Image BBS 3.0

Programmer’s Reference Guide

Jack Followay, Jr., Ryan Sherwood, Larry Hedman, Al DeRosa

Version 0.4, 2022-09-30

Table of Contents

1. Preface
2. Introduction
2.1. How to Use This Guide
2.2. How to Get Help
3. Programming Image BBS 3.0
3.1. New Features
3.1.1. BASIC Keyword Extensions
load Relocate Flag
new Line Range
Hexadecimal Values
Binary Values
3.2. Programming Etiquette
3.2.1. Programming Theory
Static vs. Dynamic String Variables
3.2.2. Module Structure
3.3. Conversion and Backward Compatibility
3.4. im Subroutines
3.5. sub.* Module Jump Table
3.6. & Routines
3.6.1. & Image BBS Output
3.6.2. Encoded Function Keys
3.6.3. & By Itself
3.7. BASIC Editing Modes
3.7.1. Quote Mode
3.7.2. Insert Mode
3.8. Outputting Strings
3.8.1. String Literals
3.8.2. String Variables
3.8.3. Concatenation
3.8.4. Word-Wrap
3.8.5. Set Margins
3.8.6. MCI Commands
3.9. Outputting Numbers
3.9.1. Integers
3.9.2. Floating Point
4. & Parameters Explained
4.1. &,1 Input Line
4.2. &,2 Disk File Input

N 3 o0 g g U s W W W WD N e

DN DN DN DN DN DN DN DN DN DN DN DN D DN DN N PR ===
Y N S O S T T T e R N e N (o o U Y

4.3.&,3 Read File from DisK. 28

4.4.&,4 Get Byte from Modem. 29
45, 8,5 Gt VEISION 29
4.6.&,6 Password INPUL 29
47. &, 7Load File 30
4.8.&,8 DISK DIreCtOrY.o 31
4.9. &,9 Bottom Variable 32
4.10.&,10 Terminal Mode. 32
411 &, 1T Clear ATTAY 33
412, &, T2 NEW USETo 33
413, &, 13 arbit ... 33
434, &, TADUMP ATTAY . ..o 34
4.15. 8,15 CONVEIt anS 34
4.15.1. &, 15 Convert Date 34
Image BBS Date Format. e 34
4.15.2.&,15, T Title Case o 36
4.15.3. &,15,2 Decode Function Keys. 36
4.15.4.&,15,3 and &, 15,4 36
4.15.5.&,15,5newdate 36
4.15.6. &,15,6 Scan STTING. 36
4.16. 8,10 SYSA0052. 37
A7, &, 17 SYSA005S . 38
4.18.&,18 Set Screen MOde. o 38
4.19. 8,19 Get VETISION 39
4.20. &,20 Read from Interface Table. 39
4.21. &,21 Write to Interface Table. 39
4.22.&,22 Wait x Tenths of a Second 40
4.23. &,23 Get Character from Modem 40
4.24. 8,24 XChroUtl. 40
4.25. 8,25 SOUNo 40
4.26. 8,20 €CSChK. 41
4.27.&,27 Save Variable POINtErsS 41
4.27.1. Creating NeW ATTAYSo oottt e 41
4.28. &,28 Restore Variable Pointers 42
4.29. &, 29 USBVAT.ot 42
4.30. 8,30 PULVATo 42
431, &,3T ZETO . . . o 42
4.32. 8,32 MINUSOIIE oot 43
4.33. 8,33 etarTo 43
434, 8,34 PULATT . . .o 43

4.35.&,35 getln . .. 43

4.36. &,30 PULIN . .. 43

A.37. 8,37 TraPOIL.o 43
4.38. &,38 trapofl. . . . 43
4.39. &,39 Priln . ..o 43
4.40. &,40 TOrCRECo 44
4.471. &, 41 sethaud. 44
4.42.&,42 ECS Commands. 44

4.42.1. &,42 Check for ECS Command 45

4.42.2.&,42,1 Goto Line in ECS Command. 45

4.42.3. &,42,2 Get ECS Definitions From RAM. 46

4.42.4.&,42,3 Put ECS Definition Into RAM 46

4.42.5. &,42,4 Load ECS Definitions from Disk o 46

4.42.6.&,42,5 Save ECS Definitionsto Disk o 47
4.43. &, 43 chatchKk. 47
AA4, &, A0 ITACE . . .o 47
AAS5. &, A5 PITVAT . . . 48
4.46.&,40 privar 48
447, &, 47 carChR. . ..o 48
4.48.&,48 getRhd. 48
4.49. &,49 getmod 48
4.50. &,50 OULSCIL.o 49
451, &,5T0utmod. 49
4.52. &,52 Lightbar Interface 49
4.53. &,53 Logo T . . 49
4.54. &,54 Text Editor Interface. 50
4.55. 8,55 OUtPUL.o 50
4.56. &, 560 chatmode. 50
457, &, 57 relread 50
4.58. &, 58 setalarm. 51
4.59. &,59 Tarerr 51
4.60. &, 00 SIPUCHLUTES o 52
4.61. &,07T POSCIST . . . oo 52
4.62. 8,02 Set TIME o 52
4.63. &, 03 InliNel 53
4.64. &, 04 CONVSITo 53
4.65. &,05 CONVETT 53
4.66. &,60 Calculated goto. 53
4.67.&,60,1 Calculated gosub 54
4.68. &,07 COPYIIte 54
4.69. &, 068 STTUCT.o 54

4.70. &,69 Display String on Console 55

4.71. &,70 Position Terminal CUTSOT. 55

S, SITUCTUL S . . . 57
5.1, StatiC ATTAYS. . . . oo 57
5.2.Some New Terminology 60
5.3. USING SILUCKSo 60
5.4. Numeric Values and StruCtsS. 60
5.5.8,60,0 PUut STTING 61
5.6.8,60,1 Get SIFING 62
5.7.&,60,2 Load Struct from Disk. 63
5.8.&,60,3 Save a Struct to Disk 64
5.9.&,60,4Put Date 65
5.10. &,60,5 Get Date 66
5.11.&,60,6 Scan StrUCE. 67
5.12.&,60,7 SOTt STTUCE 69
5.13.&,60,8 Scan Numbers 69
5.14.&,60,9 SCan SUIM 71
5.15.&,60,10 Copy Record 71
5.16. &,60,11 Scan for String 72
5.17.&,60,72 GaME SCANL.o 72
5.18.&,00,13 Text Read 73

6. Variables. 74
6.1.Variable. 74
6.2, LY P . e 75
6.3. USB? o 75
6.4. PUIPOSE . . . o 75
6.5, INteger . . . o 75
6.6. Floating PoOInt. 76
6.7, SETINES . . . 77
6.8. SITING ATTAYS 80
6.9. Floating POINt ATTAYS. 80
6.10. IMage 1.2 ATTAYS.o 80

7. POKEs and Memory LOCations 82

8. Machine Language Entry POINtS. 83
8.1, ProtOCOlSo 83

B LA+ ANAEX . 83
8. 2.+ PUNT O . o 83
8. 1.3, Teader . o 84
8.1.4. Graphic Menu 84

9. Lightbar Reference 86

9.1. Lightbar Numbering 86

9.2. Lightbar Interface: &,52 87

9.2.1. BASIC &,52 COMMANGAS. o oottt 87

9.2.2. Assembly Example 87

10. Memory Map. 88
11. File Formats. 90
11.1. IntrodUCtioN. o 90

100, e.data. . o 90

Chapter 1. Preface

0 Preliminary start on documentation. Feedback welcome!

Welcome to the Image BBS 3.0 Programmer’s Reference Guide.

Image BBS has always been a versatile system, allowing a balance between the simplicity of
operation and the power of customization with BASIC and ML programming. With the advent of
Image BBS v3.0, the power of the system has increased greatly.

Nearly the entire BBS can be customized completely online without the need for programming
knowledge. However, Image BBS v3.0 also provides for many powerful new programming tools not
before available to the SysOp who desires complete customization of the BBS by changing the BASIC
code.

This guide is designed to help such programmers use the Image Application Programming Interface
(API) more productively. A lot of hard work has gone into this manual as it was created while the
BBS was still being developed. Care was taken to document as much of the BBS as possible for just
this purpose. We hope you find this useful in creating the next generation of Image BBS
applications.

Happy programming!
—TJack Followay, Jr.; Larry Hedman, Al DeRosa, and Ryan Sherwood

Additional thanks go to jam and X-Tec for editing help, and Jay Campey for pointing out
several outright errors in documentation.

Chapter 2. Introduction

Welcome to the first official New Image BBS Programmer’s Reference Guide. While there was an
unofficial guide released for Image v1.2, we hoped to give SysOps something they could trust when
questions arose about v3.0. Nearly everyone who helped write Image v3.0 helped contribute to this
guide. I would like to personally thank everyone who was involved, but if I’ve forgotten anyone
please forgive me!

Al DeRosa (Bucko)

Larry Gartin (Wheelman)
Ray Kelm (Professor)
John Moore (Little John)
Ryan Powers (MonOp)
Bob Sisko (Iron Axe)

Ed Wilson (Fred Krueger)

And most of all, I'd like to thank our dear friend, Fred Dart, to whom we owe the very existence of
Image v2.0. Without Fred, the project would have been lost forever. It is in his memory that we
dedicate Image BBS v3.0.

2.1. How to Use This Guide

2.2. How to Get Help

Chapter 3. Programming Image BBS 3.0

3.1. New Features

variable=usr(0@) function reads the stack pointer to display how much free space is on the processor
stack.

3.1.1. BASIC Keyword Extensions

A few BASIC keywords have had additional parameters added to them.

load Relocate Flag

Regular Commodore DOS uses the ,1 in load"filename”,8,1 to mean “load this file to the load
address stored in the file.”

In Image BBS, the relocate_flag has an expanded purpose—specifying the segment of memory to
load a particular file to. A segment is the address which a file will load into, ignoring the file’s
existing load address contained in the first two bytes of the file.

0 Currently, some segments are undefined.
Segment Purpose Address Example File
2 Protocol start $c000 ++ punter
7 Print mode table X e.printmodes
8 Lightbar table X e.lightdefs
9 Alarm table X e.alarms
10 ASCII —» Commodore translation table x n/a
11 Commodore — ASCII translation table x n/a
12 Network alarm table X nm. times

Example 1. Loading a Protocol

Here are three different methods of accomplishing the same thing, loading the Punter file
transfer protocol.

The first uses the enhanced load function:

3000 dr=5:gosub 3:a$="++ punter":load dr$+a$,dv%,2 @

And the second relies more heavily on the Image ML, using the parameters set by BASIC:

3000 dr=5:gosub 3:a$=dr$+"++ punter":&,7,2 @

In both examples:

* dr=5:gosub 3 takes an Image drive number (dr, 1-6) to return the device (dv%, e.g. 10) and
drive prefix (dr$, e.g., 0:). Here, it returns the device and drive which your modules are
stored on.

» a$="++ punter" sets the filename to load.
Next:

® Method 1: load dr$+a$,dv%,2 loads drive prefix dr$ plus filename a$ from device dv% to
segment 2 ($c000)

@ Method 2: &,7,2 uses dr$, a$ and dv% as defined by BASIC, but is shorter code

The third (preferred) method calls a routine in im:

3000 a$="punter":gosub 28

This method saves time in loading ++ files. If the file specified in a$ is already in memory, the
load process in line 29 is skipped. It also is a shorter syntax for loading a protocol, saving
memory in the BASIC program.

new Line Range

new line_number prepares to load a new module by erasing lines from line_number to the end of the
program.

Example:

new 3000 erases lines 3000 to the end of all loaded modules.

Hexadecimal Values

Hexadecimal values (base 16) are prefaced with $. They can be used in poke, peek, sys and &
commands. poke $d004,$0c is the equivalent of poke 53252,12.

Binary Values

Binary values (base 2) are prefaced with % and up to 8 bits can be specified. Leading 0s do not have
to be specified.

Binary values can be used with the same BASIC keywords as above. Hexadecimal and binary can be
combined, i.e.:

poke $d004,%00001100

is again the equivalent of poke 53252,12. Since only the lowest 4 bits are being set, the example can
be shortened to:

poke $d004,%1100

Parsing Limitations

If you want to do logical operations like and or or with the new binary or hexadecimal prefixes,
the only keywords they work with are poke, peek, sys, and &.

Putting hexadecimal or binary prefixes after logical operators results in a ?syntax error:
poke $d004,peek($d004) and %1100
Instead, assign %1100 to a variable first, then perform the logical operation using the variable:

c=%1100:poke $d004,peek($d004) and c

3.2. Programming Etiquette

Be nice. Write clean code. FIXME

3.2.1. Programming Theory
Static vs. Dynamic String Variables
There are two types of strings in BASIC: static and dynamic.

Static strings look like:
10 a$="hello":b$="there"

They are given a string descriptor (the address, length and type of string) within the BASIC program
itself. Normally this isn’t a problem. However, when you load another module over the top of that
string text, the string pointer still points to the same address. Then when printed, the string
variable displays random bytes of the new module, often BASIC tokens.

There’s a way to get around this.

Dynamic strings are different: they’re created when two strings get concatenated together. You've
probably looked through Image’s code and seen lines like:

i.SB

3192 ... sy$="Su"+"b" ...

The reason for concatenating two strings together like this is because strings created this way have

string descriptors which point higher in memory (they get created from the top of BASIC
downwards). Each new string defined by concatenation creates a new string, moving the pointer to
that string downwards, towards the end of your BASIC program—and your static strings.

This is the whole reason garbage collection exists—as more static strings and dynamic strings
get defined, the pointers to the next free byte move toward each other. You’ll eventually run
out of space, triggering a garbage collection as the old definitions of strings get erased to
reclaim memory. (Image BBS uses a custom garbage collection routine, which is much faster
than the one in standard Microsoft BASIC.)

But the long and the short of it is that the string definition caused by, e.g.: sy$="S"+"ub" lives higher
in memory and the text shouldn’t be overwritten by loading another module, causing strings to
output bytes of your program.

3.2.2. Module Structure

When developing a module, bugs are certain to happen. These bugs are logged to e.errlog. There
are variables shown in the error log which can be handy to show which line or module the
program was in when it crashed.

Table 1. e.errlog Filename Hints

Filename Prefix Starting Line Variable Name Label

i 3000 prs Program
i/ 4000 p1$ Module
sub.* 60000 p2$ Sub-Module
o pr$ is considered the main program name. p1$ is considered a loadable module
name (similar to the Little Modem Program e.g., +.XX.YY) sub-modules of Image 1.2.

If your module spans from, say, lines 3000-4000 (or beyond), it would be a good idea to do something
like:

pré="i."+"test calls":p1$=pr$

to assign both pr§ (error lines 3000-) and p1$ (error lines 4000-) to the same string. This avoids
leaving garbage strings in e.errlog because of the previously-mentioned “static string” issue.

