

Commodore 64
Assembler
Workshop

Commodore 64
Assembler
Workshop

Bruce Smith

SHIVA PUBLISHING LIMITED
64 Welsh Row, Nantwich, Cheshire CWS 5ES, England

© Bruce Smith, 1984

ISBN 1 85014 004 9

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the Publishers.

This book is sold subject to the Standard Conditions of Sale of Net
Books and may not be resold in the UK below the net price given by
the Publishers in their current price list.

An interface was used to produce this book from a microcomputer
disc, which ensures direct reproduction of error-free program
listings.

Typeset and printed by Devon Print Group, Exeter

Contents

Introduction

1 Opening the Tool Box
Writing Machine Code
Debugging

2 Commodore Command
CHRGET
The Wedge Operating System
The New Commands
Using the WOS

3 ASCII to Binary Conversions
ASCII Hex to Binary Conversion
Four ASCII Digits to Hex
Convert Decimal ASCII String to Binary

4 Binary to Hex ASCII
Print Accumulator
Print a Hexadecimal Address
Binary Signed Number to Signed ASCII Decimal
String

S String Manipulation
Comparing Strings
Strings Unite
Copy Cat
Insertion

Printing Print!

7 A Bubble of Sorts

Software Stack

Binary Ins and Outs
Come In

9 Move, Fill and Dump
Move it!
Fill
A Memory Dump

10 Hi-res Graphics
A BASIC Move
Selecting Hi-res
A Clear View

Appendix 1: 6510 Complete Instruction Set

Appendix 2: 6510 Opcodes

Appendix 3: Commodore 64 Memory Map

Appendix 4: Branch Calculators

Index

104
104
111
113

120
121
123
124

129

145

149

150

151

Introduction

The Commodore 64 Assembler Workshop is aimed at those of you
who have been delving into the delights of programming at
machine code level. It is a natural progression from Commodore 64
Assembly Language, but will be invaluable even if you learned
assembler and machine code using any of the other relevant books
available. It provides a bench full of useful assembly language
routines and utilities programs and examines the techniques
involved.

Extensive use of vectored addresses is made throughout the
Commodore’s operation, allowing modifications to be made to the
manner in which the micro operates. Chapter 2 demonstrates how
the CHRGET subroutine can be used to allow new RAM-based
commands to be added to the already extensive facilities provided
by the machine. A short ‘wedge’ interpreter is provided and the
techniques for adding your own commands examined, and to get
you going, three commands come supplied with the wedge inter-
preter: @CLS, @UPand @LOW.

Conversion between ASCII based numerical character strings
and their two-byte binary equivalents and vice versa is not straight-
forward. Such conversions are fully described in Chapters 3 and 4,
and working routines are listed.
Any program which handles strings of data must be able to

manipulate the strings, whether it is an adventure game or the
latest stock control reports. Routines for comparing, copying,
deleting and inserting strings are included, and Chapter 6 goes on
to show the various ways 1n which text can be printed to the screen.

Sorting data lists into order is a task which it is often necessary to
perform within a program, so the technique of bubble sorting is
investigated.
Many other processors provide operations that would be useful

to have available when using the 6510. A software stack imple-
mentation similar to that found on the 6809 preocessor is produced
in Chapter 8, allowing up to eight selected registers to be pushed on
to a memory-based stack.

Routines to move, fill and produce a hex and ASCIT dump of
memory are then examined and the final chapter provides a few
hi-resolution graphics utilities to speed you along the way.
Many of the chapters suggest projects for you to undertake at

your leisure, while every program has a detailed line-by-line
description of its operation. Program listings are provided using
BASIC loaders so that they can be used directly as they are.
Included in each line is a REM statement giving the mnemonic
representation of the instruction should you be using an assembler.

In fact. all the tools for using the Assembler Workshop are
supplied—assuming of course you have the workbench!

Highbury, November 1984 Bruce Smith

I Opening the Tool Box

The routines included in this book are designed to make your life
that much easier when writing machine code. Quite often, after
mastering the delights of the Commodore 64’s microprocessor,
programmers become frustrated because the techniques involved
in, say, converting between ASCII characters and their equivalent
binary values are not known. Nor are they readily available in a
published form, so the painful process of sitting down armed with
pencil and paper and working out the conversion through trial and
error begins.

This is just one example of the type of assembler program you
will find within these pages. Wherever possible, they are supplied
in a form that will make them relocatable, the only addresses
requiring alteration being those specified by JSR or JMP.

Each listing is in the form of a BASIC loader program, using a
loop to READ and POKE decimal machine code data into
memory. This will allow those of you who have not yet splashed out
your hard earned cash on a suitable assembler program to get
underway. For those lucky ones among you who do have an as-
sembler, each data statement has been followed by a REM line
containing the standard mnemonic representation of the instruc-
tion (see Appendix 1 for a summary). This can be entered directly
and assembled as required.

Although the programs are typeset they have been spooled
ditect as ASCII files and loaded into my word processor so all
should run as they are.
BASIC is used freely to demonstrate the machine code’s oper-

ation—rather than repeating sections of assembler code, BASIC is
often used to shorten the overall listing, and it is left to you to add
further sections of assembler from other programs within the book
or from your own resources. For example, many programs require
you to input a decimal address. In the demonstrations, this is
indicated by means of a one-line INPUT statement. In Chapter 3,
however, there is a routine for inputting a string of five ASCII

decimal characters and converting it into a two-byte binary
number. This can be inserted into the assembler text of the pro-
gram, to go some way to making it a full machine code program
available for use as a completely self-contained section of machine
code.

WRITING MACHINE CODE

You have an idea that you wish to convert into machine code—so
what’s the best way to go about it? Firstly, make some brief notes
about its operation. Will it use the screen? If so, what mode? Will it
require the user to input values from the keyboard? If so, what keys
do you use? What will the screen presentation look like? Will you
want to use sound?...and so on. Once you have decided on the
effects you want, put them down in flowchart form. This need not
be the normal flowchart convention of boxes and diamonds—I find
it just as easy to write each operation I want the program to
perform in a list and then join the flow of these up afterwards.

Quite often, the next step is to write the program in BASIC! This
may sound crazy, but it allows you to examine various aspects of

the program’s operation in more detail. An obvious example of this
is obtaining the correct screen layout—you might find after run-
ning the routine that the layout does not look particularly good.
Finding this out at an early stage will save you a lot of time later,
avoiding the need to rewrite the screen layout portion of your
machine code—rewriting BASIC is much easier! If you write the
BASIC tester as a series of subroutines, it will greatly simplify the
process of conversion to machine code. Consider the main loop of
such a BASIC tester, which takes the form:

18 GOSUB 28% : REM SET UP VARIABLES

2% GOSUB 398 : REM SET UP SCREEN

30 REM LOOP

48 GOSUB 498 : REM INPUT VALUES

58 GOSUB 59@ : REM CONVERT AS NEEDED

69 GOSUB 60% : REM DISPLAY VALUES

76 GOSUB 7% : REM DO UPDATE

89 IF TEST=NOTDONE THEN GOTO 39

99 END

Each module can be taken in turn, converted into assembler and
tested. Once performing correctly the next procedure can be
examined. Debugging is made easier because the results of each
module are known having used the BASIC tester. The final main
loop of the assembler might then look something like this:

JSR $C2@g : REM SET UP VARIABLES

JSR $C39g : REM SET UP SCREEN

REM LOOP

JSR $c4gg : REM INPUT VALUES

JSR $C5@g : REM CONVERT AS NEEDED

JSR €C69@ : REM DISPLAY VALUES

JSR $5708 : REM DO UPDATE

BNE LOOP

You might be surprised to learn that this technique of testing
machine code programs by first using BASIC is employed by many
software houses the world over.

DEBUGGING

A word or two about debugging machine code programs that will
not perform as you had hoped: if this happens to you, before
pulling your hair out and throwing the latest copy of Machine Code
Nuclear Astrophysics Weekly in the rubbish bin, a check of the
following points may reveal the bug!

1. If you are using a commercial assembler, check that your labels
have all been declared and correctly assigned. If you are
assembling ‘by hand’, double-check all your branch displace-
ments and JMP and JSR destination addresses. You can
normally ascertain exactly where the problem is by examining
how much of the program works before the error occurs,
rather than checking it all.
If your program uses immediate addressing, ensure you have
prefixed the mnemonic with a hash (#) to inform the assembler
or, if compiling by hand, check that you have used the correct
opcode. It is all too easy to assemble the coding for LDA $41
when you really want the coding for LDA #$41.
Check that you have set or cleared the Carry flag before
subtraction or addition.
My favourite now—ensure that you save the result of a sub-
traction or an addition. The sequence:

CLC

LDA $FB

ADC #1

BCC OVER

INC $FC

OVER

RTS

is not much good if you don’t save the result of the addition
with:

STA $FB

before the RTS!
5. Does the screen clear to the READY prompt whenever you

perform a SYS call, seemingly without executing any of the
machine code? The bug that often causes this 1s due to an extra
comma being inserted into a series of DATA statements. For
example the DATA line:

DATA 169,9, ,162,255

with an extra comma between the @ and 162, would assemble

the following:

LDA #$2¢2

BRK

LDX #$FF

as the machine has interpreted ‘,,’ as ‘,0,’ and assembled the
command which has zero as its opcode—BRK!

6. Does the program ‘hang up’ every time you run it, when you
are quite certain that the data statements are correct? This is
often caused by a full stop instead of a comma being used
between DATA statements, e.g.

DATA 169,6,162.5,96

Here, if a full stop has been used instead of a comma between
the 162 and the 5, the READ command interprets this as a
single number, 162.5, rounds it down to 162, and assembles
this ignoring the 5 and using the 96 (RTS) as the operand, as
follows:

LDA #$96

LDX #$62

XXX

When executed, the garbage after the last executable instruc-
tion results in the system hanging up. This error should not
occur if you calculate your loop count correctly, so always
double-check this value before running your program.

If none of these errors is the cause of the problem, then I’m afraid
you must put your thinking cap on. Well-commented assembler
will make debugging very much easier.

2 Commodore Command

One of the disadvantages of using random access memory-based
machine code routines as utilities within a BASIC program is that it
is left to you, the programmer, to remember just where they are
stored, and to use the appropriate SYS call to implement them.
This doesn’t usually pose any problems if only one or two machine
code utilities are present; the problems occur when several are
being used. Normally you would need to keep a written list of these
next to you, looking up the address of each routine as you need it.
Great care must be taken to ensure that the SYS call is made to the
correct address, as a mis-typed or wrongly called address can send
the machine into an infinite internal loop, for which the only cure is
a hard reset, which would destroy all your hard work.

The program offered here provides a useful and exciting solution
to the problem, enabling you to add new commands to your
Commodore 64’s vocabulary. Each of your routines can be given a
command name, and the machine code comprising any command

will be executed by simply entering its command name. The
routine is written so that these new commands can be used either
directly from the keyboard or from within programs.

The trick in ‘teaching’ the Commodore 64 new commands is to
get the machine to recognize them. If an unrecognized command is
entered at the keyboard, the almost immediate response from the
64 is ‘?SYNTAX ERROR’. If you have any expansion cartridges
you ll know that it is possible to expand the command set, and the
Programmer's Reference Guide gives a few hints on how to do this,
on pages 307 and 308—the method pursued here is by resetting the
system CHRGET subroutine.

CHRGET

The CHRGET routine is, in fact, a subroutine which is called by
the main BASIC Interpreter. You can think of it as a loop of code,
protruding from the machine, into which we can wedge our own

bits of code, thereby allowing fundamental changes to be made to
the manner in which the Commodore operates. Let’s have a look at
how the normal CHRGET subroutine (which is located in zero
page from $73) operates:

Table 2.1

Address Machine code Assembler

$OO73 E6 7A INC $7A

$0275 DZ G2 BNE $9979
$0077 E6 7B INC $7B

$2B79 AD xx xx LDA $xxxx

$PP7C C9 3A CMP #$3A

$OP7E BY QA BCS $698A

$0080 Co 2g CMP #$2¢

$0082 FZ EF BEQ $0973

$0984 38 SEC

$BG85 EQ 39 SBC #$3¢

$ A087 38 SEC

$0088 ES D@ SBC #$D¢

$PP8A 6g RTS

The subroutine begins by incrementing the byte located at $7A.
This address forms a vector which holds the address of the inter-
preter within the BASIC program that is currently being run. If
there is no carry over into the high byte, which must therefore itself
be incremented, a branch occurs to location $9979. You will notice
that the bytes which have just been incremented lie within the
subroutine itself. These are signified in the above listing by ‘xx xx’,
because they are being updated continually by the routine. The
reason for this should be fairly self-evident: looking at the opcode,
we can see that it is LDA, therefore each byte is, in turn, being
extracted from the program.

The next two bytes at $907C perform a compare, CMP #$3A.
The operand here, $3A, is the ASCII code for a colon, so
CHRGET is checking for a command delimiter. The BCS $008A
will occur if the accumulator contents are greater than $3A, effec
tively returning control back to within the BASIC Interpreter
ROM. The next line, CMP #$20, checks whether a space has been
encountered within the program. If it has, the branch is executed
back to $0073 and the code rerun.

The rest of the coding is checking that the byte is a legitimate

one—it should be an ASCII character code in the range $39 to $39,
that is, a numeric code. If it is, the coding will return to the main
interpreter with the Carry flag clear. If the accumulator contains
less than $39 (it could, of course, have ASCII $2@ in it, as we have
already checked for this) then the Carry flag is set.

It is important to understand what is happening here, as we will
need to overwrite part of this code to point it in the direction of our
own ‘wedge’ interpreter. This has to perform the ‘deleted’ tasks
before returning to the main interpreter to ensure the smooth and
correct running of the Commodore 64.

THE WEDGE OPERATING SYSTEM

To distinguish the Wedge Operating System (WOS) commands
from normal commands (and illegal ones!), we must prefix them
with a special character—one which is not used by the Commodore
64. The Programmer’s Reference Guide suggests the use of the
the ‘@’ sign, so that’s what we will use.

Program 1a lists the coding for the WOS. I have chosen to place it
well out of the way, in the free RAM area from 49666 (3C202)
onwards. As we shall see the memory below (bis to 49152 ($C000)
is also used by the WOS.

Program la

18 REM *** WEDGE OPERATING SYSTEM — WOS ***
26 REM *** WOS INTERPRETER FOR COMMODORE 64 ***

30 :

46 CODE-49666
5 FOR LOOP=f TO 188
68 READ BYTE
7% POKE CODE+LOOP, BYTE
89 NEXT LOOP
O9 :

19% REM ** M/C DATA **

118 DATA 169,¢ : REM LDA #$99@

128 DATA 169,192 : REM LDY #4$C@

138 DATA 32,398,171 : REM JSR $ABI1E

148 DATA 169,76 : REM LDA #$4C

158 DATA 133,124 : REM STA $7C

168 DATA 169,24 : REM LDA #$18

176 DATA 133,125 : REM STA $7D

188 DATA 169,194 : REM LDA #$C2

198 DATA 133,126 : REM STA $7E

10

200
205

219

22
230

249

258

266

270

280

290

3D
31g
320

33g
340

359

366
376
388

399

4D D
419

429

439

AAG
445
A5¢
469

ATP

489

499

509
519

520

539
549

559g
569

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

198 ,2,3

201,64

208,68

165,157

246 , 49

173,90,2

201,64

268,28

169 0

177,122

261,32

240 ,9

230,122

268 , 246

230,123

56

176,241

169,9

56

176,29

169,64

56

176,24

52,114,194 :

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

169,92

177,122

261,98

246,13

261,58

246 ,9

230,122

208,242

230,123

o6

176,237

REM

REM

: REM

REM

REM

REM

: REM

: REM

: REM

32,114,194 : REM

REM

: REM

: REM

: REM

: REM

REM

REM

: REM

: REM

32,116,164 :

: REM

: REM

: REM

: REM

: REM

: REM

REM

REM

REM

JMP

WOS STARTS HERE

CMP

BNE

LDA

BEQ

LDA

CMP

BNE

JSR
LDY

LDA

CMP

BEQ

INC

BNE

INC

SEC

BCS
JSR
LDA

SEC

BCS

LDA
SEC

BCS

($ypsp<)

$40

$44

$9D

$28

$6200

#$4p
$1C

$C272

HDD

($7A) ,Y

#$2G

$69
S7A

$F6

$7B

SF]

SAAT

$00

$1D

$40

$18

PROGRAM—MODE

JSR

LDY

LDA

CMP

BEQ

CMP

BEQ

INC

BNE

INC

SEC

BCS

$C272

HDD
($7A),Y

HYDD

$6D
#BSA

$69
$7A

$F2

$7B

$ED

INCREMENT
INDEXES

Yes LAST Yes JMP TO

9

No

ADDRESS

INCREMENT JUMP TO
ALL ADDRESS

INDEXES

Figure 2.1 The wedge operating system flowchart

579 DATA 291,58 : REM CMP #$3A

589 DATA 176,19 : REM BCS $@A

599 DATA 291,32 : REM CMP #$2¢

600 DATA 246,7 : REM BEQ $97

618 DATA 56 : REM SEC

628 DATA 233,48 : REM SBC #$3¢

638 DATA 56 : REM SEC

648 DATA 233,28 : REM SBC #$Dg¢

65% DATA 96 - REM RTS

668 DATA 76,115, : REM JMP $973

665 :: REM FIND—-EXECUTE

12

67g
689

699

TPP
71g
720
73D

749
756

76D
77D
78D

6)
809
819

829
839

849

859

869
879

889
899
969
919

926

936

949

959

969

979

989

999

1P99
1919
1P2g
1939
1P49
1959
1f6g

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

169,9¢

133,127

169, 193

133,128

23,122

268 ,2

230,133

168,
162,08

177,127

249,36

209,122

268,4

200
56

176,244

177,127

249 ,4

20
56

176,248

20
152

24

191,127

133,127

169,9

191,128

133,128

169,98

252

252

56

176,216

133,128

252

133,129

198,128,

>: REM

REM

REM

: REM

: REM

- REM

REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

: REM

189 ,89,192 :

: REM

: REM

189,889,192 :

: REM

> REM

REM

REM

LDA
STA
LDA
STA

INC
BNE
INC
LDY
LDX
LDA
BEQ

CMP
BNE
INY
SEC

BCS
LDA
BEQ

INY

SEC

BCS
INY
TYA

CLC
ADC
STA
LDA
ADC
STA

LDY
INX
INX
SEC
BCS
LDA

STA
INX
LDA
STA

JMP

#$DD
S7F

HEC1

$89
S7A

$02
$7B

HG DP

#$DD

($7F),Y
$24

($7A),Y

$4

$F4
($7F) ,Y

$24

$F8

$7F

$7F

EDD

$89

$89

#$OD

$D8

$CP5 , xX
$8

$CA5P , xX
$81

($298P)

1965 :: REM ILLEGAL

1878 DATA 162,11 - REM LDX #$@B

1988 DATA 198,9,3 : REM JMP ($39)

199¢

1199 REM ** SET UP COMMAND TABLE «+

1119 TABLE=49498

1128 FOR LOOP=9 TO 19

1138 READ BYTE

1148 POKE TABLE+LOOP, BYTE

1159 NEXT LOOP

116¢

1178 REM ** ASCII COMMAND DATA **

1188 DATA 67,76,83,@ : REM CLS

1199 DATA 76,79,87,8 : REM LOW

120% DATA 85,89,@ : REM UP

To enable the WOS to identify a wedge command, it needs a
complete list to which it can compare the one it is interpreting in the
program—this is done with the aid of a command table, which is
formed by the program lines from 119 to 1209. This ASCII table is
based at 49498 ($C19) and, as you can see from the listing, three
commands are provided: @CLS, @ LOW and @ UP. Note that
the @ is omitted from the front of each command in the table—t is
unnecessary at the comparison stage, as by this time it has already
been established that it is a WOS command—and that each com-
mand is terminated by a zero. A table listing the execution address
of each command must also be constructed, but more of this later.

The main program consists of two parts, an initialization routine
and the interpreter proper.

The initialization routine is embodied in lines 119 to 2@. Its
function is to reset the CHRGET subroutine investigated earlier.
Lines 119 to 13 issue a heading on the screen indicating that the

49408

re" | | +s" | $09)” [-o" | -w" | $00 [-u~| $00
The Command Table

49232

oo alee clan oe
EXECUTION
ADDRESS OF: CLS LOW UP

The Address Table

Figure 2.2 The Command and Address Tables.

13

14

WOS has been initialized. The subroutine at $AB1E, called by line
139, prints out an ASCII string located at the address given by the
index registers. In this instance it is located at $COMO (49152), and is
assembled into memory by the second part of the listing. Lines 140
to 199 poke three bytes into the CHRGET subroutine which effec-
tively assembles the code:

JMP $C218

The address $C218 is the address of the start of the WOS inter-
preter at line 219. Finally, line 200 does an indirect jump through
the IMAN vector at $0302 to perform a warm BASIC start. The
CHRGET subroutine, complete with wedge jump, now looks like
this:

Table 2.2

Address Machine code Assembler

$OO73 E6 7A INC $7A

$BO75 DZ 2 BNE $9979

$OOTT E6 7B INC $7B

$2B79 AD xx xx LDA $xxxx

$AS7TC 4C 18 C2 JMP $C218

When the WOS is entered, the byte in the accumulator is checked
to see if it is an@ (line 210), signifying a wedge command. If it is
not, then a branch to line 579 is performed. As you can see, the
code from line 570 to 65% performs the normal function of the
CHRGET routine, with control returning to the BASIC Inter-

preter.

If the byte is an @ , the interpretation continues. The byte at $9D
is located, to detect whether the command is within a program or
has been issued in direct mode. A zero indicates that the command
has been called from within a program and the branch of line 249 to
line 459 is performed. In both instances the interpretation follows
similar lines—for descriptive purposes, we will assume program
mode and resume the commentary from line 450.

The subroutine at $C272 is the interpreter proper. Starting at
line 665 it locates the command and executes it. The first eight
bytes (lines 670 to 70M) set up a zero page vector to point to the
command table at $C1@. Lines 719 to 739 update the zero page
bytes at $7A and $7B, which hold the address of the current point
within the program. After initializing both index registers, the first

byte within the command table is located (lines 749 to 760), and
compared to the byte within the program, immediately after the @
(line 780). If the comparison fails, the branch to line 839 is per-
formed, locating the zero and therefore the next command in the
command table. When a comparison is successful (the command is
identified) and the terminating zero located by line 779, the branch
to line 1919 is performed. Lines 1010 to 106 locate the execution
address of the command from the address table located at $CQ59.
The X register is used as an offset into this, being incremented by
two each time a command table comparison fails (lines 970 and
980). The two address bytes are loaded to form a zero page vector
and the machine code is executed via an indirect jump.

On completion of the routine, its terminating RTS returns
control to line 469, and the next byte after the command is sought
out. When a zero is found, the branch of line 499 is performed and
the CHRGET routine is completed, control being returned to the
BASIC Interpreter.

