
Please note that this “guide” was compiled from several online sources, mostly pertaining to
the Apple][versions of Merlin. The information here has not been completely tested with

Merlin-128 and may not be 100% accurate for the Commodore version.

Editor Mode Keyboard Commands

Directives

MERLIN-128 Version 1.10 — A Contrived User’s Guide

Cursor Movement Text Manipulation
C= B move cursor to top of document C= X cut text selection
C= N move cursor to bottom of document C= C copy text selection
Ctrl B move cursor to beginning of line C= P paste text selection
Ctrl N move cursor to end of line C= A select all text
Ctrl W tab to next field C= D delete cursor line

Program Control

C= H toggle split screen mode
C= F,W find string
C= Q quit to main menu
C= + quit to line editor
C= L goto label
C= E find and replace
Ctrl E display free memory

C= Del delete line above cursor
C= R juggle two lines of text
C= I insert line
Ctrl D rubout character after cursor
Ctrl K convert upper/lowercase
Ctrl A clear from cursor to end
Ctrl I toggle insert/overwrite mode
Tab toggle insert/overwrite mode
Ctrl T same as backspace
Ctrl K change character to lower case
Ctrl L toggle upper/lowercase entry

EQU - equate label

label EQU expression

Create a label definition.

ORG - set origin

ORG expression

Establishes the address at which the program is designed to run. It defaults to $8000. If more
than one org is used, the first one establishes the bload address and the second establishes
the origin. You cannot use org*-1 to back up the object pointers as is done in some
assemblers. This must be done instead by using DS-1.

OBJ - set object

OBJ address

This is accepted only prior to the start of code. It only sets the division line between the
symbol table and object code read in memory (which defaults to $8000). If the REL opcode is
used then OBJ is disregarded.

PUT - put a text file in assembly

PUT filename

PUT reads the named file and inserts it at the location of the opcode. There are two
restrictions on a PUT file: one, there cannot be macro definitions inside of a file which is PUT;
second, a PUT file may not call another PUT file with this pseudo-op. Of course, linking can be
simulated by having the main program just contain the macro definitions and call in turn all the
others with the PUT opcode. Any variable may be used as a local variable.

USE - use a text file as a macro library

USE filename

This works like PUT but the file is kept in memory. It is intended for loading a macro library
that is USEd by the source file.

VAR - setup variables

VAR exprssion;expression;expression

VAR 1;$3;LABEL [setup variables 1, 2, and 3]

This is just a convenient way to equate the variables]1 through]8. VAR 3;$42;LABEL will
set]1=3,]2=$42, and]3=LABEL. This is designed for use just prior to a PUT. If a PUT file
uses]1 through]8 there must be a previous declaration of these.

SAV - save object code

SAV filename

This will save the current object code. This can be done several times during assembly.
Together with put these pseudo-ops make it posslble to assemble very large files.

TYP - file type for DSK or SAV

TYP expression

This sets the file type to be used by DSK or SAV. The default is BIN. Valid filetypes are 0, 6,
$F0-$F7 and $FF (no type, BIN, CMD, user-defined, and SYS.) This probably doesn’t have
any effect in the Commodore version.

DSK - assembly directly to disk

DSK filename

This pseudo-op will force assembly output directly to disk.

END - end of source file

END

This rarely used opcode instructs the assembler to ignore the rest of the source.

DUM - dummy section

DUM expression

This starts a section of code that will be examined for value of labels but will produce
no object code.

DEND - dummy end

DEND

This ends a dummy section and reestablishes the org address to the value it had
upon entry to the dummy section. Shown below is a sample usage of DUM and DEND.

