

Page 2 of 191

Page 3 of 191

'READ ME' file for the geoSHELL Programmer's Development Package

Copyright 1994 by Maurice Randall

Thank you for your interest in geoSHELL and especially in creating

commands for geoSHELL, whether it be for yourself or others also. There

is a great deal of information contained in this package. If you've

obtained it via the postal service, you either received it on one 1581

disk or three 1541 disks. If you downloaded it from a network or BBS,

then it is most likely in three arc'd files. You can use CS-DOS, ARC

2.30, or Omega-Q to dearc the files. Each file will require one 1541 disk

side.

You will find that referring to this information by viewing it in

GeoWrite can be tedious. The best thing to do is to print out the entire

manual so that you may have all of the information at your fingertips

while working on your source code. Although, in addition to the index,

you can use GeoWrite to search for a word that might lead you to the

topic you need information on.

Everything included here is in GeoWrite format and was created using the

COMMODORE 10 pt font. This will allow you to use the NLQ print mode of

your printer for a much faster printout. The entire manual including the

cover (GeoPaint file) is 194 printed pages. I've created two new commands

for geoSHELL that will help you to print this manual. The command

'ppaint' will print the cover for you, and 'pwrite' will print the rest

of the manual. Both of these commands are included in this package along

with documentation for them. Ppaint will use your GEOS printer driver,

while pwrite uses it's own built-in driver with your printer's built-in

font. 64 users, make sure you copy your printer driver to disk one, or

the disk that contains the cover file, gsdevpakcover. Be sure to read the

documentation on pwrite and edit the file pwconfig before using it. Also,

if you wish to use any codes that are in pwconfig, geoSHELL must be able

to find it when you use the pwrite command.

There is an 'exec' file that you can use from geoSHELL that will handle

the entire printing chore for you. Just enter...

exec printdevpak

...and follow the onscreen prompts. This exec file will also call one of

two other exec files, printserial or printgeocable. If the exec file

refers to a particular disk side, just make sure that it is in one of

your drives. Also make sure that ppaint and pwrite are available. First

the cover will be printed followed by the odd pages. Then you will be

prompted to put the paper back into the printer so that the even numbered

pages will now be printed on the back side of the odd sides. Once again,

make sure that pwconfig can be found during the printing process if you

wish to use it's added features. If necessary, copy pwconfig to your path

partition, or your ramdisk, or each of the devpak disks along with the

pwrite command. Feel free to modify this exec file if you need to print

the manual in a slightly different manner. Or you can just print each

segment one at a time with GeoWrite or pwrite.

There will be a few more files in the package that won't get printed by

the exec file. These contain some routines that you may use in your own

source code. There is also the sample source code files that you will use

for your starting templates. The geoSHELL equate files are also included.

The documentation gives full details on these files. If you wish to print

any of these, just use pwrite or GeoWrite to do so.

Page 4 of 191

Here is a listing of each file that is included in this package:

READ ME What you're looking at now.

printdevpak Exec file for printing out the manual.

printserial Used by printdevpak.

printgeocable Used by printdevpak.

ppaint Command for printing GeoPaint files.

ppaint.doc Documentation for ppaint.

pwrite Command for printing GeoWrite files in NLQ.

pwconfig Configure file for pwrite.

pwrite.doc Documentation for pwrite.

gsdevpakcover The manual cover in GeoPaint format.

gsdevpak1 Section 1 of the manual.

gsdevpak2 Section2, pages 1 through 31.

gsdevpak3 Section2, pages 32 through 61.

gsdevpak4 Section2, pages 62 through 90.

gsdevpak5 Section2, pages 91 through 130.

gsappendix1 Appendix A of the manual.

gsappendix2 Appendix B.

gsappendix3 Appendix C.

gsappendix4 Appendix D.

gsdevindex The index for the manual.

MiscSource Miscellaneous source code.

GSVariables Assemble this to create GSVariables.rel.

GSVars1 geoSHELL variables. (.included in GSVariables)

GSVars2 geoSHELL variables. (.included in GSVariables)

ShellEquates geoSHELL equates. (.included in GSVariables)

GSVariables.rel Always put this in your link file.

Sample.lnk Template for your link files.

SampleHdr Template for your header files.

Sample Template for your source code files.

Color80.lnk Link file for color80 command.

Color80Hdr Header file for color80 command.

Color80src Source code for color80 command.

If you obtained this package in the form of three arc'd files, they are

as follows:

gs1dvpak.arc Disk 1, the first 12 files.

gs2dvpak.arc Disk 2, the next 3 files.

gs3dvpak.arc Disk 3, the remaining files.

These files will dearc to three 1541 disk sides. Or all three files will

dearc to a single 1581 disk. Since you will use GeoWrite for your text

editor when creating your source code, you will be able to easily cut and

paste any of the included example routines that you will find in this

package. If you should encounter any problems, please let me know.

Thanks, and good luck.

Maurice Randall

P.O. Box 606

Charlotte MI 48813

PH: (517) 543-5202

Page 5 of 191

I may also be contacted on GEnie as M.RANDALL2

clr

echo If you are using a tractor feed printer, set the perforation at

about 1/4" above the printhead^

echo Are you using a geoCable or the serial port?^

echo Hit 'g' for geoCable or 'p' for serial port.^

getkey

{p }

echo Which drive contains Disk 1? a, b, c, or d^

echo Press q to quit^

getkey

{a a: ppaint gsdevpakcover^ }

{b b: ppaint gsdevpakcover^ }

{c c: ppaint gsdevpakcover^ }

{d d: ppaint gsdevpakcover^ }

exec printserial^

{g }

echo Which drive contains Disk 1? a, b, c, or d^

echo Press q to quit^

getkey

{a a: ppaint gsdevpakcover^ }

{b b: ppaint gsdevpakcover^ }

{c c: ppaint gsdevpakcover^ }

{d d: ppaint gsdevpakcover^ }

exec printgeocable^

{q end }

Page 6 of 191

pwrite op gsdevpak1^

pwrite op gsdevpak2^

clr

echo Place disk two in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite op gsdevpak3^

pwrite op gsdevpak4^

pwrite op gsdevpak5^ }

clr

echo Place disk three in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite op gsappendix1^

pwrite op gsappendix2^

pwrite op gsappendix3^

pwrite op gsappendix4^

pwrite op gsdevindex^ }

clr

echo Re-insert the paper so that the printing will occur on the back side

beginning with the cover...^

echo Place disk one in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite ep gsdevpak1^

pwrite ep gsdevpak2^ }

clr

echo Place disk two in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite ep gsdevpak3^

pwrite ep gsdevpak4^

pwrite ep gsdevpak5^ }

clr

echo Place disk three in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite ep gsappendix1^

pwrite ep gsappendix2^

pwrite ep gsappendix3^

pwrite ep gsappendix4^

pwrite ep gsdevindex^ }

clr

 echo Printing is finished!^

echo You can now assemble your manual into a folder.^

end

{q end }

Page 7 of 191

pwrite og gsdevpak1^

pwrite og gsdevpak2^

clr

echo Place disk two in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite og gsdevpak3^

pwrite og gsdevpak4^

pwrite og gsdevpak5^ }

clr

echo Place disk three in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite og gsappendix1^

pwrite og gsappendix2^

pwrite og gsappendix3^

pwrite og gsappendix4^

pwrite og gsdevindex^ }

clr

echo Re-insert the paper so that the printing will occur on the back side

beginning with the cover...^

echo Place disk one in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite eg gsdevpak1^

pwrite eg gsdevpak2^ }

clr

echo Place disk two in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite eg gsdevpak3^

pwrite eg gsdevpak4^

pwrite eg gsdevpak5^ }

clr

echo Place disk three in any drive and hit s to start...^

echo ...or q to quit^

getkey

{s clr pwrite eg gsappendix1^

pwrite eg gsappendix2^

pwrite eg gsappendix3^

pwrite eg gsappendix4^

pwrite eg gsdevindex^ }

clr

 echo Printing is finished!^

echo You can now assemble your manual into a folder.^

end

{q end }

Page 8 of 191

geoSHELL Command Documentation

Copyright 1993 by Maurice Randall

(requires geoSHELL V2.2 or greater)

ppaint (external transient)

This command will print a GeoPaint document without having to load up

GeoPaint. You can now print your GeoPaint files right from geoSHELL.

Example: ppaint filename

This will print a GeoPaint file from the currently active drive. That's

all there is to it.

The standard GEOS printer drivers are used to do the printing.

You can use the STOP key to halt the printing in case the document does

not look like you want it to. For some of the multi-pass printer drivers,

you may have to hold the key down for several seconds until it responds.

MAKING MULTIPLE COPIES

By using geoSHELL's 'exec' command, you can print a number of GeoPaint

files all at once and walk away from the computer while the printing is

taking place. Just create a GeoWrite file with the necessary commands in

it and execute the file with the 'exec' command. Refer to your geoSHELL

manual for more on the exec command.

Page 9 of 191

open 27 64^

close 27 64^

boldon 27 71^

boldoff 27 72^

italicon 27 52^

italicoff 27 53^

underlineon 27 45 1^

underlineoff 27 45 0^

subscripton 27 83 1^

subscriptoff 27 84^

superscripton 27 83 0^

superscriptoff 27 84^

The codes listed on page one will be used by pwrite when it loads in this

configure file. These are the most common ones supported by most Epson

mode printers. If these codes do not match the ones supported by your

printer, simply change them to the correct ones. If your printer does not

support a certain style change, delete that particular one altogether and

that particular style change will simply be ignored when printing.

If you are using a 1525 printer, or any other printer with limited

capabilities that emulates the 1525, delete the codes from page one and

cut and paste the following codes in their place if you want to try these

features. Or, you could just use the 'open' string of codes to ensure

that the printer is in the correct mode. This will let you do some

special things with your printer. Wherever bold print is, you will have

double-wide characters useful for headlines or titles. Limit the length

of your lines when using bold in this case. Also with these codes,

whenever you use italics, you will now have reverse-printing. The open

string makes sure that your printer is operating in upper/lower case mode

with other settings turned off. The close string does the same thing.

open 17 15 146^

close 17 15 146^

boldon 14^

boldoff 15^

italicon 18^

italicoff 146^

The following set of codes works on a STAR NX1000 and may also work on

other printers. This will set up the printer to use the COURIER font.

open 27 64 27 107 0 27 120 49^

close 27 64^

boldon 27 71^

boldoff 27 72^

italicon 27 52^

italicoff 27 53^

underlineon 27 45 1^

underlineoff 27 45 0^

subscripton 27 83 1^

subscriptoff 27 84^

superscripton 27 83 0^

superscriptoff 27 84^

Page 10 of 191

geoSHELL V2.2 DOCUMENTATION

Copyright 1994 by Maurice Randall

pwrite (external transient)

Once you've used this command a few times, you will love GeoWrite. This

gives you the printing capabilites that GeoWrite left out. From the very

beginning, GeoWrite was always intended to use your printer's graphic

mode. This allows almost any style of font to be used. GeoWrite excels at

this type of printing. Some of us still like using our printer's own

built-in fonts, however. Yes, GeoWrite has a mode that let's you print in

Draft or NLQ. That will use your printer's own font. But here's the

catch, all style changes are ignored! Enter 'pwrite'. All bold, italic,

underline, subscript and superscript style changes are supported. Only

the outline style is ignored since graphic printing must be used in order

to support it. So, do not use outline in your document or it will throw

the layout off.

This command also supports PAGE, DATE, and TIME in the headers and

footers. The title page setting is also supported. Double-spacing is

handled as well. But, 1 1/2 spacing is not, since GeoWrite does not

format the page properly for this to work on all printers. And not all

printers can print at 4 lines per inch. But to do 3 lines per inch only

requires an extra linefeed.

Now you can have your cake and eat it too. Use GeoWrite for all your

graphic-type printing and use pwrite for all of your NLQ printing. When

you create your GeoWrite document, you must use the COMMODORE 10 pt font

throughout for proper formatting, since pwrite expects 80 characters per

line and 66 lines per page. There will actually be 62 printed lines with

4 lines of nothing in order to skip over the perforation. This is how

GeoWrite formats the document, so pwrite does it the same way. In fact,

whatever GeoWrite does on the screen, pwrite will do on the printer, as

long as the COMMODORE font is used.

Pwrite does not check the font that is in use though. It will ignore any

font change. But if you don't use the COMMODORE font, your results may

not be what you expect. By using this font, GeoWrite will allocate 12

pixels for each line, giving you 6 lines per inch and so each page on the

screen will look just like what comes out on the paper.

THE CONFIGURE FILE

Here is another plus for pwrite. Before printing begins, it will look for

a file called pwconfig. If it finds it, it will use the printer codes it

finds in the file. Since pwrite does not use your normal GEOS printer

driver, it must know how your printer works. This is what the pwconfig

file is for. This contains the codes for turning on the style changes and

turning them off. If pwconfig is not found, then all style changes will

be ignored. You can also leave out any style change codes that you wish

to have ignored when printing your document. Delete the ones that your

printer does not support, or change them to any setting that you would

like activated.

There is also a series of codes that can be sent at the start of a

document and another at the end. Any codes following 'open' will be sent

at the beginning of your document. This is useful for setting up your

Page 11 of 191

printer into any special configuration you want, such as the desired font

selection. Then, when printing is finished, the codes following 'close'

will be sent. You can use this to reset your printer back to it's default

settings, or whatever you desire. The default codes that are supplied

will send the normal reset sequence of 27 64. This is what most Epson

mode printers use. You are free to change this any way you want.

All of the other settings should be self-explanatory. For instance

'boldon' will be used whenever the style change for bold is encountered.

And likewise, 'boldoff' when non-bold text is once again encountered. The

settings that are supplied are used on most Epson mode printers. Each of

these settings will accept up to 20 codes. Each string of codes must be

terminated with an UP-ARROW character. There must be one space separating

each code. The basic rules for any command in geoSHELL is followed here.

Just think of these as commands that only pwrite recognizes.

PRINTING YOUR DOCUMENTS

When you are ready to print, you must decide which pages you desire to

print, and how your printer is connected. Here is one example:

pwrite ap filename

If you are familiar with geoSHELL, it's obvious what the filename does.

But the parameter before the filename, 'ap', tells pwrite to print 'all'

pages and send them to a printer or interface connected to the serial

port.

You can see that the 'p' is used just like with any other print command

in geoSHELL. Likewise if you are using a geoCable, substitute a 'g' for

the 'p'. Instead of using the 'a' to print all the pages, you can use an

'o' or an 'e'. These would select either 'odd' or 'even' pages. This

makes it handy for printing double-sided sheets. The only thing you must

remember is how your pages are numbered. The first page can start with an

even number if you told GeoWrite to do so. Keep this in mind.

For those times when you need to print just one or a few pages out of

your document, you can tell pwrite to do so with a slightly different

parameter arrangement. You still use the ap, ag, ep, or whatever, but you

can also include a range of pages just before this. Here is an example:

pwrite 12 24 ap filename

This will print all pages from 12 through 24 of your document. If you

used an 'o' instead of the 'a', then only the odd pages between those two

would get printed. The pages that get printed are determined by how you

have them numbered in the document. If your first page starts out as page

number 36, then the previous example would print nothing. Let's say you

wanted to print just page 10. The following example would do this:

pwrite 10 10 ap filename

You always select the starting page and the ending page when you use this

parameter. Just remember that this is optional and you can leave it out

if you wish to print the entire document.

There might be an occasion when you need to print your pages in the other

direction. If you were to put a higher number first and a lower number

Page 12 of 191

second in your parameter, then the higher numbered page would get printed

first, followed by the next page before it and so on until the second

page specified is printed. Here's an example:

pwrite 35 30 ap filename

This will print the pages from 35 through 30 in reverse order.

HINTS AND TIPS

As with anything, the best way to learn anything is to just start doing

it. But, here's some things you might want to remember when you are

creating your document.

Unless you are experimenting with something a little different, be sure

that the COMMODORE font is selected throughout your document. It is very

easy for the BSW font to be mistaken here or there when viewing it on the

screen. Watch your headers and footers. Make sure the correct font is

chosen here also. It is more critical here. If the wrong font is used in

the headers and/or footers, some of the data might not print out because

of the space allowed. The BSW font does not require as much vertical

space, and so all of the lines contained within might not print out.

Speaking of headers and footers, these can be very useful. GeoWrite does

not provide any means of controlling the top and bottom margins unless

you use page breaks. But by using a header or footer with some carriage

returns, GeoWrite will allocate a blank line for each carriage return.

This let's you control the amount of blank space as each page skips over

the perforation.

Headers and footers work just a little different here. When using a

header, the content of your page will begin at the very next line

following your header. But when you use a footer, GeoWrite inserts one

blank line before printing the footer. So, this will cause printing to go

to the 63rd line instead of stopping at the 62nd line. So, if you want

printing to begin two lines down, just hit two carriage returns in a

blank header. Or if you want a bigger margin at the bottom of the page,

add carriage returns to a footer. Just count one extra space for the

blank one that is inserted by GeoWrite. Pwrite will follow the same

format that GeoWrite does here.

Don't worry if this sounds confusing, pwrite will format your page

properly. Whatever you see on the screen will be what comes out on paper.

But use that COMMODORE font or it might not. Even if you put just

carriage returns in a header or footer, make sure that those carriage

returns have the COMMODORE font assigned to them for proper line spacing.

Actually, if you don't like the looks of the COMMODORE font on screen,

you can substitute any other font as long as it's dimensions in height

and width are exactly the same.

When you set up or modify the pwconfig file, you can put anything you

want on any page except page one. Only page one is used by pwrite. This

way, you can store different setups on other pages and just cut and paste

them to page one when needed. You can also keep notes on the additional

pages for your own use. If you use a printer with limited capabilites,

such as a 1525, check out page 3 of the supplied pwconfig file. If you

are using a CMD device and have assigned a partition with the path

command, pwrite will also search the path partition for the pwconfig

file. When it searches for your document, it will search all drives

Page 13 of 191

except the path partition. You don't have to have the document on the

currently active drive. This allows large works that are spread across

multiple files to be more easily printed without having to select the

correct drive first. Just make sure that pwrite doesn't find the wrong

one if you have more than one copy of the same name visible on your

system.

Since pwrite doesn't care what codes you use for each of the style

changes, you might be able to do some special stuff. Let's say for

example that you don't really need underlining in your document, but you

want to use two different fonts. Just change the underlineon and

underlineoff to select a different font. Then whenever you want to use

this font, underline your text in GeoWrite. You can have up to 20 codes

in each string. This should be more than enough to do some pretty fancy

stuff. Use your imagination.

In fact, if you are careful in planning, you could have your printer do

double-wide and double-high printing. If you do double-wide, limit your

line length with carriage returns. If you do double-high or anything else

that would print larger than 6 lines per inch, use a page break to limit

the length of the page. You might find that you will have to print one

page at a time, in some cases when doing special things. Double-wide is

handy for headlines.

You can also print columns easily now by using both pcode (or gcode) and

pwrite. Start by setting the left margin in your document all the way to

the left and the right margin just slightly to the left of the middle on

each page. Then begin by printing just the odd pages. When finished, use

pcode to send the code to your printer that will move it's left margin

over to the center of the page. Put your paper back into the printer and

use pwrite to print the even pages. The second column will now print out.

Or, if your printer supports returning to the top of form, you can set up

an exec file to do it all in one step. The following example works on a

STAR NX-1000 and any other printer that supports the CHR$(27)CHR$(12)

sequence:

pcode 27 64^ {tell the printer this is the top}

pcode 27 67 70^ {make the page length longer}

pcode 27 108 0^ {left margin to zero}

pwrite 1 1 ap filename^ {first column}

pcode 27 12^ {return to top}

pcode 27 108 40^ {left margin to center}

pwrite 2 2 ap filename^ {second column}

{now do the next page}

pcode 27 64^ {tell the printer this is the top}

pcode 27 67 70^ {make the page length longer}

pcode 27 108 0^ {left margin to zero}

pwrite 3 3 ap filename^ {first column}

pcode 27 12^ {return to top}

pcode 27 108 40^ {left margin to center}

pwrite 4 4 ap filename^ {second column}

...and so on....

Page 14 of 191

If you have included any photo scraps in your document, these will be

ignored by pwrite. However, the correct amount of blank space will be

inserted for the graphic. This allows you to put the paper back in the

printer and do one of two things. Using a copy of your document, you can

delete all of the text lines on the page and enter carriage returns in

their place. And then use GeoWrite to print the graphic on your page. Or

you can convert the GeoWrite document to a GeoPaint and then erase all

the text and let GeoPaint or the 'ppaint' command print the graphic.

With a little thought you will actually have more control here. You can

place the graphic wherever you want on the page.

If you have a printer that is wide enough to take a page sideways, you

could print left and right pages and then fold them into a 5.5 x 8.5 inch

booklet. Just use the codes in the 'open' string to control the size of

your font and the lines per inch. A condensed elite setting works pretty

good here. Also use margin settings in GeoWrite to help with this.

As you use this command, you will discover many tricks that you didn't

think were possible.

Page 15 of 191

THE geoSHELL PROGRAMMER'S DEVELOPMENT PACKAGE

Copyright 1993, 1994 by Maurice Randall

All Rights Reserved

This package has been released to the public domain, for the sole purpose

to be used by individuals to create and share with others their work that

this package makes possible. The author still retains all copyrights to

the material contained herein and as such this package may not be

distributed by any means for profit. It may be freely passed around in

it's original electronic form, either arc'd or unarc'd, with it's entire

contents intact, with no parts of it modified or removed, including this

message. The only charge that may be applied is the actual cost for

distribution, unless the distribution is by a recognized Commodore User

Group, where the only charge may be the group's normal library disk fee.

geoSHELL is the Copyrighted work of Maurice Randall

GEOS is a product of Berkeley Softworks (Geoworks) and Creative Micro

Designs

Commodore 64 and 128 are products of Commodore Business Machines

CMD HD, FD, and RamLink are products of Creative Micro Designs

Page 16 of 191

TABLE OF CONTENTS

AN INTRODUCTION TO THIS MANUAL 1-2

A QUICK TUTORIAL 1-5

THE geoSHELL STYLE 1-7

USE geoSHELL TO YOUR ADVANTAGE 1-10

GETTING PARAMETERS FROM THE USER 1-11

THE DIFFERENT COMMAND MODES 1-12

EXITING YOUR COMMAND 1-13

WORKING WITH FILENAMES AND DRIVES 1-15

WORKING WITH PRINTERS 1-17

DISPLAYING MESSAGES 1-18

DISPLAYING LARGE AMOUNTS OF TEXT 1-20

COLORING THE 80 COLUMN SCREEN 1-22

THE ACCESSIBLE ROUTINES / With Examples 2-1

THE APPENDIX

 A. Memory Usage A-1

 B. Messages And Constants B-1

 C. Modes And Their Values C-1

 D. The Included Source Code D-1

INDEX I-1

 Routines Indexed By Topic I-1

 Disk Or Drive Related I-1

 Keyboard Related Routines I-2

 Input Related Routines I-2

 Printer Routines I-2

 Screen And Window Routines I-2

 Text Displaying I-3

 Text And Number Conversions Routines I-4

 Error Related Routines I-4

 Command Related I-5

 Memory Related Routines I-5

 Alphabetical Index To Routines I-6

 Index To Variables

 And Other Memory Locations I-8

 Miscellaneous Index I-9

Page 17 of 191

AN INTRODUCTION TO THIS MANUAL

This manual is a part of a new development package for developing

commands to be used with geoSHELL, the command line interface for GEOS.

This manual isn't going to explain much about geoSHELL from the user's

point of view, the geoSHELL User's Manual does that. And I would assume

that if you are planning on writing commands for geoSHELL, that you more

than likely are already somewhat familiar with the basic operation of

geoSHELL.

In order to create a new command for geoSHELL, you should be familiar

with machine language programming in GEOS and likewise will need the

GEOPROGRAMMER package that was developed by Berkeley Softworks (now known

as GEOWORKS) and is now available from CMD Sales, a division of Creative

Micro Designs. All of the source code included here and all of the

references to macros and variables is compatible only with GeoProgrammer

and as such is in GeoWrite format. From this point on, it will be assumed

that you do indeed have the GEOPROGRAMMER package and are familiar with

using it to write programs for GEOS.

I put a great deal of effort into making geoSHELL easy to use and

understand and I hope that throughout this manual and accompanying files,

that I have achieved the same results by making it easy for you to become

familiar with the inner workings of geoSHELL, and have supplied enough

material, so that you might be able to use the information contained here

to write new commands for yourself and others to use and enjoy.

Throughout this manual, there are programming examples, and when this

document is printed on your printer, some of the characters may not print

as they will appear in GeoWrite, depending on how your printer is

configured. Since you will be printing this document using your printer's

own built-in fonts, here is a list of the characters that are most likely

to look different than what they really are:

^ The UP-ARROW

| The CMDR/UP-ARROW

{ A LEFT CURLY-BRACE

} A RIGHT CURLY-BRACE

The POUND sign

[A LEFT BRACKET

] A RIGHT BRACKET

_ An UNDERLINE character

< A LESS-THAN character

> A GREATER-THAN character

If none of these characters appear as described, you will have to

remember this as you read through the document, or check your printer

manual and make the needed changes to your printer. If they look correct,

then you are all set. The only other way out is to painstakingly print

this document using GeoWrite's 'HIGH' print setting, which uses the

graphic mode of your printer. There are a lot of pages, this will take a

great deal of time.

While reading through this manual, think about theterminology that is

used. Some of my methods may not be the same as yours or anybody else's

for that matter, but I think that I have put it in words that might be

Page 18 of 191

fairly easy to follow and understand. There are references to the current

drive or currently active drive here and there. Usually, the currently

active drive is the one that the user thinks is the current drive, the

one represented by the drive letter that is displayed at the left of the

command line. A reference to the current drive might be the one that is

currently being accessed, however. Hopefully you will make this

distinction. The variable PRESDRIVE always contains the device number of

the currently active drive that the users sees. Whereas, the current

drive would be contained in curDrive.

I have put this development package into the public domain and it may be

freely distributed by anyone as long as it is not sold for any amount of

money for profit. The only fee that may be charged for it's distribution

would be enough to cover the cost of copying and mailing. This allows

registered Commodore user groups to put the package into their library

and charge their members the normal library disk fee to obtain it. Any

individual may privately give out copies of this package as long as there

is no charge to do so. Any other person or group or organization must

obtain written permission from myself, the holder of the copyright,

before being allowed to distribute it in any form. It is also assumed

that anyone using this package is also an owner of an original geoSHELL

disk and manual and is registered as such. For those who aren't, it is

assumed that you are not using this package as an aid in creating

commands for geoSHELL, but possibly as an aid in creating program's of

other types for GEOS in general. Please feel free to use the information

contained here if it helps to keep the GEOS format alive. But you will

find that in most part, this package pertains mainly to geoSHELL.

With that out of the way, let's get down to business. Read through this

documentation and study some of the sample source code that is included.

Look through the section of this manual that covers each of the

accessible routines in geoSHELL and try to imagine what you might be able

to do with some of those routines. Think of a useful command that you

wish geoSHELL had, and then create that command. If you come up with

something useful, upload it to some of the major networks and share it

with other geoSHELL owners or send it to me so that I can include it with

other commands that I will create for geoSHELL owners to use. Anything

that you create with this package should be kept as public domain. The

only commercial part of geoSHELL is the main program and it's

accompanying manual.

I hope this package is helpful, and please write to me with any problems

or further questions that this package does not answer for you. If you

create something useful, let me know.

Maurice Randall

P.O. Box 606

Charlotte MI 48813

PH: (517) 543-5202 (daytime phone and answering machine)

Using a P.O. Box, I will always be able to receive your mail, since my

residence address could possibly change. If you are ever in the

Charlotte, Michigan area though, stop in and say hi at my shop during the

daytime hours at:

Automotive Performance

426 Sumpter St.

Page 19 of 191

Charlotte MI 48813

There is no shareware fee involved with using this package. You may use

it free of charge. Being a registered owner of geoSHELL entitles you to

use this package. Just write to me and let me know that you are using it

so that if I discover any errors or create any updates, I can keep you

informed as such. By the same token, please let me know if you find any

errors anywhere. I've done considerable proofreading of this entire

document and rechecked it with the original source code for geoSHELL.

But, I'm just human also. I think, though, that you will find this to be

quite error-free and I hope that you can make good use of it.

A QUICK TUTORIAL

Included with this package are three files that are the very most basic

templates that you can have when you start to create a geoSHELL command.

They are appropriately named Sample, SampleHdr, and Sample.lnk. Copy

these three files along with GSVariables.rel to either a separate work

disk or your ram disk. Don't use the original files, use copies. You are

about to create your very first geoSHELL command. Be sure that you also

have GEOASSEMBLER and GEOLINKER on your disk. You can split these files

between drives A and B if you'd like. The other files you will need were

included with your GEOPROGRAMMER package. They are geosSym and geosMac.

Copy these to drive A or B also. And don't forget GEOWRITE, since that is

the text editor that we use.

Start by loading 'Sample' into GeoWrite and study the contents of this

file. In it you will see where you would add the code that makes up your

command. The very first instruction that will be in this file, where the

label 'Sample' is found is where geoSHELL will jump to when it executes

your command. From this point on, until you reach the instruction 'jmp

ExitCommand', your command will be in control of the machine.

You can have your command do most anything you can think of, within

reason, and within the limitations of your machine and the limitations

imposed by the memory given to you. We won't worry about any of this for

now, because this first command will be very small and will work just

fine, hopefully on the first try.

Where the label, 'Sample' is, type in the following code exactly like you

see it here:

Sample:

 LoadW r0,#nameText ;point r0 at some text.

 lda #(IN_ONE|TR_CR) ;formatting info.

 jsr OtherMessage ;display a message.

 jmp ExitCommand ;quit the command.

nameText:

 .byte "John Doe",0 ;use your name instead.

Now load up GEOASSEMBLER. If you're using geoSHELL, just type the

hotkeys, 'as', to run it. Assemble the file SampleHdr and then assemble

Sample. If everything was done properly, these two files should have

assembled without any errors.

Exit out of GEOASSEMBLER and load up GEOLINKER. With geoSHELL, type the

hotkeys, 'li', to run it. Now, from GEOLINKER's menu, select the file

Page 20 of 191

'Sample.lnk' and proceed to finish creating your first command. Once

again, if everything was done properly, GEOLINKER will finish with no

errors and you will have a file on your disk called 'sample'.

If you came up with any errors while assembling or linking, you will have

to go back and check the files for errors. When you've corrected the

problem, try assembling and linking again.

Now that you have a new command called 'sample', try it out. Just enter

the command's name from geoSHELL and see what it does. If it works as

expected, you will see your name displayed withinthe geoSHELL window.

What your command did was to access the built-in routine OtherMessage to

display the text string that r0 was pointing at. Just before calling the

routine, you loaded the accumulator with a value that told OtherMessage

how you wanted the text displayed. In this case, we or'd #IN_ONE with

#TR_CR. IN_ONE tells OtherMessage to indent one character, and TR_CR

tells it to add a trailing carriage return after displaying the message.

When you are ready to go further, take these same sample files and rename

them appropriately to reflect the command you are creating. Be sure to go

into the SampleHdr file and change the areas that should be altered, such

as your name should go where the author's name is. You can also add a

message in the Hdr file that will show up in the Desktop's info box or

with geoSHELL's info command. Load the .lnk file into GeoWrite and change

the names of the files contained in it. Always leave the file

GSVariables.rel as the first file to link and you will have access to all

of the variables that are accessible in geoSHELL. GSVariables does not

add anything to the size of your code, it only gives access to the

variables and equates.

Read through this manual and check out all of the features of geoSHELL

that are available to you and then think of some ideas for some new

commands.

THE geoSHELL STYLE

When you create your commands for geoSHELL, try to stick to the style

that everyone is accustomed to. A command's name should be all lower-case

letters. It's easier to type when you don't have to hold down the shift

key. Keep any required parameters simple and easy to remember. If your

command requires a destination of some sort, such as a disk drive or

printer, make the requirement one letter, if possible, followed by a

space and then a filename if it is required.

You are actually free to do what you want, but people get used to doing

things a certain way. Keep that in mind. It is hard for some people to

get the hang of using geoSHELL after becoming familiar with the Desktop.

But once they have used geoSHELL for awhile, they find out just how easy

and powerful it really is. Keep this in mind if you try to change the

style that geoSHELL users are now familiar with.

geoSHELL comes with a fairly complete online help file and a help command

for accessing it. But since new commands are not included in the help

file, it would be a good idea to display a short bit of information on

the screen when the user enters the wrong parameter after your command.

If no parameters are required, then there would be no need for this. Your

command would just do it's thing and exit. You would still want to have

error messages displayed when your command detects an error, however.

This manual will explain how to display messages on the geoSHELL window.

There are also examples in the sample source code that you can cut and

Page 21 of 191

paste into your own source code. That will make it easier to get it right

the first time.

Your command, if you decide to share it with others should also include

complete documentation. Don't make everyone try to figure out how to use

it or exactly what it does. Explain everything, and in a manner that

everyone can understand. Even the most expert of people prefer simple

instructions. Put your documentation in GeoWrite format. If you create it

with a 64, the 128 can still read it on the screen, since a 128 will

display the full page width. But if you create the documentation on a

128, think of the 64 users also. Remember that they can only display half

of the page width. So, it is acceptable to format the documentation with

the right-hand margin set at 4.1 inches. Set the left margin all the way

to the left. 64 users should select a 'full page wide' from the menus in

order to get the left margin set at .2 inch, thereby making the document

a V2.1 file. If a 128 user loads a V2.0 file into GeoWrite, the first

thing he is asked is if he wishes to convert it to 2.1. This can be

alarming sometimes or annoying if reading the original doc file on a

write-protected disk. By keeping the right margin at 4.1 inches, a 64

user won't have to scroll to the right as he is reading the text. If the

user wishes to print out the documentation, he is free to reformat the

text to any margin settings he desires, but for just reading on the

screen, it is very disturbing to have to scroll back and forth.

Once you have a full working command with absolutely no bugs and wish to

share it with others, use one of the convert programs (2.5 compatible) or

the new convert command for geoSHELL toconvert the command and the

documentation to Commodore format and then use one of the arc utilities

to arc the files together. This way the command and it's docs stay

together when uploading and downloading. Anyone that does any amount of

downloading from a BBS or major network should have the utilities to

unarc a file. Of course, an easier way is to create a self-dissolving arc

file. Then the user merely has to load and run the file to dissolve and

then use convert to get the files back into GEOS format.

Always think of the person that is going to use your command. Keep in

mind also the many different combinations of hardware that is possible

with GEOS. There are many different drive setups that can be used and

many different printers. Try to be compatible with everybody. If you are

creating a command for yourself, then just do what only you need. But if

you are going to share with someone else, keep this in mind. If you stick

with the proven routines in geoSHELL, then your command should be

compatible with any of the drives that are available.

Also, try to decide if your command will work with both the 64 and 128.

If it is specific to the 128's 80 column mode, be sure to check the

system that is being used. If you put the correct identification byte in

the command's header block, then geoSHELL will do the checking for you

before your command is loaded. But there is one catch to this. When a

command is used once, it will stay in memory until another transient

command overwrites it. If the machine is a 128 and your command only

works in 80 column mode, for instance, geoSHELL will, of course, allow

the command to execute if the user is currently in 80 column mode. But,

once the command is in memory, it is possible that the user could switch

to 40 columns and enter the command again. And if your command does nasty

stuff in 40 column mode or vice-versa, that wouldn't be good. So, it is a

good idea to test the screen mode before continuing with your command in

these cases.

Page 22 of 191

geoSHELL provides a variable to check that will tell you exactly the

machine and the mode it is running in. The variable 'screenmode' is used

for this. If bit 6 is set, the machine is a 64. If bit 7 is set, it is a

128 in 80 column mode. If screenmode equals 0, then the machine is a 128

in 40 column mode. In addition to this, the variable 'videomode' will

tell you if the 128's 80 column screen is in multi-color mode or

monochrome mode, in case your command needs to know. If bit 7 of

videomode is set, the 128's 80 column screen is using color. This can be

tested even while in 40 column mode, but is not effective unless the user

switches to 80 columns.

Most commands will not have any reason to erase the geoSHELL window from

the screen. It is a good idea to try and keep the window active, if at

all possible. When your command exits, the user needs the window to be

there in order to continue with something else. Of course, geoSHELL has

routines that you can call to restore the window and whatever was in it.

But when you erase it and do something different, there will be some

routines that you won't want to access. The reason is that some geoSHELL

routines will cause your command to cease if certain errors are

encountered. If that happens and the window is not there, then the user

just gets a blinking cursor without the window. He willstill be able to

type in a command, but the effect might scare him. There are only two

commands that are supplied with geoSHELL that operate without the

geoSHELL window. One is 'dcopy' when used with a 40 column screen, and

the other is 'color80' with the 80 column screen of the 128. dcopy uses

the computer's screen memory area for a buffer when transferring data

from one disk to another. While it is doing this, it will blank all but

the lower portion of the screen where it displays, 'Please Wait - Disk

Copy In Progress'. It still lets the user know what is going on. If it

didn't display this, the user might think that the computer has locked

up. As soon as the copying is finished, the screen is restored and the

window looks just as it did before the copying began. Some of the sample

source code contains the same routines that dcopy uses so that you can do

the same thing in your code if you need some extra room while your

command is running. If you have a 128, you've no doubt seen the color80

command and obviously this command doesn't need to have the geoSHELL

window running. The color80 command shows that even graphic type commands

may be used with geoSHELL. The source code for color80 is included in

this package so that you can have an idea of how to do something similar.

The only thing to keep in mind is to make sure that your command can get

the screen back into shape without using any of the geoSHELL routines

that will stop your command. There aren't very many that will do this,

but be aware of the ones that do. The description of each routine will

tell you if this can happen. The routine that geoSHELL jumps through to

halt your command is called 'NoMoreCmds'. This not only stops your

command, but any others that the user might have typed in following yours

will be ignored also. You can also jump through NoMoreCmds to halt your

command in case of an error that you feel should return control to the

user. Keep this in mind. In some cases, the user might type in two

commands that relate to each other. If the first command detects a

problem, it might not be a good idea to allow the second command to

execute. This is something that you have to control in your command.

Decide how serious of an error it is and then take appropriate action.

You should try to display an error message and then jump to NoMoreCmds if

the error is serious enough. If it is not something that would cause a

Page 23 of 191

problem, then just end your command the clean way with a jump through

'ExitCommand'. This routine will return control to geoSHELL in the same

state as it was when your command first started. geoSHELL will then

process further commands if there are any.

USE geoSHELL TO YOUR ADVANTAGE

geoSHELL contains 101 routines that can be accessed from it's jump table.

Use these routines to your advantage. Also, use the GEOS kernal routines.

You can make your commands short if you can make use of what is already

available to you. Some of geoSHELL's routines might never be useful to

you, and some of them will be used in each and every command that you

create.

Most simple commands can be written in just one or two pages of source

code. The smaller they are, the faster they will load from disk. This is

important to the user. Obviously, many commands that have already been

written for geoSHELL could be translated into an application. One

disadvantage to this would be that each application would end up being

much larger and take up more room on a disk. Another disadvantage to this

is that when the application is finished, geoSHELL or the Desktop must be

reloaded from disk. geoSHELL commands do not remove geoSHELL from memory.

