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Introduction 

The Commodore 64 Assembler Workshop is aimed at those of you 
who have been delving into the delights of programming at 
machine code level. It is a natural progression from Commodore 64 
Assembly Language, but will be invaluable even if you learned 
assembler and machine code using any of the other relevant books 
available. It provides a bench full of useful assembly language 
routines and utilities programs and examines the techniques 
involved. 

Extensive use of vectored addresses is made throughout the 
Commodore’s operation, allowing modifications to be made to the 
manner in which the micro operates. Chapter 2 demonstrates how 
the CHRGET subroutine can be used to allow new RAM-based 
commands to be added to the already extensive facilities provided 
by the machine. A short ‘wedge’ interpreter is provided and the 
techniques for adding your own commands examined, and to get 
you going, three commands come supplied with the wedge inter- 
preter: @CLS, @UPand @LOW. 

Conversion between ASCII based numerical character strings 
and their two-byte binary equivalents and vice versa is not straight- 
forward. Such conversions are fully described in Chapters 3 and 4, 
and working routines are listed. 
Any program which handles strings of data must be able to 

manipulate the strings, whether it is an adventure game or the 
latest stock control reports. Routines for comparing, copying, 
deleting and inserting strings are included, and Chapter 6 goes on 
to show the various ways 1n which text can be printed to the screen. 

Sorting data lists into order is a task which it is often necessary to 
perform within a program, so the technique of bubble sorting is 
investigated. 
Many other processors provide operations that would be useful 

to have available when using the 6510. A software stack imple- 
mentation similar to that found on the 6809 preocessor is produced 
in Chapter 8, allowing up to eight selected registers to be pushed on 
to a memory-based stack. 



Routines to move, fill and produce a hex and ASCIT dump of 
memory are then examined and the final chapter provides a few 
hi-resolution graphics utilities to speed you along the way. 
Many of the chapters suggest projects for you to undertake at 

your leisure, while every program has a detailed line-by-line 
description of its operation. Program listings are provided using 
BASIC loaders so that they can be used directly as they are. 
Included in each line is a REM statement giving the mnemonic 
representation of the instruction should you be using an assembler. 

In fact. all the tools for using the Assembler Workshop are 
supplied—assuming of course you have the workbench! 

Highbury, November 1984 Bruce Smith 



I Opening the Tool Box 

The routines included in this book are designed to make your life 
that much easier when writing machine code. Quite often, after 
mastering the delights of the Commodore 64’s microprocessor, 
programmers become frustrated because the techniques involved 
in, say, converting between ASCII characters and their equivalent 
binary values are not known. Nor are they readily available in a 
published form, so the painful process of sitting down armed with 
pencil and paper and working out the conversion through trial and 
error begins. 

This is just one example of the type of assembler program you 
will find within these pages. Wherever possible, they are supplied 
in a form that will make them relocatable, the only addresses 
requiring alteration being those specified by JSR or JMP. 

Each listing is in the form of a BASIC loader program, using a 
loop to READ and POKE decimal machine code data into 
memory. This will allow those of you who have not yet splashed out 
your hard earned cash on a suitable assembler program to get 
underway. For those lucky ones among you who do have an as- 
sembler, each data statement has been followed by a REM line 
containing the standard mnemonic representation of the instruc- 
tion (see Appendix 1 for a summary). This can be entered directly 
and assembled as required. 

Although the programs are typeset they have been spooled 
ditect as ASCII files and loaded into my word processor so all 
should run as they are. 
BASIC is used freely to demonstrate the machine code’s oper- 

ation—rather than repeating sections of assembler code, BASIC is 
often used to shorten the overall listing, and it is left to you to add 
further sections of assembler from other programs within the book 
or from your own resources. For example, many programs require 
you to input a decimal address. In the demonstrations, this is 
indicated by means of a one-line INPUT statement. In Chapter 3, 
however, there is a routine for inputting a string of five ASCII 



decimal characters and converting it into a two-byte binary 
number. This can be inserted into the assembler text of the pro- 
gram, to go some way to making it a full machine code program 
available for use as a completely self-contained section of machine 
code. 

WRITING MACHINE CODE 

You have an idea that you wish to convert into machine code—so 
what’s the best way to go about it? Firstly, make some brief notes 
about its operation. Will it use the screen? If so, what mode? Will it 
require the user to input values from the keyboard? If so, what keys 
do you use? What will the screen presentation look like? Will you 
want to use sound?...and so on. Once you have decided on the 
effects you want, put them down in flowchart form. This need not 
be the normal flowchart convention of boxes and diamonds—I find 
it just as easy to write each operation I want the program to 
perform in a list and then join the flow of these up afterwards. 

Quite often, the next step is to write the program in BASIC! This 
may sound crazy, but it allows you to examine various aspects of 

the program’s operation in more detail. An obvious example of this 
is obtaining the correct screen layout—you might find after run- 
ning the routine that the layout does not look particularly good. 
Finding this out at an early stage will save you a lot of time later, 
avoiding the need to rewrite the screen layout portion of your 
machine code—rewriting BASIC is much easier! If you write the 
BASIC tester as a series of subroutines, it will greatly simplify the 
process of conversion to machine code. Consider the main loop of 
such a BASIC tester, which takes the form: 

18 GOSUB 28% : REM SET UP VARIABLES 

2% GOSUB 398 : REM SET UP SCREEN 

30 REM LOOP 

48 GOSUB 498 : REM INPUT VALUES 

58 GOSUB 59@ : REM CONVERT AS NEEDED 

69 GOSUB 60% : REM DISPLAY VALUES 

76 GOSUB 7% : REM DO UPDATE 

89 IF TEST=NOTDONE THEN GOTO 39 

99 END 

Each module can be taken in turn, converted into assembler and 
tested. Once performing correctly the next procedure can be 
examined. Debugging is made easier because the results of each 
module are known having used the BASIC tester. The final main 
loop of the assembler might then look something like this: 



JSR $C2@g : REM SET UP VARIABLES 

JSR $C39g : REM SET UP SCREEN 

REM LOOP 

JSR $c4gg : REM INPUT VALUES 

JSR $C5@g : REM CONVERT AS NEEDED 

JSR €C69@ : REM DISPLAY VALUES 

JSR $5708 : REM DO UPDATE 

BNE LOOP 

You might be surprised to learn that this technique of testing 
machine code programs by first using BASIC is employed by many 
software houses the world over. 

DEBUGGING 

A word or two about debugging machine code programs that will 
not perform as you had hoped: if this happens to you, before 
pulling your hair out and throwing the latest copy of Machine Code 
Nuclear Astrophysics Weekly in the rubbish bin, a check of the 
following points may reveal the bug! 

1. If you are using a commercial assembler, check that your labels 
have all been declared and correctly assigned. If you are 
assembling ‘by hand’, double-check all your branch displace- 
ments and JMP and JSR destination addresses. You can 
normally ascertain exactly where the problem is by examining 
how much of the program works before the error occurs, 
rather than checking it all. 
If your program uses immediate addressing, ensure you have 
prefixed the mnemonic with a hash (#) to inform the assembler 
or, if compiling by hand, check that you have used the correct 
opcode. It is all too easy to assemble the coding for LDA $41 
when you really want the coding for LDA #$41. 
Check that you have set or cleared the Carry flag before 
subtraction or addition. 
My favourite now—ensure that you save the result of a sub- 
traction or an addition. The sequence: 

CLC 

LDA $FB 

ADC #1 

BCC OVER 

INC $FC 

OVER 

RTS 



is not much good if you don’t save the result of the addition 
with: 

STA $FB 

before the RTS! 
5. Does the screen clear to the READY prompt whenever you 

perform a SYS call, seemingly without executing any of the 
machine code? The bug that often causes this 1s due to an extra 
comma being inserted into a series of DATA statements. For 
example the DATA line: 

DATA 169,9, ,162,255 

with an extra comma between the @ and 162, would assemble 

the following: 

LDA #$2¢2 

BRK 

LDX #$FF 

as the machine has interpreted ‘,,’ as ‘,0,’ and assembled the 
command which has zero as its opcode—BRK! 

6. Does the program ‘hang up’ every time you run it, when you 
are quite certain that the data statements are correct? This is 
often caused by a full stop instead of a comma being used 
between DATA statements, e.g. 

DATA 169,6,162.5,96 

Here, if a full stop has been used instead of a comma between 
the 162 and the 5, the READ command interprets this as a 
single number, 162.5, rounds it down to 162, and assembles 
this ignoring the 5 and using the 96 (RTS) as the operand, as 
follows: 

LDA #$96 

LDX #$62 

XXX 

When executed, the garbage after the last executable instruc- 
tion results in the system hanging up. This error should not 
occur if you calculate your loop count correctly, so always 
double-check this value before running your program. 

If none of these errors is the cause of the problem, then I’m afraid 
you must put your thinking cap on. Well-commented assembler 
will make debugging very much easier. 



2 Commodore Command 

One of the disadvantages of using random access memory-based 
machine code routines as utilities within a BASIC program is that it 
is left to you, the programmer, to remember just where they are 
stored, and to use the appropriate SYS call to implement them. 
This doesn’t usually pose any problems if only one or two machine 
code utilities are present; the problems occur when several are 
being used. Normally you would need to keep a written list of these 
next to you, looking up the address of each routine as you need it. 
Great care must be taken to ensure that the SYS call is made to the 
correct address, as a mis-typed or wrongly called address can send 
the machine into an infinite internal loop, for which the only cure is 
a hard reset, which would destroy all your hard work. 

The program offered here provides a useful and exciting solution 
to the problem, enabling you to add new commands to your 
Commodore 64’s vocabulary. Each of your routines can be given a 
command name, and the machine code comprising any command 

will be executed by simply entering its command name. The 
routine is written so that these new commands can be used either 
directly from the keyboard or from within programs. 

The trick in ‘teaching’ the Commodore 64 new commands is to 
get the machine to recognize them. If an unrecognized command is 
entered at the keyboard, the almost immediate response from the 
64 is ‘?SYNTAX ERROR’. If you have any expansion cartridges 
you ll know that it is possible to expand the command set, and the 
Programmer's Reference Guide gives a few hints on how to do this, 
on pages 307 and 308—the method pursued here is by resetting the 
system CHRGET subroutine. 

CHRGET 

The CHRGET routine is, in fact, a subroutine which is called by 
the main BASIC Interpreter. You can think of it as a loop of code, 
protruding from the machine, into which we can wedge our own 



bits of code, thereby allowing fundamental changes to be made to 
the manner in which the Commodore operates. Let’s have a look at 
how the normal CHRGET subroutine (which is located in zero 
page from $73) operates: 

Table 2.1 

Address Machine code Assembler 

$OO73 E6 7A INC $7A 

$0275 DZ G2 BNE $9979 
$0077 E6 7B INC $7B 

$2B79 AD xx xx LDA $xxxx 

$PP7C C9 3A CMP #$3A 

$OP7E BY QA BCS $698A 

$0080 Co 2g CMP #$2¢ 

$0082 FZ EF BEQ $0973 

$0984 38 SEC 

$BG85 EQ 39 SBC #$3¢ 

$ A087 38 SEC 

$0088 ES D@ SBC #$D¢ 

$PP8A 6g RTS 

The subroutine begins by incrementing the byte located at $7A. 
This address forms a vector which holds the address of the inter- 
preter within the BASIC program that is currently being run. If 
there is no carry over into the high byte, which must therefore itself 
be incremented, a branch occurs to location $9979. You will notice 
that the bytes which have just been incremented lie within the 
subroutine itself. These are signified in the above listing by ‘xx xx’, 
because they are being updated continually by the routine. The 
reason for this should be fairly self-evident: looking at the opcode, 
we can see that it is LDA, therefore each byte is, in turn, being 
extracted from the program. 

The next two bytes at $907C perform a compare, CMP #$3A. 
The operand here, $3A, is the ASCII code for a colon, so 
CHRGET is checking for a command delimiter. The BCS $008A 
will occur if the accumulator contents are greater than $3A, effec 
tively returning control back to within the BASIC Interpreter 
ROM. The next line, CMP #$20, checks whether a space has been 
encountered within the program. If it has, the branch is executed 
back to $0073 and the code rerun. 

The rest of the coding is checking that the byte is a legitimate 



one—it should be an ASCII character code in the range $39 to $39, 
that is, a numeric code. If it is, the coding will return to the main 
interpreter with the Carry flag clear. If the accumulator contains 
less than $39 (it could, of course, have ASCII $2@ in it, as we have 
already checked for this) then the Carry flag is set. 

It is important to understand what is happening here, as we will 
need to overwrite part of this code to point it in the direction of our 
own ‘wedge’ interpreter. This has to perform the ‘deleted’ tasks 
before returning to the main interpreter to ensure the smooth and 
correct running of the Commodore 64. 

THE WEDGE OPERATING SYSTEM 

To distinguish the Wedge Operating System (WOS) commands 
from normal commands (and illegal ones!), we must prefix them 
with a special character—one which is not used by the Commodore 
64. The Programmer’s Reference Guide suggests the use of the 
the ‘@’ sign, so that’s what we will use. 

Program 1a lists the coding for the WOS. I have chosen to place it 
well out of the way, in the free RAM area from 49666 (3C202) 
onwards. As we shall see the memory below (bis to 49152 ($C000) 
is also used by the WOS. 

Program la 

18 REM *** WEDGE OPERATING SYSTEM — WOS *** 
26 REM *** WOS INTERPRETER FOR COMMODORE 64 *** 

30 : 

46 CODE-49666 
5 FOR LOOP=f TO 188 
68 READ BYTE 
7% POKE CODE+LOOP, BYTE 
89 NEXT LOOP 
O9 : 

19% REM ** M/C DATA ** 

118 DATA 169,¢ : REM LDA #$99@ 

128 DATA 169,192 : REM LDY #4$C@ 

138 DATA 32,398,171 : REM JSR $ABI1E 

148 DATA 169,76 : REM LDA #$4C 

158 DATA 133,124 : REM STA $7C 

168 DATA 169,24 : REM LDA #$18 

176 DATA 133,125 : REM STA $7D 

188 DATA 169,194 : REM LDA #$C2 

198 DATA 133,126 : REM STA $7E 
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Figure 2.1 The wedge operating system flowchart 

579 DATA 291,58 : REM CMP #$3A 

589 DATA 176,19 : REM BCS $@A 

599 DATA 291,32 : REM CMP #$2¢ 

600 DATA 246,7 : REM BEQ $97 

618 DATA 56 : REM SEC 

628 DATA 233,48 : REM SBC #$3¢ 

638 DATA 56 : REM SEC 

648 DATA 233,28 : REM SBC #$Dg¢ 

65% DATA 96 - REM RTS 

668 DATA 76,115,  : REM JMP $973 

665 :: REM FIND—-EXECUTE 
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1965 :: REM ILLEGAL 

1878 DATA 162,11 - REM LDX #$@B 

1988 DATA 198,9,3 : REM JMP ($39) 

199¢ 

1199 REM ** SET UP COMMAND TABLE «+ 

1119 TABLE=49498 

1128 FOR LOOP=9 TO 19 

1138 READ BYTE 

1148 POKE TABLE+LOOP, BYTE 

1159 NEXT LOOP 

116¢ 

1178 REM ** ASCII COMMAND DATA ** 

1188 DATA 67,76,83,@ : REM CLS 

1199 DATA 76,79,87,8 : REM LOW 

120% DATA 85,89,@ : REM UP 

To enable the WOS to identify a wedge command, it needs a 
complete list to which it can compare the one it is interpreting in the 
program—this is done with the aid of a command table, which is 
formed by the program lines from 119 to 1209. This ASCII table is 
based at 49498 ($C19) and, as you can see from the listing, three 
commands are provided: @CLS, @ LOW and @ UP. Note that 
the @ is omitted from the front of each command in the table—t is 
unnecessary at the comparison stage, as by this time it has already 
been established that it is a WOS command—and that each com- 
mand is terminated by a zero. A table listing the execution address 
of each command must also be constructed, but more of this later. 

The main program consists of two parts, an initialization routine 
and the interpreter proper. 

The initialization routine is embodied in lines 119 to 2@. Its 
function is to reset the CHRGET subroutine investigated earlier. 
Lines 119 to 13 issue a heading on the screen indicating that the 

49408 

re" | | +s" | $09)” [-o" | -w" | $00 [-u~| $00 
The Command Table 

49232 

oo alee clan oe 
EXECUTION 
ADDRESS OF: CLS LOW UP 

The Address Table 

Figure 2.2 The Command and Address Tables. 

13 
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WOS has been initialized. The subroutine at $AB1E, called by line 
139, prints out an ASCII string located at the address given by the 
index registers. In this instance it is located at $COMO (49152), and is 
assembled into memory by the second part of the listing. Lines 140 
to 199 poke three bytes into the CHRGET subroutine which effec- 
tively assembles the code: 

JMP $C218 

The address $C218 is the address of the start of the WOS inter- 
preter at line 219. Finally, line 200 does an indirect jump through 
the IMAN vector at $0302 to perform a warm BASIC start. The 
CHRGET subroutine, complete with wedge jump, now looks like 
this: 

Table 2.2 

Address Machine code Assembler 

$OO73 E6 7A INC $7A 

$BO75 DZ 2 BNE $9979 

$OOTT E6 7B INC $7B 

$2B79 AD xx xx LDA $xxxx 

$AS7TC 4C 18 C2 JMP $C218 

When the WOS is entered, the byte in the accumulator is checked 
to see if it is an@ (line 210), signifying a wedge command. If it is 
not, then a branch to line 579 is performed. As you can see, the 
code from line 570 to 65% performs the normal function of the 
CHRGET routine, with control returning to the BASIC Inter- 

preter. 

If the byte is an @ , the interpretation continues. The byte at $9D 
is located, to detect whether the command is within a program or 
has been issued in direct mode. A zero indicates that the command 
has been called from within a program and the branch of line 249 to 
line 459 is performed. In both instances the interpretation follows 
similar lines—for descriptive purposes, we will assume program 
mode and resume the commentary from line 450. 

The subroutine at $C272 is the interpreter proper. Starting at 
line 665 it locates the command and executes it. The first eight 
bytes (lines 670 to 70M) set up a zero page vector to point to the 
command table at $C1@. Lines 719 to 739 update the zero page 
bytes at $7A and $7B, which hold the address of the current point 
within the program. After initializing both index registers, the first 



byte within the command table is located (lines 749 to 760), and 
compared to the byte within the program, immediately after the @ 
(line 780). If the comparison fails, the branch to line 839 is per- 
formed, locating the zero and therefore the next command in the 
command table. When a comparison is successful (the command is 
identified) and the terminating zero located by line 779, the branch 
to line 1919 is performed. Lines 1010 to 106 locate the execution 
address of the command from the address table located at $CQ59. 
The X register is used as an offset into this, being incremented by 
two each time a command table comparison fails (lines 970 and 
980). The two address bytes are loaded to form a zero page vector 
and the machine code is executed via an indirect jump. 

On completion of the routine, its terminating RTS returns 
control to line 469, and the next byte after the command is sought 
out. When a zero is found, the branch of line 499 is performed and 
the CHRGET routine is completed, control being returned to the 
BASIC Interpreter. 

THE NEW COMMANDS 

Program 1b provides the assembly routines to construct the initial- 
ization prompts, the machine code for the new commands and the 
address table: 

Program 1b 

1219 REM ** TITLE MESSAGE DISPLAYED ON SYS 

49666 xx 

1229 HEAD=49152 

1239 FOR LOOP=-g TO 4¢ 

1248 READ BYTE 

1258 POKE HEAD+LOOP, BYTE 

1269 NEXT LOOP 

1279 
1288 REM ** ASCII CHARACTER DATA ** 

1299 DATA 147,13,32,32,42,42,32,67,54,52,32 

138% DATA 69,88, 84,69,78,68,69,68,32,83,85 

120% DATA 89,69, 82,32,66,65,83,73,67,32, 86,49 

1319 DATA 46,48,32,42,42,13,9 

1329 :: 

1369 REM ** SET UP M/C FOR COMMANDS ** 

137% MC=59176 

1389 FOR LOOP- TO 14 

1399 READ BYTE 

I5 



1496 POKE MC+LOOP, BYTE 

141@ NEXT LOOP 

1426 

1439 REM ** COMMAND M/C «+ 

1449 :: REM CLS 
1459 DATA 169,147 - REM LDA #4$93 

1469 DATA 76,219,255 : REM JMP $FFD2 

1479 :: REM LOW 

1489 DATA 169,14 : REM LDA #«$@E 

1499 DATA 76,219,255 : REM JMF $FFD2 

159g :: REM UP 

1519 DATA 169,142 : REM LDA #$8D 

1528 DATA 76,218,255 : REM JMP $FFD2 

1539 :: 

1549 REM ** SET UP ADDRESS TABLE +*+* 

1558 ADDR=49232 

1568 FOR LOOP=@ TO 5 

1578 READ BYTE 

1588 POKE ADDR+LOOP,BYTE 

159% NEXT LOOP 

1699 

161 REM ** ADDRESS DATA ** 

162% DATA 9,196 : REM CLS $C4¢¢ 

1638 DATA 5,196 : REM LOW $C495 

164 DATA 19,196 : REM UP $C49A 

Each command’s machine code is located from 59176 ($C4@). The 
three new commands and their functions are: 

CLS  : clear screen and home cursor 

LOW : select lower case character set 

UP : select upper case character set 

Nothing to set the house alight, admittedly, but the techniques 
involved are more important at present. These are simple to imple- 
ment and, once understood, enable more useful and complex 
commands to be added. The code associated with each command is 
responsible simply for printing its ASCII code. The final section of 
listing (lines 1549 to 1650) pokes the execution address of each 
command into memory. The final address points to the code at line 
170, and the program jumps to this position if the command is not 
found within the command table. This code performs an indirect 
jump to the BASIC Interpreter’s error handler. 



USING THE WOS 

Using the Wedge Operating System is easy: enter the program as 
shown, run it to assemble the code into memory, and if all goes 
well, save the program. To initialize the WOS enter: 

SYS 49666 

The screen will clear, and the following message be printed across 
the top of the screen: 

** C64 EXTENDED SUPER BASIC V1.0 ** 

The wedge commands are now available for immediate use. Re- 
member that pressing RUN/STOP and RESTORE together will 
reset the CHRGET routine to its default value making the WOS 
invisible. To relink it, simply execute the SYS 49666 call again. 

Line-by-line 

A line-by-line description of the WOS now follows, to enable you 
to examine its operation in more detail: 

line 119 : load accumuator with low byte message address 

line 129 : load accumulator with high byte message address 

line 13 : print start up message 

line 149 : reset CHRGET subroutine 

line 28% : doa BASIC warm start 

line 25 : main entry for WOS 

line 219 : isit an ‘@’ and therefore a WOS command? 

line 22 : no, so branch to line 570 to update 

line 23 : yes, check for direct or program mode 

line 249 : if zero, then WOS command is within program, 

so branch to line 450 

line 259 : else direct mode so get byte from buffer 

line 269 : recheck that it is a WOS command 

line 27 : if error, branch to line 410 

line 28 : find and execute the command else issue 

appropriate error message 

line 299% : initialize index 

line 3% : get byte from buffer 

line 319 : is it a space? 

line 32 : yes, so branch to line 380 
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line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

336 

349 

359 

360 

38 
396 

ADD 

429 

439 

445 

456 

469 

AT 
489 

499 

oy 
516 

526 

536 

549 

556 

570 

58 
596 

6D 
61g 

620 

630 

649 

650 

660 

665 
676 

716 

720 

increment low byte of address 

branch back to line 300 if high byte does not need 

to be updated 

else increment high byte of address 

set Carry flag and do a forced branch back to 

line 300 

: print ‘READY’ prompt 

clear accumulator 

set Carry flag and force a branch to line 500 to 

update and return 

get ‘@’ into accumulator 

set Carry flag and force a branch to line 570 

entry point for PROGRAM-MODE 

locate and execute command or print appropriate 

error message 

clear indexing register 

get byte from program 

is it a @ and therefore end of line? 

yes, branch to line 500 

: no, is it the command delimiter ‘:’? 

yes, branch to line 570 

no, increment low byte of address 

if not zero, branch back to line 47@ to redo loop 

increment high byte of address 

set Carry flag and force a branch back to line 470. 

is it a command delimiter ‘:’? 

if greater than or equal to ‘:’ then branch to line 650 

is it a space? 

yes, so branch to line 650 

set Carry flag 

subtract ASCII base code 

set Carry flag 

subtract token and ASCII set bits 

return to BASIC Interpreter 

jump to CHRGET 

entry for FIND-EXECUTE subroutine 

seed address of command table ($C1@9) into vector 

at $7F 

increment low byte of command address 

branch over if no carry into high byte 



line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

73D 

7T4Q 

750 

76D 

77D 

786 

79 
86 
820 

836 

846 

858 

866 

886 

896 

9f6 
919 

926 

939 

949 

959 

966 

979 

986 

999 

1919 

162g 

1938 

1$49 

1659 

1f69 

1865 

1678 

1688 

else increment high byte of address 

back together, initialize Y register 

and X register 

get byte from the command table 

if zero byte, then command is identified, branch to 

line 1019 

is it the same as the byte pointed to in the command 

table? 

no, branch to line 830 

increment index 

set Carry flag and force a branch back to line 769 

command not identified—seek out zero byte. Get 

byte from command table 

if zero, branch to line 880 

increment index 

set Carry flag and force a branch to line 830 

increment index 

transfer into accumulator 

clear Carry flag 

add to low byte of vector address 

Save result 

clear accumulator 

add carry to high byte of vectored address 

and save the result 

initialize index 

add two to X to move onto next address in the 

:. command address table 

set Carry flag and force a branch to line 760 

get low byte of command execution address 

save it in a vector 

increment index 

get high byte of command execution address 

save it in vector 

jump to vectored address to execute machine code 

of identified command 

entry for ILLEGAL—unrecognized WOS command 

get error code into X register 

and jump to error handling routine 
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3 ASCII to Binary 
Conversions 

An important aspect of interactive machine code is the ability to 
convert strings of ASCII characters into their hexadecimal equi- 
valents, so that they may be manipulated by the processor. In this 
chapter we shall examine, with program examples, how this is 
performed. The routines provide the following conversions: 

1. Single ASCII hex characters into binary. 
2. Four ASCII hex digits into two hex bytes. 
3. Signed ASCII decimal string into two signed hex bytes. 