1 ORG $1000

2

3 IOBADRS EQU $B7EB

4

5 DUM IOBADRS

6 IOBTYPE DFB 1

7 IOBSLOT DFB $60

8 IOBDRV DFB 1

9 IOBVOL DFB 0

10 IOBTRACK DFB 0

11 IOBSECT DFB 0

12 DS 2

13 IOBBUF DA 0

14 DA 0

15 IOBCMD DFB 1

16 IOBERR DFB 0

17 ACTVOL DFB 0

18 PREVSL DFB 0

19 PREVDR DFB 0

20 DEND

Conditional Assembly

21

22 START LDA #SLOT

23 STA IOBSLOT

24 * And so on

DO - do if true

DO expression

DO 0 [turn assembly off]

DO 1 [turn asssembly on]

DO label [if label<>0 then on]

DO label/l2 [if label<l2 then off]

DO label-l2 [if label=l2 then off]

This along with ELSE and FIN are conditional assembly ops. If the operand evaluates to zero
then assembler will stop generating object code (until it sees another conditional). Except for
macro names, it will not recognize any labels in such an area of code. If the operand
evaluates to a non zero then assembly will proceed as usual.

This is useful for sources to designed to generate slightly different code for different situations.
For example in a program with text, you may wish to have one version for Apples with lower
case adapters and one for those without. By using conditional assembly modification of such
programs becomes much simpler, since you do not have to make the modification in two
separate versions of the source code.

Every DO should be terminated somewhere later by a FIN and each FIN should be preceded
by a DO. An ELSE should occur only inside such a DO/FIN structure. DO/FIN structures may
be nested up to eight deep (possibly with some ELSE's between). If the DO condition is off
(value 0) then assembly will not resume until its corresponding FIN is encountered, or an
ELSE at this level occurs. Nested DO/FIN structures are valuable for putting conditionals in
macros.

ELSE - do if not true

ELSE

This inverts the assembly condition (on becomes off and off becomes on) for the last DO.

IF - if true then do

IF character,variable

IF (,]1 [if first char of]1 is ‘(‘ then assemble following code]

IF ",]TEMP [if first char of]TEMP is ‘“‘ then assemble]

IF "=]1 [alternate use with equals sign instead of comma]

This checks to see if char is the leading character of the replacement string for]var. Postion is
important the assembler checks the first and third characters of the operand for a match. If a
match if found then the following code will be assembled. As with DO this must be terminated
with a FIN, with optional ELSE's between. The comma is not examined, so any character may
be used there. For example IF "=]1 could be used to test if the first character of the
variable]1 is a double quote " or not perhaps needed in a macro which could be given either
an ASCII or a hex parameter.

FIN - finish conditional

FIN

This cancels the last DO or IF and continues assembly with the next highest level of
conditional assembly, or ON if the FIN concluded the last (outer) DO or IF.

String Data

Data and Storage Allocation

General notes on string data and string delimiters. Different delimiters have effects. Any delimiter
less than (in ASCII value) the single quote (‘) will produce a string with the high bits on, otherwise
the high bits will be off. All of the opcodes in this section except REV also accept hexadecimal
data after the string. Any of the following syntaxes are acceptable:

 ASC “STRING”878D00 DCI “STRING”,87,8D,00

 FLS “STRING”,878D00 INV “STRING”,878D00

 INV “STRING”,878D00

ASC - define ASCII text

ASC “STRING” [negative ASCII string]

ASC ‘STRING’ [positive ASCII string]

ASC “Bye, Bye”,8D [negative with added hex byte]

Insert ASCII string (and any hex data included) into memory.

DCI - dextral character inverted

DCI “STRING” [neg ascii except for the G]

This is the same as ASC except that the string is put into memory with the last
character having the opposite high bit to the others.

INV - define inverse text

INV “STOP” [negative ASCII, inverse on printing]

This puts a delimited string in memory in inverse format.

FSL - define flashing text

FSL “FLASHING” [negative ASCII, flashing on display]

This is the same as INV except that the text attribute is flashing.

REV - reverse

REV “sdrawkcab” [negative ASCII, reverse order]

This puts the delimited string in memory backwards. For example,
REV “sdrawkcab” gives “backwards”. Hex data may not be added after the
string terminator.

