
....... FIRS STEPS IN ~
MACHINE COD ON

HOUR C6
Ross Symons

Ross Symons is a 16-year-old student, who lives in
Tyabb, about 15 miles from Melbourne, in Australia.
He is a keen sportsman, and spends most of his leisure
time when not programming his computers (he has
three) on the playing field.

First Steps in Machine
Code on the

Commodore 64

Ross Symons

~ IT
IFO~F-H ADDISON
" n~u ·WESLEY

First Steps in Machine Code on the Commodore 64

A CORGI/ADDISON-WESLEY BOOK 0 552 99128 7

First publication in Great Britain

PRINTING HISTORY

Corgil Addison-Wesley edition published 1984

Copyright © Addison-Wesley 1984
Designed by Brian Shorrock

Conditions of sale
1. This book is sold subject to the condition that it shall not, by
way of trade or otherwise, be lent, re-sold, hired out or otherwise
circulated without the publisher's prior consent in any form of
binding or cover other than that in which it is published and
without a similar condition including this condition being
imposed on the subsequent purchaser.
2. This book is sold subject to the Standard Conditions of Sale of
Net Books and may not be re-sold in the UK below the net price
fixed by the publishers for the book.

This book is set by 11/12 Mallard

Corgi Books are published by Transworld Publishers Ltd.,
Century House, 61-63 Uxbridge Road, Ealing, London W5 5SA

Made and printed in West Germany by Mohndruck, Giitersloh

The programs presented in this book have been included for their
instructional and entertainment value. They have been tested
with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor
does it accept any liabilities with respect to the programs.

Contents

Introduction vii

Chapter One-
Hexadecimal and binary notation 1

Chapter Two-
The assembler/disassembler 6

Chapter Three - Accessing machine code 16
Chapter Four - Loading registers 18
Chapter Five -

Storing the registers in memory 28
Chapter Six-

Increment, decrement and transfer 38
Chapter Seven - Jumping 47
Chapter Eight -

The processor status register 53
Chapter Nine - Compare instructions 55
Chapter Ten - Conditional branching 65
Chapter Eleven-

Storing registers on the stack 73
Chapter Twelve-

Subtraction and addition 77
Chapter Thirteen - Shifting and rotating 85
Chapter Fourteen - Logical instructions 92
Chapter Fifteen - Interrupts 100
Chapter Sixteen - Program creation 105

Appendices: A - Useful memory locations
B - 6510 instruction set

In troduction

Welcome to the world of machine code on the Commo
dore 64. All you need is this book and your trusty com
puter, and you're on your way.

I've written this book to take you from where you are
now - with a knowledge of BASIC, but little or none of
machine code programming - to the point where
you'll have a good knowledge of the fundamentals of
machine code on the Commodore 64. I've gone through
all the instructions - one by one - and included a
host of sample programs to show them in use.

Machine code is not an easy subject to master. You'll
have to concentrate, and work slowly through the book.
But, if you do, I assure you that by the end you'll have a
good knowledge of the fundamental building blocks of
Commodore 64 machine code. Then, it is up to you to put
these blocks together to create dazzling programs of
your own.

To show you how effective these can be, I've included
two complete games which are a mixture of machine
code and BASIC. The first one is called PUB SQUASH,
and the second is a racing car game. Both of these ran
so fast when they were first written, I had to add delay
loops to slow them down enough for you to see them!
That fact alone illustrates one of the great attractions
of working in machine code.

Don't try to hurry through this book. You are acquir
ing a skill which will bring you a lot of satisfaction in
the coming years, so it is worth getting it right from the
beginning. Enter every program as you come to it, and
make sure you understand each program before moving
on to the next one. I assure you the effort will be worth
while.

I'd like to thank Tim Hartnell for the assistance he
gave me while I was writing this book.

Time to get underway,

Ross Symons,
Tyabb, Victoria, Australia.
1984

CHAPTER ONE ~
HEXADECIMAL AND
BINARY NOTATION

In assembly language there are two different forms of
numbers apart from decimal. These number systems
are called 'binary' and 'hexadecimal' notation.

Hexadecimal Notation
Hexadecimal numbers are numbers based on sixteen,
just as decimal numbers are based on ten. Hexa
decimal digits range from a value of 0 to 15, and use
the figures 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.

Here is a list of hexadecimal numbers and their
decimal equivalents:

Hexadecimal Decimal
Equlvaient

1 1

2 2

3 3

4 4

5 5

6

7

8

9

A

B

C

o
E

F

6

7

8

9

10

1 1

12

13

14

15

The table is suitable when you're only dealing in single
digits, like 9. It cannot be used for digits such as AF or
A9E. To find out the decimal equivalent of multiple digit
numbers we must examine how they are constructed.
For this example, we will use the decimal number
6754. The following will show how this number is
constructed:

In the same way as above we can see how a hexa
decimal number is made up. We will use the number
A045 (hexadecimal):

A045 = A*163 +O*162 +4*16 1 +5*160 =
10*4096+0*256+4*16+5*1 = 41029

As shown above, powers of digits in a number
increase as you go to the left.

2

Over 90% of the numbers in this book are hexadecimal,
and therefore it is advisable that you learn to use
hexadecimal numbers. However, if you're lazy, you can
use the program in the next chapter which will convert
numbers from decimal to hex (abbreviation for hexa
decimal) and from hex to decimal.

Binary Notation
You may have come across binary numbers before if
you have created sprites on your computer. Binary
digits are based ontwo, and are either 0 or 1. Here is a
table with binary numbers and their decimal and hex
equivalents:

BintilllrY Decimal
Hexa~

decimal

1 1 1

10 2 2

11 3 3

100 4 4

101 5 5

110 6 6

111 7 7

1000 8 8

1001 9 9

1010 10 A

3

1011

1100

1101

1110

1 111

11

12

13

14

15

B

C

D

E

F

The above table, like the earlier one, can be only used
for simple numbers. To convert more complex numbers
we must examine how binary numbers are formed. For
the following example we will use binary 10110010:

10110010 = 1 *27 +0*26 +1 *25 +1 *24+0*
23 +0*22 +1 *21 +2*00

= 1*128+0*64+1*32+1*16+0*8+0*
4+1 *2+0*1

= 128+0+32+16+0+0+2+0
= 178

The above method is time-consuming and so is not the
best way to convert binary to decimal. However, the
example does show you how binary numbers are
formed. If you have designed your own sprites, you
will be familiar with this method:

1 28 64 32 1 6 8 4 2 1

1 0 1 1 0 0 1 0 = 1 28 + 32 + 1 6 + 2
= 178

4

To work in this way, you first write down the table (128
64 etc.) and write your binary number directly under it,
as in the above example. After this, write down every
number in the table which has a 1 below it. Then all you
do is add the numbers you have written down. The
result is the decimal equivalent of the binary number.

5

CHAPTER TWO -
ASSEMBLERI
DISASSEMBLER
BASIC is not the true language of the Commodore 64,
although the computer enables you to use BASIC by
interpreting it into assembly language.

To write directly in assembly language we must use an
interpreter. The interpreter will change the assembly
language that you write into numbers that the
computer can understand.

There is an interpreter in this chapter. It's called an
'assembler', because it assembles assembly language
into numbers (machine code). The same program has a
disassembler option which will convert machine code
back to assembly language.

Most of this book was written with this assembler and
before you continue with the following chapters it is
necessary to type the following program into your
machine and save it.

6

1 OPEN5127~127

1127 PRINT"{CLR}ASSEMBLER/DISASSEMBLER":PR
INT"BY ROSS SYMONS~1984"
2127 PRINT"{CUR DN}l.ASSEMBLE CODE"
3127 PRINT"{CUR DN}2.DISASSEMBLE CODE"
4.0 PRINT"{CUR DN}3.CHR$ INTERPRETATION"
5127 PRINT"{CUR DN}4.DATA INTERPRETATION"
6127 PRINT"{CUR DN}5.SAVE MEMORY"
7127 PRINT"{CUR DN}6.LOAD MEMORY"
8127 PRINT"{CUR DN}7.EXECUTE CODE"
9.0 PRINT"{CUR DN}8.HEX-DECIMAL CCONVERSI
ON"
1.0.0 POKE198~127:WAIT198~1:GETA$
11.0 A=ASC(A$)-48:IFA(1270RA>8THENl127!27
12127 PRINT:ON A GOSUB 10127127~4127127127,5127!21127,6127!21!21

,7127127127,76127127,8127127127,9127127127
13127 GOTOl127
1127127127 INPUT"START OF CODE ";P$:IFLEN(P$)(
>4THENl127!27127
11271127 HEX$=LEFT$(P$,2):GOSUB2127127!27:P=DEC*25
6
112715 HEX$=RIGHT$(P$,2):GOSUB2!27127127:P=P+DEC
11272.0 PRINTP$;" ";:INPUT#5127,C$:PRINT:L=LE
N(C$):IFL=!27THEN1!212.0
112722 IFC$="X"THENRETURN
112725 IF L=3THENB1=1:C3$=C$:OP=-1:GOT0123
o
112730 FOR R=lTOLEN(C$)
1.04127 IFMID$(C$,R,1)="$"THENC1$=LEFT$(C$,
R-1):R=LEN(C$)
1.05.0 NEXT
1.060 FOR R=LEN(C$)T01STEP-l
1.07.0 C2$=MID$(C$,R,1):IFC2$("G"ANDC2$=>"
.0"THENC2$=RIGHT$(C$,LEN(C$)-R):R=1
1.08.0 NE)·n

7

1090 C3$=Cl$+C2$:C4$=MID$(C$,LEN(Cl$)+2,
LEN(C$)-LEN(C3$)-1)
1095 IFLEN(C4$)(>2ANDLEN(C4$)(>4THENPRIN
TSPC(18);"{CUR UP}?INCORRECT DIGITS":GOT
01020
1100 HI$=LEFT$(C4$,2):LO$=RIGHT$(C4$,2)
1110 HEX$=HI$:GOSUB2000:HI=DEC
1120 HEX$=LO$:GOSUB2000:LO=DEC
1200 OP=-l
1210 IFLEN(C4$'=2THENB1=2
1220 IFLEN(C4$)=4THENB1=3
1230 RESTORE
1240 FOR R=0 TO 255
1250 READOP$:BY=ASC(LEFT$(OP$,1»-48:IFB
Y<>BITHEN1270
1255 OP$=RIGHT$(OP$,LEN(OP$)-l)
1260 IFOP$=C3$THENOP=R:R=255
1270 NEXT
1280 IFOP=-lTHENPRINTSPC(18);"{CUR UP}?U
NKNOWN CODE":GOT01020
1290 IFOP=160ROP=480ROP=800ROP=1120ROP=1
440ROP=1760ROP=2080ROP=240THEN1330
1300 IFBl=3THENPOKEP,OP:POKEP+l,LO:POKEP
+2,HI
1305 IFB1=2THENPOKEP,OP:POKEP+l,LO
1307 IFBl=lTHENPOKEP,OP
1310 P=P+Bl:DEC=P:GOSUB3000:P$=HEX$
1320 GOT01010
1330 AD=HI*256+LO:DI=0
1340 IF AD)P THEN DI=AD-P:IF DI>127 THEN
PRINTSPC(18);"{CUR UP}?BAD BRANCH":GOTOI
010
1350 IF AD<PTHENDI=(P-AD)*-l:IF DI(-128
THENPRINTSPC(18';"{CUR UP}?BAD BRANCH":G
OT01010

8

136.0 IFDI(.0THENLO=254+DI
1365 IFDI=.0THENLO=254
1367 IFDI=lTHENLO=255
137.0 IFDI}lTHENLO=DI-2
138.0 B1=2:GOT013.05
2.0.0.0 DEC=.0
L.01.0 FOR R=.0T01
2.02.0 S=ASC(MID$(HEX$,2-R,1»-48
2.03.0 IFS}l.0THENS=S-7
2.04.0 IF S(16ANDS}-lTHENDEC=DEC+(16 A R)*S
2.05.0 NE}(T
2.06.0 RETURN
3.0.0.0 D(1)=INT(DEC/4.096)
3.01.0 DEC=DEC-D(1)*4.096
3.02.0 D(2)=INT(DEC/256)
3.03.0 DEC=DEC-D(2)*256
3.04.0 D(3)=INT(DEC/16)
3.05.0 DEC=DEC-D(3)*16
3.06.0 D(4)=DEC:HEX$=""
3.07.0 FOR R= 1 T04
308.0 IF D(R»9THEND(R)=D(R)+7
3.09.0 HEX$=HEX$+CHR$(D(R) +48)
31.0.0 NE)<T
311.0 RETURN
4.0.00 INPUT"START OF CODE ";P$:IFLEN(P$)(
}4THEN4.0.0.0
4.01.0 HEX$=LEFT$(P$,2):GOSUB2.0.0.0:P=DEC*25
6

