
WITH THE |

COMMODORE VIC
L.R. Carter and E. Huzan

Pe

” commodore

COMPUTER.

f 875
F (TO
= 47S.
ox

Learn Computer Programming
with the Commodore VIC

Lionel Carter is a qualified Chartered Mechanical Engineer
and Principal Lecturer in Management Science at Slough
College of Higher Education.

Dr Eva Huzan is Head of the Computing Division at
Slough College of Higher Education, a member of the
Computing Science Advisory Panel (‘O’ and ‘A’ ievel),
University of London, and a committee member of the
British Computer Society Microprocessor Specialist
Group.

Learn Computer Programming
with the

Commodore VIC

L. R. Carter
M. Tech., C. Eng., M.I.Mech.E., M.B.C.S., F.O.R.

-E. Huzan
BSc., Ph.D. (Physics), Ph.D. (Computing), F.B. C. S.

HODDER AND STOUGHTON

LONDON SYDNEY AUCKLAND TORONTO

First printed 1982

Copyright © 1982
L. R. Carter and E. Huzan

All rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording,
or any information storage and retrieval system, without
permission in writing from the publisher.

British Library Cataloguing in Publication Data

Carter, L. R.
Learn computer programming with the
Commodore VIC. _
1. VIC (Computer) — Programming
2. Basic (Computer program language)
I. Title Hf. Huzan, E.
001.64'24 QA76.8V/

ISBN 0 340 28070 0

Printed and bound in Great Britain
for Hodder and Stoughton Educational, a division of
Hodder and Stoughton Ltd, Mill Road, Dunton Green,

Sevenoaks, Kent by Richard Clay (The
Chaucer Press Ltd, Bungay, Suffolk.

Photoset by Rowland Phototypesetting Ltd,
Bury St Edmunds, Suffolk.

Contents

Acknowledgements
List of Figures
List of Tables

Introduction
Introduction to Computers and Programming
Simple Input and Output Statements
Arithmetic Operations
Program Development
Conditional and Unconditional Branching
POKE, PEEK and Colour
Other Functions
Arrays
Subroutines and High Resolution Graphics

10 Sound
11 Using Data Files
12 Applications

‘Appendix A Programs
Appendix B_ Answers to Problems

Appendix C ASCII and CHR$ Codes
Appendix D Screen and Border Colour

| Combinations

Appendix E Screen Codes

Appendix F Screen and Colour Memory |
Locations

Appendix G Musical Scales

Appendix H_ Further Study —

Index |

WOOINNNARWNR

v1

Vil

10
18
26
i
46
57
70
79
93

100
107

128
144
145

149
150

152
153
154
1D

y

Acknowledgements

We would like to thank Commodore, especially Andrew
Goltz and John Baxter, for their helpful advice and assist-
ance.

List of Figures
<

Figure 1.1. Basic units of acomputer
Figure 4.1 Some flowchart symbols 29
Figure 4.2 Flowchartforaverageofthreenumbers 30
Figure 5.1 Flowchart to illustrate loop control 35

Figure 5.2. Rectangle output from program 43

_ Figure 8.1. Sorting a list of numbers into ascending

order 7]

Figure 9.1 ~ Sampling flowchart 85

Figure 11.1 General flow with dummy record 104

i.

j

!
?

4

: \

|
es

'

:

4
1

i

Yas i :

uo :

ac

zt

ees 3 ener Oe i ee eee, i ee ee i tte OO pe Ce or ge ee eT

'\ aatigeh nigel,

4 ; ve , y \ ’

List of Tables

Table 1.1L

Table 2.1

Table 2.2

Table 3.1

Table 3.2

Table 3.3

Table 3.4
Table 3.5
Table 3.6

Table 3.7

Table 3.8

Table 3.9

Table 4.1

Table 5.1

Table 5.2
Table 5.3
Table 5.4

Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 6.1

Table 6.2

Table 6.3

Machine code instructions
Name and address program
Data for program
Contents of X, Y andS
Program to illustrate order of

evaluation |
Contents of B, C,D, EandA
LET statements _
Data read and final results _
Changes to arithmetic expressions
Results of arithmetic operations
Output from ‘Number of £s

required’ program
Output from ‘Cost of aanneny

program
Headings for re-order program
Relational operators
Terminating with a dummy value
Program to add N numbers
Alternative program to add N

numbers
Start, end and step variables
Start; end and step expressions
Calculations for different codes
Program to output a rectangle
Demonstration of border and

screen colours
Printing strings in different

colours
POKEing coloured hearts to screen 54

x Computer Programming with the Commodore VIC

Table 6.4
Table 6.5
Table 7.1

Table 7.2

Table 7.3

Table 7.4

Tabie 7.5

Table 7.6

Table 7.7

Table 7.8

Table 7.9

Table 8.1

Table 8.2

Table 8.3

Table 8.4

Table 8.5
Table 9.1

Table 9.2

Table 9.3
Table 9.4

Table 9.5

Table 9.6

Table 9.7

Table 9.8

Table 9.9

Table 9.10

Table 9.11

Table 10.1

Table 10.2

Histogram routine .
An example of simple animation
Rounding to nearest minute —
Use of SGN and SQR
Calculation of diameter of

cylindrical tanks
Output from program given in

Table 7.3
Program to round numbers
Sines and angles (in degrees)
Data used to calculate areas of

- tniangies
Some solids with uniform cross-

sectional areas
Data for ‘Volumes of solids’

problem
Program to output nimibers > 10

and negative numbers |
Output from program given in

Table 8.1
Input data for ‘Nested FOR loops’

program
Table to be output
Program using nested FOR loops
Frequericy grouping routine
Frequency table routine
Parish data |
Frequency table for Problem 2
Data to be sampled ~
Contents of X(R,])
Sampling routine
Protected input routine
High resolution initialisation
Plot subroutine ,
High resolution plotting example
A two-tone routine
A passing siren

54
55
59

61

62
66
67

68

69

69

70

71

74
75
75
81
82
82
83
84
84
86
87
89
90
91
94
95

Table 10.3
Table 10.4

Table 10.5
Table 11.1

Table 11.2

Table 11.3

Table 12.1

Table 12.2

Table 12.3

Table 12.4

- Table 12.5
Table 12.6

Table 12.7

Table 12.8 (1)
Table 12.8 (2)

Table 12.9
Table 12.10
Table 12.11

Table 12.12

Table 12.13

Table Al
Table A2

Table A3

Table A4

Table A5

Table A6

Table A7

Table A8

Table A9

Table Al0

List of Tables

A falling object
An explosion
A phone ring cycle
Stock records
Output from re-order program
Output from search program
Program to calculate e”
‘Heat of combustion’ problem
Output from Table 12.2 and data

input |
Quadratic equations
Tabulation of results for Problem 3
Linear regression routine

. Data for Problem 4
Main routine of simulation program
Main routine of simulation program
Example of output from Table 12.8
Failure pattern of units |
Program for mortgage calculation
Example of output from Table 12.11
Morse trainer

Number of £s required
Cost of stationery
Using the ON . .. GOTO

statement

Centering a rectangle
Print options (amendments to

Table 2.1)
Letter headings (amendments to

Table 2.1)
Notebook labels (amendments to

Table 2.1) .
Envelope labels (amendments to

Table 2.1)
Animated face
Radius of circumcircle

X1

I
|
98

101
105
106
108
108

109
110
111
114
115
its
118
120
121
123
124
125

128
129

129
130

130

131

132

133
134
135

xii Computer Programming with the Commodore VIC

Table All
Table Al2

Table A13

Table Al4
Table A15

Table Al6

Table A17

Table A18

Table A19

Table A20
Table A21

Table A22

Table A23

Table A24

Areas of triangles
Volumes of solids
Copying an array
Sum of elements
Sorting a list of numbers
Pastureland frequency table
Input subroutine
A simple tune
Stock data file creation
Re-order list
Stock file search
Cos X
Roots of quadratic equations
Width of a slit

135
136
137
137
138
138
139
139
140
140
141
142
142
143

Introduction

The Commodore Colour VIC computer has many facilities
which you can use for a variety of applications in the home,
at school, in offices and laboratories, wherever you have a
mains point and a television set. :

As soon as you switch on your VIC, you will have access
to the BASIC programming language; BASIC stands for
Beginners All-purpose Symbolic Instruction Code. You
will be able to write useful programs in BASIC very quickly
by working through this book. No knowledge of computers
or programming is assumed and the many exercises and
problems (with answers in the appendices) will help you to
progress at your own speed. |

An attractive feature of the VIC is its colour capability.
You will learn about colour and easy-to-use animation
techniques early on in the book so that you can introduce
these facilities in any of the programs. The VIC also allows
you to program a variety of sound effects. Sample routines
are given in this book which you can include in your own
programs.

The versatility of the VIC is demonstrated further by the
sections on high-resolution graphics, which do not require
any special program packs although you will need an extra
3K RAM pack. All the subroutines necessary to produce
high-resolution graphs are given in this book.

The applications dealt with in this book include:

colour effects, animation and high-resolution graphics;
sound effects and Morse trainer; ,

cost calculations and mortgage calculation;
stock file processing and simulation;

~~,

2 Computer Programming with the Commodore VIC

processing scientific and engineering data;

simple and more complex mathematical calculations.

These by no means exhaust the types of applications for
which you can use the VIC. Once you have mastered these
simple applications you will be able to start using your VIC
for more sophisticated tasks. For example, the user port on
the VIC can be used to control models and scientific
equipment. You can obtain further attachments for your
VIC, such as joy sticks and paddles for games and control
applications, and a disk unit and printer for more advanced
business applications. -

1 Introduction to Computers and
Programming

1.1 Basic functions and units of a computer

An essential function of a computer is the ability to store
the set of instructions required to process a particular task.
This set of instructions (the program), which is prepared by
a programmer, has to be held in the computer’s store (its
main memory) while the instructions are followed.

Each computer has a fixed instruction set which it can
execute. A control unit selects the instructions, one at a
time, from the memory, decodes or interprets them and
causes the computer to carry out the instruction. If the
instruction requires an arithmetic operation to. be per-
formed then the control unit transfers the necessary data
between the memory and the arithmetic and logic unit.

The main memory, arithmetic and logic unit, and control
unit comprise the central part of the computer, and
together are known as the central processor. |

Input and output peripheral devices, linked to the central
processor, are used to insert.programs and data into the
computer’s memory and to output results from there.
Typical input devices read and decode patterns of punched
holes on cards or paper tape, or sense marks optically or
magnetically, and transmit this information electronically —
to the central processor. Alternatively, the information can
be keyed in directly from a keyboard (similar to that of a
typewriter). Results may be displayed on a television
screen or visual display unit, or, if a ‘hard’ copy is required,
printers are available which print either one character or a
complete line at a time across a page. Graph plotters may
also be used as output peripherals.

4 Computer Programming with the Commodore VIC

Programs may be stored magnetically on backing or
"secondary storage devices, and these can then be read back
into the computer’s memory when required. On large
(mainframe) computers, magnetic disks and tape are used
for this purpose, while on the smaller microcomputers the
equivalent devices are floppy disks and cassettes which hold
less information and transfer it much more slowly. Other
forms of secondary storage, such as magnetic bubble
memories, are also available.

Secondary storage devices are also used to hold files of
data records. These are transferred to and from the compu-
ter’s memory under program control for file processing
applications. |

Figure 1.1 shows the basic units of a computer, the flow
of data and control links.

1.2 How information is held

A computer is largely made up of a number of two-state
devices. The ‘off’ state of the device may be considered to
represent a 0 and the ‘on’ state a 1. A numbering system
comprising only Os and 1s is called a binary system. Differ-
ent patterns of these binary digits (or bits) may be used to
represent a character set and ranges of numbers.

Numbers are represented in the computer’s memory as a
combination of bits. The number of bits available to repre-
sent a number varies with the computer used. When using
BASIC, most systems will work in floating point arithme-
tic, in which numbers are held as a mantissa and an expo-
nent. For example, 6 X 10° = 6000, has a mantissa of 6 and
an exponent of 3. :

«

1.3. Programming a computer

Each family of processors has its own instruction set which
is likely to differ from that of other processors. This means
that a particular processor is only capable of understanding
its own set of instructions in binary code.

~ ee

og)

Introduction to Computers and Programming 5

SECONDARY

STORAGE

devices

yee

MAIN STORE
(MEMORY)

OUTPUT
devices

INPUT

devices

ARITHMETIC
AND LOGIC

UNIT

rn gewewewgqawes «ss @&2 @ @& = = = we

CONTROL
UNIT

CENTRAL PROCESSOR

—» flowofdata
control links

Figure 1.1 Basic units of a computer

BAAR ac

6 Computer Programming with the Commodore VIC

The computer’s memory can be considered as consisting
of a number of cells capable of storing binary patterns
representing program instructions or data. Each of these
cells is uniquely numbered so that reference can be made to
particular memory cells, either to select a program instruc-
tion or data, or to write data into a certain memory cell.

As an example of how programs are written in a compu-
ter’s own code (machine code), it will be assumed that two
numbers are held in memory cells 5 and 6, that these are to
be added together, and the result stored in memory cell 8.
The addition will be performed in a storage location called
the accumulator, so the first instruction needs to load one of
the numbers into the accumulator. The second instruction
adds the other number to the number in the accumulator,
which will then contain the sum of the two numbers. The
third instruction stores the contents of the accumulator in
the required memory cell.

The binary codes for these instructions for a typical
processor are shown in Table 1.1

Instruction Machine code
1 . Load number held in memory cell 5 10100101 0101

into accumulator |

2 Add number held in memory cell 6 01100101 0110
to number in accumulator |

3 Store number held in accumulator 10000101: 1000
in memory cell 8

‘Table 1.1 Machine code instructions

In one program run, memory cells 5 and 6 could have
been set to 70 and 25, respectively. After the three instruc-
tions in Table 1.1 have been obeyed, cells 5 and 6 would still
contain 70 and 25 and cell 8 would now contain 70 + 25 i.e.
95. The same program could be run again with different
data in cells 5 and 6 (say 43 and 12), which would result in
cell 8 having its previous value of 95 replaced by the new
value of 55.

Introduction to Computers and Programming 7

1.4 Programming languages

As you have seen, programming in the computer’s own

machine code requires that the instructions and data are

given to it in binary. Writing down and keying in a series of
1s and Os is time-consuming and prone to error. An alterna-
tive way of expressing the instructions is to use mnemonic
codes. For example, the command to load a number from a
memory cell could be written as LDA instead of, say,
10100101. Also the memory cells could be given symbolic
names instead of referring to them by their actual numeric
(binary) addresses.

This type of programming language is used when it is
necessary to have close control over the functions of the

computer. Languages which use such mnemonic codes are

known as assembly languages. Each assembly language

instruction usually corresponds to an equivalent machine

code instruction. The translation of the assembly language

program into machine code is carried out by a machine
code program called an assembler.

High-level languages have been devised which allow

several machine code instructions to be expressed in one

statement. BASIC is such a programming language as

shown in the example below: |

LETC=A+B>

is a BASIC statement which causes the two numbers, held

in memory cells called A and B, to be added together and
the sum stored in memory cell C. This is the same problem

which previously required three machine code or assembly

language instructions.
However, neither assembly language nor BASIC pro-

grams can be understood directly by the computer. BASIC

programs need to be translated into machine code using a

compiler or interpreter. The basic difference between these

two is the stage at which the translation from BASIC into

machine code is performed. Using a compiler, the transla-

8 Computer Programming with the Commodore VIC

tion is done before the program is executed; this gives speed
advantages over an interpreter which performs the transla-
tion process as it executes the program. The VIC BASIC
interpreter is particularly suitable for first-time users be-
cause it has been designed so that programs can easily be
altered and corrected.

1.5 Microprocessors and microcomputers

The development of microtechnology has opened up the
use of computers to many more people than was previously
possible, and has changed the way many applications can
be handled. In addition, the compactness and low cost of
microcomputer-based systems are making possible new
applications. | | -

Microelectronic devices (integrated circuits) are made
from wafer-thin pieces of semi-conductor material, such as
silicon. A small chip of silicon, a few millimetres square,
can contain a very large number of electronic components
built into circuits.

Integrated circuits (ICs) which have a wide variety of
processing and storage functions are available. Today it is
possible to have all the circuits needed for a microcomputer
on a single semi-conductor chip, which is about the same
size as the early ICs that contained only a few components.
Large Scale Integrated circuits (LSIs) contain many
thousands of components. |

In, a microcomputer, the chip performing the functions
of the central processor is called a microprocessor.
The microprocessor performs the following functions:

Synchronisation of processing events and instruction
decoding (control unit);

Temporary storage of addresses and data (registers);
Arithmetic and logic operations (arithmetic and logic

unit).

Introduction to. Computers and Programming 9

Further information is given in Microelectronics and Micro-

computers L. R. Carter and E. Huzan, Teach Yourself

Books, 1981.

Your VIC contains Commodore’s own 6502 micro-

processor. and another Commodore special-function pro-

cessor: the video interface controller. The video interface

controller inside your VIC is a special microprocessor

which controls the colour and sound signals output to your

television set. It contains special control registers which

you can change under program control.

2 Simple Input and
Output Statements

2.1 READ, DATA, INPUT and PRINT statements

This chapter explains how you may enter information into

your VIC computer (input), and how the VIC may be
programmed to supply information, for example on a
printer or video screen (output).

Each BASIC instruction (or statement) consists of a
command to the computer to carry out a certain action, and
a combination of variables, constants, separators (e.g. a.
comma) and operators (e.g. +) on which the action is to be
performed. For example:

10 READA,B,C

tells the VIC to read three numbers (numeric constants)
from the DATA statement (see line 20 below) and store

them in three cells in the VIC’s memory identified by the
names A, B andC. A, B and Care called variables and refer
to unique numeric addresses, as explained in Chapter 1.
When A, B or C are referenced again in the same program,
the VIC will obtain the current contents ofthese cells. In a
different program, A, B and C may refer to cells with
different actual numeric addresses but unique for that
program. Single memory cells are referenced in BASIC
programs by single letters of the alphabet, A—Z, followed
optionally by a single number, 0-9, or another letter A—Z.

The 10 before READ in the statement above is the line
number. Line numbers enable you to change particular
lines in your program by retyping the line. Gaps may be left
in the sequence of line numbers for subsequent insertion of
additional instructions. Three further instructions com-

Simple Input and Output Statements 11

plete the program to read and output (PRINT) three
numbers:

20 DATA 25,11,30
30 PRINT A,B,C
40END _

The END statement terminates execution of the BASIC
program, 1.e. the processing of the program instructions is
stopped.

Note that the following three statements have the same
effect as the above READ statement. That is, after these
three instructions have been executed with the DATA
statement shown in line 20, A, B and C will contain 25, 11
and 30 respectively.

10 READA
11 READ B
12 READ C

Type this program into your VIC exactly as shown, pressing
the RETURN key once at the end of each line. After the
complete program has been typed in, type LIST to check
that this has been done correctly. If there are any mistakes,
you can ‘edit’ the program by moving the cursor to the
required position. There are special cursor control keys
which allow you to move the cursor to the left and right and

up and down. Once you have reached the position of the
mistake on the screen, simply type over the mistake with

the corrected character. After the correction has been

made, press the RETURN key with the cursor still in

position over the line which is being modified. On re-listing

the program, the corrected version should appear on the

screen.
To help you in editing, there is a special insert/delete key

which allows insertion of spaces and deletion of characters.

The LIST command can be used to list a particular line (e.g.

LIST 30) or groups of lines (e.g. LIST 200-250). |

When you have entered your program correctly, type in

12 Computer Programming with the Commodore VIC

the command RUN and press the RETURN key to initiate
execution of your program.

Note in particular how the contents of A, B and C (i.e.
25, 11 and 30) are output and the number of spaces between
the numbers. Change the program so that the PRINT
statement is as follows:

30 PRINT A;B;C
and note the spacing between the numbers when a semi-
colon is used to separate the variables in a PRINT state-
ment instead of a comma.

To change the data, you will need to alter the numbers in
the DATA statement. Alternatively, you may use an IN-
PUT statement instead of READ and DATA statements.
Replace the READ and DATA statements in the program
by the following statement:

10 INPUT A,B,C»

(delete line 20 by typing 20 and pressing the RETURN
key). When run, the VIC will output a question-mark (7?) to
indicate that data should be input from the keyboard.
A heading may be output at the beginning of the output

from the computer by putting it in double quotation marks
in a PRINT statement as in the following example:

28 PRINT “A”, “B”’, me Oi

30 PRINT A,B,C

(Note: In computer codes the same character is used for
open and closed double quotation marks.)

An alternative method of identifying the three numbers is
to output A = followed by the number. Experiment with
the following statement to obtain the spacing you require
(delete line 28):

30 PRINT “A =”;A; “B =”B; “C =”;C

The information in the double quotes is output as given in
line 30, while A, B and C which are not in quotes refer to

Simple Input and Output Statements 13

memory cells. If A, B and C contain 25, 11 and 30 respec-
tively, line 30 will output:

A=25 B=11 C=30

You may put extra spaces (v indicates a space) between
the quotation marks. For example, substituting,

“VVVVVAV =”

in statement 30 above would result in A being output with
five spaces before it and one space before the equals sign.

The TAB function may be used to output information in
particular column positions on your video screen as illus-
trated in the following example:-

30 PRINT TAB(3);“A =";A; TAB(10);“B =”:B;TAB

(16);“C =";C

This will cause A = to be output in positions 4, 5 and 6,
followed by the contents of cell A, then B = in positions 11,
12 and 13, followed by the contents of cell B, then C = in
positions 17, 18 and 19 followed by the contents of cell C.

The TAB function will be discussed further in subse-
quent chapters.

2.2 String variables —

For many problems it is necessary to input, store and
output variable information which consists of a mixture of
letters, numbers and special characters, including spaces.
Such a series of symbols is called a string. Strings may be
stored in string variables. These must be given a name

consisting of one of the alphabetic letters A—-Z (followed
optionally by another letter A—Z or 0-9), followed finally
by a dollar sign $, e.g., A$, B$, C$, . . ., ZS.

The constant information given in double quotes pre-_

viously is termed.a string constant. .

String variables are essential for reading in and manipu-

lating files of information, particularly for business applica-

14 Computer Programming with the Commodore VIC
tions. Just a few examples of the use of string variables are
given here to give you some initial practice.

Once a program has been written and proved correct, it
may be used over and over again with different data, on
different occasions and by different people. It is useful,
therefore, to output the date the program has been run, and
perhaps by whom. Two string variables may be used to
input this information and to cause it to be output.

Change and insert statements in the program to output
three numbers as follows:

10 INPUT A,B,C,D$,N$
26 PRINT |
27 PRINT “DATE ”:D$;“ ?:N$
28 PRINT

When this amended program is run, in reply to ? you will
heed to input three numbers separated by commas (for A,
B and C), followed by the date and your name. For
example, input data for the above program could be:

? 25,11,30, 26/08/81 , J.SMITH

Try running this program with different data, different
dates and your name. Notice that the PRINT statements at
lines 26 and 28 output blank lines.

2.3 Obtaining the required print layout

It is important to design suitable output so that this can be
output in different formats for different purposes. Various
ways of using name and address information will be used to
illustrate this. The program given in Table 2.1 inputs a title
(MR, MRS, MISS etc.), aname and an address, so that this
is stored in memory cells referenced by string variables, and
outputs a letter heading, notebook label and envelope
label.

The six INPUT statements shown in Table 2.1 will cause
the computer to request six lines of data to be input. When

1
26
26
4G
5G
6a

Simple Input and Output Statements

IHFUT TE
IHPUT Het
INPLT AF
IHFUT Et
INPUT C# a
IHPUT Ti.