ASCII HEX TO BINARY CONVERSION 

This routine converts a hexadecimal ASCII character in the accum- 
ulator into its four-bit binary equivalent. For example, if the 
accumulator contains $37 (that is, ASC‘‘7’’), the routine will result 
in the accumulator holding $7, or 99000111 binary. Similarly, if the 
accumulator holds $46 (ASC“F’’) the routine will return $F, or 
(001111, in the accumulator. 

Conversion is quite simple, and Table 3.1 gives some indication 
of what is required. 

Table 3.1 

Hex Binary value ASCII value ASCII binary 

p LODLOODD $30 £0116 069 
1 DDLOLO01 $31 $611 0661 

2 PODLL016 $32 $0116619 
35 D£LG6GG11 $33 $6119611 

4 DOLDD1 06 $34 $611f162 



Table 3.1 (contd.) 

5 DOP0G1G1 $35 60119191 

6 60006119 $36 60116119 
‘6 PPPPG111 $37 $$116111 

8 DL0L16 0 $38 60111669 

~, DOO01061 $39 00111091 

A 60001610 $41 D1P0O66P1 

B 66001611 $42 J1GD0010 

C DLOL11 69 $43 $1966G11 

D 60061191 $44 $106 6166 

E 66001116 $45 61066191 
F 60061111 $46 61068118 

The conversion of ASCII characters @ to 9 is straightforward. All 
we need to do ts mask off the high nibble of the character’s ASCII 
code. For example ASC “1” is $31 or 00110001 binary— masking 
the high nibble with AND $OF results in 00000001. Converting 
ASCII characters A and F is a little less obvious, however. If the 
high nibble of the code is masked off, then the remaining bits are 9 
less than the hex required. For example, the ASCII for the letter 
‘D’ is $44 or 01000100. Masking the high nibble with AND $OF 
gives 4, or 00000100, and adding 9 to this gives: 

2DD00169 
+ 6£661061 

$06G1161 

the binary value for $D. 

Program 2 

16 REM ** CONVERT ASCII CHARACTER IN ** 

26 REM ** ACCUMULATOR TO BINARY *+* 

39 REM ** REQUIRES 2% BYTES OF MEMORY «** 

4g : 

5@ CODE=-49152 

68 FOR LOOP=6 TO 29 

76 READ BYTE 

86 POKE CODE+LOOP, BYTE 

98 NEXT LOOP 

190 : 

21 



11g 
129 

139 

146 
156 
16¢ 

176 

189 

196 
2D 
216 

22 
230 

246 

250 

269 
270 

289 
299 

3D 
319 

320 
33 
346 

35 
360 

376 

386 

399 

ADD 
419 

426 

436 

446 

450 
46 
ATH 

486 

499 

REM ** M/C DATA ** 

DATA 291,48 REM CMP #$3¢ 

DATA 144,15 REM BCC $F 

DATA 291,58 REM CMP #$3A 

DATA 144,8 REM BCC $8 

DATA 233,7 REM SBC #$@7 

DATA 144,7 REM BCC $07 

DATA 291,64 REM CMP #$4¢ 

DATA 176,2 REM BCS $2 

co REM ZERO-NINE 

DATA 41,15 REM AND #$@F 

7 REM RETURN 

DATA 96 REM RTS 

oe REM ILLEGAL 

DATA 56 REM SEC 

DATA 96 REM RTS 

REM ** TESTING ROUTINE ** 

TEST =49184 

FOR LOOP=-@ TO 14 

READ BYTE 

POKE TEST+LOOP, BYTE 

NEXT LOOP 

REM ** M/C TEST DATA ** 

iz REM TEST 

DATA 32,228,255 REM JSR $FFE4 

DATA 249,251 REM BEQ $FB 

DATA 32,9,192 REM JSR $C06¢ 

DATA 144,2 REM BCC $62 

DATA 169,255 REM LDA #$FF 

7 REM OVER 

DATA 133,251 REM STA $FB 

DATA 96 REM RTS 

PRINT CHR§$( 147) 

PRINT"HIT A HEX CHARACTER KEY, AND ITS 

BINARY" 

PRINT"EQUIVALENT VALUE WILL BE PRINTED" 



SUBTRACT 7 TO 
MOVE TO 

A-F 

SET CARRY 
TO DENOTE 
ERROR 

MASK HIGH 
NIBBLE 

Figure 3.1 Conversion flowchart 

SDD 
510 SYS TEST 
526 : 

530 PRINT "RESULT = "PEEK(251) 

Program 2 contains a short demonstration, prompting for a hexa- 
decimal value key to be pressed (i.e. @ to F) and returning its 
hexadecimal code. Thus, pressing the ‘A’ key will produce a result 
of 41. 23 
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The ASCII-BINARY routine begins by checking for the legality 
of the character, by comparing it with 48 ($30). If the value in the 
accumulator is less than ASC“, the Carry flag will be cleared, 
signalling an error. If the character is legal, the.contents are then 
compared with 58 ($3A), which is one greater than the ASCII code 
for 9. This part of the routine ascertains whether the accumulator’s 
contents are in the range $30 to $39. If they are, the Carry flag will 
be cleared and the branch to ZERO-NINE (lines 15@ and 120) 
pertormed. The high nibble is then masked off to complete the 
conversion. 

If the branch of line 159 fails, a legality check for the hex 
characters A to F is performed. This is done by subtracting 7 from 
the accumulator’s contents, which should bring the value it holds 
down below 64 ($40), or one less than the ASCII code for the letter 
‘A’. At this point the Carry flag is set (it was previously set as the 
branch of the previous line was not performed), and the CMP #$40 
of line 189 clears it if the contents are higher than 64. The routine 
then masks off the high nibble, leaving the correct binary. 

The following example shows how the conversion of ASC“F”’ to 
$F works: 

Mnemonic Accumulator Carry flag 

$46 (ASC"F") 

CMP 4$32 $46 1 

BCC ILLEGAL 

CMP #$3A $46 i 

BCC ZERO-NINE 

SBC #7 $3F 1 

BCC ILLEGAL 

CMP #$4@ $3F 4) 

BCS RETURN 

AND $F $OF g 
RTS 

Note that this routine indicates an error by returning with the Carry 
flag set, so any calls to the conversion routine should always check 
for this on return. The short test routine does this, and loads the 
accumulator with $FF to signal the fact. 

Using two calls to this routine would allow two-byte hex values to 
be input and converted into a full eight-byte value. On completion 
of the first call, the accumulator’s contents would need to be shifted 
into the high nibble. 



The coding might look like this: 

: REM WAIT 

JSR GETIN : REM GET FIRST CHARACTER 

BEQ WAITI1 

JSR ASCII-BINARY : REM CONVERT TO BINARY 

BCS REPORT—ERROR > REM NON-HEX IF C=1l 

ASL A : REM MOVE INTO HIGHER 

NIBBLE 

ASL A 

ASL A 

ASL A 

STA HIGH—NIBBLE : REM SAVE RESULT 

: REM WAIT2 

JSR GETIN : REM GET SECOND CHARACTER 

BEQ WAIT2 

JSR ASCII-BINARY : REM CONVERT TO BINARY 

BCS REPORT—ERROR > REM NON-HEX IF C=1 

ORA HIGH-NIBBLE : REM ADD HIGH NIBBLE 

: REM ALL BINARY NOW IN 

ACCUMULATOR 

Using this routine and entering, say, $FE will return 11111119 in 
the accumulator. 

Line-by-line 

A line-by-line description of Program 2 follaws: 

line 129 : isit >= than ASC‘0’’? 

line 138 : no, branch to ILLEGAL 

line 149 : isitinrange@9? 

line 158 : yes, branch to ZERO-NINE to skip A-F 

translation. 

line 16% : move onto ASCII codes for A—F 

line 178 : branch to ILLEGAL if Carry flag clear 

line 188 _ isit higher than ASC“ @”’? 

line 198 : no, branch to ILLEGAL 

line 268 : entry for ZERO-NINE 

line 219 : clear high nibble 

line 228 : entry for RETURN 

25 
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line 23¢ return with binary in accumulator 

line 248 : entry for ILLEGAL 

line 25 : set Carry flag to denote an error 

line 269 return to BASIC 

line 374 entry for TEST 

line 388 : read keyboard 

line 399 : if null string, branch to TEST 

line 469 : call conversion at $COOO 

line 419 if no errors, branch OVER 

line 42¢ else error, place 255 in accumulator 

line 43% : entry forOVER 

line 449 : save accumulator in $FB 

line 45¢ and return to BASIC 

FOUR ASCII DIGITS TO HEX 

We can use the ASCII-BINARY routine as the main subroutine in 
a piece of coding which will convert four ASCII digits into a 
two-byte hexadecimal number, making the routine most useful for 
inputting two-byte hexadecimal addresses. For example, the 
routine would convert the ASCII string “CAFE” into a two-byte 
binary number 11091010 111111190 or $CAFE. Program 3 lists the 
entire coding: 

Program 3 

1g 
20 

30 

40 

56 

6G 

7G 

8f 

96 

19 
119 

129 

139 

149 

158 

** CONVERT FOUR ASCII DIGITS INTO +** 

** A TWO-BYTE HEXADECIMAL NUMBER ** 

REM 

REM 

CODE=49152 

FOR LOOP=0 TO 62 

READ BYTE 

POKE CODE+LOOP, BYTE 

NEXT LOOP 

REM +** M/C DATA ** 

DATA 166,9 : REM 

DATA 162,251 : REM 

DATA 148,9 : REM 

DATA 148,1 : REM 

DATA 148,2 : REM 

REM 

LDY #0 

LDX ¢$FB 

STY $60,X 

STY $61,X 

STY $€2,X 

NEXT—CHARACTER 



166 
179 

186 

196 

202 
219 

220 
225 
236 

246 

256 

260 

27D 

280 
299 

3Df 
316 

320 

336 

349 
35 
366 

37 
380 

399 

4D 
41p 
429 

436 
449 
450 

469 

47D 

489 

496 

SDD 
51g 
529 
539 

549 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

REM 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

REM 

TEST = 

FOR LOOP-@ TO 34 

185 ,66,3 

52,42,192 

176,21 

1f, 19 
10,19 
148 ,2 
16,4 

1g 
54,0 
54,1 
136 
268 , 248 
186 ,2 

2D 
268 , 227 

181,2 

96 

: REM 

: REM 

REM 

REM 

REM 

: REM 

: REM 

REM 

: REM 

REM 

>: REM 

REM 

: REM 

: REM 

: REM 

: REM 

REM 

: REM 

REM 

LDA 

JSR 

BCS 

ASL 

ASL 

OTY 

LDY 

$335C Bee 

$CH2A 

$15 

A 

A 

ASLA 

ASLA 

$62,X 

4$D4 
AGAIN 

ASL A 

ROL $66,X 

$61,X ROL 

DEY 

BNE 

LDY 

INY 

BNE $ES 

ERROR 

LDA 

RTS 

$2, 

*#** ASCII-BINARY CONVERSION *** 

261,48 

144,15 

21,58 

144,8 

253,7 

144,7 

261,64 

176,2 

41,15 

96 

56 

96 

REM 

: REM 

- REM 

: REM 

: REM 

> REM 

: REM 

: REM 

REM 

: REM 

REM 

REM 

REM 

: REM 

- REM 

CMP 

BCC 

CMP 

BCC 

SBC 

BCC 

CMP 

BCS 

ZERO—-NINE 

#$3D 

$OF 
HBESA 

$28 

$D7 

$D7 

#$40 

$2 

AND $F 

RETURN 

RTS 

ILLEGAL 

SEC 

RTS 

*** SET UP A TEST PROCEDURE *** 

492352 
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556 READ BYTE 

560 POKE TEST+LOOP,BYTE 

576 NEXT LOOP 

580 : 

599 REM «** TEST M/C DATA *« 

600 DATA 168,64 : REM LDY #$@¢ 

616 DATA 162,4 : REM LDX #$@4 

626 :: REM OVER 

638 DATA 142,52,3 : REM STX $334 

646 DATA 146,53,3 : REM STY $335 

656 :: REM INNER 

660 DATA 32,228,255 : REM JSR $FFE4 

676 DATA 246,251 : REM BEQ $FB 

680 DATA 174,52,3 : REM LDX $334 

690 DATA 172,53,3 : REM LDY $335 

706 DATA 153,66,3 : REM STA $33C,Y 

716 DATA 32,218,255 : REM JSR $FFD2 

720 DATA 2692 : REM INY 

736 DATA 262 : REM DEX 

748 DATA 298,229 : REM BNE $E5 

756 DATA 32,8,192 : REM JSR $C£6¢ 

766 DATA 96 : REM RTS 

T76 : 

786 PRINT CHR$(147) 

796 PRINT "INPUT A FOUR DIGIT HEX NUMBER : $"; 

860 SYS TEST 

816 PRINT 

826 PRINT "THE FIRST BYTE WAS :";PEEK(251) 

830 PRINT "THE SECOND BYTE WAS :"; PEEK(252) 

The machine code begins by clearing three bytes of zero page RAM 
pointed to by the contents of the X register (lines 10M to 140). The 
ASCII characters are accessed one by one from a buffer which may 
be resident anywhere in memory (liné 160), though in this case it is 
the four bytes at the start of the cassette buffer. Conversion and 
error-detection are performed (lines 17@ and 18) and the four 
returned bits shifted into the high four bits of the accumulator. The 
buffer index, which keeps track of the character position in the 
buffer, is saved in the third of the three bytes cleared. 

The loop between lines 259 and 3 is responsible for moving the 
four bits through the two zero page bytes which hold the final 
result. In fact, with the accumulator, the whole process of the loop 
is to perform the operation of a 24-bit shift reoister. Figure 3.2 



Accumulator ASLA 

ROL 0, X 

Carry 

Figure 3.2 Movement of bits through a 3-byte shift register 

Result high byte 
ROL 1, X 

illustrates the procedure. 
The ASL A instruction shuffles the bits in the accumulator one 

bit to the left, with the dislodged bit 7 moving across into the Carry 
flag bit. This carry bit is then rotated into bit 0 of the result address 
low byte, which in turn rotates its bit 7 into the Carry flag. The next 
ROL instruction repeats this movement on the high byte. The net 
effect of all this is that as the process is executed four times, the 
returned conversions are shifted through the result address to 
reside in the correct place, as Figure 3.3 illustrates. 

1,X 0,X Accumulator 

Entry DODOODOO DODOODOD 11110000 

Ist pass DODODOOD 00001111 ly 

2nd pass DODOODOO 11110900 Ly 

3rd pass 00001111 hy oy 

4th pass 11110000 Fy DODOODID 

Figure 3.3 A 24-bit shift register, showing passage of the bits in the 

number $ F000 

Error-checking is provided for, the routine aborting when it 
encounters an illegal hex character, leaving the accumulator con- 
taining the index into the buffer, pointing to the illicit value. In fact, 
this method is used to complete the execution of the conversion- 
rotate loop, using a RETURN character placed at the end of the 

29 



30 

ASCII hex string. 
The test routine (lines 599 to 800) prompts for four hex-based 

characters to be input. These are placed in the buffer (line 610) and 
printed to the VDU. On completion of the input, the address- 
binary routine is called, and the result placed in the first two bytes 
of the user area, for printing or manipulation purposes. 

Line-by-line 

A line-by-line decription of Program 3 follows: 

line 1@@ : clear indexing register 

line 116 : get byte destination 

line 129 : clear three bytes 

line 159 : entry for NEXT-CHARACTER 

line 16@ : get character from buffer 

line 1728 : call ASCII-BINARY to convert 

line 18% : branch to ERROR if Carry flag is set 

line 19% : move low nibble into high nibble 

line 218 : save index into buffer 

line 22 : moving four bits 

line 225 : entry for AGAIN 

line 236 : move bit 7 into Carry flag 

line 248 : movecarry into bit @ and bit 7 into Carry flag 

line 25% : movecarry into bit @ and bit 7 into Carry flag 

line 268 : decrement bit count 

line 27% : and do until four bits done 

line 289 : restore index into buffer 

line 299 : increment it to point to next character 

line 38% : do branch to NEXT-CHARACTER 

line 318 : entry for ERROR 

line 326 : get illegal character 

line 339 : return to calling routine 

CONVERT DECIMAL ASCII STRING TO BINARY 

This routine takes a signed decimal string of ASCII characters and 
transforms it into a two-byte hexadecimal number. For example, 
entering —32,678 will return the value $8000, where $8009 is its 
signed binary equivalent. Entry requirements to the conversion 
routine are obtained by the BASIC text in lines 880 to 949. Note 



that in addition to obtaining the characters for insertion into the 
string buffer, the number of characters for conversion is required, 
this being placed in the first byte of the buffer. 

Program 4 

19 REM ** DECIMAL ASCII TO BINARY ** 

20 REM ** READ & POKE M/C DATA ** 

30 CODE=49152 

4f FOR LOOP=@ TO 155 

5@ READ BYTE 

66 POKE CODE+LOOP,BYTE 

70 NEXT LOOP 

Bf : 

99 REM ** M/C DATA «+* 

106 
116 DATA 174,6¢,3 REM LDX $33C 

126 DATA 28,3 REM BEQ $03 

125 DATA 76,154,192 REM JMP $CQ9A 

136 DATA 168,90 REM LDY #@ 

148 DATA 148,55,3 REM STY $337 

156 DATA 148,53,3 REM STY $335 

166 DATA 158,54,3 REM STY $336 

176 DATA 260 REM INY 

186 DATA 148,52,3 REM STY $334 

198 DATA 185,69,3 REM LDA $33C, 

206 DATA 291,45 REM CMP #$2D 

216 DATA 298,14 REM BNE $%E 

226 DATA 169,255 REM LDA #&FF 

236 DATA 141,55,3 REM STA $337 

249 DATA 238,52,3 REM INC $334 

256 DATA 22 REM DEX 

266 DATA 246,113 REM BEQ $71 

276 DATA 76,54,192 REM JMP $C@36 

286 :: REM POSITIVE 

298 DATA 261,43 REM CMP #$2B 

306 DATA 298,12 REM BNE $6 

318 DATA 238,52,3 REM INC $334 

326 DATA 262 REM DEX 

330 DATA 249,160 REM BEQ $64 

31 



32 

346 

350 

369 

370 

380 

399 

ADD 
Alp 
429 

436 
449 

459 

466 

ATG 

489 

499 

SPD 
516 

526 

53 
546 

556 

566 

570 
580 

59P 

60 
61g 
620 
630 
649 

652 

66 
67h 
689 

69 
TOD 
716 

720 
73D 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

172,52,35 

185,68 ,3 

261,58 

16,96 

261,48 

48 , 86 

T2 

14,53,3 

46 ,54,3 

173 ,53,3 

172 ,53,3 

14,53,3 

46 ,54,3 

14,53,3 

46 ,54,3 

24 

189,53,3 

141,53,3 

152 

189 ,54,3 

141,54,3 

56 

1f4 

255,48 

24 

189,53,3 

141,53,3 

144,3 

258 ,54,3 

258 ,52,35 

262 

268,181 

173,55,3 

16,17 

56 

169 , 6 

257 ,53,3 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

CONVERT—CHARACTER 

LDY $334 

LDA $33C,Y 

CHECK—-LEGALITY 

CMP #$3A 

BPL $5A 

CMP #$3¢@ 

BMI $56 

PHA 

ASL $335 

ROL $336 

LDA $335 

LDY $336 

ASL $335 

ROL $336 

ASL $335 

ROL $336 

CLC 

ADC $335 

STA $335 

TYA 

ADC $336 

STA $336 

SEC 

PLA 

SBC #$3¢ 

CLC 

ADC $335 

STA $335 

BCC $93 

INC $336 

NO-—CARRY 

INC $3534 

DEX 

BNE $B5 

LDA $337 

BPL $11 

SEC 

LDA #6 

SBC $335 
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Figure 3.4 ASCII string to binary conversion flowchart 



746 DATA 141,53,3 REM STA $335 

750 DATA 169,¢ REM LDA #4 

766 DATA 237,54,3 REM SBC $336 

776 DATA 141,54,3 REM STA $336 

780 :: REM NO—COMPLEMENT 

799 DATA 24 REM CLC 

806 DATA 144,1 REM BCC $1 

818 :: REM ERROR 

826 DATA 56 REM SEC 

836 :: REM FINISH 

8468 DATA 96 REM RTS 

85g 

860 REM ** SET UP SCREEN AND GET NUMBER ** 

876 PRINT CHR$(147) 

886 INPUT'NUMBER FOR CONVERSION"; A$ 

89% FOR LOOP=1 TO LEN(A$) 

998 TEMP$=MID$(A$,LOOP, 1) 

916 B=ASC(TEMP$ ) 

926 POKE 828+LO0P,B 

936 NEXT LOOP 

948 POKE 828,LEN(A$) 

950 : 

969 SYS CODE 

976 : 

988 PRINT'THE TWO BYTES ARE AS FOLLOWS" 

999 PRINT"LOW BYTE "; PEEK(821) 

190% PRINT'HIGH BYTE "; PEEK(822) 

Bytes are designated as follows: 

826 ($334) : string index 

821 ($335) current count 

823 ($336) : sign flag 

828 ($33C) length of string 

829 ($33D) : start of character string 

The machine code begins by obtaining the character count from the 
X register. An error is signalled if this count is zero, otherwise the 



program progresses, clearing the sign flag (used to signal positive or 
negative values) and result destination bytes at ‘current’ (lines 130 
to 160). Location $79 is used to hold the string index, pointing to 
the next character for conversion. This byte is initially loaded with 
1 so that it skips over the count byte in the buffer. 

The first byte of the string is tested for a ‘+’ or ‘—’ sign, the 
former being an optional item in the string, and the sign flag is set 
accordingly (lines 199 to 230). The CONVERT-CHARACTER 
loop starts by testing the character about to be manipulated to 
ensure it is a decimal value, i.e. @to 9 inclusive. Converting the byte 

into binary form is achieved by multiplying the byte by 10. This 
multiplication is readily available using four arithmetic shifts and 
an addition: 2*2*2+2= 19. 

Because we are dealing with a two-byte result, the arithmetic 
shift must be performed on the two bytes, allowing bits to be 
transferred from one byte to the other. This is performed by using 
an ASL followed by a ROL. As figure 3.5 illustrates, this acts 
exactly like a 16-bit ASL. The first pass through this character- 
conversion loop has little effect, as it is operating on characters 
already converted, of which there are none first time round! 

Lines 579 to 620 carry out the conversion of ASCII to binary and 
store the result. This is performed, as we know from earlier 
examples, by masking off the high nibble. Another technique for 
doing this is simply to subtract the ASCII code for ‘@’: $39. 

ASL high byte 

A | 

pi ttt i tt j- 
Carry 

ttt Ett 
Carry = ROL low byte 

Figure 3.5. A16-bit arithmetic shift 

Once all the characters have been processed, the sign flag at $334 
(820) is checked for a negative value. If this is indicated (lines 699 
and 70), the value of current is subtracted from zero, thereby 
converting the absolute value into a signed negative byte (lines 710 
to 770). The Carry flag is used to indicate any error conditions—if 
it is Set an error occurred, and the string index at $334 points to the 
illegal character. 
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Line-by-line 

A line-by-line description of Program 4 now follows: 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

11g 
126 

126 
139 

14 
156 
179 

189 

196 

2D 
219 

229 
230 

240 

256 

266 

27D 

286 

296 

3D 
319 

326 

330 

349 

356 

360 

378 

38f 
399 

40D 
41g 
426 

43 
456 

get length of string 

branch if not zero 

else jump to ERROR 

clear Y register 

sign flag 

and store bytes 

increment Y 

set index to first ASCII character 

get first character 

is it a minus sign? 

no, branch to POSITIVE 

yes, get negative byte 

and set the sign flag 

move to next character 

decrement length counter 

branch to ERROR if zero 

else jump to CONVERT-CHARACTER 

entry for POSITIVE 

is first character a +? 

no, branch to CHECK-LEGALITY 

yes, move to next character 

decrement length counter 

branch to ERROR if zero 

entry for CONVERT-CHARACTER 

restore index 

get character from buffer 

entry for CHECK-LEGALITY 

is it <= ASC“9”? 

no, it’s bigger, branch to ERROR 

is it >= ASC‘‘@”’? 

no, branch to ERROR 

save code on stack 

multiply both bytes by two 

save low byte 



line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

462 

AT 
499 

51g 
520 

530 

546 

556 

566 

576 

586 

596 

6D 
619 

62 
639 

64 
656 

66 
676 

68 
69 
TDD 
719 

720 

73D 

74 
750 

76D 

TTD 
78D 

79D 
809 
819 

829 
836 

849 

save high byte 

multiply by two again (now *4) 

and again (now *8) 

clear Carry flag 

add low byte *2 

and save result 

transfer high byte *2 

and add to *8 high byte 

save it. Now *10 

set Carry flag 

restore ASCII code from stack 

convert ASCII to binary 

clear Carry flag 

add it to low byte current 

Save result 

branch if NO-CARRY 

else increment high byte 

entry for NO-CARRY 

move index on to next byte 

decrement length counter 

branch to CONVERT-CHARACTER if not finished 

completed so get sign flag 

if clear branch to NO-COMPLEMENT 

else set Carry flag 

clear accumulator 

and obtain two’s complement 

save low byte result 

clear accumulator 

subtract high byte from 

and save result 

entry for NO-COMPLEMENT 

clear Carry flag 

and force branch to FINISH 

entry for ERROR 

set Carry flag to denote error 

entry for FINISH 

return to BASIC 
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4 Binary to Hex ASCII 

This chapter complements the previous one and illustrates how 
memory-based hex values can be converted into their ASCII repre- 
sentation. The routines provide the following conversions: 

1. Print accumulator as two ASCII hex characters. 
2. Print two hex bytes as four ASCII hex characters. 
3. Print two-byte signed binary number as signed decimal 

number. 