It stays there. In fact, your command will also stay in memory until the

user loads in another transient command from disk. This allows the user

to do other things with geoSHELL and still be able to use your command

again.

Another advantage to doing functions in GEOS with geoSHELL commands will

be evident with those that use CMD devices. geoSHELL and all of it's

commands can be placed in just one partition instead of having to have a

copy in each partition like you would need if using the Desktop. Then, as

long as the user identifies that partition with the 'path' command,

geoSHELL will always have access to any of those commands, no matter

which device or partition the user is working from. It is sort of like a

big extention of the computer's memory. If your command were to perform

some sort of printing function, the user merely types in the command and

any required parameters, if needed, and the command is executed. The user

doesn't even realize that geoSHELL changed partitions to get access to

the command.

When geoSHELL executes your command, it turns control over to your

command. Your command can now do what it is designed to do and then exit.

The most simplest of commands would act as though they were just another

routine in geoSHELL that is being jsr'd to. But you do not want to end

your command with an 'rts'. This will not return you to geoSHELL's main

processor. This returns you to the GEOS Kernal's mainloop. The reason

geoSHELL was written to operate this way, was so that your command could

make use of custom input routines and use the GEOS mainloop to catch user

input. The command 'color80' works this way. At one point it will do an

rts and wait for the user to click on an icon. It sets up an icon table

for GEOS to look at when the user clicks the mouse. If you still want

user input, and need a blinking cursor, geoSHELL has routines that will

turn on the cursor for you, or turn it off, also. You will have to

process the characters that the user enters. There are some routines that

will do a certain amount of this for you. Plus, the GEOS kernal has

routines for this also.

Page 24 of 191

GETTING PARAMETERS FROM THE USER

When the user types in your command and enters a required parameter, you

will have access to that parameter in several ways. There is a table that

geoSHELL creates at 'ParamTable'. This table is 43 bytes long. The 43rd

byte will always be a null. If there is any data following your command,

it will be placed in this table. If no parameter was entered, this table

will be all zeros. If one or more parameters were entered, they will be

placed here at least up to the point where geoSHELL either finds a

carriage return or a terminator, which could be an up-arrow character or

a null byte. The remainder of the bytes in the table will be nulls.

There is also a pointer into the actual buffer where the commands are

coming from. The command pointer, a4, points to this buffer. This buffer

can be in one of two places. If the commands are coming from the user at

the keyboard, a4 will be pointing somewhere within the command buffer. If

the commands are being executed from a startup file or an exec file, then

a4 will be pointing somewhere within the startup buffer. geoSHELL looks

where a4 is pointing when it is ready to execute the next command.

When you use ParamName to get the filename, a2 and r6 will both be

pointing at it. They will also be null-terminated. As you know, the user

is allowed to use wildcards when entering a filename. ParamName will

identify this fact for you. If a wildcard (? or *) is used, bit 7 of

WILDCARD will be set. If your command works like the 'rename' command

where the user needs to type in two filenames with an equals (=) sign

separating them, then ParamName will have bit 5 set if the equals sign

was used properly. And in this case, a4, the command pointer, will

automatically be updated to point at the second filename as well as a2,

while r0 will be pointing at the first filename. Both will be null-

terminated. If bit 7 is set in this case, it will still reflect wildcards

in the filename that a2 is pointing at. You are not notified if wildcards

exist in the filename that r0 is pointing at. In the case of the rename

command, the first filename should be entered without wildcards anyway.

Even though ParamName points a2 at a filename and terminates it with a

null byte, the bytes contained in ParamTable will not be affected. You

can still get access to the exact characters that the user typed in.

If you need to use the filename that r0 points at in the case of the user

entering two filenames, you might want to save the value contained in r0,

since that is a fairly popular zero page location. a2 will not get

changed unless you call a geoSHELL routine that purposely changes it.

Another variable that might be useful is 'paramsize'. When geoSHELL loads

your command and fills ParamTable, it also sets the variable paramsize

with the number of bytes that were copied to ParamTable.

THE DIFFERENT COMMAND MODES

If your command needs more than what can be typed in at the keyboard, it

would have to be a command that would only execute from a 'startup' or

'exec' file. The user can enter as much as will fit in the exec file at

least until it gets too large for the startup buffer. The startup buffer,

which is also used for exec files, is 1536 bytes in size. This can

accomodate all but the larger GeoWrite pages. When you need to access a

parameter that is larger than ParamTable will hold, just read the

parameters beginning with the byte that a4 is pointing at.

Page 25 of 191

There is a way to tell if your command is being executed from the command

line or a startup/exec file. The variable 'STUPMODE' will identify this

for you. If bit 7 of STUPMODE is set, then the command is being executed

from a startup or exec file. If bit 7 is cleared, the user typed in the

command from the keyboard. If the command came from a function key press,

then the variable 'FKEYMODE' will have it's bit 7 set, otherwise it will

be cleared. So, in some cases, your command may or may not be compatible

with these different modes. As an example, geoSHELL's 'echo' command is

not allowed to run from the keyboard. There is no reason for it, even

though it would do no harm.

When you are creating your command, test it to be sure that it will

operate in these different modes. Try to make it compatible with any of

the different ways that the user might want to use it. In most cases, you

won't have any problem with your command in any of the different modes,

unless it does something out of the ordinary.

EXITING YOUR COMMAND

The proper way to exit a command is through the routine 'ExitCommand'.

This way, geoSHELL knows you are finished and it will then proceed to

check if any more commands exist that need to be executed. If not, then

it will return control to the user. If you simply did an 'rts' instead of

'jmp ExitCommand', you would return to the GEOS mainloop and the user

would be stuck, unless your command itself was looking for user input

through mainloop. If not, then the only way the user might get out of

this situation would be to click on geoSHELL's close icon, and return to

the Desktop. So, when testing your command, should you forget this, just

click on the close icon, return to the Desktop and then you can get back

into geoSHELL from there. If the Desktop isn't found by geoSHELL, then

geoSHELL will grab control of the computer and give control back to the

user. Just be sure to end your command with the jump through ExitCommand

and the user won't run into this problem.

If you had any parameters that your command used, you are required to

update the command pointer before you exit your command. Otherwise,

geoSHELL will try to execute your parameter and that obviously would not

work. If your parameter were a filename, geoSHELL would attempt to load

and run that file. This may not be what you had intended, but you are in

charge until your command exits, so do as you please. You can put the

command pointer wherever you want, but in most cases, you would place it

just past your parameter, so that geoSHELL can check for another command

following it and do as the user expects.

There is a routine that helps you to adjust the command pointer. It is

called 'IncCmdPointer'. If you did not use any parameters, then you would

not need to worry about updating the pointer, because it would already be

pointing at the next command. But if you had a parameter, you need to put

the pointer past it and point at the next command if there is any.

Remember that from the user's standpoint, you are required to put at

least one space after a command's parameter, so the command pointer needs

to be incremented by the number of bytes that make up the parameter plus

one for the space that follows it. Assuming your command had a one-byte

parameter, the following code would increment the command pointer

properly:

lda #2

Page 26 of 191

jsr IncCmdPointer

You must load the accumulator with the amount to increment and then call

the routine. If your parameter was a filename, and it contained 10

characters, you would have to increment the pointer by 11. geoSHELL will

count the length of your filename for you if you use the routine

'ParamName' to fetch the filename that the user typed in. The length of

the filename will be contained in 'NUM_IN_NAME'. Just load the

accumulator with the value in NUM_IN_NAME and add 1 to it for at least

one trailing space, and then call IncCmdPointer. Refer to the information

about these routines for more sample source code on how to use them

properly.If you were grabbing parameters directly from the command buffer

or startup buffer if the command was executed from a startup or exec file

(a4 points to the first parameter either way), then you might just

manually update the command pointer (a4) as you go. The following code

would do this:

 ldy #0

10$

 lda (a4),y

 ...

 ... ;do what you need with the byte.

 ... ;somewhere in here you might

 ... ;branch out to 20$ if done.

 ...

 iny ;or branch to here.

 bne 10$

 inc a4H ;keep a4 pointing properly.

 bne 10$;branch always.

20$

 iny ;one past our parameter.

 bne 30$

 inc a4H ;in case y incremented to zero.

30$

 tya ;increment the last little bit.

 jsr IncCmdPointer

 ...

 ... ;continue on

 ...

WORKING WITH FILENAMES AND DRIVES

You've learned how to get a2 to point to the filename that the user has

typed in. Now let's see how we can find a filename on a disk. There are

several routines for doing this. You no doubt know of some of the

routines that are built into the GEOS kernal for finding a file or

accessing a file in some manner. But if you merely take the filename that

a2 is pointing at and do the following routine, it might not work.

 MoveW a2,r6 ;point r6 to filename

 jsr FindFile ;and use GEOS kernal

 ;to find it.

Page 27 of 191

You are probably wondering why this wouldn't work. When using the

DeskTop, the user clicks on an icon. The DeskTop knows the exact spelling

of the file and the drive it is located on (the currently open drive).

But with geoSHELL, the user can type in anything. What if the user

included some wildcards in the filename? GEOS doesn't work with

wildcards. Those have to be handled by the application. geoSHELL will do

this for you. In fact, it is all handled automatically. And there are

several routines you can call depending on the search you would like to

perform. Here's one example:

 jsr CkPresdrive ;find the file on the

 ;currently active drive.

 bit goodflag ;Is it there?

 bmi 50$;branch if so.

This example would search the currently active drive for the filename

that the user typed in. This would be the drive that the user sees as

being open, according to the letter that is displayed at the left of the

line. You can tell which drive it is by checking the value of PRESDRIVE.

This variable always holds the device number of the user's currently

active drive, or the 'present' drive. Using geoSHELL routines to search

for filenames will properly handle the wildcards for your command. If the

file is found, the variable 'goodflag' will have it's bit 7 set and your

command will be able to then process the file as needed. Another thing

that these routines do for you is that now a2 is pointing at the actual

name of the file as it exists on the disk. The wildcards are converted

into the characters that they are supposed to represent. Now the standard

GEOS routines can process the filename because you know the exact name as

it appears on the disk. If you wanted to keep a copy of the filename that

the user typed in, then you might want to save a copy of where a2 is

pointing before calling the routine. The routine will actually point a2

at a different location, where geoSHELL assembled the correct filename

for you. This location is usually at 'filetoload'. Most of the time, you

won't have a need for the original name, just the correct one. If

geoSHELL doesn't find the file, then a2 won't change.geoSHELL has many

ways to search for a file. Here are the different methods you can select

from, depending on what you intend to accomplish:

CkPresdrive will search the current drive.

CkAllDrives will search all of the drives except the path partition,

unless that particular partition is currently open on one of the drives.

CkThisDrive will search the drive that you specify in the accumulator.

Just load the accumulator with a value from 8-11.

CkOtherDrives will search any drive that you haven't yet searched with

CkThisDrive. This allows you to use CkThisDrive to pick and choose the

exact order you want, and then use CkOtherDrives to search all remaining

drives. The path partition is ignored.

CkPath will search the path partition.

CkPathOrder will search a specific order with certain priorities. First

all ramdisks are searched, then the path partition, and finally any

remaining drives.

FindParName will search the currently active drive just like CkPresdrive

does, except you don't have to supply the filename for the search. This

Page 28 of 191

routine will get it for you, since it calls ParamName to get the

filename. The only drawback to this routine is that if the file is not

found, it will exit through NoMoreCmds and your command will end. Be sure

that the geoSHELL window is active if you use this routine.

Each of these routines will deal with any wildcards if contained in the

filename that a2 points at. You can always test goodflag for a successful

search. If goodflag is set, indicating that the file was found, then the

variable DRVFOUNDON will contain the device number where the file was

found. Plus the drive that contains the file will be open so that you do

not have to call SetDevice or OpenDisk.

If you called a routine that searches the path partition, and if the file

is found on that partition, then 'pathload' will have it's bit 7 set. In

this case, you will be left with the path partition open. It is your

responsibility to restore the partition that was previously open once you

are through with that file and before you exit your command. Otherwise,

the user might not appreciate it. There is a simple routine in geoSHELL

to do this for you. It is called ResetFromPath. Call this when you are

finished with the file and are ready to close the partition.

ResetFromPath will reopen the original partition on the path device and

will also reselect the drive specified in PRESDRIVE. Also be sure to call

ResetFromPath before using any routine that could cause your command to

cease. You wouldn't want to leave the user in the wrong partition when

control returns to him. You can always reopen the path partition if need

be. It all works fairly quick, so it would not slow your command down to

any noticable degree.

WORKING WITH PRINTERS

There are routines in geoSHELL for accessing a printer or interface

connected to the serial port. Unfortunately, they were mistakenly left

out of the jump table. The '@p' command causes geoSHELL to send output to

the printer through these routines. In the sample source code files that

are included with this package, you will find some source code that you

can put in your command for accessing the serial printer or interface.

On a brighter note, the routines that access a printer connected to the

user port with a geoCable 'is' in the jump table. There are two routines,

Open_GC_Channel and Send_GC_Byte. You don't have to call Open_GC_Channel.

However, it is a good idea to do so, because it will check to make sure

there is a printer connected and responding before you attempt to send

any bytes to it. This routine will return with x=0 if a printer was found

and is able to accept data. The universal 'goodflag' is not used with

this routine. Once you are sure that a printer is there, use Send_GC_Byte

to transmit the bytes. Just load the accumulator with the byte to send

and call the routine.

One of the things you might want to try when testing your routine is to

see how it works with the @p or @g command, even if your command has

nothing to do with the printer itself. Make sure that when geoSHELL is

sending screen output to the printer, that your command will work with

it. If not, then you would want to either inform the user with an error

message, or turn the printer output off yourself. You can check this with

the variable PRNTMODE. Any non-zero value here will send output to a

printer. Bit 7 set goes to the serial port and bit 6 set goes to the user

port. You can turn these off if the printer doesn't get along with your

Page 29 of 191

command for some reason. Just be sure to restore it before you exit your

command.

DISPLAYING MESSAGES

geoSHELL is full of messages. A good deal of the program is involved with

sending messages to the screen in order to inform the user what is taking

place. But it seems as though there were times when it should have even

more messages.

As geoSHELL evolved, it grew larger and larger. At one point in time, it

did not have the ability to use transient commands. All commands were

contained in memory and so every command was considered a resident

command. But it got to the point where something had to go. So, some

commands were removed from geoSHELL and made into transient commands.

Some were moved into VLIR records in the geoSHELL file and others were

placed in their own separate files as external transients. This also

allowed many of geoSHELL's messages to get moved out of memory and into

the transient commands. In this way, more messages could be added to the

commands themselves, since they would not require any of geoSHELL's main

memory. But, I guess you just can't have enough messages. Not everybody

will read a manual, but they will usually notice a message that is

displayed in front of them.

So, you will want to keep the user informed of any error that occurs, or,

if your command is doing something that might require some processing

time, let the user know about it. Don't make him think that his computer

has just locked up. But, keep your messages short and to the point.

Another thing to remember is to keep your messages limited in length.

Remember, a 128 user might be able to have an 80 character message on his

screen, but a 64 user can't. So, for the longer messages, you will have

to break them up into two lines. Remember that a 128 user might also be

in 40 column mode. You have 40 columns to work with, so keep the messages

to a maximum of 40 characters including any spaces.

There are two routines that will help you to display a message to the

screen, 'Message' and 'OtherMessage'. The routine Message will allow you

to have access to the messages that are built-in to geoSHELL. If you can

use any of these, it will make your own command that much smaller.

OtherMessage lets you use messages that are contained in your command.

Here is a couple of examples:

;Example #1

 ...

 ldx #15

 lda #(IN_TWO|TR_CR)

 jsr Message

 ...

;Example #2

 ...

 LoadW r0,#wrongText

 lda #(IN_TWO|TR_CR)

 jsr OtherMessage

 ...

wrongText:

Page 30 of 191

 .byte "Wrong Filetype!",0

In the first example, you will be displaying the internal message #15

because you loaded x with 15 and called Message. Message #15 will display

'Insufficient Room On Disk!'. Notice that you also had to load the

accumulator with a value. This value tells the message routine how to

display your message. There are some constants for this. The ones we used

here are IN_TWO and TR_CR. The first one, IN_TWO, stands for 'initial two

spaces', and will make the message appear two spaces over from where the

cursor is and the second one, TR_CR, stands for 'trailing carriage

return', and will produce a carriage return after your message is

displayed.

The second example above uses OtherMessage. Here, you have to point r0 to

a null-terminated string, load the accumulator with the formatting

information and then call the routine.

If a message causes printing to exceed the limit of the 40 column screen,

it will simply be chopped off at the right side. No harm will occur,

other than the user won't see the whole message.

In the Appendix, you will find a list of the built-in messages that you

can access along with the different constants that can be loaded into the

accumulator before calling these routines.

DISPLAYING LARGE AMOUNTS OF TEXT

If you need to display large amounts of text, there are routines in

geoSHELL for doing this, complete with word-wrap. The 'type' and 'echo'

commands make use of these routines.

The echo command can display any text following it until it encounters

either a null byte or an up-arrow terminator. Here is a method you can

use that is similar to the one that the echo command uses:

 LoadB endecho,#128 ;initialize a flag.

 LoadB typeset,#0 ;ignore tabs and carriage

 ;returns.

 MoveW a4,r0 ;point r0 to the start

 ;of your parameter or the text

 ;that follows your command.

 10$

 jsr DispText ;display up to 80 columns

 ;of text.

 jsr AdjTxtPointer ;advance a pointer to

 ;some more of the text.

 bit endecho ;have we reached the end?

 bmi 10$;branch if not.

 MoveW r0,a4 ;adjust the command pointer.

 rts

In the above example, using DispText and AdjTxtPointer together, you can

display any text that r0 points at. In this example, we are displaying

text that follows our command since we are pointing r0 at the same spot

that a4 is pointing at. DispText will give you word wrap, because it will

only display complete words to the screen. Calling AdjTxtPointer will

point r0 at the first word that DispText didn't display. We know that we

have reached the end of the text when bit 7 of endecho is cleared. The

Page 31 of 191

routine starts out by setting endecho's bit 7, otherwise only one line of

text will get displayed. Then as long as bit 7 remains set, there is

still some text left and so we loop back to display some more. The above

routine will terminate if a null byte or an up-arrow terminator is

reached. It will work this way if typeset is set to zero. If bit 7 of

typeset is set, then an up-arrow will not terminate the routine, only a

null byte will. Also, this would cause carriage returns and tabs to be

recognized. A tab will not be treated as a true tab, but will be expanded

to equal 5 spaces. That is how the 'type' command works with DispText. Of

course, though, since the type command is capable of displaying almost

any kind of text file, it also does some other processing of the text it

reads from disk before passing it on to DispText. DispText only

understands true ascii text. DispText will also call routines that will

scroll the text when it reaches the bottom of the geoSHELL window.

CkKeyboard is also called to allow the user to pause or stop the text. If

the STOP key is pressed, your command will terminate and control will

return to the user. So you should only use these routines if the geoSHELL

window is active. The routines are designed to display text in the

window,anyways. If you wish to defeat this, you can turn the keyboard off

by setting bit 7 in the variable 'kboardoff'. If you set bit 6, then only

the STOP key will be ignored. Reset kboardoff to zero when you are

finished.

COLORING THE 80 COLUMN SCREEN

geoSHELL has a command called 'rgb' that allows a user of the 128 with a

color monitor to display geoSHELL in multiple colors, instead of just the

two colors that GEOS uses for most applications. Since geoSHELL has been

given this ability, the routine to put the color on the screen has been

made available in the jump table so that any command can have access to

the same routine and add color if it operates outside of the geoSHELL

window. This is what the command 'color80' does. The routine that puts

color on the screen is called 'ColorScreen'.

Before attempting to color the screen, you should be sure that the user

has put the computer in color mode. First, your command should check to

make sure that the machine is a 128 in 80 column mode. Test bit 7 of

screenmode to check for 80 column mode. If it is set, then the machine is

a 128 running in 80 columns. Following this, test bit 7 of videomode. If

it is set, then the user has selected color mode with the 'rgb' command.

If this all checks out OK, then you can proceed with your command. If the

machine is not a 128 in 80 column color mode, then you should inform the

user as such, and then exit the command appropriately.

ColorScreen expects two things, a table of compressed bytes pointed at by

r0, which from here on we will call a 'Color Scrap', and a table of color

combinations pointed at by r1. In the table of color combinations, there

can be as many as 255 different combinations of colors. The reason that a

separate table is used for the colors is to make it easy to alter the

colors in any Color Scrap just by modifying the different color

combinations in this table instead of having to go through the Scrap

itself and changing each color byte. The colors can be changed very

easily while your command is running, or while you are developing the

source code. Each combination is a one byte value consisting of a

foreground color and a background color. The foreground color (0-15) is

stored in the upper nybble of the byte, while the background color is

Page 32 of 191

stored in the lower nybble. So, a byte that defines a black foreground

with a white background would be (BLACK80<<4)|WHITE80. Using

GeoAssembler, this will shift the value of BLACK80 left 4 bits and 'or'

it with WHITE80. In hexidecimal form it would be $0f, since BLACK80

equals 0 and WHITE80 equals 15. In the description for the Color Scrap,

you will see how ColorScreen uses this table of color combinations. Here

are all of the equates that you can use instead of having to remember

which color number corresponds to which color. These equates are all

assembled in GSVariables.rel.

BLACK80 = 0 ;black

DK80GREY = 1 ;dark grey

DK80BLUE = 2 ;dark blue

LT80BLUE = 3 ;light blue

DK80GREEN = 4 ;dark green

LT80GREEN = 5 ;light green

DK80CYAN = 6 ;dark cyan

LT80CYAN = 7 ;light cyan

DK80RED = 8 ;dark redLT80RED = 9 ;light red

DK80PURPLE = 10 ;dark purple

LT80PURPLE = 11 ;light purple

DK80YELLOW = 12 ;dark yellow

LT80YELLOW = 13 ;light yellow

LT80GREY = 14 ;light grey

WHITE80 = 15 ;white

The Color Scrap defines the areas of the screen that you would like to

have color applied or changed from what is currently there. You can color

anything from one 8 x 8 pixel area to the full screen. The screen is made

up of 1760 individual areas that we can add color to. Normally, there is

2000 areas, but since geoSHELL doesn't use the lower 3 rows when in rgb

mode, we are limited to 1760 color areas. These areas correspond to the

same character locations if the screen were in text mode such as when you

first turn the computer on. We will refer to each area as a card. There

are 22 lines of 80 cards on the screen that we can add color to. Each

card or line is eight pixels high and each card is eight pixels wide. In

the VDC chip's own memory, there are 1760 bytes that hold the color

information for each card on the screen. The first byte corresponds to

the card at the upper left corner of the screen. Bytes 0-79 represent the

cards in the first row. Bytes 80-159 represent the cards in the second

row, and so on. So, you can see that each row is stored sequentially in

memory. When designing a Color Scrap, you have to keep this arrangement

in mind.

The lower three card rows that are blanked out are always in the same

color as the border. This way, the blanked out rows just make the lower

border area look thicker. geoSHELL provides you with a routine to change

the border color. It is called SetBrdrColor. To use it you must first

load brdrcolor with the desired color 0-15. Here again, make sure that

the machine is in color mode.

Let's design a simple Color Scrap.

Here is how a Color Scrap is laid out:

Page 33 of 191

byte 1 row (0-21) to begin at.

byte 2 column (0-79) to begin at.

byte 3 number of times (1-255) to repeat the next command.

byte 4 number of 2 byte commands (1-255) that follow.

byte 5 number of sequential cards (1-255) to color.

byte 6 offset (0-254) into color table of color to use.

 If 255, then no coloring will take place, the routine will simply

increment the number of cards defined by byte 5.

 Bytes 5 and 6 are a pair of bytes that is the first command set in

the number of command sets that is defined by byte 4. If byte 4 was a 2,

then byte 7 and 8 will also be a command set. If byte 3 is a 2, then the

group of bytes from byte 4 through byte 8 will be performed twice. In

this case, then byte 9 will be thestart of the next group.

byte 9 If 0, then end of table.

 If 255, then the next two bytes define a new row and column to

begin coloring from.

 and so on until end of table...

;This example will color a 4 x 4 card box where the upper left ;corner of

the box is at row 2, column 10.

ColorBox:

 LoadW r0,#boxScrap

 LoadW r1,#boxColors

 jmp ColorScreen

boxScrap:

 .byte 2,10 ;start at row 2, column 10.

 .byte 4 ;repeat the next number of

 ;sets 4 times so that 4

 ;rows get colored.

 .byte 2 ;number of command sets.

 .byte 4,0 ;color 4 cards with

 ;color 0 (1st color combo)

 ;from the color table.

 .byte 76,255 ;skip 76 cards without

 ;coloring.

 .byte 0 ;end of table.

boxColors:

 .byte (DK80RED<<4)|LT80GREY ;use one color combo

 ;with this example.

;this same color scrap could also be written like this to

;accomplish the same result.

boxScrap:

 .byte 2,10 ;start at row 2, column 10.

 .byte 1 ;repeat once.

 .byte 1 ;number of command sets.

Page 34 of 191

 .byte 4,0 ;color 4 cards with color 0

 ;from the color table.

 .byte 255 ;get a new starting value.

 .byte 3,10 ;start at row 3, column 10.

 .byte 1

 .byte 1

 .byte 4,0

 .byte 255 ;get a new starting value.

 .byte 4,10 ;start at row 4, column 10.

 .byte 1

 .byte 1

 .byte 4,0

 .byte 255 ;get a new starting value.

 .byte 5,10 ;start at row 5, column 10.

 .byte 1 .byte 1

 .byte 4,0

 .byte 0 ;end of table.

Even though this would accomplish the same result, it requires a bigger

table and will also take about twice as long to put the color on the

screen, although the difference in speed can't be seen with the eye. So,

when you are creating your Color Scrap, think if you can make it more

compact. Here is an example that will put color on the whole screen.

 .byte 0,0 ;start at row 1, column 1.

 .byte 22 ;repeat 22 times.

 .byte 1 ;one command set.

 .byte 80,0 ;color 80 cards with 1st

 ;color from table.

 .byte 0 ;end of table.

Once you get the hang of it, you will find it rather easy to create quite

complex Color Scraps. Putting color on the 80 column screen really adds

to it's appeal. There is no reason not to do it with any new GEOS

application, not just geoSHELL. The only drawback is that not everybody

has 64K of video ram in their 128s. This is why geoSHELL limits the

coloring of the screen to the first 22 card rows due so that the users

with only 16K of video ram will still be able to have color.

When you are using the 80 column color screen, remember that when you use

geoSHELL to clear the screen for you with ClearScreen, it will clear it

with the background pattern that is stored in clr80pattern. Depending on

what you are doing with the screen, the background pattern that the user

has chosen for the geoSHELL screen may not look good with your command.

The trick here is to store the pattern byte that you want at clr80pattern

and restore the original one before your command exits. In fact, you can

do that with any of the color or pattern bytes that geoSHELL stores

beginning at coltable. Here is a list of those variables, and you can see

that all of the pattern bytes are stored just after the color variables.

coltable: ;80 column color table.

backcolor: .block 1 ;screen background color.

shellcolor: .block 1 ;shell color.

textcolor: .block 1 ;text color.

padcolor: .block 1 ;pad background color.

Page 35 of 191

brdrcolor: .block 1 ;screen border color.

back40pattern: .block 1 ;backgrnd pattern for 40 column.

back80pattern: .block 1 ;backgrnd pattern for 80 column.

clr80pattern: .block 1 ;backgrnd pattern for RGB mode.

Feel free to experiment with different settings if your command needs to,

but don't forget to restore them. If you change any of these variables,

you won't see the effect until you force geoSHELL to clear the screen or

redraw the geoSHELL window. Otherwise you will have to do your own

coloring with ColorScreen.

-- NOTES --

Page 36 of 191

SECTION 2

This section of the manual contains information about each of the

routines that are accessible in geoSHELL from it's jump table. It is laid

out in a manner that should be familiar to those of you who have either

the Official GEOS Programmer's Reference Manaul by Bantam Books or The

Hitchhiker's Guide To GEOS by Berkeley Softworks.

In some of the source code examples that are given, you might see

references to a jump to another routine. Some of these might refer to

other routines or error routines that you would create somewhere in your

own source code. Hopefully, it is understandable which routines are

geoSHELL routines and which are not.

Whenever you access any of the geoSHELL routines, be sure that you are

doing it from a mode that is allowed. For instance, if you have called

the GEOS kernal routine InitForIO, you can't call a geoSHELL routine that

also does so. Likewise, some geoSHELL routines require that you call

InitForIO first. If you don't, this could be the source of a serious

crash or lockup. Read the description about the routine thoroughly before

using it. You might also want to refer to the index to find other parts

of this manual that might have information about a particular routine.

AdjTxtPointer

Function: Used with DispText to advance r0 within a text buffer.

Pass: textpointer - any value 0-255 (normally set by DispText).

Return: r0 - holding new value.

Destroys: a

Description: When using DispText to display text to a line of the

geoSHELL window, r0 will still be pointing at the text and the variable

textpointer will hold a value that if added to r0 will then point r0 at

the next segment of text that should be displayed. Calling this routine

will add that value to r0.

Example: See the entry for DispText for an example on how to use this

routine.

See Also: DispText, Message, OtherMessage, DsplyLine, DsplyString,

CarrReturn, ClearLine, ClearBoth, ClearRemainder, StripRulers,

set_XY_pos, save_XY_pos, MskCtrlCodes, ConvToAscii, CkESC_RULER

Asc_3_Byte

Function: Convert an ascii number (0-255) to a single byte.

Pass: r0 - pointer to a 1,2 or 3 digit ascii number.

Return: r5L - contains the byte.

 a - contains the byte.

Page 37 of 191

 goodflag - set if value is allowed.

 r0 - unchanged.

Destroys: a, x, y, r5L, r8L

Description: Point r0 at an ascii representation of a byte from 0-255

and call this routine to convert it to a single byte that will be placed

in r5L. If r0 was pointing to something that did not represent a number

between 0 and 255, then the routine will exit through nogood. Always

check goodflag before proceeding any further. The number should also end

with either a space or some sort of terminator such as an up-arrow, or a

null byte. When the user types in a number such as a parameter after your

command, ParamTable will be loaded with this number. You could then point

r0 at ParamTable and call this routine.

Example:

;this example will get the number the user types in and then

;locate a requested font file that was typed after the

;number on the current drive.

 ...

 ... ;some of your code.

 ...

 LoadW r0,#ParamTable ;point at the first parameter.

 jsr Asc_3_Byte ;convert it to a single byte.

 bit goodflag ;was it a good value?

 bmi 10$;branch if so.

 5$

 jmp DoError ;jump to an error routine.

 10$

 MoveB r5L,pointSize ;save the value for now.

 ldx #1 ;there was at least one digit.

 20$

 lda ParamTable,x

 beq 5$;branch if no more data.

 cmp #' ' ;look for the first space.

 beq 30$

 inx

 bne 20$;branch always.

 30$

 inx ;point one past the space. txa

 jsr IncCmdPointer ;aim the command pointer.

 jsr ParamName ;and get a possible filename.

 bit goodflag

 bpl 5$;branch if not valid.

 jsr CkPresdrive ;look for the file on the

 ;current drive.

 bit goodflag

 bpl 5$;branch if not found.

 ...

 ... ;at this point we can

Page 38 of 191

 ... ;continue to check if it

 ... ;is a font file.

 ...

pointSize:

 .block 1

See Also: Asc_Byte, Asc_BCD, ByteNZ_Ascii, ByteWZ_Ascii, ConvertK

Asc_BCD

Function: Convert a two digit ascii number to one byte in binary coded

decimal (BCD) format.

Pass: r5L - first ascii digit of number '0'-'9'

 r8L - second ascii digit of number '0'-'9'

Return: r5L - BCD byte $00 - $99

 goodflag - set if a valid number and within the allowable range.

Destroys: a

Description: This routine will take a two-character ascii decimal

number from '00' - '99' and convert it to a one-byte binary coded decimal

number from $00 - $99 and return it in r5L.

Example:

;this example takes a one or two character number from the

;user (0-99) and converts it to a one-byte BCD number.

 ...

 ...

 lda ParamTable+1 ;did the user enter just

 jsr CkTerminators ;one digit? (0-9)

 bit goodflag

 bmi 10$;branch if so.

 lda ParamTable+2 ;how about two

 jsr CkTerminators ;digits? (00-99)

 bit goodflag

 bmi 20$;branch if so.

 5$

 jmp NotValid ;do an error message.

 10$

 ;a single digit number is

 ;handled here.

 MoveB ParamTable+0,r8L ;r8L gets the one (2nd) digit.

 LoadB r5L,#'0' ;we create the first digit.

 beq 30$;branch always.

 20$

 MoveB ParamTable+0,r5L ;load r5L with first digit.

 MoveB ParamTable+1,r8L ;load r8L with second digit.

 30$

 jsr Asc_BCD ;convert to BCD byte.

Page 39 of 191

 bit goodflag ;was it a valid number?

 bpl 5$;branch if not.

 ... ;continue on...

 ...

See Also: Asc_Byte, Asc_3_Byte, ByteNZ_Ascii, ByteWZ_Ascii,

ConvertKAsc_Byte

Function: Convert a two digit ascii number to a one byte value.

Pass: r5L - first ascii digit of number '0'-'9'

 r8L - second ascii digit of number '0'-'9'

Return: r5L - value of 0-99.

 goodflag - set if a valid number and within the allowable range.

Destroys: a

Description: This routine will take a two-character ascii decimal

number from '00' - '99' and convert it to a one-byte value and return it

in r5L.

Example:

 ...

 ...

 MoveB asciiNum+0,r5L ;load r5L with first digit.

 MoveB asciiNum+1,r8L ;load r8L with second digit.

 jsr Asc_BCD ;convert to one byte.

 bit goodflag ;was it a valid number?

 bmi 10$;branch if so.

 jmp DoError ;display some sort of error.

 10$

 ... ;continue on...

 ...

asciiNum:

 .byte "58"

See Also: Asc_3_Byte, Asc_BCD, ByteNZ_Ascii, ByteWZ_Ascii, ConvertK

ByteNZ_Ascii

Function: Convert a 16 bit number to an ascii representation of the

number with no leading zeros.

Pass: r8 - number to convert.

Return: Asc_String - ascii characters '0' to '65536'.

Destroys: a, x, y, r4, r8

Page 40 of 191

Description: This routine will take the 16 bit value in r8 and

convert it to it's ascii decimal representation and put the result of the

conversion at Asc_String. Asc_String will also contain a null byte in the

sixth character position. If the result is less than five digits, then

any leading zeros are replaced by ascii spaces.

Example:

;This example will take the value in r0 and display it to the

;screen at the current cursor position.

ShowValue:

 MoveW r0,r8 ;copy r0 to r8.

 jsr ByteNZ_Ascii ;convert to a string.

 LoadW r0,#Asc_String ;point r0 to the string.

 ldy #0 ;point to the left-most digit.

 10$

 lda (r0),y ;check a digit to see if

 cmp #' ' ;it is a space character.

 bne 20$;branch on the first

 ;non-space character.

 iny ;point to the next one

 bne 10$;and branch always.

 20$

 clc ;add the value in y

 tya ;to r0.

 adc r0L

 sta r0L

 lda r0H

 adc #0

 sta r0H

 ;r0 now points to the

 ;first non-space character.

 lda #TR_CR ;do a carriage return

 jmp OtherMessage ;after displaying the string.

See Also: Asc_3_Byte, Asc_Byte, Asc_BCD, ByteWZ_Ascii, ConvertK

ByteWZ_Ascii

Function: Convert a 16 bit number to a 5 digit ascii representation of

the number with leading zeros.

Pass: r8 - number to convert.

Return: Asc_String - five ascii characters containing 00000 to 65536.

Destroys: a, x, y, r4, r8

Description: This routine will take the 16 bit value in r8 and

convert it to it's ascii decimal representation and put the result of the

conversion at Asc_String. Asc_String will also contain a null byte in the

Page 41 of 191

sixth character position. The result will always have five digits, since

leading zeros are left in.

Example:

;This example will take the value in r0 and display it to the

;screen at the current cursor position with leading zeros

;remaining.

ShowValue:

 MoveW r0,r8 ;copy r0 to r8.

 jsr ByteWZ_Ascii ;convert to a string.

 LoadW r0,#Asc_String ;point r0 to the string.

 lda #TR_CR ;do a carriage return

 jmp OtherMessage ;after displaying the string.

See Also: Asc_3_Byte, Asc_Byte, Asc_BCD, ByteNZ_Ascii, ConvertK

Byte_Time

Function: Convert the time as contained in directory entries to ascii

format. (this routine should not be used)

Pass: not applicable

Return: not applicable

Destroys: not applicable

Description: This routine should not be used. The variables that need

to be set are only accessible by internal routines. The routine was

invariably left in the jump table and should have been removed, or the

required variables should have been moved to where they could be accessed

by outside routines. For these reasons, only internal geoSHELL routines

have proper access to this routine.

Example: no example since this routine is not recommended.

See Also:

CarrReturn

Function: Perform a carriage return.

Pass: nothing

Return: cur_line - line that cursor is now on.

 cur_X_pos - screen X coordinate of cursor.

 cur_Y_pos - screen Y coordinate of cursor.

Destroys: no guarantees

Page 42 of 191

Description: Simply perform a carriage return in the geoSHELL window

and the cursor will then be on the next line down. If the cursor was

already on the last line, then all the lines will scroll up and the

cursor will still be on the last line.

Example:

 ...

 jsr CarrReturn ;move the cursor down

 jsr CarrReturn ;two lines.

 ...

See Also: AdjTxtPointer, Message, OtherMessage, DsplyLine, DsplyString,

DispText, ClearLine, ClearBoth, ClearRemainder, StripRulers, set_XY_pos,

save_XY_pos, MskCtrlCodes, ConvToAscii, CkESC_RULER

CkAllDrives

Function: Check all drives for a file.

Pass: a2 - null terminated filename.

Return: goodflag - set if file is found.

 DRVFOUNDON - device number of the drive where file is found.

 curDrive - the drive where the file is located is now open.

 PRESDRIVE - unchanged

 a2 - points to the filename converted to the actual name, any

wildcards are converted to the characters they represent.

 dirEntryBuf - directory entry for this file.

Destroys: no guarantees

Description: This routine will search all available drives A, B, C,

and D for the filename that a2 points at. Upon return, the first thing to

test is goodflag. If goodflag is cleared, then the file was not found for

whatever reason. If goodflag is set, then the file exists and the drive

it is on will be the open drive. PRESDRIVE will still reflect the drive

that the user thinks is currently active.

Example:

 ...

 ...

 jsr ParamName ;point a2 at a filename the

 ;user typed in.

 bit goodflag ;is there a filename?

 bmi 10$;branch if so.

Page 43 of 191

 5$

 jmp DoError ;display an error.

 10$

 jsr CkAllDrives ;look for the file.

 bit goodflag ;does it exist somewhere?

 bpl 5$;branch if not.

 ...

 ... ;continue on...