4.02.0 HEX$=RIGHT$(P$,2):GOSUB2.0.0.0:P=P+DEC
4.03.0 OP=PEEK(P):RESTORE:FOR R=.0TOOP
4.04.0 READOP$
4.050 NEXT:BY=VAL(LEFT$(OP$,l»:OT$=""
4.053 IFOP$="?"THENOP$="????":BY=l
4.055 L=LEN(OP$)-1:0P$=RIGHT$(OP$,L)
4.06.0 IFBY=lTHENOP$=RIGHT$(OP$,3):GOT0411
.0

9

4065 IFOP=160ROP=480ROP=800ROP=1120ROP=1
440ROP=1760ROP=2080ROP=240THEN4180
4070IFRIGHT$(OP$,3)=").Y"THENOT$=").Y":
OP$=LEFT$(OP$,L-3):GOT04120
4080 IFRIGHT$(OP$,2)=".X"THENOT$=".X":OP
$=LEFT$(OP$,L-2)
4090 IFRIGHT$(OP$,2)=".Y"THENOT$=".Y":OP
$=LEFT$(OP$,L-2)
4100IFRIGHT$(OP$,3)=".X)"THENOT$=".X)":
OP$=LEFT$(OP$,L-3):GOT04120
4105 IFRIGHT$(OP$,1)=") "THENOT$=") ":OP$=
LEFT$(OP$,L-1)
4110 IFBY=1THENPRINTP$;" ";OP$
4120IFBY=2THENDEC=PEEK(P+1):GOSUB3000:P
RINTP$;" ";OP$;"$";RIGHT$(HEX$,2);OT$
4130 IFBY=3THENDEC=PEEK(P+2)*256+PEEK(P+
1):GOSUB3000:PRINTP$;" ";OP$;"$";HEX$;OT
$

4140 P=P+BY:DEC=P:GOSUB3000:P$=HEX$
4150 GETA$:IFA$="X"THENRETURN
4160 IF A$()""THENFORR=0T0100:NEXT:GOT04
150
4170 GOT04010
4180 DI=PEEK(P+1):IFDI)127THENDI=(256-DI
)*-1
4190 DEC=P+DI+2:GOSUB3000:BY=2
4200 PRINTP$;" ";OP$;"$";HEX$
4210 GOT04140
5000 INPUT"START OF INTERPRETATION ";P$:
IFLEN(P$) ()4THEN5000
5010 HEX$=LEFT$(P$,2):GOSUB2000:P=DEC*25
6
5020 HEX$=RIGHT$(P$,2):GOSUB2000:P=P+DEC
5030 PRINTP$;" (RVS ON}";:FOR R=0 TO 19
5040 CH=PEEK(P+R)

10

5050 IFCH<320RCH>95THENCH=32
5060 PRINTCHR$(CH);
5070 NEXT
5080 P=P+20:DEC=P:GOSUB3000:P$=HEX$
5090 PRINT
5100 GETA$:IFA$="X"THENRETURN
5110 IF A$=" "THENFORR=0T0100:NEXT:GOT05
100
5120 GOT05010
6000 INPUT"START OF DATA ";P$:IFLEN(P$)(
>4THEN6000
6010 HEX$=LEFT$(P$,2):GOSUB2000:P=DEC*25
6
6020 HEX$=RIGHT$(P$,2):GOSUB2000:P=P+DEC
6030 PRINTP$;" ";:FOR S=0 TO 9
6040 DEC=PEEK(P+S):GOSUB3000
6050 PRINT" ";RIGHT$(HEX$,2);
6060 NEXT
6070 P=P+10:DEC=P:GOSUB3000:P$=HEX$
6080 PRINT
6090 GETA$:IFA$="X"THENRETURN
6100 IF A$=" "THENFORR=0T0100:NEXT:GOT06
090
6110 GOT06010
7000 INPUT"DISK OR TAPE (D/T) ";A$:A$=LE
FT$(A$,1):IFA$="T"THENPOKE251,1
7010 IFA$="D"THENPOKE251,8
7020 IFA$<>"D"ANDA$<>"T"THEN7000
7030 INPUT"FILENAME (1-6 CHARACTERS) ";A
$:IFLEN(A$»60RLEN(A$)=0THEN7030
7040 POKE820,LEN(A$):FORR=0TOLEN(A$)-1
7050 POKE821+R,ASC(MID$(A$,R+l,1»
7060 NEXT:OP$="SAVE ":IFZ=-lTHENOP$="LOA
D "
7070 PRINT"START OF ";OP$;:INPUT#50,P$:P

11

RINT
7080 HEX$=LEFT$(P$,2):GOSUB2000:POKE253,
DEC
7090 HEX$=RIGHT$(P$,2):GOSUB2000:POKE252
,DEC:IFZ=-lTHEN7130
7100 PRINT"END OF ";OP$;:INPUT#50,P$:PRI
NT
7110 HEX$=LEFT$(P$,2):GOSUB2000:POKEI021
,DEC
7120 HEX$=RIGHT$(P$,2):GOSUB2000:POKE102
0,DEC
7130 RESTORE:FORR=0T0255:READA$:NEXT
7140 FORR=0T026:READA:POKE679+R,A:NEXT
7150 IFZ=-ITHENFORR=0T026:READA:POKE679+
R,A:NEXT
7160 Z=0:SYS679:RETURN
7600 Z=-1:GOT07000
8000 INPUT"ADDRESS OF THE CODE ";P$:IFLE
N(P$)<>4THEN8000
8010 HEX$=LEFT$(P$,2):GOSUB2000:P=DEG*25
6
8020 HEX$=RIGHT$(P$,2):GOSUB2000:P=P+DEC
8030 SYS(P)
8040 PRINT:PRINT" AR XR YR SP"
8050 DEC=PEEK(780):GOSUB3000:AR$=RIGHT$(
HEX$,2)
8060 DEC=PEEK(781):GOSUB3000:XR$=RIGHT$(
HEX$,2)
8070 DEC=P~EK(782):GOSUB3000:YR$=RIGHT$(
HEX$,2)
8080 POKE820,186:POKE821,96:SYS820
8090 DEC=PEEK(781):GOSUB3000:SP$=RIGHT$(
HEX$,2)
8100 PRINT" .. ; AR$; " " ; XR$; ; YR$;
.. "; SP$

12

8110 FRINT:PRINT"PRESS ANY KEY":POKE198~
.0:WAIT198~ 1
8120 RETURN
9000 INPUT"HEX TO DECIMAL (H) OR DECIMAL

TO HEX (D)";A$:A$=LEFT$(A$,l)
9010 IFA$<>"H"ANDA$<>"D"THEN9000
9020 IFA$="H"THEN9100
9030 PRINT:PRINT"USE NUMBERS BETWEEN 0 A
ND 65535 ONLY"
9040INPUT#50,A$:IFA$="X"THENRETURN
9050 DEC=VAL(A$):IFDEC}655350RDEC(0THEN9
030
9060 GOSUB3000:PRINTTAB(10);HEX$
9070 GOT09040
9100 PRINT:PRINT"USE ONE TO FOUR DIGIT N
UNBERS"
9110 INPUT#50,HEX$:IFHEX$="X"THENRETURN
9120IFLEN(HEX$)}4THEN9100
9125 IFLEN(HEX$)=10RLEN(HEX$)=3THENHEX$=
"0"+HEX$
9130 P=0:IFLEN(HEX$)=2THENGOSUB2000:GOTO
9150
9140 A$=HEX$:HEX$=LEFT$(A$,2):GOSUB2000:
P=DEC*256:HEX$=RIGHT$(A$,2):GOSUB2000
9150 P=P+DEC:PRINTTAB(10l;P:GOT09110
10000 DATA" IBRK", "20RA (. Xl", "?", "?", "?",
"20RA" , "2ASL" , "?" , " 1 PHP" , "20RA#" , " 1 ASL"
10010 DATA"?","?","30RA","3ASL","?","3BP
L I! , "20RA () . Y" , "?" , "?" , "?" , "20RA. X"
10020 DATA"2ASL.X","?","lCLC","30RA.X","
?" , "?" , "?" , "30RA. X" , "3ASL. X" , "?" , "3J SR"
10030 DATA"2AND(.X)","?","?","2BIT","2AN
D","2ROL","?","lPLP","2AND#","lROL"
10040 DATA"?","3BIT","3AND","3ROL","?","
3Bt1 I " , "2AND () . Y" , "?" , "?" , "?"

13

10050 DATA"2AND.X","2ROL.X","?","ISEC","
3AND.Y","?","?","?","3AND.X","3ROL.X"
10060 DATA"?","lRTI","2EOR(.X)","?","?",
"?" , "2EOR" , "2LSR" , "?" , " 1 PHA" , "2EOR#"
10070 DATA"ILSR","?","3JMP","3EOR","3LSR
" , "?" , "3BVC" , "2EOR () • Y" , "?" , "?" , "?"
10080 DATA"2EOR.X","2LSR.X","?","lCLI","
3EOR.Y","?","?","?","3EOR.X","3LSR.X"
10090 DATA"?","IRTS","2ADC(.X)","?","?",
"?", "2ADC", "2ROR", "?", "IPLA", "2ADC#"
10100 DATA"IROR","?","3JMP()","3ADC","3R
OR" , "?" , "3BVS II , "2ADC () . Y" , "?" , "?" , "?"
10110 DATA"2ADC.X","2ROR.X","?","ISEI","
3ADC. Y" , "?" , "?" , "?" , "3ADC. X" , "3ROR. >< "
10120 DATA"?", "?", "2STA (. X) ", "?", "?", "2S
TY","2STA","2STX","?","IDEY","?","ITXA"
10130 DATA"?","3STY","3STA","3STX","?","
3BCC", "2STA(). Y", "?", "?", "2STY. X"
10140 DATA"2STA. X", "2STX. Y", "?"," 1 TYA","
3STA. Y" , II 1 TXS" , "?" , "?" , "3ST A. X" , "?" , "?"
10150 DATA"2LDY#","2LDA(.X)","2LDX#","?"
, "2LDY", "2LDA", "2LDX", "?"," 1 TAY", "2LDA#"
10160 DATA"lTAX","?","3LDY","3LDA","3LDX
" , "?" , "3BCS" , "2LDA () . V" , "?" , "?" , "2LDY. X"
10170 DATA"2LDA.X","2LDX.Y","?","ICLV","
3LDA.Y","ITSX","?","3LDY.X","3LDA.X"
10180 DATA"3LDX.Y","?","2CPY#","2CMP(.X)
" , "?" , "?" , "2CPV" , "2CMP" , "2DEC " , "?"
10190 DATA"IINV","2CMPtt","IDEX","?","3CP
Y","3CMP","3DEC","?","3BNE","2CMP().Y"
10200 DATA"?","?","?","2CMP.X","2DEC.X",
"?"," lCLD", "3CMP. V", "?", "?", "?", "3Ctr1P. X"
10210 DATA"3DEC.X","?","2CPX#","2SBC(.X)
" , "?" , "?" , "2C PX" , "2SBC" , "2 I NC " , "?"
10220 DATA"IINX","2SBC#»,"INOP","?",~3CP

14

X" , "3SBC " , "3 I NC " , "? II , "3BEGl" , II 2SBC () . Y"
10230 DATA"?","?I,I?",12SBC.X","2INC.X",
" ? " , " 1 SED" , "3SBC. Y" , "? II , "? II , "?"
10240 DATA"3SBC.X","3INC.X","?"
10250 DATA166,251,32,186,255,173,52,3,16
2,53,160,3,32,189,255,174,252,3,172,253
10260 DATA3,169,252,32,216,255,96
10300 DATA166,251,32,186,255,173,52,3,16
2,53,160 ,3,32
10310 DATA189,255,174,252,3,172,253,3,16
9,0,32,213,255,96

There will be explanations on how to use the program
in following chapters.

15

CHAPTER THREE
ACCESSING
MACHINE CODE

-

Now that you have finished typing out the assembler
program, RUN it. There should be a menu on the
screen. Press the 1 key. The computer should then
prompt you with 'START OF CODE?' Answer this by
typing COOO and RETURN.

