

MEGA65 TEAM

Dr. Paul Gardner-Stephen Detlef Hastik
(highlander) (deft)
Founder Co-Founder
Software and Virtual Hardware Architect General Manager
Spokesman and Lead Scientist Marketing & Sales

Martin Streit Anton Schneider-Michallek
(seriously) (adtbm)
Video and Photo Production Hardware Pool Management
Tax and Organization Soft-, Hard- and V-Hardware Testing
Social Media Forum Administration

Falk Rehwagen Antti Lukats
(bluewaysw) (antti-brain)
Jenkins Build Automation Host Hardware Design and Production
GEOS, Hardware Quality Management

Dieter Penner Dr. Edilbert Kirk
(doubleflash) (Bit Shifter)
Host Hardware Review and Testing Manual and Tools
File Hosting ROM Enhancements

Gábor Lénárt Mirko H.
(LGB) (sy2002)
Emulator Additional Hardware and Platforms

Farai Aschwanden Thomas Hertzler
(Tayger) (grumpyninja)
File Base, Tools USA Spokesman
Financial Advisory Artist Relations

Andrew Owen Daniel England
(Cheveron) (Mew Pokémon)
Keyboard Advisory, Sinclair Support Additional Code and Tools

Roman Standzikowski Hernán Di Pietro
(FeralChild) (indiocolifa)
Open Roms Additional Emulation

Reporting Errors and Omissions

This book is a work-in-progress produced by and for the MEGA65 community. The
version of this edition is:

c o m m i t 6 f b 0 c 1 6 6 1 a 7 1 a 2 3 8 b f 7 5 4 e 1 7 7 a 7 c 2 a 5 3 5 4 a 2 f 5 7 7

date : Fri Oct 15 2 3 : 0 0 : 1 6 2021 + 1 1 0 0

We want this book to be the best that it possibly can. So if you see any errors, or find
anything that is missing, or that you would like more information on, please report them
using the MEGA65 User’s Guide issue tracker:

https://github.com/mega65/mega65-user-guide/issues

You can also check there to see if anyone else has reported a similar problem, while
you wait for this book to be updated.

Finally, you can always download the latest version of this book from:

https://github.com/mega65/mega65-user-guide

3

https://github.com/mega65/mega65-user-guide/issues
https://github.com/mega65/mega65-user-guide

MEGA65 REFERENCE GUIDE

Published by
the MEGA Museum of Electronic Games & Art e.V., Germany.

WORK IN PROGRESS

Copyright ©2019 – 2021 by Paul Gardner-Stephen, the MEGA Museum of Electronic
Games & Art e.V., and contributors.

This reference guide is made available under the GNU Free Documentation License
v1.3, or later, if desired. This means that you are free to modify, reproduce and re-
distribute this reference guide, subject to certain conditions. The full text of the GNU
Free Documentation License v1.3 can be found at https://www.gnu.org/licenses/
fdl-1.3.en.html.

Implicit in this copyright license, is the permission to duplicate and/or redistribute this
document in whole or in part for use in education environments. We want to support
the education of future generations, so if you have any worries or concerns, please
contact us.

October 15, 2021

ii

https://www.gnu.org/licenses/fdl-1.3.en.html
https://www.gnu.org/licenses/fdl-1.3.en.html

Contents

I PREFACE xxxiii

1 Introduction xxxv

Welcome to the MEGA65! . xxxvii

Other Books in this series . xxxviii

II GETTING TO KNOW YOUR MEGA65 1-1

2 Setup 2-1

Unpacking and connecting the MEGA65 . 2-3

Rear Connections . 2-4

Side Connections . 2-5

MEGA65 screen and peripherals . 2-6

Optional Connections . 2-7

Operation . 2-7

Using the MEGA65 . 2-7

THE CURSOR . 2-8

3 Getting Started 3-1

Keyboard . 3-3

iii

Command Keys . 3-3

RETURN . 3-3

SHIFT . 3-3

SHIFT LOCK . 3-3

CTRL . 3-4

RUN STOP . 3-4

RESTORE . 3-4

THE CURSOR KEYS . 3-5

INSerT/DELete . 3-5

CLeaR/HOME . 3-5

MEGA KEY . 3-5

NO SCROLL . 3-6

Function Keys . 3-6

HELP . 3-6

ALT . 3-6

CAPS LOCK . 3-6

The Screen Editor . 3-7

Editor Functionality . 3-9

4 Configuring your MEGA65 4-1

Important Note . 4-3

Formatting SD cards . 4-3

Installing ROM and Other Support Files . 4-6

ROM File . 4-7

Support Files . 4-8

On-boarding . 4-9

Configuration Utility . 4-11

Input Devices . 4-15

Chipset . 4-16

iv

Video . 4-17

Audio . 4-17

Network . 4-18

5 Cores and Flashing 5-1

What are cores, and why do they matter? . 5-3

Model types . 5-3

Bitstream files . 5-4

File types . 5-4

Where to download . 5-4

Selecting a core . 5-5

Installing an upgrade core for the MEGA65 5-7

Installing other cores . 5-9

Creating cores for the MEGA65 . 5-9

Replacing the factory core in slot 0 . 5-10

Understanding The Core Booting Process . 5-10

6 Floppy Disks And D81 Images 6-1

Terminology . 6-3

The Freezer . 6-4

III FIRST STEPS IN CODING 6-7

7 How Computers Work 7-1

Computers are stupid. Really stupid . 7-3

Making an Egg Cup Computer . 7-3

8 Getting Started in BASIC 8-1

Your first BASIC programs . 8-3

Exercises to try . 8-12

v

First steps with text and numbers . 8-13

Exercises to try . 8-29

Making simple decisions . 8-30

Exercises to try . 8-43

Random numbers and chance . 8-44

Exercises to try . 8-48

9 Text Processing 9-1

Characters and Strings . 9-3

String Literals . 9-5

String Variables . 9-5

String Statements . 9-7

Simple Formatting . 9-8

Suppressing New Lines . 9-8

Automatic Tab Stops . 9-8

Tabs Stops and Spacing . 9-9

Sample Programs . 9-9

Palindromes . 9-9

Simple Ciphers . 9-9

10 C64, C65 and MEGA65 Modes 10-1

Switching Modes from BASIC . 10-3

From MEGA65/C65 to C64-mode . 10-3

From C64 to MEGA65/C65-mode . 10-4

Entering Machine Code Monitor Mode 10-4

The KEY Register . 10-4

Exposing Extra C65 Registers . 10-5

Disabling the C65/MEGA65 Extra Registers 10-6

Enabling MEGA65 Extra Registers . 10-6

vi

Traps to look out for . 10-7

Accessing Memory from BASIC 65 . 10-7

The MAP Instruction . 10-8

IV SOUND AND GRAPHICS 10-9

11 Graphics 11-1

V HARDWARE 11-9

12 Using Nexys4 boards as a MEGA65 12-1

Building your own MEGA65 Compatible Computer 12-3

Working Nexys4 Boards . 12-4

The Nexys4 board . 12-4

The Nexys4DDR board . 12-4

The Nexys A7 . 12-5

Power, Jumpers, Switches and Buttons . 12-6

Micro-USB Power . 12-7

External Power Supply . 12-7

Other Jumpers and Switches . 12-8

Connections and Peripherals . 12-9

Communicating with your PC . 12-9

Onboard buttons . 12-10

Keyboard . 12-11

Some key mappings with a USB keyboard 12-12

Preparing microSDHC card . 12-13

Preparation Steps . 12-13

Loading the bitstream from QSPI . 12-15

Preparation Steps . 12-15

vii

Useful Tips . 12-15

VI CROSS-PLATFORM DEVELOPMENT TOOLS 12-17

13 Emulators 13-1

Using The Xmega65 Emulator . 13-3

Using the Live ISO image . 13-3

Creating a Bootable USB stick or DVD 13-3

Getting Started . 13-4

Other Features of the Live ISO . 13-5

14 Data Transfer and Debugging Tools 14-1

m65 command line tool . 14-3

Screenshots using m65 tool . 14-3

Load and run a program on the MEGA65 14-4

Reconfigure the FPGA to run a different bitstream 14-4

Remote keyboard entry . 14-4

Unit testing and logging support . 14-5

Using unit tests with C . 14-5

Using unit tests with BASIC 65 14-6

BASIC 65 example . 14-7

M65Connect . 14-8

mega65_ftp . 14-9

TFTP Server . 14-10

Converting a BASIC text file listing into a PRG file 14-10

15 Assemblers 15-1

16 C and C-Like Compilers 16-1

MEGA65 libc . 16-3

viii

17 MEGA65 Standard C Library 17-1

Structure and Usage . 17-3

conio.h . 17-3

conionit . 17-3

setscreenaddr . 17-3

getscreenaddr . 17-4

setcolramoffset . 17-4

getcolramoffset . 17-4

setcharsetaddr . 17-4

getcharsetaddr . 17-5

clrscr . 17-5

getscreensize . 17-5

setscreensize . 17-5

set16bitcharmode . 17-6

sethotregs . 17-6

setextendedattrib . 17-6

togglecase . 17-6

bordercolor . 17-6

bgcolor . 17-7

textcolor . 17-7

revers . 17-7

highlight . 17-7

blink . 17-8

underline . 17-8

altpal . 17-8

clearattr . 17-8

cellcolor . 17-8

setpalbank . 17-9

ix

setpalbanka . 17-9

getpalbank . 17-9

getpalbanka . 17-9

setmapedpal . 17-10

getmapedpal . 17-10

setpalentry . 17-10

fillrect . 17-10

box . 17-11

hline . 17-11

vline . 17-12

gohome . 17-12

gotoxy . 17-12

gotox . 17-12

gotoy . 17-13

moveup . 17-13

movedown . 17-13

moveleft . 17-13

moveright . 17-14

wherex . 17-14

wherey . 17-14

cputc . 17-14

cputnc . 17-14

cputhex . 17-15

cputdec . 17-15

cputs . 17-15

cputsxy . 17-16

cputcxy . 17-16

cputncxy . 17-16

x

cprintf . 17-17

cgetc . 17-17

kbhit . 17-18

getkeymodstate . 17-18

flushkeybuf . 17-18

cinput . 17-18

VIC_BASE . 17-19

18 BASIC Tokenisers 18-1

VII APPENDICES 18-5

A Accessories A-1

B BASIC 65 Command Reference B-1

Commands, Functions and Operators . B-3

BASIC 65 constants . B-5

BASIC 65 variables . B-5

BASIC 65 arrays . B-5

Keywords And Tokens Part 1 . B-7

Keywords And Tokens Part 2 . B-8

Tokens And Keywords Part 1 . B-9

Tokens And Keywords Part 2 . B-10

BASIC command reference . B-11

ABS . B-12

AND . B-13

APPEND . B-14

ASC . B-15

ATN . B-16

xi

AUTO . B-17

BACKGROUND . B-18

BACKUP . B-19

BANK . B-20

BEGIN . B-21

BEND . B-22

BLOAD . B-23

BOOT . B-25

BORDER . B-26

BOX . B-27

BSAVE . B-29

BUMP . B-31

BVERIFY . B-32

CATALOG . B-33

CHANGE . B-35

CHAR . B-36

CHR$. B-38

CIRCLE . B-39

CLOSE . B-41

CLR . B-42

CMD . B-43

COLLECT . B-44

COLLISION . B-45

COLOR . B-46

CONCAT . B-47

CONT . B-48

COPY . B-49

COS . B-51

xii

CURSOR . B-52

DATA . B-53

DCLEAR . B-54

DCLOSE . B-55

DEC . B-56

DEF FN . B-57

DELETE . B-58

DIM . B-59

DIR . B-60

DISK . B-61

DLOAD . B-62

DMA . B-63

DMODE . B-64

DO . B-65

DOPEN . B-66

DPAT . B-68

DS . B-69

DS$. B-70

DSAVE . B-71

DT$. B-72

DVERIFY . B-73

EDIT . B-74

EDMA . B-76

EL . B-77

ELLIPSE . B-78

ELSE . B-80

END . B-81

ENVELOPE . B-82

xiii

ERASE . B-83

ER . B-84

ERR$. B-85

EXIT . B-86

EXP . B-87

FAST . B-88

FILTER . B-89

FIND . B-90

FN . B-91

FONT . B-92

FOR . B-93

FOREGROUND . B-94

FRE . B-95

FREAD . B-96

FWRITE . B-97

GET . B-98

GET# . B-99

GETKEY . B-100

GO64 . B-101

GOSUB . B-102

GOTO . B-103

GRAPHIC . B-104

HEADER . B-105

HELP . B-106

HEX$. B-107

HIGHLIGHT . B-108

IF . B-109

INPUT . B-110

xiv

INPUT# . B-111

INSTR . B-113

INT . B-114

JOY . B-115

KEY . B-116

LEFT$. B-118

LEN . B-119

LET . B-120

LINE . B-121

LINE INPUT# . B-122

LIST . B-123

LOAD . B-124

LOADIFF . B-126

LOG . B-128

LOG10 . B-129

LOOP . B-130

LPEN . B-131

MERGE . B-132

MID$. B-133

MOD . B-134

MONITOR . B-135

MOUSE . B-136

MOVSPR . B-137

NEW . B-139

NEXT . B-140

NOT . B-141

OFF . B-142

ON . B-143

xv

OPEN . B-145

OR . B-146

PAINT . B-147

PALETTE . B-148

PEEK . B-149

PEEKW . B-150

PEN . B-151

PIXEL . B-152

PLAY . B-153

POINTER . B-156

POKE . B-157

POKEW . B-158

POLYGON . B-159

POS . B-160

POT . B-161

PRINT . B-162

PRINT# . B-163

PRINT USING . B-164

RCOLOR . B-166

RCURSOR . B-167

READ . B-168

RECORD . B-169

REM . B-171

RENAME . B-172

RENUMBER . B-173

RESTORE . B-174

RESUME . B-175

RETURN . B-176

xvi

RGRAPHIC . B-177

RIGHT$. B-178

RMOUSE . B-179

RND . B-180

RPALETTE . B-181

RPEN . B-182

RPLAY . B-183

RREG . B-184

RSPCOLOR . B-185

RSPEED . B-186

RSPPOS . B-187

RSPRITE . B-188

RUN . B-189

RWINDOW . B-190

SAVE . B-191

SCNCLR . B-192

SCRATCH . B-193

SCREEN . B-194

SET . B-197

SGN . B-198

SIN . B-199

SLEEP . B-200

SOUND . B-201

SPC . B-202

SPEED . B-203

SPRCOLOR . B-204

SPRITE . B-205

SPRSAV . B-206

xvii

SQR . B-207

ST . B-208

STEP . B-209

STOP . B-210

STR$. B-211

SYS . B-212

TAB . B-214

TAN . B-215

TEMPO . B-216

THEN . B-217

TI . B-218

TI$. B-219

TO . B-220

TRAP . B-221

TROFF . B-222

TRON . B-223

TYPE . B-224

UNTIL . B-225

USING . B-226

USR . B-228

VAL . B-229

VERIFY . B-230

VIEWPORT . B-231

VOL . B-232

WAIT . B-233

WHILE . B-234

WINDOW . B-235

XOR . B-236

xviii

C Special Keyboard Controls and Sequences C-1

PETSCII Codes and CHR$. C-3

Control codes . C-5

Shifted codes . C-8

Escape Sequences . C-8

D The MEGA65 Keyboard D-1

Hardware Accelerated Keyboard Scanning D-3

Latin-1 Keyboard Map . D-4

Keyboard Theory of Operation . D-4

C65 Keyboard Matrix . D-4

Synthetic Key Events . D-5

Keyboard LED Control . D-6

Native Keyboard Matrix . D-7

E Decimal, Binary and Hexadecimal E-1

Numbers . E-3

Notations and Bases . E-4

Decimal . E-6

Binary . E-7

Hexadecimal . E-9

Operations . E-11

Counting . E-11

Arithmetic . E-13

Logic Gates . E-15

Signed and Unsigned Numbers . E-17

Bit-wise Logical Operators . E-18

Converting Numbers . E-20

xix

F System Memory Map F-1

Introduction . F-3

MEGA65 Native Memory Map . F-4

The First Sixteen 64KB Banks . F-4

Colour RAM . F-5

28-bit Address Space . F-6

$D000 – $DFFF I/O Personalities . F-8

CPU Memory Banking . F-10

C64/C65 ROM Emulation . F-11

C65 Compatibility ROM Layout . F-12

G 45GS02 Microprocessor G-1

Introduction . G-3

Differences to the 6502 . G-3

Supervisor/Hypervisor Privileged Mode G-3

6502 Illegal Opcodes . G-4

Read-Modify-Write Instruction Bug Compatibility G-4

Variable CPU Speed . G-5

Slow (1MHz – 3.5MHz) Operation G-5

Full Speed (40MHz) Instruction Timing G-6

CPU Speed Fine-Tuning . G-6

Direct Memory Access (DMA) G-6

Accessing memory between the 64KB and 1MB points G-6

C64-Style Memory Banking . G-7

VIC-III “ROM” Banking . G-7

VIC-III Display Address Translator G-8

The MAP instruction . G-8

Direct Memory Access (DMA) Controller G-10

Flat Memory Access . G-10

xx

Accessing memory beyond the 1MB point G-11

Using the MAP instruction to access >1MB G-11

Flat-Memory Access . G-13

Virtual 32-bit Register . G-14

C64 CPU Memory Mapped Registers . G-16

New CPU Memory Mapped Registers . G-17

MEGA65 CPU Maths Acceleration Registers G-21

MEGA65 Hypervisor Mode . G-29

Reset . G-29

Entering / Exiting Hypervisor Mode . G-29

Hypervisor Memory Layout . G-30

Hypervisor Virtualisation Control Registers G-33

Programming for Hypervisor Mode . G-36

H 45GS02 & 6502 Instruction Sets H-1

Addressing Modes . H-3

Implied . H-3

Accumulator . H-3

Q Pseudo Register . H-4

Immediate Mode . H-4

Immediate Word Mode . H-4

Base Page (Zero-Page) Mode . H-5

Base Page (Zero-Page) Quad Mode H-5

Base Page (Zero-Page) X Indexed Mode H-5

Base Page (Zero-Page) Quad X Indexed Mode H-6

Base Page (Zero-Page) Y Indexed Mode H-6

Base Page (Zero-Page) Base Y Indexed Mode H-6

Base Page (Zero-Page) Z Indexed Mode H-6

Base Page (Zero-Page) Quad Z Indexed Mode H-7

xxi

Absolute Mode . H-7

Absolute Quad Mode . H-7

Absolute X Indexed Mode . H-7

Absolute Quad X Indexed Mode . H-8

Absolute Y Indexed Mode . H-8

Absolute Quad Y Indexed Mode . H-8

Absolute Z Indexed Mode . H-8

Absolute Quad Z Indexed Mode . H-8

Absolute Indirect Mode . H-9

Absolute Indirect X-Indexed Mode . H-9

Base Page Indirect X-Indexed Mode H-9

Base Page Quad Indirect X-Indexed Mode H-9

Base Page Indirect Y-Indexed Mode H-10

Base Page Quad Indirect Y-Indexed Mode H-10

Base Page Indirect Z-Indexed Mode H-10

Base Page Quad Indirect Z-Indexed Mode H-10

32-bit Base Page Indirect Z-Indexed Mode H-11

32-bit Base Page Indirect Quad Z-Indexed Mode H-11

32-bit Base Page Indirect Mode . H-11

32-bit Base Page Indirect Mode . H-12

Stack Relative Indirect, Indexed by Y H-12

Relative Addressing Mode . H-12

Relative Word Addressing Mode . H-13

6502 Instruction Set . H-13

Opcode Map . H-14

Instruction Timing . H-14

Addressing Mode Table . H-16

Official And Unintended Instructions H-16

xxii

4510 Instruction Set . H-57

Opcode Map . H-58

Instruction Timing . H-58

Addressing Mode Table . H-61

45GS02 Compound Instructions . H-116

I Developing System Programmes I-1

Introduction . I-5

Flash Menu . I-5

Format/FDISK Utility . I-6

Keyboard Test Utility . I-7

MEGA65 Configuration Utility . I-7

Freeze Menu . I-7

Freeze Menu Helper Programmes . I-7

Hypervisor . I-8

OpenROM . I-8

J MEGA65 Hypervisor Services J-1

General Services . J-3

$00:$00 – Get Hypervisor Version . J-3

$00:$38 – Get Current Error Code (geterrorcode) J-3

$00:$3A – Setup Transfer Area for Other Calls (setup_transfer_area) . J-5

Disk/Storage Hypervisor Calls . J-5

$00:$02 – Get Default Drive (SD card Partition) J-6

$00:$04 – Get Current Drive (SD card Partition) J-6

$00:$06 – Select Drive (SD card Partition) J-6

$00:$08 – NOT IMPLEMENTED Get Disk Size J-6

$00:$0A – NOT IMPLEMENTED Get Current Working Directory J-6

$00:$0C – Change Working Directory J-7

xxiii

$00:$0E – NOT IMPLEMENTED Create Directory J-7

$00:$10 – NOT IMPLEMENTED Remove Directory J-7

$00:$12 – Open Directory (opendir) J-7

$00:$14 – Read Next Directory Entry (readdir) J-8

$00:$16 – Close Directory (closedir) J-8

$00:$18 – Open File (openfile) . J-8

$00:$1A – Read From a File (readfile) J-8

$00:$1C – NOT IMPLEMENTED Write to a File (writefile) J-8

$00:$1E – NOT IMPLEMENTED Create File (mkfile) J-8

$00:$20 – Close a File (closefile) . J-8

$00:$22 – Close All Open Files (closeall) J-8

$00:$24 – NOT IMPLEMENTED Seek to a Given Offset in a File (seekfile) J-8

$00:$26 – NOT IMPLEMENTED Delete a File (rmfile) J-9

$00:$28 – NOT IMPLEMENTED Get Information About a File (fstat) . . . J-9

$00:$2A – NOT IMPLEMENTED Rename a File (rename) J-9

$00:$2C – NOT IMPLEMENTED Set time stamp of a file (filedate) . . . J-9

$00:$2E – Set the current filename (setname) J-9

$00:$30 – Find first matching file (findfirst) J-9

$00:$32 – Find subsequent matching file (findnext) J-9

$00:$34 – Find matching file (one only) (findfile) J-10

$00:$36 – Load a File into Main Memory (loadfile) J-10

$00:$3C – Change Working Directory to Root Directory of Selected
Partition . J-10

$00:$3E – Load a File into Attic Memory (loadfile_attic) J-10

Disk Image Management . J-10

$00:$40 – Attach a D81 Disk Image to Drive 0 J-10

$00:$42 – Detach All D81 Disk Images J-10

$00:$44 – Write Enable All Currently Attached D81 Disk Images J-11

$00:$46 – Attach a D81 Disk Image to Drive 1 J-11

xxiv

Task and Process Management . J-11

$00:$50 – NOT IMPLEMENTED Get Task List J-11

$00:$52 – NOT IMPLEMENTED Send Message to Another Task J-11

$00:$54 – NOT IMPLEMENTED Receive Messages From Other Tasks . . J-11

$00:$56 – NOT IMPLEMENTED Write Into Memory of Another Task . . . J-11

$00:$58 – NOT IMPLEMENTED Read From Memory of Another Task . . . J-11

$00:$60 – NOT IMPLEMENTED Terminate Another Task J-11

$00:$62 – NOT IMPLEMENTED Create a Native MEGA65 Task J-12

$00:$64 – NOT IMPLEMENTED Load File Into Task J-12

$00:$66 – NOT IMPLEMENTED Create a C64-Mode Task J-12

$00:$68 – NOT IMPLEMENTED Create a C65-Mode Task J-12

$00:$6A – NOT IMPLEMENTED Exit and Switch to Another Task J-12

$00:$6C – NOT IMPLEMENTED Context-Switch to Another Task J-12

$00:$6E – NOT IMPLEMENTED Exit This Task J-12

$00:$70 – Toggle Write Protection of ROM Area J-12

$00:$72 – Toggle 4510 vs 6502 Processor Mode J-12

$00:$74 – Get current 4510 memory MAPping J-13

$00:$76 – Set 4510 memory MAPping J-13

$00:$7C – Write Character to Serial Monitor/Matrix Mode Interface . J-13

$00:$7E – Reset MEGA65 . J-13

$01:$00 – Enable Write Protection of ROM Area J-13

$01:$02 – Disable Write Protection of ROM Area J-13

System Partition & Freezing . J-14

$02:$00 – Read System Config Sector Into Memory J-14

$02:$02 – Write System Config Sector From Memory J-14

$02:$04 – Apply System Config Sector Current Loaded Into Memory . J-14

$02:$06 – Set DMAgic Revision Based On Loaded ROM J-14

$02:$10 – Locate First Sector of Freeze Slot J-14

xxv

$02:$12 – Unfreeze From Freeze Slot J-14

$02:$14 – Read Freeze Region List . J-14

$02:$16 – Get Number of Freeze Slots J-14

$03:$XX – Write Character to Serial Monitor/Matrix Mode Interface . . J-14

Secure Mode . J-14

$11:$XX – Request Enter Secure Mode J-15

$12:$XX – Request Exit Secure Mode J-15

$32:$XX – DEPRECATED Set Protected Hardware Configuration J-15

$3F:$XX – Freeze Self . J-15

K Machine Language Monitor K-1

Introduction . K-3

C65 ROM Standard Machine Language Monitor K-3

Table of C65 ROM Standard Monitor Commands K-4

Calling the Monitor . K-4

addresses and numbers . K-5

D : DISASSEMBLE . K-5

M : MEMORY . K-6

Enhanced Machine Language Monitor . K-7

Table of MEGA65 Enhanced Monitor Commands K-8

Calling the Monitor . K-9

addresses and numbers . K-9

Assembler . K-9

A : ASSEMBLE . K-10

B : BITMAPS . K-11

MEGA65 Matrix Mode Monitor Interface . K-12

Table of Matrix Mode Monitor Commands K-14

Calling the Monitor . K-14

: Hypervisor trap enable/disable K-14

xxvi

+ : Set Serial Interface UART Divisor K-15

@ : CPUMEMORY . K-15

? or H : HELP . K-16

B : BREAKPOINT . K-16

D : DISASSEMBLE . K-16

E : FLAGWATCH . K-17

F : FILL . K-17

G : SETPC . K-17

I : INTERRUPTS . K-18

J : DEBUGMON . K-18

L : LOADMEMORY . K-18

M : MEMORY . K-18

R : REGISTERS . K-19

S : SETMEMORY . K-19

T : TRACE . K-19

W : WATCHPOINT . K-19

Z : CPUHISTORY . K-20

L F018-Compatible Direct Memory Access (DMA) Controller L-1

F018A/B DMA Jobs . L-3

F018 DMA Job List Format . L-4

F018 11 byte DMA List Structure L-5

F018B 12 byte DMA List Structure L-5

Performing Simple DMA Operations L-7

MEGA65 Enhanced DMA Jobs . L-12

Texture Scaling and Line Drawing . L-15

Audio DMA . L-17

Sample Address Management . L-18

Sample Playback frequency and Volume L-18

xxvii

Pure Sine Wave . L-19

Sample playback control . L-19

F018 “DMAgic” DMA Controller . L-19

MEGA65 DMA Controller Extensions . L-20

Unimplemented Functionality . L-24

M VIC-IV Video Interface Controller M-1

Features . M-5

VIC-II/III/IV Register Access Control . M-6

Detecting VIC-II/III/IV . M-7

Video Output Formats, Timing and Compatibility M-8

Integrated Marvellous Digital Hookup™(IMDH™) Digital Video Output . M-9

Connecting to Naughty Proprietary Digital Video Standards . . M-9

Frame Timing . M-11

Physical and Logical Rasters . M-14

Bad Lines . M-14

Memory Interface . M-15

Relocating Screen Memory . M-15

Relocating Character Generator Data M-16

Relocating Colour / Attribute RAM . M-16

Relocating Sprite Pointers and Images M-17

Hot Registers . M-18

New Modes . M-18

Why the new VIC-IV modes are Character and Bitmap modes, not Bit-
plane modes . M-18

Displaying more than 256 unique characters via ”Super-Extended At-
tribute Mode” . M-19

Using Super-Extended Attribute Mode M-23

Full-Colour (256 colours per character) Text Mode (FCM) M-27

Nibble-colour (16 colours per character) Text Mode (NCM) M-27

xxviii

Alpha-Blending / Anti-Aliasing . M-28

Flipping Characters . M-28

Variable Width Fonts . M-28

Raster Re-write Buffer . M-29

Sprites . M-29

VIC-II/III Sprite Control . M-30

Extended Sprite Image Sets . M-30

Variable Sprite Size . M-30

Variable Sprite Resolution . M-31

Sprite Palette Bank . M-31

Full-Colour Sprite Mode . M-32

VIC-II / C64 Registers . M-35

VIC-III / C65 Registers . M-38

VIC-IV / MEGA65 Specific Registers . M-41

N 6526 Complex Interface Adaptor (CIA) Registers N-1

CIA 6526 Registers . N-3

CIA 6526 Hypervisor Registers . N-6

O 4551 UART, GPIO and Utility Controller O-1

C65 6551 UART Registers . O-3

4551 General Purpose I/O & Miscellaneous Interface Registers O-4

P 45E100 Fast Ethernet Controller P-1

Overview . P-3

Differences to the RR-NET and similar solutions P-3

Theory of Operation: Receiving Frames P-4

Accessing the Ethernet Frame Buffers P-6

Theory of Operation: Sending Frames P-7

Advanced Features . P-7

xxix

Broadcast and Multicast Traffic and Promiscuous Mode P-8

Debugging and Diagnosis Features P-8

Memory Mapped Registers . P-9

COMMAND register values . P-11

Example Programs . P-11

Q 45IO27 Multi-Function I/O Controller Q-1

Overview . Q-3

F011-compatible Floppy Controller . Q-3

Multiple Drive Support . Q-3

Buffered Sector Operations . Q-4

Reading Sectors from a Disk . Q-4

Track Auto-Tune Function Deprecated Q-5

Sector Skew and Target Any Mode . Q-5

Disk Layout and 1581 Logical Sectors Q-6

FD2000 Disks . Q-7

High-Density and Variable-Density Disks Q-7

Track Information Blocks . Q-8

Formatting Disks . Q-9

Write Pre-Compensation . Q-10

Buffered Sector Writing . Q-10

F011 Floppy Controller Registers . Q-11

SD card Controller and F011 Virtualisation Functions Q-13

SD card Based Disk Image Access . Q-14

F011 Virtualisation . Q-16

Dual-Bus SD card Controller . Q-16

Write Gate . Q-17

Fill Mode . Q-17

Selecting Among Multiple SD cards Q-17

xxx

SD Controller Command Table Q-18

Touch Panel Interface . Q-20

Audio Support Functions . Q-23

Miscellaneous I/O Functions . Q-25

R Reference Tables R-1

Units of Storage . R-3

Base Conversion . R-4

S Flashing the FPGAs and CPLDs in the MEGA65 S-1

Suggested PC specifications . S-5

Warning . S-6

Installing Vivado . S-6

Installing the FTDI drivers . S-22

Linux drivers . S-23

Windows drivers . S-23

Flashing the main FPGA using Vivado . S-27

Flashing the CPLD in the MEGA65’s Keyboard with Lattice Diamond S-40

Flashing the MAX10 FPGA on the MEGA65’s Mainboard with INTEL QUARTUS S-47

T Trouble shooting T-1

Hardware . T-3

No lights when powering on . T-3

Vivado . T-3

RAM requirements . T-3

mega65_ftp . T-3

Missing Library . T-4

xxxi

U Model Specific Features U-1

Detecting MEGA65 Models . U-3

MEGA65 Desktop Computer, Revision 3 onwards U-3

MEGA65 Desktop Computer, Revision 2 . U-4

MEGAphone Handheld, Revisions 1 and 2 U-5

Nexys4 DDR FPGA Board . U-6

V Schematics V-1

MEGA65 R3 Schematics . V-3

MEGA65 R2 Schematics . V-28

W Supporters & Donors W-1

Organisations . W-3

Contributors . W-4

Supporters . W-5

INDEX Index-3

xxxii

PART I
PREFACE

xxxiv

CHAPTER 1
Introduction

• Welcome to the MEGA65!

• Other Books in this series

xxxvi

WELCOME TO THE MEGA65!
Congratulations on your purchase of one of the most long-awaited computers in the
history of computing. The MEGA65 is a community designed computer, based on
the never-released Commodore® 651 computer; a computer designed in 1989 and
intended for public release in 1990. Decades have passed, and the MEGA65 invokes
an earlier time when computers were simple and friendly. They were not only simple to
operate and understand how they work, but friendly and approachable for new users.

These 1980s computers inspired an entire generation of professionals to choose the
exciting and rewarding technology careers they have today. Just imagine the joy of
these individuals as they learned they could use their new computer to solve problems,
write a letter, prepare taxes, invent new things, or even discover how the universe
works. We want to re-create that level of excitement not found in modern computing,
so we made the MEGA65.

The MEGA65 team believes that owning a computer is like owning a home. You don’t
just use a home; you change things big and small to make it your own custom living
space. After a while, when you settle in, you may decide to renovate or expand your
home to make it more comfortable or provide more utility. Think of the MEGA65 as a
”computing home”.

This guide will teach you how to do more than just hang pictures on a wall, it will show
you how to build your dream home. While you read this user’s guide, you will learn
how to operate the MEGA65, write programs, add additional software, and extend
hardware capabilities. What won’t be immediately obvious is that along the journey,
you will also learn about the history of computing as you explore BASIC version 65 and
operating system commands.

Computer graphics and music make computing more fun; and we designed the
MEGA65 for fun! In this user’s guide, you will learn how to program using theMEGA65’s
built-in graphics and sound capabilities. But you don’t need to be a programmer to
have fun with the MEGA65. Because the MEGA65 includes a complete Commodore®
64™2, it can also run thousands of games, utilities, and business software packages
from the past, as well as new programs being written today by Commodore computer
enthusiasts. Excitement for the MEGA65 will grow as we discover what program-
mers create as they learn about the power and features of this modern Commodore
computer recreation. Together, we will build a new “homebrew” community to create
software and projects we didn’t think were possible on the MEGA65.

1Commodore is a trademark of C= Holdings
2Commodore 64 is a trademark of C= Holdings

xxxvii

We welcome you on this journey! Thank you for becoming a part of the MEGA65
community of users, programmers, and enthusiasts! Get involved, learn more about
your MEGA65, and join us online at:

OTHER BOOKS IN THIS SERIES
This is one of several MEGA65 documentation volumes. The series includes:

• The MEGA65 User’s Guide – Provides an introduction to the MEGA65, and a
condensed BASIC 65 command reference

• The MEGA65 BASIC 65 Reference Guide – Comprehensive documentation of all
BASIC 65 commands, functions and operators

• The MEGA65 Chipset Reference – Detailed documentation about the MEGA65
and C65’s custom chips

• The MEGA65 Developer Guide – Information for developers who wish to write
programs for the MEGA65

• The MEGA65 Book – All volumes in a single huge PDF for easy searching. 1080
pages and growing!

xxxviii

PART II
GETTING TO KNOW YOUR

MEGA65

1-2

CHAPTER 2
Setup

• Unpacking and connecting the MEGA65

• Rear Connections

• Side Connections

• MEGA65 screen and peripherals

• Optional Connections

• Operation

2-2

UNPACKING AND CONNECTING THE
MEGA65
Time to set up your MEGA65 home computer! The box contains the following:

• MEGA65 computer

• Power supply (black box with socket for mains supply)

• This book, the MEGA65 User’s Guide

In addition, to be able to use your MEGA65 computer you may need:

• A television or computer monitor with a VGA or digital video input, that is capable
of displaying an image at 480p or 576p (720x480 or 720x576 pixel resolution
at 50Hz or 60Hz)

• A VGA video cable, or;

• A digital video cable

These items are not included with the MEGA65.

You may also like to use the following to get the most out of your MEGA65:

• 3.5mm mini-jack audio cable and suitable speakers or hifi system, so that you
can enjoy the sound capabilities of your MEGA65.

• RJ45 Ethernet cable (regular network cable) and a network router or switch. This
allows the usage of the high-speed networking capabilities of your MEGA65.

2-3

REAR CONNECTIONS

1 3.5mm Audio Mini-Jack

2 External microSD Card Slot

3 Network LAN Port

4 Digital Video Connector

5 VGA Video Connector

6 External Floppy Disk Drive Connector

7 Cartridge Expansion Port

8 DC Power-In Socket

2-4

SIDE CONNECTIONS

1 Power Switch

2 Controller Port 2

3 Controller Port 1

4 Reset Button

Various peripherals can be connected to Controller Ports 1 and 2 such as joysticks,
paddles or mouses.

2-5

MEGA65 SCREEN AND PERIPHERALS

2-6

1. Connect the power supply to the Power Supply socket of the MEGA65.

2. If you have a VGA monitor and a VGA cable, connect one end to the VGA port
of the MEGA65 and the other end into your VGA monitor.

3. If you have a TV or monitor with a compatible Digital Video connector, connect
one end of your cable to the Digital Video port of the MEGA65, and the other
into the Digital Video port of your monitor. If you own amonitor with a DVI socket,
you can use a Digital Video to DVI adapter.

OPTIONAL CONNECTIONS
1. The MEGA65 includes an internal 3.5” floppy disk drive. You can also connect

older Commodore® IEC serial floppy drives to the MEGA65, such as the Com-
modore® 1541, 1571 or 1581. To use these drives, connect one end of an IEC
cable to the Commodore® floppy disk drive and the other end to the Disk Drive
socket of the MEGA65. You can also connect SD2IEC devices and Pi1541’s.
It is also possible to daisy-chain additional floppy disk drives or Commodore®
compatible printers.

2. You can connect your MEGA65 to an Ethernet network using a standard Ethernet
cable.

3. For enjoying audio from your MEGA65, you can connect a 3.5mm stereo mini-
jack cable to an audio amplifier or speaker system. If your system has RCA
connectors you will need a 3.5mm mini-jack to twin RCA adapter cable. The
MEGA65 also has a built-in amplifier to allow the use of headphones.

4. A microSD card (either SDHC or SDXC) can be inserted into the external microSD
card slot at the rear of the MEGA65.

5. Underneath the MEGA65, you will find an opening/trapdoor that provides ac-
cess to the internal SD card slot, and also two PMOD connecters that allow for
future possible hardware expansions such as Tape adapters, Userport interfaces,
extra memory, or even real SIDs.

OPERATION
Using the MEGA65

1. Switch on the MEGA65 by using the switch on the left-hand side.

2. After a moment, the following will be displayed on your TV or monitor:

2-7

THE CURSOR

The flashing square underneath the READY prompt is called the cursor. The cursor
indicates that the computer is ready to accept input. Pressing keys on the keyboard
will print their respective characters onto the screen. The characters will be printed at
the current cursor position, and the cursor will advance to the next position after every
key press.

You can type commands, for example: tell the computer to load a program. You can
even start entering program code.

2-8

CHAPTER 3
Getting Started

• Keyboard

• The Screen Editor

• Editor Functionality

3-2

KEYBOARD
Now that everything is connected, it’s time to get familiar with the MEGA65 keyboard.

You may notice that the keyboard is a little different from the keyboards used on com-
puters today. While most keys will be in familiar positions, there are some specialised
keys, and some with special graphic symbols marked on the front.

Here’s a brief description of how some of these special keys function.

Command Keys

The Command Keys are: RETURN , SHIFT , CTRL , ` , and RESTORE .

RETURN

Pressing RETURN enters the information you have typed into the MEGA65’s memory. The
computer will either act on a command, store some information, or display an error
message if you made a mistake.

SHIFT

The two SHIFT keys are located on the left and the right. They work very much like the
Shift key on a regular keyboard, however they also perform some special functions as
well.

In upper case mode, holding down SHIFT and pressing any key with two graphic sym-

bols on the front produces the right-hand symbol on that key. For example, SHIFT and

J prints theJ character.

In lower case mode, pressing SHIFT and a letter key prints the upper case letter on
that key.

Finally, holding SHIFT down and pressing a Function key accesses the function shown

on the front of that key. For example: SHIFT and F1 activates F2.

SHIFT LOCK

In addition to SHIFT is SHIFT
LOCK . Press this key to lock down the Shift function. Now any

key you press while SHIFT
LOCK is illuminated prints the character to the screen as if you

were holding down SHIFT . This includes special graphic characters.

3-3

CTRL

CTRL is the Control key. Holding down CTRL and pressing another key allows you to

perform Control Functions. For example, holding down CTRL and one of the number
keys allows you to change text colours. The colour that is printed at the top row on
the front of the number key will be used.

There are some examples of this in Chapter/Appendix 3 on page 3-7, and all of the
Control Functions are listed in Chapter/Appendix C on page C-5.

If a program is being LISTed to the screen, holding down CTRL slows down the display
of each line.

Holding CTRL and pressing * enters the Matrix Mode Debugger.

RUN STOP

Normally, pressing RUN
STOP stops the execution of a program. Holding SHIFT while press-

ing RUN
STOP loads the first program from disk.

Programs are able to disable RUN
STOP .

You can boot your MEGA65 into the Machine Code Monitor by holding down RUN
STOP

and pressing reset on the left-hand side.

RESTORE

The computer screen can be restored to a clean state without clearing the memory

by holding down RUN
STOP and pressing RESTORE . This combination also resets operating

system vectors and re-initialises the screen editor, which makes it a handy combination
if the computer has become a little confused.

Programs are able to disable this key combination.

You can also enter the Freeze Menu by holding RESTORE down for more than one second.
From there you can access the Machine Code Monitor.

3-4

THE CURSOR KEYS

At the bottom right-hand side of the keyboard are the cursor keys. These four direc-
tional keys allow you move the cursor to any position for on-screen editing.

The cursor moves in the direction indicated on the keys: ← ↑ → ↓ .

However, it is also possible to move the cursor up by using SHIFT and ↓ . In the same

way you can move the cursor left by using SHIFT and → .

You don’t have to keep pressing a cursor key over and over. If you need to move the
cursor a long way, you can keep the key pressed down. When you are finished, simply
release the key.

INSerT/DELete

This is the INSERT / DELETE key. When pressing INST
DEL , the character to the left is

deleted, and all characters to the right are shifted one position to the left.

To insert a character, hold SHIFT and press INST
DEL . All the characters to the right of

the cursor are shifted to the right. This allows you to type a letter, number or any other
character at the newly inserted space.

CLeaR/HOME

Pressing CLR
HOME places the cursor at the top left-most position of the screen.

Holding down SHIFT and pressing CLR
HOME clears the entire screen and places the cursor

at the top left-most position of the screen.

MEGA KEY

` or the MEGA key provides a number of different functions and can be used to
launch special utilities.

Holding SHIFT and pressing ` switches between lower and uppercase character
modes.

Holding ` and pressing any key with two graphic symbols on the front prints the
left-most graphic symbol to the screen.

Holding ` and pressing any key that shows a single graphic symbol on the front
prints that graphic symbol to the screen.

3-5

Holding ` and pressing a number key switches to one of the colours in the second
range, i.e., the colour that is printed at the bottom row on the front of the number key
will be used.

Holding ` and pressing TAB enters the Matrix Mode Debugger.

Switching on the MEGA65 or pressing the reset button on the left-hand side while

holding down ` switches the MEGA65 into C64-mode.

NO SCROLL

If a program is being LISTed to the screen, pressing NO
SCROLL freezes the screen output.

This feature is not available in C64-mode.

Function Keys

There are seven Function keys available for use by software applications, F1 F3

F5 F7 F9 F11 and F13 can be used to perform specific functions with
a single press.

Hold SHIFT to access F2 through to F14 as shown on the front of each Function
key.

Only Function keys F1 to F8 are available in C64-mode.

HELP

HELP can be used by software and also acts as F15 / F16 .

ALT

Holding ALT down while pressing other keys can be used by software to perform
specific functions. Not available in C64-mode.

Holding ALT down while switching the MEGA65 on activates the Utility Menu. You
can format an SD card, or enter the MEGA65Configuration Utility to select the default
video mode and change other settings, or to test your keyboard.

CAPS LOCK

CAPS
LOCK works similarly to SHIFT

LOCK in C65 and MEGA65-modes, but only modifies the letter

keys. Also, holding CAPS
LOCK down forces the processor to run at the maximum speed.

3-6

This can be used, for example, to speed up loading from the internal disk drive or SD
card, or to greatly speed up the de-packing process after a program is run. This can
reduce the loading and de-packing time from many seconds to as little as a fraction
of a second.

THE SCREEN EDITOR
When you switch on your MEGA65 or reset it, the following screen will appear:

The colour bars in the top left-hand side of the screen can be used as a guide to help
calibrate the colours of your display. The screen also displays the name of the system,
the copyright notice, and the ROM version. The displayed date and time are taken
from the internal RTC (Real-Time Clock), which can be set in the Configure Menu.

Finally, you will see the READY prompt and the flashing cursor.

You can begin typing keys on the keyboard and the characters will be printed at the
cursor position. The cursor itself will advance after each key press.

You can also produce reverse text or colour bars by holding down CTRL and pressing

9 , or R . This enters reverse text mode. When this is enabled, you can press and

hold the SPACE BAR . While doing so, a white bar will be drawn across the screen.

You can even change the current colour by holding CTRL down and pressing a number

key (from 1 to 8). For example, if you press and hold CTRL down and press 1 ,

the colour will change to black. Now, when you hold down the SPACE BAR , a black

bar will be drawn. If you continue to change the colour and press the SPACE BAR ,
you will get an effect similar to the image below:

3-7

You can disable reverse text mode by holding CTRL and pressing 0 .

By pressing any key, characters will be printed to the screen in the chosen colour.

A further eight colours can be selected by holding down ` and pressing a key from

1 to 8 . The colour that is printed at the bottom row on the front of the number

key will be used. For example, if you held ` down while pressing 4 , dark gray
will be used. For even more colours, see Chapter/Appendix C.3 on page C-11.

You can create fun pictures just by using these colours and letters. Here’s an example
of what a year four student drew:

What will you draw?

Functions

Functions using CTRL are called Control Codes. Functions using ` are called

Mega Codes. There are also functions that are called by using SHIFT , which are
called Shifted Codes.

Lastly, ESC enables the use of Escape Sequences.

3-8

You can read about all of these functions in detail in Chapter/Appendix C on page C-
5, but some are shown in this section.

ESC Sequences

Escape sequences are performed a little differently than a Control function or a Shift
function. Instead of holding the modifier key down, an Escape sequence is performed

by pressing ESC and releasing it, followed by pressing the desired key code.

For example: to switch between 40/80 column mode, press and release ESC , then

press X .

There are more modes available. You can create flashing text by holding CTRL down

and pressing O . Any characters you type in will flash. Turn flashmode off by pressing
ESC , then O .

EDITOR FUNCTIONALITY
The MEGA65 screen can allow you to do advanced tabbing, and quickly move around
the screen in many ways to help you to be more productive.

For example, press CLR
HOME to go to the home position on the screen. Hold CTRL down

and press W several times. This is the Word Advance function, which jumps your
cursor to the next word, or printable character.

You can set custom tab positions on the screen for your convenience. Press CLR
HOME

and then → to the fourth column. Hold down CTRL and press X to set a tab.

Move another 16 positions to the right again, and press CTRL and X again to set
a second tab.

Press CLR
HOME to go back to the home position. Hold CTRL down and press I . This

is the Forward Tab function. Your cursor will tab to the fourth position. Press CTRL

and I again. Your cursor will move to position 8. Why do you ask? By default, every
8th position is already set as a tabbed position. So the 4th and 20th positions have

been added to the existing tab positions. You can continue to press CTRL and I to
advance to the 16th and 20th positions.

To find the complete set of Control codes, see Chapter/Appendix C on page C-5.

Creating a Window

3-9

You can set a window on the MEGA65 working screen. Move your cursor to the be-

ginning of the ”BASIC 65” text. Press ESC , then press T . Move the cursor 10 lines
down and 15 to the right.

Press ESC , then B . Anything you type will be contained within this window.

To escape from the window back to the full screen, press CLR
HOME twice.

Extras

Long press on RESTORE to go into the Freeze Menu. Then press J to switch joystick
ports without having to physically swap the joystick to the other port.

Go to Fast mode with POKE 0,65 or use the Freeze Menu.

` + SHIFT switches between uppercase and lowercase text for the entire display.

3-10

CHAPTER 4
Configuring your MEGA65

• Important Note

• Formatting SD cards

• Installing ROM and Other Support Files

• On-boarding

• Configuration Utility

4-2

IMPORTANT NOTE
For your convenience, your MEGA65 comes with an SD card with all of the essential
files already on it, so you may prefer to skip this section and jump straight to the on-
boarding section on page 4-9.

Alternatively, you’re welcome to read this section and familiarise yourself on how your
SD card was prepared.

Do not format the SD card that came with your MEGA65. If you want to create a
new bootable SD card, please use another one, and keep the SD card that came with
your MEGA65 as a safety backup.

FORMATTING SD CARDS
The MEGA65 has two SD card slots: A full-size SD card slot inside, under the trap-
door, and a microSD size slot on the rear. The current version of the MEGA65 firmware
only supports the use of one SD card at a time. If you have cards in both slots, the
MEGA65 will default to the external slot. The exception to this is that the MEGA65’s
FDISK/FORMAT utility can access both, allowing you to select which SD card to format
or repair.

Depending on the model, your MEGA65 may or may not have come with a pre-
configured SD card. If it hasn’t, or if you wish to use a different SD card, (e.g., with a
larger capacity), you must format it for use in the MEGA65.

This must be done on the MEGA65, not on a PC or other computer.

Only use SDHC cards. Older SD cards (typically with a capacity of <4GB) will not
work. Newer SDXC cards with capacities greater than 32GB may or may not work.
We would appreciate hearing your experience with such cards. It is unimportant as to
which file-system is currently on the card, as the MEGA65 FDISK/FORMAT utility will
completely reformat the card.

There are several reasons for this: First, to fit themost features into theMEGA65’s small
operating system, it is particular about the FAT32 file system it uses. Second, only the
MEGA65 FDISK/FORMAT utility can create a MEGA65 System Partition. The MEGA65
System Partition holds non-volatile configuration settings for your MEGA65, and also
contains the freeze slots that make it easy to switch between MEGA65 programs and
games.

Formatting an SD card on the MEGA65 is easy.

Switch the MEGA65 on while holding down the ALT key.

4-3

This will present the MEGA65 Utility Menu, which contains a selection of built-in utili-
ties, similar to the following:

Note that Utility Menu is always accessible, even if no SD card is present in both the
internal and external slots.

The exact set of utilities depends on the model of your MEGA65 and the version of
the MEGA65 factory core which it is running. However, all versions include both the
MEGA65 FDISK/FORMAT utility, and the MEGA65 Configure utility. Most models also
include a keyboard test utility, that you can use to test that your keyboard is functioning
correctly. This is the same utility used in the factory when testing brand new keyboards.

Select the number that corresponds to the FDISK/FORMAT utility. This will typically be
2. The FDISK utility will start, and attempt to detect the size of all SD cards you have
installed. If you have both an internal and external SD card installed, it will allow you to
choose which one you wish to format. The internal SD card is bus 0, and the external
microSD card is bus 1. Note that the MEGA65 will always attempt to boot from the
external microSD card if one is present.

For safety, when formatting we strongly recommend that you remove any SD card or
microSD card that you do not intend to format, so that you do not accidentally destroy
any data. This is because formatting an SD card on the MEGA65 cannot be undone,
and all data currently on the SD card will be lost. If you have files or data on the SD
card that you wish to retain, you should first back them up. The contents of the FAT32
partition can be easily backed up by inserting the SD card into another computer.
The contents of the MEGA65 System Partition, including the contents of freeze slots
requires the use of specialised software.

You should aim to back up valuable data from your MEGA65 on a regular basis, es-
pecially while the computer remains under development. While we take every care

4-4

to avoid data corruption or other mishaps, we cannot guarantee that the MEGA65 is
free of bugs in this regard.

If you have only an internal SD card, you might see a display similar to the following:

Once you have selected the bus, the FDISK/FORMAT utility will ask you to confirm that
you wish to delete everything:

To avoid accidental loss of data, you must type DELETE EVERYTHING in capitals and press
RETURN . Alternatively, switch the MEGA65 off and on to abort this process without
causing damage to your data.

It is also possible to attempt a recovery from a lost Master Boot Record error (“Boot
Sector”) by typing FIX MBR instead.

4-5

The aim here is to have a correctly formatted SD card with all of the essential files
stored on it so the MEGA65 can properly boot. When switching on, the MEGA65 will
search for, and boot using these files:

• FREEZER.M65 (Freeze Menu program)

• AUDIOMIX.M65 (Freeze Menu audio mixer utility)

• C64THUMB.M65 (C64 thumbnail image used in freezer)

• C65THUMB.M65 (C65 thumbnail image used in freezer)

• MEGA65.ROM (128KB ROM file)

• MEGA65.D81 (default disk image, automatically mounted)

Straight out of the box, the MEGA65 will only have one SD card installed, accessi-
ble via the trap-door under the case. This SD card contains all of the essential files
needed to properly boot up. If an external microSD card is also detected during boot
up, the MEGA65 will give it higher priority, and will try to boot from it instead. This
means that the external microSD card needs to have the essential files on it, other-
wise the MEGA65 will not boot up properly and will fall back to loading the OpenROM,
which does not support all MEGA65 features. In general, if your MEGA65 cannot boot
properly and falls back to OpenROM, your boot-up screen will look similar to this:

INSTALLING ROM AND OTHER
SUPPORT FILES
The MEGA65 FDISK/FORMAT utility will add a copy of the Open ROMs project’s C64-
compatible ROM to your SD card, and will name it MEGA65.ROM.

For MEGA65 owners, we have replaced this file with the latest ROM from the ’Closed
ROMs’ project. It provides many improvements over the original/incomplete C65
ROMs. It contains the operating system, BASIC 65, CBDOS and the machine lan-
guage monitor BSMON. This ROM is developed especially for the MEGA65 and can
be identified by the version number 92xxxx.

4-6

However, you may have other ROMs that you wish to use on your MEGA65. You can
copy as many of these as you wish onto the SD card, just make sure that they have
the .ROM file extension. The default ROM should be called MEGA65.ROM. These files
must be 128KB in size, and use the same internal format as the ROMs intended for
the C65. This means that the C64-mode KERNAL must be placed at offset $E000, a
C65-mode BASIC at $A000, and a suitable character set at $D000.

You can optionally name your alternate ROMs as ’MEGA65x.ROM’, replacing ’x’ with
a number from 0 to 9. This allows you to quickly boot-up to your alternate ROMs by
holding down a number from 0 to 9 prior to switching on your MEGA65.

Other important support files include FREEZER.M65 and AUDIOMIX.M65, which allow
you to use the MEGA65’s integrated freezer. More details are provided in the ’Floppy
Disks And D81 Images’ chapter on page 6-3.

ROM File

Original C65 ROMs

You may want to source your own C65 ROM via other means. There were many differ-
ent versions created during the development of the Commodore 65, and the MEGA65
can use any of them. However, they will not support the advanced features of the
MEGA65, and are incomplete and buggy, as development on them ceased due to
Commodore abandoning the C65 project.

MEGA65 Closed ROMs

There are also newer versions of the MEGA65 Closed ROM actively under develop-
ment. These ROMs improve upon the original C65 ROMs and make better use of the
extra hardware capabilities that the MEGA65 has over the original C65 hardware.
These ROMs are available via the filehost (at https://files.mega65.org), but only
to owners of the MEGA65, who will need to log into the filehost with their credentials
in order to download it. It can be located by visiting the ”Files” tab and searching for
”kernal rom”:

MEGA65 ROM diff files

4-7

https://files.mega65.org

If you have sourced your own 911001.bin C65 ROM and would like to patch it to the
latest MEGA65 closed ROM, we do provide patches, as the additional improvements
we have made to the closed rom are open source. Those diff files are available here:

http://mega65.org/rom-diffs

MEGA65 Open ROMs

Another available option is to make use of MEGA65 Open ROMs. The latest version
of this is always downloadable from either of the following urls:

• http://mega65.org/open-roms

• https://github.com/MEGA65/open-roms/raw/master/bin/mega65.rom

Support Files

For official owners of the MEGA65 (both the devkit and the final product), visit the
following url and log in with the user credentials you have been provided. This will
take you to the MEGA65 Filehost location where the ”MEGA65 SD card essentials”
download page is located. Then click the ”Download” link to retrieve the latest ”SD
essentials.rar” file.

http://mega65.org/sdcard-files

Note that this link is only available to official owners of the MEGA65 product, as the
fileset also contains the licensed closed-source MEGA65.ROM file.

For Nexys board owners in search of a similar fileset (without the ROM), visit the fol-
lowing url instead:

http://mega65.org/sdcard-norom

4-8

http://mega65.org/rom-diffs
http://mega65.org/open-roms
https://github.com/MEGA65/open-roms/raw/master/bin/mega65.rom
http://mega65.org/sdcard-files
http://mega65.org/sdcard-norom

This will take you to the MEGA65 Filehost location where the ”MEGA65 SD card es-
sentials - No ROM” download page is located. Click the ”Download” link to retrieve
the latest ”SD essentialsNoROM.rar” file.

Note that while this fileset does not contain a ROM, there are future plans for it to
include the freely available ROM from the Open ROMs project.

ON-BOARDING
On first launch of your MEGA65, you will see the on-boarding screen.

Here you can select and test you screen configuration.

For example, press TAB to switch to PAL 50HZ

4-9

Then press RETURN , followed by Y to test the new video mode.

Press K to keep the new video mode.

Press RETURN to complete the configuration.

4-10

Note for Nexys4 board users:

At this very specific step, the board is supposed to reboot and display the main
MEGA65 screen. If the board does not reboot and the screen remains black, then
switch power to the board off then on again.

After the reboot you will get the main MEGA65 screen:

CONFIGURATION UTILITY
The configuration utility for theMEGA65 has a similar purpose to the BIOS on a PC, and
allows you to control certain default behaviours of your MEGA65; however, rather than
storing the configuration data in a battery-backed RAM, the MEGA65 stores this data
on sector 1 of the SD card. If you switch SD cards, you will change the configuration
data.

To enter the configuration utility, switch the MEGA65 on while holding ALT down.
This will show the utility menu, similar to the following:

4-11

Now press the number corresponding to the Configure Menu. The MEGA65 Configu-
ration Utility will launch, showing a display similar to the following:

If your MEGA65’s System Partition has become corrupt, you may be prompted to press
F14 to correct this, i.e., hold SHIFT and tap the F13 key, with a display similar

to the following:

4-12

To correct this error, press F13 . Next, press F7 to save the reset configuration,
otherwise the reset data will not be saved to the MEGA65 System Partition.

Once you have dismissed that display, or if your MEGA65 System Partition was not
corrupted, you can begin exploring and adjusting various settings. The program can
be controlled using the keyboard, or optionally, an Amiga™or C1351 mouse.

You can advance screens by pressing F1 , or use F2 to navigate in the opposite

direction. Use the ← and → keys to navigate between screens.

Use the ↑ and ↓ keys to select an item.

Press RETURN or SPACE to toggle a setting, or to change a text or numeric value.
The black circle next to an option indicates the current selection.

When finished, you can press F7 to see the option to save the changes. This will
give you four options:

4-13

• Exit Without Saving abandons any changes made in the MEGA65 Configure util-
ity and exits.

• Apply and Test Settings Now uses the current settings immediately but does not
exit. This is helpful to test compatibility of your TV or monitor with PAL or NTSC
video modes. If you still see your display after applying a change, it is safe to
save those settings.

• Restore Factory Defaults resets the MEGA65 configuration settings to the fac-
tory defaults. It will randomly select a new MAC address for models that include
an internal Ethernet adaptor. If you wish to commit these changes, you must still
save them.

• Save as Default and Exit commits changes made to the SD card. These changes
will be used when the MEGA65 is switched on.

4-14

Input Devices

• Joystick 1 Amiga Mouse Mode allows either normal operation, where software
will see it as an Amiga mouse or 1351 emulation mode, where the MEGA65
translates the Amiga mouse’s movements into 1351 compatible signals. This
allows you to use an Amiga mouse with existing C64/C65 software compatible
with a 1351 mouse.

• Joystick 1 Amiga Mouse Detection can be set to conservative or aggressive. If
you use an Amiga mouse and it fails to move smoothly in all directions, you may
set it to aggressive. Conversely, if you regularly use joysticks in the port, and
have difficulties with the joystick input misbehaving, you may select the conser-
vative option.

• Joystick 2 Amiga Mouse Mode is identical to the first option, but for the second
joystick port. This allows you to have different settings for each port.

• Joystick 2 Amiga Mouse Detection similarly provides the ability to separately
control the Amiga mouse detection algorithm for the second joystick port.

4-15

Chipset

• Real-Time Clock allows setting the MEGA65’s Real-Time Clock for those models
that include one. To set the clock or calendar, simply edit the field and press
RETURN . The display does not change while viewing this page, but if you use the
cursor left and right keys to select another page and return to this page, the
values will update if a Real-Time Clock is fitted and functioning.

• DMAgic Revision allows selecting the default mode of operation for the C65
DMAgic DMA controller. This option is only required for ROMs not detected by
the MEGA65’s HYPPO Hypervisor. If you see screen corruption in BASIC, try tog-
gling this option.

• F011 Disk Controller This option allows you to select whether the internal 3.5”
floppy drive functions using real diskettes, or whether it simply makes noises to
add atmosphere when using D81 disk images from the SD card. This merely sets
the default option, and you can change this setting, or select a different disk
image for use as either or both of the C65 3.5” DOS based drives.

• Default Disk Image allows you to choose the D81 disk image used with the in-
ternal drive, if the F011 Disk Controller option above is set to use an SD card
disk image.

4-16

Video

• Video Mode selects whether the MEGA65 starts in PAL or NTSC. The MEGA65
supports true 480p NTSC and 576p PAL double-scan modes, with exact 60Hz
/ 50Hz frame-rates. This setting sets the default value, and the system can be
switched between PAL and NTSC via the Freeze Menu, or under software control
by MEGA65-enabled programs.

Audio

4-17

• Audio Output selects whether the SIDs and digital audio channels are combined
to provide a monaural signal or whether the left and right tagged audio sources
are separated to provide a stereo signal. This setting can be changed in the
Audio Mixer of the Freeze Menu, or under the control of MEGA65-enabled soft-
ware.

• Swap Stereo Channels allows switching the left and right-hand sides of the
stereo audio output. This is useful for software that expects left and right SIDs
to be at swapped addresses compared with the MEGA65 defaults.

• DAC Algorithm allows selecting between two different digital to analog con-
version algorithms. Both options sound good and the selection is a personal
preference.

• Audio Amplifier allows enabling or disabling the audio amplifier contained in
some models of the MEGA65. This option works for audio outputs, e.g., internal
speaker or loud speaker.

Network

• MAC Address allows you to set the default MAC address of your MEGA65. This
can be changed at run-time by MEGA65-enabled software.

4-18

CHAPTER 5
Cores and Flashing

• What are cores, and why do they matter?

• Bitstream files

• Selecting a core

• Installing an upgrade core for the MEGA65

• Installing other cores

• Creating cores for the MEGA65

• Replacing the factory core in slot 0

• Understanding The Core Booting Process

5-2

WHAT ARE CORES, AND WHY DO THEY
MATTER?
The MEGA65 computer uses a versatile chip called an FPGA as its heart, which is
an acronym for “Field Programmable Gate Array”. This is a fancy way of saying that
FPGAs are chips that can be programmed by you to impersonate other chips. They
do this by re-configuring their arrays of logic gates to reproduce the circuits of other
chips. As a result, FPGAs are not an emulation, but a re-creation of other chips.

However, FPGAs forget what chip they are pretending to be whenever the power is
turned off, or when they are re-programmed. This might sound annoying, but it’s actu-
ally very powerful. It means that you can tell the FPGA in the MEGA65 to impersonate
not just the MEGA65 design as it currently stands, but to impersonate any improve-
ments made to the design itself. In other words, you can upgrade the MEGA65 hard-
ware just by providing a new set of instructions to the FPGA. These sets of instructions
are called “cores”, or “bitstreams”. For the purpose of the MEGA65, these two terms
are interchangeable.

FPGAs are so flexible that not only is it possible to teach the MEGA65 to be a better
MEGA65, but it is also possible to teach the MEGA65 to be other interesting home
computers. We believe that the FPGA is powerful enough to re-create a Commodore
PET™, VIC-20™, Apple II™, Spectrum™, BBC Micro™, or even an Amiga™, or one of
the 16-bit era game consoles. Unlike some previous FPGA-based retro-computers,
the MEGA65, its FPGA instructions, board layout, and other information is all available
for free under various open-source licenses. This means that anyone is free to create
other cores for the MEGA65 hardware.

To top it all off, the MEGA65 has enough storage for 7 different sets of FPGA instruc-
tions, so that you can easily switch the MEGA65’s “personality” from being a MEGA65
to another system, and back again.

The remainder of this chapter describes how to select a core to run on the MEGA65,
and how to store a core into one of the seven slots in the flash memory storage.

Model types

Retail models of the MEGA65 are referred to as the MEGA65R3A (revision 3A).
Throughout the course of development of the MEGA65, there have been several other
model variants used by developers, each with differing specifications and available
core slots, so they will be listed here, just to raise awareness of them.

5-3

Model FPGA type QSPI size #slots slot size

MEGA65R3A The retail/release version of the MEGA65
A200T 64MB 8 8MB

MEGA65R3 The DevKit model
A200T 32MB 4 8MB

MEGA65R2 An earlier MEGA65 model
A100T 32MB 8 4MB

Nexys4 FPGA development boards used early in the project
A100T 16MB 4 4MB

BITSTREAM FILES
Firstly, there are a variety of files related to the MEGA65’s cores/bitstreams that you
should be familiar with, in order to decide what file-types are needed for what occa-
sion.

File types

File-type Purpose
.cor The MEGA65 project’s custom bitstream file format, containing ex-

tra header information to help identify the bitstream and the spe-
cific MEGA65 target device it is intended for. The MEGA65’s flash-
ing utility makes use of this additional information to ensure you
don’t accidentally flash the bitstream of a different device.

.mcs The bitstream file in a format needed when flashing it to your de-
vice’s QSPI flash memory chip via Vivado®.

.prm This file contains checksum information that can be used by Vivado
to verify the .mcs file you have tried to flash. Optional.

.bit A plain bitstream file that can be copied to your SD card.

Where to download

Visit the following url:

https://files.mega65.org

5-4

https://files.mega65.org

Click the ’Files’ tab, and in the search-bar, type ’.cor’ and press Enter. For the purposes
of this chapter on core-flashing, download the desired .cor file that suits your target
device:

• mega65r3-dev.cor (for MEGA65R3 boards, both Release and DevKits)

• mega65r2-dev.cor (for MEGA65R2 boards)

• nexys4ddr-widget-dev.cor (for Nexys4 DDR boards)

• nexys4-dev.cor (for Nexys4 PSRAM boards)

• You can also find .bit, .mcs and .prm files located here too.

Alternatively, if you intend to flash the QSPI chip via Vivado, you would instead down-
load the .mcs file for your target device (and optionally, the .prm files as well).

Another alternative for Nexys4 board users is to download .bit files and copy them to
SD cards, which you can also download.

But once again, for the purposes of this chapter on core-flashing, you will only be
interested in the .cor files.

SELECTING A CORE
To operate the MEGA65 with an alternate core, switch off the power to the MEGA65,

and then hold NO
SCROLL down while switching the power back on. This instructs the

MEGA65 to enter the Flash and Core Menu, instead of booting normally. When boot-
ing like this, the following screen will appear:

5-5

To select a core and start it, use the cursor keys to highlight the desired core, and then

press RETURN . If you select a flash slot that does not contain a valid core, it will be
highlighted in red to indicate that it cannot be booted from:

Alternatively, you can press the number corresponding to the core you would like to
use. The MEGA65 immediately reconfigures the FPGA, and launches the core. If
for some reason the core is faulty, the MEGA65 may instead restart normally after
a few seconds, and depending on the circumstances, take you back into the menu
automatically.

The MEGA65 will keep running the new core until you physically power it off. Pressing
the reset button will not reset which core is being run.

5-6

INSTALLING AN UPGRADE CORE FOR
THE MEGA65
Installing and upgrading the core (from a .cor file) for the MEGA65 can be done in a
few easy steps.

First, copy the core onto the MEGA65’s SD card. You can do this by removing the
SD card and copying a previously downloaded core file to it from another computer.
Alternatively, you can insert an SD card that already contains the upgrade core. Finally,
you can use the MEGA65 TFTP Server program and the MEGA65’s Ethernet port to
upload the core upgrade file onto the SD card from another computer on your local
network.

The Flash Menu will use the external microSD slot over the internal SD card, so if you
have both a microSD card and SD card inserted in your MEGA65, the Flash Menu will
ignore the internal SD card. To avoid this, simply copy the core(s) from the internal SD
card to the external microSD card, or temporarily remove the external microSD card
from the rear of your MEGA65, so that the Flash Menu will be able to find the core
files. Also note that the Flash Menu currently only supports DOS-style 8.3 character
filenames in UPPERCASE. If your core files have a longer name, you will need to rename
them when copying them onto your microSD or SD card.

Next, once you have the upgrade core on the MEGA65’s SD card, enter the Flash and

Core Menu as above, i.e., switch off the power, and hold NO
SCROLL down while switching

the power on again. When the Flash and Core Menu appears, hold CTRL down and

press 1 (or CTRL and a different number, if you wish to replace the contents of a
different flash slot). The MEGA65 will present you with a list of core files that are on
the SD card:

5-7

Select the upgrade core file you wish to install using the cursor keys, and then press
RETURN . The MEGA65 will then erase the flash slot, before writing the upgraded core.
You will see a progress bar while the MEGA65 erases the flash slot:

The progress bar will then reset, and the MEGA65 will write the new core into the slot.
This process can take up to 15 minutes, depending on the size of the core file. If you
simply wish to erase a flash slot, you can select the “– erase slot –” option instead of a
file name. This will then perform only the erasure part of the process.

It is important to not switch the power off during this process. If you do, the
core file will be only partially installed, and the MEGA65 may not start properly. While
inconvenient, it won’t damage your MEGA65 or leave it in an unusable state: It will
simply fall back to using the factory supplied core. If this happens, enter the Flash and
Core Menu as described above, and follow the instructions again.

5-8

When the flashing process has completed, you will see a message indicating that the
process is complete:

When this happens, simply switch off the power to the MEGA65 and switch it back on
again for it to start using the upgraded core. This is because the MEGA65 will always
try to start the core in slot 1 when it is powered on.

INSTALLING OTHER CORES
Installing other cores works very similarly to installing upgrade cores. The only differ-

ence is that you press CTRL and 2 to 7 from the Flash and Core Menu, so that
the core gets installed to another slot.

Of course, there is nothing stopping you from installing a different core in slot 1, so
that the MEGA65 behaves as a different type of computer when you switch it on. If
you do this, you can always choose to run the MEGA65 core by entering the Flash and
Core Menu, and selecting the MEGA65 core.

CREATING CORES FOR THE MEGA65
If you would like to create your own cores for the MEGA65, or help contribute to
the MEGA65 core, then you may also wish to take a look at Chapter/Appendix S
on page S-5, which explains how to use the FPGA development tools to flash the
MEGA65.

5-9

REPLACING THE FACTORY CORE IN
SLOT 0
Replacing the core in slot 0 is not recommended, because if it ever gets corrupted, it
will “brick” the machine. This will require you to connect a TE-0790 JTAG programmer,
by opening your MEGA65 case, installing the module, going through some rather con-
voluted software preparation steps (similar to if you were creating your own bistream/-
core) and then restoring a working bitstream into the slot.

The MEGA65 is an open system though, so it’s possible for you to do all of this, but
it’s very hard. There is a secret key-press combination in the Flash Menu that will then
challenge you with a series of questions with increasing difficulty to ensure that you
know what you are doing. Only after you have correctly answered these questions will
you be given the option to erase and/or replace the contents of slot 0. Details of the
questions asked are purposely not documented.

There really should be no reason for using this method to replace the contents of slot
0: If you want to make your own bitstreams/cores, you can either write them to other
slots and use the Flash Menu to activate them, or you can simply use a TE-0790 JTAG
programmer, and then use Vivado or other FPGA development tool to write to the flash
directly. This method is also somewhat faster than flashing through the Flash Menu.

You have been warned!

UNDERSTANDING THE CORE BOOTING
PROCESS
This section summarises how the MEGA65 selects which core to start with when it is
powered on. The process is shown in the following figure:

5-10

When the MEGA65 is powered on, it does the following:

• Starts the bitstream stored in slot 0 of flash memory. If that is the MEGA65
Factory Core, the MEGA65 HYPPO Hypervisor starts.

5-11

• If it is the first boot since power-on, HYPPO starts the Flash Menu program – but
note that the Flash Menu in this mode may not show anything on the screen to
indicate that it is running!

• The Flash Menu then checks if the system is booting from Flash Slot 0.

• If Flash Slot 0 is being used, it then checks if NO
SCROLL is being held.

• If it is, the Flash Menu program shows its display, allowing you to select or re-flash
a core.

• If NO
SCROLL is not being pressed, the Flash Menu program checks if Flash Slot 1

contains a valid core.

• If it does, then the Flash Menu program attempts to start that core.

• If it succeeds, then the system reconfigures itself for that core, after which the
behaviour of the system is according to that core.

• If it fails, the keyboard will go into “ambulance mode”, showing flashing blue
lights to indicate that some first-aid is required. Note that in ambulance mode
the reset button has no effect: You must switch the MEGA65 off and on again.

If you have selected a different core in the Flash Menu, the process is similar, except
that the ambulance lights will appear for only a limited time, as the FPGA will auto-
matically search through the flash memory until it finds a valid core. If it gets to the
end of the flash memory, it will start the MEGA65 Factory Core from slot 0 again.

5-12

CHAPTER 6
Floppy Disks And D81 Images
• Terminology

• The Freezer

6-2

TERMINOLOGY
BASIC and CBDOS use following terminology:

UNIT is a device number in the range 0-31. The numbers from 0 to 11 are reserved
for following device types:

unit # device comment
0 KEYBOARD input
1 unused was TAPE on C64
2 unused was RS232 on C64
3 SCREEN input/output
4-5 IEC PRINTER output
6-7 IEC PLOTTER output
8-9 CBDOS drives floppy drive or disk image
10-11 IEC drives 1541, 1571, 1581, FD-2000

DRIVE is the drive number inside a UNIT.

device drive numbers comment
1581 IEC 0 single drive
1571 IEC 0 single drive
1541 IEC 0 single drive
FD-2000 IEC 0 single drive (CMD)
FD-4000 IEC 0 single drive (CMD)
SD2IEC 0 drive images

6-3

For all single drives the drive number is always 0. These are all known drives with an
IEC interface, for example the CBM drives 1541, 1571, 1581 and the CMD drives
FD-2000 and FD-4000. Also SD2IEC devices, which emulate a CBM drive using disk
images on SD-card.

Dual disk drives like 4040, 8050, 8250 which use drive numbers 0 and 1 are equipped
with the IEEE-488 interface and need an IEEE-488 to IEC converter to be used on
the MEGA65.

The internal floppy controller of the MEGA65 can control two floppy drives (one inter-
nal and one external, both attached to the same ribbon cable). The FREEZER can be
used to assign D81 images from the SD-card to the drive numbers 0 and/or 1, instead
of physical floppy drives.

BASIC commands, that address files or disks, use therefore U for UNIT and D for drive.
The default settings are UNIT = 8 and DRIVE = 0.

THE FREEZER
The freezer is a tool for changing system parameters at any time regardless of the

currently running program. The freezer is invoked by pressing RESTORE for approximately
half to one second. The current status of the computer is frozen and the freezer menu,
similar to the picture above, is displayed. Most options are self explaining or will be
covered in detail in the online documentation. This chapter describes, how to assign
disk images and the internal floppy disk drive.

The bottom/right region of the freezer screen shows the current assignments. The
internal CBDOS (Computer Based Disk Operating System) can handle two 3.5” flop-
pydrives or D81 images. Drive 0 can be either the internal floppy disk drive or a D81
disk image. Drive 1 can be either an external floppy disk drive (connected with the
same ribbon cable as the internal drive) or a D81 disk image.

The typical configurations will probably be:

Drive 0 :internal floppy disk drive, drive 1: disk image
Drive 0 :disk image, drive 1: disk image

The assignment, and the mounting of disk images can be done by pressing O for

drive 0 or 1 for drive 1.

The drive numbers are used internally by the CBDOS. BASIC and Kernal however ad-
dress the storage devices by UNIT numbers. The CBDOS fakes two single drives for
the operating system, by assigning separate unit numbers to drive 0 and drive 1. The
default assignment is:

6-4

UNIT 8, DRIVE 0 :internal drive 0 (internal floppy or disk image)
UNIT 9, DRIVE 0 :internal drive 1 (external floppy or disk image)

Sometimes one wants to change this unit assignment, if for example a floppy drive
1541 is plugged in as unit 8 to the IEC port. Then the internal drive assignment can
be switched to an alternative unit number, to avoid conflict.

8 toggles the unit assignment of drive 0 between 8 and 10.
9 toggles the unit assignment of drive 1 between 9 and 11.

After setting the preferences, the freezer can be exited with F3 . The freezer
restores the screen and returns to the interrupted program.

The drive and unit assignments are temporary and will be reset to default after power
down or reset. For permanent settings use the CONFIGURE menu.

6-5

6-6

PART III
FIRST STEPS IN CODING

6-8

CHAPTER 7
How Computers Work

• Computers are stupid. Really stupid

7-2

Did you know that many computer experts and programmers learned how to use com-
puters when they were still small children? Home computers only became common in
the early 1980s. They were so new, that people would often write programs to do
what they wanted to do, because no software existed to do the job for them.

It was also quite common for people working in all sorts of office jobs to learn how to
program the computers they used for their jobs. For example, the people processing
payroll for a company would often learn how to program the computer to calculate
the everyone’s pay!

Things have changed a lot since then, though. Now most people choose existing pro-
grams or apps to do what they need, and think that programming is a specialised skill
that only some people have the ability to learn. But this isn’t true. Of course, like every
other field of pursuit everyone will be better at some things than others, whether it be
sports, knitting, maths or writing. But almost everyone is able to learn enough to help
them in their life.

We created the MEGA65, because we believe that YOU can learn to program, so that
computers can be more useful to you, and as with learning any new skill, that you can
have the satisfaction and enjoyment and new adventures that this brings!

COMPUTERS ARE STUPID. REALLY
STUPID
How can this be so? Computers are able to do so many different things, often thou-
sands of times faster than a person can. So how can we say that computers are
stupid? The answer is that no computer can do anything that it hasn’t been instructed
by a person to do. Even the latest Artificial Intelligence systems were instructed how
to learn (or how to learn, how to learn). To understand why this is so, it is helpful to
understand how computers really work.

Making an Egg Cup Computer

The heart of a computer is its Central Processing Unit, or CPU for short. Many modern
computers have more than one CPU, but let’s keep things simple to begin with. The
CPU has a set of simple instructions that it understands, like, “get the thing from cup
#21,” “put this thing into cup #403,” “add these things together,” or “do the following
instruction, but only if the thing in cup #712 is the number 3.”

But what do wemean with all of these “things” and “cups”? Let’s start by thinking about
how we could pretend to be a computer using just an empty egg carton, some small
pieces of paper and a pencil or pen. Start by writing numbers, beginning with one, in

7-3

each of the little egg cups in the egg carton. Then write the number zero on a little
scrap of paper and put it in the first cup. Do the same for the other cups. You should
now have an egg carton with numbered cups, and with every cup having a scrap of
paper with the number zero written on it. Now we just need to decide on a few simple
rules that will explain how our egg-cup computer will work:

• First, each cup is allowed to hold exactly one thing at a time. Never more. Never
less. This so that when we ask the question “what is in box such-and-such,” that
there is a single clear answer. It’s also how computer memory works: Each piece
of memory can hold only one thing at a time.

• Second, we need a way for the computer to know what to do next. On most
computers this is called the ProgramCounter, or PC, for short (not to be confused
with PC when people are talking about a Personal Computer). The PC is just the
number of the next of the next memory location (or in our case, egg-cup), that
the computer will examine, when deciding what to do next. You might like to
have another piece of paper that you can use to write the PC number on as you
go along.

• Third, we need to have a list of things that the egg-cup computer will do, based
on what number is in the egg-cup indicated by the PC.

So let’s come up with the set of things that the computer can do, based on the number
in the egg-cup indicated by the PC. We’ll keep things simple with just the following:

Number in
the egg-cup Action

0 i) Add one to the PC, and do nothing else.
1 i) Add one to the PC.

ii) Set the PC to be the number stored in that egg-cup.
2 i) Add one to the PC.

ii) Add the number in the egg-cup indicated by the PC
to the number in the egg-cup indicated by the num-
ber in the egg-cup following that.
iii) Put the answer in the egg-cup indicated by the
egg-cup following that.
iv) Finally, add two more to the PC, to skip over the
egg-cups that we made use of.

Don’t worry if that sounds a bit confusing for now, specially that last one – we will
go through it in detail very soon! The best way to explain it, is to go through some
examples.

7-4

CHAPTER 8
Getting Started in BASIC

• Your first BASIC programs

• First steps with text and numbers

• Making simple decisions

• Random numbers and chance

8-2

It is possible to code on the MEGA65 in many languages, however most people start
with BASIC. That makes sense, because BASIC stands for Beginner’s All-purpose Sym-
bolic Instruction Code: It was made for people like you to get started with in the world
of coding!

A few short words before we dive in: BASIC is a programming language, and like
spoken language it has conventions, grammar and vocabulary. Fortunately, it is much
quicker and easier to learn than our complex human languages. But if you pay atten-
tion, you might notice some of these structures, and that can help you along your path
in the world of coding.

If you haven’t already read Chapter/Appendix 3 on page 3-3, it might be a good
idea to do so. This will help you be able to more confidently interact with the MEGA65
computer.

It’s also great to remember that if you really confuse the MEGA65, you can always get
back to the READY. prompt by just pressing the reset button on the left-hand side of
the keyboard, or if that doesn’t help, then by turning it off and on again using the power
switch on the left-hand side of the keyboard. You don’t have to worry about shutting
the computer down properly or any of that nonsense. The only thing to remember is
that if you had any unsaved work, it will be lost when you switch the computer off and
on again or press the reset button.

Finally, if you don’t understand all of the descriptions and information with an example
– don’t worry! We have provided as much information as we can, so that it is there in
case you have questions, encounter problems are just curious to discover more. Feel
free to skip ahead to the examples and try things out, and then you can go back and
re-read it when you are motivated to find something out, or help you work though a
problem. And if you don’t find the answer to your problem, send us a message! There
are support forums for the MEGA65 at https://mega65.net, and you can report
problems with this guide at:

https://github.com/mega65/mega65-user-guide

We hope you have as much fun learning to program the MEGA65 as we have had
making it!

YOUR FIRST BASIC PROGRAMS
The MEGA65 was designed to be programmed! When you switch it on, it takes a
couple of seconds to get its house in order, and then it quickly shows you a “READY.”
prompt and flashing block called the cursor. When the cursor is blinking, it tells you
that the computer is waiting for input. The “READY.” message tells you that the BASIC

8-3

https://mega65.net
https://github.com/mega65/mega65-user-guide

programming language is running and ready for you to start programming. You don’t
even need to load any programs – you can just get started.

Try typing the following into the computer and see what happens:

H E L L O C O M P U T E R

To do this, just type the letters as you see them above. The computer will already

be in uppercase mode, so you don’t need to hold SHIFT or CAPS
LOCK down. When you

have typed ”HELLO COMPUTER”, press RETURN . This tells the computer you want it to
accept the line of input you have typed. When you do this, you should see a message
something like the following:

If you saw a SYNTAX ERROR message something like that one, then congratulations:
You have succeeded in communicating with the computer! Error messages soundmuch
nastier than they are. The MEGA65 uses them, especially the syntax error to tell you
when it is having trouble understanding what you have typed, or what you have put in
a program. They are nothing to be afraid of, and experienced programmers get them
all the time.

In this case, the computer was confused because it doesn’t understand theword “hello”
or the word “computer”. That is, it didn’t know what you wanted it to do. In this
regard, computers are quite stupid. They know only a fewwords, and aren’t particularly
imaginative about how they interpret them.

8-4

So let’s try that again in a way that the computer will understand. Try typing the follow-
ing in. You can just type it right away. It doesn’t matter that the syntax error message
can still be seen on the screen. The computer has already forgotten about that by the
time it told you READY. again.

P R I N T " H E L L O C O M P U T E R "

Again, make sure you don’t use shift or shift-lock while typing it in. The symbols around
the words HELLO COMPUTER are double-quotes. If you are used to an Australian
or American keyboard, you might discover that they double-quote key is in a rather
different place to where you are used to: Double-quotes can be typed on theMEGA65

by holding down SHIFT , and then pressing 2 . Don’t forget to press RETURN when you
are done, so that the computer knows you want it to do something with your input.

If you make a mistake while typing, you can use INST
DEL to rub out the mistake and fix

it up. You can also use the cursor keys to move back and forth on the line while you
edit the line you are typing, but there is a bit of a trick if you have already typed a
double-quote: If you try to use the cursor keys, it will print a funny reversed symbol
instead of moving the cursor. This is because the computer thinks you want to record
moving the cursor in the text itself, which can be really useful and fun, and which you
can read more about in Chapter/Appendix 3 on page 3-3. But for now, if you make

a mistake just press RETURN and type the messed up line again.

8-5

Hopefully now you will see something like the following:

This time no new SYNTAX ERROR message should appear. But if some kind of error
message has appeared, just try typing in the command again, after taking a close look
to work out where the mistake might be.

Instead of an error, we should see HELLO COMPUTER repeated underneath the line you
typed in. The reason this happened is that the computer does understand the word
PRINT. It knows that whatever comes after the word PRINT should be printed to the
screen. We had to put HELLO COMPUTER inside double-quotes to tell the computer
that we want it to be printed literally.

If we hadn’t put the double-quotes in, the computer would have thought that HELLO
COMPUTER was the name of a stored piece of information. But because we haven’t
stored any piece of information in such a place, the computer will have zero there,
so the computer will print the number zero. If the computer prints zero or some other
number when you expected a message of some sort, this can be the reason.

8-6

You can try it, if you like, and you should see something like the following:

In the above examples we typed commands in directly, and the computer executed

them immediately after you pressed RETURN . This is why typing commands in this way is
often called direct mode or immediate mode.

But we can also tell the computer to remember a list of commands to execute one
after the other. This is done using the rather unimaginatively named non-direct mode.
To use non-direct mode, we just put a number between 0 and 63999 at the start
of the command. The computer will then remember that command. Unlike when we
executed a direct-mode command, the computer doesn’t print READY. again. Instead
the cursor just reappears on the next line, ready for us to type in more commands.

Let’s try that out with a simple little program. Type in the following three lines of input:

1 FOR I = 1 TO 10 STEP 1

2 P R I N T I

3 NEXT I

8-7

When you have done this, the screen should show something like this:

If it doesn’t you can try again. Don’t forget, if you feel that the computer is getting all
muddled up, you can just press the reset button or flip the power switch off and on, at
the left-hand side of the computer to reboot it. This only takes a couple of seconds,
and doesn’t hurt the MEGA65 in anyway.

We have told the computer to remember three commands, that is, FOR I = 1 TO 10

STEP 1, PRINT I and NEXT I. We have also told the computer which order we would
like to run them in: The computer will start with the command with the lowest number,
and execute each command that has the next higher number in turn, until it reaches
the end of the list. So it’s a bit like a reminder list for the computer. This is what we
call a program, a bit like the program at a concert or the theatre, it tells us what is
coming up, and in what order. So let’s tell the computer to execute this program.

But first, let’s try to guess what will happen. Let’s start with the middle command,
PRINT I. We’ve seen the PRINT command, and we know it tells the computer to print
things to the screen. The thing it will try to print is I. Just like before, because there
are no double-quotes around the I, it will try to print a piece of stored information.
The piece of information it will try to print will be the piece associated with the thing
I.

When we give a piece of information like this a name, we call it a variable. They
are called variables because they can vary. That is, we can replace the piece of
information associated with the variable called I with another piece of information.
The old piece will be forgotten as a result. So if we gave a command like LET I = 3,
this would replace whatever was stored in the variable called I with the number 3.

8-8

Back to our program, we now know that the 2nd command will try to print the piece of
information stored in the variable I. So lets look at the first command: FOR I = 1 TO

10 STEP 1. Although we haven’t seen the FOR command before, we can take a bit
of a guess at how it works. It looks like it is going to put something into the variable
I. That something seems to have something to do with the range of number 1 through
10, and a step or interval of 1. What do you think it will do?

If you guessed that it will put the values 1, 2, 3, 4, 5, 6, 7, 8, 9 and then 10 into the
variable I, then you can give yourself a pat on the back, because that’s exactly what
it does. It also helps us to understand the 3rd command, NEXT I: That command tells
the computer to put the next value into the variable I. And here is a little bit of magic:
When the computer does that, it goes back up the list of commands, and continues
again from the command after the FOR command.

So lets pull that together: When the computer executes the first command, it discovers
that it has to put 10 different values into the variable I. It starts by putting the first
value in there, which in this case will be the number 1. The computer then continues to
the second command, which tells the computer to print the piece of information that
is currently stored in the variable called I. That will be the number 1, since that was
the last thing the computer was told to put there. Then the computer proceeds to the
third command, which tells it that it is time to put the next value into the variable I.
So the computer will throw away the number 1 that is currently in the variable I, and
put the number 2 in there, since that is the next number in the list. It will then continue
from the 2nd command, which will cause the computer to print out the contents of
the variable I again. Except that this time I has had the number 2 stored in it most
recently, so the computer will print the number 2. This process will repeat, until the
computer has printed all ten values that the FOR command indicated it to do.

8-9

To see this in action, we need to tell the computer to execute the program of com-
mands we typed in. We do this by using the RUN command. Because we want it to run
the program immediately, we should use immediate mode (remember, this is another

name for direct mode). So just type in the word RUN and press RETURN . You should then
see a display that looks something like the following:

You might notice a couple of things here:

First, the computer has told us it is READY. again as soon as it finished running the
program. This just makes it easier for us to know when we can start giving commands
to the computer again.

Second, when the computer got to the bottom of the screen it automatically scrolled
the display up to make space. This is quite normal. What is important to remember, is
that the computer forgets everything that scrolls off the top. The only exception is if
you have told the computer to remember a command by putting a number in front of it.
So our program is quite safe for now. We can see that this is the case by typing the RUN
command a couple more times: The program listing will have scrolled off the top of
the screen, but we can still RUN the program, because the computer has remembered
it. Give it a try! Did it work?

8-10

If you wish to see the program of remembered commands, you can use the LIST

command. This commands causes the computer to display the remembered program
of commands to the screen, like in the display here. If you would like to replace any of
the commands in the program, you can type a new line that has the same number as
the one you wish to change.

For example, to print the results all on one line, we could modify the second line of the

program to PRINT I; by typing the following line of input and pressing RETURN :

2 P R I N T I ;

8-11

You can make sure that the change has been remembered by running the LIST com-
mand again, as we can see here. You can then use the RUN command to run the
modified program, like this:

It is quite easy to modify your programs in this way. As you become more comfortable
with the process, there are two additional helpful tricks:

First, you can give the LIST command the number of a command, or line as they are
referred to, and it will display only that line of the program. Alternatively, you can give
a range separated by a minus sign to display only a section of the program, e.g., LIST
1 - 2 to list the first two lines of our program.

Second, you can use the cursor keys to move the cursor to a line which has already
been remembered and is displayed on the screen. If you modify what you see on the

screen, and then press RETURN while the cursor is on that line, the BASIC interpreter will
read in the modified line and replace the old version of it. It is important to note that

if you modify multiple lines of the program at the same time, you must press RETURN on
each line that has been modified. It is good practice to check that the program has
been correctly modified. Use the LIST command again to achieve this.

Exercises to try

1. Can you make it count to a higher or lower number?

At the moment it counts from 1 to 10. Can you change it to count to 20 instead?
Or to count from 3 to 17? Or how about from 14.5 to 21.5? What do you think you
would need to reverse the order in which it counts?

Clue: You will need to modify the FOR command.

8-12

2. Can you change the counting step?

At the moment it counts by ones, i.e., each number is one more than the last. Can you
change it to count by twos instead? Or by halves, so that it counts 1, 1.5, 2, 2.5, 3,
…?

Clue: You will need to modify the STEP clause of the FOR command.

3. Can you make it print out one of the times tables?

At the moment it prints the answers to the 1 times tables, because it counts by ones.
Can you make it count by threes, and show the three times tables?

Clue: You will need to modify the FOR command.

4. Can you make it print out the times tables from 1×1 to 10×10?

Clue: You might like to use ; on the end of PRINT command, so that you can have
more than one entry per line on the screen.
Clue: The PRINT command without any argument will just advance to the start of the
next line.
Clue: You might need to have multiple FOR loops, one inside the other.

FIRST STEPS WITH TEXT AND
NUMBERS
In the last section we started to use both numbers and text. Text on computers is
made by stringing individual letters and other symbols together. For this reason they
are called strings. We also call the individual letters and symbols characters. The
name character comes from the printing industry where each of the symbols that can
be printed on a page. For computers, it has much the same meaning, and the set of
characters that a computer can display is rather unimaginatively called a character
set..

When the MEGA65 expects some for of input, it is typically looking for one of four
things:

1. a keyword like PRINT or STEP, which are words that have a special meaning to
the computer;

2. a variable name like I or A$ that it will then use to either store or retrieve a piece
of information;

3. a number like 42 or -30.3137; or

4. a string like "HELLO COMPUTER" or "23 KILOMETRES".

8-13

Sometimes you have a choice of which sort of thing you can provide, while other times
you have less choice. What sort of thing the computer will accept depends on what
you are doing at the time. For example, in the previous section we discovered that
when the computer tells us that it is READY, that we can give it a keyword or a number.
Do you think that the computer will accept all four kinds of thing when it says READY.?
We already know that keywords and numbers and keywords can be entered, but what
about variable names or strings? Let’s try typing in a variable name, say N, and press-

ing RETURN , and see what happens. And then lets try with a string, say "THIS IS A

STRING".

You should get a syntax error each time, telling you that the computer doesn’t under-
stand the input you have given it. Let’s start with when you typed the variable: If you
just tell the computer the name of a stored piece of information, it doesn’t have the
foggiest idea what you are wanting it to do. It’s the same when you give it a piece of
information, like a string, without telling the computer what to do with it.

But as we discovered in the last section, we can tell the computer that we want to see
the piece of information that is stored in a variable using the PRINT command. So we
could instead type in PRINT N, and the computer would know what to do, and will
print the piece of information stored in the variable called N.

In fact, using the PRINT command is so common, that programmers got annoying
having to type in the PRINT command all the time, that they made a short cut: If you
type a question mark character, i.e., a ?, the computer knows that you mean PRINT.
So for example if you type ? N, it will do the same as typing PRINT N. Of course, you

have to press RETURN after each command to tell the computer you want it to process
what you typed. From here on, we will assume that you can remember to do that,
without being reminded.

8-14

The ? shortcut also works if you are telling the computer to remember a command as
part of a program. So if you type 1 ? N, and then LIST, you will see 1 PRINT N, as
we can see in the following screen-shot:

Like we saw in the last section, the variable N has not had a value stored in it, so when
the computer looks for what is there, it finds nothing. Because N is a numeric variable,
when there is nothing there, this means zero. If it was a string variable, then it would
have found literally nothing. We can try that, but first we have to explain how we tell
the computer we are talking about a string variable. We do that by putting a dollar
sign character, i.e., a $, on the end of the variable name. So if we put a $ on the end
of the variable name N, it will refer to a string variable called N$.

We can experiment with these variables by using the hopefully now familiar PRINT
command (or the ? shortcut) to see what is in the variables. But we need a convenient
way to put values into them. Fortunately we aren’t the first people to want to put
values into variables, and so the LET exists. The LET command is used to put a value
into a variable. For example, we can tell the computer:

LET N = 5.3

8-15

This tells the computer to put the value 5.3 into the variable N. We can then use the
PRINT command to check that it worked. Similarly, we can put a value into the variable
N$ with something like:

LET N$ = " THE KING OF THE P O T A T O P E O P L E "

If we try those, we will see something like the following:

8-16

We mentioned just before that N is a numeric variable and that N$ is a string variable.
This means that we can only put numbers into N and strings into N$. If we try to put
the wrong kind of information into a variable, the computer will tell us that we have
mis-matched the kind of information with the place we are trying to put it by giving us
a TYPE MISMATCH ERROR like this:

This leads us to a rather important point: N and N$ are separate variables, even though
they have similar names. This applies to all possible variable names: If the variable
name has a $ character on the end, it means it is a string variable quite separate from
the similarly named numeric variable. To use a bit of jargon, this means that each type
of variable has their own separate name spaces.

(There are also four other variable name spaces that we haven’t talked about yet:
integer variables, identified by having a % character at the end of their name, e.g., N%,
and arrays of numeric, string or integer variables. But don’t worry about those for now.
We’ll talk about those a bit later on.)

So far we have only given values to variables in direct mode, or by using constructions
like FOR loops. But we haven’t seen how we can get information from the user when
a program is running. One way that we can do this, is with the INPUT command.

8-17

INPUT is quite easy to use: We just have to say which variable we would like the input
to go into. For example, to tell the computer to ask for the user to provide something
to put into the variable A$, we could use something like INPUT A$. The only trick
with the INPUT command is that it cannot be used in direct mode. If you try it, the
computer will tell you ILLEGAL DIRECT ERROR. Try it, and you should see something
like the following

This means that the INPUT command can only be used as part of a program. So we
can instead do something like the following:

1 I N P U T A$

2 P R I N T " YOU T Y P E D "; A$

RUN

8-18

What do you think that this will do? The first line will ask the computer for something
to put into the variable A$, and the second line will print the string "YOU TYPED",
followed by what the INPUT command read from the user. Let’s try it out:

Did you expect that to happen? What is this question mark doing there? The ? here is
the computer’s way of telling you that a program is waiting for some input from you.
This means that the computer uses the same symbol, ?, to mean two different things: If
you type it as part of a program or in direct mode, then it is a short-cut for the PRINT
command. That’s when you type it. But if the computer shows it to you, it has this
other meaning, that the computer is waiting for you to type something in. There is also
a third way that the computer uses the ? character. Have you noticed what it is? It is
to indicate the start of an error message. For example, a Syntax Error is indicated by
?SYNTAX ERROR. When a character or something has different meanings in different
situations or contexts, we say that it its context dependent.

8-19

But returning to our example, if we now type something in, and press RETURN to tell the
computer that you are done, the program will continue, like this:

Of course, we didn’t really know what to type in, because the program didn’t give any
hints to the user as to what the programmer wanted them to do. So we should try to
provide some instructions. For example, if we wanted the user to type their name, we
could print a message asking them to type their name, like this:

1 P R I N T " WHAT IS YOUR NAME "

2 I N P U T A$

3 P R I N T " H E L L O "; A$

8-20

Now if we run this program, the user will get a clue as to what we expect them to do,
and the whole experience will make a lot more sense for them:

When we run the program, we first see the WHAT IS YOUR NAME message from line
1. The computer doesn’t print the double-quote symbols, because they only told the
computer that the piece of information between them is a string. The string itself is
only the part in between.

After this we see the ? character again and the blinking cursor telling us that the
computer is waiting for some input from us. The rest of the programmed is blocked
from continuing until it we type the piece of information. Once we type the piece
of input, the computer stores it into the variable A$, and can continue. Thus when it
reaches line 3 of the program, it has everything it needs, and prints out both the HELLO
message, as well as the information stored in the variable called A$.

Notice that the word LISTER doesn’t appear anywhere in the program. It exists only
in the variable. This ability to process information that is not part of a program is one
of the things that makes computer programs so powerful and able to be used for so
many purposes. All we have to do is to change the input, and we can get different
output.

8-21

For example, with our program we run it again and again, and give it different input
each time, and the program will adapt its output to what we type. Pretty nifty, right?
Let’s have the rest of the crew try it out:

We can see that each time the program prints out the message customised with the
input that you typed in…Until we get to RIMMER, BSC. As always, Mr. Rimmer is
causing trouble. In this case, he couldn’t resist putting his Bronze Swimming Certificate
qualification on the end of his name.

We see that the computer has given us a kind of error message, ?EXTRA IGNORED. The
error is not written in red, and doesn’t have the word ERROR on the end. This means
that it is a warning, rather than an error. Because it is only a warning, the program
continues. But something has happened: The computer has ignored Mr. Rimmer’s BSC,
that is, it has ignored the extra input. This is because the INPUT command doesn’t
really read a whole line of input. Rather, it reads one piece of information. The INPUT
command thinks that a piece of information ends at the end of a line of input, or when
it encounters a comma (,) or colon (:) character.

8-22

If you want to include one of those symbols, you need to surround the whole piece of
information in double-quotes. So, if Mr. Rimmer had read this guide instead of ob-
sessing over the Space Core Directives, he would have known to type "RIMMER, BSC"

(complete with the double-quotes), to have the program run correctly. It is important
that the quotes go around the whole piece of information, as otherwise the computer
will think that the first quote marks the start of a new piece of information. We can
see the difference it makes below:

While this can all be a bit annoying at times, it has a purpose: The INPUT command
can be used to read more than one piece of information. We do this by putting more
than one variable after the INPUT command, each separated by a comma. The INPUT
command will then expect multiple pieces of information. For example, we could ask
for someone’s name and age, with a program like this:

1 P R I N T " WHAT IS YOUR NAME AND AGE "

2 I N P U T A$, A

3 P R I N T " H E L L O "; A$

4 P R I N T " YOU ARE "; A ; " Y E A R S OLD ."

8-23

If we run this program, we can provide the two pieces of information on the one line
when the computer presents us with the ? prompt, for example LISTER, 3000000.
Note the comma that separates the two pieces of information, LISTER and 3000000.
It’s also worth noticing that we haven’t put any thousands separators into the number
3,000,000. If we did, the computer would think we meant three separate pieces of
information, 3, 000 and 000, which is not what we meant. So let’s see what it looks
like when we give LISTER, 3000000 as input to the program:

In this case, the INPUT command reads the two pieces of information, and places
the first into the variable A$, and the second into the variable A. When the program
reaches line 3 it prints HELLO followed by the first piece of information. Then when it
gets to line 4, it prints the string YOU ARE, followed by the contents of the variable A,
which is the number 3,000,000, and finally the string YEARS OLD.

It’s also possible to just give one piece of information at a time. In that case, the
INPUT command will ask for the second piece of information with a double question-
mark prompt, i.e., ??. Once it has the second piece of information. (If we had more
than two variables on the INPUT command, it will still present the same ?? prompt,
rather than printing more and more question-marks.)

8-24

So if we try this with our program, we can see this ? and ?? prompts, and how the
first piece of information ends up in A$ because it is the first variable in the INPUT

command. The second piece of information ends up in A because A is the second
variable after the INPUT command. Here’s how it looks if we give this input to our
program:

Until now we have been asking the user to input information by using a PRINT com-
mand to display the message, and then an INPUT command to tell the computer which
variables we would like to have some information input into. But, like with the PRINT

command, this is something that happens often enough, that there is a shortcut for it.
It also has the advantage that it looks nicer when running, and makes the program a
little shorter. The short cut is to put the message to show after the INPUT command,
but before the first variable.

We can change our program to use this approach. First, we can change line 3 to
include the prompt after the INPUT command. We can do this one of two ways: First,
we could just type in a new line 3. The computer will automatically replace the old
line 3 with the new one.

But, as we have mentioned a few times now, programmers are lazy beasts, and so
there is a short-cut: If you can see the line on the screen that you want to change, you
can use the cursor keys to navigate to that line, edit it on the screen, and then press
RETURN to tell the computer to accept the new version of the line.

8-25

Either way, you can check that the changes succeeded by typing the LIST command
on any line of the screen that is blank. This will show the revised version of the program.
For example:

We still have a little problem, though: Line 1 will print the message WHAT IS YOUR

NAME AND AGE, and then Line 2 will print it again! We only want the message to
appear once. Thus we would like to change line 1 so that it doesn’t do this any more.
Because there is no other command on line 1 that we want to keep, that line can just
become empty. So we can type in something like this:

1

8-26

We can confirm that the contents of the line have been deleted by running the LIST

command again, like this:

Did you notice something interesting? When we told the computer to make line 1 of
the program empty, it deleted it completely! That’s because the computer thinks that
an empty line is of no use. It also makes sure that your programs don’t get all cluttered
up with empty lines if you make lots of changes to your programs.

It is also possible to DELETE a range of lines. For example (but don’t do this now), you
could delete lines 3-4 with:

D E L E T E 3 -4

You can read more about the DELETE command in the BASIC 65 Command Reference.

8-27

With that out the way, let’s run our program and see what happens. As usual, just type

in the RUN command and press RETURN . You should see something like this:

We can see our prompt of WHAT IS YOUR NAME AND AGE there, but now the cursor
is appearing without any ? character. This is because we put a comma (,) after the
message in the INPUT command. To get the question mark, we have to instead put a
semi-colon (;) after the message, like this:

I N P U T " WHAT IS YOU NAME AND AGE "; A$, A

8-28

Now if we run the program, we should see what we are looking for:

Exercises to try

1. Can you make the program ask someone for their name, and then for their
favourite colour?

At the moment it asks for their name and age. Can you change the program so that it
reports on their favourite colour instead of their age?

Clue: What type of information is age? Is it numeric or a string? Is it the same type of
information as the name of a colour?

2. Can you write a program that asks someone for their name, prints the hello
message, and then asks for their age and prints out that response?

At the moment, the program expects both pieces of information at the same time. This
means the program can’t print a message about the first message until after it has both
pieces of information. Change the program so that you can have an interaction like
the following instead:

WHAT IS YOUR NAME ? DEEP T H O U G H T

H E L L O DEEP T H O U G H T

WHAT IS THE A N S W E R ? 42

YOU SAID THE A N S W E R IS 42

Clue: You will need more lines in your program, so that you can have more than one
INPUT and PRINT command.

8-29

3. Can you write a program that asks several questions, and then prints out the
list of answers given?

Think of several questions you would like to be able to ask someone, and then write
a program that asks them, and remembers the answers and prints them out with an
appropriate message. For example, running your program could look like this:

WHAT IS YOUR NAME ? F R O D O

HOW OLD ARE YOU ? 33

WHAT IS YOUR F A V O U R I T E FOOD ? E V E R Y T H I N G !

T H A N K YOU FOR A N S W E R I N G .

YOUR NAME IS F R O D O

YOU ARE 33 Y E A R S OLD

YOU F A V O U R I T E FOOD IS E V E R Y T H I N G !

Clue: You will need more lines in you program, to have the various INPUT and PRINT

commands.

Clue: You will need to think carefully about which variable names you will use.

MAKING SIMPLE DECISIONS
In the previous section we have learnt how to input text and numeric data, and how to
display it. However, the programs have just followed the lines of instruction in order,
without any way to decide what to do, based on what has been input.

In this section we will see how we can take simple decisions using the IF and THEN

commands. The IF command checks if something is true or false, and if it is true,
causes the computer to execute the command the comes after the THEN command.

The way the computer decides whether something is true or false is that it operates on
the supplied information using one of several symbols. These symbols are thus called
operators. Also, because the compare two things, they depend on the relationship
of the things. For this reason they are called relational operators. They include the
following:

• Equals (=). For example, 3 = 3 would be true, while 3 = 2 would be false.

• Less than (<). For example, 1 < 3 would be true, while both 3 < 3 and 1 < 3

would be false.

• Greater than (>). For example, 3 > 1 would be true, while both 3 > 3 and 1 >

3 would be false.

8-30

As it is common to want to consider when something might be equal or greater than, or
equal or less than, there are short cuts for this. Similarly, if you wish to test if something
is not equal to something else, there is a relational operator for this, too:

• Unequal, which we normally say as not equal (<>). This is different to the math-
ematical symbol for not equal, ̸=, because the MEGA65’s character set does
not include a character that looks like that. So the programmers who created
BASIC for the MEGA65 used the greater than and less than signs together to
mean either less than or greater than, that is, not equal to. For example, 1 <>

3 would be true, while 3 <> 3 would be false.

• Less than or equal to (<=). For example, 1 < 3 and 3 <= 3 would be true, while
both 4 < 3 would be false.

• Greater than or equal to (>=). For example, 3 >= 1 and 3 >= 3 would be true,
while both 1 >= 3 would be false.

A good trick if you have trouble remembering which way the (<) and (>) signs go, the
side with more ends of lines is the one that needs to have more. For example, the
(<) symbol has one point on the left, but two ends of lines on the right-hand side. So
for something to be true with (<), the number on the left-hand side needs to be less
than the number on the right-hand side. This trick even works for the equals sign, (=),
because it has the same number of ends on both sides, so you can remember that the
numbers on both sides need to be equal. It also works when you have two symbols
together, like (>=), it is true if the condition is true for any of the symbols in it. So in
this case the (>) symbol has more ends on the left than the right, so if the number on
the left is bigger than the number on the right, it will be true. But also because the (=)
symbol has two ends on each side, it will be true if the two numbers are the same.

Using these relational operators, we can write a line that will do something, but only
if something is true or false. Let’s try this out, with a few examples:

IF -2 < 0 THEN P R I N T " -2 IS A N E G A T I V E N U M B E R "

IF 2 < 0 THEN P R I N T "2 IS A N E G A T I V E N U M B E R "

IF 0 < -2 THEN P R I N T " -2 IS A P O S I T I V E N U M B E R "

IF 0 < 2 THEN P R I N T "2 IS A P O S I T I V E N U M B E R "

8-31

These commands work fine in direct mode, so you can just type them directly into the
computer to see what they will do. This can be handy for testing whether you have the
logic correct when planning an IF – THEN command. If you type in those commands,
you should see something like the following:

We can see that only the PRINT commands that followed an IF command that has
a true value were executed. The rest were silently ignored by the computer. But we
can of course include these into a program. So lets make a little program that will ask
for two numbers, and say whether they are equal, or if one is greater or less than the
other. Before you have a look at the program, have a think about how you might do it,
and see if you can figure it out. The clue I will give you, is that the IF command also
accepts the name of a variables, not just numbers. So you can do something like IF

A > B THEN PRINT "SOMETHING". The program will be on the next page, to stop
you peeking before you have a think about it!

8-32

Did you have a go? There are lots of different ways it could be done, but here is what
I came up with:

1 I N P U T " WHAT IS THE F I R S T N U M B E R "; A

2 I N P U T " WHAT IS THE S E C O N D N U M B E R "; B

3 IF A = B THEN P R I N T " THE N U M B E R S ARE E Q U A L "

4 IF A > B THEN P R I N T " THE F I R S T N U M B E R IS B I G G E R "

5 IF B > A THEN P R I N T " THE S E C O N D N U M B E R IS B I G G E R "

We can then run the program as often as we like, and the computer can tell us which
of the two numbers we give it is biggest, or if they are equal:

Notice how in this program, we didn’t use fixed numbers in the IF command, but in-
stead gave variable names instead. This is one of the very powerful things in computer
programming, together with being able to make decision based on data. By being
able to refer to data by name, regardless of its current value or how it got there, lets
the programmer create very flexible programs.

Let’s think about a bit of a more interesting example: a “guess the number” game.
For this, we need to have a number that someone has to guess, and then we need to
accept guesses, and indicate whether the guess was correct or not. If the guess is
incorrect, we should tell the user if the correct number is higher or lower.

We have already learned most the ingredients to make such a program: We can use
LET to set a variable to the secret number, INPUT to prompt the user for their guess,
and then IF, THEN and PRINT to tell the user whether their guess was correct or not.
So let’s make something. Again, if you like, stop and think and experiment for a few
minutes to see if you can make such a program yourself.

8-33

Here is how I have done it. But don’t worry if you have done it in a quite different way:
There are often many ways to write a program to perform a particular task.

1 SN =23

2 P R I N T " G U E S S THE N U M B E R B E T W E E N 1 AND 100"

3 I N P U T " WHAT IS YOUR G U E S S "; G

4 IF G < SN THEN P R I N T " MY N U M B E R IS B I G G E R "

5 IF G > SN THEN P R I N T " MY N U M B E R IS S M A L L E R "

6 IF G = SN THEN P R I N T " C O N G R A T U L A T I O N S ! YOU G U E S S E D MY N U M B E R !"

The first line puts our secret number into the variable SN. The second line prints a
message telling the user what they are supposed to do. The third line asks the user for
their guess, and puts it into the variable G. The fourth, fifth and sixth lines then check
whether the guess is correct or not, and if not, which message it should print. This is
done by using the IF command and an appropriate relative operator to make each
decision. This works well, to a point. For example:

We can see that it prints the message, and it asks for a guess, and responds appropri-
ately. But if we want to guess again, we have to use the RUN command again for each
extra guess. That’s a bit poor from the user’s perspective. However that is unlikely to
be a problem for long, because the user can see the secret number in the listing on
the screen!

So we would like to fix these problems. Let’s start with hiding the listing. We previously
mentioned that when the screen scrolls, anything that was at the top of the screen
disappears. So we could just make sure the screen scrolls enough, that any listing that

8-34

was visible is no longer visible. We could do this using PRINT and a FOR loop. The
screen is 25 lines, so we could do something like:

FOR I = 1 to 25

P R I N T

NEXT I

But there are better ways. If you hold down SHIFT , and then press CLR
HOME , it clears

the screen. This is much simpler and more convenient. But how can we do something
like that in our program? It turns out to be very simple: You can type it while entering
a string! This is because the keyboard works differently based on whether you are in
quote mode.

Quote mode is just a fancy way of describing what happens when you type a double-
quote character into the computer: Until you type another double-quote or press the
RETURN . You might remember we mentioned the problem of funny symbols coming up
when using the cursor keys. I didn’t want to distract you at the time, but that is a
symptom of being in quote mode: In quote mode many special keys show a symbol
that represents them, rather than taking their normal action. For example, if you press
the cursor left key while in quote mode, a Ƣ symbol appears. If you press the cursor

right key, a Ž, up Ʊ, down ű and the CLR
HOME a ų, and if you are holding down SHIFT and

press CLR
HOME a Ƴ.

8-35

So let’s use this to make the second line clear the screen when it prints the GUESS THE

NUMBER BETWEEN 1 AND 100 message. The first time you try it is a bit confusing,
but once you get the hang of it, it is quite easy. What we want in the end is a line that
looks like this:

2 PRINT "ƳGUESS THE NUMBER BETWEEN 1 AND 100"

To do this, start by typing 2 PRINT ". Then hold the SHIFT key down, and press
CLR
HOME . Your line should now look like 2 PRINT"Ƴ. If so, you have succeeded! You can
now finish typing the line as normal. When you have done that, you can use the LIST

command as usual, to make sure that you have successfully modified the program. You
should see your modified line with the Ƴ symbol in it.

8-36

If you now run the program by typing in RUN and pressing RETURN as usual, the 2nd line
tells the compute to clear the screen before printing the rest of the message, like this:

This hides the listing from the user, so that they can’t immediately see what our secret
number is. We can type our guess in, the same as before, but just like before, after
one guess it returns to the READY. prompt. We really would like people to be able to
make more than one guess, without needing to know that they need to run the program
again.

There are a few ways we could do this. We already saw the FOR – NEXT pattern. With
that, we could make the program give the user a certain number of guesses. If we
followed the NEXT command with another program line, we could even tell the user
when they have taken too many guesses. So lets have a look at our program and see
how we might do that. Here is our current listing again:

1 SN =23

2 P R I N T Ƴ" G U E S S THE N U M B E R B E T W E E N 1 AND 100"

3 I N P U T " WHAT IS YOUR G U E S S "; G

4 IF G < SN THEN P R I N T " MY N U M B E R IS B I G G E R "

5 IF G > SN THEN P R I N T " MY N U M B E R IS S M A L L E R "

6 IF G = SN THEN P R I N T " C O N G R A T U L A T I O N S ! YOU G U E S S E D MY N U M B E R !"

If we want the user to have multiple guesses, we need to have lines 2 through 6 run
multiple times. This makes our life a bit tricky, because it means we need to insert a
line between line 1 and 2. But unless you are a mathemagican, there are no whole
numbers between 1 and 2, and the MEGA65 doesn’t understand line numbers like 1.5.

8-37

Fortunately, the MEGA65 has the RENUMBER command. This command can be typed
only in direct mode. When executed, it changes the line numbers in the program, while
keeping them in the same order. The new numbers are normally multiples of 10, so
that you have lots of spare numbers in between to add extra lines. For example, if we
use it on our program, it will renumber the lines to 10, 20, …, 60. We can see that this
has happened by using the LIST command:

Now our life is much easier: We can choose any number that is between 10 and 20 to
put our FOR command into. It’s a common choice to use the middle number, so that if
you think of other things you want to add in later, you have the space to do it. So let’s
add a FOR command to give the user 10 chances to guess the number. We can use
any variable name we like for this, except for G and SN, because we are using those.
It would be very confusing if we mixed those up! So lets add a line like this:

15 FOR I = 1 TO 10 STEP 1

Now we need a matching NEXT I after line 60. Let’s keep the nice pattern of adding
10 to work out the next line number, and put it as line 70:

70 NEXT I

8-38

We can type those lines in, and then use LIST command to make sure the result is
correct:

That’s looking pretty good. But there are a couple of little problems still. Can you work
out what they might be? What will happen now after the user makes a guess? What
will happen if they run out of guesses?

If you worked out that making a guess that the screen will be immediately cleared, you
can give yourself a pat on the back! The user will hardly have time to see the message.
Worse, if they guess the number correctly, they won’t know, and the program will keep
going. We’d really like the program to stop or end, once the user makes a correct
guess.

We can do this using either the STOP or END commands. These two commands are
quite similar. The main difference is that if you STOP a program, the computer tells
you where it has stopped, and you have the chance to continue the program using the
CONT command. The END command, on the other hand, tells the computer that the
program has reached its end, and it should go back to being READY. The END command
makes more sense for our program, because after the user has guessed the number,
there isn’t any reason to continue.

Now we need a way to be able tell the computer to do two different things when the
user makes a correct guess. We could just add an extra IF command after line 60
which prints the congratulations message, e.g., 65 IF G=SN THEN END.

But we can be a bit more elegant than that: There is a way to have multiple commands
on a single line. If you remember back to when we were learning about the INPUT

command, you might remember that there were two different characters that separate
pieces of information: , and :. The second one, :, is called a colon, and can also be

8-39

used to separate BASIC commands on a single line. So if we want to change line 60
to PRINT the message of congratulations and then END the program, we can just add
: END to the end of the line. The line should look like this:

60 IF G = SN THEN P R I N T " C O N G R A T U L A T I O N S ! YOU G U E S S E D MY N U M B E R !": END

That solves that problem. But it would also be nice to not clear the screen after every
guess, so that the user can see what their last guess was, and whether it was bigger
or smaller than the number. To do this, we can remove the clear-screen code from line
20, and add a new print command to a lower line number, so that it clears the screen
once at the start of the program, before the user gets to start guessing.

For example, we could it put in line 5, so that it happens as the absolute first action of
the program. As we mentioned earlier, the line numbers themselves aren’t important:
All that is important is to remember that the computer starts at the lowest line number,
and runs the lines in order. Anyway, let’s make those changes to our program:

20 P R I N T " G U E S S THE N U M B E R B E T W E E N 1 AND 100"

5 P R I N T Ƴ""

If you type those lines in, and LIST the program again, you should see something like
the following:

8-40

We can now RUN the program, and see whether it worked. Let’s try it!

The screen still clears, which is good. Can you notice one little difference already,
though? There is a blank line above the first message. This is because our PRINT
command in line 5 goes to the next row on the screen after it has printed the clear-
screen character. We can fix this by putting a ; (semi-colon) character at the end of
the PRINT command. This tells the PRINT command that it shouldn’t go to the start
of the next row on the screen when it has done everything. So if we change line 5 to
5 PRINT "Ƴ"; this will make the empty space at the top the screen disappear.

8-41

But back to our program, we can now make guesses, and the program will tell us
whether each guess is more or less than the correct number. And after 10 guesses, it
stops asking for guesses, and goes back to the READY. prompt, like this:

It would be nice to tell the user if they have run out of guesses. We need to add this
message after the NEXT command. We should also be nice and tell them what the
secret number was, instead of leaving them wondering. So let’s add the line to the
end of our program as line 80:

80 P R I N T " S O R R Y ! YOU RAN OUT OF G U E S S E S . MY N U M B E R WAS "; SN

8-42

Now if the user doesn’t guess the number, they will get a useful message, like this:

Exercises to try

1. Can you make the program ask at the start for the secret number?

At the moment the program sets the secret number to 23 every time. To make the
game more interesting it would be great to ask the first user for the secret number,
and then start the rest of the game, so that someone else can try to guess the number.

Clue: You will need change the line that sets the SN variable so that it can be read
from the first user. You might find the INPUT statement useful.

2. Can you make the program ask for the user’s name and give personalised
responses?

At the moment, the program displays very simple messages. It would be nice to ask
the user their name, and then use their name to produce personalised messages, like
SORRY DAVE, BUT THAT NUMBER IS TOO SMALL.

Clue: You will need to add a line early in the program to ask the user their name.

Clue: You might like to review how we used the PRINT command, including with ; to
print more than one thing on a line.

3. Can you improve the appearance of the messages with colours and better
spacing?

We haven’t really made the program particularly pretty. It would be great to use
colours.

8-43

Clue: You might like to add more PRINT commands to improve the spacing and layout
of the messages.

Clue: You might like to use either the colour codes in the messages you PRINT

Clue: You might also like to use the FOREGROUND, BACKGROUND and BORDER com-
mands to set the colour of the text, screen background and border.

4. Can you make the program say if a guess is “warmer” or “colder” than the
previous guess?

At the moment the program just tells you if the guess is higher or lower than the secret
number. It would be great if it could tell you if a guess is getting closer or further away
with each guess: When they get closer, it should tell the user that they are getting
“warmer”, and “colder” when they get further away.

This is quite a bit more involved than the previous exercises, and requires you to work
out some new things.

Clue: You will need to remember the previous guess in a different variable, and then
compare it with the last one: Is it nearer or further away. You might need to have IF
commands that have another IF after the first one, or to learn how to use the AND

operator.

RANDOM NUMBERS AND CHANCE
We’ll come back to the Guess The Number game shortly, but let’s take a detour first.
Through a maze. Let’s hope we can get back out before the end of the lesson! Let’s
look at a simple way to make a maze. This program has been known for a long time.
It works by choosing at random whether to display aM or aN symbol. These symbols

are obtained by holding down SHIFT and tapping either the N or M keys. You can see
the symbols on the front of those keys. While they are shown on the keys with a box
around them, the box does not appear, only the diagonal line. It turns out that printing
either of these two characters at random draws a decent looking maze.

8-44

Let’s give it a try. To be able to do this, we need a way to generate randomness. The
MEGA65 has the RND(1) function to do this. This function works like a variable, but
each time you try to use it, it gives a different result. Let’s see how that works. Type in
the following:

P R I N T RND (1)

Each time you type this, it will give a different answer, as you can see here:

We can see that this gives us several different results: 1.07870447E-03,
.793262171, .44889513, .697215893. Each of these is a number between 0 and
1, even the first one. The first one is written in scientific notation. The E-03 means
that the value is 1.07870447× 10−3 = 0.000107870447. That is, the E-03 means to
move the decimal place three places to the left. If there is a + after E, then it means
to move the decimal place to the right. For example, 1.23456E+3 represents the
number 1234.56.

8-45

Now, I promised a maze, so I better give you one. We can use this RND(1) to pick
between these two symbols. The first one has a character code of 205, and the
second one conveniently 206. This means that if we add the result of RND(1) to
205.5, we will get a number between 205.5 and 206.5. Half the time it will be
205.something, and the other half of the time it will be 206.something. We can use
this to print one or the other characters by using the CHR$() function that returns the
character corresponding to the number we put between the brackets. This means we
can do something like:

LET C = 2 0 5 . 5 + RND (1)

P R I N T CHR$ (C);

This will print one or the other of these symbols each time. We could use this already
to print the maze by doing this over and over, making a loop. We could use FOR and
NEXT. But in this case, we want it to go forever, that is, each time the program gets
to the end, we want it to go to the start again. The people who created BASIC really
weren’t very creative, so the command to do this is called GOTO. You put the number
of the line that you want to be executed next after it, e.g., GOTO 1. We can use this
to write our little maze program so that it will run continuously:

10 LET C = 2 0 5 . 5 + RND (1)

20 P R I N T CHR$ (C);

30 GOTO 10

8-46

If you RUN this program, it will start drawing a maze forever, that looks like the screen

shot below. You can stop it at any time by pressing RUN
STOP , or you can pause it by

pressing NO
SCROLL , and unpause it by pressing NO

SCROLL again. If you press RUN
STOP , the

computer will tell you where it was up to at the time. In the case of the screenshot
below, it was working on line 10:

That works nicely, and draws a very famous maze [1]. We can, however, make the
program smaller. We don’t need to put the result of the calculation of which symbol
to display on a separate line. We can put the calculation directly into brackets for the
CHR$() function:

10 P R I N T CHR$ (2 0 5 . 5 + RND (1)) ;

20 GOTO 10

And we can use what we learnt about the : (colon) symbol, and put the GOTO com-
mand onto the same line as the PRINT command:

10 P R I N T CHR$ (2 0 5 . 5 + RND (1)) ; : GOTO 10

Can you see how there are often many ways to get the same effect from a program?
This is quite normal. For complex programs, there are many, many ways to get the
same function. This is one of the areas in computer programming where you can be
very creative.

But back to the topic of randomness. It’s all well and good using these random numbers
between 0 and 1 for drawing a maze, but it’s a bit tricky to ask people to get a really
long decimal. If we want a number in the range 1 to 100, we can multiply what we get

8-47

from RND(1) by 100. If we do that, it gets a bit better, but we will still get numbers
like 55.0304651, 30.3140154, 60.2505497 and .759229916.

That’s closer, but we really want to get rid of those fractional parts. That is, we want
whole numbers or integers. BASIC has the INT() function that works like the RND(1)
function, except that whatever number you put in the brackets, it will return just the
whole part of that. So for example INT(2.18787) will return the value 2. As I said
just now, it chops off the fractional part, that is, it always rounds down. So even if we
do INT(2.9999999) the result will still be 2, not 3. This means that if we multiply the
result of RND(1) by 100, we will get a number in the range of 0 – 99, not 1 – 100.
This is nice and easy to fix: We can just add 1 to the result. So to generate an integer,
that is a whole number, that is between 1 and 100 inclusive, we can do something
like:

P R I N T INT (RND (1) * 1 0 0) + 1

That looks much better. So lets type in our “guess the number” program again. But
this time, lets replace the place where we set our secret number to the number 23,
to instead set it to a random integer between 1 and 100. Don’t peek at the solution
just yet. Have a think about how we can use the above to set SN to a random integer
between 1 and 100. Once you have your guess ready, have a look what I came up with
below. You might have made a different program that can do the same job. That’s
quite fine, too!

10 SN = INT (RND (1) * 1 0 0) + 1

20 P R I N T Ƴ""

30 FOR I = 1 TO 10 STEP 1

40 P R I N T " G U E S S THE N U M B E R B E T W E E N 1 AND 100"

50 I N P U T " WHAT IS YOUR G U E S S "; G

60 IF G < SN THEN P R I N T " MY N U M B E R IS B I G G E R "

70 IF G > SN THEN P R I N T " MY N U M B E R IS S M A L L E R "

80 IF G = SN THEN P R I N T " C O N G R A T U L A T I O N S ! YOU G U E S S E D MY N U M B E R !": END

90 NEXT I

100 P R I N T " SORRY , YOU HAVE RUN OUT OF G U E S S E S "

Now we don’t have to worry about someone guessing the number, and we don’t need
someone else to pick the number for us. This makes the program much more fun to
play. Can you beat it?

Exercises to try

1. Can you make the maze program make different mazes?

8-48

The maze program currently displays equal numbers ofN andM. Can you change the
program to print twice as many of one than the other? How does the maze look then?

Clue: We used 205.5 so that when we add a random number between 0 and 1, we
end up with 205.something half the time and 206.something the other half of the the
time. If you reduce 205.5 towards 205, or increase it towards 206 you will change
the relative proportion of each character that appears.

2. Can you modify the “guess my number” program to choose a number be-
tween 1 and 10?

At the moment, the program picks a number between 1 and 100. Modify the program
so that it picks a number from a different range. Don’t forget to update the message
printed to the user. Do they still need 10 guesses? Change the maximum number of
guesses they get before losing to a more suitable amount.

Clue: You will need to modify the line that sets SN, as well as the PRINT message that
gives instruction to the user.

3. Set the screen, border and text colour to random colours

Modify either the maze or “guess my number” program to use random colours. How
might you make sure that the text is always visible?

Clue: Use the FOREGROUND, BACKGROUND and BORDER commands to set the colours.
Use colour numbers between 0 and 15, inclusive. You can put a calculation at the end
of these commands in place of a simple number.

Clue: To make sure you don’t set the text colour to the same as the background, you
might like to calculate which background colour you wish to use and keep it in one
variable, and then calculate the text colour to use and store it in a different variable.
If the two variables have the same number, then you need to change one of them.

4. Make the “guess my number” program randomly choose between two differ-
ent greeting messages when it starts.

The “guess my number” program currently always prints the same message every time
it starts. Modify it so that it prints one of two possible messages each time.

Clue: Use RND(1) to obtain a random number. If that number is less than some thresh-
old, print the first message, else print the second message.

Clue: It might be easier, if you store the random number in a variable, so that you can
use two IF statements to decide whether to print each message.

Clue: If you use < (less than) as the relational operator in one of the IF statements,
you will need to use the opposite in the other one. The opposite of less than is greater
than or equal to.

8-49

8-50

CHAPTER 9
Text Processing

• Characters and Strings

• String Literals

• String Variables

• String Statements

• Simple Formatting

• Sample Programs

9-2

CHARACTERS AND STRINGS
Representing textual information in the form of printable letters, numbers and symbols
is a common requirement of many computer programs. The need for text arises in word
processing applications and word games. It is also required in natural language pro-
cessing and text-based adventure games, both of which need to understand the input.
Understanding text input is called parsing. In short, text processing is used everywhere.
In order to input, output and manipulate such information, we must introduce two key
concepts: characters and strings.

Characters can be printable or non-printable. A character most often represents a
single, primitive element of printable text which may be displayed on the screen via
the statement PRINT. It is most common and most natural to think of a character as
representing a letter of an alphabet. A character might, for example, be any of the
uppercase letters ’A’ to ’Z’, or any of the lowercase letters ’a’ to ’z’. However, charac-
ters can also represent commonly used symbols such as punctuation marks or currency
symbols. Indeed, characters can also represent the decimal digits, ’0’ to ’9’. It is worth
noting that this refers to the text-based representation of the numerals 0 to 9 as
printable symbols as opposed to their numeric counterparts. In addition, the MEGA65
provides an extensive range of special symbols that can be used together for games,
for drawing fancy borders or art. Besides displaying information, such symbols can
create simple yet intruiging visual patterns. For convenience, these special symbols
appear on the front sides of the MEGA65’s keys.

A character can also be non-printable. Using such characters (in a PRINT statement)
can activate certain behaviors or cause certain modes to become active, such as the
switching of all text on the screen to lowercase or setting the foreground color to
orange. Other non-printable characters might represent a carriage return or clear
the screen.

For a complete catalog of available characters, refer to Chapter/Appendix C on
page C-3. The table lists the characters that correspond to a given code number.
The code number must be supplied as an argument to the statement CHR$ which,
when combined with the PRINT statement, outputs the respective characters to the
screen.

Here’s an example of printing the exclamation mark using a character code:

P R I N T CHR$ (33)

!

Note that the ’!’ is actually visible on the display because it is a printable character.

Here’s an example of changing the foreground color to white using character codes:

9-3

P R I N T CHR$ (5)

Although no character is output, all subsequent printable characters displayed will be
colored white.

Sometimes it can be useful to do the conversion in reverse: from a character to its
code number. To do this, a single character must be supplied as an argument to the
statement ASC within quotation marks which, when combined with the PRINT state-
ment, outputs the respective code number to the screen in decimal.

Here’s an example of obtaining the code number for the exclamation mark.

P R I N T ASC (" ! ")

33

And here’s an example of obtaining the code number for the exclamation mark and
storing it in an integer variable:

A % = ASC (" ! ")

Although we could output individual characters repeatedly by using CHR$ it would be
tedious to do this all the time.

The concept of a string is needed because it embodies the idea of a contiguous block
of text. Thus, a string can contain multiple printable and/or multiple non-printable
characters in any combination. A string can potentially be empty and contain no char-
acters at all. To write a string we enclose the characters inside quotation marks. So
”HELLO WORLD!” is an example of a string literal.

P R I N T " H E L L O W O R L D !"

H E L L O W O R L D !

All strings have a property called length which is howmany printable and non-printable
characters there are present in that string. The length can be as low as 0 (the empty
string) or as high as 255. Attempting to create a string with a length in excess of 255
characters results in a ?STRING TOO LONG ERROR.

P R I N T LEN (" H E L L O W O R L D !")

12

P R I N T LEN ("")

0

9-4

It is possible to create variables specifically for strings. All such string variables have
names that begin with a leading alphabetic character, have an optional second char-
acter that is alphanumeric, and end with a $ sign. Once given a value, they can be
used with PRINT.

AB$ = " H E L L O W O R L D !": P R I N T AB$

H E L L O W O R L D !

A1$ = " H E L L O W O R L D !": P R I N T LEN (A1$)

12

STRING LITERALS
String literals can be joined with one or more other such string literals to form a com-
pound string. This process is called concatenation. To concatenate two or more string
literals, use the + operator to chain them together.

Here are some examples:

P R I N T (" S E C O N D " + " HAND ")

S E C O N D H A N D

P R I N T (" C O U N T E R " + " C L O C K " + " WISE ")

C O U N T E R C L O C K W I S E

Sometimes punctuation or spaces may be required to make the final output appear
correctly formatted, as in the following example.

P R I N T (" F R U I T : " + " APPLE , " + " PEAR AND " + " R A S P B E R R Y .")

F R U I T : APPLE , PEAR AND R A S P B E R R Y .

STRING VARIABLES
Concatenation is more commonly used with string variables combined with string lit-
erals. For example, in a text-based adventure game you might want to list some exits
such as north or south. Because these exits will vary depending on the location you
are currently at it would make sense to use variables for the exits themselves and use

9-5

concatenation with literals such as commas, spaces and full stops to format the output
appropriately.

A$ = " PEA ": B$ = " NUT ": P R I N T (A$ + B$ + " B U T T E R ")

P E A N U T B U T T E R

It is also possible to use strings as the parameters of DATA statements, to be read
later, using the READ statement. The following example also demonstrates that arrays
can hold strings too.

10 DIM A$ (6)

20 P R I N T " R A I N B O W C O L O R S : ";

30 FOR I = 0 TO 5

40 : READ A$ (I): P R I N T (A$ (I) + " , ");

50 NEXT I

60 READ A$ (I): P R I N T (" AND " + A$ (I) + ".")

70 DATA " RED " , " O R A N G E " , " Y E L L O W " , " G R E E N " , " BLUE " , " I N D I G O " , " V I O L E T "

It is common for string data or single-character data to come directly from user input.
When the user types some text, that text will often need to be be parsed or printed
back to the screen. In general, there are three main ways that this can be done: via
the GET statement, via the GETKEY statement or via the INPUT statement.

All three statements have different behaviours, and it’s important to understand how
each one operates by constrasting and comparing them.

The GET statement is useful for storing the current keypress in a variable. The program
does not wait for a keypress: it continues executing the next statement immediately.
For this reason it is sometimes important to place the GET statement inside some kind
of loop—the loop is to be exited only when a valid keypress is detected. If the variable
to GET is a string variable and no keypress is detected, then that string variable is set
to equal an empty string.

10 GET A$: REM DO NOT WAIT FOR A KEYPRESS - - READ ANY K E Y P R E S S INTO THE V A R I A B L E

20 P R I N T A$: IF (A$ = " Y " OR A$ = " N ") THEN END

30 GOTO 10

The GETKEY statement is also useful for storing the current keypress in a variable. In
constast to the GET statement, the GETKEY statement, when executed, does wait for
a single keypress before it continues executing the next statement.

9-6

10 G E T K E Y A$: REM WAIT FOR A KEYPRESS - - P A U S E AND READ IT INTO THE V A R I A B L E

20 P R I N T A$: IF (A$ = " Y " OR A$ = " N ") THEN END

30 GOTO 10

While GET and GETKEY are fine for reading single characters, the INPUT statement is
useful for reading in entire strings—that is, zero or more characters at a time.

When the INPUT statement is used with a comma and a variable, the prompt string
is displayed normally with a cursor that permits the user to type in some text. When
the INPUT statement is used with a semicolon and a variable, the prompt string is
displayed with a question mark appended and a cursor that permits the user to type
in some text.

10 I N P U T " E N T E R YOUR NAME " , A$: REM NOT A Q U E S T I O N

20 P R I N T (" H E L L O " + A$)

10 I N P U T " WHAT IS YOUR NAME "; A$: REM A Q U E S T I O N

20 P R I N T (" H E L L O " + A$)

In either case, pressing RETURN will complete the text entry—the text entered will be
stored in the given variable. Note that if the string variable is already equal to some

string and RETURN is pressed without entering in new data, then the old string value
currently stored in the variable is retained.

STRING STATEMENTS
There are three commonly-used string manipultion commands: MID$, LEFT$ and
RIGHT$. These are good for isolating substrings, including individual characters.

The following program asks for an input string and then prints all left substrings.

10 I N P U T " E N T E R A WORD :" , A$

20 P R I N T " ALL LEFT S U B S T R I N G S ARE :"

30 FOR I = 0 TO LEN (A$)

40 : P R I N T L E F T $ (A$, I)

50 NEXT I

The following program asks for an input string and then prints all right substrings.

9-7

10 I N P U T " E N T E R A WORD :" , A$

20 P R I N T " ALL R I G H T S U B S T R I N G S ARE :"

30 FOR I = 0 TO LEN (A$)

40 : P R I N T R I G H T $ (A$, I)

50 NEXT I

The following program ask for an input string consisting of a first name following by a
space followed by a last name. It then outputs the initial letters of both names.

10 I N P U T " E N T E R A F I R S T NAME , A S P A C E AND A LAST NAME :" , A$

20 N = -1

30 FOR I = 1 TO LEN (A$)

40 : IF (MID$ (A$, I , 1) = " ") THEN N = I : GOTO 60

50 NEXT I

60 IF (N = -1) THEN GOTO 10

70 P R I N T " I N I T I A L S ARE : "; MID$ (A$, 1 , 1) + " . " + MID$ (A$, N + 1 , 1) + " . "

SIMPLE FORMATTING
Suppressing New Lines

When using the PRINT statement in a program, the default behaviour is to output the
string and then move to the next line. To stop the behaviour of automatically moving
to the next line, simply append a ; (semicolon) after the end of the string. Constrast
lines 10, 20 and 30 in the following program.

10 P R I N T " THIS A S I N G L E LINE OF TEXT ": REM A NEW LINE IS A D D E D AT THE END

20 P R I N T " THE S E C O N D LINE "; : REM A NEW LINE IS S U P P R E S S E D

30 P R I N T " USES A S E M I C O L O N " : REM A NEW LINE IS A D D E D AT THE END

Automatic Tab Stops

Sometimes is can be convenient to use the PRINT statement to output information
neatly into columns. This can be done by appending a , (comma) after the end of the
string. Consider the following example program.

10 P R I N T " TEXT 1" , " TEXT 2" , " TEXT 3" , " TEXT 4"

Note that each tab stop is 10 characters apart. So TEXT 1 begins at column 0, TEXT
2 begins at column 10, TEXT 3 begins at column 20, and TEXT 4 begins at column 30.

9-8

Tabs Stops and Spacing

When printing text on the screen, it is often necessary to format text by using spaces
and tabs. Two commands come in handy here: SPC and TAB.

The command SPC(5), for example, moves five characters to the right. Any intervening
characters that lie between the current cursor position and the position five characters
to the right are left unchanged.

The commmand TAB(20), for example, moves to column 20 by subtracting the cursor’s
current position away from twenty and then moving that number of characters to the
right. If the cursor’s initial position is to the right of column 20 then the command does
nothing. This command can often be used to make text line up neatly into columns.

SAMPLE PROGRAMS
We conclude with some examples.

Palindromes

A palindrome is a word or phrase or number that reads the same forwards as it does
backwards. Some examples are: CIVIC, LEVEL, RADAR, MADAM and 1234321. The
following program reverses the input text and then determines whether the original
phrase is equal to the reversed phrase.

10 REM *** PALINDROMES ***

20 INPUT "ENTER SOME TEXT: ", A$

30 B$ = ""

40 FOR I = 1 TO LEN(A$)

50 : B$ = MID$(A$, I, 1) + B$

60 NEXT I

70 IF (A$ = B$) THEN PRINT (A$ + " IS A PALINDROME"): ELSE PRINT (A$ + " IS NOT A PALINDROME")

80 GOTO 20

Simple Ciphers

We now look at three simple examples of scrambling and unscrambling English lan-
guage text messages. This scrambling and unscrambling process is the study of cryp-
tography and is used to keep information secure so that it can’t be read by others
except for those privileged to know the cipher’s method and secret key.

9-9

The process of scrambling a given message is called encryption. The ordinary, read-
able unscrambled text is called plaintext. Encrypting plaintext results in a scrambled
messsage. This scrambled text is called ciphertext. The process of unscrambling the
ciphertext is called decryption. Decrypting the ciphertext results in an unscrambled
message—the plaintext.

Suppose that we were to encrypt some plaintext and then send the resulting ciphertext
to a friend. Provided that the friend knows the method and secret key used to scramble
the message, they could then decrypt the ciphertext and would be able to recover and
read our original plaintext message.

If someone else attempts to read the ciphertext using the wrong method and/or the
wrong secret key, the resulting text will be unintelligible.