PRINT ACCUMULATOR 

To convert an eight-bit binary number into its ASCII hex equi- 
valent characters, the procedure described in Chapter 3 must be 
reversed. However, because text is printed on the screen from left 
to right, we must deal with the high nibble of the byte first. Program 
5 uses the hexprint routine to print the hexadecimal value of any 
key pressed at the keyboard. 

Program 5 

1 REM ** PRINT ACCUMULATOR AS A HEX NUMBER «*+* 

26 : 

36 CODE=49152 

46 FOR LOOP=@ TO 21 

5@ READ BYTE 

66 POKE CODE+LOOP, BYTE 

76 NEXT LOOP 

88 : 

98 REM «* M/C DATA «+ 

10g : 



118 DATA 72 REM PHA 

126 DATA 74, 74 REM ASL A: ASLA 

138 DATA 74, 74 REM ASL A: ASLA 

146 DATA 32,9,192 REM JSR $C@g9 

158 DATA 164 REM PLA 

160 :: REM FIRST $C@G9 

176 DATA 41,15 REM AND #$6F 

186 DATA 241,19 REM CMP #$@A 

198 DATA 144,62 REM BCC $2 

206 DATA 195,6 REM ADC #$6 

216 :: REM OVER 

226 DATA 165,48 REM ADC #$3¢ 

230 DATA 76,216,255 REM JMP $FFD2 

246 

2508 REM ** SET UP DEMO AT 828 «x 

260 REM LDA $FB : JMP $CGPg 

270 POKE 828,165 : POKE 829,251 

280 POKE 838,76 : POKE 831,¢ : POKE 832,192 

296 “PRINT CHR$#( 147) 

360 PRINT "HIT ANY KEY AND ITS HEX VALUE IN" 

319 PRINT "ASCII WILL BE DISPLAYED" 

320 GET A$:- IF A$="" THEN GOTO 32 

336 A=ASC(A$) 

348 POKE 251,A 

356 : 

360 SYS 828 

3768 REM CALL 'SYS CODE' TO USE DIRECTLY 

The hexprint routine is embedded between lines 119 and 230. The 
accumulator’s contents are first pushed on to the hardware stack. 
This procedure is necessary as it will have to be restored before the 
second pass, which calculates the ASCII code for the second char- 
acter. The first pass through the routine sets about moving the 
upper nibble of the accumulator byte into the lower nibble (lines 
120 and 130). The FIRST subroutine ensures that the high nibble is 
cleared by logically ANDing it with $0F. This is, of course, surplus 
to requirement on the first pass, but is needed on the second pass to 
isolate the low nibble. Comparing the accumulator’s contents with 
19 will ascertain whether the value is in the range 0 to 9 or A to F. If 
the Carry flag is clear, it falls in the lower range (9 to 9) and simply 
setting bits 4 and 5, by adding $39, will give the required ASCII 
code. A further 7 must be added to skip non-hex ASCII codes to 
arrive at the ASCII codes for A to F ($41 to $46). You may have 
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noticed that line 209 does not add 7 but in fact adds one less, 6. ‘This 
is because, for this section of coding to be executed, the carry must 
have been set, and the 6519 addition opcode references the Carry 
flag in addition. Therefore, the addition performed is: accumulator 
+6 4 1. 
The JMP of line 230 will return the program back to line 159. 

Remember, FIRST was called with a JSR, so the RTS from com- 
pletion of the CHROUT call returns control here. The accumu- 
lator is restored and the process repeated for the second ASCII 
digit. | 
A short test routine is established in lines 250 to 349. This 

requests you to hit a key, the value of which is placed in a free zero 
page byte. The ‘hand-POKEd’ routine at 828 is called by line 369, 
and puts the key’s value into the accumulator before performing a 
jump to the main routine. 

The following example illustrates the program’s operation, 
assuming the accumulator holds the value 01091111, $4F: 

Mnemonic Accumulator Carry flag 

$4F 

LSR A $27 1 

LSR A $13 1 

LSR A $69 l 

LSR A $D4 1 

JSR FIRST 

AND #$6F $24 1 
CMP #$6A $04 

BCC OVER 

OVER 

ADC #$3¢ $34 (ASC"4") D 

JMP CHROUT 

PLA $4F p 

AND #$0F $OF D 

CMP #$A 

Line-by-line 

A line-by-line description of Program 5 follows: 

line 119 : save accumulator on stack 

line 128 : move high nibble into low nibble 



line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

14g 
15¢ 

16¢ 

176 
18¢ 

19¢ 

269 
219 

220 

230 

call FIRST subroutine 

restore accumulator 

entry for FIRST 

ensure only low nibble set 

is it < 10? 

yes, branch to OVER 

no, add 7, value $A to $F 

entry for OVER 

add 48 to convert to ASCII code 

and print, returning to line 149 or BASIC 

PRINT A HEXADECIMAL ADDRESS 

The hexprint routine can be extended to enable two zero page 
bytes to be printed out in hexadecimal form. This is an especially 
important procedure when writing machine based utilities, such as 
a hex dump or disassembler. The revamped program is listed 
below: 

Program 6 

1@ REM ** PRINT TWO HEX BYTES AS ** 

20 REM ** A TWO-BYTE ADDRESS «+ 

38 CODE=49152 

4% FOR LOOP=9 TO 34 

54 
62 

READ BYTE 

POKE CODE+LOOP, BYTE 

78 NEXT LOOP 

89 
99 REM ** M/C DATA «+ 

199 REM ** CALL WITH $FB,$FC HOLDING BYTES ** 

119 :: REM ADDRESS—PRINT 

128 DATA 162,251 - REM LDX #$FB 

136 DATA 181,1 : REM LDA $91,X 

149 DATA 32,13,192 : REM JSR $C£PD 

158 DATA 181,9 : REM LDA $99,X 

168 DATA 32,13,192 : REM JSR $CQ@D 

17% DATA 96 : REM RTS 

189 :: REM HEXPRINT 

199 DATA 72 : REM PHA 

208 DATA 74,74 : REM LSR A: LSR A 
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218 DATA 74,74 > REM LSR A: LSRK A 

220 DATA 32,22,192 : REM JSR $C#16 

238 DATA 14 : REM PLA 

246 :: REM FIRST 
258 DATA 41,15 - REM AND #$9F 
260 DATA 291,16 : REM CMP #$@A 

278 DATA 144,2 : REM BCC $2 

280 DATA 195,6 : REM ADC #$96 

290 :: REM OVER 

306 DATA 195,48 : REM ADC #$3¢ 
318 DATA 76,218,255 : REM JMP $FFD2 

Zero paged indexed addressing is used to access the two bytes, the 
crucial location being given in the X, register, which acts as the 
index for the high byte, LDA $@1,X (line13@), and the low byte, 
LDA $0@,X (line 150). The all-important address in this instance is 
$FB (line 130), so the bytes accessed by ADDRESS-PRINT are 
$FB ($FB+@) and $FC ($FB+1). Using this method, various 
addresses can be housed within zero page and any one reached 
simply by seeding the X register with the location value. 

Project 

Adapt Program 6 to accept a five character decimal number from 
the keyboard, printing its hexadecimal value on the screen. 
Remember—no BASIC, and the input routine must be able to 
accept numbers in the range @ to 65! 

BINARY SIGNED NUMBER TO SIGNED ASCII 
DECIMAL STRING 

This conversion utility takes a two-byte hexadecimal number and 
converts it into its equivalent decimal based ASCII character 
string. For example, if the two-byte value is $7FFF, the decimal 
string is 32,767, $7FFF being 32,767 in decimal. The coding uses 
signed binary values so that if the most significant bit is set, a 
negative value is interpreted. This is relayed in the string with a 
minus sign. This means that the routine can handle values in the 
range 32,/67 to —32,768. When using the routine, remember that 
the two’s complement representation is used, so that a hex value of 
$FFFF is converted to the string —1, and $8000 returns the char- 
acter string —32,7/67. 

The two address bytes are located at $334 and $335 and the string 
buffer from $FB onwards. The length of the string buffer will vary, 
but its maximum length will not exceed six digits, so this number of 
bytes should be reserved. 
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Figure 4.1 Hex to ASCII conversion flowchart 
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Program 7 

19 REM ** BINARY SIGNED NUMBER CONVERSION ** 

20 REM ** INTO SIGNED DECIMAL ASCII STRING ** 

30 CODE=49152 : OUTPUT=49391 

4 FOR LOOP=-@ TO 163 

5@ READ BYTE 

68 POKE CODE+LOOP, BYTE 

7% NEXT LOOP 

Bf : 

99 REM *«* M/C DATA *« 

198 DATA 168,¢ : REM LDY #4$@¢ 

116 DATA 152 : REM TYA 

128 DATA 133,251 : REM STA $FB 

138 DATA 133,252 : REM STA $FC 

148 DATA 133,253 : REM STA $FD 

158 DATA 133,254 : REM STA $FE 

168 DATA 133,255 : REM STA $FF 

178 DATA 173,53,3 : REM LDA $335 

188 DATA 141,56,3 : REM STA $338 

198 DATA 16,15 : REM BPL $F 

206 DATA 56 : REM SEC 

216 DATA 152 : REM TYA 

226 DATA 237,52,3 : REM SBC $334 

236 DATA 141,52,3 REM STA $334 

246 DATA 152 : REM TYA 

256 DATA 237,53,3 : REM SBC $335 

266 DATA 141,53,3 : REM STA $335 

276 :: REM CONVERSION 

286 DATA 169,¢ : REM LDA #$0¢ 

298 DATA 141,54,3 : REM STA $336 

306 DATA 141,55,3 : REM STA $337 

318 DATA 24 : REM CLC 

326 DATA 162,16 : REM LDX #$19 

336 :: REM LOOP 

340 DATA 46,52,3 : REM ROL $334 

356 DATA 46,53,3 : REM ROL $335 

36M DATA 46,54,3 : REM ROL $336 

376 DATA 46,55,3 : REM ROL $337 

388 DATA 56 : REM SEC 
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398 DATA 173,54,3 REM LDA $336 

406 DATA 233,19 REM SBC #$@A 

416 DATA 168 : REM TAY 

426 DATA 173,55,3 : REM LDA $337 

436 DATA 233,¢ REM SBC #$£¢ 

446 DATA 144,6 REM BCC $6 

456 DATA 149,54,3 REM STY $336 

466 DATA 141,55,3 REM STA $337 

ATO :: REM LESS-—THAN 

488 DATA 262 REM DEX 

499 DATA 288,221 : REM BNE $DD 

506 DATA 46,52,3 : REM ROL $334 

518 DATA 46,53,3 : REM ROL $335 

520 :: REM ADD-ASCII 

536 DATA 24 REM CLC 

548 DATA 173,54,3 REM LDA $336 

550 DATA 195,48 REM ADC #$3¢ 

560 DATA 32,116,192 REM JSR $C#74 

576 DATA 173,52,3 REM LDA $334 

580 DATA 13,53,3 REM ORA $335 

598 DATA 298,187 REM BNE $BB 

GOO :: REM FINISHED 

616 DATA 173,56,3 REM LDA $338 

626 DATA 16,5 REM BPL $5 

630 DATA 169,45 REM LDA #$2D 

646 DATA 32,116,192 REM JSR $C§74 

650 :: REM POSITIVE 

669 DATA 96 : REM RTS 

678 REM SUBROUTINE TO FORM ASCII CHARACTER 

STRING IN $FB 

688 :: REM CONCATENATE 

698 DATA 72 : REM PHA 

766 DATA 168,¢ REM LDY #$@¢ 

719 DATA 185,251,¢ REM LDA $$@FB,Y 

720 DATA 168 : REM TAY 

736 DATA 246,11 : REM BEQ $B 

T4h :: REM SHUFFLE-ALONG 

75@ DATA 185,251,¢ REM LDA $@0FB,Y 

760 DATA 269 : REM INY 

776 DATA 153,251,¢ : REM STA $00FB,Y 



786 DATA 136,136 - REM DEY : DEY 

798 DATA 28,245 : REM BNE $F5 

BOO :: REM ZERO—-FINISH 

810 DATA 14 : REM PLA 

828 DATA 16,1 : REM LDY #4$@1 

836 DATA 153,251,8  : REM STA $06FB,Y 

840 DATA 136 : REM DEY 

858 DATA 182,251. : REM LDX $FB,Y 

866 DATA 232 : REM INX 

878 DATA 158,251 : REM STX $FB,Y 

888 DATA 96 : REM RTS 

89% REM STRING PRINTING ROUTINE 

966 :: REM STRING—PRINT 

910 DATA 166,251 : REM LDX $FB 

926 DATA 166,1 - REM LDY #$@1 

930 :: REM PRINT-LOOP 

948 DATA 185,251,¢ : REM LDA $FB,Y 

956 DATA 32,218,255 : REM JSR $FFD2 

968 DATA 266 : REM INY 

976 DATA 292 : REM DEX 

986 DATA 28,246 : REM BNE $F6 

998 DATA 96 : REM RTS 

1026 
1916 REM ** GET IN A HEX NUMBER ** 

1928 PRINT CHR$(147) : PRINT 

1936 PRINT" INPUT A HEX NUMBER :$"; 

1846 GOSUB 2962 

1958 POKE 82¢,LOW : REM LOW BYTE HEX 

NUMBER 

1868 GOSUB 2066 

1876 POKE 821,HIGH : REM HIGH BYTE HEX 

NUMBER 

198g : 

199% SYS CODE - REM CALL CONVERSION 

1166 

1118 PRINT"ITS DECIMAL EQUIVALENT IS :"; 

1126 SYS OUTPUT 

1139 END 

114¢ 

1999 REM ** HEX INPUT CONTROL ** 



48 

2DDD 
2018 

2626 

2030 

2040 

2056 

26D 

2076 

20686 

2096 

2166 

2206 : 

2499 REM ** GET HEX ROUTINE ** 

2500 GET Z$ 

2516 IF Z$=""" THEN GOTO 2569 

2520 IF Z$>"F" THEN GOTO 2596 

GOSUB 256¢ 

F=NUM : PRINT Z$; 

GOSUB 256¢ 

S=NUM : PRINT Z$; 

HIGH=F*16+S 

GOSUB 2569 

F=NUM : PRINT Z$; 

GOSUB 2566 

S=NUM : PRINT Z$ 

LOW=F*16+S 

RETURN 

2536 

2546 

2556 

2560 

2576 

2588 

IF 

IF 

IF 

IF 

IF 

IF 

Z$="A" 
Z2$="B" 
2 ="'C" 
Z$="D" 
Z$="E" 
Z$="F" 

THEN 

THEN 

THEN 

THEN 

THEN 

THEN 

NUM=19: 

NUM=11: 

NUM=12: 

NUM=13: 

NUM=14: 

NUM=15: 

RETURN 

RETURN 

RETURN 

RETURN 

RETURN 

RETURN 

2599 NUM=VAL(Z$): RETURN 

Functional bytes: 

201-255 ($F B-$FF ) ASCII string buffer 

829-821 ($334-$335) : binary address for 
conversion 

822-823 ($336-$337) : temporary storage 

824 ($338 ) : sign flag 

To demonstrate the routine’s workings, the program first prompts 
for a hexadecimal number using the BASIC hex loader subroutine 
at line 2000. This is evaluated and placed at BINARY-ADDRESS 
by lines 1059 and 1070. 

The program proper begins by clearing the string buffer area 
(lines 109 to 169), an important procedure which ensures no illicit 
characters find their way into the ASCII string. The sign of the 
number is tested by loading the high byte of the address byte into 
the accumulator and saving its value in the sign flag byte. This 
process will condition the Negative flag. If it is set, a negative 
number is interpreted and the plus branch to CONVERSION (line 



199) fails. The next seven operations obtain the absolute value of 
the two-byte number by subtracting it from itself and the set carry 
bit. Thus $FFFF will result in an absolute value of 1 and $8000 an 
absolute value of 32,678. 

The two flows of the program rejoin at line 280, where the two 
temporary bytes are cleared. These bytes are used in conjunction 
with the binary address bytes to form a 32-bit shift register, allow- 
ing bits to flow from the low byte address to the high byte of 
temporary. 

The loop of lines 349 to 510 performs the conversion, by succes- 
sively dividing through by ten until the quotient has a value of zero. 
By this time the binary equivalent of this ASCII character being 
processed will have been placed in the temporary byte. To produce 
this, the loop needs sixteen iterations so the X register is used to 
count these out. Converting the binary to hex involves simply 
adding $390 or ASC“‘@”’ to it (lines 539 to 559). 

Because it may not be immediately clear what is happening, 
Table 4.1 shows the values of the accumulator and four associated 
bytes after each of the 16 passes of the loop, when converting 
$FFFF into its absolute ASCII value of 1. It should be clear from 
this how the bits shuffle their way through the four byte ‘register’. 

Table 4.1 

Iteration Accumulator $334 $335 $336 $337 

1 DP 61 DL DL 4) 

2 FF G2 DO DP DP 

3 FF BA 4) DP DP 

A FF 68 yy DD DP 

5 FF 1p 4 4) OP 

6 FF 20 DL DP DD 
7 FF 4G DP 4) 4) 

8 FF 8g DD DD 4) 

9 FF ay) DD 61 4) 

1g FF 4) DL 61 4) 

11 FF oy) £2 61 yy 

12 FF ) DD 61 4) 

13 FF 1) DP Bl DP 
14 FF 1) ) 61 4) 

15 FF 4) DP 61 yy 

16 FF DD 4 apt 4) 
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All that is now required is for this character to be added to the 
string buffer. This concatenation is completed by the code of lines 
699 to 880. This began by obtaining the buffer index, which con- 
tains the current number of characters already concatenated. This 
is stored in the first byte of the buffer, $FB in this instance. It is then 
moved across into the accumulator. Next, lines 75 to 799 move any 
characters present in the buffer up memory one byte, thereby 
Opening up a gap of one byte into which the newly formed char- 
acter can be placed (lines 819 to 870). The buffer index is also 
incremented and restored at this point, before an RTS is made 
back to the main body of the program. 

End of program operation is tested for by logically ORing the 
contents of the high and low bytes of the address. If the result is 
zero, all bits have been rotated and dealt with, in which case the 
sign flag byte is tested to ascertain whether a minus sign need be 
placed at the start of the ASCII string (lines 600 to 669). 

Line-by-line 

A line-by-line description of Program 7 follows: 

line 10% : clear Y register 

line 119 : and accumulator 

line 129 : and then the five buffer bytes 

line 176 : get high byte for conversion 

line 189% : save in sign flag 

line 19% : if positive branch to CONVERSION 

line 28% : else set Carry flag 

line 219 : clear accumulator 

line 229 : obtain absolute value of low byte 

line 238 : and save 

line 249 : clear accumulator 

line 258 : obtain absolute value of high byte 

line 269 : and save 

line 276 : entry for CONVERSION 

line 289 : clear accumulator 

line 29% : clear temporary storage bytes 

line 319 : clear Carry flag 

line 329 : sixteen bits to process 

line 338 : entry for LOOP 

line 34% : move bit 7 into Carry flag 

line 35% : and on into bit @ 

line 36% : move bit 7 into Carry flag 



line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

370 

389 
399 

ADD 
41g 
429 

A436 
AAG 
459 

ATG 

A489 

499 

50 
51¢ 

526 

530 
549 

558 

568 

570 

58¢ 

5998 

6D 
61g 

629 
639 

649 

65d 

669 

689 
69¢ 

TBP 
719 

726 
T3D 

TAD 

75D 

76D 

TTD 

786 

and on into bit @ 

set Carry flag 

get low byte of temp 

subtract 10 

Save result in Y 

get high byte of temporary 

subtract carry bit 

branch to LESS-THAN if divisor>dividend 

else save result of operation in temporary 

entry for LESS-THAN 

decrement bit count 

branch to LOOP until 16 bits done 

rotate bit 7 into Carry flag 

and on into bit @ 

entry for ADD-ASCII 

clear Carry flag 

get low byte from temporary 

convert into ASCII character 

concatenate on to string in buffer 

get low byte of binary number 

OR with high byte. If @ then all done 

if not finished branch to CONVERSION 

entry for FINISHED 

get sign 

if N = 9 branch to POSITIVE 

otherwise get ASC*—” 

and add it to final string 

entry for POSITIVE 

back to BASIC 

entry for CONCATENATE, $C074 

save accumulator 

initialize index 

and get buffer length 

move it into Y for indexing 

if @ branch to ZERO-LENGTH 

entry for SHUFFLE-ALONG 

get character from buffer 

increment index 

save character one byte along 

restore original address minus one 
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line 79% : branch to SHUFFLE-ALONG until completed 

line 8% : entry for ZERO-FINISH 

line 8198 : restore accumulator 

line 82 : index past length byte 

line 83 : add character to buffer 

line 84% : decrement index 

line 859 : get length byte 

line 868 : increment it 

line 876 : save it 

line 886 : back to calling routine 

line 99% : entry for OUTPUT 

line 919 : get length of string as counter 

line 929 : set index to first character 

line 93% : entry for PRINT-LOOP 

line 948 : get character 

line 958 : print it 

line 96% : increment index 

line 979 : decrement count 

line 989 : branch to PRINT-LOOP until all done 

line 99% : back to BASIC 



11@ INPUT"WHICH DIRECTION 

5 String Manipulation 

In this chapter we will look at how ASCII character strings can be 
manipulated using machine code routines to perform the following 
operations: 

1. Compare two strings. 
2. Concatenate one string onto another. 
3. Copy a substring from within a main string. 
4. Insert a substring into a main string. 

These types of routines are essential if you intend to write any 
programs that manipulate data and information. Adventure games 
are a typical example of this kind of program. 

COMPARING STRINGS 

String comparison is normally performed after the computer user 
has input some information from the keyboard. In BASIC this 
might be written as: 

169 A$="MOVE LEFT" 

119 INPUT"WHICH DIRECTION ?"; B$% 

129 IF A$=B$ THEN PRINT "CORRECT!" 

We do not always wish to test for equality, however. In BASIC, we 
are able to test for unlike items using the NOT operators ‘<>’. 
Thus, line 120 could have been written as: 

126 IF A$ <> BS PRINT "WRONG!" 

At other times, we may wish to test which of two strings has a 
greater length, and this is possible in BASIC using the LEN 
Statement: 
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218 IF LEN(A$) > LEN(B%$) THEN PRINT "FIRST" 

Program 8 gives the assembler and BASIC listing for the string 
comparison routine, which puts all the functions described above 
at your disposal whenever the program is used. The Status register 
holds these answers in the Zero and Carry flags. The Zero flag is 
used to signal equality: if it is set (Z=1), the two strings compared 
were identical; if it is cleared (Z=Q) they were dissimilar. 

The Carry flag returns information as to which of the two strings 
was the longer: if it is set (C=1), they were identical in length or the 
first string was the larger. The actual indication required here ts 
evaluated in conjunction with the Zero flag. If Z=@ and C=1, then 
a longer string rather than an equal-length string is indicated, but if 
the Carry flag is returned clear (C=Q), then the second string was 
longer than the first. 