Gl PRINT'CY > REM CLEAR
fB REM LETTER HEATIHG
Sf PRINT TARY 325 A£
S6 PRIWT TAECS35 BE
Lae
114
126
136
i4@
L5G
le
1ra
196
a 1S
“14
22H
2h
4

late

al
276
238
2S
=F

218
228
et
246
oan) St
tl
3,74

3o8

PRIMT TRECS) C$
PRIWT TABS S53; DF
FRINT
PRINT
EMD -
FEM NOTEBOOK LABEL
FRIGHT
PR TAT

PRINT
PRE THT
PRIHTTABCS >, RES

FREIGHT
PRINT

PRDHT
FPR IWT
ENT
FEM ENVELOPE LABEL
PRITHT
PRIHT
PRT
PRIWT TARCS3: THs" "SHE

PRIWT TABCS3: At

PRIHT TABCSo: BF

PRIHT TABCSO;CE

PRIWT TABS So. DF

EL

Table 2.1 Name and address program

15

16 Computer Programming with the Commodore VIC

working interactively, each line of data is entered in re-
sponse to the ? output by the computer as shown in Table

Die
Enter and run the program on your VIC. Save the

program on cassette by typing in SAVE“ TABLE 2.1” and

press the RETURN key; the VIC will then prompt you.
The REM (remarks) statements at lines 61, 70, 150 and

290, in Table 2.1, are only listed with the program to
explain the program’s actions. Note that you can put more
than one statement separated by a colon (:) against one line
number (as shown in line 61). This avoids using extra line
numbers and is shown in several examples in this book. The
‘clear screen’ character, shown in quotes in line 61, is
obtained by pressing shift and the CLR/HOME key. This
will give you a clear screen so that the letter heading is

displayed at the top of your screen. When the END instruc- |
tion is reached at line 140, execution of the program is
terminated but you can continue the processing by typing
the command CONT, and similarly at the end of the
‘Notebook Label’ part of the program to continue after line
280.

2? MR
? J. SMITH
? 1 THE AVENUE
? LONDON W8
9

?

Table 2.2. Data for program

The notebook label will contain just the name of the
owner in between two lines of asterisks. However, at this
stage you will not be able to centralise the name, according
to its length, for names of varying length. This will be dealt
with in Chapter 5 as an example of the use of test instruc-
tions. |

If you have worked through this chapter step by step, you

Simple Input and Output Statements 17

should be able to answer all the following questions. Test
yourself referring to the appropriate sections in this chapter
if necessary.

2.4 Questions

ay A na & O&O N=

Explain what a variable is in BASIC.
Which command did you use to run your BASIC
program?
How did you change an instruction in your BASIC
program?
How did you delete an instruction in your BASIC
program?
How did you insert an instruction in your BASIC
program? 3
If your VIC outputs a single question mark (?) during

the running of a program, what does this indicate?

In which positions are numbers output on your VIC

when there are commas between the variables in a

PRINT statement?
In which positions are numbers output on your VIC

when there are semicolons between the variables in a

PRINT statement?
How are string constants represented in BASIC?

What are string variables and how may they be used?

What is the purpose of the TAB function? Give an

example.
What is the purpose of the REM statement?

3 Arithmetic Operations.

3.1. Constants and variables

Your VIC may be programmed to perform a variety of
calculations by means of arithmetic assignment statements
in which the result of the calculation is assigned to a
memory cell. For example: ,

SOLETS=X+Y_

causes your VIC to add the contents of memory cell X to
that of memory cell Y and puts the result in a memory cell
called S. X and Y will have had values assigned to them
previously, either by an INPUT or READ + DATA
statements or by another LET statement. The contents of
cells X and Y are unchanged by the action of the LET

statement. For example, Table 3.1 shows the contents of X,
Y and S before and after execution of the above LET
statement, in a program which contains the following state-
ments in addition to line 50 above:

30 READ X,Y
40 DATA 123,56

Cell Before — After
xX 123 123
Y 56 56
S ? 179

Table 3.1 Contents of X, Y andS

Arithmetic Operations 19

Note the original, unknown, contents of S has been over-
written by the new value 179, the sum of 123 and 56.

The variables on the right-hand side of the equals sign in
a LET statement may be operated on by a number of
different arithmetic operators, and may be mixed with
constant values (constants). For example: ~

51 LETI=I-1

subtracts 1 from the current value of I, so that after the LET
statement has been obeyed I has a value one less than its
previous value. Note that the word LET may be omitted.

The numeric constants that may be used are:
a) whole numbers (integers) which do not contain a deci-

mal point, for example, —45,360 (or +360);
b) numberscontaining a decimal point (floating point), for

example, 8.123, —97.5;
c) numbers in exponential format, for example, 12.3E4,

which represents 12.3 < 10* = 123000 (4 is called the
exponent). The exponent may also be negative, for
example, 12.3E —4, which is 12.3 x 10°* = 0.00123.

Note that numbers are made negative by putting a minus

sign (—) in front of them; a plus sign (+), or no sign,
indicates the number 1s positive.
Any number that is used in the program, either as a

constant or as the contents of a variable, must lie within the

range limits of your VIC i.e. £1.70141183E+38,

+2.93873588E—39 for largest and smallest numbers, re-

spectively.

3.2 Arithmetic operators

The symbols on the right-hand side of the equals sign in a

LET statement may consist of variable names, constants

and arithmetic operators; this combination of symbols is

called an arithmetic expression. The arithmetic operators

20 Computer Programming with the Commodore VIC

indicate which arithmetic operation is to be carried out on
the numbers in the arithmetic expression. The following list
shows the order in which operations are performed unless
changed by the use of brackets as explained in the next
section.

Arithmetic operators — Meaning
raise to a power
(exponentiation)

*,/ multiply, divide
+,- add, subtract

3.3. Hierarchy of operations

It is possible to use brackets 1n an arithmetic expression to —
give the correct meaning. The contents of the brackets are
evaluated first starting with the innermost pair of brackets
and working outwards. For example, to evaluate

5+9
4+3

the top line (numerator) needs to be added first, then the
bottom line (denominator) needs to be added, and finally
the numerator is divided by the denominator. Brackets are
used to ensure this order of evaluation.
A program to illustrate the order of evaluation is given in

Table 3.2; the larger gap in the sequence of line numbers

o4 READ B.C. DLE
46 DATA 2.9.4.3
“4 LET A=CB+Co ec Ite
ra PRINT BC oDSEsA
SH EMT

Table 3.2 Program to illustrate order of evaluation

Arithmetic Operations 21

between the LET and PRINT statements will allow the
insertion of additional statements later. Table 3.3 shows
the contents of the memory cells before and after the LET
statement in line 50 has been obeyed.

Cell BCDEA
Before 5 9 4 3 ?
After > 9 4 °3 2

Table 3.3. Contents of B,C,D,EandA

Run this program on your VIC and then amend the LET
Statement as follows (i.e. remove the brackets).

SOLETA=B+C/D+E

A will now be 10.25 (i.e.++ 5 + 3). This is because the VIC
evaluates the arithmetic expression in a certain order if
there are no brackets, depending on the arithmetic oper-
ators in the expression.

If there are no brackets, then the VIC will perform the
exponentiations first (if there are any), followed by multi-
plication and division of equal hierarchy, but in the order
left to right, lastly addition and subtraction of equal hierar-
chy. Within brackets the same order of evaluation is carried
out, innermost brackets being calculated first as previously
stated.

Looking again at the last statement at line 50, you will see
that the division, C/D, has been carried out first as it is of

higher hierarchy than addition. This gives a completely

different result from that calculated in the previous LET

statement in Table 3.2 where brackets were used.

3.4 Arithmetic expressions and statements

Insert all the LET and PRINT statements shown in Table

3.4 into your program and run it. Output all the results

22 Computer Programming with the Commodore VIC

So LET A= B+C) °C 0+E)
S11 LET G=CE-E&i
ve LET H=C-"CE-Bo et
wo LET J=G-H."E+E T2
61 LET S=C#0-EBTA
Be LET T=(C#DI-B> TA
Bo LET USCEeeC-Bo HDA D)
ra PRINT
rl PRINT
roe PRINT BS" Bs "CH" Ci "D="sGDs "E="GE
ro PRINT
v4 PRINT
Yo PRINT AS" SAS "GE" sGs "HE HE TS" J
re PRINT
vr PRINT
roe ee INT iNet — t ; aon i? ‘oa +B iTs +o Li= $: i}

oe ENT

Table 3.4 LET statements

(A,G,H,J,S,T,U) together with the variable names as
identification. The data read and the final results are shown

in Table 3.5.

B=5 C=9 D=4E=3
A=2 G=-17 H=-18 J=-2
S=11 T=961 U=48 |

Table 3.5 Data read and final results

Notes |

1 Line 51 could be replaced by

51 LET G = (C/E) — (B*D)

to give the same result, although the brackets are.
unnecessary in this case.

2 The brackets in line 52 are essential to give the correct
answer, as can be seen by comparing the results of line
52 with that of line 51.

3 Inline 53, H is used in the expression because a value
was assigned to it in line 52. Instead of Et2, you can

Arithmetic Operations 23

use E*E which is a quicker operation. Amend line 53
to

53 LET J = G — H/E+ E+E

and check that you get the same result for J.
4 In line 61, BTA (i.e. 5’) is evaluated first, then C*D

(i.e. 9 X 4) before the subtraction (i.e. 36 — 25) is
carried out. However, in line 62 the contents of the
brackets are evaluated first (i.e. 21) before this is
Squared by A.

5 There are three pairs of brackets in line 63. The
innermost pair is evaluated first from the left, that is,
C — B (equals 4), then D/A is evaluated (equals 2).
The exponentiation is carried out next to give 4°, and
finally this is multiplied by E (i.e. 3).

21 LET G=C/CE-Bi et
te LET H=C“CE-BaSti>
ao LET J=¢¢G-H3 -E+E> t2
61 LET S=Ce¢Ti-B3 TA
Ba LET T=C&CT-E TAS
Bo LET D=E#C-E TIA

Table 3.6 Changes to arithmetic expressions

As a further exercise, change the arithmetic expressions
in lines 51-63 in Table 3.4 to those given in Table 3.6.
Check your results with those given in Table 3.7. Your VIC
has the facility for changing individual characters in a line:
use this facility instead of typing whole lines again.

B=5C=9D=4E=3
A=2 G=-18 H= —.529412 J = 7.97232
S=9 T= —189 U = —285.5
Table 3.7 Results of arithmetic operations

3.5 Problems

You are now ready to attempt some simple problems. For
more complicated problems, it is advisable to express the

aie ee, a rte ?

24 Computer Programming with the Commodore VIC

logic in the form of a flowchart before coding it in BASIC,
as explained in Chapter 4.

In your programs, use constants instead of variables for
values that are not going to change during the execution of
the program or from one run of the program to the next.
Variable names should be meaningful: for example, use E
for Expenses.

Write programs and run them on your VIC for each of
the following problems. If you get errors, reading Chapter
4 will help you to correct them. Compare your programs
with those given in Tables Al and A2 in Appendix A;
substituting actual values in place of the variables will help

- you understand the action of each instruction. The output
from each program for the data given is shown in Tables 3.8
and 3.9. You should experiment with a variety of PRINT
statements to give different outputs, e.g. underline answer
with hyphens or asterisks, line up values.

Sette AT gee

- Problem 1 — Number of £s required

On your proposed visit to the USA, you will need 150
dollars a night for accommodation and 125 dollars a day for

LENGTH OF STAY:
5 NIGHTS

ACCOMMODATION:
$ 150 PER NIGHT
EXPENSES (MEALS ETC.):
$ 125
ALLOWANCE (PRESENTS):
$ 100
EXCHANGE RATE:

1.75 ($ TO THE £)
£ REQUIRED

842.85
KOK Kk

Table 3.8 Output from ‘Number of £s required’ program

Arithmetic Operations 25

food, travelling and incidental expenses. You intend to stay
five nights and wish to take sufficient dollars to have 100
dollars to buy presents. How many pounds sterling will you
need to exchange if the exchange rate is 1.75 dollars to the
£? (Your program should be flexible enough to cope with
changes in expenses, the length of stay and the exchange
rate for subsequent visits.)
— — _ — ADEE BA Hy ~

Problem 2 — Cost of stationery

Calculate the cost of stationery for a course that is being
run, given the following information:

Number of delegates attending 58
Cost of folders 14p each
Cost of paper 26p per pad
Cost of pens 12p each

Allow two pens per delegate (there is a quantity discount of
8% for orders over 100 pens). Write the program so that it
may also be used on other occasions, when different num-
bers of delegates will be attending, and allow for changes in
costs. :

NO OF DELEGATES:
58

COST OF FOLDERS:
14P EACH

COST OF PAPER:
26 P PER PAD

COST OF PENS LESS 8 %:
12 P EACH

COST OF STATIONERY =

£36.00
a KK KK

Table 3.9 Output from ‘Cost of stationery’ program

4 Program Development

4.1 The need for pre-planning

This chapter gives you guidance on developing a proposed
program. If a program is written too hastily valuable time
may be lost subsequently in implementing the necessary
changes. Time spent pre-planning is seldom wasted. Com-
mercial systems designers and programmers are expected
to conform to a specific formal procedure. In developing
your Own programs, you need to exercise self-discipline.

4.2 Understanding the problem

The first step is to ensure that you understand what you
intend or are required to do. Are the terms of reference
clear? This might mean that you need to check the meaning
of any terminology or jargon used. You may also need to
ensure you understand the mathematical notation used to
specify any relationships involved. Thus, initially, some
research or background reading may be necessary. Re-
search may also be necessary when you know what you
want to do, but are not sure of the method to be used.

4.3 Designing output

The starting point of designing a program should be the
output. You need to consider and make decisions on the
following aspects.

The output from a program may be printed and/or
written to a file. Is your output going to be solely printed,
written to a file or a mixture of both? This leads on to

Program Development 27

deciding precisely what is to be printed and what 1 is to be
written to the file.

For example, your intention may be to write a program
to read a stock data file and produce a list of items to
re-order. Given, for the moment, that a program can be
written to identify the items to be re-ordered, you need to
consider: should the output be solely a printed list or
should a re-order file be produced that can be the input toa ~
purchase order program? If you are going to have a printed
list of items to be re-ordered, what should it contain?
Should it list the complete stock tecord of each item or, the
a extreme, should it just be a list of stock code num-
ers?
A program of this nature is developed in Chapter 11, in

that case the re-order list consists of stock code and stock
description. The whole record was not printed but only
sufficient to fully identify each stock item.

Having decided what is to be output it is then necessary
to consider the format and general layout. The considera-
tions to be made are:

In which columns are the variables to be printed?
Should they be truncated or rounded?
Are column headings necessary?
Are main headings necessary?
What spacing is required between headings?
Should headings be underlined?
The output to a re-order list program might therefore

start as shown in Table 4.1.

4@ PRINT"RE-ORDER LIST”
S PRINT "oe——s- renee |

SQ PRINT
6G PRINT "CODE" -TABC?) i "DESCRIPTICN”
65 PRINT"----"3 TEC?) 3 "----------- ;
74 PRINT

Table 4.1 Headings for re-order program

28 Computer Programming with the Commodore VIC

4.4 Input requirements

Once the output details have been decided you can then
identify the necessary input. If a large amount of data is to
be processed it may be advisable to read it from a data file:
this is dealt with further in Chapter 11. If the data is solely
associated with the one program it can be incorporated in
DATA statements, while data that varies from run to run is
best entered via INPUT statements.

You may not be the only person using the program and
this is a factor to be considered. Values should be entered in
their most usual form, i.e. 12.5 not .125 for interest rates
(see, for example, the mortgage problem in Chapter 12).
Ample print messages should be provided, giving guid-
ance, if necessary, as to the input required.

A further aspect of the input design is the desirability of
providing some form of control over the program during
run time. For example, in the ‘Heat of combustion’ prob-
lem (Chapter 12), the user is asked whether any more data
is to be processed and replies Y or N, i.e.

100 PRINT “ANY MORE DATA”
105 PRINT “(Y = YES, N = NO)”
110 INPUT Y$

4.5 Flowcharting

Once you have a broad idea of your requirements the
logical sequence of the program statements needs to be
developed. This can be done by drawing a flowchart. The
more common symbols used in flowcharts are shown in
Figure 4.1 |

An example of the use of the flowchart symbols is given
in Figure 4.2, where it is required to calculate the average of
three numbers. The purpose of a flowchart is to ensure the
logic is correct before becoming involved with the detail of
individual program statements. Further examples of flow-

Program Development 29

Symbol Use

At the start and end of processing

To represent a stage of processing

Conditional test leading to up to
three alternative paths

Input or output statements

Connector, allowing chart to be

continued at matching connector A

Figure 4.1 Some flowchart symbols

30 Computer Programming with the Commodore VIC

START

Set count

. to 1

Add number
to total

Calculate

average

Print

average

STOP

Figure 4.2. Flowchart for average of three numbers

Program Development 31

charts will be found elsewhere in this book accompanying
the descriptions of programs.
On occasions it becomes apparent from the flowchart or

analysis of the problem that a similar calculation will be
repeated several times in the program. When a similar set
of program statements is likely to be required in several
parts of the program, this may indicate the possibility of
writing them once only as a subroutine and using this
routine several times over. A discussion of subroutines is
the subject of Chapter 9.

Having drawn flowcharts, the next Stage is writing the
program. When the program has been written, you still
have not finished. A very important part of producing
useful programs is to ensure that they perform as intended,
and the next section discusses the testing and documenta-
tion of your programs.

4.6 Program testing

If you make a mistake in the use of the BASIC language,
your VIC will detect this and output a message to tell you
that there is a syntax error in your program. Examples of
typical syntax errors are: mistakes in spelling (e.g. IPUT
instead of INPUT), wrong instruction format (e.g. LET
X+Y=S instead of LET S=X+Y), unacceptable variable
name (e.g. 2A instead of A2). You must clear all the syntax
errors before you proceed.

Your program may still be incorrect after the syntax
errors have been cleared. You may get an execution error
caused by asking your VIC to perform an action which it
cannot do. For example, if values are calculated by your
program which are either too small or too large you will get
arithmetic overflow (this will happen when dividing by
zero). An execution error will occur also if you try to assign
a String to a numeric variable (e.g. using D instead of D$ for
a date, 26/08/81).
A program which runs successfully, without an execution

32 Computer Programming with the Commodore VIC

error occurring, may still give the wrong results because the
logic of the program is incorrect. You should work through
your flowchart and/or program instructions with typical
data before running the program on your VIC (this is
known as performing a dry-run). Then run the program on
your VIC with this typical data; this should be designed to
test every instruction path in the program (i.e. every branch
in your flowchart).

It is important to write down details of the program and
its use, for subsequent reference. You will find it useful to
include the following sections in your documentation:
Identification, Contents Page, Summary, Description of
the Problem, Specification of the Problem, Input and Out-
put Formats, Use of Program, Interpretation of Outputs,
Modifications, Appendices.

S Conditional and Unconditional
Branching

5.1 Controlling the order in which instructions are obeyed

For most problems your VIC needs to be programmed to
repeat a set of instructions and to execute different sets of
instructions in the program according to the requirements
for that particular run. This is done by means of branch
(jump) instructions. | |

The GOTO instruction causes control to pass to the line
number in the statement. That is, the computer will execute
next the statement it has branched to and continue to
execute the instructions following in sequence until it en-
counters another branch instruction. For example:

SOLETI=1.
60 PRINT I
7OLETI=1I+2
80GOTO60 —

will cause the odd numbers 1, 3, 5 etc. to be printed. When
the computer executes the instruction at line 80, it will
always branch to line 60 and obey that instruction followed
by line 70. Therefore, the GOTO statement 1s an uncon-

ditional branch instruction, since it is always executed
independently of any condition that exists.

However, you will notice that in the above section of a
program, there is no instruction which stops the program

being executed; it will go on for ever! .

To stop the computer executing this set of instructions,

you will need to insert a conditional branch instruction.

This will perform a test to see if a condition exists and pass

34 Computer Programming with the Commodore VIC

control to a different part of the program according to the
result of the test.
A conditional branch instruction that you may use in

BASIC is the IF . . . THEN statement. For example, to
stop the program which prints odd numbers, you could add
the following instructions to those given above:

65 IF | = 21 THEN 90
90 END

Try running the program and see if it stops after 21 has been
printed. If you replace 21 by an even number, say, 20 or 22,
the program will not stop since I never has this value.

5.2 Loops and their control

This small program that you have just tested has a set of
instructions, lines 60-80, which are performed repeatedly,
thus forming a loop. The flowchart for this program shows
the loop and the branch out of the loop more clearly (see
Figure 5.1). Notice the GOTO 60 instruction is represented
by an arrow from box 70 to box 60.

There are several alternative ways of exiting from a loop
and for branching to different parts of a program. The
format of the IF . . . THEN statement 1s:

line number IF relational expression THEN different line
number

Notice that the line number following the THEN must be
different from the line number preceding the IF, otherwise
the IF statement itself will cause continuous looping.

The relational expression is the test that is to be per-
formed. If this test is true (that is, the condition exists),
then control passes to the line number following the
THEN. If the test is false, then control passes to the line
number following the IF statement, that is, the instructions

. will continue to be obeyed in sequence until another branch
instruction is met.

Conditional and Unconditional Branching 35

START

50

60

65

 Tyes
90

Figure 5.1 Flowchart to illustrate loop control

The relational expression compares two expressions, so
that its format is:

expression relational operator expression

You have already used one relational operator in the .
previous example = (equal to). The full list is given in Table
na

36 Computer Programming with the Commodore VIC

relational operator meaning
= equal to
> greater than
< less than

> = or = > greater than or equal to
< = or = < less than or equal to
<> or> < not equal to

Table 5.1 Relational operators

The IF... THEN statement is useful for terminating
the inputting of data, as it can be used to test for a final
dummy value. This is a value which indicates the end of the
data list, but which is not used in the calculations in the
program. This 1s illustrated in Table 5.2, which shows a
program to add numbers. The numbers are entered one at a
time in response to the INPUT statement in line 30.

if PRINT’ ADD WH HUMBERS”
hae
eA LET T=
a IAPUT x
46 IF x<=@ THEN 7@
aH LET T=T+s
Sa GOTO Be

re PRINT" TOTAL =" 7
a EMIT

Table 5.2. Terminating with a dummy value

The program in Table 5.2 will stop when either a zero ora
negative value is read into X. The IF . . . THEN statement
must appear before the calculations involving X, So that the
dummy value is not used in the calculations.

Another way to stop repetition of a set of instructions is
to specify the number of times the loop has to be carried
out, as shown in Table 5.3.

Conditional and Unconditional Branching 37

1@ IHPUT H
26 PRINT ADD’ 3 M3 "MUMBERS”
fo PRIWT
28 LET I=6
oo LET T=
46 INPUT #
28 LET TH=T+
64 LET I=I+1
MOoIF IH THEM 4a
A PRINT" TOTAL: 2°iT
fH ENT :

Table 5.3 Program to add N numbers

If line 30 in Table 5.3 read:

30 LETI=1

then line 70 would need to be: |

70 IF I< = N THEN 40

This is because the value of I, after line 60 has been obeyed,
is one greater than the number of numbers when the loop
has been executed N times, if I is set to 1 to start with. This
means the loop is terminated when I = N + 1.

5.3. Comparing character strings

The IF . . . THEN statement may also be used to compare
character strings, since each character is represented by a
unique combination of binary digits when stored in the.
computer. For example, if P$ contains.the character H,
then: cent,

25 IF P$ = “H” THEN 30 .

will be true and a branch will be made to line 30.
This facility is particularly useful for comparing names,

addresses and similar information for business applica-
tions. You will need to refer to a list of codes used to
represent characters in your computer’s memory to find out

ME ee
- .

38 Computer Programming with the Commodore VIC

which characters have a lower or higher value for greater

than or less than tests (see Appendix C).

5.4 TheFOR... NEXT statements

In section 5.2, the number of times a loop was executed was

programmed by setting an initial value for the loop counter,

testing for a final value, and incrementing the current value
of the loop counter if the final value had not been reached.
The FOR . . . NEXT statements have been designed to
program these three operations in an easier way.

In the example to add N numbers, in Table 5.3, the
variable I (used as the loop counter) was set to an initial
value 0. 1 was added to I after the number had been read
and added in, and finally a test was carried out (I < N) to
determine whether the program should loop back or stop.
FOR . . . NEXT statements will be used in an alternative
version of the program. The FOR . . . NEXT statements
consist of two lines of code. At the beginning of the loop the
FOR statement is used to set up the initial conditions, the
increment or STEP to be made at the end of the loop and
the final value as follows:

line number FOR variable = expression 1 TO expression 2
STEP expression 3

where expression | sets the initial value of the loop counter
(also known as the index), expression 2 sets the final value
of the loop counter, and expression 3 gives the increment to
be added to the variable at the end of each pass through the
set of instructions in the loop. If the STEP is equal to 1,
both the word STEP and expression 3 may be omitted.

The final instruction 1n the loop has the format:

line number NEXT variable

where the variable has the same name as that given in the
associated FOR statement.