The cryptographic systems we describe here are very simple. Obviously, they shouldn’t
be used today because they are easily broken by techniques of cryptanalysis. Nev-
ertheless, they illustrate some basic techniques and show how we might structure a
sample program.

We investigate three ciphers. These are the ROT13 cipher, the Caesar Cipher and the
Atbash Cipher. These are part of a group of ciphers known as affine ciphers.

Mathematically, it is useful to think of the letters of the English alphabet as numbered.
A is 0, B is 1 and so, with Z being equal to 25.

Letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A key mathematical component of a cryptographic system is modular arithmetic,
sometimes casually referred to as ”clock arithmetic” because the numbers begin at
zero and increase until they reach an upper limit, at which point they wrap around
back to zero again, much like a circle. In our case, since there are 26 letters in the
English alphabet, we use modulo 26 arithmetic—our letters are numbered from 0 to
25.

0

3

10

13

16

23

To reduce a given number using modulo 26 we can use the following function:

f(x) = x−
⌊ x

26

⌋
× 26

9-10

This says that to obtain the value of a number x using modulo 26 we first divide x by
26 and round down, which gives us the number of times we went around the circle.
We then multiply this result by 26 again and subtract this from x. The final result is the
remainder left over and will always be a value between 0 and 25.

As an example, the number 28 in modulo 26 is equal to 2:

f(28) = 28−
⌊
28

26

⌋
× 26 = 28− 1× 26 = 2

The program at the end of this chapter makes use of this formula by defining a corre-
sponding function at line 30:

DEF FN F (X)= X - INT (X / 2 6) * 2 6

ROT13: When we encrypt each plaintext letter we move forward 13 places. So the
plaintext letter A becomes the ciphertext letter N, B becomes O, with latter letters
”wrapping around” back to the beginning of the alphabet. Thus, the plaintext letter Z
becomes the ciphertext letter M. This covers encryption. To decrypt each ciphertext
letter we simply repeat the process bymoving forward 13 places again, which brings us
full circle, back to where we started. Thus, a ciphertext letter N becomes the plaintext
letter A.

We can see this visually as a mapping in the form of a table:

English Plaintext A B C D E F G H I J K L M
ROT13 Ciphertext N O P Q R S T U V W X Y Z

English Plaintext N O P Q R S T U V W X Y Z
ROT13 Ciphertext A B C D E F G H I J K L M

To encrypt using ROT13, find the plaintext letter in the top row and move down to
the bottom row to find the corresponding ciphertext letter. To decrypt using ROT13,
find the ciphertext letter in the bottom row and move up to the top row to find the
corresponding plaintext letter.

If we consider the ROT13 cipher from a mathematical standpoint, we can see that to
both encrypt and decrypt we simply add 13 to the numerical value of a plaintext or
ciphertext letter and reduce it using modulo 26. This gives us a new number between
0 and 25 which corresponds to the encrypted or decrypted letter. Function EROT13 is
the encryption function. It accepts the value of a plaintext letter x as an argument and
returns the value of the ciphertext letter as a result. FunctionDROT13 is the decryption

9-11

function. It accepts the value of a ciphertext letter x as an argument and returns the
value of the plaintext letter as a result.

EROT13(x) = (x+ 13) mod 26

DROT13(x) = (x+ 13) mod 26

Notice that the definitions of both the encryption and decryption functions are, in this
case, exactly the same.

Atbash: Atbash is an ancient technique used to encrypt the 22-letter Hebrew alpha-
bet, but we can apply the same logic to encrypt the 26-letter English alphabet. To
encrypt a letter using Atbash we need to consider the English alphabet written back-
wards. So encrypting the plaintext letter A becomes the ciphertext letter Z, B becomes
Y, C becomes X and so on. Decrypting the ciphertext works the same way: the ci-
phertext letter A becomes the plaintext letter Z, B becomes Y, C becomes X and so
on.

We can see this visually as a mapping in the form of a table:

English Plaintext A B C D E F G H I J K L M
Atbash Ciphertext Z Y X W V U T S R Q P O N

English Plaintext N O P Q R S T U V W X Y Z
Atbash Ciphertext M L K J I H G F E D C B A

To encrypt using Atbash, find the plaintext letter in the top row and move down to
the bottom row to find the corresponding ciphertext letter. To decrypt using Atbash,
find the ciphertext letter in the bottom row and move up to the top row to find the
corresponding plaintext letter.

If we consider the Atbash cipher from a mathematical standpoint, we can see that
to encrypt and decrypt, we need to multiply by 25 and then add 25 to the numerical
value of the plaintext or ciphertext and reduce it using modulo 26. This gives us a new
number between 0 and 25 which corresponds to the encrypted or decrypted letter.
Function EAtbash is the encryption function. It accepts the value of a plaintext letter
x as an argument and returns the value of the ciphertext letter as a result. Function
DAtbash is the decryption function. It accepts the value of a ciphertext letter x as an
argument and returns the value of the plaintext letter as a result.

EAtbash(x) = (25× x+ 25) mod 26

9-12

DAtbash(x) = (25× x+ 25) mod 26

Notice that the definitions of both the encryption and decryption functions are, in this
case, exactly the same.

Caesar: The Caesar cipher is also an ancient technique used encrypt and decrypt
messages. To encrypt a letter using the Caesar cipher we move three positions for-
ward. So encrypting the plaintext letter A becomes the ciphertext letter D, B becomes
E, C becomes F and so on. Decrypting the ciphertext works the opposite way. In-
stead of moving forward, we move three positions backward. The ciphertext letter A
becomes the plaintext letter X, B becomes Y, C becomes Z and so on.

We can see this visually as a mapping in the form of a table:

English Plaintext A B C D E F G H I J K L M
Caesar Ciphertext D E F G H I J K L M N O P

English Plaintext N O P Q R S T U V W X Y Z
Caesar Ciphertext Q R S T U V W X Y Z A B C

To encrypt using the Caesar cipher, find the plaintext letter in the top row and move
down to the bottom row to find the corresponding ciphertext letter. To decrypt using
the Caesar cipher, find the ciphertext letter in the bottom row and move up to the top
row to find the corresponding plaintext letter.

If we consider the Casear cipher from a mathematical standpoint, we can see that to
encrypt, we need to add 3 to the numerical value of the plaintext and reduce it using
modulo 26. This gives us a new number between 0 and 25 which corresponds to the
encrypted letter. To decrypt, we need to subtract 3 from the numerical value of the
ciphertext and reduce it modulo 26. This gives us a new number between 0 and 25
which corresponds to the decrypted letter.

Function ECaesar is the encryption function. It accepts the value of a plaintext letter
x as an argument and returns the value of the ciphertext letter as a result. Function
DCaesar is the decryption function. It accepts the value of a ciphertext letter x as an
argument and returns the value of the plaintext letter as a result.

ECaesar(x) = (x+ 3) mod 26

DCaesar(x) = (x− 3) mod 26

9-13

Notice that the definitions of both the encryption and decryption functions are, in this
case, different.

We can generalise all three of the above methods by stating that they use the following
encryption and decryption functions:

E(x) = (A1x+B1) mod 26

D(x) = (A2x+B2) mod 26

Here, A1, A2, B1 and B2 are constants and put together they comprise the encryption
key for an affine cipher.

Running the following program displays a text menu. The user can choose to encrypt
or decrypt a string, or quit the program. You can practice typing in a plaintext phrase
to encrypt and then decrypt the ciphertext phrase to retrieve the orginal plaintext.

A good sample text string for testing a cipher is:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

This text string, which is 43 characters long, contains 8 spaces and 35 alphabetic
characters. Every character of the alphabet occurs at least once in this string, so
encrypting and decrypting with it checks that every letter is transformed as expected.

Encrypting the above text string using the ROT13 cipher yields:

GUR DHVPX OEBJA SBK WHZCF BIRE GUR YNML QBT

Encrypting the above text string using the Atbash cipher yields:

GSV JFRXP YILDM ULC QFNKH LEVI GSV OZAB WLT

Encrypting the above text string using the Caesar cipher yields:

WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

9-14

10 REM *** C R Y P T O G R A P H Y ***

20 POKE 0 ,65: P R I N T CHR$ (1 4 2) : P R I N T CHR$ (1 4 7)

30 DEF FN F (X)= X - INT (X / 2 6) * 2 6

40 C$ ="": P$ =""

50 P R I N T " S E L E C T AN O P T I O N (E , D OR Q):": P R I N T

60 P R I N T "{ S P A C E *3}[E] E N C R Y P T P L A I N T E X T ": P R I N T

70 P R I N T "{ S P A C E *3}[D] D E C R Y P T C I P H E R T E X T ": P R I N T

80 P R I N T "{ S P A C E *3}[Q] QUIT ": P R I N T

90 GET S$

100 IF (S$ =" Q ") THEN END

110 IF (S$ =" E ") THEN G O S U B 150: GOTO 40

120 IF (S$ =" D ") THEN G O S U B 270: GOTO 40

130 GOTO 90

140 REM E N C R Y P T

150 I N P U T " E N T E R P L A I N T E X T M E S S A G E TO E N C R Y P T : " , P$

160 IF P$ ="" THEN GOTO 150

170 M$ = P$: G O S U B 390

180 IF (V =0) THEN G O S U B 460: GOTO 150

190 A =1: B =3

200 FOR I =1 TO LEN (P$)

210 : L$ = MID$ (P$, I ,1)

220 : IF (L$ =" ") THEN C$ = C$ +" ": ELSE C$ = C$ + CHR$ (6 5 + (FN F (A *(ASC (L$) -65)+ B)))

230 NEXT I

240 P R I N T : P R I N T "{ R E V E R S E ON } E N C R Y P T E D C I P H E R T E X T :{ R E V E R S E OFF }" , C$: P R I N T

250 R E T U R N

260 REM D E C R Y P T

270 I N P U T " E N T E R C I P H E R T E X T M E S S A G E TO D E C R Y P T : " , C$

280 IF C$ ="" THEN GOTO 270

290 M$ = C$: G O S U B 390

300 IF (V =0) THEN G O S U B 460: GOTO 270

310 A =1: B = -3

320 FOR I =1 TO LEN (C$)

330 : L$ = MID$ (C$, I ,1)

340 : IF (L$ =" ") THEN P$ = P$ +" ": ELSE P$ = P$ + CHR$ (6 5 + (FN F (A *(ASC (L$) -65)+ B)))

350 NEXT I

360 P R I N T : P R I N T "{ R E V E R S E ON } D E C R Y P T E D P L A I N T E X T :{ R E V E R S E OFF }" , P$: P R I N T

370 R E T U R N

380 REM V A L I D A T E

390 V = 1

400 FOR I =1 TO LEN (M$)

410 : L$ = MID$ (M$, I ,1)

420 : IF NOT (((L$ >= " A ") AND (L$ <= " Z ")) OR (L$ =" ")) THEN V = 0

430 NEXT I

440 R E T U R N

450 REM E R R O R M E S S A G E

460 P R I N T : P R I N T " USE L E T T E R S AND S P A C E S ONLY ": P R I N T

470 R E T U R N

9-15

If you wish to use the ROT13 cipher ensure that the following lines are changed:

190 A =1: B =13

310 A =1: B =13

If you wish to use the Atbash cipher ensure that the following lines are changed:

190 A =25: B =25

310 A =25: B =25

If you wish to use the Caesar cipher ensure that the following lines are changed:

190 A =1: B =3

310 A =1: B = -3

The program listing, as written, uses the Caesar cipher by default.

9-16

CHAPTER 10
C64, C65 and MEGA65 Modes
• Switching Modes from BASIC

• The KEY Register

• Accessing Memory from BASIC 65

• The MAP Instruction

10-2

The MEGA65, like the C65 and the C128, has multiple operating modes. However,
there are important differences between the MEGA65 and both of these earlier com-
puters.

By default, the MEGA65.ROM file boots to MEGA65-mode (including BASIC 65), and
provides amethod to switch to C64-mode via theGO 64 command. However, it is also
possible to use an original C65 ROM (version 91xxxx.BIN) named as MEGA65.ROM,
making the MEGA65 start in C65-mode with BASIC 10. This also provides the same
functionality to switch to C64-mode.

Therefore, dependent on your boot ROM choice, you have:

Boot Mode ROM version BASIC C64-mode
MEGA65 92xxxx BASIC 65 GO 64
C65 91xxxx BASIC 10 GO 64

For readers familiar with the C128, the most important difference is that all of the
MEGA65’s new features can be accessed from every mode, and that you can even
switch back and forth between the different modes. It’s also possible to create hybrid
modes that combine different features from the different modes – all you need is the
MAP instruction and the KEY register address, which is 53295 ($D02F).

This chapter explains the different modes, the MAP instruction, and the KEY register,
which allows you to change the mode of operation of the MEGA65. This chapter also
explains how to use BASIC commands to switch from one mode to another.

SWITCHING MODES FROM BASIC
The MEGA65 is used in either C64-mode (running BASIC 2), C65-mode (running BA-
SIC 10) for ROM versions 91xxxx, or MEGA65-mode (running BASIC 65) for ROM
versions 92xxxx.

However, various MEGA65 features can be accessed from all modes, and all MEGA65
features are available to programs written in assembly language / machine code.
More information on how to write such programs can be found in the various appen-
dices.

From MEGA65/C65 to C64-mode

To switch from MEGA65/C65 to C64-mode, use the familiar GO 64 command, which
is identical to switching to C64 mode on a C128:

10-3

GO 64

ARE YOU SURE? Y

Note that any programs in memory will be lost in the process of switching modes. This
is the same as the C128.

Alternatively, you can hold ` down while pressing the reset button or switching the
MEGA65 on. Again, this is the same as the C128.

From C64 to MEGA65/C65-mode

To switch from C64 to MEGA65/C65-mode, use the following command. Note that
this command does not ask you for confirmation!

SYS 58552

Alternatively, you can switch back toMEGA65/C65-mode by pressing the reset button
on the left-hand side of the MEGA65, or by switching the MEGA65 off and on again.

Another option is to long-press RESTORE , and then press F5 from the Freeze Menu.
This simulates pressing the reset button.

Note that any programs in memory will be lost in the process of switching modes. This
is the same as the C128.

Entering Machine Code Monitor Mode

The Machine Code Monitor can be entered by typing either the MONITOR command

from BASIC 65/10, or by holding RUN
STOP down, and then pressing the reset button on

the left-hand side of the MEGA65.

THE KEY REGISTER
The MEGA65 has a VIC-IV video controller chip instead of the C64’s VIC-II or the
C65’s VIC-III. Just as the VIC-III has extra registers compared to the VIC-II, the VIC-IV
has even more registers. If these were visible all the time, software that was made for
the C64 and VIC-II may inadvertently use these new registers, resulting in unexpected
behaviour. Therefore, the creators of the C65 created a way to hide the extra VIC-III
registers from old C64 programs. Enabling and disabling the extra registers is done via
the KEY register. For more information about which registers are disabled and enabled

10-4

in each of the VIC-II, VIC-III and VIC-IV I/O modes, refer to Chapter/Appendix F on
page F-8.

The KEY register is an unused register of the VIC-II, which you can POKE to and PEEK
from, similar to other registers. But the KEY register has a special function: If you write
two certain values to it in quick succession, you can tell the VIC-IV to stop hiding the
VIC-III or VIC-IV registers from the rest of the MEGA65.

Exposing Extra C65 Registers

For example, to enable the VIC-III’s new registers when in C64-mode, you must POKE
the values 165 and 150 into the KEY register. The easiest way to do this is to switch
your MEGA65 off and on again, and type GO 64 and answer Y to enter C64-mode.

If you do this while already in C65-mode, the MEGA65 may not function correctly.

Once you are in C64-mode, try typing the following commands:

POKE 53295,165: POKE 53295,150

When you enter these commands, the MEGA65 returns a READY. prompt, and seem-
ingly nothing else has happened. This is expected, because the MEGA65 has only
enabled the VIC-III’s new registers (and some other C65-mode features). The C64
BASIC and KERNAL will still function as normal, and it may appear that nothing has
changed... But things have changed.

For example, you can do something that the C64 and its VIC-II can’t do: smoothly
change one colour to another. The VIC-III has registers that allow you to change the
red, green and blue components of the colours. Now that the VIC-III registers are
enabled, it’s possible to change the colour of the background progressively from blue
to purple, by increasing the red component of the colour that is normally blue on the
C64. The red component value registers are at 53504 – 53759 ($D100 – $D1FF).
Blue is colour 6, so a change to register 53510 (53504 + 6, or $D106) is required.
An example BASIC listing below includes a FOR loop to change the colour:

FOR I = 0 TO 15 STEP 0.2 : POKE 53510,I : NEXT

Once the program has been entered, type RUN on a new line. This will make the
background of the screen fade from blue to purple. If you would like to make the
effect progress faster, increase the 0.2 to a larger number such as 0.5. To make it
slower, change it to a smaller number such as 0.02. You can also change the red
component by POKEing a different number to 53504 – 53759 ($D100 – $D1FF), the
green component at 53760 – 54015 ($D200 – $D2FF), or the blue component at

10-5

54016 – 54271 ($D300 – $D3FF). For example, to have the border and text (since
they are both normally “light blue”) fade from blue to green, you can try:

POKE 53518,0 : FOR I = 0 TO 15 STEP 0.1 : POKE 53774,I : POKE 54030,15-I : NEXT

Disabling the C65/MEGA65 Extra Registers

You can also disable the VIC-III registers again by POKEing any number into the KEY
register, e.g.:

POKE 53295,0

If you RUN the examples above again, the colours won’t change because the registers
are disabled. Instead, writing to those addresses changes some of the VIC-II’s regis-
ters, as on a C64 they appear several times over. Fortunately for the above example,
the registers used have no obvious side-effects. This is because the modified registers
in the examples above on a standard VIC-II are used to change the sprite positions.
Since there are no sprites on the screen, you won’t see anything change.

Enabling MEGA65 Extra Registers

The MEGA65 has even more registers than the C65. To enable these in C64-mode,
it’s required to POKE another two values into the KEY register:

POKE 53295,71: POKE 53295,83

Again, you won’t see any immediate difference, which is similar to when enabling the
VIC-III registers. However, now the MEGA65 can access not only the VIC-II and VIC-III
registers, but also the VIC-IV registers. If you like, you can try the examples from earlier
in this chapter to see that the VIC-III registers are accessible again. But now you can
also do MEGA65 specific things. For example, if you wanted to move the start of the
top border higher on the screen, you can try something such as:

POKE 53320,60

Alternatively, you can have some fun and animate the screen borders, by having them
move closer and further apart:

FOR I = 255 TO 0 STEP -1 : POKE 53320,I : POKE 53322, 255 - I : NEXT

10-6

The above example has the loop count backwards (from 255 to 0), so that your don’t
end up with only a tiny sliver of the text visible. You can make it go forwards if you like.

If you do get stuck with only a sliver of the screen, you can press RUN
STOP and RESTORE .

You might be wondering: Why does RUN
STOP and RESTORE work when these are VIC-IV

registers that the C64-mode BASIC and KERNAL don’t know about? The reason is
the VIC-IV has a feature called “hot registers”, where certain C64 and C65 registers
cause some MEGA65 registers to be reset to the C64 or C65-mode defaults. In this
particular case, it is the KERNAL resetting the VIC-II screen using 53265 ($D011),
which adjusts the vertical border size in C64/C65-mode, and is thus a “hot register”
for the MEGA65’s vertical border position registers.

See if you can instead make the screen shake around by changing the TEXTXPOS
and TEXTYPOS registers of the VIC-IV. You can find out the POKE codes for those,
and lots of other interesting new registers by looking through Chapter/Appendix M on
page M-5.

Traps to look out for

In all modes, the DOS for the internal 3.5” disk drive (including when you use D81
disk images from an SD card) resets the KEY register to VIC-II mode whenever it is
accessed. This means if you perform actions such as check the drive status, or LOAD or
SAVE a file, the KEY register will be reset, and only the VIC-II registers will be enabled.
You can of course enable the C65 or MEGA65 registers by POKEing the correct values
to the KEY register again.

ACCESSING MEMORY FROM BASIC
65
BASIC 65 contains powerful memory banking and Direct Memory Access (DMA) com-
mands that can be used to read, fill, copy, and write areas of memory beyond the
C65’s 128KB of RAM. The MEGA65 has 384KB of main memory, split into 6 banks of
64KB each. They are:

• BANK 0 and BANK 1 - acts as the C65’s normal 128KB RAM.

• BANK 2 and BANK 3 - normally write-protected, and contains the C65’s ROM
image.

• BANK 4 and BANK 5 - used for all graphic routines in BASIC 65 for high resolution
bitplane graphics. BASIC 10 doesn’t use banks 4 and 5.

10-7

Using the BANK, PEEK and POKE commands, this region of memory can be easily
accessed, for example:

BANK 4: POKE0,123: REM PUT 123 IN LOCATION $40000

BANK 4: PRINT PEEK(0): REM SHOW CONTENTS OF LOCATION $40000

Or, by using the DMA command, you can copy the current contents of the screen and
colour RAM into BANK 4 with:

DMA 0, 2000, 2048, 0, 0, 4 : REM SCREEN TEXT TO BANK 4

DMA 0, 2000, DEC("F800"), 1, 2000, 4 : REM COPY COLOUR RAM TO BANK 4

You can then put something else on the screen, and copy it back with:

DMA 0, 2000, 0, 4, 2048, 0 : REM SCREEN TEXT FROM BANK 4

DMA 0, 2000, 2000, 4, DEC("F800"), 1 : REM COPY COLOUR RAM FROM BANK 4

THE MAP INSTRUCTION
The above methods can be used from BASIC. In contrast, the MAP instruction is an
assembly language instruction that can be used to rearrange the memory that the
MEGA65 uses. It is used by the C65 ROM and BASIC 65 to manage what memory it
can use at any particular point in time. For further explanation of the MAP instruction,
refer to the relevant section of Chapter/Appendix G on page G-8.

10-8

PART IV
SOUND AND GRAPHICS

colortbl adjustbox

10-10

CHAPTER 11
Graphics

11-2

Let’s have some fun with graphics! In this part of the book, we want to examine the
MEGA65’s graphics modes by walking through example code in machine language to
get to know the various options of the MEGA65 in the area of graphics. First of all, it
is important to know that the MEGA65 supports three different basic graphics modes:

• Bitmap graphics

• Graphics based on character sets

• Bitplanes

BITMAP GRAPHICS
In bitmap graphics every pixel of a graphic is stored separately. The way the pixels
are hold in memory varies from system to system and in most cases depends on the
performance of the hardware. If memory would be unlimited, the easiest way to re-
member a pixel is to save its RGB-values in three separate bytes. Example: 0xFFFFFF
for white would result in three values to be stored: $FF, $FF and $FF. To be honest, this
is too simple and not really efficient. Let’s think about another way. Why not defining a
color table (or color palette) and store the RGB values once and finally only reference
the color by its index in the table? This will save us a lot of memory! Let’s imagine
we would create a colorful 8x8 bitmap to represent an ”A” on the screen. Colourful
means, we want it in some brownish colors. The color table for it may look like this:

Index Color

Black

9 Brown

8 Orange

A Light Red

F Light Grey

7 Yellow

The color values, by the way, are exact the same as the color values from the standard
C64 color palette. Next we design the ”A”. Each pixel references a value from the
color table above.

11-3

1 2 3 4 5 6 7 8

1

2 A F 7 F A 8

3 F F 8 A

4 7 7 8 A

5 7 F F A A A

6 F A 8 A

7 A A A A

8 8 9 8 A

But how much memory does this little graphic use XXX?

If we create an one-dimensional array, we will get an array with 64 elements, because
our graphic consists of 8x8 pixels = 64 color values that have to be saved. If we
transfer that to the memory of the MEGA65, it means that we have 64 bytes to store
in memory. However, full-screen graphics are made up of far more pixels. On the
C64 and of course also on the MEGA65, 320x200 pixels are required to generate
a graphic that fills the entire screen. If we transfer this to our array, we would have
a total of 64,000 entries. Converted to the memory of the MEGA65, that is 64,000
bytes or nearly 64 kilobytes of data! If we now also consider that the good old C64
only had 64K of RAM available, we recognize the Drama! That’s just too much data!
We need strategies to reduce our bitmap data. On the C64 we had to two types
of bitmap graphics and both come with its own concepts to use as less memory as
possible.

• Hires

• Multicolor (MCM)

Hires

First, a bitmap is divided into blocks of 8x8 pixels each. In order to achieve the full
resolution of 320x200 pixels, 40 of such blocks next to each other builds up a line. If
we now build up 25 lines, we arrive at a graphic that fills the complete screen.

width=center

11-4

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Splitting into blocks makes sense because this gives us the chance to reduce the data
drastically. Each line of a 8x8 block are 8 bits, so why not forget the color indexes and
just say each pixel set represents a ”1” in the line and each pixel not set corresponds
to ”0”.

11-5

1 2 3 4 5 6 7 8

1 = 0→ $00

2 1 1 1 1 = 120→ $78

3 1 1 1 1 = 204→ $CC

4 1 1 1 1 = 204→ $CC

5 1 1 1 1 1 1 = 252→ $FC

6 1 1 1 1 = 204→ $CC

7 1 1 1 1 = 204→ $CC

8 1 1 1 1 = 204→ $CC

As shown above now you can easily convert the bits of each line to its hex value and
you finally get 8 bytes of data. This is the central idea in hires graphics and with this
concept you save a lot of memory. Here in this example it’s 8 Bytes versus 64 Bytes
if you have to manage all the color references. Let’s count it up for a full screen
picture: We have 40x25 Blocks, that is 1000 blocks in total. Each block is 8 Bytes or
1 Kilobyte, so we’ll result in ”only” 10K for a full screen picture.

This is a brilliant solution, but now have a problem: We lost the colors!

If you look at the first figure, it was very colorful. But do we really need so many
colors? This is the second important concept in hires bitmap graphics: Less colors
means less memory. In fact hires mode limits you to two colors per 8x8 pixel block.
This information is stored in the Screen-RAM, not in the Color-RAM as one might
assume. And again the idea why is really clever: In Screen-RAM you can hold values
between $00 and $FF whereas in the Color-RAM it makes only sense to store values
between $0 and $0F to reference one specific color from the C64 color palette
which consists of 16 colors ($0-$F). On the MEGA65 you can have even more colors
and you are able to tweak the default colors, but this will be explained later.

Back to the Screen-RAM. Here you store two colors for each 8x8 block. If you split
the byte into its Hi-Byte and Low-Byte you have the chance to put a background and
a foreground color into it! The value $0a for example can be seen as $0 and $a. This
way we’ll get a black background and light red for the pixels in the block. In the end
this means, a fullscreen hires bitmap will consume not 10 but 20 Kilobytes. 10K for
the raw bitmap data as mentioned earlier and another 10K for the colors inside the
Screen-RAM.

11-6

Programming simple Hires Bitmaps

Let’s code!

11-7

11-8

PART V
HARDWARE

11-10

CHAPTER 12
Using Nexys4 boards as a

MEGA65
• Building your own MEGA65 Compatible

Computer

• Working Nexys4 Boards

• Power, Jumpers, Switches and Buttons

• Keyboard

• Preparing microSDHC card

• Loading the bitstream from QSPI

• Useful Tips

12-2

BUILDING YOUR OWN MEGA65
COMPATIBLE COMPUTER
You can build your own MEGA65-compatible computer by using either a Nexys4DDR
(aka. Nexys A7) or the older Nexys4 (Non-DDR) FPGA development boards. This ap-
pendix describes the process to set up a Nexys4DDR (Nexys A7) board for this pur-
pose (which is the newer, preferred board). The older non-DDR Nexys4 board is also
supported, and the instructions are the same, except that you must use a bitstream
designed for that board. Using a Nexys4DDR bitstream on a non-DDR Nexys4 board,
or vice versa, may cause irreparable damage to your board, so make sure you have
the correct bitstream to suit your board.

DISCLAIMER: M.E.G.A cannot take any responsibility for any damage that may occur
to your Nexys4DDR/NexysA7/Nexys4 boards.

12-3

WORKING NEXYS4 BOARDS
There are currently 3 Nexys FPGA boards which can be setup as a MEGA65:

The Nexys4 board

No longer manufactured but still available for sale on some websites with old stock.

Documentation:
• https://reference.digilentinc.com/reference/programmable-logic/
nexys-4/reference-manual

• https://reference.digilentinc.com/_media/reference/
programmable-logic/nexys-4/nexys4_rm.pdf

The Nexys4DDR board

No longer manufactured but still available for sale on some websites with old stock.

Documentation:
• https://reference.digilentinc.com/reference/programmable-logic/
nexys-4-ddr/reference-manual

• https://reference.digilentinc.com/_media/reference/
programmable-logic/nexys-4-ddr/nexys4ddr_rm.pdf

12-4

https://reference.digilentinc.com/reference/programmable-logic/nexys-4/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-4/reference-manual
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-4/nexys4_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-4/nexys4_rm.pdf
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/reference-manual
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-4-ddr/nexys4ddr_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-4-ddr/nexys4ddr_rm.pdf

The Nexys A7

This is the re-branded version of the above Nexys4 DDR board:

Documentation:
• https://reference.digilentinc.com/reference/programmable-logic/
nexys-a7/reference-manual

• https://reference.digilentinc.com/_media/reference/
programmable-logic/nexys-a7/nexys-a7_rm.pdf

12-5

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-a7/nexys-a7_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-a7/nexys-a7_rm.pdf

POWER, JUMPERS, SWITCHES AND
BUTTONS
This top-down picture highlights the key jumper positions of interest on the Nexys4
board:

The Nexys4 boards can be powered in two ways: using an external power supply, or
from a standard USB port.

12-6

Micro-USB Power

Connect your micro-usb cable to a USB port on a USB charger or PC to provide power.
Connect the other end to the Nexys4’s micro-usb connector. Place the JP3 jumper on
pins 1 and 2 to select USB power. Use the switch to power up the Nexys4.

External Power Supply

The MEGA65 core can consume a lot of power, and a standard USB port could poten-
tionally be too little for the Nexys4 board. In particular, writing to the SD card might
hang or perform odd behaviour. Therefore you should consider a 5V power supply.

Digilent sell a power supply for the Nexys4 board, and we recommend you use this to
ensure you avoid the risk of damage to your Nexys4 board. The chosen power supply
should be center positive, 2.1mm internal diameter plug, and should deliver 4.5VDC
to 5.5VDC rated at least 1 Amp.

Connect the power supply cable to the supply plug of the Nexys4. Place the JP3
jumper on pins 2 and 3 to select WALL power. Use the switch to power up the Nexys4.

12-7

Other Jumpers and Switches

For your initial set up, we’d suggest you set the following jumpers on your Nexys4 board
to these positions:

• JP1 - USB/SD

• JP2 - SD

This will assure that the bitstream files will get loaded from your SD card on start-up.

At some later stage, you may prefer to load the bitstream from the on-board QSPI
flash, and at that point, you can revisit your JP1 jumper setting and adjust it to the
QSPI position.

All 16 switches on the lower edge of the board must be set to the off position.

12-8

Connections and Peripherals

A USB keyboard can be connected to the USB port. Only a keyboard that lacks a USB
hub will work with the Nexys4 board. Generally, extremely cheap keyboards will work,
while more expensive keyboards tend to have a USB hub integrated, and will not work.
You may need to try several keyboards before you find one that works.

You can connect a VGA monitor to the VGA port.

The mono audio-out jack can be connected to the line-in of an amplifier.

Communicating with your PC

There may be occasions where you wish to communicate with your Nexys4 board from
your PC, in order to perform activities such as:

• Flash your QSPI flash chip via Vivado

• Upload bitstream files directly from your PC (via m65 tool)

12-9

• Make use of support tools such as M65Connect, m65, mega65_ftp, m65dbg,
etc

On such occasions, you will need to connect your micro-usb cable up to your PC.

Onboard buttons

The “CPU RESET” button will reset theMEGA65when pressed, while the “PROG” button
will cause the FPGA itself to reload the MEGA65 core. The main difference between
the two is that CPU RESET is faster, and does not clear the contents of memory, while
the FPGA button is slower, and does reset the contents of memory.

Two of the five buttons in the cross arrangement can also be used: BTND acts as though

you have pressed RESTORE , while BTNC will trigger an IRQ, as though the IRQ line had
been pulled to ground.

12-10

KEYBOARD
The keyboard layout is positional rather than logical. This means that keys in similar
positions to the keys on a C65 keyboard will have similar function. This relationship
assumes that your USB keyboard uses a US keyboard layout.

To help you locate what the various MEGA65 keys are mapped to, the MEGA65 has a
built-in virtual keyboard test feature. This can be accessed in two ways.

The easiest way is to keep ALT held down in while switching on the Nexys4, or reset-
ting the Nexys4 with the “PROG” button. The configure menu will be presented and
by pressing 3, the virtual keyboard will be presented on a black background.

Pressing a key on the USB keyboard will show the highlighted key on the virtual key-
board to help you identify the key mapping.

The other way to access the virtual keyboard is from within the MEGA65. Hold
` and press TAB to access the Matrix Mode Debugger. From here, enter the
following:

s ffd3615 ff

This will open a semi-transparent virtual keyboard at the top of the screen. Alterna-
tively:

s ffd3615 ff ff

This will open a semi-transparent virtual keyboard in the centre of the screen.

Hold ` and press TAB to exit Matrix Mode Debugger and return to the MEGA65.

12-11

Some key mappings with a USB keyboard
RESTORE is mapped to the PAGE UP key.

RUN
STOP is mapped to ESC .

12-12

PREPARING MICROSDHC CARD
The MEGA65 requires an SDHC card of between 4GB and 64GB capacity. Some
SDXC cards may work, however, this is not officially supported.

Preparation steps for the Nexys4 board’s SD card share much in common with the
steps needed for real MEGA65 hardware, and as such, it is worth having a look over
the Configuring your MEGA65 chapter if you ever need details.

So in this section, we’ll provide more details on the distinctive steps, and be more brief
on the common steps.

One point of distinction between the Nexys board and the real MEGA65 hardware is
that the latter already has a default bitstream/core provided, which permits you to
format your SD card in the specific style required by the MEGA65.

For Nexys4 board owners however, you have no such default bitstream, so see Bit-
stream files for more details on where the appropriate ”nexys4.bit” or ”nexys4ddr-
widget.bit” files for your device can be downloaded from.

Preparation Steps

The steps are:

• Format the SD card in a convenient computer using the FAT32 file-system. The
MEGA65 and Nexys4 boards do not understand other file systems, especially the
exFAT file system.

• Copy your bitstream file (with name ending in “.bit”) onto the SD card.

• Insert the SD card into the SD card slot on the under-side of the Nexys4 board.

• Switch on the Nexys4 board.

• Enter the Utility Menu by holding ALT down on the USB keyboard you have
connected to the Nexys4 board.

• Enter the FDISK/FORMAT tool by pressing 2 when the option appears on the
MEGA65 boot screen.

• Follow the prompts in the FDISK/FORMAT program to again format the SD card
for use by the MEGA65.

The FDISK tool will partition your SD card into two partitions and format
them.

12-13

– One is type $41 = MEGA65 System Partition, where the save slots, config-
uration data and other files live.
(This partition is invisible in i.e. Win PCs).

– The other partition with type $0C = VFAT32, where KERNAL, support files,
games, and so on, will be copied to later.
(This partition is visible on i.e. Win PCs).

• Once formatting is complete, switch off the Nexys4 board and remove the mi-
croSDHC card from the Nexys board and put it back into your PC

• This time, copy the following items onto the SD card:

– The bitstream file

– The extracted files from within either the ”SD essentials.rar” or ”SD es-
sentialsNoROM.rar” file that you downloaded from the MEGA65 filehost.
(See Installing ROM and Other Support Files for more details).

– If you have sourced your own preferred ROM file (e.g. ”911001.BIN”), copy
it onto the SD card also, and rename it to ”MEGA65.ROM” (uppercase is
essential).

– Any .D81 disk image files you wish to make use of.

* Note that if a file named MEGA65.D81 is added to the SD card, it will
be mounted automatically on startup.

* Make sure that all .D81 files have names that fit the old DOS 8.3 char-
acter limit, and are upper case. This restriction will be removed in a
future release.

• Remove the SD card and reinsert it into your Nexys4 board.

• Power the Nexys4 board back on. The MEGA65 should boot within 15 seconds.

• On first start up, you will find yourself at the on-boarding screen, of which more
details can be found in the Configuring your MEGA65 chapter.

Congratulations. Your MEGA65 has been set up and is ready to use.

Please note that the above method of copying the bitstream file to the SD card means
that the bitstream is loaded into the Nexys FPGA each time on boot - which takes
around 13 seconds for the system to start. The bitstream can also be flashed using
Vivado software into the QSPI flash to deliver a boot up time of 0.3 seconds.

For more detailed information on preparing and configuring your MEGA65, please
refer to the Configuring your MEGA65 chapter.

12-14

LOADING THE BITSTREAM FROM QSPI
While loading the bitstream from the SD card is the suggested (and well-trodden)
path this document has chosen, of late, more nexys4 users have been exploring the
alternative pathway of loading the bitstream from the QSPI flash. Some potential
reasons they have chosen this pathway are:

• Faster loading times (0.3 seconds versus 13 seconds)

• Some people were interested in the possibility of flashing multiple cores onto
their QSPI (via steps described in the Cores and Flashing Chapter)

• Some people have experienced niggling issues with the SD card pathway, such
as:

– System unable to reboot from on-boarding screen

– System unable to reboot from freeze-menu after switching between
PAL/NTSC

In time, if this proves to be a more popular pathway, we can revise our documentation
here to suit it. Here are some steps in brief.

Preparation Steps

For users that want to try this pathway, you will need to adjust the JP1 jumper setting
to use QSPI and then follow the steps in the Flashing the FPGAs and CPLDs in the
MEGA65 chapter in relation to Installing Vivado and Flashing the main FPGA using
Vivado.

Be forewarned that the installation of Vivado is a lengthy process (both in terms of
download time, and installation time).

Once you have flashed Slot0 of your QSPI chip via Vivado, you can then follow the
steps described in Configuring your MEGA65 to perform the custom SD card format-
ting, installing of ROM and support files and on-boarding.

USEFUL TIPS
The following are some useful tips for getting familiar with the MEGA65:

• Press & hold ` (or the Commodore key if using a Commodore 64 or 65 key-
board) during boot to start up in C64-mode instead of C65-mode

12-15

• Press & hold RUN
STOP during boot to enter the machine language monitor, instead

of starting BASIC.

• Press RESTORE for approximately 1/2 - 1 second to enter the MEGA65 Freeze
Menu. From this menu you have convenient tools to change the CPU speed,
switch between PAL & NTSC video mode, change Audio settings, manage
freeze-states, select D81 disk images, examine andmodify memory of the frozen
program, among other features. This is in many ways the heart of the MEGA65,
so it is well worth exploring and getting familiar with.

• Type POKE0,65 in C64-mode to switch the CPU to full speed (40MHz). Some soft-
ware may behave incorrectly in this mode, while other software will work very
well, and run many times faster than on a C64.

• Type POKE0,64 in C64-mode to switch the CPU to 1MHz.

• Type SYS58552 in C64-mode to switch to C65-mode.

• Type GO64 in C65-mode and confirm, by pressing Y, to switch to C64-mode, which
is the same as on a C128.

• The C65 ROM makes device 8 the default, so you can normally leave off the ,8
from the end of LOAD and SAVE commands.

• Pressing SHIFT + RUN
STOP from either C64 or C65-mode will attempt to boot from

disk.

Have fun! The MEGA65 has been lovingly crafted over many years for your enjoyment.
We hope you have as much fun using it as we have had creating it!

The MEGA Museum of Electronic Games & Art welcomes your feedback, suggestions
and contributions to this open-source digital heritage preservation project.

12-16

PART VI
CROSS-PLATFORM

DEVELOPMENT TOOLS

12-18

CHAPTER 13
Emulators

• Using The Xmega65 Emulator

• Using the Live ISO image

13-2

At the time of writing, there is only one emulator for the MEGA65, xmega65; LGB’s
Xemu emulator suite. The LGB developers work hard to keep up with the development
of the MEGA65; however, some MEGA65 emulation may not be accurate but should
be sufficient for software development on the MEGA65.

During development, frequently test software on real hardware, such as a MEGA65 or
FPGA board capable of running a MEGA65 core.

Download the MEGA65 emulator source code from https://github.com/
lgblgblgb/xemu.

Download pre-compiled versions from https://github.lgb.hu/xemu/.

A live ISO image containing the emulator, documentation, and other tools
is available from Forum64.de at https://www.forum64.de/index.php?thread/
104698-xemu-live-system-iso-file/&postID=1549927#post1549936.

USING THE XMEGA65 EMULATOR

USING THE LIVE ISO IMAGE
The Live ISO image is the product of a volunteer community; not the MEGA65 team.
We include it for your convenience.

Creating a Bootable USB stick or DVD

There are many ways to create a live ISO image. The method you choose depends
on your operating system and whether you wish to install to a USB drive or burn it to
a DVD. Burning to a DVD is straightforward, assuming you own a computer that has a
DVD writer. If you wish to create a faster bootable USB drive, try one of the methods
below:

If you are using Windows, consider a tool like http://www.isotousb.com/.

On Linux, you can use the instructions at https://fossbytes.com/
create-bootable-usb-media-from-iso-ubuntu/.

For Apple Macs, consider these instructions at https://ubuntu.com/tutorials/
create-a-usb-stick-on-macos#1-overview.

Similar instructions are available for other popular computers, such as Ami-
gas (https://forum.hyperion-entertainment.com/viewtopic.php?t=3857), or
Sun UltraSPARC workstations (https://forums.servethehome.com/index.php?
threads/how-to-create-a-bootable-solaris-11-usb.1998/).

13-3

https://github.com/lgblgblgb/xemu
https://github.com/lgblgblgb/xemu
https://github.lgb.hu/xemu/
Forum64.de
https://www.forum64.de/index.php?thread/104698-xemu-live-system-iso-file/&postID=1549927#post1549936
https://www.forum64.de/index.php?thread/104698-xemu-live-system-iso-file/&postID=1549927#post1549936
http://www.isotousb.com/
https://fossbytes.com/create-bootable-usb-media-from-iso-ubuntu/
https://fossbytes.com/create-bootable-usb-media-from-iso-ubuntu/
https://ubuntu.com/tutorials/create-a-usb-stick-on-macos#1-overview
https://ubuntu.com/tutorials/create-a-usb-stick-on-macos#1-overview
https://forum.hyperion-entertainment.com/viewtopic.php?t=3857
https://forums.servethehome.com/index.php?threads/how-to-create-a-bootable-solaris-11-usb.1998/
https://forums.servethehome.com/index.php?threads/how-to-create-a-bootable-solaris-11-usb.1998/

Finally, the popular, easy-to-use, and free cross-platform belanaEtcher is available at
https://www.balena.io/etcher/.

Getting Started

To avoid potential copyright issues, the bootable ISO image does not include propri-
etary ROMs for the MEGA65; such as legacy C65 ROMs. It does include an open-
source replacement ROM from our OpenROMs project. This ROM will boot into a
BASIC 2 environment that you can use to load and execute many C64 programs as
shown in the image below:

If you wish to use a C65 ROM that includes BASIC 10, download the appropriate ROM
file and place it on another USB stick named MEGA65.ROM. On start-up, the MEGA65
will ask if a ROM has been downloaded; as shown in the image below:

13-4

https://www.balena.io/etcher/

If the Live ISO cannot find a ROM, it will prompt you to download a ROM; as shown
below:

Other Features of the Live ISO

As the previous screen-shots show, the Live ISO provides various and convenient desk-
top shortcuts. On the left-hand side, there are shortcuts for launching the MEGA65
emulator and the C65 emulator so you can test that programs will run on both plat-
forms. As previously mentioned, both emulators are a work in progress and may not
be 100% compatiable.

Another link provides access to the MEGA65 Book. This all-in-one volume, of apporix-
mately 800 pages, contains the official MEGA65 documentation. The majority of this
developer’s guide is also present in the MEGA65 Book.

This ISO also includes documentation for the C65 Notepad; a program for the C65
and MEGA65 written by Snoopy (the developer of the Live ISO image). A “read me”
file contains further information about the Live ISO.

Finally, on the right-hand side, there are links to download a C65 ROM and to update
the MEGA65 Book to the latest version. This will ensure you don’t need to create a
new bootable image each time a frequent update is made to the MEGA65 Book.

To access all contents of the Live ISO image, use the file explorer.

13-5

13-6

CHAPTER 14
Data Transfer and Debugging

Tools
• m65 command line tool

• M65Connect

• mega65_ftp

• TFTP Server

• Converting a BASIC text file listing into

a PRG file

14-2

The key to effective cross-platform development is having quick and easy means to
deploy and test software on the MEGA65. This is especially true while the MEGA65
emulator continues to be developed. In fact, even once the MEGA65 emulator is com-
plete, it is unlikely that it will be able to offer full compatibility at full speed, because
the MEGA65 is much more demanding to emulate than the C64.

There are a variety of tools that can be used for data transfer and debugging.
These typically function using either the MEGA65’s serial monitor interface, or via the
MEGA65’s fast ethernet adapter. The serial monitor interface is available via the UART
lines on the JB1 header.

If you do not have access to the serial monitor interface, there are tools being devel-
oped for the fast ethernet port that provide some, but not all, of the capabilities of the
serial monitor interface. These will be documented as they become available. The re-
mainder of this chapter focusses on methods that access the serial monitor interface.

You can either connect a 3.3V UART adaptor to the appropriate lines, or more con-
veniently, connect a TE-0790-03 JTAG debug module onto this connector. This gives
you a USB connection that can be used for injecting software, remote debugging and
memory inspection, as well as activating or flashing bitstreams. With this connection,
there are the following tools:

M65 COMMAND LINE TOOL
The https://github.com/mega65/mega65-tools repository contains a number of
tools, utilities and example programs. These tools are mainly for Linux but can be used
on Windows with Cygwin. One of those is the m65 command line tool. This is rather a
swiss-army knife collection of utilities in one. Common useful functions include:

Screenshots using m65 tool

To take a screenshot of the MEGA65 use:

m65 - S

This will create a file called mega65-screeen-000000.png, or if that file already
exists, the first non-used number will be used in place of 000000.

Note that this screenshot function works by having m65 emulate the function of the
VIC-IV. Thus while it produces excellent looking digital screenshots, it may not exactly
match the real display of the MEGA65. At the time of writing it does not render sprites
or bitplanes, only text and bitmap-based video modes.

14-3

https://github.com/mega65/mega65-tools

Load and run a program on the MEGA65

To load and run a program on the MEGA65, you can use a command like:

m65 - F -4 - r foo . prg

The -F option tells m65 to reset the MEGA65 before loading the program.

The -4 option tells m65 to switch the MEGA65 to C64-mode before loading the pro-
gram. If this is left off, then it will attempt to load the program in C65-mode.

The -r option tells m65 to run the program immediately after loading.

Note that this command works using the normal BASIC LOAD command, and is thus
limited to loading programs into the lower 64KB of RAM

Reconfigure the FPGA to run a different bitstream

To try out a different MEGA65 bitstream, a command like the following can be used:

m65 - b b i t s t r e a m . bit

This will cause the named bitstream to be sent to the FPGA. As the FPGA will be re-
configured by this action, and program currently running will not merely be stopped,
but also main memory will be cleared. For models of the MEGA65 that are fitted with
8MB or 16MB of expansion memory, those expansion memories are implemented in
external chips, and so the contents of them will not be erased.

For non-MEGA65 bitstreams (such as zxunomega65 and gbc4mega65), use the ’-q’
argument instead:

m65 - q b i t s t r e a m . bit

Remote keyboard entry

The MEGA65’s keyboard interface logic supports the injection of synthetic key events
using the registers $D615 – $D617. The m65 utility uses this to allow remote typing
on the MEGA65 in a way that is transparent to software. There are three ways to use
this:

m65 - t s o m e t e x t

This form types the supplied text, in this case sometext, but does not simulate pressing
RETURN . If you wish to simulate the pressing of RETURN , use -T instead of -t, e.g.:

14-4

m65 - T list

This would cause the LIST command to be typed and executed.

Finally, it is possible to begin general remote keyboard control via:

m65 - t -

In this mode, any key pressed on the keyboard of the computer where m65 is running
will be relayed to the MEGA65. Note that not all special keys are supported, and
that there is some latency, so using key repeat can cause unexpected results. But for
general remote control, it is a very helpful facility.

Unit testing and logging support

The m65 tool includes support to facilitate remote unit testing directly on MEGA65
hardware. When unit testing mode is active, m65 waits for the MEGA65 to send cer-
tain byte sequences over the serial interface which signal the current state (started,
passed, failed) of a given test. Additionally, it is possible to send log messages from
the MEGA65 to the host computer.

Unit testing mode is entered by calling m65 with the -u flag. To run a remote BASIC
program in C65-mode and simultaneously put m65 into unit testingmode, the following
command can be used:

m65 - Fur attic - ram . prg - w t e s t s . log

The -F and -r options tell m65 to reset the MEGA65 before loading the program
”attic-ram.prg” and then automatically run it. The -u option then tells m65 go into unit
testing mode instead of exiting after launching the program. The optional -w option
makes m65 append the test results to the file ”test.log” (creating the file if it doesn’t
exist).

Please note that m65 automatically exits from unit testing mode if no test state signals
were received for over 10 seconds.

Support is provided for sending unit test signals to the host computer fromC and BASIC
65 programs:

Using unit tests with C

The MEGA65 libc contains support for unit testing via functions defined in tests.h

and tests.c.

To signal the start of a test, include tests.h and use

14-5

unit_test_setup("testName",issueNumber);

where ”testName” is a human-readable name of the test (e.g. ”VIC-II”) and issueNum-
ber a reference to the corresponding bug issue (for example, the issue number from
github).

After starting a test, it’s possible to signal passed tests with the unit_test_ok() function:

unit_test_ok();

A failed test is signalled with unit_test_fail():

unit_test_fail("fail message");

Each time the unit_test_ok() or unit_test_fail() functions are called, the sub issue of the
test (reported on the host computer) is incremented. This makes it easier to combine
and identify multiple tests in one file.

You can send arbitrary log messages via unit_test_log():

unit_test_log("hello world from mega65!");

...and finally, when all is done, the end of unit testing is signalled by the use of

unit_test_done();

Using unit tests with BASIC 65

b65support.bin is a machine language module providing support for unit testing
from BASIC 65, available in the bin65 folder of the mega65-tools repository. This
module works by redirecting the USR vector to perform the functions needed to com-
municate with the testing host.

In an automated test scenario, you may want to inject the b65support.bin binary
into MEGA65 RAM by using m65:

m65 - @ mega65 - t o o l s / b i n 6 5 / b 6 5 s u p p o r t . b i n @ 1 5 f e

Of course it’s also possible to load b65support.bin directly from the MEGA65 by
mounting the M65UTILS.D81 image from the freezer and issuing

B L O A D " B 6 5 S U P P O R T . BIN "

After loading, b65support.bin is initialized with

SYS $ 1 6 0 0

Once initialized, the following functions are provided by b65support.bin:

14-6

A = USR (< issueNum >)

prepares a new test with number <issueNum> and resets subissue number to 0

A = USR ("= < testName >")

sets test name and sends test start signal; for example: A=USR("=VIC-III") sets
the test name to ’VIC-III’ and signals the host computer that the test has started.

A = USR ("/ < l o g M e s s a g e >)

sends a log message to the host computer

A = USR (" P ")

sends the ’passed’ signal to the host computer and increases the sub issue number

A = USR (" F ")

sends the ’test failed’ signal to the host computer and increases the sub issue number

A = USR (" D ")

sends the ’test done’ signal to the host computer

All calls return the current sub issue number or ?ILLEGAL QUANTITY ERROR in case
of calling an invalid command.

BASIC 65 example

The following is a complete BASIC 65 example showing how to use m65’s unit testing
features:

14-7

100 rem a t t i c ram c a c h e test

110 poke $bfffff2 , $e0 : rem e n a b l e a t t i c ram c a c h e

120 sys $ 1 6 0 0 : rem init test m o d u l e

130 a = usr (3 7 9) : rem set i s s u e n u m b e r

140 a = usr ("= attic - ram - c a c h e ") : rem set test name

150 b a n k 1 2 8 : poke0 ,65 : rem just to be sure

160 b0 = $ 8 0 0 0 0 0 0 : b1 = $ 8 0 0 0 1 0 0 : rem a t t i c ram a r e a s to be t e s t e d

170 for r =0 to $ff

180 poke b0 + r ,0 : rem fill area 1 with 0

190 poke b1 + r , $ff : rem fill area 2 with $ff

200 next r

210 for t =1 to 10 : rem 10 t r i e s

220 poke b0 ,32 : rem w r i t e to b0

230 for x =0 to $ff : t1 = b1 + x

240 a = peek (b0) : rem read from b0

250 b = peek (t1): b = peek (t1) : rem read t w i c e from t1

260 ifb < >255 t h e n f = t : t =11: x =256 : rem this shouldn ' t h a p p e n

270 next x

280 next t

290 if f =0 then b e g i n

300 p r i n t " no f a u l t s d e t e c t e d a f t e r "; t ;" t r i e s ."

310 a = usr (" p ") : rem s i g n a l ' test passed ' to host

320 bend : else b e g i n

330 a = usr (" f ") : rem s i g n a l ' test failed ' to host

340 p r i n t " h y p e r ram f a u l t d e t e c t e d a f t e r "; f ;" t r i e s ."

350 p r i n t " peek ($ "; hex$ (t1);") [t1] is "; b ;" but s h o u l d be 255"

360 bend

370 a = usr (" d ") : rem test done

M65CONNECT
This is a cross-platform graphical tool available for Windows, Linux andMacOSX, which
allows access to most of the functions of the m65 command-line tool, without needing
to use a command line, or being able to compile the tool for your preferred operating
system.

The repository for M65Connect is: https://github.com/MEGA65/m65connect

The latest binary version is available from https://files.mega65.org.

14-8

https://github.com/MEGA65/m65connect
https://files.mega65.org

With the MEGA65 or Nexys FPGA switched off, connect a USB cable from your com-
puter to the MEGA65 or Nexys FPGA board. Run the M65Connect executable and
follow the prompts to connect. The program will help you identify which USB Serial
Port to communicate over.

With this tool you can easily transfer PRG programs and a variety of other files.
M65Connect can handle the transfer, switching to C64-mode, and execution of pro-
grams.

MEGA65_FTP
The mega65_ftp utility from the https://github.com/mega65/mega65-tools
repository is a little misleadingly named: While it is a File Transfer Program, it does
not use the File Transfer Protocol (FTP). Rather, it uses the serial monitor interface to
take remote control of a MEGA65, and directly access its SD card to enable copying
of files between the MEGA65 and the host computer.

Note that it does not perfectly restore the MEGA65’s state on exit, and thus should
only be used when the MEGA65 is at the READY prompt, so that any running software
doesn’t go haywire. In particular, you should avoid using it when a sensitive program
is running, such as the Freeze Menu, MEGA65 Configuration Utility, or the MEGA65
Format/FDISK utility. (This problem could be solved with a little effort, if someone has
the time and interest to fix it).

When run, it provides an FTP-like interface that supports the get, put, rename and
dir commands. Note that when putting a file, you should make sure that it is given
a name that is all capitals and has o DOS-compatible 8.3 character file name. This
is due to limitations in both mega65_ftp and the MEGA65’s Hypervisor’s VFAT32 file
system code. Again, these problems could be fixed with a modest amount of effort
on the part of a motivated member of the community.

Finally, the mega65_ftp program is very slow to push new files to the MEGA65, typ-
ically yielding speeds of around 5KB/sec. This is partly because the serial monitor
interface is capable of transferring data at only 40KB/sec (when set to 4,000,000
bits per second), and partly because the remote control process results in a lot of
round-trips where helper routines are executed on the MEGA65 to read, write and
verify sectors on the SD card. It would be quite feasible to improve this to reach close
to 40KB/sec, and potentially faster using either some combination of data compres-
sion, de-duplication of identical sectors (especially when uploading disk images) and
other techniques. Again, this would be a very welcome contribution that someone in
the community could contribute to everyone’s benefit.

14-9

https://github.com/mega65/mega65-tools

TFTP SERVER
Work on a true TFTP server for the MEGA65 that supports fast TFTP transfers over
the 100mbit ethernet has begun, and can be used to very quickly read files from the
MEGA65. Speeds of close to 1MB/sec are possible, depending on SD card perfor-
mance. Rather than using DHCP, this utility will respond to any IP address that ends in
.65. It always uses the MAC address 40:40:40:40:40:40. True DHCP support as well
as using the MEGA65’s configured ethernet MAC address may be added in the future.

More importantly, support for writing files to the SD card is not yet complete, and
is blocked by the need for the implementation of the necessary functions in the
MEGA65’s Hypervisor for creating and growing files. A particular challenge is en-
abling the creation of files with contiguous clusters as is required for D81 disk images:
If a D81 file is fragmented, then it cannot be mounted, because the mounting mech-
anism requires a pointer to the contiguous block of the SD card containing the disk
image. In the interim, mega65_ftp can be used as a substitute.

CONVERTING A BASIC TEXT FILE
LISTING INTO A PRG FILE
If you have a untokenised BASIC program in plain text format sourced from somewhere
like an internet post, and you wish to try it on the MEGA65 without typing it in, it is
possible to convert it to a PRG.

C64List is a Windows-based command-line tool that will allow you to make the con-
version. Once you have a .PRG file, you can use a tool like M65Connect to upload it
to the MEGA65 or Nexys FPGA.

C64List is available for download from http://www.commodoreserver.com/
Downloads.asp

Ensure you have a program listing saved to a file on your local computer (for example,
program.txt) encoded as ANSI or UTF8.

Use C64List to convert the file to a PRG file using:

C64List program.txt -prg

Now you can upload your newly converted program to the MEGA65 with M65Connect
or one of the other tools described previously.

14-10

http://www.commodoreserver.com/Downloads.asp
http://www.commodoreserver.com/Downloads.asp

It is worth noting that this method will not be 100% effective on listings with special
PETSCII characters. Programs with PETSCII will require some editing on the MEGA65
itself before saving to disk.

14-11

14-12

CHAPTER 15
Assemblers

15-2

The table below shows an overview of assemblers known to work with MEGA65. For
general use we recommend ACME as it has good support for the 45GS02 instruction
set; is open source; and finally written in C. The latter means that it may be ported to
run natively on the MEGA65 in the future.

Name 45GS02 Source Reference
ACME yes C https://sourceforge.net/projects/acme-crossass
KickAss yes Java
Ophis yes Python https://github.com/michaelcmartin/Ophis
BSA yes C https://github.com/Edilbert/BSA
CA65 no1 C https://github.com/mega65/cc65

The BSA assembler is currently used to build the MEGA65.ROM. Most of this source
code is written in the syntax of the ancient BSO assembler (Boston Systems Office),
which was used in the years 1989 - 1991 by software developers, working on the C65.
The BSA Assembler has a compatibility mode, which makes it possible to assemble
these old source codes with minor or none modifications. The BSA Assembler has
currently only a description of commands embedded in the C-source of the assembler.

1Our fork of CA65 (part of CC65) correctly detects the MEGA65’s CPU, but has no explicit support for
the processor’s features

15-3

https://sourceforge.net/projects/acme-crossass
https://github.com/michaelcmartin/Ophis
https://github.com/Edilbert/BSA
https://github.com/mega65/cc65

15-4

CHAPTER 16
C and C-Like Compilers

• MEGA65 libc

16-2

Short answer: CC65 and KickC both work on the MEGA65.

Both CC65 and KickC are known to work on the MEGA65. However, both by default
have only a C64 memory model, and use only 6502 opcodes. It would be super for
someone to create a C65 memory configuration for CC65, and should not be too
hard to do.

CC65 supports overlays, which could be powerfully used with the MEGA65’s extra
memory to allow programs larger than 64KB. However, this would require writing a
suitable loader for such programs, which also does not yet exist.

Similarly, modifying the code generator of CC65 to use 45GS02 features would
not be particularly difficult to do, and would help to overcome the otherwise horri-
bly slow and bloated code that CC65 produces. Also adding first-class support for
the 45GS02 CPU features in CA65 (or perhaps even better, making CC65 produce
ACME compatible assembly output) would be of tremendous advantage, and not par-
ticularly hard to do. These would all be great tasks to tackle while you wait for your
MEGA65 DevKit to arrive!

An example template for a C program that can be compiled using CC65 and exe-
cuted on the MEGA65 can be found in the repository https://github.com/MEGA65/
hello-world. This repository will even download and compile CC65, if you don’t al-
ready have it installed on your system. This repository should work on Linux and Mac,
and on Windows under the Windows Subsystem for Linux (WSL).

MEGA65 LIBC
A C library is being developed for the MEGA65, and which already includes a num-
ber of useful features. This library is available from http://github.com/mega65/
mega65-libc. The procedures, functions and definitions it provides are documented
in a separate chapter.

The MEGA65 libc is currently available only for CC65, although we would welcome
someone maintaining a KickC port of it.

16-3

https://github.com/MEGA65/hello-world
https://github.com/MEGA65/hello-world
http://github.com/mega65/mega65-libc
http://github.com/mega65/mega65-libc

16-4

CHAPTER 17
MEGA65 Standard C Library
• Structure and Usage

• conio.h

17-2

A C library is being developed for the MEGA65, and which already includes a num-
ber of useful features. This library is available from http://github.com/mega65/
mega65-libc. The procedures, functions and definitions it provides are documented
in a separate chapter.

The MEGA65 libc is currently available only for CC65, although we would welcome
someone maintaining a KickC port of it.

STRUCTURE AND USAGE
The MEGA65 libc is purposely provided in source-form only, and with groups of func-
tions in separate files, and with separate header files for including. The idea is that you
include only the header files that you require, and add only the source files required
to the list of source files of the program you are compiling. This avoids the risk of the
compiler including functions in your compiled program that are never used, and thus
wasting precious memory space.

Note that some library source files are written in C, and thus are present as files with
a .c extension, while others are written in assembly language either for efficiency or
out of necessity, and have a .s extension.

Typical usage is to either have the mega65-libc source code checked out in an adja-
cent directory, or within the source directory of your own project. In the latter case,
this can be done using the git submodule facility.

The following sections document each of the header files and the corresponding func-
tions that they provide.

CONIO.H

conionit
Description: Initialises the library internal state

Syntax: void conioinit(void)

Notes: This must be called before using any conio library function.

setscreenaddr
Description: Sets the screen RAM start address

17-3

http://github.com/mega65/mega65-libc
http://github.com/mega65/mega65-libc

Syntax: void setscreenaddr(long addr);

Parameters: addr: The address to set as start of screen RAM

Notes: No bounds check is performed on the selected address

getscreenaddr
Description: Returns the screen RAM start address

Syntax: long getscreenaddr(void);

Return Value: The current screen RAM address start address.

setcolramoffset
Description: Sets the color RAM start offset value

Syntax: void setcolramoffset(long offset);

Parameters: addr: The offset from the beginning of the color RAM address
($FF80000)

Notes: No bounds check is performed on the resulting address. Do not exceed
the available Color RAM size

getcolramoffset
Description: Returns the color RAM start offset value

Syntax: long getscreenaddr(void);

Return Value: The current color RAM start offset value.

setcharsetaddr
Description: Sets the character set start address

Syntax: void setcharsetaddr(long addr);

Parameters: addr: The address to set as start of character set

Notes: No bounds check is performed on the selected address

17-4

getcharsetaddr
Description: Returns the current character set start address

Syntax: long getscreenaddr(void);

Return Value: The current character set start address.

clrscr
Description: Clear the text screen.

Syntax: void clrscr(void)

Notes: Color RAM will be cleared with current text color

getscreensize
Description: Returns the dimensions of the text screen

Syntax: void getscreensize(unsigned char* width, unsigned

char* height)

Parameters: width: Pointer to location where width will be returned

height: Pointer to location where height will be returned

setscreensize
Description: Sets the dimensions of the text screen

Syntax: void setscreensize(unsigned char width, unsigned char

height)

Parameters: width: The width in columns (40 or 80)

height: The height in rows (25 or 50)

Notes: Currently only 40/80 and 25/50 are accepted. Other values are
ignored.

17-5

set16bitcharmode
Description: Sets or clear the 16-bit character mode

Syntax: void set16bitcharmode(unsigned char f)

Parameters: f: Set true to set the 16-bit character mode

Notes: This will trigger a video parameter reset if HOTREG is ENABLED. See
sethotregs function.

sethotregs
Description: Sets or clear the hot-register behavior of the VIC-IV chip.

Syntax: void set16bitcharmode(unsigned char f)

Parameters: f: Set true to enable the hotreg behavior

Notes: When this mode is ENABLED a video mode reset will be triggered when
touching $D011, $D016, $D018, $D031 or the VIC-II bank bits of
$DD00.

setextendedattrib
Description: Sets or clear the VIC-III extended attributes mode to support blink,

underline, bold and highlight.

Syntax: void setextendedattrib(unsigned char f)

Parameters: f: Set true to set the extended attributes mode

togglecase
Description: Toggle the current character set case

Syntax: void togglecase(void)

bordercolor
Description: Sets the current border color

17-6

Syntax: void bordercolor(unsigned char c)

Parameters: c: The color to set

bgcolor
Description: Sets the current screen (background) color

Syntax: void bgcolor(unsigned char c)

Parameters: c: The color to set

textcolor
Description: Sets the current text color

Syntax: void textcolor(unsigned char c)

Parameters: c: The color to set

Notes: This function preserves attributes in the upper 4-bits if extended at-
tributes are enabled. See setextendedattrib.

revers
Description: Enable the reverse attribute

Syntax: void revers(unsigned char c)

Parameters: enable: 0 to disable, 1 to enable

Notes: Extended attributes mode must be active. See setextendedattrib.

highlight
Description: Enable the highlight attribute

Syntax: void highlight(unsigned char c)

Parameters: enable: 0 to disable, 1 to enable

Notes: Extended attributes mode must be active. See setextendedattrib.

17-7

blink
Description: Enable the blink attribute

Syntax: void blink(unsigned char c)

Parameters: enable: 0 to disable, 1 to enable

Notes: Extended attributes mode must be active. See setextendedattrib.

underline
Description: Enable the underline attribute

Syntax: void underline(unsigned char c)

Parameters: enable: 0 to disable, 1 to enable

Notes: Extended attributes mode must be active. See setextendedattrib.

altpal
Description: Enable the alternate-palette attribute

Syntax: void altpal(unsigned char c)

Parameters: enable: 0 to disable, 1 to enable

Notes: Extended attributes mode must be active. See setextendedattrib.

clearattr
Description: Clear all text attributes

Syntax: void clearattr())

Notes: Extended attributes mode must be active. See setextendedattrib.

cellcolor
Description: Sets the color of a character cell

Syntax: void cellcolor(unsigned char x, unsigned char y, un-

signed char c)

17-8

Parameters: x: The cell X-coordinate

y: The cell Y-coordinate

c: The color to set

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

setpalbank
Description: Set current text/bitmap palette bank (BTPALSEL).

Syntax: void setpalbank(unsigned char bank)

Parameters: bank: The palette bank to set. Valid values are 0, 1, 2 or 3.

Notes: Use setpalbanka to set alternate text/bitmap palette

setpalbanka
Description: Set alternate text/bitmap palette bank.

Syntax: void setpalbanka(unsigned char bank)

Parameters: bank: The palette bank to set. Valid values are 0, 1, 2 or 3.

Notes: Use setpalbank to set main text/bitmap palette

getpalbank
Description: Get selected text/bitmap palette bank.

Syntax: unsigned char getpalbank(void)

Notes: Use getpalbanka to get alternate text/bitmap selected palette

Return Value: The current selected main text/bitmap palette bank.

getpalbanka
Description: Get selected alternate text/bitmap palette bank.

Syntax: unsigned char getpalbanka(void)

17-9

Notes: Use getpalbank to get main text/bitmap selected palette

Return Value: The current selected alternate text/bitmap palette bank.

setmapedpal
Description: Set maped-in palette bank at $D100-$D3FF.

Syntax: void setmapedpal(unsigned char bank)

Parameters: bank: The palette bank to map-in. Valid values are 0, 1, 2 or 3.

getmapedpal
Description: Get maped-in palette bank at $D100-$D3FF.

Syntax: unsigned char getmapedpal(void)

setpalentry
Description: Set color entry for the maped-in palette

Syntax: void setpalentry(unsigned char c, unsigned char r,

unsigned char g, unsigned char b)

Parameters: c: The palette entry index (0-255)

r: The red component value

g: The green component value

b: The blue component value

Notes: Use setmapedmal to bank-in the palette to modify

fillrect
Description: Fill a rectangular area with character and color value

Syntax: void fillrect(const RECT *rc, unsigned char ch, un-

signed char col)

Parameters: rc: A RECT structure specifying the box coordinates

17-10

ch: A char code to fill the rectangle

col: The color to fill

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

box
Description: Draws a box with graphic characters

Syntax: void box(const RECT *rc, unsigned char color, unsigned

char style, unsigned char clear, unsigned char shadow)

Parameters: rc: A RECT structure specifying the box coordinates

color: The color to use for the graphic characters

style: The style for the box borders. Can be set to
BOX_STYLE_NONE, BOX_STYLE_ROUNDED, BOX_STYLE_INNER,
BOX_STYLE_OUTER, BOX_STYLE_MID

clear: Set to 1 to clear the box interior with the selected color

shadow: Set to 1 to draw a drop shadow

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

hline
Description: Draws an horizontal line.

Syntax: void hline(unsigned char x, unsigned char y, unsigned

char len, unsigned char style)

Parameters: x: The line start X-coordinate

y: The line start Y-coordinate

len: The line length

style: The style for the line. See HLINE_ constants for available styles.

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

17-11

vline
Description: Draws a vertical line.

Syntax: void vline(unsigned char x, unsigned char y, unsigned

char len, unsigned char style)

Parameters: x: The line start X-coordinate

y: The line start Y-coordinate

len: The line length

style: The style for the line. See VLINE_ constants for available styles.

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

gohome
Description: Set the current position at home (0,0 coordinate)

Syntax: void gohome(void)

gotoxy
Description: Set the current position at X,Y coordinates

Syntax: void gotoxy(unsigned char x, unsigned char y)

Parameters: x: The new X-coordinate

y: The new Y-coordinate

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

gotox
Description: Set the current position X-coordinate

Syntax: void gotox(unsigned char x)

Parameters: x: The new X-coordinate

17-12

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

gotoy
Description: Set the current position Y-coordinate

Syntax: void gotoy(unsigned char y)

Parameters: y: The new Y-coordinate

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

moveup
Description: Move current position up

Syntax: void moveup(unsigned char count)

Parameters: count: The number of positions to move

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

movedown
Description: Move current position down

Syntax: void movedown(unsigned char count)

Parameters: count: The number of positions to move

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

moveleft
Description: Move current position left

Syntax: void moveleft(unsigned char count)

Parameters: count: The number of positions to move

17-13

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

moveright
Description: Move current position right

Syntax: void moveright(unsigned char count)

Parameters: count: The number of positions to move

Notes: No screen bounds checks are performed; out of screen behavior is
undefined

wherex
Description: Return the current position X coordinate

Syntax: unsigned char wherex(void)

Return Value: The current position X coordinate

wherey
Description: Return the current position Y coordinate

Syntax: unsigned char wherey(void)

Return Value: The current position Y coordinate

cputc
Description: Output a single character to screen at current position

Syntax: void cputc(unsigned char c)

Parameters: c: The character to output

cputnc
Description: Output N copies of a character at current position

17-14

Syntax: void cputnc(unsigned char count, unsigned char c)

Parameters: c: The character to output

count: The count of characters to print

cputhex
Description: Output an hex-formatted number at current position

Syntax: void cputhex(long n, unsigned char prec)

Parameters: n: The number to write

prec: The precision of the hex number, in digits. Leading zeros will be
printed accordingly

Notes: The $ symbol will be automatically added at beginning of string

cputdec
Description: Output a decimal number at current position

Syntax: void cputdec(long n, unsigned char padding, unsigned

char leadingZ)

Parameters: n: The number to write

padding: The padding space to add before number

leadingZ: The leading zeros to print

cputs
Description: Output a string at current position

Syntax: void cputs(const unsigned char* s)

Parameters: s: The string to print

Notes: No pointer check is performed. If s is null or invalid, behavior is unde-
fined

17-15

cputsxy
Description: Output a string at X,Y coordinates

Syntax: void cputsxy (unsigned char x, unsigned char y, const

unsigned char* s)

Parameters: x: The X coordinate where string will be printed

y: The Y coordinate where string will be printed

s: The string to print

Notes: No pointer check is performed. If s is null or invalid, behavior is unde-
fined

cputcxy
Description: Output a single character at X,Y coordinates

Syntax: void cputcxy (unsigned char x, unsigned char y, un-

signed char c)

Parameters: x: The X coordinate where character will be printed

y: The Y coordinate where character will be printed

c: The character to print

cputncxy
Description: Output N copies of a single character at X,Y coordinates

Syntax: void cputncxy (unsigned char x, unsigned char y, un-

signed char count, unsigned char c)

Parameters: x: The X coordinate where character will be printed

y: The Y coordinate where character will be printed

count: The number of characters to output

c: The character to print

17-16

cprintf
Description: Prints formatted output.

Escape strings can be used to modify attributes, move cursor, etc sim-
ilar to PRINT in CBM BASIC.

Syntax: unsigned char cprintf (const unsigned char* format,

...)

Parameters: format: The string to output. The available escape codes are:

Cursor positioning
\t Go to next tab position (multiple of 8s)
\r Carriage Return
\n New line

{clr} Clear screen {home} Move cursor to home (top-left)
{d} Move cursor down {u} Move cursor up
{r} Move cursor right {l} Move cursor left

Attributes
{rvson} Reverse attribute ON {rvsoff} Reverse attribute OFF
{blon} Blink attribute ON {bloff} Blink attribute OFF
{ulon} Underline attribute ON {uloff} Underline attribute OFF

Colors (default palette)
{blk} {wht} {red} {cyan}
{pur} {grn} {blu} {yel}
{ora} {brn} {pink} {gray1}
{gray2} {lblu} {lgrn} {gray3}

Notes: Currently no argument replacement is done with the variable argu-
ments.

cgetc
Description: Waits until a character is in the keyboard buffer and returns it

Syntax: unsigned char cgetc (void);

Return Value: The last character in the keyboard buffer

Notes: Returned values are ASCII character codes

17-17

kbhit
Description: Returns the character in the keyboard buffer

Syntax: unsigned char kbhit (void);

Return Value: The character code in the keyboard buffer, 0 otherwise.

Notes: Returned values are ASCII character codes

getkeymodstate
Description: Return the key modifiers state.

Syntax: unsigned char getkeymodstate(void)

Return Value: A byte with the key modifier state bits, where bits:

Bit Meaning Constant
0 Right SHIFT State KEYMOD_RSHIFT
1 Left SHIFT state KEYMOD_LSHIFT
2 CTRL state KEYMOD_CTRL
3 MEGA state KEYMOD_MEGA
4 ALT state KEYMOD_ALT
5 NOSCRL state KEYMOD_NOSCRL
6 CAPSLOCK state KEYMOD_CAPSLOCK
7 Reserved -

flushkeybuf
Description: Flush the keyboard buffer

Syntax: void flushkeybuf(void)

cinput
Description: Get input from keyboard, printing incoming characters at current po-

sition.

Syntax: unsigned char cinput(char* buffer, unsigned char bu-

flen, unsigned char flags)

Parameters: buffer: Target character buffer preallocated by caller

17-18

buflen: Target buffer length in characters, including the null charac-
ter terminator

flags: Flags for input: (default is accept all printable characters)

CINPUT_ACCEPT_NUMERIC
Accepts numeric characters.

CINPUT_ACCEPT_LETTER
Accepts letters.

CINPUT_ACCEPT_SYM
Accepts symbols.

CINPUT_ACCEPT_ALL
Accepts all. Equals to CINPUT_ACCEPT_NUMERIC
|CINPUT_ACCEPT_LETTER |CINPUT_ACCEPT_SYM

CINPUT_ACCEPT_ALPHA
Accepts alphanumeric characters. Equals to
CINPUT_ACCEPT_NUMERIC |CINPUT_ACCEPT_LETTER

CINPUT_NO_AUTOTRANSLATE
Disables the feature that makes cinput to autodisplay uppercase
characters when standard lowercase character set is selected
and the user enters letters without the SHIFT key, that would
display graphic characters instead of alphabetic ones.

Return Value: Count of successfully read characters in buffer

VIC_BASE
VIC_BASE is a pre-processor macro that provides the base address of the VIC-IV chip,
i.e., $D000.

IS_H640 is a pre-processor macro that returns 0 if the current VIC-III/IV video mode
is set to 320 pixels accross (40 column mode), and non-zero if it is set to 640 pixels
across (80 column mode).

17-19

17-20

CHAPTER 18
BASIC Tokenisers

18-2

Various tokenisers for C64 BASIC exist, e.g., https://github.com/catseye/
hatoucan, https://www.c64-wiki.com/wiki/C64list, or the petcat utility that is
part of VICE. If you are using Ubuntu Linux, you can install petcat by using the fol-
lowing command:

sudo apt - get i n s t a l l vice

We recommend petcat, because it supports both C64 BASIC 2 and C65 BASIC 10.

18-3

https://github.com/catseye/hatoucan
https://github.com/catseye/hatoucan
https://www.c64-wiki.com/wiki/C64list

18-4

PART VII
APPENDICES

6

APPENDICES

8

APPENDIX A
Accessories

A-2

APPENDIX B
BASIC 65 Command Reference
• Commands, Functions and Operators

• BASIC 65 constants

• BASIC 65 variables

• BASIC 65 arrays

• BASIC command reference

B-2

COMMANDS, FUNCTIONS AND
OPERATORS
This appendix describes each of the commands, functions and other callable elements
of BASIC 65, an enhanced version of BASIC 10. Some of these can take one or more
arguments, which are pieces of input that you provide as part of the command or
function call. Some also require that you use special keywords. Here is an example of
how commands, functions and operators will be described in this appendix:

KEY <numeric expression>,<string expression>

In this case, KEY is what we call a keyword. That just means a special word that
BASIC understands. Keywords are always written in CAPITALS, so that you can easily
recognise them.

The < and > signs mean that whatever is between themmust be there for the command,
function or operator to work. In this case, it tells us that we need to have a numeric
expression in one place, and a string expression in another place. We’ll explain
what they are a bit more in a few moments.

You might also see square brackets around something. For example, [,numeric ex-
pression]. This means that whatever appears between the square brackets is op-
tional, that is, you can include it if you need to, but that the command, function or
operator will work just fine without it. For example, the CIRCLE command has an optional
numeric argument to indicate if the circle should be filled when being drawn.

The comma, and some other symbols and punctuation marks just represent themselves.
In this case, it means that there must be a comma between the numeric expression
and the string expression. This is what we call syntax: If you miss something out, or
put the wrong thing in the wrong place, it is called a syntax error, and the computer
will tell you if you have a syntax error by giving a ?SYNTAX ERROR message.

There is nothing to worry about if you get an error from the computer. Instead, it is just
the computer’s way of telling you that something isn’t quite right, so that you can more
easily find and fix the problem. Error messages such as this won’t hurt the computer or
cause any damage to your program, so there is nothing to worry about. For example,
if we accidentally left the comma out, or replaced it with a full stop, the computer will
respond with a SYNTAX ERROR, similar to what’s shown below:

B-3

KEY 8"FISH"

?SYNTAX ERROR

KEY 8."FISH"

?SYNTAX ERROR

It is very common for commands, functions and operators to use one or more “expres-
sions”. An expression is just a fancy name for something that has a value. This could
be a string ("HELLO"), a number (23.7), or a calculation that might include one or more
functions or operators (LEN("HELLO") * (3 XOR 7)). Generally speaking, expressions can result
in either a string or a numeric result. In this case we call the expressions either string
expressions or numeric expressions. For example, "HELLO" is a string expression, while
23.7 is a numeric expression.

It is important to use the correct type of expression when writing your programs. If you
accidentally use the wrong type, the computer will give you a ?TYPE MISMATCH ERROR, to say
that the type of expression you gave doesn’t match what it expected. For example,
we will get a ?TYPE MISMATCH ERROR if we type the following command, because "POTATO" is a
string expression instead of a numeric expression:

KEY "POTATO","SOUP"

If you wish, you can try typing this in yourself.

Commands are statements that you can use directly from the READY. prompt, or from
within a program, for example:

PRINT "HELLO"

HELLO

10 PRINT "HELLO"

RUN

HELLO

B-4

BASIC 65 CONSTANTS
type example example
decimal integer 32000 -55
decimal fixed point 3.14 -7654.321
decimal floating point 1.5E03 7.7E-02
hex $D020 $FF
string "X" "TEXT"

BASIC 65 VARIABLES
Each scalar variable consumes 8 bytes of storage in memory. The reserved area in
bank 0 from $F700-$FEFF can store 256 variables. Variables don’t need to be de-
clared, the type is determined by an appended character. All variables without an
appended character are regarded as REAL by default. The storage is claimed at their
first usage and they are initialised to zero, string variables are initialised as an empty
string ””.

type appended character range example
byte & 0 .. 255 BY& = 23
integer % -32768 .. 32767 I% = 5
real none -1E37 .. 1E37 XY = 1/3
string $ length = 0 .. 255 AB$ = "TEXT"

BASIC 65 ARRAYS
Each array consumes the number of elements multiplied by the item size plus the size
of the header (6 + 2 * dimensions) in memory. For example the array

100 DIM X(8,2,3) :REM (0..8, 0..2, 0..3)

has 3 dimensions and 9 x 3 x 4 = 108 items. The size for real items is 5, so the data
of that array occupies 540 bytes. The header size is 6 + 2 * 3 = 12 bytes. So the total
length in memory is 552 bytes.

Arrays are stored in bank 1 starting at address $2000 and expand upwards. They
share the available memory ($2000 .. $F6FF) with the string area, which starts in
bank 1 at address $F6FF and expand downwards. Each of the above scalar variable
types can be used as an array by declaring them with a DIM statement. The arrays

B-5

are initialised to zero for all elements on declaration. If an undeclared array element
is used, an automatic implicit declaration is done, which sets the upper boundary for
each dimension to 10. For example, the usage of an undeclared element AB(3,5)
would automatically perform a ”DIM AB(10,10)”. The lower boundary for each dimen-
sion is always 0 (zero), so an array initialised with DIM AB(10) consists of 11 elements
and accepts indexes from 0 to 10.

String arrays are, more precisely expressed, arrays of string descriptors. Each item
consists of three bytes, which hold the values: length of the string and the address
(low/high byte) of the assigned string in string memory. The usage of the BASIC func-
tion POINTER with a string or string array element as the argument, returns the address
of the descriptor, not the string itself.

type & item size appended range example
character

byte array 1 & 0 .. 255 BY&(5,6) = 23
integer array 2 % -32768 .. 32767 I%(0,10) = 5
real array 5 none -1E37 .. 1E37 XY(I%) = 1/3
string array 3 $ length = 0 .. 255 AB$(X) = "TEXT"

B-6

Keywords And Tokens Part 1
* AC COLOR E7 FAST FE25
+ AA CONCAT FE13 FGOSUB FE48
- AB CONT 9A FGOTO FE47
/ AD COPY F4 FILTER FE03
< B3 COS BE FIND FE2B
= B2 CURSOR FE41 FN A5
> B1 CUT E4 FONT FE46
ABS B6 DATA 83 FOR 81
AND AF DCLEAR FE15 FOREGROUND FE39
APPEND FE0E DCLOSE FE0F FORMAT FE37
ASC C6 DEC D1 FRE B8
ATN C1 DEF 96 FREAD# FE1C
AUTO DC DELETE F7 FWRITE# FE1E
BACKGROUND FE3B DIM 86 GCOPY FE32
BACKUP F6 DIR EE GENLOCK FE38
BANK FE02 DISK FE40 GET A1
BEGIN FE18 DLOAD F0 GO CB
BEND FE19 DMA FE1F GOSUB 8D
BLOAD FE11 DMODE FE35 GOTO 89
BOOT FE1B DO EB GRAPHIC DE
BORDER FE3C DOPEN FE0D HEADER F1
BOX E1 DPAT FE36 HELP EA
BSAVE FE10 DSAVE EF HEX$ D2
BUMP CE03 DVERIFY FE14 HIGHLIGHT FE3D
BVERIFY FE28 ECTORY FE29 IF 8B
CATALOG FE0C EDIT FE45 INPUT 85
CHANGE FE2C EDMA FE21 INPUT# 84
CHAR E0 ELLIPSE FE30 INSTR D4
CHR$ C7 ELSE D5 INT B5
CIRCLE E2 END 80 JOY CF
CLOSE A0 ENVELOPE FE0A KEY F9
CLR 9C ERASE FE2A LEFT$ C8
CMD 9D ERR$ D3 LEN C3
COLLECT F3 EXIT ED LET 88
COLLISION FE17 EXP BD LINE E5

B-7

Keywords And Tokens Part 2
LIST 9B PRINT# 98 SLEEP FE0B
LOAD 93 PUDEF DD SOUND DA
LOADIFF FE43 RCOLOR CD SPC(A6
LOG BC RCURSOR FE42 SPEED FE26
LOG10 CE08 READ 87 SPRCOLOR FE08
LOOP EC RECORD FE12 SPRDEF FE1D
LPEN CE04 REM 8F SPRITE FE07
MEM FE23 RENAME F5 SPRSAV FE16
MERGE E6 RENUMBER F8 SQR BA
MID$ CA RESTORE 8C STEP A9
MOD CE0B RESUME D6 STOP 90
MONITOR FA RETURN 8E STR$ C4
MOUSE FE3E RGRAPHIC CC SYS 9E
MOVSPR FE06 RIGHT$ C9 TAB(A3
NEW A2 RMOUSE FE3F TAN C0
NEXT 82 RND BB TEMPO FE05
NOT A8 RPALETTE CE0D THEN A7
OFF FE24 RPEN D0 TO A4
ON 91 RPLAY CE0F TRAP D7
OPEN 9F RREG FE09 TROFF D9
OR B0 RSPCOLOR CE07 TRON D8
PAINT DF RSPEED CE0E TYPE FE27
PALETTE FE34 RSPPOS CE05 UNTIL FC
PASTE E3 RSPRITE CE06 USING FB
PEEK C2 RUN 8A USR B7
PEN FE33 RWINDOW CE09 VAL C5
PIXEL CE0C SAVE 94 VERIFY 95
PLAY FE04 SAVEIFF FE44 VIEWPORT FE31
POINTER CE0A SCNCLR E8 VOL DB
POKE 97 SCRATCH F2 WAIT 92
POLYGON FE2F SCREEN FE2E WHILE FD
POS B9 SET FE2D WINDOW FE1A
POT CE02 SGN B4 XOR E9
PRINT 99 SIN BF ^ AE

B-8

Tokens And Keywords Part 1
80 END A3 TAB(C6 ASC
81 FOR A4 TO C7 CHR$
82 NEXT A5 FN C8 LEFT$
83 DATA A6 SPC(C9 RIGHT$
84 INPUT# A7 THEN CA MID$
85 INPUT A8 NOT CB GO
86 DIM A9 STEP CC RGRAPHIC
87 READ AA + CD RCOLOR
88 LET AB - CF JOY
89 GOTO AC * D0 RPEN
8A RUN AD / D1 DEC
8B IF AE ^ D2 HEX$
8C RESTORE AF AND D3 ERR$
8D GOSUB B0 OR D4 INSTR
8E RETURN B1 > D5 ELSE
8F REM B2 = D6 RESUME
90 STOP B3 < D7 TRAP
91 ON B4 SGN D8 TRON
92 WAIT B5 INT D9 TROFF
93 LOAD B6 ABS DA SOUND
94 SAVE B7 USR DB VOL
95 VERIFY B8 FRE DC AUTO
96 DEF B9 POS DD PUDEF
97 POKE BA SQR DE GRAPHIC
98 PRINT# BB RND DF PAINT
99 PRINT BC LOG E0 CHAR
9A CONT BD EXP E1 BOX
9B LIST BE COS E2 CIRCLE
9C CLR BF SIN E3 PASTE
9D CMD C0 TAN E4 CUT
9E SYS C1 ATN E5 LINE
9F OPEN C2 PEEK E6 MERGE
A0 CLOSE C3 LEN E7 COLOR
A1 GET C4 STR$ E8 SCNCLR
A2 NEW C5 VAL E9 XOR

B-9

Tokens And Keywords Part 2
EA HELP FE02 BANK FE26 SPEED
EB DO FE03 FILTER FE27 TYPE
EC LOOP FE04 PLAY FE28 BVERIFY
ED EXIT FE05 TEMPO FE29 ECTORY
EE DIR FE06 MOVSPR FE2A ERASE
EF DSAVE FE07 SPRITE FE2B FIND
F0 DLOAD FE08 SPRCOLOR FE2C CHANGE
F1 HEADER FE09 RREG FE2D SET
F2 SCRATCH FE0A ENVELOPE FE2E SCREEN
F3 COLLECT FE0B SLEEP FE2F POLYGON
F4 COPY FE0C CATALOG FE30 ELLIPSE
F5 RENAME FE0D DOPEN FE31 VIEWPORT
F6 BACKUP FE0E APPEND FE32 GCOPY
F7 DELETE FE0F DCLOSE FE33 PEN
F8 RENUMBER FE10 BSAVE FE34 PALETTE
F9 KEY FE11 BLOAD FE35 DMODE
FA MONITOR FE12 RECORD FE36 DPAT
FB USING FE13 CONCAT FE37 FORMAT
FC UNTIL FE14 DVERIFY FE38 GENLOCK
FD WHILE FE15 DCLEAR FE39 FOREGROUND

CE02 POT FE16 SPRSAV FE3B BACKGROUND
CE03 BUMP FE17 COLLISION FE3C BORDER
CE04 LPEN FE18 BEGIN FE3D HIGHLIGHT
CE05 RSPPOS FE19 BEND FE3E MOUSE
CE06 RSPRITE FE1A WINDOW FE3F RMOUSE
CE07 RSPCOLOR FE1B BOOT FE40 DISK
CE08 LOG10 FE1C FREAD# FE41 CURSOR
CE09 RWINDOW FE1D SPRDEF FE42 RCURSOR
CE0A POINTER FE1E FWRITE# FE43 LOADIFF
CE0B MOD FE1F DMA FE44 SAVEIFF
CE0C PIXEL FE21 EDMA FE45 EDIT
CE0D RPALETTE FE23 MEM FE46 FONT
CE0E RSPEED FE24 OFF FE47 FGOTO
CE0F RPLAY FE25 FAST FE48 FGOSUB

B-10

BASIC COMMAND REFERENCE

B-11

ABS
Token: $B6

Format: ABS(x)

Usage: The numeric function ABS(x) returns the absolute value of the numeric
argument x.

x numeric argument (integer or real expression).

Remarks: The result is of type real.

Example: Using ABS

PRINT ABS(-123)

123

PRINT ABS(4.5)

4.5

PRINT ABS(-4.5)

4.5

B-12

AND
Token: $AF

Format: operand AND operand

Usage: AND performs a bit-wise logical AND operation on two 16-bit values.
Integer operands are used as they are. Real operands are converted to a
signed 16-bit integer (losing precision). Logical operands are converted
to 16-bit integer using $FFFF, decimal -1 for TRUE and $0000, decimal
0, for FALSE.

0 AND 0 -> 0
0 AND 1 -> 0
1 AND 0 -> 0
1 AND 1 -> 1

Remarks: The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values are
regarded as TRUE.

Examples: Using AND

PRINT 1 AND 3

1

PRINT 128 AND 64

0

In most cases, AND is used in IF statements.

IF (C >= 0 AND C < 256) THEN PRINT "BYTE VALUE"

B-13

APPEND
Token: $FE $0E

Format: APPEND# channel, filename [,D drive] [,U unit]

Usage: Opens an existing sequential file of type SEQ or USR for writing, and
positions the write pointer at the end of the file.

channel number, where:

• 1 <= channel <= 127 line terminator is CR.

• 128 <= channel <= 255 line terminator is CR LF.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: APPEND# works similarly to DOPEN#... ,W, except that the file must exist already.
The content of the file is retained, and all printed text is appended to the
end. Trying to APPEND to a non existing file reports a DOS error.

Examples: Open existing file in append mode:

APPEND#5,"DATA",U9

APPEND#130,(DD$),U(UN%)

APPEND#3,"USER FILE,U"

APPEND#2,"DATA BASE"

B-14

ASC
Token: $C6

Format: ASC(string)

Usage: Takes the first character of the string argument and returns its numeric
code value. The namewas apparently chosen to be amnemonic to ASCII,
but the returned value is in fact the so-called PETSCII code.

Remarks: ASC returns zero for an empty string, whose behaviour is different to
BASIC 2, where ASC(””) gave an error. The inverse function to ASC is
CHR$. Refer to the CHR$ command on page B-38 for more information.

Examples: Using ASC

PRINT ASC("MEGA")

77

PRINT ASC("")

0

B-15

ATN
Token: $C1

Format: ATN(numeric expression)

Usage: Returns the arc tangent of the argument. The result is in the range (−π/2
to π/2)

Remarks: A multiplication of the result with 180/π converts the value to the unit
”degrees”. ATN is the inverse function to TAN.

Examples: Using ATN

PRINT ATN(0.5)

.463647609

PRINT ATN(0.5) * 180 / ~

26.5650512

B-16

AUTO
Token: $DC

Format: AUTO [step]

Usage: Enables faster typing of BASIC programs. After submitting a new pro-

gram line to the BASIC editor with RETURN , the AUTO function generates
a new BASIC line number for the entry of the next line. The new number
is computed by adding step to the current line number.

step line number increment

Typing AUTO with no argument switches this function off.

Examples: Using AUTO

AUTO 10 : USE AUTO WITH INCREMENT 10

AUTO : SWITCH AUTO OFF

B-17

BACKGROUND
Token: $FE $3B

Format: BACKGROUND colour

Usage: Sets the background colour of the screen to the argument, which must
be in the range of 0 to 15. (See colour table).

Colours: Index and RGB values of colour palette

index red green blue colour
0 0 0 0 black
1 15 15 15 white
2 15 0 0 red
3 0 15 15 cyan
4 15 0 15 purple
5 0 15 0 green
6 0 0 15 blue
7 15 15 0 yellow
8 15 6 0 orange
9 10 4 0 brown

10 15 7 7 pink
11 5 5 5 dark grey
12 8 8 8 medium grey
13 9 15 9 light green
14 9 9 15 light blue
15 11 11 11 light grey

Example: Using BACKGROUND

BACKGROUND 3 : REM SELECT BACKGROUND COLOUR CYAN

B-18

BACKUP
Token: $F6

Format: BACKUP U source TO U target
BACKUP D source TO D target [,U unit]

Usage: The first form of BACKUP, specifying units for source and target can only
be used for the drives connected to the internal FDC (Floppy Disk Con-
troller). Units 8 and 9 are reserved for this controller. These can be
either the inernal floppy drive (unit 8) and another floppy drive (unit 9),
attached to the same ribbon cable or mounted D81 disk images. There-
fore, BACKUP can be used to copy from floppy to floppy, floppy to image,
image to floppy and image to image, depending on image mounts and
the existence of a second physical floppy drive.

The second form of BACKUP, specifying drives for source and target, is
meant to be used for dual drives units connected to the IEC bus. For
example: CBM 4040, 8050, 8250 via IEEE-488 to IEC adapter. The
backup is then done by the disk unit internally.

source unit or drive # of source disk.
target unit or drive # of target disk.

Remarks: The target disk will be formatted and an identical copy of the source disk
will be written.
BACKUP cannot be used to backup from internal devices to IEC devices
or vice versa.

Examples: Using BACKUP

BACKUP U8 TO U9 : REM BACKUP INTERNAL DRIVE 8 TO DRIVE 9

BACKUP U9 TO U8 : REM BACKUP DRIVE 9 TO INTERNAL DRIVE 8

BACKUP D0 TO D1, U10 : REM BACKUP ON DUAL DRIVE CONNECTED VIA IEC

B-19

BANK
Token: $FE $02

Format: BANK bank-number

Usage: Selects the memory configuration for BASIC commands that use 16-
bit addresses. These are LOAD, LOADIFF, PEEK, POKE, SAVE, SYS,
and WAIT. Refer to the system memory map in Chapter/Appendix F on
page F-3 for more information.

Remarks: A value > 127 selects memory mapped I/O. The default value for the
bank number is 128. This configuration has RAM from $0000 to $1FFF
and BASIC ROM’s, KERNAL ROM’s and I/O from $2000 to $FFFF.

Example: Using BANK

BANK 1 :REM SELECT MEMORY CONFIGURATION 1

B-20

BEGIN
Token: $FE $18

Format: BEGIN ... BEND

Usage: BEGIN and BEND act as a pair of braces around a compound statement
to be executed after THEN or ELSE. This overcomes the single line limi-
tation of the standard IF ... THEN ... ELSE clause.

Remarks: Do not jump with GOTO or GOSUB into a compound statement. It may
lead to unexpected results.

Example: Using BEGIN and BEND

10 GET A$

20 IF A$>="A" AND A$<="Z" THEN BEGIN

30 PW$=PW$+A$

40 IF LEN(PW$)>7 THEN 90

50 BEND :REM IGNORE ALL EXCEPT (A-Z)

60 IF A$<>CHR$(13) GOTO 10

90 PRINT "PW=";PW$

B-21

BEND
Token: $FE $19

Format: BEGIN ... BEND

Usage: BEGIN and BEND act as a pair of braces around a compound statement
to be executed after THEN or ELSE. This overcomes the single line limi-
tation of the standard IF ... THEN ... ELSE clause.

Remarks: The example below shows a quirk in the implementation of the compound
statement. If the condition evaluates to FALSE, execution does not re-
sume right after BEND as it should, but at the beginning of next line. Test
this behaviour with the following program:

Example: Using BEGIN and BEND

10 IF Z > 1 THEN BEGIN:A$="ONE"

20 B$="TWO"

30 PRINT A$;" ";B$;:BEND:PRINT " QUIRK"

40 REM EXECUTION RESUMES HERE FOR Z <= 1

B-22

BLOAD
Token: $FE $11

Format: BLOAD filename [,B bank] [,P address] [,R] [,D drive] [,U unit]

Usage: ”Binary LOAD” loads a file of type PRG into RAM at address P.

BLOAD has two modes: The flat memory address mode can be used to
load a program to any address in the 28-bit (256MB) address range
where RAM is installed. This includes the standard RAM banks 0 to 5, but
also the 8MB so called ”attic RAM” at address $8000000.

This mode is triggered by specifying an address at parameter P, that is
larger than $FFFF. The bank parameter is ignored in this mode.

For compatibility reasons with older BASIC versions, BLOAD accepts the
syntax with a 16-bit address at P and a bank number at B as well. The
attic RAM is out of range for this compatibility mode.

The optional parameter R (RAW MODE) does not interpret or use the first
two bytes of the program file as the load address, which is otherwise the
default behaviour. In RAW MODE every byte is read as data.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

address can be used to override the load address, that is stored in the
first two bytes of the PRG file.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: The BLOAD cannot cross bank boundaries.

BLOAD uses the load address from the file, if no P parameter is given.

Examples: Using BLOAD

B-23

BLOAD "ML DATA", B0, U9

BLOAD "SPRITES"

BLOAD "ML ROUTINES", B1, P32768

BLOAD (FI$), B(BA%), P(PA), U(UN%)

BLOAD "CHUNK",P($8000000) :REM LOAD TO ATTIC RAM

B-24

BOOT
Token: $FE $1B

Format: BOOT filename [,B bank] [,P address] [,D drive] [,U unit]
BOOT SYS
BOOT

Usage: BOOT filename loads a file of type PRG into RAM at address P and bank
B, and starts executing the code at the load address.

BOOT SYS loads the boot sector from sector 0, track 1 and unit 8 to
address $0400 in bank 0, and performs a JSR $0400 afterwards (Jump
To Subroutine).

BOOT with no parameters attempts to load and execute a file named
AUTOBOOT.C65 from the default unit 8. It’s short for RUN ”AUTO-
BOOT.C65”.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

address can be used to override the load address, that is stored in the
first two bytes of the PRG file.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: BOOT SYS copies the contents of one physical sector (two logical sec-
tors) = 512 bytes from disk to RAM, filling RAM from $0400 to $05ff.

Examples: Using BOOT

BOOT SYS

BOOT (FI$), B(BA%), P(PA), U(UN%)

BOOT

B-25

BORDER
Token: $FE $3C

Format: BORDER colour

Usage: Sets the border colour of the screen to the argument, which must be in
the range of 0 to 15. Refer to the colour table under BACKGROUND on
page B-18 for the colour values and their corresponding colours.

Example: Using BORDER

10 BORDER 4 : REM SELECT BORDER COLOUR PURPLE

B-26

BOX
Token: $E1

Format: BOX X0,Y0, X2,Y2 [,SOLID]
BOX X0,Y0, X1,Y1, X2,Y2, X3,Y3 [,SOLID]

Usage: The first form of BOX with two coordinate pairs and an optional SOLID
parameter draws a simple rectangle, assuming that the coordinate pairs
declare two diagonally opposite corners.

The second formwith four coordinate pairs declares a path of four points,
which will be connected by lines. The path is closed by connecting the
last point with the first one.

The quadrangle is drawn using the current drawing context set with
SCREEN, PALETTE and PEN. The quadrangle is filled if the parameter
SOLID is not 0.

Remarks: BOX can be used with four coordinate pairs to draw any shape that can
be defined with four points, not only rectangles. For example rhomboids,
kites, trapezoids and parallelograms. It is also possible to draw bow tie
shapes.

Examples: Using BOX

BOX 0,0, 160,0, 160,80, 0,80

BOX 0,0, 160,80, 160,0, 0,80

B-27

BOX 20,0, 140,0, 160,80, 0,80

B-28

BSAVE
Token: $FE $10

Format: BSAVE filename ,P start TO P end [,B bank] [,D drive] [,U unit]

Usage: ”Binary SAVE” saves a memory range to a file of type PRG.

BSAVE has two modes: The flat memory address mode can be used to
save a memory block in the 28-bit (256MB) address range where RAM is
installed. This includes the standard RAM banks 0 to 5, but also the 8MB
so called ”attic RAM” at address $8000000.

This mode is triggered by specifying addresses for the start and end pa-
rameter P, that are larger than $FFFF. The bank parameter is ignored in
this mode. This flat memory mode allows saving ranges greater than 64K.

For compatibility reasons with older BASIC versions, BSAVE accepts the
syntax with 16-bit addresses at P and a bank number at B as well. The
attic RAM is out of range for this compatibility mode. This mode cannot
cross bank boundaries, start and end address are supposed to refer to
the same bank.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$). If the first character of the filename is an at sign ’@’,
it is interpreted as a ”save and replace” operation. It is not recommended
to use this option on 1541 and 1571 drives, as they contain a ”save and
replace bug” in their DOS.

start is the first address, where the saving begins. It also becomes the
load address, which is stored in the first two bytes of the PRG file.

end address where the saving ends. end-1 is the last address to be used
for saving.

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

B-29

Remarks: The length of the file is end - start + 2.
If the number after an argument letter is not a decimal number, it must be
set in parenthesis, as shown in the third and fourth line of the examples.

The PRG file format, that is used by BSAVE requires the load address to
be written to the first two bytes. If the saving is done with a bank number,
that is not zero or a start address higher than $FFFF, this information does
not fit. For compatibility reasons, only the the two low order bytes are
written. Loading the file with the BLOAD command requires then the full
specification of the load address as parameter.

Examples: Using BSAVE

BSAVE "ML DATA", P 32768 TO P 33792, B0, U9

BSAVE "SPRITES", P 1536 TO P 2058

BSAVE "ML ROUTINES", B1, P($9000) TO P($A000)

BSAVE (FI$), B(BA%), P(PA) TO P(PE), U(UN%)

B-30

BUMP
Token: $CE $03

Format: b = BUMP(type)

Usage: Used to detect sprite-sprite (type=1) or sprite-data (type=2) collisions.
the return value b is an 8-bit mask with one bit per sprite. The bit position
corresponds to the sprite number. Each bit set in the return value indi-
cates that the sprite for its position was involved in a collision since the
last call of BUMP. Calling BUMP resets the collision mask, so you always
get a summary of collisions encountered since the last call of BUMP.

Remarks: It’s possible to detect multiple collisions, but you will need to evaluate
the sprite coordinates to detect which sprites have collided.

Example: Using BUMP

10 S% = BUMP(1) : REM SPRITE-SPRITE COLLISION

20 IF (S% AND 6) = 6 THEN PRINT "SPRITE 1 & 2 COLLISION"

30 REM ---

40 S% = BUMP(2) : REM SPRITE-DATA COLLISION

50 IF (S% <> 0) THEN PRINT "SOME SPRITE HIT DATA REGION"

sprite return mask
0 1 0000 0001
1 2 0000 0010
2 4 0000 0100
3 8 0000 1000
4 16 0001 0000
5 32 0010 0000
6 64 0100 0000
7 128 1000 0000

B-31

BVERIFY
Token: $FE $28

Format: BVERIFY filename [,P address] [,B bank] [,D drive] [,U unit]

Usage: ”Binary VERIFY” compares a memory range to a file of type PRG.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

address is the address where the comparison begins. If the parameter
P is omitted, it is the load address that is stored in the first two bytes of
the PRG file that will be used.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: BVERIFY can only test for equality. It gives no information about the num-
ber, or position of different valued bytes. In direct mode BVERIFY exits
either with the message OK or with VERIFY ERROR. In program mode, a
VERIFY ERROR either stops execution or enters the TRAP error handler,
if active.

Examples: Using BVERIFY

BVERIFY "ML DATA", P 32768, B0, U9

BVERIFY "SPRITES", P 1536

BVERIFY "ML ROUTINES", B1, P(DEC("9000"))

BVERIFY (FI$), B(BA%), P(PA), U(UN%)

B-32

CATALOG
Token: $FE $0C

Format: CATALOG [filepattern] [,W] [,R] [,D drive] [,U unit] $ [filepattern] [,W]
[,R] [,D drive] [,U unit]

Usage: Prints a file catalog/directory of the specified disk.

The W (Wide) parameter lists the directory three columns wide on the
screen and pauses after the screen has been filled with a page (63 di-
rectory entries). Pressing any key displays the next page.

The R (Recoverable) parameter includes files in the directory which are
flagged as deleted but still recoverable.

filepattern is either a quoted string, for example: ”da*” or a string ex-
pression in brackets, e.g. (DI$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: CATALOG is a synonym for DIRECTORY or DIR and produces the same
listing. The filepattern can be used to filter the listing. The wildcard
characters * and ? may be used. Adding ,T= to the pattern string, with T
specifying a filetype of P, S, U or R (for PRG, SEQ, USR, REL) filters the
output to that filetype.

The shortcut symbol $ can only be used in direct mode.

Examples: Using CATALOG

CATALOG

0 "BLACK SMURF " BS 2A

508 "STORY PHOBOS" SEQ

27 "C8096" PRG

25 "C128" PRG

104 BLOCKS FREE.

B-33

CATALOG "*,T=S"

0 "BLACK SMURF " BS 2A

508 "STORY PHOBOS" SEQ

104 BLOCKS FREE.

Below is an example showing how a directory looks with the wide pa-
rameter:

DIR W

0 "BASIC EXAMPLES "

1 "BEGIN" P 1 "FREAD" P 2 "PAINT.COR" P

1 "BEND" P 1 "FRE" P 3 "PALETTE.COR" P

1 "BUMP" P 2 "GET#" P 1 "PEEK" P

1 "CHAR" P 1 "GETKEY" P 3 "PEN" P

1 "CHR$" P 1 "GET" P 1 "PLAY" P

4 "CIRCLE" P 2 "GOSUB" P 2 "POINTER" P

1 "CLOSE" P 2 "GOTO.COR" P 1 "POKE" P

1 "CLR" P 2 "GRAPHIC" P 1 "POS" P

2 "COLLISION" P 1 "HELP" P 1 "POT" P

1 "CURSOR" P 1 "IF" P 1 "PRINT#" P

0 "DATA BASE" R 2 "INPUT#" P 1 "PRINT" P

1 "DATA" P 2 "INPUT" P 1 "RCOLOR.COR" P

1 "DEF FN" P 2 "JOY" P 1 "READ" P

1 "DIM" P 1 "LINE INPUT#" P 1 "RECORD" P

1 "DO" P 3 "LINE" P 1 "REM" P

5 "ELLIPSE" P 1 "LOOP" P 1 "RESTORE" P

1 "ELSE" P 1 "MID$" P 1 "RESUME" P

1 "EL" P 1 "MOD" P 1 "RETURN" P

1 "ENVELOPE" P 1 "MOVSPR" P 1 "REVERS" S

2 "EXIT" P 1 "NEXT" P 3 "RGRAPHIC" P

1 "FOR" P 2 "ON" P 1 "RMOUSE" P

B-34

CHANGE
Token: $FE $2C

Format: CHANGE ”findstring” TO ”replacestring” [,from-to]

Usage: CHANGE performs a find and replace of the BASIC program that is
currently in memory. An optional line range from-to limits the search to
this range, otherwise the whole BASIC program is searched. At each oc-
currence of the findstring, the line is listed and the user is prompted for
an action:

• Y RETURN perform the replace and find the next string

• N RETURN do not perform the replace and find the next string

• * RETURN replace the current and all following matches

• RETURN exit the command, and don’t replace the current match

Remarks: Any character may be used except the double quote (") character in the
the findstring and replacestring. Using the double quote character (”)
finds text strings that are not tokenised, and therefore not part of a key-
word.
For example, CHANGE "LOOP" TO "OOPS" will not find the BASIC keyword LOOP, be-
cause the keyword is stored as a token and not as text. However CHANGE

&LOOP& TO &OOPS& will find and replace it (possibly causing SYNTAX ERRORs).

Can only be used in direct mode.

Examples: Using CHANGE

CHANGE "XX$" TO "UU$", 2000-2700

CHANGE &IN& TO &OUT&

B-35

CHAR
Token: $E0

Format: CHAR column, row, height, width, direction, string [, address of
character set]

Usage: Displays text on a graphic screen. It can be used in all resolutions.

column (in units of character positions) is the start position of the output
in horizontally. As each column unit is 8 pixels wide, a screen width of
320 has a column range of 0-39, while a screen width of 640 has a
column range of 0-79.

row (in pixel units) is the start position of the output in vertically. In con-
trast to the column parameter, its unit are in pixels (not character posi-
tions), with the top row having the value 0.

height is a factor applied to the vertical size of the characters, where 1
is normal size (8 pixels) 2 is double size (16 pixels), and so on.

width is a factor applied to the horizontal size of the characters, where
1 is normal size (8 pixels) 2 is double size (16 pixels), and so on.

direction controls the printing direction:
1: up
2: right
4: down
8: left

The optional address of character set can be used to select a charac-
ter set, different to the default character set at $29800, which includes
upper and lower case characters.

Three character sets (see also FONT) are available:

$29000 Font A (ASCII)
$3D000 Font B (Bold)
$2D000 Font C (CBM)

The first part of the font (upper case / graphics) is stored at $xx000 -
$xx7FF.

The second part of the font (lower case / upper case) is stored at $xx800
- $xxFFF.

string is a string constant or expression which will be printed. This string
may optionally contain one or more of the following control characters:

B-36

CHR$(6) CTRL+F flip character
CHR$(18) RVSON reverse
CHR$(146) RVSOFF reverse off
CHR$(21) CTRL+U underline
CHR$(25)+"-" CTRL+Y + "-" rotate left
CHR$(25)+"+" CTRL+Y + "+" rotate right
CHR$(26) CTRL+Z mirror

Remarks: Regular text mode control characters, such as cursor movement codes,
will be ignored (neither printed nor interpreted).

Notice that the start position of the string has different units in the hor-
izontal and vertical directions. Horizontal is in columns and vertical is in
pixels.

Refer to the CHR$ command on page B-38 for more information.

Example: Using CHAR

10 SCREEN 640,400,2

20 CHAR 28,180,4,4,2,"MEGA65",$29000

30 GETKEY A$

40 SCREEN CLOSE

Will print the text ”MEGA65” at the centre of a 640 x 400 graphic screen.

B-37

CHR$
Token: $C1

Format: CHR$(numeric expression)

Usage: Returns a string containing one character, whose PETSCII value is equal
to the argument.

Remarks: The argument range is from 0 - 255, so this function may also be used
to insert control codes into strings. Even the NULL character, with code
0, is allowed.
CHR$ is the inverse function to ASC. The complete table of characters
(and their PETSCII codes) is on page C-3.

Example: Using CHR$

10 QUOTE$ = CHR$(34)

20 ESCAPE$ = CHR$(27)

30 PRINT QUOTE$;"MEGA65";QUOTE$: REM PRINT "MEGA65"

40 PRINT ESCAPE$;"Q"; : REM CLEAR TO END OF LINE

B-38

CIRCLE
Token: $E2

Format: CIRCLE xcentre, ycentre, radius, [,solid]

Usage: A special case of ELLIPSE, using the same value for horizontal and ver-
tical radius.

xcentre x coordinate of the centre in pixels

ycentre y coordinate of the centre in pixels

radius radius of the circle in pixels

solid fills the circle, if not zero

Remarks: CIRCLE is used to draw circles on screens with an aspect ratio of 1:1
(for example: 320 x 200 or 640 x 400). Whilst using other resolutions
(such as 640 x 200), the shape will instead be an ellipse.

B-39

Example: Using CIRCLE

100 REM CIRCLE (AFTER F.BOWEN)

110 BORDER 0 :REM BLACK

120 SCREEN 320,200,4 :REM SIMPLE SCREEN SETUP

130 PALETTE 0,0,0,0,0 :REM BLACK

140 PALETTE 0,1,RND(.)*16,RND(.)*16,15 :REM RANDOM COLOURS

150 PALETTE 0,2,RND(.)*16,15,RND(.)*16

160 PALETTE 0,3,15,RND(.)*16,RND(.)*16

170 PALETTE 0,4,RND(.)*16,RND(.)*16,15

180 PALETTE 0,5,RND(.)*16,15,RND(.)*16

190 PALETTE 0,6,15,RND(.)*16,RND(.)*16

200 SCNCLR 0 :REM CLEAR

210 FORI=0TO32 :REM CIRCLE LOOP

220 PEN 0,RND(.)*6+1 :REM RANDOM PEN

230 R=RND(.)*36+1 :REM RADIUS

240 XC=R+RND(.)*320:IF(XC+R)>319THEN240:REM X CENTRE

250 YC=R+RND(.)*200:IF(YC+R)>199THEN250:REM Y CENTRE

260 XC=XC+WT*320:YC=YC+HT*200

270 CIRCLE XC,YC,R,. :REM DRAW

280 NEXT

290 GETKEY A$:REM WAIT FOR KEY

300 SCREEN CLOSE:BORDER 6

B-40

CLOSE
Token: $A0

Format: CLOSE channel

Usage: Closes an input or output channel.

channel number, which was given to a previous call of commands such
as APPEND, DOPEN, or OPEN.

Remarks: Closing files that have previously been opened before a program has
completed is very important, especially for output files. CLOSE flushes
output buffers and updates the directory information on disks. Failing to
CLOSE can corrupt files and disks. BASIC does NOT automatically close
channels nor files when a program stops.

Example: Using CLOSE

10 OPEN 2,8,2,"TEST,S,W"

20 PRINT#2,"TESTSTRING"

30 CLOSE 2 : REM OMITTING CLOSE GENERATES A SPLAT FILE

B-41

CLR
Token: $9C

Format: CLR
CLR V Used for management of BASIC variables, arrays and strings. The
run-time stack pointers, and the table of open channels is reset After ex-
ecuting a CLR all variables and arrays will be undeclared. RUN performs
CLR automatically.

CLR V clears (zeroes) the variable V. V can be a numeric variable or a
string variable, but not an array.

Remarks: CLR should not be used inside loops or subroutines, as it destroys the re-
turn address. After aCLR, all variables are unknown and will be initialised
when they are next used.

Example: Using CLR

10 A=5: P$="MEGA65"

20 CLR

30 PRINT A;P$

RUN

0

B-42

CMD
Token: $9D

Format: CMD channel [,string]

Usage: Redirects the standard output from screen to a channel. This enables
you to print listings and directories to other output channels. It is also
possible to redirect this output to a disk file, or a modem.

channel number, which was given to a previous call of commands such
as APPEND, DOPEN, or OPEN.

The optional string is sent to the channel before the redirection begins
and can be used, for example, for printer or modem setup escape se-
quences.

Remarks: The CMD mode is stopped by a PRINT#, or by closing the channel with
CLOSE. It is recommended to use PRINT# before closing, to make sure
that the output buffer has been flushed.

Example: Using CMD to print a program listing:

OPEN 1,4 :REM OPEN CHANNEL #1 TO PRINTER AT UNIT 4

CMD 1

LIST

PRINT#1

CLOSE 1

B-43

COLLECT
Token: $F3

Format: COLLECT [,D drive] [,U unit]

Usage: Rebuilds the BAM (Block Availability Map) of a disk, deleting splat files
(files which have been opened, but not properly closed) and marking
unused blocks as free.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: While this command is useful for cleaning a disk from splat files, it is
dangerous for disks with boot blocks or random access files. These blocks
are not associated with standard disk files and will therefore be marked
as free and may be overwritten by further disk write operations.

Examples: Using COLLECT

COLLECT

COLLECT U9

COLLECT D0, U9

B-44

COLLISION
Token: $FE $17

Format: COLLISION type [,linenumber]

Usage: Enables or disables a user-programmed interrupt handler. A call without
the linenumber argument disables the handler, while a call with linenum-
ber enables it. After the execution of COLLISION with linenumber, a
sprite collision of the same type, (as specified in the COLLISION call)
interrupts the BASIC program and performs a GOSUB to linenumber,
which is expected to contain the user code for handling sprite collisions.
This handler must give control back with a RETURN.

type specifies the collision type for this interrupt handler:

1 sprite - sprite collision
2 sprite - data - collision
3 light pen

linenumber must point to a subroutine which has code for handling
sprite collision and ends with a RETURN.

Remarks: It is possible to enable the interrupt handler for all types, but only one
can execute at any time. An interrupt handler cannot be interrupted by
another interrupt handler. Functions such as BUMP, RSPPOS and LPEN
may be used for evaluation of the sprites which are involved, and their
positions.

Example: Using COLLISION

10 COLLISION 1,70 : REM ENABLE

20 SPRITE 1,1 : MOVSPR 1,120, 0 : MOVSPR 1,0#5

30 SPRITE 2,1 : MOVSPR 2,120,100 : MOVSPR 2,180#5

40 FOR I=1 TO 50000:NEXT

50 COLLISION 1 : REM DISABLE

60 END

70 REM SPRITE <-> SPRITE INTERRUPT HANDLER

80 PRINT "BUMP RETURNS";BUMP(1)

90 RETURN: REM RETURN FROM INTERRUPT

B-45

COLOR
Token: $E7

Format: COLOR <ON|OFF>

Usage: Enables or disables handling of character attributes on screen. IfCOLOR
is ON, the screen routines take care of both character RAM and attribute
RAM (or colour RAM). For example, if the screen is scrolling text, the at-
tributes are also scrolled, so each character keeps its attribute. IfCOLOR
is OFF, the attribute is fixed and only character movement is performed
for screen characters. This speeds up screen handling, which could be
useful when moving characters with different colours is not intended.

Example: COLOR ON - with colour/attribute handling
COLOR OFF - no colour/attribute handling

B-46

CONCAT
Token: $FE $13

Format: CONCAT appendfile [,D drive] TO targetfile [,D drive] [,U unit]

Usage: CONCAT (concatenation) appends the contents of appendfile to the
targetfile. Afterwards, targetfile contains the contents of both files,
while appendfile remains unchanged.

appendfile is either a quoted string, for example: ”data” or a string
expression in brackets, for example: (FI$)

targetfile is either a quoted string, for example: ”safe” or a string ex-
pression in brackets, for example: (FS$)

If the disk unit has dual drives, it is possible to apply CONCAT to files
which are stored on different disks. In this case, it is necessary to specify
the drive# for both files. This is also necessary if both files are stored on
drive#1.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: CONCAT is executed in the DOS of the disk drive. Both files must ex-
ist and no pattern matching is allowed. Only files of type SEQ may be
concatenated.

Examples: Using CONCAT

CONCAT "NEW DATA" TO "ARCHIVE" ,U9

CONCAT "ADDRESS",D0 TO "ADDRESS BOOK",D1

B-47

CONT
Token: $9A

Format: CONT

Usage: Used to resume program execution after a break or stop caused by an

END or STOP statement, or by pressing RUN
STOP . This is a useful debug-

ging tool. The BASIC program may be stopped and variables can be
examined, and even changed. The CONT statement resumes execution.

Remarks: CONT cannot be used, if a program has stopped because of an er-
ror. Also ,any editing of a program inhibits continuation. Stopping and
continuation can spoil the screen output, and can also interfere with in-
put/output operations.

Example: Using CONT

10 I=I+1:GOTO 10

RUN

BREAK IN 10

READY.

PRINT I

947

CONT

B-48

COPY
Token: $F4

Format: COPY source [,D drive] [,U unit] TO [target] [,D drive] [,U unit]

Usage: Copies the contents of source to target. It is used to copy either single
files or, by using wildcard characters, multiple files.

source is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

target is either a quoted string, e.g. ”backup” or a string expression in
brackets, e.g. (FS$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

If none or one unit number is given, or the unit numbers before and after
the TO token are equal, COPY is executed on the disk drive itself, and
the source and target files will be on the same disk.

If the source unit (before TO) is different to the target unit (after TO),
COPY is executed in MEGA65 BASIC by reading the source files into a
RAM buffer and writing to the target unit. In this case, the target file
name cannot be chosen, it will be the same as the source filename. The
extended unit-to-unit copy mode allows the copying of single files, pat-
tern matching files or all files of a disk. Any combination of units is al-
lowed, internal floppy, SD card images, IEC floppy drives such as the
1541, 1571, 1581, or CMD floppy and hard drives.

Remarks: The file types PRG, SEQ and USR can be copied. If source and target are
on the same disk, the target filename must be different from the source
file name.

COPY cannot copy DEL files, that are commonly used as titles or separa-
tors in disk directories. These do not conform to Commodore DOS rules
and cannot be accessed by standard OPEN routines.

REL files cannot be copied from unit to unit.

Examples: Using COPY

B-49

COPY U8 TO U9 :REM COPY ALL FILES

COPY "CODES" TO "BACKUP" :REM COPY SINGLE FILE

COPY "*.TXT",U8 TO U9 :REM PATTERN COPY

COPY "M*",U9 TO U11 :REM PATTERN COPY

B-50

COS
Token: $BE

Format: COS(numeric expression)

Usage: Returns the cosine of the argument. The argument is expected in units
of radians. The result is in the range (-1.0 to +1.0)

Remarks: An argument in units of degrees can be converted to radians by multi-
plying it with π/180.

Examples: Using COS

PRINT COS(0.7)

0.76484219

X=60:PRINT COS(X * ~ / 180)

0.5

B-51

CURSOR
Format: CURSOR [<ON/OFF>] [,column] [,row] [,style]

Usage: Moves the text cursor to the specified position on the current text screen.

ON or OFF displays or hides the cursor.

column and row specify the new position.

style defines a solid (1) or flashing (0) cursor.

Example: Using CURSOR

10 CURSOR ON,1,2,1 :REM SET SOLID CURSOR AT COLUMN 1, ROW 2

B-52

DATA
Token: $83

Format: DATA [list of constants]

Usage: Used to define constants which can be read by READ statements in a pro-
gram. Numbers and strings are allowed, but expressions are not. Items
are separated by commas. Strings containing commas, colons or spaces
must be placed in quotes.

RUN initialises the data pointer to the first item of the first DATA state-
ment and advances it for every read item. It is the programmer’s re-
sponsibility that the type of the constant and the variable in the READ
statement match. Empty items with no constant between commas are
allowed and will be interpreted as zero for numeric variables and an
empty string for string variables.

RESTORE may be used to set the data pointer to a specific line for sub-
sequent reads.

Remarks: It is good programming practice to put large amounts of DATA state-
ments at the end of the program, so they don’t slow down the search for
line numbers afterGOTO, and other statements with line number targets.

Example: Using DATA

1 REM DATA

10 READ NA$, VE

20 READ N% : FOR I=2 TO N% : READ GL(I) : NEXT I

30 PRINT "PROGRAM:";NA$;" VERSION:";VE

40 PRINT "N-POINT GAUSSLEGENDRE FACTORS E1":

50 FOR I=2 TO N%:PRINT I;GL(I):NEXT I

60 END

80 DATA "MEGA65",1.1

90 DATA 5,0.5120,0.3573,0.2760,0.2252

RUN

PROGRAM:MEGA65 VERSION: 1.1

N-POINT GAUSSLEGENDRE FACTORS E1

2 0.512

3 0.3573

4 0.276

5 0.2252

B-53

DCLEAR
Token: $FE $15

Format: DCLEAR [,D drive] [,U unit]

Usage: Sends an initialise command to the specified unit and drive.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

The DOS of the disk drive will close all open files, clear all channels, free
buffers and re-read the BAM. All open channels on the computer will also
be closed.

Examples: Using DCLEAR

DCLEAR

DCLEAR U9

DCLEAR D0, U9

B-54

DCLOSE
Token: $FE $0F

Format: DCLOSE [# channel] [,U unit]

Usage: Closes a single file or all files for the specified unit.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

DCLOSE is used either with a channel argument or a unit number, but
never both.

Remarks: It is important to close all open files before a program ends. Otherwise
buffers will not be freed and even worse, open files that have been writ-
ten to may be incomplete (commonly called splat files), and no longer
usable.

Examples: Using DCLOSE

DCLOSE#2 :REM CLOSE FILE ASSIGNED TO CHANNEL 2

DCLOSE U9:REM CLOSE ALL FILES OPEN ON UNIT 9

B-55

DEC
Token: $D1

Format: DEC(string expression)

Usage: Returns the decimal value of the argument, that is written as a hex string.
The argument range is ”0000” to ”FFFF” (0 to 65535 in decimal). The
argument must have 1-4 hex digits.

Remarks: Allowed digits in uppercase/graphics mode are:
0123456789ABCDEF and in lowercase/uppercase mode:
0123456789abcdef.

Example: Using DEC

PRINT DEC("D000")

53248

POKE DEC("600"),255

B-56

DEF FN
Token: $96

Format: DEF FN name(real variable)

Usage: Defines a single statement user function with one argument of type real,
returning a real value. The definition must be executed before the func-
tion can be used in expressions. The argument is a dummy variable, which
will be replaced by the argument when the function is used.

Remarks: The value of the dummy variable will not change and the variable may
be used in other contexts without side effects.

Example: Using DEF FN

10 PD = ~ / 180

20 DEF FN CD(X)= COS(X*PD): REM COS FOR DEGREES

30 DEF FN SD(X)= SIN(X*PD): REM SIN FOR DEGREES

40 FOR D=0 TO 360 STEP 90

50 PRINT USING "###";D

60 PRINT USING " ##.##";FNCD(D);

70 PRINT USING " ##.##";FNSD(D)

80 NEXT D

RUN

0 1.00 0.00

90 0.00 1.00

180 -1.00 0.00

270 0.00 -1.00

360 1.00 0.00

B-57

DELETE
Token: $F7

Format: DELETE [line range]
DELETE filename [,D drive] [,U unit] [,R]

Usage: Used to either delete a range of lines from the BASIC program or to
delete file from disk.

line range consists of the first and last line to delete, or a single line
number. If the first number is omitted, the first BASIC line is assumed.
The second number in the range specifier defaults to the last BASIC line.

filename is either a quoted string, for example: ”safe” or a string ex-
pression in brackets, for example: (FS$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

R Recover a previously deleted file. This will only work if there were no
write operations between deletion and recovery, which may have altered
the contents of the file.

Remarks: DELETE filename works similar to SCRATCH filename.

Examples: Using DELETE

DELETE 100 :REM DELETE LINE 100

DELETE 240-350 :REM DELETE ALL LINES FROM 240 TO 350

DELETE 500- :REM DELETE FROM 500 TO END

DELETE -70 :REM DELETE FROM START TO 70

DELETE "DRM",U9 :REM DELETE FILE DRM ON UNIT 9

B-58

DIM
Token: $86

Format: DIM name(limits) [,name(limits)]...

Usage: Declares the shape, the bounds and the type of a BASIC array. As a dec-
laration statement, it must be executed only once and before any usage
of the declared arrays. An array can have one or more dimensions. One
dimensional arrays are often called vectors while two or more dimen-
sions define a matrix. The lower bound of a dimension is always zero,
while the upper bound is declared. The rules for variable names apply
for array names as well. There are integer arrays, real arrays and string
arrays. It is legal to use the same identifier for scalar variables and array
variables. The left parenthesis after the name identifies array names.

Remarks: Integer arrays consume two bytes per element, real arrays five bytes and
string arrays three bytes for the string descriptor plus the length of the
string itself.
If an array identifier is used without being previously declared, an implicit
declaration of an one dimensional array with limit of 10 is performed.

Example: Using DIM

1 REM DIM

10 DIM A%(8) : REM ARRAY OF 9 ELEMEMTS

20 DIM XX(2,3) : REM ARRAY OF 3X4 = 12 ELEMENTS

30 FOR I=0 TO 8 : A%(I)=PEEK(256+I) : PRINT A%(I);: NEXT:PRINT

40 FOR I=0 TO 2 : FOR J=0 TO 3 : READ XX(I,J):PRINT XX(I,J);: NEXT J,I

50 END

60 DATA 1,-2,3,-4,5,-6,7,-8,9,-10,11,-12

RUN

45 52 50 0 0 0 0 0 0

1 -2 3 -4 5 -6 7 -8 9 -10 11 -12

B-59

DIR
Token: $EE (DIR) $FE $29 (ECTORY)

Format: DIR [filepattern] [,W] [,R] [,D drive] [,U unit] DIRECTORY [filepattern]
[,W] [,R] [,D drive] [,U unit] $ [filepattern] [,W] [,R] [,D drive] [,U unit]

Usage: Prints a file directory/catalog of the specified disk.

The W (Wide) parameter lists the directory three columns wide on the
screen and pauses after the screen has been filled with a page (63 di-
rectory entries). Pressing any key displays the next page.

The R (Recoverable) parameter includes files in the directory, which are
flagged as deleted but are still recoverable.

filepattern is either a quoted string, for example: ”da*” or a string ex-
pression in brackets, e.g. (DI$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: DIR is a synonym for CATALOG or DIRECTORY, and produces the same
listing. The filepattern can be used to filter the listing. The wildcard
characters * and ? may be used. Adding ,T= to the pattern string, with T
specifying a filetype of P, S, U or R (for PRG, SEQ, USR, REL) filters the
output to that filetype.

The shortcut symbol $ can only be used in direct mode.

Examples: Using DIR

DIR

0 "BLACK SMURF " BS 2A

508 "STORY PHOBOS" SEQ

27 "C8096" PRG

25 "C128" PRG

104 BLOCKS FREE.

For a DIR listing with the wide parameter, please refer to the example
under CATALOG on page B-34.

B-60

DISK
Token: $FE $40

Format: DISK command [,U unit] @ command [,U unit]

Usage: Sends a command string to the specified disk unit.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

command is a string expression.

Remarks: The command string is interpreted by the disk unit and must be compat-
ible to the used DOS version. Read the disk drive manual for possible
commands.

Using DISK with no parameters prints the disk status.

The shortcut symbol @ can only be used in direct mode.

Examples: Using DISK

DISK "I0" :REM INITIALISE DISK IN DRIVE 0

DISK "U0>9" :REM CHANGE UNIT# TO 9

B-61

DLOAD
Token: $F0

Format: DLOAD filename [,D drive] [,U unit]

Usage: ”Disk LOAD” loads a file of type PRG into memory reserved for BASIC
programs.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: The load address, which is stored in the first two bytes of the file is ig-
nored. The program is loaded into BASIC memory. This enables load-
ing of BASIC programs that were saved on other computers with differ-
ent memory configurations. After loading, the program is re-linked and
ready to be run or edited. It is possible to use DLOAD in a running pro-
gram. This is called overlaying, or chaining. If you do this, then the newly
loaded program replaces the current one, and the execution starts au-
tomatically on the first line of the new program. Variables, arrays and
strings from the current run are preserved and can also be used by the
newly loaded program.

Examples: Using DLOAD

DLOAD "APOCALYPSE"

DLOAD "MEGA TOOLS",U9

DLOAD (FI$),U(UN%)

B-62

DMA
Token: $FE $1F

Format: DMA command [,length, source address, source bank, target ad-
dress, target bank, sub]

Usage: DMA (”Direct Memory Access”) is obsolete, and has been replaced by
EDMA.

command 0 = copy, 1 = mix, 2 = swap, 3 = fill

length number of bytes

source address = 16-bit address of read area or fill byte

source bank bank number for source (ignored for fill mode)

target = 16-bit address of write area

target bank bank number for target

sub sub command

Remarks: DMA has access to the lower 1MB address range organised in 16 banks
of 64 K. To avoid this limitation, use EDMA, which has access to the full
256MB address range.

Examples: A sequence of DMA calls to demonstrate fast screen drawing operations

DMA 0, 80*25, 2048, 0, 0, 4 :REM SAVE SCREEN TO $00000 BANK 4

DMA 3, 80*25, 32, 0, 2048, 0 :REM FILL SCREEN WITH BLANKS

DMA 0, 80*25, 0, 4, 2048, 0 :REM RESTORE SCREEN FROM $00000 BANK 4

DMA 2, 80, 2048, 0, 2048+80, 0 :REM SWAP CONTENTS OF LINE 1 & 2 OF SCREEN

B-63

DMODE
Token: $FE $35

Format: DMODE jam,complement,inverse,stencil,style,thick

Usage: ”Display MODE” sets several parameters of the graphics context, which
is used by drawing commands.

jam 0 - 1
complement 0 - 1
inverse 0 - 1
stencil 0 - 1
style 0 - 3
thick 1 - 8

B-64

DO
Token: $EB

Format: DO ... LOOP
DO [<UNTIL | WHILE> <logical expression>]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> <logical expression>]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement only exits the current loop.

Examples: Using DO and LOOP

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

B-65

DOPEN
Token: $FE $0D

Format: DOPEN# channel, filename [,L[reclen]] [,W] [,D drive] [,U unit]

Usage: Opens a file for reading or writing.

channel number, where:

• 1 <= channel <= 127 line terminator is CR.

• 128 <= channel <= 255 line terminator is CR LF.

L indicates, that the file is a relative file, which is opened for read/write,
as well as random access. The reclength is mandatory for creating rela-
tive files. For existing relative files, the reclen is used as a safety check,
if given.

W opens a file for write access. The file must not exist.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: DOPEN# may be used to open all file types. The sequential file type SEQ is
default. The relative file type REL is chosen by using the L parameter.
Other file types must be specified in the filename, e.g. by adding ”,P” to
the filename for PRG files or ”,U” for USR files.

If the first character of the filename is an at sign ’@’, it is interpreted as a
”save and replace” operation. It is not recommended to use this option
on 1541 and 1571 drives, as they contain a ”save and replace bug” in
their DOS.

B-66

Examples: Using DOPEN

DOPEN#5,"DATA",U9

DOPEN#130,(DD$),U(UN%)

DOPEN#3,"USER FILE,U"

DOPEN#2,"DATA BASE",L240

DOPEN#4,"MYPROG,P" : REM OPEN PRG FILE

B-67

DPAT
Token: $FE $36

Format: DPAT type [,number, pattern, ...]

Usage: ”Drawing PATtern” sets the pattern of the graphics context for drawing
commands.

type 0-63
number 1-4
pattern 0-255

B-68

DS
Format: DS is a reserved system variable.

Usage: DS holds the status of the last disk operation. It is a volatile variable.
Each use triggers the reading of the disk status from the current disk de-
vice in usage. DS is coupled to the string variable DS$ which is updated
at the same time. Reading the disk status from a disk device automat-
ically clears any error status on that device, so subsequent reads will
return 0, if no other activity was in between.

Example: Using DS

100 DOPEN#1,"DATA"

110 IF DS<>0 THEN PRINT"COULD NOT OPEN FILE DATA":STOP

B-69

DS$
Format: DS$

Usage: DS$ holds the status of the last disk operation in text form of the format:
Code,Message,Track,Sector.

DS$ is coupled to the numeric variable DS It is updated when DS is used.
DS$ is set to ”00,OK,00,00”, if there was no error, otherwise it is set to
a DOS error message (listed in the disk manuals).

Remarks: DS$ is a reserved system variable.

Example: Using DS$

100 DOPEN#1,"DATA"

110 IF DS<>0 THEN PRINT DS$:STOP

B-70

DSAVE
Token: $EF

Format: DSAVE filename [,D drive] [,U unit]

Usage: ”Disk SAVE” saves the BASIC program to a file of type PRG.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$). The maximum length of the filename is 16 charac-
ters. If the first character of the filename is an at sign ’@’ it is interpreted
as a ”save and replace” operation. It is not recommended to use this
option on 1541 and 1571 drives, as they contain a ”save and replace
bug” in their DOS.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: The DVERIFY can be used after DSAVE to check, if the saved program
on disk is identical to the program in memory.

Example: Using DSAVE

DSAVE "ADVENTURE"

DSAVE "ZORK-I",U9

DSAVE "DUNGEON",D1,U10

B-71

DT$
Format: DT$

Usage: DT$ holds the current date and is updated before each usage from the
RTC (Real-Time Clock). The RTC can be set in the Configure Menu. The
string DT$ is formatted as: ”DD-MON-YYYY”, for example: ”04-APR-
2021”.

Remarks: DT$ is a reserved system variable.

Example: Using DT$

100 PRINT "TODAY IS: ";DT$

B-72

DVERIFY
Token: $FE $14

Format: DVERIFY filename [,D drive] [,U unit]

Usage: ”Disk VERIFY” compares the BASIC program in memory with a disk file of
type PRG.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: DVERIFY can only test for equality. It gives no information about the
number or position of different valued bytes. DVERIFY exits either with
the message OK or with VERIFY ERROR.

Example: Using DVERIFY

DVERIFY "ADVENTURE"

DVERIFY "ZORK-I",U9

DVERIFY "DUNGEON",D1,U10

B-73

EDIT
Format: EDIT <ON | OFF>

Usage: EDIT switches the builtin editor either to text mode EDIT ON or BASIC
program editor EDIT OFF.

After power up or reset, the editor is initialised as BASIC program editor.

After setting the editor to text mode with EDIT ON, the diffences to pro-
gram mode are:

The editor does no tokenising/parsing. All text entered after a linenum-
ber remains pure text, BASIC keywords such as FOR and GOTO are not
converted to BASIC tokens, as they are whilst in program mode.

The line numbers are only used for text organisation, sorting, deleting,
listing etc. When the text is saved to file with DSAVE, a sequential file
(type SEQ) is written, not a program (PRG) file, which is what happens
whilst in program mode. Line numbers are not written to the file.

DLOAD in text mode can load only sequential files. Line numbers are
automatically generated for editing purposes.

The mode of the editor can be recognised by looking at the prompt: In
program mode, the prompt is: READY., whilst in text mode the prompt is:
OK.

The text mode affects entered lines with leading number only, lines with
no linenumber are executed as BASIC commands, as usual.

Sequential files, created with the text editor, can be displayed (without
loading them) on the screen by using TYPE <filename>.

B-74

Example: Using EDIT

ready.

edit on

ok.

100 This is a simple text editor.

dsave "example"

ok.

new

ok.

catalog

0 "demoempty " 00 3d

1 "example" seq

3159 blocks free

ok.

type "example"

This is a simple text editor.

ok.

dload "example"

loading

ok.

list

1000 This is a simple text editor.

ok.

B-75

EDMA
Token: $FE $21

Format: EDMA command ,length, source, target [, sub , mod]

Usage: EDMA (”Extended Direct Memory Access”) is the fastest method to ma-
nipulate memory areas using the DMA controller.

command 0 = copy, 1 = mix, 2 = swap, 3 = fill.

length number of bytes (maximum = 65535).

source 28-bit address of read area or fill byte.

target 28-bit address of write area.

sub sub command (see chapter on DMA controller).

mod modifier (see chapter on DMA controller).

Remarks: EDMA can access the entire 256MB address range, using up to 28 bits
for the addresses of the source and target.

Examples: Using EDMA

EDMA 0, $800, $F700, $8000000 :REM COPY SCALAR VARIABLES TO ATTIC RAM

EDMA 3, 80*25, 32, 2048 :REM FILL SCREEN WITH BLANKS

EDMA 0, 80*25, 2048, $8000800 :REM COPY SCREEN TO ATTIC RAM

B-76

EL
Format: EL

Usage: EL has the value of the line where the most recent BASIC error occurred,
or the value -1 if there was no error.

Remarks: EL is a reserved system variable.

This variable is typically used in a TRAP routine, where the error line is
taken from EL.

Example: Using EL

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR

30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

100 IF ER>0 THEN PRINT ERR$(ER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

B-77

ELLIPSE
Token: $FE $30

Format: ELLIPSE xcentre, ycentre, xradius, yradius, [,solid]

Usage: Draws an ellipse.

xcentre x coordinate of centre in pixels.

ycentre y coordinate of centre in pixels.

xradius x radius of the ellipse in pixels.

yradius y radius of the ellipse in pixels.

solid fills the ellipse, if not zero.

Remarks: ELLIPSE is used to draw ellipses on screens at various resolutions. It can
also be used to draw circles.