Program 8 

18 REM ** STRING COMPARISON ROUTINE «x 

26 CODE-49152 
36 TEST-49184 
46 FOR LOOP-% TO 41 
5@ READ BYTE 

66 POKE CODE+LOOP, BYTE 

76 NEXT LOOP 
86 : 

99 REM ** M/C DATA «* 

168 DATA 173,52,3  : REM LDA $334 
11M DATA 295,53,3 : REM CMP $335 
126 DATA 144,3 : REM BCC $3 

136 DATA 174,53,3  : REM LDX $335 

146 :: REM COMPARE-STRING 

156 DATA 246,12 : REM BEQ $C 

166 DATA 168,¢ - REM LDY 4$@¢ 

176 :: REM COMPARE-—BYTES 

186 DATA 177,251 : REM LDA ($FB),Y 

198 DATA 269,253 : REM CMP ($FD),Y 

206 DATA 298,16 : REM BNE $A 

218 DATA 266 : REM INY 

226 DATA 262 : REM DEX 

236 DATA 288,246 : REM BNE $F6 

246 :: REM CONDITION-FLAGS 

256 DATA 173,52,3 : REM LDA $334 
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FLAGS 

Figure 5.1 Compare strings flowchart 

260 DATA 205,53,3 : REM CMP $335 

276 :: REM FINISH 

280 DATA 96 : REM RTS 

298 

SOO :: REM TEST ROUTINE 

318 DATA 32,8,192 : REM JSR $CO6g 
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326 DATA 8 - REM PHP 

336 DATA 164 : REM PLA 

346 DATA 41,3 REM AND #$(3 

358 DATA 133,251 : REM STA $FB 

360 DATA 96 : REM RTS 

376: 

388 REM ** SET UP STRINGS FOR COMPARISON *+* 

398 PRINT CHR$(147) 

408 INPUT "FIRST STRING :"; A$ 

418 FOR LOOP=1 TO LEN(A$) 

426 TEMP$-MID$(A$,LOOP, 1) 

436 A-=ASC(TEMP$) 

446 POKE 59432+LOOP-1,A 

456 NEXT LOOP 

466 : 

478 INPUT "SECOND STRING :";B$% 

48% FOR LOOP=1 TO LEN(B$) 

496 TEMP$-MID$(B$,LOOP, 1) 

560 B-=ASC(TEMP$ ) 

518 POKE 5%688+LOOP-1,B 

520 NEXT LOOP 

536 : 

548 POKE 251,8 : POKE 252,197 

558 POKE 253,08 : POKE 254,198 

560 POKE 829, LEN( A$) POKE 821,LEN(B$) 

576 : 

588 SYS TEST 

598 : 

660 PRINT "RESULT IS : ";PEEK(251) 

Bytes reserved: 

201-252 ($FB-$FC) : address of first string 

253-254 ($FD-$FE)  : address of second string 

826 ($334 ) : length of first string 

821 ($335 ) : length of second string 

Once run, the BASIC text of lines 380 to 520 calls for two strings to 
be input. These are stored in memory from $C5@% and $C6M. Note 
that the routine cannot handle strings greater than 256 characters in 
length (though it could of course be expanded to do so). The length 



of each string is also required by the routine, so this is ascertained 
and stored in the appropriate zero page bytes at $334 and $335 (line 
560). 

To allow the string buffers to be fully relocatable, the string 
addresses are held in two zero page vectors (lines 549 and 559). 

String comparison proper starts by evaluating the length bytes to 
find out if they are the same length. If they are not equal, then the 
strings cannot be identical. However, as the routine returns infor- 
mation about the lengths of the strings it is still completed—in this 
case the program compares bytes through the length of the smaller 
of the two strings. 

Byte comparison is performed by lines 170 to 199, using post- 
indexed indirect addressing. On the first non-equal characters the 
main loop is exited to FINISH. Assuming the entire comparison 
works, and the X register, which holds the working string length, 
has been decremented to zero, the length bytes (lines 250 and 260) 
are compared to condition the Zero and Carry flags before the 
routine completes. 

The short test routine returns the Zero and Carry flag values and 
prints them out. indicating the following results: 

Returned Z C Result 

D D Dp Strings <> and string | larger 

1 DB 1 Strings <> and string 2 larger 

il 1 Strings = 

Line-by-line 

A line-by-line description of Program 8 follows: 

line 18% : get length of first string 

line 119 : isit the same length as the second string? 

line 12 : no. it’s longer. so branch to COMPARE-STRING 

line 139 : yes. so get length of second string 

line 149 : entry for COMPARE-STRING 

line 158 : if zero. branch to CONDITION-FLAGS 

line 169 : initialize indexing register 

line 178 : entry for COMPARE-BYTES 

line 18@ : get character from first string 

line 198 : compare to same character in second string 

line 20 : if dissimilar. branch to FINISH 

line 218 : increment index 
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line 22@ : decrement string counter 

line 238 : branch back to COMPARE-BYTES until zero 

line 24% : entry for CONDITION-FLAG 

line 258 : get length of first string 

line 262 : compare with length of the second string 

line 278 : entry for finish 

line 289 : back to calling routine 

line 39% : entry for TEST routine 

line 319 : push status onto stack 

line 32 : pull into accumulator 

line 33% : save Z and C 

line 34% : save at location $FB 

line 358 : back to BASIC 

STRINGS UNITE 

Strings may be joined together by a process called ‘concatenation’. 
In BASIC the addition operator ‘+’ performs this function. Thus 
the program: 

168 A$="REM" 

119 B$="ARK" 

128 C$=A$-+BE 

assigns the string "REMARK’ to the string C$. If line 12@ were 
rewritten as: 

126 C$=BH+A$ 

the resultant value assigned to C$ would be ‘ARKREM”. We can 
see from this that one string is simply tagged on to the end of the 
other. overwriting the former’s RETURN character, but preserv- 
ing the latter’s. 

This process of concatenation can be performed quite readily as 
Program 9 illustrates. However, the actual BASIC equivalent of 
the operation we are performing here is: 

AG -AG “BE 

In other words, we are adding the second string on to the first 
String. rather than summing the two to give a separate final string. 
although this is possible with slight modifications to the assembler 
text. 



Program 9 

1p 
20 
3 
4p 
5p 
6D 
7D 
8 
of 
10 
11g 
129 

139 

14g 
156 

166 
176 
18g 

196 

208 
216 

22 
2350 

246 

259 
26 
270 

289 
299 

3D 
319 

320 

33 
349 
35 
360 

37 
386 

REM ** STRING CONCATENATION «+ 

CODE=49152 

FOR LOOP=6 TO 96 

READ BYTE 

POKE CODE+LOOP, BYTE 

NEXT LOOP 

REM ** M/C DATA ** 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

173 ,52,3 

141,54,3 

169 ,f 

141,55,3 

24 

173 ,53,3 

169 ,52,3 

176,35 

76,45,192 

169, 255 
141,57,3 
56 
237 ,52,3 
144,51 
141,56,3 
169, 255 
141,52,3 
76,559,192 

141,52,3 

169, g 

141,57,3 

173 ,53,3 

141,56,3 

173 ,56,3 

246,21 

REM 

REM 

: REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

: REM 

REM 

REM 

REM 

REM 

REM 

REM 

>: REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

STRING-CONCATENATION 

LDA $334 

STA $336 

LDA #$62 

STA $337 

CLC 

LDA $335 

ADC $334 

BCS $63 

JMP $C%2D 

TOO—LONG 

LDA #$FF 

STA $339 

SEC 

SBC $334 

BCC $33 

STA $338 

LDA #$FF 

STA $334 

JMP $CQ3B 

GOOD-LENGTH 

STA $334 

LDA #990 

STA $339 

LDA $335 

STA $338 

CONCATENATION 

LDA $338 

BEQ $15 

LOOP 
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398 DATA 172,55,3 : REM LDY $337 

460 DATA 177,253 : REM LDA ($FD),Y 

416 DATA 172,54,3 : REM LDY $336 

426 DATA 145,251 : REM STA ($FB),Y 

430 DATA 238,54,3 : REM INC $336 

446 DATA 238,55,3 : REM INC $337 

456 DATA 2(6,56,3 : REM DEC $338 

466 DATA 28,235 : REM BNE $EB 

A7O :: REM FINISHED 

480 DATA 172,52,3 : REM LDY $334 

499 DATA 169,13 : REM LDA #$@D 

506 DATA 145,251 : REM STA ($FB),Y 

518 DATA 173,57,3 : REM LDA $339 

526 DATA 16 : REM ROR A 

538 DATA 96 : REM RTS 

54¢ 

660 PRINT CHR$( 147) 

616 INPUT "FIRST STRING "; A$ 

626 INPUT "SECOND STRING ";:B¢% 

630 : 

646 F-49664 : REM $C26g 

656 S=49926 : REM $C36¢ 

660 : 

670 FOR LOOP=1 TO LEN(A$) 

686 TEMP$-MID$(A$,LOOP, 1) 

696 A-=ASC(TEMP$ ) 

766 POKE F+LOOP-1,A 

710 NEXT LOOP 

720 : 

730 FOR LOOP=1 TO LEN(B$) 

749 TEMP$-MID$(B$,LOOP, 1) 

756 B-=ASC(TEMP$) 

766 POKE S+LOOP-1,B 

776 NEXT LOOP 

786 : 

790 POKE 251,¢ POKE 252,194 

806 POKE 253,68 : POKE 254,195 

818 POKE 82%, LEN( A$) 
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Figure 5.2 Concatenate strings flowchart 

828 POKE 821,LEN(B$) 

836 : 

846 SYS CODE 

856 
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866 REM *** PRINT OUT FINAL STRING *** 

876 PRINT "FINAL STRING IS :"; 

886 LOOP=¢ 

899 REM ** REPEAT *+* 

998 BYTE=PEEK(F+LOOP) 

918 PRINT CHR$(BYTE); 

926 LOOP=LOOP+1 

930 IF BYTE=13 THEN END 

948 GOTO 96¢ 

This program allows a final string of 256 characters in length to be 
manipulated. Therefore, as the program stands, the combined 
lengths of the two strings should not exceed this length. If they do, 
then only as many characters as space allows will be concatenated 
on to the first string, leaving the second string truncated. The Carry 
flag is used to signal whether any truncation has taken place, being 
set if 1t has and cleared otherwise. As with the string comparison 
routine, the string buffers are accessed via two zero page vectors 
(lines 799 and 80) and two bytes are reserved to hold the length of 
each string. A further two bytes are used to save index values. 

The first nine machine code operations (lines 19 to 18@) deter- 
mine the final length of the string, by adding the length of the first 
string to that of the second string. A sum greater than 256 is 
signalled in the Carry flag and the branch of line 179 is performed, 
in which case the number of characters which can be inserted into 
the first string buffer is ascertained. The overflow indicator is 
loaded with $FF if a truncation occurs; otherwise it is cleared with 

$00 
The concatenating loop is held between lines 359 and 469. This 

simply moves a byte from the vectored address plus the index of the 
second string and places it at the end of the first string, as pointed to 
by the first string index byte. This process is reiterated until the 
value of ‘count’ has reached zero. Lines 480 and 50 place a 
RETURN character at the end of thé string to facilitate printing 
from BASIC or machine code. The Overflow flag is loaded into the 
accumulator and bit 7 rotated across into the Carry flag, thereby 
signalling whether truncation has occurred. Lines 619 to 779 hold 
the BASIC test routine that reads in and then pokes the character 
strings into memory at $C20@ and $C300. After the SYS call (line 
840), the final BASIC routine prints the concatenated string from 
memory. 

Project 

Adapt the program to perform the BASIC equivalent of 
C$=A$+B$ or C$=B$+A$ on request. 



Line-by-line 

A line-by-line description of Program 9 now follows: 

line 169 : get first string’s length 

line 119 : string one’s index 

line 128 : clear accumulator 

line 139 : set string two’s index to zero 

line 148 : clear Carry flag 

line 159 : get second string’s length 

line 16 : and add to length of first string 

line 176 : branch to TOO-LONG if total greater than 256 bytes 

line 188 : otherwise jump to GOOD-LENGTH 

line 19% : entry for TOO-LONG 

line 20% : load accumulator with 255 

line 219 : and store to indicate overflow 

line 226 : set Carry flag and subtract 

line 239 : string one’s length from maximum length 

line 249 : branch to FINISH if first string is greater than 

256 bytes in length 

line 259 : save current count 

line 268 : restore maximum length 

line 276 : store in string one’s length 

line 288 : jump to concatenation routine 

line 299 : entry for GOOD-LENGTH 

line 398 : save accumulator in string one’s length 

line 319 : load with 0 toclear 

line 328 : overflow indicator 

line 338 : get string two’s length 

line 349 : save in count 

line 359 : entry for CONCATENATION 

line 368 : get count value 

line 379 : if zero, then finish 

line 388 : entry for LOOP 

line 398 : get index for string two 

line 4@9 : and get character from second string 

line 419 : get string one’s index 

line 42 : and place character into first string 

line 439 : increment first string’s index 

line 44% : increment second string’s index 

line 45@ : decrement count 
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line 468 : branchto LOOP until count=0 

line 47% : entry for FINISHED 

line 489 : get final length of first string 

line 498 : load accumulator with ASCII return 

line 5@@ : place at end of string 

line 519 : get overflow indicator 

line 528 : and move it into Carry flag 

line 53 : back to calling routine 

COPY CAT 

String manipulation routines must include a method of copying 
substrings of characters from anywhere within a string of char- 
acters. In BASIC, three such commands are provided. They are 
MID$, LEFT$ and RIGHTS, although with the first of these, any 
point in a string can be accessed. The following shows the sort of 
thing possible in BASIC: 

166 A$="CONCATENATE" 

119 BS=MID$( A$, 9,3) 

126 PRINT B$ 

Running this will output the string ‘CON’. What the code has done 
is to take the three characters from the first character in the Main$. 
Program 10 produces the same type of operation from machine 
code. 

Program 10 

18 REM ** COPY A SUBSTRING FROM WITHIN *« 

20 REM *«* A MAIN ASCII STRING «* 

30 CODE=49152 

46 MAIN=5#432 : REM $C56¢ 

50 SUB=-59688 : REM $C6G¢ 

69 REM ** READ AND POKE M/C DATA *»* 

76 FOR LOOP=@ TO 123 

89 READ BYTE 

9% POKE CODE+LOOP, BYTE 

196 NEXT LOOP 

11g 

126 REM ** M/C DATA «* 

13 DATA 16,2 : REM LDY #$@¢ 

148 DATA 148,52,3 : REM STY $334 



158 DATA 

16@ DATA 

178 DATA 
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Figure 5.3 Copy string flowchart 

148,56,3 : REM STY $338 

173,54,3  : REM LDA $336 

246 98 : REM BEQ $62 
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66 

182 

199 

20D 
216 

220 

230 

240 

250 
260 
27 
286 

290 

3D 
31p 

320 

336 

34g 
356 

366 

370 

386 

399 

4D 
419 

429 

439 

44g 
459 

469 

ATS 
489 

499 

SDP 
519 

526 

53 
546 

559 
560 

570 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

173.5546 

205,55,3 

144,93 

24 

173,55,3 

169 ,54,3 

176,9 

176 

262 

236,53,3 

144, 2g 

246,18 

56 

173 ,53,3 

237,55,3 

141,54,3 

238 ,54,3 

169,255 

141,56,3 

173 ,54,3 

261,255 

144,19 

246 ,8 

169,255 

141,54,3 

141,56,3 

174,54,3 

246 ,35 

169, 9 

141,52,3 

172 ,55,3 

177,251 

172 ,52,3 

145 , 253 

2358 ,55,3 

258 ,52,3 

REM LDA 

REM CMP 

REM BCC 

REM CLC 

REM LDA 

REM ADC 

REM BCS 

REM TAX 

REM DEX 

: REM CPX 

> REM BCC 

>: REM BEQ 

$335 

$337 

$5D 

$337 
$336 

$29 

$335 

$14 

$12 

REM TRUNCATION 

REM SEC 

REM LDA 

REM SBC 

REM STA 

> REM INC 

REM LDA 

REM STA 

$335 

$337 

$336 

$336 

HOFF 

$338 

REM GREATER—-EQUAL 

REM LDA 

: REM CMP 

REM BCC 

REM BEQ 

REM LDA 

: REM STA 

REM STA 

REM COPY-— 

REM LDX 

REM BEQ 

REM LDA 

> REM STA 

REM LOOP 

REM LDY 

: REM LDA 

REM LDY 

REM STA 

> REM INC 

REM INC 

$336 

HEF 

GHA 

$68 

HOFF 

$336 

$3358 

SUBSTRING 

$336 

$23 

H$OD 

$334 

$337 

($FB),Y 

$334 

($FD),Y 

$337 

$3354 



586 

599 
6D 
619 

62 
636 

646 

65 
655 
66 
670 
686 

699 
TOD 
716 

720 
730 
74D 

750 

76D 

77D 

786 

TOP 
86 
819 

829 
836 

849 

859 

869 

876 
88 

896 

Ty 
919 

926 

936 

946 

DATA 262 : REM DEX 

DATA 28,237 : REM BNE $ED 

DATA 26,52,3  : REM DEC $334 

DATA 173,56,3  : REM LDA $338 

DATA 268,23 : REM BNE $93 

= REM FINISH 

DATA 24 : REM CLC 

DATA 144,1 : REM BCC $61 

- REM ERROR 

DATA 56 : REM SEC 

= REM OUT 

DATA 169,13 : REM LDA 4$QD 

DATA 172,52,3  : REM LDY $334 

DATA 200 : REM INY 

DATA 145,253 : REM STA ($FD),Y 

DATA 96 : REM RTS 

REM ** SET UP MAIN STRING «** 

PRINT CHR$( 147) 

oC REM ERROR 

INPUT "MAIN STRING "; BE 

FOR LOOP=1 TO LEN(B$) 

TEMP$=MID$ (BS, LOOP, 1) 

B=ASC( TEMP$ ) 

POKE MAIN+LOOP-1,B 

NEXT LOOP 

INPUT" INDEX INTO STRING "> X 

INPUT"NUMBER OF BYTES TO COPY ";Y 

REM ** SET UP BYTES FOR M/C +** 

POKE 251,08 : POKE 252,197 

: REM $C5@% VECTOR 

POKE 253,08 : POKE 254,198 

: REM $C6@% VECTOR 

POKE 821,LEN(B$) 

POKE 822,Y 

POKE 823,X 

SYS CODE 
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956 : 

9608 REM ** READ COPIED SUBSTRING ** 

976 FOR LOOP=1 TO Y 

988 Z=PEEK(SUB+LOOP-1) 

998 PRINT CHR$(Z); 

1960 NEXT LOOP 

Bytes are designated as follows: 

201-252 ($FB-$FC) : main string vector 

253-254 ($FD-$FE) : substring vector 

826 ($334) : length of substring 

821 ($335 ) : length of main string 

822 ($336 ) : number of bytes to be copied 

823 ($337 ) : index into main string 

824 ($338 ) : error flag 

Once again, a few lines of BASIC demonstrate the operation of the 
routine, requesting the source string, starting index and length of 
substring, or rather the number of bytes to be copied into the 
substring from the starting index. The main string is in a buffer 
located at $C5Q@ and the substring is copied into its own buffer at 
$C600. As always, these addresses may be changed to suit user 
needs, as they are vectored through zero page (lines 88 and 899). 

Error-checking 1s allowed, as the Carry flag is set on exit if an 
error has occurred. Normally, an error will occur only if the starting 
index is beyond the length of the source string, or the number of 
bytes to be copied from the main string is zero. If the number of 
bytes requested in the length exceeds the number left from the 
indexed position to the end of the main string, then only the bytes 
available will be copied to the substring buffer. 
On entry to the routine, error-checking is performed (lines 169 

to 240) and if any are found, the program exits. Lines 30% to 370 
perform a truncation if the number of bytes to be copied exceeds 
those available. The COPY-SUBSTRING loop (lines 469 to 59Q) 
copies each string byte from the vectored address in the main string 
to the substring buffer. Each time a character is copied, the sub- 
string length byte is incremented. On completion of this loop, 
controlled by the X register, the error flag is restored and the Carry 
flag conditioned accordingly (lines 61 to 669). Finally (lines 699 to 
730), an ASCII RETURN character is placed at the end of the 
substring. 

The following example shows the resultant substrings produced 
from the main string ‘CONCATENATE’ for different indexes. 
Figure 5.4 illustrates the index value for each of the main string’s 
characters. 



Index Length Substring 

D 3 CON 

3 3 CAT 

4 3 ATE 

Figure5.4 String Index 

Line-by-line 

A line-by-line description of Program 10 follows: 

line 13 : initialize Y register 

line 149 : clear substring length 

line 159 : and error flag 

line 16% : get substring length 

line 179 : if. null string, branch to FINISH 

line 189 : get main string’s length 

line 19% : compare it with index byte 

line 28% : branch to ERROR if index is greater 

line 21 : clear the Carry flag 

line 228 : get index 

line 238 : add it to substring length 

line 248 : branch to TRUNCATION if result is greater than 255 

line 250 : move index across into X register 

line 269 : decrement it by one 

line 276 : compare result with string length 

line 28% : branch tt GREATER-EQUAL if result is 

line 299 : greater than or equal to string length 

line 39% : entry for TRUNCATION 

line 318 : set the Carry flag 

line 328 : get string length 

line 339 : subtract the index from it 

line 348 : save the new length 

line 358 : and increment it by one 

69 



70 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

366 

37 
380 

396 

ADD 
419 

420 

A3f 
449 
450 

460 

ATP 

489 

499 

SDD 
516 
526 

53 
54 
556 

566 

570 

586 

596 

6D 
61g 

620 
63 
649 

65 
655 
660 

67 
686 

69 
THD 
71g 
720 

denote an error by 

Setting the error flag 

entry for GREATER-EQUAL 

get length into accumultor 

compare with maximum length 

branch if count is 

greater or equal to maximum length 

put maximum length in accumulator 

store in bytes to copy 

and also in error flag 

entry for COPY-SUBSTRING 

get the index position 

branch to ERROR if zero 

clear accumulator 

and substring length 

entry for LOOP 

get main string index into Y register 

get character from main string 

get substring index 

copy character into substring 

increment main string index 

increment substring index 

decrement bytes to move counter 

branch to LOOP if still bytes to be copied 

decrement final substring count 

get error flag into accumulator 

branch to ERROR if not zero 

FINISH entry 

clear Carry flag as no error 

branch to OUT 

entry for ERROR 

set Carry flag to indicate error 

entry for OUT 

place RETURN in accumlator 

get substring index into Y 

increment Y 

place RETURN at end of substring 

return to BASIC. 



INSERTION 

This final routine provides the facility for inserting a string within 
the body of another string, allowing textual material—for 
example, in word processing applications—to be manipulated. If 
the main string held ‘ELIZABETH OKAY’, this routine could be 
called to insert the string ‘RULES’, so that the final string would 
read ‘ELIZABETH RULES OKAY’. As with the COPY routine, 
the position of the insertion is pointed to by an index byte, and the 
Carry flag is set if an error is detected—that is, if an index of 9 ora 
null substring is specified. 

The maximum length of the final string is 256 characters. If the 
insertion of the substring would cause this length to be exceeded, 
the substring is truncated to the length given by (256 minus length 
of main string) and only these characters are inserted. 

As always, a BASIC primer demonstrates the routine’s use. The 
string buffers are held at $C5@0 and $C69 and in this instance they 
are accessed directly, although there is no reason why vectored 
addresses could not be used. 

Program 11 

16 REM ** INSERT ONE ASCII STRING ** 

2 REM ** INTO ANOTHER ASCII STRING «* 

36 MAIN=59432 : REM $C56¢ 

48 SUB=5/688 : REM $C69¢ 

5% CODE=49152 

6@ REM ** READ AND POKE DATA ** 

76 FOR LOOP=-% TO 141 

88 READ BYTE 

98 POKE LOOP+CODE, BYTE 

16 NEXT LOOP 

116 : 

126 REM ** M/C DATA ** 

136 DATA 169,96 : REM LDY #@ 

146 DATA 148,53,3 : REM STY $335 

158 DATA 165,252 : REM LDA $FC 

166 DATA 28,3 : REM BNE $93 

176 DATA 76,137,192 : REM JMP $Cg89 

18¢ :: REM ZERO—LENGTH 

19% DATA 165,253 : REM LDA $FD 

206 DATA 246,124 : REM BEQ $7C 

216 DATA :: REM CHECK 

71 
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226 

230 

246 

250 
266 

270 

288 

299 

30D 
318 

326 

336 

346 

356 
366 

376 
388 

396 

ADD 
41g 
426 

43D 

44g 
456 

466 

AT 

489 

496 

566 
518 

526 

53 
546 

55 
566 
576 
589 

598 

600 
61g 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

24 

165,252 

191,251 

1'76,6 

261,255 

246,18 

144,16 

169,255 

56 

229,251 

246 , 194 

144,192 

133,252 

169,255 

141,53,3 

165,251 

197 , 253 

176, 26 

166,251 

252 

134,253 

169,255 

141,53,3 

24 

165,251 

191,252 

133,251 

76,169,192 

56 

165,251 

229,253 

176 

252 

165,251 

133,254 

24 

191,252 

REM 

REM 

REM 

REM 

: REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

>: REM 

REM 

REM 

REM 

CLC 

LDA $FC 

ADC $FB 

BCS $96 

CMP #$FF 

BEQ $12 

BCC $19 

CUT-OFF 

LDA #$FF 

SEC 

SBC $FB 

BEQ $68 

BCC $66 

STA $FC 

LDA #ASFF 

STA $335 

CALC—LENGTH 

LDA $FB 

CMP $FD 

BCS $14 

LDX $FB 

INX 

STX $FD 

LDA #$FF 

STA $335 

CLC 

LDA $FB 

ADC $FC.. 