See Also: CkPresdrive, CkThisDrive, CkOtherDrives, CkPathOrder, CkPath,

CkForDisk, FindParName

CkDrvLetter

Function: Tests if the accumulator is holding a value from 97 to 100

('a', 'b', 'c', 'd') and converts it to a device number.

Pass: a - with value to test.

Return: goodflag - set if value falls within allowable range.

 a - converted to device number 8-11

Destroys: nothing (a is altered however)

Description: This routine can be used by any routine that might work

with the drives and gets an input from the user. This will test if a

value falls within a range that would equal the ascii value that

represents a, b, c, or d. If the accumulator holds a value less than 97

or greater than 100, then the routine will exit through nogood.

Otherwise, the routine exits through yesgood and the accumulator will

contain a new value from 8-11.

Example:

 ...

 ...

 lda ParamTable+0 ;get the first parameter.

 jsr CkDrvLetter ;is this a, b, c, or d?

 bit goodflag ;branch if so.

 bmi 10$

 jmp NotDriveLetter ;go do an error.

 10$

 ... ;accumulator now

 ... ;holds 8, 9, 10, or 11.

 ...

 ... ;continue processing.

 ...

See Also: CkForDisk, ParamName

CkESC_RULER

Page 44 of 191

Function: Used for advancing a pointer past bytes used with ruler

escapes in a GeoWrite document.

Pass: a - value that r0 is pointing at.

Return: * If byte is a ruler escape:

 r0 - incremented by the number of bytes used in the ruler.

 goodflag - cleared if byte was a ruler escape.

 * If byte is not a ruler escape:

 a - unchanged.

 r0 - unchanged.

 goodflag - set if byte was not a ruler escape.

Destroys: If byte is a ruler escape:

 a, x

 If byte is not a ruler escape:

 x

Description: Here is a routine that geoSHELL uses when processing a

startup or exec file. Each byte of the GeoWrite page is sent through this

routine to jump past any rulers that might be contained within the file.

geoSHELL only needs the actual text that is contained in the file. The

text is what makes up the commands. The user is allowed to use different

fonts and graphics in a startup file, but geoSHELL doesn't need them. By

loading the accumulator with each byte and accessing this routine, the

rulers can be stripped from the buffer that the file is loaded into. The

'type' command also makes use of this routine when displaying a GeoWrite

file to the screen.

Example:

;this example will strip the rulers from a buffer that a

;GeoWrite page was loaded into and then display it

;within the geoSHELL window. The example AdjustBuffer will work

;because the size of the bytes in the buffer will always

;decrease in size. Refer to DispText for an example on how

;to display this converted text to the screen.

AdjustBuffer:

 lda #[ourBuffer ;point r0 and r1

 sta r0L ;to the buffer that a

 sta r1L ;GeoWrite page is

 lda #]ourBuffer ;loaded into.

 sta r0H sta r1H

 ldy #0 ;start y at zero.

 10$

Page 45 of 191

 lda (r0),y ;get a byte from the buffer.

 beq 90$;branch if end of text.

 jsr CkESC_RULER ;process this byte.

 bit goodflag ;do we have a good byte?

 bpl 10$;branch if not.

 sta (r1),y ;store this byte.

 iny ;increment to point at the

 ;next byte.

 bne 10$;branch if y hasn't not zero.

 inc r0H ;otherwise increment the

 inc r1H ;high bytes of our pointers.

 bne 10$;branch always.

 90$

 rts ;done with this routine.

See Also: AdjTxtPointer, Message, OtherMessage, DsplyLine, DsplyString,

CarrReturn, ClearLine, ClearBoth, ClearRemainder, StripRulers,

set_XY_pos, save_XY_pos, MskCtrlCodes, ConvToAscii, DispText

CkForDisk

Function: Check for a disk in any desired drive.

Pass: accumulator - device number from 8-11.

Return: goodflag set if the drive contains a formatted disk.

 Refer to OpenDisk for other values that are set.

Destroys: no guarantees

Description: This routine performs a simple check to see if a

particular drive contains a valid disk that can be read. You might call

this routine before processing your command if it requires disk access.

This would allow you to inform the user of a 'missing disk' if necessary.

The routine jumps through yesgood if a valid disk is found.

Example:

 ...

 ...

 lda ParamTable+0 ;get a parameter from the user.

 jsr CkDrvLetter ;convert it to 8-11.

 bit goodflag ;was it a, b, c, or d?

 bmi 10$;branch if so.

 jmp DoError ;display an error.

 10$

 jsr CkForDisk ;does the desired drive have

 bit goodflag ;a disk in it?

 bmi 20$;branch if so.

 jsr MissDisk ;do a geoSHELL error routine.

 jmp NoMoreCmds ;and quit the command.

 20$

 ... ;otherwise,

 ... ;continue on... ...

Page 46 of 191

See Also: CkPresdrive, CkThisDrive, CkOtherDrives, CkPathOrder, CkPath,

CkAllDrives, MissDisk, FindParName

CkKeyboard

Function: Check for CONTROL, STOP and other keys and process

accordingly.

Pass: kboardoff - (optional) ignore the keyboard if bit 7 is set, or if

clear, continue with CkKeyboard. Set bit 6 to ignore only the STOP key.

Return: y - keycode of the key that is being pressed.

Destroys: a, x, y

Description: This routine is usually used to check for the user

pressing the STOP key or the CONTROL key. If the STOP key is pressed when

CkKeyboard is called, your command will end and CkKeyboard will exit

through NoMoreCmds. If you call CkKeyboard, be sure that the geoSHELL

window is still displayed on the screen, otherwise the user will have

whatever your command has put on the screen with a blinking cursor

somewhere in the middle. Also be sure that InitForIO is not in effect

while calling this routine.

 If the user presses the CONTROL key during this routine, the

routine will simply pause and wait for the user to let go of the CONTROL

key and then it will return. If any other key is pressed, the keycode of

the key will be returned in the y register.

 CkKeyboard should be called whenever your command does something

such as displaying a series of scrolling text that the user might want to

halt. Just put CkKeyboard somewhere in the loop of your routine. Think

about how your command is working and try to imagine if the user might

want a way out or a way to pause the output. In that case, use this

routine. If your routine is using certain geoSHELL routines, CkKeyboard

may already be in use. Test your command to see if the STOP key or

CONTROL key is already functioning.

Example:

 ... ;the bulk of your command.

 ...

 10$

 jsr CkKeyboard ;allow the user a way out.

 ...

 ... ;continue with something here.

 ...

 bit goodflag ;this might be another way out.

 bmi 10$;loop back and do it again.

 90$

 rts

See Also: Wait, YesKeypress, NoKeypress, NoMoreCmdsCkModeFlag

Function: Test if a file is compatible with the current mode.

Page 47 of 191

Pass: Load fileHeader with the file's header block.

Return: goodflag - set if file is compatible.

 x - pointer to error message if file is not compatible.

Destroys: a, x

Description: geoSHELL uses this routine before it allows a file to be

loaded and run. It will check the mode flag in the file's header block

which is loaded in at fileHeader. It checks to make sure that the file is

configured as being compatible with the mode that the computer is

currently running in, whether it be 64, 128, 40 or 80 columns, etc. If

the current mode is not compatible with the file, then the routine will

exit through nogood and the value in x will be a pointer to a geoSHELL

error message that you can display if desired. Otherwise, if goodflag is

set, then the file is compatible. See the appendix for a listing of the

correct byte to use in the header block for a particular mode.

Example:

;this example will get a filename from the user and check the

;currently active drive for the file and if it is compatible,

;it will continue with whatever it is intending to do.

 ...

 ...

 jsr ParamName ;get a filename.

 bit goodflag ;is it valid?

 bmi 10$;branch if so.

 5$

 jmp DoError ;display an error.

 10$

 jsr CkPresdrive ;this will load dirEntryBuf.

 bit goodflag ;does the file exist?

 bpl 5$;branch if not.

 jsr GetHeader ;get the file's header block.

 ;GetHeader doesn't return if

 ;any error.

 jsr CkModeFlag ;check the file's compatibility.

 bit goodflag ;well?

 bmi 20$;branch if OK.

 lda #(IN_TWO|TR_CR) ;x points to the error message.

 jsr Message ;display the message.

 jmp NoMoreCmds ;and quit.

 20$

 ... ;otherwise, continue on...

See Also: GetHeader, Only128, Message, OtherMessage, DoRun

CkOtherDrives

Function: Search all drives for a file that have not yet been searched.

Page 48 of 191

Pass: a2 - pointer to a null-terminated filename.

 drivesChecked - (4 bytes) identify the drives that should be

searched. If zero, then search the drive, if bit 7 is set, then ignore

the drive.

Return: goodflag - set if file found.

 a2 - now points to the exact name of the file in case the user

included wildcards in the filename.

 DRVFOUNDON - set to device number of the drive the file was found

on.

 curDevice and curDrive - the drive the file was found on is now

open.

 PRESDRIVE - unchanged.

 dirEntryBuf - directory entry for file if found.

Destroy: no guarantees

Description: When searching for a file, you can choose the order that

you wish to search the drives in. Just load the accumulator with a device

number and call CkThisDrive. You can check another drive if desired also.

When you've checked the ones that you feel should have priority, and wish

to check the remaining ones, just call CkOtherDrives and geoSHELL will

proceed to do just that. CkOtherDrives will check four locations at

drivesChecked before accessing a drive. If a corresponding byte at

drivesChecked is zero, that drive will be searched. The ramdisks get

priority here, and then the real drives are tested. By manipulating the

bytes at drivesChecked, you can force CkOtherDrives to either check a

drive or to ignore it. So, you might want to mark the drives that you

have already checked. Otherwise, those drives will get searched again. If

all the drives have already been checked, then the routine will return as

though the file was not found anyway and goodflag will be cleared.

Example:

;this example will search only drives A and B for a desired file.

 ...

 jsr ParamName ;get a filename from the user.

 bit goodflag ;is it valid?

 bmi 10$;branch if so.

 jmp DoError ;display an error message. 10$

 lda #128

 sta drivesChecked+2 ;ignore drive C.

 sta drivesChecked+3 ignore drive D.

 lda #0

 sta drivesChecked+0 ;allow drive A.

 sta drivesChecked+1 ;allow drive B.

 jsr CkOtherDrives ;and search them.

 bit goodflag

Page 49 of 191

 bmi 20$

 jmp FileNotAvail ;do a geoSHELL error routine.

 20$

 ...

 ... ;file is found,

 ... ;so continue on...

 ...

See Also: CkPresdrive, CkThisDrive, CkAllDrives, CkPathOrder, CkPath,

CkForDisk, FindParNameCkPath

Function: Check to see if a file is on the path partition.

Pass: a2 - pointed to a null-terminated filename

Return: goodflag - set if successful.

 DRVFOUNDON - contains the device number (8-11) of the path device

if successful.

 pathload - bit 7 set if successful.

 a2 - will point to the null-terminated filename.

 path partition - will be left open.

 dirEntryBuf - will contain the directory entry for the file.

Destroys: no guarantees.

Description: Call this routine to check the path partition for a

desired filename. Check goodflag first after calling this routine. If the

file was found on the path partition, then goodflag will be set. Once you

have finished with the file, be sure to call ResetFromPath to put the

device back to the partition it was in prior to calling this routine.

DRVFOUNDON will contain the device number (8-11) of the path device. If a

path has not been defined with the path command, or if the defined path

does not exist, the routine will exit through nogood.

Example:

 ...

 jsr CkPath

 bit goodflag

 bmi 10$

 rts ;goodflag will still be zero.

 10$

 ... ;do whatever you need to do

 ... ;with the file here.

 ...

 jsr ResetFromPath

 jmp yesgood ;tell the calling routine

 ;that this routine was

 ;was successful.

Page 50 of 191

CkPathOrder

Function: Search a path partition for a file, but first check all

available ramdisks, then the path partition, and then all remaining

drives.

Pass: a2 - pointer to a null-terminated filename.

Return: goodflag - set if file is found.

 DRVFOUNDON - contains the device number (8-11) of the device the

file is found on.

 curDevice and curDrive - drive file is found on will be open.

 PRESDRIVE - unchanged.

 pathload - bit 7 set if file is found on the path partition.

 a2 - will point to the null-terminated filename with any wildcards

converted to the characters they represent.

 dirEntryBuf - will contain the directory entry for the file.

Destroys: no guarantees.

Description: This routine will search all available drives for a

file, including the path partition. The ramdisks get checked first, then

the path partition gets the next priority, and then all remaining drives

will be searched. As soon as the file is found, the search will end

through yesgood and the drive the file is found on will be open. If the

file is not found, then the routine will exit through nogood and the

currently active drive as the user sees it will remain the open drive.

Example:

 ... ;a2 already points to a filename.

 jsr CkPathOrder ;search for the file, including

 ;the path partition.

 bit goodflag ;did we find the file?

 bmi 10$;branch if so.

 jmp FileNotAvail ;do a geoSHELL error routine.

 10$

 ... ;file is found,

 ... ;so continue on...

 ...

 ... ;before finishing, be sure to

 ... ;close the path partition.

 jsr ResetFromPath ;in case the file was found ;on

the path partition.

 ldx NUM_IN_NAME ;how big was the filename?

 inx ;add one for a space.

 txa ;put in in a.

Page 51 of 191

 jsr IncCmdPointer ;and point the command pointer

 ;past our command.

 jmp ExitCommand ;exit cleanly.

See Also: CkPresdrive, CkThisDrive, CkOtherDrives, CkAllDrives, CkPath,

CkForDisk, FindParName

CkPresdrive

Function: Check the currently active drive for a file.

Pass: a2 - null terminated filename.

Return: goodflag - set if file is found.

 DRVFOUNDON - device number of the current drive where file is

found.

 curDrive - the current drive where the file is located is now open.

 PRESDRIVE - unchanged (the current drive)

 a2 - points to the filename converted to the actual name, any

wildcards are converted to the characters they represent.

 dirEntryBuf - directory entry for this file.

Destroys: no guarantees

Description: This routine will search the currently active drive for

the filename that a2 points at. Upon return, the first thing to test is

goodflag. If goodflag is cleared, then the file was not found for

whatever reason. If goodflag is set, then the file exists on the drive.

Example:

 ...

 ...

 jsr ParamName ;point a2 at a filename the

 ;user typed in.

 bit goodflag ;is there a filename?

 bmi 10$;branch if so.

 5$

 jmp DoError ;display an error.

 10$

 jsr CkPredrive ;look for the file.

 bit goodflag ;does the file exist?

 bpl 5$;branch if not.

 ...

 ... ;continue on...

 ...

Page 52 of 191

See Also: CkAllDrives, CkThisDrive, CkOtherDrives, CkPathOrder, CkPath,

CkForDisk, FindParName

CkTerminators

Function: Check if the value is one of the geoSHELL text terminators.

Pass: a - value to test.

Return: a - unchanged.

 goodflag - set if a terminator

Destroys: nothing

Description: This will test the value in the accumulator and return

through nogood or yesgood depending on the value. If the value is either

a space, an up-arrow, a CMDR up-arrow or a null byte, then goodflag will

be set because it will exit through yesgood. The catch here is that a

space character will also be considered a valid terminator by this

routine. geoSHELL uses this because a command with no parameters may be

terminated by a space. If you wish to test for a terminator and ignore a

space, then use CkTermNoSpace.

Example:

 ...

 LoadW r0,#textBuffer ;point at our buffer.

 ldy #0

 10$

 lda (a4),y ;get a byte from input.

 jsr CkTerminators ;find the first space

 bit goodflag ;or end of parameter.

 bmi 20$;branch if terminator.

 sta (r0),y ;otherwise store byte.

 iny ;point y at next byte.

 cpy #80 ;let's limit to 80 bytes.

 bne 10$;loop back for more.

 iny ;point at next byte

 tya ;transfer value to a.

 jsr IncCmdPointer ;set for the next command

 ;in line after ours.

 ...

 ... ;now do what we want with

 ... ;the text in our buffer.

 ...

See Also: CkTermNoSpace

CkTermNoSpace

Function: Check if the value is one of the geoSHELL text terminators

except for a space.

Page 53 of 191

Pass: a - value to test.

Return: a - unchanged.

 goodflag - set if a terminator.

Destroys: nothing

Description: This will test the value in the accumulator and return

through nogood or yesgood depending on the value. If the value is either

an up-arrow, a CMDR up-arrow or a null byte, then goodflag will be set

because it will exit through yesgood.

Example:

 ...

 ldx #0

 10$

 lda ParamTable,x ;get a byte from ParamTable.

 jsr CkTermNoSpace ;check if a terminator?

 bit goodflag ;well?

 bmi 20$;branch if end of parameter.

 inx ;point at the next byte.

 cpx #16 ;let's only allow 16 bytes.

 bne 10$;loop back for more, maybe.

 jmp DoError ;do an error of some sort.

 20$

 inx ;point just past our

 txa ;parameter,

 jsr IncCmdPointer ;at the next command.

 ...

 ... ;and continue on...

 ...

See Also: CkTerminators

CkThisDrive

Function: Check a drive for a file.

Pass: a2 - null terminated filename.

 a - device number (8-11) of drive to search.

Return: goodflag - set if file is found.

 DRVFOUNDON - device number of the drive if file is found.

 curDrive - the drive if file is found, is now open.

 PRESDRIVE - unchanged

Page 54 of 191

 a2 - points to the filename converted to the actual name, any

wildcards are converted to the characters they represent.

 dirEntryBuf - directory entry for this file.

Destroys: no guarantees

Description: This routine will search a specific drive for the

filename that a2 points at. Upon return, the first thing to test is

goodflag. If goodflag is cleared, then the file was not found for

whatever reason. If goodflag is set, then the file exists and the desired

drive will be the open drive. PRESDRIVE will still reflect the drive that

the user thinks is currently active.

Example:

;this example will use a drive specifier that the user types in,

;plus a filename also entered by the user and then check the

;desired drive for that file.

;the command might look like: command b filename

 ...

 ...

 lda ParamTable+0 ;get the first parameter

 ;from the user.

 jsr CkDriveLetter ;convert it to a device number.

 bit goodflag ;is it a device number?

 bpl 5$;branch if not.

 sta devNum ;save it for now.

 lda #2 ;point past the drive

 jsr IncCmdPointer ;specifier.

 jsr ParamName ;and get the filename the

 ;user typed in.

 bit goodflag ;is there a filename?

 bmi 10$;branch if so.

 5$

 jmp DoError ;display an error. 10$

 lda devNum

 jsr CkThisDrive ;look for the file.

 bit goodflag ;does it exist?

 bpl 5$;branch if not.

 ...

 ... ;continue on...

devNum:

 .block 1

See Also: CkPresdrive, CkAllDrives, CkOtherDrives, CkPathOrder, CkPath,

CkForDisk, FindParName

ClearBoth

Page 55 of 191

Function: Clear the current line on the screen and in the memory

buffer.

Pass: nothing

Return: nothing

Destroys: a, x, r0, r1, r2L, r11

Description: geoSHELL maintains an internal buffer that represents

the characters that the user sees in the geoSHELL window. This is how

geoSHELL is able to restore a window when switching screens, for

instance, or returning from a Desk Accessory. If your command intends to

work directly with the data that is on the screen as well as the data in

the buffer, you can clear both the current line that the cursor is on as

well as the internal memory buffer that corresponds to it by calling this

routine. Normally, there is no need to work directly like this. geoSHELL

does a pretty good job of maintaining the text and buffers while your

command can do other things.

Example:

 ...

 jsr ClearBoth ;clear the data on the line

 ;the cursor is on.

 ...

See Also: ResetScreen, ClearScreen, ClearWindow, EraseWindow,

ReDoWindow, DispLetter, DriveLetter, DsplyLine, DsplyString, CarrReturn,

set_XY_pos, save_XY_pos, ClearLine, ClearRemainder, ReDisplayWindow,

DispText, unsetPrompt

ClearLine

Function: Clear the current line in the geoSHELL window.

Pass: r1H - vertical pixel location set by calling set_XY_pos.

Return: nothing

Destroys: nothing

Description: This is mostly an internal routine for clearing the

current line in the geoSHELL window. It does not clear the corresponding

memory buffer.

Example:

 ...

 jsr set_XY_pos

 jsr ClearLine ;clear the line

 ;the cursor is on.

Page 56 of 191

 ...

See Also: ResetScreen, ClearScreen, ClearWindow, EraseWindow,

ReDoWindow, DispLetter, DriveLetter, DsplyLine, DsplyString, CarrReturn,

set_XY_pos, save_XY_pos, ClearBoth, ClearRemainder, ReDisplayWindow,

DispText, unsetPrompt

ClearRemainder

Function: Clear the window below the current cursor position.

Pass: nothing

Return: nothing

Destroys: a, r1H, r11

Description: If your command displays a series of text to the window,

you may desire to clear all text below the current cursor position for a

cleaner display. The 'type' command does this as well as some other

commands. This makes it easier for the user to read what it being put on

the screen. The internal buffers are not cleared, only the visible text

on the screen. As new text is added (through the normal geoSHELL text

displaying routines), it will show up on the screen and also replace what

is in the memory buffers.

Example:

 ...

 jsr ClearRemainder

 ...

See Also: ResetScreen, ClearScreen, ClearWindow, EraseWindow,

ReDoWindow, DispLetter, DriveLetter, DsplyLine, DsplyString, CarrReturn,

set_XY_pos, save_XY_pos, ClearBoth, ClearLine, ReDisplayWindow, DispText,

unsetPrompt

ClearScreen

Function: Clear the entire screen.

Pass: nothing

Return: nothing

Destroys: no guarantees

Description: This routine will clear the screen with the default

background pattern as established by the command 'backpatt'. By using

this routine, geoSHELL will take care of whatever screenmode is being

Page 57 of 191

used. This also takes care of the proper screen coloring if the user is

in 80 column color mode. By adjusting the above mentioned variables

(back40pattern, etc) you can change the pattern that is used.

Example:

 ...

 jsr ClearScreen

 ...

See Also: ResetScreen, ClearRemainder, ClearWindow, EraseWindow,

ReDoWindow, DispLetter, DriveLetter, DsplyLine, DsplyString, CarrReturn,

set_XY_pos, save_XY_pos, ClearBoth, ClearLine, ReDisplayWindow, DispText,

unsetPrompt

ClearWindow

Function: Clear the geoSHELL window.

Pass: nothing

Return: nothing

Destroys: no guarantees

Description: Calling this routine will clear any text that is

displayed in the geoeSHELL window. The buffer that is holding the text

internally is also cleared and the cursor position is reset to be at the

top left of the window. This is what takes place when the user hits SHIFT

CLR/HOME.

Example:

 ...

 jsr ClearWindow

 ...

See Also: ResetScreen, ClearScreen, ClearRemainder, EraseWindow,

ReDoWindow, DispLetter, DriveLetter, DsplyLine, DsplyString, CarrReturn,

set_XY_pos, save_XY_pos, ClearBoth, ClearLine, ReDisplayWindow, DispText,

unsetPrompt

ClrKeyData

Function: Eliminate any detected keypresses.

Pass: nothing

Return: keyData gets reset to zero.

 goodflag is always set by this routine.

Destroys: a, x, y

Page 58 of 191

Description: Call this routine to clear out any keypresses that GEOS

has detected. This might be needed when the user has pressed a key before

your routine actually gets handled. After executing this routine, you can

then get a valid keypress. This routine will also wait for the user to

let go of the keyboard.

Example:

 ...

 ... ;the bulk of your command.

 ...

 jsr ClrKeyData ;clear any existing keypresses

 ;and wait for the user to let

 ;go of the keyboard

 ...

 ... ;no chance for the next

 ... ;routine to get a wrong

 ... ;keypress.

See Also: NoKeypress, YesKeypress, Wait

ClrTrnsName

Function: Clear a transient command's name from memory.

Pass: nothing

Return: curTransName - set to null.

Destroys: a, x

Description: When a transient command is loaded into memory and

executed, it will remain in memory until either another command is loaded

or if a resident command needs to use the area reserved for transient

commands. In the latter case, the resident command will call ClrTrnsName

to inform geoSHELL that no transient command is in memory. Then if the

user enters that particular command again, geoSHELL will be forced to

reload it from disk.

 In most cases, a transient command will not need to call this

routine, because it is advantageous to just let your command remain in

memory should the user need to use it several times in a row. However, if

your command is loaded from a VLIR file or does anything that would

change itself to a state that can not be restarted properly, then call

ClrTrnsName at any time before exiting your command. This way, your

command will be loaded in fresh each time it is used.

Example:

 ...

 ... ;some of the code in your

 ... ;command might trash the

Page 59 of 191

 ... ;basic state of your command.

 ...

 jsr ClrTrnsName ;remove your command's name

 ;from memory.

 jmp ExitCommand ;and finish.

ColorScreen

Function: Color an area of the 80 column screen.

Pass: r0 - table of compressed locations.

 r1 - table of various color combinations to use.

Return: goodflag - always zero (not an error).

Destroys: a, x, y, r0, r1

Description: This routine will put colors on the 80 column screen of

the 128. Your routine must test the current screenmode and videomode to

be sure that a 64 is not being used or that a 128 is not in monochrome

mode before calling this routine. ColorScreen does not check it for you.

 Point r0 to a table of compressed bytes and r1 to a table of color

combinations. This color table may contain as many as 256 different

combinations of foreground and background colors. Each character area can

contain it's own foreground and background color. You might say that the

table that this routine uses could be called a 'Color Scrap' since it can

color a portion of the screen.

 It is not a good idea to put colors below the 176th scanline.

geoSHELL does not normally use this lower area of the screen. This is so

that 128s with only 16K of video memory may also use the color mode.

 In the appendix, you will find an explanation of how to create the

table of compressed bytes and the color tables for this routine.

Example: Refer to the appendix for a full explanation and example for

using this routine. You will also find the complete source code for the

command 'color80' included with this package. Naturally, this routine is

used in that command, since it was originally developed specifically for

color80.

See Also: FixColors

ConvertK

Function: Convert a 16-bit number to an ascii string representing

kilobytes.

Pass: r4 - 16 bit number to convert.

Return: Asc_String - a five-character ascii decimal string with

leading zeros converted to spaces and null-terminated.

Page 60 of 191

Destroys: a, x, y, r4, r5, r8, r9

Description: This routine is used by the 'dir' command when it

displays the 'K Bytes Free' message after displaying a directory. The

routine will take the value in r4 and convert it to a decimal string

after dividing it by 4 and rounding it down to the nearest whole number

(4 blocks equals 1 Kbyte). If the value originally passed in r4 is less

than four, then the decimal string will be rounded up to 1. In the case

of the 'dir' command, it loads r4 with the number of blocks free on a

disk and calls this routine to create the number of kilobytes free. The

resulting null-terminated decimal string can be found at Asc_String.

Example:

;this example will display the kbytes free on the current drive.

ShowFree:

 LoadW r5,#curDirHead ;get the number of blocks

 jsr CalcBlksFree ;free on the current drive.

 jsr ConvertK ;convert it to the nearest K.

 LoadW r0,#Asc_String ;point r0 to the string.

 lda #(IN_TWO|TR_ONE) ;indent two + trailing space.

 jsr OtherMessage ;put the string on the screen.

 LoadW r0,#kbyteText ;along with 'KBytes Free'.

 lda #TR_CR ;and a carriage return.

 jmp OtherMessage ;do it.

kbyteText:

 .byte "KBytes Free",0

See Also: Asc_3_Byte, Asc_Byte, Asc_BCD, ByteNZ_Ascii, ByteWZ_Ascii

ConvToAscii

Function: Convert PetASCII text to ASCII text.

Pass: r0 - start of text to convert.

 endoftext - pointer to one byte past the last byte of text.

Return: r0 - (unchanged) points to converted text.

 endoftext - adjusted to point to a null byte at the new end of text

plus one.

 r2 - pointing at same location as endoftext.

Destroys: a, x, y, r2

Description: This routine will take any length of PetASCII text and

convert it to ASCII text. Just point r0 to the start of the buffer

holding the text and point endoftext at the byte following the end of the

Page 61 of 191

text. Call this routine and that text will be converted to ASCII.

Unrecognized bytes are removed from the buffer. Upon return, r0 will

still be pointing at the same starting point, but endoftext might point

to a different spot making the buffer smaller in size. The buffer will

never grow, since characters will never be added, only removed. The bytes

that may get removed are usually control codes such as might be created

by various wordprocessors. The text after conversion will also have any

null bytes removed and a null terminator will be added at the end.

Example:

 ...

 LoadW r0,#textBuffer

 LoadW endoftext,#(bufEnd+1)

 jsr ConvToAscii

 ...

See Also: AdjTxtPointer, Message, OtherMessage, DsplyLine, DsplyString,

DispText, ClearLine, ClearBoth, ClearRemainder, StripRulers, set_XY_pos,

save_XY_pos, MskCtrlCodes, CarrReturn, CkESC_RULER

DateDisplay

Function: Display the current date.

Pass: nothing

Return: nothing

Destroys: no guarantees

Description: This routine merely displays the current date to the

geoSHELL window just as if the user had typed it in without any

parameters.

Example:

 ...

 jsr DateDisplay ;display the date.

 ...

See Also:

Dir

Function: Display the directory of the current drive.

Pass: ParamTable - parameters just as the user might enter.

Page 62 of 191

 kboardoff - (optional) set bit 7 to ignore the keyboard. Set bit 6

to ignore just the STOP key.

Return: nothing

Destroys: no guarantees

Description: This will display a directory of the currently active

drive just as if the user typed in the 'dir' command. The format command

accesses this routine after it finishes formatting a disk so that the

user can see that the disk formatting is complete. You would want to load

ParamTable with any parameters you wish Dir to work with just as if the

user typed them in at the keyboard. If you place an ascii '6' at

ParamTable+0 and a null byte at ParamTable+1 and call this routine, a

directory of all the applications on the current drive will be displayed.

If ParamTable+0 contains a null byte, then all of the files on the disk

will be displayed just as if the user typed 'dir' without a parameter. If

the user presses the STOP key while the directory is scrolling, your

command will terminate and control will return to the user. You can turn

off the keyboard by setting bit 7 of kboardoff. However, this will not

allow the user to pause the display. So, instead, you can set bit 6 to

just ignore the STOP key. This way, Dir will always return to your

command. Just remember to reset kboardoff to zero when finished.

Example:

;this example will display all files ending with '.src'.

ShowFiles:

 ldx #6

 10$

 lda fileText,x

 sta ParamTable,x

 dex

 bpl 10$

 jmp Dir

fileText:

 .byte "*.src",0

See Also: CkForDisk, MissDisk, Status

DispLetter

Function: Display the drive letter of the currently active drive.

Pass: nothing

Return: nothing

Destroys: a, x, y, r0-r15

Description: This is primarily an internal geoSHELL routine. It will

simply display the letter (A,B,C or D) of the currently active drive at

Page 63 of 191

the left of the current line the cursor is on. The cursor will now be in

the third character position on the current line.

Example:

See Also: DriveLetter

DispText

Function: Display ascii text to the geoSHELL window up to a maximum of

the width of the window.

Pass: r0 - point to the start of ascii text.

 endecho - zero if only one line of text is needed, or set bit 7 if

you need to test for end of text.

 typeset - bit 7 set will handle carriage returns and tabs and

ignore up-arrow terminators, while if cleared, then carriage returns and

tabs are ignored, and an up-arrow will clear endecho.

 kboardoff - normally zero. Set to 128 to turn the keyboard off

while displaying text. (reset it to zero when finished)

Return: goodflag - meaningless

 r0 - unchanged

 endecho - bit 7 cleared if end of text reached

 textpointer - offset pointer to next word to display

Destroys: a, x, y, r1-r15

Description: Display any amount of text in the geoSHELL window. Both

the echo and type commands use this routine. Just point r0 at the start

of the text you wish to display and call this routine. If you wish to

have carriage returns and tabs recognized, then set typeset to 128. Also,

before calling this routine, set endecho to 128, because DispText will

clear it to zero if the end of text is reached. End of text is a null

byte. This allows you to repeatedly call DispText to put text in the

window. Of course, you would have to keep updating r0 between calls to

DispText since it does not change. There is a routine that will do this

for you. Call AdjTxtPointer and r0 will point to the next word to display

on the next line. DispText will automatically do a carriage return when

it reaches the right side of the window, so that the next call will

display text on the next line down. If the bottom line is reached, the

text will be scrolled. While this is taking place, the keyboard is active

so that the user may pause or halt the text displaying with the CONTROL

or STOP keys.

Example:

;this example will display ascii text that is contained in

Page 64 of 191

;a buffer of your choice. In this example we will call the

;buffer 'textStart'.

DoText:

 LoadW r0,#textStart ;set r0 to the start

 ;of your text.

 LoadB endecho,#128 ;initialize a flag.

 LoadB typeset,#128 ;do tabs and carriage

 ;returns.

 10$

 jsr DispText ;display up to 80 columns

 ;of text.

 jsr AdjTxtPointer ;advance a pointer to

 ;some more of the text.

 bit endecho ;have we reached the end?

 bmi 10$;branch if not.

 rts

See Also: AdjTxtPointer, Message, OtherMessage, DsplyLine, DsplyString,

CarrReturn, ClearLine, ClearBoth, ClearRemainder, StripRulers,

set_XY_pos, save_XY_pos, MskCtrlCodes, ConvToAscii, CkESC_RULERDoRun

Function: Load and run a file.

Pass: a2 - pointer to null terminated filename.

Return: not applicable.

Destroys: not applicable.

Description: You can use this routine if you desire to load and run

any file that is capable of doing so. All you need to do is point a2 to a

null terminated filename. You don't even have to know where the file is

located, DoRun will find it for you. DoRun will take over and cause your

command to cease it's function. If any errors are encoutered, control

will return to the user. For this reason you might only want to call this

routine if the geoSHELL window is displayed.

Example:

;this routine takes the filename that the user typed in and

;then passes control to DoRun. If the file is found on one of the

;available drives, it will be loaded and run.

 ...

 jsr ParamName ;get the filename.

 bit goodflag ;is it a valid filename?

 bmi 10$;branch if so.

 jmp DoError ;otherwise display an error.

 10$

 jmp DoRun ;find it and run it.

See Also:

Page 65 of 191

DriveLetter

Function: Display the drive letter of the active drive and turn the

cursor on.

Pass: nothing

Return: nothing

Destroys: a, x, y, r0-r15

Description: Most commands have no use for this routine. It is mostly

an internal routine that is accessed just before control is returned to

the user. However, since geoSHELL gives your command control of the

system, you could use this to also return control to the user and

interact with the user instead of geoSHELL's own main processor doing so.

You would need some sort of routine to call for user input. This routine

also gets the cursor blinking.

Example:

See Also: DispLetter

DsplyLine

Function: Display a line of text to the geoSHELL window beginning at

the left side of the current line.

Pass: a0 set to the null terminated string to be displayed.

Return: cur_line - updated to reflect the line the cursor is on. A

carriage return is performed after the line is displayed.

Destroys: no guarantees.

Description: This routine should only be used by a command that might

need a more direct approach for displaying text to the geoSHELL window.

The 'type' command uses it and so does geoSHELL's main display routines.

For general message displaying, use Message and OtherMessage. a0 is

normally used by internal routines for keeping the cursor in sync with

the internal memory buffers. A carriage return is always performed after

the line of text is displayed and if the cursor is on the last line, the

text will scroll up one line.

 This routine also calls CkKeyboard to check for the CONTROL or STOP

key. So, if you wish this feature turned off, set bit 7 of kboardoff. If

you wish to allow the user to still be able to use the CONTROL key to

pause text, then set bit 6 of kboardoff and the STOP key will be ignored.

Example:

Page 66 of 191

 ...

 lda PRESDRIVE ;get the real device number

 jsr GetRealDriveNum ;of the currently active drive.

 bit goodflag ;is it a real drive?

 bmi 10$;branch if so.

 LoadW r0,#notReal ;inform the user that this

 lda #(IN_TWO|TR_CR) ;won't work on this drive.

 jsr OtherMessage

 jmp NoMoreCmds ;and exit.

 10$

 jsr PushStuff ;save a bunch of stuff.

 jsr InitForIO ;pop out of GEOS.

 LoadW r0,#iText ;send an init command

 LoadB cmdlength,#2 ;to the drive.

 lda REALDRIVE ;get the device number.

 jsr SendCmd ;and send the command.

 lda REALDRIVE ;read the error channel.

 jsr ReadChannel

 jsr DoneWithIO ;pop back into GEOS.

 LoadW a0,#EnOfShell ;and display the text

 jsr DsplyLine ;from the error channel.

 jsr PopStuff ;restore a bunch of stuff.

notReal:

 .byte "This Is Not A Real Drive!",0

iText:

 .byte "I0" ;initialize command (be sure

 ;to use an upper-case i here)

See Also: AdjTxtPointer, Message, OtherMessage, DispText, DsplyString,

CarrReturn, ClearLine, ClearBoth, ClearRemainder, StripRulers,

set_XY_pos, save_XY_pos, MskCtrlCodes, ConvToAscii, CkESC_RULER

DsplyString

Function: Display a string at the current cursor position.

Pass: a0 - pointing to the null-terminated string to be displayed.

Return: cur_X_pos holds the new horizontal pixel location of the

cursor.

 cur_Y_pos holds the new vertical pixel location of the cursor.

Destroys: no guarantees.

Description: This routine is mostly an internal routine and normally

need not be used. It will display a null-terminated string pointed to by

a0 to the screen beginning at the current cursor position. The cursor

will be left at the end of the string on the screen. This routine will

check the bytes before they are printed and any bytes that cannot be

printed on the screen by GEOS will be converted to '?'.

Example:

Page 67 of 191

See Also: AdjTxtPointer, Message, OtherMessage, DispText, DsplyLine,

CarrReturn, ClearLine, ClearBoth, ClearRemainder, StripRulers,

set_XY_pos, save_XY_pos, MskCtrlCodes, ConvToAscii, CkESC_RULER

EraseWindow

Function: Clear only the geoSHELL window

Pass: nothing

Return: nothing

Destroys: no guarantees

Description: This is called by ClearWindow and is usually not needed

by most commands unless your command is not dealing entirely with text

input and/or display. This routine does not clear the buffer that is

holding the text that was displayed in the window. So, in some cases this

routine could be used without losing what was in the buffer, and a

subsequent call to ReDoWindow will therefore restore the text to the

screen.

Example:

 ...

 jsr EraseWindow

 ...

See Also: ResetScreen, ClearScreen, ClearWindow, ClearBoth, ReDoWindow,

DispLetter, DriveLetter, DsplyLine, DsplyString, CarrReturn, set_XY_pos,

save_XY_pos, ClearLine, ClearRemainder, ReDisplayWindow, DispText,

unsetPrompt

execStartup

Function: Execute a string of commands located beginning at StUpBuffer.

Pass: nothing (other than to load StUpBuffer with the commands).

Return: not applicable

Destroys: not applicable

Description: Fill the buffer at StUpBuffer with a group of commands

and call this routine to execute them. This does not return to your

command. When all commands in the buffer have been executed, control will

return to the user.

Example:

Page 68 of 191

See Also:

ExitCommand

Function: Exit a transient command cleanly.

