
Nuand

)

I

)

)

)

)

)

)

)

)

)

)

)

)

I

)

I

)

)

I

)

>

THE

SOFTWARE

PROTECTION

HANDBOOK

For the C-6U-

DAVID THOM

and

VIC NUMBERS

COVER and ILLUSTRATION

ACE CAMPBELL

(S) 19814 PSIDAC

ALL RIGHTS RESERVED

PUBLISHER'S NOTE

This book is written as an information guide for

those who wish to learn about and experiment with

software protection and duplication methods. It is

not intended to encourage theft or illegal uses of

copyrighted software.

All information in this book is accurate insofar

as can be determined by the authors and publisher. No

liability can be assumed for any inaccuracies which may

be inadvertently contained herein.

The user of this information must assume all

liabilities associated with its use. The user must

also assume all risk to person or property associated

with the use of the circuitry described in this book.

It is recommended that the user be technically

competent to determine the suitability of the

application. In no event shall the authors or

publisher be liable for incidental or consequential

damages in connection with the use of the information

in this book. ^~

C-64, VIC-20,and MONITOR$8000 are trademarks of ~

Commodore Business Machine, Inc. L

Romulatorf Tapeworm, PSIPACK and its program names

are all trademarks of PSIDAC. C

c
*** PROGRAM NOTES *** Q

Most of the Basic programs will require that you C
use CBM "shorthand" when typing to avoid excess memory (~ .

use.

Programs have been written for the Commodore 1541 /—

disk and 1525 printer. Many of the programs have been ^-
tested on a version of the MSD. The programs which (^

"talk" to the drive controller such as Diskpicker and ^

error analyzers will not work with MSD. The others may v_

work. r

c

THE SOFTWARE PROTECTION HANDBOOK ^

Copyright c 1984 by PSIDAC. All rights reserved. No _

part of this publication may be distributed by any L
means. The circuits and programs contained herein and £

on the PSIPACK disk may be copied for personal use. No

part of this book may be reproduced for publication. C

SPH-64 VI284 USD19*95 C
c

THIRD PRINTING O

2 O

Ike, pkiLoAOpy. of tki/L book e.mb/iace.A

thn.e.e. main

I, lo pnovide. btioad vLe.w of p/Lote,ctLon

Lclwa. and e,tkicA. th/ioug,k "LooLa. and

2. lo aZe-zit j£ouj tke, consume,il} of. ike.

"v La Lou a. cLiLdLe," natu/ie, of

p/iote,ctLon/p/tote.atLon bne.a,ke,nA., and tke,

pote,ntLal co&t of g,e,ttin$. caug,kt Ln tki/L

/LpL/iaL,

3- lo ne.move, /Lome, of tke, muA.te.nu.

&u/L/toundine^ tke, Aub'j.e,at wkiLe. p/ioviding, a.

UAe.fuL /ie.fe./ie,nce, doc.ume.nt.

*** CONTENTS ***

Preface

Pg. 6

Chapter 1 Introduct ion. Rules, Regulat ions, and Ethics

Pg. 7 for copying software.

Chapter 2 Tools. Descr i pt ion of tools provided in this

Pg. 21 book as well as other helpful tools for

break ing protected programs.

Chapter 3 Maps. C-6U and 15U-1 disk memory maps with

Pg. 47 explanat ions. Also special memory Iocat ions

and conf igurat ions used for protect ion

purposes.

Chapter 4 Protect ion Methods. Current and future

Pg. 71 techniques used to protect software. Covers

disks, cartridges and tapes.

Chapter 5 Tapes. Specific procedures, circuits and

Pg. 88 software to dupl icate tapes. Tapeworm,

Clonepiug, and Trelo.

Chapter 6 Disks. Procedures, and programs to copy and

Pg. 117 analyze protect ion on disk. DD-1, Fastback,

Superd irectory, D isk-Ed itor, T/S Analyzer,

Error Analyzer, Diskpicker, Re Iocate/Loader,

and Linkster.

Chapter 7 Cartr idges. Saving cartr idges to disk and

Pg. 17b tape. Romulat or system.

Appendix A~... CBM ASCI1-CHR$- SCREEN CODES Chart.

Pg^ 197

Appendix B.... Monitor use with Diskpicker.

Pg. 201

Appendix C..•. Autorun Booters- Machine and Basic version.

Pg. 202

*** CONTENTS CONT. ***

Appendix D.... Sector Byte identifications. Resetting

Pg. 205 Deleted programs or files.

Appendix E.

Pg. 207

Appendix F.

Pg. 208

Reset switch wiring.

GCR sector encoding explanations. Sector maps

in GCR with notes.

Append ix G.

Pg. 211

Appendix H.

Pg. 212

Products avaiIable from PSIDAC.

Interrupt routine techniques.

DISK NAME = PSIPfiCK (C)1984 VBN 3RD ED.

TYPE FRACK SECTOR

PRG

PRG

PRG

PRG

PRG

PRQ

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

17

17

20

19

I /

15

19

19

i /

16

26

20

20

28

19

28

17

19

17

17

17

16

16

19

17
1 -?
x /

19

19

19

16

14

14

19

19

17

8

X

12

13

19

2

9

Q

15

7

2

3

4

6

S

9

3

6

6

7

16

S

i

5

8

2

14

7

15

3

9

15

4

16

17

NAME BLKS

1PSIMAIN

2PSIMAIN

SUPERDIRECTORY

DISK-EDITOR

RELOCATE/LOADER

DISKPICKER

T/S ANALYZER

FASTBACK

1DUPDAC

2DUPDAC

ftDMACH

MACHRELO

3R0MULAT0R

2R0MULAT0R

ZMACH

ANALYMACH

SUPERhON64.yi

ERROR ANALYZER

20 NO HEADER

21 ERASE TRK

22 NO DATA

23 DATCHKSUM

SYNC WRITER

HELP

WRITE HDR

READ HDR

COPY HDR

CON HDR

ICON HDR

LINKSTER

TMACHRELO

TRELO

SYNC ONLY

1TRKFMT

TRACK CHECK

5

n 2

" "?

B S

0 7

. 2

B 20

" 10

B 7

5 17

9 17

" 1

a 1

8 4

a 4

a 1

* 1

u 1©

B 7
a -|

3 1
B 1

X

H 1

H !

B 4

8 1

" 1

B 1

• 1

u 5

" 1

■ 7

8 1

I

* 10

PREFACE Q

c
The writing of this book was undertaken as a result of Q

the large number of inquiries and strong interest developed

after the release of our first book "The Software Pirate's C
Handbook for the VIC-20" (SPH-20). This book will follow a r

similar format to the SPH-20 and, although each are complete

books in their own right, this book is designed as a Q
complement to SPH-20. *-

The SPH-64 will expand on both the philosophy and C

technique of duplicating software. In doing so we want to

dispel many of the doubts and fears that people often have C
about copying software. We also want to be sure that the r~

legal issues are understood so that we do not promote theft v~
or black-marketing of software which clearly are crimes. At (^
the same time we will show you how to protect your own *-

investments by making back-up copies of a variety of v_

"protected" forms of software. (2

This book will first cover our philosophy for copying, C
and specific legal considerations. In the following f~

chapters we will outline technical theory and concepts with

specific numbered procedures and the program listings at the (^
end of applicable chapters. In many cases you will be able *-

to go directly to the specific procedure for the type of ^
copy you wish to make. However for a better understanding £

or in case of difficulty in making a copy, you may need to ~

refer to the sections which give attention to theory and C
concepts. In this manner you should be able to gain an f-

understanding of the kinds of protection that you are ^~
encountering so that you can deduce possible (^
"countermeasures". ^

The ultimate purpose of this book is not to provide you £

with the "newest thing" in copy history, but rather, we will

try to provide you with primary tools and knowledge of C
protection systems. These tools are not candied for appeal s~

but are essential utilities which are themselves open and v-
unprotected so that you can use, study, and adapt them to a (~
continually changing market. Our experience has shown that ^~

"packaged" protection breaking software becomes obsolete as V-

fast as it is written, leaving the consumer with yet another C

hole to pour money into. Adaptive programs and user skills

are necessary to stay current. In light of this, we offer C
this book, not as the final word, but as what may be the s~

first technical reference document available on the subject. ^-
Together with the programs included, this makes a powerful £
analytical package for defeating protected software. ~-

We greatly hope that you find this book informative, /~

understandable, and USEFUL! j:

The authors.

CHAPTER ONE

INTRODUCTION

PIRACY...an issue so clouded with fear, intrigue,

and misinformation that you dare only to utter it in

safe, familiar company. The original title of this

book was to be "The Software Pirate's Handbook II", but

had to be changed after several advertisers flatly

refused to advertise a book of that title in spite of

the fact that the book was never meant to encourage

piracy in any form. The use of "Pirate" was intended as

a light-hearted reference to any copying process, and

to inspire a certain tendancy of humankind; the

attraction to things mysterious or secret.

Unfortunately, there is a great deal of hocus-

pocus and puffery being used to cloak the alleged

brainchildren of this new market. This reletively new

consumer product - software - is being hawked, with all

c

c

the vigor and claims of mysterious powers,like the C

patent medicines of earlier years. This technocratic ^-

rhetoric is replete with all the rumored pitfalls and ^

warnings of what may happen to you or your equipment if r

you try to exercise your documented legal right to copy C

the product. All of this has the detrimental end effect ^

of deluding the consumer into purchasing overpriced, *-

underperforming products. In our opinion this will £

most certainly undermine the strong beginning and C

curiosity the home microcomputer market now has. It is ^~

our goal to provide the public with some knowldge, *-

tools, and attitudes that will be a start in changing £

this situation. I see two futures for home C

microcomputing, one with software and computers ^*

accepted and used by many, and the other with software ^

and computers rejected as expensive "hyped" toys of a £

bygone fad. C

C
At this point we must separate the difference (]

between what is acceptable copying and what is Piracy. v_

Quite simply, the intent of the user will decide the

question. Copying for sale, distribution or other non- s~

personal uses is Piracy. Copying for backup, archival, (^

study, and other personal uses is not piracy. Loaning v,

your original to another person for temporary use is

not piracy. (If that ever were changed we may as well s~

burn the libraries and return to the Dark Ages!) Q

However copying an original you do not own is C_

unethical.

We should start to analyze this whole issue of ^

8 9
0

copying software by first classifying software amongst

the products with which it belongs. This will also help

to peel away some of the misinformation that surrounds

the issue. To get very basic, software is a set of

instructions which produce a desired effect on a

physical system. Software is written with letters and

numbers and can be embodied in many different forms

such as; verbal, magnetic recording, paper, solid state

and so on...just like this book or a piece of music or

a recipe for example. The fact is that the examples

that I have given are just as common or likely to be

found in one of the formats listed as software itself,

with the exception of solid state, which refers mainly

to ROM memory. The reason that books and other

typically printed materials are not commonly found in

this format is that they inherently contain vastly

greater amounts of data than the average program. Any

one of these also often cost more to produce, take more

expensive equipment, and more time to write than a

piece of software. How strange it is then that software

should sell for tens of times more money than these

other like products!

I suppose that the real mystique of software, and

the factor most capitalized on, is it's code-like

nature. Few people are professional programmers and

thus cannot really understand the mysterious language

of the program. Some might say that all that is

important is that the user be able to use the program

and that the degree of secrecy or protection applied to

the program is not a concern. We feel that this is a

9

little like a homemakers magazine saying that you

should only be able to eat the end result of a recipe, Q

not be able to understand the words and numbers which . *-

define the end product! If you only wish to eat and ^

care less about the ingredients, that is your r

perogative, but if you like to understand what you are Q

eating, there really should be no great mystery about ^

the ingredients.

When it comes to making a copy of a piece of

software many people get cold feet. In selling the r-

"Pirate's Handbook" for the Vic-20, we advertised "for Q

archival use only". We recieved many promises, signed C

statements and so on from our customers that they would ^

use it only for "archival" purposes. I am sorry that so r~

many people have been bullied into thinking that they £

might be required to make such a statement in the first C

place. I have yet to meet a person who felt the need to ^~

sign an affadavit before running up to the local *-■

grocery store to make a copy of a magazine article, C

pages of a book, recipe or whatever. Probably the only C

situation even near in comparison would be the fear of ^~

attempting to photocopy a dollar bill to try in a bill ^

changer, (it doesn't work!) Q

C
A recent manifestation of this biased thinking on r-.

software appears in a proposal being considered for Q

state law in Louisiana. The law, if enacted, would V-

mandate that the act of purchasing and subsequently

opening the package of a piece of software, would r-

inherently place the "opener" in a legal contract with Q)

C

10 O

c

the seller. The purchaser would be obligated to refrain

from copying, distributing, and whatever else they

throw in. I hope they have a lot of jail space in

Louisiana!

One of my favorite analogies which may help you to

put this whole ethical question in perspective is the

recipe analogy. Consider the fact that a recipe like

software is a set of written instructions which cause a

desired effect on a physical system. Like software, it

requires a sequence of steps to be performed in the

correct order in real time. Both require specialized

hardware to perform their respective functions. As with

computer hardware, a complete cooking system easily

costs thousands of dollars. Developing a unique recipe

requires specialized skill as well as a great deal of

time.

Some of the major differences are a result of the

general perception of a recipe as an ordinary everyday

commodity often given away and the perception of a

program as a highly valuable and unfathomable product.

It is easy to believe that a great deal more knowledge

and effort goes into a program than a recipe. However

there are a lot of professionally trained chefs who

would argue otherwise! Judging from some of the

"professional" software that I have seen marketed, I am

quite sure that they are right!

If you can then, consider that these diverse yet

similar copyrightable literary forms should be given

equal treatment and respect when we think of copying.

11

c

c
Are womens clubs and church groups that exchange (^

recipes (many of which are blatantly copied from the ^-

pages of magazines) commiting an act of piracy? ^~

Probably they are in the strictest sense, but who r

really cares!? It doesn't appear that their doing so C

has seriously affected the market. If taken case by ^~

case, each category of information market has a similar ^

situation. For each of these markets there is some r

form of equipment and general knowledge of methods for C

making copies of the copyrighted product. Your right to *~

own and know these facts has never really been -.

disallowed. Otherwise, tape recorders, photocopy r

machines, and probably even cameras could have been Q

outlawed due to their potential for illegal use in ^

copying protected information. Each of these markets _

also face the real threat of blatant piracy by those r

who would profit by use of copy technology. The current (^

misunderstanding of the ethical question of copying ^~

software is not a result of a factual difference in the

nature of software but rather a simple difference in r~

the typical perception of software versus more commonly (J

understood information like a recipe. v-

C
Historically software has been a closely guarded C

secret of the company owning it. This results largely ^

from the fact that prior to 1980 software had no legal *~

form of protection. It did not fall under patent law or C

copyright law. Also most software was for larger C

businesses as home use was not that extensive. ^-

C
Naturally the market was limited and the price ^

necessarily high. As a result companies were rightfully C

12 C

C

worried about being ripped-off by those who might copy

their software and sell it without fear of punity. This

unfortunatly, happened too often. More recently for

example, Franklin computer copied many versions of

Apple computer's operating system. The uncertanty of

the new laws protecting software prevented Apple from

stopping this apparently obvious case of piracy.

Although the two companies finally came to an out of

court settlement/ the 3rd U.S. Circuit Court of Appeals

in Philadelphia ruled that the software was protected

under current copyright law. "Piracy" of this form

could quite literally, bankrupt a company. The

operating systems of a microcomputer are closely linked

to the hardware design of a system. A company stands to

lose the fantastic amount of investment that it takes

to set up production and marketing if unscrupulous

persons pirate these software systems to install in a

competing computer. In effect, this creates a limited

monopoly for the original manufacturer. If a competitor

wishes to make a 100% compatible alternate, the

operating system he uses must be identical in

performance^ For technical reasons, this is virtually

impossible Xo do without copying the operating system!

Although legal protection for ROM based operating

systems has -been upheld in court, the issue is long

from being settled.

The heart of the copyright intent is that the

specific expression of an idea is copyrightable but the

idea is not. Ideas must be free of legal encumbrances.

However* if the idea can only be expressed in one way

13

without losing its meaning/ then the ability to protect

that idea becomes very limited. The same sort of thing Q

is true when product names become so common as to be v-

considered generic. Legal protection is lost. Thus I

can talk about crescent wrenches and skill saws r

without worrying about the legal ramifications. There (^

is not a clearly defined legal answer available for (~

this problem with operating system software. The real

answer may lie in the intent of the person making the /~

copy. Q

c
From another viewpoint, an applications package C

which may take a month or so for a single person to C.

write and an average investment to produce and market ^

should not be priced as the basis for a lifelong r-

income. This does not mean that it should be stolen and £

distributed according to some modern Robin Hoodian C

mentality. It does mean that the over-pricing of ^-

applications software creates a climate where such ^~

piracy is going to be common. If the price better £

accommodated the market, the tendancy of people to C

distribute copyrighted software would greatly diminish. ^~

Protection of software is clearly not the answer. v-

I would not even recommend that anyone buy software if

the protection methods seem too strong. The ability to r~

make backups and expect a reliable and compatible Q

product are rights of a consumer. As later chapters v_

will bear out, some of the more elaborate protection

schemes can prove rather unreliable. Often they are s-

obvious encumbrances to smooth loading and running of a Q

14

program. Furthermore, in the case of disks, they often

are not compatible with other brands of disk drives.

The real clincher is that Commodore, or any other drive

manufacturer, reserve the right to update their drive

hardware/software at any time as needed. Protection

schemes which operate beyond the defined specifications

of the system would not necessarily work on an

"updated" system! The drive manufacturer has no

obligation to try to figure out what has been done

beyond the original accepted specifications. If you

don't believe this is a real problem, try talking to

anyone who has bought "Commodore compatible" hardware.

The difficulty of backing up highly protected

software places you in the vulnerable position of

facing complete system crash and resulting data loss.

In many cases I can think of it would be totally

unacceptable to even run a program without having a

backup accessible within minutes. Although failure of

the storage medium is more common with tapes and disks,

it is still possible with cartridges. The major

problems with cartridges are that a lot of wear and

tear is placed on the port by constantly changing

cartridges. As anyone experienced in failure analysis

could tell you, the weakest link in many electronic

systems is the mechanical interface such as edge

connectors. I have seen them become loose, bent,

intermittent and who knows what else. One popular

solution has been to use expander boards with

switchable slots but these are quite expensive and

15

c

c
still limit the total number of cartridges you may use r

without switching. Our solution is to use an external Q

RAM memory which can be loaded from tape or disk and ^-

then emulate the original ROM cartridge. This way, the ^_

RAM unit is left in the computer and does not interfere r

with any other operation. When desired, the cartridge C

program which was previously saved on disk or tape can ^

be loaded and reloaded as needed. Your cartridges can ^

be put away safely and be used only to make backups. Q

The obvious problem with this system is that people who C

donft own the cartridge could illegaly obtain copies of ^

the tape or disk and use the program without purchasing *-

it. We strongly discourage this. It is an illegal act Q

of piracy. Chapter 7 gives specific details on this C

system. ^

The point of importance is that without a backup C

copy of each program you endanger yourself needlessly.

Feeble attempts of software houses to remedy this by r-

offering backups if your original fails, simply do not (^

solve the problems. This is true even IF the backup v.

policy is quick and promises a replacement within say

24hrs. What happens 'if the original company goes out of r-

business? What if the user faces a deadline or is in Q

the middle of a presentation? In some cases a delay of C

more than some minutes can be devastating. In our

opinion there is only one rule and all should take r-

heed: Only a fool runs a program without a backup but Q

it is a fools fool who runs a program without a backup C

of the backup! For those really important programs we

recommend that backups be stored in two different s-

16 C

C

locations. In one case, one of our programs was

recovered from a disk which had it's protective cover

cut away and had been thrown in the trash - after being

passed around to show how they were constructed! One

of the first things you should do especially with a new

disk or tape is to make a backup.

It is likely that you may hear about a "great"

program but find out it is uncopiable or very hard to

copy. We ask? are you willing to suffer the

consequences of a failure with no backup? Is it then,

really such a great program? The truth is that such a

program rewritten with no protection is much more

valuable and marketable. The irony is that selling a

program with significant modification may not even BE a

violation of copyrights. "Reverse engineering", an

accepted industrial practice of distilling the

underlying principals of a product and then marketing

your own version, has always been a common source of

"improved" products.

Another issue which creates a problem for those

who purchase software is the lack of documentation of

the program itself. Not all people want or care to try

to modify a program to suit their application but for

many the original program may be ill suited to their

needs. These people have a legitimate need to be able

to list and modify the program. Without adequate

documentation, this is nearly impossible. Our

philosophy is that if you buy our book we are happy to

give you our listings and you may make any changes that

17

c

c
suit your special wishes. We feel that all software s~

should be sold with listings and documentation or that (^

they should be available for a reasonable price. The v_

ability to customize is a unique feature of software _

which should be capitalized on instead of hidden. Some r

products are naturally customizable some are not. The Q

custom car parts industry has made a fortune on this *-

very fact. Occasionally a potentially valuable piece of ~

software is totally useless to a person because of the r

inability to modify it. £

C
The consumer has a legal right to expect a product C

to perform the "normal" functions associated with that C

type of product. In legal terms this is known as the

merchantability of a product. Imagine that you buy an r-

"all purpose" fertilizer for flowers. After reading all £

directions and using it, your roses do great but all C

your other flowers die. Let's say that after talking to ^

your friend, a chemist, you find that it would work on s-

other flowers - IF you had specialized knowledge of the (^

chemical compounds used and how they could be applied C_

successfully to other flowers. A lawyer would probably ^-

tell you that you have legal grounds for recovery s-

because the product is not merchantable as an all (~

purpose fertilizer without sufficient instructions on C

how to use it successfully, and any "normal" ^

application does more harm than good. In the s~

microcomputer business, there are many programs sold (^

with the implication that they will do many things. C

Only after purchasing might you find out that it would ^~

require specialized knowledge or even modification to ^

18 C

C

make it work to reasonable expectations. Since backup

copying of owned software is a legal right I wonder if

a copy protected program itself violates the principal

of merchantability. As long as we have that right it is

reasonable to expect software to be copyable.

Time and again various industries have gone

through this "secrets" game only to find in the end

that a large number of the consumers have a right,

need, and demand to know what's inside. Limiting or

protecting this information can only limit the

useability of the equipment and also limits the growth

of add-ons which make the original product more useful.

Software houses would certainly view this as opening

the door wide to the pirates. Already terrified by loss

of profits due to piracy they find more and more

elaborate and costly protection to be the answer. Yet

this is the very thing that makes the market so

attractive to the pirates in the first place! Take away

the protection and high price, and who would need a

pirate anyway!?

In strict legal terms, software has been protected

by U.S. copyright law since 1980. Anyone who makes a

copy of software and gives it away or sells it is in

direct violation of these laws and prosecution is

available. Other information forms have survived very

well with copyright law as the only means of

protection. The pricing has been set by the accepted

method of market determination and copying and

exchanging amongst small groups or by friends has never

19

c

c
seriously affected the market. The thought of a ladies (~ ■

sewing circle being sued for exchanging patterns seems C

ludicrous because it is. Large scale piracy does not ^~

occur as a result of grocery store photocopy machines ^

because the original is priced low enough that it C

wouldn't be profitable. With the areas of legality C

clearly defined, no one should feel intimidated or ^

afraid to make a copy of software for backup purposes. ,-

The existance of copying hardware, software, and C

information should be no more threatening than a C

photocopy machine or tape recorder and the knowledge of ^-_

how to use them! *~

C

C

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

20 C

c

*** CHAPTER TWO ***

TOOLS

Without a doubt the C64 is a powerful computer and

a very versatile tool. However, the first time that you

try to save a protected program you might suddenly feel

like a child given the task of decrypting a classified

and encoded top-secret document. A myriad of questions

immediately present themselves. Where do you start?

What kind of program is it? What methods of protection

have been applied? Is there any way to list it? Where

does the program reside in memory? And so on... It is

often difficult to decide which questions to ask in the

first place!

It would be wonderful if someone made a super-

copier that would copy any software with the ease that

a photocopy machine will copy this page. Unfortunately,

there is just no way that a single answer will cover

21

c

c
the wide variety of possibilities available for copy (^

protection. The only way to really be equipped for the v_

task is to have various specialized tools. Most of the

jobs cannot be accomplished with only one of the tools s~

but will require skilled application of many different (^

tools. The key here is skill. The most effective tool C

you can posses is a sound knowledge of how software can

be protected so that you can make a meaningful analysis r~

of each situation and apply the correct tools with the (~

greatest amount of skill. C

C

In this chapter we will concentrate on C

familiarizing you with the kinds of tools to use on ^-

three categories of software media. These are, ^-

cartridges, disks, and tapes. Within these categories (~

we will define "levels" of protection as they apply. C

The descriptions of tools will aquaint you with the ^

general applications of the tools but we will leave out _

the specifics of use until the later chapters, which s~

will list the procedures in a very detailed fashion. If (~

breaking protected software is all new to you, this *-

chapter should give you a good general understanding of -.

what you are up against and what tools are available r~-

to help you. This should also help you develop plans of (~

attack when you come up against a protected program ^-~

that you need to back-up. ~

—Cartridges—

C
Cartridges are unique in that they are a form of £

protection in themselves. That is to say that the very C

C

22 C

c

features of the cartridge are what protect the program

that it contains. The fact that the computer is

designed to autorun cartridges makes it difficult to

break into and list the program or save it to another

format. Since most people don't have PROM memory

burning facilities, they cannot expect to make a "copy

cartridge" from an original cartridge. Furthermore, the

cost of PROM burners and circuit boards to implement a

copy cartridge would make it expensive anyway.

Actually cartridges are not that prone to failure.

The simple excuse of making a duplicate cartridge for

back-up purposes really isn't realistic in view of PROM

making costs. We have developed a method that can be

used to transfer cartridge programs to tape or disk and

then run in a RAM expander! This makes the process very

cheap if applied for many cartridges. With this system

it becomes desirable to have back-ups for all

cartridges you own. After all, if the cost is a little

disk or tape real-estate, why not have a copy? There

are good reasons to want a tape or disk copy, such as

avoiding the hassle of continuously plugging and

unplugging cartridges when changing programs. Making a

modification of a program residing in a cartridge can't

be accomplished unless the program can be put into RAM

and run in RAM. A single disk can contain a whole

library of programs while the cartridge holds only one.

Having drawers full of odd shapped cartridges is a real

pain. If, for example, you need to transport a library

of cartridges to work each day, you would need an extra

lunchbucket! But with your cartridge library on disk,

23

c

c
your software is very transportable. Q

C
Remember that all these limitations in the /-

cartridge medium are mostly to make copying less (^

likely. It would be much cheaper for a software house v~

to sell all of it's software on either tape or disk.

Magnetic media does not require a circuit board or r-

specially manufactured circuits and enclosures. Q

Cartridges exist largely because of the fear of piracy. C

As is often the case, those with legitimate needs are

penalized by actions of those with illegitimate greed. s~

When the C64 is powered up one of the housekeeping ^

chores that it does is to check to see if a cartridge r

is plugged in. Part of this is accomplished by two pins C

on the cartridge edge connector which are identified by ^-

the names GAME and EXROM. The job of these pins is to ^

control the way the memory is configured on the C64 so r

that the computer will allow Basic, Kernal and ROM to C

be located as necessary. The initialization routines ^~

also check memory locations where a cartridge resides _.

to see if an access code is found there. These codes r

then tell the computer that there indeed is a cartridge (]

and they pass information to the computer so it knows ^

where to start running the program from. A program _

doesn't need to start at the beginning of the cartridge r

memory to run. Most of the time the entry point is not Q

at the beginning but further on in cartridge memory. ^

Following is an Interrogate dump of the first several ^

bytes of a typical ROM cartridge. Notice the ASCII r

(reversed) display which shows the access code CBM80. C

C
24 C

c.

The first four bytes before this code give the cold

start and warm start addresses respectively.

CS $8394 WS $83A0

34 83 R8 83 C3 C2 CD 38

38 82 BB 5R 30 5F EE 3D

A3 C0 C8 80 57 88 57 EE

„•- 39182l»flPI»W 57 48 81 C4 04 40 13 CR
CR 4R 13 48 C4 84 81 C8

—ROMULATOR—

Romulator is a cartridge copy system that comes in

three versions. One for the VIC-20, one for C64 tape

systems and one for C64 disk: systems. The C64 versions

are identified as 2Romulator for disk and 3Romulator

for tape. In this book we will refer to the C64 system

as Romulator and leave the numbers out except when

needed for specific procedures etc. Romulator consists

of a special program which moves the contents of the

cartridge then saves it to the magnetic medium being

used. A special Romulator circuit card is used which

allows changing the configuration of the GAME and EXROM

lines thus preventing auto starting. This card is used

with both the tape and disk versions of the C64

software. The circuit card also has a socket for an 8K

or 16K RAM expander. The RAM expander is the key since

the tape or disk program can be downloaded to the RAM.

The RAM is made to look like a ROM cartridge by the use

of a write enable line which prevents erasing of the

program by software means. Finally, the RAM location

can be changed so that it will reside anywhere commonly

25

c

used by commercial cartridges.

The general process is to use the Romulator

circuit card to determine the normal cartridge s-

configuration, next set the switches to defeat the £

autorun and then to copy the contents of the cartridge C

to the selected magnetic medium. The Romulator card *-

with RAM is left in the computer. It does not *-■

interfere with any other operation. The cartridge can C

be stored away safely. When desired to run the program, C

it is downloaded into the expander RAM which is then ^

write protected and switched into the configuration for *-

the cartridge being run. A system reset button on the Q

Romulator card is then pressed to force a cold start. C

Since the computer will see the cartridge configuration ■

and cartridge codes, it will run the program as though *-

the cartridge itself were plugged in! This can be done C

with 8K or 16K cartridges. To date we have not found C

one that it will not work with. Chapter seven lists the ^

exact procedures to follow as well as the programs and ^

circuits needed. r~

C
This book has been written with the aid of Quick r~

Brown Fox word processor which we run on a Romulator (^

system. The cartridge is safely stored in a drawer. It C_

is very nice to be free of the anxiety of having some

unexpected "glitch" destroy the cartridge and put us r

temporarily out of business. Also gone is the fear that (^

an overworked edge connector will become intermittent V_

or fail altogether. If you decide to set up a Romulator

system for your computer you will find it a valuable /-

C
26 C

c

accessory.

—DISKS—

There are a wider variety of protection schemes in

existence for disk than any other medium. It is

understandable that software houses have developed so

many forms of protection since an unprotected disk is

so easy to copy. Many people would be tempted to avoid

purchasing by copying from a friend, and a few might

even try to make a profit by selling pirated copies at

a much lower price. The protection methods we will

cover will help you to protect your own disk software

and to break protection when you need to make a back

up of one you have purchased. As a consumer, you should

avoid purchasing "super protected" disks because of the

limitations and insecurity they force upon the user. If

the super protected program is the best thing around,

you will have to weigh the disadvantages versus the

quality of the software. You might perhaps settle with

purchasing a second original if you need maximum

protection from the eventual disk crash. When

appropriate, we will spell out specific limitations and

problems to normal function introduced by some forms of

protection.

We will define "levels" of protection to make our

discussion easier. These are not in line with any

"standard level", but are merely to give us a yardstick

in comparing different kinds of protection. This may

also help you in classifying programs that you wish to

copy so that you can select the most appropriate form

of "attack".

27

c

—PROTECTION LEVELS—

Level 0 Unprotected. Can be saved by loading and

saving. Contains basic only or basic loaded machine Q
language. s-

Level 1 Contains auto-run feature and a STOP £

disable poke in program. Doesn't allow saving but can r

be direct copied or Relocate/loaded and saved. (see l_
copy systems; Direct Duplicator-1 [DD-1] and r-

Relocate/Loader) ^

Level 2 Contains "bad sector" errors on disk which s-

prevents most commercial disk duplicators from reading ^
past. Creates "shuts off in the middle of copying" C

syndrome with many disk copy programs. >Iay also contain _.

LI techniques. DD-1 will copy these. C

Level 3 Same as above except program will not run ^
without error sectors being put back into the copy. Q
Requires Error Maker program or modification of program s-

to take out sections which "look" for bad sectors. ^-

Level 4 This is what we will call "advanced" error _

protection. It involves altering the parameters of the C
normal drive formatting and/or writing. This will r

produce symptoms such as extra tracks, specially ^
encoded data or format info, modified headers, "data C
under errors", and so on. The so called "half tracking" ^

is one of these non-standard writing techniques. This ^
seems to be the direction of newer software and can Q

create severe compatibility problems. Diskpicker can be _

used to both analyze and develop routines to break C
anything that fits into the altered DOS category, as /-

that is its primary purpose. ^-

Level 5 Disk requires hardware module to operate. ^

"Dongle" protected. Requires Dongle synthesizer or ^-
modification of program so that it does not look for f~

dongle. This is a "valid" form of protection if it

allows backup disks to be made. It will minimize C
"Piracy" while giving the owner crash protection. r-

C

c

This listing does not attempt to cover every

possibility under the sun but it does cover the more s-

common methods that we have encountered. For those Q

levels which require modification of the program, you v-

will need an understanding of how to disassemble

programs to make the necessary changes. A full fluency r

C
28 C.

c

in machine language is beyond the scope of this book

and really is an aquired skill. We will try to define

the process however to give you some chance. Your own

interest in going further is up to you. Level 4 is

probably the one that you should avoid purchasing in

the first place If you can find a similar program of

similar quality without the protection. Don't be fooled

though/ a highly protected program has no relation

whatsoever to the quality of the program. I have seen

public domain programs that are significantly better

than expensive commercial versions!

Attacking level four protection can be done with

Diskpicker. The error making and header modifying

routines we give will get you started in this

direction.

— WHOLE DISK DUPLICATORS —

Direct Duplicator-1 was written by Vic Numbers

and is listed as a part of this book. PSIDAC holds

copyrights on this program. DD-1 overcomes many of the

limitations of other "whole disk" copiers. This is

especially true for protected disks containing errors

which will stop some copiers. Other copiers may

attempt to "second guess" where the errors might be and

do those sections last, which does not often work. DD-

1 does a sector by sector duplication of every track

and sector on the disk. It will transfer the contents

of bad sectors but cannot reproduce an error. Most

duplicators that can get through the errors can't

29

duplicate the errors so programs called Error Makers

are needed. These programs and means of clearing errors

will be described later. DD-1 has a version for single

disk owners and a version for dual disk owners. The (^

single disk version (1DUPDAC and 1PSIMAIN) will require C

swapping disks. The dual disk version (2DUPDAC and

2PSIMAIN) is essentially a hands free system. Both in

versions will print the type of error on the screen or Q

optionally to the printer/ if the original contains V_

"error protection". This is a powerful feature that

gives needed information if you have to reinstall s~

errors or modify the copied program to make it run. £

c
One very unusual feature is a "fast write" mode r~

which tests each byte of data on a sector and skips Q

over any sector which contains normal format data but ^

no program data. This will in no way affect the

validity of the copy but it can cut the time to make a s~

duplicate almost in half. Another really handy feature Q

C

read. The idea is that once DD-1 has read a buffer

is the ability to write more than one copy per original

c

c
full of data (150 blocks) that this data can be written r-

to more than one disk. This saves the extra read which Q

would be redundant since the buffer still contains the v_

data until a new 150 block section is read. Thus making

c
many copies of the same disk can be accomplished at a r~

very fast rate. This is very handy for disks of (^

programs that you have written and wish to distribute. v-

Generally, if the original contains more than three

programs and you wish to make several copies, you will r

save time by using the fast write mode and multiple Q

30 O
c

c

copy features of DD-1. Since this system is written in

machine language (DUPDAC) with a basic controller

(PSIMAIN) speed and flexibility are natural.

DD-1 is simple to use and usually overcomes

protection on the original. Since the whole process is

very direct, you will avoid spending the time required

to get an understanding of what is being done on the

disk. It is best for the lower levels of protection.

There are several other noteworthy copier programs

on the market which you might find especially suited to

your needs. We will point out some of their advantages

and limitations from our viewpoint. Clone Machine is

the trade name of a set of programs released by Micro

Ware, of Butler, New Jersey. It offers a whole disk

backup program along with other programs similar to the

variety we give you in chapter 6. We will cover the

other types of tools later in this chapter. The Clone

Machine disk duplicater program provides a "graphic"

display indicating the reading and writing of sectors.

The version we used locked up when an error was

encountered. This meant writing down track and sector,

then returning to menu options and then trying to

continue the copy process from the point ended. We

found this extremely cumbersome compared to the

automatic error skipping features of DD-1. The whole

menu process can sometimes be tedious since typically

you will be doing the same thing over and over. It is

tiresome having to keep telling it that you1re using

device 8 each time!

31

c
Clone machine uses a 120 block buffer which allows ^

reasonable copy times for backup purposes. Uses for C

multiple copies or high speed are not supported, and C

copying an original with lots of protection errors ^-

would be frustrating. In most respects though. Clone *-

Machine does what is says it will and can be useful. C

The Unguard error writer seemed to function well, it C

provides a simple direct way of writing errors back ^-

onto a disk. The problem will be mainly one of ^

obsolecence as new forms of protection hit the shelves. £

Our biggest complaint would be the price. At $49.95 it C

is hard to justify owning for the value obtained. *-*

Another good copier is Supercopy by Richvale ^

Telecommunications. It is relatively fast and has a

nice menu display. Once again, the program is locked up /-

giving you little opportunity to modify it and keep it £

current with the changing forms of protection. We ^_

believe a copy program should be open so that as new

forms of protection come along you can add routines to r-

accomodate them. (]

c

c
There are several very new entries to the market Q

(mid 1984) that you may wish to consider. The major C

features are that they provide fast copy times (4 ^

minute average) and automatic error writing including ^

the "current popular errors". The copy protection used Q

by these programs does indicate their inevitable C

obsolescence however. In the mean time though they are

certainly "state-of-the-art"! Among those we have tried *-

c

32 c
c

or that have come well recommended are "DI-SECTOR" from

Starpoint Software of Gazelle, California, "GEMINI 2.0"

available from Computron Business Systems of Portland,

Oregon, and "ULTRA COPY" from Ultrabyte of Dearborn,

MI. There may be more good copiers hatching than there

are good programs to copy!

We have included two programs which will greatly

simplify and speed up copying disks with several

errors. The programs are T/S Analyzer and Fastback. T/S

is used to examine the disk sector by sector and log

any errors found. The check is made out through

track number 35. This log can be saved on

another disk for later use or simply examined to see

what you are up against. The primary purpose for the

log is to tell Fastback which sectors to copy and which

ones to skip. Any unused sector or a sector containing

an error are skipped. This results in a very fast copy.

The original time spent to make the error log is spread

over the total number of backups that you make.

Fastback need waste no time repeating the error

checking on each copy as does DD-1 and most other

copiers. Another note is that the logging routine which

takes about 10 minutes can operate unattended unlike

the copier programs themselves. After doing the

Fastback you can go back with an error maker and

replace the error sectors as needed, or remove the

sections of the program that look for the errors.

There are several copy programs "floating" around

that you may run into.We have commonly found that the

whole disk copiers usually have no fast or multiple

33

c

features and often are awkward in handling errors. ^-

Although DD-1 cannot solve every copy situation, we r

have tried to make it economical to own and easy to C

use. T/S Analyzer and Fastback are especially handy if *^

c
you intend to make several backups. T/S Analyzer by ^

itself is useful if you want to find out what kind of r

errors you are going to find on a particular disk. (See C

listings chapter 6) ^-

c

Contrary to how it may sound, a Dumb copier is v~

probably the most effective way to duplicate "smart"

protected disks. The principle of dumb copying is that r-

data is fed from one drive to another without going Q

through the logic of the system. This is basically a V.

dubbing process. The effectiveness of protection in

the first place relies on the fact that your disk drive ^

has a computer inside that decides which data from the £

diskette is good, which is bad, and which is ugly. v_

The dumb copier could care less, it writes what it

sees! We have not heard of any system of this type yet ^

on the market for low end users. We are currently Q

considering developing and marketing such a system. At C

this point a lot depends on the market interest.

— OTHER TOOLS — ^
C

Superdirectory is what its name says it is. When C

you run into programs which cannot be copied by whole

disk means and when you load them and they take off ^

running... it's time for Superdirectory. As you know, Q

the Load"$",8 tells you whats on the disk but it C

doesn't tell eveything! Superdirectory will tell you a

34 c

c

SUPERDIRECTORY

DISK HfiME = PSIPRCK VI C<84>

TYPE TRRCK SECTOR NfiME

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PPG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

DEL

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

PRG

^Rfi

PRG

PRG

PRG

PRG

17

17

19

13

17

16

19

17

17

16

20

20

20

20

19

20

20

19

17

17

17

16

16

17

19

19

19

19

13

16

14

14

0

1

0

13

19

2

9

2

15

7

2

3

4

6

8
9

12
4

6

7

16

0

1
a

6

5

14

7

15

3
9

15

ELKS

IPSIMfilN
2P3IMRIN

SUPERDIRECTORY

DISK-EDITOR

RELOCfiTE/LORDER
DISKPICKER

T/S RNRLVZER

FRSTERCK
1DUPDRC

2DUPDRC

fiDMRCH

NRCHRELO

3R0MULRT0R

2R0MULRT0R
ZMRCH

RNRLYMRCH

MONITOR*8000

ERROR RNRLVZER

20 NO HERDER

21 ERRSE TRK

22 NO DfiTR

23 DRTCHK3UH
SYNC URITER
HELP

NRITE HDR

RERD HDR

COPY HDR

CON HDR

ICON HDR

LINKSTER

TMRCHRELO

TRELO

2

2

8

7

2

17

8

7

17

17

1

1

4

4

1

1

17

7

1

1

1

1

1
4

1

1

1

1

1

5

1

7

HEX.RDD

0801

0801

0801

0801

080 1

0301

0801

0801

CQ00

C000

C000

0348
0R00
MUlCilH
UnWU

C000

CS40

0101

0801

3300

3300

3300

3300

3300

0801

3300

4300

3300

530O

5300

0801

1F48

. DEC.fiDD

2049

2043

2043

2U49

2043

2043

2043

2043

43152

43152

49152
340

2568

43152

51264

257

2043

13856

13056

13056

13056

13056

2043

13056

17152

13056

21248

21248

8088

2B43

35

c

c
lot about whats on your disk so that you can decide how Q

to handle each program and file. C

C

On the opposite page is a sample printout of a C

Superdirectory listing. Note that as well as the name

and number of blocks, you are also told the starting s-

track and sector for each. Note also that DELeted Q

programs are listed. Until they have actually been v_

written over/ they are still on the disk. This can be

used for protection since one normally wouldn't even /r

know they were present! Appendix D shows how to restore Q

scratched programs. The most valuable feature of v.

Superdirectory is the second section which lists each

program by its starting track and sector and gives the r ,

hex and decimal equivalents of its starting address in Q]

the computer. This makes it easy to separate machine ^

routines from basic routines and to locate autorun and

other protection boot systems that load in normally r

below hex 0801. With this info you can often load and (_

"pick" programs separately. Without knowing these v-

addresses, you can load them but you don't know where

to find them! s~

Error Analyzer has two primary functions. One is ^

to do a quick track by track check for normal sync C

formatting. This is done out to track 44 so that as C

well as finding Erased tracks it will also tell you if *-

anything has been put beyond the normal track ranges. ^

This operation can be done in a few seconds and is a £

good idea on a new program disk to get an idea of what C

you are up against. The second mode is a sector by ^~

o
36 C

sector check which is similar but gives you a complete

listing of errors by sector. Unlike T/S analyzer/ this

one does not make a log of errors for Fastback. The

other difference is that it is a machine controlled

read which operates OUTSIDE of the normal DOS. This

improves its ability to "tolerate" the errors it finds

without bumping and grinding the head in the process.

The error listings can be printed if desired for a

permanent record.

Relocate/Loader is another useful tool in

"picking" programs. For example you will probably be

able to load and pick any program addressed above hex

0801 but the ones starting lower than this may lock up

the computer. The trick is to load them somewhere else

and pick them. Once the "picking" is done, you can save

them and change the address on the disk so that they

load back to where they were supposed to. Somtimes

rather than even picking a program, you may simply

reload it so that it won't run or lock up. Then you can

save the program - which defeats the purpose of the

lockup anyway! The saved version of the relocated

program will need two bytes changed on the disk so that

it will then load back to its normal disk location and

run normally. A 50K byte buffer is available for your

relocated programs. All efforts were made to keep

Relocate/loader itself small. There is also a tape

version called Trelo which is describe^ in the tape

section of this chapter and chapter 5.