If your module is a collection of sub-modules, it is helpful to define in your main program:

3000 pr$="1i."+"test calls"

And in your sub-module, define:

4000 p1$=pr$+".structs"
so that e.errlog reads:

Module: 1i.test calls
Sub Module: i.test calls.structs

3.3. Conversion and Backward Compatibility

Image v3.0 is a major change in design and programming style from previous versions. Your first
reaction might be to assume that you can no longer use legacy modules created under Image v1.2a
and below. However, nearly everything written under previous versions of Image can be made to
run under v3.0. The easiest method for this is to run under “1.3 emulation.”

If modules are renumbered to start at line 3000, they can run under Image 3.0.

This mode greatly reduces available memory, but allows a program to make the same calls to im
that were available under Image 1.2a. The best method for using legacy modules is to convert them
to v3.0 compliant modules.

This section is provided to help you as you attempt to convert such modules. The vl1.2a < - v3.0
cross-reference will be your best tool, but please take time to read the notes regarding making the
modules truly Image v3.0 compliant rather than just “compatible.” You will want to take careful
note of the theory and structure of a v3.0 compliant program, found in the Programming Etiquette
section of this guide.

3.4. im Subroutines

This chapter documents im routines.

Some routines are simply needed too often by too many modules to justify placing them in every
single module. Subroutines are a programmer’s greatest friend. The core im file contains many
subroutines which you will find basic to your application or module’s needs. Be sure to read the
Programming Etiquette section for help when deciding where to place a new routine you create.

= Contributions by Jack “Rascal” Followay, Jr; Larry “X-Tec” Hedman, Jay “X” Campey, and
Ryan “Pinacolada” Sherwood.

Table 2. im routines

v3.0 v1.2, Purpose
v2.0

goto @ goto 18T Jump to main prompt at line 300.
2

v3.0 v1.2,
v2.0

gosub 1 gosub 10
01

gosub 2 gosub 10
09

gosub 3 gosub 10
10

gosub 4 gosub 10
1

gosub 5 gosub 10
12

Purpose

Position record pointer of the currently opened REL file on LFN 2 (it calls line
10, the position command, twice).

There is a 1/10™-second delay (&,22,1) between positioning commands. This is
to give a physical disk drive’s read/write head (or a slower filesystem, such as
on a SD card) time to move to the correct spot within the file.

Setup:

x: record number desired

Sets active system device/drive according to configured setup.
Setup:

dr: system drive (1-6) desired:

dr Purpose Prefix
1 System files S.,nN.

2 E-Mail/NetMail m., nm.
3 Etcetera Files €.

4 Directory Files d-

5 Plus Files i., i/, sub., ++
6 User Files u.
Returns:

dv%: Active device

dr%: Active drive + :

Closes, then re-opens command channel (LFN 15) on the device/drive
requested by setting the variable dr explained above.

Opens filename stored in a$ on device/drive dr requested by setting the
variable as explained in line 2. Will automatically make call to lines 2 and 3.
Upon exit, this routine falls through to line 5.

Read error channel of currently active device/drive.
Returns:

Upon exit, a$ contains the error status message, e% returns the error number,
ef the error text, t% the track, and s% the sector.

v3.0

gosub 6

gosub 7

gosub 9

gosub 1

gosub 1

v1.2,
v2.0

gosub 10
06

gosub 10
07

gosub 13
60

gosub 10
02

gosub 10
04

Purpose

Uppercase input routine. Waits for user input followed by a carriage return.
Stacked commands (uu$, e.g. SB4"R37Q) are checked for. If any are pending,
gosub 310 handles checking for displaying command history ("?) or executing a
command in the history (* and a digit).

Setup: p$: Text of prompt.
poke 53252, x: Number of characters allowed.
Returns:

an$: the string input by the user.

Wait for a keypress.

Returns: an$, a single uppercase character.

Prints (strictly text) contents of cm$ to Area window of the SysOp screen, unless
a network transfer is active (nt=1).

Position RELative file record pointer DOS command. Same as line 1. However,
it is suggested that you call this routine from line 1 for some systems’
compatibility.

Each user has a total of 19 flags stored in 1§, which decide whether or not they
have access to a particular function or area of the system. These flags are held
in a twenty-digit string. Each digit represents a separate flag which can be
checked by setting the variable a to the flag number 1-20 (with the exception of
19), and issuing a gosub 11 command. If a returns with a value of zero, access is
denied, or the flag’s value is zero. The values of each flag are as follows:

Flag Purpose Flag Purpose
1 Non-Weed Status 11 BAR/Log View Access
2 Credit Ratio 12 Sub Maint Access
3 Local Maint Access 13 Files Maint Access
4 Post/Respond Access 14 MCI Access
5 U/D Access 15 Prime Time UD Access
6 Max. Editor Lines 16 Max. Idle Time
7 Unlimited D/Ls 17 Calls Per Day Allowed
8 Remote Maint Access 18 Time/Day Allowed (first digit)
9 E-Mail Access 19 Time/Day Allowed (second digit)
10 User List Access 20 D/Ls per Call Allowed

gosub 1 gosub 19 Reset routine. Resets all system output to default parameters.

2

14

v3.0 v1.2, Purpose
v2.0

gosub 1 gosub 10 Clear the screen and fall through to line 14.
3 75

gosub 1 gosub 10 Outputs the SEQ file in a$ on device, drive dr to the SysOp screen and to the
4 76 modem.

gosub T gosub 10 Update Board Activity Register (BAR) statistic x.
b 25

This routine:
1. inputs st(x) from record x of e.stats file

2. adds the value of i to it (which can be negative if you want to subtract from
the statistic)

3. falls through to line 17.
Setup: open e.stats (gosub 30).

x: the desired statistic to be updated:

Description Last Log Current Total
Feedback 1 12 23 30

SysOp Mail 13 24 31
User Mail 14 25 32
Posts 15 26 33
Uploads 17 28 35
Downloads 18 36

19 29

2

3

4
Responses 5 16 27 34

6

7

New Users 8

9

Calls 20
Time Used 10 21

Time Idle 11 22

gosub 1 gosub 10 Print the value of st(x) to record x of e.stats. Note that e.stats should be
1 26 opened first (gosub 30), prior to calling this routine, on LFN 2.

10

v3.0

gosub 2

gosub 3

gosub 3

gosub 3

gosub 3

gosub 3

gosub 3

v1.2,
v2.0

gosub 10
60

none

gosub 10
62

gosub 10
63

gosub 10
64

gosub 10
65

Purpose

Loads a ++ (protocol) file from Plus File drive—if it isn’t already loaded—and
checks the DOS error status.

Setup:
a$: ML or protocol file (minus the ++ prefix)
This routine then:

1. displays the module name (a$) in the Area window of the SysOp screen

2. sets dr=5 and determines the correct device/drive for the Plus Files system
disk

3. checks whether the module requested has already been loaded (m1$=a$):

o If so, the DOS error status (e%) is set to 0 to indicate no error, and it
returns instead of re-loading the file.

o otherwise, loads the module via &,7 and returns
Returns:
TODO
Opens REL file e.stats on Etcetera drive on LFN 2.

Opens REL file e.access on Etcetera drive on LFN 2.

Opens E-Malil file for desired user.
Setup:

tt$: user’s handle of the E-Mail file to open (a$) should contain an ",r" or ",w"
appropriate for reading or writing.

Opens REL file e.data on Etcetera drive on LFN 2.
Opens SEQ file e.1og (where is the day code in am$) on the Etcetera drive.
Setup:

a$: a to append, r to read, or w if doing maintenance that requires creating the
file.

Opens REL file "u.config" on user files drive.

11

v3.0 v1.2, Purpose

v2.0
gosub 4 Loads sub.editor, and executes at line 60000. This is the entry point for the
0 system editor. Set (mm) according to reason for calling:
mm Routine
1 Main Entry Routine (Clear tt$() buffer)
2 Alt. Entry (Don't Clear, Resume editing)
gosub 4 Loads sub.handles, and executes at line 60000. Set mm according to reason for
1 calling:
mm Routine
0 Load u.index and put total
Number of users in (uh)
1 Load u.index and check for
user in (an$). User ID is
returned in (i), unless not
found [(i)=0].
gosub 4 Loads sub.protos, and executes at line 60000. Setup: Set mm according to reason
2

for calling:

mm Purpose

0 Load the file s.m.protos into tt$().
Setup:
% is set to 1 if in Local mode.

x is set to the total number of protocols in tt$(). (20 max)

1 Load and display protocol, asks user to select protocol unless in Console
Local mode (which defaults to Copier), then loads the protocol.

2 Load user’s default protocol (found in uh FIXME).

12

v3.0

v1.2,
v2.0

gosub 4 none

3

gosub

gosub

gosub

gosub

gosub

gosub

gosub

gosub

gosub

gosub 14
90

gosub 10
85

gosub 10
79

none

Purpose

Loads sub.display, and executes at line 60000. Set mm according to reason for
calling:

mm Routine

1 Displays screen used while
user is online and fills in
all the user's information.

2 Wait for Call Screen

3 Displays screen used while
user in online, but leaves
windows blank.

4 Displays file transfer
screen where device/drive
=[dv%(bn+6),dr%(bn+6)]

5 Displays file transfer
screen where device/drive
=[d1%,d2%]

Prints a$ to the daily log, unless in instant mode (i%=1). Entering this routine at
line 51 ignores i%.

Writes file capital reverse P to device, drive in dr, scratches file, then sets a to
sgn(e%) (0 if e%=0, 1 if e% is non-zero). This routine is used to test (particularly on
floppy-based systems) if there is a free directory entry on the device/drive. It
should be called before the creation of any new file.

Reads blocks free on device/drive dr. This routine should be called and the
variable bf checked before creating any file on a device, drive to ensure there
is enough space available. Blocks free are returned in the variable (bf).

Load and execute an i. file module beginning at line 3000. These are the 'main’
modules.

Load and execute an i/ 'mini-module’ file beginning at line 4000. These are the
equivalent of +.MM. * files from v1.2.

Load and execute a 'sub.* module file beginning at line 60000. 'sub' modules
are subroutines used to supplement the 'image' file. sub.modem has a
subroutine at line 100. (Replaces 2.0’s im. files)

Loads i.module from device, drive in (dr), then RETURNS. (Lines 70-75 fall thru
to lines 76-78 then to this line before returning and executing at the
appropriate line).

Similar to 24, except uses p1$ as a reference to currently loaded file, rather
than pr§.

Same as 28, except peculiar difference in approach of checking against m1$.

13

v3.0

gosub 9

gosub 1
00

200

14

v1.2,
v2.0

gosub 19
02

gosub 10
13

Purpose

Wait for yes/no hotkey.
Returns:

If Y, then Prints Yes, and a=1. Otherwise No is printed and a=0.

Load sub.* module in a$ (minus the sub. prefix) from the plus file drive (dr=5),
then returns from routine. This routine will also store the filename in (cm$)
and output it to the Area window of the SysOp Screen. The "i." and drive
designators are automatically added by the sub-routine. If the program (pr$) is
already in memory, (e%) is set to 0 to signify no DOS error has occurred, and
the sub-routine exits, otherwise this routine exits to line 5 to check the DOS
error status.

The subroutine filename is added to a “module stack” so that if a sub.* file
loads another sub.* file, the previous sub.* file is reloaded on exit. is is the
stack depth, and im$() is the module name.

System prompt routine. Not to be confused with line 1812 of 1.2’s "im" file
which is now line 300, this routine is used for all system prompts. It prints the
prompt in (p$), the time, and stack free if in local mode. The routine will check
the command stack (uu$), FIXME

v3.0 v1.2, Purpose
v2.0

228 Check for logoff ['O", or "Q" if at Main Prompt (Ic=1)] or menu ("?") commands.

On 'exit' this routine will goto line 3000 with (mm) set as follows:

mm Action

@ "Init." Use this as an entry point.

1 Not a Global (ECS) Command.

2 Prep. for a prompt display. (Setup (p$) and
any pre-prompt text, then RETURN) This Action
is called before actually displaying the Time/
prompt in (p$).

3 Global (ECS) Command issued. Clean up & Exit.
(This Could be a GOSUB or GOTO ECS Command.

The purpose is to quickly perform a clean-up
(close files, etc) before proceeding. In most
cases, nothing is done. Exit should be handled
by issuing a RETURN.

NOTE: This is also the setting for (mm) that is
used if the time limit is exceeded.

4-7 *Internal usage by modules* Not related to
prompt routine.

If an ECS command is detected, the routine at line 304 is
called. If nothing is entered (<CR>), the local (Ic) menu is
shown to the user.

goto 23 Set f1=2 for "Immediate logoff" (0!, 0%!), otherwise f1=1. cd% (“carrier drop”)
4 flag. If the 2™ character is a % (i.e., 0% or 0%!), gosub 302 (load i.1lo, the logoff

module).

15

v3.0 v1.2,
v2.0

goto
250

gosub 2
80

goto 30 goto 181
0 2

302

304

306

gosub 3 none
10

gosub 3 none
1

gosub 3 none
15

16

Purpose

Displays local/level (Ic) menu. (See Table)

lc Menu

1 Main menu

2 Message Base Menu (SB)

3 Editor Menu/Help

4 Local Mode Menu (zz)

5 File Transfer Menu (UD)

6 E-Mail Menu (EM)

! General Files Menu (GF)

8 End of Bulletin Menu (SB)
9 Disk Transfer Menu (UD/UX)

This routine is called by the prompt routine at line 200 to check for ECS
commands.

Main prompt entry routine. i.main is loaded at line 3000, and executed.

Loads 1i.1o file and executes with mm set to @ (init). Action is dependent on the
value of f1:

f1 Action

0 connection established

1 normal logoff

2 fast logoff (0! or out of time)

3 normal entry (when loading i.1o for “Wait For Call” screen)

Reverts memory marker back to 1 (&,28,1), calls line 306 which then issues an
&,27 (save) and exits.

Image 1.2 Emulation Mode. Dimensions variables similar to Image v1.2
[bb$(31), dt$(61), ed$(61), nn$(61), a%(61), c%(61), d%(61), e%(31), f%(61), ac%(31),
s0%(31)].

“Emulating” 1.2 is not the only use—this routine is helpful to save space and
quickly dimension common variables to be used in a program.

Check for 7?7, the command history. If so, goto 315.
Check for " and a digit 0-9. This executes that command history entry.

Prints up to the last 10 commands (stored in the history stack, hs$(10)) typed
via 7.

v3.0 v1.2, Purpose
v2.0

gosub 3 FIXME Update access level of user online. (Called by prompt routine at line 200).
20

gosub 3 none If f1§ is not as long as the record in e.access, append the additional flags. This
21 is done when a user previously on Image 1.x is upgraded to Image 2.0 or 3.0,
since these versions have more user flags per account.

gosub 3 gosub 10 OQutputs a random macro from file e.macros.
30 96

goto 99 goto 160 returnjump-point.
9 3

If an on-goto statement needs to exit a subroutine, you can write:

1 on a goto 999
999 return

3.5. sub.* Module Jump Table

Files with a sub. prefix contain routines which are used often, but to save memory and avoid code
repetition, are separated from the main im module.