STR - define string with a leading length byte

STR “HI” [result = $02 C8 C9]

STR ‘HI’,8D [result = $02 48 49 8D]

This puts a delimited string into memory, adding one byte to record the string length
at its beginning, otherwise working the same as ASC. The following hex bytes are not
included in the count of the length.

DA / DW - define address / define word

DA $FDFD [result = $FD FD in memory]

DA 10,$300 [result = $0A 00 00 03]

DW LAB1, LAB2 [example of use with labels]

This stores the two-byte value of the operand (usually an address) in the oblect code,
least-significant-byte first. These two pseudo-ops also accept multiple data

Formatting

separated by commas (such as DA 1,10,100).

DDB - define double byte

DDB $FDED+1 [result = $FD EE in memory]

DDB 10,$300 [result = $00 0A 03 00]

This works just like DA except that the most-significant-byte is placed first.

DFB / DB - define byte

DFB 10 [result = $0A in memory]

DFB $10 [result = $10 in memory]

DB >$FDED+2 [result = $FD in memory]

DB LAB [example of use with labels]

This puts the specified byte into the object code. It can accept several bytes of data,
which must be separated by commas and contain spaces. Byte selection for 16-bit
expressions is possible with the following operators:

#<expression [least-sig.-byte of the expression]
#>expression [most-sig.-byte of the expression]
#expression [alternate form for LSB]
#/expression [alternate form for MSB]

HEX - define hexadecimal data

HEX 0102030F [result = $01 02 03 0F in memory]

HEX FD,ED,C0 [result = $FD ED C0 in memory]

This is a more convenient alternative to DFB for the insertion of hexadecimal data.
Unlike all other pseudo-ops, use of the “$” is not required or accepted by HEX.

DS - define storage

DS 10 [zero 10 bytes of memory]

DS 10,$80 [fill 10 bytes of memory with $80]

DS £ [zero memory to next page boundary]

DS £,$80 [fill to next page boundary with $80]

This reserves space for string storage data, or whatever data structures are needed.
The £ options are intended mainly for use with REL files and work slightly differently
there. Any DS £ opcode occurring in a REL file will cause the linker to load the next
file at the first available page boundary.

LST - control listing

LST ON [turn listing on]

LST OFF [turn listing off]

LST [turn listing on]

This controls the assembly listing to be sent to the screen (or other output device). If the LST
is off the object code will be generated much faster, but this is recommended only for
debugged programs. (Note: Control-D from the keyboard toggles this flag during the second
pass.)

EXP - macro expansion control

EXP ON [macro expand on]

EXP OFF [print only macro call]

EXP ONLY [print only generated code]

With EXP on the entire macro will be printed during assembly. The off condition will print only
the >>> pseudo-op. EXP defaults to on. This has no effect on the object code generated.
EXP only will cause expansion of the macro to the listing omitting the call line and end of
macro line. (If the macro call line is labeled it is printed.) This mode will print out just as if the
macro lines were written out in the source.

LSTDO - list the do off areas of the code

LSTDO [list the do off areas]

LSTDO OFF [supress listing of the do off areas]

This opcode determines whether do off areas of code are printed in the listing.

PAU - pause

PAU

On the second pass this causes the assembler to pause until a key is pressed. This
can also be done from the keyboard by pressing the space bar.

PAG - insert page

PAG

This sends a formfeed signal to the listing.

AST - insert asterisks

AST 30 [print 30 asterisks in listing]

This sends a line of asterisks to the listing, handy for marking off sections of code.

SKP - skip lines

SKP 5 [skip 5 lines in listing]

This sends a given number of carriage returns to the listing.

TR - truncate control

TR ON [limit object code printing]

TR OFF [don’t limit object code printing]

TR [limit object code printing]

These commands can limit the object code printout to three bytes per line of source,
even if the line generates more than three.

DAT - date stamp assembly listing

DAT

This command only works on the ProDos version of Merlin. It prints the current date
and time on the seccond pass of assembly.