The program in Table 5,3 can be amended as shown in

Conditional and Unconditional Branching 39

Table 5.4. A number will be read into X N times as

controlled by the FOR . . . NEXT statements. I is set to 1

initially in line 35, then in line 60 I is incremented by 1 and if

it is greater than N the program will go to line 80 and print

the total, otherwise it goes back to line 40. |

GQ: SrPE WK TAPE CO

1@ THPUT H
26 PRINT"ADD" 3 Hs "HUMEERS"

2a FPRIHT
28 LET T=&
ao FOR I=1 TO WH
46 IHPUT &
=& LET T=T+s
6G HEAT I
Sa PRINT’ TOTAL =": T
S@ ENT

Table 5.4 Alternative program to add N numbers

Insert the instruction:

70 PRINT I

so that you can see the value of I after the loop has been

executed for the required number of times.

You may use I within the loop, but you should avoid

changing I (that is assigning a new value to I) within the

loop as this changes the conditions set up by the FOR

_. . NEXT statements. The problem flowcharted in Figure

5.1 may be coded as follows:

50 FORI =1TO21 STEP 2
60 PRINT I
70 NEXT I
80 END

The value of the increment given in the expression follow-

ing STEP may be negative (so that the loop counter is

decremented) or fractional. Table 5.5 shows a program

40 Computer Programming with the Commodore VIC

16 PRINT"START. END AND STEP”
i= PRINT" VAR TABLES"
le PRINT
“4 INPUT ALB.C
24 FOR I=A TO B STEP C
44 PRINT I
24 HEMT I ‘
6@ END

Table 5.5 Start, end and step variables

where you can input the start, end and step as variables (A,
B and C). Try a number of different combinations, includ-
ing negative and fractional values, and see what happens.
Table 5.6 shows a similar program where expressions have
been used in place of simple variables.

1G FRINT'START. EHD AND STEP”
it PRINT"ESPRESS IONS”
16 PRINT
24 IHFUT ALBLC
24 FOR I=A+1 TO Bee STEP C-3
46 PRIWT I
=~ HEAT I
6G ENT

Table 5.6 Start, end and step expressions

5.5 TheON... GOTO statement

The format of the ON . . . GOTO statement is

line number ON expression GOTO two or more line
numbers separated by commas

The integral part of the evaluated expression must be a
positive number not greater than the number of line num-
bers after the GOTO part of the statement.

Control will pass to the first, second, third, etc. line

Conditional and Unconditional Branching 41

number after the GOTO if the integral part of the ex-
pression is equal to 1, 2, 3, etc.

For example, different calculations may need to be
carried out according to a code, as in the following prob-
lem. A number of sets of data are to be input. Each set
consists of a code (1, 2, 3, 4 or 5) and values of X and Y.
Calculations are to be performed on each set of data
according to the rules shown in Table 5.7.

Code |. Calculation

1 R=X+yY
2 R=xX-yY
3 R=xX+Y
4 R=xX/Y
5 R=xXtY

Table 5.7 Calculations for different codes

You can now write a program to tabulate the code, the X
and Y values, and the results of the calculations.

Use the ON... GOTO statement to control which
calculation is to be carried out according to its associated
code. Draw a flowchart for the program, prepare test data,
code and run your BASIC program. Remember the test
data must test every branch in your program. You may
input the codes and data in any order, that is the first set of

data may have a code of, say, 3, the next a code of 1, etc.
Compare your program with the one listed in Table A3.
Suitable test data and calculated values are given in Appen-
dix B. | |

5.6 Further use of the TAB function and FOR loops

The TAB function may be used with a variable or ex-
pression in the brackets following TAB, e.g. TAB(I),
TAB(P — 1). The program given in Table 5.8 outputs a
rectangle of variable dimensions, consisting of L1 dashes
for the two lines across and L2 ‘s for the two vertical lines.

42 Computer Programming with the Commodore VIC

ef PRINT"START COLUMN POSITION"
26 IMHPUT FP

PRIHT"LENGTH ACROSS & Dict"
IHPUT Li.tLe
LET K=1
PRINT TABS P-13;
REM CUTFUT DASHES ACROSS
FOF I=1 TO Li
PRINT ="
HES T I
PRINT

ish IF K=2 THEN 24@
Id REM QUTPUT "t"S TICWH
124 FOR I=1 Ta L2-2
lee PRINT TABCP-195 "9";
lv@ FOR J=1 Ta Li-z
LS PRINT? ty
L136 HEXT J
eG@@ PRINT"
“16 HEXT I
ec LET F=K+1
238 GOTO Fa
“46 ENT

me ee J i A fd Re iy TS TY i a IT 1h)

Table 5.8 Program to output a rectangle

Notes on Table 5.8

1

2

Lines 20 and 40 output a message to the user asking for
data to be entered.
The PRINT statement in line 70 is terminated by a
semi-colon (;); this will cause the next PRINT state-
ment that is obeyed to output on to the same line.
Line 120 is necessary to cause the complete line of L1
dashes to be output. After passing through line 220,
which sets K to 2, lines 90-120 are repeated to com-
plete the rectangle and execution of the program is
then terminated.
Lines 150-210 comprise a FOR loop which has
another FOR loop (lines 170-190) wholly within it.

Conditional and Unconditional Branching 43

The FOR loops are said to be nested and this will be
discussed further in Chapter 8. For each pass through
the outer FOR loop, the inner loop is executed L1-2
times, so that a 7 is output followed by some spaces
and then another f. When line 190 is reached another
pass through the outer loop is executed until L2-2
lines, consisting of f spaces 7, have been output.

In this case, the use of nested FOR loops could be
avoided by replacing lines 160-200 by the following
statement:

160 PRINT TAB(P — 1); “?”; TAB(L1 — 1 + P); “?”

=— ew eeseweewe= swe ee ees se=eseewe =—= oe ose ewe swe ew ee“ «=

=qanpn ep omee ee aw Se awe cwewemeo ses se owas aw es see =e -

Figure 5.2 Rectangle output from program

Figure 5.2 shows a rectangle output by the program when
the following data was used:

7
20, 10

i.e. twenty dashes were output for the two lines across and
eight 7s for the two vertical lines.

You should enter the program given in Table 5.8 into
your VIC and run it with different input data. Write

44 Computer Programming with the Commodore VIC

another program to output a rectangle of variable width
and depth in the centre of the screen, using graphics
characters for the four corners and four sides. The program
is listed in Table A4.

5.7. Problems

The following problems all refer to the name and address
program given in Table 2.1, p. 15.

Problem 1 — Print options

Amend the program in Table 2.1 to allow selection of any
combination of the three print options:

code _ option
H Letter heading
N Notebook label
L Envelope label
F Stop execution of program

The amendments are given in Table AS.

Problem 2 — Letter headings

Amend the program in Table 2.1 to enable the letter
heading print position and the number of headed sheets
required to be entered at run time. The amendments are
given in Table A6.

Problem 3 — Notebook labels

Amend the program in Table 2.1 so that the name in N$ is
output centrally in a complete border of asterisks. Allow
for the number of labels required, the length of the name,
and the number of labels to be output per page to be
entered at run time. The amendments are given in Table
A7.

Conditional and Unconditional Branching 45

Problem 4 — Envelope labels

Amend the program in Table 2.1 to enable the total

number of labels required and the number of labels per

page to be entered at run time. The amendments are given

in Table A8.

Note: Loops will need to be inserted into the program for

problems 2, 3 and 4 to cause the required number of letter

headings, notebook and envelope labels to be printed.

6 POKE, PEEK and Colour

6.1 Character codes

As explained in Chapter 1 characters and numbers are
stored in a computer as binary patterns. Standard binary
codes have been established by different organisations.
The American Standard Code for Information Interchange
(ASCII) has been widely adopted and Appendix C gives
these codes as implemented on the VIC. Characters can be
converted into these codes and vice versa by the use of ASC
and CHR$ string functions. These and further string func-
tions are described below.

6.1.1 CHR$

This function returns the character corresponding to a
specified ASCII code, i.e.

10 LET A$ = CHR$(66)
The ASCII code for the letter B is 66, so the above
statement stores B in A$. Words can be built up by
concatenation, 1.e.

10 LET A$ = CHR$(66) + CHR$(69)
results in A$ = BE, where 69 is the ASCII code for E.

Note that as CHR$ returns the ASCII code, variables
can be set if required to various control characters (i.e.
Return).

6.1.2 ASC

This function is the opposite of CHR$ in that it returns the
ASCII code number for a specified character, i.e.

POKE, PEEK and Colour 47

10 LET X = ASC(“E’”’)

results in X = 69.
If the argument is a string variable the ASCII code of the

first character is returned, i.e.

5 LET T$ = “TOTAL”
10 LET X = ASC(T$)

results in X = 84.

6.1.3 LEN

This function returns the length of a string. For example,

changing line 10 to:

10 LET L = LEN(T$)

would set L = 5.

6.1.4 LEFT$, RIGHT$

These functions return the leftmost or rightmost specified
number of characters from a string, e.g.

10 LET B$ = LEFT$(T$,2)
returns the leftmost two characters from the string TS, 1.e.
B$ = TO, similarly,

10 LET E$ = RIGHTS(TS. 3)

leaves E$ = TAL

6.1.5 MID$

This function returns a substring of n characters starting
with the ith character, 1.e.

10 LET C$ = MID$(T$,2,3)
results in C$ = OTA where n = 3 andi =2.

48 Computer Programming with the Commodore VIC

6.1.6 STR$

This function converts a numeric argument to the string
equivalent of its PRINTed form, i.e.

10 LET N = 20
20 LET X$ = STR$(N)

results in X$ containing “‘20”’ as a string, thus

30 LET Y$ = “VIC” + X$
40 PRINT Y$

results in,

VIC 20

being printed. Note that the string version of the numeric
contains a leading blank (the suppressed + sign).

6.1.7 VAL

This function is the opposite of STR$. The string is exam-
ined, left to mght and the first recognisable number format
is returned, 1.e.

X = VAL(“VIC 20’’) results in KX = 20
~X = VAL(‘“‘—78.97.65”’) results in X = —78.97

6.2 POKE and PEEK

The POKE command allows you to place any specified
value directly into a required memory location. Its general
form is, POKE x,y where the value of x specifies the
memory location and y the value to be POKEd, 1.e.

POKE 36879 ,93

The above command places the value 93 into memory
location 36879. In this case, location 36879 happens to be

POKE, PEEK and Colour 49

the one that determines the colour of the screen. The value
93 causes the screen to go completely green. A more
detailed explanation of the control of colour is given in
section 6.3. |

The most common use for POKE on the VIC is to control
the colour, sound and position of characters on the screen.
Advanced programming techniques can involve PEEKing
and POKEing to a special area of computer memory known
as Zero page, in order to achieve special effects that are not
available from BASIC. Although PEEKing and POKEing
cannot in any way damage your VIC, you should first
master simple applications, such as POKEing VIC screen
memory and the VIC control registers, before trying out
more sophisticated techniques. If at any time the VIC
‘crashes’, e.g the cursor disappears etc. then pressing the
STOP and RESTORE keys simultaneously will reset the
VIC without the loss of your program.

The PEEK function allows access to the contents of a
specified memory location. PEEK(x) returns the value of
the contents of location x. The value returned can be
assigned to be a variable in the usual way, i.e.

10 LET S = PEEK(36879)
20 PRINT S

Running the above program immediately after starting the
VIC should result in S having the value 27.
PEEKing may be used in games and animation to deter-

mine the ‘status’ of parts of the screen, i.e. whether a
missile is now occupying the target’s location, thereby
implying a hit. |

Variables can be used with both PEEK and POKE so
that all the following are examples of valid syntax:

POKE X,Z
POKE X + L+22,Z
PEEK (X + L+22)
IF A$ = CHR$(PEEK(K)) THEN Y

50 Computer Programming with the Commodore VIC

6.3 The VIC colour system

The VIC colour system allows independent control of the
colour of the screen, its border and any individual charac-
ter.

The border can be set to any one of eight colours and the
screen to any one of sixteen colours. They are set via a
single POKE command to location 36879; the value being
POKEd determines the border-screen colour combination.
Appendix D gives the required value for all combinations.
For example, the combination at start-up is a cyan border
and white screen which can be subsequently restored by:

POKE 36879 ,27

The program in Table 6.1 demonstrates all the screen
and border combinations. Note that when the screen is the
same colour as the characters, the characters are not read-
able and apparently disappear. The program consists of
two loops; the outer loop (lines 10—60) sets S to successive
screen values associated with a black border and hence to
the first entry in each row of Appendix D. The inner loop
(lines 20-50) determines the column position and hence S
+ B represents the value to be POKEd. Line 40 is a delay
loop to allow each colour combination to be viewed.

18 FoR

2G FOR E
SA PORE

FOF fi=
HET EB
HET. &
EMD

Table 6.1 Demonstration of border and screen colours

rn

Pou
Ty) m2 co

Ban {3} eR = La me 8 jnoh ‘Ty

-J4-4
Ono

aa

re) PQ is) iS) br
t

i) rm 4 Ne peal

wat WY

any a

“J iT) CT fe ory a 4

Control over the colour of the characters can be achieved
in several ways and is discussed next.

——

POKE, PEEK and Colour SI

6.4 Colour control of characters

The colour of characters can be programmed by the use of

specific keys, by setting variables to specific. character code
s

or by POKEing direct to the screen.

The colour of characters output to the screen from the

current position of the cursor onwards can be set by keying

CTRL simultaneously with one of the labelled colour keys.

This keying sequence can also be incorporated within

quotes in a PRINT statement, 1.e.

10 PRINT “CTRL and Red key THIS PRINTS RED”

Alternatively, the keying of CTRL and a colour can be

assigned to a string variable which is then incorporated in a

PRINT statement, 1.e.

10 C$ = “CTRL and Red key”’

20 PRINT C$;“THIS PRINTS RED”

A third way of PRINTing in a specified colour is to use the

appropriate character code as found in Appendix C. The

program in Table 6.2 illustrates this method where the

character codes are read from a series of DATA state-

ments. This method of changing the colour of characters 1s

useful for printing headings.

1@ FOR L=1 TO 8

7 FEAL €.CF 7

oA PRIAT CHRECC aS "THIS IS "CF

44 HET bL

14@@ DATA idd. BLACK

11@ DATA &. WHITE

ize DATA 28. REL

126 DATA 1i5o.CAH

14@ DATA 156, PURPLE

{54 LATA =. GREEHM

16 TATA a1. BLUE

iva LATA 152. YELLOW

{Sa@ END

Table 6.2 Printing strings in different colours

52 Computer Programming with the Commodore VIC

The space bar can be used to produce ‘bars’ of colour by
use of the RVS ON and RVS OFF keys. If the reverse
character set is turned on by the RVS ON key a space
becomes a solid block of whatever colour is in operation.
This is also programmable, i.e.

10 PRINT “CTRL and RVS ON key CTRL and Red key
VVVVV"

produces a red bar five spaces long. Note that RVS ON and
RVS OFF both have character codes (18 and 146, respec-
tively) that can be used in programs in the same way as the
codes for colours. Thus the previous example instead could
be:

10 PRINT CHR$(18);CHR$(28);“vv VV"
The fourth method of producing coloured characters is to

use the POKE command and is discussed in the next
section.

6.5 POKEing coloured characters

The screen of the VIC is memory mapped, that is each
possible character position on the screen has an associated
memory location. For example, the top left hand corner
position corresponds to memory location 7680 on the basic
VIC and by POKEing this address with a particular value
the appropriate character will appear on the screen in white
(for this to be visible the screen colour should be set, for the
time being, to another colour). The screen codes for each
key are given in Appendix E. Note that these codes do not
correspond to the character codes of Appendix C, and are
only relevant for POKEing to the screen. Thus,

POKE 7680,83

will produce a white heart in the ‘home position’. By adding
128 to the code its equivalent reverse character is obtained.

“ ee ee eee

ee
-

—— ee eee

POKE, PEEK and Colour 53

_ For each screen memory location there is a correspond-
ing colour code memory location, e.g. 38400 is the colour
location corresponding to the screen position 7680. It is
important to ensure that the correct matching colour loca-
tion is used with the required screen memory location. The
colour of the character POKEd to a location can be control-
led by POKEing a value one less than the number shown on
the colour keys, e.g. 2 for red. Thus,

POKE 7680,83 : POKE 38400,2

will produce a red heart in the ‘home position’.
The screen memory locations together with their associ-

ated colour locations are given in Appendix F. These
locations change if the VIC is expanded beyond an ad-
ditional 3K. For this reason it is advisable, when writing
programs that PEEK and POKE to the screen, to use
expressions that relate to the ‘home position’ and the
required offset. This expression can also use the required
row and column numbers to calculate the memory location,

1.€.

100 SM = 7680 : CM = 38400
110 POKE SM + 22*R + C, 83
120 POKE CM + 22*R + C, 2

If you are using a VIC system with more than 3K of

additional RAM expansion, you will need to set SM to 4096

and CM to 37888.
The routine above will POKE a red heart to row R,

column C. If the screen memory and colour locations

change only line 100 need be adjusted.

Table 6.3 gives a simple program illustrating the use of

POKE. This program POKEs a series of different coloured

hearts near the centre of the screen. The starting position is

row 11 (line 110). A loop (lines 120-150) prints a different

coloured heart in turn in columns C + I (columns 6 to 13

inclusive). The loop counter, I, is also used to determine

the colour, I—1 in line 140.

54 Computer Programming with the Commodore VIC

96 PRINT" > FEM CLEAR
1@@ SM="eee: CM=s5400
L1G F=11°C=6
12 FOR I=1 TO &
128 FORE SM+22eR+C+1. 3
146 PORE CN+22eR+C+1, I- 1
{SG HEAT I
16eG END

Table 6.3 POKEing coloured hearts to screen

6.6 Histogram example

The program in Table 6.4 illustrates the use of colours to
produce a histogram. This routine plots ten vertical lines, in
red, over a scale from 0 to 10.

1@ PRINTS): REM CLEAR
2A PRINT eREH I STOGRAM SRE”
25 FRINT
3G FOR L=1a To 1 STEP=1
44 L$=" "+S TRECL?
SQ PRINT RIGHT$(L#.4)9;° 7
Sa HEET L
7A PRINT? 0° & “TOT Trt
a0 FOR f= 1 TO 1a
dQ READ Ti
iG@ IF Di=G@ THEN 156
116 FOF H=1 To D
iZe PORE FOPL-CHESSI+F, 166
L2G PORE Be6S1-CHeefI+F,
i4@ WERT H
15G HEXT F
iSG DATA S78), 502,686, 4.3.6
17a ENT

Table 6.4 Histogram routine

Line 10 clears the screen and line 20 prints the main
heading. Lines 30 to 60 form a loop that produces the
vertical scale. The string handling in these lines causes the
numbers, obtained from the loop count, to be aligned

POKE, PEEK and Colour 55

correctly. The graphics character in line 50 forms part of the
scaled vertical axis. Line 70 produces the horizontal axis.

In this example, data is contained in a DATA line (160)
and is read as required for each column in line 90 into the
variable D. The histogram is built up by POKEing red
reverse characters vertically over ten columns as required.
Lines 80 to 150 form an outer loop that repeats the inner
loop for each column. If the histogram has zero entry then
line 100 causes the inner loop to be bypassed.

The inner loop (lines 110-140) POKEs a reverse charac-
ter space (32 + 128 = 160) vertically D times.

6.7 Animation

The building up of the bars in the histogram example
represents a simple form of animation. However, more

elaborate animation such as that used in games requires
characters to move up, down and across the screen. The
illusion of movement is obtained by POKEing the charac-
ter into a suitable adjacent screen location and then
POKEing a space into the preceding position.

2 PRINT?" REM CLEAR
Lf SN=PhSh: CM=se466
2H SH SMt+ Sees
24 C=CMN+e2ee6
46 FOR I=8 TO 21
aH FORE S+1.42
BH PORE C+I.2
1@ PORE Sti-D. 323:
ee FOR D=1 TO 18@:HEXT
46 WET f
1A PORE Stil. 32
1i@ EMD

Table 6.5 Anexample of simple animation

A simple example of this is given by the program in Table
6.5. This program causes an asterisk to move across the
screen from left to right in row 8 (note that the top row is

56 Computer Programming with the Commodore VIC

row zero). Lines 10 to 30 set the initial screen and colour
locations to the first position of row 8. The loop (lines
40—90) moves the required character to each column along
that row and colour it red (line 60). Line 70 within the loop
puts a space into the preceding column. A delay loop in line
80 stops the asterisk moving too fast. Line 100 puts a space
into the final position of the asterisk on exiting the loop.

6.8 Problem

Use graphics characters to build up a simple picture of a
face on the screen. Introduce animation that causes the face
to alternately sulk and smile.
An example of such a routine is given in Table A9.

7 Other Functions

7.1 Mathematical functions

Commonly used routines, such as those required for
obtaining the integral part of a number (INT), the logar-
ithm and antilogarithm of a number (LOG and EXP), and
trigonometric functions (e.g. SIN) are available as library
functions in BASIC. Examples of a variety of these func-
tions will be given in the following sections.

Further background on mathematical functions and
problems involving these are given in The Pocket Calcula-
tor L. R. Carter and E. Huzan, Teach Yourself Books,
1979.

7.2 Arguments

Each function name is followed by an expression (the
argument) in brackets. The function operates on the argu-
ment, that is, the value of the expression is used in the
standard routine represented by the function name. For
example:

100 LET S = SOR(B*B — 4*A+C)
will evaluate the square root of the expression in brackets,
i.e B’ — 4AC, and put the result in cell S.

There may be restrictions regarding the values of the
argument associated with a function. For example, it is not
possible to take the square root of a negative number,
therefore the argument used with SOR must not have a
negative value. The TAB function followed by a semicolon
causes characters to be output in the column following the

58 Computer Programming with the Commodore VIC

argument value; therefore, this value must correspond to a
possible column position. A comma in place of the semi-
colon will have a different effect.

7.3. Using library functions

Library functions are used in LET or PRINT statements on
their own or in expressions of any complexity. These
expressions may contain further library functions. The
evaluation is, as usual, working from the innermost brack-
ets outwards.

7.4 Truncation

You have already used the library function INT to obtain
the integral part of a number which has decimal places. The
INT function gives the largest integer which is not greater
than the argument. Therefore, if the argument is a positive

- number, the decimal places are dropped and the number is
said to be truncated after INT has been used. For example:

110 LET B = INT(A)
puts 15 into B if A is 15.36. Remember A will remain
unchanged after the LET statement has been obeyed, so it
will still contain 15.36. |

However, if A contains —15.36 then the integer placed
into B is not —15 (since this is larger than — 15.36) but —16;
in this case, B does not contain the truncated value of A.

To obtain the truncated value of a negative number, the
sign must be removed from the number before the INT
function is applied, using the function ABS which takes the
absolute value of its argument (i.e. the sign is ignored), and
the function SGN used. SGN gives the value of 1 if its
argument has a positive value, —1 if its argument has a
negative value, and a zero if the value of its argument is
zero. For example: :

120 LET B = SGN(A)*INT(ABS(A))

Other Functions 59

multiplies the integral part of the absolute value of A by its
sign, so that B will contain the truncated value of A when A
is positive or negative. Assuming A contains — 15.36, as in
the previous example, then ABS(A) gives 15.36, INT(ABS
(A)) gives 15, and SGN(A)*INT(ABS(A)) multiplies 15
by —1 giving —15.

7.5 Rounding

Numbers often need to be rounded to a nearest number of
decimal places or to a nearest value in general. Adding 0.5
to a number before truncating it will cause the number to
be rounded to the nearest integer (whole number). For
example:

130 LET B = INT(A + 0.5)
puts 24 in B if A contains, say 24.3, and 25 in B if A
contains, say 24.5 or 24.6. The program shown in Table 7.1
illustrates this method of rounding; angles input in decimals
of a degree are output in degrees and minutes, rounded to
the nearest minute.

2“@ PREIHT" AHGLE TEGS MIHS"
38 PRINT
46 IMPUT A
“4 IF A=@ THEN 11
Sa LET D=ITdT¢Ao
@ FEM RCUHT

LET M=THT if A-Daeoate, Bo

PRIHT As TAEC1G@2505 TABS Teoh

@ GOTO 44

f EMT

RA

bah po a a) mn =.J tT

Table 7.1 Rounding to nearest minute

To round a number to a certain number of decimal
places, you need to divide the number by a scaling factor
before adding 0.5, truncating, and finally multiplying by the

60 Computer Programming with the Commodore VIC

scaling factor. For example, to round to three decimal
places the scaling factor is 0.001:

140 LET P2 = INT(P1/0.001 + 0.5)*0.001

puts 3.142 into P2 when P1 contains 3.14159.
In general, if the scaling factor is contained in F then an

expression may be rounded by using:

INT((expression)/F + 0.5)*F

This will work also if, for example, you wish to round a
number to the nearest 10; in this case, F = 10.