Example: Using ELLIPSE

B-78

100 REM ELLIPSE

110 W=320:H=200:B%=2 :REM WIDTH, HEIGHT, DEPTH

120 X0=W/2:Y0=H/2:XD=W/4:YD=H/4 :REM CENTRE AND HALF AXIS

130 BORDER 0 :REM BLACK

140 BACKGROUND 0 :REM BLACK

150 FOREGROUND 5 :REM GREEN

160 SCREEN 320,200,B% :REM SET PARAMETERS

170 PEN 2 :REM DRAW PEN RED

180 ELLIPSE X0,Y0,XD,YD,1 :REM DRAW SOLID ELLIPSE

190 PEN 3 :REM DRAW PEN CYAN

200 ELLIPSE X0,Y0,XD+8,YD+8,0 :REM DRAW OUTLINED ELLIPSE

210 A$=STR$(W)+" X"+STR$(H)+" X"+STR$(B%)

220 PEN 1 :REM DRAW PEN WHITE

230 CHAR 12,10,1,1,2,A$:REM DRAW TEXT

240 GETKEY A$:REM WWAIT FOR KEYPRESS

250 SCREEN CLOSE :REM CLOSE GRAPHICS

B-79

ELSE
Token: $D5

Format: IF expression THEN <true clause> ELSE <false clause>

Usage: ELSE is part of an IF statement.

expression a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero value.

true clause one or more statements starting directly after THEN on the
same line. A line number after THEN performs a GOTO to that line in-
stead.

false clause one or more statements starting directly after ELSE on the
same line. A linenumber after ELSE performs aGOTO to that line instead.

Remarks: The standard IF ... THEN ... ELSE structure is restricted to a single line.
But the true clause or false clause may be expanded to several lines
using a compound statement surrounded with BEGIN and BEND.

Example: Using ELSE

100 REM ELSE

110 RED$=CHR$(28):BLACK$=CHR$(144):WHITE$=CHR$(5)

120 INPUT "ENTER A NUMBER";V

130 IF V<0 THENPRINT RED$;:ELSEPRINT BLACK$;

140 PRINT V : REM PRINT NEGATIVE NUMBERS IN RED

150 PRINT WHITE$

160 INPUT "END PROGRAM:(Y/N)";A$

170 IF A$="Y" THENEND

180 IF A$="N" THEN120:ELSE160

B-80

END
Token: $80

Format: END

Usage: Ends the execution of the BASIC program. The READY. prompt appears
and the computer goes into direct mode waiting for keyboard input.

Remarks: END does not clear channels nor close files. Also, variable definitions
are still valid after END. The program may be continued with the CONT
statement. After executing the last line of a program, END is automati-
cally executed.

Example: Using END

10 IF V < 0 THEN END : REM NEGATIVE NUMBERS END THE PROGRAM

20 PRINT V

B-81

ENVELOPE
Token: $FE $0A

Format: ENVELOPE n, [attack, decay, sustain, release, waveform, pw]

Usage: Used to define the parameters for the synthesis of a musical instrument.

n envelope slot (0-9).

attack attack rate (0-15).

decay decay rate (0-15).

sustain sustain rate (0-15).

release release rate (0-15).

waveform 0:triangle, 1:sawtooth, 2:square/pulse, 3:noise, 4:ring mod-
ulation.

pw pulse width (0-4095) for waveform.

There are 10 slots for storing instrument parameters, preset with follow-
ing values:

n A D S R WF PW Instrument
0 0 9 0 0 2 1536 piano
1 12 0 12 0 1 accordion
2 0 0 15 0 0 calliope
3 0 5 5 0 3 drum
4 9 4 4 0 0 flute
5 0 9 2 1 1 guitar
6 0 9 0 0 2 512 harpsichord
7 0 9 9 0 2 2048 organ
8 8 9 4 1 2 512 trumpet
9 0 9 0 0 0 xylophone

Example: Using ENVELOPE

10 ENVELOPE 9,10,5,10,5,2,4000

20 VOL 9

30 TEMPO 30

40 PLAY "T9O4Q CDEFGAB U3T8 CDEFGAB L","T5O3Q H CGEQG T7 HCGEQG L"

B-82

ERASE
Token: $FE $2A

Format: ERASE filename [,D drive] [,U unit] [,R]

Usage: Used to erase a disk file.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

R Recover a previously erased file. This will only work if there were no
write operations between erasing and recovery, which may have altered
the contents of the file.

Remarks: ERASE filename works similarly to SCRATCH filename.

The success and the number of erased files can be examined by printing
or using the system variable DS$. The second to last number from DS$
contains the number of successfully erased files, (normally the second to
last number in DS$ contains the track number in case of a disk error).

Examples: Using ERASE

ERASE "DRM",U9 :REM ERASE FILE DRM ON UNIT 9

PRINT DS$

01, FILES SCRATCHED,01,00

ERASE "OLD*" :REM ERASE ALL FILES BEGINNING WITH "OLD"

PRINT DS$

01, FILES SCRATCHED,04,00

B-83

ER
Format: ER.

Usage: ER has the value of the most recent BASIC error that has occurred, or -1
if there was no error.

Remarks: ER is a reserved system variable.

This variable is typically used in a TRAP routine, where the error number
is taken from ER.

Example: Using ER

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR

30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

100 IF ER>0 THEN PRINT ERR$(ER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

B-84

ERR$
Token: $D3

Format: ERR$(number)

Usage: Used to convert an error number to an error string.

number is a BASIC error number (1-41).

This function is typically used in a TRAP routine, where the error number
is taken from the reserved variable ER.

Remarks: Arguments out of range (1-41) will produce an ILLEGAL QUANTITY error.

Example: Using ERR$

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR

30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

100 IF ER>0 THEN PRINT ERR$(ER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

B-85

EXIT
Token: $FD

Format: EXIT

Usage: Exits the current DO .. LOOP and continues execution at the first state-
ment after LOOP.

Remarks: In nested loops, EXIT exits only the current loop, and continues execution
in an outer loop (if there is one).

Example: Using EXIT

1 REM EXIT

10 OPEN 2,8,0,"$" : REM OPEN CATALOG

15 IF DS THEN PRINT DS$: STOP: REM CANT READ

20 GET#2,D$,D$: REM DISCARD LOAD ADDRESS

25 DO : REM LINE LOOP

30 GET#2,D$,D$: REM DISCARD LINE LINK

35 IF ST THEN EXIT : REM END-OF-FILE

40 GET#2,LO,HI : REM FILE SIZE BYTES

45 S=LO + 256 * HI : REM FILE SIZE

50 LINE INPUT#2, F$: REM FILE NAME

55 PRINT S;F$: REM PRINT FILE ENTRY

60 LOOP

65 CLOSE 2

B-86

EXP
Token: $BD

Format: EXP(numeric expression)

Usage: The EXP (EXPonential function) computes the value of the mathemati-
cal constant Euler’s number (2.71828183) raised to the power of the
argument.

Remarks: An argument greater than 88 produces an OVERFLOW ERROR:

Examples: Using EXP

PRINT EXP(1)

2.71828183

PRINT EXP(0)

1

PRINT EXP(LOG(2))

2

B-87

FAST
Token: $FE $25

Format: FAST [speed]

Usage: Set CPU clock to 1MHz, 3.5MHz or 40MHz.

speed CPU clock speed where:

• 1 sets CPU to 1MHz.

• 3 sets CPU to 3MHz.

• Anything other than 1 or 3 sets the CPU to 40MHz.

Remarks: Although it’s possible to call FAST with any real number, the precision
part (the decimal point and any digits after it), will be ignored.

FAST is a synonym of SPEED.

FAST has no effect if POKE 0,65 has previously been used to set the CPU
to 40MHz.

Example: Using FAST

10 FAST :REM SET SPEED TO MAXIMUM (40 MHZ)

20 FAST 1 :REM SET SPEED TO 1 MHZ

30 FAST 3 :REM SET SPEED TO 3.5 MHZ

40 FAST 3.5 :REM SET SPEED TO 3.5 MHZ

B-88

FILTER
Token: $FE $03

Format: FILTER sid [,freq, lp, bp, hp, res]

Usage: Sets the parameters for a SID sound filter.

sid 1 : right SID, 2 : left SID

freq filter cut off frequency (0 -> 2047)

lp low pass filter (0:off, 1:on)

bp band pass filter (0:off, 1:on)

hp high pass filter (0:off, 1:on)

resonance resonance (0 -> 15)

Remarks: Missing parameters keep their current value. The effective filter is the
sum of of all filter settings. This enables band reject and notch effects.

Example: Using FILTER

10 PLAY "T7X1O3P9C"

15 SLEEP 0.02

20 PRINT "LOW PASS SWEEP" :L=1:B=0:H=0:GOSUB 100

30 PRINT "BAND PASS SWEEP":L=0:B=1:H=0:GOSUB 100

40 PRINT "HIGH PASS SWEEP":L=0:B=0:H=1:GOSUB 100

50 GOTO 20

100 REM *** SWEEP ***

110 FOR F = 50 TO 1950 STEP 50

120 IF F >= 1000 THEN FF = 2000-F : ELSE FF = F

130 FILTER 1,FF,L,B,H,15

140 PLAY "X1"

150 SLEEP 0.02

160 NEXT F

170 RETURN

B-89

FIND
Token: $FE $2B

Format: FIND delimiter string delimiter [,from-to]

Usage: FIND is an editor command that can only be used in direct mode. It
searches a given line range (if specified), otherwise the entire BASIC
program is searched. At each occurrence of the ”find string” the line is

listed with the string highlighted. NO
SCROLL can be used to pause the output.

Remarks: Any un-shifted character that is not part of the string can be used as
delimiter.

However, using double quotes ” as a delimiter has a special effect: The
search text is not tokenised. FIND ”FOR” will search for the three letters
F, O, and R, not the BASIC keyword FOR. Therefore, it can find the word
FOR in string constants or REM statements, but not in program code.

On the other hand, FIND /FOR/ will find all occurrences of the BASIC
keyword, but not the text ”FOR” in strings.

Partial keywords cannot be searched. For example, FIND /LOO/ will not
find the keyword LOOP,

Example: Using FIND

B-90

FN
Token: $A5

Format: FN name(numeric expression)

Usage: FN functions are user-defined functions, that accept a numeric expres-
sion as an argument and return a real value. They must first be defined
with DEF FN before being used.

Example: Using FN

10 PD = ~ / 180

20 DEF FN CD(X)= COS(X*PD): REM COS FOR DEGREES

30 DEF FN SD(X)= SIN(X*PD): REM SIN FOR DEGREES

40 FOR D=0 TO 360 STEP 90

50 PRINT USING "###";D

60 PRINT USING " ##.##";FNCD(D);

70 PRINT USING " ##.##";FNSD(D)

80 NEXT D

RUN

0 1.00 0.00

90 0.00 1.00

180 -1.00 0.00

270 0.00 -1.00

360 1.00 0.00

B-91

FONT
Token: $FE $46

Format: FONT [A|B|C]

Usage: FONT is used to switch between fonts, and the code pages PETSCII, and
enhanced PETSCII. The enhanced PETSCII includes all ASCII symbols that
are missing in the PETSCII code page, although the order is still PETSCII.

The ASCII symbols are typed by holding the ` together with the de-
sired key. The codes for uppercase and lowercase are swapped com-
pared to ASCII. The uppercase/graphics code page is not changed.

code key PETSCII ASCII
$5C pound \ \
$5E up arrow ^ ^
$5F back arrow _ _
$7B colon ě {
$7C dot Ĝ |
$7D semicolon ĝ }
$7E comma ~ ~

Examples: Using FONT

FONT A :REM ASCII - ENABLE {|}_~^
FONT B :REM LIKE A, WITH A SERIF FONT
FONT C :REM COMMODORE FONT (DEFAULT)

B-92

FOR
Token: $81

Format: FOR index=start TO end [STEP step] ... NEXT [index]

Usage: FOR statements start the definition of a BASIC loop with an index vari-
able.

index may be incremented or decremented by a constant value on each
iteration. The default is to increment the variable by 1. The index variable
must be a real variable.

start is used to initialise the index.

end is checked at the end of an iteration, and determines whether an-
other iteration will be performed, or if the loop will exit.

step defines the change applied to to the index variable at the end of an
iteration. Positive step values increment it, while negative values decre-
ment it. It defaults to 1.0 if not specified.

Remarks: For positive increments end must be greater than or equal to start,
whereas for negative increments end must be less than or equal to start.

It is bad programming practice to change the value of the index variable
inside the loop or to jump into or out of a loop body with GOTO.

Examples: Using FOR

10 FOR D=0 TO 360 STEP 30

20 R = D * ~ / 180

30 PRINT D;R;SIN(R);COS(R);TAN(R)

40 NEXT D

10 DIM M(20,20)

20 FOR I=0 TO 20

30 FOR J=I TO 20

40 M(I,J) = I + 100 * J

50 NEXT J,I

B-93

FOREGROUND
Token: $FE $39

Format: FOREGROUND colour

Usage: Sets the foreground colour (text colour) of the screen to the argument,
which must be in the range of 0 to 15. Refer to the colour table un-
der BACKGROUND on page B-18 for the colour values and their corre-
sponding colours.

Example: Using FOREGROUND

B-94

FRE
Token: $B8

Format: FRE(bank)

Usage: Returns the number of free bytes for banks 0 or 1, or the ROM version if
the argument is negative.

FRE(0) returns the number of free bytes in bank 0, which is used for BASIC
program source.

FRE(1) returns the number of free bytes in bank 1, which is the bank for
BASIC variables, arrays and strings. FRE(1) also triggers ”garbage col-
lection”, which is a process that collects used strings at the top of the
bank, thereby defragmenting string memory.

FRE(-1) returns the ROM version, a six-digit number of the form 92xxxx.

Example: Using FRE:

10 PM = FRE(0)

20 VM = FRE(1)

30 RV = FRE(-1)

40 PRINT PM;" FREE FOR PROGRAM"

50 PRINT VM;" FREE FOR VARIABLES"

60 PRINT RV;" ROM VERSION"

B-95

FREAD
Token: $FE $1C

Format: FREAD# channel, pointer, size

Usage: Reads size bytes from channel to memory starting at the 32-bit address
pointer.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

Care must be taken not to overwrite memory that is used by the system
or the interpreter.

It is recommended to use the POINTER statement for the pointer argu-
ment, and to compute the size parameter by multiplying the number of
elements with the item size.

type item size
byte array 1
integer array 2
real array 5

Keep in mind that the POINTER function with a string argument does NOT
return the string address, but the string descriptor. It is not recommended
to use FREAD for strings or string arrays unless you are fully aware on how
to handle the string storage internals.

Also, ensure that you always specify an index if you use an array. The
start address of array XY() is POINTER(XY(0)). POINTER(XY) returns the
address of the scalar variable XY.

Example: Using FREAD:

100 N=23

110 DIM B&(N),C&(N)

120 DOPEN#2,"TEXT"

130 FREAD#2,POINTER(B&(0)),N

140 DCLOSE#2

150 FORI=0TON-1:PRINTCHR$(B&(I));:NEXT

160 FORI=0TON-1:C&(I)=B&(N-1-I):NEXT

170 DOPEN#2,"REVERS",W

180 FWRITE#2,POINTER(C&(0)),N

190 DCLOSE#2

B-96

FWRITE
Token: $FE $1E

Format: FWRITE# channel, pointer, size

Usage: Writes size bytes to channel from memory starting at the 32-bit address
pointer.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN.

It is recommended to use the POINTER statement for the pointer argu-
ment and compute the size parameter by multiplying the number of ele-
ments with the item size.

Refer to the FREAD item size table on page B-96 for the item sizes.

Keep in mind that the POINTER function with a string argument does NOT
return the string address, but the string descriptor. It is not recommended
to use FWRITE for strings or string arrays unless you are fully aware on
how to handle the string storage internals.

Also ensure that you always specify an index if you use an array. The
start address of array XY() is POINTER(XY(0)). POINTER(XY) returns the
address of the scalar variable XY.

Example: Using FWRITE:

100 N=23

110 DIM B&(N),C&(N)

120 DOPEN#2,"TEXT"

130 FREAD#2,POINTER(B&(0)),N

140 DCLOSE#2

150 FORI=0TON-1:PRINTCHR$(B&(I));:NEXT

160 FORI=0TON-1:C&(I)=B&(N-1-I):NEXT

170 DOPEN#2,"REVERS",W

180 FWRITE#2,POINTER(C&(0)),N

190 DCLOSE#2

B-97

GET
Token: $A1

Format: GET variable

Usage: Gets the next character (or byte value of the next character) from the
keyboard queue. If the variable being set to the character is of type string
and the queue is empty, an empty string is assigned to it, otherwise a one
character string is created and assigned instead. If the variable is of type
numeric, the byte value of the key is assigned to it, otherwise zero will be
assigned if the queue is empty. GET does not wait for keyboard input,
so it’s useful to check for key presses at regular intervals or in loops.

Remarks: GETKEY is similar, but waits until a key has been pressed.

Example: Using GET:

10 DO: GET A$: LOOP UNTIL A$ <> ""

40 IF A$ = "W" THEN 1000 :REM GO NORTH

50 IF A$ = "A" THEN 2000 :REM GO WEST

60 IF A$ = "S" THEN 3000 :REM GO EAST

70 IF A$ = "Z" THEN 4000 :REM GO SOUTH

80 IF A$ = CHR$(13) THEN 5000 :REM RETURN

90 GOTO 10

B-98

GET#
Token: $A1 ’#’

Format: GET# channel, list of variables

Usage: Reads as many bytes as necessary from the channel argument and as-
signs strings of length one to string variables, or an 8-bit binary value to
numeric variables. This is useful for reading characters (or bytes) from an
input stream one byte at a time.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

Remarks: All values from 0 to 255 are valid, so GET can also be used to read binary
data.

Example: Using GET# to read a disk directory:

1 REM GET#

10 OPEN 2,8,0,"$" : REM OPEN CATALOG

15 IF DS THEN PRINT DS$: STOP: REM CANT READ

20 GET#2,D$,D$: REM DISCARD LOAD ADDRESS

25 DO : REM LINE LOOP

30 GET#2,D$,D$: REM DISCARD LINE LINK

35 IF ST THEN EXIT : REM END-OF-FILE

40 GET#2,LO,HI : REM FILE SIZE BYTES

45 S=LO + 256 * HI : REM FILE SIZE

50 LINE INPUT#2, F$: REM FILE NAME

55 PRINT S;F$: REM PRINT FILE ENTRY

60 LOOP

65 CLOSE 2

B-99

GETKEY
Token: $A1 $F9 (GET token and KEY token)

Format: GETKEY variable

Usage: Gets the next character (or byte value of the next character) from the
keyboard queue. If the queue is empty, the program will wait until a key
has been pressed. After a key has been pressed the variable will be set
and program execution will continue. When used with a string variable, a
one character string is created and assigned. Otherwise if the variable
is of type numeric, the byte value is assigned.

Example: Using GETKEY:

10 GETKEY A$:REM WAIT AND GET CHARACTER

40 IF A$ = "W" THEN 1000 :REM GO NORTH

50 IF A$ = "A" THEN 2000 :REM GO WEST

60 IF A$ = "S" THEN 3000 :REM GO EAST

70 IF A$ = "Z" THEN 4000 :REM GO SOUTH

80 IF A$ = CHR$(13) THEN 5000 :REM RETURN

90 GOTO 10

B-100

GO64
Token: $CB $36 $34 (GO token and 64)

Format: GO64

Usage: Switches the MEGA65 to C64-compatible mode. If you’re in direct
mode, a security prompt ARE YOU SURE? is displayed, which must be responded
with Y to continue. SYS58552 can be used to switch back to C65-mode.

Example: Using GO64:

GO64

ARE YOU SURE?

B-101

GOSUB
Token: $8D

Format: GOSUB line

Usage: GOSUB (GOto SUBroutine) continues program execution at the given
BASIC line number, saving the current BASIC program counter and line
number on the run-time stack. This enables the resumption of execution
after theGOSUB statement, once a RETURN statement in the called sub-
routine is executed. Calls to subroutines via GOSUB may be nested, but
the subroutines must always end with RETURN, otherwise a stack over-
flow may occur.

Remarks: Unlike other programming languages, BASIC65 does not support argu-
ments or local variables for subroutines.
Programs can be optimised by grouping subroutines at the beginning of
the program source. The GOSUB calls will then have low line numbers
with fewer digits to decode. The subroutines will also be found faster,
since the search for subroutines often starts at the beginning of the pro-
gram.

Example: Using GOSUB:

10 GOTO 100 :REM TO MAIN PROGRAM

20 REM *** SUBROUTINE DISK STATUS CHECK ***

30 DD=DS:IF DD THEN PRINT "DISK ERROR";DS$

40 RETURN

50 REM *** SUBROUTINE PROMPT Y/N ***

60 DO:INPUT "CONTINUE (Y/N)";A$

70 LOOP UNTIL A$="Y" OR A$="N"

80 RETURN

90 REM *** MAIN PROGRAM ***

100 DOPEN#2,"BIG DATA"

110 GOSUB 30: IF DD THEN DCLOSE#2:GOSUB 60:REM ASK

120 IF A$="N" THEN STOP

130 GOTO 100: REM RETRY

B-102

GOTO
Token: $89 (GOTO) or $CB $A4 (GO TO)

Format: GOTO line
GO TO line

Usage: Continues program execution at the given BASIC line number.

Remarks: If the target line number is higher than the current line number, the search
starts from the current line, proceeding to higher line numbers. If the
target line number is lower, the search starts at the first line number of
the program. It is possible to optimise the run-time speed of the program
by grouping often used targets at the start (with lower line numbers).

GOTO (written as a single word) executes faster than GO TO.

Example: Using GOTO:

10 GOTO 100 :REM TO MAIN PROGRAM

20 REM *** SUBROUTINE DISK STATUS CHECK ***

30 DD=DS:IF DD THEN PRINT "DISK ERROR";DS$

40 RETURN

50 REM *** SUBROUTINE PROMPT Y/N ***

60 DO:INPUT "CONTINUE (Y/N)";A$

70 LOOP UNTIL A$="Y" OR A$="N"

80 RETURN

90 *** MAIN PROGRAM ***

100 DOPEN#2,"BIG DATA"

110 GOSUB 30: IF DD THEN DCLOSE#2:GOTO 60:REM ASK

120 IF A$="N" THEN STOP

130 GOTO 100: REM RETRY

B-103

GRAPHIC
Token: $DE

Format: GRAPHIC CLR

Usage: Initialises the BASIC graphic system. It clears the graphics memory and
screen, and sets all parameters of the graphics context to their default
values.

Once the graphics system has been cleared, commands such as LINE,
PALETTE, PEN, SCNCLR, and SCREEN can be used to set graphic system
parameters again.

Example: Using GRAPHIC:

100 REM GRAPHIC

110 GRAPHIC CLR : REM INITIALISE

120 SCREEN DEF 1,1,1,2 : REM 640 X 400 X 2

130 SCREEN OPEN 1 : REM OPEN IT

140 SCREEN SET 1,1 : REM VIEW IT

150 PALETTE 1,0,0, 0,0 : REM BLACK

160 PALETTE 1,1,0,15,0 : REM GREEN

170 SCNCLR 0 : REM FILL SCREEN WITH BLACK

180 PEN 0,1 : REM SELECT PEN

190 LINE 50,50,590,350 : REM DRAW LINE

200 GETKEY A$: REM WAIT FOR KEYPRESS

210 SCREEN CLOSE 1 : REM CLOSE SCREEN AND RESTORE PALETTE

B-104

HEADER
Token: $F1

Format: HEADER diskname [,Iid] [,D drive] [,U unit]

Usage: Used to format (or clear) a disk.

diskname is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (DN$). The maximum length of diskname is 16 charac-
ters.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: For new disks which have not already been formatted, it is necessary
to specify the disk ID with the Iid parameter. This switches the format
command to full format, which writes sector IDs and erases all contents.
This takes some time, as every block on the disk will be written.
If the Iid parameter is omitted, a quick format will be performed. This
is only possible if the disk has already been formatted. A quick format
writes the new disk name and clears the block allocation map, marking all
blocks as free. The disk ID is not changed, and blocks are not overwritten,
so contents may be recovered with ERASE R. You can read more about
ERASE on page B-83.

Examples: Using HEADER

HEADER "ADVENTURE",IDK : FORMAT DISK WITH NAME ADVENTURE AND ID DK

HEADER "ZORK-I",U9 : FORMAT DISK IN UNIT 9 WITH NAME ZORK-I

HEADER "DUNGEON",D1,U10: FORMAT DISK IN DRIVE 1 UNIT 10 WITH NAME DUNGEON

B-105

HELP
Token: $EA

Format: HELP

Usage: When the BASIC program stops due to an error, HELP can be used to
gain further information. The interpreted line is listed, with the erroneous
statement highlighted or underlined.

Remarks: Displays BASIC errors. For errors related to disk I/O, the disk status vari-
able DS or the disk status string DS$ should be used instead.

Example: Using HELP

10 A=1.E20

20 B=A+A:C=EXP(A):PRINT A,B,C

RUN

?OVERFLOW ERROR IN 20

READY.

HELP

20 B=A+A:ţŝťŸŰňšŉ:PRINT A,B,C

B-106

HEX$
Token: $D2

Format: HEX$(numeric expression)

Usage: Returns a four character hexadecimal representation of the argument.
The argument must be in the range of 0-65535, corresponding to the
hex numbers $0000-$FFFF.

Remarks: If real numbers are used as arguments, the fractional part will be ignored.
In other words, real numbers will not be rounded.

Example: Using HEX$:

PRINT HEX$(10),HEX$(100),HEX$(1000.9)

000A 0064 03E8

B-107

HIGHLIGHT
Token: $FE $3D

Format: HIGHLIGHT colour [,mode]

Usage: Sets the colour to be used for the ”highlight” text attribute. The colour
value must be in the range of 0 to 15. Refer to the colour table un-
der BACKGROUND on page B-18 for the colour values and their corre-
sponding colours.

The optional parameter mode defines how BASIC listings are highlighted
when listed:

• mode 0 no syntax highlighting

• mode 1 highlight REM statements

• mode 2 highlight BASIC keywords

Remarks: The highlight text attribute is used to highlight text in listings generated
by the CHANGE,FIND, LIST, and HELP commands.

Example: Using HIGHLIGHT

B-108

IF
Token: $8B

Format: IF expression THEN <true clause> ELSE <false clause>

Usage: Starts a conditional execution statement.

expression a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero value.

true clause one or more statements starting directly after THEN on the
same line. A line number after THEN performs a GOTO to that line in-
stead.

false clause one or more statements starting directly after ELSE on the
same line. A linenumber after ELSE performs aGOTO to that line instead.

Remarks: The standard IF ... THEN ... ELSE structure is restricted to a single line.
But the true clause or false clause may be expanded to several lines
using a compound statement surrounded with BEGIN and BEND.

Example: Using IF

1 REM IF

10 RED$=CHR$(28) : BLACK$=CHR$(144) : WHITE$=CHR$(5)

20 INPUT "ENTER A NUMBER";V

30 IF V<0 THEN PRINT RED$; : ELSE PRINT BLACK$;

40 PRINT V : REM PRINT NEGATIVE NUMBERS IN RED

50 PRINT WHITE$

60 INPUT "END PROGRAM: (Y/N)"; A$

70 IF A$="Y" THEN END

80 IF A$="N" THEN 20 : ELSE 60

B-109

INPUT
Token: $85

Format: INPUT [prompt <,|;>] variable list

Usage: Prints an optional prompt string and question mark to the screen, flashes
the cursor and waits for user input from the keyboard.

prompt optional string expression to be printed as the prompt. If the
separator between prompt and variable list is a comma, the cursor
is placed directly after the prompt. If the separator is a semicolon, a
question mark and a space is added to the prompt instead.

variable list list of one or more variables that receive the input.

The input will be processed after the user presses RETURN .

Remarks: The user must take care to enter the correct type of input, so it matches
the variable list types. Also, the number of input items must match the
number of variables. A surplus of input items will be ignored, too few
input items trigger another request for input with the prompt ??. Typing
non numeric characters for integer or real variables will produce a TYPE
MISMATCH ERROR. Strings for string variables must be in double quotes
(”) if they contain spaces or commas. Many programs that need a safe
input routine use LINE INPUT and a custom parser, in order to avoid pro-
gram errors by wrong user input.

Example: Using INPUT:

10 DIM N$(100),A%(100),S$(100):

20 DO

30 INPUT "NAME, AGE, GENDER";NA$,AG%,SE$

40 IF NA$="" THEN 30

50 IF NA$="END" THEN EXIT

60 IF AG% < 18 OR AG% > 100 THEN PRINT "AGE?":GOTO 30

70 IF SE$ <> "M" AND SE$ <> "F" THEN PRINT "GENDER?":GOTO 30

80 REM CHECK OK: ENTER INTO ARRAY

90 N$(N)=NA$:A%(N)=AG%:S$(N)=SE$:N=N+1

100 LOOP UNTIL N=100

110 PRINT "RECEIVED";N;" NAMES"

B-110

INPUT#
Token: $84

Format: INPUT# channel, variable list

Usage: Reads a record from an input device, e.g. a disk file and assigns the data
to the variables in the list.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

variable list list of one or more variables, that receive the input.

The input record must be terminated by a RETURN character and must
be not longer than the input buffer (160 characters).

Remarks: The type and number of data in a record must match the variable list.
Reading non numeric characters for integer or real variables will produce
a FILE DATA ERROR. Strings for string variables have to be put in quotes
if they contain spaces or commas.
LINE INPUT# may be used to read a whole record into a single string
variable.

Sequential files, that can be read by INPUT# can be generated by pro-
grams with PRINT# or with the editor of the MEGA65. For example:

EDIT ON

10 "CHUCK PEDDLE",1937,"ENGINEER OF THE 6502"

20 "JACK TRAMIEL",1928,"FOUNDER OF CBM"

30 "BILL MENSCH",1945,"HARDWARE"

DSAVE "CBM-PEOPLE"

EDIT OFF

Example: Using INPUT#:

B-111

10 DIM N$(100),B%(100),S$(100):

20 DOPEN#2,"CBM-PEOPLE":REM OPEN SEQ FILE

25 IF DS THEN PRINT DS$:STOP:REM OPEN ERROR

30 FOR I=0 TO 100

40 INPUT#2,N$(I),B%(I),S$(I)

50 IF ST AND 64 THEN 80:REM END OF FILE

60 IF DS THEN PRINT DS$:GOTO 80:REM DISK ERROR

70 NEXT I

80 DCLOSE#2

110 PRINT "READ";I;" RECORDS"

120 FOR J=0 TO I:PRINT N$(I):NEXT J

RUN

CHUCK PEDDLE

JACK TRAMIEL

BILL MENSCH

TYPE "CBM-PEOPLE"

"CHUCK PEDDLE",1937,"ENGINEER OF THE 6502"

"JACK TRAMIEL",1928,"FOUNDER OF CBM"

"BILL MENSCH",1945,"HARDWARE"

B-112

INSTR
Token: $D4

Format: INSTR(haystack, needle [,start])

Usage: Locates the position of the string expression needle in the string expres-
sion haystack, and returns the index of the first occurrence, or zero if
there is no match.

The string expression haystack is searched for the occurrence of the
string expression needle.

An enhanced version of string search using pattern matching is used if
the first character of the search string is a pound sign ’£’. The pound sign
is not part of the search but enables the use of the ’.’ (dot) as a wildcard
character, which matches any character. The second special pattern
character is the ’*’ (asterisk). The asterisk in the search string indicates
that the character preceding the asterisk may never occur in order to be
considered as a match.

The optional argument start is an integer expression, which defines the
starting position for the search in haystack. If not present, it defaults to
one.

Remarks: If either string is empty or there is no match the function returns zero.

Examples: Using INSTR:

I = INSTR("ABCDEF","CD") : REM I = 3

I = INSTR("ABCDEF","XY") : REM I = 0

I = INSTR("RAIIIN","\A*IN") : REM I = 2

I = INSTR("ABCDEF","\C.E") : REM I = 3

I = INSTR(A$+B$,C$)

B-113

INT
Token: $B5

Format: INT(numeric expression)

Usage: Searches for the highest integer value that is less than or equal to the ar-
gument, and returns this value as a real number. This function is NOT lim-
ited to the typical 16-bit integer range (-32768 to 32767), as it uses real
arithmetic. The allowed range is therefore determined by the size of the
real mantissa which is 32-bits wide (-2147483648 to 2147483647).

Remarks: It is not necessary to use the INT function for assigning real values to
integer variables, as this conversion will be done implicitly, but only for
the 16-bit range.

Examples: Using INT:

X = INT(1.9) :REM X = 1

X = INT(-3.1) :REM X = -4

X = INT(100000.5) :REM X = 100000

N% = INT(100000.5) :REM ?ILLEGAL QUANTITY ERROR

B-114

JOY
Token: $CF

Format: JOY(port)

Usage: Returns the state of the joystick for the selected port (1 or 2). Bit 7
contains the state of the fire button. The stick can be moved in eight
directions, which are numbered clockwise starting at the upper position.

left centre right
up 8 1 2

centre 7 0 3
down 6 5 4

Example: Using JOY:

10 N = JOY(1)

20 IF N AND 128 THEN PRINT "FIRE! ";

30 REM N NE E SE S SW W NW

40 ON N AND 15 GOSUB 100,200,300,400,500,600,700,800

50 GOTO 10

100 PRINT "GO NORTH" :RETURN

200 PRINT "GO NORTHEAST":RETURN

300 PRINT "GO EAST" :RETURN

400 PRINT "GO SOUTHEAST":RETURN

500 PRINT "GO SOUTH" :RETURN

600 PRINT "GO SOUTHWEST":RETURN

700 PRINT "GO WEST" :RETURN

800 PRINT "GO NORTHWEST":RETURN

B-115

KEY
Token: $F9

Format: KEY [ON | OFF | LOAD | SAVE | number, string]

Usage: Reads the state of the function keys. The function keys can either send
their key code when pressed, or a string assigned to the key. After power
up or reset this feature is activated and the keys have their default as-
signments.

KEY OFF switch off function key strings. The keys will send their character
code if pressed.

KEY ON switch on function key strings. The keys will send assigned strings
if pressed.

KEY LOAD loads key definitions from file.

KEY SAVE saves key definitions to file.

KEY list current assignments.

KEY number, string assigns the string to the key with the given number.

Default assignments:

KEY

KEY 1,CHR$(27)+"X"

KEY 2,CHR$(27)+"@"

KEY 3,"DIR"+CHR$(13)

KEY 4,"DIR "+CHR$(34)+"*=PRG"+CHR$(34)+CHR$(13)

KEY 5,"ŵ"

KEY 6,"KEY6"+CHR$(141)

KEY 7,"ŷ"

KEY 8,"MONITOR"+CHR$(13)

KEY 9,"Ű"

KEY 10,"KEY10"+CHR$(141)

KEY 11,"Ŷ"

KEY 12,"KEY12"+CHR$(141)

KEY 13,CHR$(27)+"O"

KEY 14,"Ŵ"+CHR$(27)+"O"

KEY 15,"HELP"+CHR$(13)

KEY 16,"RUN "+CHR$(34)+"*"+CHR$(34)+CHR$(13)

B-116

Remarks: The sum of the lengths of all assigned strings must not exceed 240 char-
acters. Special characters such as RETURN or QUOTE are entered using
their codes with the CHR$(code) function. Refer to CHR$ on page B-38
for more information.

Examples: Using KEY:

KEY ON :REM ENABLE FUNCTION KEYS

KEY OFF :REM DISABLE FUNCTION KEYS

KEY :REM LIST ASSIGNMENTS

KEY 2,"PRINT ~"+CHR$(14) :REM ASSIGN PRINT PI TO F2

KEY SAVE "MY KEY SET" :REM SAVE CURRENT DEFINITIONS TO FILE

KEY LOAD "ELEVEN-SET" :REM LOAD DEFINITIONS FROM FILE

B-117

LEFT$
Token: $C8

Format: LEFT$(string, n)

Usage: Returns a string containing the first n characters from the argument
string. If the length of string is equal to or less than n, the resulting
string will be identical to the argument string.

string a string expression.

n a numeric expression (0-255).

Remarks: Empty strings and zero lengths are legal values.

Example: Using LEFT$:

PRINT LEFT$("MEGA-65",4)

MEGA

B-118

LEN
Token: $C3

Format: LEN(string)

Usage: Returns the length of a string.

string a string expression.

Remarks: There is no terminating character, as opposed to other programming lan-
guages such as C, which uses the NULL character. The length of the string
is internally stored in an extra byte of the string descriptor.

Example: Using LEN:

PRINT LEN("MEGA-65"+CHR$(13))

8

B-119

LET
Token: $88

Format: LET variable = expression

Usage: Assigns values (or results of expressions) to variables.

Remarks: The LET statement is obsolete and not required. Assignment to variables
can be done without using LET, but it has been left in BASIC 65 for back-
wards compatibility.

Examples: Using LET:

LET A=5 :REM LONGER AND SLOWER

A=5 :REM SHORTER AND FASTER

B-120

LINE
Token: $E5

Format: LINE xbeg,ybeg [[,xnext1,ynext1], […]]

Usage: Draws a pixel at (xbeg/ybeg), if only one coordinate pair is given.

If more than one pair is defined, a line is drawn on the current graphics
screen from the coordinate (xbeg/ybeg) to the next coordinate pair(s).

All currently defined modes and values of the graphics context are used.

Example: Using LINE:

1 REM SCREEN EXAMPLE 1

10 SCREEN 320,200,2 :REM SCREEN #0 320 X 200 X 2

20 PEN 1 :REM DRAWING PEN COLOR 1 (WHITE)

30 LINE 25,25,295,175 :REM DRAW LINE

40 GETKEY A$:REM WAIT FOR KEYPRESS

50 SCREEN CLOSE :REM CLOSE SCREEN AND RESTORE PALETTE

B-121

LINE INPUT#
Token: $E5 $84

Format: LINE INPUT# channel, variable list

Usage: Reads one record per variable from an input device, (such as a disk drive)
and assigns the read data to the variable. The records must be termi-
nated by a RETURN character, which will not be copied to the string vari-
able. Therefore, an empty line consisting of only the RETURN character
will result in an empty string being assigned.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

variable list list of one or more variables, that receive the input.

Remarks: Only string variables or string array elements can be used in the variable
list. Unlike other INPUT commands, LINE INPUT# does not interpret or
remove quote characters in the input. They are accepted as data, as all
other characters.

Records must not be longer than the input buffer, which is 160 charac-
ters.

Example: Using LINE INPUT#:

10 DIM N$(100)

20 DOPEN#2,"DATA"

30 FOR I=0 TO 100

40 LINE INPUT#2,N$(I)

50 IF ST=64 THEN 80:REM END OF FILE

60 IF DS THEN PRINT DS$:GOTO 80:REM DISK ERROR

70 NEXT I

80 DCLOSE#2

110 PRINT "READ";I;" RECORDS"

B-122

LIST
Token: $9B

Format: LIST [P] [line range]

Usage: Used to list a range of lines from the BASIC program.

line range consists of the first and/or last line to list, or a single line
number. If the first number is omitted, the first BASIC line is assumed. If
the second number is omitted, the last BASIC line is assumed.

Format: LIST [P] filename [,U unit]

Used to list a BASIC program directly from unit, which by default is 8.

Remarks: The optional parameter P enables page mode. After listing 24 lines,
the listing will stop and display the prompt [MORE] at the bottom of the
screen. Pressing Q quits page mode, while any other key triggers the
listing of the next page.

LIST output can be redirected to other devices via CMD.

The keys F9 and F11 , or Ctrl P and Ctrl V scroll a BASIC
listing on screen up or down.

Examples: Using LIST

LIST 100 :REM LIST LINE 100

LIST 240-350 :REM LIST ALL LINES FROM 240 TO 350

LIST 500- :REM LIST FROM 500 TO END

LIST -70 :REM LIST FROM START TO 70

LIST "DEMO" :REM LIST FILE "DEMO"

LIST P :REM LIST PROGRAM IN PAGE MODE

LIST P "MURX" :REM LIST FILE "MURX" IN PAGE MODE

B-123

LOAD
Token: $93

Format: LOAD filename [unit [,flag]] / filename [unit [,flag]]

Usage: A common use of the shortcut symbol / is to quickly load PRG files. To do
this:

1. Print a disk directory using either DIR, or CATALOG.

2. Move the cursor to the desired line.

3. type / in the first column of the line, and press RETURN .

After pressing RETURN , the listed file on the line with the leading / will be
loaded. Characters before and after the file name double quotes (”) will
be ignored. This applies to PRG files only.

filename is either a quoted string, e.g. ”prog”, or a string expression.

The unit number is optional. If not present, the default disk device is
assumed.

If flag has a non-zero value, the file is loaded to the address which is
read from the first two bytes of the file. Otherwise, it is loaded to the
start of BASIC memory and the load address in the file is ignored.

Remarks: LOAD loads files of type PRG into RAM bank 0, which is also used for
BASIC program source.

LOAD ”*” can be used to load the first PRG from the given unit.

LOAD ”$” can be be used to load the list of files from the given unit.
When using LOAD ”$”, LIST can be used to print the listing to screen.

LOAD is implemented in BASIC 65 to keep it backwards compatible with
BASIC V2.

The shortcut symbol / can only be used in direct mode.

By default the C64 uses unit 1, which is assigned to datasette tape
recorders connected to the cassette port. However the MEGA65 uses
unit 8 by default, which is assigned to the internal disk drive. This means
you don’t need to add ,8 to LOAD commands that use it.

Examples: Using LOAD

B-124

LOAD "APOCALYPSE" :REM LOAD A FILE CALLED APOCALYPSE TO BASIC MEMORY

LOAD "MEGA TOOLS",9 :REM LOAD A FILE CALLED "MEGA TOOLS" FROM UNIT 9 TO BASIC MEMORY

LOAD "*",8,1 :LOAD THE FIRST FILE ON UNIT 8 TO RAM AS SPECIFIED IN THE FILE

B-125

LOADIFF
Token: $FE $43

Format: LOADIFF filename [unit]

Usage: Loads an IFF file into graphics memory. The IFF (Interchange File For-
mat) is supported by many different applications and operating systems.
LOADIFF assumes that files contain bitplane graphics which fit into the
MEGA65 graphics memory. Supported resolutions are:

Width Height Bitplanes Colours Memory
320 200 max. 8 max. 256 max. 64 K
640 200 max. 8 max. 256 max. 128 K
320 400 max. 8 max. 256 max. 128 K
640 400 max. 4 max. 16 max. 128 K

filename is either a quoted string, e.g. ”picture.iff” or a string expres-
sion.

The unit number is optional. If not present, the default disk device is
assumed.

Remarks: Tools are available to convert popular image formats to IFF. These tools
are available on several operating systems, such as AMIGA OS, macOS,
Linux, and Windows. For example, ImageMagick is a free graphics
package that includes a tool called convert, which can be used to cre-
ate IFF files in conjunction with the ppmtoilbm tool from the Netbpm
package.

To use convert and ppmtoilbm for converting a JPG file to an IFF file on
Linux:

convert <myImage.jpg> <myImage.ppm>
ppmtoilbm -aga <myImage.pbm> > <myImage.iff>

Example: Using LOADIFF

B-126

100 BANK128:SCNCLR

110 REM DISPLAY PICTURES IN 320 X 200 X 7 RESOLUTION

120 GRAPHIC CLR:SCREEN DEF 0,0,0,7:SCREEN OPEN 0:SCREEN SET 0,0

130 FORI=1TO7: READF$

140 LOADIFF(F$+".IFF"):SLEEP 4:NEXT

150 DATA ALIEN,BEAKER,JOKER,PICARD,PULP,TROOPER,RIPLEY

160 SCREEN CLOSE 0

170 PALETTE RESTORE

B-127

LOG
Token: $BC

Format: LOG(numeric expression)

Usage: Computes the value of the natural logarithm of the argument. The natural
logarithm uses Euler’s number (2.71828183) as base, not 10 which is
typically used in log functions on a pocket calculator.

Remarks: The log function with base 10 can be computed by dividing the result by
log(10).

Example: Using LOG

PRINT LOG(1)

0

PRINT LOG(0)

?ILLEGAL QUANTITY ERROR

PRINT LOG(4)

1.38629436

PRINT LOG(100) / LOG(10)

2

B-128

LOG10
Token: $CE $08

Format: LOG10(numeric expression)

Usage: Computes the value of the decimal logarithm of the argument. The dec-
imal logarithm uses 10 as base.

Example: Using LOG10

PRINT LOG10(1)

0

PRINT LOG10(0)

?ILLEGAL QUANTITY ERROR

PRINT LOG10(5)

0.69897

PRINT LOG10(100);LOG(10);LOG(0.1);LOG(0.01)

2 1 -1 -2

B-129

LOOP
Token: $EC

Format: DO ... LOOP
DO [<UNTIL | WHILE> <logical expression>]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> <logical expression>]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement only exits the current loop.

Examples: Using DO and LOOP

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

B-130

LPEN
Token: $CE $04

Format: LPEN(coordinate)

Usage: This function requires the use of a CRT monitor (or TV), and a light pen. It
will not work with an LCD or LED screen. The light pen must be connected
to port 1.

LPEN(0) returns the X position of the light pen, the range is 60-320.

LPEN(1) returns the Y position of the light pen, the range is 50-250.

Remarks: The X resolution is two pixels, therefore LPEN(0) only returns even num-
bers. A bright background colour is needed to trigger the light pen. The
COLLISION statement may be used to enable an interrupt handler.

Example: Using LPEN

PRINT LPEN(0),LPEN(1) :REM PRINT LIGHT PEN COORDINATES

B-131

MERGE
Token: $E6

Format: MERGE filename [,D drive] [,U unit]

Usage: MERGE loads a BASIC program file from disk and appends it to the pro-
gram in memory.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: The load address, stored in the first two bytes of the file is ignored. The
loaded program does not replace a program in memory (which is what
DLOAD does), but is appended to a program in memory. After loading
the program is re-linked and ready to run or edit.

It is the user’s responsibility to ensure that there are no line number con-
flicts among the program in memory and the merged program. The first
line number of the merged program must be greater than the last line
number of the program in memory.

Example: Using MERGE

DLOAD "MAIN PROGRAM"

MERGE "LIBRARY"

B-132

MID$
Token: $CA

Format: variable$ = MID$(string, index, n)
MID$(string, index, n) = string expression

Usage: MID$ can be used either as a function which returns a string, or as a
statement for inserting sub-strings into an existing string.

string a string expression.

index start index (0-255).

n length of sub-string (0-255).

Remarks: Empty strings and zero lengths are legal values.

Example: Using MID$:

10 A$ = "MEGA-65"

20 PRINT MID$(A$,3,4)

30 MID$(A$,5,1) = "+"

40 PRINT A$

RUN

GA-6

MEGA+65

B-133

MOD
Token: $NN

Format: MOD(dividend,divisor)

Usage: The MOD function returns the remainder of the division.

Remarks: In other programming languages such C, this function is implemented as
an operator (%). In BASIC 65 it is implemented as a function.

Example: Using MOD:

FOR I = 0 TO 8: PRINT MOD(I,4);: NEXT I

0 1 2 3 0 1 2 3 0

B-134

MONITOR
Token: $FA

Format: MONITOR

Usage: Calls the machine language monitor program, which is mainly used for
debugging.

Remarks: Using the MONITOR requires knowledge of the CSG4510 / 6502 /
6510 CPU, the assembly language they use, and their architectures.
More information on the MONITOR is available in Chapter/Appendix K
on page K-7.

To exit the monitor press X.

Help text can be displayed with either ? or H.

Example: Using MONITOR

MONITOR

B-135

MOUSE
Token: $FE $3E

Format: MOUSE ON [,port [,sprite [,pos]]]
MOUSE OFF

Usage: Enables the mouse driver and connects the mouse at the specified port
with the mouse pointer sprite.

port mouse port 1, 2 (default) or 3 (both).

sprite sprite number for mouse pointer (default 0).

pos initial mouse position (x,y).

MOUSE OFF disables the mouse driver and frees the associated sprite.

Remarks: The ”hot spot” of the mouse pointer is the upper left pixel of the sprite.

Examples: Using MOUSE:

REM LOAD DATA INTO SPRITE #0 BEFORE USING IT

MOUSE ON, 1 :REM ENABLE MOUSE WITH SPRITE #0

MOUSE OFF :REM DISABLE MOUSE

B-136

MOVSPR
Token: $FE $06

Format: MOVSPR number, position

Usage: Moves a sprite on screen. Each position argument consists of two 16-
bit values, which specify either an absolute coordinate, a relative coor-
dinate, an angle, or a speed. The value type is determined by a prefix:

• +value relative coordinate: positive offset.

• -value relative coordinate: negative offset.

• #value speed.

If no prefix is given, the absolute coordinate or angle is used.

Therefore, the position argument can be used to either:

• set the sprite to an absolute position on screen.

• specify a displacement relative from the current position.

• trigger a relative movement from a specified position.

• describe movement with an angle and speed starting from the cur-
rent position.

MOVSPR number, position is used to set the sprite immediately to the
position or, in the case of an angle#speed argument, describe its further
movement.

Format: MOVSPR number, start-position TO end-position, speed

Usage: Places the sprite at the start position, defines the destination position,
and the speed of movement. The sprite is placed at the start position,
and will move in a straight line to the destination at the given speed.
Coordinates must be absolute or relative. The movement is controlled by
the BASIC interrupt handler and happens concurrently with the program
execution.

number sprite number (0-7).

position x,y | xrel,y | x,yrel | xrel,yrel | angle#speed.

x absolute screen coordinate pixel.

y absolute screen coordinate pixel.

xrel relative screen coordinate pixel.

B-137

yrel relative screen coordinate pixel.

angle compass direction for sprite movement [degrees]. 0 = up, 90 =
right, 180 = down, 270 = left, 45 upper right, etc.

speed speed of movement, configured as a floating point number in the
range of 0.0-127.0, in pixels per frame. PAL has 50 frames per second
whereas NTSC has 60 frames per second. A speed value of 1.0 will move
the sprite 50 pixels per second in PAL mode.

Remarks: The ”hot spot” is the upper left pixel of the sprite.

Example: Using MOVSPR:

100 CLR:SCNCLR:SPRITECLR

110 BLOAD "DEMOSPRITES1",B0,P1536

130 FORI=0TO7: C=I+1:SP=0.07*(I+1)

140 MOVSPRI, 160,120

145 MOVSPRI,45*I#SP

150 SPRITEI,1,C,,0,0

160 NEXT

170 SLEEP 3

180 FORI=0TO7:MOVSPR I,0#0:NEXT

B-138

NEW
Token: $A2

Format: NEW NEW RESTORE

Usage: Resets all BASIC parameters to their default values. Since NEW resets
parameters and pointers, (but does not overwrite the address range of a
BASIC program that was in memory), it is possible to recover the program.
If there were no LOAD operations, or editing performed after NEW, the
program can be restored with the NEW RESTORE.

Examples: Using NEW:

NEW :REM RESET BASIC

NEW RESTORE :REM TRY TO RECOVER NEW'ED PROGRAM

B-139

NEXT
Token: $82

Format: FOR index=start TO end [STEP step] ... NEXT [index]

Usage: Terminates the definition of a BASIC loop with an index variable.

The index variable may be incremented or decremented by a constant
value step on each iteration. The default is to increment the variable by
1. The index variable must be a real variable.

start value to initialise the index with.

end is checked at the end of an iteration, and determines whether an-
other iteration will be performed, or if the loop will exit.

step defines the change applied to to the index variable at the end of
every iteration. Positive step values increment it, while negative values
decrement it. It defaults to 1.0 if not specified.

Remarks: The index variable after NEXT is optional. If it is omitted, the variable for
the current loop is assumed. Several consecutive NEXT statements may
be combined by specifying the indexes in a comma separated list. The
statements NEXT I:NEXT J:NEXT K and NEXT I,J,K are equivalent.

Example: Using NEXT

10 FOR D=0 TO 360 STEP 30

20 R = D * ~ / 180

30 PRINT D;R;SIN(R);COS(R);TAN(R)

40 NEXT D

10 DIM M(20,20)

20 FOR I=0 TO 20

30 FOR J=I TO 20

40 M(I,J) = I + 100 * J

50 NEXT J,I

B-140

NOT
Token: $A8

Format: NOT operand

Usage: Performs a bit-wise logical NOT operation on a 16-bit value. Integer
operands are used as they are, whereas real operands are converted
to a signed 16-bit integer (losing precision). Logical operands are con-
verted to a 16-bit integer, using $FFFF (decimal -1) for TRUE, and $0000
(decimal 0) for FALSE.

expression result
NOT 0 1
NOT 1 0

Remarks: The result is of type integer.

Examples: Using NOT

PRINT NOT 3

-4

PRINT NOT 64

-65

In most cases, NOT is used in IF statements.

OK = C < 256 AND C >= 0

IF (NOT OK) THEN PRINT "NOT A BYTE VALUE"

B-141

OFF
Token: $FE $24

Format: keyword OFF

Usage: OFF is a secondary keyword used in combination with primary keywords,
such as COLOR, KEY, and MOUSE.

Remarks: OFF cannot be used on its own.

Examples: Using OFF

COLOR OFF :REM DISABLE SCREEN COLOUR

KEY OFF :REM DISABLE FUNCTION KEY STRINGS

MOUSE OFF :REM DISABLE MOUSE DRIVER

B-142

ON
Token: $91

Format: ON expression GOSUB line list
ON expression GOTO line list
keyword ON

Usage: ON calls either a computed GOSUB or GOTO statement. Depending on
the result of the expression, the target for GOSUB and GOTO is chosen
from the table of line addresses at the end of the statement.

When used as a secondary keyword, ON is used in combination with pri-
mary keywords, such as COLOR, KEY, and MOUSE.

expression is a positive numeric value. Real values are converted to
integer (losing precision). Logical operands are converted to a 16-bit
integer, using $FFFF (decimal -1) for TRUE, and $0000 (decimal 0) for
FALSE.

line list is a comma separated list of valid line numbers.

Remarks: Negative values for expression will stop the program with an error mes-
sage. The line list specifies the targets for values of 1, 2, 3, etc.
An expression result of zero, or a result that is greater than the number of
target lines will not do anything, and the program will continue execution
with the next statement.

B-143

Example: Using ON

10 COLOR ON :REM ENABLE SCREEN COLOUR

20 KEY ON :REM ENABLE FUNCTION KEY STRINGS

30 MOUSE ON :REM ENABLE MOUSE DRIVER

40 N = JOY(1):IF N AND 128 THEN PRINT "FIRE! ";

60 REM N NE E SE S SW W NW

70 ON N AND 15 GOSUB 100,200,300,400,500,600,700,800

80 GOTO 40

100 PRINT "GO NORTH" :RETURN

200 PRINT "GO NORTHEAST":RETURN

300 PRINT "GO EAST" :RETURN

400 PRINT "GO SOUTHEAST":RETURN

500 PRINT "GO SOUTH" :RETURN

600 PRINT "GO SOUTHWEST":RETURN

700 PRINT "GO WEST" :RETURN

800 PRINT "GO NORTHWEST":RETURN

B-144

OPEN
Token: $9F

Format: OPEN channel, first address [,secondary address [,filename]]

Usage: Opens an input/output channel for a device.

channel number, where:

• 1 <= channel <= 127 line terminator is CR.

• 128 <= channel <= 255 line terminator is CR LF.

first address device number. For IEC devices the unit number is the
primary address. Following primary address values are possible:

unit device
0 Keyboard
1 System default
2 RS232 serial connection
3 Screen

4-7 IEC printer and plotter
8-31 IEC disk drives

The secondary address has some reserved values for IEC disk units,
0:load, 1:save, 15:command channel. The values 2-14 may be used for
disk files.

filename is either a quoted string, e.g. ”data” or a string expression.
The syntax is different to DOPEN#, since the filename for OPEN includes
all file attributes, for example ”0:data,s,w”.

Remarks: For IEC disk units the usage of DOPEN# is recommended.

If the first character of the filename is an at sign ’@’, it is interpreted as a
”save and replace” operation. It is not recommended to use this option
on 1541 and 1571 drives, as they contain a ”save and replace bug” in
their DOS.

Example: Using OPEN

OPEN 4,4 :REM OPEN PRINTER

CMD 4 :REM REDIRECT STANDARD OUTPUT TO 4

LIST :REM PRINT LISTING ON PRINTER DEVICE 4

OPEN 3,8,3,"0:USER FILE,U"

OPEN 2,9,2,"0:DATA,S,W"

B-145

OR
Token: $B0

Format: operand OR operand

Usage: Performs a bit-wise logical OR operation on two 16-bit values. Integer
operands are used as they are. Real operands are converted to a signed
16-bit integer (losing precision). Logical operands are converted to a
16-bit integer using $FFFF (decimal -1) for TRUE and $0000 (decimal
0), for FALSE.

expression result
0 OR 0 0
0 OR 1 1
1 OR 0 1
1 OR 1 1

Remarks: The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values are
regarded as TRUE.

Example: Using OR

PRINT 1 OR 3

3

PRINT 128 OR 64

192

In most cases, OR is used in IF statements.

IF (C < 0 OR C > 255) THEN PRINT "NOT A BYTE VALUE"

B-146

PAINT
Token: $DF

Format: PAINT x, y, mode [,colour]

Usage: Performs a flood fill of an enclosed graphics area.

x, y is a coordinate pair, which must lie inside the area to be filled.

mode specifies the fill mode:

• 0 use the colour to fill the area.

• 1 use the colour of pixel (x,y) to fill the area.

Example: Using PAINT

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM 320 X 200

30 SCREEN OPEN 1 :REM OPEN

40 SCREEN SET 1,1 :REM MAKE SCREEN ACTIVE

50 PALETTE 1,1,10,15,10 :REM COLOUR 1 TO LIGHT GREEN

60 PEN 1 :REM SET DRAWING PEN (PEN 0) TO LIGHT GREEN (1)

70 LINE 160,0,240,100 :REM 1ST. LINE

80 LINE 240,100,80,100 :REM 2ND. LINE

90 LINE 80,100,160,0 :REM 3RD. LINE

100 PAINT 160,10,0,1 :REM FILL TRIANGLE WITH COLOUR 1

110 GETKEY K$:REM WAIT FOR KEY

120 SCREEN CLOSE 1 :REM END GRAPHICS

B-147

PALETTE
Token: $FE $34

Format: PALETTE [screen|COLOR], colour, red, green, blue
PALETTE RESTORE

Usage: PALETTE can be used to change an entry of the system colour palette,
or the palette of a screen.
PALETTE RESTORE resets the system palette to the default values.

screen screen number (0-3).

COLOR keyword for changing system palette.

colour index to palette (0-255).

red red intensity (0-15).

green green intensity (0-15).

blue blue intensity (0-15).

Example: Using PALETTE

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM 320 X 200

30 SCREEN OPEN 1 :REM OPEN

40 SCREEN SET 1,1 :REM MAKE SCREEN ACTIVE

50 PALETTE 1,0, 0, 0, 0 :REM 0 = BLACK

60 PALETTE 1,1, 15, 0, 0 :REM 1 = RED

70 PALETTE 1,2, 0, 0,15 :REM 2 = BLUE

80 PALETTE 1,3, 0,15, 0 :REM 3 = GREEN

90 PEN 2 :REM SET DRAWING PEN (PEN 0) TO BLUE (2)

100 LINE 160,0,240,100 :REM 1ST. LINE

110 LINE 240,100,80,100 :REM 2ND. LINE

120 LINE 80,100,160,0 :REM 3RD. LINE

130 PAINT 160,10,0,2 :REM FILL TRIANGLE WITH BLUE (2)

140 GETKEY K$:REM WAIT FOR KEY

150 SCREEN CLOSE 1 :REM END GRAPHICS

B-148

PEEK
Token: $C2

Format: PEEK(address)

Usage: Returns an unsigned 8-bit value (byte) from address.

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

Remarks: Banks 0-127 give access to RAM or ROM banks. Banks greater than 127
are used to access I/O, and the underlying SYSTEM hardware such as the
VIC, SID, FDC, etc.

Example: Using PEEK

10 BANK 128 :REM SELECT SYSTEM BANK

20 L = PEEK($02F8) :REM USR JUMP TARGET LOW

30 H = PEEK($02F9) :REM USR JUMP TARGET HIGH

40 T = L + 256 * H :REM 16-BIT JUMP ADDRESS

50 PRINT "USR FUNCTION CALLS ADDRESS";T

B-149

PEEKW
Token: $C2 ’W’

Format: PEEKW(address)

Usage: Returns an unsigned 16-bit value (word) read from address (low byte)
and address+1 (high byte).

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

Remarks: Banks 0-127 give access to RAM or ROM banks. Banks greater than 127
are used to access I/O, and the underlying SYSTEM hardware such as the
VIC, SID, FDC, etc.

Example: Using PEEKW

20 UA = PEEKW($02F8) :REM USR JUMP TARGET

50 PRINT "USR FUNCTION CALL ADDRESS";UA

B-150

PEN
Token: $FE $33

Format: PEN [pen,] colour

Usage: Sets the colour of the graphic pen.

pen pen number (0-2):

• 0 drawing pen (default, if only single parameter provided).

• 1 off bits in jam2 mode.

• 2 currently unused.

colour palette index.

Remarks: The colour selected by PEN will be used by all graphic/drawing com-
mands that follow it. If you intend to set the drawing pen 0 to a colour,
you can omit the first parameter, and only provide the colour parameter.

Example: Using PEN

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM 320 X 200

30 SCREEN OPEN 1 :REM OPEN

40 SCREEN SET 1,1 :REM MAKE SCREEN ACTIVE

50 PALETTE 1,0, 0, 0, 0 :REM 0 = BLACK

60 PALETTE 1,1, 15, 0, 0 :REM 1 = RED

70 PALETTE 1,2, 0, 0,15 :REM 2 = BLUE

80 PALETTE 1,3, 0,15, 0 :REM 3 = GREEN

90 PEN 1 :REM SET DRAWING PEN (PEN 0) TO RED (1)

100 LINE 160,0,240,100 :REM DRAW RED LINE

110 PEN 2 :REM SET DRAWING PEN (PEN 0) TO BLUE (2)

120 LINE 240,100,80,100 :REM DRAW BLUE LINE

130 PEN 3 :REM SET DRAWING PEN (PEN 0) TO BLUE (3)

140 LINE 80,100,160,0 :REM DRAW GREEN LINE

150 GETKEY K$:REM WAIT FOR KEY

160 SCREEN CLOSE 1 :REM END GRAPHICS

B-151

PIXEL
Token: $CE $0C

Format: PIXEL(x,y)

Usage: Returns the colour of a pixel at the given position.

x absolute screen coordinate.

y absolute screen coordinate.

B-152

PLAY
Token: $FE $04

Format: PLAY [string1 [,string2 [,string3 [,string4 [,string5 [,string6]]]]]]

Usage: PLAY without any arguments will cause all voices to be silenced, and all
of BASIC’s music-system variables to be reset (E.g. TEMPO).

PLAY can be followed by up to six comma-separated string arguments,
where each argument provides the sequence of notes and directives to
be played on a specific voice on the two available SID chips, allowing
for up to 6-channel polyphony.

A musical note is a character (A, B, C, D, E, F, or G), which may be pre-
ceded by an optional modifier.

Possible modifiers are:

char effect
sharp
$ flat
. dotted
H half note
I eighth note
Q quarter note
R pause (rest)
S sixteenth note
W whole note

Embedded directives consist of a letter, followed by a digit:

char directive argument range
O octave 0 - 6
T instrument envelope 0 - 9
U volume 0 - 9
X filter 0 - 1
M modulation 0 - 9
P portamento 0 - 9
L loop N/A

The modulation directive will modulate your note by the magnitude you
specify (1-9), or use 0 to turn this feature off.

Similarly, the portamento directive will gently slide between consecutive
notes at the speed you specify (1-9), or use 0 to turn this feature off.

B-153

Note that the gate-off behaviour of notes is disabled while portamento
is enabled, and to re-enable it, you must turn off portamento (P0).

Add an L directive (no argument needed) at the end of your string if you
would like it to loop back to the beginning of your string upon completion.

You have a lot of flexibility on which voice channels you choose to play
your melodies on. For instance, you may decide to use only voice 1 and
voice 4 for your melody, and spare the other channels for sound effects
generated by SOUND. Just skip the voices you’re not using with PLAY, by
leaving those arguments empty:

PLAY "O4EDCDEEERL",,,"O2CGEGCGEGL"

You can even call PLAY again to use the aforementioned unused chan-
nels, to play another melody alongside your first melody. For example,
using voice2 and voice5 this time:

PLAY ,"O5T2IGAGFEDCEGO6.QCL",,,"O3T2.QG.B O4ICO3GE.QCL"

If you wish to assess whether a melody is playing on a voice channel, you
can find out by checking the value returned from RPLAY(voice), where
the voice parameter is a value from 1 to 6 indicating the voice channel.
It will return either 1 (playing), or 0 (not playing).

One caveat to be aware of is that BASIC strings have a maximum length
of 255 bytes. If your melody needs to exceed this length, consider break-
ing up your melody into several strings, then use RPLAY(voice) to assess
when your first string has finished and then play the next string.

Instrument envelope slots may be modified by using the ENVELOPE state-
ment. The default settings for the envelopes are on page B-82.

Remarks: The PLAY statement makes use of an interrupt driven routine that starts
parsing the string and playing the melody. Program execution continues
with the next statement, and will not block until the melody has finished.

Example: Using PLAY

B-154

5 REM *** SIMPLE LOOPING EXAMPLE ***

10 ENVELOPE 9,10,5,10,5,0,300

20 VOL 8

30 TEMPO 30

40 PLAY "O5T9HCIDCDEHCG IGAGFEFDEWCL", "O2T0QCGEGCGEG DBGB CGEGL"

5 REM *** MODULATION + PORTAMENTO EXAMPLE ***

10 TEMPO 20

20 M$ = "M5 T2O5P0QD P5FP0RP5QG .AI#AQA HGQE.C IDQE HFQD .DI#CQD HEQ#CQO4HA"

30 M$ = M$ + "O5QDHFQG.AI#AQA HGQE.C IDQEFED#CO4BO5#C DO4AFD P0R L"

40 B$ = "T0QRO2H.D.F.CO1.A.#A.G.A QAIO2AGFE H.D.F.CO1.A.#A.AO2 .D DL"

50 PLAY M$,B$

B-155

POINTER
Token: $CE $0A

Format: POINTER(variable)

Usage: Returns the current address of a variable or an array element as a 32-
bit pointer. For string variables, it is the address of the string descriptor,
not the string itself. The string descriptor consists of three bytes (length,
string address low, string address high).

Remarks: The address values of arrays and their elements are constant while the
program is executing.
However, the addresses of strings (not their descriptors) may change at
any time due to ”garbage collection”.

Example: Using POINTER

10 BANK 0 :REM SCALARS ARE IN BANK 0

20 H$="HELLO" :REM ASSIGN STRING TO H$

30 P=POINTER(H$) :REM GET DESCRIPTOR ADDRESS

40 PRINT "DESCRIPTOR AT: $";HEX$(P)

50 L=PEEK(P):SP=PEEKW(P+1) :REM LENGTH & STRING POINTER

60 PRINT "LENGTH = ";L :REM PRINT LENGTH

70 BANK 1 :REM STRINGS ARE IN BANK 1

80 FOR I%=0 TOL-1:PRINT PEEK(SP+I%);:NEXT:PRINT

90 FOR I%=0 TOL-1:PRINT CHR$(PEEK(SP+I%));:NEXT:PRINT

RUN

DESCRIPTOR AT: $F743

LENGTH = 5

72 69 76 76 79

HELLO

B-156

POKE
Token: $97

Format: POKE address, byte [,byte ...]

Usage: Writes one or more bytes into memory or memory mapped I/O, starting
at address.

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

byte a value in the range of 0-255.

Remarks: The address is incremented for each data byte, so a memory range can
be written to with a single POKE.

Banks greater than 127 are used to access I/O, and the underlying SYS-
TEM hardware such as the VIC, SID, FDC, etc.

Example: Using POKE

10 BANK 128 :REM SELECT SYSTEM BANK

20 POKE $02F8,0,24 :REM SET USR VECTOR TO $1800

B-157

POKEW
Token: $97 ’W’

Format: POKEW address, word [,word ...]

Usage: Writes one or more words into memory or memory mapped I/O, starting
at address.

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

word a value from 0-65535. The first word is stored at address (low
byte) and address+1 (high byte). The second word is stored at address+2
(low byte) and address+3 (high byte), etc.

Remarks: The address is increased by two for each data word, so a memory range
can be written to with a single POKEW.

Banks greater than 127 are used to access I/O, and the underlying SYS-
TEM hardware such as the VIC, SID, FDC, etc.

Example: Using POKEW

10 BANK 128 :REM SELECT SYSTEM BANK

20 POKEW $02F8,$1800 :REM SET USR VECTOR TO $1800

B-158

POLYGON
Token: $FE $2F

Format: POLYGON x, y, xrad, yrad, sides [,drawsides [,subtend [,angle
[,solid]]]]

Usage: Draws a regular n-sided polygon. The polygon is drawn using the current
drawing context set with SCREEN, PALETTE, and PEN.

x,y centre coordinates.

xrad,yrad radius in x- and y-direction.

sides number of polygon sides.

drawsides sides to draw.

subtend draw line from centre to start (1).

angle start angle.

solid fill (1) or outline (0).

Remarks: A regular polygon is both isogonal and isotoxal, meaning all sides and
angles are alike.

Example: Using POLYGON

100 SCREEN 320,200,1 :REM OPEN 320 x 200 SCREEN

110 POLYGON 160,100,40,40,6 :REM DRAW HONEYCOMB

120 GETKEY A$:REM WAIT FOR KEY

130 SCREEN CLOSE :REM CLOSE GRAPHICS SCREEN

Results in:

B-159

POS
Token: $B9

Format: POS(dummy)

Usage: Returns the cursor column relative to the currently used window.

dummy a numeric value, which is ignored.

Remarks: POS gives the column position for the screen cursor. It will not work for
redirected output.

Example: Using POS

10 IF POS(0) > 72 THEN PRINT :REM INSERT RETURN

B-160

POT
Token: $CE $02

Format: POT(paddle)

Usage: Returns the position of a paddle.

paddle paddle number (1-4).

The low byte of the return value is the paddle value, with 0 at the clock-
wise limit and 255 at the anticlockwise limit.

A value greater than 255 indicates that the fire button is also being
pressed.

Remarks: Analogue paddles are noisy and inexact. The range may be less than
0-255 and there could be some jitter in the values returned from POT.

Example: Using POT

10 X = POT(1) : REM READ PADDLE #1

20 B = X > 255 : REM TRUE (-1) IF FIRE BUTTON IS PRESSED

30 V = X AND 255 : PADDLE #1 VALUE

B-161

PRINT
Token: $99

Format: PRINT arguments

Usage: Evaluates the argument list, and prints the values formatted to the cur-
rent screen window. Standard formatting is used, depending on the ar-
gument type. For user controlled formatting, see PRINT USING.

The following argument types are evaluated:

• numeric the printout starts with a space for positive and zero val-
ues, or a minus sign for negative values. Integer values are printed
with the necessary number of digits. Real values are printed in ei-
ther fixed point form (typically 9 digits), or scientific form if the value
is outside the range of 0.01 to 999999999.

• string the string may consist of printable characters and control
codes. Printable characters are printed at the cursor position, while
control codes are executed.

• ”,” a comma acts as a tabulator.

• ”;” a semicolon acts as a separator between arguments of the list.
Other than the comma character, it does not insert any additional
characters. A semicolon at the end of the argument list suppresses
the automatic return (carriage return) character.

Remarks: The SPC and TAB functions may be used in the argument list for posi-
tioning. CMD can be used for redirection.

Example: Using PRINT

10 FOR I=1 TO 10 : REM START LOOP

20 PRINT I,I*I,SQR(I)

30 NEXT

B-162

PRINT#
Token: $98

Format: PRINT# channel, arguments

Usage: Evaluates the argument list, and prints the formatted values to the device
assigned to channel. Standard formatting is used, depending on the
argument type. For user controlled formatting, see PRINT# USING.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN.

The following argument types are evaluated:

• numeric the printout starts with a space for positive and zero val-
ues, or a minus sign for negative values. Integer values are printed
with the necessary number of digits. Real values are printed in ei-
ther fixed point form (typically 9 digits), or scientific form if the value
is outside the range of 0.01 to 999999999.

• string may consist of printable characters and control codes. Print-
able characters are printed at the cursor position, while control
codes are executed.

• ”,” a comma acts as a tabulator.

• ”;” a semicolon acts as a separator between arguments of the list.
Other than the comma character, it does not insert any additional
characters. A semicolon at the end of the argument list suppresses
the automatic return (carriage return) character.

Remarks: The SPC and TAB functions are not suitable for devices other than the
screen.

Example: Using PRINT# to write a file to drive 8:

10 DOPEN#2,"TABLE",W,U8

20 FOR I=1 TO 10 : REM START LOOP

30 PRINT#2,I,I*I,SQR(I)

40 NEXT

50 DCLOSE#2

You can confirm that the file ’TABLE’ has been written by typing DIR

"TA*", and then view the contents of the file by typing TYPE "TABLE".

B-163

PRINT USING
Token: $98 $FB or $99 $FB

Format: PRINT [# channel,] USING format;argument

Usage: Parses the format string and evaluates the argument. The argument can
be either a string or a numeric value. The format of the resulting output
is directed by the format string.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN. If no channel is specified, the output goes
to the screen.

format string variable or a string constant which defines the rules for
formatting. When using a number as the argument, formatting can be
done in either CBM style, providing a pattern such as ###.## or in C style
using a <width.precision> specifier, such as %3D %7.2F %4X .

argument the number to be formatted. If the argument does not fit
into the format e.g. trying to print a 4 digit variable into ### a series of
asterisks will replace the format character.

argument may consist of printable characters and control codes. Print-
able characters are printed to the cursor position, while control codes
are executed. The number of # characters sets the width of the output.
If the first character of the format string is an equals ’=’ sign, the argu-
ment string is centered. If the first character of the format string is a
greater than ’>’ sign, the argument string is right justified.

Remarks: The format string is applied for one argument only, but it is possible to
append more USING format;argument sequences.

B-164

Examples: Using PRINT# USING

PRINT USING "##.##";~, USING " [%6.4F] ";SQR(2)

3.14 [1.4142]

PRINT USING " < # # # > ";12*31

< 3 7 2 >

PRINT USING "###"; "ABCDE"

ABC

PRINT USING ">###"; "ABCDE"

CDE

PRINT USING "ADDRESS:$%4X";65000

ADDRESS:$FDE8

A$="###,###,###.#":PRINT USING A$;1E8/3

33,333,333.3

B-165

RCOLOR
Token: $CD

Format: RCOLOR(colour source)

Usage: Returns the current colour index for the selected colour source.

Colour sources are:

• 0 background colour (VIC $D021).

• 1 text colour ($F1).

• 2 highlight colour ($2D8).

• 3 border colour (VIC $D020).

Example: Using RCOLOR

10 C = RCOLOR(3) : REM C = colour index of border colour

B-166

RCURSOR
Token: $FE $42

Format: RCURSOR [colvar],[rowvar]

Usage: Returns the current cursor column and row.

Remarks: The row and column values start at zero, where the left-most column is
zero, and the top row is zero.

Example: Using RCURSOR

100 CURSOR ON,20,10

110 PRINT "[HERE]";

120 RCURSOR X,Y

130 PRINT " COL:";X;" ROW:";Y

RUN

[HERE] COL: 26 ROW: 10

B-167

READ
Token: $87

Format: READ variable list

Usage: Reads values from program source into variables.

variable list Any legal variables.

All types of constants (integer, real, and strings) can be read, but not ex-
pressions. Items are separated by commas. Strings containing commas,
colons or spaces must be put in quotes.

RUN initialises the data pointer to the first item of the first DATA state-
ment and advances it for every read item. It is the programmer’s re-
sponsibility that the type of the constant and the variable in the READ
statement match. Empty items with no constant between commas are
allowed and will be interpreted as zero for numeric variables and an
empty string for string variables.

RESTORE may be used to set the data pointer to a specific line for sub-
sequent readings.

Remarks: It is good programming practice to put large amounts of DATA state-
ments at the end of the program, so they don’t slow down the search for
line numbers afterGOTO, and other statements with line number targets.

Example: Using READ

10 READ NA$, VE

20 READ N%:FOR I=2 TO N%:READ GL(I):NEXT I

30 PRINT "PROGRAM:";NA$;" VERSION:";VE

40 PRINT "N-POINT GAUSS-LEGENDRE FACTORS E1":

50 FOR I=2 TO N%:PRINT I;GL(I):NEXT I

30 STOP

80 DATA "MEGA65",1.1

90 DATA 5,0.5120,0.3573,0.2760,0.2252

B-168

RECORD
Token: $FE $12

Format: RECORD# channel, record, [,byte]

Usage: Positions the read/write pointer of a relative file.

channel number, which was given to a previous call of commands such
as DOPEN, or OPEN.

record target record (1-65535).

byte byte position in record.

RECORD can only be used for files of type REL, which are relative files
capable of direct access.

RECORD positions the file pointer to the specified record number. If this
record number does not exist and there is enough space on the disk which
RECORD is writing to, the file is expanded to the requested record count
by adding empty records. When this occurs, the disk status will give the
message RECORD NOT PRESENT, but this is not an error!

after a call of INPUT# or PRINT#, the file pointer will proceed to the next
record position.

Remarks: The Commodore disk drives have a bug in their DOS, which can destroy
data by using relative files. A recommended workaround is to use the
command RECORD twice, before and after the I/O operation.

Example: Using RECORD

B-169

100 DOPEN#2,"DATA BASE",L240 :REM OPEN OR CREATE

110 FOR I%=1 TO 20 :REM WRITE LOOP

120 PRINT#2,"RECORD #";I% :REM WRITE RECORD

130 NEXT I% :REM END LOOP

140 DCLOSE#2 :REM CLOSE FILE

150 :REM NOW TESTING

160 DOPEN#2,"DATA BASE",L240 :REM REOPEN

170 FOR I%=20 TO 2 STEP -2 :REM READ FILE BACKWARDS

180 RECORD#2,I% :REM POSITION TO RECORD

190 INPUT#2,A$:REM READ RECORD

200 PRINT A$;:IF I% AND 2 THEN PRINT

210 NEXT I% :REM LOOP

220 DCLOSE#2 :REM CLOSE FILE

RUN

RECORD # 20 RECORD # 18

RECORD # 16 RECORD # 14

RECORD # 12 RECORD # 10

RECORD # 8 RECORD # 6

RECORD # 4 RECORD # 2

B-170

REM
Token: $8F

Format: REM

Usage: Marks any characters after REM on the same line as a comment.

Characters after REM are never executed, they’re ignored by BASIC.

Example: Using REM

10 REM *** PROGRAM TITLE ***

20 N=1000 :REM NUMBER OF ITEMS

30 DIM NA$(N)

B-171

RENAME
Token: $F5

Format: RENAME old TO new [,D drive] [,U unit]

Usage: Renames a disk file.

old is either a quoted string, e.g. ”data” or a string expression in brack-
ets, e.g. (FI$).

new is either a quoted string, e.g. ”backup” or a string expression in
brackets, e.g. (FS$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: RENAME is executed in the DOS of the disk drive. It can rename all reg-
ular file types (PRG, SEQ, USR, REL). The old file must exist, and the new
file must not exist. Only single files can be renamed, wildcard characters
such as ’*’ and ’?’ are not allowed. The file type cannot be changed.

Example: Using RENAME

RENAME "CODES" TO "BACKUP" :REM RENAME SINGLE FILE

B-172

RENUMBER
Token: $F8

Format: RENUMBER [new [,inc [range]]]

Usage: Used to renumber all, or a range of lines of a BASIC program.

new new starting line of the line range to renumber. The default value
is 10.

inc increment to be used. The default value is 10.

range line range to renumber. The default values are from first to last
line.

RENUMBER changes all line numbers in the chosen range and also
changes all references in statements that use GOSUB, GOTO, RESTORE,
RUN, TRAP, etc.

RENUMBER can only be executed in direct mode. If it detects a problem
such as memory overflow, unresolved references or line number overflow
(more than than 64000 lines), it will stop with an error message and
leave the program unchanged.

RENUMBERmay be called with 0-3 parameters. Unspecified parameters
use their default values.

Remarks: RENUMBER may need several minutes to execute for large programs.

Examples: Using RENUMBER

RENUMBER :REM NUMBERS WILL BE 10,20,30,...

RENUMBER 100,5 :REM NUMBERS WILL BE 100,105,110,115,...

RENUMBER 601,1,500 :REM RENUMBER STARTING AT 500 TO 601,602,...

RENUMBER 100,5,120-180 :REM RENUMBER LINES 120-180 TO 100,105,...

B-173

RESTORE
Token: $8C

Format: RESTORE [line]

Usage: Set, or reset the internal pointer for READ from DATA statements.

line new position for the pointer. The default is the first program line.

Remarks: The new pointer target line does not need to contain DATA statements.
Every READ will advance the pointer to the next DATA statement auto-
matically.

Example: Using RESTORE

10 DATA 3,1,4,1,5,9,2,6

20 DATA "MEGA65"

30 DATA 2,7,1,8,2,8,9,5

40 FOR I=1 TO 8:READ P:PRINT P:NEXT

50 RESTORE 30

60 FOR I=1 TO 8:READ P:PRINT P:NEXT

70 RESTORE 20

80 READ A$:PRINT A$

B-174

RESUME
Token: $D6

Format: RESUME [line | NEXT]

Usage: Used in a TRAP routine to resume normal program execution after han-
dling an exception.

RESUME with no parameters attempts to re-execute the statement that
caused the error. The TRAP routine should have examined and corrected
the issue that cause the exception in this case.

line line number to resume program execution at.

NEXT resumes execution following the statement that caused the error.
This could be the next statement on the same line (separated with a colon
’:’), or the statement on the next line.

Remarks: RESUME cannot be used in direct mode.

Example: Using RESUME

10 TRAP 100

20 FOR I=1 TO 100

30 PRINT EXP(I)

40 NEXT

50 PRINT "STOPPED FOR I =";I

60 END

100 PRINT ERR$(ER): RESUME 50

B-175

RETURN
Token: $8E

Format: RETURN

Usage: Returns control from a subroutine, which was called with GOSUB or an
event handler declared with COLLISION.

The execution continues at the statement following the GOSUB call.

In the case of the COLLISION handler, the execution continues at the
statement where it left to call the handler.

Example: Using RETURN

10 SCNCLR :REM CLEAR SCREEN

20 FOR I=1 TO 20 :REM DEFINE LOOP

30 GOSUB 100 :REM CALL SUBROUTINE

40 NEXT I :REM LOOP

50 END :REM END OF PROGRAM

100 CURSOR ON,I,I,0 :REM ACTIVATE AND POSITION CURSOR

110 PRINT "X"; :REM PRINT X

120 SLEEP 0.5 :REM WAIT 0.5 SECONDS

130 CURSOR OFF :REM SWITCH BLINKING CURSOR OFF

140 RETURN :REM RETURN TO CALLER

B-176

RGRAPHIC
Token: $CC

Format: RGRAPHIC(screen,parameter)

Usage: Return graphic screen status and parameters

param description
0 open (1), closed (0), or invalid (>1)
1 width (0=320, 1=640)
2 height (0=200, 1=400)
3 depth (1-8 bitplanes)
4 bitplanes used (bitmask)
5 bank 4 blocks used (bitmask)
6 bank 5 blocks used (bitmask)
7 drawscreen # (0-3)
8 viewscreen # (0-3)
9 drawmodes (bitmask)
10 pattern type (bitmask)

Example: Using RGRAPHIC

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 0,1,0,4 :REM SCREEN 0:640 X 200 X 4

30 SCREEN OPEN 0 :REM OPEN

40 SCREEN SET 0,0 :REM DRAW = VIEW = 0

50 SCNCLR 0 :REM CLEAR

60 PEN 0,1 :REM SELECT COLOUR

70 LINE 0,0,639,199 :REM DRAW LINE

80 FOR I=0 TO 10:A(I)=RGRAPHIC(0,I) :NEXT

90 SCREEN CLOSE 0

100 FOR I=0 TO 6:PRINT I;A(I):NEXT :REM PRINT INFO

RUN

0 1

1 1

2 0

3 4

4 15

5 15

6 15

B-177

RIGHT$
Token: $C9

Format: RIGHT$(string, n)

Usage: Returns a string containing the last n characters from string. If the length
of string is equal or less than n, the result string will be identical to the
argument string.

string a string expression.

n a numeric expression (0-255).

Remarks: Empty strings and zero lengths are legal values.

Example: Using RIGHT$:

PRINT RIGHT$("MEGA-65",2)

65

B-178

RMOUSE
Token: $FE $3F

Format: RMOUSE xvar, yvar, butvar

Usage: Reads mouse position and button status.

xvar numeric variable where the x-position will be stored.

yvar numeric variable where the y-position will be stored.

butvar numeric variable receiving button status.
left button sets bit 7, while right button sets bit 0.

value status
0 no button
1 right button

128 left button
129 both buttons

RMOUSE places -1 into all variables if the mouse is not connected or
disabled.

Remarks: Active mice on both ports merge the results.

Example: Using RMOUSE:

10 MOUSE ON, 1, 1 :REM MOUSE ON PORT 1 WITH SPRITE 1

20 RMOUSE XP, YP, BU :REM READ MOUSE STATUS

30 IF XP < 0 THEN PRINT "NO MOUSE ON PORT 1":STOP

40 PRINT "MOUSE:";XP;YP;BU

50 MOUSE OFF :REM DISABLE MOUSE

B-179

RND
Token: $BB

Format: RND(type)

Usage: Returns a pseudo random number.

This is called a ”pseudo” random number, as the numbers are not re-
ally random. They are derived from another number called a ”seed” that
generates reproducible sequences. type determines which seed is used:

• type = 0 use system clock.

• type < 0 use the value of type as seed.

• type > 0 derive a new random number from previous one.

Remarks: Seeded random number sequences produce the same sequence for
identical seeds.

Example: Using RND:

10 DEF FNDI(X) = INT(RND(0)*6)+1 :REM DICE FUNCTION

20 FOR I=1 TO 10 :REM THROW 10 TIMES

30 PRINT I;FNDI(0) :REM PRINT DICE POINTS

40 NEXT

B-180

RPALETTE
Token: $CE $0D

Format: RPALETTE(screen, index, rgb)

Usage: Returns the red, green or blue value of a palette colour index.

screen screen number (0-3).

index palette colour index.

rgb (red=0, green=1, blue=2).

Example: Using RPALETTE

10 SCREEN 320,200,4 :REM DEFINE AND OPEN SCREEN

20 R = RPALETTE(0,3,0) :REM GET RED

30 G = RPALETTE(0,3,1) :REM GET GREEN

40 B = RPALETTE(0,3,2) :REM GET BLUE

50 SCREEN CLOSE :REM CLOSE SCREEN

60 PRINT "PALETTE INDEX 3 RGB =";R;G;B

RUN

PALETTE INDEX 3 RGB = 0 15 15

B-181

RPEN
Token: $D0

Format: RPEN(n)

Usage: Returns the colour index of pen n.

n pen number (0-2), where:

• 0 draw pen.

• 1 erase pen.

• 2 outline pen.

Example: Using RPEN

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 0,1,0,4 :REM SCREEN 0:640 X 200 X 4

30 SCREEN OPEN 0 :REM OPEN

40 SCREEN SET 0,0 :REM DRAW = VIEW = 0

50 SCNCLR 0 :REM CLEAR

60 PEN 0,1 :REM SELECT COLOUR

70 X = RPEN(0)

80 Y = RPEN(1)

90 C = RPEN(2)

100 SCREEN CLOSE 0

110 PRINT "DRAW PEN COLOUR = ";X

RUN

DRAW PEN COLOUR = 1

B-182

RPLAY
Token: $FE $0F

Format: RPLAY(voice)

Usage: Returns a value of 1 or 0, to indicate whether a melody is playing on the
given voice channel or not.

voice the voice channel to assess, ranging from 1 to 6.

Example: Using RPLAY:

10 PLAY "O4ICDEFGABO5CR","O2QCGEGCO1GCR"

30 IF RPLAY(1) OR RPLAY(2) THEN GOTO 30: REM WAIT FOR END OF SONG

B-183

RREG
Token: $FE $09

Format: RREG areg, xreg, yreg, zreg, sreg

Usage: Reads the values that were in the CPU registers after a SYS call, into the
specified variables.

areg gets accumulator value.

xreg gets X register value.

yreg gets Y register value.

zreg gets Z register value.

sreg gets status register value.

Remarks: The register values after a SYS call are stored in system memory. This is
how RREG is able to retrieve them.

Example: Using RREG:

10 BANK 128

20 BLOAD "ML PROG",8192

30 SYS 8192

40 RREG A,X,Y,Z,S

50 PRINT "REGISTER:";A;X;Y;Z;S

B-184

RSPCOLOR
Token: $CE $07

Format: RSPCOLOR(n)

Usage: Returns multi-colour sprite colours.

n sprite multi-colour number:

• 1 get multi-colour # 1.

• 2 get multi-colour # 2.

Remarks: Refer to SPRITE, and SPRCOLOR for more information.

Example: Using RSPCOLOR:

10 SPRITE 1,1 :REM TURN SPRITE 1 ON

20 C1% = RSPCOLOR(1) :REM READ COLOUR #1

30 C2% = RSPCOLOR(2) :REM READ COLOUR #2

B-185

RSPEED
Token: $CE $0E

Format: RSPEED(n)

Usage: Returns the current CPU clock in MHz.

n numeric dummy argument, which is ignored.

Remarks: RSPEED(n) will not return the correct value if POKE 0,65 has previously
been used to enable the highest speed (40MHz).

Refer to the SPEED command for more information.

Example: Using RSPEED:

10 X=RSPEED(0) :REM GET CLOCK

20 IF X=1 THEN PRINT "1 MHZ" :GOTO 50

30 IF X=3 THEN PRINT "3.5 MHZ" :GOTO 50

40 IF X=40 THEN PRINT "40 MHZ"

50 END

B-186

RSPPOS
Token: $CE $05

Format: RSPPOS(sprite,n)

Usage: Returns a sprite’s position and speed

sprite sprite number.

n sprite parameter to retrieve:

• 0 X position.

• 1 Y position.

• 2 speed.

Remarks: Refer to the MOVSPR and SPRITE commands for more information.

Example: Using RSPPOS:

10 SPRITE 1,1 :REM TURN SPRITE 1 ON

20 XP = RSPPOS(1,0) :REM GET X OF SPRITE 1

30 YP = RSPPOS(1,1) :REM GET Y OF SPRITE 1

30 SP = RSPPOS(1,2) :REM GET SPEED OF SPRITE 1

B-187

RSPRITE
Token: $CE $06

Format: RSPRITE(sprite,n)

Usage: Returns a sprite’s parameter.

sprite sprite number (0-7).

n the sprite parameter to return (0-5):

• 0 turned on (0 or 1) A 0 means the sprite is off.

• 1 foreground colour (0-15).

• 2 background priority (0 or 1).

• 3 x-expanded (0 or 1). 0 means it’s not expanded.

• 4 y-expanded (0 or 1). 0 means it’s not expanded.

• 5 multi-colour (0 or 1). 0 means it’s not multi-colour.

Remarks: Refer to the MOVSPR and SPRITE commands for more information.

Example: Using RSPRITE:

10 SPRITE 1,1 :REM TURN SPRITE 1 ON

20 EN = RSPRITE(1,0) :REM SPRITE 1 ENABLED ?

30 FG = RSPRITE(1,1) :REM SPRITE 1 FOREGROUND COLOUR INDEX

40 BP = RSPRITE(1,2) :REM SPRITE 1 BACKGROUND PRIORITY

50 XE = RSPRITE(1,3) :REM SPRITE 1 X EXPANDED ?

60 YE = RSPRITE(1,4) :REM SPRITE 1 Y EXPANDED ?

70 MC = RSPRITE(1,5) :REM SPRITE 1 MULTI-COLOUR ?

B-188

RUN
Token: $8A

Format: RUN [line number]
RUN filename [,D drive] [,U unit]

Usage: Run a BASIC program.

If a filename is given, the program file is loaded into memory and run,
otherwise the program that is currently in memory will be used instead.

line number an existing line number of the program in memory to run
from.

filename either a quoted string, e.g. ”prog” or a string expression in
brackets, e.g. (PR$). The filetype must be PRG.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

RUN first resets all internal pointers to their default values. Therefore,
there will be no variables, arrays or strings defined. The run-time stack is
also reset, and the table of open files is cleared.

Remarks: To start or continue program execution without resetting everything, use
GOTO instead.

Examples: Using RUN

RUN "FLIGHTSIM" :REM LOAD AND RUN PROGRAM FLIGHTSIM

RUN 1000 :REM RUN PROGRAM IN MEMORY, START AT LINE# 1000

RUN :REM RUN PROGRAM IN MEMORY

B-189

RWINDOW
Token: $CE $09

Format: RWINDOW(n)

Usage: Returns information regarding the current text window.

n the screen parameter to retrieve:

• 0 width of current text window.

• 1 height of current text window.

• 2 number of columns on screen (40 or 80).

Remarks: Older versions of RWINDOW reported the width - 1 and the height - 1
for arguments 0 and 1.

Refer to the WINDOW command for more information.

Example: Using RWINDOW:

10 W = RWINDOW(2) :REM GET SCREEN WIDTH

20 IF W=80 THEN BEGIN :REM IS 80 COLUMNS MODE ACTIVE?

30 PRINT CHR$(27)+"X"; :REM YES, SWITCH TO 40COLUMNS

40 BEND

B-190

SAVE
Token: $94

Format: SAVE filename [,unit] ← filename [,unit]

Usage: Saves a BASIC program to a file of type PRG.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

The maximum length of the filename is 16 characters, not counting the
optional save and replace character ’@’ and the in-file drive definition. If
the first character of the filename is an at sign ’@’, it is interpreted as a
”save and replace” operation. It is not recommended to use this option
on 1541 and 1571 drives, as they contain a ”save and replace bug” in
their DOS. The filename may be preceded by the drive number definition
”0:” or ”1:”, which is only relevant for dual drive disk units.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: SAVE is obsolete, implemented only for backwards compatibility. DSAVE
should be used instead. The shortcut symbol← (next to 1). Can only
be used in direct mode.

Examples: Using SAVE

SAVE "ADVENTURE"

SAVE "ZORK-I",8

SAVE "1:DUNGEON",9

B-191

SCNCLR
Token: $E8

Format: SCNCLR [colour]

Usage: Clears a text window or screen.

SCNCLR (with no arguments) clears the current text window. The default
window occupies the whole screen.

SCNCLR colour clears the graphic screen by filling it with the given
colour.

Example: Using SCNCLR:

1 REM SCREEN EXAMPLE 2

10 GRAPHIC CLR :REM INITIALIZE

20 SCREEN DEF 1,0,0,2 :REM SCREEN #1 320 X 200 X 2

30 SCREEN OPEN 1 :REM OPEN SCREEN 1

40 SCREEN SET 1,1 :REM USE SCREEN 1 FOR RENDERING AND VIEWING

50 SCREEN CLR 0 :REM CLEAR SCREEN

60 PALETTE 1,1,15,15,15 :REM DEFINE COLOUR 1 AS WHITE

70 PEN 0,1 :REM DRAWING PEN

80 LINE 25,25,295,175 :REM DRAW LINE

90 SLEEP 10 :REM WAIT FOR 10 SECONDS

100 SCREEN CLOSE 1 :REM CLOSE SCREEN AND RESTORE PALETTE

B-192

SCRATCH
Token: $F2

Format: SCRATCH filename [,D drive] [,U unit] [,R]

Usage: Used to erase a disk file.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

R Recover a previously erased file. This will only work, if there were no
write operations between erasure and recovery, which may have altered
the contents of the file.

Remarks: SCRATCH filename works similarly to ERASE filename.

The success and the number of erased files can be examined by printing
or using the system variable DS$. The second last number, which nor-
mally reports the track number in case of a disk error, instead reports the
number of successfully erased files.

Examples: Using SCRATCH

SCRATCH "DRM",U9 :REM SCRATCH FILE DRM ON UNIT 9

PRINT DS$

01, FILES SCRATCHED,01,00

SCRATCH "OLD*" :REM SCRATCH ALL FILES BEGINNING WITH "OLD"

PRINT DS$

01, FILES SCRATCHED,04,00

B-193

SCREEN
Token: $FE $2E

Format: SCREEN [screen,] width, height, depth
SCREEN CLR colour
SCREEN DEF width flag, height flag, depth
SCREEN SET drawscreen, viewscreen
SCREEN OPEN [screen]
SCREEN CLOSE [screen]

Usage: There are two approaches available when preparing the screen for the
drawing of graphics: a simplified approach, and a detailed approach.
Simplified approach:

The first version of SCREEN (which has pixel units for width and height) is
the easiest way to start a graphics screen, and is the preferred method
if only a single screen is needed (i.e., a second screen isn’t needed for
double buffering). This does all of the preparatory work for you, and
will call commands such as GRAPHIC CLR, SCREEN CLR, SCREEN DEF,
SCREEN OPEN and, SCREEN SET on your behalf. It takes the following
parameters:

SCREEN [screen,] width, height, depth

• screen the screen number (0-3) is optional. If no screen number is
given, screen 0 is used. To keep this approach as simple as possible,
it is suggested to use the default screen 0.

• width 320 or 640 (default 320)

• height 200 or 400 (default = 200)

• depth 1..8 (default = 8), colours = 2 ^depth.

The argument parser is error tolerant and uses default values for width
(320) and height (200) if the parsed argument is not valid.

This version of SCREEN starts with a predefined palette and sets the
background to black, and the pen to white, so drawing can start imme-
diately using the default values.

On the other hand, the detailed approach will require the setting of
palette colours and pen colour before any drawing can be done.

The colour value must be in the range of 0 to 15. Refer to the colour
table under BACKGROUND on page B-18 for the colour values and their
corresponding colours.

B-194

When you are finished with your graphics screen, simply call SCREEN
CLOSE [screen] to return to the text screen.

Detailed approach:

The other versions ofSCREEN perform special actions, used for advanced
graphics programs, that open multiple screens or require double buffer-
ing. If you have chosen the simplified approach, you will not require any
of these versions below, apart from SCREEN CLOSE.

SCREEN CLR colour (or SCNCLR colour)
Clears the active graphics screen by filling it with colour.

SCREEN DEF screen, width flag, height flag, depth
Defines resolution parameters for the chosen screen. The width flag and
height flag indicate whether high resolution (1) or low resolution (0) is
chosen.

• screen screen number 0-3

• width flag 0-1 (0:320, 1:640 pixel)

• height flag 0-1 (0:200, 1:400 pixel)

• depth 1-8 (2 - 256 colours)

Note that the width and height values here are flags, and not pixel units.

SCREEN SET drawscreen, viewscreen
Sets screen numbers (0-3) for the drawing and the viewing screen, i.e.,
while one screen is being viewed, you can draw on a separate screen and
then later flip between them. This is what’s known as ”double buffering”.

SCREEN OPEN screen
Allocates resources and initialises the graphics context for the selected
screen (0-3). An optional variable name as a further argument, gets the
result of the command that can be tested afterwards for success.

SCREEN CLOSE [screen]
Closes screen (0-3) and frees resources. If no value is given, it will de-
fault to 0. Also note that upon closing screen 0, PALETTE RESTORE is
automatically performed for you.

Examples: Using SCREEN:

B-195

5 REM *** SIMPLIFIED APPROACH ***

10 SCREEN 320,200,2 :REM SCREEN #0: 320 X 200 X 2

20 PEN 1 :REM DRAWING PEN COLOUR = 1 (WHITE)

30 LINE 25,25,295,175 :REM DRAW LINE

40 GETKEY A$:REM WAIT KEYPRESS

50 SCREEN CLOSE :REM CLOSE SCREEN 0

5 REM *** DETAILED APPROACH ***

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM SCREEN #1: 320 X 200 X 2

30 SCREEN OPEN 1 :REM OPEN SCREEN 1

40 SCREEN SET 1,1 :REM USE SCREEN 1 FOR RENDERING AND VIEWING

50 SCREEN CLR 0 :REM CLEAR SCREEN

60 PALETTE 1,1,15,15,15:REM DEFINE COLOUR 1 AS WHITE

70 PEN 0,1 :REM DRAWING PEN

80 LINE 25,25,295,175 :REM DRAW LINE

90 SLEEP 10 :REM WAIT 10 SECONDS

100 SCREEN CLOSE 1 :REM CLOSE SCREEN 1

110 PALETTE RESTORE :REM BACK TO TEXT PALETTE

B-196

SET
Token: $FE $2D

Format: SET DEF unit
SET DISK old to new
SET VERIFY ON|OFF

Usage: SET DEF unit redefines the default unit for disk access, which is initialised
to 8 by the DOS. Commands that do not explicitly specify a unit, will use
this default unit.

SET DISK old to new is used to change the unit number of a disk drive
temporarily.

SET VERIFY ON|OFF enables or disables the DOS verify-after-write
mode for 3.5 drives.

Remarks: These settings are valid until a reset or shutdown.

Examples: Using SET:

DIR :REM SHOW DIRECTORY OF UNIT 8

SET DEF 11 :REM UNIT 11 BECOMES DEFAULT

DIR :REM SHOW DIRECTORY OF UNIT 11

DLOAD "*" :REM LOAD FIRST FILE FROM UNIT 11

SET DISK 8 TO 9 :REM CHANGE UNIT# OF DISK DRIVE 8 TO 9

DIR U9 :REM SHOW DIRECTORY OF UNIT 9 (FORMER 8)

SET VERIFY ON :REM ACTIVATE VERIFY-AFTER-WTITE MODE

B-197

SGN
Token: $B4

Format: SGN(numeric expression)

Usage: Extracts the sign from the argument and returns it as a number:

• -1 negative argument.

• -0 zero.

• 1 positive, non-zero argument.

Example: Using SGN

10 ON SGN(X)+2 GOTO 100,200,300 :REM TARGETS FOR MINUS,ZERO,PLUS

20 Z = SGN(X) * ABS(Y) : REM COMBINE SIGN OF X WITH VALUE OF Y

B-198

SIN
Token: $BF

Format: SIN(numeric expression)

Usage: Returns the sine of the numeric expression. The argument is expected
in units of radians. The result is in the range (-1.0 to +1.0)

Remarks: An argument in units of degrees can be converted to radians by multi-
plying it with π/180.

Examples: Using SIN

PRINT SIN(0.7)

.644217687

X=30:PRINT SIN(X * ~ / 180)

.5

B-199

SLEEP
Token: $FE $0B

Format: SLEEP seconds

Usage: Pauses execution for the given duration. The argument is a positive float-
ing point number. The precision is 1 microsecond.

Remarks: Pressing RUN
STOP interrupts the sleep.

Example: Using SLEEP

20 SLEEP 10 :REM WAIT 10 SECONDS

40 SLEEP 0.0005 :REM SLEEP 500 MICRO SECONDS

50 SLEEP 0.01 :REM SLEEP 10 MILLI SECONDS

60 SLEEP DD :REM TAKE SLEEP TIME FROM VARIABLE DD

70 SLEEP 600 :REM SLEEP 10 MINUTES

B-200

SOUND
Token: $DA

Format: SOUND voice, freq, dur [,dir ,min, sweep, wave, pulse]

Usage: Plays a sound effect.

voice voice number (1-6).

freq frequency (0-65535).

dur duration (0-32767) .

dir direction (0:up, 1:down, 2:oscillate).

min minimum frequency (0-65535).

sweep sweep range (0-65535).

wave waveform (0:triangle, 1:sawtooth, 2:square, 3:noise).

pulse pulse width (0-5095).

Remarks: SOUND starts playing the sound effect and immediately continues with
the execution of the next BASIC statement, while the sound effect is
played. This enables the showing of graphics or text and playing sounds
simultaneously.

Examples: Using SOUND

SOUND 1, 7382, 60 :REM PLAY SQUARE WAVE ON VOICE 1 FOR 1 SECOND

SOUND 2, 800, 3600 :REM PLAY SQUARE WAVE ON VOICE 2 FOR 1 MINUTE

SOUND 3, 4000, 120, 2, 2000, 400, 1

REM PLAY SWEEPING SAWTOOTH WAVE AT VOICE 3

B-201

SPC
Token: $A6

Format: SPC(columns)

Usage: Skips columns.
The effect is similar to pressing → <column> times.

Remarks: The name of this function is derived from SPACES, which is misleading.
The function prints cursor right characters, not spaces. The contents
of those character cells that are skipped, will not be changed.

Example: Using SPC

10 FOR I=8 TO 12

20 PRINT SPC(-(I<10));I :REM TRUE = -1, FALSE = 0

30 NEXT I

RUN

8

9

10

11

12

B-202

SPEED
Token: $FE $26

Format: SPEED [speed]

Usage: Set CPU clock to 1MHz, 3.5MHz or 40MHz.

speed CPU clock speed where:

• 1 sets CPU to 1MHz.

• 3 sets CPU to 3MHz.

• Anything other than 1 or 3 sets the CPU to 40MHz.

Remarks: Although it’s possible to call SPEED with any real number, the precision
part (the decimal point and any digits after it), will be ignored.

SPEED is a synonym of FAST.

SPEED has no effect if POKE 0,65 has previously been used to set the
CPU to 40MHz.

Example: Using SPEED

10 SPEED :REM SET SPEED TO MAXIMUM (40 MHZ)

20 SPEED 1 :REM SET SPEED TO 1 MHZ

30 SPEED 3 :REM SET SPEED TO 3.5 MHZ

40 SPEED 3.5 :REM SET SPEED TO 3.5 MHZ

B-203

SPRCOLOR
Token: $FE $08

Format: SPRCOLOR [mc1] [,mc2]

Usage: Sets multi-colour sprite colours.

SPRITE, which sets the attributes of a sprite, only sets the foreground
colour. For the setting the additional two colours of multi-colour sprites,
use SPRCOLOR instead.

Remarks: The colours used with SPRCOLOR will affect all sprites. Refer to the
SPRITE command for more information.

Example: Using SPRCOLOR:

10 SPRITE 1,1,2,,,,1 :REM TURN SPRITE 1 ON (FG = 2)

20 SPRCOLOR 4,5 :REM MC1 = 4, MC2 = 5

B-204

SPRITE
Token: $FE $07

Format: SPRITE CLR
SPRITE LOAD filename [,D drive] [,U unit]
SPRITE SAVE filename [,D drive] [,U unit]
SPRITE num [switch, colour, prio, expx, expy, mode]

Usage: SPRITE CLR clears all sprite data and sets all pointers and attributes to
their default values.

SPRITE LOAD loads sprite data from filename to sprite memory.

SPRITE SAVE saves sprite data from sprite memory to filename.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

The last form switches a sprite on or off and sets its attributes:

num sprite number

switch 1:on, 0:off

colour sprite foreground colour

prio sprite (1) or screen (0) priority

expx 1:sprite X expansion

expy 1:sprite Y expansion

mode 1:multi-colour sprite

Remarks: SPRCOLORmust be used to set additional colours for multi-colour sprites
(mode = 1).

Example: Using SPRITE:

2290 CLR:SCNCLR:SPRITE CLR

2300 SPRITE LOAD "DEMOSPRITES1"

2320 FORI=0TO7: C=I: IFC=6THENC=8

2330 MOVSPR I, 60+30*I,0 TO 60+30*I,65+20*I, 3:SPRITE I,1,C,,1,1:NEXT: SLEEP3

2340 FORI=0TO7: SPRITE I,,,,0,0 :NEXT: SLEEP3: SPRITE CLR

2350 FORI=0TO7: MOVSPR I,45*I#5 :NEXT: FORI=0TO7: SPRITE I,1: NEXT

2360 FORI=0TO7:X=60+30*I:Y=65+20*I:DO

2370 LOOPUNTIL(X=RSPPOS(I,.))AND(Y=RSPPOS(I,1)):MOVSPRI,.#.:NEXT

B-205

SPRSAV
Token: $FE $16

Format: SPRSAV source, destination

Usage: Copies sprite data.

source sprite number or string variable.

destination sprite number or string variable.

Remarks: Source and destination can either be a sprite number or a string variable,
but both cannot be a string variable at the same time. A simple string
assignment can be used for such cases.

SPRSAV can be used with the basic form of sprites (C64 compatible)
only. These sprites have a size of 64 bytes, and the amount of memory
they consume is 67 bytes.

The extended sprites and the variable height sprites cannot be used with
SPRSAV.

Example: Using SPRSAV:

10 BLOAD "SPRITEDATA",P1600 :REM LOAD DATA FOR SPRITE 1

20 SPRITE 1,1 :REM TURN SPRITE 1 ON

30 SPRSAV 1,2 :REM COPY SPRITE 1 DATA TO 2

40 SPRITE 2,1 :REM TURN SPRITE 2 ON

50 SPRSAV 1,A$:REM SAVE SPRITE 1 DATA IN STRING

B-206

SQR
Token: $BA

Format: SQR(numeric expression)

Usage: Returns the square root of the numeric expression.

Remarks: The argument must not be negative.

Example: Using SQR

PRINT SQR(2)

1.41421356

B-207

ST
Format: ST is a reserved system variable.

Usage: ST holds the status of the last I/O operation. If ST is zero, there was no
error, otherwise it is set to a device dependent error code.

Example: Using ST

100 MX=100:DIM T$(MX) :REM DATA ARRAY

110 DOPEN#1,"DATA" :REM OPEN FILE

120 IF DS THEN PRINT"COULD NOT OPEN":STOP

130 LINE INPUT#1,T$(N):N=N+1 :REM READ ONE RECORD

140 IF N>MX THEN PRINT "TOO MANY DATA":GOTO 160

150 IF ST=0 THEN 130 :REM ST = 64 FOR END-OF-FILE

160 DCLOSE#1

170 PRINT "READ";N;" RECORDS"

B-208

STEP
Token: $A9

Format: FOR index=start TO end [STEP step] ... NEXT [index]

Usage: STEP is an optional part of a FOR loop.

The index variable may be incremented or decremented by a constant
value after each iteration. The default is to increment the variable by 1.
The index variable must be a real variable.

start initial value of the index.

end is checked at the end of an iteration, and determines whether an-
other iteration will be performed, or if the loop will exit.

step defines the change applied to to the index at the end of a loop iter-
ation. Positive step values increment it, while negative values decrement
it. It defaults to 1.0 if not specified.

Remarks: For positive increments, end must be greater than or equal to start. For
negative increments, end must be less than or equal to start.

It is bad programming practice to change the value of the index variable
inside the loop or to jump into or out of a loop body with GOTO.

Example: Using STEP

10 FOR D=0 TO 360 STEP 30

20 R = D * ~ / 180

30 PRINT D;R;SIN(R);COS(R);TAN(R)

40 NEXT D

B-209

STOP
Token: $90

Format: STOP

Usage: Stops the execution of the BASIC program. A message will be displayed
showing the line number where the program stopped. The READY. prompt
appears and the computer goes into direct mode, waiting for keyboard
input.

Remarks: All variable definitions are still valid after STOP. They may be inspected
or altered, and the program may be continued with CONT. However, any
editing of the program source will disallow any further continuation.

Program execution can be resumed with CONT.

Example: Using STOP

10 IF V < 0 THEN STOP : REM NEGATIVE NUMBERS STOP THE PROGRAM

20 PRINT SQR(V) : REM PRINT SQUARE ROOT

B-210

STR$
Token: $C4

Format: STR$(numeric expression)

Usage: Returns a string containing the formatted value of the argument, as if it
were PRINTed to the string.

Example: Using STR$:

A$ = "THE VALUE OF PI IS " + STR$(~)

PRINT A$

THE VALUE OF PI IS 3.14159265

B-211

SYS
Token: $9E

Format: SYS address [, areg, xreg, yreg, zreg, sreg]

Usage: Calls a machine language subroutine. This can be a ROM-resident kernal
routine, a BASIC subroutine, or any other routine which has previously
been loaded or POKEd to RAM.

The CPU registers are loaded with the arguments (if they’re specified),
then a subroutine call (JSR address) is performed. JSR is an assembly
language instruction that is short for Jump to SubRoutine. The called
routine should exit with an RTS instruction. RTS is another assembly lan-
guage instruction that is short for Return from SubRoutine. After the sub-
routine has returned, the register contents will be saved, and the execu-
tion of the BASIC program will continue.

address start address of the subroutine.

areg CPU accumulator value.

xreg CPU X register value.

yreg CPU Y register value.

zreg CPU Z register value.

sreg Status register value.

Remarks: The register values after a SYS call are stored in system memory. RREG
can be used to retrieve these values.

SYS uses the current bank, which has been set with BANK.

The SYS instruction on the MEGA65 is completely different to the well
known SYS command on the C64. It is not possible to jump to an address
after the BASIC program text in bank 0 (and execute amachine language
subroutine there), as bank 0 is 64K of RAM with no I/O or kernal mapped
in.

Using SYS properly (i.e. without corrupting BASIC RAM, and having ac-
cess to kernal routines and I/O) requires some technical skill, which is out
of scope of the User’s Guide. However, if you would like to learn more,
there is a lot more information and examples in the MEGA65 Developer
Guide.

Example: Using SYS:

B-212

10 BANK 128

20 BLOAD "ML PROG",8192

30 SYS 8192

40 RREG A,X,Y,Z,S

50 PRINT "REGISTER:";A;X;Y;Z;S

B-213

TAB
Token: $A3

Format: TAB(column)

Usage: Positions the cursor at column.
This is only done if the target column is right of the current cursor column,
otherwise the cursor will not move. The column count starts with 0 being
the left-most column.

Remarks: This function shouldn’t be confused with T AB, which advances the
cursor to the next tab-stop.

Example: Using TAB

10 FOR I=1 TO 5

20 READ A$

30 PRINT "* " A$ TAB(10) " *"

40 NEXT I

50 END

60 DATA ONE,TWO,THREE,FOUR,FIVE

RUN

* ONE *

* TWO *

* THREE *

* FOUR *

* FIVE *

B-214

TAN
Token: $C0

Format: TAN(numeric expression)

Usage: Returns the tangent of the argument. The argument is expected in units
of [radians]. The result is in the range (-1.0 to +1.0)

Remarks: An argument in units of degrees can be converted to radians by multi-
plying it with π/180.

Example: Using TAN

PRINT TAN(0.7)

.84228838

X=45:PRINT TAN(X * ~ / 180)

.999999999

B-215

TEMPO
Token: $FE $05

Format: TEMPO speed

Usage: Sets the playback speed for PLAY.

speed 1-255.

The duration (in seconds) of a whole note is computed with duration =
24/speed.

Example: Using TEMPO

10 VOL 8

20 FOR T = 24 TO 18 STEP -2

30 TEMPO T

40 PLAY "T0M3O4QGAGFED","T2O4M5P0H.DP5GB","T5O3IGAGAGAABABAB"

50 IF RPLAY(1) THEN GOTO 50

60 NEXT T

70 PLAY "T0O5QCO4GEH.C","T2O5IEFEDEDCEGO6P8CP0R","T5O3ICDCDEFEDCO4C"

B-216

THEN
Token: $A7

Format: IF expression THEN <true clause> ELSE <false clause>

Usage: THEN is part of an IF statement.

expression is a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero value.

true clause one or more statements starting directly after THEN on the
same line. A line number after THEN performs a GOTO to that line in-
stead.

false clause one or more statements starting directly after ELSE on the
same line. A linenumber after ELSE performs aGOTO to that line instead.

Remarks: The standard IF ... THEN ... ELSE structure is restricted to a single line.
But the true clause or false clause may be expanded to several lines
using a compound statement surrounded with BEGIN and BEND.

Example: Using THEN

1 REM THEN

10 RED$=CHR$(28) : BLACK$=CHR$(144) : WHITE$=CHR$(5)

20 INPUT "ENTER A NUMBER";V

30 IF V<0 THEN PRINT RED$; : ELSE PRINT BLACK$;

40 PRINT V : REM PRINT NEGATIVE NUMBERS IN RED

50 PRINT WHITE$

60 INPUT "END PROGRAM: (Y/N)"; A$

70 IF A$="Y" THEN END

80 IF A$="N" THEN 20 : ELSE 60

B-217

TI
Format: TI

Usage: TI is a high precision timer with a resolution of 1 micro second.

It is started or reset with CLR TI, and can be accessed in the same way
as any other variable in expressions.

Remarks: TI is a reserved system variable. The value in TI is the number of seconds
(to 6 decimal places) since it was last cleared or started.

Example: Using TI

100 CLR TI :REM START TIMER

110 FOR I%=1 TO 10000:NEXT :REM DO SOMETHING

120 ET = TI :REM STORE ELAPSED TIME IN ET

130 PRINT "EXECUTION TIME:";ET;" SECONDS"

B-218

TI$
Format: TI$

Usage: TI$ stores the time information of the RTC (Real-Time Clock) in text form,
using the format: ”hh:mm:ss”. It is updated with every use.

TI$ is a read-only variable, which reads the registers of the RTC and
formats the values to a string.

Remarks: TI$ is a reserved system variable.

It is possible to access the RTC registers directly via PEEK. The start ad-
dress of the registers is at $FFD7110. For example:

For more information on how to set the Real-Time Clock, refer to the
Configuring Utility section on page 4-11.

100 REM ****** READ RTC ****** ALL VALUES ARE BCD ENCODED

110 RT = $FFD7110 :REM ADDRESS OF RTC

120 FOR I=0 TO 5 :REM SS,MM,HH,DD,MO,YY

130 T(I)=PEEK(RT+I) :REM READ REGISTERS

140 NEXT I :REM USE ONLY LAST TWO DIGITS

150 T(2) = T(2) AND 127 :REM REMOVE 24H MODE FLAG

160 T(5) = T(5) + $2000 :REM ADD YEAR 2000

170 FOR I=2 TO 0 STEP -1 :REM TIME INFO

180 PRINT USING ">## ";HEX$(T(I));

190 NEXT I

RUN

12 52 36

Example: Using TI$

PRINT DT$;TI$

05-APR-2021 15:10:00

B-219

TO
Token: $A4

Format: keyword TO

Usage: TO is a secondary keyword used in combination with primary keywords,
such as BACKUP, BSAVE, CHANGE, CONCAT, COPY, FOR, GO, RE-
NAME, and SET DISK

Remarks: TO cannot be used on its own.

Example: Using TO

10 GO TO 1000 :REM AS GOTO 1000

20 GOTO 1000 :REM SHORTER AND FASTER

30 FOR I=1 TO 10 :REM TO IS PART OF THE LOOP

40 PRINT I:NEXT :REM LOOP END

50 COPY "CODES" TO "BACKUP" :REM COPY SINGLE FILE

B-220

TRAP
Token: $D7

Format: TRAP [line number]

Usage: TRAP with a valid line number registers the BASIC error handler. When a
program has an error handler, the run-time behaviour changes. Normally,
BASIC will exit the program and display an error message.

However, if a BASIC error handler has been registered, BASIC will instead
save the execution pointer and line number, place the error number into
the system variable ER, and GOTO the line number of TRAP. The trapping
routine can examine ER and process the error. From this, the TRAP error
handler can then decide whether to STOP or RESUME execution.

TRAP with no argument disables the error handler. Errors will be handled
by the normal system routines.

Example: Using TRAP

10 TRAP 100

20 FOR I=1 TO 100

30 PRINT EXP(I)

40 NEXT

50 PRINT "STOPPED FOR I =";I

60 END

100 PRINT ERR$(ER): RESUME 50

B-221

TROFF
Token: $D9

Format: TROFF

Usage: Turns off trace mode (switched on by TRON).

Example: Using TROFF

10 TRON :REM ACTIVATE TRACE MODE

20 FOR I=85 TO 100

30 PRINT I;EXP(I)

40 NEXT

50 TROFF :REM DEACTIVATE TRACE MODE

RUN

[10][20][30] 85 8.22301268E+36

[40][30] 86 2.2352466E+37

[40][30] 87 6.0760302E+37

[40][30] 88 1.65163625E+38

[40][30] 89

?OVERFLOW ERROR IN 30

READY.

B-222

TRON
Token: $D8

Format: TRON

Usage: Turns on trace mode.

Example: Using TRON

10 TRON :REM ACTIVATE TRACE MODE

20 FOR I=85 TO 100

30 PRINT I;EXP(I)

40 NEXT

50 TROFF :REM DEACTIVATE TRACE MODE

RUN

[10][20][30] 85 8.22301268E+36

[40][30] 86 2.2352466E+37

[40][30] 87 6.0760302E+37

[40][30] 88 1.65163625E+38

[40][30] 89

?OVERFLOW ERROR IN 30

READY.

B-223

TYPE
Token: $FE $27

Format: TYPE filename [,D drive] [,U unit]

Usage: Prints the contents of a file containing text encoded as PETSCII.

filename is either a quoted string, e.g. ”data” or a string expression in
brackets, e.g. (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: TYPE cannot be used to type BASIC programs. Use LIST for programs
instead. TYPE can only process SEQ or USR files containing records of
PETSCII text, delimited by the CR vcharacter.

The CR character is also knows as carriage return, and can be created
by using CHR$(13) .

Example: Using TYPE

TYPE "README"

TYPE "README 1ST",U9

B-224

UNTIL
Token: $FC

Format: DO ... LOOP
DO [<UNTIL | WHILE> <logical expr.>]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> <logical expr.>]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement exits the current loop only.

Examples: Using DO and LOOP.

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

B-225

USING
Token: $FB

Format: PRINT [# channel,] USING format;argument

Usage: Parses the format string and evaluates the argument. The argument can
be either a string or a numeric value. The format of the resulting output
is directed by the format string.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN. If no channel is specified, the output goes
to the screen.

format string variable or a string constant which defines the rules for
formatting. When using a number as the argument, formatting can be
done in either CBM style, providing a pattern such as ###.## or in C style
using a <width.precision> specifier, such as %3D %7.2F %4X .

argument the number to be formatted. If the argument does not fit
into the format e.g. trying to print a 4 digit variable into ### a series of
asterisks will replace the format character.

argument may consist of printable characters and control codes. Print-
able characters are printed to the cursor position, while control codes
are executed. The number of # characters sets the width of the output.
If the first character of the format string is an equals ’=’ sign, the argu-
ment string is centered. If the first character of the format string is a
greater than ’>’ sign, the argument string is right justified.

Remarks: The format string is only applied for one argument, but it is possible to
append more than one USING format;argument sequences.

B-226

Example: USING with a corresponding PRINT#

PRINT USING "##.##";~, USING " [%6.4F] ";SQR(2)

3.14 [1.4142]

PRINT USING " < # # # > ";12*31

< 3 7 2 >

PRINT USING "###"; "ABCDE"

ABC

PRINT USING ">###"; "ABCDE"

CDE

PRINT USING "ADDRESS:$%4X";65000

ADDRESS:$FDE8

A$="###,###,###.#":PRINT USING A$;1E8/3

33,333,333.3

B-227

USR
Token: $B7

Format: USR(numeric expression)

Usage: Invokes an assembly language routine whose memory address is stored
at $02F8 - $02F9. The result of the numeric expression is written to
floating point accumulator 1.

After executing the assembly routine, BASIC returns the contents of the
floating point accumulator 1.

Remarks: Banks 0-127 give access to RAM or ROM banks. Banks greater than 127
are used to access I/O, and the underlying SYSTEM hardware such as the
VIC, SID, FDC, etc.

If you would like to learn more, there is a lot more information and exam-
ples in the MEGA65 Developer Guide.

Example: Using USR

10 UX = DEC("7F00") :REM ADDRESS OF USER ROUTINE

20 BANK 128 :REM SELECT SYSTEM BANK

30 BLOAD "ML-PROG",P(UX) :REM LOAD USER ROUTINE

40 POKE (DEC("2F8")),UX AND 255 :REM USR JUMP TARGET LOW

50 POKE (DEC("2F9")),UX / 256 :REM USR JUMP TARGET HIGH

60 PRINT USR(~) :REM PRINT RESULT FOR ARGUMENT PI

B-228

VAL
Token: $C5

Format: VAL(string expression)

Usage: Converts a string to a floating point value.

This function acts in the same way as reading from a string.

Remarks: A string containing an invalid number will not produce an error, but return
0 as the result instead.

Example: Using VAL

PRINT VAL("78E2")

7800

PRINT VAL("7+5")

7

PRINT VAL("1.256")

1.256

PRINT VAL("$FFFF")

0

B-229

VERIFY
Token: $95

Format: VERIFY filename [,unit [,binflag]]

Usage: VERIFY with no binflag compares a BASIC program in memory with a
disk file of type PRG. It does the same as DVERIFY, but the syntax is
different.

VERIFY with binflag compares a binary file in memory with a disk file of
type PRG. It does the same as BVERIFY, but the syntax is different.

filename is either a quoted string, e.g. ”prog” or a string expression.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: VERIFY can only test for equality. It gives no information about the num-
ber or position of different valued bytes. VERIFY exits with either the
message OK or with VERIFY ERROR.

VERIFY is obsolete in BASIC 65. It is only here for backwards compati-
bility. It is recommended to use DVERIFY and BVERIFY instead.

Examples: Using VERIFY

VERIFY "ADVENTURE"

VERIFY "ZORK-I",9

VERIFY "1:DUNGEON",10

B-230

VIEWPORT
Token: $FE $31

Format: VIEWPORT <CLR|DEF> X, Y, DX, DY

Usage: VIEWPORT DEF defines a clipping region with the origin (upper left posi-
tion) set toX,Y and thewidthDX and the heightDY. All following graphics
commands are limited to the VIEWPORT region.

Remarks: VIEWPORT must be followed by eitherCLR or DEF, and four integer pa-
rameters.

VIEWPORT CLR resets the clipping region to the entire screen.

Example: Using VIEWPORT

VIEWPORT DEF 20,20,100,100 :REM REGION 20->119, 20->119

VIEWPORT CLR :REM FULL SCREEN

B-231

VOL
Token: $DB

Format: VOL volume

Usage: Sets the volume for sound output with SOUND or PLAY.

volume 0 (off) to 15 (loudest).

Remarks: This volume setting affects all voices.

Example: Using VOL

10 TEMPO 22

20 FOR V = 2 TO 8 STEP 2

30 VOL V

40 PLAY "T0M3O4QGAGFED","T2O4M5P0H.DP5GB","T5O3IGAGAGAABABAB"

50 IF RPLAY(1) THEN GOTO 50

60 NEXT V

70 PLAY "T0O5QCO4GEH.C","T2O5IEFEDEDCEGO6P9CP0R","T5O3ICDCDEFEDCO4C"

B-232

WAIT
Token: $92

Format: WAIT address, andmask [, xormask]

Usage: Pauses the BASIC program until a requested bit pattern is read from the
given address.

address the address at the current memory bank, which is read.

andmask AND mask applied.

xormask XOR mask applied.

WAIT reads the byte value from address and applies the masks:
result = PEEK(address) AND andmask XOR xormask.

The pause ends if the result is non-zero, otherwise reading is repeated.
This may hang the computer indefinitely if the condition is never met.

Remarks: WAIT is typically used to examine hardware registers or system variables
and wait for an event, e.g. joystick event, mouse event, keyboard press
or a specific raster line is about to be drawn to the screen.

Example: Using WAIT

10 BANK 128

20 WAIT 211,1 :REM WAIT FOR SHIFT KEY BEING PRESSED

B-233

WHILE
Token: $ED

Format: DO ... LOOP
DO [<UNTIL | WHILE> <logical expr.>]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> <logical expr.>]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement exits the current loop only.

Examples: Using DO and LOOP

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

B-234

WINDOW
Token: $FE $1A

Format: WINDOW left, top, right, bottom [,clear]

Usage: Sets the text screen window.

left left column

top top row

right right column

bottom bottom row

clear clear text window flag

Remarks: The row values count from 0 to 24. The column values count from 0 to
either 39 or 79. This depends on the screen mode.

There can be only one window on the screen. Pressing CLR
HOME twice or

PRINTing CHR$(19)CHR$(19) will reset the window to the default (full
screen).

Example: Using WINDOW

10 WINDOW 0,1,79,24 :REM SCREEN WITHOUT TOP ROW

20 WINDOW 0,0,79,24,1 :REM FULL SCREEN WINDOW CLEARED

30 WINDOW 0,12,79,24 :REM LOWER HALF OF SCREEN

40 WINDOW 20,5,59,15 :REM SMALL CENTRED WINDOW

B-235

XOR
Token: $E9

Format: operand XOR operand

Usage: The Boolean XOR operator performs a bit-wise logical exclusive OR op-
eration on two 16-bit values. Integer operands are used as they are.
Real operands are converted to a signed 16-bit integer (losing preci-
sion). Logical operands are converted to 16-bit integer using $FFFF,
decimal -1 for TRUE and $0000, decimal 0, for FALSE.

0 XOR 0 -> 0
0 XOR 1 -> 1
1 XOR 0 -> 1
1 XOR 1 -> 0

Remarks: The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values are
regarded as TRUE.

Example: Using XOR

FOR I = 0 TO 8: PRINT I XOR 5;: NEXT I

5 4 7 6 1 0 3 2 13

B-236

APPENDIX C
Special Keyboard Controls and

Sequences
• PETSCII Codes and CHR$

• Control codes

• Shifted codes

• Escape Sequences

C-2

PETSCII CODES AND CHR$
In BASIC, PRINT CHR$(X) can be used to print a character from a PETSCII code. Below is the
full table of PETSCII codes you can print by index. For example, while in the default
uppercase/graphics mode, by using index 65 from the table below as: PRINT CHR$(65) you
will print the letter A. You can read more about CHR$ on page B-38.

You can also do the reverse with the ASC statement. For example: PRINT ASC("A") will
output 65, which matches with the code in the table.

NOTE: Function key (F1-F14 + HELP) values in this table are not intended to be printed
via CHR$(), but rather to allow function-key input to be assessed in BASIC programs
via the GET / GETKEY commands.

0

1

2 UNDERLINE ON

3

4

5 WHITE

6

7 BELL

8

9 TAB

10 LINEFEED

11 DISABLE
SHIFT

`

12 ENABLE
SHIFT

`

13 RETURN

14 LOWER CASE

15 BLINK/FLASH ON

16 F9

17 ↓

18 RVS ON

19 CLR
HOME

20 INST
DEL

21 F10 / BACK WORD

22 F11

23 F12 / NEXT WORD

24 SET/CLEAR TAB

25 F13

26 F14 / BACK TAB

27 ESCAPE

28 RED

29 →

30 GREEN

31 BLUE

32 SPACE

33 !

34 ”

35 #

36 $

37 %

38 &

39 ’

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ?

64 @

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

C-3

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

91 [

92 £

93]

94 ↑

95 ←

96 C

97 A

98 B

99 C

100 D

101 E

102 F

103 G

104 H

105 I

106 J

107 K

108 L

109 M

110 N

111 O

112 P

113 Q

114 R

115 S

116 T

117 U

118 V

119 W

120 X

121 Y

122 Z

123 +

124 -

125 B

126 \

127]

128

129 ORANGE

130 UNDERLINE OFF

131

132 HELP

133 F1

134 F3

135 F5

136 F7

137 F2

138 F4

139 F6

140 F8

141 SHIFT RETURN

142 UPPERCASE

143 BLINK/FLASH OFF

144 BLACK

145 ↑

146 RVS
OFF

147 SHIFT CLR
HOME

148 SHIFT INST
DEL

149 BROWN

150 LT. RED

151 DK. GRAY

152 GRAY

153 LT. GREEN

154 LT. BLUE

155 LT. GRAY

156 PURPLE

157 ←

158 YELLOW

159 CYAN

160 SPACE

161 k

162 i

163 t

164 [

165 g

166 =

167 m

168 /

169 ?

170 v

171 q

172 d

173 z

174 s

175 n

176 a

177 e

178 r

179 w

180 h

181 j

182 l

183 y

184 u

185 p

186 {

187 f

188 c

189 x

190 v

191 b

C-4

NOTE: Codes from 192 to 223 are the equal to 96 to 127. Codes from 224 to 254
are equal to 160 to 190, and code 255 is equal to 126.

NOTE2: While using lowercase/uppercase mode (by pressing ` + SHIFT), be aware
that:

• The uppercase letters in region 65-90 of the above table are replaced with
lowercase letters.

• The graphical characters in region 97-122 of the above table are replaced with
uppercase letters.

• PETSCII’s lowercase (65-90) and uppercase (97-122) letters are in ASCII’s up-
percase (65-90) and lowercase (97-122) letter regions.

CONTROL CODES

Keyboard Control Function

Colours

CTRL + 1 to 8

Choose from the first range of
colours. More information on the
colours available is under the BASIC
BACKGROUND command on page
B-18.

` + 1 to 8 Choose from the second range of
colours.

CTRL + E Restores the colour of the cursor
back to the default (white).

Tabs

CTRL + Z

Tabs the cursor to the left. If there
are no tab positions remaining, the
cursor will remain at the start of the
line.

CTRL + I

Tabs the cursor to the right. If there
are no tab positions remaining, the
cursor will remain at the end of the
line.

C-5

Keyboard Control Function

CTRL + X

Sets or clears the current screen
column as a tab position. Use CTRL

+ Z and I to jump back and

forth to all positions set with X .

Movement

CTRL + Q Moves the cursor down one line at a
time. Equivalent to ↓ .

CTRL + J

Moves the cursor down a position. If
you are on a long line of BASIC
code that has extended to two lines,
then the cursor will move down two
rows to be on the next line.

CTRL +] Equivalent to → .

CTRL + T

Backspace the character
immediately to the left and to shift
all rightmost characters one position
to the left. This is equivalent to
INST
DEL .

CTRL + M Performs a carriage return,

equivalent to RETURN .

Word movement

CTRL + U

Moves the cursor back to the start
of the previous word. If there are no
words between the current cursor
position and the start of the line, the
cursor will move to the first column
of the current line.

CTRL + W

Advances the cursor forward to the
start of the next word. If there are
no words between the cursor and
the end of the line, the cursor will
move to the first column of the next
line.

C-6

Keyboard Control Function

Scrolling

CTRL + P Scroll BASIC listing down one line.
Equivalent to F9 .

CTRL + V Scroll BASIC listing up one line.
Equivalent to F11 .

CTRL + S Equivalent to NO
SCROLL .

Formatting

CTRL + B
Enables underline text mode. You
can disable underline mode by

pressing ESC , then O .

CTRL + O
Enables flashing text mode. You can
disable flashing mode by pressing
ESC , then O .

Casing

CTRL + N Changes the text case mode from
uppercase to lowercase.

CTRL + K
Locks the uppercase/lowercase
mode switch usually performed with
` + SHIFT .

CTRL + L
Enables the uppercase/lowercase
mode switch that is performed with

the ` + SHIFT .

Miscellaneous

CTRL + G Produces a bell tone.
CTRL + [Equivalent to pressing ESC .
CTRL + * Enters the Matrix Mode Debugger.

C-7

SHIFTED CODES

Keyboard Control Function

SHIFT + INST
DEL

Insert a character at the current
cursor position and move all
characters to the right by one
position.

SHIFT + HOME
Clear home, clear the entire screen,
and move the cursor to the home
position.

ESCAPE SEQUENCES
To perform an Escape Sequence, press and release ESC , then press one of the fol-
lowing keys to perform the sequence:

Key Sequence

Editor behaviour

ESC X Clears the screen and toggles
between 40 and 80-column modes.

ESC @
Clears a region of the screen,
starting from the current cursor
position, to the end of the screen.

ESC O Cancels the quote, reverse,
underline, and flash modes.

Scrolling

ESC V Scrolls the entire screen up one line.

ESC W Scrolls the entire screen down one
line.

C-8

Key Sequence

ESC L Enables scrolling when ↓ is
pressed at the bottom of the screen.

ESC M

Disables scrolling. When pressing
↓ at the bottom of the screen,

the cursor will move to the top of
the screen. However, when pressing
↑ at the top of the screen, the

cursor will remain on the first line.

Insertion and deletion

ESC I
Inserts an empty line at the current
cursor position and moves all
subsequent lines down one position.

ESC D
Deletes the current line and moves
lines below the cursor up one
position.

ESC P Erases all characters from the cursor
to the start of the current line.

ESC Q Erases all characters from the cursor
to the end of the current line.

Movement

ESC J Moves the cursor to the start of the
current line.

ESC K
Moves the cursor to the last
non-whitespace character on the
current line.

ESC ↑

Saves the current cursor position.

Use ESC ← (next to 1) to
move it back to the saved position.
Note that the ↑ used here is next

to RESTORE .

C-9

Key Sequence

ESC ←

Restores the cursor position to the
position stored via a prior a press of

the ESC ↑ (next to RESTORE) key

sequence. Note that the ← used

here is next to 1 .

Windowing

ESC T

Sets the top-left corner of the
windowed area. All typed
characters and screen activity will
be restricted to the area. Also see
ESC B . Windowed mode can be

disabled by pressing CLR
HOME twice.

ESC B

Sets the bottom right corner of the
windowed area. All typed
characters and screen activity will
be restricted to the area. Also see
ESC T . Windowed mode can be

disabled by pressing CLR
HOME twice.

Cursor behaviour

ESC A

Enables auto-insert mode. Any keys
pressed will be inserted at the
current cursor position, shifting all
characters on the current line after
the cursor to the right by one
position.

ESC C Disables auto-insert mode, reverting
back to overwrite mode.

ESC E Sets the cursor to non-flashing
mode.

ESC F Sets the cursor to regular flashing
mode.

Bell behaviour

C-10

Key Sequence

ESC G Enables the bell which can be
sounded using CTRL and G .

ESC H Disable the bell so that pressing
CTRL and G will have no effect.

Colours

ESC S

Switches the VIC-IV to colour range
16-31. These colours can be
accessed with CTRL and keys 1

to 8 or ` and keys 1 to

8 .

ESC U

Switches the VIC-IV to colour range
0-15. These colours can be
accessed with CTRL and keys 1

to 8 or ` and keys 1 to

8 .

Tabs

ESC Y Set the default tab stops (every 8
spaces) for the entire screen.

ESC Z
Clears all tab stops. Any tabbing

with CTRL and I will move the
cursor to the end of the line.

C-11

C-12

APPENDIX D
The MEGA65 Keyboard

• Hardware Accelerated Keyboard Scanning

• Keyboard Theory of Operation

• C65 Keyboard Matrix

• Synthetic Key Events

• Keyboard LED Control

• Native Keyboard Matrix

D-2

The MEGA65 has a full mechanical keyboard which is compatible with the C65 and
C64 keyboards, and features four distinct cursor keys which work in both C64 and
C65-mode, as well as eleven new C65 keys that normally work only in C65-mode.

HARDWARE ACCELERATED KEYBOARD
SCANNING
To make use of the new extended keyboard easier, the MEGA65 features a hardware
accelerated keyboard scan circuit, that provides ASCII (not PETSCII!) codes for keys
and key-combinations. This makes it very simple to use the full capabilities of the
MEGA65’s keyboard, including the entry of ASCII symbols such as {, _ and |, which are
not possible to type on a normal C64 and C128 keyboards.

The hardware accelerated keyboard scanner has a buffer of 3 keys, which helps to
make it easier to read from the keyboard without having check it too regularly. Fur-
ther, the hardware acclerated keyboard scanner supports most Latin-1 code-page
characters, allowing the entry of many accented characters. These keys are entered

by holding down ` and pressing other keys or key-combinations. The use of ASCII
or Latin-1 symbols not present in the PETSCII character set requires the use of a font
that contains these symbols, and software which supports them.

The hardware accelerated keyboard scanner is very simple to use: First, make sure
that you have the MEGA65 I/O context activated, then read memory location $D610
(decimal 54800). If the register contains zero, no key has been pressed. Otherwise
the value will be the ASCII code of the most recent key or key-combination that has
been pressed. Reading $D610 again will continue to read the same value until you
POKE any value into $D610. This clears the key from the input buffer.

The hardware accelerated keyboard scanner also provides a register that indicates
which of the modifier keys are currently being held down. This is accessed via the
read-only register $D611 (decimal 54801):

Bit 0 Right SHIFT

Bit 1 Left SHIFT

Bit 2 CTRL

Bit 3 `

Bit 4 ALT

Bit 5 NO
SCROLL

Bit 6 CAPS
LOCK

Bit 7 Reserved

D-3

Note that the hardware accelerated keyboard scanner operates independently of the
C64 or C65 KERNAL keyboard scanning routines. That is, the KERNAL will still have
any keys that you have entered buffered in the normal way. For assembly language
programs the easiest solution to this is to disable interrupts via the SEI instruction. This
prevents the KERNAL keyboard scanner from running.

Latin-1 Keyboard Map
KEYBOARD THEORY OF OPERATION
The MEGA65 keyboard is a full mechanical keyboard, constructed as a matrix. Every
key switch is fitted with a diode, which allows the keyboard hardware to detect when
any combination of keys are pressed at the same time. This matrix is scanned by the
firmware in the CPLD chip on the keyboard PCB many thousands of times per second.
The matrix arrangement of the MEGA65 keyboard does not use the C65 matrix layout.

Instead, the CPLD also sorts the natural matrix of the keyboard into the C65 key-
board matrix order, and transmits this serially via the keyboard cable to the MEGA65
mainboard. The MEGA65 core reads this serial data and uses it to reconstruct a C65-
compatible virtual keyboard in the FPGA. This virtual keyboard also takes input from the
on-screen-keyboard, synthetic keyboard injection mechanism and/or other keyboard
input sources depending on the MEGA65 model.

The end-to-end latency of the keyboard is less than one milli-second.

C65 KEYBOARD MATRIX
The MEGA65 keyboard presents to legacy software as a C65-compatible keyboard.
In this mode all keys are available for standard PETSCII scanning as per normal. There
is also a hardware accelerated mechanism for detecting arbitrary combinations of
keys that are held down. This is via $D614 (decimal 54804). Writing a value between
0 and 8 to this register selects the corresponding row of the C65 keyboard matrix,
which can then be read back from $D613. If a bit is zero, then it means that the key
is being pressed. If the bit is one, then the key is not being pressed.

The left and up cursor keys are special, because they logically press cursor right or
down, and the right shift key. To be able to differentiate between these two situations,
you can read $D60F: Bit 0 is the state of the left cursor key and bit 1 is the state of
the up cursor key.