3.6. & Routines

& is the command character which is BASIC’s interface to 70 machine language routines of Image
BBS.

o This section is undergoing discovery of what some routines are for and how
they are used.

3.6.1. & Image BBS Output

In BASIC, the print keyword (or its abbreviation, ?) displays text on the screen, as in:
print"Hello there!"

You can substitute & in Image BBS to do the same thing:
&"Hello there!"

But unlike BASIC, after outputting this text, the cursor remains on the same line—there is no
automatic carriage return printed.

17

It’s as if a semicolon (;) was used after the print statement above—this keeps the text all on one
line:

print"Hello ";"there!";

vS. printing on two lines:

print"Hello"
print"there!"

To work around this, you can output a carriage return, which moves the cursor to the beginning of
the next line.

Boring Background: CR/LF, CR, LF?

On other terminals or operating systems, a carriage return moves the cursor to the beginning
of the current line.

Sometimes an additional linefeed character is needed, which keeps the cursor in the current

column, but moves the cursor down a row.

Hello
there!

This stairstep-looking result is what printing looks like with only a linefeed, when the terminal
needed both a carriage return and a linefeed. Probably not the desired result.

However, printing in Commodore BASIC—and our BBS in this example—doesn’t need a
linefeed. A carriage return is the equivalent of a carriage return plus linefeed.

&"Hello there!"+chr$(13)

chr$() (read it as “character string”) is a function that outputs a character supplied in parentheses.
A carriage return is chr§(13). So this snippet of code will output Hello there!, then move the cursor
to the beginning of the next line.

There is also a string variable defined in im: r$=chr$(13) (short for “return”). This is a handy
shortcut. You can now code:

&"Hello there!"+r$

7 Using the r§$ variable is actually an easy way to write data containing carriage
- returns to a SEQ file, as you’ll see later.

18

But there’s something even handier available.

3.6.2. Encoded Function Keys

Some special characters are difficult (or impossible) to type in BASIC. Or, they might cause
problems while reading disk files. Therefore, they have been encoded using the reverse video
letters seen while typing function keys when in Commodore’s “quote mode.”

This eliminates a few difficulties:

» Entering special characters is made easier—instead of chr$() codes, you can just tap a function
key in quote mode

* Some more simply written code (and BASIC itself) can truncate data when a , is encountered in
a SEQ file—this character encoding eliminates that problem

Image BBS converts these special characters from their encoded form to readable characters when
you:

* use RD to read a SEQ file
* use SB to read a post

e Use WF to .Get, .Edit, and .Put a file back.

The image seq reader utility used in BASIC also does this.

O A new & command, &,15,2, does the same thing when passed an§, the string to
- translate.

As it relates to carriage returns, though, we can see in the following table:

Table 3. Image BBS Encoded Function Keys

Key Quoted Character Key Quoted Character

f1 E , comma f2 I ? question mark
f3 F : colon 4 J = equal sign

f5 G " quotation mark fb K- Return chr$(13)
f7 H * asterisk f8 L A up arrow

Key is what you type on the Commodore 64 keyboard.
Quoted is what it looks like in “quote mode.”

Character is what the encoded character represents.

3.6.3. & By Itself
This is a quick way to output the contents of a$.

a$="Hello there f6":§&

19

This outputs Hello there and a carriage return.

We can take the previous example of:
&"Hello there!"+r$

and simplify it further with:

&"Hello there! f6"

(r) Because of a quirk in the BASIC interpreter, you must follow a then clause
- with a colon before using the ampersand.

In other words, the following results in a ?syntax error:
if b then &"hello"
This must be used instead:

if b then:&"hello"

3.7. BASIC Editing Modes

3.7.1. Quote Mode

In the BASIC editor, once the quote mark (Shift + 2, ") is typed, color or cursor controls stop
changing the cursor color or moving the cursor. Instead, they start displaying reversed characters
which stand for the color control, cursor control or symbol you are typing. Once the text inside the
quotes is printed, they perform their functions as if typed manually. The Inst/Del key is the only
cursor control not affected by “quote mode.”

Typing a second " exits quote mode, and allows you to use the cursor keys to edit the program line

again.

7 See &,70 Position Terminal Cursor for how to easily move the terminal cursor
- within Image BBS, instead of using lots of cursor controls in quote mode.

3.7.2. Insert Mode

Insert mode is similar to quote mode, only for the number of spaces you insert with the Shift
+ Inst/Del key, the BASIC editor is in quote mode. Once the space inserted has been typed in, insert
mode is exited.

20

O Return gets out of quote and insert mode, and adds the current line into the
- BASIC program.

Shift + Return gets out of quote and insert mode, but does not add the current line into the
BASIC program.

3.8. Outputting Strings
3.8.1. String Literals

3.8.2. String Variables

3.8.3. Concatenation

3.8.4. Word-Wrap

A new feature of the text output routine is word-wrap. This is where a word which would extend
past the right hand margin is moved to the following line instead.

The position to wrap words is usually 40 columns on the console, whatever the remote user’s
screen width is, and 80 columns on the printer, if one is attached.

Setting the variable 1p=1 and outputting text with &"---" will enable word-wrap.

Setting 1p=0 disables word-wrap, so words continue past the right margin.

3.8.5. Set Margins

The left and right margins can now be indented by up to 15 characters using two new MCI
commands:

* fm<x (set left margin). This command causes every carriage return issued by Image BBS to be
followed by x spaces, which indents text x spaces. The values for x are 0 (to disable word-wrap),
or 1-9, and j-o (10-15).

* fm>x (set right margin). This command causes the system to word wrap as if the user’s screen
width was x characters less than it really is. It indents the text from the right side.

The use of fm<x and fm>x together allows you to make “block indents” of text that appear correct
regardless of the user’s screen width.

3.8.6. MCI Commands

TODO

21

o Outputting a string which itself contains MCI commands or MCI string
variables will not work as expected, e.g.:

cP="Hi":c%=3:28="£%c FH3LHOF%Cc":&"£$2"

does not output z$ (£$c outputs c§, £#3 sets 3 leading characters, £#0 sets the fill character to 0,
and £%c displays the value of c%). It outputs a literal

f8c £H#3£#0f%C
Instead, do this:

c$="Hi":c%=3:28="£8c £\#3£# £%c":8z$
This outputs the expected

Hi 003

3.9. Outputting Numbers

3.9.1. Integers

3.9.2. Floating Point

Floating point values are not integers—the value could be fractional, and the decimal point could be
in any position, hence the term “floating point.”

Gstr(h)

Since &h isn’t supported to output the value of h, it must be converted to a string with the str$()
function.

@ &str$(h) is still useful if the number of digits output is greater than 5, the limit of
- the MCI numeric output routine.

&str$(h) worked under Image 1.2; it works here too, but there is a new MCI command in Image 3.0
to output single-letter floating point variables:

&II£ ! hll
Output the value of h.

To output a two-character variable name (e.g., xx, c1), you have some choices:

22

* assign the two-character variable name to a single letter variable name, e.g.:

x=xx:&"Blocks free: £!x"

* output the two-character variable using the str§() function:

&"Number of days:"+str$(xx)

Output the value of xx.

23

Chapter 4. & Parameters Explained

& commands from this point on have additional parameter(s) called by at least one number,
followed by optional parameter(s). These variables are denoted in italics.

&,call

This means that &, is required, but the value of call varies. Substitute the appropriate number in
its place.

Example

&, 40: perform garbage collection

&, call[,optional]

This means that, again, &,call is required. The value of call varies. However, the parameter
[,optional] is not required. If it is supplied, there needs to be a , and the appropriate parameter
substituted in its place.

Example

&,9,1: display a$ in the 16-character programmable window

There are various sections which most commands use. They outline BASIC setup (variables or
pokes) which need to be done before the & call can be used.

BASIC Setup:

Any pokes or BASIC variables which are used by the & command are listed here.

Parameters:

Any extra information given after &, x, like strings or numbers, are listed here.

Returns:

Strings, numbers or arrays returned when the & command is finished are listed here.

Examples:

Examples of setup, the & call being used, and some typical results are listed here.

4.1. &,1 Input Line

&,1 accepts input from the user at a prompt. It handles features including word wrap, MCI access,
line length, and the ability to type graphics characters.

BASIC Setup:
poke 53252, 11ine_length limits the length of the input to line_length characters, 1-79.
p$: text of the prompt shown before : and input is accepted.

w$: the default response to a prompt. When using edit mode, if only Return is typed at a prompt, an$

24

nmn

is set to a null string (an$=
example is given below.

). The module can check for this and not update the original string. An

pl=0: allow both lowercase and uppercase.
pl=1: convert lowercase input to uppercase.

Parameters:

&,1,editor[,password]
e Not all of these parameters are currently understood.

editor: editor flags:

Each bit controls a separate function of the input routine. Bits may be combined together to
perform multiple functions.

Binary Decimal Purpose (if set)

%00000001 1 disable typing graphics characters

%00000010 2 . or / on column one exits input

%00000100 4 disable prompt (p$)

%00001000 g disable typing £ (the MCI command character)
%00010000 16 enable word-wrap

00100000 32 enable edit mode

%01000000 64 ignore time remaining

%10000000 128 disable typing Delete on column one to exit input
Returns:

Variable Purpose

an$ 1

peek() Purpose
$d006/53254 0: normal

1: Delete, . or / typed on column 1

Explanations:
TODO: demonstrations of each mode in i.test calls

Edit mode
The prompt (p$) is displayed, and the default response (w$) is displayed. Then, the prompt (p$) is

25

displayed again, and one of three choices can be made:

* Return accepts the default (w$)
* a new string can be typed

* the current string can be edited using Ctrl key shortcuts

password: password flags:

Binary Decimal Purpose

%00000001 1 password mask enabled for output

[uses mask character in peek(17138)]

%00000010 2 no output

Returns:

an$: text typed at the prompt.
Examples:

TODO: write examples for each option.

Example 1:

poke 53252,10:p$="Name":&,1

poke 53252,10: Set the input length to 10 characters.
p$="Name": Set the prompt to Name:.
&,1: Allow user input, and return string in an§.

Example 2:

poke 53252,20:w$=na$:p$="Handle":&,1,32:if an$<>"" then na$=an$

poke 53252,20: Set the input length to 20 characters.
w$=na$: Assign the user’s handle (na$) to w$ (the prompt’s default).
p$="Handle": Set the prompt to Handle:.

&,1,32: Setting bit 5 (a value of 32) enables edit mode. This displays the prompt, the original text (
w$), and re-displays the prompt. Editing control keys can be used to change the input. Editing mode
looks like this:

Handle: PINACOLADA

26

Handle: _

The string typed in response to a prompt is returned in an$.

nmn

if an§<>"" then na$=an$: Just typing Return (to accept the default, w$) sets an$ to a null string. If
something else was typed (an$<>""), assign na$ to what was typed (an$).

Example 3:

poke 53252,30:p$="New Prompt":&,1,9:if an$<>"" then po$=an$

poke 53252,30: Set the input length to 30 characters.
p$="New Prompt": Set the prompt to New Prompt:.

&,1,9: Setting bits 3 and 0 (a value of 8 + 1) allow MCI and graphics characters to be entered.

4.2. &,2 Disk File Input

Input data from an open disk file. This routine inputs a maximum of 80 characters into a$.

Parameters:
&,2,1fn[,bytes]

1fn: logical file number.

Logical File Numbers

A logical file number (LFN) relates the open, close, cmd, get#, input# and print# statements to
each other.

LFNs help distinguish multiple files from each other. They associate the commands being used
with the filename opened which uses the same LFN.

The LFN is the first number in an open statement, e.g. open 2,10, 2.
The LFN value ranges from 1 to 255. LEN 15 is usually reserved for the DOS command channel.
The only restriction is that you can’t re-open a LFN that is already open, or you get the error
?file open error.

bytes: number of bytes to get from file (1-80). Carriage returns are ignored.

Returns:

a$: bytes from file

27

Example:

s.test file

@ a regular string

@ a 30-character string, used to demonstrate &,2,2,25

i.read test file

3000 dr=1:a$="s.test file,s,r":gosub 4 @
3002 if e% then:&:goto 3100 @

3004 &,2,2:& ®

3006 &,2,2,25:& @

3100 close 2:goto 300 ®

® dr=1: set the Image drive to 1 (the System drive). a$="s.test file,s,r": set the System disk
filename prefix to s., the main filename to test file, specifies s for a SEQuential file, and r for
reading the file. gosub 4: open a$ for the device and drive assigned to the System drive.

@ If there is a DOS error (e.g. file not found), this line intercepts it. e%: the DOS error number. if
e% implies if e%<>0 (if e% does not equal zero; i.e., a non-zero result means an error occurred). a$:
the DOS error string. &: display the DOS error string in a$. goto 3100: close the disk channel
instead of getting data from a non-existant file.

® &,2,2: using logical file #2, get a line of data from the disk. The data is returned in a$. & output
as.

@ &,2,2,25: using logical file #2, get a line of data from the disk—but stop at 25 characters, instead
of getting the entire line. The data is returned in a$. & output a$.

® close 2: close disk file. goto 300: go to main prompt.

Example 2. BASIC Pitfall

Using input#2,a$ when the disk file contains a string hello,there returns only hello in a$.
When used with input#, , is a delimiter which truncates (cuts off) the data after the ,.

You can prefix the string with " on disk to get around that. But most likely, you want to read
hello and there into two separate variables. input#2,a$,b$ does that, resulting in a$="hello"
and b$="there".

4.3. &,3 Read File from Disk

Read a file from disk. An optional speed parameter can be specified for reading movie files, which
adds an appropriate slowdown based on the value.

28

Parameters:
&,3,1fn[, speed]
1fn: logical file number

,speed: speed (1-20 for movie file read. 1=faster, 20=slower)

4.4. &,4 Get Byte from Modem

This returns the character received from the modem in peek(780). This routine does no ASCII
translation, and no high bit stripping; it gets the character directly from the RS232 routines.

Returns:

x=peek(780) reads the character from the RS232 routines. If no character is received from the
modem, peek(780)=0.

4.5. &,5 Get Version

Get the version information embedded in the BBS ML.
Returns:

1p: major/minor (1.3)

a%: revision (1)

a$: date ("12/29/91 1:18p")

4.6. &, 6 Password Input

Sets the input length to 14, and displays a definable mask character rather than the actual
characters typed. The text typed is returned in plain (non-masked) text.

Parameters:

poke 17138,mask: display mask character instead of the user’s input
You could do poke 17138,asc("X") to set the mask character to X.
Returns:

an$: password in plain text

Example:

29

im

263 &"Password: ":&,6:if an$<>ep$ then:&"Incorrect Password."

