Merlin 128"

The Complete Macro Assembler System
For The Commodore 128

By Glen Bredon

Merlin 128
| nstruction M anual

Written by
Glen Bredon

Produced by:
Roger Wagner Publishing, Inc.

1050Pioneer Way. Suite P
El Cajon, CA 92020
Customer Service & Technical Support:
619/442-0522

ISBN 0-92779623-6
5C587

Customer Licensing Agreement

The Roger Wagner Publishing, Inc. software product that you have just
recaved from Roger Wagner Publishing, Inc., or one of its authorized dealers,
Is provided to you subjed to the Terms and Conditions of the Software
Customer Licensing Agreement. Should you decide that you cannot accept
these Terms and Conditions, then you must return your product with all
documentation and this License marked "REFUSED" within the 30 day
examination period foll owing the receipt of the product.

1. License. Roger Wagner Publishing, Inc. hereby grants you upon your receipt
of this product, a nonexclusive license to use the enclosed Roger Wagner
Publishing, Inc. product subjed to the terms and restrictions st forth in this
License Agreement.

2. Copyright. This oftware product, and its documentation, is copyrighted by
Roger Wagner Publishing, Inc. Y ou may not copy or otherwise reproduce the
product or any part of it except as expresdy permitted in this License.

3. Restrictions on Use and Transfer. The original and any badkup copies of this
product are intended for your personal use in connedion with asingle
computer. Y ou may not distribute copies of, or any part of; this product
without the expresswritten permission of Roger Wagner Publishing, Inc.

Limitations of Warr anties and Liability

Roger Wagner Publishing, Inc. and the program author shall have no liabili ty
or responsibili ty to purchaser or any other person or entity with resped to
liability, lossor damage caused or alleged to be caused diredly or indiredly by
this oftware, including, but not limited to any interruption of service, lossof
businessor anticipatory profits or consequential damages resulting from the
use or operation of this software. Some states do not allow the exclusion or
limitation of implied warranties or liabili ty for incidental or consequential
damages, so the dove limitation or exclusion may not apply to you.

Copyrights

The Merlin 128 daumentation and software ae apyrighted © 1986by Roger
Wagner Publishing, Inc. This documentation and/or software, or any part
thereof, may not be reproduced in any form or by any means, eledronic or
mechanical, including photocopying, recording, storage in an information
retrieval system, or otherwise, without the prior written permission of the

publi sher.

We have tried our best to gve you a quality product at a fair price, and made
the software copyable for your personal convenience. Please recommend our
product to your friends, but resped our wishes to not make copies for others.
Thanks!

Merlin 128 is a trademark of Roger Wagner Publishing, Inc.

About the M anual

This manual was formatted using MacAuthor from Icon Technology, Ltd, 9
Jarrom Stred, Leicester LE2 7DH, England, and Apple's LaserWriter printer.

OUR GUARANTEE

This product caries the unconditional guaranteeof satisfadion or your money
bad. Any product may be returned to placeof purchase for complete refund or
replacement within thirty (30) days of purchase if acampanied by the sales
recept or other proof of purchase.

ABOUT THE AUTHOR

Glen Bredon is a profesor a Rutgers University in New Jersey where he has taught
mathematics for over fifteen years He purchased his first computer in 1979and began
exploring its internal operations because "l wanted to know more than my students.” The
result of this gudy was the best selling Merlin Maao Assembler and ather programming
aids. A native Californian and concerned environmentalist, Glen spends his simmers away
from mathematics and computing, preferring the solitude of the Sierra Nevada mountains
where he has helped establish wildernessreserves.

MERLIN 128
Table of Contents

INTRODUCTION
System ReQUIrEMENtS —==-===m == s e
Suggested Realing ----=-===m=mm e s

BEGINNER'S GUIDE TO USING MERLIN 128
Steps From the Very Beginning
Editing a SourceListing
ASEMDlY -
Saving and Running Programs
Making Badk-up Copies of Merlin 128

MAIN MENU
Main MEeNU = ~-mmmmmmmmcmcmm i cmmc e e e e e

THE EDITOR

About the Editor Documentation
Immediate Mode
Add/Insert Commands — ==--==== = e s e
Editing an EXisting LiNe =----mmmmmm e oo e e
Full Screen Editor Commands
Control Key Commands -=-=-========m e s oo
Commodore Key Commands --=-=-=========== ==
Editor Command Summary
Altkeysand Keydefs =~ =mmmmmmmmmm e
If you make amistake = -=--mmmmmmmmmemmme e
Find and Change Commands
More Immediate Mode Edit Commands
Other Immediate Mode Commands

AsemblingaFile -

THE ASEMBLER
The ASEMDIEr —mmm e e
About the Assembler Documentation
Preliminary Definitions
Assmbler Syntax Conventions

Source Code Format -------mm-mmmmmm oo
Number Format
Expressions Allowed by the Assembler
Immediate Data Syntax — --------=-mmmmmm oo
6502Addressing Modes
Special Forced Non-Zero Page Addressing
Assembler Pseudo Opcode Descriptions

o o1 N

10
11

13

17
18
20
20
21
22
25
32
33
33
35
35
39
45

46
47
48
49
49
50
51
53
54
54
55

Formatting Pseudo Ops

String Data Pseudo Ops
Data and Storage Allocation Pseudo Ops
Miscellaneous Pseudo Ops

Conditional Pseudo Ops
Maao Pseudo Ops

Variables

Local Labels

MACROS
Maaos

Special Variables
Maao Libraries and the USE Pseudo Op

THE LINKER

The Linker
Pseudo Opcode for Re-locaable Code Files

TECHNICAL INFORMATION

Tednical Information

General Information

Symbol Table

Configuration
Contents of PARMS file

Merlin 128Memory Map

ERROR MESSAGES
Error Messages

SOURCEROR
I ntroduction

Using Sourceror

Final Processing

Dealing with Finished Source
Changing Sourceror’s Label Table

Using Sourceror.XL

UTILITIES
FORMATTER

XREF

XREFA
PRINTFILER

Changing Printfiler's Options
ALTKEYS

KEYDEFS

Sample Programs & Files
DEMO

COPY

90
93
97

98
100

105
105
105
106
107
109

110

114
114
117
118
119
120

121
121
124
124
125
126
127
128
128
128

ZAP

HI-RES
SWISH

RAMTEST

Pl -
PRDEC

PRINTHEX

INPUT

GETERR
READKEY

MULT/DIV

ASCHEX
BASIC HEADER
KERNEL EQUATES

GLOSSARY
Glossry

INDEX
[NAEX —mmmmmmmm e e

Merlin 128 User's Manual Preface

MERLIN 128

Merlin 128is an extremely powerful, comprehensive Maao Assembler system for the
Commodore 128 computer. It consists of four main modules and numerous auxiliary and
utility programs which comprise one of the most complete assembler systems available for
any personal computer. Merlin's four main modules are:

- FILE MANAGEMENT system, for disk 1/O, file management, disk operations, €etc.,

- EDITOR system, for writing and editing programs with word-processor-like power,

- ASSEEMBLER system, with such advanced feaures as Maaos, Maao libraries,
conditional assembly, linked files, etc.,

- LINKER system, for generating relocaable aode modules, library routines, run-time
padages, etc.

But Merlin 128is more than just the sum of these four parts. Here are some of the other
feaures offered by Merlin 128

- Merlin 128reagnizes over 50 Pseudo Opcodes for extreme programming flexibility,

- Merlin 128has over 40 editing commands for ultimate editing power equaled only by word
Processors,

- Merlin 128comes with a powerful symbolic disassembler to generate Merlin source @de
from raw binary programs,

- Merlin 128comes with many sample programs, libraries and ather aids to get you going
with assembly language fast,

- Merlin 128is UNLOCKED and COPY ABLE for your benefit.

Merlin 128 User’s M anual Introduction

INTRODUCTION

Congratulations on your purchase of Merlin 128 one of the most powerful, yet essy to use
asemblers for the Commodore 128 computer. Merlin 128 offers virtually every feaure and
function that a programmer needs, thus making it unlikely that you'll outgrow it. At the same
time, Merlin 128's easy huilt-in editor and fast assemblies make it a pleasure to use whether
you're writing a few lines of code or 30,000

To run Merlin 128 you'll need the following:

* COMMODORE 128
* 1571Disk drive or equivalent

If you are aurrently using a printer, Merlin 128will function just fine with it, producing
formatted listings with page bre&ks and titles.

If you're familiar with assembly language programming aready, you will find Merlin 128
easy to adapt to. It follows the standards of 6502 pogramming, and its assembler-direaed
commands, or pseudo-ops are a super-set of just about every other asseembler. That is,
asembler diredives like HEX, ASC, DS etc., that you've used in other assemblers are still
therein Merlin 128 and better ill, you'll find a new complement of functions to make
programming easier. These include asembling direaly to or from disk files, multiple data
formats for numbers and strings, a complete set of assembler utilities sich as cross
referencing and a source @de generator (Sourceror), maao caoabilities and more.

If you're new to aseembly language programming, Merlin 128isthe eaiest asembler there
is. However, the Merlin 128manual does not make any attempt to tead the tedniques of
asembly language programming itself. Those techniques are wvered in various tutorial
books avail able from a number of publishers. Becaise everyone has different goals and
objedives, you should seek out those books which best match your current needs and
experience

Two of the better books that we recommend include:

ASEMBLY LANGUAGE FOR KIDS - William B. Sanders. Microlit, 17857Aguacde
Way, San Diego, CA 92127

COMMODORE 64/128 ASEMBLY LANGUAGE PROGRAMMING - Mark
Andrews. Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapolis, IN
46268

Both of these books offer Merlin program listings.

Page 1

Merlin 128 User's Manual Beginner'sGuide

BEGINNER'SGUIDE TO USING MERLIN 128

The purpose of this sedion is not to provide instruction in assembly language programming.
Rather, it will show you the loading, editing, and running of a short assembly language
program to gve you an ideaof how Merlin 128works.

Many of the Merlin 128 commands and functions are very similar in operation. This sedion
does not attempt to present demonstrations of each and every command option. The
objedive isto present examples of the more common operations, sufficient to get you
started writing your own programs using Merlin 128 Y ou should not exped to immediately
use all of the various commands that Medin 128 supportsin your first program. The best
approadh isto use the Merlin 128 manual in an encyclopediadike fashion, reading just those
sedionsthat provide some utility to a current programming task. We suggest that you lightly
skim through the manual once, to beacome avare of generally what the software has to offer,
and then return later to specific sections as needed.

Now, let'stry your first program with Merlin 128 Just follow these steps:

1 Boat the Merlin 128disk. A title screen appeas, after which the screen changes to
the MAIN MENU. The main menu is used for loading and saving files, disk
operations, and of course, entering the MERLIN Editor and Assembler itself.

2. When the '%' prompt appeas at the bottom of the main menu, type ‘E'. This instantly
places the system in EDITOR control mode. The screen clears and the prompt
changesto acolon (":").

3. The two most often used commands in the immediate mode of the Editor are'A’ (for
Addlines) and 'l' for inserting lines between existing lines of your source code.

Sincewe ae entering an entirely new program, type ‘A’ a the "' prompt and press
RETURN (A = ADD). A '1' appeas at the top right corner of the screen. This
indicaes the aurrent line number. The aursor is on the left side of the screen, and will
appea asaninverse'l' (the meaning of the aursor appeaancewill be discussed a
little later in this manual).

4. Online 1, enter an asterisk (*). An asterisk asthe first charader inany line is similar
to aREM satement in BASIC it tellsthe assembler that thisis aremark line and
anything after the asterisk isto beignored. To confirm this, type the title'Merlin 128
Demo' after the asterisk and pressthe RETURN key.

5. After Return, the aursor once aain drops down one line, a'2' appeas at the top right
to indicate the new line number. Pressthe spacebar once and type 'ORG', space
again, type '$80@', and pressRETURN.

Page 2

Merlin 128 User’s M anual Beginner'sGuide

The above step instructs the assembler to create the following program so that it can run
at memory locaion $800Q Merlin 128almost always assembles your program in the
same place in memory, but the ORG (for Origin) isused to tell Merlin 128where you
want the program to eventually be run. Thisis that JMPs, JSRs and ather locaion
dependent code within your program is properly written with the final locaion in mind.

Y ou'll notice that when you pressthe spacebar, Merlin 128 automatically moves the
cursor to the next field on the line. You'l recal that in assembly language programming,
the position of text on ead line determines what kind of information it is. Labels for
routines and entry points are in the first position. On line 2 you skipped this field by
pressing the spacebar first, before entering any text. The second position is for the
command itself. The command can either be a65108502command such as LDA, RTS,
etc., or it can be adiredive to Merlin 128itself, to be used duing the asembly to write
afileto dsk, creaealabel, call upamaao, or any of Merlin 128's many assembler
commands.

Asterisk can also be used to just create ablank line. On line 3, enter another asterisk,
with o text following it, and pressRETURN again.

On line 4, do not spaceonce after the line number. Type 'BSOUT', space 'EQU’, space
'$SFFD2', space ;' (semicolon), 'Output subrouting', RETURN.

This defines the label BSOUT to be equal to hex FFD2. This use of a label isknown asa
constant. Wherever BSOUT appeas in an expresson, it will be replaced with $FFD2.
Why don't we just use '$FFD2'? For one thing, 'BSOUT" is easier to remember than
'$FFD2'. Also, if alater assembly required changing the locaion of BSOUT, all that
needs changing is the 'EQU' statement, rather than all the other '$FFD2's throughout the
listing.

Semicolons are like asterisks, used to mark the beginning of a remark (comment).
Semicolons, however, are used to mark the start of a @mment at the end of a line that
contains other text.

8. Line5: Type 'BUFLEN', space'EQU', space'20', space ';', 'Length of string to print’,
RETURN.
The program should now look like this:
* Merlin 128Demo
ORG $8010
BSOUT EQU $FFD2 ;Output subroutine
BUFLEN EQU 20 ;Length of string to print

Page 3

Merlin 128 User's Manual Beginner'sGuide

9. Enter the following 5 lines:

GETIN EQU $EFE4 ;Get input subroutine

KEY EQU $FFOF ;Keyboard scan routine

*

START LDX #0 Set X to0

LOOP LDA SIRINO, X :Get a character from STRINO
JSR BSOUT :Send it to the screen

Foll owing the Opcodeis the operand, in this case'BSOUT". The operandis the target information
of the Opcode. Where to JSR to, what valueto load, etc.

10. Enter the following lines to complete the program:

INX :Increment X

CPX #BUFLEN ;Compare X to valuein BUFLEN

BNE LOOP ;if not equal, go back to LOOP
SCAN JSR KEY ;Scan the keyboard

JSR GETIN ;Any input?

BEQ SCAN ;If not, go back to SCAN

CMP #$0D ;Was Return pressed?

BEQ DONE ;If so, goto DONE

JP AN ;If not, go back to SCAN
DONE RTS :All done

STRING TXT 'PressReturn to Exit'

11 The program has been completely entered, but the system is gill in ADD mode. To exit ADD,
just pressthe Commodore key (bottom left of keyboard) and the horizontal arrow key (top left of
keyboard) at the sametime. (A Commodore command key character istyped in a manner similar
to control characters, and are indicated in this manual by CC and CTRLC, respedively.) The"'
prompt reappears at the bottom of the screen, indicating that the system has returned to the
immediate mode.

12. Promthe ' prompt, type L to list the program. The screen should now look like this:

* Merlin 128 Demo

ORG $8000
*
BSOUT EQU $FED2 ; Output subroutine
BUFLEN EQU 20 ;Length o string to print
GET IN EQU $EFE4 ;Get input subroutine
KEY EQU $FFOF ;Keyboard scan routine
*
START LDX #0 Set Xto0
LOOP LDA STRING, X ;Get acharacter from STRING
BSOUT :Send it to the screen
INX :Increment X
CPX #BUFLEN ;Compare X to valuein BUFLEN
BNE LOOP ;If not equal, go back to LOOP
SCAN JSR KEY ;Scan the keyboard
JSR GET IN ;Any input?

Page 4

Merlin 128 User's Manual Beginner'sGuide

BEQ SCAN ;If not, go badk to SCAN

CMP #$0D ;Was Return pressed?

BEQ DONE ;If s0, go to DONE

JMP CAN ;If not, go badk to SCAN
DONE RTS A1l cbne

STRING TXT 'PressReturn to Exit'

Note that throughout the entry of this program, ead bit of text has been moved to a spedfic
field. Hereisasummary of the fields as used so far:

LABEL OPCODE OPERAND COMMENT

Field One isreserved for labels. BSOUT, START and DONE are examples of labels.

Field Two isreserved for opcodes, such asthe Merlin 128 peudo-opcodes (also called
diredives) ORG and EQU, and the 651085020pcodes BR and RTS.

Field Threeis for operands, such as $800Q $FFD2 and, in this case, BSOUT.

Field Four contains comments (preceded by";")

It should be goparent from this exercise that it is not necessary to input extra spacesin the
sourcefile for formatting puposes, even if these spaces semto exist in alisting you may be
using.

In summary:

1) Do not spacefor alabel. Spaceonce after alabel or, if there is no label, once for the
opcode.

2) Spaceonce after the opcode for the operand. Spaceonce dter the operand for the
comment. If thereis no operand, type aspaceand a semicolon for a comment.

EDITING A SOURCE LISTING

Asauming no errors have been made in the text entered so far, you could now asemble the
program entered with Merlin 128, Before doing that, however, let's look at the editing
abilitiesof Merlin 128

Editing is the processof making alterations to text that you've alrealy entered, and this
ability isone of MERLIN 128s drong points. In a sense, an assembler is just aword
processor for the text that makes up a program. In that light, then, you can judge an
asembler in part by how good its editing features are.

Merlin has a powerful, built-in full screen editor. Powerful in the range of operations
possible but, after alittle pradice, remarkably easy to use.

Page 5

Merlin 128 User's Manual Beginner'sGuide

There aetwo phases to editing text with Merlin 128 The first istelling the Editor which
lines you wish to add, delete or edit. Sometimes a specific line number is not needed, as
when you typed ‘A’ to start adding linesto your listing.

Other times, you will wish to edit aline that has already been entered, and a line number
may be required. In addition, onceyou are aliting a specific line, new commands becme
available to you to make specific changesto aline of text.

Note that in the remainder of this manual, special charaders will be abbreviated as follows:
= = Commodore key, ~ = Horizontal arrow, Esc = Escape key, Alt = Alternate key, and
CTRL-C = Control-C.

Inserting and deleting lines in the source code ae both smple operations. The following
example wil | INSERT threenew lines between the existing lines 5 and 6.

1. After the"' prompt, type'l' for (INSERT), the number '21', and pressSRETURN. All
inserted lines will precede (numerically) the line number specified in the cmmmand.

2. Type an asterisk, and pressRETURN. Notethat the INSERT mode has not been
exited.

3. Type aother asterisk, and pressRETURN again.
4. Press paceonce, and type TYA'.
Thethreenew lines (21, 22, and 23 have been inserted, and the subsequent original

sourcelines (now lines 24 and 25 have been renumbered. The last few lines of the
program should now look like this:

JMP CAN ;If not, go bark to SCAN
*
*

TYA
DONE RTS A1l cbne

STRING TXT 'PressReturnto Exit'

5. PressC= - to exit the full screen editor. The system revertsto Immediate Mode ('
prompt).

Using DELETE isequally easy.

1. InImmediate Mode of the dlitor, type 'D21', and pressRETURN. Nothing new appeas
on the screen.

2. TypelL to list the source code. The sourcelisting is one line shorter. You've just deleted
the TYA' line, and the subsequent lines have been renumbered.

Page 6

Merlin 128 User's Manual Beginner'sGuide

It is possible to delete arange of lines in one step.
1. Incontrol mode, input 'D21,22 and presSSRETURN.
2. Typel tolist the source

Lines 21 and 22from the example, which contained the inserted asterisks, have been
deleted, and the subsequent lines renumbered. The listing appeas the same a when you first
entered the listing.

This automatic renumbering feaure makes it IMPERATIVE that when you are deleting
several different groups of lines at once, you must remember to begin with the group with
highest numbers and work bad to the lowest.

For example, if you had along listing, and wanted to Delete lines 5-7, 15-23 and 66-72, you
would typein:

D66, 72
D15,23
D5, 7

NOT:

D5, 7
D15,23
D66, 72

This is because after the first Delete of lines 5 through 7, what used to be lines 15 through
23 arenow a 12through 20! Keep thisin mind and you'll avoid problems.

While Adding, Inserting, or Editing an existing line, you have many options within the line,
all of which are accesed by using Control charaders. To demonstrate, using the listing
you've entered:

1. Atthe"' prompt, enter 'E' (the EDIT command) and a line number (use '21' for this
demonstration), and pressSRETURN. The airsor moves to the beginning of the specified
line and isover the'D' in DONE'.

DONE RTS

2. Type CTRL-D. The dharader under the airsor disappeas. Type CTRL-D threemore
times until 'DONE' has been deleted, and the aursor is positioned to the left of the
opcode (RTS).

3. Pressc= , thenL tolist the program. In line 21 of the source code, only the opcode
remains.

4. Atthe"' prompt, enter 'E21 and pressRETURN.

Page 7

Merlin 128 User's Manual Beginner'sGuide

5. Dont move the aursor with the spacebar or arrow keys. Type the word ‘DONE’, then
presscC= .

6. PressL tolist the program. Line 21 has been restored.

The other sub-commands (CTRL-charaders) used under the EDIT command function

similarly. Real the definitions in the Editor Section and pradice afew operations.
ASEMBLY

The next step in using Merlin 128isto aseemble the source mdeinto objed code.

At the "' prompt, type the ommand ASM and pressSRETURN. On your screen isthe
following:

ASEMBLING

1 * Merlin128Demo

2 ORG $8000

3 *

4 BSOUT EQU $FFD2 ;Output subroutine

5 BUFLEN EQU 20 ;Length of string to print

6 GETIN EQU $FFE4 ;Get input subroutine

7 KEY EQU $EF9F ;Keyboard scan routine

8 *
8000 A2 00 9 START LDX #0 :Set X to 0
8002 BD 1D 80 10 LOOP LDA STRING,X ;Get a harader from STRING
8005 20 D2 FF 11 JSR BSOUT ;Send it to the screen
8008 E8 12 INX ;Increment X
8009 EI 14 13 CPX BUFLEN ;Compare X to valuein BUFLEN
800B: DO F5 14 BNE LOOP ;I not equal, go badk to LOOP
80(D: 20 9% FF 15 SCAN JSR KEY ;Scan the keyboard
8010 20 E4 FF 16 JSR GETIN Any inpu?
8013 FO F8 17 BEQ SCAN ;If not, go badk to SCAN
8015 C9 0D 18 CMP #$D ;Was Return pressed?
8017 FO 03 19 BEQ DONE ;If s0, go to DONE
8019 4C 0D 80 20 JMP CAN ;If not, go badk to SCAN
801C: 60 21 DONE RTS ;All done

801D: 70 52 45 22 STRING TXT 'PressReturnto Exit'
8020 53 53 20 72 45 54 55 52

8028 4E 20 54 4 20 65 58 49

8030 54

--End Merlin 128 assembly, 49 bytes, Errors: O

Page 8

Merlin 128 User's Manual Beginner'sGuide

Symbol Table - alphabetical order:

BSOUT =$FFD2 BUFLEN =$%$14 DONE =$801C GETIN =$FFE4
KEY =$FFIF LOOP =$8002 SCAN =$80MD ?START=$8000
STRING =$801D

Symbol table - numerical order:

BUFLEN =$14 ? START =$8000 LOOP =$8002 SCAN --$80D
DONE =$801C STRING =$801D KEY =$FFOF BSOUT =$FFD2
GETIN =$FFE4

If instead of completing the aove listing, the screen displays an error message, notethe line
number referenced in the message, and pressRETURN until the"--END ASSEMBLY ..."
message gpeas. Then refer badk to the first sedion where the program was first entered
and compare the listing with Step 12 Look especialy for elementsin incorrect fields. Using
the aliting functions you've leaned, change ay lines in your listing which do not look like
those in the listing in step 12 then, from the "' prompt, type ASM and pressRETURN to re-
assemble.

If all went well, to the right of the column of line numbers down the middle of the screen is
the now familiar, formatted Source Code.

To the left of the line numbers, beginningon line 9, is a series of numeric and alphabetic
charaders. Thisisthe Object Code, which is the opcodes and operands assembled to their
machine language hexadeamal equivalents.

For example, starting on line 9, the first group of charaders (8000 isthe program's garting
addressin memory (seethe definition of ORG in the Assembler Sedion). After the '800Q" is
the number 'A2'. This is the one-byte hexadecimal code for the opcode LDX.

NOTE: the label 'START' is not assembled into objed code; neither are comments, remarks,
or pseudo-ops sich as ORG. Such elements are only for the cmnvenienceand utility of the
programmer and the use of the as®mbler program.

On line 11, after the '8005" isthe number '20'. This is the one-byte hexadeamal code for the
opcode JSR. The next two bytes (eat pair of hexadeamal digits is one byte) bear a arious
resemblanceto the last group of charaders on line 4; have alook. In line 4 of the source
code wetold the asseembler that the label 'BSOUT' EQUated with address $FFD2. In line 11,
when the asembler encountered 'BSOUT' as the operand, it substituted the specified
address The sequence of the high and low-order bytes was reversed, turning $FFD2 into D2
EF, a6510850@ microprocesor convention.

Page 9

Merlin 128 User's Manual Beginner'sGuide

The rest of the information presented should explain itself. The total errors encountered in
the source code was zero, and 49 lytes of objed code (count of bytes following the
addresses) was generated.

SAVING AND RUNNING PROGRAMS

Thefinal step in using Merlin 128is runnng the program. It is always a good ideato save
the source code and objed code before testing any program. Then, if the program bombs or
hangs up, you'll be &le to go badk to your listing without having lost your work to that
point. To do this, you will have to return to the Main Menu, and use the SAVE SOURCE
command. Y ou would then follow that with an OBJECT CODE SAVE. Note that OBJECT
CODE SAVE can only be done if there has been a successful assembly.

Here aethe adual stepsto follow:

1. Withthe"' prompt, type'Q and pressRETURN. The system will quit the EDITOR
mode and revert to Main Menu. If the Merlin 128 system disk is gill in the drive,
remove it and insert aninitialized work disk.

After the '%' prompt, type 'S (the Main Menu SAVE SOURCE FILE command).
The system is now waiting for afilename. Type 'demol’, and press RETURN.
After the program has been saved, the prompt returns.

2. Type'C (CATALOG) and look at the disk caalog. The source code has been saved
asafiletitled "demol .s'. The suffix “.s" is afile-labeling convention which
indicaes the subjed file is urce mde. This auffix isautomatically appended to
the name by the SAVE SOURCE command.

3. PressRETURN to return to Main Menu and type '0', for OBJECT CODE SAVE.
The objed file should be saved under the same name as was ealier specified for
the sourcefile, so pressRETURN to accept 'demo 1' as the objed name. There is
no danger of overwriting the sourcefile because the suffix ".0" is appended to
objed code file names. Type 'C' (CATALOG) to verify that the object code has
been saved as afiletitled "demo 1.0". PressRETURN to return to the Main Menu.

When looking at the Main Menu, you'll also noticethat the aldressand length of
your source code text is displayed. If you have done asuccessful assembly, the
addressand length of the assembled objed code is also displayed. If the object
code information isNOT DISALAYED, Merlin 128will not let you save an objed
fileto disk. The objed code save is disabled whenever an error has occurred during
an assembly, you have made achange to the source code and not yet re-assembled
it, or the source code s either too big to fit or not allowed in the space you have
specified for the asembly. Seethe sedions on ORG, OBJ and Memory Allocaion
if this latter problem occurs.

Page 10

Merlin 128 User's Manual Beginner'sGuide

Next type 'G' (GO) to run a program. At the prompt, type 'demol’. The demonstration
program puts the message 'Press Return to Exit' on the screen. It works!

Now you can return to the Main Menu by pressing RETURN. (All assembly language
programsthat end in an RTS, and that are run using Merlin 128's'G' command in the
Main Menu will return to the Main Menu when done.)

MAKING BACK-UP COPIESOF MERLIN 128

The Merlin 128diskette is unprotected and copies may be made using any copy utility. The
Merlin 128diskette has a wpy program on it. The COPY program must be run from
BASIC. From the Main Menu, type 'B' to qut to BASIC, then type RUN "COPY".

It is highly recommended that you use only the BACK-UP copy of Merlin 128in your daily
work, and keep the original in a safe place

PERSONALIZING MERLIN 128

Certain aspects of Merlin 128 such as the badkground, border and charader colors, the
printer line width, default tab positions for the fields in the source listing, etc. can be
customized by changing the file PARMS.S on the Merlin 128disk, and reassembling the
PARMS.O file. If you would like to change any of these defaults of Merlin 128 seethe
seaion on Configuration in the Technica Information sedion of this manual for details on
making the dhanges. For now, though, we recommend you leave well enough alone until
you're more familiar with Merlin 128

THE REST OF THISMANUAL...