The C65 keyboard matrix layout is as follows:

D-4

0 1 2 3 4 5 6 7 8

0 INST
DEL 3 5 7 9 + £ 1 NO

SCROLL

1 RETURN W R Y I P * ← TAB

2 → A D G J L ; CTRL ALT

3 F7 4 6 8 0 - CLR
HOME 2 HELP

4 F1 Z C B M . SHIFT
right SPC F9

5 F3 S F H K : = ` F11

6 F5 E T U O @ ↑ Q F13

7 ↓ SHIFT
left X V N , / RUN

STOP
ESC

Note that the keyboard matrix is identical to the C64 keyboard matrix, except for the
addition of one extra column on the right-hand side. The cursor left and up keys on
the MEGA65 and C65 are implemented as cursor right and down, but with the right

shift key applied. This enables them to work in C64-mode. CAPS
LOCK is not part of the

matrix, but has its own dedicated line. Its status can be read from bit 6 of register
$D611 (decimal 54801):

The numbers across the top indicate the columns of the matrix, and the numbers down
the left indicate the rows. The unique scan code of a key is calculated by multiplying

the column by eight, and adding the row. For example, CLR
HOME is in column 6 and row

3. Thus its scan code is 6× 8 + 3 = 51.

SYNTHETIC KEY EVENTS
The MEGA65 keyboard interface logic allows the use of a variety of keyboard types
and alternatives. This is partly to cater for the early development on general purpose
FPGA boards, the MEGAphone with its touch interface, and the desktop versions of
the MEGA65 architecture. The depressing of up to 3 three keys can be simulated via
the registers $D615 – $D617 (decimal 54,805 – 54,807). By setting the lower 7 bits
of these registers to any C65 keyboard scan code, the MEGA65 will behave as though

that key is being held down. RESTORE exists outside of the keyboard matrix, as on the

C64. To simulate holding RESTORE down, write $52 (ASCII code for a capital R), and to

simulate a quick tap of the RESTORE , write $72 (ASCII code for a lowercase R). Another
value must be written after the $72 value has been written, if you wish to simulate

multiple presses of RESTORE .

D-5

To release a key, write $7F (decimal 127) to the register containing the active key
press. For example, to simulate briefly pressing the * key, the following could be used:

POKE DEC("D615"),6*8+1:FORI=1TO100:NEXT:POKE DEC("D615"),127

The FOR loop provides a suitable delay to simulate holding the key for a short time.
All statements should be on a single line like this, if entered directly into the BASIC
interpreter, because otherwise the MEGA65 will continue to act as though the * key
is being held down, making it rather difficult to enter the other commands!

KEYBOARD LED CONTROL
The LEDs on the MEGA65’s keyboard are normally controlled automatically by the sys-
tem. However, it is also possible to place them under user control. This is activated
by setting bit 7 (decimal 128) of $D61D (decimal 54813). The lower bits indicate
which keyboard LED to set. Values 0 through 11 correspond to the red, green and
blue channels of the four LEDs. The table below shows the specific values:

0 left-half of DRIVE LED, RED

1 left-half of DRIVE LED, GREEN

2 left-half of DRIVE LED, BLUE

3 right-half of DRIVE LED, RED

4 right-half of DRIVE LED, GREEN

5 right-half of DRIVE LED, BLUE

6 left-half of POWER LED, RED

7 left-half of POWER LED, GREEN

8 left-half of POWER LED, BLUE

9 right-half of POWER LED, RED

10 right-half of POWER LED, GREEN

11 right-half of POWER LED, BLUE

Register $D61E (decimal 54814) is used to specify the intensity that should be given
to a specific LED (value between 0 and 255).

Note that whatever value is in $D61E gets written to whatever register is currently
selected in $D61D. Therefore to safely change the intensity of one specific LED en-

D-6

sure $D61D is set to 255 first. This prevents affecting another LED when we set the
intended intensity value into $D61E. Now select the target LED by setting $D61D to
128 + x, where x is a value from the table above. Hold the $D61D, $D61E configura-
tion for approximately one millisecond to give the keyboard logic enough time to pick
up the new intensity value for the selected LED.

To return the keyboard LEDs to hardware control, clear bit 7 of $D61D.

For example to pulse the keyboard LEDs red and blue, the following program could be
used:

10 REM ENABLE SOFTWARE CONTROL OF LEDS

20 POKEDEC("D61D"),128

30 REM SET ALL LEDS TO OFF

40 POKEDEC("D61E"),0

50 FORI=0TO11:POKEDEC("D61D"),128+I:NEXT

60 REM SELECT RED CHANNEL OF RIGHT MOST LED

70 POKEDEC("D61D"),128

80 REM CYCLE FROM BLACK TO RED AND BACK

90 FORI=0TO255:POKEDEC("D61E"),I:NEXT

100 FORI=255TO0STEP-1:POKEDEC("D61E"),I:NEXT

110 REM SELECT BLUE CHANNEL OF LEFT MOST LED

120 POKEDEC("D61D"),128+8

130 REM CYCLE FRO BLACK TO BLUE AND BACK

140 FORI=0TO255:POKEDEC("D61E"),I:NEXT

150 FORI=255TO0STEP-1:POKEDEC("D61E"),I:NEXT

160 GOTO70

NATIVE KEYBOARD MATRIX
The native keyboard matrix is accessible only from the CPLD on the MEGA65’s key-
board. If you are programming the MEGA65 computer, you should not need to use
this.

0 F5

1 9

2 I

3 K

4 <

5 INST
DEL

6 CLR
HOME

D-7

7 O

8 F3

9 8

10 U

11 J

12 M

13 →

14 £

15 =

16 F1

17 7

18 Y

19 H

20 N

21 ↓

22 -

23 ;

24 Reserved

25 6

26 T

27 G

28 B

29 ← (cursor left)

30 +

31 :

32 NO
SCROLL

33 5

34 R

35 F

36 V

37 SPACE

38 0

39 L

40 CAPS
LOCK

41 4

42 E

43 D

44 C

45 Reserved

46 HELP

47 RETURN

48 ALT

49 3

50 W

51 S

52 X

53 ↑ (cursor up)

54 F13

55 ↑ (next to *)

56 ESC

57 2

58 Q

59 A

60 Z

61 right SHIFT

D-8

62 F11

63 *

64 Reserved

65 1

66 Reserved

67 Reserved

68 left SHIFT and SHIFT
LOCK

69 /

70 F9

71 @

72 RUN
STOP

73 ← (next to 1)

74 TAB

75 CTRL

76 `

77 >

78 F7

79 P

D-9

D-10

APPENDIX E
Decimal, Binary and

Hexadecimal
• Numbers

• Notations and Bases

• Operations

• Signed and Unsigned Numbers

• Bit-wise Logical Operators

• Converting Numbers

E-2

NUMBERS
Simple computer programs, such as most of the introductory BASIC programs in this
book, do not require an understanding of mathematics or much knowledge about the
inner workings of the computer. This is because BASIC is considered a high-level pro-
gramming language. It lets us program the computer somewhat indirectly, yet still
gives us control over the computer’s features. Most of the time, we don’t need to con-
cern ourselves with the computer’s internal architecture, which is why BASIC is user
friendly and accessible.

As you acquire deeper knowledge and become more experienced, you will often want
to instruct the computer to perform complex or specialised tasks that differ from the
examples given in this book. Perhaps for reasons of efficiency, you may also want to
exercise direct and precise control over the contents of the computer’s memory. This
is especially true for applications that deal with advanced graphics and sound. Such
operations are closer to the hardware and are therefore considered low-level. Some
simple mathematical knowledge is required to be able to use these low-level features
effectively.

The collective position of the tiny switches inside the computer—whether each switch
is on or off—is the state of the computer. It is natural to associate numerical concepts
with this state. Numbers let us understand and manipulate the internals of the machine
via logic and arithmetic operations. Numbers also let us encode the two essential and
important pieces of information that lie within every computer program: instructions
and data.

A program’s instructions tell a computer what to do and how to do it. For example, the
action of outputting a text string to the screen via the statement PRINT is an instruction.
The action of displaying a sprite and the action of changing the screen’s border colour
are instructions too. Behind the scenes, every instruction you give to the computer is
associated with one or more numbers (which, in turn, correspond to the tiny switches
inside the computer being switched on or off). Most of the time these instructions
won’t look like numbers to you. Instead, they might take the form of statements in
BASIC.

A program’s data consists of information. For example, the greeting “HELLOMEGA65!”
is PETSCII character data in the form of a text string. The graphical design of a sprite
might be pixel data in the form of a hero for a game. And the colour data of the
screen’s border might represent orange. Again, behind the scenes, every piece of
data you give to the computer is associated with one or more numbers. Data is some-
times given directly next to the statement to which it applies. This data is referred to
as a parameter or argument (such as when changing the screen colour with a BACK-
GROUND 1 statement). Data may also be given within the program via the BASIC
statement DATA which accepts a list of comma-separated values.

E-3

All such numbers—regardless of whether they represent instructions or data—reside in
the computer’s memory. Although the computer’s memory is highly structured, the com-
puter does not distinguish between instructions and data, nor does it have separate
areas of memory for each kind of information. Instead, both are stored in whichever
memory location is considered convenient. Whether a given memory location’s con-
tents is part of the program’s instructions or is part of the program’s data largely de-
pends on your viewpoint, the program being written and the needs of the programmer.

Although BASIC is a high-level language, it still provides statements that allow pro-
grammers to manipulate the computer’s memory efficiently. The statement PEEK lets
us read the information from a specified memory location: we can inspect the con-
tents of a memory address. The statement POKE lets us store information inside a
specified memory location: we can modify the contents of a memory address so that
it is set to a given value.

NOTATIONS AND BASES
We now take a look at numbers.

Numbers are ideas about quantity and magnitude. In order to manipulate numbers and
determine relationships between them, it’s important for them to have a unique form.
This brings us to the idea of the symbolic representation of numbers using a positional
notation. In this appendix we’ll restrict our discussion to whole numbers, which are
also called integers.

The decimal representation of numbers is the one with which you will be most com-
fortable since it is the one you were taught at school. Decimal notation uses the ten
Hindu-Arabic numerals 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and is thus referred to as a base
10 numeral system. As we shall see later, in order to express large numbers in decimal,
we use a positional system in which we juxtapose digits into columns to form a bigger
number.

For example, 53280 is a decimal number. Each such digit (0 to 9) in a decimal number
represents a multiple of some power of 10. When a BASIC statement (such as PEEK
or POKE) requires an integer as a parameter, that parameter is given in the decimal
form.

Although the decimal notation feels natural and comfortable for humans to use, mod-
ern computers, at their most fundamental level, use a different notation. This notation
is called binary. It is also referred to as a base 2 numeral system because it uses only
two Hindu-Arabic numerals: 0 and 1. Binary reflects the fact that each of the tiny
switches inside the computer must be in exactly one of two mutually exclusive states:
on or off. The number 0 is associated with off and the number 1 is associated with on.

E-4

Binary is the simplest notation that captures this idea. In order to express large num-
bers in binary, we use a positional system in which we juxtapose digits into columns to
form a bigger number and prefix it with a % sign.

For example, %1001 0110 is a binary number. Each such digit (0 or 1) in a binary
number represents a multiple of some power of 2.

We’ll see later how we can use special BASIC statements to manipulate the patterns
of ones and zeros present in a binary number to change the state of the switches
associated with it. Effectively, we can toggle individual switches on or off, as needed.

A third notation called hexadecimal is also often used. This is a base 16 numeral
system. Because it uses more than ten digits, we need to use some letters to represent
the extra digits. Hexadecimal uses the ten Hindu-Arabic digits 0 to 9 as well as the six
Latin alphabetic characters as “digits” (A, B, C, D, E and F) to represent the numbers
10 to 15. This gives a total of sixteen symbols for the numbers 0 to 15. To express a
large number in hexadecimal, we use a positional system in which we juxtapose digits
into columns to form a bigger number and prefix it with a $ sign.

For example, $E7 is a hexadecimal number. Each such digit (0 to 9 and A to F) in a
hexadecimal number represents a multiple of some power of 16.

Hexadecimal is not often used when programming in BASIC. It is more commonly used
when programming in low-level languages like machine code or assembly language.
It also appears in computer memory maps and its brevity makes it a useful notation,
so it is described here.

Always remember that decimal, binary and hexadecimal are just different notations
for numbers. A notation just changes the way the number is written (i.e., the way it
looks on paper or on the screen), but its intrinsic value remains unchanged. A notation
is essentially different ways of representing the same thing. The reason that we use
different notations is that each notation lends itself more naturally to a different task.

When using decimal, binary and hexadecimal for extended periods you may find it
handy to have a scientific pocket calculator with a programmer mode. Such cal-
culators can convert between bases with the press of a button. They can also add,
subtract, multiply and divide, and perform various bit-wise logical operations. See
Chapter/Appendix R on page R-3 as it contains a Base Conversion table for decimal,
binary, and hexadecimal for integers between 0 and 255.

The BASIC listing for this appendix is a utility program that converts individual numbers
into different bases. It can also convert multiple numbers within a specified range.

Although these concepts might be new now, with some practice they’ll soon seem like
second nature. We’ll look at ways of expressing numbers in more detail. Later, we’ll
also investigate the various operations that we can perform on such numbers.

E-5

Decimal
When representing integers using decimal notation, each column in the number is for a
different power of 10. The rightmost position represents the number of units (because
100 = 1) and each column to the left of it is 10 times larger than the column before
it. The rightmost column is called the units column. Columns to the left of it are
labelled tens (because 101 = 10), hundreds (because 102 = 100), thousands (because
103 = 1000), and so on.

To give an example, the integer 53280 represents the total of 5 lots of 10000, 3 lots
of 1000, 2 lots of 100, 8 lots of 10 and 0 units. This can be seen more clearly if we
break the integer up into distinct parts, by column.

Since

53280 = 50000 + 3000 + 200 + 80 + 0

we can present this as a table with the sum of each column at the bottom.

TEN THOUSANDS THOUSANDS HUNDREDS TENS UNITS
104 = 10000 103 = 1000 102 = 100 101 = 10 100 = 1

5 0 0 0 0
3 0 0 0

2 0 0
8 0

0
5 3 2 8 0

Another way of stating this is to write the expression using multiples of powers of 10.

53280 = (5× 104) + (3× 103) + (2× 102) + (8× 101) + (0× 100)

Alternatively

53280 = (5× 10000) + (3× 1000) + (2× 100) + (8× 10) + (0× 1)

We now introduce some useful terminology that is associated with decimal numbers.

The rightmost digit of a decimal number is called the least significant digit, because,
being the smallest multiplier of a power of 10, it contributes the least to the number’s
magnitude. Each digit to the left of this digit has increasing significance. The leftmost
(non-zero) digit of the decimal number is called the most significant digit, because,
being the largest multiplier of a power of 10, it contributes the most to the number’s
magnitude.

For example, in the decimal number 53280, the digit 0 is the least significant digit
and the digit 5 is the most significant digit.

E-6

A decimal number a ism orders of magnitude greater than the decimal number b if a =
b×(10m). For example, 50000 is three orders of magnitude greater than 50, because
it has three more zeros. This terminology can be useful when making comparisons
between numbers or when comparing the time efficiency or space efficiency of two
programs with respect to the sizes of the given inputs.

Note that unlike binary (which uses a conventional % prefix) and hexadecimal (which
uses a conventional $ prefix), decimal numbers are given no special prefix. In some
textbooks you might see such numbers with a subscript instead. So decimal numbers
will have a sub-scripted 10, binary numbers will have a sub-scripted 2, and hexadec-
imal numbers will have a sub-scripted 16.

Another useful concept is the idea of signed and unsigned decimal integers.

A signed decimal integer can be positive or negative or zero. To represent a signed
decimal integer, we prefix it with either a + sign or a – sign. (By convention, zero,
which is neither positive nor negative, is given the + sign.)

If, on the other hand, a decimal integer is unsigned it must be either zero or positive
and does not have a negative representation. This can be illustrated with the BASIC
statements PEEK and POKE. When we use PEEK to return the value contained within a
memory location, we get back an unsigned decimal number. For example, the state-
ment PRINT (PEEK (49152)) outputs the contents of memory location 49152 to the
screen as an unsigned decimal number. Note that the memory address that we gave
to PEEK is itself an unsigned integer. When we use POKE to store a value inside a
memory location, both the memory address and the value to store inside it are given
as unsigned integers. For example, the statement POKE 49152, 128 stores the un-
signed decimal integer 128 into the memory address given by the unsigned decimal
integer 49152.

Each memory location in the MEGA65 can store a decimal integer between 0 and
255. This corresponds to the smallest and largest decimal integers that can be repre-
sented using eight binary digits (eight bits). Also, the memory addresses are decimal
integers between 0 and 65535. This corresponds to the smallest and largest decimal
integers that can be represented using sixteen binary digits (sixteen bits).

Note that the largest number expressible using d decimal digits is 10d−1. (This number
will have d nines in its representation.)

Binary
Binary notation uses powers of 2 (instead of 10 which is for decimal). The rightmost
position represents the number of units (because 20 = 1) and each column to the left
of it is 2 times larger than the column before it. Columns to the left of the rightmost

E-7

column are the twos column (because 21 = 2), the fours column (because 22 = 4), the
eights column (because 23 = 8), and so on.

As an example, the integer %1101 0011 uses exactly eight binary digits and repre-
sents the total of 1 lot of 128, 1 lot of 64, 0 lots of 32, 1 lot of 16, 0 lots of 8, 0 lots
of 4, 1 lot of 2 and 1 unit.

We can break this integer up into distinct parts, by column.

Since

%1101 0011 = %1000 0000 + %100 0000 + %00 0000 + %1 0000 + %0000 + %000 + %10
+ %1

we can present this as a table with the sum of each column at the bottom.

ONE
HUNDRED AND SIXTY- THIRTY-

TWENTY-EIGHTS FOURS TWOS SIXTEENS EIGHTS FOURS TWOS UNITS
27 = 128 26 = 64 25 = 32 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0

0 0 0 0 0 0
1 0 0 0 0

0 0 0 0
0 0 0

1 0
1

1 1 0 1 0 0 1 1
Another way of stating this is to write the expression in decimal, using multiples of
powers of 2.

%11010011 = (1×27)+(1×26)+(0×25)+(1×24)+(0×23)+(0×22)+(1×21)+(1×20)

Alternatively

%11010011 = (1×128)+(1×64)+(0×32)+(1×16)+(0×8)+(0×4)+(1×2)+(1×1)

which is the same as writing

%11010011 = 128 + 64 + 16 + 2 + 1

Binary has terminology of its own. Each binary digit in a binary number is called a bit.
In an 8-bit number the bits are numbered consecutively with the least significant (i.e.,
rightmost) bit as bit 0 and the most significant (i.e., leftmost) bit as bit 7. In a 16-bit
number the most significant bit is bit 15. A bit is said to be set if it equals 1. A bit is

E-8

said to be clear if it equals 0. When a particular bit has a special meaning attached
to it, we sometimes refer to it as a flag.

1 1 0 1 0 0 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

As mentioned earlier, each memory location can store an integer between 0 and 255.
The minimum corresponds to %0000 0000 and the maximum corresponds to %1111
1111, which are the smallest and largest numbers that can be represented using ex-
actly eight bits. The memory addresses use 16 bits. The smallest memory address,
represented in exactly sixteen bits, is %0000 0000 0000 0000 and this corresponds
to the smallest 16-bit number. Likewise, the largest memory address, represented in
exactly sixteen bits, is %1111 1111 1111 1111 and this corresponds to the largest
16-bit number.

It is often convenient to refer to groups of bits by different names. For example, eight
bits make a byte and 1024 bytes make a kilobyte. Half a byte is called a nibble. See
Chapter/Appendix R on page R-3 for the Units of Storage table for further information.

Note that the largest number expressible using d binary digits is (in decimal) 2d − 1.
(This number will have d ones in its representation.)

Hexadecimal
Hexadecimal notation uses powers of 16. Each of the sixteen hexadecimal numerals
has an associated value in decimal.

E-9

Hexadecimal Decimal
Numeral Equivalent

$0 0
$1 1
$2 2
$3 3
$4 4
$5 5
$6 6
$7 7
$8 8
$9 9
$A 10
$B 11
$C 12
$D 13
$E 14
$F 15

The rightmost position in a hexadecimal number represents the number of ones (since
160 = 1). Each column to the left of this digit is 16 times larger than the column before
it. Columns to the left of the rightmost column are the 16-column (since 161 = 16),
the 256-column (since 162 = 256), the 4096-column (since 163 = 4096), and so on.

As an example, the integer $A3F2 uses exactly four hexadecimal digits and represents
the total of 10 lots of 4096 (because $A = 10), 3 lots of 256 (because $3 = 3), 15
lots of 16 (because $F = 15) and 2 units (because $2 = 2). We can break this integer
up into distinct parts, by column.

Since

$A3F2 = $A000 + $300 + $F0 + $2

we can present this as a table with the sum of each column at the bottom.

FOUR THOUSAND TWO HUNDRED
AND NINETY-SIXES AND FIFTY-SIXES SIXTEENS UNITS

163 = 4096 162 = 256 161 = 16 160 = 1

A 0 0 0
3 0 0

F 0
2

A 3 F 2

E-10

Another way of stating this is to write the expression in decimal, using multiples of
powers of 16.

$A3F2 = (10× 163) + (3× 162) + (15× 161) + (2× 160)

Alternatively

$A3F2 = (10× 4096) + (3× 256) + (15× 16) + (2× 1)

which is the same as writing

$A3F2 = 40960 + 768 + 240 + 2

Again, like binary and decimal, the rightmost digit is the least significant and the left-
most digit is the most significant.

Each memory location can store an integer between 0 and 255, and this corresponds
to the hexadecimal numbers $00 and $FF. The hexadecimal number $FFFF corre-
sponds to 65535—the largest 16-bit number.

Hexadecimal notation is often more convenient to use and manipulate than binary.
Binary numbers consist of a longer sequence of ones and zeros, while hexadecimal is
much shorter and more compact. This is because one hexadecimal digit is equal to
exactly four bits. So a two-digit hexadecimal number comprises of eight bits with the
low nibble equalling the right digit and the high nibble equalling the left digit.

Note that the largest number expressible using d hexadecimal digits is (in decimal)
16d − 1. (This number will have d $F symbols in its representation.)

OPERATIONS
In this section we’ll take a tour of some familiar operations like counting and arithmetic,
and we’ll see how they apply to numbers written in binary and hexadecimal.

Then we’ll take a look at various logical operations using logic gates. These operations
are easy to understand. They’re also very important when it comes to writing programs
that have extensive numeric, graphic or sound capabilities.

Counting
If we consider carefully the process of counting in decimal, this will help us to under-
stand how counting works when using binary and hexadecimal.

Let’s suppose that we’re counting in decimal and that we’re starting at 0. Recall that
the list of numerals for decimal is (in order) 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Notice that

E-11

when we add 1 to 0 we obtain 1, and when we add 1 to 1 we obtain 2. We can
continue in this manner, always adding 1:

0 + 1 = 1
1 + 1 = 2
2 + 1 = 3
3 + 1 = 4
4 + 1 = 5
5 + 1 = 6
6 + 1 = 7
7 + 1 = 8
8 + 1 = 9

Since 9 is the highest numeral in our list of numerals for decimal, we need some way
of handling the following special addition: 9+ 1. The answer is that we can reuse our
old numerals all over again. In this important step, we reset the units column back to
0 and (at the same time) add 1 to the tens column. Since the tens column contained
a 0, this gives us 9 + 1 = 10. We say we “carried” the 1 over to the tens column while
the units column cycled back to 0.

Using this technique, we can count as high as we like. The principle of counting for
binary and hexadecimal is very much same, except instead of using ten symbols, we
get to use two symbols and sixteen symbols, respectively.

Let’s take a look at counting in binary. Recall that the list of numerals for binary is (in
order) just 0 and 1. So, if we begin counting at %0 and then add %1, we obtain %1
as the result:

%0 + %1 = %1

Now, the sum %1+%1 will cause us to perform the analogous step: we reset the units
column back to zero and (at the same time) add %1 to the twos column. Since the
twos column contained a %0, this gives us %1 + %1 = %10. We say we “carried” the
%1 over to the twos column while the units column cycled back to %0. If we continue
in this manner we can count higher.

%1 + %1 = %10
%10 + %1 = %11
%11 + %1 = %100
%100 + %1 = %101
%101 + %1 = %110
%110 + %1 = %111
%111 + %1 = %1000

E-12

Now we’ll look at counting in hexadecimal. The list of numerals for hexadecimal is (in
order) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. If we begin counting at $0 and
repeatedly add $1 we obtain:

$0 + $1 = $1
$1 + $1 = $2
$2 + $1 = $3
$3 + $1 = $4
$4 + $1 = $5
$5 + $1 = $6
$6 + $1 = $7
$7 + $1 = $8
$8 + $1 = $9
$9 + $1 = $A
$A + $1 = $B
$B + $1 = $C
$C + $1 = $D
$D + $1 = $E
$E + $1 = $F

Now, when we compute $F + $1 we must reset the units column back to $0 and add
$1 to the sixteens column as that number is “carried”.

$F + $1 = $10

Again, this process allows us to count as high as we like.

Arithmetic
The standard arithmetic operations of addition, subtraction, multiplication and division
are all possible using binary and hexadecimal.

Addition is done in the same way that addition is done using decimal, except that
we use base 2 or base 16 as appropriate. Consider the following example for the
addition of two binary numbers.

% 1 1 0
+ % 1 1 1
% 1 1 0 1

We obtain the result by first adding the units columns of both numbers. This gives us %0
+ %1 = %1 with nothing to carry into the next column. Then we add the twos columns
of both numbers: %1 + %1 = %0 with a %1 to carry into the next column. We then
add the fours columns (plus the carry) giving (%1 + %1) + %1 = %1 with a %1 to carry

E-13

into the next column. Last of all are the eights columns. Because these are effectively
both zero we only concern ourselves with the carry which is %1. So (%0 + %0) + %1 =
%1. Thus, %1101 is the sum.

Next is an example for the addition of two hexadecimal numbers.

$ 7 D
+ $ 6 9

$ E 6

We begin by adding the units columns of both numbers. This gives us $D + $9 = $6
with a $1 to carry into the next column. We then add the sixteens columns (plus the
carry) giving ($7 + $6) + $1 = $E with nothing to carry and so $E6 is the sum.

We now look at subtraction. As you might suspect, binary and hexadecimal subtraction
follows a similar process to that of subtraction for decimal integers.

Consider the following subtraction of two binary numbers.

% 1 0 1 1
- % 1 1 0

% 1 0 1

Starting in the units columns we perform the subtraction %1 - %0 = %1. Next, in the
twos columns we perform another subtraction %1 - %1 = %0. Last of all we subtract
the fours columns. This time, because %0 is less than %1, we’ll need to borrow a %1
from the eights column of the top number to make the subtraction. Thus we compute
%10 - %1 = %1 and deduct %1 from the eights column. The eights columns are now
both zeros. Since %0 - %0 = %0 and because this is the leading digit of the result we
can drop it from the final answer. This gives %101 as the result.

Let’s now look at the subtraction of two hexadecimal numbers.

$ 3 D
- $ 1 F

$ 1 E

To perform this subtraction we compute the difference of the units columns. In order
to do this, we note that because $D is less than $F we will need to borrow $1 from the
sixteens column of the top number to make the subtraction. Thus, we compute $1D -
$F = $E and also compute $3 - $1 = $2 in the sixteens column for the for the $1 that
we just borrowed. Next, we compute the difference of the sixteens column as $2 - $1
= $1. This gives us a final answer of $1E.

We won’t give in depth examples of multiplication and division for binary and hex-
adecimal notation. Suffice to say that principles parallel those for the decimal system.
Multiplication is repeated addition and division is repeated subtraction.

E-14

We will, however, point out a special type of multiplication and division for both binary
and hexadecimal. This is particularly useful for manipulating binary and hexadecimal
numbers.

For binary, multiplication by two is simple—just shift all bits to the left by one position
and fill in the least significant bit with a %0. Division by two is simple too—just shift all
bits to the right by one position and fill in the most significant bit with a %0. By doing
these repeatedly we can multiply and divide by powers of two with ease.

Thus the binary number %111, when multiplied by eight has three extra zeros on the
end of it and is equal to %111000. (Recall that 23 = 8.) And the binary number
%10100, when divided by four has two less digits and equals %101. (Recall that
22 = 4.)

These are called left and right bit shifts. So if we say that we shift a number to the left
four bit positions, we really mean that we multiplied it by 24 = 16.

For hexadecimal, the situation is similar. Multiplication by sixteen is simple—just shift
all digits to the left by one position and fill in the rightmost digit with a $0. Division
by sixteen is simple too—just shift all digits to the right by one position. By doing this
repeatedly we can multiply and divide by powers of sixteen with ease.

Thus the hexadecimal number $F, when multiplied 256 has two extra zeros on the end
of it and is equal to $F00. (Recall that 162 = 256.) And the hexadecimal number $EA0,
when divided by sixteen has one less digit and equals $EA. (Recall that 161 = 16.)

Logic Gates
There exist several so-called logic gates. The fundamental ones are NOT, AND, OR
and XOR.

They let us set, clear and invert specific binary digits. For example, when dealing with
sprites, we might want to clear bit 6 (i.e., make it equal to 0) and set bit 1 (i.e., make
it equal to 1) at the same time for a particular graphics chip register. Certain logic
gates will, when used in combination, let us do this.

Learning how these logic gates work is very important because they are the key to
understanding how and why the computer executes programs as it does.

All logic gates accept one or more inputs and produce a single output. These inputs
and outputs are always single binary digits (i.e., they are 1-bit numbers).

The NOT gate is the only gate that accepts exactly one bit as input. All other gates—
AND, OR, and XOR—accept exactly two bits as input. All gates produce exactly one
output, and that output is a single bit.

E-15

First, let’s take a look at the simplest gate, the NOT gate.

The NOT gate behaves by inverting the input bit and returning this resulting bit as its
output. This is summarised in the following table.

INPUT X OUTPUT
0 1
1 0

We write NOT x where x is the input bit.

Next, we take a look at the AND gate.

As mentioned earlier, the AND gate accepts two bits as input and produces a single
bit as output. The AND gate behaves in the following manner. Whenever both input
bits are equal to 1 the result of the output bit is 1. For all other inputs the result of the
output bit is 0. This is summarised in the following table.

INPUT X INPUT Y OUTPUT
0 0 0
0 1 0
1 0 0
1 1 1

We write x AND y where x and y are the input bits.

Next, we take a look at the OR gate.

The OR gate accepts two bits as input and produces a single bit as output. The OR
gate behaves in the following manner. Whenever both input bits are equal to 0 the
result is 0. For all other inputs the result of the output bit is 1. This is summarised in
the following table.

INPUT X INPUT Y OUTPUT
0 0 0
0 1 1
1 0 1
1 1 1

We write x OR y where x and y are the input bits.

Last of all we look at the XOR gate.

The XOR gate accepts two bits as input and produces a single bit as output. The XOR
gate behaves in the following manner. Whenever both input bits are equal in value the
output bit is 0. Otherwise, both input bits are unequal in value and the output bit is 1.
This is summarised in the following table.

E-16

INPUT X INPUT Y OUTPUT
0 0 0
0 1 1
1 0 1
1 1 0

We write x XOR y where x and y are the input bits.

Note that there do exist some other gates. They are easy to construct.

• NAND gate: this is an AND gate followed by a NOT gate

• NOR gate: this is an OR gate followed by a NOT gate

• XNOR gate: this is an XOR gate followed by a NOT gate

SIGNED AND UNSIGNED NUMBERS
So far we’ve largely focused on unsigned integers. Unsigned integer have no positive
or negative sign. They are always assumed to be positive. (For this purpose, zero is
regarded as positive.)

Signed numbers, as mentioned earlier, can have a positive sign or a negative sign.

Signed numbers are represented by treating the most significant bit as a sign bit. This
bit cannot be used for anything else. If the most significant bit is 0 then the result is
interpreted as having a positive sign. Otherwise, the most significant bit is 1, and the
result is interpreted as having a negative sign.

A signed 8-bit number can represent positive-sign numbers between 0 and 127, and
negative-sign numbers between -1 and -128.

A signed 16-bit number can represent positive-sign numbers between 0 and 32767,
and negative-sign numbers between -1 and -32768.

Reserving the most significant bit as the sign of the signed number effectively halves
the range of the available positive numbers (i.e., compared to unsigned numbers), with
the trade-off being that we gain an equal quantity of negative numbers instead.

To negate any signed number, every bit in the signed number must be inverted and then
%1must added to the result. Thus, negating %0000 0101 (which is the signed number
+5) gives %1111 1011 (which is the signed number -5). As expected, performing the
negation of this negative number gives us +5 again.

E-17

BIT-WISE LOGICAL OPERATORS
The BASIC statements NOT, AND, OR and XOR have functionality similar to that of the
logic gates that they are named after.

The NOT statement must be given a 16-bit signed decimal integer as a parameter. It
returns a 16-bit signed decimal integer as a result.

In the following example, all sixteen bits of the signed decimal number +0 are equal to
0. The NOT statement inverts all sixteen bits as per the NOT gate. This sets all sixteen
bits. If we interpret the result as a signed decimal number, we obtain the answer of
-1.

PRINT (NOT 0)

-1

As expected, repeating the NOT statement on the parameter of -1 gets us back to
where we started, since all sixteen set bits become cleared.

PRINT (NOT -1)

0

The AND statement must be given two 16-bit signed decimal integers as parameters.
The second parameter is called the bit mask. The statement returns a 16-bit signed
decimal integer as a result, having changed each bit as per the AND gate.

In the following example, the number +253 is used as the first parameter. As a 16-bit
signed decimal integer, this is equivalent to the following number in binary: %0000
0000 1111 1101. The AND statement uses a bit mask as the second parameter with
a 16-bit signed decimal value of +239. In binary this is the number %0000 0000
1110 1110. If we use the AND logic gate table on corresponding pairs of bits, we
obtain the 16-bit signed decimal integer +237 (which is %0000 0000 1110 1100 in
binary).

PRINT (253 AND 239)

237

We can see this process more clearly in the following table.

% 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1
AND % 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0

% 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0

E-18

Notice that each bit in the top row passes through unchanged wherever there is a 1
in the mask bit below it. Otherwise the bit in that position gets cleared.

The OR statement must be given two 16-bit signed decimal integers as parameters.
The second parameter is called the bit mask. The statement returns a 16-bit signed
decimal integer as a result, having changed each bit as per the OR gate.

In the following example, the number +240 is used as the first parameter. As a 16-bit
signed decimal integer, this is equivalent to the following number in binary: %0000
0000 1111 0000. The OR statement uses a bit mask as the second parameter with a
16-bit signed decimal value of +19. In binary this is the number %0000 0000 0001
0011. If we use the OR logic gate table on corresponding pairs of bits, we obtain the
16-bit signed decimal integer +243 (which is %0000 0000 1111 0011 in binary).

PRINT (240 OR 19)

243

We can see this process more clearly in the following table.

% 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
OR % 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

% 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1

Notice that each bit in the top row passes through unchanged wherever there is a 0
in the mask bit below it. Otherwise the bit in that position gets set.

Next we look at the XOR statement. This statement must be given two 16-bit unsigned
decimal integers as parameters. The second parameter is called the bit mask. The
statement returns a 16-bit unsigned decimal integer as a result, having changed each
bit as per the XOR gate.

In the following example, the number 14091 is used as the first parameter. As a 16-bit
unsigned decimal integer, this is equivalent to the following number in binary: %0011
0111 0000 1011. The XOR statement uses a bit mask as the second parameter with
a 16-bit unsigned decimal value of 8653. In binary this is the number %0010 0001
1100 1101. If we use the XOR logic gate table on corresponding pairs of bits, we
obtain the 16-bit unsigned decimal integer 5830 (which is %0001 0110 1100 0110
in binary).

PRINT (XOR(14091,8653))

5830

We can see this process more clearly in the following table.

E-19

% 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1
XOR % 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1

% 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0

Notice that when the bits are equal the resulting bit is 0. Otherwise the resulting bit
is 1.

Much of the utility of these bit-wise logical operators comes through combining them
together into a compound statement. For example, the VIC II register to enable sprites
is memory address 53269. There are eight sprites (numbered 0 to 7) with each bit
corresponding to a sprite’s status. Now suppose we want to switch off sprite 5 and
switch on sprite 1, while leaving the statuses of the other sprites unchanged. We can
do this with the following BASIC statement which combines an AND statement with
an OR statement.

POKE 53269, (((PEEK(53269)) AND 223) OR 2)

The technique of using PEEK on a memory address and combining the result with bit-
wise logical operators, followed by a POKE to that same memory address is very com-
mon.

CONVERTING NUMBERS
The program below is written in BASIC. It does number conversion for you. Type it in
and save it under the name “CONVERT.BAS”.

To execute the program, type RUN and press RETURN .

The program presents you with a series of text menus. You may choose to convert
a single decimal, binary or hexadecimal number. Alternatively, you may choose to
convert a range of such numbers.

The program can convert numbers in the range of 0 to 65535.

E-20

10 REM ****************************

20 REM * *

30 REM * INTEGER BASE CONVERTER *

40 REM * *

50 REM ****************************

60 POKE 0,65: BORDER 6: BACKGROUND 6: FOREGROUND 1

70 DIM P(15)

80 E$ = "STARTING INTEGER MUST BE LESS THAN OR EQUAL TO ENDING INTEGER"

90 FOR N = 0 TO 15

100 : P(N) = 2 ^ N

110 NEXT N

120 REM *** OUTPUT MAIN MENU ***

130 PRINT CHR$(147)

140 PRINT: PRINT "INTEGER BASE CONVERTER"

150 L = 22: GOSUB 1930: PRINT L$

160 PRINT: PRINT "SELECT AN OPTION (S, M OR Q):": PRINT

170 PRINT "[S]{SPACE*2}SINGLE INTEGER CONVERSION"

180 PRINT "[M]{SPACE*2}MULTIPLE INTEGER CONVERSION"

190 PRINT "[Q]{SPACE*2}QUIT PROGRAM"

200 GET M$

210 IF (M$="S") THEN GOSUB 260: GOTO 140

220 IF (M$="M") THEN GOSUB 380: GOTO 140

230 IF (M$="Q") THEN END

240 GOTO 200

250 REM *** OUTPUT SINGLE CONVERSION MENU ***

260 PRINT: PRINT "{SPACE*2}SELECT AN OPTION (D, B, H OR R):": PRINT

270 PRINT "{SPACE*2}[D]{SPACE*2}CONVERT A DECIMAL INTEGER"

280 PRINT "{SPACE*2}[B]{SPACE*2}CONVERT A BINARY INTEGER"

290 PRINT "{SPACE*2}[H]{SPACE*2}CONVERT A HEXADECIMAL INTEGER"

300 PRINT "{SPACE*2}[R]{SPACE*2}RETURN TO TOP MENU"

310 GET M1$

320 IF (M1$="D") THEN GOSUB 500: GOTO 260

330 IF (M1$="B") THEN GOSUB 760: GOTO 260

340 IF (M1$="H") THEN GOSUB 810: GOTO 260

350 IF (M1$="R") THEN RETURN

360 GOTO 310

370 REM *** OUTPUT MULTIPLE CONVERSION MENU ***

380 PRINT: PRINT "{SPACE*2}SELECT AN OPTION (D, B, H OR R):": PRINT

390 PRINT "{SPACE*2}[D]{SPACE*2}CONVERT A RANGE OF DECIMAL INTEGERS"

400 PRINT "{SPACE*2}[B]{SPACE*2}CONVERT A RANGE OF BINARY INTEGERS"

410 PRINT "{SPACE*2}[H]{SPACE*2}CONVERT A RANGE OF HEXADECIMAL INTEGERS"

E-21

420 PRINT "{SPACE*2}[R]{SPACE*2}RETURN TO TOP MENU"

430 GET M2$

440 IF (M2$="D") THEN GOSUB 1280: GOTO 380

450 IF (M2$="B") THEN GOSUB 1670: GOTO 380

460 IF (M2$="H") THEN GOSUB 1800: GOTO 380

470 IF (M2$="R") THEN RETURN

480 GOTO 430

490 REM *** CONVERT SINGLE DECIMAL INTEGER ***

500 D$ = ""

510 PRINT: INPUT "ENTER DECIMAL INTEGER (UP TO 65535): ",D$

520 GOSUB 1030: REM VALIDATE DECIMAL INPUT

530 IF (V = 0) THEN GOTO 510

540 PRINT: PRINT " DEC";SPC(4);"BIN";SPC(19);"HEX"

550 L = 5: GOSUB 1930: L1$ = L$

560 L = 20: GOSUB 1930: L2$ = L$

570 PRINT SPC(1);L1$;SPC(2);L2$;SPC(2);L1$

580 FOREGROUND 7

590 B$ = ""

600 D1 = 0

610 IF (D < 256) THEN GOTO 660

620 D1 = INT(D / 256)

630 FOR N = 1 TO 8

640 : IF ((D1 AND P(8 - N)) > 0) THEN B$ = B$ + "1": ELSE B$ = B$ + "0"

650 NEXT N

660 IF (D < 256) THEN B$ = "%" + B$: ELSE B$ = "%" + B$ + " "

670 D2 = D - 256*D1

680 FOR N = 1 TO 8

690 : IF ((D2 AND P(8 - N)) > 0) THEN B$ = B$ + "1": ELSE B$ = B$ + "0"

700 NEXT N

710 H$ = HEX$(D)

720 IF (D < 256) THEN H$ = "{SPACE*2}$" + RIGHT$(H$,2): ELSE H$ = "$" + H$

730 IF (D < 256) THEN PRINT SPC(6 - LEN(D$)); D$;SPC(12) + MID$(B$,1,5) +

" " + MID$(B$,6,10); "{SPACE*2}" + H$: FOREGROUND 1: RETURN

740 PRINT SPC(6 - LEN(D$));D$;"{SPACE*2}" + MID$(B$,1,5) + " " + MID$(B$,6,4) +

MID$(B$,10,5) + " " + MID$(B$,15,4); "{SPACE*2}" + H$: FOREGROUND 1: RETURN

750 REM *** CONVERT SINGLE BINARY INTEGER ***

760 I$=""

770 PRINT: INPUT "ENTER BINARY INTEGER (UP TO 16 BITS): ",I$

780 GOSUB 1110: REM VALIDATE BINARY INPUT

790 IF (V = 0) THEN GOTO 760: ELSE GOTO 540

800 REM *** CONVERT SINGLE HEXADECIMAL INTEGER ***

E-22

810 H$=""

820 PRINT: INPUT "ENTER HEXADECIMAL INTEGER (UP TO 4 DIGITS): ",H$

830 GOSUB 1220: REM VALIDATE HEXADECIMAL INPUT

840 IF (V = 0) THEN GOTO 810: ELSE GOTO 540

850 REM *** VALIDATE DECIMAL INPUT STRING ***

860 FOR N = 1 TO LEN(D$)

870 : M = ASC(MID$(D$,N,1)) - ASC("0")

880 : IF ((M < 0) OR (M > 9)) THEN V = 0

890 NEXT N: RETURN

900 REM *** VALIDATE BINARY INPUT STRING ***

910 FOR N = 1 TO LEN(I$)

920 : M = ASC(MID$(I$,N,1)) - ASC("0")

930 : IF ((M < 0) OR (M > 1)) THEN V = 0

940 NEXT N: RETURN

950 REM *** VALIDATE HEXADECIMAL INPUT STRING ***

960 FOR N = 1 TO LEN(H$)

970 : M = ASC(MID$(H$,N,1)) - ASC("0")

980 : IF (NOT (((M >= 0) AND (M <= 9)) OR

((M >= 17) AND (M <= 22)))) THEN V = 0

990 NEXT N: RETURN

1000 REM *** OUTPUT ERROR MESSAGE ***

1010 FOREGROUND 2: PRINT: PRINT A$: FOREGROUND 1: RETURN

1020 REM *** VALIDATE DECIMAL INPUT ***

1030 V = 1: GOSUB 860: REM VALIDATE DECIMAL INPUT STRING

1040 IF (V = 0) THEN A$ = "INVALID DECIMAL NUMBER": GOSUB 1010

1050 IF (V = 1) THEN BEGIN

1060 : D = VAL(D$)

1070 : IF ((D < 0) OR (D > 65535)) THEN A$ = "DECIMAL NUMBER OUT OF RANGE":

GOSUB 1010: V = 0

1080 BEND

1090 RETURN

1100 REM *** VALIDATE BINARY INPUT ***

1110 V = 1: GOSUB 910: REM VALIDATE BINARY INPUT STRING

1120 IF (V = 0) THEN A$ = "INVALID BINARY NUMBER": GOSUB 1010: RETURN

1130 IF (LEN(I$) > 16) THEN A$ = "BINARY NUMBER OUT OF RANGE":

GOSUB 1010: V = 0 : RETURN

1140 IF (V = 1) THEN BEGIN

1150 : I = 0

1160 : FOR N = 1 TO LEN(I$)

1170 : I = I + VAL(MID$(I$,N,1)) * P(LEN(I$) - N)

1180 : NEXT N

E-23

1190 BEND

1200 D$ = STR$(I): D = I: RETURN

1210 REM *** VALIDATE HEXADECIMAL INPUT ***

1220 V = 1: GOSUB 960: REM VALIDATE HEXADECIMAL INPUT STRING

1230 IF (V = 0) THEN A$ = "INVALID HEXADECIMAL NUMBER": GOSUB 1010: RETURN

1240 IF (LEN(H$) > 4) THEN A$ = "HEXADECIMAL NUMBER OUT OF RANGE":

GOSUB 1010: V = 0: RETURN

1250 D = DEC(H$): D$ = STR$(D): H = D: RETURN

1260 RETURN

1270 REM *** CONVERT MULTIPLE DECIMAL INTEGERS ***

1280 DB$=""

1290 PRINT: INPUT "ENTER STARTING DECIMAL INTEGER (UP TO 65535): ", DB$

1300 D$=DB$: GOSUB 1030: D$="": REM VALIDATE DECIMAL INPUT

1310 IF (V = 0) THEN GOTO 1290

1320 DE$=""

1330 PRINT: INPUT "ENTER ENDING DECIMAL INTEGER (UP TO 65535): ", DE$

1340 D$=DE$: GOSUB 1030: D$="": REM VALIDATE DECIMAL INPUT

1350 IF (V = 0) THEN GOTO 1330

1360 DB=VAL(DB$): DE=VAL(DE$)

1370 IF (DE < DB) THEN A$ = E$: GOSUB 1010: GOTO 1280

1380 SC = 1: SM = INT(((DE - DB) / 36) + 1)

1390 D = DB

1400 FOR J = SC TO SM

1410 : PRINT CHR$(147) + "RANGE: " + DB$ + " TO " + DE$ + "{SPACE*10}SCREEN: "

+ STR$(J) + " OF " + STR$(SM)

1420 : PRINT: PRINT "DEC";SPC(4);"BIN";SPC(19);"HEX";SPC(8);"DEC";SPC(4);

"BIN";SPC(19);"HEX"

1430 L = 5: GOSUB 1930: L1$ = L$

1440 L = 20: GOSUB 1930: L2$ = L$

1450 : PRINT SPC(1);L1$;SPC(2);L2$;SPC(2);L1$;SPC(6);L1$;SPC(2);

L2$;SPC(2);L1$

1460 : FOR K = 0 TO 17

1470 : FOREGROUND (7 + MOD(K,2))

1480 : D$ = STR$(D): GOSUB 590: D = D + 1

1490 : IF (D > DE) THEN GOTO 1630

1500 : NEXT K

1510 : PRINT CHR$(19): PRINT: PRINT: PRINT

1520 : FOR K = 0 TO 17

1530 : FOREGROUND (7 + MOD(K,2))

1540 : D$ = STR$(D): PRINT TAB(40): GOSUB 590: D = D + 1

E-24

1550 : IF (D > DE) THEN GOTO 1630

1560 : NEXT K

1570 : FOREGROUND 1: PRINT: PRINT SPC(19);"PRESS X TO EXIT OR SPACEBAR TO CONTINUE..."

1580 : GET B$

1590 : IF B$="X" THEN RETURN

1600 : IF B$=" " THEN GOTO 1620

1610 : GOTO 1580

1620 NEXT J

1630 PRINT CHR$(19): FOR I = 1 TO 22: PRINT: NEXT I

1640 PRINT SPC(20); "COMPLETE. PRESS SPACEBAR TO CONTINUE..."

1650 GET B$: IF B$<>" " THEN GOTO 1650: ELSE RETURN

1660 REM *** CONVERT MULTIPLE BINARY INTEGERS ***

1670 IB$=""

1680 PRINT: INPUT "ENTER STARTING BINARY INTEGER (UP TO 16 BITS): ", IB$

1690 I$=IB$: GOSUB 1110: I$="": REM VALIDATE BINARY INPUT

1700 IF (V = 0) THEN GOTO 1680

1710 IB = I

1720 IE$=""

1730 PRINT: INPUT "ENTER ENDING BINARY INTEGER (UP TO 16 BITS): ", IE$

1740 I$=IE$: GOSUB 1110: I$="": REM VALIDATE BINARY INPUT

1750 IF (V = 0) THEN GOTO 1730

1760 IE = I

1770 IF (IE < IB) THEN A$ = E$: GOSUB 1010: GOTO 1670

1780 DB = IB: DE = IE: DB$ = STR$(IB): DE$ = STR$(IE): GOTO 1380

1790 REM *** CONVERT MULTIPLE HEXADECIMAL INTEGERS ***

1800 HB$=""

1810 PRINT: INPUT "ENTER STARTING HEXADECIMAL INTEGER (UP TO 4 DIGITS): ", HB$

1820 H$=HB$: GOSUB 1220: H$="": REM VALIDATE HEXADECIMAL INPUT

1830 IF (V = 0) THEN GOTO 1810

1840 HB = H

1850 HE$=""

1860 PRINT: INPUT "ENTER ENDING HEXADECIMAL INTEGER (UP TO 4 DIGITS): ", HE$

1870 H$=HE$: GOSUB 1220: H$="": REM VALIDATE HEXADECIMAL INPUT

1880 IF (V = 0) THEN GOTO 1860

1890 HE = H

1900 IF (HE < HB) THEN A$ = E$: GOSUB 1010: GOTO 1800

1910 DB = HB: DE = HE: DB$ = STR$(HB): DE$ = STR$(HE): GOTO 1380

1920 REM *** MAKE LINES ***

1930 L$=""

1940 FOR K = 1 TO L: L$ = L$ + "-": NEXT K

1950 RETURN

E-25

E-26

APPENDIX F
System Memory Map

• Introduction

• MEGA65 Native Memory Map

• $D000 – $DFFF I/O Personalities

• CPU Memory Banking

• C64/C65 ROM Emulation

F-2

INTRODUCTION
The MEGA65 computer has a large 28-bit address space, which allows it to address
up to 256MB of memory and memory-mapped devices. This memory map has several
different views, depending on which mode the computer is operating in. Broadly,
there are five main modes: (1) Hypervisor mode; (2) C64 compatibility mode; (3)
C65 compatibility mode; (4) UltiMAX compatibility mode; and (5) MEGA65-mode, or
one of the other modes, where the programmer has made use of MEGA65 enhanced
features.

It is important to understand that, unlike the C128, the C65 andMEGA65 allow access
to all enhanced features from C64-mode, if the programmer wishes to do so. This
means that while we frequently talk about “C64-mode,” “C65-mode” and “MEGA65-
mode,” these are simply terms of convenience for the MEGA65 with its memory map
(and sometimes other features) configured to provide an environment that matches
the appropriate mode. The heart of this is the MEGA65’s flexible memory map.

In this appendix, we will begin by describing the MEGA65’s native memory map, that
is, where all of the memory, I/O devices and other features appear in the 28-bit ad-
dress space. We will then explain how C64 and C65 compatible memory maps are
accessed from this 28-bit address space.

F-3

MEGA65 NATIVE MEMORY MAP

The First Sixteen 64KB Banks
The MEGA65 uses a similar memory map to that of the C65 for the first MB of memory,
i.e., 16 memory banks of 64KB each. This is because the C65’s 4510 CPU can access
only 1MB of address space. These banks can be accessed from BASIC 65 using the
BANK, DMA, PEEK and POKE commands. The following table summarises the contents
of the first 16 banks:

HEX DEC Address Contents
0 0 $0xxxx First 64KB RAM. This is the RAM visible in

C64-mode.
1 1 $1xxxx Second 64KB RAM. This is the 2nd 64KB

of RAM present on a C65.
2 2 $2xxxx First half of C65 ROM (C64-mode and

shared components) or RAM
3 3 $3xxxx Second half of C65 ROM (C65-mode

components) or RAM
4 4 $4xxxx Additional RAM (384KB or larger chip-

RAM models)
5 5 $5xxxx Additional RAM (384KB or larger chip-

RAM models)
6 6 $6xxxx Additional RAM (512KB or larger chip-

RAM models)
7 7 $7xxxx Additional RAM (512KB or larger chip-

RAM models)
8 8 $8xxxx Additional RAM (1MB or larger chip-RAM

models)
9 9 $9xxxx Additional RAM (1MB or larger chip-RAM

models)
A 10 $Axxxx Additional RAM (1MB or larger chip-RAM

models)
B 11 $Bxxxx Additional RAM (1MB or larger chip-RAM

models)
C 12 $Cxxxx Additional RAM (1MB or larger chip-RAM

models)
D 13 $Dxxxx Additional RAM (1MB or larger chip-RAM

models)
continued …

F-4

…continued
HEX DEC Address Contents
E 14 $Exxxx Additional RAM (1MB or larger chip-RAM

models)
F 15 $Fxxxx Additional RAM (1MB or larger chip-RAM

models)

The key features of this address space are the 128KB of RAM in the first two banks,
which is also present on the C65. If you intend to write programs which can also run
on a C65, you should only use these two banks of RAM.

On all models it is possible to use all or part of the 128KB of “ROM” space as RAM. To
do this, you must first request that the Hypervisor removes the read-only protection on
this area, before you will be able to change its contents. If you are writing a program
which will start from C64-mode, or otherwise switch to using the C64 part of the ROM,
instead of the C65 part), then the second half of that space, i.e., BANK 3, can be safely
used for your programs. This gives a total of 192KB of RAM, which is available on all
models of the MEGA65.

On models that have 384KB or more of chip RAM, BANK 4 and 5 are also available.
Similarly, models which provide 1MB or more of chip RAM will have BANK 6 through 15
also available, giving a total of 896KB (or 960KB, if only the C64 part of the ROM is
required) of RAM available for your programs. Note that the MEGA65’s built-in freeze
cartridge currently freezes only the first 384KB of RAM.

Colour RAM
The MEGA65’s VIC-IV video controller supports much larger screens than the VIC-II
or VIC-III. For this reason, it has access to a separate colour RAM, similar to on the
C64. For compatibility with the C65, the first two kilo-bytes of this are accessible
at $1F800 – $1FFFF. The full 32KB or 64KB of colour RAM is located at $FF80000.
This is most easily access through the use of advanced DMA operations, or the 32-bit
base-page indirect addressing mode of the processor.

At the time of writing, the BANK and DMA commands cannot be used to access the
rest of the colour RAM, because the colour RAM is not located in the first mega-byte
of address space. This may be corrected in a future revision of the MEGA65, allowing
access to the full colour RAM via BANK 15 or an equivalent DMA job.

F-5

28-bit Address Space
In addition to the C65-style 1MB address space, the MEGA65 extends this to 256MB,
by using 28-bit addresses. The following shows the high-level layout of this address
space.

HEX DEC Size Contents
0000000 0 1 CPU I/O Port Data Direction Register
0000001 1 1 CPU I/O Port Data
0000002
– 005FFFF

2 – 384KB 384KB Fast chip RAM (40MHz)

0060000
– 0FFFFFF

384KB – 16MB 15.6MB Reserved for future chip RAM expansion

1000000
– 3FFFFFF

16MB – 64MB 48MB Reserved

4000000
– 7FFFFFF

64MB –
128MB

64MB Cartridge port and other devices on the
slow bus (1 – 10 MHz)

8000000
– 87FFFFF

128MB –
135MB

8MB 8MB ATTIC RAM (selected models only)

8800000
– 8FFFFFF

135MB –
144MB

8MB 8MB CELLAR RAM (selected models
only)

9000000
– EFFFFFF

144MB –
240MB

96MB Reserved for future expansion RAM

F000000
– FF7DFFF

240MB –
255.49MB 15.49MBReserved for future I/O expansion

FF7E000 –
FF7EFFF

255.49MB –
255.49MB

4KB VIC-IV Character ROM (write only)

FF80000 –
FF87FFF

255.5MB –
255.53MB

32KB VIC-IV Colour RAM (32KB colour RAM
models)

FF88000 –
FF8FFFF

255.53MB –
255.57MB

32KB Additional VIC-IV Colour RAM (64KB
colour RAM models only)

FF90000 –
FFCAFFF

255.53MB –
255.80MB

216KB Reserved

FFCB000
– FFCBFFF

255.80MB –
255.80MB

4KB Emulated C1541 RAM

FFCC000
– FFCFFFF

255.80MB –
255.81MB

16KB Emulated C1541 ROM

FFD0000
– FFD0FFF

255.81MB –
255.81MB

4KB C64 $Dxxx I/O Personality

continued …

F-6

…continued
HEX DEC Size Contents
FFD1000
– FFD1FFF

255.81MB –
255.82MB

4KB C65 $Dxxx I/O Personality

FFD2000
– FFD2FFF

255.82MB –
255.82MB

4KB MEGA65 $Dxxx Ethernet I/O Personality

FFD3000
– FFD3FFF

255.82MB –
255.82MB

4KB MEGA65 $Dxxx Normal I/O Personality

FFD4000
– FFD5FFF

255.82MB –
255.83MB

8KB Reserved

FFD6000
– FFD67FF

255.83MB –
255.83MB

2KB Hypervisor scratch space

FFD6000
– FFD6BFF

255.83MB –
255.83MB

3KB Hypervisor scratch space

FFD6C00
– FFD6DFF

255.83MB –
255.83MB

512 F011 floppy controller sector buffer

FFD6E00 –
FFD6FFF

255.83MB –
255.83MB

512 SD Card controller sector buffer

FFD7000
– FFD70FF

255.83MB –
255.83MB

256 MEGAphone r1 I2C peripherals

FFD7100
– FFD71FF

255.83MB –
255.83MB

256 MEGA65 r2 I2C peripherals

FFD7200 –
FFD72FF

255.83MB –
255.83MB

256 MEGA65 HDMI I2C registers (only for
models fitted with the ADV7511 HDMI
driver chip)

FFD7300
– FFD7FFF

255.83MB –
255.84MB

3.25KB Reserved for future I2C peripherals

FFD8000
– FFDBFFF

255.83MB –
255.86MB

16KB Hypervisor ROM (only visible in Hypervi-
sor Mode)

FFDC000
– FFDDFFF

255.86MB –
255.87MB

8KB Reserved for Hypervisor Mode ROM ex-
pansion

FFDE000 –
FFDE7FF

255.87MB –
255.87MB

2KB Reserved for Ethernet buffer expansion

FFDE800 –
FFDEFFF

255.87MB –
255.87MB

2KB Ethernet frame read buffer (read only)
and Ethernet frame write buffer (write
only)

FFDF000 –
FFDFFFF

255.87MB –
255.87MB

4KB Virtual FPGA registers (selected models
only)

FFE0000 –
FFFFFFF

255.87MB –
256MB

128KB Reserved

F-7

$D000 – $DFFF I/O PERSONALITIES
The MEGA65 supports four different I/O personalities. These are selected by writing
the appropriate values to the $D02F KEY register, which is visible in all four I/O per-
sonalities. There is more information in Chapter/Appendix 10 on page 10-3 about
the use of the KEY register.

The following table shows which I/O devices are visible in each of these I/O modes,
as well as the KEY register values that are used to select the I/O personality.

F-8

HEX C64 C65 MEGA65
ETHERNET MEGA65

KEY $00 $A5, $96 $45, $54 $47, $53
$D000 – $D02F VIC-II VIC-II VIC-II VIC-II
$D030 – $D07F VIC-II1 VIC-III VIC-III VIC-III
$D080 – $D08F VIC-II F011 F011 F011
$D090 – $D09F VIC-II – SD card SD card

$D0A0 – $D0FF VIC-II
RAM EXPAND
CONTROL – –

$D100 – $D1FF VIC-II RED Palette RED Palette RED Palette

$D200 – $D2FF VIC-II
GREEN
Palette

GREEN
Palette

GREEN
Palette

$D300 – $D3FF VIC-II BLUE Palette BLUE Palette BLUE Palette
$D400 – $D41F SID Right #1 SID Right #1 SID Right #1 SID Right #1
$D420 – $D43F SID Right #2 SID Right #2 SID Right #2 SID Right #2
$D440 – $D45F SID Left #1 SID Left #1 SID Left #1 SID Left #1
$D460 – $D47F SID Left #2 SID Left #2 SID Left #2 SID Left #2
$D480 – $D49F SID Right #1 SID Right #1 SID Right #1 SID Right #1
$D4A0 – $D4BF SID Right #2 SID Right #2 SID Right #2 SID Right #2
$D4C0 – $D4DF SID Left #1 SID Left #1 SID Left #1 SID Left #1
$D4E0 – $D4FF SID Left #2 SID Left #2 SID Left #2 SID Left #2
$D500 – $D5FF SID images – Reserved Reserved
$D600 – $D63F – UART UART UART

$D640 – $D67F – UART images HyperTrap
Registers

HyperTrap
Registers

$D680 – $D6FF – – MEGA65
Devices

MEGA65
Devices

$D700 – $D7FF – – MEGA65
Devices

MEGA65
Devices

$D800 – $DBFF COLOUR RAM
COLOUR

RAM
ETHERNET
Buffer

COLOUR
RAM

$DC00 – $DDFF CIAs
CIAs /

COLOUR
RAM

ETHERNET
Buffer

CIAs /
COLOUR

RAM

$DE00 – $DFFF CART I/O CART I/O ETHERNET
Buffer

CART I/O /
SD SECTOR

1 In the C64 I/O personality, $D030 behaves as on C128, allowing
toggling between 1MHz and 2MHz CPU speed.
2 The additional MEGA65 SIDs are visible in all I/O personalities.
3 Some models may replace the repeated images of the first four
SIDs with four additional SIDs, for a total of 8 SIDs.

F-9

CPU MEMORY BANKING
The 45GS10 processor, like the 6502, can only “see” 64KB of memory at a time.
Access to additional memory is via a selection of bank-switching mechanisms. For
backward-compatibility with the C64 and C65, the memory banking mechanisms for
both of these computers existing the MEGA65:

1. C65-style MAP instruction banking

2. C65-style $D030 banking

3. C64-style cartridge banking

4. C64-style $00 / $01 banking

It is important to understand that these different banking modes have a priority order:
If a higher priority form of banking is being used, it takes priority over a lower priority
form. The C65 banking methods take priority of the C64-mode banking methods. So,
for example, if the 45GS10 MAP instruction has been used to provide a particular
memory layout, the C64-style $00 / $01 banking will not be visible.

This makes the overall banking scheme more complex than on the C64. Thus to un-
derstand what the actual memory layout will be, you should start by considering the
effects of C64 memory banking, and then if any C65 MAP instruction memory bank-
ing is enabled, using that to override the C64-style memory banking. Then if any C65
$D030 memory banking is used, that overrides both the C64 and C65 MAP instruction
memory banking. Finally, if I/O is banked, or if there are any cartridges inserted and
active, their effects are made.

The following diagram shows the different types of banking that can apply to the
different areas of the 64KB that the CPU can see. The higher layers take priority over
the lower layers, as described in the previous paragraph.

I/O/CART
CART

ROMLO
CART
ROMHI I/O

CART
ROMHI

C65 BASIC BASIC
INTER-
FACE KERNAL

MAP
MAP LO

(4 x 8KB slabs)
MAP HI

(4 x 8KB slabs)

C64 BASIC
CHAR
ROM KERNAL

RAM RAM* RAM RAM RAM RAM RAM
$0000 –
$7FFF

$8000 –
$9FFF

$A000 –
$BFFF

$C000 –
$CFFF

$D000 –
$DFFF

$E000 –
$FFFF

F-10

(There are actually a few further complications. For example, if the cartridge selects
the UltiMAX™game mode, then only the first 4KB of RAM will be visible, and the re-
maining address space will be un-mapped, and able to be supplied by the cartridge.)

For example, using $D030 to bank in C65 ROM at $A000, this will take priority over
the C64 BASIC 2 ROM at the same address.

C64/C65 ROM EMULATION
The C64 and C65 use ROM memories to hold the KERNAL and BASIC system. The
MEGA65 is different: It uses 128KB of its 384KB fast chip RAM at $20000 - $3FFFF
(banks 2 and 3) to hold these system programs. This makes it possible to change or
upgrade the “ROM” that the MEGA65 is running, without having to open the computer.
It is even possible to use the MEGA65’s Freeze Menu to change the “ROM” being used
while a program is running.

The C64 and C65memory banking methods use this 128KB of area when making ROM
banks visible. When the RAM banks are mapped, they are always read-only. However,
if the MAP instruction or DMA is used to access that address area, it is possible to
write to it. For improved backward compatibility, the whole 128KB region of memory
is normally set to read-only.

A program can, however, request read-write access to this 128KB area of memory, so
that it can make full use of the MEGA65’s 384KB of chip RAM. This is accomplished by
triggering the Toggle Rom Write-protect system trap of the hypervisor. The following
code-fragment demonstrates how to do this. Calling it a second time will re-activate
the write-protection.

LDA # $70

STA $ D 6 4 0

NOP

This fragment works by calling sub-function $70 (toggle ROM write-protect) of Hyper-
visor trap $00. Note that the NOP is mandatory. The MEGA65 I/O personality must be
first selected, so that the $D640 register is un-hidden.

The current write-protection state can be tested by attempting to write to this area
of memory. Also, you can examine and toggle the current state from in the MEGA65
Freeze Menu.

NOTE: If you are starting your program from C65-mode, you must first make sure that
the I/O area is visible at $D000-$DFFF. The simplest way to do this is to use the MAP
instruction with all zero values in the registers. The following fragment demonstrates

F-11

this, and also makes sure that the MEGA65 I/O context is active, so that the hypervisor
trap will be able to trigger:

; C l e a r C65 m e m o r y map

LDA # $00

TAX

TAY

TAZ

MAP

; Bank I / O in via C64 m e c h a n i s m

LDA # $35

STA $01

; Do M E G A 6 5 / VIC - IV I / O k n o c k

LDA # $47

STA $ D 0 2 F

LDA # $53

STA $ D 0 2 F

; End MAP sequence , thus a l l o w i n g i n t e r r u p t s to o c c u r a g a i n

EOM

; Do H y p e r v i s o r call to un - write - p r o t e c t the ROM area

LDA # $70

STA $ D 6 4 0

NOP

C65 Compatibility ROM Layout
The layout of the C65 compatibility 128KB ROM area is identical to that of the C65:

HEX Contents
$3E000 -- $3FFFF C65 KERNAL
$3C000 -- $3DFFF RESERVED
$38000 -- $3BFFF C65 BASIC GRAPHICS ROUTINES
$32000 -- $37FFF C65 BASIC
$30000 -- $31FFF MONITOR (gets mapped at $6000 -- $7FFF)
$2E000 -- $2FFFF C64 KERNAL
$2D000 -- $2DFFF C64 CHARSET
$2C000 -- $2CFFF INTERFACE
$24000 -- $27FFF RESERVED
$20000 -- $23FFF DOS (gets mapped at $8000 -- $BFFF)

F-12

The INTERFACE program is a series of routines that are used by the C65 to switch
between C64-mode, C65-mode and the C65’s built-in DOS. The DOS is located in
the lower-eighth of the ROM.

F-13

F-14

APPENDIX G
45GS02 Microprocessor

• Introduction

• Differences to the 6502

• C64 CPU Memory Mapped Registers

• New CPU Memory Mapped Registers

• MEGA65 CPU Maths Acceleration Registers

• MEGA65 Hypervisor Mode

G-2

INTRODUCTION
The 45GS02 is an enhanced version of the processor portion of the CSG4510 and of
the F018 ”DMAgic” DMA controller used in the Commodore 65 computer prototypes.
The 4510 is, in turn, an enhanced version of the 65CE02. The reader is referred to
the considerable documentation available for the 6502 and 65CE02 processors for
the backwards-compatible operation of the 45GS02.

This chapter will focus on the differences between the 45GS02 and the earlier 6502-
class processors, and the documentation of the many built-in memory-mapped I/O
registers of the 45GS02.

DIFFERENCES TO THE 6502
The 45GS02 has a number of key differences to earlier 6502-class processors:

Supervisor/Hypervisor Privileged
Mode
Unlike the earlier 6502 variants, the 45GS02 has a privileged mode of operation. This
mode is intended for use by an operating system or type-1 hypervisor. The ambiguity
between operating system and Hypervisor on the MEGA65 stems from the fact that
the operating system of the MEGA65 is effectively little more than a loader and task-
switcher for C64 and C65 environments, i.e., effectively operating as a hypervisor,
but provides only limited virtualisation of the hardware.

The key differences between normal and supervisor mode on the MEGA65, are that in
supervisor mode:

• A special 16KB memory area is mapped to $8000 - $BFFF, which is used to
contain both the program and data of the Hypervisor / supervisor program. This
is normally the Hyppo program. This memory is not mappable by any means
when the processor is in the normal mode (the chip-select line to it is inhibited),
protecting it from accidental or malicious access.

• The 64 SYSCALL trap registers in the MEGA65 I/O-mode at $D640 - $D67F are
replaced by the virtualisation control registers. These registers allow complete
control over the system, and it is their access that truly defines the privilege of
the supervisor mode.

G-3

• The processor always operates at full speed (40MHz) and in the 4510 processor
personality.

The Hypervisor Mode is described in more detail later in this appendix.

6502 Illegal Opcodes
The 65C02, 65CE02 and CSG4510 processors extended the original 6502 proces-
sor by using previously unallocated opcodes of the 6502 to provide additional instruc-
tions. All software that followed the official documentation of the 6502 processor will
therefore work on these newer processors, possibly with different instruction timing.
However, the common practice on the C64 and other home computers of using unde-
fined opcodes (often called “illegal opcodes”, although there is no law against using
them), means that many existing programs will not work on these newer processors.

To alleviate this problem the 45GS02 has the ability to switch processor personalities
between the 4510 and 6502. The effect is that in 6502 mode, none of the new
opcodes of the 65C02, 65CE02, 4510 or 45GS02 are available, and are replaced
with the original, often strange, behaviour of the undefined opcodes of the 6502.

WARNING: This feature is incomplete and untested. Most undocumented 6502 op-
codes do not operate correctly when the 6502 personality is enabled.

Read-Modify-Write Instruction Bug
Compatibility
The 65CE02 processor optimised a group of instructions called the Read-Modify-Write
(RMW) instructions. For such instructions, such as INC, that increments the contents of
a memory location, the 6502 would read the original value and then write it back un-
changed, before writing it back with the new increased value. For most purposes, this
did not cause any problems. However, it turned out to be a fast way to acknowledge
VIC-II interrupts, because writing the original value back (which the instruction doesn’t
need to do) acknowledges the interrupt. This method is faster and uses fewer bytes
than any alternative, and so became widely used in C64 software.

The problem came with the C65 with its 65CE02 derived CSG4510 that didn’t do
this extra write during the RMW instructions. This made the RMW instructions one cycle
faster, which made software run slightly faster. Unfortunately, it also meant that a
lot of existing C64 software simply won’t run on a C65, unless the interrupt acknowl-
edgement code in each program is patched to work around this problem. This is the

G-4

single most common reason why many C64 games and other software titles won’t run
on a C65.

Because this problem is so common, the MEGA65’s 45GS02 includes bug compati-
bility with this commonly used feature of the original 6502. It does this by checking if
the target of an RMW instruction is $D019, i.e., the interrupt status register of the VIC-
II. If it is, then the 45GS02 performs the dummy write, allowing many C64 software
titles to run unmodified on the MEGA65, that do not run on a C65 prototype. By only
performing the dummy write if the address is $D019, the MEGA65 maintains C64
compatibility, without sacrificing the speed improvement for all other uses of these
instructions.

Variable CPU Speed
The 45GS02 is able to run at 1MHz, 2MHz, 3.5MHz and 40MHz, to support running
software designed for the C64, C128 in C64-mode, C65 and MEGA65.

Slow (1MHz – 3.5MHz) Operation

In these modes, the 45GS02 processor slows down, so that the same number of in-
structions per video frame are executed as on a PAL or NTSCC64, C128 in C64-mode
or C65 prototype. This is to allow existing software to run on the MEGA65 at the cor-
rect speed, and with minimal display problems. The VIC-IV video controller provides
cycle indication pulses to the 45GS02 that are used to keep time.

In these modes, opcodes take the same number of cycles as an 6502. However mem-
ory accesses within an instruction are not guaranteed to occur in the same cycle as
on a 1MHz 6502. Normally the effect is that instructions complete faster, and the
processor idles until the correct number of cycles have passed. This means that timing
may be incorrect by up to 7 micro-seconds. This is not normally a problem, and even
many C64 fast loaders will function correctly. For example, the GEOS™Graphical
Operating System for the C64 can be booted and used from a 1541 connected to
the MEGA65’s serial port.

However, some advanced VIC-II graphics tricks, such as Variable Screen Position (VSP)
are highly unlikely to work correctly, due to the uncertainty in timing of thememory write
cycles of instructions. However, in most cases such problems can be easily solved by
using the advanced features of the MEGA65’s VIC-IV video controller. For example,
VSP is unnecessary on the MEGA65, because you can set the screen RAM address to
any location in memory.

G-5

Full Speed (40MHz) Instruction Timing

When the MEGA65’s processor is operating at full speed (currently 40MHz), the in-
struction timing no longer exactly mirrors the 6502: Instructions that can be executed
in fewer cycles will do so. For example, branches are typically require fewer instruc-
tions on the 45GS02. There are also some instructions that require more cycles on
the 45GS02, in particular the LDA, LDX, LDY and LDZ instructions. Those instructions
typically require one additional cycle. However as the processor is running at 40MHz,
these instructions still execute much more quickly than on even a C65 or C64 with an
accelerator.

CPU Speed Fine-Tuning

It is also possible to more smoothly vary the CPU speed using the SPEEDBIAS register
located at $D7FA (55290), when MEGA65 I/O mode is enabled. The default value is
$80 (128), which means no bias on the CPU speed. Higher values increase the CPU
speed, with $FF meaning 2× the expected speed. Lower values slow the processor
down, with $00 bring the CPU to a complete stand-still. Thus the speed can be varied
between 0× and 2× the intended value.

This register is provided to allow tweaking the processor speed in games.

Note that this register has no effect when the processor is running at full-speed, be-
cause it only affects the way in which VIC-IV video cycle indication pulses are pro-
cessed by the CPU.

Direct Memory Access (DMA)

Direct Memory Access (DMA) is a method for quickly filling, copying or swapping mem-
ory regions. The MEGA65 implements an improved version of the F018 “DMAgic” DMA
controller of the C65 prototypes. Unlike on the C65 prototypes, the DMA controller is
part of the CPU on the MEGA65.

Detailed information on how to use the DMA controller and these advanced features
can be found in Chapter/Appendix L on page L-3

Accessing memory between the 64KB
and 1MB points
The C65 included four ways to access memory beyond the 64KB point: three methods
that are limited, specialised or both, and two general-purpose methods. We will first
consider the limited methods, before documenting the general-purpose methods.

G-6

C64-Style Memory Banking

The first method, is to use the C64-style $00/$01 ROM/RAM banking. This method is
very limited, however, as it allows only the banking in and out of the two 8KB regions
that correspond to the C64 BASIC and KERNAL ROMs. These are located at $2A000
and $2E000 in the 20-bit C65 address space, i.e., $002A000 and $002E000 in
the 28-bit address space of the MEGA65. It can also provide access to the C64
character ROM data at $D000, which is located at $2D000 in the C65 memory map,
and thus $002D0000 in the MEGA65 address space. In addition to being limited to
which regions this method can access, it also only provides read-only access to these
memory regions, i.e., it cannot be used to modify these memory regions.

VIC-III “ROM” Banking

Similar to the C64-style memory banking, the C65 included the facility to bank several
other regions of the C65’s 128KB ROM. These are banked in and out using various bits
of the VIC-III’s $D030 register:

$D030
Bit

Signal
Name

20-bit
Address

16-bit
Address

Read-Write
Access?

0 CRAM2K

$1F800 –
$1FFFF,
$FF80000
– $FF807FF

$D800 –
$DFFF Y

3 ROM8
$38000 –
$39FFF

$8000 –
$9FFF N

4 ROMA
$3A000 –
$3BFFF

$A000 –
$BFFF N

5 ROMC
$2C000 –
$2CFFF

$C000 –
$CFFF N

6 CROM9
$29000 –
$29FFF

$D000 –
$DFFF N

7 ROME
$3E000 –
$3FFFF

$E000 –
$FFFF N

The CRAM2K signal causes the normal 1KB of colour RAM, which is located at $1F800
– $1FBFF and is visible at $D800 – $DBFF, to instead be visible from $D800 – $DFFF.
That is, the entire range $1F800 – $1FFFF is visible, and can be both read from and
written to. Unlike on the C64, the colour RAM on the MEGA65 is always visible as 8-bit
bytes. Also, on the MEGA65, the colour RAM is 32KB in size, and exists at $FF80000 –
$FF87FFF. The visibility of the colour RAM at $1F800 – $1FFFF is achieved by mirroring
writes to both regions when accessing the colour RAM via this mechanism.

G-7

Note that these VIC-III memory banking signals take precedence over the C64-style
memory banking.

VIC-III Display Address Translator

The third specialised manner to access to memory above the 64KB point is to use the
VIC-III’s Display Address Translator. Use of this mechanism is documented in Chap-
ter/Appendix M on page M-5.

The MAP instruction

The first general-purpose means of access to memory is the MAP instruction of the
4510 processor. The MEGA65’s 45GS02 processor also supports this mechanism.
This instruction divides the 64KB address of the 6502 into eight blocks of 8KB each.
For each of these blocks, the block may either be accessed normally, i.e., accessing
an 8KB region of the first 64KB of RAM of the system. Alternatively, each block may
instead be re-mapped (hence the name of the MAP instruction) to somewhere else in
the address space, by adding an offset to the address. Mapped addresses in the first
32KB use one offset, the lower offset, and the second 32KB uses another, the upper
offset. Re-mapping of memory using the MAP instruction takes precedence over the
C64-style memory banking, but not the C65’s ROM banking mechanism.

The offsets must be a multiple of 256 bytes, and thus consist of 12 bits in order to
allow an arbitrary offset in the 1MB address space of the C65. As each 8KB block
in a 32KB half of memory can be either mapped or not, this requires one bit per 8KB
block. Thus the processor requires 16 bits of information for each half of memory, for a
total of 32 bits of information. This is achieved by setting the A and X registers for the
lower half of memory and the Y and Z registers for the upper half of memory, before
executing the MAP instruction.

The MAP instruction copies the contents of these registers into the processors internal
registers that hold the mapping information. Note that there is no way to use the MAP
instruction to determine the current memory mapping configuration, which somewhat
limits its effectiveness.

The following diagram illustrates how the MAP instruction takes the values of the four
A, X, Y and Z registers, and uses them to compue the upper and lower address offsets,
and sets the bank enable bits for each of the eight 8KB memory regions of the 6502
address space:

G-8

LDY #$BC

LDZ #$XA

LDA #$EF

LDX #$ZD

MAP

EOM

C64 16-Bit
Address Space

Upper 32KB
Offset

$ABC00

Lower 32KB
Offset

$DEF00

Offset
Enable?

C65 Memory
Bank Offset

X

X

X

X

Z

Z

Z

Z

7

6

5

4

7

6

5

4 +$0000-$1FFF

+$2000-$3FFF

+$4000-$5FFF

+$6000-$7FFF

+$8000-$9FFF

+$A000-$BFFF

+$C000-$DFFF

+$E000-$FFFF

That is, the contents of the A register and the lower-nibble of the X register form a
12-bit value that is multiplied by 256 to produce the offset used for any of the 8KB
banks in the lower 32KB half of the 6502’s 16-bit address space. The upper nibble
of the X register is used as flags to indicate which of the four 8KB blocks in that 32KB
half of the 6502 address space should have the offset added to their addresses to
compute the actual address.

The Y and Z registers are used in a similar way to produce the offset for the upper
32KB half of the 6502 address space, and the flags to indicate whether the offset is
used for each of the four 8KB blocks in that half of the address space.

Note that the lower 8 bits of the offset cannot be set. That is, the offset will be a
multiple of 256 bytes, unlike on some extended 6502 processors. However, in practice
this restriction is rarely limiting.

To understand how this works in practice, the following example shows how this works
with a concrete example, showing the address ranges that would be visible in each of
the 8KB slices of the 6502’s 64KB address space:

G-9

LDY #$80

LDZ #$34

LDA #$00

LDX #$11

MAP

EOM

C64 16-Bit
Address Space

Upper 32KB
Offset

$48000

Lower 32KB
Offset

$10000

Offset
Enable?

C65 Memory
Bank Offset

0

0

1

1

0

0

0

1 $10000-$11FFF

$02000-$03FFF

$04000-$05FFF

$06000-$07FFF

$50000-$51FFF

$52000-$53FFF

$0C000-$0DFFF

$0E000-$0FFFF

Notice that the offsets for each of the two 32KB address ranges get added to the
6502 address. This is why the offset of $48000 for the upper 32KB generates an
address of $50000 at the 6502 address $8000.

See also under “Using the MAP instruction to access >1MB” for further explanation.

Direct Memory Access (DMA) Controller

The C65’s F018/F018A DMA controller allows for rapid filling, copying and swapping
of the contents of memory anywhere in the 1MB address space. Detailed information
about the F018 DMA controller, and the MEGA65’s enhancements to this, refer to
Chapter/Appendix L on page L-3

Flat Memory Access

G-10

Accessing memory beyond the 1MB
point
The MEGA65 can support up to 256MB of memory. This is more than the 1MB address
space of the CSG4510 on which it is based. There are several ways of performing
this.

Using the MAP instruction to access >1MB

The full address space is available to the MAP instruction for legacy C65-style memory
mapping, although some care is required, as the MAP instruction must be called up
to three times. The reason for this is that the MAP instruction must be called to first
select which mega-byte of memory will be used for the lower and upper map regions,
before it is again called in the normal way to set the memory mapping. Because
between these two calls the memory mapping offset will be a mix of the old and new
addresses, all mapping should be first disabled via the MAP instruction. This means
that the code to re-map memory should live in the bottom 64KB of RAM or in one of
the ROM-bankable regions, so that it can remain visible during the mapping process.

Failure to handle this situation properly will result in the processor executing instruc-
tions from somewhere unexpected half-way through the process, because the routine
it is executing to perform the mapping will suddenly no longer be mapped.

Because of the relative complexity of this process, and the other problems with the
MAP instruction as a means of memory access, we recommend that for accessing
data outside of the current memory map that you use either DMA or the flat-memory
address features of the 45GS02 that are described below. Indeed, access to the full
address space via the MAP instruction is only provided for completeness.

As an other example of how the MAP instruction can be used to map an area of mem-
ory from the expanded address space, the following programmaps the Ethernet frame
buffer from its natural location at $FFDE8000 to appear at $6800. To keep the ex-
ample as simple as possible, we assume that the code is running from in the bottom
64KB of RAM, and not in the region between $6000 – $8000.

As the MAP instruction normally is only aware of the C65-style 20-bit addresses, the
MEGA65 extension to the instruction must be used to set the upper 8 bits of the 28-
bit MEGA65 addresses, i.e., which mega-byte of address space should be used for
the address translation. This is done by setting the X register to $0F when setting the
mega-byte number for the lower-32KB of the C64-style 64KB address space. This
does not create any incompatibility with any sensible use of the MAP instruction on a
C65, because this value indicates that none of the four 8KB memory blocks will be re-
mapped, but at the same time specifies that the upper 4 bits of the address offset for

G-11

re-mapped block is the non-zero value of $F. The mega-byte number is then specified
by setting the A register.

The same approach applies to the upper 32KB, but using the Z and Y registers instead
of the X and A registers. However, in this case, we do not need to re-map the upper
32KB of memory in this example, we will leave the Z and Y registers set to zero. We
must however set X and A to set the mega-byte number for the lower-32KB to $FF.
Therefore A must have the value $FF. To set the lower 20-bits of the address offset we
use the MAP instruction a second time, this time using it in the normal C65 manner.
As we want to remap $6800 to $FFDE800, and have already dealt with the $FFxxxxx
offset via the mega-byte number, we need only to apply the offset to make $6800
point to $DE800. $DE800 minus $6800 = $D8000. As the MAP instruction operates
with a mapping granularity of 256 bytes = $100, we can drop the last two digits from
$D8000 to obtain the MAP offset of $D80. The lower 8-bits, $80, must be loaded
into the A register. The upper 4-bits, $D, must be loaded into the low-nibble of the
X register. As we wish to apply the mapping to only the fourth of the 8KB blocks that
make up the lower 32KB half of the C64 memory map, we must set the 4th bit of the
upper nibble. That is, the upper nibble must be set to %1000, i.e., $8. Therefore the
X register must be loaded with $8D. Thus we yield the complete example program:

; Map Ethernet registers at $6000 - $7FFF

; Ethernet controller really lives $FFDE000 - $FFDEFFF, so select $FF megabyte section for MAP LO

LDA #$ff

LDX #$0f

LDY #$00

LDZ #$00

map

; now enable mapping of $DE000-$DFFFF at $6000

; MAPs are offset based, so we need to subtract $6000 from the target address

; $DE000 - $6000 = $D8000

LDA #$80

LDX #$8d

LDY #$00

LDZ #$00

map

EOM

; Ethernet buffer now visible at $6800 - $6FFF

G-12

Note that the EOM (End Of Mapping) instruction (which is the same as NOP on a 6502,
i.e., opcode $EA) was only supplied after the last MAP instruction, to make sure that no
interrupts could occur while the memory map contained mixed values with the mega-
byte number set, but the lower-bits of the mapping address had not been updated.

No example in BASIC for the MAP instruction is possible, because the MAP is an ma-
chine code instruction of the 4510 / 45GS02 processors.

Flat-Memory Access

The 45GS02 makes it easy to read or write a byte from anywhere in memory by al-
lowing the Zero-Page Indirect addressing mode to use a 32-bit pointer instead of the
normal 16-bit pointer. This is accomplished by using the Z-indexed Zero-Page Indi-
rect Addressing Mode for the access, and having the instruction directly preceded by
a NOP instruction (opcode $EA). For example:

NOP

LDA ($45),Z

If you are using the ACME assembler, or another assembler that supports the 45GS02
extensions, you can instead use square-brackets to indicate that you are performing
a flat-memory operation. Such assemblers will insert the $EA prefix automatically for
you. For example:

LDA [$45],Z

Regardless which tool you are using, this example would read the four bytes of Zero-
Page memory at $45 – $48 to form a 32-bit memory address, and add the value of
the Z register to this to form the actual address that will be read from. The byte order
in the address is the same as the 6502, i.e., the right-most (least significant) byte of
the address will be read from the first address ($45 in this case), and so on, until the
left-most (most significant) byte will be read from $48. For example, to read from
memory location $12345678, the contents of memory beginning at $45 should be
78 56 43 12.

This method is much more efficient and also simpler than either using the MAP in-
struction or the DMA controller for single memory accesses, and is what we generally
recommend. The DMA controller can be used for moving/filler larger regions of mem-
ory. We recommend the MAP instruction only be used for banking code, or in rare
situations where extensive access to a small region of memory is required, and the
extra cycles of reading the 32-bit addresses is problematic.

G-13

Virtual 32-bit Register
The 45GS02 allows the use of its four general purpose registers, A, X ,Y and Z as a
single virtual 32-bit register. This can greatly simplify and speed up many common
operations, and help avoid many common programming errors. For example, adding
two 16-bit or 32-bit values can now be easily accomplished with something like:

; Clear carry before performing addition, as normal

CLC

; Prefix an instruction with two NEG instructions to select virtual 32-bit register mode

NEG

NEG

LDA $1234 ; Load the contents of $1234-$1237 into A,X,Y and Z respectively

; And again, for the addition

NEG

NEG

ADC $1238 ; Add the contents of $1238-$123B

; The result of the addition is now in A, X, Y and Z.

; And can be written out in whole or part

; To write it all out, again, we need the NEG + NEG prefix

NEG

NEG

STA $123C ; Write the whole out to $123C-$123F

; Or to write out the bottom bytes, we can just write the contents of A and X as normal

STA $1240

STX $1241

This approach works with the LDA, STA, ADC, SBC, CMP, EOR, AND, BIT, ORA, ASL,
ASR, LSR, ROL, ROR, INC and DEC instructions. If you are using ACME or another
45GS02 aware assembler, you can instead use the new LDQ, STQ, ADCQ, SBCQ, CPQ,
EORQ, ANDQ, BITQ, ORQ, ASLQ, ASRQ, LSRQ, ROLQ, RORQ, INQ and DEQmnemonics. The
previous example would thus become:

G-14

; Clear carry before performing addition, as normal

CLC

LDQ $1234 ; Load the contents of $1234-$1237 into A,X,Y and Z respectively

; And again, for the addition

ADCQ $1238 ; Add the contents of $1238-$123B

; The result of the addition is now in A, X, Y and Z.

; And can be written out in whole or part

; To write it all out, again, we need the NEG + NEG prefix

STQ $123C ; Write the whole out to $123C-$123F

; Or to write out the bottom bytes, we can just write the contents of A and X as normal

STA $1240

STX $1241

The virtual 32-bit addressing mode works with any addressing mode. However, in-
dexed addressing modes, where X, Y or Z are added to the address should be used
with care, because these registers may in fact be holding part of a 32-bit value.

The exception is the Zero-Page Indirect Z-Indexed addressing mode: In this case the
Z register is NOT added to the target address, unlike would normally be the case. This
is to allow the virtual 32-bit register to be able to be used with flat-memory access
with the combined prefix of NEG NEG NOP, before the instruction to allow accessing
a 32-bit value anywhere in memory in a single instruction.

Note that the virtual 32-bit register cannot be used in immediate mode, e.g., to load
a constant into the four general purpose registers, or to add or subtract a constant
value. This is to avoid problems with variable length instructions.

For LDQ and STQ, it would save at most one byte compared to LDA #$nn ... LDZ #$nn,
and would be no faster. In fact, for many common values, such as #$00000000, there
are short-cuts, such as:

LDA #$00

TAX

TAY

TAZ

If you need to add or subtract a 32-bit immediate value, this may require you to re-
order the arguments, or perform other minor gymnastics. For example, to compute the
sum of the contents of memory and an immediate value, you can load the A, X, Y and
Z registers with the immediate value, and then use ADCQ with the memory address,
e.g.:

G-15

; Get the immediate value #$12345678 into Q

LDA #$78

LDX #$56

LDY #$34

LDZ #$12

; Add the contents of memory locations $1234-$1237

NEG

NEG

ADC $1234

; Store the result back in $1234-$1237

NEG

NEG

STA $1234

Again, if you are using the ACME or another 45GS02-aware assembler, this can be
more compactly and clearly written as follows. But note that in both cases the same
byte-sequence of machine code is produced, and the program will take the same
number of cycles to execute.

; Get the immediate value #$12345678 into Q

LDA #$78

LDX #$56

LDY #$34

LDZ #$12

; Add the contents of memory locations $1234-$1237

ADCQ $1234

; Store the result back in $1234-$1237

STQ $1234

C64 CPU MEMORY MAPPED
REGISTERS

HEX DEC Signal Description
00 0 PORTDDR 6510/45GS10 CPU port DDR
01 1 PORT 6510/45GS10 CPU port data

G-16

NEW CPU MEMORY MAPPED
REGISTERS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D640 54848 HTRAP00

D641 54849 HTRAP01

D642 54850 HTRAP02

D643 54851 HTRAP03

D644 54852 HTRAP04

D645 54853 HTRAP05

D646 54854 HTRAP06

D647 54855 HTRAP07

D648 54856 HTRAP08

D649 54857 HTRAP09

D64A 54858 HTRAP0A

D64B 54859 HTRAP0B

D64C 54860 HTRAP0C

D64D 54861 HTRAP0D

D64E 54862 HTRAP0E

D64F 54863 HTRAP0F

D650 54864 HTRAP10

D651 54865 HTRAP11

D652 54866 HTRAP12

D653 54867 HTRAP13

D654 54868 HTRAP14

D655 54869 HTRAP15

D656 54870 HTRAP16

D657 54871 HTRAP17

D658 54872 HTRAP18

D659 54873 HTRAP19

D65A 54874 HTRAP1A

D65B 54875 HTRAP1B

D65C 54876 HTRAP1C

D65D 54877 HTRAP1D

D65E 54878 HTRAP1E

D65F 54879 HTRAP1F

D660 54880 HTRAP20

D661 54881 HTRAP21

continued …

G-17

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D662 54882 HTRAP22

D663 54883 HTRAP23

D664 54884 HTRAP24

D665 54885 HTRAP25

D666 54886 HTRAP26

D667 54887 HTRAP27

D668 54888 HTRAP28

D669 54889 HTRAP29

D66A 54890 HTRAP2A

D66B 54891 HTRAP2B

D66C 54892 HTRAP2C

D66D 54893 HTRAP2D

D66E 54894 HTRAP2E

D66F 54895 HTRAP2F

D670 54896 HTRAP30

D671 54897 HTRAP31

D672 54898 HTRAP32

D673 54899 HTRAP33

D674 54900 HTRAP34

D675 54901 HTRAP35

D676 54902 HTRAP36

D677 54903 HTRAP37

D678 54904 HTRAP38

D679 54905 HTRAP39

D67A 54906 HTRAP3A

D67B 54907 HTRAP3B

D67C 54908 HTRAP3C

D67D 54909 HTRAP3D

D67E 54910 HTRAP3E

D67F 54911 HTRAP3F

D710 55056 – BADEXTRA BRCOST –

D7FA 55290 FRAMECOUNT

D7FB 55291 – CARTEN –

D7FD 55293 NOEXROMNOGAME – POWEREN

D7FE 55294 – OCEANA PREFETCH

• BADEXTRA Cost of badlines minus 40. ie. 00=40 cycles, 11 = 43 cycles.

G-18

• BRCOST 1=charge extra cycle(s) for branches taken

• CARTEN 1= enable cartridges

• FRAMECOUNT Count number of elapsed video frames

• HTRAP00 Writing triggers hypervisor trap $00

• HTRAP01 Writing triggers hypervisor trap $01

• HTRAP02 Writing triggers hypervisor trap $02

• HTRAP03 Writing triggers hypervisor trap $03

• HTRAP04 Writing triggers hypervisor trap $04

• HTRAP05 Writing triggers hypervisor trap $05

• HTRAP06 Writing triggers hypervisor trap $06

• HTRAP07 Writing triggers hypervisor trap $07

• HTRAP08 Writing triggers hypervisor trap $08

• HTRAP09 Writing triggers hypervisor trap $09

• HTRAP0A Writing triggers hypervisor trap $0A

• HTRAP0B Writing triggers hypervisor trap $0B

• HTRAP0C Writing triggers hypervisor trap $0C

• HTRAP0D Writing triggers hypervisor trap $0D

• HTRAP0E Writing triggers hypervisor trap $0E

• HTRAP0F Writing triggers hypervisor trap $0F

• HTRAP10 Writing triggers hypervisor trap $10

• HTRAP11 Writing triggers hypervisor trap $11

• HTRAP12 Writing triggers hypervisor trap $12

• HTRAP13 Writing triggers hypervisor trap $13

• HTRAP14 Writing triggers hypervisor trap $14

• HTRAP15 Writing triggers hypervisor trap $15

• HTRAP16 Writing triggers hypervisor trap $16

• HTRAP17 Writing triggers hypervisor trap $17

• HTRAP18 Writing triggers hypervisor trap $18

G-19

• HTRAP19 Writing triggers hypervisor trap $19

• HTRAP1A Writing triggers hypervisor trap $1A

• HTRAP1B Writing triggers hypervisor trap $1B

• HTRAP1C Writing triggers hypervisor trap $1C

• HTRAP1D Writing triggers hypervisor trap $1D

• HTRAP1E Writing triggers hypervisor trap $1E

• HTRAP1F Writing triggers hypervisor trap $1F

• HTRAP20 Writing triggers hypervisor trap $20

• HTRAP21 Writing triggers hypervisor trap $21

• HTRAP22 Writing triggers hypervisor trap $22

• HTRAP23 Writing triggers hypervisor trap $23

• HTRAP24 Writing triggers hypervisor trap $24

• HTRAP25 Writing triggers hypervisor trap $25

• HTRAP26 Writing triggers hypervisor trap $26

• HTRAP27 Writing triggers hypervisor trap $27

• HTRAP28 Writing triggers hypervisor trap $28

• HTRAP29 Writing triggers hypervisor trap $29

• HTRAP2A Writing triggers hypervisor trap $2A

• HTRAP2B Writing triggers hypervisor trap $2B

• HTRAP2C Writing triggers hypervisor trap $2C

• HTRAP2D Writing triggers hypervisor trap $2D

• HTRAP2E Writing triggers hypervisor trap $2E

• HTRAP2F Writing triggers hypervisor trap $2F

• HTRAP30 Writing triggers hypervisor trap $30

• HTRAP31 Writing triggers hypervisor trap $31

• HTRAP32 Writing triggers hypervisor trap $32

• HTRAP33 Writing triggers hypervisor trap $33

• HTRAP34 Writing triggers hypervisor trap $34

G-20

• HTRAP35 Writing triggers hypervisor trap $35

• HTRAP36 Writing triggers hypervisor trap $36

• HTRAP37 Writing triggers hypervisor trap $37

• HTRAP38 Writing triggers hypervisor trap $38

• HTRAP39 Writing triggers hypervisor trap $39

• HTRAP3A Writing triggers hypervisor trap $3A

• HTRAP3B Writing triggers hypervisor trap $3B

• HTRAP3C Writing triggers hypervisor trap $3C

• HTRAP3D Writing triggers hypervisor trap $3D

• HTRAP3E Writing triggers hypervisor trap $3E

• HTRAP3F Writing triggers hypervisor trap $3F

• NOEXROM Override for /EXROM : Must be 0 to enable /EXROM signal

• NOGAME Override for /GAME : Must be 0 to enable /GAME signal

• OCEANA Enable Ocean Type A cartridge emulation

• POWEREN Set to zero to power off computer on supported systems. WRITEONLY.

• PREFETCH Enable expansion RAM pre-fetch logic

MEGA65 CPU MATHS ACCELERATION
REGISTERS
Every MEGA65 contains a combined 32-bit hardware multiplier and divider. This de-
vice takes two 32-bit inputs, MULTINA and MULTINB, and simultaneously calculates:

• the 64-bit product of MULTINA and MULTINB

• the 32-bit whole part of MULTINA / MULTINB

• the 32-bit fractional part of MULTINA / MULTINB

It is always updating the outputs based on the inputs, so there is no need to take special
action when changing the inputs. The multiplier takes 1 cycle to calculate, and the
updated result will thus be available immediately. The hardware divider, however, can
take upto 16 cycles depending on the particular inputs. Thus programmers should
insert a short delay after changing the inputs before reading the output. As this delay

G-21

is so short, it can be implemented by simply reading the first byte of the result four
times consecutively, as the 4th read will occur after the result has settled.

Some models of the MEGA65 also include a math unit, which helps to accelerate
the calculation of fixed-point formulae. This presently disabled in all models of the
MEGA65 and will be further documented if and when it becomes available.

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D70F 55055 DIVBUSY MULBUSY –

D768 55144 DIVOUT

D769 55145 DIVOUT

D76A 55146 DIVOUT

D76B 55147 DIVOUT

D76C 55148 DIVOUT

D76D 55149 DIVOUT

D76E 55150 DIVOUT

D76F 55151 DIVOUT

D770 55152 MULTINA

D771 55153 MULTINA

D772 55154 MULTINA

D773 55155 MULTINA

D774 55156 MULTINB

D775 55157 MULTINB

D776 55158 MULTINB

D777 55159 MULTINB

D778 55160 MULTOUT

D779 55161 MULTOUT

D77A 55162 MULTOUT

D77B 55163 MULTOUT

D77C 55164 MULTOUT

D77D 55165 MULTOUT

D77E 55166 MULTOUT

D77F 55167 MULTOUT

D780 55168 MATHIN0

D781 55169 MATHIN0

D782 55170 MATHIN0

D783 55171 MATHIN0

D784 55172 MATHIN1

D785 55173 MATHIN1

D786 55174 MATHIN1

D787 55175 MATHIN1

continued …

G-22

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D788 55176 MATHIN2

D789 55177 MATHIN2

D78A 55178 MATHIN2

D78B 55179 MATHIN2

D78C 55180 MATHIN3

D78D 55181 MATHIN3

D78E 55182 MATHIN3

D78F 55183 MATHIN3

D790 55184 MATHIN4

D791 55185 MATHIN4

D792 55186 MATHIN4

D793 55187 MATHIN4

D794 55188 MATHIN5

D795 55189 MATHIN5

D796 55190 MATHIN5

D797 55191 MATHIN5

D798 55192 MATHIN6

D799 55193 MATHIN6

D79A 55194 MATHIN6

D79B 55195 MATHIN6

D79C 55196 MATHIN7

D79D 55197 MATHIN7

D79E 55198 MATHIN7

D79F 55199 MATHIN7

D7A0 55200 MATHIN8

D7A1 55201 MATHIN8

D7A2 55202 MATHIN8

D7A3 55203 MATHIN8

D7A4 55204 MATHIN9

D7A5 55205 MATHIN9

D7A6 55206 MATHIN9

D7A7 55207 MATHIN9

D7A8 55208 MATHIN10

D7A9 55209 MATHIN10

D7AA 55210 MATHIN10

D7AB 55211 MATHIN10

D7AC 55212 MATHIN11

D7AD 55213 MATHIN11

continued …

G-23

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D7AE 55214 MATHIN11

D7AF 55215 MATHIN11

D7B0 55216 MATHIN12

D7B1 55217 MATHIN12

D7B2 55218 MATHIN12

D7B3 55219 MATHIN12

D7B4 55220 MATHIN13

D7B5 55221 MATHIN13

D7B6 55222 MATHIN13

D7B7 55223 MATHIN13

D7B8 55224 MATHIN14

D7B9 55225 MATHIN14

D7BA 55226 MATHIN14

D7BB 55227 MATHIN14

D7BC 55228 MATHIN15

D7BD 55229 MATHIN15

D7BE 55230 MATHIN15

D7BF 55231 MATHIN15

D7C0 55232 UNIT0INB UNIT0INA

D7C1 55233 UNIT1INB UNIT1INA

D7C2 55234 UNIT2INB UNIT2INA

D7C3 55235 UNIT3INB UNIT3INA

D7C4 55236 UNIT4INB UNIT4INA

D7C5 55237 UNIT5INB UNIT5INA

D7C6 55238 UNIT6INB UNIT6INA

D7C7 55239 UNIT7INB UNIT7INA

D7C8 55240 UNIT8INB UNIT8INA

D7C9 55241 UNIT9INB UNIT9INA

D7CA 55242 UNIT10INB UNIT10INA

D7CB 55243 UNIT11INB UNIT11INA

D7CC 55244 UNIT12INB UNIT12INA

D7CD 55245 UNIT13INB UNIT13INA

D7CE 55246 UNIT14INB UNIT14INA

D7CF 55247 UNIT15INB UNIT15INA

D7D0 55248 – UNIT0OUT

D7D1 55249 – UNIT1OUT

D7D2 55250 – UNIT2OUT

D7D3 55251 – UNIT3OUT

continued …

G-24

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D7D4 55252 – UNIT4OUT

D7D5 55253 – UNIT5OUT

D7D6 55254 – UNIT6OUT

D7D7 55255 – UNIT7OUT

D7D8 55256 – UNIT8OUT

D7D9 55257 – UNIT9OUT

D7DA 55258 – UNIT10OUT

D7DB 55259 – UNIT11OUT

D7DC 55260 – UNIT12OUT

D7DD 55261 – UNIT13OUT

D7DE 55262 – UNIT14OUT

D7DF 55263 – UNIT15OUT

D7E0 55264 LATCHINT

D7E1 55265 – CALCEN WREN

D7E2 55266 RESERVED

D7E3 55267 RESERVED

• CALCEN Enable committing of output values from math units back to math reg-
isters (clearing effectively pauses iterative formulae)

• DIVBUSY Set if hardware divider is busy

• DIVOUT 64-bit output of MULTINA ÷ MULTINB

• LATCHINT Latch interval for latched outputs (in CPU cycles)

• MATHIN0 Math unit 32-bit input 0

• MATHIN1 Math unit 32-bit input 1

• MATHIN10 Math unit 32-bit input 10

• MATHIN11 Math unit 32-bit input 11

• MATHIN12 Math unit 32-bit input 12

• MATHIN13 Math unit 32-bit input 13

• MATHIN14 Math unit 32-bit input 14

• MATHIN15 Math unit 32-bit input 15

• MATHIN2 Math unit 32-bit input 2

• MATHIN3 Math unit 32-bit input 3

• MATHIN4 Math unit 32-bit input 4

G-25

• MATHIN5 Math unit 32-bit input 5

• MATHIN6 Math unit 32-bit input 6

• MATHIN7 Math unit 32-bit input 7

• MATHIN8 Math unit 32-bit input 8

• MATHIN9 Math unit 32-bit input 9

• MULBUSY Set if hardware multiplier is busy

• MULTINA Multiplier input A / Divider numerator (32 bit)

• MULTINB Multiplier input B / Divider denominator (32 bit)

• MULTOUT 64-bit output of MULTINA × MULTINB

• RESERVED Reserved

• UNIT0INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 0.

• UNIT0INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 0.

• UNIT0OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 0

• UNIT10INA Select which of the 16 32-bit math registers is input A for Math
Function Unit 10.

• UNIT10INB Select which of the 16 32-bit math registers is input B for Math
Function Unit 10.

• UNIT10OUT Select which of the 16 32-bit math registers receives the output
of Math Function Unit A

• UNIT11INA Select which of the 16 32-bit math registers is input A for Math
Function Unit 11.

• UNIT11INB Select which of the 16 32-bit math registers is input B for Math
Function Unit 11.

• UNIT11OUT Select which of the 16 32-bit math registers receives the output
of Math Function Unit B

• UNIT12INA Select which of the 16 32-bit math registers is input A for Math
Function Unit 12.

• UNIT12INB Select which of the 16 32-bit math registers is input B for Math
Function Unit 12.

G-26

• UNIT12OUT Select which of the 16 32-bit math registers receives the output
of Math Function Unit C

• UNIT13INA Select which of the 16 32-bit math registers is input A for Math
Function Unit 13.

• UNIT13INB Select which of the 16 32-bit math registers is input B for Math
Function Unit 13.

• UNIT13OUT Select which of the 16 32-bit math registers receives the output
of Math Function Unit D

• UNIT14INA Select which of the 16 32-bit math registers is input A for Math
Function Unit 14.

• UNIT14INB Select which of the 16 32-bit math registers is input B for Math
Function Unit 14.

• UNIT14OUT Select which of the 16 32-bit math registers receives the output
of Math Function Unit E

• UNIT15INA Select which of the 16 32-bit math registers is input A for Math
Function Unit 15.

• UNIT15INB Select which of the 16 32-bit math registers is input B for Math
Function Unit 15.

• UNIT15OUT Select which of the 16 32-bit math registers receives the output
of Math Function Unit F

• UNIT1INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 1.

• UNIT1INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 1.

• UNIT1OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 1

• UNIT2INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 2.

• UNIT2INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 2.

• UNIT2OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 2

• UNIT3INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 3.

G-27

• UNIT3INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 3.

• UNIT3OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 3

• UNIT4INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 4.

• UNIT4INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 4.

• UNIT4OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 4

• UNIT5INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 5.

• UNIT5INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 5.

• UNIT5OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 5

• UNIT6INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 6.

• UNIT6INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 6.

• UNIT6OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 6

• UNIT7INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 7.

• UNIT7INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 7.

• UNIT7OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 7

• UNIT8INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 8.

• UNIT8INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 8.

• UNIT8OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 8

G-28

• UNIT9INA Select which of the 16 32-bit math registers is input A for Math Func-
tion Unit 9.

• UNIT9INB Select which of the 16 32-bit math registers is input B for Math Func-
tion Unit 9.

• UNIT9OUT Select which of the 16 32-bit math registers receives the output of
Math Function Unit 9

• WREN Enable setting of math registers (must normally be set)

MEGA65 HYPERVISOR MODE

Reset
On power-up or reset, the MEGA65 starts up in hypervisor mode, and expects to find a
program in the 16KB hypervisor memory, and begins executing instructions at address
$8100. Normally a JMP instruction will be located at this address, that will jump into
a reset routine. That is, the 45GS02 does not use the normal 6502 reset vector. It’s
function is emulated by the Hyppo hypervisor program, which fetches the address from
the 6502 reset vector in the loaded client operating system when exiting hypervisor
mode.

The hypervisor memory is automatically mapped on reset to $8000 - $BFFF. This spe-
cial memory is not able to mapped or in anyway accessed, except when in hypervisor
mode. It can, however, always be accessed from the serial monitor/debugger inter-
face via its 28-bit address, $FFF8000 – $FFFBFFF. This is to protect it from accidental
or malicious access from a guest operating system.

Entering / Exiting Hypervisor Mode
Entering the Hypervisor occurs whenever any of the following events occurs:

• Power-on When the MEGA65 is first powered on.

• Reset If the reset line is lowered, or a watch-dog triggered reset occurs.

• SYSCALL register accessed The registers $D640 - $D67F in the MEGA65 I/O
context trigger SYSCALLs when accessed. This is intended to be the mechanism
by which a client operating system or process requests the attention of the hy-
pervisor or operating system.

G-29

• Page Fault On MEGA65s that feature virtual memory, a page fault will cause a
trap to hypervisor mode.

• Certain keyboard events Pressing RESTORE for >0.5 seconds, or the ALT and
TAB key combination traps to the hypervisor. Typically the first is used to launch
the Freeze Menu an the second to toggle the display of debug interface.

• Accessing virtualised I/O devices For example, if the F011 (internal 3.5” disk
drive controller) has been virtualised, then attempting to read or write sectors
using this device will cause traps to the hypervisor.

• Executing an instruction that would lock up the CPU A number of undocu-
mented opcodes on the 6502 will cause the CPU to lockup. On the MEGA65,
instead of locking up, the computer will trap to the hypervisor. This could be
used to implement alternative instruction behaviours, or simply to tell the user
that something bad has happened.

• Certain special events Some devices can generate hypervisor-level interrupts.
These are implemented as traps to the hypervisor.

The 45GS02 handles all of these in a similar manner internally:

1. The SYSCALL or trap address is calculated, based on the event.

2. The contents of all CPU registers are saved into the virtualisation control regis-
ters.

3. The hypervisor mode memory layout is activated, the CPU decimal flag and spe-
cial purpose registers are all set to appropriate values. The contents of the A,X,Y
and Z and most other CPU flags are preserved, so that they can be accessed
from the Hypervisor’s SYSCALL/trap handler routine, without having to load them,
thus saving a few cycles for each call.

4. The hypervisor-mode flag is asserted, and the program counter (PC) register is
set to the computed address.

All of the above happens in one CPU cycle, i.e., in 25 nano-seconds. Returning from
a SYSCALL or trap consists simply of writing to $D67F, which requires 125 nano-
seconds, for a total overhead of 150 nano-seconds. This gives the MEGA65 SYSCALL
performance rivalling – even beating – even the fastest modern computers, where the
system call latency is typically hundreds to tens of thousands of cycles [2].

Hypervisor Memory Layout
The hypervisor memory is 16KB in size. The first 512 bytes are reserved for SYSCALL
and system trap entry points, with four bytes for each. For example, the reset entry

G-30

point is at $8100 - $8100 + 3 = $8100 - $8103. This allows 4 bytes for an instruction,
typically a JMP instruction, followed by a NOP to pad it to 4 bytes.

The full list of SYSCALLs and traps is:

HEX DEC Name Description
8000 32768 SYSCALL00 SYSCALL 0 entry point
8004 32772 SYSCALL01 SYSCALL 1 entry point
8008 32776 SYSCALL02 SYSCALL 2 entry point
800C 32780 SYSCALL03 SYSCALL 3 entry point
8010 32784 SYSCALL04 SYSCALL 4 entry point
8014 32788 SYSCALL05 SYSCALL 5 entry point
8018 32792 SYSCALL06 SYSCALL 6 entry point
801C 32796 SYSCALL07 SYSCALL 7 entry point
8020 32800 SYSCALL08 SYSCALL 8 entry point
8024 32804 SYSCALL09 SYSCALL 9 entry point
8028 32808 SYSCALL0A SYSCALL 10 entry point
802C 32812 SYSCALL0B SYSCALL 11 entry point
8030 32816 SYSCALL0C SYSCALL 12 entry point
8034 32820 SYSCALL0D SYSCALL 13 entry point
8038 32824 SYSCALL0E SYSCALL 14 entry point
803C 32828 SYSCALL0F SYSCALL 15 entry point
8040 32832 SYSCALL10 SYSCALL 16 entry point
8044 32836 SECURENTR Enter secure container trap entry point
8048 32840 SECUREXIT Leave secure container trap entry point.
804C 32844 SYSCALL13 SYSCALL 19 entry point
8050 32848 SYSCALL14 SYSCALL 20 entry point
8054 32852 SYSCALL15 SYSCALL 21 entry point
8058 32856 SYSCALL16 SYSCALL 22 entry point
805C 32860 SYSCALL17 SYSCALL 23 entry point
8060 32864 SYSCALL18 SYSCALL 24 entry point
8064 32868 SYSCALL19 SYSCALL 25 entry point
8068 32872 SYSCALL1A SYSCALL 26 entry point
806C 32876 SYSCALL1B SYSCALL 27 entry point
8070 32880 SYSCALL1C SYSCALL 28 entry point
8074 32884 SYSCALL1D SYSCALL 29 entry point
8078 32888 SYSCALL1E SYSCALL 30 entry point
807C 32892 SYSCALL1F SYSCALL 31 entry point
8080 32896 SYSCALL20 SYSCALL 32 entry point
8084 32900 SYSCALL21 SYSCALL 33 entry point
8088 32904 SYSCALL22 SYSCALL 34 entry point
continued …

G-31

…continued
HEX DEC Name Description
808C 32908 SYSCALL23 SYSCALL 35 entry point
8090 32912 SYSCALL24 SYSCALL 36 entry point
8094 32916 SYSCALL25 SYSCALL 37 entry point
8098 32920 SYSCALL26 SYSCALL 38 entry point
809C 32924 SYSCALL27 SYSCALL 39 entry point
80A0 32928 SYSCALL28 SYSCALL 40 entry point
80A4 32932 SYSCALL29 SYSCALL 41 entry point
80A8 32936 SYSCALL2A SYSCALL 42 entry point
80AC 32940 SYSCALL2B SYSCALL 43 entry point
80B0 32944 SYSCALL2C SYSCALL 44 entry point
80B4 32948 SYSCALL2D SYSCALL 45 entry point
80B8 32952 SYSCALL2E SYSCALL 46 entry point
80BC 32956 SYSCALL2F SYSCALL 47 entry point
80C0 32960 SYSCALL30 SYSCALL 48 entry point
80C4 32964 SYSCALL31 SYSCALL 49 entry point
80C8 32968 SYSCALL32 SYSCALL 50 entry point
80CC 32972 SYSCALL33 SYSCALL 51 entry point
80D0 32976 SYSCALL34 SYSCALL 52 entry point
80D4 32980 SYSCALL35 SYSCALL 53 entry point
80D8 32984 SYSCALL36 SYSCALL 54 entry point
80DC 32988 SYSCALL37 SYSCALL 55 entry point
80E0 32992 SYSCALL38 SYSCALL 56 entry point
80E4 32996 SYSCALL39 SYSCALL 57 entry point
80E8 33000 SYSCALL3A SYSCALL 58 entry point
80EC 33004 SYSCALL3B SYSCALL 59 entry point
80F0 33008 SYSCALL3C SYSCALL 60 entry point
80F4 33012 SYSCALL3D SYSCALL 61 entry point
80F8 33016 SYSCALL3E SYSCALL 62 entry point
80FC 33020 SYSCALL3F SYSCALL 63 entry point
8100 33024 RESET Power-on/reset entry point

8104 33028 PAGFAULT Page fault entry point (not currently
used)

8108 33032 RESTORKEY Restore-key long press trap entry point
810C 33036 ALTTABKEY ALT+TAB trap entry point

8110 33040 VF011RD F011 virtualised disk read trap entry
point

8114 33044 VF011WR F011 virtualised disk write trap entry
point

continued …

G-32

…continued
HEX DEC Name Description
8118 33048 BREAKPT CPU break-point encountered

811C –
81FB

33048
–
33275

RESERVED Reserved traps point entry

81FC 33276 CPUKIL KIL instruction in 6502-mode trap entry
point

The remainder of the 16KB hypervisor memory is available for use by the programmer,
but will typically use the last 512 bytes for the stack and zero-page, giving an overall
memory map as follows:

HEX DEC Description

8000 –
81FF

32768
–
33279

SYSCALL and trap entry points

8200 –
BDFF

33280
–
48639

Available for hypervisor or operating system program

8E00 –
BEFF

48640
–
48895

Processor stack for hypervisor or operating system

8F00 –
BFFF

48896
–
49151

Processor zero-page storage for hypervisor or
operating system

The stack is used for holding the return address of function calls. The zero-page stor-
age is typically used for holding variables and other short-term storage, as is customary
on the 6502.

Hypervisor Virtualisation Control Reg-
isters

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D640 54848 REGA

D641 54849 REGX

D643 54851 REGZ

continued …

G-33

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D644 54852 REGB

D645 54853 SPL

D646 54854 SPH

D647 54855 PFLAGS

D648 54856 PCL

D649 54857 PCH

D64A 54858 MAPLO

D64B 54859 MAPLO

D64C 54860 MAPHI

D64D 54861 MAPHI

D64E 54862 MAPLOMB

D64F 54863 MAPHIMB

D650 54864 PORT00

D651 54865 PORT01

D652 54866 – EXSID VICMODE

D653 54867 DMASRCMB

D654 54868 DMADSTMB

D655 54869 DMALADDR

D656 54870 DMALADDR

D657 54871 DMALADDR

D658 54872 DMALADDR

D659 54873 – VFLOP VFLOP

D670 54896 GEORAMBASE

D671 54897 GEORAMMASK

D672 54898 – MATRIXEN –

D67C 54908 UARTDATA

D67D 54909 WATCHDOG

D67E 54910 HICKED

D67F 54911 ENTEREXIT

• ASCFAST Hypervisor enable ASC/DIN CAPS LOCK key to enable/disable CPU
slow-down in C64/C128/C65 modes

• CPUFAST Hypervisor force CPU to 48MHz for userland (userland can override
via POKE0)

• DMADSTMB Hypervisor DMAgic destination MB

• DMALADDR Hypervisor DMAGic list address bits 0-7

• DMASRCMB Hypervisor DMAgic source MB

G-34

• ENTEREXIT Writing trigger return from hypervisor

• EXSID 0=Use internal SIDs, 1=Use external(1) SIDs

• F4502 Hypervisor force CPU to 4502 personality, even in C64 IO mode.

• GEORAMBASE Hypervisor GeoRAM base address (x MB)

• GEORAMMASK Hypervisor GeoRAM address mask (applied to GeoRAM block
register)

• HICKED Hypervisor already-upgraded bit (writing sets permanently)

• JMP32EN Hypervisor enable 32-bit JMP/JSR etc

• MAPHI Hypervisor MAPHI register storage (high bits)

• MAPHIMB Hypervisor MAPHI mega-byte number register storage

• MAPLO Hypervisor MAPLO register storage (high bits)

• MAPLOMB Hypervisor MAPLO mega-byte number register storage

• MATRIXEN Enable composited Matrix Mode, and disable UART access to serial
monitor.

• PCH Hypervisor PC-high register storage

• PCL Hypervisor PC-low register storage

• PFLAGS Hypervisor P register storage

• PIRQ Hypervisor flag to indicate if an IRQ is pending on exit from the hypervisor
/ set 1 to force IRQ/NMI deferal for 1,024 cycles on exit from hypervisor.

• PNMI Hypervisor flag to indicate if an NMI is pending on exit from the hypervisor.

• PORT00 Hypervisor CPU port $00 value

• PORT01 Hypervisor CPU port $01 value

• REGA Hypervisor A register storage

• REGB Hypervisor B register storage

• REGX Hypervisor X register storage

• REGZ Hypervisor Z register storage

• ROMPROT Hypervisor write protect C65 ROM $20000-$3FFFF

• RSVD RESERVED

• SPH Hypervisor SPH register storage

G-35

• SPL Hypervisor SPL register storage

• UARTDATA (write) Hypervisor write serial output to UART monitor

• VFLOP 1=Virtualise SD/Floppy0 access (usually for access via serial debugger
interface)

• VICMODE VIC-II/VIC-III/VIC-IV mode select

• WATCHDOG Hypervisor watchdog register: writing any value clears the watch
dog

Programming for Hypervisor Mode
The easiest way to write a program for Hypervisor Mode on theMEGA65 is to use KickC,
which is a special version of C made for writing programs for 6502-class processors.
The following example programs are from KickC’s supplied examples. KickC produces
very efficient code, and directly supports the MEGA65’s hypervisor mode quite easily
through the use of a linker definition file with the following contents:

.file [name="%O.bin", type="bin", segments="XMega65Bin"]

.segmentdef XMega65Bin [segments="Syscall, Code, Data, Stack, Zeropage"]

.segmentdef Syscall [start=$8000, max=$81ff]

.segmentdef Code [start=$8200, min=$8200, max=$bdff]

.segmentdef Data [startAfter="Code", min=$8200, max=$bdff]

.segmentdef Stack [min=$be00, max=$beff, fill]

.segmentdef Zeropage [min=$bf00, max=$bfff, fill]

This file instructs KickC’s assembler to create a 16KB file with the 512 byte SYSCAL-
L/trap entry point region at the start, followed by code and data areas, and then the
stack and zero-page areas. It enforces the size and location of these fields, and will
give an error during compilation if anything is too big to fit.

With this file in place, you can then create a KickC source file that provides data
structures for the SYSCALL/trap table, e.g.:

G-36

// XMega65 KERNAL Development Template

// Each function of the KERNAL is a no-args function

// The functions are placed in the SYSCALLS table surrounded by JMP and NOP

import "string"

// Use a linker definition file (put the previous listing into that file)

#pragma link("mega65hyper.ld")

// Some definitions of addresses and special values that this program uses

const char* RASTER = 0xd012;

const char* VIC_MEMORY = 0xd018;

const char* SCREEN = 0x0400;

const char* BGCOL = 0xd021;

const char* COLS = 0xd800;

const char BLACK = 0;

const char WHITE = 1;

// Some text to display

char[] MESSAGE = "hello world!";

void main() {

// Initialise screen memory, and select correct font

*VIC_MEMORY = 0x14;

// Fill the screen with spaces

memset(SCREEN, ' ', 40*25);

// Set the colour of every character on the screen to white

memset(COLS, WHITE, 40*25);

// Print the "hello world!" message

char* sc = SCREEN+40; // Display it one line down on the screen

char* msg = MESSAGE; // The massage to display

// A simple copy routine to copy the string

while(*msg) {

*sc++ = *msg++;

}

// Loop forever showing two white lines as raster bars

while(true) {

if(*RASTER==54 || *RASTER==66) {

*BGCOL = WHITE;

} else {

*BGCOL = BLACK;

}

}

}

// Here are a couple sample SYSCALL handlers that just display a character on the screen

void syscall1() {

*(SCREEN+79) = '>';

}

void syscall2() {

*(SCREEN+78) = '<';

}

// Now we select the SYSCALL segment to hold the SYSCALL/trap entry point table.

#pragma data_seg(Syscall)

// The structure of each entry point is JMP <handler address> + NOP.

// We have a char (xjmp) to hold the opcode for the JMP instruction,

// and then put the address of the SYSCALL/trap handler in the next

// two points as a pointer, and end with the NOP instruction opcode.

struct SysCall {

char xjmp; // Holds $4C, the JMP $nnnn opcode

void()* syscall; // Holds handler address, will be the target of the JMP

char xnop; // Holds $EA, the NOP opcode

};

// To save writing 0x4C and 0xEA all the time, we define them as constants

const char JMP = 0x4c;

const char NOP = 0xea;

// Now we can have a nice table of up to 64 SYSCALL handlers expressed

// in a fairly readable and easy format.

// Each line is an instance of the struct SysCall from above, with the JMP

// opcode value, the address of the handler routine and the NOP opcode value.

export struct SysCall[] SYSCALLS = {

{ JMP, &syscall1, NOP },

{ JMP, &syscall2, NOP }

};

// In this example we had only two SYSCALLs defined, so rather than having

// another 62 lines, we can just ask KickC to make the TRAP table begin

// at the next multiple of $100, i.e., at $8100.

export align(0x100) struct SysCall[] SYSCALL_RESET = {

{ JMP, &main, NOP }

};

G-37

If you save the first listing into a file called mega65hyper.ld, and the second into a file
called mega65hyper.kc, you can then compile them using KickC with a command like:

kickc -a mega65hyper

It will then produce a file called mega65hyper.bin, which you can then try out on your
MEGA65, or run in the XMega65 emulator with a command like:

xmega65 -kickup mega65hyper.bin

G-38

APPENDIX H
45GS02 & 6502 Instruction

Sets
• Addressing Modes

• 6502 Instruction Set

• 4510 Instruction Set

• 45GS02 Compound Instructions

H-2

The 45GS02 CPU is able to operate in native mode, where it is compatible with the
CSG 4510, and in 6502 compatibility mode, where 6502 undocumented instructions,
also known as illegal instructions, are supported for compatibility.

When in 4510 compatibility mode, the 45GS02 also supports a number of extensions
through compound instructions. These work be prefixing the desired instruction’s op-
code with one or more prefix bytes, which represent sequences of instructions that
should not normally occur. For example, two NEG instructions in a row acts as a pre-
fix to tell the 45GS02 that the following instruction will operate on 32 bits of data,
instead of the usual 8 bits of data. This means that a 45GS02 instruction stream
can be readily decoded or disassembled, without needing to set special instruction
length flags, as is the case with the 65816 family of microprocessors. The trade-off
is increased execution time, as the 45GS02 must skip over the prefix bytes.

The remainder of this chapter introduces the addressing modes, instructions, opcodes
and instruction timing data of the 45GS02, beginning with 6502 compatibility mode,
before moving on to 4510 compatibility mode, and the 45GS02 extensions.

ADDRESSING MODES
The 45GS02 supports 36 different addressing modes, which are explained below.
Many of these are very similar to one another, being variations of the normal 6502 or
65CE02 addressing modes, except that they accept either 32-bit pointers, operate
on 32-bits of data, or both.

Implied
In this mode, there are no operands, as the precise function of the instruction is implied
by the instruction itself. For example, the INX instruction increments the X Register.

Accumulator
In this mode, the Accumulator is the operand. This is typically used to shift, rotate or
modify the value of the Accumulator Register in some way. For example, INC A incre-
ments the value in the Accumulator Register.

H-3

Q Pseudo Register
In this mode, the Q Pseudo Register is the operand. This is typically used to shift, rotate
or modify the value of the Q Pseudo Register in some way. For example, ASL Q shifts the
value in the Q Pseudo Register left one bit.

Remember that the Q Pseudo Register is simply the A, X, Y and Z registers acting
together as a pseudo 32-bit register, where A contains the least significant bits, and
Z the most significant bits. There are some cases where using a Q mode instruction
can be helpful for operating on the four true registers.

Immediate Mode
In this mode, the argument to the instruction is a value that is used directly. This is
indicated by proceeding the value with a # character. Most assemblers allow values
to be entered in decimal, or in hexadecimal by preceding the value with a $ sign, in
binary, by preceding the value with a % sign. For example, to set the Accumulator
Register to the value 5, you could use the following:

LDA #5

The immediate argument is encoded as a single byte following the instruction. For the
above case, the instruction stream would contain $A9, the opcode for LDA immediate
mode, followed by $05, the immediate operand.

Immediate Word Mode
In this mode, the argument is a 16-bit value that is used directly. There is only one
instruction which uses this addressing mode, PHW. For example, to push the word $1234
onto the stack, you could use:

PHW #$1234

The low byte of the immediate value follows the opcode of the instruction. The high
byte of the immediate value then follows that. For the above example, the instruction
stream would thus be $F4 $34 $12.

H-4

Base Page (Zero-Page) Mode
In this mode, the argument is an 8-bit address. The upper 8-bits of the address are
taken from the Base Page Register. On 6502 processors, there is no Base Page Regis-
ter, and instead, the upper 8-bits are always set to zero – hence the name of this mode
on the 6502: Zero-Page. On the 45GS02, it is possible to move this “Zero-Page” to
any page in the processor’s 64KB view of memory by setting the Base Page Register
using the TAB instruction. Base Page Mode allows faster access to a 256 region of
memory, and uses less instruction bytes to do so.

The argument is encoded as a single byte that immediately follows the instruction
opcode. For example, LDA $12 would read the value stored in location $12 in the Base
Page, and put it into the Accumulator Register. The instruction byte stream for this
would be $85 $12.

Base Page (Zero-Page) Quad Mode
In this mode, the argument is an 8-bit address. The upper 8-bits of the address are
taken from the Base Page Register. On 6502 processors, there is no Base Page Regis-
ter, and instead, the upper 8-bits are always set to zero – hence the name of this mode
on the 6502: Zero-Page. On the 45GS02, it is possible to move this “Zero-Page” to
any page in the processor’s 64KB view of memory by setting the Base Page Register
using the TAB instruction. Base Page Mode allows faster access to a 256 region of
memory, and uses less instruction bytes to do so.

The argument is encoded as a single byte that immediately follows the instruction
opcode. For example, LDQ $12 would read the value stored in locations $12 – $15 in the
Base Page, and put them into the Q Pseudo Register.

Base Page (Zero-Page) X Indexed
Mode
This mode is identical to Base Page Mode, except that the address is formed by taking
the argument, and adding the value of the X Register to it. In 6502mode, the result will
always be in the Base Page, that is, any carry due to the addition from the low byte
into the high byte of the address will be ignored. The encoding for this addressing
mode is identical to Base Page Mode.

H-5

Base Page (Zero-Page) Quad X In-
dexed Mode
This mode is identical to Base Page Quad Mode, except that the address is formed
by taking the argument, and adding the value of the X Register to it. In 6502 mode,
the result will always be in the Base Page, that is, any carry due to the addition from
the low byte into the high byte of the address will be ignored. The encoding for this
addressing mode is identical to Base Page Quad Mode.

Base Page (Zero-Page) Y Indexed
Mode
This mode is identical to Base Page Mode, except that the address is formed by taking
the argument, and adding the value of the Y Register to it. In 6502mode, the result will
always be in the Base Page, that is, any carry due to the addition from the low byte
into the high byte of the address will be ignored. The encoding for this addressing
mode is identical to Base Page Mode.

Base Page (Zero-Page) Base Y Indexed
Mode
This mode is identical to Base Page Quad Mode, except that the address is formed
by taking the argument, and adding the value of the Y Register to it. In 6502 mode,
the result will always be in the Base Page, that is, any carry due to the addition from
the low byte into the high byte of the address will be ignored. The encoding for this
addressing mode is identical to Base Page Quad Mode.

Base Page (Zero-Page) Z Indexed
Mode
This mode is identical to Base Page Mode, except that the address is formed by taking
the argument, and adding the value of the Z Register to it. In 6502mode, the result will
always be in the Base Page, that is, any carry due to the addition from the low byte

H-6

into the high byte of the address will be ignored. The encoding for this addressing
mode is identical to Base Page Mode.

Base Page (Zero-Page) Quad Z In-
dexed Mode
This mode is identical to Base Page Quad Mode, except that the address is formed
by taking the argument, and adding the value of the Z Register to it. In 6502 mode,
the result will always be in the Base Page, that is, any carry due to the addition from
the low byte into the high byte of the address will be ignored. The encoding for this
addressing mode is identical to Base Page Quad Mode.

Absolute Mode
In this mode, the argument is an 16-bit address. The low 8-bits of the address are
taken from the byte immediately following the instruction opcode. The upper 8-bits
are taken from the byte following that. For example, the instruction LDA $1234, would read
the memory location $1234, and place the read value into the Accumulator Register.
This would be encoded as $AD $34 $12.

Absolute Quad Mode
In this mode, the argument is an 16-bit address. The low 8-bits of the address are
taken from the byte immediately following the instruction opcode. The upper 8-bits
are taken from the byte following that. For example, the instruction LDQ $1234, would read
the memory locations $1234 – $1237, and place the read values into the Q Pseudo
Register. This would be encoded as $42 $42 $AD $34 $12.

Absolute X Indexed Mode
This mode is identical to Absolute Mode, except that the address is formed by taking
the argument, and adding the value of the X Register to it. If the indexing causes the
address to cross a page boundary, i.e., if the upper byte of the address changes, this
may incur a 1 cycle penalty, depending on the processor mode and speed setting. The
encoding for this addressing mode is identical to Absolute Mode.

H-7

Absolute Quad X Indexed Mode
This mode is identical to Absolute Quad Mode, except that the address is formed by
taking the argument, and adding the value of the X Register to it. If the indexing causes
the address to cross a page boundary, i.e., if the upper byte of the address changes,
this may incur a 1 cycle penalty, depending on the processor mode and speed setting.
The encoding for this addressing mode is identical to Absolute Quad Mode.

Absolute Y Indexed Mode
This mode is identical to Absolute Mode, except that the address is formed by taking
the argument, and adding the value of the Y Register to it. If the indexing causes the
address to cross a page boundary, i.e., if the upper byte of the address changes, this
may incur a 1 cycle penalty, depending on the processor mode and speed setting. The
encoding for this addressing mode is identical to Absolute Mode.

Absolute Quad Y Indexed Mode
This mode is identical to Absolute Quad Mode, except that the address is formed by
taking the argument, and adding the value of the Y Register to it. If the indexing causes
the address to cross a page boundary, i.e., if the upper byte of the address changes,
this may incur a 1 cycle penalty, depending on the processor mode and speed setting.
The encoding for this addressing mode is identical to Absolute Quad Mode.

Absolute Z Indexed Mode
This mode is identical to Absolute Mode, except that the address is formed by taking
the argument, and adding the value of the Z Register to it. If the indexing causes the
address to cross a page boundary, i.e., if the upper byte of the address changes, this
may incur a 1 cycle penalty, depending on the processor mode and speed setting. The
encoding for this addressing mode is identical to Absolute Mode.

Absolute Quad Z Indexed Mode
This mode is identical to Absolute Quad Mode, except that the address is formed by
taking the argument, and adding the value of the Z Register to it. If the indexing causes
the address to cross a page boundary, i.e., if the upper byte of the address changes,

H-8

this may incur a 1 cycle penalty, depending on the processor mode and speed setting.
The encoding for this addressing mode is identical to Absolute Quad Mode.

Absolute Indirect Mode
In this mode, the 16-bit argument is the address that points to, i.e., contains the ad-
dress of actual byte to read. For example, if memory location $1234 contains $78 and
memory location $1235 contains $56, then JMP ($1234) would jump to address $5678.
The encoding for this addressing mode is identical to Absolute Mode.

Absolute Indirect X-Indexed Mode
In this mode, the 16-bit argument is the address that points to, i.e., contains the ad-
dress of actual byte to read. It is identical to Absolute Indirect Mode, except that the
value of the X Register is added to the pointer address. For example, if the X Register
contains the value $04, memory location $1238 contains $78 and memory location
$1239 contains $56, then JMP ($1234) would jump to address $5678. The encoding for
this addressing mode is identical to Absolute Mode.

Base Page Indirect X-Indexed Mode
This addressing mode is identical to Absolute Indirect X-Indexed Mode, except that
the address of the pointer is formed from the Base Page Register (high byte) and the
8-bit operand (low byte). The encoding for this addressing mode is identical to Base
Page Mode.

Base Page Quad Indirect X-Indexed
Mode
This addressing mode is identical to Base PAge Indirect X-Indexed Mode, except that
the address of the pointer is formed from the Base Page Register (high byte) and the
8-bit operand (low byte). The encoding for this addressing mode is identical to Base
Page Quad Mode.

H-9

Base Page Indirect Y-Indexed Mode
This addressing mode differs from the X-Indexed Indirect modes, in that the Y Register
is added to the address that is read from the pointer, instead of being added to the
pointer. This is a very useful mode, that is frequently because it effectively provides
access to “the Y-th byte of the memory at the address pointed to by the operand.”
That is, it de-references a pointer. The encoding for this addressing mode is identical
to Base Page Mode.

Base Page Quad Indirect Y-Indexed
Mode
This addressing mode is identical to the Base Page Indirect Y-Indexed Mode, except
that 32-bits of data are operated on. The encoding for this addressing mode is iden-
tical to Base Page Mode, except that it is prefixed by $42, $42.

Base Page Indirect Z-Indexed Mode
This addressing mode differs from the X-Indexed Indirect modes, in that the Z Register
is added to the address that is read from the pointer, instead of being added to the
pointer. This is a very useful mode, that is frequently because it effectively provides
access to “the Z-th byte of the memory at the address pointed to by the operand.”
That is, it de-references a pointer. The encoding for this addressing mode is identical
to Base Page Mode.

That is, it is equivalent to the Base Page Indirect Y-Indexed Mode.

Base Page Quad Indirect Z-Indexed
Mode
This addressing mode is identical to the Base Page Indirect Z-Indexed Mode, except
that 32-bits of data are operated on. The encoding for this addressing mode is iden-
tical to Base Page Mode, except that it is prefixed by $42, $42.

H-10

32-bit Base Page Indirect Z-Indexed
Mode
This mode is formed by preceding a Base Page Indirect Z-Indexed Mode instruction
with the NOP instruction (opcode $EA). This causes the 45GS02 to read a 32-bit ad-
dress instead of a 16-bit address from the Base Page address indicated by its operand.
The Z index is added to that pointer. Importantly, the 32-bit address does not refer to
the processor’s current 64KB view of memory, but rather to the 45GS02’s true 28-bit
address space. This allows easy access to any memory, without requiring the use of
complex bank-switching or DMA operations.

For example, if addresses $12 to $15 contained the bytes $20, $D0, $FF, $0D, and
the Z index contained the value $01, the following instruction sequence would change
the screen colour to blue:

LDA #$06

LDZ #$01

STA [$12],Z

32-bit Base Page Indirect Quad Z-
Indexed Mode
This addressing mode is identical to the 32-bit Base Page Indirect Z-Indexed Mode,
except that it operates on 32-bits of data at the 32-bit address formed by the argu-
ment, in comparison to 32-bit Base Page Indirect Z-Indexed Mode which operates on
only 8 bits of data. The encoding of this addressing mode is $42, $42, $EA, followed
by the natural 6502 opcode for the instruction being performed.

32-bit Base Page Indirect Mode
This mode is formed by preceding a Base Page Indirect Z-Indexed Mode instruction
with the NOP instruction (opcode $EA). This causes the 45GS02 to read a 32-bit
address instead of a 16-bit address from the Base Page address indicated by its
operand. Importantly, the 32-bit address does not refer to the processor’s current
64KB view of memory, but rather to the 45GS02’s true 28-bit address space. This al-
lows easy access to any memory, without requiring the use of complex bank-switching
or DMA operations.

H-11

For example, if addresses $12 to $15 contained the bytes $20, $D0, $FF, $0D, the
following instruction sequence would change the screen border colour to blue:

LDA #$06

STA [$12]

NOTE: The ACME assembler is the only assembler that currently supports this address-
ing mode. For other assemblers, you can achieve the same result by using a NOP

instruction to prefix the equivalent Base Page Indirect, Indexed by Z instruction.

LDA #$06

NOP

STA ($12),Z

The encoding for this addressing mode is identical to Base Page Mode.

32-bit Base Page Indirect Mode
This addressing mode is identical to the 32-bit Base Page Indirect Mode, except that
it operates on 32-bits of data at the 32-bit address formed by the argument, in com-
parison to 32-bit Base Page Indirect Mode which operates on only 8 bits of data. The
encoding of this addressing mode is $42, $42, $EA, followed by the natural 6502
opcode for the instruction being performed.

Stack Relative Indirect, Indexed by Y
This addressing mode is similar to Base Page Indirect Y-Indexed Mode, except that
instead of providing the address of the pointer in the Base Page, the operand indi-
cates the offset in the stack to find the pointer. This addressing mode effectively
de-references a pointer that has been placed on the stack, e.g., as part of a function
call from a high-level language. It is encoded identically to the Base Page Mode.

Relative Addressing Mode
In this addressing mode, the operand is an 8-bit signed offset to the current value of
the Program Counter (PC). It is used to allow branches to encode the nearby address
at which execution should proceed if the branch is taken.

H-12

Relative Word Addressing Mode
This addressing mode is identical to Relative Addressing Mode, except that the ad-
dress offset is a 16-bit value. This allows a relative branch or jump to any location in
the current 64KB memory view. This makes it possible to write software that is fully
relocatable, by avoiding the need for absolute addresses when calling routines.

6502 INSTRUCTION SET
NOTE: The mechanisms for switching from 4510 to 6502 CPU personality have yet to
be finalised.

NOTE: Not all 6502 illegal opcodes are currently implemented.