Now you will be in a position to enter assembly
language at 'location' COOO. In assembly language we
don't have line numbers but instead have addresses.
COOO is an address. You don't know any assembly
language yet so press X and RETURN. This will return
you to the main menu.

Now press 2. Again you will be prompted with 'START
OF CODE'. This time answer it with F301. The
computer will now be printing out the instructions from
address F301 and onward. It doesn't matter that you
don't understand what is being printed. You will
understand it shortly.

To stop the printing, hold the SPACE BAR down. Now
press X again. You should return to the main menu.
Press 7. This time, when you are prompted with
'ADDRESS OF THE CODE', type FFD2. The computer
will now RUN the assembly language at the address
FFD2 and print some numbers and characters on the
screen. These numbers and characters will be
explained in the next chapter. Press any key and you
will be returned to the main menu.

16

After this, press 8, then D. This allows you to enter
decimal numbers and the computer will convert them
to hex. After you have tried a few, press X. Now press
8 again, then H. Now you will be able to enter hex
numbers and the computer will convert them to
decimal. Press X if you want to return to the main menu.

17

CHAPTER FOUR -
LOADING REGISTERS
There are three main registers in assembly language
on the Commodore 64. These registers may be
thought of as variables. These three variables or
registers are called the Accumulator (A), X register
and Y register. Unlike BASIC variables these can only
have values from zero to 255 (0 - FF in hex).

To make a register equal to a value, we must load it
with that value. For example: In BASIC, to make the
variable A equal 55, we would type 'A = 55'. In
assembly language it would be 'LDA# $37', the LDA
stands for 'load A'. The # means 'with the following
value' and the $ means a hex number. The A register is
loaded with 37 and not 55 because we must use hex
numbers in assembly language, and 37 in hex is the
same as 55 decimal.

Registers may be loaded in many different ways. The
one above is called Immediate. In due course, I'll show
you all the ways to load registers. However, first we'll
discuss how to use the assembler to write the
assembly language.

LOAD and RUN the assembler. Press 1, then type
COOO, we will put our code at addresses COOO and on.

Now type 'LDA# $37' and press RETURN. When the
cursor re-appears type RTS. This RTS instruction will
return the computer to BASIC when it is RUN. If you
don't put an RTS at the end of an assembly language
program, the computer won't return and could CRASH.

18

The code that you have typed in would look like this:

C.000 LDA#$37

C0fJ2: RTS

Now press X. You should return to the main menu.
Press 7. You should be prompted with 'ADDRESS OF
CODE'. Type COOO and press RETURN. The computer
will now run the assembly language that you typed in.
The A register will be loaded with 37.

After the computer has returned from the assembly
language, it will print out the values of the registers on
the screen. AR stands for A register, XR for X register,
VA for Y register and SP for Stack Pointer. (Don't worry
about the SP for now, as I will explain this in later
chapters.)

Notice that the A register has a value of 37, the value
that we loaded it with. The X register and Y register
can be loaded in the same way, here are some
examples:

C000 LD::<#$9A

C002 RTS

C0l30 LDY#$50

C.002 RTS

19

The first example loads the X register with 9A, the
second loads the Y register with 50. (It is important to
remember that all the figures given in this chapter and
following chapters are hexadecimal, unless I state
otherwise.)

Zero Page
Before reading on you should be familiar with the PEEK
statement. If not, consult your User's Guide, pages 62
and 126. All of the following instructions perform PEEK
functions. Zero Page is the name given to the
addresses between 0 and FF.

In BASIC, to make the variable A equal the value of
location C5, we would type 'A = PEEK (197)' (197 is
decimal for C5). In assembly language it is 'LDS$C5'.
The difference between this and the previous load
instruction, as you can see, is that there is no # sign.

Here is a demonstration program which loads the A
register with the value of location C5. Remember to
use option 7 on the main menu to run it.

The X and Y reg isters can be loaded in the same way:

20

C.00.0 LD~<$D7

C002 F:TS

C000 LD'{$(13

C002 RTS

The first example loads the X register with the value of
location 07. The second program loads the Y register
with the value of location 03. Note that it is 03 and not
3. Although they mean the same thing, the assembler
will only accept two-digit or four-digit numbers.

Indexed Addressing
(Zero Page)
In BASIC if you wanted to make the variable A equal
location 45+X you would type 'A = PEEK (45+X)'.
The assembly ianguage equivalent is 'LOA$45.X'. Here
is a program to do this:

C.000 LDA$45. X

C002 RTS

In the previous example, if X had a value of 10 then the
A register would have been loaded with the value of
location 55.

21

The X register can be loaded with the Y register as an
index, but not with the A register or itself. In ttle
following example, the X register will be loaded with
the value of location 67, because the Y register is
equal to 27 and 40+27= 67:

C000 LDY#$27

C0.02 LDX$40. Y

C004 RTS

The Y register can also be loaded in this way, using
the X register as the index. The following program
loads the Y register with the value of location 03
(1 +2= 3):

C0£10 LD>·:#$02

C002 LDY$01. ><

C004 RTS

Absolute Addressing
Unlike Zero Page addressing which has a limited
range, Absolute enables you to use figures ranging
from 00 to FFFF.

Location 0286 holds the current colour of the cursor.
To find out the colour of the cursor we can make the A
register equal to the value of location 0286.

22

Here is the program which will do this:

C00.0 LDA$.0266

Cf103 RTS

After you have run through it once, change the colour
of the cursor. As you change the colour of the cursor,
the value will change.

The X and Y registers can also be loaded in this way.

Absolute
Indexed Addressing
This is much the same as Zero Page Indexed Address
ing. However, because it is absolute you can use
numbers ranging from 00 to FFFF.

The A register can use either the X or Y register as an
index. On the Commodore 64 the screen starts at
address 0400. So, to load the A register with the first
character on the screen we would type 'lDS$0400'. If
we wanted to load the A reg ister with Xth character on
the screen we would use 'LDA$0400.X'.

Here is a program to load the Xth character on the
screen:

C0k,0 L DX#$.09

C002 LDA$0400.X

23

If you change the value of the X register, you will load
the A register with a different character.

The X register can also be loaded in this way, although
it can only use the Y register as an index.

The Y register uses the X register as an index in
Absolute Indexed Addressing.

Indexed
Indirect Addressing
Only the A register can use this addressing. Before we
go any further, it's important that you understand what
the terms 'HI byte' and 'LOW byte' mean.

LOW byte is the first two digits of an address. For
example, in the address FEA9, the LOW byte is A9.
The address 764F has a LOW byte of 4F.

HI byte is the second pair of digits in an address. The
address FEA9 has a HI byte of FE, and 764F has a HI
byte of 76.

Let's join our bytes to Indexed Indirect Addressing to
carry out the instruction 'LDA($40.X)'. When the
computer comes across this instruction, it adds the
value of the X register to the number in brackets. For
this example, let's assume that the X register equals
10. If we did make this assumption, the total inside the
brackets would be 50. (For this example, let's assume
that location 50 equals D2.) Then the computer will

24

get the Hi byte from location 51 (we'll assume that
location 51 equals FF).

The computer now has a LOW byte and a H I byte, so it
can form an address. The address will b~ FFD2, LOW
byte D2,HI byte FF. Now that the address has been
formed the A register will be loaded with the value of
location FFD2.

I will go through another example before we actually
use this instruction on the computer. For this example,
assume that the X register equals 20, location 30
equals 43 and location 31 equals FE. The instruction
for this example will be 'LDA($10.X)'. The LOW byte
will be the value of location 30, which is 43. The HI
byte would be the value of location 31, which is FE.
The complete address will be FE43, so the A register
will be loaded with the value of location FE43:

C.0.0.0 LDX#$.0B

C0.02 LDA($20.X)

C.0.04 RTS

When you RUN the program the A register should end
up with a value of DB. All I should need to tell you is:
location 2B equals 01; location 2C equals 08; and
location 0801 equals DB.

25

Indirect
Indexed Addressing
Like the last mode, this one can only be used by the A
register. An example of this mode in use is
'LDA($78).Y'. The computer gets its LOW byte from
location 78, then its HI byte from location 79. After it
forms an address, it adds the value of the Y register to
the address.

If location 78 equalled 56, location 79 equalled 98 and
the Y register equalled 03 then the following would
happen:

The LOW byte (location 78) would be 56, the HI byte
(location 79) would be 98. The address would
therefore be 9856, although this wouldn't be the final
address. The computer would next add the value of the
Y register to the address to get a final address of
9859. The A register would then be loaded with the
value of location 9859.

Here is an example program:

':::000 LDY#$10

C:.ci~J2 LDA ($43) & '(

C004 Fns

In the above example, location 43 equals 04, location
44 equals 02 and location 0204 equals 20.

26

There are no more load instructions for you to learn,
so here's a small test of your knowledge to date:

Location AD holds the HI byte of the 64's clock.
Location Ai holds the MID byte (two middle digits) and
location A2 holds the LOW byte.

How might you read the whole clock, all at once?

There are many answers to this question, although the
best answer follows.

C.000 LDA$A0

CQ102 LDX$A 1

C004 LDY$A2

C006 RTS

Whether your program is the same as this one doesn't
really matter, so long as it worked. If your program
doesn't work I suggest that you go back over this
chapter carefully.

27

CHAPTER FIVE -
STORING
THE REGISTERS
IN MEMORY
Now that we know how to load registers it is important
that we know how to store the values of them. We will
need to store the registers because there are only
three of them. Could you imagine writing a BASIC
program with just three variables?

In this chapter you will learn how to store registers in
memory. Once they are in memory you can load the
values back into the registers at will, using the
instructions from the previous chapter.

Zero Page Addressing
The first store instruction we will examine is STA. This
stands for Store the A register. We are using Zero
Pages so we will be able to store the A register in
locations 00 to FF.

The following program stores the A register in location
FB:

C000 LDA#$80

C002 STA$FB

C004 RTS

28

Execute the program, then return to the main menu.
Now press 4. You should then be prompted with
'START OF DATA?' Type OOFB then RETURN. The
computer will start printing out numbers. These
numbers are the values of memory locations. Notice
that the first one is 80, the value we stored in location
FB.

The X and Y registers can also have their values
stored in Zero Page. They use the instructions STX
(Store the X register in memory) and STY (Store the Y
register in memory).

Here is an example of each:
C0.00 LDX:tt$23

C0.02 STX$FE

C004 RTS

C000 LDY:tt$0D

C002 STY$CB

C004 RTS

After you execute the code you can check that it
worked by using option 4 from the main menu.

29

Zero Page
Indexed Addressing
This works in the same way as it did for the load
instructions, except for the fact that this time we are
storing. For this instruction the A register uses the X
register as an index. 'STA$25.x' is an example of an
actual instruction. This one would store the A register
at location 25+X (X register).

Here is a program to show this:

C000 LDX#$45

C002 LDAtI:$FF

C004 ST A$25 . ~<

CQJ06 RTS

The A register is stored in location 6A, because 25+X
= 25+45 = 6A. You can check this by using option 4
on the main menu.

The X register can also store itself in this way,
although it uses the Y register as an index. The Y
register uses the X register as an index when it stored
by this method.

Here is an example of each:

30

C000 LDX~$80

C002 LDY~$05

C004 ST::-::$F0. Y

C006 RTS

C.0f:10 LDY~$0f:1

C002 LDX~$F0

C.0.04 STY$ll. X

'~CG6 RTS

The first example stores the X register in location F5,
because FO+Y = FO+5 = F5. The second example
stores the Y register in location 101, because 11 + X
= 11 +FO = 101.

Absolute Addressing
All three registers can use Absolute Addressing to
store themselves. We will examine the A register first.

As you mIght recall, I told you that the colour of the
cursor is stored at location 0286.

The following program will change the colour of the
cursor by changing the value of location 0286:

31

C000 LDAtt$00

C002 STA$0286

C005 RTS

By changing the value of the A register in the previous
program, you can change the colour, that is, you load
the A register with a different value.

Location 028A controls the key repeat. If this location
equals 80 then the keys repeat, otherwise they don't.

The following program uses the X register to set key
repeat:

C000 LDXtt$80

C002 STX$028A

C005 RTS

To test that it worked, break out of the program using
RUN/STOP and hold a key down.

Location 0020 holds the background colour of the
screen.