THE NEW COMMANDS

Program 1b provides the assembly routines to construct the initial-
ization prompts, the machine code for the new commands and the
address table:

Program 1b

1219 REM ** TITLE MESSAGE DISPLAYED ON SYS

49666 xx

1229 HEAD=49152

1239 FOR LOOP=-g TO 4¢

1248 READ BYTE

1258 POKE HEAD+LOOP, BYTE

1269 NEXT LOOP

1279
1288 REM ** ASCII CHARACTER DATA **

1299 DATA 147,13,32,32,42,42,32,67,54,52,32

138% DATA 69,88, 84,69,78,68,69,68,32,83,85

120% DATA 89,69, 82,32,66,65,83,73,67,32, 86,49

1319 DATA 46,48,32,42,42,13,9

1329 ::

1369 REM ** SET UP M/C FOR COMMANDS **

137% MC=59176

1389 FOR LOOP- TO 14

1399 READ BYTE

I5

1496 POKE MC+LOOP, BYTE

141@ NEXT LOOP

1426

1439 REM ** COMMAND M/C «+

1449 :: REM CLS
1459 DATA 169,147 - REM LDA #4$93

1469 DATA 76,219,255 : REM JMP $FFD2

1479 :: REM LOW

1489 DATA 169,14 : REM LDA #«$@E

1499 DATA 76,219,255 : REM JMF $FFD2

159g :: REM UP

1519 DATA 169,142 : REM LDA #$8D

1528 DATA 76,218,255 : REM JMP $FFD2

1539 ::

1549 REM ** SET UP ADDRESS TABLE +*+*

1558 ADDR=49232

1568 FOR LOOP=@ TO 5

1578 READ BYTE

1588 POKE ADDR+LOOP,BYTE

159% NEXT LOOP

1699

161 REM ** ADDRESS DATA **

162% DATA 9,196 : REM CLS $C4¢¢

1638 DATA 5,196 : REM LOW $C495

164 DATA 19,196 : REM UP $C49A

Each command’s machine code is located from 59176 ($C4@). The
three new commands and their functions are:

CLS : clear screen and home cursor

LOW : select lower case character set

UP : select upper case character set

Nothing to set the house alight, admittedly, but the techniques
involved are more important at present. These are simple to imple-
ment and, once understood, enable more useful and complex
commands to be added. The code associated with each command is
responsible simply for printing its ASCII code. The final section of
listing (lines 1549 to 1650) pokes the execution address of each
command into memory. The final address points to the code at line
170, and the program jumps to this position if the command is not
found within the command table. This code performs an indirect
jump to the BASIC Interpreter’s error handler.

USING THE WOS

Using the Wedge Operating System is easy: enter the program as
shown, run it to assemble the code into memory, and if all goes
well, save the program. To initialize the WOS enter:

SYS 49666

The screen will clear, and the following message be printed across
the top of the screen:

** C64 EXTENDED SUPER BASIC V1.0 **

The wedge commands are now available for immediate use. Re-
member that pressing RUN/STOP and RESTORE together will
reset the CHRGET routine to its default value making the WOS
invisible. To relink it, simply execute the SYS 49666 call again.

Line-by-line

A line-by-line description of the WOS now follows, to enable you
to examine its operation in more detail:

line 119 : load accumuator with low byte message address

line 129 : load accumulator with high byte message address

line 13 : print start up message

line 149 : reset CHRGET subroutine

line 28% : doa BASIC warm start

line 25 : main entry for WOS

line 219 : isit an ‘@’ and therefore a WOS command?

line 22 : no, so branch to line 570 to update

line 23 : yes, check for direct or program mode

line 249 : if zero, then WOS command is within program,

so branch to line 450

line 259 : else direct mode so get byte from buffer

line 269 : recheck that it is a WOS command

line 27 : if error, branch to line 410

line 28 : find and execute the command else issue

appropriate error message

line 299% : initialize index

line 3% : get byte from buffer

line 319 : is it a space?

line 32 : yes, so branch to line 380

18

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

336

349

359

360

38
396

ADD

429

439

445

456

469

AT
489

499

oy
516

526

536

549

556

570

58
596

6D
61g

620

630

649

650

660

665
676

716

720

increment low byte of address

branch back to line 300 if high byte does not need

to be updated

else increment high byte of address

set Carry flag and do a forced branch back to

line 300

: print ‘READY’ prompt

clear accumulator

set Carry flag and force a branch to line 500 to

update and return

get ‘@’ into accumulator

set Carry flag and force a branch to line 570

entry point for PROGRAM-MODE

locate and execute command or print appropriate

error message

clear indexing register

get byte from program

is it a @ and therefore end of line?

yes, branch to line 500

: no, is it the command delimiter ‘:’?

yes, branch to line 570

no, increment low byte of address

if not zero, branch back to line 47@ to redo loop

increment high byte of address

set Carry flag and force a branch back to line 470.

is it a command delimiter ‘:’?

if greater than or equal to ‘:’ then branch to line 650

is it a space?

yes, so branch to line 650

set Carry flag

subtract ASCII base code

set Carry flag

subtract token and ASCII set bits

return to BASIC Interpreter

jump to CHRGET

entry for FIND-EXECUTE subroutine

seed address of command table ($C1@9) into vector

at $7F

increment low byte of command address

branch over if no carry into high byte

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

73D

7T4Q

750

76D

77D

786

79
86
820

836

846

858

866

886

896

9f6
919

926

939

949

959

966

979

986

999

1919

162g

1938

1$49

1659

1f69

1865

1678

1688

else increment high byte of address

back together, initialize Y register

and X register

get byte from the command table

if zero byte, then command is identified, branch to

line 1019

is it the same as the byte pointed to in the command

table?

no, branch to line 830

increment index

set Carry flag and force a branch back to line 769

command not identified—seek out zero byte. Get

byte from command table

if zero, branch to line 880

increment index

set Carry flag and force a branch to line 830

increment index

transfer into accumulator

clear Carry flag

add to low byte of vector address

Save result

clear accumulator

add carry to high byte of vectored address

and save the result

initialize index

add two to X to move onto next address in the

:. command address table

set Carry flag and force a branch to line 760

get low byte of command execution address

save it in a vector

increment index

get high byte of command execution address

save it in vector

jump to vectored address to execute machine code

of identified command

entry for ILLEGAL—unrecognized WOS command

get error code into X register

and jump to error handling routine

20)

3 ASCII to Binary
Conversions

An important aspect of interactive machine code is the ability to
convert strings of ASCII characters into their hexadecimal equi-
valents, so that they may be manipulated by the processor. In this
chapter we shall examine, with program examples, how this is
performed. The routines provide the following conversions:

1. Single ASCII hex characters into binary.
2. Four ASCII hex digits into two hex bytes.
3. Signed ASCII decimal string into two signed hex bytes.

ASCII HEX TO BINARY CONVERSION

This routine converts a hexadecimal ASCII character in the accum-
ulator into its four-bit binary equivalent. For example, if the
accumulator contains $37 (that is, ASC‘‘7’’), the routine will result
in the accumulator holding $7, or 99000111 binary. Similarly, if the
accumulator holds $46 (ASC“F’’) the routine will return $F, or
(001111, in the accumulator.

Conversion is quite simple, and Table 3.1 gives some indication
of what is required.

Table 3.1

Hex Binary value ASCII value ASCII binary

p LODLOODD $30 £0116 069
1 DDLOLO01 $31 $611 0661

2 PODLL016 $32 $0116619
35 D£LG6GG11 $33 $6119611

4 DOLDD1 06 $34 $611f162

Table 3.1 (contd.)

5 DOP0G1G1 $35 60119191

6 60006119 $36 60116119
‘6 PPPPG111 $37 $$116111

8 DL0L16 0 $38 60111669

~, DOO01061 $39 00111091

A 60001610 $41 D1P0O66P1

B 66001611 $42 J1GD0010

C DLOL11 69 $43 $1966G11

D 60061191 $44 $106 6166

E 66001116 $45 61066191
F 60061111 $46 61068118

The conversion of ASCII characters @ to 9 is straightforward. All
we need to do ts mask off the high nibble of the character’s ASCII
code. For example ASC “1” is $31 or 00110001 binary— masking
the high nibble with AND $OF results in 00000001. Converting
ASCII characters A and F is a little less obvious, however. If the
high nibble of the code is masked off, then the remaining bits are 9
less than the hex required. For example, the ASCII for the letter
‘D’ is $44 or 01000100. Masking the high nibble with AND $OF
gives 4, or 00000100, and adding 9 to this gives:

2DD00169
+ 6£661061

$06G1161

the binary value for $D.

Program 2

16 REM ** CONVERT ASCII CHARACTER IN **

26 REM ** ACCUMULATOR TO BINARY *+*

39 REM ** REQUIRES 2% BYTES OF MEMORY «**

4g :

5@ CODE=-49152

68 FOR LOOP=6 TO 29

76 READ BYTE

86 POKE CODE+LOOP, BYTE

98 NEXT LOOP

190 :

21

11g
129

139

146
156
16¢

176

189

196
2D
216

22
230

246

250

269
270

289
299

3D
319

320
33
346

35
360

376

386

399

ADD
419

426

436

446

450
46
ATH

486

499

REM ** M/C DATA **

DATA 291,48 REM CMP #$3¢

DATA 144,15 REM BCC $F

DATA 291,58 REM CMP #$3A

DATA 144,8 REM BCC $8

DATA 233,7 REM SBC #$@7

DATA 144,7 REM BCC $07

DATA 291,64 REM CMP #$4¢

DATA 176,2 REM BCS $2

co REM ZERO-NINE

DATA 41,15 REM AND #$@F

7 REM RETURN

DATA 96 REM RTS

oe REM ILLEGAL

DATA 56 REM SEC

DATA 96 REM RTS

REM ** TESTING ROUTINE **

TEST =49184

FOR LOOP=-@ TO 14

READ BYTE

POKE TEST+LOOP, BYTE

NEXT LOOP

REM ** M/C TEST DATA **

iz REM TEST

DATA 32,228,255 REM JSR $FFE4

DATA 249,251 REM BEQ $FB

DATA 32,9,192 REM JSR $C06¢

DATA 144,2 REM BCC $62

DATA 169,255 REM LDA #$FF

7 REM OVER

DATA 133,251 REM STA $FB

DATA 96 REM RTS

PRINT CHR§$(147)

PRINT"HIT A HEX CHARACTER KEY, AND ITS

BINARY"

PRINT"EQUIVALENT VALUE WILL BE PRINTED"

SUBTRACT 7 TO
MOVE TO

A-F

SET CARRY
TO DENOTE
ERROR

MASK HIGH
NIBBLE

Figure 3.1 Conversion flowchart

SDD
510 SYS TEST
526 :

530 PRINT "RESULT = "PEEK(251)

Program 2 contains a short demonstration, prompting for a hexa-
decimal value key to be pressed (i.e. @ to F) and returning its
hexadecimal code. Thus, pressing the ‘A’ key will produce a result
of 41. 23

24

The ASCII-BINARY routine begins by checking for the legality
of the character, by comparing it with 48 ($30). If the value in the
accumulator is less than ASC“, the Carry flag will be cleared,
signalling an error. If the character is legal, the.contents are then
compared with 58 ($3A), which is one greater than the ASCII code
for 9. This part of the routine ascertains whether the accumulator’s
contents are in the range $30 to $39. If they are, the Carry flag will
be cleared and the branch to ZERO-NINE (lines 15@ and 120)
pertormed. The high nibble is then masked off to complete the
conversion.

If the branch of line 159 fails, a legality check for the hex
characters A to F is performed. This is done by subtracting 7 from
the accumulator’s contents, which should bring the value it holds
down below 64 ($40), or one less than the ASCII code for the letter
‘A’. At this point the Carry flag is set (it was previously set as the
branch of the previous line was not performed), and the CMP #$40
of line 189 clears it if the contents are higher than 64. The routine
then masks off the high nibble, leaving the correct binary.

The following example shows how the conversion of ASC“F”’ to
$F works:

Mnemonic Accumulator Carry flag

$46 (ASC"F")

CMP 4$32 $46 1

BCC ILLEGAL

CMP #$3A $46 i

BCC ZERO-NINE

SBC #7 $3F 1

BCC ILLEGAL

CMP #$4@ $3F 4)

BCS RETURN

AND $F $OF g
RTS

Note that this routine indicates an error by returning with the Carry
flag set, so any calls to the conversion routine should always check
for this on return. The short test routine does this, and loads the
accumulator with $FF to signal the fact.

Using two calls to this routine would allow two-byte hex values to
be input and converted into a full eight-byte value. On completion
of the first call, the accumulator’s contents would need to be shifted
into the high nibble.

The coding might look like this:

: REM WAIT

JSR GETIN : REM GET FIRST CHARACTER

BEQ WAITI1

JSR ASCII-BINARY : REM CONVERT TO BINARY

BCS REPORT—ERROR > REM NON-HEX IF C=1l

ASL A : REM MOVE INTO HIGHER

NIBBLE

ASL A

ASL A

ASL A

STA HIGH—NIBBLE : REM SAVE RESULT

: REM WAIT2

JSR GETIN : REM GET SECOND CHARACTER

BEQ WAIT2

JSR ASCII-BINARY : REM CONVERT TO BINARY

BCS REPORT—ERROR > REM NON-HEX IF C=1

ORA HIGH-NIBBLE : REM ADD HIGH NIBBLE

: REM ALL BINARY NOW IN

ACCUMULATOR

Using this routine and entering, say, $FE will return 11111119 in
the accumulator.

Line-by-line

A line-by-line description of Program 2 follaws:

line 129 : isit >= than ASC‘0’’?

line 138 : no, branch to ILLEGAL

line 149 : isitinrange@9?

line 158 : yes, branch to ZERO-NINE to skip A-F

translation.

line 16% : move onto ASCII codes for A—F

line 178 : branch to ILLEGAL if Carry flag clear

line 188 _ isit higher than ASC“ @”’?

line 198 : no, branch to ILLEGAL

line 268 : entry for ZERO-NINE

line 219 : clear high nibble

line 228 : entry for RETURN

25

26

line 23¢ return with binary in accumulator

line 248 : entry for ILLEGAL

line 25 : set Carry flag to denote an error

line 269 return to BASIC

line 374 entry for TEST

line 388 : read keyboard

line 399 : if null string, branch to TEST

line 469 : call conversion at $COOO

line 419 if no errors, branch OVER

line 42¢ else error, place 255 in accumulator

line 43% : entry forOVER

line 449 : save accumulator in $FB

line 45¢ and return to BASIC

FOUR ASCII DIGITS TO HEX

We can use the ASCII-BINARY routine as the main subroutine in
a piece of coding which will convert four ASCII digits into a
two-byte hexadecimal number, making the routine most useful for
inputting two-byte hexadecimal addresses. For example, the
routine would convert the ASCII string “CAFE” into a two-byte
binary number 11091010 111111190 or $CAFE. Program 3 lists the
entire coding:

Program 3

1g
20

30

40

56

6G

7G

8f

96

19
119

129

139

149

158

** CONVERT FOUR ASCII DIGITS INTO +**

** A TWO-BYTE HEXADECIMAL NUMBER **

REM

REM

CODE=49152

FOR LOOP=0 TO 62

READ BYTE

POKE CODE+LOOP, BYTE

NEXT LOOP

REM +** M/C DATA **

DATA 166,9 : REM

DATA 162,251 : REM

DATA 148,9 : REM

DATA 148,1 : REM

DATA 148,2 : REM

REM

LDY #0

LDX ¢$FB

STY $60,X

STY $61,X

STY $€2,X

NEXT—CHARACTER

166
179

186

196

202
219

220
225
236

246

256

260

27D

280
299

3Df
316

320

336

349
35
366

37
380

399

4D
41p
429

436
449
450

469

47D

489

496

SDD
51g
529
539

549

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

REM

TEST =

FOR LOOP-@ TO 34

185 ,66,3

52,42,192

176,21

1f, 19
10,19
148 ,2
16,4

1g
54,0
54,1
136
268 , 248
186 ,2

2D
268 , 227

181,2

96

: REM

: REM

REM

REM

REM

: REM

: REM

REM

: REM

REM

>: REM

REM

: REM

: REM

: REM

: REM

REM

: REM

REM

LDA

JSR

BCS

ASL

ASL

OTY

LDY

$335C Bee

$CH2A

$15

A

A

ASLA

ASLA

$62,X

4$D4
AGAIN

ASL A

ROL $66,X

$61,X ROL

DEY

BNE

LDY

INY

BNE $ES

ERROR

LDA

RTS

$2,

*#** ASCII-BINARY CONVERSION ***

261,48

144,15

21,58

144,8

253,7

144,7

261,64

176,2

41,15

96

56

96

REM

: REM

- REM

: REM

: REM

> REM

: REM

: REM

REM

: REM

REM

REM

REM

: REM

- REM

CMP

BCC

CMP

BCC

SBC

BCC

CMP

BCS

ZERO—-NINE

#$3D

$OF
HBESA

$28

$D7

$D7

#$40

$2

AND $F

RETURN

RTS

ILLEGAL

SEC

RTS

*** SET UP A TEST PROCEDURE ***

492352

28

556 READ BYTE

560 POKE TEST+LOOP,BYTE

576 NEXT LOOP

580 :

599 REM «** TEST M/C DATA *«

600 DATA 168,64 : REM LDY #$@¢

616 DATA 162,4 : REM LDX #$@4

626 :: REM OVER

638 DATA 142,52,3 : REM STX $334

646 DATA 146,53,3 : REM STY $335

656 :: REM INNER

660 DATA 32,228,255 : REM JSR $FFE4

676 DATA 246,251 : REM BEQ $FB

680 DATA 174,52,3 : REM LDX $334

690 DATA 172,53,3 : REM LDY $335

706 DATA 153,66,3 : REM STA $33C,Y

716 DATA 32,218,255 : REM JSR $FFD2

720 DATA 2692 : REM INY

736 DATA 262 : REM DEX

748 DATA 298,229 : REM BNE $E5

756 DATA 32,8,192 : REM JSR $C£6¢

766 DATA 96 : REM RTS

T76 :

786 PRINT CHR$(147)

796 PRINT "INPUT A FOUR DIGIT HEX NUMBER : $";

860 SYS TEST

816 PRINT

826 PRINT "THE FIRST BYTE WAS :";PEEK(251)

830 PRINT "THE SECOND BYTE WAS :"; PEEK(252)

The machine code begins by clearing three bytes of zero page RAM
pointed to by the contents of the X register (lines 10M to 140). The
ASCII characters are accessed one by one from a buffer which may
be resident anywhere in memory (liné 160), though in this case it is
the four bytes at the start of the cassette buffer. Conversion and
error-detection are performed (lines 17@ and 18) and the four
returned bits shifted into the high four bits of the accumulator. The
buffer index, which keeps track of the character position in the
buffer, is saved in the third of the three bytes cleared.

The loop between lines 259 and 3 is responsible for moving the
four bits through the two zero page bytes which hold the final
result. In fact, with the accumulator, the whole process of the loop
is to perform the operation of a 24-bit shift reoister. Figure 3.2

Accumulator ASLA

ROL 0, X

Carry

Figure 3.2 Movement of bits through a 3-byte shift register

Result high byte
ROL 1, X

illustrates the procedure.
The ASL A instruction shuffles the bits in the accumulator one

bit to the left, with the dislodged bit 7 moving across into the Carry
flag bit. This carry bit is then rotated into bit 0 of the result address
low byte, which in turn rotates its bit 7 into the Carry flag. The next
ROL instruction repeats this movement on the high byte. The net
effect of all this is that as the process is executed four times, the
returned conversions are shifted through the result address to
reside in the correct place, as Figure 3.3 illustrates.

1,X 0,X Accumulator

Entry DODOODOO DODOODOD 11110000

Ist pass DODODOOD 00001111 ly

2nd pass DODOODOO 11110900 Ly

3rd pass 00001111 hy oy

4th pass 11110000 Fy DODOODID

Figure 3.3 A 24-bit shift register, showing passage of the bits in the

number $ F000

Error-checking is provided for, the routine aborting when it
encounters an illegal hex character, leaving the accumulator con-
taining the index into the buffer, pointing to the illicit value. In fact,
this method is used to complete the execution of the conversion-
rotate loop, using a RETURN character placed at the end of the

29

30

ASCII hex string.
The test routine (lines 599 to 800) prompts for four hex-based

characters to be input. These are placed in the buffer (line 610) and
printed to the VDU. On completion of the input, the address-
binary routine is called, and the result placed in the first two bytes
of the user area, for printing or manipulation purposes.

Line-by-line

A line-by-line decription of Program 3 follows:

line 1@@ : clear indexing register

line 116 : get byte destination

line 129 : clear three bytes

line 159 : entry for NEXT-CHARACTER

line 16@ : get character from buffer

line 1728 : call ASCII-BINARY to convert

line 18% : branch to ERROR if Carry flag is set

line 19% : move low nibble into high nibble

line 218 : save index into buffer

line 22 : moving four bits

line 225 : entry for AGAIN

line 236 : move bit 7 into Carry flag

line 248 : movecarry into bit @ and bit 7 into Carry flag

line 25% : movecarry into bit @ and bit 7 into Carry flag

line 268 : decrement bit count

line 27% : and do until four bits done

line 289 : restore index into buffer

line 299 : increment it to point to next character

line 38% : do branch to NEXT-CHARACTER

line 318 : entry for ERROR

line 326 : get illegal character

line 339 : return to calling routine

CONVERT DECIMAL ASCII STRING TO BINARY

This routine takes a signed decimal string of ASCII characters and
transforms it into a two-byte hexadecimal number. For example,
entering —32,678 will return the value $8000, where $8009 is its
signed binary equivalent. Entry requirements to the conversion
routine are obtained by the BASIC text in lines 880 to 949. Note

that in addition to obtaining the characters for insertion into the
string buffer, the number of characters for conversion is required,
this being placed in the first byte of the buffer.

Program 4

19 REM ** DECIMAL ASCII TO BINARY **

20 REM ** READ & POKE M/C DATA **

30 CODE=49152

4f FOR LOOP=@ TO 155

5@ READ BYTE

66 POKE CODE+LOOP,BYTE

70 NEXT LOOP

Bf :

99 REM ** M/C DATA «+*

106
116 DATA 174,6¢,3 REM LDX $33C

126 DATA 28,3 REM BEQ $03

125 DATA 76,154,192 REM JMP $CQ9A

136 DATA 168,90 REM LDY #@

148 DATA 148,55,3 REM STY $337

156 DATA 148,53,3 REM STY $335

166 DATA 158,54,3 REM STY $336

176 DATA 260 REM INY

186 DATA 148,52,3 REM STY $334

198 DATA 185,69,3 REM LDA $33C,

206 DATA 291,45 REM CMP #$2D

216 DATA 298,14 REM BNE $%E

226 DATA 169,255 REM LDA #&FF

236 DATA 141,55,3 REM STA $337

249 DATA 238,52,3 REM INC $334

256 DATA 22 REM DEX

266 DATA 246,113 REM BEQ $71

276 DATA 76,54,192 REM JMP $C@36

286 :: REM POSITIVE

298 DATA 261,43 REM CMP #$2B

306 DATA 298,12 REM BNE $6

318 DATA 238,52,3 REM INC $334

326 DATA 262 REM DEX

330 DATA 249,160 REM BEQ $64

31

32

346

350

369

370

380

399

ADD
Alp
429

436
449

459

466

ATG

489

499

SPD
516

526

53
546

556

566

570
580

59P

60
61g
620
630
649

652

66
67h
689

69
TOD
716

720
73D

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

172,52,35

185,68 ,3

261,58

16,96

261,48

48 , 86

T2

14,53,3

46 ,54,3

173 ,53,3

172 ,53,3

14,53,3

46 ,54,3

14,53,3

46 ,54,3

24

189,53,3

141,53,3

152

189 ,54,3

141,54,3

56

1f4

255,48

24

189,53,3

141,53,3

144,3

258 ,54,3

258 ,52,35

262

268,181

173,55,3

16,17

56

169 , 6

257 ,53,3

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

CONVERT—CHARACTER

LDY $334

LDA $33C,Y

CHECK—-LEGALITY

CMP #$3A

BPL $5A

CMP #$3¢@

BMI $56

PHA

ASL $335

ROL $336

LDA $335

LDY $336

ASL $335

ROL $336

ASL $335

ROL $336

CLC

ADC $335

STA $335

TYA

ADC $336

STA $336

SEC

PLA

SBC #$3¢

CLC

ADC $335

STA $335

BCC $93

INC $336

NO-—CARRY

INC $3534

DEX

BNE $B5

LDA $337

BPL $11

SEC

LDA #6

SBC $335

START

GET
FIRST

CHARACTER

Yes SET SIGN CALCULATE
ABSOLUTE FLAG
ADDRESS

No

GET
CHARACTER

CONVERT
TO

BINARY

ROTATE
SHIFT

REGISTERS

UPDATE
INDEXES

END

Figure 3.4 ASCII string to binary conversion flowchart

746 DATA 141,53,3 REM STA $335

750 DATA 169,¢ REM LDA #4

766 DATA 237,54,3 REM SBC $336

776 DATA 141,54,3 REM STA $336

780 :: REM NO—COMPLEMENT

799 DATA 24 REM CLC

806 DATA 144,1 REM BCC $1

818 :: REM ERROR

826 DATA 56 REM SEC

836 :: REM FINISH

8468 DATA 96 REM RTS

85g

860 REM ** SET UP SCREEN AND GET NUMBER **

876 PRINT CHR$(147)

886 INPUT'NUMBER FOR CONVERSION"; A$

89% FOR LOOP=1 TO LEN(A$)

998 TEMP$=MID$(A$,LOOP, 1)

916 B=ASC(TEMP$)

926 POKE 828+LO0P,B

936 NEXT LOOP

948 POKE 828,LEN(A$)

950 :

969 SYS CODE

976 :

988 PRINT'THE TWO BYTES ARE AS FOLLOWS"

999 PRINT"LOW BYTE "; PEEK(821)

190% PRINT'HIGH BYTE "; PEEK(822)

Bytes are designated as follows:

826 ($334) : string index

821 ($335) current count

823 ($336) : sign flag

828 ($33C) length of string

829 ($33D) : start of character string

The machine code begins by obtaining the character count from the
X register. An error is signalled if this count is zero, otherwise the

program progresses, clearing the sign flag (used to signal positive or
negative values) and result destination bytes at ‘current’ (lines 130
to 160). Location $79 is used to hold the string index, pointing to
the next character for conversion. This byte is initially loaded with
1 so that it skips over the count byte in the buffer.