The precaling section was a simple look a how to enter, assemble and then save aMerlin
128 pogram.

The remainder of this manual is an encyclopedic reference of the various commands that are
available within Merlin 128to make writing an assembly language program esasier.
Remember that the commands and directives available within Merlin 128 are merely the
building Hocks from which you can creae your own programs. It isupto you to deade
when and where they are to be used.

The manual describes the following aspeds of Merlin 128

1) TheMain Menu: Thislevel of Merlin 128is used for loading and saving files, disk
operations, and entering the Editor/Asembler.

Page 11

Merlin 128 User's Manual Beginner'sGuide

2) The Editor: This sdion describes the functions available for creaing and editing a
sourcelisting for an asseembly language program.

3) The Assmbler: This ®dion covers assembler diredives within Merlin 128 Remember
that these ae not editing or dired user commands, but rather, text commands included
within a sourcelisting to tell the assembler to do something spedal while your program is
being assembled. This might include using a Maao definition, writing a file to disk, or other
functions,

4) Supplemental Sedions: There ae anumber of additional sedions in this manual that
describe the use of Maaos, the Relocaing Linker, Error Messages, Sourceror and ather
Utilities, and many other aspeds of Merlin 128's operation. These @an be consulted as
necessary.

Page 12

Merlin 128 User's Manual Main Menu

THE MAIN MENU

The Main Menu is used for file maintenance operations sich as loading or saving code or
caaoging the disk. The following sections siImmarize eatt command available in this
mode.

C (CATALOG)

When you press"C", the CATALOG of the aurrent diskette will be shown. The Main Menu
prompt (%) appeas. This permits you to give arother Main Menu command suchas‘L’ to
LOAD SOURCE while the cdalog is gill on the screen. If you do not want to gve a
command, just presSRETURN. Pressthe spacebar to pause the cdalog process and any
other key to resume. Pressthe Rur/Stop key (or Control-C) to abort the ctalog.

L (LOAD SOURCE)

Thisisused to load a sourcefile from disk. You will be prompted for the name of the file.
Y ou should not append ".s" since Merlin 128 aes this automatically. If you have pressed
‘L’ by mistake, just pressRun/Stop/Restore and the cmmand will be ancelled without
effeding any file that may be in memory.

After aLOAD SOURCE (or APPEND SOURCE) command, you are aitomatically placel
in the elitor mode, just asif you had pressed 'E'. The sourcewill automatically be loaded to
the correct address Subsequent LOAD SOURCE or SAVE SOURCE commands wil |
display the last used filename. If a sourcefile had already been loaded, the airsor will be
flashing under the first charader of the filename. If you pressRETURN, the aurrent
filename will be used for the command. If you wish to load a different filename, type the
filename and pressSRETURN.

S (SAVE SOURCE)

Use thisto save asourcefileto disk. Asin the load command, you do not include the suffix
".s" and you can pressRun/Stop/Restore to cancel the mmmand. NOTE: the addressand
length of the sourcefile ae shown on the MENU, and are for information only. Y ou should
not use these for saving; the asembler remembers them better than you can and sends them
automatically. Asinthe LOAD SOURCE command above, the last loaded or saved
filename will be displayed and you may press RETURN to save the same filename, or enter
another filename.

NOTE: when a SAVE or WRITE is done from the Main Menu, or when the SAV opcodeis
used in the source code, an error will result if the file already exists on the

Page 13

Merlin 128 User's Manual Main Menu

diskette. This can be avoided by precealing the filename with '@:' or '@0:". The new fileis
saved before the old file is cratched, thus there must be enough room on the diskette for the
new file.

This syntax may also be used for aLOAD but it has no effed other than to make the '@:'a
part of the default filename.

A (APPEND FILE)

This loads in a specified sourcefile and places it at the end of the file arrently in memory.
It operates in the same way as the LOAD SOURCE command, and does not affed the
default file name. It does not save the gpended file; you are freeto do that if you wish.

N (NEW SOURCE)

This command, after confirming your intention, deletes the aurrent sourcefile from memory.
This is handy when used prior to a READ command, since READ always appends the file to
the existing source @de, if any.

R (READ TEXT FILE)

This command reads text files into Merlin 128 They are always appended to the aurrent
buffer. To clear the buffer and start fresh, use the NEW SOURCE command. If no fileisin
memory, the name given will become the default filename. Appended reads will not do this.

When the rea is complete, you are placal in the ditor. If the file mntains lines longer than
255 charaders, these will be divided into two or more lines by the READ command. The
file will be read only until it reaches HIMEM, and will produce amemory error if it goes
beyond. Only the data read to that point will remain.

The READ TEXT FILE and WRITE TEXT FILE commands are used to LOAD or
CREATE "PUT" files, or to accessfiles from other asseemblers or text editors.

W (WRITE TEXT FILE)

ThiswritesaMerlin 128file into atext file insteal of a binary file. The WRITE command

does not delete or scratch first. Seethe CAUTION in the SAVE command regarding the'@:'
syntax.

Page 14

Merlin 128 User's Manual Main Menu

D (DRIVE CHANGE)

When you press‘D’, the ‘New Drive # prompt will appea. Enter the desired number. The
currently seleded drive number is shown on the Main Menu. When Merlin 128is first
booted, the selected drive will be the on used by the boot.

E (ENTER EDITOR/ASEMBLER)

This command places you in the Editor/Assembler mode. It automatically sets the default
tabs for the alitor to those gpropriate for sourcefiles. If you wish to use the editor to edit
an ordinary text file, you can type TABS from the wlon prompt (:) in the Editor to zero all
tabs.

0 (SAVE OBJECT CODE)

Thiscommand is valid only after the successful assembly of a sourcefile. In this case you
will seethe addressand length of the objed code on the menu. Aswith the source aldress
thisis given for information only.

NOTE: the objed addressshown is that of the program's ORG (or $80@ by default) and not
that of the adual current location of the asembled code (which is ordinarily $AOOQin
bank 1).

When using this command, you are asked for aname for the objed file. A '.0" suffix will be
automatically appended to this filename. Thus, you can safely use the same name & that of
the sourcefile.

When this objed code is saved to the disk, its addresswill be the @rrect one, the one shown
on the Main Menu. When later you LOAD it, the file will load at that address which can be
anything ($1C00,$800Q etc).

G (RUN PROGRAM)

This command will LOAD and EXECUTE the specified objed file. It will not runaBASIC
program. The specified objed file must have a'.o' suffix. It is not necessary to include the
suffix when entering the filename. Therefore, pressing 'G' and entering filename' and
pressing RETURN will LOAD and EXECUTE the objed file clled ‘filename.o'.

The'G' command will run a program anywhere in RAM 0. It enters with the RAMHALF
configuration unless the program extends to $CO00or beyond. The program will be in
conflict with Merlin 128if the load addressis between $1C00 and $6~FF. In this case,
Merlin 128will move itself into RAM 1 at $A000and place asmall i nterface routine &
$800before loading your program. When your program does

Page 15

Merlin 128 User's Manual Main Menu

an RTS, Merlin 128will move itself bad. You can also returnto Merlin 128with a IMP
$80Q While Merlin 128is moved to $A000, pressing Reset will cause areboot.
X (DISK COMMAND)
This snds the ommand to the "Error Channel. Examples of intended use ae:

X thenV will do adisk verify.

X then S:FILE.O will scratch “FILE.O”.

X then R:NEWFILE.S = OLDFILE.S will rename OLDFILE.S.
NOTE: the.Sor .O, if any, must be entered here, and that quotes sould not be used. Also,
to prevent unintentional initialization, the N (New) command is not supported.
M (MONITOR)
This command wses the CBM monitor program. Y ou can use all of the standard CBM
Monitor feaures. Press‘ X’ to return to the Merlin 128 Main Menu. This command should
not be cnfused with the MON command in the Merlin 128 Editor.
B (BASIC)
After confirming your intention to qut, thiscommand exits Merlin 128and goesto
BASIC. Merlin 128moves itself to $A000in RAM 1. The default Function Key
definitions are reinstated except for the F4 key, which becomes a Return to Merlin
128 (SY S 2048 command.
Pressing F4 to re-enter Merlin 128is provided for safety. In fad, the sourcefile, if any, may
still be intad. It is possible, however, that a BASIC program could overwrite the re-entry
routine & $800. Therefore, the F4 method of returning to should be used with caution. The

recommended re-entry method isto pressthe Reset button to reboct.

Note: When inside Merlin 128 pessing the Reset button initializes the 1/O devices and
returns to the Main Menu. It does not go to BASIC or reboat.

Page 16

Merlin 128 User’s M anual The Editor

THE EDITOR

Basically there ae two modes in the Editor: the Immediate Mode and the full screen Editing
Mode, which includes Adding or Inserting new lines of text.

When you first go to the Editor from the Main Menu, you will be in the Immediate Mode,
which isindicated by the wlon (":") prompt. No adual editing isdone & this level. Rather,
you can either type a @mmand which will start up the full screen editor, or you may use a
number of specific Immediate Mode commands, which are of a general utility nature, such
asto print alisting, asemble afile, convert number types, etc.

When you type an editing command such as A (to Add), etc. from the Immediate Mode, the
color prompt will disappea and the screen display will change to the full screen editor, but
more on that in a moment.

ABOUT THE EDITOR DOCUMENTATION

For ead of the mmmands available in the Merlin 128 Editor, the documentation consists of
threebasic parts:

1) the name and syntax of the cdmmand,
2) examples of the use of each avail able syntax,
3) adescription of the function of each command.

When the syntax for each command is given:
PARENTHESES () indicate arequired value,

ANGLE BRACKETS <> indicate an optional value or charader.
SQUARE BRACKETS] are used to enclose ammments about the command.

Page 17

Merlin 128 User's Manual The Editor

THE IMM EDIATE MODE

GENERAL GUIDELINESFOR THE IMM EDIATE MODE
For most of the Immediate Mode commands, only the first letter of the command is
required, the rest being optional. This manual will show the required command charadersin
UPPFER case and the optional ones in lower case.
Line Numbersin Immediate M ode
With some commands, you must specify aline number, arange of line numbers, or arange
list. A line number isjust anumber. A rangeisapair of line numbers separated by a mmma.
A range list consists of several ranges separated by a slash (“/”).
Line Number examples:

10 LINE # [asingle line number]

10,30 RANGE [the range of lines 10to 30]

10,30/50,60 RANGELIST [ranges10to 30 AND 50to 64
If aline number in arange exceals the number of the last line in the source, the alitor
automaticall y adjusts the specified line to the last line number. For example, if you wanted
to Delete dl the lines past 100in a sourcelisting, D100,9999would probably do it!
Delimited Strings (or d-strings)
Several commands allow specification of a string. The string must be "delimited" by a non-
numeric charader other than the slash or comma. Such a delimited string is called a d-string.
The usual delimiter is single or double quote marks (* or").

Delimited string examples:

'‘thisis a delimited string'
"thisis adelimited string" @this is another d-string@

Note that the slash"/" cannot be used as a delimiter sinceit isthe charader that delimits
range listsin the ditor.

Page 18

Merlin 128 User's Manual The Editor

Wild Card Charactersin Delimited Strings

For all of the cmmmands that use delimited strings (d-strings), the “~” charader actsasa
wild card charader. Therefore, the d-string “Jons’ is equivalent to the d-string "Jones' as
well as"Jonas".

Upper and Lower Case Control

The shift and caps lock keys work as you would exped. while eiting or entering a line of
text, there ae dso special upper/lower case cmmands available, as will be described later.

Page 19

Merlin 128 User's Manual The Editor

ADD/INSERT COMM ANDS

Following are the commands recognized by Merlin 128 in the Immediate Mode of the
Editor. The Immediate Mode is indicated by the wlon prompt ().

Add/Insert aLine

When you first start alisting, the Add command is used to start entering lines. It can also be
used later to add linesto the end of the listing. Insert is used to insert new linesin between
existing lines in the source listing.

Add
A [only option for this command]

The Add command places you in the Full Screen Editor at the end of the existing source
listing (if any). Adding lines is much like entering additional BASIC lines with auto line
numbering. To exit from ADD mode (adually to exit the Full Screen Editor), pressc= and

— .

Y ou may enter an empty line by pressng RETURN. This is useful for visually blocking
off different parts of a listing.
Insert

Insert (line number)
| 20 [inserts lines "above" line 20

This allows you to enter text just above the specified line. Otherwise, it functions the same
as the Add command.

EDITING AN EXISTING LINE IN A SOURCE LISTING...

Once aline already exists in your Sourcelisting, you may want to edit a particular line or

range of lines. Thisis done using the airsor control and editing commands of the Full
Screen Editor, asis described shortly.

Page 20

Merlin 128 User's Manual The Editor

FULL SCREEN EDITOR COMM ANDS

After typing E and a line number or string in the Immediate Mode of the Editor, you are
placal in the Full Screen Editor. The line specified is placal at the center of the screen with
the aursor on itsfirst charader.

At the upper right hand corner of the screen, the number of the line containing the aursor is
printed. Somewhat to the left of this you may see avertical bar. This bar isthe End-of-Line
Marker and it indicates the position at which an assembly listing will overflow the printer
line. You can put charaders beyond this mark, but they should be for information only, and
will not be printed within a printer listing. The position of the mark is calculated using the
line length parameter in the PARMS (seethe Tednical Information sedion) file. If thisis
very large, the mark will not be shown.

Thelineistabbed asit isinthe listing, and the arsor will jJump aaossthe tabs as you move
it with the arow keys.

The Edit mode commands are divided into two types. Control key commands which are line
oriented, and Commodore key commands which are global. (i.e., entire listing-oriented).
The control key commands edit text and move the aursor on just the line the airsor is
presently on. Use the Commodore key commands to make changes to groups of lines, or to
move about in the listing. All editing commands work whether the Full Screen Editor was
started up using the Add, Insert or Edit commands. When you are through editing, pressc=
and - at the sametime. The line is accepted as it appeas on the screen, no matter where the
cursor is when you exit the Edit mode.

To get the most out of the Merlin 128Full Screen Editor, you should kegy in mind that a full
screen editor is like aword processor. That is, any charader you type isimmediately entered
into whatever line the aursor ison.

With the Merlin 128Full Screen Editor, if you can seeit on the screen, you can edit it, and
moving to aline is a simple matter of using the arow keys or other special commands to
move to the part of the listing you want to edit. Just remember, when you are using the Full
Screen Editor, think of yourself as using aword processor where you can freely scroll to
whatever part of the page you want to edit, and the final "document™ is just your source
listing.

Page 21

Merlin 128 User's Manual The Editor

Control Key Commands (Line oriented)
Control-A (delete all)
Deletes al charaders from the aursor to the end of the line.
Control-B (beginning of line)
Moves the airsor to the beginning of the line.
Control-D (delete)
Deletesthe darader under the aursor. (See &so the DElete key)
Control-E (memory status)

This command displays a status box showing the number freeand used bytes, and the
length of the clipboard, if any.

Control-F (find)

Finds the next occurrence of the dharader typed after the CTRL-F. The aursor changes to
an inverse 'F' to indicate the Find Mode. To move the aursor to the next occurrence on the
line, pressthe dharader key again.

Control-I (togde aursor)

Toggdesthe airsor mode between the insert cursor (inverse'l’) and overstrike airsor
(inverse block). The insert mode of the aursor should not be mnfused with entering the
Full Screen Editor using the Add and Insert commands. The aursor can be in the insert
mode regardlessof whether lines are being added or inserted. The insert mode of the
cursor refers only to whether individual charaders are being inserted (inverse 'l' cursor) or
typed over (inverse block).

The charader insert mode defaults to ON upon entry. When you change it with the TAB,
INST, or Control-I, it remains that way until changed again. Thus, moving from one line
to another has no effed on this gatus.
The statusis indicated by the type of cursor displayed. It isan inverse'l' when insert mode
isadive, and an inverse block when the overstrike mode is adive. (The aursor isan
inverse 'F when you are in find mode.)

Control-K (character case change)

This command changes the cae of the charader under the aursor.

Page 22

Merlin 128 User's Manual The Editor

Control-L (lower case mnvert)
Ordinarily, unlessthe arsor isina comment or an ASCII string, lower case dharaders
will be mnverted to UPPER CASE charaders. Thisis also defeaed when the tabs are
zeroed. To override this conversion, or to reinstate it, just use the Control-L command.
This conversion isalso in effed when you use the c= F, c= W, or C= L find commands to
specify the text to find.

Control-N (end of line)
Moves the airsor to the end of the line.

Control-O (other characters)
Thiskey is used as a special 'prefix’ key That is, if you wanted to type aControl-N, for
example, as part of aline, the Editor would treat the Control-N asa owmmand key, rather
than entering it on the line you were dliting. Likewise, you might want to type the
ESCAPE key as part of aPRTR initialization string. To enter any charader on aline, just
pressControl-O first, then immediately follow with your desired control charader. The
control character will appear either in inverse, or for ESCAPE and certain other keys, asa
Commodore graphics charader. For multiple control charaders, Control-O will have to be
typed once eah time before e@h charader is entered.

Control-R (restore)
This command restoresthe original line. For example, if you have used CTRL-A to delete
all charadersto the end of the line, you can pressCTRL-R to undo the dfeds of the
CTRL-A command.

Control-W (find word)

This command jumps the aursor to the next occurrence of aword in the line
(alphanumeric).

Control-X (cancd global exchange)

This command can be used to cancel any global exchange while it isin progress
Cursor keys

The aursor (4-diredional) keys move the aursor in the specified dredion.
DEL (delete key)

Deletesthe dharader to the left of the aursor. (See dso Control-D).

Page 23

Merlin 128 User's Manual The Editor

ESC (Escape key)

This command moves the aursor to the beginning of the next line. Thisis similar to Return
except that ESCape does not insert a blank line.

HOME (Home key)

Pressing the Home key on any line causes that line number to be remembered when the C=
HOM E command is used.

INST (togde airsor)

Togdlesthe airsor mode between the insert cursor (inverse'l') and overstrike aursor
(inverse block).

Moving from one line to another has no effed on the status of the aursor; it only changes
when toggled with CTRL-I, INST or TAB.

RETURN

Pressing Return anywhere in the line caises the aursor to move to the beginning of the
next line and insert ablank line.

TAB

Toggdles the aursor mode between the insert cursor (inverse'l') and overstrike aursor
(inverse block).

Moving from one line to another has no effed on the status of the airsor; it only changes
when toggled with CTRL-I, INST or TAB.

Page 24

Merlin 128 User's Manual The Editor

Commodore Key Commands (Entirelisting oriented)

In addition to the line-oriented commands (control key commands), the Full Screen Editor
uses Commodore key commands to move within the listing, and to edit entire lines of text.
These ommands are & follows:

Cc= A (sded all text)

This command seleds all text to be at fromthe arrent line to the end of the listing. c=C
will then copy the seleded text, (C= X will cut the text), while pressing any other key will
cancel the selection.

Thistednigue @n be used to move the entire listing to the dipboard.

C= B (beginning of source)

This command moves to the beginning of the sourcelisting and places the aursor on the
eleventh line.

c= C (copy)

C= C dartsthe seled mode to “cut” or “copy” text. Thefirst time C= C is pres=d, the
current line is €leded and is shown in inverse. Use the down cursor or ESCape keysto
extend the seledion if desired, or pressany other key to cancel the seledion. Additional
seleded lines are shown in inverse. Use the up arrow key to adjust the range seleded if
you go too far, however, the seled mode will be canceled if you move the arsor above
the first selected line or past the top of the screen.

The second time C= C is pressd, or if C= A has alrealy been pressd, a @mpy is made of
the seleded text from the listing and is placed on the clipboard. If you want to cut the text
from the listing, type C= X. The seleded lines will disappear from the screen and are
placed on the clipboard.

If you are unfamiliar with the ideaof a"clipboard", thisisjust an analogy to how you
might put pieceof paper clipped from a magazne, letter, etc. on a dipboard, to hold it
temporarily while you were getting ready to put it in its final locaion. In the Commodore
128, the clipboard just refers to amemory buffer that holds the text you have seleded
while you decide where you want the final text placed.

Page 25

Merlin 128 User's Manual The Editor

C= D (delete arrent line)

This command celetes the aurrent line (C= DEL will delete the line above the arsor) and
placesit in aspecial 'undo' buffer which is independent of the dipboard.

The c= R command exchanges the airrent line with the contents of the 'undo’ buffer.
Therefore, to move asingle line to another location, you could placethe airsor onthe line
to be moved, and then type C= D to delete the line. Then move the aursor to another line,
pressSRETURN, C=1, or C= TAB to create an empty line, and press C= R to replacethat
line with the deleted line.

C= E (global exchange) (also called 'Find & Replace)

Sometimes called 'Find & Replace', this command will let you search for a group of
words, and replacethem with another. The C= E command opens a dialog box that asks
for the text to change, and the new text to replaceit. If you pressRETURN aone (a blank
entry) for either of these, the command is aborted.

If you enter the text in both fields and presSRETURN, the file is then searched for the
change text. Unlike the FIND command, it looks only for full words. That is, the text
found must be bounded by non-alphanumeric charadersor it will be ignored.

If text is found with this method, the screen is reprinted with the replacement made and
the arsor is placed on the first charader of the replacement. Now you must pressakey to
continue. Pressing RETURN (or most any other control charader) will defea the dnange
and the routine will look for the next occurrence of the text to change. Pressing the space
bar or any other charader (except 'A") will accept the dhange and the routine will
continue.

You can bad out of the global exchange while the airsor ison an entry by pressing either
ESCape or Control-X. You can also type the ‘A" key, which will cause all occurrencesto
be changed. Caution: this can be @orted only by RUN/STOP or RESET.

Y ou can tell when the routine is finished by the fad that during the exchange sequence,
the line number at the top right is misgng. It will return when there ae no more matches
for the dhange text, or when you presseSCape or Control-X.

Page 26

Merlin 128 User's Manual The Editor

C=F (find text)

The c= F command opens awindow which asks for the find text. It then finds the first
occurrence of the text in the entire text file. The text can be anywhere on aline. After the
first find, you can find the next occurrence by typing another c= F. The find mode is
indicated by the inverse 'F' at the top right of the screen. Y ou can edit the line and then
type C= F to go to the next occurrence

If there ae more occurrences to be found, one or more '+' signs wil | be shown rext to the
line number at the top right of the screen. This garts from the line below the arrent line,
and only indicaes the number of lines remaining with occurrences, and not the total
number of occurrences.

If the C= F command is used after text has been seleded, only the selected text will be
seached for the text to be found. When the seach has been completed, the text is no
longer seleded. Thus, you can use the C= A and c= C commands to seach just a portion
of your listing.

The c= B command and the Control-E status command both cancel the Find mode, as
does failure to find the text below the aurrent line.

The c= W command is identical to C= F except that it finds only whole words bounded by
non-alphanumeric charaders. If you type either C= W or C= F to find the next occurrence,
this mode will change acordingly.
In all casesthe line containing the text is moved to the ceanter of the screen, unlessit is
within the first 10 lines of the start of the source

C=H (half screen)
This command toggles the split or half screen mode. In this mode, the bottom ten lines are
frozen inawindow. A bar is shown above these lines to separate the frozen text from the
scroll window. Pressing C= H again will cancd the half screen mode and refresh the
screen.

C=1 (insert line)

Pressing Cc=1 or c= TAB will insert ablank line & the airsor.

C=L (locate label or line)

This command will locate the first occurrence of alabel or any text in the label column.
Only the dharaderstyped are compared with the labels, so in some @ses you may want to
end your input with a space

Page 27

Merlin 128 User's Manud The Editor

If anumber is entered after this command, the aursor will move to the beginning of line
number specified. Thisis particularly handy when editing a sourcefile from a printed
listing.

The c= L command asks for alabel or any text to locate. It finds the first occurrence of
that text in the file, but only in the label column. Only the charaders typed are cmmpared
with the labels, so in some @ses you may wish to end your input with a space

The intended use for this command isto move rapidly to a particular place in the source
You can use aeae your own 'markers to enhancethe cgability of this command.

Therefore, if aline starts *7', you can specify * 7' as the text to find for this command and
it will work.

If you type anumber for the label in an c= L command, you will be sent to that line
number. This is convenient when editing a sourcefile using a printed listing.

In all casesthe line containing the text is moved to the canter of the screen, unlessit is
within the first 10 lines of the start of the source

C= N (end of source)

This command moves the aursor to the end of the sourcelisting.

C= P (paste)
Pastes the contents of the clipboard at the line wntaining the airsor. Only full lines are
moved. Using this command does not change the contents of the dipboard, so this
command can be used to replicate arange of lines.

If the c= P paste command is issued when a range of text has been seleded, the range will
be replacal by the text in the clipboard. Text deleted in this manner is not recoverable.

C=Q (quit)

This command quits the Full Screen Editor and goesto the Main Menu. (Does not work in
Editor Immediate Mode —use ‘Q’).

C= R (replace) (Seealso c= D)

This command exchanges the aurrent line with the cntents of the 'undo’ buffer.
Therefore, pressing c= R aseoond time will cancel the effed of the first press

Page 28

Merlin 128 User's Manual The Editor

Using C= R when the airsor ison blank line will placethe mntents of the undo’ buffer on
the line and placethe empty line in the 'undo’ buffer.

The c= R command can ke used to move asingle line. Placethe aursor at the beginning
of the line to be moved and pressC= R. Move the aursor to the desired locaion, press
RETURN to insert ablank line, and pressCc= R again.

C=R can be used by itself to easly interchange two lines. Just placethe aursor on the first
line, press~R, move the aursor to the second line, pressC= R again, move the airsor back
to where the first line was and press C= R for the third, and final, time.

c=W (find word)

The c= W command is identical to C= F except that it finds only whole words bounded by
non- alphanumeric charaders. If you type either C= W or C= F to find the next
occurrence, this mode will change acordingly.

If the c= W command is used after text has been selected, only the selected text will be
seached for the word to be found. When the seach has been completed, the text isno
longer seleded.

C= X (cut highlighted text)

Similar to c= C, but seleded text is removed from the screen after being copied to the
clipboard. Thisisin contrast to C= C which leaves the original text on the screen after
copying to the clipboard. One use of this command isto use £B, then C= A to seled
everything from the beginning of the file to the end. c= X will then cut it; anything else
will cancel the seled mode. This provides a simple means of moving the antire file to the
clipboard.

C=Z (reprint screen)
This command reprints the screen so that the aurrent line becomes the eleventh line on the
screen.

C= Up cursor (move up one page)
Moves the aursor up one page. The C= Up cursor and C= Down cursor commands move

up or down one page & atime. Thisis approximately equivalent to two C= Left or C=
Right cursor commands.

Page 29

Merlin 128 User's Manual The Editor

C= Down cursor (move down one page)

Moves the airsor down one page.

C= Left cursor (move half-screen up)
Moves the airsor up 10 lines; that line then beames the eleventh line on the
screen. This command has the effed of moving the arrent line to the bottom of the
screen and then moving the airsor to what was the 1t line on the screen.

C= Right cursor (move half-screen down)
Moves the airsor down 10lines; that line then becomes the eleventh line on the
screen. This command has the effed of moving the airrent line to the top of the screen
and then moving the arsor to what was the bottom line on the screen.

C=* (asterisk)

Produces aline of 32 asterisks.

Cc=1 (Vertical arrow)
Produces an asterisk, 30 spaces, and then another asterisk. Thisand the €= *
command can be used to produce alarge box for titles and other information.
C= - (hyphen)

Produces aline of 1 asterisk and 31 typhens.

C= (equal sign)

Produces aline of 1 asterisk and 31equal signs.

C= ~(Horizontal arrow)

Quits the Full Screen Editor to the Editor Immediate Mode. The clon prompt (:) appeas
at the bottom of the screen to indicate that the Editor is now in the Immediate Mode.

Page 30

Merlin 128 User's Manual The Editor

c= DEL (delete)

This command celetes the line above the cursor and placesit in a special 'undo’
buffer which is independent of the clipboard.

The c= R command replaces the aurrent line with the cntents of the 'undo’ buffer.
Therefore, you could use C= DEL to delete aline, move the aursor to another line, press
RETURN, Cc=1, or cC= TAB toinsert aline, and press C= R to replacethat line with the
deleted line.

c=HOME

Go to the line used for the last CTRL-HOME.

C=TAB (insert line)

Pressing c= TAB or c=| will insert ablank line & the airsor.

The Editor'sHandling o Strings and
Commentswith Spaces

When entering strings or comments in the Add/I nsert or Edit modes, you will sometimes
find the eitor apparently inserting additional spaces. Thisis only adisplay function,
however, and the alitor will remove the alded spaces when the line is terminated.