&"Password: ": Display the prompt Password: .
&, 6: Allow password entry, displaying the mask character instead of the text actually typed.

if an$<>ep$ then:&"Incorrect Password.": if an$ (the entered text) is not equal to (<>) ep$ (a
password set on an Extended Command Set command), display the message.

4.7. &,7 Load File

Loads a module into memory.

Parameters:

a$: the drive number and filename (e.g., "0:1.module")
Syntax:

&,7,device[,segment]

Segments

Segments are pre-defined addresses that a module will load to, regardless of the file’s first two
bytes which define its load address.

Not all segments are currently defined.

Segment Purpose
2 Protocols or blocks of ML
7 Print mode table
8 Lightbar text
9 Alarm table
10 ASCII-to-Commodore translation table
11 Commodore-to-ASCII translation table

12 Print mode table

im:

29 m1$="++ "+a$:a$=dr$+m1$:&,7,dv%,2:goto 5

This line loads an ML protocol (++ file).

30

ml$="++ "+a$
Assign m1§ the ++ prefix for error reporting purposes.
a$=dr$+m1$
Concatenate dr$ (the current drive prefix) and m1$ (discussed above) into a$.
&,7,dv%,2
Do a module load using device dv% into segment 2 (the protocol address, 49152 or $c000).
goto 5

Check for a DOS error.

4.8. &,8 Disk Directory

Display either:

* an entire disk directory at once, from the directory header to the blocks free. message

* aline of information at a time (calling it multiple times will get the directory header, each file’s
block count, filename, filetype, splat and lock status, and the blocks free. count)

Parameters:

&,8,1fn,flag

1fn: logical file #

flag: [0=entire directory | 1=single line]

Returns:

flag=0: Displays entire directory

flag=1: a$: single line of disk directory information

Display Entire s. Disk Directory

3000 dr=1:gosub 3:open 2,dv%,0,"$"+dr$+"*":get#2,a%,a$ @
3002 &,8,2,0:close 2:goto 300 @

® dr=1:gosub 3: get device of s. disk. open 2,dv%,0,"$"+dr$+"*": open the directory as a file. The
secondary address must be 0 to instruct the drive to return the disk directory as a BASIC-
formatted series of lines, displayable by this routine. $0:*: Use the wildcard pattern * (all files).

31

get#2,a$,as: discard the load address information.

@ &,8,2,0: Use 1fn#2 to get the entire disk directory (0). close 2: close 1fn#2. goto 300: go to main
prompt.

4.9. &,9 Bottom Variable

Output variables to 16-character status window.
Parameters:

&,9[,x]: x=variable number to display, 0-49:

Variable Variable Variable Variable Variable
0 an$ 10 tt§ 20 nl 30 a% 40 18
1 a$ 11 na$ 21 ul 31 b$ 41 2%
2 b$ 12 rn$ 22 qe 32 dv% 42 3%
3 tr$ 13 ph$ 23 rq 33 dr§ 43 f4$
4 d1$ 14 ak$ 24 ac% 34 c1$ 44 58
5 d2¢ 15 1p 25 ef 35 c2% 45 6%
6 d3$ 16 pl 26 1f 36 co$ 46 7%
7 da$ 17 rc 27 w$ 37 ch§ 47 8%
8d5$ 18sh 28 p$ 38 kpk 48 mp$
9 1d$ 19 mw 29 tr% 39 c3% 49 mn%

Examples:

&,9[,0]: output an$ to status window
&,9,1: print a$ to status window
&,9,2: print b$ to status window
&,9,3: output tr$ to status window

&,9,4: output d1$ to status window

4.10. &,10 Terminal Mode

C= + Ctrl leaves terminal mode

32

4.11. &,11 Clear Array

Clear array #x.

Table 4. Array Numbers
Number Array Purpose
0 tt8() Text editor: lines entered
bb$ ()
dt$()
ed$()
nn$ ()
3%()
c%0)
d%()
e%()
%0

10 ac%() Access levels

© 00 9 O U1 W N e

11 so%() Subops

Example:

& 11
Clear tt$() array.

4.12. &,12 New User

Non-abortable file read.

4.13. &,13 arbit

A function reserved to arbitrate port use in multi-port Lt.Kernal hard drive setups.

0 This is currently being researched.

33

4.14. &,14 Dump Array

Write array elements to an already-open file, using logical file #2.

&,14,array

Output from 1 to however many elements were dimensioned for array.

&,14,array,end

Output elements of array from 1-end.

e See Array Numbers for the arrays which correspond to array.

4.15. &,15 Convert an$

This group of functions perform various conversions on the string contained in an§.

(r) Related string conversion functions can be found at &, 65 convert.
-

4.15.1. &,15 Convert Date
an$=d1$:&,15:&an$ - displays verbose date

1. an$=d1$: Put current 11-digit date (d1%, e.g. 60429218427) into an$

2. &,15: Convert 11-digit date to a long date string, e.g. Thu Apr 29, 2021 4:29 P and assign that to
an$

3. &an$: Output an$

Image BBS Date Format

Image BBS uses an 11-digit string to represent a time and date. The formatisw yr mo dt hr mi.

o Extra spaces between the numbers have been added for ease of reading, but
are not used in the actual string.

Table 5. Image BBS Date Format

Positi Abbreviat Purpo Range

on ion se
1 W weekd 71=Sun...7=Sat
ay
2-3 yr year 00...99 (the year within the century, 20xx, is displayed using &, 15)

34

Positi Abbreviat Purpo Range

on ion se
4-5 mo month 01...12
6-7 dt date 01...31
8-9 hr hour 00...11 (12:00 AM, midnight—11:00 AM, 1 hour until noon)
80...92 (12:00 PM, noon—11:00 PM, 1 hour until midnight)
10-11 mi minut 00...59
e

The current time and date is stored in the string d1$, which is continually updated by the ML. Here
is a sample definition of d1$:

"22105178944"

Let’s break down how the string is encoded.

Table 6. Image BBS Date Decoding

Position Value Purpose Meaning

1 2 weekday Mon

92-3 21 year 2021

4-5 05 month May

6-7 17 date 17

8-9 89 hour 9:00 PM (9=hour, plus 80=PM)
10-11 44 minute 44

As the table above shows, this string stands for Mon May 17, 2021 9:44 PM.

You can also output Ctrl + d or chr$(4) in an & statement to convert an 11-digit
o date/time string to a long date/time string. Both these statements output the
same string as above:

e 3$="22105178944":&" Ctr10+0d "+a$
e a$="22105178944" :&chr$(4)+a$

Outputting the date and time this way also outputs the user’s time zone.

35

4.15.2. &,15,1 Title Case

Changes an all uppercase string to mixed case.

an$="THE CHIEF":&,15,1:&an$ — The Chief

4.15.3. &,15,2 Decode Function Keys

Decodes quoted function key characters into readable equivalents.

i.t
an$="host f3 port":&,15,2:&"£v7 f6" — host:port

4.15.4. &,15,3 and &,15,4

These point to, and are the same as, &, 15, 2.

4.15.5. &,15,5 newdate
Some sort of hour (?) conversion.

Syntax:

an$="wyymmddhhmm" :&,15,5:&" Ctr10+0d "+an$

o This function is currently being researched.

4.15.6. &,15,6 Scan String

Scan an$ for the first occurrence of a specified character. You can specify the character to scan for
in one of two ways:

» x, the PETSCII value of the character

» use the asc("x") function, which returns the ASCII (or PETSCII) value of character x
If the specified character is found in an$, split it into two strings:

* an$ now ends before the specified character was found

* af$ begins after the specified character was found to the end of the string

36

Split on space, two ways
1. an$="Hello world":&,15,6,32
This splits "Hello world" at chr$(32) (Space), resulting in a$="Hello" and an$="wor1d".
2. an$="Hello world":&,15,6,asc(" ")

This splits "Hello world" at the ASCII value of Space (32), resulting in a$="Hello" and
an$="wor1d".

After the split, the two strings look like this:

af="Hello" chr$(32) an$="wor1ld"

O If the specified character is not found in an$, a$="", a null string.
w

im
312 &,15,6,140:uu$=an$:an$=a$

o 140= 8, Image "

352 &,15,6,133:d2%=val(an$):d1%=a:dr=.:dv%(.)=d1%:dr%(.)=d2%

o 133=f1, Image ,

4.16. &,16 sys49152

Perform sys 49152. Usually this is used in a file transfer protocol for performing a file copy, upload,
or download.

Parameters:

&, 16[,sub-function]

Following &, 16 with a sub-function number (e.g., &,16,2) calls a sub-function of the module through
a jump table.

Details: Jump Tables

A jump table is used to give assembly language routines stable entry point addresses that

37

don’t change even if routines pointed to change in size. This is done by maintaining a list of
addresses to be jmped to in 6510 assembly code.

In other words: when not using a jump table, changing a routine’s size shifts subsequent
inline routine entry points around by the number of bytes added or subtracted by the
modification. You probably don’t want to search for all the BASIC sys addresses referencing
the changed entry points throughout your code.

Instead, just change the address that the jump table entry jmps to, and you can keep the BASIC
sys address that calls the routine the same (stable).

As an example, each of these instructions in a fictitious protocol assembly-language jump
table starting at $c000 take 3 bytes:

c000: jmp $c009; sys 49152 sub-function 0 (&, 16)
c003: jmp $c0a5; sys 49155 sub-function 1 (&, 16,1, also the equivalent of &,17)
c006: jmp $c147; sys 49158 sub-function 2 (&,16,2)

c009: <first byte of first routine>

(;) Refer to Protocols for more information and listings of jump tables.
-

4.17. &,17 sys49155

Perform sys 49155 as shown above.

4.18. &,18 Set Screen Mode

This command turns the screen mask on (enabling split screen mode) or off (enabling full-screen
mode). The bottom status line (showing the date and time, status indicators, and the time remaining
for a user’s call) is always present, regardless of mode.

Parameters:
&,18,0: Turn the screen mask off, enabling full screen mode (24 lines for viewing caller activity).

&,18,1: Turn the screen mask on, enabling split screen mode (16 lines for viewing caller activity).
The 9 lines of the screen mask show:

* the lightbar interface
* system, caller, protocol or network transfer information depending on the BBS’s mode

* the modem I/O windows, M= free memory, and L= BASIC line number currently executing

38

4.19. &,19 Get Version

This function did something different in Image 1.2, but was removed. It points to &,5: Get Version to
maintain the numbering of the & calls.

4.20. &,20 Read from Interface Table

Reads a byte from the interface table. This is meant to possibly eventually replace peek()ing
memory locations. While the functionality is there, it is limited, but can be expanded in the future.

Parameters:
&,20,1index, command

index: position in table (see table)
command: [0=put in a% | T=return in accumulator, peek(780)]

Table 7. Interface Table Addresses

Index Peek() Hexadecimal Purpose

0 53252 $d0e4 Input line length

For now, refer to Pokes and Memory Locations to see the list of pokes you may use.

4.21. &,21 Write to Interface Table

Writes a byte to the interface table. This is meant to possibly eventually replace pokeing memory
locations. While the functionality is there, it is limited, but should be expanded in the future.

Parameters:

index: see Interface Table Addresses for more information

value: the value you would normally poke into a memory location
Example:

&,21,0,20 Set input line length to 20 characters.

39

4.22. &,22 Wait x Tenths of a Second

This waits for any interval from .1 second to 25.5 seconds, in 1/10-second steps.
Parameters:

x=1-255

Example:

&22,19 @
&,22,200 @

@ Wait 1 second (10 10™ of a second)
@ Wait 20 seconds (20 10/10™ of a second)

4.23. &,23 Get Character from Modem

3000 &,23:c=peek(780):if c<>32 then 3000 @
@ Get character from modem. Save in c. Loop until the caller hits Space [chr$(32)].

G &,23 doesn’t stop and wait for input, unlike the £g7 MCI command. If no character
- is received from the connected user, peek(780)=0.

4.24. &,24 xchroutl

This is an output character routine that should be used when writing ML routines which need to
output a character to the user.

4.25. &,25 Sound

Produce 4 separate sounds, optionally repeating the sound a specified number of times.

Parameters:

&,25,sound[, repeat]

sound=
&,25,0 beep
&,25,1 ding

40

&,25,2 higher pitched ding
&,25,3 gong sound from CCGMS (a terminal program)

repeat= Number of times to repeat: [0: Stop repeat | 1-254: Repeat count | 255: infinite]

4.26. &,26 ecschk

o This is currently being researched.

4.27. &,27 Save Variable Pointers

This saves pointers that tell BASIC where variables and arrays start and end. When modules
introduce arrays not already defined in im, the variable pointers can be restored with &,28. This
erases unnecessary variables after they’re done being used.

FIXME

4.27.1. Creating New Arrays

If you define any new arrays in a module, be sure not to consume unnecessary memory after you
end the module. You can do this by using the &,27 (array pointer save) and &,28 (array pointer
restore) calls.

Image 1.2 had just one level of variable pointer save and restore. Image 1.3 and above adds
multiple levels of save and restore with an additional parameter.

3000 &,27,2 @
3002 dim u%(10,20) @

3010 &,28,2:g0to 300 @

@ save current variable pointers, and create variable pointer level 2
@ create new array

® &,28,2: restore level 2 array pointers (this frees up memory used by the array but preserves level
1 system variables still needed by the BBS). goto 300: go to main prompt.

TODO: I would like a diagram of array pointers, creating new arrays, restoring old pointers here.

O The main prompt restores level 1 array pointers and already does a &,28,1
- there.

41

If you substitute &,27,1 for &,627,2 and &,28,1 for &,28,2 in the above code, line 300 will redo
&,28,1. This causes a ?redimid array error in 306 (i.e., redimensioned array error; an array
can’t be dimensioned twice).

4.28. &,28 Restore Variable Pointers

FIXME

4.29. &,29 usevar

Get contents of a variable. This is the routine to call to read the value of a variable from ML.
Prerequisite:

1dx variable_number ; variable to access.

(Refer to variable table FIXME.)

Returns:

$61: Start of buffer holding the variable contents.

4.30. &,30 putvar

Assign a value to a variable. This stores the contents of the buffer at $61 into a variable.
Prerequisite:

1dx variable_ number ; variable to access.

(Refer to variable table FIXME.)

Returns:

$61: Start of buffer holding the variable contents.

4.31. &,31 zero

This stores the floating point equivalent of 0 in the buffer starting at $61.

42

4.32. &,32 minusone

This stores the floating point equivalent of -1 in the buffer starting at $61.

4.33. &,33 getarr

Get descriptor (Iength and pointer) for an element of tt$(x).
Prerequisite:
1dx element ; element to access.

Returns: $61: Start of buffer holding the descriptor.

4.34. &,34 putarr

4.35. &,35 getin

4.36. &, 36 putin

4.37. &,37 trapon

Enable error-trap routine. BASIC run-time errors will be caught, and redirected to the BBS error
handler at line 2000.