The following program will use the Y register to
change the colour of the background:

C0.00 LDYtt$00

C0.02 STY$D020

C005 RTS

32

By changing the value that Y is loaded with you can
change the background colour to the one that you
want.

Absolute
Indexed Addressing
The A register is the only register that can be stored
using Absolute Indexed Addressing. This time the A
register may use either the X or Y register as an index.

The following programs store a character on the
screen. See if you can spot them:

C.0.00 LDX#$29

C002 LDA#$21

C£1.04 STA$0400.X

C007 RTS

C!2l00 LDY#$F0

CQl02 LDA#$21

(:.OQI4 STA$0400. X

The first program stores a character in the top left of
the screen, the second stores a character on the right
side of the screen. They both work because the

33

screen memory starts at location 0400.

Indexed
Indirect Addressing
Again the A register is the only register that can use
this form of addressing. An example of this instruction
would be 'STA{$32.X)'.lf this instruction was executed
and X equalled 14, then the LOW byte would be the
value of location 46 (32+X) and the HI byte would be
the value of location 47. After this the computer would
form an address and store the A register at that
location.

Here is an example program (a full explanation follows
the program):

C(·).0.0 LD>::#$21

CG02 STX$FB

C.o.04 LDX#$D.0

C006 ST}<$FC

C.0.08 LDA#$00

C00A LDX#$01

C.0.€1C STA($FA.X)

CODE RTS

34

When you RUN the assembly, the background colour
should change.

COOO:

C002:
C004:
C006:
C008:
COOA:
COOC:

this line loads the X register with the LOW
byte.
the LOW byte is stored in location FB.
the X register is loaded with the HI byte.
the HI byte is stored in location Fe.
this loads the A register with 00.
the X register is loaded with 01.
the computer gets the LOW' byte from
location FB (FA+X), then the HI byte from
location FC (FA+X+1). The computer then
forms the address 0021, which is the
location which holds the background colour.
The A register is then stored there, changing
the colour to black.

Indirect
Indexed Addressing
As you know, the A register is the only register which
can use this form of addressing. This form of address
ing is much like the previous one, except that it uses
the Y register as an index and it adds the Y register
after the address has been formed, not before.

Here is a program to show this. It stores a character in
the top left of the screen:

35

COOO:
C002:
C004:
C006:
C008:

COOA:
COOC:

C000 LDXtt$28

C002 STX$FB

C004 LDXtt$04

C006 STX$FC

C008 LDYtt$28

Ch0A LDAtt$23

C00C STA($FB).Y

C.00E RTS

this loads the X register with the LOW byte.
the LOW byte is now stored in location FB.
now the X register is loaded with the HI byte.
the HI byte is stored in location Fe.
now the Y register (the index) is loaded with
28.
the A reg ister is loaded with 23.
the computer gets the LOW byte from
location FB, then the HI byte from location
Fe. It then forms the address 0400, next it
adds Y to the address making it 0428. The A
register is then stored at that address.

That was the final store instruction. Before you move
onto the next chapter, I have devised another test for
you.

The border colour is controlled by location 0020 and
the background colour is controlled by location 0021 .

36

The problem is:
Can you make a program that changes the border to
the same colour as the background?

The answer follows.

C000 LDA$D021

C003 STA$D020

C006 RTS

The above answer is not the only answer, as we could
have done it with the X or Y registers. If your answer is
similar to mine, and it works, then proceed with the
next chapter. If it didn't, then I advise you to go through
the chapter again.

37

CHAPTER SIX -
INCREMENT,
DECREMENT
AND TRANSFER
Having only three registers sometimes becomes
frustrating and on occasions it isn't practical to store
the registers. We can get over this problem by trans
ferring the value of one register to anott"ler.

For example, if the A register had a value that we didn't
want to lose and we needed to use the A register for
another function, we could transfer its value to the X
register. This would be done with the instruction TAX,
which stands for Transfer A to X. After the A register
had been used, we could transfer the value from the X
register back to A register. We do this with the
instruction TXA (Transfer X to A).

In this example program, the A register is used, but still
ends up with the value it started with:

C000 TAX

C001 LDA#$00

C003 STA$D02.0

C006 TXA

C007 RT~;

38

COOO: transfer the value of the A register to the X
register.

C001: load the A register with 00.
C003: store the A register in location 0020 (this

changes the border to black).
C006: transfer the original value back into the A

register.

The Y register can also be transferred, using TYA
(Transfer Y to A) and TAY (Transfer A to V).

INX and INY
INX stands for Increment the X register. This means
add 01 to the X register. INY stands for Increment the Y
register, which means add 01 to the Y register.

Here is an example of each:

C000 I.,.DX#$01

C0.02 INX

C003 RTS

C.0.0.0 LDY#$.08

C.002 INY

CQf03 RTS

39

In the first example, the X register is increased from a
value of 01 to 02. In the second example the Y register
is incremented from a value of 08 to 09.

Increment
Memory, like registers, can be incremented. Memory is
incremented by using the command INC (INCrement
memory).

Zero Page Addressing
'INC$45' is an example of the increment instruction
using Zero Page.

The following program makes location FB equal 04,
and then increments it to a value of 05:

CO!o.0 LDA#$04

C002 STA$FB

C!.J04 INC$FB

COf2i6 RTS

To check whether it worked or not, use option 4 on the
main menu.

40

Zero Page Indexed
The INC instruction uses the X register as an index for
this mode of addressing. An example of this instruction
is 'INC$97.x', which would increment location 97 + X.

This next program increments location 9A from a value
of 44 to 45:

cri00 LDA~S44

C002 STAS9A

C0.04 LDX#S03

C0fJ6 INCS97.X

C00S RTS

Again, to check it use option 4 on the main menu.

Absolute Addressing
With this instruction, you can increment any location in
memory. Every time you execute the next program, the
border changes colour:

C000 INCSD020

C003 RTS

The border will keep changing each time you execute
the program because the program increments location
D020, which holds the colour of the border.

41

Absolute
Indexed Addressing
Again the X register is used as an index. The following
program will show a peculiarity of the increment
instructions:

C000 LDA#$FF

C0.02 ST A$07F8

C.005 I NC$07F8

C.008 RTS

If you use option 4 on the main menu you wi II see that
the result of the increment is 00. This is an important
point to remember. It means that any register or
location of memory which equals FF before it is
incremented will end up as 00.

DEX and DEY
DEX stands for DEcrement the X register, and means
subtract 01 from the X register. DEY stands for
DEcrement the Y register, and means subtract 01 from
the Y register.

Here is an example of each:

42

CfO.0fO LDX#$E4

Cf002 DEX

Cf003 RTS

C0.'ii0 LI"'(#$.09

C002 DE'"

C:.0t;:J3 RTS

Zero Page Addressing
Now we move onto the next instruction, DEC, which
stands for DECrement memory.

Here is an example of Zero Page DEC:

C.0IZ1.0 LDA#$45

C.002 STA$FB

C004 DEC$FB

C.006 RTS

The program, when executed, stores 45 in location FB,
then this is decremented to 44.

43

Zero Page Indexed
For this instruction the X register is used as an index. I
think it is worth noting that the BASIC ROM stores
some of its values on Zero Page. That is why, when
using Zero Page, you have to be careful which
locations you alter. The Commodore 64 Reference
Guide provides useful information on this.

Here is an example program for Zero Page Indexed
INC:

C000 LDA#$FF

C002 STA$CC

C004 LDX#$0C

C006 INC$C0.X

C008 RTf:

After you have executed this program the cursor
should be flashing. We changed location CC, which is
where the BASIC ROM stores the cursor enable.

Absolute Addressing
With this instruction you can decrement any memory
location, as in the following program:

44

C000 DEC$0286

C0.03 RTS

Each time you execute this program the cursor colour
will change. This is because location 0286 holds the
cursor colour.

Absolute
Indexed Addressing
The X register is used as an index for this instruction:

C000 LDAtt$00

C.0U2 STA$03FD

C005 LD;;<tt$l D

C.007 DEC$03E0. ><

C00A RTS

After you have RUN the program, check the value of
location 03FD, using option 4 on the main menu. It
should be FF. This happened because we decre
mented a memory location which had a value of 00.
From this we can see that any location that is equal to
00, and is decremented, will end up with a value of FF.

That was the last instruction in this chapter, so it's test
time again!

45

As you may have noticed, the A register has no
decrement instruction, nor has it an increment
instruction. The problem:

Load the A register with 55 and decrement it to a value
of 54. (HINTII Transfer).

There are two equally good answers. See if you can
work them both out before seeing how I did it.

C000 LDA#$55

C002 TAY

C003 DEY

C004 TYA

C005 RTS

OR
C000 LDA#$55

CQ1.t2I2 TAX

C003 DEX

C004 TXA

C0i2J5 RTS

If your program worked, or better still you had either of
the above, then proceed with the next chapter.
Otherwise I suggest you go over this chapter again
carefully.

46

CHAPTER SEVEN
JUMPING

-
Before reading on it is necessary for you to be familiar
with BASIC's GOTO and GOSUB. Explanations on
these can be found in the User Gu ide.

JMP
This instruction is very similar to the GOTO
instruction. If you want to jump to a new address you
can use this instruction.

For example, if you wanted to jump to the address
BOOO, you would type JMP$BOOO.

Here is an example program (a full explanation follows
the program):

C000 JI'tlP$C006

C003 LDA#$00

C005 RTS

C006 LDA#$FF

C008 RTS

47

COOO: jump to location COOS.
C003: this loads the A register with 00, although it

will never be executed, because we have
jumped over it.

COOS: this would return the computer to BASIC,
although it has also been jumped over.

COOS: this is where the computer has jumped to.
This line loads the A register with FF.

C008: return to BASIC.

Indirect Addressing
The JMP command supports indirect addressing. It is
written in the form JMP ($XXXX), where XXXX is a four
digit hex number.

When you execute this instruction the program will
stop, and the cursor will appear. This happens
because the LOW byte for error messages is stored at
location 0302, and the HI byte is stored at location
0303. When it is executed the computer jumps to the
error message routine and stops, because there is no
error.

SYS
You may have come across this before. It isn't an
assembly language command but in fact is BASIC. This
command will go to machine code and return to BASIC

48

when it encounters an RTS statement. For example,
COOO in hex is the same as 49152 in decimal, so to
RUN any of the programs that we have done so far just
type 'SYS 49152'. The SYS command is used after you
have written the assembly language routine, and no
longer need the assembler.

JSR and the STACK
Every time you have executed an assembly language
program the assembler has told you the values of the
registers, including the SP register. It is now time to
tell you what the SP is.

SP stands for Stack Pointer. You may have heard of the
stack before. The stack is the place where return
addresses are put. That is, when the computer goes on
a GOSUB, the line number that it must go back to when
the RETURN statement is executed is stored on the
stack.

These are the main points to note:

The computer stores the address on the stack.

The computer meets a return statement.

The computer gets the address back off the
stack.

The computer "returns" to that address.

49

The assembly language equivalent for GOSUB is JSR,
which stands for Jump to Sub-Routine. The equivalent
for the RETURN statement is RTS, which stands for
Return from Sub-routine.' The stack behaves in the
same way for JSR and RTS as it does for GOSUB and
RETURN.

The actual stack is 255 bytes of memory that
stretches from location 0100 to 01 FF. The stack
pointer points to the next free byte on the stack. The
stack pOinter starts off with a value of FF, which points
to location 01 FF, then BASIC takes a few bytes off and
we end up with the stack pointer pOinting to location
01EF.

Each time you use a JSR instruction or a SYS the
computer saves the LOW byte of the return address
onto the stack, then it decrements the stac'k pointer.
After that the HI byte of the return address is stored on
the stack, and once again the stack pointer is decre
mented.

Each time you use an RTS statement the computer
takes the HI byte off the stack and increments the
stack pointer. It then takes the LOW byte off the stack
and increments the stack pointer again. The computer
then forms the return address by putting the LOW and
HI bytes together. After the address has been formed
the computer returns to that address.

By jumping to subroutines that BASIC uses we can
print characters, move the cursor and the like. To print
a character, you load the A register with the ASCII
value of that character and JSR$FFD2:

50

C000 LDA#$41

C002 JSR$FFD2

C.005 RTS

This program prints the letter A, because the A
register is loaded with the ASCII value of the letter A
before the routine is called. To print other characters,
look at the ASCII chart on pages 135-137 of your
User's Manual.