Inthe cae of ASCII strings, the restoration is only done when the delimiter isaquae (")or
asingle quae (). You can, however, acomplish the same thing by editing the line,
replacing the first delimiter with aquae, pressing the down arrow once, then pressthe up
arrow once The spaces will be removed and then you can then edit the line and change the
delimiter badk to the desired one.

Another approad, especially where an exad number of spaces or other exad formatting of
the text is neaessary, is to turn off the tab formatting by typing TABS' in the Immediate
mode. Thiswill stop all automatic tabbing by the Editor. Tabs are aitomaticdly restored by
going to the Main Menu, and then returning to the Editor.

Page 31

Merlin 128 User's Manual

The Editor

EDITOR COMM AND SUMMARY

CONTROL KEY COMMANDS (line oriented)

The Control Key commands consist of cursor moves and line oriented commands.

Control-A
Control-B
Control-D
Control-E
Control-F
Control-I
Control-L
Control-K
Control-N
Control-O
Control-R
Control-W
Control-X

Cursor keys
DEL -

TAB -

Deletes charadersto end of line

Moves cursor to beginning of line

Deletes charader under the aursor
Displays memory status window

Finds next occurrence of next charader typed
Togdes insert and overstrike aursor
Togdles lower case mnversion

Changes case of charader under cursor
Moves cursor to end of line

Prefix key for typing control charaders
Retrieves original line

Finds next occurrence of word in line
Cancels global exchange while in progress
Moves the airsor

Deletes charader to left of cursor

Moves cursor to beginning of next line
Remembers line for recall by c= HOME
Togdles insert and overstrike aursor
Moves cursor down and inserts blank line
Togdles insert and overstrike aursor

COMMODORE KEY COMMANDS (entirelisting ariented)

The Commodore Key commands are global commands, which means they are generall y
oriented to the whole listing as opposed to just the aurrent line (or asingle dharader).

oNeNoNeoNoNeNoNoNoNoNe
TZr T ITMOO®>

Seledstext for cut from line to end of file
Moves to beginning. Cursor on eleventh line
Start text seledion/Copy selected text to clipboard
Deletes line and placesit in undo' buffer
Global exchange (Seach & Replacg

Finds next occurrence of text entered
Toggles half-screen mode

Inserts blank line & cursor

Finds first occurrence of label or line

Moves cursor to end of listing

Pastes contents of clipboard on current line

Page 32

Merlin 128 User's Manual The Editor

C=Q - Quits editor and returnsto Main Menu

C=R - Exchanges current line with 'undo buffer
C=W e Finds next occurrence of whole word

C=X e Cut selected text to clipboard

C=2Z e Current line becomes eleventh line on screen
c=Up - Moves cursor up one page

c=Down ----------- Moves cursor down on page

C=Left - Moves cursor up 10 lines

c=Right ----------- Moves cursor down 10 lines

c=DEL - Deletes line above cursor; putsin ‘undo’ buffer
c=HOME ----------- Goesto line of last CTRL-HOME

c=TAB - Insertsablank line & cursor

C=1 =mmmmmmmmmmeee- Produces1 *, 30 spaces, and 1 *

C=%* oo Produces aline of 32 asterisks

C=- - Producesalineof 1 * and 31 typhens

C== e Producesalineof 1 * and 31equal signs

C= « —mmmmmmmmmmeee- Returns editor to Immediate Mode

GENERAL REMARKS

When you move the airsor between lines, its horizontal position will jump around. Thisis
because it is based on the actual position in the line and not on the screen position. If the
tabs are zeoed you will not notice this, except for the fad that the aursor is never beyond
the last charader inthe line.

The maximum line length is 80 charaders. Lines longer than that will be truncated | F they
are dited.

Y ou must return to the Immediate Mode (C=) in order to usethe ASM command to
asemble, MON to use the Merlin 128 Monitor, or to Quit and goto the Main Menu, etc. An
asembly will delete the contents of the clipboard.

ALTKEYSAND KEYDEFS

ALTKEY S and KEYDEFS are sourcefiles that contain the ALT key maaos and the
Function Key definitions used by Merlin 128 Y ou can add your own macros or definitions
or edit the existing ones. Both of these programs discussed in detail, including command
charts, in the sedion called Utilities.

OOPS

Virtually any editor action can he undone. Y ou should remember that the proper undo
command is of the same 'type’ as the cmmmand you want to undo. Thus, any Control

Page 33

Merlin 128 User's Manual The Editor

key command is undone by Control-R. Thisincludesthe C= *, C= -, and C= = commands
which are onsidered line oriented commands for this purpose.

The line deletion commands C= D and C= DEL are undone by creaing an empty line with
Cc=TAB followed by c= R. If you forget to creae the empty line, type another C= R and
reped the aove procedure.

The c= R command undoes itself.

A CUT (c= X) isundone by a PASTE (c= P) without moving the aursor off its line.

If you are entering a line of text in response to a prompt, such as afilename, PRTR
initializaion, or dialog box, you can pressControl-C or Control-X to cancel the line.

Page 34

Merlin 128 User's Manual The Editor

MORE IMMEDIATE MODE COMMANDS

Merlin 128also has Immediate Mode Find and Change commands to alow you to list all
linesthat have a cetain opcode, label, etc. in them (Find); or to change all or some
occurrences of a cetain label or opcode to something different (Change).

F (Find)

Find (d-string)

Find (line number) <d-string>
Find (range) <d-string>

Find (range list) <d-string>

F"A String" [finds lines with " A String"]

F10"STRING" [finds"STRING" if in line 10

F 10,20 "HI" [finds lines in range of 10through 20that contain "HI"]
F 10,20/50,99 "HI" [finds lines that contain "HI" in range of 10 through 20

and 50through 99]

This command lists those lines containing the spedfied string. It is aborted with CTRL-C
or /' key.

FW (Find Word)

FW (d-string)

FW (line number) <d-string>
FW (range) <d-string>

FW (range list) <d-string>

FW "LABEL" [find all lineswith "LABEL"]
FW 20"LABEL" [trytofind'LABEL"in2Q
FW 20,30"PTR" [find all lines between 20 and 30that contain "PTR"]

FW 20,30/50,99"PTR" [find al lines between 20 and 30and between 50 and 99
that contain the word "PTR"]

Thisis an alternative to the FIND command. It will find the specified word only if it is
surrounded, in source, by non-alphanumeric charaaers.

Therefore, FW "CAT" will find:
CAT
CAT-1
(CAT X)

but will not find CATALOG or SCAT.

Page 35

Merlin 128 User's Manual The Editor

C (Change)

Change (d-string d-string)

Change (line number) <d-string d-string>
Change (range) <d-string d-string>
Change (range list) <d-string d-string>

C "hello"goodby [finds "hello" and if told to do so will change it to
“goodbye’]
C 50"hello"bye [changesin line 50 only]

C 50,100"Hello"BYE [changes lines 50 through 10Q
C 50,60/65,66 "AND"OR [changes in lines 50 through 60 and lines 65 and 64

This changes occurrences of the first string to the seaond string. The strings must have the
same delimiters. For example, to change occurrences of "speling” to "spelling’ throughout
the range 20,100, you would type C 20,100"speling'spelling. If no range is gecified the
entire sourcefile is used.

Before the dhange operation begins, you are asked whether you want to change "all" or
"some". If you select "some" by hitting the "'S" key, the eitor tops whenever the first
string is found and displays the line & it would appea with the dhange.

If you then pressthe"Y" key, the dhange will be made. If you pressRETURN, the cdhange
will not be made. Typing any control charader such as ESCAPE, RETURN or any others
will result in the dhange not being made. Any other key, suchas"Y" (or even"N") will
accept the cdhange. CTRL-C or"/" key will abort the dhange process

CW (Change word)

Change (d-string d-string)
Change (line numbers) <d-string d-string>
Change (range) <d-string d-string>
Change (range list) <d-string d-string>
CW "FTR"PRT [change all "FTR"sto "PRT"g]
CW 20"PTR"PRT [as above but only in line 20]
CW 20,30"PTR"PRT [dothe same asthe &ove but for lines 20 through 30|
CW 1,9/20,30 "PTR"PRT [same as above but include lines 1 through 9 in the range]

Thisworks smilar to the CHANGE command with the added features as described under
EW.

Page 36

Merlin 128 User's Manual The Editor

D (Delete)

Delete (line number)
Delete (range)
Delete (range list)
D10 [deletes line number 10
D 10,32 [deletes lines 10 through 32
D 20,30/10,12 [deletes ranges of lines 10 through 12 and 20through30]

This deletes the specified lines. Since, unlike BASIC, the line numbers are fictitious, they
change with any insertion or deletion. Therefore, when deleting several blocks of lines
at the same time, you MUST speafy the higher rangefirst for the wrred linesto be
deleted!

COPY

COPY (line number) TO (line number)
COPY (range) TO (line number)
COPY 10TO 20 [copies line 10to just before line 20]
COPY 10,20TO 30 [copies lines 10 through 20to just before line 30

This copies the line number or rangeto just ‘above’ the specified number. It does not
delete anything.

MOVE

MOVE (line number) TO (line number)
MOVE (range) TO (line number)
MOVE 10TO 20 [Move line 10to just before 20|
MOVE 10,20TO 30 [Move lines 10 through 20to just before line 30|

Thisisthe same a COPY but after copying, automatically deletes the original range. Y ou
always end upwith the same lines as before, but in a different order.

Page 37

Merlin 128 User's Manual The Editor

L (List)
List
List (line number)
List (range)
List (rangelist)
L [list entire file]
L20 [list line 20 only]
L 20,30 [list 20 through 30
L 20,30/40,42 [list 20 through 30 and then list lines 40 through 42]

Liststhe sourcefile with line numbers. Control charaders in source ae shown in inverse,
unlessthe listing is being sent to a printer or other nonstandard output device

The listing can be @orted by RUN/STOP, CTRL-C or with “/” key. Y ou may stop the
listing by pressng the spacebar and then advance aline & atime by pressing the space
bar again. By holding down the spacebar, the aito-repea feaure of the Commodore 128
will result in aslow listing. Any other key will resume the normal speed. This gacebar
tedhnique also works during assembly and the symbol table printout. Any other key will
restart it. This ace bar pause also works during assembly and the symbol table print ouit.

[period]
[only option for this command]

Lists garting from the beginning of the last specified range. For example, if you type "Li
0,100, lines 10to 100 will be listed. If you then use"."”, listing will start again at 10 and
continue until stopped (the end of the range is not remembered).

/ <line number>
/ [sarttolist at last line listed]
/50 [gart listing at line50]

This command continues the listing from the last line number listed, or, when aline
number is Pecified, from that line. This listing continues to the end of the file or until it is
stopped asin LIST.

Page 38

Merlin 128 User's Manual The Editor

OTHER IMM EDIATE MODE COMMANDS

TYPE (Type)

TYPE: FILENAME [display contents of atext file with line numbers]
TYPEL: FILENAME [display contents of atext file without line numbers]

This command will display the contents of any text file without loading it into memory.
Thisis handy for viewing another sourcefile without destroying the one in memory. It

works with both SEQ and PRG sourcefiles, but with a PRG file, the'.S' suffix must be
included. Do not use this command on files which are not text files.

This command lists the full file. The listing can ke paused by pressing the spacebar, or
aborted by pressng RUN/STOP or the '/* key.

P (Print)

Print
Print (line number)
Print (range)
Print (range list)
P [print entire fil €]
P50 [print line 50 only]
P50,100 [print lines 50 through 10Q
PI1,10/20,30 [print 1 through 10, then print lines 20 through 30

Thisisthe same & LIST except that line numbers are not added.

PRTR (Printer)

PRTR (command)
PRTR 2 [adivate printer 4n slot 1 with no printer string]
PRTR 2 "<CTRL-1>80N" [as above, but add Control-I80N to initialize the printer]
PRTR 2 ™PageTitle" [printer inslot 1, no init string, “Page Title” is the page
header]
PRTR [send formatted listing to screan]

This command is for sending a listing to a printer with page headers and provision for
page boundary skips. (Seethe sedion on Configuration for detail s on setting up default
parameters, also "TTL" in the Aseembler Sedion).

Page 39

Merlin 128 User's Manual The Editor

The entire syntax of thiscommand is:
PRTR slot# " (string) "<page header>"
If the page header is omitted, the header will consist of page numbers only.

The initialization string may not be omitted if a page header isto be used. If no special
string is required by the printer, use anull string of two quotes only, as in the example
showing "Page Title" (in which case a cariage return will be used).

No output is ent to the printer until aLIST, PRINT, or ASM command is issued.
TEXT
TEXT [only option for this command]

This converts all spacesin asourcefileto inverse spaces. The purpose of thisis for useon
word processing type "text" files 9 that it is not necessary to remember to zero the tabs
before printing such afile. This conversion has no effed on anything except the Editor's
tabulation.

FIX
FIX [only option for this command]

Thisundoesthe effed of TEXT. It also does a number of technical housekegoing chores.
It isrecommended that FIX be used on all sourcefiles from external sources that are being
converted to Merlin 128sourcefiles, after which the file should be saved.

NOTE: The TEXT and FIX routines are somewhat dow. Several minutes may be needed
for their exeaution on large files. FIX will truncae ay lines longer than 255 charaders.

VAL
VAL "expresson"
VAL "PTR [return value of label "PTR" |
VAL "LABEL" [givesthe aldress(or value) of LABEL for the last assembly
done or "unknown label" if not found.]
VAL "$10002" [returns $080Q
VAL "%1000 [returns $0009

Thiswill return the value of the expression as the assembler would compute it. All forms
of label and literal expressions valid for the assembler are valid for this command. Note
that labels will have the value given them in the most recent asembly.

Page 40

Merlin 128 User's Manual The Editor

Hex-DecConversion

128=$0080
$80=128

If you type adecimal number (positive or negative) in the immediate mode, the hex
equivalent isreturned. If you type ahex number, prefixed by "$", the decimal equivalent is
returned. All commands accet hex numbers.

GET
GET (obj adrs)
GET [put objed in RAMO at the aldress pecified in the sourcés
ORG]
GET $8000 [put objed at locaion $8000in RAMOQ]

This command is used to move the objed code, after an assembly, from its locaion in
RAM1 to its ORG locaion in RAMO. It isonly accepted if the move will not overwrite
the assembler and any sourcefile that may be in memory. If an addressis edfied, the
objed code will be moved to that location in RAMO. If the program’'s ORG address
conflicts with Merlin 128or a sourcefile in memory, a"RANGE ERROR" message is
displayed.

This command is supplied for convenience The recommended method for testing a
program is to save the source cele, save the object code, and then run the program from
BASIC or with the'G' command from the MAIN MENU.

NEW
NEW [only option for this command]

Deletes the present sourcefile in memory.

PORT

PORT (20r 4,5,6,7)
PORT 4 [can be used to send output to printer]

Seleds a printer in specified port for output, but does not format output as does PRTR.

NOTE: PORT is automatically turned off after an ASM command, but not after aLIST or
PRINT command. The PORT command can ke used to send an asembly listing to the
printer unformatted and without page bre&s. If formatting and page bre&s are desired,
use the PRTR command. Unlessyou have aspecific reason for using the PORT command,
PRTR isrecommended insteal.

Page 41

Merlin 128 User's Manual The Editor

USER
USER
USER 1 [example for use with XREF]
USER O: FILENAME [example for use with PRINTFILER]

This does a JSR to the routine & $B00. The routine & $B00 must begin witha CLD
instruction.

TABS
TABS <number><, number><,..> <"tab charader">
TABS [clea all tabs]
TABS 10,20 [set tabsto 10& 20
TABS 10,20™ [as above, spaceistab charader]

This ststhe tabs for the alitor, and has no effect on the assembler listing. Up to nine tabs
are possble. The default tab charader is a space, but any may be specified. The assembler
regards the space & the only acceptable tab charader for the separation of labels, opcodes,

and operands. If you dont specify the tab charader, then the last one used remains.
Entering TABS and aRETURN will set al tabsto zero.

LEN (Length)
LEN [only option for this command]

This gives the length in bytes of the sourcefile, and the number of bytes free

W (Where)
Where (line number)
W 50 [where is line 50 in memory]
WO [where is end of sourcefil €]

This prints in hex the locaion in memory of the start of the specified line. "Where 0" (or
"WQ") will give the location of the end of source

Page 42

Merlin 128 User's Manual The Editor

MON (Monitor)
MON [Only option with this command]
The Merlin 128Monitor is offered as an alternative to the CBM Monitor As with the
CBM Monitor, the bank is gecified by the first digit of afive digit address Y ou can use
the 'G' command to run a program in memory, but the specified registers are not picked up
so thisis not as useful for debugging asthe CBM Monitor. A BRK will send you to the
CBM Monitor. You may re-enter Merlin 128 ly pressing 'Q". This goesto the Main Menu.
Merlin 1228MONITOR COMMANDS:
Prompt = $

EXAMPLE COMMENTS

$1000 02 IF 2C Note that proper entry format is byte-space-byte dc.

$100l Disassemble 20 lines beginning at $100. ASCII indicated at right.
$100ll Disassemble 40 lines beginning at $100. ASCII indicated at right.
Multiplel's Continues disassembly at current address

$I000h Does a hex dump of 16 bytesat $1000Q ASCII indicated at right.

h Alone @ntinues the dump from current address

Multiple h's Dumps multiple 16 byte blocks.

$100Q 110 Does a hex dump of the designated range. Note comma is used here.

$100CC=2000201Fm Movesrange $2000- $201F to $1000 This supports both upward
and downward moves.

$100Q 200 Zeros this range.

$100aC= 2000201Fv Compares the range $2000- $201F with that starting at $1000
and displays contents of both when differences are found.

$1000g Jumpsto aprogram at $100. Return by RTS. A BRK will also send
you to the CBM Monitor.

Page 43

Merlin 128 User's Manual The Editor

$r Returns to Editor.
$q Returnsto the Main Menu. Thisisa"safe" return even if the zeo
page locaions have been changed.
TRON (Truncate On)
TRON [only option for this command]
When used as an Immediate command, sets a flag which, during LIST or PRINT, will

suppressprinting of comments that follow a semicolon. It makes reading of some source
fileseasier.

TROF (Truncate Off)
TROF [only option for this command]
When used as an Immediate command, returns to the default condition of the truncation
flag (which also happens automaticall y upon entry to the editor from the Main Menu or
from the Asembler). All sourcelineswhen listed o printed will appear normal.
FUN (Function)
FUN (Number): Definition [temporarily redefine afunction key]
This command can be used to temporarily redefine any function key from within the
Editor. For example, 'FUN4:TY PE' would cause the F4 key to produce 'TY PE' when
pressed. It is not possible to include a cariage return in the definition. However, you

could include an extra dharader and then use the Monitor to change the extra dharader to
the cariage return.

Q (Quit)
Q [only option for this command]

Exitsto Main Menu.

Page 44

Merlin 128 User’s M anual The Editor

ASEMBLING A FILE
Onceyou have entered and edited your sourcelisting, you will want to assemble it. ASM
does that!
ASM (Asemble)
ASM [only option for this cmd]
This passes control to the assembler, which attempts to assemble the sourcefile.

If you wish to have aformatted printed listing of an assembly, just use the PRTR
command immediately before typing in the ASM command.

Assmbly may be terminated at any point by pressing RUN/STOP or Control-C.
ESC (Escape)
ESC [only option for this command]
During the second passof assembly, pressng the ESC key will toggle the list flag, so that

the listing will either stop or resume. Thisis defeaed if aLST opcode occursin the
source, but another ESC will reinstate it.

Page 45

Merlin 128 User’s M anual The Assembler

THE ASEMBLER

In Merlin 128 the Editor is used to create and edit the sourcelisting from which the final
program (objed code) will be assembled. The Assembler isthat part of Merlin 128which
adually interprets your source code to create the final program.

The Assmbler portion of Merlin 128is distinct only in concept. In practice, both the Editor
and Assembler are resident in the machine & all times, and thus both are avail able without
having to be avare of which isin operation at any given time. Thisisin contrast to many
other asemblers, in which the Editor and Assemblers are ammpletely separate programs,
necessitating the switching between them by loading and running independent programs,
and often a requirement to save the sourcefile to dsk before an assembly can even be done.

This sdion of the documentation explains the syntax of those cmmmands, or diredives, that
can be used in the sourcelisting itself, and which diread Merlin 128to perform some
function while asembling the objed code. These ae in contrast to the Editor commands
which are used to merely edit the sourcefile.

An assembler diredive is used to communicae anideato the assembler which is more
complex than that addressed by just the usual opcodes of the microprocessor itself.

For example, in the simplest assembler possible, only commands like LDA, JSR, etc. would
be recognized by the assembler. However, the first time that you want to creae a datatable,
an instruction would be required by the asembler which will define one or more bytes that
are pure number values, as opposed to specific opcodes. Thisis allowed in virtually all
asemblers by creaing the assembler diredive, or pseudo opcode, ‘HEX'.

Thus the aseembler can creae abyte of datalike this:

1 LABEL HEX F7 ;STORESBYTE '$F7'

Now, suppose that the data you wanted to store was an ASCII charader string. With only
the HEX diredive, you'd have to look up all the ASCII charader equivalents, and encode
them in your program with individual HEX statements.

Wouldn't it be nice, though, if the assembler itself had a larger repertoire of 'new' commands
(i.e. diredives) that included ones for defining charader strings? You bet! And Merlin 128
has a lot of them.

Thesimplest is* TXT’, and atypical line would look like this:

1 LABEL TXT THISISA TEST' ;STORE ENTIRE CHARACTER STRING

When assembled, Merlin 128would automatically do the 'look up of the ASCII charader
equivalents, and store the bytes in memory at wherever that satement

Page 46

Merlin 128 User's Manual The Assembler

occurred in your program. Along with the Editor, the variety and power of assembler
diredivesisthe other biggest fador in determining the power of a given assembler. Merlin
128isoutstanding in this areawith awide cmplement of diredives for every occasion.

This adion of the documentation will explain the syntax to use in your sourcefiles for eah
diredive, and document the feauresthat are available to you in the essembler.

About The Assmbler Documentation
The assembler documentation is broken into threemain sedions:

1) Preliminary Definitions,
2) Asembler Syntax Conventions,
3) Asembler Pseudo Opcode Descriptions.

The last two sections are eat broken down further into the following:

Assmbler Syntax Conventions:
1) Number Format
2) Source Code Format
3) Expressions Allowed by the Assembler
4) Immediate Data Syntax
5) 6502Addressing modes

Asembler Pseudo Opcode Descriptions:
1) Assembler Diredives
2) Formatting Pseudo Ops
3) String Data Pseudo Ops
4) Data and Storage Allocation Pseudo Ops
5) Miscellaneous Pseudo Ops
6) Conditional Pseudo Ops
7) Pseudo Opsfor Maaos
8) Variables

The Asembler Syntax Conventions illustrate the syntax of a line of assembly code, the
proper method to specify numbers and data, how to construct assembler expressions and the
proper syntax to use to specify the different addressing modes allowed by the 6502
microprocesor. This sdion should be understood prior to using the asembler, otherwise it
iswill be difficult to determine the accetable methods to construct a proper expression as
the operand for a pseudo op.

The Assembler Pseudo Opcode Descriptions illustrate the functions of the many Merlin 128
pseudo ops, the correct syntax to use and examples of each pseudo ops use.

Page 47

Merlin 128 User's Manual The Assembler

PRELIMINARY DEFINITIONS

The type of operand for amost al of Merlin 128's pseudo ops and the 6502microprocessor
can be grouped into one of four categories:

1) Expressions

2) Delimited Strings (d-strings)
3) Data

4) Filenames

Expressons

Expressions are defined in the Asseembler Syntax Conventions sedion of the manual.
Delimited Strings

Delimited Strings are defined in the Editor sedion of the manual, but that definition is
repeded here for continuity.

Several of the Pseudo Opcodes, and some of the 65020opcodes alow their operand to be a
string. Any such string must be delimited by a non-numeric charader other than the slash (/)
or comma (,). Such astring is called a delimited string or "d-string". The usual delimiter isa
single or double quate mark (" or").

Examples:
"thisisad-string"
'this is another d-gtring”
@another one@
Zthisis one delimited by an upper case zZ
N
A

Note that delimited strings used as the objed of any 65020pcode must be enclosed in single
or double quotes. If not, the assembler will interpret the d-string to be alabel, expression or
datainsteal.

Take special notethat some of the pseudo ops as well as the 65020pcodes use the deli miter
to determine the hi-bit condition of the resultant string. In such cases the delimiter should be
restricted to the single or double quae.

Data

Datais defined as raw hexadecimal data composed of the digits 0...9 and the letters
A..F.

Page 48

Merlin 128 User's Manual The Assembler

Filenames
Filenames are defined as the name of afile without any delimiters, e.g. no quotes
surrounding the name. Source file names are suffixed with “.S”, Objed files are suffixed
witha*.0O”. Text files, USE filesand PUT files do not have aprefix or suffix. The
applicable suffix should not be used when loading or saving files.
When afilename is used in a sourcelisting, itr must be surrounded by quotes. For example:
DSK “MYFILE"
SAY “MYFILE"
PUT “FILEONE”
ASEMBLER SYNTAX CONVENTIONS
SOURCE CODE FORMAT
Syntax of a Source CodeLine
A line of source code typically looks like:
LABEL OPCODE OPERAND ;.COMMENT

and a few real examples:

1 START LDA #50 ' THISISA COMMENT
2 * THISISA COMMENT ONLY LINE
3 ;TABBED BY EDITOR

A line ontaining only a cmment can begin with “*” asin line 2 above. Comment lines
starting with “;”, however, are acceted and tabbed to the cmmment field asin 3 above. The
asembler will accet an empty line in the source @de and will tred it just asa SKP 1
instruction (seethe sedion on pseudo opcodes), except that the line number will be printed.

The number of spaces sparating the fields is not important, except for the eitor's listing,
which expeds just one space

Source Code L abdel Conventions

The maximum allowable LABEL length is 13 charaders, but more than 8 will produce
messy assembly listings. A label must begin with a darader at least aslarge, in ASCII
value, asthe @lon, and may not contain any charaders less in ASCII value, than the
number zero. Note that periods (.) are not allowed in labels sincethe period is used to
specify the logicd OR in expressions. Labels are CASE SENSITIYE. Thus, these aethree
different labels: START, Start, start.

Page 49

Merlin 128 User's Manual The Assembler

A line may contain a label by itself. Thisis equivalent to equating the label to the airrent
value of the aldresscounter.

Source Opcode and Pseudo Opcode Conventions

The assembler examines only the first 3 charaders of the OPCODE (with certain exceptions
such as macro cdls). For example, you can use PAGE instead of PAG (because of the
exception, the fourth letter should not be aD, however). The a®mbler listing will not be
aligned with an opcode longer than five charaders unless there is no operand.

Operand and Comment Length Conventions

The maximum allowable cmmbined OPERAND + COMM ENT length is 64 charaders.

You will get an OPERAND TOO LONG error if you use more than this. A comment line
by itself isalso limited to 64charaders.

NUMBER FORMAT
The assembler accepts decimal, hexadecimal, and binary numerical data. Hex numbers must
be precaled by “$” and hinary numbersby “ %", thus the following four numbers are all
equivalent:

Dec Hex Binary Binary

100 $64 %1100100 %01100100
asindicaed by the last binary number, leading zeros are ignored.
Immediate Data vs. Addresses
In order to instruct the assembler to interpret a number as immediate data as opposed to an
address the number should be prefixed with a“#” . The “#” here stands for " number" or
"data" . For example:
LDA #100 LDA #$64 LDA #%1100100
These threeinstructions will all LOAD the Accumulator with the number 100, decimal.
A number not precaded by " #" isinterpreted as an address Therefore:
LDA 1000 LDA $3E8 LOA %1111101000

are gquivalent ways of loading the acamulator with the byte that resides in memory
location $3E8.

Page 50

Merlin 128 User's Manual The Assembler

Use of Deamal, Hexadecimal or Binary Numbers

We recommend that you use the number format that is appropriate for clarity. For example,
the datatable:

DA $1

DA $A

DA $64

DA $3E8

DA $2710
isagood ded more mysterious than its decimal equivalent:

DA 1

DA 10

DA 100

DA 1000

DA 10000
Similarly,

ORA #3%$80

is less informative than
ORA #%10000000

which sets the hi-bit of the number in the acaimulator.

EXPRESSONSALLOWED BY THE ASEMBLER

To make the syntax accepted and/or required by the assembler clea, we must define what is
meant by an “expresson”.

