 00000 

SYMBOL TABLE 

SYMBOL VALUE 
BASFl 1.081. C 0331" Cl 0345 ClISIT COOl" 
C2 03116 C2ISIT COFD CHECIC ClI9B CHUIR CliF6 
CHICPLY C409 CHROEr 0073 CMPl ClIE3 COHPAR 1"1"1"1" 
DECI C537 DIRl 0350 O1R2 035E DIR3 0351" 
ONE C116 DNTH!S C1E4 DOWN 03111 OWN C520 
DXFLOT 0058 OIFLOT 0062 EnCOH AEFO BNl 0311C 
BND C311D Fl0UL Cl33 Fl0YFL C136 1"11"2 BCOF 
1"11"11 B7F7 P1L Cl110 1"1LFL C139 F1IFL C120 
F1YFL C130 FUOD FFFF F201V FPFF FILL C027 
FILLIT C2C5 FILMOR C020 FIND C038 FINDIT C29B 
FlUl FFPF FLooP C2A5 OBTeOL C117 OBTJOY CliA8 
OETKEY C4BA GETXY 87BB GETY B7Pl GOON C279 
INSERT C367 JOYl 0360 JOY2 0361 UYEN 034B 
Ll0 C319 L 11 C33B L5 C2Bl L6 C208 
L7 C200 L8 C2F3 L9 C2F8 LEFT C526 
LFLFl Cl116 LFLOT 0067 LHI 0341. LINE C194 
LINEOIC C1El LLO 0349 LOOP C293 Hl0FF C415 
H20FF C47C MLTI COC3 HHl C3FB MH2 CII65 
MOVE C51A KPl C410 HP2 C484 MU 0344 
NEXT C20A OFF 0348 OFPF C095 ON 0347 
ONN Cl13 PAINT C2511 PEBK C343 PLOT C15E 
PLOTIT C181 POINT C175 POK C4BC PUSH C3l1E 
PUTCOL C120 QUIT C253 QUT C4A5 RBTURN C54C 
RIGHT C53B SCREEN COOC SETUP C09D SONFl BC2B 
SKIP C086 SKIPP C50ll SKP C050 START C287 
snPTR 0343 STORE C316 SUBT 8853 TABLB COOO 
TARGET C48E TBLl C50A TBL2 C512 TRYC2 COE6 
TRYC3 Cl04 UP 0342 VARHI 0003 WDOOFF C3AD 
WEDGE C3C2 IFLFl C140 IFLOT 004E IH1 0330 
XI 0340 XLO 033C IFl B3A2 Yl"II 033B 
IFLFl C143 TFLOT 0053 

END OF ASSBMBLY 

305 



306 

APPENDIX E: 
DESIGN GRIDS 

1< 
o 319 

1111111111112 
1 2 3 4 4 5 6 7 8 8 9 0 1 2 2 3 4 5 6 6 7 8 9 0 

o 8 6 4 2 0 8 6 4 2 0 8 6 4 208 642 0 8 6 4 2 0 
o 
8 

16 

24 

o 32 

40 

48 

56 

64 

72 

80 

199 88 

96 
104r+-r~~-+-r~~-+-r+-r+-r~~-+-r+-r+-+-

112r+-r~~-+-r~~-+-r+-r+-r~~-+-r+-~-+-

120r+-r~~-+-r~~-+-r+-r+-r~~-+-r+-~-+-

y 
"X,Y PIXEL POINTS" 

x 



-9 9 

-9 1 

73 

~ 

-5 7 

-4 9 

-4 1 

33 

25 

17 

-9 

-1 
0 

8 

16 

24 

32 

40 

48 

56 

64 

72 

60 

88 

96 

x 
-x, -y 
-1-1-1-1-1-1-1 
543221 0-9-9-6~-9-5-4-4-3~~ 
35791 3 5 7 9 1 3 5 7 9 1 3 5 7-9-1 

1 1 1 1-1 - 1 1-9-9-6 7-9-5-4-4-3 2 1-9 1 
5 4 322 1 079 1 357 9 1 357 
3579135 

-X, +y 

+x, -y 
1 1 1 1 1 1 

1234456 788 9 0 2 2 3 4 5 
o 8 6 4 208 6 4 208 6 420 8 6 4 2 

08123 4 4 5 6 7 8 8 9 1 1 1 1 1 1 1 
6 4 2 0 8 6 4 208 601 223 4 5 

420 8 6 4 2 

+X.+y 

VIsmLE' SCREEN 
, 

-9 9 

1 

3 

-9 

-7 

-9 

-5 7 

-49 

1 

-33 

-4 

2 

1 

-9 

-1 
0 

8 

16 

24 

32 

40 

48 

56 

64 

72 

60 

88 

96 

307 



308 

ROW# 0 

1 

2 

3 

4 

5 

7 

8 

1 

10 

1 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1 
263 
8 4 2 

1 6 3 
242 
8 

SPRITE DESIGN GRID 
(TOP) 