Disk-Editor is a program that will display any

37

c

sector of the disk on the screen and allow you to

change any bytes in that sector. This will give you the r

ability to change the address contained in the first C

track and sector of a program which tells where that ^

program loads to in the computer. This is normally done ^

on programs that have been saved with Relocate/loader r

techniques. Also you may find occasions when you would Q

like to scramble some data on a particular sector, ^

reactivate a deleted file or otherwise confound some ^

location on a disk. Some other programs similar to this r

are called disk doctors and also have the ability to C

change data on the disk. ^

C

Error Makers are programs which can reproduce V'

C
certain errors on a disk. This is usually accomplished

by sending a machine language program to the computer /r

in the disk which tells it to do something outside its (^

normal operating paramaters. Often there will be C

compatibility problems when using these with disks

other than the 1541 since the operating system programs *-

used by other manufacturers are not identical to the Q

1541. C

c
Diskpicker is a disk drive software development Q

system which allows you to write, load, and execute ^-

programs directly in the disk drive memory. We have ^

provided the more commom error routines which can be r

sent to the disk drive to write the errors as desired Q

on a disk. The primary purpose of Diskpicker however is ^-

to give you a development system on which you can ~

devise your own error writing, modified formating, r ,

C

38 C

encrypted data writing, routines and so on. As

Diskpicker is designed, it lets you develop a routine

such as an error writer, send it to the disk and

execute it and then read the disk to see if it

operated the way you wanted. Since the market will

continually change with new errors and techniques for

protection, Diskpicker gives you a way to develop and

use new error routines as needed. Alternately, if you

are not into machine programming, you may be able to

find someone with an error making routine and you can

then use Diskpicker to send it and execute it.

Commercial error writing programs do not generally

allow for this and are thus prematurely obsolete. The

Diskpicker requires Monitor$8000 by Commodore to give

it the monitor features although other monitors can be

used by changing the auto load and monitor call

locations. Other monitors should not be located at

$C000 as this area is used by Diskpicker. Beyond that

it is a unique program that gives you a chance to stay

current in this volatile pastime.

Linkster is a simple basic program that gives you

a display and printout of the tracks and sectors used

by a program. It is very handy when you need to know

exactly which tracks and sectors are being used by any

given program.

There are some other tools which you may like to

have that we have not included in our kit. Two notable

tools are BAM view and Track and Sector display. These

are readily available in the public domain and are

39

c

c
furnished on the demo with your 1541 drive, thus we r

have made no effort to include our own version. The Bam C

view is nice to give you a more graphical display of ^

what tracks and sectors have been used on a disk. The ^

track and sector display is similar to what you get £

when you use our Disk-Editor. A block at a time can be C

displayed or printed. The data is in hex with the ASCII ^-

representation shown off to the side. This is nice as ^

it allows you to see things like names and other £

"coherent" data. It is a passive program only, and C

unlike the Disk-Editor which allows you to change ^-

contents of these locations. ^

The next group of tools that you may need to use

are the most powerful but also the hardest to use. They r t

are the Editor/Assemblers. To the uninitiated, these C

allow you to write, view, change, save, and generally v~

manipulate machine language programs. The secret that

most programmers and pirates alike try to keep is that /-

in order to become really proficient at breaking Q

protected programs you need an understanding of machine ^

language and the use of editor/assemblers. There are

too many possibilities for any likelyhood of ever r

seeing an undefeatable protection breaker. Get an Q)

editor/assembler and start learning how to use it. You t !

may never become a machine language programmer, but it

will be a powerful tool even if your ability is r

limited. Q

c
There are many E/As that will do the job and feel Q

free to use one that you like. If you have no previous C

c

40 C

c

experience we recommend two which Commodore sells on a

disk called "Commodore 64 Macro Assembler Development

System". The two programs are called "Monitor$8000" and

"Monitor$COOO" after the hex locations in which they

reside. We recommend these partly because the entire

range of memory can be accessed with these two. If a

program happens to extend up into the area used by one

of the assemblers, you can always use the other! Also

the command structure is identical for each which makes

switching quite painless. Also this assembler is

readily available . You will need it to use Diskpicker.

There are two major weaknesses which are nearly

unforgivable in a commercial system though. The first

is that they will not save the memory locations where

they reside, so you can't copy them. We have included

a range of memory locations in Appendix B which you

should change in Monitor$8000 so that this problem can

be eliminated. In this manner Monitor$8000 can be

modified so that it will save any range in memory. The

second problem is that page zero cannot be saved or

restored from a monitor command and thus it is awkward

to go back and forth between basic and assembler. We

have included a utility routine "ZMACH" that can be

loaded when using the monitors to do this. With these

fixes you should find them quite usefull in attacking

machine programs and various forms of protection.

The use of E/As and the details of machine

language are complete subjects in themselves. Many good

books exist on the subject and you should purchase one

along with the Commodore 64 Reference guide. Two books,

41

either of which will get you started on machine

language are "Programming the 6502" by Lawrence ^

Leventhal and "6502 Software Design" by Leo J. Scanlon. Q;.

The 64 reference guide is especially important because C'

of the Kernal explanations and the complete memory maps

which can be a great aid in trying to figure out what a ^

program is doing. The two 6502 machine language books Q

give good expanations of machine language commands and C

simple examples of their use. Many of the routines that

you will be disassembling involve jumps to Kernal ^~

routines along with specialized machine routines. By Q

tracing the kernal jumps in the program you can often C

get a "skeleton" of it. By filling in with what the

specialized machine programs are doing you can then ^ (

learn what has been done. (~

c
A good calculator with Hex to Decimal conversions r~

is invaluable to a serious machine programmer. The £ <

Sharp EL-510S is a good as well as inexpensive choice. ^

c

— Summary — C

C

c

The simplest thing to do when first trying to back v-

up a disk program is to try to make a direct whole-

disk copy. If this copy will not run as is, you can r~,

then go back to see what kind of errors showed up in (^ i

duplication. If using our copier you will already have L :

a printout of this info. If you are quite certain that

the original makes heavy use of error protection, you r

should first use Error Analyzer to check the disk out Q)

C

42 c

and depending on what you find, perhaps run T/S

Analyzer to get an error log. The error log should be

saved on a disk reserved for this purpose. A Fastback

can then be done, utilizing the error log. Next use

an error maker to try to reproduce these kinds of

errors in the copy. If this fails, use a program such

as SuperDirectory to locate what kind of programs are

on the disk and where they load to. Where possible load

these programs and list or dissassemble them as

appropriate for the kind of program involved. Locate

the sections which look for the errors, extra tracks,

etc. and take these sections out. When programs autorun

preventing listing, use Relocate/Loader to load then

dissassemble. For more ideas on use of these programs

see the chapters which cover specific applications.

If you obtain versions of the kinds of programs we

have discussed and become proficient at using them, you

will be able to break many forms of protection. As

with any complex job, it is an art which depends

largely on aquired skill. In this book we do not hope

to solve every problem for you but rather to give you a

guide to follow and explain the major tools and their

use. If and when software falls into line with the rest

of the information market, these problems of exotic

protection may dissappear.

— Tapes —

Compared to disks and cartridges, tape protection

is very easy to circumvent. The main reason for this is

that the tape medium simply does not provide for any

43

c
really sophisticated "lock outs". A magnetic tape Q,

recorder is a very "dumb" peripheral device compared to Q

a disk recorder. It contains no microprocessor or logic *-

control devices which need to be fooled or bypassed as

does a disk drive. The serial nature of the tape does /~

not allow for sophisticated file handling and the £

kinds of access code checking that disks may use. In ^~

fact, if a program of interest is available both on ^

disk or tape, you may choose to purchase the tape and q

make your back-ups on disk! You can then enjoy the (/

speed and versatility of the disk while avoiding the *-

sophisticated forms of protection which the disk ^

version may contain! Q

c
The most effective way of copying a taped program ^

is to use the "Clone" method which we describe in Q

chapter 5. The effectiveness of this system is due to *L

the fact that it is an entirely "dumb copier". A dumb

copier makes no attempt to interpret any data, it has s~

no means to do so. Information coming from one Q

datasette is rerouted via a special plug and fed into L

another datasette. One plays whatever is on the tape

while the other records whatever is on the tape. The s-

data on- the backup is an exact match to the original (^

complete with any protection and so on. v_ '

c

When using cloning for duplication you should be C

aware of the fact that a cloned copy is never quite as *-

good as a "computer saved" copy. The amount of ^

degradation is minimal and will not cause any problems (~

if the clone is made from an original tape. If clones C '

c

44 C

C

€'

are made of clones, there will be a multiplication

effect so that after about four or five generations the

copy would be unuseable. You might think of this as

sort of a problem of inbreeding. The best practice is

to clone the original and use the clone, keeping the

original stored safely away in case your clone is

damaged. In this manner all clones will be first

generation and will not exhibit mutant tendencies!

Another way to make tape copies is to try to save

them directly. One noteworthy form of tape protection

against this relies on an autorun routine in the

program. These are loaded below hex $0801 in memory.

The usual trick is to use a short autorun program which

also disables the STOP key so that you cannot break and

list the main program(s). Often there may be more than

one program, each of which can be loaded and saved

normally as long as the autorun section is not loaded.

If the datasette runs and stops and runs again while

loading a program, this is probably the case. The

autorun section can be saved separately by using the

tape version of Relocate/Loader, Trelo.

If you decide to try to copy tape programs by

loading and saving, you will need to know whether they

are basic or machine language and where the machine

sections reside in memory. Chapter 3 details the tape

buffer which can be used to extract the beginning and

ending addresses of programs being loaded. In order to

be effective at this kind of work we recommend that you

add a "Load Data Audio" circuit to your computer. Tape

45

programs contain a "header" section which contains the

name and locations» By listening to the program load

with the audio circuit, you can stop the recorder at

the appropriate times and Peek at the tape buffer to Q

find out the starting and ending locations. An v_

editor/assembler is helpful in this also so that you

can get a full hex display of the important buffer r-

locations and also directly save the machine programs £

to the backup tape or disk. v~

C

This completes our discussion of tools for C

f
duplicating software. Although other tools and methods v

exist, this is a good sampling of the essentials. As ^

with any craft, you will probably find yourself £

collecting a variety of specialized tools to solve C

special problems. As your skill with the simple tools ^

increases, you will begin to understand the r

applications for the more advanced tools. C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

o

c
46 C

o

o

*** CHAPTER THREE ***

MAPS

For many applications of the computer we do not

need to know much about the memory of the system.

Usually we can be happy knowing that we will not run

out of useable memory space. When it comes to

duplicating programs however, working without a memory

map is like trying to find a house in a strange city

without a roadmap. "Getting into" a protected program

will often require that we know something about where

it normally resides in memory or how the computer is

configured to run that program. This chapter will give

you the maps and information about system configuration

that you will need. This chapter should be used as a

reference when you get into situations which require

you to locate programs. Do not worry about memorizing

this information, you will be better off just

familiarizing yourself with what kind of information is

47

c

here, then look it up when you need it. C

c
We will cover five topics concerning memory as Q

follows: v-

c

c
1. Normal configuration. r~

2. Software reconfiguration, Q

3. Hardware reconfiguration. L

4. Special locations.

5. Disk memory. r-

NORMAL CONFIGURATION ^

c

Figure 3.1 shows the normal configuration for the (L
f

C64. Note that the memory addresses are given both in ^

hex and in decimal. In this configuration the areas ^

shown shaded are RAM available to the user. For basic {f

programs the memory must be contiguous. Thus the v_

area from 2048 to 40960 (38911 bytes) is available for *-

basic programs. *-

Basic ROM starts at $A000 and extends to $BFFF.

That means that in normal configuration/ this area is r

occupied by Basic and cannot be used otherwise. Another Q

free RAM zone begins at $C000 but can only be used for ^

machine programs or data storage kinds of jobs since it

is not contiguous with the other free RAM. The area at f

$C000 is 4K (4096) bytes, extending to $CFFF. A basic C

program can poke values to the 4K RAM at $C000 thus ^~

increasing the available RAM without reconfiguring. ^

Alternately, this RAM at $C000 could be used for r

machine subroutines which basic could call thus Q

reducing the requirements for uninterupted memory

space.

49

c

c

c

c

c

c

c

c

c
SOFTWARE RECONFIGURATION £

c

c
One of the unique features of the C64 is the way £>

its memory can be reconfigured. This is made possible v-

because the C64 contains 64K of RAM located between hex

$0000 and $FFFF. The ROM and I/O areas shown on figure /-

3.1 actually contain RAM "underneath" them. The 6510 £

microprocessor used in the C64 allows the programmer to ^~

switch memory blocks in or out. If the 6510 r

microprocessor chip had more than 16 address lines, r ,

the process of reconfiguring memory would not be Q

necessary. The 16 address lines limit it to directly t-

addressing 64K of memory. By using a special output

port at location $0001/ the 6510 "turns on or off" /-

these memory blocks which are addressed "on top of each Q

other". Actually, the ROM and I/O are normally "in", ^

while the RAM underneath is accessed by switching the

ROM "out". So Basic ROM is normally seen at $A000 and ^

KERNAL ROM is normally seen at $E000. The 1/0 section Q

hex $D000 to $DFFF has three possible memories to talk v_

to. Normally it is I/O. By changing location 1 to a

value such as decimal 51, the character ROM can be r

c

c
50 C

C

C'

FIG. 3.1
MEMORY MAP

COMMODORE C-64

EOOO

DOOO

COOO

AOOO

8000

6000

4000

0600

0400

0000

KERNAL ROM

(8K)

4K I/O

(CHARACTER ROM)

4K RAM

BASIC ROM

(8K)

8K RAM

OR

CARTRIDGE ROM

8K RAM

8K RAM

14K RAM

1K SCREEN RAM

1K CONTROL ZONE

ZERO PAGE

65535

57344

53248

49152

40960

32768

24576

HEX

16384

2048

1024

O

DEC

51

switched into the D000 to DFFF locations. A value of Q

decimal 48 will switch the D000 to DFFF RAM in. C
c

In the case of BASIC and KERNAL areas, the C

underlying RAM can be written to at any time but can

only be read if the ROM is switched out. Thus a basic s-

program can poke values into these "hidden" RAM Q

locations or a machine program can Store to these C

locations. To read the contents of this memory the ROM

must be switched out by the accessing program. This f~

means that the program that reads these locations C

cannot be BASIC because the BASIC ROM and/or KERNAL ^
c

ROM will be "shut off" during the access time. For ^

L
example, if the KERNAL area is "off" the machine Q

routine must not access KERNAL routines during the time (L

the hidden memory is being read. If Basic is off, the ^~

calling routine must not use any basic statements. One *-

important note is that switching the KERNAL off also £

disables Basic. Also if using the I/O area, the program C

reading the underlying RAM must not contain any ^~

interrupts, keyboard or I/O calls, in addition to not ^

using BASIC or KERNAL routines. Outside of these Q

limitations, the memory reconfiguration is a good C

feature which allows the C64 to go far beyond the *-

limitations of a normal 8/16 bit computer. r~

Unfortunately, it also makes for quite a bit of Q

confusion for many users and makes some forms of C

protection harder to analyze and break. In some cases,

knowing the normal configuration for a program you are ^

trying to break will be of paramount importance. Q

C

52 C
c

Three of the bits at location $0001 hex control

the configuration of the ROM and I/O memory. Table 3.1

shows the hex, binary and decimal values used to

reconfigure the port. Most often you would use a small

machine routine to set the value at location $0001 for

the configuration desired, then access the memory,

finally resetting the value at $0001 to 37 before

returning to basic or accessing normal I/O or KERNAL

routines.

TABLE 3.1

Value at Loc $0001

HEX

37

36

35

34

33

32

31

30

BINARY

110111

110110

110101

110100

110011

110010

110001

110000

DEC

55

54

53

52

51

50

49

48

CONFIGURATION

Normal (Map fig 3.1)

BASIC out

KERNAL & BASIC out

BAS -KERN -I/O out (64K RAM)

I/O out

I/O & BASIC out

I/O & KERNAL & BASIC out

I/O-BAS -KERN out (64K RAM)

Although the values in table 3.1 are the "normal"

state for the data in location $0001, there are other

situations which may cause these values to appear

53

c

different than the ones listed in table 3.1. The reason *~

for this is that the value at location $0001 is the

result of eight bits of binary information and only the r

last three of these bits actually control memory (^

configuration. The other bits which go together to make v_

up the value have to do with the cassette port. Simply

storing one of the hex values listed in location $0001 r

will achieve the desired result but is not the (^

"cleanest" in programming terms. A better method when v-

you need to shut OFF one bit of eight, is to use the

logical AND instruction. When you need to turn ON one r

bit without affecting the rest, the ORA (logical OR) Q

instruction is best. Table 3.2 gives the pre- ^~

'calculated values to AND or OR for changing memory ^

configurations. Think of the AND as disabling certain r

ROMs while the OR (ORA machine) will reset to normal. A C

disable program for removing basic might look like *-■

this:

LDA #$FE ^
AND $01 C
STA $01 r

RTS v-

A resetting routine: -

LDA #$01 f

ORA $01 V-
STA $01 C
RTS ^

c

c

c

c

c

c

c

54 C

c

c

TABLE 3.2

2-

3-

4-

5-

6-

7-

8-

Disable #

HEX

FE

FD

FC

FB

FA

F9

F8

(AND)

Enable #

HEX

01

02

03

04

05

06

07

(OR) Configuration

Basic out

KERN & BASIC out

KERN BAS I/O out

I/O out

I/O BAS out

I/O BAS KERN out

I/O BAS KERN out

HARDWARE RECONFIGURATION

(CARTRIDGES)

As you can see, the useable memory controlled by

the addressing limitations of an 8/16 bit

microprocessor, is pretty well filled up! The problem

then arises of where to put cartridge programs. Leaving

a certain area unused as the VIC 20 does, would mean a

limitation of user RAM or a tradeoff in sophistication

of the normal system. Rather than allow this, the

Commodore designers included another memory

reconfiguration scheme that could be controlled by the

cartridge itself. The concept being that cartridge

programs would occupy RAM locations starting at hex

8000 or hex A000, with a hardware system of switching

out the normal memory in these locations. This still

leaves a lot of RAM available if needed by the

cartridge program and, in the case of A000 cartridges,

uses BASIC area which is not often needed since most

55

c
cartridges are machine language. s-

An interesting fact is that the cartridge program ^

could again reconfigure memory once it starts C

operation. In many cases this would foil attempts to C

transfer the cartridge program to RAM inside the C64 ^~

and running it from there. Some cartridge programs can *~

be operated from C64 memory without using the r

cartridge! This is not a very predictable method though C

as even a simple "write over" loop in the program could *•-■

eliminate any possibility of running in RAM without ^

write protection. This along with the chance that the £

program could reconfigure memory when it runs, C

f
convinced us that the only viable way of running ^

cartridge programs without using the cartridge would be -

through the use of an external RAM with write protect £

capability, which essentially emulates ROM. Thus the C

r

Romulator system described in chapter seven provides a v-

very reliable cartridge elimination scheme. r
L

The hardware reconfiguration necessary for the

cartridges involves two lines which are connected to r

the expansion port of your C64. These two lines are Q

named GAME and EXROM and they are normally at logic one v_

with no cartridge plugged in. In general, these lines -

are either individually or both grounded by the r-

cartridge to control the memory configuration of the Q_

C64. Table 3.3 details the possible combinations of *-'

these lines and indicates what areas are made

available. Actually there is no specific rule for r

exactly where in these areas a cartridge must start for Q

c
56 C

C

e

any given line configuration. However unfortunate this

might be, it has little effect on our ability to copy

and operate the cartridge in external RAM such as the

Romulator system does. All that is important is that

you know the normal state of these lines with the

particular cartridge in guestion. Chapter seven

outlines a very simple non-destructive way to find out

the normal starting location used by the cartridge ROM.

TABLE 3.3

GAME

1

0

1

0

EXROM

1

1

0

0

MEMORY CONFIGURATION

NORMAL- no cartridge in

$8000 & A000 & E000 available

Location $8000 available

BASIC out $8000 & $A000 available

Hardware reconfiguration will be needed if you are

doing cartridge backups. The Romulator system provides

you with the necessary hardware to accomplish this for

the majority of 8K and 16K cartridges currently

available.

SPECIAL LOCATIONS

There are several areas in the C64 memory that are

of particular concern to anyone breaking protected

57

c
programs. These locations or areas of memory either Q

contain information that you may need to duplicate a C

particular protected program, or they may be locations

used for purposes of disabling the keyboard, auto- s-

start routines and so on. One area of especial interest £

is the "control zone" which is indicated on figure 3.1. *—

This zone which resides between $0000 and $0400 is

mainly used by the operating system to store /--

"housekeeping" data such as pointers, vectors, flags Q

and so on. The "zero page" ($0000 to OOFF" is located C-
c

in this zone. The memory maps in the Commodore 64

Programmer's Reference Guide spells out the function of r ,

every assigned location in the control zone. There are Q

three fairly good size "free" areas within the control v_

zone that you need to be aware of. The tape buffer

$033C-$03FB is one and an unused area $02A7-$02FF is /r

the other and $0100-$01FF the third. Although the tape Q

buffer area and the $0100 area have other jobs, you ^~

will see them used for directly loaded routines. _

The tape buffer has two characteristics of ^-

interest to us. One is that upon loading a tape header s-

from a program, it will contain the starting and ending (^

addresses of that program. Figure 3.2 shows the first (L

few locations of the tape buffer and indicates what ^

information the bytes located.there contain. Note the ^

way the starting and ending address of the program that C

has been loaded is determined. Second, the buffer area C

of the tape buffer is often used for a short control

program or data storage. Programs in the buffer area *~

can be written there from disk or tape or sometimes C

58 C

C

c

Byte function

&

address

Sample of

first five bytes

FIGURE 3.2

TAPE BUFFER

Identification of the first five locations of the

tape buffer. (033C - 03U0) All values in Hex.

TAPE BUFFER MAP
HEX

033C

03W

0350

STARTING & ENDING ADDRESS &

STATUS BYTE

16 BYTES USED FOR PROGRAM
NAME

REMAINDER OF BUFFER USED

TO STORE TAPE DATA DURING

TRANSFER FROM TAPE TO

SAMPLE MONITOR DISPLAY OF DATA IN TAPE BUFFER

ASCII HEX

033C NAM 03 00 14 00 16 4E 41 4D

0344E PSIDAC 45 20 50 53 49 44 41 43

O34C 00 00 00 00 00 00 00 00

0354 00 00 00 00 00 00 00 00

035C 00 00 00 00 00 00 00 00

0364 00 00 00 00 00 00 00 00

036C 00 00 00 00 00 00 00 00

59

c

c
placed there via a "poking" routine in another Q

location. Since this area would only be affected by a C

tape load, it is protected from being destroyed by

normal means such as resets etc. Also it is not obvious *-

to the uninitiated and thus provides a small measure of Q

secrecy. Routines here must be in machine language as C_

it is not contiguous with user RAM. The size limits the ^7

extent of the program, but it is perfect for boot or s~

protection routines and access codes. (^

c
The unused memory at $02A7-$02FF has similar r

applications. This is an insidious area because it (_

borders on the BASIC vector locations. The significance ^~

of this is that if each of these five vector locations *~

contain the starting address of a routine, any Q

RUN/RESTORE attempt will force an automatic jump into C,

the routine. In this manner, an attempt to break a *-

program for listing or disassembly cannot be done from ^

the keyboard. Most importantly'though is that if these £

vector locations are loaded to from tape or disk, upon C

completion of the load the program they point to will *-

run! This is the elusive method for AUTORUN! The trick ^

to using autorun is that the program must be in the C

computer BEFORE these locations are loaded to. Since C

one of the purposes of autorun is to prevent listing of ^~

programs before the user RUNs them, that means that the ^

program to be autorun must be loaded along with but Q

before the vectors. The only area before the vectors C

big enough to contain a program is the $02A7 to $02FF ^

area. Although not large this area is perfect to boot *-

in a main program and run it. RUN/RESTORE will simply Q

60 C
c

restart the program as long as the vectors are set! The

Relocate/loader process in chapter six gives the

procedure to get around this and save these routines or

examine them. Appendix C lists an autorun routine that

you can use with your own programs if you wish. Note

locations specified for addresses and load options.

The zone at $0100 has sometimes been used for

autorun boots. Most of the same ideas apply to it as

the other areas we have already talked about. You

should once again be alert for addresses shown up by

Superdirectory which reside in this zone. The

Relocate/loader is a • perfect way to save these

routines.

As usual, the possibilites for using or modifying

certain locations in the control zone are limitless.

Ultimately, you need the ability to find out what

locations a program is using in the control zone and

then analyzing the result for each particular case.

Some programs, especially basic will need to have

the basic vector locations intact, that is the

autostart method would interfere with the normal

operation of a basic routine. When this case occurs,

the autostart may be used as a loader but from the

moment the basic program is accessed, the five vectors

will need to be restored. There is a method which will

prevent any basic program from being "Stopped" and

listed which requires no special separate routines.

That is to execute a POKE808,225 somewhere near the

beginning of the program. This location is the KERNAL

61

c

c
STOP routine vector and poking 225 there prevents the q

computer from doing the STOP routine when the STOP key Q

is pressed! • *=-

As a general rule you should be especially -v~

watchful of pokes or stores to any control page

locations. Pay particular attention to any changes of s-

vector addresses as they cause the computer to go to Q

the wrong place when that routine or condition arises. C

This allows protectors to keep people from using

"normal" means to look at their programs. For more r~

information, you will need the 'Programmers Reference (^

Guide or- one of the other clones of this guide which V-

fill most bookstore computer bookshelves. Probably the

most fertile range to study and look for in programs s-

are address locations $02A7 through $03FF. This range (T

contains the five BASIC vectors and thirteen KERNAL v_

vectors as well as the largest unused zone and the

tape buffer. . r~

The tools included in this book are just the *~

beginning in breaking protection. The whole protection Q

dilemma is dynamic in nature and even as we write this C

book, someone somewhere is bound to be devising a new ^-

and more diabolical scheme. Every time you buy another *-

utility guaranteed to break "all forms of protection" Q

you will eventually find something it won't work on. C

Information and understanding are the most important ^

keys you can have to unlocking protection. ^

DISK MEMORY

C

62 C

c

Perhaps one of the best kept secrets of the

Commodore family of equipment is information concerning

the disk drive. Most of the information around is a

slightly fermented product of the grapevine... So and

so said this... what'isname said that. The information

and procedures being used with the disk range from

gibberish to genius. What we have managed to distill

from all this is somewhere between and although I know

it is not genius, I hope you won't find it gibberish!

In this section ye will give you a simplified disk

map, figure 3.3 as well as point out a few of the areas

of special interest. The VIAs which are used in the

disk drive are detailed in figure 3.4. * For diskette

formatting, we will refer you to your User's Manual.

Appendix F shows a GCR (group coded recording) map of a

typical disk sector. You should also note the GCR

header organization as it is slightly different from

what the disk manual implies. The rest of this chapter

will explain the areas shown on the maps in figure 3.3

and 3.4.

The ROM used in the disk is 16K and provides a

unique operating system (DOS) in which the vast

majority of all disk functions are accomplished by

software. This is the hardware-software tradeoff which

gives designers the choice of making fast and

relatively expensive hardware intensive products

versus slower, cheaper software intensive products.

The Commodore directive was to produce an inexpensive

63

FFFF —

FIGURE 3.3

MEMORY MAP

1S41 DISK

16K ROM

DISK OPERATING SYSTEM

(D.O.S.)

COOO _

2000

1C0F

1C00

180F

18OO

2048 BYTES

(8K) RAM

OOOO

ALL ADDRESSES IN HEX

DOTTEO AREA UNUSED

64

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

o

disk which inherently requires the use of software for

as many functions as possible. Although much too long

to detail here, you can get a complete disassembly of

this ROM by using Diskpicker which is explained in more

detail in chapter six. If you are serious about

programming the disk, you should take the time to do

this. Be sure to have lots of paper ready for your

printer and a couple hours of time. 16K is a lot to

transfer and print!

As a user, you can control the ROM only to the

extent that you may use (JSR to) the routines contained

there. However, those with the knowlege and equipment,

could "burn" another set of ROMs with some of the

routines specially modified. The purpose of this might

then be to cause the disk to write in an abnormal

manner which could not be reproduced by normal disk

drives. If this is done in a manner that does not

interfere with normal reading operations, it would be a

very effective protection scheme. The users "normal"

operating system could not copy or write in the same

way as the manufacturers "abnormal" operating system.

The only hope would be if the user, by analyzing the

protection, could write a routine that could be fitted

into an unused RAM buffer in the disk memory. In some

cases, one could reproduce the way the disk was

protected. This is one of the primary purposes of

Diskpicker; to allow user machine language programs to

be developed, tested, and operated in the disk RAM.

The major problem in implementing such routines will be

the limited RAM available. If the protection DOS

65

routine is called by an earlier DOS routine, the users

RAM routine would need both, as well as any others in

the chain. The whole thing starts to become quite ^-

large. The reason is that the normal DOS is going to ^

call routines within its address space, this does not C

always allow jumping out to RAM routines then back and C

so on. Only a modified ROM could provide this ^

capability. There are still many routines you can use ^

parts of from RAM calls however. As chapter six will Q

show you, our error writing routines involve exactly C_

this kind of process. ^

The ROM area from $C000 to $F24C serves mostly v-

for the software oriented tasks of interpreting, _

manipulating data and so on. This you will probably not r~

have a lot of reason to modify. The ROM from $F24D to (~

$FFFF contains the hardware control routines. These ^-

routines control such things as selecting tracks and -

sectors, starting motors, selecting reading and writing r

and so on. Many of the error writing jobs can be Q

accomplished by using these routines or modified ^-

versions of them. A source code listing, which you may ~

be able to locate through a user group, can be an r

invaluable aid in using these routines. C

c
The RAM used, by the disk is 2K in size. The RAM Q

provides the zero page ($OOOO-$OOFF) which is required v_

by 6502 based systems. Two pages $0100-$02FF are

reserved for additional pointers, stack requirements, r-

and so on. $O25B-$O2BO which is in this area is used Q

for RAM array and takes care of file handling. $02bl- v.

C

66 C
c

$02FF is for output buffer information such as error

codes and directory. The rest of the RAM area is

divided into 256 byte "buffers". There are five of

these buffers which have the primary job of holding the

data comming from and going to the disk. They are

allocated as needed by the DOS. User programs can be

located in these buffers and called by the user

commands. The first 18 bytes of the buffer at $0500 are

often used 'for a jump table to user routines.

By far the most important area of these RAM

locations is the $0000-$0005 which is the job queue,

and $0006-$0012 which provides the respective headers

(track and sector) for the job in the queue. Note that

there are two RAM locations for each job location.

In addition to the ROM and RAM, there are also two

Versatile Interface adapters which are seen by the disk

CPU as memory locations. By nature, a VIA occupies only

16 memory locations. Figure 3.4 shows what is found at

each location of a VIA. The first VIA is normally

"seen" at $1800-$180F. Its primary job is to control

the serial bus. It is connected directly to the serial

bus and has the job of taking data from. the internal

data bus and sending it out on the serial bus and vice

versa. The second VIA is normally "seen" at $lC00-

$1COF and its job is to serve as hardware controller.

It is connected to the circuits which drive the motors,

sense write protect, and controls the read/write logic

for the head. The hardware signals are transmitted to

and from the VIA directly from the internal disk data

67

FIGURE 3.4

1541 DISK VIA MAP

00

01

02

03

04

05

06

07

08

09

0A

OB

OC

OD

OE

OF

I/O REGISTER B

I/O REGISTER A (WITH HANDSHAKE)

DATA DIRECTION REGISTER B (DDR-B)

DATA DIRECTION REGISTER A (DDR-A)

TIMER ONE LOW BYTE (CLRS INT ON READ)

TIMER ONE HIGH BYTE (CLRS INT ON WRITE)

TIMER ONE LOW BYTE TO LOAD

TIMER ONE HIGH BYTE TO LOAD

TIMER TWO LOW BYTE

TIMER TWO HIGH BYTE

SHIFT REGISTER

AUXILIARY CONTROL REGISTER (ACR)

PERIPHERAL CONTROL REGISTER (PCR)

INTERRUPT FLAG REGISTER (IFR)

INTERRUPT ENABLE REGISTER (IER)

I/O REGISTER A (WITHOUT HANDSHAKE)

The 1541 drive uses two VIAs. One is primarily used in

communicating with the serial bus while the other is

primarily used For hardware control. The VIA occupies

16 memory locations (00-OF). The specific Function

desired can be accessed at one oF these locations as

indicated. Note that either VIA can be READ From or

WRITTEN to, thus a port would be an input iF it is

being READ and an output iF it is being WRITTEN to.

This is taken care oF with the normal READ/WRITE

control line From the microprocessor.

68

C

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

bus. As you can see from figure 3.4/ among the other

functions^ the VIAs have directly addressable timers

which are used as needed by the DOS.

One interesting fact about the 1541 drive is the

"mirroring" of memory that is shown on the map figure

3.3. As shown# the deviccss which make up the disk

memory can be seen at more than one location in the

map. The ROM at two 16K areas/ the RAM at four 2K

locations, and each VIA at 256 16 byte locations (not

shown). The reason for this is the way the disk

hardware decodes memory. It was simply cheaper and

easier to decode only the necessary address lines to

place the memory in its designed locations. When only

some of the address lines are decoded to define a

memory block/ that block will be "mirrored" at every

other location defined by those lines. In order to get

unique positions in memory, all address lines must be

decoded. Mirroring causes no problems so long as two

decoded blocks do not overlap each other. It can

produce some confusion though if you are not aware of

it and you "discover" what looks like important data at

say $2003. What you would be seeing is actually the

zero page data at $0003! A programmer could confuse

those studying his code by accessing the same data with

different addresses.

Other sources for information on the disk include

the 1541 Maintenance Manual by Michael Peltier, which

covers the system hardware if you need to make repairs.

You will not find it much help for software

69

applications though. The User's Manual that comes with

the drive should be refered to for diagrams on how the

diskette is configured with tracks and sectors. However

note appendix F for the correct header format map. One

final interesting note is that the drive can be forced

beyond track 35 by software control. Chapter six covers

this in detail.

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

*** CHAPTER FOUR ***

PROTECTION CONCEPTS

Software protection concepts have evolved from

relatively simple schemes to very complex ones. In the

rush to find ways to keep users out of programs/

methods have been developed at an incredible pace. Each

new form of protection then spawns a w*hole new set of

breaker programs and copying techniques. The results of

this vicious cycle takes its toll on programmers AND

users. If you have been playing in this game for even a

short time you have perhaps already bought some breaker

products only to find that some new form of protection

foils the methods it uses. So once again you are in the

market for the latest breaker system and so on and so

on.... We cannot offer a total solution to this nor I

doubt, can anyone else. The ultimate answer for disks

will probably take the form of a mechanical "dumb

copier" which will not interpret any data but simply

71

c

c
read and write an exact copy. Although it still ^

wouldn't be a guarantee against certain forms of (^

protection. This chapter will cover a variety of the i_

techniques currently being used. Chapters five six and

seven will then list specific procedures. Your ability r-

to stay current with the ever changing techniques Q

depends on your practice and motivation. We will start v

off with information about disk then go on to

cartridge and finally tape protection methods. /-

There are really two things to consider when *-

breaking protection. One is; do you just need a copy?, £

and two is do you need to modify the program (code) to C

customize it for your application? Where applicable we ^-

will try to include information to help you get ^

listings of protected programs. Often you can learn Q

quite a bit by studying listings of protected programs. (L

In many cases, modifying the program so that the *t-

protection no longer exists will give you a much more ^

valuable commodity. With your modified version, you £

won't have to play all the protection games if you need C

an additional backup copy!

DISK PROTECTION C
c

c

Chapter two defined some arbitrary levels of

protection. Here we will expand on this information s-

giving you more detail on the protection in contrast (^

with our earlier focus on tools available for breaking C_

the various levels.

C

72 C

C

LEVEL 0.... Although this level is "unprotected"

there are a few points that a beginner should be aware

of. If the program is in Basic, it may involve more

than one program which the user would need to copy

separately. Since these are often chain loaded, it is

important not to run the program. It should be loaded,

saved to the backup then perhaps run to see if it loads

any other programs. In a similar fashion, the program

might access data files which would not be saved by the

save command. Often the program might • be in machine

language and a simple save will not work since that is

for basic only. Even though the machine routines are

"unprotected", you may need to use something like

Superdirectory to find the address range of the program

so that you can save it with an Editor/Assembler. The

E/A's require that you know the beginning and ending

address of the program to save it. In general, with

unprotected programs, if you wish to copy by Saving you

need to know the details of what kind of program it is

and what all it needs to operate correctly. The

simplest method of duplicating such programs is to use

a BAM type copier. Virtually any whole disk copier

will also work.

LEVEL 1.... Programs in this category use some

sort of autorun feature which prevents the user from

making listings, and directly Saving the program. The

added use of a STOP disable poke keeps the user from

simply pressing the stop key to see whats in the

program. On programs that ask for data from the

keyboard or use a peripheral device, you can sometimes

73

c

c
break into them by giving the computer some value out ^

of range or unplugging the device the program is (^

talking to. The idea is to force some kind of error ^-

which will return control to the user. At that point _

listings etc can be done. Usually the program will s~

intercept the error codes and return control to the (^

program, so you will need to be devious in the kinds of v-

things you try. We were able to break into a well

protected word processor and generate complete listings r

by unplugging the cassette connector while the program (_

was writing a file. Other ways to get into such ^-

programs involve more coherent means such as ^

relocate/loading which prevents autoruns as the data /*~

does not go int.o the vector table that the programmer C

wanted. Then by saving the program without the autorun ^

or with a modified autorun, the disk can be edited so ~

that when the copy is loaded it goes to the right place f

but no longer has the protection! The complete Q_

procedure for this is in chapter six. Once again if ^-

making a backup is your only concern and you do not ^

c
need to get into the code, you can use BAM copiers or /"

whole disk copiers. The advantage of relocate/loading C

is that in essence it gives you a new unprotected *-

program which you can list and modify at will. The BAM ^

and whole disk copiers will give you a "clone" of the f~

original which will still contain the autorun and non- C

STOP features as originally written. The final choice ^-

depends on your needs. *-

LEVEL 2.... has been defined as including those

programs which use disk errors to stop whole disk r

74 C

c

duplication. In this case, the errors will only stop

duplicators which do not reset or "handle" errors.

Although "old" as the protection methods go, there are

several "whole disk" duplicator programs which will

stop if the disk indicates that there is an error on

the disk. The kind of error could be one of many-

possibilities but generally falls into the category of

tampered headers or data on the disk. Regardless of the

specific error, the duplicator stops because the disk

drive tells the computer in essence that the diskette

is defective. This of course is exactly what the

protectors want to happen so that you will not get a

useable copy. Most of the more recent entries on the

duplicator market can handle this kind of error

situation. There are various possibilities but the

concept is to "skip over" any sector in which the disk

drive sees an error. Some such as DD-1 will go ahead

and transmit the data on the sector in question in many

cases. Essentially it just ignores the errors that the

disk drive says are there, and goes on to the next

sector. This level of protection can be broken by error

tolerant duplicators. Alternately, the relocate/load

method can be used on this protection level. This

level of protection usually includes the autorun and

non-STOP features. Otherwise there would be nothing

stopping the user from simply loading and saving the

program. The program itself has no relation to the

errors, they are just inserted on a blank track or

sector to disable copiers which don't have error

tolerant routines.

75

c

c

LEVEL 3.... This level is more typical of much C

current software. In this elaborate scheme, disks will

have errors and autoruns as described earlier but to *-

complicate matters, the program or a loader will check £

to see if the errors are present at the right locations t_

on the disk. If the errors are not there, the program

will not run, or it will crash. This is called error r-

checking and if a program employs error checking you (^

will need to either get rid of the error checking C

routines or you will need to put the same errors back

on the backup disk as the original had (and in the s-

correct places). One popular place to put the error Q

checking routines is in a loader that runs after the v_

autorun boot has started things up. The order is

something like this: A very small autorun routine loads *-■

to the control zone resetting vectors and forcing £

itself to run. This autorun then boots in a loader C

program which is more sophisticated and handles the ^

loading and error checking for the main disk s-

program(s). If the loader doesn't find the proper £

errors in the correct locations it will not continue to C

load the main program or will cause a crash etc. In ^

addition to checking for the errors, the loader program s-

may be responsible for actually deciding which tracks £

and sectors to load and in what order. This way a main C

program can be saved and have its BAM erased. As long

as the person who writes the loader knows which order *~

the tracks and sectors need to be loaded. Interspersed Q

amongst the valid data loads the loader can check C

predefined tracks and sectors for specific errors. By ^

76

using a table of tracks to load and ones to error

check, a very high degree of protection is obtained.

Our disk analyzer is helpful both in making protected

programs and backing up ones that have been protected

in this manner. It will give you a sector by sector

list of which ones contain data and which ones contain

errors as well as what kind of error. When the main

program has finally loaded correctly, it will run

taking control of the system preventing breaks or

normal methods of stopping. The main program may or may

not perform further checks for errors on tracks and

sectors depending on how it is designed. The simplest

approach for these programs is to use an error

analyzing routine and whole disk copier and then use an

error writer to make errors on the backup - exactly

like they were on the original. The major problem with

this is keeping up to date on the errors that you can

write onto your backup disk. As the state of the art

.progresses, you find that you need to be able to write

an increasingly large number of different kinds of

errors. The other method which is harder is to

relocate/load and disassemble the loader routines and

locate error checking sections. Again, the disk

analyzer printout will help because it will tell you

which sectors contain errors. Upon inspection of the

loader you will know which sectors it is expecting to

find errors in and spotting that data is easier. With

the "Hunt" command of an editor/assembler you can

systematically search through large amounts of code to

locate occurances of likely command sequences. Practice

77

c

and experience are the key to doing this successfully.

In general you will be looking for a sequence of CMP #$XX r-

(XX= hex error code value) followed by a BEQ or maybe £

BNE**. C
C

The error writing process itself involes a fairly C

cumbersome system of writing special routines which are *^

loaded into the disk drive RAM and executed by the disk ^

drive microprocessor. The routines are basically mutant r

versions of the disks own formatting and data writing (_

routines. In other words, if you have just saved a ^-

program which you wish to protect by these means (or ^

made a backup which needs them), by running one of £

these mutated routines, you can cause something like £

one sector header to be formatted differently than the **-

normal pattern for that disk. Other possibilities ^

include erasing an entire track of data or completely £

wiping out a sector. C

c
The level three will at some point check to see if Q

errors are present before a run will be allowed. *-

Alternately the errors might be checked within the

program. r

LEVEL 4.... This in many ways is just an extension ^

of Level 3 but there is a sly twist. The errors £

involved in this level of protection include with the v_

others, the trick of putting data beyond the normal 35

c
tracks defined in the original drive design, or writing s-

data where none would be expected and can't be (^ »

recovered by the DOS read functions. Both the extra

tracks and the "hidden" data require modified DOS

78

routines to be loaded. These DOS routines are machine

programs that operate similar to the normal ones in the

disk but they are designed to find the hidden data

whereas the normal routines would simply return an

error. The "extra track" protection could involve

simply writing sync beyond track 35 or even go as far

as putting data out there. There are other unexpected

places to "hide" data such as between the last and

first sector of any given track. This area is normally

defined as a "gap", but data can be written and read

here using modified DOS routines. Another trick is to

erase all or part of a track and then to write data in

the erased part. This data will not have the usual

headers, so it must be read with a special routine. One

way to find such data is to find the last valid sector

using an error analyzer, then begin reading the data

found AFTER this block. In this manner you can recover

a couple of sectors worth of the hidden data. This

process can be repeated with a change in the timing so

that you see more and more of the data. Often a couple

blocks worth is all you need. The diskpicker HDR read

routine is useful for this purpose. Changing the sector

number to an illegal value has a similar effect to

these others. The disk may only expect to find perhaps

.20 sectors on a given track but the protected disk will

have some sectors with numbers higher than this. To

recover this data, you would again go to a header

reading routine. In essence, you will get the data

First, then save it under a valid number. The last

thing would be to change the copy header so that it

79

looked like the original. Errors can be "spliced" into

a copy disk by reading the bad part off the original

and writing it verbatim to the copy. (See Diskpicker C

Procedure) ^

c

Once again though, in these processes the drive is v_

being manipulated by mutant programs to perform these?

"unnatural acts". We discourage both the use and s-

purchase of software with this form of protection as (^

there are some valid guestions as to the effects this t

can have on a drive. First of all, th^ere are many

1541s, especially the earlier models, which seem to get r

out of align if the head is forced to "bump" £'

excessively. (Bumping is when the head goes to the end V-

and bumps several times) These programs only aggravate-

this situation as you may have already discovered. A ^

good guality drive mechanism should be able to handle £

this without problems but this problem does exist and v-

will occur on some drives. You will just have to live

with it if you decide to purchase a program with such f

protection and it adversely affects your drive. In the f .■

least these programs will usually take their time ^

loading with a undue share of bumping, chattering, _

blinking, and various other assorted paranormal r ,

responses. (

c
Another dilemma with this level of protection is £

that it may not be compatible with drives of other

manufacturers. How a drive loads and saves data is a

function of the hardware and software design of the

drive. When a drive is as software dependant as

80

Commodore's are, a 100% compatible drive would have to

have the disk operating system copied verbatim.

Although this has been done before with some computers,

it is legally questionable. It is generally accepted

that totally compatible means 99% compatible while most

"compatible" equipment really comes in at a much lower

percentage. What is reasonable to expect is that a

compatible disk drive can save and load it's own

programs and load commercial software that is recorded

WITHIN ORIGINAL EQUIPMENT MANUFACTURERS SPECIFICATIONS.