The first byte of the string is tested for a ‘+’ or ‘—’ sign, the
former being an optional item in the string, and the sign flag is set
accordingly (lines 199 to 230). The CONVERT-CHARACTER
loop starts by testing the character about to be manipulated to
ensure it is a decimal value, i.e. @to 9 inclusive. Converting the byte

into binary form is achieved by multiplying the byte by 10. This
multiplication is readily available using four arithmetic shifts and
an addition: 2*2*2+2= 19.

Because we are dealing with a two-byte result, the arithmetic
shift must be performed on the two bytes, allowing bits to be
transferred from one byte to the other. This is performed by using
an ASL followed by a ROL. As figure 3.5 illustrates, this acts
exactly like a 16-bit ASL. The first pass through this character-
conversion loop has little effect, as it is operating on characters
already converted, of which there are none first time round!

Lines 579 to 620 carry out the conversion of ASCII to binary and
store the result. This is performed, as we know from earlier
examples, by masking off the high nibble. Another technique for
doing this is simply to subtract the ASCII code for ‘@’: $39.

ASL high byte

A |

pi ttt i tt j-
Carry

ttt Ett
Carry = ROL low byte

Figure 3.5. A16-bit arithmetic shift

Once all the characters have been processed, the sign flag at $334
(820) is checked for a negative value. If this is indicated (lines 699
and 70), the value of current is subtracted from zero, thereby
converting the absolute value into a signed negative byte (lines 710
to 770). The Carry flag is used to indicate any error conditions—if
it is Set an error occurred, and the string index at $334 points to the
illegal character.

35

36

Line-by-line

A line-by-line description of Program 4 now follows:

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

11g
126

126
139

14
156
179

189

196

2D
219

229
230

240

256

266

27D

286

296

3D
319

326

330

349

356

360

378

38f
399

40D
41g
426

43
456

get length of string

branch if not zero

else jump to ERROR

clear Y register

sign flag

and store bytes

increment Y

set index to first ASCII character

get first character

is it a minus sign?

no, branch to POSITIVE

yes, get negative byte

and set the sign flag

move to next character

decrement length counter

branch to ERROR if zero

else jump to CONVERT-CHARACTER

entry for POSITIVE

is first character a +?

no, branch to CHECK-LEGALITY

yes, move to next character

decrement length counter

branch to ERROR if zero

entry for CONVERT-CHARACTER

restore index

get character from buffer

entry for CHECK-LEGALITY

is it <= ASC“9”?

no, it’s bigger, branch to ERROR

is it >= ASC‘‘@”’?

no, branch to ERROR

save code on stack

multiply both bytes by two

save low byte

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

462

AT
499

51g
520

530

546

556

566

576

586

596

6D
619

62
639

64
656

66
676

68
69
TDD
719

720

73D

74
750

76D

TTD
78D

79D
809
819

829
836

849

save high byte

multiply by two again (now *4)

and again (now *8)

clear Carry flag

add low byte *2

and save result

transfer high byte *2

and add to *8 high byte

save it. Now *10

set Carry flag

restore ASCII code from stack

convert ASCII to binary

clear Carry flag

add it to low byte current

Save result

branch if NO-CARRY

else increment high byte

entry for NO-CARRY

move index on to next byte

decrement length counter

branch to CONVERT-CHARACTER if not finished

completed so get sign flag

if clear branch to NO-COMPLEMENT

else set Carry flag

clear accumulator

and obtain two’s complement

save low byte result

clear accumulator

subtract high byte from

and save result

entry for NO-COMPLEMENT

clear Carry flag

and force branch to FINISH

entry for ERROR

set Carry flag to denote error

entry for FINISH

return to BASIC

37

4 Binary to Hex ASCII

This chapter complements the previous one and illustrates how
memory-based hex values can be converted into their ASCII repre-
sentation. The routines provide the following conversions:

1. Print accumulator as two ASCII hex characters.
2. Print two hex bytes as four ASCII hex characters.
3. Print two-byte signed binary number as signed decimal

number.

PRINT ACCUMULATOR

To convert an eight-bit binary number into its ASCII hex equi-
valent characters, the procedure described in Chapter 3 must be
reversed. However, because text is printed on the screen from left
to right, we must deal with the high nibble of the byte first. Program
5 uses the hexprint routine to print the hexadecimal value of any
key pressed at the keyboard.

Program 5

1 REM ** PRINT ACCUMULATOR AS A HEX NUMBER «*+*

26 :

36 CODE=49152

46 FOR LOOP=@ TO 21

5@ READ BYTE

66 POKE CODE+LOOP, BYTE

76 NEXT LOOP

88 :

98 REM «* M/C DATA «+

10g :

118 DATA 72 REM PHA

126 DATA 74, 74 REM ASL A: ASLA

138 DATA 74, 74 REM ASL A: ASLA

146 DATA 32,9,192 REM JSR $C@g9

158 DATA 164 REM PLA

160 :: REM FIRST $C@G9

176 DATA 41,15 REM AND #$6F

186 DATA 241,19 REM CMP #$@A

198 DATA 144,62 REM BCC $2

206 DATA 195,6 REM ADC #$6

216 :: REM OVER

226 DATA 165,48 REM ADC #$3¢

230 DATA 76,216,255 REM JMP $FFD2

246

2508 REM ** SET UP DEMO AT 828 «x

260 REM LDA $FB : JMP $CGPg

270 POKE 828,165 : POKE 829,251

280 POKE 838,76 : POKE 831,¢ : POKE 832,192

296 “PRINT CHR$#(147)

360 PRINT "HIT ANY KEY AND ITS HEX VALUE IN"

319 PRINT "ASCII WILL BE DISPLAYED"

320 GET A$:- IF A$="" THEN GOTO 32

336 A=ASC(A$)

348 POKE 251,A

356 :

360 SYS 828

3768 REM CALL 'SYS CODE' TO USE DIRECTLY

The hexprint routine is embedded between lines 119 and 230. The
accumulator’s contents are first pushed on to the hardware stack.
This procedure is necessary as it will have to be restored before the
second pass, which calculates the ASCII code for the second char-
acter. The first pass through the routine sets about moving the
upper nibble of the accumulator byte into the lower nibble (lines
120 and 130). The FIRST subroutine ensures that the high nibble is
cleared by logically ANDing it with $0F. This is, of course, surplus
to requirement on the first pass, but is needed on the second pass to
isolate the low nibble. Comparing the accumulator’s contents with
19 will ascertain whether the value is in the range 0 to 9 or A to F. If
the Carry flag is clear, it falls in the lower range (9 to 9) and simply
setting bits 4 and 5, by adding $39, will give the required ASCII
code. A further 7 must be added to skip non-hex ASCII codes to
arrive at the ASCII codes for A to F ($41 to $46). You may have

39

noticed that line 209 does not add 7 but in fact adds one less, 6. ‘This
is because, for this section of coding to be executed, the carry must
have been set, and the 6519 addition opcode references the Carry
flag in addition. Therefore, the addition performed is: accumulator
+6 4 1.
The JMP of line 230 will return the program back to line 159.

Remember, FIRST was called with a JSR, so the RTS from com-
pletion of the CHROUT call returns control here. The accumu-
lator is restored and the process repeated for the second ASCII
digit. |
A short test routine is established in lines 250 to 349. This

requests you to hit a key, the value of which is placed in a free zero
page byte. The ‘hand-POKEd’ routine at 828 is called by line 369,
and puts the key’s value into the accumulator before performing a
jump to the main routine.

The following example illustrates the program’s operation,
assuming the accumulator holds the value 01091111, $4F:

Mnemonic Accumulator Carry flag

$4F

LSR A $27 1

LSR A $13 1

LSR A $69 l

LSR A $D4 1

JSR FIRST

AND #$6F $24 1
CMP #$6A $04

BCC OVER

OVER

ADC #$3¢ $34 (ASC"4") D

JMP CHROUT

PLA $4F p

AND #$0F $OF D

CMP #$A

Line-by-line

A line-by-line description of Program 5 follows:

line 119 : save accumulator on stack

line 128 : move high nibble into low nibble

line

line

line

line

line

line

line

line

line

line

14g
15¢

16¢

176
18¢

19¢

269
219

220

230

call FIRST subroutine

restore accumulator

entry for FIRST

ensure only low nibble set

is it < 10?

yes, branch to OVER

no, add 7, value $A to $F

entry for OVER

add 48 to convert to ASCII code

and print, returning to line 149 or BASIC

PRINT A HEXADECIMAL ADDRESS

The hexprint routine can be extended to enable two zero page
bytes to be printed out in hexadecimal form. This is an especially
important procedure when writing machine based utilities, such as
a hex dump or disassembler. The revamped program is listed
below:

Program 6

1@ REM ** PRINT TWO HEX BYTES AS **

20 REM ** A TWO-BYTE ADDRESS «+

38 CODE=49152

4% FOR LOOP=9 TO 34

54
62

READ BYTE

POKE CODE+LOOP, BYTE

78 NEXT LOOP

89
99 REM ** M/C DATA «+

199 REM ** CALL WITH $FB,$FC HOLDING BYTES **

119 :: REM ADDRESS—PRINT

128 DATA 162,251 - REM LDX #$FB

136 DATA 181,1 : REM LDA $91,X

149 DATA 32,13,192 : REM JSR $C£PD

158 DATA 181,9 : REM LDA $99,X

168 DATA 32,13,192 : REM JSR $CQ@D

17% DATA 96 : REM RTS

189 :: REM HEXPRINT

199 DATA 72 : REM PHA

208 DATA 74,74 : REM LSR A: LSR A

41

42

218 DATA 74,74 > REM LSR A: LSRK A

220 DATA 32,22,192 : REM JSR $C#16

238 DATA 14 : REM PLA

246 :: REM FIRST
258 DATA 41,15 - REM AND #$9F
260 DATA 291,16 : REM CMP #$@A

278 DATA 144,2 : REM BCC $2

280 DATA 195,6 : REM ADC #$96

290 :: REM OVER

306 DATA 195,48 : REM ADC #$3¢
318 DATA 76,218,255 : REM JMP $FFD2

Zero paged indexed addressing is used to access the two bytes, the
crucial location being given in the X, register, which acts as the
index for the high byte, LDA $@1,X (line13@), and the low byte,
LDA $0@,X (line 150). The all-important address in this instance is
$FB (line 130), so the bytes accessed by ADDRESS-PRINT are
$FB ($FB+@) and $FC ($FB+1). Using this method, various
addresses can be housed within zero page and any one reached
simply by seeding the X register with the location value.

Project

Adapt Program 6 to accept a five character decimal number from
the keyboard, printing its hexadecimal value on the screen.
Remember—no BASIC, and the input routine must be able to
accept numbers in the range @ to 65!

BINARY SIGNED NUMBER TO SIGNED ASCII
DECIMAL STRING

This conversion utility takes a two-byte hexadecimal number and
converts it into its equivalent decimal based ASCII character
string. For example, if the two-byte value is $7FFF, the decimal
string is 32,767, $7FFF being 32,767 in decimal. The coding uses
signed binary values so that if the most significant bit is set, a
negative value is interpreted. This is relayed in the string with a
minus sign. This means that the routine can handle values in the
range 32,/67 to —32,768. When using the routine, remember that
the two’s complement representation is used, so that a hex value of
$FFFF is converted to the string —1, and $8000 returns the char-
acter string —32,7/67.

The two address bytes are located at $334 and $335 and the string
buffer from $FB onwards. The length of the string buffer will vary,
but its maximum length will not exceed six digits, so this number of
bytes should be reserved.

START

SHIFT HIGH
NIBBLE INTO

LOWER
NIBBLE

CONVERT
FIRST
DIGIT

IS
IT LESS
THAN 19?

Yes

ADD6TO
CONVERT TO

A-F

CONVERT
DIGIT TO

ASCII

END

No

RESTORE
ACCUMULATOR.

CLEAR HIGH
NIBBLE

Figure 4.1 Hex to ASCII conversion flowchart

43

Program 7

19 REM ** BINARY SIGNED NUMBER CONVERSION **

20 REM ** INTO SIGNED DECIMAL ASCII STRING **

30 CODE=49152 : OUTPUT=49391

4 FOR LOOP=-@ TO 163

5@ READ BYTE

68 POKE CODE+LOOP, BYTE

7% NEXT LOOP

Bf :

99 REM *«* M/C DATA *«

198 DATA 168,¢ : REM LDY #4$@¢

116 DATA 152 : REM TYA

128 DATA 133,251 : REM STA $FB

138 DATA 133,252 : REM STA $FC

148 DATA 133,253 : REM STA $FD

158 DATA 133,254 : REM STA $FE

168 DATA 133,255 : REM STA $FF

178 DATA 173,53,3 : REM LDA $335

188 DATA 141,56,3 : REM STA $338

198 DATA 16,15 : REM BPL $F

206 DATA 56 : REM SEC

216 DATA 152 : REM TYA

226 DATA 237,52,3 : REM SBC $334

236 DATA 141,52,3 REM STA $334

246 DATA 152 : REM TYA

256 DATA 237,53,3 : REM SBC $335

266 DATA 141,53,3 : REM STA $335

276 :: REM CONVERSION

286 DATA 169,¢ : REM LDA #$0¢

298 DATA 141,54,3 : REM STA $336

306 DATA 141,55,3 : REM STA $337

318 DATA 24 : REM CLC

326 DATA 162,16 : REM LDX #$19

336 :: REM LOOP

340 DATA 46,52,3 : REM ROL $334

356 DATA 46,53,3 : REM ROL $335

36M DATA 46,54,3 : REM ROL $336

376 DATA 46,55,3 : REM ROL $337

388 DATA 56 : REM SEC

START

SAVE
SIGN
BIT

CALCULATE
ABSOLUTE

QUOTIENT
= 9?

CONVERT
BIT VALUE
TO ASCII

CONCATENATE
CHARACTER
TO STRING

Figure 4.2 Binary to ASCII string conversion flowchart

398 DATA 173,54,3 REM LDA $336

406 DATA 233,19 REM SBC #$@A

416 DATA 168 : REM TAY

426 DATA 173,55,3 : REM LDA $337

436 DATA 233,¢ REM SBC #$£¢

446 DATA 144,6 REM BCC $6

456 DATA 149,54,3 REM STY $336

466 DATA 141,55,3 REM STA $337

ATO :: REM LESS-—THAN

488 DATA 262 REM DEX

499 DATA 288,221 : REM BNE $DD

506 DATA 46,52,3 : REM ROL $334

518 DATA 46,53,3 : REM ROL $335

520 :: REM ADD-ASCII

536 DATA 24 REM CLC

548 DATA 173,54,3 REM LDA $336

550 DATA 195,48 REM ADC #$3¢

560 DATA 32,116,192 REM JSR $C#74

576 DATA 173,52,3 REM LDA $334

580 DATA 13,53,3 REM ORA $335

598 DATA 298,187 REM BNE $BB

GOO :: REM FINISHED

616 DATA 173,56,3 REM LDA $338

626 DATA 16,5 REM BPL $5

630 DATA 169,45 REM LDA #$2D

646 DATA 32,116,192 REM JSR $C§74

650 :: REM POSITIVE

669 DATA 96 : REM RTS

678 REM SUBROUTINE TO FORM ASCII CHARACTER

STRING IN $FB

688 :: REM CONCATENATE

698 DATA 72 : REM PHA

766 DATA 168,¢ REM LDY #$@¢

719 DATA 185,251,¢ REM LDA $$@FB,Y

720 DATA 168 : REM TAY

736 DATA 246,11 : REM BEQ $B

T4h :: REM SHUFFLE-ALONG

75@ DATA 185,251,¢ REM LDA $@0FB,Y

760 DATA 269 : REM INY

776 DATA 153,251,¢ : REM STA $00FB,Y

786 DATA 136,136 - REM DEY : DEY

798 DATA 28,245 : REM BNE $F5

BOO :: REM ZERO—-FINISH

810 DATA 14 : REM PLA

828 DATA 16,1 : REM LDY #4$@1

836 DATA 153,251,8 : REM STA $06FB,Y

840 DATA 136 : REM DEY

858 DATA 182,251. : REM LDX $FB,Y

866 DATA 232 : REM INX

878 DATA 158,251 : REM STX $FB,Y

888 DATA 96 : REM RTS

89% REM STRING PRINTING ROUTINE

966 :: REM STRING—PRINT

910 DATA 166,251 : REM LDX $FB

926 DATA 166,1 - REM LDY #$@1

930 :: REM PRINT-LOOP

948 DATA 185,251,¢ : REM LDA $FB,Y

956 DATA 32,218,255 : REM JSR $FFD2

968 DATA 266 : REM INY

976 DATA 292 : REM DEX

986 DATA 28,246 : REM BNE $F6

998 DATA 96 : REM RTS

1026
1916 REM ** GET IN A HEX NUMBER **

1928 PRINT CHR$(147) : PRINT

1936 PRINT" INPUT A HEX NUMBER :$";

1846 GOSUB 2962

1958 POKE 82¢,LOW : REM LOW BYTE HEX

NUMBER

1868 GOSUB 2066

1876 POKE 821,HIGH : REM HIGH BYTE HEX

NUMBER

198g :

199% SYS CODE - REM CALL CONVERSION

1166

1118 PRINT"ITS DECIMAL EQUIVALENT IS :";

1126 SYS OUTPUT

1139 END

114¢

1999 REM ** HEX INPUT CONTROL **

48

2DDD
2018

2626

2030

2040

2056

26D

2076

20686

2096

2166

2206 :

2499 REM ** GET HEX ROUTINE **

2500 GET Z$

2516 IF Z$=""" THEN GOTO 2569

2520 IF Z$>"F" THEN GOTO 2596

GOSUB 256¢

F=NUM : PRINT Z$;

GOSUB 256¢

S=NUM : PRINT Z$;

HIGH=F*16+S

GOSUB 2569

F=NUM : PRINT Z$;

GOSUB 2566

S=NUM : PRINT Z$

LOW=F*16+S

RETURN

2536

2546

2556

2560

2576

2588

IF

IF

IF

IF

IF

IF

Z$="A"
Z2$="B"
2 ="'C"
Z$="D"
Z$="E"
Z$="F"

THEN

THEN

THEN

THEN

THEN

THEN

NUM=19:

NUM=11:

NUM=12:

NUM=13:

NUM=14:

NUM=15:

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

2599 NUM=VAL(Z$): RETURN

Functional bytes:

201-255 ($F B-$FF) ASCII string buffer

829-821 ($334-$335) : binary address for
conversion

822-823 ($336-$337) : temporary storage

824 ($338) : sign flag

To demonstrate the routine’s workings, the program first prompts
for a hexadecimal number using the BASIC hex loader subroutine
at line 2000. This is evaluated and placed at BINARY-ADDRESS
by lines 1059 and 1070.

The program proper begins by clearing the string buffer area
(lines 109 to 169), an important procedure which ensures no illicit
characters find their way into the ASCII string. The sign of the
number is tested by loading the high byte of the address byte into
the accumulator and saving its value in the sign flag byte. This
process will condition the Negative flag. If it is set, a negative
number is interpreted and the plus branch to CONVERSION (line

199) fails. The next seven operations obtain the absolute value of
the two-byte number by subtracting it from itself and the set carry
bit. Thus $FFFF will result in an absolute value of 1 and $8000 an
absolute value of 32,678.

The two flows of the program rejoin at line 280, where the two
temporary bytes are cleared. These bytes are used in conjunction
with the binary address bytes to form a 32-bit shift register, allow-
ing bits to flow from the low byte address to the high byte of
temporary.

The loop of lines 349 to 510 performs the conversion, by succes-
sively dividing through by ten until the quotient has a value of zero.
By this time the binary equivalent of this ASCII character being
processed will have been placed in the temporary byte. To produce
this, the loop needs sixteen iterations so the X register is used to
count these out. Converting the binary to hex involves simply
adding $390 or ASC“‘@”’ to it (lines 539 to 559).

Because it may not be immediately clear what is happening,
Table 4.1 shows the values of the accumulator and four associated
bytes after each of the 16 passes of the loop, when converting
$FFFF into its absolute ASCII value of 1. It should be clear from
this how the bits shuffle their way through the four byte ‘register’.

Table 4.1

Iteration Accumulator $334 $335 $336 $337

1 DP 61 DL DL 4)

2 FF G2 DO DP DP

3 FF BA 4) DP DP

A FF 68 yy DD DP

5 FF 1p 4 4) OP

6 FF 20 DL DP DD
7 FF 4G DP 4) 4)

8 FF 8g DD DD 4)

9 FF ay) DD 61 4)

1g FF 4) DL 61 4)

11 FF oy) £2 61 yy

12 FF) DD 61 4)

13 FF 1) DP Bl DP
14 FF 1)) 61 4)

15 FF 4) DP 61 yy

16 FF DD 4 apt 4)

49

50

All that is now required is for this character to be added to the
string buffer. This concatenation is completed by the code of lines
699 to 880. This began by obtaining the buffer index, which con-
tains the current number of characters already concatenated. This
is stored in the first byte of the buffer, $FB in this instance. It is then
moved across into the accumulator. Next, lines 75 to 799 move any
characters present in the buffer up memory one byte, thereby
Opening up a gap of one byte into which the newly formed char-
acter can be placed (lines 819 to 870). The buffer index is also
incremented and restored at this point, before an RTS is made
back to the main body of the program.

End of program operation is tested for by logically ORing the
contents of the high and low bytes of the address. If the result is
zero, all bits have been rotated and dealt with, in which case the
sign flag byte is tested to ascertain whether a minus sign need be
placed at the start of the ASCII string (lines 600 to 669).