7.6 Square roots

The library function for obtaining a square root is SOR.
Remember the argument must not have a negative value.
You can use SGN to test the sign, as shown in Table 7.2.

re IMPUT 1
cf FOR IT=1 Toa
S48 IHMPUT ALB. C-PRIWT
iG@ LET F=EeE-4#AeC
Lig IF SGH*R>=-1 THEM 15@-
12 LET R=SOR CR
ith PRIHT"SQUARE ROOT ="
loo PRIWTR: "FOR" ;As Bs
i4@ GOTO 166
LaG FRIHT RESULT HEGATIVE”
Pao PRINT FOR" SAS BSC PRIWT
164 WHET I
Lra EMT

Table 7.2 Use of SGN and SQR

The program given in Table 7.3 calculates and outputs
the diameter in metres (rounded to two decimal places) of
cylindrical tanks, given the volume V (in litres of water)
and three standard heights in metres. The formula for the
volume of a cylinder of height h, and radius r is:

ue

Other Functions 61

V = arh

Therefore, the diameter d is given by:

2r=2 Van

“6 PRINT’VOLUME HEIGHT DIAMETER”
26 PRIHT"LTRES, M. Me"
+f

mY 1)

5, 8 — -r ae —4{ I | | i | { { ! { | { I { ! I | l ! i 1

HATA 143.25,1.75
IHFUT ty

IF ¥=G THEH 166
PRIWT
FOR JI=1 Ta &
FREAD H

LET D=IHT{SGRC V0 1GGGES, 14 24H) ¥CHO+E. 59-168
PRIHT TABCLID iY: TABS S9 3H: TABL 169514
HEMT I
FEST ORE
GOTO 66
ERT

rom on £

fmt enh bet pene ph pee pee 1D LT | TT CA i fee 5)

im A my im

TY aT) 175) 175) 0)

Table 7.3 Calculation of diameter of cylindrical tanks

In the problem, the three standard heights are given ina
DATA statement. For each volume V the diameter D is
calculated and output using each of the three standard
heights in turn. Every time the READ H statement (line
100) is obeyed, the next value in the DATA statement
is taken. That is, the first time through the FOR loop H is
taken to be 1, the second time 1.25, and the third time 1.75.
The DATA pointer then needs to be reset to the beginning
of the DATA values ready for a further three passes
through the FOR loop with the next value of V. This is
achieved by the RESTORE statement in line 140. Use the
program to find the diameter of tanks which have volumes
of 500 and 1000 litres (1000 litres = 1 m*). The answers are
shown in Table 7.4

62 Computer Programming with the Commodore VIC

VOLUME HEIGHT DIAMETER
LTRS. M. M.

500 1 8 \
500 1.25 71
500 1.75 6

1000] 1.13
1000 1.25 1.01
1000 1.75 85

Table 7.4 Output fro = program given in Table 7.3

7.7 Trigonometric functions

The sine, cosine and tangent of angles are obtained by using
the function names SIN, COS and TAN respectively,
followed by the angle in brackets (expressed in radians).
For example:

100 LET X = COS(B)
will put the cosine of B (radians) in cell X.

Only the inverse tangent (arctangent) is available as the
function ATN. This has as the argument the tangent of the
required angle. The angle obtained will be in radians —7/2
to 7/2.

and sin’x + cos’x, = 1, For an le x tan x = Six Bie x, - COS X

Therefore, the inverse sine and inverse cosine of x may be
expressed as follows:

sin X
in-~lw — mart | wee sin“'x = tan V(1 —sin’x) ie (FR)

COS X
cos'x = —tan™ iva —COs"x) faye (72)

. Other Functions 63

When0<x<7/2_ cosines are positive = cos x

When 7/2<x <7 _ cosines are negative = —cos(7 — x)

Equation (7.2) is true for beth cases. When cos x >0, the

expression in brackets is positive and equation (7.2) gives

the required angle as x. When cos x <0, the expression in

brackets is negative and equation (7.2) gives the required

angle as 7 — x.
The following BASIC statements may be used to find

angle A in radians given that the sine of the angle is S or the

cosine of the angle is C:

110 LET A = ATN(S/SQR(1 — S#S))
120 LET A = — ATN(C/SOR(1 — C*C)) + 1.5708

where 77/2 = 1.5708
Note: You must avoid using the above formulae when S = 1

(required angle is 7/2) or C = 1 (required angle is 0).

m is available as a library function with your VIC. Alter-

natively, its numeric value may be used as a constant, or

ATN(1)#4 will calculate 7, since the tan of 7/4 radians is 1.

7.8 Logarithms and antilogarithms

The logarithms and antilogarithms of expressions are given

by the functions LOG and EXP, respectively. For example,

the x“ root of a number may be found by dividing the log of

the number (y) by x and taking the antilog; this may be

expressed as shown in the following BASIC statement:

100 LET R = EXP(LOG(Y)/X)

After this statement has been obeyed, R will contain the

required root.
The function LOG gives the logarithm of its argument to

base e; these are known as Naperian (or natural) logar-

ithms. Since,

log.
logio Aeon ion 0

64 Computer Programming with the Commodore VIC

the following BASIC statement finds the log of a number
(Y) to base 10:

110 LET T = LOG(Y)/LOG(10)

Similarly, the antilog is found by multiplying the log to base
10 by log.10 and taking the antilog of the result as follows:

120 LET A = EXP(T*LOG(10))
e has the value 2.7182818 to 8 significant figures. The

function EXP raises e to the X" power, where X is its
argument. That is, EXP(X) = e’; the use of EXP is illus-
trated further in the next section.

7.9 Hyperbolic functions

Hyperbolic functions may be expressed in terms of e*. For
example:

me x a-x sinh x = 5 (e e

cosh h = 5 (e* + e*)

_ sinhx _e—e*

WE Lk ere
The sinh of the number held in cell X will be placed into cell
Y by the following LET statement:

110 LET Y = (EXP(X) — EXP(—X))/2

7.10 TAB function

The TAB function has already been used in several
examples. The definition of TAB is summarised below.
The TAB function may only be used in PRINT statements
to give the next output column position.

If TAB(P) is followed by a semicolon, then the variable
or expression following the semicolon will be output start-

Other Functions 65

ing at column INT(P+1). P may be any expression whose
value lies between 0 and 255.

7.11 Random numbers

Pseudo random numbers may be obtained by the use of the
function RND. This function chooses a number at random
between 0 and 1. This facility can be used in programs to
form the basis of chance outcome in games, and to simulate
randomness in scientific and business applications.

The function is RND(X), where X is a dummy number
having any value. The value of X determines the starting
point of the string of numbers generated, that is, RND(7)
will generate a difference sequence from RND(3). How-
ever, because RND(7), for example, is fixed within a
program the same sequence will be generated each time the
program is run.

The random numbers generated will usually need to be
manipulated. For example, to represent the throw of a die
integer values between 1 and 6 need to be randomly
generated. This may be done with the following instruc-
tion:

100 LET T = INT(6*RND(3) + 1)
The +1 is required as otherwise the truncated integer
would lie between 0 and 5.
When it is required to generate numbers to represent a

sample from a uniform distribution a single statement
similar to the above will be sufficient. In more advanced
cases of simulation, it is often required to sample from a
given frequency distribution. A subroutine suitable for
these circumstances is described in Chapter 9.

»

7.12 User defined functions

You may define your own functions by using a DEF FNx

statement, which has the following format:

66 Computer Programming with the Commodore. VIC

line number DEF FNx(variable) = expression

Each user-defined function must have a unique name with-
in the program as given by FNx, where x is a variable name.

Each function has a dummy argument given by the
variable in brackets above. The actual argument used when

- the function is subsequently referenced in the program will
be different from the dummy argument in the function
definition. For example, the previous expression used to
round a number can now be defined as a function as
follows: |

50 DEF FNR(A) = INT(A/F + 0.5)#F
This can be used subsequently in the same program to
round a number to, say, the nearest 100 and to one decimal
place as shown in Table 7.5. —

DEF FHECAS=THT CAF +@, SF
READ E.C
DATA 858. 32.55.8649, 32, 54,651.32, 56, 6.8
IF FE = @ THEM 138

4 REN FOUND B TO WHEAREST 1ga
LET F=18&
LET Bi=FHRC E>
REM ROUND C TO 1 DECIMAL PLACE

i4@ LET F=8.1
126 LET Ci=FHR ECs ,)
166 PRIWT "EB ="VBS "BL =" Bi." ="7Ce Cl. ="5C1
ir PRIWT
166 GOTO &&
13% END

SO ms) 17) SY YE

5)

my ™ ae, el ee oe oe | td PQ me i

Table 7.5 Program to round numbers

A user-defined function may contain another user-
defined function in its definition. For example, the program
given in Table 7.6 tabulates the sines of a number of angles
(given) and the corresponding angles expressed in degrees
to two decimal places.

Other Functions 6/7

2A PRINT" SINE TEGREES"”
26 PRINT" sa
46 PRINT
~4 DEF FHECARI=INT{ACG. 14+8.559#8, 1
BEG TEF FHOICUS=186-“ATHS 13 #42

TEF FHACS ={ATHLS-SOR {1 -S#S 5 oO RFHO LO
S6 THRPUT

TF N= THEN ee
IF <1 THEN 13
Let Teo
GOTO 146
LET [i= DASA A ia
FRIWT TABS 13; TARCS) sD
Ci y ci ea |

Etdii

IZ)

Penh beh et pnd pe peed bee NT I J Ty LB LPI mms SY a) 0G) ay Ge) ay i)

Table 7.6 Sines and angles (in degrees)

7.13 Problems

Problem I — Radius of circumcircle

Write a program to find the radius of a circular track passing
through points which form a triangle. The radius (r) of the
circumcircle of a triangle is given by:

eee a b re

Din A © sin B Euan C

where a, b, c and A, B, C are the sides and angles of the
triangle.

The program is listed in Table A10, and the answer for a
= 452 metres, b = 386 metres andc = 739 metres is given in
Appendix B. (Note: cos B = (a? + ¢ — b’)/2ac.)

Problem 2 — Areas.of triangles

The area of a triangle, with sides a, b and cand angles A, B
and C, may be calculated if the three sides or two sides and
the included angle are given, by using one of the following
formulae:

68 Computer Programming with the Commodore VIC

area of triangle = V(s(s — a)(s — b)(s — c))
where 2s=a+b+c :

or area = Yabsin C or “bcsin A or Yacsin B

Write a program to tabulate the areas of the triangles given
in Table 7.7, using suitable headings. Note unknown values
have been set to zero. Output all areas in square cm to one
decimal place. The program is listed in Table A11, and the
answers are given in Appendix B.

Sides of triangle (cm) Included angle
a b C (degrees)

17.2 9.8 14.1 —60
QO 74 98 125.4

292 0 405 30.5
10.3 15.6 0 69

dummy values—1 0 0 0

Table 7.7 Data used to calculate areas of triangles

Problem 3 — Volumes of solids

The volume of a solid of uniform cross-sectional area (A)
and height (H) is given by:

V=AxXH

The uniform cross-sectional areas of some common solids
are given in Table 7.8 together with their codes.

Write a program to calculate the volumes of the solids
given in Table 7.8. All dimensions are in cm. The name of
the solid is to be held in a DATA statement. Output the
name of the solid and its volume. Code 0 can be used to
terminate execution of the program. Suitable test data is
given in Table 7.9, but include some extra data of your own.

Other Functions 69

Code > Solid Cross-sectional area

1 cuboid L xX W

2 cylinder 7X R?’

3 hexagonal bar yV/27 x D?

L=length W=width R=radius D = length of side

Table 7.8 Some solids with uniform cross-sectional areas

Ist 2nd Required no.
: dimension dimension Height. of decimal

Code (LorRorD) (Worzero) (H) places

2 4.5 0 1.75 yd
3 12.6 0 250 0
1 5.3 7.0 4.2 1

Table 7.9 Data for ‘Volumes of solids’ problem

The program is listed in Table A12, and the answers are
given in Appendix B. The program presented in Table A12
allows the user to round the answer using a scaling factor
(F) to give the required number of decimal places (see
section7.5).

8 Arrays

8.1 Lists and tables

So far single memory cells have been referenced by single

variable names.
Many problems involve processing a number of variables

in exactly the same way. In these programs, it is much more
convenient to use the same name to reference a number of
memory cells whose contents are processed by the same set
of instructions in the program; a subscript is used in associa-
tion with the variable name to identify uniquely each

particular memory cell. For example, the program given in

1f@ INPUT WH
“A FOR I=1 TOW
2A INPUT ACID.
446 HET I
SA PRIHT"HUMBERS > 1”
64 PRINT
Ye FOR I=1 TO H
S@ IF AcI> <= 16 THEN 144
S96 PRIWT ACT :
1G@ HEXT I
114 PRINT
126 PRIWT
13@ PRINT’ NEGATIVE HUMBERS"
135 PRIWT
i4d@ FOR I=1 TOW
15@ IF AX I32 >=@ THEH 17a
166 PRINT ACI>
irG@ HEeT I
166 PRIWT
190 EMD

Table 8.1 Program to output numbers >10 and negative
numbers

Arrays 71

Table 8.1 inputs a list of N numbers and outputs a list of
numbers that are greater than 10, and a list of numbers that
are negative, using two passes through the stored data.

If N is equal to 9, then the list of 9 numbers is input into
memory cells A(1), A(2), . . ., A(9), since in the FOR loop
(lines 20-40) I takes the values 1—9. I is the subscript and A
is the name of an array of nine elements. Each element of
the array may be referenced by the array name and the
subscript referring to its position in the array. That is, A(4)
refers to the fourth number input into the array A, which is
the memory cell between those occupied by A(3) and A(5).

Your BASIC system starts numbering the elements of an
array at 0, that is, the first element of the array is referenced
by A(0). The program given in Table 8.1 may be amended
so that it can be used to input and process nine numbers

_ starting at A(0) by changing the initial value of I to0 in each
FOR statement, lines 20, 70 and 140. N would need to be
input as 8 instead of 9 i in this case.

Try running the program given in Table 8.1 with the
following nine numbers:

6, 12, —30, 10, —4, 47, 9, 0, 58

The output for this data is shown in Table 8.2.

NUMBERS > 10
12
47
58

NEGATIVE NUMBERS
~30
=4

Table 8.2. Output from program given in Table 8.1

Array A, in the previous example, is called a one-
dimensional array because it has one subscript. A one-
dimensional array is a list, and a two-dimensional array is a

72 Computer Programming with the Commodore VIC

table. A three-dimensional array is more difficult to visual-

ise; an example would be to have the page number of a

book as the third dimension (subscript), and the lines and

columns on a page forming a table referenced by the other

two subscripts. The subscripts are separated by commas

within the brackets following the name of the array, so that

T$(3,2,8) could refer to the third line and second column

on the eighth page of a book.

8.2 Naming arrays

Arrays used for holding numbers must be called by a

variable name followed by the subscripts in brackets.
Array names which are identical to single variable names

may be used in the same program. That is, the BASIC

system will distinguish between A used as a single variable

and A (subscript(s)) used as an array element for storing

numbers, and A$ used as a single string variable and A$
(subscript(s)) used for storing character strings.

8.3. Subscripts

The subscripts that may be used with array names may

consist of any expression. However, since the subscripts

refer to unique positions in the array which is stored in

memory cells in the computer, the individual subscripts

must have positive values which the system will truncate to

integer values (zero is a possible value for a subscript, as

explained previously). |

The integer values of the subscripts must lie within the

bounds of the array. For example, in the program given in

Table 8.1 the BASIC system automatically allocates eleven

memory cells (subscripts 0-10) in the absence of a DIM

‘statement, which will be explained in the next section. If N

were input as, say, 20 then elements referenced in the FOR

statement beyond the A(10) element would be outside the

Arrays 73

defined storage of the array (i.e. outside the bounds of the
array); in this case an execution error would occur.

8.4 The DIM statement

The DIM statement is used to define storage for arrays
which have subscripts whose values are greater than ten.
Although the DIM statements can appear anywhere in the
program (before the array is accessed) it is better to place it »
at the beginning of the program so that it is separate from
the main logic.

The format of the DIM statement is:

line number DIM list of array variables separated by com-
mas

The array variables in the list may be ordinary or string
variables; each variable name is followed by subscripts,
separated by commas, in brackets.

For example, array X is to be used to store a list of up to
fifty numbers, and array T$ is to be used to hold a table
comprising a maximum of 5 rows and 7 columns. ;

The DIM statement to define storage for these two arrays
is: .

30 DIM X(50),T$(5,7)

X will have fifty-one memory cells of storage reserved
referenced by X(0), X(1), X(2), . . ., X(50). T$ will have a
total of forty-eight cells reserved, the first cell being refer-
enced by T$(0,0) and the last cell by T$(5,7).

Notice that storage is reserved for the maximum array
size in each case. A particular run of your program may
require less storage than the maximum; thisis acceptable or
alternatively you can input values for the variable sub-
scripts in the DIM statement before it is used (this is known
as dynamic dimensioning). Note that the dimensioning may
only be done once during the program run. For example,

74 Computer Programming with the Commodore VIC

the DIM statement below requires K, L and M to be input
at run time.

40 DIM X(K),T$(L,M)

More than one DIM statement may be used in a prog-
ram, but the same array name may not appear in more than
one DIM statement in a program. For example:

50 DIM B$(30,8),A$(60),A(20,20) correct 60 DIM D(100),C$(5,7,6) if
is correct.

70 DIM B$(30,8),A$(60),A(20,20) |. race
80 DIM D(100),A(20,20),C$(5,7,6) |

will produce an error because A(20,20) appears in the DIM
statements in line 70 and in line 80. | °

It is important to note that the DIM statement may be
used to override the automatic storage allocation for small
arrays. For example, if array A is to contain a maximum of
six cells and array B a maximum of four cells, then DIM
A(5),B(3) will cause the exact storage required to be
allocated, thus saving storage compared with the automatic
allocation of eleven cells for each array.

8.5 Nested FOR loops

A FOR loop may lie wholly within another FOR loop; as
was shown in Table 5.8, Chapter 5. This facility is particu-

1 2 ie a
5 6 7 8
9 10 11 12

Table 8.3. Input data for ‘Nested FOR loops’ program

Arrays 75

Table 8.4 Table to be output

larly useful for manipulating arrays. For example, the data
given in Table 8.3 is to be input into a two-dimensional
array called A and output in the form shown in Table 8.4.
The program given in Table 8.5 uses nested FOR loops to
achieve this; try running this program.

1G

tS

46
ais
as
re
oe

1G6
114
126
136
146

DIM ACS. 4)
DATA 1.2.3,
FOR I=1 Ta
FOR J=1 Ta
READ ACI. >
HEAT J
HET I
FOR I=1 To
FOR J=1 Tt
PRINT ACT,
NEXT J
PRINT
HET I
EMT

262:7,8.9,16,11,12

4
-

:

I>;

Table 8.5 Program using nested FOR loops

8.6 Problems

Write programs for the following problems.

Problem I — Copying an array

Copy an array A comprising N elements into an array B, of
the same size as A, in reverse order. For example, if N is 20,

76 Computer Programming with the Commodore VIC

A(20) will go into B(1), A(19) into B(2), etc. Assume N is
always a multiple of 5, and output array B in rows of 5
columns.)

The program is listed in Table A13.

Problem 2 — Sum of elements

Sum the elements on the diagonals of an M X M array.
Allow for M to be odd (as well as even) when the central
element must be added in only once. Test your program in
one run with an odd and an even value of M. Output the
array and the sum of the elements on the diagonals in each
case.

The program is listed in Table A14.

Problem 3 — Sorting a list of numbers

Sort a list of N numbers, held in array A, into ascending

numerical order. Use only one array which is just large

enough to hold the maximum number of numbers that may

be input. The logic of the method is shown in Figure 8.1.

This involves pushing the highest number to the end of the

list by exchanging the higher number of each pair working

through the list. That is, if element A(1) is greater than

element A(2) then their contents are exchanged so that the

higher value is in A(2); then the value in A(2) is compared

with that in A(3) and exchanged if necessary. The second

pass through the list is shorter since at the end of the first
pass A(N) contained the highest value in the list and does

not need to be compared again. If no exchanges take place

during a pass (i.e. E = 0) then the list is in the required

sorted order and no further passes are necessary.

Output the list of numbers in its original order and after it

has been sorted. Use the following data, and create your

own data, to provide a variety of different lists to be sorted.

Data:

15,12,3, 20, 22, 22, 9, 4, 23, 2, 0, —25, 17, 18

(START

READ N

numbers into
array A

Exchange

contents of

A(J) & A(J +1)

Figure 8.1 Sorting a list of numbers into ascending order

78 Computer Programming with the Commodore VIC

The program is listed in Table A15. This uses the HOME
character in a PRINT statement (line 200) to take the
cursor to the top left-hand corner of the screen, without
clearing the screen.

9 Subroutines and High Resolution
Graphics

9.1 Purpose of subroutines

A subroutine is a sequence of instructions designed to
perform one or more specific tasks. The routine may be
required more than once in different places in the program.
When a routine is written as a subroutine it is incorporated
in the main program once. During execution the statement,
GOSUB linenumber, causes control to pass to the line
number specified. Execution continues until a RETURN
statement is encountered. Control then passes back to the
statement following the originating GOSUB statement.
A subroutine can be entered as many times as required

and therefore can save the writing of similar instructions in
several parts of the program. Apart from the extra program
writing, the program usually becomes longer if subroutines
are not used. A longer program requires more computer
storage, and takes longer to translate into machine code;
using: subroutines wherever possible generally makes a
program more efficient.

Once a subroutine has been developed and tested it may
be used in quite different programs, either as it stands or
with modifications. If possible, subroutines should be de-
signed to allow them to be used in many different ways
without modification. This may be done by building in
flexibility.

9.2 Independent development

Another advantage of using subroutines is that they may be
developed and tested independently from the program(s)
in which they are to be used.

80 Computer Programming with the Commodore VIC

By testing subroutines independently a complex prog-
ram may be built up more quickly using proved sub-
routines. In addition, if a subroutine has been developed
for one program, then it can be tested with suitable test data
for use in a different program before it is incorporated.
However, the final program will need to be tested as a
whole to ensure that the linkages, i.e. statements between
the subroutines (as well as the subroutines), give correct
results for every branch of the program. The test data must
be comprehensive enough to test every instruction in the
program, as discussed in Chapter 4.

9.3 Graphs and histograms

If you use a computer to analyse data it is almost certain
that at some time you will want to plot the data, or maybe
group it into a frequency table. The following sections

describe a series of subroutines that allow you to do this.

To allow the subroutines to be compatible we need to

standardise some of the variable names. The routines have

been written to allow up to 100 data values to be processed.

These values will be held in the array V. There is therefore

the need for a DIM V(100) in the main program. If the data

is to be grouped into a frequency table before, say, printing

out a histogram, the variable will be stored in array X and

the frequency in array F. A frequency table having a

maximum of fifteen class intervals should be adequate for

most purposes. Therefore the main program will need a

DIM statement containing X(15),F(15).

9.4 Frequency grouping subroutines

Before producing a histogram, or carrying out other forms

of analysis, it is often required to group individual data

points into class intervals and note the total number of

values falling into each interval (i.e. the frequency).

Subroutines and High Resolution Graphics 81

A subroutine to do this is given in Table 9.1. The

frequency table so constructed is composed of fifteen class

intervals. Any data not included as a result of this con-

straint is printed out by line 2100. A new run can then be

undertaken with the class interval parameters respecified

accordingly.

2H@G PRINT"ENTER SIZE OF” |
2085 PRINT’CLASS INTERVAL”
2018 INPUT C
2615 PRINT "
202@ PRINT "ENTER LOWER BOUND"
2025 PRINT"GF 1ST. INTERVAL”
2028 INPNT L
24G FOR I = 1 Td
2050 FOR J = 1 TO 15 7
260 IF Yel? b= ¢L+(C#I23 THEN asa
SEPA FeT=P eo ta+
SHS0 GOTO 2114
2090 MENT J
214G PRINT VOI; "NOT COUNTED"
2@11G NEXT 1
212@ FOR J = 1 TO 15
P12H LET HQId = L + C0 I-. 50803
214 HEXT J
2150 RETURN

Table 9.1 Frequency grouping routine

The reason for designing the program in this manner is
that a completely automatic parameter setting routine may
disguise the presence of a ‘rogue’ value which, once pointed
out, you are happy to ignore.
A subroutine to print out a frequency table is given in

Table 9.2. As this subroutine is intended to be independent
of the grouping subroutine, the class interval and lower
bounds are calculated from the array values of X.