With level 4 software the protection is not within the

design parameters of the drive so it is anybodies guess

what it will and what it won't work on. It is something

like an oil company putting in a additive to gasoline

which rots out engine gasket material without ever

bothering to check it out with car manufacturers! Thus

programs, error writers and copiers that work at these

levels will in general be uncompatible with drives

other than the 1541. You simply cannot expect equipment

manufacturers to be able to forsee the various ways

programmers might try to "defile the DOS".

Making duplicates of this kind of software, if

necessary, can be done like level three. The error

maker will need to have the capability of writing data

or errors beyond the normal tracks. The best approach

for this level would be to remove the error checking

from the loader or main program so that you won't have

to worry about all the error checking problems every

time you load the program. This is done virtually the

same as the others, with relocate loads and

81

o
dissassombly. ^

LEVEL 5.... This may be the most effective

protection method in current use as well as the most r

valid. It works on the principle of a hardware "key" Q

which is usually plugged in to the joystick port. As *-

the program runs it can periodically check to see if

the key is in and crash itself if it is not! The r

hardware key is effective for several reasons but the £

most noteworthy is that most people have no means of ^L

duplicating the piece of hardware. Even if they could _

it would be a time consuming task to first figure out r

what the key contains and then make a similar one. C

Removing the sections of the program that check for the *-

key would be the best approach but certainly not easy. ^

As opposed to the error checking which requires the f ,

disk to run and consume quite a bit of time, the

hardware key can be validated in a matter of

microseconds and has little or no degrading effect on ^

the program. This is why error checking routines are Q

often in a loader, so that they do not steal time from C

the main program. Many programs would be of little use ^-

if the protection system had to run the disk for a few ^

seconds every so often in the middle of what you were f \

trying to do. The hardware key does not suffer these C •

limitations. It is possible to check for the valid key *-

literally hundreds of times within the main body of the ^

program, without noticeable time lag! If the checking C ;

is done durinq an interrupt cycle, the time, taken is C '

almost unmeasurable. Appendix H shows how an interrupt ^ '

routine can bo easily accessed from a main program. ^

82 C

V

The key itself could be as simple as a plug with

certain pins shorted to ground which the computer would

see as a specific value anytime it looked at the

joystick port. Using just the five joystick switches

allows 31 possible code values that could be hardwired

into a small plug. This will be defined as a passive

key. You can easily make one of these for your own

protected programs! This would not be too hard to

defeat though if the user realized that it was just a

hardwired setup.

In more elaborate schemes, the protector can use a

ROM chip which is addressed by a code sent on the lines

and responds with a different value for each code. The

circuit could send pulses of a certain frequency or in

a certain pattern as the code. If desired the protector

could use a complete microprocessor on a chip to

respond with a very complex set of passkeys. There is

simply no imagineable limit to what could be done.

Unfortunately we can offer no simple solution to

the hardware key systems. If the key is the only

protection, and the disk itself can be easily backed

up, then you have little reason to worry. Your

requirement for backup ability has been met while still

protecting the seller from wanton distribution. We feel

that it would be unethical for us to encourage

reproduction of these keys. Thus in this respect, we

feel key protection is valid as long as you can back up

the magnetic medium.

83

One final word about compiled basic programs. The

compiled program has been transformed into it's machine C'

language equivalent, which among other thinqs, makes it *-

harder to analyze. Using protection on compiled >*-.

programs makes a very effective means of protection. C

C
In the future we hope to see prices of software r-

come into line with value. New forms of protection are Q

on the horizon but along with them comes the questions ^-'

of compatibilty and effectivness against inspired

pirating. • ^~

c
CARTRIDGE PROTECTION ^

Compared to disks, cartridges are quite simple.

However due to the hardware necessary to make and use

backups, the procedures are less well known. The real

heart of cartridge protection is the autostart feature

of the cartridge. Since it is running all the time, how

do you disassemble or save it? The answer is just about

as simple; do not let it autostart! C

€
Understanding an doing this depends on realizing ^ \

that the only time the cartridge will autostart- is when C
r ■)

the computer is first turned on or the coldstart or

reset is initiated. If we disconnect certain lines on *- •

the cartridge and then turn on the computer the £ i

computer will not know the cartridge is there so the

autostart will not occur. We can then switch the

cartridge into certain areas of the computer and "look"

at the contents or save them to tape or disk. An

external RAM system which emulates ROM through the use

84

of a write protect can later be loaded with the

original cartridge code, switched into the correct

location, then run as though it were the cartridge

itself!

The most difficult obstacle to overcome with

cartridges is the duplication of the hardware memory

configuration used by the original. (See Chap. 3

Hardware Reconfiguration) Although the C64 is "filled"

up with memory, the cartridges can be "switched" in

place of some other memory device. Even though this is

not protection in the true sense, it has the same

effect. The Romulator system (Chap. 7) gives you a

procedure which does not require you to know

specifically "where" the cartridge is seen at. All that

is required is that you determine the configuration of

the GAME and EXROM lines which ultimately control what

the computer does with memory and start up routines. We

have encountered no other forms of protection with

cartridges.

TAPE PROTECTION

Tapes have severe limitations in the kinds of

protection available compared to disks. As with the

others, the autorun can and usually is used. The

locations and method is really the same as the disk

except that the autorun routine will boot in from the

tape instead of the disk.

In the next chapter we will cover the clone system

which will duplicate all tapes regardless of protection

85

FIGURE 4.1

LOAD DATA AUDIO & SAVE DATA AUDIO

LOAD

IK/i

TO RICORDIR

SAVE

I Ra

TO RICORDIR

PIN #

A-1

B-2

C-3
Dl

F-6

FUNCTION

Ground

+5 Volts
Cassette Motor

Cassette READ

Cassette WRITE

Cassette Switch

The JiOAD data audio circuit provides an audio output during
LOAD operations. This is useful in determining characteristics
of pre-recorded program tapes* It also provides a simple way
to align the tape head by "ear". (Chapter five - Head aligoment
procedure). Installation can be in the computer or on lines
D-[|. and A-1 where they enter the datasette. If you are using
a Tapeworm, or similar interface, parts can be mounted on the
interface unit itself. (Use earphone for speaker)

The SAVE data audio circuit .is primarily for "Relocate Loading"
which is detailed in chapter five. You may choose to wire two
aligator clips to an earphone with a 1K ohm series resistor.

In this manner, you can simply clip it across E-5 and A-1 when
you are performing header changes . The SAVE data audio
circuit provides audio only during the time that the computer

is saving data to tape*

86

used. As with disks, often a tape program will load in

several sections which each set up certain parameters

of the program and all are needed to run. If a save is

attempted after loading the program only part would be

saved and it would be useless. To duplicate this by

other than cloneing requires that you know when each

section starts and stops so that you can stop the tape

and put in you blank to make a copy. Also, if you try

this, be alert for machine sections mixed between basic

sections. You will need to use an editor/assembler for

the machine sections.

Figure 4.1 shows the connections for an audio

output which greatly helps in identifying separate load,

sections. A taped program consists of a tone leader

followed by a short data burst (header) then another

tone leader followed by a longer data burst which is

the program. If you hope to copy taped programs by

saving, you will find the circuits very helpful.

The one protection that tapes can use is the

hardware key. However there is nothing to prevent you

from making backup tapes, it will just keep you from

distributing them or running on more than one computer.

As with disks, this is not a real problem then for your

own use. The one drawback is the reliance on the key

itself, if it fries, you are out of business!

87

c

c

c

c

c

c

c

c
*** CHAPTER FIVE *** s~

C

TAPES C
c

c

c

c

c

c

c

c

c
The very size of the C64 memory allows programmers *~

to write some very powerful programs. As these programs £

require large amounts of data, they also tend to be \L

quite slow if loaded from a datasette. As a result,

tapes are not as popular as with the Vic 20. However, r

even if you .primarily use a disk drive, it is still (f

handy to have a tape drive available. You may encounter €•

a taped version of a program you wish to have. The cost

o
of a datasette may prevent you from wanting to own one s-

for this somewhat rare function. In answer to this we £ \

have developed a simple device which lets you avoid the

expense of a datasette. Chapter five features TAPEWORM

(tm) which is an inexpensive interface for standard ^

recorders. If you do not own a datasette this circuit Q •

will allow you to add a tape drive for very little C'

o

88 ^

C'

oxpenso. If you already own a datasette and wish to

"clone" tapes using audio type duplication, the

Tapeworm will provide you with the means to add another

drive as required for dubbing purposes. Another of the

major differences is that if you wish to do audio work

such as message playback or time lapse recording etc.

the inherent Tapeworm cassette motor interface will

make this possible. Audio work cannot be done at all

with the datasette since it utilizes digital signal

processing. Tapeworm makes no change to an audio

recorder circuits. It is entirely an external device

which turns digital computer data into audio signals

for the recorder and the opposite function of

converting the audio output of the tape recorder to a

digital level signal for the computer. The theory of

operation will give more technical detail about these

aspects for those so inclined.

This chapter also features CLONEPLUG (tm) which is

a simple plug that allows audio dubbing of digital

tapes. In essence, Cloneplug is a dumb copier so

virtually any tape can be duplicated. Although some

have had success with doing this with two audio

recorders, it is very unlikely that purely audio clones

will work very well. The amount of signal degradation

is severe if the data is not converted to, digital

format. An audio clone is even worse in successive

generations which have been cloned from a previous

clone. The clone method we will show you relies on

digital signals or audio-conditioned digital signals so

that cloning can be done over several generations

89

without the inbreeding problems.

between the Vic 20 and C64 computers and most standard

cassette tape recorders.

c

c

c
TAPEWORM ,-

c

DESCRIPTION C

C

C
TAPEWORM provides the proper interface circuitry ^

c

c

FEATURES *-

C

C

The TAPEWORM is an inexpensive and reliable alternative

to the purchase of single use cassette data recorders |~

such as the datasette. (2

C

When not being used with the computer, your cassette

recorder can be used for normal recording applications. r .

No changes or modifications need be made to your |T

recorder. \- '

c

c
TAPEWORM allows the computer to control the cassette r

recorder to play and record voice/sound information £ \

under program command; i.e., telephone answering... ^'

security monitoring... slide show sound... time lapse

recording... etc. r

c

TAPEWORM allows manual adjustment of the volume output ^~

level of the cassette recorder so that you havo the r

90 C

T
A
P
E
W
O
R
M

B
L
O
C
K

D
I
A
G
R
A
M

F
I
G
U
R
E

5
.
1

E
"
L
T
L

♦
M
£

q

I
E
"
L
T
L

R
E
C
O
R
D
E
t

C
o
m
p
u
t
e
r

o
u
t
p
u
t

a
n
d

i
n
p
u
t
m
u
s
t

b
e

5
V

s
q
u
a
r
e

w
a
v
e
s
.

W
h
e
n

r
e
c
o
r
d
i
n
g
,

t
h
e

T
a
p
e
w
o
r
m

c
o
n
d
i
t
i
o
n
s

t
h
e

c
o
m
p
u
t
e
r

s
i
g
n
a
l

t
o

f
e
e
d

t
h
e
M
I
C

i
n
p
u
t

o
n

t
h
e

r
e
c
o
r
d
e
r
.

W
h
e
n

p
l
a
y
i
n
g
,

I
C
1
B

c
i
r
c
u
i
t
r
y

r
e
s
t
o
r
e
s

t
h
e

d
i
g
i
t
a
l

l
e

v
e
l

t
o

t
h
e

E
A
R

s
i
g
n
a
l

f
r
o
m

t
h
e

c
a
s
s
e
t
t
e
.

^
^
^

c

ability to compensate for tape quality variations.

C

With an optional modification, the data can be heard C

during the load operations to aid in analyzing *-

protection methods, ,-

A.C. adapters are not needed. The cassette and TAPEWORM £

obtain all power from the computer just like a C

datasette does. ^-

Used with CLONEPLUG, TAPEWORM facilitates tape *-

duplication using standard recorders and or one f-

datasette and one standard recorder, (fig. 5.7) C

Simple to hook up. Ear, Mic, an power plugs provide all ^

cassette interface connections without modifying *r

recorder. £

Recommended tape recorder: SANYO SLIM 1 or SLIM 2. C'

c
Other tape recorders may work with TAPEWORM. Variations

in record levels, fidelity, 6VDC connector polarity, ^

voltages, etc. between manufacturers requires some Q

technical discretion before making cassette recorder C_

substitution.

TAPEWORM THEORY OF OPERATION

C

c
Refer to figure 5.1 for the block diagram showing r

function of Tapeworm. Note the cassette write and Q

cassette read signals drawn at the left of the diagram L

by the computer block. As shown, both are five volt

c
square waves. This is the normal digital signal the ^

computer expects to "see". Cassette recorders on the Q

92

other hand, do not like five volt square waves. They

are much better suited to smoother waveforms like the

sinewave shown at lower right. Furthermore, a

microphone input on a cassette recorder expects to see

a lOmV to 20mV (0.020V) signal, NOT 5 volts!

To accomplish this, the signal from the computer

is fed through the input circuitry consisting of IC1A

and the IK/100 ohm voltage divider. IC1A functions as

an integrator which rounds off the 5V square waves from

the computer. The voltage divider then reduces the

voltage level seen at the Mic input of the cassette

deck to about 20mV. The sketches of the signals in

figure 5.1 show the approximate shaping taking place.

For loading programs to the computer, the output

of the tape recorder is a sinewave of about 6 volts.

The output circuitry consisting of IC1B • and Ql must

provide a clean squarewave of 5 volts to the computer.

IC1B is designed as a high gain clipping amplifier and

Ql provides a fast risetime 5 volt square wave of the

correct polarity. This is fed into the cassette read

line of the cassette port on the computer.

As you can see from the schematic figure 5.2, the

cassette switch line is always grounded. This causes

the computer to always think the buttons of the

cassette are depressed so that the computer will not

print the "Press Play...." messages. This is done to

eliminate the need for wiring inside the cassette deck

to the switch which closes when the buttons are

depressed. If you are technically able to determine the,

93

c

c
wiring on your particular deck and wish to do so, the ^

circuit board has provision for this. Simply cut the Q

ground link on line F6 and wire it to the switch in v~

your deck. As this is awkward to do, we do not

recommend it. r~

The Tapeworm board obtains operating power from ^

the computer via the 5VDC output on pin B2. Six volt DC r

power is fed directly from the computer pin C3 to your C

cassette deck. There is enough power at this output to *-

easily drive most modern 6VDC recorders. You should be ^

careful of polarity for your recorder, (see note below) £

c

c

ASSEMBLY C

c

Figures 5.2-5.4 give the schematics and layouts _

for Tapeworm. Appendix D lists kits available from f

PSIDAC or you may use your own resources. C

c
Before installing any parts, the circuit board £

should be cleaned with alcohol and scrubbing pad so C

that the copper is bright and shiny. All parts are *-

installed from the BLANK side of the board with the ^

leads protruding through the holes on the copper FOIL Q

side of the board- Soldering should be done with radio _'

grade rosin core solder and a small, clean soldering

iron of 25 to 40 watts maximum. Be especially careful ^

to orient the IC correctly. Use the pin 1 dot or ^ •

notched end and the component layout for reference. C_

c
The edge connector is soldered directly to the PC (^

94

F
I
G
U
R
E

5
.
2

T
A
P
E
W
O
R
M

S
C
H
E
M
A
T
I
C

R
E
C
O
R
D
E
R

•
0
0
4
7
o
f

r
C
O
M
P
U
T
E
R

8
E
A
R

I
t
l
'

P
I
N
#

A
-
1

B
-
2

0
-
3

D-
I4
.

E
-
5

P
-
6

F
U
N
C
T
I
O
N

G
r
o
u
n
d

+
5

V
o
l
t
s

C
a
s
s
e
t
t
e

M
o
t
o
r

C
a
s
s
e
t
t
e

H
E
A
D

C
a
s
s
e
t
t
e

W
H
I
T
E

C
a
s
s
e
t
t
e

S
w
i
t
c
h

FIGURE 5.3

PRINTED CIRCUIT LAYOUT

(c)

'82
tapeworm

I*. I POSITIVE PC LAYOUT (FOIL SIOI SHOWN)

PT# QTY DESCRIPTION RADIO SHACK EQUIV.

C1

C2

C3

IC1

Q1

R1

R2-3

R4

R5

R6

R7

R8-9

EC1

P1-2

P3

. 0047ufr Disc Cap. 12V

.1uf Disc Cap. 12V

.47uF Electrolytic 16V

LM3900 Quad OP Amp

2N3904 NPN Transistor

100 ohm Resistor

1K ohm Resistor

4.7K ohm Resistor

10K ohm Resistor

22K ohm Resistor

100K ohm Resistor

1M ohm Resistor

(All resistors 1/4 Watt)

6 pin .156" edge connector

1/8" Mini phone plug

DC plug (to match recrdr)

272-

272-

272-

276-

276-

271-

271-

271-

271-

271-

271-

271-

130

135

1417

1713

2016

1311

1321

1330

1335

1339

1347

1356

PSIDAC #CONN*

274-286

274-1551

Misc — Wire ties, solder, Mic. wire, etc. —

* For complete kit, see Appendix G-Price List.

96

s

N
O
T
E
:

F
O
I
L

I
S

O
N

T
H
E

O
P
P
O
S
I
T
E

S
I
D
E

O
F

P
C

B
O
A
R
D
.

M
O
S
T

R
I
C
O
R
D
f
R
S

(
s
i
t
m
o
w
)

F
I
G
U
R
E

5
.
4

C
O
M
P
O
N
E
N
T

L
A
Y
O
U
T

S
A
N
Y
O

S
L
I
M

I
*

I
I

n
F
T
F
R
M
I
N
F

n
D
R
R
F
C
T

P
O
L
A
R
I
T
Y

O
N

Y
O
U
R

R
E
C
O
R
D
E
R

c

c
board traces. You should first make a small solder r

"puddle" on each of the end foil traces which are for £

the edge connector. By holding the edge connector in *-

alignment and then heating it's terminal with your ^_

iron, you can "tack" the lead in place. Do the same r

with the other end. This will hold the connector firmly (^

in place. If necessary, you can remelt and reposition ^-

the connector until it is perfectly aligned. Then -

.solder the middle terminals down to the foil. Finally, r

go back and resolder the two end terminals to get a (JT

good shiny connection. **-

Note that the Mic ground is not soldered at the PC C

board end. It is soldered at the Plug end. This

prevents "ground loop" interference while still *-

maintaining shield properties of the cable. An optional |^

LED circuit is shown in the schematic. You can add this t-

by drilling extra holes in the PC board. The LED will

light up when data is being loaded to the computer. r-

This helps you determine whether data is present as £

well as being an aid in deducing the number of separate C
c

data loads the program must go through to run. Some

prefer this to the audio modifications shown in chapter f

4 and later in this chapter. Q>

C

C
POLARITY C

c

c>

Re extra careful in wiring the audio plug. If you (-

use any recorder other than the Sanyo recommended, you

will need to determine the polarity. Most recorders

98

have a negative center pin. Sanyo is opposite! See

figure 5.4 inset. If your recorder has the positive

lead connected to the Mic and Ear ground pins (Positive

ground system) you will not be able to use Tapeworm.

(Some Panasonics are wired this way)

If you make a mistake on the power connections, it

will blow the computer fuse. It is highly .unlikely to

cause any other damage.

USE OF TAPEWORM

HOOK-UP

- Always plug the Tapeworm into the computer COMPONENT

SIDE UP with the computer TURNED OFF!

- Make sure all cassette recorder switches are up or

OFF before switching the computer on.

- Use high output, low noise tapes of good quality.

- Insert MIC and EAR plugs into the cassette jacks

marked MIC and EAR.

- Insert Tapeworm plug marked DC6V into the cassette

jack marked DC6V or 6V power.

OPERATION

- Turn on computer.

- You can advance or rewind tapes at this time.

- The cassette recorder volume should be set to about

3/4 of full volume. This setting may vary depending on

tape quality and recorder used.

- The motor can be disabled by typing SAVE or S shift A

99

c

c
RETURN then hitting Run/Stop. r

- The computer SAVE, LOAD, and VERIFY operations will C

now function in accordance with the computer

instruction guide. *-

NOTE: The "PRESS PLAY ON TAPE" and "PRESS PLAY AND Q

RECORD ON TAPE" messages will not be displayed when C

using the unmodified Tapeworm.

- REWIND of tape is best accomplished by placing *■

computer in READY state and using the VERIFY command. (£

This will turn on the motor voltage and give you C

control of the tape deck.

-Press RUN/STOP to disable manual control. *~

- We recommend that you always advance tape past the Q

leader when performing SAVE operations so that no data C

is lost trying to record on leader.

c

c

OPTIONAL MODIFICATION r

c

c
When the Tapeworm EAR plug is in the jack on your /r

recorder, the speaker is shut off by a switch built (*

into the jack. By jumping this switch with a resistor, C

a comfortable audio output will be obtained. This is a

feature you may like. It allows you to hear when data s-

is present on the tape. Figure 5.5 shows how to do this £

on a Sanyo Slim 1 or 2. For other recorders, use the L

information in figure 4.1.

c

c

c

c

ioo C

c

USE A SMALL PIECE OF TAPE UNDER

RESISTOR FOR INSULATION

FIGURE 5.5

SANYO SLIM I & II

(USE FIG.4.1 FOR OTHER RECORDERS)

HEAD ALIGNMENT

Normally all tapes recorded on your recorder will

be in alignment with the tape head and each other.

However, tapes made on different recorders or some

commercial tapes may not be aligned with your machine,

resulting in difficult loading. If you are using an

older tape recorder, you may need to align it with a

commercially made tape before using it extensively.

This will assure accurate loads of commercial tapes AND

your own tapes. It is not a good idea to change the

alignment once it is adjusted for normal tracking..

Otherwise you will end up with a mess of misaligned

tapes, each requiring realignment to load properly. BE

SURE IT IS NECESSARY BEFORE PROCEEDING WITH HEAD

ALIGNMENT!

101

If you are using a datasette you will need to wire

the "LOAD DATA AUDIO" circuit (fig. 4.1), or use an

oscilloscope. If you have this circuit already or it's

equivalent, simply ignore the reference to "Ear Plug"

in the following procedure.

- Unplug "Ear" plug.

- Put in tape do not close cover.

- Locate alignment hole left of tape head, (see sketch)

- Set volume 1/4 to 1/2 of full - Press Play.

- Adjust screw for loudest output. **Do not turn far! A

slight adjustment back and forth only!**

TYPICAL LOCATION OF HEAD

ALIGNMENT HOLE

ADDITIONAL INFORMATION

102

c

c

c

c

c

c

c

c

c'
c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

Other brands of recorders usually work well with

Tapeworm. However, if recorder voltage is different

than 6VDC, you cannot use the power plug supplied.

Instead, you can use the adapter or power source

normally supplied with your recorder. This will require

that you control your recorder MANUALLY since Tapworm

normally controls the recorder through the 6VDC power

plug.

Another inherent feature of using a standard

recorder with Tapeworm is that it is still a normal

recorder and as such can be used for audio work under

control of your computer. By unplugging the Mic and Ear

plugs and using only the 6VDC power plug, the computer

can start and stop the recorder under program command.

The most efficient way to do this is to use a line

similar to this for turning motor ON:

100POKE1,PEEK(1)AND223

For turning motor OFF:

110POKE1,PEEK(1)OR32

CLONING

Fighting tape protection schemes can be a

frustrating experience. In the least, it can become

more time consuming than desireable especially if you

just need to make a backup so that you can file the

original for safekeeping. For these reasons we suggest

that under all normal circumstances that you simply

"Clone" the original using the cloneplug system we

describe. As a dumb copier, the cloning method does not

103

FIGURE 5.6a

CLONE CIRCUITRY

CASSITTI PORT ClONI PLUG

90° PI mi

t

SPOT SWITCH

CUTAPfflT

LEADING FKOM PADS

FIGURE 5.6b

y' CLONE MOD. ON TAPEWORM

tape

Figure 5«6a is the schematic of a clone plug. Note that if

You are using one or more datasettes, that you will need the

90° plug. See figure £.8 for PC layout.

Figure .6b shows how to modify a Tapeworm so that you will

not need a clone plug. (You must use two standard recorders

which work in the normal manner with Tapeworm bo use this

modification) You can either modify the artwork of figure

5.3 or remove traces from two lower pads and use jumpers fop

changes indicated in solid black. Clone is C-D, normal C-N#

104

depend on or vary with the type of protection used.

Although we have heard of some people obtaining

useable copies with a straight audio to audio method

and two tape recorders, we do not feel that it is a

very good method. The reason lies in the fact that the

signals used by the computer are not exactly the same

as audio signals. The frequency requirements and

tolerance to wow and flutter is not as great with these

digital signals. As a result, the audio to audio method

induces problems which are minor in audio recordings

but seriously degrade digital data. If attempted at

all, the audio method should use high quality reel to

reel recorders and the copies should always be made

from an original.

The Cloneplug system is a simple arrangement which

uses the Tapeworm and/or datasette itself to restore

the digital characteristics of the signals before

sending them on to the recorder making the copy. This

will normally allow good clones up to four or five

"generations" removed from the original. However, when

possible, best results are still obtained when the

original is used for cloning.

One major feature of the Cloneplug system is that

you can use two standard recorders and one Tapeworm, or

two datasettes and no Tapeworm, or a combination of a

standard with Tapeworm and a datasette! Figure 5.7

shows the different hookups to match the equipment you

have available. This way you should be able to use

cloning with a minimum hardware aquisition.

105

FIGURE 5.7

CLONE HOOK-UPs

C64

CASSETTE

PORT

CLONE

PLUG

TAPEWORM

PLAY1ACK
(orbattmtos)

TWO STANDARD RECORDERS

RECORD

DECK

>°Plug <lfSED ON LY for RECORD)

TAPEWORM

ONE DATASETTE AND ONE RECORDER

RECORD

'DICK

CLONE

PLUG

TWO DATASETTES

DATASETTE

1

PLAYBACK

DATASETTE

2

RECORD

106

CLONING PROCEDURE

Before cloning, be sure that the recorders that

you are using are compatible with the Tapeworm and C64.

If you are using datasettes only and no standard

recorders, you will not need to worry about Tapeworm.

1. Determine the correct hookup from figure 5.7 based on

the type of recorders you are using.

2. Place original tape in PLAYBACK DECK. NOTE: PLAYBACK

DECK plugs into main (horizontal) edge of Cloneplug.

3. Place blank tape in RECORD DECK. NOTE: RECORD DECK, if

using 5.7b or 5.7c, plugs into vertical (90 degree)

plug of Cloneplug.

4. Make sure proper cassette buttons are set. Enter LOAD

command on computer.

5. When done , verify clone by loading it.

6. Best results are obtained if you record the clone on

the same deck as you normally use to load programs when

not cloning.

SAVING TAPES

There are times when you may wish to Save a

program via the computer instead of cloning. The

biggest advantage to doing this is that the "Saved"

program is equal in quality to an original tape.

107

I I
J

I F6 |

I

I

im
I

-. 4
i i

FIGURE 5.8

SUPER CLONE PLUG PC BOARD

SOLDER 90° PLUG HERE (foil to left)

-SLOT

1:1 LAYOUT

90° PLUG IS FOR RECORD ONLY (SEE FIG. 5.7)

EPOXY BEAD

FOIL SIDE UP & FRONT

SOLDER TRACES

108

Secondly, you do not have to use two recorders and play

around with external hardware. The main disadvantage is

that you need to have a good handle on the protection

being used. Often this will mean simply to know how

MANY sections a program loads in, where the sections

load TO, and whether the program sections are MACHINE

or BASIC, Following is a general outline of procedures

to make direct computer saved copies of many taped

programs.

Start by determining the number of separate loads

taking place. This can be done by listening for the

long tone leader followed by the short header burst.

Another way is to watch the screen for the FOUND

interval which occurs after the header.

STOP the computer after each header load (before

data load) and use an editor/assembler to read the tape

buffer. Write down the starting and ending address

given on each header. NOTE: DO NOT LOAD THE PROGRAM

SECTIONS. Fast forward past these to the next header.

When done you should have a list that looks

something like this:

lrst PRG. Starts $02A7 Ends $030B

2nd PRG. Starts $0801 Ends $30FF

3rd PRG. Starts $C000 Ends $C400

Remember that your list values will be in hex.

Programs that load below $0801 probably have something

to do with autorun and will require relocate/loading

109

(sec separate section this chapter) to load and save.

Write R/L by each of these on your list. The programs

above $0801 can bo saved separately as machine or

basic. If they are at $0801 you can load them

separately and list them to see if they make sense as

basic routines. If so, write BASIC beside them and when

you save them for your final duplicate, they will be

saved via the basic "SAVE" command. Assume the rest are Q)

machine language, they will be saved with the Lj

c
editor/assembler. Write Mach. beside each of these on

c
your list. *-

To make the backup, you will need to save each ^

program in order on your copy tape. Using your list, r

perform a LOAD1"1,1,1 and the appropriate save for each C*

program. (Use TRELO and its special save procedure on *~

those indicated R/L) If all goes well, your final tape -

c
will have an exact copy of the original programs. If f~ ,

you are so inclined, you may try to defeat the autorun C]

feature all together so that your copy will be easier ^~

to duplicate for future backups. ~

MACHINE SAVES ^

C

If you are not familiar with editor assemblers, it ^

may seem like a big chore to do machine saves. This is r

not true, it is a very simple process which you need to C

know. We recommend the use of Monitor$8000 and ^~

Monitor$C000 which Commodore sells on it's "Commodore ^

64 Macro Assembler Development System", (see chapter 2) r

When modified according to appendix B, any area in C

110 ^

C

memory can be saved with the "S" (save) command as

follows:

S"prg name",01,beginning hex address, ending hex

address

NOTEtthe 01 indicates tape drive. For disk use 08.

As you can see, this is a natural with the

information provided by the tape buffer.

RELOCATE LOADER for TAPE

TRELO-TMACHRELO

The main purpose of the Relocate load (r/1)

process is to force programs to load in the wrong place

so that autorun and other "disabling" features will not

operate.- This allows you to "get into" the program and

find out what it does. In some cases, we just want to

be able to Save the program, which of course can't be

done if it is running. The basis of the technique given

here is that autorun routines which keep you from

getting into programs are normally loaded into memory

locations in the "control zone" before $0801.

The tape relocate/loader will shift the program

up in memory to $2000. Thus a autorun which normally

loads to $0100 will be loaded by the R/L to $2000.

This relocating process will keep the program ,from

running. The save is performed by TRELO as a machine

save from $2000 to the "new end" of the program. TRELO

does all the calculations for you and displays the

original addresses so you can replace them in the tape

111

c

header. C

C
Since the relocated program SAVEs from an Q

abnormal location, it will not yet load and run v_

correctly. The trick is to EDIT the header data that

tells the program where it will load to. In other r-

words, your copy must have a different header put on so Q

that it will load to the normal location instead of the L

relocated aroa. This procedure is called "header

swapping" and. can be tricky. It will require the use of /-

the "Save Data" audio circuit of figure 4.1 or split (T

second timing. If you use the timing method you only C

have about +/- 0.5 seconds to react. Also close

attention needs to be paid to the EXACT start of the /-

header on the tape. The process involves replacing the (^

relocated copy's header with a "normal" one. The L"

following step by step procedure will simplify this _

process for you. s~

RELOCATE/LOADER PROCEDURE ^

C

c
1. Load and run TRELO. *-

2. Follow prompts to make relocated copy. Before making (^

the new header, study the following steps. They direct v^

you through the process of putting a NEW header over

the one with the relocated address. (TRELO keeps track /-

of the correct addresses for you) (^

3. Connect "Save data audio" .circuit or obtain accurate V-

STOPWATCH. The audio method is more reliable. (With ^

some monitors, you can turn up the volume and it will r-

pick up the SAVE audio, eliminating the need for the Q

112 ^
o

circuit or stopwatch. Check this by SAVING a program

with your monitor volume at full) .

4.Set up relocated copy tape at the very beginning of

FIRST tone leader. This positioning is critical if

using timing.

5. Follow prompts. By listening to data, allow to save

ONLY THE HEADER, then STOP tape recorder. (Or time for

13.1 seconds)

6. If all went well, your relocated program will have a

"normal" header which will cause it to load and run as

it should!

HINT: Practice listening to tape saves and loads to get

used to the "sound" of headers and data loads. (see

sketch) With a little practice, you will be able to

accurately respond to the short break between. You

must use the same name on the relocated copy and the

doctored header so that the time for the header will

not change. Be careful to start the tape in the same

place when editing as when the relocate load was done.

This will prevent it from recording over the data.

TAPE HEADER CONFIGURATION SKETCH

ALLOWABLE OVERLAP (HDR SWAP)

- APPROX. 13sec.-

mmmmm
■<:-: header -:'::::
S*. data i:&

DATA
(POM.)

vM-x-x-XyX;: i tx*:?:*:*:*:*

TAPE TO DISK TRELO PROCEDURE

113

c

1. Load TRELO and RUN. r

2. Follow prompts for disk. WRITE DOWN ORIGINAL STARTING f

ADDRESS! Convert to HEX, break into HIGH byte and LOW (

byte. ie: if calculated value is $02A7 High byte =02 ^-

Low byte =A7. _

3. When process is finished, use SUPERDIRECTORY to find f

the starting TRACK and SECTOR used by the disk to store C

your program. *--

4. Use DISK-EDITOR to change the starting ADDRESS on the ~

Relocated copy back to what you calculated. (Original C

Address) The third location from the top left on Disk- C

Editor display is the LOW byte. Replace the THIRD BYTE ^

TO YOUR CALCULATED LOW BYTE. The Fourth location is the ^

HIGH byte. Change the FOURTH LOCATION TO YOUR f

CALCULATED HIGH BYTE. Hit RETURN and follow prompts to C

save data. (Chapter six has more info on DISK- ^-
c

EDITOR) f

5. Relocated copy should now run normally. NOTE: NOT ALL Q.

PROGRAMS CAN BE SUCCESSFULLY COPIED WITH THIS C

PROCEDURE. *-

C
NOTE: if exchanging program medium from tape to disk, or *-

vice versa, remember to change the device number in ^
the booter section. C

C

c

c

c

c

c

c

c

c

c

Cc
c

TRELO

1 IFfl=0THEHfl=l:LOflD"TMfiCHRELO",8,1

2 P0KE53289,11:P0KE53231,11
3 PRINT'TMil TRELO/LOflDER IPSIDflC <C>84 VBNaT : PR I NT "MS11 GOTO 15
8 PRINT"sPUT CPV TfiPE IN DRIVE - SET FOR t\ RECORD!" : PRINT"flPRESS F7"

9 GETftf: I Ffi*O " II" THEN*
10 PRINT" ttfifiVING ";NF$:" FROM %BG;M TO ";Efl:SV38043

11 IFCK$="D" THEN0PEN15,8,15: INPUT815,flS, B$, C$, D* • PRINT"*!" ft*, BS, CS, U* ■ CLOSE 15

12 PQKE304IM P0KE8Q45',l: INPUT"iPatiflKE NEW TflPE HEftDER";flK*

13 IFflKf='1V"THEH10v3

14 IFCK*="D"THEN290•END

15 PRINT"MPLflCE ORIGINAL TflPE IN DRIVE" POKE1,PEEKU>flND223

20 PRINTM3flPERF0RM TflPE LOflD... WHEN FOUND NESSflGE"

21 PRINTliMRPPERRS, SRUH/STOP* THEN ENTER HRUN25^H END
25 POKE52>20:POKE56,20-POKE53280,11 :P0KE53281,ll

26 flH=PEEK<830;:flL=PEEKC829):BH=PEEK<832> =BL=PEEK<831>
27 OD=(PEEKX830>*256>+PEEK<829>:0E=<PEEK<832>*256)+PEEK'.831 •:BV=OE-OD

28 BG=32*256:P0KE254 >32 = P0KE253,0

30 PRINT"msKI TRELO/LOflDER IPSIDRC <C)84 VBNsT

32 P0KEl,PEEK<l>ftND223:pRINT"WSREWIND TflPE HPRESS F7 WHEN DONE"

33 GETfl*-.IFfl*O11«"THEN33

34 P0KEl*PEEKCl>0R32PRINT"nsPRESS PLflV ■
35 INPUT " mNPUT sE'^flCTi FI LENflME "; NF$: NL=LEN<UFS > : P0KE251, NL

40 SVS8008:SVS8103

45 PRINT'TTTW OF BYTES*"BV; " "Efl=BG+BV

50 PRINT".«DRIGINflL STflRTING flDDRESS = M;OD:PRINT"(!»RIGINflL ENDING flBBRESS = ";0E
55 INPUT-^fiVE ON T/D";CK*:IFCK$=MT"THEN8
&0 PRINT"rFREP DISK TO COPY - F7 WHEN REflDV":POKE8047,8 POKE8049,3GOTn9

100 POKE830 >flH:P0KE829,flL:P0KE832,BH:P0KE831>BL:P0KE254,flH = P0KE253,flL

105 P0KE175,BH:P0KEl?4,BL
115 PRINT"OU * ROUTINE TO REPLflCE TflPE HEflDER *"
120 P0KEliPEEKd>flND223:PRINT"M SREWIND TflPE TO EXflCT BEGINNING""

125 PRINT"BF7 WHEN REflDV!"

130 GETfl*:IFfl*OMirTHEN 130-
140 PRINT'-TTl^RESS PLFiV flND RECORDS a ■ POKE 1,PEEK<1>OR32
150 PRINT":BlffTIME FOR *XflCTLVfa 13.1 SECONDS* " = PRINT"jflTHEN HIT SRUN/STOFS"

160 PRIHT"«!F7 WHEN REflDY11

170 GETfl$:lFfl*Ollll"THEN170

ISO SVS8043

200 PRINT"MUSE DISK-EDITOR TO RESETS LOflD TOk flDDRESS"

115

1F4S

1F4B

1F4D

1F4F

1F51

1F54

1F56

1F58

1F5R

1F5D

1F5F

1F61

1F63

1F66

1F69

1F6R

1F6B

1F6E

1F70

1F72

1F74

1F77

1F79

1F7B

1F7D

1F39

1F82
1F84

1F86

1F88

1F8R

1F8C

1F8E

1F91

1F34

1F95

1F97

1F9R

1F9C

1F9E

1F9F

1FR0

1FR3

1FR5

1FR6

1FR7

1FR9

1FRC

IFfiF

1FB0

1FB2

TMACHRELO

20

R9

R2

R0

20

R5

R2

R0

20

as

f\6

R4

20

28

60

00

20

R9

R2

R0

20

R5

fi2
R0

20

R5

85

R5

85

R9

f\6

R4

20

28

60

R5

3D

29

85

60

00

RD

85

63

00

f\6

BD

9D

CR

B0

60

95

01

01

00

Bfl

FB

41

03

BB

00

FB

FE

D5

R0

95

01

01

FF

BR

FB

Bl

02

BD

FD

FC

FE

FD

FC

RE

RF

113

R0

01

R7

FE

01

R7

01

FB

40

B0

F7

IF

FF

FF

FF

IF

IF

FF

FF

FF

IF

02

02

03

02

JSR

LDR

LDX

LBV

JSR

LDfl

LDX

LDV

JSR

LDfl

LDX

LDV

JSR

JSR

RTS

BRK

JSR

LDfl

LDX

LDV

JSR

LDR

LDX

LDV

JSR

LDft

STR

LDR

STR

LDfl

LDX

LDV

JSR

JSR

RTS

LDfl

STfl

RND

STfl

RTS

BRK

LDfl

STfl

RTS

BRK

LDX

LDfl

STfl

DEX

BHE

RTS

$1F95

#$01

#$01

#$00

$FFBfl

$FB

#$41

#$03

$FFBD

#$00

$FD

$FE

$FFD5

$1FR0

$1F95

#$01

#$01

#$FF

$FFBfl

$FB

#$B1

#$02

$FFBD

$FD

$*FC
$FE

$FD

#$FC

$flE

$flF

$FFD8

$1FR0

$01

$02fl7

#$FE

$01

$02R7

$61

$FB

$0340,X

$02B0,X

$1FR9

116

*** CHAPTER SIX ***

DISKS

If the point has not been, made clear enough yet,

let me restate it here, at the beginning of the chapter

you may have turned to first. There is not now, and may

never be, a single software solution to the protection

used on disks. Regardless of the optimism of

advertisements in general, neither we nor anyone else

can offer a 100% solution or method for protection

breaking. The more you understand the disk drive and

it's potential, the clearer this point becomes. What

happens is that as a consumer you get caught in an

endless vicious cycle of new protections and new

products to break them. Everyone makes money at your

expense! The true solutions lie in your ability to

become a "detective" of sorts and to have tools that

are adaptable to the situation. With this in mind, we

make little attempt to supply overglossed, (and

117

c

priced), declining term software. Instead we have

developed some raw utilities which allow you to obtain r~

information, look into and modify programs, override Q

disk operating systems, and in general, to give you ^-■

control of what should be done. ^

This chapter consists of three main sections. The

first will cover each of the disk utilities in terms of s-

what it is, generally what it does, and special £

operating details. Chapter two gives a shorter, less t.

specific introduction to the various utilities for

disk, tape, and cartridge. The second part of this s-

chapter will give you some specific procedures to (^

follow in attacking different types of problems. It C

will cover some of the common ways you would combine

several utilities in a logical sequence to breaking a ^

program. The third section gives you the actual £

listings of the programs and any pertinent loading C_

details. ^y

SECTION 1 - UTILITIES

SUPERDIRECTORY

(»ives you an expanded directory of whats listed in

the normal disk directory. The additional features

include identification of the starting track and sector

for each program and file, listing of deleted programs

and files, and the starting address of each program

given in hex and decimal. Although this may seem

innocuous at first glance, it is really a key to

determining what you may be up against on a given

us

program. If for example, the program shows a starting

address of less than $0801, it will affect the control

zone and may be an autostart. Relocating will probably

be needed if you wish to save or pick. The number of

blocks used by the program will give you an idea of

what its function may be. Again, a short routine loaded

first is likely autorun or autoboot. If the program

begins at 0801, it is probably basic and if loaded by

itself, you will probably be able to list it. There is

however, no reason that it cannot be machine language,

so be ready to try disassembly also. Do not run a

routine first, often the program can be listed beftfre

you run it but you may lose control after you run it.

In addition, if the program is loaded separately, it

may not run correctly as the other sections are often

needed.

Programs starting in the $033C-$03FF range are

usually machine routines or access keys which reside in

the tape buffer. In these you should look for a

meaningful dissassembly or ASCII code representing

information.

Programs above $0801 will often be machine

language routines or hex data used by the main program.

Blocks in the $8000 and $C000 range? are popular for

machine programs and data.

Superdiroctory utilizes the machine routine

"ADMACH" in its operation. Loading and running

Supordirectory will automatically load ADMACH. Use of

Supordirectory is simple, after loading and running, it

119

o

will give you the option of sending the output to the *-

printer as well as the screen, then asking for the disk ^

to be examined. We recommend that you print a f ,

Superdirectory for every disk you have, and make it one C

of the first things you do with new disks. ^-

C
RELOCATE/LOADER Q;

c
One of the disadvantages of using whole disk ^

copiers is that an entire disk may be required when £

only a small portion of that disk is actually used. C

Many people like to combine similar programs on a disk

so that they might have several games on one disk, r

several utilities on another, business packages on £

another, and so on. In order to "pack" a disk with l_--'

fi
different programs you usually need to use normal basic

or machine SAVE commands. As you well know, commercial r~

prgrams do not usually lend themselves to this £

operation. O

c

The premise of Relocate/loader is that if a C'

program is loaded to the WRONG PLACE, it will not take

control of the system. Thus you are free to SAVE at

will. The R/L has the SAVE routine as an inherent part

of its operation. The most important thing to remember

is that the relocated copy will always have a starting *-■'

O
address of $0A00, regardless of where the original was ^

supposed to reside. Thus the relocated copy cannot RUN r^

until its starting address has been doctored. That is Q)

one' of the primary purposes of Disk-Editor. ^

If you wish to pick the program, you can use the

relocated version before you change the address back.

The disk version of Relocate/Loader uses a short

basic program to . control the machine relocating

programs. The machine routines are loaded through the

basic main program. "MACHRELO" is the name of these

machine routines. One of the things done by the system

is that basic is switched out during the relocating

process. This along with the compact size of the basic

main and machine routines allows us to sgueeze in a 50K

byte buffer. The size of this buffer should allow the

use of R/L on the vast majority of "long" programs.

DISK-EDITOR

As one of the primary uses of Disk-Editor is to

allow you to change the addresses contained on a disk,

we will go into this next. Each sector of the disk

contains header information and then a "block" of data

which is 256 bytes in size (binary, actual GCR format

is longer by 4:5 ratio, see Appendix F). Disk-Editor

allows you to dump any block on the disk to examine it

or to change any of the data contained in the block. On

every block, the first two bytes of data tell which

block is next on the disk. In this manner, the drive

can "link" all of the blocks together which belong to

any given program. Disk-Editor shows the links in

green. On the first block of a program, the second and

third bytes give the starting address (hex) of the

program. These are the two bytes you need to change

when "resetting" the address, on a relocated program.