STA $FB 

JMP $CZ6D 

NO—PROBLEMS 

SEC 

LDA $FB 

SBC $FD 

TAX 

INX 

LDA $FB 

STA $FE 

CLC 

ADC $FB 



620 DATA 

639 DATA 

640 :: 

650 DATA 

660 DATA 

676 DATA 

689 DATA 

698 DATA 

766 DATA 

716 DATA 

726 DATA 

730 :: 

746 DATA 

756 DATA 

766 DATA 

T7170 :: 

786 DATA 

7968 DATA 

800 DATA 

8168 DATA 

826 DATA 

830 DATA 

846 DATA 

859 DATA 

869 DATA 

876 DATA 

880 :: 

899 DATA 

980 DATA 

916 :: 

926 DATA 

930 :: 

949 DATA 

956 

133,251 

141,52,3 

164,254 

185,6,197 

172 ,52,3 

153,6,197 

266 ,52,3 

198 , 254 

202 

268 , 237 

169 ,¢ 

133,254 

166,252 

164,254 

185,9,198 

164,253 

153,0,197 

236 , 253 

236,254 

2D2 

208 , 239 

173,53,3 

208 , 3 

24 

144,1 

56 

96 

: REM 

: REM 

REM 

REM 

: REM 

: REM 

: REM 

: REM 

: REM 

REM 

REM 

REM 

REM 

: REM 

REM 

REM 

REM 

REM 

REM 

: REM 

REM 

REM 

: REM 

REM 

: REM 

: REM 

REM 

>: REM 

REM 

REM 

REM 

REM 

REM 

STA $FB 

STA $334 

MAKE—SPACE 

LDY $FE 

LDA $C502, 

LDY $334 

STA $C500,Y 

DEC $334 

DEC $FE 

DEX 

BNE $ED 

INSERT—SUBSTRING 

LDA #$6¢ 

STA $FE 

LDX $FC 

TRANSFER 

LDY $FE 

LDA $C609,Y 

LDY $FE 

STA $C599,Y 

INC $FD 

INC $FE 

DEX 

BNE $EF 

LDA $335 

BNE $63 

GOOD 

CLG 

BCC $61 

ERROR 

SEC 

FINISH 

RTS 

968 REM ** GET MAIN STRING AND STORE AT 

GCSOD xx 
976 PRINT CHR$(147) 

988 INPUT"MAIN STRING"; B$ 

999 FOR LOOP=1 TO LEN(B$) 

1966 TEMP$=MID$(B$,LOOP, 1) 
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191% B-=ASC(TEMP$) 

1926 POKE MAIN+LOOP-1,B 

1636 NEXT LOOP 

104g : 

1950 REM ** GET SUBSTRING AND STORE AT $C6Q00 ** 

1969 INPUT"SUB STRING"; C$ 

1976 FOR LOOP=1 TO LEN(C$) 

1988 TEMP$-MID$(C#$, LOOP, 1) 

1998 B=ASC(TEMP$ ) 

1168 POKE SUB+LOOP-1,B 

1118 NEXT LOOP 

1126 

1139 REM ** GET INSERTION INDEX ** 

1149 INPUT" INSERTION INDEX"; X 

115¢ : 

1169 REM ** POKE VALUES INTO ZERO PAGE «+# 

11768 POKE 251, LEN(B$) 

1188 POKE 252, LEN(C$) 

119% POKE 253,X 

1260 : 

1218 SYS CODE 

1226 : 

1236 REM ** READ FINAL STRING «+* 

1249 COUNT=LEN(B$) +LEN(C$)-1 

1258 FOR LOOP=@ TO COUNT 

1269 Z=PEEK(MAIN+LOOP) 

12768 PRINT CHR$(Z) ; 

1288 NEXT LOOP 

The program begins by checking the length bytes to ensure that no 
null strings are present (lines 159 to 2(@M) and then sums the two 
lengths to obtain the final length. If the addition results in the Carry 
flag being set (line 259), the total length will exceed 256 bytes and, 
as a result, the inserted substring will be truncated (lines 319 to 
399). 

If the insertion index is greater than the length of the string, the 
substring is actually concatenated on to the end of the main string. 
This evaluation is performed through lines 409 to 530. Before 
inserting the substring, all characters to the left of the index must be 
shuffled up through memory to make space for it. These calcu- 
lations are carried out in lines 559 to 659, ready for the shuffling 
process (lines 669 to 74). Inserting the substring now involves 
simply copying it from its buffer into the space opened up for it 



(lines 759 to 870), the X register being used as the characters- 
moved counter. 

Finally, the error flag is restored and the Carry flag conditioned 
to signal any errors. 

Line-by-line 

A line-by-line description of Program 11 follows: 

line 139 : clear indexing register 

line 149 : clear error flag 

line 15 : get substring length 

line 168 : branch to ZERO-LENGTH if Z=0@ 

line 17% : otherwise carry on 

line 18% : entry for ZERO-LENGTH 

line 199 : get offset 

line 299 : branch to ERROR if Z=1 

line 216 : entry for CHECK 

line 228 : clear Carry flag 

line 23 : get substring length 

line 249 : add it to main string length 

line 258 : branch to CUT-OFF if greater than 256 

line 269 : is it maximum length? 

line 279 : branch to CALC-LENGTH if 

line 289 : it is equal to or greater than 

line 298 : entry for CUT-OFF 

line 30 : get the maximum length allowed 

line 319 : set Carry flag 

line 329 : subtract length of string 

line 339 : branch to ERROR if 

line 349 : length is equal to or greater than string 

line 358 : save characters free 

line 369 : set error flag 

line 389 : entry for CALC-LENGTH 

line 399 : get main string length 

line 489 : is offset within string? 

line 418 : branch to NO-PROBLEMS if it is 

line 429 : else place substring 

line 439 : at end of main string 

line 448 : save X in offset 

line 459 : and flag the error 

75 
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line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

46 
476 

489 

499 
SDD 
516 

526 

53 
546 

55 
560 

570 

586 

59 
60 
619 

626 

636 

646 

656 

666 

676 

680 

69 
719 

720 

73D 

74D 

75D 

76D 
164) 

78 
6) 
80 
819 

82 
849 

859 

860 

879 

in error flag byte 

clear Carry flag 

get length of string 

calculate total length 

and save result 

jump to INSERT-SUBSTRING 

entry for NO-PROBLEMS 

set Carry flag 

get length of substring 

subtract offset 

move index into X 

increment index 

get length 

Save in source 

clear Carry flag 

find total length 

Save result 

and for index 

entry for MAKE-SPACE 

get source index 

: get byte from main 

get offset into string 

move byte along 

decrement both indexes 

decrement counter 

branch to MAKE-SPACE until done 

entry for INSERT-SUBSTRING 

clear accumulator 

and source 

get counter 

entry for TRANSFER 

get index 

get byte from substring 

get offset into main string 

and place byte in main 

increment both indexes 

do until substring inserted 

branch to TRANSFER 

get error flag 

branch to ERROR 



line 

line 

line 

line 

line 

line 

line 

886 

8998 

966 
918 

926 

936 

944 

entry for GOOD 

signal no error 

branch to FINISH 

: entry for ERROR 

: denote error 

entry for FINISH 

return to calling routine 

TI 
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6 Printing Print! 

Every machine code program sooner or later requires text to be 
printed on to the screen. In most instances, this is a fairly simple 
process and often involves merely indexing into an ASCII string 
table and printing the characters, using one of the Operating 
System calls, until either a RETURN character or zero byte is 
encountered. Program 12 uses this method. 

Program 12 

18 REM ** PRINT STRING FROM MEMORY «+ 

26 CODE=-49152 

36 FOR LOOP-% TO 13 

46 READ BYTE 

58 POKE CODE+LOOP, BYTE 

66 NEXT LOOP 

7p 

O68 :: 

199 DATA 

119 :: 

126 DATA 

139 DATA 

149 DATA 

158 DATA 

169 DATA 

178 DATA 

18¢ 

80 REM «* M/C DATA ** 

162,98 

189, 8,197 

32,216,255 

252 

261,13 

208 , 245 

96 

266 STRING-59432 

REM 

REM 

REM 

REM 

REM 

: REM 

REM 

REM 

: REM 

198 REM ** GET STRING TO BE 

STRING—PRINT 

LDX #$09 

NEXT—CHARACTER 

LDA $C59¢,X 

JSR $FFD2 

INX 

CMP #$@D 

BNE $F5 

RTS 

PRINTED *+* 



START 

PULL RTS 
ADDRESS 

MOVE TO 
NEXT BYTE 

JUMP TO 
RTS ADDRESS 

No 

PRINT IT 

Figure 6.1 Printing embedded code flowchart 

2168 PRINT CHR$( 147) 

220 INPUT "INPUT STRING :"; A$ 

236 FOR LOOP=1 TO LEN(A$) 

246 TEMP$=-MID$( A$, LOOP, 1) 

256 B-=ASC(TEMP$ ) 

266 POKE STRING+LOOP-1,B 

276 NEXT LOOP 

280 PRINT: PRINT 

29% PRINT"YOUR STRING WAS AS FOLLOWS :"; 

306 SYS CODE 

Here, a string buffer is located at $C5@9 (50432) and the require- 
ment for printing the string is that it must be terminated with an 
ASCIT RETURN character, $9D. The program begins by initial- 
izing an index, the X register (line 10M), and loading the byte at 
$C500+ X into the accumulator. This is printed using the Kernal’s 
CHROUT routine, the index is incremented and then the accumu- 

lator’s contents are compared to see whether the character just 
Output was a RETURN (line 15). If not, the loop branches back 
and the next character is sought. 

719 



Program 13 shows how several strings may be printed to the 
screen using a loop similar to that described above. The number of 
strings for printing may be variable, the desired number being 
passed into the routine via the Y register. The string data has been 
entered using the DATA statement. If a large amount of string 
data is to be stored, and the amount to be printed at any one time 
varied, a vectored address should be used to access the table. 
Positioning of the text on the screen can be performed by embed- 
ding the relative number of RETURNS and spaces into the DATA, 
or more neatly by using the Kernal’s PLOT routine to set the X and 
Y tab co-ordinates. 

Program 13 

19 REM ** PRINT Y NUMBER OF STRINGS «+* 

20 CODE=49152 

30 FOR LOOP=% TO 18 

46 READ BYTE 

5@ POKE CODE+LOOP,BYTE 

6 NEXT LOOP 

TO : 

86 REM *«* M/C DATA *+* 

99 DATA 162,9 : REM LDX #$6¢ 

198 DATA 166,4 : REM LDY #494 

119 :: REM NEXT-—CHARACTER 

126 DATA 189,8,197  : REM LDA $C5¢6¢,x 

138 DATA 32,218,255 : REM JSR $FFD2 

146 DATA 232 : REM INX 

158 DATA 21,13 : REM CMP #$@D 

166 DATA 298,245 : REM BNE $F5 

176 DATA 136 : REM DEY 

186 DATA 268,242 : REM BNE $F2 

198 DATA 96 : REM RTS 

200 
219 REM ** SET UP FOUR SIMPLE STRINGS #*+* 

226 STRING=59432 

239 FOR LOOP=% TO 31 

249 READ BYTE 

256 POKE STRING+LOOP, BYTE 

266 NEXT 

27D : 

286 REM ** ASCII DATA «* 



296 DATA 32,65,65,65,65,65,65,13 

306 DATA 32,32,66,66,66,66,66,13 

316 DATA 32,32,32,67,67,67,67,13 

326 DATA 32,32,32,32,68,68,68,13 

The final program in this chapter shows the way I find easiest to 
store and print character strings, stowing them directly within the 
machine code. The two main advantages of this method are that 
the string is inserted directly at the point it is needed, avoiding the 
need to calculate indexes into look-up tables, and that because it 
manipulates its own address it is fully relocatable. 

Program 14 

19 REM ** ASCII STRING OUTPUT ROUTINE ** 

26 CODE=49152 

30 FOR LOOP=6 TO 26 

4 READ BYTE 

5@ POKE CODE+LOOP,BYTE 

69 NEXT LOOP 

TO: 

89 REM ** M/C DATA *+* 

99 DATA 164 : REM PLA 

196 DATA 133,251 REM STA $FB 

116 DATA 14 REM PLA 

128 DATA 133,252 REM STA $FC 

136 :: REM REPEAT 

146 DATA 168,90 REM LDY #$@ 

156 DATA 236,251 REM INC $FB 

166 DATA 28,2 REM BNE $62 

176 DATA 236,252 REM INC $FC 

186 :: REM OVER 

199 DATA 177,251 REM LDA ($FB),Y 

206 DATA 48,6 REM BMI $6 

216 DATA 32,216,255 REM JSR $FFD2 

226 DATA 76,6,192 : REM JMP $C6¢6 

236 :: REM FINISH 

249 DATA 198,251,¢ REM JMP ($FB) 

250 

266 REM ** DEMO ROUTINE LOCATED AT $C2G¢ x» 

276 DEMO-49664 

81 



288 FOR LOOP=@ TO 38 

299 READ BYTE 

306 POKE DEMO+LOOP,BYTE 

316 NEXT LOOP 

326 : 

336 REM ** DEMO M/C DATA ** 

346 DATA 169,147 : REM LDA #4$93 

358 DATA 32,218,255 :-REM JSR $FFD2 

366 DATA 32,6,192 : REM JSR $C66¢ 

376 REM *«* NOW STORE ASCII CODES FOR PRINTING *»* 

386 DATA 13 : REM CARRIAGE—-RETURN 

399 DATA 83,84,82,73,78,71,83,32 

> REM STRINGS<SPACE> 

466 DATA 87,73,84,72,73,78,32 

> REM WITHIN<SPACE> 

419 DATA 77,65,67,72,73,78,69,32 

: REM MACHINE<SPACE> 

426 DATA 67,79,68,69,33 

: REM CODE! 

439 DATA 234 : REM NOP 

449 DATA 96 > REM RTS 

456 : 

469 SYS DEMO 

The ASCII character string is placed in memory by leaving the 
machine code assembly (line 369) and POKEing the ASCII codes 
of the string directly into successive memory locations (lines 389 to 
429). 

For this routine to work, it is imperative that the first byte 
following the string is a negative byte—that is, one with bit 7 set. 
The opcode for NOP, $EA, is ideal for this purpose as it has its 
most significant bit set ($EA=11101910) and its only effect is to 
cause a very short delay. 

The ASCII print routine is just 27 bytes in length and it should be 
called as a subroutine immediately before the string is encountered 
(line 369). On entry into the subroutine, the first four operations 
pull the return address from the stack and save it in a zero page 
vector at $FB and $FC. These bytes are then incremented by one to 
point at the byte following the subroutine call. 

Because the string data follows on immediately after the ASCII 
print subroutine call, post-indexed indirect addressing can be used 
to load the first string character into the accumulator (line 199). 
The string terminating negative byte is tested for (line 200), and if 
not found the byte is printed with a CHROUT call. A JMP to 



REPEAT is then performed and the loop reiterated. When the 
negative byte is encountered, and the branch of line 20M succeeds, 
an indirect jump (line 24@) via the current vectored address is 
executed, returning control back to the calling machine code at the 
end of the ASCII string. 

Line-by-line 

A line-by-line description of Program 14 follows: 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

99 

166 
11g 

12¢ 

138 

149 

15g 

16¢ 

179 

18¢ 

19¢ 

260 
216 

226 

230 

246 

346 

356 

3608 

380 

399 

4DD 
41g 

426 

A430 

44g 

set low byte RTS address 

save in $FB 

get high byte RTS address 

save in $FC 

entry for REPEAT 

initialize index to zero 

increment low byte of vectored address 

branch to OVER if not zero 

else increment page value 

entry for OVER 

get byte from within program 

if negative, branch to FINISH 

else print it 

jump to REPEAT 

entry for FINISH 

jump back into main program 

load accumulator with clear screen code 

and print it 

call string printing routine at $COM 

ASCII code for RETURN 

ASCII string ‘STRINGS ” 

ASCII string ‘WITHIN ’ 

ASCII string “MACHINE ’ 

ASCII string ‘CODE!’ 

negative byte 

back to BASIC 



7 ABubble of Sorts 

Any program written to handle quantities of data will, at some 
time, require the data in a data table to be sorted into ascending or 
descending order. Several algorithims are available to facilitate this 
manipulation of data, of which the bubble sort is perhaps the 
simplest to implement in BASIC or machine code. 

The technique involves moving through the data list and com- 
paring pairs of bytes. If the first byte is smaller than the next byte in 
the list, the next pair of bytes is sought. If, on the other -hand, the 
second byte 1s less than the first, the two bytes are swapped. This 
procedure is repeated until a pass is executed in which no elements 
are exchanged, so all are in ascending order. Program 15 is the 
BASIC version of such a bubble sort. 

Program 15 

19 REM ** BASIC BUBBLE SORT «+ 

26 TABLE-=828 

30 FOR LOOP=@ TO 19 

46 READ BYTE 

5@ POKE TABLE+LOOP, BYTE 

69 NEXT LOOP 

76 : 

86 REM ** BUBBLE—-UP ROUTINE «* 

98 FOR BUBBLE=6 TO 19 

198 TEMP=BUBBLE 

116 : 

126 IF PEEK(TABLE+TEMP ) >PEEK (TABLE: (TEMP-1) ) 

THEN GOTO 184 

136 HOLD=PEEK (TABLE+TEMP ) 

146 POKE TABLE+TEMP, PEEK (TABLE+(TEMP-1) ) 



158 POKE TABLE+(TEMP-1) , HOLD 

166 TEMP=TEMP-1 

179 IF TEMP<>@ THEN GOTO 12¢ 

186 NEXT 

198 : 

260 REM ** DATA FOR SORTING «* 

218 DATA 1,255,67, 89, 12¢ 

226 DATA 6,268,85,45,199 

230 DATA $,123,77,98,231 

246 DATA 9,234,99,98, 1994 

256 : 

266 REM ** PRINT SORTED DATA «* 

276 FOR LOOP-=@ TO 19 

286 PRINT PEEK(TABLE+LOOP) 

29% NEXT LOOP 

The data bytes for sorting are held within the four data lines from 
219 to 240 and these are read into a memory array called TABLE. 
The sorting procedure is performed through lines 99 to 189, line 120 
checking to see if a swap is required. If a swap is unnecessary, 
GOTO 189 is executed and the swap routine bypassed. If it is 
required, however, the GOTO statement is not encounted, and the 
swap is performed in lines 130 to 169. The byte currently being 
pointed to is PEEKed into the variable HOLD (line 130) and the 
next byte is PEEKed and then POKEd into the location immedi- 
ately before it (line 149). The swap is completed by POKEing the 
value of HOLD into the now ‘vacant’ location. The variable TEMP 
is used to keep track of the number of passes through the loop. 

Figure 7.1 Numbers bubbling up 
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Figure 7.1 illustrates how small numbers bubble up through a 
data list using this sorting method. In this example, the data list 
consists of six numbers 27, CA, @A, 4C, F@ and 5@ (Figure 7.1a). 
After the first pass of the bubble sort three swaps have occurred 
(Figure 7.1b), thus: 

27 < CA therefore no change. 
CA > QA therefore swap items. 
CA > 4C therefore swap items. 
CA < FQ therefore no change. 
FQ > 5@ therefore swap items. eg al a 

The next pass through the data list produces the ordered list of 
Figure 7.1c in which just two swaps occurred, as follows: 

27 > @A therefore swap items. 
27 < 4C therefore no change. 
4C < 50 therefore no change. 
CA > 5@ therefore swap items. 
CA < F@ therefore no change. AR WN 

All the data elements are now in their final order, so the next pass 
through the list will have no effect. We can signal this by using an 
exchange flag to indicate whether the last pass produced any swaps, 
the sort routine exiting when the flag is cleared. This detail is 
included in the BASIC loader listed below as Program 16. 

Program 16 

19 REM *** BUBBLE SORT *** 

26 CODE=49152 

36 TABLE=56432 

4$ FOR LOOP=6 TO 44 

58 READ BYTE 

68 POKE CODE+LOOP, BYTE 

76 NEXT LOOP 

88 : 

99 REM ** M/C DATA ** 

196 DATA 2%6,52,3 : REM DEC $334 

116 :: REM BUBBLE-LOOP 

126 DATA 166,¢ : REM LDY #$6¢ 

136 DATA 148,53,3 > REM STY $335 

148 DATA 174,52,3 : REM LDX $334 

15@ :: REM LOOP 



SET 
EXCHANGE 

FLAG 

GET 
EXCHANGE 

FLAG 

RESET 
POINTERS 

Figure 7.2 Bubble sort flowchart 
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169 

176 

189 

199 

200 
210 

220 

236 

246 

256 

260 
270 

286 
299 
3D 
319 

326 

336 

335 
34 
35 
36 
37 
386 

399 

4D 
419 

429 

43 
44g 
450 

460 

AT 
489 

499 

SPL 
519 

526 

530 

DATA 177,253 : REM LDA ($FD),Y 

DATA 299,251 : REM CMP ($FB),Y 

DATA 176,13 : REM BCS $D 

DATA 72 : REM PHA 

DATA 177,251 : REM LDA ($FB),Y 

DATA 145,253 : REM STA ($FD),Y 

DATA 164 : REM PLA 

DATA 145,251 : REM STA ($FB),Y 

DATA 169,1 : REM LDA #4991 

DATA 141,53,3 : REM STA $335 

as REM SECOND-FIRST 

DATA 299 : REM INY 

DATA 262 : REM DEX 

DATA 298, 233 : REM BNE $E9 

DATA 173,53,3 : REM LDA $335 

DATA 246,5 : REM BEQ $5 

DATA 296,52,3 : REM DEC $334 

DATA 298,215 : REM BNE $D7 

oe REM FINISH 

DATA 96 : REM RTS 

REM ** SET UP VECTORS «+ 

REM $FB=$C509, $FD=$C561 

POKE 251,0 : POKE 252,197 

POKE 253,1 : POKE 253,197 

REM ** SET UP SCREEN AND ARRAY ** 

PRINT CHR$(147) 

PRINT "*x** MACHINE CODE BUBBLE SORT *#*#*" 

PRINT: PRINT 

INPUT"NUMBER OF ELEMENTS IN ARRAY ";N 

POKE 829,N : REM LENGTH OF ARRAY 

AT $334 

FOR LOOP=@ TO N—-1 

PRINT" INPUT ELEMENT ";LOOP+1; 

INPUT A 

POKE TABLE+LOOP, A 

NEXT LOOP 

REM ** CALL CODE THEN PRINT SORTED TABLE *-* 



548 SYS CODE 

558 PRINT"SORTED VALUES ARE AS FOLLOWS" 

560 FOR LOOP=@ TO N-1 

576 PRINT PEEK(TABLE+LOOP) 

58 NEXT LOOP 

After POKEing the machine code data into memory at $CQ@, two 
zero page vectors are created to hold the address of the TABLE 
and TABLE+1 (lines 379 to 399). The program then requests (in 
BASIC!) the number of elements in the array, which should be a 
series of integer values less than 256. These are then POKEd into 
memory (lines 459 to 510). The machine code begins by decrement- 
ing the length of array byte by one.(line 19M), because the last 
element in the array will have no element beyond it to swap with. 
The swap flag is then cleared (line 13@) and the main loop entered 
using the X register to count the iterations. 
The LOOP begins by loading the data byte into the accumulator 

(line 160) and comparing it with the one immediately preceding it. 
If the byte+1 is greater than the byte, the Carry flag will be set and 
no swap required, in which case the branch to SECOND-FIRST is 
executed (line 189). 

If a swap is required, the second byte is saved, pushing it on to 
the hardware stack. The first byte is then transferred to the second 
byte’s position (lines 209 and 210) and the accumulator is restored 
from the stack and transferred to the position of the first byte (lines 
220 to 230). To denote that a swap has occured, the swap flag is set 
(lines 249 and 250). The index and counters are then adjusted (lines 
270 and 28@) and the loop continues until all the array elements 
have been compared. Upon completion of a full pass through the 
array, the swap flag is checked. If it is clear, no exchanges took 
place during the last pass, so the data list is now ordered and the 
sort finished (line 300 and 319). If the flag is set. the length of array 
byte 1s decremented and the procedure repeated once more (lines 
320 and 330). On return from the SYS call, the now ordered list is 
printed out to the screen. 

Line-by-line 

A line-by-line description of Program 16 now follows: 

line 169 : subtract one from the length of the array 

line 118 : entry for BUBBLE-LOOP 

line 128 : initialize indexing. register 

line 139 : clear the swap flag 

line 148 : get the array size into the X register to act as a loop 

counter 
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line 159 : entry for LOOP 

line 169 : get the byte at the byte+1 position 

line 17% : compare it with the previous byte 

line 18% : branch to SECOND-FIRST if the second byte 

(byte+1) is larger than the first (byte) 

line 198 : save accumulator on hardware stack 

line 299 : get first byte at ‘byte’ position 

line 219 : place in current location (byte+1) 

line 22@ : restore accumulator 

line 236 : and complete swap of bytes 

line 249 : load accumulator with 1 

line 25 : and set the swap flag to denote that a swap has been 

performed 

line 26% : entry for SECOND-FIRST 

line 276 : move index on to next byte 

line 286 : decrement loop counter 

line 29% : branch to LOOP until done 

line 369 : get the swap flag into the accumulator 

line 319 : if clear, branch to FINISH 

line 32 : decrement outer counter 

line 338 : branch to BUBBLE-LOOP until all done 

line 335 : entry to FINISH 

line 348 : back to calling routine 

Projects 

Rewrite the BASIC sections of the program to make it a complete 
machine code routine. 

Adapt the sorting routine to handle 16-bit numbers. 



8 Software Stack 

One of the criticisms of the 6510 processor is that it has a very 
limited set of operation instructions—only 56, though addressing 
modes extend this to 152 functions. With some thought, however, 
it is possible to implement operations present on other processors, 
such as the Z80 or 6809, and build up a set of very useful sub- 
routines which can ultimately be strung together to perform quite 
sophisticated operations, as well as making the conversion of pro- 
grams written for other processors much easier. 