Line-by-line

A line-by-line description of Program 7 follows:

line 10% : clear Y register

line 119 : and accumulator

line 129 : and then the five buffer bytes

line 176 : get high byte for conversion

line 189% : save in sign flag

line 19% : if positive branch to CONVERSION

line 28% : else set Carry flag

line 219 : clear accumulator

line 229 : obtain absolute value of low byte

line 238 : and save

line 249 : clear accumulator

line 258 : obtain absolute value of high byte

line 269 : and save

line 276 : entry for CONVERSION

line 289 : clear accumulator

line 29% : clear temporary storage bytes

line 319 : clear Carry flag

line 329 : sixteen bits to process

line 338 : entry for LOOP

line 34% : move bit 7 into Carry flag

line 35% : and on into bit @

line 36% : move bit 7 into Carry flag

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

370

389
399

ADD
41g
429

A436
AAG
459

ATG

A489

499

50
51¢

526

530
549

558

568

570

58¢

5998

6D
61g

629
639

649

65d

669

689
69¢

TBP
719

726
T3D

TAD

75D

76D

TTD

786

and on into bit @

set Carry flag

get low byte of temp

subtract 10

Save result in Y

get high byte of temporary

subtract carry bit

branch to LESS-THAN if divisor>dividend

else save result of operation in temporary

entry for LESS-THAN

decrement bit count

branch to LOOP until 16 bits done

rotate bit 7 into Carry flag

and on into bit @

entry for ADD-ASCII

clear Carry flag

get low byte from temporary

convert into ASCII character

concatenate on to string in buffer

get low byte of binary number

OR with high byte. If @ then all done

if not finished branch to CONVERSION

entry for FINISHED

get sign

if N = 9 branch to POSITIVE

otherwise get ASC*—”

and add it to final string

entry for POSITIVE

back to BASIC

entry for CONCATENATE, $C074

save accumulator

initialize index

and get buffer length

move it into Y for indexing

if @ branch to ZERO-LENGTH

entry for SHUFFLE-ALONG

get character from buffer

increment index

save character one byte along

restore original address minus one

51

line 79% : branch to SHUFFLE-ALONG until completed

line 8% : entry for ZERO-FINISH

line 8198 : restore accumulator

line 82 : index past length byte

line 83 : add character to buffer

line 84% : decrement index

line 859 : get length byte

line 868 : increment it

line 876 : save it

line 886 : back to calling routine

line 99% : entry for OUTPUT

line 919 : get length of string as counter

line 929 : set index to first character

line 93% : entry for PRINT-LOOP

line 948 : get character

line 958 : print it

line 96% : increment index

line 979 : decrement count

line 989 : branch to PRINT-LOOP until all done

line 99% : back to BASIC

11@ INPUT"WHICH DIRECTION

5 String Manipulation

In this chapter we will look at how ASCII character strings can be
manipulated using machine code routines to perform the following
operations:

1. Compare two strings.
2. Concatenate one string onto another.
3. Copy a substring from within a main string.
4. Insert a substring into a main string.

These types of routines are essential if you intend to write any
programs that manipulate data and information. Adventure games
are a typical example of this kind of program.

COMPARING STRINGS

String comparison is normally performed after the computer user
has input some information from the keyboard. In BASIC this
might be written as:

169 A$="MOVE LEFT"

119 INPUT"WHICH DIRECTION ?"; B$%

129 IF A$=B$ THEN PRINT "CORRECT!"

We do not always wish to test for equality, however. In BASIC, we
are able to test for unlike items using the NOT operators ‘<>’.
Thus, line 120 could have been written as:

126 IF A$ <> BS PRINT "WRONG!"

At other times, we may wish to test which of two strings has a
greater length, and this is possible in BASIC using the LEN
Statement:

54

218 IF LEN(A$) > LEN(B%$) THEN PRINT "FIRST"

Program 8 gives the assembler and BASIC listing for the string
comparison routine, which puts all the functions described above
at your disposal whenever the program is used. The Status register
holds these answers in the Zero and Carry flags. The Zero flag is
used to signal equality: if it is set (Z=1), the two strings compared
were identical; if it is cleared (Z=Q) they were dissimilar.

The Carry flag returns information as to which of the two strings
was the longer: if it is set (C=1), they were identical in length or the
first string was the larger. The actual indication required here ts
evaluated in conjunction with the Zero flag. If Z=@ and C=1, then
a longer string rather than an equal-length string is indicated, but if
the Carry flag is returned clear (C=Q), then the second string was
longer than the first.

Program 8

18 REM ** STRING COMPARISON ROUTINE «x

26 CODE-49152
36 TEST-49184
46 FOR LOOP-% TO 41
5@ READ BYTE

66 POKE CODE+LOOP, BYTE

76 NEXT LOOP
86 :

99 REM ** M/C DATA «*

168 DATA 173,52,3 : REM LDA $334
11M DATA 295,53,3 : REM CMP $335
126 DATA 144,3 : REM BCC $3

136 DATA 174,53,3 : REM LDX $335

146 :: REM COMPARE-STRING

156 DATA 246,12 : REM BEQ $C

166 DATA 168,¢ - REM LDY 4$@¢

176 :: REM COMPARE-—BYTES

186 DATA 177,251 : REM LDA ($FB),Y

198 DATA 269,253 : REM CMP ($FD),Y

206 DATA 298,16 : REM BNE $A

218 DATA 266 : REM INY

226 DATA 262 : REM DEX

236 DATA 288,246 : REM BNE $F6

246 :: REM CONDITION-FLAGS

256 DATA 173,52,3 : REM LDA $334

START

GET BYTE
FROM

STRING 1

COMPARE
WITH BYTE
IN STRING 2

ARE No
THEY THE aga END

SAME?

Yes

INCREMENT
POINTERS

<>
SET STRING

FLAGS

Figure 5.1 Compare strings flowchart

260 DATA 205,53,3 : REM CMP $335

276 :: REM FINISH

280 DATA 96 : REM RTS

298

SOO :: REM TEST ROUTINE

318 DATA 32,8,192 : REM JSR $CO6g

56

326 DATA 8 - REM PHP

336 DATA 164 : REM PLA

346 DATA 41,3 REM AND #$(3

358 DATA 133,251 : REM STA $FB

360 DATA 96 : REM RTS

376:

388 REM ** SET UP STRINGS FOR COMPARISON *+*

398 PRINT CHR$(147)

408 INPUT "FIRST STRING :"; A$

418 FOR LOOP=1 TO LEN(A$)

426 TEMP$-MID$(A$,LOOP, 1)

436 A-=ASC(TEMP$)

446 POKE 59432+LOOP-1,A

456 NEXT LOOP

466 :

478 INPUT "SECOND STRING :";B$%

48% FOR LOOP=1 TO LEN(B$)

496 TEMP$-MID$(B$,LOOP, 1)

560 B-=ASC(TEMP$)

518 POKE 5%688+LOOP-1,B

520 NEXT LOOP

536 :

548 POKE 251,8 : POKE 252,197

558 POKE 253,08 : POKE 254,198

560 POKE 829, LEN(A$) POKE 821,LEN(B$)

576 :

588 SYS TEST

598 :

660 PRINT "RESULT IS : ";PEEK(251)

Bytes reserved:

201-252 ($FB-$FC) : address of first string

253-254 ($FD-$FE) : address of second string

826 ($334) : length of first string

821 ($335) : length of second string

Once run, the BASIC text of lines 380 to 520 calls for two strings to
be input. These are stored in memory from $C5@% and $C6M. Note
that the routine cannot handle strings greater than 256 characters in
length (though it could of course be expanded to do so). The length

of each string is also required by the routine, so this is ascertained
and stored in the appropriate zero page bytes at $334 and $335 (line
560).

To allow the string buffers to be fully relocatable, the string
addresses are held in two zero page vectors (lines 549 and 559).

String comparison proper starts by evaluating the length bytes to
find out if they are the same length. If they are not equal, then the
strings cannot be identical. However, as the routine returns infor-
mation about the lengths of the strings it is still completed—in this
case the program compares bytes through the length of the smaller
of the two strings.

Byte comparison is performed by lines 170 to 199, using post-
indexed indirect addressing. On the first non-equal characters the
main loop is exited to FINISH. Assuming the entire comparison
works, and the X register, which holds the working string length,
has been decremented to zero, the length bytes (lines 250 and 260)
are compared to condition the Zero and Carry flags before the
routine completes.

The short test routine returns the Zero and Carry flag values and
prints them out. indicating the following results:

Returned Z C Result

D D Dp Strings <> and string | larger

1 DB 1 Strings <> and string 2 larger

il 1 Strings =

Line-by-line

A line-by-line description of Program 8 follows:

line 18% : get length of first string

line 119 : isit the same length as the second string?

line 12 : no. it’s longer. so branch to COMPARE-STRING

line 139 : yes. so get length of second string

line 149 : entry for COMPARE-STRING

line 158 : if zero. branch to CONDITION-FLAGS

line 169 : initialize indexing register

line 178 : entry for COMPARE-BYTES

line 18@ : get character from first string

line 198 : compare to same character in second string

line 20 : if dissimilar. branch to FINISH

line 218 : increment index
57

line 22@ : decrement string counter

line 238 : branch back to COMPARE-BYTES until zero

line 24% : entry for CONDITION-FLAG

line 258 : get length of first string

line 262 : compare with length of the second string

line 278 : entry for finish

line 289 : back to calling routine

line 39% : entry for TEST routine

line 319 : push status onto stack

line 32 : pull into accumulator

line 33% : save Z and C

line 34% : save at location $FB

line 358 : back to BASIC

STRINGS UNITE

Strings may be joined together by a process called ‘concatenation’.
In BASIC the addition operator ‘+’ performs this function. Thus
the program:

168 A$="REM"

119 B$="ARK"

128 C$=A$-+BE

assigns the string "REMARK’ to the string C$. If line 12@ were
rewritten as:

126 C$=BH+A$

the resultant value assigned to C$ would be ‘ARKREM”. We can
see from this that one string is simply tagged on to the end of the
other. overwriting the former’s RETURN character, but preserv-
ing the latter’s.

This process of concatenation can be performed quite readily as
Program 9 illustrates. However, the actual BASIC equivalent of
the operation we are performing here is:

AG -AG “BE

In other words, we are adding the second string on to the first
String. rather than summing the two to give a separate final string.
although this is possible with slight modifications to the assembler
text.

Program 9

1p
20
3
4p
5p
6D
7D
8
of
10
11g
129

139

14g
156

166
176
18g

196

208
216

22
2350

246

259
26
270

289
299

3D
319

320

33
349
35
360

37
386

REM ** STRING CONCATENATION «+

CODE=49152

FOR LOOP=6 TO 96

READ BYTE

POKE CODE+LOOP, BYTE

NEXT LOOP

REM ** M/C DATA **

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

173 ,52,3

141,54,3

169 ,f

141,55,3

24

173 ,53,3

169 ,52,3

176,35

76,45,192

169, 255
141,57,3
56
237 ,52,3
144,51
141,56,3
169, 255
141,52,3
76,559,192

141,52,3

169, g

141,57,3

173 ,53,3

141,56,3

173 ,56,3

246,21

REM

REM

: REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

: REM

REM

REM

REM

REM

REM

REM

>: REM

REM

REM

REM

REM

REM

REM

REM

STRING-CONCATENATION

LDA $334

STA $336

LDA #$62

STA $337

CLC

LDA $335

ADC $334

BCS $63

JMP $C%2D

TOO—LONG

LDA #$FF

STA $339

SEC

SBC $334

BCC $33

STA $338

LDA #$FF

STA $334

JMP $CQ3B

GOOD-LENGTH

STA $334

LDA #990

STA $339

LDA $335

STA $338

CONCATENATION

LDA $338

BEQ $15

LOOP

59

398 DATA 172,55,3 : REM LDY $337

460 DATA 177,253 : REM LDA ($FD),Y

416 DATA 172,54,3 : REM LDY $336

426 DATA 145,251 : REM STA ($FB),Y

430 DATA 238,54,3 : REM INC $336

446 DATA 238,55,3 : REM INC $337

456 DATA 2(6,56,3 : REM DEC $338

466 DATA 28,235 : REM BNE $EB

A7O :: REM FINISHED

480 DATA 172,52,3 : REM LDY $334

499 DATA 169,13 : REM LDA #$@D

506 DATA 145,251 : REM STA ($FB),Y

518 DATA 173,57,3 : REM LDA $339

526 DATA 16 : REM ROR A

538 DATA 96 : REM RTS

54¢

660 PRINT CHR$(147)

616 INPUT "FIRST STRING "; A$

626 INPUT "SECOND STRING ";:B¢%

630 :

646 F-49664 : REM $C26g

656 S=49926 : REM $C36¢

660 :

670 FOR LOOP=1 TO LEN(A$)

686 TEMP$-MID$(A$,LOOP, 1)

696 A-=ASC(TEMP$)

766 POKE F+LOOP-1,A

710 NEXT LOOP

720 :

730 FOR LOOP=1 TO LEN(B$)

749 TEMP$-MID$(B$,LOOP, 1)

756 B-=ASC(TEMP$)

766 POKE S+LOOP-1,B

776 NEXT LOOP

786 :

790 POKE 251,¢ POKE 252,194

806 POKE 253,68 : POKE 254,195

818 POKE 82%, LEN(A$)

START

GET TOTAL
STRING
LENGTH

Yes | CALCULATE
TRUNCATION

INDEX

RESEED
VALUES

GET BYTE
FROM

STRING 2

PLACE AT
END OF
STRING 1

ADJUST
INDEXES

& COUNTERS

Yes SIGNAL
ANY END

OVERFLOW

Figure 5.2 Concatenate strings flowchart

828 POKE 821,LEN(B$)

836 :

846 SYS CODE

856

62

866 REM *** PRINT OUT FINAL STRING ***

876 PRINT "FINAL STRING IS :";

886 LOOP=¢

899 REM ** REPEAT *+*

998 BYTE=PEEK(F+LOOP)

918 PRINT CHR$(BYTE);

926 LOOP=LOOP+1

930 IF BYTE=13 THEN END

948 GOTO 96¢

This program allows a final string of 256 characters in length to be
manipulated. Therefore, as the program stands, the combined
lengths of the two strings should not exceed this length. If they do,
then only as many characters as space allows will be concatenated
on to the first string, leaving the second string truncated. The Carry
flag is used to signal whether any truncation has taken place, being
set if 1t has and cleared otherwise. As with the string comparison
routine, the string buffers are accessed via two zero page vectors
(lines 799 and 80) and two bytes are reserved to hold the length of
each string. A further two bytes are used to save index values.

The first nine machine code operations (lines 19 to 18@) deter-
mine the final length of the string, by adding the length of the first
string to that of the second string. A sum greater than 256 is
signalled in the Carry flag and the branch of line 179 is performed,
in which case the number of characters which can be inserted into
the first string buffer is ascertained. The overflow indicator is
loaded with $FF if a truncation occurs; otherwise it is cleared with

$00
The concatenating loop is held between lines 359 and 469. This

simply moves a byte from the vectored address plus the index of the
second string and places it at the end of the first string, as pointed to
by the first string index byte. This process is reiterated until the
value of ‘count’ has reached zero. Lines 480 and 50 place a
RETURN character at the end of thé string to facilitate printing
from BASIC or machine code. The Overflow flag is loaded into the
accumulator and bit 7 rotated across into the Carry flag, thereby
signalling whether truncation has occurred. Lines 619 to 779 hold
the BASIC test routine that reads in and then pokes the character
strings into memory at $C20@ and $C300. After the SYS call (line
840), the final BASIC routine prints the concatenated string from
memory.

Project

Adapt the program to perform the BASIC equivalent of
C$=A$+B$ or C$=B$+A$ on request.

Line-by-line

A line-by-line description of Program 9 now follows:

line 169 : get first string’s length

line 119 : string one’s index

line 128 : clear accumulator

line 139 : set string two’s index to zero

line 148 : clear Carry flag

line 159 : get second string’s length

line 16 : and add to length of first string

line 176 : branch to TOO-LONG if total greater than 256 bytes

line 188 : otherwise jump to GOOD-LENGTH

line 19% : entry for TOO-LONG

line 20% : load accumulator with 255

line 219 : and store to indicate overflow

line 226 : set Carry flag and subtract

line 239 : string one’s length from maximum length

line 249 : branch to FINISH if first string is greater than

256 bytes in length

line 259 : save current count

line 268 : restore maximum length

line 276 : store in string one’s length

line 288 : jump to concatenation routine

line 299 : entry for GOOD-LENGTH

line 398 : save accumulator in string one’s length

line 319 : load with 0 toclear

line 328 : overflow indicator

line 338 : get string two’s length

line 349 : save in count

line 359 : entry for CONCATENATION

line 368 : get count value

line 379 : if zero, then finish

line 388 : entry for LOOP

line 398 : get index for string two

line 4@9 : and get character from second string

line 419 : get string one’s index

line 42 : and place character into first string

line 439 : increment first string’s index

line 44% : increment second string’s index

line 45@ : decrement count
63

line 468 : branchto LOOP until count=0

line 47% : entry for FINISHED

line 489 : get final length of first string

line 498 : load accumulator with ASCII return

line 5@@ : place at end of string

line 519 : get overflow indicator

line 528 : and move it into Carry flag

line 53 : back to calling routine

COPY CAT

String manipulation routines must include a method of copying
substrings of characters from anywhere within a string of char-
acters. In BASIC, three such commands are provided. They are
MID$, LEFT$ and RIGHTS, although with the first of these, any
point in a string can be accessed. The following shows the sort of
thing possible in BASIC:

166 A$="CONCATENATE"

119 BS=MID$(A$, 9,3)

126 PRINT B$

Running this will output the string ‘CON’. What the code has done
is to take the three characters from the first character in the Main$.
Program 10 produces the same type of operation from machine
code.

Program 10

18 REM ** COPY A SUBSTRING FROM WITHIN *«

20 REM *«* A MAIN ASCII STRING «*

30 CODE=49152

46 MAIN=5#432 : REM $C56¢

50 SUB=-59688 : REM $C6G¢

69 REM ** READ AND POKE M/C DATA *»*

76 FOR LOOP=@ TO 123

89 READ BYTE

9% POKE CODE+LOOP, BYTE

196 NEXT LOOP

11g

126 REM ** M/C DATA «*

13 DATA 16,2 : REM LDY #$@¢

148 DATA 148,52,3 : REM STY $334

158 DATA

16@ DATA

178 DATA

START

CALCULATE
LENGTH

SOURCE STRING

GET INDEX
AND COUNT

LOCATE
BYTE IN
STRING

PLACE IN
SUBSTRING

UPDATE
INDEXES

PLACE <RETURN>
IN

SUBSTRING

Figure 5.3 Copy string flowchart

148,56,3 : REM STY $338

173,54,3 : REM LDA $336

246 98 : REM BEQ $62
65

66

182

199

20D
216

220

230

240

250
260
27
286

290

3D
31p

320

336

34g
356

366

370

386

399

4D
419

429

439

44g
459

469

ATS
489

499

SDP
519

526

53
546

559
560

570

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

173.5546

205,55,3

144,93

24

173,55,3

169 ,54,3

176,9

176

262

236,53,3

144, 2g

246,18

56

173 ,53,3

237,55,3

141,54,3

238 ,54,3

169,255

141,56,3

173 ,54,3

261,255

144,19

246 ,8

169,255

141,54,3

141,56,3

174,54,3

246 ,35

169, 9

141,52,3

172 ,55,3

177,251

172 ,52,3

145 , 253

2358 ,55,3

258 ,52,3

REM LDA

REM CMP

REM BCC

REM CLC

REM LDA

REM ADC

REM BCS

REM TAX

REM DEX

: REM CPX

> REM BCC

>: REM BEQ

$335

$337

$5D

$337
$336

$29

$335

$14

$12

REM TRUNCATION

REM SEC

REM LDA

REM SBC

REM STA

> REM INC

REM LDA

REM STA

$335

$337

$336

$336

HOFF

$338

REM GREATER—-EQUAL

REM LDA

: REM CMP

REM BCC

REM BEQ

REM LDA

: REM STA

REM STA

REM COPY-—

REM LDX

REM BEQ

REM LDA

> REM STA

REM LOOP

REM LDY

: REM LDA

REM LDY

REM STA

> REM INC

REM INC

$336

HEF

GHA

$68

HOFF

$336

$3358

SUBSTRING

$336

$23

H$OD

$334

$337

($FB),Y

$334

($FD),Y

$337

$3354

586

599
6D
619

62
636

646

65
655
66
670
686

699
TOD
716

720
730
74D

750

76D

77D

786

TOP
86
819

829
836

849

859

869

876
88

896

Ty
919

926

936

946

DATA 262 : REM DEX

DATA 28,237 : REM BNE $ED

DATA 26,52,3 : REM DEC $334

DATA 173,56,3 : REM LDA $338

DATA 268,23 : REM BNE $93

= REM FINISH

DATA 24 : REM CLC

DATA 144,1 : REM BCC $61

- REM ERROR

DATA 56 : REM SEC

= REM OUT

DATA 169,13 : REM LDA 4$QD

DATA 172,52,3 : REM LDY $334

DATA 200 : REM INY

DATA 145,253 : REM STA ($FD),Y

DATA 96 : REM RTS

REM ** SET UP MAIN STRING «**

PRINT CHR$(147)

oC REM ERROR

INPUT "MAIN STRING "; BE

FOR LOOP=1 TO LEN(B$)

TEMP$=MID$ (BS, LOOP, 1)

B=ASC(TEMP$)

POKE MAIN+LOOP-1,B

NEXT LOOP

INPUT" INDEX INTO STRING "> X

INPUT"NUMBER OF BYTES TO COPY ";Y

REM ** SET UP BYTES FOR M/C +**

POKE 251,08 : POKE 252,197

: REM $C5@% VECTOR

POKE 253,08 : POKE 254,198

: REM $C6@% VECTOR

POKE 821,LEN(B$)

POKE 822,Y

POKE 823,X

SYS CODE

67

956 :

9608 REM ** READ COPIED SUBSTRING **

976 FOR LOOP=1 TO Y

988 Z=PEEK(SUB+LOOP-1)

998 PRINT CHR$(Z);

1960 NEXT LOOP

Bytes are designated as follows:

201-252 ($FB-$FC) : main string vector

253-254 ($FD-$FE) : substring vector

826 ($334) : length of substring

821 ($335) : length of main string

822 ($336) : number of bytes to be copied

823 ($337) : index into main string

824 ($338) : error flag

Once again, a few lines of BASIC demonstrate the operation of the
routine, requesting the source string, starting index and length of
substring, or rather the number of bytes to be copied into the
substring from the starting index. The main string is in a buffer
located at $C5Q@ and the substring is copied into its own buffer at
$C600. As always, these addresses may be changed to suit user
needs, as they are vectored through zero page (lines 88 and 899).

Error-checking 1s allowed, as the Carry flag is set on exit if an
error has occurred. Normally, an error will occur only if the starting
index is beyond the length of the source string, or the number of
bytes to be copied from the main string is zero. If the number of
bytes requested in the length exceeds the number left from the
indexed position to the end of the main string, then only the bytes
available will be copied to the substring buffer.
On entry to the routine, error-checking is performed (lines 169

to 240) and if any are found, the program exits. Lines 30% to 370
perform a truncation if the number of bytes to be copied exceeds
those available. The COPY-SUBSTRING loop (lines 469 to 59Q)
copies each string byte from the vectored address in the main string
to the substring buffer. Each time a character is copied, the sub-
string length byte is incremented. On completion of this loop,
controlled by the X register, the error flag is restored and the Carry
flag conditioned accordingly (lines 61 to 669). Finally (lines 699 to
730), an ASCII RETURN character is placed at the end of the
substring.

The following example shows the resultant substrings produced
from the main string ‘CONCATENATE’ for different indexes.
Figure 5.4 illustrates the index value for each of the main string’s
characters.

Index Length Substring

D 3 CON

3 3 CAT

4 3 ATE

Figure5.4 String Index

Line-by-line

A line-by-line description of Program 10 follows:

line 13 : initialize Y register

line 149 : clear substring length

line 159 : and error flag

line 16% : get substring length

line 179 : if. null string, branch to FINISH

line 189 : get main string’s length

line 19% : compare it with index byte

line 28% : branch to ERROR if index is greater

line 21 : clear the Carry flag

line 228 : get index

line 238 : add it to substring length

line 248 : branch to TRUNCATION if result is greater than 255

line 250 : move index across into X register

line 269 : decrement it by one

line 276 : compare result with string length

line 28% : branch tt GREATER-EQUAL if result is

line 299 : greater than or equal to string length

line 39% : entry for TRUNCATION

line 318 : set the Carry flag

line 328 : get string length

line 339 : subtract the index from it

line 348 : save the new length

line 358 : and increment it by one

69

70

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

366

37
380

396

ADD
419

420

A3f
449
450

460

ATP

489

499

SDD
516
526

53
54
556

566

570

586

596

6D
61g

620
63
649

65
655
660

67
686

69
THD
71g
720

denote an error by

Setting the error flag

entry for GREATER-EQUAL

get length into accumultor

compare with maximum length

branch if count is

greater or equal to maximum length

put maximum length in accumulator

store in bytes to copy

and also in error flag

entry for COPY-SUBSTRING

get the index position

branch to ERROR if zero

clear accumulator

and substring length

entry for LOOP

get main string index into Y register

get character from main string

get substring index

copy character into substring

increment main string index

increment substring index

decrement bytes to move counter

branch to LOOP if still bytes to be copied

decrement final substring count

get error flag into accumulator

branch to ERROR if not zero

FINISH entry

clear Carry flag as no error

branch to OUT

entry for ERROR

set Carry flag to indicate error

entry for OUT

place RETURN in accumlator

get substring index into Y

increment Y

place RETURN at end of substring

return to BASIC.