82 Computer Programming with the Commodore VIC

2Ahe
3Hi1 Gt
et So aS
2ASA
A484
ed & eal Ss
et StS
i SS
et SS tS
SHS
218G
2114

PRIHT
Let ys
bet
PRIMT”
PR IT
PRIWT”
FOr [=
LET &
FRIHT
HEMT I
PRIHT”
RE TUR

= 4(2) — ROL}
= 81) - (5803

TABC435 "8"5 TAB L495 °F"

1015
=L + CHOI-1)
Bi TABCS9 5 "-"S TABCI495FCDD
ee er ee Gates epee SEEe Ghee Geert Geom Gteee GOGES cane Stare coped sees eens aueee pueer somes

Table 9.2 Frequency table routine

Problem I — Pastureland frequency table

Write a program incorporating these subroutines to process
the data shown in Table 9.3. The output required is a
frequency table of the percentage pastureland.

Parish % amount of pastureland
46
47
63
74
76
26
37
39
35
43
52
59

Table 9.3. Parish data

The program, which gives the output shown in Table 9.4,
is listed in Table A16.

CPS OSSSESEHSHEHSOHSHESHSHESHSHHSHRHHSHEHSHESHSHSHSHSHSHSHHHSHHESHSHSHSHHHEHSESSEHSHESESHHOSEHSHOHSSSEHREASEHHEES

COTO CHOOT ESCO HOE SC OHEKEOTEHEH ESHA EEOOREE POSHSHRESEHSHHSEHSHHSHOHRSHESHEHHEHSHOHSEHHOHSSHOHSHHSHSESEEHRHEOE®

SSHSSSHSSSHSSHSSSHSSHESHSSSSHSSHSSHSHSHSHSSHSSSHSASSHESHSHSHSHHHEHHEHHSHOHSHRHSHSHSHSHSHSEHHSHSHSEHEHSEHSHEHEHSHOEOSHHHHESSES

Table 9.4 Frequency table for Problem 2

a

9.5 Sampling from a frequency distribution

A subroutine is described below that allows a value to be
sampled from a frequency distribution. The frequency
distribution is contained in the two-dimensional array X.
The first dimension contains the variable value, the second
dimension contains the cumulative percentage frequency.

To allow the subroutine to be used generally in a variety

of programs some standardisation of the array containing

the frequency distribution is necessary. The number of

class intervals has been set at 10 resulting in the dimensions

for the array X being (10,2). Note that, for convenience,
the existence of 0 subscripts have been ignored. If a re-

quired distribution contains less than ten rows (i.e. class
intervals), the final entries in the array will be identical. For

example, the data to be sampled, shown in Table 9.5,

would be contained in the array X(R,I) as shown in Table

9.6.

84 Computer Programming with the Commodore VIC

Variable Cumulative % frequency
eee

5 10
10 27
15 42
20 65
25 80
30 100
eee

Table 9.5 Data to be sampled

Any distributions to be used from'a main program are
established in a similar (10,2) format and array X can be
equated to them before entering the subroutine.

ESOP Pan Te ORR RW SAE NES ESR IN GD BUA RE LEA ge

Column subscript, I

(41) (2)
rcs ene ere

(1,) 5 10
(2,) 10 27
(3,) 15 42
(4,) 20. 65
(5,) 25 80

Row subscript, R= (6,) 30 100
| (7,) 30 100

(8,) 30° 100
(9,) 30. 100
(10,) 30 100

o Oe meg OO ts co Ae ty IO OOO ATI tl ER

Table 9.6 Contents of X(R,I)

9.6 Description of subroutine

A flowchart for the subroutine is shown in Figure 9,1 and
the listing is given in Table 9.7,

ENTER

Select and

scale up

random no

Set row
count to 1

Assign row
value to V |

Add 1 to

row count (R)

Print error
message

EXIT

Figure 9.1 Sampling flowchart

86 Computer Programming with the Commodore VIC

900 REM SAMPLIHG SUE
914 LET 2=18G8RHIC 3)
S20 FOR F=1 TO 14
S30 LET VY=KtR,1>
S44 IF 2c=KCR.29 THEN 986
S58 HEXT F

PRINT ERROR: RW HOT"
PRINT’ PROPERLY ALLOCATED"
EMT

RE TUR mo -.j ty Lup tp 40 m1 oS

Table 9.7 Sampling routine

The random number generated is scaled to lie between 0
and 100 (line 910). Within the FOR loop the array X is
inspected row by row. The value of the current row variable
is assigned to V (line 930) and the value of the scaled ran-
dom number Z is compared with the current cumulative fre-
quency (line 940). If Z is greater than the frequency the
process is repeated for the next row (line 950). When,
eventually, the random value Z falls within the current class
interval the subroutine is left, carrying back the current
value of the variable V. If, due to errors in setting up the
distribution, the random value Z cannot be associated with
any particular row then lines 960 and 965 are encountered,
giving rise to the error message.
A simulation program using this subroutine is given in

Chapter 12, section 12.5.

Problem 2 — Input subroutine

Write a subroutine to allow the details of Table 9.5 to be
entered into a two-dimensional array D. Make provision
for up to ten rows to be entered. |

A subroutine to meet the above requirements is shown in
Table A17.)

Subroutines and High Resolution Graphics 81

9.7 Protected INPUT routine

Input statements can cause the inexperienced user prob-

lems. If the return key is pressed in response to an input

statement without entering ‘data’ the VIC accepts a null

return and continues through the program, usually with

unintended results. The routine to be described (Table 9.8)

will not accept solely the return key, thereby preventing

‘null’ inputs. |

AGG
rar] Sa

bent &9 Fd Se

REM PROTECTED INPUT
ZIga"" ZIge"" : .
PRINT’ a MHI"; FOR D=1 TO 26G:MEXT

SGSG PRINT" §PG FOR D=1 TO S@G:MEAT
SG4G GET Z1f:1F Z1g="" THEN 5a2e
SGS0 IF ZI$¢oCHR#(203 THEN SacG

SG6a@ SIF=LEFTS(ZIF.2L—-19
5 FL=LENCPI£2:°1F 2L<1 THEN S@2e

SA7Q PRINTZI£: GOTO 3626

SaaG IF SIF=CHRE(13>9 THEN 3126

sede PRINTS S:
SLHG 2IF=LIF+21F
Sli GOTO 3826 ,

Size IF 23s="" THEN S626

Hise PRINT |
Sida RETURN,

Table 9.8 Protected input routine

This subroutine makes use of the GET statement which

accepts a single character from the keyboard without wait-

ing for the return character. The GET statement allows any

entry from the keyboard to be examined by the VIC. You

can use this technique, together with the conditional

branch statements given in Chapter 5, for writing programs

that allow the user to choose a course of action from a

‘menu’ of choices. Because the GET statement will also

accept a ‘null’ response the user does not have time to

respond unless a loop is built into the program. A common

~ ¢method 1s:

88 Computer Programming with the Commodore VIC

200 GET A$: IF A$ = “’” THEN 200

Line 200 forms a closed loop which is only broken by a key
being pressed. While the loop in line 200 is being executed
no cursor will be displayed.

The principle of the subroutine is that a series of charac-
ters keyed in response to a GET loop are concatenated into
a String to give the equivalent of the response to an INPUT
statement. Line 5010 sets the GET variable ZI$ and the
concatenated variable ZJ$ to null strings. A flashing cursor
is simulated in lines 5020 and 5030. Lines 5020 to 5040 form
therefore a more elaborate GET loop, i.e. 5020 — cursor
on; 5030 — cursor off; 5040 — GET character, else cursor
on etc. When a character is entered this loop is left and the
character tested. | |

The first test (line 5050) is to check for the delete key
(character code 20). If the delete key has been pressed the
length of the current string ZJ$ is calculated (line 5055). If
ZJ$ is reduced to a null string the entry loop is re-entered,
i.e. control is passed to line 5020. Providing ZJ$ does
contain characters, line 5060 removes the rightmost charac-
ter. Line 5070 ‘prints’ the delete character, ise. causes the
cursor to move left and then the GET loop is re-entered.

The second test (line 5080) checks for the pressing of the
return key (character 13). Providing the return key has not
been pressed, the acceptable character is printed and con-
catenated to ZJ$ in lines 5090 and 5100 before 5110 returns
control to the GET loop. |
When the return key is pressed, line 5080 causes execu-

tion to pass to line 5120 where the status of ZJ$ is checked.
If ZJ$ is still a null string then depression of the return key
is not acceptable and the GET loop is re-entered. When
ZJ$ does contain a response, depression of the return key is
‘accepted’ and the final PRINT is executed to terminate the
action of the trailing semi-colons in previous print state-
ments. Cal

“4

Subroutines and High Resolution Graphics. 89 |

9.8 High resolution graphics

It is possible on the VIC to create user defined characters by
Switching the individual dots (the pixel) that make up a
character on or off. A character is created from an array of
8 X 8 pixels and so, with suitable programming, graphs can
be created to this higher resolution. In order to manipulate
characters for this purpose, it is necessary to move some
characters from ROM to RAM where they can be suitably
amended. This also means that pointers in the memory are
adjusted so that the VIC is directed to the appropriate part
of RAM. A high resolution cartridge is available for the
VIC which extends BASIC with a number of special com-
mands for high resolution work. However, anybody with a
VIC which has 3K or more additional memory can achieve
high resolution using the following subroutines. A detailed
discussion of the requirements is outside the scope of this
book but the required routines can be incorporated into
user written programs as deseribed below.

ifaG FEM INITIALISATION OF HI-RES
ISG. FRINT @" REM CTRL & ELE
1GiG PRINT’ PORE s6era. ro
1420 IFPEEK SC S6669 > =2537THEM I aSe
LAS PORESESS9, SoS: PORESES6, PEEK (36867 90R128,
lide PUKE A FORERE, 13: POKES1.@° PORES
1836 CLE: B2768 | THsi sk
Laie PRINTS EMIT TALIS TS
LAP FOR T=ATOSSSe6+7 :POKEI+T. PEEKS 145): HE? T
1856 REM EMD OF. INITIAL ISATION ; :

ih | 2

Table 9.9 High resolution initialisation.

To write a program incorporating high resolution
graphics requires the application of two routines. The first
routine is given in Table 9.9. This routine, which alters
pointers, must be at the beginning of the program. Note that
this routine also sets the screen, border and character
colours (purple, yellow and black); the points are plotted in

~—_—

90 Computer Programming with the Commodore VIC
white. The second routine, given in Table 9.10, plots at a
specific pixel on the screen using X and Y as co-ordinates
from the top left-hand corner of the screen. This routine
can be used as a subroutine as required. An example of the
use of these two routines is given in the following section.

SHG@ REM PLOT SUE ! SG1G SMES MSY Yo oP yeaer oer oom
S26 C=PEEK CPS: [FQD=12STHEMSaSG
SO26 CN=CH+1 SsS126+¢ 127 +CH 3 #2: T=51 2+ cK
SB40 FORISQTOF POKES+1.FEEKCT+1 3 SHEXT
SH45 G=LEP+CH POKEP. dared
SOTA Cat 1LSG+Ges+ (AMDT
SO32 POREC. PEERS COORN 21 7-CMAMDP 399
Seoe RETURH ‘ eae :

Table 9.10 Plot subroutine

9.9 Example of high resolution plotting -

The program to be described plots the movement of a
confectionary company’s shares and the price of cocoa. As
eight points can be plotted horizontally within the space of
one character, a convenient scale to adopt for business use
is two pixel points to a week. This allows 2 X 52 weeks, i.e.
104 pixels to be used which can be scaled, using traditional
graphics characters, into thirteen four-weekly periods. The
concept that one year equals thirteen equal periods of four
weeks is often used in business when data is analysed.
Choosing to represent a year over 104 pixels leaves suf-
ficient space across the screen for notation and labelling.
The company’s share price is scaled on the left hand axis

and the scale for cocoa prices is on the right hand axis.
Table 9.11 gives the user routine to be used in conjunction
with Tables 9.9 and 9.10, Lines 2000 to 2100 set up the
headings and scales, lines 3000 to 3060 plot the company’s
share prices and lines 4000 to 4060 plot the cocoa prices.
The data is placed in lines 6000 to 6122.

eS tke ee eee

_, ee ee Stee Oe aahount”

“AAG
“B1G
2A
Fa 5
dS ba
23
2048
2H4Z
a Si beat
2d So be
2684
SAE
ere
LHSe
eas
254
2106
She
S61
ZA

ase

344d

dS bet

2066
4666
4618
4026
4030
4646
4630
4664
a Sad Sa
fet Sa Sa
a
at ca a S|

ml St Pa

et es es 1D IS) aT I Et eed eee Oe DO ee De 6 MMMOHHa hhh hme PIU PQ wm CO my BP

Subroutines and High Resolution Graphics 91

REM USER SUE
PRINT "22"
PRINT" SHARES" ; TABS 1593 "COCOR"
PRINT"PRICE” ; TABS IS) "PRICE" : PRINT: PRINT
READ LE:LT= LE+ ioe REAL RE RT=RE+1 a0

FOR T=@ TO 18: H=LT-1a#1 : ?=RT-1481]
MF=RIGHTEC" "ESTRECK) » 3
TE=RIGHTEC" MtSTRECTO. S2
PRINTHS: TABC Los PE: HEAT

© REM D0 VERTICAL AXIS
FOR THESTOIS POREPESR+ooe T+
POREPGSGH+ 1542242, 91:REM PUT JOIN OF AXES
REM DO HORTSONTAL AXIS

SLL HEXT

FORIH=H=47O16 FORE GSa+1SeS2+1. 114° HEAT
REM D0 VERTICAL AwIsS
FOR THSSTO1S: PO
PRIHT OQ. TABC Sa. °1les4serooeles”
REM pe GRAFH :
FOR “=28 To 132
READ D: IF T=G@ THEN 266
VEHINTCOLT+S5-Do es 1a
GOSUB Sea
HET
REM EMD 1ST FLOT
REM eae GRAPH
FOR Mets Ta 1232
READ ‘D: IF Ti=@ THEN 4868
WIHT CCRT+S5-Toeee lao
GOSUE Shee
HET
REM END 2H GRAPH
GOYO Shea
LATA &&. 1ae
REM 1ST GRAPH oe | ae,
DATA 146,162,183, 188,118.115.112,.118

DATA 126.122.115.128. 128. 124.126.1356
DATA 128,126,129, 128.125. 124.126.1122
VATA t22,126.128. 136.132.1568, 146. 142
DATA 144.142.129.738. 136.127.1055. 138
DATA 136.134. 132.132.1368. 126.156. 134
TATA &
REM 240 GRAPH
TATA 142.164.118.168, 168.116.118.168
DATA 11G,112,116, 115,118, 114,116,.1718

PRSA+te2#T +16. PLE HEAT

92 Computer Programming with the Commodore VIC

Giid DATA 126, 122,124,.126.115.,116.114.118
6116 DATA 11G-.112,116,118.12e8. 122.124.1268
6118 DATA LeG.116.118,.116.114. 115.116.1185
6124 DATA 114.118.112.165, 186.116.114.116
6122 DATA & 7

908@ KEM END ROUTINE
SG1G PRINT ” Sieeteleteteteqeterereleqaiereieretaieteg ; =
9G@15 PRINT"FRESS A REY TO END”
39626 GETAS: IFAF="" THENS@2&
S838 ENT

Table 9.11. High resolution plotting example

The majority of the headings and scales are determined
by PRINT statements. However, the start of each vertical
scale is read into LB and RB in line 2025. The appropriate
scale is then calculated. To plot the company’s share price
(lines 3000 to 3060), a loop is set up capable of plotting
horizontally from pixel 28 to pixel 132. This loop is left
however if the data value read, D, is zero. Thus as the year
passes only the data statements need extending and to be:
terminated with a zero. The value of D 1s then scaled into
the appropriate pixel value in line 3030. Once the Y value
has been calculated the plotting subroutine (8000) is called
(line 3040).

The plotting of the cocoa price follows a similar logic and
coding. Because the initial routine moves pointers there
will be no cursor on completion of the graph. Therefore a
final short routine (9000) is called which uses a GET to
terminate the program. To prevent the display being spoilt
by the return of the cursor, a series of ‘cursor down’
characters precede the message to be printed (in line 9010).
Each cursor down character moves the cursor down one
line on the screen. |

10 Sound

10.1. The VIC sound system
The VIC sound system consists of four independent sound
generators each having a frequency range of three octaves.
Three of the generators give a ‘pure’ tone while the fourth
outputs ‘white noise’. White noise is the name given to
noise having a wide frequency spectrum. It is used for
creating a variety of sound effects, such as explosions,
which would be difficult to synthesise from a mixture of
three pure tones. |

In addition, the system allows the total volume to be
program controlled. Because the tones cannot be demon-
strated until the volume is turned ‘on’, this feature will be
discussed first.

10.2 Controlling the volume

The sound level is set by POKEing to 36878 a value
between 0 and 15. 0 represents the lowest volume level and
15 the loudest. The relative sound level is determined by
the volume control setting on the television set being used.
Note that the VIC acts on the integer values thereby
providing 16 levels of sound (including 0), e.g. POKE
36878,4.99 sets the volume to level 4. : ery

10.3 Controlling the tones

The three pure tone generators are activated by POKEing

to 36874, 36875, 36876 and the white noise generator by

POKEing 36877. The range of values that can be POKEd is

128 to 255. Values outside this range either have no effect

94 Computer Programming with the Commodore VIC

or produce a syntax error. It is convenient, however, to use
the value 0 to turn off a particular tone generator. Note that
POKEing the same value to locations 36874, 36875, 36876
produces three different tones. The tones rise with the
values 128 to 254 but value 255 produces a low tone.

1S6@ REM TWO HOTES
IGG PORE 268768. 15
1@26 FOR H=1 To 148
1S POKE S6e74, 246
L846 FOR : TU Sr
1836 MENT
1GEG PORE
1G°@ FOR s
1888 HEXT
1G3@ HEAT 4
L1G PORE S8er4.e
Li1G POKE 36676. 4a
1126 RETURY

Table 10.1 A two-tone routine

in —

J

* IT)

1

I

peal)
Pater —~{

Mon cei i

A simple program to alternate two notes is shown in
Table 10.1. Line 1010 switches the volume full on. Line
1020 and 1090 causes the two tones to be repeated ten
times. Line 1030 ‘switches on’ note value 240 and the F OR
loop (lines 1040-1050) provide a delay which determines
for how long the note is sustained. The alternate note
(value 230) is then similarly sounded and sustained by lines
1060 to 1080. At the end of ten cycles, lines 1100 and 1110
‘turn off’ the note and volume, respectively.

It is important to terminate any sound routines by state-
ments to ‘switch off’ the tones used and to return the
volume to zero. If this is not done, because POKE is being
used, the status of these locations will persist and be carried
over into subsequent programs that are run. This is also an
important consideration within a program as sound effects
are most conveniently incorporated as subroutines. All the
programs in this chapter have been written as subroutines
and hence have a RETURN statement as the final line.

: Sound 95

10.4 Controlling tone and volume |

This section uses a more comprehensive version of the
previous routine to simulate a passing car siren. The pro-
gram in Table 10.2 illustrates how the sound level can be
varied and the note changed by manipulating variables.

The basic FOR loop is lines 2070 to, 2140 and is used to
control the sound level. By setting variables X, Y, Z to 1,15
and 1, respectively, prior to the loop, the sound level is
increased at line 2080 (POKE 36878,L) on each pass of the
loop from 1 to 15. This causes the sound effect within the
loop to become progressively louder. On reaching full
volume the loop (lines 2070-2140) is exited and the para-
meters of the loop are revised over lines 2150, 2160 and
2170 to cause the loop, when next encountered, to decre-
ment L from 15 down to 0. This second pass of the loop 1s:
achieved by means of the J loop (lines 2060-2180)...

2068
HALA

2S

REM PASSING SIREH
T=248 3.
Ti=10

a5 in iG

“HA

oa S ben)

HAA

Aye
aS ta
ARISE
“166
“118 WE:
212e
“138
“144 |
elie
(2166
elra =
e1se t
2156
2G

ee |

| Sues

=1
Erk J=) Th

FOR Las

RETRY

urs “J se)

hh

<

Table 10.2 A passing siren

STERY 2.

96 Computer Programming with the Commodore VIC

In the earlier program (Table 10.1), the two tones were
produced by two separate POKE statements and two sets
of identical delay loops. For longer programs, alternative

programming methods that avoid the repetition of very
similar lines of code might be desirable. The current pro- .
gram (Table 10.2) illustrates one of these alternatives to
produce two tones.

One of the required tone values is set as T in line 2010 and
the difference between the required values is set as D in line.
2020. Within the main ‘volume control’ loop the tone is
generated at line 2090 for the duration of the sustain loop
(lines 2100-2110). Lines 2120 to 2130 cause the tone value
to be revised prior to the next pass. Line 2120 causes the
tone difference to be alternately +D, —D, +D, —Detc. on
each successive pass. Line 2130 revises the tone value
alternately to the two required values. Note on the first pass
the variable T is revised down, hence the initial value of T-

(line 2010) needs to be the higher of the two alternatives.
The penultimate line (2190) turns off the tone generator.

The volume is already off as the final value of L on exiting
the loop is zero..

10.5 Sound effects

The generation of sound effects depends upon software
control of the associated parameters. Although there are
countless variations possible, the main characteristics to
consider are: | |

a) the frequencies, and their progression over time;
b) the frequency mix;
c) the volume, and its variation over time;
d) the tone- silence ratio. i4"

The frequency can be changed progressively by means of
a FOR loop. A downwards progression of frequencies,
representing for example, a falling object can be obtained
from the program shown in Table 10.3.

eS
SEG
tS aa
SE
24
tS
2h Gt
od
2HSG
tS be

Sound

FEM FALLING GBIECT

PORE S657°8. 1%
FOR T=24@ TO 126 STEP -1

PORE S8e7e. 7
FOR S=1 TO 36
HEXT S
HEMT T
PORE 28576, &
PORE S826. &
RE T LPH

¥]

Table 10.3 A falling object

A disappearing object can be implied by having the
frequencies rise, e.g. by changing the FOR loop at line 3020

to

3020 FOR T = 130 TO 240

Changes in volume have already been illustrated by the

passing siren program (Table 10.2). A commonly required

sound effect is an explosion. This is achieved by using white

noise (i.e. POKE 36877) and allowing it to die away. The

program in Table 10.4 illustrates this effect.

4608
4eili
4628
4638
4hi4h
4656
4068
467°
4856

FEM EXPLOSIOH

PORE Seerr. 148
FOR L=15 TO @ STEER St

PORE S6e7re.b |
FOR S=1] To S&e’.

HEX? 3S
HEAT OL .

FOKE Seer. @
RE TUR

Table 10.4. An explosion

The tone-silence ratio is important for effects represent-
ing sounds such as phones. Table 10.5 illustrates a phone
ring cycle. The first line (5010) turns the volume full on and

98 Computer Programming with the Commodore VIC

pat) a1 SS
a4 1 &
at Sa a
at Sa Bt Se
a] SE aS
mt Sa at
a] tt
a a

ran] St Ke

REM PHONE RINGING
POKE 3687S, 15
FOR F=1 Ta 5
FOR H=1 To 2
FOR T=1 Ta 26
FORE 36876. 234
FOR S=1 7
HET
FORE 8876, @

m7 Ty
i}

28g

~
F aad

“898 HES
21 GG
~118
a wk
21 SG
2146
Lie
31668
21Fa

FOR D=1 TO 156
NET Deo
HEMT N
FOR P=1 TO
HEAT F
HEMT RF
POKE 36876,
RETURN

1686

rH

Table 10.5\ A phone ring cycle

~~

the last line (5160), prior to RETURN, turns the volume
off. The outer FOR loop (lines 5020-5150) repeats the
basic sound effect five times. Lines 5030 to 5120 form
another FOR loop that produces two ‘rings’ in quick suc-
cession while lines 5130 and 5140 form a relatively long
pause before the whole cycle is repeated.
A pure tone is modified in the FOR loop (lines 5040

—5090) to produce a ‘ringing’ sound. The loop generates 20
bursts of pure tone, each burst being sustained in lines 5060
to 5070 for only a short period. :

This chapter has illustrated just a few of the effects that
are possible. In all the examples, the progressive change in
the FOR loops controlling volume or frequency have been
linear. Exponential and other forms of progression can give
further effects. Other interesting and unusual effects can be
obtained by using the RND function to control volume,
frequency and/or timing.