This next routine sets the x and y co-ordinates of the
cursor. First you load the X register with the x
co-ordinate, then the Y register with the y co-ordinate.
Now type CLC (this command will be explained in the
next chapter), then JSR$FFFO:

C000 LDX#$00

C002 LDY#$05

C004 CLC

C005 JSR$FFF0

C00S RTS

As should be obvious, the cursor was set to the upper
left of the screen. By combining the two previous
routines you should be able to print any character at
any position on the screen.

That concludes this chapter, so here is another
problem for you to solve:

51

Can you clear the screen and set the cursor to 01 ,01 ?

C £1.0.0 LDA#~93

C.0.02 J3R$FFD2

C.0.05 LDX#$.01

C0.07 LDY#$01

C009 CLC

C00A JSR$FFF0

C.OOD RTS

The above program prints a clear home (ASCII 93 hex
or 147 decimal) and then sets the cursor to 01,01.

If you didn't get the above or your program didn't work
then don't worry, so long as you know how the
program works. If you don't know how it works then I
advise you once again to read over this chapter.

52

CHAPTER EIGHT -
THE PROCESSOR
STATUS REGISTER
The Processor Status Register (P register) tells us the
state of the computer. We will discover how to test the
status in the next chapter. In this chapter I will show
you what the P register is.

As you know, a byte has eight bits, and each of those
bits may be a 0 or a 1. The P register uses each bit as
a flag. Each bit is set or reset, depending on the status
of the computer.

Here is an explanation of what each bit does:

Bit 7: this is called the negative flag. This bit is set
to 1 when the result of operation is a number
between 80 and FF. For example, LDA# $C7
would set this bit. The bit is reset if the result
of an operation is between 00 and 7F.

Bit 6: this is called the overflow flag. It is set when
an increment goes above 7F or a decrement
goes below 80. Otherwise it is reset.

Bit 5: this bit doesn't do anything; it isn't used.

Bit 4: this flag is for BRK (force break) and this will
be discussed later.

Bit 3: this bit is called the Decimal flag. This will
also be discussed later.

53

Bit 2: this flag is called IRQ disable and, once
again, will be discussed later, along with the
BRK flag.

Bit 1: this bit is the Zero flag. It is set if the resu It of
an operation is 00, otherwise it is reset.

Bit 0: this bit is called the carry flag. You will learn
more about this flag in the next chapter.

Setting and
Clearing Flags
Some of the flags have commands that will set them to
1 or reset to 0 as follows:

CLC: Clear the carry flag.
SEC: Set the carry flag.

CLD: Clear the Decimal flag.
SED: Set the Decimal flag.

CLI: Clear the IRQ flag.
SEI: Set the IRQ flag.

CLV: Clear the Overflow flag.

54

CHAPTER NINE
COMPARE
INSTRUCTIONS

-

Before we begin studying the compare instructions it
is necessary for you to add the following lines to your
assembler:

8040 PRINT:PRINT"{CLR} AR XR YR
sp"
8080 DEC=PEEK(783)
8090 G05UB3000:5P$=RIGHT$(HEX$~2)
8101 POKE760~8:POKE761~104:POKE762,9~:5Y
576@
8102 BI$="":BI=PEEK(780):FOR R=7T00STEP-
1: IFBI{ (2· ... R)THENBI$=BI$+" 0":GOT08106
8104 BI$=BI$+" 1":BI=BI-(2 A R)
8106 NEXT
8108 PRINT"{C.UF DN]{CIIR DN} N V - B D I
Z C":FRINTBI$

After you have typed them in re-SAVE the assembler.

These new lines find the value of the P register and
print out the value of each flag.

There are three compare instructions, one for each of
the X, Y and A registers. The compare instruction for
the X register is CPX, which stands for Compare the X
register. The Y register's compare instruction is CPY,
which stands for Compare the Y register. The A
register's compare instruction is CMP, which stands for
Compare the A reg ister.

55

Immediate Addressing
This is the form of addressing with the # symbol. An
example of the A register's compare instruction would
be 'CMP# $67'. This would compare the A register
with the 67. The results of compare instructions are as
follows:

1. If the register is less than the data it is compared
with, the Negative (N) flag is set.

2. If the register and the data are equal the Zero and
Carry flag wi II be set.

3. If the register is greater than the data the Carry flag
is set.

The above paints are important, they cater for every
result of a compare instruction.

Here is an example of CMP using Immediate address
ing:

C000 LDA#$56

C.0.02 C r'lP#$70

C004 RTS

After you execute the program you will see that the
Negative flag is set. This happens because the
register (A register) is less than the data (70).

56

Here is another example, this time using CPX:

C00.0 LDX#$67

C002 CPi<#$67

CJ2104 RTS

The Carry flag and the Zero flag will be set when this
program is executed. This happens because the
register (X register) and the data (67) are equal.

Here's yet another example, this time using CPY:

C000 LDY#$6.0

CJ21.02 CPY#$20

C004 RTS

Only the Carry flag is set this time, because the
register (Y register) is greater than the data (20).

Zero Page Addressing
All of the registers can be compared with locations on
Zero Page. The first one we will look at is CMP:

57

CBBB LDX#$B9

CBB2 STX$FB

C.0B4 LDA#$i116

CB06 CMP$FB

CB08 RTS

The A register is found to be less than location FB,
because the Negative flag was set.

Here are examples of CPX and CPY:

C0BB LDA#$57

CBB2 STA$FD

CBB4 Lm<#$58

Ci11B6 CPXliFD

CBB8 RTS

CB.0B LDA#$3B

CBB2 STA$FE

C0B4 LDY#$3B

CBB6 CPY$FE

C008 RTS

58

The first program sets the Carry flag because the
register (X) is greater than the data (57). The second
program sets both the Carry and Zero flags because
the reg ister (Y) is equal to the data (30).

Zero Page
Indexed Addressing
The A register is the only register that has Zero Paged
Indexed addressing for the compare instruction. The X
register is used as the index:

C000 LDX#$10

C002 LDA#$01

C004 CMP$B7.X

C006 RTS

The above program compares the A register with
location C7 (87 + X). Location C7 controls reversel
non-reverse printing. If it is equal to 01 then the
computer prints reverse. Therefore if you are printing
in reverse and you execute the above program the
Carry and Zero flags will be set.

59

Absolute Addressing
All three registers can use this form of addressing for
comparing.

Here are examples of each:

C.0/iJ/iJ LDA#$/iJ 1

C002 CMP$0286

C/iJ/iJ5 RTS

C/iJ00 LDX#$/iJ.0

C002 CPX$D.015

C005 RTS

C000 LDY#$00

C002 CPY$/iJ291

C005 RTS

The first example tests the A register against location
0286. The second tests the X register against location
0015, which holds the sprite enable flags. The final
program tests the Y register against location 0291.

60

Absolute
Indexed Addressing
The A register is the only register that supports this
form of addressing for its compare instruction. The X
register is used as an index as you can see in this
example program:

C00.0 LDX#$77

C.Qi02 LDA#$64

C004 CftlP$0200.X

C.0.07 RTS

The above program compares the A reg ister with the
first location of the keyboard buffer, location 0277.
The Y register can also be used as an index for this
instruction.

Indexed
Indirect Addressing
Again the A register is the only register which
supports this form of addressing. This time the X
register is the only register that can be used as the
index.

61

Here is an example program:

COOO:
C002:
C004:
C006:
COOS:
COOA:
COOC:

COOE:

CY',,' fJ LDY#$fJD

CJi02 STY$FB

C004 LDY#$03

C006 STY$FC

C00S LDX#$lB

C00A LDA#$20

C00C ctrlP ($E0. X)

C00E RTS

this loads the Y register with 00.
this stores the Y register in location FB.
now the Y register is loaded with 03.
the Y register is stored in location FC.
this loads the X register with 1 B.
now the A register is loaded with 20.
the computer gets the LOW byte from
location FB and the HI byte from location FC.
It then forms the address 0300 and com
pares the value of that location against the A
register.
this returns the computer to BASIC.

62

Indirect
Indexed Addressing
The A register is the only register to have this form of
addressing. This time the Y register is used as an
index:

COOO:
C002:
C004:
C006:
COOS:
CODA:
COOC:

C000 LlJX#$00

C002 STX$FD

C004 LD)<#$04

C0.06 STX$FE

C.008 LDY#$09

C00A LDA#$10

C00C CtrlP ($FD) . Y

C00E RTS

this loads the X register with 00.
this stores the X register in location FD.
now the X register is loaded with 04.
then it is stored in location FE.
this loads the Y register with 09.
now the A register is loaded with 10.
the LOW byte comes from location FD and
the HI byte from location FE. Then the
computer forms the address 0400. After that,
it adds the value of the Y register to the
address, ending in the address 0409. The A
register is then compared to the value of this
location.

63

That was the last instruction for this chapter, so we
now have a problem to test your knowledge on the
compare instructions.

The A register contains an unknown value. When
tested against the number 34 the Carry flag is set.
When compared to 55 the Negative flag is set. Select
one of the following answers:

A. The A register contains a value less than 34.
B. The A register contains a value between 35 and

54.
C. The A register has a value greater than 55.

The answer is B. If you didn't get the answer, just read
the first two pages of this chapter before proceeding
to the next chapter.

64

CHAPTER TEN
CONDITIONAL
BRANCHING

-

Conditional branches are like BASIC's IF ... THEN ...
statement. They carry out operations such as 'if the
Negative flag is set branch to'. There are eight
different conditional branch instructions which are
explained in this chapter.

BCC
(Branch on Carry Clear)

The BCC instruction will cause a branch if the Carry
flag is clear (reset). An example of the BCC instruction
is 'BCC$C009'. This instruction would branch to the
address C009 if the Carry flag is clear, otherwise it
would continue with the next instruction. This kind of
branch is called RELATIVE addressing. That means it
has a certain range, relative to its present address.

This range is how far it can branch. These branch
instructions can branch 80 (decimal 128) locations
backward and 7F (decimal 127) locations forward.
This means that a branch instruction, BCC$COFO, at
location COCO would be out of range, although if the
instruction was BCC$C07F it would be within range. If
the instruction BCC$COOO was at location C090 it
would be out of range, although if the instruction was
BCC$C010 it would not.

65

You don't have to worry about this, because the
assembler will tell you when you are out of range. If
you are out of range the assembler will give you the
message 'BAD BRANCH'.

The following program compares the A register with a
number, and branches if the A reg ister is less than the
number:

C000 LDA#$20

C.002 CMP#$30

CQf04 BCC$C007

C006 RTS

C.007 STA$D020

C00A RTS

COOO: this loads the A register with 20.
C002: the A register compared to 30, which sets

the Negative flag.
C004: a branch is taken to location COO?, because

the Carry flag is clear.
C006: if the branch wasn't taken the computer

would return to BASIC.
COO?: this stores the A register in location 0020,

which changes the border colour.
CODA: this returns the computer to BASIC.

66

BCS
(Branch on Carry Set)

This instruction is the opposite of BCC. It branches
when the Carry flag is set:

CJOJOJO LDX$J0286

C0J03 CPX#$01

CJOJ05 BNE$CJOJ08

CJ007 RTS

CJOJ08 LDA#$JOJO

CJOJOA STA$J0286

C0j2iD RTS

In the above example the A register is loaded with the
colour of the cursor. This is compared to 01. If it is
equal to, or greater than 01, a branch is taken to COOl
where it is made equal to 00.

67

BNE
(Branch on Result
not Zero)
This instruction causes a branch if the Zero flag is not
set. The following example is a time delay which I have
used often in machine code games programs:

C000 LDXt:t$00

C002 LDYtt$00

C004 DEX

C005 BNE$C004

C0.07 DEY

C00S BNE$C004

C00A RTS

This mightn't seem much of a time delay when you run
it, but it executes around 130,000 instructions.

This is how it runs:

cooo:
C002:
C004:

loads the X register with 00.
loads the Y register with 00.
the X register is then decremented to a value
of FF, which sets the Negative flag and resets
the Zero flag.

68

coos: because the Zero flag has been reset, the
branch is taken back to location C004.

C007: this instruction is executed when the X
register has been decremented to 00. The
actual instruction decrements the Y register.

C008: this causes a branch back to location C004
if the Y register wasn't decremented to 00.

CODA: this returns the computer to BASIC.

BEQ
(Branch on Result Zero)

This is the opposite to BNE. It causes a branch when
the Zero flag is not set:

C000 LDA$028A

C003 BEQ$C006

C0.05 RTS

C006 LDA#$80

C008 STA$028A

C00B RTS

The program tests whether location 028A equals 00. If
it does a branch is taken to location COOS. If the
branch was taken, location 028A is set to 80 which
sets the key repeat.