4.38. &, 38 trapoff

Disable error-trap routine. BASIC run-time errors will not be caught, and will crash like in regular
BASIC, halting the program and putting you back at the ready. prompt.

4.39. &,39 prtin

Prints the array element tt$() contained in the .x register.

43

4.40. &,40 forcegc

Perform a garbage collection (freeing RAM by erasing unused strings). While the garbage collection
is being performed, G shows in the status indicator area on the bottom status line.

FG also performs garbage collection if you are in pseudo-local mode.

4.41. &,41 sethaud

This command changes the bits per second (BPS) rate.

Do not change the BPS rate while someone is online. This only changes the
o rate of Image BBS transmitting data; the modem cannot match speeds except
while offline.

Parameters:

Parameter BPS rate

&,41,0 300
&,41,1 not used
&,41,2 1200
&,41,3 2400
&,41,4 4800
&,41,5 9600
&,41,6 19200
&,41,7 38400

To utilize speeds higher than 2400 BPS, you must have a SwiftLink, Turbo232
O or compatible high-speed RS232 cartridge connected to the
et expansion/cartridge port of your Commodore 64.

4.42. &,42 ECS Commands

This group of commands are used for interfacing the Extended Command Set (ECS) with BASIC.
There are sub-commands to:

¢]Joad and save the command set

44

 search for and update individual commands

* goto or gosub line numbers in im, or modules

4.42.1. &,42 Check for ECS Command

This checks whether the command passed in an$ is a valid ECS command.
Example:

im

226 f4=.:a%=2z:b%=2"ac%:&,42:if a% then ef$=b$:ep$=af:ec=a%:ec%=b%:goto 261

BASIC Setup:
an$: command the user typed
a%: Local Mode flag (z2)
%: access level
Returns:
a%: [0: not found in ECS table | n: ECS command #n]
a$: password
b$: ECS flags

%: credits to use command

4.42.2. &,42,1 Goto Line in ECS Command

This will goto a particular line in im contained in the ECS command, if its goto/gosub flag is set to
goto. In this respect, it is similar to &, 66: calculated GOTO.

Parameter:

a%: line number to goto
Example:

im

268 a%=asc(ef$+nl$)+256*asc(mid$(ef$,2,1)+nl$):&,642,1

From an ECS flags string ef$, a% holds the line # to goto, using &,42, 1.

45

4.42.3. &,42,2 Get ECS Definitions From RAM

Example:

i/IM.ecs

4004 &,42,2:n=a%:qgoto 4034

Returns:

a%: number of ECS definitions in memory

4.42.4. &,42,3 Put ECS Definition Into RAM

Add/replace the ECS definition in tt$(n) to the list currently in memory.
Parameter:

tt$(n): command definition

&,42,3,number: the command number in the ECS to add/replace
Examples:

i/IM.ecs

4010 tt$(n+1)=chr$(0):&,42,3,n+1:return

n: the current count of ECS commands
Assign an empty command [chr$(0) is a null byte] to the next command [tt$(n+1)].

&,42,3,n+1: Add the empty command in [tt$(n+1)] to the ECS.

4.42.5. &,42,4 Load ECS Definitions from Disk
Load ECS definitions from a disk file.

Parameters:

a$: filename

dv%: device #

Example:

46

im
3106 a$=dr$+"e.ecs.main":&,42,4

Load the ECS definitions in e.ecs.main from disk.

4.42.6. &,42,5 Save ECS Definitions to Disk
Save ECS definitions to a disk file.

Parameters:

a$: filename

dv%: device #

BASIC Setup:

O Line 4016 is the root example, lines 4010 and 4018 are provided for context.

i.IM/ecs:
4010 tt$(n+1)=chr$(0):&,42,3,n+1:return @

4016 &"Save To Disk{f6:2}":qgosub 4010:gosub 4018:gosub 19:a$=dr$+af:&,42,5:tz=0:return
@

4018 dr=3:a$="e.ecs.main":return @

@ Set end of ECS command list.

@ gosub 4010: see callout 1. gosub 4018: see callout 3. gosub 19: scratch existing e.ecs.main file.
&,42,5: Save ECS definitions to disk. tz=0: Clear “file modified” flag.

® assign dr=3 (Image drive) to the Etcetera disk, and a$="e.ecs.main", the ECS filename.

4.43. &,43 chatchk

Checks for presence of the Cht left check mark.

4.44. &,44 trace

Checks for presence of the Trc left check mark.

47

4.45. &,45 prtvar

Prints a variable with MCI enabled.

4.46. &,46 prtvar0

Prints a variable with MCI disabled.

4.47. &,47 carchk

Checks for the presence of a Carrier Detect signal.
Returns:

0: carrier present, or local mode

1: carrier dropped

2: timeout

4.48. &,48 getkbd

Check console keyboard for a keypress. This can also be also used from BASIC.
Returns:

peek(198): Character typed

G &,48 does not stop and wait for input, unlike the £g7 MCI command. If no character
- is typed on the keyboard, peek(198)=0.

FIXME: verify this

4.49. &,49 getmod

Gets a character from the modem, with ASCII translation.

48

4.50. &, 50 outscn

Output a character to the BBS console.

4.51. &,51 outmod

Outputs character in accumulator [peek(780)] to modem.

4.52. &,52 Lightbar Interface

This is how to read the status of lightbar checkmarks, change checkmarks’ status, and move the “lit”
portion to a specific location.

Parameters:

&,52,position,option

(r) &,52,$hexadecimal,option is allowed.

Example: Turn off Trc left: & 52,$18,0 (&,52,24,0 decimal).

option=0: clear checkmark at position

option=1: set checkmark at position

option=2: toggle checkmark at position

option=3: read status of position, return in a% (0=off, 1=on)
option=4: move lightbar to position

Option 5 does the same thing in ML as option 4 does in BASIC.

4.53. &,53 Logoff

* Resets various flags:
o chat page counter
- sound repeat counter

e clears status line indicators

Example:

49

im:

3074 &,53

4.54. &,54 Text Editor Interface

The text editor is called with the &,54,mode command. The editor can be entered in different ways,
depending on the value of mode.

Line 60100 of sub.editor uses &,54,a. The values of a and the purpose for entering the editor are as
follows:

Table 8. Text editor calls

Line Variable Purpose

60086 3a=0 Normal entry, empty buffer
60110 a=1 Buffer not cleared

60108 a=2 Extended editor command

When a is equal to 0, this is the "normal” entry point into the editor with an empty buffer.
When a is equal to 1, entry into the editor does not clear the buffer.

When a is equal to 2, entry into the editor is the point that would be used in an extended command
if the command that was typed was not a recognized command.

How to use the editor in your BASIC programs is described later in “The Editor.”

4.55. &,55 output

4.56. &,56 chatmode

4.57. &,57 relread

Reads records from an open RELative file until the character ” is encountered.

Parameters:
&,57,1fn

1fn: logical file number

50

4.58. &,58 setalarm

Parameters:
&,58,hour,minute

hour: hour

minute: minute

4.59. &,59 farerr

Cause a specified BASIC error to happen.

Parameter:
&,59,1,error

Example:

&,59,1,14

Cause error 14, ?illegal quantity error.

Table 9. Error Numbers

Number Error Number Error
TOO MANY FILES 16 OUT OF MEMORY
2 FILE OPEN 17 UNDEFD STATEMENT
3 FILE NOT OPEN 18 BAD SUBSCRIPT
4 FILE NOT FOUND 19 REDIM’D ARRAY
5 DEVICE NOT PRESENT 20 DIVISION BY ZERO
6 NOT INPUT FILE 21 ILLEGAL DIRECT
7 NOT OUTPUT FILE 22 TYPE MISMATCH
8 MISSING FILE NAME 23 STRING TOO LONG
9 ILLEGAL DEVICE NUMBER 24 FILE DATA
10 NEXT WITHOUT FOR 25 FORMULA TOO COMPLEX
11 SYNTAX 26 CAN’T CONTINUE
12 RETURN WITHOUT GOSUB 27 UNDEF’D FUNCTION
13 OUT OF DATA 28 VERIFY

31

Number Error Number Error
14 ILLEGAL QUANTITY 29 LOAD
15 OVERFLOW 30 BREAK

4.60. &, 60 Structures

Structures (or structs for short) allow you to access and manipulate the memory used by arrays at
machine language speeds.

See the Structures chapter for more information.

4.61. &,61 poscrsr
Move the terminal cursor to a specified column and row on the screen.

Parameters:

&,61,column, row

o 0,0 is the top left corner of the screen.

im
4004 &,38:&,61,.,8:print"&,37:90t0300:":end

&,61,0,8: position the cursor at column 0, row 9. print recovery information if the BBS crashes.

4.62. &,62 Set Time
Set BBS clock.

Parameters:

&,62, hour, minute

hour: hour

minute: minute

Example:

32

im:

3182 &,62,h,m

4.63. &, 63 inlinel

4.64. &, 64 convstr

4.65. &, 65 convert

Another group of related string conversion functions, there are sub-functions to convert:

e names (?)

disk data

* special characters to Image-encoded function keys, and

* check special characters.

(o . . .
O Related string conversion functions can be found at &,15 Convert an§.
-

4.66. &,66 Calculated goto

goto line number held in a%. If you have 13 4-digit goto targets on a line, this can save a fair amount
of RAM (and BASIC interpretation time).

BASIC Setup:
a%: line number to goto

Instead of writing this (which uses 73 bytes):
e Spaces between line number targets have been added for clarity’s sake.

Example 3. Calculated GOTO

on a% goto 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100,
4200, 4300

33

The same thing can be written like so (which uses 19 bytes):
a%=3000+3%*100:&, 66

Based on the value of a% (including 0), &, 66 will goto lines starting at 3300 in increments of 100 (
0=3000, 1=3100, 2=3200, 3=3300, etc.)

4.67. &,66,1 Calculated gosub

gosub line number held in a%. If you have 13 4-digit gosub targets on a line, this can save a fair
amount of RAM (and BASIC interpretation time).

Example:

Instead of writing this (which uses 73 bytes):

on a% gosub 3000,3100,3200,3300,3400,3500,3600,3700,3800,3900,4000,4100,4200,4300
The same thing can be written like so (which uses 38 bytes):

a%=abs(val(an$)):if a%<15 then a%=3100+a%*50:&,66,1

Based on the value of a% (including 0), &, 66,1 will gosub lines starting at 3100, in increments of 50 (
0=3100, 1=3150, 2=3200, 3=3250, etc).

a%=3:3%=3100+3%*50:&, 66,1

would gosub 3250.

4.68. &,67 copyrite

4.69. &, 68 struct

Certain sub-functions of &, 60 are re-directed here.

54

4.70. &,69 Display String on Console
o This function will not draw PETSCII graphics characters properly.

Parameters:
&,69,column, row, text,color

column: 0-39

row: 0-24
o Upper left of the screen starts at column 0, row 0.

text: can be a string (a$), literal text ("Hi there!"), or a combination of both ("Hi there, "+a$+"!")

color: is 1-15 for un-reversed colors. (0, black, is excluded—this is the same numbering as MCI
colors.)

For reversed colors, add $80 (or 128 decimal). $8x is reverse color x ($81 or 129 is reverse white, $8f
or 142 is reverse light gray).

Example:
im

13 &,69,4,21,1eft$(" "+cm$+"{21 spaces}",22),8$8c

1. &,69,4,21: position string at column 5, row 22

2. left$(" "+cm$+"{21 spaces}",22): format the string so it’s left-justified in the 22-character Area
window

3. ,$8c: draws the string in reverse ($8) in color $c (decimal 13, light green)

O The module sub.display is a good example of using &, 69.

4.71. &,70 Position Terminal Cursor

Parameters:

&,70,column, row

O Upper left corner of the screen is 0, 0.
w

55

column: 0-39
row: 0-24
i.IM

3350 ... &,70,.,n/2+8.5:&"{white}"

36

Chapter 5. Structures

o 8/1/2022: Documentation under heavy development and discovery. Feedback
welcome.

Structures (or structs for short) allow you to access and manipulate the memory used by arrays at
machine language speeds.

Programmed properly, structs save RAM compared to having multiple string and numeric arrays
defined to, say, hold information about a U/D library:

* filename and filetype

the block size
¢ times downloaded

* upload date and last download date
You can now hold all this information within a single struct array, performing:

* searches
* sorts
* filtering the list of files based on a substring match

¢ and more.

You can store multiple types of data in a single struct—each category is stored in a separate
“column” called a field—-and perform operations on the data using &,60 or &,68, and various sub-
commands.

Performing a struct search operation is much faster than searching through an array in BASIC with
a for---next loop.

5.1. Static Arrays

The arrays are considered static because, like static strings embedded in BASIC text (such as
a$="hello"), the size of individual fields can’t change once the struct is defined.

o Currently there’s no option to resize a struct without first copying data to
another struct (accomplished with &,60,10 Copy Record).

There are functions to:

* put and get strings, and Image BBS-style 11-digit dates

 sort and filter data

57

* test and collect information from the struct, then put the results in another array
* copy pieces of information from one part of the struct to another

* load and save structs
FIXME more functions
Elements are the individual “boxes” in the array that data is held in.
Strings can be stored in either a floating point [like a() or b()], or integer [like a%() or b%()] array.

» Two bytes of a string’s text can be stored per element of an integer array

* Five bytes of a floating point array, or 4 bytes... FIXME

Table 10. Representation of a Sample
Two-Dimensional Integer Array

Record (0,x)
Field (0,0) x%(0,0) x%(0,1) x%(@,2)
Field (1,0) x%(1,0) x%(1,1) x%(1,2)
Field (2,0) x%(2,0) x%(2,1) x%(2,2)

It is suggested that you use numeric instead of string arrays, since this will allow you to both access
the elements as numeric data, as well as put and get strings.

Floating point arrays use 5 bytes per element. Integer arrays use 2 bytes per element. When
deciding to use structs, you should determine what types of data you will need to store, and how
much memory that data will require.

Example 4. User Data, Part 1

As a running example, let’s design a struct to hold a user’s ID#, handle, and password. A
module will be written to store, edit, and retrieve data to/from this struct.

* The ID is an integer type (never > 32767), requiring 2 bytes.
* The handle can be up to 20 characters.

* The password can be up to 15 characters.

Since the integers store in 2 bytes, the total number of bytes needed is 37 (2 + 20 + 15). Thirty-
seven bytes would require either:

* 19 integer elements (2 bytes per element x 19 elements = 38 bytes)
or
+ 8 floating point elements (5 bytes per element x 8 elements = 40 bytes).

Now that you have the basic concept of the struct, let’s look in a little more detail. Here is a
byte-by-byte map of the struct we designed.