Sound 99

10.6 Problem 4

Write a program to play the following notes:

_ G(2), A(2), B(2), G(2), G(2), A(2), B(2), G(2), B(2),
C(2), D(4), B(2), C(2), D(4), D(1), E(1), D1), CQ),
B(2), G(2), D(1), E(1), D(1), C1), B(2), G(2), G2),
lower D(2), G(4), G(2), lower D(2), G(4) :

The numbers in brackets indicate the relative duration
required for each note. Also practise changing the colour
with the notes. The POKE values for musical notes are
given in Appendix G. A suitable program is listed in
Appendix A18.

11 Using Data Files

11.1 Data files

When a large amount of common data is required by a
program it is inconvenient to enter this data each time via
the keyboard. A preferable method is to store the data in
DATA statements within the program, as described in
Chapter 3. However, this is still restrictive as these DATA
statements are not readily available to other programs. The
most flexible approach is to store your data in separate files
from your programs so that the data files may be used by
more than one program. You can then also prepare stan-
dard programs to analyse and process different data set up
in data files.
A data file is created by a BASIC program so that the

contents and format are under your control. In practice this

means you are likely to write several programs, e.g. one to

create the data file, one to update the data file, and some to

process the data. This chapter shows how such data files
may be created andread. — | cans

There are two ways of processing files: sequentially and

randomly. Random access of files can only be carried out

from disks, whereas sequential access can be carried out

from disks or magnetic tape. This book deals only with

sequential file systems. |

11.2 File records

The contents of a data file may be regarded as the equiva-

lent of a series of DATA statements within a program.

Although the data consists of one long ‘column’ of values, it

eed

sn tt ll tt =

.

—_ ee eee ee

Using Data Files 101

is useful for you to think and design the logic’ of your
program round the concept of records. For example, a
stock record might consist of a stock number, item descrip-
tion, stock level, unit cost and re-order level as shown in
Table 11.1.

Stock No Description Stock © Unit Cost Be-awder level

1234 Pens 15 45 ait DO
2340 Pencils 50 12 | 40
2679 Erasers «8 § 10
3456 Rulers 20 26 30
4567 Writing pads . 40 35 50
4568 Note books 60 40 cso 30
6770 Labels rn? AO 19 038 PA DS
6775 Pins 40 15°: se 20
6979 Envelopes 40 20 60
7050 Cash books 30 = 22 40

Table 11.1. Stock Records

The data contained in Table 11.1, recorded sequentially
record by record, would give rise to a ‘column’ of values as
shown below:

1234
PENS
15
45
20
2340
PENCILS
50.
etc.

In transferring this data to and from memory it 1s more

convenient to assign separate variable names to each part

of a record and move one record at a time. This keeps the
program logic simpler, although within a particular prog-

ram a variable (unit cost, say) may not be manipulated or

used.
As the program examples in this chapter use the data

102 Computer Programming with the Commodore VIC

shown in Table 11.1, this is a convenient place to define the
variable names to be used:

K = stock number
D$ = description
S = stock
C = unitcost
R. = re-order level

11.3 OPEN and CLOSE

Any files to be used by your program need to be declared
before use. The OPEN statement has the general form:

line number OPEN x, y, z, “filename”

where x, y, z are file parameters as follows:

x = the file number, as chosen by the user for this par-
ticular program

y = the number of the device containing the file
z = an indicator stipulating whether the file is to be

opened to be read, or to be written to

E.g. 10 OPEN 2,1,1,“STOCK”

indicates that a file named “STOCK” will be referred to
subsequently as file 2 and is located on device number 1. If
z =1, this indicates the file is to be written to.

The default option, OPEN x, means that the next file
encountered will be opened to read only and will be
assigned the number x.
A separate OPEN statement is required for each file

being used. Each file that is opened also needs to be closed
after final processing of the file bya CLOSE statement, e.g. .

90 CLOSE 1

11.4 File input—output statements |

The statement used to output a file has the general form:

Using Data Files 103

PRINT#filenumber, variable list
e.g. PRINT#1,K,D$,S,C,R

The comma as a delimiter is suppressed so that in the above

example K,D$,S,C,R, is written as one string. You can
preserve the variables separately by using separate PRINT
Statements, 1.e.

PRINT#1,K
PRINT#1,D$
PRINT#1,S
PRINT#1,C
PRINT#1,R

or you can retain the commas by enclosing them in quotes,
1.e.

PRINT#1,K;”’,”;D$;”’,”;S;”,”;C;”’,”;R

The corresponding read statement is:

INPUT, filenumber, variable list
Thus a corresponding read statement might be:

INPUT#1,K,D$,S,C,R

11.5 End of file records

It is convenient if you have within your program your own
means of detecting the end of your data. This can easily be
done by terminating your data files with a dummy record.
The contents of this dummy record are chosen to make it
unique. For example, in the stock record file previously
discussed the dummy stock number could be made larger
than any likely to be encountered, i.e. 9999 if four-digit
codes are used. | |

Since a complete record is transferred as a whole, the
remaining fields of the dummy record need to be provided
with values as shown below:

9999 ,X,0,0,0

104 Computer Programming with the Commodore VIC

START

INITIALISE

READ A
RECORD

<> YES

MAIN
PROGRAM
FOR RECORD

TERMINATION
ROUTINES

STOP

Figure 11.1 General flow with dummy record

Using Data Files 105

The general flow of processing when a dummy record iS

used is shown in Figure 11.1.

Problem 1 — Stock data file

Write a program to create a stock data file on cassette

incorporating a dummy end record for the data in Table

Li,
A suitable program is listed in Table A19.

Problem 2 — Re-order list

Write a program to read the data file produced in problem 1

and output a list of items to be re-ordered. A sample output

is shown in Table 11.2.

RE-ORDER LIST
eoe%sefeee ef © @© © © © © © @

eeeeeee8.8 @ @ @ @# @ @ @ # #® @ # &* 8 @

1234 PENS
2679 ERASERS
3456 RULERS
4567 WRITING PADS
6979 ENVELOPES
7050 CASH BOOKS

Table 11:2 Output from re-order program

A suitable program is listed in Table A20.

Problem 3 — A data file search program

Write a program using string functions to search the stock

data file produced in section 11.5 for any stock description

containing a specified substring, i.e. PEN. An example of
the output is shown in Table 11.3.

106 Computer Programming with the Commodore VIC

STOCK FILE SEARCH |

ENTER SEARCH WORD ? PEN
PRESS PLAY ON TAPE#1
OK

1234 PENS 15

11 RECORDS READ
2 RECORDS LISTED

Table 11.3) Output from search program

The program is listed in Table A21.

12 Applications

12.1 Series

A series consists of a number of terms, each term having a
constant relationship to the next term. When devising
computer programs for evaluating series, a procedure
needs to be designed which allows the next term in the
series to be calculated from the previous term.

For example, the exponential series may be evaluated as
follows:

an x) .x e=lLtxt+a ta,t...7%

where 2!=1xX2 3!=1x2x3 ete.
The steps in the repetitive process to calculate e* to n terms
are:

Step 1. (initialisation), set first term (T) to x, e*to1+ T,
and I to 2

Step 2. calculate next term by multiplying previous term
by x/I, and add this new term to the old value of e*

Step 3. repeat step 2 a further n — 2 times.

The BASIC routine to calculate e* is shown in Table 12.1

Problem 1 — Evaluation of cos x

Write a BASIC program for evaluating cos x, given that:

» di Same
cos x = 1 —ar tar S

The program 1s listed in Table A22, and the value of cos 30°
to 5 terms is given in Appendix B.

+...

108 Computer Programming with the Commodore VIC

26 PRINT"HO OF TERMS FOR ET”
2 IHMPUT W
46 PRINT "VALUE OF #”;
S@ INPUT &
6G LET T=
ra LET E=1+T °
eG FOR I=2 TO
96 LET T=T#s4."1
16@ LET E=E+T
11@ HEXT I
115 PRINT
L2G PRINTVE Tas MS" E
L250 PRINT" Seek ee ee eee eR RRR ES"
isa ENT

Table 12.1 Program to calculate e”

12.2 Processing experimental data

The program given in Table 12.2 illustrates the use of the
computer to process data which is entered at run time from

16 PRIHT "HEAT OF COMBUSTICGN”
Lo PRIN) “ssHs——=4-——— eH et
“G FRIHT "HAME OF SUBSTAHCE”
2 IHPUT Het "
48 PRIWHT "ENTER S.W.7T.R”
6 INPUT S.H.T oR
BG LET HEH Ht4. 2 Tere, 661 S48. 5)
ra PRIWT
c8 FRIHT "RESULT FOR "SH
ao PRIA =" SHe "EI AMOL”
co PRINT" eee"
SQ PRINT
166 PRIWHT “AY MORE DATA”
185 PRINT CYSES. H=HOo” |
114 IHPUT ‘Yt
126 PRIHT
is@ IF YF = "Y" THEN 2&
i4dg EMD
Table 12.2 ‘Heat of combustion’ problem

the keyboard in response to messages output from the
program. This method of working 1s applicable to, say, a
class of students where each group is carrying out similar

Applications 109

experiments. The results of the experiments are prepared
for input to the computer program, and the program is used
to output the final answer for each group. Similarly, a
scientist may repeat the same experiments for different
substances and the series of results may then be processed
by one computer program.

HEAT OF COMBUSTION

NAME OF SUBSTANCE
? ETHANOL
ENTER S,W,T,R
? .36,100,23.5,46

RESULT FOR ETHANOL
= 1261 KJ/MOL

oe 3K OK KOK Kk KK OK KK HK

ANY MORE DATA
(Y = YES, N = NO)
2Y
NAME OF SUBSTANCE
? METHANOL
ENTER S,W,T,R
? .39,99,21.2,32
RESULT FOR METHANOL
= 723 KJ/MOL
KKK KKK KKK

ANY MORE DATA
(Y = YES, N = NO)
2N

Table 12.3 Output from Table 12.2 and data input

The output messages, replies (data input) and results are

shown in Table 12.3. S is the mass of substance burnt and W

the mass of water heated by the substance in grammes, T is

the rise in temperature of the water in °C, and R is the

relative molecular mass.

Problem 2 — Roots of quadratic equations

Write a program to calculate the values of the roots of any

number of quadratic equations (ax’ + bx + c = 0), given

110 Computer Programming with the Commodore VIC

the coefficients a, b and c. If b? — 4ac>0, output the
message “REAL ROOTS’ and the two roots. If b? — 4ac =
0, output the message ‘COINCIDENT ROOTS’, and
the value = — b/2a. If b’ — 4ac<0, output the message

3x? + 9x+ 2
Tx? — 5x + 3
x’ — &x + 16
2x°> + 3x — 4

—3x?-—2x+ 1
x+2x+ 3

hud wt te eu oocococo°o

Table 12.4 Quadratic equations

‘COMPLEX ROOTS’. Allow for interactive entry of a, b
and c during run time and stop the execution of the program
by zeros being entered for a, b and c. The program is listed
in Table A23, and the answers for the equations shown in
Table 12.4 are given in Appendix B.

12.3 Tabulation of results and averaging

Measurements, intermediate calculations and final results
of experiments may need to be tabulated so that a perma-
nent record is available in an easily readable form. The final
answer is often obtained by averaging the results of more
than one experiment.

Problem 3 — Width of aslit

The collimator of a spectrometer was used to provide a
parallel beam of light from a sodium flame. The beam of
light was allowed to fall on a slit placed vertically at the
centre of the table of the spectrometer. When appropriate

adjustments had been made, parallel bands were seen on

looking through the telescope. These were made as sharp

as possible by adjusting the slit of the collimator. The

crosswires of the eyepiece of the telescope were set on

corresponding minima on either side of the centre and the

Applications 111

vernier readings were noted; this gave a value of 2A for

each of the fringes 1 to 6.

The width of the slit W (cm) = Na/A where N is the fringe

number, \ = 5.893 x 10-5 cm (wavelength of sodium

light), and A is in radians. |

Write a program to tabulate the measurements taken and

values of A and W shown in Table 12.5 (you will need to

split the output into two separate tables) and output the

average value of the width of the slit. There are two pairs of

vernier readings for each fringe number. Values of 2A are

found by subtracting the second vernier reading from the

first vernier reading. The average value of A is then calcu-

lated for each fringe number. The program is listed in Table

A24, and the average value of W is given in Appendix B.

FRINGE VERNIER READINGS A WIDTH OF

NUMBER DEG MIN DEG MIN MIN ~SLITCM

ee en a eee te eee ee ee ee
a

6 we ee One ete 6 6 6 0 6 6 O06 ele sw ©, 8 6 lee 6 6 CRM LR O62 0078 OO Fe OR OLONS we ee ee”

Cs 66 © Ole 8 lW Ree SOO BO 8-8. G6. 6, O G0 O40 DRO OO 8 ORE SOE SPR RR

swe © aterele S98 © 6 6 656. 8 PU £8 8 Sw 8S 8 RAYS 8 SSO ee ee eR ee eee

ceo ea meeeveeneeevneeewoeeeoeanea eels ds geee ase ee gee eee eR erases

ceo ep beh oOtam ween wee oe meee & H FF 4 8G OF OF OG B'S NM 8 HGF Be eo Fee

Qapecpes-6.¢ ss eigpeap pe Sap rsa ae pata ¢ 90 a8 GO Pea eh a ee ee ec eB |enge ae ee 8

Table 12.5 Tabulation of results for Problem 3

112 Computer Programming with the Commodore VIC

12.4 Linear regression

Often straight line graphs may be obtained by manipulating

the formula which defines the relationship between the
variables. The equation of a straight line may be written as,

y=mx-+t+c

where,

x = the independent variable
y = the dependent variable
m = the slope of the line
c = the intercept of the line on the y axis

A line of ‘best fit’ .can be calculated for a series of data

points from,

a n&xy — 2xLy

n>x? — (x)

andc —_2y — m2x_

n

where,
x and y are the co-ordinates of each data point and
n = number of data points.

There are many equivalent forms of the above express-
ion; some are more suited to manual calculation than

programming. A measure of how closely the data follows
the calculated straight line is given by the coefficient of
correlation (r). If the data lies on a perfectly straight line
then r will be +1 (for positive slope) or —1 (for negative
slope). In the extreme case of no correlation whatsoever,
i.e. the points are scattered randomly, r will equal zero.
The acceptable level of correlation, i.e. value of r, for the
number of readings involved can be found from statistical
tables.

Again, the formulae for r can be presented in different
ways. The expression given below is in a convenient form
for programming when the slope is already evaluated.

Applications 113

_ \/ m(=xy — 2xZy/n)

ro V Sy? = (Sy)?/n
It should be noted that m, c and r require similar pre-

liminary calculations and that it is convenient to initially

calculate and store,

Dx, Vy, Dx’, Dy’, VxLy

A program to perform linear regression and calculate r is

given in Table 12.6

Problem 4 — Young’s modulus of the material of a bar

The bar was clamped horizontally at one end. A weight of

mass M (kg) was attached to the other end, and was kept

vibrating by an electro-magnet. The vibrating end of the

bar was illuminated and was viewed through a slit in a
rotating disc, using a telescope. The speed of the disc was

gradually increased by adjusting the resistance, placed in

series with the electric motor used to rotate the disc, until

the bar appeared to be at rest when it was vibrating. A
counting arrangement on the motor gave the number of
rotations in a definite time.

It can be shown that the motion of the vibrating bar is
simple harmonic with a period:

—" v(P(M + —
3Y1

where _ 1is the moment of inertia of cross-section
Y is Young’s modulus of the material of the bar
lis the length of the bar in metres
m is the mass in kg of the vibrating part of the bar

For a bar of rectangular cross-section (breadth b and
depth d metres), i = bd?/12.

3Ybd°T? Hence, - 22. =
48 rh

= M + 33/140m

114 Computer Programming with the Commodore VIC

T’ (seconds) plotted for different values of M (kg) gives a
straight line graph, and Y may be found using the slope of
the graph as follows:

yi 1 16 wb.
~ Slope of graph bd?

78 DIM €¢265. 926)
6G PRINT "ENTER NO OF”
62 PRINT"PAIRS OF READINGS"
f@ INFUT N
cH FOR I = 1 TON
3@ PRINT "ENTER X.Y PAIR "5
166 INPUT XI. YC1D
11@ HEXT I
1-6 GOSUB 4qan
1s ENT
48GG LET S1
4Gi6 LET Se
4428 LET S3
4836 LET S4
4640 LET SS
4166 FOR I =1 TON

tun nw AQAAQa

411@ LET S1 = $1 + CID
4126 LET Se = S2 + YCID
4136 LET S3 = S3 + KCI t2
4146 LET S4 = S4 + CIO te
4156 LET SS = SS + ACT ORYC ID
4166 NEXT I
41°6@ LET M = CN®S5 - S2eS1I“CN*®S3 - SI TZd
4156 LET C = (S2 -— M&S1-N
4190 LET R = (Mh CSS -— SI¥S2/NDOCCS4 - S2te-eNd
4192 PRINT
4193 PRINT"Y =
4194 PRINT"M = "GM
4195 PRINT"C =
4136 PRIWT
4197 PRINT "COEFF. OF CORF.="
4199 PRINT SQRCR)
4193 RETURH

Table 12.6 Linear regression routine

Applications 115

Write a program to output Young’s modulus for a bar in

Newtons/m?. Use the linear regression routine given 1n

el,

M (kg) _ T (seconds)
gears

.097 0.12
147 0.139
157 0.145
ATT 0.15
197 0.16

Table 12.7. Data for Problem 4

Table 12.6, to find the slope of the graph for the values of

T and M given in Table 12.7. The dimensions of the bar are:

b = 1.58 cm, d = 0.312 cm, 1 = 40 cm. The results are given

~ in Appendix B.

Note: Remember to calculate T? for the linear regression

‘Y’ values; the ‘X’ values are those listed under M.

12.5 Simulation

12.5.1 Background

Simulation requires the writing of a program that models a

situation. Changes are brought about in the model, either

by the user or by inbuilt routines so that the behaviour of

the model can be studied. From studying the behaviour of

the model under varying circumstances it is hoped to gain a

better understanding of the reality represented by the

model. |
Some models consist of specific relationships, e.g. a

Balance Sheet. In such a case, if you make a change in one
variable this leads to a specific revised Balance Sheet. You

can, by this means, simulate the effect of changes in labour
costs on the profits.
Many forms of simulation require the values of some of

the variables to be sampled from a probable range of

116 Computer Programming with the Commodore VIC

values. The probable range of values is usually expressed as
a probability (or frequency) distribution. In these models,
the outcomes and their interactions need to be studied over
many simulations to obtain a representative picture of the
model’s behaviour.
A simple simulation model of this type is discussed

below. As the basis of the variability is the sampling from a
frequency distribution, the program has been written to
make use of the two subroutines previously developed in
Chapter 9, section 9.6. Note how the subroutine can be
used several times by transferring values to and from the
variables common to the subroutine.

12.5.2 Simulation of combined units

The problem is to simulate the breakdown pattern of a
combined unit comprising a motor assembly and a gear
assembly from the breakdown pattern of the individual
assemblies.

The running time of a combined unit can be simulated by
sampling in turn from the running time distributions of the
motor unit and the gear unit. The shorter running time will
be the running time of the combined unit. By simulating
many such samples the MTBF (mean time between failure)
for a combined unit can be obtained. »

12.5.3. Output required

For a short simulation it is convenient to monitor the course
of each pass through the program. Therefore, in this case,
the output can be the sampled lives of the motor and gear
assemblies, the life of the combined unit and the MTBF to
date. For longer simulations this amount of detail would be
time consuming to print. It could be incorporated for
debugging purposes and then dropped, the final program
only producing the ultimate MTBF.

However, a single final statement of the value of the

Applications 117

MTBF is not as informative as a running output of the
variable. The decision to terminate a simulation is often
taken once the variable under inspection has settled down.
These considerations, in this case, lead to the idea that

there should be an option to continue the run if the
fluctuation in the MTBF is not within the desired limits.

12.5.4 Description of the program

The BASIC listing of the main routine is shown in Table
12.8 and of the subroutines in Tables 9.7 and A17 (see
Chapter 9).

“A TIM Mc1@.29,.G£18.2), 1G. e3sF C1G.29
44 GOSUE SaG
26 FOR I=1 Ta N
ae LET MCI, 13=2C1.
S4 LET Mel, 23-07, Se as

=e HET I
64 GOSUE Bae

re FOR T=1 TO H
re LET GCL. Lo=¢t. i>
r4 LET Gel. fa=frt. 23
ve HEAT I
of LET USS! SSeS eee ee
34 LET T=& ?
ii LET K=1
Lis FRIWT
126 PRIWT"LEHGTH OF SIMULATION”
tae IMPUT Lb
i448 FPRIPT
ids PRIWT wt
156 PRINT'SIMN". TABLA. "ATR" | TABS S3: “GEAR”.
166 FRIWNTTABC ise. "COME": THBCLoo. "MTBF"
Lr PRIWT Ut
lca FOR S=kK TOL
eH FOR I=1 Ta 1&
fH LET «el. 13=Me1.13
“4 LET KEL, 2a=htl. 23

266 HEXT I

Table 12.8 (1) Main routine for simulation program

118 Computer Programming with the Commodore VIC

71 GOSUE Fae
220 LET U1=¥
24 FOR 1=1 TO 14
Yd? LET HC1,13=G01,13
244 LET HCL, 22=G01,23
246 HEXT 1
254 GOSIE 9ae
26@ LET Uz=¥
266 LET C=
29@ IF UZSU1 THEN 326
20@ LET C=ue
#20 LET T=T+C
238 LET ASTSS
235 LET A=INT¢1G#AD 18
S4@ PRINTS; TABC49 3 U13 TABCS9 UZ; TABS 139503 TABCL 7354
G5G HEST ©

| a so PRIWT Ut
2°@ LET K=L+1
358 PRINT'ENTER ADDITIONAL”
336 PRIAT"SIMULATIOHS REGUIRED, "
S95 PRIHT OR ZERO To STOP”
468 INPUT L _
442 IF Lo THEN 424
416 END
4c LET L=K+L-1
436 GOTO 176

Table 12.8 (2) Main routine for simulation program

The motor unit frequency distribution is input after
control is transferred to the subroutine from line 40. The
input is returned in array D and the contents copied to array
M. This allows array D and hence the subroutine to be used
again. This time the gear unit frequency distribution is
input and on return to the main routine it is copied from
array D to array G.

The next stage of the program initialises the variables T
and K in readiness for the simulation. Variable T is the

Applications 119

cumulative combined unit running time, and variable K is
the starting (or continuation) value of the simulation count.
K is initially set at one for the first run (line 100) and is
revised in line 370 in case the FOR loop is to be continued.

The initial length of the simulation is input at line 130.
Line 150 and 160 print the required heading. PRINT U$
produces a line of dashes and is used to highlight the
headings (lines 145 and 170). Each line of calculated output
is produced within the FOR loop from lines 180 to 350.

To sample from the motor unit distribution (array M) it is
copied to array X by lines 200-206. The subroutine starting
at line 900 is entered and a sample from array X is returned
as variable V. In line 220 this value is retained for future
reference as variable U1. This procedure is then repeated
for the gear unit, the sampled value being retained as U2.
Lines 280-300 carry forward the lower of the two values as
variable C (this is the running time of the combined unit).
The cumulative running time is calculated in line 320 and
the current average running time (the MTBF) is calculated
in line 330 as A. Having completed a pass through the FOR
loop, a line of output provides the current simulated values
of U1, U2, CandA.

After simulating the stipulated number of times (i.e. L),
the FOR loop is left. In anticipation of continuing, the
value of K is reset in line 370. Lines 390-400 allow you to
reset L, or, if you enter zero, the run stops.

To separate this interactive part of the run from the
previously calculated output, PRINT U$ is now used in line
355. If the run is to be continued, control is returned to line
170 to separate the subsequent output in a similar way. This
means of trying to keep the output tidy is best appreciated
by studying extracts from a run of this program as shown in
Table 12.9.