69

BMI
(Branch on Result Minus)

This instruction causes a branch if the Negative flag is
set, as in this example program:

C000 LDA#$20

C002 CfrlP#$30

C.0.04 BfrlI$C007

C006 RTS

C0.07 LDA#$00

C009 STA$D020

C00C RTS

The program tests the A register against 30, and
because the A register is less than 30, the Negative
flag is set. The branch is then taken to COO? and the
border colour is changed.

BPL
(Branch on Result Plus)

This is the opposite of 8MI. It causes a branch if the
Negative flag is clear.

70

Here is an example:

C000 LD}<:t:t$30

C002 STA$FB

':004 LDYt:t$30

S006 CPY$FB

C008 BPL$C00B

C00A RTS

C00B STY$D021

C00E RTS

The program changed the colour of the screen,
because the branch was taken from location cooa to
location COOB.

Bve and BVS
These commands cause branches depending on the
Overflow flag. BVC causes a branch if the Overflow
flag is clear. BVS will cause a branch if the Overflow
flag is set. There wi II be more said about the Overflow
flag and these instructions in chapter twelve.

It is time for another test. The problem is:

71

Devise a program that will PRINT the letter A 255
times.

C.000 LDX#$00

C002 LDA#$41

C004 JSR$FFD2

C007 INX

C008 BNE$C004

C00A RTS

OR

C000 LDY#$00

C002 LDA#$41

C004 JSR$FFD2

C007 INY

C008 BNE$C004

C0.0A RTS

Either of the above programs will work. If you
understand how they work then continue with the next
chapter. Otherwise perhaps you'd better revise the
previous two chapters.

72

CHAPTER ELEVEN -
STORING REGISTERS
ON THE STACK
As you already know, we are restricted greatly when
working in the machine code on the Commodore 64 by
only having three registers. You are probably thinking
'but we can store them in memory, or even transfer
them.' Even transferring or storing the registers may
not be possible or practical in some situations.

We get around this by storing registers on the stack.
This chapter shows you how to save registers to the
stack and how to take them back off.

PLA and PHA
PHA stands for Push the A register on the stack. When
you push the A register on the stack its value is stored
in the location pointed to by the Stack Pointer (SP).
Then the SP is decremented, so that it points to the
next free byte on the stack. For example, if the SP
equals 89 and you push the A register on the stack the
A register will be transferred to location 0189. The SP
will be decremented to equal 88.

PLA stands for Pull the A register off the stack. Once
you have stored the A register on the stack you use
this instruction to get it back off the stack and into the
A register. For example, if the SP equals 92 and you

73

use the PLA statement, then the A register will be
loaded with location 0193. The SP will then be
incremented to a value of 93.

Here is an example of saving the A register to the
stack, using it for another purpose, and then retrieving
it off the stack:

C000 LDA#$30

C002 PHA

C003 LDA#$00

C.005 ST A$D020

C008 PLA

C009 RTS

PHP and PLP
PHP stands for Push the P register onto the stack. PHP
has the same effect on the stack as PHA.

PLP stands for Pull the P register from the stack. PLP
has the same effect on the stack as PLA.

Here is an example of saving the P register to the
stack and retrieving it again:

74

C000 LDA#$00

C002 PHP

C0./33 LDA#$80

C005 STA$028A

C008 PLP

C009 RTS

TXS and TSX
There are two transfer instructions that I have not yet
told you about. The first one is TSX, which stands for
Transfer the Stack pointer to the X register. The other
one is TXS, which stands for Transfer the X register to
the Stack Pointer. Both can be used to make sure that
the Stack Pointer doesn't equal zero.

Notes
* When pushing any numbers on the stack, always

remember to take them back off the stack. If you
don't take values off the stack the system may crash
when it executes an RTS statement.

* Numbers are pulled off the stack in the reverse
order that they were put on. For example, if the
numbers 1, 2, 3, 4, 5 and 6 are put on the stack in
that order, they would be taken off in the following

75

order: 6, 5, 4, 3, 2 and 1. (This order is referred to as
'last in - first out'.)

Here is a problem for you to ponder before going on to
the next chapter:
Transfer all registers to the stack, and then retrieve
them all.

C0.0.0 PHP

eG0! PHA

C.002 TXA

C.003 PHA

C£104 TYA

C005 PHA

C0.0.0 PLA

C00l TAY

C0£12 PLA

C£103 TAX

C.0.04 PLA

C.0£15 PLP

The first program puts the registers on the stack and
the second takes them off.
It isn't too important that you managed to create the
above programs, but it is important that you
understand them.

76

CHAPTER TWELVE
SUBTRACTION
AND ADDITION

-

This chapter deals with the mathematical functions of
the 6510 (the 64's microprocessor). The 6510 can
only handle subtraction and addition, and both are
carried out with the A register. This is why the A
register is called the accumulator.

ADC
(Add to Accumulator
with Carry)
By now you should know all of the addressing modes.
That is, you should know what Zero Page addressing,
Absolute addressing and all the rest are. Therefore, I
won't be outlining every addressing mode of an
instruction any more.

The instruction, ADC, causes a value and the Carry
flag to be added to the A register. For example, if the
Carry flag is set, the A register has a value of 40 and
you use the instruction ADC# $03, the A register will
end up with a value of 44. This happens because the
computer would add 03 to 40, giving it 43, then it
would add the Carry flag to that, giving it a final value
of 44.

77

If the Carry flag had not been set, the value of the A
register would have been 43. Before addition we can
use the command CLC to Clear the Carry so that an
extra 01 isn't added to the final answer.

Here is an example program which adds 02 and 02
together:

C000 LDA#$02

C002 CLC

C003 ADC#$.02

C0J215 RTS

The previous program added 02 to 02, and of course
the answer was 04.

Here is another program. Again it adds 02 to 02, but
this time the Carry flag is set:

C000 LDA#$02

C002 SEC

C003 ADC#$02

':":0.05 RTS

The result of the addition is 05, because the Carry flag
was added as well as 02. If the Carry flag was clear
and you added 06 to 04 you would get an answer of
OA.

78

Sometimes it isn't practical to use this sort of addition,
i.e.IYou would rather have a decimal result. It is possible
to get the A register to carry out decimal addition by
setting the Decimal flag. This is done by using the SED
(Set Decimal flag) instruction. When the Decimal flag is
set an addition such as 05 plus 07 will equal 12, and
not OC. Before returning to BASIC you must clear the
Decimal flag, as the BASIC interpreter will crash if it is
set.

Here is an example of Decimal addition:

C000 SED

C001 LDA#$07

C0.03 CLC

C004 ADC#$06

C0.06 CLD

C0.G7 RTS

This will give the A register a value of 13. If the
Decimal flag hadn't been set before the addition the A
register would have had a value of OD.

79

Notes on ADC
* The Carry flag will be set if an addition exceeds 255

under normal circumstances. However, if the
Decimal flag is set, the Carry will be set if an
addition exceeds 99.

* The Zero flag will be set if the addition results in
zero.

* The Negative flag will be set if the addition results in
a number between 80 and FF.

* The Overflow flag will be set if the result of an
addition exceeds 7F.

* Always reset the Decimal flag before returning to
BASIC, otherwise the computer will crash.

* ADC can support the following modes of address
ing:

IMMEDIATE (ADC# $ZZ)

ZERO PAGE (ADC$ZZ)

ZERO PAGE INDEXED (ADC$ZZ.X)

ABSOLUTE (ADC$ZZZZ)

ABSOLUTE INDEXED (ADC$ZZZZ.X or
ADC$ZZZZ.Y)

INDEXED INDIRECT (ADC ($ZZ.X))

INDIRECT INDEXED (ADC($ZZ).Y)

In the above table ZZ means a two-digit number and

80

ZZZZ means a four-digit hex number.

SBC
(Subtract from
a Register with Borrow)
SSC is used to subtract a value from the A register. If
the Carry flag isn't set, an extra 01 is taken from the A
register. If the Carry flag is set, the Carry flag is
ignored by the subtraction.

Here is an example. Notice we set the Carry flag so
that it will be ignored:

C.0.00 LDA#$40

C002 SEC

C003 SBC#$20

C005 RTS

The result in the A register is 20, because 40-20 =
20. Had the Carry flag been clear the A register would
have had a value of 1 F, because an extra 01 would
have been subtracted.

SSC can also use the decimal mode. When the
Decimal flag is set the SBC command subtracts in
decimal notation. For example, if the Decimal flag is
set and you take 01 from 20 you would get an answer
of 19, not 1 F.

81

Here is an example of Decimal subtraction:

C.0£.i0 L.DAtt$60

C.0.02 SED

C003 SEC

C004 SBCtt$15

C006 CLD

C0.07 RTS

The above program subtracts 15 from 60, and
because the Decimal and Carry flags are set, the
answer left in the A register is 45.

Notes on SBC
• The Carry flag will be set if the result of a sub

traction is Zero or positive.

• The Zero flag will be set if the result is 00.

• The Negative flag is set if the result is less than 00.
In that case the seventh bit of the A register will be
set.

• The Overflow flag is set if the subtraction is less
than -80.

82

* The following addressing modes are supported by
SBC:

IMMEDIATE (SBC# $ZZ)

ZERO PAGE (SBC$ZZ)

ZERO PAGE INDEXED (SBC$ZZ.X)

ABSOLUTE (SBC$ZZZZ)

ABSOLUTE INDEXED (SBC$ZZZZ.X or
SBC$ZZZZ. Y)

INDEXED INDIRECT (SBC ($ZZ.X))
INDIRECT INDEXED (SBC($ZZ).Y)

Here's a problem to test your understanding of this
chapter.

Make a program that will add the Y register to the X
register, and add that total to the A register. You may
use the following instructions:

PHA, PLA, CLC, RTS, TXA, TAX, STYFE, STXFE,
ADC$FE.

You may use each one more than once. If you can't
think of a program using these instructions, work out
your own.

83

Here's the answer:

C000 PHA

C.0.01 TXA

C002 STY$FE

C.0.04 CLC

C.005 ADC$FE

C.0.07 TAX

C008 PLA

C.009 STX$FE

C00B CLC

C00C ADC$FE

C.00E RTS

Note that this program isn't the only answer to the
problem. If your program is different to the above
program and it works, then it is probably just as good.

84

CHAPTER THIRTEEN
- SHIFTING
AND ROTATION
This chapter, and the one following it, rely heavily on a
knowledge of binary numbers. With the following lines,
the assembler will convert the values of the registers
to binary numbers. Load your assembler and enter the
following:

8050 DEC=PEEK(780):GOSUB8900:BA$=BI$:GOS
UB3000:AR$=RIGHT$(HEX$,2)
8060 DEC=PEEK(781):GOSUB8900:BX$=BI$:GOS
UB3000:XR$=RIGHT$(HEX$,2)
8070 DEC=PEEK(782):GOSUB8900:BY$=BI$:GOS
UB3000:YR$=RIGHT$(HEX$,2)

8109 PRINT"{CUR DN}AR= ";BA$:PRINT"{CUR
DN}XR= ";BXS:PRINT"{CUR DN}YR= ";BY$

8900 BI=DEC:BI$="":FOR R=7T00STEP-1:IFBI
«2 A R)THENBI$=BI$+" 0":GOT08920
8910 BI$=BI$+" 1":BI=BI-(2 A R)
8920 NEXT:RETURN

After you have typed the lines in, re-save your
assembler.

85

ASL
(A register Shift Left)

ASL causes a shift of one bit to the left. Here is a
diagram:

Carry 7 0

...--.111 ---+---t---I ----+-1-0
When you use this instruction a 0 enters bit 0, bit 0
enters bit 1, bit 1 enters bit 2, and so on, until bit 7
enters the Carry flag.

Here is an example showing a value before and after
an ASL instruction:

Before rotation:

Carry flag = 0, memory to be rotated = 10010110

After rotation:

Carry flag = 1, memory = 00101100

You should be able to see that the memory was shifted
one bit to the left and the Carry received the seventh
bit.

86

Here is a program that shifts the A register from a value
of 81 (10000001) to 2 (00000010) and sets the Carry
flag:

C0fHO LDA#$81

C!002 ASL

C003 RTS

C004 LDY#$03

C006 RTS

The above program sets the Carry flag because bit 7,
which was 1, was shifted into the Carry flag.