38

Table 11. Sample “User Data” Struct Layout

Element Position Byte Position Data Type Bytes Used
Element 0 Bytes 00-01 ID# Integer 2 bytes
Element 1 Bytes 02-21 Handle String 20 bytes
Element 11 Bytes 22-36 Password String 15 bytes
Element 18% Byte 37 unused n/a 1 byte

Table 12. “User Data” Struct Data Storage

Elemen U%(0,0 u%(0,1 u%(0,2 u%(0,3 u%(0,4 u%(0,5 u%(0,6 u%(0,7 u%(0,8 u%(0,9 u%(0,10
¢)))))))))))

BytePo 00 01 0203 0405 0607 0809 1011 1213 1415 1617 1819 20 21
S

Data ID# Handle (20 bytes)
Bytes 01 PI NA CO LA DA xx xx xx xx X X

Element U%(0,11) u%(0,12) u%(0,13) u%(0,14) u%(0,15) u%(0,16) u%(0,17) u%(0,18)
Byte Pos 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Data Password (15 bytes) unused
Bytes P A 55 W o RD X X X X XX x unused
7 Because the unused byte 37 is not on an even element boundary (the previous
- element is an odd number of bytes), it cannot be used.

Since the ID# is an integer anyway, it would be best to use an integer array. The definition
would look like this:

dim u%(18)

(r) Remember that arrays start at element 0! There are 19 bytes in this struct, 0-
- 18.

Of course, you may want to store more than one of these records in memory. To do so, you
would need a 2-dimensional array. (Suppose that x is the number of records you want.) This
would change the dim statement to:

dim u%(18,x-1)

39

5.2. Some New Terminology

To refer to data in a struct, and hopefully reduce confusion about “elements” and “bytes,” the
following terminology will be used:

* The first number in the array notation is the field number (like a field within a record of a
RELative file). It’s reccommended to be an even number since integers occupy at least two

bytes.

* The second number is the record number. When the size of the struct is dimensioned, you use
this value to address individual records within the struct.

Record and field are specified in what most people and programs would
consider reverse order (in a database, a record is composed of fields of
information). Sorry, there’s no way around this (that we’re aware of).

TODO: a visualization of fields in a record.

Table 13. Fields in Records

u%(field,recor

d)

Record 0
[u%(0,0)]

Record 1
Record 2
Record 3

Q

Fields 0-1 Field 2 Field 3 Field 4

— configuration information —

a b C d e
flg h i j
k|1 m n 0

Record 0, field 0 [e.g., u%(0,0)] is often used to hold the number of records in
the struct. Record @ may hold additional information in other fields during the
lifetime of the struct.

5.3. Using Structs

Now down to the important part: how to use all of this! The struct system is called with either
&,60,sub-function, - or &,68,sub-function, .

There are currently 14 sub-functions supported by the struct routines. They are documented below.

5.4. Numeric Values and Structs

The array used with structs is either an integer or floating point type. To put numeric values into—
or get numeric values from—a struct requires no special struct calls.

60

You may use code similar to the following examples:

Table 14. Get Number
From and Put Number
Into Struct

Get value Put value
f=a%(3,3) a%(3,3)=20

(;) Integer arrays can store values from -32768 to 32767.
-

5.5. &,60,0 Put String

Copies a specified string variable (up to a specified length) into a field of a record of a struct.

Syntax
&,60,0, length, struct%(field, record), string$

Parameters

length: the maximum string length to put into the record.
struct%(field, record): the struct name, field and record you’re putting the string into.
string$: the string variable name to assign the struct data to.

Example 5. Put String

&,60,0,20,u%(1,1),na$

1. Put a string:
&,60,0,20,u%(1,1),na$

2. of up to 20 bytes:
&,60,0,20,u%(1,1),na$

3. from the u%() array (field 1, record 1):
&,60,0,20,u%(1,1),na$

4. into the string variable na$:
&,60,0,20,u%(1,1),na$

TODO: test if putting string longer than length into struct is truncated — it should be.

61

Returns

7type mismatch error:if the parameter string$ is not a string variable FIXME

5.6. &,60,1 Get String

This copies data from a struct into a specified string variable.

Syntax
&,60,1,length, struct%(field, record), string$

Parameters

The parameters length, struct%(field, record), and string$ are the same as Put String above.

Example 6. Get String

&,60,1,20,u%(11,2),a$

o Feedback wanted: which is better, format 1 or format 2? But that’s just, like, your
opinion, man.

Example 7. User Data, Part 2

In our earlier example user data struct, to access the third user’s password, you would do this:
&,60,1,20,u%(11,2),3$

Table 15. Format 1

Parameter Purpose

&,60,1,... Getastring...

20, ... of at most 20 bytes...

u%(11,2),... from the array u%(), record 2, field 11...

as into the string variable a$.

Format 2
&,60,1,20,u%(11,2),a$

1. Get a string...
&,60,1,20,u%(11,2),a$

2. of at most 20 bytes...

62

&,60,1,20,u%(11,2),a$
3. from the array u%(), record 2, field 11...
&,60,1,20,u%(11,2),a$

4. into the string variable a$

5.7. &,60,2 Load Struct from Disk

Loads the specified struct on disk into an array.

Syntax
&,60,2,0, struct%(field, record), filename$, device

Parameters

&,60,2,0,: Required parameters.
struct%(field, record),: FIXME
filename$,: FIXME

device: FIXME

Setup

Assign the variable dr to the Image drive number desired, and gosub 3. This returns device (dv%).

(For our example, we’ll set dr=6, since u. files live on Image drive 6.)
dr=6:gosub 3

This also returns the drive prefix, dr8.

Example 8. Load Struct from Disk

&,60,2,0,u%(0,0),dr$+"u.handles", dv%

Parameters

1. Load a struct:

&,60,2,0,u%(0,0),dr$+"u.handles",dv%

0 The 0 is believed to be a necessary but ignored parameter.

63

2. Use the u%() array (load to record 0, field 0):

&,60,2,0,u%(0,0),dr$+"u.handles",dv%

You do not have to load the file at the start of the array. The starting record
and field are specified in the array notation. This example loads the file

o u.handles into the u%() array, starting at the beginning of the array (0,0). It
could load starting at (0,5) —record 5, field @ — or anywhere else you want,
as long as it is within the bounds of the struct’s dimensions.

3. Use the drive prefix dr§, plus the fictitious "u.handles" filename:
&,60,2,0,u%(0,0),dr$+"u.handles",dv%
4. dv% is the device number to load the struct from:

&,60,2,0,u%(0,0),dr$+"u.handles",dv%

5.8. &,60,3 Save a Struct to Disk

This saves a struct to a specified disk file.

Syntax
&,60,3,0, struct%(field, record), filename$, device

Setup
TODO use include:: from &, 60,2 setup

Parameters

&,60,3,0, struct%(field, record), bytes, filename$, device

The parameters struct%(field, record), bytes, filename$, and device are the same as in previous
commands.

The starting record and field numbers to save are specified by the numbers in the array notation.

Example 9. Save Struct to Disk

&,60,3,0,u%(0,0),38*3,dr$+"u.handles",dv%

Calculating Struct Size to Save
The number of bytes should be calculated using the formula:

bytes per record x number of records

64

(There are 38 bytes per record x 3 records in the example.)

0 Don’t forget: records start at 0!

The starting record and field is specified with (as above) u%(0,0).

1. Save a struct:
&,60,3,0,u%(0,0),3*38,dr$+"u.handles",dv%

2. The starting element is specified with struct%(field, record):
&,60,3,0,u%(0,0),3*38,dr$+"u.handles",dv%

3. bytes: the number of bytes the struct occupies is the number of records multiplied by the bytes
per record. In our example, 3 records x 38 bytes:

&,60,3,0,u%(0,0),3*38,dr$+"u.handles",dv%
4. drive prefix dr$ + filename (the theoretical u.handles):
&,60,3,0,u%(0,0),3*38,dr$+"u.handles",dv%

5. device dv%, set by gosub 3 before the struct save call

5.9. &,60,4 Put Date

Put an 11-digit date string into a struct (converted from 6 bytes as stored in Binary Coded Decimal).

Syntax
&,60,4,0, struct%(field, record), string$

struct%(field, record): struct name, record and field to store date in

Parameters

string$: the 11-digit date string (either a literal string or string variable?) FIXME

Returns

7illegal quantity error if the date string is not 11 digits

Example 10. Put Date

an$="10412208234":&,60,4,0,u%(3,0),an$

TODO: Explain example.

65

Details: Binary Coded Decimal

Structs store an 11-digit date in 3 elements (6 bytes) using Binary Coded Decimal (BCD)
format. Two decimal digits are stored per byte, using the high and low nybbles (i.e., 4-bit
halves of an 8-bit number).

an$="10412208234":&,60,4,0,u%(0,1),an$

Element u%(0,1) u%(0,2) u%(0,3) unused
Binary %0001 %0000 %0100 %0001 %0010 %0010 %0000 %1000 %0010 %0011 %0100 %xxxx
Decimal 1 0 4 1 2 2 0 8 2 3 4 X

5.10. &,60,5 Get Date

Convert a 6-digit Binary Coded Decimal (BCD) date string (as shown above) to the 11-digit format as
shown above.

Parameters

&,60,5,0, struct%(field, record), string$

Parameter Purpose
&,60,5,0,... Get date call. @ seems to be an ignored but necessary parameter.
struct%(field, record),... struct name, field, record...

string$...string variable to hold the converted 11-digit date and time

Example 11. Get Date

&,60,5,0,u%(0,1),an$:&,15:&an$

&,60,5,0,: Get a date string...
u%(0,1),: ...from the struct u%(), field 1, record 0...
an$: ...into an$.

&,15: Convert an$ into a long date string.

G W M P

&an$: Display the long date string.

Result
TODO: finish the output

66

5.11. &,60,6 Scan Struct

Scan through a field in a struct, testing whether various conditions are true on variables. If the
condition is true, perform an operation on another field in the struct.

Syntax

&,60,6, num, command, a%(a,b), b%(a,b), size, bits, test

Example: i.GF

3166 a%=0:if s%(0,0) then:&,60,6,5%(0,0),0,5%(0,1),s%(1,1),80,1,2"ac%

Statement

if s%(0,0)
then:::

&,60,6,...
s%(0,0),...
0,..
s%(0,1),...

s%(1,1),...

80,...
1,..

2MNac%

Variable

n/a

n/a
num
command

s%(field,
record)

s%(field,
record)

size
bits

test

Example 12. i MM.load

Purpose

There is an implied if s%(0,0)<>0 here, meaning “if the record count
is non-zero, then...”

scansum
for the record count
0: 2-byte and between bits in s%(0,1) and s%(1,1)? FIXME

starting flags element

starting object element

each record is 80 bytes wide
set bit 1 on ... if command returns zero? FIXME

access level

4106 &,60,6,x1%(0,0),0,x1%(0,1),x1%(1,1),36,4096,2"ac%
4108 &,60,6,x1%(0,0),5,x1%(0,1),x1%(0,1),36,8192, f
4110 &,60,6,x1%(0,0),7,x1%(0,1),x1%(0,1),36,16384,1d

num: # of fields in the struct to scan

bits: the bits to set if test is true

flag%(field, record): the struct name, record and field on which to set bits if test is true.

record may be a dummy parameter, more tests needed.

scan%(field, record): struct name, record and field to scan

67

size: record size in bytes
command: command number as listed in this table:

Table 16. Scan Struct Commands
Num Command Add If Result

2 byte and not equal to 0

1 2 byteand equalto@

2 2 byte cmp less than (<)

3 2 byte cmp greater than or equal to (>=)

4 date cmp date is less than (<)

5 date cmp date is greater than or equal to (>=)
Num

Command number

Command

How to compare the two objects:

* and does a logical and with the bits FIXME

* Cmp compares values

Add If Result
Add this record (field?) to the FIXME only if object meets the command’s criteria

test: the object to test for (apparently can be either a variable or a number, maybe the byte
number?)

Example 13. i.UD from Image 2.0

o This is still being researched.

The following code scans the U/D directory for entries which have an upload date older than
1d$, setting bits $4f on ud%(3,1) (if the entry matches?):

.UD:

3950 &,60,6,rn,$4f,ud%(0,1),ud%(3,1),60,4,1d$:b%=a%

rn: highest record number to scan in the directory struct
$4f: (%0100 1111 in binary) FIXME still researching the purpose of this
ud%(0,1): FIXME

ud%(3,1): Upload date

68

60: record is 60 bytes wide
4: date comparison, < (less than)
1d$: the comparison object (last call date). Can apparently be a string name, or number of an array?

Returns

a%: count of fields the comparison returns as matching test.

b%(a,b): the array containing the comparisons matching test.

5.12. &,60,7 Sort Struct

Sort a string array (only two-dimensional?). Does not work with numeric arrays.

Syntax
&,60,7,0, a$(a, b), start

Parameters

a$(a,b): String array to sort
start: Element to start sorting at?

Example 14. i/lo/tt maint

4016 for i=1 to 8:8&".":&,60,7,0,a%$(p+1,i),n-p:next:p=n-10

5.13. &,60,8 Scan Numbers

Scan through a specified field in a struct for non-zero values. a% returns how many non-zero values
there are. The list of non-zero values are returned in the specified array.

Syntax

&, 60,8, number, size, access, struct%(field, record), result%(1), start

Parameters

number: number of records to scan
size: size of the record, in bytes
access: access level to filter results by (in bits?)

struct%(field, record): the struct, record and field to scan

69

result%(1): the single-dimension array to put the results in. 1 seems to be a dummy parameter:
ignored, but necessary to be interpreted as a valid array reference.

start: record to start scanning at

Example 15. i/MM.load

4112 &,60,8,x1%(0,0),36,8192+16384,x1%(0,1),x2%(1),1:x2%(0)=3a%

1. &,60,8: Scan Numbers sub-command

rn: Scan through rn records

60: the struct is 60 bytes per record

a: filter by access level a

ud%(0,1): look in the ud%(field=0, record=1) (field O=“don’t care?”)

f%(x): put non-zero results in the f%() array

N e voe W N

. 1: Start at record 1.

o More research needed. 8192+16384 exceeds the expected access levels of 0-9
(values 1-1023).

Example 2: i.UD

3310 &,60,8,rn,60,a,ud%(0,1),f%(1),1:1%(0)=a%

FIXME: order of params changed — this is Jack’s struct UD

. &,60,8: Scan Numbers sub-command
. rn: Scan through rn records

. 60: the struct is 60 bytes per record

. ud%(0,1): look in the ud%(field=0, record=1) (field 0="don’t care?")

1
2
3
4. a:filter by access level a
5
6. f%(x): put non-zero results in the f%() array
7

. 1: Start at record 1.

Returns

a%: number of results returned, 0=none.

a%(a): one-dimensional array of results, from a%(1-a)

70

5.14. &,60,9 Scan Sum

Syntax

&,60,9, number, size, struct%(field, record)
number: number of records to scan
size: size of record, in bytes

struct%(field, record): (field=“don’t care”? FIXME), record to scan
o This function call documentation is incomplete.