A B C 
1 1 

1 2 6 3 1 263 1 
6 8 4 2 1 8 4 2 6 8 4 2 1 8 4 2 6 8 4 

1 8 4 2 1 1 6 3 1 842 1 1 6 3 1 8 4 
6 2 4 2 e 2 4 2 6 

8 8 

DATA STATEMENTS 

SUM I SUM ~ SUM 
BASIC DATA OF OF OF 

2 1 LINE # ABC 
DATA 

,--,-
DATA 

,---,-
DATA ,---,-
DATA ,---,-
DATA 

,---,-
DATA 

,---,-
DATA 

,---,'-
DATA 

,--,'-
DATA 

,---,'-
DATA 

,---,'-
DATA 

,--,-
DATA 

,---,' -
DATA 

,---,-
DATA 

,--,-
DATA 

,'-
DATA 

,---,'-
DATA 

,---,'-
DATA 

,---,'-
DATA 

,---"-
DATA ,---,-
DATA 

,---.-
2 1 



APPENDIXF: 
COLOR CHARTS 

There are sixteen available colors on your Commodore 64. These colors, and 
their corresponding color codes, are: 

COLOR CODE 

Black 0 
White 1 
Red 2 
Cyan 3 
Purple 4 
Green 5 
Blue 6 
Yellow 7 
Orange 8 
Brown 9 
Red 10 
Gray 1 11 
Gray 2 12 
Green 2 13 
Blue 2 14 
Gray 3 15 

309 



310 

The 1,000 screen color blocks are diagrammed on the grid below. 

TOP OF SCREEN 
Col. # 

111111111122222222223333333333 X 
o 1 2 3 4 5 6 789 0 1 234 5 6 789 0 1 234 5 6 7 890 1 234 5 6 7 8 9 

Row # 0 t-+--t-+-t-+--Ht-+--t-+-t-+--HH--t--t-t-t-+-t-++-t-+--t-t-t-t--H-++-t-t-t-+-t--+-i 
~t-+--t-+-t-+--Ht-+--t-+-t-+--HH--t--t-t-t-+-t-++-t-+-t--t-t-t--H-++-t-t-t-+-t--+-i 
OOt-+--t-+-t-+-~H---t-+-t-+--Ht-+-t--t-t-t-+-t-+-Ht-+--t-t-t-t-+-t-++-~~+-t--+-i 
l~r+~~-r+-r+~~-r+-tr+~t-t-r+-t-r+-r+~~-r+-t-+~t-t-r+-t~ 
l00r+~~-r+-r+~~-r+-tr+~t-t-r+-t-r+-r+~t-t-r+-t-+~t-t-r+-t~ 
~r+~~-r+-r+~~-r+-tr++-t-t-r+-t-r+-r+~t-t-r+-t-+~t-t-r+-t~ 
2~ r+~~-r+-r+~~-r+-tl-+~H -+-r+-t-++-I-+~~-r+-tI-+~t-t-r+-t-4 
200~~~-r+-1-+~~-r+-1-+~t-t-r+-t-++-1-+~t-t-r+-t-++-t-t-r+-t~ 320 t-+--t-+-t-+-+-t-+--t-+-t-+-+-t-+--t-t-t-t-+-t-++-t-+--t-t-t-t-+-t-+-t--t-t-t-+-t--+-i 
360t-+--t-+-t-+-+-H---t-+-t-++-t-+--t-t-t-t-+-t-++-H---t-t-t-t-+-t-++-~~+-t--+-i 400 

t-+--t-+-t-+-+-H---t-+-t-++-t-+--t-t-t-t-+-t-++-H---t-t-t-+-+-t-++-~~+-t--+-i 
440 