INSERTION

This final routine provides the facility for inserting a string within
the body of another string, allowing textual material—for
example, in word processing applications—to be manipulated. If
the main string held ‘ELIZABETH OKAY’, this routine could be
called to insert the string ‘RULES’, so that the final string would
read ‘ELIZABETH RULES OKAY’. As with the COPY routine,
the position of the insertion is pointed to by an index byte, and the
Carry flag is set if an error is detected—that is, if an index of 9 ora
null substring is specified.

The maximum length of the final string is 256 characters. If the
insertion of the substring would cause this length to be exceeded,
the substring is truncated to the length given by (256 minus length
of main string) and only these characters are inserted.

As always, a BASIC primer demonstrates the routine’s use. The
string buffers are held at $C5@0 and $C69 and in this instance they
are accessed directly, although there is no reason why vectored
addresses could not be used.

Program 11

16 REM ** INSERT ONE ASCII STRING **

2 REM ** INTO ANOTHER ASCII STRING «*

36 MAIN=59432 : REM $C56¢

48 SUB=5/688 : REM $C69¢

5% CODE=49152

6@ REM ** READ AND POKE DATA **

76 FOR LOOP=-% TO 141

88 READ BYTE

98 POKE LOOP+CODE, BYTE

16 NEXT LOOP

116 :

126 REM ** M/C DATA **

136 DATA 169,96 : REM LDY #@

146 DATA 148,53,3 : REM STY $335

158 DATA 165,252 : REM LDA $FC

166 DATA 28,3 : REM BNE $93

176 DATA 76,137,192 : REM JMP $Cg89

18¢ :: REM ZERO—LENGTH

19% DATA 165,253 : REM LDA $FD

206 DATA 246,124 : REM BEQ $7C

216 DATA :: REM CHECK

71

72

226

230

246

250
266

270

288

299

30D
318

326

336

346

356
366

376
388

396

ADD
41g
426

43D

44g
456

466

AT

489

496

566
518

526

53
546

55
566
576
589

598

600
61g

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

24

165,252

191,251

1'76,6

261,255

246,18

144,16

169,255

56

229,251

246 , 194

144,192

133,252

169,255

141,53,3

165,251

197 , 253

176, 26

166,251

252

134,253

169,255

141,53,3

24

165,251

191,252

133,251

76,169,192

56

165,251

229,253

176

252

165,251

133,254

24

191,252

REM

REM

REM

REM

: REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

>: REM

REM

REM

REM

CLC

LDA $FC

ADC $FB

BCS $96

CMP #$FF

BEQ $12

BCC $19

CUT-OFF

LDA #$FF

SEC

SBC $FB

BEQ $68

BCC $66

STA $FC

LDA #ASFF

STA $335

CALC—LENGTH

LDA $FB

CMP $FD

BCS $14

LDX $FB

INX

STX $FD

LDA #$FF

STA $335

CLC

LDA $FB

ADC $FC..

STA $FB

JMP $CZ6D

NO—PROBLEMS

SEC

LDA $FB

SBC $FD

TAX

INX

LDA $FB

STA $FE

CLC

ADC $FB

620 DATA

639 DATA

640 ::

650 DATA

660 DATA

676 DATA

689 DATA

698 DATA

766 DATA

716 DATA

726 DATA

730 ::

746 DATA

756 DATA

766 DATA

T7170 ::

786 DATA

7968 DATA

800 DATA

8168 DATA

826 DATA

830 DATA

846 DATA

859 DATA

869 DATA

876 DATA

880 ::

899 DATA

980 DATA

916 ::

926 DATA

930 ::

949 DATA

956

133,251

141,52,3

164,254

185,6,197

172 ,52,3

153,6,197

266 ,52,3

198 , 254

202

268 , 237

169 ,¢

133,254

166,252

164,254

185,9,198

164,253

153,0,197

236 , 253

236,254

2D2

208 , 239

173,53,3

208 , 3

24

144,1

56

96

: REM

: REM

REM

REM

: REM

: REM

: REM

: REM

: REM

REM

REM

REM

REM

: REM

REM

REM

REM

REM

REM

: REM

REM

REM

: REM

REM

: REM

: REM

REM

>: REM

REM

REM

REM

REM

REM

STA $FB

STA $334

MAKE—SPACE

LDY $FE

LDA $C502,

LDY $334

STA $C500,Y

DEC $334

DEC $FE

DEX

BNE $ED

INSERT—SUBSTRING

LDA #$6¢

STA $FE

LDX $FC

TRANSFER

LDY $FE

LDA $C609,Y

LDY $FE

STA $C599,Y

INC $FD

INC $FE

DEX

BNE $EF

LDA $335

BNE $63

GOOD

CLG

BCC $61

ERROR

SEC

FINISH

RTS

968 REM ** GET MAIN STRING AND STORE AT

GCSOD xx
976 PRINT CHR$(147)

988 INPUT"MAIN STRING"; B$

999 FOR LOOP=1 TO LEN(B$)

1966 TEMP$=MID$(B$,LOOP, 1)

74

191% B-=ASC(TEMP$)

1926 POKE MAIN+LOOP-1,B

1636 NEXT LOOP

104g :

1950 REM ** GET SUBSTRING AND STORE AT $C6Q00 **

1969 INPUT"SUB STRING"; C$

1976 FOR LOOP=1 TO LEN(C$)

1988 TEMP$-MID$(C#$, LOOP, 1)

1998 B=ASC(TEMP$)

1168 POKE SUB+LOOP-1,B

1118 NEXT LOOP

1126

1139 REM ** GET INSERTION INDEX **

1149 INPUT" INSERTION INDEX"; X

115¢ :

1169 REM ** POKE VALUES INTO ZERO PAGE «+#

11768 POKE 251, LEN(B$)

1188 POKE 252, LEN(C$)

119% POKE 253,X

1260 :

1218 SYS CODE

1226 :

1236 REM ** READ FINAL STRING «+*

1249 COUNT=LEN(B$) +LEN(C$)-1

1258 FOR LOOP=@ TO COUNT

1269 Z=PEEK(MAIN+LOOP)

12768 PRINT CHR$(Z) ;

1288 NEXT LOOP

The program begins by checking the length bytes to ensure that no
null strings are present (lines 159 to 2(@M) and then sums the two
lengths to obtain the final length. If the addition results in the Carry
flag being set (line 259), the total length will exceed 256 bytes and,
as a result, the inserted substring will be truncated (lines 319 to
399).

If the insertion index is greater than the length of the string, the
substring is actually concatenated on to the end of the main string.
This evaluation is performed through lines 409 to 530. Before
inserting the substring, all characters to the left of the index must be
shuffled up through memory to make space for it. These calcu-
lations are carried out in lines 559 to 659, ready for the shuffling
process (lines 669 to 74). Inserting the substring now involves
simply copying it from its buffer into the space opened up for it

(lines 759 to 870), the X register being used as the characters-
moved counter.

Finally, the error flag is restored and the Carry flag conditioned
to signal any errors.

Line-by-line

A line-by-line description of Program 11 follows:

line 139 : clear indexing register

line 149 : clear error flag

line 15 : get substring length

line 168 : branch to ZERO-LENGTH if Z=0@

line 17% : otherwise carry on

line 18% : entry for ZERO-LENGTH

line 199 : get offset

line 299 : branch to ERROR if Z=1

line 216 : entry for CHECK

line 228 : clear Carry flag

line 23 : get substring length

line 249 : add it to main string length

line 258 : branch to CUT-OFF if greater than 256

line 269 : is it maximum length?

line 279 : branch to CALC-LENGTH if

line 289 : it is equal to or greater than

line 298 : entry for CUT-OFF

line 30 : get the maximum length allowed

line 319 : set Carry flag

line 329 : subtract length of string

line 339 : branch to ERROR if

line 349 : length is equal to or greater than string

line 358 : save characters free

line 369 : set error flag

line 389 : entry for CALC-LENGTH

line 399 : get main string length

line 489 : is offset within string?

line 418 : branch to NO-PROBLEMS if it is

line 429 : else place substring

line 439 : at end of main string

line 448 : save X in offset

line 459 : and flag the error

75

76

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

46
476

489

499
SDD
516

526

53
546

55
560

570

586

59
60
619

626

636

646

656

666

676

680

69
719

720

73D

74D

75D

76D
164)

78
6)
80
819

82
849

859

860

879

in error flag byte

clear Carry flag

get length of string

calculate total length

and save result

jump to INSERT-SUBSTRING

entry for NO-PROBLEMS

set Carry flag

get length of substring

subtract offset

move index into X

increment index

get length

Save in source

clear Carry flag

find total length

Save result

and for index

entry for MAKE-SPACE

get source index

: get byte from main

get offset into string

move byte along

decrement both indexes

decrement counter

branch to MAKE-SPACE until done

entry for INSERT-SUBSTRING

clear accumulator

and source

get counter

entry for TRANSFER

get index

get byte from substring

get offset into main string

and place byte in main

increment both indexes

do until substring inserted

branch to TRANSFER

get error flag

branch to ERROR

line

line

line

line

line

line

line

886

8998

966
918

926

936

944

entry for GOOD

signal no error

branch to FINISH

: entry for ERROR

: denote error

entry for FINISH

return to calling routine

TI

78

6 Printing Print!

Every machine code program sooner or later requires text to be
printed on to the screen. In most instances, this is a fairly simple
process and often involves merely indexing into an ASCII string
table and printing the characters, using one of the Operating
System calls, until either a RETURN character or zero byte is
encountered. Program 12 uses this method.

Program 12

18 REM ** PRINT STRING FROM MEMORY «+

26 CODE=-49152

36 FOR LOOP-% TO 13

46 READ BYTE

58 POKE CODE+LOOP, BYTE

66 NEXT LOOP

7p

O68 ::

199 DATA

119 ::

126 DATA

139 DATA

149 DATA

158 DATA

169 DATA

178 DATA

18¢

80 REM «* M/C DATA **

162,98

189, 8,197

32,216,255

252

261,13

208 , 245

96

266 STRING-59432

REM

REM

REM

REM

REM

: REM

REM

REM

: REM

198 REM ** GET STRING TO BE

STRING—PRINT

LDX #$09

NEXT—CHARACTER

LDA $C59¢,X

JSR $FFD2

INX

CMP #$@D

BNE $F5

RTS

PRINTED *+*

START

PULL RTS
ADDRESS

MOVE TO
NEXT BYTE

JUMP TO
RTS ADDRESS

No

PRINT IT

Figure 6.1 Printing embedded code flowchart

2168 PRINT CHR$(147)

220 INPUT "INPUT STRING :"; A$

236 FOR LOOP=1 TO LEN(A$)

246 TEMP$=-MID$(A$, LOOP, 1)

256 B-=ASC(TEMP$)

266 POKE STRING+LOOP-1,B

276 NEXT LOOP

280 PRINT: PRINT

29% PRINT"YOUR STRING WAS AS FOLLOWS :";

306 SYS CODE

Here, a string buffer is located at $C5@9 (50432) and the require-
ment for printing the string is that it must be terminated with an
ASCIT RETURN character, $9D. The program begins by initial-
izing an index, the X register (line 10M), and loading the byte at
$C500+ X into the accumulator. This is printed using the Kernal’s
CHROUT routine, the index is incremented and then the accumu-

lator’s contents are compared to see whether the character just
Output was a RETURN (line 15). If not, the loop branches back
and the next character is sought.

719

Program 13 shows how several strings may be printed to the
screen using a loop similar to that described above. The number of
strings for printing may be variable, the desired number being
passed into the routine via the Y register. The string data has been
entered using the DATA statement. If a large amount of string
data is to be stored, and the amount to be printed at any one time
varied, a vectored address should be used to access the table.
Positioning of the text on the screen can be performed by embed-
ding the relative number of RETURNS and spaces into the DATA,
or more neatly by using the Kernal’s PLOT routine to set the X and
Y tab co-ordinates.

Program 13

19 REM ** PRINT Y NUMBER OF STRINGS «+*

20 CODE=49152

30 FOR LOOP=% TO 18

46 READ BYTE

5@ POKE CODE+LOOP,BYTE

6 NEXT LOOP

TO :

86 REM *«* M/C DATA *+*

99 DATA 162,9 : REM LDX #$6¢

198 DATA 166,4 : REM LDY #494

119 :: REM NEXT-—CHARACTER

126 DATA 189,8,197 : REM LDA $C5¢6¢,x

138 DATA 32,218,255 : REM JSR $FFD2

146 DATA 232 : REM INX

158 DATA 21,13 : REM CMP #$@D

166 DATA 298,245 : REM BNE $F5

176 DATA 136 : REM DEY

186 DATA 268,242 : REM BNE $F2

198 DATA 96 : REM RTS

200
219 REM ** SET UP FOUR SIMPLE STRINGS #*+*

226 STRING=59432

239 FOR LOOP=% TO 31

249 READ BYTE

256 POKE STRING+LOOP, BYTE

266 NEXT

27D :

286 REM ** ASCII DATA «*

296 DATA 32,65,65,65,65,65,65,13

306 DATA 32,32,66,66,66,66,66,13

316 DATA 32,32,32,67,67,67,67,13

326 DATA 32,32,32,32,68,68,68,13

The final program in this chapter shows the way I find easiest to
store and print character strings, stowing them directly within the
machine code. The two main advantages of this method are that
the string is inserted directly at the point it is needed, avoiding the
need to calculate indexes into look-up tables, and that because it
manipulates its own address it is fully relocatable.

Program 14

19 REM ** ASCII STRING OUTPUT ROUTINE **

26 CODE=49152

30 FOR LOOP=6 TO 26

4 READ BYTE

5@ POKE CODE+LOOP,BYTE

69 NEXT LOOP

TO:

89 REM ** M/C DATA *+*

99 DATA 164 : REM PLA

196 DATA 133,251 REM STA $FB

116 DATA 14 REM PLA

128 DATA 133,252 REM STA $FC

136 :: REM REPEAT

146 DATA 168,90 REM LDY #$@

156 DATA 236,251 REM INC $FB

166 DATA 28,2 REM BNE $62

176 DATA 236,252 REM INC $FC

186 :: REM OVER

199 DATA 177,251 REM LDA ($FB),Y

206 DATA 48,6 REM BMI $6

216 DATA 32,216,255 REM JSR $FFD2

226 DATA 76,6,192 : REM JMP $C6¢6

236 :: REM FINISH

249 DATA 198,251,¢ REM JMP ($FB)

250

266 REM ** DEMO ROUTINE LOCATED AT $C2G¢ x»

276 DEMO-49664

81

288 FOR LOOP=@ TO 38

299 READ BYTE

306 POKE DEMO+LOOP,BYTE

316 NEXT LOOP

326 :

336 REM ** DEMO M/C DATA **

346 DATA 169,147 : REM LDA #4$93

358 DATA 32,218,255 :-REM JSR $FFD2

366 DATA 32,6,192 : REM JSR $C66¢

376 REM *«* NOW STORE ASCII CODES FOR PRINTING *»*

386 DATA 13 : REM CARRIAGE—-RETURN

399 DATA 83,84,82,73,78,71,83,32

> REM STRINGS<SPACE>

466 DATA 87,73,84,72,73,78,32

> REM WITHIN<SPACE>

419 DATA 77,65,67,72,73,78,69,32

: REM MACHINE<SPACE>

426 DATA 67,79,68,69,33

: REM CODE!

439 DATA 234 : REM NOP

449 DATA 96 > REM RTS

456 :

469 SYS DEMO

The ASCII character string is placed in memory by leaving the
machine code assembly (line 369) and POKEing the ASCII codes
of the string directly into successive memory locations (lines 389 to
429).

For this routine to work, it is imperative that the first byte
following the string is a negative byte—that is, one with bit 7 set.
The opcode for NOP, $EA, is ideal for this purpose as it has its
most significant bit set ($EA=11101910) and its only effect is to
cause a very short delay.

The ASCII print routine is just 27 bytes in length and it should be
called as a subroutine immediately before the string is encountered
(line 369). On entry into the subroutine, the first four operations
pull the return address from the stack and save it in a zero page
vector at $FB and $FC. These bytes are then incremented by one to
point at the byte following the subroutine call.

Because the string data follows on immediately after the ASCII
print subroutine call, post-indexed indirect addressing can be used
to load the first string character into the accumulator (line 199).
The string terminating negative byte is tested for (line 200), and if
not found the byte is printed with a CHROUT call. A JMP to

REPEAT is then performed and the loop reiterated. When the
negative byte is encountered, and the branch of line 20M succeeds,
an indirect jump (line 24@) via the current vectored address is
executed, returning control back to the calling machine code at the
end of the ASCII string.

Line-by-line

A line-by-line description of Program 14 follows:

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

99

166
11g

12¢

138

149

15g

16¢

179

18¢

19¢

260
216

226

230

246

346

356

3608

380

399

4DD
41g

426

A430

44g

set low byte RTS address

save in $FB

get high byte RTS address

save in $FC

entry for REPEAT

initialize index to zero

increment low byte of vectored address

branch to OVER if not zero

else increment page value

entry for OVER

get byte from within program

if negative, branch to FINISH

else print it

jump to REPEAT

entry for FINISH

jump back into main program

load accumulator with clear screen code

and print it

call string printing routine at $COM

ASCII code for RETURN

ASCII string ‘STRINGS ”

ASCII string ‘WITHIN ’

ASCII string “MACHINE ’

ASCII string ‘CODE!’

negative byte

back to BASIC

7 ABubble of Sorts

Any program written to handle quantities of data will, at some
time, require the data in a data table to be sorted into ascending or
descending order. Several algorithims are available to facilitate this
manipulation of data, of which the bubble sort is perhaps the
simplest to implement in BASIC or machine code.

The technique involves moving through the data list and com-
paring pairs of bytes. If the first byte is smaller than the next byte in
the list, the next pair of bytes is sought. If, on the other -hand, the
second byte 1s less than the first, the two bytes are swapped. This
procedure is repeated until a pass is executed in which no elements
are exchanged, so all are in ascending order. Program 15 is the
BASIC version of such a bubble sort.

Program 15

19 REM ** BASIC BUBBLE SORT «+

26 TABLE-=828

30 FOR LOOP=@ TO 19

46 READ BYTE

5@ POKE TABLE+LOOP, BYTE

69 NEXT LOOP

76 :

86 REM ** BUBBLE—-UP ROUTINE «*

98 FOR BUBBLE=6 TO 19

198 TEMP=BUBBLE

116 :

126 IF PEEK(TABLE+TEMP) >PEEK (TABLE: (TEMP-1))

THEN GOTO 184

136 HOLD=PEEK (TABLE+TEMP)

146 POKE TABLE+TEMP, PEEK (TABLE+(TEMP-1))

158 POKE TABLE+(TEMP-1) , HOLD

166 TEMP=TEMP-1

179 IF TEMP<>@ THEN GOTO 12¢

186 NEXT

198 :

260 REM ** DATA FOR SORTING «*

218 DATA 1,255,67, 89, 12¢

226 DATA 6,268,85,45,199

230 DATA $,123,77,98,231

246 DATA 9,234,99,98, 1994

256 :

266 REM ** PRINT SORTED DATA «*

276 FOR LOOP-=@ TO 19

286 PRINT PEEK(TABLE+LOOP)

29% NEXT LOOP

The data bytes for sorting are held within the four data lines from
219 to 240 and these are read into a memory array called TABLE.
The sorting procedure is performed through lines 99 to 189, line 120
checking to see if a swap is required. If a swap is unnecessary,
GOTO 189 is executed and the swap routine bypassed. If it is
required, however, the GOTO statement is not encounted, and the
swap is performed in lines 130 to 169. The byte currently being
pointed to is PEEKed into the variable HOLD (line 130) and the
next byte is PEEKed and then POKEd into the location immedi-
ately before it (line 149). The swap is completed by POKEing the
value of HOLD into the now ‘vacant’ location. The variable TEMP
is used to keep track of the number of passes through the loop.

Figure 7.1 Numbers bubbling up

86

Figure 7.1 illustrates how small numbers bubble up through a
data list using this sorting method. In this example, the data list
consists of six numbers 27, CA, @A, 4C, F@ and 5@ (Figure 7.1a).
After the first pass of the bubble sort three swaps have occurred
(Figure 7.1b), thus:

27 < CA therefore no change.
CA > QA therefore swap items.
CA > 4C therefore swap items.
CA < FQ therefore no change.
FQ > 5@ therefore swap items. eg al a

The next pass through the data list produces the ordered list of
Figure 7.1c in which just two swaps occurred, as follows:

27 > @A therefore swap items.
27 < 4C therefore no change.
4C < 50 therefore no change.
CA > 5@ therefore swap items.
CA < F@ therefore no change. AR WN

All the data elements are now in their final order, so the next pass
through the list will have no effect. We can signal this by using an
exchange flag to indicate whether the last pass produced any swaps,
the sort routine exiting when the flag is cleared. This detail is
included in the BASIC loader listed below as Program 16.

Program 16

19 REM *** BUBBLE SORT ***

26 CODE=49152

36 TABLE=56432

4$ FOR LOOP=6 TO 44

58 READ BYTE

68 POKE CODE+LOOP, BYTE

76 NEXT LOOP

88 :

99 REM ** M/C DATA **

196 DATA 2%6,52,3 : REM DEC $334

116 :: REM BUBBLE-LOOP

126 DATA 166,¢ : REM LDY #$6¢

136 DATA 148,53,3 > REM STY $335

148 DATA 174,52,3 : REM LDX $334

15@ :: REM LOOP

SET
EXCHANGE

FLAG

GET
EXCHANGE

FLAG

RESET
POINTERS

Figure 7.2 Bubble sort flowchart

87

88

169

176

189

199

200
210

220

236

246

256

260
270

286
299
3D
319

326

336

335
34
35
36
37
386

399

4D
419

429

43
44g
450

460

AT
489

499

SPL
519

526

530

DATA 177,253 : REM LDA ($FD),Y

DATA 299,251 : REM CMP ($FB),Y

DATA 176,13 : REM BCS $D

DATA 72 : REM PHA

DATA 177,251 : REM LDA ($FB),Y

DATA 145,253 : REM STA ($FD),Y

DATA 164 : REM PLA

DATA 145,251 : REM STA ($FB),Y

DATA 169,1 : REM LDA #4991

DATA 141,53,3 : REM STA $335

as REM SECOND-FIRST

DATA 299 : REM INY

DATA 262 : REM DEX

DATA 298, 233 : REM BNE $E9

DATA 173,53,3 : REM LDA $335

DATA 246,5 : REM BEQ $5

DATA 296,52,3 : REM DEC $334

DATA 298,215 : REM BNE $D7

oe REM FINISH

DATA 96 : REM RTS

REM ** SET UP VECTORS «+

REM $FB=$C509, $FD=$C561

POKE 251,0 : POKE 252,197

POKE 253,1 : POKE 253,197

REM ** SET UP SCREEN AND ARRAY **

PRINT CHR$(147)

PRINT "*x** MACHINE CODE BUBBLE SORT *#*#*"

PRINT: PRINT

INPUT"NUMBER OF ELEMENTS IN ARRAY ";N

POKE 829,N : REM LENGTH OF ARRAY

AT $334

FOR LOOP=@ TO N—-1

PRINT" INPUT ELEMENT ";LOOP+1;

INPUT A

POKE TABLE+LOOP, A

NEXT LOOP

REM ** CALL CODE THEN PRINT SORTED TABLE *-*

548 SYS CODE

558 PRINT"SORTED VALUES ARE AS FOLLOWS"

560 FOR LOOP=@ TO N-1

576 PRINT PEEK(TABLE+LOOP)

58 NEXT LOOP

After POKEing the machine code data into memory at $CQ@, two
zero page vectors are created to hold the address of the TABLE
and TABLE+1 (lines 379 to 399). The program then requests (in
BASIC!) the number of elements in the array, which should be a
series of integer values less than 256. These are then POKEd into
memory (lines 459 to 510). The machine code begins by decrement-
ing the length of array byte by one.(line 19M), because the last
element in the array will have no element beyond it to swap with.
The swap flag is then cleared (line 13@) and the main loop entered
using the X register to count the iterations.
The LOOP begins by loading the data byte into the accumulator

(line 160) and comparing it with the one immediately preceding it.
If the byte+1 is greater than the byte, the Carry flag will be set and
no swap required, in which case the branch to SECOND-FIRST is
executed (line 189).