The routine described below mimics an instruction in the 6809 
instruction set which allows the contents of up to eight registers to 
be pushed on to a stack in memory. This stack is often known as the 
user stack. I said ‘up to eight registers’, because the ones to be 
pushed can be selected, this being determined by the bit pattern of 
the byte after the user stack subroutine call. But more of that in a 
moment. First, which registers are we going to push? Obviously all 
the processor registers: the Program Counter, Status register, 
accumulator, and Index registers. The three remaining ones, we 
will implement as three two-byte ‘psuedo-registers’ from the user 
area of zero page. These are: 

PRlL : $88 and $81 

PR2 : $82 and $83 

PRS : $84 and $84 

This now enables us to save the contents of these locations when 
required. ; 

As already stated, the byte after the user stack subroutine call 
determines by its bit pattern which registers are to be pushed, as 
follows: 

bit @ : pseudo-register 1 

bit 1 : pseudo-register 2 

bit 2 : pseudo-register 3 “ 
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bit 3 Y register 

bit 4 X register 

bit 5 accumulator 

bit 6 Status register 

bit 7 Program Counter 

The rule here is that if the bit is set, the related register is pushed. 
Thus the instructions: 

JSR USER-STACK 

.BYTE $FF 

would push all registers on to the user stack, the embedded byte 
being $FF or 11111111. Alternatively, the coding: 

JSR USER-STACK 

.BYTE $1E 

where $1E = 99911119 would push only the accumulator, Status 
and Index registers. Perhaps at this point a question is running 
through your mind: ‘won’t the embedded byte cause my program 
to crash?’. That’s true on face value, but what we do is get the user 
Stack coding to move the Program Counter on one byte, to pass 
over it, as Program 17 shows: 

Program 17 

16 REM ** USER STACK «+ 

26 CODE=-49152 

30 FOR LOOP=% TO 116 

48 READ BYTE 

56 POKE CODE+LOOP, BYTE 

6% NEXT LOOP 

TO : 

88 REM ** M/C DATA ** 

99 DATA 8 : REM PHP 

196 DATA 72 - REM PHA 
116 DATA 138,72 : REM TXA : PHA 

126 DATA 152,72 : REM TYA : PHA 

136 DATA 186 : REM TSX 

146 DATA 168,6 : REM LDY #$@6 

156 :: REM PUSH—ZERO-PAGE 

168 DATA 185,138,@ : REM LDA $@98A,Y 



176 

189 

199 

26 
216 

226 

236 

246 

250 
266 

276 

286 

299 
3D 
31p 

326 

336 

349 
350 
366 

376 

386 

396 

40 
Alp 
420 

430 

449 

450 

460 

AT 
489 

499 

SBD 
516 
526 

53 
546 

55 
569 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

T2 

136 

268 , 249 

204,5,1 

189;5,1 

133,139 

268 ,3 

204,6,1 

189,6,1 

133,149 

169,135 

153,141 

177,139 

153,142 

169,8 

133,143 

136 

198,252 

38,142 

144,16 

189,6,1 

145,251 

136 

56,141 

16,6 

189,5,1 

145,251 

136 

262 

38,141 

144,1 

262 

198,143 

268 , 226 

56 

152 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

PHA 

DEY 

BNE 

INC 

LDA 

STA 

BNE 

INC 

$F9 
$105, X 
$105, X 

$8B 

$23 
$166, xX 

PC—LOW 

LDA 

OTA 

LDA 

OTA 

LDA 

STA 

LDA. 

STA 

DEY 

DEC 

$106 ,X 

$8C 

#P87 

$8D 

($8B) ,Y 

$8E 

#$08 

$8F 

BFC 

ROTATE-BYTE 

ROL 

BCC 

LDA 

OTA 

DEY 

BIT 

BPL 

LDA 

STA 

DEY 

$8E 

$1 
$106 ,X 
($FB),Y 

$8D 

$26 
$105, X 
($FB) ,Y 

BIT—CLEAR 

DEX 

ROL 

BCC 

DEX 

OVER 

DEC 

BNE 

SEC 

TYA 

$8D 

$01 

$8F 

$E2 

93 



5768 DATA 11,251 : REM ADC $FB 

580 DATA 133,251 : REM STA $FB 

598 DATA 144,2 : REM BCC $62 

600 DATA 238,252 : REM INC $FC 

61g :: REM CLEAR-—STACK 

620 DATA 162,6 : REM LDX #9 

636 :: REM REPEAT 

646 DATA 194 : REM PLA 

650 DATA 149,139 : REM STA $8B,xX 

666 DATA 232 : REM INX 

676 DATA 224,6 : REM CPX #$@6 

6808 DATA 268,248 : REM BNE $F8 

699 DATA 194,168 : REM PLA : TAY 

700 DATA 14,176 : REM PLA : TAX 

716 DATA 164 : REM PLA 

720 DATA 4G : REM PLP 

730 DATA 96 - REM RTS 

T46 :: REM TEST—ROUTINE 

756 DATA 169,24¢ : REM LDA #$F@ 

766 DATA 162,15 : REM LDX #$@F 

776 DATA 168,255 : REM LDY #$FF 

788 DATA 32,6,192 : REM JSR $CG6¢ 

796 DATA 255 : REM EMBEDDED-BYTE 

886 DATA 96 : REM RTS 

81g 

826 REM ** SET UP ZERO PAGE AND FREE RAM ** 

830 PRINT CHR$( 147) 

848 POKE 251,12 POKE 252,197 

856 FOR N=139 TO 144 : POKE N,N : NEXT 

866 FOR N=5#432 TO 59448 : POKE N,@ : NEXT 

876 

8868 SYS 49258 : REM SYS TEST-ROUTINE 

896 

999 REM *«* READ RESULTS «** 

918 FOR LOOP-58432 TO 56443 

928 READ NAME$ 

936 PRINT NAME$: 

948 PRINT PEEK(LOOP) 

958 NEXT LOOP 
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978 DATA "ZERO PAGE ","ZERO PAGE+1" 

988 DATA "ZERO PAGE+2","ZERO PAGE+3" 

99% DATA "ZERO PAGE+4","ZERO PAGE+5" 

1000 DATA "Y REGISTER ","X REGISTER " 

161% DATA "ACCUMULATOR", "STATUS ii 

1628 DATA "PC LOW " "PC HIGH 

The problem to solve next is that of where to place the user stack. 
This will depend on your own requirements, so to make the whole 
thing flexible, a vectored address in the bytes at $FB and $FC 
contains the stack address. In the program listed above, this is 
$C512 (line 840). The vectored address is, in fact, the address + 12. 
This is because the stack is pushed in reverse (decreasing) order. 

When executed, the coding first pushes all the processor 
registers on to the hardware stack and moves the stack pointer 
across into the X register (lines 9 to 140). Next, the six zero page 
pseudo-registers are pushed there (lines 159 to 199). The return 
address from the subroutine call is then incremented on the stack, 
using the contents of the X register (stack pointer) to access it (lines 
2 to 240). The two bytes that form the RTS address are copied 
into pseudo-register 1 (now safely on the hardware stack) to form a 
vector though which the embedded data byte can be loaded into 
7 accumulator and then saved for use in zero page (lines 259 to 
319). 

In line 280, a pre-defined byte was loaded into the accumulator 
and saved in zero page. This byte holds a bit code that will inform 
the program as to whether the register being pulled from the 
hardware stack for transfer to the software stack is one or two bytes 
long. The byte value, $87, is 10990111 in binary and the set bits 
correspond to the two-byte registers, the Program Counter and the 
three pseudo-registers. By rotating this byte left after each pull 
operation and using the BIT operation, the Negative flag can be 
tested to see if a further pull is needed. All this and the copy 
hardware stack/push software stack is handled by lines 329 to 559. 

Finally, the registers and pseudo-registers are restored to their 
original values (lines 620 to 730). The test routine between lines 750 
and 80 shows the way the program is used. When run, the test 
procedure produces the following output on the screen: 

ZERO PAGE 139 

ZERO PAGE+1 149 

ZERO PAGE+2 141 

ZERO PAGE+3 142 

ZERO PAGE+4 143 

ZERO PAGE+5 144 

Y REGISTER ROO 

X REGISTER 15 
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ACCUMULATOR 249 

STATUS 

PC LOW 

PC HIGH 

As can be seen, the zero page bytes contain the values POKEd into 
them by the FOR...NEXT loop of line 839 while the accumulator 
and Index registers display their seeded values (lines 759 to 779). 
The Program Counter holds 192 * 256 + 115, or $C073, which was 
the point in the program where its contents where pushed at line 
780. 

This program could be extended to provide a routine to perform 
a pull user stack, to copy the contents of a software stack into the 

1'76 

115 

192 

processor and pseudo-registers. 

Line-by-line 

A line-by-line description of Program 17 follows: 

line 9 

line 149 

line 159 

line 166 

line 172 

line 189 

line 199 

line 26¢ 

line 219 

line 226 

line 232 

line 249 

line 259 

line 269 

line 279 

line 289 

line 299 

line 3£9 

line 319 

line 329 

line 332 

line 349 

line 359 

save all processor registers on hardware stack 

move stack pointer into X for index 

entry for PUSH-ZERO-PAGE 

get zero page byte 

push on to hardware stack 

: .decrement index 

branch to PUSH-ZERO-PAGE until done 

increment low byte of RTS address 

get it from stack 

and save in zero page 

if not equal branch to PC-LOW 

else increment page byte of RTS address 

entry for PC-LOW 

get high byte of RTS address 

and save it to form vector 

get bit code to indicate register size 

and save it 

get embedded code after subroutine call 

and save it 

eight bits n embedded byte to test 

save bit count 

decrement index to $FF 

decrement high byte of vectored address at $FB 



line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

366 

370 

386 

399 

ADD 
41g 
426 

43g 
449 

45 
460 

AT 
489 
499 

56D 
516 
526 

53 
546 

55 
566 

576 
586 

599 
6D 
619 

626 

636 

646 

656 

669 
670 

68 
699 

730 

740 

75D 
78D 

79P 

809 

entry for ROTATE-BYTE 

move next coded bit into Carry flag 

if bit clear skip it, branch to BIT-CLEAR 

otherwise get byte from stack 

save it on user stack 

decrement index 

is it a two byte register? 

no, so branch to BIT-CLEAR 

yes, so get the second byte from the stack 

and save it on the user stack 

decrement index 

entry for BIT-CLEAR 

decrement hardware stack index 

move bit of register code into Carry flag 

if clear, branch to OVER 

else decrement hardware stack index 

entry for OVER 

decrement bit counter 

and repeat until all done 

set Carry flag 

move user stack pointer into accumulator 

add to low byte of address 

and save 

branch to CLEAR-STACK if carry is clear 

else increment high byte of address 

entry for CLEAR-STACK 

initialize X register 

entry for REPEAT 

pull byte from stack 

and restore zero page 

increment index 

all bytes restored? 

no, branch to REPEAT 

yes, restore all registers 

back to calling routine 

entry for TEST-ROUTINE 

seed registers 

call user stack routine 

embedded byte 

back to BASIC 
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BINARY INS AND OUTS 

Sometimes when printing the values of registers, it is necessary to 
have their binary representation—for example, in the case of the 
Status register, because we are concerned with the state of the 
particular bits within it, rather than the overall value of the con- 
tents. Program 18 provides a short routine which produces such a 
binary output from a decimal input. This could easily be adapted 
for use within a program such as the software stack given above. 

Program 18 

19 REM ** PRINT ACCUMULATOR AS A ** 

26 REM ** BINARY NUMBER ** 

36 CODE=49152 

40 FOR LOOP-@ TO 17 

5@ READ BYTE 

68 POKE CODE+LOOP, BYTE 

76 NEXT LOOP 

86 : 

99 REM ** M/C DATA «+ 

108 DATA 162,96 : REM LDX #$@8 

116 DATA 72 : REM PHA 

120 :: REM NEXT-BIT 

138 DATA 164 : REM PLA 

148 DATA 19 : REM ASL A 

158 DATA 72 : REM PHA 

166 DATA 169,48 : REM LDA #4$3¢ 

176 DATA 15,6 - REM ADC #$6¢ 

186 DATA 32,216,255 : REM JSR $FFD2 

198 DATA 262 : REM DEX 

206 DATA 268,243 : REM BNE $F3 

218 DATA 194 : REM PLA 

226 DATA 96 : REM RTS 

236 

248 REM ** SET UP DEMO RUN «+ 

258 REM LDA $FB : JSR $C@ZG : RTS 

260 POKE 828,165 :POKE 821,251 

276 POKE 822,32 : POKE 823,9 

280 POKE 824,192 : POKE 825,96 

296 PRINT CHR$( 147) PRINT 

360 INPUT "INPUT A NUMBER "; A$ 



318 A=VAL(A$) 

326 POKE 251,A 

336 PRINT"BINARY VALUE IS :"; 

346 SYS 82¢ 

Line-by-line 

The following line-by-line description should make the program’s 
operation clear. It is simply moving each bit of the accumulator in 
turn into the Carry flag position, using the arithmetic shift left 
operation (see Figure 8.1) and adding its value to the ASCII code 
for Q, i.e. 

accumulator=48+carry 

‘e|—{or| [oso] s]sa[or[on)— 
B7 \ 
86/85 | 64] 63 |B | 61] Bo] o 

1 +ASC(‘B”)= ASC(“1”). 

8 + ASC(“‘8”) = ASC(“‘B”) 

Figure 8.1 Arithmetic shift left 

If the Carry flag is clear, the result will be 48+@=48, so the 
CHROUT routine will print a @. On the other hand, if the Carry 
flag is set, the result of the addition will be 48+1=49, so a 1 will be 
printed by CHROUT. 

line 18% : eight bits in a byte 

line 119 : push accumulator on to stack 

line 126 : entry for NEXT-BIT 
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line 13@ : restore accumulator 

line 149 : shift bit 7 into carry 

line 15g : save shifted accumulator on stack 

line 168 : get ASCII code for @ 

line 176 : add carry 

line 18 : print either @ or 1 

line 19% : decrement bit counter 

line 288 : do NEXT-BIT until complete 

line 21 : pull stack to balance push 

line 228 : back to BASIC 

COME IN 

By reversing this process, it is possible to input a number directly 
into the accumulator in binary form as Program 19 shows. The 
program scans the keyboard for a pressed 1 or @ key and the Carry 
flag is set or cleared respectively. A copy of the accumulator, 
initially cleared, is kept on the hardware stack and restored each 
time round to rotate the carry bit into it using the rotate left 
operation (see Figure 8.2). The loop is executed eight times, once 
for each bit, and on completion, the accumulator holds the 
hexadecimal value of the binary number. 

[87 [6 [Bs | ba) 62 | ez |81| Bo 

| 
NEN geo” ete i 

KL 

'56|85| 84/53) 52/61] 65] ¢ 

Figure 8.2. Input a number directly into the accumulator 



Program 19 

1g 
20 
3 
4p 
5D 
68 
7D 
8 
9 
1P 
119 

129 

139 

146 

159 

169 

176 
18¢ 

199 

20 
210 

229 
230 

240 

259 
269 
276 
286 

298" 
3D 
31g 

326 

339 
346 

356 

366 

37, 
389 

REM ** INPUT A HEX NUMBER IN BINARY FORM ** 

CODE=49152 

FOR LOOP=@ TO 41 

READ BYTE 

POKE CODE+LOOP, BYTE 

NEXT LOOP 

REM ** M/C DATA *+# 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

162,8 

169, 9 

T2 

24 

134,243 

32,228,255 

246,251 

261,49 

246 ,7 

261,48 

268 , 243 

24 

144,1 

56 

8 

32,216,255 

4g 
194 

A2 

72 

166,253 

262 

288 , 224 

194 

133,251 

96 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

>: REM 

REM 

REM 

REM 

REM 

REM 

REM 

>: REM 

LDX #$8 

LDA #$60 

PHA 

CLC 

MAINLOOP 

STX $FD 

LOOP 

JSR $FFE4 

BEQ $FB 

CMP 4$31 

BEQ $07 

CMP #$39¢ 

BNE $F3 

CLC 

BCC $1 

SET 

SEC 

OVER 

PHP 

JSR $FFD2 

PLP 

PLA 

ROL A 

PHA 

LDX $FD 

DEX 

BNE $E¢ 

PLA 

STA $FB 

RTS 
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396 : 

46 PRINT CHR$(147) 

418 PRINT 

426 PRINT" INPUT YOUR BINARY NUMBER :"; 

430 SYS CODE 

446 PRINT PEEK(251) 

Line-by-line 

A line-by-line explanation of Program 19 now follows: 

line 9 : eight bits to read 

line 169 : clear accumulator—shift register 

line 119 : push it on to stack 

line 12@ : clear the Carry flag 

line 13% : entry for MAINLOOP 

line 148 : save X register 

line 158 : entry for LOOP 

line 168 : jump to GETIN 

line 1768 : if null, branch to LOOP 

line 188 : is it ASC“1’? 

line 19% : yes, branch to SET 

line 260 : is it ASC‘@’? 

line 219 : no, branch to LOOP 

line 228 : yes, clear Carry flag 

line 23 : and force branch to OVER 

line 248 : entry for SET 

line 258 : set Carry flag 

line 268 : entry for OVER 

line 276 : save Carry flag on stack 

line 286 : print @Qor1 

line 299 : restore Carry flag 

line 38% : restore accumulator 

line 318 : move Carry flag into bit @ 

line 328 : save accumulator 

line 338 : restore bit count 

line 348 : decrement it by one 

line 358 : branch to MAINLOOP until all done 

line 368 : restore accumulator 

line 378 : save in zero page 

line 388 : back to BASIC 



Project 

Convert the software stack program to print the binary values of 
each register upon completion. 

Modify it further to allow register values to be seeded into the 
software stack test routine, using the binary input routine. Note 
that you should only attempt seeding the accumulator and Index 
registers. Why? 
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9 Move, Filland Dump 

MOVE IT! 

The ability to move blocks of memory around within the bounds of 
the memory map is a necessity. When manipulating hi-resolution 
graphics, for example, large blocks of memory need to be moved 
around quickly and smoothly. The program could also be used to 
relocate sections of machine code rather than rewriting the assemb- 
ler that created them—assuming, of course, that your code has 
been designed to make it portable. 

At first sight, it may seem that the simplest method of moving a 
block of memory is to take the first byte to be moved and store it at 
the destination address, take the second byte and place it at the 

destination address + 1, and so forth. There would be no problem 
here if the destination address was outside the source address, but 
consider what would happen if the destination address was within 
the bounds to be searched by the source address—that is, the two 
regions overlapped. Figure 9.1 illustrates the problem using this 
straightforward method to move a block of five bytes forward by 
Just a single byte, relocating the five bytes from $C5@ to $CS5@1. 

Using the obvious method, the first character, ‘S’, is moved from 
$C50M to $C501 thereby overwriting the ‘A’. The program then 
takes the next character at location START+1 ($CS@1), the ‘S’ that 
has just been written there, and places it at START+2 ($CS5@2) 

START $CS500 

$C501 

$C502 

$C503 

$C504 

$C505 

Figure 9.1 The overwriting move sequence 



overwriting the ‘R’. As you can see, the end result is SSSSS—the 
whole block is full of ‘S’s—not the required effect! 

To avoid this problem, the MOVE routine acts ‘intellegently’ 
and if it calculates that an overwrite would occur, performs the 
movement of bytes in the reverse order, starting at the highest 
address and moving down the memory map as Figure 9.2 shows. 

START $C500 

$C501 

$C502 

$C503 

$C504 

$C505 

Ist 2nd 3rd Ath Sth 

Figure9.2 The correct move sequence 

Program 20 

1 REM ** MEMORY BLOCK MOVE RQUTINE ** 

26 REM ** 189 BYTES LONG WHEN ASSEMBLED ** 

36 REM ** PLUS 5 DATA BYTES IN ZERO PAGE ** 

46 CODE=49152 

56 FOR LOOP-# TO 168 

6@ READ BYTE 

78 POKE CODE+LOOP, BYTE 

86 NEXT LOOP 

96 : 

196 REM ** M/C DATA * 

116 DATA 56 : REM SEC 

129 DATA 165,251 : REM LDA $FB 

136 DATA 229,253 : REM SBC $FD 

146 DATA 179 : REM TAX 

158 DATA 165,252 : REM LDA $FC 

166 DATA 229,254 : REM SBC $FE 

176 DATA 168 : REM TAY 

188 DATA 138 : REM TXA 

198 DATA 295,52,3 : REM CMP $334 

260 DATA 152 : REM TYA 

218 DATA 237,53,3 : REM SBC $335 
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220 DATA 176,2 : REM BCS $2 

236 DATA 144,35 : REM BCC $23 

246 :: REM MOVE-LEFT 

256 DATA 162,¢ : REM LDY #$@¢ 

266 DATA 174,53,3 > REM LDX $335 

276 DATA 248,14 : REM BEQ $@E 

280 :: REM LEFT—COMPLETE—PAGES 

296 DATA 177,253 : REM LDA ($FD),Y 

300 DATA 145,251 : REM STA ($FB),Y 

316 DATA 26¢ : REM INY 

326 DATA 268,249 : REM BNE $F9 

336 DATA 236,254 : REM INC $FE 

346 DATA 236,252 : REM INC $FC 

356 DATA 262 : REM DEX 

366 DATA 268,242 - REM BNE $F2 
S70. = REM LEFT—PARTIAL-—PAGE 

3808 DATA 174,52,3 : REM LDX $334 

399 DATA 246,8 : REM BEQ $#8 

AGO :: REM LAST-LEFT 

416 DATA 177,253 : REM LDA ($FD),Y 

426 DATA 145,251 : REM STA ($FB),Y 

436 DATA 2692 : REM INY 

446 DATA 292 : REM DEX 

45¢ DATA 268,248 : REM BNE $F8 

460 :: REM EXIT 

476 DATA 96 : REM RTS 

486 

499 :: REM MOVE-RIGHT 

506 DATA 24 : REM CLC 

518 DATA 173,53,3 : REM LDA $335 

5208 DATA 72 : REM PHA 

536 DATA 161,254 : REM ADC $FE 

546 DATA 133,254 : REM STA $FE 

556 DATA 24 : REM CLC 

560 DATA 194 : REM PLA 

576 DATA 161,252 : REM ADC $FC 

586 DATA 133,252 : REM STA $FC 

598 DATA 172,52,3 : REM LDY $334 

600 DATA 246,9 - REM BEQ $69 



616 :: REM TRANSFER 

620 DATA 136 : REM DEY 

636 DATA 177,253 : REM LDA ($FD),Y 

646 DATA 145,251 : REM STA ($FB),Y 

656 DATA 192,¢ : REM CPY #$@¢ 

660 DATA 268,247 - REM BNE $F7 

670 :: REM RIGHT—COMPLETE-—PAGES 

680 DATA 174,53,3 : REM LDX $335 

698 DATA 246,221 : REM BEQ $DD 

TOO :: REM UPDATE 

716 DATA 198,254 : REM DEC $FE 

726 DATA 198,252 : REM DEC $FC 

730 :: REM PAGE 

749 DATA 136 :. REM DEY 

756 DATA 177,253 : REM LDA ($FD),Y 

760 DATA 145,251 : REM STA ($FB),Y 

776 DATA 192,¢ : REM CPY #$6¢ 

786 DATA 268,247 : REM BNE $F7 

796 DATA 262 : REM DEX 

806 DATA 268,249 : REM BNE $F¢ 

8168 DATA 96 : REM RTS 

826 : 

8368 REM ** SET UP VARIABLES «** 

846 PRINT CHR$(147) 

8568 PRINT" xxx MEMORY MOVER V1.1 «*#" 

866 INPUT"START ADDRESS eS 

876 INPUT"DESTINATION ve 

8868 INPUT"LENGTH IN BYTES ";L 

898 : 

996 S1=INT(S/256) : S2=-S—(S1*256) 
91M D1=INT(D/256) : D2=D-(D1*256) 
924 L1=-INT(L/256) : L2=-L—(L1*256) 
936 : 

940 POKE 251,D2 : POKE 252,D1 

958 POKE 253,S2 : POKE 254,S1 

968 POKE 826,L2 : POKE 821,L1 

O76 : 

988 REM *«* SET UP DEMO «« 

998 FOR N=@ TO 15 

1008 POKE 8284N,N 
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1618 POKE 966+N,¢ 

1620 NEXT N 

1930 : 

1848 SYS CODE 

1g56 : 

1966 REM ** PRINT THE RESULTS! *+* 

1976 FOR N=6 TO 15 

1986 PRINT PEEK(828:+N);" Le: 

19998 PRINT PEEK(9@+N) 

116% NEXT N 

Bytes reserved: 

251-252 ($FB—-$FC ) : Destination vector 

253-254 ($FD-$FE ) - Source vector 

829-821 ($334-$335) : Length of block to be 

moved 

When run, the BASIC test requests three inputs: the START 
address of the memory block to be moved, its DESTINATION 
address and its LENGTH in bytes. All values should be entered as 
decimal values. Thus, to move a 1K block of memory from 49152 to 
56000, the values to input are: 

START ADDRESS > 49152 

DESTINATION : 56600 

LENGTH IN BYTES 124 

For reasons already explained, the coding begins by ascertaining 
whether a left-move or a right-move operation is required. It 
calculates this (lines 119 to 210) by subtracting the source address 
from the destination address. If the result is less than the number of 
bytes to be moved, overwriting would occur using the MOVE- 
LEFT routine, so the MOVE-RIGHT coding is called (line 239). If 
the memory locations do not overlap, the quicker MOVE-LEFT 
routine is selected (line 220). For further description purposes we 
will examine the MOVE-LEFT routine (lines 240 to 470). 
Memory movement is performed in two phases: complete 

memory pages are first relocated, and then any remaining bytes in 
the final partial page are moved. These details are held in the 
length of block bytes $334 and $335. 