121

c

c
Oncfi these addresses have been reset to their original ^

values, the relocated program can be loaded an run as r

though it were the original! Remember that the two ([,'

bytes you change are in hex and in the standard 6502 *-

format of low byte first, high byte second. Also ^

remember that they are contained on the starting sector r

of the program. These locations in the rest of the Q

sectors contain program data. ^-

There may be times when you will want to change

some of the data within a particular sector of a disk.

Disk-Editor gives you this option. It is simple to use,

you postition the cursor over the bytes you wish to (^

change, and type in the new values. When you have C!

completed all the changes for a given sector, hitting

c •
the RETURN key cause the changes to be read and prompt *- >

you on whether you desire to actually write the changes (V»

onto the disk. C

O
Disk-Editor is a basic program which loads its C'

machine subroutines under the name ADMACH. As with the ^'

others, you must run the basic program to load the

machine routines. If you get into a situation where you

need to re-RUN the main program, you can always skip

the first line which calls the machine load, as long as

the machine program has not been wiped out in some

manner. This is true of all of our basic/machine

programs.

LINKSTER

Linkster is a basic program which gives you a

complete list of sector links for a given program.

122

Linkstor allows you to specify which track and sector

you would like to begin with/ then it will print a list

of all the tracks and sectors used from that point in

the program. You do not have to start linking from the

beginning, it will just give you the ones from the

point you choose. Linkster also counts the number of

blocks from the point you started. The printout can be

screen only or screen and printer.

Other than simply finding out where a program is

stored on your disk, linkster can be used to find bad

sectors when a program disk becomes defective and

looses some data. If you have a program which loads for

a bit and then stops and returns a disk error, use

linkster to find out which sector the error is coming

from. You can then concentrate on "fixing" the sector.

If it is really bad you may be able to change the

previous link so that the program "skips" the bad

sector. In some cases you can list the program and

replace what is missing by hand and then resave the

"repaired" program!

ERROR ANALYZER

Error Analyzer checks an entire disk for errors by

either a sector by sector check or by a track by track

check. Error Analyzer checks tracks all the way to 44.

This gives you the ability to find out if any level 4

protection has been used on the disk. The track by

track check is primarily a sync locator which can

indicate if sync has been wiped out on any normal

tracks and if any has been written on the "extra" inner

123

tracks above 35. Many of the protection methods such as

wiping out a track, erasing sync, or writing to the

extra tracks can bo detected by this program. If any

information or protection codes have boen written to

the "extra" tracks, this is the only program that will

detect that, and do so in a short amount of time.

The track by track check only takes about 45

seconds and is a good idea as a primary test on new

programs. The sector by sector test takes longer but is

more thorough. When errors are found the program is

designed so as to not "bump" the disk head which can be

detrimental to alignment on some disk drives. Instead

it uses a machine programming technigue which will

recheck each track or sector four times and then go on

to the next. You will appreciate this feature on disks

with lots of errors. It is guicker, cleaner, safer, and

doesn't make your disk sound like its having a cow.

Error Analyzer lias printer options on both checks.

This will give you a convenient paper listing of the

errors found. These printouts supplied by our programs

should be used as a "map" as you work back through your

copied program to get it operating. With current

protection involving many errors in various locations,

you will need these printouts to work your way through

the "patching" chores on your copy disk.

T/S ANALYZER

T/S Analyzer has the primary purpose of producing

a error log which can be stored as a file and passed

along to Fastback. Although T/S does not have the

124

advanced reading technique of Error analyzer, it does

have several logging options and serves as a map maker

for Fastback. If you plan to be doing a lot of copying,

you should format a disk especially to hold your T/S

error logs. In this manner, the log only need be done

once when the disk to be copied is new. As time goes

on, you will build a file of error logs and if you ever

need to do another backup you can simply load Fastback

and through it, the appropriate error log for the

program in question. The output of T/S tells both what

errors are encountered as well as which sectors contain

data and which sectors are unused on the disk. This can

be helpful to locate sectors which have data but are

not called through the normal linking method. If a

sector has been destroyed, linkster cannot find out

what is beyond the bad sector. T/S can give you a clue

as where to pick up from!

T/S loads its machine routines under the name

"ANALYMACH". As before, this is done in the first line

of the program. T/S gives you four options. First to

analyze the Tracks and Sectors on the disk being

tested. Once this is done you have the choice of (2)

printing the log or (3) saving it to your log disk. The

final option is to load an error log previously saved.

You can then print that if you desire. This allows you

to make your logs at one time and then later as the

need arise.s or it becomes appropriate, you can make a

printout. The number of errors counted is kept track of

and printed out for your convenience.

FASTBACK

125

The error loq from T/S, which Fastback asks for,

relieves Fastback from having to bother with any empty

or bad sectors on the disk. Only those with valid data

are loaded into the buffer and subsequently saved on

your copy disk. Thus Fastback is just about as fast as

a copier can be. The operation is comparable to a DAM

copier which only copies those sectors containing

program. The difference is that it is not using an

easily destroyed BAM but rather a verified list of

which sectors have data and are copiable.

Once a Fastback copy has been made, you can use

the error log printouts which indicate where changes,

or errors need to be. Error writers or Diskpicker can

be used to put errors on. Alternately you may choose to

list/disassemble the program and try to modify the

sections which look for the errors. There may be data

in the sectors with errors that you will need to

recover. Fastback loads its machine counterpart

"ANALYMACH" in the first line of the program.

DD-1

DD-1 is the name of a group of four programs which

provide direct duplication via whole disk copy. The

programs are 1DUPDAC and its controller 1PSIMAIN which

are for single disk copies. 2DUPDAC and its basic

controller 2PSIMAIN are used for whole disk copies with

two disk drives. Although not as advanced in technique

as Fastback, you will find DD-1 is very handy to make

an on the spot backup of a less protected disk. It can

126

be quite fast if the original is only partially full

and you make use of the fast copy features.

The programs are able to copy many of the lower

level protection disks since they provide a direct

track by track duplication which does not depend on

BAMs, and it skips over errors. A 150 block buffer is

used for a minimum number of swaps. Track and sector

manipulations are handled by machine routines for

maximum reading and writing speed. Error decoding

allows simple operation and circumvents many error

protection schemes.

The system also features an error display which

can be sent to a printer for logging and later error

writing or removal, DD-1 will skip sectors which

contain errors designed to stop whole disk copiers. If

the program requires the errors to be present you can

use diskpicker or an error writer to replace them.

The. "fast write" feature of DD-1 causes the

program to skip over the writing of any sectors which

contain only format data and no program data. For

compatibility with other drives, this can be set to

look for a normal format of "ONEs" or "ZEROs". The

program checks the contents of the sector before

writing it and if it contains only format data it will

skip to the next.

The Multiple Copy Option allows making more than

one copy per original - without rereading the original.

This will allow you to -read in a section of the

127

o

original, tlion write it to several copies, and so on. ^'

'This saves a great amount of time since the original is ^

only read once.

After chosing either 1 or 2 disk drives, the

corresponding DUPDAO is loaded. Then type NEW and load * (\

the basic PSIMAIN version that corresponds to the C

number of drives you are using. The options and

procedure for 1)0-1 are given in the procedure part of r ,

this chapter (section 2). £>

DISKPICKER C

c

Diskpicker is a machine language development C

system for the 1541 disk drive. It is designed to allow ^

you to develop machine language routines in the C64

memory space and then transfer them to the disk drive.

From there, the routines can be executed from a control

menu in Diskpicker. The memory transfer features of

diskpicker allow you to transfer any or all of the disk ^

drive memory contents into the C64 memory space. It can C

then be examined, printed, modified an so on. Since C

Diskpicker uses the Commodore MONITOR$8000, you have a *-

full featured editor assembler for accomplishing the ^

various machine language tasks. Diskpicker also £

utilizes ZMACH which gives it the ability to switch C s

effortlessly between its basic and machine functions. ^

You may wish to make a ROM listing of your disk

drive ROM using diskpicker. The 16K size will make a

ra'ther large printout however. The disk controller

routines that you will need the most reside from F24D

to FFFF and thus makes a much shorter listing.

128

In addition to writing routines to bo sent to the

disk drive, you will also be able to load sectors from

the disk drive and transfer them back to computer

memory to see what is there. Diskpicker allows you to

look at header images , and other format information

that you normally couldn't see. Also modified headers

can be created which will produce errors if read

normally. With diskpicker, special machine language

routines can be written to find and read data after

these modified headers. This gives you the power to

experiment with protection methods of your own as well

as read out data that would otherwise be hidden.

The specific procedure for Diskpicker will be

given in the next section but the menu options

available are as follows:

1...Transfer disk memory to buffer (in C64)

2...Enable monitor (machine E/A)

3...Transfer (C64) buffer to disk memory space.

4...Direct execute user program.

5...Job Que execute user program.

6...Load Sector to disk buffer.

7...Initialize disk I/O.

8...Format Diskette.

ZMACH

Zmach is a short machine routine which you can

load any time you are using an editor assembler,

particularly Monitor$8000. Zmach provides you with a

129

way to save? and restore zero page as you qo back and

fortli between basic and machine language. This is

necessary to prevent, "lock up" of the computer when

exiting from the editor assembler. When loaded, before

going to the E/A, you SAVE ZERO PAGE by typing SYS'19152 Q

RETURN. Later, after you exit from the machine monitor, ^

you type SYS491H4 to RESTORE ZERO PAGE.

SECTION 2 — PROCEDURES ^

We will start this section with general procedure

to follow with any new disk and then we will cover

remaining individual utility programs with special (] !

notes to make you aware of additional options that may t '

not be obvious from a users standpoint.

1 Do a SUPERDIRECTORY listing of what is on your new ([•

disk. If you have a printer, make a hard copy for your t-

records.

2 Run an ERROR ANALYZER TRACK check. This will identify

use of error protection and extra tracks. Make hardcopy

if errors show up. Next do a TRACK and SECTOR analysis,

making hardcopy as needed.

3...Choose copy method. DD-1, FASTBACK or RELOCATE/LOAD.

Go directly to procedure for method chosen.

DD-1 PROCEDURE

1•..SELECT and LOAD "1DUPDAC",8,1 then NEW and LOAD

"1PSIMAIN",8 for single drive users.

2... SELECT and LOAD "2DUPDAC",8,1 then NEW and LOAD

"2PSIMAIN",8 for dual drives.

3...PRINTER option. List and change line 1 P=0 to P=l to

turn on printer. F7 must be pressed after each error

printout unless last line of program is changed from

SYS49903 to SYS49881. NOTE: if you use this option a

lot you may wish to save the modified version for your

own use. We have chosen this method of configuratioA

over a menu to conserve memory for buffer space.

4...SET FAST COPY MODE. Run selected DD-1 program with

disk to be copied but STOP after the first few sectors

have been read on track one. ?PEEK(2561) and

?PEEK(25G2). If both are 1 then POKE49747,1 and

POKE49751rl. If both PEEKs were 0, then do nothing. 0

is default value for DD-1 FAST COPY.

5...SET MULTIPLE COPY option. Default makes one copy.

POKE49174, [number of EXTRA copies desired]. Note that

the value you poke will produce that many EXTRA write

cycles. Thus poke 1 for 2 copies, 2 for 3 copies and so

on. The default value of 0 produces one copy.

6...DUAL DISKS; device number 8 for original disk, and

device number 9 for copy disk.

131

7...Run J)D-1 program chosen. You must use previously

formatted disks for copies since DD-1 has no format

option. If you forget, just RUN/STOP and format disks ^

in normal way. (Do not use wedge), then RUN again. s-

Follow PROMPTS on screen. Q

C

8...Bell indicates program read or write is active. TRack,

SECtor, and ERRor displays indicate current location s-

and any errors encountered. You will have time to write (^

the info down if an error was found. You must press F7 L

after error to continue with copy process.

FASTBACK PROCEDURE

1...LOAD and run T/S analyzer. Follow PROMPTS. Make error

printout if desired. SAVE error log on disk reserved &■

for that purpose. £

C

2 LOAD and RUN FASTBACK. Follow PROMPTS. ^

O
3...After copy is done, use error log and error maker or Q

Diskpicker to write errors back on copy disk. C

4...As an alternate to error writing, try to disassemble

original program and remove error checking routines. As

these routines may be in the boot, you may need to use

Relocate/Loader to get into these routines.

RELOCATE/LOADER PROCEDURE •

132

1...L0AD and RUN RELOCATE/LOADER.

2...Follow PROMPTS and select program from original disk

to bo Relocate/loaded.

3...Type in EXACT program name when asked for it.

4...Save the Relocated copy. If you are trying to pick the

program you can load Editor /Assemblers or other tools

needed for picking. The relocated copy can be loaded as

often as needed for study purposes. It will have a

starting address of $0A00 or decimal 2560. You do not

need to change the start address until you are done

"picking". While picking, you can save the program as a

normal machine language routine.

5...If relocating has been done to COPY and if you have

completed any needed changes and now need to reset

address, go to the DISK-EDITOR PROCEDURE.

DISK-EDITOR PROCEDURE

1...L0AD and RUN DISK-EDITOR.

2...Follow PROMPTS and select track and sector desired to

edit. IF RESETTING ADDRESS, this will be the first

track and sector for the program. If you do not know

which is the first track and sector you will need to do

a Superdirectory listing to find out.

133

c

3...Once desired sector lias been loaded, you will have i *-

display with the hex values of each byte in the sector.

The first two are green and are the NEXT TRACK and r

SECTOR values IN HEX. (Convert these to decimal to find Q

next track and sector and convert any desired values to ^

hex before trying to replace current ones) For example

if next track and sector is given as 17 10; the

decimal value is 23 16. If you wish to change this link C

to. to say track 1 sector 12 you would type in 01 0C. ^

C

c
4...If you want to change the LOAD-TO address, it is given r ,

in the 3rd and 4th bytes. (Two following the green C

ones) Remember this only applies to the first sector of ^-

the program, all others contain data in this location. _

The values are in hex with the low byte first and the r

high byte second. If you are looking at a {T

relocate/saved copy, you would see in this location *-

these numbers: 00 0A Which means that the program r

will load to location $0A00. If you are resetting the r

address back to what is used on the original disk, look Q

up the correct start address from the HEX.ADD column of *-

your Superdirectory listing of that disk. ^

C
5...Once all desired changes have been made, follow the C

PROMPTS to either SAVE changed sector or get another ^-

one. SAVED sector will replace itself on the disk. ~

C

G

C

C

C

C

8

DISKPICKER PROCEDURE

The uses of Diskpicker go well beyond what a

simple procedure can give you. As it is a system that

allows you to develop programs to use in the disk, we

will explain how to use the options and give you some

example error routines which you can send to the disk.

Beyond this, you will need fluency in machine language

to be sucessful. Note that you must obtain a copy of

MONITOR$8000 which should be saved on your PSIPACK

disk. Other monitors may be used if you want to change

the program lines that load and call MONITOR$8000.

(SYS32768 is the call). Remember that other monitors

cannot occupy the beginning of basic RAM or $C000

locations. You will need some free RAM to use as buffer

space for developing routines and for storing

information read from the disk. Typically a couple of K

will be enough.

1...L0AD and RUN Diskpicker.

2...MENU OPTION 1 - Transfer disk memory to buffer.

The purpose of this option is to allow any valid

locations in the disk drive to be transfered to the

memory of the C64 from where you can dissassemble,

study, and modify as desired. The monitor printer

options will allow you to make printouts of this

memory. Since the total RAM in the disk is only 2K in

135

size, you have plenty of room in the 64 for this v

purpose. The requirements of Diskpicker do limit you to ^

using memory between $3000 and $7FFF which is 20K. ^

Option one will ask for the starting and ending _

DISK locations you want to transfer to the C64. These f

must be in HEX! It will then ask you where you want the (/

C64 buffer which will recieve the data to be. We *-

STRONGLY recommend that you always use the same page ^

offset. Thus if you want to transfer disk $0300-$03FF r

to the C64 you should use a buffer start such as 3300 C

or 4300 or 5300 etc. This will make disassembly more ^

meaningful because all page addresses will be the same. -

NOTE: We define 00-FF as location address; 000-F00 as C

page address; and 0000-F000 as block address. C

c

2...MENU OPTION 2 - Enable Monitor Mode. f

This option puts you into the editor assembler. We

. use Monitor$0000 (by Commodore) for this purpose. The s-

typical E/A features are available in this mode. For Q

example, you can select a memory area and write a C_

machine routine which can be transfered to the disk by

option 3. When looking at information that you have s-

loaded from a disk through disk memory, we recommend Q

using the I (intorrogate) command which will give you L

an ASCII as well as hex dump. This can be useful when ^ '

looking for acess codes or particular info which would r-

be meaningful in ASCII. Keep a copy of figure 3.3 (disk C

map) handy when using the monitor. C '

C
To EXIT the monitor mode, type G C020. This will C

I

return you to the main menu in basic mode. Your

programs or data that you were working on will remain

intact as long as you do not try to transfer something

on top of them or erase them with a monitor command.

This gives you the ability to keep many "images" of

disk memory or machine routines in memory at one time.

3...Transfer Buffer to Disk Memory

This option allows you to send the data or program

that you have in the C64 buffer space TO the disk drive

memory. Remember that the disk uses $0000 to $02FF for

system purposes and you will not normally transfer

programs to these locations. The buffers in the disk,

0300, 0400, 0500, 0600, and 0700 are perfect for such

uses. S

4...Direct Execute User Program.

Assuming you have transferred a program to the

disk drive, this option will allow you to cause that

program to be executed! You will be asked for the

address (hex) in the disk at which you want execution

to begin. The proper commands will be sent by

Diskpicker to cause that program to RUN in the disk

memory* It is a good idea to make sure a scratch disk

is in the drive the first few times you try a routine

in case it backfires.

Direct Execute is primarily for routines which

manipulate data rather than routines which control

reading or writing .to sectors. The reason for this is

137

o
that direct execute does not provide for automatic ^

track and sector preparation as does Job Que Execute. Q

C

5...Job Que Execute.

This option provides execution of your routine AS ^

A PART OF one of the EXISTANT DISK ROUTINES. In other r

words, if you select lets say a Job Que WRITE, the r

drive will find the track and sector you have selected, C

and then execute your routine. Normally your routine *-

would be designed to affect what might normally have ^

been done through the disk routines. The job que r

functions save you the trouble of trying to get the C

motors going, find track and sector, etc. ^

The following list gives the direct execute \~

commands:

128-READ -Reads in selected sector. *-

144-WRITE -Writes to selected sector. Q

160-VERIFY -Compares sector with one in memory. v.

176-SEEK TRACK -Locates specified track.

184-SEEK SEC -Locates specified sector. s-

192-BUMP -Runs head to stop and bumps (resets head) £

208-JUMP -Jumps to specified memory location. V

224-EXECUTE -Puts Track and Sector to be affected in j:

Que, finds track and sector, loads the header there and s~

goes to your machine routine. Note that your machine Q

routine or its jump vector must start at the beginning v.

of one of the five buffers, $0300 through $0700. Since ^

data is read from the disk header, variables in the r

drive inoiuory will bo affected. Q

C
138 C

C

6...Load Sector To Disk Buffer

This option will ask you for the headers (track

and sector) and will then load that sector to the disk

memory. From there it can be transferred to C64 Memory

for study. This option is useful to examine specific

sectors.

7...Initialize disk I/O

This is essentially a RESET command which returns

the disk to power up conditions. It does so without

wiping out all of memory like a C64 RESET would do.

Useful when you need to be sure the disk is clear for

other operations. It is a good idea to use this

command any time you have uncovered and error and wish

to send new commands to the disk. This makes sure the

disk is ready to receive the data properly.

8...Format Diskette.

This option allows to format a diskette without

breaking out of program. This can be useful since you

will typically be trying to do things which can "mess"

up your practice scratch disk!

9...Resetting.

If the system locks up, use SYS49184 for a- warm

reset. In extreme cases you may need a reset button or

turn off the computer. (See Appendix E). X is used to

139

c

c
escape an input mode question. (

C

c

ADVANCED TECHNIQUES C

C

c
In making protection, there are some things which r~

go beyond simply writing an error and having the Q

program test the error by trying to load the sector. C

Error writing programs to date leave you with little other

option. There are many things possible of which we will s-

try to start you thinking about a few. Q

c
Consider first, how a disk sector or partial Q

track could be erased. The disk would normally find C

this sector by its header, which can't be done if it *-

has been erased. However, if you know which sector is ^

bad, you can tell the disk to look for the sector in C

front of it, which is good. Once the preceeding good C

sector is found, the disk is programmed to wait for a *-

certain period and write some data. This data then goes ^

to the "nonexistant" sector. A similar process can be r

used to read this data. A quite effective means of C

protection since it is difficult to reproduce the exact ^-

parameters used to write the data! This variation can ^

be used on the "extra" tracks beyond 35. r

C
Other ways to protect include putting data in the r-

GAP at the end of a track. If your copy maker is not Q

aware that data is there it will not look there. With C

the machine routines we have included, the gap data can

be road in a fashion similar to the above process. > s-

C

140 C
c

Tracks and Sectors can be given illegal numbers by

changing this data in the header. (Appendix F) The

normal DOS will not accept out of range values. A

machine routine used by the disk drive can do this. The

diskette could also be entirely or partially formatted

in an abnormal pattern which would only be recognized

by a modified DOS routine.

Another devious means would be to write "encoded"

sync pulses on an unused part of the disk. These sync

pulses could be encoded by a means as simple as

spacing. In other words, the time between consecutive

sync pulses would have to be exactly according to a

predetermined VARIABLE spacing/ or the program checking

them would abort. Breaking such a system would require

a sophisticated analysis of the diskette which cannot

be done through normal DOS routines.

These examples should give you a clearer idea of

what can be done if you go outside the confines of the

DOS and develop both reading and writing routines. It

is hard enough to understand how the normal DOS

routines function/ let alone trying to figure out what

someone has done beyond this. These methods by nature

will not be compatible with other drives. It is also

interesting to note that copier programs usually will

not copy themselves... in other words they are

obsoleted by their own manufacturers since they have

developed protection that foils their OWN product!! If

they can do it, so can anybody else. If a copy program

cannot copy itself, you may rest certain that within a

141

o

c
VERY short time there will be many new programs out r \

that it also cannot copy! If the market continues to Q"

develop in this direction, we will likely continue with ^~

our development of a disk "Dumb Copier". Such a system

will put to rest any protection that does not involve /-

external hardware or physical modification of the disk Q

drive. v.

C

C

ERROR WRITING PROCEDURE *~
c

c
Following are some examples of how to send error Q

writing routines to the disk via Diskpicker. In the C

program section of this chapter we have listings for

all the error routines included. You may prefer to *r

write a basic program which "sends" these routines to C

the disk and then executes them. We have chosen not to C

as such error writers are abundant already and become *-

outdated as fast as they are sold. If you become ^

familiar with the techniques of Diskpicker, you will be Q

able to add and modify routines as YOU see fit. C

C

C<
IMPORTANT: Although every attempt was made to make **

these procedures compatible with all 1541s, there are Q

apparently four revisions of the DOS ROM put out by L ;

Commodore. As explained earlier, this can lead to ^-

compatibility problems with many forms of protected s-

software AS WELL AS error making procedures. This is Q

why such protection is of questionable validity. We L

can not guarantee that all error making routines will ^

work on all past and future versions. s-

142 C

O

SPECIAL INSTRUCTIONS AND CAUTIONS

NOTE:These techniques should not be attempted if you do

not understand the underlying principles.

Indiscriminate use could cause the disk head to stick

which may require partial disassembly to correct!!

1. To Escape back to Main Menu, Input letter X for

requested input value.

2. To escape from Monitor$8000, input G C020. (requires

space btween G & C020)

3. If disk or computer locks up, (and if you have a reset

button), press reset and enter SYS49184 to restore

system.

4. Always Format disk to be written to with the same disk

ID# as the original.

5. Never select tracks above 44 or disk head will bang

against end stop and may get stuck. If this happens you

will need to open disk case and gently push head back

to center.

6. If head gets stuck, first try by using Initialize

operation or call the Job Que Bump command, #192.

7. Always input valid header # and data for track & sector

when using the Job Que.

ERROR 20 NO HEADER

Erases header from specified track and sector.

1. Load and run Diskpicker.

2. Select menu option 2. Set printer choice "N".

3. Input L"20 NO HEADER",08 After load, Input G

C020.

4. Place diskette to be written on in drive.

5. Select menu option 7.

6. Select menu option 3.

7. Input disk start address 0300.

8. Input disk end address 034F.

9. Input Buffer address 3300.

10.After Data transfer to disk, select menu option 5.

11.Input Job choice 224. Select choice 1 (0300) for

execute address. F0R ONE SECTOR SET MULTISECTOR*'N'

FOR ALL SECTORS. SET MULTISECTOR*'Y'

143

12.For header #1, input track # desired to write ON. Q>

13.For header#2, input value ONE LESS than sector desired O
to write ON. (USE 0 FOR SECTOR #s 1) Q

* Note: If sector 0 is to be written to, select the C
highest sector'number on this track. (see drive user /-
manual). i.e.: Input a 20 if sector 0 on track 1 is v-
being chosen. Q

14.REPEAT the above steps 8-11 for writing type 20 errors C.
to other headers of your choice. * Intermixing read, f

write and load operations may write over the error

routine being held in the disk memory buffer. C

15.To test your errors, select option 5 (Job Que Execute). ^-

16. Input job choice 128. v-

17.For header #1 , enter track #desired to read, and for

header#2, enter the sector number to read. C

18.If everything went right, you will see the proper error ^
message and OP status code. Q

** For error routines 21 ERASE TRACK, 22 NO DATA, 23 C
DATCHKSUM, and SYNC WRITER, repeat the same Q

instructions as given above EXCEPT select the EXACT

track and sector #s you wish to write on. (No wrap C
around is needed on sector 0) The SYNC WRITER routine r

is usually used to write sync pulses to tracks from 35 ^-
thru 44. This will change the error returned when Q
reading these areas from sync not found to HEADER NOT ^

FOUND. • L

C

READ HEADER C

c
This routine reads the GCR header from a disk and Q

allows you to put it in the computer for analysis or ^

modification. By using this routine and the HDR WRITE v_

you can "SPLICE:" bad headers from original disks on to r

your copy disks. In many cases this is more effective

than trying to reproduce the header errors that have (_
been used for protection. s-

1. Load and run Diskpicker. Q

2. Select Menu option 2 and printer choice "N". v.

3. Input L"READ I!DR",08 after load, input LMCOPY ^
HUH",00 C

4. After load, input. (] C020 *-

5. Place* diskette to be read into drive. ^

C

144 C

6. Select menu option 7 then option 3,

7. Input disk start address 0300

8. Input disk end address 034F

9. Input buffer address 4300

10.After data transfer, select menu option 5.

11.Input Job choice 224 and select choice 1 for execute

address Of 0300. FOR ONE SECTOR, MULTISECTOR*'N' FOR ALL

SECTORS MULTISECTOR='V

12.For header #1, enter track header you wish to copy is

on.

13.For header #2, enter sector value ONE LESS than sector

value with header you want, ie: Input 0 if sector 1 was

choice.

** For sectors 0, seiect last sector on that track!.

14.Select menu option 1.

15.Input disk start address of 0400.

16.Input disk end address of 05FF.

17.Input buffer address of 6400.

18.After data transfer, select menu option 2 and desired

printer option.

19.Use memory dump command (M) of monitor to display GCR

image of the header and data now contained in computer

memory locations from 6400 to 65FF. See Appendix F for

explanation of GCR image. G C020 will return you to

main menu.

COPY HEADER

Writes GCR image of header from disk buffer to

object diskette. Useful for ERROR SPLICING.

1. Follow steps 1-19 for Read Hdr routine.

2. Insert disk to be written to in drive, (object disk)

3. Select menu option 3.

4. Input disk start address 0300.

5. Input disk end address 035F.

6. Input buffer address 3300.

7. After transfer of program to disk, select menu option

5.

145

c

c
8. Input Job Choice 224 and select choice 1 for execute (~

address of 0300.FOR ONE SECTOR, MULTISECTOR='N' FOR ALL ^
SECTORS MULTISECTOR='Y1 C

9. For header #1/ enter the track header is to be written r

to. V

10.For header#2, enter sector value ONE LESS than desired ^

sector to be written to. ie: Input 0 if 1 is your ^-
choice. (~

* If choice is 0, use highest sector value on THAT track, C
as described in other procedures. r~

11.If everything went right, you can use READ HDR steps 5 Q
thru 19 to look at and verify the new header just ^

written! ! v-

C

EXTRA NOTES C

c
Remember, Diskpicker is designed to give you (^

control of exactly what is written and sent to the ^

disk. It is a disk development system especially for ^
experimenting with and testing modified DOS routines. Q

Do not confuse its intent with that of "turnkey" error

writers which are simple to use but restrict you to C
what they have decided should be used for errors. Such f~

programs are obsolete shortly after they are sold. With ^
Diskpicker you can concentrate on collecting modified (^
DOS routines which are by nature short and easily ^~

traded, and use Diskpicker to transfer and execute v_

these routines. Dedicated error writers generally try C

to keep you from getting into the program let alone

modify and update it. C

Below are listed some protection possibilities to ^~
look for on original diskettes: Q

1. Missing or extra sync bytes. Use READ HDR to look for C
this. r

2. Missing header or illegal header ID. C

3. False header checksum. ^~

4. Illegal or missing sectors. _

5. False ID numbers. r

6. Protection data in GAP area. Q

7. Missing or illegal data block ID byte. ^>

8. Data block missing. ^

9. False data checksum.

10.Protection data in end of track GAP.

146

11.Protection data encoded using sync pulse

combinations.

♦Note: It is possible to achieve some of the above

errors on tracks 36 thru 44 as these are readily

available using the disk controller software.

Even though protection errors will cause loading

problems under normal conditions, it is a fairly simple

process to recover useable data from a bad sector. This

is done by analyzing the error and writing a short

machine program to recover the data. The trick is to

sync up on a previous sector's sync pulse and count

bytes to the location you wish to read from. When

counting bytes, sync pulses show up as ONE byte even

though several have occurred. A valid sync pulse does

not always show up on a GCR sector read out as an "FF".

The general philosophy for precise error writing

is to place the GCR data you wish to record in one of

the disk memory buffers, find a valid sync pulse on a

nearby preceeding sector, count bytes up to the area

you wish to write to, switch the disk controller to its

write mode and dump the buffer to the diskette.

Switching from read to write is Best accomplished

during the gap time when GCR 55*s are being read.

The read/write techniques just described will

allow a clever programmer to read or write desired

information to/from any place on the diskette!! Good

luck!!!

*** IMPORTANT: When switching diskettes during
Diskpicker procedures, be sure to perform

Initialization - Menu option seven. This will insure
that the drive page zero memory locations are
initialized to the current diskette identification

parameters. THIS DOES NOT HAPPEN ON POWER UP!

147

o

c

c

c

c

CREATE HEADER ERRORS ^

1. For checksum error in header, load ICON HDRthrough

monitor mode of Diskpicker. t
f

2. If checksum in header error is not desired, load CONHDR v-
through monitor mode. Q

3. Load WRITE HDR through monitor mode. v
PUT OBJECT DISKETTE IN DRIVE. r

4. Select 6 from main menu and enter track# and sector#

desired. C

5. Select choice 1 - (Transfer disk mem. to buffer) ^~
Start addr. 0000 Q
End addr. OOFF r

■ Buff. addr. 6000 . ^

6. Interogate memory locations 6000 -6030 form monitor

mode. Refer to Appendix F "Important Disk Memory (L.
Locations" to identify byte functions. f~

7. Change locations to value desired to create errors. C
Disk ID #s might normally be changed. *-

8. The GCR image of this hdr can be seen in computer £

buffer locations 6024-602B. (Which come from disk _

memory 0024-002B) SELECT 3 FROM MAIN MENU START ADDR 0016 C.

END ADDR 001B BUFF ADDR 6016 r

9. Select 3 from main menu.

Start addr. 0300 Q
End addr. 031F r

Buff. addr. 5300 ^

10.Select 4 from main menu. Entry addr. 0300 r

11.GCR image is now in disk memory locations 03E0-03E7, r

ready for transfer to the object disk. Make sure object

disk is inserted in drive. Q

12.Select 3 from main menu. ^~
Start addr. 0300 Q

End addr. 036F r

Buff. addr. 3300 L \

13. Select 5 from main menu. Job choice = 224. For

execute start addr, select 1 (0300) (

14. For Hdr #1, use track desired. For Hdr#2, use ONE *-

LKSS than desired. ("wraparound as in earlier (

procedures), ie: For sector 1 enter a 0. _

IT).To check errors, follow read header techniques. C

148 (

1PSIMAIN

1 SVS49891P=0

2 SVS49844
3 SVS49516:X=PEEK<49160>:0NXGGT04,3/5/18

4 T=PEEK<49156> : S=PEEKc:49157> = PRINT#15/ MU1 "2; 0; T;S: G0SUB25 = SVS49691:60T03
5 SVS49853-2=0
6 SV349939:X=PEEK<49161):0NXG0T07/6,2/10/5
7 T=PEEK<49158):S=PEEK<49159):SVS49745:IFPEEKC43173>=1FIMDZ=1THEH6

8 PRINT#15/MB-P:M2;0 SVS49718:PRINT#15/HU2:"2;0;T;3:GOSUB25:2=1GOTO6

I© 3VS49872:END
25 PRINT11 ^tfTRK.11!11!! " :PRINT"WSEC. "S11!! " • INPUT#15,fl*,B*
26 PR1NTMWERR. "flfTmTT1: IFfl*^'^O-'THENRETURH

27 IFP=1THENOPEN4,4:PRINT#4/T/S/fl$/B*•CL0SE4
28 SVS49903:RETURN

2PSIMAIN

1 SVS49778 P=0

2 SVS49816:M»0
3 SVS45516:X=PEEK<49160):ONXGOTO4/3,5/10
4 T=PEEK<49156):S=PEEK<49157):pRINT#15/MUl:ll2;0;T;S:GOSUB25:SVS49691GOTO3

5 3VS49832^M=1=2=0
6 3V349684X=PEEK<49l61):QNXG0T07/6/2/10/5

7 T=PEEK<49158> :S=PEEK<49159) =SVS49745: IFPEEK<49173>=lftHDZ=lTHEN6

8 PRINT#15,MB-P:l)2;0:3VS497ia-PRINT#15/llU2:"2;0;T;S:GOSUB25-Z=l -G0T06

10 SVS49348 END

25 PRINT"«TRK."T"y"iPRIHT"»SEC."S-n "•INPUT#15/R$,B*
26 PRINT"JBERR. "fl^'TTTTTn0 : IFfl$=ll08"THENRETURN

27 IFP=1THENOPEH4/4:PRINT#4/T/3/ft*/B*:CL0SE4

23 IFM=0THENSVS49867:RETURN

29 3VS49877:RETURN

149

DUPDAC DATA

:C008 00 00 OB OB 11 F8 11 23

:C010 03 OF 23 08 09 00 00 00

C318

oaifi

C31C

C31E

C320
C022

C024

C026

C023

C32B

C02C

C02E

C330

C033

CQ36

C339

C03C

CQ3F

C042

C04S

C048

C04B

C04E

D351

C054

C057

C35R

C05B

C05C
CQ5D

C05E

C060

CQ63
C365

C363

CQ6fl
C36D

C070

C072

C075

C077

C07R

C07C

CQ7E

C030

CQ83

C386

1DUPDAC

R9

85

85

R9

35

85

R0

fl9

99

C3

C0
D0

RD

3D
.RD

8D

RD

8D

RD

3D

fiD

3D

RD

3D

RD

8D

60

00

00

30

R9

RE

R0

20

R9

20

20

f\9

RE

R0

20

R9

R2

R0

20

20

60

00

FB

FD

OR

FC

FE

00

00

00

0R

F3

0R

20

0B

21

11
18

0C

05

3D

36

10

00

0F

01

0F

13

0F

BR

00

BD

C6

32

13

32

BR

01

12

C0

BD

C0

C0

C0

D0

C0

D0

C0

D4

C0

D4

C0

D4

C3

D4

C0

D4

C0

FF

FF

FF

C0

FF

FF

FF

LDR

STfi

3TR

LDR

STfl

STR

LDV

LDR

STfl

INV
CPV

BNE

LDR

STfl

LDfl

STfl

LDfl

STfl

LDfl

STfl

LDfl

STfl

LDfl

STfl

LDfl
STfl

RTS

BRK

BRK

BRK

LDfl

LDX

LDV

JSR

LDfl

JSR

JSR

LDfl

LDX

LDV

JSR

LDfl

LDX

LDV

JSR

JSR

RTS

#$00

$FB

$FD

#$3fl

$FC

$FE

#$00

#$00
$C000,V

#$0fl

$C028

$C00fl

$D020

$C00B

$D021

$C011
$D413

$CO0C

$D405

$C00D

$D406

$C010
$D400

SC00F
$D401

#$0F

$C013

#$0F

SFFBfl

#$00

$FFBD.

$FFC0

#$02

$C013

#$02

$FFBfl

#$01

#$12

#$C0
$FFBD

$FFC0

C087

C033

C039

C08R

C03B

C03D

C08F

C091

C093

C096

C093

C09B

C09C

C09D

C09E

C09F

C0R0

C0R2

C0fl5

C0fl7
CQfifl

C3RC

C0RF

C0B2

C0B4

C0B7

C0B9

C0BC

C0BE

C0C0
C0C2

C0C5

C0C8

C0C9

C0CR

C0CB

C0CC

C0CD

C0CE

C0D0

C0D3

C0D5

C0D7

C0DR

C0DB

C0DD

C0DE

C0DF

C0E0

C0E1
C0E3

C3E6

C3E8

C3Efl

C0ED

C0EE

C3F0

C0F1
CQF2

C0F4

33

00

00

00

fl9

35

85

fl9

20

fl9

20

60

00

00

00

00

fl9
RE

R0

20
R3

20

20

fl9

flE

fl0

20

fl9

fl2
fl0

20

20

60

00

00

00

00

13

fl2

BD

C9

F0

20

E3

D0

60

30

00

13

R2

BD

C9

F0

20

E3

D0

63

18
R2

BD

3fl

FC

FE

02

C3
0F

C3

0F

14

3F
BR

33

BD

C0

32

14

02

BR

01

12
C0

BD

C0

30

F3

34

36

D2

F3

33

8C

34

36

D2

F3

03

E3

FF

FF

C0

FF

FF

FF

C0

FF

FF

FF

CD

FF

CE

FF

CE

BRK

BRK

BRK

BRK

LDfl

STfl

STfl

LDfl

JSR

LDfl
JSR

RTS

BRK

BRK

BRK

BRK

LDfl

LDX

LDV

JSR

LDfl

JSR

JSR

LDfl

LDX

LDV

JSR

LDfl

LDX
LDV

JSR

JSR

RTS

BRK

BRK

BRK

BRK

CLC

LDX

LDfl

CMP

BEQ

JSR

INX

BNE

RTS

BRK

BRK

CLC

LDX

LDfl

CMP

BEQ

JSR

INX

BNE

RTS

CLC

LDX

LDR

#$3fl

$FC

$FE

#$02

$FFC3

#$3F
$FFC3

#$3F

$C014

#$3F

$FFBR

#$03

$FFBD

$FFC0

#$02

$C014

#$02

$FFBfl

#$01

#$12
#$C0

$FFBD

$FFC0

#$38

$CDF3,X

#$34

$C0DD

$FFD2

$C3D3

#$33

$CE8C,X

#$34

$C0F0

$FFD2

$C8E3

#$00
$CEE9,X

o

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

150

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
n
o
o
o
o

(

Jc
oc
oc
oc
oc
oJ

n
i
b
o
w
n
i
i
T
i

i
C
O
P
O
<
S

Vf
i
V
O
O
O

S
>

t
r
t
s
i

®
^
*
"
n
-
J
©
c
o
©

W
CT

i
C
O
C
O
T
|

CT
i
^

^
J
h
*

o n

*
*
o

w
-
<
j

c
o
m
-
n
^
j
©
c
D
^

&
\

Vf
l

CT
»

I-
*
C
u

C
D
©

iT
^
C
D
C
D
C
D

C
D

"S
i

C
D

~%
J

C
D
C
D
C
D

C
D

C
D
C
D

o
o
r
o
e
n
w
e
n
©

w
e
n

e
n
c
r
>

^
o
o
h
-

©
q
>
c
o

*-
*
©
©

©
©
©

Q
T
l

©
T
l

C
D
©

C
D

©

8
8
8
|
o
8
8
o

*
*

i^
D
^
0
C
9
1
^
3

tt
f

W
T
1
0
0

V
D
P
0
O
1

:ide

:iE2

C1E5

C1E8

C1E9

C1EB

C1EE

C1F1

C1F2

C1F5

C1F3

C1F9

C1FC

C1FF

C200

C203

C206

C209

C20B

C20D

C210

C213
C216

C217

C213

C219

C21R

C21B

C21C

C21E

C221

C223
C226

C228

C229

C22B

C22D

C230

C233
C234

C235

C236

C237

C239
C23C

C23E
C240

C243
C244

C246

C243

C24B

C24E

C24F

C250
C251
C252

C254

C256

C258

1DUPDAC -

D0

fl2

3E

3C

60

R2

8E

3D

ca
B9

3D

C3

B9

3D

C3
3C

RD

CD

D0

fl2
3E

RE

20

60

00

00

00

00

13

R2

20

R0

20

91

C3

D0

E6

20

EE

60

00

00

13

R2

20

R0

Bl

20

C3

D0

E6

20

EE

60

00

00

13

fl0

Bl

C9
D0

02

0.4

09

01

01

09

06

76

07

76

03

01

07

03

05

02

09

0F

0B

02

C6

00

A5
FB

F3

FC

CC

05

02

C9

00

FD

R3

F8

FE

CC

07

00

FD

00

QE

C0

C0

C0

C0

CF

C0

CF

C0

C0

C0

C0

C0

C0

Cl

FF

FF

FF

C0

FF

FF

FF

C0

BNE

LDX

STX

STV

RTS

LDX

STX

STR

INV

LDfl

STfi

INV

LDR

STfi

INV
STV

LDfl

CMP

BNE

LDX

STX

LDX

JSR

RTS

BRK

BRK

BRK

BRK

CLC

LDX

JSR

LDV

JSR

STR

INV

BNE

INC

JSR

INC

RTS

BRK

BRK

CLC

LDX

JSR
LDV

LDfl

JSR
INV

BNE

INC

JSR

INC

RTS

BRK

BRK

CLC

LDV

LDfl

CMP

BNE

$C1E2

#$04

$C009
$C001

#$01
$C009

$C006

$CF76,

$C007

$CF76,

$C003

$C001

$C007

$C003

$C210

#$02

$C009

$C00F

$C10B

#$02

$FFC6

#$00

$FFR5

<$FB>,

$C223
$FC

$FFCC

$C005

#$02

$FFC3

#$00

<$FD)>

$FFR8

$C23E

$FE

$FFCC

$C007

#$00

if $FD') /

#$00

$C268

V

V

V

V

V

152

C25fl

C25B

C25D

C25F
C262

C265

C267

C263

C26fl

C26D

C26E

C26F

C270

C271

C272

C275

C278

C27B

C27E

C231

C234
C287

C288

C289

C28R

C23B
C28C

C23F

C292

C295

C293

C29B

C29E*

C23F

C2R0

C2fll

C2fl2

C2R3

C2R6

C2R9

C2RC

C2RF

C2B0

C2B1

C2B2

C2B3

C2B4

C2B7

C2BR

C2BD

C2C0

C2C1

C2C2
C2C5

C2C8

C2CB

C2CE

C2CF
C2B0

C8

D0

R2

3E

EE

E6

60

R2

3E

60

00

00

00

00

20

20

20

20

20

20

20

60

00

00

00

00

20

20

20

20

20

20

60

00

00

00

00

20

20

20

20

60

00

00

00

00

20

20

20

20

60

00

20

20

20

20

60

00

20

F7

01

15

07

FE

00

15

CD

E0

Fl

0B

13

CD

33

CD

20

Fl

0B

CD

•46

CD

59

Fl

0B

SB

72

5E

FB

3B

8C

5E

03

SB

C0

C0

C0

C0

C0

C0

Cl

Cl

ca

Cl

C0

Cl

C0

Cl

C0

Cl

C0

Cl

C0

Cl

C0

C2

C0

C2

C0

C2

C0

C3

ca

INV

BNE

LDX

STX

INC

INC

RTS

LDX

STX

RTS

BRK
BRK

BRK

BRK
JSR

JSR

JSR

JSR
JSR

JSR

JSR

RTS

BRK

BRK

BRK

BRK

JSR

JSR

JSR

JSR
JSR

JSR
RTS

BRK

BRK

BRK

BRK

JSR

JSR

JSR
JSR

RTS

BRK

BRK

BRK

BRK

JSR

JSR

JSR

JSR

RTS

BRK

JSR

JSR

JSR

JSR

RTS

BRK
JSR

$C254 •

#$01

$C015

$C007

$FE

#$00

$C015

$C0CD

$C0E0

$C0F1

$C10B

$C118

$C0CD

$C133

$C0CD

$C120

$C0F1

$C10B

$C0CD

$C146

•$C0CD

$C159

$C0F1
$C10B

$C08B

$C272

$C05E

$C2FB

$C08B

$C28C

$C05E

$C303

$C08B

c

c

c

c

c

c

c

c

c
r

c

c
r

c

c

c

c

c

c

c

c

c

c

c

c

c

c
r

C

c
r ,

C)

c

c

r)

c

c
r

r

o

1DUPDAC ~'