Pass: nothing

Return: not applicable

Destroys: not applicable

Description: When everything in your command goes as expected and you

are ready to terminate it and return control to geoSHELL, call this

routine. If you simply perform an 'rts', then your command will put the

GEOS mainloop in control without the user being able to have access to

geoSHELL's keyboard input. ExitCommand puts things back like they were

before your command was called.

 In some cases, you may want to do an rts somewhere within your

command if you wish to have it working with the GEOS main loop instead of

geoSHELL doing so. In this case, your command really isn't finished yet,

but perhaps you have set up your own user input routines for mainloop to

handle. geoSHELL contains certain routines that can do many things for

you, but some special situations may need new routines to do different

things. But when your routine is finally finished, exit through

ExitCommand and geoSHELL will process any further commands that the user

may have entered.

Example:

 ...

 ... ;the bulk of your command.

 ...

 jmp ExitCommand ;exit cleanly.

See Also: NoMoreCmds

FileNotAvail

Function: Display a 'Filename Not Available!' message and return

control to the user.

Pass: a2 - pointing to a null terminated filename.

Return: not applicable

Destroys: not applicable

Description: If your command fails to find a file that the user

requests, you could end your command by jumping through this routine. If

a2 is still pointing at the null-terminated filename, this routine will

Page 69 of 191

display the filename on the screen, followed by 'Not Available!'. Control

is then returned to the user instead of your command.

Example:

 ...

 jsr ParamName ;get the filename.

 bit goodflag ;is it valid?

 bmi 10$;branch if so.

 jmp MissgFilename ;display a geoSHELL error

 ;and exit.

 10$

 jsr CkAllDrives ;find the file.

 bit goodflag ;does it exist?

 bmi 20$

 jmp FileNotAvail ;display error and exit.

 20$

 ...

 ... ;continue on...

 ...

See Also: Message, NoMoreCmds, LoadProblem, OtherMessage, FileNotAvail,

MissDisk, MissgFilename, NotFound

FindCMDType

Function: Find the location of a CMD device.

Pass: a - an upper-case letter corresponding to the desired device to

locate: F, H, or R.

 F = FD Series

 H = HD Series

 R = RamLink or RamDrive

Return: goodflag - bit 7 set if the requested CMD device was found.

 curDrive - desired CMD device is opened

 REALDRIVE - real device number of the CMD device

Destroys: no guarantees

Description: To find out if a particular CMD device is being used,

load the accumulator with an F, H, or R and call this routine. If

goodflag is set upon return, then the device was found. This routine also

calls GetCMDType, and so the variables that are set with that routine

will also be in effect.

Example:

;this example will locate an FD Series drive if one is being used.

;this same routine can be modified to locate any CMD drive.

;If a RamLink or RamDrive is being searched for and found, then

Page 70 of 191

;the variables are set by GetCMDType can be checked:

;cmdtype+0 will contain an 'R'

;and cmdtype+1 will have either an 'L' or a 'D'

;while cmdtype+2 will contain either a 3 or a 4.

FindFD:

 lda #'F' ;let's find the FD Drive.

 jsr FindCMDType

 bit goodflag

 bmi 10$

 LoadB FDdrive,#0 ;set variable to zero to

 ;indicate no FD.

 jmp NoFD ;do whatever, if not found.

 10$

 MoveB REALDRIVE,FDdrive

 rts ;goodflag is still set

 ;and FDdrive now contains

 ;the device number of the FD.

FDdrive:

 .block 1

See Also: GetCMDTypeFindParName

Function: Search the current drive for a desired file from a parameter

the user entered.

Pass: nothing

Return: If file not found, routine does not return.

 If routine returns then file is found on the current drive.

 a2 - now points to a null-terminated filename.

 dirEntryBuf - contains the directory entry for the file.

Destroys: no guarantees

Description: You could use this routine when you wish to search the

current drive for a file that the user desires your command to act on.

This routine will take care of calling ParamName for you and call the

necessary routines for searching the drive. If the file is not found,

however, the routine will display an error that the file is not available

and jump through NoMoreCmds, which will return control to the user. If

the user did not enter a parameter that could possibly be a filename,

this routine will also handle that error for you without returning. If

the routine returns, then obviously the file is found, and your command

may continue.

Example:

 ...

 jsr FindParName ;find the desired file.

Page 71 of 191

 ... ;file is found, so continue...

 ...

See Also: CkAllDrives, CkThisDrive, CkOtherDrives, CkPathOrder, CkPath,

CkForDisk, CkPresdrive

FindRamLink

Function: Find a RamLink or RamDrive if one is currently being used.

Pass: InitForIO must be called first!

Return: goodflag - set if an RL/RD is found on the system.

 RAMLINK - holds the real device number of the RL or RD.

 cmdtype - (two bytes) holds the characters 'RL' or 'RD'

 cmdtype+2 - holds a 3 for RamDrive or a 4 for RamLink.

Destroys: no guarantees

Description: This routine will check to see if a RamLink or RamDrive

is connected and enabled, even if it is not being used by GEOS. The only

way this routine will not find the device is if the user has given it a

device number of 14. geoSHELL always ignores device number 14 in order to

prevent a possible crash should the user have a Xetec Super Graphics Gold

printer interface connected. Don't forget to call InitForIO before

calling this routine.

Example:

;this example routine will find a RamDrive. If a RamDrive is found

;then the variable RAMLINK will contain the device number of the

;RamDrive.

FindRD:

 jsr InitForIO ;pop out of GEOS.

 jsr FindRamLink ;look for an RL or RD.

 jsr DoneWithIO ;pop back in.

 bit goodflag ;did we find one or the other?

 bpl 20$;branch if not.

 lda cmdtype+2 ;check the device type.

 cmp #3 ;is it an RD?

 bne 10$;branch if not.(if it was an RL)

 rts ;goodflag already set.

 10$

 LoadB RAMLINK,#0 ;in case a RamLink was found,

 ;because we were looking for

 ;a RamDrive instead.

 20$

 jmp nogood ;signal to calling routine

 ;that no RamDrive is found.

Page 72 of 191

See Also: GetCMDType, FindCMDType, GetRealDriveNumFixColors

Function: Restore the default colors to the 40 column screen.

Pass: nothing

Return: Colors on screen restored.

Destroys: a, y, r0, r1, r2L

Description: geoSHELL uses this routine to restore the colors on the

40 column screen whenever a desk accessory exits back to geoSHELL. Some

DA's alter the screen colors without restoring them upon exit. This is

actually allowed and is left up to the application to restore the colors

as well as any other data displayed on the screen. If your command alters

the colors for it's own purpose, use this routine to restore them, unless

the intention is to alter the colors permanently. In this case, you would

also want to change the GEOS variable, screencolors. The high nybble of

screencolors is the foreground color (0-15) while the low nybble is the

background color (0-15).

Example:

 ...

 jsr FixColors ;restore 40 column color

 ...

See Also: ColorScreen

GetCMDType

Function: Check if a device is a CMD device and if so, what type.

Pass: a - real device number of device to check. (remember that a RamLink

or RamDrive can be 12 or higher if it is being used as a RAM_1581)

 InitForIO must be called before calling this routine.

Return: goodflag - set if a CMD device.

 cmdtype - (two bytes) contains 'FD', 'HD', 'RD', or 'RL'.

 cmdtype+2 - contains 1, 2, 3, or 4.

 1 = FD Series drive.

 2 = HD Series hard drive.

 3 = PP RamDrive.

 4 = RamLink.

Destroys: a, x, y, r0

Description: After calling InitForIO, you can call this routine to

find out if a particular drive is a CMD device and exactly what type it

is. Upon return, if goodflag is set, then the device is a CMD device.

Page 73 of 191

Then you can proceed to check the bytes at cmdtype to see which CMD

device it is.

Example:

;this particular example will check if drive A is a CMD HD.

CheckHD:

 jsr InitForIO ;first, pop out of GEOS.

 lda #8 ;drive A.

 jsr GetCMDType ;is it a CMD device?

 jsr DoneWithIO ;pop back into GEOS.

 bit goodflag ;so was it a CMD?

 bpl 90$;branch if not.

 lda cmdtype+2 ;check the type byte.

 cmp #2 ;is it an HD?

 bne 90$;branch if not.

 rts ;or exit with goodflag

 ;still set.

 90$

 jmp nogood ;tell the calling routine

 ;that this is not an HD.

See Also: FindRamLink, FindCMDType, GetRealDriveNum

GetHeader

Function: Load the header block of a file into fileHeader.

Pass: dirEntryBuf with a file's directory entry.

Return: fileHeader contains the file's header block.

 r7 - start address of the file.

 r1 - track and sector of first data block, or if VLIR file, then

T/S of index block.

Description: This routine will not return if any errors are

encountered. If an error such as file not found occurs, then an error

message will be displayed and control will return to the user. If a

header block is successfully loaded, then control returns to your command

and you may continue.

Example:

 ...

 jsr ParamName ;get the filename.

 jsr CkAllDrives ;find the file.

 bit goodflag ;did we find it?

 bmi 10$;branch if so.

 jmp FileNotAvail ;tell the user, no file.

 10$

Page 74 of 191

 jsr GetHeader ;no need to check for errors,

 ;routine returns if OK.

 ...

 ... ;so we can continue...

 ...

See Also:

GetMess

Function: Set a pointer to a message.

Pass: r0 - pointing to the start of a group of null-terminated message

strings.

 x - desired message number (1-255)

Return: r0 - pointing to the desired message.

Destroys: a, x, y

Description: This is part of the routine that 'Message' uses to

locate a particular message within a whole group of messages. You can set

up a table of messages, with each message being null-terminated. Set x to

the message you need and r0 to the start of the group of messages and

then call this routine. Upon return, r0 will be pointing at the desired

message. A maximum of 255 messages can be contained in a table.

Example:

;this example will display the error message corresponding to the

;value in x.

DoError:

 LoadW r0,#errorMessages ;point to the start of

 ;message table.

 ;x is set before calling this.

 jsr GetMess ;point to the desired message.

 lda #(IN_TWO|TR_CR) ;indent two and trailing CR.

 jmp OtherMessage ;display the message.

errorMessages:

 .byte "This Would Be Error Number 1!",0

 .byte "And Error Number 2!",0

 .byte "Or Number 3!",0

 .byte "This Can Be Error Number 4!",0

 .byte "Number 5 Might Be Here!",0

See Also: GetMessage, Message, OtherMessage

GetMessage

Page 75 of 191

Function: Point at one of geoSHELL's built-in messages.

Pass: x - desired message number.

Return: r0 - pointing to the message

Destroys: a, x, y

Description: This routine will simply point r0 to the desired message

contained in the standard geoSHELL message table, depending on the value

in x. There really isn't much use for this command, although it could be

used to locate a particular message and then alter the message. The only

problem with this is that the message must contain the exact same number

of characters, since if any null bytes are added, then they are treated

as blank messages and any following messages will be out of sync when

geoSHELL tries to display one of them. In other words, the wrong message

might get displayed, thereby creating confusion for the user.

Example:

See Also: GetMess, Message, OtherMessage

GetRealDriveNum

Function: Get the 'real' device number of a drive.

Pass: a - device number 8-11 of drive.

Return: goodflag - set if device is a real drive or a device that

uses some form of CBM DOS such as a RamLink.

 REALDRIVE - device number of the device.

 curdrvtype - drive type of device as GEOS sees it.

 RAMLINK - 0 if device is not a RamLink or RamDrive or if so it will

contain a copy of REALDRIVE.

Destroys: a, x, y, r0-r15

Description: If working with the built-in DOS in the drive is

desired, you need to know the device number before using standard kernal

routines to access the device. Normally this is not a problem. However,

it is possible that a RamLink or RamDrive might be used with 1581

partitions being used to emulate a RAM_1581. In these cases, the GEOS

disk driver is controlling the device as a RAM device and not a DOS

device. So, the device number of the device in question might be 12 or

higher instead of the usual 8-11 that GEOS uses. This routine will test

the device and return the correct device number for you in REALDRIVE.

Page 76 of 191

 This routine will also call PurgeAllTurbos. So, if you call another

routine after this one that needs the turbo code purged in the drives, it

will not be necessary to call PurgeAllTurbos.

Example:

 ...

 lda PRESDRIVE ;let's get the device number

 ;of the currently active

 ;drive.

 jsr GetRealDriveNum

 bit goodflag

 bmi 10$

 jmp NotRealDrive ;go do some sort of error.

 10$

 ... ;now we have the real

 ;drive number for sure

 ;just in case a RamLink

 ;is being used.

See Also:

ParamName

Function: Point r6 and a2 to the filename that the user entered.

Pass: nozero - set bit 7 of this variable if you do not want a zero

placed at the end of the filename, otherwise simply ignore this variable

(it is automatically reset to zero when the routine is finished), it is

not necessary for your command to set it to zero.

Return: goodflag - set if what appears to be a valid filename

was found.

 r6 - points to a null terminated filename.

 a2 - points to a null terminated filename.

 WILDCARD - bit 7 set if any wildcard characters are found (* and/or

?).

 r0 - if bit 5 of WILDCARD is set, this means that the user included

an equals (=) sign somewhere in the parameter and r0 will be pointing

at the first null-terminated filename while a2 and r6 will be pointing at

the second one.

 NUM_IN_NAME - contains the number of characters 1-16 that are in

the filename.

Description: Call this routine when your command needs to have a

filename follow as a parameter. If ParamName finds what appears to be a

valid filename (up to a maximum of 16 characters), it will exit through

yesgood. If you find that goodflag does not have bit 7 set, then the

Page 77 of 191

routine failed and you do not have any valid filename to process. Handle

this accordingly.

 When a command needs two filenames entered in a manner such as what

the 'rename' command requires, then r0 will return pointing at the first

filename and a2 will be pointing at the second.

 Example: ren newname=oldname

 In this case, both filenames will become null-terminated. You can

tell that the user entered a parameter this way by checking bit 5 of

WILDCARD. If it is set, then an equals sign was found.

 If bit 7 of WILDCARD is set, then the user entered at least one

wildcard in the filename. In the case of bit 5 being set, wildcards are

only checked in the second filename, the one that a2 is pointing at.

Example:

;this example requires that the user enters two filenames similar;to the

way that the rename command works.

 ...

 jsr ParamName

 bit goodflag

 bmi 10$

 5$

 jsr MissgFilename

 10$

 bbrf 5,WILDCARD,5$;use a macro to test bit 5.

 ;did the user enter two names?

 ;it will branch if not.

 MoveW r0,firstName ;save r0 for now.

 jsr CkPresdrive ;check the current drive

 ;for the second filename.

 bit goodflag ;does the file exist?

 bmi 30$;branch if so.

 20$

 jsr NotFound ;tell the user, not found.

 jmp NoMoreCmds ;and exit.

 30$

 MoveW a2,secondName ;save this name for now.

 MoveW firstName,a2 ;now let's

 jsr CkPresdrive ;look for the first filename.

 bit goodflag ;did we find it?

 bpl 20$;branch if not.

 ...

 ... ;at this point we have

 ... ;determined that both

 ... ;filenames exist on the

 ... ;currently active drive

 ... ;and we may continue on...

 ...

 inc NUM_IN_NAME ;get the length of the a2

 lda NUM_IN_NAME ;filename plus on for a space.

 jsr IncCmdPointer ;point at the next command.

Page 78 of 191

 jmp ExitCommand ;and exit cleanly.

firstName:

 .block 2

secondName:

 .block 2

See Also: FindParName

PopStuff

Function: Restore certain variables after a call to PushStuff.

Pass: nothing

Return: r0-r15, a0-a4 are restored to the values they held when

PushStuff was called.

Destroys: nothing

Description: Refer to PushStuff for the basic purpose of these two

routines. Do not call this routine except after you have already called

PushStuff, but be sure to call it if you have called PushStuff. PopStuff

restores various zero page locations from a special built-in stack that

is maintained by geoSHELL. Treat it just like you would if you were to

push a byte onto the processor's stack. One difference here though is

that if you exit your command through NoMoreCmds, then this built-in

stack is reset anyway and you would not need to call PopStuff.

Example:

 ...

 jsr PushStuff ;save some zero page registers.

 ...

 ... ;you might have some code

 ... ;in here that trashes the

 ... ;contents of r0-r6 or whatever.

 ...

 jsr PopStuff ;restore the registers.

 ...

See Also: PushStuff, NoMoreCmds

PurgeAllTurbos

Function: Purge the turbo code from all the drives that are being used

in order to perform low-level DOS routines.

Pass: nothing

Return: goodflag - could be either set or cleared, but in the case of

this routine, it is meaningless.

Destroys: a, x, y, r0-r3

Page 79 of 191

Description: Before performing any low level functions with the

drives such as direct memory accessing, it is necessary to purge the

turbo code in the drive so that the disk driver will restore it

completely when EnterTurbo is called. If not, then your routines could

possibly corrupt the turbo code that is in the drive and the driver would

think that it is still intact.

 This routine purges the turbo code from 'all' the drives so that

you might be able to do low level functions with more than one drive at a

time as you wish. geoSHELL's normal disk accessing will tell the disk

drivers to restore the needed turbo code before any GEOS disk accessing.

For that reason, it is not necessary that your command call EnterTurbo

unless it will also need some GEOS disk accesses.

 If you are dealing with the DOS in just one drive, then you could

just call PurgeTurbo for that one device. However some of the routines

that you call in geoSHELL, especially the ones that deal with the CMD

devices, might deal with more than one drive and therefore needs the

turbo code in all the drives to be purged. This routine will do that for

you.

Example:

 ...

 jsr PurgeAllTurbos ;kill all the turbo code.

 jsr InitForIO ;pop out of GEOS.

 ...

 ... ;do some low-level stuff.

 ...

 jsr DoneWithIO ;pop back into GEOS.

 jmp ExitCommand

See Also:

PushStuff

Function: Save certain zero page locations to a built-in stack.

Pass: nothing

Return: nothing

Destroys: nothing

Description: In some cases you might want to preserve the locations

from r0-r15. Just call this routine and geoSHELL will save them on a

special stack contained in memory. The locations from a0-a4 are also

saved with this routine. Nothing gets trashed when calling this routine.

a,x and y are not trashed. Use PopStuff to restore all of these

locations. If you call PushStuff, be sure to call PopStuff, for the same

reason you would do a pla after you do a pha instruction. If you exit

your command through NoMoreCmds, this will be done for you.

Page 80 of 191

 Since the stack this routine uses is 256 bytes long, and 42 bytes

are saved to it each time, you can safely call this routine 6 times

before having to call PopStuff. The last set in is the first set out,

just like pushing and pulling one byte on the processor's stack.

Example:

;this example looks for a filename on the current drive, and

;whether the file is found or not, it will continue with whatever

;it is designed to do. But while it is displaying a message to the

;user, it will save some stuff and restore afterwards and then

;continue on.

 ...

 jsr ParamName ;get the filename.

 jsr CkPresdrive ;is it on the current drive?

 bit goodflag ;well?

 bmi 10$;branch if so.

 jsr PushStuff ;save everything.

 jsr NotFound ;tell the user 'not found'.

 jsr PopStuff ;restore everything.

 10$

 ...

 ... ;and continue...

 ...

See Also: PopStuff

RdFnKeyDefs

Function: Load the default function key definitions from the current

drive.

Pass: geoSHELL must be an open VLIR file.

Return: goodflag - set if geoSHELL was found on the current drive and

the function key definitions loaded successfully.

Destroys: a, y, r1-r4, r7

Description: This routine will load in the function key definitions

from the currently open drive if there is a copy of geoSHELL on the

drive. The user will now have access to those function key definitions.

The 'defkey' command uses this routine. You must first open geoSHELL as a

VLIR file before calling this routine. Close the file afterwards.

Example:

;here is an example of a complete geoSHELL command that will

;load in the function key definitions from the drive that the

;user chooses. Let's call this command 'loadkeys'. The user is

;supposed to enter the command followed by a parameter that

;specifies the desired drive to load the keys from.

Page 81 of 191

;Example: loadkeys b

;This would load the function key definitions from drive B.

;You'll notice in this source code, that the idea is to keep

;checking for errors to keep the user from crashing his machine.

;Here's the complete source code for the command.

LoadKey:

 lda ParamTable+1 ;check that only one

 jsr CkTerminators ;character is entered.

 bit goodflag

 bmi 10$;branch if so.

 5$

 jmp MissgFilename ;(bad parameter)

 10$

 lda ParamTable+0

 jsr CkDrvLetter ;convert this to the

 ;desired device number (8-11).

 bit goodflag ;is it legal?

 bpl 5$;branch if not.

 pha ;save the device number.

 LoadW a2,#ShellText ;point a2 at the geoSHELL

 ;name.

 pla

 jsr CkThisDrive ;see if geoSHELL is on this

 bit goodflag ;drive.

 bmi 20$;branch if so. jsr NotFound ;tell the user, not

found.

 jmp NoMoreCmds ;and exit.

 20$

 MoveW a2,r0 ;point r0 at the name.

 jsr OpenWrFile ;this opens a VLIR file.

 bit goodflag ;was it successful?

 bmi 30$;branch if so.

 25$

 jmp LoadProblem ;tell about a loading problem.

 30$

 jsr RdFnKeyDefs ;load in the function keys.

 bit goodflag ;did it go OK?

 bmi 40$;branch if so.

 jsr CloseRecordFile ;close the file.

 bra 25$;and do an error thing.

 40$

 jsr CloseRecordFile ;close the file.

 LoadW r0,#successText ;and tell the user

 lda #(IN_TWO|TR_CR) ;that it went OK.

 jsr OtherMessage

 lda #2

 jsr IncCmdPointer ;point at the next command.

 jmp ExitCommand ;and exit cleanly.

successText:

 .byte "Function Keys Loaded!",0

ShellText:

 .byte "geoSHELL",0

Page 82 of 191

See Also:

ReadChannel

Function: Read a drive's error channel.

Pass: a - device number of desired drive.

 InitForIO must be called first.

Return: EnOfShell - up to 256 bytes of information from the drive's

error channel.

 goodflag - set if the read was successful.

Destroys: a, x, y

Description: This command will read a drive's error channel and

return the information to a buffer at EnOfShell. This buffer is 256 bytes

long in order to accomodate the number of bytes that may come from a CMD

device's error channel as opposed to a CBM device. This routine handles

the communication between the computer and the drive for you. If goodflag

is set, then you will find some valid bytes in the buffer at EnOfShell,

otherwise it may just contain null bytes. So check goodflag first upon

return from this routine. Also, before calling this routine, be sure to

call PurgeAllTubos and InitForIO.

Example:

 ...

 lda PRESDRIVE ;do this in case it's an

 jsr GetRealDriveNum ;RD or RL as a RAM_1581.

 ;this also calls PurgeAllTurbos.

 jsr InitForIO ;pop out of GEOS.

 ...

 ... ;through here, you might

 ... ;have some code that

 ... ;accesses the drive's DOS

 ... ;for whatever reason.

 ...

 lda REALDRIVE ;now let's check the

 jsr ReadChannel ;error channel.

 jsr DoneWithIO ;pop back into GEOS.

 bit goodflag ;was the read successful?

 bmi 20$;branch if so.

 jmp DoError ;display some sort of error.

 20$

 ...

 ... ;now we can read the data

 ... ;located at EnOfShell.

 ...

See Also: PurgeAllTurbos, SendCmd, SendListen, SendTalk,

GetRealDriveNumReDisplayWindow

Page 83 of 191

Function: Clear each line in the geoSHELL window and redisplay the text

contained in it from the internal buffers.

Pass: nothing

Return: nothing

Destroys: no guarantees

Description: If your command does anything that might alter the state

of what is being displayed in the geoSHELL window, you can use this

routine to restore the text as it should be.

Example:

 ...

 ... ;let's say that your command

 ... ;puts up a couple of icons

 ... ;in the middle of the geoSHELL

 ... ;window in this code here.

 ... ;that would wipe out the text

 ... ;that was there.

 bit goodflag ;did the user do as he should?

 bmi 50$;branch if so.

 jsr ReDisplayWindow ;restore the text in the window.

 jmp NoMoreCmds ;and exit.

 50$

 ...

 ... ;continue on...

 ...

See Also: ResetScreen, ClearRemainder, ClearWindow, EraseWindow,

ReDoWindow, DispLetter, DriveLetter, DsplyLine, DsplyString, CarrReturn,

set_XY_pos, save_XY_pos, ClearBoth, ClearLine, ClearScreen, DispText,

unsetPrompt

ReDoWindow

Function: Redraw the geoSHELL window and any text that was already

contained in it.

Pass: nothing

Return: nothing

Destroys: no guarantees

Description: When your command performs some sort of action that

might disrupt the geoSHELL window, call this routine to restore it. The

text that is contained in the memory buffer will be restored to the

window after the window is redrawn.

Example:

Page 84 of 191

 ...

 jsr ClearScreen

 ...

 ... ;do something on the screen.

 ...

 jsr ReDoWindow ;redraw the window as it was.

 jmp ExitCommand ;and exit cleanly.

See Also: ResetScreen, ClearRemainder, ClearWindow, EraseWindow,

ReDisplayWindow, DispLetter, DriveLetter, DsplyLine, DsplyString,

CarrReturn, set_XY_pos, save_XY_pos, ClearBoth, ClearLine, ClearScreen,

DispText, unsetPrompt

ResetFromPath

Function: Reset a CMD device back from the path partition to the

current partition the user is operating in.

Pass: nothing

Return: nothing

Destroys: no guarantees

Description: After calling any routine that does a file search on a

path partition, call this routine to put the drive back to it's proper

partition. If you do not, then the drive will remain in the partition

that is defined as the path partition if the desired file was found on

the path partition. It is up to your command to do this. This way, the

path partition can remain open until you are finished with it.

Example:

 ...

 jsr ParamName ;get the filename.

 bit goodflag ;is it valid?

 bmi 10$;branch if so.

 jmp MissgFilename ;do an error message and exit.

 10$

 jsr CkPath ;check the path partition

 bit goodflag ;for the file.

 bmi 20$;branch if found.

 jmp FileNotAvail ;otherwise do a file not

 ;available error and exit.

 20$

 ...

 ... ;do what your command intends

 ... ;at this point.

 ...

 jsr ResetFromPath ;restore the original partition.

 inc NUM_IN_NAME ;ParamName sets this variable.

Page 85 of 191

 lda NUM_IN_NAME

 jsr IncCmdPointer ;point to the next command.

 jmp ExitCommand ;and exit cleanly.

See Also: CkPresdrive, CkThisDrive, CkOtherDrives, CkPathOrder, CkPath,

CkForDisk, FindParName

ResetScreen

Function: Display a fresh geoSHELL screen in the correct mode.

Pass: nothing

Return: nothing

Destroys: a, x, y, r0-r15

Description: This will completely clear the screen and redraw it

fresh in the current mode (40 or 80 columns). The geoSHELL window will be

redrawn and the cursor will be positioned to the left side of line one.

Example:

 ...

 jsr ResetScreen ;wipe the screen and start over.

 ...

See Also: ResetScreen, ClearRemainder, ClearWindow, EraseWindow,

ReDisplayWindow, DispLetter, DriveLetter, DsplyLine, DsplyString,

CarrReturn, set_XY_pos, save_XY_pos, ClearBoth, ClearLine, ClearScreen,

DispText, unsetPrompt

R_Icons

Function: Restore the default geoSHELL icon.

Pass: nothing

Return: otherPressVector - set for mouse positioning of cursor.

 Close icon - set to exit to Desktop or the calling interface that

geoSHELL was entered from.

 Mouse limits - set to default settings.

Destoys: a, x, y, r0-r11

Description: If your command does anything to change the icon status

that the GEOS kernal is controlling, or otherPressVector, or the mouse

position limits, call this routine to fix the problem. This will inform

GEOS that the icon at the upper right of the geoSHELL window is there.

Some actions might kill this icon, thereby making it necessary to call

this routine before exiting your command. While testing your command, be

sure to check the icon by clicking on it to see if it is still active

after exiting your command. If not, then add the call to this routine

Page 86 of 191

before exiting. If you exit to NoMoreCmds, this will be done for you. It

actually does no harm to call this routine before exiting your command

even if your command does nothing to change these things.

Example:

 ...

 jsr R_Icons ;fix the close icon.

 jmp ExitCommand ;all done with command.

See Also:

SaveToREU

Function: Copies geoSHELL and Input driver info to REU.

Pass: nothing

Return: nothing

Destroys: a, x, y, r0-r3

Description: When geoSHELL is activated, it installs itself as the

default user interface into the GEOS kernal in place of the Desktop. If

the user were to exit to BASIC and then use RBOOT to get back into

geoSHELL, the Desktop would then be the default interface. This routine

fixes that problem. The same thing would happen if the user were to

change input drivers. So, for that reason, the 'install' command calls

this routine also. Only the portion of the kernal that contains the

needed info for the user interface and the input driver is copied to the

GEOS kernal area of the REU. There probably is no reason to use this

routine unless your command should affect the input driver in some way,

such as a patch would. Then you would want to call this routine to insure

the patch would be used in an RBOOT situation.

 Should there be no REU, no harm is done since the routine will

simply rts if no REU is present.

Example:

See Also:

save_XY_pos

Function: Save the current values of r1H and r11 into two variables.

Pass: r1H - the current desired pixel location of the cursor.

 r11 - the desired horizontal pixel location of the cursor.

Return: cur_X_pos will hold the value that was in r11.

 cur_Y_pos will hold the value that was in r1H.

Page 87 of 191

Destroys: a

Description: This routine allows you to bypass geoSHELL's management

routines and physically relocate the cursor on the screen, if only

temporary. Once your command exits, geoSHELL might again take control and

properly place it.

 There is really no need to use this routine since most of your

needs can be handled through other routines that let geoSHELL handle the

text displaying and cursor positioning.

Example:

;this example serves no real purpose other than to show

;how this routine could be used. First r1H and r11 are loaded

;with values that correspond to the upper area of the screen.

;This location is 10 pixels down from the top and 48 pixels

;over from the left side. Then save_XY_pos is used to save

;these values to their proper locations and OtherMessage will

;then print a message at the top of the screen instead of

;in the geoSHELL window.

 ...

 LoadB r1H,#10

 LoadW r11,#48

 jsr save_XY_pos

 LoadW r0,#upperText

 lda #0

 jsr OtherMessage

 ...

See Also: set_XY_pos

Searching

Function: Display the 'Searching For Filename' message.

Pass: nosearchmessage - cleared to zero. (it is normally zero and also is

always cleared by this routine)

 a2 - null terminated filename to display in the message.

Return: message displayed on screen.

Destroys: no guarantees

Description: This routine merely needs a2 to be pointing at a null-

terminated filename, and that filename will be included in a message that

will be displayed to the screen, such as, 'Searching For Filename'. This

is basically just another internal geoSHELL message that can also be

called with the routine, Message. 'Searching For' is message number 2.

Usually, the entire line the cursor is currently on will be cleared first

Page 88 of 191

before displaying this message. The message will always start on the

third character location and perform a carriage return afterwards.

 Whenever the routine CkAllDrives is being used to search for a

file, this routine is automatically called. So, if you wish the

'Searching For ...' message to be displayed you need not do anything when

CkAllDrives is being used. For any other searching function, such as

CkThisDrive, you would have to call this routine. If you wish to have

CkAllDrives 'not' call this routine, then set the variable

nosearchmessage to 128. It is not necessary to reset this variable

afterwards since it is automatically reset.

Example:

 ...

 jsr ParamName ;get the filename.

 bit goodflag ;is there one?

 bmi 10$;branch if so.

 jmp MissgFilename ;display error and exit.

 10$

 jsr Searching ;display searching message.

 jsr CkPresdrive ;look on the current drive.

 bit goodflag ;did we find the file?

 bmi 20$;branch if so.

 jmp FileNotAvail ;display an error and exit.

 20$

 ... ;continue on...

See Also:SendCmd

Function: Send a string of bytes to the drive's command channel.

Pass: a - real device number of desired drive.

 r0 - points to the bytes to send.

 cmdlength - number of bytes (1-255) to send. A zero here will send

256 bytes.

 Be sure to purge the turbo code from the drive that the command is

being sent to, and call InitForIO also.

Return: goodflag - set if the drive responded and accepted the bytes.

 r0 - unchanged.

Destroys: a, x, y

Description: This routine may be used to send any string of bytes to

a drive that is connected to the computer. In fact, it does not have to

be one of the drives that GEOS is working with. Just point r0 at the

string of bytes, and set cmdlength to the number of bytes you wish to

send, load the accumulator with the (real) device number of the desired

drive and call this routine.

Page 89 of 191

 Don't forget to purge the turbo code in the drive and call

InitForIO before calling this routine.

Example:

;this example will send a string to the drive's command channel

;that will cause a drive to initialize the disk.

 ...

 jsr PurgeAllTurbos ;let's kill all the turbos.

 jsr InitForIO ;pop out of GEOS.

 LoadW r0,#iText ;point r0 to bytes.

 LoadB cmdlength,#2 ;load cmdlength with # of bytes.

 lda driveNum ;get the device number.

 jsr SendCmd ;send the command.

 bit goodflag ;did the drive take it?

 bmi 20$;branch if so.

 jsr DoneWithIO ;pop back into GEOS.

 jmp DoError ;do an error of some sort.

 20$

 ...

 ... ;continue on...

 ...

iText:

 .byte "I0" ;initialize command.driveNum:

 .byte 8 ;drive number stored here.

See Also: PurgeAllTurbos, ReadChannel, SendListen, SendTalk,

GetRealDriveNum

SendListen

Function: Get a drive's attention and send it a command.

Pass: a - real device number of desired drive.

 cmdtosend - the secondary command byte to send to the drive.

 You must purge the turbo code in the drive and call InitForIO

before calling this routine.

Return: goodflag - set if device is responding.

 the device - still in the 'Listen' mode (if goodflag is set) and

will accept more bytes on the serial bus.

Destroys: a

Description: This routine will prepare a drive to receive bytes on

the serial bus. After setting up and calling this routine, if goodflag is

set, then you may continue to send bytes on the serial bus using the

Page 90 of 191

kernal routine, Ciout, and the drive will continue receiving them. Just

load cmdtosend with a byte to send as a secondary command and load the

accumulator with the device number of the desired drive and call this

routine. Then just keep sending bytes through Ciout. When finished, just

call the kernal routine Unlsn, and it will tell the drive we are finished

sending bytes.

Example:

;this particular example will open a sequential file on the current

;drive so that it's contents may be read into the computer.

 ...

 jsr ParamName ;get a filename.

 bit goodflag ;is it valid?

 bmi 10$;branch if so.

 jmp MissgFilename ;display bad parameter.

 10$

 lda PRESDRIVE

 jsr GetRealDriveNum ;get the real device number.

 ;this will also purge all turbos.

 bit goodflag ;is this a real drive?

 bmi 20$;branch if so.

 LoadW r0,#notRealText ;display an error message,

 lda #(IN_TWO|TR_CR)

 jsr OtherMessage

 jmp NoMoreCmds ;and exit.

 20$

 jsr InitForIO ;pop out of GEOS.

 LoadB cmdtosend,#(3|$f0) ;open channel 3,

 lda REALDRIVE ;in this particular device,

 jsr SendListen ;attempt to open it. bit goodflag ;was it

successful?

 bmi 30$;branch if so.

 25$

 jsr DoneWithIO ;otherwise,

 LoadW r0,#notRespText ;do an error message.

 lda #(IN_TWO|TR_CR)

 jsr OtherMessage

 jmp NoMoreCmds ;and exit.

 30$

 ldy #0

 40$

 lda (a2),y ;open the channel with

 jsr Ciout ;our filename.

 iny

 cpy NUM_IN_NAME ;have we sent the whole

 ;filename?

 bne 40$;branch if not.

 lda #CR ;send a carriage return

 jsr Ciout ;to the drive.

 jsr Unlsn ;make it do it's thing.

 lda REALDRIVE

 jsr ReadChannel ;see if it did it's thing.

Page 91 of 191

 bit goodflag ;check goodflag first.

 bpl 25$

 lda EnOfShell+0 ;did the error channel

 cmp #'0' ;return '0' in the first byte?

 bne 25$;branch if not.

 cmp EnOfShell+1 ;how about the second byte?

 bne 25$;branch if not.

 LoadB cmdtosend,#(3|$60) ;get the channel ready

 lda REALDRIVE ;for reading.

 jsr SendTalk

 bit goodflag ;is it ready?

 bpl 25$;branch if not.

 LoadW r0,#buffer ;point r0 at our buffer.

 LoadB STATUS,#0 ;be sure to clear STATUS.

 ldy #0

 50$

 jsr Acptr ;read a byte from the drive.

 sta (r0),y ;store it in our buffer.

 iny ;increment for the next byte.

 bne 60$

 inc r0H

 lda r0H ;have we reached the end

 cmp #$7f ;of our buffer?

 beq 70$;branch if so.

 60$

 lda STATUS ;is this the end of file

 ;or any other error?

 beq 50$;branch if not.

 70$

 jsr Untalk ;stop the drive.

 LoadB cmdtosend,#(3|$e0) ;and close the channel.

 lda REALDRIVE

 jsr SendListen

 jsr Unlsn jsr DoneWithIO ;pop back into GEOS.

 ...

 ... ;at this point, we have

 ... ;a buffer filled with the

 ... ;bytes from the file that

 ... ;the user desired and our

 ... ;command may continue to do

 ... ;as it is designed to do.

 ...

notRealText:

 .byte "This Is Not A REAL Drive!",0

notRespText:

 .byte "The Drive Is Not Responding!",0

See Also: PurgeAllTurbos, ReadChannel, SendCmd, SendTalk,

GetRealDriveNum

SendTalk

Page 92 of 191

Function: Get a drive's attention and send it a command to prepare it

for talking.

Pass: a - real device number of desired drive.

 cmdtosend - the secondary command byte to send to the drive.

 You must purge the turbo code in the drive and call InitForIO

before calling this routine.

Return: goodflag - set if device is responding.

 the device - is in the 'Talk' mode (if goodflag is set) and will

send bytes to the computer by using the kernal routine 'Actpr'.

Destroys: a

Description: This routine will prepare a drive to send bytes on the

serial bus. After setting up and calling this routine, if goodflag is

set, then you may begin receiving bytes on the serial bus using the

kernal routine Acptr. Just load cmdtosend with a byte to send as a

secondary command and load the accumulator with the device number of the

desired drive and call this routine. Then just keep receiving bytes

through Acptr until STATUS is any non-zero value. When finished, use the

kernal routine Untalk to tell the drive we are finished receiving bytes.

Example: Refer to the example in the description for the routine

'SendListen'. It includes an example of how to use SendTalk.

See Also: PurgeAllTurbos, ReadChannel, SendCmd, SendTalk,

GetRealDriveNum

Send_GC_Byte

Function: Send a byte to a printer via a geoCable connected to the user

port.

Pass: a - byte to send.

 InitForIO must be called before accessing this routine.

Return: nothing - no error checking is performed

Destroys: a

Description: This routine will send the byte contained in the

accumulator to a parallel printer connected to the user port via a

geoCable. No error checking is done. If the routine returns, the byte was

sent, and you can send another one if desired. It is a good idea to call

Open_GC_Channel before this one to verify the presence of a printer

before using this routine. Otherwise, if the printer is not accepting the

byte, the routine might just wait until it does so. That could be

Page 93 of 191

forever. As long as Open_GC_Channel returns with x=0 then it is OK to use

this routine to send data to the printer.