Primitive Expressions

Expressions are built up from "primitive expressions' by use of arithmetic and logical
operations. The primitive expressions are:

1. A label.

2. A number (either decimal, $hex, or %binary).

3. Any ASCII charader precealed or enclosed by quotes or single quaes.
4. The* charader (sands for the arrent addressy.

Page 51

Merlin 128 User's Manual The Assembler

All number formats accept 16-bit data and leading zeros are never required. In case 3, the
"value" of the primitive expression isjust the ASCII value of the dharader. The high-bit will
be on (value >$7F)) if aquote (") is used, and off (value <$80) if asingle quote (') is used.

Arithmetic and Logical Operationsin Expressions

The asembler supportsthe four arithmetic operations: +, -, / (integer division), and *
(multiplication). It also supportsthe threelogical operations: ! (Exclusve OR), (OR), and
& (AND).

Building Expressons

Expressions are built using the primitive expressons defined above, either with or without
arithmetic and/or logicd operations. This means that expressions can take the form of
primitives or primitives operated on by other primitives using the aithmetic and logical
operators.

Some examples of legal expressions are:

#01 (primitive expression = 1)

#$20 (primitive expression = 32 deg
LABEL (primitive mnsisting of a label)

A" (primitive mnsisting of letter "A")
* (primitive = arrent value of PC)

The following are examples of more complex expressons

LABEL1-LABEL?2 (LABEL1 minus LABEL?2)
2*LABEL+$231 (2 times LABEL plus hex 231)
1234+%10111 (1234 pus binary 10111

“K-*A"+1 (ASCIl "K" minus ASCII "A" plus 1)
"O"'LABEL (ASCIl "0" EOR LABEL)
LABEL&S$7F (LABEL AND hex 71)

*-2 (current addressminus 2)

LABEL.%10000000 (LABEL OR binary 10000000

Parentheses and Precalence In Expressons

Parentheses are not normally allowed in expressions. They are not used to modify the
preceadence of expression evaluation. All arithmetic and logical operations are evaluated left
to right (2+3*5 would assemble a 25 and not 17).

Parentheses are used to retrieve avalue from the memory locaion specified by the value of
the expresson within the parentheses, much like indired addressing. This use is restricted to
certain pseudo ops, however.

Page 52

Merlin 128 User's Manual

The Assembler

For example:

DO ($300

will instruct the assembler to generate code if the value of memory location $30Q at the time

of aseembly, is non-zero.

Example of Use of Assembler Expressions

The aility of the asembler to evaluate expressons sich asLAB2-LAB1-1 is very useful

for the following type of code:

COMPARE LDX
LOOP CMP
BEQ
DEX
BPL
JMP
DATA HEX
EODATA EQU

#EODATA-DATA-1

DATA, X :found
FOUND

LOOP

REJECT :not found
CACFC5D9

With this type of code, you can add or delete some of the DATA and the value which is
loaded into the X index for the comparison loop will be automatically adjusted.

IMM EDIATE DATA SYNTAX

For those opcodes sich as LDA, CMP, etc., which accept immediate data (numbers as
opposed to addresses) the immediate mode is signed by preceding the expression with “#”.

AnexampleisLDX #3. In addition:

#<expression producesthe low byte of the expression

#>expression produces the high byte of the expression

#expresson also givesthe low byte (the 6502does not accept
2-byte DATA)

#lexpresson isoptional syntax for the high byte of the expression

Page 53

Merlin 128 User's Manual The Assembler

6502ADDRESSNG MODES
The Merlin 128Asembler accets all the 65020pcodes with standard mnemonics. It also
accets BLT (Branch if LessThan) and BGE (Branch if Greaer or Equal) as pseudonyms
for BCC and BCS, respedively.

There ae 12 addressing modes available. The gpropriate syntax for these ae:

AddressngMode Syntax Example
Implied OPCODE CLC
Accumulator OPCODE ROR
Immediate (data) OPCODE #expr ADC #$F8
CMP# M”
LDX #>LABELI-LABEL2-
Zero page (addresy OPCODE expr ROL 6
Indexed X OPCODE expr,X LDA $EO,X
Indexed Y OPCODB expr,Y STX LABEL,Y
Absolute (addres§y OPCODE expr BIT $300
Indexed X OPCODE expr,X STA $400QX
Indexed Y OPCODE expr,y SBC LABEL-1Y
Indirect JMP (expr) JMP ($3F2)
Preindexed X OPCODE (expr,X) LDA (6,X)
Postindexed Y OPCODB (expr),Y STA ($FE),Y

Spedal Forced Non-Zero Page Addressing

There is no differencein syntax for zero page and absolute modes. The assembler
automatically uses zero page mode when appropriate. Merlin 128 povides the aility to
forcenon-zero page aldressing. The way to do thisisto add anything (except “D”) to the
end of the opcode. Example:

LDA $10assembles as zero page (2 bytes) while,
LDA: $10assmbles as non-zero page (3 bytes).

Also, in the indexed indired modes, only a ze&o page expression is allowed, and the
asembler will give an error message if the “expr” does not evaluate to azero page aldress

NOTE: The "acaimulator mode" does not require an operand (the letter "A"). For example,
to do an LSR of the acamulator, you can use:

1 LABEL LSR ; LOGICAL SHIFT RIGHT
Some assemblers perversely require you to put an"A" in the operand for this mode.

The asembler will decide the legality of the aldressing mode for any given opcode.

Page 54

Merlin 128 User’s M anual The Assembler

ASEMBLER PSEUDO OPCODE DESCRIPTIONS
EQU or = (EQUate)

Label EQU expression

Label = expression (alternate syntax)
START EQU $1000 [equate START to $100)]
CHAR EQU "A" [equate CHAR to ASCII value of A]
PTR = * [PTR equals present addressin the assembled source
listing.]
LABEL = 55 [LABEL equalsthe decimal value of 55|

LABEL EQU $25
LDA LABEL

Thiswill Load the Accumulator with the value that's gored in location $25.

LABEL EQU $25
LDA #LABEL

Thiswill Load the Accumulator with the value of $25

IMPORTANT: Forgetting to include the # symbol to load an immediate valueis
probably the number-one cause of program bugs. If you're having a problem,
double dhedk immediate value syntax first!

EQU is used to define the value of a LABEL, usually an exterior addressor an
often-used constant for which a meaningful name is desired. It isrecommended that these
all be locaed at the beginning of the program.

NOTE: The asmbler will not permit an "equate" to a zero page number after the label
eguated has been used, since bad code wuld result from such a situation (also see
"Variables").

For Example:
1 LDA #LEN
2 LABEL DFB $00
3 DFB $01
4 LEN EQU *-LABEL

When asseembled, thiswill givean" ILLEGAL FORWARD REFERENCE IN LINE 4"
error message. The solution is as follows:

1 LDA #END - LABEL
2 LABEL DEB $00

3 DFB $01

4 END

Page 55

Merlin 128 User's Manual The Assembler

Notethat Labels are CASE SENSITIVE. Therefore, the assembler will consider the
following labels as different labels:

START [upper case label]
Start [mixed case label]
start [lower case label]

EXT (EXTernal label)

label EXT [label is external labels name]
PRINT EXT [define PRINT as external]

This pseudo op defines alabel as an external label for use by the Linker. The value of the
label, at asembly time, is set to $8000 but the final value is resolved by the linker. The
symbol table will list the label as having the value of $8000plus its external reference
number (0-$FE). Seethe LINKER sedion of the manual for more information on this

opcode.
ENT (ENTry label)

label ENT
PRINT ENT [define PRINT as entry label]

This pseudo op will define the label in the label columnasan ENTRY label. An entry
label isalabel that may be referred to as an EXTernal label by another REL code module.
The true addressof an entry label will be resolved by the LINKER.

The REL code module being written, or assembled, may refer to the ENT label just asif it
were an ordinary label. It can be EQU'd, jumped to, branched to, etc.

The symbol table listing will print the relative addressof the label and will flag it asan
“E”.

Seethe LINK ER sedion of the manual for more information on this opcode.

Page 56

Merlin 128 User’s M anual The Assembler

ORG (set ORIGin)

ORG expression

ORG

ORG $1000 [start code at $10@)

ORG START+END [dtart at value of expresson |
ORG [re-ORG]

Establishes the aldressat which the program is designed to run. It defaultsto $8000
Ordinarily there will be only one ORG and it will be & the start of the program. If more
than one ORG is used, the first one establishesthe DL OAD address while the second
adually establishes the origin. This can be used to create an objed file that would load to
one aldressthough it may be designed to run at another address

Y ou cannot use ORG *-1 to badk upthe object pointers as is done in some assemblers.
This must be done instead by DS -1.

ORG without an operand is accepted and istreated asa" REORG" type command. It is
intended to be used to reestablish the crrect addresspointer after a segment of code
which hes adifferent ORG. (When used in aREL file, all labelsin a sedion between an
"ORG address' and an "ORG no address' are regarded as absolute addresses. Thisis
meant ONLY to be used in a sedion to be moved to an explicit address)

Example of ORG without an operand:

1 ORG $1000
100Q AO 00 2 LDY #0
1002 20 21 10 3 JSR MOVE 'MOVE" IS
1005 4C 12 10 4 JMP CONTINUE ;NOT LISTED.
5 ORG $300 ;ROUTINE TO
0300 8D 08 CO 6 PAGE3 STA MAINZP ;BE MOVED
0303 20 ED FD 7 JSR CouTt
0306 8D 09 CO 8 STA AUXZP
0309 60 9 RTS
10 ORG ;REORG
1012 A9 C1 11 CONTINUELDA #'A”
1014 20 00 03 12 JSR PAGE3

Sometimes, you will want to generate two blocks of code with separate ORGs in one
asembly. There ae threeways of doing this. Eadch involves adiredive (DSK, SAV and
DS) that are described later in this manual, but all are presented here in the interest of
completeness

In this first example, two separate disk files are aeaed with independent ORG values by
using the DSK command. This command diredsthe assembler to assemble all code to
disk following the DSK command. The file is closed when either the asmbly ends or
another DSK command is encountered.

Page 57

Merlin 128 User's Manual The Assembler

kkkkkkkkkkkkkkkkkhkk

* MULTIPLE ORG'S*
* SOLUTION#1 *
* DSK COMMAND *

kkkkkkkkkkkkkkkkkhkk

DSK "FIIEONE"
ORG $8000
LDA #0

O©CoO~NOUITA WNBE

11 DSK "FILETWO"
12 ORG $8100
13 LDY #1

In this second example, two separate disk files are ayain creaed with independent ORG
values, but this time by using the SAV command. This command directs the asseembler to
save all code asembled previous to the SAV code disk.

kkkkkkkkkkkkkkkkkhkk

* MULTIPLE ORG'S*
* SOLUTION#2 *
* SAV COMMAND *

kkkkkkkkkkkkkkkkkhkk

ORG $8000
LDA #0
SAV "FILEONE"

O©CoO~NOUITA WNPE

11 ORG $8100
12 LDY #1
13 SAV "FILETWOQO"

In this last example, just onefile is creaed on disk, but the two blocks of code ae
separated by approximately a $100 kyte gap (lessthe size of the first code block, of
course).

Please read the sedion on SAV for more information about multiple ORGs in a program.

kkkkkkkkkkkkkkkkkhkk

* MULTIPLE ORG'S*
* SOLUTION#3 *
* DSCOMMAND *

kkkkkkkkkkkkkkkkkhkk

ORG $8000

LDA #0

DSt : or could have been DS $81006*
0 LDY #1

Merlin 128 User's Manual The Assembler

REL (RELocatable amde module)

REL
REL [only option for this opcode]

This opcode instructs the assembler to generate code files compatible with the relocating

linker. This opcode must occur prior to the use or definition of any labels. Seethe
LINKER sedion of this manual for more information on this opcode.

OBJ (set OBJeq)

OBJ expression
OBJ $4000 [use of hex addressin RAM 1]
OBJ START [use with a label]

The OBJ opcode is accepted only prior to the start of the ade and it only setsthe division
line between the symbol table and objed code areas in memory (which defaults to

$A000). The OBJ addressis accepted only if it lies betwean $4000and $FEEQ. This may
cause you a problem if you forget this fad and try to asseemble alisting OBJed somewhere
else, such as $30Q for example.

Nothing disastrous will happen if OBJis out of range; when you return to the Main Menu
to save your objed file, no objed file addressand length values will be displayed on the
screen, and Merlin 128will simply beep at you if you try to save an objed file.

The main reason for using OBJ isto be ale to quit the assembler diredly, test aroutine in
memory, and then be able to immediately return to the assembler to make any corredions.
If you want to do this, simply use the GET command (Example: GET $800Q before
quitting to BASIC.

Most people should never have to use this opcode. If the REL opcode is used then OBJ is
disregarded. If DSK is used then you can, but should not have to, set OBJto $FEEO to
maximize the spacefor the symbol table.
PUT (PUT atext filein asembly)
PUT "filename"
PUT "Filename" [PUT's file FILENAME]
PUT "Filenarne",9 [PUT'sfile FILENAME from device9 1

PUT "filename' reals the named file and "inserts’ it a the location of the opcode.

Page 59

Merlin 128 User's Manual The Assembler

Occasionally your sourcefile will become too large to assemble in memory. This could be
dueto avery long program, extensive mmments, dummy segments, etc. In any case, this
iswhere the PUT opcode can make life easy. All you have to do is divide your program
into sedions, then save e@h sedion as a separate text file. The PUT opcode will load
these text files and “insert” them in the “Master” sourcefile & the locaion of the PUT
opcode. This"Master" sourcefile usually only contains equates, maaos (if used), and all
of your PUT opcodes.

A "Master" sourcefile might look something like this:

kkkk kkhkhkkkkkkkhkk * k%

*

Master Source*

kkkk kkhkkkkkkkkhkk * k%

*

*

*

*

LABEL DEFINITIONS
LABELL EQU $00
LABEL2 EQU $02
BSOUT EQU $FFD2

MACRO DEFINITIONS

SWAP MAC
LDA]I
STA]2
<

SAMPLE SOURCE CODE

LDA #LABEL1
STA LABEL2
LDA #/LABEL1
STA LABEL2+1
LDA LABEL1
JSR BSOUT
RTS

BEGIN PUTFILES

PUT "FILE1" ;FIRST SOURCE FILE SEGMENT
PUT "FILE2" ;SECOND SOURCE FILE SEGMENT
PUT "FILES' ;THIRD SOURCE FILE SEGMENT

Note that you cannot define M ACROs from within a PUT file. Also, you cannot cal the
next PUT file fromwithina PUT file. All MACRO definitionsand PUT opcodes must
be inthe "Master" sourcefile. There ae other usesfor PUT files such as PUTting
portions of code & subroutines, PUTting afile of global page eguates, etc. The
possibilities are almost endless.

Here's an example of a master program that uses 3 PUT filesto create afinal objed file,
"FINAL.Q", that is called from a BASIC program:

Page 60

Merlin 128 User's Manual

The Assembler

1 * MASTER CALLING PROGRAM

2

3 BSOUT EQU $FFD2

4

5

6 ORG $8000

7

8

9 PUT "FILE1" : Named "FILE1" on disk
10 PUT "FILE2" : Named "FILE2" on disk
11 PUT "FILES® : Named "FILES" on disk

And here aethetext files that the master program calls in using the PUT commands:

1 * HLE1

2

3 LDX
4 LOOP1 LDA
5

6 JSR

7 INX

8 BNE
9 STRING1 TXT
1 * FILE2

2

3 FILE2 LDX
4 LOOP2 LDA
5

6 JSR

7 INX

8 BNE
9 STRING2 TXT
1* HLES3

2

3 FILE3 LDX
4 LOOP3 LDA
5 BEQ
6 JSR

7 INX

8 BNE
9 DONE RTS
10 STRINGS TXT

#0
STRING1,X

BSOUT

LOOP1
THISISFILE 1',00

#0
STRING2,X

BSOUT

LOOP2
'‘NOW itsFILE 2',00

#0
STRINGS,X
DONE
BSOUT

LOOP3

'FINALLY FILE 3,00

Ead PUT file (FILEL, FILE2, FILE3) prints amessage éout which fileit is.

Page 61

Merlin 128 User's Manual The Assembler

NOTE: "Insert" refers to the effed on assembly and not to the locaion of the source The
fileitself isadually placed just following the main source These files are in memory only
one & atime, so avery large program can be assembled using the PUT facility.

There aetwo redrictionson a PUT file. First, there caanot be MACRO definitions inside
afilewhich is PUT; they must be in the main sourceor in a USE file. Seoond, a PUT file
may not cdl another PUT file with the PUT opcode. Of course, linking can be simulated
by having the "main program"” just contain the maao definitionsand call, inturn, al the
others with the PUT opcode.

Any variables (such as |LABEL) may be used as"locd" variables. The usual local
variables |1 through]8 may be set up for this purpose using the VAR opcode.

The PUT facility provides a simple way to incorporate often used subroutines, such as
PRDEC, in aprogram.

If there isan error during assembly, the aror will show both the line number of the PUT
opcode in the Master file and that in the PUT file.

The PUT opcode accets both SEQ and PRG type sourcefiles, but if you're using the PRG
type, you must include the".S" suffix in the filename.

If you are working with PRG files written with Merlin 64 use the LOAD command and
resave them with Merlin 128

USE (USE atext fileasa macro library)

USE filename
USE "FILENAME"
USE "FILENAME",9 [Device Number]

Thisworks as does a PUT but the file is kept in memory. It is intended for loading a
maao library that is USEd by the sourcefile.

VAR (setup VARiables)

VAR expr;expr;expr...
VAR 1;$3;,LABEL [setupVAR's1,2 and 3|

Thisisjust a convenient way to equate the variables]1-]8. "VAR 3;$42;LABEL" will set
]1=3,]2=9%42, and]3=LABEL. Thisisdesigned for use just prior to aPUT. If aPUT

file uses]1-]18, except in PMC (or>>>) lines for cdling macros, there must be aprevious
declaration of these.

Page 62

Merlin 128 User's Manual The Assembler

SAV (SAVeobjed code)

SAV "filename"
SAV "FILE"
SAV "FILE",9

"SAVE filename" will save the aurrent objed code under the specified name. It will not
add the suffix " .O" to the file name & would happen in the Main Menu. Otherwise, it ads
exactly as does the Main Menu objed saving command, but it can be done several times
during aseembly.

This pseudo-opcode provides a means of saving portions of a program having more than
one ORG. It dso enables the asembly of extremely large files. After a save, the objea
addressisreset to the last specification of OBJ or to $80M by default.

Files saved with the SAVe command will be saved to BLOAD to the correct address

SAV allows you to save sections of assembled OBJECT code during an assembly. It saves
all assembled code in the aurrent assembly at the point a which the SAV opcode occurs.
This appliesonly to the first SAV in asource With each additional SAV, Merlin 128only
saves the object code generated sincethe last SAV. This feaure dlows you to use one
sourcefile to aseemble ade and then SAVe sedions in separate files. Together with the
PUT and DSK, SAV makes it possble to assemble extremely large files.

*kkk kkkkkkkkkkkk **

* SAV Sample *

*kkk kkkkkkkkkkkk **

*

* LABEL DEFINITIONS

*
LABEL1 EQU $00
LABEL2 EQU $02
BSOUT EQU $FFD2

*

* MACRO DEFINITIONS

*

SWAP MAC
LDA |1
STA]2
<

*

* SOURCE PART ONE
*
ORG $800 ;PART ONE STARTSHERE
LDA #LABEL1
STA LABEL2
LDA #/LABEL1
STA LABEL2+1

Page 63

Merlin 128 User's Manual The Assembler

LDA LABEL1

JER BSOUT
RTS
Etc.
END NOP ;NOT REQUIRED - EXAMPLE ONLY
SAV "FILE1" :SAVE CODE FROM $800TO HERE

*
* SOURCE PART TWO

ORG $6000 ;PART TWO STARTSHERE
LDA #LABEL1
STA LABEL2
LDA #/LABEL1
STA LABEL2+1
LDA LABEL1
JSR BSOUT
RTS
Etc.
END1 NOP ;NOT REQUIRED - EXAMPLE ONLY
SAV "FILE2"
END ;NOT REQUIRED - EXAMPLE ONLY

Therefore, SAV is used to save sedions of code to separate individual binary files during
an assembly. With SAV, you can assemble ade that may not be continuous in memory
but which must be assembled all at once because the seaions refer to ead other, and may
share labels, data, and/or subroutines.

DSK (asemblediredly to DiSK)

DSK filename
DSK "PROG"
DSK "PROG",9

"DSK filename" will cause Merlin 128to open afile specified in the opcode and placeall
asembled codein that file. It isused at the start of a sourcefile before any code is
generated. Merlin 128then writes all the following code diredly to disk. If DSK is
arealy in effect, the old file will be closed and the new one begun. This is useful
primarily for extremely large files.

NOTE: Filesintended for use with the linking loader must be saved with the DSK pseudo
op; seethe REL opcode.

DSK has two basic purposes:

1) It allows you to assemble programs that result in objed code larger than Merlin
128 can normally keep in memory.

Page 64

Merlin 128 User's Manual

The Assembler

2) It dlowsyou to automatically put your objed code on disk without having to
remember to use the Main Menu's "O" command. Like "SAV", DSK does not
automatically add the ".O" suffix to the saved file name.

The first purpose is the most often used reason for utilizing the DSK opcode.

Y ou should be avare that using DSK will slow asembly significantly. Thisis
because Merlin 128will write asedor to dsk every time 256 kytes of objed code
have been generated. If you don't nead a cpy of the objed code on disk, you
should not use (or use aconditional to defed) the DEK opcode.

Here is an example listing of a program that creaestwo separate objed files using

the DSK command:

"F ILEONE" :ASSENBLE 'FILEONE' TO DISK
$4000 “FILEONE' AT $4000(SY S 4*4096)
$FFD2

#0
STRING1,X
DONE1
BSOUT

1 * DSK SAMPLE *
2 DSK
3 ORG
4 BSOUT EQU
5

6

7 LDX
8 LOOPL LDA
9 BEQ
10 JSR
11 INX
12 BNE

13 DONE1 RTS
14 STRING1 TXT

15

16 ORG
17 DSK
18

19 LDX
20 LOOP2 LDA
21 BEQ
22 JSR
23 INX
24 BNE

25 DONEZ2 RTS
26 STRING2 TXT

LOOP1
‘Thisisone’,00

$8000 ;FILETWO’ AT $8000
“FILETWO’ ;ASEMBLE ‘FILETWO’ TO DISK

#0
STRING2,X
DONE2
BSOUT
LOOP2

‘Now it'stwo’,00

Page 65

Merlin 128 User's Manual The Assembler

END (END of sourcefile)

END
END [only option for this opcode]

Thisrarely used or neaded pseudo opcode instructs the asembler to ignore the rest of the
source Labels occurring after END will not be recognized.

DUM (DUMmy sedion)

DUM expression
DUM $1000 [start DUMmmy code & $10Q0]
DUM LABEL [start code a value of LABEL]
DUM END-START [start at val of END-START]

This garts a sedion of code that will be examined for value of labels but will produceno
objed code. The expression must give the desired ORG of this sdion. It is possible to re-
ORG such asedion using another DUMMY opcode or using ORG. Note that although
no objed code is produced from a dummy sedion, the text output of the assembler will
appea asif code is being produced.

DEND (Dummy END)

DEND
DEND [only option for this opcode]

This ends a dummy sedion and re-establi shes the ORG addressto the value it had upon
entry to the dummy sedion.

DUM and DEND are used most often to create aset of labels that will exist outside of
your adual program, but that your program needsto reference Thus, the labels and their
values need to be avail able, but you don't want any code actually assembled for that
particular part of the listing.

Sample usage of DUM and DEND:

1 ORG $2000
2

3 DUN $63
4

5 FACEXP DFB 0

6 FACHO DFB 0

7 FACMOH DFB 0

8 FACMO DFB 0

9 FACLO DFB 0
10FACSGN DFB 0,0

Page 66

Merlin 128 User’s M anual The Assembler

11 ARGEXP DFB 0
12 ARGHO DFB 0
13 ARGMOH DFB 0
14 ARGMO DFB 0
15 ARGLO DFB 0
16 ARGSGN DFB 0,0
17 FACOV DFB 0
18

19 DEND

20

21 START LDA #0
23 STA FACEXP

24 * And so on

Note that no codeis generated for lines 3 through 19, but the labels are available to the
program itself, for example, online 23.

Page 67

Merlin 128 User's Manual The Assembler

FORMATTING PSEUDO OPS

LST ON/OFF (LiSTing control)

LST ON or OFF
LST ON [turn listing on]
LST OFF [turn listing off]
LST [turn listing on, optional]

This controls whether the assembly listing isto be sent to the screen (or other output
device) or not You may, for example, use this to send only a portion of the asembly
listing to your printer. Any number of LST instructions may be in the source If the LST
condition is OFF at the end of assembly, the symbol table will not be printed.

The asembler adually only chedsthe third charader of the operand to seewhether or
not it isa space Therefore, LST will have the same effed asLST ON. The LST diredive
will have no effed on the adual generation of objed code. If the LST condition is OFF,
the objed code will be generated much faster, but this is recommended only for debugged
programs.

NOTE: ESCAPE from the keyboard toggles this flag during the second pass and thus can
be used to manually turn on or off the screen or a printer listing duing assembly.

LSTDO ON/OFF (LiST DO OFF areasof code)
LSTDO ONor OFF
LSTDO ON [list the DO OFF areas]
LSTDO OFF [don't list the DO OFF areds)
LSTDO [list the DO OFF areas, optional]

LSTDO ONcauseslinesin DO OFF areasto be listed during assembly. LSTDO OFF will
not print such lines. The default condition can be set in the PARMS.Sfile. Maao
definitions are exceptions. These ae listed, unlessin a LST OFF condition, even if you
have LSTDO OFF.

Page 68

Merlin 128 User's Manual The Assembler

EXP ON/OFF/ONLY (macro EXPand control)

EXP ON or OFFor ONLY
EXPON [maao expand on]
EXP OFF [print only maao call]
EXPONLY [print only generated code]

EXP ON will print an entire maao during the asembly. The OFF condition will print
only the PM C pseudo-op. EXP defaults to ON. This has no effed on the objed coded
generated. EXP ONLY will cause expansion of the macro to the listing omitting the cll
line and end of maao line. (if the maao cdl lineis labeled, however, it is printed.) This
mode will print out just as if the maao lines were written out in the source

PAU (PAUse)

PAU
PAU [only option for this opcode]

On the seaond pass this causes assembly to pause until akey is pressed. This can also be
done from the keyboard by pressng the spacebar. This is handy for debugging.
PAG (new PAGe)

PAG
PAG [only option for this opcode]

This nds a formfeed ($8C) to the printer. It has no effed on the screen listing.

AST (send aline of ASTerisks)

AST expresson
AST 30 [send 30asterisksto listing |
AST NUM [send NUM asterisks]

This snds a number of asterisks (*) to the listing equal to the value of the operand.
The number format is the usual one (base 10), so that AST10will send (decimal)
10 asterisks, for example. The number istreated modulo 256 with O being 256
asterisks.

Page 69

Merlin 128 User's Manual The Assembler

SKP (SKiP lines)

SKP expression
SKP 5 [skip 5linesin listing]
SKP LINES [skip “LINES’ linesin listing]

This ®nds "expression” number of carriage returns to the listing. The number format is
the same ain AST.

TR ON/OFF (TRuncate ontrol)

TR ON or OFF
TR ON [limit objed code printing]
TR OFF [dont limit objed code print]

TR ONor TR (alone) limits objed code printout to threebytes per source line, even if the
line generates more than three TR OFF resetsiit to print all object bytes.

CYC (calculate and print CYCletimesfor code)

CyC

CYC OFF

CYCAVE
CyC [print opcode cycles & total]
CYC OFF [stop cycle time printing]
CYCAVE [print cycles & average]

This opcode will cause aprogram cycle aunt to be printed duing assembly. A second
CY C opcode will cause the acumulated total to goto zero. CY C OFF causes it to stop
printing cycles. CYC AVE will average in the cycles that are undeterminable due to
branches, indexed and indirea addressing.

The cycle times will be printed (or displayed) to the right of the comment field and will
appea similar to any one of the following:

5 ,0326 or 5 ,0326 or 5'',0326

The first number displayed (the 5 in the example @ove) isthe cycle count for the airrent
instruction. The second number displayed isthe acamulated total of cycles in decimal.
The position of the cycle aunt can be changed by altering the file PARMS.S. Seethe
Tedhnical Information Sedion for details.

A single quae dter the cycle count indicaes a possible alded cycle, depending on certain
conditions the assembler cannot foresee If this appeas on abranch

Page 70

Merlin 128 User's Manual The Assembler

instruction then it indicaes that one cycle should be alded if the branch occurs. For non-
branch instructions, the single quae indicates that one gycle should be added if a page
boundary is crossd.

A double quae dter the cycle aount indicaes that the assembler has determined that

a branch would be taken and that the branch would crossa page boundary. In this
casethe extracycleis displayed and added to the total.