The routine begins by loading the number of pages to be moved 
into the X register (line 269), branching to LEFT-PARTIAL- 
PAGE if it is zero (line 280). Transfer of data bytes is completed 
using post-indexed indirect addressing through the zero page 
vectors. When all the whole pages have been transferred, any 



remaining bytes are transferred by the LEFT-PARTIAL-PAGE 
loop (lines 379 to 459). 

The MOVE-RIGHT routine is similar in operation, except that 
it starts at the highest memory location referenced and moves down 
through memory, the highest address of the source and destination 
being calculated in lines 509 to 659. 

Line-by-line 

A line-by-line description of Program 20 now follows: 

line 116 : set Carry flag 

line 128 : get low byte destination address 

line 13 : subtract low byte source address 

line 149 : transfer result into X register 

line 159 : get high byte destination address 

line 16 : subtract high byte source address 

line 17 : save result in X register: 

line 189 : restore result of low byte subtraction 

line 19% : compare it with low byte of length 

line 28% : restore result of high byte subtraction 

line 219 : subtract high byte of length from it 

line 229 : if Carry flag set, branch to MOWE-LEFT 

line 236 : else branch to MOVE-RIGHT 

line 249 : entry for MOVE-LEFT 

line 258 : initialize index 

line 26% : get number of pages to be moved 

line 278 : if zero, branch to LEFT-PARTIAL-PAGE 

line 289 : entry for LEFT-COMPLETE-PAGES 

line 298 : get source byte 

line 368 : store at destination 

line 319 : increment index 

line 326 : branch to LEFT-COMPLETE-PAGES until page 

done 

line 33f : increment source page 

line 348 : increment destination page 

line 35% : decrement page counter 

line 368 : branch to LEFT-COMPLETE-PAGES until all moved 

line. 37% : entry for LEFT-PARTIAL-PAGE 

line 388 : get number of bytes on page to be moved 

line 39% : if zero, branch to EXIT 
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line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

46D 
416 

426 

436 

446 

459 

466 

ATO 

A496 

506 
51g 

526 

530 

54g 

550 

566 

576 

586 

599 

606 
619 

626 

630 

646 

652 

660 

670 

686 

696 

6) 
716 

720 

730 

T40 

756 

760 
77 

78D 

entry for LAST-LEFT 

get source byte 

Store at destination 

increment index 

decrement byte count 

branch to LAST-LEFT until done 

entry for EXIT 

back to BASIC 

entry for MOVE-RIGHT 

clear Carry flag 

get number of pages to be moved 

save on stack 

add it to source high byte 

and save result 

reclear Carry flag 

get length high byte off stack 

add it to destination high byte 

and save the result 

get low byte of length into Y register 

branch to RIGHT-COMPLETE-PAGES if zero 

entry for TRANSFER 

decrement index 

get source byte 

and copy to destination 

is Y = 9? 

no, branch to TRANSFER 

entry for RIGHT-COMPLETE-PAGES 

get number of pages to be moved 

if zero, branch to EXIT 

entry for UPDATE 

decrement number of pages to do 

and also destination 

entry for PAGE 

decrement index 

get source byte 

copy to destination 

is Y = @? 

no, branch to PAGE 



line 79% : decrement page counter 

line 8@@ : if not zero, branch to UPDATE 

line 81% : return to BASIC 

FILL 

Program 21 provides the BASIC loader listing to implement a 
memory FILL routine, which is particularly useful for clearing 
sections of RAM with a pre-determined value. 

Program 21 

19 REM *«* MEMORY FILL ROUTINE «+ 

26 REM ** 38 BYTES LONG WHEN ASSEMBLED ** 

306 REM ** PLUS 5 DATA BYTES IN ZERO PAGE ** 

4% CODE=49152 

5@ FOR LOOP=6 TO 32 

66 READ BYTE 

70 POKE CODE+LOOP, BYTE 

88 NEXT LOOP 

96 : 

166 REM «* M/C DATA *« 

118 DATA 165,255 : REM LDA $FF 

126 DATA 166,252 : REM LDX $FC 

136 DATA 246,12 : REM BEQ $@C 

146 DATA 168,90 : REM LDY #$9¢ 

156 :: REM COMPLETE-—PAGE 

166 DATA 145,253 : REM STA ($FD),Y 

176 DATA 269 : REM’ INY 

186 DATA 298,251 : REM BNE $FB 

198 DATA 238,254 : REM INC $FE 

206 DATA 292 : REM DEX 

219 DATA 298,246 : REM BNE $F6 

226 :: REM PARTIAL—PAGE 

236 DATA 166,251 : REM LDX $FB 

248 DATA 246,8 : REM BEQ $98 

2508 DATA 168,9 : REM LDY #$¢¢ 

266 :: REM AGAIN 

276 DATA 145,253 : REM STA ($FD),Y 
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286 DATA 26¢ : REM INY 

296 DATA 22 : REM DEX 

306 DATA 288,258 : REM BNE $FA 

316 :: REM FINISH 

326 DATA 96 : REM RTS 

336 

346 REM *«* GET DETAILS «+ 

358 PRINT CHR$(147) 

366 INPUT"FILL DATA ie 

376 INPUT"START ADDRESS SS 

389 INPUT"NUMBER OF BYTES :";L 

398 : 

466 S1=INT(S/256) : S2=S—(S1*256) 

416 L1=INT(L/256) : L2=L—(L1*256) 

A426 

436 POKE 251,L2 : POKE 252,L1 

446 POKE 253,S2 : POKE 254,S1 

456 POKE 255,F 

466 

476 SYS CODE 

Bytes reserved: 

201-252 ($FB-$FC) : number of bytes to be filled 

203-254 ($FD—-$FE ) : start of address of bytes to be 

filled 

2905 (SFF ) : value to fill with 

When executed, the machine code expects to find the fill value, the 
start address and the amount of memory to be filled, in five zero 
page bytes of memory from $FB. Input of each of these is handled 
by a few lines of BASIC from line 369. To clear a 1K block of RAM 
from $C5@9 with zero, the following information should be entered 
in response to the 64’s prompt: 

FILL DATA : £ 

START ADDRESS : 49152 

NUMBER OF BYTES : 1824 

The FILL routine works in a similar manner to the MOVE routine 
described above, dealing with whole and partial pages separately. 
The main fill loop is embodied in lines 159 to 309. 



Line-by-line 

A line-by-line description of the program now follows: 

line 119 : get data with which to fill 

line 12 : get number of complete pages to be filled 

line 139 : if zero, branch to PARTIAL-PAGE 

line 149 : initialize index 

line 158 : entry for COMPLETE-PAGE 

line 169 : fill byte 

line 176 : increment index 

line 188 : branch to COMPLETE-PAGE until all of page is 

done 

line 19% : increment page 

line 28% : decrement page counter 

line 21 : branch to COMPLETE-PAGE until all pages are 

filled 

line 228 : entry for PARTIAL-PAGE 

line 23 : get number of bytes left to be filled 

line 249 : if zero, branch to FINISH 

line 259 : else clear index 

line 26 : entry for AGAIN 

line 279 : fill byte 

line 289 : increment index 

line 299% : decrement bytes left to do count 

line 39% : branch to AGAIN until all filled 

line 318 : entry for FINISH 

line 328 : back to BASIC 

A MEMORY DUMP 

A hex and ASCII dump of memory can be extremely useful, not 
only within machine code programs, but also when used from a 
BASIC program. Most often it provides information about the way 
a program is manipulating numeric and string variables and tables. 
Figure 9.3 shows the type of dump produced by the routine: 
twenty-four lines of eight bytes each. The example shows some text 
stored in memory. Each line starts with the current address, fol- 
lowed by the eight bytes stored in memory from that point. The far 
right of the listing provides the ASCII equivalents of each byte. 
Any non-ASCII character (that is, one greater than $7F) or control 
code (those less than $20) is represented by a full stop. 
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C108 

C110 

C118 

Ci2o 

Ci28 

C130 

C138 

Ci40 

Ci48 

Ciso0 

Cis8 

C160 

Cié68s 

C170 

C178 

C180 

Ciss 

C190 

C198 

C1A0 

CiA8 

C1B0 

CiBs 

Cico 

C1c8 

CiDoO 

CiD&e 

CiEO 

C1E8 

C1FO 

CiF8 

C200 

C208 

C210 

C218 

C220 

C228 

C230 

C238 

C240 

C248 

C250 

C258 

C260 

C268 

C270 

C278 

C280 

C288 

C290 

C298 

C2A0 

C?2A8 

04 

61 

20 

20 

74 

7O 

65 

65 

6F 

77 

48 

63 

69 

6E 

65 

&F 

20 

6F 

73 

8D 

54 

&& 

6F 

20 

8D 

49 

63 

65 

&1 

65 

&7 

73 

68 

72 

6E 

635 

6F 

65 

68 

20 

&F 

20 

zO 

74 

20 

41 

68 

74 

70 

7S 

20 

00 

08 

20 
7S 

4C 
60 

74 
Oo 

00 

2c 

6F 

C9 
00 

Figure 9.3 Memory dump 
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As it stands, the routine requires three zero page data bytes, two 
for the start address and one for the number of eight byte lines to be 
dumped. The routine also employs the ADDRESS-PRINT and 
HEXPRINT routines discussed earlier. 

Program 22 

19 REM ** DUMP LINES OF 8 BYTES OF #« 

20 REM ** MEMORY IN HEX AND ASCII ** 

30 CODE=49152 

48 FOR LOOP=-% TO 111 

5@ READ BYTE 

68 POKE CODE+LOOP, BYTE 

76 NEXT LOOP 

86 : 

99 REM ** M/C DATA «»* 

198 DATA 32,71,192 : REM JSR $C47 

116 :: REM HEX—BYTES 

128 DATA 162,7 : REM LDX #4$67 

139 DATA 169,¢ : REM LDY #$6¢ 

149 REM HEX—LOOP 

158 DATA 177,251 : REM LDA ($FB),Y 

168 DATA 32,9%,192 : REM JSR $CQ5A 

176 DATA 32,66,192 : REM JSR $C42 

188 DATA 262 : REM INY 

199 DATA 262 : REM DEX 

206 DATA 16,244 : REM BPL $F4 

218 DATA 32,66,192 : REM JSR $C@42 

226 :: REM ASCII-BYTES 

236 DATA 162,7 REM LDX #$67 

246 DATA 168,90 : REM LDY #$@¢ 

256 :: REM ASCII-LOOP 

266 DATA 177,251 : REM LDA ($FB),Y 

276 DATA 261,32 : REM CMP #$2¢ 

286 DATA 48,4 : REM BMI $4 

296 DATA 261,128 - REM CMP #$8¢ 

366 DATA 144,2 : REM BCC $62 

S10 = REM FULL—STOP 

326 DATA 169,46 REM LDA #$2E 

330 :: REM LEAP—FROG 
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349 
356 

360 

370 

386 

399 

4D 
419 

429 

430 

44g 
45 
460 

ATG 

489 

499 

SDP 
519 

526 

53 
546 

556 

566 

570 

586 

596 

6D 
616 

626 

630 

646 

65 
660 

679 

689 

699 

TD 
719 

72 
730 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

32,216,255 

200 
262 

16,237 

169,13 

32,218,255 

24 

165,251 

15,8 

133,251 

144,2 

236,252 

198,254 

268,191 

96 

169 , 32 

76,216,255 

162,251 

181,1 

32,98,192 

181,6 

32,968,192 

32,66,192 

52,66,192 

96 

T2 

T4,74 

74,74 

$2399; 192 

1f4 

41,15 

201,10 

144,2 

15,6 

: REM 

: REM 

> REM 

: REM 

: REM 

REM 

REM 

REM 

: REM 

REM 

REM 

: REM 

REM 

: REM 

: REM 

: REM 

REM 

REM 

REM 

REM 

: REM 

: REM 

REM 

REM 

: REM 

REM 

REM 

REM 

REM 

REM 

: REM 

REM 

: REM 

: REM 

REM 

: REM 

>: REM 

: REM 

>: REM 

REM 

JSR $FFD2 

INY 

DEX 

BPL $ED 

LDA #$@D 

JSR $FFD2 

CLC 

LDA $FB 

ADC #$8 

STA $FB 

BCC $92 

INC $FC 

NO—CARRY 

DEC $FE 

BNE $BF 

RTS 

SPACE 

LDA #$20 

JMP $FFD2 

ADDRESS-—PRINT 

LDX #$FB 

LDA 1,X 

JSR $CO5A 

LDA ,X 

JSR $CO5A 

JSR $C642 

JSR $Cg42 

RTS 

HEXPRINT 

PHA 

LSR A : 

LSR A : 

JSR $C663 

PLA 

FIRST 

AND #$@F 

CMP #$6A 

BCC $62 

ADC #$@6 

OVER 

LSR A 

LSR A 



746 DATA 165,48 : REM ADC #$3g 

756 DATA 76,219,255 : REM JMP $FFD2 

766 : 

776 REM ** INPUT DETAILS FOR DUMP ««# 

786 PRINT CHR$(147) 

796 INPUT"DUMP START ADDRESS ";A 

86% HIGH=INT(A/256) 

818 LOW=A—(HIGH*256) 

826 POKE 251,LOW : POKE 252,HIGH 

836 INPUT"NUMBER OF LINES (26/SCREEN) ";B 

8498 POKE 254,B 

858 SYS CODE 

The program’s operation is quite simple, using the X register to 
count the bytes as they are printed across the screen using 
HEXPRINT (lines 120 to 210). The second section of code (lines 
22 to 370) is responsible for printing either the ASCII character 
contained in the byte, or a full stop if an unprintable character or a 
control code is encountered. The final section of code moves the 
cursor down one line and increments the address counter. The 
whole loop is repeated until the line count reaches zero. 

Line-by-line 

A line-by-line description of the Program 22 now follows: 

line 18% : print start address of current line 

line 119 : entry for HEX-BYTES 

line 128 : eight bytes to do (@—7) 

line 138 : clear index 

line 146 : entry for HEX-LOOP 

line 159 : get byte through vectored address 

line 168 : print it as two hex digits 

line 17 : print a space 

line 189 : increment index 

line 19% : decrement bit count 

line 28% : branch to HEX-LOOP until all done 

line 219 : print a space 

line 229 : entry for ASCII-BYTES 

line 238 : eight bytes to redo 

line 249 : set index 

line 258 : entry for ASCII-LOOP 
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line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

269 

276 

286 

296 

30D 
316 

326 

336 

346 

350 

369 

376 

386 

396 

406 
419 

A426 

436 

446 

456 

466 

ATG 

A489 

499 

SPP 
51g 

526 

536 

54g 

556 

560 

576 

586 

599 

CLD 
616 

626 

639 

646 

666 

get byte through vectored address 

is it less than ASC“ ”’? 

yes, branch to FULL-STOP 

is it greater than 128? 

no, branch to LEAP-FROG 

entry for FULL-STOP 

get ASC.” into accumulator 

entry for LEAP-FROG 

print accumulator’s contents 

increment index 

decrement bit count 

branch to ASCII-LOOP until all done 

get ASCII code for RETURN 

print new line 

clear Carry flag 

get low byte of address 

add 8 to it 

save result 

if no carry, branch to NO-CARRY 

else increment high byte of address 

entry for NO-CARRY 

decrement line counter 

: branch to start at $C@@0 until all lines done 

return to BASIC 

entry to SPACE 

get ASCII code for space 

print it and return through jump 

entry to ADDRESS-PRINT 

load index into X register 

get high byte of address 

print it as two hex digits 

get low byte of address 

print it as two hex digits 

print a space | 

print a second space 

:. return to main program 

entry to HEXPRINT 

save accumulator on stack 

move high nibble into low nibble position 

call FIRST subroutine 



line 

line 

line 

line 

line 

line 

line 

line 

line 

670 

68 
699 

TDL 
719 

720 

730 
74D 

75D 

restore accumulator to do low byte 

entry for FIRST 

mask off high nibble 

is it less than 10? 

yes, so jump OVER 

add 7 to convert to A—F 

entry to OVER 

add 48 to convert to ASCII code 

print it and return 
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10 Hi-res Graphics 

The Commodore 64 can support hi-resolution graphics. However, 
as you are no doubt aware, setting up the hi-res screen prior to 
using it can be a rather long-winded process, requiring several lines 
of BASIC text. In fact, four routines are normally required: 

1. Move start of BASIC user area and set position for hi-res 
screen. 

2. Clear screen memory. 
3. Select screen colour and clear to that colour. 
4. Reselect normal character mode. 

All of these can be performed quite simply at machine level, and 
the routines for each follow. They can be compiled as DATA at the 
end of a graphics program, poked into memory at RUN time and 
executed via a SYS call. This does have one of the original dis- 
advantages, in that a large chunk of program is required. However, 
the main advantage is speed, particularly in clearing the screen. 
Alternatively, any of these routines would make an admirable 
addition to the Wedge Operating System. allowing it to be called by 
name from within your programs. Suitable command names might 
be: 

@MOVEBAS : move BASIC program area to make room for 

hi-res screen 

@HIRES : select hi-res screen 

@ CLEAR : clear hi-res screen 

@GCOL : clear to graphics colour specified in a dedicated 

byte 

@ MODE : select normal character mode 

Let us now examine each command in turn. 



A BASIC MOVE 

You may be wondering why we should bother to move the BASIC 
program area at all—why not just position the hi-res screen mid- 
way in memory? The reason for the careful positioning of the 
routine is as a matter of safety—placing the hi-res screen above the 
BASIC program area could lead to it being corrupted, especially if 
it is being used in conjunction with the program, because adding a 
line or two to the program could cause it to extend into the hi-res 
screen. Making sure the BASIC program fits in is no real safeguard 
either, as variables, strings and arrays all eat up memory at an 
incredible rate, and these could find their way into the screen 
memory. All these problems can be avoided by moving the start of 
BASIC up enough bytes to allow the hi-res screen to be tucked in 
underneath. 
To do this requires a machine code program. The Programmer's 

Reference Guide lists five vectors associated with BASBAS (that’s 
my mnemonic for BASIC’s base!). as follows: 

$2B—-$2C TXTTAB’ :_ start of BASIC text 

$2D-$2E VARTAB  : start of BASIC variables 

$2F-$36 ARYTAB- :_ start of BASIC arrays 

$31-$32 STREND  : endof BASIC arrays+1 

$281-$282 MEMSTR- : bottom of memory 

To move BASIC, each of these vectors must be reset to point to the 
new start area and the first three bytes of the new start area must be 
cleared to keep the Kernal happy. 

Program 23 performs each of these functions. The address of the 
new BASIC area is $4900, which allows room for the hi-res screen 
plus 32 sprites. 

Program 23 

1f REM ** MOVE BASIC PROGRAM AREA START ** 

26 REM ** UP TO 16348 TO FREE HI-RES SCREEN +** 

3h: 
49 CODE=49152 

5@ FOR LOOP=@ TO 39 

66 READ BYTE 

76 POKE CODE+LOOP, BYTE 

88 NEXT LOOP 

96 : 

186 REM «* M/C DATA «** 

116 DATA 169,¢ : REM LDA #$60 

a 



122 

126 

136 

14g 

156 

166 

176 

189 

198 

266 
216 

229) 

230 

249 

250 

260 

276 

286 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

Line-by-line 

141,2,64 

141,1,64 

141,6,64 

141,129,2 

169 ,64 

133,44 

133,46 

133,48 

133, 58 

141,139,2 

169, 1 

133, 43 

169,3 

133,45 

133,47 

133,49 

96 

>: REM 

REM 

: REM 

: REM 

REM 

: REM 

: REM 

: REM 

: REM 

: REM 

REM 

: REM 

: REM 

: REM 

REM 

REM 

>: REM 

OTA 

STA 

STA 

STA 

LDA 

STA 

OTA 

STA 

STA 

STA 

LDA 

OTA 

LDA 

STA 

STA 

STA 

RTS 

$4662 

$4661 

$4000 
$6281 

#$4D 

$2C 

$2E 

$36 

$32 

$6282 

HBO 1 

$2B 

HBOS 

$2D 

$2F 

$31 

A line-by-line description of Program 23 follows: 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

119 

129 

156 

169 

176 

18¢ 

196 

266 
216 

226 

236 

246 

256 

initialize accumulator 

and clear first four bytes of new program area 

set low byte of MEMSTR (bottom of memory pointer) 

load high byte of new program area address into 

accumulator 

set high byte of TXTTAB 

set high byte of VARTAB 

set high byte of ARYTAB 

set high byte of STREND 

set high byte of MEMSTR 

load accumulator with 1 

store in low byte of TXTTAB 

load accumulator with 3 

set low bytes of all vectored addresses 



SELECTING HI-RES 

Before selecting the hi-resolution screen mode, it 1s necessary to 
point the VIC chip to the start of screen memory. This is done by 
writing to the VIC Memory Control register located at $DQ@18 
(57272). The actual location is controlled by the condition of bits 3, 
2 and 1. Table 10.1 details their settings for various addresses. 

Table 10.1 

Bit code Value Address selected 

XXxxPOPx D $-2647 ( $0200-$O7FF) 
XXxXxOP1x 2 2948-4695 ($P860-$OFFF ) 

XxxxO10x 4 4G96-6143 ($1600-$17FF ) 

xxxxO1llx 6 6144-8191 ($1800-$1F FF ). 

xxxx 19x 8 8192-18239  ($2660-$27FF) 

Xxxxl@1x 1g 16246-12287 ($2800-H2FFF ) 

Xxxxll1lx 12 12288-14335 ($30GO-$37FF ) 

Xxxxlllx 14 14336-16383 ($3800-$3FFF ) 

You can see from the table that the screen memory may be moved 
around in 2K block steps. An ‘x’ in each of the other bits denotes 
that these bits may be in either state. However, remember that 
these bits are controlling other aspects of the VIC’s function, so 
that any reprogramming of bits 3, 2 and 1 must preserve the other 
bits. This is best done with the logical OR function. Looking at 
Table 10.1 we can see that bit 3 must be set to point the Memory 
Control register at location 8192. In BASIC this would simplify to: 

196 A=PEEK(53727) : REM GET VALUE 

118 A=A OR 8 : REM SET BIT 3 

126 POKE 53727,A - REM REPROGRAM 

which translates to assembler as: 

LDA #$68 

ORA $D#18 

STA $D918 

Now that the hi-res screen has been defined, it can be switched in 

by setting bit 5 of the VIC Control register at $D@11 (53265). 
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Again, the other bits in the register must be preserved, so the byte 
must be ORed with 32 (99199000 binary). In BASIC this is: 

139 A=PEEK(53265) : REM GET VALUE 

149 A=A OR 32 : REM SET BIT 5 

158 POKE 53265,A : REM REPROGRAM 

and 1n assembler: 

LDA #$2¢ 

ORA $D11 

STA $D@11 

A CLEAR VIEW 

Once hi-res mode has been selected, it will be filled with junk 
(often referred to as garbage). To clear this, each location must in 
turn be POKEd with zero. A BASIC program to do this would take 
the form: 

206 SB-=8192 

218 FOR L=SB TO SB+7999 

220 POKE L,@ 

230 NEXT L 

Previously, in normal character mode, locations 1024 to 2023 were 
used to control which character was displayed—for example, 
POKE ing a 1 into location 1924 would make a letter A appear at 
the top left hand corner of the screen. When in hi-res mode, this 
area of memory is used to hold the colour information of that byte. 
Note that the colour information does not now come from the 
colour memory—colour details are taken directly from the hi-res 
screen itself. The high nibble of the byte (that is, bits 4 to 7) holds 
the colour code of any bit that is set in that 8 by 8 bit matrix, while 
the lower nibble (bits 3 to @) holds the colour of any bits that are 
clear in the same area. 

To clear the hi-res screen to black ink on green paper in BASIC 
we would use: 

246 FOR C=1024 TO 2623 

256 POKE C,13 

260 NEXT C 

If all the above BASIC program lines were to be combined and 
RUN, the resulting hi-res screen would take around 20 seconds to 
construct—a bit slow, you'll agree! Program 24 provides the 



machine code equivalent. Note that the value assigned to CODE is 
49498 and NOT 49152 as we have been using previously. This is to 
allow the program to be used in conjunction with the MOVEBAS 
program described earlier. After you have entered and RUN 
MOVEBAS, try this one for an instant hi-res screen! 