H-13

Opcode Map

$x0
$x1

$x2
$x3

$x4
$x5

$x6
$x7

$x8
$x9

$xA
$xB

$xC
$xD

$xE
$xF

$0
xBRK

O
RA

KIL
SLO

NO
PO

RA
ASL

SLO
PHP

O
RA

ASL
A
NC

NO
PO

RA
ASL

SLO
$1

xBPL
O
RA

KIL
SLO

NO
PO

RA
ASL

SLO
C
LC

O
RA

NO
PSLO

NO
PO

RA
ASL

SLO
$2

xJSR
A
ND

KIL
RLA

BIT
A
ND

RO
L
RLA

PLP
A
ND

RO
L
A
NC

BIT
A
ND

RO
L
RLA

$3
xBM

I
A
ND

KIL
RLA

NO
PA

ND
RO

L
RLA

SEC
A
ND

NO
PRLA

NO
PA

ND
RO

L
RLA

$4
xRTI

EO
R
KIL

SRE
NO

PEO
R
LSR

SRE
PHA

EO
R
LSR

A
LR

JM
P
EO

R
LSR

SRE
$5

xBVC
EO

R
KIL

SRE
NO

PEO
R
LSR

SRE
C
LI

EO
R
NO

PSRE
NO

PEO
R
LSR

SRE
$6

xRTS
A
D
C
KIL

RRA
NO

PA
D
C
RO

R
RRA

PLA
A
D
C
RO

R
A
RR

JM
P
A
D
C
RO

R
RRA

$7
xBV

S
A
D
C
KIL

RRA
NO

PA
D
C
RO

R
RRA

SEI
A
D
C
NO

PRRA
NO

PA
D
C
RO

R
RRA

$8
xNO

P
STA

NO
PSA

X
STY

STA
STX

SA
X
D
EY

NO
P
TX

A
X
A
A
STY

STA
STX

SA
X

$9
xBC

C
STA

KIL
SHA

STY
STA

STX
SA

X
TYA

STA
TX

S
TAS

SHY
STA

SHX
SHA

$A
xLDY

LD
A

LDX
LA

X
LDY

LD
A

LDX
LA

X
TAY

LD
A

TA
X

LA
X

LDY
LD

A
LDX

LA
X

$Bx
BC

S
LD

A
KIL

LA
X

LDY
LD

A
LDX

LA
X

C
LV

LD
A

TSX
LAS

LDY
LD

A
LDX

LA
X

$C
xC

PY
C
M
PNO

PD
C
PC

PY
C
M
PD

EC
D
C
PINY

C
M
PD

EX
SBX

C
PY

C
M
PD

EC
D
C
P

$D
xBNE

C
M
PKIL

D
C
PNO

PC
M
PD

EC
D
C
PC

LD
C
M
PNO

PD
C
P
NO

PC
M
PD

EC
D
C
P

$Ex
C
PX

SBC
NO

PISC
C
PX

SBC
INC

ISC
INX

SBC
NO

PSBC
C
PX

SBC
INC

ISC
$Fx

BEQ
SBC

KIL
ISC

NO
PSBC

INC
ISC

SED
SBC

NO
PISC

NO
PSBC

INC
ISC

Instruction Timing
The following table summarises the base instruction timing for 6502mode. Please also
read the information for 4510mode, as it discusses a number of important factors that
affect these figures.

H-14

$x0
$x1

$x2
$x3

$x4
$x5

$x6
$x7

$x8
$x9

$xA
xBxC

$xD
xExF

$0
x7

6
9

8
3

3
5

5
3

2
2

2
4

4
6

6
$1

x2
b

5
p

9
8

4
4
p

6
6

2
4
p

2
7

4
p

4
p

7
7

$2
x6

6
9

8
3

3
5

5
4

2
2

2
4

4
6

6
$3

x2
b

5
p

9
8

4
4

6
6

2
4
p

2
7

4
p

4
p

7
7

$4
x6

6
9

8
3

3
5

5
3

2
2

2
3

4
6

6
$5

x2
b

5
p

9
8

4
4

6
6

2
4
p

2
7

4
p

4
p

7
7

$6
x6

6
9

8
3

3
5

5
4

2
2

2
5

4
6

6
$7

x2
b

5
p

9
8

4
4

6
6

2
4
p

2
7

4
p

4
p

7
7

$8
x2

6
2

6
3

3
3

3
2

2
2

2
4

4
4

4
$9

x2
b

6
9

6
4

4
4

4
2

5
2

5
5

5
5

5
$A

x2
6

2
6

3
3

3
3

2
2

2
2

4
4

4
4

$Bx
2
b

5
p

9
5
p

4
4

4
4

2
4
p

2
4
p

4
p

4
p

4
p

4
p

$C
x2

6
2

8
3

3
5

5
2

2
2

2
4

4
6

6
$D

x2
b

5
p

9
8

4
4

6
6

2
4
p

2
7

4
p

4
p

7
7

$Ex
2

6
2

8
3

3
5

5
2

2
2

2
4

4
6

6
$Fx

2
b

5
p

9
8

4
4

6
6

2
4
p

2
7

4
p

4
p

7
7

bA
dd

one
cycle

if
branch

crosses
a
page

boundary.
pA

dd
one

cycle
if
indexing

crosses
a
page

boundary.

H-15

Addressing Mode Table

$x0
$x1

$x2
$x3

$x4
$x5

$x6
$x7

$x8
$x9

$xA
$xB

$xC
$xD

$xE
$xF

$0
x

($nn,X
)

($nn,X
)$nn

$nn
$nn

$nn
#$nn

A
#$nn

$nnnn
$nnnn

$nnnn
$nnnn

$1
x
$rr

($nn),Y
($nn),Y

$nn,X
$nn,X

$nn,X
$nn,X

$nnnn,Y
$nnnn,Y

$nnnn,X
$nnnn,X

$nnnn,X
$nnnn,X

$2
x
$nnnn($nn,X

)
($nn,X

)$nn
$nn

$nn
$nn

#$nn
A

#$nn
$nnnn

$nnnn
$nnnn

$nnnn
$3

x
$rr

($nn),Y
($nn),Y

$nn,X
$nn,X

$nn,X
$nn,X

$nnnn,Y
$nnnn,Y

$nnnn,X
$nnnn,X

$nnnn,X
$nnnn,X

$4
x

($nn,X
)

($nn,X
)$nn

$nn
$nn

$nn
#$nn

A
#$nn

$nnnn
$nnnn

$nnnn
$nnnn

$5
x
$rr

($nn),Y
($nn),Y

$nn,X
$nn,X

$nn,X
$nn,X

$nnnn,Y
$nnnn,Y

$nnnn,X
$nnnn,X

$nnnn,X
$nnnn,X

$6
x

($nn,X
)

($nn,X
)$nn

$nn
$nn

$nn
#$nn

A
#$nn

($nnnn)$nnnn
$nnnn

$nnnn
$7

x
$rr

($nn),Y
($nn),Y

$nn,X
$nn,X

$nn,X
$nn,X

$nnnn,Y
$nnnn,Y

$nnnn,X
$nnnn,X

$nnnn,X
$nnnn,X

$8
x
#$nn

($nn,X
)#$nn($nn,X

)$nn
$nn

$nn
$nn

#$nn
#$nn

$nnnn
$nnnn

$nnnn
$nnnn

$9
x
$rr

($nn),Y
($nn),Y

$nn,X
$nn,X

$nn,Y
$nn,Y

$nnnn,Y
$nnnn,Y

$nnnn,X
$nnnn,X

$nnnn,Y
$nnnn,Y

$A
x
#$nn

($nn,X
)#$nn($nn,X

)$nn
$nn

$nn
$nn

#$nn
#$nn

$nnnn
$nnnn

$nnnn
$nnnn

$Bx
$rr

($nn),Y
($nn),Y

$nn,X
$nn,X

$nn,Y
$nn,Y

$nnnn,Y
$nnnn,Y

$nnnn,X
$nnnn,X

$nnnn,Y
$nnnn,Y

$C
x#$nn

($nn,X
)#$nn($nn,X

)$nn
$nn

$nn
$nn

#$nn
#$nn

$nnnn
$nnnn

$nnnn
$nnnn

$D
x$rr

($nn),Y
($nn),Y

$nn,X
$nn,X

$nn,X
$nn,X

$nnnn,Y
$nnnn,Y

$nnnn,X
$nnnn,X

$nnnn,X
$nnnn,X

$Ex
#$nn

($nn,X
)#$nn($nn,X

)$nn
$nn

$nn
$nn

#$nn
#$nn

$nnnn
$nnnn

$nnnn
$nnnn

$Fx
$rr

($nn),Y
($nn),Y

$nn,X
$nn,X

$nn,X
$nn,X

$nnnn,Y
$nnnn,Y

$nnnn,X
$nnnn,X

$nnnn,X
$nnnn,X

Official And Unintended Instructions
The 6502 opcode matrix has a size of 16 x 16 = 256 possible opcodes. Those, that
are officially documented, form the set of the legal instructions. All instructions of this
legal set are headed by a blue coloured mnemonic.

The remaining opcodes form the set of the unintended instructions (sometimes called
”illegal” instructions). For the sake of completeness these are documented too. All
instructions of the unintended set are headed by a red coloured mnemonic.

H-16

The unintended instructions are implemented in the 6502 mode, but are not guaran-
teed to produce exactly the same results as on other CPU’s of the 65xx family. Many
of these instructions are known to be unstable, even running on old hardware.

ADC
This instruction adds the argument to the contents of the Accumulator Register and
the Carry Flag. If the D flag is set, then the addition is performed using Binary Coded
Decimal.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The C flag will be set if the unsigned result is >255, or >99 if the D flag is set.

ADC : Add with carry 6502
A← A+M+C

NZ I CDV E
+ + · + · + ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) ADC ($nn,X) 61 2 6
zero-page ADC $nn 65 2 3
immediate ADC #$nn 69 2 2
absolute ADC $nnnn 6D 3 4
(indirect),Y ADC ($nn),Y 71 2 5 p

zero-page,X ADC $nn,X 75 2 4
absolute,Y ADC $nnnn,Y 79 3 4 p

absolute,X ADC $nnnn,X 7D 3 4 p

pAdd one cycle if indexing crosses a page boundary.

ALR [unintended]
This instruction shifts the Accumulator one bit right after performing a binary AND of
the Accumulator and the immediate mode argument. Bit 7 will be set to zero, and the
bit 0 will be shifted out into the Carry Flag

H-17

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 0 of the value was set, prior to being shifted.

ALR : Binary AND and Logical Shift Right 6502
A← (A AND Value) >>1, C← A(0)

NZ I CDV E
+ + · + · · ·

Addressing Mode AssemblyCodeBytesCycles
immediate ALR #$nn 4B 2 2

ANC [unintended]
This instructions performs a binary AND operation of the argument with the accumu-
lator, and stores the result in the accumulator. Only bits that were already set in the
accumulator, and that are set in the argument will be set in the accumulator on com-
pletion. Unlike the AND instruction, the Carry Flag is set as though the result were
shifted left one bit. That is, the Carry Flag is set in the same way as the Negative Flag.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The C flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

ANC : Binary AND, and Set Carry 6502
A← A AND M, C← A7 AND M7

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
immediate ANC #$nn 0B 2 2
immediate ANC #$nn 2B 2 2

H-18

AND
This instructions performs a binary AND operation of the argument with the accumu-
lator, and stores the result in the accumulator. Only bits that were already set in the
accumulator, and that are set in the argument will be set in the accumulator on com-
pletion.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

AND : Binary AND 6502
A← A AND M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) AND ($nn,X) 21 2 6
zero-page AND $nn 25 2 3
immediate AND #$nn 29 2 2
absolute AND $nnnn 2D 3 4
(indirect),Y AND ($nn),Y 31 2 5 p

zero-page,X AND $nn,X 35 2 4
absolute,Y AND $nnnn,Y 39 3 4 p

absolute,X AND $nnnn,X 3D 3 4 p

pAdd one cycle if indexing crosses a page boundary.

ARR [unintended]
This instruction shifts the Accumulator one bit right after performing a binary AND of
the Accumulator and the immediate mode argument. Bit 7 is exchanged with the
carry.

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The V flag will be apparently be affected in some way.

H-19

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

ARR : Binary AND and Rotate Right 6502
A← (A AND Value) >>1, C← A(7)

NZ I CDV E
+ + · + · + ·

Addressing Mode AssemblyCodeBytesCycles
immediate ARR #$nn 6B 2 2

ASL
This instruction shifts either the Accumulator or contents of the provided memory lo-
cation one bit left. Bit 0 will be set to zero, and the bit 7 will be shifted out into the
Carry Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

ASL : Arithmetic Shift Left 6502
A← A<<1 or M← M<<1

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
zero-page ASL $nn 06 2 5
accumulator ASL A 0A 1 2
absolute ASL $nnnn 0E 3 6
zero-page,X ASL $nn,X 16 2 6
absolute,X ASL $nnnn,X 1E 3 7

BCC
This instruction branches to the indicated address if the Carry Flag is clear.

H-20

BCC : Branch on Carry Flag Clear 6502
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BCC $rr 90 2 2 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

BCS
This instruction branches to the indicated address if the Carry Flag is set.

BCS : Branch on Carry Flag Set 6502
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BCS $rr B0 2 2 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

BEQ
This instruction branches to the indicated address if the Zero Flag is set.

BEQ : Branch on Zero Flag Set 6502
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BEQ $rr F0 2 2 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

H-21

BIT
This instruction is used to test the bits stored in a memory location. Bits 6 and 7 of the
memory location’s contents are directly copied into the Overflow Flag and Negative
Flag. The Zero Flag is set or cleared based on the result of performing the binary AND
of the Accumulator Register and the contents of the indicated memory location.

Side effects

• The N flag will be set if the bit 7 of the memory location is set, else it will be
cleared.

• The V flag will be set if the bit 6 of the memory location is set, else it will be
cleared.

• The Z flag will be set if the result of A AND M is zero, else it will be cleared.

BIT : Perform Bit Test 6502
N← M(7), V← M(6), Z← A AND M

NZ I CDV E
+ + · · · + ·

Addressing Mode AssemblyCodeBytesCycles
zero-page BIT $nn 24 2 3
absolute BIT $nnnn 2C 3 4

BMI
This instruction branches to the indicated address if the Negative Flag is set.

BMI : Branch on Negative Flag Set 6502
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BMI $rr 30 2 2 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

H-22

BNE
This instruction branches to the indicated address if the Zero Flag is clear.

BNE : Branch on Zero Flag Clear 6502
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BNE $rr D0 2 2 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

BPL
This instruction branches to the indicated address if the Negative Flag is clear.

BPL : Branch on Negative Flag Clear 6502
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BPL $rr 10 2 2 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

BRK
The break command causes the microprocessor to go through an interrupt sequence
under program control. The address of the BRK instruction + 2 is pushed to the stack
along with the status register with the Break flag set. This allows the interrupt service
routine to distinguish between IRQ events and BRK events. For example:

PLA ; load status
PHA ; restore stack
AND #$10 ; mask break flag
BNE DO_BREAK ; -> it was a BRK
... ; else continue with IRQ server

H-23

Cite from: MCS6500 Microcomputer Family Programming Manual, January 1976,
Second Edition, MOS Technology Inc., Page 144:

”The BRK is a single byte instruction and its addressing mode is Implied.”

There are debates, that BRK could be seen as a two byte instruction with the addressing
mode immediate, where the operand byte is discarded. The byte following the BRK
could then be used as a call argument for the break handler. Commodore however
used the BRK, as stated in the manual, as a single byte instruction, which breaks into
the ML monitor, if present. These builtin monitors decremented the stacked PC, so that
it could be used to return or jump directly to the code byte after the BRK.

BRK : Break to Interrupt 6502
PC← ($FFFE)

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied BRK 00 1 7

BVC
This instruction branches to the indicated address if the Overflow (V) Flag is clear.

BVC : Branch on Overflow Flag Clear 6502
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BVC $rr 50 2 2 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

BVS
This instruction branches to the indicated address if the Overflow (V) Flag is set.

H-24

BVS : Branch on Overflow Flag Set 6502
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BVS $rr 70 2 2 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

CLC
This instruction clears the Carry Flag.

Side effects

• The C flag is cleared.

CLC : Clear Carry Flag 6502
C← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied CLC 18 1 2

CLD
This instruction clears the Decimal Flag. Arithmetic operations will use normal binary
arithmetic, instead of Binary-Coded Decimal (BCD).

Side effects

• The D flag is cleared.

CLD : Clear Decimal Flag 6502
D← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied CLD D8 1 2

H-25

CLI
This instruction clears the Interrupt Disable Flag. Interrupts will now be able to occur.

Side effects

• The I flag is cleared.

CLI : Clear Interrupt Disable Flag 6502
I← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied CLI 58 1 2

CLV
This instruction clears the Overflow Flag.

Side effects

• The V flag is cleared.

CLV : Clear Overflow Flag 6502
V← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied CLV B8 1 2

CMP
This instruction performs A−M, and sets the processor flags accordingly, but does not
modify the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

H-26

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

CMP : Compare Accumulator 6502

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) CMP ($nn,X) C1 2 6
zero-page CMP $nn C5 2 3
immediate CMP #$nn C9 2 2
absolute CMP $nnnn CD 3 4
(indirect),Y CMP ($nn),Y D1 2 5 p

zero-page,X CMP $nn,X D5 2 4
absolute,Y CMP $nnnn,Y D9 3 4 p

absolute,X CMP $nnnn,X DD 3 4 p

pAdd one cycle if indexing crosses a page boundary.

CPX
This instruction performs X−M, and sets the processor flags accordingly, but does not
modify the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result of X − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of X − M is zero or positive, i.e., if X is not less
than M, else it will be cleared.

• The Z flag will be set if the result of X − M is zero, else it will be cleared.

H-27

CPX : Compare X Register 6502

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
immediate CPX #$nn E0 2 2
zero-page CPX $nn E4 2 3
absolute CPX $nnnn EC 3 4

CPY
This instruction performs Y−M, and sets the processor flags accordingly, but does not
modify the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result of Y − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of Y − M is zero or positive, i.e., if Y is not less
than M, else it will be cleared.

• The Z flag will be set if the result of Y − M is zero, else it will be cleared.

CPY : Compare Y Register 6502

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
immediate CPY #$nn C0 2 2
zero-page CPY $nn C4 2 3
absolute CPY $nnnn CC 3 4

DCP [unintended]
This instruction decrements the contents of the indicated memory location, and then
performs A − M, and sets the processor flags accordingly, but does not modify the
contents of the Accumulator Register.

H-28

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

DCP : Decrement and Compare Accumulator 6502
M← M-1, A-M

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) DCP ($nn,X) C3 2 8
zero-page DCP $nn C7 2 5
absolute DCP $nnnn CF 3 6
(indirect),Y DCP ($nn),Y D3 2 8
zero-page,X DCP $nn,X D7 2 6
absolute,Y DCP $nnnn,Y DB 3 7
absolute,X DCP $nnnn,X DF 3 7

DEC
This instruction decrements the Accumulator Register or indicated memory location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

DEC : Decrement Memory or Accumulator 6502
A← A - 1 or M← M - 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
zero-page DEC $nn C6 2 5
absolute DEC $nnnn CE 3 6
zero-page,X DEC $nn,X D6 2 6
absolute,X DEC $nnnn,X DE 3 7

H-29

DEX
This instruction decrements the X Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

DEX : Decrement X Register 6502
X← X - 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied DEX CA 1 2

DEY
This instruction decrements the Y Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

DEY : Decrement Y Register 6502
Y← Y - 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied DEY 88 1 2

EOR
This instructions performs a binary XOR operation of the argument with the accumu-
lator, and stores the result in the accumulator. Only bits that were already set in the
accumulator, or that are set in the argument will be set in the accumulator on com-
pletion, but not both.

H-30

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

EOR : Binary Exclusive OR 6502
A← A XOR M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) EOR ($nn,X) 41 2 6
zero-page EOR $nn 45 2 3
immediate EOR #$nn 49 2 2
absolute EOR $nnnn 4D 3 4
(indirect),Y EOR ($nn),Y 51 2 5 p

zero-page,X EOR $nn,X 55 2 4
absolute,Y EOR $nnnn,Y 59 3 4 p

absolute,X EOR $nnnn,X 5D 3 4 p

pAdd one cycle if indexing crosses a page boundary.

INC
This instruction increments the Accumulator Register or indicated memory location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

INC : Increment Memory or Accumulator 6502
A← A + 1 or M← M + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
zero-page INC $nn E6 2 5
absolute INC $nnnn EE 3 6
zero-page,X INC $nn,X F6 2 6
absolute,X INC $nnnn,X FE 3 7

H-31

INX
This instruction increments the X Register, i.e., adds 1 to it.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

INX : Increment X Register 6502
X← X + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied INX E8 1 2

INY
This instruction increments the Y Register, i.e., adds 1 to it.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

INY : Increment Y Register 6502
Y← Y + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied INY C8 1 2

ISC [unintended]
This instruction increments the indicated memory location, and then performs A − M -
1 + C, and sets the processor flags accordingly. The result is stored in the Accumulator
Register.

NOTE: This instruction is affected by the status of the Decimal Flag.

H-32

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

ISC : Increment Memory, Subtract With Carry 6502
M← M+1, A← - M - 1 + C

NZ I CDV E
+ + · + · + ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) ISC ($nn,X) E3 2 8
zero-page ISC $nn E7 2 5
absolute ISC $nnnn EF 3 6
(indirect),Y ISC ($nn),Y F3 2 8
zero-page,X ISC $nn,X F7 2 6
absolute,Y ISC $nnnn,Y FB 3 7
absolute,X ISC $nnnn,X FF 3 7

JMP
This instruction sets the Program Counter (PC) Register to the address indicated by the
instruction, causing execution to continue from that address.

JMP : Jump to Address 6502
PC← M2:M1

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
absolute JMP $nnnn 4C 3 3
indirect JMP ($nnnn) 6C 3 5

H-33

JSR
This instruction saves the address of the instruction following the JSR instruction onto
the stack, and then sets the ProgramCounter (PC) Register to the address indicated by
the instruction, causing execution to continue from that address. Because the return
address has been saved on the stack, the RTS instruction can be used to return from
the called sub-routine and resume execution following the JSR instruction.

NOTE: This instruction actually pushes the address of the last byte of the JSR instruction
onto the stack. The RTS instruction naturally is aware of this, and increments the ad-
dress on popping it from the stack, before setting the Program Counter (PC) register.

JSR : Jump to Sub-Routine 6502
PC← M2:M1, Stack← PCH:PCL

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
absolute JSR $nnnn 20 3 6

KIL [unintended]
On a 6502, these instructions cause the processor to enter an infinite loop in their
internal logic that can only be aborted by resetting the computer. On the 45GS02
these instructions cause Hypervisor Traps. Or rather, they will, once this functionality
has been implemented. Thus they can be used to detect whether running on a 6502
or a 45GS02: If on a 6502 processor, the instruction will never return, while they will
cause an exception on a 45GS02, likely causing the calling program to be aborted
or crash.

H-34

KIL : Lock-up 6502 Processor 6502

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied KIL 02 1 9
implied KIL 12 1 9
implied KIL 22 1 9
implied KIL 32 1 9
implied KIL 42 1 9
implied KIL 52 1 9
implied KIL 62 1 9
implied KIL 72 1 9
implied KIL 92 1 9
implied KIL B2 1 9
implied KIL D2 1 9
implied KIL F2 1 9

LAS [unintended]
NOTE: This monstrosity of an instruction, aside from being devoid of any conceivable
useful purpose is unstable on many 6502 processors and should therefore also be
avoided for that reason, if you had not already been put off.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• A feeling of hollow satisfaction, when you actually discover a useful purpose for
this instruction. exactly how it works.

LAS : Set A, X and SPL Register With Useless Value6502
SP, A, X← SP AND M

NZ I CD VE
· · · · · · ·

Addressing Mode Assembly CodeBytes Cycles
absolute,Y LAS $nnnn,Y BB 3 4 p

pAdd one cycle if indexing crosses a page boundary.

H-35

LAX [unintended]
This instruction loads both the Accumulator Register and X Register with the indicated
value, or with the contents of the indicated location.

NOTE: The LAX instruction is known to be unstable on many 6502 processors, and
should not be used. Non-immediate modes MAY be stable enough to be usable, but
should generally be avoided.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

LAX : Load Accumulator and X Registers 6502
A, X← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) LAX ($nn,X) A3 2 6
zero-page LAX $nn A7 2 3
immediate LAX #$nn AB 2 2
absolute LAX $nnnn AF 3 4
(indirect),Y LAX ($nn),Y B3 2 5 p

zero-page,Y LAX $nn,Y B7 2 4
absolute,Y LAX $nnnn,Y BF 3 4 p

pAdd one cycle if indexing crosses a page boundary.

LDA
This instruction loads the Accumulator Register with the indicated value, or with the
contents of the indicated location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-36

LDA : Load Accumulator 6502
A← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) LDA ($nn,X) A1 2 6
zero-page LDA $nn A5 2 3
immediate LDA #$nn A9 2 2
absolute LDA $nnnn AD 3 4
(indirect),Y LDA ($nn),Y B1 2 5 p

zero-page,X LDA $nn,X B5 2 4
absolute,Y LDA $nnnn,Y B9 3 4 p

absolute,X LDA $nnnn,X BD 3 4 p

pAdd one cycle if indexing crosses a page boundary.

LDX
This instruction loads the X Register with the indicated value, or with the contents of
the indicated location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

LDX : Load X Register 6502
X← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
immediate LDX #$nn A2 2 2
zero-page LDX $nn A6 2 3
absolute LDX $nnnn AE 3 4
zero-page,Y LDX $nn,Y B6 2 4
absolute,Y LDX $nnnn,Y BE 3 4 p

pAdd one cycle if indexing crosses a page boundary.

H-37

LDY
This instruction loads the Y Register with the indicated value, or with the contents of
the indicated location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

LDY : Load Y Register 6502
Y← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
immediate LDY #$nn A0 2 2
zero-page LDY $nn A4 2 3
absolute LDY $nnnn AC 3 4
zero-page,X LDY $nn,X B4 2 4
absolute,X LDY $nnnn,X BC 3 4 p

pAdd one cycle if indexing crosses a page boundary.

LSR
This instruction shifts either the Accumulator or contents of the provided memory lo-
cation one bit right. Bit 7 will be set to zero, and the bit 0 will be shifted out into the
Carry Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 0 of the value was set, prior to being shifted.

H-38

LSR : Logical Shift Right 6502
A← A>>1, C← A(0) or M← M>>1

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
zero-page LSR $nn 46 2 5
accumulator LSR A 4A 1 2
absolute LSR $nnnn 4E 3 6
zero-page,X LSR $nn,X 56 2 6
absolute,X LSR $nnnn,X 5E 3 7

NOP
These instructions act as null instructions: They perform the bus accesses as though
they were real instructions, but then do nothing with the retrieved value. They can thus
be used either as delay instructions, or to read from registers that have side-effects
when read, without corrupting a register.

Only $EA is an intended opcode for NOP on the 6502. All others are only available
on NMOS versions of the processor, or the 45GS02 in 6502 mode.

H-39

NOP : No-Operation (some are unintended opcodes)6502

NZ I CD VE
· · · · · · ·

Addressing Mode Assembly CodeBytes Cycles
zero-page NOP $nn 04 2 3
absolute NOP $nnnn 0C 3 4
zero-page,X NOP $nn,X 14 2 4
implied NOP 1A 1 2
absolute,X NOP $nnnn,X 1C 3 4 p

zero-page,X NOP $nn,X 34 2 4
implied NOP 3A 1 2
absolute,X NOP $nnnn,X 3C 3 4 p

zero-page NOP $nn 44 2 3
zero-page,X NOP $nn,X 54 2 4
implied NOP 5A 1 2
absolute,X NOP $nnnn,X 5C 3 4 p

zero-page NOP $nn 64 2 3
zero-page,X NOP $nn,X 74 2 4
implied NOP 7A 1 2
absolute,X NOP $nnnn,X 7C 3 4 p

immediate NOP #$nn 80 2 2
immediate NOP #$nn 82 2 2
immediate NOP #$nn 89 2 2
immediate NOP #$nn C2 2 2
zero-page,X NOP $nn,X D4 2 4
implied NOP DA 1 2
absolute,X NOP $nnnn,X DC 3 4 p

immediate NOP #$nn E2 2 2
implied NOP EA 1 2
zero-page,X NOP $nn,X F4 2 4
implied NOP FA 1 2
absolute,X NOP $nnnn,X FC 3 4 p

pAdd one cycle if indexing crosses a page boundary.

ORA
This instructions performs a binary OR operation of the argument with the accumulator,
and stores the result in the accumulator. Only bits that were already set in the accu-
mulator, or that are set in the argument will be set in the accumulator on completion,
or both.

H-40

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

ORA : Decrement Memory or Accumulator 6502
A← A + 1 or M← M + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) ORA ($nn,X) 01 2 6
zero-page ORA $nn 05 2 3
immediate ORA #$nn 09 2 2
absolute ORA $nnnn 0D 3 4
(indirect),Y ORA ($nn),Y 11 2 5 p

zero-page,X ORA $nn,X 15 2 4 p

absolute,Y ORA $nnnn,Y 19 3 4 p

absolute,X ORA $nnnn,X 1D 3 4 p

pAdd one cycle if indexing crosses a page boundary.

PHA
This instruction pushes the contents of the Accumulator Register onto the stack, and
decrements the value of the Stack Pointer by 1.

PHA : Push Accumulator Register onto the Stack6502
STACK← A, SP← SP - 1

NZ I CD VE
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PHA 48 1 3

PHP
This instruction pushes the contents of the Processor Flags onto the stack, and decre-
ments the value of the Stack Pointer by 1.

H-41

PHP : Push Processor Flags onto the Stack 6502
STACK← P, SP← SP - 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PHP 08 1 3

PLA
This instruction replaces the contents of the Accumulator Register with the top value
from the stack, and increments the value of the Stack Pointer by 1.

PLA : Pull Accumulator Register from the Stack6502
A← STACK, SP← SP + 1

NZ I CD V E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PLA 68 1 4

PLP
This instruction replaces the contents of the Processor Flags with the top value from
the stack, and increments the value of the Stack Pointer by 1.

NOTE: This instruction does NOT replace the Extended Stack Disable Flag (E Flag), or
the Software Interrupt Flag (B Flag)

PLP : Pull Processor Flags from the Stack 6502
A← STACK, SP← SP + 1

NZ I CDV E
+ + + + + + ·

Addressing Mode AssemblyCodeBytesCycles
implied PLP 28 1 4

H-42

RLA [unintended]
This instruction shifts the contents of the provided memory location one bit left. Bit 0
will be set to the current value of the Carry Flag, and the bit 7 will be shifted out into
the Carry Flag The result is then ANDed with the Accumulator.

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

RLA : Rotate Left Memory, and AND with Accumulator6502
M← M<<1, C← M(7), M(0)← C, A← A AND M<<1

NZ I CD VE
+ + · + · · ·

Addressing Mode Assembly CodeBytes Cycles
(indirect,X) RLA ($nn,X) 23 2 8
zero-page RLA $nn 27 2 5
absolute RLA $nnnn 2F 3 6
(indirect),Y RLA ($nn),Y 33 2 8
zero-page,X RLA $nn,X 37 2 6
absolute,Y RLA $nnnn,Y 3B 3 7
absolute,X RLA $nnnn,X 3F 3 7

ROL
This instruction shifts either the Accumulator or contents of the provided memory lo-
cation one bit left. Bit 0 will be set to the current value of the Carry Flag, and the bit
7 will be shifted out into the Carry Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

H-43

ROL : Rotate Left Memory or Accumulator 6502
M← M<<1, C← M(7), M(0)← C

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
zero-page ROL $nn 26 2 5
accumulator ROL A 2A 1 2
absolute ROL $nnnn 2E 3 6
zero-page,X ROL $nn,X 36 2 6
absolute,X ROL $nnnn,X 3E 3 7

ROR
This instruction shifts either the Accumulator or contents of the provided memory lo-
cation one bit right. Bit 7 will be set to the current value of the Carry Flag, and the bit
0 will be shifted out into the Carry Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

ROR : Rotate Right Memory or Accumulator 6502
M← M>>1, C← M(0), M(7)← C

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
zero-page ROR $nn 66 2 5
accumulator ROR A 6A 1 2
absolute ROR $nnnn 6E 3 6
zero-page,X ROR $nn,X 76 2 6
absolute,X ROR $nnnn,X 7E 3 7

H-44

RRA [unintended]
This instruction shifts either the contents of the provided memory location one bit right.
Bit 7 will be set to the current value of the Carry Flag, and the bit 0 will be shifted out
into the Carry Flag. The result is added to the Accumulator.

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if the addition results in an overflow in the Accumulator.

RRA : Rotate Right Memory, and Add to Accumulator6502
M← M>>1, C← M(0), M(7)← C, A← A + M>>1 + C

NZ I CD VE
+ + · + · · ·

Addressing Mode Assembly CodeBytes Cycles
(indirect,X) RRA ($nn,X) 63 2 8
zero-page RRA $nn 67 2 5
absolute RRA $nnnn 6F 3 6
(indirect),Y RRA ($nn),Y 73 2 8
zero-page,X RRA $nn,X 77 2 6
absolute,Y RRA $nnnn,Y 7B 3 7
absolute,X RRA $nnnn,X 7F 3 7

RTI
This instruction pops the processor flags from the stack, and then pops the Program
Counter (PC) register from the stack, allowing an interrupted program to resume.

• The 6502 Processor Flags are restored from the stack.

• Neither the B (Software Interrupt) nor E (Extended Stack) flags are set by this
instruction.

H-45

RTI : Return From Interrupt 6502
P← STACK, PC← STACK, SP← SP + 3

NZ I CDV E
+ · + + + + ·

Addressing Mode AssemblyCodeBytesCycles
implied RTI 40 1 6

RTS
This instruction adds optional argument to the Stack Pointer (SP) Register, and then
pops the Program Counter (PC) register from the stack, allowing a routine to return to
its caller.

RTS : Return From Subroutine 6502
PC← STACK + N, SP← SP + 2 + N

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied RTS 60 1 6

SAX [unintended]
This instruction acts as a combination of AND and CMP. The result is stored in the X
Register. Because it includes functionality from CMP rather than SBC, the Carry Flag
is not used in the subtraction, although it is modified by the instruction.

NOTE: This instruction is affected by the status of the Decimal Flag.

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

H-46

SAX : AND Accumulator and X, and Subtract Without Carry6502
X← (A AND X) - Value

NZ I CD VE
+ + · + · + ·

Addressing Mode Assembly CodeBytes Cycles
(indirect,X) SAX ($nn,X) 83 2 6
zero-page SAX $nn 87 2 3
absolute SAX $nnnn 8F 3 4
zero-page,Y SAX $nn,Y 97 2 4

SBC
This instruction performs A − M - 1 + C, and sets the processor flags accordingly. The
result is stored in the Accumulator Register.

NOTE: This instruction is affected by the status of the Decimal Flag.

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

H-47

SBC : Subtract With Carry 6502
A← - M - 1 + C

NZ I CDV E
+ + · + · + ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) SBC ($nn,X) E1 2 6
zero-page SBC $nn E5 2 3
immediate SBC #$nn E9 2 2
immediate SBC #$nn EB 2 2
absolute SBC $nnnn ED 3 4
(indirect),Y SBC ($nn),Y F1 2 5 p

zero-page,X SBC $nn,X F5 2 4
absolute,Y SBC $nnnn,Y F9 3 4 p

absolute,X SBC $nnnn,X FD 3 4 p

pAdd one cycle if indexing crosses a page boundary.

SBX [unintended]
This instruction loads the X Register with the binary AND of the Accumulator Register
and X Register, less the immediate argument.

NOTE: The subtraction effect in this instruction is due to CMP , not . Thus the Negative
Flag is set according to the function of CMP, not SBC. That is, the carry flag is not
used in the calculation.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if the result is zero or positive, else it will be cleared.

SBX : AND and Subtract 6502
X← (A AND X) - V

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
immediate SBX #$nn CB 2 2

H-48

SEC
This instruction sets the Carry Flag.

Side effects

• The C flag is set.

SEC : Set Carry Flag 6502
C← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied SEC 38 1 2

SED
This instruction sets the Decimal Flag. Binary arithmetic will now use Binary-Coded
Decimal (BCD) mode.

NOTE: The C64’s interrupt handler does not clear the Decimal Flag, which makes it
dangerous to set the Decimal Flag without first setting the Interrupt Disable Flag.

Side effects

• The D flag is set.

SED : Set Decimal Flag 6502
D← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied SED F8 1 2

SEI
This instruction sets the Interrupt Disable Flag. Normal (IRQ) interrupts will no longer
be able to occur. Non-Maskable Interrupts (NMI) will continue to occur, as their name
suggests.

H-49

Side effects

• The I flag is set.

SEI : Set Interrupt Disable Flag 6502
I← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied SEI 78 1 2

SHA [unintended]
NOTE: This instruction is unstable on many 6502 processors, and should be avoided.

This instruction stores the binary AND of the contents of the Accumulator Register, X
Register and the third byte of the instruction into the indicated location.

SHA : Store binary AND of A, X and 3rd Instruction Byte6502
M← A AND X AND B3

NZ I CD VE
· · · · · · ·

Addressing Mode Assembly CodeBytes Cycles
(indirect),Y SHA ($nn),Y 93 2 6
absolute,Y SHA $nnnn,Y 9F 3 5

SHX [unintended]
NOTE: This instruction is unstable on many 6502 processors, and should be avoided.

This instruction stores the binary AND of the contents of the X Register and the third
byte of the instruction into the indicated location.

SHX : Store Binary AND of X Register and 3rd Instruction Byte6502
M← X AND B3

NZ I CD VE
· · · · · · ·

Addressing Mode Assembly CodeBytes Cycles
absolute,Y SHX $nnnn,Y 9E 3 5

H-50

SHY [unintended]
NOTE: This instruction is unstable on many 6502 processors, and should be avoided.

This instruction stores the binary AND of the contents of the Y Register and the third
byte of the instruction into the indicated location.

SHY : Store Binary AND of Y Register and 3rd Instruction Byte6502
M← Y AND B3

NZ I CD VE
· · · · · · ·

Addressing Mode Assembly CodeBytes Cycles
absolute,X SHY $nnnn,X 9C 3 5

SLO [unintended]
This instruction shifts either contents of the provided memory location one bit left,
and then ORs the result with the Accumulator Register, and places the result in the
Accumulator.

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 of the Accumulator is
set after the instruction completes, else it will be cleared.

• The Z flag will be set if the Accumulator contains $00 after the instruction has
completed, else it will be cleared.

• The C flag will be set if bit 7 of the memory contents was set, prior to being
shifted.

H-51

SLO : Shift Left and OR 6502
M← M<<1, A← M<<1

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) SLO ($nn,X) 03 2 8
zero-page SLO $nn 07 2 5
absolute SLO $nnnn 0F 3 6
(indirect),Y SLO ($nn),Y 13 2 8
zero-page,X SLO $nn,X 17 2 6
absolute,Y SLO $nnnn,Y 1B 3 7
absolute,X SLO $nnnn,X 1F 3 7

SRE [unintended]
This instruction shifts the contents of the provided memory location one bit right. Bit
7 will be set to zero, and the bit 0 will be shifted out into the Carry Flag. The result is
exclusive ORed with the Accumulator and stored in the Accumulator.

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 0 of the value was set, prior to being shifted.

SRE : Logical Shift Right and Exclusive OR with Accumulator6502
M← M>>1, A← A XOR M>>1

NZ I CD VE
+ + · + · · ·

Addressing Mode Assembly CodeBytes Cycles
(indirect,X) SRE ($nn,X) 43 2 8
zero-page SRE $nn 47 2 5
absolute SRE $nnnn 4F 3 6
(indirect),Y SRE ($nn),Y 53 2 8
zero-page,X SRE $nn,X 57 2 6
absolute,Y SRE $nnnn,Y 5B 3 7
absolute,X SRE $nnnn,X 5F 3 7

H-52

STA
This instruction stores the contents of the Accumulator Register into the indicated lo-
cation.

STA : Store Accumulator 6502
M← A

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) STA ($nn,X) 81 2 6
zero-page STA $nn 85 2 3
absolute STA $nnnn 8D 3 4
(indirect),Y STA ($nn),Y 91 2 6
zero-page,X STA $nn,X 95 2 4
absolute,Y STA $nnnn,Y 99 3 5
absolute,X STA $nnnn,X 9D 3 5

STX
This instruction stores the contents of the X Register into the indicated location.

STX : Store X Register 6502
M← X

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
zero-page STX $nn 86 2 3
absolute STX $nnnn 8E 3 4
zero-page,Y STX $nn,Y 96 2 4

STY
This instruction stores the contents of the Y Register into the indicated location.

H-53

STY : Store Y Register 6502
M← Y

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
zero-page STY $nn 84 2 3
absolute STY $nnnn 8C 3 4
zero-page,X STY $nn,X 94 2 4

TAS [unintended]
NOTE: This monstrosity of an instruction, aside from being devoid of any conceivable
useful purpose is unstable on many 6502 processors and should therefore also be
avoided for that reason, if you had not already been put off.

Side effects

• Remarkably, despite the over complicated operation that it performs, it modifies
none of the processor flags.

• Loss of sanity if you attempt to use it, or even figure out exactly how it works.

TAS : Munge X Register and Stack Pointer 6502
SP← A AND X, M← (A AND X) AND B3

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
absolute,Y TAS $nnnn,Y 9B 3 5

TAX
This instruction loads the X Register with the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-54

TAX : Transfer Accumulator Register into the X Register6502
X← A

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TAX AA 1 2

TAY
This instruction loads the Y Register with the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

TAY : Transfer Accumulator Register into the Y Register6502
Y← A

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TAY A8 1 2

TSX
This instruction loads the X Register with the contents of the Stack Pointer High (SPL)
Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-55

TSX : Transfer Stack Pointer High Register into the X Register6502
X← SPH

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TSX BA 1 2

TXA
This instruction loads the Accumulator Register with the contents of the X Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

TXA : Transfer X Register into the Accumulator Register6502
A← X

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TXA 8A 1 2

TXS
This instruction sets the low byte of the Stack Pointer (SPL) register to the contents of
the X Register.

TXS : Transfer X Register into Stack Pointer Low Register6502
SPL← X

NZ I CD VE
· · · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TXS 9A 1 2

TYA
This instruction loads the Accumulator Register with the contents of the Y Register.

H-56

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

TYA : Transfer Y Register into the Accumulator Register6502
A← Y

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TYA 98 1 2

XAA [unintended]
This instruction loads the Accumulator Register with the binary AND of the X Register
and the immediate mode argument.

NOTE: This instruction is unstable on many 6502 processors, and should not be used.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

XAA : Transfer X into A and AND with operand 6502
A← X AND VALUE

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
immediate XAA #$nn 8B 2 2

4510 INSTRUCTION SET

H-57

Opcode Map

$x0
$x1

$x2
$x3

$x4
$x5

$x6
$x7

$x8
$x9

$xA
$xB

$xC
$xD

$xE
$xF

$0
xBRK

O
RA

C
LE

SEE
TSB

O
RA

ASL
RM

B0
PHP

O
RA

ASL
TSY

TSB
O
RA

ASL
BBR0

$1
xBPL

O
RA

O
RA

BPL
TRB

O
RA

ASL
RM

B1
C
LC

O
RA

INC
INZ

TRB
O
RA

ASL
BBR1

$2
xJSR

A
ND

JSR
JSR

BIT
A
ND

RO
L
RM

B2
PLP

A
ND

RO
L
TYS

BIT
A
ND

RO
L
BBR2

$3
xBM

I
A
ND

A
ND

BM
I
BIT

A
ND

RO
L
RM

B3
SEC

A
ND

D
EC

D
EZ

BIT
A
ND

RO
L
BBR3

$4
xRTI

EO
R
NEG

ASR
ASR

EO
R
LSR

RM
B4

PHA
EO

R
LSR

TA
Z

JM
P
EO

R
LSR

BBR4
$5

xBVC
EO

R
EO

R
BVC

ASR
EO

R
LSR

RM
B5

C
LI

EO
R
PHY

TA
B

M
A
PEO

R
LSR

BBR5
$6

xRTS
A
D
C
RTS

BSR
STZ

A
D
C
RO

R
RM

B6
PLA

A
D
C
RO

R
TZA

JM
P
A
D
C
RO

R
BBR6

$7
xBV

S
A
D
C
A
D
C
BV

S
STZ

A
D
C
RO

R
RM

B7
SEI

A
D
C
PLY

TBA
JM

P
A
D
C
RO

R
BBR7

$8
xBRA

STA
STA

BRA
STY

STA
STX

SM
B0

D
EY

BIT
TX

A
STY

STY
STA

STX
BBS0

$9
xBC

C
STA

STA
BC

C
STY

STA
STX

SM
B1

TYA
STA

TX
S

STX
STZ

STA
STZ

BBS1
$A

xLDY
LD

A
LDX

LD
Z

LDY
LD

A
LDX

SM
B2

TAY
LD

A
TA

X
LD

Z
LDY

LD
A

LDX
BBS2

$Bx
BC

S
LD

A
LD

A
BC

S
LDY

LD
A

LDX
SM

B3
C
LV

LD
A

TSX
LD

Z
LDY

LD
A

LDX
BBS3

$C
xC

PY
C
M
PC

PZ
D
EW

C
PY

C
M
PD

EC
SM

B4
INY

C
M
PD

EX
ASW

C
PY

C
M
PD

EC
BBS4

$D
xBNE

C
M
PC

M
PBNE

C
PZ

C
M
PD

EC
SM

B5
C
LD

C
M
PPHX

PHZ
C
PZ

C
M
PD

EC
BBS5

$Ex
C
PX

SBC
LD

A
INW

C
PX

SBC
INC

SM
B6

INX
SBC

EO
M
RO

W
C
PX

SBC
INC

BBS6
$Fx

BEQ
SBC

SBC
BEQ

PHW
SBC

INC
SM

B7
SED

SBC
PLX

PLZ
PHW

SBC
INC

BBS7

Instruction Timing
The following table lists the base cycle count for each opcode. Note that the number
of cycles depends on the speed setting of the processor: Some instructions take more
or fewer cycles when the processor is running at full-speed, or a C65 compatibility
3.5MHz speed, or at C64 compatibility 1MHz/2MHz speed. More detailed information
on this is listed under each each instruction’s information, but the high-level view is:

H-58

• When the processor is running at 1MHz, all instructions take at least two cycles,
and dummy cycles are re-inserted into Read-Modify-Write instructions, so that
all instructions take exactly the same number of cycles as on a 6502.

• The Read-Modify-Write instructions and all instructions that read a value from
memory all require an extra cycle when operating at full speed, to allow signals
to propagate within the processor.

• The Read-Modify-Write instructions require an additional cycle if the operand is
$D019, as the dummy write is performed in this case. This is to improve com-
patibility with C64 software that frequently uses this “bug” of the 6502 to more
rapidly acknowledge VIC-II interrupts.

• Page-crossing and branch-taking penalties do not apply when the processor is
running at full speed.

• Many instructions require fewer cycles when the processor is running at full
speed, as generally most non-bus cycles are removed. For example, Pushing
and Pulling values to and from the stack requires only 2 cycles, instead of the 4
that that the 6502 requires for these instructions.

Note that it is possible that further changes to processor timing will occur.

Similar issues apply to when the processor is in 6502 mode.

H-59

$x0
$x1

$x2
$x3

$x4
$x5

$x6
$x7

$x8
$x9

$xA
xBxC

$xD
xExF

$0
x7

6
p
r
1
s

1
s

3
r

3
r

4
r

4
b
r
2

2
1
s

1
s

5
r

4
r

5
r

$1
x2

b
5
p
r
5
p
r
3
b

5
r

3
r

4
r

4
b
r
1
s

4
r

1
s

1
s

4
r

4
p
r
5
p
r
5
b

$2
x5

5
p
r
5
r

5
p
r
3
r

3
r

4
r

4
r

4
m

2
1
s

1
s

4
r

4
r

5
r

5
b

$3
x2

r
5
p
r
5
p
r
3
b

3
p
r
4
p
r
5
p
r
4
r

1
s

4
r

1
s

1
s

4
p
r
4
p
r
5
p
r
4
b

$4
x6

m
5
r

1
s

1
s

4
r

3
r

4
r

4
r

2
2

1
s

1
s

3
4
r

5
r

4
b
r

$5
x2

b
5
p
r
5
p
r
3
b

5
p
r
3
p

3
p
r
4
r

1
s

4
p
r
2

1
s

1
s

4
p
r
5
p
r
4
b
r

$6
x6

m
5
r

4
3
b

3
3
r

5
r

5
r

4
m

2
1
s

1
s

5
r

4
r

6
r

4
b
r

$7
x2

b
5
p
r
5
p
r
3
b

3
3
r

4
r

4
r

$8
x

$9
x

$A
x

$Bx
$C

x
$D

x
$Ex
$FxbA

dd
one

cycle
if
branch

crosses
a
page

boundary.
m
Subtractnon-bus

cycles
w
hen

at4
0
M
Hz.

pA
dd

one
cycle

if
indexing

crosses
a
page

boundary.
rA

dd
one

cycle
if
clock

speed
is
at4

0
M
Hz.

sInstruction
requires

2
cycles

w
hen

C
PU

is
run

at1
M
Hz

or2
M
Hz.

H-60

Addressing Mode Table

$x0
$x1

$x2
$x3

$x4
$x5

$x6
$x7

$x8
$x9

$xA
$xB

$xC
$xD

$xE
$xF

$0
x

($nn,X
)

$nn
$nn

$nn
$nn

#$nn
A

$nnnn
$nnnn

$nnnn
$nn,$rr

$1
x
$rr

($nn),Y
($nn),Z

$rrrr
$nn

$nn,X
$nn,X

$nn
$nnnn,Y

A
$nnnn

$nnnn,X
$nnnn,X

$nn,$rr
$2

x
$nnnn($nn,X

)($nnnn)
($nnnn,X

)$nn
$nn

$nn
$nn

#$nn
A

$nnnn
$nnnn

$nnnn
$nn,$rr

$3
x
$rr

($nn),Y
($nn),Z

$rrrr
$nn,X

$nn,X
$nn,X

$nn
$nnnn,Y

A
$nnnn,X

$nnnn,X
$nnnn,X

$nn,$rr
$4

x
($nn,X

)A
A

$nn
$nn

$nn
$nn

#$nn
A

$nnnn
$nnnn

$nnnn
$nn,$rr

$5
x
$rr

($nn),Y
($nn),Z

$rrrr
$nn,X

$nn,X
$nn,X

$nn
$nnnn,Y

$nnnn,X
$nnnn,X

$nn,$rr
$6

x
($nn,X

)#$nn
$rrrr

$nn
$nn

$nn
$nn

#$nn
A

($nnnn)
$nnnn

$nnnn
$nn,$rr

$7
x
$rr

($nn),Y
($nn),Z

$rrrr
$nn,X

$nn,X
$nn,X

$nn
$nnnn,Y

($nnnn,X
)$nnnn,X

$nnnn,X
$nn,$rr

$8
x
$rr

($nn,X
)($nn,SP),Y

$rrrr
$nn

$nn
$nn

$nn
#$nn

$nnnn,X
$nnnn

$nnnn
$nnnn

$nn,$rr
$9

x
$rr

($nn),Y
($nn),Z

$rrrr
$nn,X

$nn,X
$nn,Y

$nn
$nnnn,Y

$nnnn,Y
$nnnn

$nnnn,X
$nnnn,X

$nn,$rr
$A

x
#$nn

($nn,X
)#$nn

#$nn
$nn

$nn
$nn

$nn
#$nn

$nnnn
$nnnn

$nnnn
$nnnn

$nn,$rr
$Bx

$rr
($nn),Y

($nn),Z
$rrrr

$nn,X
$nn,X

$nn,Y
$nn

$nnnn,Y
$nnnn,X

$nnnn,X
$nnnn,X

$nnnn,Y
$nn,$rr

$C
x#$nn

($nn,X
)#$nn

$nn
$nn

$nn
$nn

$nn
#$nn

$nnnn
$nnnn

$nnnn
$nnnn

$nn,$rr
$D

x$rr
($nn),Y

($nn),Z
$rrrr

$nn
$nn,X

$nn,X
$nn

$nnnn,Y
$nnnn

$nnnn,X
$nnnn,X

$nn,$rr
$Ex

#$nn
($nn,X

)($nn,SP),Y
$nn

$nn
$nn

$nn
$nn

#$nn
$nnnn

$nnnn
$nnnn

$nnnn
$nn,$rr

$Fx
$rr

($nn),Y
($nn),Z

$rrrr
#$nnnn$nn,X

$nn,X
$nn

$nnnn,Y
$nnnn

$nnnn,X
$nnnn,X

$nn,$rr

ADC
This instruction adds the argument to the contents of the Accumulator Register and
the Carry Flag. If the D flag is set, then the addition is performed using Binary Coded
Decimal.

H-61

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The C flag will be set if the unsigned result is >255, or >99 if the D flag is set.

ADC : Add with carry 4510
A← A+M+C

NZ I CDV E
+ + · + · + ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) ADC ($nn,X) 61 2 5 r

base-page ADC $nn 65 2 3 r

immediate ADC #$nn 69 2 2
absolute ADC $nnnn 6D 3 4 r

(indirect),Y ADC ($nn),Y 71 2 5 pr

(indirect),Z ADC ($nn),Z 72 2 5 pr

base-page,X ADC $nn,X 75 2 3 r

absolute,Y ADC $nnnn,Y 79 3 4 r

absolute,X ADC $nnnn,X 7D 3 4 r

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

AND
This instructions performs a binary AND operation of the argument with the accumu-
lator, and stores the result in the accumulator. Only bits that were already set in the
accumulator, and that are set in the argument will be set in the accumulator on com-
pletion.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-62

AND : Binary AND 4510
A← A AND M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) AND ($nn,X) 21 2 5 pr

base-page AND $nn 25 2 3 r

immediate AND #$nn 29 2 2
absolute AND $nnnn 2D 3 4 r

(indirect),Y AND ($nn),Y 31 2 5 pr

(indirect),Z AND ($nn),Z 32 2 5 pr

base-page,X AND $nn,X 35 2 4 pr

absolute,Y AND $nnnn,Y 39 3 4 r

absolute,X AND $nnnn,X 3D 3 4 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

ASL
This instruction shifts either the Accumulator or contents of the provided memory lo-
cation one bit left. Bit 0 will be set to zero, and the bit 7 will be shifted out into the
Carry Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

H-63

ASL : Arithmetic Shift Left 4510
A← A<<1 or M← M<<1

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
base-page ASL $nn 06 2 4 r

accumulator ASL A 0A 1 1 s

absolute ASL $nnnn 0E 3 5 r

base-page,X ASL $nn,X 16 2 4 r

absolute,X ASL $nnnn,X 1E 3 5 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.
sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

ASR
This instruction shifts either the Accumulator or contents of the provided memory loca-
tion one bit right. Bit 7 is considered to be a sign bit, and is preserved. The contents
of bit 0 will be shifted out into the Carry Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 0 of the value was set, prior to being shifted.

ASR : Arithmetic Shift Right 4510
A← A>>1 or M← M>>1

NZ I CDV E
+ + · + · · ·

Addressing Mode AssemblyCodeBytesCycles
accumulator ASR A 43 1 1 s

base-page ASR $nn 44 2 4 r

base-page,X ASR $nn,X 54 2 5 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.
sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

H-64

ASW
This instruction shifts a 16-bit value in memory left one bit.

For example, if location $1234 contained $87 and location $1235 contained $A9,
ASW $1234 would result in location $1234 containing $0E and location $1235 con-
taining $53, and the Carry Flag being set.

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 of the upper byte is set
after the operation, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the upper byte was set, prior to being shifted.

ASW : Arithmetic Shift Word Left 4510
M← M<<1

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
absolute ASW $nnnn CB 3

BBR0
This instruction branches to the indicated address if bit 0 is clear in the indicated
base-page memory location.

BBR0 : Branch on Bit 0 Reset 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBR0 $nn,$rr 0F 3

BBR1
This instruction branches to the indicated address if bit 1 is clear in the indicated
base-page memory location.

H-65

BBR1 : Branch on Bit 1 Reset 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBR1 $nn,$rr 1F 3 5 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

BBR2
This instruction branches to the indicated address if bit 2 is clear in the indicated
base-page memory location.

BBR2 : Branch on Bit 2 Reset 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBR2 $nn,$rr 2F 3 5 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

BBR3
This instruction branches to the indicated address if bit 3 is clear in the indicated
base-page memory location.

BBR3 : Branch on Bit 3 Reset 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBR3 $nn,$rr 3F 3 4 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

H-66

BBR4
This instruction branches to the indicated address if bit 4 is clear in the indicated
base-page memory location.

BBR4 : Branch on Bit 4 Reset 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBR4 $nn,$rr 4F 3 4 br

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

BBR5
This instruction branches to the indicated address if bit 5 is clear in the indicated
base-page memory location.

BBR5 : Branch on Bit 5 Reset 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBR5 $nn,$rr 5F 3 4 br

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

BBR6
This instruction branches to the indicated address if bit 6 is clear in the indicated
base-page memory location.

H-67

BBR6 : Branch on Bit 6 Reset 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBR6 $nn,$rr 6F 3 4 br

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

BBR7
This instruction branches to the indicated address if bit 7 is clear in the indicated
base-page memory location.

BBR7 : Branch on Bit 7 Reset 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBR7 $nn,$rr 7F 3

BBS0
This instruction branches to the indicated address if bit 0 is set in the indicated base-
page memory location.

BBS0 : Branch on Bit 0 Set 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBS0 $nn,$rr 8F 3

BBS1
This instruction branches to the indicated address if bit 1 is set in the indicated base-
page memory location.

H-68

BBS1 : Branch on Bit 1 Set 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBS1 $nn,$rr 9F 3

BBS2
This instruction branches to the indicated address if bit 2 is set in the indicated base-
page memory location.

BBS2 : Branch on Bit 2 Set 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBS2 $nn,$rr AF 3

BBS3
This instruction branches to the indicated address if bit 3 is set in the indicated base-
page memory location.

BBS3 : Branch on Bit 3 Set 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBS3 $nn,$rr BF 3

BBS4
This instruction branches to the indicated address if bit 4 is set in the indicated base-
page memory location.

H-69

BBS4 : Branch on Bit 4 Set 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBS4 $nn,$rr CF 3

BBS5
This instruction branches to the indicated address if bit 5 is set in the indicated base-
page memory location.

BBS5 : Branch on Bit 5 Set 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBS5 $nn,$rr DF 3

BBS6
This instruction branches to the indicated address if bit 6 is set in the indicated base-
page memory location.

BBS6 : Branch on Bit 6 Set 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBS6 $nn,$rr EF 3

BBS7
This instruction branches to the indicated address if bit 7 is set in the indicated base-
page memory location.

H-70

BBS7 : Branch on Bit 7 Set 4510
PC← PC + R8

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page and relativeBBS7 $nn,$rr FF 3

BCC
This instruction branches to the indicated address if the Carry Flag is clear.

BCC : Branch on Carry Flag Clear 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BCC $rr 90 2
16-bit relative BCC $rrrr 93 3

BCS
This instruction branches to the indicated address if the Carry Flag is set.

BCS : Branch on Carry Flag Set 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BCS $rr B0 2
16-bit relative BCS $rrrr B3 3

BEQ
This instruction branches to the indicated address if the Zero Flag is set.

H-71

BEQ : Branch on Zero Flag Set 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BEQ $rr F0 2
16-bit relative BEQ $rrrr F3 3

BIT
This instruction is used to test the bits stored in a memory location. Bits 6 and 7 of the
memory location’s contents are directly copied into the Overflow Flag and Negative
Flag. The Zero Flag is set or cleared based on the result of performing the binary AND
of the Accumulator Register and the contents of the indicated memory location.

Side effects

• The N flag will be set if the bit 7 of the memory location is set, else it will be
cleared.

• The V flag will be set if the bit 6 of the memory location is set, else it will be
cleared.

• The Z flag will be set if the result of A AND M is zero, else it will be cleared.

BIT : Perform Bit Test 4510
N← M(7), V← M(6), Z← A AND M

NZ I CDV E
+ + · · · + ·

Addressing Mode Assembly CodeBytesCycles
base-page BIT $nn 24 2 3 r

absolute BIT $nnnn 2C 3 4 r

base-page,X BIT $nn,X 34 2 3 pr

absolute,X BIT $nnnn,X 3C 3 4 pr

immediate BIT #$nn 89 2
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

BMI
This instruction branches to the indicated address if the Negative Flag is set.

H-72

BMI : Branch on Negative Flag Set 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BMI $rr 30 2 2 r

16-bit relative BMI $rrrr 33 3 3 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

BNE
This instruction branches to the indicated address if the Zero Flag is clear.

BNE : Branch on Zero Flag Clear 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BNE $rr D0 2
16-bit relative BNE $rrrr D3 3

BPL
This instruction branches to the indicated address if the Negative Flag is clear.

BPL : Branch on Negative Flag Clear 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BPL $rr 10 2 2 b

16-bit relative BPL $rrrr 13 3 3 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

H-73

BRA
This instruction branches to the indicated address.

BRA : Branch Unconditionally 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BRA $rr 80 2
16-bit relative BRA $rrrr 83 3

BRK
The break command causes the microprocessor to go through an interrupt sequence
under program control. The address of the BRK instruction + 2 is pushed to the stack
along with the status register with the Break flag set. This allows the interrupt service
routine to distinguish between IRQ events and BRK events. For example:

PLA ; load status
PHA ; restore stack
AND #$10 ; mask break flag
BNE DO_BREAK ; -> it was a BRK
... ; else continue with IRQ server

Cite from: MCS6500 Microcomputer Family Programming Manual, January 1976,
Second Edition, MOS Technology Inc., Page 144:

”The BRK is a single byte instruction and its addressing mode is Implied.”

There are debates, that BRK could be seen as a two byte instruction with the addressing
mode immediate, where the operand byte is discarded. The byte following the BRK
could then be used as a call argument for the break handler. Commodore however
used the BRK, as stated in the manual, as a single byte instruction, which breaks into
the ML monitor, if present. These builtin monitors decremented the stacked PC, so that
it could be used to return or jump directly to the code byte after the BRK.

H-74

BRK : Break to Interrupt 4510
PC← ($FFFE)

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied BRK 00 1 7

BSR
This instruction branches to the indicated address, saving the address of the caller on
the stack, so that the routine can be returned from using an RTS instruction.

This instruction is helpful for using relocatable code, as it provides a relative-addressed
alternative to JSR.

BSR : Branch Sub-Routine 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
16-bit relative BSR $rrrr 63 3 3 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

BVC
This instruction branches to the indicated address if the Overflow (V) Flag is clear.

BVC : Branch on Overflow Flag Clear 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BVC $rr 50 2 2 b

16-bit relative BVC $rrrr 53 3 3 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

H-75

BVS
This instruction branches to the indicated address if the Overflow (V) Flag is set.

BVS : Branch on Overflow Flag Set 4510
PC← PC + R8 or PC← PC + R16

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
relative BVS $rr 70 2 2 b

16-bit relative BVS $rrrr 73 3 3 b

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.

CLC
This instruction clears the Carry Flag.

Side effects

• The C flag is cleared.

CLC : Clear Carry Flag 4510
C← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied CLC 18 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

CLD
This instruction clears the Decimal Flag. Arithmetic operations will use normal binary
arithmetic, instead of Binary-Coded Decimal (BCD).

Side effects

• The D flag is cleared.

H-76

CLD : Clear Decimal Flag 4510
D← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied CLD D8 1

CLE
This instruction clears the Extended Stack Disable Flag. This causes the stack to be
able to exceed 256 bytes in length, by allowing the processor to modify the value of
the high byte of the stack address (SPH).

Side effects

• The E flag is cleared.

CLE : Clear Extended Stack Disable Flag 4510
E← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied CLE 02 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

CLI
This instruction clears the Interrupt Disable Flag. Interrupts will now be able to occur.

Side effects

• The I flag is cleared.

H-77

CLI : Clear Interrupt Disable Flag 4510
I← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied CLI 58 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

CLV
This instruction clears the Overflow Flag.

Side effects

• The V flag is cleared.

CLV : Clear Overflow Flag 4510
V← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied CLV B8 1

CMP
This instruction performs A−M, and sets the processor flags accordingly, but does not
modify the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

H-78

CMP : Compare Accumulator 4510

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) CMP ($nn,X) C1 2
base-page CMP $nn C5 2
immediate CMP #$nn C9 2
absolute CMP $nnnn CD 3
(indirect),Y CMP ($nn),Y D1 2
(indirect),Z CMP ($nn),Z D2 2
base-page,X CMP $nn,X D5 2
absolute,Y CMP $nnnn,Y D9 3
absolute,X CMP $nnnn,X DD 3

CPX
This instruction performs X−M, and sets the processor flags accordingly, but does not
modify the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result of X − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of X − M is zero or positive, i.e., if X is not less
than M, else it will be cleared.

• The Z flag will be set if the result of X − M is zero, else it will be cleared.

CPX : Compare X Register 4510

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
immediate CPX #$nn E0 2
base-page CPX $nn E4 2
absolute CPX $nnnn EC 3

H-79

CPY
This instruction performs Y−M, and sets the processor flags accordingly, but does not
modify the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result of Y − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of Y − M is zero or positive, i.e., if Y is not less
than M, else it will be cleared.

• The Z flag will be set if the result of Y − M is zero, else it will be cleared.

CPY : Compare Y Register 4510

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
immediate CPY #$nn C0 2
base-page CPY $nn C4 2
absolute CPY $nnnn CC 3

CPZ
This instruction performs Z−M, and sets the processor flags accordingly, but does not
modify the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result of Z − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of Z − M is zero or positive, i.e., if Z is not less
than M, else it will be cleared.

• The Z flag will be set if the result of Z − M is zero, else it will be cleared.

H-80

CPZ : Compare Z Register 4510

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
immediate CPZ #$nn C2 2
base-page CPZ $nn D4 2
absolute CPZ $nnnn DC 3

DEC
This instruction decrements the Accumulator Register or indicated memory location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

DEC : Decrement Memory or Accumulator 4510
A← A - 1 or M← M - 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
accumulator DEC A 3A 1 1 s

base-page DEC $nn C6 2
absolute DEC $nnnn CE 3
base-page,X DEC $nn,X D6 2
absolute,X DEC $nnnn,X DE 3
sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

DEW
This instruction decrements the indicated memory word in the Base Page. The low
numbered address contains the least significant bits. For example, if memory location
$12 contains $78 and memory location $13 contains $56, the instruction DEW $12
would cause memory location to be set to $77.

H-81

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

DEW : Decrement Memory Word 4510
M16← M16 - 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page DEW $nn C3 2

DEX
This instruction decrements the X Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

DEX : Decrement X Register 4510
X← X - 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied DEX CA 1

DEY
This instruction decrements the Y Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-82

DEY : Decrement Y Register 4510
Y← Y - 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied DEY 88 1

DEZ
This instruction decrements the Z Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

DEZ : Decrement Z Register 4510
Z← Z - 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied DEZ 3B 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

EOM
In contrast with the 6502, the NOP instruction on the 45GS02 performs two additional
roles when in 4502 mode.

First, indicate the end of a memory mapping sequence caused by a MAP instruction,
allowing interrupts to occur again.

Second, it instructs the processor that if the following instruction uses Base-Page In-
direct Z Indexed addressing, that the processor should use a 32-bit pointer instead
of a 16-bit 6502 style pointer. Such 32-bit addresses are unaffected by C64, C65
or MEGA65 memory banking. This allows fast and easy access to the entire address
space of the MEGA65 without having to perform or be aware of any banking, or using
the DMA controller. This addressing mode causes a two cycle penalty, caused by the
time required to read the extra two bytes of the pointer.

H-83

Side effects

• Removes the prohibition on all interrupts caused by the the MAP instruction, al-
lowing Non-Maskable Interrupts to again occur, and IRQ interrupts, if the Inter-
rupt Disable Flag is not set.

EOM : End of Mapping Sequence / No-Operation4510

NZ I CD VE
· · · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied EOM EA 1

EOR
This instructions performs a binary XOR operation of the argument with the accumu-
lator, and stores the result in the accumulator. Only bits that were already set in the
accumulator, or that are set in the argument will be set in the accumulator on com-
pletion, but not both.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

EOR : Binary Exclusive OR 4510
A← A XOR M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) EOR ($nn,X) 41 2 5 r

base-page EOR $nn 45 2 3 r

immediate EOR #$nn 49 2 2
absolute EOR $nnnn 4D 3 4 r

(indirect),Y EOR ($nn),Y 51 2 5 pr

(indirect),Z EOR ($nn),Z 52 2 5 pr

base-page,X EOR $nn,X 55 2 3 p

absolute,Y EOR $nnnn,Y 59 3 4 pr

absolute,X EOR $nnnn,X 5D 3 4 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

H-84

INC
This instruction increments the Accumulator Register or indicated memory location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

INC : Increment Memory or Accumulator 4510
A← A + 1 or M← M + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
accumulator INC A 1A 1 1 s

base-page INC $nn E6 2
absolute INC $nnnn EE 3
base-page,X INC $nn,X F6 2
absolute,X INC $nnnn,X FE 3
sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

INW
This instruction increments the indicated memory word in the Base Page. The low
numbered address contains the least significant bits. For example, if memory location
$12 contains $78 and memory location $13 contains $56, the instruction DEW $12
would cause memory location to be set to $79.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

INW : Increment Memory Word 4510
M16← M16 + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page INW $nn E3 2

H-85

INX
This instruction increments the X Register, i.e., adds 1 to it.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

INX : Increment X Register 4510
X← X + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied INX E8 1

INY
This instruction increments the Y Register, i.e., adds 1 to it.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

INY : Increment Y Register 4510
Y← Y + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied INY C8 1

INZ
This instruction increments the Z Register, i.e., adds 1 to it.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

H-86

• The Z flag will be set if the result is zero, else it will be cleared.

INZ : Increment Z Register 4510
Z← Y + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied INZ 1B 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

JMP
This instruction sets the Program Counter (PC) Register to the address indicated by the
instruction, causing execution to continue from that address.

JMP : Jump to Address 4510
PC← M2:M1

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
absolute JMP $nnnn 4C 3 3
indirect JMP ($nnnn) 6C 3 5 r

indirect,X JMP ($nnnn,X) 7C 3
rAdd one cycle if clock speed is at 40 MHz.

JSR
This instruction saves the address of the instruction following the JSR instruction onto
the stack, and then sets the ProgramCounter (PC) Register to the address indicated by
the instruction, causing execution to continue from that address. Because the return
address has been saved on the stack, the RTS instruction can be used to return from
the called sub-routine and resume execution following the JSR instruction.

NOTE: This instruction actually pushes the address of the last byte of the JSR instruction
onto the stack. The RTS instruction naturally is aware of this, and increments the ad-
dress on popping it from the stack, before setting the Program Counter (PC) register.

H-87

JSR : Jump to Sub-Routine 4510
PC← M2:M1, Stack← PCH:PCL

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
absolute JSR $nnnn 20 3 5
indirect JSR ($nnnn) 22 3 5 r

indirect,X JSR ($nnnn,X) 23 3 5 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

LDA
This instruction loads the Accumulator Register with the indicated value, or with the
contents of the indicated location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

LDA : Load Accumulator 4510
A← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) LDA ($nn,X) A1 2
base-page LDA $nn A5 2
immediate LDA #$nn A9 2
absolute LDA $nnnn AD 3
(indirect),Y LDA ($nn),Y B1 2
(indirect),Z LDA ($nn),Z B2 2
base-page,X LDA $nn,X B5 2
absolute,Y LDA $nnnn,Y B9 3
absolute,X LDA $nnnn,X BD 3
(indirect,SP),Y LDA ($nn,SP),Y E2 2

H-88

LDX
This instruction loads the X Register with the indicated value, or with the contents of
the indicated location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

LDX : Load X Register 4510
X← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
immediate LDX #$nn A2 2
base-page LDX $nn A6 2
absolute LDX $nnnn AE 3
base-page,Y LDX $nn,Y B6 2
absolute,Y LDX $nnnn,Y BE 3

LDY
This instruction loads the Y Register with the indicated value, or with the contents of
the indicated location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-89

LDY : Load Y Register 4510
Y← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
immediate LDY #$nn A0 2
base-page LDY $nn A4 2
absolute LDY $nnnn AC 3
base-page,X LDY $nn,X B4 2
absolute,X LDY $nnnn,X BC 3

LDZ
This instruction loads the Z Register with the indicated value, or with the contents of
the indicated location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

LDZ : Load Z Register 4510
Z← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
immediate LDZ #$nn A3 2
absolute LDZ $nnnn AB 3
absolute,X LDZ $nnnn,X BB 3

LSR
This instruction shifts either the Accumulator or contents of the provided memory lo-
cation one bit right. Bit 7 will be set to zero, and the bit 0 will be shifted out into the
Carry Flag

H-90

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 0 of the value was set, prior to being shifted.

LSR : Logical Shift Right 4510
A← A>>1, C← A(0) or M← M>>1

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
base-page LSR $nn 46 2 4 r

accumulator LSR A 4A 1 1 s

absolute LSR $nnnn 4E 3 5 r

base-page,X LSR $nn,X 56 2 3 pr

absolute,X LSR $nnnn,X 5E 3 5 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.
sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

MAP
This instruction sets the C65 or MEGA65 style memory map, depending on the values
in the Accumulator, X, Y and Z registers.

Care should be taken to ensure that after the execution of an MAP instruction that
appropriate memory is mapped at the location of the following instruction. Failure to
do so will result in unpredictable results.

Further information on this instruction is available in Appendix G.

Side effects

• The memory map is immediately changed to that requested.

• All interrupts, including Non-Maskable Interrupts (NMIs) are blocked from occur-
ring until an EOM (NOP) instruction is encountered.

H-91

MAP : Set Memory Map 4510

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied MAP 5C 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

NEG
This instruction replaces the contents of the Accumulator Register with the twos-
complement of the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

NEG : Negate Accumulator 4510
A← -A

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
accumulator NEG A 42 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

ORA
This instructions performs a binary OR operation of the argument with the accumulator,
and stores the result in the accumulator. Only bits that were already set in the accu-
mulator, or that are set in the argument will be set in the accumulator on completion,
or both.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-92

ORA : Decrement Memory or Accumulator 4510
A← A + 1 or M← M + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) ORA ($nn,X) 01 2 6 pr

base-page ORA $nn 05 2 3 r

immediate ORA #$nn 09 2 2
absolute ORA $nnnn 0D 3 4 r

(indirect),Y ORA ($nn),Y 11 2 5 pr

(indirect),Z ORA ($nn),Z 12 2 5 pr

base-page,X ORA $nn,X 15 2 3 r

absolute,Y ORA $nnnn,Y 19 3 4 r

absolute,X ORA $nnnn,X 1D 3 4 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

PHA
This instruction pushes the contents of the Accumulator Register onto the stack, and
decrements the value of the Stack Pointer by 1.

PHA : Push Accumulator Register onto the Stack4510
STACK← A, SP← SP - 1

NZ I CD VE
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PHA 48 1 2

PHP
This instruction pushes the contents of the Processor Flags onto the stack, and decre-
ments the value of the Stack Pointer by 1.

H-93

PHP : Push Processor Flags onto the Stack 4510
STACK← P, SP← SP - 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PHP 08 1 2

PHW
This instruction pushes either a 16-bit literal value or the memory word indicated onto
the stack, and decrements the value of the Stack Pointer by 2.

PHW : Push Word onto the Stack 4510
STACK← M1:M2, SP← SP - 2

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
immediate PHW #$nnnn F4 3
absolute PHW $nnnn FC 3

PHX
This instruction pushes the contents of the X Register onto the stack, and decrements
the value of the Stack Pointer by 1.

PHX : Push X Register onto the Stack 4510
STACK← X, SP← SP - 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PHX DA 1

PHY
This instruction pushes the contents of the Y Register onto the stack, and decrements
the value of the Stack Pointer by 1.

H-94

PHY : Push Y Register onto the Stack 4510
STACK← Y, SP← SP - 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PHY 5A 1 2

PHZ
This instruction pushes the contents of the Z Register onto the stack, and decrements
the value of the Stack Pointer by 1.

PHZ : Push Z Register onto the Stack 4510
STACK← z, SP← SP - 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PHZ DB 1

PLA
This instruction replaces the contents of the Accumulator Register with the top value
from the stack, and increments the value of the Stack Pointer by 1.

PLA : Pull Accumulator Register from the Stack4510
A← STACK, SP← SP + 1

NZ I CD V E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PLA 68 1 4 m

mSubtract non-bus cycles when at 40MHz.

PLP
This instruction replaces the contents of the Processor Flags with the top value from
the stack, and increments the value of the Stack Pointer by 1.

H-95

NOTE: This instruction does NOT replace the Extended Stack Disable Flag (E Flag), or
the Software Interrupt Flag (B Flag)

PLP : Pull Processor Flags from the Stack 4510
A← STACK, SP← SP + 1

NZ I CDV E
+ + + + + + ·

Addressing Mode AssemblyCodeBytesCycles
implied PLP 28 1 4 m

mSubtract non-bus cycles when at 40MHz.

PLX
This instruction replaces the contents of the X Register with the top value from the
stack, and increments the value of the Stack Pointer by 1.

PLX : Pull X Register from the Stack 4510
X← STACK, SP← SP + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PLX FA 1

PLY
This instruction replaces the contents of the Y Register with the top value from the
stack, and increments the value of the Stack Pointer by 1.

PLY : Pull Y Register from the Stack 4510
Y← STACK, SP← SP + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PLY 7A 1

H-96

PLZ
This instruction replaces the contents of the Z Register with the top value from the
stack, and increments the value of the Stack Pointer by 1.

PLZ : Pull Z Register from the Stack 4510
Z← STACK, SP← SP + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied PLZ FB 1

RMB0
This instruction clears bit zero of the indicated address. No flags are modified, re-
gardless of the result.

RMB0 : Reset Bit 0 in Base Page 4510
M(0)← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page RMB0 $nn 07 2 4 br

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

RMB1
This instruction clears bit 1 of the indicated address. No flags are modified, regardless
of the result.

H-97

RMB1 : Reset Bit 1 in Base Page 4510
M(1)← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page RMB1 $nn 17 2 4 br

bAdd one cycle if branch is taken.
Add one more cycle if branch taken crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

RMB2
This instruction clears bit 2 of the indicated address. No flags are modified, regardless
of the result.

RMB2 : Reset Bit 2 in Base Page 4510
M(2)← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page RMB2 $nn 27 2 4 r

rAdd one cycle if clock speed is at 40 MHz.

RMB3
This instruction clears bit 3 of the indicated address. No flags are modified, regardless
of the result.

RMB3 : Reset Bit 3 in Base Page 4510
M(3)← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page RMB3 $nn 37 2 4 r

rAdd one cycle if clock speed is at 40 MHz.

H-98

RMB4
This instruction clears bit 4 of the indicated address. No flags are modified, regardless
of the result.

RMB4 : Reset Bit 4 in Base Page 4510
M(4)← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page RMB4 $nn 47 2 4 r

rAdd one cycle if clock speed is at 40 MHz.

RMB5
This instruction clears bit 5 of the indicated address. No flags are modified, regardless
of the result.

RMB5 : Reset Bit 5 in Base Page 4510
M(5)← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page RMB5 $nn 57 2 4 r

rAdd one cycle if clock speed is at 40 MHz.

RMB6
This instruction clears bit 6 of the indicated address. No flags are modified, regardless
of the result.

RMB6 : Reset Bit 6 in Base Page 4510
M(6)← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page RMB6 $nn 67 2 5 r

rAdd one cycle if clock speed is at 40 MHz.

H-99

RMB7
This instruction clears bit 7 of the indicated address. No flags are modified, regardless
of the result.

RMB7 : Reset Bit 7 in Base Page 4510
M(7)← 0

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page RMB7 $nn 77 2

ROL
This instruction shifts either the Accumulator or contents of the provided memory lo-
cation one bit left. Bit 0 will be set to the current value of the Carry Flag, and the bit
7 will be shifted out into the Carry Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

ROL : Rotate Left Memory or Accumulator 4510
M← M<<1, C← M(7), M(0)← C

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
base-page ROL $nn 26 2 4 r

accumulator ROL A 2A 1 1 s

absolute ROL $nnnn 2E 3 5 r

base-page,X ROL $nn,X 36 2 5 pr

absolute,X ROL $nnnn,X 3E 3 5 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.
sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

H-100

ROR
This instruction shifts either the Accumulator or contents of the provided memory lo-
cation one bit right. Bit 7 will be set to the current value of the Carry Flag, and the bit
0 will be shifted out into the Carry Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

ROR : Rotate Right Memory or Accumulator 4510
M← M>>1, C← M(0), M(7)← C

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
base-page ROR $nn 66 2 5 r

accumulator ROR A 6A 1 1 s

absolute ROR $nnnn 6E 3 6 r

base-page,X ROR $nn,X 76 2
absolute,X ROR $nnnn,X 7E 3
rAdd one cycle if clock speed is at 40 MHz.
sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

ROW
This instruction rotates the contents of the indicated memory word one bit left. Bit 0
of the low byte will be set to the current value of the Carry Flag, and the bit 7 of the
high byte will be shifted out into the Carry Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the upper byte was set, prior to being shifted.

H-101

ROW : Rotate Word Left 4510
M2:M1← M2:M1<<1, C← M2(7), M1(0)← C

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly CodeBytesCycles
absolute ROW $nnnn EB 3

RTI
This instruction pops the processor flags from the stack, and then pops the Program
Counter (PC) register from the stack, allowing an interrupted program to resume.

• The 6502 Processor Flags are restored from the stack.

• Neither the B (Software Interrupt) nor E (Extended Stack) flags are set by this
instruction.

RTI : Return From Interrupt 4510
P← STACK, PC← STACK, SP← SP + 3

NZ I CDV E
+ · + + + + ·

Addressing Mode AssemblyCodeBytesCycles
implied RTI 40 1 6 m

mSubtract non-bus cycles when at 40MHz.

RTS
This instruction adds optional argument to the Stack Pointer (SP) Register, and then
pops the Program Counter (PC) register from the stack, allowing a routine to return to
its caller.

RTS : Return From Subroutine 4510
PC← STACK + N, SP← SP + 2 + N

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied RTS 60 1 6 m

immediate RTS #$nn 62 2 4
mSubtract non-bus cycles when at 40MHz.

H-102

SBC
This instruction performs A − M - 1 + C, and sets the processor flags accordingly. The
result is stored in the Accumulator Register.

NOTE: This instruction is affected by the status of the Decimal Flag.

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

SBC : Subtract With Carry 4510
A← - M - 1 + C

NZ I CDV E
+ + · + · + ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) SBC ($nn,X) E1 2
base-page SBC $nn E5 2
immediate SBC #$nn E9 2
absolute SBC $nnnn ED 3
(indirect),Y SBC ($nn),Y F1 2
(indirect),Z SBC ($nn),Z F2 2
base-page,X SBC $nn,X F5 2
absolute,Y SBC $nnnn,Y F9 3
absolute,X SBC $nnnn,X FD 3

SEC
This instruction sets the Carry Flag.

Side effects

• The C flag is set.

H-103

SEC : Set Carry Flag 4510
C← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied SEC 38 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

SED
This instruction sets the Decimal Flag. Binary arithmetic will now use Binary-Coded
Decimal (BCD) mode.

NOTE: The C64’s interrupt handler does not clear the Decimal Flag, which makes it
dangerous to set the Decimal Flag without first setting the Interrupt Disable Flag.

Side effects

• The D flag is set.

SED : Set Decimal Flag 4510
D← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied SED F8 1

SEE
This instruction sets the Extended Stack Disable Flag. This causes the stack to operate
as on the 6502, i.e., limited to a single page of memory. The page of memory in
which the stack is located can still be modified by setting the Stack Pointer High (SPH)
Register.

Side effects

• The E flag is set.

H-104

SEE : Set Extended Stack Disable Flag 4510
E← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied SEE 03 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

SEI
This instruction sets the Interrupt Disable Flag. Normal (IRQ) interrupts will no longer
be able to occur. Non-Maskable Interrupts (NMI) will continue to occur, as their name
suggests.

Side effects

• The I flag is set.

SEI : Set Interrupt Disable Flag 4510
I← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
implied SEI 78 1

SMB0
This instruction sets bit zero of the indicated address. No flags are modified, regardless
of the result.

SMB0 : Set Bit 0 in Base Page 4510
M(0)← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page SMB0 $nn 87 2

H-105

SMB1
This instruction sets bit 1 of the indicated address. No flags are modified, regardless
of the result.

SMB1 : Set Bit 1 in Base Page 4510
M(1)← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page SMB1 $nn 97 2

SMB2
This instruction sets bit 2 of the indicated address. No flags are modified, regardless
of the result.

SMB2 : Set Bit 2 in Base Page 4510
M(2)← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page SMB2 $nn A7 2

SMB3
This instruction sets bit 3 of the indicated address. No flags are modified, regardless
of the result.

SMB3 : Set Bit 3 in Base Page 4510
M(3)← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page SMB3 $nn B7 2

H-106

SMB4
This instruction sets bit 4 of the indicated address. No flags are modified, regardless
of the result.

SMB4 : Set Bit 4 in Base Page 4510
M(4)← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page SMB4 $nn C7 2

SMB5
This instruction sets bit 5 of the indicated address. No flags are modified, regardless
of the result.

SMB5 : Set Bit 5 in Base Page 4510
M(5)← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page SMB5 $nn D7 2

SMB6
This instruction sets bit 6 of the indicated address. No flags are modified, regardless
of the result.

SMB6 : Set Bit 6 in Base Page 4510
M(6)← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page SMB6 $nn E7 2

H-107

SMB7
This instruction sets bit 7 of the indicated address. No flags are modified, regardless
of the result.

SMB7 : Set Bit 7 in Base Page 4510
M(7)← 1

NZ I CDV E
· · · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page SMB7 $nn F7 2

STA
This instruction stores the contents of the Accumulator Register into the indicated lo-
cation.

STA : Store Accumulator 4510
M← A

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
(indirect,X) STA ($nn,X) 81 2
(indirect,SP),Y STA ($nn,SP),Y 82 2
base-page STA $nn 85 2
absolute STA $nnnn 8D 3
(indirect),Y STA ($nn),Y 91 2
(indirect),Z STA ($nn),Z 92 2
base-page,X STA $nn,X 95 2
absolute,Y STA $nnnn,Y 99 3
absolute,X STA $nnnn,X 9D 3

STX
This instruction stores the contents of the X Register into the indicated location.

H-108

STX : Store X Register 4510
M← X

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page STX $nn 86 2
absolute STX $nnnn 8E 3
base-page,Y STX $nn,Y 96 2
absolute,Y STX $nnnn,Y 9B 3

STY
This instruction stores the contents of the Y Register into the indicated location.

STY : Store Y Register 4510
M← Y

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page STY $nn 84 2
absolute,X STY $nnnn,X 8B 3
absolute STY $nnnn 8C 3
base-page,X STY $nn,X 94 2

STZ
This instruction stores the contents of the Z Register into the indicated location.

STZ : Store Z Register 4510
M← Z

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
base-page STZ $nn 64 2 3
base-page,X STZ $nn,X 74 2 3
absolute STZ $nnnn 9C 3
absolute,X STZ $nnnn,X 9E 3

H-109

TAB
This instruction sets the Base Page register to the contents of the Accumulator Register.
This allows the relocation of the 6502’s Zero-Page into any page of memory.

TAB : Transfer Accumulator into Base Page Register 4510
B← A

NZ I CD VE
· · · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TAB 5B 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TAX
This instruction loads the X Register with the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

TAX : Transfer Accumulator Register into the X Register4510
X← A

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TAX AA 1

TAY
This instruction loads the Y Register with the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-110

TAY : Transfer Accumulator Register into the Y Register4510
Y← A

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TAY A8 1

TAZ
This instruction loads the Z Register with the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

TAZ : Transfer Accumulator Register into the Z Register4510
Z← A

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TAZ 4B 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TBA
This instruction loads the Accumulator Register with the contents of the Base Page
Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-111

TBA : Transfer Base Page Register into the Accumulator4510
A← B

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TBA 7B 1

TRB
This instruction sets performs a binary AND of the negation of the Accumulator Register
and the indicated memory location, storing the result there. That is, any bits set in the
Accumulator Register will be reset in the indicated memory location.

It also performs a test for any bits in common between the accumulator and indicated
memory location. This can be used to construct simple shared-memory multi-processor
systems, by providing an atomic means of setting a semaphore or acquiring a lock.

Side effects

• The Z flag will be set if the binary AND of the Accumulator Register and contents
of the indicated memory location prior are zero, prior to the execution of the
instruction.

TRB : Test and Reset Bit 4510
M← M AND (NOT A)

NZ I CDV E
· + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page TRB $nn 14 2 5 r

absolute TRB $nnnn 1C 3 4 r

rAdd one cycle if clock speed is at 40 MHz.

TSB
This instruction sets performs a binary OR of the Accumulator Register and the indi-
cated memory location, storing the result there. That is, any bits set in the Accumulator
Register will be set in the indicated memory location.

It also performs a test for any bits in common between the accumulator and indicated
memory location. This can be used to construct simple shared-memory multi-processor
systems, by providing an atomic means of setting a semaphore or acquiring a lock.

H-112

Side effects

• The Z flag will be set if the binary AND of the Accumulator Register and contents
of the indicated memory location prior are zero, prior to the execution of the
instruction.

TSB : Test and Set Bit 4510
M← M OR A

NZ I CDV E
· + · · · · ·

Addressing Mode AssemblyCodeBytesCycles
base-page TSB $nn 04 2 3 r

absolute TSB $nnnn 0C 3 5 r

rAdd one cycle if clock speed is at 40 MHz.

TSX
This instruction loads the X Register with the contents of the Stack Pointer High (SPL)
Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

TSX : Transfer Stack Pointer High Register into the X Register4510
X← SPH

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TSX BA 1

TSY
This instruction loads the Y Register with the contents of the Stack Pointer High (SPH)
Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

H-113

• The Z flag will be set if the result is zero, else it will be cleared.

TSY : Transfer Stack Pointer High Register into the Y Register4510
Y← SPH

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TSY 0B 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TXA
This instruction loads the Accumulator Register with the contents of the X Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

TXA : Transfer X Register into the Accumulator Register4510
A← X

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TXA 8A 1

TXS
This instruction sets the low byte of the Stack Pointer (SPL) register to the contents of
the X Register.

TXS : Transfer X Register into Stack Pointer Low Register4510
SPL← X

NZ I CD VE
· · · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TXS 9A 1

H-114

TYA
This instruction loads the Accumulator Register with the contents of the Y Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

TYA : Transfer Y Register into the Accumulator Register4510
A← Y

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TYA 98 1

TYS
This instruction sets the high byte of the Stack Pointer (SPH) register to the contents
of the Y Register. This allows changing the memory page where the stack is located
(if the Extended Stack Disable Flag (E) is set), or else allows setting the current Stack
Pointer to any page in memory, if the Extended Stack Disable Flag (E) is clear.

TYS : Transfer Y Register into Stack Pointer High Register4510
SPH← Y

NZ I CD VE
· · · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TYS 2B 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TZA
This instruction loads the Accumulator Register with the contents of the Z Register.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-115

TZA : Transfer Z Register into the Accumulator Register4510
A← Z

NZ I CD VE
+ + · · · · ·

Addressing Mode AssemblyCodeBytes Cycles
implied TZA 6B 1 1 s

sInstruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

45GS02 COMPOUND INSTRUCTIONS
As the 4510 has no unallocated opcodes, the 45GS02 uses compound instructions
to implement its extension. These compound instructions consist of one or more single
byte instructions placed immediately before a conventional instruction. These pre-
fixes instruct the 45GS02 to treat the following instruction differently, as described in
Chapter/Appendix G on page G-3.

ADC
This instruction adds the argument to the contents of the Accumulator Register and
the Carry Flag. If the D flag is set, then the addition is performed using Binary Coded
Decimal.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The C flag will be set if the unsigned result is >255, or >99 if the D flag is set.

H-116

ADC : Add with carry 45GS02
A← A+M+C

NZ I CDV E
+ + · + · + ·

Addressing Mode Assembly CodeBytesCycles
No description ADC [$nn],ZEA 72 0 7 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

ADCQ
This instruction adds the argument to the contents of the 32-bit Q pseudo-register
Register and the Carry Flag. If the D flag is set, then the operation is undefined, and
is subject to change.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The C flag will be set if the unsigned result is >255 if the D flag is clear.

ADCQ : Add with carry 45GS02
Q← Q+M+C

NZ I CDV E
+ + · + · + ·

Addressing Mode Assembly Code BytesCycles
base-page quad ADCQ $nn 42 42 65 4 8 r

absolute quad ADCQ $nnnn 42 42 6D 5 9 r

(indirect quad) ADCQ ($nn) 42 42 72 4 10 ipr

[indirect quad] ADCQ [$nn] 42 42 EA 72 5 13 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

H-117

AND
This instructions performs a binary AND operation of the argument with the accumu-
lator, and stores the result in the accumulator. Only bits that were already set in the
accumulator, and that are set in the argument will be set in the accumulator on com-
pletion.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

AND : Binary AND 45GS02
A← A AND M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
No description AND [$nn],ZEA 32 0 7 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

ANDQ
This instructions performs a binary AND operation of the argument with the Q pseudo
register, and stores the result in the accumulator. Only bits that were already set in
the Q pseudo register, and that are set in the argument will be set in the Q pseudo
register on completion.

Note that the indicated memory location is treated as the first byte of a 32-bit little-
endian value.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-118

ANDQ : Binary AND 45GS02
Q← Q AND M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad ANDQ $nn 42 42 25 4 8 r

absolute quad ANDQ $nnnn 42 42 2D 5 9 r

(indirect quad) ANDQ ($nn) 42 42 32 4 10 ipr

[indirect quad] ANDQ [$nn] 42 42 EA 32 5 13 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

ASLQ
This instruction shifts either the Q pseudo-register or contents of the provided memory
location and following three one bit left, treating them as holding a little-endian 32-
bit value. Bit 0 will be set to zero, and the bit i31 will be shifted out into the Carry
Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

H-119

ASLQ : Arithmetic Shift Left 45GS02
Q← Q<<1 or M← M<<1

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad ASLQ $nn 42 42 06 4 12 dmr

Q Pseudo Register ASLQ Q 42 42 0A 3 3
absolute quad ASLQ $nnnn 42 42 0E 5 13 dmr

base-page quad,X ASLQ $nn,X 42 42 16 4 12 dmpr

absolute quad,X ASLQ $nnnn,X42 42 1E 5 13 dmpr

dSubtract one cycle when CPU is at 3.5MHz.
mSubtract non-bus cycles when at 40MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

ASRQ
This instruction shifts either the Q pseudo-register or contents of the provided memory
location and following three one bit left, treating them as holding a little-endian 32-
bit value. Bit 0 will be set to zero, and the bit i31 will be shifted out into the Carry
Flag

Side effects

• The N flag will be set if the result is negative, i.e., if bit 7 is set after the operation,
else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 7 of the value was set, prior to being shifted.

H-120

ASRQ : Arithmetic Shift Left 45GS02
Q← Q<<1 or M← M<<1

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly Code BytesCycles
Q Pseudo Register ASRQ Q 42 42 43 3 3
base-page quad ASRQ $nn 42 42 44 4 12 dmr

base-page quad,X ASRQ $nn,X42 42 54 4 12 dmpr

dSubtract one cycle when CPU is at 3.5MHz.
mSubtract non-bus cycles when at 40MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

BITQ
This instruction is used to test the bits stored in a memory location and following three,
treating them as holding a little-endian 32-bit value. Bits 30 and 31 of the memory
location’s contents are directly copied into the Overflow Flag and Negative Flag. The
Zero Flag is set or cleared based on the result of performing the binary AND of the Q
Register and the contents of the indicated memory location.

Side effects

• The N flag will be set if the bit 31 of the memory location is set, else it will be
cleared.

• The V flag will be set if the bit 30 of the memory location is set, else it will be
cleared.

• The Z flag will be set if the result of Q AND M is zero, else it will be cleared.

BITQ : Perform Bit Test 45GS02
N← M(31), V← M(30), Z← Q AND M

NZ I CDV E
+ + · · · + ·

Addressing Mode Assembly Code BytesCycles
base-page quad BITQ $nn 42 42 24 4 8 r

absolute quad BITQ $nnnn42 42 2C 5 9 r

rAdd one cycle if clock speed is at 40 MHz.

H-121

CMP
This instruction performs A−M, and sets the processor flags accordingly, but does not
modify the contents of the Accumulator Register.

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

CMP : Compare Accumulator 45GS02

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly Code BytesCycles
No description CMP [$nn],ZEA D2 0 7 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

CMPQ
This instruction performs Q−M, and sets the processor flags accordingly, but does not
modify the contents of the Q Register. The memory location is treated as the address
of a little-endian 32-bit value.

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 31 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

H-122

CMPQ : Compare Q Pseudo Register 45GS02

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad CMPQ $nn 42 42 C5 4 8 r

absolute quad CMPQ $nnnn 42 42 CD 5 9 r

(indirect quad) CMPQ ($nn) 42 42 D2 4 10 ipr

[indirect quad] CMPQ [$nn] 42 42 EA D2 5 13 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

DEQ
This instruction decrements the Accumulator Register or indicated memory location.

Note that the indicated memory location is treated as the first byte of a 32-bit little-
endian value.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

DEQ : Decrement Memory or Q 45GS02
Q← Q - 1 or M← M - 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly Code BytesCycles
Q Pseudo Register DEQ Q 42 42 3A 3 3
base-page quad DEQ $nn 42 42 C6 4 12 dmr

absolute quad DEQ $nnnn 42 42 CE 5 13 dmr

base-page quad,X DEQ $nn,X 42 42 D6 4 12 dmpr

absolute quad,X DEQ $nnnn,X42 42 DE 5 13 dmpr

dSubtract one cycle when CPU is at 3.5MHz.
mSubtract non-bus cycles when at 40MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

H-123

EOR
This instructions performs a binary XOR operation of the argument with the accumu-
lator, and stores the result in the accumulator. Only bits that were already set in the
accumulator, or that are set in the argument will be set in the accumulator on com-
pletion, but not both.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

EOR : Binary Exclusive OR 45GS02
A← A XOR M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
No description EOR [$nn],ZEA 52 0 7 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

EORQ
This instructions performs a binary XOR operation of the argument with the Q pseudo
register, and stores the result in the Q pseudo register. Only bits that were already set
in the Q pseudo register, or that are set in the argument will be set in the accumulator
on completion, but not bits that were set in both.

Side effects

• The N flag will be set if the result is negative, i.e., bit 31 is set, else it will be
cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-124

EORQ : Binary Exclusive OR 45GS02
Q← Q XOR M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad EORQ $nn 42 42 45 4 8 r

absolute quad EORQ $nnnn 42 42 4D 5 9 r

(indirect quad) EORQ ($nn) 42 42 52 4 10 ipr

[indirect quad] EORQ [$nn] 42 42 EA 52 5 13 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

INQ
This instruction increments the Q pseudo register or indicated memory location.

Note that the indicated memory location is treated as the first byte of a 32-bit little-
endian value.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

INQ : Increment Memory or Accumulator 45GS02
Q← Q + 1 or M← M + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly Code BytesCycles
Q Pseudo Register INQ Q 42 42 1A 3 3
base-page quad INQ $nn 42 42 E6 4 13 dmr

absolute quad INQ $nnnn 42 42 EE 5 14 dmr

base-page quad,X INQ $nn,X 42 42 F6 4 13 dmpr

absolute quad,X INQ $nnnn,X42 42 FE 5 14 dpr

dSubtract one cycle when CPU is at 3.5MHz.
mSubtract non-bus cycles when at 40MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

H-125

LDA
This instruction loads the Accumulator Register with the indicated value, or with the
contents of the indicated location.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

LDA : Load Accumulator 45GS02
A← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
No description LDA [$nn],ZEA B2 0 7 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

LDQ
This instruction loads the Q pseudo register with the indicated value, or with the con-
tents of the indicated location. As the Q register is an alias for A, X, Y and Z used
together, this operation will set those four registers. A contains the least significant
bits, X the next least significant, then Y, and Z contains the most significant bits.

Side effects

• The N flag will be set if the result is negative, i.e., bit 31 is set, else it will be
cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

H-126

LDQ : Load Q Pseudo Register 45GS02
Q← M

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad LDQ $nn 42 42 A5 4 8 r

absolute quad LDQ $nnnn 42 42 AD 5 9 r

(indirect quad) LDQ ($nn) 42 42 B2 4 10 ipr

[indirect quad] LDQ [$nn] 42 42 EA B2 5 13 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

LSRQ
This instruction shifts either the Q pseudo register or contents of the provided memory
location one bit right. Bit 31 will be set to zero, and the bit 0 will be shifted out into
the Carry Flag.

Note that the memory address is treated as the first address of a little-endian encoded
32-bit value.

Side effects

• The N flag will be set if the result is negative, i.e., if bit 31 is set after the oper-
ation, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 0 of the value was set, prior to being shifted.

H-127

LSRQ : Logical Shift Right 45GS02
Q← Q>>1, C← A(0) or M← M>>1

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad LSRQ $nn 42 42 46 4 12 dmr

Q Pseudo Register LSRQ Q 42 42 4A 3 3
absolute quad LSRQ $nnnn 42 42 4E 5 13 dmr

base-page quad,X LSRQ $nn,X 42 42 56 4 12 dmpr

absolute quad,X LSRQ $nnnn,X42 42 5E 5 13 dmpr

dSubtract one cycle when CPU is at 3.5MHz.
mSubtract non-bus cycles when at 40MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

ORA
This instructions performs a binary OR operation of the argument with the accumulator,
and stores the result in the accumulator. Only bits that were already set in the accu-
mulator, or that are set in the argument will be set in the accumulator on completion,
or both.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

ORA : Decrement Memory or Accumulator 45GS02
A← A + 1 or M← M + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly CodeBytesCycles
No description ORA [$nn],ZEA 12 0 7 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

H-128

ORQ
This instructions performs a binary OR operation of the argument with the Q pseudo
register, and stores the result in the Q pseudo register. Only bits that were already set
in the Q pseudo register, or that are set in the argument, or both, will be set in the Q
pseudo register on completion.

Note that this operation treats the memory address as the first address of a 32-bit
little-endian value. That is, the memory address and the three following will be used.

Side effects

• The N flag will be set if the result is negative, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

ORQ : Decrement Memory or Q 45GS02
Q← Q + 1 or M← M + 1

NZ I CDV E
+ + · · · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad ORQ $nn 42 42 05 4 8 r

absolute quad ORQ $nnnn 42 42 0D 5 9 r

(indirect quad) ORQ ($nn) 42 42 12 4 10 pr

[indirect quad] ORQ [$nn] 42 42 EA 12 5 13 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

RESQ
These extended opcodes are reserved, and their function is undefined and subject to
change in future revisions of the 45GS02. They should therefore not be used in any
program.

H-129

RESQ : Reserved extended opcode 45GS02
UNDEFINED

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly Code BytesCycles
(indirect quad,X) RESQ ($nn,X) 42 42 01 4 10 ipr

(indirect quad),Y RESQ ($nn),Y 42 42 11 4 10 ipr

base-page quad,X RESQ $nn,X 42 42 15 4 8 pr

absolute quad,Y RESQ $nnnn,Y42 42 19 5 9 pr

absolute quad,X RESQ $nnnn,X42 42 1D 5 9 pr

(indirect quad,X) RESQ ($nn,X) 42 42 21 4 10 ir

(indirect quad),Y RESQ ($nn),Y 42 42 31 4 10 ipr

base-page quad,X RESQ $nn,X 42 42 34 4 8 pr

base-page quad,X RESQ $nn,X 42 42 35 4 8 pr

absolute quad,Y RESQ $nnnn,Y42 42 39 5 10 pr

absolute quad,X RESQ $nnnn,X42 42 3C 5 9 pr

absolute quad,X RESQ $nnnn,X42 42 3D 5 10 pr

(indirect quad,X) RESQ ($nn,X) 42 42 41 4 10 ipr

(indirect quad),Y RESQ ($nn),Y 42 42 51 4 10 ipr

base-page quad,X RESQ $nn,X 42 42 55 4 8 pr

absolute quad,Y RESQ $nnnn,Y42 42 59 5 9 pr

absolute quad,X RESQ $nnnn,X42 42 5D 5 9 pr

(indirect quad,X) RESQ ($nn,X) 42 42 61 4 10 ir

(indirect quad),Y RESQ ($nn),Y 42 42 71 4 10 ipr

base-page quad,X RESQ $nn,X 42 42 75 4 8 pr

absolute quad,Y RESQ $nnnn,Y42 42 79 5 10 pr

absolute quad,X RESQ $nnnn,X42 42 7D 5 10 pr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

ROLQ
This instruction shifts either the Accumulator or contents of the provided memory lo-
cation one bit left. Bit 0 will be set to the current value of the Carry Flag, and the bit
31 will be shifted out into the Carry Flag.

NOTE: The memory address is treated as the first address of a little-endian encoded
32-bit value.

H-130

Side effects

• The N flag will be set if the result is negative, i.e., if bit 31 is set after the oper-
ation, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 31 of the value was set, prior to being shifted.

ROLQ : Rotate Left Memory or Q 45GS02
M← M<<1, C← M(31), M(0)← C

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad ROLQ $nn 42 42 26 4 12 dmr

Q Pseudo Register ROLQ Q 42 42 2A 3 3
absolute quad ROLQ $nnnn 42 42 2E 5 13 dmr

base-page quad,X ROLQ $nn,X 42 42 36 4 12 dmpr

absolute quad,X ROLQ $nnnn,X42 42 3E 5 13 dmpr

dSubtract one cycle when CPU is at 3.5MHz.
mSubtract non-bus cycles when at 40MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

RORQ
This instruction shifts either the Q pseudo register or contents of the provided memory
location one bit right. Bit 31 will be set to the current value of the Carry Flag, and the
bit 0 will be shifted out into the Carry Flag

Note that the address is treated as the first address of a little-endian 32-bit value.

Side effects

• The N flag will be set if the result is negative, i.e., if bit 31 is set after the oper-
ation, else it will be cleared.

• The Z flag will be set if the result is zero, else it will be cleared.

• The C flag will be set if bit 31 of the value was set, prior to being shifted.

H-131

RORQ : Rotate Right Memory or Accumulator 45GS02
M← M>>1, C← M(0), M(31)← C

NZ I CDV E
+ + · + · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad RORQ $nn 42 42 66 4 12 dmr

Q Pseudo Register RORQ Q 42 42 6A 3 3
absolute quad RORQ $nnnn 42 42 6E 5 13 dmr

base-page quad,X RORQ $nn,X 42 42 76 4 12 dmpr

absolute quad,X RORQ $nnnn,X42 42 7E 5 13 dmpr

dSubtract one cycle when CPU is at 3.5MHz.
mSubtract non-bus cycles when at 40MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

RSVQ
These extended opcodes are reserved, and their function is undefined and subject to
change in future revisions of the 45GS02. They should therefore not be used in any
program.

H-132

RSVQ : Reserved extended opcode 45GS02
UNDEFINED

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly Code BytesCycles
(indirect quad,X) RSVQ ($nn,X) 42 42 81 4 10 ip

(indirect quad,SP),Y RSVQ ($nn,SP),Y42 42 82 4 10 ip

(indirect quad),Y RSVQ ($nn),Y 42 42 91 4 10 ip

base-page quad,X RSVQ $nn,X 42 42 95 4 8 p

absolute quad,Y RSVQ $nnnn,Y 42 42 99 5 9 p

absolute quad,X RSVQ $nnnn,X 42 42 9D 5 9 p

(indirect quad,X) RSVQ ($nn,X) 42 42 A1 4 10 ipr

(indirect quad,X) RSVQ ($nn,X) 42 42 C1 4 10 ipr

(indirect quad),Y RSVQ ($nn),Y 42 42 D1 4 10 ipr

base-page quad,X RSVQ $nn,X 42 42 D5 4 8 pr

absolute quad,Y RSVQ $nnnn,Y 42 42 D9 5 9 pr

absolute quad,X RSVQ $nnnn,X 42 42 DD 5 9 pr

(indirect quad,X) RSVQ ($nn,X) 42 42 E1 4 10 ipr

(indirect quad),Y RSVQ ($nn),Y 42 42 F1 4 10 ipr

base-page quad,X RSVQ $nn,X 42 42 F5 4 8 pr

absolute quad,Y RSVQ $nnnn,Y 42 42 F9 5 8 pr

absolute quad,X RSVQ $nnnn,X 42 42 FD 5 9 pr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

SBC
This instruction performs A − M - 1 + C, and sets the processor flags accordingly. The
result is stored in the Accumulator Register.

NOTE: This instruction is affected by the status of the Decimal Flag.

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 7 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

H-133

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

SBC : Subtract With Carry 45GS02
A← - M - 1 + C

NZ I CDV E
+ + · + · + ·

Addressing Mode Assembly CodeBytesCycles
No description SBC [$nn],ZEA F2 0 8 pr

pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

SBCQ
This instruction performs Q − M - 1 + C, and sets the processor flags accordingly. The
result is stored in the Q pseudi register.

NOTE: that the indicated memory location is treated as the first byte of a 32-bit little-
endian value.

NOTE: The decimal (D) flag must be clear. Operation is reserved when D flag is set.

Side effects

• The N flag will be set if the result of A − M is negative, i.e. bit 31 is set in the
result, else it will be cleared.

• The C flag will be set if the result of A − M is zero or positive, i.e., if A is not less
than M, else it will be cleared.

• The V flag will be set if the result has a different sign to both of the arguments,
else it will be cleared. If the flag is set, this indicates that a signed overflow has
occurred.

• The Z flag will be set if the result of A − M is zero, else it will be cleared.

H-134

SBCQ : Subtract With Carry 45GS02
Q← - M - 1 + C

NZ I CDV E
+ + · + · + ·

Addressing Mode Assembly Code BytesCycles
base-page quad SBCQ $nn 42 42 E5 4 8 r

absolute quad SBCQ $nnnn 42 42 ED 5 9 r

(indirect quad) SBCQ ($nn) 42 42 F2 4 10 ipr

[indirect quad] SBCQ [$nn] 42 42 EA F2 5 13 ipr

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.
rAdd one cycle if clock speed is at 40 MHz.

STA
This instruction stores the contents of the Accumulator Register into the indicated lo-
cation.

STA : Store Accumulator 45GS02
M← A

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly CodeBytesCycles
No description STA [$nn],ZEA 92 0 8 ip

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.

STQ
This instruction stores the contents of the Q pseudo register into the indicated location.

As Q is composed of A, X, Y and Z, this means that these four registers will be written
to the indicated memory location through to the indicated memory location plus 3,
respectively.

H-135

STQ : Store Q 45GS02
M← Q = M+0← A, ... , M+3← Z

NZ I CDV E
· · · · · · ·

Addressing Mode Assembly Code BytesCycles
base-page quad STQ $nn 42 42 85 4 8
absolute quad STQ $nnnn 42 42 8D 5 9
(indirect quad) STQ ($nn) 42 42 92 4 10 ip

[indirect quad] STQ [$nn] 42 42 EA 92 5 13 ip

iAdd one cycle if clock speed is at 40 MHz.
pAdd one cycle if indexing crosses a page boundary.

H-136

APPENDIX I
Developing System

Programmes
• Introduction

• Flash Menu

• Format/FDISK Utility

• Keyboard Test Utility

• MEGA65 Configuration Utility

• Freeze Menu

• Freeze Menu Helper Programmes

• Hypervisor

• OpenROM

I-2

I-3

I-4

INTRODUCTION
The MEGA65 has a number of system programs and utilities that are used at various
times to perform various functions. This includes the utilities accessible via the Utility
Menu , the Freeze Menu and its own helper programs, as well as the Flash Menu .

A number of these system programs are pre-loaded into the MEGA65 bitstream, while
others live on the SD card. For those that are pre-loaded into the MEGA65 bitstream,
this works by having areas of pre-initialised memory, that contain the appropriate
program. For example, the utilities accessible via the Utility Menu are all located in
the colour RAM, while the Flash Menu is located at $50000 – $57FFF.

In one sense, the easiest way to test new versions of these utilities is to generate
a new bitstream with the updated versions. However, synthesising a new bitstream is
very time consuming, typically taking an hour on a reasonably fast computer. Therefore
this chapter explains the procedure for loading an alternate version of each of these
system programs, as well as providing some useful information about these programs,
how the operate, and the environment in which they operate compared with normal
C64 or C65-mode programs.

FLASH MENU
The flash menu is located in pre-initialised RAM at $50000 – $57FFFF. It is executed
during the first boot each time the MEGA65 is powered on. It is unusual in that it
executes in the hypervisor context. This is so that it has access to the QSPI flash, which
is not available outside of Hypervisor Mode, so that user programs cannot corrupt the
cores stored in the flash.

It is also important to note that the flash menu program must fit entirely below $8000
when loaded and executing, as the Hypervisor is still mapped at $8000 – $BFFF, and
can easily be corrupted by an ill behaved flash menu program. In this regard, the
flash menu can be regarded as an extension of the hypervisor that is discarded after
the first boot. This is unlike all other system programs, that operate in a dedicated
memory context, from where the Hypervisor is safe from corruption. It also means that
you can’t crunch the flash menu to make it fit, as it would overwrite the Hypervisor
during decrunching.

Also, as the flash menu is executed very early in the boot process, only the pre-included
OpenROMROM image is available. Thus youmust ensure that your flash menu program
is compatible with that ROM.

The Hypervisor maintains a flag that indicates whether the flash menu has been ex-
ecuted or not. This flag is updated at the point where the Hypervisor exits to user

I-5

mode for the first time, since after that point, the contents of $50000 – $57FFF can
no longer be trusted to contain the flash menu. This means that if you wish to have the
Hypervisor run a new version of the flash menu that you have loaded, you must prevent
the Hypervisor from exiting to user mode first.

The easiest way to achieve this is to hold the ALT key down while powering on the
MEGA65. This will cause the Hypervisor to display the Utility Menu, rather than exiting
to user mode. It is safe at this time to use the m65 utility to load the replacement flash
menu program using a command similar to the following:

m65 -@ newflashmenu.prg@50000

That command would load the file newflashmenu.prg at memory location $50000.

After that, you can simply press the reset button on the side of the MEGA65 while

holding NO
SCROLL down, and it will boot again, and because it never left Hypervisor Mode

during the previous boot cycle, it will run your updated flash menu program.

It should also be possible to completely automate this process, by first using m65 -b to
load a new bitstream, thus simulating a cold boot, and then quickly calling m65 again
to simulate depressing the ALT key (or herhaps simply halting the processor), then m65
-@ ... and finally m65 -F to reset the machine. Writing a script or utility that correctly
implements this automation is left as an exercise for the reader.

FORMAT/FDISK UTILITY
The Format/FDISK utility is accessed as part of the Utility Menu system. These utili-
ties are compiled, crunched and linked using the utilpacker program. If you have
checked out the mega65-core source repository, you can re-build the colour RAM
image by using:

make bin/COLOURRAM.BIN

You will of course need to first have modified the Format/FDISK utility, which is normally
located in the src/mega65-freeze-menu subdirectory.

You need to then load this modified colour RAM image into the running machine. Sim-
ilar to when updating the flash menu, the Hypervisor will only present the utility menu
on the first boot, before exiting to user mode for the first time, because it cannot
otherwise be sure that the colour RAM contains the valid utility programs.

I-6

So as for the flash menu, you would power the MEGA65 off, and then holding the ALT
key down, you switch the MEGA65 back on, so that it displays the utility menu. At this
point you can use the following command to load your modified COLOURRAM.BIN file:

m65 -c COLOURRAM.BIN

You can now hold ALT down, and press the reset button on the left-hand side of the
MEGA65, which should again present the utility menu, but this time with your modified
format/fdisk utility in place.

KEYBOARD TEST UTILITY
The process for updating the Keyboard test utility is essentially the same as for the
format/FDISK utility, as it lives in the colour RAM

MEGA65 CONFIGURATION UTILITY
The process for updating the MEGA65 Configuration utility is essentially the same as
for the format/FDISK utility, as it lives in the colour RAM

FREEZE MENU
The Freeze Menu is a normal program, which is stored in FREEZER.M65 on the SD card’s
FAT32 file system.

To updated the Freeze Menu, simply use the m65ftp utility or some other means to
upload your updated FREEZER.M65 file to the SD card’s FAT32 file system. The format
of the program is simply a C64-mode PRG file, just renamed to FREEZER.M65.

FREEZE MENU HELPER PROGRAMMES
The Freeze Menu helper programs are updated in the same way as the Freeze Menu
itself.

I-7

HYPERVISOR
The Hypervisor is normally built as HICKUP.M65, a 16KB file that contains the com-
plete Hypervisor program. MEGA65 bitstreams contain a pre-build version located at
$FFF8000 – $FFFBFFF. Updated versions of the Hypervisor can be tested using two
main approaches:

• 1. Place the updated HICKUP.M65 file on the FAT32 file system of the SD card,
and then power the MEGA65 off and on. This works because the Hypervi-
sor contains code that checks for an updated version of itself, and if found,
loads it. However this approach is problematic in that if you install a newer bit-
stream, it will still downgrade the Hypervisor to whatever version is found in the
HICKUP.M65 file on the SD card. This method is only recommended for devel-
opers who have a need to test their modified Hypervisor code from a cold start.
Even then, it is recommended to remove the HICKUP.M65 file immediately after
testing to avoid unexpected down-grading in the future.

• 2. Use the m65 command’s
t -k option to replace the Hypervisor in place, and then reset the MEGA65 using
the reset button on the left-hand side of the case. This should be done when the
Hypervisor is not active, so that corruption of current execution cannot occur.
However, it must also occur before any ROM has been loaded to replace the
default OpenROM image. This is because the Hypervisor will attempt to call into
the ROM on first-boot in prepration for calling the flash menu, and assumes that
the OpenROM is present, because it uses a special OpenROM-specific call to
initialise parts of the system state for the flash menu. This is best done by using
a command like m65 -k bin/HICKUP.M65 -R bin/MEGA65.ROM to load both a
new Hypervisor program and re-load an OpenROM image.

OPENROM
To load a new version of a ROM, there are several options, including replacing both
the Hypervisor and ROM at the same time, as described above. However, typically
the easiest is to copy the new ROM onto the FAT32 filesystem of the SD card as ei-
ther MEGA65.ROM, or MEGA65x.ROM, where x is replaced by a digit between 0 and
9. When reseting the MEGA65, MEGA65.ROM will then be loaded as normal, or if
a digit between 0 and 9 is held down on the keyboard while resetting, the Hypervi-
sor will instead load MEGA65x.ROM, where x is the number being held down on the
keyboard.

I-8

APPENDIX J
MEGA65 Hypervisor Services
• General Services

• Disk/Storage Hypervisor Calls

• Disk Image Management

• Task and Process Management

• System Partition & Freezing

• Secure Mode

J-2

The MEGA65’s Hypervisor provides a number of services via Hypervisor Traps. This
chapter will describe these services. For detailed information on how Hypervisor Traps
are facilitated by the CPU is described in Chapter/Appendix G on page G-3.

The hypervisor calls are identified by the trap register ($D640 – $D67F), and the value
of the accumulator register when writing to the trap register. Thus a hypervisor call
$00:$02 would be made via the following sequence of instructions:

LDA # $02

STA $ D 6 4 0 + $00

NOP ; All t r a p s c a l l s MUST be f o l l o w e d by a NOP i n s t r u c t i o n

The values of the other registers or other structures will be described for each individual
call.

GENERAL SERVICES

$00:$00 – Get Hypervisor Version
Returns the version of the Hypervisor operating system and DOS components in the
four registers:

• A = Hypervisor Operating System Major Version number.

• X = Hypervisor Operating System Minor Version number.

• Y = Hypervisor DOS Minor Version number.

• Z = Hypervisor DOS Major Version number.

These values can be used to check whether a given MEGA65 system’s hypervisor sup-
ports features that become available (or are deprecated) at particular versions.

$00:$38 – Get Current Error Code
(geterrorcode)
Returns the current error code from the Hypervisor. The currently supported error codes
are:

• $01 (1) – Partition Not Interesting, indicating that an attempt tomount a partition
was rejected because the partition was not of a supported type.

J-3

• $02 (2) – Bad Signature, indicating that the signature bytes at the end of a
partition table or of the first sector of a partition were missing or incorrect.

• $03 (3) – An attempt was made to mount a FAT12 or FAT16 partition. Only FAT32
partitions are supported.

• $04 (4) – An attempt was made to mount a partition that has too many reserved
sectors. The number of reserved sectors must be less than 65,536.

• $05 (5) – An attempt was made to mount a partition that does not have exactly
two copies of the FAT structure.

• $06 (6) – An attempt was made to mount a partition that contains a partition
with too few clusters.

• $07 (7) – A read timeout occurred.

• $08 (8) – An unspecified error occurred while handling a partition.

• $10 (16) – An invalid address was supplied to the Setup Transfer Area For Other
Calls function.

• $11 (17) – An illegal value was supplied to a Hypervisor call.

• $20 (32) – A read error occurred.

• $21 (33) – A write error occurred.

• $80 (128) – An attempt was made to select or operate on a disk or partition
that does not exist.

• $81 (129) – The supplied filename was too long.

• $82 (130) – A Hypervisor call was made to a function that is not implemented.

• $83 (131) – An attempt was made to load a file into memory that is longer than
16MB.

• $84 (132) – Too many files are open, and no free file descriptor could be ob-
tained for the requested operation.

• $85 (133) – The supplied cluster number is invalid.

• $86 (134) – An attempt was made to operate on a directory, where a normal
file was expected.

• $87 (135) – An attempt was made to operate on a normal file, where a directory
was expected.

• $88 (136) – The requested file could not be located.

• $89 (137) – An invalid file descriptor was supplied.

J-4

• $8A (138) – A disk image file had the wrong length, and was rejected for this
reason.

• $8B (139) – A disk image was attempted to be mounted, but could not because
it is fragmented on the file system. Disk images must be stored contiguously on
disk. This is because of the way that the SD card controller and floppy controller
work: They load the starting sector of the disk image into special registers, and
have no way to correctly handle a disk image that is stored in separate pieces
on the disk.

• $8C (140) – The disk has no free space for the requested operation.

• $8D (141) – An attempt was made to create a file that already exists, or to
rename a file to have the name of a file that already exists.

• $8E (142) – An attempt was made to create a file in a directory that cannot
accommodate any more entries.

• $FF (255) – The end of a file or directory was encountered.

$00:$3A – Setup Transfer Area for
Other Calls (setup_transfer_area)
Setup the transfer area for various hypervisor calls. The page number of the transfer
area is supplied in the Y register. This page must be between $00 (0) and $7E (126),
thus indicating a transfer area starting between $0000 and $7E00 (0 and 32,256).
The transfer area is 256 bytes long for most calls. Note that the transfer area is in-
dicated using the processor’s current memory mapping at the time that a function is
called. However, it is good practice to always place it in the bottom 32KB of main
memory.

• Y = Page number of the transfer area ($00 – $7E).

This call can produce the following error codes:

• $10 (16) – An invalid transfer area address was supplied, i.e., Y > $7E (126).

DISK/STORAGE HYPERVISOR CALLS

J-5

$00:$02 – Get Default Drive (SD card
Partition)
This call returns the default drive (SD card partition) number in the A register.

$00:$04 – Get Current Drive (SD card
Partition)
This call returns the current selected drive (SD card partition) in the A register.

$00:$06 – Select Drive (SD card Parti-
tion)
This call sets the currently selected drive (SD card partition) to the drive indicated in
the X register.

• X = Selected drive (SD card partition) number.

This call can produce the following error codes:

• $80 (128) – An attempt was made to select or operate on a disk or partition
that does not exist.

$00:$08 – NOT IMPLEMENTED Get Disk
Size
When implemented, this call will return information on the size of the currently selected
disk (SD card partition).

$00:$0A – NOT IMPLEMENTED Get Cur-
rent Working Directory
When implemented, this call will return information on the currently selected directory
or sub-directory.

J-6

$00:$0C – Change Working Directory
Changes the current working directory to the directory specified in the dirent structure.
The dirent structure can be populated by using any of the findfirst, findnext, findfile,
or readdir Hypervisor calls.

This call can produce the following error codes:

• $87 (135) – An attempt was made to operate on a normal file, where a directory
was expected.

$00:$0E – NOT IMPLEMENTED Create
Directory
When implemented, this call will allow the creation of new subdirectories.

$00:$10 – NOT IMPLEMENTED Remove
Directory
When implemented, ths call will allow the removal of a directory.

$00:$12 – Open Directory (opendir)
Open the current working directory.

On success, it returns the file descriptor of the opened directory in the A register.

This call can result in the following error codes:

• $07 (7) – A read timeout occurred.

• $08 (8) – An unspecified error occurred while handling a partition.

• $10 (16) – An invalid address was supplied to the Setup Transfer Area For Other
Calls function.

• $11 (17) – An illegal value was supplied to a Hypervisor call.

• $20 (32) – A read error occurred.

• $21 (33) – A write error occurred.

J-7

• $80 (128) – An attempt was made to select or operate on a disk or partition
that does not exist.

• $84 (132) – Too many files are open, and no free file descriptor could be ob-
tained for the requested operation.

$00:$14 – Read Next Directory Entry
(readdir)
$00:$16 – Close Directory (closedir)
$00:$18 – Open File (openfile)
$00:$1A – Read From a File (readfile)
$00:$1C – NOT IMPLEMENTED Write to
a File (writefile)
$00:$1E – NOT IMPLEMENTED Create
File (mkfile)
$00:$20 – Close a File (closefile)
$00:$22 – Close All Open Files
(closeall)
$00:$24 – NOT IMPLEMENTED Seek to
a Given Offset in a File (seekfile)

J-8

$00:$26 – NOT IMPLEMENTED Delete a
File (rmfile)
$00:$28 – NOT IMPLEMENTED Get In-
formation About a File (fstat)
$00:$2A – NOT IMPLEMENTED Rename
a File (rename)
$00:$2C – NOT IMPLEMENTED Set time
stamp of a file (filedate)
$00:$2E – Set the current filename
(setname)
Sets the current Hypervisor filename to the ASCIIZ string stored at $YYXX. The provided
address must be in the first 31KB of main memory. Addresses at $7F00 or above will
result in errors.

The filename indicates a file in the current working directory of the SD card’s FAT file
system. This call will not work with names of files that are stored on floppy disks or
floppy disk images.

$00:$30 – Find first matching file (find-
first)
$00:$32 – Find subsequent matching
file (findnext)

J-9

$00:$34 – Find matching file (one only)
(findfile)
$00:$36 – Load a File into Main Mem-
ory (loadfile)
On success, this call loads the file specified by the setname Hypervisor call into the
specified address in main (chip) memory. It is limited to files of 16MB size, and the
first 16MB of the address space. The load address will be $00ZZYYXX.

Addresses during loading will wrap around within the same 16MB region of memory,
i.e., the most significant address byte will not be incremented during loading.

$00:$3C – Change Working Directory
to Root Directory of Selected Partition
$00:$3E – Load a File into Attic Mem-
ory (loadfile_attic)
On success, this call loads the file specified by the setname Hypervisor call into the
specified address in the Attic RAM memory. It is limited to files of 16MB size, and the
first 16MB of the attic RAM address space. The load address will be $08ZZYYXX.

Addresses during loading will wrap around within the same 16MB region of memory,
i.e., the most significant address byte will not be incremented during loading.

DISK IMAGE MANAGEMENT

$00:$40 – Attach a D81 Disk Image to
Drive 0
$00:$42 – Detach All D81 Disk Images

J-10

$00:$44 – Write Enable All Currently
Attached D81 Disk Images
$00:$46 – Attach a D81 Disk Image to
Drive 1
TASK AND PROCESS MANAGEMENT

$00:$50 – NOT IMPLEMENTED Get Task
List
$00:$52 – NOT IMPLEMENTED Send
Message to Another Task
$00:$54 – NOT IMPLEMENTED Receive
Messages From Other Tasks
$00:$56 – NOT IMPLEMENTED Write
Into Memory of Another Task
$00:$58 – NOT IMPLEMENTED Read
From Memory of Another Task
$00:$60 – NOT IMPLEMENTED Termi-
nate Another Task

J-11

$00:$62 – NOT IMPLEMENTED Create
a Native MEGA65 Task
$00:$64 – NOT IMPLEMENTED Load
File Into Task
$00:$66 – NOT IMPLEMENTED Create
a C64-Mode Task
$00:$68 – NOT IMPLEMENTED Create
a C65-Mode Task
$00:$6A – NOT IMPLEMENTED Exit and
Switch to Another Task
$00:$6C – NOT IMPLEMENTED
Context-Switch to Another Task
$00:$6E – NOT IMPLEMENTED Exit This
Task
$00:$70 – Toggle Write Protection of
ROM Area
$00:$72 – Toggle 4510 vs 6502 Pro-
cessor Mode

J-12

$00:$74 – Get current 4510 memory
MAPping
Y = page where memory mapping is to be stored. Six bytes will be returned: Y must
be <= $7E.

• $00 - Low byte of MAPLO (lower 32KB RAM mapping)

• $01 - High byte of MAPLO (lower 32KB RAM mapping)

• $02 - Low byte of MAPHI (upper 32KB RAM mapping)

• $03 - High byte of MAPHI (upper 32KB RAM mapping)

• $04 - Megabyte offset for MAPLO (lower 32KB RAM mapping)

• $05 - Megabyte offset for MAPHI (upper 32KB RAM mapping)

$00:$76 – Set 4510 memory MAPping
This call performs the opposite of the Get 4510 memory MAPping, reading 6 bytes
from the memory page indicated by Y, and storing them into the current processor’s
mapping status. Y must be <= $7E.

$00:$7C – Write Character to Serial
Monitor/Matrix Mode Interface
$00:$7E – Reset MEGA65
$01:$00 – Enable Write Protection of
ROM Area
$01:$02 – Disable Write Protection of
ROM Area

J-13

SYSTEM PARTITION & FREEZING

$02:$00 – Read System Config Sector
Into Memory
$02:$02 – Write System Config Sector
From Memory
$02:$04 – Apply System Config Sector
Current Loaded Into Memory
$02:$06 – Set DMAgic Revision Based
On Loaded ROM
$02:$10 – Locate First Sector of
Freeze Slot
$02:$12 – Unfreeze From Freeze Slot
$02:$14 – Read Freeze Region List
$02:$16 – Get Number of Freeze Slots
$03:$XX – Write Character to Serial
Monitor/Matrix Mode Interface
SECURE MODE

J-14

$11:$XX – Request Enter Secure Mode
$12:$XX – Request Exit Secure Mode
$32:$XX – DEPRECATED Set Protected
Hardware Configuration
This call will be removed once the secure mode framework is more completely imple-
mented.

Until it is removed, this call allows a process to request the setting of the protected
hardware configuration to allow or restrict access to various sub-systems, including
the SD card storage system.

$3F:$XX – Freeze Self

J-15

J-16

APPENDIX K
Machine Language Monitor

• Introduction

• C65 ROM Standard Machine Lan-

guage Monitor

• Enhanced Machine Language Monitor

• MEGA65 Matrix Mode Monitor Interface

K-2

INTRODUCTION
Before we go any further, it is important to remember that the MEGA65 typically has
two separate machine language monitors: The one included in C65 ROMs, and the
one that is part of the Matrix Mode debug interface. It is also possible to replace the
standard C65 monitor in the ROM with the enhanced MEGA65 OpenROMs machine
language monitor, which corrects many bugs and adds many new features – including
support for all enhanced CPU instructions of the MEGA65. This chapter describes all
three of these machine language monitors.

C65 ROM STANDARD MACHINE
LANGUAGE MONITOR
The machine language monitor is a debugging tool for machine language programs.
It includes a mini-assembler, a disassembler and many useful commands. When the
program execution encounters the code 00 (zero) alias BRK, the default action of
the operating system is, to call the monitor. This features allows the debugging of
programs by setting breakpoints.

K-3

Table of C65 ROM Standard Monitor
Commands

C mnemonic description
A ASSEMBLE Assemble a line of 45GS02 code
C COMPARE Compare two sections of memory
D DISASSEMBLE Disassemble a line of 45GS02 code
F FILL Fill a section of memory with a value
G GO Start execution at specified address
H HUNT Find specified data in a section of memory
L LOAD Load a file from disk
M MEMORY Dump a section of memory
R REGISTERS Display the contents of the 45GS02 registers
S SAVE Save a section of memory to a disk file
T TRANSFER Transfer memory to another location
V VERIFY Compare a section of memory with a disk file
X EXIT Exit Monitor mode
. <period> Assembles a line of 45GS02 code
> <greater> Modifies memory
; <semicolon> Modifies register contents
@ <at sign> Disk command, directory or status
$ <hex> Display hex, decimal, octal, and binary value
+ <decimal> Display hex, decimal, octal, and binary value
& <octal> Display hex, decimal, octal, and binary value
% <binary> Display hex, decimal, octal, and binary value

Calling the Monitor
To enter the monitor from BASIC, type: MONITOR

The monitor responds with a display of register contents and waits for a command:

MONITOR

PC SR AC XR YR ZR BP SP

; 000000 00 00 00 00 00 00 F8

K-4

addresses and numbers
All addresses and numbers must be numbers of base 16 (hex), 10 (decimal), 8 (octal)
or 2 (dual). Symbolic names like CHROUT or arithmetics like $1000+5 are not allowed.

It is an old tradition since the first monitor of the Commodore PET, that the default base
is 16. In fact the old monitors would not accept any other numbers, than hexadecimal
(short hex). This may confuse beginners, because a statement like

LDA #10

loads the decimal value 16 into the accumulator. Later monitors, like that of the Com-
modore 128 accepted numbers of base 16,10,8 and 2 - like this one, but still used
16 (hex) as default. Additionally the MEGA65 monitor allows character entry, which
uses the PETSCII value of the character. Following prefixes can be used to specify the
base of the following number:

base name prefix digits characters example
16 hexadecimal 0123456789ABCDEF 100
16 hexadecimal $ 0123456789ABCDEF $100
10 decimal + 0123456789 +256
8 octal & 01234567 &400
2 dual % 01 %100000000

character ' all 'A

D : DISASSEMBLE
Format: D [from [,to]]

Usage: Prints a machine language listing for the specified address range as-
suming, that it contains code. If only one argument is present, the dis-
assembler disassembles the next 21 bytes. If no argument is given, the
disassembly continues with the last used disassemble address. The con-
tents are printed as hex values.

Remarks: The rows start with the dot character ’.’. This enables direct full screen
editing of the disassembly. Typing return in any row will assemble the
changed command of the cursor row back to memory, if writable RAM is
there. See monitor command ..

The disassembler knows the instruction set of the C65 CPU GS6502.
Enhanced instructions from the 45GS02 CPU of the MEGA65 are not
recognised.

Example: Using D

K-5

M : MEMORY
Format: M [from [,to]]

Usage: Prints a memory dump for the given address range. The dump displays
memory contents, organised in rows of 16 consecutive addresses starting
with the address, given as 1st. argument. The dump continues until a
row has been printed, containing the value of the address given as 2nd.
argument. If no 2nd. argument is present, the dump displays a full page
of 256 bytes in 16 rows. The contents are printed as 16 byte values in
hex, followed by the character representation.

Remarks: The rows start with the character ’>’. This enables direct full screen edit-
ing of the dump. Typing return in any row will write the changed values
of the cursor row back to memory, if writable RAM is there. See monitor
command >.

Example: Using M

K-6

ENHANCED MACHINE LANGUAGE
MONITOR
This machine language monitor is a new development for the MEGA65. It is available
both in the 92xxxx ROMs and in the OpenROMs.

The enhanced monitor has following additional features:

Adddresses:
All addresses are used as 32-bit (4 bytes) addresses. This allows access to the
whole MEGA65 address range, which needs 28-bit. This is especially useful for
the access to the 8MB RAM blocks called attic RAM at $8000000 (builtin) and
cellar RAM at $8800000 (optional). Setting bit 31 of an address to 1 gives
access to a special (banked) configuration. In this case the I/O area at $D000
and the ROM area $6000 - $7FFF (monitor ROM) and $E000 - $FFFF (kernal
ROM) overlay the current bank.

Commands:
The additional command B displays character bitmaps.

Disk access:
The disk command character knows two more functions: U1 for reading a se-
quence of disk blocks to memory and U2 for writing a memory range to disk
blocks. This enables disk disk editing, for example modifying directory entries

K-7

or can be even used to backup whole floppy contents or disk images. The attic
RAM is large enough to hold the contents of 8 complete 1581 floppies.

Disassembler:
The disassembler can decode all additional address modes, like the 32-bit in-
direct mode [$nn], Z and the compound instructions involving the use of the
32-bit Q register.

Register:
The register displays the full 16-bit stack pointer and the base page register
and accepts new settings for ithem.

Table of MEGA65 Enhanced Monitor
Commands

C mnemonic description
A ASSEMBLE Assemble a line of 45GS02 code
B BITMAPS Display 8x8 bitmaps (characters)
C COMPARE Compare two sections of memory
D DISASSEMBLE Disassemble a line of 45GS02 code
F FILL Fill a section of memory with a value
G GO Start execution at specified address
H HUNT Find specified data in a section of memory
L LOAD Load a file from disk
M MEMORY Dump a section of memory
R REGISTERS Display the contents of the 45GS02 registers
S SAVE Save a section of memory to a disk file
T TRANSFER Transfer memory to another location
V VERIFY Compare a section of memory with a disk file
X EXIT Exit Monitor mode
. <period> Assembles a line of 45GS02 code
> <greater> Modifies memory
; <semicolon> Modifies register contents
@ <at sign> Disk command, directory or status
$ <hex> Display hex, decimal, octal, and binary value
+ <decimal> Display hex, decimal, octal, and binary value
& <octal> Display hex, decimal, octal, and binary value
% <binary> Display hex, decimal, octal, and binary value

K-8

Calling the Monitor
To enter the monitor from BASIC, type: MONITOR

The monitor responds with a display of register contents and waits for a command:

MONITOR

BS MONITOR COMMANDS:ABCDFGHJMRTX@.>;?$+&%'LSV

PC SR AC XR YR ZR BP SP NVEBDIZC

; 00CFA4 35 00 00 00 00 00 01F8 --11-1-1

addresses and numbers
All addresses and numbers must be numbers of base 16 (hex), 10 (decimal), 8 (octal)
or 2 (dual). Symbolic names like CHROUT or arithmetics like $1000+5 are not allowed.

It is an old tradition since the first monitor of the Commodore PET, that the default base
is 16. In fact the old monitors would not accept any other numbers, than hexadecimal
(short hex). This may confuse beginners, because a statement like

LDA #10

loads the decimal value 16 into the accumulator. Later monitors, like that of the Com-
modore 128 accepted numbers of base 16,10,8 and 2 - like this one, but still used
16 (hex) as default. Additionally the MEGA65 monitor allows character entry, which
uses the PETSCII value of the character. Following prefixes can be used to specify the
base of the following number:

base name prefix digits characters example
16 hexadecimal 0123456789ABCDEF 100
16 hexadecimal $ 0123456789ABCDEF $100
10 decimal + 0123456789 +256
8 octal & 01234567 &400
2 dual % 01 %100000000

character ' all 'A

Assembler
The monitor has a builtin mini-assembler, which can be used to write machine lan-
guage code using the standard mnemonics like LDA or STA, etc. The most important
difference to a full assembler is the necessity to use numeric constants as operands for

K-9

the instructions only. So you cannot use named variables, labels or subroutine names.
A call to the kernal routine, which prints a character to the screen would be written JSR
CHROUT in a full assembler, while the mini-assembler needs the syntax JSR FFD2 (you
need to know or lookup the addresses). There is the convenience for branch instruc-
tions, that the target address is written to the operand field and the mini-assembler
computes the relative address, that is inserted in the code.

The assembler knows all instructions and address modes of the MEGA65CPU 45GS02
(except the instructions using the Q register, these will be added later). So an instruc-
tion like LDA [TXTPTR],Z will be assembled as loading the accumulator using a 32-bit
pointer at the addresses TXTPTR, TXTPTR+1, TXTPTR+2, TXTPTR+3.

A : ASSEMBLE
Format: A address mnemonic operand

Usage: The mini assembler allows entry of machine language instructions using
easy to remember mnemonics instead of opcodes. The operand may be
entered as hex, decimal, binary or character. Branch targets are auto-
matically converted to relative distances. After each entered instruction,
the mini assembler generates the 1-3 byte long machine code, prints this
code along with the instruction and advances the program counter. A
new line is generated with the command A and the new value of the
program counter printed. This eases the fast entry of instructions. The
assembly input mode is stopped by pressing RETURN only. Any line of the
entered code or a line in disassembly format can be changed by moving
the cursor into that line and changing the desired element, for example
the mnemonic or the operand. Listed hex values before the mnemonic
are ignored.

If the monitor shall be reentered after executing the code, the last in-
struction must be a BRK instruction and the program must be called with
I/O and monitor ROM active. This is done by setting the bit 31 of the
execution address. If the program was entered in bank 0 on address
1500, it should be started with: G 80001500.

If the entered code is a subroutine, it must end with a RTS instruction.

Remarks: The assembler recognises all 45GS02 instructions of the MEGA65, ex-
cept the instructions, that use the Q register. These instructions can be
entered by typing the NEG NEG prefix explicit. E.g. instead of LDQ
$1234, entering the 3 instructions (on 3 different rows) NEG NEG LDA
$1234 is assembled to the equivalent code.

K-10

B : BITMAPS
Format: B display character bitmaps

Usage: B address

Remarks: The B command displays the contents of memory cells bitwise by printing
an asterisk for 1 and a dor for 0. The special arrangement of character
data with 8 bytes forming one character cell, is considered. 8 characters
are displayed for each call.

There are three ROM character sets builtin in the 92xxxx ROMs:

FONT A : $029000 : ASCII [\]^_ {|}~ included

FONT B : $03D000 : serif version of A

FONT C : $02D000 : original C64 font

K-11

MEGA65 MATRIX MODE MONITOR
INTERFACE
This monitor is different to the other two: It is part of the MEGA65 system itself, and
runs concurrently with MEGA65’s processor. That is, you can view and modify the
memory the MEGA65, while a program is running.

This works using dedicated hardware in the MEGA65 design, that implements a little
helper processor that runs this monitor interface, and has a special access mechanism
to the memory and processor of the MEGA65.

In comparison with the ROM-based monitors that execute on the MEGA65’s primary
processor, the Matrix Mode monitor has several advantages and disadvantages:

• It can be used while a program is running.

• It can be used, even if the ROM area is being used for program code or data,
instead of containing a standard C65 or MEGA65 ROM.

K-12

• It can be accessed via the serial debug interface, via the JB1 connector.

• It can be instructed to stop the processor as soon as the program counter (PC)
register of the main processor reaches a user specified address. That is, it sup-
ports a (single) hardware breakpoint.