Example:

;this example will send the bytes contained in a buffer to the

;printer. r0 points to the start of the buffer and r2 points to

;the byte just past the end of the buffer. If this example returns

;with goodflag set, the buffer was sent to the printer.

SendBuffer:

 jsr InitForIO ;pop out of GEOS.

 jsr Open_GC_Channel ;check for a printer.

 txa ;check if x = 0.

 beq 10$;branch if so.

 jsr DoneWithIO ;pop back into GEOS.

 jmp nogood ;signal calling routine of error.

 10$

 ldy #0 ;y will stay at zero throughout

 ;the sending of text.

 20$

 lda (r0),y ;get a byte from the buffer.

 jsr Send_GC_Byte ;send it to the printer.

 inc r0L ;point at the next byte.

 bne 30$

 inc r0H

 30$

 sec ;have we reached the end?

 lda r0L

 sbc r2L

 lda r0H

 sbc r2H

 bcc 20$;branch if not. jsr DoneWithIO ;pop back into GEOS.

 jmp yesgood ;and tell the calling routine

 ;everything went OK.

See Also: Open_GC_Channel

SetBrdrColor

Function: Change the color of the 80 column screen's border.

Pass: brdrcolor - color (0-15).

Return: border color changed.

Destroys: a, x, temp_check

Description: This routine will change the color of the 80 column

screen's border to the color that is stored in brdrcolor. Your routine

must check to be sure that the machine is a 128 before calling this

routine. It should also check the videomode to make sure that the

computer is not in monochrome mode.

Page 94 of 191

Example:

;this example is a routine that will change the border to blue.

BlueBorder:

 bit videomode ;128 in RGB mode?

 bmi 10$;branch if so.

 rts

 10$

 LoadB brdrcolor,#DK80BLUE

 jmp SetBrdrColor ;change the border

 ;to blue.

See also: ColorScreen, FixColors

SetDrName

Function: Display drive letter, drive type, and disk name.

Pass: a - desired drive number (8-11) representing drive A-D.

Return: goodflag - meaningless with this routine.

Destroys: no guarantees

Description: Load the accumulator with a device number (8-11)

representing any of the available drives or ramdisks and call this

routine to display the drive letter, the drive type, and the name of the

disk that is in the drive. Both the 'status' and the 'dir' commands call

this routine. The status command will call it once for each of the drives

that are being used. The line the cursor is on will be cleared before the

text is displayed.

Example:

;suppose you wanted to create a command that would display various

;bits of information about a drive and the disk that it contains.

;You could call SetDrName to start with and then test the drive

;and disk to get other bits of info to display.

 ...

 lda ParamTable+1 ;make sure only one

 jsr CkTerminators ;parameter was used for this.

 bmi 10$;branch if so.

 5$

 jmp MissgFilename ;display bad parameter.

 10$

 lda ParamTable+0 ;get the parameter.

 jsr CkDrvLetter ;convert it to 8-11.

 bit goodflag ;did it convert OK?

 bpl 5$;branch if not.

 jsr SetDrName ;display some stuff.

 ...

 ... ;now we can continue

Page 95 of 191

 ... ;testing the drive...

 ...

See Also: Dir, MissDisk, Status, CkDrvLetter, CkForDisk

SetPartParams

Function: Set up some internal variables for the current partition.

Pass: curdrvtype - Set this variable by calling GetRealDriveNum first.

 a - real device number from REALDRIVE after calling

GetRealDriveNum.

Return: goodflag - set if a CMD device with partitions.

 certain internal variables will contain information about the

current partition on the desired device.

Destroys: a, x, y, r0

Description: The main purpose of this routine is to establish the

information that geoSHELL needs for the current partition of a particular

drive. If you were to open a different partition such as what happens

when geoSHELL accesses commands on the path partition, then with this

information, the original partition and drive is known so that it may be

restored. Until the partition is restored, the routine should not be used

again. Once the partition is restored, either through the required call

to ResetFromPath, OpenCurPartition, or InitCurPartition, then

SetPartParams may be used again in order to set up for another partition

to be opened. Even when your command intends to open a partition through

a call to OpenPartition, and leave that partition open with no intentions

of returning to the original one, this routine still needs to be called.

This is because OpenPartition checks to make sure that the desired

partition to open is of the same type as the current one so that it is

compatible with the disk driver that is being used with GEOS on that

drive.

Example: Refer to OpenPartition for an example of how to use this

routine.

See Also: InitCurPartition, OpenCurPartition, ResetFromPath,

OpenPathPartition, SetPartParams

SetThisDevice

Function: A substitute for the GEOS routine 'SetDevice'.

Pass: a - drive number 8-11.

Return: goodflag - set if device is now ready.

 x - contains zero or error number if any from GEOS.

Page 96 of 191

Destroys: a, x, y

Description: This routine is a recommended substitute for the GEOS

kernal routine 'SetDevice'. During it's execution, it still calls

SetDevice, but also does some other checking. It also does a jump through

yesgood or nogood for setting goodflag. During geoSHELL development, it

was discovered that some disk drivers that are used in GEOS would

mysteriously lock up under certain circumstances. This lock up occured

while calling SetDevice. The lockup required just the right conditions

for it to occur. By calling this routine instead of SetDevice, you will

still accomplish the same function but with less chance of any problems

occuring under these conditions.

Example:

;this example expects a drive letter from the user following the

;command. After the usual checking of the parameter, SetThisDevice

;is called and the command proceeds to execute.

 ...

 lda ParamTable+1 ;only one parameter needed.

 jsr CkTerminators

 bit goodflag

 bmi 10$;branch if one parameter.

 5$

 jmp MissgFilename ;display bad parameter.

 10$

 lda ParamTable+0 ;get the parameter.

 jsr CkDrvLetter ;set it to 8-11.

 bmi goodflag ;is it 8-11?

 bpl 5$;branch if not.

 jsr SetThisDevice ;Set the Device.

 bit goodflag ;everything OK?

 bmi 20$;branch if so.

 LoadW r0,#noDriveText ;do an error message.

 lda #(IN_TWO|TR_CR)

 jsr OtherMessage

 jmp NoMoreCmds ;and exit.

 20$

 ...

 ... ;continue on...

 ...

noDriveText: .byte "Drive Not Available!",0

See Also: CkForDisk

set_XY_pos

Function: Load r1H and r11 with the pixel values of the current cursor

position.

Pass: nothing

Page 97 of 191

Return: r1H holds the vertical pixel location of the cursor.

 r11 holds the horizontal pixel location of the cursor.

Destroys: a

Description: Used by internal geoSHELL routines or your routines if

you need to do any manual displaying of text to the screen. Text

displaying is normally handled nicely by geoSHELL with other routines, so

you rarely would have a need to call this routine.

Example: See save_XY_pos for an example of how to use this routine.

See Also: save_XY_pos

Status

Function: Display information for each of the connected drives.

Pass: nothing

Return: information on the screen.

 goodflag is meaningless here.

Destroys: no guarantees.

Description: This is the routine that the 'status' command calls. In

fact, this is the status command. You can use this if you need to show

the drives that are currently online. The swap command calls this to

display the arrangement of the drives after it performs the swap.

Example:

 ...

 jsr Status

 ...

See Also: Dir, MissDisk, SetDrName, CkDrvLetter, CkForDisk

StripRulers

Function: Strip the GeoWrite rulers, escapes and any other unwanted

characters from a GeoWrite page loaded into memory.

Pass: r0 - start of null terminated buffer.

 r2 - location to save converted buffer to.

Return: buffer stripped, null-terminated, and located where r2 was

pointing when the routine was called.

 goodflag - affected, but meaningless with this routine.

Page 98 of 191

 r2 - points at the zero byte that ends the buffer.

Destroys: a, x, y, r0, r2

Description: This routine will take a GeoWrite page that is loaded

into memory and convert in such a way that you will be left with only

ASCII text. Load r0 with start of the buffer and r2 with the start of the

area to save the converted buffer to. r2 must be less than or equal to

r0, or it can point past the end of the buffer that r0 is pointing at.

Normally, you would set r2 equal to r0 so that the buffer will remain in

the same location. This will strip the GeoWrite rulers, escapes and any

other unwanted characters.

 The only hitch to this routine is that it was designed for the

startup and exec commands. This means that carriage returns and tabs are

converted to a single space. In fact, any byte that is less than a 32 or

greater than a 126 is converted to a space. For an exec file, this ends

up making it basically one long command line. Remember that geoSHELL

allows more than one command to be on a line, so it has no use for any

carriage returns.

 After this routine is called, the only byte in the buffer that will

fall outside of 32-126 will be the last one and it will be a zero byte.

Example:

 ...

 lda #[buffer

 sta r0L

 sta r2L

 lda #]buffer

 sta r0H

 sta r2H

 jsr StripRulers

 ...

See Also: AdjTxtPointer, Message, OtherMessage, DsplyLine, DsplyString,

CarrReturn, ClearLine, ClearBoth, ClearRemainder, CkESC_RULER,

set_XY_pos, save_XY_pos, MskCtrlCodes, ConvToAscii, DispText

Switch

Function: Switch 40/80 column modes on a 128.

Pass: nothing

Return: screenmode - reflects the switched mode.

 if 64 mode - does not return.

Destroys: no guarantees

Page 99 of 191

Description: This is the routine that the 'switch' command jumps to.

In fact, this is the switch command, and will act just as if the user

entered the command. If this routine is accessed in 64 mode, the user

will be presented with a message stating '128 Only Command' and will

promptly jump through NoMoreCmds, thereby ending your command. So, you

would want to check screenmode to make sure that the machine is a 128

before using this routine, unless you intend for this to happen.

Example:

;this example is actually the source code for a possible command

;that could be called 'srun'. This will check the screenmode of a file

;before it is loaded, and it will give the user the option of

;switching screens or aborting. The routine CkModeFlag is called in

;this command to check if the file is compatible with the machine.

;The various values that can be returned in x by this routine can

;be found in the appendix.

SRun:

 jsr ParamName ;get the filename.

 bit goodflag ;was there one?

 bmi 20$;branch if so.

 jmp MissgFilename ;display bad parameter.

 10$

 jsr CkAllDrives ;look for the file.

 bit goodflag ;did we find it?

 bmi 20$;branch if so.

 jmp FileNotAvail ;display not available.

 20$

 jsr GetHeader ;get the file's header block.

 bit goodflag ;is it a GEOS file?

 bpl 80$;branch if not and then try

 ;to run it.

 jsr CkModeFlag ;see if it's compatible?

 bit goodflag ;well?

 bmi 80$;branch if so and run it.

 bit screenmode ;check the mode we're in.

 bvs 90$;branch if 64 mode (can't run).

;at this point we know that we are running on a 128. All we need

;to check for is if the file is for 64 only. The only other

;possibility would be if we need to switch from 40 to 80 or;from 80 to

40. So, if not 64 mode, then we can switch screens.

;if x = 36 " is for 40 columns!"

;if x = 37 " is for 128-40 columns!"

;if x = 38 " is for 128-80 columns!"

;if x = 39 " is for 128 mode!"

;if x = 40 " is for 64 mode!"

;if x = 41 " is not a GEOS file!"

 cpx #40 ;is the file for 64 only?

 beq 90$;branch if so (can't run).

 txa ;save x for now.

 pha

Page 100 of 191

 MoveW a2,r0 ;display the filename...

 lda #(IN_TWO|TR_ONE) ;stay on the same line...

 jsr OtherMessage

 pla

 txa ;restore x and...

 lda #TR_CR

 jsr Message ;display the mode the file

 ;is designed for.

 LoadW r0,#switchText ;display a requestor

 lda #(IN_TWO|TR_CR) ;to switch screens.

 jsr OtherMessage

 jsr Wait ;wait for user input.

 lda st_KeyData ;get the key that was pressed.

 cmp #25 ;was it a 'y'.

 ;(keycode, not ascii code)

 beq 50$;branch if so.

 jmp NoMoreCmds ;any other key will abort.

 50$

 jsr Switch ;switch screens.

 80$

 jmp DoRun ;hand the job over to

 ;geoSHELL to run the file.

 90$

 jmp CantRun ;tell the user, no go.

 ;(this would be your own

 ;error routine)

switchText:

 .byte "Would You Like To Switch Screens? y/n",0

See Also: CkModeFlag, DoRun

unsetPrompt

Function: Turn the blinking cursor off.

Pass: nothing

Return: cursor is turned off.

Destroys: nothing

Description: If you wish to turn the cursor on, it is a simple matter

to do so. Just set bit 7 of cursorOn. But to turn it off requires more

work. This routine will do it for you. It has to make sure that the

cursor isn't currently in the visible stage with the character under it

in reverse video. If so, it will erase the cursor and reverse the

character and then it will make sure that it stays off by clearing bit 7

of cursorOn. Of course, you do not need to access this routine unless you

have already turned the cursor on for user input of some sort and then

wish it turned back off.

Page 101 of 191

 If your routine does an rts to have GEOS mainloop handle your input

stuff, then you might want to turn the cursor off if you are not working

with any text input. Otherwise, you might have a blinking cursor right in

the middle of the graphic that you just displayed on the screen while

waiting for the user to click on an icon. This would not look good.

Example:

See Also:

Wait

Function: Wait for the user to press a key.

Pass: nothing

Return: st_keyData contains the keycode (not ascii value) of the key

that was pressed.

 goodflag - meaningless, it is always set by this routine.

Destroys: a, x, y, r3L

Description: This routine is similar to YesKeypress, except that it

turns the mouse off while it is waiting for the user to press a key. This

prevents the user from being able to click on geoSHELL's close icon,

instead of pressing a key.

Example:

 ...

 jsr Wait ;wait for a keypress with the

 ;mouse turned off.

 ...

 ... ;continue on...

 ...

See Also: NoKeypress, ClrKeyData, CkKeyboard, YesKeypress

yesgood

Function: Usually identifies a successful routine.

Pass: nothing

Return: goodflag - bit 7 set.

Destroys: nothing

Description: geoSHELL uses this routine extensively. It and nogood

are the universal routines for identifying successes and failures. This

Page 102 of 191

routine actually does nothing more than set a flag (goodflag) to give an

indication to a calling routine that a success occured. All the calling

routine has to do is check goodflag with the bit instruction. It will be

minus if yesgood set it. As an example, the routine 'CkForDisk' will jump

through yesgood upon exit of the routine if it found a formatted disk in

the drive.

 It's true that the carry flag or some other form of error checking

could have been used, but it's also possible that the x register or the

carry flag could change before we are ready to check it. We have more

control over how goodflag is affected, and can do some processing before

checking it if needed.

Example:

;this particular example will test an 80 character buffer for any

;non-space character. If a non-space character is found, then it

;will return with goodflag set by calling yesgood.

CkNonSpace:

 ldx #0

 10$

 lda charBuffer,x ;get a character from the buffer.

 beq 20$;branch if null encountered.

 cmp #' ' ;is it a space?

 bne 40$;branch if not.

 inx ;point at the next byte.

 cpx #80 ;have we reached the maximum?

 bne 10$;branch if not.

 20$

 jmp nogood ;signal no non-spaces found.

 40$

 jmp yesgood ;signal at least one

 ;non-space found.

See Also: nogood

YesKeypress

Function: Wait for the user to press a key.

Pass: nothing

Return: st_keyData contains the keycode (not ascii value) of the key

being pressed.

 goodflag - always cleared by this routine.

Destroys: a, x, y

Description: Call this routine when you need a keypress from the

user. The Commodore keycode value as listed in the 64 or 128 Programmer's

Reference Manual will be returned in st_KeyData. This routine will hold

the computer indefinitely until a key is pressed. The value in goodflag

Page 103 of 191

is meaningless upon return, however be cautious that you pass the correct

value to the next routine in your command because goodflag will always be

reset to zero by this routine.

Example:

;this example will check for the user to press the spacebar.

;Of course, any other key could also be checked for, or

;all of them.

CkForSpace:

 jsr YesKeypress ;wait for the user to

 ;press a key.

 lda st_keyData ;get the keycode of the key

 ;the user is pressing.

 cmp #60 ;is it the spacebar?

 beq 10$;branch if so.

 jmp nogood ;inform the calling routine

 ;that the spacebar was not

 ;pressed.

 10$

 jmp yesgood ;inform the calling routine

 ;that the spacebar was

 ;pressed.

See Also: NoKeypress, ClrKeyData, CkKeyboard, Wait

-- NOTES --

IncCmdPointer

Function: Position the command pointer past your command's parameter.

Pass: accumulator - number of bytes in your parameter plus one for a

trailing space which is supposed to separate your command with the next.

Return: a4 - incremented the number of desired bytes.

Destroys: a, y

Description: Since geoSHELL allows more than one command to be typed

in on a single line and also since your command could contain a parameter

that might not be any specific length, geoSHELL requires that your

command manage the command pointer (a4) at some point in time before you

exit your command. You must load the accumulator with the number of bytes

that you need the pointer advanced and then call this routine. This

number should be the number of characters that were in your parameter

plus one for the space that the user should have typed in just before the

next command. If your command does not use any parameter, then you do not

need to call this routine, because geoSHELL's command pointer will

Page 104 of 191

already be pointing to the location just past your command's name in the

command buffer.

Example:

 ...

 ... ;the bulk of your command.

 ...

 lda #2 ;assuming your command only

 ;used one parameter plus a

 ;space after the parameter.

 jsr IncCmdPointer ;point geoSHELL in the

 ;proper spot.

 jmp ExitCommand ;and exit your command.

Example #2

 ...

 ... ;part of your command.

 ...

 jsr ParamName ;point a2 to a filename

 ;parameter,

 ;and set NUM_IN_NAME to the

 ;length of the filename.

 bit goodflag

 bmi 10$

 ;display an error here.

 jmp NoMoreCmds ;and then stop any further

 ;command processing. 10$

 ...

 ... ;the bulk of your command.

 ...

 inc NUM_IN_NAME ;add one for a terminator

 ;following the filename.

 lda NUM_IN_NAME ;and get the value.

 jsr IncCmdPointer ;point geoSHELL in the

 ;proper spot.

 jmp ExitCommand ;and exit your command.

See Also: ExitCommand

InitCurPartition

Function: Open the currently active partition after changing to a

different one.

Pass: Certain internal variables must be set by calling GetRealDriveNum

and SetPartParams beforehand.

Page 105 of 191

Return: The partition the user is seeing will be reopened.

Destroys: a, x, y, r0-r15

Description: This routine requires that a certain amount of setup is

performed to work properly. Normally you would want to call other

routines such as ResetFromPath instead of this one.

 In order to make this routine work properly, geoSHELL needs to

figure out what the current partition is first as well as the correct

device number. You do that by calling other geoSHELL routines to properly

set up the internal routines.

Example:

;this could be part of the code that you might use for a command

;that would switch among partitions.

 ...

 jsr SetPartStuff ;set up the variables for

 ;the current partition

 bit goodflag ;does this device use

 ;partitions?

 bmi 10$;branch if so.

 jmp NotPartDevice ;otherwise display an error.

 10$

 ...

 ... ;do whatever you had planned.

 ...

 jsr InitCurPartition ;open the current partition.

 ...

 ... ;continue with more code

 ...

 rts

SetPartStuff:

 lda PRESDRIVE

 jsr GetRealDriveNum ;is this a DOS type device?

 bit goodflag

 bpl 10$;branch if not.

 jsr InitForIO

 lda REALDRIVE ;this was set by GetRealDriveNum

 jsr SetPartParams ;set some internal variables.

 ;this will set goodflag

 ;if the device has partitions.

 jsr DoneWithIO 10$

 rts

See Also: OpenPartition, OpenCurPartition, ResetFromPath,

OpenPathPartition, SetPartParams

InitgeoSHELL

Page 106 of 191

Function: Start geoSHELL (Initial jump address).

Pass: nothing

Return: not applicable

Destroys: not applicable

Description: This routine will 'start' geoSHELL. This routine is the

main starting point of geoSHELL. When either GEOS or getshell loads

geoSHELL into memory, this address is jumped to. It is not recommended to

use this at any other time since the state of GEOS must be such as it is

when an application is first started due to the way geoSHELL operates.

There is actually no reason to ever jump to this routine. In some cases,

if you were to try to restart geoSHELL with this routine, then some

functions may not work quite right. NoMoreCmds may not work quite right

afterwards. When it is necessary to reset the state of geoSHELL, use the

routine NoMoreCmds instead of InitgeoSHELL.

Example: no example since this routine is not recommended.

See Also: NoMoreCmds

LoadProblem

Function: Display an error message and return control to the user.

Pass: nothing

Return: not applicable

Destroys: not applicable

Description: If your command works in such a way that it attempts to

load in a file and has some sort of problem with loading, you can use

this routine to exit your command. This will display to the user,

'Problem Loading File!', and then it will jump to NoMoreCmds. Then the

user can check to see why a problem occured, whether it be a bad disk or

a missing or corrupted file or whatever and try your command again.

Example:

 ...

 jsr ParamName ;fetch the filename the

 bit goodflag ;user typed in.

 bmi 10$;branch if successful.

 jmp MissgFilename ;display 'Bad Parameter'.

 10$

 jsr CkPresdrive ;find the file on the

 bit goodflag ;current drive.

 bmi 20$;branch if found.

 jmp FileNotAvail ;tell the user it's not there.

Page 107 of 191

 20$

 MoveW a2,r0 ;point r0 to the now true

 ;filename without wildcards.

 jsr OpenRecordFile ;let GEOS open it.

 txa ;well?

 beq 30$;branch if OK.

 jsr CloseRecordFile ;make sure it's closed.

 jmp LoadProblem ;and exit with an error.

 30$

 ...

 ... ;desired VLIR file is now

 ... ;open, so we can

 ... ;continue...

 ...

See Also: MissgFilename, NoMoreCmds, Message, OtherMessage,

FileNotAvail, MissDisk, NotFound

Message

Function: Display an internal geoSHELL message.

Pass: x - number of desired message.

 a - formatting information.

Return: nothing

Destroys: no guarantees

Description: This routine will display one of geoSHELL's own internal

messages. This allows you to make use of whatever is available without

the need to include your own messages. Just load x with the number of the

desired message, load the accumulator with the formatting information and

call this routine. A complete list of available messages and a

description of the formatting information is listed in the appendix.

Example:

;this particular example is for a command that might only work

;from a startup or exec file. If coming from anything but, then

;message #72, 'This Is A Startup Command!', will be displayed.

;This example could be the first thing your command does.

 bit STUPMODE ;are we in startup mode?

 bmi 10$;branch if so.

 ldx #72 ;point at message 72.

 lda #(IN_TWO|TR_CR) ;indent two and carriage rtn.

 jsr Message ;do the message.

 jsr ClrTrnsName ;remove the command.

 jmp NoMoreCmds ;and return to the user.

Page 108 of 191

 10$

 ...

 ... ;continue on...

 ...

See Also: MissgFilename, NoMoreCmds, LoadProblem, OtherMessage,

FileNotAvail, MissDisk, NotFound

MskCtrlCodes

Function: Remove control codes (any non-ASCII characters) from a text

buffer.

Pass: r0 - start of buffer.

 endoftext - one byte past end of buffer.

 txttype - always set this to zero.

Return: the buffer is altered.

 endoftext - points to the new end of text + 1. The buffer will

decrease in size if any unwanted bytes have been removed from it.

Destroys: a, y, r0, r2

Description: If your command has just loaded a buffer with text, you

can call this routine to strip any characters from it that GEOS is unable

to display on the screen. You will be left with only ASCII text plus any

carriage returns, tabs, or shifted-spaces. You should always set txttype

to zero, just in case the 'type' command has recently been used. The type

command uses this variable for various purposes. One of the uses is to

tell MskCtrlCodes if the buffer it is converting is a Text Scrap or a

text album. In this case, MskCtrlCodes will strip the first escape ruler

from the buffer. You could also use this routine for this purpose,

however geoSHELL has other routines for doing this also. This feature is

quite specific to the type command, so you would normally just clear the

variable txttype before calling MskCtrlCodes.

 ConvToAscii also calls this routine when it is converting from

PetASCII to ASCII, so if your command uses ConvToAscii, calling

MskCtrlCodes will not change anything in your buffer, since it will

already have been done.

Example:

 ...

 jsr ReadFile ;use GEOS to read in a linked

 ;chain of blocks.

 txa ;any problems?

 beq 10$;branch if not.

Page 109 of 191

 jmp LoadProblem ;display an error and exit.

 10$

 LoadW r0,#textBuffer ;point r0 to our new text.

 MoveW r7,endoftext ;GEOS left r7 pointing to

 ;the last byte plus one.

 LoadB txttype,#0 ;always do this. jsr MskCtrlCodes ;strip

unwanted characters.

 ...

 ... ;continue on...

 ...

See Also: AdjTxtPointer, Message, OtherMessage, DsplyLine, DsplyString,

CarrReturn, ClearLine, ClearBoth, ClearRemainder, StripRulers,

set_XY_pos, save_XY_pos, CkESC_RULERS, ConvToAscii, DispText

MissDisk

Function: Display the message 'Missing Disk?!'.

Pass: nothing

Return: nothing

 goodflag - meaningless

Destroys: no guarantees

Description: This routine displays a built-in message informing the

user of a missing disk. It will return to your command so that you may

act on it further if needed.

Example:

 ...

 lda #10 ;check for a disk in

 jsr CkForDisk ;drive C.

 bit goodflag ;is there one?

 bmi 10$;branch if so.

 jsr MissDisk ;display a message.

 jmp NoMoreCmds ;and exit.

 10$

 ...

 ... ;otherwise,

 ... ;continue on...

 ...

See Also: MissgFilename, NoMoreCmds, LoadProblem, OtherMessage,

FileNotAvail, Message, NotFound

MissgFilename

Page 110 of 191

Function: Display the message 'Bad Parameter!' without returning.

Pass: nothing

Return: not applicable

Destroys: not applicable

Description: This routine displays a built-in message informing the

user of a bad parameter. It will not return to your command, since it

then jumps through NoMoreCmds.

Example:

 ...

 jsr ParamName ;check if the user typed in

 bit goodflag ;a filename.

 bmi 10$;branch if so.

 jmp MissgFilename ;tell him, bad parameter.

 10$

 ...

 ... ;otherwise,

 ... ;continue on...

 ...

See Also: Message, NoMoreCmds, LoadProblem, OtherMessage, FileNotAvail,

MissDisk, NotFound

nogood

Function: Usually identifies a failure in a routine.

Pass: nothing

Return: goodflag - bit 7 set to zero.

Destroys: nothing

Description: geoSHELL uses this routine extensively. nogood and

yesgood are the universal routines for identifying successes and

failures. This routine actually does nothing more than clear a flag (bit

7 of goodflag) to give an indication to a calling routine that a failure

has occured. All the calling routine has to do is check goodflag with the

bit instruction. It will be plus if nogood cleared it. As an example, the

routine 'CkForDisk' will jump through nogood upon exit of the routine if

it did not find a formatted disk in the drive.

 It's true that the carry flag or some other form of error checking

could have been used, but it's also possible that the x register or the

carry flag could change before we are ready to check it. We have more

control over how goodflag is affected, and can do some processing before

checking it if needed.

Page 111 of 191

Example:

 ...

 jsr OpenDisk ;call a GEOS routine.

 txa ;check the value returned in x.

 beq 10$;branch if OpenDisk was OK.

 jmp nogood ;signal the calling routine

 ;that this routine failed.

 10$

 ... ;continue with more.

See Also: yesgood

NoKeypress

Function: Wait for the user to release the keyboard.

Pass: nothing

Return: goodflag - meaningless, although the routine will always

return with goodflag's bit 7 set.

 the keyboard - completely released.

Destroys: a, x, y

Description: This routine is only used when you want the user to

release any keys that he may be pressing. When you desire user input of

some sort, you might want to call this routine to first insure that no

keys are being pressed and then proceed to look for a keypress with

YesKeypress. Refer to the Wait routine, as it will call both of these

routines for you.

 One problem with using this routine however would be that GEOS will

still return the character code of the key if the user was pressing one.

If you merely want the user to let go of the keyboard, but do not need

keyboard input, then this routine will do just fine. If you want to clear

out the keypress that the user was holding, then call ClrKeyData instead.

That routine will also wait for the user to release the keyboard.

Example:

 ...

 ... ;some of your command's code.

 ...

 jsr NoKeypress ;wait for no keys being

 ;pressed.

 ...

 ... ;continue with further

 ... ;parts of your command.

See Also: YesKeypress, ClrKeyData, Wait, CkKeyboard

Page 112 of 191

NoMoreCmds

Function: Exit from just about anything and return complete control

back to geoSHELL.

Pass: nothing

Return: not applicable

Destroys: not applicable

Description: On just about any kind of error that a user might

create, or if you just want to get out of a situation, or if you want to

end your command and not allow any further commands to be processed, call

this routine. Certain situations occur when a command is running, and it

is up to the programmer of the command to check for any possible

situation that might arise, and when necessary call this routine to end a

line of commands. As an example, 'fcopy' will call this routine when it

is unable to find the desired file that the user typed. First it displays

the necessary message and then jumps to NoMoreCmds so that no problems

will arise with any other commands that might follow.

Example:

 ...

 ... ;parts of your command.

 ...

 jsr DoWhatever ;jsr to another routine.

 bit goodflag ;check for an error on return.

 bmi 10$;branch if routine was ok.

 jsr DisplayError ;you might want to have a

 ;routine to display an error.

 jmp NoMoreCmds ;stop any further commands.

 10$

 ...

 ... ;continue with your command.

 ...

See Also: ExitCommand, IncCmdPointer

NotFound

Function: Display a 'FILENAME Not Found!' message.

Pass: a2 - pointer to null-terminated filename.

Return: nothing

Destroys: no guarantees

Description: In a case where your command fails to find a desired

filename that perhaps the user is requesting, you can call this routine

to display a message that the filename in question is not available.

Whatever the filename is that the user typed in will be displayed

Page 113 of 191

followed by 'Not Available!'. The routine will return to your command

where you can decide how to continue processing. Just be sure that a2 is

pointing at the null-terminated filename that you wish to include in the

message.

Example:

 ...

 jsr ParamName ;get the filename.

 bit goodflag ;is it valid?

 bmi 10$;branch if so.

 jmp MissgFilename ;display an error.

10$

 jsr CkAllDrives ;look for it.

 bit goodflag ;did we find it?

 bmi 20$;branch if so.

 jsr NotFound ;display 'not found'.

 jmp NoMoreCmds ;and in this case we

 ;will just exit.

 20$

 ...

 ... ;continue on...

 ...

See Also: Message, NoMoreCmds, LoadProblem, OtherMessage, FileNotAvail,

MissDisk, MissgFilename

Only128

Function: Inform the user when a 128 command is being used on a 64 and

exit.

Pass: nothing

Return: not applicable

Destroys: not applicable

Description: This routine will display the message '128 Only' and end

by jumping to the routine NoMoreCmds, thereby bringing all commands to a

halt. This is a nice way to get out of a command when it will only work

on a 128, but an attempt is being made to use it on a 64. Simply test the

variable 'screenmode' to determine the machine that is being used.

Example:

 bit screenmode ;check the mode.

 bvc 10$;branch if a 128.

 jsr ClrTrnsName ;clear the command.

 jmp Only128 ;do an error and exit.

 10$

 ...

 ... ;this is a 128, so

 ... ;continue on...

 ...

Page 114 of 191

See Also: CkModeFlag

OpenCurPartition

Function: Open the currently active partition after changing to a

different one.

Pass: Certain internal variables must be set by calling GetRealDriveNum

and SetPartParams beforehand.

 InitForIO must be called first.

 PurgeAllTurbos must be called first.

Return: The partition the user is seeing will be reopened.

Destroys: a, x, y, r0-r15

Description: This routine is a lower level geoSHELL routine that

requires a certain amount of setup to work properly. Normally you would

want to call other routines such as ResetFromPath instead of this one.

But in the case of a filecopier, for instance, you may wish to bypass the

routines that take you back into GEOS while moving data around using the

drive's own DOS. In that case, this routine will reopen the current

partition, while your command can maintain it's own variables for another

partition that you are working with.

 In order to make this routine work properly, geoSHELL needs to

figure out what the current partition is first as well as the correct

device number. You do that by calling other geoSHELL routines,

GetRealDriveNum and SetPartParams, to properly set up the internal

variables.

Example:

;this could be part of the code that you might use for a command

;that would switch among partitions.

 ...

 jsr SetPartStuff ;set up the variables for

 ;the current partition

 bit goodflag ;does this device use

 ;partitions?

 bmi 10$;branch if so.

 jmp NotPartDevice ;otherwise display an error.

 10$

 jsr PurgeAllTurbos ;SetPartParams also does this.

 jsr InitForIO

 ...

 ... ;do whatever you had planned.

 ...

 jsr OpenCurPartition ;open the current partition.

 jsr DoneWithIO

Page 115 of 191

 ... ;continue with more code... ...

 rts

SetPartStuff:

 lda PRESDRIVE

 jsr GetRealDriveNum ;is this a DOS type device?

 bit goodflag

 bpl 10$;branch if not.

 jsr InitForIO

 lda REALDRIVE ;this was set by GetRealDriveNum

 jsr SetPartParams ;set some internal variables.

 ;this will set goodflag

 ;if the device has partitions.

 jsr DoneWithIO

 10$

 rts

See Also: InitCurPartition, ResetFromPath, GetRealDriveNum,

SetPartParams, OpenPartition, GetCMDType, FindCMDType, FindRamLink,

PurgeAllTurbos, OpenPathPartition, SetPartParamsOpenGS

Function: Locate and open geoSHELL to gain access to it's VLIR records.

Pass: nothing

Return: goodflag - set if successful.

 geoSHELL is now an open VLIR file, and so everything pertaining

to a call to OpenRecordFile pertains here.

 pathload - set if geoSHELL was found on the path partition.

 DRVFOUNDON - device number (8-11) of the drive that geoSHELL was

found on.

 curDevice and curDrive - the currently open drive.

 PRESDRIVE - unchanged.

 Also anything that OpenRecordFile returns is returned with this

routine, such as the Index Table in fileHeader, and dirEntryBuf.

Destroys: a, x, y, r0-r15, a2

Description: This routine will search for geoSHELL on all available

drives as well as a 'path' partition if one is set and jump through

yesgood if it is found. If found, a call to OpenRecordFile is made and

geoSHELL is left as an open VLIR file. If it was found on the path

partition, then 'pathload' is also set. In this case, after closing

geoSHELL with a call to CloseRecordFile, a call should also be made to

ResetFromPath. Having geoSHELL open like this allows access to make

modifications such as what the 'custom' command does. The search for

geoSHELL is performed through CkPathOrder.

Example:

Page 116 of 191

 ...

 jsr OpenGS ;open the geoSHELL file.

 bit goodflag ;was it successful?

 bmi 10$;branch if so.

 jsr NotFound ;display that geoSHELL was

 jmp NoMoreCmds ;not found and exit.

 10$

 ...

 ... ;now we can do what we

 ... ;want with the geoSHELL

 ... ;file that is the one

 ... ;that is currently in control.

 ...

See Also: OpenGSIndex

OpenGSIndex

Function: Load geoSHELL's VLIR index block into fileHeader.

Pass: nothing

Return: goodflag - set if routine was successful.

 pathload - set if geoSHELL was found on the path partition.

 DRVFOUNDON - device number (8-11) of the drive that geoSHELL was

found on.

 fileHeader - contains geoSHELL's index table if successful

(goodflag set)

 dirEntryBuf - geoSHELL's directory entry.

 curDevice and curDrive - the currently open drive.

 PRESDRIVE - unchanged.

Destroys: a, x, y, r0-r15, a2

Description: This routine will find geoSHELL and load it's index

sector into memory at fileHeader. If bit 7 of pathload is set, then

geoSHELL was found on the path partition. The path partition is still

open if so, and a call to ResetFromPath should be made before your

command exits, or the user will have to do it himself (not desireable).

The geoSHELL file is not left as an open VLIR file with this routine,

only the index table is loaded into memory.

Example:

GetGSIndex:

 jsr OpenGSIndex ;get geoSHELL index sector.

 bit goodflag ;was it successful?

Page 117 of 191

 bmi 10$;branch if so.

 rts ;goodflag is still cleared.

 10$

 ;geoSHELL's index sector is

 ;now in memory at fileHeader.

 ;We will now restore the drive.

 ;This could also be done by

 ;the calling routine if it

 ;needs to keep geoSHELL

 ;available while performing

 ;it's operation on it.

 jsr ResetFromPath ;reset the drive to it's previous

 ;partition in case geoSHELL

 ;was found on the path

 ;partition.

 jmp yesgood ;tell the calling routine ;that

geoSHELL's index is

 ;in memory.

See also: OpenGS

OpenPartition

Function: Open a partition on a CMD device.

Pass: r0 - pointing to a string with 'CP' and the ascii characters

representing the desired partition to open.

 a - the real device number of the desired CMD device.

 cmdlength - the length (3-5) of the string that r0 is pointing at.

 PurgeAllTurbos, InitForIO, and SetPartParams must be called just

before calling this routine.

Return: goodflag - set if the desired partition was opened.

Destroys: no guarantees

Description: This routine is the one you would call when you wish to

open a partition on a CMD device. It does not have to be the currently

active drive either. Any connected CMD device may be controlled with this

routine. Be sure to call PurgeAllTurbos and then InitForIO first. Also,

you will need to call SetPartParams before calling OpenPartition. This is

so that the type of partition that is currently open on the desired drive

can be compared to the one that you are attempting to open. As long as

they are of the same type, then the routine may open it. This is to

prevent any problems with the disk driver that is being used.

 All the low-level handling of the device is taken care of for you

with this routine. This makes it a very easy task to open any partition.

The only hitch with doing this is that you should only use this on one

device at a time. Because geoSHELL maintains some internal variables for

Page 118 of 191

you that will be used when you do a subsequent call to OpenCurPartition

or InitCurPartition. Those routines will restore the partition that was

currently open before calling OpenPartition. That is another reason for

calling SetPartParams first. In the case of the 'fcopy' command, if the

user copies to a destination by specifying a particular partition instead

of a drive, the source drive is always the current partition. If the

destination is on the same drive, then fcopy has no problem. If the

destination is a different drive, then then OpenCurPartition will

consider the current partition to be the one that is currently open on

the destination drive. A call to OpenCurPartition or InitCurPartition

would then reopen the original partition on the destination drive. This

may sound complicated but in reality it is not. As long as the current

partition is restored, another call can be made to open a partition on

another device or the same one.Just remember to work with one partition

at a time or you can work with a currently open partition and one that is

not currently open when you need to work with two partitions at the same

time.

Example:

;this example might look fairly lengthy, but the bulk of it is

;taking the parameter that the user typed in and building a

;string that we will pass on to OpenPartition. This example

;performs some sort of whatever to a desired partition that

;the user chooses. When finished, it will reopen the original

;partition.

;The command that the user types in might look like this:

;commandname 45

;This example command does not expect a fixed length parameter

;and so a space can terminate the 45 in this case. The 45

;represents partition number 45, the one the user wants this

;command to act on. A partition number such as 45 could be

;anything from 1 to 255 or the maximum allowed by the device.

 lda PRESDRIVE ;this acts on the current

 ;drive as the user sees it.

 jsr GetRealDriveNum ;just in case it's an RL or RD.