If a swap is required, the second byte is saved, pushing it on to
the hardware stack. The first byte is then transferred to the second
byte’s position (lines 209 and 210) and the accumulator is restored
from the stack and transferred to the position of the first byte (lines
220 to 230). To denote that a swap has occured, the swap flag is set
(lines 249 and 250). The index and counters are then adjusted (lines
270 and 28@) and the loop continues until all the array elements
have been compared. Upon completion of a full pass through the
array, the swap flag is checked. If it is clear, no exchanges took
place during the last pass, so the data list is now ordered and the
sort finished (line 300 and 319). If the flag is set. the length of array
byte 1s decremented and the procedure repeated once more (lines
320 and 330). On return from the SYS call, the now ordered list is
printed out to the screen.

Line-by-line

A line-by-line description of Program 16 now follows:

line 169 : subtract one from the length of the array

line 118 : entry for BUBBLE-LOOP

line 128 : initialize indexing. register

line 139 : clear the swap flag

line 148 : get the array size into the X register to act as a loop

counter

89

line 159 : entry for LOOP

line 169 : get the byte at the byte+1 position

line 17% : compare it with the previous byte

line 18% : branch to SECOND-FIRST if the second byte

(byte+1) is larger than the first (byte)

line 198 : save accumulator on hardware stack

line 299 : get first byte at ‘byte’ position

line 219 : place in current location (byte+1)

line 22@ : restore accumulator

line 236 : and complete swap of bytes

line 249 : load accumulator with 1

line 25 : and set the swap flag to denote that a swap has been

performed

line 26% : entry for SECOND-FIRST

line 276 : move index on to next byte

line 286 : decrement loop counter

line 29% : branch to LOOP until done

line 369 : get the swap flag into the accumulator

line 319 : if clear, branch to FINISH

line 32 : decrement outer counter

line 338 : branch to BUBBLE-LOOP until all done

line 335 : entry to FINISH

line 348 : back to calling routine

Projects

Rewrite the BASIC sections of the program to make it a complete
machine code routine.

Adapt the sorting routine to handle 16-bit numbers.

8 Software Stack

One of the criticisms of the 6510 processor is that it has a very
limited set of operation instructions—only 56, though addressing
modes extend this to 152 functions. With some thought, however,
it is possible to implement operations present on other processors,
such as the Z80 or 6809, and build up a set of very useful sub-
routines which can ultimately be strung together to perform quite
sophisticated operations, as well as making the conversion of pro-
grams written for other processors much easier.

The routine described below mimics an instruction in the 6809
instruction set which allows the contents of up to eight registers to
be pushed on to a stack in memory. This stack is often known as the
user stack. I said ‘up to eight registers’, because the ones to be
pushed can be selected, this being determined by the bit pattern of
the byte after the user stack subroutine call. But more of that in a
moment. First, which registers are we going to push? Obviously all
the processor registers: the Program Counter, Status register,
accumulator, and Index registers. The three remaining ones, we
will implement as three two-byte ‘psuedo-registers’ from the user
area of zero page. These are:

PRlL : $88 and $81

PR2 : $82 and $83

PRS : $84 and $84

This now enables us to save the contents of these locations when
required. ;

As already stated, the byte after the user stack subroutine call
determines by its bit pattern which registers are to be pushed, as
follows:

bit @ : pseudo-register 1

bit 1 : pseudo-register 2

bit 2 : pseudo-register 3 “

91

92

bit 3 Y register

bit 4 X register

bit 5 accumulator

bit 6 Status register

bit 7 Program Counter

The rule here is that if the bit is set, the related register is pushed.
Thus the instructions:

JSR USER-STACK

.BYTE $FF

would push all registers on to the user stack, the embedded byte
being $FF or 11111111. Alternatively, the coding:

JSR USER-STACK

.BYTE $1E

where $1E = 99911119 would push only the accumulator, Status
and Index registers. Perhaps at this point a question is running
through your mind: ‘won’t the embedded byte cause my program
to crash?’. That’s true on face value, but what we do is get the user
Stack coding to move the Program Counter on one byte, to pass
over it, as Program 17 shows:

Program 17

16 REM ** USER STACK «+

26 CODE=-49152

30 FOR LOOP=% TO 116

48 READ BYTE

56 POKE CODE+LOOP, BYTE

6% NEXT LOOP

TO :

88 REM ** M/C DATA **

99 DATA 8 : REM PHP

196 DATA 72 - REM PHA
116 DATA 138,72 : REM TXA : PHA

126 DATA 152,72 : REM TYA : PHA

136 DATA 186 : REM TSX

146 DATA 168,6 : REM LDY #$@6

156 :: REM PUSH—ZERO-PAGE

168 DATA 185,138,@ : REM LDA $@98A,Y

176

189

199

26
216

226

236

246

250
266

276

286

299
3D
31p

326

336

349
350
366

376

386

396

40
Alp
420

430

449

450

460

AT
489

499

SBD
516
526

53
546

55
569

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

T2

136

268 , 249

204,5,1

189;5,1

133,139

268 ,3

204,6,1

189,6,1

133,149

169,135

153,141

177,139

153,142

169,8

133,143

136

198,252

38,142

144,16

189,6,1

145,251

136

56,141

16,6

189,5,1

145,251

136

262

38,141

144,1

262

198,143

268 , 226

56

152

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

PHA

DEY

BNE

INC

LDA

STA

BNE

INC

$F9
$105, X
$105, X

$8B

$23
$166, xX

PC—LOW

LDA

OTA

LDA

OTA

LDA

STA

LDA.

STA

DEY

DEC

$106 ,X

$8C

#P87

$8D

($8B) ,Y

$8E

#$08

$8F

BFC

ROTATE-BYTE

ROL

BCC

LDA

OTA

DEY

BIT

BPL

LDA

STA

DEY

$8E

$1
$106 ,X
($FB),Y

$8D

$26
$105, X
($FB) ,Y

BIT—CLEAR

DEX

ROL

BCC

DEX

OVER

DEC

BNE

SEC

TYA

$8D

$01

$8F

$E2

93

5768 DATA 11,251 : REM ADC $FB

580 DATA 133,251 : REM STA $FB

598 DATA 144,2 : REM BCC $62

600 DATA 238,252 : REM INC $FC

61g :: REM CLEAR-—STACK

620 DATA 162,6 : REM LDX #9

636 :: REM REPEAT

646 DATA 194 : REM PLA

650 DATA 149,139 : REM STA $8B,xX

666 DATA 232 : REM INX

676 DATA 224,6 : REM CPX #$@6

6808 DATA 268,248 : REM BNE $F8

699 DATA 194,168 : REM PLA : TAY

700 DATA 14,176 : REM PLA : TAX

716 DATA 164 : REM PLA

720 DATA 4G : REM PLP

730 DATA 96 - REM RTS

T46 :: REM TEST—ROUTINE

756 DATA 169,24¢ : REM LDA #$F@

766 DATA 162,15 : REM LDX #$@F

776 DATA 168,255 : REM LDY #$FF

788 DATA 32,6,192 : REM JSR $CG6¢

796 DATA 255 : REM EMBEDDED-BYTE

886 DATA 96 : REM RTS

81g

826 REM ** SET UP ZERO PAGE AND FREE RAM **

830 PRINT CHR$(147)

848 POKE 251,12 POKE 252,197

856 FOR N=139 TO 144 : POKE N,N : NEXT

866 FOR N=5#432 TO 59448 : POKE N,@ : NEXT

876

8868 SYS 49258 : REM SYS TEST-ROUTINE

896

999 REM *«* READ RESULTS «**

918 FOR LOOP-58432 TO 56443

928 READ NAME$

936 PRINT NAME$:

948 PRINT PEEK(LOOP)

958 NEXT LOOP

968

978 DATA "ZERO PAGE ","ZERO PAGE+1"

988 DATA "ZERO PAGE+2","ZERO PAGE+3"

99% DATA "ZERO PAGE+4","ZERO PAGE+5"

1000 DATA "Y REGISTER ","X REGISTER "

161% DATA "ACCUMULATOR", "STATUS ii

1628 DATA "PC LOW " "PC HIGH

The problem to solve next is that of where to place the user stack.
This will depend on your own requirements, so to make the whole
thing flexible, a vectored address in the bytes at $FB and $FC
contains the stack address. In the program listed above, this is
$C512 (line 840). The vectored address is, in fact, the address + 12.
This is because the stack is pushed in reverse (decreasing) order.

When executed, the coding first pushes all the processor
registers on to the hardware stack and moves the stack pointer
across into the X register (lines 9 to 140). Next, the six zero page
pseudo-registers are pushed there (lines 159 to 199). The return
address from the subroutine call is then incremented on the stack,
using the contents of the X register (stack pointer) to access it (lines
2 to 240). The two bytes that form the RTS address are copied
into pseudo-register 1 (now safely on the hardware stack) to form a
vector though which the embedded data byte can be loaded into
7 accumulator and then saved for use in zero page (lines 259 to
319).

In line 280, a pre-defined byte was loaded into the accumulator
and saved in zero page. This byte holds a bit code that will inform
the program as to whether the register being pulled from the
hardware stack for transfer to the software stack is one or two bytes
long. The byte value, $87, is 10990111 in binary and the set bits
correspond to the two-byte registers, the Program Counter and the
three pseudo-registers. By rotating this byte left after each pull
operation and using the BIT operation, the Negative flag can be
tested to see if a further pull is needed. All this and the copy
hardware stack/push software stack is handled by lines 329 to 559.

Finally, the registers and pseudo-registers are restored to their
original values (lines 620 to 730). The test routine between lines 750
and 80 shows the way the program is used. When run, the test
procedure produces the following output on the screen:

ZERO PAGE 139

ZERO PAGE+1 149

ZERO PAGE+2 141

ZERO PAGE+3 142

ZERO PAGE+4 143

ZERO PAGE+5 144

Y REGISTER ROO

X REGISTER 15

95

96

ACCUMULATOR 249

STATUS

PC LOW

PC HIGH

As can be seen, the zero page bytes contain the values POKEd into
them by the FOR...NEXT loop of line 839 while the accumulator
and Index registers display their seeded values (lines 759 to 779).
The Program Counter holds 192 * 256 + 115, or $C073, which was
the point in the program where its contents where pushed at line
780.

This program could be extended to provide a routine to perform
a pull user stack, to copy the contents of a software stack into the

1'76

115

192

processor and pseudo-registers.

Line-by-line

A line-by-line description of Program 17 follows:

line 9

line 149

line 159

line 166

line 172

line 189

line 199

line 26¢

line 219

line 226

line 232

line 249

line 259

line 269

line 279

line 289

line 299

line 3£9

line 319

line 329

line 332

line 349

line 359

save all processor registers on hardware stack

move stack pointer into X for index

entry for PUSH-ZERO-PAGE

get zero page byte

push on to hardware stack

: .decrement index

branch to PUSH-ZERO-PAGE until done

increment low byte of RTS address

get it from stack

and save in zero page

if not equal branch to PC-LOW

else increment page byte of RTS address

entry for PC-LOW

get high byte of RTS address

and save it to form vector

get bit code to indicate register size

and save it

get embedded code after subroutine call

and save it

eight bits n embedded byte to test

save bit count

decrement index to $FF

decrement high byte of vectored address at $FB

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

366

370

386

399

ADD
41g
426

43g
449

45
460

AT
489
499

56D
516
526

53
546

55
566

576
586

599
6D
619

626

636

646

656

669
670

68
699

730

740

75D
78D

79P

809

entry for ROTATE-BYTE

move next coded bit into Carry flag

if bit clear skip it, branch to BIT-CLEAR

otherwise get byte from stack

save it on user stack

decrement index

is it a two byte register?

no, so branch to BIT-CLEAR

yes, so get the second byte from the stack

and save it on the user stack

decrement index

entry for BIT-CLEAR

decrement hardware stack index

move bit of register code into Carry flag

if clear, branch to OVER

else decrement hardware stack index

entry for OVER

decrement bit counter

and repeat until all done

set Carry flag

move user stack pointer into accumulator

add to low byte of address

and save

branch to CLEAR-STACK if carry is clear

else increment high byte of address

entry for CLEAR-STACK

initialize X register

entry for REPEAT

pull byte from stack

and restore zero page

increment index

all bytes restored?

no, branch to REPEAT

yes, restore all registers

back to calling routine

entry for TEST-ROUTINE

seed registers

call user stack routine

embedded byte

back to BASIC

97

98

BINARY INS AND OUTS

Sometimes when printing the values of registers, it is necessary to
have their binary representation—for example, in the case of the
Status register, because we are concerned with the state of the
particular bits within it, rather than the overall value of the con-
tents. Program 18 provides a short routine which produces such a
binary output from a decimal input. This could easily be adapted
for use within a program such as the software stack given above.

Program 18

19 REM ** PRINT ACCUMULATOR AS A **

26 REM ** BINARY NUMBER **

36 CODE=49152

40 FOR LOOP-@ TO 17

5@ READ BYTE

68 POKE CODE+LOOP, BYTE

76 NEXT LOOP

86 :

99 REM ** M/C DATA «+

108 DATA 162,96 : REM LDX #$@8

116 DATA 72 : REM PHA

120 :: REM NEXT-BIT

138 DATA 164 : REM PLA

148 DATA 19 : REM ASL A

158 DATA 72 : REM PHA

166 DATA 169,48 : REM LDA #4$3¢

176 DATA 15,6 - REM ADC #$6¢

186 DATA 32,216,255 : REM JSR $FFD2

198 DATA 262 : REM DEX

206 DATA 268,243 : REM BNE $F3

218 DATA 194 : REM PLA

226 DATA 96 : REM RTS

236

248 REM ** SET UP DEMO RUN «+

258 REM LDA $FB : JSR $C@ZG : RTS

260 POKE 828,165 :POKE 821,251

276 POKE 822,32 : POKE 823,9

280 POKE 824,192 : POKE 825,96

296 PRINT CHR$(147) PRINT

360 INPUT "INPUT A NUMBER "; A$

318 A=VAL(A$)

326 POKE 251,A

336 PRINT"BINARY VALUE IS :";

346 SYS 82¢

Line-by-line

The following line-by-line description should make the program’s
operation clear. It is simply moving each bit of the accumulator in
turn into the Carry flag position, using the arithmetic shift left
operation (see Figure 8.1) and adding its value to the ASCII code
for Q, i.e.

accumulator=48+carry

‘e|—{or| [oso] s]sa[or[on)—
B7 \
86/85 | 64] 63 |B | 61] Bo] o

1 +ASC(‘B”)= ASC(“1”).

8 + ASC(“‘8”) = ASC(“‘B”)

Figure 8.1 Arithmetic shift left

If the Carry flag is clear, the result will be 48+@=48, so the
CHROUT routine will print a @. On the other hand, if the Carry
flag is set, the result of the addition will be 48+1=49, so a 1 will be
printed by CHROUT.

line 18% : eight bits in a byte

line 119 : push accumulator on to stack

line 126 : entry for NEXT-BIT

99

100

line 13@ : restore accumulator

line 149 : shift bit 7 into carry

line 15g : save shifted accumulator on stack

line 168 : get ASCII code for @

line 176 : add carry

line 18 : print either @ or 1

line 19% : decrement bit counter

line 288 : do NEXT-BIT until complete

line 21 : pull stack to balance push

line 228 : back to BASIC

COME IN

By reversing this process, it is possible to input a number directly
into the accumulator in binary form as Program 19 shows. The
program scans the keyboard for a pressed 1 or @ key and the Carry
flag is set or cleared respectively. A copy of the accumulator,
initially cleared, is kept on the hardware stack and restored each
time round to rotate the carry bit into it using the rotate left
operation (see Figure 8.2). The loop is executed eight times, once
for each bit, and on completion, the accumulator holds the
hexadecimal value of the binary number.

[87 [6 [Bs | ba) 62 | ez |81| Bo

|
NEN geo” ete i

KL

'56|85| 84/53) 52/61] 65] ¢

Figure 8.2. Input a number directly into the accumulator

Program 19

1g
20
3
4p
5D
68
7D
8
9
1P
119

129

139

146

159

169

176
18¢

199

20
210

229
230

240

259
269
276
286

298"
3D
31g

326

339
346

356

366

37,
389

REM ** INPUT A HEX NUMBER IN BINARY FORM **

CODE=49152

FOR LOOP=@ TO 41

READ BYTE

POKE CODE+LOOP, BYTE

NEXT LOOP

REM ** M/C DATA *+#

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

162,8

169, 9

T2

24

134,243

32,228,255

246,251

261,49

246 ,7

261,48

268 , 243

24

144,1

56

8

32,216,255

4g
194

A2

72

166,253

262

288 , 224

194

133,251

96

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

>: REM

REM

REM

REM

REM

REM

REM

>: REM

LDX #$8

LDA #$60

PHA

CLC

MAINLOOP

STX $FD

LOOP

JSR $FFE4

BEQ $FB

CMP 4$31

BEQ $07

CMP #$39¢

BNE $F3

CLC

BCC $1

SET

SEC

OVER

PHP

JSR $FFD2

PLP

PLA

ROL A

PHA

LDX $FD

DEX

BNE $E¢

PLA

STA $FB

RTS

101

396 :

46 PRINT CHR$(147)

418 PRINT

426 PRINT" INPUT YOUR BINARY NUMBER :";

430 SYS CODE

446 PRINT PEEK(251)

Line-by-line

A line-by-line explanation of Program 19 now follows:

line 9 : eight bits to read

line 169 : clear accumulator—shift register

line 119 : push it on to stack

line 12@ : clear the Carry flag

line 13% : entry for MAINLOOP

line 148 : save X register

line 158 : entry for LOOP

line 168 : jump to GETIN

line 1768 : if null, branch to LOOP

line 188 : is it ASC“1’?

line 19% : yes, branch to SET

line 260 : is it ASC‘@’?

line 219 : no, branch to LOOP

line 228 : yes, clear Carry flag

line 23 : and force branch to OVER

line 248 : entry for SET

line 258 : set Carry flag

line 268 : entry for OVER

line 276 : save Carry flag on stack

line 286 : print @Qor1

line 299 : restore Carry flag

line 38% : restore accumulator

line 318 : move Carry flag into bit @

line 328 : save accumulator

line 338 : restore bit count

line 348 : decrement it by one

line 358 : branch to MAINLOOP until all done

line 368 : restore accumulator

line 378 : save in zero page

line 388 : back to BASIC

Project

Convert the software stack program to print the binary values of
each register upon completion.

Modify it further to allow register values to be seeded into the
software stack test routine, using the binary input routine. Note
that you should only attempt seeding the accumulator and Index
registers. Why?

103

104

9 Move, Filland Dump

MOVE IT!

The ability to move blocks of memory around within the bounds of
the memory map is a necessity. When manipulating hi-resolution
graphics, for example, large blocks of memory need to be moved
around quickly and smoothly. The program could also be used to
relocate sections of machine code rather than rewriting the assemb-
ler that created them—assuming, of course, that your code has
been designed to make it portable.

At first sight, it may seem that the simplest method of moving a
block of memory is to take the first byte to be moved and store it at
the destination address, take the second byte and place it at the

destination address + 1, and so forth. There would be no problem
here if the destination address was outside the source address, but
consider what would happen if the destination address was within
the bounds to be searched by the source address—that is, the two
regions overlapped. Figure 9.1 illustrates the problem using this
straightforward method to move a block of five bytes forward by
Just a single byte, relocating the five bytes from $C5@ to $CS5@1.

Using the obvious method, the first character, ‘S’, is moved from
$C50M to $C501 thereby overwriting the ‘A’. The program then
takes the next character at location START+1 ($CS@1), the ‘S’ that
has just been written there, and places it at START+2 ($CS5@2)

START $CS500

$C501

$C502

$C503

$C504

$C505

Figure 9.1 The overwriting move sequence

overwriting the ‘R’. As you can see, the end result is SSSSS—the
whole block is full of ‘S’s—not the required effect!

To avoid this problem, the MOVE routine acts ‘intellegently’
and if it calculates that an overwrite would occur, performs the
movement of bytes in the reverse order, starting at the highest
address and moving down the memory map as Figure 9.2 shows.

START $C500

$C501

$C502

$C503

$C504

$C505

Ist 2nd 3rd Ath Sth

Figure9.2 The correct move sequence

Program 20

1 REM ** MEMORY BLOCK MOVE RQUTINE **

26 REM ** 189 BYTES LONG WHEN ASSEMBLED **

36 REM ** PLUS 5 DATA BYTES IN ZERO PAGE **

46 CODE=49152

56 FOR LOOP-# TO 168

6@ READ BYTE

78 POKE CODE+LOOP, BYTE

86 NEXT LOOP

96 :

196 REM ** M/C DATA *

116 DATA 56 : REM SEC

129 DATA 165,251 : REM LDA $FB

136 DATA 229,253 : REM SBC $FD

146 DATA 179 : REM TAX

158 DATA 165,252 : REM LDA $FC

166 DATA 229,254 : REM SBC $FE

176 DATA 168 : REM TAY

188 DATA 138 : REM TXA

198 DATA 295,52,3 : REM CMP $334

260 DATA 152 : REM TYA

218 DATA 237,53,3 : REM SBC $335

105

220 DATA 176,2 : REM BCS $2

236 DATA 144,35 : REM BCC $23

246 :: REM MOVE-LEFT

256 DATA 162,¢ : REM LDY #$@¢

266 DATA 174,53,3 > REM LDX $335

276 DATA 248,14 : REM BEQ $@E

280 :: REM LEFT—COMPLETE—PAGES

296 DATA 177,253 : REM LDA ($FD),Y

300 DATA 145,251 : REM STA ($FB),Y

316 DATA 26¢ : REM INY

326 DATA 268,249 : REM BNE $F9

336 DATA 236,254 : REM INC $FE

346 DATA 236,252 : REM INC $FC

356 DATA 262 : REM DEX

366 DATA 268,242 - REM BNE $F2
S70. = REM LEFT—PARTIAL-—PAGE

3808 DATA 174,52,3 : REM LDX $334

399 DATA 246,8 : REM BEQ $#8

AGO :: REM LAST-LEFT

416 DATA 177,253 : REM LDA ($FD),Y

426 DATA 145,251 : REM STA ($FB),Y

436 DATA 2692 : REM INY

446 DATA 292 : REM DEX

45¢ DATA 268,248 : REM BNE $F8

460 :: REM EXIT

476 DATA 96 : REM RTS

486

499 :: REM MOVE-RIGHT

506 DATA 24 : REM CLC

518 DATA 173,53,3 : REM LDA $335

5208 DATA 72 : REM PHA

536 DATA 161,254 : REM ADC $FE

546 DATA 133,254 : REM STA $FE

556 DATA 24 : REM CLC

560 DATA 194 : REM PLA

576 DATA 161,252 : REM ADC $FC

586 DATA 133,252 : REM STA $FC

598 DATA 172,52,3 : REM LDY $334

600 DATA 246,9 - REM BEQ $69

616 :: REM TRANSFER

620 DATA 136 : REM DEY

636 DATA 177,253 : REM LDA ($FD),Y

646 DATA 145,251 : REM STA ($FB),Y

656 DATA 192,¢ : REM CPY #$@¢

660 DATA 268,247 - REM BNE $F7

670 :: REM RIGHT—COMPLETE-—PAGES

680 DATA 174,53,3 : REM LDX $335

698 DATA 246,221 : REM BEQ $DD

TOO :: REM UPDATE

716 DATA 198,254 : REM DEC $FE

726 DATA 198,252 : REM DEC $FC

730 :: REM PAGE

749 DATA 136 :. REM DEY

756 DATA 177,253 : REM LDA ($FD),Y

760 DATA 145,251 : REM STA ($FB),Y

776 DATA 192,¢ : REM CPY #$6¢

786 DATA 268,247 : REM BNE $F7

796 DATA 262 : REM DEX

806 DATA 268,249 : REM BNE $F¢

8168 DATA 96 : REM RTS

826 :

8368 REM ** SET UP VARIABLES «**

846 PRINT CHR$(147)

8568 PRINT" xxx MEMORY MOVER V1.1 «*#"

866 INPUT"START ADDRESS eS

876 INPUT"DESTINATION ve

8868 INPUT"LENGTH IN BYTES ";L

898 :

996 S1=INT(S/256) : S2=-S—(S1*256)
91M D1=INT(D/256) : D2=D-(D1*256)
924 L1=-INT(L/256) : L2=-L—(L1*256)
936 :

940 POKE 251,D2 : POKE 252,D1

958 POKE 253,S2 : POKE 254,S1

968 POKE 826,L2 : POKE 821,L1

O76 :

988 REM *«* SET UP DEMO ««

998 FOR N=@ TO 15

1008 POKE 8284N,N

108

1618 POKE 966+N,¢

1620 NEXT N

1930 :

1848 SYS CODE

1g56 :

1966 REM ** PRINT THE RESULTS! *+*

1976 FOR N=6 TO 15

1986 PRINT PEEK(828:+N);" Le:

19998 PRINT PEEK(9@+N)

116% NEXT N

Bytes reserved:

251-252 ($FB—-$FC) : Destination vector

253-254 ($FD-$FE) - Source vector

829-821 ($334-$335) : Length of block to be

moved

When run, the BASIC test requests three inputs: the START
address of the memory block to be moved, its DESTINATION
address and its LENGTH in bytes. All values should be entered as
decimal values. Thus, to move a 1K block of memory from 49152 to
56000, the values to input are:

START ADDRESS > 49152

DESTINATION : 56600

LENGTH IN BYTES 124

For reasons already explained, the coding begins by ascertaining
whether a left-move or a right-move operation is required. It
calculates this (lines 119 to 210) by subtracting the source address
from the destination address. If the result is less than the number of
bytes to be moved, overwriting would occur using the MOVE-
LEFT routine, so the MOVE-RIGHT coding is called (line 239). If
the memory locations do not overlap, the quicker MOVE-LEFT
routine is selected (line 220). For further description purposes we
will examine the MOVE-LEFT routine (lines 240 to 470).
Memory movement is performed in two phases: complete

memory pages are first relocated, and then any remaining bytes in
the final partial page are moved. These details are held in the
length of block bytes $334 and $335.