120 Computer Programming with the Commodore VIC

LENGTH OF SIMULATION
?10
eeeceeeeeeeeseaeeeeeeseeeeeeeeeoeeeeseeseeseeeraesevreseos

eeeoeeesveseeseaeeeeeeeeeseeseeseseeneeseseseeeaeeseeenes

ENTER ADDITIONAL
SIMULATIONS REQUIRED,
OR ZERO TO STOP ?5
@eeeceeeeeeeeseeeeseeeseeeeeseeeseeseeseseeeeeseeeeese

ENTER ADDITIONAL
SIMULATIONS REQUIRED,
OR ZERO TO STOP ? 0

Table 12.9 Example of output from Table 12.8

Problem 5 — Combined units simulation

Use the simulation program (Table 12.8) to calculate the
mean time between failure for a combined unit consisting
of motor and gear units having the failure pattern shown in
Table 12.10. Simulate 100 failures. The answer is given in
Appendix B.

Applications 121

, Motor Unit Gear Unit
Life (weeks) Cum%Freq Life(weeks) Cum % Freq

4 20 10 10
8 40 12 15

12 50 14 40
16 90 16 60
20 100 18 WD

| 20 80
22 100

Table 12.10 Failure pattern of units

12.6 Financial

Many financial calculations relate to the calculation of
interest over a period of time. A common example involv-
ing repayment of interest (and capital) is a mortgage repay-
ment. Once a mortgage has been obtained there is little you
can do about the repayments required. A computer pro-
gram, however, could be particularly useful in examining
the effects of changing the variables to assist in choosing the
most suitable mortgage.

12.6.1 Mortgage calculations

The repayments required on a mortgage can be calculated
from the following formula:

— Pi(1 + i)

| ~ +i) —-1
where,

P = Principal (the amount borrowed)
n = duration of mortgage
i = interest rate per annum
R = required annual repayment

Many organisations providing mortgages allow you to
repay monthly. The monthly repayments are usually 2 of

122 Computer Programming with the Commodore VIC

the annual repayments because they are regarded as simply
advance payments of the annual premium. These monthly
advance payments do not themselves earn interest.

12.6.2 Requirements of the program

In examining alternative mortgage proposals you would
want to change P, n and/or i as required. As successive
changes were made it would be useful to be reminded as to
the current values of these three variables.

This program is the type likely to be used by someone
such as a broker in a working environment. As he is not
likely to have any programming knowledge the PRINT
messages need to be clear and the data entered in the most
natural way. Thus the variables to be revised are indicated
by entering I, P or N rather than entering a numeric
alternative such as 1, 2 or 3. Although the program is
slightly more complex as a result, this is regarded as a
secondary consideration.

The input to the program is straightforward; the interest
rate is entered as a percentage (i.e. 12.5 not .125) as this is
how it is commonly quoted.

12.6.3 Description of the program

A listing of the program is given in Table 12.11 and an
example of the output in Table 12.12.

Line 30 defines the function FNM which rounds to two
decimal places thereby representing monetary amounts to
the nearest pence. Lines 40-100 request the starting values
of I, P and N. The annual repayment is calculated in line
120 and printed as a monthly repayment in line 130. A
blank line (line 140) is printed before looping and produc-
ing revised output.

Line 160 allows you to revise optionally the values of I, P
or N and line 170 reminds you of the current values. The
option you enter is identified by the program over lines
200-250. If an inappropriate character is entered this char-

mt (5) f

Applications

FEM MORTGAGE REPAYMENT -
DEF FHM O=TMTCse1ae + . 55-108
PRINT" INTEREST RATE AS
IHFUT J
LET I = 1-186
FRIHT"SIZE OF MORTGAGE"
IHPUT F
PRINT"FERICI OF LOAN “'PRSo”

nat |

yy 1%) 13)
. J.

es) LC

NOVY ed me eT a oy pe ed ed fa
Sm lps 4, 5!

fi ft ri feeb ah eb pee pee peck peek feck feh fuk pus pe Lo co J

Ky Tr <3,

% a Tad TS ey i i
240

oF

300
218

Cents

SA
real

IHFUT W
LET R=CPe Tec ltl oto ec cl+I tHa-1)
PRINT ’MOMTHLY REPAYMENTS ="
PRINT FHMCRA 12)
PRINT ,
PRIMT"ENTER I.F CF HW"
PRIHT’TG REVISE IMTEREST."
FRIHT PRINCIPAL CF YEARS"
PRINT PRIHT"ESISTING VALUES ARE”
PRINT I:FsN
FRIHT:FPRIHT'OR ENTER S TO STOP”
THFUT. AF
IF AS = "S" THEM 35a
PRIHT REVISED VALUE"
IHFUT
IF At "TI" THEM 296
18 el 3 "RP" THEM 31
IF AF "H" THEM 33
PRINT FRINT"REVISION ERRCR: "
PRIHWT A$.” ENTERED” -FRIWT
BOT 168
LET I =
GOTO 126
LEFT F = &
GOTO 126
LET H = #
GOTO i268
EMT

me 1G

Table 12.11 Program for mortgage calculation

123

acter ‘falls through’ these lines and the error message (line
260) is printed. Otherwise the revised value entered in line
220 is assigned accordingly over lines 290 to 330. The
program then loops back to line 120 to recalculate R.

124 Computer Programming with the Commodore VIC

INTEREST RATE AS A %
712.5
SIZE OF MORTGAGE
? 10000
PERIOD OF LOAN (YRS)
225
MONTHLY REPAYMENTS =
109.95
ENTER I,P ORN
TO REVISE INTEREST,
PRINCIPAL OR YEARS
EXISTING VALUES ARE
2D 10000 25

OR ENTER S TO STOP
2P
REVISED VALUE
? 8000
MONTHLY REPAYMENTS =
87.96

ENTERI,PORN
TO REVISE INTEREST,
PRINCIPAL OR YEARS

EXISTING VALUES ARE
125 8000 Zz

OR ENTER S TO STOP
28

Table 12.12 Example of output from Table 12.11

Problem 6 — Monthly repayments

Run the program shown in Table 12.11 using the following
data:

Interest rate, 11%
Loan, £15,000
Period of loan, 20 years

Then revise the loan to £20,000. The two monthly repay-
ments are given in Appendix B.

Applications 125

12.7. Morse trainer

This program makes use of the VIC’s sound facilities to

‘playback’ in Morse code any string entered at the

keyboard. In addition, an appropriate graphics dot or dash

is displayed on the screen to match the Morse sounds.

The program is given in Table 12.13. Line 5 sets the tone

to be sounded for the Morse signal and line 6 sets the basic

unit of sustain used in subsequent delay loops. By making S

smaller, the Morse will be played quicker but the relative

timings of dots, dashes and pauses will be maintained. Line

20 transfers control to subroutine 400 which sets up an array

M$(26) with strings of dots and dashes to represent the

Morse code (in alphabetic sequence). This routine could be

extended to include the full Morse code set by increasing

the array size and adding suitable DATA statements.

4 DIM MN#¢26>,.L$¢40)
5 POKE 36876. 241
iG S=16
14 PRINT "Siete"
15 PRINT” | MORSE TRAINER”
16 PRINT" 9 ---ooo0- oo "
20 GOSUB 40a
25 PRINT" SENTER MESSAGE: Gi";
3@ INFUT SF
35 PRINT" WG"
44 GOSUB 5aa
s@ FOR K=1 TOL
6@ L¥ = LECK>
7@ GOSUE 1466
9@ HEAT K
144 EMD
4a@ FOR I= 1 TO 26
414 READ M#<I>
42°@ NEAT I
430 BATA "eta meen meet Mee

44G DATA "some a mye een et ee ee
450 LATA Mo

 } | 9] ue
#°

+2]

464
47
426
496
JAG
21
we
Jeu
are
J46
45
raha
ra
1666
1G1&
Lice
LA36
1646
1GiG
1G66
1Gir@
1656
1836
1186
46AG
4605
4016
4044
4078
pa] a
JAAS
261
JA46
a) Sa
a1
64GS
6614
5A44
7 AGG
(ARS
r@lg
(846

126 Computer Programming with the Commodore VIC
DAA. a
DATA "..
DATA "--.."
RETURN
REM TRANSLATE
L=LENCS#)
FOR I=1 TOL
L#¢ 1O=CHRS (32)
FOR J=1 TO 26
IF MITS(S$, 1, L9<SCHREC644I> THEN 55a
LECT =M$CID
NEAT J
NEXT I

é as oa é @®es é

Pere | 23 —_ tt hy ee | ? —_ 2! ee
é see é a md ee é e —

REM SOUNT CHARACTER
IF LE<CSCHRF(32> THEN 1636
GOSUB Yeea:GOTG 1166
W=LENCL$>
FOR I=1 TO WwW
SF=MIDSCL$, 1.12
IF “#=CHRE(46) THEN GOSUB 4006
IF XF=CHRSC45> THEN GOSUE [606
NEST I
GOSUB 6666
RETURN
REM DOT
PRINT" @":
FOR DT=1 TG
FOR D=1 TO
RETURH
REM DASH
FRIWT a "5 .
FOR D=1 TO S&’5:POKE 3687S. 15:NEXT BD
FOR D=1 TO S:POKE 3687°6.@°NEKT D
RETURN
REM END LETTER
PRINT
FOR T= 1 TO 2%5:POKE
RETURH
FEM END WORD
PRINT
FOR D= 1 TO 6#5:FOKE
RETURN

& > POKE 6o7re.15:NEXT OD
S:FPOKE 366 *S,@°HEXT BD

% Se

™

3

3687S8.@:>NEAT BD

3687S.@> NEXT OD

Table 12.13 Morse trainer

Applications 127

_ The message to be transmitted in Morse is input at line
30. This is examined character by character in the sub-

routine (lines 500-560) and as each character is identified in

line 540 its Morse code equivalent (M$(J)) is copied to

array L$. Each character occupies one cell in the array. The

dimension statement (line 4) therefore limits the current

program to messages of 40 characters.
Lines 50 to 90 in the main program then transfer the

Morse code string from array L$ to the variable L$ within a
loop. The current content of the variable L$ then is used by
the subroutine 1000 to 1100 to determine which sound

subroutines should be called.
If L$ is a space then the ‘end word’ subroutine (lines

7000-7040) is entered. Lines 4000 to 4070 or lines 5000 to
5070 are executed if L$ is a dot or dash, respectively.
Having sounded appropriately, the ‘end letter’ subroutine
(lines 6000-6040) is entered. |

The relative timing is determined by the delay loops in
the sound subroutines. Taking the dot character as a unit of
‘duration, the time interval between characters is also

equivalent to a dot. The duration of a dash is three dots.
Between letters there is a pause equivalent to three dots,
but as the last dot or dash has a pause of one unit within its
own subroutine the ‘end letter’ subroutine needs to add
only two dot equivalents. Similarly, as the interval between
words is equivalent to seven dots the subroutine (lines
7000-7040) adds a further pause equivalent to six dots.
These timings are approximate because the time spent in
the rest of the program will add a smail fixed element.

The above program can be modified in several ways; for
example by making the INPUT from tape, practice tapes
could be compiled by someone else so that the listener does
not already know the message.

Appendix A
Programs (Tables Al to A24)

aS
em
ae
4h
45
SA
ar Pa

LD cong CO > i} A oy is

THPUT A E ! F, tH ! F:

PRIWT
LET T=" AtE 2 #H+F oR
PRIWT"’LEHMHGTH OF STAY:"
FRIWT tHe "HIGHTS"
PRIMT ACCOMODAT I City:

PRIWT"£" 5A; a HIGHT”

PRINT "EXPEMSESS MEALS ETC. 3°"
PRIHT'$°°€ '
PRINT ALLOWAHCESPRESEHTS3:"
PRIWAT YE" SF

PRINT "“EXCHAHGE FATE: ™

FRIHT Fi" TO THE £2"
PRIT

PRIHT "£ FEQUIRED:"
| PRIAT T

186 PRI T "ae
116 END

Table Al_ Number of £s required

Appendices

“@ IHPUT WOF.F.S. 0
ai PRINT
38 LET CSHeCF+P+2e5e0 186-Tl 1689 “1668
44 PRINT HO GF DELEGATES: ”
4= PRIWT 1
“& PRIWT"COST OF FOLIERS: "
ao FRINT F;"F ERCH"
BE FRIHT"COST GF PAPER: "
Bo PRINT Fs "FP PER FAD"
TG PRINT"COST OF FEMS LESS"s Ds": "
vo PRINT S;"F ERCH"
SG FPRIWT
co PRINT’COST OF STATIGHER’Y ="
94 PRIAT "ES" SC
92 PRINT? eee ee”
18 END

Table A2 Cost of stationery

PRINT"CALCULATIONS FOR"
PRINT’ DIFFERENT -CODES”
PRINT "--------------- :

ott PRIHT

a)
mb re Om) ty me) A el es rT anal

115
128
125
128

146
145
156
as
iF

i REM H=HUMEBER OF
FEM SETS CF DATA

IHF 4

FOF J=1 Ta H

IHPUT C.8.4
OH C GOTO 94. 166.118.1206, 128
LET R=s+Y

GOTO 146

LET F=s-'7

GOTO i4&

LET Rosey

GOTH 146

LET R=
GATTO 146

LET R=KT?
PRINT LOGE 1.3 OR 2k
PR THT Ue aa”
FRE THT

HEMT J

Ent

Table A3_ Using the ON . .. GOTOstatement

129

130 Computer Programming with the Commodore VIC
= FRINT’ ENTER WIDTH. DEPTH”
1@ INFUT WT
I= LET S=1L1-INTCW 24a, 5
“6 FRINT'S" > REM CLEAR
“2 FOR T=1 TO 11-INT*0/¢2+a.55
ee FRIWT

32 NEST I
46 FRINT TABCS3, "0";
4=° FOF I=1 Ta wW-z2
Set ee
vo MEAT JI
6G PRINT!"
eo FOR I=] To [i-z2
Y@ PRINT TABCSI;"l "3 TABCM-14595" 9
ro WEXT I
SQ PRIWT TABS Sos "Le;
oc FOR I=} un Wes

Peint’ 2",
32 HEST I
1G@ PRINT"
1635 EMD

LI Lo Aim)

Table A4 Centering a rectangle

PRINT "ry": REM CLEAR
PRINT"CFTICN H.M.L OR F";
INPUT P#
IF P$="F" THEN 3&6

| IF P#="N" THEN 136
IF F$="L" THEN 291

Table AS Print options (amendments to Table 2.1)

b]

me

Ty Ty Ty Ty OT) “IO LB ty

Appendices 131

FEM LETTER HEADING
PRIMHT"HO OF SHEETS"
FRIHT’& PRINT FOSIT IO”
IHPUT HL. PF
FOR f=1 TO Hl
PRIHT"S" - REM CLEAR
PRIHT
FR THT
PRIHT TABCP Ds AF

Wa PRIWT TABSPo. BS
14 PRINT TABCPo. CF

1146 FRINTTABCPS . DF
111 END
lig HEXT I
Lio GOIG ‘)

)

“JT ON Be
LO mJ ms) mJ med J md md md

m— 1 oO

m) i)
=}

Table A6 Letter headings (amendments to Table 2.1)

132 Computer Programming with the Commodore VIC
126 REM WOTERCOK LABEL
1s PRINT"ENMTER NG CF LABELS”
loa PRINT"& HAME LEMGTH"
14@ ITHPUT He.b
ida FRINT"EMTER HO OF LABELS" 4
126 PRINT PER PAGE”
131 IMPUT WN
ize FOR I=1 TO H2."N
123 PRINTS)! > REM CLEAR
i=4 FOR J=1 Ta Wa

208 PRINT" # *"
21G PRINT" # +
228 LET J1=INT<18-Le2>
221 PRINT #" ;
223 FOR I1=1 TO J1
224 PRINT" ";
225 WEXT 11
22 PRINT H#;
23@ PRINT TABCZL3 3 ae"
225 PRINT" * *”
24@ PRINT" # *
i i bi

Sl HEXT J
“82 HEXT I
“33 GOTO 61

Table A7 Notebook labels (amendments to Table 2.1)

Appendices 133

“98 REM ENVELOPE LABEL
291 PRINT "ENTER HO CF LABELS”
“92 PRINT"PER PAGE & TOTAL”
243 THPUT HE. He
294 FOR T=1 TO Hé“HS
eS PRINT": REM CLEAR
236 FOR J=1 To N5

MEST
El
HET: I
GOTO eS Hed 13 3 3 me i ae MO) ot

Table A8_ Envelope labels (amendments to Table 2.1)

134 Computer Programming with the Commodore VIC
oa PRINT’): REM CLEAR

SM=PTe6ee : CM=s846e
SHSM+oee+E.
C=CM+22#E:+8
FOR [T= TO 5
FOR J=H TO &

—

4 Ns

a) 1) MD
7 at,

+t:

7. O04 pa fe ed P

H REAL

AH FORE steee +s.
os POKE f teetl tJ, 5

SQ WEST [

LAG NEST i)
tA Bers Yera: CLa6
15 ZEEE WA="3

le path WA) FOR [=1 To 14
PORE Stleedt2. #
PORE Ct+2e844+2.0Lb
PORE S+22ed43,'7

POKE OAL CL

Fok Ti=1 To 1@6@°HWEXT I

MESH OM=SHADMAEKE
VE="5 1 :4 T= TH:' TH= TE

HEMT i

ma

"A mT IT ed ft. ke

en ne de ell ee
mT) LTT WY SY Sy a)

mS wey 260 DATA S5,182.102.102,182, 73
218 DATA 93, 87,96, 96, 97.93
220 DATA 93.96.85. 73.96.93
230 DATA 92.96.74, 75.96.93
246 DATA 93:36, 96. 96.96.95
256 DATA F4.¢
268 EMD

Table A9 Animated face

oT Ss ‘Ty fs Ty ma Ty m LN “J it

26
20
465
5a
66
7G
ry

oe

Appendices

PRIHT "SITES GF TRIANGLE”,
IHPUT ALB.
LET H=(A#A+CEeC-EEB SO SRARC _
LET F=E/C2SS 1H ATH CSGR(1-KeR oD

PRIHT
PRIWT "RADIUS ="sRs "hi"
FPRIWT "XEREEREREREREERERERD
ENT

Table A10 Radius of circumcircle

1@ DEF FHR OM o=1THT Ra. 1 +8. 25 ee, 1
DEF FHDCUS=ATHS 14-186
PRINT’ THREE SIDES AND ANGLE”
PRINT"@ IF UNKNOWN”
INFUT ALB. C. DL: PRINT
IF AC@ THEN 236
IF [ii>@ THEN 116
LET SSCA+R+O0 “2
LET R=FHR (SOR (S&C S-ADECS-BIECS-O9 93

A GOTC 196
A LET D=DLsFHoeU

IF A= THEN 166
IF B=G@ THEM 126
LET R=FHRCCASBRS THe D3 oS
GOTO 196
LET R=FHRY CBSCeS THe To “23
GOTO 136
LET R=FHRY CASCeSTI NCD oS
PRIHT"ARER ="]F."SG CM"
PRINT S&¢e RE ERERER REESE SER ER
PRIHT
GOTO se
EMD

Table All Areas of triangles

135

136 Computer Programming with the Commodore VIC

1@ DATA CUBCID. CYLINDER. "HEX BAR”
2@ DEF FNRCAD=INTCACF+@. 52 #F
36 DEF FAPCUS=ATHY 1 a4
4@ PRINT "ENTER CODE ANI SCALE"
SQ INFUT C.F
6G IF C = @ THEN 250
F@ PRINT "ENTER THC! DIMENSIONS"
7S INPUT Dd, D2
8@ PRINT "ENTER HEIGHT”
25 INPUT H
94 PRINT
14@ CN C GOTO 114.136. 156
114 LET ASDLeD2
126 GOTC 168
120 -LET A=FHP CUD #01 aT
144 GOTO 160
15@ LET ASSGR< 27 “CeDLaT
166 FOR I=1 To c
17@ READ Ht
126 NEXT I
19@ PRINT "VOL OF "SN&;" ="
195 PRINT FHRCAHS" CUBIC CM"
260 PRINT ‘“HeSEaREEESE EERE
21G PRINT
220 PRINT
238 RESTORE
244 GOTC 46
250 END

Table Al2 Volumes of solids

46

Se
re

186
116

“136
144
156
16a
17a
1g

et
36
46
me)
a
re
i
SE

Appendices

INPUT
TIM AC SGo. BY 2a
FOF T=1 TO WH
READ AT?
HET I
FOR I=1 TO HW STEF &
FOR J=I TO I+4
LET BC To=ACH+1—J)
PRIHT Beto:
Merl. xt
PRINT
MEST I
DATA ioe. 3.4,5,6. 758.9,
MATA L432Sclosl?s J
EMT

~~ iS eos _— — se a ee

Table A13 Copying an array

DIM ACS. a,
THPUT 1
IF M=G@ THEN 268
LET Di=
FOR I=1 Ta M4
FOR J=1 To
READ ACI. I>
PRINT ACT. I>;

1HiG
114
126
1h

14a

128
1E8
ive
1S&
1a5
136
“He
216
ea
2
“46
en)
an)

HET J
PRINT
D=D+ACT., LotAcd, sM+1-T)
HExT [I
PR IAT
IF M“Z=IHTiM22 THEM ish
LET HEIHTeMeaatl
LET DU=D-ACH. Ho
PRINT’ SUM OM DLAGOWALS =”
PRIHWT i
PR IHT
PR IMT
RESTORE
GOTO sa
DATA 14,
DATA 2.
DATA 3a.
EMT

ae

iz.T3,14,15,
ff. 25.24.25
ce, ae fat

swe’ ot

16. 1°,18.13
lt wm ae

é é.{ ’ me * aso? : eo

ll.
“1.
a1:

wT ‘ 8)

Table A14 Sum of elements

137

138 Computer Programming with the Commodore VIC

2 INPUT 7H
26 PRIHT "OO: REM CLEAR
46 TIM Atids
s& FOR I=1 TO W
6G READ ACLa > PRINT ACT
ra HET I
s@ PRINT
S@ FOR I=1 TQ N-1
1@@ LET E=0
Pie run =) To Nad
le@ IF ACD SSAC I+1> THEN 1°76
Ls@ LET S=ACT>
L46 LET ACS =ACI+1)
128 LET Ae d+io=¢
leg LET E=1
L(G WENT
1SG IF E=@ THEN 2a
136 NEXT I
eH PRINT S" > REM HOME
elf FOR K=1 TO 1
eiG PRINT TAB La>: ACKS
es8 NEST K
248 LATA 15.12.3.26.22,.22,9,4, G@,—-25+17,.15
224 ENT

ts Kame “om

4

Table A15S_ Sorting a list of numbers

20 DIM ¥Cig@eo. X15. FCis3
26 PRINT "ENTER HO CF PARISHES"
4G IHPUT H
SQ PRINT
6G FOR I = i TO H
7@ PRINT "PARISH"; 1
SG INPUT Wél3
a4 HEMT I
LAG PRINT
114 GOSUE 2eeK
128 GOSUE seq
12a EMD

Table Al6 Pastureland frequency table

16
2
26
4G
SiG
GG
7
ate
56
1 GG
116
126
12h
146
156
20
216
226
238
246
256
286
276
2G
296

Appendices 139

SHG PRIMYT
SIG PRIHT"NO OF ROWS"
S15 PRINT"IM FREG DIST."
S24 IHMFUT 4
S26 IF H1l1 THEN $5@
S44 PRINT'NCT MORE THAM 14"
S42 PRIMT" TRY AGAIH"
o45 GOTO See
SS PRINT
SoG PRIMT'INPUT % & CUM FREQ"
e7@ FOR I=1 TO N
SSG INPUT DCl,1>,0¢1,23
S96 HEKT I
e995 RETURH

Table Al7 Input subroutine

PRIPT ? TIMSTAeTeTetare Tete ie ee”
REAL Ts
PRINTTS
READ .t.¢
PORE BEEPS, is
IF Hea THEN 128
PORE 36676. +
FOR D=1 To 2s
POKE 36879, H-25
HEST I
PORE 26876, 4
GOTO 46
POKE 2687S. 6
POKE 36879.27
EMT
DATA "FRERE JACQUES”
TATA 172,2,181,2,189.2,172.2
DATA 1f2.2,191,2,189.2.172,2
DATA 189.2,193,.2,260,4
DATA 189.2,193.2,206,4¢
LIA TA eG. 1,266.1,266.1.195,1,199,.2,172,2
DATA 6G, 1,266.1,200.1.193.1,199.2,172.2
DATA 1ir2.2 PY 14e,2,1%2.4

DATA 1f2.2,145.2,172,4
DATA -1,-1

Table A18 A simple tune

140 Comp

36
46
45
5G
6G

7e
oe
Ji
1a
114
12
ed)
146

uter Programming with the Commodore VIC

24 CPEMW 1.1, a
21G INPUT K.D,S, Rk
Ft De PRIHT#LsK

216 PRIMTHI. It
Sis PRINTHIL.

21S PRINTHI.
219 PRIHTHI.