• It can be instructed to stop the processor whenever a specified memory address
is written to. That is, it suppors a “write watch” on a single memory address.
The memory address is specified as a full 28-bit address, allowing it to detect
memory writes via any means. Note that DMA operations will complete, before
the watch point takes effect.

• It can be instructed to stop the processor whenever specific CPU flags are set
or cleared, which can also be used to support debugging of programs.

• On somemodels of the MEGA65, the integrated ROM of the monitor processor is
very small, which means that functionality may be limited. This is why, for exam-
ple, there is no “assemble” command for this monitor. This may be corrected in
future core updates for MEGA65 models that have capacity for a larger monitor
processor ROM.

K-13

Table of Matrix Mode Monitor Com-
mands

C mnemonic description
HYPERTRAP Enable/disable CPU hypervisor traps
+ UARTDIVISOR Set UART bitrate divisor
? HELP help
@ CPUMEM (show memory from CPU context)
B BREAKPOINT Set/clear CPU execution break point
D DISASSEMBLE Disassemble memory
E FLAGWATCH Set/clear CPU flags watch point
F FILL Fill memory with a value
G SETPC Set CPU program counter
H HELP help
I INTERRUPTS Enable/disable CPU interrupts
J DEBUGMON Various debug functions for the monitor itself
L LOADMEMORY Load data into memory
M MEMORY Show memory contents
R REGISTERS show registers
S SETMEMORY Set memory contents
T TRACE set CPU trace/run mode
W MEMORYWATCH Set/clear memory write watch point
Z CPUHISTORY CPU history

Calling the Monitor
To enter or exit the monitor hold down ` and press TAB . You will see an animation
of green characters raining down from the top of the screen, and then be presented
with a simple text terminal interface which is transparent, so that you can see the
screen output of your running program at the same time.

: Hypervisor trap enable/disable
Format: # Enable or disable Hypervisor Traps

Usage: #[0|1]

Remarks: If the argument is 1, then Hypervisor traps are enabled, otherwise they
are disabled.

K-14

It is not confirmed if this command is currently functional.

+ : Set Serial Interface UART Divisor
Format: + Set Serial Interface UART Divisor

Usage: + divisor

Remarks: Sets the divisor for the serial monitor interface. This allows changing the
baud rate of the serial monitor interface from the default 2,000,000 bits
per second. The baud rate will be equal to 40, 500, 000÷ (divisor − 1).
This affects only the serial UART interface, and does not affect accessing
this monitor via the Matrix Mode composited display.

For example, to slow the serial monitor interface down to 19,200 bits per
second, the divisor would need to be 40, 500, 000÷ (19, 200− 1) = 2108.
The + command then requires that you convert this value to hexadecimal,
thus the command would be +83c.

Note that this command does no sanity checking of the provided value.
If you accidentally provide an incorrect value for your needs, you can
recover from this situation by activating the Matrix Mode interface by

holding down ` and tapping TAB , and entering the appropriate
command to correct the divisor, e.g., +14 to return to the default of
2,000,000 bits per second.

You must then exit the Matrix Mode again by repeating the ` + TAB

key combination, before the serial UART interface will become active
again. This is because the Matrix Mode disables the serial UART interface
when active.

@ : CPUMEMORY
Format: @ [address]

Usage: Prints a memory dump for the given 16-bit address, as interpretted by
the current CPU memory mapping. If you wish to inspect the contents
of memory anywhere in the 28-bit address space, use the M command
instead.

The dump displays memory contents, organised in rows of 16 consecutive
addresses starting with the address. The dump displays a full page of

K-15

256 bytes in 16 rows. The contents are printed as 16 byte values in hex,
followed by the character representation.

Remarks: If not address is provided, it will show the next 256 bytes.

? or H : HELP
Format: ? or h

Usage: Displays a (very) brief message identifying the monitor. On some models
of the MEGA65 that have more memory available to the monitor proces-
sor, this command may display information about each of the available
commands.

B : BREAKPOINT
Format: b [address]

Usage: Sets or clears the hardware breakpoint. If no address is provided, then
the breakpoint will be disabled. Otherwise the breakpoint is set to the
provided 16-bit address.

Whenever the program counter (PC) register of the MEGA65’s processor
equals the value provided to this command, the processor will halt, and
the Matrix Mode monitor interface will display the last instruction exe-
cuted and current register values to alert the user to this event. It does
not activate the Matrix Mode display when this occurs. It is normally ex-
pected that Matrix Mode will either already be active, or that the user is
interacting via the serial interface.

D : DISASSEMBLE
Format: <d|D> [address]

Usage: Disassembles and displays the instruction stored at the indicated 28-bit
address.

To disassemble instructions from the CPU’s current memory context, tak-
ing into account current memory banking, prefix the address with 777,
e.g., d777080D would disassemble the instruction at $080D, as currently
visible to the MEGA65’s processor.

K-16

Use D instead of d to disassemble 16 instructions at a time, instead of
just one.

E : FLAGWATCH
Format: e [value]

Usage: Sets or clears the CPU flag watch point: If no argument is provided, the
flag watch point is disabled. If a value is provided, it is assumed to be
a 16-bit value, where the first two hexadecimal digits indicate the pro-
cessor flags that will trigger the watch point if they are set. The second
two hexadecimal digits indicate which processor flags will trigger the
watch point if they are clear. In this way any combination of processor
flag values can be monitored.

This command does not function correctly at the time of writing.

Example: To cause the watch point to trigger when the Negative Flag is asserted,
the command e8000 would be used.

F : FILL
Format: f [start] [end+1] [value]

Usage: Fills the indicated 28-bit address range with the indicated value.

Remarks: The end address should be one more than the last address that is desired
to be filled.

G : SETPC
Format: g address

Usage: Sets the Program Counter (PC) register of the MEGA65’s processor to
the supplied 16-bit address. If the processor is running at the time, ex-
ecution will immediately proceed from that address. If the processor is
halted at the time, e.g., due to the use of the
tt t1 command, the processor remains halted, but with the Program
Counter set to the indicated address, ready for when the processor is
again allowed to run.

K-17

I : INTERRUPTS
Format: i[0|1]

Usage: Enables or disables interrupts on the MEGA65’s processor. Disabling
interrupts can be helpful when single-stepping through a program, as
otherwise you will tend to end up only stepping through the interrupt
handler code, because the interrupts will happen more frequently than
the steps through the code.

Remarks: This command is known to have problems, and may not currently function.

J : DEBUGMON
Format: j [value]

Usage: Display, and optionally set, internal signals of the matrix mode monitor
interface.

L : LOADMEMORY
Format: l <start addr> <end addr + 1>

Usage: Fast-load a block of memory via the serial monitor interface. Immediately
after sending this command, the bytes of memory to be loaded should
be sent to the serial monitor interface. The bytes are read as-is, and thus
should be provided as natural bytes, not encoded in hexadecimal. This
allows loading data at approximately 200KB per second at the default
serial baud rate of 2,000,000 bits per second.

M : MEMORY
Format: <m|M> [address]

Usage: Prints a memory dump for the given 28-bit address. If you wish to inspect
the contents of memory as currently seen by the processor’s current bank-
ing configuration, use the command instead.

The dump displays memory contents, organised in rows of 16 consecutive
addresses starting with the address. The dump displays a full page of
256 bytes in 16 rows. The contents are printed as 16 byte values in hex,
followed by the character representation.

K-18

Remarks: If not address is provided, it will show the next 256 bytes.

R : REGISTERS
Format: r

Usage: Displays the current value of various processor registers and flags, as well
as a disassembly of the most recently executed instruction.

S : SETMEMORY
Format: s addr <value ...>

Usage: Sets the contents of the indicated memory location to the supplied value.
If more than one space-separated value is provided, then multiple con-
secutive memory locations will be set.

This command uses 28-bit addresses, and therefore ignores the current
selected memory banking configuration.

T : TRACE
Format: t<0|1|c>

Usage: Selects the trace or run mode of the processor: t0 means that the pro-
cessor runs freely, t1 halts the processor, and tc runs the processor in
continuous-trace mode, where it displays each instruction and the reg-
ister values immediately following its execution, as though t1 had been
selected, and the user were to then immediately press return or enter to
request the next instruction to be executed.

If t1 is selected, pressing enter or return in the Matrix Mode monitor will
cause the next instruction to be executed.

The t0 command is also used following the triggering of a break-point
or watch-point, to allow the processor to resume.

W : WATCHPOINT
Format: w [address]

K-19

Usage: Sets or clears the hardware watch-point. If no address is provided, then
the watch-point will be disabled. Otherwise the watch-point is set to the
provided 28-bit address.

Whenever the MEGA65’s processor writes to the address provided to this
command, the processor will halt, and the Matrix Mode monitor interface
will display the last instruction executed and current register values to
alert the user to this event. It does not activate the Matrix Mode display
when this occurs. It is normally expected that Matrix Mode will either
already be active, or that the user is interacting via the serial interface.

Z : CPUHISTORY
Format: z [address]

Usage: Displays information about the instructions recently executed by the
MEGA65’s processor.

Remarks: This command is suspected to not be correctly operational at the time of
writing.

K-20

APPENDIX L
F018-Compatible Direct

Memory Access (DMA)
Controller

• F018A/B DMA Jobs

• MEGA65 Enhanced DMA Jobs

• Texture Scaling and Line Drawing

• Audio DMA

• F018 “DMAgic” DMA Controller

• MEGA65 DMA Controller Extensions

• Unimplemented Functionality

L-2

The MEGA65 includes an F018/F018A backward-compatible DMA controller. Unlike
in theC65, where the DMA controller exists as a separate chip, it is part of the 45GS02
processor in the MEGA65. However, as the use of the DMA controller is a logically
separate topic, it is documented separately in this appendix.

The MEGA65’s DMA controller provides several important improvements over the
F018/F018A DMAgic chips of the C65:

• Speed The MEGA65 performs DMA operations at 40MHz, allowing filling 40MB
or copying 20MB per second. For example, it is possible to copy a complete 8KB
C64-style bitmap display in about 200 micro-seconds, equivalent to less than
four raster lines!

• Large Memory Access The MEGA65’s DMA controller allows access to all
256MB of address space.

• Texture Copying Support The MEGA65’s DMA controller can do fractional ad-
dress calculations to support hardware texture scaling, as well as address strid-
ing, to make it possible in principle to simultaneously scale-and-draw a texture
frommemory to the screen. This would be useful, should anyone be crazy enough
to try to implement a Wolfenstein or Doom style-game on the MEGA65.

• Transparency/Mask Value Support The MEGA65’s DMA controller can be told
to ignore a special value when copying memory, leaving the destination memory
contents unchanged. This allows masking of transparent regions when perform-
ing a DMA copy, which considerably simplifies blitting of graphics shapes.

• Per-Job Option List A number of options can be configured for each job in a
chained list of DMA jobs, for example, selecting F018 or F018B mode, changing
the transparency value, fractional address stepping or the source or destination
memory region.

• Background Audio DMA The MEGA65 includes background audio DMA capa-
bilities similar to the Amiga™series of computers. Key differences are that the
MEGA65 can use either 8 or 16-bit samples, supports very high sample rates
up to approximately 1 MHz, has 256 volume settings per channel, and no inter-
channel modulation.

F018A/B DMA JOBS
To execute a DMA job using the F018 series of DMA controllers, you must construct
the list of DMA jobs in memory, and then write the address of this list into the DMA ad-
dress registers. The DMA job will execute when you write to the ADDRLSBTRIG register
($D700). For this reason you must write the MSB and bank number of the DMA list inti

L-3

$D701 and $D702 first, and the LSB only after having set these other two registers. If
you wish to execute multiple DMA jobs using the same list structure in memory, you can
simply write to ADDRLSBTRIG again after updating the list contents – provided that no
other program has modified the contents of $D701 or $D702. Note that BASIC 65
uses the DMA controller to scroll the screen, so it is usually safest to always write to all
three registers.

When ADDRLSBTRIG has been written to, the DMA job completes immediately. Unlike
on the C65, the DMA controller is part of the processor of the MEGA65. This means
that the processor stops trying to execute instructions or fetching audio samples for
DMA audio playback until the DMA job has completed. It also means that, unlike
on the C65, DMA jobs cannot be interrupted. If your program has sensitive timing
requirements, you may need to break larger DMA jobs into several smaller jobs. This
is somewhat mitigated by the high speed of the MEGA65’s DMA, which is able to fill
memory at 40.5MB per second and copy memory at 20.25MB per second, compared
with circa 3.5MB and 1.7MB per second on a C65. This allows larger DMA jobs to
be executed, without needing to worry about the impact on real-time elements of a
program. For example, it is possible to fill an 80 column 50 row text screen using the
MEGA65’s DMA controller in just 200 microseconds.

F018 DMA Job List Format
The MEGA65’s DMA controller supports the two different DMA job list formats used by
the original F018 part that was used in the earlier C65 prototypes (upto Revision 2B)
and the F018B and later revisions used in the Revision 3 – 5 C65 prototypes. The main
difference is the addition of a second command byte, as the following tables show:

It is important to know which style the DMA controller is expecting. The MEGA65’s
Hypervisor sets the mode based on the detected version of C65 ROM, if one is running.
If it is an older one, then the F018 style is expected, otherwise the newer F018B style
is expected. You can check which style has been selected by querying bit 0 of $D703:
If it is a 1, then the newer F018B 12 byte list format is expected. If it is a 0, then the
older F018 11 byte list format is expected. The expected style can be set by writing
to this register.

Unless you are writing software that must also run on a C65 prototype, you should
most probably use the MEGA65’s Enhanced DMA Jobs, where the list format is ex-
plicitly specified in the list itself. As the Enhanced DMA Jobs are an extension of the
F018/F018B DMA jobs, you should still read the following, unless you are already
familiar with the behaviour of the F018 DMA controller.

L-4

F018 11 byte DMA List Structure
OffsetContents
$00 Command LSB
$01 Count LSB
$02 Count MSB
$03 Source Address LSB
$04 Source Address MSB
$05 Source Address BANK and FLAGS
$06 Destination Address LSB
$07 Destination Address MSB
$08 Destination Address BANK and FLAGS
$09 Modulo LSB
$0a Modulo MSB

* The Command MSB is $00 when using this list format.

F018B 12 byte DMA List Structure
OffsetContents
$00 Command LSB
$01 Count LSB
$02 Count MSB
$03 Source Address LSB
$04 Source Address MSB
$05 Source Address BANK and FLAGS
$06 Destination Address LSB
$07 Destination Address MSB
$08 Destination Address BANK and FLAGS
$09 Command MSB
$0a Modulo LSB / Mode
$0b Modulo MSB / Mode

The structure of the command word is as follows:

L-5

Bit(s) Contents
0 – 1 DMA Operation Type
2 Chain (i.e., another DMA list follows)
3 Yield to interrupts
4 MINTERM -SA,-DA bit
5 MINTERM -SA,DA bit
6 MINTERM SA,-DA bit
7 MINTERM SA,DA bit

8 – 9 Addressing mode of source
10 – 11Addressing mode of destination
12 – 15RESESRVED. Always set to 0’s

The command field take the following four values:

Value Contents
%00 (0)Copy
%01 (1)Mix (via MINTERMs)
%10 (2)Swap
%11 (3)Fill
* Only Copy and Fill are implemented at the time of writing.

The addressing mode fields take the following four values:

Value Contents
%00 (0)Linear (normal) addressing
%01 (1)Modulo (rectangular) addressing
%10 (2)Hold (constant address)
%11 (3)XY MOD (bitmap rectangular) addressing
* Only Linear, Modulo and Hold are implemented at the time of writing.

The BANK and FLAGS field for the source address allow selection of addresses within
a 1MB address space. To access memory beyond the first 1MB, it is necessary to use
an Enhanced DMA Job with the appropriate option bytes to select the source and/or
destination MB of memory. The BANK and FLAGS field has the following structure:

Bit(s)Contents
0 – 3Memory BANK within the selected MB
4 HOLD, i.e., do not change the address
5 MODULO, i.e., apply the MODULO field to wrap-around within a limited memory space
6 DIRECTION. If set, then the address is decremented instead of incremented.
7 I/O. If set, then I/O registers are visible during the DMA controller at $D000 – $DFFF.

L-6

Performing Simple DMA Operations
For information on using the DMA controller from BASIC 65, refer to the DMA BASIC
command in Chapter/Appendix B on page B-63.

To use the DMA controller from assembly language, set up a data structure with the
DMA list, and then set $D702 – $D700 to the address of the list. For example, to clear
the screen in C65-mode by filling it with spaces, the following routine could be used:

LDA #$00 ; DMA list exists in BANK 0

STA $D702

LDA #>dmalist ; Set MSB of DMA list address

STA $D701

LDA #<dmalist ; Set LSB of DMA list address, and execute DMA

STA $D700

RTS

dmalist:

.byte $03 ; Command low byte: FILL

.word 2000 ; Count: 80x25 = 2000 bytes

.word $0020 ; Fill with value $20

.byte $00 ; Source bank (ignored with FILL operation)

.word $0800 ; Destination address where screen lives

.byte $00 ; Screen is in bank 0

.byte $00 ; Command high byte

.word $0000 ; Modulo (ignored due to selected commmand)

It is also possible to execute more than one DMA job at the same time, by setting the
CHAIN bit in the low byte of the command word. For example to clear the screen as
above, and also clear the colour RAM for the screen, you could use something like:

L-7

LDA #$00 ; DMA list exists in BANK 0

STA $D702

LDA #>dmalist ; Set MSB of DMA list address

STA $D701

LDA #<dmalist ; Set LSB of DMA list address, and execute DMA

STA $D700

RTS

dmalist:

.byte $04 ; Command low byte: FILL + CHAIN

.word 2000 ; Count: 80x25 = 2000 bytes

.word $0020 ; Fill with value $20

.byte $00 ; Source bank (ignored with FILL operation)

.word $0800 ; Destination address where screen lives

.byte $00 ; Screen is in bank 0

.byte $00 ; Command high byte

.word $0000 ; Modulo (ignored due to selected commmand)

; Second DMA job immediately follows the first

.byte $03 ; Command low byte: FILL

.word 2000 ; Count: 80x25 = 2000 bytes

.word $0001 ; Fill with value $01 = white

.byte $00 ; Source bank (ignored with FILL operation)

.word $F800 ; Destination address where colour RAM lives

.byte $01 ; colour RAM is in bank 1 ($1F800-$1FFFF)

.byte $00 ; Command high byte

.word $0000 ; Modulo (ignored due to selected commmand)

Copying memory is very similar to filling memory, except that the command low byte
must be modified, and the source address field must be correctly initialised. For ex-
ample, to copy the character set from where it lives in the ROM at $2D000 – $2DFFF
to $5000, you could use something like:

L-8

LDA #$00 ; DMA list exists in BANK 0

STA $D702

LDA #>dmalist ; Set MSB of DMA list address

STA $D701

LDA #<dmalist ; Set LSB of DMA list address, and execute DMA

STA $D700

RTS

dmalist:

.byte $00 ; Command low byte: COPY

.word $1000 ; Count: 4KB = 4096

.word $D000 ; Copy from $xD000

.byte $02 ; Source bank = $02 for $2xxxx

.word $5000 ; Destination address where screen lives

.byte $00 ; Screen is in bank 0

.byte $00 ; Command high byte

.word $0000 ; Modulo (ignored due to selected commmand)

It is also possible to perform a DMA operation from BASIC 2 in C64 mode by POKEing
the necessary values, after first making sure that MEGA65 or C65 I/O mode has been
selected by writing the appropriate values to $D02F (53295). For example, to clear
the screen in C64 BASIC 2 using the DMA controller, you could use something like:

10 rem enable mega65 I/O

20 poke53295,asc("g"):poke53295,asc("s")

30 rem dma list in data statements

40 data 3: rem command lsb = fill

50 data 232,3 : rem screen is 1000 bytes = 3*256+232

60 data 32,0: rem fill with space = 32

70 data 0: rem source bank (unused for fill)

80 data 0,4: rem screen address = 1024 = 4*256

90 data 0: rem screen lives in bank 0

100 data 0: rem command high byte

110 data 0,0: rem modulo (unused in this job)

120 rem put dma list at $c000 = 49152

130 fori=0to11:reada:poke49152+i,a:next

140 rem execute job

150 poke55042,0: rem dma list is in bank 0

160 poke55041,192: rem dma list is in $c0xx

170 poke55040,0: rem dma list is in $xx00, and execute

L-9

While this is rather cumbersome to do each time, if you wanted to clear the screen
again, all you would need to do would be to POKE 55040,0 again, assuming that the
DMA list and DMA controller registers had not been modified since the previous time
the DMA job had been run.

The HOLD, I/O and other options can also be used to create interesting effects. For
example, to write a new value to the screen background colour very quickly, you could
copy a region of memory to $D021, with the I/O flag set to make the I/O register
visible for writing in the DMA job, and the HOLD flag set, so that the same address gets
written to repeatedly. This will write to the background colour at a rate of 20.5MHz,
which is almost as fast as the video pixel clock (27MHz). Thus we can change the
colour almost every pixel.

With a little care, we can make this routine such that it takes exactly one raster-line to
run, and thus draw vertical raster bars, or to create a kind of frankenstein video mode
that uses a linear memory layout – at the cost of consuming all of the processor’s time
during the active part of the display.

The following example does this to draw vertical raster bars on the screen. This pro-
gram assumes that the MEGA65 is set to PAL. For NTSC, the size of the DMA transfer
would need to be decreased a little. The other thing to note with this program, is that
it uses MEGA65 Enhanced DMA Job option $81 to set the destination megabyte in
memory to $FFxxxxx, and the bank is set to $D, and the destination address to $0021,
to form the complete address $FFD0021. This is the true location of the VIC-IV’s
border colour register. The program is written using ACME-compatible syntax.

L-10

basicheader:

;; 2020 SYS 2061

!word $80a,2020

!byte $9e,$32,$30,$36,$31,0,0,0

;; Actual code begining at $080d = 2061

main:

sei

lda #$47 ; enable MEGA65 I/O

sta $D02f

lda #$53

sta $d02f

lda #65 ; Set CPU speed to fast

sta 0

lda #0 ; disable screen to show only the border

sta $d011

lda $d012 ; Wait until start of the next raster

raster_sync: ; before beginning loop for horizontal alignment

cmp $d012

beq raster_sync

;; The following loop takes exactly one raster line at 40.5MHz in PAL

loop:

jsr triggerdma

jmp loop

triggerdma:

lda #0 ; make sure F018 list format

sta $d703

lda #0 ; dma list bank

sta $d702

lda #>rasterdmalist

sta $d701

lda #<rasterdmalist

sta $d705

rts

L-11

rasterdmalist:

!byte $81,$ff,$00

!byte $00 ; COPY

!word 619 ; DMA transfer is 619 bytes long

!word rastercolours ; source address

!byte $00 ; source bank

!word $0020 ; destination address

!byte $1d ; destination bank + HOLD

;; unused modulo field

!word $0000

rastercolours:

!byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0

!byte 0,0,0,11,11,11,12,12,12,15,15,15,1,1,1,15,15,15,12,12,12,11,11,11,0,0,0

!byte 0,0,0,6,6,6,4,4,4,14,14,14,3,3,3,1,1,1,3,3,3,14,14,14,4,4,4,6,6,6,0,0,0

!byte 0,0,0,11,11,11,12,12,12,15,15,15,1,1,1,15,15,15,12,12,12,11,11,11,0,0,0

!byte 0,0,0,6,6,6,4,4,4,14,14,14,3,3,3,1,1,1,3,3,3,14,14,14,4,4,4,6,6,6,0,0,0

!byte 0,0,0,11,11,11,12,12,12,15,15,15,1,1,1,15,15,15,12,12,12,11,11,11,0,0,0

!byte 0,0,0,6,6,6,4,4,4,14,14,14,3,3,3,1,1,1,3,3,3,14,14,14,4,4,4,6,6,6,0,0,0

!byte 0,0,0,11,11,11,12,12,12,15,15,15,1,1,1,15,15,15,12,12,12,11,11,11,0,0,0

!byte 0,0,0,6,6,6,4,4,4,14,14,14,3,3,3,1,1,1,3,3,3,14,14,14,4,4,4,6,6,6,0,0,0

!byte 0,0,0,11,11,11,12,12,12,15,15,15,1,1,1,15,15,15,12,12,12,11,11,11,0,0,0

!byte 0,0,0,6,6,6,4,4,4,14,14,14,3,3,3,1,1,1,3,3,3,14,14,14,4,4,4,6,6,6,0,0,0

!byte 0,0,0,11,11,11,12,12,12,15,15,15,1,1,1,15,15,15,12,12,12,11,11,11,0,0,0

!byte 0,0,0,6,6,6,4,4,4,14,14,14,3,3,3,1,1,1,3,3,3,14,14,14,4,4,4,6,6,6,0,0,0

!byte 0,0,0,11,11,11,12,12,12,15,15,15,1,1,1,15,15,15,12,12,12,11,11,11,0,0,0

!byte 0,0,0,6,6,6,4,4,4,14,14,14,3,3,3,1,1,1,3,3,3,14,14,14,4,4,4,6,6,6,0,0,0

!byte 0,0,0,11,11,11,12,12,12,15,15,15,1,1,1,15,15,15,12,12,12,11,11,11,0,0,0

!byte 0,0,0,6,6,6,4,4,4,14,14,14,3,3,3,1,1,1,3,3,3,14,14,14,4,4,4,6,6,6,0,0,0

!byte 0,0,0,11,11,11,12,12,12,15,15,15,1,1,1,15,15,15,12,12,12,11,11,11,0,0,0

!byte 0,0,0,6,6,6,4,4,4,14,14,14,3,3,3,1,1,1,3,3,3,14,14,14,4,4,4,6,6,6,0,0,0

MEGA65 ENHANCED DMA JOBS
The MEGA65’s implementation of the DMAgic supports significantly enhanced DMA
jobs. An enhanced DMA job is indicated by writing the low byte of the DMA list address
to $D705 instead of to $D700. The MEGA65 will then look for one or more job option
tokens at the start of the DMA list. Those tokens will be interpretted, before executing
the DMA job which immediately follows the end of job options token ($00).

L-12

Job option tokens that take an argument have the most-significant bit set, and al-
ways take a 1 byte option. Job option tokens that take no argument have the most-
significant-bit clear. Unsupported job option tokens are simply ignored. This allows for
future revisions of the DMAgic to add support for additional options, without breaking
backward compatibility.

These options are also used to achieve advanced features, such as hardware texture
scaling at up to 20Mpixels per second, and hardware line drawing at up to 40Mpixels
per second. These advanced functions are implemented by allowing complex cal-
culations to be made to the source and/or destination address of DMA jobs as they
execute.

The list of valid job option tokens is:

L-13

$00End of job option list
$06Disable use of transparent value
$07Enable use of transparent value
$0AUse 11 byte F011A DMA list format
$0BUse 12 byte F011B DMA list format
$53Enable ‘Shallan Spiral’ Mode
$80Source address bits 20 – 27
$81Destination address bits 20 – 27
$82Source skip rate (256ths of bytes)
$83Source skip rate (whole bytes)
$84Destination skip rate (256ths of bytes)
$85Destination skip rate (whole bytes)
$86Transparent value (bytes with matching value are not written)
$87Set X column bytes (LSB) for line drawing destination address
$88Set X column bytes (MSB) for line drawing destination address
$89Set Y row bytes (LSB) for line drawing destination address
$8ASet Y row bytes (MSB) for line drawing destination address
$8BSlope (LSB) for line drawing destination address
$8CSlope (MSB) for line drawing destination address
$8DSlope accumulator initial fraction (LSB) for line drawing destination

address
$8ESlope accumulator initial fraction (MSB) for line drawing destination

address
$8F Line Drawing Mode enable and options for destination address (set

in argument byte): Bit 7 = enable line mode, Bit 6 = select X or Y
direction, Bit 5 = slope is negative.

$97Set X column bytes (LSB) for line drawing source address
$98Set X column bytes (MSB) for line drawing source address
$99Set Y row bytes (LSB) for line drawing source address
$9ASet Y row bytes (MSB) for line drawing source address
$9BSlope (LSB) for line drawing source address
$9CSlope (MSB) for line drawing source address
$9DSlope accumulator initial fraction (LSB) for line drawing source ad-

dress
$9ESlope accumulator initial fraction (MSB) for line drawing source ad-

dress
$9F Line Drawing Mode enable and options for source address (set in

argument byte): Bit 7 = enable line mode, Bit 6 = select X or Y
direction, Bit 5 = slope is negative.

L-14

TEXTURE SCALING AND LINE DRAWING
The DMAgic supports an advanced internal address calculator that allows it to draw
scaled textures and draw lines with arbitrary slopes on VIC-IV FCM video displays.

For texture scaling, the FCM screen must be arranged vertically, as shown below:

0

1

2

25

26

27

By lining the characters into vertical columns like this, advancing vertically by one pixel
adds a constant 8 bytes each time, as shown below:

L-15

$000

$008

$010

$018

$020

$028

$030

$038

$001

$008

$011

$019

$021

$029

$031

$039

$002

$00A

$012

$01A

$022

$02A

$032

$03A

$003

$00B

$013

$01B

$023

$02B

$033

$03B

$004

$00C

$014

$01C

$024

$02C

$034

$03C

$005

$00D

$015

$01D

$025

$02D

$035

$03D

$006

$00E

$016

$01E

$026

$02E

$036

$03E

$007

$00F

$017

$01F

$027

$02F

$037

$03F

$040

$048

$050

$058

$060

$068

$070

$078

$041

$048

$051

$059

$061

$069

$071

$079

$042

$04A

$052

$05A

$062

$06A

$072

$07A

$043

$04B

$053

$05B

$063

$06B

$073

$07B

$044

$04C

$054

$05C

$064

$06C

$074

$07C

$045

$04D

$055

$05D

$065

$06D

$075

$07D

$046

$04E

$056

$05E

$066

$06E

$076

$07E

$047

$04F

$057

$05F

$067

$06F

$077

$07F

$080 $081 $082 $083 $084 $085 $086 $087

$088

The source and destination skip rates also allow setting the scaling factors. A skip rate
of $0100 this corresponds to stepping $01.00 pixels. To use the vertically stacked
FCM layout as the target for copying vertical lines of textrures, then the destination
skip rate should be $0800, i.e., 8.0 bytes per pixel. This would copy a vertical line
of texture data without scaling. By setting the source stepping to < $0100 will cause
some pixels to be repeated, effectively zooming the texture in, while setting the source
stepping to > $0100 will cause some pixels to be skipped, effectively zooming the
texture out. The destination stepping does not ordinary need to be adjusted. Note
that the texture data must be stored with each vertical stripe stored contiguously, so
that this mode can be used.

For line drawing, the DMA controller needs to know the screen layout, specifically,
what number must be added to the address of a rightmost pixel in one column of FCM
characters in order to calculate the address of the pixel appearing immediately to its

L-16

right. Similarly, it must also know how much must be added to the address of a bottom
most pixel in one row of FCM characters in order to calculate the address of the pixel
appearing immediately below it. This allows for flexible screen layout options, and
arbitrary screen sizes. You must then also specify the slope of the line, and whether
the line has the X or Y as its major axis, and whether the slope is positive or negative.

The file test_290.c in the https://github.com/mega65/mega65-tools repository
provides an example of using these facilities to implement hardware accelerated line
drawing. This is very fast, as it draws lines at the full DMA fill speed, i.e., approximately
40,500,000 pixels per second.

AUDIO DMA
The MEGA65 includes four channels of DMA-driven audio playback that can be used
in place of the direct digital audio registers at $D6F8-$D6FB. That is, you must select
which of these two sources to feed to the audio cross-bar mixer. This is selected via
the AUDEN signal ($D711 bit 7), which simultaneously enables the audio DMA function
in the processor, as well as instructing the audio cross-bar mixer to use the audio from
this instead of the $D6F8-$D6FB digital audio registers. If you wish to have no other
audio than the audio DMA channels, the audio cross-bar mixer can be bypassed, and
the DMA audio played at full volume by setting the NOMIX signal ($D711 bit 4). In that
mode no audio from the SIDs, FM, microphones or other sources will be available. All
other bits in $D711 should ordinarily be left clear, i.e., write $80 to $D711 to enable
audio DMA.

Two channels form the left digital audio channel, and the other two channels form the
right digital audio channel. It is these left and right channels that are then fed into the
MEGA65’s audio cross-bar mixer.

As the DMA controller is part of the processor of the MEGA65, and the MEGA65
does not have reserved bus slots for multi-media operations, the MEGA65 uses idle
CPU cycles to perform background DMA. This requires that the MEGA65 CPU be set
to the “full speed” mode, i.e., approximately 40MHz. In this mode, there is a wait-
state whenever reading an operand from memory. Thus each instruction that loads
a byte from memory will create one implicit audio DMA slot. This is rarely a problem
in practice, except if the processor idles in a very tight loop. To ensure that audio
continues to play in the background, such loops should include a read instruction, such
as:

loop : LDA $ 1 2 3 4 // E n s u r e loop has at l e a s t one idle c y c l e for

// a u d i o DMA

JMP loop

L-17

https://github.com/mega65/mega65-tools

Each of the four DMA channels is configured using a block of 16 registers at $D720,
$D730, $D740 and $D750, respectively. We will explain the registers for the first
channel, channel 0, at $D720 – $D72F.

Sample Address Management
To play an audio sample you must first supply the start address of the sample. This is a
24-bit address, and must be in the main chip memory of the MEGA65. This is done by
writing the address into $D72A – $D72C. This is the address of the first sample value
that will be played. You must then provide the end address of the sample in $D727
– $D728. But note that this is is only 16 bits. This is because the MEGA65 compares
only the bottom 16 bits of the address when checking if it has reached the end of a
sample. In practice, this means that samples cannot be more than 64KB in size. If
the sample contains a section that should be repeated, then the start address of the
repeating part should be loaded into $D721 – $D723, and the CH0LOOP bit should
be set ($D720 bit 6).

You can determine the current sample address at any time by reading the registers at
$D72A – $D72C. But beware: These registers are not latched, so it is possible that
the values may be updated as you read the registers, unless you stop the channel first
by clearing the CH0EN signal.

Sample Playback frequency and Vol-
ume
The MEGA65 controls the playback rate of audio DMA samples by using a 24-bit
counter. Whenever the 24-bit counter overflows, the next sample is requested. Sam-
ple speed control is achieved by setting the value added to this counter each CPU
cycle. Thus a value of $FFFFFF would result in a sample rate of almost 40.5 MHz. In
practice, sample rates above a few megahertz are not possible, because there are
insufficient idle CPU cycles, and distorted audio will result. Even below this, care must
be taken to ensure that idle cycles come sufficiently often and dispersed through-
out the processor’s instruction stream to prevent distortion. At typical sample rates
below 16KHz and using 8-bit samples these effects are typically negligible for nor-
mal instruction streams, and so no special action is normally required for typical audio
playback.

At the other end of the scale, sample rates as low as 40.5MHz/224 = 2.4 samples
per second are possible. This is sufficiently low enough for even the most demanding
infra-sound applications.

L-18

Volume is controlled by setting $D729. Maximum volume is obtained with the value
$FF, while a value of $00will effectively mute the channel. The first two audio channels
are normally allocated to the left, and the second two to the right. However, the
MEGA65 includes separate volume controls for the opposite channels. For example,
to play audio DMA channel 0 at full volume on both left and right-hand sides of the
audio output, set both $D729 and $D71C to $FF. This allows panning of the four audio
DMA channels.

Both the frequency and volume can be freely adjusted while a sample is playing to
produce various effects.

Pure Sine Wave
Where it is necessary to produce a stable sine wave, especially at higher frequencies,
there is a special mode to support this. By setting the CH0SINE signal, the audio
channel will play a 32 byte 16-bit sine wave pattern. The sample addresses still need
to be set, as though the sine wave table were located in the bottom 64 bytes of
memory, as the normal address generation logic is used in this mode. However, no
audio DMA fetches are performed when a channel is in this mode, thus avoiding all
sources of distortion due to irregular spacing of idle cycles in the processor’s instruction
stream.

This can be used to produce sine waves in both the audible range, as well as well into
the ultrasonic range, at frequencies exceeding 60,000Hz, provided that the MEGA65
is connected to an appropriately speaker arrangement.

Sample playback control
To begin a channel playing a sample, set the CH0EN signal ($D720 bit 7). The sample
will play until its completion, unless the CH0LOOP signal has also been set. When a
sample completes playing, the CH0STP flag will be set. The audio DMA subsystem
cannot presently generate interrupts.

Unlike on the Amiga™, the MEGA65 audio DMA system supports both 8 and 16-bit
samples. It also supports packed 4-bit samples, playing either the lower or upper
nibble of each sample byte. This allows two separate samples to occupy the same
byte, thus effectively halving the amount of space required to store two equal length
samples.

F018 “DMAGIC” DMA CONTROLLER

L-19

HEX DEC Signal Description

D700 55040
ADDRLSB-

TRIG
DMAgic DMA list address LSB, and
trigger DMA (when written)

D701 55041 ADDRMSB DMA list address high byte (address bits
8 – 15).

D702 55042 ADDRBANK DMA list address bank (address bits 16
– 22). Writing clears $D704.

MEGA65 DMA CONTROLLER
EXTENSIONS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D703 55043 – EN018B

D704 55044 ADDRMB

D705 55045 ETRIG

D70E 55054 ADDRLSB

D711 55057 AUDEN BLKD AUDWR-
BLK NOMIX – AUDBLKTO

D71C 55068 CH0RVOL

D71D 55069 CH1RVOL

D71E 55070 CH2LVOL

D71F 55071 CH3LVOL

D720 55072 CH0EN CH0LOOP CH0SGN CH0SINE CH0STP – CH0SBITS

D721 55073 CH0BADDR

D722 55074 CH0BADDR

D723 55075 CH0BADDR

D724 55076 CH0FREQ

D725 55077 CH0FREQ

D726 55078 CH0FREQ

D727 55079 CH0TADDR

D728 55080 CH0TADDR

D729 55081 CH0VOLUME

D72A 55082 CH0CURADDR

D72B 55083 CH0CURADDR

D72C 55084 CH0CURADDR

D72D 55085 CH0TMRADDR

D72E 55086 CH0TMRADDR

continued …

L-20

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D72F 55087 CH0TMRADDR

D730 55088 CH1EN CH1LOOP CH1SGN CH1SINE CH1STP – CH1SBITS

D731 55089 CH1BADDR

D732 55090 CH1BADDR

D733 55091 CH1BADDR

D734 55092 CH1FREQ

D735 55093 CH1FREQ

D736 55094 CH1FREQ

D737 55095 CH1TADDR

D738 55096 CH1TADDR

D739 55097 CH1VOLUME

D73A 55098 CH1CURADDR

D73B 55099 CH1CURADDR

D73C 55100 CH1CURADDR

D73D 55101 CH1TMRADDR

D73E 55102 CH1TMRADDR

D73F 55103 CH1TMRADDR

D740 55104 CH2EN CH2LOOP CH2SGN CH2SINE CH2STP – CH1SBITS

D741 55105 CH2BADDR

D742 55106 CH2BADDR

D743 55107 CH2BADDR

D744 55108 CH2FREQ

D745 55109 CH2FREQ

D746 55110 CH2FREQ

D747 55111 CH2TADDR

D748 55112 CH2TADDR

D749 55113 CH2VOLUME

D74A 55114 CH2CURADDR

D74B 55115 CH2CURADDR

D74C 55116 CH2CURADDR

D74D 55117 CH2TMRADDR

D74E 55118 CH2TMRADDR

D74F 55119 CH2TMRADDR

D750 55120 CH3EN CH3LOOP CH3SGN CH3SINE CH3STP – CH3SBITS

D751 55121 CH3BADDR

D752 55122 CH3BADDR

D753 55123 CH3BADDR

D754 55124 CH3FREQ

continued …

L-21

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D755 55125 CH3FREQ

D756 55126 CH3FREQ

D757 55127 CH3TADDR

D758 55128 CH3TADDR

D759 55129 CH3VOLUME

D75A 55130 CH3CURADDR

D75B 55131 CH3CURADDR

D75C 55132 CH3CURADDR

D75D 55133 CH3TMRADDR

D75E 55134 CH3TMRADDR

D75F 55135 CH3TMRADDR

• ADDRLSB DMA list address low byte (address bits 0 – 7) WITHOUT STARTING A
DMA JOB (used by Hypervisor for unfreezing DMA-using tasks)

• ADDRMB DMA list address mega-byte

• AUDBLKTO Audio DMA block timeout (read only) DEBUG

• AUDEN Enable Audio DMA

• AUDWRBLK Audio DMA block writes (samples still get read)

• BLKD Audio DMA blocked (read only) DEBUG

• CH0BADDR Audio DMA channel 0 base address LSB

• CH0CURADDR Audio DMA channel 0 current address LSB

• CH0EN Enable Audio DMA channel 0

• CH0FREQ Audio DMA channel 0 frequency LSB

• CH0LOOP Enable Audio DMA channel 0 looping

• CH0RVOL Audio DMA channel 0 right channel volume

• CH0SBITS Audio DMA channel 0 sample bits (11=16, 10=8, 01=upper nybl,
00=lower nybl)

• CH0SGN Enable Audio DMA channel 0 signed samples

• CH0SINE Audio DMA channel 0 play 32-sample sine wave instead of DMA data

• CH0STP Audio DMA channel 0 stop flag

• CH0TADDR Audio DMA channel 0 top address LSB

L-22

• CH0TMRADDR Audio DMA channel 0 timing counter LSB

• CH0VOLUME Audio DMA channel 0 playback volume

• CH1BADDR Audio DMA channel 1 base address LSB

• CH1CURADDR Audio DMA channel 1 current address LSB

• CH1EN Enable Audio DMA channel 1

• CH1FREQ Audio DMA channel 1 frequency LSB

• CH1LOOP Enable Audio DMA channel 1 looping

• CH1RVOL Audio DMA channel 1 right channel volume

• CH1SBITS Audio DMA channel 1 sample bits (11=16, 10=8, 01=upper nybl,
00=lower nybl)

• CH1SGN Enable Audio DMA channel 1 signed samples

• CH1SINE Audio DMA channel 1 play 32-sample sine wave instead of DMA data

• CH1STP Audio DMA channel 1 stop flag

• CH1TADDR Audio DMA channel 1 top address LSB

• CH1TMRADDR Audio DMA channel 1 timing counter LSB

• CH1VOLUME Audio DMA channel 1 playback volume

• CH2BADDR Audio DMA channel 2 base address LSB

• CH2CURADDR Audio DMA channel 2 current address LSB

• CH2EN Enable Audio DMA channel 2

• CH2FREQ Audio DMA channel 2 frequency LSB

• CH2LOOP Enable Audio DMA channel 2 looping

• CH2LVOL Audio DMA channel 2 left channel volume

• CH2SGN Enable Audio DMA channel 2 signed samples

• CH2SINE Audio DMA channel 2 play 32-sample sine wave instead of DMA data

• CH2STP Audio DMA channel 2 stop flag

• CH2TADDR Audio DMA channel 2 top address LSB

• CH2TMRADDR Audio DMA channel 2 timing counter LSB

• CH2VOLUME Audio DMA channel 2 playback volume

• CH3BADDR Audio DMA channel 3 base address LSB

L-23

• CH3CURADDR Audio DMA channel 3 current address LSB

• CH3EN Enable Audio DMA channel 3

• CH3FREQ Audio DMA channel 3 frequency LSB

• CH3LOOP Enable Audio DMA channel 3 looping

• CH3LVOL Audio DMA channel 3 left channel volume

• CH3SBITS Audio DMA channel 3 sample bits (11=16, 10=8, 01=upper nybl,
00=lower nybl)

• CH3SGN Enable Audio DMA channel 3 signed samples

• CH3SINE Audio DMA channel 3 play 32-sample sine wave instead of DMA data

• CH3STP Audio DMA channel 3 stop flag

• CH3TADDR Audio DMA channel 3 top address LSB

• CH3TMRADDR Audio DMA channel 3 timing counter LSB

• CH3VOLUME Audio DMA channel 3 playback volume

• EN018B DMA enable F018B mode (adds sub-command byte)

• ETRIG Set low-order byte of DMA list address, and trigger Enhanced DMA job
(uses DMA option list)

• NOMIX Audio DMA bypasses audio mixer

UNIMPLEMENTED FUNCTIONALITY
The MEGA65’s DMAgic does not currently support either memory-swap or mini-term
operations.

Miniterms were intended for bitplane blitting, which is not required for the MEGA65
which offers greatly advanced character modes and stepped and fractional DMA ad-
dress incrementing which allows efficient texture copying and scaling. Also there ex-
ists no known software which ever used this facility, and it remains uncertain if it was
ever implemented in any revision of the DMAgic chip used in C65 prototypes.

Thememory-swap operation is intended to be implemented, but can beworked around
in the meantime by copying the first region to a 3rd region that acts as a temporary
buffer, then copying the 2nd region to the 1st, and the 3rd to the 2nd.

L-24

APPENDIX M
VIC-IV Video Interface

Controller
• Features

• VIC-II/III/IV Register Access Control

• Video Output Formats, Timing and

Compatibility

• Memory Interface

• Hot Registers

• New Modes

• Sprites

• VIC-II / C64 Registers

• VIC-III / C65 Registers

• VIC-IV / MEGA65 Specific Registers

M-2

M-3

M-4

FEATURES
The VIC-IV is a fourth generation Video Interface Controller developed especially for
the MEGA65, and featuring very good backwards compatibility with the VIC-II that
was used in the C64, and the VIC-III that was used in the C65. The VIC-IV can be
programmed as though it were either of those predecessor systems. In addition it
supports a number of new features. It is easy to mix older VIC-II/III features with the
new VIC-IV features, making it easy to transition from the VIC-II or VIC-III to the VIC-IV,
just as the VIC-III made it easy to transition from the VIC-II. Some of the new features
and enhancements of the VIC-IV include:

• Direct access to 384KB RAM (up from 16KB/64KB with the VIC-II and 128KB
with the VIC-III).

• Support for 32KB of 8-bit Colour/Attribute RAM (up from 2KB on the VIC-III),
to support very large screens.

• HDTV 720×576 / 800×600 native resolution at both 50Hz and 60Hz for PAL
and NTSC, with VGA and digital video output.

• 81MHz pixel clock (up from ∼ 8MHz with the VIC-II/III), which enables a wide
range of new features.

• New 16-colour (16×8 pixels per character cell) and 256-colour (8×8 pixels per
character cell) full-colour text modes.

• Support for up to 8,192 unique characters in a character set.

• Four 256-colour palette banks (versus the VIC-III’s single palette bank), each
supporting 23-bit colour depth (versus the VIC-III’s 12-bit colour depth), and
which can be rapidly alternated to create even more colourful graphics than is
possible with the VIC-III.

• Screen, bitmap, colour and character data can be positioned at any address
with byte-level granularity (compared with fixed 1KB – 16KB boundaries with
the VIC-II/III)

• Virtual screen dimensioning, which combined with byte-level data position
granularity provides effective hardware support for scrolling and panning in
both X and Y directions.

• New sprite modes: Bitplane modification, full-colour (15 foreground colours
+ transparency) and tiled modes, allowing a wide variety of new and exciting
sprite-based effects

• The ability to stack sprites in a bit-planar manner to produce sprites with up to
256 colours.

M-5

• Sprites can use 64 bits of data per raster line, allowing sprites to be 64 pixels
wide when using VIC-II/III mono/multi-colour mode, or 16 pixels wide when
using the new VIC-IV full-colour sprite mode.

• Sprite tile mode, which allows a sprite to be repeated horizontally across an
entire raster line, allowing sprites to be used to create animated backgrounds
in a memory-efficient manner.

• Sprites can be configured to use a separate 256-colour palette to that used
to draw other text and graphics, allowing for a more colourful display.

• Super-extended attribute mode which uses two screen RAM bytes and two
colour RAM bytes per character mode, which supports a wide variety of new fea-
tures including alpha-blending/anti-aliasing, hardware kerning/variable-
width characters, hardware horizontal/vertical flipping, alternate palette se-
lection and other powerful features that make it easy to create highly dynamic
and colourful displays.

• Raster-Rewrite Buffer which allows hardware-generated pseudo-sprites,
similar to “bobs” on Amiga™ computers, but with the advantage that they are
rendered in the display pipeline, and thus do not need to be un-drawn and re-
drawn to animate them.

• Multiple 8-bit colour play-fields are also possible using the Raster-Rewrite
Buffer.

In short, the VIC-IV is a powerful evolution of the VIC-II/III, while retaining the
character and distinctiveness of the VIC-series of video controllers.

For a full description of the additional registers that the VIC-IV provides, as well
as documentation of the legacy VIC-II and VIC-III registers, refer to the corre-
sponding sections of this appendix. The remainder of the appendix will focus on
describing the capabilities and use of many of the VIC-IV’s new features.

VIC-II/III/IV REGISTER ACCESS
CONTROL
Because the new features of the VIC-IV are all extensions to the existing VIC-II/III de-
signs, there is no concept of having to select the mode in which the VIC-IV will operate:
It is always in VIC-IV mode. However, for backwards compatibility with software, the
many additional registers of the VIC-IV can be hidden, so that it appears to be either
a VIC-II or VIC-III. This is done in the same manner that the VIC-III uses to hide its new
features from legacy VIC-II software.

M-6

The mechanism is the VIC-III write-only KEY register ($D02F, 53295 decimal). The
VIC-III by default conceals its new features until a “knock” sequence is performed.
This consists of writing two special values one after the other to $D02F. The following
table summarises the knock sequences supported by the VIC-IV, and indicates which
are VIC-IV specific, and which are supported by the VIC-III:

First Value
Hex (Decimal)

Second Value
Hex (Decimal) Effect VIC-IV

Specific?

$00 (0) $00 (0)

Only VIC-II registers
visible (all VIC-III and
VIC-IV new registers
are hidden)

No

$A5 (165) $96 (150)
VIC-III new registers
visible No

$47 (71) $53 (83)
Both VIC-III and VIC-IV
new registers visible Yes

$45 (69) $54 (84)

No VIC-II/III/IV
registers visible.
45E100 Ethernet
controller buffers are
visible instead

Yes

Detecting VIC-II/III/IV
Detecting which generation of the VIC-II/III/IV a machine is fitted with can be impor-
tant for programs that support only particular generations, or that wish to vary their
graphical display based on the capabilities of the machine. While there are many pos-
sibilities for this, the following is a simple and effective method. It relies on the fact
that the VIC-III and VIC-IV do not repeat the VIC-II registers throughout the I/O ad-
dress space. Thus while $D000 and $D100 are synonymous when a VIC-II is present
(or a VIC-III/IV is hiding their additional registers), this is not the case when a VIC-III
or VIC-IV is making all of its registers visible. Therefore presence of a VIC-III/IV can
be determined by testing whether these two locations are aliases for the same regis-
ter, or represent separate registers. The detection sequence consists of using the KEY
register to attempt to make either VIC-IV or VIC-III additional registers visible. If either
succeeds, then we can assume that the corresponding generation of VIC is installed.
As the VIC-IV supports the VIC-III KEY knocks, we must first test for the presence of a
VIC-IV. Also, we assume that the MEGA65 starts in VIC-IV mode, even when running
C65 BASIC. Thus the test can be done in BASIC from either C64 or C65-mode as
follows:

M-7

0 REM IN C65 - MODE WE C A N N O T S A F E L Y W R I T E TO $D02F , SO WE TEST A D I F F E R E N T WAY

10 IF PEEK ($ D 0 1 8) AND 32 THEN GOTO 65

20 POKE $D000 ,1: POKE $D02F ,71: POKE $D02F ,83

30 POKE $ D 0 0 0 +256 ,0: IF PEEK ($ D 0 0 0)=1 THEN P R I N T " VIC - IV P R E S E N T ": END

40 POKE $D000 ,1: POKE $D02F , 1 6 5 : POKE $D02F ,150

50 POKE $ D 0 0 0 +256 ,0: IF PEEK ($ D 0 0 0)=1 THEN P R I N T " VIC - III P R E S E N T ": END

60 P R I N T " VIC - II P R E S E N T ": END

65 REM WE A S S U M E WE HAVE A C65 HERE

70 V1 = PEEK ($ D 0 5 0): V2 = PEEK ($ D 0 5 0): V3 = PEEK ($ D 0 5 0)

80 IF V1 < > V2 OR V1 < > V3 OR V2 < > V3 THEN P R I N T " VIC - IV P R E S E N T ": END

90 GOTO 40

Line 10 of this program checks whether the screen is a multiple of 2KB. As the screen
on the C64 is located at 1KB, this test will fail, and execution will continue to line 20.
Line 20 writes 1 to one of the VIC-II sprite position registers, 53248, before writing
the MEGA65 knock to the key register, 53295. Line 30 writes to 53248 + 256, which
on the C64 is a mirror of 53248, but on a MEGA65 with VIC-IV I/O enabled will be
one of the red palette registers. After writing to 53248 + 256, the program checks
if the register at 53248 has been modified by the write to 53248 + 256. If it has,
then the two addresses point to the same register. This will happen on either a C64 or
C65, but not on a computer with a VIC-IV. Thus if 53248 has not changed, we report
that we have detected a VIC-IV. If writing to 53248 + 256 did change the value in
register 53248, then we proceed to line 40, which writes to 53248 again, and this
time writes the VIC-III knock to the key register. Line 50 is like line 30, but as it appears
after a VIC-III knock, it allows the detection of a VIC-III. Finally, if neither a VIC-IV nor
VIC-III is detected, we conclude that only a VIC-II must be present.

As the MEGA65 is the only C64-class computer that is fitted with a VIC-IV, this can
be used as a de facto test for the presence of a MEGA65 computer. Detection of a
VIC-III can be similarity assumed to indicate the presence of a C65.

VIDEO OUTPUT FORMATS, TIMING
AND COMPATIBILITY

M-8

Integrated Marvellous Digital
Hookup™(IMDH™) Digital Video Out-
put
The MEGA65 features VGA analog video output and Integrated Marvellous Digital
Hookup™ (IMDH™). This is different to existing common digital video standards in
several key points:

1. We didn’t invent a new connector for it: We instead used the most common
digital video connector already in use. So your existing cables should work fine!

2. We didn’t make it purposely incompatible with any existing digital video stan-
dard. So your existing TVs and monitors should work fine!

3. We don’t engage in highway-robbery for other vendors to use the IMDH™ dig-
ital video standard, by trying to charge them $10,000 every year, just for the
permission to be able to sell a single device. This means that the MEGA65 is
cheaper for you!

4. The IMDH™ standard does not allow content-protection or other sovereignty
eroding flim-flam. If you produced the video, you can do whatever you like with
it!

Connecting to Naughty Proprietary
Digital Video Standards
There are digital video standards that are completely backwards compared with
IMDH™. Fortunately because of IMDH™’s open approach to interoperability, these
should, in most cases, function with the MEGA65 without difficulty. Simply find a
video cable fits the IMDH™connector on the back of your MEGA65, and connect it to
your MEGA65 and a TV, Monitor or Projector that has the same connector.

However, regrettably, not all manufacturers have submitted their devices for
IMDH™compliance testing with the MEGA65 team. This means that some TVs and
Monitors are, unfortunately, not IMDH™compliant. Thus while most TVs and Monitors
will work with the MEGA65, you might find that you need to try a couple to get a sat-
isfactory result. If you do find a monitor that doesn’t work with the MEGA65, please
let us know, and also report the problem to the Monitor vendor, recommending that
they submit their devices for IMDH™compliance testing.

M-9

The VIC-IV was designed for use in the MEGA65 and related systems, including the
MEGAphone family of portable devices. The VIC-IV supports both VGA and digital
video output, using the non-proprietary IMDH™ interface. It also supports parallel
digital video output suitable for driving LCD display panels. Considerable care has
been taken to create a common video front-end that supports these three output
modes.

For simplicity and accuracy of frame timing for legacy software, the video format is
normally based on the HDTV PAL and NTSC 720×576/480 (576p and 480p) modes
using a 27MHz output pixel clock. This is ideal for digital video and LCD display panels.
However not all VGA displays support these modes, especially 720×576 at 50Hz.

In terms of VIC-II and VIC-III backwards compatibility, this display format has several
effects that do not cause problems for most programs, but can cause some differences
in behaviour:

1. Because the VIC-IV display is progressive rather than interlaced, two physical
raster lines are produced for each logical VIC-II or VIC-III raster line. This means
that there are either 63 or 65 cycles per logical double raster, rather than per
physical 576p/480p physical raster. This can cause some minor visual artefacts,
when programs make assumptions about where on a horizontal line the VIC is
drawing when, for example, the border or screen colour is changed.

2. The VIC-IV does not follow the behaviour of the VIC-III, which allowed changes
in video modes, e.g., between text and bitmap mode, on characters. Nor does
it follow the VIC-II’s policy of having such changes take effect immediately. In-
stead, the VIC-IV applies changes at the start of each raster line. This can cause
some minor artefacts.

3. The VIC-IV uses a single-raster rendering buffer which is populated using the
VIC-IV’s internal 81MHz pixel clock, before being displayed using the 27MHz
output pixel clock. This means that a raster lines display content tends to be
rendered much earlier in a raster line than on either the VIC-II or VIC-III. This can
cause some artefacts with displays, particularly in demos that rely on specific
behaviour of the VIC-II at particular cycles in a raster line, for example for effects
such as VSP or FLI. At present, such effects are unlikely to display correctly on
the current revision of the VIC-IV. Improved support for these features is planned
for a future revision of the VIC-IV.

4. The 1280×200 and 1280×400 display modes of the VIC-III are not currently
supported, as they cannot be meaningfully displayed on any modern monitor,
and no software is known to support or use this feature.

M-10

Frame Timing
Frame timing is designed to match that of the 6502 + VIC-II combination of the C64.
Both PAL and NTSC timing is supported, and the number of cycles per logical raster
line, the number of raster lines per frame, and the number of cycles per frame are
all adjusted accordingly. To achieve this, the VIC-IV ordinarily uses HDTV 576p 50Hz
(PAL) and 480p 60Hz (NTSC) video modes, with timing tweaked to be as close as
possible to double-scan PAL and NTSC composite TV modes as used by the VIC-II.

The VIC-IV produces timing impulses at approximately 1MHz which are used by the
45GS02 processor, so that the correct effective frequency is providedwhen operating
at the 1MHz, 2MHz and 3.5MHz C64, C128 and C65 compatibility modes. This allows
the single machine to switch between accurate PAL and NTSC CPU timing, as well as
video modes. The exact frequency varies between PAL and NTSC modes, to mimic the
behaviour of PAL versus NTSC C64, C128 and C65 processor and video timing.

The PAL frame is constructed from 624 physical raster lines, consisting of 864 pixel
clock ticks. The pixel clock is 27MHz, which is 1/3 the VIC-IV pixel clock. The visible
frame is 720×576 pixels, the entirety of which can be used in VIC-IV mode. In VIC-II
and VIC-III modes, the border area reduces the usable size to 640×400 pixels. In
VIC-II mode and VIC-III 200H modes, the display is double scanned, with two 31.5
micro-second physical rasters corresponding to a single 63 micro-second VIC-II-style
raster line. Thus each frame consists of 312 VIC-II raster lines of 63 micro-seconds
each, exactly matching that of a PAL C64.

M-11

VIC-II/III Screen Area

Vertical Fly-Back Area

Horiz-
ontal
Fly-Back
Area

720 Visible Pixels

VIC-II/III Border Area

VIC-II/III Border Area

624
Lines

864 Horizontal Ticks
(31.5 μSec per line)

576
Visible
Lines

PAL Frame Timing

The NTSC frame is constructed from 526 physical raster lines, consisting of 858 pixel
clock ticks. The pixel clock is 27MHz, which is 1/3 the VIC-IV pixel clock. The visible
frame is 720×480 pixels, the entirety of which can be used in VIC-IV mode. In VIC-
II and VIC-III modes, the border area reduces the usable size to 640×400 pixels.
In VIC-II mode and VIC-III 200H modes, the display is double scanned, with two 32
micro-second physical rasters corresponding to a single 64 micro-second VIC-II-style
raster line. Thus each frame consists of 263 VIC-II raster lines of 64 micro-seconds
each, matching the most common C64 NTSC video timing.

M-12

VIC-II/III Screen Area

Vertical Fly-Back Area

Horiz-
ontal
Fly-Back
Area

720 Visible Pixels

VIC-II/III Border Area

VIC-II/III Border Area

526
Lines

858 Horizontal Ticks
(32 μSec per line)

480
Visible
Lines

NTSC Frame Timing

As these HDTV video modes are not supported by all VGA monitors, a compatibility
mode is included that provides a 640×480 VGA-style mode. However, as the pixel
clock of the MEGA65 is fixed at 27MHz, this mode runs at 63Hz. Nonetheless, this
should work on the vast majority of VGA monitors. There should be no problem with
the PAL / NTSC modes when using the digital video output of the MEGA65 with the
vast majority of IMDH™-enabled monitors and TVs.

To determine whether the MEGA65 is operating in PAL or NTSC, you can enter the
Freeze Menu, which displays the current video mode, or from a program you can check
the PALNTSC signal (bit 7 of $D06F, 53359 decimal). If this bit is set, then the machine
is operating in NTSCmode, and clear if operating in PALmode. This bit can bemodified
to change between the modes, e.g.:

M-13

10 REM ENABLE C65+MEGA65 I/O

20 IF PEEK($D018)<32 THEN POKE $D02F,ASC("G"):POKE $D02F,ASC("S")

30 REM CHECK NTSC BIT

40 NTSC=PEEK($D06F) AND 128

50 REM DISPLAY STATE AND ASK FOR TOGGLE

60 PRINT"MEGA65 IS IN ";:IF NTSC THEN PRINT"NTSC MODE":ELSE PRINT"PAL MODE"

70 INPUT"SWITCH MODES (Y/N)? ",A$

80 REM TOGGLE NTSC BIT

90 IF A$="Y" THEN POKE $D06F,PEEK($D06F) XOR 128:ELSE END

100 REM DISPLAY NEW STATE

110 NTSC=PEEK($D06F) AND 128

120 PRINT"MEGA65 IS IN ";:IF NTSC THEN PRINT"NTSC MODE":ELSE PRINT"PAL MODE"

Physical and Logical Rasters
Physical rasters per frame refers to the number of actual raster lines in the PAL or NTSC
Enhanced Definition TV (EDTV) video modes used by the MEGA65. Logical Rasters
refers to the number of VIC-II-style rasters per frame. Each logical raster consists of
two physical rasters per line, since EDTV modes are double-scan modes compared
with the original PAL and NTSC Standard Definition TV modes used by the C64. The
frame parameters of the VIC-IV for PAL and NTSC are as follows:

Standard Cycles per
Raster

Physical
Rasters per
Frame

Logical Rasters
per Frame

PAL 63 626 312
NTSC 65 526 263

The result is that the frames on the VIC-IV consist of exactly the same number of ∼
1MHz CPU cycles as on the VIC-II exactly.

Bad Lines
The VIC-IV does not natively incur any “bad lines”, because the VIC-IV has its own
dedicated memory busses to the main memory and colour RAM of the MEGA65. This
means that both the processor and VIC-IV can access the memory at the same time,
unlike on the C64 or C65, where they are alternated.

M-14

However, to improve compatibility, the VIC-IV signals when a “bad line” would have
occurred on the VIC-II. The 45GS02 processor of the MEGA65 accepts these bad line
signals, and pauses the CPU for 40 clock cycles, except if the processor is running at
full speed, in which case they are ignored. This improves the timing compatibility with
the VIC-II considerably. However, the timing is not exact, because the current revision
of the 45GS02 pauses for exactly 40 cycles, instead of 40 – 43 cycles, depending
on the instruction being executed at the time. Also, the VIC-IV and 45GS02 do not
currently pause for sprite fetches.

The bad line emulation is controlled by bit 0 of $D710: setting this bit enables bad line
emulation, and clearing it prevents any bad line from stealing time from the processor.

MEMORY INTERFACE
The VIC-IV supports up to 64KB of colour RAM and, in principle, 16MB of direct access
RAM for video data. However in typical installations 32KB of colour RAM and 384KB of
addressable RAM is present. In MEGA65 systems, the second 128KB of RAM is typically
used to hold a C65-compatible ROM, leaving 256KB available, unless software is
written to avoid the need to use C65 ROM routines, in which case all 384KB can be
used.

The VIC-IV supports all legacy VIC-II and VIC-III methods for accessing this RAM, in-
cluding the VIC-II’s use of 16KB banks, and the VIC-III’s Display Address Translator
(DAT). This additional memory can be used for character and bitmap displays, as well
as for sprites. However, the VIC-III bitplane modes remain limited to using only the first
128KB of RAM, as the VIC-IV does not enhance the bitplane mode.

Relocating Screen Memory
To use the additional memory for screen RAM, the screen RAM start address can be
adjusted to any location in memory with byte-level granularity by setting the SCRNPTR
registers ($D060 – $D063, 53344 – 53347 decimal). For example, to set the screen
memory to address 12345:

REM ENABLE C65+MEGA65 I/O

IF PEEK($D018)<32 THEN POKE $D02F,ASC("G"):POKE $D02F,ASC("S")

POKE $D060,$45:POKE $D061,$23:POKE $D062,$1

M-15

Relocating Character Generator Data
The location of the character generator data can also be set with byte-level precision
via the CHARPTR registers at $D068 – $D06A (53352 – 53354 decimal). As usual,
the first of these registers holds the lowest-order byte, and the last the highest-order
byte. The three bytes allow for placement of character data anywhere in the first
16MB of RAM. For systems with less than 16MB of RAM accessible by the VIC-IV, the
upper address bits should be zero.

For example, to indicate that character generator data should be sourced beginning
at $41200 (266752 decimal), the following could be used. Note that the AND bi-
nary operator only works with arguments between 0 and 65,535. Therefore we first
subtract 4×65,536 = 262,144 from the address (the 4 is determined by calculating
INT(266752/65536)), before we use the AND operator to compute the lower part of
the address:

REM ENABLE C65+MEGA65 I/O

IF PEEK($D018)<32 THEN POKE $D02F,ASC("G"):POKE $D02F,ASC("S")

REM HEX $41200 IS EASILY DIVIDED IN ITS 3 BYTES $00, $12, $4

REM BUT YOU CAN ALSO USE MATH TO EXTRACT THE PARTS

POKE $D060,(266752-INT(266752/65536)*$10000) AND 255

POKE $D061,INT((266752-INT(266752/65536)*65536)/256)

POKE $D062,INT(266752/65536)

Relocating Colour / Attribute RAM
The area of colour RAM being used can be similarly set using the COLPTR registers
($D064 – $D065, 53348 – 53349 decimal). That is, the value is an offset from the
start of the colour / attribute RAM. This is because, like on the C64, the colour / at-
tribute RAM of the MEGA65 is a separate memory component, with its own dedicated
connection to the VIC-IV. By default, the COLPTRs are set to zero, which replicates
the behaviour of the VIC-II/III. To set the display to use the colour / attribute RAM
beginning at offset $4000, one could use something like:

REM ENABLE C65+MEGA65 I/O

IF PEEK($D018)<32 THEN POKE $D02F,ASC("G"):POKE $D02F,ASC("S")

REM SET COLPTR TO $4000, SPLITS INTO $00 LSB and $40 MSB

POKE $D064,$00

POKE $D065,$40

M-16

Relocating Sprite Pointers and Images
The location of the sprite pointers can also be moved, and sprites can be made to have
their data anywhere in first 4MB of memory. This is accomplished by first setting the
location of the sprite pointers by setting the SPRPTRADR registers ($D06C – $D06E,
53356 – 53358 decimal, but note that only the bottom 7 bits of $D06E are used,
as the highest bit is used for the SPRPTR16 signal). This allows the list of eight sprite
pointers to be moved from the end of screen RAM to an arbitrary location in the first
8MB of RAM. To allow sprites themselves to be located anywhere in the first 4MB of
RAM, the SPRPTR16 bit in $D06E must be set. In this mode, two bytes are used to
indicate the location of each sprite, instead of one. That is, the list of sprite pointers
will be 16 bytes long, instead of 8 bytes long as on the VIC-II/III. When SPRPTR16
is enabled, the location of the sprite pointers should always be set explicitly via the
SPRPTRADR registers. For example, to position the sprite pointers at location 800 –
815, you could use something like the following code. Note that a little gymnastics
is required to keep the SPRPTR16 bit unchanged, and also to work around the AND
binary operator not working with values greater than 65535:

REM ENABLE C65+MEGA65 I/O

IF PEEK($D018)<32 THEN POKE $D02F,ASC("G"):POKE $D02F,ASC("S")

POKE $D06C,(800-INT(800/65536)*65536) AND 255

POKE $D06D,INT(800/256) AND 255

POKE $D06E,(PEEK($D06E) AND 128)+INT(800/65536)

The location of each sprite image remains a multiple of 64 bytes, thus allowing for
up to 65,536 unique sprite images to be used at any point in time, if the system is
equipped with sufficient RAM (4MB or more). In this mode, the VIC-II 16KB banking is
ignored, and the location of sprite data is simply 64× the pointer value. For example,
to have the data for a sprite at $C000 (49152 decimal), this would be sprite location
768, because 49152 divided by 64 = 768. We then need to split 768 into high and
low bytes, to set the two pointer bytes: 768 = 256×3, with remainder 0, so this would
require the two sprite pointer bytes to be 0 (low byte, which comes first) and 3 (high
byte). Thus if the sprite pointers were located at $7F8 (2040 decimal), setting the
first sprite to sprite image 768 could be done with something like:

POKE 2040 ,768 -256* INT (7 6 8 / 2 5 6)

POKE 2041 , INT (7 6 8 / 2 5 6)

M-17

HOT REGISTERS
Because of the availability of precise vernier registers to set a wide range of video
parameters directly, $D011 (53265 decimal), $D016 (53270 decimal) and other
VIC-II and VIC-III video mode registers are implemented as virtual registers: by default,
writing to any of these results in computed consistent values being applied to all of
the relevant vernier registers. This means that writing to any of these virtual registers
will reset the video mode. Thus some care has to be taken when using new VIC-IV
features to not touch any of the “hot” VIC-II and VIC-III registers.

The “hot” registers to be careful with are:

$D011, $D016, $D018, $D031 (53265, 53270, 53272 and 53297 decimal) and
the VIC-II bank bits of $DD00 (56576 decimal).

If you write to any of those, various VIC-IV registers will need to be re-written with the
values you wish to maintain.

This “hot” register behaviour is intended primarily for legacy software. It can be dis-
abled by clearing the HOTREG signal (bit 7 of $D05D, 53341 decimal).

NEW MODES

Why the new VIC-IV modes are Char-
acter and Bitmap modes, not Bitplane
modes
The new VIC-IV video modes are derived from the VIC-II character and bitmap modes,
rather than the VIC-III bitplane modes. This decision was based on several realities of
programming a memory-constrained 8-bit home computer:

1. Bitplanes require that the same amount of memory is given to each area on
screen, regardless of whether it is showing empty space, or complex graphics.
There is no way with bitplanes to reuse content from within an image in another
part of the image. However, most C64 games use highly repetitive displays, with
common elements appearing in various places on the screen, of which Boulder
Dash and Super Giana Sisters would be good examples.

2. Bitplanes also make it difficult to update a display, because every pixel is unique,
in that there is no way to make a change, for example to the animation in an

M-18

onscreen element, and have it take effect in all places at the same time. The
diamond animations in Boulder Dash are a good example of this problem. The
requirement to modify multiple separate bytes in each bitplane create an in-
creased computational burden, which is why there were calls for the Amiga AAA
chip-set to include so-called “chunky” modes, rather than just bitplane based
modes. While the Display Address Translator (DAT) and DMAgic of the C65 pro-
vide some relief to this problem, the relief is only partial.

3. Scrolling using the C65 bitplanes requires copying the entire bitplane, as the
hardware support for smooth scrolling does not extend to changing the bitplane
source address in a fine manner. Even using the DMAgic to assist, scrolling a
320×200 256-colour display requires 128,000 clock cycles in the best case
(reading and writing 320×200 = 64000 bytes). At 3.5MHz on the C65 this
would require about 36 milli-seconds, or about 2 complete video frames. Thus
for smooth scrolling of such a display, a double buffered arrangement would be
required, which would consume 128,000 of the 131,072 bytes of memory.

In contrast, the well known character modes of the VIC-II are widely used in
games, due to their ability to allow a small amount of screen memory to select
which 8×8 block of pixels to display, allowing very rapid scrolling, reducedmem-
ory consumption, and effective hardware acceleration of animation of common
elements. Thus the focus of improvements in the VIC-IV has been on character
mode. As bitmap mode on the VIC-II is effectively a special case of character
mode, with implied character numbers, it comes along free for the ride on the
VIC-IV, and will only be mentioned in the context of a very few bitmap-mode
specific improvements that were trivial to make, and it thus seemed foolish to
not implement, in case they find use.

Displaying more than 256 unique
characters via ”Super-Extended At-
tribute Mode”
The primary innovation is the addition of the Super-Extended Attribute Mode. The
VIC-II already uses 12 bits per character: Each 8×8 cell is defined by 12 bits of data:
8 bits of screen RAM data, by default from $0400 – $07E7 (1024 – 2023 decimal),
indicating which characters to show, and 4 bits of colour data from the 1K nibble
colour RAM at $D800 – $DBFF (55296 – 56319 decimal). The VIC-III of the C65
uses 16 bits, as the colour RAM is now 8 bits, instead of 4, with the extra 4 bits of
colour RAM being used to support attributes (blink, bold, underline and reverse video).
It is recommended to revise how this works, before reading the following. A good

M-19

introduction to the VIC-II text mode can be found in many places. Super-Extended
Attribute mode doubles the number of bits per character used from the VIC-III’s 16,
to 32: Two bytes of screen RAM and two bytes of colour/attribute RAM.

Super-Extended AttributeMode is enabled by setting bit 0 in $D054 (53332 decimal).
Remember to first enable VIC-IV mode, to make this register accessible. When this bit
is set, two bytes are used for each of the screen memory and colour RAM for each
character shown on the display. Thus, in contrast to the 12 bits of information that
the C64 uses per character, and the 16 bits that the VIC-III uses, the VIC-IV has 32
bits of information. How those 32 bits are used varies slightly among the particular
modes. The default is as follows:

Bit(s) Function

Screen RAM byte 0
Lower 8 bits of character number, the same as the VIC-II
and VIC-III

Screen RAM byte 1,
bits 0 - 4

Upper 5 bits of character number, allowing addressing of
8,192 unique characters

Screen RAM byte 1,
bits 5 – 7

Trim pixels from right-hand side of character (bits 0 – 2) or
Set character data Y offset if GOTOX set set (bits 0 – 2)

Colour RAM byte 0,
bit 7

Vertically flip the character or enable transparency for
subsequent characters if GOTOX is set

Colour RAM byte 0,
bit 6

Horizontally flip the character

Colour RAM byte 0,
bit 5

Alpha blend mode (leave 0, discussed later)

Colour RAM byte 0,
bit 4

GOTO X (allows repositioning of characters along a raster
via the Raster-Rewrite Buffer, discussed later), must be set
to 0 for displaying characters

Colour RAM byte 0,
bits 3

If set, Full-Colour characters use 4 bits per pixel and are
16 pixels wide (less any right-hand side trim bits), instead
of using 8 bits per pixel. When using 8 bits per pixels, the
characters are the normal 8 pixels wide

Colour RAM byte 0,
bits 2

Trim pixels from right-hand side of character (bit 3) or Set
character data Y offset if GOTOX set set (bit 3)

Colour RAM byte 0,
bits 0 – 1

Number of pixels to trim from top or bottom of character

Colour RAM byte 1,
bits 0 – 3

Low 4 bits of colour of character

Colour RAM byte 1,
bits 4 – 7

Upper 4 bits of colour of character (if VIC-II multi-colour
mode is enabled)

Colour RAM byte 1,
bit 4

Hardware blink of character (if VIC-III extended attributes
are enabled)

continued …

M-20

…continued
Bit(s) Function
Colour RAM byte 1,
bit 5

Hardware reverse video enable of character (if VIC-III
extended attributes are enabled)*

Colour RAM byte 1,
bit 6

Hardware bold attribute of character (if VIC-III extended
attributes are enabled)*

Colour RAM byte 1,
bit 7

Hardware underlining of character (if VIC-III extended
attributes are enabled)

* Enabling BOLD and REVERSE attributes at the same time on the MEGA65 selects an
alternate palette, effectively allowing 512 colours on screen, but each 8×8 character
can use colours only from one 256 colour palette.

If the GOTOX bit is set, some of the fields have different meanings:

Bit(s) Function

Screen RAM byte 0

Lower 8 bits of new X position to start drawing the next
character, relative to the start of character drawing.
Setting to 0 causes the next character to be drawn over
the top of the left-most character.

Screen RAM byte 1,
bits 0 - 1

Upper 2 bits of new X position

Screen RAM byte 1,
bits 3 - 4

RESERVED, set to 0

Screen RAM byte 1,
bits 5 - 7

FCM Character data offset: Characters display normally
when set to zero. When non-zero, 8 × the value is added
to the character address. With careful planning, this can
be used to smoothly vertically scroll multiple layers of RRB
content.

Colour RAM byte 0,
bit 4 - 5

RESERVED, set to 0

Colour RAM byte 0,
bits 6

If set, the following characters will be rendered as
background, allowing sprites to appear in front of them,
even when sprites are set to background.

Colour RAM byte 0,
bit 7

If set, then background/transparent pixels will not be
drawn, allowing layering

Colour RAM byte 0,
bit 4

GOTO X, set to 1

continued …

M-21

…continued
Bit(s) Function

Colour RAM byte 0,
bits 3

ROWMASK. If set, then the pixel row mask is used to
determine which pixel rows of the following characters
should be rendered. This can be used to vertically scroll
characters using the Raster-Rewrite Buffer, by drawing
each character twice, once shifted down on the screen
line on which it appears, and a second time, shifted up in
the following screen line, and masked so that only the pixel
rows belonging to the scrolled character are displayed,
and not data from either before or after that character’s
data.

Colour RAM byte 0,
bits 2

If set, the following characters will be rendered as
foreground, regardless of their colouring, allowing sprites
to appear behind them.

Colour RAM byte 0,
bits 0 - 1

RESERVED, set to 0

Colour RAM byte 1,
bits 0 - 7

Pixel row mask flags

We can see that we still have the C64 style bottom 8 bits of the character number
in the first screen byte. The second byte of screen memory gets five extra bits for
that, allowing 213 = 8,192 different characters to be used on a single screen. That’s
more than enough for unique characters covering an 80×50 screen (which is possible
to create with the VIC-IV). The remaining bits allow for trimming of the character.
This allows for variable width characters, which can be used to do things that would
not normally be possible, such as using text mode for free horizontal placement of
characters (or parts thereof). This was originally added to provide hardware support
for proportional width fonts.

For the colour RAM, the second byte (byte 1) is the same as the C65, i.e., the lower
half providing four bits of foreground colour, as on the C64, plus the optional VIC-
III extended attributes. The C65 specifications document describes the behaviour
when more than one of these are used together, most of which are logical, but there
are a few combinations that behave differently than one might expect. For example,
combining bold with blink causes the character to toggle between bold and normal
mode. Bold mode itself is implemented by effectively acting as bit 4 of the foreground
colour value, causing the colour to be drawn from different palette entries than usual.

However, if you do not need VIC-III extended attributes, you can instead use the upper
four bits of the second byte of colour RAM to contain more bits for the colour index,
allowing selection from the full range of 256 colour entries. This mode is activated by
enabling the VIC-II’s multi-colour mode while full-colour mode is active.

M-22

The C65 / VIC-III attributes and the use of 256 colour 8-bit values for various VIC-II
colour registers is enabled by setting bit 5 of $D031 (53297 decimal). Therefore this
is highly recommended when using the VIC-IV mode, as otherwise certain functions
will not behave as expected. Note that BOLD+REVERSE together has the meaning of
selecting an alternate palette on the MEGA65, which differs from the C65.

Many effects are possible due to Super-Extended Attribute Mode. A few possibilities
are explained in the following sub-sections.

Using Super-Extended Attribute Mode
Super-Extended Attribute Mode requires double the screen RAM and colour RAM as
the VIC-II/III text modes. This is because two bytes of each are required to define
each character, instead of one. The screen RAM can be located anywhere in the
384KB of main memory using registers $D060 – $D062 (53344 – 53346 decimal).
The colour RAM can be located anywhere in the 32KB colour RAM. Only the first 1 or
2KB of the colour RAM is visible at $D800 – $DBFF or $D800 – $DFFF (if the CRAM2K
signal is set in bit 0 of $D030, 53296 decimal). Thus if using a screen larger than
40×25 characters use of the DMA controller or some other means may be required
to access the full amount of colour RAM. Thus we will initially discuss using Super-
Extender Attribute Mode with a 40x25 character display, so that the use of DMA or
other means to access the additional colour RAM.

The first step is to enable the Super-Extended Attribute Mode by asserting the FCLRHI
and CHR16 signals, by setting bits 2 and 0 of $D054 (53332 decimal). As this is
a VIC-IV register, we must first enable the VIC-IV I/O mode. The VIC-IV must also
be configured to 40 column mode, by clearing the H640 signal by clearing bit 7 of
$D031 (53297 decimal). This is because each pair of characters will be used to form
a single character on screen, with one character requiring two screen RAM bytes, thus
80 screen RAM bytes are required to display 40 characters. Similarly 80 colour RAM
bytes are required as well.

To understand this visually, it is helpful to first consider the normal C64 screen memory
layout:

M-23

$400 $401 $402 $403 $404 $405 $406 $407 $408 $409 $40a $40b $40c $40d $40e $40f $410 $411 $412 $413 $414 $415 $416 $417 $418 $419 $41a $41b $41c $41d $41e $41f $420 $421 $422 $423 $424 $425 $426 $427

$428 $429 $42a $42b $42c $42d $42e $42f $430 $431 $432 $433 $434 $435 $436 $437 $438 $439 $43a $43b $43c $43d $43e $43f $440 $441 $442 $443 $444 $445 $446 $447 $448 $449 $44a $44b $44c $44d $44e $44f

$450 $451 $452 $453 $454 $455 $456 $457 $458 $459 $45a $45b $45c $45d $45e $45f $460 $461 $462 $463 $464 $465 $466 $467 $468 $469 $46a $46b $46c $46d $46e $46f $470 $471 $472 $473 $474 $475 $476 $477

$478 $479 $47a $47b $47c $47d $47e $47f $480 $481 $482 $483 $484 $485 $486 $487 $488 $489 $48a $48b $48c $48d $48e $48f $490 $491 $492 $493 $494 $495 $496 $497 $498 $499 $49a $49b $49c $49d $49e $49f

$4a0 $4a1 $4a2 $4a3 $4a4 $4a5 $4a6 $4a7 $4a8 $4a9 $4aa $4ab $4ac $4ad $4ae $4af $4b0 $4b1 $4b2 $4b3 $4b4 $4b5 $4b6 $4b7 $4b8 $4b9 $4ba $4bb $4bc $4bd $4be $4bf $4c0 $4c1 $4c2 $4c3 $4c4 $4c5 $4c6 $4c7

$4c8 $4c9 $4ca $4cb $4cc $4cd $4ce $4cf $4d0 $4d1 $4d2 $4d3 $4d4 $4d5 $4d6 $4d7 $4d8 $4d9 $4da $4db $4dc $4dd $4de $4df $4e0 $4e1 $4e2 $4e3 $4e4 $4e5 $4e6 $4e7 $4e8 $4e9 $4ea $4eb $4ec $4ed $4ee $4ef

$4f0 $4f1 $4f2 $4f3 $4f4 $4f5 $4f6 $4f7 $4f8 $4f9 $4fa $4fb $4fc $4fd $4fe $4ff $500 $501 $502 $503 $504 $505 $506 $507 $508 $509 $50a $50b $50c $50d $50e $50f $510 $511 $512 $513 $514 $515 $516 $517

$518 $519 $51a $51b $51c $51d $51e $51f $520 $521 $522 $523 $524 $525 $526 $527 $528 $529 $52a $52b $52c $52d $52e $52f $530 $531 $532 $533 $534 $535 $536 $537 $538 $539 $53a $53b $53c $53d $53e $53f

$540 $541 $542 $543 $544 $545 $546 $547 $548 $549 $54a $54b $54c $54d $54e $54f $550 $551 $552 $553 $554 $555 $556 $557 $558 $559 $55a $55b $55c $55d $55e $55f $560 $561 $562 $563 $564 $565 $566 $567

$568 $569 $56a $56b $56c $56d $56e $56f $570 $571 $572 $573 $574 $575 $576 $577 $578 $579 $57a $57b $57c $57d $57e $57f $580 $581 $582 $583 $584 $585 $586 $587 $588 $589 $58a $58b $58c $58d $58e $58f

$590 $591 $592 $593 $594 $595 $596 $597 $598 $599 $59a $59b $59c $59d $59e $59f $5a0 $5a1 $5a2 $5a3 $5a4 $5a5 $5a6 $5a7 $5a8 $5a9 $5aa $5ab $5ac $5ad $5ae $5af $5b0 $5b1 $5b2 $5b3 $5b4 $5b5 $5b6 $5b7

$5b8 $5b9 $5ba $5bb $5bc $5bd $5be $5bf $5c0 $5c1 $5c2 $5c3 $5c4 $5c5 $5c6 $5c7 $5c8 $5c9 $5ca $5cb $5cc $5cd $5ce $5cf $5d0 $5d1 $5d2 $5d3 $5d4 $5d5 $5d6 $5d7 $5d8 $5d9 $5da $5db $5dc $5dd $5de $5df

$5e0 $5e1 $5e2 $5e3 $5e4 $5e5 $5e6 $5e7 $5e8 $5e9 $5ea $5eb $5ec $5ed $5ee $5ef $5f0 $5f1 $5f2 $5f3 $5f4 $5f5 $5f6 $5f7 $5f8 $5f9 $5fa $5fb $5fc $5fd $5fe $5ff $600 $601 $602 $603 $604 $605 $606 $607

$608 $609 $60a $60b $60c $60d $60e $60f $610 $611 $612 $613 $614 $615 $616 $617 $618 $619 $61a $61b $61c $61d $61e $61f $620 $621 $622 $623 $624 $625 $626 $627 $628 $629 $62a $62b $62c $62d $62e $62f

$630 $631 $632 $633 $634 $635 $636 $637 $638 $639 $63a $63b $63c $63d $63e $63f $640 $641 $642 $643 $644 $645 $646 $647 $648 $649 $64a $64b $64c $64d $64e $64f $650 $651 $652 $653 $654 $655 $656 $657

$658 $659 $65a $65b $65c $65d $65e $65f $660 $661 $662 $663 $664 $665 $666 $667 $668 $669 $66a $66b $66c $66d $66e $66f $670 $671 $672 $673 $674 $675 $676 $677 $678 $679 $67a $67b $67c $67d $67e $67f

$680 $681 $682 $683 $684 $685 $686 $687 $688 $689 $68a $68b $68c $68d $68e $68f $690 $691 $692 $693 $694 $695 $696 $697 $698 $699 $69a $69b $69c $69d $69e $69f $6a0 $6a1 $6a2 $6a3 $6a4 $6a5 $6a6 $6a7

$6a8 $6a9 $6aa $6ab $6ac $6ad $6ae $6af $6b0 $6b1 $6b2 $6b3 $6b4 $6b5 $6b6 $6b7 $6b8 $6b9 $6ba $6bb $6bc $6bd $6be $6bf $6c0 $6c1 $6c2 $6c3 $6c4 $6c5 $6c6 $6c7 $6c8 $6c9 $6ca $6cb $6cc $6cd $6ce $6cf

$6d0 $6d1 $6d2 $6d3 $6d4 $6d5 $6d6 $6d7 $6d8 $6d9 $6da $6db $6dc $6dd $6de $6df $6e0 $6e1 $6e2 $6e3 $6e4 $6e5 $6e6 $6e7 $6e8 $6e9 $6ea $6eb $6ec $6ed $6ee $6ef $6f0 $6f1 $6f2 $6f3 $6f4 $6f5 $6f6 $6f7

$6f8 $6f9 $6fa $6fb $6fc $6fd $6fe $6ff $700 $701 $702 $703 $704 $705 $706 $707 $708 $709 $70a $70b $70c $70d $70e $70f $710 $711 $712 $713 $714 $715 $716 $717 $718 $719 $71a $71b $71c $71d $71e $71f

$720 $721 $722 $723 $724 $725 $726 $727 $728 $729 $72a $72b $72c $72d $72e $72f $730 $731 $732 $733 $734 $735 $736 $737 $738 $739 $73a $73b $73c $73d $73e $73f $740 $741 $742 $743 $744 $745 $746 $747

$748 $749 $74a $74b $74c $74d $74e $74f $750 $751 $752 $753 $754 $755 $756 $757 $758 $759 $75a $75b $75c $75d $75e $75f $760 $761 $762 $763 $764 $765 $766 $767 $768 $769 $76a $76b $76c $76d $76e $76f

$770 $771 $772 $773 $774 $775 $776 $777 $778 $779 $77a $77b $77c $77d $77e $77f $780 $781 $782 $783 $784 $785 $786 $787 $788 $789 $78a $78b $78c $78d $78e $78f $790 $791 $792 $793 $794 $795 $796 $797

$798 $799 $79a $79b $79c $79d $79e $79f $7a0 $7a1 $7a2 $7a3 $7a4 $7a5 $7a6 $7a7 $7a8 $7a9 $7aa $7ab $7ac $7ad $7ae $7af $7b0 $7b1 $7b2 $7b3 $7b4 $7b5 $7b6 $7b7 $7b8 $7b9 $7ba $7bb $7bc $7bd $7be $7bf

$7c0 $7c1 $7c2 $7c3 $7c4 $7c5 $7c6 $7c7 $7c8 $7c9 $7ca $7cb $7cc $7cd $7ce $7cf $7d0 $7d1 $7d2 $7d3 $7d4 $7d5 $7d6 $7d7 $7d8 $7d9 $7da $7db $7dc $7dd $7de $7df $7e0 $7e1 $7e2 $7e3 $7e4 $7e5 $7e6 $7e7

That is, each character cell uses one byte of screen RAM, and the addresses increase
smoothly, both within lines, and between lines. Super-Extended Attribute Mode re-
quires two bytes per character cell. So if you set $D054 to $05, for example, you will
get screen addresses like this:

M-24

$400 $402 $404 $406 $408 $40a $40c $40e $410 $412 $414 $416 $418 $41a $41c $41e $420 $422 $424 $426 $428 $42a $42c $42e $430 $432 $434 $436 $438 $43a $43c $43e $440 $442 $444 $446 $448 $44a $44c $44e

$428 $42a $42c $42e $430 $432 $434 $436 $438 $43a $43c $43e $440 $442 $444 $446 $448 $44a $44c $44e $450 $452 $454 $456 $458 $45a $45c $45e $460 $462 $464 $466 $468 $46a $46c $46e $470 $472 $474 $476

$450 $452 $454 $456 $458 $45a $45c $45e $460 $462 $464 $466 $468 $46a $46c $46e $470 $472 $474 $476 $478 $47a $47c $47e $480 $482 $484 $486 $488 $48a $48c $48e $490 $492 $494 $496 $498 $49a $49c $49e

$478 $47a $47c $47e $480 $482 $484 $486 $488 $48a $48c $48e $490 $492 $494 $496 $498 $49a $49c $49e $4a0 $4a2 $4a4 $4a6 $4a8 $4aa $4ac $4ae $4b0 $4b2 $4b4 $4b6 $4b8 $4ba $4bc $4be $4c0 $4c2 $4c4 $4c6

$4a0 $4a2 $4a4 $4a6 $4a8 $4aa $4ac $4ae $4b0 $4b2 $4b4 $4b6 $4b8 $4ba $4bc $4be $4c0 $4c2 $4c4 $4c6 $4c8 $4ca $4cc $4ce $4d0 $4d2 $4d4 $4d6 $4d8 $4da $4dc $4de $4e0 $4e2 $4e4 $4e6 $4e8 $4ea $4ec $4ee

$4c8 $4ca $4cc $4ce $4d0 $4d2 $4d4 $4d6 $4d8 $4da $4dc $4de $4e0 $4e2 $4e4 $4e6 $4e8 $4ea $4ec $4ee $4f0 $4f2 $4f4 $4f6 $4f8 $4fa $4fc $4fe $500 $502 $504 $506 $508 $50a $50c $50e $510 $512 $514 $516

$4f0 $4f2 $4f4 $4f6 $4f8 $4fa $4fc $4fe $500 $502 $504 $506 $508 $50a $50c $50e $510 $512 $514 $516 $518 $51a $51c $51e $520 $522 $524 $526 $528 $52a $52c $52e $530 $532 $534 $536 $538 $53a $53c $53e

$518 $51a $51c $51e $520 $522 $524 $526 $528 $52a $52c $52e $530 $532 $534 $536 $538 $53a $53c $53e $540 $542 $544 $546 $548 $54a $54c $54e $550 $552 $554 $556 $558 $55a $55c $55e $560 $562 $564 $566

$540 $542 $544 $546 $548 $54a $54c $54e $550 $552 $554 $556 $558 $55a $55c $55e $560 $562 $564 $566 $568 $56a $56c $56e $570 $572 $574 $576 $578 $57a $57c $57e $580 $582 $584 $586 $588 $58a $58c $58e

$568 $56a $56c $56e $570 $572 $574 $576 $578 $57a $57c $57e $580 $582 $584 $586 $588 $58a $58c $58e $590 $592 $594 $596 $598 $59a $59c $59e $5a0 $5a2 $5a4 $5a6 $5a8 $5aa $5ac $5ae $5b0 $5b2 $5b4 $5b6

$590 $592 $594 $596 $598 $59a $59c $59e $5a0 $5a2 $5a4 $5a6 $5a8 $5aa $5ac $5ae $5b0 $5b2 $5b4 $5b6 $5b8 $5ba $5bc $5be $5c0 $5c2 $5c4 $5c6 $5c8 $5ca $5cc $5ce $5d0 $5d2 $5d4 $5d6 $5d8 $5da $5dc $5de

$5b8 $5ba $5bc $5be $5c0 $5c2 $5c4 $5c6 $5c8 $5ca $5cc $5ce $5d0 $5d2 $5d4 $5d6 $5d8 $5da $5dc $5de $5e0 $5e2 $5e4 $5e6 $5e8 $5ea $5ec $5ee $5f0 $5f2 $5f4 $5f6 $5f8 $5fa $5fc $5fe $600 $602 $604 $606

$5e0 $5e2 $5e4 $5e6 $5e8 $5ea $5ec $5ee $5f0 $5f2 $5f4 $5f6 $5f8 $5fa $5fc $5fe $600 $602 $604 $606 $608 $60a $60c $60e $610 $612 $614 $616 $618 $61a $61c $61e $620 $622 $624 $626 $628 $62a $62c $62e

$608 $60a $60c $60e $610 $612 $614 $616 $618 $61a $61c $61e $620 $622 $624 $626 $628 $62a $62c $62e $630 $632 $634 $636 $638 $63a $63c $63e $640 $642 $644 $646 $648 $64a $64c $64e $650 $652 $654 $656

$630 $632 $634 $636 $638 $63a $63c $63e $640 $642 $644 $646 $648 $64a $64c $64e $650 $652 $654 $656 $658 $65a $65c $65e $660 $662 $664 $666 $668 $66a $66c $66e $670 $672 $674 $676 $678 $67a $67c $67e

$658 $65a $65c $65e $660 $662 $664 $666 $668 $66a $66c $66e $670 $672 $674 $676 $678 $67a $67c $67e $680 $682 $684 $686 $688 $68a $68c $68e $690 $692 $694 $696 $698 $69a $69c $69e $6a0 $6a2 $6a4 $6a6

$680 $682 $684 $686 $688 $68a $68c $68e $690 $692 $694 $696 $698 $69a $69c $69e $6a0 $6a2 $6a4 $6a6 $6a8 $6aa $6ac $6ae $6b0 $6b2 $6b4 $6b6 $6b8 $6ba $6bc $6be $6c0 $6c2 $6c4 $6c6 $6c8 $6ca $6cc $6ce

$6a8 $6aa $6ac $6ae $6b0 $6b2 $6b4 $6b6 $6b8 $6ba $6bc $6be $6c0 $6c2 $6c4 $6c6 $6c8 $6ca $6cc $6ce $6d0 $6d2 $6d4 $6d6 $6d8 $6da $6dc $6de $6e0 $6e2 $6e4 $6e6 $6e8 $6ea $6ec $6ee $6f0 $6f2 $6f4 $6f6

$6d0 $6d2 $6d4 $6d6 $6d8 $6da $6dc $6de $6e0 $6e2 $6e4 $6e6 $6e8 $6ea $6ec $6ee $6f0 $6f2 $6f4 $6f6 $6f8 $6fa $6fc $6fe $700 $702 $704 $706 $708 $70a $70c $70e $710 $712 $714 $716 $718 $71a $71c $71e

$6f8 $6fa $6fc $6fe $700 $702 $704 $706 $708 $70a $70c $70e $710 $712 $714 $716 $718 $71a $71c $71e $720 $722 $724 $726 $728 $72a $72c $72e $730 $732 $734 $736 $738 $73a $73c $73e $740 $742 $744 $746

$720 $722 $724 $726 $728 $72a $72c $72e $730 $732 $734 $736 $738 $73a $73c $73e $740 $742 $744 $746 $748 $74a $74c $74e $750 $752 $754 $756 $758 $75a $75c $75e $760 $762 $764 $766 $768 $76a $76c $76e

$748 $74a $74c $74e $750 $752 $754 $756 $758 $75a $75c $75e $760 $762 $764 $766 $768 $76a $76c $76e $770 $772 $774 $776 $778 $77a $77c $77e $780 $782 $784 $786 $788 $78a $78c $78e $790 $792 $794 $796

$770 $772 $774 $776 $778 $77a $77c $77e $780 $782 $784 $786 $788 $78a $78c $78e $790 $792 $794 $796 $798 $79a $79c $79e $7a0 $7a2 $7a4 $7a6 $7a8 $7aa $7ac $7ae $7b0 $7b2 $7b4 $7b6 $7b8 $7ba $7bc $7be

$798 $79a $79c $79e $7a0 $7a2 $7a4 $7a6 $7a8 $7aa $7ac $7ae $7b0 $7b2 $7b4 $7b6 $7b8 $7ba $7bc $7be $7c0 $7c2 $7c4 $7c6 $7c8 $7ca $7cc $7ce $7d0 $7d2 $7d4 $7d6 $7d8 $7da $7dc $7de $7e0 $7e2 $7e4 $7e6

$7c0 $7c2 $7c4 $7c6 $7c8 $7ca $7cc $7ce $7d0 $7d2 $7d4 $7d6 $7d8 $7da $7dc $7de $7e0 $7e2 $7e4 $7e6 $7e8 $7ea $7ec $7ee $7f0 $7f2 $7f4 $7f6 $7f8 $7fa $7fc $7fe $800 $802 $804 $806 $808 $80a $80c $80e

There are two things to notice in the above table: First, the address advances by
two bytes for each character cell, because two bytes are required to define each
character. Second, the start address of each screen line still only advances by 40
($28 in hexadecimal). This isn’t what we really want, because it means that half of
the previous row will get displayed again on each current row. This is fixed by setting
the number of bytes to advance each screen row in $D058 (LSB) and $D059 (MSB).
So in this case, we want to increase the number of bytes skipped each line from 40
bytes, to 80 bytes, which we can do by setting $D058 to 80 ($50 in hexadecimal),
and $D059 to 0. This gives us a screen layout like this:

M-25

$400 $402 $404 $406 $408 $40a $40c $40e $410 $412 $414 $416 $418 $41a $41c $41e $420 $422 $424 $426 $428 $42a $42c $42e $430 $432 $434 $436 $438 $43a $43c $43e $440 $442 $444 $446 $448 $44a $44c $44e

$450 $452 $454 $456 $458 $45a $45c $45e $460 $462 $464 $466 $468 $46a $46c $46e $470 $472 $474 $476 $478 $47a $47c $47e $480 $482 $484 $486 $488 $48a $48c $48e $490 $492 $494 $496 $498 $49a $49c $49e

$4a0 $4a2 $4a4 $4a6 $4a8 $4aa $4ac $4ae $4b0 $4b2 $4b4 $4b6 $4b8 $4ba $4bc $4be $4c0 $4c2 $4c4 $4c6 $4c8 $4ca $4cc $4ce $4d0 $4d2 $4d4 $4d6 $4d8 $4da $4dc $4de $4e0 $4e2 $4e4 $4e6 $4e8 $4ea $4ec $4ee

$4f0 $4f2 $4f4 $4f6 $4f8 $4fa $4fc $4fe $500 $502 $504 $506 $508 $50a $50c $50e $510 $512 $514 $516 $518 $51a $51c $51e $520 $522 $524 $526 $528 $52a $52c $52e $530 $532 $534 $536 $538 $53a $53c $53e

$540 $542 $544 $546 $548 $54a $54c $54e $550 $552 $554 $556 $558 $55a $55c $55e $560 $562 $564 $566 $568 $56a $56c $56e $570 $572 $574 $576 $578 $57a $57c $57e $580 $582 $584 $586 $588 $58a $58c $58e

$590 $592 $594 $596 $598 $59a $59c $59e $5a0 $5a2 $5a4 $5a6 $5a8 $5aa $5ac $5ae $5b0 $5b2 $5b4 $5b6 $5b8 $5ba $5bc $5be $5c0 $5c2 $5c4 $5c6 $5c8 $5ca $5cc $5ce $5d0 $5d2 $5d4 $5d6 $5d8 $5da $5dc $5de

$5e0 $5e2 $5e4 $5e6 $5e8 $5ea $5ec $5ee $5f0 $5f2 $5f4 $5f6 $5f8 $5fa $5fc $5fe $600 $602 $604 $606 $608 $60a $60c $60e $610 $612 $614 $616 $618 $61a $61c $61e $620 $622 $624 $626 $628 $62a $62c $62e

$630 $632 $634 $636 $638 $63a $63c $63e $640 $642 $644 $646 $648 $64a $64c $64e $650 $652 $654 $656 $658 $65a $65c $65e $660 $662 $664 $666 $668 $66a $66c $66e $670 $672 $674 $676 $678 $67a $67c $67e

$680 $682 $684 $686 $688 $68a $68c $68e $690 $692 $694 $696 $698 $69a $69c $69e $6a0 $6a2 $6a4 $6a6 $6a8 $6aa $6ac $6ae $6b0 $6b2 $6b4 $6b6 $6b8 $6ba $6bc $6be $6c0 $6c2 $6c4 $6c6 $6c8 $6ca $6cc $6ce

$6d0 $6d2 $6d4 $6d6 $6d8 $6da $6dc $6de $6e0 $6e2 $6e4 $6e6 $6e8 $6ea $6ec $6ee $6f0 $6f2 $6f4 $6f6 $6f8 $6fa $6fc $6fe $700 $702 $704 $706 $708 $70a $70c $70e $710 $712 $714 $716 $718 $71a $71c $71e

$720 $722 $724 $726 $728 $72a $72c $72e $730 $732 $734 $736 $738 $73a $73c $73e $740 $742 $744 $746 $748 $74a $74c $74e $750 $752 $754 $756 $758 $75a $75c $75e $760 $762 $764 $766 $768 $76a $76c $76e

$770 $772 $774 $776 $778 $77a $77c $77e $780 $782 $784 $786 $788 $78a $78c $78e $790 $792 $794 $796 $798 $79a $79c $79e $7a0 $7a2 $7a4 $7a6 $7a8 $7aa $7ac $7ae $7b0 $7b2 $7b4 $7b6 $7b8 $7ba $7bc $7be

$7c0 $7c2 $7c4 $7c6 $7c8 $7ca $7cc $7ce $7d0 $7d2 $7d4 $7d6 $7d8 $7da $7dc $7de $7e0 $7e2 $7e4 $7e6 $7e8 $7ea $7ec $7ee $7f0 $7f2 $7f4 $7f6 $7f8 $7fa $7fc $7fe $800 $802 $804 $806 $808 $80a $80c $80e

$810 $812 $814 $816 $818 $81a $81c $81e $820 $822 $824 $826 $828 $82a $82c $82e $830 $832 $834 $836 $838 $83a $83c $83e $840 $842 $844 $846 $848 $84a $84c $84e $850 $852 $854 $856 $858 $85a $85c $85e

$860 $862 $864 $866 $868 $86a $86c $86e $870 $872 $874 $876 $878 $87a $87c $87e $880 $882 $884 $886 $888 $88a $88c $88e $890 $892 $894 $896 $898 $89a $89c $89e $8a0 $8a2 $8a4 $8a6 $8a8 $8aa $8ac $8ae

$8b0 $8b2 $8b4 $8b6 $8b8 $8ba $8bc $8be $8c0 $8c2 $8c4 $8c6 $8c8 $8ca $8cc $8ce $8d0 $8d2 $8d4 $8d6 $8d8 $8da $8dc $8de $8e0 $8e2 $8e4 $8e6 $8e8 $8ea $8ec $8ee $8f0 $8f2 $8f4 $8f6 $8f8 $8fa $8fc $8fe

$900 $902 $904 $906 $908 $90a $90c $90e $910 $912 $914 $916 $918 $91a $91c $91e $920 $922 $924 $926 $928 $92a $92c $92e $930 $932 $934 $936 $938 $93a $93c $93e $940 $942 $944 $946 $948 $94a $94c $94e

$950 $952 $954 $956 $958 $95a $95c $95e $960 $962 $964 $966 $968 $96a $96c $96e $970 $972 $974 $976 $978 $97a $97c $97e $980 $982 $984 $986 $988 $98a $98c $98e $990 $992 $994 $996 $998 $99a $99c $99e

$9a0 $9a2 $9a4 $9a6 $9a8 $9aa $9ac $9ae $9b0 $9b2 $9b4 $9b6 $9b8 $9ba $9bc $9be $9c0 $9c2 $9c4 $9c6 $9c8 $9ca $9cc $9ce $9d0 $9d2 $9d4 $9d6 $9d8 $9da $9dc $9de $9e0 $9e2 $9e4 $9e6 $9e8 $9ea $9ec $9ee

$9f0 $9f2 $9f4 $9f6 $9f8 $9fa $9fc $9fe $a00 $a02 $a04 $a06 $a08 $a0a $a0c $a0e $a10 $a12 $a14 $a16 $a18 $a1a $a1c $a1e $a20 $a22 $a24 $a26 $a28 $a2a $a2c $a2e $a30 $a32 $a34 $a36 $a38 $a3a $a3c $a3e

$a40 $a42 $a44 $a46 $a48 $a4a $a4c $a4e $a50 $a52 $a54 $a56 $a58 $a5a $a5c $a5e $a60 $a62 $a64 $a66 $a68 $a6a $a6c $a6e $a70 $a72 $a74 $a76 $a78 $a7a $a7c $a7e $a80 $a82 $a84 $a86 $a88 $a8a $a8c $a8e

$a90 $a92 $a94 $a96 $a98 $a9a $a9c $a9e $aa0 $aa2 $aa4 $aa6 $aa8 $aaa $aac $aae $ab0 $ab2 $ab4 $ab6 $ab8 $aba $abc $abe $ac0 $ac2 $ac4 $ac6 $ac8 $aca $acc $ace $ad0 $ad2 $ad4 $ad6 $ad8 $ada $adc $ade

$ae0 $ae2 $ae4 $ae6 $ae8 $aea $aec $aee $af0 $af2 $af4 $af6 $af8 $afa $afc $afe $b00 $b02 $b04 $b06 $b08 $b0a $b0c $b0e $b10 $b12 $b14 $b16 $b18 $b1a $b1c $b1e $b20 $b22 $b24 $b26 $b28 $b2a $b2c $b2e

$b30 $b32 $b34 $b36 $b38 $b3a $b3c $b3e $b40 $b42 $b44 $b46 $b48 $b4a $b4c $b4e $b50 $b52 $b54 $b56 $b58 $b5a $b5c $b5e $b60 $b62 $b64 $b66 $b68 $b6a $b6c $b6e $b70 $b72 $b74 $b76 $b78 $b7a $b7c $b7e

$b80 $b82 $b84 $b86 $b88 $b8a $b8c $b8e $b90 $b92 $b94 $b96 $b98 $b9a $b9c $b9e $ba0 $ba2 $ba4 $ba6 $ba8 $baa $bac $bae $bb0 $bb2 $bb4 $bb6 $bb8 $bba $bbc $bbe $bc0 $bc2 $bc4 $bc6 $bc8 $bca $bcc $bce

It is possible to use Super-Extended Attribute Mode from C65-mode, by setting the
screen to 80 columns, as the C65 ROM sets up 2KB for both the screen RAM and
colour RAM, and this automatically sets $D058 and $D059 to the correct value for
40×2 = 80 bytes per screen line. The user need only to treat each character pair as a
single Super-Extended Attribute character, and to enable Super-Extended Attribute
Mode, as described above.

Because pairs of colour RAM and screen RAM bytes are used to define each character,
care must be taken to initialise and manipulate the screen. A good approach is to set
the text colour to black, because this is colour code 0, and then to fill the screen with
@ characters, because that is character code 0. You can then have several ways to
manipulate the screen. You can use the normal PRINT command and carefully construct
strings that will put the correct values into each screen and colour byte pair. Another
approach is to use the BANK and POKE commands to directly set the contents of the
screen and colour RAM.

Managing a Super-Extended Attribute Mode screen in this way using BASIC 65 is
of course rather a hack, and is only suggested as a relatively simple way to begin
experimenting. You will almost certainly want to quickly move to using custom screen
handling code, most probably in assembly, to manipulate Super-Extended Attribute
Mode screens, although this approach of using BASIC 65 can be quite powerful, by
allowing use of existing screen scrolling and other manipulations.

XXX Example program

M-26

The following descriptions assume that you have implemented one of the methods
described above to set the screen and colour RAM.

Full-Colour (256 colours per charac-
ter) Text Mode (FCM)
In normal VIC-II/III text mode, one byte is used for each row of pixels in a character.
As a reminder for how those modes work, in hi-res mode, each pixel is either the back-
ground or foreground colour, based on the state of one bit in the byte. Multi-colour
mode uses two bits to select between four possible colours, but as there are still only
8 bits to describe each row of 8 pixels, each pair of pixels has the same colour. The
VIC-IV’s full-colour text mode removes these limitations, and allows each pixel of a
character to be chosen from the 256 colour of either the primary or alternate palette
bank, without sacrificing horizontal resolution.

To do this, each character now requires 64 bytes of data. The address of the data
is 64 × the character number, regardless of the character set address. FCM should
normally be used with Super-Extended Attribute Mode (SEAM), so that more than 256
unique characters can be address. As SEAM allows the selection of 8,192 unique
characters, this allows FCM character data to be placed anywhere in the first 512KB
of chip RAM (but note that most models of the MEGA65 have only 384KB of chip RAM).

Nibble-colour (16 colours per charac-
ter) Text Mode (NCM)
The Nibble-Colour Mode (NCM) for text is similar to Full-Colour Text Mode, except that
each byte of data describes two pixels using 4 bits each. This makes the NCM unique,
because the characters will be 16 pixels wide, instead of the usual 8 pixels wide.
This can be used to create colourful displays, without using as much memory as FCM,
because fewer characters are required to cover the screen. Unlike the VIC-II’s MCM,
this mode does not result in a loss of horizontal resolution.

In NCM the lower four bits of the pixel colour comes from the upper or lower four bits
of the pixel data. The upper four bits of the colour code come from the colour RAM
data for the displayed character. This makes it possible to use all palette entries in
NCM, although the limitation of 16 colours per character remains.

A further advantage of NCM is that it uses fewer bus cycles per pixel than FCM, be-
cause fewer character data fetches need to occur per raster line. Together with the

M-27

reduced memory requirements, this makes NCM particularly useful for creating colour-
ful multiple layers of graphics. This allows the VIC-IV to display arcade style displays
with more colours than many 16-bit computers.

XXX

Alpha-Blending / Anti-Aliasing
XXX

Flipping Characters
XXX

Variable Width Fonts
There are 4 bits that allow trimming pixels from the right edge of characters when they
are displayed. This has the effect of making characters narrower. This can be useful
for making more attractive text displays, where narrow characters, such as “i” take
less space than wider characters, such as “m”, without having to use a bitmap display.
This feature can be used to make it very efficient to display such variable-width text
displays – both in terms of memory usage and processing time.

This feature can be combined with full-colour text mode, alpha blending mode and
4-bits per pixel mode to allow characters that consist of 15 levels of intensity between
the background and foreground colour, and that are up to 16 pixels wide. Further,
the GOTO bit can be used to implement negative kerning, so that character pairs like
A and T do not have excessive white space between them when printed adjacently.
The prudent use of these features can result in highly impressive text display, similar to
that on modern 32-bit and 64-bit systems, but that are still efficient enough to be im-
plemented on a relatively constrained system such as the MEGA65. The “MegaWAT!?”
presentation software for the MEGA65 uses several of these features to produce its
attractive anti-aliased proportional text display on slides.

XXX MEGAWat!? screenshot

XXX Example program

M-28

Raster Re-write Buffer
If the GOTO bit is set for a character in Super-Extended Attribute Mode, instead of
painting a character, the position on the raster is back-tracked (or advanced forward
to) the pixel position specified in the low 10 bits of the screen memory bytes. If the
vertical flip bit is set, then this has the alternate meaning of preventing the background
colour from being painted. This combination can be used to print text material over
the top of other text material, providing a crude supplement to the 8 hardware sprites.
The amount of material is limited only by the raster time of the VIC-IV. Some experi-
mentation will be required to determine how much can be achieved in PAL and NTSC
modes.

If the GOTO bit is set for a character, and the character width reduction bits are also
set, they are interpretted as a Y offset to add to the character data address, but
only in Full Colour Mode. Setting Y=1 causes the character data to be fetched from
8 bytes later, i.e., the first row of character data will come from the address where
the second row of character data would normally be fetched. Similary for increased
values the character data will be fetched from further character rows. With careful
arrangement of characters in memory, it is possible to use this feature to provide free
vertical placement of soft sprites, without needing to copy the character data.

This ability to draw multiple layers of text and graphics is highly powerful. For example,
it can be used to provide multiple overlapping layers of separately scrollable graphics.
This gives many of the advantages of bitplane-based play-fields on other computers,
such as the Amiga, but without the disadvantages of bitplanes.

A good introduction to the Raster Re-write Buffer and its uses can be found in this
video:

https://www.youtube.com/watch?v=00bm5uBeBos&feature=youtu.be

One important aspect of the RRB, is that the VIC-IV will display only the character
data to the left of, and including, the last drawn character. This means that if you use
the GOTO token to overwrite multiple layers of graphics, you must either make sure
that the last layer reaches to the right-hand edge of the display, or you must include
a GOTO token that moves the render position to the right-hand edge of the display.

XXX Example program

SPRITES

M-29

https://www.youtube.com/watch?v=00bm5uBeBos&feature=youtu.be

VIC-II/III Sprite Control
The control of sprites for C64 / VIC-II/III compatibility is unchanged from the C64. The
only practical differences are very minor. In particular the VIC-IV uses ring-buffer for
each sprites data when rendering a raster. This means that a sprite can be displayed
multiple times per raster line, thus potentially allowing for horizontal multiplexing.

Extended Sprite Image Sets
On the VIC-II and VIC-III, all sprites must draw their image data from a single 16KB
region of memory at any point in time. This limits the number of different sprite images
to 256, because each sprite image occupies 64 bytes. In practice, the same 16KB
region must also contain either bitmap, text or bitplane data, considerably reducing
the number of sprite images that can be used at the same time.

The VIC-IV removes this limitation, by allowing sprite data to be placed anywhere in
memory, although still on 64-byte boundaries. This is done by setting the SPRPTR16
signal (bit 7, $D06E, decimal 53358), which tells the VIC-IV to expect two bytes per
sprite pointer instead of one. These addresses are then absolute addresses, and ignore
the 16KB VIC-II bank selection logic. Thus 16 bytes are required instead of 8 bytes.
The list of pointers can also be placed anywhere in memory by setting the SPRPTRADR
($D06C – $D06D, 53356 – 53357 decimal) and SPRPTRBNK signals (bits 0 – 6, $D06E,
53358 decimal). This allows for sprite data to be located anywhere in the first 4MB of
RAM, and the sprite pointer list to be located anywhere in the first 8MB of RAM. Note
that typical installations of the VIC-IV have only 384KB of connected RAM, so these
limitations are of no practical effect. However, the upper bits of the SPRPTRBNK signal
should be set to zero to avoid forward-compatibility problems.

One reason for supporting more sprite images is that sprites on the VIC-IV can require
more than one 64 byte image slot. For example, enabling Extra-Wide Sprite Mode
means that a sprite will require 8×21 = 168 bytes, and will thus occupy four VIC-II
style 64 byte sprite image slots. If variable height sprites are used, this can grow to
as much as 8×255 = 2,040 bytes per sprite.

Variable Sprite Size
Sprites can be one of three widths with the VIC-IV:

1. Normal VIC-II width (24 pixels wide).

2. Extra Wide, where 64 bits (8 bytes) of data are used per raster line, instead of
the VIC-II’s 24. This results in sprites that are 64 pixels wide, unless Full-Colour

M-30

Sprite Mode is selected for a sprite, in which case the sprite will be 64 bits ÷ 4
bits per pixel = 16 pixels wide.

3. Tiled mode, where the sprite is drawn repeatedly until the end of the raster line.
Tiled mode should normally only be used with Extra Wide sprite mode, as the
tiling always occurs using the full 64-bit sprite data. Thus if you use tiled mode
with normal 24 pixel wide mono or multi-colour sprites, the tiling will treat each
2 and 2/3 rows of sprite data as a single row, resulting in garbled displays.

To enable a sprite to be 64 pixels (or 16 pixels if in Full-Colour Sprite Mode), set the
corresponding bit for the sprite in the SPRX64EN register at ($D057, 53335 decimal).
Enabling Full Colour mode for a sprite implicitly enables extended width mode, causes
these sprites to be 16 pixels wide.

Similarly, sprites can be various heights: Sprites will be either the 21 pixels high of
the VIC-II, or if the corresponding bit for the sprite is enabled in the SPRHGTEN signal
($D055, 53333 decimal), then that sprite will be the number of pixels tall that is set
in the SPRHGT register ($D056, 53334 decimal).

Variable Sprite Resolution
By default, sprites are the same resolution as on the VIC-II, i.e., each sprite pixel is
two physical pixels wide and high. However, sprites can be made to use the native
resolution, where sprite pixels are one physical pixel wide and/or high. This is achieved
by setting the relevant bit for the sprite in the SPRENV400 ($D076, 53366 decimal)
registers to increase the vertical resolution on a sprite-by-sprite basis. The horizontal
resolution for all sprites is either the normal VIC-II resolution, or if the SPR640 signal
is set (bit 4 of $D054, 53332 decimal), then sprites will have the same horizontal
resolution as the physical pixels of the display.

Sprite Palette Bank
The VIC-IV has four palette banks, compared with the single palette bank of the VIC-
III. The VIC-IV allows the selection of separate palette banks for bitmap/text graphics
and for sprites. This makes it easy to have very colourful displays, where the sprites
have different colours to the rest of the display, or to use palette animation to achieve
interesting visual effects in sprites, without disturbing the palette used by other ele-
ments of the display.

The sprite palette bank is selected by setting the SPRPALSEL signal in bits 2 and 3 of
the register $D070 (53360 decimal). It is possible to set this to the same bank as
the bitmap/text display, or to select a different palette bank. Palette bank selection

M-31

takes effect immediately. Don’t forget that to be able to modify a palette, you have
to also bank it to be the palette accessible via the palette bank registers at $D100 –
$D3FF by setting the MAPEDPAL signal in bits 6 and 7 of $D070.

Full-Colour Sprite Mode
In addition to monochrome and multi-colour modes, the VIC-IV supports a new full-
colour sprite mode. In this mode, four bits are used to encode each sprite pixel. How-
ever, unlike multi-colour mode where pairs of bits encode pairs of pixels, in full-colour
mode the pixels remain at their normal horizontal resolution. The colour zero is consid-
ered transparent. If you wish to use black in a full-colour sprite, you must configure the
palette bank that is selected for sprites so that one of the 15 colours for the specific
sprite encodes black.

Full-colour sprite mode is selectable for each sprite by setting the appropriate bit in
the SPR16EN register ($D06B, 53355 decimal).

To enable the eight sprites to have 15 unique colours each, the sprite colour is drawn
using the palette entry corresponding to: spritenumber × 16 + nibblevalue, where
spritenumber is the number of the sprite (from 0 to 7), and nibblevalue is the value of
the half-byte that contains the sprite data for the pixel. In addition, if bitplane mode
is enabled for this sprite, then 128 is added to the colour value, which makes it easy
to switch between two colour schemes for a given sprite by changing only one bit in
the SPRBPMEN register.

Because Full-Colour Sprite Mode requires four bits per pixel, sprites will be only six
pixels wide, unless Extra Wide Sprite Mode is enabled for a sprite, in which case the
sprite will be 16 pixels wide. Tiled Mode also works with Full-Colour Sprite Mode, and
will result in the 16 full-colour pixels of the sprite being repeated until the end of the
raster line.

The following BASIC program draws a Full-Colour Sprite in either C64 or C65-mode:

M-32

10 P R I N T CHR$ (1 4 7)

20 REM C65 / C64 - MODE D E T E C T

30 IF PEEK (5 3 2 7 2) AND 32 THEN GOTO 100

40 POKE 53295 , ASC (" G "): POKE 53295 , ASC (" S ")

100 REM S E T U P S P R I T E

110 AD = 4 0 9 6 : REM $ 1 0 0 0 S P R I T E ADDR

120 TC =10 : REM T R A N S P A R E N T C O L O U R

130 SPR = PEEK (5 3 3 5 6) + PEEK (5 3 3 5 7) * 2 5 6 : REM GET S P R I T E T A B L E A D D R E S S

140 POKE SPR , AD /64 : REM SET S P R I T E A D D R E S S

150 FOR I = AD TO AD +168 : REM C L E A R S P R I T E WITH TC

160 POKE I , TC + TC *16 : REM ONE BYTE = 2 P I X E L

170 NEXT

180 POKE 53287 , TC : REM SET T R A N S P A R E N T C O L O U R

190 POKE 53 24 8 , 10 0 : REM PUT S P R I T E ...

200 POKE 53 24 9 , 10 0 : REM ON S C R E E N AT 100 ,100

210 POKE 53355 ,1 : REM MAKE S P R I T E 0 16 - C O L O U R

220 POKE 53335 ,1 : REM MAKE S P R I T E 0 USE 16 X4 - BITS

230 POKE 53269 ,1 : REM E N A B L E S P R I T E 0

240 G O S U B 900 : REM READ MULTI - C O L O U R S P R I T E

250 END

900 REM LOAD S P R I T E FROM DATA

910 READ N$: IF N$ =" END " THEN R E T U R N

920 G O S U B 1000 : REM D E C O D E LINE

930 GOTO 910

M-33

1000 REM D E C O D E S T R I N G OF N I B B L E S IN N$ AT A D D R E S S AD

1010 IF LEN (N$) < >16 THEN B E G I N : P R I N T " I L L E G A L SPR DATA !": END : BEND

1020 FOR I =1 TO 16 STEP 2

1030 N =(ASC (MID$ (N$, I ,1)) - ASC (" @ ")) : REM HIGH NYB

1040 IF N <0 THEN N = TC : REM . IS T R A N S P A R E N T

1050 M =(ASC (MID$ (N$, I +1 ,1)) - ASC (" @ ")) : REM LOW NYB

1060 IF M <0 THEN M = TC : REM . IS T R A N S P A R E N T

1070 POKE AD ,(N AND 1 5) * 1 6 + (M AND 15): REM SET 2 P I X E L S

1080 AD = AD +1 : REM A D V A N C E AD

1090 NEXT I

1100 R E T U R N

1998 REM S P R I T E DATA

1999 REM . = T R A N S P A R E N T , @ - O = C O L O U R S 0 TO 15

2000 DATA ".. AAFF ... HHCC ..."

2010 DATA ". AAFF HHCC .."

2020 DATA " AAFF HHCC ."

2030 DATA " AFF ... @@@ ... HHC ."

2040 DATA " FF .. @ @ G G G @ @ .. HH ."

2050 DATA ".. @ @ G G G G G G G @ @ ..."

2060 DATA ". @ G G G G G G G G G G G @ .."

2070 DATA ". @ G G G G G G G G G G G @ .."

2080 DATA " @ G G G @ @ G G G @ @ G G G @ ."

2090 DATA " @ G G @ G G G G G G G @ G G @ ."

2100 DATA " @ G G G G G G G G G G G G G @ ."

2110 DATA " @ G G G G G B G B G G G G G @ ."

2120 DATA " @ G G G B B B B B B B G G G @ ."

2130 DATA ". @ G G G G B B B G G G G @ .."

2140 DATA ". @ G G G G G B G G G G G @ .."

2150 DATA ".. @ @ G G G G G G G @ @ ..."

2160 DATA " II .. @ @ G G G @ @ .. KK ."

2170 DATA " DII ... @@@ ... KKE ."

2180 DATA " DDII KKEE ."

2190 DATA ". DDII KKEE .."

2200 DATA ".. DDII ... KKEE ..."

2210 DATA " END "

M-34

VIC-II / C64 REGISTERS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D000 53248 S0X

D001 53249 S0Y

D002 53250 S1X

D003 53251 S1Y

D004 53252 S2X

D005 53253 S2Y

D006 53254 S3X

D007 53255 S3Y

D008 53256 S4X

D009 53257 S4Y

D00A 53258 S5X

D00B 53259 S5Y

D00C 53260 S6X

D00D 53261 S6Y

D00E 53262 S7X

D00F 53263 S7Y

D010 53264 SXMSB

D011 53265 RC ECM BMM BLNK RSEL YSCL

D012 53266 RC

D013 53267 LPX

D014 53268 LPY

D015 53269 SE

D016 53270 – RST MCM CSEL XSCL

D017 53271 SEXY

D018 53272 VS CB –

D019 53273 – ILP ISSC ISBC RIRQ

D01A 53274 – MISSC MISBC MRIRQ

D01B 53275 BSP

D01C 53276 SCM

D01D 53277 SEXX

D01E 53278 SSC

D01F 53279 SBC

D020 53280 – BORDERCOL

D021 53281 – SCREENCOL

D022 53282 – MC1

D023 53283 – MC2

continued …

M-35

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D024 53284 – MC3

D025 53285 SPRMC0

D026 53286 SPRMC1

D027 53287 SPR0COL

D028 53288 SPR1COL

D029 53289 SPR2COL

D02A 53290 SPR3COL

D02B 53291 SPR4COL

D02C 53292 SPR5COL

D02D 53293 SPR6COL

D02E 53294 SPR7COL

D030 53296 – C128FAST

• BLNK disable display

• BMM bitmap mode

• BORDERCOL display border colour (16 colour)

• BSP sprite background priority bits

• C128FAST 2MHz select (for C128 2MHz emulation)

• CB character set address location (× 1KiB)

• CSEL 38/40 column select

• ECM extended background mode

• ILP light pen indicate or acknowledge

• ISBC sprite:bitmap collision indicate or acknowledge

• ISSC sprite:sprite collision indicate or acknowledge

• LPX Coarse horizontal beam position (was lightpen X)

• LPY Coarse vertical beam position (was lightpen Y)

• MC1 multi-colour 1 (16 colour)

• MC2 multi-colour 2 (16 colour)

• MC3 multi-colour 3 (16 colour)

• MCM Multi-colour mode

M-36

• MISBC mask sprite:bitmap collision IRQ

• MISSC mask sprite:sprite collision IRQ

• MRIRQ mask raster IRQ

• RC raster compare bit 8

• RIRQ raster compare indicate or acknowledge

• RSEL 24/25 row select

• RST Disables video output on MAX Machine(tm) VIC-II 6566. Ignored on normal
C64s and the MEGA65

• S0X sprite 0 horizontal position

• S0Y sprite 0 vertical position

• S1X sprite 1 horizontal position

• S1Y sprite 1 vertical position

• S2X sprite 2 horizontal position

• S2Y sprite 2 vertical position

• S3X sprite 3 horizontal position

• S3Y sprite 3 vertical position

• S4X sprite 4 horizontal position

• S4Y sprite 4 vertical position

• S5X sprite 5 horizontal position

• S5Y sprite 5 vertical position

• S6X sprite 6 horizontal position

• S6Y sprite 6 vertical position

• S7X sprite 7 horizontal position

• S7Y sprite 7 vertical position

• SBC sprite/foreground collision indicate bits

• SCM sprite multicolour enable bits

• SCREENCOL screen colour (16 colour)

• SE sprite enable bits

• SEXX sprite horizontal expansion enable bits

M-37

• SEXY sprite vertical expansion enable bits

• SPR0COL sprite 0 colour / 16-colour sprite transparency colour (lower nybl)

• SPR1COL sprite 1 colour / 16-colour sprite transparency colour (lower nybl)

• SPR2COL sprite 2 colour / 16-colour sprite transparency colour (lower nybl)

• SPR3COL sprite 3 colour / 16-colour sprite transparency colour (lower nybl)

• SPR4COL sprite 4 colour / 16-colour sprite transparency colour (lower nybl)

• SPR5COL sprite 5 colour / 16-colour sprite transparency colour (lower nybl)

• SPR6COL sprite 6 colour / 16-colour sprite transparency colour (lower nybl)

• SPR7COL sprite 7 colour / 16-colour sprite transparency colour (lower nybl)

• SPRMC0 Sprite multi-colour 0

• SPRMC1 Sprite multi-colour 1

• SSC sprite/sprite collision indicate bits

• SXMSB sprite horizontal position MSBs

• VS screen address (× 1KiB)

• XSCL horizontal smooth scroll

• YSCL 24/25 vertical smooth scroll

VIC-III / C65 REGISTERS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D020 53280 BORDERCOL

D021 53281 SCREENCOL

D022 53282 MC1

D023 53283 MC2

D024 53284 MC3

D025 53285 SPRMC0

D026 53286 SPRMC1

D02F 53295 KEY

D030 53296 ROME CROM9 ROMC ROMA ROM8 PAL EXTSYNC CRAM2K

D031 53297 H640 FAST ATTR BPM V400 H1280 MONO INT

D033 53299 B0ADODD – B0ADEVN –

continued …

M-38

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D034 53300 B1ADODD – B1ADEVN –

D035 53301 B2ADODD – B2ADEVN –

D036 53302 B3ADODD – B3ADEVN –

D037 53303 B4ADODD – B4ADEVN –

D038 53304 B5ADODD – B5ADEVN –

D039 53305 B6ADODD – B6ADEVN –

D03A 53306 B7ADODD – B7ADEVN –

D03B 53307 BPCOMP

D03C 53308 BPX

D03D 53309 BPY

D03E 53310 HPOS

D03F 53311 VPOS

D040 53312 B0PIX

D041 53313 B1PIX

D042 53314 B2PIX

D043 53315 B3PIX

D044 53316 B4PIX

D045 53317 B5PIX

D046 53318 B6PIX

D047 53319 B7PIX

D100 –
D1FF

53504 –
53759 PALRED

D200 –
D2FF

53760 –
54015 PALGREEN

D300 –
D3FF

54016 –
54271 PALBLUE

• ATTR Enable extended attributes and 8 bit colour entries

• B0ADEVN - Bitplane 0 address, even lines

• B0ADODD - Bitplane 0 address, odd lines

• B0PIX Display Address Translater (DAT) Bitplane 0 port

• B1ADEVN - Bitplane 1 address, even lines

• B1ADODD - Bitplane 1 address, odd lines

• B1PIX Display Address Translater (DAT) Bitplane 1 port

• B2ADEVN - Bitplane 2 address, even lines

• B2ADODD - Bitplane 2 address, odd lines

M-39

• B2PIX Display Address Translater (DAT) Bitplane 2 port

• B3ADEVN - Bitplane 3 address, even lines

• B3ADODD - Bitplane 3 address, odd lines

• B3PIX Display Address Translater (DAT) Bitplane 3 port

• B4ADEVN - Bitplane 4 address, even lines

• B4ADODD - Bitplane 4 address, odd lines

• B4PIX Display Address Translater (DAT) Bitplane 4 port

• B5ADEVN - Bitplane 5 address, even lines

• B5ADODD - Bitplane 5 address, odd lines

• B5PIX Display Address Translater (DAT) Bitplane 5 port

• B6ADEVN - Bitplane 6 address, even lines

• B6ADODD - Bitplane 6 address, odd lines

• B6PIX Display Address Translater (DAT) Bitplane 6 port

• B7ADEVN - Bitplane 7 address, even lines

• B7ADODD - Bitplane 7 address, odd lines

• B7PIX Display Address Translater (DAT) Bitplane 7 port

• BORDERCOL display border colour (256 colour)

• BPCOMP Complement bitplane flags

• BPM Bit-Plane Mode

• BPX Bitplane X

• BPY Bitplane Y

• CRAM2K Map 2nd KB of colour RAM $DC00-$DFFF

• CROM9 Select between C64 and C65 charset.

• EXTSYNC Enable external video sync (genlock input)

• FAST Enable C65 FAST mode (∼3.5MHz)

• H1280 Enable 1280 horizontal pixels (not implemented)

• H640 Enable C64 640 horizontal pixels / 80 column mode

• HPOS Bitplane X Offset

M-40

• INT Enable VIC-III interlaced mode

• KEY Write $A5 then $96 to enable C65/VIC-III IO registers

• MC1 multi-colour 1 (256 colour)

• MC2 multi-colour 2 (256 colour)

• MC3 multi-colour 3 (256 colour)

• MONO Enable VIC-III MONO video output (not implemented)

• PAL Use PALETTE ROM or RAM entries for colours 0 - 15

• PALBLUE blue palette values (reversed nybl order)

• PALGREEN green palette values (reversed nybl order)

• PALRED red palette values (reversed nybl order)

• ROM8 Map C65 ROM $8000

• ROMA Map C65 ROM $A000

• ROMC Map C65 ROM $C000

• ROME Map C65 ROM $E000

• SCREENCOL screen colour (256 colour)

• SPRMC0 Sprite multi-colour 0 (8-bit for selection of any palette colour)

• SPRMC1 Sprite multi-colour 1 (8-bit for selection of any palette colour)

• V400 Enable 400 vertical pixels

• VPOS Bitplane Y Offset

VIC-IV / MEGA65 SPECIFIC
REGISTERS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D020 53280 BORDERCOL

D021 53281 SCREENCOL

D022 53282 MC1

D023 53283 MC2

D024 53284 MC3

continued …

M-41

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D025 53285 SPRMC0

D026 53286 SPRMC1

D02F 53295 KEY

D048 53320 TBDRPOS

D049 53321 SPRBPMEN TBDRPOS

D04A 53322 BBDRPOS

D04B 53323 SPRBPMEN BBDRPOS

D04C 53324 TEXTXPOS

D04D 53325 SPRTILEN TEXTXPOS

D04E 53326 TEXTYPOS

D04F 53327 SPRTILEN TEXTYPOS

D050 53328 XPOS

D051 53329 NORRDEL DBLRR XPOS

D052 53330 FNRASTER

D053 53331 FNRST SHDEMU – FNRASTER

D054 53332 ALPHEN VFAST PALEMU SPR640 SMTH FCLRHI FCLRLO CHR16

D055 53333 SPRHGTEN

D056 53334 SPRHGHT

D057 53335 SPRX64EN

D058 53336 LINESTEP

D059 53337 LINESTEP

D05A 53338 CHRXSCL

D05B 53339 CHRYSCL

D05C 53340 SIDBDRWD

D05D 53341 HOTREG RSTDELEN SIDBDRWD

D05E 53342 CHRCOUNT

D05F 53343 SPRXSMSBS

D060 53344 SCRNPTR

D061 53345 SCRNPTR

D062 53346 SCRNPTR

D063 53347 EXGLYPH – CHRCOUNT SCRNPTR

D064 53348 COLPTR

D065 53349 COLPTR

D068 53352 CHARPTR

D069 53353 CHARPTR

D06A 53354 CHARPTR

D06B 53355 SPR16EN

D06C 53356 SPRPTRADR

continued …

M-42

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D06D 53357 SPRPTRADR

D06E 53358 SPRPTR16 SPRPTRBNK

D06F 53359 PALNTSC VGAHDTV RASLINE0

D070 53360 MAPEDPAL BTPALSEL SPRPALSEL ABTPALSEL

D071 53361 BP16ENS

D072 53362 SPRYADJ

D073 53363 RASTERHEIGHT ALPHADELAY

D074 53364 SPRENALPHA

D075 53365 SPRALPHAVAL

D076 53366 SPRENV400

D077 53367 SRPYMSBS

D078 53368 SPRYSMSBS

D079 53369 RSTCOMP

D07A 53370 FNRSTCMPEXTIRQS RESERVED
SPTR-
CONT RSTCMP

D07B 53371 Number

D07C 53372 DEBUGC VSYNCP HSYNCP RE-
SERVED BITPBANK

• ABTPALSEL VIC-IV bitmap/text palette bank (alternate palette)

• ALPHADELAY Alpha delay for compositor

• ALPHEN Alpha compositor enable

• BBDRPOS bottom border position

• BITPBANK Set which 128KB bank bitplanes

• BORDERCOL display border colour (256 colour)

• BP16ENS VIC-IV 16-colour bitplane enable flags

• BTPALSEL bitmap/text palette bank

• CHARPTR Character set precise base address (bits 0 - 7)

• CHR16 enable 16-bit character numbers (two screen bytes per character)

• CHRCOUNT Number of characters to display per row (LSB)

• CHRXSCL Horizontal hardware scale of text mode (pixel 120ths per pixel)

• CHRYSCL Vertical scaling of text mode (number of physical rasters per char text
row)

M-43

• COLPTR colour RAM base address (bits 0 - 7)

• DBLRR When set, the Raster Rewrite Buffer is only updated every 2nd raster line,
limiting resolution to V200, but allowing more cycles for Raster-Rewrite actions.

• DEBUGC VIC-IV debug pixel select red(01), green(10) or blue(11) channel vis-
ible in $D07D

• EXGLYPH source full-colour character data from expansion RAM

• EXTIRQS Enable additional IRQ sources, e.g., raster X position.

• FCLRHI enable full-colour mode for character numbers >$FF

• FCLRLO enable full-colour mode for character numbers <=$FF

• FNRASTER Read physical raster position

• FNRST Raster compare source (0=VIC-IV fine raster, 1=VIC-II raster)

• FNRSTCMP Raster compare is in physical rasters if set, or VIC-II raster if clear

• HOTREG Enable VIC-II hot registers. When enabled, touching many VIC-II reg-
isters causes the VIC-IV to recalculate display parameters, such as border po-
sitions and sizes

• HSYNCP hsync polarity

• KEY Write $47 then $53 to enable C65GS/VIC-IV IO registers

• LINESTEP number of bytes to advance between each text row (LSB)

• MAPEDPAL palette bank mapped at $D100-$D3FF

• MC1 multi-colour 1 (256 colour)

• MC2 multi-colour 2 (256 colour)

• MC3 multi-colour 3 (256 colour)

• NORRDEL When clear, raster rewrite double buffering is used

• Number of text rows to display

• PALEMU Enable PAL CRT-like scan-line emulation

• PALNTSC NTSC emulation mode (max raster = 262)

• RASLINE0 first VIC-II raster line

• RASTERHEIGHT physical rasters per VIC-II raster (1 to 16)

• RESERVED

• RSTCMP Raster compare value MSB

M-44

• RSTCOMP Raster compare value

• RSTDELEN Enable raster delay (delays raster counter and interrupts by one line
to match output pipeline latency)

• SCREENCOL screen colour (256 colour)

• SCRNPTR screen RAM precise base address (bits 0 - 7)

• SHDEMU Enable simulated shadow-mask (PALEMU must also be enabled)

• SIDBDRWD Width of single side border

• SMTH video output horizontal smoothing enable

• SPR16EN sprite 16-colour mode enables

• SPR640 Sprite H640 enable;

• SPRALPHAVAL Sprite alpha-blend value

• SPRBPMEN Sprite bitplane-modify-mode enables

• SPRENALPHA Sprite alpha-blend enable

• SPRENV400 Sprite V400 enables

• SPRHGHT Sprite extended height size (sprite pixels high)

• SPRHGTEN sprite extended height enable (one bit per sprite)

• SPRMC0 Sprite multi-colour 0 (8-bit for selection of any palette colour)

• SPRMC1 Sprite multi-colour 1 (8-bit for selection of any palette colour)

• SPRPALSEL sprite palette bank

• SPRPTR16 16-bit sprite pointer mode (allows sprites to be located on any 64
byte boundary in chip RAM)

• SPRPTRADR sprite pointer address (bits 7 - 0)

• SPRPTRBNK sprite pointer address (bits 22 - 16)

• SPRTILEN Sprite horizontal tile enables.

• SPRX64EN Sprite extended width enables (8 bytes per sprite row = 64 pixels
wide for normal sprites or 16 pixels wide for 16-colour sprite mode)

• SPRXSMSBS Sprite H640 X Super-MSBs

• SPRYADJ Sprite Y position adjustment

• SPRYSMSBS Sprite V400 Y position super MSBs

M-45

• SPTRCONT Continuously monitor sprite pointer, to allow changing sprite data
source while a sprite is being drawn

• SRPYMSBS Sprite V400 Y position MSBs

• TBDRPOS top border position

• TEXTXPOS character generator horizontal position

• TEXTYPOS Character generator vertical position

• VFAST C65GS FAST mode (48MHz)

• VGAHDTV Select more VGA-compatible mode if set, instead of HDMI/HDTV
VIC-II cycle-exact frame timing. May help to produce a functional display on
older VGA monitors.