 ;This also calls PurgeAllTurbos.

 LoadB paramsize,#2 ;let's keep track of the size

 ;of our parameter. (it's at

 ;least one plus a space)

 ldx #2 ;first fill string with spaces.

 lda #' '

 10$

 sta partNumber,x

 dex

 bpl 10$

 lda ParamTable ;we need at least one character.

 jsr CkTerminators ;is this a valid character?

 bne 20$;branch if so.

 15$

 jmp MissgFilename ;this will display

 ;'Bad Parameter' and exit.

 20$

Page 119 of 191

 sta partNumber+0 ;save this first character.

 lda ParamTable+1 ;get the next character.

 jsr CkTerminators ;is it a character?.

 beq 40$;branch if not.

 inc paramsize ;the parameter is at least

 ;two characters now.

 sta partNumber+1

 lda ParamTable+2

 jsr CkTerminators

 beq 40$

 inc paramsize ;the parameter is at least

 ;three characters now.

 sta partNumber+2

 lda ParamTable+3 ;there must be a space or

 ;terminating character after ;the last

character in the

 ;parameter.

 jsr CkTerminators ;well?

 bne 15$;branch if not.

 40$

 jsr InitForIO ;pop out of GEOS.

 lda REALDRIVE ;get the device number.

 jsr SetPartParams ;set some internal variables

 ;and check if this device has

 ;partitions.

 bit goodflag ;well?

 bpl 50$;branch if not.

 LoadW r0,#partString ;point r0 to the string we

 ;just built up.

 LoadB cmdlength,#5 ;any spaces in the string are

 ;ignored by CMD's DOS.

 jsr OpenPartition ;open the partition.

 50$

 jsr DoneWithIO ;pop back into GEOS.

 bit goodflag ;did the partition get opened?

 bmi 60$;branch if so.

 LoadW r0,#cantOpen ;otherwise, let's tell the

 lda #(IN_TWO|TR_CR) ;user we couldn't get to the

 jsr OtherMessage ;partition.

 jmp NoMoreCmds ;and return control to him.

 60$

 ...

 ... ;here we can do what the

 ... ;command is designed to do

 ... ;with the partition that we

 ... ;just opened.

 ...

 jsr InitCurPartition ;restore the original

 ;partition.

 lda paramsize ;we were keeping track of this.

 jsr IncCmdPointer ;point past our command and

 ;parameter.

 jmp ExitCommand ;and do a clean exit.

Page 120 of 191

partString:

 .byte "CP"

partNumber:

 .byte "1 " ;this gets changed.

cantOpen:

 .byte "Unable To Open Partition!",0

See Also: InitCurPartition, OpenCurPartition, ResetFromPath,

OpenPathPartition, SetPartParamsOpenPathPartition

Function: Open the path partition.

Pass: nothing

Return: goodflag - set if successful.

 pathcheck - set to the device number of the drive containing the

path partition.

 REALDRIVE - contains the real device number of the drive containing

the path partition.

Destroys: a, x, y, r0-r15

Description: This routine will open the partition of the device that

has been defined by the path command to be the path partition. Upon

return, if goodflag is set, the routine was successful and the device

containing the path partition is now open along with the correct

partition. Since this device is now open, curDrive will contain the

device number as well as pathcheck. In the case of a RamLink or RamDrive

being used as a RAM_1581, REALDRIVE will contain the real device number

of the device for DOS purposes. In these cases, GEOS might see the device

as 8-11, but the DOS in the RL or RD is seing it as 12 or higher.

 When finished with the path partition, be sure to call

ResetFromPath to restore the device to the partition that the user is

currently seeing.

 If no path has been established, or if the path partition has been

defined, but cannot be opened for whatever reason, the routine will exit

through nogood.

Example:

 ...

 jsr OpenPathPartition

 bit goodflag

 bmi 10$

 rts

 10$

 ...

 ... ;do what you need to do.

 ...

 jsr ResetFromPath

Page 121 of 191

 jmp yesgood

See Also: InitCurPartition, OpenCurPartition, ResetFromPath,

OpenPartition

OpenWrFile

Function: Load a file's VLIR index into memory.

Pass: r0 - pointer to a null terminated filename.

Return: goodflag set if successful.

 fileHeader contains the file's index sector.

Destroys: a, y ,r1, r4-r6

Description: In cases where you need a VLIR file's index in memory,

simply point r0 to the filename and call this routine. The index will be

loaded in fileHeader. If the filename was typed in by the user, call

ParamName to point r6 and a2 to the filename and then copy a2 or r6 to

r0. You can then call this routine. This routine does not leave any VLIR

files open, and only checks the currently active drive.

Example:

;here is how you would search all drives for a file and then

;load it's VLIR index into memory.

GetIndex:

 jsr ParamName ;what filename did

 ;the user type in.

 bit goodflag

 bmi 10$;branch if the user entered

 ;a filename.

 5$

 rts ;otherwise, exit with

 ;goodflag reset to zero.

 10$

 ;a2 now points to the filename

 ;that the user requests.

 jsr CkAllDrives ;find the file.

 bit goodflag

 bpl 5$

 ;a2 now points to the

 ;real filename even if the

 ;user used wildcards.

 MoveW a2,r0

 jmp OpenWrFile ;this ends the routine.

 ;goodflag will represent the

 ;success or failure of loading

 ;in the file's VLIR index.

 ;if goodflag has bit 7 set,

Page 122 of 191

 ;then the index is loaded.

 ;if not, then maybe the file

 ;was not a VLIR type file.

See Also: OpenGS, OpenGSIndex, GetHeaderOpen_GC_Channel

Function: Check the user port via a geoCable for the presence of a

printer.

Pass: nothing

 InitForIO must be called before accessing this routine.

Return: x - zero means the printer is ready for input. (this is one

of the few routines that doesn't affect goodflag)

Destroys: a, x, y

Description: This routine works with a parallel printer via a

geoCable connected to the user port. It will check to make sure the

printer is there. It is not necessary to call this routine if you already

know that a printer is ready for input. However, if your command is

uncertain that the printer is connected and running, call this routine.

If x is zero upon return, the printer is connected and ready. Otherwise

the printer might be there but not responding, such as if it is still

printing from it's buffer or if it has been switched offline by the user.

If you don't access this routine before sending any bytes, your command

will just hang and the computer will appear locked up until the user

realizes that the printer is not available and turns the printer on. In

most cases, the user doesn't think about this, he will think your command

has caused a crash.

Example:

 ...

 jsr InitForIO ;pop out of GEOS.

 jsr Open_GC_Channel ;check for a printer.

 txa ;check if x = 0.

 beq 10$;branch if so.

 jsr DoneWithIO ;pop back into GEOS.

 jmp nogood ;signal calling routine of error.

 10$

 ...

 ... ;continue on...

 ...

See Also: Send_GC_Byte

OtherMessage

Function: Display a message.

Pass: r0 - pointer to text string to display.

Page 123 of 191

 a - formatting information.

Return: nothing

Destroys: no guarantees

Description: This routine will display whatever message you wish to

display in the geoSHELL window. You are limited to the length of the

current screenwidth that is being used, 40 or 80 columns. Just point r0

to the null terminated text that you wish to display and load the

accumulator with the formatting information and call this routine.

Example:

;this particular example is supposed to be some sort of

;command that acts on a GEOS file. If the file exists and

;it is not a GEOS file, then OtherMessage will be used

;to inform the user that this file is not a GEOS file.

 ...

 jsr FindParName ;this won't return if error.

 lda dirEntryBuf+0 ;first check the filetype.

 and #%00001111

 cmp #REL ;is it a REL file?

 beq 20$;branch if so.

 lda dirEntryBuf+22 ;is this a GEOS file?

 bne 30$;branch if so.

 20$

 MoveW a2,r0 ;tell the user that

 lda #(IN_ONE|TR_ONE) ;this

 jsr OtherMessage ;file...

 LoadW r0,#notText ;is not

 lda #TR_CR ;a

 jsr OtherMessage ;GEOS file.

 jmp NoMoreCmds ;and exit.

 30$

 ...

 ... ;this is a GEOS file, so

 ... ;we can continue on...

 ...

notText:

 .byte "Is Not A GEOS File!",0

See Also: Message, NoMoreCmds, LoadProblem, NotFound, FileNotAvail,

MissDisk, MissgFilename

Page 124 of 191

APPENDIX A

MEMORY USAGE

geoSHELL uses a fair amount of memory in it's operation and does not

leave a great deal for you to use with your command. However with some

thought and making use of geoSHELL resources, you will find that you do

not need much memory to do even complex tasks. The smaller your command,

the faster you will create it anyway. And perhaps, the more commands you

will be able to create, also.

Even still, there is almost 6K of programming space that you are free to

use for your command. This is sufficient for all but the largest of

commands. The command 'fcopy' works well with this amount of memory and

even includes it's transfer buffer in this space. The 'type' command

works just fine in this space also, including the area it uses for it's

text buffer. Usually when a command needs more room than this, it will be

because it needs a larger area for a buffer, rather than for program

code. The 'dcopy' command likes a big buffer. The bigger, the better. For

this reason, it will use the area from $a000 to $a000+8000, the area

occupied by the 40 column foreground screen. If you've ever used the

dcopy command in 40 column mode, you've noticed that it blanks the screen

all except for enough room at the bottom to display a message to the

user. With both the foreground and background colors being the same, the

user is unaware of all the activity going on with the screen memory.

Your command is always loaded in at $6800 and is jumped to at that

address. Obviously, if you make use of a GEOS printer driver, you will

have to limit yourself to the area from $6800-$78ff, since the printer

driver will load in at $7900. Otherwise, your program code may extend on

up to $7f3f. You are free to use the area up to $7fff but geoSHELL won't

allow your command to load if it is large enough to fill the area between

$7f40 and $7fff. This should have been changed as geoSHELL was being

developed, but it never was, and this oversight wasn't discovered until

this manual was being put together. Normally, this shouldn't be a

problem, since most commands need some free space just for variable

storage.

In looking through this listing of memory that geoSHELL uses, you might

find a byte here and a byte there that you can use. You might even find a

whole page of memory here or there. And there will be locations outside

of your command that you will be using anyway.

Here is a simplified memory map of geoSHELL:

$0400 - $10ff Variable Storage Area

$1100 - $16ff Startup Buffer

$1700 - $1846 Jump Table

$1847 - $66ff The geoSHELL main code. Do not attempt to alter any of

this area.

$6700 - $67ff EnOfShell - Routines that read a drive's error channel

use this area. Free for use at any other time.

$6800 - $7fff Transient Command Area

It is not really necessary to know the actual location of any variable or

routine since everything available in geoSHELL can be accessed with a

Page 125 of 191

label. All of the labels are listed in this document with explanations of

their uses and are available when you link the file GSVariables.rel with

your source code. The variables are also defined for you in this

appendix. You might also wish to study the file ShellEquates to discover

some of the equates that are available to you when creating your source

code. Some of these equates and the available variables are discussed

throughout the descriptions of the geoSHELL routines. You should become

familiar with these equates and variables and use them to your advantage.

On the 128, geoSHELL uses only front ram (bank 1) so that you are free to

use whatever back ram is not being used by the GEOS kernal as needed.

geoSHELL doesn't care if your command uses any of the zero page

locations, r0-r15. You will just have to keep track of what routines in

geoSHELL and the GEOS kernal might trash any of these that you are using.

If necessary, use PushStuff and PopStuff to preserve these when needed.

Also, some of the registers from a0 through a9 are available. Two of them

are used heavily by geoSHELL and your command, a2 and a4. Normally, you

will let geoSHELL manage a4 for you. a4 is the command pointer. It is

always pointing at the current parameter that is being used or the next

command that will be used. a2 is the universal filename pointer. Here is

the list of the a0-a9 registers:

a0 geoSHELL's user input buffer pointer. (not a good idea to mess with

this one)

a1 not used.

a2 universal filename pointer.

a3 not used.

a4 command pointer. (use this properly)

a5 used by time and directory routines.

a6 used by time and directory routines.

a7 not used.

a8 used by directory routines.

a9 not used.

As you can see, there are plenty of free zero page registers that you can

use as needed.

One of the geoSHELL variables that you should remember aboutis called

'PRESDRIVE'. This variable holds the device number of the currently

active drive that the user thinks he is working from. In other words, if

the drive letter on the screen looks like this...

B>

...then PRESDRIVE will contain the value 9. None of the routines that

geoSHELL uses for searching the different drives will alter PRESDRIVE.

This way, any drive can be accessed by your routine and the user will

still keep the same drive as his current one. geoSHELL let's the user

control which drive is the currently active one. He can change it by

entering a letter followed by a colon. If do have a need to change the

currently active drive, then simply change the value in PRESDRIVE. Just

make sure that the drive is online before doing so.

This is a listing of all the variables that will always be available,

even in future versions of geoSHELL. They begin at StOfRamsect ($0400)

and end at EnOfRamsect ($16ff). Actually, the last $0600 bytes of this

area is the startup buffer.

StOfRamsect: ;used as a reference point for

Page 126 of 191

 ;initializing this area.

screenmode: .block 1 ;current mode of the machine

 ;that is being used.

 ;#%10000000 =80 column 128

 ;#%00000000 =40 column 128

 ;#%01000000 =64

PRESDRIVE: .block 1 ;device number of the currently

 ;active drive as seen by

 ;the user.

goodflag: .block 1 ;universal success/error flag.

DRVFOUNDON: .block 1 ;drive a file is found on.

STUPMODE: .block 1 ;bit7 set =startup or exec mode.

FKEYMODE: .block 1 ;bit7 set =function key mode.

NUM_IN_NAME: .block 1 ;number of characters in a

 ;filename.

ParamTable: .block 44 ;table that holds the parameter

 ;for a command.

comchars: .block 1

cur_Y_pos: .block 1 ;current vertical pixel position

 ;of cursor.

cur_X_pos: .block 2 ;current horizontal pixel

 ;position of cursor.

cur_line: .block 1 ;current line (0-11) of cursor.

cur_char: .block 1 ;current character (0-39 or 0-79)

 ;position of cursor.

tempFileName: .block 17 ;temporary storage.

curTransName: .block 17 ;transient command that is

 ;currently in memory.

scrnwidth: .block 1 ;40 or 80.

domessages: .block 1 ;a zero here will prevent

 ;messages from being displayed.

 ;bit 7 set will allow messages.

cur_keyData: .block 1

CMD_POINTER: .block 1 ;normally zero during execution

 ;of a command. Leave this alone.

tempDrive: .block 1 ;temporary storage used for

 ;status and directory displays.

typeset: .block 1 ;used by DispText.

cmpwidth: .block 1 ;used by DispText.

paramsize: .block 1 ;holds the size of the parameter

 ;that is loaded in ParamTable.

pathload: .block 1 ;this is set to 128 when a

 ;file is found on the

 ;specified path partition.

Asc_String: .block 6 ;ascii decimal strings are

 ;built here.

endecho: .block 1 ;used by DispText.

sourceType: .block 1 ;used by copy commands.destType: .block 1

 ;used by copy commands.

sourceDrive: .block 1 ;used by copy commands.

destDrive: .block 1 ;used by copy commands.

sourcePartition: .block 1 ;used by copy commands.

destPartition: .block 1 ;used by copy commands.

Page 127 of 191

;the custom command saves the following locations from StOfDefs

;to EnOfDefs to the geoSHELL file on disk.

StOfDefs:

videomode: .block 1 ;used only for 80 columns.

 ;0 = monochrome

 ;128 = color

distype: .block 1 ;used by 'ddate' and 'dtype'.

fastdirectory: .block 1 ;used by 'fast' and 'slow'.

defStName: .block 17 ;"Startup",0,0,0,0,0,0,0,0,0,0

coltable: ;80 column color table.

backcolor: .block 1 ;screen background color.

shellcolor: .block 1 ;shell color.

textcolor: .block 1 ;text color.

padcolor: .block 1 ;pad background color.

brdrcolor: .block 1 ;screen border color.

back40pattern: .block 1 ;default background pattern for

 ;40 column.

back80pattern: .block 1 ;default background pattern for

 ;80 column.

clr80pattern: .block 1 ;default background pattern for

 ;80 column RGB mode.

 .block 3 ;these bytes are unused.

curPrinter: .block 1 ;printer device number 4 or 5.

curSecond: .block 1 ;printer secondary address.

crtextstring: .block 3

curCharSet: .block 1 ;character set to send to

 ;printer when @p or @g is used.

 ; 0 = Ascii

 ;128 = PetAscii

 .block 10 ;reserved for future use...

EnOfDefs:

TrRtnLAddr: .block 16 ;do not mess with this!

TrRtnHAddr: .block 16 ;do not mess with this!

 .block 4 ;reserved for future use.

RAMLINK: .block 1 ;the real device number for

 ;RamLink or RamDrive is set

 ;here after a call to

 ;FindRamlink. This is

 ;normally only needed if there

 ;is a RAM1581 used.

cmdtype: .block 3 ;contains FD,HD,RD, or RL.

 ;cmdtype+2 can be from 1-4

 ;1=FD drive

 ;2=HD

 ;3=RD

Page 128 of 191

 ;4=RL

KeyBuffStart:

Key1Buff: .block 81 ;buff_size =81

Key2Buff: .block 81 ;each buffer here holds

Key3Buff: .block 81 ;a function key definition.

Key4Buff: .block 81

Key5Buff: .block 81

Key6Buff: .block 81

Key7Buff: .block 81

Key8Buff: .block 81

restartbyte: .block 1

CmdNumber: .block 1

zeroflag: .block 1

hotkeycommand: .block 2

top_rectangle: .block 1

bot_rectangle: .block 1

left_rectangle: .block 2

right_rectangle: .block 2

temp_line: .block 1

temp_check: .block 1 ;used for temporary storage of

 ;a, x, or y registers.

ck_year: .block 1

ck_month: .block 1

ck_day: .block 1

ck_hour: .block 1

ck_minute: .block 1

CMD_COUNT: .block 1

lastblock: .block 2

filesiz: .block 2

lstbyte: .block 2

headlocation: .block 6

FIRSTDRIVE: .block 1

DRIVECHECK: .block 1

foundtrans: .block 1

inserty: .block 1

stparsize: .block 1

scancheck: .block 1

check_key: .block 1

nosearchmessage: .block 1

saver0: .block 2

numfillbytes: .block 1

numfillcopies: .block 1

numfillstrings: .block 1

stringlocation: .block 2

dublclickspot: .block 1

drivesChecked: .block 4

PRNTMODE: .block 1 ;bit 7 set =send output to the ;serial

printer in addition to

 ;the screen.

 ;bit 6 set =send output to the

 ;geoCable.

Page 129 of 191

strtoprint: .block 2 ;temporarily save r0 here until

 ;ready to send the string that

 ;it points at to the printer.

savex: .block 1 ;temp storage for x.

line_count: .block 1

cursorStatus: .block 1 ;bit 7 set means cursor is

 ;inverted.

 ;cleared means cursor is normal.

cursorOn: .block 1 ;high bit set means cursor is

 ;active.

 ;clear means cursor is inactive.

st_keyData: .block 1

reg24: .block 1

gs_stack: .block 256

stackpointer: .block 1

stupsequence: .block 1

ActHWide: .block 1

ActLeft: .block 1

svkeyVector: .block 2

Dir_Entry: .block 2

Dir_Type: .block 1

StripZFlag: .block 1

ParentName: .block 17

PermName: .block 17

DiskName: .block 17

filetoload: .block 17

WILDCARD: .block 1

DRV_CKD: .block 1

FILECOUNTER: .block 1

NxtBlock: .block 2

X_PARAM: .block 2

Y_PARAM: .block 1

MoveXTable: .block 2

MoveYTable: .block 2

NOSPACE: .block 1

stackReturn: .block 2

stripStack: .block 1

NMCreturn: .block 2

DISPBUFFER: .block 84

WrModeFlag: .block 1

test1string: .block 17

test2string: .block 17

clrlineflag: .block 1

clearcount: .block 1

messflag: .block 1

msgchars: .block 1

messlocation: .block 2

horizcount: .block 1

kboardoff: .block 1

tempr0: .block 2

gstructype: .block 1gfiletype: .block 1

cfiletype: .block 1

texttrsc: .block 2

nozero: .block 1

Page 130 of 191

gscolcount: .block 1

headcolor: .block 1

colbyte: .block 1

staddress: .block 2

clickspot: .block 1

tempy: .block 1 ;temp storage of y register.

 .block 16 ;currently unused.

TrRtnNum: .block 1

tcomnum: .block 1

pathcheck: .block 1

REALDRIVE: .block 1

cmdlength: .block 1

curparnum: .block 1

curpartype: .block 1

curdrvtype: .block 1

errorck: .block 1

partdir: .block 1

syscount: .block 1

cmdtosend: .block 1

lastck: .block 1

runorprint: .block 1

textpointer: .block 1

interpret: .block 1

endoftext: .block 2 ;this contains the byte past

 ;the last byte read in.

txttype: .block 1 ;0=SEQfile (CBM or GEOS)

 ;1=SCRAPfile (Text Scrap)

 ;2=WRITEfile (GeoWrite file)

 ;3=VLIRfile (but not GeoWrite)

 ;4=ALBUMfile (text album)

nextbatch: .block 2

ovrflbyte: .block 1

curpage: .block 1

scrcode: .block 2

asciicode: .block 2

petcode: .block 2

cur_table: ;variables defining the

 ;location and size of the

 ;geoSHELL window.

lft_shell: .block 2 ;left position word

 ;(0-319 or 0-639).

rht_shell: .block 2 ;right position word

 ;(0-319 or 0-639).

left_shell: .block 1 ;left position of window on

 ;screen in bytes.

wid_shell: .block 1 ;width of the bitmap in bytes.

lft_window: .block 2rht_window: .block 2

col0: .block 2

rht_column: .block 2

en_cur_table:

Page 131 of 191

;the internal memory buffers holding a copy of the text

;that appears on the screen for each line in the geoSHELL

;window, lines 0-11.

buff_0: .block 81

buff_1: .block 81

buff_2: .block 81

buff_3: .block 81

buff_4: .block 81

buff_5: .block 81

buff_6: .block 81

buff_7: .block 81

buff_8: .block 81

buff_9: .block 81

buff_10: .block 81

buff_11: .block 81

 .block 3 ;extra added here to

 ;protect bufmem10.

;copies of the ten most recent command line strings.

bufmem10: .block 80

bufmem9: .block 80

bufmem8: .block 80

bufmem7: .block 80

bufmem6: .block 80

bufmem5: .block 80

bufmem4: .block 80

bufmem3: .block 80

bufmem2: .block 80

bufmem1: .block 80

CmdBuffer: .block 82

 .block 10 ;currently unused.

StUpBuffer: .block $0600 ;buffer for startup

 ;and exec files.

EnOfStUpBuffer:

EnOfRamsect:

THE JUMP TABLE

Here is a list of all the available routines that are easily accessible

in geoSHELL through it's jump table. The jump table begins at $1700.

These routines are listed in the order as they appear in the jump table.

For a complete description of each routine, refer to section 2 of this

manual.

$1700 InitgeoSHELL Start geoSHELL (Initial jump address).

$1703 Only128 Inform the user when a 128 command is being used on a 64

and exit.

$1706 OpenGS Locate and open geoSHELL to gain access to it's VLIR

records

Page 132 of 191

$1709 NoMoreCmds Exit from just about anything and return complete

control back to geoSHELL.

$170c ResetScreen Display a fresh geoSHELL screen in the correct mode.

$170f ClearScreen Clear the entire screen.

$1712 ClearWindow Clear the geoSHELL window.

$1715 EraseWindow Clear only the geoSHELL window.

$1718 Asc_3_Byte Convert an ascii number (0-255) to a single byte.

$171b ReDoWindow Redraw the geoSHELL window and any text that was already

contained in it.

$171e R_Icons Restore the default geoSHELL icon.

$1721 OpenWrFile Load a file's VLIR index into memory.

$1724 PushStuff Save certain zero page locations to a built-in stack.

$1727 PopStuff Restore certain variables after a call to PushStuff.

$172a ResetFromPath Reset a CMD device back from the path partition to

the current partition the user is operating in.

$172d CkForDisk Check for a disk in any desired drive.

$1730 ParamName Point r6 and a2 to the filename that the user entered.

$1733 DoRun Load and run a file.

$1736 IncCmdPointer Position the command pointer past your command's

parameter.

$1739 CkPath Check to see if a file is on the path partition.

$173c DriveLetter Display the drive letter of the active drive and turn

the cursor on.

$173f DispLetter Display the drive letter of the currently active drive.

$1742 OpenPathPartition Open the path partition.

$1745 Switch Switch 40/80 column modes on a 128.

$1748 (reserved)

$174b ClrKeyData Eliminate any detected keypresses.

$174e YesKeypress Wait for the user to press a key.$1751 NoKeypress Wait

for the user to release the keyboard.

$1754 nogood Usually identifies a failure in a routine.

$1757 yesgood Usually identifies a successful routine.

$175a DsplyLine Display a line of text to the geoSHELL window beginning

at the left side of the current line.

$175d DsplyString Display a string at the current cursor position.

$1760 CarrReturn Perform a carriage return.

$1763 set_XY_pos Load r1H and r11 with the pixel values of the current

cursor position.

$1766 save_XY_pos Save the current values of r1H and r11 into two

variables.

$1769 ClearLine Clear the current line in the geoSHELL window.

$176c ClearBoth Clear the current line on the screen and in the memory

buffer.

$176f ClearRemainder Clear the window below the current cursor

position.

$1772 StripRulers Strip the GeoWrite rulers, escapes and any other

unwanted characters from a GeoWrite page loaded into memory.

$1775 AdjTxtPointer Used with DispText to advance r0 within a text

buffer.

$1778 ReDisplayWindow Clear each line in the geoSHELL window and

redisplay the text contained in it from the internal buffers.

$177b Message Display an internal geoSHELL message.

$177e OtherMessage Display a message.

$1781 GetMessage Point at one of geoSHELL's built-in messages.

Page 133 of 191

$1784 Asc_Byte Convert a two digit ascii number to a one byte value.

$1787 ByteWZ_Ascii Convert a 16 bit number to an ascii representation

of the number with no leading zeros.

$178a ByteNZ_Ascii Convert a 16 bit number to a 5 digit ascii

representation of the number with leading zeros.

$178d ConvertK Convert a 16-bit number to an ascii string rounded off

to the nearest kilobyte.

$1790 Asc_BCD Convert a two digit ascii number to one byte in binary

coded decimal (BCD) format.

$1793 CkESC_RULER Used for advancing a pointer past bytes used with ruler

escapes in a GeoWrite document.$1796 DispText Display ascii text to

the geoSHELL window up to a maximum of the width of the window.

$1799 GetMess Set a pointer to a message.

$179c execStartup Execute a string of commands located beginning at

StUpBuffer.

$179f CkPathOrder Search a path partition for a file, but first check all

available ramdisks, then the path partition, and then all remaining

drives.

$17a2 FindParName Search the current drive for a desired file from a

parameter the user entered.

$17a5 Wait Wait for the user to press a key.

$17a8 ExitCommand Exit a transient command cleanly.

$17ab unsetPrompt Turn the blinking cursor off.

$17ae ColorScreen Color an area of the 80 column screen.

$17b1 SetBrdrColor Change the color of the 80 column screen's border.

$17b4 SetThisDevice A substitute for the GEOS routine 'SetDevice'.

$17b7 SetDrName Display drive letter, drive type, and disk name.

$17ba FileNotAvail Display a 'Filename Not Available!' message and

return control to the user.

$17bd Searching Display the 'Searching For Filename' message.

$17c0 MissgFilename Display the message 'Bad Parameter!' without

returning.

$17c3 NotFound Display a 'FILENAME Not Found!" message.

$17c6 Dir Display the directory of the current drive.

$17c9 CkTerminators Check if the value is one of the geoSHELL text

terminators.

$17cc CkTermNoSpace Check if the value is one of the geoSHELL text

terminators except for a space.

$17cf MissDisk Display the message 'Missing Disk?!'.

$17d2 CkAllDrives Check all drives for a file.

$17d5 (reserved)

$17d8 CkKeyboard Check for CONTROL, STOP and other keys and process

accordingly.

$17db CkPresdrive Check the currently active drive for a file.

$17de CkThisDrive Check a drive for a file.

$17e1 PurgeAllTurbos Purge the turbo code from all the drives that are

being used in order to perform low-level DOS routines.

$17e4 CkOtherDrives Search all drives for a file that have not yet

been searched.

$17e7 DateDisplay Display the current date.$17ea Byte_Time Convert

the time as contained in directory entries to ascii format. (this routine

should not be used)

$17ed (reserved)

$17f0 FixColors Restore the default colors to the 40 column screen.

Page 134 of 191

$17f3 MskCtrlCodes Remove control codes (any non-ASCII characters)

from a text buffer.

$17f6 ConvToAscii Convert PetASCII text to ASCII text.

$17f9 GetHeader Load the header block of a file into fileHeader.

$17fc LoadProblem Display an error message and return control to the

user.

$17ff OpenGSIndex Load geoSHELL's VLIR index block into fileHeader.

$1802 RdFnKeyDefs Load the default function key definitions from the

current drive.

$1805 Open_GC_Channel Check the user port via a geoCable for the

presence of a printer.

$1808 Send_GC_Byte Send a byte to a printer via a geoCable connected

to the user port.

$180b SaveToREU Copies geoSHELL and Input driver info to REU.

$180e ClrTrnsName Clear a transient command's name from memory.

$1811 CkDrvLetter Tests if the accumulator is holding a value from 97 to

100 ('a', 'b', 'c', 'd') and converts it to a device number.

$1814 Status Display information for each of the connected drives.

$1817 SendCmd Send a string of bytes to the drive's command channel.

$181a ReadChannel Read a drive's error channel.

$181d SendListen Get a drive's attention and send it a command.

$1820 SendTalk Get a drive's attention and send it a command to prepare

it for talking.

$1823 FindRamLink Find a RamLink or RamDrive if one is currently being

used.

$1826 GetCMDType Check if a device is a CMD device and if so, what type.

$1829 FindCMDType Find the location of a CMD device.

$182c OpenPartition Open a partition on a CMD device.

$182f SetPartParams Set up some internal variables for the current

partition.

$1832 InitCurPartition Open the currently active partition after

changing to a different one.

$1835 OpenCurPartition Open the currently active partition after changing

to a different one.

$1838 CkModeFlag Test if a file is compatible with the current mode.

$183b GetRealDriveNum Get the 'real' device number of a drive.

-- NOTES –

Page 135 of 191

APPENDIX B

MESSAGES AND CONSTANTS

As discussed in other parts of this manual, geoSHELL has some built-in

text displaying routines. Of these routines, you have access to

displaying messages to the user describing such things as errors or how

your command might be progressing. It is always good to let the user know

what is going on. The main routines for doing this is Message and

OtherMessage. You will find yourself using OtherMessage the most, since

Message is limited to only the built-in geoSHELL messages.

OtherMessage needs to know where the message is that you wish to display.

Point r0 at this null-terminated text string. One other thing it needs is

a value loaded into the accumulator telling it how to display your text.

You can indent from 1-7 spaces and also add trailing spaces and carriage

returns. The routine Message also needs this information loaded into the

accumulator. The following are the constants for this:

IN_CR = %10000000 ;initial carriage return.

 ;otherwise begin at present

 ;cursor location.

TR_CR = %01000000 ;carriage return after text.

 ;otherwise leave cursor one

 ;space past text.

IN_ONE = %00000001 ;one leading space

IN_TWO = %00000010 ;two leading spaces...

IN_THREE = %00000011 ;etc...

IN_FOUR = %00000100

IN_FIVE = %00000101

IN_SIX = %00000110

IN_SEVEN = %00000111

TR_ONE = %00001000 ;one trailing space

TR_TWO = %00010000 ;two trailing spaces...

TR_THREE = %00011000 ;etc...

TR_FOUR = %00100000

TR_FIVE = %00101000

TR_SIX = %00110000

TR_SEVEN = %00111000

;A typical section of a routine might look like this:

 ...

 LoadW r0,#textToDisplay ;point to the text.

 lda #(IN_TWO|TR_CR) ;insert 2 spaces, add a

 ;carriage return.

 jsr OtherMessage ;go display it.

 ...

textToDisplay:

 .byte "This Text Will Be Displayed!",0

Page 136 of 191

You can also load the accumulator with a zero if you wish tojust print

the text right where the cursor is and leave the cursor at the space

following the last character that gets displayed on the screen. You will

find yourself using this routine quite often.

geoSHELL has some internal messages also that are accessible with the

routine Message. Some of these messages are specific to certain routines

and may not be of any benefit to you. However, there are also some that

will be used quite frequently. You will notice in this listing the ones

that look familiar and will realize the useful ones and the not so useful

ones. In order to use these, you simply load the x register with the

number of the message and load the accumulator just like you would for

OtherMessage and then call Message.

Here is a complete list of the built-in messages:

 .byte "Can't Display File!",0 ;#1

 .byte "Searching For",0 ;#2

 .byte "Loading...",0 ;#3

 .byte "Bad Parameter!",0 ;#4

 .byte "Deleting",0 ;#5

 .byte "On Drive"

 .byte "A",0 ;#6

 .byte "Copying",0 ;#7

 .byte "Drive "

 .byte "A",0 ;#8

 .byte "To Drive "

 .byte "A",0 ;#9

 .byte "Not Found!",0 ;#10

 .byte "Write Protect On!",0 ;#11

 .byte "Missing Disk?!",0 ;#12

 .byte "Too Many Asterisks!",0 ;#13

 .byte "Command is Corrupted!!",0 ;#14

 .byte "Insufficient Room On Disk!",0 ;#15

 .byte "Filename May Not Exceed",0 ;#16

 .byte "8 Char's!",0 ;#17

 .byte "11 Char's!",0 ;#18

 .byte "File Is Locked!!!",0 ;#19

 .byte "Is This A Command?",0 ;#20

 .byte "128 mode only",0 ;#21

 .byte "Not Available",0 ;#22

 .byte 0 ;#23

 .byte "Cannot Run",0 ;#24

 .byte "No Matches Found",0 ;#25

 .byte "** Border Files **",0 ;#26

 .byte "** Non-GEOS Disk **",0 ;#27

 .byte "Date: "

 .byte "01/"

Page 137 of 191

 .byte "02/"te "91",0 ;#28

 .byte "Time: "

 .byte "12:"

 .byte "00 "

 .byte "pm",0 ;#29

 .byte "geoSHELL V2.2",0 ;#30

 .byte "Copyright 1993 by Maurice Randall",0 ;#31

 .byte 0 ;#32 unused

 .byte 0 ;#33 unused

 .byte "Wrong Format",0 ;#34

 .byte "Problem Loading File!",0 ;#35

 .byte " is for 40 columns!",0 ;#36

 .byte " is for 128-40 columns!",0 ;#37

 .byte " is for 128-80 columns!",0 ;#38

 .byte " is for 128 mode!",0 ;#39

 .byte " is for 64 mode!",0 ;#40

 .byte " is not a GEOS file!",0 ;#41

 .byte " 0=Not Geos",0 ;#42

 .byte " 1=Basic ",0 ;#43

 .byte " 2=Assembly",0 ;#44

 .byte " 3=Data ",0 ;#45

 .byte " 4=System ",0 ;#46

 .byte " 5=Desk Acc",0 ;#47

 .byte " 6=Applic ",0 ;#48

 .byte " 7=App Data",0 ;#49

 .byte " 8=Font ",0 ;#50

 .byte " 9=Printer ",0 ;#51

 .byte "10=64Input ",0 ;#52

 .byte "11=Disk Drv",0 ;#53

 .byte "12=Sys Boot",0 ;#54

 .byte "13=Temp ",0 ;#55

 .byte "14=AutoExec",0 ;#56

 .byte "15=128Input",0 ;#57

 .byte "16=??? ",0 ;#58

 .byte "17=GW Doc ",0 ;#59

 .byte " ??? ",0 ;#60

 .byte 0 ;#61 reserved

 .byte 0 ;#62 reserved.

 .byte "21=TransCom",0 ;#63

 .byte " SubDir ",0 ;#64 reserved.

 .byte " SPLAT!!! ",0 ;#65

 .byte 0 ;#66 reserved.

 .byte 0 ;#67 reserved.

 .byte 0 ;#68 reserved.

 .byte 0 ;#69 reserved.

 .byte 0 ;#70 reserved.

 .byte " 0 KBytes Free",0 ;#71

 .byte "This Is A Startup Command!",0 ;#72

 .byte "Partition Not Compatible!",0 ;#73

Page 138 of 191

 .byte "Unknown To Device!",0 ;#74

 .byte "Unable To Rename File!",0 ;#75

 .byte "Drive "

 .byte "D Not Available!",0 ;#76

 .byte "-- Drive Selected --",0 ;#77

 .byte "Printer Unavailable!",0 ;#78

 .byte "Startup File Too Large!",0 ;#79

 .byte "Parent Application",0 ;#80

 .byte "Double-Sided Disk!",0 ;#81

 .byte "Bad Directory Header?!",0 ;#82

 .byte "Can't Find Main Loop!",0 ;#83

 .byte "Sub-Dir Command Failed!!!",0 ;#84

 .byte "Exec File Too Large!",0 ;#85

 .byte "-- Partition Selected --",0 ;#86

 .byte "Printer:",0 ;#87

 .byte "Input:",0 ;#88

 .byte 0 ;#89

 .byte 0 ;#90

 .byte 0 ;#91

 .byte 0 ;#92

 .byte 0 ;#93

 .byte 0 ;#94

 .byte 0 ;#95

 .byte 0 ;#96

 .byte 0 ;#97

 .byte 0 ;#98

 .byte 0 ;#99

 .byte 0 ;#100

 .byte 0 ;#101

 .byte 0 ;#102

 .byte 0 ;#103

 .byte 0 ;#104

 .byte 0 ;#105

 .byte 0 ;#106

 .byte 0 ;#107

 .byte 0 ;#108

 .byte 0 ;#109

 .byte 0 ;#110

 .byte 0 ;#111

 .byte 0 ;#112

 .byte 0 ;#113

 ;(used for the time display)

 .byte "Time: "

 .byte "12:"

 .byte "00 :"

 .byte "00 "

 .byte "pm",0 ;#114

 .byte "A:",160,0 ;#115

 .byte "B:",160,0 ;#116

 .byte "C:",160,0 ;#117

 .byte "D:",160,0 ;#118

Page 139 of 191

 .byte 0 ;#119 reserved

 .byte 0 ;#120 reserved .byte 0 ;#121 reserved

 .byte 0 ;#122 reserved

 .byte 0 ;#123 reserved

 .byte "1541 ",0 ;#124

 .byte "1571 ",0 ;#125

 .byte "1581 ",0 ;#126

 .byte "RAM 41",0 ;#127

 .byte "RAM 71",0 ;#128

 .byte "RAM 81",0 ;#129

 .byte "SHDW41",0 ;#130

 .byte "SHDW71",0 ;#131

 .byte "SHDW81",0 ;#132

 .byte "RL1581",0 ;#133

 .byte "RL NTV",0 ;#134

 .byte "GW RAM",0 ;#135

 .byte "---- ",0 ;#136

 .byte "??? ",0 ;#137

 .byte "HD1581",0 ;#138

 .byte "HD NTV",0 ;#139

 .byte "HD1541",0 ;#140 unknown?