224 IF K=9999 THENM 23a
“44 GOTO 218
eu CLOSE 1
660 ENDL

70)

Table Al9 Stock data file creation

PEN 1,1,8."STK-DATA”
PRINT"RE-CRDER LIST"
PRINT "-<----- ‘

PRINT

PRIHT"CODE": TABC Ys DESCRIPTION"

PRIWMT"—---" TABC 2) 3 8 --en ne

PRIHT
THPUT#IE. TF. S,0.F
Tr it fata THEN 138
IF SoF THEN of
PRINT Ke TAB Pos DF
GOTO o&
CLOSE j
EMD

Table A20 Re-order list

Appendices

1 PROT 2"
2 PRINT"STOCK FILE SEARCH"
4. PRINT"----------------- "
S PRINT .
& PRINT’ENTER SEARCH WORD"
1G INPUT x
15 L=LENCH#> |
24 OPEN 1.1.@."STK-DATA”™
22 LET E = @
24 LET F = @
25 LET Ug ="--------------------- :
27 PRINT Us
2&2 PRINT TABC19; "CODE"; TABCS):

"DETAILS"; TABC15) 3 "STOCK
29 PRINTLUS
2G INPUT#1.K.D8,$.0,R
23h LETTE =E +1
4@ LET W=LEN<D$)-L+1
S@ IF K= 9999 THEN Sao
6G FOR I=170 W
7G LET Z#=MIDS(D$.1,L)
Sa IF 2#=$ THEN 146
96 HEXT I
92 GOTO 36
1G LET F =F + 1
11@ PRINT K;TAE(S3;D¢; TABC159;5
144 GOTO 36
S@@ CLOSE 1
a S|

@ PRIHT F ."*RECORIS LISTED" oh
G5 wh

PRIWT Ut
PRIHT E . "RECORDS READ”

ENWL

Table A21 Stock file search

141

a

142 Computer Programming with the Commodore VIC

26 PRINT"HO GF TERNS FOR COS i”
a INFUT H
44 PRINT’VALUE OF *& (DEGREES >”
—@ IHPUT #1
64 LET A= CALRATNY 1 #4150) T2
ra LET T=1
oe LET C=1
S60 FOR T=2 TO N*#2 STEP 2
166 LET T=(-1LoeT#e Cl -L aed
145 LET C=C+T
L11@ HEAT I
115 PRINT
126 PRINT@ COS" 415 "="5C
So PRINT See eee ee ee ee REESE RE”

L3G ENT

Table A22 Cos X

l@ DEF FHRCAS=INTCA@. @1t+G, See, Bl
eH PRIHNT"ROGOTS CF”
en PRINT GUADRATIC EQUATIONS”
S06 PRs So Sass 4S ee ‘
44 PRIHT"ENTER A,B,C"
38 FPRIHT’*2ERGES TO STOPo”
6G IHPUT A. B.C
rei IF A=@ THEW 216
o8 LET D=Be-4#A¥#C
96 IF D8 THEN 158
if@ IF D=G@ THEN 1,74
114 LET D=SGR¢Do
2@ PRIHT"FREAL ROOTS: "
eo PRIHT FHRO 6 -B+Do “8 2#A2 2;

ISG PRIHT AND "s FHR SO -B-Do "2A
146 GOTO 1668
15@ PRINT"COMPLEX ROOTS"
164 GOTO 1396 .
17G@ PRINT"COINCIDEHMT FOOTS:”"
vo PRIWT FHRS-BAC2A2

156 PRL" RRR ER RR ERR RRR RR RE
194 PRINT
eA@ GOTO 46
“18 EMD

Table A23_ Roots of quadratic equations

16
26
263
46
art a

ae
7a
Cry

Appendices

THPUT "WHAVELEHGTH" 3 L
IHFUT "HO CF FRINGES" 3M
PRIHT"EWTER TWO SETS GF"
PRINT'VERHIER READINGS”
PRINT"FOR EACH FRIHGE"
PRINT"IH DEG & MIN"
FOR I=1 TO W
FOR J=1 TO 2
INPUT PCI. I>, QC1, 79, R01, I3),S8¢1,3)
LET BX Js=ABSCPCI, Je6E+OK L,JI-RCT SO

 RERHSET, ID
NEXT J
LET ACTI=INTCCBC10+BC 29943

S LET WOLD =T#L ROGET SES CAC THAT 1 ed
NEXT I
PRINT
PRINT "FRINGE READINGS”

re PRINT NUMBER DEG MIM DEG NIK"
1S6 PRINT"
196 FOR I=1 Toa
“86 PRINT TARCS3;P¢1.19;3 TARLIG33 GCL, 19;
“16 PRINT TARCI43;R¢ 1.19; 7TABCLS35S¢1,1)
24 PRINT TAECZ3;1
es@ PRINT TABCS);PC1.29; TABCI@33OC1.29;
“46 PRIWHT TABCI4¢3 RY . 29; TABS 199;S€1,25
2i6 PRINT" "

“66 HEXT I
2° PRINT: EXD .
eS PRIMT’FRIHGE A WIDTH oF”
2S PRINT’HUMBER MIH SLIT cM"
20Q PRINT: PRINT"
314 FOR I=1 Ta H
S28 LET WOLI=INTCWC IDG. GGG1+6.5980, aaa
228 PRINT > PRINT
344 PRINT TAEC@3; 1; TARCTOS ACT 33 TABCAZ GWT)
34 PRINT: PRINT

268 PRINT” ?

2°@ PRINT-:LET W=W+eHeC1>
HEAT I

143

PRINT EHD: LET W=IMT CW H-G,. GGG1+8. 55986, aay
4 PRIHNT"SLIT WIDTH =";ho" CM"
A PRIHT" #2 ee eee ee ee Ree EE ER EERE

420 EMD

Table A24 Width of aslit

Appendix B

Answers to Problems

Chapter 5

1 CALCULATIONS FOR DIFFERENT CODES

CODE XxX Y CALC. VALUE

3 my A 204
1 -> i 38
2 8 34 —26
5 - o 64
4 62 5 12.4

Chapter 7

1 RADIUS = 443.334M

2 SIDESOFTRIANGLECM ANGLE AREA

A B C DEG SQCM

ee Serre wae re ser tteaceaesiaes ie

74 98 125.4 = 2955.7

292 405 30.5 30010.7

10.3 15.6 69 7S

3 VOLUME OF CYLINDER = 111.33 CUBIC CM

VOLUME OF HEXAGONALBAR = 103118 CUBIC
CM

VOLUME OF CUBOID = 155.8 CUBIC CM

Appendices 145

Chapter 12

1 Cos 30° = 0.866025 (to five terms)

2 REAL ROOTS : —-.24 AND —2.76
COMPLEX ROOTS
COINCIDENT ROOTS : 4
REAL ROOTS : 85 AND —2.35
REAL ROOTS : —] AND BS i
COMPLEX ROOTS
COINCIDENT ROOTS : -—:5

3 WIDTH OF SLIT = 6.75E-2 CM

Slope = 0.1096
Coefficient of correlation = 0.9953
Young’s modulus = 1.92 x 10" Nm~

S The answer will vary slightly depending upon the selec-
tion of random numbers but should be close to 11.1
weeks.

6 Monthly repayments = 156.97 and 209.29, respectively.

Appendix C
ASCII and CHR§$ Codes

This appendix shows you what characters will appear if you
PRINT CHR$ (X), for all possible values of X. It will also
show the values obtained by typing PRINT ASC (‘‘x’”’
where x is any character you can type. This is useful in
evaluating the character received in a GET statement,
converting upper/lower case, and printing character-based
commands (like switch to upper/lower case) that could not
be enclosed in quotes.

146 Computer Programming with the Commodore VIC

_ {PRINTS CHR$|PRINTS CHR$|PRINTS CHR$/|PRINTS CHR$

0 B 48

' 1 49

2 2 50

3 3 51

4 4 52

WHT 5 21 % 37 5 53

6 22| 8 38] 6 54

C 23 |+* 39) 7 55

8 24] | 40] 8 56

9 25,) 41 9 of

10 2] 4240s 58

11 | 4 Ge: 43 59

12; G28) SC, 44 | -<, +60

13 | Bos 29] — 45} = 61

4/gm 30/ . 4) > 62
15 BLU 31 / AT 2 63

Appendices 147

PRINTS CHR$|PRINTS CHR$/| PRINTS CHRS$| PRINTS CHRS

@ 64) U 85 | 106) “127

A 65] v 86] | 107 128

B 66 | w 87/ | | 108 129

C 67 x 88 |. N 109 130

D 68 | Y 89 4 110 131

E 69 | z 90 [] 111 132

F 104 91] 112] f1 133

G TA 1K 92 e 113 fs 134

HS 6 ¥2] 93 |_| 114 f5 135

| 73 : 94 y)] 115 {7 136

J 74 <- 95 a 117 f2 137

K 75 — 96 A 117 | f 138

a 76| [@| 97] [X} 118 | 6 139

M 77 i 98 OJ 119 | 8 140 i

N 78 = 99 & 120 oon

O 79 |; 1. 100 Bipec Fase 142

p so | [| 101 ry *-122 143

q 681} |) 102} EY 123 144

R = 82) | | 103) BH] 124 Es

s 83// |} 104} [|| 146

tT 84} [105] TT | 147

148 Computer Programming with the Commodore VIC

PRINTS CHR$/PRINTS CHR$| PRINTS CHRS$|PRINTS CHR$

C14 159| | J 170} f 181

149 FRR ico} oii) | 9 182

150 | tet] | 172] 183

151 | gy = 162] [UY 173) 184

152 | [] 163; Gp] 174] jg = 185

153 |{ | 164 | 175} | | 186

154 { [| 165] [4 176] | 187

155 | Be tee) Ls i77| [188

Mm iss || | 167] G4 178] YH] 189

157 | wm = t68| LL) 170] BM] 190
miss |W sco} P| iso] Sm 191

Appendix D
Screen and Border Colour Combinations

You can change the screen and border colours of the VIC
anytime, in or out of a program, by typing

POKE 36879, X

where X is one of the numbers shown in the chart below.
POKE 36879, 27 returns the screen to the normal colour
combination, which is a CYAN border and white screen.

Try typing POKE 36879, 8. Then type CTRL

Fa and you have white letters on a totally black

screen! Try some other combinations. This POKE com-
mand is a quick and easy way to change screen colours in a
program. |

BORDER)
SCREEN BLK WHT RED CYAN PUR GRN BLU YEL
BLACK 8 . 9 10 11 12 13 14 15
WHITE 24 2 20 27 2 2 4230 ~° 31
RED 40 «41 42 43 44 #45 £46 ~~ «47
CYAN 5 +57 #258 59 #2460. 61 62 63
PURPLE 72 73.0 740—i<“‘<‘H!Ot:*<“<«SGSSC*«CSTTtSC<i«‘ ;:C‘C;C‘s«é‘STQSC
GREEN 88 89 90. 91 92 93 94°» 95
BLUE 104105 = 106 = 107, 108 = 109, 110111
YELLOW 120. 121 122 123 «124 «#125 126 ~©«127
“ORANGE 136 137 138 139 140 141 ~ «+142 ~« 4143
LT.ORANGE 152. 153 154155156‘ 187—‘1 159
PINK 168 169-170, S171, 172,173,174 175
_LT. CYAN 184 185 «= 186. s«187—S—s«188~— 1189'S 190 _~—s‘191
LT.PURPLE 200 = 201-—S 202, 203-204. 205. 206-—S 207
LT. GREEN 216 217 «2218 219 220 221 222 223,
LT. BLUE 232 233 234 235 236 237 «©2238 +~=©= «239
i

LT. YELLOW 248 249 250 251 252 253 254 255

Appendix E
Screen Codes

SET 1 SET 2 POKE| SET1 SET2 POKE| SET 1 SET 2 POKE

@ 0 U u 21 * 42

A a 1 V V 22 + 43

B b 2 Ww ow 23 44

C Cc 3 X x 24 — 45

D d 4 Y sy 25 46

E e 5 Z z 26 / 47

ai 6 27 | @ 48

Gg 7 £ 28 1 49

H bh 8 ya 50

| | 9 . 30 3 51

J j 10 “ 31 4 52

K k 141 32 | 5 53

L | 12 ! 33 | 6 54

M m 13 ‘i 34 7 55

Noe 14 ff 35 | 8 56

O O 15 $ 36 9 57

p p 16 % 37 98

Q 4q 47 & 38 59

R or 18 | 39 | < 60

S S 19 (40 ee 61

T t 20) 41 > 62

Appendices 151

SET 1 SET 2 POKE| SET 1 SET 2 POKE| SET1 SET 2 POKE
9 63} |] tT || § 106

i 6 }[q u [HH 107

4} A 65 | [xX] v.86 | lg 108

‘T} 8 6 |} we a7 {[l 109

EK} cc 67 | ff] x 38 |G] 110

FT op ew iff} y a | i 111

rT ec 69 |f@}) 6 6z.) oo [dg 112

ce 96.) a1 | OO 113

|] @ 7 |B] 92 | 14 114

| eve | TT] 93 | H | 115

LK | | 73 | Tr we o4 | 116

‘Yous wai No OE 117

P|] « 7 |e |! J 118

| jf. 76 | o7 | 119

| NJ M077 | 2 | ™ 120

4A nN 78 | {| 99 | 121

[1] o. 7 |{] 100 || | YW 122

T] pep e/f{] 101 | | 123

@ ao ai | 1o2 | (124

La} Re 2.1L | 103 | 0] 125

Iv] os) 83 | bee 104 | 126

Wy’ 105 | Mi 127

Appendix F
Screen and Colour
Memory Locations

Q 1 2 3.4 5 6 7 8 9 1011 1213 1415 16 17 18 19 20 21

|

rae eae ea 5

ar ia ca Or

a eae ~~ + -—_+-—_+—__++—_+—_ +--+ +--+

) }

}

Fo tected -7- Fe te ¢ 8

bpm te pp pp nt ht a HH t

ae
25

|
i

:

|
{

Seater eats +——4— + et
ab Ren SE SR +—++-+ + + + 4 4 + +--+ +

|
|
|
|

ll
||

Screen iocatian

Eaagi + +¢-+--¢ 4 +--+ ttn + area + + © + - . + -

odes Q

by 1°23 4 5 a 7 8 9 1011 1213 1415 16 17 1819 20 21 af ee aR :
ssgoo; ,.. . | LP Pty a8 Lad
3422, ... | | {idee tpt
38444, 1. i | pice ct . badd
38466, 1 igs i,
38488, |. | | cate i ee t
38510, . . oe ee + +

38532 | 2 1. : tap Peer
38554, 53 4 1 4 it
28876 | - ial &
38598 | | os ig a a
38620 | | ine Sip awe
38642 | a Se | awe
38664 | | | TTT fl cm Smee
38686 | | | Mae | ofl:
38708 | |. |_ oes
38730 | | ve
38752 | | a il ee
38774 [os os SiG oo
38796 [| ren 7
38818 | a
38840 | f 7 7 etal :
38862 | 1% im
38884 | |)” mi

Equivalent colour location codes

Appendix G
Musical Scales

Note POKE value Note POKE value
C 131 = 193
C# 138 C’# 196
D 145 D’ 200
D# 151 D’# 203
E 157 E’ 206
F 162 F’ 209
F# 167 F’°# 211
G 172 G’ 214
G# 177 G’# 216
A 181 A’ 218
A# 185 A’# 220
B 189 B’ * 222

BOs 224

Note: ’ = one octave higher; ”’ = two octaves higher.

Appendix H
Further Study

‘Personal Computing on the VIC 20’ (beginner’s guide)

Commodore, 675 Ajax Avenue, Trading Estate, Slough,

Berks, England.
‘VIC Learning Series’ (cassette & workbook materials)

Commodore, 675 Ajax Avenue, Trading Estate, Slough,

Berks, England.
‘VIC Revealed’ (advanced techniques)

Computabits, 41 Vincent St, Yeovil, Somerset.

‘VIC Programmer’s Reference Guide’ (advanced techni-

ques)
Commodore, 675 Ajax Avenue, Trading Estate, Slough,

Berks, England.
‘PET Interfacing’ (control & laboratory applications)
Howard W Sams, 4300 West 62nd St, Indianapolis,
Indiana, 46268, USA. :

‘Commodore Club News’ (magazine)
Commodore, 675 Ajax Avenue, Trading Estate, Slough,
Berks, England.

‘VIC Computing’ (magazine)
Printout Publications, P.O. Box 48, Newbury, England.

‘Home and Educational Computing’ (magazine) _
P.O. Box 5406, Greenboro, NC 27403, USA.

Index

ABS 58
accumulator 6
American Standard Code for

Information Interchange
(ASCII) 46, 145

animation 55, 134
antilogarithms see EXP
arctangent see ATN
arguments 57
dummy 66

arithmetic
and logic unit 3
expression 19
operations 18
Operators 19

arrays 70
dimensioning 73
naming 72
subscripts 72

ASC 46
ASCII 46, 145
assembler 7
assembly language 7
ATN 62
average of three numbers

flowchart 30

backing storage devices 4
BASIC

methods of translation 7
binary 4
bit 4

_ brackets
use of 20

branch
conditional 34
GOTO 33
IF...THEN 34
instruction 33
ON...GOTO 40

central processor 3
charactercodes 46
characters

colourof 51
chips

micro 8
CHR$ 46
clearscreen 16
CLOSE 102
codes

character 46
colour 50

POKE 48
screen location 53,152

colour

characters 51

restoring 50
screen and border 50
screen location codes 53,

152
compiler 7
conditional statements 34,

38,40 |

156 Computer Programming with the Commodore VIC

constant 10
numeric 19

CONT 16
control unit 3
COS 62
cosh 64
cosine

evaluation of 107, 142
inverse of 62
(see also COS)

CTRLkey 51
cursor

simulated 88
cursor down character 92

DATA 10,61
data

input statement 10
files 100

DEFFN 65
DIM 73
dimensions of arrays 71

(see also DIM)
documentation 32
dryrun 32
dummy arguments 66
dummy value —

example of 36
dynamic dimensioning 73

e 64
END 11
equalto 35
error

execution 31
logical 32
syntax 31

evaluation
orderof 20

executionerrors 31

exercises see problems
EXP 63
exponent 4, 19
exponential series 107
exponentiation 20

files
data 100
endrecord 103
input-output

statements 102
OPEN and CLOSE 102

financial applications 121
floating point 4, 19
flowchart 28

average of three numbers
30

dummy record 104
loop control 35
sampling 85
sorting numbers 7/7
symbols 29

FOR. ..NEXT
example 38
loops 38
nested 43,74

functions
exponential 63
hyperbolic 64
library 57
logarithmic 63
ofacomputer 3
string 46
TAB 64
trigonometric 62
user defined 65

GET 87
GOSUB 79
GOTO 33

graphs 80, 89
greaterthan 36

headings
format and layout of 27
outputting 12

high level language 7
high resolution cartridge 89
high resolution graphics 89
histogram

example of colour 54
HOME character 78
hyperbolic function 64

ICs 8
IF...THEN 34
input

protected 87
INPUT 10
INPUT# 103
input

devices 3
statements 10, 14, 102

insert/delete key 11
instruction 6
INT 58
interpreter 7

jump see branch

LEFT$ 47
LEN 47
lessthan 36
LET 18
library functions 57
linear regression 112
line numbers 10
LIST 11
lists 70
LOG 63
logarithms see EXP, LOG

Index 157

logicalerrors 32

loop
count 36, 38

flowchart of 35

nested 43,74

LSI 8

machine code 6

mantissa 4

memory
main 3

menu 87

microcomputers 8
microprocessors 8
MID$ 47
mnemonic code 7

Monte Carlo simulation

115 |
Morse code 125
musical scales 99, 153

name
variable 10

noise
white 93

number
constant 19
decimal 19
exponential format 19
floating point 19
integer 19
negative 19
positive 19

ON...GOTO 40
OPEN 102
operations

hierarchy of 20
operators 10

arithmetic 19

158 Computer Programming with the Commodore VIC

output stock datafile 105, 140
designing 26 sum of elements 76, 137

devices 3 usingON...GOTO 41,
layoutof 14 129
statements 10, 102 volume of solids 68, 136

width of aslit 110, 143
PEEK 48 Young’s modulus 113
peripheral devices 3 program 3
pi 63 development of 26
pixels 89 editing 11

plotting languages 7
testingof 31

programming languages 7
in high resolution 89

plotting routine 90
POKE 48 . programs
PRINT 11 border and screen colours
PRINT# 103 50
problems coloured hearts 54

animated face 56, 134
area ofatriangle 67, 135
centering a rectangle 44,

130 -
copying an array 75, 137
cost of stationery 25,129
datafile search 105, 141
evaluation of cos x_ 107,

142
input subroutine 86, 139
monthly repayments 124.
number of £s_ required

24, 128
pastureland

table 82, 138
print options 44, 130
quadratic equations 109,

142
radius of a circumcircle

67,155
reorder list 105, 140
simple tune 99, 139
simulation 120
sorting numbers 76, 138

frequency

cylindrical tank diameters
61

different colour strings
ay

explosion 97
falling object 97
frequency grouping routine

81
frequency table routine

82
heat ofcombustion 108
high resolution plotting

example 90
histogram routine 54
linear regression 114
Morse trainer 125
mortgage calculation 123
name and address 14,

130, 131, 132, 133
passing siren 95
phone ring cycle 98
plotting routine 90
print selected numbers

70

protected input routine
87

roundingexamples 59, 66
Sampling routine 86
simple animation 55
simulation problem 117
sines and angles 67
toadd N numbers 37,39

- tocalculate e* 108
to illustrate FOR
NEXT 39

to illustrate nested FOR
loops 75

to illustrate SGN _ and
SOR 60

to output arectangle 42
two-tone routine 94

random numbers see RND
READ 10
records

file 100
registers 8
regression

linear 112
relational

expression 34
operators 35

REM 16
reorder program

headings 27
RESTORE 61
RETURN 79
RETURN key 11
RIGHTS$ 47
RND 65
roots of quadratic 109
rounding 59
RUN 12
RVS
ON and OFF 52

Index 159

sampling 83
screen

clear 16
colour 50

location codes 53, 152

secondary storage devices 4

separators 10
series 107
SGN 538
simulated cursor 88
simulation 115
SIN 62
sine

inverse of 62
(see also SIN)

sinh 64
sorting numbers 76
sound

effects 93
generators see tones

Morse code 125
SQR_ 57, 60
square root function see

SOR
statement 10

conditional 34, 38, 40
STEP 38
STOP and RESTORE keys

49
string

comparison 37
constant 13
functions 46

variables 13

STR$ 48
subroutine 31,79, 80

(see also GOSUB)
subscripts 70, 72
syntaxerrors 31

TAB 13, 41, 57, 64.

160 Computer Programming with the Commodore VIC
tables 70
tabulation 110
TAN 62
tangent

inverse of ‘62
(see also TAN, ATN)

tanh 64 |
testing program 31
tones

controlling 93,95
trigonometric functions 62
truncation 58

unitsofacomputer 3
user defined functions 65

VAL 48
variables 10,18

VDU see visual display unit
video interface controller 9
visual display unit 3
volume

control ofsound 93,95

white noise 93

-* +

~~
~ >

‘

'
‘

i

AAV

HID

vt ee ad a

This book provides a practical grounding in BASIC,
the most widely-used microcomputer programming
language. Using the Commodore VIC, the authors
explain how to write, develop and test BASIC
programs. Many different applications of the VIC,
ranging from colour and sound animations to scientific
and business applications, are described. .
A comprehensive series of exercises, with answers, is
provided to help you learn at yourown pace.

Dpeesornee: 6
Ag 3 yr vy j

he) | eo

; A MESSrice

Sem «| = = ec0
*

Output showing some of the different applications of
the Commodore VIC.

ISBN 0 340 28070 0
UNITED KINGDOM £1.95

commodore COMPUTE