Program 24 

19 REM ** HI-RES GRAPHICS SCREEN SET AND 

CLEAR ** 

26 CODE=4948 

39 FOR LOOP=@ TO 165 

46 READ BYTE 

58 POKE CODE+LOOP, BYTE 

66 NEXT LOOP 

TO : 

89 REM ** M/C DATA «** 

85 :: REM SELECT-HI-RES 

99 DATA 169,8 : REM LDA #$@8 

199 DATA 13,24,288 : REM ORA $D@18 

118 DATA 141,24,298 : REM STA $Dg18 

126 DATA 169,32 : REM LDA #$2¢ 

136 DATA 13,17,288 : REM ORA $D@11 

146 DATA 141,17,268 : REM STA $D@1l 

156 :: REM CLEAR—-SCREEN—MEMORY 

169 DATA 169,6 : REM LDA #$@¢ 

176 DATA 133,251 : REM STA $FC 

188 DATA 169,32 : REM LDA #$2¢ 

198 DATA 133,252 : REM STA $FC 

206 DATA 169,64 : REM LDA #$4¢ 

218 DATA 133,253 : REM STA $FD 

226 DATA 169,63 : REM LDA #$3F 

236 DATA 133,254 : REM STA $FE 

246 :: REM IN 

256 DATA 165,252 : REM LDA $FC 

268 DATA 197,254 - REM CMP $FE 

276 DATA 268,9 : REM BNE $9 

286 DATA 165,251 : REM LDA $FB 

296 DATA 197,253 : REM CMP $FD 

306 DATA 28,3 : REM BNE $3 
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318 

320 

330 

346 

350 

366 

376 

380 

399 

ADD 
41g 

426 

436 

449 

450 

462 

ATG 

488 

499 

566 
51¢ 

520 

530 

549 

556 

560 

570 

58 

596 

620 
618 

626 

636 

648 

656 

669 

676 

126 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

76,62,192 

166 , 6 

169, 

145,251 

236,251 

268,231 

236,252 

56 

176,226 

169, @ 

133,251 

169 ,4 

133,252 

169,231 

133,253 

169,7 

133,254 

165,252 

197,254 

268,7 

165,251 

197,253 

208 ,1 

96 

166 ,¢ 

169,13 

145,251 

236,251 

268 , 233 

236,252 

56 

176, 228 

REM 

REM 

REM 

REM 

REM 

REM 

: REM 

REM 

: REM 

REM 

REM 

: REM 

REM 

REM 

REM 

REM 

REM 

: REM 

REM 

REM 

REM 

REM 

>: REM 

REM 

: REM 

: REM 

: REM 

REM 

REM 

REM 

REM 

: REM 

: REM 

: REM 

REM 

REM 

JMP $CP3E 

CLEAR 

LDY 

LDA 

OTA 

INC 

BNE 

INC 

SEC 

BCS 

H$DD 

HEOD 

($FB),Y 

SFB 

SET 

SFC 

$E2 

COLOUR 

LDA 

STA 

LDA 

STA 

LDA 

OTA 

LDA 

STA 

CIN 

LDA 

CMP 

BNE 

LDA 

CMP 

BNE 

RTS 

HEDO 
$FB 

#EOA 

SFC 

#EET 

$FD 

HE OT 

$FE 

$FC 
$FE 

$27 
$FB 
$FD 

$f1 

GREEN 

LDY 

LDA 

STA 

INC 

BNE 

INC 

SEC 

BCS 

HEOD 
#BOD 

($FB),Y 

$FB 

$E9 

SFC 

$E4 



Line-by-line 

A line-by-line description of Program 24 follows: 

line 9 

line 182 

line 119 

line 129 

line 139 

line 149 

line 159 

line 169 

line 2¢0¢ 

line 249 

line 25¢ 

line 2694 

line 27¢ 

line. 28¢ 

line 299 

line 369 

line 319 

line 32¢ 

line 339 

line 349 

line 359 

line 369 

line 379 

line 389 

line 399 

line 40¢ 

line 429 

line 439 

line 476 

line 519 

line 529 

line 53¢ 

line 54¢ 

load accumulator with mask 00001000 

force bit 3 to select 8196 as bit map start address 

and program VIC Memory Control register 

load accumulator with mask 00100000 

force bit 5 to select bit map mode 

and program CIC Control register 

entry for bit map CLEAR-SCREEN-MEMORY 

routine 

set up vector to point to screen start address $2000 

set up vector to point to screen end address $493F 

entry for IN 

get high byte current address 

is it same as high byte end address? 

no, so branch to CLEAR 

yes, get low byte current address 

is it same as low byte end address 

no, so branch to CLEAR 

yes, all done jump to COLOUR 

entry for CLEAR 

initialize index 

clear accumulator 

clear byte of screen memory 

increment low byte of current screen address 

branch to IN if no carry over 

increment high byte 

set Carry flag 

force branch to IN 

entry for COLOUR 

set up vector to point to start of colour memory 

set up vector to point to end of colour memory 

entry for CIN 

get high byte of current address 

is it the same as high byte end address? 

no, branch to GREEN 
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line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

line 

556 

576 

586 

596 

6D 
616 

626 

636 

649 

650 

666 

676 

560 
get low byte of current address 

is it the same as the low byte end address? 

no, branch to GREEN 

back to calling routine 

entry for GREEN 

clear indexing register 

get code for green into accumulator 

POKE it into colour memory 

increment low byte of current address 

branch to CIN if no carry over 

increment high byte 

set Carry flag 

and force branch to CIN 



Appendix 1: 6510 Complete 
Instruction Set 

ADC Add with carry 

Address mode Op-code Bytes 

Immediate $ 69 2 

Zero page $65 2 

Zero page,X $75 2 

Absolute $6D 3 

Absolute, X $7D 3 

Absolute, Y $79 3 

(Indirect,X) $61 2 

(Indirect), Y $71 2 

AND AND with accumulator 

Address mode Op-code Bytes 

Immediate $ 29 2 

Zero page $25 2 

Zero page, X $ 35 Z 

Absolute $2D 3 

Absolute, X $3D 3 

Absolute, Y $39 3 

(Indirect,X) $21 2 

(Indirect), Y $31 Z 
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ASL Shift left 

Address mode Op-code 

Accumulator $0A 

Zero page $ 06 
Zero page, X $16 

Absolute $0E 

Absolute, X $1E 

BCC Branch if C = @ 

Address mode Op-code 

Relative $90 

BCS Branch if C = 1 

Address mode Op-code 

Relative $ BO 

BEQ Branch if Z = 1 

Address mode Op-code 

Relative $ FO 

NZC 

Bytes Cycles 

Ww WN NO ee NINH DHW NN NV 

Flags unaltered 

Bytes Cycles 

Zz 3 or 2 

Flags unaltered 

Bytes Cycles 

2 3 or2 

Flags unaltered 

Bytes Cycles 

Z 3 or 2 



BIT 

Address mode Op-code 

Zero page $24 

Absolute $2C 

BMI Branch if N = 1 

Address mode Op-code 

Relative $30 

BNE Branch if Z = @ 

Address mode Op-code 

Relative $D0 

BPL Branch if N = 0 

Address mode Op-code 

Relative $10 

Flags unaltered 

Flags unaltered 

Flags unaltered 



BRK Break 

Address mode Op-code 

Implied $00 

BVC Branch if V = @ 

Address mode Op-code 

Relative $50 

BVS Branch if V = 1 

Address mode Op-code 

Relative $70 

CLC Clear Carry flag 

Address mode Op-code 
Implied $18 

132 

Bytes 

2 

Bytes 

2 

Bytes 

Flags unaltered 

Cycles 

3 or 2 

Flags unaltered 

Cycles 

3 or2 



CLD Clear Decimal flag 

Address mode Op-code 

Implied $D8 

CLI Clear Interrupt flag 

Address mode Op-code 

Implied $58 

CLV Clear Overflow flag 

Address mode Op-code 

Implied $ B8 

CMP Compare accumulator 

Address mode Op-code 

Immediate $ C9 

Zero page $ C5 

Zero page, X $ DS 

Absolute $ CD 

Absolute, X $DD 

Absolute, Y $ D9 

(Indirect, X) $C1 

(Indirect), Y $D1 

Bytes 

ee) < S 

NN WW WN WN WN 
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CPX Compare X register 

Address mode Op-code 

Immediate $ EQ 
Zero page $E4 

Absolute $ EC 

CPY Compare Y register 

Address mode Op-code 

Immediate $CO 
Zero page $C4 
Absolute $CC 

DEC Decrement memory 

Address mode Op-code 

Zero page $ C6 
Zero page,X $ D6 

Absolute $ CE 

Absolute, X $ DE 

DEX Decrement X register 

Address mode Op-code 

Implied $CA 

Bytes 

Bytes 

Bytes Cycles 



DEY Decrement Y register 

Address mode Op-code 

Implied $88 

EOR Exclusive-OR 

Address mode Op-code 

Immediate $ 49 

Zero page $ 45 
Zero page, X $ 55 

Absolute $ 4D 
Absolute, X $ 5D 
Absolute, Y $ 59 
(Indirect, X) $41 
(Indirect), Y $51 

INC Increment memory 

Address mode Op-code 

Zero page $E6 

Zero page, X $ F6 

Absolute $EE 

Absolute, X $FE 

Bytes 

NN WWWN WN LY 
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INX Increment X register 

Address mode Op-code 

Implied $ E8 

INY Increment Y register 

Address mode Op-code 

Implied $C8 

JMP Jump 

Address mode Op-code 

Absolute $4C 
Indirect $ 6C 

JSR Jump to subroutine 

Address mode Op-code 

Absolute $ 20 

Bytes 

Bytes 

Bytes 

3 

3 

Bytes 

3 

Cycles 

Cycles 

Flags unaltered 

Cycles 

3 

5 

Flags unaltered 

Cycles 

6 



LDA Load accumulator 

Address mode Op-code 

Immediate $ AD 

Zero page $ AS 

Zero page, X $ BS 

Absolute $ AD 

Absolute, X $BD 

Absolute, Y $ B9 

(Indirect, X) $Al 

(Indirect), Y $B1 

LDX Load X register 

Address mode Op-code 

Immediate $A2 

Zero page $A6 

Zero page, Y $B6 

Absolute $AE 

Absolute, Y $BE 

LDY Load Y register 

Address mode Op-code 

Immediate $ AQ 

Zero page $ A4 

Zero page,X $ B4 

Absolute $ AC 

Absolute,X $ BC 

Sy = S 

NN WWWwWN WN LN 

Bytes 

WWNN NHN 

Bytes 

WWwWNN WN 
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LSR Logical shift right 

Address mode Op-code 

Accumulator $4A 

Zero page $46 

Zero page, X $56 

Absolute $4E 

Absolute, X $.5E 

NOP No operation 

Address mode Op-code 

Implied $EA 

ORA Inclusive OR 

Address mode 

Immediate 

Zero page 

Zero page, X 

Absolute 

Absolute, X 

Absolute, Y 

(Indirect,X) 

(Indirect), Y 

138 

Bytes 

WWN N — 

Bytes 

1 

D = sa) w 

NN WW WN WN WN 

N = 9,ZC 

Cycles 

NINH NN WV 

Flags unaltered 

Cycles 

2 



PHA Push accumulator 

Address mode Op-code 

Implied $48 

PHP Push Status register 

Address mode Op-code 

Implied $ 08 

PLA Pull accumulator 

Address mode Op-code 

Implied $ 68 

PLP Pull Status register 

Address mode Op-code 

Implied $28 

Flags unaltered 

Bytes Cycles 

1 3 

Flags unaltered 

Bytes Cycles 

1 3 

NZ 

Bytes Cycles 

1 4 

Flags as status 

Bytes Cycles 

1 4 



ROL Rotate left NZC 

Address mode Op-code Bytes Cycles 

Accumulator $2A 1 2 

Zero page $26 2 5 

Zero page, X $36 2 6 

Absolute $2E 3 6 

Absolute, X $3E 3 7 

ROR Rotate right NZC 

Address mode Op-code Bytes Cycles 

Accumulator $6A 1 2 

Zero page $.66 2 5 

Zero page, X $ 76 2 6 

Absolute $ 6E 3 6 

Absolute,X $ 7E 3 7 

RTI Return from interrupt Flags as pulled 

Address mode Op-code Bytes Cycles 

Implied $ 40 1 6 



RTS Return from subroutine 

Address mode Op-code 

Implied $ 60 

SBC Subtract from accumulator 

Address mude Op-code 

Immediate $E9 

Zero page $E5 

Zero page, X $ FS 

Absolute $ED 

Absolute, X $ FD 

Absolute, Y $ F9 

(Indirect,X) $ E1 

(Indirect), Y $ Fl 

SEC Set Carry flag 

Address mode Op-code 

Implied $38 

SED Set Decimal flag 

Address mode Op-code 

Implied $F8 

Bytes 

oy = & 

NN WWWNN WN 

Bytes 

Bytes 

Flags unaltered 

Cycles 

6 
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SEI Set Interrupt flag 

Address mode Op-code 

Implied $ 78 

STA Store accumulator 

Address mode Op-code 

Zero page $85 

Zero page, X $ 95 

Absolute $8D 

Absolute, X $9D 

Absolute, Y $ 99 

(Indirect, X) $81 

(Indirect), Y $91 

STX Store X register 

Address mode Op-code 

Zero page $ 86 
Zero page, Y $ 96 
Absolute $ 8E 

Flags unaltered 

Bytes Cycles 

NN WW WN N NNMnn & Hh W 

Flags unaltered 

Bytes Cycles 

2 3 

2 4 

3 4 



STY Store Y register 

Address mode Op-code 

Zero page $ 84 

Zero page, X $ 94 

Absolute $8C 

TAX Transfer accumulator to X 

Address mode Op-code 

Implied $AA 

TAY Transfer accumulator to Y 

Address mode Op-code 

Implied $A8 

TSX Transfer Stack Pointer to X 

Address mode Op-code 

Implied $BA 

Bytes 

Bytes 

1 

Bytes 

1 

Bytes 

Flags unaltered 

Cycles 

3 
4 

4 

Cycles 

NZ 

Cycles 

Z 

NZ 

Cycles 

Z 
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TXA Transfer X to accumulator 

Address mode Op-code 

Implied $8A 

TXS Transfer X to Stack Pointer 

Address mode Op-code 

Implied $9A 

TYA Transfer Y to accumulator 

Address mode Op-code 

Implied $ 98 

Flags unaltered 

Bytes Cycles 

1 2 

NZ 

Bytes Cycles 

1 2 



Appendix 2: 6510 Opcodes 

All numbers are hexadecimal. 

00 

01 

02 

03 

04 

05 

06 

07 

08 

09 

OA 

0B 

0C 

0D 

OE 

OF 

BRK implied 

ORA (zero page, X) 

Future expansion 

Future expansion 

Future expansion 

ORA zero page 

ASL zero page 

Future expansion 

PHP implied 

ORA #immediate 

ASL accumulator 

Future expansion 

Future expansion 

ORA absolute 

ASL absolute 

Future expansion 

BPL relative 

ORA (zero page), 

Future expansion 

Future expansion 

Future expansion 

Y 

ORA zero page, X 

ASL zero page, X 

Future expansion 

CLC implied 

ORA absolute, Y 

Future expansion 

Future expansion 

Future expansion 

ORA absolute, X 

ASL absolute, X 

Future expansion 

JSR absolute 

AND (zero page, X) 

Future expansion 

Future expansion 

BIT zero page 

AND zero page 

ROL zero page 

Future expansion 

PLP implied 

AND #immediate 

ROL accumulator 

Future expansion 

BIT absolute 

AND absolute 

ROL absolute 

Future expansion 

BMI relative 

AND (zero page), Y 

Future expansion 

Future expansion 

Future expansion 

AND zero page, X 

ROL zero page, X 

Future expansion 
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38 

39 

3A 

3B 

3C 

3D 

3E 

3F 

40 

4] 

42 

43 

44 

45 

46 

47 

48 

49 

4A 

4B 

4C 

4D 

4E 

4F 

50 

S| 

52 

53 

54 

55 

56 

57 

58 

59 

SA 

SB 

SC 

SEC implied 

AND absolute, Y 

Future expansion 

Future expansion 

Future expansion 

AND absolute, X 

ROL absolute, X 

Future expansion 

RTI implied 

EOR (zero page, X) 

Future expansion 

Future expansion 

Future expansion 

EOR zero page 

LSR zero page 

Future expansion 

PHA implied 

EOR #immediate 

LSR accumulator 

Future expansion 

JMP absolute 

EOR absolute 

LSR absolute 

Future expansion 

BVC relative 

EOR (zero page), Y 

Future expansion 

Future expansion 

Future expansion 

EOR zero page, X 

LSR zero page, X 

Future expansion 

CLI implied 

EOR absolute, Y 

Future expansion 

Future expansion 

Future expansion 

5D 

SE 

SF 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

6A 

6B 

6C 

6D 

6E 

6F 

70 

7\ 

72 

73 

74 

75 

76 

17 

78 

79 

7A 

7B 

7C 

7D 

7E 

7F 

80 

81 

EOR absolute, X 

LSR absolute, X 

Future expansion 

RTS implied 

ADC (zero page, X) 

Future expansion 

Future expansion 

Future expansion 

ADC zero page 

ROR zero page 

Future expansion 

PLA implied 

ADC #immediate 

ROR accumulator 

Future expansion 

JMP (indirect) 

ADC absolute 

ROR absolute 

Future expansion 

BVS relative 

ADC (zero page), Y 

Future expansion 

Future expansion 

Future expansion 

ADC zero page, X 

ROR zero page. X 

Future expansion 

SEI implied 

ADC absolute, Y 

Future expansion 

Future expansion 

Future expansion 

ADC absolute, X 

ROR absolute, X 

Future expansion 

Future expansion 

STA (zero page, X) 



82 

83 

84 

85 

86 

87 

88 

89 

8A 

8B 

8C 

8D 

8E 

8F 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

9A 

9B 

9C 

9D 

9E 

OF 

AO 

Al 

A2 

A3 

A4 

AS 

A6é 

Future expansion 

Future expansion 

STY zero page 

STA zero page 

STX zero page 

Future expansion 

DEY implied 

Future expansion 

TXA implied 

Future expansion 

STY absolute 

STA absolute 

STX absolute 

Future expansion 

BCC relative 

STA (zero page), Y 

Future expansion 

Future expansion 

STY zero page, X 

STA zero page, X 

STX zero page, Y 

Future expansion 

TYA implied 

STA absolute, Y 

TXS implied 

Future expansion 

Future expansion 

STA absolute, X 

Future expansion 

Future expansion 

LDY #immediate 

LDA (zero page, X) 

LDX #immediate 

Future expansion 

LDY zero page 

LDA zero page 

LDX zero page 

AA 

Future expansion 

TAY implied 

LDA #immediate 

TAX implied 

Future expansion 

LDY absolute 

LDA absolute 

LDX absolute 

Future expansion 

BCS relative 

LDA (zero page), Y 

Future expansion 

Future expansion 

LDY zero page, X 

LDA zero page, X 

LDX zero page, Y 

Future expansion 

CLV implied 

LDA absolute, Y 

TSX implied 

Future expansion 

LDY absolute, X 

LDA absolute, X 

LDX absolute, Y 

Future expansion 

CPY #immediate 

CMP (zero page, X) 

Future expansion 

Future expansion 

CPY zero page 

CMP zero page 

DEC zero page 

Future expansion 

INY implied 

CMP #immediate 

DEX implied 

Future expansion 
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148 

CC 

CD 

CE 

CF 

DO 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

D9 

DA 

DB 

DC 

CPY absolute 

CMP absolute 

DEC absolute 

Future expansion 

BNE relative 

CMP (zero page), Y 

Future expansion 

Future expansion 

Future expansion 

CMP zero page, X 

DEC zero page, X 

Future expansion 

CLD implied 

CMP absolute, Y 

Future expansion 

Future expansion 

Future expansion 

DD CMP absolute, X 

DE 

DF 

EO 

E | 

E2 

E3 

E4 

E5 

DEC absolute, X 

Future expansion 

CPX #immediate 

SBC (zero page, X) 

Future expansion 

Future expansion 

CPX zero page 

SBC zero page 

E6 

E7 

F8 

E9 

EA 

EB 

EC 

ED 

EE 

EF 

FO 

Fl 

F2 

F3 

F4 

FS 

F6 

F7 

F8 

F9 

FA 

FB 

FC 

FD 

FE 

FF 

INC zero page 

Future expansion 

IN X implied 

SBC #immediate 

NOP implied 

Future expansion 

CPX absolute 

SBC absolute 

INC absolute 

Future expansion 

BEQ relative 

SBC (zero page), Y 

Future expansion 

Future expansion 

Future expansion 

SBC zero page, X 

INC zero page, X 

Future expansion 

SED implied 

SBC absolute, Y 

Future expansion 

Future expansion 

Future expansion 

SBC absolute, X 

INC absolute, X 

Future expansion 



Appendix 3: Commodore 64 
Memory Map 

Kernal Operating System 

ROM 

Colour RAM 

VIC and SID 

‘Free’ RAM 

BASIC interpreter ROM 

VSP cartridge ROM 

Program area 

Screen memory 

Kernal vectors and flags 

Input buffers 

Zero page 

FFFF 

ALE 

BORN 

80u 

4gB 

300 

200 

188 

OO 

149 



Appendix 4: Branch Calculators 

The branch calculators are used to give branch values in hex. First, count the number of 
bytes you need to branch. Then locate this number in the centre of the appropriate table, 
and finally, read off the high and low hex nibbles from the side column and top row 
respectively. 

Example For a backward branch of 16 bytes: 

Locate 16 in the centre of Table A4.1 (bottom row), then read off high nibble (#F) and 
low nibble (#9) to give displacement value (#F@). 

Table A4.1 Backward branch calculator 

TMMOUQwWPYCSH 

Table A4.2 Forward branch calculator 

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
96 97 98 99 100 101 1062 103 104 105 106 107 108 109 110 II! 
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 SYA NBWN — BS 
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Index 

@CLS, 13, 16 
@LOW, 13, 16 
@UP, 13, 16 
ASCII decimal string to binary, 

30 
ASCII hex to binary conversion, 

20, 26 

BASIC, Extended Super, 17 
BASIC, move start of, 121 

BASIC tester, 4 

binary input, 100 
binary output, 98 
binary to hex conversion, 38 
binary to signed ASCII string, 42 
bubble sort, 84 

CHRGET, 7, 13, 14 

commands, 7 

conversion, 

ASCTI decimal string to binary, 
30 
ASCII hex to binary, 20, 26 
binary to hex, 38 

binary to signed ASCII string, 
42 

debugging, 5 

Extended Super BASIC, 17 

graphics, hi-res, 120 

hi-res graphics, 120 
selection, 123 

clear screen, 124 

memory, 

dump, 113, 
fill, 111 

move, 104 

move BASIC area, 121 

print a hex address, 41 
print accumulator as hex, 38 
printing print, 78 

print string from memory, 78 
print string in program, 81 

shift register, 
24-bit, 29 
16-bit, 35 

software stack, 91 
string manipulation, 53 

copy substring, 64 

insert substring, 71 
string comparison, 53 

string concatenation, 58 

tool box, 3 

wedge operating system, 9 

writing machine code, 4 
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Other titles of interest 

Easy Programming for the Commodore 64 
Ian Stewart & Robin Jones 
An intoductory guide to BASIC programming. 

Commodore 64 Assembly Language 
Bruce Smith 

The Commodore 64 Music Book 

James Vogel & Nevin B. Scrimshaw 

Commodore 64 Machine Codew 

Ian Stewart & Robin Jones 
‘An excellent introduction to the subject’— Popular Computing 
Weekly 

Gateway to Computing with the Commodore 64 
Ian Stewart 
‘Recommended’— Popular Computing Weekly 

Book One £4.95(p) 

Book Two £4.95(p) 

Computers in a Nutshell 
Ian Stewart 

Microchip Mathematics: Number Theory for 
Computor Users 
Keith Devlin 
A fascinating book about the interaction of mathematics and 
computing. 

Brainteasers for BASIC Computers 
Gorden Lee 
‘A book I would warmly recommend’—Computer & Video Games 

£6.95 

£7.95 

£5.95 

£6.95 

£6.95(h) 
£6.95(h) 

£4.95 

£12.95 

£4.95 



ORDER FORM 

I should like to order the following Shiva titles: 

Qty Title ISBN Price 

—_— EASY PROGRAMMING FOR THE COMMODORE 64 0 906812 64 X £6.95 

—___ COMMODORE 64 ASSEMBLY LANGUAGE 0 906812 96 8 £7.95 

—— THE COMMODORE 644 MUSIC BOOK 1 85014 0197 £5.95 

—___ COMMODORE 64 MACHINE CODE 1 85014 025 1 £6.95 

GATEWAY TO COMPUTING WITH THE COMMODORE 64 

____ BOOK ONE (pbk) 1 85014 0170 £4.95 

____ BOOK ONE (hdbk) 1 85014 051 0 £6.95 

—___ BOOK TWO (pbk) 1 85014 035 9 £4.95 

—____ _ BOOK TWO (hdbk) 1 85014 055 3 £6.95 

—___ COMPUTERS IN A NUTSHELL 1 85014 0189 £4.95 

—__ MICROCHIP MATHEMATICS 1 85014 047 2 £12.95 

____  BRAINTEASERS FOR BASIC COMPUTERS 0 906812 36 4 £4.95 

Please send me a full catalogue of computer books and software: & 

INAS cts caste alg ee A eae dt ee aes eae tee eek eh nee es ade ee cates 

PGCTESS” 2132354852540 54 8 be eeORban sae aP weet ye Sate oe eee 

ed 

This form should be taken to your local bookshop or computer store. In case of 
difficulty, write to Shiva Publishing Ltd, Freepost. 64 Welsh Row, Nantwich. 
Cheshire CW5 5BR, enclosing acheque for£ ............ 0.0... c ee eee 

For payment by credit card: Access/Barclaycard/Visa/American Express 

Gard NO. ¢adiaires te cheisans Signature 