CYC - calculate and print cycle times

CYC [print opcode cycles and total]

CYC OFF [stop cycle time printing]

CYC AVE [print cycles and average]

This opcode will cause a program cycle count to be printed during assembly. A second CYC
opcode will cause the accumulated total to be zeroed. CYC off causes it to stop printing
cycles. CYC ave will average in the cycles that are undeterminable due to branches, and
indexed or indirect addressing. The cycle times will be printed to the right of the comment
field and will appear similar to any of the following:

 5 ,0326 5' ,0326 5'',0326

The first number displayed is the cycle count for the current instruction. The second number
displayed is the accumulated total of cycles in decimal. A single quote after the cycle count
indicates a possible added cycle, depending on certain conditions that the assembler cannot
foresee. If this appears on a branch instruction then it indicates that one cycle should be
added if the branch occurs. For non-branch instructions, the single quote indicates that once
cycle should be added if a page boundary is crossed.

Miscellaneous Pseudo-Opcodes

A double quote after the cycle count indicates that the assembler has determined
that a branch would be taken and that the branch would cross a page boundary. In
this case the extra cycle is displayed and added to the total.

The CYC opcode will also work for the extra 65C02 opcodes in Merlin. It will not work
for the additional R65C02 instructions present in the Rockwell chip.

KBD - define label from keyboard

KBD

KBD string

This allows a label to be equated from the keyboard during assembly. Any expression may be
input, including expressions referencing previously defined labels, a bad input error will occur
if the input cannot be evaluated. If a string is given, it will be used for the user prompt.

LUP - loop expression

LUP value

--^ [used to indicate end of LUP]

The LUP pseudo opcode is used to repeat portions of source between the LUP and the --^
expression number of times. An example of this is:

Source code: Assembles as:

 LUP 4 ASL

 ASL ASL

 ---^ ASL

 ASL

and will show that way in the assembly listing with repeated line numbers. Perhaps the major
use of this is for table building. As an example:

1]A = 0

2 LUP $FF

3] =]A+1

4 DFB]A

5 --^

Which will assemble the table 1, 2, 3,,$FF. The maximum LUP value is $8000 and the LUP
opcode will simply be ignored if you try to use more than this. NOTE: the above use of
incrementing variable in order to build a table WILL NOT work if used within a macro.
Program structures such as this must be included as part of the main program source.

CHK - place checksum in object code

CHK

This places a checksum byte into object code as the location of the CHK opcode. This is
usually placed at the end of the program and can be used by your program at runtime to verify
the existence of an accurate image of the program in memory.

ERR - force error

ERR exprssion

ERR $80-($300) [error if $80 not in $300]

ERR *-1/$4000 [error if PC>$4100]

ERR \$5000 [error if REL code address exceeds $5000]

The ERR expression will force an error if the expression has a non zero value and the
message break in line ??? will be printed. Note for REL files: The ERR\expression syntax
gives an error on the second pass if the address pointer reaches expression or beyond. This
is equivalent to ERR *-1/expression, but if when used with REL files it instructs the linker to
check that the last byte of the current module does not extend to expressions or beyond
(expression must be absolute). If the linker finds that the current module does extend beyond
expression, linking will abort with a message Constraint Error.

Macros

MAC - start macro definition

MAC macroname

This signals the start of a macro definition.

<<< - end macro definition

<<<

This signals the end of a macro definition.

>>> - insert macro

>>> macroname

This instructs the assembler to assemble a copy of the named macro at the present location.
Alternatively, the >>> can be omitted and the macro can be called simply by using the
macroname as an opcode.