The routine begins by loading the number of pages to be moved
into the X register (line 269), branching to LEFT-PARTIAL-
PAGE if it is zero (line 280). Transfer of data bytes is completed
using post-indexed indirect addressing through the zero page
vectors. When all the whole pages have been transferred, any

remaining bytes are transferred by the LEFT-PARTIAL-PAGE
loop (lines 379 to 459).

The MOVE-RIGHT routine is similar in operation, except that
it starts at the highest memory location referenced and moves down
through memory, the highest address of the source and destination
being calculated in lines 509 to 659.

Line-by-line

A line-by-line description of Program 20 now follows:

line 116 : set Carry flag

line 128 : get low byte destination address

line 13 : subtract low byte source address

line 149 : transfer result into X register

line 159 : get high byte destination address

line 16 : subtract high byte source address

line 17 : save result in X register:

line 189 : restore result of low byte subtraction

line 19% : compare it with low byte of length

line 28% : restore result of high byte subtraction

line 219 : subtract high byte of length from it

line 229 : if Carry flag set, branch to MOWE-LEFT

line 236 : else branch to MOVE-RIGHT

line 249 : entry for MOVE-LEFT

line 258 : initialize index

line 26% : get number of pages to be moved

line 278 : if zero, branch to LEFT-PARTIAL-PAGE

line 289 : entry for LEFT-COMPLETE-PAGES

line 298 : get source byte

line 368 : store at destination

line 319 : increment index

line 326 : branch to LEFT-COMPLETE-PAGES until page

done

line 33f : increment source page

line 348 : increment destination page

line 35% : decrement page counter

line 368 : branch to LEFT-COMPLETE-PAGES until all moved

line. 37% : entry for LEFT-PARTIAL-PAGE

line 388 : get number of bytes on page to be moved

line 39% : if zero, branch to EXIT

109

110

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

46D
416

426

436

446

459

466

ATO

A496

506
51g

526

530

54g

550

566

576

586

599

606
619

626

630

646

652

660

670

686

696

6)
716

720

730

T40

756

760
77

78D

entry for LAST-LEFT

get source byte

Store at destination

increment index

decrement byte count

branch to LAST-LEFT until done

entry for EXIT

back to BASIC

entry for MOVE-RIGHT

clear Carry flag

get number of pages to be moved

save on stack

add it to source high byte

and save result

reclear Carry flag

get length high byte off stack

add it to destination high byte

and save the result

get low byte of length into Y register

branch to RIGHT-COMPLETE-PAGES if zero

entry for TRANSFER

decrement index

get source byte

and copy to destination

is Y = 9?

no, branch to TRANSFER

entry for RIGHT-COMPLETE-PAGES

get number of pages to be moved

if zero, branch to EXIT

entry for UPDATE

decrement number of pages to do

and also destination

entry for PAGE

decrement index

get source byte

copy to destination

is Y = @?

no, branch to PAGE

line 79% : decrement page counter

line 8@@ : if not zero, branch to UPDATE

line 81% : return to BASIC

FILL

Program 21 provides the BASIC loader listing to implement a
memory FILL routine, which is particularly useful for clearing
sections of RAM with a pre-determined value.

Program 21

19 REM *«* MEMORY FILL ROUTINE «+

26 REM ** 38 BYTES LONG WHEN ASSEMBLED **

306 REM ** PLUS 5 DATA BYTES IN ZERO PAGE **

4% CODE=49152

5@ FOR LOOP=6 TO 32

66 READ BYTE

70 POKE CODE+LOOP, BYTE

88 NEXT LOOP

96 :

166 REM «* M/C DATA *«

118 DATA 165,255 : REM LDA $FF

126 DATA 166,252 : REM LDX $FC

136 DATA 246,12 : REM BEQ $@C

146 DATA 168,90 : REM LDY #$9¢

156 :: REM COMPLETE-—PAGE

166 DATA 145,253 : REM STA ($FD),Y

176 DATA 269 : REM’ INY

186 DATA 298,251 : REM BNE $FB

198 DATA 238,254 : REM INC $FE

206 DATA 292 : REM DEX

219 DATA 298,246 : REM BNE $F6

226 :: REM PARTIAL—PAGE

236 DATA 166,251 : REM LDX $FB

248 DATA 246,8 : REM BEQ $98

2508 DATA 168,9 : REM LDY #$¢¢

266 :: REM AGAIN

276 DATA 145,253 : REM STA ($FD),Y

111

112

286 DATA 26¢ : REM INY

296 DATA 22 : REM DEX

306 DATA 288,258 : REM BNE $FA

316 :: REM FINISH

326 DATA 96 : REM RTS

336

346 REM *«* GET DETAILS «+

358 PRINT CHR$(147)

366 INPUT"FILL DATA ie

376 INPUT"START ADDRESS SS

389 INPUT"NUMBER OF BYTES :";L

398 :

466 S1=INT(S/256) : S2=S—(S1*256)

416 L1=INT(L/256) : L2=L—(L1*256)

A426

436 POKE 251,L2 : POKE 252,L1

446 POKE 253,S2 : POKE 254,S1

456 POKE 255,F

466

476 SYS CODE

Bytes reserved:

201-252 ($FB-$FC) : number of bytes to be filled

203-254 ($FD—-$FE) : start of address of bytes to be

filled

2905 (SFF) : value to fill with

When executed, the machine code expects to find the fill value, the
start address and the amount of memory to be filled, in five zero
page bytes of memory from $FB. Input of each of these is handled
by a few lines of BASIC from line 369. To clear a 1K block of RAM
from $C5@9 with zero, the following information should be entered
in response to the 64’s prompt:

FILL DATA : £

START ADDRESS : 49152

NUMBER OF BYTES : 1824

The FILL routine works in a similar manner to the MOVE routine
described above, dealing with whole and partial pages separately.
The main fill loop is embodied in lines 159 to 309.

Line-by-line

A line-by-line description of the program now follows:

line 119 : get data with which to fill

line 12 : get number of complete pages to be filled

line 139 : if zero, branch to PARTIAL-PAGE

line 149 : initialize index

line 158 : entry for COMPLETE-PAGE

line 169 : fill byte

line 176 : increment index

line 188 : branch to COMPLETE-PAGE until all of page is

done

line 19% : increment page

line 28% : decrement page counter

line 21 : branch to COMPLETE-PAGE until all pages are

filled

line 228 : entry for PARTIAL-PAGE

line 23 : get number of bytes left to be filled

line 249 : if zero, branch to FINISH

line 259 : else clear index

line 26 : entry for AGAIN

line 279 : fill byte

line 289 : increment index

line 299% : decrement bytes left to do count

line 39% : branch to AGAIN until all filled

line 318 : entry for FINISH

line 328 : back to BASIC

A MEMORY DUMP

A hex and ASCII dump of memory can be extremely useful, not
only within machine code programs, but also when used from a
BASIC program. Most often it provides information about the way
a program is manipulating numeric and string variables and tables.
Figure 9.3 shows the type of dump produced by the routine:
twenty-four lines of eight bytes each. The example shows some text
stored in memory. Each line starts with the current address, fol-
lowed by the eight bytes stored in memory from that point. The far
right of the listing provides the ASCII equivalents of each byte.
Any non-ASCII character (that is, one greater than $7F) or control
code (those less than $20) is represented by a full stop.

114

C108

C110

C118

Ci2o

Ci28

C130

C138

Ci40

Ci48

Ciso0

Cis8

C160

Cié68s

C170

C178

C180

Ciss

C190

C198

C1A0

CiA8

C1B0

CiBs

Cico

C1c8

CiDoO

CiD&e

CiEO

C1E8

C1FO

CiF8

C200

C208

C210

C218

C220

C228

C230

C238

C240

C248

C250

C258

C260

C268

C270

C278

C280

C288

C290

C298

C2A0

C?2A8

04

61

20

20

74

7O

65

65

6F

77

48

63

69

6E

65

&F

20

6F

73

8D

54

&&

6F

20

8D

49

63

65

&1

65

&7

73

68

72

6E

635

6F

65

68

20

&F

20

zO

74

20

41

68

74

70

7S

20

00

08

20
7S

4C
60

74
Oo

00

2c

6F

C9
00

Figure 9.3 Memory dump

This 1s

a simple

example

of how

the .dum

p routin

e for th

e Commod

ore 64.

works..T

he dump

can be d

ivided i

nto thre

e .secti

ons. The

first c

olumn 11

sts the

-start a

ddress o

the bl

ock. The

second

-column

is in fa

ct the h

exadecim

al .valu

es of e1

ght byte

s from t

his .add

ress. Fi

nally th

e last c

OoOlumn .d

epicts t

he ASCII

values

of these

-bytes.

unless

the byte

1s non-

ASCII .w

hich is

then dis

played a

sa full

As it stands, the routine requires three zero page data bytes, two
for the start address and one for the number of eight byte lines to be
dumped. The routine also employs the ADDRESS-PRINT and
HEXPRINT routines discussed earlier.

Program 22

19 REM ** DUMP LINES OF 8 BYTES OF #«

20 REM ** MEMORY IN HEX AND ASCII **

30 CODE=49152

48 FOR LOOP=-% TO 111

5@ READ BYTE

68 POKE CODE+LOOP, BYTE

76 NEXT LOOP

86 :

99 REM ** M/C DATA «»*

198 DATA 32,71,192 : REM JSR $C47

116 :: REM HEX—BYTES

128 DATA 162,7 : REM LDX #4$67

139 DATA 169,¢ : REM LDY #$6¢

149 REM HEX—LOOP

158 DATA 177,251 : REM LDA ($FB),Y

168 DATA 32,9%,192 : REM JSR $CQ5A

176 DATA 32,66,192 : REM JSR $C42

188 DATA 262 : REM INY

199 DATA 262 : REM DEX

206 DATA 16,244 : REM BPL $F4

218 DATA 32,66,192 : REM JSR $C@42

226 :: REM ASCII-BYTES

236 DATA 162,7 REM LDX #$67

246 DATA 168,90 : REM LDY #$@¢

256 :: REM ASCII-LOOP

266 DATA 177,251 : REM LDA ($FB),Y

276 DATA 261,32 : REM CMP #$2¢

286 DATA 48,4 : REM BMI $4

296 DATA 261,128 - REM CMP #$8¢

366 DATA 144,2 : REM BCC $62

S10 = REM FULL—STOP

326 DATA 169,46 REM LDA #$2E

330 :: REM LEAP—FROG

116

349
356

360

370

386

399

4D
419

429

430

44g
45
460

ATG

489

499

SDP
519

526

53
546

556

566

570

586

596

6D
616

626

630

646

65
660

679

689

699

TD
719

72
730

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

32,216,255

200
262

16,237

169,13

32,218,255

24

165,251

15,8

133,251

144,2

236,252

198,254

268,191

96

169 , 32

76,216,255

162,251

181,1

32,98,192

181,6

32,968,192

32,66,192

52,66,192

96

T2

T4,74

74,74

$2399; 192

1f4

41,15

201,10

144,2

15,6

: REM

: REM

> REM

: REM

: REM

REM

REM

REM

: REM

REM

REM

: REM

REM

: REM

: REM

: REM

REM

REM

REM

REM

: REM

: REM

REM

REM

: REM

REM

REM

REM

REM

REM

: REM

REM

: REM

: REM

REM

: REM

>: REM

: REM

>: REM

REM

JSR $FFD2

INY

DEX

BPL $ED

LDA #$@D

JSR $FFD2

CLC

LDA $FB

ADC #$8

STA $FB

BCC $92

INC $FC

NO—CARRY

DEC $FE

BNE $BF

RTS

SPACE

LDA #$20

JMP $FFD2

ADDRESS-—PRINT

LDX #$FB

LDA 1,X

JSR $CO5A

LDA ,X

JSR $CO5A

JSR $C642

JSR $Cg42

RTS

HEXPRINT

PHA

LSR A :

LSR A :

JSR $C663

PLA

FIRST

AND #$@F

CMP #$6A

BCC $62

ADC #$@6

OVER

LSR A

LSR A

746 DATA 165,48 : REM ADC #$3g

756 DATA 76,219,255 : REM JMP $FFD2

766 :

776 REM ** INPUT DETAILS FOR DUMP ««#

786 PRINT CHR$(147)

796 INPUT"DUMP START ADDRESS ";A

86% HIGH=INT(A/256)

818 LOW=A—(HIGH*256)

826 POKE 251,LOW : POKE 252,HIGH

836 INPUT"NUMBER OF LINES (26/SCREEN) ";B

8498 POKE 254,B

858 SYS CODE

The program’s operation is quite simple, using the X register to
count the bytes as they are printed across the screen using
HEXPRINT (lines 120 to 210). The second section of code (lines
22 to 370) is responsible for printing either the ASCII character
contained in the byte, or a full stop if an unprintable character or a
control code is encountered. The final section of code moves the
cursor down one line and increments the address counter. The
whole loop is repeated until the line count reaches zero.

Line-by-line

A line-by-line description of the Program 22 now follows:

line 18% : print start address of current line

line 119 : entry for HEX-BYTES

line 128 : eight bytes to do (@—7)

line 138 : clear index

line 146 : entry for HEX-LOOP

line 159 : get byte through vectored address

line 168 : print it as two hex digits

line 17 : print a space

line 189 : increment index

line 19% : decrement bit count

line 28% : branch to HEX-LOOP until all done

line 219 : print a space

line 229 : entry for ASCII-BYTES

line 238 : eight bytes to redo

line 249 : set index

line 258 : entry for ASCII-LOOP

117

118

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

269

276

286

296

30D
316

326

336

346

350

369

376

386

396

406
419

A426

436

446

456

466

ATG

A489

499

SPP
51g

526

536

54g

556

560

576

586

599

CLD
616

626

639

646

666

get byte through vectored address

is it less than ASC“ ”’?

yes, branch to FULL-STOP

is it greater than 128?

no, branch to LEAP-FROG

entry for FULL-STOP

get ASC.” into accumulator

entry for LEAP-FROG

print accumulator’s contents

increment index

decrement bit count

branch to ASCII-LOOP until all done

get ASCII code for RETURN

print new line

clear Carry flag

get low byte of address

add 8 to it

save result

if no carry, branch to NO-CARRY

else increment high byte of address

entry for NO-CARRY

decrement line counter

: branch to start at $C@@0 until all lines done

return to BASIC

entry to SPACE

get ASCII code for space

print it and return through jump

entry to ADDRESS-PRINT

load index into X register

get high byte of address

print it as two hex digits

get low byte of address

print it as two hex digits

print a space |

print a second space

:. return to main program

entry to HEXPRINT

save accumulator on stack

move high nibble into low nibble position

call FIRST subroutine

line

line

line

line

line

line

line

line

line

670

68
699

TDL
719

720

730
74D

75D

restore accumulator to do low byte

entry for FIRST

mask off high nibble

is it less than 10?

yes, so jump OVER

add 7 to convert to A—F

entry to OVER

add 48 to convert to ASCII code

print it and return

119

120

10 Hi-res Graphics

The Commodore 64 can support hi-resolution graphics. However,
as you are no doubt aware, setting up the hi-res screen prior to
using it can be a rather long-winded process, requiring several lines
of BASIC text. In fact, four routines are normally required:

1. Move start of BASIC user area and set position for hi-res
screen.

2. Clear screen memory.
3. Select screen colour and clear to that colour.
4. Reselect normal character mode.

All of these can be performed quite simply at machine level, and
the routines for each follow. They can be compiled as DATA at the
end of a graphics program, poked into memory at RUN time and
executed via a SYS call. This does have one of the original dis-
advantages, in that a large chunk of program is required. However,
the main advantage is speed, particularly in clearing the screen.
Alternatively, any of these routines would make an admirable
addition to the Wedge Operating System. allowing it to be called by
name from within your programs. Suitable command names might
be:

@MOVEBAS : move BASIC program area to make room for

hi-res screen

@HIRES : select hi-res screen

@ CLEAR : clear hi-res screen

@GCOL : clear to graphics colour specified in a dedicated

byte

@ MODE : select normal character mode

Let us now examine each command in turn.

A BASIC MOVE

You may be wondering why we should bother to move the BASIC
program area at all—why not just position the hi-res screen mid-
way in memory? The reason for the careful positioning of the
routine is as a matter of safety—placing the hi-res screen above the
BASIC program area could lead to it being corrupted, especially if
it is being used in conjunction with the program, because adding a
line or two to the program could cause it to extend into the hi-res
screen. Making sure the BASIC program fits in is no real safeguard
either, as variables, strings and arrays all eat up memory at an
incredible rate, and these could find their way into the screen
memory. All these problems can be avoided by moving the start of
BASIC up enough bytes to allow the hi-res screen to be tucked in
underneath.
To do this requires a machine code program. The Programmer's

Reference Guide lists five vectors associated with BASBAS (that’s
my mnemonic for BASIC’s base!). as follows:

$2B—-$2C TXTTAB’ :_ start of BASIC text

$2D-$2E VARTAB : start of BASIC variables

$2F-$36 ARYTAB- :_ start of BASIC arrays

$31-$32 STREND : endof BASIC arrays+1

$281-$282 MEMSTR- : bottom of memory

To move BASIC, each of these vectors must be reset to point to the
new start area and the first three bytes of the new start area must be
cleared to keep the Kernal happy.

Program 23 performs each of these functions. The address of the
new BASIC area is $4900, which allows room for the hi-res screen
plus 32 sprites.

Program 23

1f REM ** MOVE BASIC PROGRAM AREA START **

26 REM ** UP TO 16348 TO FREE HI-RES SCREEN +**

3h:
49 CODE=49152

5@ FOR LOOP=@ TO 39

66 READ BYTE

76 POKE CODE+LOOP, BYTE

88 NEXT LOOP

96 :

186 REM «* M/C DATA «**

116 DATA 169,¢ : REM LDA #$60

a

122

126

136

14g

156

166

176

189

198

266
216

229)

230

249

250

260

276

286

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

Line-by-line

141,2,64

141,1,64

141,6,64

141,129,2

169 ,64

133,44

133,46

133,48

133, 58

141,139,2

169, 1

133, 43

169,3

133,45

133,47

133,49

96

>: REM

REM

: REM

: REM

REM

: REM

: REM

: REM

: REM

: REM

REM

: REM

: REM

: REM

REM

REM

>: REM

OTA

STA

STA

STA

LDA

STA

OTA

STA

STA

STA

LDA

OTA

LDA

STA

STA

STA

RTS

$4662

$4661

$4000
$6281

#$4D

$2C

$2E

$36

$32

$6282

HBO 1

$2B

HBOS

$2D

$2F

$31

A line-by-line description of Program 23 follows:

line

line

line

line

line

line

line

line

line

line

line

line

line

119

129

156

169

176

18¢

196

266
216

226

236

246

256

initialize accumulator

and clear first four bytes of new program area

set low byte of MEMSTR (bottom of memory pointer)

load high byte of new program area address into

accumulator

set high byte of TXTTAB

set high byte of VARTAB

set high byte of ARYTAB

set high byte of STREND

set high byte of MEMSTR

load accumulator with 1

store in low byte of TXTTAB

load accumulator with 3

set low bytes of all vectored addresses

SELECTING HI-RES

Before selecting the hi-resolution screen mode, it 1s necessary to
point the VIC chip to the start of screen memory. This is done by
writing to the VIC Memory Control register located at $DQ@18
(57272). The actual location is controlled by the condition of bits 3,
2 and 1. Table 10.1 details their settings for various addresses.

Table 10.1

Bit code Value Address selected

XXxxPOPx D $-2647 ($0200-$O7FF)
XXxXxOP1x 2 2948-4695 ($P860-$OFFF)

XxxxO10x 4 4G96-6143 ($1600-$17FF)

xxxxO1llx 6 6144-8191 ($1800-$1F FF).

xxxx 19x 8 8192-18239 ($2660-$27FF)

Xxxxl@1x 1g 16246-12287 ($2800-H2FFF)

Xxxxll1lx 12 12288-14335 ($30GO-$37FF)

Xxxxlllx 14 14336-16383 ($3800-$3FFF)

You can see from the table that the screen memory may be moved
around in 2K block steps. An ‘x’ in each of the other bits denotes
that these bits may be in either state. However, remember that
these bits are controlling other aspects of the VIC’s function, so
that any reprogramming of bits 3, 2 and 1 must preserve the other
bits. This is best done with the logical OR function. Looking at
Table 10.1 we can see that bit 3 must be set to point the Memory
Control register at location 8192. In BASIC this would simplify to:

196 A=PEEK(53727) : REM GET VALUE

118 A=A OR 8 : REM SET BIT 3

126 POKE 53727,A - REM REPROGRAM

which translates to assembler as:

LDA #$68

ORA $D#18

STA $D918

Now that the hi-res screen has been defined, it can be switched in

by setting bit 5 of the VIC Control register at $D@11 (53265).