TTL ‘pageheader’
TFL
TFL "Title Page" [Change page header to "Title Page']

This lets you change the page header at any point in an assembly, provided the PRTR
command isin effect.

Page 71

Merlin 128 User's Manual The Assembler

STRING DATA PSEUDO OPS
General noteson String Data and String Delimiters

Different delimiters have different effeds. Any delimiter lessthan (in ASCII value) the
single quote (') will produce astring with the high-bits on, otherwise the high-bits will be
off. For example, the delimiters !"#3$%& will produce astring in "negative" ASCII, and the
delimiters'()+?will produceonein "positive" ASCII. Usually the quote (") and single quote
(") arethe delimiters of choice, but other delimiters provide the means of inserting a string
containing the quae or single quote as part of the string. Example delimiter effeds:

"HELLO" [negative ASCII, hi bit set]
HELLO! [negative ASCII, hi bit set]
#HELL O# [negative ASCII, hi bit set]
&HELLO& [negative ASCII, hi bit set]
ENTER "HELLQO"! [string with embedded qudes]
'HELLO' [positive ASCII, hi bit clea]
(HELLO([positive ASCII, hi bit clea]
'ENTER "HELLO™ [string with embedded qudes]

All of the opcodes in this ®dion, except REV, also accet hex data dter the string. Any of
the following syntaxes are accetable:

TXT "gring"878D00
DCI "string",878D00
ASC "string”,87,8D,00
ASI "STRING",878D00

REV "string"
Command Input Comments Assembles as (hex)
TXT '‘Abc" Commodore ASCII 61 4243
DCI '‘Abc" Commodore ASCII 61 42C3
ASC ‘Abc" Standard ASCII 41 62 63
ASI ‘Abc" Standard ASCII 41 62E3
REV '‘Abc" Commodore ASCII 43 4261

Page 72

Merlin 128 User's Manual The Assembler

TXT (define Commodore ASCII TeXT)

TXT d-string
TKF"STRING" [negative Commodore ASCII string]
TXT 'STRING' [positive Commodore ASCII string |
TXT "Bye,Bye",8D [negative with added hex bytes]

This puts a delimited Commodore ASCII string into the objed code. The only restriction
on the delimiter isthat it does not occur in the string itself.

DCI (define Commodore ASCI | text - Dextral Character Inverted)

DCI d-string
DCI "STRING" [negative Commodore ASCII, except for the "G" |
DCI 'STRING' [positive Commodore ASCII, except for the "G" |
DCI 'Hello',878D [positive Commodore with two added hex bytes]

Thisisthe same & TXT except that the Commodore ASCII string is put into memory with
the last charader having the opposite high bit to the others.

ASC (define Standard ASCII text)

ASC d-string
ASC"STRING" [negative ASCII string |
ASC 'STRING' [positive ASCII string |
ASC "Bye,Bye",8D [negative with added hex bytes]

This puts a delimited Standard ASCII string into the objed code. The only restriction on
the delimiter isthat it does not occur in the string itself.

AS| (define Standard ASCII | nverted text)

ASl d-string
ASI "STRING" [negative ASCII, except for the"G"]
ASI 'STRING' [positive ASCII, except for the "G" |

Thisisthe same & ASC except that the Standard ASCII string is put into memory with the
last charader having the opposite high bit to the others. ASl isto ASC as DCI isto TXT.

Page 73

Merlin 128 User's Manual The Assembler

REV (define REVerse Commodore ASCI | text)
REV &string
REV "Insert" [negative ASCII, reversed in memory |
REV 'Insert’ [same & above but positive |

This puts the d-string in memory backwards. Example:
REV "COMMODORE"
gives ERODOMM OC (delimiter choice ain TXT). HEX data may not be alded after the

string terminator.

STR (definea Commodore ASCII STRing with a leading length byte)

STR d-gtring
STR"HI" [negative Commodore ASCII result =02 C8 C9]
STR'HI',8D [positive Commodore ASCII result 02 849 & |

This puts a delimited string into memory with a leading length byte. Otherwise it works
the same asthe TXT opcode. Note that following HEX bytes, if any, are not counted in
the length.

Page 74

Merlin 128 User's Manual The Assembler

DATA AND STORAGE ALL OCATION PSEUDO OPS
DA or DW (Define Addressor Define Word)

DA expressgon or DW expresson

DA $FDFO [results: FO FD in memory]
DA 10,$300 [results: OA OO Oo 03]
DW LAB1,LAB2 [example of use with labels]

This goresthe two-byte value of the operand, usually an address in the objed code, low-
byte first.

These two pseudoops also accet multiple data separated by commas (such as DA
1,10,100.

DDB (Define Double-Byte)
DDB expression
DDB $FDED+1 [results. FD EE in memory]
DDB 10,$300 [results: 00 QA 03 00]
As above with DA, but places high-byte first. DDB aso accepts multiple data (such as
DDB 1,10,100).
DFB or DB (DeFine Byte or Define Byte)

DFB expresson or DB expression

DFB 10 [results: OA in memory]
DFB $10 [results: 10 in memory]
DB >$FDED+2 [results: FD in memory]
DB LAB [example of use with label]

This puts the byte specified by the operand into the objed code. It accepts sveral bytes of
data, which must be separated by commas and contain no spaces. The standard number
format is used and arithmetic is done & usual.

The"#" symbol is acceptable but ignored, asis'<". The “>" symbol may be used to
specify the high-byte of an expression, otherwise the low-byte is always taken. The “>”
symbol should appea as the first charader only of an expresson or immediately after #.
That is, the instruction DFB >LAB1-LAB2 will producethe high-byte of the value of
LAB 1-LAB 2.

Page 75

Merlin 128 User's Manual The Assembler

For example:
DFB $34,100LAB1-LAB2,%10l 1,>LAB1-LAB2

isaproperly formatted DFB statement which will generate the object code (hex):
34 64DE 0B 09

asauming that LAB 1=$81A2 and LAB2=$77CA4.

FLO expression (FLOAT)

FLO expresson
FLO LABEL [floats 5 bytesin memory]
FLO $FFFF [results: 90 7 FFOO0 00in memory]
FLO1 [results: 81 0000 0000 in memory]
FLO-1 [results: 81 80 @ 0000 in memory]

This assembles the five byte paded floating point equivalent of the expresson. If the
expresson begins with a minus sign, then the operand is floated as a signed integer.
Otherwisg, it is floated as an unsigned integer. It should be noted that Merlin 128first
computes a 16 [t integer using unsigned arithmetic, which is then floated acardingly.
Thus, $FFFF will float as 65535-1 will float as-1, and -$FFFF will float as 1. Thefile
called "pi.main.s" has examples of the use of this opcode. Note that you can use "FLOAT"

instead of "FLQO" sinceonly the first three taraders are examined, unless used in a maao
name.

HEX (defineHEX data)

HEX hex-data
HEX 010203% [results: OI 02 03 @ in memory]
HEX FD,ED,CO [results: FD ED CO in memory]

Thisis an alternative to DFB which allows convenient insertion of hex data. Unlike all
other cases, the"$" is not required or accepted here. The operand should consist of hex
numbers having two hex digits (for example, use OF, not F). They may be separated by
commas or may be aljacent. An error message will be generated if the operand contains
an odd number of digitsor endsin a cmmand, or asin all cases, contains more than 64
charaders.

Page 76

Merlin 128 User's Manual The Assembler

DS (Define Storage)

DS expression

DS expressionl, expression2

DS+t
DS t,expression2
DS 10 [zero out 10 bytes of memory]
DS 10,$80 [put $80in 10 bytes of memory]
DSt [zero memory to next memory page]
DS 1,$80 [put $80in memory to next page]

This reserves Pace for string storage data. It zeros out this Pace if the expresgon is
positive. DS 10, for example, will set aside 10 bytes for storage.

Because DS adjusts the object code pointer, an instruction like DS -1 can be used to back
up the objea and addresspointers one byte.

The first alternate form of DS, with two expressions, will fill expressonl bytes with the
value of (the low byte of) expresson2, provided expressgon2 is positive. If expression2 is
missng, O isused for thefill.

The second alternate form, "DS +", will fill memory (with 0's) until the next memory page.
The"DS 1,expresson2" form does the same but fills using the low byte of expression2.

Notesfor REL filesand the Linker

The" +" options are intended for use mainly with REL files and work slightly differently
with these files. Any "DS " opcode occurring in a REL file will cause the linker to load
the next file & the first available page boundary, and to fill with O's or the indicaed byte.
Note that, for REL files, the location of this code has no effed on its adion. To avoid
confusion, you should pu this code & the end of afile.

Page 77

Merlin 128 User's Manual

The Assembler

USING DATA TABLESIN PROGRAMS

Merlin's various data ammands are used by the programmer to store pure data bytes (as
opposed to exeautable program instruction bytes) in memory for use by the program. As an
example, here is a program that prints the sum of two numbers sjuared.

* DATA TABLE DEMO *

CLEAR
CHROUT
SCNKEY
GETIN
START

PRINT1

LOOP1

PRINT?2

WAIT

DONE
DATA1
DATAZ2

DATAS

ORG

EQU
EQU
EQU
EQU

JSR
LDY
INY
LDA
JSR
LDX
LDA
BEQ
JSR
INX
BNE
LDA
JSR
LDA
JSR
CPY
BCS
JMP
JSR
JSR
BEQ
CMP
BEQ
JMP
RTS
DFB
ASC
HEX
DFB

$8000

$E544
$FFD2
$FE9F
$FFE4

CLEAR

#1 START WITH 1 LESSTHAN 0" ($FF)
Y=Y +1

DATALY ;GET CHAR FROM TABLE

CHROUT ;PRINT NUMBER TO SE SQUARED

#0

DATA2,X ;LOOP TO PRINT TEXT

PRINT?2

CHROUT

LOOP1

DATASY ;PRINT SQUARED VALUE
CHROUT

#$8D

CHROUT

#$03 ;THREE LOOPSCOMPLETE?
WAIT ;IF SO WAIT FOR RETURN
FRINT1 ;IF NOT BEGIN AGAIN
SCNKEY

GETIN

WAIT

#$0D ;WAS RETURN PRESSED?
DONE

WAIT

#4849,50,51

“ SQUARED IS’
00

#4849,52,57

Page 78

Merlin 128 User's Manual The Assembler

MISCELL ANEOUS PSEUDO OPS

KBD (definelabel from KeyBoarD)

label KBD
label KBD d-string
OUTPUT KBD [get value of OUTPUT from keyboard)]
OUTPUT KBD "send to printer” [prompt with the d-gtring for the value of OUTPUT]

This allows alabel to be equated from the keyboard during assembly. Any
expresson may be input, including expressons referencing previously defined labels,
however aBAD INPUT error will occur if the input cannot be evaluated.

The optional delimited string will be printed on the screen instead of the standard "Give
value for LABEL:" message. A colon is appended to the string.

LUP (begin aloop)
LUP expresson (Loop)
-t (end of LUP)

The LUP pseudo-opcode is used to repea portions of source between the LUP and the --1
"expression” number of times. An example of thisis:

LUP 4
ASL
-t

which will assemble &s:
ASL
ASL
ASL
ASL

and will show that way in the asembly listing, with repeaed line numbers.

Perhaps the major use of thisis for table building. As an example:

A = 0
LUP $FF

1A =]A+1
DPB]A

-t

will assemblethetable 1, 2, 3, ...,.$FF.

Page 79

Merlin 128 User's Manual The Assembler

The maximum LUP value is $8000and the LUP opcode will simply be ignored if you try
to use more than this.

NOTE: the @ove use of incrementing variables in order to build a table will not work if
used within a maao. Program structures guch as this must be included as part of the main
program source.

InaLUP, if the @ charader appeasin the label column, it will be increased by the loop
count (thus A,B,C...). Sincethe loop count is a muntdown, these labels will go badkwards
(the last label hasthe A). This makes it possible to label itemsinside aLUP. This will
work ina LUP with a maximum length of 26 counts, otherwise you will get aBAD
LABEL error and possibly some DUPLICATE LABEL errors.

CHK (placeCHed sum in objed code)

CHK
CHK [only option for this opcode]

This places a chedksum byte into objed code d the location of the CHK opcode. Thisis
usually placel at the end of the program and can be used by your program at runtime to
verify the existence of an acarate image of the program in memory.

The chedksum is calculated with exclusive-or'ing each successive byte with the running
result. That is byte 1 is EOR'ed with byte 2 and the result put in the acamulator. Then that
value is EOR'ed with byte 3 and the processcontinued until the last byte in memory has
been involved in the calculation. It isnot afoolproof error chedking scheme, but is
adequate for most uses. If you were puldishing your sourcelisting in a magazine, or
loading objed code in any situation in which you want to asaure that a functional copy of
the objed code has been loaded, then the use of the ched<sum pseudo-op is recommended.

The following program segment will confirm the chedksum at run time:

1 STARTCHK LDA #<STARTCHK
2 STA PTR

3 LDA #>STARTCHK

4 STA PTR+1

5 LDY #$00

6 LDA #$00

7 PHA : PUSH ZERO ON STACK

8

9 LOOP LA . RETRIEVE CURRENT OSKEUM
10 ROR (PTR),Y

11 PHA : PUT TENIP BACK

12 INC PTR

13 BNE CHK . WRAP AROUND YET?

14 INC PTR+1 ' YEP

Page 80

Merlin 128 User's Manual

The Assembler

15 CHK
16

17

18

19

20

21

22 CHKCS
23

24

25

26 REALSTART
27

998 PROGEND
999 CHNSUM

ERR (forceERRor)

ERR expresson
ERR 1t expresson

LDA
CMP
BCC
LDA
CMP
BCC
BEQ
ALA

CMP
BNE

?7?
77

RTS
CHK

ERR $80($300

ERR*-1/$4100

ERR 1$5000

PTR+1
#>PROGEND
LOOP

PTR
#<PROGEND
LOOP

LOOP

CHKSUM
ERROR

; SEEIF WE'RE DONE YET...
; NOT YET...

; NOPE

; RETRIEVE CALCULATED VALUE
; COMPARE TO MERLIN'SVALUE

; ERROR HANDLER....

; FALL THROUGH IF O.K.

; REAL PROGRAM STARTS HERE

; END OF RUNCTIONAL PROGRAM
; Merlin 128CHECKSUM DIRECTIVE

[error if $80not in $300]
[error if PC > $410(Q
[error if REL code aldressexceals $500Q

"ERR expression” will force an error if the expresson has a non-zero value and the
messge "BREAK IN LINE?7?" will be printed.

This may be used to ensure your program does not exceed, for example, $95-F by adding

thefinal line:

ERR

*-1/$9600

NOTE: The @ove example would only alert you that the program is too long, and wil | not
prevent writing above $9600 duing assembly, but there can be no harmin this, sincethe
asembler will cease generating objed codein such an instance The aror occursonly on
the seaond passof the asseembly and does not abort the assembly.

Another available syntax is: ERR ($300-$4C

which will produce an error on the first passand abort asembly if location $300 aes not
contain the value $4C.

Page 81

Merlin 128 User's Manual The Assembler

Notesfor REL Filesand the ERR Pseudo Op

The"ERR texpression” syntax gives an error on the seand passif the aldresspointer
readies expression or beyond. Thisis equivalent to "ERR *-1/expr", but it when used with
REL files, it instructsthe linker to chedk that the last byte of the arrent module does not
extend to expression or beyond (expresson must be asolute). If the linker finds that the
current module does extend beyond expression, linking will abort with a message
Congtraint error:" followed by the value of expression in the ERR opcode. You can see
how this works by trying to link the PI file to an addressover $1C20. Note that the
position of this opcode in a REL file has no beaing on its adion, so that it is best to put it
at the end.

USR (USeR definable op-code)

USR optional expressions
USR expresson [examples depend on definition]

To prevent accidents, USR opcode routines are required to start with the CLD instruction
at location $E00. (Note that thisis different from USER). For purposes of loading, they
may adually begin at $DFF with an RTS.

Thisisauser definable pseudo-opcode. It does a JSR $E00. This locaion will contain an
RTS after aboot, aBRUN MERLIN or BRUN BOOT ASM. To set up your routine you
should BRUN it from the EXEC command after CATALOG. This should just set upa
JMP at $B00to the main routine and then RTS.

The following flags and entry points may be used by your routine:

USRADS =$EOO ;:must have aCLD instruction

PUTBYTE = $4C06 ;seebelow

EVAL = $4C09 ;seebelow

PASINUM =$4 ;contains asembly pass number

ERRCONT = 3$IF ;error count

VALUE =$55 ;value returned by EVAL

OPNDLEN =$2B ;contains combined length of
;operand and comment

NOTFOUND =$30 ;seediscusson of EVAL

MORKSP =$980 ;contains the operand and

;comment in positive ASCII

Y our routine will be alled by the USR opcode with A=0, Y=0 and cary set. To dired the
asembler to put a byte in the object code, you should JISR PUTBY TE with the byte in A.

PUTBYTE will preserve Y but will scramble A and X. It returns with the zeo flag clear
(so that BNE always branches). On the first passPUTBY TE only adjusts the objed and
addresspointers, so that the mntents of the registers are not important. Y ou must cdl
PUTBY TE the same number of times on ead pass or

Page 82

Merlin 128 User's Manual The Assembler

the pointers will not be kept correctly and the assembly of other parts of the program will
be incorrect!

If your routine neeals to evaluate the operand, or part of it, you can dothisby a JSR
EVAL. The X register must point to the first charader of the portion of the operand you
wish to evaluate (set X=0 to evaluate the expresson at the start of the operand). On return
from EVAL, X will point to the dharader following the evaluated expression. The' Y
register will be 0, 1, or 2 depending on whether this charader isaright parenthesis, a
gpace or acomma or end of operand.

Any charader not alowed in an expression will cause assembly to abort witha BAD
OPERAND or other error. If some label in the expression is not recognized then locaion
NOTFOUND will be non-zero. On the second pass however, you will get an
UNKNOWN LABEL error and the rest of your routine will be ignored. On return from
EVAL, the mmputed value of the expresson will be in locaion VALUE and VALUE+1,
low byte first. Onthe first passthis value will be insignificant if NOTFOUND is non-zero.

Y ou may use zeo page locaions $62-$6F, but should not alter other locations. Upon
return from your routine (RTS), the USR line will be printed (on the second pass.

When you use the USR opcode in a sourcefile, it is wise to include some sort of ched (in
source) that the required routine is in memory. If, for example, your routine cntains an
RTS at location $EIO then:

ERR ($£10)-$60

will test that byte and abort assembly if the RTS is not there. Similarly if you know that
the required routine should assemble exadly two bytes of data, then you can (roughly)
check for it with the following code:

LABEL USR OPERAND
ERR *-LABEL-2

Thiswill force a error on the second passif USR does not produce &adly two objed
bytes.

It is possible to use USR for several different routines in the same source For example,
your routine could chedk the first operand expresson for an index to the desired routine
and ad acordingly. Thus “USR 1, whatever” would branch to the first routine, “USR
2,stuff" to the seaond, etc.

Page 83

Merlin 128 User's Manual The Assembler

CONDITIONAL PSEUDO OPS

DO (DO iftrue)

DO expresson
DOO [turn assembly off]
DO1 [turn it on]
DO LABEL [if LAB EL<>0 then on]
DO LAB1/LAB2 [if LAB I<LAB2 then off]
DO LAB1-LAB2 [if LAB I-LAB2 then off]

Thistogether with ELSE and FIN are the cnditional assembly pseudo ops. If the operand
evaluates to zero, then the asembler will stop generating objed code (until it sees another
conditional). Except for maao names, it will not recognize any labels in such an areaof
code. If the operand evaluates to a non-zero number, then assembly wil | proceed as usual.
Thisisvery useful for maaos.

It is also useful for sources designed to generate slightly different code for diff erent
situations. For example, if you are designing a program to go on a ROM chip, you would
want one version for the ROM and another with small differences asa RAM version for
debugging puposes. Conditionals can be used to create these different objed codes
without requiring two sources.

Every DO should be terminated somewhere later by a FIN and each FIN should be
precaled by aDO. An ELSE should occur only inside such a DO/FIN structure. DO/FIN
structures may be nested upto eight deep (possibly with some EL SE's between). If the DO
condition is off (value 0), then assembly wil | not resume until its corresponding FIN is
encountered, or an ELSE at this level occurs. Nested DO/FIN structures are valuable for

putting conditionals in macros.

ELSE (ELSE do this)

ELSE
ELSE [only option for this opcode]

Thisinvertsthe assembly condition (ON beames OFF and OFF becomes ON) for the last
DO.

Page 84

Merlin 128 User’s M anual

The Assembler
IF (IF sothen do)
|F char,]var (IF char isthe first charader of Jvar)
IF(,]1 [if first char of]1is'(" then assemble following code]
IF"]TEMP [if first char is"”, assem)|
IF'=]1 [alternate use with "="]

This cheds to seeif char isthe lealing charader of the replacement string for Jvar.
Position is important: the aseembler checksthe first and third charaders of the operand for
amatch. If amatch is found then the following code will be asembled. Aswith DO, this
must be terminated with a FIN, with optional EL SEs between. The commais not
examined, so any charader may be used there. For example:

IF "=]1

could be used to test if the first charader of the variable |1 isadouble quate (*) or not,
perhaps neaded in a maao which could be given either an ASCII or a hex parameter.

FIN (FINish conditional)

FIN
FIN [only option for this opcode]

This cancels the last DO or IF and continues assembly with the next highest level of
conditional assembly, or ON if the FIN concluded the last (outer) DO or IF.

EXAMPLE OF THE USE OF CONDITIONAL ASEMBLY:

* Maao "MOV', moves datafrom]1to]2: (seealso 'local Variables', this Sedion)

MOV MAC
LDA]1
STA]2

* Maao "MOVD", moves datafrom]l to]2 with many available
* syntaxes

MOVD MAC

MOV]1;12

IE (]1 :Syntax MOVD (ADR1),Y;??7?
INY

IE (]2 . MOVD (ADRLY),Y:(ADR2),Y

Page 85

Merlin 128 User's Manual

The Assembler

MOV
ELSE
MOV
FIN
ELSE
IF
INY
IF
MOV
ELSE
MOV
FIN
ELSE
IF
MOV
ELSE
MOV
FIN
FIN
FIN
<<<

11,12

11]2+1

(.12

#]1
11/$100;]

]1+1;]2
#]1
11/$100;]2+1

]1+1;]2+1

Call syntaxes supported by MOW):

MOVD ADR1;ADR2

MOVD (ADR1),Y;ADR2
MOVD ADR1; (ADR2) ,Y
MOVD (ADR1),Y; (ADR2),Y
MOVD #ADR1;ADR2
MOVD #ADRL1;(ADR2},Y

: MOVD (ADRL),Y;ADR2

;Syntax MOVD ???%XADR2),Y
: MOVD #ADRL;(ADR2),Y

: MOVD ADRI1;(ADR2),Y
;Syntax MOVD ???7ADR2

; MOVD #ADR1;ADR2

; MOVD ADR1;ADR2
;MUST close ALL

:conditionals, Count DOs
:& Ifs, deduct FINs. Must

Page 86

Merlin 128 User's Manual The Assembler

MACRO PSEUDO OPS
MAC (begin M ACro definition)

Label MAC

This signals the start of a MACRO definition. It must be labeled with the maao name.
The name you use is then reserved and cannot be referenced by things other than the PMC
pseudo-op (things like DA NAME will not be acceted if NAME isthe label on MAC).

EOM (<<<)

EOM
<<< (alternate syntax)

This signals the end of the definition of a macro. It may be labeled and used for branches
to the end of amaao, or one of its copies.

PMC (>>>) (macro-name)

PMC maao-name
>>> maago-name (alternate syntax #1)
maao-name (alternate syntax #2)

Thisinstructs the asseembler to aseemble a ©py of the named maao at the present
locaion. Seethe sedion on MACROS. It may be labeled.

VARIABLES

Labels beginning with"]" are regarded as Variables. They can be redefined as often as you
wish. The designed pupose of variablesis for use in maaos, but they are not confined to
that use.

Forward referenceto avariable is impossible (with corred results) but the assembler will
assign some valueto it. That is, a variable should be defined before it is used.

It is possible to use variables for badkwards branching, using the same label at numerous
placesin the source This simplifies label naming for large programs and uses much less
gpacethan the equivalent once-used labels.

Page 87

Merlin 128 User's Manual The Assembler

For example:
1 LDY #0
2]ILQOP LDA TABLE)Y
3 BEQ NOGOOD
4 JSR DOIT
5 INY
6 BNE]JLOOP ;BRANCH TO LINE 2
7 NOGOOD LDX #1
8]ILOOP INX
9 STA DATAX
10 LDA TBL2X
11 BNE]JLOOP ;BRANCH TO LINE 8

LOCAL LABELS

A local label is any label beginning with a clon. A local label is"attaded” to the last
global label and can be referred to by any line from that global |abel to the next global
label. Y ou can then use the same local label in other segments governed by other global
labels. Y ou can chooseto use ameaningless type of local label such as:1, :2, etc., or you
can use meaningful names such as :LOOP, :EXIT, and so on.

Example of local labels:

1 START LDY #0

2 LDX #0

3 :LOOP LDA (JUNK),Y ;:loop islocal to start

4 STA (JUNKDEST),Y

5 INY

6 CPY #100

7 BNE :LOOP ;branch badk to LOOPin 3
8 LOOP2 LDY #0

9 :LOOP LDA (STUFR,Y ;:loop is now local to loop2
10 STA (STUFFDEST),Y

11 INY

12 CPY #100

13 BNE :LOOP ;branch badk to LOOPiIn9
14 RTS

Some restrictions on use of local labels:

Local labels cannot be used inside maaos. You cannot label aMAC, ENT or BXT witha
local label and you cannot EQUate alocal label. The first label in a program cannot be a
local |abel.

Page 88

Merlin 128 User's Manual The Assembler

Local Labels, Global Labelsand Variables

There aethreedistinct types of labels used by the asembler. Each of these ae identified
and treated dfferently by Merlin.

Global Labels labels not starting with “]” or “:”

Local labels labels beginning with”:”

Variables labels beginning with"]"

Note that local labels do not save spacein the symbol table, while variables do. Local
labels can be used for forward and badkward branching, whil e variables cannot. Good
programming pradice dictates the use of local labels as branch points, variables for
passing ckta, etc.

Page 89

Merlin 128 User's Manual M acros

MACROS
Why Macros?

Maaos represent a shorthand method of programming that allows multiple lines of code to
be generated from a single statement, or maao cdl. They can be used as a simple meansto
eliminate repetitive entry of frequently used program segments, or they can be used to
generate complex portions of code that the programmer may not even understand.

Examples of the first type ae presented throughout this manual and in the “MACRO
LIBRARY.S’. Examples of the second, more complex type, can be found in the "FP
MACROS" file.

Maaos literally allow you to write your own language and then turn that language into
machine mde with just afew lines of source @de. Some people even take great pride in
how many bytes of source code they can generate with asingle Maao call.

How DoesaMacro Work?

A maao is simply a user-named sequence of assembly language statements. To create the
maao, you simply indicate the beginning of a definition with the macro name in the LABEL
field, followed by the definition of the maao itself.

The maao definition ends with a terminator command in the opcode field of either "EOM"
(for "End Of Maao"), or the charader'<<<".

For example, suppose in your program that locaions $06 and $07 read to be incremented by
one, asin thislisting:

1 INC INC $06 ;INCLOBYTE

2 BNE DONE

3 INC $07 ; INCHIGHBYTE

4 DONE ?7 ; PROGRAM CONTINUES HERE...

Further, suppose that thisis to be done anumber of different times throughout the program.
Y ou could make the operation a subroutine, and JSR to it, or you could write the threelines
of code out a eadt spat its needed.

However, amaao could be defined to do the same thing like this:

1 INK MAC ; define amaao named INK

2 INC $06

3 BNE DONE

4 INC $07

5 DONE ; NO OPCODE NEEDED

6 <<< ; this signals the end of the maao

Page 90

Merlin 128 User’s M anual M acros

Now whenever you want to increment bytes $06,07 in your program, you could just use the
maao call:

100 >>> INK ; usethe macro "INK"
or.
100 PMC INK : alternate for ">>>"

Now, suppose you noticethat there ae anumber of different byte-pair locations that get
incremented throughout your program. Do you have to write amaao for eat one?
Wouldn't it be nice if there was a way to include avariable within a maao definition? You
could then define the maao in ageneral way, and when you use it, via amaao cdl, "fill in
the blanks" left when you defined it Here's a new example:

1 INK MAC ; define a macro named INK

2 INC 11 ; increment 1st location

3 BNE DONE

4 INC]1+1 pincrement location+ 1

5 DONE : NO OPCODE NEEDED

6 <<< ; this dgnals the end o the macro

This can now be clled in aprogram with the statement:

100 >>> INK,$06

In the sssembled objed code, this would be assembled as:

100 INC $06

100 BNE DONE

100 INC $07

100 DONE ; NO OPODDE NEEDED

Noticethat during the assembly, all the objed code generated within the maao is listed with
the same line number. Don't worry though, the bytes are being placed properly in memory,
aswill be evidenced by the addresses printed to the left in the adual assembly.