C2D3

C2D6

C2D7

C2D3

C2D9

C2DC

C2DF

C2E6

C2E1

C2E2

C2E3
C2E5

C2E7

C2E9

C2EC

C2ED

C2EE

C2EF

C2F2

C2F5

C2F3

C2F9

C2Ffi
C2FB

C2FD

C300

C381

C302

C303

C305
C308

C39B

C30C

C30E

C310

C311

C312

C313

C316

C317

C31fl

C31D

C31F

C322
C324

C326

C328
C32fl

C32D

C32F

C332

C33S
C336

C333

C33R
C33C

C33F

C341

C343

20

60

00

00

20

20

60

00
00

00

93

85

85

20

60

00

00

20

20

20
60

00

00

R9

8D

60

00

00

R0

89

99

C3

C0

D0

60

00

00

20

13

RD

CD
F0

RD

C9

F0

C9
F0

EE

R8

69

99

C3

C0

D0

R2

3E
R9

35

60

R3

88

5E

0R
34

38

13

8B

81

5E

00

17

00
00

3C

09

F5

C4

17

16

24

09

01

ID

02

19
17

00

3C

00

09

F5

05

09

0R

38

C2 JSR
RTS

BRK
BRK

C0 JSR
C0 JSR

RTS

BRK

BRK

BRK

LDR
STfl

STR

C0 JSR
RTS

BRK

BRK
C0 JSR

Cl JSR
C0 JSR

RTS

BRK

BRK

LDfl

C0 STR

RTS

BRK

BRK
LDV

Q0 LDR

03 STR

INV

CPV

BNE
RTS
BRK

BRK

Cl JSR

CLC
C0 LDR

C8 CMP

BEQ

CO LDR

CMP
BEQ

CMP

BEQ
C0 INC

LDV

03 LDfl
C0 STfl

INV

CPV

BNE

LDX

CO STX

LDfl

STfl

RTS

$C2R3

$C08B

$C05E

#$0fl
$34

$33

$C018

*C03B

$C101

#$00

$C017

#$00
$C000;V

$033C,V

#$09

$C305

$C1C4

$C017

$C016
$C343

$C009

#$01

$C343

#$02
$C343
$C017

#$00

$033C,V

$C000,V

#$09
$C32F

#$05

$38

153

CDF0

CDF3

CE88

CE08

CE10

CE18

CE29

CE23

CE30

CE38
CE40

CE43
CE50

CE58
CE60

CE63
CE70

CE78

CE30

CE38
CE90

CE98

CER0

CER3

CEB8

CEB8

CEC0

CEC8

CED0

CED8

CEE0

CEE8
CEF0

CEF3

CF00

CF08

CF10

CF13

CF20

CF28

CF30

CF33

CF40

CF43

CF50

CF53

CF60
CF68

CF70

CF78

CF80

CF88

CF90

CF98

CFR0

CFR8

CFB0

CFB8

CFC0

CFC8

CFD0

1DUPDAC

93

20

72

72

72

20

34

41

44

20

fl3

R3

fl3
fl3

20

23

41

0D

49

52

9E

45

49

4B

56

11

20

43

4B

56

11

52

2fl

2R

20

41

2R

2R
4D

42

0D

2fl

41

4D

20

20

44
8D

00

15

00

07

03

0B

15

0F

15

00

FF

00

IB

20

05

72

72

72

20
20

43
55

20
R3

R3

R3

0D

20

43

43

04

43

53

2R

52

4E

20
45

11

49

4F

20
45
11

45

20

20

4D

42

0D

20

4F

4C

04

20

54

50

2R

52

49
04

00

02

15

00

15

00

0E

06

12

13

16

13

00

20

72

72

72

72

20

44

4B
50

20
R3

R3

R3

20

20

29

20

9F

20

0D
20

54

41

49

20

11
4E

50

49

20
9F

53
2R

2R

4F

4C
04

57

44

45

11

44

49

4C

0D

45

53

00

00

80

05

15

09

15

00

15

00

15

11

19

12

20

72

72

72

0D

20

49

2D
44

20
R3

R3
R3

20

20

20

9E

9F

4E
04

2R

20

4C

4E

2R

11

53

59

4E

2fl

2fl
53
0B

28

44

45
11

52

45

44

11

55

4F

45

11

4D

43

00

00

15

00

03
00

0C

15

10

13

00

13

00

1C

- DAT/

20

72

72

72

20

05

53

55

41

20

fl3

R3
R3

20

20

50

31

42

55

11

20

4F

20

20

20

05

45

20

20
20

20

20
04

52

45

44
11

49

20

20

9F

50

4E

54

11

4F

20

00

00

03
15

00

15

00

0F

00

13

13

17

12

00

20

72

72

72

20

43

4B

50

43

20

R3

R3

R3
20

20

53

39

59

4D

11

49

52

44

44

2R

2R

52

44

44

2R
2R

46

11

45

20

20

05

54

45

2fl

9F

4C

20

45

2fl

56

2R

00

00

00

06

03

0R
15

00

15

00

16

00

1R

12

V TABLE

20

72

72

72

20

2D

20

20

0D

20

R3

R3

R3

20

20

49

38

20

42
11

4E

49

49

52
0B

20

54

49

52
0D
20

37

11

41

45

2R
2fl

45

4E

20

2R

49

43

20
20

45

20

00

01

15

00

FF

00

0D

06

11

13

00

13

00

ID

20 CFB8 12 IE 00 12 IF 00 02 FF
72 CFE0 IF 02 11 20 00 11 21 00
72 CFE8 11 22 00 11 23 00 11 FF
72 CFF0 BB 08 00 80 08 80 88 80
20 CFF8 08 00 00 00 00 88 80 81
36

42

31
20

05
R3

R3

R3

20
IE

44

33

56

45

11

53

47

53

49

34

2R

20

53

49

84

50

20
9E

44

4E

20

20

20
41

2fl

20

43

4F

2R
2fl

20

2R

00

00

04
15

03

15

00

FF

00

14

11

13

12

00

154

o

c

c

c>

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c^

c

c

c

c

o

c>

C)

C:

C)

c>

c

DUPDAC

:C008

rCOlO

C018

C01R

C01C

C01E

C920

C922

C024

C026

C028

C02B

C02C

C02E

C030
C033

C036

C039

C03C

C03F

C042
C045

C043

C04B

C04E

C051

C054

C057

C05fl

C05B

C05C

C05D

C05E
C060

C063

C065

C068

C06R

C06D
C070

C072

C075
C077

C07R

C07C

C07E

C030

C083

C886
C087

C083

C089

C08fl

C08B

C08D

C08F

DATA

00 00 OB OH 11

03 OF 23 08 09

R9
85

85
fl9

85

85

R0

fl9

99
C3

C0

D0
RD

3D

RB

3D

RD

3D

RD
8D

RD

3D
RD

3D

RD

3D

60
00

00

00

R9

RE

R0

20

R9

20

20

R9

RE

R0

20

R9

R2

R0

20

20

60

00

00

00

00

R9

35

35

00

FB

FD

0R

FC

FE

00
00

00

0R

F8
0R

20

0B

21
11

13

0C

05

0D

06

10

00

0F

01

0F

13

0F

BR

00

BD

C0

02

13

02

BR

01

12
C0

BD

C0

0R

FC

FE

C0

C0
D0

C0

D0

C0
D4

C0

D4

C0

D4

C0

D4

C0

D4

C0

FF

FF
FF

C0

FF

FF

FF

LDR

STfl

STR

LDfl

STfl

STfl

LDV

LDR

STfl

INV

CPV

BNE

LDfl
STfl

LDfl
STfl

LDfl
STfl

LDfl
STfl

LDfl
STfl

LDfl
STfl

LDfl

STfl

RTS

BRK

BRK

BRK

LDfl

LDX

LDV

JSR

LDfl

JSR

JSR
LDfl

LDX

LDV

JSR

LDfl

LDX
LDV

JSR

JSR
RTS

BRK

BRK

BRK

BRK
LDfl
STfl

STfl

F8 11 23

00 00 00

#$00

$FB

$FD

#$0fl

$FC

$FE

#$00

#$00

$C000,V

#$0fl

$C02S

$C00fl

$D020

$C00B

$D021
$C011
$D413

$C00C
$D405

$C00D

$D406

$C010
$D400

$C00F

$D401

#$0F

$C013

#$0F

$FFBfl

#$00

$FFBD

$FFC0
#$02

$C013

#$02

$FFBR

#$01

#$12
#$C0

$FFBD

$FFC0

#$0R

$FC

$FE

2DUPDAC

C091

C093

C096

C098

C09B

C09C

C09D

C09E

C09F

C0fl0

C0fl2

C0R5

C0R7

C0flfl

C0flC

C0RF

C0B2

C0B4

C0B7

C0B9

C0BC

C0BE

C0C0

C0C2

C0C5

C0C3

C0C9

C0CR

C0CB

C0CC

C0CD
C0CE

C0D0

C0D3

C0D5

C0D7

C0DR

C0DB

C0DD

C0DE

C0DF

C0E0

C0E1
C0E3

C0E6

C0E3

C0ER
C0ED

C0EE

C0F0

C0F1

C0F2

C0F4

C0F7

20

f\9

20

60

00

00

00

00

R9

RE

R0

20
fl9

20

20

R9

RE

R0

20

R9

R2

fl0

20

20

60

00

00

00

00

13
fl2

BD

C9
F0

20

E8

D0

68

00

00

13

fl2

BD

C9

F0

20
E3

D0

60

13

fl2

BD

C9

82

C3

0F

C3

0F

14

0F

Bfl

00

BD

C0

02

14

02

BR

01

12

C0

BD

C0

00

F0

04

06

D2

F3

00

8C

04

06

D2

F3

00

E0

04

FF

FF

C0

FF

FF

FF

C0

FF

FF

FF

CD

FF

CE

FF

CE

LDR

JSR

LDR

JSR

RTS

BRK
BRK

BRK

BRK

LDfl

LDX
LDV

JSR

LDR

JSR

JSR

LDfl

LDX
LDV

JSR

LDfl

LDX

LDV

JSR

JSR

RTS

BRK

BRK

BRK

BRK

CLC

LDX

LDR

CMP

BEQ

JSR

I NX

BNE

RTS

BRK

BRK

CLC

LDX

LDR

CMP

BEQ

JSR
INX

BNE

RTS

CLC

LDX

LDfl
CMP

#$92

$FFC3

#$@F

$FFC3

#$0F

$C014

#$0F

$FFBR

#$00

$FFBD

$FFC0

#$02

$C014

#$02

$FFBfl

#$01

#$12

#$C0

$FFBD

$FFC0

#$00

$CDF0,X

#$04

$C0DD

$FFD2

$C0D0

#$08

$CE3C,X 1
#$04

$C0F0

$FFD2

$C0E3

#$00

$CEE0,X

#$04

155

o
o
o
o
o
p
p
p
o
o
o
o
o
o
o
o
o
o
o
p
p
p
p
p
p
o
p
p
p
p
o
p
o
o
o
p
o
o
o
o
o
o
o
o
o
o
o
o
o
o
g
g
g
g

)
{
r
»
b
n
w
t
i
n
i
M
T
i

r
u

c

-
n

M
C
D
C
D

*-
*
C
D

"T
I

t
3
C
D
C
D
~
T
l
C
D

"T
|

t
J
C
D
C
D
W
C
D

"s
J
C
D

C
D

C
D
C
D

T
l
C
O
m
T
I

O
C
D

D
C
O

f
O
C
T
i
-
J
^
C
O
Q

C
O

IV
)
C
h

4*
>
U
l
C
D

C
O

M
(
h
4
*
-
C
0
C
D

tj
D

4^
-

4>
>

A
T
|

V
D
C
0
4
^
C
0

r
O
C
h

D

-
n
o

"
n
o

~
n
o

o
t=
)
a
n

T
J

3
n

t
i
t
i

*
n
m

~
n
m

m
-
^

*
-
c
d

t
i

t
i

4

*
f
^
f
^

^r
i

t
ri

T
l

t
r
l

l
i
£

-
-
-
-
-
-

$
(V
)o
^

co
as

iv
>c

o
en

co
iv
xs

oo
vd

a
-^
~n

►-
.

^
.

x
x
x

o
n
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
n
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

30
r
^
i
o
c
d
^
d
c
d
^
n
r
o
c
d
v
o
k
d
c
i
^
^

cs

<T
>

™s
j

C
D
C
D
C
D

C
D

C
D
C
D
C
D

*^
1

C
D
^
*
C
D

tJ
$
™>

J
^
^
C
O
^
^
C
D

mf
\

Cf
l

(J
^

4
^
0
0

*-
*

C
D

C
O
C
O
3
)
T
)

C
D
4
^

CT
k
M

Q
>
C
D
C
D
t
-
^
0
0

C
O

o
o
o

o
o
o

o
o

o
n

o
o

o
o

o
o
o

o
*-
*
C
D
C
D

C
D
C
D
C
D

C
D
m

C
D

*l
C
D
C
D

C
D

C
D

C
D

T
|
C
D

C
D

w
t
i
c
o

\
&
r
o
c
n
c
d

f
o
c
^

e
n
c
h

4
^
c
o

c
d

c
o

m
c
o

4
^

o
>
c
d
o

c
o

o
m

^-
jj

iv
?

•i
<

<
x

P
!
n
;

)
o
r
u
n
o
o
o
o
o
o
n
r
n
-
)
o
n
q
o
o
o
o
p
p
p
o
o
o
n
P
P
P
P
2
G
2
2
Q
D
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

©
O

"T
l
"
H

"
H
3
)
©

c
n
o
o
o
o

w
e
n
©
>
o
©

8
3

■
n

-
n

1
O

V
D
O
Q
U
1
M

»-
*

I

J
8
8
8
8
R
R
i
8
8
8
8
8
8
8
8
8
8
8
8
8
R
i
8
8
8
R
i
8
8
8
8
8
S
S
8
8
8
3
S
»

| T
J

»
-
*

~
\
|

i
-
*

I
j
j

O >

o
n

©
i \

S
I
R

2
§
3
!

2
S
S

S
S
S

S
3

S
3

S
S

S
S

>
r
o
i
o

5
S
S

>
o
o
n
n
q
n
p
o
n
n
n
o
n
(

j
J
O
N

(
•
-
Q

T
|

f

o
o
o
o
o
o
o
o
o
c
O
O
O
O
O
O
O
O

t
i
m

t
d
c
d
o
s

m
.
c
a

*
T
i
©
»
-
*
©
"
n

e
n
©

m
^
j
e
n
~

j

O
O
O
O
O
O
O
O
j

»—
*
Q

k
^
C
D

*■
*

*"
^
'
3
©

C
D
i
9

©
"
n
i
o
o

•-
*
©

"t
i
n
i
o

»
^

m
r
n
o

©
o

c
o

i
-
j
o

m
«a

>

2DUPDAC

C2R4

C2fi5

C2R6

C2fl7

C2R8

C2fiB

C2flE
C2B1

C2B4

C2B5
C2B6
C2B7
C2B3
C2BB

C2BE

C2C1
C2C4

C2C7

C2C8
C2C3

C2Cfi

C2CB
C2CE
C2D1

C2D2
C2D3
C2D4

C2D5

C2D3

C2DB

80

68

89

20 3B

20 CD

20 46
20 R0

60

00
00

00

20 3B

20 CD
20 59

20 Fl

20 8B
60

00
80

00

20 3B

20 5E
60

00

00

00

20 SB

20 R0
60

60 RTS

BRK

BRK

BRK

C0 JSR

C0 JSR
Cl JSR
C0 JSR

RTS

BRK

BRK

BRK

C0 JSR

C0 JSR

Cl JSR

C0 JSR
Cl JSR

RTS

BRK

BRK
BRK

C0 JSR

C0 JSR

RTS

BRK

BRK

BRK

C0 JSR

C0 JSR

RTS

SC83B

$C8CD

$C146

$C8R0

$C8SB
$C0CIJ
$C159

$C8F1

$C18B

SC88B

*C65E

SC08B

*C0R0

DATA TABLE

CDF0

CDF3

CE00

CE03

CE10

CE18

CE20

CE23

CE30

CE38
CE40

CE48
CE50

CE58
CE60

CE68

CE70

CE73

CE80
CE88

CE90

CE98

CER0

CER3

CEB0

CEB8
CEC0

CEC3

CED0

93 20

20 05

72 72
72 72
72 72
20 20
34 20

41 43

44 55

20 20

R3 R3

R3 R3
R3 R3

R3 0D

20 20

23 43

41 43

0D 11

49 43

52 53

9E 2fl

45 52

49 4E

4B 20

56 45

11 11

20 49

43 4F

20 20

72 72

72 72

72 72
72 0D
28 20

44 49

4B 2D

50 44

20 20

R3 R3

R3 R3
R3 R3

20 20

20 28
29 20

20 9E

9F 9F

20 4E

0D 04

20 2fl

54 20

41 4C

49 4E
28 2fl

11 11

4E 53

58 59

20 28

72 72

72 72
72 72
20 28

05 43
53 4B

55 50

41 43

20 20

R3 R3

R3 R3

R3 R3

20 20

20 20

50 53

31 39

42 59

55 4D

11 11
28 49

4F 52

20 44

28 44

2@ 2fl

05 2R

45 52
20 44

20 20

72 72

72 72
72 72
20 20

2D 36
20 42

20 32

8D 20

20 05

R3 R3

R3 R3
R3 R3

20 20

20 IE

49 44

38 33

20 56
42 45

11 11
4E 53

49 47

49 53

52 49
8D 94

28 2fl

54 20

49 53

CED8

CEE8

CEE3

CEF8

CEF8

CF00

CF03
CF10

CF13

CF20

CF23
CF30

CF33
CF48

CF48

CF50

CF53
CF60

CF63

CF70

CF73

CF30

CF33

CF90

CF93

CFR0

CFR3

CFB0

CFB8
CFC0

CFC3

CFD0

CFD3

CFE0
CFE3

CFF0

CFF3

56

11
52

2fl

2R

29

41

2R

2R

4D

42

3D
2R

41

4D

20
28

44

0D
00

15

00

07

03

0B

15
0F

15

00
FF

00

IB

12

IF

11

BB

00

45

11

45

20

28

4D

42

0D

20

4F

4C

04

20

54

50

2fl
52

49

04

00

02
15

00

15

00

0E
06

12

13

16
13

00

IE

02

22

00

00

20

9F

53

2R

2R

4F

4C

04

57

44

45

11

44

49

4C

0D

45

53

00

88

80

85

15

09

15
00

15

00

15

11

19

12

00

11

00

00

00

2fl

2fl

53

8D

28

44

45

11
52

45

44

11

55
4F

45

11

4D

43

00

00

15

00

03
00

0C

15

10

13

00

13

00

1C
12

20

11

00

00

28

20
28

84

52

45
44

11

49

20

20
9F

50

4E
54

11
4F

20

08

00

03

15

00

15
00
0F

80

13
13
17

12
00

IF

00

23
88

80

2R

2R

46

11

45

20

26

05
54

45

2R

9F

4C

20
45

2R

56

2R

00

00

60

86

83

8R

15

86

15

00

16

68

1R

12
06

11

00

88

80

8D

28

37

11

41

45

2R

2R

45

4E

20

2R

49

43

20

20

45

20

88

81

15

00
FF

00

8D

86

11

13

86

13

66

ID

02

21

11

86

86

©4

58

20

9E

44

4E

28

28

28

41

2R

26

43

4F

2R

2R

28

2R

66

68

84

15

63

15

68

FF

68

14

11

13

12

88

FF

66
FF

68

66

4B 20 49 4E 20 44 52 49

158

SUPERDIRECTORY

5 IFfl=0THENfl=l:LOflD"ADMflCH11,8,1
10 POKE53280,11 P0KE532S1,11:TR=18 SE=1:DIMfl<3ee>:DIMB<208>
15 HX*="0123456783RBCDEF"
18 P^INPUT'TlaPRINTER V/N";VN$: IFVH*="V"THENP=1
20 PR INT" 7X1 SUPERBIRECTORVil <C>34 PSIDRC VfiN4"
25 IFP=1THEHOPEN4,4 = PRINT84 = PRINT#4,CHR$< 16) " 15SUPERDIRECTORV" : PR I NT#4: CL0SE4
30 PRINTMMINSERT SOURCE BISK IN BRIVE"
35 INPUT°MDISK NRME";BN*
40 IFPD=1THEN50

41 PRINTMM«PRESS F7"

42 GETA$:1FR*OI1II'ITHEN42
45 IFP=1THENOPEN4,4:PRINT#4,"DISK HRME = "BN$:pRINT#4 CL0SE4
50 OPEH15,3>15:OPEN2,3,2>"#M:PRIHT#15,1IUl:ll2;0;TR;3E
60 SVS49152

70 CL0SE2 CLGSE15
80 FORRP=0TO255
100 R<RP)=PEEK<RP+52332)
120 NEXT

125 TR=R<0>:SE=fl<l>
130 PRINT"nWTVPE TRRCK SECTOR HfiME BLKSM"
132 IFPD=lTHEN0PEN4,4:G0T0138
133 IFPO1THEN136

134 0PEN4,4:PRINT#4,"TVPE TRflCK SECTOR HRME BLKS"=PRINT«4
136 IFP=1THEHPB=1

138 F0RRP=2T0226STEP32•OK=1:FT*="
133 TK=fl<RP+l>:3K=fl<RP+2>:NB=fl<RP+28):IFTK=0THENCLOSE4:
140 IFR<RP>=50THENFT*aMBELM ^OK
145 IFR<RP) = 130THENFT*=tlPRGM =
150 IFR<RP)=132THENFT$="REL"
155 IFR<RP>al29THENFT*=MSEQM
160 PRINTFTS;

165 IFP=1THENPR1NT#4,FT$;
172 PR1NTTRB<5>TK;TRBC12)SK;
175 IFP=lTHENPRINT#4..CHR$<16)"07MTK;CHR$<16>M16ll3K.:CHRt<16>"27";

173 IFOK=1THEHB<C>=TK:B<C+1)=SK:C=C+2

180 PRINTTRB< 18);: F0RTX=3T018: PRINTCHR$<R<RP+TX> >; : NEXT = PRINTTRB<34)NB

185 IFP=1THENFORTX=3TO18• PRINT#4>CHR$<R<RP+TX)); ■ NEXT = PRINT«4,CHR*< 16>"34"NB
190 NEXT CL0SE4

200 IFR<0)O0THENGOTO40

300 PRINTM^PRESS F7W"
305 GETR*: IFfl$O"H"THEN305

310 PRINT-'^TRRCK SECTOR HEX.flDB BEC.RDD11:PRINT

315 IFPO1THEN320
318 0PEN4,4:PRINT#4:PRINT#4,MTRRCK SECTOR HEX.RDD DEC.ADD" PRINTtt4

313 CLOSE4

320 PC=l:FORRP=0TOC-2STEP2

330 TR=B<RP>:SE=B<RP+1)

340 0PEN15.3,15:OPEN2,3,2,"#lt:PRINT#15,"Ul:"2;0;TR;SE
359 SVS49152

360 CL0SE2:CLOSE15:PC=PC+1

364 IFP=1TNEN370

365 IFPCO18GOTO370
367 PRINT'XPRESS F7W"
368 GETR*-IFR*OlliriTHEN368
363 PC=1PRIHTII3TRRCK SECTOR HEX.RUB DEC .RDD11 PRINT

370 RL=PEEK<52394> : RH=PEEK(52995) : RT=256*RH+RL

375 GOSUB1000

380 PR1NTTR;TRB<9>SE;TRB<13)B*;TRB<29)RT
382 IFPO1THEN390

335 0PEN4,4

386 PRINT#4,TR;CHR*<16)M07"SE;CHR*<16)"16llDf;CHR$<16)ll26HflTCLOSE4

390 NEXT

400 PRINT"«WPRESS F7"

410 GETfl*:lFfi*O"irTHEN410

999 RUN10
1000 X*flT:B**lin
1005 B<1)=INT<X/4096):X=X-<B<1)*4096):D<2)alNT<X/256)=X=X-<D<2)*256)
1010 B<3)=INT<X/16):B<4)=X-<B<3)*16)
1020 FORI=lTO4D*=D$+riID*<HX$,<D<I)+l),l):NEXT

1060 RETURN CHMG£ THE5E LINE5 FOR NON-COMMODORE PRINTERS
23 IFP=1THENOPEN4,4:PRINTIK:PRINTK4,TABU5) "SUPERDIRECTORV" -PRINTS-CLOSED

165 IFP»lTHEr*PRINTH4,FT$jT«B<07)TK5

172 PRINTTAB(5)TKiTrtB(12)SKi
175 IFP*1THENPRINTK4,TAB<18>5K;TAB<24}5

S3 KIS^I<?i^M?^»S3 KIS^I,?:FiRi^TMi?^».(«<RP+TX), , :NEXT:PRIN™»<3*>NB
ill IFP-lTtCI^ORTX-aTOlS:PRINTS.CHR*<fl(RP+TX)).:NEXT:PRINTtK.TftB(2)NB
386 PRINTS,TR;Tft6CV)SE!TfiB!5>D*;TftB(7>ftT-.CLOSED

159

C000

C001

C003

C005

C607

C009

C008

C00E

C010

C013

C015

C016

C013

C01B

C01C

C01B
C01E

C01F

C020

C021

C023

C025

C027

C029

C02B

C02E
C030

C032

C035

C036
C039

C03B

C03C

C03D

C03E

ADMACH

18

R9

85

fl9

35

R2

2fr
R0

20

91
C3

B0

20

60
00

00
00

00

13

fl9

85

fl9

35

fl2

20

R0

Bl

20

C3

D0
20

60

00

00

C0

00

FB

CF

FC

02

C6

00

R5

FB

F8
CC

00

FB

CF

FC

02
C9

00

FB

R8

F8
CC

3B

FF

FF

FF

FF

FF

FF

CLC

LBR
STR

LBR

STR

LDX

JSR

LBV

JSR
STfl

INV

BHE

JSR

RTS

BRK

BRK

BRK

BRK
CLC

LDfl

STR

LBR

STfl

LDX

JSR

LDV

LDR

JSR

INV

BNE
JSR

RTS

BRK
■nni/

CPV

#$00

$FB

#$CF

$FC

#$02
$FFC6

#$00
$FFR5

<$FB),V

$C010

$FFCC

#$00

$FB

#$CF

$FC

#$02

$FFC9

#$00
<$FB),V

$FFR8

$C030
$FFCC

#$8B

160

DISK-EDITOR

10 IFR=0THENfl=l:LORDllRDMRCHll,8,l
20 POKE53280,11: P0KE53281,11: DIMfi<300>: DIMR$<300> : HX$="0123456789RBCBEFM
25 P^INPUT'TWRINTER Y/NM;VN$: IFVN*=IIVIITHENP=1
30 PRINTS DISK-EDITORI1 <C> PSIDflC VBN*"
48 IFP=1THENOPEN4> 4:PRINTD4:PRINT#4,CHR*< 16)" 13DISK-EDIT0R":PRINT#4 CL0SE4
50 PRINTNU INSERT SOURCE DISK IN DRIVE11 = INPUTMW DISK NRME";DN*
80 IFPslTHEN0PEN4,4:PRINT#4/"DISK NflME = nDNS:PRINTtt4:CLQSE4
110 INPUT"* INPUT TRflCK # ";TR: INPUT"W INPUT SECTOR tt »;SE

120 OPENlS/8*15:OPEN2,8,2iM#l|:PRINT#S
125 INPUT#15,fl*,B$,C*,D*:PRINT"Jd Mfl$,B
130 FORRP=0TO255:fl<RP)=PEEK(RP+52992)=NEXT
140 PRINT-a-; :RP=0:FORXfl=0TO20:FORVR=lTOl2:GOSUB1000PRINTD$" "; :RP=RP+1
150 NEXT:PRINT" ";=NEXT

160 FGRRP=RPTO255:GOSUB1000:PRINTD$M "i NEXT:PRINT
165 PRINTMTRRCK "TR" SECTOR "SE^IFP-0THEN200
170 OPEN4*4:RP°0

175 FORXfl=0TO20:FORVfl=tTO12:GOSUB1000:pRINT#4/D*" M; RP=RP+1
180 NEXT:PRINT#4," ":NEXT

190 FORRP=RPTO255:QOSUB1000:PRINT#4.D*M "i:NEXT=PRINT#4
195 PRINT#4,"TRfiCK MTR" SECTOR MSE:CL0SE4
200 F0RCL=55296T055296+5: POKECL, 13: NEXT

210 SL=1024:BL=52992:FORBC=0TO255
220 X=PEEK<SL):IFX=32THENSL«SL+1:GOTO220
230 IFX>47THENX=<X-43>*16:GOTO260
240 IFX<7THENX=(X+9>*16:GOTO260
250 PRINT'TBEl ILLEGRL DRTR FOUND":END
260 POKESL, 32: SL«SL+1:V=»PEEK<SL)
270 IFV>47THENV=V-48:GOTO300
280 IFV<7THENV=V+9=GOTO300
290 GOTO250

300 NT=X+V = POKEBL.NT = BL=BL+1:POKESL* 32:SL=SL+1•NEXT

330 PRINT'TW RERDV DISK TO SRVE"

340 PRINT"W PRESS F7 TO SRVE":PRINT11W PRESS Fl TO NOT SRVE"
350 GETXJ

360 IFX$="IIMTHENPRINTMT :GOTO390
370 IFX^'B-'THENPRINT'TT1 :GOTO110

380 GOTO350

390 GPEN15,3/15:0PEN2/8,2*"#w = PRINT#15* MB-P:M2;0
408 3V343184;PRINT#15,"U2-"2;0;TR;SECLOSE2

410 INPUT#15,fl*,B$,C$,D$:PRINTMM "fl$/B*,C*.D$:CL0SE15

415 PRINT-M TO USE PGM. RGRIN PRESS F7"
420 GETX$:IFX$~llltNTHENRUN20

440 GOTO420

999 END

1008 X=fl<RP):D*»MO
1O10 B1*INT<X/16):D*=D$+MID$<HX$,D1+1,1>

1020 D2=INT<X-16*D1) :D$=D*+MID*<HX*.D2+l. 1) :RETURN

FOR NON-COHMODORE PRINTERS CHANGE TTCSE LINES

^0 IFP»1T^NOPEN4,^:PRINT»»4:PRINTIK,TAB(13) BDISK-EDITOR":PRINT**:CL0SE4

161

ERROR ANALYZER £,

10 POKE53280,11:PGKE53231 , U :P=4 = D=8:RT=1:NT=3 C)
20 DIMER*<11):FORRP=1TQ11:RERDER*<RP>:NEXT
30 DRTfi"fiLL OK","NO HEflDER FOUND","NO SVNC FOUND","DRTfl BLOCK NOT FOUND" f ,
40 DfiTFTCHECKSUM ERROR IN BflTfi","BYTE DECODING ERROR","WRITE VERIFY ERROR" ^
50 DflTfl"WRITE PROTECT ON","CHECK SUM ERROR IN HEflDER","LONG DflTfl BLOCK" f

60 DflTfl"DISK ID MISMATCH" ^-'
80 DftTfl 1,17,0,20,13,24,0,18,25,30,0,17,31,35,0,16,36,44,0,15 " r
85 OPEH15/D/15/"IOI>:CLOSE15 V_ '
S0 PRINT'TUI ERROR ftNflLVZERII PSIDflC(C>84 VBN" r

160 PRIHT"H4INSERT SOURCE DISK IN DRIVE"=PRINT"PRESS F7" L
110 GETF7$:IFF7$O"II"THEN119 r

115 PR=0:INPUTn:iPRINTER V/N"JYN$:1FYN$="V"THENPR=1 L>
120 INPUT "MDISK NfiME";DN$ -

122 PRINT'TIBELECT CHOICE" :PRINTMW<1)=LOG ERRORS" C
123 PRINT"W(2)=L0G UNFORMflTTED TRflCKSW" ^

124 INPUTCH*'CH=VRL<:CHS>-.pRINTll3fflfl":Oi>ICH6OTO128,300 (!
125 PRIHT"3li:Q0T0122 ^
128 IFPR=1THENGPEN4,P:PRINT#4,M ERROR LOG FOR "DN$:PRINT#4:CL0SE4 (
140 F0RPP=lT05:REflDFT,LT,FS/LS

150 FORTC=FTTOLT•FORSC=FSTOLS = 0PEN15,D,15 C \
160 T=0 v~
170 PRINTtH5,"M-WMCHR*<6)CHR$<0)CHR$<l)CHR$<TC) f *
180 PRINT#15, IIM-U"CHR$(7)CHR$<0)CHR$<1)CHR$<SC) v-
130 PRINT#15,"M-W"CHR*<0>CHR$<0>CHR$<t)CHR*<128) f

200 PRINTttlS« "M-R"CHR$<0>CHR$<0) :GET#15,R$'XaRSC<:fl$+CHR*<:0>> ^ IFX>127THEN200 v.

202 IFX=1THEN210 r
205 T=T+1: IFTONTTHEN179 ^-
210 CL0SE15:PRINT"ERttllX;TRB<6)llTR#MTC;TRB<12>MSE#MSC-PRINTERS<X>"Jfl11 r

220 IFX=1ORRT=1THEN1800 L
230 IFPR=0THEN265 r

235 OPEN4,P L
250 PRINT#4,"ER#"X" TR# "TC;CHR*<16)M06SE# "SC;CHR$<16)"24"ER*<X> CLOSE4 _.

260 GOTO1000 • C '
265 GOSUB2000 ^.

280 GOTO1000 (,
300 IFPR=1THENOPEN4,P:PRINT#4,"UNFORMflTTED TRRCK LOG FOR "DN*:pRIHTtt4CL0SE4 .

310 FORTR=1TO44:QPEN15,D,15 f
320 PRINT#15, tlM-W"CHR*<6)CHR$<0>CHR$<l)CHR$(TR) ^
330 PRINT#15,"M-WIICHR$C7^CHR$<0)CHR$<1>CHR*<0) ft
343 PRINT#15,I1M-WIICHR$<0)CHR$<0>CHR*<1)CHR$<128> v-
350 PRINT#15,"M-R"CHR$(.0>CHR$<0>:GET#15,fl*:X=RSC<fl*+CHR$<0>>:IFX>127THEN35Q f >

360 CLOSE15 v-
365 FM*="SVNC FOUND"=IFX=3THENFM$="UNFORMflTTED" f >

375 PRINT"TRRCK "TR;TflBC12)FM$ ^'
385 IFPR=lflNDX=3THEN 0PEN4,P:PRINTtt4, "TRflCK "TR;CHR*<16>1I12IIFM$ CL0SE4 f

390 NEXTGOSUB2008:GOTO85 ' \-''
999 END r

1880 NEXT:NEXT:NEXT L
101Q GOSUB2080:GOTO35 r .

2880 PRINT"«PRESS F7 TO COHTINUEM" L
2010 GETF7$:IFF7$O"H"THEN2010 ^

2020 RETURN . (_ >
INSERT LINE 112 OPEN13,D, 13, MI0" :CLOSE 13 ^v

CHRNGE FOLLOWING LINE5 FOR NON-COMMODORE FRINTER5 ^
250 PRINTS,'ERtrXB TR« •TCiTAB<06) "SE« "SCjTAB(24)ERi(X)-CLOSED Q
385 IFPR=1ANDX=3THEN OPEN4,P:PRINTS.. "TRACK nTR5TAB(12)'FM$:CLOSED ^

NOTE: The following options For Error Analyzer are

included for your benefit: C '
LINE 10 RT=O for STOP on ERROR, or RT=1 to run through. ^

LINE 140 For non-extended (0-35) "formatted track check", V~>
Change PP=1 TO 5 to PP=1 TO 4. Q)
LINE 310 Set TR=1T044 for complete sync check. Set .

TR=1T035 for non-extended sync check, or set TR=36T044 to {^)
only check "extra" tracks for sync. r*

NOTE: IF DISK LOCKS UP BEYOND TRACK 35, OPEN DRIVE DOOR. v
Some diskette manufacturers certification methods may Q)
cause variations in what is "found" in the extra tracks. ^

162 O

C)

0

LINKSTER

100 PRINT"3 fuLIHKSTER IKC) PSIDflC 1284 DTfcw"

113 P0KE53288,11:P0KE53281» 11:P=9:DR=8
129 INPUT"SPRINTER ON Y/N";PR*
130 IFPR**"VllTHENP*l:lNPUTll)«PRO NflME";NM$:GOTO140

135 IFPR*OIIN"THEM100
146 PRINT11:! SiLINKSTER IKC) PSIDflC 1984 DTk11

150 PRIHT"MENTER STRRTING TRRCK & SECTOR"
1*0 INPUT" jfiTTRfiCK1' ; TR: INPUT"MBECTOR11; SE: PRINT
180 IFP=1THENOPEN4,4:PRINT#4,NMCHR<13)"STflRTING <TR StC>-"IR;SE UL0SE4

190 LN=l:CT=l
200 LN=LN+1:OPEN15,DR,15:0PEN3, DR,3,"#"
210 PRINT#15,"B-R";3;DR;TR;SE:GOTO600

220 PRINT#15,"B-P";3;0

230 GETtt3/Q«: IFQ$s>M>THENQ»sCHR><0>
240 TR«RSC(QS>:IFTR»0ORTR>35THEN320

250 GET#3,M*: IFW*»IlifTHENW*»CHR*<0>
260 CL0SE3•CLOSE15:SE=fl3C<U*>
270 IFP=lflNDLN=€.THEN0PEN4,4 : PRINT#4, " " : CL0SE4

280 IFLN=6THENPRINT:LN=1

290 PRINTTR'irSE11-11;
300 IFP»lTHEN0PEN4i4:PRINT«4/TR;SEn - u;^CL0SE4

310 CT=CT+l:i3OTO200

320 PRINT11 ENDING TR/SECM"

330 IFP=1THENOPEN4,4:PRINT#4.." - ENDING TR/SEC"

340 IFP=1THENPRINT#4,CHR$<13>CT" BLOCKS USED11 = PRINT#4: CLOSE*

c«50 PRINTCT11 BLOCKS USED W"

36U PRINT"PRESS F7 TO RUN RGBIN":CLOSE15=CL0SE3
370 GETCK*: IFCKiO"ll"THEN370

380 RUN

600 INPUT#15/ER$,B$,C$,D$:lFER*=il00"THENGOTO 220

610 PRINT: PR INT "BERROR CONDITION IIER$/B$11 MC*" "D*11^11

620 PRINTMWCORRECT PROBLEM - PRESS F7"

630 GETCK* IFCK*O"irTHEN630

640 PR I NT "H mM
650 CL0SE3 CLOSE15:GOTO150

RERDV.