t-+--t-+-t-+-+-H---t-+-t-+-HH---t-t-t-t-+-t-++-H---t-t-t-+-+-t-+-t--~~+-t--+-i 

480t-+--t-+-t-+-+-H---t-+-t-+-~t-+--t-t-t~+-t-++-H---t-+-t-+-+-t-++-~~+-t--+-i 
520t-+--t-+-t-++-H---t-+-t-++-H---t-t-t~+-t-++-H---t-t-t-++-t-++-~~+-t--+-i 
~r+~~-++-t-+~~-r+-I-+~t-t-r+-t-r+-t-+~~-r+-t-+~t-t-r+-t~ 
~r+~+-t-++-t-+~+-t-r+-I-+~t-t-r+-t-++-t-+~~-r+-t-+~t-t-r+-t~ 
~0r+~+-t-++-t-+~+-t-++-I-+~~-r+-t-++-t-+~~-r+-tl-++-t-t-r+-t~ 
~t-+-r+-t-++-t-+-r+-t-++-t-+~t-t-r+-t-++-t-+~t-t-r+-tl-++-t-t-r+-t~ 
7~r+-r+-t-++-t-t-r+-t-++-t-+~t-t-r+-t-++-t-t-rt-t-r+-t-++-t-t-r+-t-4-4 
7rol-++-t-t-r+-t-++-t-t-r+-t-++-t-t-r~-r+-t-++-t-t-r+-t-++-t-t-r~~ 800 

t-++-~-t-+-t-+-t--t-t~+-t-++-t-+--t-+-t-+-+-t-++-t-+--t-+-t-++-H---t-+-t~ 

M0t-++-~~+-t-++-~~+-t-++-t-+--t-+-t-++-t-++-t-+--t-+-t-++-H---t-t-t~ 
~0t-+--t-+-t-++-H-~+-t-++-H---t-t-t-++-t-++-t-+--t-t-t-+-HH-+-t-t~+-t~ 920 
~t-+-t-+-t-++-t-+-t-+-t-++-H---t-+-t-+-+-t-++-t-+--t-+-t-+-Ht-++-t-t-t-+-t~ 

y 

COWR BLOCK # = COL. # + ROW # 

MEM. LOC. = 17408 + COWR BLOCK # 

COLOR MEMORY 



APPENDIXG: 
TOOL KIT REFERENCE CARD 

Under "How To Use" you will find that all variables are set equal to "#". See the 
back of this card for the value ranges allowed for each variable. Note also that most 
of the tools listed below require a DIM statement of: 
"DIM P$(99,2),R~(99,2),L~(99,1), C(2,2),T(2,2),W(2,2)". 

Tool Description How To Use 
10 TURN ON GRAPHICS MU=#: GOSUB 10 
20 RETURN TO TEXT GOSUB 20 
30 CLEAR HIRES/MULTI C=#: GOSUB 30 
40 PLOT A POINT X=#: Y=#: C=#: 

GOSUB 40 
SO PLOT A LINE Xl=#: Yl=#: X2=# 

Y2=1i: C=#: GOSUB SO 
60 PAINT A SHAPE X=Ii: Y=#: C=#: 

GOSUB 62 or 
PP=#: C=#: GOSUB 60 

70 CLIP A SHAPE (SEE TOOL 90) 
80 DRAW A SHAPE C=Ii: GOSUB 90 

(SEE TOOL BOO) 
90 DRAW A SHAPE ND=#: NL=$: C=#: 

MU=Ii. SEE TOOL BOO. 
100 APPL Y TRANSFORMS (SEE TOOL 90) 
110 CLEAR C MATRIX GOSUB 110 
120 CLEAR T MATRIX GOSUB 120 
130 COMBINE MATRICES (SEE TOOLS 140,150,160) 
140 TRANSLATE A SHAPE XT=#: YT=#: GOSUB 140 
ISO SCALE A SHAPE XS=#: YS=#: GOSUB ISO 
160 ROTATE A SHAPE RO=#: GOSUB 160 
170 ZAPI (DON'T USE WITHIN 

PROGRAM) 
Type RUN 172 

180 TURN ON SPRITE SP SP=#: GOSUB 180 
190 TURN OFF SRITE SP SP=#: GOSUB 190 
200 X EXPAND SPRITE SP SP=#: GOSUB 200 
210 X UN EXPAND SPRITE SP SP=#: GOSUB 210 
220 Y EXPAND SPRITE SP SP=#: GOSUB 220 
230 Y UNEXPAND SPRITE SP SP=#: GOSUB 230 
240 SP PRIORITY OVER SHAPES SP=#: GOSUB 240 
250 SHAPE PRIORITY OVER SP SP=#: GOSUB 250 
260 SET SPRITE TO COLOR C SP=#: C=#: GOSUB 260 
270 PLACE SPRITE AT X, Y X=#: Y=#: SP=#: GOSUB 270 
280 MOVE SP FROM Xl,Yl TO XI=#: Yl=#: X2=#: 