 .byte "HD1571",0 ;#141 unknown?

 .byte "FD1581",0 ;#142

 .byte "HD1581",0 ;#143

 .byte "RD1581",0 ;#144

 .byte "RL1581",0 ;#145

 .byte "FD NTV",0 ;#146

 .byte "HD NTV",0 ;#147

 .byte "RD NTV",0 ;#148

 .byte "RL NTV",0 ;#149

 .byte 0 ;#150 reserved

 .byte "Exit To Drive A Or B!",0 ;#151

 .byte "SEQUENTIAL",0 ;#152

 .byte "VLIR",0 ;#153

 .byte "???",0 ;#154

-- NOTES --

Page 140 of 191

APPENDIX C

MODES AND THEIR VALUES

GEOS is a system that has been developed to be shared as closely as

possible between the two Commodore computers, the 64 and 128. In most

cases, when an application works with GEOS 64, it will work with GEOS 128

in 40 column mode. But, once in a while, an application will show up that

can only be run on a specific machine or in a specific mode, such as a

128 in 80 column mode. There is a byte in a file's header block that will

identify the type of computer that it is allowed or was designed to be

run on. That byte can be found at fileHeader+96 when the file's header

block is loaded in at fileHeader. There is a geoSHELL routine for

checking if a file is compatible with the computer or the current mode it

is in. That routine is CkModeFlag. Refer to the documentation on this

routine for more info on how to use it.

For manual checking of this byte, here is a listing of the possible

values and their meaning:

$00 = 40 column only - 128 or 64

$20 = 128 - 40 column only

$40 = All modes allowed

$60 = 128 only - 40 or 80 columns

$80 = 64 only

$c0 = 128 - 80 column only

If the current mode of the computer does not match or is not compatible

with this byte, then geoSHELL will not execute a file that the user is

trying to run. For the same token, if your command is being written

specifically for a particular machine or mode, then be sure to include

the correct byte in the header file of your command.

While your command is executing, if you need to check the type of

computer or mode, then just test the variable 'screenmode' for this

information. Here are the possible variations of this variable:

#%10000000 = 128 in 80 column mode

#%00000000 = 128 in 40 column mode

#%01000000 = 64

In addition to this, the variable 'videomode' will tell you if the RGB

mode of the 80 column screen has been selected. Bit 7 will reflect this.

This can be set even if the computer is in 40 column mode. That way, when

the user switches to 80 column mode, it will be put into RGB (color)

mode.

When manually placing text or graphics on the screen, it is not a good

idea to use the lower portion of the screen below scanline 176 since

geoSHELL allows a 16K video ram equipped 128 to operate in color mode.

You will notice that none of the standard functions in geoSHELL do

anything in this lower area. Even the mouse is prevented from entering

this area. So, keep this in mind unless the machine is not in color mode.

But that would prevent your command from being used by those who

likeusing geoSHELL's color on the 80 column screen.

Page 141 of 191

APPENDIX D

THE INCLUDED SOURCE CODE

Included with this package are a number of source code files. Within

these you will find many useful examples that you might be able to use in

your own source code when creating a geoSHELL command. Feel free to make

use of these, or to get ideas on how to develop your own routines. You

can also find many examples throughout this manual. Almost every routine

description has at least one source code example to go with it. Just use

GeoWrite to cut and paste any of this source into your own source code

files.

When creating a geoSHELL command, you might always want to start out with

the 'Sample' source code files and build on them. This group of files

includes the following:

Sample ;the main source file.

SampleHdr ;the header file.

Sample.lnk ;the linker file.

Just make copies of these files and then rename them appropriately for

the command you are creating. Then start adding additional code to create

your command.

The included file MiscSource contains several sample routines. Each

routine is documented in the file. Look through this file and see if

there are any routines that might be useful to you.

Also included is the complete source code for the command 'color80'. This

was the first graphic command that operated outside of the geoSHELL

window. While looking through the source for color80, you'll notice that

it would really have been easy to change the colors of the screen with

just a parameter following the command. But I created the command this

way to show everyone that geoSHELL doesn't leave you stuck working with

text in a window. The bulk of color80 deals with the screen it creates,

and not the actual changing of the colors.

color80 is a 128 only command but will still give the 64 users an idea of

how to get in and out of the geoSHELL window. The biggest thing you must

remember is to not jump through NoMoreCmds until you've restored the

window. It is your job to do this. The NoMoreCmds routine could have been

made to check for this condition except the routine is used quite a lot

and it would be disturbing to see the window redrawn on every error that

occurs. Perhaps a variable could have been used to tell the routine if

the window is active or not. In any case, just be sure to rebuild the

window if you do anything to remove it before your command exits. There

are routines that will do this for you. If you don't trash the window,

then you need not worry about it.

In the file MiscSource you'll also find a way to blank the 40 column

screen for when you need to use the extra screen memory for processing.

The same methods here can be used to restore the screen. You will see

just how easy it is. When operating in 80 columns, you can use the 40

column foreground memory without blanking the screen. The routines

included in MiscSource will check the screen mode and take appropriate

action for you.

REQUIRED FILES

Page 142 of 191

When you are assembling and linking your commands, there will be some

files that you will need in order to have access to all that geoSHELL

makes available to you. In your main source code, you would naturally

want geosSym (included in GEOPROGRAMMER) in order to be able to use the

labels it provides for having access to the GEOS kernal along with

various constants. You'll also need geosMac in order to be able to use

the macros that you will find in most of the examples that are in this

package. Both of these files are included with GEOPROGRAMMER. In the

sample source code file that you will use as your template, these have

already been .included'd at the beginning of the source file. In the

sample linker file there is a call to GSVariables.rel. This is the other

file that you need. It is included in this package. Also included is the

source code that assembles into this .rel file.

You can load up these source files into GeoWrite if you want to study the

different equates and constants contained in them. By linking

GSVariables.rel with your source code, you will have access to these.

This includes all of the built-in routines in geoSHELL and all of the

accessible variables. Plus some additional constants are included for

geoSHELL that you may or may not have a use for. Linking GSVariables.rel

with your source does not add any bytes at all to the code that you are

creating. It is all constants and equates and no actual program code. But

link it ahead of your file so that GEOLINKER will already be aware of it

when it links your file.

The following files are used to create GSVariables.rel:

GSVariables

GSVars1

GSVars2

ShellEquates

If you ever need to recreate GSVariables.rel, just assemble GSVariables.

It .includes the other files when it is assembled. It would not be a good

idea to alter the contents of any of these files unless you are merely

adding some of your own constants or equates. If you alter the existing

ones, then your code might put data where it doesn't belong.

Most of the equates and constants contained in these files are also

discussed throughout this manual.

Page 143 of 191

geoSHELL ROUTINES INDEXED BY TOPIC

The first section of this index contains all of the available geoSHELL

routines listed by topic. Some routines can be found under more than one

topic heading if they should pertain to more than one subject. Section 2

of this manual contains a full description of each routine in

alphabetical order. Refer to the general index for the exact page numbers

where each routine may be found plus other locations throughout the

manual where a particular routine might be mentioned.

DISK OR DRIVE RELATED

CkAllDrives Check all drives for a file.

CkDrvLetter Tests if the accumulator is holding a value from 97 to 100

('a', 'b', 'c', 'd') and converts it to a device number.

CkForDisk Check for a disk in any desired drive.

CkModeFlag Test if a file is compatible with the current mode.

CkOtherDrives Search all drives for a file that have not yet been

searched.

CkPath Check to see if a file is on the path partition.

CkPathOrder Search a path partition for a file, but first check all

available ramdisks, then the path partition, and then all remaining

drives.

CkPresdrive Check the currently active drive for a file.

CkThisDrive Check a drive for a file.

DoRun Load and run a file.

FindCMDType Find the location of a CMD device.

FindParName Search the current drive for a desired file from a parameter

the user entered.

FindRamLink Find a RamLink or RamDrive if one is currently being used.

GetCMDType Check if a device is a CMD device and if so, what type.

GetHeader Load the header block of a file into fileHeader.

GetRealDriveNum Get the 'real' device number of a drive.

InitCurPartition Open the currently active partition after changing

to a different one.

OpenCurPartition Open the currently active partition after changing to a

different one.

OpenGS Locate and open geoSHELL to gain access to it's VLIR records

OpenGSIndex Load geoSHELL's VLIR index block into fileHeader.

OpenPartition Open a partition on a CMD device.

OpenPathPartition Open the path partition.

OpenWrFile Load a file's VLIR index into memory.

PurgeAllTurbos Purge the turbo code from all the drives that are being

used in order to perform low-level DOS routines.RdFnKeyDefs Load the

default function key definitions from the current drive.

ReadChannel Read a drive's error channel.

ResetFromPath Reset a CMD device back from the path partition to the

current partition the user is operating in.

SendCmd Send a string of bytes to the drive's command channel.

SendListen Get a drive's attention and send it a command.

SendTalk Get a drive's attention and send it a command to prepare it

for talking.

SetPartParams Set up some internal variables for the current

partition.

Page 144 of 191

SetThisDevice A substitute for the GEOS routine 'SetDevice'.

KEYBOARD RELATED ROUTINES

CkKeyboard Check for CONTROL, STOP and other keys and process

accordingly.

ClrKeyData Eliminate any detected keypresses.

NoKeypress Wait for the user to release a key.

RdFnKeyDefs Load the default function key definitions from the current

drive.

YesKeypress Wait for the user to press a key.

Wait Wait for the user to press a key.

INPUT RELATED ROUTINES

FindParName Search the current drive for a desired file from a parameter

the user entered.

ParamName Point r6 and a2 to the filename that the user entered.

PRINTER ROUTINES

Open_GC_Channel Check the user port via a geoCable for the presence of a

printer.

Send_GC_Byte Send a byte to a printer via a geoCable connected to the

user port.

SCREEN AND WINDOW ROUTINES

ClearScreen Clear the entire screen.

ClearWindow Clear the geoSHELL window.

ColorScreen Color an area of the 80 column screen.

EraseWindow Clear only the geoSHELL window.

FixColors Restore the default colors to the 40 column screen.

ReDoWindow Redraw the geoSHELL window and any text that was already

contained in it.

ResetScreen Display a fresh geoSHELL screen in the correct mode.R_Icons

 Restore the default geoSHELL icon.

SetBrdrColor Change the color of the 80 column screen's border.

Switch Switch 40/80 column modes on a 128.

TEXT DISPLAYING

CarrReturn Perform a carriage return.

CkESC_RULER Used for advancing a pointer past bytes used with ruler

escapes in a GeoWrite document.

CkTerminators Check if the value is one of the geoSHELL text

terminators.

CkTermNoSpace Check if the value is one of the geoSHELL text

terminators except for a space.

ClearLine Clear the current line in the geoSHELL window.

ClearRemainder Clear the window below the current cursor position.

ConvToAscii Convert PetASCII text to ASCII text.

DateDisplay Display the current date.

Dir Display the directory of the current drive.

Page 145 of 191

DispLetter Display the drive letter of the currently active drive.

DispText Display ascii text to the geoSHELL window up to a maximum of

the width of the window.

DriveLetter Display the drive letter of the active drive and turn the

cursor on.

DsplyLine Display a line of text to the geoSHELL window beginning at

the left side of the current line.

DsplyString Display a string at the current cursor position.

FileNotAvail Display a 'Filename Not Available!' message and return

control to the user.

GetMess Set a pointer to a message.

GetMessage Point at one of geoSHELL's built-in messages.

LoadProblem Display an error message and return control to the user.

Message Display an internal geoSHELL message.

MissDisk Display the message 'Missing Disk?!'.

MissgFilename Display the message 'Bad Parameter!' without returning.

MskCtrlCodes Remove control codes (any non-ASCII characters) from a

text buffer.

NotFound Display a 'FILENAME Not Found!" message.

Only128 Inform the user when a 128 command is being used on a 64 and

exit.

OtherMessage Display a message.

ReDisplayWindow Clear each line in the geoSHELL window and redisplay the

text contained in it from the internal buffers.

save_XY_pos Save the current values of r1H and r11 into two variables.

Searching Display the 'Searching For Filename' message.

SetDrName Display drive letter, drive type, and disk name.set_XY_pos

 Load r1H and r11 with the pixel values of the current cursor

position.

Status Display information for each of the connected drives.

StripRulers Strip the GeoWrite rulers, escapes and any other unwanted

characters from a GeoWrite page loaded into memory.

unsetPrompt Turn the blinking cursor off.

TEXT AND NUMBER CONVERSION ROUTINES

Asc_3_Byte Convert an ascii number (0-255) to a single byte.

Asc_BCD Convert a two digit ascii number to one byte in binary coded

decimal (BCD) format.

Asc_Byte Convert a two digit ascii number to a one byte value.

ByteNZ_Ascii Convert a 16 bit number to a 5 digit ascii

representation of the number with leading zeros converted to spaces.

ByteWZ_Ascii Convert a 16 bit number to a 5 digit ascii

representation of the number with leading zeros.

CkDrvLetter Tests if the accumulator is holding a value from 97 to 100

('a', 'b', 'c', 'd') and converts it to a device number.

CkESC_RULER Used for advancing a pointer past bytes used with ruler

escapes in a GeoWrite document.

ConvertK Convert a 16-bit number to an ascii string representing

kilobytes.

ConvToAscii Convert PetASCII text to ASCII text.

MskCtrlCodes Remove control codes (any non-ASCII characters) from a

text buffer.

Page 146 of 191

StripRulers Strip the GeoWrite rulers, escapes and any other unwanted

characters from a GeoWrite page loaded into memory.

ERROR RELATED ROUTINES

FileNotAvail Display a 'Filename Not Available!' message and return

control to the user.

LoadProblem Display an error message and return control to the user.

MissDisk Display the message 'Missing Disk?!'.

MissgFilename Display the message 'Bad Parameter!' without returning.

nogood Usually identifies a failure in a routine.

NoMoreCmds Exit from just about anything and return complete control

back to geoSHELL.

NotFound Display a 'FILENAME Not Found!" message.

Only128 Inform the user when a 128 command is being used on a 64 and

exit.

yesgood Usually identifies a successful routine.

COMMAND RELATED

CkTerminators Check if the value is one of the geoSHELL text

terminators.

CkTermNoSpace Check if the value is one of the geoSHELL text

terminators except for a space.

ClrTrnsName Clear a transient command's name from memory.

execStartup Execute a string of commands located beginning at StUpBuffer.

ExitCommand Exit a transient command cleanly.

IncCmdPointer Position the command pointer past your command's

parameter.

MEMORY RELATED ROUTINES

AdjTxtPointer Used with DispText to advance r0 within a text buffer.

ClearBoth Clear the current line on the screen and in the memory

buffer.

ClrTrnsName Clear a transient command's name from memory.

InitgeoSHELL Start geoSHELL (Initial jump address).

PopStuff Restore certain variables after a call to PushStuff.

PushStuff Save certain zero page locations to a built-in stack.

SaveToREU Copies geoSHELL and Input driver info to REU.

Page 147 of 191

INDEX TO ROUTINES

AdjTxtPointer 1-20, 2-1, 2-42

Asc_3_Byte 2-2

Asc_BCD 2-4

Asc_Byte 2-5

ByteNZ_Asc 2-6

ByteWZ_Asc 2-7

Byte_Time 2-8

CarrReturn 2-9

CkAllDrives 1-16, 2-10, 2-51, 2-57, 2-75, 2-87, 2-105

CkDrvLetter 2-11, 2-14, 2-26, 2-95, 2-117

CkESC_RULER 2-12

CkForDisk 2-14, 2-70, 2-72, 2-127

CkKeyboard 1-20, 2-15, 2-45

CkModeFlag 2-16, 2-123, C-1

CkOtherDrives 1-16, 2-18

CkPath 1-16, 2-20, 2-100

CkPathOrder 1-16, 2-21, 2-79

CkPresdrive 1-15, 1-16, 2-23, 2-66, 2-91

CkTerminators 2-24, 2-84

CkTermNoSpace 2-25

CkThisDrive 1-16, 2-26, 2-18, 2-95, 2-105

ClearBoth 2-28

ClearLine 2-29

ClearRemainder 2-30

ClearScreen 1-25, 2-31, 2-99

ClearWindow 2-32, 2-48

ClrKeyData 2-33, 2-73

ClrTrnsName 2-34, 2-67, 2-76

ColorScreen 1-22, 2-35

ConvertK 2-36

ConvToAscii 2-37, 2-68

DateDisplay 2-38

Dir 2-39

DispLetter 2-40

DispText 1-20, 2-41, 2-1

DoRun 2-43, 2-124

DriveLetter 2-44

DsplyLine 2-45

DsplyString 2-47

EraseWindow 2-48

execStartup 2-49

ExitCommand 1-5, 1-9, 1-13, 2-50

FileNotAvail 2-51, 2-19, 2-66, 2-100, 2-105

FindCMDType 2-52

FindParName 1-16, 2-53, 2-89

FindRamLink 2-54

FixColors 2-55

GetCMDType 2-56, 2-52

GetHeader 2-57, 2-16, 2-123

GetMess 2-58

GetMessage 2-59

Page 148 of 191

GetRealDriveNum 2-60, 2-45, 2-63, 2-77, 2-84, 2-97, 2-108, 2-

116IncCmdPointer 1-13, 2-61, 2-85, 2-96, 2-100

InitCurPartition 2-63, 2-83, 2-85, 2-116

InitgeoSHELL 2-65

LoadProblem 2-66, 2-68

Message 1-18, 2-67, B-1

MissDisk 2-70, 2-14

MissgFilename 2-71, 2-51, 2-66, 2-75, 2-84, 2-91, 2-105

MskCtrlCodes 2-68

nogood 2-72, 2-127

NoKeypress 2-73

NoMoreCmds 1-9, 1-16, 2-74, 2-66, 2-71, 2-75, 2-76, 2-92, 2-94, 2-102,

2-123, D-1

NotFound 2-75, 2-79, 2-91, 2-94

Only128 2-76

OpenCurPartition 2-77, 2-83, 2-116

OpenGS 2-79

OpenGSIndex 2-81

OpenPartition 2-83, 2-116

OpenPathPartition 2-86

OpenWrFile 2-87

Open_GC_Channel 1-17, 2-88, 2-112

OtherMessage 1-5, 1-18, 2-89, B-1

ParamName 1-11, 1-13, 1-16, 2-90, 2-87

PopStuff 2-92, 2-45, A-2

PurgeAllTurbos 2-93, 2-60, 2-77, 2-83, 2-106

PushStuff 2-94, 2-45, 2-92, A-2

RdFnKeyDefs 2-95

ReadChannel 2-97, 2-45, 2-97, 2-109

ReDisplayWindow 2-98

ReDoWindow 2-99, 2-48

ResetFromPath 1-16, 2-100, 2-20, 2-21, 2-79, 2-81, 2-86, 2-116

ResetScreen 2-101

R_Icons 2-102

SaveToREU 2-103

save_XY_pos 2-104, 2-117

Searching 2-105

SendCmd 2-106, 2-45

SendListen 2-108, 2-111

SendTalk 2-111, 2-109

Send_GC_Byte 1-17, 2-112

SetBrdrColor 1-23, 2-114

SetDrName 2-115

SetPartParams 2-116, 2-63, 2-77, 2-83, 2-85

SetThisDevice 2-117

set_XY_pos 2-118, 2-29

Status 2-120

StripRulers 2-121

Switch 2-123

unsetPrompt 2-125

Wait 2-126, 2-73, 2-124

yesgood 2-127, 2-81

YesKeypress 2-128, 2-73, 2-126

Page 149 of 191

INDEX TO VARIABLES AND OTHER MEMORY LOCATIONS

(any variables not listed here can be found in APPENDIX A)

Asc_String 2-6, 2-7, 2-36

back40pattern 1-25

back80pattern 1-25

backcolor 1-25

brdrcolor 1-25, 2-114

clr80pattern 1-25

cmdlength 2-45, 2-83, 2-85, 2-106

cmdtosend 2-108, 2-111

cmdtype 2-54, 2-56

coltable 1-25

curdrvtype 2-60, 2-116

cursorOn 2-125

curTransName 2-34

cur_line 2-9, 2-45

cur_X_pos 2-9, 2-47, 2-104

cur_Y_pos 2-9, 2-47, 2-104

drivesChecked 2-18

DRVFOUNDON 1-16, 2-10, 2-18, 2-20, 2-21, 2-23, 2-26, 2-79, 2-81

endecho 1-20, 2-41

endoftext 2-37, 2-68

EnOfShell 2-45, 2-97, 2-109, A-2

filetoload 1-15

FKEYMODE 1-12

goodflag 1-14, 1-17, 2-72, 2-127

kboardoff 1-21, 2-15, 2-39, 2-41, 2-45

nosearchmessage 2-105

NUM_IN_NAME 1-13, 2-90, 2-100

nozero 2-90

padcolor 1-25

paramsize 1-11, 2-84

ParamTable 1-11, 1-12, 2-39

pathcheck 2-86

pathload 1-16, 2-20, 2-21, 2-79, 2-81

PRESDRIVE 1-3, 1-14, 2-10, 2-18, 2-21, 2-23, 2-26, 2-79, 2-81, A-3

PRNTMODE 1-17

RAMLINK 2-54, 2-60

REALDRIVE 2-45, 2-52, 2-60, 2-63, 2-85, 2-86, 2-97, 2-108, 2-116

screenmode 1-8, 2-123, C-1

shellcolor 1-25

StUpBuffer 2-49

STUPMODE 1-12, 2-67

st_KeyData 2-124, 2-126, 2-128

temp_check 2-114

textcolor 1-25

textpointer 2-1, 2-41

txttype 2-68

typeset 1-20, 2-41

videomode 1-8, 1-22, 2-114, C-1

WILDCARD 1-11, 2-90MISCELLANEOUS INDEX

a0-a9 registers A-2

Page 150 of 191

CMD devices 1-10

CMDR/UP-ARROW 1-2

color 1-22

Color Scraps 1-22 to 1-25

color80 1-9, 1-10, 1-22, D-1

command buffer 1-11

command pointer 1-11

CONTROL key 2-15, 2-41, 2-45

cursor 1-10

dcopy 1-9, A-1

drives 1-15

echo 1-12, 1-20

fcopy A-1

filenames 1-11, 1-13, 1-15

GREATER-THAN SIGN 1-2

GSVariables 1-6, 1-22, A-2, D-2

GSVars1 D-2

GSVars2 D-2

icon 1-13

input 1-10

jump table A-2

LEFT BRACKET 1-2

LEFT CURLY-BRACE 1-2

LESS-THAN SIGN 1-2

mainloop 1-10

memory usage A-1

message constants 1-6, 1-19, B-1

messages 1-18, B-1

messages (internal) B-2

modes C-1

mouse C-1

parameters 1-11, 1-13

partitions 1-10, 1-16

path 1-10, 1-16

patterns 1-25

POUND SIGN 1-2

printers 1-17, 2-54, 2-88, 2-112

rename 1-11

rgb 1-22, C-1

RIGHT BRACKET 1-2

RIGHT CURLY-BRACE 1-2

Sample source code 1-5, D-1

Sample.lnk 1-5, D-1

SampleHdr 1-5, D-1

screen blanking 1-9, D-1

ShellEquates A-2, D-2

source code D-1

startup buffer 1-11, 1-12, 1-13

STOP KEY 1-20, 1-21, 2-15, 2-39, 2-41, 2-45

terminators 1-11, 1-20

text 1-20

TR_CR 1-6

type 1-20, A-1UNDERLINE 1-2

UP-ARROW 1-2

Page 151 of 191

wildcards 1-11, 1-15, 1-16

window 1-8, D-1

word-wrap 1-20

Page 152 of 191

MISCELLANEOUS SOURCE CODE

This is a table of contents of the sample source code contained in this

file. Feel free to make use of the code contained here for use in your

own commands. This helps save time, instead of trying to invent something

that has already been done for you. Just use GeoWrite to cut and paste

any of these examples into your own source code.

BLANKING AND RESTORING THE 40 COLUMN SCREEN 2

 RstrWindow 2

 BlnkWMessage 3

 BlnkNMessage 4

SENDING DATA TO THE PRINTER 5

 InitPrinter 6

 ByteToPrinter 7

COLORING THE 80 COLUMN SCREEN 8

 Coloring Icons (example) 8

 CloseCommand (example) 8

 icnClrScrap 9

 icnClrCombos 9

 DoColorFrame 10

GIVE geoSHELL COLOR IN 40 COLUMNS 11

 Color40 11

 Add40R0 (used with Color40) 12

SEARCHING THE COMMAND BUFFER 13

 FindSkip 13

 IncR0 14

;here is the code that will call the routines to blank the 40 column

;screen and restore them after your command finishes it's task.

;This method puts a message on the bottom of the 40 column screen and

;also deals with proper handling if the routine is run on an 80 column

128.

;You will be able to use memory from $a000 to $bdff.

;If you need the additional 320 bytes that the message on the bottom

uses,

;then use BlnkNMessage in place of BlnkWMessage. BlnkNMessage can be

found

;on the following page. Be sure to call RstrWindow before exiting your

command.

;Also, test your command for anything that might happen while the screen

is

;blanked. You must be able to call RstrWindow to get the window back on

the

;screen for the user.

 ... ;any code ahead of this...

 jsr BlnkWMessage ;blank the screen with a message

 ;at the bottom.

 jsr DoYourThing ;this calls your own code.

 jsr RstrWindow ;put the geoSHELL window back.

 ... ;any more additional code....

RstrWindow:

Page 153 of 191

 clc

 jsr StartMouseMode ;turn the mouse back on.

 bit screenmode ;is this 80 column mode?

 bmi 50$;branch if so. (80 columns didn't blank)

 jsr ClearScreen ;clear the screen.

 jsr ReDoWindow ;redraw the window and it's contents.

 ;this is all taking place while the

 ;screen is still blanked, until we

 jsr FixColors ;put the color back on the screen.

 50$

 jmp R_Icons ;do this because the icon gets killed.

;this routine blanks the 40 column screen and displays a message at the

;bottom. If in 80 column mode, it will put the same message in the

;geoSHELL window since the screen does not have to be blanked. The

message

;will also be placed in the 40 column window in addition to the bottom of

;the screen.

BlnkWMessage:

 jsr ClearMouseMode ;shut the mouse off for now.

 LoadW r0,#prgrsText ;point at our message.

 lda #(IN_ONE|TR_CR)

 jsr OtherMessage ;put it on 40 or 80 columns.

 bit screenmode ;now check for 80 columns.

 bmi 20$;branch if so and skip the rest.

 LoadW r0,#(24*40) ;blank only the upper 24 card rows.

 LoadW r1,#COLOR_MATRIX

 lda screencolors ;get the current screencolors.

 and #%00001111 ;put the background color into

 sta r2L

 asl a

 asl a

 asl a

 asl a

 ora r2L ;the foreground also.

 sta r2L

 jsr FillRam ;and color the screen.

 PushB windowBottom ;make sure that PutString can

 LoadB windowBottom,#199 ;get down to the bottom of the screen.

 LoadW r0,#prgrs40Text ;point r0 for PutString.

 jsr PutString ;use GEOS to print this string.

 PopB windowBottom ;restore this.

 20$

 rts ;and return.

prgrs40Text:

 .byte GOTOXY

 .word 24 ;start printing at the 24th pixel.

 ;adjust this for the length of

 ;your message.

 .byte 198

;put your message here, but leave a leading and trailing space in

Page 154 of 191

;the message so that the background pattern doesn't brush up against

;the message, for a better appearance.

prgrsText:

 .byte " Put Your Message Here... ",0

;this routine blanks the 40 column screen and allows you to use the

;entire foreground screen memory area since this routine does not

;put a message at the bottom of the screen.

;80 column mode is still dealt with properly here. The message in this

;routine will only appear in the window on both the 40 and 80 column

screens

;and not at the bottom of the screen like it does with BlnkWMessage.

BlnkNMessage:

 jsr ClearMouseMode ;shut the mouse off for now.

 LoadW r0,#prgrsText ;point at our message.

 lda #(IN_ONE|TR_CR)

 jsr OtherMessage ;put it on 40 or 80 columns.

 bit screenmode ;now check for 80 columns.

 bmi 20$;branch if so and skip the rest.

 LoadW r0,#(25*40) ;blank the entire screen.

 LoadW r1,#COLOR_MATRIX

 lda screencolors ;get the current screencolors.

 and #%00001111 ;put the background color into

 sta r2L

 asl a

 asl a

 asl a

 asl a

 ora r2L ;the foreground also.

 sta r2L

 jsr FillRam ;and color the screen.

 20$

 rts ;and return.

prgrsText:

 .byte "Put Your Message Here...",0

;These routines will allow you to send data to a printer whether it

;be connected through the serial port or the user port with a geoCable.

;Just let InitPrinter and ByteToPrinter know which device you want data

;sent to. This example uses a variable printDest to identify that. If

;bit 7 is set, data goes to serial, bit 6 set goes to geoCable. If both

;bits are set, data goes to both. The following example will load

printDest

;from a parameter the user supplies and proceed to do it's thing.

;One thing to keep in mind with using the printer: If you are sending

text

;to a printer and also displaying the same text on the screen using

;geoSHELL routines, the user will get double copies of the data on the

;printer if he is using the @p or @g commands. Normally, your use of the

;printer won't involve sending the same text to the screen anyway.

Page 155 of 191

 ...

 ... ;code leading up to this.

 ...

 lda ParamTable+0

 cmp #'p'

 beq 10$

 cmp #'g'

 beq 20$

 jmp MissgFilename ;display a bad parameter.

 10$

 lda #%10000000

 .byte $2c

 20$

 lda #%01000000

 sta printDest

 ...

 ... ;whatever else code you might have.

 ...

 jsr InitPrinter ;make sure the printer is there.

 bit goodflag ;if the printer is not available

 ;you can deal with it however you wish.

 ;in this case we will just exit.

 bmi 30$;branch if printer is ready.

 jmp NoMoreCmds ;you might display an error message

 ;before this exit if needed.

 30$

 ...

 ...

 jsr InitForIO

 ... ;whatever routines you need to load

 ... ;the accumulator will go here.

 ... ;usually from a buffer.

 ...

 jsr ByteToPrinter ;send the byte in the accumulator

 ;to the printer.

 ...

 ... ;now you either go back and do

 ... ;some more or just end your command.

 jsr Unlsn ;in case we're using the serial printer.

 jsr DoneWithIO

 ...

;this routine checks to make sure that the printer/s is/are connected and

;ready to accept data. printDest identifies which port/s to find the

;printer/s at. After this routine is called, if a serial printer is being

;used, then it will be left in 'listen' mode on the serial bus. Before

any

;disk access can occur, you must call the kernal routine 'Unlsn'. Then

;before further access to the printer you will have to call InitPrinter

again.

InitPrinter:

 bit printDest ;where's the printer?

 bmi 10$;branch if serial.

 bvs 50$;branch if geoCable.

Page 156 of 191

 bpl 20$;branch if neither.

 10$

 lda curPrinter ;printer device # set by 'pconf'.

 jsr SetDevice

 jsr InitForIO ;pop out of GEOS.

 LoadB STATUS,#0 ;clear STATUS.

 lda curPrinter

 jsr Listen ;tell the printer to listen.

 lda curSecond ;secondary address set by 'pconf'.

 ora #$60

 jsr Second ;send a command to the printer.

 lda STATUS ;did the printer respond?

 beq 30$;branch if so.

 jsr Unlsn ;tell the printer to stop listening.

 ;(what printer? there wasn't any)

 jsr DoneWithIO ;pop back into GEOS.

 20$

 jmp nogood

 30$

 jsr DoneWithIO ;pop back into GEOS.

 ;serial printer is still in

 ;listen mode.

 bit printDest ;are we also doing the geoCable?

 bvc 80$;branch if not.

 50$

 jsr InitForIO ;pop out of GEOS.

 jsr Open_GC_Channel ;check for a printer on the geoCable.

 txa ;save it for a second.

 pha

 beq 60$;branch if printer responded.

 jsr Unlsn ;otherwise unlisten the serial bus

 ;in case the serial printer is also set.

 60$

 jsr DoneWithIO ;pop back into GEOS.

 pla ;well?

 bne 20$;branch if no printer.

 80$

 jmp yesgood

printDest:

 .block 1

;this routine sends a byte to the printer/s.

;load the accumulator with the byte to send.

;printDest identifies which port/s to find the printer/s at.

;InitForIO must be called before this routine.

;InitPrinter must be called before this routine.

;call the kernal routine Unlsn after sending the last byte if a serial

;printer is being used.

ByteToPrinter:

 sta byteToPrint

 bit printDest ;where's the printer?

 bmi 20$;branch if serial.

 bvs 50$;branch if geoCable.

Page 157 of 191

 10$

 rts

 20$

 jsr Ciout

 bit printDest

 bvc 10$

 lda byteToPrint

 50$

 jmp Send_GC_Byte

byteToPrint:

 .block 1

;this example will clear the 80 column color mode screen and

;color some icons that you will place on the screen.

;the current color bytes that are being altered will be saved and

;then restored upon exit.

;Modify this routine and use it as desired.

 bit screenmode ;is this a 128?

 bmi 20$;branch if so.

 10$

 LoadW r0,#colrOnlyText ;tell the user this command is

 lda #(IN_TWO|TR_CR) ;for 128 color mode only.

 jsr OtherMessage

 jmp NoMoreCmds ;and exit.

 20$

 bit videomode ;are we in color mode?

 bpl 10$;branch if not.

 MoveB backcolor,sbackcolor ;save the default background color.

 MoveB textcolor,stextcolor ;save the default foreground color.

 MoveB brdrcolor,sbrdrcolor ;save the default border color.

 MoveB clr80pattern,sclr80pattern ;save the default pattern.

 LoadB backcolor,#WHITE80 ;set background to white.

 LoadB textcolor,#BLACK80 ;set the foreground color to black.

 LoadB clr80pattern,#0 ;set background pattern #0

 jsr ClearScreen ;clear the screen.

 LoadB brdrcolor,#WHITE80 ;set the border color

 jsr SetBrdrColor ;to white.

 ... ;through this section, use BitmapUp

 ... ;to put some icons on the screen

 LoadW r0,#icnClrScrap ;call ColorScreen to color the icons.

 LoadW r1,#icnClrCombos

 jmp ColorScreen

 ... ;now you can point GEOS at your own

 ... ;icon table and rts to mainloop

 rts

;one of the icons could call a routine to exit your command such as

follows:

CloseCommand:

 MoveB sbackcolor,backcolor ;restore the default background color.

 MoveB stextcolor,textcolor ;restore the default foreground color.

 MoveB sbrdrcolor,brdrcolor ;restore the default border color.

 MoveB sclr80pattern,clr80pattern ;restore the default pattern.

Page 158 of 191

 jsr ClearScreen ;clear the screen.

 jsr ReDoWindow ;put geoSHELL just like it was.

 jmp ExitCommand ;and exit.

colrOnlyText:

 .byte "Command Only Works In 128 Color!",0

sbackcolor:

 .block 1

stextcolor:

 .block 1

sbrdrcolor:

 .block 1

sclr80pattern:

 .block 1;this Color Scrap will color 8 icons that are placed in two

rows of 4

;similar to the way they are arranged on the Desktop. This only colors

the

;areas of the screen where the icons should be. You use BitmapUp to

;put the icons in place.

;To use this Color Scrap, point r0 at icnClrScrap and r1 at IcnClrCombos

;and then call ColorScreen.

;To understand this Color Scrap, each icon is 6 cards wide and 3 cards

tall.

;The upper left corner of icon #1 is at row 10, column 10. There are 4

;icons on this row. There is 6 cards separating each icon. The next row

of

;four icons is directly below the first row of icons and is at row 16.

;Each icon is given a different color.

;The third row of bytes in this example is repeated 3 times. It begins

;at column zero and skips over to column 10 without doing any coloring.

;Then, 6 cards are colored with color #0 from the color table. 6 more

cards

;are skipped and 6 are colored with color #1. This goes on until the

;rightmost icon gets it's coloring. Then 28 bytes are skipped to put the

;pointer at the start of the next row. Now this will repeat to color

;the second card row of each of the top icons. A similar thing happens

;for the second row of icons later on as you can see.

;Modify this for your own use.

icnClrScrap:

 .byte 10,0 ;row 10, column 0

 .byte 3,8 ;repeat 8 commands 3 times.

 .byte 10,255,6,0,6,255,6,1,6,255,6,2,6,255,6,3,28,255

 .byte 255 ;a new position command.

 .byte 16,0 ;row 16, column 0

 .byte 3,8 ;repeat 8 commands 3 times.

 .byte 10,255,6,4,6,255,6,5,6,255,6,6,6,255,6,7,28,255

 .byte ;end of table.

icnClrCombos:

 .byte (DK80BLUE<<4)|LT80CYAN ;dk blue foregrnd,light cyan backgrnd.

 .byte (BLACK80<<4)|LT80YELLOW

 .byte (DK80PURPLE<<4)|WHITE80

 .byte (DK80RED<<4)|LT80RED

Page 159 of 191

 .byte (LT80GREY<<4)|BLACK80

 .byte (DK80BLUE<<4)|LT80GREY

 .byte (DK80GREEN<<4)|BLACK80

 .byte (WHITE80<<4)|DK80RED

;this example will draw a framed rectangle and then color the

;frame of the rectangle and the space within the rectangle.

;This particular rectangle will be drawn exactly where the

;geoSHELL window resides. It will be given a black frame, while the space

;inside the rectangle will have a white background with a dark blue

;foreground. This example only works in 80 column color mode.

;Modify this for your own use.

DoColorFrame:

 jsr ClearScreen ;clear the screen with default

 ;foreground and background colors

 ;and background pattern.

 lda #0 ;use pattern number #0.

 jsr SetPattern

 jsr i_Rectangle ;draw the rectangle.

 .byte 32,167

 .word 16,607

 jsr i_FrameRectangle ;and put a frame around it.

 .byte 32,167

 .word 16,607

 .byte 255

 LoadW r0,#frameScrap

 LoadW r1,#frameColors

 jmp ColorScreen

frameScrap:

 .byte 4,2 ;row 4, column 2

 .byte 1,1 ;repeat 1 command set once.

 .byte 74,0 ;color 74 cards, the top of the rectangle.

 .byte 15,5 ;repeate 5 command sets 15 times.

 .byte 2,255,1,0,72,1,1,0,4,255

 ;color the next 15 rows of the

 ;rectangle.

 .byte 1,2 ;repeat 2 commands sets once.

 .byte 2,255,74,0 ;color the bottom of the rectangle.

 .byte 0

;use two different color combinations with this rectangle.

frameColors:

 .byte (BLACK80<<4)|WHITE80

 .byte (DK80BLUE<<4)|WHITE80

;here is a routine that would give color to geoSHELL when in 40 column

mode.

;Just change the equates here to whatever you like.

;geoSHELL has a built-in routine for doing this same thing in 80

;column mode. The routine is called ColorScreen. It is much simpler

;to create a Color Scrap for that routine to use. For the 40 column

;screen, though, geoSHELL has no coloring routines except for FixColors

;which restores the original screen colors (one foreground and one

Page 160 of 191

;background color).