The next program shifts a memory location. The X
register holds the value before the shift, and the Y
register holds the value after the shift:

C0.00 LDX#$AE

C002 STX$FE

C0.04 ASL$FE

C006 LDY$FE

C008 RTS

87

LSR
(Logical Shift Right)

This does the opposite of ASL.lt shifts memory one bit
to the right. Here is a diagram of LSR:

o L---..-~I
Carry

The whole byte is shifted one bit right and a 0 enters
bit 0, while bit 7 enters the Carry flag. Here is an
example program that shifts the A register from a value
of A7 (10100111) to 53 (01010011) and sets the
Carry flag:

'2.0.00 LDAtt$A7

C002 LSR

C003 RTS

11 LSR and ASL both support the following modes of
addressing:

ACCUMULATOR (A REGISTER) ADDRESSING
(ASL, LSR)

ZERO PAGE ADDRESSING (LSRZZ, ASLZZ)

ZERO PAGE INDEXED ADDRESSING (LSR$ZZ.X,
ASL$ZZ.x)

88

ABSOLUTE ADDRESSING (LSR$ZZZZ,
ASL$ZZZZ)

ABSOLUTE INDEXED ADDRESSING
(LSR$ZZZZ.X, ASL$ZZZZ.x)

ROL
(Rotate One bit Left)

. ROL is exactly the same as ASL, except instead of a 0
entering bit 0, the Carry flag is shifted there. Here is a
diagram:

Carry 7 o

I I ~ I
~

As the diagJam shows, the Carry flag enters bit 0 and
the whole byte is shifted one bit to the left. Here is an
example program that shifts the A register from a value
of 81 (10000001) to 3 (00000011). Notice that the
Carry flag is set before the rotation.

C.000 LDA#$81

C002 SEC

89

C003 ROL

C004 RTS

The A reg ister ended up with 3, because the Carry flag
entered bit 0, the register was shifted left, then bit 7
entered the Carry flag.

ROR
(Rotate One bit Right)

This instruction is the opposite of ROL. It causes the
Carry flag to enter bit 7, the memory to be shifted right
and bit 7 to enter the Carry flag. Here is a diagram:

7 0 Carry

In the next program, FF (11111111) is rotated to 7F
(01111111), and the Carry is also set as a result:

C000 LDAttSFF

C002 CLC

90

C0.03 ROR

C004 RTS

W Both ROL and ROR support the same modes of
addressing as ASL and LSR.

It is time again for you to solve a problem.

Before a rotate or shift takes place the A register
equals 78 (01111000) and the Carry flag is set. After
the rotation the A register has a value of F1 and the
Carry flag is clear. Which instruction did I use: ROL,
ROR, ASL or LSR? ,

The instruction I used was ROL. Here is the actual
program I used:

C000 LDA**$78

C002 SEC

C003 ROL

(:004 RTS

If you didn't get ROL as the answer, but can under
stand your mistake, then continue. If, however, you are
unsure please re-read this chapter very carefully as it
covers a great deal in a small amount of text.

91

CHAPTER FOURTEEN
- LOGICAL
INSTRUCTIONS
Logical instructions change the bits of a byte. Unlike
most of the instructions we have studied so far, they
may store values in bit. This chapter explains every
logical instruction on the 6510.

AND
(AND Memory with the
A Register)
This does the same as BASIC's AND instruction. The A
register is the only register that can use the AND
instruction. The actual instruction compares each bit
in a number with each bit in another number. If two bits
are set (1) the result will have that bit set. Otherwise it
will be reset (0).

Here is an example:

10111010
10001011
10001010

92

The two numbers above the line are being ANOed. The
number below the line is the result. Notice that the
result has bits set that were set in both of the numbers
that were ANDed. When you use the AND instruction in
assembly language the A register always ends up with
the result.

Here is an example in which 45 (010000101) is ANDed
with CE (11001110):

C000 LDAtt$45

C002 ANDtt$CE

C004 RTS

The AND instruction is useful in turning certain bits off.
For example to turn bit 0 off you would AND the
number with FE (11111110). If you wanted to turn bits
7 and 0 off you would AND the number with 7E
(01111110).

Notes on AND
'" If the result is between 80 and FF the Negative flag

will be set.

'" If the result is 00 then Zero flag will be set.

'" The A register supports the following modes of
addressing for the AND instruction:

93

IMMEDIATE (AND# $ZZ)
ZERO PAGE (AND$ZZ)
ZERO PAGE INDEXED (AND$ZZ.x)
ABSOLUTE (AND$ZZZZ)
ABSOLUTE INDEXED (AND$ZZZZ.x) or
(AND$UZZ.Y)
INDEXED INDIRECT (AND ($ZZ.x))
INDIRECT INDEXED (AND($ZZ).Y)

ORA
(OR memory with the
A register)
This operates in the same way as BASIC's OR
instruction. Two numbers are compared bit by bit. If
either or both of the bits are set, that bit will be set in
the result.

Here is an example:

10111001
00100101

10111101

The number below the line is the result of the OR. OR
can be used to turn certain bits of a byte on.

Here is a program that turns the seventh bit of location
028A on:

94

C.0.0J2J LDA$028A

Cfl03 ORA#$80

C.0.H5 STA$028A

C0G8 RTS

The previous program turns the key repeat on,
because bit 7 controls key repeat, 1 = on, 0 = off.
The A register always gets the result of an ORA.

Notes on ORA
.. Ifthe result is between 80 and FF the Negative flag

will be set.

• If the result is 00 the Zero flag will be set.

", The A register supports the following modes of
addressing for ORA:

IMMEDIATE (ORA# $ZZ)
ZERO PAGE (ORA$ZZ)
ZERO PAGE INDEXED (ORA$ZZ.x)
ABSOLUTE (ORA$ZZZZ)
ABSOLUTE INDEXED (ORA$ZZZZ.x) or
(ORA$ZZZZ.Y)
INDEXED INDIRECT (ORA($ZZ.X))
INDIRECT INDEXED (ORA($ZZ).Y)

95

EOR
(ExclusiveeaOr with the
A register)
This is exactly the same as ORA, with one difference. If
the A register and the value it is tested against both
have the same bit set that bit will be a 0 in the result.

Here is an example:

11001011
01010010

10011001

The result is the number below the line. From the
example you should be able to see the difference
between EOR and ORA.

Here is a program that switches the screen colour
each time you run it.

C000 LDA$D021

C.003 EOR#$07

C.005 STA$D.021

C.008 RTS

The program works because each time it is run it
inverts bit 0, 1 and 2.

96

Notes on EOR
", If the result of an EOR is between 80 and FF the

Negative flag wi II be set.

", If the result is 00 the Zero flag will be set.

", The A register supports the following modes of EOR:

IMMEDIATE (EOR# $ZZ)
ZERO PAGE (ORA$ZZ)
ZERO PAGE INDEXED (ORA$ZZ.x)
ABSOLUTE (ORA$ZZZZ)
ABSOLUTE INDEXED (ORA$ZZZZ.x) or
(ORA$ZZZZ.Y)
INDEXED INDIRECT (ORA($ZZ.X))
INDIRECT INDEXED (ORA($ZZ).Y)

BIT
(Test bits in memory
with a register)
Unlike most of the instructions we have looked at so
far, this instruction does not affect registers or
memory. When you use this instrucUon the memory's
seventh bit goes to the Negative flag and its sixth bit
goes to the Overflow flag. The A register is then
ANDed with the memory, and if the resu It is 00 the Zero
flag is set. The result of this AND is not stored
anywhere.

97

Here is an example in which the A register is BITed
with location FB:

C000 LDX**$8A

C.002 STX$FB

C004 LDA**$89

C006 BIT$FB

C008 RTS

The BIT command has only two modes of addressing;
Zero Page and Absolute. It can usually only serve one
purpose which is to test the status of a byte of
memory.

BIT was the last logical instruction to be covered, so
we have come to the end of yet another chapter. Here
is a problem to test your knowledge of logical
instructions:

I wrote a program to lead the A register with A9
(10101001). It then performed a logical instruction
and the A register ended up with 08 (00001000). What
was the logical instruction performed in the program?

C.00.0 LDA**$A9

C002 EOR**$Al

C004 RTS

98

The program above is the same as the one in the
problem. As you can see the answer to the problem is
EOR# $A1. This diagram will show you how it worked:

A register = 10101001
data = 10100001

A register = 00001000

99

CHAPTER FIFTEEN
INTERRUPTS

-
There is yet another register we have not yet
discussed yet. It is called the PC (Program Counter).
The PC works independently, that is it does everything
on its own. The PC keeps track of which address the
computer is at. For example, if the computer was
executing an instruction at address COOO, the PC
would equal COOO.

Interrupts, as their name suggest, interrupt the normal
flow of a program. Every 1/6Oth of a second the
Commodore is interrupted. It is interrupted to update
the clock and scan the keyboard.

We can use this to our advantage. We can change the
interrupt so that it jumps to our routines every 1 /60th
sec. We can do this by changing the vector that the
interrupt jumps through.

A vector is two bytes which point to an address and
are in LOW-HI byte form.

The vector for this interrupt (IRQ-Interrupt Request) is
at locations 0314 and 0315. This vector normally
points to location EA31. When we change the vector
to point to our routine we must end our routine with
'JMP$EA31 '. This will ensure that the keyboard will be
scanned and the clock updated.

Here is a program to change the IRQ vector to point to
location C010:

100

ceee SEI

C001 LDAtt$10

C003 STA$0314

C006 LDAtt$C0

C008 STA$0315

C00B CLI

C00C RTS

Make sure you don't run this program before we write
a routine at location C010. You would have probably
noticed the SEI and CLI instructions in the program.
SEI sets the IRQ disable. That means that when the IRQ
flag equals 1, interrupts are ignored. The CLI instruc
tion clears the IRQ flag and enables interrupts.

Here is the routine that we will run using the IRQ
routine:

C010 INC$D020

C013 JMP$EA31

Now, after you have typed in the above, run the
assembly language at location COOO. The screen
should start flickering. This happens because the
screen is changing colour so rapidly that your eyes
can't keep up with it.

101

Note
While you are changing the IRQ vector, always set the
IRQ flag. After you have changed the vector you can
then use the CLI command to clear the IRQ flag.

BRK
(Force Break)
BRK, like IRQ, is an interrupt. There is, however, a
difference. BRK is an instruction. When you use the
BRK instruction, a jump is taken through a vector at
locations 0316 and 0317.

We can change the vector to point to any location
where we have a routine, but first we must learn more
about BRK.

When a BRK instruction is executed, it jumps through
its vector to yet another routine. It is then returned by
the RTI instruction, which stands for Return from
Interrupt. RTI is exactly the same as RTS, except it
returns from interrupts, not subroutines.

When the RTI instruction is executed the PC is taken
off the stack and it is incremented twice.

The fact that the PC is incremented twice means that it
won't return to the next address, but to the one after
that. That means that we must fill up the location after
the BRK. We can fill this location with a NOP
instruction. NOP stands for No Operation, this

102

instruction does absolutely nothing except take up
space.

This shows how BRK works:

COOO BRK (This causes the computer to go
through the vector.)

C001 NOP (This instruction is "skipped".)

C002 . . . (The computer returns to this instruction
after an RTI instruction)

The following program changes the BRK vector and
then uses the BRK instruction:

C0.0.0 LDA#$10

C002 STA$0316

C.0.05 LDA#$C.0

C0.07 STA$0317

C0.0A BRK

C.00B NOP

C00C RTS

Don't run it until you enter the following routine:

C.010 I NC$0286

C013 RTI

103

Each time you run the program at location COOO the
cursor colour will change. This happens because the
BRK increments location 0286, which holds the
current cursor colour.

There is no test for this chapter as I think you should
read it twice anyway. When dealing with interrupts you
have to be very careful.

You have now learned every command that the 6510
microprocessor offers. Now we get to the good bits;
learning how to use that knowledge.

104

CHAPTER SIXTEEN -
PROGRAM CREATION
By now you know the C64's machine code instruc
tions. There is only one more thing to learn, how to put
everything you know together to form practical
programs.

One of the best ways to learn this is to carefully study
completed programs such as the ones in this chapter.

We have two games programmes. Both games are a
mixture of BASIC and machine code. The BASIC part
sets up sprites and the like.

The first one is called PUB SQUASH. It is modelled on
the very first arcade game made in 1 976. The bat is
controlled with the F1 and F3 keys.