Later, if you need to increment locations $0A,0B, thiswould do the trick:

150 >>> |INK,$0A

In the sssembled objed code, this would be assembled as:

150 INC $0A

150 BNE DONE

150 INC $0B

150 DONE ; NO OPCODE NEEDED

Now, let's suppose that you want to use several variables within a maao definition. No
problem! Merlin lets you use 8 variables within amaao,]1 through]8.

Page 91

Merlin 128 User’s M anual M acros

Here's another example:

MOVE MAC ; define a macro named MOVE
LDA 11 ; load accum with variable]1
STA]2 ; storeaccumin location]2
<<< ; this dgnals the end o the macro

Thisisamaao that moves abyte (or value) from one locaion to another. In this example
the variables are 11 and 12 When you call the MOVE maao you provide aparameter list
that "fillsin" variables]1 and]2. What actually happens isthat the asembler substitutesthe
parameters you provide & assembly time for the variables. The order of substitution is
determined by the parameter's place in the parameter list and the locaion of the
corresponding variable in the maao definition. Here's how MOVE would be alled and then
filled in:

MOVE $00$01
MOVE: macro being called
$00: takes place of]1 (1st variable)
$01 takes place of]2 (2nd variable)

then, the maao will be "expanded” into assembly code,

>>> MOVE,$0D;$01
LDA $00 {$00in place of ~1}
STA $01 {$01linplaceof 121

It is very important to redize that anything used in the parameter list will be substituted for
the variables. For example:

>>> MOVE#'A";DATA

would result in the following:

>>> MOVE, #'A";DATA
LDA #'A"
STA DATA

Y ou can get even fancier if you like:

>>> MOVE#'A"; (STRING),Y
LDA #A
STA (STRING),Y

Asillustrated, the substitution of the user supplied parameters for the variables is quite
literal. It is quite possible to get into trouble this way also, but Merlin will inform you, viaan
error message, if you get too caried away.

One common problem encountered is forgetting the diff erence between immediate mode
numbers and addresses.

Page 92

Merlin 128 User's Manual M acros

The following two maao cdlswill do quite different things:

>>> MOVE,I0;20
>>> MOVE#10#20

The first storesthe contents of memory location 10 (decimal) into memory locaion 20
(decimal). The second maao call will attempt to store the number 10 (dedmal) in the
number 20! What has happened here is that an ill egal addressing mode was attempted. The
second macro cdl would be expanded into something like this (if it were possible):

>>> MOVE, #10#20 ;call the MOVE maao
LDA #10 ;nothing wrong here
STA #20 ;woops! can't do this!

*** BAD ADDRESSMODE *** ;Merlin will let you know!

In order to use the maaos provided with Merlin, or to write your own, study the maao in
question and try to visualize how the required parameters would be substituted. With a little
time and effort you'll be using them like aPro!
MORE ABOUT SPECIAL VARIABLES
Bight variables, named] 1 through |8, are predefined and are designed for conveniencein
maaos. These @n be used in any maao call. Maaos can ke clled one of threeways, and
thiswill affect the syntax of accompanying variable expressions.
In the first two methods,

>>> NAME,exprl;expr2;expr3...

and
PMC NAME,exprl;expr2;expr3...

will assign the value of exprl to the variable |1, that of expr2 to]2, and so on. An example
of thisusage is: SWAP,$6;$7; TEMP

MACRO DEFINITION RESULT ANT CODE EXAMPLE

TEMP EQU $10
SWAP MAC

LDA]1 LDA $06
STA |3 STA TEMP
LDA]2 LDA $07
STA]I STA $06
LDA |3 LDA TEMP
STA]2 STA $07
<<

>>> SWAP,$6,$7, TEMP

Page 93

Merlin 128 User's Manual M acros

>>> SWAP,$1000%$6; TEMP (2nd maao call with new argument)

This program segment swaps the ontents of locaion $6 with that of $7, using TEMP as a
scratch depository, then swaps the mntents of $6 with that of $1000

If, as above, some of the special variables are used in the Maao definition, then values for
them must be specified inthe PMC (or >>>) statement. In the assembly listing, the special
variables will be replacel by their corresponding expressons.

The number of values must match the number of variables used in the maao definition. A
BAD VARIABLE error will be generated if the number of values is less than the number of
variables used. No error message will be generated, however, if there ae more values than
variables.

Note that in giving the parameter list, the Maao is followed by a mma, and then each
parameter separated with a semicolon. The asembler will accept some other charadersin
placeof the mmma between the maao name and the expressions in a maao call (seethe
following examples). You may use any of these charaders:

.I,- (andthe space harader

The semicolons are required, however, between the expressions, and no extra spaces are
allowed.

Macro names may also be put in the opcode column, without using the PMC or >>>, with
the following restriction: The maao name cannot be the same & any regular opcode or
pseudo opcode, such asLDA, STA, ORG, EXP, etc. Also, it cannot begin with the letters
DEND or POPD.

Note that the PMC or >>> syntax is nhot subjed to this restriction.

Maaos will accept literal data. Thus the assembler will accept the following type of maao
cal:

MACRO DEFINITION

MUV MAC
LDA 1
STA]2
<

>>> MUV . (PNTR),Y;DEST
>>> MUV . #3,FLAG,X

Page 94

Merlin 128 User’s M anual M acros

with the resultant code from the @ove two maao calls being:

>>> MUV. (PNTR),Y;DEST :macro call

LDA (PNTR)Y ;substitute first parm.

STA DEST ;Substitute second parm.
and,

>>> MUV #3,FLAG,X :macro call

LDA #3 ;Substitute first parm.

STA FLAG,X ;Substitute second parm.

It will also accept:

MACRO DEFINITION RESULT ANT CODE EXAMPLE
PRINT MAC PRINT. "Example"
JSR SENDMSC JER SENDMSG
AEC 11 AEC "Example"
BRK BRK
<<<

Some alditional examples of the PRINT maao cdl:

>>> PRINT. "quote"!
>>> PRINT. Thisisan exarpi€
>>> PRINT. "So's this, understand?"

LIMITATION: If such strings contain spaces or semicolons, they must be delimited by
guaes (single or double). Also, literals sich as >>>WHAT."A" must have the final
delimiter. (Thisisonly truein macro cdls or VAR statements, but it is good practicein all
cases.)

MORE ABOUT DEFINING A MACRO
A maao definition begins with the line:
Name MAC (ho gperand)

with Name in the label field. Its definition is terminated by the pseudo-op EOM or <<<. The
label you use & Name annot be referenced by anything aher than avalid Maao cdl:
NAME, PMC NAME or >>> NAME.

Forward referenceto amacro definition is not possble, and would result ina NOT
MACRO error message. That is, the maao must be defined before it is called by
NAME, PMC or >>>,

The aconditionals DO, IF, ELSE and FIN may be used within a maao.

Page 95

Merlin 128 User's Manual M acros

Labels inside maaos are updeted eat time the maao NAME, PMC or >>>NAME is
encountered.

Error messages generated by errorsin maaos often abort assembly, becaise of possibly
harmful effects. Important: Such messages will usually indicae the line number of the
maao call rather than the line inside the maao where the eror occurred. Thus, if you get an
error on aline in which amaao has been used, you should ched the maao definition itself
for the offending statement.

Nested M acros
Maaos may be nested to a depth of 15. Here is an example of a nested maao in which the

definition itself is nested. (This can only be done when both definitions end at the same
place)

TROB MAC

>>> TR]1+1;]2+1
TR MAC

LDA 11

STA]2

In this example >>>TR.LOC;DEST will assemble &s:

LDA LOC
STA DEST

and >>> TRDB.LOC;DEST will assemble as:

LDA LOC+1
STA DEST+1
LDA LOC
STA DEST

A more common form of nesting is il lustrated by these two maao definitions:

TABMAP EQU $354

POKE MAC
LDA #2
STA]1
<

HTAB MAC

>>> POKE. TABMAP+] 1;]2

The HTAB maao could then be used like this:

HTAB 220 st tab #2to column 20 ceamal

Page 96

Merlin 128 User’s M anual M acros

and would generate the following code:
LDA #20 ;]2 in POKE maao

STA TABMAP+2 ;11 in POKE maao, 1st parm.
:in H~AB maao

Macro Librariesand the USE Pseudo Op
There ae anumber of maao libraries on the Merlin disk. These libraries are examples of
how one could set up alibrary of often used macros. The requirements for afile to be
considered amaao library are:

1) Only Maao definitions and label definitions exist in the file,

2) Thefileisatextfile,

3) Thefile must be accesible & assembly time (it must be on an available disk drive).
The maao libraries included with Merlin include:

Macro Library functions

MACRO LIBRARY.S Often-used maaos for general use

FP MACROS Hoating point math routines

PT.MACROS Maaos used for the “PI” linker demonstration
programs

Any of these maao libraries may be included in an assembly by simply includinga USE
pseudo op with the gpropriate library name. There is no limit to the number of libraries that
may be in memory at any one time, except for available memory space Seethe
documentation on the USE pseudo op for adiscusson on its use in a program.

Page 97

Merlin 128 User's Manual The Linker

THE LINKER
Why aLinker?

The linking facilities built into Merlin offer a number of advantages over assemblers without
this capabil ity:

1) Extremely large programs may be assembled in one operation, over 41000 lytes long,

2) Large programs may be assembled much more quickly with a wrresponding deaease in
development time,

3) Libraries of subroutines (for disk acaess graphics, scree/modem/printer drivers, etc.)
may be developed and linked to any Merlin 128 pogram,

4) Programs may be quickly re-assembled to run at any address.

With alinker, you can write portions of code that perform specific tasks, such as general
disk 1/0 handler, and perform whatever testing and debugging is required. When the mdeis
corred, it isassembled as a REL file and placed on a disk. Whenever you need to write a
program that uses disk 1/0 you won't have to re-write or re-assemble the disk 1/0O portion of
your new program. Just link your general disk 1/0 handler to your new program and away
you go. Thistedhnique can be used for a variety of often used subroutines.

Wouldn't aPUT file or Maao USES library serve the same purpose? A PUT file ammesthe
closest to dugicaing the utility of REL files and the linker, but there ae afew rather large
drawbadks for certain programs. First, using a PUT file to add a general purpose subroutine
would result in much slower assembly. Second, any label definitions contained in the PUT
file would be global within the entire program. With aREL file, only labels defined as
ENTry inthe REL file (and EXTernal in the aurrent file) would be shared by both programs.
There is no chance for dugicate label errors when using the linker. Consider the following
simple example:

A REL file has been assembled that drives a plotter. There ae six entry points into the
driver: PENUP, PENDOWN, NORTH, SOUTH, EAST, WEST. To further illustrate the
value of alinker, assume the driver was written by a friend who has moved 2000miles from
you. Your job isto write asmple program to draw a box. The amde would look something
like this:

1 REL ;RELOCATABLE CODE
2 PENUP EXT ;EXTERNAL LABEL
3PENDOWN EXT ;ANOTHER ONE

4 NORTH EXT

5 SOUTH EXT

6 EAST EXT

Page 98

Merlin 128 User's Manual The Linker

7 NEST EXT

8

9 BOX LDY #00 ; INITIALIZEY

10 JSR PENDOWN ; GET READY TO DRAW

11 :LOOP JSR NORTH ; MOVE UP

12 INY ; INC COUNTER

13 CPY#100 ; 100MOVES YET?

14 BNE ‘LOOP ; NOTICE LOCAL LABEL
15 LDY #00 ; INITY AGAIN

16 :LOOP2 JSR EAST ; NOW MOVE TO RIGHT

17 INY

18 CPY#100

19 BNE :LOOP2 ; FINISH MOVING RIGHT

20* YOU GET THE IDEA, DO SOUTH, THEN WEST, AND DONE!

This simple sample program illustrates some of the power of RELocaable, linked files.

Y our program doesn't have to concern itself with conflicts between it's labels and the REL
files labels, you don't concern yourself with the locaion of the EXTernal labels, your
program listing is only 30to 40lines and it is capable of drawing a box on a plotter!

Let'slook at another example that illustrates points 1 and 2 above. Thistime you are writing
adata base program. Y ou have broken the program down into 6 modules, all of which are
REL files:

1) Userinterface

2) ISAM file system

3) Sort subsystem

4) Seach subsystem

5) Report generator

6) Memory management subsystem

Y ou would first design and write the user interfacefor your program. This would then be
asembled and stored as a REL file. Next, the ISAM file system is written and de-bugged.

Y ou would then link the two modules together to seehow they worked together. Next, you
would complete the Sort, the Search, and all the rest. In fad, by using REL files, and
documenting the ENTry points and their conditions, six different people could be working
simultaneously on the same projed and need no more from one another than the ENT labels!

To illustrate point 2, assume that the six modules are all coded as PUT files and that the
resulting program was 40k bytes long. The time it would take to assemble and cross
reference such alarge program would be measured in hours or days. Changing one byte in
the source code would require a @mplete re-assembly and a quite await! By asseembling
each sedion independently as REL files and then linking them, the one byte change would
require aaembly of only one module in the 40k program. In short, with REL filesand a
linker, changes to large programs can be made quickly and efficiently, grealy speeding the
program development process

Page 99

Merlin 128 User's Manual The Linker

About the Linker Documentation

There aethreepseudo opcodesthat ded directly with relocaable modules and the linking
process These ae:

REL - Informsthe asembler to generate relocatable files
EXT - Defines alabel as external to the airrent file
ENT - Definesalabel in the aurrent file & acaessible to other REL fil es.

There aetwo aher pseudoopcodesthat behave differently when used in a REL file,
relative to anormal file. These ae:

DS - Define Storage opcode,
ERR- Force an ERRor opcode.

Ead of these five pseudo opcodes will be defined or redefined in this dion as they pertain
to REL files. Also, an Editor command unique to REL files will be defined: LINK.

In order to use the Linker, the files to be linked must be specified. The linker usesafile
containing the names of the files to be linked for this purpose.

The Linker documentation will make no additional attemptsto educate the user asto when
(or when ot) to use REL files.

PSEUDO OPCODES FOR USE WITH RELOCATABLE
CODE FILES

REL (generatea RELocatable codefile)
REL [only options for this opcode]

This opcode instructs the asseembler to generate arelocatable ade file for subsequent use
with the relocaing linker.

This must occur prior to definition of any labels. You will get aBAD "REL" error if not.
REL files are incompatible with the SAV pseudo op and with the EXEC mode's object
code save coommand. To get an object file to the disk you must use the DSK opcode for
direct assembly to disk.

There ae alditional illegal opcodes and proceduresthat are normally allowed with
standard files, but not with REL files. For example, an ORG at the start of the adeis not
allowed. In addition, multiplicaion, division or logica operations can be goplied to
absolute expressions but not to relative ones.

Page 100

Merlin 128 User's Manual The Linker

Examples of absolute expresgons are:

- An EQUate to an explicit address,
-The diff erence between two relative labels,
-Labels defined in DUMMY code sedions.

Examples of relative expressionsthat are not allowed are:

-Ordinary labels,
-Expressionsthat utilizethe PC, like: LABEL =*.

The starting address of an REL file, supplied by the assembler, is $800Q Note that this
addressis afictional address since it will later be dhanged by the linker. It is for this
reason that no ORG opcode is allowed.

There ae some restrictions involving use of EXTernal labels in operand expressions. No
operand can contain more than one external. For operands of the following form:

#>expression or >expression

where the expression contains an external, the value of the expression must be within 7
bytes of the external labels value. For example:

LDA #>EXTERNAL+8 [illegal expresson]
DFB >EXTERNAL-1 [legal expresson]

Objed files generated with the REL opcode ae given the file type USR.

EXT (definealabel EXTernal to the current REL module)

label EXT
PRINT EXT [define label PRINT as EXT]

This defines the label in the label column as an external label. Any external label must be
defined asan ENTry label in its own REL module, otherwise it will not be reconciled by
the linker (the label would not have been found in any of the other linked modules). The
EXTernal and ENTry label concepts are what allows REL modules to communicae and
use eah other as sibroutines, etc.

The value of the label is st to $800 and will be resolved by the linker. In the symbol
table listing, the value of an external will be $8000plus the external reference number
($0-$FE) and the symbol wil | be flagged with an “X”.

Page 101

Merlin 128 User's Manual The Linker

ENT (definealabel asan ENTry label in a REL code module)

label ENT
PRINT ENT [define label PRINT as ENTry]

This defines the label in the label column asan ENTry label. This means that the label can
be referred to as an external label. This faality allows other REL modulesto use the label
asif it were part of the aurrent REL module. If alabel is meant to be made available to
other REL modules it must be defined with the ENT opcode, otherwise, other modules
wouldn't know it existed and the linker would not be ale to reconcile it.

The following example of a segment of a REL module will illustrate the use of this
opcode:

21 STA POINTER ;S0mMe meaninglesscode

22 INC POINTER ;for our example

23 BNE SWAP :CAN BE USED AS NORMAL
24 JMP CONTINUE

25 SWAP ENT :MUST BE DEFINED IN THE
26 LDA POINTER ;CODE PORTION OF THE

27 STA PTR :MODULE AND NOT USED
28 LDA POINTER +l :AS AN EQUated label

29 STA PTR+

30 * etc.

Note that the label SWAP is associated with the adein line 26 and that the label may be
used just like any other label in aprogram. It can be branched to, jumped to, used asa
subroutine, etc.

ENT labels will be flagged in the symbol table listing with an "E."
DS (Define Storage)

DSt

DS texpression
DSt [start next module, fill memory with zeros to next page bre&]
DS1,1 [start next module, fill memory with the value 1 to next page]

When this opcodeis found in an REL file it causes the linker to load the next file in the
"linker name file" at the first available page boundary and to fill memory either with zeros
or with the value speafied by the expresson. This opcode should be placed at the end of
your sourcefile.

Page 102

Merlin 128 User's Manual The Linker

ERR (force an ERRor)

ERR texpresson
ERR 1$4200 [error if current code passes address$420Q

This opcode will instruct the linker to chedk that the last byte of the aurrent file does not
extend to expression” or beyond. Note that the expresson must be @solute and not a
relative expression.

If the linker finds that thisis not the case, linking will abort with the message:
CONSTRAINT ERROR;:, followed by the value of the expression in the ERR opcode.

Y ou can seehow thisworks by trying to link the PI file on the Merlin disk to an address
greder than $1C20.

Note that the position of this opcode in a REL file has no beaingon itsadion. It is
recommended that it be put at the end of afile.

LINK (LINK REL files, thisisan editor command)
LINK adrs "filename'
LINK $1000"NAMES" [link filesin NAMES]

This editor command invokes the linking loader. For example, suppose you want to link
the objed files whose names are held in a"linker name file' called NAMES. Suppose the
start addressdesired for the linked program is $100Q Then you would type: LINK $1000
“NAMES’ <RETURN>. (The final quote mark in the name is optional and you can use

other delimiters suichas“’” or”;”.). The specified start addresshas no effed on the space
available to the linker.

Note that this command is only accepted if there is no current sourcefile in memory, since
the linker would destroy it.

Linker Name Files

The linker name file is just atext file mntaining the file names of the REL objea modules
you want linked. It should be written with the Merlin editor and written to the disk with
the “W” EXEC command.

Thus, if you want to link the object files named MY PROG.START, MYPROG.MID, and
LIB.ROUTINE,9 you would creae atext file with these lines:

MYPROC.START
MYPROG.MID
LIB.ROUTINE, 9

Page 103

Merlin 128 User’s M anual The Linker

Then you would write this to disk with the "W" command under the filename (for
example) MYPROG.NAMES. (Use awy filename you wish here, it isnot required to cdl it
NAMES.). Then you would link these files with a start addressof $4000 ly typing NEW
and then isauing the Editor command: LINK $4000"MY PROG.NAMES.

The names file may contain empty lines and comment lines garting with "*".

Thelinker will not save the objed fileit creates. Instead, it sets up the objed file
pointers for the Main Menu Objed command (“O”) and returns you dredly to Main Menu
upon the cmpletion of the linking process

The Linking Process

Various error messages may be sent during the linking process(seethe ERRORS sedion
of this manual for more information). If a eror occurs involving the file loading, then that
error message will be seen and linking will abort. If the eror FILE TY PE MISMATCH
occurs after the message "Externals:" has been printed then it is being sent by the linker
and means that the file structure of one of the filesis incorred and the linking cannot be
done.

The message MEMORY IN USE may occur for two reasons. Either the object program is
toolarge to accept (the total objed size of the linked file cannot exceed about $A100) or
the linking dictionary has exceeded its allotted space($B000long). Eac of these
possibilities is excealingly remote.

After all files have been loaded, the externals will be resolved. Each external 1abel
referenced will be printed to the screen and will be indicated to have been resolved or not
resolved. An indication isalso given if an external reference @rrespondsto dugdicae
entry symbols. With both of these erorsthe aldressof the field (one or two bytes)
effeded is printed. Thisisthe aldressthe field will have when the final code is
DLOADed.

If you use the TRON command prior to the LINK command, only the erorswill be
printed in the external list (NOT RESOLVED and DUPLICATE errors).

Thislisting may be stopped at any point using the spacebar. The spacebar may also be
used to single step through the list. If you pressthe spacebar while the files are loading
then the linker will pause right after resolving the first external reference

Thelist can be sent to aprinter by using the PRTR command prior to the LINK command.
At the end, the total number of errors (external references not resolved and referencesto
duplicae entry symbols) will be printed. After pressing a key you will be sent to the
MAIN Menu and can save the linked objed file with the objed save mmmand, using any
filename you please. You can also return to the elitor and use the GET command to move
the linked code to RAMO.

Page 104

Merlin 128 User's Manual Tednical Information

TECHNICAL INFORMATION

The sourceis placel at START OF SOURCE when loaded, regardlessof its original
address

The important pointers are:

START OF SOURCE in $C,$D (set to $7000 uless changed)
HIMEM in $E,$F ($FFO0, don't change)
END OF SOURCE in $10%11

GENERAL INFORMATION

When you exit to BASIC or to the monitor, these pointers are saved. They are restored upon
re-entry to Merlin 128

Re-entry after exit to BASIC is made by the "SY S 2048 command or by the F4 function
key.

If during assembly the objed code exceals usable RAM then the ade will not be written to
memory, but assembly will appea to proceeal as normal and its output sent to the screen or
printer. The only clue that this has happened, if not intentional, is that the OBJECT CODE
SAVE command at EXEC level isdisabled in this event. Thereis ordinarily a 23K spacefor
objed code, which can be changed with the OBJ opcode.

SYMBOL TABLE

The symbol table is printed after assembly unlessL ST OFF has been invoked. It is displayed
first sorted alphabetically and then sorted numerically. The symbol table can be aborted at
any time by pressing RUN/STOP. Stopping it in this manner will have no ill effect on the

objed code which was generated.

The symbol table is flagged as follows:

Maao Definition

label defined within aMaao

Variable (symbols garting with"]")

A symbol that was defined but never referenced
External symbol

Entry symbol

mXxXva<zZ
O

(local labels are not shown in the symbol table listing.)

Page 105

Merlin 128 User's Manual Tednical Information

The symbol printout usesthe first tab to determine the spaceto allocae to ead symbol.
Thus, if you change the default tabs to enable more label space, the symbol table printout
will change also. Note that you may have to change the parameter for number of symbols
per line in the table.

CONFIGURATION

The onfiguration registers $D101-$D504 are set up as iown below. These should not be
changed, or reset to values shown. Returnto MAIN MENU via $20000r $2500will reset
them.

$D501 %00000000 (ROM)

$D502 %01111111 (RAM1)

$D503 %00111111 (RAMO)

$D504 %00001110 (RAMHALF)

RAM HALF leaves RAM below $C000, ROM and 1/0 above. The RAM HALF
configuration is the one usually in effed at any given time.

Merlin 128configuration data is gored in a file the PARMS.O file which is loaded at boct.
To change any of these values, load the sourcefile, PARM.S, make the desired changes,
then reassemble it.

Usethe'S command to save the source code & PARMS. Use the 'O’ command to save the
objed code s PARMS. Merlin 128will add the gpropriate suffix (.S or .O).

Page 106

Merlin 128 User's Manual

Tednical Information

CONTENTS OF PARMS

PARMS for Merlin-128
SRC = $7000
HIM = $FFO0
ORG$2506
SFEED DFB 0
ERRFLG DFB $80
PNTSAV DA SRC
DA HIM
DA SRC
DFB #'N"
DFB 4
CYCHORIZ DFB 80-8

LSTDOFLG DFB 0

DEFBKGND DFB 0
CHRCOLOR DFB 149

;Source address(=> $7000)
;Don't change

;Do not change the org

;Printer output speed (RS232)
;0 to defeat keywait on error

;Don't change these

)
.6
)

;Editorswild card (cmd mode)

;Number of symbolg/linein
; Symbol table printout

;Column for CY C printing
;$FFtonot list DO OFF areas

; Foreground/background color
;:Char color

* For DEFBKGND use the foll owing table:

red

light red
orange
purple
brown
yellow
light grey
white

dark cyan
grey

light green
light blue
light grey
purple
light cyan
cyan

;Control reg. for RS232
;Command reg.

*
*0 - black 8 -
*1 - medium grey 9 -
*2 - blue 10 -
*3 - light grey 11 -
*4 - green 12 -
*5 - light green 13 -
*6 - dark grey 14 -
*7 - cyan 15 -
*
* For CHRCOLOR use the character codes for colors, i.e.:
*
*5 = white 151 =
* 28 = rd 152 =
* 30 = green 153 =
*31 = blue 154 =
* 129 = darkpurple 155 =
* 144 = black 156 =
* 149 = dakydlow 158 =
* 150 = lightred 159 =
RS232 DFB %00000110
DFB %00010@O0
DFB 0

:Baud low (if used)

Page 107

Merlin 128 User's Manual Tednical Information

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

DFB 0 ;Baud h
RPTDFLT DFB $80 ;Repeat key default
NUMLINES DFB 60 ;Printer lines/page

PAGSKIP DFB 0 ;# of lines kipped at perf
; will formfeed if O.
;If printer does not reaognize
; formfeed then usually you
; should put a7 here

NUNCHRS DFB 80 ;Printer width

PRNTRCR DFB $80 ;Put a0 hereif your printer
; will not do an automatic CR
; after the# o charsin
; NUMCHRS (eg. if the printer
; width ismorethan NUNCHRS).
;Thisisso that output can
; ke an acaurate line count.
;For ailmost all printersyou
; should use $80 here - unless
; you use aNUMCHRS lessthan
; the actual printer width.

LFD DFB 0 ;Linefea default 0=no,$D=yes
CNUMSK DFB 0 ;UC/LC conversion for printer

; Put 2 32=$20 here to convert

; Ic/uc for printer output.

ECHO DFB $61 ;$61=echo printer output
; 0 =no echo (to screen)

* Editor and assmbler tabs (use 5 more than column) :

DFLTABS DFB 14 ;Opcode column (+5)
DFB 20 ;Operand column (+5)
DFB 31 ;Comment column (+5)
ERR *-$2523 ;That's it folks

Page 108

Merlin 128 U

ser'sManual

Tednical Information

$FFFF

$FF00 h

$7000

$2000

$1C00

$1200
$1100

$1000
$E00

$C00

$B0OO

$800
$0

Merlin 128Memory M ap

Bank 0

" ROM & Interrupt Code

Source Files

&

Merlin 128

H

Unused
(reserved for USER routines,
etc. Portions of $1200-12FF
are used by kernel
interrupt routines)

.

Buffer for DSK

Function key usage

USR Opcode routines

RS232 buffers &
Merlin's printer usage

Editor's USER routines

bl

Misc. Usage

Usual Stuff

Bank 1
SFFFE
$FFo0 b ROM & Interrupt Code
Object code or Linker tables

$A000 b

Symbo] table,

or Clipboard,

or Linker tables

$0

v, Common RAM boundary R N T DK

y

Sourceror usage

USER routines can use
this space by banking in
the "common'” area

Page 109

Merlin 128 User’s M anual Err or Me ssages

ERROR MESSAGES
BAD ADDRESSMODE

The aldressing mode is not avalid 6510instruction; for example, JSR (LABEL) or LDX
(LABEL),Y.

BAD BRANCH

A branch (BEQ, BCC, etc.) to an addressthat is out of range, i.e. further away than +127
bytes.

NOTE: Mogt errors will throw off the asembler's address calculations. Bad branch
errors dould be ignored until previous errors have been dealt with.

BAD EXTERNAL

EXT or ENT inamaao or an equate of alabel to an expression containing an external,
or a branch to an external (use JIMP).