BACKBACK = LTBLUE ;background color in background area.

BACKFORE = BLUE ;foreground color in background area.

SHELLCLR = RED ;frame color of geoSHELL.

PADCLR = WHITE ;pad color of geoSHELL.

TEXTCLR = BLACK ;text color in pad area.

Color40:

 LoadW r0,#COLOR_MATRIX ;start of 40 column color area.

 ldy #0

 lda #((BACKFORE<<4)|BACKBACK)

 10$

 sta (r0),y ;color the upper four rows of screen.

 iny

 cpy #160

 bne 10$

 AddVW #160,r0 ;increment r0 to point at the top row

 ;of the shell frame.

 ldx #3 ;do this segment three times.

 15$

 ldy #0

 lda #((BACKFORE<<4)|BACKBACK)

 sta (r0),y ;color empty space at left of frame.

 iny

 lda #((SHELLCLR<<4)|PADCLR)

 20$

 sta (r0),y ;color the top of the frame.

 iny

 cpy #38

 bne 20$

 lda #((BACKFORE<<4)|BACKBACK)

 30$

 sta (r0),y ;color the two empty spaces at the right

 ;of the frame.

 iny

 sta (r0),y

 jsr Add40R0

 dex

 bne 15$

 ldx #12 ;now do 14 rows of the screen in the

 ;pad area.

 40$

 ldy #0

 lda #((BACKFORE<<4)|BACKBACK)

 sta (r0),y ;the empty space at the left.

 iny

 lda #((SHELLCLR<<4)|PADCLR)

 sta (r0),y ;one card on the left border of frame. iny

 lda #((TEXTCLR<<4)|PADCLR)

 50$

 sta (r0),y ;color 37 cards in the pad.

 iny

 cpy #37

Page 161 of 191

 bne 50$

 iny

 lda #((SHELLCLR<<4)|PADCLR)

 sta (r0),y ;color the border at the right side.

 iny

 lda #((BACKFORE<<4)|BACKBACK)

 sta (r0),y ;color the two empty spaces at the right.

 iny

 sta (r0),y

 jsr Add40R0 ;point at the next row down.

 dex ;count down from 12.

 bne 40$;branch if more to do.

 ldx #2

 55$

 ldy #0 ;now we do the bottom of the frame.

 lda #((BACKFORE<<4)|BACKBACK)

 sta (r0),y

 iny

 lda #((SHELLCLR<<4)|PADCLR)

 60$

 sta (r0),y

 iny

 cpy #38

 bne 60$

 lda #((BACKFORE<<4)|BACKBACK)

 sta (r0),y

 iny

 sta (r0),y

 jsr Add40R0

 dex

 bne 55$

 ldy #0

 lda #((BACKFORE<<4)|BACKBACK)

 70$

 sta (r0),y

 iny

 cpy #160

 bne 70$

 rts

Add40R0:

 AddVW #40,r0

 rts

;when you need to look ahead in the command buffer for a text string or

;another command, this example will show you how to do it.

;The 'getkey' command has to look forward through an exec or startup file

;for a left-curly brace followed by a character that represents the key

;that the user has pressed. This example does it in a similar manner.

;a4 always points to the next command or your parameter if there is one.

;From that point until the end of the buffer is all text until a null-

byte

;is encountered, signifying the end of the command buffer, or the

;startup buffer. It makes no difference whether your command is coming

;from a startup file in the startup buffer or the keyboard in the

Page 162 of 191

;command buffer. The only difference is that the startup buffer can hold

;more commands.

;In this example, we are simply looking for a string

;called 'skip'. If goodflag is set upon return then r0 is pointing at

;skip. No ifs, ands, or buts.

;a4 does not get altered, however we can skip ahead if we'd like

;by copying r0 to a4. This particular code loops around perhaps a little

;too much, but it works perfectly and will return with r0 either pointing

;at skip for sure or definitely not pointing at it.

FindSkip:

 MoveW a4,r0 ;point r0 at the start of what's left

 ;in the buffer.

 LoadW r1,#skipText ;point r1 at the text to compare to.

 bra 15$;go check the first byte.

 ;(the first byte doesn't have to be

 ;a space)

 10$

 ldy #0 ;let's look for the next terminator.

 ;because there has to be a space before

 ;and after 'skip'.

 lda (r0),y ;get a byte.

 beq 90$;branch if end of buffer.

 13$

 jsr CkTerminators ;is this a terminator?

 jsr IncR0 ;increment r0 before checking goodflag.

 bit goodflag ;so, was it?

 bmi 15$;branch if so.

 bpl 10$;or branch if not and keep looking.

 15$

 lda (r0),y ;get the next byte.

 beq 90$;branch if end of buffer.

 cmp skipText+0 ;does this match the 's'in 'skip'?

 bne 13$;branch in case it's a terminator.

 ldx #r0 ;let GEOS kernal check

 ldy #r1 ;the two strings.

 lda #4 ;four characters.

 jsr CmpFString ;are they equal?

 beq 60$;branch if so.

 jsr IncR0

 bra 10$;branch always.

;at this point, we have one more check to make. We make sure that the

;user is using the correct syntax by putting a space after 'skip'.

 60$

 ldy #4 ;point at the byte past 'skip'.

 lda (r0),y ;and fetch that byte. jsr CkTerminators

 ;maybe this string here is 'skippy'

 bit goodflag ;or something else.

 bmi 80$

 jsr IncR0 ;point at the next byte.

 bra 10$;branch if not 'skip' with a space

 ;and keep looking.

 80$

 rts ;goodflag is already set.

Page 163 of 191

 90$

 jmp nogood ;no skip in this buffer.

skipText:

 .byte "skip"

IncR0:

 inc r0L ;increment r0 to the next byte.

 bne 10$;branch if it didn't roll over.

 inc r0H ;otherwise increment the high byte.

 10$

 rts

Page 164 of 191

;**

;

; GSVariables

;

; Used with transient commands in geoSHELL

;

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;

;**

;this file is merely assembled and the resulting .rel file is added

;to the .lnk file instead of .include(ing) it in the transient

;command source code. This along with geosSym would cause a symbol

;table overflow.

.include GSVars1

.include GSVars2

.include ShellEquates

DummyLabel: ;without this, GeoAssembler will

 ;mess up.

Page 165 of 191

;**

;

; GSVars1

;

; Used with transient commands in geoSHELL

;

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;

;**

;.included in GSVariables

StOfRamsect = $0400 ;used as a reference point for

 ;initializing this area.

screenmode = $0400

PRESDRIVE = $0401

goodflag = $0402

DRVFOUNDON = $0403

STUPMODE = $0404

FKEYMODE = $0405

NUM_IN_NAME = $0406

ParamTable = $0407 ;.block 44

 ;a couple extra null bytes added here

 ;to protect any following data.

comchars = $0433

cur_Y_pos = $0434

cur_X_pos = $0435

cur_line = $0437

cur_char = $0438

tempFileName = $0439 ;.block 17

 ;this may be used by routines for storing

 ;filenames temporarily.

curTransName = $044a ;.block 17

 ;transient command that is currently

 ;in memory.

scrnwidth = $045b

domessages = $045c ;a zero here will prevent messages

 ;from being displayed. bit 7 set will

 ;allow messages.

cur_keyData = $045d

CMD_POINTER = $045e

tempDrive = $045f ;used for status and directory displays.

typeset = $0460

cmpwidth = $0461

paramsize = $0462 ;holds the size of the parameter that

 ;is loaded in ParamTable.

pathload = $0463 ;this is set to 128 when a transient

 ;command is loaded from the specified

Page 166 of 191

 ;path.

Asc_String = $0464 ;.block 6

endecho = $046a

sourceType = $046b

destType = $046c

sourceDrive = $046d

destDrive = $046e

sourcePartition = $046f

destPartition = $0470

StOfDefs = $0471

videomode = $0471 ;used only for 80 columns.

 ;0 = monochrome

 ;1 = color

distype = $0472

fastdirectory = $0473

defStName = $0474 ;.block 17

 ;"Startup",0,0,0,0,0,0,0,0,0,0

coltable = $0485

backcolor = $0485

shellcolor = $0486

textcolor = $0487

padcolor = $0488

brdrcolor = $0489

back40pattern = $048a ;default background pattern for 40 column.

back80pattern = $048b ;default background pattern for 80 column.

clr80pattern = $048c

;$048d-$048f is unused.

curPrinter = $0490

curSecond = $0491

crtextstring = $0492 ;.block 3

curCharSet = $0495 ; 0 = Ascii

 ;128 = PetAscii

;$0496-$049f is reserved for future use and is also saved

;when the custom command is issued. It is loaded whenever geoSHELL

;loads in.

;EnOfDefs:

;$04a0-$04c3 is reserved for future use.

RAMLINK = $04c4 ;the real device number for RamLink

 ;or RamDrive is set here after a jsr

 ;to FindRamlink. This is normally only

 ;needed if there is a RAM1581 used.

cmdtype = $04c5 ;.block 3

 ;cmdtype gets loaded with a string such

 ;as "RL" or "HD" after accessing the

 ;routine GetCMDType.

Page 167 of 191

 ;cmdtype+2 gets loaded with a byte

 ;from 0-4 representing one of the

 ;following:

 ;0=non-CMD type device

 ;1=FD Series drive

 ;2=HD Series hard drive

 ;3=RD RamDrive

 ;4=RL RamLink

KeyBuffStart = $04c8

Key1Buff = $04c8 ;.block 81

Key2Buff = $0519 ;.block 81

Key3Buff = $056a ;.block 81

Key4Buff = $05bb ;.block 81

Key5Buff = $060c ;.block 81

Key6Buff = $065d ;.block 81

Key7Buff = $06ae ;.block 81

Key8Buff = $06ff ;.block 81

KeyBuffEnd = $0750

Page 168 of 191

;**

;

; GSVars2

;

; Used with transient commands in geoSHELL

;

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;

;**

;.included in GSVariables

restartbyte = $0750

CmdNumber = $0751

zeroflag = $0752

hotkeycommand = $0753 ;.block 2

top_rectangle = $0755

bot_rectangle = $0756

left_rectangle = $0757 ;.block 2

right_rectangle = $0759 ;.block 2

temp_line = $075b

temp_check = $075c ;used for temporary storage of

 ;a,x or y registers.

ck_year = $075d

ck_month = $075e

ck_day = $075f

ck_hour = $0760

ck_minute = $0761

CMD_COUNT = $0762

lastblock = $0763 ;.block 2

filesiz = $0765 ;.block 2

lstbyte = $0767 ;.block 2

headlocation = $0769 ;.block 6

FIRSTDRIVE = $076f

DRIVECHECK = $0770

foundtrans = $0771

inserty = $0772

stparsize = $0773

scancheck = $0774

check_key = $0775

nosearchmessage = $0776

saver0 = $0777 ;.block 2

numfillbytes = $0779

numfillcopies = $077a

numfillstrings = $077b

stringlocation = $077c ;.block 2

dublclickspot = $077e

drivesChecked = $077f ;.block 4

PRNTMODE = $0783 ;bit 7 set if characters are to go to

 ;the printer in addition to the screen.

Page 169 of 191

strtoprint = $0784 ;.block 2

 ;temporarily save r0 here until ready

 ;to send the string that it points at

 ;to the printer.

savex = $0786

line_count = $0787

cursorStatus = $0788 ;high bit set means cursor is inverted.

 ;cleared means cursor is normal.

cursorOn = $0789 ;high bit set means cursor is active.

 ;clear means cursor is inactive.

st_keyData = $078a

reg24 = $078b

gs_stack = $078c ;.block 256

stackpointer = $088c

stupsequence = $088d

ActHWide = $088e

ActLeft = $088f

svkeyVector = $0890 ;.block 2

Dir_Entry = $0892 ;.block 2

Dir_Type = $0894

StripZFlag = $0895

ParentName = $0896 ;.block 17

PermName = $08a7 ;.block 17

DiskName = $08b8 ;.block 17

filetoload = $08c9 ;.block 17

WILDCARD = $08da

DRV_CKD = $08db

FILECOUNTER = $08dc

NxtBlock = $08dd ;.block 2

X_PARAM = $08df ;.block 2

Y_PARAM = $08e1

MoveXTable = $08e2 ;.block 2

MoveYTable = $08e4 ;.block 2

NOSPACE = $08e6

stackReturn = $08e7 ;.block 2

stripStack = $08e9

NMCreturn = $08ea ;.block 2

DISPBUFFER = $08ec ;.block 84

WrModeFlag = $0940

test1string = $0941 ;.block 17

test2string = $0952 ;.block 17

clrlineflag = $0963

clearcount = $0964

messflag = $0965

msgchars = $0966

messlocation = $0967 ;.block 2

horizcount = $0969

kboardoff = $096a

tempr0 = $096b ;.block 2

gstructype = $096d

gfiletype = $096e

cfiletype = $096f

texttrsc = $0970 ;.block 2

nozero = $0972

Page 170 of 191

gscolcount = $0973

headcolor = $0974

colbyte = $0975

staddress = $0976 ;.block 2

clickspot = $0978

tempy = $0979 ;used for temp. storage of y register.

TrRtnLAddr = $097a ;.block 8

TrRtnHAddr = $0982 ;.block 8

TrRtnNum = $098a

tcomnum = $098b

pathcheck = $098c

REALDRIVE = $098d

cmdlength = $098e

curparnum = $098f

curpartype = $0990

curdrvtype = $0991

errorck = $0992

partdir = $0993

syscount = $0994

cmdtosend = $0995

lastck = $0996

runorprint = $0997

textpointer = $0998

interpret = $0999

endoftext = $099a ;.block 2

 ;this contains the byte past the last

 ;byte read in.

txttype = $099c ;0=SEQfile (CBM or GEOS)

 ;1=SCRAPfile (Text Scrap)

 ;2=WRITEfile (GeoWrite file)

 ;3=VLIRfile (but not GeoWrite file)

 ;4=ALBUMfile (text album)

;this next group of variables must stay grouped together, since they are

;cleared out in one batch.

nextbatch = $099d ;.block 2

ovrflbyte = $099f

curpage = $09a0

scrcode = $09a1 ;.block 2

asciicode = $09a3 ;.block 2

petcode = $09a5 ;.block 2

cur_table = $09a7 ;variables defining the location and

 ;size of the active shellwindow.

lft_shell = $09a7 ;.block 2

 ;left position word (0-319 or 0-639).

rht_shell = $09a9 ;.block 2

 ;right position word (0-319 or 0-639).

left_shell = $09ab ;left position of window on screen in bytes.

wid_shell = $09ac ;width of the bitmap in bytes.

lft_window = $09ad ;.block 2

Page 171 of 191

rht_window = $09af ;.block 2

col0 = $09b1 ;.block 2

rht_column = $09b3 ;.block 2

en_cur_table = $09b5

buff_0 = $09b5 ;.block 81

buff_1 = $0a06 ;.block 81

buff_2 = $0a57 ;.block 81

buff_3 = $0aa8 ;.block 81

buff_4 = $0af9 ;.block 81

buff_5 = $0b4a ;.block 81

buff_6 = $0b9b ;.block 81

buff_7 = $0bec ;.block 81

buff_8 = $0c3d ;.block 81

buff_9 = $0c8e ;.block 81

buff_10 = $0cdf ;.block 81

buff_11 = $0d30 ;.block 81

;$0d81-$0d83 not used.

;most recent command strings stored here.

bufmem10 = $0d84 ;.block 80

bufmem9 = $0dd4 ;.block 80

bufmem8 = $0e24 ;.block 80

bufmem7 = $0e74 ;.block 80

bufmem6 = $0ec4 ;.block 80

bufmem5 = $0f14 ;.block 80

bufmem4 = $0f64 ;.block 80

bufmem3 = $0fb4 ;.block 80

bufmem2 = $1004 ;.block 80

bufmem1 = $1054 ;.block 80

CmdBuffer = $10a4 ;.block 82

;$10f6-$10ff is currently unused.

StUpBuffer = $1100 ;.block $600

 ;buffer for startup file.

 ;exec command also uses this buffer.

EnOfStUpBuffer = $16ff

EnOfRamsect = $16ff

Trans1Start = $6800

Trans2Start = $1100 ;.block 4

T2Name = $1104 ;.block 17

T2Instruct = $1115

;the next three addresses form a jump table into the Trans2 Command.

T2Jump = $1116 ;.block 3

 ;enter here when the user types the

 ;command, if bit 7 is set in T2Instruct.

T2ReDraw = $1119 ;.block 3

Page 172 of 191

 ;enter here whenever the screen is

 ;redrawn if bit 5 is set in T2Instruct.

T2Clear = $111c ;.block 3

 ;this jump is for clearing the command

 ;from memory. It allows the command to

 ;perform any necessary action before it

 ;is removed.

;the remainder of Trans2Area occupies memory up to $13ff.

;It is also possible for one command to occupy Trans3area also.

Trans3Start = $1400 ;.block 4

T3Name = $1404 ;.block 17

T3Instruct = $1415

;the next three addresses form a jump table into the Trans3 Command.

T3Jump = $1416 ;.block 3

 ;enter here when the user types the

 ;command, if bit 7 is set in T3Instruct.

T3ReDraw = $1419 ;.block 3

 ;enter here whenever the screen is

 ;redrawn if bit 5 is set in T3Instruct.

T3Clear = $141c ;.block 3

 ;this jump is for clearing the command

 ;from memory. It allows the command to

 ;perform any necessary action before it

 ;is removed.

;the remainder of Trans3Area occupies memory up to $16ff.

;the layout of these two transient command areas is different from the

main

;transient command area that is located at $6800. These two have to

follow

;a different set of rules. Before the command will be executed, geoSHELL

has

;to find the string "TCOM" at the start of the respective area.

;Following this will be the null-terminated name of the command, padded

with

;zeros out to a total of 17 bytes. If the user types the name of the

command,

;geoSHELL will execute it based on the bits in the byte located at

;T2Instruct/T3Instruct. Refer to the programming manual for further info

;on these two command areas.

;The bytes at T2Instruct/T3Instruct tell geoSHELL how to deal with the

;command. The bits are explained below.

;Following this byte is a jump table for geoSHELL to access. The address

;that will be jumped to is based on T2Instruct/T3Instruct.

;bit 7 set jmp to T2Jump/T3Jump.

;bit 6 set reload the command from disk and execute it based on

; this same byte after it is loaded.

;bit 5 set jmp to T2ReDraw/T3ReDraw everytime the screen is redrawn.

;if T2Instruct/T3Instruct = 0 then the command will be ignored

altogether.

Page 173 of 191

;**

;

; ShellEquates

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;

;**

;.included in GSVariables

TRANSCOMM = 21 ;the GEOS filetype assigned to

 ;geoSHELL commands.

;The following define colors that may be used on the 128's 80 column

screen.

BLACK80 = 0

DK80GREY = 1

DK80BLUE = 2

LT80BLUE = 3

DK80GREEN = 4

LT80GREEN = 5

DK80CYAN = 6

LT80CYAN = 7

DK80RED = 8

LT80RED = 9

DK80PURPLE = 10

LT80PURPLE = 11

DK80YELLOW = 12

LT80YELLOW = 13

LT80GREY = 14

WHITE80 = 15

;Miscellaneous equates:

maxlines = 12 ;number of lines in the window.

buff_size = 81 ;size of certain buffers.

wind_left = $08 ;pixels from left of screen.

wind_top = $20 ;pixels from top of screen.

firstrow = wind_top+30 ;first text row.

shell_height = 136 ;pixels.

shell_width = 37 ;bytes.

top_window = wind_top+16 ;top of pad area.

bot_window = wind_top+shell_height-9 ;bottom of pad area.

row0 = firstrow

Quit_X = (wind_left+$ff)/8 ;x position for icon (bytes from left

 ;of screen)

Quit_Y = wind_top+2 ;y position for icon (pixels from top)

Page 174 of 191

Quit_Wide = 3 ;icon width

Quit_Height = 14 ;and height.

ActHLeft = 5

ActHHeight = 16

LODRIVE = 8 ;drive A.

HIDRIVE = 11 ;drive D. (highest number allowed)

TComCk = $6700 ;used when searching for a transient.

EnOfShell = $6700 ;error channels are transferred here.

HotKeyArea = $6c00 ;this is where the hotkeys are loaded

 ;in from disk whenever the user types

 ;a two-letter command. geoSHELL then

 ;checks this area for a matching

 ;hotkey definition. Whenever this is

 ;done, if a transient command is

 ;present, it is flushed from memory

 ;since it would corrupt the area.

STOP_KEY = 63

CTRL_KEY = 58

PAUSE_KEY = 87

XSCAN = $d02f

Y_KEY = 25

N_KEY = 39

SEQfile = 0 ;equates used to identify the type

SCRAPfile = 1 ;of file for use with the 'type'

WRITEfile = 2 ;command.

VLIRfile = 3

ALBUMfile = 4

drv64path = $c3e9 ;specifies the drive to use for the

 ;path when searching for a

 ;transient command.

drv128path = $c9d7

part64string = $c3ea ;and this is the partition to use.

 ;It is in the form of a 3 byte ascii string.

part128string = $c9d8

;these are equates used for message displaying.

;lda with any of these values before calling 'Message' and

'OtherMessage'.

;A routine would look like this:

;

; ...

; LoadW r0,#texttodisplay ;point to the text.

; lda #(IN_TWO|TR_CR) ;insert 2 spaces, add a carriage return.

; jsr OtherMessage ;go display it.

; ...

;texttodisplay:

; .byte "This Text Will Be Displayed!",0

Page 175 of 191

; ...

IN_CR = %10000000 ;initial carriage return.

 ;otherwise begin at present cursor

 ;location.

TR_CR = %01000000 ;carriage return after text.

 ;otherwise leave cursor at next

 ;character past text.

IN_ONE = %00000001 ;one leading space

IN_TWO = %00000010 ;two leading spaces...

IN_THREE = %00000011 ;etc...

IN_FOUR = %00000100

IN_FIVE = %00000101

IN_SIX = %00000110

IN_SEVEN = %00000111

TR_ONE = %00001000 ;one trailing space

TR_TWO = %00010000 ;two trailing spaces...

TR_THREE = %00011000 ;etc...

TR_FOUR = %00100000

TR_FIVE = %00101000

TR_SIX = %00110000

TR_SEVEN = %00111000

;The Jump Table:

InitgeoSHELL = $1700

Only128 = $1703

OpenGS = $1706

NoMoreCmds = $1709

ResetScreen = $170c

ClearScreen = $170f

ClearWindow = $1712

EraseWindow = $1715

Asc_3_Byte = $1718

ReDoWindow = $171b

R_Icons = $171e

OpenWrFile = $1721

PushStuff = $1724

PopStuff = $1727

ResetFromPath = $172a

CkForDisk = $172d

ParamName = $1730

DoRun = $1733

IncCmdPointer = $1736

CkPath = $1739

DriveLetter = $173c

DispLetter = $173f

OpenPathPartition = $1742

Switch = $1745

;$1748 is currently unused

ClrKeyData = $174b

YesKeypress = $174e

NoKeypress = $1751

nogood = $1754

yesgood = $1757

DsplyLine = $175a

Page 176 of 191

DsplyString = $175d

CarrReturn = $1760

set_XY_pos = $1763

save_XY_pos = $1766

ClearLine = $1769

ClearBoth = $176c

ClearRemainder = $176f

StripRulers = $1772

AdjTxtPointer = $1775

ReDisplayWindow = $1778

Message = $177b

OtherMessage = $177e

GetMessage = $1781

Asc_Byte = $1784

ByteWZ_Ascii = $1787

ByteNZ_Ascii = $178a

ConvertK = $178d

Asc_BCD = $1790

CkESC_RULER = $1793

DispText = $1796

GetMess = $1799

execStartup = $179c

CkPathOrder = $179f

FindParName = $17a2

Wait = $17a5

ExitCommand = $17a8

unsetPrompt = $17ab

ColorScreen = $17ae

SetBrdrColor = $17b1

SetThisDevice = $17b4

SetDrName = $17b7

FileNotAvail = $17ba

Searching = $17bd

MissgFilename = $17c0

NotFound = $17c3

Dir = $17c6

CkTerminators = $17c9

CkTermNoSpace = $17cc

MissDisk = $17cf

CkAllDrives = $17d2

;this spot is currently unused ($17d5)

CkKeyboard = $17d8

CkPresdrive = $17db

CkThisDrive = $17de

PurgeAllTurbos = $17e1

CkOtherDrives = $17e4

DateDisplay = $17e7

Byte_Time = $17ea

;$17ed is currently unused

FixColors = $17f0

MskCtrlCodes = $17f3

ConvToAscii = $17f6

GetHeader = $17f9

LoadProblem = $17fc

Page 177 of 191

OpenGSIndex = $17ff

RdFnKeyDefs = $1802

Open_GC_Channel = $1805

Send_GC_Byte = $1808

SaveToREU = $180b

ClrTrnsName = $180e

CkDrvLetter = $1811

Status = $1814

SendCmd = $1817

ReadChannel = $181a

SendListen = $181d

SendTalk = $1820

FindRamLink = $1823

GetCMDType = $1826

FindCMDType = $1829

OpenPartition = $182c

SetPartParams = $182f

InitCurPartition = $1832

OpenCurPartition = $1835

CkModeFlag = $1838

GetRealDriveNum = $183b

;room for 3 more jump addresses for future use.

Page 178 of 191

;**

;

; Sample.lnk

;

; Link file for the 'sample' transient command for geoSHELL

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;

;**

.output sample ;name for output file.

.header SampleHdr.rel ;name of file containing header block.

.seq

.psect $6800

GSVariables.rel

Sample.rel

Page 179 of 191

;**

;

; SampleHdr

;

; Header file for 'sample' command for geoSHELL

; Use this as a template for any new command.

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;

;**

.header ;start of header section.

 .word 0

 .byte 3

 .byte 21

 .byte $83 ;Commodore file type, with bit 7 set.

 .byte TRANSCOMM ;Geos file type. (21)

 .byte 0 ;Geos file structure type.

 .word Trans1Start ;start address of command (where to

 ;load to - $6800)

 .word $7f3f ;highest end address.

 .word Trans1Start ;init address of command (where to JMP to).

;permanent command name must be 12 characters including spaces

;plus version number. The final byte here is the system byte. $40 allows

;this command to run on any GEOS system. (refer to appendix C)

 .byte "Sample v1.0",0,0,0,$40

;twenty character author name including the null-terminator.

;change this to your own name.

 .byte "Maurice Randall ",0

;don't change this! If you change it, your command will not be

recognized.

 .byte "CmdProcessorV2.0",0,0,0,0

 .block 23

;place the text here that you wish to have

;displayed in the Desktop's info box.

 .byte "Just change the wording here to "

 .byte "whatever you want displayed.",0

.endh

Page 180 of 191

;**

;

; Sample

;

; External transient command source code

; for the 'sample' command used with geoSHELL.

; This may be used as a template for any new command.

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;

;**

.if Pass1

.noeqin

.noglbl

.include geosSym

.include geosMac

.glbl

.eqin

.endif

 .psect

Sample:

;add any program code into this area.

 jmp ExitCommand

SmplRamsect:

 .ramsect

;insert your own ramsect variables here.

EndSmplRamsect:

EndOfSample:

;from this point, on up to $7fff, may be used for a work area.

Page 181 of 191

;**

;

; Color80.lnk

;

; Link file for the 'color80' transient command for geoSHELL

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;**

.output color80 ;name for output file.

.header Color80Hdr.rel ;name of file containing header block.

.seq

.psect $6800

GSVariables.rel

Color80src.rel

Page 182 of 191

;**

;

; Color80Hdr

;

; Header file for 'color80' transient command for geoSHELL

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;**

.header ;start of header section.

 .word 0 ;first two bytes are always zero.

 .byte 3 ;width in bytes.

 .byte 21 ;and height in scanlines of:

 .byte $83 ;Commodore file type, with bit 7 set.

 .byte TRANSCOMM ;Geos file type.

 .byte 0 ;Geos file structure type.

 .word Trans1Start ;start address of program (where to

 ;load to).

 .word $7f3f ;highest end address. Not really

 ;important for a geoSHELL command.

 .word Trans1Start ;init address of program (where to JMP to).

 .byte "Color80 v1.0",0,0,0,$c0

 ;permanent command filename: 12 characters,

 ;followed by 4 character version number,

 ;followed by 3 zeroes,

 ;followed by mode flag.

 ;$c0 is for 80 column only.

 .byte "Maurice Randall ",0

 ;twenty character author name.

 .byte "CmdProcessorV2.0",0,0,0,0

 .block 23

 .byte "Use this command to set the screen colors "

 .byte "for geoSHELL while in 80 column mode.",0

.endh

Page 183 of 191

;***

; Color80src

; transient command source code. This command

; may be used to set the screen colors while using

; geoSHELL in 80 column mode.

; Copyright 1994 by Maurice Randall

; Charlotte, Mich. 48813

;

; For Use Only By Registered Owners Of The

; geoSHELL Programmer's Development Package

;***

.if Pass1

.noglbl

.noeqin

.include geosSym

.include geosMac

.eqin

.glbl

.endif

 .psect

Color80:

 bit screenmode ;what mode are we in?

 bmi 10$;branch if 80 columns.

 bvc 5$;branch if 128-40.

 jmp Mode_64 ;handle the 64.

 5$

 jmp Mode_40_128 ;handle the 128-40.

 10$

 jmp Mode_80_128 ;go for it.

;a few equates are defined here.

lftmonlocation = 10

uppmonlocation = 48

lftsquare = 44

topsquare = 48

toptext = topsquare+6

;color selections are stored here.

tempBackground:

 .block 1

tempShell:

 .block 1

tempText:

 .block 1

Page 184 of 191

tempPad:

 .block 1

tempBorder:

 .block 1

;tell the 64 user that this command only works in 128 mode.

Mode_64:

 jsr Only128

 jmp NoMoreCmds ;this was in the original source.

 ;Only128 now jumps through NoMoreCmds

 ;making this step unnecessary.

;tell the user that this command only works in 80 column mode.

Mode_40_128:

 LoadW r0,#only80text

 lda #(IN_THREE|TR_CR)

 jsr OtherMessages

 jmp NoMoreCmds

only80text:

 .byte "This is an 80 column command!",0

onlycolortext:

 .byte "Issue the RGB command first!",0

MonitorPic:

MonPicWidth = picW

MonPicHeight = picH

SolidSquare:

squarewidth = picW

squareheight = picH

EmptySquare:

;there is a real icon here. It is actually

;a blank photo scrap.

BlankSquare:

Mode_80_128:

 bit videomode ;are we in color mode?

 bmi 10$;branch if so.

 LoadW r0,#onlycolortext

 lda #(IN_THREE|TR_CR)

 jsr OtherMessages ;tell the user to use RGB mode.

 jmp NoMoreCmds ;and exit.

 10$

 ldx #0

 20$

 lda backcolor,x ;move the current colors

Page 185 of 191

 sta tempBackground,x ;to a temporary storage area.

 inx

 cpx #5

 bne 20$

 jsr unsetPrompt ;eliminate the cursor blink.

;at this point we will set our own colors for color80 independently

;of those that may already be set.

 LoadB brdrcolor,#LT80GREY

 jsr SetBrdrColor ;change the border color.

 LoadB backcolor,#LT80GREY ;set the background color.

 LoadB textcolor,#BLACK80 ;set the text color.

 jsr ClearScreen ;now ClearScreen will use our new colors.

 jsr i_BitmapUp ;display the picture of the monitor.

 .word MonitorPic

 .byte lftmonlocation

 .byte uppmonlocation

 .byte MonPicWidth

 .byte MonPicHeight

 jsr SetColTable ;color the little monitor.

 jsr SetIcons ;set up our own icons.

 jsr AddText ;display neccessary text to the screen.

 jsr DispColors ;display the color bar.

 rts ;exit to main loop and let GEOS

 ;get user input for the icons.

SetIcons:

 LoadW r0,#IconTable

 jsr DoIcons ;point GEOS to our little icons.

 php

 sei

 LoadW otherPressVector,#$00 ;make sure this is zero'd for

 ;this command. (geoSHELL leaves the

 ;mouse running)

 plp

 jsr MouseOff

 LoadB mouseBottom,#168 ;keep the mouse off the lower part

 ;of the screen. Or it will do

 ;funny things to the screen.

 jmp MouseUp

IconTable:

 .byte 22

 .word 0

 .byte 0

IconPointer:

 .word SolidSquare

Page 186 of 191

 .byte lftsquare

 .byte topsquare

 .byte squarewidth

 .byte squareheight

 .word DoColorSource

 .word EmptySquare

 .byte lftsquare

 .byte topsquare+16

 .byte squarewidth

 .byte squareheight

 .word DoColorSource

 .word EmptySquare

 .byte lftsquare

 .byte topsquare+32

 .byte squarewidth

 .byte squareheight

 .word DoColorSource

 .word EmptySquare

 .byte lftsquare

 .byte topsquare+48

 .byte squarewidth

 .byte squareheight

 .word DoColorSource

 .word EmptySquare

 .byte lftsquare

 .byte topsquare+64

 .byte squarewidth

 .byte squareheight

 .word DoColorSource

 .word EmptySquare

 .byte lftsquare

 .byte topsquare+80

 .byte squarewidth

 .byte squareheight

 .word DoExit

;the icon table from the previous page continues here.

ColorIcons:

 .word BlankSquare

 .byte 16,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 19,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 22,152,3,8

 .word DoCBar

 .word BlankSquare

Page 187 of 191

 .byte 25,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 28,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 31,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 34,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 37,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 40,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 43,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 46,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 49,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 52,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 55,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 58,152,3,8

 .word DoCBar

 .word BlankSquare

 .byte 61,152,3,8

 .word DoCBar

;this routine just puts the text on the screen that you see when

;you execute color80. GEOS PutString is used for this.

AddText:

 jsr i_PutString

 .word 8*lftsquare+48

 .byte toptext

 .byte "Background Color"

 .byte GOTOXY

 .word 8*lftsquare+48

 .byte toptext+16

 .byte "Shell Color"

 .byte GOTOXY

 .word 8*lftsquare+48

 .byte toptext+32

Page 188 of 191

 .byte "Text Color"

 .byte GOTOXY

 .word 8*lftsquare+48

 .byte toptext+48

 .byte "Pad Color"

 .byte GOTOXY

 .word 8*lftsquare+48

 .byte toptext+64

 .byte "Border Color"

 .byte GOTOXY

 .word 8*lftsquare+48

 .byte toptext+80

 .byte "Exit",0

 rts

;here's where we draw the colorbar that is near the bottom.

DispColors:

 jsr i_FrameRectangle ;first build a frame around the area.

 .byte 151

 .byte 160

 .word 127

 .word 512

 .byte 255

 lda textcolor ;put the text color into the

 asl a ;high nybble.

 asl a

 asl a

 asl a

 ldx #0

 10$

 sta cbarColors,x ;and build a table of colors

 clc ;with each possible background

 adc #1 ;color in the low nybble.

 inx ;we're building the table because

 cpx #16 ;textcolor can vary.

 bne 10$

 LoadW r0,#cbarTable ;use a geoSHELL routine to put the

 LoadW r1,#cbarColors ;colorbar colors on the screen.

 jsr ColorScreen

 ;originally, some more code was

 ;going in here, that's why the jsr

 ;followed by an rts.

 rts

;this is a table of compressed bytes that ColorScreen recognizes.

;refer to the appendix and the ColorScreen routine for info on

;how this works. You might call this table a 'color scrap'.

cbarTable:

Page 189 of 191

 .byte 19,16 ;start at row 19, column 16.

 .byte 1 ;do the next

 .byte 16 ;16 commands one time.

 .byte 3,0,3,1,3,2,3,3,3,4,3,5,3,6,3,7

 .byte 3,8,3,9,3,10,3,11,3,12,3,13,3,14,3,15

 .byte 0 ;a zero command ends the scrap.

;this is a table of color combinations that ColorScreen reads

;to use with the compressed bytes above. This table is constructed above.

cbarColors:

 .block 16

colorsource: ;identifies the area that is currently

 .block 1 ;selected, such as 'Border Color'.

;this is jumped to when the user clicks on one of the area icons.

DoColorSource:

 MoveB r0L,colorsource ;GEOS sets r0L. We save it here.

 jsr ClearSquares ;make all the icons point to an

 ;empty icon picture.

 lda colorsource

 asl a

 asl a

 asl a

 tax

 jsr SetSquare ;set one pointer to the icon

 ;that has been clicked on.

 jmp SetIcons ;and let GEOS redraw the icons.

;this is jumped to when the user clicks on 'exit'.

DoExit:

 ldx #0

 10$

 lda tempBackground,x ;put all selected colors into

 sta backcolor,x ;the table that geoSHELL sees.

 inx

 cpx #5

 bne 10$

 jsr ClearScreen ;clear the entire screen.

 jsr ReDoWindow ;and get the geoSHELL window back.

 jsr R_Icons ;make sure the default icon is set.

 jmp ExitCommand ;and exit cleanly.

;point all icons in the table at an empty square.

ClearSquares:

 ldx #0

 10$

 lda #[EmptySquare

 sta IconPointer,x

 lda #]EmptySquare

 sta IconPointer+1,x

 txa

 clc

 adc #8

 tax

Page 190 of 191

 cpx #40

 bcc 10$

 rts

;point the desired icon at a solid square.

SetSquare:

 lda #[SolidSquare

 sta IconPointer,x

 lda #]SolidSquare

 sta IconPointer+1,x

 rts

;when the user clicks on a color in the colorbar, GEOS jumps here.

DoCBar:

 lda r0L

 sec

 sbc #6

 ldx colorsource ;get the current area that we will change.

 sta tempBackground,x ;and store the color there.

 jsr SetColTable ;this should have been made to just

 rts ;jump through to the next routine.

;here is where we change the colors on the color80 screen as the

;user selects a different color for a certain area. This will

;alter the color table that ColorScreen will use when it colors

;the little monitor that is drawn on the screen.

SetColTable:

 lda tempBorder

 asl a

 asl a

 asl a

 asl a

 ora tempBackground

 sta ColMon0

 lda tempShell

 asl a

 asl a

 asl a

 asl a

 ora tempPad

 sta ColMon1

 lda tempText

 asl a

 asl a

 asl a

 asl a

 ora tempPad

 sta ColMon2

 LoadW r0,#ColMonTable ;point r0

 LoadW r1,#ColMon0 ;and r1

 jmp ColorScreen ;and recolor the little monitor.

;this is the color scrap that is used to color the little monitor.

Page 191 of 191

ColMonTable:

 .byte uppmonlocation/8+1

 .byte lftmonlocation+2

 .byte 1,4

 .byte 27,0,53,255,3,0,21,1

 .byte 3,6

 .byte 3,0,53,255,3,0,1,1,19,2,1,1

 .byte 1,9

 .byte 3,0,53,255,3,0,21,1,3,0,53,255,27,0,53,255,27,0

 .byte 0

;and this is the table of colors that is used with the color scrap

;for the little monitor.

;for this we only need three different color combinations to

;color the little monitor on the screen.

;this table is built as the user clicks on the colorbar.

ColMon0:

 .block 1

ColMon1:

 .block 1

ColMon2:

 .block 1