Example

None yet.

Returns

a%: FIXME: total of values in struct?

5.15. &,60,10 Copy Record

Copy one record from one struct to a record in another struct.

Syntax
&,60,10, size, al(a, b), a2(a, b)

Parameters

size: size of record

al%(a,b): source struct a1%(), record b and field a
a2%(a,b): destination struct a2%(), record b and field a
Example 16. i/IM.logon

4694 if x<>fb%(.,.) then for a=x to fb%(.,.)-1:&,60,10,60,fb%(.,a+1),fb%(.,a):next
@

@ if x<>fb%(0,0): if x does not equal the number of records in the struct [fb%(0,0)], then copy
record a+1 to record a in a loop.

5.16. &,60,11 Scan for String

Scan struct for a string present in a specified field and record. Put results in another specified
struct, field and record?

Syntax
&,60,11, num, size, op, str, al%(a,b), a2%(b), start

Parameters

num: number of records to scan
size: size of record
op: operation:

* 0 specifies a regular compare (a string literal)
* 1 specifies a pattern to match. Here you can use two wildcard characters (like Commodore DOS):
o f2 (in quote mode: I) is equal to ?, which specifies any character in its place

o f7 (in quote mode: H) is equal to *, which specifies any characters from this point to the end
of the string

str: FIXME: string variable/string literal to scan for?

al1%(a,b): source struct al%(), record b, field a, to scan

a2%(b): target 1-dimension array a2%(), dummy element b, to put results into
start: record to start scanning from

Returns

No info yet.

Example

None yet.

5.17. &,60,12 Game Scan

Unknown purpose.

Syntax
&,60,12, count, size, a$, a%(a,b), b$

Parameters

count: how many records to scan?

size: size of the record to scan

72

a$: a string to search for?
a%(a,b): a%(): struct name, a: field and b: record to scan
bg: ?

Example

None yet.

5.18. &,60,13 Text Read

Not sure yet. Read a file into a struct?

Syntax

&,60,13, number, reclen, scan(), bits, text(), strlen

Parameters

number,: count of lines to read?
reclen,: record length?

scan(),: ?

bits,: ?

text(),: ?

strlen: ?

Example

None yet.

73

Chapter 6. Variables

Within Image BBS, there are certain variables which can be considered “reserved.” This does not
mean that you cannot use them, per se, but that they can only be used for specific purposes:

» Some variables may be used any time, but have a specific purpose.

» Some variables can be used with certain subsystems, but not with others.

» Some variables may be used anywhere, but change continually.
This is explained in detail in the following paragraphs.

An example of a variable used for a specific purpose is na$. This variable is used to print the handle
of the user online. Storing something for a module in this variable would cause an undesirable
effect (modifying the user’s handle). Basically, these types of variables are used to control system
statistics and are best left alone, only to be used to output information.

Some variables are used as interfaces between the BASIC and ML, an example being p1. Setting p1 to
0 will cause all user input to be in the form of upper- and lowercase characters. When you set pl in
BASIC, it causes the ML input routines to accept both uppercase and lowercase characters.

The main variables that can be used sometimes are arrays. Depending on which subsystem you are
in, the arrays may or may not be in use. If they are not in use, it is safe to use them. The only
exceptions to this is st(), dv%() and tt$().

* st() holds the Board Activity Register stats; changing the values of this array should be reserved
for updating the BAR stats.

* dv%() is the system device designator. Altering this will change the device accessed by the
system.

» tt$() cannot be used in a module that calls the editor, unless you want to edit existing text in
that array. All text stored in the editor is put into tt$().

Some variables are intended to continually change. These include variables that will print text to
the screen and modem, as well as variables that form links between the BASIC and ML portions of
the program. Examples are a$ and an$:

* When used in conjunction with &, the value of a$ will be printed to the screen and modem.

 All responses entered at a prompt will be stored in an§.

These variables have a set purpose, but are intended to change.

6.1. Variable

This is the variable’s name.

74

6.2. Type
BBS: this is a BBS statistic or BBS-maintained variable, it could be saved to e.data.

User: this is a user statistic, saved to u.config.

6.3. Use?

v indicates you can assign a value to it within your own modules.

® indicates the variable is maintained by either the BBS ML or BASIC modules. User data
corruption or other unwanted side-effects may occur if this variable is reassigned.

? means the variable may be used in some circumstances, but not in others.

6.4. Purpose

An explanation of what the variable does.

6.5. Integer

Variabl Typ Use Purpose
e e ?

o

d

ac% BBS V' User access level, 0-9.
Read: Get user’s access level.

Write: Set user’s access level.

af% Access flag?

<

ao% BBS Old access level (“Access 01d”). If ac%<>a0%, the user’s access level has changed

during the call.

cd% User V¥ Last call carrier drop flag.

co% User V¥ Computer type: co$(co%) is the computer name.

ct% User Vv Calls today.

d1% BBS V' Currently active device number.

d2% BBS ® currently active drive/LU number. FIXME: duplicate?
d3% BBS ® Currently active drive/LU number. FIXME: duplicate?
da% User ¥ Downloads allowed per day.

db% User v Downloaded blocks.

df% BBS V' Default color for text.

kps BBS ® ASCII value of keypress?

75

Variabl

Typ Use Purpose

e

% User

BBS
BBS
BBS
BBS
BBS

% User

?

® ® ® ® ® ® <

Line length (width of the user’s screen in columns)
Minute of the day: 1-1440

Prime Time: Minutes allowed during prime time.
Prime Time: Starting hour.

Prime Time: Ending hour.

Prime Time: Active flag

Total calls to the system by the user online

6.6. Floating Point

Variab
le

am
bd
bf
ca
cr
el
em
is
11
12
13
p

nt

pf
pm
uc
uh

ul

76

Typ Writ Purpose

e
BBS
BBS
BBS
BBS

User
BBS

User
BBS
BBS
BBS
BBS
BBS

BBS

BBS

User

BBS
BBS

e

®
v

C® ® ® ® & K

AutoMaint flag.

BBS boot drive, used only during initialization.
Temporary blocks free count.

Total calls to the BBS.

Amount of credits the user has.

Line number an error has occurred on.
Expert mode flag: 0=disabled, 1=enabled
Image sub.* module stack depth counter.
BBS reservation:

BBS reservation:

BBS reservation:

Read: &,5 (get ML version data) 1p returns the ML major/minor version
number, e.g., 1.3.

Use: Disable or enable word-wrap for & text output. 1p=0: disable word-wrap,
1p=1: enable word-wrap

Network transfer flag: 0=no transfer occurring, 1=in NetMaint (NMauto)
mode.

General Files directory stack depth counter.

Prompt Mode flag: 0=disabled, 1=enabled

Variab Typ Writ Purpose
le e e

ur BBS
zz BBS ® Pseudo-local mode flag: 0=disabled, 1=enabled

6.7. Strings

b$-z$ are work variables used throughout the BBS by different subsections. They are available for
use and may be read and written freely.

Some specific information about certain variables is outlined below.

Variable Type Use Purpose
?

a$ BBS V¥ Output text using af="text":8.

General-purpose work variable.

ag BBS ® Access group information, including 4 control characters and
access group name.

(Also MCI variable fvm.)

ak$§ BBS V¥ A horizontal line 2 characters less than the user’s screen width.

(Also MCI variable £vj)
am$

an$ BBS Vv Character input from £gx, strings input from £ix or &,1.
&,15,x (convert an$): perform various conversions on an$.

(Also MCI variable £v7.)
bd$ BBS V' Boot drive partition/LU number. Used once during im initialization.

bn$ BBS ® BBS name.

(Also MCI variable £v5.)

bs$ - used once,

line 3100
c1$ BBS Vv Chatmode entry message.
c2$ BBS V' Chatmode exit message.
¢33 BBS ® Returning To The Editor message (hard-coded, imline .
cc$ BBS ® 2-character system identifier, sometimes shown with user ID.

(Also MCI variable fvn.)

77

78

Variable Type Use Purpose

ch$

cm$

co$

d1$

d2$

d3$

d4$

d5$

d6$
dd$
dr$
ef$
ep$
f1$--f8$

ff$
f1$
hx$
im$
in$
i1$
jn$

11$

BBS

BBS

BBS

BBS

BBS

BBS

BBS

BBS
BBS
BBS
BBS
BBS
BBS

User
User

BBS

BBS

User

?

® ® ® ® ® ®

®

Copy of co$?

Current Message, displayed in the Area sysop console screen mask.

(Sometimes used for debugging information in e.errlog.)

User’s computer type, displayed in 16-character programmable
window using &,9,36. Equivalent to co$(co0%).

Current time and date information in 11-digit format.

(Also MCI variable £v0.)

Time and date of last logoff, or Library name at entry.

(Also MCI variable £v8.)

Handle of last user on the system.

(Also MCI variable £v9.)

Name of current ML protocol in memory.

(Also MCI variable £v1.)

True last call date of user online in 11 digit format.

(Also MCI variable fvk.)

Logoff time of last user.

System identifier + user ID number
Currently active drive/LU number + :
ECS command flags.

ECS command password.

Programmable function key definitions. Strings must end in null
byte (n1$).

Real first name of user online.
20-character string which determines the user’s status flags.

16 hexadecimal digits: "0123456789abcdef".

Access level + handle of the sysop.

dimensioned but unused? Sub-board “joined read” string from pre-
TurboREL 1.2 SB subsystem.

Variable Type Use Purpose

12$

13$
1d$

118
Ims$
1t$
ml$
mp$
mt$

na$

nl$
nm$

p$

p1$
p2$
ph$

po$
pp$
pré
pu$
pw$
qt$
r$

rn$

sb$
sy$
tig

User

User

BBS
BBS
BBS
BBS
BBS

BBS
BBS

BBS,
ML

User

BBS
BBS
BBS

User
BBS
BBS

User

BBS
BBS

?

® ® ® ® ® ®

® ®

® ® ® ®

®

Last call date of user online in 11-digit format. Used to determine
whether a message is new or not.

Real last name of user online.

Logon time of user online in 11-digit format.

Filename of current ML module in memory.

More prompt text: --More (Y/n)? (hard-coded in im, line FIXME)
modem setup?

Handle of current caller.

(Also MCI variable £v2)
Null character [chr$(0)]
Last network sort time/date in 11-digit format.

Current prompt text.

E-mail address of current user online.

(Also MCI variable £v4)
Text for system main level prompt.
System password (change with PC command) FIXME: still used?

Name of current program (module) in memory.

Password of current online user
Quotation mark [chr$(34)].
Return character [chr$(13)]

Real name of user online (ff$+" "+11%)

(Also MCI variable £v3)

Current subsystem active.

C= Time-of-day clock

79

Variable Type Use Purpose

tk$
tt$
tz$
u$
uf$
uu$
w$
x$
z1$
z2$
z3$

6.8. String Arrays

BBS

BBS

?

Variab Typ Use Purpose

le e ?
co$(9) BBS V
hs$(10) BBs ®
is$(10) BBs ®
pf$(10) BBS

Time zone

Reserved for command stacking.
User flags.

Command stacking.

Word-wrap input.

System drive/LU designators FIXME?
only during config

only during config

only during config

Text of computer types.

User command history stack.

sub.* module call stack.

General File directory names stack.

tt$(254 BBS
)

Y

GF section remembers which menu level you were at after quitting a module.

Text entered into text editor.

This array can be used in modules not using the text editor.

6.9. Floating Point Arrays

Variable Type Use? Purpose

bf(6) BBS

® Blocks free on system disks.

6.10. Image 1.2 Arrays

Image 1.2 Arrays

bb$(31)

dt$(31)

80

ed$(61)
nn$(61)
a%(61)
c%(61)
d%(61)
e%(31)
%(61)
ac%(31)

s0%(31)

81

Chapter 7. POKEs and Memory Locations

pokes control various flags maintained by the Image BBS machine language (ML).

Deci Hex ML BASIC Purpose

mal Label Variable
830 $33e Time limit
951 $3b7 modclm 11% Terminal width in columns.
n
970 $3ca usrlin p/q Number of lines output. If the More Prompt is enabled, compare
usrlinto usrlinm to know when to display the prompt. Line
output count can be reset with poke 970, 0.
971 $3cb usrlin mp% Terminal height in rows.
m
1010 $3f2 timese n/q Time set flag. 0=Clock has been set, stop flashing bottom status
t line.
17138 $42f n/q Password mask character.
2
53252 $d0@ llen n/q Control input line length.
4
7 pokes could go away in the future, in favor of an interface table. This replaces
- using a memory location with a number in the interface table.

82

Instead of using poke 53252,22, the call would be similar to &,21,0,22.

Refer to the &,20: Read from Interface Table or &,21: Write to Interface Table commands for
more information.

Chapter 8. Machine Language Entry Points

Here is a listing of ML modules and their entry points.

o This section is currently undergoing research.

8.1. Protocols

&,16,4,x: getflag

sub.protos: This returns the value of defflag from the protocol. Its purpose is currently unknown.

&,16,5,x: getflag

This sets the value of defflag from the protocol. Its purpose is currently unknown.
8.1.1. ++ index
This module handles the u.config (user log) and u.weedinfo (user weed info) files.

Function Label Parameter(s) Returns

&,16,0 find an$=user name ?
&,16,1 loadindex a$=filename ?
&,16,2 saveindex a$=filename ?
,16,3 makeindex ag§=filename, b%=? ?
&,16,4 instindex 3%=id ?
&,16,5 deltindex z%=id ?
&,16,6 nextindex ? ?
&,16,7 setcrskip 2 ?
&,16,8 findindex a%=id a%=0: not found
8.1.2. ++ punter

Functio Purpose Returns

n
&,16,0 multi-download
&16,1 multi-upload

&,16,2 multi-download +
header

,16,3 multi-upload + header

83

Functio Purpose Returns
n

Q
o

&16,4 setflag
&,16,5 getﬂag

Q
o

(are these flags whether the protocol supports multi-file
transfers?)

8.1.3. ++ reader

This module can display PRG files.

Function Purpose Returns

&,16,0,11% Detokenize BASIC file, use column width 11%

8.1.4. Graphic Menu

The ML module ++ menu2 handles adding menu items, hotkeys, displaying the menu and passing the
menu item selected back to BASIC.

&,16,0: Add menu string

Parameters:
&,16,0,7,menu%(element,byte), "hotkey(s)", "prefix_text?", "menu_item_text"
?:42: draw two-column menu

menu%(element,byte): struct to put menu text in

hotkey(s): One (B) or two (/B) keys to type to select this menu item
prefix_text:

menu_item_text: Text the user sees for this menu item.

Example:

i.GF:

3518 if pf>1 then:&,16,0,42,9%(0,n),"/B","0p ","Return to Previous Menu":n=n+1

i.IM

&,16,.,34,m%(.,1),"A","","Macros Editor"

Returns:

84

a%: which item was selected

&,16,1: Add string
Parameters:

Unknown.