Macros represent a shorthand method of programming that allows multiple lines of code to be
generated from a single statement. Macros can be used to simulate unimplemented opcodes or to
simulate the Rockwell 65C02. A macro is a user named sequence of assembly language
statements, with general purpose operands. You define the macro in a general way and when you
use it via a macro call, you fill in the blanks left when you defined it. EXAMPLE:

 MAC SWAP ;define a macro named SWAP

 LDA]1 ;load accum with variable]1

 STA]2 ;store accum in location]2

 <<< ;this signals the end of the macro

 Would assemble as follows if]1=$300 and]2=$400

 LDA $300

 STA $400

It is very important to realize that anything used in the parameter list will be substituted for the
variables. Forward reference to a macro definition is not possible and will result in a not macro
error message. A macro must be defined before it is called by name or >>>. The conditionals DO,
IF, ELSE and FIN may be used within a macro. Labels inside macros are updated each time the
macro name or >>> name is encountered. Error messages will usually indicate the line number of
the macro call rather than the line inside the macro where the error occurred.

Macros may be nested up to 15 deep. Macros names may be put in the opcode column, without
using >>>, but the macro name cannot be the same as any regular opcode or pseudo opcode
such as LDA, STA, etc. It cannot begin with the letters DEND or POPD. The >>> opcode is not
subject to this.

Eight variables, named]1 through]8 are predefined and are designed for convenience in
macros. These are used in a >>> statement. The instruction >>> name expr1;expr2,expr3.... will
assign the value of expr1 to the variable]1 and expr2 to]2 and so on. Example:

 MACRO DEFINITION RESULT CODE EXAMPLE

 TEMP EQU $10 SWAP.$6;$7;TEMP ; MACRO CALL

 MAC

 LDA]1 LDA $06

 STA]3 STA TEMP

 LDA]2 LDA $07

 STA]1 STA $06

 LDA]3 LDA TEMP

 STA]2 STA $07

 <<<

 >>> SWAP.$6;$7;TEMP

 <<< SWAP.$1000;$6;TEMP

The Linker

This segment swaps the contents of location $6 with that of $7 using TEMP as a scratch
depository, then swaps the contents of $6 with that of $1000.

If as above some of the special variable are used in the macro definition, then values for them
must be specified in the >>> statement. In the assembly listing, the special variables will be
replaced by their corresponding expressions.

The number of values must match the number of variables used in the macro definition. A BAD
VARIABLE error will be generated if the number of values is less than the number of variables
used. Macros will accept literal data. Thus the assembler will accept the following type of macro
call:

 MUV MAC

 LDA]1

 STA]2

 <<<

 >>> MUV.(PNTR),Y;DEST

 >>> MUV.#3;FLAG,X

 with the resultant code from the above two Macro calls being:

 >>> MUV.(PNTR),Y;DEST ;macro call

 LDA (PNTR),Y ;substitute first parm

 STA DEST ;substitute second parm

and

 >>> MUV.#3;FLAG,X ;macro call

 LDA #3 ;substitute first parm

 STA FLAG,X ;substitute second parm

The designed purpose of variables is for use in macros, but they are not confinded to that use.
Forward reference to a variable is impossible with correct results, but the assembler will assign
some value to it. It is possible to use variables for backward branching, using the same label at
numerous places in the source. This simplifies label naming for large programs and uses much
less space than the equivalent once used labels. For example:

 1 LDY #0

2]JLOOP LDA TABLE,Y

3 BEQ NOGOOD

4 JSR DOIT

5 INY

6 BNE]JLOOP ;BRANCH TO LINE 2

7 NOGOOD LDX #-1

8]JLOOP INX

9 STA DATA,X

10 LDA TBL2,X

11 BNE]JLOOP ;BRANCH TO LINE 8

The linking facilities offer these advantages:

1) Extremely large programs may be assembled in one operation over 41000 bytes long
2) Large programs may be assembled much more quickly with a corresponding decrease in
 2)development time.
3) Libraries of subroutines may be developed and linked to any Merlin program
4) Programs may be quickly re assembled to run at any address

With a linker you can write portions of code that perform specific tasks, say a general disk I/O
handler and perform whatever testing and debugging is required. When the code is correct, it is
assembled as a REL file and placed on a disk.

PUT files or macro USES library don't serve the same purpose. Using a PUT file to add a general
purpose subroutine would result in slower assembly. Any label definitions contained in the PUT file
would be global within the entire program. With a REL file only labels defined as ENTry in the REL
file (and EXTernal in the current file) would be shared by both programs. There is no chance for
duplicate label errors when using the linker.