Here is the BASIC listing:

o REM PUB SQUASH BY ROSS SYMONS,198~
10 IFPEEK(49152)<>165THENLOAD"GAMEI (2)"
,8,1,1
20 GOSUBI000:REM SET UP SFRITES
30 PRINT"{CLR}":FOR P=1024T01054
40 POKEP,160
50 POKE960+P,160
6.0 NEXT
70 FOR P=1094T02000STEP40
80 POi<EP, 16.0

90 NE>::T

105

100 PRINT"{CUR DN}PRESS ANY KEY TO PLAY"
:POKE198,0:WAIT198,1:POKE251,0:POKE252,0
:SC=0
110 PRINT"{CUR UP} "
120 GOSUB300:REM PRINT SCORE ETC ...
130 POKE679,1:POKE680,255
140 SYS49152:POKE251,PEEK(251)+1
150 JFPEEK(251){5THENPOKEV,253:POKEV+l,5
0+INT(RND(1)*200)+1:GOT0120
160 GOSUB300
170 GOT0100
300 SC=SC+PEEK(252):PRINT"{HOME}{CUR DN}
{CUR L}{CUR L}{CUR L}{CUR L}{CUR L}{CUR
L}{CUR L}{CUR L}{CUR L}BALLS {CUR DN}{CU
R L}{CUR L}{CUR L}{CUR L}{CUR L}{CUR L}M
ISSED{CUR DN}{CUR L}{CUR L}{CUR L}{CUR L
}{CUR L}";PEEK(251)
310 POKE252,0:PRINT"{CUR DN}{CUR DN}{CUR

DN}{CUR L}{CUR L}{CUR L}{CUR L}{CUR L}{
CUR L}{CUR L}{CUR L}{CUR L}SCORE {CUR DN
}{CUR L}{CUR L}{CUR L}{CUR L}{CUR L} {
CUR L}{CUR L}{CUR L}";SC
330 RETURN
999 END
1000 POKE53280,0:POKE53281,0
1010 V=53248
1020 POKEV,253:POKEV+l,100
1030 POKEV+39,1:POKE2040,13
1040 FOR P=0T062
1050 POKE832+P,0
1060 POI<E896+P, 0
1080 NEXT
1090 POKE863,60:POKE866,60
1100 POKE869,60:POKE872,60
1110 POKE2041,14

106

1120 FOR P=0T059STEP3
1130 POKE896+P,31
114.0 NEXT
115.0 POKEV+21,3:POKEV+2,24:POKEV+3,l.0.0
1160 RETURN

If you are using cassettes to store your programs,
change line 10 to the following:

1.0 IFPEEK(49152><>165THENLOAD"",1,1

After you have typed out the BASIC program, SAVE it,
but don't RUN it. Now, using the assembler, type in the
following assembly language:

C00.0 LDA$C5

C002 CfttP#$4.0

C004 BEG/$C014

C.006 CfttP#$05

C008 BNE$C00D

C.00A INC$D0.03

C0.0D CfttP#$04

C.00F BNE$C014

C.011 DEC$D.003

107

C0l4 LDX#$20

C0l6 LDY#$20

C0l8 DEY

C019 BNE$C0l8

C01B DEX

C01C BNE$C0l6

C01E LDA$D001

C02l CMP#$36

C023 BCS$C02A

C025 LDA#$01

C027 STA$02A7

C02A LDA$D001

C02D C"'lP#$E0

C02F BCC$C036

C03l LDA#$FF

C033 STA$02A7

C036 LDA$D000

C039 CMP#$FC

108

C03B BCC$C042

C03D LDA#$FF

C03F STA$02A8

C042 LDA$D000

C045 BNE$C048

C.047 RTS

C048 LDA$D01E

C04B AND#$01

C04D BEQ$C056

C04F LDA#$01

C051 STA$.02A8

C054 INC$FC

C056 LDA$D000

C059 CLC

C05A ADC$02A8

C.05D STA$D000

C060 LDA$D001

C063 CLC

109

C064 ADC$07~7

C067 STA$D001

C06A JMP$C000

After you have typed it in, return to the main menu. Now
press 5. You should be prompted with a question as to
which filing system you are using. Enter D or T, D for
disk, T for tape. After this you will be asked for the file
name. Enter 'GAME1 '. Now you will be asked for the
start and end addresses of the program. The start
address is COOO and the end address is C062. Disk
users will have to rename the program with
OPEN15,8, 15, "RO:GAME1 (2) = GAME1 ".

When loading assembly language from BASIC you
should have extra parameters after the file name in the
LOAD statement. These extra parameters are 1 ,1 . This
loads a program back into the memory space it came
from.

Our second game pits you, a racing car driver, against
the track. The track is constantly changing, and there
is a different race every time you play. The F1 and F3
keys are used to steer your way through the course.

Here is the BASIC part of the listing:

110

1.0 REM**INDI 5.0.0**BY ROSS SYMONS, 1984
2.0 IFPEEK(49152)(>165THENLOAD"GAME2 (2)"
,8,1,1
3.0 GOSUB1.0.0.0:REM SET UP SPRITE
4.0 PRINT"{CLR1PRESS ANY KEY TO BEGIN":PO
KE198,.0:WAIT198,1
5.0 FOR P=96.0T01.02.0
6.0 POKEP,INT(RND(1)*253)+2
7.0 NEXT
8.0 POKE1.02.0,7:POKE1.021,16:POKE1.022,.0:POK
EV+31,.0
9.0 FOR P=l.063T01364STEP4.0
1.0.0 POKEP,16.0
11.0 NEXT
12.0 FOR P=1623T02.0.0.0STEP4.0
130 POKEP,16.0
14.0_NEXT
15.0 SYS49152
16.0 IF PEEK(l.022)=.0THENPRINT"{HOME}YAHOO
!! !YOU MADE IT! !":FORP=.0T02.0.0.0:NEXT:RUN
17.0 PRINT"{HOME1BAD LUCK, MAYBE NEXT TIME
":FORP=.0T02.0.0.0:NEXT:RUN
1.0.0.0 POKE5328.0,.0:POKE53281,.0
HH.0 V=53248
1.02.0 POKEV,3.0:POKEV+1,15.0
1.03.0 POKEV+39,1:POKE2.04.0,13
1.04.0 FOR P=.0T062:'READ A
1.05.0 POKE832+P,A
1.06.0 NEXT
1.07.0 POKEV+21,1:POKEV+28,1
1.08.0 RETURN
1.09.0 DATA.0,.0,.0,.0,.0,.0,2.0,.0,.0,2.0,.0,.0,2.0,1,
64,2.0,1,64,42,17.0,128,42,17.0,16.0
11.0.0 DATA42,17.0,168,21,85,84,42,17.0,168,
42,17.0,16.0,42,17.0,128,2.0,1,64,2.0,1,64
111.0 DATA2.0,.0,.0,2.0,.0,.0,.0,.0,.0,.0,.0,.0,.0,.0,.0
,.0,.0,.0

111

If you are using tapes to store your program, change
line 20 to the following:

20 IFPEEK(49l52)<>165THENLOAD"",1,1

Don't RUN the program, just SAVE it or it will CRASH.

Here is the assembly language listing:

C000 LDA$C5

C002 C.FrJP#$40

C004 BEG/$C.0l4

C006 CI'lP#$05

C008 BNE~C00D

C00A JSR$C095

C.00D CMP#$04

C00F BNE$C0l4

C0ll JSR$C09F

C.0l4 LDX#$20

C0l6 LDY#$20

C0l8 DEY

C0l9 BNE$C0l8

C0lB DEX

112

C01C BNE$C016

C01E LDA#$13

C020 JSR$FFD2

C023 LDX#$00

C025 LDA#$lD

C027 JSR$FFD2

C02A LDA#$14

C02C JSR$FFD2

C02F LDA#$0D

C.031 JSR$FFD2

C034 INX

C035 CPX#$18

C037 BNE$C025

C039 CLC

C0,")A PHP

C03B LDX#$00

C03D PLP

C03E ROL$03C0.X

113

C041 PHP

C042 INX

C043 CPX#$3C

C045 BNE$C03D

C047 PLP

C048 BCC$C058

C04A LDA$03FC

C04D BEG!$C05F

C04F DEC$03FC

C052 DEC$03FD

C055 JMP$C065

C058 LDA$03FC

C05B CMP~$0D

C05D BEG!$C04F

C05F INC$03FC

C062 INC$03FD

C065 LDX$03FD

C068 LDY#$26

114

C06A CLC

C06B JSR$FFF0

C06E LDA#$A6

C070 JSR$FFD2

C073 LDX$03FC

C.076 LD';'#$26

C078 CLC

C079 JSR$FFF0

C.07C LDA~$A6

C07E JSR$FFD2

C08l LDA$03FB

C084 BNE$C.087

C.086 RTS

C087 LDA$D01F

C08A BNE$C08F

C08C J rvtp$C.0.0.0

C08F LDA#$01

C09l STA$.03FE

115

C094 RTS

C095 INC$D001

C098 INC$D001

C.09B INC$D001

C09E RTS

C.09F DEC$D001

C0A2 DEC$D001

C0A5 DEC$D001

C0A8 RTS

After you have typed out the program, return to the
main menu. Now SAVE the program under the file name
'GAME2'. The start address is COOO and the end
address is COBO. Disk users will have to rename the
program with OPEN15,8,15, "RO:GAME2 (2) =
GAME2".

116

APPENDIX A

USEFUL
MEMORY LOCATIONS
The following memory locations are the locations I felt
would be useful to the beginner. For a complete guide
to the Commodore 64 memory usage buy the
Commodore 64 Reference Guide.

lOCATION USE

0014-0015 This is where BASIC stores integer
variables while doing calculations.

02B-002C Pointer to the start of BASIC text
(LOW-HI byte form).

002D-002E Pointer to the start of BASIC Variables.

002F -0030 Pointer to the start of BASIC Arrays.

0031-0032 Pointer to the end (+ 1) of BASIC arrays.

0090 Kemal input/output Status Word: ST.

00C5 Current Key pressed, you may load
registers with this value or find out
which keys are pressed. 64 means no
key has been pressed.

00C6 This holds the number of characters in
the keyboard buffer.

00F3-00F4 This pOints to the location of the screen
colour memory.

117

0277 -0280 This is the Keyboard buffer.

0281-0282 Pointer for the bottom of memory.

0283-0284 Pointer for the top of memory.

0286 Holds the current cursor colour.

0289 This holds the size of the keyboard
buffer.

028A If this is $80 the keys will repeat,
otherwise they won't.

030C Storage for the A register.

0300 Storage for the X reg ister.

030E Storage for the Y register.

030F Storage for the SP register.

033C-03FB Tape Buffer. Disk users may use this for
their assembly language programs or
sprites.

APPENDIX B

6510
INSTRUCTION SET
MCS6510 MICROPROCESSOR

ADC Add Memory to Accumulator with Carry
AND '~ND" Memory with Accumulator
ASL Shift Left One Bit (Memory or Accumulator)

118

Bee Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Result Zero
B~T Test Bits in Memory with Accumulator
IBMI Branch on Result Minus
BNE Branch on Result not Zero
BPI.. Branch on Result Plus
BRIK Force Break
Bye Branch on Overflow Clear
avos Branch on Overflow Set

ClC Clear Carry Flag
CLIO Clear Decimal Mode
CLJ Clear Interrupt Disable Bit
elV Clear Overflow Flag
eMF» Compare Memory and Accumulator
CPX Compare Memory and Index X
CIPY Compare Memory and Index Y

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

EOR "Exclusive-Or" Memory with Accumulator

INC Increment Memory by One
INIX Increment Index X by One
INY Increment Index Y by One

JMP Jump to New Location
JSR Jump to New Location Saving Return

Address

LDA load Accumulator with Memory
lDX Load Index X with Memory

119

lDY Load Index Y with Memory
lSIR Shift Right One Bit (Memory or Accumulator)

NOP No Operation

ORA "OR" Memory with Accumulator

FHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)
ROA Rotate One Bit Right (Memory or

Accumulator)
IATI Return from Interrupt
RTS Return from Subroutine

SBC Subtract Memory from Accumulator with
Borrow

SEC Set Carry Flag
SED Set Decimal Mode
SE. Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory

TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Pointer
TYA Transfer Index Y to Accumulator

120

ISBN 0-552-99128-7

00495

UK £4.95
NZ $12.95

*AUS $9.95

*Recommended
Price Only