BAD INPUT

Thisresults from either no input (RETURN aone) or an input excealing 37charaders
in answer to the KBD opcodes request for the value of a label.

BAD LABEL
Thisiscaused by an unlabeled EQU, MAC, ENT or EXT, alabel that istoo long
(greder than 13 charaders) or one cntaining illegal charaders (alabel must begin with
a dharader at least aslarge in ASCII value a the alon and may not contain any
charaders lessthan the digit zero).

BAD OBJ
An OBJ after code start or OBJ not within $4000to $FEEO.

BAD OPCODE

Occurs when the opcode is not valid (perhaps misspelled) or the opcode is in the label
column.

BAD ORG

Results from an ORG at the start of a REL file.

Page 110

Merlin 128 User's Manual Err or Me ssages

BAD " PUT"

Thisis caused by aPUT inside amaao or by a PUT inside another PUT file.
BAD REL

A REL opcode occurs after some labels have been defined.
BAD “SAV”

Thisiscaused by aSAV inside amaao or aSAV after amultiple OBJ after the last
SAV.

BAD VARIABLE
Occurs when you don't passthe number of variablesto amaao that it expeds. It can
also ocaur for a syntax error in astring passed to amaao variable, such as a literal
without the final quote.

BREAK

This message is caused by the ERR opcode when the expresson in the operand is found
to be non-zero.

DICTIONARY FULL
Overflow of the relocation dictionary in aREL file.

DUPLICATE SYMBOL
On the first pass the assembler finds two identical |abels.

ILLE GAL CHAR IN OPERAND
A non-math charader occurs in the operand where the assembler is expeding a math
operator. Thisusually occursin maao calls with improper syntax resulting from the
textual substitution.

ILLE GAL FORWARD REFERENCE
A label equated to azero page addressafter it has been used. Thisalso occurs when an
unknown (on the first pas9 label is used for some things that must be @le to cdculate

the value on the first pass(e.g. ORG< OBJDUM). It also occursif alabel is used before
it isdefined in a DUM section on zero page.

Page 111

Merlin 128 User's Manual Err or Me ssages

ILLE GAL RELATIVE ADRS
In REL mode amultiplication, division or logicd operation occursin arelative
expresson. Thisalso occurs for an operand of the type #>expr or aDFB >expr when the
expr contains an external and the off set of the value of the expr from that of the external
excedls 7.

MEMORY FULL

Thisisusually caused by one of two conditions: Source code too large or symbol table
toolarge. See"Special Note" at the end of this sction.

NESTING ERROR

Maaos nested morethan 15 degp or conditionals nested more than 8 dego will generate
thiserror.

NOT MACRO

Forward referenceto aMACRO, or referenceby PMC or >>>to alabel that isnot a
MACRO.

OUT OF MEMORY

An attempt has been made to paste more text from the clipboard than will fit in the
current sourcelisting, or to paste from an empty clipboard (such as after an assembly).

RANGE ERROR

Results when using GET to move aprogram with an ORG that conflicts with Merlin 128
or asourcefile in memory.

TWO EXTERNALS
Two or more externals in an operand expresson.

UNKNOWN LABEL
Y our program refers to alabel that has not been defined. Thisalso occursif you try to
reference aM ACRO definition by anything other than PMC or >>>. It can also occur if
the referenced label isin an areawith conditional assembly OFF. The latter will not
happen with a MACRO definition.

256 EXTERNALS

The file has more than 255 externals.

Page 112

Merlin 128 User’s M anual Err or Me ssages

MEMORY FULL Errors

There aethree ®mmon causes for the MEMORY FULL error message. They are &
follows:

MEMORY FULL IN LINE: xx. Generated duing assembly.

CAU SE #1. Too many symbols have been placed into the symbol table, causing it to
excedl avail able space

REMEDY : Make the symbol table larger by setting OBJto $FEEQ and use DSK to
asemble directly to dsk.

CAUSE #2: If the combined size of the sourcefile and aPUT fileistoolarge.
REMEDY: : Split either file into two smaller files.

ERR:MEMORY FULL . Generated immediately after you type in one line too many.

CAUSE: The source code istoo large and has exceeded available RAM.
REMEDY : Bre&k the sourcefile up into smaller sedions and bring them in when
necessary by using the "PUT" pseudo-op.

ERROR MESSAGE: None, but no abjed code will be generated (there will be no
OBJECT information displayed on the MAIN menu).

CAU SE: Object code generated from an assembly would have exceeded the available
16K gpace.
REMEDY : Set OBJto an addressless than its $8000 a@fault or use DSK.

GENERAL NOTE: When an error occurs that aborts assembly, the line mntaining the
error is printed to the screen. This may not have the same form as it has in the source, since
it shows any textual substitutions that may have occurred because of macro expansion. If it
isinamaao call, the line number will be that of the all line and not of the line in the maao
(which is unknown to the assembler).

Page 113

Merlin 128 User's Manud Sourceror

SOURCEROR

INTRODUCTION
SOURCEROR is a sophisticated and easy to use a-resident disassembler designed to create
Merlin 128sourcefiles out of binary programs, usually in a matter of minutes.
Using SOURCEROR
To use SOURCEROR, follow these steps:
1. UsetheMain Menu 'G' command to run SOURCEROR
2. Press'E'to enter the Editor.
3. Fromthe Immediate mode prompt (:), type:

USER (RETURN)

There must be no sourcein memory when the USER command is issued. If there is, the
USER command will be ignored, and you will not be ale to continue the disassembly.

4. If thereis no sourcein memory, the following prompt will appea:
Do you want an objed file loaded? (Y/N):
5. If youtype 'N', the following prompt appeas:

If the present location of the program to be disassembled is its original locaion, hit
RETURN. If not, give PRESENT locaion:

After pressing RETURN or entering the PRESENT location, the following prompt
appeas.

In disassembling, use the ORIGINAL location. Please specify it:
Enter the ORIGINAL locaion and pressRETURN. Skip to item 10.

6. If you pressed 'Y to the 'Do you want an objed file loaded? prompt, the following
appeas.

Name of file:

7 Typethe complete filename and pressSRETURN.

Page114

Merlin 128 User's Manual Sourceror

8. Thefollowing prompts appea:
seaching for filename loading
Original locaion is $###H#HS#H#H#H
Use this for disaseembly.

HIT AKEY

9. Notethe aldresses shown for 'Original location'. These ae the beginning and ending
addresses for the file to be disassembled.

10. The SOURCEROR menu appeas displaying the coommands available for disasseembly.
Y ou may start disassembling now, or use ay of the other commands. Y our first
command must include ahex address Thereafter this is optional, as explained shortly.

NOTE: When disasseembling, you must use the ORIGINAL addressof the program,
not the addresswhere the program currently resides. It will appea that you are
disassembling the program at its original locaion, but actually, SOURCEROR is
disassembling the mde at its present location and translating the aldresses.

11. When SOURCEROR’s final processing is done, the Merlin 128 Main Menu appeas.
SOURCEROR always disassembles an areain RAM 0. Thus, it is not possible to
disassemble the ROMs without saving a portion of the ROM code to adisk file and
having SOURCEROR load that into RAM.

COMMANDSUSED IN DISASEMBLY

All commands accet a 4-digit hex address before the command letter. If this number is
omitted, then the disassembly continues from its present address A number must be
specified only upon initial entry.

If you specify a number greaer than the present address a new ORG will be aedaed.

More commonly, you will specify an address lessthan the present default value. In this case,
the disaseembler cheds to seeif this addressequals the addressof one of the previous lines.
If so, it sSimply backs up to that point. If not, then it badks up to the next used addressand
creaes anew ORG. Subsequent sourcelines are "erased". It is generally best to avoid new
ORGs when possible. If you get anew ORG and dont want it, try bading upabit more
until you no longer get a new ORG upon disassembly.

This"badkup" feaure dlows you to repeat a disassembly if you have, for example, used a
HEX or other command, and then change your mind.

Page 115

Merlin 128 User's Manual Sourceror

SOURCEROR COMM AND DESCRIPTIONS
L (Lis)

This isthe main disassembly command. It disassembles 20 lines of code. It may be repeaed
(e.g. 2000LLL will disassemble 60 lines of code starting at $2000.

If anillegal opcode is encountered, the bell will sound and opcode will be printed asthree
guestion marks in flashing format. Thisisonly to cdl your attention to the situation. In the
source code itself, unrecognized opcodes are converted to HEX data, but not displayed on

the screen.

H (Hex)

This creaesthe HEX dataopcode. It defaults to one byte of data. If you insert a one byte
(oneor two digit) hex number after the H, that number of data bytes will be generated.

T (Text)

This attempts to disasseemble the data a the airrent addressas an ASCII string. Depending
on the form of the data, this will automatically be disassembled under the pseudo-opcode
TXT or DCI. The gpropriate delimiter (" or') isautomatically chosen. The disassembly will
end when the data encountered is inappropriate, when 62 charaders have been treated, or
when the high bit of the data changes. In the last condition, the TXT opcode is automaticall y
changed to DCI.

Sometimes the dhange to DCI is inappropriate. This change can be defeaed by using TT
instead of T in the command.

Occasionally, the disassembled string may not stop at the gopropriate place because the
following code looks like ASCII datato SOURCEROR. In this event, you may limit the
number of charaders put into the string by inserting a one or two digit hex number after the
T command.

This, or TT, may also have to be used to establish the @rrect boundary between a regular
ASCII string and aflashing one. It is usually obvious where this should be done.

W (Word)

This disassembles the next two bytes at the aurrent locaion as a DA opcode. Optionally, if
the coommand WW is used, these bytes are disassembled as a DDB opcode.

Page 116

Merlin 128 User’s M anual Sourceror

If W- isused as the command, the two bytes are disasseembled in the form DA LABEL-1.
The latter is often the gpropriate form when the program uses the addressby pushing it on
the stack. You may deted this while disassembling, or after the program has been
disassembled. In the latter case, it may be to your advantage to do the disassembly again
with some notesin hand.

HOUSEKEEPING COMMANDS
/ (Cancd)

This essentially cancdsthe last command. More exadly, it re-establishes the last default
address(the aldressused for a command not necessarily attached to an addresy. Thisisa
useful convenience which allows you to ignore the typing of an addresswhen a backup is
desired.

As an example, suppose you type T to dsassemble some text. You may not know what to
expect following the text, so you can just type L to look at it. Then if the text turns out to be
followed by some Hex data (such as $8D for a cariage return), smply type/ to cancel the L
and type the gpropriate H command.

Q (Quit)

This ends disassembly and goesto the final processing which is automatic. If you type an
addressbefore the Q, the addresspointer is backed to (but not including) that point before
the processing. If, at the end of the disassembly, the disassembled lines include:

2341 4C 03 EO JMP $E003
2344 A9 BE 94 LDA $94BE)Y

and the last line is just garbage, type 2344Q. Thiswill cancel the last line, but retain all the
previous.

FINAL PROCESSNG

After the Q command, the program does ome last minute processing of the assembled code.
If you pressRESET at thistime, you will return to Merlin 128and lose the disassembled
code.

The processing may take from a second or two for a short program and upto several minutes
for along one. Be patient.

When the processing is done, you are returned to Merlin 128with the newly creaed source
in the text buffer. You can use Merlin 128's Save command to save it to disk when you
want.

Page 117

Merlin 128 User's Manual Sourceror

DEALING WITH THE FINISHED SOURCE

In most cases, after you have some experience and assuming you used reasonable cae, the
sourcewill have few, if any, defeds.

Y ou may noticethat some DA's would have been more gpropriate in the DA LABEL-1 or
the DDB LABEL formats. Inthis, and similar cases, it may be best to do the disassembly
again with some notes in hand. The disassembly is © quick and painless, that it is often
much easier than trying to alter the sourcediredly.

The sourcewill have all the exterior or otherwise unrecmgnized labels at the end in atable of
eguates. You should look at this table closely. It should not contain any zero page equates
except ones resulting from DA's, JIMP's or JSR's. This isamost a sure sign of an error in the
disassembly (yours, not SOURCEROR'S). It may have resulted from an attempt to
disassemble adata aea & regular code.

NOTE: If you try to asseemble the source under these @nditions, you will get an error as
soon asthe equates appea. If, as eventually you should, you move the equatesto the start of
the program, you will not get an error, but the assembly may not be correct.

It isimportant to ded with this situation first astrouble auld occur if, for example, the
disassembler finds the data ADOO8D. It will disassemble it correctly, as LDA $008D. The
asembler always assembles this code a a zeo page instruction, giving the two bytes A5
8D. Occasionally you will find a program that uses this form for a zeo page instruction. In
that case, you will have to insert a dharader after the LDA opcode to have it assemble
identicall y to its original form. Often it was datain the first placerather than code, and must
be dealt with to get acorrect asembly.

The Memory Full Message

When the sourcefile reaches within $600 tytes of the end of its available space you will see
MEMORY FULL and "HIT A KEY". When you hit a key, SOURCEROR will go diredly to
the final processing. The reason for the $600 lyte gap isthat SOURCEROR neels a ceatain
amount of space for this processing. Thereisa"seaet" override provision at the memory

full point. If the key you pressis CTRL-O (for override), then SOURCEROR will return for
another command. Y ou can use thisto specify the desired ending point. You can also use it
to go alittle further than SOURCEROR wants you to, and dsassemble afew more lines.
Obviously, you should not carry thisto extremes. If you get too close to the end of available
gpace Sourceror will no longer accept this override and will automatically start the final
processing.

Page 118

Merlin 128 User's Manual Sourceror

Changing Sourceror'sLabel Tables

One of the nicest features of the SOURCEROR program is the astomatic assgnment of
labels to all reagnizable aldresses in the binary file being disassembled. Addresses are
recgnized by being found in atable which SOURCEROR references during the
disassembly process Thistable ison the disk under the name LABELS.O. For example, all
JSR $FFD2 instructions within a binary file will be listed by SOURCEROR as JBR BSOUT.
This table of addresslabels may be elited by using the program LABELER.

To use Labeler, press'G' from the MAIN MENU, type 'LABELER', and pressSRETURN.

LABELER COMM ANDS
L: LIST

Thisallows you to list the aurrent label table. After ‘L’, pressany key to start the listing.
Pressing any key will go to the next page; CTRL-C will abort the listing.

A: ADD LABEL

Use this option to add a new label to the list. Smply tell the program the hex addressand
the name you wish associated with that address PressSRETURN only, to abort this
option at any point.

D: DELETE LABEL(S)

Use this option to delete any addresslabels you do not want in the list. After entering the
'D' command, simply enter the NUMBER of the label you want to delete. If you want to
delete arange, enter the beginning and ending label numbers, separated by a mmma.

F: FREE SPACE

This tells you how much free spaceremains in the table for new table entries.

Q. QUIT

When finished with any modificaions you wish to make to the label table, press'Q' to
exit the LABELER program. If you wish to save the new file, press'S. Otherwise, press

ESCAPE to exit without saving the table, for instance, if you had been reviewing the
table.

Page 119

Merlin 128 User's Manual Sourceror

SOURCEROR.XL

SOURCEROR can disassemble an objed file up to about 6K in length. For files longer than
that, you can use SOURCEROR.XL. Thisisadisk based version of the disassembler
cgpable of disassembling objed files up to nealy 32K in length. After using the Main Menu
'G' command to run SOURCEROR.XL.O, you follow the same procedures as with the
standard SOURCEROR.

After the objed file has been loaded and you have been told its addressrange, you will be
prompted to insert a blank formatted diskette. The diskette does not have to be blank, but it
must have alarge amount of freespaceon it, and it must not have filenames that are the
same & those used by SOURCEROR. XL. The loaded objed file must be & least a page
shorter than 32K sinceit must fit in memory between $8000and $-FOO.

Disassembly procedls in the same way as with the standard SOURCEROR. However, after
about 6K has been disassembled, a portion of the disassembled source will be saved to disk
inthefile alled TEMP.A. After more disassembly, another portion is saved as TEMP.B and
so on. Sincethe saved portion leaves a sizable remainder still in memory, the interadive
feaure of SOURCEROR.XL is maintained. Thus, you can still 'badk up' areasonable
distance after an automatic file save.

When you press'Q' to quit, the final TEMP file, or possbly two, will be saved. The
SOURCEROR.XL program will then go into itsfinal processing stage. Do not
interrupt this processing. When it is done, you will be return to the Merlin 128 Main
Menu.

While in final processing, each of the TEMP filesisread into memory twice During the
seoond paess each file is deleted and the final result of the processing is saved in files named
SOURCE.A.S, SOURCE.B.S, and so on. The equates are saved in a separate file alled
EQUATEFILE.S. These ae all PRG file types and can be loaded by Merlin 128as long as
the full filename is used. Y ou may prefer, however, to load them and then use the ‘W’
command to write them as TXT files.

Aswith the standard SOURCEROR, you may have to make some changes regarding any
zero page equates in order to get the file to assemble corredly.

Of course, to assemble the resulting file, you will have to write ashort master program that
calls all of the other files by using the PUT opcode. For example, it might look like this:

PUT "EQUATESFILE.S'
PUT "SOURCE.A.S'
PUT "SOURCE.B.S"
PUT "SOURCE.C.S"

Page 120

Merlin 128 User's Manual Utilities

UTILITIES
FORMATTER

This program is provided to enhancethe use of Merlin 128 as a general text editor. It will
automatically format afile into paragraphs using a specified line length. Paragraphs are
separated by empty lines in the original file.

To use FORMATTER, you should use the MAIN MENU 'G' command. FORMATTER will
then load itself into high memory.

Thiswill simply set upthe elitor's USER vedor. To format afile which isin memory, issie
the USER command from the editor.

The formatter program will request arange to format. If you just specify one number, the
file will be formatted from that line to the end. Then you will be asked for aline length,
which must be lessthan 250. Finally, you may specify whether you want the file justified on
both sides (rather than just on the left).

The first thing done by the program is to chedk whether or not ead line of the file starts
with aspace If not, aspaceis inserted at the start of eadh line. Thisisto be used to gve a
left margin using the alitor's TAB command before using the PRINT command to print out
thefile.

Formatter uses inverse spacaes for the fill required by two sided justificaion. Thisis done so
that they can be located and removed if you want to reformat the file later. It is important
that you donot use the FIX or TEXT commands on afile after it has been formatted (unless
another copy has been saved). For files coming from external sources, it is desirable to first
use the FIX command on them to make sure they have the form expected by FORMATTER.
For the same reason, it is advisable to reformat afile using only left justification prior to any
edit of thefile.

Dont forget to use the TABS command before printing out aformatted file.

XREF, XREFA

These utilities provide a @nvenient means of generating a aossreferencelisting of all
labels used within a Merlin assembly language (i.e., source) program.

Such alisting can help you quickly find, identify and tracevalues throughout a program.
This beaomes especiall y important when attempting to understand, debug or fine tune
portions of code within a large program.

The Merlin assembler by itself provides a printout of its symbol table only at the end of a
succesdul assembly (provided that you have not defeaed this feaure with the

Page 121

Merlin 128User'sManual Utilities

LST OFF pseudo op code). While the symbol table allows you to seewhat the ad¢ual value
or addressof alabel is, it does not alow you to follow the use of the label through the
program.

This is where the XREF programs come in.

XREF gives you a mmplete dphabetical and numerical printout of label usage within an
asembly language program. XREFA gives a aossreferencetable by ADDRESS Thisis
more useful for large sources containing lots of PUT files. It also does not use & much
spacefor its crossreference data and therefore can handle larger sourcefiles than XREF.

Sample M erlin Symbol Table Printout:
Symbol table - alphabetical order:

ADD =$F786 BC =$F7B0 BK =$F706
Symbol table - numerical order:

BK =$F706 ADD = $F786 BC =$F7BD
Sample M erlin XREF Printout:
Crossreferenced symbol table - alphabetical order:

ADD =$F786 101 18*

BC =$F7B0 90 20r*

BK =$F706 104 12*

Crossreferenced symbol table - numerical order:

BK =$F706 104 12*
ADD =$F786 101 18*
BC =$F7B0 90 20r*

As you can seefrom the dove example, the "definition" or actual value of the label is
indicated by the "=" sign, and the line number of each line in the sourcefile that the label
appeasinislisted to the right of the definition. In addition, the line number where the label
is either defined or used as amajor entry point is suffixed ("flagged") with a“*”.

An added feaure is a special notation for additional sourcefilesthat are brought in during
asembly with the PUT pseudo opcode: "134.82", for example, indicaes line number 134 of
the main sourcefile (which will be the line mntaining the PUT opcode) and line number 82
of the PUT file, where the label is adually used.

Page 122

Merlin 128 User's Manual Utilities

XREF Instructions
1. Fromthe Main Menu, make sure you've S)aved the file that you're working on.
2. Type'G'and at the 'RUN:' prompt, type 'XREF and pressRETURN.

2a. Again fromthe MAIN MENU, type'L' to load your file. Enter the Editor by pressing
'E', and from the clon prompt, enter your appropriate PRTR command.

3. Enter the Editor, then type the gpropriate USER command

USER 0- Print assembly listing and alphabetical crossreference only. (USER has the
same effed as USER 0).

USER 1 - Print asseembly listing and both alphabetical and numerically sorted cross
referencelistings.

USER 2 - Do not print assembly listing but print alphabetical crossreference only.

USER 3 - Do not print assembly listing but print both alphabetical and numerical cross
reference listings.

For example, to print a aossreference listing only to your printer, you could type in:

PRTR 4
USER 3
ASM

USER commands 0-3 (above) cause labels within conditional assembly areas with the DO
condition OFF to be ignored and not printed in the aossreferencetable.

There ae alditional USER commands (4-7) that function the same & USER 0-3, except
that they cause labels within conditional assembly areas to be printed no matter what the
state of the DO setting is. The only exception to thisis that labels defined in such areas
and not elsewhere will be ignored.

NOTE: You may change the USER command as many times as you wish (e.g., from
USER 1to USER 2). The dhange is not permanent until you enter the ASM command
(below).

4. Enter the ASM command to begin the asembly and printing process

Sincethe XREF programs require assembler output, code in areas with LST OFF will not be
processed and labels in those aeas will not appea in the table. In particular, it is esential to
the proper working of XREF that the LST condition be ON at the end of assembly (sincethe
program also intercepts the regular symbol table output). For the same reason, the CTRL-D

Page 123

Merlin 128 User's Manual Utilities

flush command must not be used during assembly. The program attempts to determine when
the asembler is ©nding it an error message on the first passand it aborts assembly in this
case, but thisis not 100% reliable.

Another thing to look out for when using maaos with XREF. Labels defined within maao
definitions have no global meaning and are therefore not crossreferenced.

DEF MAC <---Maao definition
CMP #1
BNE DONE
ASL

DONE <<<

<---Beg. of program
>>> DEF.GLOBAL <---Maao cdl

In the dove example, variable GLOBAL will be adossreferenced, but local label DONE
will not.

XREFA

Thisisan ADDRESScrossreference program and is handy when you have lots of PUT
files. Sincethis program needs only four bytes per crossreferenceinsteal of six, it can
handle wnsiderably larger sources. Also the "where defined” referenceis not given here
because it would equal the value of the label except for EQUated labels where it would just
indicae the aldresscounter when the equate is done. This also saves considerable spacein
the table for alarger source

PRINTFILER

PRINTFILER isa utility included on the Merlin diskette that saves an assembled listing to
disk as a sequential disk file. It optionall y allows you to also seled "file padking" for smaller
spacerequirements and allows you to turn video output off for faster operation.

Text files generated by PRINTFILER include the objed code portion of a disassembled
listing, something not normally avail able when saving a sourcefile. Thisallows a complete
display of an assembly language program and provides the mnvenience of not having to
asemble the program to seewhat the objed code looks like. Applications include:

- Incorporating the asembled text file in adocument being prepared by aword procesor.

- Sending the file over atelephone line using a modem.

- Mailing the file to someone who wants to work with the complete disassembly without
having to assemble the program (such as magazine editors, €tc.)

Page 124

Merlin 128 User's Manual Utilities

How ToUse PRINTFILER

1. Fromthe Main Menu, press'G', then type 'PRINTFILER and pressRETURN. This
need only be done the first time, and is not necessary for additional source files you may
want to asseemble with PRINTFILER.

2. From the Main Menu, type ‘L’ to load followed by the sourcefilename.
3. Insert adisk with alot of freespace on it to receve the file generated by PRINTFILER.
4. Press'E' to enter the Editor, and from the a@lon prompt, type:

USER N FILENAME
where FILENAME is the name to be used for the text file generated by PRINTFILER.

'N' must be inthe range of 0 TO 3. 'N' defaults to Oif it isomitted. The meaning of the
'N'isasfollows:

N = 0 Do not echo output to screen, do not compressfile.
N =1 Echo output to screen, do not compressfile.

N = 2 Do not edho to screen, compressfile.

N = 3 Echo output to screen, compressfile.

PRINTFILER works by redireding output from what would normally go to the screen to the
disk file @lled FILENAME. Since there must be output, the LST OFF pseudo-op must not
be in the sourcefile to be used with PRINTFILER (unless you donot want to cgpture some
portion of the file). Do not pressESCAPE during assembly.

Writing to adisk file is much slower than printing to the screen, so be patient. It is faster
than sending the outpuit to the printer.

Because of memory conflicts, it is not possible to use PRINTFILER at the same time &
other USER utilities such as XREF.

PRINTFILER sends all assembly output to the disk file, including the symbol table & the
end, unlessyou have aL ST OFF at the end of the source

If you choose one of the mmpresson options, padked spaces are shown as inverse
charaders. All spacesin the file will be replacel by a byte representing the number of
contiguous aces plus $80. Thus, an inverse'A' ($81) represents one space an inverse 'B'
($82) represents two spaces, and soon. If you are unable to write aprogram that will read
such a paded file, you should avoid using the mmpresson option.

Page 125

Merlin 128 User's Manual Utilities

ALTKEYS

The ALT key can be used with another key to produce a keyboard maao. A macro
definition lets you type one key to perform a series of adions or place astring of text on the
screen. This $ould not be mnfused with Aseembler maaosthat Merlin 128 also supports.

An assembler maao is adefinition of a set of assembler instructions, usually with variables,
that you define within a given source listing. When the program is assembled, Merlin 128
replaces the maao cdl with the series of lines that have been assgned to that maao.

A keyboard maao is a substitute for a small amount of typing that you might do while
you're using the editor.

For example you've probably typed LDA' many times in assembly language programs. With
Merlin 128 you can pressthe ALT key and the 'a key at the same time, and the charaders
'LDA" would appea in the opcode field and the aursor would be & the beginning of the
operand field.

Merlin 128comes with over thirty Alternate key commands as shown below. These
commands are user definable. Y ou can load the sourcefile alled "altkeys.s and add to or
edit any of the existing commands.

Youtype: You get: Comments

ALTa LDA

ALTb DFB

ALTc CMP

ALTd DEC

ALTe EOR

ALTi INC

ALTj JSR

ALTI| LUP Cursor a LUP operand field
--1

ALT m MAC Cursor a MAC label field
<<

ALTo ORA

ALTp PHA Save A, X,Y on stakk
TXA All 5 lines with one maao
PHA
TYA
PHA

ALTt TXT *° Cursor inside quates

ALT x LDX

ALTy LDY

ALT A STA

Page 126

Merlin 128 User's Manual

Utilities

ALTP ALA
TAY
PLA
TAX
PLA
ALT X STX
ALTY STY
ALTS DFB %
ALT 6 AND
ALT 8 ()Y
ALT9 (,X)
ALTO LDA #0
STA $FFOO
ALT Down arrow
ALT Up arrow
ALT V arrow ERR 1
ALT DEL
ALT RETURN
ALT ;
ALT . LDA #>
ALT, LDA #
ALT = = $
ALT + ADC
ALT - SBC
ALT * ORG %

Retrieve A, X,Y from stadk
All 5 lines with one maao

Cursor inside parentheses
Cursor inside parentheses
Cursor on line after STA

Move aursor down 10 lines
Move aursor up 10lines

Deletes current comment, if any

Move aursor to end of next line

Moves cursor to comment field of next line and
inserts a semicolon

ALT English Pound * Merlin-128 Maao-asembler *

KEYDEPS

The function key definitions can be changed by loading the file called ‘keydef.s', making
the desired changes and then assembling. Save the assembled source and objed code using
the original name of ‘keydefs'.

The aurrent definitions are:

You press

SHIFT-RUN
HELP

F1

F2

F3

F4

F5

F6

Definition:

Q RETURN
ASM RETURN
Q RETURN L
QRETURN S
QRETURN C
Q RETURN X
USER

USER RETURN

Comments

Quits Editor and goesto Main Menu
Assmbles urce

Quits Editor and issues Load command
Quits Editor and issues Save ommand
Quits Editor and issues Catalog command
Quits Editor and issues Disk command
Issues USER without RETURN

Issues USER with RETURN

Page 127

Merlin 128 User's Manual Utilities

F7 PRTRA4::
F8 PRTRO::

SAMPLE PROGRAMSAND FILES

The Merlin 128diskette ammes with many sample programs and sourcefiles that have been
fully commented. These samples can be loaded, read, or run, and have been supplied to
illustrate various commands and techniques avail able with Merlin 128

DEMO

Thisisthe program used in the Introduction sedion of the manual. It demonstrates a string
loop and keyboard scan for inpui.