163

RELOCATE/LOADER

1 IFfl=0THENfl=1:LORD"MfiCHRELO% 8 > 1
2 PGKE52,10:P0KE56,10•POKE53280,11=PQKE53281,11
3 PRINT"nwn RELO/LORDER IPSIDflC <C>84 VBNal11
4 PRINTOUT ORIG. DISK IN DRIVE"
5 INPUT"JillNPUT FILENflME"; NF$:NL»LEN<NF*> • PQKE251, NL
6 FORLP=1TONL:P0KE319+LP,RSC(MID$<NF**LP,1))- NEXT•SVS840
7 Efl=PEEK<175>*256+PEEK<174):PRINT":««f BVTES ="ER-2560

8 PRINT"MPUT CPV DISK IN DRIVE" : PR INT" JSPRESS F7"

9 GETR$: IFfl*O"H"THEN'3
10 PRINT"«SRVING "NF$" FROM 2560 T0"Efl-SVS875:CLR

164

0343

934B

Q34D

034F

0351
8354

0356

0358

035fl

035D
035F

0361

0363

0366

0369

036R
0366

036E
0370

0372

0374

0377

0373

037B
037D

0330

0332
0334

0336

0333

033R

038C

033E

0391

0394

0395
0397

039R

039C

039E
039F

03R0

Q3R3

0385

MACHRELO

20

R3

R2

R0

20

R5
R2

R0

20

R9

R2

R0

20

20

60

00

20

R9

R2

R0

20

R5

R2
ng

20

R9

35

R9

85

R9

R6

R4

20

20

60

R5
3D

29

35

60
00
FID

35
60

35

83

03

00

BR

FB
34

03

BD

00

00

0R

D5

R0

95

03
08

FF

BR

FB
34

03

BD

00

FC

0R
FD

FC

RE

RF

D3
RQ

81

FE

01

R7

01

•93

FF

FF

FF

03

03

FF

FF

FF

03

02

02

JSR

LDR

LDX

LDV

JSR

LDR

LDX

LDV

JSR

LDfl

LDX

LDV

JSR

JSR

RTS

BRK

JSR

LDR

LDX

LDV

JSR

LDR

LDX

LDV
JSR

LDfl
STR

LDR

STR

LDR

LDX

LDV

JSR

JSR

RTS

LDR
STR

RND

STfl

RTS
BRK

LDR
STR

RTS

*9335

#$68

#$03
#$08

$FFBR

$FB

#$34

#$03

$FFBD

#$00

#$00

#$0R

$FFD5

$03R@

$0395

#$08

#$03

#$FF

$FFBfl

$FB

#$34

#$03
$FFBD

#$00

$FC
#$0R

$FD

#$FC

$RE
$RF

$FFD3
$83R0

$01
$02R7

#$FE

$01

$02R7

$01

165

10 IFA«0THENA»I:LOAD'ANALYMACH',8,J1W l»-H«WIMtNH»l:LVHL>"RNRLYMRCH ,8,1 /~ •,

11 DATA-ALL OK-,"NO HEADER ',"NO SYNC ","NO DATA ■ L '
12 DATA-DATA CHECK SUM-,-X','X' ^
13 DATA-X-.-CHKSUM IN HDRVX" f
14 DATA-BAD ID*
15 DIM£R*(11):FORRP«1TOI1:READER*(RP>:NEXT C
18 P0KE54296»15:P0KE54277,17:P0KE54278,248:P0KE54272,3:P0KE54273,35 ^
20 POKE53280,11:POKE53281,U:SL=49152:POKE51233,1:D=8:P=4 C
30 DATA1,17,0,20,18,24,0,18,25,30,0,17,31,35,0,16 V
pS £2$yBi000:OPEN15,D,15,-I0':CLO5E15 f »
fg PRINT-<SCXYL> T/S ANALYZER<LG> PSIDAC(C)84 VBN" V-
60 PRINT"<CDXCDXCV} * * * MENU * * *" r
70 PRINT'<CDHWH> (1)ANALYZE T/S DATA' <-
75 PRINTB<CDXWH> (2)PRINT T/S STATUS LOG' r
12 PgINT-<CDXWH> (3)LOAD T/S STATUS LOG' V.
15 PpiNT"<CDXWH> (4)SAVE T/S STATUS LOG- r
?g INPUT-<CDXYL> SELECT CHOICE<WH>B jCH$:CH»VAL(CH*) L '
100 ONCHGOTO200r400,600,800:GOTO50 ^
200 PRINT '{SOINSERT SOURCE DISK IN DRIVE": PRINT -PRESS F7' L'
210 GETF7$:IFF7»O-<F7>"THEN210 j:
215 INPUTS CD >DISK NAME'jDN* f>
220 PRINT"<SCXYL>T/S DATA ANALYZER ENABLED<WH>- ^
230 FORPP«1TO4:READFT,LT,FS,LS C
240 FORTC»FTTOLT:FORSC=FSTOLS V
242 0P|N15,D,15:0PEN2,D,2,'H- f »
245 PRINTH15."M-WCHR$(6)CHR*(0)CHR$(l)CHRf(TC) v
248 PgINT«15» ■M-WCHR$(7)CHR$<0)CHR$<l)CHRi(SC) f
250 PRINTH15,?M-WCHRi(0)CHRi<0)CHR$(l)CHR$<128) L
^58 IFQ<>lfHEN"80"CHR$<0)CHR$<0>:GETI*15?Q$:Q"A5C<Q$+CHR$<0)>:IFQ>127THEN255 Q
270 PRINTM15,-Ul:-2i0;TCiSC r
275 SYS51264:5S=PEEK(51232):GOSUB1080 L
280 EN«Q:NM$=ER$(Q):TR«TC:SE=SC r
30g IFQO 1THEN5S»Q:EC»EC+1 :GOTO320 C
315 NM$="DATA-:IFS5=1THENNM$=-UNU5ED' f

SS rjJNT!J5!<7£B<3>TCjTAB(8)-SEC-TAB(ll)SCjTAB(16)-C0DE-TAB(18)SS;TAB(25)NM$ C
^oo NtXT^PtXT-'NEXT

: COUNTED^ :FORTD=1TO3000:NEXT:GOTO40 Q)

DISK ANALYSIS * m *

410 PRINTH4,- TRK SEC CODE STATUS-:PRINTH4 f
415 F0RBL-49152T051198STEP3 ^L
420 X»PEEK<BL):Y«PEEK(BL+l):Z«PEEK(BL+2) • r
430 MS$="READ ERROR" L
440 IFZ«0THENMS$«'DATA- r
450 IFZ«1TKCW1S*»-UNUSED" C
460 PRINTS,X?CHR$(16) '06-Y;CHR$<16) -13"?CHR$<16) '12'ZiCHR$(16> '20'MS$ ^

600 PRINTB<SOLOAD M0DE<CD>": PRINT-INSERT STATUS LOG DISK IN DRIVE-: PRINT-PRESS F7>
602 GETF7f:IFF7t<>-<F7>-THEN602 C
605 INPUT "{SCXYLHNPUT STATUS LOG NAME ■; NFi: DN**NF$ J.
610 Jk»LEN (NFJ): P0KE251, NL: FORLP'ITONL: P0KE678+LP, ASC (MID$ <NF$, LP, 1)) C
615 NEXT:SY551308:OPEN15,D,15:INPUT*«15,A$,B$,C$,D$:PRINTA$,B$,C$,D$
620 GOSUB1005: FORTD»1 TO3000: NEXT: GOTO40 C

225 ^SJHII<f£il?\fE MODE<CD>':PRINT-INSERT STATUS LO(5 DISK IN DRIVE": PRINT "PRESS F7V

805 INPUT-<SCXYL>I^UT STATUS LOG NAME ■ i NFS: DN$=NF$ V-
810 NL=LEN(NFi):P0KE251,NL:F0RLP=lT0NL:P0KE678+LP,ASC(MID$(NFi,LPJl)> f
815 NEXT:SY551335:0PEN15>D>15:INPUT*15,Ai,B*,C$,D$:PRINTA*,B»,C$,Dt V-
820 GOSUB1005:FORTD=1TO3000:NEXT:GOTO40 r ^
999 END C. '
1000 P0KE54276,35-P0KE54276,34:RETURN r
1005 CL0SE15:RETL«N L^

CHANGE THIS LINE FOR NON-COMMODORE PRINTERS -

460 PRINTW4,X;TAB(02)Y;TAB(02)Z;TAB(03)MSi (.)
NOTE: T/S Analyzer may indicate data on tracks s-,

containing only format data. This will be apparent on *-
some partially full disks which indicate data in the Q)

first track. If you suspect this to be the case,

P0KE51233,0 (disk formatted with zeros) or P0KE51233,1 O
(disk formatted with ones). r)

O

O
166 (-■,

C)

o

FASTBACK

10 lFfi=0THENfl=l:LOfflr'flHflLYMflCH">8,1
15 P0KE52,16:P0KE56,16:P0KE53231,11:POKE53280,11
20 PGKE54236,15: P0KE54277,17: P0KE54273,248: P0KE54272, 3: P0KE54273 • 35: 0=3
30 JS=43152: JE=51198: BSM836: BE=48383: RP=BS = HP»BS
35 SP*="

40 F0RLP=lT08:REflBIS<LP) :NEXT:DflTfl 0,255,255,255,255,255,255,255

45 GOSUBIOOO^PENIS^IS^'IO'^CLOSEIS

50 PRINT'TJil FflSTBflCKII PSIDflC<C>84 VBN11

60 PRINTMjfl«NSERT STRTUS LOO DISK IN DRIVE":GOSUB1050

70 IHPUT'THNPUT STRTUS LOG NflMEM;NF*:NL=LEN<NF$> P0KE251,HL

75 FORLP*1TONL: P0KE678+LP»RSC<MID$ CNF*, LP, 1)) : NEXT: 3VS51308
80 0PEM15,3,15GOSUB1070:GOSUB1080

30 INPUT"3INPUT NUMBER OF COPIES";NC
100 PRINT"niNSERT SOURCE DISK IN DRIVE"^GOSUB1050
102 PRINT'TH RERD MODE ENRBLEDJW"

105 IFJS=JETHEN400
110 SS=PEEK<JS+2> : OK=0 = FORCS=1TO8: IFSS=IS<CS>THENOK=1 = NEXT

120 JS=J3+3IFOKO1THEN105
208 IFRP=BETHENJS"JS-3:coTO«ee
210 TR=PEEK<JS-3) = SE=PEEK<JS-2) :POKERP, TR: POKERP+1,SE RP=RP+2
220 HI=INT<RP/256> • LO»RP-<H1*256) :P0KE252,L0 = P0KE253,HI GOSUB1099
240 GOSUB2000:PRINT#15/ "Ul: "2;0;TR;SE:SVS51376:GOSUB1000

250 RP=RP+256:GOSUB1070:GOTO105
400 FORCC=1TONC

410 PRINT\TINSERT COPV DISK IN DRIVE11 ^GOSUB1050
415 PRINTS WRITE MODE ENRBLEDW*'
420 IFIJP=RPTHEH500

430 GOSUB2010:SV3<51452>:TR=PEEK<673>:3E=PEEK<680>:MP«MP+2

440 GOSUB2010 = L0=WP-<HI*256):P0KE252,LO:P0KE253,HI

460 GOSUB1038:QOSUB2000
470 PRINT91S/ "B-P = "2;0:3VS51404:PRINTH15. "U2: "2;0• TR;SE = GOSUB1000
475 OOSUB1070:1FR*="08IITHEN490
430 GOSUB1080:PRINTM3:LERR ERROR THEN11 ^GOSUB1050:PRINT"H" GOTO460

498 WP=WP+256:GOTO420

500 UP=BS: NEXT: IFJSOJETHENRP=BS: GOTO100
510 PRINT-™! * * DUPLICATION COMPLETE * * *H :GOSUB1030 RUN15

999 END
1000 PQKE54276,35:P0KE54276,34:RETURN

1058 PRINTMPRESS F7"
1053 GETF7$: IFF7$O"irTHEN1055

I860 RETURN '

1070 INPUT«15,RS;B*;C*,D*
1075 PRINT11 Jfl"SP*:PRINT°n"fl*" "B*" "C»" "DrTTTT :CL0SE2 CL0SE15 0PEN15,S, 15

1078 CL03E15 RETURN

1080 FORTD»1TO3O00:NEXT:RETURN

1090 PRINTSP$:PRINTBnTRRCKllTRB<5)TR;TflB<10)wSECTORllTRB<15>SE RETURN

2000 0PEN15,D,15:0PEN2,D,2,M#M:RETURN

2010 HI=INT<WP/256> :L0=WP-<HI*256> : P0KE252,LO:P0KE253,HI: RETURN

167

C840

C841

C843

C846

C848

C84B

C84E

C831

C853

C856

C859

C85B

C85C

C83E

C860

C862

C863

C868

C869

C86A

C86B

C86C

C86E

C870

C872

C875

C877

C879

C87B

C87E

C880

C883

C884

C885

C886

C887

C889

C88B

C88D

C890

C892

C894

C896

C899

C89B

C89D

C89F

C8A1

C8A3

C8A5

C8A7

C8AA

C8AB

C8AC

C8AD

C8AE

C8AF

C8B0

C8B3

18

A9

8D

A2

20

20

20

A0

20

CO

D0

C8

C0

00

A9

8D

20

60

00

00

00

A9

A2

A0

20

A5

A2

A0

20

A9

20

60

00

00

00

A9

A2

A0

20

A3

A2

A0

20

A9

83

A9

85

A9

A2

A0

20

60

00

00

00

00

00

20

A2

00

20

02

C6

AS

A5

00

A5

21

0A

FE

F3

01

20

CC

08

08

FF

BA

FB

A7

02

BD

00

D5

08

08

FF

BA

FB

A7

02

BD

00

FB

C0

FC

FB

02

C8

08

E8

02

C8

FF

FF

FF

FF

C8

C8

FF

FF

FF

FF

FF

FF

FF

C8

CLC

LDA

STA

LDX

JSR

JSR

JSR

LDY

JSR

CMP

BNE

INY

CPY

BNE

LDA

STA

JSR

RTS

BRK

BRK

BRK

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

LDA

JSR

RTS

BRK

BRK

BRK

LDA

LDX

LDY

JSR

LOA

LDX

LDY

JSR

LOA

STA

LDA

STA

LDA

LDX

LDY

JSR

RTS

BRK

BRK

BRK

BRK

BRK

JSR

LDX

ANALYMACH

•♦♦00

♦ C820

♦♦♦02

♦ FFC6

♦FFA5

♦FFA5

IU00

♦ FFA5

♦C821

♦ C865

••♦FE

♦C853

♦ C820

♦ FFCC

♦♦♦08

••♦08

♦UFF

♦ FFBA

♦ FB

••♦A7

•♦♦02

♦FFBD

••♦00

♦ FFD5

♦(♦08

♦♦♦08

♦♦♦FF

♦ FFBA

♦FB

♦♦♦A7

(♦♦02

♦ FFBD

(♦♦00

♦FB

(♦♦C0

♦ FC

♦♦♦FB

♦♦♦02

HiC8

♦ FFD8

♦ C8E8

••♦02

. , C8B5

. . C8B8

., C8BA

.> C8BD

.» C8BF

.> C8C0

., C8C2

.. C8C5

., C8C8

.. C8C9

., C8CA

.. C8CB

., C8CC

.. C8CF

.> C8D1

.. C804

., C8D6

.. C8D8

., C8DB

.. C8DC

., C8DE

.. C8E1

., C8E4

.> C8ES

., C8E6

.. C8E7

.> C8E8

., C8EA

., C8EC

.. C8EE

.. C8F0

.. C8F1

., C8F2

., C8F3

., C8F4

.. C8F6

., C8F8

., C8F9

.» C8FA

.. C8FB

., C8FC

. . C8FF

. > C901

., C903

., C906

., C907

.. C909

., C90C

., C90F

., C910

20

A0

20

91

C8

D0

20

20

60

00

00

00

20

A2

20

A0

Bl

20

C8

00

20

20

60

00

00

00

A5

85

29

85

60

00

00

00

A5

85

60

00

00

00

20

A0

Bl

99

C8

Bl

99

20

60

00

C6

00

A5

FC

F8

CC

F4

E8

02

C9

00

FC

A8

F8

CC

F4

01

FE

FE

01

FE

01

E8

00

FC

A7

FC

A7

F4

FF

FF

FF

C8

C8

FF

FF

FF

C8

C8

02

02

C8

JSR

LDY

JSR

STA

INY

BNE

JSR

JSR

RTS

BRK

BRK

BRK

JSR

LOX

JSR

LDY

LDA

JSR

INY

BNE

JSR

JSR

RTS

BRK

BRK

BRK

LDA

STA

AND

STA

RTS

BRK

BRK

BRK

LDA

STA

RTS

BRK

BRK

BRK

JSR

LDY

LDA

STA

INY

LDA

STA

JSR

RTS

BRK

♦ FFC6

(♦♦00

♦ FFA5

(♦FC),Y

♦C8BA

♦FFCC

♦C8F*

♦ C8E8

♦♦♦02

♦ FFC9

•♦♦00

(♦FC),Y

♦FFA8

♦ C8D6 '
♦ FFCC

♦C8F4

♦ 01

♦FE

♦♦♦FE

♦ 01

♦ FE

♦ 01

♦ C8E8

♦♦♦00

(♦FC),V

♦02A7,Y

(♦FC),Y

♦02A7,Y

♦ C8F4

C)

C]

c

c

c

c

c

c<

c

c

o

c

c

c

c

c

c

c

V

€'

c

c

c

c
r.

c

c

c

o
o
V •

o

o

C)

Q)

C1
r

168

10 IFA=0THENA=l:LOAD'MONITORt8000".8.1

28 IFA«1THENA«2:LOAD"ZMACH".8,1 DISKPICKER dcj1
30 P0KE52.31-P0KE36.31 UlSKriUKEli pgi
33 5YS49132:RUN40

40 POKE53280,ll:POKE53281,ll:CLR:DIMERt <11) :GO5UB3000
43 PRINT"<SCXYL) DISKPICKER<LG) PSIDAC(C)84 V8N<
50 PRINT"<CD> »** MENU ***"
60 Pf?INT"<CD)(l) TRANSFER DISK MEMORY TO BUFFER"
65 PRINT"<CDX2) ENABLE MONITOR MODE*
70 PRINT"<CDX3> TRANSFER BUFFER TO DISK MEMORY"
75 PRINT"<CDX4> DIRECT EXECUTE USER PROGRAM"
78 PRINT"<CD>(5) JOB QUE EXECUTE USER PROGRAM"
80 PRINT"<CD>(6> LOAD SECTOR TO DISK BUFFER"
82 PRINT"<CD>(7' INITIALIZE DISK 10"
83 PRINT"<CD)(8) FORMAT DISKETTE"
84 PRINT"<CDX9> POSITION READ/WRITE HEAD"
83 INPUT•<CD>SELECT CHOICE";CHt:CH«VAL(CH$)
88 IFCH>9THEN40

90 ONCH GOTO 100.300,400,500*600.700,800.900,805
93 GOTO40
100 PRINT "<SCXCDXI) TRANSFER DISK MEMORY TO BUFFER" :GOSUB2000
105 INPUT"{CD>INPUT DISK START AODRESS'?X$:GOSUB1000:SA*:<
118 INPUT•<CD>INPUT DISK END ADDRESS" iX*:GOSU61000:EA-X

120 INPUT"<CD)INPUT BUFFER ADDRESS•;X$:GOSUB1000:BA«X:IFX<8192THENGOSUB2030
125 IFX)32767THENGOSUB2040
130 PRINT"<CD>DISK MEM. TO BIFF. TRANSFER IN PROCESS":PRINT"<CD)BYTE COUNT *
140 NB*EA-SA:SH-INT(SA/256):SL«SA-(5H*256>
150 OPEN15,8,13:FORLP=0TONB
160 PRINTM15.'M-R"CHR«(SL)CHR«(SH):GETN15.A$:PN«ASC(A$^CHRt<0))
170 POKEBA,PN:BA-BA+1:SL-SL+1:IFSL-256THENSL-0:SH-SH+1
175 PRINTTAB(12)LP"<CU>":NEXT
180 CL0SE15:PRINT"<CDXCD)END TRANSFER":FORTD-1TO3000:^XT:RUN40
308 IW»UT"<CD>PRINTER Y/N"iYNt:IFYNt«'Y"THENP«l
302 IFYN$O"Y"ANDYNfO"N"THENPRINT"<CUHCUHCU>":GOTO300
305 PRINT:IFP«1THENOPEN4,4:CMO4

310 5YS32768
320 END
400 PRINT"<SCMCD><3) TRANSFER BUFFER TO DISK MEMORY":GOSUB2000
405 INPUTSCD>INPUT DISK START ADDRESS"iX$:GO5UB1000:SA«X
410 INPUT'<CD>INPUT DISK END ADDRESS";X*:GOSUB1080:EA«X
420 INPUT"<CD>INPUT BUFFER ADDRESS"jXf:GOSl»1080:BA-X:IFX<8192THENGOSUB2030
425 IFX>32767THENGOSUB2040
430 PRINT"<CD>BUFF. TO DISK MEM. TRANSFER IN PROCESS":PRINT"<CD>BYTE COUNT »"i
440 NB=EA-SA:SH=INT(SA/256):SL=SA-(SH*256)
450 OPEN15,8,15:FORLP«0TONB
460 PN*PEEK(BA) :PRINT*)15. "M-WCHR$(5L>CHRt(5H)CHRf <1)CHR$(PN)
470 BA»BA+1:SL«SL+1:IFSL*256THENSL«0:SH»SH+1
475 PRINTTAB(12)LP"<CU>":NEXT

480 CL0SE15:PRINT"<CDHCD>END TRANSFER":FORTD*1TO3000:NEXT:RUN40
500 PRINT"<SCXCD><4> DIRECT EXECUTE USER PROGRAM■:GOSUB2000
305 INPUT"{CD>INPUT DISK PROG. ENTRY ADDRESS"*X$:GOSUB1000:5fl-X
510 SH=INT(SA/256):SL=SA-(SH*256)
320 OPEN15,8»15:PRINT«I13, "M-E"CHR$(5L)CHRt(SH) :CL0SE15

530 PRINT"<CD>PROGRAM EXECUTION ENABLEDf:CLOSE15:FORTD=lTO3000:NEXT:RUN4©
606 PRINT"{SC}<CD><5> JOB QUE EXECUTE USER PROGRAM":GOSUB2000
605 PPINT"<CD>INPUT JOB CHOICE<CD>":PRINT"128=READ"-PRINT"144=WRITE":PRINT'160*VERIFY
610 PRINT"176*SEEK":PRINT"184*SEC SEEK":PRINT"192*BUMP":PRINT'208=JUMP"
615 PRINT"224=EXECUTEt:INPUT"<CD>CHOICE"?CH$:CH=VAL(CHf):Xf»CH$:GOSUB1100

617 IFCH»0THEN600:
618 IFCHO224THEN640
620 PRINT"<SC>5ELECT EXECUTE STARTING ADDRESS":PRINT"<CD>ADDRESSES AVAILABLE ARE:"
625 PRINT"<CD>(1)*0300"-PRINT"(2)-0400":PRINT'(3>*0500"-PRINT"(4)=0600"
628 PRINT"<5>*0700"
636 INPUT"<CD}CHOICE";CHt:X$*CHf:GOSUB1100
632 C1*VAL(CH*>:ONC1GOTO640.640,640,640.640

635 GOTO620
640 GOSUB2000
642 OK$s"N":INPUT'{CD>MULTI SECTOR Y/N"?OKt
645 INPUT"<SCXCD>INPUT HEADER HI "iXS:TN«VAL<X*>:IFX*="X"THENGOSUB1100
648 IFOKf«"Y"THENFOR5N-20TO0STEP-1:G0T0651
650 INPUT"<CD)INPUT HEADER M2 "»X*:SN-VAL(X*>:IFX*«"X'THENGOSUB1100
651 0PEN13,8?13

652 IFCHO224THEN655
653 IFC1*1THENPRINT»15» "M-WCHRf(63)CHR$(0)CHR$<l)CHR$(Cl-l>
654 IFC1 <> 1THENPRINTH15. "M-WCHR*(0)CHR$(3)CHRt (3)CHR*(76)CHRt (0)CHRi (Cl+2)
655 PRINTH13."M-W"CHRt(6)CHR$(0)CHRt(l)CHR$(TN>
660 PRINTM15. "M-WCHR$(7)CHR$(0)CHRt (l)CHRf <SN>
665 PRINTH15, "M-W"CHR$(0>CHRf(0)CHRt(l)C^t<CH)
670 PRINT"<CD>PPOGRAM EXECUTION ENABLED"
675 PRINTH15.. "M-R"CHRt(0)CHR$(0) :GETH15,A$:OP»A5C(A$+CHR*(0)): IF0PM27THEN675
680 PRINT"<CD>TRK."TN" SEC."SN" OP STATUS CODE ■ "OP
685 PRINT"<YLXCD>"EP*<OP>'<WH>"
690 IFOKt*"Y"THENCL05E15:NEXT:GO5UB2003:RUN40
695 CLOSE15:GOSUB2000:RUN40
700 PRINT"<SCXCDX6) LOAD SECTOR TO DISK BUFFER":GOSUB2000
705 INPUT"<CD)INPUT TRACK II "?Xt:TN-VAL(X$):GOSUB1100
710 INPUT"{CD>INPUT SECTOR M ">Xt:SN»VAL<X$):QO5UB1100 169
715 OPEN15,8,15:0PEN2.8.2."H"

^
:PRINT*15» 'M-W'CHR$ (0)CHR$ (0) CHR$ < 1) CHR$ (192): CL0SE15

» 'M-W'CHR$(6)CHR$(0)CHR$U)CHR$(TR)

CHR0CHR$U>CHR$U76>
0PEN15»8?19?PRINTM15» MWCHR$(6)CHR$(0)CHR$
PRINTK15.'M-W'CHR$(0)CHR$(0)CHR$U>CHR$U76>

PRINTH15,'M-R'CHR$(0)CHR$(0)
CETH15.At:X-ASC(At+CHRt(0>):IFX>127THEN840

M28> :GETW5.X»:X»ASC(X»+CHR*(e>>

84L

Ili
855
857 PRINT'<CD> TRACK « "TR" HfcRU PHHSfc ■ "Bl ^A«w ™,««« h^t
860 PRINTM15.'M-W'CHR$(0)CW*$(28)CHR$(1>CHR$(HP>:CLOSE15:FORTD«1TO3000:NEXT

865 RUN40
900 PRINT'(SOINSERT DISKETTE TO BE FORMATTED':GOSUB2080

IFHTO .5THENCLOSE15:RUN40
PRINT#15.'M-R'CHR$(0)CHR$<2£
BI«XAND3:BI»BI-1:BI«BIAND3:HP«(XAND252)ORBI

900 PRINT(SOINSERT DISKETTE TO BE FORMATTEDGOSUB208B
905 INPUT'<CD>DI5KETTE NAME'»X$:NM$«X$:GOSUB1100
910 INPUTa<CD>DISKETTE IDaiXf:ID«-X$:GOSUB1100-GOSUB2000
915 PRINT*<5C)F0RMAT ENABLED PLEA5E WAIT*
920 OPENlSBlSPRINTHlS'NB^NMtCHRK^JlDtlNPUTMlSA

930 PRIN

1000 IFX
1005 F0R

1010 F0R
020 IFD

915
920 OPENlS.B.lSI

930 PRINT'{CD>*At.Bt

000 IFX$"X'THENRU

HlS^NB^NMtjCHRK^JilDtilNPUTMlS.Af.B
Ct.Dt:CLOSE15:FORTD»lTO3000:NEXT:RUN40

IFX$XTHERUme
F0RI*lT04:D$<I>»MID»(Xt,I.I)-NEXT

1010 F0RI«lT04:D(I)»VAL(Di(I>>
1020 IFDt(I)*'A"THEND(I>»10
1025 IFDfa)«BB"THEND(I)«ll
1030 IFDf(I)"C"THEND(I)*12

TED<I)13
CTHEND(I)
*D'THEND<I)
'EaTHEND<I)
"F'THEND(I)

12
13
14
15

1030 IFD$(I)
1035 IFD$(I)
1040 IFD$(I)
1045 IFD$(I)
1050 NEXT
1060 D(l)' _
1065 RETURN
1100 IFX$O'X'THENRETURN

1105 RUN40
2000 PRINT'<CD>CHECK DISK T«N PRESS F7'
2010 GETF7$:IFF7$O'{F7>'THEN2010

2030 PRINT'<YLHCD>BUFF ADDRESS TOO LOW<WH>':FORTD«1TO2000:NEXT:PRINT'<SO':GOTO
2040 PRINT'<YLHCD)BUFF ADDRESS TOO HIGH<WH>':FORTD«1TO2000:NEXT:PRINT'(SO'-GOTOli

3010 DATA^AL^OK'^NO^EA^RFOUNDS'NO SYNC FOUND','DATA BLOCK NOT FOUND"
3020 DATA-CHECKSUM ERROR IN DATA','BYTE DECODING ERROR'.'WRITE VERIFY ERROR'
3030 DATA-WRITE PROTECT ON'.'CHECKSUM ERROR IN HEADER'.'LONG DATA BLOCK"
3040 DATA'DI5K ID MISMATCH"
3050 RESTORE:RETURN

C000

C003

C006

C008

C00B

C00D

C00F

C0U

C014

C015

C017

C018

C019

C01A

C01B

C01C

C01D

C01E

20 C3

AD 01

85 FD

AD 02

85 FE

A2 00

B5 00

9D 40

E8

D0 F8

60

00

00

00

00

00

FF JSR

08 LDA

STA

08 LDA

STA

LDX

LDA

C0 STA

INX

BNE

RTS

BRK

BRK

BRk

BRK

BRK

BRK

BRK

tFFC3

t0B01

tFD

$0882

•FE

N»00

$00,X

$C040.X

$C00F

C01F

C020

C023

C025

C028

C02A

C02B

C02D

C02F

C032

C034

C037

00

20 C3

A2 00

BD 40

95 00

E8

D0 F8

A5 FD

8D 01

AS FE

80 02

60

BRK

FF JSR $FFC3

LDX N$00

C0 LDA $C040.

STA $00.X

INX

BNE $C025

LDA $FD

08 STA $0801

LDA $FE

08 STA $0802

RTS

*NOTE: ZMACH can be used to recover any program after a

crash and reset! Use following procedure:

1. First load "ZMACH",8,1

2. Type NEW [RETURN].

3. Load your program, type SYS49152 [RETURN]

4. To restore your program after a reset or new, type

SYS49184 [RETURN]
170

O

c

c

c

c

c

c

c-

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

€

c

c

c

c

o

c

C'

V
D
C

*
-
«
U
l
©
-

C
O
C
J

O
-
*

C
E

C
h
©

t-i
CTi

C
O
©

C
i

-
U
.
©

C
D
U
.
C
D
©

C
D
©
©

C
M

C
M
©
©
©

■»-«
^
D

r>-
©

0")
t
O
U
.
C
J
C
J

*-•
O

C
J
©
O
©

0
7

C
O
U
l
©
©
©

C
h

^
O
I
H
W
'
-
«
'
h
W
^
x
W
^
^

C
O

0
7
U
.
■
»
©

*
»
U
.

*
n
*
#
*
«
*
#

4
*
#

t
t

4
f
t
4
f
t
#
4
*
&
4
*

U
l
N

©
C
O

u
i
r
^
o
c
o
>
©
i
n

L
L

4ft
0
7

4ft
©

L
l

4ft
#

4ft
*

4ft
4ft

u
C
O

c
o
c
a

c
o
m

©
L
L
©
©
U
-
©
C
0
©
©
Q
^
«

^
^
t
U
-
C
D
C
M

C
M

-r+t
C
J
t
H
Q
O
L
L

C
J
C
M
©
©

C
J
C
O

C
O
©

b
.
U

0
7

C
O

C
O
L
_
_

-
.

U
l

C
O
©

O
h

C
O
U
J
©

0
>

C
O
L

*
*
L

u
a

a
c
j

O
L
l
©

C
J
U
-
C
O
C
O
©
©

0
7
U
J

©
L
©
C
M

©
c
o
m

a
o

o
o

©
L
L
.
l
L

i
-
t
t
-
*

r
-
l

»
H

-
r
H
U
l
©
L
L
C
O
C
J
L
L
©
C
J
©
■
■
-
•
©

©
C
^
t
©
1
©
©
©

©
c
^
i
T
f
^
c
x
?
c
c
«
o
?
u
i
«
u
-
c
\
i
T
f
h
C
A
a
:
a
«
i
i
.
c
\
i
*
r
c
>

©
©
©
©
©
©
©

t
h

i-i
i-«

-
^

>r-«
,
-
»
,
-
«
C
M
C
M
C
M
C
M
O
J
C
M
C
M
C
M
C
O
C
O
C
O
C
O

C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O

C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
0
3
C
O
0
7
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O

C
E

U
l
©

-
C
h

L
L

U
J
©

C
D

'•£

O
0
1
'
©
O

O
h
O

C
M
©

C
h

<=4
©

C
O
C
O
©
©

C
h
O
©

C
O
C
O
©

C
E
©

Sj1
C
h
C
J

CH
C
E
C
M
©

C
O
C
E
C
O
C
E
C
E
C
E
C
O
U
l

ffl
C
O
P
4
C
E
»
X
C
O
U
l
«

C
O
«
O
«

C
M
C
E

-4"

©
c
o
u
i

r>-
c
c
o

u
.
-
*
c
o
u
i
c
o
c
e
w
o

u
j
©

c
m
i
n
r
-
c
o
c
h
m
q

u
j
^

c
o

©
C
D
C
D
©
©
©
©

-
^

-rH
-r-i

t
h

i-i
i
^
*
h

i-H
C
M
C
M
C
M
C
M
C
M
C
M
C
M
C
M

i^i
C
O
C
O

0
7
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
0
7
C
O
C
O
C
O
0
7
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O

i-l
C
O
C
O
C
O
C
O
C
O
C
O
0
7
C
O
C
O
C
O
C
O
C
O
C
O
0
7
C
O
C
O
0
7
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O

|
^

-
-
•
i
n
©

'.a
m
y
>

0
7
0

0
*-«

m
»
©
C
T
l
<
^
*
©

-
t
h
U
1
U
-
©
©
U
-
C
S
J
©
©
©
©

i
v

0
7
m
L
L
C
J
O
*
H
C
J
O
©
C
J
©

C
O

J
O
i
C
E
C
E
>

C
O
O
H
W

a
0

0
7

^
c
o

©
L
l
©
©
U
-
C
D
U
1
©
C
0
©
'
-
»

C
J
-
^
U

C
J
U
-
O

U
l
O

C
M
©

C
O

U
l

L
l

C
E
©

G
U
.
©

C

©©

3
i
-
f
C

D
©
C

C
O
L
L

k
>
m
-
r

C
M
L
L

"•
C
A

9
V
O

U
J

C
J

0
]
^

<d
c
a

L
U
©

u<
C
E

(=k
C
E
C
E
C
E
C
E
C
E
C
E
X
>

C
J
>

Z
D
C
«
Z
Q
:
h
O
h
R
h
P
P
>
J
l

I
-
J
C
E
O
C
Q
_
J
C
0
_
K
0
_
l
_
J
W
C
J
{

O
C
J

C
J

O
L
l
©
O
L
l
0
7
U
1
^
C
0
©
U
J

©
-th

C
J
©

L
l
©

U
l
©

C
M
©

L
l

C
O

C
O
©

C
h

■r^
-»-i
©

t-«
Vj£)

C
O

C
O
U
l
©

O
N

C
O

C
O
L
l
*
&
L
l

4ft
4
A
i
«
4
A

l
X

U
l
C
£
C
E
O
l

u
j
z

0
7
o

s
:

U
l
U
.

c
>

U
.

C
E
U
.

u
.

©
*■#

,-,
,^-.

^-.
.-I

CPl
f=4

C
h

f=4
C
M
©
©

C
O
C
O
©

C
E
©
©

Ofi
C
J

C\J
C
E
C
M
©

C
O
C
E
0
7
C
E
C
O
C
E
C
E
U
l
m

C
O
O

C
J

*=4
C
M
C
E
•
*

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
^
^
8

©
C
O
U
l
K

C
E
C
J
L
L

-r-*
•
*

«vD
C
O
C
E
W
O

U
l
L
l
y
*
"
*
W
)

©
©
©
©
©
©
©

t-i
t
h

■«-»
i-i

r-i
t-i

^-i
t-<

i-i
C
M
C
M
C
M

C
O
C
O
0
7
C
O
0
7
C
O
C
O
C
O
0
7
C
O
0
7
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O

C
O
C
O
C
O
0
7
C
O
C
O
C
O
C
O
C
O
C
O
C
O
0
7
C
O
C
O
C
O
C
O
C
O
C
O
C
O

C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
O
C
0
t
O
C
O
C
O
t
O
C
O
t
O
C
O

OJ
k
C
O
C
O
t
O
C
O
C
O
t
O
t
O
t
O
t
O
t
O
C
O
t
O
t
O
C
O
t
O
t
O
t
O
t
O
t
O
t
O
t
O
t
O
C
O
t
O
C
O
C
O
t
O
t
O
t
O
t
O
C
O
t
O
C
O
t
O
C
O
t
O
t
O
t
O
C
O
t
O
t
O
t
O
0
3
t
O
t
O
t
O

e
n
e
n
e
n
e
n

■i
n
e
n
*
.
a

4
*
*
»
4
*

*•
•

■&
>
t
o
c
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
n
o
r
o
t
o
t
o
t
o

i>
o
t
o
t
o

**
-
•-

*»
-*

«-
*•

»-
*

•-
*
h*

-
*-
<•
©
©
©
©
©
©
©
©
©

o
I

-^
j
e
n
t
o
»
-
m
o

*
u

-s
i
4
*
t
o
^
T
i
r
n
b
i
i
^
^
j
*
-

t
o
©
m
w
o

x
«
v
o
o
h
4
*
t
o
~
n
t
i
w

c
o
e
n
t
o

*■
*•
©

t
i
t
«
w

y
>
g
o
-
^
e
n
t
o
©

-&
.
x
»
t
o
x
»

o:
«
x
«
c
o
x
«
c
o
©

x
»
w

e
n
t
«
o
n
f
f
l
w
o
i
w
i
i
b
o

t
o
^
©
©

e
n

i£
«
t
»

<•
£•
t
*
v
d
t
i
c
o
©
©

i
d
o
d
t
»
c
o
©

k£
»
©

t
o
©

d
d

<
i
e
n
w

gc
«
x
«
x
i
o
o

i
»
©

o
o
t
«
t
o

uc
i
t
*
'

t
o
x
«
o
o

I
D

fc
J
t
J

V
|
g
S
8
8
S
B
D
W
a
B
-

Q
ct

i
©

y:
«
©
©
©
©
©
©
m
©

<
o

«-
*
e
n
©
^
©

t
o
©
o
©
o

m
t
o

©
I
f
f
i
E
l

>
©

"T
l
X
i

m
•
-
e
n
t
i
o
©

t
i
o

t
o
"
n
x
«

o
o

o
o

t
o
©

X
»

0C
»
©

t
o
©

T
l

T
j
©
^

-
<

T
I

D
e
n

3
3

r
<

t
i
z
:
m
r

-
c
t
i
t
o

<
p
x
m
x
<
o
x

^
3

n
t
t
n
^
o
^
^
^
^
H
.

t
o
0
3

v
D
©

t
o
©

>-
*
©
o
©
o

r
n
o

t
o
t
o

O
^

V
D
©

©
©
©
©
©
©

4*
-
C
O

e
n

t
o

o
o

^
-
4
i
.

•
-

t
o
©
&
&

t
o

o
e
o

4*
.
©
©

o:
«

©
t
O
©
©

"T
J
t
o

J
©

X
»

t
o

•
-
'
■
*
*
«
•
•
-
•
«
•

*f
r
*
—
•
-
*
•
«
•
t
o

0
3

n
©
-
n
o
o

h
*
o
o

t
i
t
o

r
o

©
e
n
-
n
©
©

t
i
©
©

t
i
©

x
«

»-
*

o
o
t
o

t
»

o
j
*
^
t
o

t
o
&

t
i

t
o
e
n
t
o

t
o
©

e
n

©
4*
-
©

©
©

*-
•■

e
e
n

e
n

©

e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
a
e
n
e
n
e
n

c
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o

o;
«
o
j

I-
j.

|
-
i

l-
i.

|_
i.

!
»
i

>_
j.

^-
fc

h
j
.
^
)
©
O

(
2
»
©

(
£
»
C
I
l
©

m
o
w

x
«

-n
j
e
n
o
j

»-
*
m
o

x
«

oc
«
ff

i
4
^
t
o
©

e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n
e
n

t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o

»
-
*

1-
*

*-
>■

!-
»■
H
*

»-
••

I
-
*
©
©
©
©

G
«
©
©
©

o
x
«
^

oc
*
e
n
t
o

*-
*•
-
n
o

x
«

o:
«

ct
i
*
•
t
o
©

<£
}
g

0
0
m

V
D
W

I
«
X
»
t
o
C
O
4
*
4
i
4
^
4
*
4
^
X
«

-»
•

©
©

o
o
e
o
t
*
e
n
t
o
©
©

e
n
k
d
e
n
e
n
e
n
e
n
u
>

n o
m
t
o
©
©

t
o

»-
*■

"n
j
h
*

•-
-•

»-
•
•-
*
©

©
4^

-
©

0
0

4^
-
X
«

"^
J
^J

O
0
0

~^
J
CT

i
©

©
t
j

C
O

V
D

n o z a

^
w
b
w
r
r
r
c
,
w
i
T
i
i
T
i
i
T
i
n
i
r
i
r

H
i
n
i
H
b
b
b
O
H
O
O
O
O
O

t
»

C
0
m

-
C
X

X
«
X
i
X
<

?
D
X
i
?
3
j
o
3
3
-
7
3
7
0
X
«

e
n

©
r
o
&

«
■
t
j

•-
».
4
4

^
.

t
O

C
O
4
^
©
©

tj
li
X
»

-\
J
V
D

0C
»
-
J

0"
i
©

*
*

m
-
©

c
o

o:
«

^
j

©
e
n

©
?
<

a
«
t
«
c
o
m

v
d
w

x
»
x
«
t
o
c
o
4
^
4
^

4^
-
4
i
x
»

©
©

o:
»
o
o
t
?
e
n
t
o
©
©

t
n
e
n
e
n
e
n
e
n

*£
i

t
i

m
t
o
©
©

t
o
h
*
^

h
*

t-
-
h
^
©

"\
I

©
4
^
©

0
3
4
^
X
i
V
D
C
O

--
J
a

i
©

©
T
J

t
O

^£
«

^
w
t
i
H
t
o
r
r
r
<
H
C
o
m
r
n
m
r
i
r

H
z
r
n
z
H
b
b
b
c
o
n
o
o
o
-
o

t
i

t
O
m

-
C
X

X
«
X
»
X

-
C
7
3
X
»
7
0
x
O
3
3
7
3
X
»

e
n

t
O

>
-
*

0
3

C
O

4^
-
©
©

Vj
li
X
i

<j
j
C
O

--
J

O"
i
©

m
-

©
o
o
t
o

©
©
X

4*
.

X

a
:
aU
J
D
C

>
>
•

©
^

*
o

ujj->o
cs?

t
h
©

©
m

h
o

u
j
w

„
i
n

o
-

i
n
©

ro
r
o
u
i
©
h
;
?

O
-
4
-

r
o
©
r
i

o
i
o

..
_,

J
133

-«j-
-M*
©

^i

a
c
>

u
j
g

<
x
>

a
:
c
c
a
.

**-
s

j
a
f
f
l
S
S
^
^
^
o
^
L
r
i
S
S
r
j
«
a
!
j
i
j
^
M
a
5
u
u
i
!
l
j
4
?
t
j
r
)
o
Q
t
o
S

m
m

o
»
.
r

C
.
J
I
O

i-o
o
-

U
.

U
-

•>-*<©
->"»C3

U
.

U
,

©
©

U
I

C
E
^
O
G
S
U
I
H
©

%
t
"
©
L
U

•
*
h
©

■••J'
©

t
H
©

iTJ
?™i

Cf-
•**^
©

U
.

U
.
l
O
©

U
-
©
©

U
.
©

Ijl.
©
C
D

U
-
©
©

£SJ
O
*
©

'•O

©
©

C
O
©

C
O
©
©
©
©

0
0
O

(>•■
0
0
©
©
©

C
O
O

Cr-
0
0
©

O-.
I
O

(Si
©

O
-
O
©
©

C
c-j
a

c
a
i
n
c
o

i-rj
c-j

<
c

ir?
c
a
<
r
o
-
a
a
a

u":i
c
o
a

■
>
c
i
o

<
c
c
o
c
c

c-J
<
r

•-*•
©
©

e

©
n

i
o
<
i
u
j
a
-

txj
u
j
©

i
m
w

-ci
■
>
a

c
«
u
©

-
vj-

r--.
c
o

<;i
o
u
©

r
o
u
t
c
o

or-
<]

©
©
©
©
©
©
©
©

"!"•■•
♦*<

t™!
•'—i

I**!
*~i

i~i
<-i

c^j
c
*j

C\i
("■•]

C
J

C'-j
C'

j
('■■!

i^j
r
i

1^3
r
o

1*0
r*

•J^
*•^

VT*
■•■J>

'•j
—-T

'•j
""j*

'm"
XI*

T
'*J"

t»T
*«j

*
v
*

C
O

c
d

1
0

t
h
C
D
'
3

i
n
C
D
C
O

Ix.
-
^
C
O

«
#
W

O
^
f

I
D

C
O
I
D
C
O

C
O
^

0")

1=1
0
1
O

O
Q

U
.
Q
Q

U
.
O
Q

I
L

111
i
S

C
O

ll.
C
J
U
h
O
O
I
l

»3>
C
J

i
T
"

C
S
3
f
••_

C
M
C
O
C
D
U
J
C
O

0
1
C
D
C
D
0
1
0
1

0
1

4ft
4ft

C
D
0
1

4
f
t
4
£

*
4
£

4
f
t

4
f
t

T
-
l

C
D
C
J

4ft

*
i
n

C
O

U")
U
I

"3"
o
i
c
d
i
n
o
i

C
O

4ft
4ft

0
1

4ft
4
£

4t-
4ft

-
T
-
l

C
D
C
J

i
-
i

4ft

i
d
l
j
j
c
j

o
i?o

i
n

cxt
"^t"

"
^
C
D
C
D

C33
'
3
O

C
D

C
D

'Ti
■»-•

k
D

C
O
0
1
O

U
J
C
J
C
D
C
J
C
D

-r-*
'
3
0
1
C
D
C
h

0
1
C
O
-
^
f
t
*
*
*
A
-
*
*
A
'
3

4ft
LL.

4ft
U
.

J
f
t
4
f
t
4
f
t
*
4
f
t
#
4
f
t
t
t
4
f
t
i
*
4
f
t
4
t
4
f
t

a
:
x

c
j
>
x

c
o

j=i
>

_
i
u
j

U
I

IJL

C
D
«
3
L
U

v
-
i
C
D
L
l

«
3
C
M
C
D
C
O
C
E

C
M
C
E
U
!
m
O

!
z
:
i

C
O

J
C
E
C
C
C
E
X

C
E
>

C
J
>
X

U
J
X
>

C
E
C
J

I=-
C
E
>
X

L
U
X

*
H
C
J
>

C
E
X

L
U
C
J
C
E
C
E
<
Z
C
E
C
E
«
X
«
X
>

Ci£
C
E
Q
.

i
M
u
n
w
J
W
j
i
o
c
o
j

—i
oi
u
«
u
o
S
.
j
j
j
w
a

co
m
q
w
j
j
m
o

co
»=»
m
«

_i
o

co
_i

co
_i

co
.j«-j

j1-)

C
J
C
J

C
J

C
J

C
J

C
J

C
J

C
J

C
E
T
f
L
U

C
E
L
l
C
O
C
J
L
l
C
D
C
J

lJ-
U
I
h

L
U

L
l

111
L
l

L
l
L
l
C
D
C
D

t-i
q

C
D
L
l
>
3
«
3

L
l

C
D
C
M
C
D
C
O
C
E
C
D
C
D

j=l
i=k

C
h

CT>
«

•J
i
C
M

1=1
C
O
'
3

«:
«

C
E
\
D

PC|
C
J
O

«
X

'31
'
X
C
M
C
D
C
O
C
E
C
E
C
O
«

I
O

v

C
O

ij>
L
l

II.

•
x
c
o
c
d
c
d
l
u

-th
c
o
i
n
i
n
u
j

^
r•-

l
u
o

c
d
o

c
d
o
i
c
d
t
-
i
c
d
u
t
-
h

cri
L
l
«
3
©

L
U
L
l

C
D

IJL
C
D
U
I
L
l

C
D

L
l
L
l
C
D
U
J
C
D
C
D
C
D
C
D
«
3
C
D

CT»
C
D

'•£>

C
D

»>J
C
D

1J1
«
3
C
O

i=l
0
1
C
E
«
3
C
M
C
h
C
D
0
1
«

C
E
C
D
«
3
«

«T>
i=»

CT>
i=l

«7i
U
I
C
D
C
D
C
A
C
J

i
=
l
«
X
C
E
»

U
I

«TQ
0
1
C
J
C
J

1=1
«
X
'
X
U
I
m

C
O
C
J

1=1
U
I
C
E
C
D
C
O
C
C
C
O
C
E
C
O
i
X
C
M
C
E
•
*

c
d
c
o
u
i

r*-
c
o
'

C
D
C
D
C
D
C
D
C
D

'

•»
m

1=1
U
-
i
3

•«-<
0
1
U
I
0
1
«

i=j
U
l

C\J
-
^

'sD
0*^

'
X
C
J

1=1
L
U
C
D
C
M
^

f•-
•J
»
C
E

1=1
L
U
U
_

t-*
0
1
i
n

f--
0
1
r
t
O

L
U
S
»
C
O
U
I
C
O

)
©
Q

f
f
l
-
H
^

-
h
-
^
^
^
^

^
f
\
l
C
M
C
M
C
M
C
M
C
J
C
M
C
M
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
-
*
^
T

""t
^

•
*

■•*
•
*
*
t

til
U
l

1^1
C
O

»?0
C
O
C
O
C
O
C
O
0
1
C
O
C
O
C
O
C
O
C
O
C
O
C
O
0
1
C
O
0
1
C
O
C
O
C
O
C
O
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
C
O
0
1
0
1
C
O
0
1
0
1
0
1
0
1
0
1
0
1
0
1
C
O

«
L
L
-
^
0
1

'JB
C
O

U
I
i
n

••£«
'Jl

'-JO
'■£•

co
oi

oi
oi

oi
oi

oi
oi

o
i
co

co
co

co
co

co
co

co
oi

oi
oi

oi
c-i

oi
oi

co
co

co
co

0
1
0
1
0
1
0
1
C
O
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
C
O
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

c

c

c

c

c

c

c

c

c

*** CHAPTER SEVEN *** C

c

c
CARTRIDGES r ,

C

C

C

C

C

C

C
This chapter is primarily a reference aid for r

building and using the ROMULATOR system. We will C

summarize the major points of cartridge duplication ^~

theory, but for a complete understanding, you will need _

to cover the material under the Cartridge headings in r \

chapters 2, 3, and 4. (!