&,16,2: Use menu

Parameters:
&,16,2,7,menu%(element,byte),item_count?,?,?,menu_height?,?,7,?

FIXME

Examples:

xxxx &,16,2,42,q%(0,0),n,36,1,n,6,6,0:a$=chr$(q%(3,a%) and 255)

xxxx &,16,2,34,m%(.,1),n,17,2,n/2+.5,2,6,.

Returns:

a%: item number selected

&,16,3:?

85

Chapter 9. Lightbar Reference

9.1. Lightbar Numbering

Table 17. Lightbar, page 1

Title
Decimal

Hex

Table 18. Lightbar, page 2

Title
Decimal

Hex

Table 19. Lightbar, page 3

Title
Decimal

Hex

Table 20. Lightbar, page 4

Title
Decimal

Hex

Table 21. Lightbar, page 5

Title
Decimal

Hex

Table 22. Lightbar, page 6

Title
Decimal

Hex

Table 23. Lightbar, page 7

Title
Decimal

Hex

86

Sys
00 01
$00 01

Asc

1617
$10 11

Chk

32 33
$20 21

Em3

48 49
$30 31

$40

64 65
$40 41

$50

80 81
$50 51

$60

96 97
$60 61

Acs

02 03
02 03

Ans

18 19
1213

Mor

34 35
22 23

Sc2

5051
3233

$42

66 67
42 43

$52

82 83
5253

$62

98 99
62 63

Loc

04 05
04 05

Exp

2021
1415

Frd

36 37
24 25

Scp
52 53
34 35

44

68 69
44 45

$54

84 85
54 55

$64

100 101
64 65

Tsr

06 07
06 07

Unv

22 23
16 17

Sub

38 39
26 27

Alt

54 55
36 37

$46

70 71
46 47

$56

86 87
56 57

$66

102 103
66 67

Cht

08 09
08 09

Tre

24 25
18 19

Res

40 41
28 29

Trb

56 57
38 39

$48

7273
48 49

$58

88 89
58 59

$68

104 105
68 69

New

10 11
0a Ob

Bel

26 27
la1b

Mnt

42 43
2a2b

DCD

58 59
3a 3b

$4a

74 75
4a 4b

$5a

9091
5a 5b

$6a

106 107
6a 6b

Prt

1213
Oco0d

Net

2829
1c1d

Mnu

44 45
2c2d

DSR

60 61
3c3d

$4c

76 77
4c 4d

$5¢

9293
5¢5d

$6¢

108 109
6¢c 6d

u/D

14 15
Oe Of

Mac

30 31
le 1f

Xpr
46 47
2e 2f

$3e

62 63
3e 3f

$4e

78 79
4e 4f

$5e

94 95
5e 5f

$6e

110 111
6e 6f

Table 24. Lightbar, page 8
Title At1 At2 At3 At4 At5 Atb At7 At8

Decimal 112113 114115 116117 118119 120121 122123 124125 126127
Hex $70 71 7273 7475 76 77 7879 7a7b 7c7d 7e 7t

9.2. Lightbar Interface: &,52

9.2.1. BASIC &,52 Commands
&,52,position, mode

position ranges from 0-127 decimal ($00-$7f hexadecimal--&,52,$30, 0, for example, is allowed).

mode is 0-4 as used by BASIC.

0 clear checkmark at position

1 set checkmark at position

2 toggle checkmark at position

3 read checkmark at position, return status in a%: 0=off, 1=on

4 move “lit” portion of lightbar to position 0-55 [FIXME: or 1-56?]

9.2.2. Assembly Example

FIXME

Mode 5 is reserved for use by ML routines, and is the equivalent of &,52,x,3 in BASIC. 1dx with the
flag to check, jsr chkflags, and the result (0 or 1) is returned in .a.

checkflag.asm

ldx #$04 ; lightbar flag number

jsr chkflag ; returns flag status (@=off, 1=on) in .a
bne flag_on

beq flag_off

87

Chapter 10. Memory Map

Author: Ray Kelm

During boot (contents of the ML file):

Memory range Purpose

$6C00 - $6FFF
$7000 - $7FFF
$3000 - $83FF
$8400 - $8DFF
$8E00 - $93FF
$9400 - $97FF
$9800 - $9BFF
$9C00 - $9FFF

wedge code
editor code
garbage collector
ECS code

struct code

swap1 code

swap2 code

swap3 code

Everything after this point is the same as the next section.

While running:

Memory range Purpose

$0800-$0AFF
$0B00-$0B7F
$0B80-$0BFF
$0C00-$0FFF
$1000-$12FF
$1300-$130F
$1310-$13CF
$1300-$13DF
$13E0-$13EC
$13ED-$13EF
$13F0-$144F
$1450-$147F
$1480-$14FF
$1500-$15FF
$1600-$161F
$1620-$163F
$1640-$165F

88

RS232 driver

RS232 input buffer
RS232 output buffer
BASIC wedge

temporary screen data
chktbl

bartbl

array pointers

days per month

unused

sounds

net alarms

ASCII to CBM translation table

CBM to ASCII translation table
tblctal

tblcta?
tblcta3

Memory range Purpose

$1660-316E0
$16E0-$16FF
$1700-$1718
$1719-$1731
$1732-$174A
$174B-$1763
$1764-$177F
$1780-$17FF
$1800-$27FF
$2800-$9FFF
$A000-$BFFF
$C000-$CAFF
$CB0O-$CCFF
$CD0OO-$CDFF
$CE00-$CEFF
$CFOO-$CFFF
$D000-$DFFF
$D000-$DFFF
$D000-$DFFF
$E000-$FFFF
$EQ00-SE3FF
$E400-$EDFF
$EE00-$F3FF
$F400-$F7FF
$F800-$FBFF
$FCOO-$FFFF

alarm table

date buffer
lobytes

hibytes

lobytec

hibytec

unused

pmodetbl

editor execution location (swapped in when needed)
BASIC program area

BASIC ROM / Image ML routines in RAM
“Protocol” block for loadable ML code
swapper area

interface page

buffer page

?2?7?

I/O memory

Character ROM

editor swap location (code is here when waiting to run)
KERNAL ROM / Image ML “swap” code in ROM
garbage collector swap module

ECS swap module

Struct swap module

Swap1 swap module

Swap2 swap module

Swap3 swap module

89

Chapter 11. File Formats

11.1. Introduction

Option Lists

To show when options are mutually exclusive (there can be only one option chosen from a
group), the following notation is used:

[option 1 | option 2 | option 3]

means that of the three options presented, option 1 or option 2 or option 3 is saved in that
position in the file.

11.1.1. e.data
e.data is a RELative file containing BBS configuration information, as well as BBS statistics.
The record size is 31 bytes.

Table 25. e.data File Format

Reco Variab Purpose Possible Values
rd le
1 ca Total calls to the system —
2-3 — unused —
4 — one-time caller weed
cutoff, in months
511 — unused —
12 ur Highest user account # +1
13- — unused
16

17 d3$ Last caller handle

18 pp$ Sub-board password for
non-RELedit systems

19 — Date/time of last user
logoff
20 P1%,p2% Prime Time info Time allowed per call, Prime Time start, Prime Time end
,p3%

90

Reco Variab Purpose

rd
21

22-
30

31

32

33-
34

35
36
37

38
39

40
41
42
43

44
45

46
47
48
49
50
51

le
12,12%

am$, d6$

tz$

bn$
c1$
c2$

cc$

System Reservation
Password

unused

Next available user
account #

RS232 Interface Type

unused

Date/time of last log reset
unused

Clock set device

Lt.Kernal device number

Autoweed cutoff, in
months

Default text color
Printer secondary address
Printer line feeds

Password mask
character(s)

Log start date

BBS time zone
abbreviation/hour offset

unused

BBS name

Entering chat message
Exiting chat message
Netsub ID

BBS identifier

Possible Values

[0=None | 1=One Call | 2=All Calls], [*=No Password | 1-
14 Character Password]

0,”: No reservation, no password
1,0NCE: Reserved for one call with password ONCE

2,ALL: Reserved for all calls with password ALL

[0=User Port | 1=SwiftLink]

[1=Manual | 3=Lt.Kernal Port 1 | 4=Lt.Kernal Port 2 | 8-
29=CMD Device #]

[0=no0 | 10=yes]

e.g., EST0O700

increments by 1 when net post/response made

e.g., N

91

Reco
rd

52
53
54
55
56
57
58

92

Variab Purpose

le

nc

System device, drive
E-Mail device, drive
Etcetera device, drive
Directory device, drive
Module device, drive
User device, drive

Credits for new user

Possible Values

For records 52-57, devices and drives are in separate
fields of each record (stored as two lines separated by a
carriage return).

	Image BBS 3.0: Programmer’s Reference Guide
	Table of Contents
	Chapter 1. Preface
	Chapter 2. Introduction
	2.1. How to Use This Guide
	2.2. How to Get Help

	Chapter 3. Programming Image BBS 3.0
	3.1. New Features
	3.1.1. BASIC Keyword Extensions
	load Relocate Flag
	new Line Range
	Hexadecimal Values
	Binary Values

	3.2. Programming Etiquette
	3.2.1. Programming Theory
	Static vs. Dynamic String Variables

	3.2.2. Module Structure

	3.3. Conversion and Backward Compatibility
	3.4. im Subroutines
	3.5. sub.* Module Jump Table
	3.6. & Routines
	3.6.1. &: Image BBS Output
	3.6.2. Encoded Function Keys
	3.6.3. & By Itself

	3.7. BASIC Editing Modes
	3.7.1. Quote Mode
	3.7.2. Insert Mode

	3.8. Outputting Strings
	3.8.1. String Literals
	3.8.2. String Variables
	3.8.3. Concatenation
	3.8.4. Word-Wrap
	3.8.5. Set Margins
	3.8.6. MCI Commands

	3.9. Outputting Numbers
	3.9.1. Integers
	3.9.2. Floating Point

	Chapter 4. & Parameters Explained
	4.1. &,1 Input Line
	4.2. &,2 Disk File Input
	4.3. &,3 Read File from Disk
	4.4. &,4 Get Byte from Modem
	4.5. &,5 Get Version
	4.6. &,6 Password Input
	4.7. &,7 Load File
	4.8. &,8 Disk Directory
	4.9. &,9 Bottom Variable
	4.10. &,10 Terminal Mode
	4.11. &,11 Clear Array
	4.12. &,12 New User
	4.13. &,13 arbit
	4.14. &,14 Dump Array
	4.15. &,15 Convert an$
	4.15.1. &,15 Convert Date
	Image BBS Date Format

	4.15.2. &,15,1 Title Case
	4.15.3. &,15,2 Decode Function Keys
	4.15.4. &,15,3 and &,15,4
	4.15.5. &,15,5 newdate
	4.15.6. &,15,6 Scan String

	4.16. &,16 sys49152
	4.17. &,17 sys49155
	4.18. &,18 Set Screen Mode
	4.19. &,19 Get Version
	4.20. &,20 Read from Interface Table
	4.21. &,21 Write to Interface Table
	4.22. &,22 Wait x Tenths of a Second
	4.23. &,23 Get Character from Modem
	4.24. &,24 xchrout1
	4.25. &,25 Sound
	4.26. &,26 ecschk
	4.27. &,27 Save Variable Pointers
	4.27.1. Creating New Arrays

	4.28. &,28 Restore Variable Pointers
	4.29. &,29 usevar
	4.30. &,30 putvar
	4.31. &,31 zero
	4.32. &,32 minusone
	4.33. &,33 getarr
	4.34. &,34 putarr
	4.35. &,35 getln
	4.36. &,36 putln
	4.37. &,37 trapon
	4.38. &,38 trapoff
	4.39. &,39 prtln
	4.40. &,40 forcegc
	4.41. &,41 setbaud
	4.42. &,42 ECS Commands
	4.42.1. &,42 Check for ECS Command
	4.42.2. &,42,1 Goto Line in ECS Command
	4.42.3. &,42,2 Get ECS Definitions From RAM
	4.42.4. &,42,3 Put ECS Definition Into RAM
	4.42.5. &,42,4 Load ECS Definitions from Disk
	4.42.6. &,42,5 Save ECS Definitions to Disk

	4.43. &,43 chatchk
	4.44. &,44 trace
	4.45. &,45 prtvar
	4.46. &,46 prtvar0
	4.47. &,47 carchk
	4.48. &,48 getkbd
	4.49. &,49 getmod
	4.50. &,50 outscn
	4.51. &,51 outmod
	4.52. &,52 Lightbar Interface
	4.53. &,53 Logoff
	4.54. &,54 Text Editor Interface
	4.55. &,55 output
	4.56. &,56 chatmode
	4.57. &,57 relread
	4.58. &,58 setalarm
	4.59. &,59 farerr
	4.60. &,60 Structures
	4.61. &,61 poscrsr
	4.62. &,62 Set Time
	4.63. &,63 inline1
	4.64. &,64 convstr
	4.65. &,65 convert
	4.66. &,66 Calculated goto
	4.67. &,66,1 Calculated gosub
	4.68. &,67 copyrite
	4.69. &,68 struct
	4.70. &,69 Display String on Console
	4.71. &,70 Position Terminal Cursor

	Chapter 5. Structures
	5.1. Static Arrays
	5.2. Some New Terminology
	5.3. Using Structs
	5.4. Numeric Values and Structs
	5.5. &,60,0 Put String
	5.6. &,60,1 Get String
	5.7. &,60,2 Load Struct from Disk
	5.8. &,60,3 Save a Struct to Disk
	5.9. &,60,4 Put Date
	5.10. &,60,5 Get Date
	5.11. &,60,6 Scan Struct
	5.12. &,60,7 Sort Struct
	5.13. &,60,8 Scan Numbers
	5.14. &,60,9 Scan Sum
	5.15. &,60,10 Copy Record
	5.16. &,60,11 Scan for String
	5.17. &,60,12 Game Scan
	5.18. &,60,13 Text Read

	Chapter 6. Variables
	6.1. Variable
	6.2. Type
	6.3. Use?
	6.4. Purpose
	6.5. Integer
	6.6. Floating Point
	6.7. Strings
	6.8. String Arrays
	6.9. Floating Point Arrays
	6.10. Image 1.2 Arrays

	Chapter 7. POKEs and Memory Locations
	Chapter 8. Machine Language Entry Points
	8.1. Protocols
	8.1.1. ++ index
	8.1.2. ++ punter
	8.1.3. ++ reader
	8.1.4. Graphic Menu

	Chapter 9. Lightbar Reference
	9.1. Lightbar Numbering
	9.2. Lightbar Interface: &,52
	9.2.1. BASIC &,52 Commands
	9.2.2. Assembly Example

	Chapter 10. Memory Map
	Chapter 11. File Formats
	11.1. Introduction
	11.1.1. e.data