X2,Y2 Y2=#: SP=#: SD=#: GOSUB 280 
290 HOOK UP ACTION SPRITES KB=#: Pl=#: P2=#: 

Ml=#: M2=#: Tl=#: 
VE=#: GOSUB 290 

300 COLLISION DETECTION GOSUB 300 
310 RESET COLLSION 

REGISTER GOSUB 310 
320 SUSPEND GAME GOSUB 320 
330 RESTART GAME GOSUB 330 
340 CRASH SOUND ON GOSUB 340 
350 SOUND OFF GOSUB 350 



-{ / 'I (;7 

360 COLLISION PUNISHMENT 
800 RETRIEVE A SHAPE 
810 RETRIEVE A SPRITE 

SP=#: COSUB 360 
SE$=#: COSUB 800 
SE$=#: SP=#: COSUB 810 

Variable List 

The following variables are commonly needed by this book's subroutine tools: 

Variable Description Value Range 

MU 
C 
X 
Y 

Xl 

Yl 

X2 

Y2 

PP 

XT 
YT 
YS 
YS 
RO 
SP 
KB 
PI 
P2 
Ml 

M2 

Tl 

VE 
SE$ 

Multicolor Indicator 
Color 
X Coordinate 
Y Coordinate 
X Coordinate 
Endpoint 1 
Y Coordinate 
Endpoint 1 
X Coordinate 
Endpoint 2 
Y Coordinate 
Endpoint 2 
Paint point coordinates' 
position in ~ array 
Translate Along X 
Translate Along Y 
Scale Along X 
Scale Along Y 
Rotation Degrees 
Sprite Number 
Keyboard Enable 
Player 1 Enable 
Player 2 Enable 
Missile 1 Direction 

Missile 2 Direction 

Target Direction 

Game Speed 
Search String 

0 = Hi-Res, 1 Multicolor 
0 To 15 
0 To 319 
0 To 199 
0 To 319 

0 To 199 

0 To 319 

0 To 199 

0 Based 

o To 7 
o Joysticks, 1 = Keyboard 
o = Disable, 1 = Enable 
o = Disable, 1 = Enable 
o = Disable, 1 = Up, 2 = 
Down, 4 = Left, 8 = Right, 
5 = \, 6 = I, 9 =/, 
10 = \. 
o = Disable, 1 = Up, 2 = 
Down, 4 = Left, 8 = Right, 
5 = \, 6 = I, 9 = /, 
10 = \. 
o = Disable, 1 = Up, 2 = 
Down, 4 = Left, 8 = Right, 
5 = \, 6 = I, 9 :./, 
10 = \. 
o = Fastest, 65 = Slowest 





cb9J1flQ~..,. 
AN ADVANCED GUIDE 

Commodore 64 Color Graph ics: An Advanced Guide is a step-by-step 
guide to crea ting advanced anima ted graphics on your personal 
computer. 

T he easy to fo llow ye t comprehensive programs can take any beginning 
programmer into the world of high speed graphics. You ' ll be amazed 
how rapidly you will be able to draw and paint your graph ic displays. 
Machine language da ta turns time-consuming graphics tasks (such as 
p lo tting lines and painting shapes) into high speed magic. 

Sequentia l instructions lead you through advanced graphics techniques. 
You 'll learn how to quickly reposition shapes on the viewing screen, 
change their size, and duplica te their shape around a centra l point. Tools 
to perform these u'icks are provided as well as helpful design ideas and art 
concepts to enrich your graphics compositions. 

T he book's final object is to produce an action arcade game using 
advanced sprite techniques. You a re provided too ls to allow you to con
nect sprites to joys ticks, detect sprite collisions, produce sound, and keep 
score. When you are ready to crea te your own arcade game you ' ll have a 
head start with your new game construction too ls. 

As a specia l bonus, appendices include a ll the tools you ' ll need to save an 
actual picture (no t your program) on d isk or tape and print your pictu res 
on paper with your VICl525 printer. 

$14.95 
U.S.A 

The Resto n C.ornpu tcr Group 
Restun Publishing Comp.1ny, Inc. 

I H80 Sunset 1-1 ills Road 
Resto n. VA 22090 

I 

ISBN 0-8359-0787-2 