C
As discussed in the earlier sections, the autorun Q

feature of a cartridge makes it impossible to "get C;

into" via normal methods such as STOP RESTORE and so ^

on. The autorun is a part of the power-up job of the *-

C64, so defeating it requires the cartridge to be £

"invisible" during power-up. Once the system is running

under user control, you are then able to get into the

cartridge for saving, disassembling and whatever else

you may want to do. This is one of the main tasks of

174

the Romulator card.

The next area of concern with cartridges is the

way they reconfigure memory. Two of the lines to the

cartridge (GAME and EXROM) control the way the C64

organizes its internal RAM and ROM. There are four

combinations which are shown in table 3.3. Once again,

the Romulator circuit card overrides the cartridge and

allows you to change the configuration. In this manner

you can easily find out the normal configuration used

by the cartridge.

The fact that a cartridge is a ROM based program

affords it another kind of protection. That is that the

program can "write" data to the ROM locations, but this

will not change the data actually stored there. In

other words, the program cannot "erase itself"! If you

run a ROM based program in RAM, a write enable line is

necessary. This enable can be turned OFF which in

effect protects the RAM from write-over. It then works

just like a ROM with the exception that it will lose

data when power is removed. The Romulator card has a

write enable switch as well as a socket into which you

plug an 8K or 16K Vic-20 RAM expander card. These were

chosen because they are readily available at a

reasonable price. Many C64 owners started with a Vic-

20 and still have expander cards. In the case of 16K

duplication the card will also need block switching.

(The Romulator Switch Card is illustrated in this

chapter and is available for those with Commodore

cartridges without the switching capability) If your

175

c

RAM already has the ability to switch either half of (_ '
f

the 16K into block one or two or OFF, you will not need

a switchcard. (Note that this reference is to the Vic- r

20 block one and two, not C64 RAM area) Q

It is possible to run some cartridge programs in £ ,

the computer RAM. The general procedure is to find the C

normal location of the ROM program, load or transfer *-

the contents of the ROM to its equivalent location in s-

RAM. You must then determine the normal entry point of C

the program (sometimes the first two bytes of the C

program) and SYS to that location. You may wish to *-

experiment with this procedure but we have not found it ^ ,

predictable enough to write about. The Romulator system Q ,

on the other hand, has proven effective for every C_;

cartridge we have thus far encountered. ^

R0MULAT0R HARDWARE

SYSTEM DESCRIPTION

C '

c

The Romulator system consists of a special circuit ^~

card and a program which are used together to transfer C

the contents of ROM based cartridges to tape or disk. C

We will refer to the copies as "cartridge tapes" or ^~

"cartridge disks". To run the cartridge tapes or disks *-

you must supply a 8K or 16K Vic-20 RAM expander (for Q,

16K cartridges you must have 16K RAM with block C

switching). The Romulator with RAM plugged in need not ^~-

c
be removed from the expansion port. It will not affect r~

normal computer operations. Cartridge disks/tapes can Q

be loaded and run at will. In addition, a cartridge C_ '

176 q

program can be "switched" out and in without reloading,

as long as power is not interrupted. Another handy

feature when using a 16K RAM is that two 8K cartridge

disks/tapes can be resident at one time allowing you to

simply switch between them. An edge connector at the

back allows cartridges to also be plugged in and

operated without removing Romulator.

THEORY OF OPERATION

Figure 7.1 shows the Romulator schematic. Note

that the data and address bus (A0-A12) pass

uninterrupted to both the cartridge and RAM slots on

the Romulator card. The GAME and EXROM lines however

are intercepted by the card so that you have complete

manual control of the system configuration. A Reset

button is also provided for cold starts. Write enable

is on board in case your RAM does not provide it.

The key to the system is the 74138 decoder and

block switching system. We have chosen the $4000 block

to serve as RAM buffer for cartridges since it allows

other user programs below; and 16K worth of transfered

ROM above. The Romulator program will transfer the

contents of cartridges to $4000, and also saves them

from there. A jumper rail is provided if you wish to

modify this for your own reasons.

The ROML and ROMH lines are normally used by the

computer to select the cartridge according to the

location forced by EXROM and GAME lines. With these

177

F
I
G
U
R
E

7
.
1

R
O
M
U
L
A
T
O
R

S
C
H
E
M
A
T
I
C

A
L
L

R
E
S
I
S
T
O
R
S

2
2
K

O
H
M
S

A
L
L

C
A
P
A
C
I
T
O
R
S

0
.
1

M
F
D

lines open and GAME and EXROM open, the computer cannot

"see" the cartridge. To avoid conflicts with the basic

ROM (ROMH), we will always connect the ROM to be copied

to the ROML line. The T switch makes this transfer if

the cartridge is normally selected by ROMH. By first

turning on EXROM, reseting, then switching the

cartridge into ROML, any ROM can be forced to appear at

$8000 without running! The RAM need not be active at

this time although it does not affect the operation if

it is. The Romulator program then performs the transfer

to $4000 and the Save. The process is repeated for 16K

cartridges. For 16Ks, you will first save the ROML half

then the ROMH half using the T switch.

The loading process requires the RAM to be

situated at $4000 with the R switch, write Enable

should be ON. A normal load is done, then if 16K the

load is repeated with the other half of the RAM and

other half of the cartridge disk. The RAM is then

switched into the location used by that cartridge using

the CA and AA switch or the C8 and A8 switches. (

Switches ending in 'A for ROMH cartridges and '8 for

ROMLs). Then by switching OFF write enable and setting

GAME and EXROM, the RESET will start the cartridge

program!

Though the theory may seem a little confusing, the

step by step procedure given later will make the

process quite simple.

ASSEMBLY

179

F
I
G
U
R
E

7
.
2

a

D
A
T

T
O
P

S
I
D
E

P
C

L
A
Y
O
U
T

1
A

N
O
T
E
:

R
E
G
I
S
T
E
R

H
O
L
E
S

A
N
D

P
L
A
T
E

T
H
R
U

R
O
M
U
L
A
T
O
R

S
C
A
L
E

1
:
1

F
I
G
U
R
E

7
.
E

T
A
Q

S
C
A
L
E

1
:
1

A
I

R
E
G
I
S
T
E
R

H
O
L
E
S

A
N
D

P
L
A
T
E

T
H
R
O
U
G
H

R
O
M
U
L
A
T
O
R

B
O
T
T
O
M

S
I
D
E

P
C

L
A
Y
O
U
T

e

o
We do not recommend that you try to build your own Q

circuits unless you have had considerable experience v.

r
doing so. The damage possible to your computer system

through improperly built circuits would far outweigh s-

the slight cost advantage you may obtain. £

c
If you have the experience necessary you will find f~

the layout straight-forward. The ROM socket is soldered C

directly to the pads at the end of the board. Note the ^-

correct orientation of the IC and switches. The RAM ^

socket is mounted near the center of the board. The PC C

board is double sided, note the Top and Bottom side C

layouts. All through-hole feeds should be soldered top ^

and bottom side or plated through. Be careful not to ^~

make solder bridges between adjacent traces on the PC r

board. See Appendix G for assembled unit availability. C

C

C

16K RAM SWITCH MODIFICATION C
c

c

If you own a Commodore 16K RAM and wish to be able **-

to do 16K cartridges, you will need a RAM switch card. ^

No changes are required if you are only interested in /"

doing 8K cartridges and will be using an 8K expander C

addressed for block one. (Vic-20 block) Figures 7.3 and *-

7.4 show the schematic and PC layout for this. With the ^

card installed in your RAM, you will have the ability C

to switch either 8K half of the 16K into block one or C

two. Figure 7.5 shows the positioning of the card in ^-'

the Commodore RAM case. If you have another brand of ~

C
182 q

FIGURE 7.3

RAM SWITCHCARD

TO

RAMT

(SEE FIG. 7.6)

5-*-

2nd

8K

FIGURE 7.4 FOIL AND COMPONENT LAYOUTS (shown 1:1 size)

! 234

fiOTLJOFF

O
(c) 84

©
COMPONENT SIDE

183

FIGURE 7.5

SWITCH CARD OR ENTATION

VIC 16K RAM

CARTRIDGE

RAM CARTRIDGE SHOWN FROM BOTTOM

184

RAM, you will have to have some other switching system.

16K RAM SWITCH INSTALLATION

FOR COMMODORE RAMS

1. Disassemble 16K case. (1 screw, 4 snaps)

2. Orient RAM SWITCH as shown in figure 7.5.

3. Use small piece of tape to hold board as shown in

figure 7.8. You should be looking at the soldered side

of the RAM and the foil side of the SWITCH CARD. The

large hole in the SWITCH CARD should be aligned with

the screw hole of the RAM.

4. Pretin SWITCH CARD numbered pads with SMALL puddle of

solder.

5. Tack solder kynar wire from numbered pads on SWITCH

CARD to like numbered pads on RAM. (1 to 1, 2 to 2, 3

to 3...)

6. Make certain jumpers on RAM at location indicated are

cut. If switch is in this position, make sure all

switches are OFF. (Some have 4 switches for half and a

jumper for other half. All must be OPEN!

7. Double check all connections. Make certain that wire

insulation is close enough to pad so inter-pad shorts

cannot occur.

YOUR NEW BLOCK SELECT SWITCHES ARE:

[2nd 8K HALF] [irst 8K HALF]

185

F
I
G
U
R
E

7
.
6

S
W
I
T
C
H
C
A
R
D

T
O

R
A
M

W
I
R
I
N
G

1
6
K

C
O
M
M
O
D
O
R
E

R
A
M

T
A
P
E

T
O

H
O
L
D

W
H
I
L
E

S
O
L
D
E
R
I
N
G

*

0
0
0
0
0
0
0
0
0
0
0
0

M
A
K
E

S
U
R
E

A
R
E

O
F
F

S

O
o
o
o
o
Q
Q
Q
O
d
o
o
d

B
O
T
T
O
M

S
I
D
E

O
F

R
A
M

S
H
O
W
N

O
O

O
O

O
O
O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O
'

O
O

O
O
O
O

O
O
O
O

O
O

O
O
O
O

O
O

O
O

o o o o o o o o

S
W
I
T
C
H
E
S

H
E
R
E

C
U
T

J
U
M
P
E
R
S

p
o
o
o
o
o
o
o
o
o
o
o

0
0
0
0
0
0
0
0
0
0
0
°

f
8
K

R
A
M
S

D
D

N
O
T

R
E
O
U
T
R
F

S
W
T
T
C
H
l

ROMULATOR PROCEDURE 8K

The following instructions give the step by step

procedure for using the Romulator system. We will refer

all operations to disk. Just replace word "disk" with

"tape" if you are using tape. Tape requires 3R0MULAT0R

program, disk uses 2R0MULAT0R or, abbreviated, 2R*.

Note that the Romulator circuit card with RAM may be

left "permanently" plugged into computer. If you are

not otherwise using expansion port it will not affect

normal operation. All steps below assume it is already

plugged in.

SAVING 8K CARTRIDGES

1. With power OFF, plug cartridge to copy into the

Romulator cartridge socket. All Romulator switches

should be OFF.

2. Turn ON computer. Using table 7.1, try each combination

of GAME, EXROM, A8, and AA. (follow each by pressing

RESET). One of the combinations should result in

RUNNING of the cartridge. If not, it may be 16K, go to

16K save procedure. WRITE DOWN the combination used

which made it RUN. (Such as A8-C8-GM-EX)

3. Turn OFF all switches. Turn ON EXROM and press RESET.

30719 Bytes Free message should appear.

4. Using information obtained in above steps, now turn ON

switch A8 if you wrote down A8. Use switch T if you

187

wrote down AA.

5. LOAD appropriate Romulator program then perform

SYS3291. Romulator title notice should appear. Follow

prompts. NAME should be less than 16 characters ...Do

NOT use quotes.

6. For additional backups repeat step 5 from SYS3291 only!

7. NOTE: A copy can be made from a copy by using editor

assembler and loading cartridge disk then Saving $4000

to $6000. . You may find this easier than using the

ROMULATOR procedure to make backups of the disk at a Q

later date. ^

C

LOADING-RUNNING CARTRIDGE DISKS/TAPES C

c

c

1. Switch all Romulator Switches OFF. Turn ON switch R, ^

and WRITE ENABLE. Switch RAM switch so RAM is in Block _

c
one. (When loading second half of 16K, use second half r ,

of RAM in block one...First half all OFF.) C

2. Press RESET. 38911 message should appear. LOAD *-

cartridge disk using "prg name",8,1 or tape with "prg

name",1,1. f

3. When done loading, Switch WRITE ENABLE OFF. (For 16K (

switch first half of RAM out of block one and switch *-

second half in then repeat step 2. When done, Write

Enable OFF, first half of RAM into block 1 second half r

into block 2 , also turn R OFF!) Q

4. Turn ON the switches you wrote down from SAVE procedure *-

table 7.1. This information should be kept with the

program. One convenient way is to include as part of

188

program name.

5. Press RESET button and program should RUN!

—TABLE 7.1—

GM

ON

OFF

ON

ON

OFF

ON

rim

EX A8

OFF

ON

ON

OFF

ON

ON

ON

ON

ON

OFF

OFF

OFF

AA

OFF

OFF

OFF

ON

ON

ON

WRITE DOWN

A8-C8-GM

A8-C8-EX

A8-C8-GM-EX

AA-CA-GM

AA-CA-EX

AA-CA-GM-EX

16K SAVE PROCEDURE

The main difference between 16K and 8K procedure is

that the 16K has to be handled in halves. You should

think of your RAM as having a First half and a Second

half. The ROM will be saved one half at a time. Each

half is saved identically except that the T switch is

used to place the second half of the ROM into position

so Romulator can see and save it. These steps assume

that you already know the cartridge is a 16K as

discovered by the first few steps of the 8K procedure.

1. Use the first three patterns of TEST on table 7.1 to

determine the RUN configuration. However, AA & A8

should both be on for each 16K test.

2. When you discover the correct pattern for RUNNING write

down the configuration indicated.

3. Turn OFF all switches. Turn ON EXROM and press RESET.

189

30719 message should appear.

4. LOAD the appropriate version of Romulator (tape or

disk). SYS3291 , Romulator title should appear. SWITCH

A8 ON!

5. Follow prompts. For NAME use a 1 followed by program ^ .

name to indicate lrst half. Name must be less than 16 £

characters, do NOT use quotes. C

6. When done turn OFF all switches and turn ON EXROM. ^

Press RESET, 30719 message should appear. Turn ON ^

T. C

7. Type SYS3291. (You do not need to reload it as long as C

power wasn't interupted).

8. Again follow prompts. Use a 2 in front of name to s-

indicate second half of program. (^

9. This completes 16K SAVE procedure. You now have the C

c
program in two halves called "lname" and "2name". The ,

LOAD RUN procedure covers the method of running both 8K ^ .

and 16K cartridge disks/tapes. £;

C
PROGRAMS r

c

c
Following are the listings in assembly code Q

(machine code is used for data tables). Note that there C:

is a data table starting at $0A00 and extending to the ^

beginning of the program area, $0BD6. We recommend the ^

use of an editor assembler Memory command to type in (^

the table and the Assemble command for the program. L

2R0MULAT0R is for disk saves and 3R0MULAT0R is for ^

tapes. PSIDAC supplies a complete disk of the programs ^

in this book if you do not wish to type these by hand. Q,

190

3R0M DATA TABLE

0fl0Q 0B 9B 11 F3 11 23 03 0F
0R08 01 01 00 00 80 00 40 20
QfllQ 00 60 00 00 00 00 00 00
0R18 00 00 00 00 00 00 00 00
0R20 00 00 00 00 00 00 93 05
0fl28 20 20 20 20 20 20 fl4 fl4
0R30 fl4 fl4 fl4 R4 fl4 fl4 R4 R4

0R33 R4 R4 R4 R4 R4 R4 R4 R4
0R40 R4 R4 R4 R4 R4 R4 R4 R4
0R48 R4 R4 20 20 0D 20 20 20
0R50 20 20 20 74 3F 33 52 4F
QR58 4D 55 4C 41 54 4F 52 20
^6^ 3E 28 43 23 IE 50 53 49

0R63 44 41 43 20 38 34 2D 56
0R70 4E 05 R7 20 0D 20 20 20
0R78 20 20 20 R3 R3 R3 R3 R3
0R80 R3 R3 R3 R3 R3 R3 R3 R3
0R33 R3 R3 R3 A3 R3 R3 R3 R3
0R90 R3 R3 R3 R3 R3 R3 R3 20
0R98 20 0D 20 20 20 20 R4 R4
0RR0 R4 R4 R4 R4 R4 R4 R4 R4

0RR8 R4 R4 R4 R4 R4 R4 R4 R4

0RB0 R4 R4 R4 R4 R4 R4 R4 R4

0RB8 R4 R4 R4 R4 R4 R4 20 0D
0RC0 04 20 20 20 20 2R 20 2R
0RC8 20 43 41 52 54 52 43 44

0RD0 47 45 20 42 41 43 4B 55
0RD3 50 20 50 52 4F 47 52 41

0RE0 4D 20 2R 20 2R 20 20 0D
0RE3 20 20 20 20 R3 R3 R3 R3
QRF0 R3 R3 R3 R3 R3 R3 R3 R3

0RF8 R3 R3 R3 R3 R3 R3 R3 R3
0B00 R3 R3 R3 R3 R3 R3 R3 R3
0B03 R3 R3 R3 R3 20 20 20 11

0B10 0D 20 20 20 20 20 28 31

0B18 23 20 52 45 41 44 53 20
9B20 54 41 50 45 20 55 4E 43

0B23 54 20 46 4F 52 20 53 41

0B30 56 45 20 20 20 11 0D 20
0B38 20 20 20 20 28 32 29 20

0B40 50 52 45 53 53 20 46 37

QB48 20 20 11 0D 04 04 20 20
9B50 20 20 20 23 33 23 20 43

8B58 4E 50 55 54 20 50 52 4F

8B60 47 52 41 4D 20 4E 41 4D

8B68 45 20 20 11 0D 20 20 20
9B70 20 20 23 34 23 20 04 04

QB73 04.04 04 11 20 20 20 20
8B80 20 23 35 23 20 4F 50 45

0B83 52 41 54 43 4F 4E 20 43

8B30 4F 4D 50 4C 45 54 45 20

0B33 52 45 4D 4F 56'45 20 20

9BR0 9D 20 20 20 20 20 20 20

0BR3 20 20 54 41 50 45 20 46

0BB0 52 4F 4D 20 55 4E 43 54

0BB8 20 11 20 20 0D 20 20 20

9BC8 28 28 28 36 23 20 50 52
9BC8 45 53 53 28 46 37 28 0D

QBD0 20 20 84 04 04 04 RD 8B

191

0BD6

0BD9

0BBB

0BBE
0BES

QBE3

0BE5

0BE8

0BER

©BED
0BFQ

0BF3

0BF6

8BF9

0BFC

0BFF

0C02

0C05

0C08

0C0B

0C0E

ecu
QC14

0C15

0C16

0C17

0C18

0C1R

0C1D

0C1F

0C21

0C24

0C25

0C27

0C23

0C29

0C2fl

0C2B

0C2D

0C?0

QC32

0C34

0C37

0C33

0C3fl

0C3B

0C3C

0C3D

0C3E

0C40

0C43

0C45

0C47

0C4fl

3R0MULAT0R -

FID

85

RD

85

RD

85

RD

85

RD

8D

fiD

8D

RD

8D

fiD

3D

RD

3D

RD

8D

RD

3D

60

00

00

00

R2

BD

C9

F0

20

E3

D0

60

00

00

00

R2

BD

C9
F0

20

E3

D0

60

00

00

00

R2

BD

C9

F0

20

E8

0B

FB

0C

FC

0D

FD

0E

FE

00

20

01

21

07

18

02

05

03

06

06

00

05

01

00

26

04

06

D2

F3

00

Cl

04

06

D2

F3

00

4E

04

06

D2

0R

0R

0R

0R

0fl

D0

0R

D0

0R

D4

0R

D4

0R

D4

0fl

D4

0fl

D4

0fl

FF

0fl

FF

0B

FF

LDR

STR

LDR

STR

LDR

STR

LDR

STR

LDR

STR

LDR

STR

LDfi

STR

LDR

STR

LDR

STR

LDR

STR

LDR

STR'

RTS

BRK

BRK

BRK

LDX

LDfi
CMP

BEQ

JSR

I NX

BNE

RTS

BRK

BRK

BRK

LDX

LDR

CMP

BEQ

JSR

INX

BNE

RTS

BRK

BRK

BRK

LDX

LDR

CMP

BEQ

JSR

INX

$0R0B

$FB

$0R0C

$FC

*0R0B

$FD

$0R0E

$FE

$0R00

$D020

$0R01

$D021

$0R07

$D413

$0R02

$D405
$0R03

$D406

$0fl06
$D400

$0fi05

$D401

#$00

$0R26,X

#$04

$0C27

$FFD2

$0C1 fi

#$00

$0RC1,X

#$04

$0C3fl

$FFD2

$0C2D

#$00

$0B4E,X

#$04

$0C4D

$FFD2

0i:4B

0C4D

0C4E

0C4F

0C50

0C51

0C53

0C56

0C58

0C5fi

0C5D

0C5E
0C60

0C61

0C62

0C63
0C64

0C67

0C69

0C6B

0C6C

0C6D
0C6E

0C71

0C74

0C75

0C78
0C79

0C7B

0C7D
0C7F

0C31

0C82

0C34

0C36

0C33

0C3fi

0C3B

0C8E

0C90

0C91

0C92

0C93

0C94

0C96

0C99

0C9C

0C9D

0C9F

0CR1

0CR4

0CR7

0CRR

0CRD

D0

60

00

00

00

R2

BD

C9

F0

20

E8

D0

60

00

00

00

20

C9

D0

60

00

00

RE

3E

Cfl

3E

60

R2
R0

Bl
91

C8

C0

D0

E6

E.6

E3

EC

D0

60

00

00

00

m

20

99

C3

C9

D0

20

3C

RD

RE

R0

F3

00

7B

04

06

D2

F3

E4

38

F9

05

04

04

00

00

FB

FD

00

F7

FC

FE

0F

EB

00

CF

16

0D

F5

6E

0R

.93

09

FF

0B

FF

FF

0R

D4

D4

0fl

FF

0fi

0C

8fl

0fl

0fl

BNE

RTS

BRK

BRK

BRK

LDX

LDfi

CMP

BEQ

JSR

I NX

BNE

RTS

BRK

BRK

BRK

JSR

CMP

BNE

RTS

BRK

BRK
LDX

STX

DEX

STX

RTS

LDX

LDV

LDfl
STR

INV

CPV

BNE
INC

INC

I NX

CPX

BNE

RTS

BRK

BRK

BRK
LDV

JSR
STfl

INV

CMP

BNE

JSR

STV

LDfl

LDX

LDV

*0C40

#$00

$0B7B,X

#$04

$0C60

$FFD2

$0C53

$FFE4

#$88

$0C64

$0R05

$D404

$D404

#$00

#$00

<$FB>,V

C$FD>,V

#$00

$0C7D

$FC

$FE

$0R0F

$0C7B

#$00

$FFCF

$0R16,V

#$0D

$0C96

$0C6E

$0R0fl

$0R08

$0R09

#$FF

O
r

c

c
f)

C'
f •
L

c

c

c

c

c
r

c

c
r

C

c

€■

V

o

c

c
r

c

c
r

c

c

c

c

c

c

192

u
.
c
e
-
'
-
*

l
©
W

U
J

C
M

Q
^
C
O

C
D

P
i
F
*
P
I

•*-«
*
-
<
p
*

p
i
c
e
u
j
©
u
-
I
j
-
c
e
c
e
i
j
l
.

L
©
l
4
f
t
l
J
L
W
©
©
L
L

.
l
^
C
M
V
D
U
M

©
©
©
©
©

(

*
(
*
C
E
X
>
a
:
C
E
C
E
C
E
t
E
C
E
f
t
:
C
E
X
>
Q
£

C
O
:
_
_
_
_
.

C
O
P
)
P
I
P
K
O

P
t
h
-
P
I
t
-
P
I
C
O
P
)
P
t
P
)
C
O
H

C
E
£

£
£

C
D
C

»
-
>
J
-
J
-
J
^
^
J
C
O
-
J
C
O
-
J
»
-
>
-
J
-
J
J
»
-
>
Q
i
W
m
W
f

oh
-
U
-
C
E

I
L
.
C
E

C
E

U
.

C
E
C
E
.
L
L

Z
)

oD
C

c
o

a
i
Q
i
t
t
:
a
;
c
i
:
c
i
:
C
i
i
t
t
:
Q
:
t
t
:
c
c
:
c
o

c
o
c
o
c
o
c
o
t
o
t
o
c
o
c
o
t
o
c
o
c
o
h

©
©
©
©
©
©
©
©

.
©
©
©
©
©
©
©
©

J
C
h
U
I
*
U
J
4

r
^
c
o

cri
i
n

«jo
«jd

•

n
C
M
C
E
C
E
C
E
C
M
C
E
C
O
C
E
C
O
C
E
C
M
C
E
C
E
C
E
W
V

I
©
©
©
©
©
©
©
©
©

i
©

C
M
C
M
C
M
C
M
C
M
C
M
C
M
C
M

u
u
u
u

©
©
©
©
©
©
©
©
c
u
o
o
o
o
o
u
o

©
©
©
©
©
©
©
©
©
©
©
©
o
u
u
o
o
u

c
j
u
a

t
©
©
©
©
©
©
©
©
©
c

!
•
©

o
2R0M. DATA TABLE ^ s

8R88 SB 0B 11 F8 11 23 93 0F r,
0R83 03 08 00 00 80 08 40 20 ^'
0R10 00 60 00 00 00 00 00 00 f

0fll8 00 00 00 00 00 00 00 80 ^
0R20 00 00 00 00 00 00 33 05 C
0R28 20 20 20 20 20 20 fl4 R4 f
0fi30 R4 R4 R4 R4 R4 R4 R4 R4 ^
QR33 R4 fi4 R4 R4 R4 R4 R4 R4 f)
0R40 R4 R4 R4 R4 R4 R4 R4 R4 ■'
0R48 R4 R4 20 20 0D 20 20 20 t
0R50 20 20 20 74 3F 32 52 4F f
0R53 4D 55 4C 41 54 4F 52 20 *-
0R60 3E 28 43 23 IE 50 53 43 C
0R68 44 41 43 20 38 34 2D 56 r,
0R70 4E 05 R7 20 0D 20 20 2© V-
0R73 20 20 20 R3 R3 R3 R3 R3 C
0R80 R3 R3 R3 R3 R3 R3 R3 R3 ^
0R88 R3 R3 R3 R3 R3 R3 R3 R3 C '
0R30 R3 R3 R3 fl3 R3 fl3 R3 20 r
0R33 20 0D 20 20 20 20 R4 Fi4 <-
9RR0 R4 R4 R4 R4 R4 fi4 R4 R4 C

0RR8 R4 R4 R4 R4 R4 R4 R4 R4

0RB0 R4 R4 R4 R4 R4 R4 R4 R4 L
0RB8 R4 R4 R4 R4 R4 R4 20 0D r

0RC0 04 20 20 20 20 2fl 20 2R ^
0RC8 20 43 41 52 54 52 43 44 (j
0RD0 47 45 20 42 41 43 4B 55 r

0RB8 50 20 50 52 4F 47 52 41 t
8RE0 4D 20 2fl 20 2fl 20 20 0D f
8RE8 20 20 20 20 R3 R3 R3 R3 ^
0RF8 R3 R3 f\3 R3 R3 R3 R3 R3 ^
8RF8 R3 R3 R3 R3 R3 R3 R3 R3 f;
0B08 R3 R3 R3 R3 R3 R3 R3 R3 ::

3B98 R3 R3 R3 R3 20 20 20 11 C!
9B10 0D 20 20 20 29 20 23 31 /
9B13 23 20 43 4E 53 45 52 54 v
0B29 20 43 4F 50 53 2© 44 43 £
0B28 53 4B 20 43 4E 28 44 52 r

0B30 43 56 45 20 28 11 9D 20 t-
9B38 20 20 20 20 28 32 23 28 f
0B4Q 58 52 45 53 53 28 46 37 x~
3B48 20 28 11 8D 04 84 28 28 O
8B50 20 20 28 28 33 23 28 43 >
8B58 4E 50 55 54 28 58 52 4F ^
0B68 47 52 41 43) 28 4E 41 4D f

0B68 45 28 28 11 8D 20 20 20):
8B70 20 28 28 34 23 20 04 84 t '
8B78 04 04 04 11 20 28 28 28 r,

8B88 20 23 35 23 28 4F 58 45 ^ }
8B88 52 41 54 43 4F 4E 28 43 f
8B30 4F 4D 58 4C 45 54 45 20 r

8B38 52 45 4D 4F 56 45 28 20 L
8BR8 0D 20 28 28 28 20 28 29 r

8BR8 28 20 44 43 53 4B 28 46 v~
0BB0 52 4F 4D 28 44 52 43 56 C
8EB8 45 11 28 28 8D 28 28 28 r

8BC8 28 28 28 36 23 28 58 52 ^;
0BC3 45 53 53 20 46 37 28 8D f

0EB8 11 11 84 84 84 84 RD 0B

194 q

8BB6

8BB9

8BBB

9BBE

8BE8

9BE3

0BE5

0BE3

QBER

QBEB

9BF0

0BF3

0BF6
0BF3

QBFC

0EFF

0C02

0C05

0C08

0C0B

9C8E
0C11

0C14
0C15

9C16

0C17

8C13

ecifl
8C1B
9C1F

0C21
8C24

8C25

8C27

0C28

0C23

0C2R
9C2B

3C2B

8C39

0C32

8C34

9C37

9C38

9C3R

9C3B
9C3C

9C3B

0C3E

8C40

9C43

9C45

0C47
0C4fl

2R0MULAT0R -

flB

35

flB

35

flB

85

flB

85

flB

3B

flB

3D

flB

SB

flB

SB

flB
8D

flB

8D

flB

SB
69

09

90

00

fl2

BB

C9

F9

29

E3

B9

69

99

99

99

fl2

BB

C9

F0

29

E8

B9

69

09

09

99

fl2
BB

C3

F9

29

E8

9B
FB

0C

FC

0B
FB

0E

FE

00

28

01

21

07

13

02

05

03

06

06

98

05

01

98

26

94

96

B2

F3

99

Cl

94

96

D2

F3

08

4E

94

96

B2

0fl

0fl

9fl

0fl

B8

0fl

D0

0fl

B4

0fl

D4

0fl

B4

0fl

D4

0fl

B4

9fl

FF

0fl

FF

0B

FF

LBfl

STfl

LBfl

STfl

LBfl

STfl

LBfl

STfl

LBfl

STfl

LBfl

STfl

LBfl

STfl

LBfl

STfl

LBfl

STfl

LBfl

STfl

LBfl
STfl

RTS
BRK
BRK
BRK

LDX

LBfl

CMP

BEQ

JSR
INX

BNE
RTS

BRK

BRK

BRK

LDX

LDfl

CMP

BEQ

JSR

I NX
BNE

RTS

BRK

BRK

BRK

LDX

LDfl
CMP

BEQ

JSR
I NX

$8fl8B

$FB

$0fl0C

$FC

$0fl0D

$FD

$0fl0E

$FE

$8fl88

$B020

$0fi81

$D021
$0fl07

$D413

$8fl82

$D485
$9fl83

$D486

$8fl06
$H400

$0fl85

$D481

#$99

$0fl26,X

#$94

$9C27

$FFD2

$9Clfl

#$98

$0flCl/X

#$94

$9C3fl

$FFD2

$9C2D

#$99

$8B4E,X
#$94

$9C4D

$FFD2

9C4B

8C4D

8C4E

9C4F

8C58
8C51

0C53

0C56

0C58

0C5R

0C5D

0C5E

0C60

0C61

0C62

0C63

0C64

0C67

0C69

0C6B

0C6C

0C6D

0C6E

0C71

0C74

0C75

0C73

0C79

0C7B

0C7D

0C7F

0C31

0C32

0C34

0C36

0CS3

0C8fl

0C8B

8C8E

0C30

0C31

0C92

0C33

0C34

0C36

0C33

8.C3C

8C9D
0C3F

9Cfll

0Cfl4

0CR7
0CRR

0CRC

D8

68

88

88

88

fl2

BD

C9

F8

28

E8

D8

68

88'

80

99

28

C3

D8

68

88

08

flE

3E

Cfl

8E

68

fl2

fl8

Bl

91

C8
C8

D8

E6

E6

E8

EC

D8

68

88

88

88

fl9

29

33

C8

C3

D8

3C

flD

flE

fl8

28

F3

88

7B

04

06

D2

F3

E4

83

F9

85

04

04

00

00

FB

FB

09

F7

FC

FE

©F

EB

08

CF

16

8D

F5

9fl

93

89

FF

Bfl

8B

FF

FF

0fl

D4

D4

0fl

FF

8fl

8fl

8fl

8R

FF

BNE

RTS

BRK

BRK

BRK

LDX

LDfl

CMP

BEQ

JSR
I NX

BNE

RTS
BRK

BRK

BRK

JSR

CMP

BNE

RTS

BRK

BRK

LDX
3TX

DEX

STX

RTS

LDX

LDV

LDfl

STfl

INV

CPV

BNE

INC

INC

I NX

CPX

BNE

RTS

BRK

BRK

BRK

LDV

JSR

3TR

INV

CMP

BNE
STV

LDfl

LDX

LDV

JSR

$8C48

#$80

$8B7B,X

#$04

$0C60

$FFD2

$0C53

$FFE4

#$88

$0C64

$0R05

$D484

$D404

#$88

#$88

<$FB),V

<$FD),V

#$88

$8C7D

$FC

$FE

$8fl8F

$8C7B

#$88

$FFCF

$0fll6,V

#$8D

$8C36

$9fl9fl

$8fl88

$9fl93

#$FF

$FFBfl

195

8CRF

8CB2
0CB4

0CB6

0CB9
0CBC

0CBE

0CC1

0CC3

9CC5

0CCS

0CCB

0CCE

0CCF

0CD2

9CD5

0CH7

0CD9

0CDfl

0CDB
0CDE

0CE1

0CE4

0CE7

QCEfl
0CEB

0CF0

0CF3

0CF6

0CF3

2R0MULAT0R -

flD
fi2

RQ

20

FID

85

FIB

85

R3

flE

flC

20

60

20

20

C9

D0

60

00

20

20

20

20
20

20

20

20

20

20

60

0fl
16

BD

0B

FD

0E

FE

FD

10

11

D8

6E

E4

88

F6

D6

18

2B

S4

SE

79

3E

34

■Si
CF

0fl

FF

9fl

0fl

0fl

0fl
FF

0C

FF

SB

0C

0C

0C

0C

0C

0C

0C

0C

0C

LDfl
LDX,

LDV

JSR

LDfl

STfl

LDfl

STfl

LDfi

LDX

LDV

JSR

RTS
JSR

JSR

CMP

BNE
RTS

BRK
JSR

JSR

JSR

JSR

JSR

JSR

JSR

JSR

JSR

JSR

RTS

-

*0R0fl

mis

#$0fl

*FFBL

*0R0D

$FD

$9R0E

$FE

#*FD
*0fll8
$9R11

$FFD8

$0C6E

*FFE4
#$88

*9CCF

*0BD6
$0C18

#0C2B
$0C64

$0C6E

$0C73

S0C3E

$0C94

$0C51

$0CCF

196

APPENDIX A

HEX-CHR$ S SCREEN CODES CHART

CBM VALUE

HEX CHR$

00

01

02

03

04

05

06

07

08

09

0A

OB

OC

OD

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

t

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

CHR DISPLAYED

MODE-UPR MODE-LWR

WHT

SH/C OFF

SH/C ON

RET

LWR/CS ON

C/DN

RVS/ON

CLR/HM

INST/DEL

RED

C/RT

GRN

BLU

SPACE

!

tt

#

$

%

S
t

(

)

+

-

/

0

1

2

!

ri

#

$

%

5

'

(

)

+

/

0

1

2

SCREEN CODE VALUE

HEX SCRN DEC SCRN

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

197

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

.87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

3

4

5

6

7

8

9

:

5

<

>

6

A

B

C

D

E

F

6

H

I

J

K

L

M

N

0

P

Q

R

5 .

T

U

V

w

X

Y

z

[

£
]

s/*

S/A

S/B

S/C

S/D

S/E

S/F

S/G

S/H

S/I

S/J

S/K

S/L

S/M

S/N

A

B

C

D

E

F

G

H

I

J

K

L

M

N

1)98

1E

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

00

01

02

03

04

05

06

07

08

09

0A

OB

OC

OD

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

51

52

53

54

55

56

57

58

59

60

61

62

63

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

BF

70

71

72
73

74

75

76

77

78

73

7A

7B

7C

7D

7E

7F

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

AA

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

S/0

S/P

S/Q

5/R

5/S

S/T

5/U

S/V

s/w

5/X

S/Y

s/z

s/+

c/-

s/-

Pi

C/*

F1

f3

f5

?7

f2

F4

f6

f8

5H/RET

UPR CS ON

BLK

CR/UP

RVS ON

CLR/HM

INST/DEL

PUR

CR/LFT

YEL

CYN

SPC

C/K

C/I

C/T

C/B

C/6

C/+

C/M

C/£

S/£ .

C/N

0

P

Q

R

S

T

U

V

w

X

Y

z

Lg CKRBD

Diag Lns

Diag Lns

1??

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F.

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

60

61

62

63

64

65

66

67

68

69

6A

96

97

98

99

100

101

102

103

104

105

106

AB

AC

AD

AE

AF

BO

B1

82

B3

B4

B5

B6

B7

BS

B9

BA

BB

BC

BO

BE

BF

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

C/Q

C/D

c/z

C/S

C/P

C/A

C/-E

C/R

C/W

C/H

C/J

C/L

C/Y

c/g

c/o

s/@

C/F

c/c

c/x

c/v

C/B

CK MARK

6B

6C

60

6E

6F

70

71

72

73

74

75

J76

77

78

79

7A

7B

7C

7D

7E

7F

J

107

10B.

109

110

111

112

113

114

115

116

117

148

119

120

121

122

123

124

125

126

127

NOTE: This table shows which characters will be displayed for

any value of CBM ASCII code. The two left columns give the

values in hex and decimal (dec used for CHR$). The 2nd and

3rd columns show what will be displayed or what control mode

affected, depending whether the computer is in the UPPER CASE

MODE (column 2), or LOWER CASE MODE (column 3). The last two

columns give the hex and decimal values used for the SCREEN

DISPLAY CODES. The decimal value is used to POKE directly to

screen locations, while the hex is used if Storing to screen

locations from a machine routine.. Note that S/ followed by a

letter means the SHIFTED letter which is the right hand

graphic symbol on your key. A C/ means the COMMODORE KEY

which produces the left tiand graphic symbol on your keyboard.

200

APPENDIX B

MONITOR USE WITH DISKPICKER

Other monitors can be substituted For M0NIT0R$8000

in Diskpicker by changing line 10 with alternate

monitor's name, and by changing the SYS to the

monitor1s entry point in line 310 to that of the

monitor you are using. Note that the alternate monitor

should reside between $8000-$BFFF.

All Diskpicker functions except #2 - Monitor Mode

can be used without a Monitor. This gives you the

ability to load and execute error utilities etc. The

procedure for this is:

1. Delete line 10. Change line 20 to read: IFA=O THEN A=1

:LOAD "ZMACH",8,1

2. Press RUN/STOP - RESTORE then load "the desired

utility program",8,1 then type NEW [RETURN]

3. SYS49184 [RETURN] Then follow normal Diskpicker

procedure section for error writing routine.

HESMON- cartridge can be used in lieu of

M0NIT0R$8000. However, you will lose the ability to

easily recover from lockup conditions which normally

require reset and ZMACH restore features. Use the

following changes and procedure:

1. DELETE DISKPICKER LINE 10 and 20. Change line 35 to

read: RUN40

2. Change line 310 to read SYS 364G6

3. TO USE- Plug in HESMON, turn computer ON, EXIT HESMON

with "XC" command.

4. Load "DISKPICKER",8 and modify as above then RUN.

5. Use RESTORE key to enter HESMON instead of Menu item

2! - To return from HESMON, type "X" command then RUN.

SUPERM0NB4.V1 -Is part of the Commodore 64

Software Bonus Pack and seems to be readily available

in the public domain. It can be used in place of

Monitor$8000. Modify Diskpicker as fallows:

1. Load "SUPERM0NB4.V1",8 then RUN. Monitor prompt screen

should appear. Use "X" command to EXIT to basic. Insert

PSIPACK disk and LOAD "DISKPICKER",8

2. Delete line 10. Change line 20 IF A=0 THEN

A=1:L0AD"ZMACH",8,1

3. Change line 310 to read: P0KE53281,3 :

SYS(PEEKC43)+256*PEEKC44)+127)

4. RUN Diskpicker as per procedure sections.

5. If you save the MODIFIED DISKPICKER, you need follow

only step 1 in order to RUN Diskpicker with

SUPERMON!!

6. If you are unable to locate SUPERMON or the COMMODORE

BONUS PACK, we will supply a copy of SUPERMON for a

handling fee of $5.00.

If your M0NIT0R$8000 will not save itself, change

hex locations $8BEC through $8BF7 to EA (These are

NOPs). M0NIT0R$8000 can be easily saved using

RELOCATE/LOADER procedures.

201

APPENDIX C

AUTO-BOOTERS

Following are two samples of autorun boaters. One

is for booting machine routines and the other for

basic. We have chosen 02A7-030C for the booter

routines. Use an editor to assemble them in these

locations. Remember that when you load the routine from

the tape or disk it will call the program identified

by the NAME bytes. To set the names and messages you

wish to use, look up the HEX CBM ASCII value for the

letter and control functions in appendix A.

The first part of the routine sends a name to the

screen to indicate that the booter is operating. The

routine for machine has more available space for this

message. The basic routine simply sends the name that

you are calling with the loader.

Next the standard Commodore format for setting

logical file, device number, name, and loading the RAM

is used. Note that the device number is listed as $08

(disk) tape is $01.

Finally, in the machine booter, it jumps to the

starting address of the machine routine that was

loaded. The basic routine sets necessary basic pointers

and restores 030S-030B vectors before it runs.

It is a good idea to use the no-break Poke 808,255

in your basic program. You should play around with some

simple test routines before you commit the loader to

service.

To set the names and messages you wish to use,

look up the HEX CBM ASCII value for the letter and

control functions in appendix A.

202

APPENDIX C

BASIC AUTOBOOTER

, 02A7

, 02A9

, 02AC

, 02AF

, 02B0

, 02B2

, 02B4

, 02B6

, 02B8

, 02BA

, 02BD

, 02BF

, 02C1

, 02C3

, 02C6

, 02C8

, 02CA

, 02CD

, 02CF

, 02D1

, 02D3

, 02D6

, 02D9

, 02DA

, 02DC

, 02DE

, 02E0

, 02E2

, 02E4

, 02E7

, 02EA

, 02EB

, 02EC

, 02ED

, 02EF

, 02F1

, 02F2

, 02F4

A2

BD

20

E8

EO

DO

A9

A2

AO

20

A9

A2

AO

20

A9

85

20

86

84

A2

BD

9D

CA

DO

A9

85

A9

85

20

4C

8B

E3

83

A4

A5

A7

E4

86

00

F6

D2

04

F5

10

08

01

BA

04

F6

02

BD

00

9D

D5

2D

2E

OC

E9

FF

F7

00

7A

08

7B

60

AE

7C

1A

A7

AE

HEX

02

FF

FF

FF

FF

02

02

A6

A7

LDX

LDA

JSR

INX

CPX

BNE

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

LDA

STA

JSR

STX

STY

LDX

LDA

STA

DEX

BNE

LDA

STA

LDA

STA

JSR

JMP

DATA

#$00

$02F6,X

$FFD2

#$04

$02A9 _

#$10

#$08

#$01

$FFBA

#$04

#$F6-

#$02 —

$FFBD

#$00

$9D

$FFD5

$2D

$2E ,

#$0C '

$02E9,X

$02FF,X

$02D3

#$00

$7A

#$08

$7B

$A660

$A7AE -

/ GET NAME AT
I 02F6
\ SEND TO
3 SCREEN

■)

SET
LFS

J

1 NAME AT ■
02 F6)

] LOAD
* RAM

)
i

RESET

VEC

► fc. A ■

BASIC

PRG-

,:02EA 8B E3 83 A4 7C A5 1A A7

,:02F2 E4 A7 86 AE 54 45 53 54

,:02FA 02 86 AE 00 00 00 36 34

,:O3O2 A7 02 A7 02 A7 02 A7 02

,:030A A7 02 00 00 00 00 4C 48

02EA.C.$ %.• 8B E3 83 A4 7C A5 1A A7

02F2DI..TEST E4 A7 86 AE 54 45 53 54

02FA 64 02 86 AE 00 00 00 36 34

0302'.•.■.'. A7 02 A7 02 A7 02 A7 02

030A1 LH A7 02 00 00 00 00 4C 48

203

APPENDIX C cont

MACHINE AUTOBOOTER

, 02A7

, 02A9

r 02AC

, 02AF

, 02B0

, 02B2

, 02B4

, 02B6

, 02B8

, 02BA

, 02BD

, O2BF

, 02C1

, 02C3

, 02C6

, 02C8

, 02CA

, 02CD

:02D0

:02D8

:02E0

:02E8

:02F0

:02F8

:0300

:O3O8

A2 00

BD DO

20 D2

E8

EO IE

DO F5

A9 10

A2 08

AO 01

20 BA

A9 04

A2 FO

AO 02

20 BD

A9 00

85 9D

20 D5

4C 00

MSG

LDX

02 LDA

FF JSR

INX

CPX

BNE

LDA

LDX

LDY

FF JSR

LDA

LDX

LDY

FF JSR

LDA

STA

FF JSR

45 JMP

& NWE
93 05 20 20 50

41 43 20 IE 41

42 4F 4F 54 20

20 20 20 20 20

4D 41 43 48 00

00 00 00 00 00

36 34 A7 02 A7

A7 02 A7 02 00

#$00

$02D0,

$FFD2

#$1E

$02A9

#$10

#$08

#$01 -

$FFBA

#$04

#$F0

#$02

$FFBD

#$00

$9D

$FFD5

$4500

HEX

53 49

55 54

9F 20

20 20

00 00

00 00

02 A7

00 00

X

44

02

20

20

00

00

02

00

/send
\SCREEN
MSG

LFS

NME

1 LOAD
j MACH. PGM

- EX MACH.