123

124

Again, the other bits in the register must be preserved, so the byte
must be ORed with 32 (99199000 binary). In BASIC this is:

139 A=PEEK(53265) : REM GET VALUE

149 A=A OR 32 : REM SET BIT 5

158 POKE 53265,A : REM REPROGRAM

and 1n assembler:

LDA #$2¢

ORA $D11

STA $D@11

A CLEAR VIEW

Once hi-res mode has been selected, it will be filled with junk
(often referred to as garbage). To clear this, each location must in
turn be POKEd with zero. A BASIC program to do this would take
the form:

206 SB-=8192

218 FOR L=SB TO SB+7999

220 POKE L,@

230 NEXT L

Previously, in normal character mode, locations 1024 to 2023 were
used to control which character was displayed—for example,
POKE ing a 1 into location 1924 would make a letter A appear at
the top left hand corner of the screen. When in hi-res mode, this
area of memory is used to hold the colour information of that byte.
Note that the colour information does not now come from the
colour memory—colour details are taken directly from the hi-res
screen itself. The high nibble of the byte (that is, bits 4 to 7) holds
the colour code of any bit that is set in that 8 by 8 bit matrix, while
the lower nibble (bits 3 to @) holds the colour of any bits that are
clear in the same area.

To clear the hi-res screen to black ink on green paper in BASIC
we would use:

246 FOR C=1024 TO 2623

256 POKE C,13

260 NEXT C

If all the above BASIC program lines were to be combined and
RUN, the resulting hi-res screen would take around 20 seconds to
construct—a bit slow, you'll agree! Program 24 provides the

machine code equivalent. Note that the value assigned to CODE is
49498 and NOT 49152 as we have been using previously. This is to
allow the program to be used in conjunction with the MOVEBAS
program described earlier. After you have entered and RUN
MOVEBAS, try this one for an instant hi-res screen!

Program 24

19 REM ** HI-RES GRAPHICS SCREEN SET AND

CLEAR **

26 CODE=4948

39 FOR LOOP=@ TO 165

46 READ BYTE

58 POKE CODE+LOOP, BYTE

66 NEXT LOOP

TO :

89 REM ** M/C DATA «**

85 :: REM SELECT-HI-RES

99 DATA 169,8 : REM LDA #$@8

199 DATA 13,24,288 : REM ORA $D@18

118 DATA 141,24,298 : REM STA $Dg18

126 DATA 169,32 : REM LDA #$2¢

136 DATA 13,17,288 : REM ORA $D@11

146 DATA 141,17,268 : REM STA $D@1l

156 :: REM CLEAR—-SCREEN—MEMORY

169 DATA 169,6 : REM LDA #$@¢

176 DATA 133,251 : REM STA $FC

188 DATA 169,32 : REM LDA #$2¢

198 DATA 133,252 : REM STA $FC

206 DATA 169,64 : REM LDA #$4¢

218 DATA 133,253 : REM STA $FD

226 DATA 169,63 : REM LDA #$3F

236 DATA 133,254 : REM STA $FE

246 :: REM IN

256 DATA 165,252 : REM LDA $FC

268 DATA 197,254 - REM CMP $FE

276 DATA 268,9 : REM BNE $9

286 DATA 165,251 : REM LDA $FB

296 DATA 197,253 : REM CMP $FD

306 DATA 28,3 : REM BNE $3

125

318

320

330

346

350

366

376

380

399

ADD
41g

426

436

449

450

462

ATG

488

499

566
51¢

520

530

549

556

560

570

58

596

620
618

626

636

648

656

669

676

126

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

76,62,192

166 , 6

169,

145,251

236,251

268,231

236,252

56

176,226

169, @

133,251

169 ,4

133,252

169,231

133,253

169,7

133,254

165,252

197,254

268,7

165,251

197,253

208 ,1

96

166 ,¢

169,13

145,251

236,251

268 , 233

236,252

56

176, 228

REM

REM

REM

REM

REM

REM

: REM

REM

: REM

REM

REM

: REM

REM

REM

REM

REM

REM

: REM

REM

REM

REM

REM

>: REM

REM

: REM

: REM

: REM

REM

REM

REM

REM

: REM

: REM

: REM

REM

REM

JMP $CP3E

CLEAR

LDY

LDA

OTA

INC

BNE

INC

SEC

BCS

H$DD

HEOD

($FB),Y

SFB

SET

SFC

$E2

COLOUR

LDA

STA

LDA

STA

LDA

OTA

LDA

STA

CIN

LDA

CMP

BNE

LDA

CMP

BNE

RTS

HEDO
$FB

#EOA

SFC

#EET

$FD

HE OT

$FE

$FC
$FE

$27
$FB
$FD

$f1

GREEN

LDY

LDA

STA

INC

BNE

INC

SEC

BCS

HEOD
#BOD

($FB),Y

$FB

$E9

SFC

$E4

Line-by-line

A line-by-line description of Program 24 follows:

line 9

line 182

line 119

line 129

line 139

line 149

line 159

line 169

line 2¢0¢

line 249

line 25¢

line 2694

line 27¢

line. 28¢

line 299

line 369

line 319

line 32¢

line 339

line 349

line 359

line 369

line 379

line 389

line 399

line 40¢

line 429

line 439

line 476

line 519

line 529

line 53¢

line 54¢

load accumulator with mask 00001000

force bit 3 to select 8196 as bit map start address

and program VIC Memory Control register

load accumulator with mask 00100000

force bit 5 to select bit map mode

and program CIC Control register

entry for bit map CLEAR-SCREEN-MEMORY

routine

set up vector to point to screen start address $2000

set up vector to point to screen end address $493F

entry for IN

get high byte current address

is it same as high byte end address?

no, so branch to CLEAR

yes, get low byte current address

is it same as low byte end address

no, so branch to CLEAR

yes, all done jump to COLOUR

entry for CLEAR

initialize index

clear accumulator

clear byte of screen memory

increment low byte of current screen address

branch to IN if no carry over

increment high byte

set Carry flag

force branch to IN

entry for COLOUR

set up vector to point to start of colour memory

set up vector to point to end of colour memory

entry for CIN

get high byte of current address

is it the same as high byte end address?

no, branch to GREEN

127

128

line

line

line

line

line

line

line

line

line

line

line

line

line

556

576

586

596

6D
616

626

636

649

650

666

676

560
get low byte of current address

is it the same as the low byte end address?

no, branch to GREEN

back to calling routine

entry for GREEN

clear indexing register

get code for green into accumulator

POKE it into colour memory

increment low byte of current address

branch to CIN if no carry over

increment high byte

set Carry flag

and force branch to CIN

Appendix 1: 6510 Complete
Instruction Set

ADC Add with carry

Address mode Op-code Bytes

Immediate $ 69 2

Zero page $65 2

Zero page,X $75 2

Absolute $6D 3

Absolute, X $7D 3

Absolute, Y $79 3

(Indirect,X) $61 2

(Indirect), Y $71 2

AND AND with accumulator

Address mode Op-code Bytes

Immediate $ 29 2

Zero page $25 2

Zero page, X $ 35 Z

Absolute $2D 3

Absolute, X $3D 3

Absolute, Y $39 3

(Indirect,X) $21 2

(Indirect), Y $31 Z

129

130

ASL Shift left

Address mode Op-code

Accumulator $0A

Zero page $ 06
Zero page, X $16

Absolute $0E

Absolute, X $1E

BCC Branch if C = @

Address mode Op-code

Relative $90

BCS Branch if C = 1

Address mode Op-code

Relative $ BO

BEQ Branch if Z = 1

Address mode Op-code

Relative $ FO

NZC

Bytes Cycles

Ww WN NO ee NINH DHW NN NV

Flags unaltered

Bytes Cycles

Zz 3 or 2

Flags unaltered

Bytes Cycles

2 3 or2

Flags unaltered

Bytes Cycles

Z 3 or 2

BIT

Address mode Op-code

Zero page $24

Absolute $2C

BMI Branch if N = 1

Address mode Op-code

Relative $30

BNE Branch if Z = @

Address mode Op-code

Relative $D0

BPL Branch if N = 0

Address mode Op-code

Relative $10

Flags unaltered

Flags unaltered

Flags unaltered

BRK Break

Address mode Op-code

Implied $00

BVC Branch if V = @

Address mode Op-code

Relative $50

BVS Branch if V = 1

Address mode Op-code

Relative $70

CLC Clear Carry flag

Address mode Op-code
Implied $18

132

Bytes

2

Bytes

2

Bytes

Flags unaltered

Cycles

3 or 2

Flags unaltered

Cycles

3 or2

CLD Clear Decimal flag

Address mode Op-code

Implied $D8

CLI Clear Interrupt flag

Address mode Op-code

Implied $58

CLV Clear Overflow flag

Address mode Op-code

Implied $ B8

CMP Compare accumulator

Address mode Op-code

Immediate $ C9

Zero page $ C5

Zero page, X $ DS

Absolute $ CD

Absolute, X $DD

Absolute, Y $ D9

(Indirect, X) $C1

(Indirect), Y $D1

Bytes

ee) < S

NN WW WN WN WN

133

134

CPX Compare X register

Address mode Op-code

Immediate $ EQ
Zero page $E4

Absolute $ EC

CPY Compare Y register

Address mode Op-code

Immediate $CO
Zero page $C4
Absolute $CC

DEC Decrement memory

Address mode Op-code

Zero page $ C6
Zero page,X $ D6

Absolute $ CE

Absolute, X $ DE

DEX Decrement X register

Address mode Op-code

Implied $CA

Bytes

Bytes

Bytes Cycles

DEY Decrement Y register

Address mode Op-code

Implied $88

EOR Exclusive-OR

Address mode Op-code

Immediate $ 49

Zero page $ 45
Zero page, X $ 55

Absolute $ 4D
Absolute, X $ 5D
Absolute, Y $ 59
(Indirect, X) $41
(Indirect), Y $51

INC Increment memory

Address mode Op-code

Zero page $E6

Zero page, X $ F6

Absolute $EE

Absolute, X $FE

Bytes

NN WWWN WN LY

135

INX Increment X register

Address mode Op-code

Implied $ E8

INY Increment Y register

Address mode Op-code

Implied $C8

JMP Jump

Address mode Op-code

Absolute $4C
Indirect $ 6C

JSR Jump to subroutine

Address mode Op-code

Absolute $ 20

Bytes

Bytes

Bytes

3

3

Bytes

3

Cycles

Cycles

Flags unaltered

Cycles

3

5

Flags unaltered

Cycles

6

LDA Load accumulator

Address mode Op-code

Immediate $ AD

Zero page $ AS

Zero page, X $ BS

Absolute $ AD

Absolute, X $BD

Absolute, Y $ B9

(Indirect, X) $Al

(Indirect), Y $B1

LDX Load X register

Address mode Op-code

Immediate $A2

Zero page $A6

Zero page, Y $B6

Absolute $AE

Absolute, Y $BE

LDY Load Y register

Address mode Op-code

Immediate $ AQ

Zero page $ A4

Zero page,X $ B4

Absolute $ AC

Absolute,X $ BC

Sy = S

NN WWWwWN WN LN

Bytes

WWNN NHN

Bytes

WWwWNN WN

137

LSR Logical shift right

Address mode Op-code

Accumulator $4A

Zero page $46

Zero page, X $56

Absolute $4E

Absolute, X $.5E

NOP No operation

Address mode Op-code

Implied $EA

ORA Inclusive OR

Address mode

Immediate

Zero page

Zero page, X

Absolute

Absolute, X

Absolute, Y

(Indirect,X)

(Indirect), Y

138

Bytes

WWN N —

Bytes

1

D = sa) w

NN WW WN WN WN

N = 9,ZC

Cycles

NINH NN WV

Flags unaltered

Cycles

2

PHA Push accumulator

Address mode Op-code

Implied $48

PHP Push Status register

Address mode Op-code

Implied $ 08

PLA Pull accumulator

Address mode Op-code

Implied $ 68

PLP Pull Status register

Address mode Op-code

Implied $28

Flags unaltered

Bytes Cycles

1 3

Flags unaltered

Bytes Cycles

1 3

NZ

Bytes Cycles

1 4

Flags as status

Bytes Cycles

1 4

ROL Rotate left NZC

Address mode Op-code Bytes Cycles

Accumulator $2A 1 2

Zero page $26 2 5

Zero page, X $36 2 6

Absolute $2E 3 6

Absolute, X $3E 3 7

ROR Rotate right NZC

Address mode Op-code Bytes Cycles

Accumulator $6A 1 2

Zero page $.66 2 5

Zero page, X $ 76 2 6

Absolute $ 6E 3 6

Absolute,X $ 7E 3 7

RTI Return from interrupt Flags as pulled

Address mode Op-code Bytes Cycles

Implied $ 40 1 6

RTS Return from subroutine

Address mode Op-code

Implied $ 60

SBC Subtract from accumulator

Address mude Op-code

Immediate $E9

Zero page $E5

Zero page, X $ FS

Absolute $ED

Absolute, X $ FD

Absolute, Y $ F9

(Indirect,X) $ E1

(Indirect), Y $ Fl

SEC Set Carry flag

Address mode Op-code

Implied $38

SED Set Decimal flag

Address mode Op-code

Implied $F8

Bytes

oy = &

NN WWWNN WN

Bytes

Bytes

Flags unaltered

Cycles

6

141

SEI Set Interrupt flag

Address mode Op-code

Implied $ 78

STA Store accumulator

Address mode Op-code

Zero page $85

Zero page, X $ 95

Absolute $8D

Absolute, X $9D

Absolute, Y $ 99

(Indirect, X) $81

(Indirect), Y $91

STX Store X register

Address mode Op-code

Zero page $ 86
Zero page, Y $ 96
Absolute $ 8E

Flags unaltered

Bytes Cycles

NN WW WN N NNMnn & Hh W

Flags unaltered

Bytes Cycles

2 3

2 4

3 4

STY Store Y register

Address mode Op-code

Zero page $ 84

Zero page, X $ 94

Absolute $8C

TAX Transfer accumulator to X

Address mode Op-code

Implied $AA

TAY Transfer accumulator to Y

Address mode Op-code

Implied $A8

TSX Transfer Stack Pointer to X

Address mode Op-code

Implied $BA

Bytes

Bytes

1

Bytes

1

Bytes

Flags unaltered

Cycles

3
4

4

Cycles

NZ

Cycles

Z

NZ

Cycles

Z

143

144

TXA Transfer X to accumulator

Address mode Op-code

Implied $8A

TXS Transfer X to Stack Pointer

Address mode Op-code

Implied $9A

TYA Transfer Y to accumulator

Address mode Op-code

Implied $ 98

Flags unaltered

Bytes Cycles

1 2

NZ

Bytes Cycles

1 2

Appendix 2: 6510 Opcodes

All numbers are hexadecimal.

00

01

02

03

04

05

06

07

08

09

OA

0B

0C

0D

OE

OF

BRK implied

ORA (zero page, X)

Future expansion

Future expansion

Future expansion

ORA zero page

ASL zero page

Future expansion

PHP implied

ORA #immediate

ASL accumulator

Future expansion

Future expansion

ORA absolute

ASL absolute

Future expansion

BPL relative

ORA (zero page),

Future expansion

Future expansion

Future expansion

Y

ORA zero page, X

ASL zero page, X

Future expansion

CLC implied

ORA absolute, Y

Future expansion

Future expansion

Future expansion

ORA absolute, X

ASL absolute, X

Future expansion

JSR absolute

AND (zero page, X)

Future expansion

Future expansion

BIT zero page

AND zero page

ROL zero page

Future expansion

PLP implied

AND #immediate

ROL accumulator

Future expansion

BIT absolute

AND absolute

ROL absolute

Future expansion

BMI relative

AND (zero page), Y

Future expansion

Future expansion

Future expansion

AND zero page, X

ROL zero page, X

Future expansion

146

38

39

3A

3B

3C

3D

3E

3F

40

4]

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

S|

52

53

54

55

56

57

58

59

SA

SB

SC

SEC implied

AND absolute, Y

Future expansion

Future expansion

Future expansion

AND absolute, X

ROL absolute, X

Future expansion

RTI implied

EOR (zero page, X)

Future expansion

Future expansion

Future expansion

EOR zero page

LSR zero page

Future expansion

PHA implied

EOR #immediate

LSR accumulator

Future expansion

JMP absolute

EOR absolute

LSR absolute

Future expansion

BVC relative

EOR (zero page), Y

Future expansion

Future expansion

Future expansion

EOR zero page, X

LSR zero page, X

Future expansion

CLI implied

EOR absolute, Y

Future expansion

Future expansion

Future expansion

5D

SE

SF

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

7\

72

73

74

75

76

17

78

79

7A

7B

7C

7D

7E

7F

80

81

EOR absolute, X

LSR absolute, X

Future expansion

RTS implied

ADC (zero page, X)

Future expansion

Future expansion

Future expansion

ADC zero page

ROR zero page

Future expansion

PLA implied

ADC #immediate

ROR accumulator

Future expansion

JMP (indirect)

ADC absolute

ROR absolute

Future expansion

BVS relative

ADC (zero page), Y

Future expansion

Future expansion

Future expansion

ADC zero page, X

ROR zero page. X

Future expansion

SEI implied

ADC absolute, Y

Future expansion

Future expansion

Future expansion

ADC absolute, X

ROR absolute, X

Future expansion

Future expansion

STA (zero page, X)

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

OF

AO

Al

A2

A3

A4

AS

A6é

Future expansion

Future expansion

STY zero page

STA zero page

STX zero page

Future expansion

DEY implied

Future expansion

TXA implied

Future expansion

STY absolute

STA absolute

STX absolute

Future expansion

BCC relative

STA (zero page), Y

Future expansion

Future expansion

STY zero page, X

STA zero page, X

STX zero page, Y

Future expansion

TYA implied

STA absolute, Y

TXS implied

Future expansion

Future expansion

STA absolute, X

Future expansion

Future expansion

LDY #immediate

LDA (zero page, X)

LDX #immediate

Future expansion

LDY zero page

LDA zero page

LDX zero page

AA

Future expansion

TAY implied

LDA #immediate

TAX implied

Future expansion

LDY absolute

LDA absolute

LDX absolute

Future expansion

BCS relative

LDA (zero page), Y

Future expansion

Future expansion

LDY zero page, X

LDA zero page, X

LDX zero page, Y

Future expansion

CLV implied

LDA absolute, Y

TSX implied

Future expansion

LDY absolute, X

LDA absolute, X

LDX absolute, Y

Future expansion

CPY #immediate

CMP (zero page, X)

Future expansion

Future expansion

CPY zero page

CMP zero page

DEC zero page

Future expansion

INY implied

CMP #immediate

DEX implied

Future expansion

147

148

CC

CD

CE

CF

DO

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

CPY absolute

CMP absolute

DEC absolute

Future expansion

BNE relative

CMP (zero page), Y

Future expansion

Future expansion

Future expansion

CMP zero page, X

DEC zero page, X

Future expansion

CLD implied

CMP absolute, Y

Future expansion

Future expansion

Future expansion

DD CMP absolute, X

DE

DF

EO

E |

E2

E3

E4

E5

DEC absolute, X

Future expansion

CPX #immediate

SBC (zero page, X)

Future expansion

Future expansion

CPX zero page

SBC zero page

E6

E7

F8

E9

EA

EB

EC

ED

EE

EF

FO

Fl

F2

F3

F4

FS

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

INC zero page

Future expansion

IN X implied

SBC #immediate

NOP implied

Future expansion

CPX absolute

SBC absolute

INC absolute

Future expansion

BEQ relative

SBC (zero page), Y

Future expansion

Future expansion

Future expansion

SBC zero page, X

INC zero page, X

Future expansion

SED implied

SBC absolute, Y

Future expansion

Future expansion

Future expansion

SBC absolute, X

INC absolute, X

Future expansion

Appendix 3: Commodore 64
Memory Map

Kernal Operating System

ROM

Colour RAM

VIC and SID

‘Free’ RAM

BASIC interpreter ROM

VSP cartridge ROM

Program area

Screen memory

Kernal vectors and flags

Input buffers

Zero page

FFFF

ALE

BORN

80u

4gB

300

200

188

OO

149

Appendix 4: Branch Calculators

The branch calculators are used to give branch values in hex. First, count the number of
bytes you need to branch. Then locate this number in the centre of the appropriate table,
and finally, read off the high and low hex nibbles from the side column and top row
respectively.

Example For a backward branch of 16 bytes:

Locate 16 in the centre of Table A4.1 (bottom row), then read off high nibble (#F) and
low nibble (#9) to give displacement value (#F@).

Table A4.1 Backward branch calculator

TMMOUQwWPYCSH

Table A4.2 Forward branch calculator

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 1062 103 104 105 106 107 108 109 110 II!
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 SYA NBWN — BS

150

Index

@CLS, 13, 16
@LOW, 13, 16
@UP, 13, 16
ASCII decimal string to binary,

30
ASCII hex to binary conversion,

20, 26

BASIC, Extended Super, 17
BASIC, move start of, 121

BASIC tester, 4

binary input, 100
binary output, 98
binary to hex conversion, 38
binary to signed ASCII string, 42
bubble sort, 84

CHRGET, 7, 13, 14

commands, 7

conversion,

ASCTI decimal string to binary,
30
ASCII hex to binary, 20, 26
binary to hex, 38

binary to signed ASCII string,
42

debugging, 5

Extended Super BASIC, 17

graphics, hi-res, 120

hi-res graphics, 120
selection, 123

clear screen, 124

memory,

dump, 113,
fill, 111

move, 104

move BASIC area, 121

print a hex address, 41
print accumulator as hex, 38
printing print, 78

print string from memory, 78
print string in program, 81

shift register,
24-bit, 29
16-bit, 35

software stack, 91
string manipulation, 53

copy substring, 64

insert substring, 71
string comparison, 53

string concatenation, 58

tool box, 3

wedge operating system, 9

writing machine code, 4

151

Other titles of interest

Easy Programming for the Commodore 64
Ian Stewart & Robin Jones
An intoductory guide to BASIC programming.

Commodore 64 Assembly Language
Bruce Smith

The Commodore 64 Music Book

James Vogel & Nevin B. Scrimshaw

Commodore 64 Machine Codew

Ian Stewart & Robin Jones
‘An excellent introduction to the subject’— Popular Computing
Weekly

Gateway to Computing with the Commodore 64
Ian Stewart
‘Recommended’— Popular Computing Weekly

Book One £4.95(p)

Book Two £4.95(p)

Computers in a Nutshell
Ian Stewart

Microchip Mathematics: Number Theory for
Computor Users
Keith Devlin
A fascinating book about the interaction of mathematics and
computing.

Brainteasers for BASIC Computers
Gorden Lee
‘A book I would warmly recommend’—Computer & Video Games

£6.95

£7.95

£5.95

£6.95

£6.95(h)
£6.95(h)

£4.95

£12.95

£4.95

ORDER FORM

I should like to order the following Shiva titles:

Qty Title ISBN Price

—_— EASY PROGRAMMING FOR THE COMMODORE 64 0 906812 64 X £6.95

—___ COMMODORE 64 ASSEMBLY LANGUAGE 0 906812 96 8 £7.95

—— THE COMMODORE 644 MUSIC BOOK 1 85014 0197 £5.95

—___ COMMODORE 64 MACHINE CODE 1 85014 025 1 £6.95

GATEWAY TO COMPUTING WITH THE COMMODORE 64

____ BOOK ONE (pbk) 1 85014 0170 £4.95

____ BOOK ONE (hdbk) 1 85014 051 0 £6.95

—___ BOOK TWO (pbk) 1 85014 035 9 £4.95

—____ _ BOOK TWO (hdbk) 1 85014 055 3 £6.95

—___ COMPUTERS IN A NUTSHELL 1 85014 0189 £4.95

—__ MICROCHIP MATHEMATICS 1 85014 047 2 £12.95

____ BRAINTEASERS FOR BASIC COMPUTERS 0 906812 36 4 £4.95

Please send me a full catalogue of computer books and software: &

INAS cts caste alg ee A eae dt ee aes eae tee eek eh nee es ade ee cates

PGCTESS” 2132354852540 54 8 be eeORban sae aP weet ye Sate oe eee

ed

This form should be taken to your local bookshop or computer store. In case of
difficulty, write to Shiva Publishing Ltd, Freepost. 64 Welsh Row, Nantwich.
Cheshire CW5 5BR, enclosing acheque for£ 0.0... c ee eee

For payment by credit card: Access/Barclaycard/Visa/American Express

Gard NO. ¢adiaires te cheisans Signature