There are three pseudo opcodes that deal directly with relocatable modules and the linking
process. These are:

REL - Informs the assembler to generate relocatable files
EXT - Defines a label as external to the current file
ENT - Defines a label in the current file as accessible to other REL files.

There are two other pseudo opcodes that behave differently when used in a REL file, than to a
normal file, they are DS and ERR.

In order to use the Linker, the files to be linked must be specified. The linker uses a file containing
the names of the files to be linked for this purpose.

REL - relocatable code module

REL

This instructs the assembler to generate code files compatible with the relocating linker. This
must occur prior to definition of any labels. To get an object file to the disk you Must use the
DSK opcode for direct assembly to disk.

An ORG at the start of the code is not allowed. Multiplication, division, or logical
operations can be applied to absolute expressions but not to relative ones. Examples of
absolute expressions are: an EQUate to an explicit address, the difference between two
relative labels, labels defined in dummy code sections. Examples of relative expressions not
allowed are ordinary labels, expressions that use the PC such as “LABEL = *”.

The starting address of an REL file, supplied by the assembler, is $8000. It will be changed by
the linker, which is why no ORG opcode is allowed. There are some restrictions involving use
of EXTernal labels in operand expressions. No operand can contain more than one external.
For operands of the following form: #>expression or >expression where the expression
contains an external, the value of the expression must be within 7 bytes of the external labels
value. For example:

LDA #>EXTERNAL+8 [illegal expression]
DFB >EXTERNAL-1 [legal expression]

EXT - external label

label EXT [label is external labels name]

PRINT EXT [define PRINT as external label]

This pseudo-op defines a label as an EXTernal label for use by the linker. Any external label
must be defined as an ENTry label in its own REL module, otherwise it will not be reconciled by
the linker. The EXTernal and ENTry label concepts are what allows REL modules to
communicate and use each other as subroutines

ENT - entry label

label ENT

PRINT ENT [define PRINT as an entry label]

This pesudo-op will define the label in the label column as an ENTry label. An ENTry label is a
label that may be referred to as an EXTernal label by another REL code module. If a label is
meant to be made available to other REL modules it must be defined with the ENT opcode.
The true address of an ENTry label will be resolved by the linker. The example of a segment
of a REL module will show the use of this opcode:

21 STA POINTER

22 INC POINTER

23 BNE SWAP

24 JMP CONTINUE

25 SWAP EXT ;MUST BE DEFINED IN THE

26 LDA POINTER ;CODE PORTION OF THE

27 STA PTR ;MODULE AND NOT USED

28 LDA POINTER+1 ;AS AN EQU LABEL

29 STA PTR+1

30 ETC

Note that the label SWAP is associated with the code in line 26 and that the label
may be used just like any other label in a program.

DS - skip to next REL file

DS \ [skip to next REL file, fill mem with 0's to next page break]

DS \1 [skip to next REL file, fill mem with 1's to next page]

When this opcode is found in an REL file it causes the linker to load the next file in the linker
name file at the first available page boundry and to fill memory either with zeros or with the
value specified by the expression. This opcode should be placed at the end of your source
file.

LINK - use linker

LINK address, filename

LINK $1000 “NAMES” [link files in NAMES]

This editor command invokes the linking loader.To link the objext files whose names are held
in the linker name file called NAMES use above command, this will give it a starting address
of $1000. This is only accepted if there is no current source file in memory, since the linker
would destroy it.

The linker name file is a text file containing the file names of the REL object modules you want
linked. Write it with the Merlin editor and save to disk with the W command. The linker will not
save the object file it creates, you must do this. Linker name files are a specially formatted file
that contains the names of the link files to be linked. Example:

STR "START”,00

STR "MID",00

STR "END",00

BRK

The break tells the linker there are no more pathnames. The file type used by the object save
command is always the file type used in the last assembly.