HEX DATA

ASCII

1 02D0.C PSID
' 02D8AC .AUT,

1 02E0BOOT .

1 02E8

1 02F0MACH

• 02F8

' 0300641.1.1.

1 03081.1

SHOWING ASCII CHRs

93

41

42

20

4D

00

36

A7

05

43

4F

20

41

00

34

02

20

20

4F

20

43

00

A7

A7

20

IE

54

20

48

00

02

02

50

41

20

20

00

00

A7

00

53

55

9F

20

00

00

02

00

49

54

20

20

00

00

A7

00

44

02

20

20

00

00

02

00

204

APPENDIX D

SECTOR EXPLANATIONS

The following information shows typical directory and

data sectors. The important bytes have been numbered and

the list identifies the meaning of the numbered bytes.

The first part is for the directory and the second part

for program data sectors.

♦*Tells how to undelete a file. yf

I 2 3 4 5 6 7 8 ? 10 I! [2-*r—BYTE ^
12 34 82 i'l e@ 31 50 53 45 4D 41 49 YJR |6

S€ 3 S S 3 3 S S 3 Sfl^*«-i~—, -—
6i 32 56 53 43 4B 41 43 4E R6 R8 R8 "iauECt
fl© R6 ft© R0 fl0 00 00 00 00 00 00 00 -, M „ ^ n>lufrv n>.™r.
0Pk 00 02 00 fi0 00 82 13 00 53 55 50 2-Next sector-04HEX =O4DEC.

45 52 44 43 52 45 43 54 4F 52 53 R0 ^ T
RS ftft 00 ft© 00 00 00 00 00 00 08 003-TyPe of file-B2HEX
68 00 82 13 QD 44 43 53 4E 2D 45 44 nn-nELETED
43 54 4F 52 fl@ R© fl© R© R0 00 00 00 81=SEQUENTIAL
6fi 00 -60 00 06 80 07 00 00 00 82 11 S2=PR06RAM
13 52 45 4C 4F 43 41 54 45 2F 4C 4F 84=RELATIVE

4i 44 45 52 R© 00 6© 00 00 00 00 00
Mfi fift R2 «R 0R &6 82 1© 02 44 43 534-Disk File starting track-

4E 50 43 43 4B 45 52 R0 R0 R0 R0 R0 11HEX =17DEC

R6 00 98 88 88 88 88 88 88 88 11 88
80 80 82 13 83 54 2F 53 20 41 4E 41 5. Disk File starting sector-

4C 53 5fi 45 52 R8 R8 R8 R0 08 88 88 oohex =oodec.

86 86 08 00 00 00 08 00 00 00 82 11
82 46 41 53 54 42 41 43 4E R8 R8 R8B.File NAME-1

flQ R0 fl© R8 R8 88 88 88 88 80 88 80
86 88 67 80 7. -p

TRRCK 18 SECTOR 1
12 67 82 11 0F 31 44 55 58 44 41 43 8. -S

R0 fi6 fi8 R0 R8 R8 R0 R8 R8 88 88 88
86 88 88 88 88 88 11 88 88 68 82 10 9. -I

87 32 44 55 50 44 41 43 R8 R8 R8 R8

fie Fie fie fie fie 00 00 00 00 00 00 00 10. -m
66 00 ii 00 00 00 82 14 02 41 44 4D

41 43 48 R0 R0 fi8 R8 R8 R8 R8 R8 R8 11. -A
fi6 68 66 06 00 06 00 00 00 08 01 00
86 66 82 14 83 4D 41 43 48 52 45 4Ci2, -I

4F fie fie fie fie Re r© r© r© 00 00 00
88 88 86 88 86 68 81 88 86 88 82 14 13. -N
64 33 52 4F 4D 55 4C 41 54 4F 52 R8

m R6 fi6 fi8 fie 00 00 00 80 00 00 00 14. Ending characters -A0
68 86 84 86 88 88 82 14 06 32 52 4F

4Ii 55 4C 41 54 4F 52 fi8 R0 R8 R8 R815. Next Entry file type-82HEX
R0 00 66 00 00 00 00 0© 00 08 04 0©
68 86 82 13 88 5fi 4D 41 43 48 fl8 R81B Next sector
Re fie Re fie fie fie m m r© 00 00 00 Data cont:inues as above to
88 60 88 86 88 8* 81 w M@ W8 y2 14 the end of directory.
63 41 4E 41 4C 53 4D 41 43 48 fl© fl© y .

©R0 R6 R0 fi© fi6 66 ©0 00 0© ©0 0© 0© *File name data is the he

** UNDELETE A FILE

You can undelete a file only if the data has not been

written over. Any time something has been saved on a disk

with a deleted file, some of the data has likely been

written over. To undelete a file, change the file type

entry back to its original number. ie:0n a program file

this byte should be changed to 82.

205

APPENDIX D cont

1

i'i
39

34

39

36

2C

34

39

31

32

66

5fl

33

29

36

34

39

3ft

RF

31

3fl

22

2
e'fl
31

33

35

36

31

39

31

3fi

35

85

B2

39

3fi

2C

39

31

8B

5ft

35

3E

55

TRRCK

:00|

32
6R

69

54

43

2C
22

91

38

B2

2C

98

66

86

00

06

66

00

00

86

06

!9E
35
00

19

22

2E

41

11

91

30

31

53

03

66

66

60

00

00

00

00

06

68

TRftCK

3

61

3fi

38

31

23

38

31

35

22

3fi

08

38

3ft

31

35

31

35

C2

B2

2C

34

32 |
17

22
3fl

3E

00

SB

22

24

45

31

22

R7

2C

1C

66

66

06

06

66

00

06

86

00

17

4
6*8
58

34

36

3fl

06

35

37

32
9E

85

00

58
58

08

35

33

28

31

22

33

5
16

B2

34

3fi

31

76

36

23

3B

34

00

RS

B2

89

BC
38

29
34

R7

42

37

gfiL-8

6
68

36

00

58

58

08

23
3fl

36

33

3E
68

C2
37

68

23

3fi

39
36

2B

31

1 SECTOR

32
5ft
34

93

28

53

2C

52

31

fl7

3F

41

06

66

00

00

00

06

00

66

66

60

3B
B2

33

22

20

22

42

52

31

8E
34

24

3E

66

66

66

88

66

66

66

06

36
31
38

65

22

9B

24

2E

22

00

2C

2C

34

86

00
08

06

00

00

00

00

SECTOR

7

01

68

3B

B2

83
84

3ft

38

SB

36

34

06

28

2C

07

3R

9E

31

06

50

38

0

3B
3fl
37

11

3R

26

80

20

3R

8B
34

42

39

60

06

00

00

60

00

00

06

16

00
IB

08

C2
34

00

53
31

54

33

33

00

34

36

66

53
34

37
11

3ft

3fl

54
89
32

54

99

22
6B

22

8B

09

3fl

24

33
66

66

00

00

00
00

00

00

9E

08

03

28

2C
54

B2

35

3B

31
38

9E

33

2C

54

B2

39

33

09

22

98

3B
36
3ft

52
22

3ft

09

41

41

IB

98

3ft

36

86

66

08

00

00

00

08
00

34

02

06

34

33

B2

C2
2C

53

3ft

35

34

31
32

B2

C2

37

29

08

32

31

53
00

80

4B
11

84

1ft

24

24

08

34

ft6

33

80
00

00

00
00

00

08
00

33

00

9E

39

2C

C2

28

22

3ft
89

38

39

36

2C

C2

28

34

B2

00

3B

35

3ft
IE
00

2E
53

31

00

22
B2

BB

2C

34

3R
00

00
00

00

00
00

00

00

38

9E

34

31

35

28

34

55

BB
33

3R

39

31

31

28

34

35

31
98

30

2C

BB
09

4fl

22

45

35

99

91

22

50

54

08

1§E
W
00

00
00

08

60

00

00

The following information

explains how program sectors

are configured.

LNext track -11HEX =17DEC

2. Next sector -OAHEX= 1ODEC

3.Load TO address low byte=01

4.Load TO address high byte=08

♦Thus load address =$0801 or

2049 DECIMAL.

5.Program DATA [in HEX)

6. " "

7.Continues to end Csee next

sector and explanation#9

and #10)

8.End byte of THIS sector.

Cpart of data)

9.Indicates no next sector if

00, otherwise same as above

except 4 S 5 would be data

not addresses.

10.Last program byte.

206

APPENDIX E

RESET SWITCH

MOMENTARY

CONTACT N.O.

TACK SOLDER WIRES HERE

iilliilii

OUTPUT PORT TOP VIEW

—INSTALLATION INSTRUCTIONS —

A Reset switch is useful For breaking out of

lockup conditions without erasing RAM data.

Tack solder two Fine wires to OUTPUT PORT

pins 1 and 3. To keep solder From Flowing

over the entire edge connector pad, you should

put a piece of masking tape over the pads,

exposing only the top end For soldering. The

switch can be mounted at any convenient

location where it is not likely to be

accidentally pushed. IF the location you use

is not close to the port, loop the wires

through the Ferrite donut to preserve EMI

shielding properties.

207

APPENDIX F

GCR INFORMATION

The normal binary information sent From the

computer to the disk is the binary equivalent of the

CBM ASCII. However when the information is to be stored

on a diskette, the DOS converts the CBM ASCII to

another format called Group Coded Recording (GCR). In

this process, the standard eight bit code has two extra

bits added to it. Thus the GCR equivalent of the ASCII

is a 10 bit number. When you load this GCR data into

RAM and view it, you are only seeing eight of the ten

bits at a time, so it is more difficult to analyze the

HEX GCR code. The other effect this has is that a 256

byte block actually takes about 320 8-bit locations on

the disk.

Following we have listed a GHR Sector Map, an

example printout of a GCR Sector Image, and a list

of the Disk drive memory locations that hold GCR header

images.

IMPORTANT DISK MEMORY LOCATIONS

HEADER IMAGES

LOC.

$0016

$0017

$0018

$0019

$001A

$0024

$0025

$0026

$0027

$0028

$0029

$002A

$002B

BINARY DATA

Disk ID HI

Disk ID LO

Track

Sector

Checksum

GCR DATA

Header block ID (HBID)

Checksum

Sector

Track

ID1

ID2

208

APPENDIX F cont

GCR BYTE MAP FOR A SECTOR

BEGIN SECTOR

FF

FF

FF

52

XX

XX

XX

XX

XX

XX

XX

55

55

55

55

55

55

55

55

55

55

55

FF

FF

FF

FF

55

XX

XX

C5) Sync Bytes

Header block ID byte

(7) Header bytes

Checksum

Sector

Track

ID1

ID2

C113 Gap bytes
i

\

(53 Sync Bytes

Data block ID Byte

C324) Data block bytes

DATA

Checksum

Of

Of

55

55

55

55

55

55

55

(7) Gap bytes

Next Sector starts here.

♦Note: The end

clear bytes.

of track Gap contains several "AA" GCR

209

6400

6403

6410

52J6E
55 55

55 55

6413 32 5fl

6420 97 75

6423 D2 B4
6430 29 4R

6438 94 R5

6440 32 5fi

6443 97 75

6450 H2 B4

6458 29 4fl

6460 94 H5

6468 32 5C
6470 F7 C9

6478 7B 9D

6480 29 4R

6438 94 R5

6490 32 5C

6498 B9 75

64R0 7C B4

64R8 29 4fl

64B0 94 R5

64B8 32 5R

64C0 57 4D

64C8 75 5C

64D0 29 4R

64D8 94 fl5

64E0 32 5R

64E8 B7 R9

64F0 D2 B4

64F8 29 4R

6500 94 R5

6508 32 5C

6510 R7 2D

bSlS 73 DF

6520 29 4fl

6528 94 R5

6530 32 5R

6538 E7 49

6540 D2 B4

6548 29 4fl

6550 94 R5

6558 4C R7

6560 |55 55
b5«-.y 6F ,-'5

65r'0

6578

55 55

55 551
6580 52 D4

6588 2D 4B

6590 D4 B5

6598 4B 52

65R0 B5 2B

65RS 52 B4

65B0 2JJ 4B

65B8 D4 B5

65C0 4B 52

65C8 B5 2B

52 H4

E5

55r

2B

55

72

bb

25ff7Fll55l
D4

CB

RD

52

29

B4

CB

m

52

29

B4

CE
57

52
29

D5

CF

RB

52

29

D7

CB

B7

52

29

95

D9
RB

52

29

D5
BE

2B

52

29

B5

CB

RB

52

29

155

55

49

55

R9

76

2B

94

52

B9

7b

2B

94

52

R7

76

C9

94

49

B7

73

2B

94

57

37

7B

39

94

52

27

74

2B

94

6B

97

72

2B

94

49

27

74

2B

94

57

55

55

55

£O155J
B5

52

2B

B4

4B

B5
•-•c-

2B

B4

4B

B5

2D

B4

4B

B5
52

2D

B4

4B

E5

52

2D

RB

5B

4fl

R5

52

C9

5D

4R

R5

52

CB

5F

F9

R5

52

39

9B

4R

R5

52

C9

9C

CF

R5

52

39

BB

4fl

R5

52

BR

DC
4R

R5

52

59

BD

4R

R5

52

55

55

yH

55

DD

4B

B5

52

2B

B4

4B

B5

52

2B

B4

4B

APPENDIX

6CR IMAGE

9R

D7

Efl

ED

D2

29

94

ER

ED

D2

29

94

EF

27

D2

29

94

D9

97

D2

29

94

CF

F9

7C

29

94

D9

B7

D2

29

94

55

D7

D2

29

94

CB

BD

D2

29

97

55

55T
DF

55

B5

52

2D

D4

4B

B5

52

2D

D4

4B

B5

52

DF

fiS

25

7C

2B

B4

4fl

R5

7C

2B

B4

4fl

R5

7R

3D

B4

4R

R5

7C

B9

B4

4R

R5

73

55

B4

4R

R5

7C

3D

B4

4fl

R5

7C

E5

B4

4fl

R5

7C

2B

B4

4R

D5

55

|FF|
65
55
2D

D4

4B

B5
52

2D

D4

4B

B5

52

2D

D4

65
fSf.

39

DD

4R

R5

52

29

DD
4fl

R5

52

29

9C

D3

R5

52

29

DD

D5

R5

52

29

5D

CD

R5

52

29

DD

F2

R5

52

29

E4

FR

R5

52

29

DE*

4R

R5

52

29

55

I5?l
^S
55"
4B

B5

52

2D

D4

4B

B5

52

2B

B4

4B

B5

F cont

EXAMPLE

HEADER |

HEADER GAP C55)

SYNC (FF or 7F)

DATA

DATA

DATA GAP

FF=SYNC 52=HDR BLOCK

GAP

FORMATTED ONLY

55=Data

block ID

ID

C

c

c

c

C

C

O:

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c>

c

c

210

APPENDIX G

PRICE LIST

884-1284

C-B4PR0DUCTS ********

PART#

SPH-64

PPK-1

SPH-B4-D

RMA-2

RS-2

SC-1

TK-1

CS-1

SPH-20

PT-1

RMK-1

PA-1

SHIRT

MON-1

DESCRIPTION

Software Protection Handbook For C-64

PSIPACK disk of SPH-B4 programs. CInstructions

SPHB4 only)

SPH-64 book and PPK-1 disk combination.

Romulator for C-64 (requires 8K or 16K Vic

compatible RAM expander)

16KRAM switch, (see text) (kit)

Super Clone Plug kit. (VIC S 64)

Tapeworm Kit. All parts, PC S inst.(VIC S 64)

Reset switch Kit. (VIC S 64)

******** VIC 5 Misc PRODUCTS ********

Software Protection Handbook for the VIC

Pirate's Tape of programs in SPH-20

Romulator, VIC version (kit)

Protection Arsenal for VIC 20. Pirates Tape,

Tapeworm Kit, Vic Romulator, Super Clone kit.

"Software Pirates" T-Shirt White Skull and

Crossbones on jet-black Shirt. (S-M-L)

"SUPERMON" Disk Can be used in place of

Monitor$8000. See ADDendix B.

♦Shipping— add 10% to order total. ($5.00

maximum)

♦Overseas Airmail— add $6.00 Orders including

SPH-64 or many items, add $10.00

♦Canada— allow for current exchange rate or

obtain money order in US dollars.

** If not available at your local dealer, you r

order directly from:

PSIDAC Products Div.

7326 N. Atlantic

Portland, OR 97217

in

nay

PRICE(US)

$19.95

$16.95

$29.95

$39.95

$9.95

$9.95

$19.95

$6.95

$9.95

$9.95

$19.95

$49.95

$9.95

$5.00

Prices subject to change without notice.

211

APPENDIX H

INTERRUPTS

At roughly 1/60 second intervals, the C-64 takes a

"time out" from the user program to do some of its own

internal housekeeping. This is the "hardware interrupt"

cycle which is a normal part of computer systems. Since

it is automatic by nature, the user need not worry

about it For normal purposes. The user CAN take

advantage of it for his own routines. The limitation is

that the routines should be short and in machine

language.

A control zone vector at $0314 and $0315 holds the

address that tells where the routines to be executed

during the interrupt are. This value is normally $EA31.

You can write a routine wherever convenient and change

the value at $0314 and $0315 to point to your new

routine. Remember that the 64 still needs to do its

own routines; so at the END of your routine you must

have a JMP $EA31 so that the normal housekeeping will

get done.

LIMITED WARRANTY

The PSIPACK diskette is guaranteed only to be free

of defects in material and to load on a Commodore 64

computer from a Commodore 1541 disk drive.

PERIOD: This coverage extends for 30 days from the

date of purchase.

LIMITATIONS: No guarantee can be made concerning

its application. Changes made by Commodore to the Disk

Operating System ROM may defeat or invalidate functions

of the programs we have provided. Neither PSIDAC nor

any of its authorized distributors may assume any

liability for incidental or consequential damages which

occur through use of this product or to damages caused

by misuse or abuse.

REMEDY: PSIDAC w:.ll replace a diskette only if it

is found to be defective in materials, workmanship, or

recording and only if returned within the 30 day

warranty period. PSIDAC will not replace diskettes

which will not load due to misaligned heads on the

users equipment.

212

THIRD EDITION ADDITIONS

Tho following procedures work with Diskpicker to

accomplish additional error writing capabilitios.

CREATE ERROR #27

Places error 27 on all sectors of desired track.

1. Load "ICON HDR",08 through monitor mode of Diskpicker.

2. Load "WRITE HDR",08 through monitor mode. Then G C020

3. Put object diskette in drive,

4. Select 6 from main menu and enter track # and sector #

desired to be errored. *If sector desired is in doubt, use

sector #1

5. Select-3 from main menu.

Start Addr 0300

End Addr 03IF

Buff Addr 5300

6. Select 4 from main menu. Entry addr 0300.

7. Select 3 from main menu.

Start Addr 0300

End Addr 036F

Buff Addr 3300

8. Select 5 from main menu Job choice= 224. For execute

start addr, select 1 =(0300)

9. For "Multi Sector Y/N", select Y.

10. For IIDR#1, use track* to be errored.

TO CHECK ERROR 27

1. Select 5 from main menu. Job choice =128.

2. For "Multi Sector Y/N", select Y.

3. For HDR#1 use track # just errored in above procedure.

* Sectors should read "Checksum Error In Header"

* For more 27 orrors repeat starting at step 4.

213

CREATE ERROR 29

Places "29" error on all sectors of desired track.

1. Load "CON HDR" through monitor mode of Diskpicker. (£

2. Load "WRITE HDR",08 through monitor mode. Then type G C
C020 [RETURN] £

3. Put object diskette in drive. C

4. Select 6 from main menu and enter track# and sector* • ^
desired to error. *If in doubt, use sector #1. £

5. Select 1 from main menu t
Start Addr 0016 f

End Addr 00IB V
Buff Addr 6016 C

6. Dump memory locations 6016-601B from monitor mode. ^

7. Change memory locations $6016 and $6017 to the Hex value ^

of the desired ID#s. *Refer to appendix F. v_ '

8. Select 3 from main menu

Start Addr 0016 O
End Addr 00IB f

Buff Addr 6016 *-

9. Select 3 from main menu r

Start Addr 0300 C
End Addr 031F

Buff Addr 5300

10. Select 4 from main menu, Entry addr 0300

11. Select 3 from main menu

Start Addr 0300

End Addr 036F

Buff Addr 3300

12. Select 5 from main menu. Job choice=224. For execute

start addr select l=(0300).

13. For Multi Sector Y/N, select Y.

14. For Hdr#l use track# to be errpred.

TO CHECK ERROR 29

1. Select 5 from main menu. Job choice = 128.

2. For Multi Sector Y/N, select Y.

214

3. For MDRtfl use track # just errorod.

♦ Socl-ors should read "DISK ID MISMATCH"

* For morn 2<> Errors, repeat procedure from stop 4,

ASSIGN ILLEGAL SECTOR #"

This procedure will substitute an illegal sector #

onto the diskette in place of a legal one. The illegal

sector can be read using the Job Que - menu option 5.

Whenever a header not found error is encountered, make sure

that illegal sectoring has not been used. This is done by

loading a sector using the Job Que road function to see if

the sector can be found in the illegal ranges specified in

the table following step 7 of this procedure.

1. Load "CON HDR" through monitor mode of Diskpicker.

2. Load "WRITE HDR11 through monitor mode.

3. Put object diskette in drive.

4. Select 6 from main menu and enter track# and sector #

desired to be changed to illegal value.

5. Select 1 from main menu,

Start Addr 0016

End Addr 001B

Buff Addr 6016

6. View memory locations 6016-601B from monitor mode. Refer

to appendix F GCR info to identify byte function.

7. Change data at memory location $6019 to hex value of

sector # you want to substitute for sector # chosen in step

4. The range of acceptable illegal sectors are:

TRACKS LEGAL SECTORS ILLEGAL SECTORS

DEC. HEX

1-17 0-20 21-25 15-19

18-24 0-18 19-23 13-17

25-30 0-17 18-22 12-16

31-35 0-16 17-21 11-15

8. Select 3 from main menu

Start Addr 0016

End Addr 001B

Buff Addr 6016

9. Select 3 from main menu

Start Addr 0300

End Addr 03 IF

Buff Addr 5300

10. Seloct 4 from main menu. Entry Addr 0300.

11. Seloct 3 from main menu

Start Addr 0300

End Addr 036F

Buff Addr 3300

215

12. Select 5 from main menu. Job choice =2 24. For Execute

Start Addr, select 1 (0300)

13. For Multi Sector Y/N, select "N1.

14. For HDR #1, use track # selected in step 6.

15. For HDR #2 Use one less than sector # selected in step 6.

("Wraparound" as in earlier procedures... ie. for sector 1

enter a 0)

TO CHECK ILLEGAL SECTOR NUMBER

1. Select 5 from main menu. Job choice= 128.

2. For Multi Sector Y/N, select fN'.

3. For HDR #1 use track # selected in step 6 above.

4. For HDR #2, use DECIMAL value of illegal sector number

you selected in step 7.

5. Even though it is an illegal value, the DOS should find

the sector and load the data into the disk buffer. The

sector selected in step 4 is now re-assigned to an illegal

value. This can be verified by repeating check procedure

steps 1-3 with a 'Y' for Multi sector question, step 2.

With a little imagination, this can be used for protecting

your own programs quite effectively.

SYNC ONLY

This process will cover any desired track with GCR

FF's for the purpose of locking up most current whole disk

copy programs. By using this routine on several unused

tracks, especially the lower numbered ones, you can help

protect your own software.

1. Load and Run Diskpicker.

2. Select menu option 2, printer choice 'N1.

3. Input L"SYNC ONLY",08 to load machine routine. After

load is done, Type G C020

4. Place diskette to be errored into drive.

5. Select menu option 7.

6. Select menu option 3.

Start Addr 0300

End Addr 034F

Buff Addr 3300

7. After data transfer to disk, select menu option 5.

8. Input Job choice 224. Select execute address 1 (0300).

216

C

9. For Multi sector Y/N, select »Nf.

10. For Header #1, input track # to be errored.

11. For header #2, input sector #0.

12. Repeat procedure steps 7 through 10 for additional sync

only errors.

13. To test your errors select option 5. Job Que execute

addr 128.

14. For Multi Sector Y/N, select 'N1.

15. For Header #1, enter track

with error.

16. For Header #2, enter sector #0.

17. If everything went right, the disk will lock up and

continue to look for the sector you selected.

18. The only way to escape this error is to open the drive

door until a sync not found error shows on the monitor.

ONE TRACK FORMAT

This routine will reformat a single track. Can be used

to repair any whole track error such as 22, 27, 29, Sync

only, Multi-No Header. This routine can also be used to

create 29 errors on a track.

** You will need a reset switch as described to

facilitate the use of this procedure.

1. Load "1TRKFMT",O8 through the monitor mode of diskpicker.

Then type G CO20

2. Put object diskette in drive.

3. Select 7 from main menu.

4. Select 2 from main menu and change data in memory

locations $3312 (ID HI) and $3313 (ID LOW) to ID#s you

want. IDs different than the one the disk was formatted

with (False ID) will reformat the track to produce a 29

error. Correct ID#s (same as disk formatted ID) will

provide normal reformat. See appendix A column 1 for the

HEX values to use for ID characters of your choice, ie. the

hex codes for an ID of MVN"=56 4E. (56 is ID HI and 4E is

ID LOW)

When done, enter G CO20

5. Select menu option 3.

Start Addr 0300

End Addr 0315

Buff Addr 3300

217

6. Select menu option 5. Job choice = 224. For execute addr,

select 1 (0300).

7. For Multi Sector Y/N, choose 'N1.

8. For HDR #1 use track desired to be reformatted.

9. For HDR #2 use sector 0.

10. Wait about 5 seconds then press computer reset, (non

critical time).

11. Type in SYS49184 then [RETURN].

12. Select menu option 7, if disk LED lamp flashes, repeat

this step.

TO CHECK

1. Select menu option 5. Job choice=128.

2. For Multi Sector Y/N, choose 'Y'.

3. For HDR #1, select track number just reformatted.

4. Refer to the error codes returned on your monitor which

indicate result of your attempts.

DETERMINING ID NUMBERS

This process will allow you to find out the Hex value

of ID#s on specific tracks and sectors of the disk.

1. Assuming Diskpicker is loaded, put object diskette in

drive.

2. Select 7 from main menu.

3. Select 6 from main menu, input Track # desired, Input

Sector # desired.

4. Select 1 from main menu.

Start Addr 0012

End Addr 00IF

Buff Addr 6012

5. Select 2 from menu and interrogate memory locations 6012-

6018

MEMORY LOCATION DEFINITIONS

DISK ADDR BUFF ADDR

$0012 $6012= Disk ID HI

$0013 $6013= Disk ID LOW

$0016 $6016= Sector ID HI

$0017 $6017= Sector ID LOW

$0018 $6018= Track #

$0019 $6019= Sector #

$001A $601A= HDR Checksum

218

TRACK CHECK

The track check program was designed to provide the

following information for full and half tracks. *

1. Disk master ID in Hex.

2. Actual track found in each physical track location.

3. Header ID#s in hex for each physical track location.

4. Status of error for each physical track location.

To operate? load and-run "TRACK CHECK". Follow the

screen prompts to provide your choice of options. P-Trk

data returns the physical track called for. D-Trk returns

the actual track found in any physical track location. In

some forms of protection the actual track found will be

different than the normal track number designed to be in

that location. IDH and IDL return the actual header ID#s

found in the physical track location. If you choose the

half track option the data returned may or may not be

reliable because normal track widths often overlap the half

track areas. This program will not return valid data for

illegal tracks having abnormal bit densities. If an

abnormal bit density exists on a particular physical track

location/ it will show up as a header not found error or

some other erratic non repeatable error.

The only commercial program diskettes we have found

using half track or bit density errors have been on highly

protected copy programs written to run on 1541 drives only.

This makes these programs incompatible on other so called

"Commodore compatible" drives. We have found some

commercial disks with more than one track 35. Track Check

will prove useful for most present day commercial programs.

FORMATTING ILLEGAL TRACKS

This procedure will format a new illegal track onto

the diskette in place of an existing legal track. This

process can also be accomplished in between tracks known as

half tracks. For example: Track 34 could be reformatted as

a track 35 resulting in two track 34s. Likewise, a physical

location of 29.5 could be reformatted as a track 33 etc.

It is best not to reformat a physical track location

with format data containing more sectors than will fit in

that location. To reformat physical track 35 as a track 1

would present a problem because track 1 format data

contains too many sectors to fit into the physical track 35

219

location. It is possible to have illegal ID#s on the
illegally formatted tracks.

An effective protection method can be utilized by-

formatting higher numbered track format data onto lower

physical track locations. This makes these tracks

unreadable under normal circumstances because the data will

be formatted at a lower than normal bit density rate for

that physical track. Disk memory location $1COO bits 5 & 6

control the bit density rate.

BIT DENSITY CONTROL TABLE

TRACK

1-17

18-24

25-30

31-35

BITS/SEC

307,692.31

285,714.29

266,666.67

250,000.00

Bit

1

1

0

0

$1COO

6 Bit 5

1

0

1

0

To test this concept try the following procedure by

formatting physical track 1 with format data for track 35.

You will notice that you can find the headers etc. using

the check procedure but you will not be able to read

headers/data from track 1 using the T/S analyzer or Track

Check programs as the data density is not normal in this

location.

The theory of this method is to make the disk drive

memory think that it is set for track 35 and the read write

head over track 35 while in reality the read write head is

over track 1! This method also forces an illegal bit

density number into memory location $lC00. By combining

illegal half tracks and illegal ID#s with illegal bit

densities you can achieve a high level of software

protection.

ILLEGAL TRACK FORMATTING

1. Load "1TRKFMT",O8 through the monitor mode of Diskpicker.

Then G C020.

2. Put object diskette in drive.

3. Select 6 from main menu and enter the track # you want to

use for format data. Then enter sector 0. This sets up the

DOS pointers and data variables in the drive memory.

4. Select menu option 1

Start Addr 0000

End Addr OOFF

Buff Addr 6000

This stores the Disk zero page in computer buffer.

5. Select menu option 9 Position read write head. Enter

your track choice for the physical track position you wish

to format with the format data determined in step 3.

6. Select menu option 3.

220

Start Addr 0000

End Addr 00FF

Buff Addr 6000

This step restores the drive page zero to contain data for

"illegal" track selected in step 3.

7. Select 2 from main menu and change the data in memory

locations $3312(ID HI) and $3313 (ID LOW) to the ID#s you

want. Then enter G C020. (If in question about ID you want

to use see section on determining ID numbers or use Track

Check on original program if making backups.

8. Select menu option 3.

Start Addr 0300

End Addr 0315

Buff Addr 3300

9. Select menu option 5. Job Choice = 224. For execute Addr

select l=(0300)

10. For multi sector Y/N select N.

11. For Hdr#l use the data track number selected in step 3.

12. For HDR#2 use sector 0.

13. Wait about 5 seconds then press computer reset.

14. Type in SYS 49184 [RETURN]

15. Select menu option 9. For track select track 18.

16. Select menu option 7. ' If disk LED lamp flashes repeat

this step.

* EXAMPLE

If you chose track 32 for step 3 and track 34.5 for step 4,

then you will have two track #3 2s, one in physical track

position 32 and one in physical track postion 34.5.

TO CHECK

1. Select 6 from main menu and enter the track # that you

chose in step 3 of the format procedure. Then enter sector

0.

2. Select menu option 1

Start Addr 0000

End Addr OOFF

Buff Addr 6000

3. Select menu option 9 Position read write head. Enter the

physical track position you selected in step 4 of the

format procedure.

4. Select menu option 3.

Start Addr 0000

End Addr OOFF

Buff Addr 6000

221

r3o Select menu opt ion '). Job choice? =12M.

(». For Multi Sector Y/N Select Y.

7. For holder 111 select the track # you used in step 1 of

this chock pro

H. Rofor to the error codes returned on your monitor for the

results of your attempt.

9. Select menu option CK For track select track 10.

10. Select nmmi option 7. If disk LED lamp flashes, repeat

this stepo

, 3300

, 3303

, 33Or>

, 3307

, 33OA

, 33OC

, 33OF

, 3311

, 3314

, 3316

, 3310

, 331A

, 331B

, 331C

, 331 F

, 331F

, 3321

, 332'1

, .VI 2(i

, 3329

, 3 32A

SYNC ONLY

AD

29

09

HI)

A9

HD

A9

OD

A2

A0

50

no

00

DO

CA

DO

20

A9

4C

00

00

OC

IF

CO

OC

FF

03

FF

01

20

00

FE

FA

F7

00

01

69

1C

1C

1C

1C

FE

F9

LDA

AND

0RA

STA

LDA

STA

LDA

STA

LDX

LDY

DVC

CLV

DEY

BNE

DEX

BNE

JSR

LDA

JMP

BRK

BRK

$1COC

#$1F

#$C0

$1COC

#$FF

$1CO3

#$FF

$1CO1

#$20

#$00

$3310

$3310

$3310

$FE00

#$01

$F969

, 3 UH)

, 3302

, 33O'l

, 3 307

, 3309

, 33OC

, 33OI-:

, 3311

, 3312

, 3313

, 33 M

, 331 r»

1TRKFMT

A5

05

AD

05

AD

05

AC

00

EA

FA

00

0D

06

51

12

12

13

13

C7

03

03

03

FA

1C

LDA

STA

LDA

STA

LDA

STA

JMP

BRK

NOP

NOP

BRK

STA

$06

$51

$0312

$12

$0313

$13

$FAC7

S1C03

<
c

c

c

c

<
c

t

c
c

c-
c

c

c
c

c

c

c

c

c:

c

c

c

c

c

o
c

c

c
c

c

c

o
c

c

222

10 POKE53280,11:POKE53281,U:P«4:D«B:HX**"0123456789ABCDEF-

12 OPEN15,8,15,-I0W:CLO5E15
15 PRINTq<SCHYL> TRACK CHECK<LG> PSIDAC(C)84 VBN":FORTD=1TO2000:NEXT
20 CH$="N0RM":PRINT'<SCXWH>5ELECT CHOICE":PRINT"<CD>(1) NORMAL TRACK CHECK"
30 PRINT'<CD><2) HALF TRACK CHECK<CD>"
40 INPUTCH*: IFCH$=" 1 'THENCH^-NORM11

50 IFCH$="2"THENCH*="HALF°
100 PRINTSCD><WH>INSERT SOURCE DISK IN DRIVE':PRINT'PRESS F7"
110 GETF7*:IFF7*<>"<F7>"THEN110
115 PR=0:INPUT"<CD>PRINTER Y/N"?YN$:IFYN$«'Y"THENPR=1
120 INPUT '<CD>DISK NAME"iDN$
125 PRINTS CD >TRACK LOG FOR "DN*
130 IFPR=1THENOPEN4>P:PRINTH4," TRACK LOG FOR "DN$:PRINTS:CL0SE4
148 0PEN15,8»15,"I9"

150 PRINTH15,"M-R'CHR*U8)CHR$<0) :GET*15,MH$:MH«ASC<MH$+CHR$<0)>
152 X=MH:GOSUB3000:MH$=Dt
155 PRINTH15,"M-R"CHR$(19>CHRt<0):GETH15,MLi:ML=A5C(ML$+CHR*<0)):CL05E15
158 X=ML:GOSUB3000:MLi=D*
160 PRINT1*CD>MASTER IDH = "MHfjML*" IN HEX<CD>'
162 IFPR=1THENOPEN4,P:PRINT»4,"MASTER IDH = 'MH$?ML»" IN HEX":PRINTtt4
165 PRINT'<CD>P-TRK D-TRK IDH IDL STATUS<CD>"
170 IFPR=1THEN:PRINTH4,BP-TRK D-TRK IOH IDL STATUS":PRINTtt4:CL0SE4
172 IFCH$=°HALF8THENGO5UB500
175 FORTR=1TC42
182 IFCH$="HALF•THENGOSUB200:GOSUB700
183 IFCH«=B NORM•THENGOSUB200:G0SUB295
185 NEXT:IFCH$=BHALF"THENGOSUB500
199 CL0SE15--RUN
200 OPEN15,D,15
205 PRINTttlS,MM-WBCHR*<24)CHR$(0)CHR$(1)CHR$\0>
206 PRINTH15, "M-W"CHRi(22>CHRi(0>CHR$(l)CHR»(0:«
207 PRINTttlS,-M-W"CHR$(23)CHR$<0)CHR$(1)CHR$<0)
210 PRINTttl5,"M-WCHR$(6)CHR$(0)CHR$(l>CHR$(TR)
220 PRINTH15, "M-W"CHR$\'7)CHR$<0)CHR$(1)CHR$<0)
230 PRINTH15,"M-W"CHRt(0)CHRi(0>CHR$(l)CHR$(176)
240 PRINTttlS,"M-R"CHR$<0)CHR$<0)
250 GETH15,A$:X=ASC(A$+CHR$(0)):IFX>127THEN240
254 OP*=B ":IFX=3THEN0P$="N0 SYNC FOUND"
255 IFX=2THEN0P*="N0 HDR FOUND"
258 IFX=9THEN0P$="HDR CHKSUM ERROR"
260 PRINTI»15, nM-R"CHR$(24)CHR$<0) :GETI*15.CT$:CT=ASC<CT*+CHR*<0))
265 PRINTttlS,-M-R"CHR$(22)CHR$<0):GET»15>IH$:IH=ASC<IH$+CHR$(0))
268 X»IH:GOSUB3000:IH*=D*
270 PRINT«15^"M-R»CHR$(23)CHR$<0):GET»15,IL$:IL=ASC(IL$+CHR$<0)) :CLOSE15
272 X=IL:GOSUB3000:IL$«Df
275 IFCTO0ANDCTOTRTHENOP*="ILLEGAL TRACK" '
280 RETURN

295 PRINTTR?TAB(6)iCT;TAB(13)jIH$jTAB(17)iIL$jTAB<22).;0P$
309 IFIL=9ANDIH=0THEN308
305 IFILOMLORIHOMHTHENPRINT" * » » * it * BAD IDH * * * * * *<CD>":OK=1
308 IFPR=1THENGOSUB1000
310 RETURN
508 0PEN15.D.15
510 PRINTH15,rH-R"CHR$«0>CHR$\23)
512 GETH15,X$:X=ASC(X*+CHR*(0)>
515 BI=XAND3:BI=BI+l:BI=BIAND3:HP=-;XAND252)0RBI
520 PRINT«15, BM-WCHR$(0)CHR$(28)CHR$(1)CHR$(HP) :CL0SE15
530 RETURN

700 PRINTTR"<CL>.5"jTAB<6);CT;TAB<13);IH$;TAB(17)jIL$jTAB<22);0P$
719 IFIL=0ANDIH=0THEN718
715 IFILOMLORIHOMHTHENPRINT" * * * * * * BAD IDH * * * * * *<CD>":OK=1
718 IFPR=1THENGOSUB2000
720 RETURN

1090 0PEN4.P
1010 PRINTH4,TR;CHR$«16>"08"CTjCHR$<16)b14"IH$jCHR$(16)"13"IL*;CHR$<16)"24"OP$
1020 IFOK=lTHENOK=0:PRINTH4,f * a * a * * BAD IDH * ******

1030 CLOSE*--RETURN
2008 0PEN4.P
2810 PRINTH4?TR".5"CHR$a6)B08"CT;CHR$(16)"14"IH$;CHR$(16)"18"IL$;
2912 PRINTH4,CHR$(16)-24fl0P$
2020 IFOK=1THENOK=0-PRINTH4," ***** * BAD IDH *******
2930 CL0SE4:RETURN
3000 D$=" ":D1=INT<X/16):DS=D$+MID$(HX$,D1+1,1)
3019 D2=INT(X-16*D1>:D*=D$+MID$(HX*,D2+1,1):RETURN

223

c

0

c

c

c

e

c
c
<■■

224

ABOUT TH& AUTHORS

Via Numbe.n.A and David I kom have. be.e.n
invoLve,d in a wo n.king aAAociatio n fon.

ove.n. Ae.ve.n ye.an.A. Ihe.y, fon.me.d rSlDAC aA a

pan.tne.n.Ahip to de.ve.Lop and man.ke.t

e.Le.atn.onia de.v iae.A and aoftwan.e..

Via Numbe.n.A haA an e.xte.nAive.
backg.n.ound in e.Le.atn.0niaA. He. haA 15
y.e.an_A of. e.xpe.n.ie.nae. in auAtom de.Aig.ne-d
automatia te.At AuAte.m.A uAe.d f.on. fauLt

at a navaL we.apo nA te.Ating,

David I horn haA be.e.n invoLve.d with

appLiaationA of mian.o pn.oae.AAO ila fion.
e.Le.c.tn.o-me.ahaniaaL Ay.Ate.mA ao ntn.oL aA

we.LL aA v ide.o g,ame.A. fl n.. I horn aLAo
Ae.tive.d aA &ng,ine.e.n.ina ft)anag,e./i fon.
WindmiLLA 1 nte.n.nationaL Dive.n.Aifie.d ove.n.
a two ye.an. pe.niod.

5inae. the.in. aAAoaiation, Numbe.n_A and
I horn have. be.e.n invoLv e.d in nume.n.o ua

induAtfiiaL and aomme.n.aiaL pn.oje.atA. I horn

and /1/umbe.n.A he.ade.d an e.ng.ine.e.n_ing. te.am in

de.Aiy.ning, a mian.opn.oae.AAon. aontn.oLLe.nJ.on.
a I^OKw wind e.Le.atn.iaaL g,e.ne.n.aton.. I he.y.

have. aLAo aoope.n.ate.d in de.Aig.ning,

compute.n.ige.d adve.n.tiAing diApLa^A aA we.LL

aA pn.oduaina and Ae.LLing. pn.oduatA ion. the.

V1C-20 and L-64.

Afte.it Aucce-AAfuLLy: man.ke.ting. a

handbook and kitA fon. the. VIC-20, Numbe.n.A
and I horn de.aide.d to continue, with a mo ne.

Ae.ix.iouA and in de.pth Atudy, on the. C-6k.

IhiA book 'la the. product of that aoaL.

THE

SOFTWARE

PROTECTION

HANDBOOK

For the C-6U

CONTRARY TO POPULAR BELIEF, WHEN YOU BUY

SOFTWARE, YOU OWN MORE THAN JUST THE

LIGHT RAYS FROM YOUR TV!

IT IS TIME TO DEFROCK THE WIZARDS BY

RELEASING INFORMATION ON THE "BLACK ARTS'

OF PROTECTION. YOU NO LONGER NEED SEEK

OUT THE CRUMBS OF INFORMAT ION DOLED OUT

BY THE LOCAL WIZARD OR HINTED AT IN THE

MAGAZINES.

THIS MANUAL WILL HELP YOU "BLOW THE LOCKS

OFF" PROTECTED SOFTWARE! THE SOFTWARE

PROTECTION HANDBOOK LETS YOU KNOW WHERE

YOU STAND LEGALLY AND PROVIDES

INFORMATION ON PROTECTION TECHNIQUES AND

BREAKING FOR EACH CATEGORY OF SOFTWARE;

DISKS, CARTRIDGES, AND TAPES. THIS MANUAL

ALSO GIVES THL LISTINGS AND PROCEDURES

FOR ELEVEN PROTECTION ANALYSIS AND

BREAKING TOOLS.

THE REFERENCE VALUE ALONE WILL KEEP YOU

TURNING BACK TO THIS BOOK FOP AS LONG AS

YOU OWN YOUR COMPUTER. YOUR BIGGEST

PROBLEM WILL BE !,\ KEEPING YOUR COMPUTING

FRIENDS FROM BORROWING YOUR COPY OF THIS

BOOK!!!

A PSIDAC PUBLICATION

73^6 N. ATLANTIC

PORTLAND, OREGON

97217