COPY

Thisisa 1571 dsk copy program which uses one or two drives. It ill ustrates dired disk
access methods. The program has a BASIC header and MUST be run from BASIC.

ZAP

Thisisal1l571 dsk zgp program that also demonstrates disk acesstedniques.

HIRES

This program contains a set of line drawing and hires plotting routines that can be accessed
from assembly. These routines are gpproximately four times faster than the Commodore 128
built-in routines. The sourcefiles illustrate graphics techniques.

SWISH

This is asample hires demo which uses the HIRES program to do some dazzling color

graphics. The sourceillustrates graphics tedniques. The object file, SWISH.O, is loaded
and acassed from the BASIC program called SWISH.

Page 128

Merlin 128 User's Manual Utilities

RAM TEST

ThisisaRAM testing program which uses the hires sreen and 80Column text. It can be
run from Merlin 128 or from BASIC. Y ou have to pressreset to exit this program.

Pl

Thisisaseries of filesthat al have the prefix 'Pl'. The purpose of these sourcefilesisto
illustrate the proper use of the linking capabilities of Merlin 128 The objed files have the
'.0' suffix and are 'USR' file types. These objed files can be linked by typing 'LINK
$1C03.PI.NAMES from the immediate mode prompt (:) in the elitor. The linked file is also
on the disk under the name 'PI.O'. It can be run from the Main Menu (press'G', type 'PI',
then RETURN). It can also be run from BASIC by typing 'BOOT 'PI.O" (RETURN)'".

PRDEC

A subroutineto print A,X in decimal. It uses locaions NL, NH, NFL (scratch) and JUST.
Just should contain O for left justification, and $20for right justification.

PRINTHEX

A routineto print A,X in hex. The entry at PRBY TE can also be used to print the byte in A
only, or the entry at PRNIB can be used to print anibble. VAR must be used to set]1to Oif
the UC/graphics charader set isin use, or |1 must be set to $20if the LC/UC charader st is
inuse.

INPUT

Thisroutine getsinput from the airrent input device (usually the keyboard) and storesit at
]2. The input is terminated by a cariage return and can be amaximum of |1 charadersin
length (256 charadersif 11 = 0). If the standard input buffer $200is used for]2, then]1
cannot be greater than $58

GETERR

This routine gets the aror message from the aurrent disk drive and prints it to the screen.
The device number is assumed to be in FA.

Page 129

Merlin 128 User's Manual Utilities

READKEY

A routine to get akey from the keyboard o input device. The routine turns on the aursor,
then turns it off when the charader has been received. The charader isreturned in the A-
register.

MULTIDIV

Thisfile contains 16 bt multiply and divide routines. Three16 Lt (two byte) locaions
ACC, AUX, and EXT must be set up, preferably on zero page.

ASCHEX

Thisroutine onvertsthe ASCII string located at ASCSTR to atwo byte hex number located
a NUM and NUM+1. Usethe VAR statement to set |1 to f or 'F acrding to which ASCII
set isdesired . Thisroutine ignores extra leading digits, thus'ABCDE' will be mnverted to
$BCDE and so on.

BASIC HEADER

Put this routine & the start of a program to be ale to 'RUN' it.

KERNEL EQUATES

This file contains over 70 common kernel equates.

Page 130

Merlin 128 User's Manual

Glossary

ABORT

ACCESS

ADDRESS

ALGORITHM

ALL OCATE

ASCII

BASE

BINARY

BIT

BRANCH

BUFFER

BYTE

CARRY

CHIP

CODE

CTRL

CURSOR

DATA

DECREMENT

GLOSSARY
terminate an operation prematurely.
locate or retrieve data.
a specific location in memory.
a method of solving a spedfic problem.
set aside or reserve space

industry standard system of 128 computer codes assigned to
specified alpha-numeric and spedal characters.

in number systems, the exponent at which the system repeds
itself; the number of symbols required by that number system.

the base two number system, composed solely of the numbers
zero and one.

one unit of binary data, either a ze&o or aone.
continue exeaution at a new location.

large temporary data storage aea

Hex representation of eight binary bits.

flag in the 6502status register.

tiny piece of silicon or germanium containing many integrated
circuits.

slang for data or machine language instructions.
abbreviation for control or control charader.

charader, usually a flashing inverse space which marks the
position of the next charader to be typed.

fads or information used by, or in a cmputer program.

deaease value in constant steps.

Page 131

Merlin 128 User's Manual

Glossary

DEFAULT

DELIMIT

DISPLACEMENT

EQUATE
EXPRESSON
FETCH
FIELD

FLAG

HEX

HIGH ORDER

HOOK
INCREMENT
INITIALIZE
/O
INTERFACE
INVERT

LABEL

LOOKUP

LOW-ORDER

LSB

nominal value or condition assgned to a parameter if not
specified by the user.

separate, aswith a: inaBASIC program line.

constant or variable used to calculate the distance between two
memory locaions.

establish avariable.

adual, implied or symbolic data.

retrieve or get.

portion of a datainput reserved for a specific type of data.

register or memory location used for preserving or establishing a
status of a given operation of condition.

the Hexadecimal (BASE 16) number system, composed of the
numbers 0-9 and the letters A-F.

the first, or most significant byte of a two-byte Hex addressor
value.

vedor addressto an 1/O routine or port.

increase value in constant steps.

set all program parametersto zero, normal, or default condition.
inpu/outpui.

method of interconneding peripheral equipment.

change to the opposite state.

name goplied to avariable or address usually descriptive of its
purpose.

slang; seetable.

the seaond, or least significant byte of atwo-byte Hex addressor
value.

least significant (bit or byte) one with the least value.

Page 132

Merlin 128 User's Manual

Glossary

MACRO

MICROPROCESSOR

MOD

MODE

MODULE

MNEMONIC

MSB

NULL

OBJECT CODE

OFFSET

OPCODE

OPERAND

PAGE

PARAMETER

PERIPHERAL

POINTER

PORT

PROMPT

PSEUDO

RAM

REGISTER

in assemblers, the caability to "call" a code segment by a
symbolic name and place it in the object file.

heat of a microcomputer.

algorithm returning the remainder of adivision operation.
particular sub-type of operation.

portion of a program devoted to a specific function.

symbolic abbreviation using charaders helpful in recllinga
function.

most significant (bit or byte), one with the greaest value.
without value.

realy to run code produced by an assembler program.
value of a displacement.

instruction to be exeauted by the 6502

datato be operated on by a 6502instruction.

a 256-byte aeaof memory named for the first byte of its Hex
address

constant or value required by a program or operation to function.
external device

memory locaion containing an address to data elsewhere in
memory.

physicd interconnedion point to peripheral equipment.
a charader asking the user to input data.

artificial, a substitute for.

Random AccessMemory.

single 65020r memory location.

Page 133

Merlin 128 UsertsManual

Glossary

RELATVE

ROM

SIGN BIT

SOURCE CODE

STACK

STRING

SWEET 16

SYMBOL

SYNTAX

TABLE

TOGGLE

VARIABLE

VECTOR

branch made using an off set or displacement.
Read Only Memory.
bit eight of a byte; negative if value greaer than $80.

Data entered into an assembler which will produce amachine
language program when assembled.

temporary storage aeain RAM used by the 6502and assembly
language programs.

agroup of ASCII charaders usually enclosed by delimiters sich
as'or".

program which simulatesa 16 t microprocesor.
symbolic or mnemonic label.

prescribed method of data entry.

list of values, words, datareferenced by a program.
switch from one state to the other.

alpha-numeric expression which may assume or be asigned a
number of values.

addressto be referenced or branched to.

Page 134

Merlin 128 User's Manual

I ndex

"I", Exclusive OR 52
“&", Logical AND 52
"I'(,-.",inMaaos 94
asalogical OR 5
“p
to abort aCHANGE 36
Editor - Immediate Mode (List from
last line) 38
Editor - to abort LIST 38
to abort aFIND 35
Line Range Delimiter 18
in Maaos 94
Sourceror (Cancel) 117
* for Comments 2, 3, 49, 50
. (period),
Listings 38
in Maaos 94
256 EXTERNALS 112
6502Addressing Modes 54

A

A: Append File 13
About the Assembler Documentation
47
About the Editor Documentation 17
About the Linker Documentation 100
Absolute addresses, and Linker 100
Accumulator mode aldressing 54 55
Add/Insert Mode Editing Commands
24, 20
ADD~ON operation, in operands 52
Altkeys 33, 126-:127
All text, to select 25, 32
AND operation, in operands 52
Angle bradets in Editor Documentation
17
Arithmetic and Logica Expressions 52
ASC 73
ASI 73
Asembler,
to Pause 69, 79
Pseudo Opcode Descriptions 87
Syntax Conventions 49, 54

INDEX

Asembling large files, and PUT, SAV,
DSK 59-62, 63-64, 64-65, 100, 113
Assmbly 8-9, 33, 45
ASM,
Command 89, 33, 45
and the PR# Command 39
and PRTR 394Q 45, 106-107
AST 69
Asterisks (*),
Comments 2, 49, 50
Line of ina comment 30, 33
Automatic renumbering 67, 18

B

Badk-up copies of Merlin 11,128
Bading upProgram Counter 57
Badkwards DELETE, in EDIT mode 23,
31, 33 (seealso Control-D)
BAD,
ADDRESSMODE 110
BRANCH 110
EXTERNAL 110
INPUT 110
LABEL 110
OBJ110
OPCODE 110
ORG 110
PUT 111
REL 111
SAV 111
VARIABLE 112
Beginning, move to,
of line of text 22, 32
of sourcefile 25, 32
Binary numbers 50-51
BGE opcode 54
Block cursor 22
BLT opcode 54
Branching,
to Variables 54, 87-88, 89
with Local Labels 88-89
BREAK 111
Bugs, common cause of 55
Building Expressons 51-53

Page 135

Merlin 128 User's Manual

I ndex

C

C. Caalog 12

pause 16
Case sensitive labels 56
CBM Monitor 43
Change 36
Change DRIVE 14
Changing Printfiler's Options 126
Changing Sourceror's Label Table

118119
Charader case change 19, 23, 32
Charader insert mode 22, 32, 34
Charaders per line 106107
Chedksum, in objed code 80-81
CHK 80-81
Clipboard 22 23, 26, 28-29, 31-34
Commands Used in Disassembly

(Sourceror) 116
Command summary 32-33
Comments 3, 33, 49, 50, 69
Comment length 21, 33, 50
Commodore Keys 21, 25-31, 32-34

Cc=A 25, 32

Cc=B 25, 27, 32

c=C 25,32 34

c=D 26, 32

c=E 26, 32

c=F 23, 27, 29, 32

c=H 27,32

c=127,31,32

Cc=L 23, 27-28, 32

Cc=N 28, 32

c=P 28, 32, 34

c=Q 28,33

Cc=R 28-29, 33, 34

c=W23, 29, 33.

c=X 25, 29, 33

c=Z29 33

c=Up 2933

c=Down 30, 33

c=left 30, 33

c=Right 30, 33

c=DEL 31, 33

c=HOME 24, 31, 32, 33

c=TAB 27, 31, 33
c=1 30, 33
c=* 30, 33, 34
Cc=- 30,3334
== 30, 33,34
C=-4,6,7,21,33
Conditional Assembly 84-86
Conditional Pseudo Ops 84-86
Configuration 11, 106107
Control charaders 19
Control-A 22, 23, 32
Control-B ~o to line begin) 22, 32
Control-C, 4, 6
during CATALOG Command 12
to abort asseembly 45
to abort List 38
to abort a Change 36
to abort aFind 35
or Control-X (to cancel lines) 34
Control-D (delete) 7, 22, 32, 33
Control-E 22, 27, 32
Control-F (find) 22, 32
Control-I (insert) 19, 22, 27, 40
Control-K 23, 32
Control-L 23, 32
Control-N (goto line end) 23, 32
Control-O (insert special) 23, 32
Control-R (restoreline) 23, 32, 33-34
Control-W 23, 32
Control-X (to Cancel global exchange)
23, 32
Copy,
Full Screen Editor 3, 25, 34
Immediate Mode, Editor 37
Copy Utility 128
Copying text,
in Full Screen Editor 3, 25, 34
in Immediate Mode of Editor 37
CopyingMerlin 11, 128
Cursor keys 23, 29-30, 33
Cursors,
appeaanceltypes 2, 22, 24, 32
changing 22 24, 32

Page 136

Merlin 128 User’s M anual

I ndex

moving 2233
Cut 25, 29, 33, 34
CW (Change Word) 36
CYC7071
Cycletimes, 70-71
column to print 106-107

D

Disk Commands 16
D: Drive Change 18
DA 75
Data, definition of 48
immediate 50, 53-54
string 18 48, 72-74
storage 75-78, 79-80
tablesin programs 78
Data and Storage Allocation Pseudo Ops
7578
DB 75
DCI 73
DDB 75
Dealing with Finished Source118
Defining,
an Altkey 33, 34, 126:127
aFunction key 44, 127-128
alocal label 88-89
alocal variable 79-80, 87-88
aMaao 95
Delete,
charader in Editor Immediate Mode
7,22,32
charadersin Pull Screen Editor 22, 32
linesin Editor Immediate Mode 6, 7,
31, 32, 34, 37
linesin Full Screen Editor 6, 7, 26, 33,
34, 37
entire Source File (New) 14, 41
DELETE key 24, 31, 32, 33
Delimited Strings, 18, 48
as an operand 48
DEND 66-67
DFB 75

DICTIONARY FULL 111
Disassembling,
raw objed code (Merlin Monitor) 43
raw objed code (Sourceror) 114-120
Disk files,
names 10, 13-16,49, 59-62, 63, 97,
104
renaming 16
viewing contents of 39
Division operation, in operands 42
DLOAD addresses and ORG 15
DO 84
Drive change 14
Drive 14
DS57,77
and Linker 100102
DSK 59, 64-65
and the Linker 100, 102
DUM 66
DUPLICATE SYMBOL 104, 111
Duplicaing Merlin disk 11,125

E

E: Enter Editor/Assembler 2, 15
Edit 20-21
Edit Mode 2021
Edit Mode Commands 21-34
Editor 2-7, 15, 17, 2145
ELSE 84
END 66
End of line,
marker 21
move to 23, 32
End of source moveto 28, 32
ENT 56
EOM or <<< 87
EQU (=) 55-56
ERR 81-82
and Linker 82, 103
ERR. MEMORY FULL 113
Error Messages (general) 9, 110113
Evaluation of expressions 40, 52, 53
Exchange, global 23, 26, 32

Page 137

Merlin 128 User's Manual

I ndex

EXCLUSIVE OR operation, in operands
52

EXP ON/OFFONLY 69

EXT 55, 101

External sourcefiles 40

Example of Conditional Assembly
84-86

Example of Use of Assembler

Expressions 51-53

Expressions Allowed by the Assembler
48, 51-53

F

Filenames 10, 13,16, 49, 59-62, 63,
97,104
FIN 85
Final Processing of Sourceror files 117
FIND,
a dharader in Edit mode 22, 32
astring 27, 32, 35
aword 23, 29, 32-33
Find and Replace (global exchange) 23,
26, 32
FIX 40
FLO 76
Forced Assembly Errors 81, 103
Formfeed, printer 69
FW (Find Word) 35
Formatter 121
Formatting Pseudo Ops 68-71
Full Screen Editor,
commands 21-34
entering 2, 5-6, 7, 15,17, 21
quitting 4, 6, 7, 21, 28, 32
FUN 44
Function keys, definitions 16, 44
redefining 44127-128

G
GET 41, 59, 104

GET Command, and LINKed files 104
General Information 105

Global Exchange 23, 26, 32
Glossry 131

H

H (Hex) 116

HEX 76

Hex-Dec Conversion 41, 50, 52
Hex data, with strings 48, 50, 52, 72
HOME 24, 31, 32, 33
Housekegring Commands 117

How Does a Maao Work? 90-93
How to Use Printfiler 125

IF85
ILLEGAL,
char inoperand 111
forward reference 111
relative adrs 111
Initialization string, for printer 39-40
Insert,
with TAB key 19, 22, 24, 37, 31, 32,
33
charader mode 2, 19, 22, 24, 37, 31,
32,33
lines 6, 20, 27, 31, 32, 33
control characters 23, 32
Integer division, in operands 52
Inverse spaces 40
Immediate Data Syntax 50, 53
Immediate Data vs. Addresses 50
Immediate Mode of Editor 17-20, 3545
INST 19, 22, 24, 32

K
KBD 79

Keyboard input during assembly 79
Keydefs 33, 127-128

Page 138

Merlin 128 User's Manual

I ndex

L

L (list - Sourceror) 116
L: Load Source 13
LABELS,
proper form of 5, 49-50
length 49
tables, changing SOURCEROR
119
case sensitivity 49, 56
goto 23, 27-28, 29, 32
LENgth 42
Line length 21, 33, 50, 106-108
Line numbers 6-7, 21
and DELETE 26, 31, 32, 33
in Immediate Mode 6-7, 18
Lines of text,
to delete 6, 7, 26, 31, 32, 33, 34
toinsert 6, 20, 21, 31, 32, 33
to replace 23, 26, 28-29, 32, 33, 34
auto numbering 6-7, 18
Lines per page 108
Link 103104
Linker
and DS opcode 77, 100,102
and DSK opcode 81,100
and ENT opcode 102
and ERR opcode 103
and EXT opcode 101
and ORG opcode 100
and REL opcode 98-101
and SAV opcode 63-64, 100
File Names 104
LIST 4,6
and the PORT command 38 41
and PRTR 38, 3940
from last listed line 38
from last specified line 38
to printer, formatted 39, 40, 44
to screen, formatted 39, 40, 44
to slow down 38
without line numbers 39
to abort 38
to pause 38, 69

Listing,

CYCLE times70-71, 106,107

DO OFFcode 84

MACROS 68

limiting bytes printed in 70
Local Labels 88-89
Local Labels, Global Labels & Variables

89

Local Variables,

defining 7980, 87-88

and PUT files 62
Locaealabel or line 23, 27-28, 32
Logical operations, in operands 52
Lower case/upper case,

to change 19,2332

in labels 49, 56
LST ON/OFF 68
LSTDO or LSTDO OFF 68
LSTDO, configuring 106107
LUP79

M

MAC 87
Maaos 90-97
defining 95
and PUT files 60-62
libraries, and USE opcode 62, 97
libraries, provided with Merlin 97
listings 68
nested 96
Pseudo Opsfor, 87
Main menu 1013-16, 33, 44
Making Badk-up Copies of Merlin 11,
125
Maximum,
length of comments 21, 33, 50
length of labels 49
Memory,
IN USE 104
full 112113
fullinLine: 113
full error, in Sourceror 118
status 22, 27, 32, 42
used by Merlin 105

Page 139

Merlin 128 User's Manual

I ndex

Merlin,

Memory Map 109

Monitor 33, 4344

internal entry points 82-83
Miscellaneous Pseudo Ops 79-83
Mistakes, fixing 34 55 (see &so

Control-R and £R)
Monitor,

CBM 16,43

Merlin 4344
MONitor 43-44
MOVE 37 (seeCut, Copy & Paste)
Moving,

the arsor 22-33

text 25, 28-29, 32-33, 34, 37
Multiplicaion operation, in operands

52

N

Nesting error 112

Nested Maaos 90

New 14,41

NOT MACRO 112

Number Format (Binary, Decimal, Hex)
52

O

“.0" Suffix to Files 10, 15, 16, 63, 65
O: OBJECT SAVE Command 1013, 15,
49
command, and Linker 100104
0OBJ59, 113
Op code and Pseudo Opcode Conventions
50
Operand and Comment Length
Conventions 50
OR operation, in operands 52
ORG 57-58, 66
and the Linker 100
OUT OF MEMORY 112

P

PAG 69
Page Healer, inlisting 39 69, 71
Parentheses,
in Editor Doc 17
and Precalence in Expressions 52-53
Paste 28, 32, 34
PAU 69
PMC or >>> 83
PORT 41
PRDEC program, and PUT FILES 62,
129
Precealence, in operand expressions 52
Preliminary Definitions 48
Primitive expressons 51-53
Print 39, 44
and the PORT command 40
command, and PRTR 39-40
Printer,
slot#, in PRTR command 3940
string, in PRTR command 3940, 71
PRINTFILER 124125
PRIinTeR 39-40 (seealso TTL, pg 28
PAG, pg 69
Pseudo Opcodes for Relocaable Code
Files 56, 59, 82, 100-104
PUT 59-62
filesastext files 14
filesvs. Linked files 98-99

Q

Q(Quit), 117
ToBASIC 16
to Editor, Immediate Mode 4, 6, 7, 21,
33 44
to Main Menu 10, 44
QUIT and MON command 44

R

R: Read Text File 14
RANGE ERROR 41,112

Page 140

Merlin 128 User's Manual

I ndex

REL Files,
and the ERR Pseudo Op 82, 103
and the Linker 77
REL, 56, 59, 82
and OBJ opcode 59
Relative expressions, and Linker 100
Renaming disk files 16
REORG opcode 57
Replace23, 28-29, 32, 33, 34
Reprint screen 29, 33
Restoring lines in Edit mode 22
Return (RETURN key) 6, 23, 32
REV 74
Reversed string data 74
RTSreturnto Merlin 10,15, 49
Running aprogram 15, 41,104
RUN/STOP: SeeControl-C

S

S: Save sourcefile 10, 13, 49
SAV 63-64, 100
« g

suffix in file names 16,17, 61-62
Screen, reprint 29, 33
SKP 70
Source ode format 5, 49-50
Sourceror 114-120
Spacesinatext line 3, 31, 40
Special variables 93-95
Status, memory 22, 27, 32, 42
STR74
String Delimiters 72
Symbol table, to dow down LISTing 38
Syntax, Source code 46
SYS 2048 B, 105
System requirements 1

T

T (Text - Sourceror) 116
TAB KEY 19, 24,31, 32, 33
TABS,

tozero TABS 15,31,42

and word processing text files 40
Tednical Information 105107
TEXT 40
Text, select al 25, 32
TRuncOFf 44, 70
TRuncON 44, 70, 104
TTL 71 (seePRTR aso)

TWO EXTERNALS 112
TXT 73
TYPE 39

U

Undo (fixing mistakes) 34
UNKNOWN LABEL 112
Upper and Lower Case Control 19
Uppercase/ lower case
to change 19, 23, 32
labels 49, 56
USE, 62
and Macro Libraries 94
USER 42
USR 82-83
Using Sourceror 114-120
Utilities 121-130

Vv

VAL 40

Value of labels 40

VAR 62

VAR opcode, and PUT files 62
Variables 62, 79, 85-89, 93-95

w

W: Write Text File, 14
and the Linker 104

W (Word) 116

W 0 command 42

Word find 23 29, 32-33

Where 42

Why Macros? 90

Why aLinker? 98

Page 141

Merlin 128 User's Manual

I ndex

Wild Cards,
in Delimited Strings 19
charader, changing the 106-107
Word processing text files 40

X
X: eXeaute disk command 156
XREF, 121-124

Instructions 123-124
XREFA 121 124

Z

Zero Page Addresses used by Merlin for

USR commands 82-83
Zero page aldressing, forced 54

Page 142

Merlin 128 Quick ReferenceCard

Full Screen Editor Commands

CONTROL KEY COMMANDS (line oriented)

The Control Key commands consist of cursor moves and line oriented commands.

Control-A --------mmeme- Deletes charadersto end of line
Control-B ~ ----------------- Moves cursor to beginning of line
Control-D = ----------=------ Deletes charader under the aursor
Control-E =~ ----------------- Displays memory status window
Control-F =~ ----------=--m-- Finds next occurrence of next charader typed
Control-I ~ ----------mmmm-- Togdes insert and overstrike aursor
Control-L ~ ----------=------ Toggdles lower case mnversion

Control-K = -------m-mmmee - Changes case of charader under cursor
Control-N = -=---==-mmmmeemm Moves cursor to end of line

Control-O ----------=----- Prefix key for typing control charaders
Control-R ----------=------ Retrieves original line

Control-W = -----==-mmmmeemm Finds next occurrence of word in line
Control-X = ---------mmmme- Cancels global exchange while in progress
Cursor keys ----------------- Moves the airsor

DEL Deletes charader to left of cursor

ESC Moves cursor to beginning of next line
HOME Remembers line for recll by c= HOME
INST Togdles insert and overstrike aursor
RETURN ------mommmmeeee Moves cursor down and inserts blank line
TAB Togdles insert and overstrike aursor

Q Quit Immediate Mode to Main Menu

Copyright © 198 Roger Wagner Publishing, Inc.

COMMODORE KEY COMMANDS (entirelisting ariented)

The Commodore Key commands are global commands, which means they are generally
oriented to the whole listing, as opposed to just the arrent line (or asingle charader).

STOTVZCF—ITMUO®>

OO00O0000O0000000O00000OO0

C N X

O

Seledstext for cut from line to end of file
Moves to beginning. Cursor on eleventh line
Start text seledion/Copy selected text to clipboard
Deletes line and placesit in undo' buffer
Global exchange (Seach & Replacg

Finds next occurrence of text entered
Toggles half-screen mode

Inserts blank line & cursor

Finds first occurrence of label or line

Moves cursor to end of listing

Pastes contents of clipboard on current line
Quits editor and returnsto Main Menu
Exchanges current line with 'undo' buffer
Finds next occurrence of whole word

Cut selected text to clipboard

Current line beames eleventh line on screen
Moves cursor up one page

Moves cursor down on page

Moves cursor up 10 lines

Moves cursor down 10 lines

Deletes line above aursor; putsin 'undo' buffer
Goesto line of last CTRL-HOME
Insertsablank line & cursor

Produces 1*, 30 spaces, and 1 *

Produces aline of 32 asterisks
Producesalineof 1 * and 31 lyphens
Producesalineof 1 * and 31equal signs
Returns editor to Immediate Mode

|| | Merlin 128"

Merlin 128 is an extremely powerful and
complete macro assembler designed
specifically for the Commodore 128. Best
of all, like any powerful tool, it makes
programming a breeze for the novice or
prol It consists of the Merlin 128 Edkor/
Assembler itself, plus extra demonstration
and utility programs to make one of the
most complete assembler systems avail-
able for any personal computer. Merlin
128 includes:

® [IILE MANAGEMENT commands such as
Load and Save Source, Save Object
Code, Read and Wirite Text Files, Catalog
disks, Append File, Drive Change, Run
Program, Disk Commands, Go to Basic,
and Go to Monitor.

EDITOR system for writing and editing
programs with word-processor-like
power. The Full Screen Edhtor offers

over 45 commands including Cut,
Copy. Paste, Add, Edit, Insert, Delete,
Goto Label, Global Find and Replace,
and more. Printouts are formatted with
headers and page breaks.

® ASSEMBLER system which incorporates
such advanced features as Macros (can
be nested), on-line Macro Libraries,
Conditional Assembly, Assemble to
Disk, Linked Files, Dummy program
segments, and more.

LINKER system for generating relocat-
able object code. Linker allows multiple
input and output files.

Merlin 128 supports over 50 Assembler
Directlves for extreme programming
flexibility in data storage, string definition,

checksums, cycle counts and more. It
also provides support for Local and
Global Labels, and Entry and External
Label Definitions for use with the
Linker.

Merlin 128 comes with a Macro Library of
over 20 commonly used macro definitions
and fundamental operations such as Add,
Subtract, Print, Increment, Decrement,
Move, Swap, Set Pointer, Compare
Address, and Goto X, Y.

Sourceror is a sophisticated and easy-to-
use disassembler that creates Merlin 128
source files from binary programs. It is very
fast and automatically assigns labels (from
a list you can edit) to all recognizable
addresses.

Merlin 128 also includes over 20 addi-
tional Sample and Udlity Programs
such as:

@ XREF to generate cross-reference
listings of all labels and addresses used
within the source program.

® Altkeys and Keydefs to create your
own keyboard command macros and
Function Key assignments. Includes 36
handy, predefined macros for your
convenience.
Copy and Zap, 1571 disk copy and
editing programs which use one or
two drives.
Hires and Swish, demonstrations of fast
Hi-Res graphics line drawing and
plotting routines.
Ram Test, a RAM testing program that
uses the Hi-Res screen and 80 column
text.

Merlin 128 requires a Commodore 128 and
at least one 1571 disk drive or equivalent.

ISBN 0-927796-23-6

it i,