• VSYNCP vsync polarity

• XPOS Read horizontal raster scan position LSB

M-46

APPENDIX N
6526 Complex Interface
Adaptor (CIA) Registers

• CIA 6526 Registers

• CIA 6526 Hypervisor Registers

N-2

CIA 6526 REGISTERS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DC00 56320 PORTA

DC01 56321 PORTB

DC02 56322 DDRA

DC03 56323 DDRB

DC04 56324 TIMERA

DC05 56325 TIMERA

DC06 56326 TIMERB

DC07 56327 TIMERB

DC08 56328 – TODJIF

DC09 56329 – TODSEC

DC0A 56330 – TODSEC

DC0B 56331 TO-
DAMPM – TODHOUR

DC0C 56332 SDR

DC0D 56333 IR – FLG SP ALRM TB TA

DC0E 56334 TOD50 SPMOD IMODA – RMODA OMODA PBONA STRTA

DC0F 56335 – IMODB LOAD RMODB OMODB PBONB STRTB

• ALRM TOD alarm

• DDRA Port A DDR

• DDRB Port B DDR

• FLG FLAG edge detected

• IMODA Timer A Timer A tick source

• IMODB Timer B Timer A tick source

• IR Interrupt flag

• LOAD Strobe input to force-load timers

• OMODA Timer A toggle or pulse

• OMODB Timer B toggle or pulse

• PBONA Timer A PB6 out

• PBONB Timer B PB7 out

• PORTA Port A

N-3

• PORTB Port B

• RMODA Timer A one-shot mode

• RMODB Timer B one-shot mode

• SDR shift register data register(writing starts sending)

• SP shift register full/empty

• SPMOD Serial port direction

• STRTA Timer A start

• STRTB Timer B start

• TA Timer A underflow

• TB Timer B underflow

• TIMERA Timer A counter (16 bit)

• TIMERB Timer B counter (16 bit)

• TOD50 50/60Hz select for TOD clock

• TODAMPM TOD PM flag

• TODHOUR TOD hours

• TODJIF TOD tenths of seconds

• TODSEC TOD seconds

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DC0F 56335 TODEDIT –

DD00 56576 PORTA

DD01 56577 PORTB

DD02 56578 DDRA

DD03 56579 DDRB

DD04 56580 TIMERA

DD05 56581 TIMERA

DD06 56582 TIMERB

DD07 56583 TIMERB

DD08 56584 – TODJIF

DD09 56585 – TODSEC

DD0A 56586 – TODSEC

DD0B 56587 TO-
DAMPM – TODHOUR

continued …

N-4

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DD0C 56588 SDR

DD0D 56589 – FLG SP ALRM TB TA

DD0E 56590 TOD50 SPMOD IMODA – RMODA OMODA PBONA STRTA

DD0F 56591 TODEDIT IMODB LOAD RMODB OMODB PBONB STRTB

• ALRM TOD alarm

• DDRA Port A DDR

• DDRB Port B DDR

• FLG FLAG edge detected

• IMODA Timer A Timer A tick source

• IMODB Timer B Timer A tick source

• LOAD Strobe input to force-load timers

• OMODA Timer A toggle or pulse

• OMODB Timer B toggle or pulse

• PBONA Timer A PB6 out

• PBONB Timer B PB7 out

• PORTA Port A

• PORTB Port B

• RMODA Timer A one-shot mode

• RMODB Timer B one-shot mode

• SDR shift register data register(writing starts sending)

• SP shift register full/empty

• SPMOD Serial port direction

• STRTA Timer A start

• STRTB Timer B start

• TA Timer A underflow

• TB Timer B underflow

• TIMERA Timer A counter (16 bit)

• TIMERB Timer B counter (16 bit)

N-5

• TOD50 50/60Hz select for TOD clock

• TODAMPM TOD PM flag

• TODEDIT TOD alarm edit

• TODHOUR TOD hours

• TODJIF TOD tenths of seconds

• TODSEC TOD seconds

CIA 6526 HYPERVISOR REGISTERS
In addition to the standard CIA registers available on the C64 and C65, the MEGA65
provides an additional set of registers that are visible only when the system is in Hyper-
visor Mode. These additional registers allow the internal state of the CIA to be more
fully extracted when freezing, thus allowing more programs to function correctly after
being frozen. They are not visible when using the MEGA65 normally, and can be safely
ignored by programmers who are not programming the MEGA65 in Hypervisor Mode.

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DC10 56336 TALATCH

DC11 56337 TALATCH

DC12 56338 TALATCH

DC13 56339 TALATCH

DC14 56340 TALATCH

DC15 56341 TALATCH

DC16 56342 TALATCH

DC17 56343 TALATCH

DC18 56344 IMFLG IMSP IMALRM IMTB TODJIF

DC19 56345 TODSEC

DC1A 56346 TODMIN

DC1B 56347 TO-
DAMPM TODHOUR

DC1C 56348 ALRMJIF

DC1D 56349 ALRMSEC

DC1E 56350 ALRMMIN

DC1F 56351 ALR-
MAMPM ALRMHOUR

• ALRMAMPM TOD Alarm AM/PM flag

• ALRMHOUR TOD Alarm hours value

N-6

• ALRMJIF TOD Alarm 10ths of seconds value

• ALRMMIN TOD Alarm minutes value

• ALRMSEC TOD Alarm seconds value

• IMALRM Interrupt mask for TOD alarm

• IMFLG Interrupt mask for FLAG line

• IMSP Interrupt mask for shift register (serial port)

• IMTB Interrupt mask for Timer B

• TALATCH Timer A latch value (16 bit)

• TODAMPM TOD AM/PM flag

• TODHOUR TOD hours value

• TODJIF TOD 10ths of seconds value

• TODMIN TOD Alarm minutes value

• TODSEC TOD Alarm seconds value

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DD10 56592 TALATCH

DD11 56593 TALATCH

DD12 56594 TALATCH

DD13 56595 TALATCH

DD14 56596 TALATCH

DD15 56597 TALATCH

DD16 56598 TALATCH

DD17 56599 TALATCH

DD18 56600 IMFLG IMSP IMALRM IMTB TODJIF

DD19 56601 TODSEC

DD1A 56602 TODMIN

DD1B 56603 TO-
DAMPM TODHOUR

DD1C 56604 DD00DELAY ALRMJIF

DD1D 56605 ALRMSEC

DD1E 56606 ALRMMIN

DD1F 56607 ALR-
MAMPM ALRMHOUR

• ALRMAMPM TOD Alarm AM/PM flag

N-7

• ALRMHOUR TOD Alarm hours value

• ALRMJIF TOD Alarm 10ths of seconds value

• ALRMMIN TOD Alarm minutes value

• ALRMSEC TOD Alarm seconds value

• DD00DELAY Enable delaying writes to $DD00 by 3 cycles to match real 6502
timing

• IMALRM Interrupt mask for TOD alarm

• IMFLG Interrupt mask for FLAG line

• IMSP Interrupt mask for shift register (serial port)

• IMTB Interrupt mask for Timer B

• TALATCH Timer A latch value (16 bit)

• TODAMPM TOD AM/PM flag

• TODHOUR TOD hours value

• TODJIF TOD 10ths of seconds value

• TODMIN TOD Alarm minutes value

• TODSEC TOD Alarm seconds value

N-8

APPENDIX O
4551 UART, GPIO and Utility

Controller
• C65 6551 UART Registers

• 4551 General Purpose I/O & Miscella-

neous Interface Registers

O-2

C65 6551 UART REGISTERS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D600 54784 DATA

D601 54785 – FRMERR PTYERR RXOVR-
RUN RXRDY

D602 54786 TXEN RXEN SYNCMOD CHARSZ PTYEN PTYEVEN

D603 54787 DIVISOR

D604 54788 DIVISOR

D605 54789 IMTXIRQ IMRXIRQ IMTXNMI IMRXNMI –

D606 54790 IFTXIRQ IFRXIRQ IFTXNMI IFRXNMI –

• CHARSZ UART character size: 00=8, 01=7, 10=6, 11=5 bits per byte

• DATA UART data register (read or write)

• DIVISOR UART baud rate divisor (16 bit). Baud rate = 7.09375MHz / DIVISOR,
unless MEGA65 fast UART mode is enabled, in which case baud rate = 80MHz
/ DIVISOR

• FRMERR UART RX framing error flag (clear by reading $D600)

• IFRXIRQ UART interrupt flag: IRQ on RX (not yet implemented on the MEGA65)

• IFRXNMI UART interrupt flag: NMI on RX (not yet implemented on the MEGA65)

• IFTXIRQ UART interrupt flag: IRQ on TX (not yet implemented on the MEGA65)

• IFTXNMI UART interrupt flag: NMI on TX (not yet implemented on the MEGA65)

• IMRXIRQ UART interrupt mask: IRQ on RX (not yet implemented on the MEGA65)

• IMRXNMIUART interrupt mask: NMI on RX (not yet implemented on theMEGA65)

• IMTXIRQ UART interrupt mask: IRQ on TX (not yet implemented on the MEGA65)

• IMTXNMI UART interrupt mask: NMI on TX (not yet implemented on theMEGA65)

• PTYEN UART Parity enable: 1=enabled

• PTYERR UART RX parity error flag (clear by reading $D600)

• PTYEVEN UART Parity: 1=even, 0=odd

• RXEN UART enable receive

• RXOVRRUN UART RX overrun flag (clear by reading $D600)

• RXRDY UART RX byte ready flag (clear by reading $D600)

O-3

• SYNCMOD UART synchronisation mode flags (00=RX & TX both async, 01=RX
sync, TX async, 1x=TX sync, RX async (unused on the MEGA65)

• TXEN UART enable transmit

4551 GENERAL PURPOSE I/O &
MISCELLANEOUS INTERFACE
REGISTERS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D609 54793 – UFAST

D60B 54795 OSKZEN OSKZON PORTF

D60C 54796 PORTFDDR PORTFDDR

D60D 54797 HDSCL HDSDA SDBSH SDCS SDCLK SDDATA RST41 CONN41

D60E 54798 BASHDDR

D60F 54799 AC-
CESSKEY OSKDIM REALHW – KEYUP KEYLEFT

D610 54800 ASCIIKEY

D611 54801 – MCAPS MSCRL MALT MMEGA MCTRL MLSHFT MRSHFT

D612 54802 LJOYB LJOYA JOYSWAP OSKDE-
BUG –

D615 54805 OSKEN VIRTKEY1

D616 54806 OSKALT VIRTKEY2

D617 54807 OSKTOP VIRTKEY3

D618 54808 KSCNRATE

D619 54809 UNUSED

D61A 54810 SYSCTL

D61D 54813 Keyboard Keyboard

D61E 54814 Keyboard

D620 54816 POTAX

D621 54817 POTAY

D622 54818 POTBX

D623 54819 POTBY

D625 54821 J21L

D626 54822 J21H

D627 54823 J21LDDR

D628 54824 J21HDDR

continued …

O-4

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D629 54825 M65MODEL

• ACCESSKEY Enable accessible keyboard input via joystick port 2 fire button

• ASCIIKEY Last key press as ASCII (hardware accelerated keyboard scanner).
Write to clear event ready for next.

• BASHDDR Data Direction Register (DDR) for $D60D bit bashing port.

• CONN41 Internal 1541 drive connect (1=connect internal 1541 drive to IEC
bus)

• HDSCL HDMI I2C control interface SCL clock

• HDSDA HDMI I2C control interface SDA data line

• J21H J21 pins 11 – 14 input/output values

• J21HDDR J21 pins 11 – 14 data direction register

• J21L J21 pins 1 – 6, 9 – 10 input/output values

• J21LDDR J21 pins 1 – 6, 9 – 10 data direction register

• JOYSWAP Exchange joystick ports 1 & 2

• KEYLEFT Directly read C65 Cursor left key

• KEYUP Directly read C65 Cursor up key

• KSCNRATE Physical keyboard scan rate ($00=50MHz, $FF=∼200KHz)

• Keyboard LED control enable

• LJOYA Rotate inputs of joystick A by 180 degrees (for left handed use)

• LJOYB Rotate inputs of joystick B by 180 degrees (for left handed use)

• M65MODEL MEGA65 model ID. Can be used to determine the model of
MEGA65 a programme is running on, e.g., to enable touch controls on MEGA-
phone.

• MALT ALT key state (hardware accelerated keyboard scanner).

• MCAPS CAPS LOCK key state (hardware accelerated keyboard scanner).

• MCTRL CTRL key state (hardware accelerated keyboard scanner).

• MLSHFT Left shift key state (hardware accelerated keyboard scanner).

• MMEGA MEGA/C= key state (hardware accelerated keyboard scanner).

O-5

• MRSHFT Right shift key state (hardware accelerated keyboard scanner).

• MSCRL NOSCRL key state (hardware accelerated keyboard scanner).

• OSKALT Display alternate on-screen keyboard layout (typically dial pad for
MEGA65 telephone)

• OSKDEBUG Debug OSK overlay (WRITE ONLY)

• OSKDIM Light or heavy dimming of background material behind on-screen key-
board

• OSKEN Enable display of on-screen keyboard composited overlay

• OSKTOP 1=Display on-screen keyboard at top, 0=Disply on-screen keyboard at
bottom of screen.

• OSKZEN Display hardware zoom of region under first touch point for on-screen
keyboard

• OSKZON Display hardware zoom of region under first touch point always

• PORTF PMOD port A on FPGA board (data) (Nexys4 boards only)

• PORTFDDR PMOD port A on FPGA board (DDR)

• POTAX Read Port A paddle X, without having to fiddle with SID/CIA settings.

• POTAY Read Port A paddle Y, without having to fiddle with SID/CIA settings.

• POTBX Read Port B paddle X, without having to fiddle with SID/CIA settings.

• POTBY Read Port B paddle Y, without having to fiddle with SID/CIA settings.

• REALHW Set to 1 if the MEGA65 is running on real hardware, set to 0 if emulated
(Xemu) or simulated (ghdl)

• RST41 Internal 1541 drive reset (1=reset, 0=operate)

• SDBSH Enable SD card bitbash mode

• SDCLK SD card SCLK

• SDCS SD card CS_BO

• SDDATA SD card MOSI/MISO

• SYSCTL System control flags (target specific)

• UFAST C65 UART BAUD clock source: 1 = 7.09375MHz, 0 = 80MHz (VIC-IV
pixel clock)

• UNUSED port o output value

O-6

• VIRTKEY1 Set to $7F for no key down, else specify virtual key press.

• VIRTKEY2 Set to $7F for no key down, else specify 2nd virtual key press.

• VIRTKEY3 Set to $7F for no key down, else specify 3nd virtual key press.

O-7

O-8

APPENDIX P
45E100 Fast Ethernet

Controller
• Overview

• Memory Mapped Registers

• Example Programs

P-2

OVERVIEW
The 45E100 is a new and simple Fast Ethernet controller that has been designed
specially for the MEGA65 and for 8-bit computers generally. In addition to supporting
100Mbit Fast Ethernet, it is radically different from other Ethernet controllers, such as
the RR-NET.

The 45E100 includes four receive buffers, allowing upto three frames to be received
while another is being processed, or to allow less frequent processing of interrupts.
These receive buffers can be memory mapped, and also directly accessed using the
MEGA65’s DMA controller. Together with automatic CRC32 checking on reception,
and automatic CRC32 generation for transmit, these features considerably reduce
the burden on the processor, and make it much simpler to write ethernet-enabled
programs.

The 45E100 also supports true full-duplex operation at 100Mbit per second, allowing
for total bi-directional throughput exceeding 100Mbit per second. The MAC address
is software configurable, and promiscuous mode is supported, as are individual control
of the reception of broadcast and multi-cast Ethernet frames.

The 45E100 also supports both transmit and receive interrupts, allowing greatly im-
proved real-world performance. When especially low latency is required, it is also
possible to immediately abort the transmission of the current Ethernet frame, so that
a higher-priority frame can be immediately sent. These features combine to enable
sub-millisecond round trip latencies, which can be of particular value for interactive
applications, such as multi-player network games.

Differences to the RR-NET and similar
solutions
The RR-NET and other Ethernet controllers for the Commodore™ line of 8-bit home
computers generally use an Ethernet controller that was designed for 16-bit PCs, but
that also supports a so-called “8-bit mode,” which suffers from a number of disadvan-
tages. These disadvantages include the lack of working interrupts, as well as processor
intensive access to the Ethernet frame buffers. The lack of interrupts forces programs
to use polling to check for the arrival of new Ethernet frames. This, together with the
complexities of accessing the buffers results in an Ethernet interface that is very slow,
and whose real-world throughput is considerably less than its theoretical 10Mbits per
second. Even a Commodore 64 with REU cannot achieve speeds above several tens
of kilobytes per second.

P-3

In contrast, the 45E100 supports both RX (Ethernet frame received) interrupts and
TX (ready to transmit) interrupts, freeing the processor from having to poll the device.
Because the 45E100 supports RX interrupts, there is no need for large numbers of
receive buffers, which is why the 45E100 requires only two RX buffers to achieve very
high levels of performance.

Further, the 45E100 supports direct memory mapping of the Ethernet frame buffers,
allowing for much more efficient access, including by DMA. Using the MEGA65’s in-
tegrated DMA controller it is quite possible to achieve transfer rates of several mega-
bytes per second – some 100x faster than the RR-NET.

Theory of Operation: Receiving
Frames
The 45E100 is simple to operate: To begin receiving Ethernet frames, the programmer
needs only to clear the RST and TXRST bits (bit 0 of register $D6E0) to ensure that the
Ethernet controller is reset, and then set these bits to 1, to release the controller from
the reset state. It will then auto-negotiate connection at the highest available speed,
typically 100Mbit, full-duplex.

If you wish to simply poll for the arrival of ethernet frames, check the RXQ bit (bit 5 of
$D6E1). If it is set, then there is at least one frame that has been received. To access
the next frame that has been received, write $01 to $D6E1, and then $03 to $D6E1.
This will rotate the ring of receive buffers, to make the next received frame accessible
by the processor. The receive buffer that was previously accessible by the processor
is marked free, and the 45E100 will use it to receive another ethernet frame when
required.

Because the 45E100 has four receive buffers, it is possible that to process multiple
frames in succession by following this procedure. If all receive buffers contain received
frames, and the processor has not accepted them, then the RXBLKD signal will be
asserted, so that the processor knows that it if any more frames are received, they
will be lost. Programmers should take care to avoid this situation. As the 45E100
supports receive interrupts, this is generally easy to manage – but don’t underestimate
how often ethernet frames can arrive on a 100mbit Fast Ethernet connection: If a
sender sends a continuous stream of minimum-length ethernet frames, they can arrive
every 6 microseconds or so! While, it is unlikely that you will have to deal with such a
high rate of packet reception, you should anticipate the need to process packets at
least every milli-second. In particular, a once-per-frame CIA or raster IRQ may cause
some packets to be lost, more than three arrive in a 16 – 20 ms video frame. The
RXBLKD signal can be used to determine if this situation is likely to have occurred. But

P-4

note that it indicates only when all receive buffers are occupied, not if any further
frames arrived while there were no free receive buffers.

The receive buffers are 2KB bytes each, and can each hold only one received ethernet
frame at a time. This is different to some ethernet controllers that use their total receive
buffer memory as a simple ring buffer. The reason for this is to keep the mechanism
for programmers as simple as possible. By having the fixed buffers, it means that the
controller can memory map the received ethernet frames in exactly the same location
each time, making it possible to write much simpler receiver programs, because the
location of the received ethernet frames can be assumed to be constant.

The structure of a receive buffer containing an ethernet frame is quite simple: The first
two bytes indicate the length of the received frame. The frame then follows immedi-
ately. The effective Maximum Transport Unit (MTU) length is 2,042 bytes, as the last
four bytes are occupied by the CRC32 checksum of the received ethernet frame. The
layout of the receive buffers is thus as follows:

HEX DEC Length Description

0000 0 1 The low byte of the length of the received
ethernet frame.

0001 1 1

The lower four bits contain the upper bits of
the length of the received ethernet frame. Bit
4 is set if the received ethernet frame is a
multi-cast frame. Bit 5 if it is a broadcast
frame. Bit 6 is set if the frame’s destination
address matches the 45E100’s programmed
MAC address. Bit 7 is set if the CRC32 check
for the received frame failed, i.e., that the
frame is either truncated or was corrupted in
transit.

0002 –
07FB

2 –
2,043

2,042 The received frame. Frames shorter than
2,042 bytes will begin at offset 2.

07FC –
07FF

2,044 –
2,047

4

Reserved space for holding the CRC32 code
during reception. The CRC32 code is,
however, always located directly after the
received frame, and thus will only occupy this
space if the received frame is more than
2,038 bytes long. ”

Because of the very rapid rate at which Fast Ethernet frames can be received, a pro-
grammer should use the receive interrupt feature, enabled by setting RXQEN (bit 7
of $D6E1). Polling is possible as an alternative, but is not recommended with the
45E100, because at the 100Mbit Fast Ethernet speed, packets can arrive as often

P-5

as every 5 microseconds. Fortunately, at the MEGA65’s 40MHz full speed mode, and
using the 20MB per second DMA copy functionality, it is possible to keep up with such
high data rates.

Accessing the Ethernet Frame Buffers
Unlike on the RR-NET, the 45E100’s ethernet frame buffers are able to be memory
mapped, allowing rapid access via DMA or through assembly language programs. It
is also possible to access the buffers from BASIC with some care.

The frame buffers can either be accessed from their natural location in the MEGA65’s
extended address space at address $FFDE800 – $FFDEFFF, or they can be mapped
into the normal C64/C65 $D000 I/O address space. Care must be taken as map-
ping the ethernet frame buffers into the $D000 I/O address space causes all other
I/O devices to unavailable during this time. Therefore CIA-based interrupts MUST be
disabled before doing so, whether using BASIC or machine code. Therefore when
programming in assembly language or machine code, it is recommended to use the
natural location, and to access this memory area using one of the three mechanisms
for accessing extended address space, which are described in Chapter/Appendix G
on page G-11.

Themethod of disabling interrupts differs depending on the context in which a program
is being written. For programs being written using C64-mode’s BASIC 2, the following
will work:

PO KE 56 33 3 , 1 2 7 : REM D I S A B L E CIA T I M E R IRQS

While for MEGA65’s BASIC 65, the following must instead be used, because a VIC-III
raster interrupt is used instead of a CIA-based timer interrupt:

PO KE 53 27 4 ,0: REM D I S A B L E VIC - II / III / IV R A S T E R IRQS

Once this has been done, the I/O context for the ethernet controller can be activated
by writing $45 (69 in decimal, equal to the character ’E’ in PETSCII)) and $54 (84 in
decimal, equal to the character ’T’ in PETSCII) into the VIC-IV’s KEY register ($D02F,
53295 in decimal), for example:

PO KE 53 29 5 , ASC (" E "): P OK E5 32 95 , ASC (" T ")

At this point, the ethernet RX buffer can be read beginning at location $D000 (53248
in decimal), and the TX buffer can be written to at the same address. Refer to ‘Theory
of Operation: Receiving Frames’ above for further explanation on this.

P-6

Once you have finished accessing the ethernet frame buffer, you can restore the nor-
mal C64, C65 or MEGA65 I/O context by writing to the VIC-III/IV’s KEY register. In
most cases, it will make the most sense to revert to the MEGA65’s I/O context by
writing $47 (71 decimal) in and $53 (83 in decimal) to the KEY register, for example:

PO KE 53 29 5 , ASC (" G "): P OK E5 32 95 , ASC (" S ")

Finally, you should then re-enable interrupts, which will again depend on whether you
are programming from C64 or C65-mode. For C64-mode:

PO KE 56 33 3 ,129

For C65-mode it would be:

PO KE 53 27 4 ,129

Theory of Operation: Sending Frames
Sending frames is similarly simple: The programmust simply load the frame to be trans-
mitted into the transmit buffer, write its length into TXSZLSB and TXSZMSB registers,
and then write $01 into the COMMAND register. The frame will then begin to transmit,
as soon as the transmitter is idle. There is no need to calculate and attach an ethernet
CRC32 field, as the 45E100 does this automatically.

Unlike for the receiver, there is only one frame buffer for the transmitter (this may be
changed in a future revision). This means that you cannot prepare the next frame until
the previous frame has already been sent. This slightly reduces the maximum data
throughput, in return for a very simple architecture.

Also, note that the transmit buffer is write-only from the processor bus interface. This
means that you cannot directly read the contents of the transmit buffer, but must load
values “blind”. Finally, the 45E100 allows you to send ethernet.

Advanced Features
In addition to operating as a simple and efficient ethernet frame transceiver, the
45E100 includes a number of advanced features, described here.

P-7

Broadcast and Multicast Traffic and
Promiscuous Mode
The 45E100 supports filtering based on the destination Ethernet address, i.e., MAC
address. By default, only frames where the destination Ethernet address matches
the ethernet address programmed into the MACADDR1 – MACADDR6 registers will be
received. However, if the MCST bit is set, then multicast ethernet frames will also
be received. Similarly, setting the BCST bit will allow all broadcast frames, i.e., with
MAC address ff:ff:ff:ff:ff:ff, to be received. Finally, if the NOPROM bit is cleared, the
45E100 disables the filter entirely, and will receive all valid ethernet frames.

Debugging and Diagnosis Features
The 45E100 also supports several features to assist in the diagnosis of ethernet prob-
lems. First, if the NOCRC bit is set, then even ethernet frames that have invalid CRC32
values will be received. This can help debug faulty ethernet devices on a network.

If the STRM bit is set, the ethernet transmitter transmits a continuous stream of de-
bugging frames supplied via a special high-bandwidth logging interface. By default,
the 45E100 emits a stream of approximately 2,200 byte ethernet frames that con-
tain compressed video provided by a VIC-IV or compatible video controller that sup-
ports the MEGA65 video-over-ethernet interface. By writing a custom decoder for this
stream of ethernet frames, it is possible to create a remote display of the MEGA65 via
ethernet. Such a remote display can be used, for example, to facilitate digital capture
of the display of a MEGA65.

The size and content of the debugging frames can be controlled by writing special
values to the COMMAND register. Writing $F1 allows the selection of frames that are
1,200 bytes long. While this reduces the performance of the debugging and streaming
features, it allows the reception of these frames on systems whose ethernet controllers
cannot be configured to receive frames of 2,200 bytes.

If the STRM bit is set and bit 2 of $D6E1 is also set, a compressed log of instructions
executed by the 45gs02 CPU will instead be streamed, if a compatible processor is
connected to this interface. This mechanism includes back-pressure, and will cause
the 45gs02 processor to slowdown, so that the instruction data can be emitted. This
typically limits the speed of the connected 45gs02 processor to around 5MHz, de-
pending on the particular instruction mix.

Note also that the status of bit 2 of $D6E1 cannot currently be read directly. This may
be corrected in a future revision.

P-8

Finally, if the video streaming functionality is enabled, this also enables reception of
synthetic keyboard events via ethernet. These are delivered to theMEGA65’s Keyboard
Complex Interface Adapter (KCIA), allowing full remote interaction with a MEGA65 via
its ethernet interface. This feature is primarily intended for development.

MEMORY MAPPED REGISTERS
The 45E100 Fast Ethernet controller is a MEGA65-specific feature. It is therefore only
available in the MEGA65 I/O context. This is enabled by writing $53 and then $47 to
VIC-IV register $D02F. If programming in BASIC, this can be done with:

PO KE 53 29 5 , ASC (" G "): P OK E5 32 95 , ASC (" S ")

The 45E100 Fast Ethernet controller has the following registers

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D6E0 55008 TXIDLE RXBLKD – KEYEN DRXDV DRXD TXRST RST

D6E1 55009 RXQEN TXQEN RXQ TXQ STRM RXBF –

D6E2 55010 TXSZLSB

D6E3 55011 TXSZMSB

D6E4 55012 COMMAND

D6E5 55013 – MCST BCST RXPH NOCRC NOPROM

D6E6 55014 MIIMPHY MIIMREG

D6E7 55015 MIIMVLSB

D6E8 55016 MIIMVMSB

D6E9 55017 MACADDR1

D6EA 55018 MACADDR2

D6EB 55019 MACADDR3

D6EC 55020 MACADDR4

D6ED 55021 MACADDR5

D6EE 55022 MACADDR6

• BCST Accept broadcast frames

• COMMAND Ethernet command register (write only)

• DRXD Read ethernet RX bits currently on the wire

• DRXDV Read ethernet RX data valid (debug)

• KEYEN Allow remote keyboard input via magic ethernet frames

• MACADDR1 Ethernet MAC address

P-9

• MACADDR2 Ethernet MAC address

• MACADDR3 Ethernet MAC address

• MACADDR4 Ethernet MAC address

• MACADDR5 Ethernet MAC address

• MACADDR6 Ethernet MAC address

• MCST Accept multicast frames

• MIIMPHY Ethernet MIIM PHY number (use 0 for Nexys4, 1 for MEGA65 r1 PCBs)

• MIIMREG Ethernet MIIM register number

• MIIMVLSB Ethernet MIIM register value (LSB)

• MIIMVMSB Ethernet MIIM register value (MSB)

• NOCRC Disable CRC check for received packets

• NOPROM Ethernet disable promiscuous mode

• RST Write 0 to hold ethernet controller under reset

• RXBF Number of free receive buffers

• RXBLKD Indicate if ethernet RX is blocked until RX buffers freed

• RXPH Ethernet RX clock phase adjust

• RXQ Ethernet RX IRQ status

• RXQEN Enable ethernet RX IRQ

• STRM Enable streaming of CPU instruction stream or VIC-IV display on ethernet

• TXIDLE Ethernet transmit side is idle, i.e., a packet can be sent.

• TXPH Ethernet TX clock phase adjust

• TXQ Ethernet TX IRQ status

• TXQEN Enable ethernet TX IRQ

• TXRST Write 0 to hold ethernet controller transmit sub-system under reset

• TXSZLSB TX Packet size (low byte)

• TXSZMSB TX Packet size (high byte)

P-10

COMMAND register values
The following values can be written to the COMMAND register to perform the de-
scribed functions. In normal operation only the STARTTX command is required, for
example, by performing the following POKE:

PO KE 55 01 2 ,1

HEX DEC Signal Description

00 0 STOPTX

Immediately stop transmitting the
current ethernet frame. Will cause a
partially sent frame to be received,
most likely resulting in the loss of that
frame.

01 1 STARTTX Transmit packet
D0 208 RXNORMAL Disable the effects of RXONLYONE

D4 212 DEBUGVIC Select VIC-IV debug stream via
ethernet when $D6E1.3 is set

DC 220 DEBUGCPU Select CPU debug stream via ethernet
when $D6E1.3 is set

DE 222 RXONLYONE
Receive exactly one ethernet frame
only, and keep all signals states (for
debugging ethernet sub-system)

F1 241 FRAME1K

Select 1KiB frames for video/cpu
debug stream frames (for receivers that
do not support MTUs of greater than
2KiB)

F2 242 FRAME2K
Select 2KiB frames for video/cpu
debug stream frames, for optimal
performance.

EXAMPLE PROGRAMS
Example programs for the ethernet controller exist in imperfect for in the MEGA65
Core repository on github in the src/tests and src/examples directories.

If you wish to use the ethernet controller for TCP/IP traffic, you may wish to examine
the port of WeeIP to the MEGA65 at https://github.com/mega65/mega65-weeip.
The code that controls the ethernet controller is located in eth.c.

P-11

https://github.com/mega65/mega65-weeip

P-12

APPENDIX Q
45IO27 Multi-Function I/O

Controller
• Overview

• F011-compatible Floppy Controller

• SD card Controller and F011 Virtuali-

sation Functions

• Touch Panel Interface

• Audio Support Functions

• Miscellaneous I/O Functions

Q-2

OVERVIEW
The 45IO27 is a multi-purpose I/O controller that incorporates the functions of the
C65’s F011 floppy controller, together with the MEGA65’s SD card controller inter-
face, and a number of other miscellaneous I/O functions.

Each of these major functions is covered in a separate section of this chapter.

F011-COMPATIBLE FLOPPY
CONTROLLER
The MEGA65 computer is one of the very few modern computers that still includes
first-class support for magnetic floppy drives. It includes a floppy controller that is
backwards compatible with the C65’s F011D floppy drive controller.

However, unlike the F011D, the MEGA65’s floppy disk controller supports HD and ED
media, and similar to the 1541 floppy drive, it also supports variable data rates, so
that a determined user could develop disk formats that store more data, include robust
copy protection schemes, or both.

GCR encoding is not currently supported, but may be supported by a future revision of
the controller. It may also be possible with some creativity and effort to use the debug
register interface to read double-density GCR formatted media. This is because there
are debug registers that can be queried to indicate the gap between each successive
magnetic domain – which is sufficient to decode any disk format.

Multiple Drive Support
Like the C65’s F011 floppy drive controller, the 45IO27 supports up to 8 drives. The
first two of those drives, drive 0 and drive 1, are assumed to be connected to a stan-
dard 34-pin floppy cable, the same as used in standard PCs, i.e., with a twist in the
cable to allow the use of two unjumpered drives.

As is described in later sections, it is possible to switch drive 0 and drive 1’s position,
without having to change cabling. Similarly, either or both of the first two drives may
reference a real floppy drive, a D81 disk image stored on an attached SD card, or
redirected to the floppy drive virtualisation service, so that the sector accesses can
be handled by a connected computer, e.g., as part of a comfortable and efficient
cross-development environment.

Q-3

The remaining six drives are supported only in conjunction with a future C1565-
compatible external drive port.

Buffered Sector Operations
The 45IO27 support two main modes of reading sectors from a disk: byte-by-byte,
and via a memory-mapped sector buffer.

The byte-by-byte mechanism consists of having a loop wait for the DRQ signal to be
asserted, and then reading the byte of data from the DATA register ($D087).

The memory-mapped sector buffer method consists of waiting for the BUSY flag to
clear, indicating that the entire sector has been read, and then directly accessing
the sector buffer located at $FFD6C00 – $FFD6DFF. Care should be taken to ensure
that the BUFSEL signal (bit 7 of $D689) is cleared, so that the floppy sector buffer is
visible, rather than the SD card sector buffer for programs other than the Hypervisor.
This is because only the Hypervisor has access to the full 4KB SD controller buffer
space: Normal programs see either the floppy sector buffer or the SD card sector
buffer repeated 8 times between $FFD6000 and $FFD6FFF.

Alternatively, the sector buffer can be mapped at $DE00 – $DFFF, i.e., in the 4KB I/O
area, by writing the $81 to the SD command register at $D680. This will hide any I/O
peripherals that are otherwise using this area, e.g., from cartridges, or REU emulation.
This function can be disabled again by writing $82 to the SD command register. As
with the normal sector buffer memory mapping at $FFD6xxx, the BUFSEL signal (bit 7
of $D689) affects whether the FDC or the SD card sector buffer is visible, for software
not running in Hypervisor mode. Note that if you use the Matrix Mode / serial monitor
interface to inspect the contents of the sector buffer, that this occurs in the Hypervisor
context, and so the BUFSEL signal will be ignored, and the full 4KB buffer will be visible.

The memory-mapped sector buffer has the advantage that it can be accessed via
DMA, allowing for very efficient copies. Also, it allows for loading a sector to occur
in the background, while your program gets on with more interesting things in the
meantime.

Reading Sectors from a Disk
There are several steps that you must follow in order to successfully read a sector from
a disk. If you follow these instructions, your code will work with both physical disks, as
well as D81 disk images that exist on the SD card:

• First, enable the motor and select the appropriate drive. The F011 supports
upto 8 physical drives, although it is rare for more than two to be physically

Q-4

connected. To enable the motor, write $60 to $D080. You should then write a
SPINUP command ($20) to $D081, and wait for the BUSY flag (bit 7 of $D082)
to clear. The drive is now spinning at speed, and ready to service requests.

• Next, select the correct side of the disk by either setting or clearing the SIDE1
flag (bit 3 of $D080). This takes effect immediately.

• Third, use the step-in and step-out commands (writing $10 and $18 to $D081)
as required to move the head to the correct track. Again, after each command,
you should wait for the BUSY flag (bit 7 of $D082) to clear, before issuing the
next command.

Note that you can check if the head is at track 0 by checking the TRACK0 flag,
but there is no fool-proof way to know if you are on any other specific track. You
can use the registers at $D6A3 – $D6A5 to see the track, sector and side value
from the last sector header which passed under the head to make an informed
guess as to which track is currently selected. Note that this only works for real
disks, as disk images do not spin under the read head. Also note that it is possible
for tracks to contain sectors which purposely or accidently have incorrect track
numbers in the sector headers.

• Fourth, you need to load the desired track, sector and side number into the
TRACK, SECTOR and SIDE registers ($D084, $D085 and $D086, respectively).
The FDC is now primed ready to read a sector.

• Fifth, you should write an appropriate read command value into $D081. This will
normally be $40 (64). You then wait for the RDREQ signal ($D083, bit 7) to go
high, to indicate that the sector has been found. You then either wait for each
occassion when DRQ goes high, and read byte-by-byte in such a loop, or wait
for the BUSY flag to clear and the DRQ and EQ flags to go high, which indicates
that the complete sector has been read into the buffer.

Track Auto-Tune Function Deprecated
The 45IO27 also includes a track “auto-tune” function, which is enabled by clearing
bit 7 of $D696. That function reads the sector headers to determine which track the
head is currently over, and steps the head in or out to try to get to the correct track.
Auto-tune is enabled by default.

Sector Skew and Target Any Mode
It is also worth noting that the TARGANY signal can be asserted to tell the floppy
controller to simply read the next sector that passes under the head. This applies only

Q-5

when using real floppy disks, where it offers the considerable advantage of letting you
read the sectors in the order in which they exist on the disk. This allows you to read a
track at once, without having to wait for the index hole to pass by, or having to know
which sector will next pass under the head.

For example, the C65 DOS formats disks using a skew factor of 7, while PCs may
use a different skew-factor. If you don’t know the skew factor of the disk, you may
schedule the reading of the sectors on the track in a sub-optimal order. This can result
in transfer rates as low as 5 sectors per second, compared with the optimal case of
50 sectors per second. Thus with either correct sector order, or using the target any
mode, it is possible to read approximately two full tracks per second, i.e., two sides
× two tracks, or approximately 20KB/second on DD disks, or double that on HD disks,
at around 40KB/second. This compares very favourably with the C65 DOS loading
speed, which is typically nearer 1KB/sec in C64-mode.

Disk Layout and 1581 Logical Sectors
The 1581 disk format is unusual in that the physical sectors on the disk are a different
size of the size of the data blocks that it presents to the user. Specifically, the disks
use 512 byte sectors, while the 1581 (and C65) DOS present 256 byte data blocks.
Two blocks are stored in each physical sector. Also, the physical track numbers are
from 0 to 79, while the logical track numbers of the DOS are 1 to 80. Physical sectors
are also numbered from 1 to 10, while logical block numbers begin are 0 to 39.

This means that if you want to find a 1581 logical sector, you need to know which
physical sector it will be found in. To determine the physical sector that contains a
block, you first subtract one from the track number, and then divide the sector number
by two. Logical sectors 0 to 19 of each track are located in physical sectors 1 to 10
on the first side of the disk. Logical sectors 20 to 39 are located in physical sectors 1
to 10 on the reverse side of the disk.

Thus we can map a some logical track and sector t,s to the physical track, side and
sector as follows:

track = t− 1

sector = (s/2) + 1, IFFs < 20, ELSE = ((s− 20)/2) + 1

side = 0IFFsector < 20

It is also worth noting that the 45IO27 is capable of reading from tracks beyond track
80, provided that the disk drive is capable of this. Almost all 3.5 inch floppy drives
are capable of reading at least one extra track, as historically manufacturers of floppy
disks stored information about the disk on the 81st track. In our experience almost all
drives will also be able to access an 82nd track.

Q-6

FD2000 Disks
The CMD™FD2000™high-density 3.5” disk drives for Commodore™computers use an
unusual disk layout that is quite different from PCs: They use 10 sectors, the same
as on 720KB double-density (DD) disks, but double the sector size from 512 bytes to
1,024 bytes. The 45IO27 does not currently support these larger sectors. At least
read-only support is planned to be added via a core update in the future.

However, the 45IO27 does already support high-density disks and drives, with much
higher capacities than the FD2000 was able to support.

High-Density and Variable-Density
Disks
The 45IO27 supports variable data rates, allowing the use of HD drives and media,
with a flexible approach to disk formats to support user experimentation, and the easy
manipulation of high-capacity software distribution formats.

You are really only limited by your imagination, available time, and the limited number
of people who are still interested in inserting a floppy disk into their computer!

The standard high-density (HD) disk format is “1.44MB”, using 18 sectors per track
over 80 tracks. This results in 80 tracks × 18 sectors × 2 sides = 2,880 sectors. As
each sector is 512 bytes, this corresponds to 1,440KB. This leads us into the interesting
wonderland of “floppy disk marketing megabytes,” a phenomena which long predates
SD card and hard drive manufacturers using 1,000,000 byte megabytes.

Curiously for floppy disks, the 1,024,000 byte “megabyte” was used, i.e., “1MB” = 1KB
× 1KB, that is a strange hybrid of binary and decimal conventions. Perhaps it was be-
cause the previous standard was 720KB, and they thought people would thing it odd
if double 720KB was 1.41MB, and complain about the missing kilo-bytes. We will con-
tinue to use the 1,024KB = 1,000KB floppy disk marketing mega-byte for consistency
with this historical inconsistency.

However, HD floppy disks are fundamentally capable of holding much more than
1.44MB. For example, the FD2000 stored 1.6MB by using double-sized sectors to
squeeze the equivalent of 20 sectors per track, and the Amiga went further by using
track-at-once writing to fit 22 sectors per track. Both these formats used a constant
data rate over all tracks, and thus a constant number of sectors per track.

However, the circumference of the tracks on a 3.5” floppy disk vary quite a lot: The
inner track has a diameter of around 2.5cm, while the outside track is 1.6× longer.
The 1.44MB disk format is designed so that the data is reliably stored on those shorter

Q-7

inner tracks. This means that we should be able to fit 160% more data on the outer-
most track compared with the inner-most track, subject to a number of terms and
conditions imposed by The Laws of Physics, the design of floppy drive electronics,
the quality of media being used and various other annoying things. Because of this
variability and uncertainty, the MEGA65’s floppy controller supports fully variable data
rate on a track-by-track basis.

Track Information Blocks
To support variable data rates, the 45GS27 supports the use of Track Information
Blocks (TIBs) that contain information on the data rate and encoding used on the track.
This allows users to experiment with various densities on various tracks, and yet have
the disks function automatically for buffered sector operations.

The Track Information Block is automatically created when using the automatic track
format function, but must be manually created if using unbuffered formatting. The TIB
itself consists of the following data:

1. 3× $A1 Sync bytes (written with clock byte $FB)

2. $65 MEGA65 Track Information Block marker (written with clock byte $FF, as are
all following bytes in the block)

3. The track number

4. The data rate divisor, in the same format as $D6A2, i.e., data rate = 40.5MHz /
value.

5. Track encoding information: Bit 7 = Track-at-once flag, 1 = no inter-sector gaps
(Amiga style), 0 = with inter-sector gaps (normal), Bit 6 = data encoding, 0 =
MFM, 1=RLL2,7. Other bits are reserved, and should be 0 when written.

6. Sector count, i.e., number of sectors on the track.

7. CRC byte 1, using the normal floppy disk CRC algorithm.

8. CRC byte 2, using the normal floppy disk CRC algorithm.

The Track Information Block is always written a the data rate for a 720KB Double-
Density disk, so that they can be present on any disk. Writing the Track Information
Block and start-of-track gaps at the DD data rate also ensures that at very high data
rates, the head still has sufficient time to switch to write mode, thus avoiding one of
the many problems that arise when writing data at very high data rates.

If formatting disks unbuffered, it is the programmer’s responsibility to switch the data
rate after having written the Track Information Block, and several more bytes to allow

Q-8

the floppy encoding pipeline to flush out the last byte of the Track Information Block.
This is all automatically managed if using the automatic track formatting function.

The inclusion of the TIB allows users to play and explore the possibilities of different
data rates on different drives and media, while still being automatically readable in
all MEGA65s, because the TIB allows the controller to switch to the correct data rate
and encoding. It is likely that over time somewhat standardised formats will develop,
quite likely in the range of 2MB to 3.5MB – thus approaching the capacity of ED media
in ED drives, without the need for those drives or media.

Formatting Disks
Formatting disks is now possible with the 45IO27, either unbuffered or fully-automatic.
To format a track issue one of the following commands to $D081:

• $A0 – Automatic format, with inter-sector gaps, and write pre-compensation
disabled.

• $A1 – Manual format, write-precompensation disabled.

• $A4 – Automatic format, with inter-sector gaps, and write pre-compensation
enable.

• $A5 – Manual format, write-precompensation enabled.

• $A8 – Automatic format, Amiga-style track-at-once, and write pre-
compensation disabled.

• $AC – Automatic format, Amiga-style track-at-once, and write pre-
compensation enable.

Manual formatting is not recommended, unless mastering track-at-once formatted
disks for software distribution, because of the relative complexity of doing so. Also,
at the higher data rates, bytes have to be delivered to the floppy controller as often
as every 20 cycles, which requires considerable care when writing the format routine.
For more information on manual formatting tracks, refer to the C64 Specifications
Manual or the C65 ROM DOS source code, for examples of manual formatting.

The automatic modes, in contrast, format a track with a single command, and are thus
much easier to use, and are recommended for general use. Write pre-compensation
should normally be enabled, as it is required at higher data rates, and does not cause
problems at lower data rates.

Q-9

Write Pre-Compensation
Write pre-compensation is a family of algorithms used when writing high data-rate
signals to floppy disks. It is used to anticipate and cancel out the predictable com-
ponent of timing variation of magnetic recording. There are a variety of sources of
this timing variation, which have been the subject of PhD theses, and a lot of propri-
etary research by hard drive manufacturers. What is important for us to understand
is that adjacent pulses (really magnetic inversions) get pushed together, if they are
surrounded by longer pulses, or tend to spread apart if surrounded by shorter pulses.

There are also other fascinatingly complex and difficult to predict factors, that cause
things such as the “negative shift of mid-length pulses”, “inverse F-distribution of pulse
arrival times” and goodness knows what else. But we shall leave those to the hard
drive manufacturers. We limit ourselves to the data pattern induced effect described
in the previous paragraph.

The 45GS27 supports two tunable coefficients for small and large corrections to this,
which are used with an internal look-up table. However, this is all automatically han-
dled if you enable write pre-compensation. This allows data rates that much more
closely approach the expected limit of HD media, although due to the other horrors of
magnetic media recording alluded to above, the actual limit is not reached.

Buffered Sector Writing
The 45IO27 can write to disk images that are located on the SD card, or when using
virtualised disk access.

To write a sector, you follow a similar process to reading, except that you write $84 to
the command byte instead of $40. The $80 indicates a write, and the $04 activates
write-precompensation. This is important when writing to real floppy disks, especially
HD and ED disks. Write-precompensation causes bits to be written slightly early or
slightly late, using an algorithm that models how the magnetic domains on a disk tend
to move after being written.

If you do not wish to use the sector buffer, but instead provide each byte one at a
time during the write operation, you must add $01 to the command code. However,
this is not recommended on the MEGA65, because when writing to the SD card or
using virtualised disk images the entire sector operation can happen instantaneously
from the perspective of your program. This means that it is not possible to supply data
reliably when in this mode. Thus apart from being less convenient, it is also less reliable.

Once a write operation has been triggered, the DRQ signal indicates when you should
provide the next byte if performing a byte-by-byte write. Otherwise, it is assumed

Q-10

that you will have pre-filled the sector buffer with the complete 512 bytes of data
required.

To write to disks that contain Track Information Blocks, you should first wait for the TIB
to be read when changing tracks. This is done by waiting for $D6A9 (sectors per track
from the TIB) to contain a non-zero value.

F011 Floppy Controller Registers
The following are the set of F011 compatibility registers of the 45IO47. Note that
registers related to the use of SD card based storage are found in the corresponding
section below.

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D080 53376 IRQ LED MOTOR SWAP SIDE DS

D081 53377 WRCMD RDCMD FREE STEP DIR ALGO ALT NOBUF

D082 53378 BUSY DRQ EQ RNF CRC LOST PROT TK0

D083 53379 RDREQ WTREQ RUN WGATE DISKIN INDEX IRQ DSKCHG

D084 53380 TRACK

D085 53381 SECTOR

D086 53382 SIDE

D087 53383 DATA

D088 53384 CLOCK

D089 53385 STEP

D08A 53386 PCODE

• ALGO Selects reading and writing algorithm (currently ignored).

• ALT Selects alternate DPLL read recovery method (not implemented)

• BUSY F011 FDC busy flag (command is being executed) (read only)

• CLOCK Set or read the clock pattern to be used when writing address and data
marks. Should normally be left $FF

• COMMAND F011 FDC command register

• CRC F011 FDC CRC check failure flag (read only)

• DATA F011 FDC data register (read/write) for accessing the floppy controller’s
512 byte sector buffer

• DIR Sets the stepping direction (inward vs

• DISKIN F011 Disk sense (read only)

Q-11

• DRQ F011 FDC DRQ flag (one or more bytes of data are ready) (read only)

• DS Drive select (0 to 7). Internal drive is 0. Second floppy drive on internal cable
is 1. Other values reserved for C1565 external drive interface.

• DSKCHG F011 disk change sense (read only)

• EQ F011 FDC CPU and disk pointers to sector buffer are equal, indicating that
the sector buffer is either full or empty. (read only)

• FREE Command is a free-format (low level) operation

• INDEX F011 Index hole sense (read only)

• IRQ The floppy controller has generated an interrupt (read only). Note that in-
terrupts are not currently implemented on the 45GS27.

• LED Drive LED blinks when set

• LOST F011 LOST flag (data was lost during transfer, i.e., CPU did not read data
fast enough) (read only)

• MOTOR Activates drive motor and LED (unless LED signal is also set, causing the
drive LED to blink)

• NOBUF Reset the sector buffer read/write pointers

• PCODE (Read only) returns the protection code of the most recently read sector.
Was intended for rudimentary copy protection. Not implemented.

• PROT F011 Disk write protect flag (read only)

• RDCMD Command is a read operation if set

• RDREQ F011 Read Request flag, i.e., the requested sector was found during a
read operation (read only)

• RNF F011 FDC Request Not Found (RNF), i.e., a sector read or write operation
did not find the requested sector (read only)

• RUN F011 Successive match. A synonym of RDREQ on the 45IO47 (read only)

• SECTOR F011 FDC sector selection register

• SIDE Directly controls the SIDE signal to the floppy drive, i.e., selecting which
side of the media is active.

• STEP Writing 1 causes the head to step in the indicated direction

• SWAP Swap upper and lower halves of data buffer (i.e. invert bit 8 of the sector
buffer)

• TK0 F011 Head is over track 0 flag (read only)

Q-12

• TRACK F011 FDC track selection register

• WGATE F011 write gate flag. Indicates that the drive is currently writing to
media. Bad things may happen if a write transaction is aborted (read only)

• WRCMD Command is a write operation if set

• WTREQ F011 Write Request flag, i.e., the requested sector was found during a
write operation (read only)

The following registers apply to the 45IO27 only, i.e., are MEGA65 specific:

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

D6A0 54944 DENSITY DBGMO-
TORA

DBGMO-
TORA DBGDIR DBGDIR DBGW-

DATA
DBGW-
GATE

DBGW-
GATE

D6A2 54946 DATARATE

• DATARATE Set number of bus cycles per floppy magnetic interval (decrease to
increase data rate)

• DBGDIR Control floppy drive STEPDIR line

• DBGMOTORA Control floppy drive MOTOR line

• DBGWDATA Control floppy drive WDATA line

• DBGWGATE Control floppy drive WGATE line

• DENSITY Control floppy drive density select line

SD CARD CONTROLLER AND F011
VIRTUALISATION FUNCTIONS
For those situations where you do not wish to use real floppy disks, the 45IO27 supports
two complementary alternative modes:

• SD card Based Disk Image Access.

• Virtualised Disk Image Access.

This is in addition to providing direct access to a dual-bus SD card interface.

Q-13

SD card Based Disk Image Access
The 45IO27 is both a floppy drive and SD card controller. This enables it to trans-
parently allow access to D81 disk images stored on the SD card. Further, because
the controller is combined, it is possible to still have the floppy drive step and spin as
though it were being used, providing considerable atmosphere and sense of realism,
even when using disk images.

The 45IO27 supports both 800KB standard D81 disk images, as well as 64MB “MEGA
Images”. While an operating system may impose restrictions based on the name of
a file, the 45IO27 is blind to these requirements. Instead, it requires only that a
contiguous 800KB or 64MB of the SD card is used to contain a disk image.

When a disk image is enabled, the corresponding set of sectors on the SD card are
effectively placed under user control, and the operating system is no longer able to
prevent the reading or writing of any of those sectors. Thus you should never enable
access to an image that is shorter than the required size, as it will otherwise allow the
user to unwittingly or maliciously access and/or modify data that is not part of the
image file.

For the same reason, only the hypervisor can change the sector number where a disk
image starts (the D?STARTSEC? signals), or allow the use of disk images instead of the
real floppy drive (USEREAL0 and USEREAL1 signals). Once the Hypervisor has set the
start sector of a disk image, and cleared the USEREAL0 or USEREAL1 signal, the user
can still controll whether an access will go to the real floppy drive or to the disk image
by respectively clearing or setting the appropriate signal. For drive 0, this is D0IMG,
and for drive 1, it is D1IMG.

There are also signals to control whether a disk image is an 800KB D81 image or a
64MB MEGA Disk image, and whether a disk image is present, and whether it is write
protected. These are all located in the $D68B register. Because of the ability of
manipulation of these registers to corrupt or improperly access data, these signals are
all read-only, except from within the hypervisor.

The following table lists the registers that are used to control access to disk images
resident on the SD card:

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D68B 54923 D1MD D0MD D1WP D1P D1IMG D0WP D0P D0IMG

D68C 54924 D0STARTSEC0

D68D 54925 D0STARTSEC1

D68E 54926 D0STARTSEC2

D68F 54927 D0STARTSEC3

D690 54928 D1STARTSEC0

continued …

Q-14

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D691 54929 D1STARTSEC1

D692 54930 D1STARTSEC2

D693 54931 D1STARTSEC3

D6A1 54945 –
USE-
REAL1 TARGANY USE-

REAL0

• D0IMG F011 drive 0 use disk image if set, otherwise use real floppy drive.

• D0MD F011 drive 0 disk image is 64MiB mega image if set (otherwise 800KiB
1581 image)

• D0P F011 drive 0 media present

• D0STARTSEC0 F011 drive 0 disk image address on SD card (LSB)

• D0STARTSEC1 F011 drive 0 disk image address on SD card (2nd byte)

• D0STARTSEC2 F011 drive 0 disk image address on SD card (3rd byte)

• D0STARTSEC3 F011 drive 0 disk image address on SD card (MSB)

• D0WP Write protect F011 drive 0

• D1IMG F011 drive 1 use disk image if set, otherwise use real floppy drive.

• D1MD F011 drive 1 disk image is 64MiB mega image if set (otherwise 800KiB
1581 image)

• D1P F011 drive 1 media present

• D1STARTSEC0 F011 drive 1 disk image address on SD card (LSB)

• D1STARTSEC1 F011 drive 1 disk image address on SD card (2nd byte)

• D1STARTSEC2 F011 drive 1 disk image address on SD card (3rd byte)

• D1STARTSEC3 F011 drive 1 disk image address on SD card (MSB)

• D1WP Write protect F011 drive 1

• TARGANY Read next sector under head if set, ignoring the requested side, track
and sector number.

• USEREAL0 Use real floppy drive for drive 0 if set (read-only, except for from
hypervisor)

• USEREAL1 Use real floppy drive for drive 1 if set (read-only, except for from
hypervisor)

Q-15

F011 Virtualisation
In addition to allowing automatic read andwrite access to SD card based D81 images,
it is possible to connect a program to the serial monitor interface that provides and
accepts data as though it were the floppy disk.

This is commonly used in a cross-development environment, where you wish to fre-
quently modify a disk image that is used by a program you are developing – without
the need to continually push new versions of the disk image on the MEGA65’s SD card
first. It also has the added benefit that it allows you to easily visualise which sec-
tors are being read from and written to, which can help speed up development and
debugging of your program.

This function operates together with the MEGA65’s Hypervisor by triggering hyperrupts
(that is, interrupts that activate the Hypervisor). There is then special code in the
Hypervisor that communicates with the m65 program via the serial monitor interface.

If that all sounds rather complex, all you need to know is that to use this function,
you run the m65 utility with arguments like -d image.d81. This should automatically
establish the link with the MEGA65. If the BASIC interprettor stops responding, press
the reset button (not the power switch) on the left-hand side of your MEGA65, and
it should return to the BASIC’s READY. prompt – and if your supplied disk image has a
C65 auto-boot function, then it should automatically start booting.

This function works very well if the host computer runs Linux, and will allow loading at
a speed of around 60KB per second. However, it may be much slower on Windows or
Apple OSX-based systems.

Of course to use this, you will also need an interface module and/or cable to connect
your cross-development system to the MEGA65’s serial monitor interface. This is most
easily done using a Trenz TE0790-03 JTAG adapter and mini-USB cable.

More information on using this interface and the m65 tool can be found in Chapter/Ap-
pendix 14 on page 14-3.

Dual-Bus SD card Controller
The 45IO27 contains a high-speed dual-bus SD card controller. This controller oper-
ates in SPI x1 mode at a clock speed of 20MHz, providing a maximum throughput of
approximately 2MB/sec. The quality of the SD card makes a signficant difference to
performance, with some cards routinely delivering 1.7MB/sec, while others 1MB/sec
or less. Generally speaking, newer cards marketted as being suitable for video record-
ing perform better. The controller supports SDHC cards, and has experimental support

Q-16

for SDXC cards. Legacy SD cards with a capacity of 2GB or less are not supported,
as these use a different addressing mode.

The SD controller itself is very simple to drive: Supply the sector number in $D861-
$D684, and then issue a read or write command to the command register ($D680).
The SD controller supports only sector-based buffered operations, using the sector
buffer. In hypervisor mode, the sector buffer is located at $FFD6E00 – $FFD6FFF,
while when the computer is in normal operating mode, the SD card and the floppy
controller share a single address for both the floppy drive and SD card sector buffers.
Which buffer is visible at that address is dictated by the BUFSEL signal. If it is 1, then
the SD card buffer is visible, while if it is 0, then the floppy drive sector buffer is visible.
See also Sub-section Q on page Q-4 for further discussion on the precise behaviour
of this buffer with regard to normal mode versus Hypervisor mode, and how it can also
be mapped at $DE00.

Write Gate
When writing a sector, you must, however, first open the “write gate”. This is a mech-
anism to prevent accidental corruption of data on the SD card, as it requires two
different values to be written to the command register ($D680) in quick succession:
You have approximately 1 milli second after opening the write gate to command the
write, before the write gate effectively closes again, write-protecting the SD card until
the write gate is opened again. There are two different write gates: One for the mas-
ter boot record (sector 0), and the other for all other sectors, both of which are listed
in the command table below. This is designed to provide additional protection to the
very important master boot record sector against programs accidentally calculating
sector 0 as the target for an ordinary write.

Fill Mode
Where you wish to fill sectors with a constant value, the 45IO27 supports a mode for
this, so that you do not need to overwrite the contents of the sector buffer. This is
activated by placing the desired fill value into the FILLVAL register ($D686), and then
issuing the enable fill mode command ($83), performing the sector write operations,
and then issuing the disable fill mode command ($84).

Selecting Among Multiple SD cards
The controller supports two SD card interfaces, and it is possible to have a card in both
at the same time. However, each card needs to be reset and commanded separately.

Q-17

Only one card can be commanded at a time. That said, it is possible to reset each
card once, and then switch between the cards to perform individual operations.

To select the first SD card slot, write $C0 to the SD Controller Command Register
($D680). To select the second SD card slot, write $C1 instead.

SD Controller Command Table
The SD controller supports the following commands that can be written to the com-
mand register at $D680:

Command Function

$00 (0)
Place SD card under reset (deprecated. Use
command $10 instead)

$01 (1) Release SD card from reset
$02 (2) Read a sector from the SD card
$03 (3) Write a single sector to the SD card

$04 (4)
Write the first sector of a multi-sector write to the SD
card

$05 (5)
Write a subsequent sector of a multi-sector write to
the SD card

$06 (6)
Write the final sector of a multi-sector write to the
SD card

$0C (12) Request flush of SD card write buffers (experimental)
$0E (14) Pull SD handshake line low (debug only)
$0F (15) Pull SD handshake line high (debug only)

$10 (16)
Place SD card under reset with flags set (preferred
method)

$11 (17) Release SD card from reset (alternate method)

$40 (64)
Clear the SDHC/SDXC flag, selecting legacy SD
card mode (deprecated)

$41 (65) Set the SDHC/SDXC mode flag

$44 (68)
End force clearing of SD card state machine error
flag

$45 (69)
Begin force clearing of SD card state machine error
flag

$4D (77)
Open write-gate to sector 0 (master boot record) for
approximately 1 milli-second

$57 (87)
Open write-gate for all sectors > 0 for approximately
1 milli-second

continued …

Q-18

…continued
Command Function

$81 (129)
Enable mapping of the SD/FDC sector buffer at
$DE00 – $DFFF

$82 (130)
Disable mapping of the SD/FDC sector buffer at
$DE00 – $DFFF

$83 (131) Enable SD card Fill Mode
$84 (132) Disable SD card Fill Mode
$C0 (192) Select SD card Slot 0
$C1 (193) Select SD card Slot 1

Note that the hypervisor can enable or disable direct access to the SD controller. The
hypervisor operating system may provide a mechanism for requesting permission to
access the SD card controller, e.g., for disk management utilities.

The SD card controller registers are as follows:

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D680 54912 CMDANDSTAT

D681 54913 SECTOR0

D682 54914 SECTOR1

D683 54915 SECTOR2

D684 54916 SECTOR3

D686 54918 FILLVAL

D68A 54922 – VFDC1 VFDC0 VICIII CDC00

D6AE 54958 – FDC2XSEL
FDCVAR-

SPD AUTO2XSEL –

D6AF 54959 – VLOST VDRQ VRNF VEQINH VW-
FOUND VRFOUND

• AUTO2XSEL Automatically select DD or HD decoder for last sector display

• CDC00 (read only) Set if colour RAM at $DC00

• CMDANDSTAT SD controller status/command

• FDC2XSEL Select HD decoder for last sector display

• FDCVARSPD Enable automatic variable speed selection for floppy controller us-
ing Track Information Blocks on MEGA65 HD floppies

• FILLVAL WRITE ONLY set fill byte for use in fill mode, instead of SD buffer data

• SECTOR0 SD controller SD sector address (LSB)

Q-19

• SECTOR1 SD controller SD sector address (2nd byte)

• SECTOR2 SD controller SD sector address (3rd byte)

• SECTOR3 SD controller SD sector address (MSB)

• VDRQ Manually set f011_drq signal (indented for virtual F011 mode only)

• VEQINH Manually set f011_eq_inhibit signal (indented for virtual F011 mode
only)

• VFDC0 (read only) Set if drive 0 is virtualised (sectors delivered via serial monitor
interface)

• VFDC1 (read only) Set if drive 1 is virtualised (sectors delivered via serial monitor
interface)

• VICIII (read only) Set if VIC-IV or ethernet IO bank visible

• VLOST Manually set f011_lost signal (indented for virtual F011 mode only)

• VRFOUND Manually set f011_rsector_found signal (indented for virtual F011
mode only)

• VRNF Manually set f011_rnf signal (indented for virtual F011 mode only)

• VWFOUND Manually set f011_wsector_found signal (indented for virtual F011
mode only)

TOUCH PANEL INTERFACE
Some MEGA65 variants include an LCD touch panel, primarily the MEGAphone hand-
held version of the MEGA65. The touch interface supports the detection of two simul-
taneous touch events. Some variants may also support gesture detection, however,
this is still very experimental.

The touch detection interface that is contained in the 45IO27 is complemented by
the on-screen-keyboard interface of the 4551 UART and GPIO controller. Refer to
section O for further information. Of particular relevance are bit 7 of the registers
$D615 – $D617 which allow activating the on-screen keyboard interface, selecting
whether the on-screen keyboard is placed in the upper or lower portion of the screen,
and whether the primary or secondary on-screen keyboard is displayed.

Direct connections between the 4551 and the 45IO27 combine information about
any currently displayed on-screen keyboard and the touch interface controller, al-
lowing synthetic keyboard events to be automatically triggered when the on-screen
keyboard portion of the touch interface is pressed. This allows the touch interface

Q-20

to be used to drive the on-screen keyboard without requiring any support from user
programs. This works even when the on-screen keyboard is moving during activation
or transitioning between the top and bottom of the screen.

As touch interfaces can require calibration, the 45IO27 allows for a linear transfor-
mation of both the X and Y coordinates of a touch event. Specifically, there are scale
(TCHXSCALE and TCHYSCALE) and offset registers (TCHXDELTA and TCHYDELTA) that
provide for this transformation. It is also possible to flip the touch screen coordinates
in either or both the X and Y axes. These calibration registers also affect the operation
of the on-screen keyboard.

It should also be noted that some touch interfaces do not have constant horizontal or
vertical resolution. For example, some panels have a low horizontal resolution region
in the middle of the panel, which can require some care to accommodate.

To detect the primary touch event, the TOUCH1XLSB, TOUCH1XMSB, TOUCH1YLSB,
TOUCH1YMSB registers can be read. Similar registers exist for the 2nd touch event:
TOUCH2XLSB, TOUCH2XMSB, TOUCH2YLSB, TOUCH2YMSB. Each touch event has a
signle bit flag that indicates whether the touch event is currently valid: the EV1 and
EV2 bits of the register $D6B0. There are also corresponding bit-fields that indicate
whether a given touch event has been made or released, allowing the detection of
when a finger both makes and breaks contact with the screen. The UPDN1 and UPDN2
signals provide this information. Binary values of 01 and 10, respectively indicate if
the finger has been removed or pressed against the touch panel. Values of 00 and
11 mean that a finger is either being held or not being held against the touch panel.

The primary touch event is also fed into the lightpen input of the VIC-IV, and can be
detected using the normal light pen registers of the VIC-IV.

The registers for the touch panel interface are as follows:

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D6B0 54960 YINV XINV UPDN2 UPDN1 EV2 EV1

D6B1 54961 CALXSCALELSB

D6B2 54962 CALXSCALEMSB

D6B3 54963 CALYSCALELSB

D6B4 54964 CALYSCALEMSB

D6B5 54965 CALXDELTALSB

D6B7 54967 CALYDELTALSB

D6B8 54968 CALYDELTAMSB

D6B9 54969 TOUCH1XLSB

D6BA 54970 TOUCH1YLSB

D6BB 54971 – TOUCH1YMSB – TOUCH1XMSB

D6BC 54972 TOUCH2XLSB

continued …

Q-21

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D6BD 54973 TOUCH2YLSB

D6BE 54974 – TOUCH2YMSB – TOUCH2XMSB

D6C0 54976 GESTUREID GESTUREDIR

• CALXDELTALSB Touch pad X delta LSB

• CALXSCALELSB Touch pad X scaling LSB

• CALXSCALEMSB Touch pad X scaling MSB

• CALYDELTALSB Touch pad Y delta LSB

• CALYDELTAMSB Touch pad Y delta MSB

• CALYSCALELSB Touch pad Y scaling LSB

• CALYSCALEMSB Touch pad Y scaling MSB

• EV1 Touch event 1 is valid

• EV2 Touch event 2 is valid

• GESTUREDIR Touch pad gesture directions (left,right,up,down)

• GESTUREID Touch pad gesture ID

• TOUCH1XLSB Touch pad touch 1 X LSB

• TOUCH1XMSB Touch pad touch #1 X MSBs

• TOUCH1YLSB Touch pad touch 1 Y LSB

• TOUCH1YMSB Touch pad touch #1 Y MSBs

• TOUCH2XLSB Touch pad touch #2 X LSB

• TOUCH2XMSB Touch pad touch #2 X MSBs

• TOUCH2YLSB Touch pad touch #2 Y LSB

• TOUCH2YMSB Touch pad touch #2 Y MSBs

• UPDN1 Touch event 1 up/down state

• UPDN2 Touch event 2 up/down state

• XINV Invert horizontal axis

• YINV Invert vertical axis

Q-22

AUDIO SUPPORT FUNCTIONS
The 45IO27 provides the primary interface into the MEGA65’s full cross-bar audio
mixer. This includes the interface for reading or modifying the mixer co-efficients, as
well as accessing the mixer feedback registers, and setting the 16-bit digital sample
values that are two of the input channels into the audio mixer.

The audio mixer consists of 128 coefficients, each of which is 16 bits. Each audio out-
put channel, e.g., left speaker, right speaker, left headphone, right headphone, cellular
modem 1 (MEGAphone models only) and so on, are generated by taking each of the
audio input channels, multiplying them by the appropriate coefficient, and adding it
to the total output of the audio output channel.

Because each audio output channel has its own set of coefficients that are applied to
all of the audio input channels, this means that it is possible to produce totally different
audio out each audio channel: For example, it is possible to play your favourite quadro-
phonic SID music out of the headphones while rick-rolling passers by with Amiga-style
MOD audio. This is why the audio mixer is refered to as a full cross-bar mixer,
because there are no restrictions on how you mix each audio output channel. In this
regard, it is very similar to a full-function audio desk, allowing different mixing levels
for different speakers.

Because the audio coefficients are 16 bits each, each one is formed using two suc-
cessive bytes of the audio co-efficient space. Changes to the audio coefficients take
effect immediately, so care should be taken when changing coefficients to avoid au-
dible clicks and pops. Also, you must allow 32 cycles to elapse before changing the
selected audio coefficient, as otherwise the change may be discarded if the audio
mixer accumulator has not had time to re-visit that coefficient.

The audio sources on the MEGA65 and MEGAphone devices are as follows:

Input Channel
ID Connection

$0 (0) Left SIDs
$1 (1) Right SIDs
$2 (2) Modem Bay 1 (MEGAphone only)
$3 (3) Modem Bay 2 (MEGAphone only)
$4 (4) Bluetooth™Left
$5 (5) Bluetooth™Right
$6 (6) Headphone Interface 1
$7 (7) Headphone Interface 2
$8 (8) Digital audio Left
continued …

Q-23

…continued
Input Channel
ID Connection

$9 (9) Digital audio Right
$A (10) MEMs Microphone 0 (Nexys4 and MEGAphone only)
$B (11) MEMs Microphone 1 (MEGAphone only)
$C (12) MEMs Microphone 2 (MEGAphone only)
$D (13) MEMs Microphone 3 (MEGAphone only)

$E (14)
Headphone jack microphone (Nexys4 and
MEGAphone only)

$F (15)
OPL-compatible FM audio (shares co-efficient with
input 14)

The OPL-compatible FM audio which is on source 15 is controlled by the coefficient for
source 14. This is because the coefficient for source 15 provides the master volume
level for each output.

The audio cross-bar mixer supports the following eight output channels:

Output
Channel ID Connection

$0 (0)
Left Primary Speaker (digital audio on MEGA65
R2/R3, physical speaker on MEGAphone, headphone
jack audio on Nexys4)

$1 (1)
Right Primary Speaker (digital audio on MEGA65
R2/R3, physical speaker on MEGAphone, headphone
jack audio on Nexys4)

$2 (2) Modem Bay 1 audio output (MEGAphone only)
$3 (3) Modem Bay 2 audio output (MEGAphone only)
$4 (4) Bluetooth Left Audio (MEGAphone only)
$5 (5) Bluetooth Right Audio (MEGAphone only)

$6 (6)
Headphone Left output (MEGA65 R2/R3 and
MEGAphone only. On Nexys4 boards the primary
speaker drives the 3.5mm jack)

$7 (7)
Headphone Right output (MEGA65 R2/R3 and
MEGAphone only. On Nexys4 boards the primary
speaker drives the 3.5mm jack)

To determine the coefficient register number for a given source and output, multiply
the output number by 32 and multiply the source number by 2. This will be the register
number for the LSB of the 16-bit coefficient. The MSB will be the next register. For

Q-24

example, to set the coefficient of the right SIDs to the 2nd modem bay audio output,
the coefficient would be 32× 3 + 1× 2 = 96 + 2 = 98.

XXX - mixer stuff XXX - mixer feedback registers XXX - Left and right digi XXX - CPU
register for selecting PWM/PDM

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D6F4 55028 MIXREGSEL

D6F5 55029 MIXREGDATA

D6F8 55032 DIGILLSB

D6F9 55033 DIGILMSB

D6FA 55034 DIGIRLSB

D6FB 55035 DIGIRMSB

D6FC 55036 READBACKLSB

D6FD 55037 READBACKMSB

D711 55057 – PWMPDM –

• DIGILEFTLSB Digital audio, left channel, LSB

• DIGILEFTMSB Digital audio, left channel, MSB

• DIGILLSB 16-bit digital audio out (left LSB)

• DIGILMSB 16-bit digital audio out (left MSB)

• DIGIRIGHTLSB Digital audio, left channel, LSB

• DIGIRIGHTMSB Digital audio, left channel, MSB

• DIGIRLSB 16-bit digital audio out (right LSB)

• DIGIRMSB 16-bit digital audio out (right MSB)

• MIXREGDATA Audio Mixer register read port

• MIXREGSEL Audio Mixer register select

• PWMPDM PWM/PDM audio encoding select

• READBACKLSB audio read-back LSB (source selected by $D6F4)

• READBACKMSB audio read-back MSB (source selected by $D6F4)

MISCELLANEOUS I/O FUNCTIONS

Q-25

Q-26

APPENDIX R
Reference Tables

• Units of Storage

• Base Conversion

R-2

UNITS OF STORAGE
Unit Equals Abbreviation
1 Bit

1 Nibble 4 Bits
1 Byte 8 bits B

1 Kilobyte 1024 B KB
1 Megabyte1024KB or 1,048,576 B MB

R-3

BASE CONVERSION
Decimal Binary Hexadecimal

0 %0 $0
1 %1 $1
2 %10 $2
3 %11 $3
4 %100 $4
5 %101 $5
6 %110 $6
7 %111 $7
8 %1000 $8
9 %1001 $9
10 %1010 $A
11 %1011 $B
12 %1100 $C
13 %1101 $D
14 %1110 $E
15 %1111 $F
16 %10000 $10
17 %10001 $11
18 %10010 $12
19 %10011 $13
20 %10100 $14
21 %10101 $15
22 %10110 $16
23 %10111 $17
24 %11000 $18
25 %11001 $19
26 %11010 $1A
27 %11011 $1B
28 %11100 $1C
29 %11101 $1D
30 %11110 $1E
31 %11111 $1F

Decimal Binary Hexadecimal

32 %100000 $20
33 %100001 $21
34 %100010 $22
35 %100011 $23
36 %100100 $24
37 %100101 $25
38 %100110 $26
39 %100111 $27
40 %101000 $28
41 %101001 $29
42 %101010 $2A
43 %101011 $2B
44 %101100 $2C
45 %101101 $2D
46 %101110 $2E
47 %101111 $2F
48 %110000 $30
49 %110001 $31
50 %110010 $32
51 %110011 $33
52 %110100 $34
53 %110101 $35
54 %110110 $36
55 %110111 $37
56 %111000 $38
57 %111001 $39
58 %111010 $3A
59 %111011 $3B
60 %111100 $3C
61 %111101 $3D
62 %111110 $3E
63 %111111 $3F

R-4

Decimal Binary Hexadecimal

64 %1000000 $40
65 %1000001 $41
66 %1000010 $42
67 %1000011 $43
68 %1000100 $44
69 %1000101 $45
70 %1000110 $46
71 %1000111 $47
72 %1001000 $48
73 %1001001 $49
74 %1001010 $4A
75 %1001011 $4B
76 %1001100 $4C
77 %1001101 $4D
78 %1001110 $4E
79 %1001111 $4F
80 %1010000 $50
81 %1010001 $51
82 %1010010 $52
83 %1010011 $53
84 %1010100 $54
85 %1010101 $55
86 %1010110 $56
87 %1010111 $57
88 %1011000 $58
89 %1011001 $59
90 %1011010 $5A
91 %1011011 $5B
92 %1011100 $5C
93 %1011101 $5D
94 %1011110 $5E
95 %1011111 $5F

Decimal Binary Hexadecimal

96 %1100000 $60
97 %1100001 $61
98 %1100010 $62
99 %1100011 $63
100 %1100100 $64
101 %1100101 $65
102 %1100110 $66
103 %1100111 $67
104 %1101000 $68
105 %1101001 $69
106 %1101010 $6A
107 %1101011 $6B
108 %1101100 $6C
109 %1101101 $6D
110 %1101110 $6E
111 %1101111 $6F
112 %1110000 $70
113 %1110001 $71
114 %1110010 $72
115 %1110011 $73
116 %1110100 $74
117 %1110101 $75
118 %1110110 $76
119 %1110111 $77
120 %1111000 $78
121 %1111001 $79
122 %1111010 $7A
123 %1111011 $7B
124 %1111100 $7C
125 %1111101 $7D
126 %1111110 $7E
127 %1111111 $7F

R-5

Decimal Binary Hexadecimal

128 %10000000 $80
129 %10000001 $81
130 %10000010 $82
131 %10000011 $83
132 %10000100 $84
133 %10000101 $85
134 %10000110 $86
135 %10000111 $87
136 %10001000 $88
137 %10001001 $89
138 %10001010 $8A
139 %10001011 $8B
140 %10001100 $8C
141 %10001101 $8D
142 %10001110 $8E
143 %10001111 $8F
144 %10010000 $90
145 %10010001 $91
146 %10010010 $92
147 %10010011 $93
148 %10010100 $94
149 %10010101 $95
150 %10010110 $96
151 %10010111 $97
152 %10011000 $98
153 %10011001 $99
154 %10011010 $9A
155 %10011011 $9B
156 %10011100 $9C
157 %10011101 $9D
158 %10011110 $9E
159 %10011111 $9F

Decimal Binary Hexadecimal

160 %10100000 $A0
161 %10100001 $A1
162 %10100010 $A2
163 %10100011 $A3
164 %10100100 $A4
165 %10100101 $A5
166 %10100110 $A6
167 %10100111 $A7
168 %10101000 $A8
169 %10101001 $A9
170 %10101010 $AA
171 %10101011 $AB
172 %10101100 $AC
173 %10101101 $AD
174 %10101110 $AE
175 %10101111 $AF
176 %10110000 $B0
177 %10110001 $B1
178 %10110010 $B2
179 %10110011 $B3
180 %10110100 $B4
181 %10110101 $B5
182 %10110110 $B6
183 %10110111 $B7
184 %10111000 $B8
185 %10111001 $B9
186 %10111010 $BA
187 %10111011 $BB
188 %10111100 $BC
189 %10111101 $BD
190 %10111110 $BE
191 %10111111 $BF

R-6

Decimal Binary Hexadecimal

192 %11000000 $C0
193 %11000001 $C1
194 %11000010 $C2
195 %11000011 $C3
196 %11000100 $C4
197 %11000101 $C5
198 %11000110 $C6
199 %11000111 $C7
200 %11001000 $C8
201 %11001001 $C9
202 %11001010 $CA
203 %11001011 $CB
204 %11001100 $CC
205 %11001101 $CD
206 %11001110 $CE
207 %11001111 $CF
208 %11010000 $D0
209 %11010001 $D1
210 %11010010 $D2
211 %11010011 $D3
212 %11010100 $D4
213 %11010101 $D5
214 %11010110 $D6
215 %11010111 $D7
216 %11011000 $D8
217 %11011001 $D9
218 %11011010 $DA
219 %11011011 $DB
220 %11011100 $DC
221 %11011101 $DD
222 %11011110 $DE
223 %11011111 $DF

Decimal Binary Hexadecimal

224 %11100000 $E0
225 %11100001 $E1
226 %11100010 $E2
227 %11100011 $E3
228 %11100100 $E4
229 %11100101 $E5
230 %11100110 $E6
231 %11100111 $E7
232 %11101000 $E8
233 %11101001 $E9
234 %11101010 $EA
235 %11101011 $EB
236 %11101100 $EC
237 %11101101 $ED
238 %11101110 $EE
239 %11101111 $EF
240 %11110000 $F0
241 %11110001 $F1
242 %11110010 $F2
243 %11110011 $F3
244 %11110100 $F4
245 %11110101 $F5
246 %11110110 $F6
247 %11110111 $F7
248 %11111000 $F8
249 %11111001 $F9
250 %11111010 $FA
251 %11111011 $FB
252 %11111100 $FC
253 %11111101 $FD
254 %11111110 $FE
255 %11111111 $FF

R-7

R-8

APPENDIX S
Flashing the FPGAs and CPLDs

in the MEGA65
• Suggested PC specifications

• Warning

• Installing Vivado

• Installing the FTDI drivers

• Flashing the main FPGA using Vivado

• Flashing the CPLD in the MEGA65’s

Keyboard with Lattice

Diamond

• Flashing the MAX10 FPGA on the

MEGA65’s Mainboard

with INTEL QUARTUS

S-2

S-3

S-4

The MEGA65 is an open-source and open-hardware computer. This means you are
free, not only to write programs that run on the MEGA65 as a finished computer, but
also to use the re-programmable chips in the MEGA65 to turn it into all sorts of other
things.

If you just want to install an upgrade core for the MEGA65, or a core that lets you use
your MEGA65 as another type of computer, you probably want to look in Chapter/Ap-
pendix 5 on page 5-3 instead.

This chapter is more intended for people who want to help develop cores for the
MEGA65. This chapter may also be of interest to Nexys4 board owners that are inter-
ested booting their devices from the on-board QSPI flash memory chip (rather than a
bitstream file on the SD card). This will require flashing an .mcs file onto their board’s
QSPI chip, so as to provide an initial bistream in the ’Slot 0’ position.

These re-programmable chips are called Field Programmable Gate Arrays (FPGAs) or
Complex Programmable Logic Devices (CPLDs), and can implement a wide variety of
circuits. They are normally programmed using a language like VHDL or Verilog. These
are languages that are not commonly encountered by most people. They are also
quite different in some ways to “normal” programming languages, and it can take a
while to understand how they work. But with some effort and perseverance, exciting
things can be created with them.

SUGGESTED PC SPECIFICATIONS
Be prepared to install many gigabytes of software on a Linux or Windows PC, before
you will be able to write programs for the FPGAs and CPLDs in the MEGA65. Also,
”compiling” complex designs can take up to several hours, depending on the speed
and memory capacity of your computer. We recommend a computer with at least
12GB RAM (preferably 16GB) if you want to write programs for FPGAs and CPLDs. On
the other hand, if all you want to do is load programs onto your MEGA65’s FPGAs and
CPLDs that other people have written, then most computers running a recent version
of Windows or Linux should be able to cope.

• OS: Linux or Windows

• CPU Speed: As fast as you can get your hands on!

• Number of cores: Ideally, 8 or more, as the free license of Vivado can make use
of a max of 8 cores.

• Hard disk space: Have about 70GB or more. The exact amount used depends
on how many components within Vivado you install (bear in mind that the full
install file is about 50GB in itself)

S-5

• Memory: minimum of 12GB (ideally, have more, to play it safe)

WARNING
Before we go any further, we do have to provide a warning about reprogramming the
FPGAs and CPLDs in the MEGA65. Re-programming the MEGA65 FPGA can poten-
tially cause damage, or leave your MEGA65 in an unresponsive state from which it is
very difficult to recover, i.e., “bricked”. Therefore if you choose to open your MEGA65
and reprogram any of the FPGAs it contains, it is no longer possible to guarantee its
correct operation. Therefore, we cannot reasonably honour the warranty of the device
as a computer. You have been warned!

INSTALLING VIVADO
Installation of Vivado is required to flash the QSPI flash memory within your MEGA65
target device, whether it be a MEGA65 R2/R3, Nexys4/Nexys4DDr/NexysA7, MEGA-
phone or other.

Vivado is also the tool used to perform compilation (synthesis, as it is preferably called)
of FPGA bitstreams.

To get started, connect to https://www.xilinx.com/support/download.html

S-6

https://www.xilinx.com/support/download.html

Select 2020.2 version

NOTE : Some users still have success with using older versions, as the main aim here
is to install a version that supports the FPGA of your target hardware.

I.e., the Artix7 100T (for Nexys and R2) or 200T (R3).

Click on Xilinx Unified Installer 2020.2: Windows Self Extracting Web Installer EXE -
248.44MB

S-7

You will be asked to create an account in order to sign in and be able to download
the installation program.

Your credentials will also be requested when doing the installation.

After having signed in, you have to provide some personal information and then click
on Download

S-8

Execute the installer as Administrator (Xilinx_Unified_2020.2_1118_1232_Win64.exe).

Click on Allow Access.

Click on Next.

S-9

Enter your credentials and click on Next.

Select Vivado and click on Next.

S-10

Select ”Vivado HL WebPACK” and click on ”Next”

We’d suggest selecting only the ”7 Series” devices, as our chosen FPGA is within this
series, and de-selecting the other series will save you about 6GB in download size.
Then click on ”Next”

Warning: As stated, disconnect any USB cable that would be connected to your PC
from the Nexys board.

S-11

Agree with all the End User Licence Agreement and Terms and conditions and click
on ”Next”.

Choose the location where you want to install the software and click on ”Next”.

Warning : You are about to download 20GB of software and you need 70GB to per-
form the installation.

S-12

Click on ”Yes”

Click on ”Install”

S-13

Wait for the installation to complete. At the very end of the installation you will be
asked if you want to install Xilinx device software.

Click on ”Install”

Let the installation complete.

S-14

The installation is completed. Click on ”OK”

You end up with the following icons on your desktop:

S-15

Launch Vivado 2020.2

Click on ”Help”->”Obtain a licence Key”

S-16

This launches the Vivado licence manager

Select ”Get Free ISE WebPACK, ISE/Vivado IP or PetaLinux Licenses”

Click on ”Connect Now”

S-17

Connect with the user account you have created to be able to download the Vivado
software. If you were not already connected to Xilinx website, this will take you to the
main webpage. Go back in the licence manager (which is not closed)

Click again on ”Connect Now” (ensure ”Get Free ISE WebPACK, ISE/Vivado IP or
PetaLinux Licenses” is still selected)

S-18

You then register your personal information on the Vivado website:

Click on ”Next”.
Select ”ISE WebPACK Licence” and ”Vivado Design Suite: HL WebPACK 2015 and
Earlier License”

Then click on ”Generate Node-Locked Licence”

S-19

Click on ”Next”

Click on ”Next”

S-20

Check your email box : You should have received an email from Xilinx, Inc. with a
licence file attached and named ”Xilinc.lic”.

Retrieve this file on your PC and keep it in safe place.

Go back to the licence manager (which is still running).

Set ”Load License” and click on ”Copy License”

S-21

Browse to the location where you saved ”Xilinc.lic” file, select it and click on ”Open”.

Click on ”OK” and close the Vivado licence manager.

Your Vivado software is registered and you can now use it.

INSTALLING THE FTDI DRIVERS
The FTDI drivers are needed in order for your PC to communicate with the hardware’s
JTAG port and serial comms port (note that the single physical USB connection made
to your PC actually provides these two ports).

S-22

Linux drivers
Some Linux users have reported that they have found the FTDI drivers to be installed
within their Linux distributions out-of-the-box, while others have found they needed to
run this extra command after installing Vivado:

cd /opt/Xilinx/Vivado/2018.3/data/xicom/cable_drivers/lin64/install_script/install_drivers
sudo ./install_drivers

Windows drivers
Download the following archive to install the drivers:

• https://www.ftdichip.com/Drivers/CDM/CDM21228_Setup.zip

Unzip the file CDM21228_Setup.zip, you get the file CDM21228_Setup.exe.

Warning:
Before installing the drivers, it is imperative to switch off the Nexys4 board and to
disconnect the USB cable from the PC.
Review the devices already installed before the installation:

S-23

https://www.ftdichip.com/Drivers/CDM/CDM21228_Setup.zip

Run the file CDM21228_Setup.exe as administrator:

Confirm that you want to run the program.

Click on ”Extract”.

S-24

Click on ”Next >”

Accept the agreement and click on ”Next >”.

The installation of the drivers starts.

S-25

Click on ”Finish”.

Connect the USB cable to a USB port on the PC without turning on the Nexys4 board.

Connecting the USB cable triggers the appearance of new devices.

• An additional COM port has been installed: This is the COM port that will be
used to communicate with the Nexys4 board.

• An additional USB composite device has been installed.

S-26

• Two USB serial converter devices have been installed.

At this point the Nexys4 board has still not been powered up.

For more information about the installed drivers, you can download the corresponding
documentation:

• https://ftdichip.com/wp-content/uploads/2020/08/AN_
396-FTDI-Drivers-Installation-Guide-for-Windows-10.pdf

• https://ftdichip.com/wp-content/uploads/2021/01/AN_119_FTDI_
Drivers_Installation_Guide_for_Windows7.pdf

FLASHING THE MAIN FPGA USING
VIVADO
Firstly, to clarify that when we say ’flashing the FPGA’, in reality, what we mean is that
we are flashing the QSPI flash memory chip that the FPGA makes use of upon startup
in order to quickly load the bitstream from.

The diagram below shows two common pathways that the FPGA can load bitstreams
at startup:

• We can first flash a bitstream/core-file onto the QSPI flash memory chip, and
the FPGA can load this quickly at power-up. Flashing the QSPI is quite slow, but
the reward of a fast boot-up time is an advantage.

S-27

https://ftdichip.com/wp-content/uploads/2020/08/AN_396-FTDI-Drivers-Installation-Guide-for-Windows-10.pdf
https://ftdichip.com/wp-content/uploads/2020/08/AN_396-FTDI-Drivers-Installation-Guide-for-Windows-10.pdf
https://ftdichip.com/wp-content/uploads/2021/01/AN_119_FTDI_Drivers_Installation_Guide_for_Windows7.pdf
https://ftdichip.com/wp-content/uploads/2021/01/AN_119_FTDI_Drivers_Installation_Guide_for_Windows7.pdf

• We can drop a bitstream file onto our SD card and let the FPGA load it (some-
what more slowly) from there at power-up. This way is popular amongst Nexys4
board users, and allows them to swap/upgrade bitstreams quickly.

In this section, we describe the pathway that makes use of the QSPI.

Many of the following steps in this section are applicable not only to MEGA65 R2/R3
owners, but Nexys4 board owners too. There are a few points of distinction along the
way that readers will be made aware of.

If you choose to proceed, you will need a functioning installation of Xilinx’s Vivado
software, and the FTDI drivers installed, as described in the earlier sections.

Youwill also need to download or build an .mcs bitstream file (and optional .prm check-
sum verification file) that you intend flash onto the QSPI chip via Vivado. See Bitstream
files for more details on where such files can be downloaded.

S-28

For MEGA65 R2/R3 owners:

You will need a TE0790-03 JTAG programming module. It is also neces-
sary to have dip-switches 1 and 3 in the ON position and dip-switches 2 and 4
in the OFF position on the TE-0790. With your MEGA65 disconnected from the
power, the TE-0790 must be installed on the JB1 connector which is located
between the floppy data cable and the audio jack. The gold-plated hole of the
TE-0790 must line up with the screw hole below. The mini-USB cable will then
connect on the side towards the 3.5” floppy drive. The following image shows
the correct position: The TE0790 is surrounded by the yellow box, and the dip-
switches by the red box. Dip-switch 1 is the one nearest the floppy data cable.

S-29

For Nexys4 board owners:

Simply connect your micro-usb cable between your Nexys4 board and
your PC via the port labeled ’PROG UART’ (J6), as shown:

Also, set J1 jumper to the QSPI position:

• Connect your non-8-bit computer to the FPGA programming device using the
appropriate USB cable.

• Switch the MEGA65 computer ON.

• Open Vivado.

S-30

Step 1a: Create a new Vivado project with ”File”, ”Project”, ”New...”.
NOTE: On future occasions that you need to flash the QSPI, just re-open this project
(no need to create a new project each time).

Step 1b: The ’New Project’ wizard appears. Click on ”Next”:

S-31

Step 1c: Name your project and choose the location you like, then click on ”Next”:

Step 1d: Keep the default selected options and click on ”Next”:

S-32

Step 1e: Do not add any sources, keep the default selected options and click on
”Next”:

Step 1f: Keep the default selected options and click on ”Next”:

S-33

Step 1g: Click on ”Finish”:

Step 2: In the left column, select ”Open Hardware Manager” at the very bottom.

S-34

Step 3: Connect to the FPGA:
Under ”Open Hardware Manager”, choose ”Open Target”, then ”Auto Connect”.

Step 4: Wait a moment, ”Connecting to server...” should automatically close without
dropping an error to the console.

S-35

Step 5: Under ”Open Hardware Manager”, choose ”Add Configuration Memory De-
vice”, then:

• For MEGA65R3: ”xc7a200t_0”
• For Nexys4 and MEGA65R2: ”xc7a100t_0”.

Step 6a: Select Memory Part:

In the newly opened dialogue:
• For MEGA65R2/R3: type ”S25fl256s” (without quotes), then select
”s25fl256sxxxxxxx0-spi-x1_x2_x4” (the upper one) and click ”OK”.

• For Nexys4: type ”S25fl128s” (without quotes), then select ”s25fl128sxxxxxxx0-
spi-x1_x2_x4” (the upper one) and click ”OK”.

S-36

Step 6b: Click on ”OK” to confirm you want to program the configuration memory
device now.

Step 6c: If you do not see such a popup, or wish to reprogram the QSPI on a future
occasion, in ”Hardware” window, right click on the memory configuration and select
”Program Configuration Memory Device”:

S-37

Step 7: Set programming options:
In the next dialogue, set the ”Configuration file” to the path of your ”.mcs” bitstream
file. You can also optionally set the ”PRM file” field to the path of your ”.prm” file.
Leave all other parameters as they are (see screenshot below).

Step 8: Patiently wait for the programming to finish. This can take several minutes
as the Vivado software erases and then reprograms the flash memory that is used to
initialise the FPGA on power-up.

S-38

Step 9: If your screen looks like the screenshot below, your new bitstream has been
successfully flashed into Slot0 of your QSPI flash memory!

Step 10: If you want to reflash the FPGA, you might find the ”Add Configuration
Memory Device” option in step 5 greyed out. Instead, select ”s25fl256sxxxxxxx0-spi-
x1_x2_x4” in the ”Hardware” window, press right mouse button and select ”Program
Configuration Memory Device” to flash.

S-39

FLASHING THE CPLD IN THE MEGA65’S
KEYBOARD WITH LATTICE DIAMOND
If you choose to proceed, you will need a TE0790-03 JTAG programming module and
a functioning installation of Lattice Diamond Programmer software. This can be done
on either Windows or Linux, but in both cases you will need to install any necessary
USB drivers. It is also necessary to have dip-switches 1 and 3 in the ON position
and dip-switches 2 and 4 in the OFF position on the TE-0790. With your MEGA65
disconnected from the power, the TE-0790 must be installed on the JB1 connector,
which is located between the floppy data cable and the audio jack. The gold-plated
hole of the TE-0790 must line up with the screw hole below. The mini-USB cable will
then connect on the side towards the 3.5” floppy drive. The following image shows the
correct position: The TE0790 is surrounded by the yellow box, and the dip-switches
by the red box. Dip-switch 1 is the one nearest the floppy data cable.

S-40

S-41

On the PCB R2 MEGA65 mainboard, dip switch 1 (the one nearest to the user sitting
in front of the machine) must be in the ON position. The other switches must be OFF.
The keyboard will go into “ambulance mode” (blue flashing lights) when set correctly.

Connect your non-8-bit computer to the FPGA programming device using a mini-USB
cable. Switch the MEGA65 computer ON. Open the Diamond Programmer which can
be downloaded from the Internet.
Step 1: Open DIAMOND PROGRAMMER:
Select ”Create a new project from a JTAG scan”. If entry under ”Cable:” is empty,
click ”Detect Cable”.

Step 2: Create a new project:
If dialog ”Programmer: Multiple Cables Detected” appears, select the first entry (”Lo-
cation 0000”) and click ”OK”.

S-42

Step 3: Select cable:
You have now created a new project which should display ”MachXO2” under ”Device
Family” and ”LCMXO2-1200HC” under ”Device”

Step 4: New Diamond Programmer project:
Choose ”File” then ”Open File” to load the Diamond Pprogrammer project with the
MEGA65 keyboard firmware update.

S-43

Step 5: Open project:
Navigate into the folder with the extracted MEGA65 keyboard firmware files you have
received and select the file ending with ”.xcf”.

Step 6: Select project file:
Click the three dots under ”File Name” to set the correct path and find the file ending
with ”.jed”.

S-44

Step 7: Choose correct path of .jed file:
Select the file ending with ”.jed” and click ”OK”.

Step 8: Select .jed file:
Click on the icon with the green arrow facing down ”PROGRAM”, which looks similar
to the Diamond Programmer program icon.

S-45

Step 9: Select cable:
After a moment the Output window should display ”INFO - Operation: successful.”
and the ”Status” cell should go green (does not always happen).

Step 10: Operation successful:
You have now successfully flashed the MEGA65 keyboard. If you wish you can now
save the project for later use.

S-46

FLASHING THE MAX10 FPGA ON THE
MEGA65’S MAINBOARD WITH INTEL
QUARTUS
If you choose to proceed, you will need a TEI0004 - Arrow USB Programmer2 module
with TEI0004 driver installed and a functioning installation of Quartus Prime Program-
mer Lite Edition. This can be done on either Windows or Linux, but in both cases you
will need to install any necessary USB drivers. With your MEGA65 disconnected from
the power, the TEI0004 must be installed on the J17 connector, which is located be-
tween the floppy data cable and the ARTIX 7 FPGA on the Mainboard. The micro-USB
port of the TEI0004 must face in the opposite direction of the HDMI and LAN sockets,
towards the trap door. The following image shows the correct position.

On the PCB R2 MEGA65 mainboard, all dip switches must be in the OFF position.
The main FPGA of the MEGA65 R2 must not contain a valid bitstream. See section
Flashing the main FPGA using Vivado on how to erase the bitstream from the main
FPGA.

S-47

S-48

Connect your non-8-bit computer to the FPGA programming device using a micro-USB
cable. Open Quartus Prime Programmer Lite Edition, which can be downloaded from
the Internet.
Step 1: Open Quartus Prime Programmer Lite Edition:
Click the ”Hardware Setup” button in the top left corner of the Quartus Prime Pro-
grammer window.

Step 2: Enter Hardware Setup:
In the newly appeared window under ”Currently selected hardware” choose ”Arrow-
USB-Blaster”. If ”Arrow-USB-Blaster” does not appear, verify cable and drivers being
correctly installed.

S-49

Step 3: Select Arrow USB-Blaster:
Click the ”Add File” button from the left row and choose the latest ”.pof” file. Then
click ”Open”.

Step 4: Select Programming File:
Tick at least the three boxes under ”Program/Configure”. Also enabling all boxes under
”Verify” and ”Blank-Check” will make the process more reliable.

S-50

Step 5: Select Program/Configure Options:

While keeping the Reset-Button pressed, switch the MEGA65 computer ON. The key-
board will go into “ambulance mode” (blue flashing lights). If it does not, the main
FPGA is not empty - restart the whole process.

Now click on ”Start” in the left row of buttons. The progress bar in the top right corner
should quickly go to 100 percent and turn green. You have now successfully updated
your MAX10 FPGA.

If you receive an error message instead, make sure the main FPGA bitstream has been
erased and that you did not release the reset-button on the MEGA65 beforehand.
Switch off the MEGA65 and restart this step.

S-51

Step 6: Programming successful:

S-52

APPENDIX T
Trouble shooting

• Hardware

• Vivado

• mega65_ftp

T-2

HARDWARE

No lights when powering on
If there are occasions when your MEGA65 display any lights when powering on, they
relate to having certain Digital Video devices plugged in while the MEGA65 is off,
that don’t provide enough power for the keyboard’s CPLD to be properly powered on,
but enough to stop it properly resetting when the MEGA65 powers on. Removing the
Digital Video cable and switching the machine off and on again fixes the issue.

VIVADO

RAM requirements

INFO: [Synth 8-256] done synthesizing module 'ram32x1024' [/home/....]
INFO: [Synth 8-256] synthesizing module 'charrom' [/home/....]

/opt/Xilinx/Vivado/2019.2/bin/loader: line 280: 2317 killed
WARNING: [Vivado 12-8222] Failed run(s) : 'synth_1'

ERROR: Application Exception: failed to launch run 'impl_1'
due to failures in the following run(s):

synth_1
These failed run(s) need to be reset prior to launching 'impl\

_1' again.

This error is due to Vivado crashing because the machine doesn’t have enough RAM
for Vivado to run. Vivado requires at least 4GB to synthesise the MEGA65 target, but
8GB is better.

MEGA65_FTP

T-3

Missing Library

/usr/bin/ld: cannot find -lncurses
collect2: error: ld returned 1 exit status
Makefile:474: recipe for target 'bin/mega65_ftp' failed
make: *** [bin/mega65_ftp] Error 1

This error occurs when the ncurses library is missing from the computer when building
the mega65_ftp program. To rectify this issue you will need to ensure that you install
this dependency.

sudo apt-get install libncurses5-dev libncursesw5-dev

T-4

APPENDIX U
Model Specific Features

• Detecting MEGA65 Models

• MEGA65 Desktop Computer, Revision 3

onwards

• MEGA65 Desktop Computer, Revision 2

• MEGAphone Handheld, Revisions 1 and 2

• Nexys4 DDR FPGA Board

U-2

DETECTING MEGA65 MODELS
While we expect the production version of the MEGA65 to be a stable platform, there
may still be cases where detecting which hardware your program is running on. This
is particularly important for the MEGA65 system software, which may need to ini-
tialise different pieces of hardware on the different models. Also, because there is a
hand-held version of the MEGA65 already in development, which uses a slightly dif-
ferent resolution screen (800x480 instead of 720x576), and has a touch screen but
no hardware keyboard, you may wish to make programs that adapt to the hand-held
devices in a more graceful way. For example, you may enable touch-screen input, and
restructure on-screen selections to be large enough to be easily activated by a finger.

The simple way to detect which model of MEGA65 your program is running on, is to
check the $D629 register (but don’t forget to enable the MEGA65 I/O personality
first, via $D02F). This contains an 8-bit hardware identifier. The following values are
currently defined:

$01 (1) MEGA65 R1

$02 (2) MEGA65 R2

$03 (3) MEGA65 R3

$21 (33) MEGAphone (hand-held) R1

$40 (64) Nexys4 PSRAM

$41 (65) Nexys4DDR

$42 (66) Nexys4DDR with widget board

$FD (253) QMTECH Wukong A100T board

$FE (254) Simulation run of VHDL

MEGA65 DESKTOP COMPUTER,
REVISION 3 ONWARDS
The R3 desktop PCB is very similar to the R2 desktop PCB, with two key changes:

• First, the R3 PCB does not have an ADV7511 digital video driver chip, and so
the I2C register block for that device is not present.

• Second, the R3 PCB uses a different on-board amplifier for the PC speakers,
which are now present in stereo, rather than mono as on the R2 PCB. The ampli-

U-3

fier on the R3 PCB is the same as on the MEGAphone R1 – R2 PCBs. However, the
I2C registers are at a different address. On the MEGA65 R3 PCB, the registers
are located at $FFD71DC – $FFD71EF.

MEGA65 DESKTOP COMPUTER,
REVISION 2
The desktop version of the MEGA65 contains a Real-Time Clock (RTC), which also
includes a small amount of non-volatile memory (NVRAM) that retains its value, even
if the computer is turned off and disconnected from its power supply. The NVRAM will
hold its values for as long as the internal battery has sufficient charge. This battery also
powers the Real-Time Clock (RTC) itself, which includes a 100 year calendar spanning
the years 2000 – 2099.

The main trick with accessing the RTC from BASIC, is that we will need to use a
MEGA65 Enhanced DMA operation to fetch the RTC registers, because the RTC regis-
ters sit above the 1MB barrier, which is the limit of the C65’s normal DMA operations.
The easiest way to do this is to construct a little DMA list in memory somewhere, and
make an assembly language routine that uses it. Something like this (using BASIC 65
in C65-mode):

10 RESTORE 110:FORI=0TO43:READA$:POKE1024+I,DEC(A$):NEXT:BANK 128:SYS1042

20 S=PEEK(1056):M=PEEK(1057):H=PEEK(1058)

30 D=PEEK(1059):MM=PEEK(1060):Y=PEEK(1061)+DEC("2000")

40 IF H AND 128 GOTO 80

50 PRINT "THE TIME IS ";RIGHT$(HEX$(H AND 63),2);":";RIGHT$(HEX$(M),2);".";RIGHT$(HEX$(S),2)

60 IF H AND 32 THEN PRINT "PM": ELSE PRINT "AM"

70 GOTO 90

80 PRINT "THE TIME IS ";RIGHT$(HEX$(H AND 63),1);":";RIGHT$(HEX$(M),2);".";RIGHT$(HEX$(S),2)

90 PRINT "THE DATE IS ";RIGHT$(HEX$(D),2);".";RIGHT$(HEX$(MM),2);".";HEX$(Y)

100 END

110 DATA 0B,80,FF,81,00,00,00,08,00,10,71,0D,20,04,00,00,00,00

120 DATA A9,47,8D,2F,D0,A9,53,8D,2F,D0,A9,00,8D,02,D7,A9

130 DATA 04,8D,01,D7,A9,00,8D,05,D7,60

This program works by setting up a DMA list in memory at 1,024 ($0400) (unused
normally on the C65), followed by a routine at 1,042 ($0412) which ensures we have
MEGA65 registers un-hidden, and then sets the DMA controller registers appropriately
to trigger the DMA job, and then returns. The rest of the BASIC code PEEKs out the RTC

U-4

registers that the DMA job copied to 1,024 - 1,032 ($0400 – $0407), and interprets
them appropriately to print the time.

The curious can use the MONITOR command, and then D1012 to see the routine.

If you want a running clock, you could replace line 100 with GOTO 10. Doing that,
you will get a result something like the following:

THE TIME IS 10:05:36 PM

THE DATE IS 20.02.2020

THE TIME IS 10:05:36 PM

THE DATE IS 20.02.2020

THE TIME IS 10:05:36 PM

THE DATE IS 20.02.2020

THE TIME IS 10:05:36 PM

THE DATE IS 20.02.2020

...

If you first POKE0,65 to set the CPU to full speed, the whole program can run many
times per second. There is an occasional glitch, if the RTC registers are read while
being updated by the machine, so we really should de-bounce the values by reading
the time a couple of times in succession, and if the values aren’t the same both times,
then repeat the process until they are. This is left as an exercise for the reader.

NOTE: These registers are not yet fully documented.

MEGAPHONE HANDHELD, REVISIONS 1
AND 2
The MEGAphone revision 1 and 2 contain a Real-Time Clock (RTC), however this RTC
does not include a non-volatile memory (NVRAM) area. Other specific features of
the MEGAphone revisions 1 and 2 include a 3-axis accelerometer, including analog
to digital converters (ADCs), amplifier controller for loud speakers, and several I2C
I/O expanders, that are used to connect the joy-pad and other peripherals. The I/O
expanders are fully integrated into the MEGAphone design, and thus there should be
no normal need to read these registers directly. The I/O expanders are, however, also
responsible for power control of the various sub-systems of the MEGAphone.

NOTE: These registers are not yet fully documented.

U-5

NEXYS4 DDR FPGA BOARD
NOTE: These registers are not yet fully documented.

U-6

APPENDIX V
Schematics

• MEGA65 R3 Schematics

• MEGA65 R2 Schematics

V-2

MEGA65 R3 SCHEMATICS

V-3

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

1
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

TE
07

65
.S

ch
D

oc
Fi

le
na

m
e:20

20
-0

6-
29

[N
o

Va
ria

tio
ns

]
TE

07
65

M
ou

nt
.H

ol
e

3.
2m

m
M

ou
nt

.H
ol

e
3.

2m
m

M
ou

nt
.H

ol
e

3.
2m

m

U
_E

th
er

ne
t

Et
he

rn
et

.S
ch

D
oc

G
N

D
G

N
D

G
N

D

U
_L

ED
_S

W
_B

U
T

LE
D

_S
W

_B
U

T.
Sc

hD
oc

U
_H

D
M

I
H

D
M

I.S
ch

D
oc

U
_S

Y
S_

M
A

X
10

_C
TR

L
SY

S_
M

A
X

10
_C

TR
L.

Sc
hD

oc

M
ou

nt
.H

ol
e

3.
2m

m
M

ou
nt

.H
ol

e
3.

2m
m

M
ou

nt
.H

ol
e

3.
2m

m
G

N
D

G
N

D
G

N
D

PM
1

FI
D

U
-D

O
T

- s
m

al
l

PM
2

FI
D

U
-D

O
T

- s
m

al
l

PM
3

FI
D

U
-D

O
T

- s
m

al
l

PM
6

FI
D

U
-D

O
T

- s
m

al
l

PM
5

FI
D

U
-D

O
T

- s
m

al
l

PM
4

FI
D

U
-D

O
T

- s
m

al
l

U
_S

O
U

N
D

SO
U

N
D

.S
ch

D
oc

U
_B

13
B

13
.S

ch
D

oc

U
_B

14
B

14
.S

ch
D

oc

U
_B

15
B

15
.S

ch
D

oc

U
_B

16
B

16
.S

ch
D

oc

U
_B

34
B

34
.S

ch
D

oc

U
_F

PG
A

-C
FG

FP
G

A
-C

FG
.S

ch
D

oc

U
_F

PG
A

-M
G

T
FP

G
A

-M
G

T.
Sc

hD
oc

U
_F

PG
A

-P
W

R
FP

G
A

-P
W

R
.S

ch
D

oc

U
_J

O
Y

JO
Y

.S
ch

D
oc

U
_K

EY
B

O
A

R
D

K
EY

B
O

A
R

D
.S

ch
D

oc

U
_P

O
W

ER
PO

W
ER

.S
ch

D
oc

U
_P

ow
er

M
ai

n
Po

w
er

M
ai

n.
Sc

hD
oc

U
_V

G
A

V
G

A
.S

ch
D

oc

U
_E

X
T_

H
EA

D
ER

EX
T_

H
EA

D
ER

.S
ch

D
oc

U
_E

X
P_

Sl
ot

EX
P_

Sl
ot

.S
ch

D
oc

U
_F

lo
pp

y
Fl

op
py

.S
ch

D
oc

Se
ria

l
Se

ria
l1

Se
ria

ln
um

be
r 6

,3
 x

 6
.3

m
m

TE
 L

og
o

PR
IN

T
La

ye
r

LO
G

O
1

LO
G

O
 P

R
IN

T

A
ss

em
bl

y
va

ria
nt

:
[N

o
Va

ria
tio

ns
]

M
od

ifi
ed

 a
t:

Va
ria

nt
D

at
eM

od
ifi

ca
tio

n

C
re

at
ed

 b
y:

Va
ria

nt
C

re
at

ed
B

y

M
od

ifi
ed

 b
y:

Va
ria

nt
M

od
ifi

ed
B

y

C
he

ck
ed

 b
y:

M
R

D
es

ig
n

dr
aw

n
by

:
IG

PIH101

COH
1

PIH201

COH
2

PIH301

CO
H3

PIH501

CO
H5

PIH701

COH
7

PIH801

CO
H8

CO
LO
GO
1

CO
PM
1

CO
PM
2

CO
PM
3

CO
PM
4

CO
PM
5

CO
PM
6

CO
Se

ri
al

1

PIH101
PIH201

PIH301
PIH501

PIH701
PIH801

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

2
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

EX
T_

H
E

A
D

E
R

.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

G
N

D

G
N

D
G

N
D

G
N

D

B
3

5
_

L2
_

N
B

3
5

_
L2

_
P

B
3

5
_

L3
_

N
B

3
5

_
L3

_
P

B
3

5
_

L4
_

N
B

3
5

_
L4

_
P

B
3

5
_

L5
_

N
B

3
5

_
L5

_
P

B
3

5
_

L6
_

N
B

3
5

_
L6

_
P

B
3

5
_

L1
_

N
B

3
5

_
L1

_
P

1 2 3 4

G
N

D
5

V
C

C
6

7 8 9 10

G
N

D
11

V
C

C
12

P1 PM
od

 2
x6

 S
M

D
 H

os
t S

oc
ke

t 9
0°

1 2 3 4

G
N

D
5

V
C

C
6

7 8 9 10

G
N

D
11

V
C

C
12

P2 PM
od

 2
x6

 S
M

D
 H

os
t S

oc
ke

t 9
0°

B
3

5
_

L1
2

_
P

B
3

5
_

L1
2

_
N

B
3

5
_

L1
0

_
P

B
3

5
_

L1
0

_
N

M
_

T
M

S

M
_

T
D

I

M
_

T
D

O
M

_
T

C
K

G
N

D
1

3.
3V

5

G
N

D
2

V
IO

6

A
3

B
7

C
4

D
8

E
9

F
10

H
12

G
11

G
N

D
H

1

U
A

R
T

T
C

K

T
D

O

T
D

I

T
M

S

JB
1

TE
07

90
-B

as
e

SM
T

1
2

3
4

5
6

7
8

9
10

J1
7

SM
D

-2
54

-9
13

2-
14

-1
0G

N
D

T
E

_
T

M
S

T
E

_
T

D
I

T
E

_
T

D
O

T
E

_
T

C
K G
N

D
G

N
D

G
N

D

3.
3V

TE
_U

A
RT

_R
X

TE
_U

A
RT

_T
X

C
13

8
47

0n
F

G
N

D

3.
3V

C
13

7
47

0n
F

G
N

D

C
PL

D
 C

O
N

FI
G

3

2

1 4

5

6

D
2

W
E-

TV
S-

82
40

13

G
N

D
B

3
5

_
L1

_
N

3

2

1 4

5

6

D
3

W
E-

TV
S-

82
40

13

G
N

D

3

2

1 4

5

6

D
4

W
E-

TV
S-

82
40

13

G
N

D

B
3

5
_

L6
_

N
3

2

1 4

5

6

D
11

W
E-

TV
S-

82
40

13

G
N

D

1 2 3 4

J1
8

11
09

90
03

7

G
N

D

G
ro

ve
_S

C
L0

G
ro

ve
_S

D
A

0
R

12
8

4K
7

R
12

9
4K

7

G
ro

ve
 C

O
N

N
PM

O
D

 C
O

N
N

3

2

1 4

5

6

D
1

W
E-

TV
S-

82
40

13

G
N

D

G
ro

ve
_S

C
L0

G
ro

ve
_S

D
A

0

G
N

D
6

IN
7

E
N

1
1

E
N

2
4

FL
G

2
3

O
U

T2
5

O
U

T1
8

FL
G

1
2

U
35

A
P2

19
6S

G
-1

3

3.
3V

C
16

3
47

0n
F

C
14

6
47

0n
F

10
V

C
14

5
10
µF

10
V

C
16

2
10
µF

10
V

C
16

4
10
µFG

N
D

G
N

D

G
N

D
G

N
D

PM
O

D
1_

V
C

C

PM
O

D
2_

V
C

C

PM
O

D
1_

V
C

C

PM
O

D
2_

V
C

C

G
N

D

G
N

D

PM
O

D
1_

FL
G

PM
O

D
2_

FL
G

PM
O

D
1_

EN
PM

O
D

2_
EN

R
14

6
10

K
R

14
7

10
K

PM
O

D
1_

V
C

C

PM
O

D
2_

V
C

C

i
CP

LD
_J

TA
G

B
3

5
_

L6
_

P
B

3
5

_
L1

2
_

P
B

3
5

_
L4

_
P

B
3

5
_

L1
0

_
P

B
3

5
_

L4
_

N
B

3
5

_
L1

0
_

N

B
3

5
_

L1
2

_
N

B
3

5
_

L1
_

P

B
3

5
_

L2
_

N
B

3
5

_
L2

_
P

B
3

5
_

L3
_

N
B

3
5

_
L3

_
P

B
3

5
_

L5
_

P
B

3
5

_
L5

_
N

i
TE

_J
TA

G

R
15

6
4K

7

G
N

D

R
15

7
4K

7

G
N

D
G

N
D

R
15

8
10

K

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

PIC13701 PIC13702
CO
C1
37

PIC13801 PIC13802
CO
C1
38

PIC14501 PIC14502
CO
C1
45

PIC14601 PIC14602
CO
C1
46

PIC16201 PIC16202
CO
C1
62

PIC16301 PIC16302
CO
C1
63

PIC16401 PIC16402
CO
C1
64

PI
D1

01

PI
D1

02

PI
D1

03

PI
D1

04

PI
D1

05

PI
D1

06
 COD
1

PI
D2

01

PI
D2

02

PI
D2

03

PI
D2

04

PI
D2

05

PI
D2

06
 COD

2

PI
D3

01

PI
D3

02

PI
D3

03

PI
D3

04

PI
D3

05

PI
D3

06
 COD

3

PI
D4

01

PI
D4

02

PI
D4

03

PI
D4

04

PI
D4

05

PI
D4

06
 CO
D4

PI
D1

10
1

PI
D1

10
2

PI
D1

10
3

PI
D1

10
4

PI
D1

10
5

PI
D1

10
6 CO
D1
1

PI
J1
70
1

PI
J1
70
2

PI
J1
70
3

PI
J1
70
4

P
I
J
1
7
0
5

P
I
J
1
7
0
6

P
I
J
1
7
0
7

P
I
J
1
7
0
8

P
I
J
1
7
0
9

P
I
J
1
7
0
1
0

COJ
17

P
I
J
1
8
0
1

PI
J1
80
2

PI
J1
80
3

P
I
J
1
8
0
4
 COJ

18

P
I
J
B
1
0
1

PI
JB
10
2

P
I
J
B
1
0
3

P
I
J
B
1
0
4

PI
JB
10
5

P
I
J
B
1
0
6

P
I
J
B
1
0
7

P
I
J
B
1
0
8

PI
JB
10
9

PI
JB

10
10

P
I
J
B
1
0
1
1

P
I
J
B
1
0
1
2

PI
JB
10
H1

CO
JB

1

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4

P
I
P
1
0
5

P
I
P
1
0
6

P
I
P
1
0
7

P
I
P
1
0
8

P
I
P
1
0
9

P
I
P
1
0
1
0

P
I
P
1
0
1
1

PI
P1
01
2

COP
1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4

P
I
P
2
0
5

P
I
P
2
0
6

P
I
P
2
0
7

P
I
P
2
0
8

P
I
P
2
0
9

P
I
P
2
0
1
0

PI
P2
01
1

P
I
P
2
0
1
2

COP
2

PI
R1

28
01

PI

R1
28

02

CO
R1
28

PIR
129

01
PIR

129
02

CO
R1
29

PIR
146

01
PIR

146
02

CO
R1
46

PIR
147

01
PIR

147
02

CO
R1
47

PIR15601 PIR15602 CO
R1
56

PIR15701 PIR15702 CO
R1
57

PIR15801 PIR15802
CO
R1
58

P
I
U
3
5
0
1

PI
U3
50
2

PI
U3
50
3

P
I
U
3
5
0
4

PI
U3
50
5

PI
U3
50
6

P
I
U
3
5
0
7

P
I
U
3
5
0
8

CO
U3
5

PIC13701

PIC13801

PIC16401

PI
D1

05

PI
D2

05

PI
D3

05

PI
D4

05

PI
D1

10
5

PI
J1
70
4

PI
J1
80
3

P
I
J
B
1
0
6

PI
R1

28
01

PIR
129

01

PIR
146

01

PIR
147

01

P
I
U
3
5
0
7

PI
D2

06

P
I
P
1
0
4

NL
B3

50
L1

0N

PI
D2

04

P
I
P
1
0
1
0

NL
B3

50
L1

0P

PI
D2

01

P
I
P
1
0
3

NL
B3

50
L2

0N

PI
D2

03

P
I
P
1
0
9

NL
B3

50
L2

0P

PI
D3

06

P
I
P
1
0
2

NL
B3

50
L3

0N

PI
D3

04

P
I
P
1
0
8

NL
B3

50
L3

0P

PI
D4

01

P
I
P
2
0
8

NL
B3

50
L4

0N

PI
D4

06

P
I
P
2
0
7

NL
B3

50
L4

0P

PI
D3

01

P
I
P
1
0
1

NL
B3

50
L5

0N

PI
D3

03

P
I
P
1
0
7

NL
B3

50
L5

0P

PI
D4

03

P
I
P
2
0
2

NL
B3

50
L6

0N

PI
D4

04

P
I
P
2
0
1

NL
B3

50
L6

0P

PI
D1

10
3

P
I
P
2
0
4

NL
B3

50
L1

00
N

PI
D1

10
1

P
I
P
2
0
1
0

NL
B3

50
L1

00
P

PI
D1

10
6

P
I
P
2
0
9

NL
B3

50
L1

20
N

PI
D1

10
4

P
I
P
2
0
3

NL
B3

50
L1

20
P

PIC13702

PIC13802

PIC14502
PIC14602

PIC16202
PIC16302

PIC16402

PI
D1

02

PI
D2

02

PI
D3

02

PI
D4

02

PI
D1

10
2

PI
J1
70
2

P
I
J
1
7
0
1
0

P
I
J
1
8
0
4

P
I
J
B
1
0
1

PI
JB
10
2

PI
JB
10
H1

P
I
P
1
0
5

P
I
P
1
0
1
1

P
I
P
2
0
5

PI
P2
01
1

PIR15601 PIR15701
PIR15801

PI
U3
50
6

PI
D1

03

P
I
J
1
8
0
1

PI
R1

28
02

NL
Gr
ov
e0
SC
L0

PI
D1

04

PI
J1
80
2

PIR
129

02
NL

Gr
ov

e0
SD

A0

PI
J1
70
1

PIR15602
NL

M0
TC

K

P
I
J
1
7
0
9

NL
M0
TD
I

PI
J1
70
3

NL
M0

TD
O

P
I
J
1
7
0
5

NL
M0

TM
S

PI
D1

01

PI
D1

06

P
I
J
1
7
0
6

P
I
J
1
7
0
7

P
I
J
1
7
0
8

PI
JB
10
5

PI
JB
10
9

P
I
J
B
1
0
1
1

P
I
U
3
5
0
4

NL
PM

OD
10

EN

PIR
147

02
PI
U3
50
3

NL
PM

OD
10

FL
G

PIC14501
PIC14601

P
I
P
1
0
6

PI
P1
01
2

PI
U3
50
5

P
I
U
3
5
0
1

NL
PM

OD
20

EN

PIR
146

02
PI
U3
50
2

NL
PM

OD
20

FL
G

PIC16201
PIC16301

P
I
P
2
0
6

P
I
P
2
0
1
2

P
I
U
3
5
0
8

P
I
J
B
1
0
4

PIR15702
NL
TE
0T
CK

PI
JB

10
10

NL

TE
0T

DI

P
I
J
B
1
0
8

NL
TE

0T
DO

P
I
J
B
1
0
1
2

NL
TE

0T
MS

P
I
J
B
1
0
3

NL
TE
0U
AR
T0
RX

P
I
J
B
1
0
7

PIR15802
NL
TE
0U
AR
T0
TX

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

3
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

EX
P

_S
lo

t.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

J8 12
0-

04
4-

60

C
64

_A
1

C
64

_A
2

C
64

_A
3

C
64

_A
4

C
64

_A
5

C
64

_A
6

C
64

_A
7

C
64

_A
8

C
64

_A
9

C
64

_A
10

C6
4_

A
11

C
64

_A
12

C
64

_A
13

C
64

_A
14

C
64

_A
15

C
64

_A
0

G
N

D
G

N
D

G
N

D
G

N
D

C
64

_D
0

C
64

_D
1

C
64

_D
2

C
64

_D
3

C
64

_D
4

C
64

_D
5

C
64

_D
6

C
64

_D
7

C
64

_G
A

M
E

C
64

_N
M

I

C
64

_R
O

M
H

C
64

_R
O

M
L

C
64

_B
A

C
64

_D
M

A

C
64

_E
X

R
O

M

C
64

_C
LO

C
K

C
64

_I
R

Q
C6

4_
RW

C
64

_I
O

1

C
64

_I
O

2

C
64

_R
ES

ET

C
64

_O
2

1D
IR

1

1B
1

2

1B
2

3

G
N

D
4

1B
3

5

1B
4

6

V
C

C
B

7

1B
5

8

1B
6

9

G
N

D
10

1B
7

11

1B
8

12

2B
1

13

2B
2

14

G
N

D
15

2B
3

16

2B
4

17

V
C

C
B

18

2B
5

19

2B
6

20

G
N

D
21

2B
7

22

2B
8

23

2D
IR

24
2O

E
25

2A
8

26
2A

7
27

G
N

D
28

2A
6

29
2A

5
30

V
C

C
A

31

2A
4

32
2A

3
33

G
N

D
34

2A
2

35
2A

1
36

1A
8

37
1A

7
38

G
N

D
39

1A
6

40
1A

5
41

V
C

C
A

42

1A
4

43
1A

3
44

G
N

D
45

1A
2

46
1A

1
47

1O
E

48

U
8

SN
74

LV
C

H
16

T2
45

D
G

V

F_
C

64
_A

1
F_

C
64

_A
2

F_
C

64
_A

3
F_

C
64

_A
4

F_
C

64
_A

5
F_

C
64

_A
6

F_
C

64
_A

7

F_
C

64
_A

8
F_

C
64

_A
9

F_
C

64
_A

10
F_

C6
4_

A
11

F_
C

64
_A

12
F_

C
64

_A
13

F_
C

64
_A

14
F_

C
64

_A
15

F_
C

64
_A

0

F_
C

64
_N

M
I

F_
C

64
_R

O
M

H

F_
C

64
_R

ES
ET

F_
C

64
_O

2

F_
C

64
_D

0
F_

C
64

_D
1

F_
C

64
_D

2
F_

C
64

_D
3

F_
C

64
_D

4
F_

C
64

_D
5

F_
C

64
_D

6
F_

C
64

_D
7

F_
C

64
_G

A
M

E

F_
C

64
_R

O
M

L
F_

C
64

_B
A

F_
C

64
_D

M
A

F_
C

64
_E

X
R

O
M

F_
C

64
_C

LO
C

K

F_
C

64
_I

R
Q

F_
C6

4_
RW

F_
C

64
_I

O
1

F_
C

64
_I

O
2

C
64

_A
1

C
64

_A
2

C
64

_A
3

C
64

_A
4

C
64

_A
5

C
64

_A
6

C
64

_A
7

C
64

_A
8

C
64

_A
9

C
64

_A
10

C6
4_

A
11

C
64

_A
12

C
64

_A
13

C
64

_A
14

C
64

_A
15

C
64

_A
0

1D
IR

1

1B
1

2

1B
2

3

G
N

D
4

1B
3

5

1B
4

6

V
C

C
B

7

1B
5

8

1B
6

9

G
N

D
10

1B
7

11

1B
8

12

2B
1

13

2B
2

14

G
N

D
15

2B
3

16

2B
4

17

V
C

C
B

18

2B
5

19

2B
6

20

G
N

D
21

2B
7

22

2B
8

23

2D
IR

24
2O

E
25

2A
8

26
2A

7
27

G
N

D
28

2A
6

29
2A

5
30

V
C

C
A

31

2A
4

32
2A

3
33

G
N

D
34

2A
2

35
2A

1
36

1A
8

37
1A

7
38

G
N

D
39

1A
6

40
1A

5
41

V
C

C
A

42

1A
4

43
1A

3
44

G
N

D
45

1A
2

46
1A

1
47

1O
E

48

U
2

SN
74

LV
C

H
16

T2
45

D
G

V

C
64

_D
0

C
64

_D
1

C
64

_D
2

C
64

_D
3

C
64

_D
4

C
64

_D
5

C
64

_D
6

C
64

_D
7

C
64

_N
M

I

C
64

_R
O

M
H

C
64

_R
ES

ET

C
64

_O
2

C
64

_G
A

M
E

C
64

_R
O

M
L

C
64

_B
A

C
64

_D
M

A

C
64

_E
X

R
O

M

C
64

_C
LO

C
K

C
64

_I
R

Q

C6
4_

RW

C
64

_I
O

1

C
64

_I
O

2

1D
IR

1

1B
1

2

1B
2

3

G
N

D
4

1B
3

5

1B
4

6

V
C

C
B

7

1B
5

8

1B
6

9

G
N

D
10

1B
7

11

1B
8

12

2B
1

13

2B
2

14

G
N

D
15

2B
3

16

2B
4

17

V
C

C
B

18

2B
5

19

2B
6

20

G
N

D
21

2B
7

22

2B
8

23

2D
IR

24
2O

E
25

2A
8

26
2A

7
27

G
N

D
28

2A
6

29
2A

5
30

V
C

C
A

31

2A
4

32
2A

3
33

G
N

D
34

2A
2

35
2A

1
36

1A
8

37
1A

7
38

G
N

D
39

1A
6

40
1A

5
41

V
C

C
A

42

1A
4

43
1A

3
44

G
N

D
45

1A
2

46
1A

1
47

1O
E

48

U
9

SN
74

LV
C

H
16

T2
45

D
G

V

F_
H

A
D

D
R

_D
IR

F_
LA

D
D

R
_D

IR
F_

A
D

D
R

_E
N

F_
C

TR
L_

EN
F_

C
TR

L_
D

IR
F_

D
A

TA
_D

IR
F_

D
A

TA
_E

N

5V
5V

5VG
N

D
G

N
D

G
N

D

G
N

D
G

N
D

G
N

D

JB
_U

P

JB
_D

O
W

N
JB

_F
IR

E

JB
_L

EF
T

JB
_R

IG
H

T

5V

3.
3V

3.
3V

3.
3V

G
N

D

G
N

D

G
N

D

3.
3V

F_
SE

R_
A

TN
F_

SE
R

_R
ES

ET
SE

R
_R

ES
ET

SE
R_

A
TN

FB
_U

P

FB
_D

O
W

N
FB

_F
IR

E

FB
_L

EF
T

FB
_R

IG
H

T

i
CA

RT

i
CA

RT

i
CA

RT
i

CA
RT

i
CA

RT

i
CA

RT
i

CA
RT

i
CA

RT

i
CA

RT
i

CA
RT

i
CA

RT

F_
A

D
D

R
_E

N
i

CA
RT

M
O

TE
B

D
RV

SB
F_

D
RV

SB
F_

M
O

TE
B

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
30

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
31

N
C

7S
Z1

26
P5

X

G
N

D

G
N

D

3.
3V

3.
3V

3.
3V

3.
3V

C
64

_D
0

C
64

_D
1

C
64

_D
2

C
64

_D
3

C
64

_D
4

C
64

_D
5

C
64

_D
6

C
64

_D
7

C
64

_G
A

M
E

C
64

_R
O

M
L

C
64

_B
A

C
64

_D
M

A

C
64

_E
X

R
O

M

C
64

_C
LO

C
K

C
64

_I
R

Q
C6

4_
RW

C
64

_I
O

1

C
64

_I
O

2

C
64

_A
1

C
64

_A
2

C
64

_A
3

C
64

_A
4

C
64

_A
5

C
64

_A
6

C
64

_A
7

C
64

_A
8

C
64

_A
9

C
64

_A
10

C6
4_

A
11

C
64

_A
12

C
64

_A
13

C
64

_A
14

C
64

_A
15

C
64

_A
0

C
64

_N
M

I

C
64

_R
O

M
H

C
64

_R
ES

ET

C
64

_O
2

R
37

4K
7

R
38

4K
7

R
39

4K
7

R
40

4K
7

R
41

4K
7

R
42

4K
7

R
43

4K
7

R
45

4K
7

R
71

4K
7

R
90

4K
7

R
91

4K
7

R
92

4K
7

R
93

4K
7

R
94

4K
7

R
95

4K
7

R
96

4K
7

R
97

4K
7

R
98

4K
7

R
99

4K
7

R
10

0
4K

7
R

10
1

4K
7

R
10

2
4K

7
R

10
3

4K
7

R
10

4
4K

7
R

10
5

4K
7

R
10

6
4K

7
R

10
7

4K
7

R
10

8
4K

7
R

10
9

4K
7

R1
10

4K
7

R1
11

4K
7

R1
12

4K
7

R1
13

4K
7

R1
14

4K
7

R1
15

4K
7

R1
16

4K
7

R1
17

4K
7

R1
18

4K
75V 5V

G
N

D

i
EX

P

i
EX

Pi
EX

P

i
EX

P i
EX

P

i
EX

P

i
EX

P i
EX

P

i
EX

P

i
EX

P

i
D

A
TA

i
A

D
R

i
A

D
R

P
I
J
8
0
1

P
I
J
8
0
2

P
I
J
8
0
3

P
I
J
8
0
4

P
I
J
8
0
5

P
I
J
8
0
6

P
I
J
8
0
7

P
I
J
8
0
8

P
I
J
8
0
9

P
I
J
8
0
1
0

P
I
J
8
0
1
1

P
I
J
8
0
1
2

PI
J8
01
3

PI
J8

01
4

PI
J8
01
5

PI
J8

01
6

P
I
J
8
0
1
7

P
I
J
8
0
1
8

P
I
J
8
0
1
9

P
I
J
8
0
2
0

P
I
J
8
0
2
1

P
I
J
8
0
2
2

PI
J8
02
3

PI
J8

02
4

PI
J8
02
5

PI
J8

02
6

P
I
J
8
0
2
7

P
I
J
8
0
2
8

P
I
J
8
0
2
9

P
I
J
8
0
3
0

P
I
J
8
0
3
1

P
I
J
8
0
3
2

PI
J8
03
3

PI
J8

03
4

PI
J8
03
5

PI
J8

03
6

P
I
J
8
0
3
7

P
I
J
8
0
3
8

P
I
J
8
0
3
9

P
I
J
8
0
4
0

P
I
J
8
0
4
1

P
I
J
8
0
4
2

PI
J8
04
3

PI
J8

04
4 COJ

8

PI
R3

70
1

PI
R3

70
2

CO
R3

7 PI
R3

80
1

PI
R3

80
2

CO
R3

8 PI
R3

90
1

PI
R3

90
2

CO
R3

9 PI
R4

00
1

PI
R4

00
2

CO
R4

0 PI
R4

10
1

PI
R4

10
2

COR
41 PI
R4

20
1

PI
R4

20
2

CO
R4

2 PI
R4

30
1

PI
R4

30
2

CO
R4

3 PI
R4

50
1

PI
R4

50
2

CO
R4

5 PI
R7

10
1

PI
R7

10
2

CO
R7

1 PI
R9

00
1

PI
R9

00
2

COR
90 PI
R9

10
1

PI
R9

10
2

CO
R9

1 PI
R9

20
1

PI
R9

20
2

CO
R9

2 PI
R9

30
1

PI
R9

30
2

CO
R9

3 PI
R9

40
1

PI
R9

40
2

CO
R9

4 PI
R9

50
1

PI
R9

50
2

COR
95 PI
R9

60
1

PI
R9

60
2

CO
R9

6 PI
R9

70
1

PI
R9

70
2

CO
R9

7 PI
R9

80
1

PI
R9

80
2

CO
R9

8 PI
R9

90
1

PI
R9

90
2

CO
R9

9 PI
R1

00
01

PI

R1
00

02

CO
R1
00

PI
R1

01
01

PI

R1
01

02

CO
R1
01

PIR
102

01
PIR

102
02

CO
R1
02

PIR
103

01
PIR

103
02

CO
R1
03

PI
R1

04
01

PI

R1
04

02

CO
R1
04

PI
R1

05
01

PI

R1
05

02

CO
R1
05

PIR
106

01
PIR

106
02

CO
R1
06

PIR
107

01
PIR

107
02

CO
R1
07

PI
R1

08
01

PI

R1
08

02

CO
R1
08

PI
R1

09
01

PI

R1
09

02

CO
R1
09

PI
R1

10
01

PI

R1
10

02

CO
R1
10

PI
R1

11
01

PI

R1
11

02

CO
R1
11

PIR
112

01
PIR

112
02

CO
R1
12

PI
R1

13
01

PI

R1
13

02

CO
R1
13

PI
R1

14
01

PI

R1
14

02

CO
R1
14

PI
R1

15
01

PI

R1
15

02

CO
R1
15

PIR
116

01
PIR

116
02

CO
R1
16

PIR
117

01
PIR

117
02

CO
R1
17

PI
R1

18
01

PI

R1
18

02

CO
R1
18

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8

P
I
U
2
0
9

P
I
U
2
0
1
0

P
I
U
2
0
1
1

PI
U2
01
2

P
I
U
2
0
1
3

PI
U2
01
4

PI
U2
01
5

P
I
U
2
0
1
6

P
I
U
2
0
1
7

P
I
U
2
0
1
8

P
I
U
2
0
1
9

P
I
U
2
0
2
0

P
I
U
2
0
2
1

PI
U2
02
2

P
I
U
2
0
2
3

P
I
U
2
0
2
4

P
I
U
2
0
2
5

P
I
U
2
0
2
6

PI
U2
02
7

P
I
U
2
0
2
8

P
I
U
2
0
2
9

P
I
U
2
0
3
0

P
I
U
2
0
3
1

P
I
U
2
0
3
2

P
I
U
2
0
3
3

P
I
U
2
0
3
4

PI
U2
03
5

P
I
U
2
0
3
6

PI
U2
03
7

P
I
U
2
0
3
8

PI
U2
03
9

P
I
U
2
0
4
0

P
I
U
2
0
4
1

P
I
U
2
0
4
2

PI
U2
04
3

PI
U2
04
4

P
I
U
2
0
4
5

P
I
U
2
0
4
6

P
I
U
2
0
4
7

PI
U2
04
8

COU
2

P
I
U
8
0
1

P
I
U
8
0
2

P
I
U
8
0
3

P
I
U
8
0
4

P
I
U
8
0
5

P
I
U
8
0
6

P
I
U
8
0
7

P
I
U
8
0
8

P
I
U
8
0
9

P
I
U
8
0
1
0

P
I
U
8
0
1
1

PI
U8
01

2

P
I
U
8
0
1
3

PI
U8
01

4

PI
U8
01

5

P
I
U
8
0
1
6

P
I
U
8
0
1
7

P
I
U
8
0
1
8

P
I
U
8
0
1
9

P
I
U
8
0
2
0

P
I
U
8
0
2
1

PI
U8
02

2

P
I
U
8
0
2
3

P
I
U
8
0
2
4

P
I
U
8
0
2
5

P
I
U
8
0
2
6

PI
U8
02

7

P
I
U
8
0
2
8

P
I
U
8
0
2
9

P
I
U
8
0
3
0

P
I
U
8
0
3
1

P
I
U
8
0
3
2

P
I
U
8
0
3
3

P
I
U
8
0
3
4

PI
U8
03

5

P
I
U
8
0
3
6

PI
U8
03

7

P
I
U
8
0
3
8

PI
U8
03

9

P
I
U
8
0
4
0

P
I
U
8
0
4
1

P
I
U
8
0
4
2

PI
U8
04

3

PI
U8
04

4

P
I
U
8
0
4
5

P
I
U
8
0
4
6

P
I
U
8
0
4
7

PI
U8
04

8

COU
8

P
I
U
9
0
1

P
I
U
9
0
2

P
I
U
9
0
3

P
I
U
9
0
4

P
I
U
9
0
5

P
I
U
9
0
6

P
I
U
9
0
7

P
I
U
9
0
8

P
I
U
9
0
9

PI
U9
01
0

PI
U9
01
1

PI
U9
01
2

PI
U9
01
3

P
I
U
9
0
1
4

P
I
U
9
0
1
5

P
I
U
9
0
1
6

P
I
U
9
0
1
7

P
I
U
9
0
1
8

P
I
U
9
0
1
9

PI
U9
02
0

P
I
U
9
0
2
1

P
I
U
9
0
2
2

P
I
U
9
0
2
3

P
I
U
9
0
2
4

P
I
U
9
0
2
5

P
I
U
9
0
2
6

P
I
U
9
0
2
7

PI
U9
02
8

PI
U9
02
9

P
I
U
9
0
3
0

P
I
U
9
0
3
1

P
I
U
9
0
3
2

P
I
U
9
0
3
3

PI
U9
03
4

P
I
U
9
0
3
5

PI
U9
03
6

PI
U9
03
7

PI
U9
03
8

P
I
U
9
0
3
9

P
I
U
9
0
4
0

P
I
U
9
0
4
1

P
I
U
9
0
4
2

P
I
U
9
0
4
3

PI
U9
04
4

P
I
U
9
0
4
5

PI
U9
04
6

P
I
U
9
0
4
7

P
I
U
9
0
4
8

CO
U9

P
I
U
3
0
0
1

PI
U3
00
2

P
I
U
3
0
0
3

P
I
U
3
0
0
4

P
I
U
3
0
0
5

CO
U3
0

P
I
U
3
1
0
1

P
I
U
3
1
0
2

PI
U3
10
3

PI
U3
10
4

P
I
U
3
1
0
5

CO
U3
1

P
I
U
2
0
3
1

P
I
U
2
0
4
2

P
I
U
8
0
3
1

P
I
U
8
0
4
2

P
I
U
9
0
2
4

P
I
U
9
0
3
1

P
I
U
9
0
4
2

P
I
U
3
0
0
1

P
I
U
3
0
0
5

P
I
U
3
1
0
1

P
I
U
3
1
0
5

P
I
J
8
0
4
0

P
I
J
8
0
4
2

PI
R3

70
2

PI
R3

80
2

PI
R3

90
2

PI
R4

00
2

PI
R4

10
2

PI
R4

20
2

PI
R4

30
2

PI
R4

50
2

PI
R7

10
2

PI
R9

00
2

PI
R9

10
2

PI
R9

20
2

PI
R9

30
2

PI
R9

40
2

PI
R9

50
2

PI
R9

60
2

PI
R9

70
2

PI
R9

80
2

PI
R9

90
2

PI
R1

00
02

PI
R1

01
02

PIR
102

02

PIR
103

02

PI
R1

04
02

PI
R1

05
02

PIR
106

02

PIR
107

02

PI
R1

08
02

PI
R1

09
02

PI
R1

10
02

PI
R1

11
02

PIR
112

02

PI
R1

13
02

PI
R1

14
02

PI
R1

15
02

PIR
116

02

PIR
117

02

PI
R1

18
02

P
I
U
2
0
7

P
I
U
2
0
1
8

P
I
U
8
0
7

P
I
U
8
0
1
8

P
I
U
9
0
7

P
I
U
9
0
1
8

P
I
J
8
0
3

PI
R1

18
01

P
I
U
2
0
2
3

NL
C6

40
A0

P
I
J
8
0
5

PIR
117

01

PI
U2
02
2

NL
C6

40
A1

P
I
J
8
0
7

PIR
116

01

P
I
U
2
0
2
0

NL
C6

40
A2

P
I
J
8
0
9

PI
R1

15
01

P
I
U
2
0
1
9

NL
C6

40
A3

P
I
J
8
0
1
1

PI
R1

14
01

P
I
U
2
0
1
7

NL
C6

40
A4

PI
J8
01
3

PI
R1

13
01

P
I
U
2
0
1
6

NL
C6

40
A5

PI
J8
01
5

PIR
112

01

PI
U2
01
4

NL
C6

40
A6

P
I
J
8
0
1
7

PI
R1

11
01

P
I
U
2
0
1
3

NL
C6

40
A7

P
I
J
8
0
1
9

PI
R1

10
01

P
I
U
8
0
2
3

NL
C6

40
A8

P
I
J
8
0
2
1

PI
R1

09
01

PI
U8
02

2

NL
C6

40
A9

PI
J8
02
3

PI
R1

08
01

P
I
U
8
0
2
0

NL
C6
40
A1
0

PI
J8
02
5

PIR
107

01

P
I
U
8
0
1
9

NL
C6
40
A1
1

P
I
J
8
0
2
7

PIR
106

01

P
I
U
8
0
1
7

NL
C6
40
A1
2

P
I
J
8
0
2
9

PI
R1

05
01

P
I
U
8
0
1
6

NL
C6
40
A1
3

P
I
J
8
0
3
1

PI
R1

04
01

PI
U8
01

4

NL
C6
40
A1
4

PI
J8
03
3

PIR
103

01

P
I
U
8
0
1
3

NL
C6
40
A1
5

P
I
J
8
0
2
2

PI
R7

10
1

PI
U8
01

2

NL
C6
40
BA

PI
J8

03
4

PI
R3

90
1

P
I
U
9
0
1
4

NL
C6
40
CL
OC
K

P
I
J
8
0
4

PI
R9

80
1

PI
U2
01
2

NL
C6

40
D0

P
I
J
8
0
6

PI
R9

70
1

P
I
U
2
0
1
1

NL
C6

40
D1

P
I
J
8
0
8

PI
R9

60
1

P
I
U
2
0
9

NL
C6

40
D2

P
I
J
8
0
1
0

PI
R9

50
1

P
I
U
2
0
8

NL
C6

40
D3

P
I
J
8
0
1
2

PI
R9

40
1

P
I
U
2
0
6

NL
C6

40
D4

PI
J8

01
4

PI
R9

30
1

P
I
U
2
0
5

NL
C6

40
D5

PI
J8

01
6

PI
R9

20
1

P
I
U
2
0
3

NL
C6

40
D6

P
I
J
8
0
1
8

PI
R9

10
1

P
I
U
2
0
2

NL
C6

40
D7

P
I
J
8
0
2
0

PI
R9

00
1

P
I
U
9
0
5

NL
C6
40
DM
A

P
I
J
8
0
2
8

PI
R4

20
1

PI
U3
00
2

NL
C6

40
EX

RO
M

P
I
J
8
0
3
0

PI
R4

10
1

P
I
U
3
1
0
2

NL
C6

40
GA

ME

P
I
J
8
0
3
2

PI
R4

00
1

P
I
U
8
0
5

NL
C6

40
IO

1

PI
J8

02
6

PI
R4

30
1

P
I
U
8
0
9

NL
C6

40
IO

2

P
I
J
8
0
3
8

PI
R3

70
1

P
I
U
9
0
3

NL
C6
40
IR
Q

P
I
J
8
0
3
7

PI
R1

01
01

P
I
U
9
0
2

NL
C6

40
NM

I

PI
J8
03
5

PIR
102

01

P
I
U
9
0
1
6

NL
C6

40
O2

P
I
J
8
0
3
9

PI
R1

00
01

PI
U9
01
3

NL
C6

40
RE

SE
T

P
I
J
8
0
4
1

PI
R9

90
1

P
I
U
8
0
3

NL
C6

40
RO

MH

PI
J8

02
4

PI
R4

50
1

P
I
U
8
0
1
1

NL
C6

40
RO

ML

PI
J8

03
6

PI
R3

80
1

P
I
U
8
0
2

NL
C6

40
RW

P
I
U
9
0
2
2

NL
DR

VS
B

P
I
U
2
0
2
5

P
I
U
8
0
2
5

NL
F0

AD
DR

0E
N

P
I
U
2
0
2
6

NL
F0

C6
40

A0

PI
U2
02
7

NL
F0
C6
40
A1

P
I
U
2
0
2
9

NL
F0

C6
40

A2

P
I
U
2
0
3
0

NL
F0
C6
40
A3

P
I
U
2
0
3
2

NL
F0

C6
40

A4

P
I
U
2
0
3
3

NL
F0

C6
40

A5

PI
U2
03
5

NL
F0

C6
40

A6

P
I
U
2
0
3
6

NL
F0

C6
40

A7

P
I
U
8
0
2
6

NL
F0
C6
40
A8

PI
U8
02

7
NL
F0
C6
40
A9

P
I
U
8
0
2
9

NL
F0
C6
40
A1
0

P
I
U
8
0
3
0

NL
F0
C6
40
A1
1

P
I
U
8
0
3
2

NL
F0
C6
40
A1
2

P
I
U
8
0
3
3

NL
F0
C6
40
A1
3

PI
U8
03

5
NL
F0
C6
40
A1
4

P
I
U
8
0
3
6

NL
F0
C6
40
A1
5

PI
U8
03

7
NL

F0
C6

40
BA

P
I
U
9
0
3
5

NL
F0

C6
40

CL
OC

K

PI
U2
03
7

NL
F0

C6
40

D0

P
I
U
2
0
3
8

NL
F0
C6
40
D1

P
I
U
2
0
4
0

NL
F0

C6
40

D2

P
I
U
2
0
4
1

NL
F0
C6
40
D3

PI
U2
04
3

NL
F0

C6
40

D4

PI
U2
04
4

NL
F0

C6
40

D5

P
I
U
2
0
4
6

NL
F0

C6
40

D6

P
I
U
2
0
4
7

NL
F0

C6
40

D7

PI
U9
04
4

NL
F0
C6
40
DM
A

P
I
U
3
0
0
4

NL
F0
C6
40
EX
RO
M

PI
U3
10
4

NL
F0

C6
40

GA
ME

PI
U8
04

4
NL

F0
C6

40
IO

1

P
I
U
8
0
4
0

NL
F0

C6
40

IO
2

PI
U9
04
6

NL
F0
C6
40
IR
Q

P
I
U
9
0
4
7

NL
F0

C6
40

NM
I

P
I
U
9
0
3
3

NL
F0

C6
40

O2

PI
U9
03
6

NL
F0

C6
40

RE
SE

T

P
I
U
8
0
4
6

NL
F0

C6
40

RO
MH

P
I
U
8
0
3
8

NL
F0
C6
40
RO
ML

P
I
U
8
0
4
7

NL
F0

C6
40

RW

P
I
U
8
0
1

NL
F0

CT
RL

0D
IR

PI

U8
04

8
NL
F0
CT
RL
0E
N

P
I
U
2
0
1

NL
F0

DA
TA

0D
IR

PI
U2
04
8

NL
F0

DA
TA

0E
N

P
I
U
9
0
2
7

NL
F0
DR
VS
B

P
I
U
8
0
2
4

NL
F0
HA
DD
R0
DI
R

P
I
U
2
0
2
4

NL
F0
LA
DD
R0
DI
R

PI
U9
02
9

NL
F0
MO
TE
B

P
I
U
9
0
3
2

NL
F0
SE
R0
AT
N

P
I
U
9
0
3
0

NL
F0
SE
R0
RE
SE
T

P
I
U
9
0
4
0

NL
FB

0D
OW

N

PI
U9
03
8

NL
FB
0F
IR
E

P
I
U
9
0
4
1

NL
FB

0L
EF

T
P
I
U
9
0
4
3

NL
FB

0R
IG

HT

PI
U9
03
7

NL
FB

0U
P

P
I
J
8
0
1

P
I
J
8
0
2

PI
J8
04
3

PI
J8

04
4

P
I
U
2
0
4

P
I
U
2
0
1
0

PI
U2
01
5

P
I
U
2
0
2
1

P
I
U
2
0
2
8

P
I
U
2
0
3
4

PI
U2
03
9

P
I
U
2
0
4
5

P
I
U
8
0
4

P
I
U
8
0
1
0

PI
U8
01

5

P
I
U
8
0
2
1

P
I
U
8
0
2
8

P
I
U
8
0
3
4

PI
U8
03

9

P
I
U
8
0
4
5

P
I
U
9
0
1

P
I
U
9
0
4

PI
U9
01
0

P
I
U
9
0
1
5

P
I
U
9
0
2
1

P
I
U
9
0
2
5

P
I
U
9
0
2
6

PI
U9
02
8

PI
U9
03
4

P
I
U
9
0
3
9

P
I
U
9
0
4
5

P
I
U
9
0
4
8

P
I
U
3
0
0
3

PI
U3
10
3

P
I
U
9
0
9

NL
JB

0D
OW

N

PI
U9
01
1

NL
JB
0F
IR
E

P
I
U
9
0
8

NL
JB

0L
EF

T
P
I
U
9
0
6

NL
JB

0R
IG

HT

PI
U9
01
2

NL
JB
0U
P

PI
U9
02
0

NL
MO

TE
B

P
I
U
8
0
6

P
I
U
8
0
8

P
I
U
8
0
4
1

PI
U8
04

3

P
I
U
9
0
2
3

P
I
U
9
0
1
7

NL
SE
R0
AT
N

P
I
U
9
0
1
9

NL
SE
R0
RE
SE
T

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

4
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
13

.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

i
B

13

i
B

13

G
N

D

IO
_L

17
N

_T
2_

13
U

16
IO

_L
17

P
_T

2_
13

T1
6

IO
_L

16
N

_T
2_

13
W

16
IO

_L
16

P
_T

2_
13

W
15

IO
_L

15
N

_T
2_

D
Q

S
_1

3
T1

5
IO

_L
15

P
_T

2_
D

Q
S

_1
3

T1
4

IO
_L

14
N

_T
2_

S
R

C
C

_1
3

V
15

IO
_L

14
P

_T
2_

S
R

C
C

_1
3

U
15

IO
_L

13
N

_T
2_

M
R

C
C

_1
3

V
14

IO
_L

13
P

_T
2_

M
R

C
C

_1
3

V
13

IO
_L

12
N

_T
1_

M
R

C
C

_1
3

W
12

IO
_L

12
P

_T
1_

M
R

C
C

_1
3

W
11

IO
_L

11
N

_T
1_

S
R

C
C

_1
3

Y
12

IO
_L

11
P

_T
1_

S
R

C
C

_1
3

Y1
1

IO
_L

10
N

_T
1_

13
W

10
IO

_L
10

P
_T

1_
13

V
10

IO
_L

9N
_T

1_
D

Q
S

_1
3

AA
11

IO
_L

9P
_T

1_
D

Q
S

_1
3

A
A

10
IO

_L
8N

_T
1_

13
A

B
10

IO
_L

8P
_T

1_
13

A
A

9
IO

_L
7N

_T
1_

13
A

B
12

IO
_L

7P
_T

1_
13

AB
11

IO
_L

6N
_T

0_
V

R
E

F_
13

Y
14

IO
_L

6P
_T

0_
13

W
14

IO
_L

5N
_T

0_
13

A
A

14
IO

_L
5P

_T
0_

13
Y

13
IO

_L
4N

_T
0_

13
A

B
15

IO
_L

4P
_T

0_
13

A
A

15
IO

_L
3N

_T
0_

D
Q

S
_1

3
A

B
13

IO
_L

3P
_T

0_
D

Q
S

_1
3

A
A

13
IO

_L
2N

_T
0_

13
A

B
17

IO
_L

2P
_T

0_
13

A
B

16
IO

_L
1N

_T
0_

13
A

A
16

IO
_L

1P
_T

0_
13

Y
16

IO
_0

_1
3

Y
17

B
A
N

K
 1

3

V
C

C
O

_1
3

A
A

17

V
C

C
O

_1
3

A
B

14

V
C

C
O

_1
3

V
16

V
C

C
O

_1
3

W
13

V
C

C
O

_1
3

Y
10

U
1A

X
C7

A
20

0T
-2

FB
G

48
4C

C
51

47
0n

F
C

52
47

0n
F

C
54

47
0n

F

C
1

4.
7µ

F

C
50

4.
7µ

F
C

2
47
µF

i
B

13

G
0

G
1

G
2

G
3

G
4

G
5

G
6

G
7

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

V
D

A
C

_C
LK

V
D

A
C

_B
LA

N
K

_N

V
D

A
C

_S
Y

N
C

_N

3.
3V

i
B

13

V
G

A
_H

Sy
nc

V
G

A
_V

Sy
nc

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
18

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
19

N
C

7S
Z1

26
P5

X

C
LO

C
K

_F
PG

A
_M

R
C

C

R
SV

D
0

R
SV

D
1

R
SV

D
2

H
SY

N
C

V
SY

N
C

H
SY

N
C

V
SY

N
C

3.
3V

3.
3V

G
N

D

G
N

D

3.
3V

3.
3V

TP
1

Te
st

po
in

t 0
.8

m
m

TP
2

Te
st

po
in

t 0
.8

m
m

TP
3

Te
st

po
in

t 0
.8

m
m

R
SV

D
0

R
SV

D
1

R
SV

D
2

O
E

/S
T

1
G

N
D

2

C
LK

3
V

D
D

4
U

17

Si
T8

00
8B

I-
73

-X
X

S-
10

0.
00

00
00

E
G

N
D

3.
3V

C
77

47
0n

F
G

N
D

1%R
12

6

22
R

V
G

A
_S

D
A

V
G

A
_S

C
L

1%R
15

9

22
R

C
PL

D
_C

LK

PIC101 PIC102 COC
1

PIC201 PIC202
COC

2
PIC5001 PIC5002 CO

C5
0

PIC5101 PIC5102
COC

51
PIC5201 PIC5202

CO
C5
2

PIC5401 PIC5402
CO
C5
4

PI
C7

70
1

PI
C7

70
2

CO
C7

7

PI
R1

26
01

PI

R1
26

02

CO
R1
26

PI
R1

59
01

PI

R1
59

02

CO
R1
59

P
I
T
P
1
0
1

CO
TP

1

P
I
T
P
2
0
1

CO
TP

2

P
I
T
P
3
0
1

CO
TP

3

P
I
U
1
0
A
A
9

PI
U1
0A
A1
0

PI
U1
0A
A1
1

PI
U1
0A
A1
3

PI
U1
0A
A1
4

PI
U1
0A
A1
5

PI
U1
0A
A1
6

PI
U1
0A
A1
7

PI
U1
0A
B1
0

PI
U1
0A
B1
1

PI
U1
0A
B1
2

PI
U1
0A
B1
3

PI
U1
0A
B1
4

PI
U1
0A
B1
5

PI
U1
0A
B1
6

PI
U1
0A
B1
7

P
I
U
1
0
T
1
4

PI
U1
0T
15

P
I
U
1
0
T
1
6

P
I
U
1
0
U
1
5

P
I
U
1
0
U
1
6

P
I
U
1
0
V
1
0

P
I
U
1
0
V
1
3

PI
U1
0V
14

P
I
U
1
0
V
1
5

P
I
U
1
0
V
1
6

P
I
U
1
0
W
1
0

P
I
U
1
0
W
1
1

P
I
U
1
0
W
1
2

P
I
U
1
0
W
1
3

P
I
U
1
0
W
1
4

PI
U1
0W
15

P
I
U
1
0
W
1
6

PI
U1
0Y
10

PI
U1
0Y
11

P
I
U
1
0
Y
1
2

PI
U1
0Y
13

P
I
U
1
0
Y
1
4

P
I
U
1
0
Y
1
6

P
I
U
1
0
Y
1
7
 CO
U1
A

P
I
U
1
7
0
1

P
I
U
1
7
0
2

P
I
U
1
7
0
3

P
I
U
1
7
0
4

CO
U1

7

P
I
U
1
8
0
1

P
I
U
1
8
0
2

PI
U1

80
3

PI
U1
80
4

P
I
U
1
8
0
5

CO
U1
8

P
I
U
1
9
0
1

P
I
U
1
9
0
2

PI
U1

90
3

PI
U1
90
4

P
I
U
1
9
0
5

CO
U1
9

PIC101
PIC201

PIC5001
PIC5101

PIC5201
PIC5401

PI
C7

70
2

PI
U1
0A
A1
7

PI
U1
0A
B1
4

P
I
U
1
0
V
1
6

P
I
U
1
0
W
1
3

PI
U1
0Y
10

P
I
U
1
7
0
1

P
I
U
1
7
0
4

P
I
U
1
8
0
1

P
I
U
1
8
0
5

P
I
U
1
9
0
1

P
I
U
1
9
0
5

P
I
U
1
0
W
1
0

NLB
0

P
I
U
1
0
Y
1
2

NLB
1

PI
U1
0A
B1
2

NLB
2

PI
U1
0A
A1
1

NLB
3

PI
U1
0A
B1
1

NLB
4

PI
U1
0Y
11

NLB
5

PI
U1
0A
B1
0

NLB
6

PI
U1
0A
A1
0

NLB
7

PI
R1

26
01

P
I
U
1
0
V
1
3

N
L
C
L
O
C
K
0
F
P
G
A
0
M
R
C
C

PI
R1

59
01

NL

CP
LD

0C
LK

P
I
U
1
0
Y
1
4

NLG
0

P
I
U
1
0
W
1
4

NLG
1

PI
U1
0A
A1
5

NLG
2

PI
U1
0A
B1
5

NLG
3

PI
U1
0Y
13

NLG
4

PI
U1
0A
A1
4

NLG
5

PI
U1
0A
A1
3

NLG
6

PI
U1
0A
B1
3

NLG
7

PIC102
PIC202

PIC5002
PIC5102

PIC5202
PIC5402

PI
C7

70
1

P
I
U
1
7
0
2

PI
U1

80
3

PI
U1

90
3

P
I
U
1
0
W
1
2

P
I
U
1
8
0
2

NL
HS

YN
C

PI
R1

26
02

PI
R1

59
02

P
I
U
1
7
0
3

P
I
U
1
0
U
1
5

NLR
0

P
I
U
1
0
V
1
5

NLR
1

P
I
U
1
0
T
1
4

NLR
2

P
I
U
1
0
Y
1
7

NLR
3

P
I
U
1
0
Y
1
6

NLR
4

PI
U1
0A
B1
7

NLR
5

PI
U1
0A
A1
6

NLR
6

PI
U1
0A
B1
6

NLR
7

P
I
T
P
1
0
1

P
I
U
1
0
T
1
6

NL
RS
VD
0

P
I
T
P
2
0
1

P
I
U
1
0
U
1
6

NL
RS
VD
1

P
I
T
P
3
0
1

P
I
U
1
0
W
1
6

NL
RS
VD
2

P
I
U
1
0
W
1
1

N
L
V
D
A
C
0
B
L
A
N
K
0
N

P
I
U
1
0
A
A
9

NL
VD

AC
0C

LK

P
I
U
1
0
V
1
0

NL
VD

AC
0S

YN
C0

N

PI
U1
80
4

NL
VG

A0
HS

yn
c

PI
U1
0W
15

NL
VG
A0
SC
L

PI
U1
0T
15

NL
VG

A0
SD

A

PI
U1
90
4

NL
VG

A0
VS

yn
c

PI
U1
0V
14

P
I
U
1
9
0
2

NL
VS

YN
C

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

5
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
14

.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

i
B

14

i
B

14

G
N

D

S
P

I-
C

S

S
P

I-
D

Q
O

S
P

I-
D

Q
2

S
P

I-
D

Q
3

S
P

I-
D

Q
1

3.
3V

i
B

14

i
B

14
IO

_2
5_

14
N

15

IO
_L

24
N

_T
3_

A
00

_D
16

_1
4

R
17

IO
_L

24
P

_T
3_

A
01

_D
17

_1
4

P
16

IO
_L

23
N

_T
3_

A
02

_D
18

_1
4

N
14

IO
_L

23
P

_T
3_

A
03

_D
19

_1
4

N
13

IO
_L

22
N

_T
3_

A
04

_D
20

_1
4

R
16

IO
_L

22
P

_T
3_

A
05

_D
21

_1
4

P
15

IO
_L

21
N

_T
3_

D
Q

S
_A

06
_D

22
_1

4
P

17
IO

_L
21

P
_T

3_
D

Q
S

_1
4

N
17

IO
_L

20
N

_T
3_

A
07

_D
23

_1
4

T1
8

IO
_L

20
P

_T
3_

A
08

_D
24

_1
4

R
18

IO
_L

19
N

_T
3_

A
09

_D
25

_V
R

E
F_

14
R

14
IO

_L
19

P
_T

3_
A

10
_D

26
_1

4
P

14
IO

_L
18

N
_T

2_
A1

1_
D

27
_1

4
U

18
IO

_L
18

P
_T

2_
A

12
_D

28
_1

4
U

17
IO

_L
17

N
_T

2_
A

13
_D

29
_1

4
A

B
18

IO
_L

17
P

_T
2_

A
14

_D
30

_1
4

A
A

18
IO

_L
16

N
_T

2_
A

15
_D

31
_1

4
W

17
IO

_L
16

P
_T

2_
C

S
I_

B
_1

4
V

17
IO

_L
15

N
_T

2_
D

Q
S

_D
O

U
T_

C
S

O
_B

_1
4

A
B

20
IO

_L
15

P
_T

2_
D

Q
S

_R
D

W
R

_B
_1

4
A

A
19

IO
_L

14
N

_T
2_

S
R

C
C

_1
4

V
19

IO
_L

14
P

_T
2_

S
R

C
C

_1
4

V
18

IO
_L

13
N

_T
2_

M
R

C
C

_1
4

Y
19

IO
_L

13
P

_T
2_

M
R

C
C

_1
4

Y
18

IO
_L

12
N

_T
1_

M
R

C
C

_1
4

W
20

IO
_L

12
P

_T
1_

M
R

C
C

_1
4

W
19

IO
_L

11
N

_T
1_

S
R

C
C

_1
4

V
20

IO
_L

11
P

_T
1_

S
R

C
C

_1
4

U
20

IO
_L

10
N

_T
1_

D
15

_1
4

A
B

22
IO

_L
10

P
_T

1_
D

14
_1

4
A

B
21

IO
_L

9N
_T

1_
D

Q
S

_D
13

_1
4

Y
22

IO
_L

9P
_T

1_
D

Q
S

_1
4

Y
21

IO
_L

8N
_T

1_
D

12
_1

4
A

A
21

IO
_L

8P
_T

1_
D

11
_1

4
A

A
20

IO
_L

7N
_T

1_
D

10
_1

4
W

22
IO

_L
7P

_T
1_

D
09

_1
4

W
21

IO
_L

6N
_T

0_
D

08
_V

R
E

F_
14

T2
0

IO
_L

6P
_T

0_
FC

S
_B

_1
4

T1
9

IO
_L

5N
_T

0_
D

07
_1

4
R

19
IO

_L
5P

_T
0_

D
06

_1
4

P
19

IO
_L

4N
_T

0_
D

05
_1

4
U

21
IO

_L
4P

_T
0_

D
04

_1
4

T2
1

IO
_L

3N
_T

0_
D

Q
S

_E
M

C
C

LK
_1

4
V

22
IO

_L
3P

_T
0_

D
Q

S
_P

U
D

C
_B

_1
4

U
22

IO
_L

2N
_T

0_
D

03
_1

4
R

21
IO

_L
2P

_T
0_

D
02

_1
4

P
21

IO
_L

1N
_T

0_
D

01
_D

IN
_1

4
R

22
IO

_L
1P

_T
0_

D
00

_M
O

S
I_

14
P

22

IO
_0

_1
4

P
20

B
A
N

K
 1

4

V
C

C
O

_1
4

M
14

V
C

C
O

_1
4

P
18

V
C

C
O

_1
4

R
15

V
C

C
O

_1
4

T2
2

V
C

C
O

_1
4

U
19

V
C

C
O

_1
4

Y
20

U
1B

X
C7

A
20

0T
-2

FB
G

48
4C

C
58

47
0n

F
C

59
47

0n
F

C
60

47
0n

F
C

61
47

0n
F

C
55

4.
7µ

F

C
57

4.
7µ

F
C

53
47
µF F_

C
64

_D
2

F_
C

64
_D

3

F_
C

64
_D

4

F_
C

64
_D

5

F_
C

64
_D

6

F_
C

64
_D

7

F_
D

A
TA

_D
IR

F_
D

A
TA

_E
N

F_
C

64
_N

M
I

F_
C

64
_R

ES
ET

F_
C

64
_O

2

F_
C

64
_D

M
A

F_
C

64
_C

LO
C

K

F_
C

64
_I

R
Q

F_
SE

R_
D

A
TA

_O

F_
SE

R
_C

LK
_O

F_
SE

R_
D

A
TA

_E
N

F_
SE

R
_C

LK
_E

N

F_
SE

R
_C

LK
_I

F_
SE

R_
D

A
TA

_I

F_
SE

R_
A

TN

FB
_U

P

FB
_D

O
W

N

1%R
58

1K
G

N
D

ET
H

_L
ED

2

D
9

LE
D

 R
ed

 L
TS

T-
C

19
1K

R
K

T1%
R

67

24
0R

G
N

D
U

LE
D

U
LE

D

F_
SE

R
_R

ES
ET

F_
C

64
_R

O
M

H

F_
C

64
_G

A
M

E

F_
C

64
_R

O
M

L

F_
C

64
_B

A

F_
C

64
_E

X
R

O
M

F_
C6

4_
RW

F_
C

64
_I

O
1

F_
C

64
_I

O
2

F_
C

TR
L_

D
IR

F_
SE

R
_S

R
Q

_I

F_
SE

R
_S

R
Q

_O

F_
SE

R
_S

R
Q

_E
N

F_
C

64
_D

0
F_

C
64

_D
1

PIC5301 PIC5302
CO

C5
3

PIC5501 PIC5502 CO
C5
5

PIC5701 PIC5702 CO
C5
7

PIC5801 PIC5802
CO
C5
8

PIC5901 PIC5902
CO

C5
9

PIC6001 PIC6002
CO

C6
0

PIC6101 PIC6102
CO

C6
1

PI
D9

0A

PI
D9

0K

COD
9

PI
R5

80
1

PI
R5

80
2 CO
R5
8

PI
R6

70
1

PI
R6

70
2

COR
67

PI
U1
0A
A1
8

PI
U1
0A
A1
9

PI
U1
0A
A2
0

PI
U1
0A
A2
1

PI
U1
0A
B1
8

PI
U1
0A
B2
0

PI
U1
0A
B2
1

PI
U1
0A
B2
2

PI
U1
0M
14

PI
U1
0N
13

P
I
U
1
0
N
1
4

P
I
U
1
0
N
1
5

P
I
U
1
0
N
1
7

P
I
U
1
0
P
1
4

P
I
U
1
0
P
1
5

P
I
U
1
0
P
1
6

P
I
U
1
0
P
1
7

PI
U1
0P
18

PI
U1
0P
19

P
I
U
1
0
P
2
0

P
I
U
1
0
P
2
1

P
I
U
1
0
P
2
2

P
I
U
1
0
R
1
4

P
I
U
1
0
R
1
5

PI
U1
0R
16

P
I
U
1
0
R
1
7

PI
U1
0R
18

PI
U1
0R
19

P
I
U
1
0
R
2
1

P
I
U
1
0
R
2
2

PI
U1
0T
18

P
I
U
1
0
T
1
9

P
I
U
1
0
T
2
0

P
I
U
1
0
T
2
1

P
I
U
1
0
T
2
2

PI
U1
0U
17

P
I
U
1
0
U
1
8

P
I
U
1
0
U
1
9

PI
U1
0U
20

P
I
U
1
0
U
2
1

PI
U1
0U
22

P
I
U
1
0
V
1
7

P
I
U
1
0
V
1
8

P
I
U
1
0
V
1
9

P
I
U
1
0
V
2
0

P
I
U
1
0
V
2
2

P
I
U
1
0
W
1
7

P
I
U
1
0
W
1
9

P
I
U
1
0
W
2
0

P
I
U
1
0
W
2
1

PI
U1
0W
22

PI
U1
0Y
18

P
I
U
1
0
Y
1
9

PI
U1
0Y
20

P
I
U
1
0
Y
2
1

P
I
U
1
0
Y
2
2
 CO
U1
B

PIC5302
PIC5501

PIC5701
PIC5801

PIC5901
PIC6001

PIC6101
PI
U1
0M
14

PI
U1
0P
18

P
I
U
1
0
R
1
5

P
I
U
1
0
T
2
2

P
I
U
1
0
U
1
9

PI
U1
0Y
20

P
I
U
1
0
R
1
4

NL
ET

H0
LE

D2

PI
U1
0N
13

NL
F0

C6
40

BA

PI
U1
0A
A1
9

NL
F0

C6
40

CL
OC

K

P
I
U
1
0
P
1
6

NL
F0
C6
40
D0

P
I
U
1
0
R
1
7

NL
F0
C6
40
D1

P
I
U
1
0
P
2
0

NL
F0
C6
40
D2

PI
U1
0R
16

NL
F0
C6
40
D3

P
I
U
1
0
U
1
8

NL
F0
C6
40
D4

P
I
U
1
0
V
1
8

NL
F0
C6
40
D5

P
I
U
1
0
W
2
0

NL
F0
C6
40
D6

P
I
U
1
0
W
2
1

NL
F0
C6
40
D7

P
I
U
1
0
P
1
5

NL
F0
C6
40
DM
A

PI
U1
0R
19

NL
F0
C6
40
EX
RO
M

PI
U1
0W
22

NL
F0

C6
40

GA
ME

P
I
U
1
0
N
1
5

NL
F0

C6
40

IO
1

PI
U1
0A
A2
0

NL
F0
C6
40
IO
2

P
I
U
1
0
P
1
4

NL
F0
C6
40
IR
Q

P
I
U
1
0
W
1
7

NL
F0

C6
40

NM
I

P
I
U
1
0
V
1
7

NL
F0
C6
40
O2

P
I
U
1
0
N
1
4

NL
F0
C6
40
RE
SE
T

PI
U1
0T
18

NL
F0

C6
40

RO
MH

PI
U1
0A
B1
8

NL
F0
C6
40
RO
ML

PI
U1
0R
18

NL
F0

C6
40

RW

PI
U1
0U
17

NL
F0
CT
RL
0D
IR

P
I
U
1
0
V
2
2

NL
F0
DA
TA
0D
IR

P
I
U
1
0
U
2
1

NL
F0

DA
TA

0E
N

P
I
U
1
0
N
1
7

NL
F0
SE
R0
AT
N

PI
U1
0A
A2
1

NL
F0
SE
R0
CL
K0
EN

PI
U1
0Y
18

NL
F0
SE
R0
CL
K0
I

P
I
U
1
0
Y
1
9

NL
F0
SE
R0
CL
K0
O

P
I
U
1
0
Y
2
1

NL
F0

SE
R0

DA
TA

0E
N

PI
U1
0A
B2
2

NL
F0

SE
R0

DA
TA

0I

P
I
U
1
0
Y
2
2

NL
F0
SE
R0
DA
TA
0O

PI
R5

80
2

PI
U1
0A
B2
1

NL
F0

SE
R0

RE
SE

T

PI
U1
0A
B2
0

NL
F0

SE
R0

SR
Q0

EN

PI
U1
0A
A1
8

NL
F0
SE
R0
SR
Q0
I

PI
U1
0U
20

NL
F0
SE
R0
SR
Q0
O

P
I
U
1
0
P
1
7

NL
FB

0D
OW

N

P
I
U
1
0
W
1
9

NL
FB

0U
P

PIC5301
PIC5502

PIC5702
PIC5802

PIC5902
PIC6002

PIC6102

PI
R5

80
1

PI
R6

70
2

PI
D9

0K

PI
R6

70
1

PI
U1
0P
19

P
I
U
1
0
T
2
0

P
I
U
1
0
T
2
1

P
I
U
1
0
V
1
9

P
I
U
1
0
V
2
0

P
I
U
1
0
T
1
9

NL
SP

I0
CS

P
I
U
1
0
R
2
2

NL
SP
I0
DQ
1

P
I
U
1
0
P
2
1

NL
SP

I0
DQ

2

P
I
U
1
0
R
2
1

NL
SP
I0
DQ
3

P
I
U
1
0
P
2
2

NL
SP

I0
DQ

O

PI
D9

0A

PI
U1
0U
22

NL
UL
ED

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

6
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
15

.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

i
B

15

i
B

15

G
N

D

IO
_2

5_
15

M
17

IO
_L

24
N

_T
3_

R
S

0_
15

M
16

IO
_L

24
P

_T
3_

R
S

1_
15

M
15

IO
_L

23
N

_T
3_

FW
E

_B
_1

5
K

16
IO

_L
23

P
_T

3_
FO

E
_B

_1
5

L1
6

IO
_L

22
N

_T
3_

A
16

_1
5

L1
5

IO
_L

22
P

_T
3_

A
17

_1
5

L1
4

IO
_L

21
N

_T
3_

D
Q

S
_A

18
_1

5
J1

7
IO

_L
21

P
_T

3_
D

Q
S

_1
5

K
17

IO
_L

20
N

_T
3_

A
19

_1
5

L1
3

IO
_L

20
P

_T
3_

A
20

_1
5

M
13

IO
_L

19
N

_T
3_

A
21

_V
R

E
F_

15
K

14
IO

_L
19

P
_T

3_
A

22
_1

5
K

13
IO

_L
18

N
_T

2_
A

23
_1

5
M

20
IO

_L
18

P
_T

2_
A

24
_1

5
N

20
IO

_L
17

N
_T

2_
A

25
_1

5
N

19
IO

_L
17

P
_T

2_
A

26
_1

5
N

18
IO

_L
16

N
_T

2_
A

27
_1

5
L1

8
IO

_L
16

P
_T

2_
A

28
_1

5
M

18
IO

_L
15

N
_T

2_
D

Q
S

_A
D

V
_B

_1
5

M
22

IO
_L

15
P

_T
2_

D
Q

S
_1

5
N

22
IO

_L
14

N
_T

2_
S

R
C

C
_1

5
L2

0
IO

_L
14

P
_T

2_
S

R
C

C
_1

5
L1

9
IO

_L
13

N
_T

2_
M

R
C

C
_1

5
K

19
IO

_L
13

P
_T

2_
M

R
C

C
_1

5
K

18
IO

_L
12

N
_T

1_
M

R
C

C
_1

5
H

19
IO

_L
12

P
_T

1_
M

R
C

C
_1

5
J1

9
IO

_L
11

N
_T

1_
S

R
C

C
_1

5
J2

1
IO

_L
11

P
_T

1_
S

R
C

C
_1

5
J2

0
IO

_L
10

N
_T

1_
AD

11
N

_1
5

L2
1

IO
_L

10
P_

T1
_A

D
11

P
_1

5
M

21

IO
_L

9N
_T

1_
D

Q
S

_A
D

3N
_1

5
K

22
IO

_L
9P

_T
1_

D
Q

S
_A

D
3P

_1
5

K
21

IO
_L

8N
_T

1_
A

D
10

N
_1

5
G

20
IO

_L
8P

_T
1_

A
D

10
P

_1
5

H
20

IO
_L

7N
_T

1_
A

D
2N

_1
5

H
22

IO
_L

7P
_T

1_
A

D
2P

_1
5

J2
2

IO
_L

6N
_T

0_
V

R
E

F_
15

H
18

IO
_L

6P
_T

0_
15

H
17

IO
_L

5N
_T

0_
A

D
9N

_1
5

H
15

IO
_L

5P
_T

0_
A

D
9P

_1
5

J1
5

IO
_L

4N
_T

0_
15

G
18

IO
_L

4P
_T

0_
15

G
17

IO
_L

3N
_T

0_
D

Q
S

_A
D

1N
_1

5
H

14
IO

_L
3P

_T
0_

D
Q

S
_A

D
1P

_1
5

J1
4

IO
_L

2N
_T

0_
A

D
8N

_1
5

G
16

IO
_L

2P
_T

0_
A

D
8P

_1
5

G
15

IO
_L

1N
_T

0_
A

D
0N

_1
5

G
13

IO
_L

1P
_T

0_
A

D
0P

_1
5

H
13

IO
_0

_1
5

J1
6

B
A
N

K
 1

5

V
C

C
O

_1
5

G
19

V
C

C
O

_1
5

H
16

V
C

C
O

_1
5

J1
3

V
C

C
O

_1
5

K
20

V
C

C
O

_1
5

L1
7

V
C

C
O

_1
5

N
21

U
1C

X
C7

A
20

0T
-2

FB
G

48
4C

C
64

47
0n

F
C

65
47

0n
F

C
66

47
0n

F
C

67
47

0n
F

C
62

4.
7µ

F

C
63

4.
7µ

F
C

4
47
µF

3.
3V

F_
C

64
_A

1

F_
C

64
_A

6

F_
C

64
_A

7

F_
C

64
_A

8

F_
C

64
_A

9
F_

C
64

_A
10

F_
C6

4_
A

11

F_
C

64
_A

12

F_
C

64
_A

13

F_
C

64
_A

14

F_
C

64
_A

15

F_
C

64
_A

0

F_
H

A
D

D
R

_D
IR

F_
LA

D
D

R
_D

IR

F_
A

D
D

R
_E

N

C
P0

C
P1

C
P2

Pu
lse

-d
isc

ha
rg

e

R
SV

D
_M

R
C

C

i
B

15

C
P0

C
P1

C
P2

C
P3

G
N

D

JA
_A

X

JA
_A

Y

JB
_A

X
JB

_A
Y

F_
M

O
TE

B

F_
D

RV
SB

FP
G

A
_T

X
FP

G
A

_R
X

F_
C

TR
L_

EN

C
T

_
H

P
D

FP
G

A
_R

ES
ET

_N
D

BG
_U

A
RT

_T
X

D
BG

_U
A

RT
_R

X

G
N

D

TP
6

TP
4

TP
5

TP
7

F_
C

64
_A

4

F_
C

64
_A

5

F_
C

64
_A

2

F_
C

64
_A

3

T8 2N
70

02
,2

15

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
41

N
C

7S
Z1

26
P5

X
1%R

14

1K

3.
3V

3.
3V

50
V

C
78

1.
2n

F

G
N

D

G
N

D G
N

D
T1

0
2N

70
02

,2
15

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
42

N
C

7S
Z1

26
P5

X
1%R

46

1K

3.
3V

3.
3V

50
V

C
81

1.
2n

F

G
N

D

G
N

D

G
N

D
T7 2N

70
02

,2
15

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
6

N
C

7S
Z1

26
P5

X
1%R

22

1K

3.
3V

3.
3V

50
V

C
79

1.
2n

F

G
N

D

G
N

D

G
N

D
T9 2N

70
02

,2
15

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
40

N
C

7S
Z1

26
P5

X
1%R

23

1K

3.
3V

3.
3V

50
V

C
80

1.
2n

F

G
N

D

G
N

D

Pu
lse

-d
isc

ha
rg

e

Pu
lse

-d
isc

ha
rg

e

Pu
lse

-d
isc

ha
rg

e
Pu

lse
-d

isc
ha

rg
e

C
P3

PIC401 PIC402
COC

4
PIC6201 PIC6202 COC

62
PIC6301 PIC6302 COC

63
PIC6401 PIC6402

COC
64

PIC6501 PIC6502
COC

65
PIC6601 PIC6602

CO
C6
6

PIC6701 PIC6702
CO
C6
7

PIC7801 PIC7802
CO
C7
8

PIC7901 PIC7902
CO
C7
9

PIC8001 PIC8002
CO
C8
0

PIC8101 PIC8102
COC

81

PI
R1

40
1

PI
R1

40
2

CO
R1
4

PI
R2

20
1

PI
R2

20
2

CO
R2
2

PI
R2

30
1

PI
R2

30
2

CO
R2

3

PI
R4

60
1

PI
R4

60
2

CO
R4
6

P
I
T
7
0
1

PIT702 PIT703
COT

7

P
I
T
8
0
1

PIT802 PIT803
COT

8

P
I
T
9
0
1

PIT902 PIT903
COT

9

P
I
T
1
0
0
1

PIT1002 PIT1003
CO

T1
0

P
I
T
P
4
0
1

CO
TP

4

PI
TP
50
1

CO
TP

5

P
I
T
P
6
0
1

CO
TP

6

P
I
T
P
7
0
1

CO
TP

7

PI
U1
0G
13

P
I
U
1
0
G
1
5

P
I
U
1
0
G
1
6

P
I
U
1
0
G
1
7

P
I
U
1
0
G
1
8

P
I
U
1
0
G
1
9

PI
U1
0G
20

PI
U1
0H
13

PI
U1
0H
14

P
I
U
1
0
H
1
5

P
I
U
1
0
H
1
6

PI
U1
0H
17

P
I
U
1
0
H
1
8

P
I
U
1
0
H
1
9

P
I
U
1
0
H
2
0

P
I
U
1
0
H
2
2

P
I
U
1
0
J
1
3

P
I
U
1
0
J
1
4

P
I
U
1
0
J
1
5

PI
U1
0J
16

P
I
U
1
0
J
1
7

P
I
U
1
0
J
1
9

P
I
U
1
0
J
2
0

PI
U1
0J
21

P
I
U
1
0
J
2
2

P
I
U
1
0
K
1
3

P
I
U
1
0
K
1
4

PI
U1
0K
16

PI
U1
0K
17

P
I
U
1
0
K
1
8

PI
U1
0K
19

PI
U1
0K
20

P
I
U
1
0
K
2
1

P
I
U
1
0
K
2
2

P
I
U
1
0
L
1
3

P
I
U
1
0
L
1
4

P
I
U
1
0
L
1
5

P
I
U
1
0
L
1
6

P
I
U
1
0
L
1
7

PI
U1
0L
18

PI
U1
0L
19

P
I
U
1
0
L
2
0

P
I
U
1
0
L
2
1

P
I
U
1
0
M
1
3

P
I
U
1
0
M
1
5

P
I
U
1
0
M
1
6

P
I
U
1
0
M
1
7

PI
U1
0M
18

PI
U1
0M
20

P
I
U
1
0
M
2
1

P
I
U
1
0
M
2
2

P
I
U
1
0
N
1
8

P
I
U
1
0
N
1
9

P
I
U
1
0
N
2
0

P
I
U
1
0
N
2
1

P
I
U
1
0
N
2
2

CO
U1
C

P
I
U
6
0
1

P
I
U
6
0
2

P
I
U
6
0
3

P
I
U
6
0
4

P
I
U
6
0
5

COU
6

P
I
U
4
0
0
1

P
I
U
4
0
0
2

P
I
U
4
0
0
3

P
I
U
4
0
0
4

P
I
U
4
0
0
5

COU
40

P
I
U
4
1
0
1

P
I
U
4
1
0
2

PI
U4
10
3

PI
U4
10
4

P
I
U
4
1
0
5

CO
U4

1

P
I
U
4
2
0
1

P
I
U
4
2
0
2

P
I
U
4
2
0
3

P
I
U
4
2
0
4

P
I
U
4
2
0
5

CO
U4

2

PIC401
PIC6201

PIC6301
PIC6401

PIC6501
PIC6601

PIC6701
P
I
U
1
0
G
1
9

P
I
U
1
0
H
1
6

P
I
U
1
0
J
1
3

PI
U1
0K
20

P
I
U
1
0
L
1
7

P
I
U
1
0
N
2
1

P
I
U
6
0
1

P
I
U
6
0
5

P
I
U
4
0
0
1

P
I
U
4
0
0
5

P
I
U
4
1
0
1

P
I
U
4
1
0
5

P
I
U
4
2
0
1

P
I
U
4
2
0
5

PI
U1
0H
13

PI
U4
10
4

NL
CP
0

P
I
U
1
0
G
1
5

P
I
U
4
2
0
4

NL
CP

1

P
I
U
1
0
J
1
4

P
I
U
6
0
4

NL
CP
2

P
I
U
1
0
J
2
2

P
I
U
4
0
0
4

NL
CP
3

P
I
U
1
0
M
1
5

NL
CT
0H
PD

P
I
U
1
0
L
1
4

NL
DB

G0
UA

RT
0R

X

P
I
U
1
0
L
1
3

NL
DB

G0
UA

RT
0T

X

PI
U1
0L
19

NL
F0

AD
DR

0E
N

PI
U1
0K
19

NL
F0
C6
40
A0

P
I
U
1
0
K
1
8

NL
F0
C6
40
A1

P
I
U
1
0
K
2
1

NL
F0

C6
40

A2

P
I
U
1
0
M
2
2

NL
F0
C6
40
A3

P
I
U
1
0
L
2
0

NL
F0
C6
40
A4

P
I
U
1
0
J
2
0

NL
F0

C6
40

A5

PI
U1
0J
21

NL
F0

C6
40

A6

P
I
U
1
0
K
2
2

NL
F0
C6
40
A7

PI
U1
0H
17

NL
F0

C6
40

A8

P
I
U
1
0
H
2
0

NL
F0
C6
40
A9

PI
U1
0G
20

NL
F0
C6
40
A1
0

P
I
U
1
0
J
1
5

NL
F0
C6
40
A1
1

P
I
U
1
0
H
1
9

NL
F0
C6
40
A1
2

PI
U1
0M
20

NL
F0
C6
40
A1
3

P
I
U
1
0
N
2
2

NL
F0
C6
40
A1
4

P
I
U
1
0
H
1
8

NL
F0
C6
40
A1
5

P
I
U
1
0
G
1
8

NL
F0
CT
RL
0E
N

P
I
U
1
0
G
1
7

NL
F0
DR
VS
B

PI
U1
0L
18

NL
F0
HA
DD
R0
DI
R

P
I
U
1
0
L
2
1

NL
F0
LA
DD
R0
DI
R

P
I
U
1
0
H
1
5

NL
F0

MO
TE

B
P
I
U
1
0
M
1
3

NL
FP
GA
0R
ES
ET
0N

PI
U1
0K
16

NL
FP
GA
0R
X

P
I
U
1
0
L
1
6

NL
FP
GA
0T
X

PIC402
PIC6202

PIC6302
PIC6402

PIC6502
PIC6602

PIC6702

PIC7801

PIC7901
PIC8001

PIC8101

PIT702

PIT802

PIT902

PIT1002

P
I
U
1
0
L
1
5

P
I
U
6
0
3

P
I
U
4
0
0
3

PI
U4
10
3

P
I
U
4
2
0
3

PI
R1

40
1

NL
JA

0A
X

PI
R4

60
1

NL
JA

0A
Y

PI
R2

20
1

NL
JB
0A
X

PI
R2

30
1

NL
JB
0A
Y

PIC7802

PI
R1

40
2 PIT803

P
I
U
4
1
0
2

PIC7902

PI
R2

20
2 PIT703

P
I
U
6
0
2

PIC8002

PI
R2

30
2 PIT903

P
I
U
4
0
0
2

PIC8102

PI
R4

60
2 PIT1003

P
I
U
4
2
0
2

PI
TP
50
1

PI
U1
0K
17

P
I
T
P
6
0
1

P
I
U
1
0
N
1
9

P
I
T
P
7
0
1

P
I
U
1
0
N
2
0

PI
U1
0G
13

P
I
U
1
0
G
1
6

PI
U1
0H
14

PI
U1
0J
16

P
I
U
1
0
J
1
7

P
I
U
1
0
K
1
3

P
I
U
1
0
K
1
4

P
I
U
1
0
M
1
6

P
I
U
1
0
M
1
7

PI
U1
0M
18

P
I
U
1
0
M
2
1

P
I
U
1
0
N
1
8

P
I
T
7
0
1

P
I
T
8
0
1

P
I
T
9
0
1

P
I
T
1
0
0
1

P
I
U
1
0
H
2
2

NL
Pu

ls
e0

di
sc

ha
rg

e

P
I
T
P
4
0
1

P
I
U
1
0
J
1
9

NL
RS
VD
0M
RC
C

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

7
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
16

.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

i
B

16

i
B

16

G
N

D

IO
_2

5_
16

F2
1

IO
_L

24
N

_T
3_

16
G

22
IO

_L
24

P
_T

3_
16

G
21

IO
_L

23
N

_T
3_

16
D

21
IO

_L
23

P
_T

3_
16

E
21

IO
_L

22
N

_T
3_

16
D

22
IO

_L
22

P
_T

3_
16

E
22

IO
_L

21
N

_T
3_

D
Q

S
_1

6
A

21
IO

_L
21

P
_T

3_
D

Q
S

_1
6

B
21

IO
_L

20
N

_T
3_

16
B

22
IO

_L
20

P
_T

3_
16

C
22

IO
_L

19
N

_T
3_

V
R

E
F_

16
C

20
IO

_L
19

P
_T

3_
16

D
20

IO
_L

18
N

_T
2_

16
F2

0
IO

_L
18

P
_T

2_
16

F1
9

IO
_L

17
N

_T
2_

16
A

19
IO

_L
17

P
_T

2_
16

A
18

IO
_L

16
N

_T
2_

16
A

20
IO

_L
16

P
_T

2_
16

B
20

IO
_L

15
N

_T
2_

D
Q

S
_1

6
E

18
IO

_L
15

P
_T

2_
D

Q
S

_1
6

F1
8

IO
_L

14
N

_T
2_

S
R

C
C

_1
6

D
19

IO
_L

14
P

_T
2_

S
R

C
C

_1
6

E
19

IO
_L

13
N

_T
2_

M
R

C
C

_1
6

C
19

IO
_L

13
P

_T
2_

M
R

C
C

_1
6

C
18

IO
_L

12
N

_T
1_

M
R

C
C

_1
6

C
17

IO
_L

12
P

_T
1_

M
R

C
C

_1
6

D
17

IO
_L

11
N

_T
1_

S
R

C
C

_1
6

B
18

IO
_L

11
P

_T
1_

S
R

C
C

_1
6

B
17

IO
_L

10
N

_T
1_

16
A

14
IO

_L
10

P
_T

1_
16

A
13

IO
_L

9N
_T

1_
D

Q
S

_1
6

A
16

IO
_L

9P
_T

1_
D

Q
S

_1
6

A
15

IO
_L

8N
_T

1_
16

B
13

IO
_L

8P
_T

1_
16

C
13

IO
_L

7N
_T

1_
16

B
16

IO
_L

7P
_T

1_
16

B
15

IO
_L

6N
_T

0_
V

R
E

F_
16

D
15

IO
_L

6P
_T

0_
16

D
14

IO
_L

5N
_T

0_
16

D
16

IO
_L

5P
_T

0_
16

E
16

IO
_L

4N
_T

0_
16

E
14

IO
_L

4P
_T

0_
16

E
13

IO
_L

3N
_T

0_
D

Q
S

_1
6

C
15

IO
_L

3P
_T

0_
D

Q
S

_1
6

C
14

IO
_L

2N
_T

0_
16

E
17

IO
_L

2P
_T

0_
16

F1
6

IO
_L

1N
_T

0_
16

F1
4

IO
_L

1P
_T

0_
16

F1
3

IO
_0

_1
6

F1
5

B
A
N

K
 1

6

V
C

C
O

_1
6

A
17

V
C

C
O

_1
6

B
14

V
C

C
O

_1
6

C
21

V
C

C
O

_1
6

D
18

V
C

C
O

_1
6

E
15

V
C

C
O

_1
6

F2
2

U
1D

X
C7

A
20

0T
-2

FB
G

48
4C

C
91

47
0n

F
C

92
47

0n
F

C
93

47
0n

F
C

98
47

0n
F

C
68

4.
7µ

F

C
90

4.
7µ

F
C

5
47
µF

3.
3V

FA
_U

P

FA
_D

O
W

N
FA

_F
IR

E

FA
_L

EF
T

FA
_R

IG
H

T

FB
_F

IR
E

D
Q

0

D
Q

1

D
Q

2

D
Q

3
D

Q
4

D
Q

5

D
Q

6

D
Q

7

RW
D

S

H
_C

LK

C
S0

H
_R

ES

R
FU

A
2

R
E

S
E

T
A

4

R
FU

A
5

C
K

B
2

V
C

C
B

4

R
FU

B
5

V
S

S
B

3

C
K

B
1

C
S

A
3

D
Q

2
C

4
R

FU
C

5

R
W

D
S

C
3

V
S

S
Q

C
1

D
Q

1
D

2

D
Q

3
D

4

D
Q

4
D

5

D
Q

0
D

3

V
C

C
Q

D
1

D
Q

6
E

2

V
C

C
Q

E
4

V
S

S
Q

E
5

D
Q

5
E

3

D
Q

7
E

1

R
FU

C
2

N
C

/V
S

S
A

1

U
29

IS
66

W
V

H
8M

8B
LL

-1
00

B
1L

I

RW
D

S
C

S0

H
_R

ES

H
_C

LK

G
N

D

3.
3V

G
N

D
G

N
D

3.
3V

C
25

47
0n

F
C

26
47

0n
F

D
Q

0
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6
D

Q
7

SD
2_

D
2

SD
2_

D
3

SD
2_

C
M

D

SD
2_

D
0

SD
2_

D
1

SD
2_

C
LK

SD
2_

C
D

SD
2_

W
P

G
ro

ve
_S

C
L0

G
ro

ve
_S

D
A

0

A
0

5

A
1

4
V

S
S

2

S
D

A
3

S
C

L
1

V
C

C
6

U
36

24
A

A
02

5E
48

T-
I/O

T
G

N
D

R
15

1
4K

7

R
15

2
4K

7

G
N

D

3.
3V

C
17

5
47

0n
F

G
N

D

3.
3V

FP
G

A
_S

C
L

FP
G

A
_S

D
A

FP
G

A
_S

C
L

FP
G

A
_S

D
A

K
B_

JT
A

G
EN

K
B

_
T

M
S

K
B

_
T

D
I

K
B

_
T

D
O

K
B

_
T

C
K

K
B

_I
O

1
K

B
_I

O
2

K
B

_I
O

3

TP
8

FB
_L

EF
T

FB
_R

IG
H

T

+
-

B
1

B
at

te
rie

ha
lte

r C
R

12
20

G
N

D

S
D

A
11

G
N

D
8

N
C

6

X
2

1

IR
Q

/F
O

U
T

13

N
C

15

S
C

L
12

VB
AT

7

X
1

20

X
2

2

X
2

3

X
2

4

X
2

5

X
1

19

X
1

18

X
1

17

X
1

16

N
C

9

N
C

10

N
C

21

V
D

D
14

U
38

IS
L1

20
20

M
IR

Z

I2
C

 a
dd

r:
0x

6F
 fo

r R
TC

I2
C

 a
dd

r:
0x

57
 fo

r S
R

A
M

6.
3V

C
18

4
47

0n
F

G
N

D
6.

3V

C
18

5
47

0n
F

G
N

D

D
14

BA
T5

4C

G
N

D

3V

FP
G

A
_S

C
L

FP
G

A
_S

D
A

R
16

3
4K

7

I2
C

 a
dd

r:
0x

50
3.

3V

X
2

X
1

A
0

1

A
1

2

A
2

3

V
S

S
4

S
D

A
5

S
C

L
6

W
P

7

V
C

C
8

U
39

24
LC

12
8-

I/S
T

G
N

D

G
N

D

G
N

D

3.
3V

3.
3V

FP
G

A
_S

C
L

FP
G

A
_S

D
A

I2
C

 a
dd

r:
0x

54

nS
D

_A
U

D
IO

A
U

D
IO

_M
C

LK
A

U
D

IO
_S

D
A

TA

A
U

D
IO

_B
C

LK

A
U

D
IO

_L
R

C
LK

P
I
B
1
0
0

COB
1

PIC501 PIC502
COC

5

PIC2501 PIC2502
CO
C2
5

PIC2601 PIC2602
CO
C2
6

PIC6801 PIC6802 CO
C6
8

PIC9001 PIC9002 CO
C9
0

PIC9101 PIC9102
COC

91
PIC9201 PIC9202

CO
C9
2

PIC9301 PIC9302
COC

93
PIC9801 PIC9802

COC
98

PIC17501 PIC17502
CO
C1
75

PIC18401 PIC18402
CO
C1
84

PIC18501 PIC18502
CO
C1
85

P
I
D
1
4
0
1

P
I
D
1
4
0
2

PI
D1

40
3

CO
D1
4

PI
R1

51
01

PI

R1
51

02

CO
R1
51

PIR
152

01
PIR

152
02

CO
R1
52

PIR16301 PIR16302 CO
R1
63

P
I
T
P
8
0
1

CO
TP

8

P
I
U
1
0
A
1
3

P
I
U
1
0
A
1
4

P
I
U
1
0
A
1
5

P
I
U
1
0
A
1
6

P
I
U
1
0
A
1
7

P
I
U
1
0
A
1
8

P
I
U
1
0
A
1
9

PI
U1
0A
20

P
I
U
1
0
A
2
1

PI
U1
0B
13

P
I
U
1
0
B
1
4

P
I
U
1
0
B
1
5

P
I
U
1
0
B
1
6

P
I
U
1
0
B
1
7

PI
U1
0B
18

PI
U1
0B
20

PI
U1
0B
21

P
I
U
1
0
B
2
2

P
I
U
1
0
C
1
3

P
I
U
1
0
C
1
4

PI
U1
0C
15

P
I
U
1
0
C
1
7

P
I
U
1
0
C
1
8

PI
U1
0C
19

P
I
U
1
0
C
2
0

P
I
U
1
0
C
2
1

P
I
U
1
0
C
2
2

PI
U1
0D
14

P
I
U
1
0
D
1
5

P
I
U
1
0
D
1
6

P
I
U
1
0
D
1
7

PI
U1
0D
18

P
I
U
1
0
D
1
9

P
I
U
1
0
D
2
0

PI
U1
0D
21

P
I
U
1
0
D
2
2

P
I
U
1
0
E
1
3

P
I
U
1
0
E
1
4

P
I
U
1
0
E
1
5

P
I
U
1
0
E
1
6

P
I
U
1
0
E
1
7

P
I
U
1
0
E
1
8

PI
U1
0E
19

P
I
U
1
0
E
2
1

P
I
U
1
0
E
2
2

PI
U1
0F
13

PI
U1
0F
14

PI
U1
0F
15

P
I
U
1
0
F
1
6

P
I
U
1
0
F
1
8

P
I
U
1
0
F
1
9

PI
U1
0F
20

P
I
U
1
0
F
2
1

P
I
U
1
0
F
2
2

P
I
U
1
0
G
2
1

P
I
U
1
0
G
2
2

CO
U1
D

P
I
U
2
9
0
A
1

PI
U2

90
A2

PI
U2

90
A3

P
I
U
2
9
0
A
4

P
I
U
2
9
0
A
5

P
I
U
2
9
0
B
1

P
I
U
2
9
0
B
2

P
I
U
2
9
0
B
3

P
I
U
2
9
0
B
4

P
I
U
2
9
0
B
5

P
I
U
2
9
0
C
1

P
I
U
2
9
0
C
2

P
I
U
2
9
0
C
3

P
I
U
2
9
0
C
4

P
I
U
2
9
0
C
5

P
I
U
2
9
0
D
1

P
I
U
2
9
0
D
2

P
I
U
2
9
0
D
3

PI
U2
90
D4

P
I
U
2
9
0
D
5

PI
U2
90
E1

P
I
U
2
9
0
E
2

P
I
U
2
9
0
E
3

PI
U2

90
E4

PI
U2

90
E5

CO
U2

9

P
I
U
3
6
0
1

PI
U3
60
2

PI
U3
60
3

PI
U3
60
4

PI
U3
60
5

P
I
U
3
6
0
6
 CO
U3
6

P
I
U
3
8
0
1

PI
U3
80
2

PI
U3
80
3

P
I
U
3
8
0
4

P
I
U
3
8
0
5

P
I
U
3
8
0
6

PI
U3
80
7

P
I
U
3
8
0
8

P
I
U
3
8
0
9

P
I
U
3
8
0
1
0

P
I
U
3
8
0
1
1

PI
U3
80
12

P
I
U
3
8
0
1
3

PI
U3
80
14

PI
U3

80
15

P
I
U
3
8
0
1
6

P
I
U
3
8
0
1
7

PI
U3
80
18

PI
U3
80
19

P
I
U
3
8
0
2
0

PI
U3

80
21

 CO
U3
8

P
I
U
3
9
0
1

P
I
U
3
9
0
2

P
I
U
3
9
0
3

P
I
U
3
9
0
4

P
I
U
3
9
0
5

P
I
U
3
9
0
6

P
I
U
3
9
0
7

P
I
U
3
9
0
8

CO
U3
9

PIC501 PIC2501
PIC2601

PIC6801
PIC9001

PIC9101
PIC9201

PIC9301
PIC9801

PIC17501

PIC18501

PI
R1

51
02

PIR
152

02

PIR16302

P
I
U
1
0
A
1
7

P
I
U
1
0
B
1
4

P
I
U
1
0
C
2
1

PI
U1
0D
18

P
I
U
1
0
E
1
5

P
I
U
1
0
F
2
2

P
I
U
2
9
0
B
4

P
I
U
2
9
0
D
1

PI
U2

90
E4

P
I
U
3
6
0
6

PI
U3
80
14

P
I
U
3
9
0
2

P
I
U
3
9
0
3

P
I
U
3
9
0
8

PI
U1
0E
19

NL
AU

DI
O0

BC
LK

P
I
U
1
0
F
1
9

NL
AU
DI
O0
LR
CL
K

P
I
U
1
0
D
1
6

NL
AU

DI
O0

MC
LK

P
I
U
1
0
E
1
6

NL
AU
DI
O0
SD
AT
A

P
I
U
1
0
C
2
2

PI
U2

90
A3

NL
CS
0

P
I
U
1
0
A
2
1

P
I
U
2
9
0
D
3

NL
DQ
0

PI
U1
0D
21

P
I
U
2
9
0
D
2

NL
DQ
1

P
I
U
1
0
C
2
0

P
I
U
2
9
0
C
4

NL
DQ
2

PI
U1
0A
20

PI
U2
90
D4

NL
DQ
3

PI
U1
0B
20

P
I
U
2
9
0
D
5

NL
DQ
4

P
I
U
1
0
A
1
9

P
I
U
2
9
0
E
3

NL
DQ
5

P
I
U
1
0
E
2
1

P
I
U
2
9
0
E
2

NL
DQ
6

P
I
U
1
0
E
2
2

PI
U2
90
E1

NL
DQ
7

P
I
U
1
0
F
1
6

NL
FA
0D
OW
N

P
I
U
1
0
E
1
7

NL
FA

0F
IR

E

PI
U1
0F
14

NL
FA

0L
EF

T
PI
U1
0F
13

NL
FA

0R
IG

HT

P
I
U
1
0
C
1
4

NL
FA
0U
P

PI
U1
0F
15

NL
FB

0F
IR

E

P
I
U
1
0
F
2
1

NL
FB

0L
EF

T

PI
U1
0C
15

NL
FB

0R
IG

HT

PI
R1

51
01

P
I
U
1
0
A
1
5

P
I
U
3
6
0
1

PI
U3
80
12

P
I
U
3
9
0
6

NL
FP

GA
0S

CL

PIR
152

01

P
I
U
1
0
A
1
6

PI
U3
60
3

P
I
U
3
8
0
1
1

P
I
U
3
9
0
5

NL
FP

GA
0S

DA

P
I
B
1
0
0

PIC502 PIC2502
PIC2602

PIC6802
PIC9002

PIC9102
PIC9202

PIC9302
PIC9802

PIC17502

PIC18402
PIC18502

P
I
U
2
9
0
A
1

P
I
U
2
9
0
B
3

P
I
U
2
9
0
C
1

PI
U2

90
E5

PI
U3
60
2

PI
U3
60
4

PI
U3
60
5

P
I
U
3
8
0
8

P
I
U
3
9
0
1

P
I
U
3
9
0
4

P
I
U
3
9
0
7

P
I
U
1
0
G
2
1

NL
Gr
ov
e0
SC
L0

P
I
U
1
0
G
2
2

NL
Gr

ov
e0

SD
A0

P
I
U
1
0
D
2
2

P
I
U
2
9
0
B
2

NL
H0

CL
K

P
I
U
1
0
B
2
2

P
I
U
2
9
0
A
4

NL
H0
RE
S

P
I
U
1
0
A
1
4

NL
KB

0I
O1

P
I
U
1
0
A
1
3

NL
KB

0I
O2

P
I
U
1
0
C
1
3

NL
KB

0I
O3

PI
U1
0B
13

NL
KB

0J
TA

GE
N

P
I
U
1
0
E
1
3

NL
KB

0T
CK

P
I
U
1
0
D
1
5

NL
KB
0T
DI

P
I
U
1
0
E
1
4

NL
KB

0T
DO

PI
U1
0D
14

NL
KB

0T
MS

P
I
B
1
0
0
 P
I
D
1
4
0
1

P
I
D
1
4
0
2

PIC18401
PI
D1

40
3

PI
U3
80
7

PIR16301
P
I
U
3
8
0
1
3

P
I
T
P
8
0
1

P
I
U
1
0
D
2
0

P
I
U
1
0
A
1
8

P
I
U
1
0
D
1
9

P
I
U
1
0
E
1
8

PI
U1
0F
20

PI
U2

90
A2

P
I
U
2
9
0
A
5

P
I
U
2
9
0
B
1

P
I
U
2
9
0
B
5

P
I
U
2
9
0
C
2

P
I
U
2
9
0
C
5

P
I
U
3
8
0
6

P
I
U
3
8
0
9

P
I
U
3
8
0
1
0

PI
U3

80
15

PI
U3

80
21

P
I
U
1
0
F
1
8

NL
nS
D0
AU
DI
O

PI
U1
0B
21

P
I
U
2
9
0
C
3

NL
RW

DS

P
I
U
1
0
D
1
7

NL
SD

20
CD

P
I
U
1
0
B
1
7

NL
SD
20
CL
K

P
I
U
1
0
B
1
6

NL
SD

20
CM

D

PI
U1
0B
18

NL
SD
20
D0

P
I
U
1
0
C
1
8

NL
SD

20
D1

PI
U1
0C
19

NL
SD
20
D2

P
I
U
1
0
B
1
5

NL
SD
20
D3

P
I
U
1
0
C
1
7

NL
SD

20
WP

P
I
U
3
8
0
1
6

P
I
U
3
8
0
1
7

PI
U3
80
18

PI
U3
80
19

P
I
U
3
8
0
2
0
 NLX
1

P
I
U
3
8
0
1

PI
U3
80
2

PI
U3
80
3

P
I
U
3
8
0
4

P
I
U
3
8
0
5

NLX
2

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

8
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
34

.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

IO
_0

_3
4

T3

IO
_L

1P
_T

0_
34

T1

IO
_L

1N
_T

0_
34

U
1

IO
_L

2P
_T

0_
34

U
2

IO
_L

2N
_T

0_
34

V
2

IO
_L

3P
_T

0_
D

Q
S

_3
4

R
3

IO
_L

3N
_T

0_
D

Q
S

_3
4

R
2

IO
_L

4P
_T

0_
34

W
2

IO
_L

4N
_T

0_
34

Y
2

IO
_L

5P
_T

0_
34

W
1

IO
_L

5N
_T

0_
34

Y
1

IO
_L

6P
_T

0_
34

U
3

IO
_L

6N
_T

0_
V

R
E

F_
34

V
3

IO
_L

7P
_T

1_
34

A
A

1

IO
_L

7N
_T

1_
34

A
B

1

IO
_L

8P
_T

1_
34

A
B

3

IO
_L

8N
_T

1_
34

A
B

2

IO
_L

9P
_T

1_
D

Q
S

_3
4

Y
3

IO
_L

9N
_T

1_
D

Q
S

_3
4

A
A

3

IO
_L

10
P

_T
1_

34
A

A
5

IO
_L

10
N

_T
1_

34
A

B
5

IO
_L

11
P

_T
1_

S
R

C
C

_3
4

Y
4

IO
_L

11
N

_T
1_

S
R

C
C

_3
4

A
A

4

IO
_L

12
P

_T
1_

M
R

C
C

_3
4

V
4

IO
_L

12
N

_T
1_

M
R

C
C

_3
4

W
4

IO
_L

13
P

_T
2_

M
R

C
C

_3
4

R
4

IO
_L

13
N

_T
2_

M
R

C
C

_3
4

T4

IO
_L

14
P

_T
2_

S
R

C
C

_3
4

T5

IO
_L

14
N

_T
2_

S
R

C
C

_3
4

U
5

IO
_L

15
P

_T
2_

D
Q

S
_3

4
W

6

IO
_L

15
N

_T
2_

D
Q

S
_3

4
W

5

IO
_L

16
P

_T
2_

34
U

6

IO
_L

16
N

_T
2_

34
V

5

IO
_L

17
P

_T
2_

34
R

6

IO
_L

17
N

_T
2_

34
T6

IO
_L

18
P

_T
2_

34
Y

6

IO
_L

18
N

_T
2_

34
A

A
6

IO
_L

19
P

_T
3_

34
V

7

IO
_L

19
N

_T
3_

V
R

E
F_

34
W

7

IO
_L

20
P

_T
3_

34
A

B
7

IO
_L

20
N

_T
3_

34
A

B
6

IO
_L

21
P

_T
3_

D
Q

S
_3

4
V

9

IO
_L

21
N

_T
3_

D
Q

S
_3

4
V

8

IO
_L

22
P

_T
3_

34
A

A
8

IO
_L

22
N

_T
3_

34
A

B
8

IO
_L

23
P

_T
3_

34
Y

8

IO
_L

23
N

_T
3_

34
Y

7

IO
_L

24
P

_T
3_

34
W

9

IO
_L

24
N

_T
3_

34
Y

9

IO
_2

5_
34

U
7

B
A
N

K
 3

4

V
C

C
O

_3
4

A
A

7

V
C

C
O

_3
4

A
B

4

V
C

C
O

_3
4

R
5

V
C

C
O

_3
4

T2

V
C

C
O

_3
4

V
6

V
C

C
O

_3
4

W
3

U
1E

X
C7

A
20

0T
-2

FB
G

48
4C

IO
_2

5_
35

L6

IO
_L

24
N

_T
3_

35
N

5
IO

_L
24

P
_T

3_
35

P
6

IO
_L

23
N

_T
3_

35
M

5
IO

_L
23

P
_T

3_
35

M
6

IO
_L

22
N

_T
3_

35
N

2
IO

_L
22

P
_T

3_
35

P
2

IO
_L

21
N

_T
3_

D
Q

S
_3

5
P

4
IO

_L
21

P
_T

3_
D

Q
S

_3
5

P
5

IO
_L

20
N

_T
3_

35
P

1
IO

_L
20

P
_T

3_
35

R
1

IO
_L

19
N

_T
3_

V
R

E
F_

35
N

3
IO

_L
19

P
_T

3_
35

N
4

IO
_L

18
N

_T
2_

35
L4

IO
_L

18
P

_T
2_

35
L5

IO
_L

17
N

_T
2_

35
J6

IO
_L

17
P

_T
2_

35
K

6
IO

_L
16

N
_T

2_
35

M
2

IO
_L

16
P

_T
2_

35
M

3
IO

_L
15

N
_T

2_
D

Q
S

_3
5

L1
IO

_L
15

P
_T

2_
D

Q
S

_3
5

M
1

IO
_L

14
N

_T
2_

S
R

C
C

_3
5

K
3

IO
_L

14
P

_T
2_

S
R

C
C

_3
5

L3
IO

_L
13

N
_T

2_
M

R
C

C
_3

5
J4

IO
_L

13
P

_T
2_

M
R

C
C

_3
5

K
4

IO
_L

12
N

_T
1_

M
R

C
C

_3
5

G
4

IO
_L

12
P

_T
1_

M
R

C
C

_3
5

H
4

IO
_L

11
N

_T
1_

S
R

C
C

_3
5

G
3

IO
_L

11
P

_T
1_

S
R

C
C

_3
5

H
3

IO
_L

10
N

_T
1_

A
D

15
N

_3
5

H
5

IO
_L

10
P

_T
1_

A
D

15
P

_3
5

J5

IO
_L

9N
_T

1_
D

Q
S

_A
D

7N
_3

5
J2

IO
_L

9P
_T

1_
D

Q
S

_A
D

7P
_3

5
K

2
IO

_L
8N

_T
1_

A
D

14
N

_3
5

G
2

IO
_L

8P
_T

1_
A

D
14

P
_3

5
H

2
IO

_L
7N

_T
1_

A
D

6N
_3

5
J1

IO
_L

7P
_T

1_
A

D
6P

_3
5

K
1

IO
_L

6N
_T

0_
V

R
E

F_
35

E
3

IO
_L

6P
_T

0_
35

F3
IO

_L
5N

_T
0_

A
D

13
N

_3
5

F1
IO

_L
5P

_T
0_

A
D

13
P

_3
5

G
1

IO
_L

4N
_T

0_
35

D
2

IO
_L

4P
_T

0_
35

E
2

IO
_L

3N
_T

0_
D

Q
S

_A
D

5N
_3

5
D

1
IO

_L
3P

_T
0_

D
Q

S
_A

D
5P

_3
5

E
1

IO
_L

2N
_T

0_
A

D
12

N
_3

5
B

2
IO

_L
2P

_T
0_

A
D

12
P

_3
5

C
2

IO
_L

1N
_T

0_
A

D
4N

_3
5

A
1

IO
_L

1P
_T

0_
A

D
4P

_3
5

B
1

IO
_0

_3
5

F4

B
A
N

K
 3

5

V
C

C
O

_3
5

C
1

V
C

C
O

_3
5

F2

V
C

C
O

_3
5

H
6

V
C

C
O

_3
5

J3

V
C

C
O

_3
5

M
4

V
C

C
O

_3
5

N
1

U
1F

X
C7

A
20

0T
-2

FB
G

48
4C

G
N

D

C
12

4.
7µ

F

C
15

9

4.
7µ

F

G
N

D

C
16

6
47

0n
F

C
16

7
47

0n
F

C
16

8
47

0n
F

C
16

9
47

0n
F

C
16

0

4.
7µ

F

C
16

1

4.
7µ

F

B
3

5
_

L1
2

_
P

B
3

5
_

L1
2

_
N

B
3

5
_

L1
0

_
P

B
3

5
_

L1
0

_
N

i
B

35

B
3

5
_

L3
_

P
B

3
5

_
L3

_
N

B
3

5
_

L2
_

P
B

3
5

_
L2

_
N

B
3

5
_

L4
_

N
B

3
5

_
L4

_
P

B
3

5
_

L1
_

P
B

3
5

_
L1

_
N

B
3

5
_

L6
_

N
B

3
5

_
L6

_
P

B
3

5
_

L5
_

P
B

3
5

_
L5

_
N

i
B

35
i

B
34

i
B

34

S
C

L_
A

S
D

A
_

A

H
P

D
_

A

C
E

C
_

A

LS
_

O
E

3.
3V

3.
3V

3.
3V

3.
3V

F_
R

ED
W

C

F_
IN

D
EX

F_
M

O
TE

A

F_
D

RV
SA

F_
D

IR

F_
ST

EP

F_
W

D
A

TE
F_

W
G

A
TE

F_
TR

C
K

0
F_

W
PT

F_
RD

A
TA

1

F_
SI

D
E1

F_
D

SC
K

C
H

G

ET
H

_T
X

_E
N

ET
H

_T
X

_D
0

ET
H

_T
X

_D
1

ET
H

_R
X

_D
0

ET
H

_R
X

_D
1

ET
H

-R
ST

ET
H

_C
R

S_
D

V

ET
H

_C
LK

ET
H

_M
D

IO
ET

H
_M

D
C

ET
H

_R
X

ER
SD

_D
2

SD
_D

3
SD

_C
M

D

SD
_D

0

SD
_D

1

SD
_C

LK

SD
_C

D

H
D

M
I_

T
X

C
_

P
H

D
M

I_
T

X
C

_
N

H
D

M
I_

T
X

2
_

P
H

D
M

I_
T

X
2

_
N

H
D

M
I_

T
X

1
_

P
H

D
M

I_
T

X
1

_
N

H
D

M
I_

T
X

0
_

P
H

D
M

I_
T

X
0

_
N

PW
M

_L

PW
M

_R

PIC1201 PIC1202 CO
C1

2
PIC15901 PIC15902 CO

C1
59

PIC16001 PIC16002 CO
C1
60

PIC16101 PIC16102 CO
C1
61

PIC16601 PIC16602
CO
C1
66

PIC16701 PIC16702
CO
C1
67

PIC16801 PIC16802
CO
C1
68

PIC16901 PIC16902
CO
C1
69

PI
U1
0A
A1

PI
U1
0A
A3

P
I
U
1
0
A
A
4

PI
U1

0A
A5

P
I
U
1
0
A
A
6

P
I
U
1
0
A
A
7

PI
U1

0A
A8

PI
U1
0A
B1

P
I
U
1
0
A
B
2

P
I
U
1
0
A
B
3

PI
U1
0A
B4

PI
U1

0A
B5

P
I
U
1
0
A
B
6

PI
U1

0A
B7

PI
U1

0A
B8

P
I
U
1
0
R
2

P
I
U
1
0
R
3

PI
U1
0R
4

PI
U1
0R
5

P
I
U
1
0
R
6

P
I
U
1
0
T
1

PI
U1
0T
2

P
I
U
1
0
T
3

P
I
U
1
0
T
4

P
I
U
1
0
T
5

PI
U1
0T
6

P
I
U
1
0
U
1

P
I
U
1
0
U
2

P
I
U
1
0
U
3

P
I
U
1
0
U
5

P
I
U
1
0
U
6

PI
U1
0U
7

PI
U1
0V
2

P
I
U
1
0
V
3

P
I
U
1
0
V
4

P
I
U
1
0
V
5

P
I
U
1
0
V
6

P
I
U
1
0
V
7

P
I
U
1
0
V
8

P
I
U
1
0
V
9

PI
U1
0W
1

P
I
U
1
0
W
2

P
I
U
1
0
W
3

PI
U1
0W
4

P
I
U
1
0
W
5

PI
U1
0W
6

P
I
U
1
0
W
7

P
I
U
1
0
W
9

P
I
U
1
0
Y
1

P
I
U
1
0
Y
2

P
I
U
1
0
Y
3

P
I
U
1
0
Y
4

P
I
U
1
0
Y
6

P
I
U
1
0
Y
7

P
I
U
1
0
Y
8

PI
U1
0Y
9

CO
U1
E

P
I
U
1
0
A
1

P
I
U
1
0
B
1

PI
U1

0B
2

PI
U1

0C
1

P
I
U
1
0
C
2

P
I
U
1
0
D
1

P
I
U
1
0
D
2

P
I
U
1
0
E
1

P
I
U
1
0
E
2

P
I
U
1
0
E
3

P
I
U
1
0
F
1

PI
U1

0F
2

P
I
U
1
0
F
3

P
I
U
1
0
F
4

PI
U1

0G
1

P
I
U
1
0
G
2

P
I
U
1
0
G
3

PI
U1

0G
4

P
I
U
1
0
H
2

P
I
U
1
0
H
3

P
I
U
1
0
H
4

PI
U1

0H
5

P
I
U
1
0
H
6

PI
U1

0J
1

PI
U1

0J
2

P
I
U
1
0
J
3

P
I
U
1
0
J
4

PI
U1

0J
5

PI
U1

0J
6

PI
U1

0K
1

P
I
U
1
0
K
2

P
I
U
1
0
K
3

PI
U1

0K
4

P
I
U
1
0
K
6

P
I
U
1
0
L
1

P
I
U
1
0
L
3

P
I
U
1
0
L
4

P
I
U
1
0
L
5

PI
U1

0L
6

PI
U1

0M
1

P
I
U
1
0
M
2

P
I
U
1
0
M
3

P
I
U
1
0
M
4

P
I
U
1
0
M
5

P
I
U
1
0
M
6

PI
U1

0N
1

PI
U1

0N
2

P
I
U
1
0
N
3

P
I
U
1
0
N
4

PI
U1

0N
5

P
I
U
1
0
P
1

PI
U1

0P
2

P
I
U
1
0
P
4

P
I
U
1
0
P
5

P
I
U
1
0
P
6

PI
U1

0R
1

CO
U1
F

PIC1201
PIC15901

PIC16001
PIC16101

PIC16601
PIC16701

PIC16801
PIC16901

P
I
U
1
0
A
A
7

PI
U1
0A
B4

PI
U1

0C
1

PI
U1

0F
2

P
I
U
1
0
H
6

P
I
U
1
0
J
3

P
I
U
1
0
M
4

PI
U1

0N
1

PI
U1
0R
5

PI
U1
0T
2

P
I
U
1
0
V
6

P
I
U
1
0
W
3

P
I
U
1
0
A
1

NL
B3

50
L1

0N

P
I
U
1
0
B
1

NL
B3

50
L1

0P

PI
U1

0B
2

NL
B3

50
L2

0N

P
I
U
1
0
C
2

NL
B3

50
L2

0P

P
I
U
1
0
D
1

NL
B3

50
L3

0N

P
I
U
1
0
E
1

NL
B3

50
L3

0P

P
I
U
1
0
D
2

NL
B3

50
L4

0N

P
I
U
1
0
E
2

NL
B3

50
L4

0P

P
I
U
1
0
F
1

NL
B3

50
L5

0N

PI
U1

0G
1

NL
B3

50
L5

0P

P
I
U
1
0
E
3

NL
B3

50
L6

0N

P
I
U
1
0
F
3

NL
B3

50
L6

0P

PI
U1

0H
5

NL
B3
50
L1
00
N

PI
U1

0J
5

NL
B3

50
L1

00
P

PI
U1

0G
4

N
L
B
3
5
0
L
1
2
0
N

P
I
U
1
0
H
4

NL
B3

50
L1

20
P

P
I
U
1
0
W
9

NL
CE

C0
A

P
I
U
1
0
K
6

NL
ET

H0
RS

T

P
I
U
1
0
L
4

NL
ET
H0
CL
K

PI
U1

0K
4

NL
ET
H0
CR
S0
DV

PI
U1

0J
6

NL
ET

H0
MD

C

P
I
U
1
0
L
5

NL
ET

H0
MD

IO

P
I
U
1
0
P
4

NL
ET
H0
RX
0D
0

P
I
U
1
0
L
1

NL
ET
H0
RX
0D
1

P
I
U
1
0
M
6

NL
ET

H0
RX

ER

P
I
U
1
0
L
3

NL
ET
H0
TX
0D
0

P
I
U
1
0
K
3

NL
ET
H0
TX
0D
1

P
I
U
1
0
J
4

NL
ET

H0
TX

0E
N

P
I
U
1
0
P
5

NL
F0

DI
R

PI
U1

0N
5

NL
F0
DR
VS
A

PI
U1

0R
1

NL
F0

DS
CK

CH
G

P
I
U
1
0
M
2

NL
F0
IN
DE
X

P
I
U
1
0
M
5

NL
F0

MO
TE

A

P
I
U
1
0
P
1

NL
F0

RD
AT

A1

P
I
U
1
0
P
6

NL
F0

RE
DW

C

PI
U1

0M
1

NL
F0
SI
DE
1

P
I
U
1
0
M
3

NL
F0

ST
EP

PI
U1

0N
2

NL
F0
TR
CK
0

P
I
U
1
0
N
4

NL
F0

WD
AT

E

P
I
U
1
0
N
3

NL
F0

WG
AT

E

PI
U1

0P
2

NL
F0

WP
T

PIC1202
PIC15902

PIC16002
PIC16102

PIC16602
PIC16702

PIC16802
PIC16902

PI
U1
0A
B1

NL
HD

MI
0T

X0
0N

PI
U1
0A
A1

N
L
H
D
M
I
0
T
X
0
0
P

P
I
U
1
0
A
B
2

NL
HD

MI
0T

X1
0N

P
I
U
1
0
A
B
3

NL
HD

MI
0T

X1
0P

PI
U1

0A
B5

NL

HD
MI

0T
X2

0N

PI
U1

0A
A5

N
L
H
D
M
I
0
T
X
2
0
P

P
I
U
1
0
Y
1

NL
HD

MI
0T

XC
0N

PI
U1
0W
1

NL
HD

MI
0T

XC
0P

P
I
U
1
0
Y
8

NL
HP
D0
A

PI
U1

0A
B8

NL

LS
0O

E

PI
U1
0A
A3

P
I
U
1
0
A
A
4

P
I
U
1
0
A
A
6

PI
U1

0A
A8

P
I
U
1
0
A
B
6

P
I
U
1
0
G
3

P
I
U
1
0
R
2

P
I
U
1
0
R
3

PI
U1
0R
4

P
I
U
1
0
R
6

P
I
U
1
0
T
1

P
I
U
1
0
T
3

P
I
U
1
0
T
4

P
I
U
1
0
T
5

PI
U1
0T
6

P
I
U
1
0
U
1

P
I
U
1
0
U
2

P
I
U
1
0
U
3

P
I
U
1
0
U
5

P
I
U
1
0
U
6

PI
U1
0U
7

PI
U1
0V
2

P
I
U
1
0
V
3

P
I
U
1
0
V
4

P
I
U
1
0
V
5

P
I
U
1
0
V
7

P
I
U
1
0
V
8

P
I
U
1
0
W
2

PI
U1
0W
4

P
I
U
1
0
W
5

PI
U1
0W
6

P
I
U
1
0
W
7

P
I
U
1
0
Y
2

P
I
U
1
0
Y
3

P
I
U
1
0
Y
4

P
I
U
1
0
Y
6

P
I
U
1
0
Y
7

PI
U1
0Y
9

PI
U1

0L
6

NL
PW
M0
L

P
I
U
1
0
F
4

NL
PW

M0
R

PI
U1

0A
B7

NL

SC
L0

A

PI
U1

0K
1

NL
SD
0C
D

P
I
U
1
0
G
2

NL
SD

0C
LK

PI
U1

0J
2

NL
SD
0C
MD

P
I
U
1
0
H
2

NL
SD

0D
0

P
I
U
1
0
H
3

NL
SD

0D
1

PI
U1

0J
1

NL
SD

0D
2

P
I
U
1
0
K
2

NL
SD

0D
3

P
I
U
1
0
V
9

NL
SD
A0
A

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

9
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

FP
G

A
-C

FG
.S

ch
D

oc
Fi

le
na

m
e:20

20
-0

6-
29

[N
o

Va
ria

tio
ns

]
TE

07
65

FP
G

A
_

P
R

O
G

_
B

1%
R

3

1K
FP

G
A

_
D

O
N

E

S
P

I-
S

C
K

G
N

D

3.
3V

C
14

10
0n

F
G

N
D

S
P

I-
C

S

S
P

I-
D

Q
O

S
P

I-
D

Q
1

S
P

I-
D

Q
2

S
P

I-
D

Q
3

C
LK

B
2

G
N

D
B

3

V
C

C
B

4
C

S
C

2

W
P

/IO
2

C
4

D
O

/IO
1

D
2

D
I/I

O
0

D
3

H
O

LD
/R

E
S

E
T/

IO
3

D
4

U
5A

S2
5F

L2
56

SA
G

B
H

I2
0

N
C

A
2

N
C

A
3

N
C

A
4

N
C

A
5

N
C

B
1

N
C

B
5

N
C

C
1

N
C

C
3

N
C

C
5

N
C

D
1

N
C

D
5

N
C

E
1

N
C

E
2

N
C

E
3

N
C

E
4

N
C

E
5

U
5B

S2
5F

L2
56

SA
G

B
H

I2
0

i
FP

G
A

_J
TA

G

B
O

O
TM

O
D

E
=

M
A

ST
ER

 S
PI

i
SP

IF
LA

SH

S
P

I-
S

C
K

3.
3V

3.
3V

D
X

N
_0

N
9

D
X

P
_0

N
10

V
R

E
FN

_0
L9

V
R

E
FP

_0
M

10

V
N

_0
M

9
V

P
_0

L1
0

C
FG

B
V

S
_0

U
8

P
R

O
G

R
A

M
_B

_0
N

12

IN
IT

_B
_0

U
12

D
O

N
E

_0
G

11

M
2_

0
U

9
M

1_
0

U
10

M
0_

0
U

11

C
C

LK
_0

L1
2

TM
S

_0
T1

3
TC

K
_0

V
12

TD
O

_0
U

13
TD

I_
0

R
13

VC
C

BA
TT

_0
E

12

V
C

C
A

D
C

_0
K

10

G
N

D
A

D
C

_0
K

9

V
C

C
O

_0
F1

2

V
C

C
O

_0
T1

2

B
A
N

K
0

U
1G

X
C7

A
20

0T
-2

FB
G

48
4C

3.
3V FP

G
A

_
IN

IT

3.
3V

1%R
8

4K
87

3.
3V

L2 B
K

P0
60

3H
S1

21
-T

G
N

D

A
G

N
D

A
G

N
D

A
G

N
D

AV
C

C

C
23

47
0n

F

A
G

N
D

L3 B
K

P0
60

3H
S1

21
-T

AV
C

C
1.

8V

1%R
7

4K
87

3.
3V

G
N

D

C
17

0

4.
7µ

F
G

N
D 1%R

1

4K
87

3.
3V

FP
G

A
_

T
M

S

FP
G

A
_

T
D

I
FP

G
A

_
T

D
O

FP
G

A
_

T
C

K

V
_P

V
_N

16
V

X
7R

C
12

2
10

nF

FP
G

A
_P

R
O

G
_B

1%R
68

4K
87

3.
3V

G
N

D

2
3

1 4
5

6

S2 SP
U

J1
91

50
0

G
N

D

G
N

D

R
13

4

49
R

9

3.
3V

1%R
14

8
4K

87 T6 2N
70

02
,2

15

3.
3V

1%R
14

5
4K

87

G
N

D

CP
LD

_J
TA

G
EN

16
V

X
7R

C
75

10
nF

J2
0

JU
M

PE
R

2.
54

-2 G
N

D

i
SP

IF
LA

SH

i
C

FG i
C

FG

i
C

FG

R
ES

ET

PI
C1

40
1

PI
C1

40
2

CO
C1

4

PIC2301 PIC2302 CO
C2
3

PIC7501 PIC7502
CO

C7
5

PIC12201 PIC12202
CO
C1
22

PIC
170

01
PIC

170
02

CO
C1
70

PIJ2001 PIJ2002 COJ
20

PI
L2

01

PI
L2

02

COL
2

PI
L3

01

PI
L3

02

COL
3

PI
R1

01

PI
R1

02
 COR
1

PI
R3

01

PI
R3

02

COR
3

PI
R7

01

PI
R7

02
 COR
7

PI
R8

01

PI
R8

02
 COR
8

PIR6801 PIR6802 CO
R6

8

PI
R1

34
01

PI

R1
34

02

CO
R1
34

PIR14501 PIR14502 CO
R1
45

PIR14801 PIR14802 CO
R1
48

P
I
S
2
0
1

P
I
S
2
0
2

P
I
S
2
0
3

P
I
S
2
0
4

P
I
S
2
0
5

P
I
S
2
0
6

COS
2

P
I
T
6
0
1

PIT602 PIT603
COT

6

P
I
U
1
0
E
1
2

P
I
U
1
0
F
1
2

PI
U1

0G
11

PI
U1

0K
9

P
I
U
1
0
K
1
0

P
I
U
1
0
L
9

PI
U1
0L
10

PI
U1

0L
12

PI
U1

0M
9

P
I
U
1
0
M
1
0

P
I
U
1
0
N
9

P
I
U
1
0
N
1
0

P
I
U
1
0
N
1
2

P
I
U
1
0
R
1
3

PI
U1

0T
12

PI
U1

0T
13

PI
U1
0U
8

P
I
U
1
0
U
9

P
I
U
1
0
U
1
0

P
I
U
1
0
U
1
1

P
I
U
1
0
U
1
2

P
I
U
1
0
U
1
3

P
I
U
1
0
V
1
2
 CO
U1
G

P
I
U
5
0
B
2

PI
U5
0B
3

P
I
U
5
0
B
4

P
I
U
5
0
C
2

PI
U5
0C
4

P
I
U
5
0
D
2

P
I
U
5
0
D
3

PI
U5
0D
4 CO

U5
A

P
I
U
5
0
A
2

P
I
U
5
0
A
3

P
I
U
5
0
A
4

PI
U5
0A
5

PI
U5
0B
1

P
I
U
5
0
B
5

P
I
U
5
0
C
1

PI
U5
0C
3

PI
U5
0C
5

P
I
U
5
0
D
1

P
I
U
5
0
D
5

P
I
U
5
0
E
1

P
I
U
5
0
E
2

PI
U5
0E
3

P
I
U
5
0
E
4

P
I
U
5
0
E
5

CO
U5
B

PIV101

PIV102
 CO

V1

PI
L3

02

PI
C1

40
1

PIC
170

02

PI
R1

02

PI
R3

01

PI
R7

02

PI
R8

02

PIR6801

PIR14502
PIR14802

P
I
U
1
0
F
1
2

PI
U1

0T
12

PI
U1
0U
8

P
I
U
1
0
U
1
1

P
I
U
5
0
B
4

PIC2302

PI
L2

01

PI
U1

0K
9

P
I
U
1
0
L
9

P
I
U
1
0
M
1
0

PIC2301

PI
L3

01

P
I
U
1
0
K
1
0

PIR14801 PIT603
PIV101

NL
CP
LD
0J
TA
GE
N

PI
R3

02

PI
U1

0G
11

NL

FP
GA

0D
ON

E

PI
R8

01

P
I
U
1
0
U
1
2

NL
FP

GA
0I

NI
T

PIR6802
P
I
U
1
0
N
1
2

N
L
F
P
G
A
0
P
R
O
G
0
B

P
I
U
1
0
V
1
2

N
L
F
P
G
A
0
T
C
K

P
I
U
1
0
R
1
3

NL
FP

GA
0T

DI

P
I
U
1
0
U
1
3

N
L
F
P
G
A
0
T
D
O

PI
U1

0T
13

N
L
F
P
G
A
0
T
M
S

PI
C1

40
2

PIC7502

PIC
170

01

PIJ2001

PI
L2

02

P
I
S
2
0
2

P
I
S
2
0
5

PIT602

P
I
U
1
0
E
1
2

P
I
U
1
0
U
9

P
I
U
1
0
U
1
0

PI
U5
0B
3

PIC7501

PIJ2002

PI
R1

34
02

PIR14501 P
I
T
6
0
1

PI
R1

34
01

P
I
S
2
0
3

P
I
S
2
0
6

P
I
S
2
0
1

P
I
S
2
0
4

P
I
U
1
0
N
9

P
I
U
1
0
N
1
0

P
I
U
5
0
A
2

P
I
U
5
0
A
3

P
I
U
5
0
A
4

PI
U5
0A
5

PI
U5
0B
1

P
I
U
5
0
B
5

P
I
U
5
0
C
1

PI
U5
0C
3

PI
U5
0C
5

P
I
U
5
0
D
1

P
I
U
5
0
D
5

P
I
U
5
0
E
1

P
I
U
5
0
E
2

PI
U5
0E
3

P
I
U
5
0
E
4

P
I
U
5
0
E
5

PIV102

NL
RE
SE
T

PI
R7

01

P
I
U
5
0
C
2

NL
SP

I0
CS

P
I
U
5
0
D
2

NL
SP

I0
DQ

1

PI
U5
0C
4

NL
SP

I0
DQ

2
PI

R1
01

PI
U5
0D
4

NL
SP

I0
DQ

3
P
I
U
5
0
D
3

NL
SP

I0
DQ

O

PI
U1

0L
12

P
I
U
5
0
B
2

NL
SP
I0
SC
K

PIC12202
PI
U1

0M
9

NL
V0
N

PIC12201
PI
U1
0L
10

NL
V0
P

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

10
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

FP
G

A-
M

G
T.

S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

M
G

TP
R

X
N

3_
21

6
C

9
M

G
TP

R
X

P
3_

21
6

D
9

M
G

TP
TX

N
3_

21
6

C
7

M
G

TP
TX

P
3_

21
6

D
7

M
G

TP
R

X
N

2_
21

6
A

10
M

G
TP

R
X

P
2_

21
6

B
10

M
G

TP
TX

N
2_

21
6

A
6

M
G

TP
TX

P
2_

21
6

B
6

M
G

TP
R

X
N

1_
21

6
C

11
M

G
TP

R
X

P
1_

21
6

D
11

M
G

TP
TX

N
1_

21
6

C
5

M
G

TP
TX

P
1_

21
6

D
5

M
G

TP
R

X
N

0_
21

6
A

8
M

G
TP

R
X

P
0_

21
6

B
8

M
G

TP
TX

N
0_

21
6

A
4

M
G

TP
TX

P
0_

21
6

B
4

M
G

TR
E

FC
LK

1N
_2

16
E

10
M

G
TR

E
FC

LK
1P

_2
16

F1
0

M
G

TR
E

FC
LK

0N
_2

16
E

6
M

G
TR

E
FC

LK
0P

_2
16

F6
M

G
TR

R
E

F_
21

6
F8

M
G

TA
V

TT
B

5

M
G

TA
V

TT
B

7

M
G

TA
V

TT
C

8

M
G

TA
V

TT
B

9

M
G

TA
V

TT
B1

1

M
G

TA
V

TT
C

4

M
G

TA
V

C
C

D
6

M
G

TA
V

C
C

D
10

M
G

TA
V

C
C

F9

M
G

TA
V

C
C

E
8

M
G

TA
V

C
C

F7

U
1H

X
C7

A
20

0T
-2

FB
G

48
4C

G
N

D

G
N

D

G
N

D

G
N

D

P
I
U
1
0
A
4

PI
U1

0A
6

P
I
U
1
0
A
8

PI
U1
0A
10

PI
U1

0B
4

P
I
U
1
0
B
5

PI
U1

0B
6

P
I
U
1
0
B
7

PI
U1
0B
8

PI
U1

0B
9

PI
U1
0B
10

P
I
U
1
0
B
1
1

P
I
U
1
0
C
4

P
I
U
1
0
C
5

P
I
U
1
0
C
7

P
I
U
1
0
C
8

P
I
U
1
0
C
9

P
I
U
1
0
C
1
1

P
I
U
1
0
D
5

P
I
U
1
0
D
6

P
I
U
1
0
D
7

P
I
U
1
0
D
9

P
I
U
1
0
D
1
0

P
I
U
1
0
D
1
1

P
I
U
1
0
E
6

PI
U1
0E
8

P
I
U
1
0
E
1
0

PI
U1
0F
6

P
I
U
1
0
F
7

PI
U1

0F
8

P
I
U
1
0
F
9

P
I
U
1
0
F
1
0
 CO
U1
H

P
I
U
1
0
A
8

PI
U1
0A
10

P
I
U
1
0
B
5

P
I
U
1
0
B
7

PI
U1
0B
8

PI
U1

0B
9

PI
U1
0B
10

P
I
U
1
0
B
1
1

P
I
U
1
0
C
4

P
I
U
1
0
C
8

P
I
U
1
0
C
9

P
I
U
1
0
C
1
1

P
I
U
1
0
D
6

P
I
U
1
0
D
9

P
I
U
1
0
D
1
0

P
I
U
1
0
D
1
1

PI
U1
0E
8

P
I
U
1
0
F
7

PI
U1

0F
8

P
I
U
1
0
F
9

P
I
U
1
0
A
4

PI
U1

0A
6

PI
U1

0B
4

PI
U1

0B
6

P
I
U
1
0
C
5

P
I
U
1
0
C
7

P
I
U
1
0
D
5

P
I
U
1
0
D
7

P
I
U
1
0
E
6

P
I
U
1
0
E
1
0

PI
U1
0F
6

P
I
U
1
0
F
1
0

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

11
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

FP
G

A
-P

W
R

.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

C
69

4.
7µ

F

C
70

4.
7µ

F

C
76

4.
7µ

F

C
46

4.
7µ

F

C
47

4.
7µ

F

G
N

D

G
N

D

G
N

D

1V
1.

8V

C
71

4.
7µ

F

C
74

4.
7µ

F

1V

C
44

4.
7µ

F

1V

C
48

4.
7µ

F

1.
8V

G
N

D

V
C

C
B

R
A

M
J1

1

V
C

C
B

R
A

M
L1

1

V
C

C
B

R
A

M
N

11

V
C

C
A

U
X

H
12

V
C

C
A

U
X

K
12

V
C

C
A

U
X

M
12

V
C

C
A

U
X

P
12

V
C

C
A

U
X

R
11

V
C

C
IN

T
H

10

V
C

C
IN

T
H

8

V
C

C
IN

T
J7

V
C

C
IN

T
J9

V
C

C
IN

T
L7

V
C

C
IN

T
K

8

V
C

C
IN

T
M

8

V
C

C
IN

T
N

7

V
C

C
IN

T
P

8

V
C

C
IN

T
P

10

V
C

C
IN

T
R

7

V
C

C
IN

T
R

9

V
C

C
IN

T
T1

0

V
C

C
IN

T
T8

U
1I

X
C7

A
20

0T
-2

FB
G

48
4C

G
N

D
A

3
G

N
D

A
2

G
N

D
A

7
G

N
D

A
5

G
N

D
A

9

G
N

D
A1

1

G
N

D
A

12

G
N

D
A

A
2

G
N

D
A

22

G
N

D
A

B
9

G
N

D
A

B
19

G
N

D
A

A
12

G
N

D
A

A
22

G
N

D
B

12

G
N

D
B

19

G
N

D
C

3

G
N

D
B

3

G
N

D
C

16

G
N

D
D

3

G
N

D
C

6

G
N

D
C

10

G
N

D
C

12

G
N

D
D

12

G
N

D
D

4

G
N

D
D

8

G
N

D
E

4

G
N

D
E

5

G
N

D
D

13

G
N

D
E

9
G

N
D

E
7

G
N

D
E1

1

G
N

D
F1

1

G
N

D
F1

7

G
N

D
E

20

G
N

D
F5

G
N

D
G

6

G
N

D
G

7

G
N

D
G

8

G
N

D
G

5

G
N

D
G

12

G
N

D
G

14

G
N

D
G

9

G
N

D
G

10

G
N

D
H

1

G
N

D
J1

0

G
N

D
J1

2

G
N

D
J1

8

G
N

D
H

7

G
N

D
H

9

G
N

D
H

11

G
N

D
H

21

G
N

D
J8

G
N

D
K

7

G
N

D
K1

1

G
N

D
M

19

G
N

D
K

5

G
N

D
M

7

G
N

D
M

11

G
N

D
K

15

G
N

D
L2

G
N

D
L8

G
N

D
L2

2

G
N

D
N

16

G
N

D
P

3

G
N

D
N

6

G
N

D
N

8

G
N

D
P1

1

G
N

D
P

13

G
N

D
R

8

G
N

D
P

7

G
N

D
P

9

G
N

D
R

12

G
N

D
R

20

G
N

D
R

10

G
N

D
T9

G
N

D
T7

G
N

D
T1

1

G
N

D
U

4
G

N
D

T1
7

G
N

D
W

8

G
N

D
Y

5

G
N

D
Y

15

G
N

D
U

14

G
N

D
V

1

G
N

D
V1

1

G
N

D
V

21

G
N

D
W

18

U
1J

X
C7

A
20

0T
-2

FB
G

48
4C

G
N

D

1V

C
14

9

10
0µ

F

C
14

8

10
0µ

F

C
14

7

10
0µ

F

C
9

47
0n

F
C

10
47

0n
F

C1
1

47
0n

F
C

20
47

0n
F

C
24

47
0n

F
C

42
47

0n
F

C
43

47
0n

F
C

49
47

0n
F

C
56

47
0n

F
C

14
0

47
0n

F
C

14
1

47
0n

F
C

14
2

47
0n

F
C

14
3

47
0n

F

G
N

D

1V G
N

D

1V

V
CC

IN
T

C
A

PS

V
C

C
B

R
A

M
 C

A
PS

V
C

C
A

U
X

 C
A

PS

C
15

0
47

0n
F

C
15

1
47

0n
F

C
15

2
47

0n
F

C
15

3
47

0n
F

C
15

4
47

0n
F

C
15

5
47

0n
F

C
15

6
47

0n
F

C
15

7
47

0n
F

C
15

8
47
µF

PIC901 PIC902
CO

C9

PIC1001 PIC1002
CO
C1
0

PIC1101 PIC1102
CO

C1
1

PIC2001 PIC2002
CO
C2
0

PIC2401 PIC2402
CO

C2
4

PIC4201 PIC4202
CO

C4
2

PIC4301 PIC4302
CO
C4
3

PIC4401 PIC4402 CO
C4
4

PIC4601 PIC4602 CO
C4
6

PIC4701 PIC4702 CO
C4
7

PIC4801 PIC4802 CO
C4

8

PIC4901 PIC4902
CO
C4
9

PIC5601 PIC5602
CO
C5
6

PIC6901 PIC6902 CO
C6
9

PIC7001 PIC7002 CO
C7
0

PIC7101 PIC7102 COC
71

PIC7401 PIC7402 COC
74

PIC7601 PIC7602 CO
C7
6

PIC14001 PIC14002
CO
C1
40

PIC14101 PIC14102
CO
C1
41

PIC14201 PIC14202
CO
C1
42

PIC14301 PIC14302
CO
C1
43

PIC14701 PIC14702 C
OC
14
7

PIC14801 PIC14802 C
OC
14
8

PIC14901 PIC14902 C
OC
14
9

PIC15001 PIC15002
CO
C1
50

PIC15101 PIC15102
CO
C1
51

PIC15201 PIC15202
CO
C1
52

PIC15301 PIC15302
CO
C1
53

PIC15401 PIC15402
CO
C1
54

PIC15501 PIC15502
CO
C1
55

PIC15601 PIC15602
CO
C1
56

PIC15701 PIC15702
CO
C1
57

PIC15801 PIC15802
CO
C1
58

P
I
U
1
0
H
8

PI
U1

0H
10

PI

U1
0H

12

P
I
U
1
0
J
7

P
I
U
1
0
J
9

P
I
U
1
0
J
1
1

PI
U1
0K
8

P
I
U
1
0
K
1
2

P
I
U
1
0
L
7

P
I
U
1
0
L
1
1

P
I
U
1
0
M
8

P
I
U
1
0
M
1
2

P
I
U
1
0
N
7

P
I
U
1
0
N
1
1

P
I
U
1
0
P
8

PI
U1

0P
10

P
I
U
1
0
P
1
2

P
I
U
1
0
R
7

P
I
U
1
0
R
9

PI
U1

0R
11

P
I
U
1
0
T
8

P
I
U
1
0
T
1
0
 CO
U1

I

P
I
U
1
0
A
2

PI
U1
0A

3

PI
U1
0A

5

P
I
U
1
0
A
7

P
I
U
1
0
A
9

P
I
U
1
0
A
1
1

PI
U1
0A
12

PI
U1
0A
22

P
I
U
1
0
A
A
2

PI
U1
0A
A1
2

PI
U1
0A
A2
2

PI
U1
0A
B9

PI
U1
0A
B1
9

P
I
U
1
0
B
3

P
I
U
1
0
B
1
2

P
I
U
1
0
B
1
9

PI
U1
0C

3

P
I
U
1
0
C
6

P
I
U
1
0
C
1
0

P
I
U
1
0
C
1
2

P
I
U
1
0
C
1
6

PI
U1
0D

3

P
I
U
1
0
D
4

P
I
U
1
0
D
8

P
I
U
1
0
D
1
2

PI
U1
0D
13

PI
U1
0E

4

P
I
U
1
0
E
5

P
I
U
1
0
E
7

P
I
U
1
0
E
9

PI
U1
0E
11

P
I
U
1
0
E
2
0

PI
U1
0F

5

P
I
U
1
0
F
1
1

P
I
U
1
0
F
1
7

PI
U1
0G

5

PI
U1
0G

6

P
I
U
1
0
G
7

P
I
U
1
0
G
8

P
I
U
1
0
G
9

PI
U1
0G
10

PI
U1
0G
12

P
I
U
1
0
G
1
4

P
I
U
1
0
H
1

P
I
U
1
0
H
7

PI
U1

0H
9

PI
U1
0H
11

P
I
U
1
0
H
2
1

P
I
U
1
0
J
8

P
I
U
1
0
J
1
0

PI
U1
0J
12

PI
U1
0J
18

P
I
U
1
0
K
5

P
I
U
1
0
K
7

P
I
U
1
0
K
1
1

PI
U1
0K
15

P
I
U
1
0
L
2

P
I
U
1
0
L
8

P
I
U
1
0
L
2
2

P
I
U
1
0
M
7

PI
U1
0M
11

P
I
U
1
0
M
1
9

P
I
U
1
0
N
6

P
I
U
1
0
N
8

P
I
U
1
0
N
1
6

PI
U1

0P
3

P
I
U
1
0
P
7

P
I
U
1
0
P
9

P
I
U
1
0
P
1
1

PI
U1
0P
13

PI
U1

0R
8

P
I
U
1
0
R
1
0

P
I
U
1
0
R
1
2

P
I
U
1
0
R
2
0

PI
U1

0T
7

PI
U1

0T
9

P
I
U
1
0
T
1
1

P
I
U
1
0
T
1
7

P
I
U
1
0
U
4

PI
U1
0U
14

PI
U1

0V
1

P
I
U
1
0
V
1
1

P
I
U
1
0
V
2
1

P
I
U
1
0
W
8

PI
U1
0W
18

PI
U1

0Y
5

P
I
U
1
0
Y
1
5

CO
U1

J

PIC4601
PIC4701

PIC4801
PIC15301

PIC15401
PIC15501

PIC15601
PIC15701

PIC15801

PI
U1

0H
12

P
I
U
1
0
K
1
2

P
I
U
1
0
M
1
2

P
I
U
1
0
P
1
2

PI
U1

0R
11

PIC901
PIC1001

PIC1101
PIC2001

PIC2401
PIC4201

PIC4301

PIC4401

PIC4901
PIC5601

PIC6901
PIC7001

PIC7101
PIC7401

PIC7601

PIC14001
PIC14101

PIC14201
PIC14301

PIC14702
PIC14802

PIC14902

PIC15001
PIC15101

PIC15201

P
I
U
1
0
H
8

PI
U1

0H
10

P
I
U
1
0
J
7

P
I
U
1
0
J
9

P
I
U
1
0
J
1
1

PI
U1
0K
8

P
I
U
1
0
L
7

P
I
U
1
0
L
1
1

P
I
U
1
0
M
8

P
I
U
1
0
N
7

P
I
U
1
0
N
1
1

P
I
U
1
0
P
8

PI
U1

0P
10

P
I
U
1
0
R
7

P
I
U
1
0
R
9

P
I
U
1
0
T
8

P
I
U
1
0
T
1
0

PIC902
PIC1002

PIC1102
PIC2002

PIC2402
PIC4202

PIC4302

PIC4402

PIC4602
PIC4702

PIC4802 PIC4902
PIC5602

PIC6902
PIC7002

PIC7102
PIC7402

PIC7602

PIC14002
PIC14102

PIC14202
PIC14302

PIC14701
PIC14801

PIC14901

PIC15002
PIC15102

PIC15202

PIC15302
PIC15402

PIC15502
PIC15602

PIC15702
PIC15802

P
I
U
1
0
A
2

PI
U1
0A

3

PI
U1
0A

5

P
I
U
1
0
A
7

P
I
U
1
0
A
9

P
I
U
1
0
A
1
1

PI
U1
0A
12

PI
U1
0A
22

P
I
U
1
0
A
A
2

PI
U1
0A
A1
2

PI
U1
0A
A2
2

PI
U1
0A
B9

PI
U1
0A
B1
9

P
I
U
1
0
B
3

P
I
U
1
0
B
1
2

P
I
U
1
0
B
1
9

PI
U1
0C

3

P
I
U
1
0
C
6

P
I
U
1
0
C
1
0

P
I
U
1
0
C
1
2

P
I
U
1
0
C
1
6

PI
U1
0D

3

P
I
U
1
0
D
4

P
I
U
1
0
D
8

P
I
U
1
0
D
1
2

PI
U1
0D
13

PI
U1
0E

4

P
I
U
1
0
E
5

P
I
U
1
0
E
7

P
I
U
1
0
E
9

PI
U1
0E
11

P
I
U
1
0
E
2
0

PI
U1
0F

5

P
I
U
1
0
F
1
1

P
I
U
1
0
F
1
7

PI
U1
0G

5

PI
U1
0G

6

P
I
U
1
0
G
7

P
I
U
1
0
G
8

P
I
U
1
0
G
9

PI
U1
0G
10

PI
U1
0G
12

P
I
U
1
0
G
1
4

P
I
U
1
0
H
1

P
I
U
1
0
H
7

PI
U1

0H
9

PI
U1
0H
11

P
I
U
1
0
H
2
1

P
I
U
1
0
J
8

P
I
U
1
0
J
1
0

PI
U1
0J
12

PI
U1
0J
18

P
I
U
1
0
K
5

P
I
U
1
0
K
7

P
I
U
1
0
K
1
1

PI
U1
0K
15

P
I
U
1
0
L
2

P
I
U
1
0
L
8

P
I
U
1
0
L
2
2

P
I
U
1
0
M
7

PI
U1
0M
11

P
I
U
1
0
M
1
9

P
I
U
1
0
N
6

P
I
U
1
0
N
8

P
I
U
1
0
N
1
6

PI
U1

0P
3

P
I
U
1
0
P
7

P
I
U
1
0
P
9

P
I
U
1
0
P
1
1

PI
U1
0P
13

PI
U1

0R
8

P
I
U
1
0
R
1
0

P
I
U
1
0
R
1
2

P
I
U
1
0
R
2
0

PI
U1

0T
7

PI
U1

0T
9

P
I
U
1
0
T
1
1

P
I
U
1
0
T
1
7

P
I
U
1
0
U
4

PI
U1
0U
14

PI
U1

0V
1

P
I
U
1
0
V
1
1

P
I
U
1
0
V
2
1

P
I
U
1
0
W
8

PI
U1
0W
18

PI
U1

0Y
5

P
I
U
1
0
Y
1
5

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

12
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

SY
S_

M
AX

10
_C

TR
L.

S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

B
A

N
K

 1
A

B
A

N
K

 1
B

IO
_1

A
/A

D
C

1I
N

1/
D

IF
FI

O
_R

X
_L

1N
D

1
IO

_1
A

/A
D

C
1I

N
2/

D
IF

FI
O

_R
X

_L
1P

C
2

IO
_1

A
/A

D
C

1I
N

3/
D

IF
FI

O
_R

X
_L

3N
E

3
IO

_1
A

/A
D

C
1I

N
4/

D
IF

FI
O

_R
X

_L
3P

E
4

IO
_1

A
/A

D
C

1I
N

5/
D

IF
FI

O
_R

X
_L

5N
C

1
IO

_1
A

/A
D

C
1I

N
6/

D
IF

FI
O

_R
X

_L
5P

B
1

IO
_1

A
/A

D
C

1I
N

7/
D

IF
FI

O
_R

X
_L

7N
F1

IO
_1

A
/A

D
C

1I
N

8/
D

IF
FI

O
_R

X
_L

7P
E

1

IO
_1

B
/D

IF
FI

O
_R

X
_L

14
N

F4
IO

_1
B

/D
IF

FI
O

_R
X

_L
14

P
G

4

IO
_1

B
/D

IF
FI

O
_R

X
_L

16
N

H
2

IO
_1

B
/D

IF
FI

O
_R

X
_L

16
P

H
3

A
D

C
_V

R
E

F
D

3

IO
_1

B/
JT

A
G

E
N

E
5

IO
_1

B/
TM

S/
D

IF
FI

O
_R

X_
L1

1N
G

1
IO

_1
B/

TC
K/

D
IF

FI
O

_R
X_

L1
1P

G
2

IO
_1

B
/T

D
I/D

IF
FI

O
_R

X
_L

12
N

F5
IO

_1
B

/T
D

O
/D

IF
FI

O
_R

X
_L

12
P

F6

A
N

A
IN

1
D

2

R
E

FG
N

D
E

2

V
R

E
FB

1N
0

H
1

V
C

C
IO

1A
F2

V
C

C
IO

1B
G

3

U
32

A

10
M

08
SA

U
16

9C
8G

B
A

N
K

 2

IO
_2

/D
IF

FI
O

_R
X

_L
19

N
J1

IO
_2

/D
IF

FI
O

_R
X

_L
19

P
J2

IO
_2

/D
IF

FI
O

_R
X

_L
21

N
M

1
IO

_2
/D

IF
FI

O
_R

X
_L

21
P

M
2

IO
_2

L2
IO

_2
/D

IF
FI

O
_R

X
_L

28
N

K
1

IO
_2

/D
IF

FI
O

_R
X

_L
28

P
K

2
IO

_2
/P

LL
_L

_C
LK

O
U

TN
/D

IF
FI

O
_R

X
_L

27
N

M
3

IO
_2

/P
LL

_L
_C

LK
O

U
TP

/D
IF

FI
O

_R
X

_L
27

P
L3

IO
_2

/C
LK

0N
/D

IF
FI

O
_R

X
_L

18
N

G
5

IO
_2

/C
LK

0P
/D

IF
FI

O
_R

X
_L

18
P

H
6

IO
_2

/C
LK

1N
/D

IF
FI

O
_R

X
_L

20
N

H
5

IO
_2

/C
LK

1P
/D

IF
FI

O
_R

X
_L

20
P

H
4

IO
_2

/D
P

C
LK

0/
D

IF
FI

O
_R

X
_L

22
N

N
2

IO
_2

/D
P

C
LK

1/
D

IF
FI

O
_R

X
_L

22
P

N
3

V
R

E
FB

2N
0

L1

V
C

C
IO

2
K

3

V
C

C
IO

2
J3

U
32

B

10
M

08
SA

U
16

9C
8G

B
A

N
K

 3

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
1N

L5

IO
_3

/D
IF

FI
O

_R
X

_B
2N

M
4

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
1P

L4

IO
_3

/D
IF

FI
O

_R
X

_B
2P

M
5

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
3N

K
5

IO
_3

/D
IF

FI
O

_R
X

_B
4N

N
4

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
3P

J5

IO
_3

/D
IF

FI
O

_R
X

_B
4P

N
5

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
5N

N
6

IO
_3

/D
IF

FI
O

_R
X

_B
6N

N
7

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
5P

M
7

IO
_3

/D
IF

FI
O

_R
X

_B
6P

N
8

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
7N

J6

IO
_3

/D
IF

FI
O

_R
X

_B
8N

M
8

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
7P

K
6

IO
_3

/D
IF

FI
O

_R
X

_B
8P

M
9

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
9N

J7
IO

_3
/D

IF
FI

O
_T

X
_R

X
_B

9P
K

7

IO
_3

N
12

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
10

N
M

13

IO
_3

/D
IF

FI
O

_R
X_

B1
1N

N
10

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
10

P
M

12

IO
_3

/D
IF

FI
O

_R
X_

B1
1P

N
9

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
12

N
M

11
IO

_3
/D

IF
FI

O
_T

X
_R

X
_B

12
P

L1
1

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
14

N
J8

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
14

P
K

8

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
16

N
M

10
IO

_3
/D

IF
FI

O
_T

X
_R

X
_B

16
P

L1
0

V
R

E
FB

3N
0

N
11

V
C

C
IO

3
L8

V
C

C
IO

3
L7

V
C

C
IO

3
L6

U
32

C

10
M

08
SA

U
16

9C
8G

B
A

N
K

 5
IO

_5
/D

IF
FI

O
_R

X
_R

1P
K

10

IO
_5

/D
IF

FI
O

_R
X

_R
2P

K1
1

IO
_5

/D
IF

FI
O

_R
X

_R
1N

J1
0

IO
_5

/D
IF

FI
O

_R
X

_R
2N

L1
2

IO
_5

/D
IF

FI
O

_R
X

_R
7P

K
12

IO
_5

L1
3

IO
_5

/D
IF

FI
O

_R
X

_R
7N

J1
2

IO
_5

/D
IF

FI
O

_R
X

_R
8P

J9

IO
_5

/D
IF

FI
O

_R
X

_R
9P

J1
3

IO
_5

/D
IF

FI
O

_R
X

_R
8N

H
10

IO
_5

/D
IF

FI
O

_R
X

_R
9N

H
13

IO
_5

/D
IF

FI
O

_R
X

_R
10

P
H

9

IO
_5

/D
IF

FI
O

_R
X_

R
11

P
G

13
IO

_5
/D

IF
FI

O
_R

X
_R

10
N

H
8

IO
_5

/D
IF

FI
O

_R
X_

R
11

N
G

12

V
R

E
FB

5N
0

K
13

V
C

C
IO

5
J1

1

V
C

C
IO

5
H

11

U
32

D

10
M

08
SA

U
16

9C
8G

B
A

N
K

 6

IO
_6

/D
IF

FI
O

_R
X

_R
18

P
F1

2

IO
_6

/D
IF

FI
O

_R
X

_R
18

N
E

12

IO
_6

C
13

IO
_6

/D
IF

FI
O

_R
X

_R
27

P
F8

IO
_6

/D
IF

FI
O

_R
X

_R
28

P
B

12
IO

_6
/D

IF
FI

O
_R

X
_R

27
N

E
9

IO
_6

/D
IF

FI
O

_R
X

_R
28

N
B1

1

IO
_6

/D
IF

FI
O

_R
X

_R
29

P
C

12

IO
_6

/D
IF

FI
O

_R
X

_R
30

P
B

13
IO

_6
/D

IF
FI

O
_R

X
_R

29
N

C
11

IO
_6

/D
IF

FI
O

_R
X

_R
30

N
A

12

IO
_6

/D
IF

FI
O

_R
X

_R
31

P
E

10

IO
_6

/D
IF

FI
O

_R
X

_R
31

N
D

9

IO
_6

/D
IF

FI
O

_R
X

_R
33

P
D

12

IO
_6

/D
IF

FI
O

_R
X

_R
33

N
D

11

IO
_6

/C
LK

2P
/D

IF
FI

O
_R

X
_R

14
P

G
9

IO
_6

/C
LK

2N
/D

IF
FI

O
_R

X
_R

14
N

G
10

IO
_6

/C
LK

3P
/D

IF
FI

O
_R

X
_R

16
P

F1
3

IO
_6

/C
LK

3N
/D

IF
FI

O
_R

X
_R

16
N

E
13

IO
_6

/D
P

C
LK

3/
D

IF
FI

O
_R

X
_R

26
P

F9

IO
_6

/D
P

C
LK

2/
D

IF
FI

O
_R

X
_R

26
N

F1
0

V
R

E
FB

6N
0

D
13

V
C

C
IO

6
G

11

V
C

C
IO

6
F1

1

U
32

E

10
M

08
SA

U
16

9C
8G

B
A

N
K

 8
IO

_8
/D

IF
FI

O
_R

X
_T

14
P

C
10

IO
_8

/D
IF

FI
O

_R
X

_T
15

P
A

8
IO

_8
/D

IF
FI

O
_R

X
_T

14
N

C
9

IO
_8

/D
IF

FI
O

_R
X

_T
15

N
A

9

IO
_8

/D
IF

FI
O

_R
X

_T
16

P
B

10

IO
_8

/D
IF

FI
O

_R
X

_T
17

P
A

10

IO
_8

/D
IF

FI
O

_R
X

_T
17

N
A1

1

IO
_8

/D
IF

FI
O

_R
X

_T
18

N
E

8

IO
_8

/D
IF

FI
O

_R
X

_T
19

P
A

7

IO
_8

/D
IF

FI
O

_R
X

_T
19

N
A

6

IO
_8

/D
IF

FI
O

_R
X

_T
20

P
B

6

IO
_8

/D
IF

FI
O

_R
X

_T
21

P
A

4
IO

_8
/D

IF
FI

O
_R

X
_T

20
N

B
5

IO
_8

/D
IF

FI
O

_R
X

_T
21

N
A

3

IO
_8

/D
IF

FI
O

_R
X

_T
22

P
E

6

IO
_8

/D
IF

FI
O

_R
X

_T
23

P
B

3

IO
_8

/D
IF

FI
O

_R
X

_T
23

N
B

4

IO
_8

A
5

IO
_8

/D
IF

FI
O

_R
X

_T
26

P
A

2

IO
_8

/D
IF

FI
O

_R
X

_T
26

N
B

2

V
R

E
FB

8N
0

B
7

IO
_8

/D
E

V
_C

LR
N

/D
IF

FI
O

_R
X

_T
16

N
B

9

IO
_8

/D
E

V
_O

E
/D

IF
FI

O
_R

X
_T

18
P

D
8

IO
_8

/C
O

N
FI

G
_S

E
L

D
7

I_
8/

N
C

O
N

FI
G

E
7

IO
_8

/C
R

C
_E

R
R

O
R

/D
IF

FI
O

_R
X

_T
22

N
D

6

IO
_8

/N
ST

AT
U

S
/D

IF
FI

O
_R

X
_T

24
P

C
4

IO
_8

/C
O

N
F_

D
O

N
E

/D
IF

FI
O

_R
X

_T
24

N
C

5

V
C

C
IO

8
C

8

V
C

C
IO

8
C

7

V
C

C
IO

8
C

6

U
32

F

10
M

08
SA

U
16

9C
8G

G
N

D
N

13
G

N
D

N
1

G
N

D
M

6
G

N
D

L9
G

N
D

J4
G

N
D

H
12

G
N

D
G

7
G

N
D

F3
G

N
D

E1
1

G
N

D
D

5
G

N
D

C
3

G
N

D
B

8
G

N
D

A
13

G
N

D
A

1

V
C

C
A

1
K

4

V
C

C
A

2
D

10

V
C

C
A

3
D

4

V
C

C
A

4
K

9

V
C

C
_O

N
E

H
7

V
C

C
_O

N
E

G
8

V
C

C
_O

N
E

G
6

V
C

C
_O

N
E

F7

U
32

G

10
M

08
SA

U
16

9C
8G

G
N

D

G
N

D

C
24

8
47

0n
F

G
N

D

C
24

5
47

0n
F

G
N

D

C
24

4
47

0n
F

G
N

D

C
25

0
47

0n
F

G
N

D

C
25

2
47

0n
F

G
N

D

C
24

9
47

0n
F

G
N

D

C
24

6
47

0n
F

G
N

D C
24

7
47

0n
F

G
N

D

M10_nCONF

R
30

10
K

i
B

an
k5

R
29

10
K

R
28

10
K

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V3.

3V

M
10

_C
O

N
F_

D
O

N
E

M
10

_n
ST

AT
U

S

M
10

_n
C

O
N

F

M
10

_C
O

N
F_

D
O

N
E

C
20

2

47
0n

F

G
N

D

i
B

an
k2

i
B

an
k1

i
B

an
k3

i
B

an
k6

i
B

an
k8

M
10

_n
ST

AT
U

S

3.
3V

3.
3V

M
_

T
M

S

M
_

T
D

I
M

_
T

D
O

M
_

T
C

K

M
_

T
X

3.
3V

L1
0

M
PZ

16
08

S2
21

A

FP
G

A
_P

R
O

G
_B

D
12

LE
D

 R
ed

 L
TS

T-
C

19
1K

R
K

T
1%R

13
0

24
0R

3.
3V

D
10

LE
D

 G
re

en
 L

TS
T-

C
19

1K
G

K
T

1%R
70

24
0R

3.
3V

LE
D

_R

LE
D

_G

V
D

A
C_

PS
A

V
E_

N

C
PL

D
_C

FG
0

C
PL

D
_C

FG
1

C
PL

D
_C

FG
2

C
PL

D
_C

FG
3

PM
O

D
1_

FL
G

PM
O

D
2_

FL
G

PM
O

D
1_

EN

PM
O

D
2_

EN

C
17

3
47

0n
F

G
N

D

C
16

5

4.
7µ

F

K
B

_
T

D
I

K
B

_
T

C
K

K
B

_I
O

1

i
K

B

i
K

B

K
_J

TA
G

EN

K
_

T
M

S

K
_

T
C

K
K

_
T

D
I

K
_

T
D

O

K
_I

O
1

K
_I

O
2

K
_I

O
3

3.
3V

_R
EF

M
_

R
X

T
E

_
T

M
S

T
E

_
T

D
I

T
E

_
T

D
O

T
E

_
T

C
K

TE
_U

A
RT

_R
X

TE
_U

A
RT

_T
X

LE
D

_G

LE
D

_R

FP
G

A
_

T
M

S

FP
G

A
_

T
D

I
FP

G
A

_
T

D
O

FP
G

A
_

T
C

K

FP
G

A
_

D
O

N
E

FP
G

A
_

IN
IT

EN
_5

V
_J

O
Y

_N

i
K

B

K
B

_
T

M
S

i
K

B

K
B

_
T

D
O

i
K

B

i
K

B
K

B
_I

O
2

K
B_

JT
A

G
EN

i
K

B

5V
_J

O
Y

_P
G

K
B

_I
O

3
i

K
B

C
PL

D
_C

LK

FP
G

A
_R

X

FP
G

A
_T

X

D
BG

_U
A

RT
_T

X
D

BG
_U

A
RT

_R
X

FP
G

A
_R

ES
ET

_N

1 2 3 4 5 6 7 8 9 10 11 12 13 14

J2
1

Pi
n

H
ea

de
r 2

.5
4

2R
ow

 1
4P

in
s

G
N

D

C
PL

D
_D

B
G

0
C

PL
D

_D
B

G
1

C
PL

D
_D

B
G

2
C

PL
D

_D
B

G
3

C
PL

D
_D

B
G

4
C

PL
D

_D
B

G
5

C
PL

D
_D

B
G

6
C

PL
D

_D
B

G
7

C
PL

D
_D

B
G

8
C

PL
D

_D
B

G
9

C
PL

D
_D

B
G

10
CP

LD
_D

BG
11

C
PL

D
_D

B
G

0

C
PL

D
_D

B
G

1

C
PL

D
_D

B
G

2

C
PL

D
_D

B
G

3

C
PL

D
_D

B
G

4

C
PL

D
_D

B
G

5

C
PL

D
_D

B
G

6

C
PL

D
_D

B
G

7

C
PL

D
_D

B
G

9
C

PL
D

_D
B

G
8

CP
LD

_D
BG

11

C
PL

D
_D

B
G

10
C

PL
D

_A
D

C
1

C
PL

D
_A

D
C

2
C

PL
D

_A
D

C
3

CP
LD

_J
TA

G
EN

R
ES

ET

PI
C1

65
01

PI

C1
65

02
 CO
C1
65

PIC17301 PIC17302
CO
C1
73

PI
C2

02
01

PI

C2
02

02

CO
C2
02

PIC24401 PIC24402
CO
C2
44

PIC24501 PIC24502
CO
C2
45

PIC24601 PIC24602
CO
C2
46

PIC24701 PIC24702
CO
C2
47

PIC24801 PIC24802
CO
C2
48

PIC24901 PIC24902
CO
C2
49

PIC25001 PIC25002
CO
C2
50

PIC25201 PIC25202
CO
C2
52

PI
D1

00
A

PI
D1

00
K

COD
10

PI
D1

20
A

PI
D1

20
K

CO
D1

2

PI
J2

10
1

PI
J2

10
2

P
I
J
2
1
0
3

P
I
J
2
1
0
4

P
I
J
2
1
0
5

PI
J2

10
6

PI
J2

10
7

P
I
J
2
1
0
8

P
I
J
2
1
0
9

PI
J2
10
10

PI
J2
10
11

P
I
J
2
1
0
1
2

P
I
J
2
1
0
1
3

P
I
J
2
1
0
1
4
 COJ

21

PI
L1

00
1

PI
L1

00
2

CO
L1

0

PI
R2

80
1

PI
R2

80
2

CO
R2
8

PI
R2

90
1

PI
R2

90
2

CO
R2
9

PI
R3

00
1

PI
R3

00
2

CO
R3
0

PI
R7

00
1

PI
R7

00
2

CO
R7
0

PIR
130

01
PIR

130
02

CO
R1
30

P
I
U
3
2
0
B
1

P
I
U
3
2
0
C
1

P
I
U
3
2
0
C
2

P
I
U
3
2
0
D
1

P
I
U
3
2
0
D
2

P
I
U
3
2
0
D
3

P
I
U
3
2
0
E
1

P
I
U
3
2
0
E
2

PI
U3
20
E3

PI
U3
20
E4

P
I
U
3
2
0
E
5

PI
U3
20
F1

P
I
U
3
2
0
F
2

P
I
U
3
2
0
F
4

P
I
U
3
2
0
F
5

P
I
U
3
2
0
F
6

PI
U3
20
G1

P
I
U
3
2
0
G
2

P
I
U
3
2
0
G
3

P
I
U
3
2
0
G
4

PI
U3

20
H1

P
I
U
3
2
0
H
2

PI
U3
20
H3

CO
U3
2A

P
I
U
3
2
0
G
5

P
I
U
3
2
0
H
4

P
I
U
3
2
0
H
5

P
I
U
3
2
0
H
6

PI
U3
20
J1

PI
U3
20
J2

P
I
U
3
2
0
J
3

PI
U3
20
K1

PI
U3
20
K2

P
I
U
3
2
0
K
3

P
I
U
3
2
0
L
1

P
I
U
3
2
0
L
2

P
I
U
3
2
0
L
3

PI
U3
20
M1

P
I
U
3
2
0
M
2

P
I
U
3
2
0
M
3

P
I
U
3
2
0
N
2

PI
U3
20
N3

CO
U3
2B

P
I
U
3
2
0
J
5

P
I
U
3
2
0
J
6

P
I
U
3
2
0
J
7

P
I
U
3
2
0
J
8

PI
U3
20
K5

P
I
U
3
2
0
K
6

P
I
U
3
2
0
K
7

PI
U3
20
K8

PI
U3
20
L4

P
I
U
3
2
0
L
5

P
I
U
3
2
0
L
6

P
I
U
3
2
0
L
7

PI
U3
20
L8

PI
U3
20
L1
0

PI
U3
20
L1
1

P
I
U
3
2
0
M
4

P
I
U
3
2
0
M
5

P
I
U
3
2
0
M
7

PI
U3
20
M8

PI
U3
20
M9

PI
U3
20
M1
0

PI
U3
20
M1
1

PI
U3
20
M1
2

PI
U3
20
M1
3

P
I
U
3
2
0
N
4

P
I
U
3
2
0
N
5

PI
U3
20
N6

P
I
U
3
2
0
N
7

PI
U3
20
N8

P
I
U
3
2
0
N
9

PI
U3
20
N1
0

PI
U3
20
N1
1

PI
U3
20
N1
2

CO
U3
2C

PI
U3
20
G1
2

PI
U3
20
G1
3

PI
U3
20
H8

P
I
U
3
2
0
H
9

PI
U3
20
H1
0

PI
U3

20
H1

1

PI
U3
20
H1
3

P
I
U
3
2
0
J
9

PI
U3
20
J1
0

PI
U3

20
J1

1

PI
U3
20
J1
2

PI
U3
20
J1
3

PI
U3
20
K1
0

PI
U3
20
K1
1

PI
U3
20
K1
2

PI
U3

20
K1

3

PI
U3
20
L1
2

PI
U3
20
L1
3

CO
U3
2D

PI
U3
20
A1
2

PI
U3
20
B1
1

PI
U3
20
B1
2

PI
U3
20
B1
3

PI
U3
20
C1
1

PI
U3
20
C1
2

PI
U3
20
C1
3

P
I
U
3
2
0
D
9

PI
U3
20
D1
1

PI
U3
20
D1
2

PI
U3
20
D1
3

P
I
U
3
2
0
E
9

PI
U3
20
E1
0

PI
U3
20
E1
2

PI
U3
20
E1
3

P
I
U
3
2
0
F
8

PI
U3
20
F9

PI
U3
20
F1
0

PI
U3
20
F1
1

PI
U3
20
F1
2

PI
U3
20
F1
3

PI
U3
20
G9

PI
U3
20
G1
0

PI
U3
20
G1
1

CO
U3
2E

P
I
U
3
2
0
A
2

PI
U3
20
A3

PI
U3
20
A4

PI
U3
20
A5

P
I
U
3
2
0
A
6

PI
U3
20
A7

P
I
U
3
2
0
A
8

P
I
U
3
2
0
A
9

PI
U3
20
A1
0

PI
U3
20
A1
1

P
I
U
3
2
0
B
2

P
I
U
3
2
0
B
3

PI
U3
20
B4

P
I
U
3
2
0
B
5

P
I
U
3
2
0
B
6

P
I
U
3
2
0
B
7

PI
U3
20
B9

PI
U3
20
B1
0

P
I
U
3
2
0
C
4

P
I
U
3
2
0
C
5

P
I
U
3
2
0
C
6

P
I
U
3
2
0
C
7

PI
U3
20
C8

P
I
U
3
2
0
C
9

PI
U3
20
C1
0

P
I
U
3
2
0
D
6

PI
U3
20
D7

P
I
U
3
2
0
D
8

P
I
U
3
2
0
E
6

P
I
U
3
2
0
E
7

PI
U3
20
E8

CO
U3
2F

P
I
U
3
2
0
A
1

PI
U3

20
A1

3

P
I
U
3
2
0
B
8

P
I
U
3
2
0
C
3

P
I
U
3
2
0
D
4

P
I
U
3
2
0
D
5

PI
U3
20
D1
0

PI
U3

20
E1

1

PI
U3

20
F3

P
I
U
3
2
0
F
7

P
I
U
3
2
0
G
6

P
I
U
3
2
0
G
7

PI
U3
20
G8

P
I
U
3
2
0
H
7

PI
U3

20
H1

2

P
I
U
3
2
0
J
4

PI
U3
20
K4

P
I
U
3
2
0
K
9

PI
U3

20
L9

PI
U3

20
M6

P
I
U
3
2
0
N
1

PI
U3

20
N1

3

CO
U3
2G

PIC17301

PIC24401
PIC24501

PIC24601

PIC24701

PIC24801

PIC24901

PIC25001

PIC25201

PI
D1

00
A

PI
D1

20
A

PI
L1

00
2

PI
R2

80
2

PI
R2

90
2

PI
R3

00
2

P
I
U
3
2
0
C
6

P
I
U
3
2
0
C
7

PI
U3
20
C8

P
I
U
3
2
0
D
4

PI
U3
20
D1
0

P
I
U
3
2
0
F
2

P
I
U
3
2
0
F
7

PI
U3
20
F1
1

P
I
U
3
2
0
G
3

P
I
U
3
2
0
G
6

PI
U3
20
G8

PI
U3
20
G1
1

P
I
U
3
2
0
H
7

PI
U3

20
H1

1

P
I
U
3
2
0
J
3

PI
U3

20
J1

1

P
I
U
3
2
0
K
3

PI
U3
20
K4

P
I
U
3
2
0
K
9

P
I
U
3
2
0
L
6

P
I
U
3
2
0
L
7

PI
U3
20
L8

PI
C1

65
02

PI
C2

02
02

PI
L1

00
1

P
I
U
3
2
0
D
3

NL
30
3V
0R
EF

PI
U3
20
G1
3

NL
5V
0J
OY
0P
G

P
I
U
3
2
0
D
2

NL
CP
LD
0A
DC
1

P
I
U
3
2
0
C
2

NL
CP

LD
0A

DC
2

P
I
U
3
2
0
D
1

NL
CP

LD
0A

DC
3

PI
U3
20
A1
2

NL
CP
LD
0C
FG
0

PI
U3
20
C1
1

NL
CP
LD
0C
FG
1

PI
U3
20
A1
1

NL
CP
LD
0C
FG
2

PI
U3
20
B1
1

NL
CP
LD
0C
FG
3

P
I
U
3
2
0
H
6

NL
CP

LD
0C

LK

PI
J2

10
1

PI
U3
20
L1
0

NL
CP
LD
0D
BG
0

PI
J2

10
2

PI
U3
20
N1
0

NL
CP
LD
0D
BG
1

P
I
J
2
1
0
3

PI
U3
20
M1
0

NL
CP
LD
0D
BG
2

P
I
J
2
1
0
4

P
I
U
3
2
0
N
9

NL
CP
LD
0D
BG
3

P
I
J
2
1
0
5

PI
U3
20
M9

NL
CP
LD
0D
BG
4

PI
J2

10
6

PI
U3
20
N8

NL
CP
LD
0D
BG
5

PI
J2

10
7

PI
U3
20
M8

NL
CP
LD
0D
BG
6

P
I
J
2
1
0
8

P
I
U
3
2
0
N
7

NL
CP
LD
0D
BG
7

P
I
J
2
1
0
9

PI
U3
20
N6

NL
CP
LD
0D
BG
8

PI
J2
10
10

P
I
U
3
2
0
M
7

NL
CP
LD
0D
BG
9

PI
J2
10
11

P
I
U
3
2
0
M
5

NL
CP

LD
0D

BG
10

P
I
J
2
1
0
1
2

P
I
U
3
2
0
N
5

NL
CP
LD
0D
BG
11

P
I
U
3
2
0
E
5

NL
CP

LD
0J

TA
GE

N

PI
U3
20
J1
0

NL
DB

G0
UA

RT
0R

X
PI
U3
20
K1
0

NL
DB

G0
UA

RT
0T

X

PI
U3
20
H1
3

NL
EN

05
V0

JO
Y0

N

P
I
U
3
2
0
J
6

N
L
F
P
G
A
0
D
O
N
E

P
I
U
3
2
0
K
6

NL
FP

GA
0I

NI
T

PI
U3
20
G1
2

NL
FP

GA
0P

RO
G0

B

P
I
U
3
2
0
J
9

NL
FP
GA
0R
ES
ET
0N

PI
U3
20
L1
1

NL
FP
GA
0R
X

P
I
U
3
2
0
J
5

NL
FP

GA
0T

CK

P
I
U
3
2
0
J
7

NL
FP

GA
0T

DI

P
I
U
3
2
0
K
7

NL
FP

GA
0T

DO

PI
U3
20
K8

N
L
F
P
G
A
0
T
M
S

PI
U3
20
K1
1

NL
FP
GA
0T
X

PI
C1

65
01

PIC17302

PI
C2

02
01

PIC24402
PIC24502

PIC24602

PIC24702

PIC24802

PIC24902

PIC25002

PIC25202
P
I
J
2
1
0
1
3

P
I
J
2
1
0
1
4

P
I
U
3
2
0
A
1

PI
U3

20
A1

3

P
I
U
3
2
0
B
8

P
I
U
3
2
0
C
3

P
I
U
3
2
0
D
5

PI
U3
20
D7

P
I
U
3
2
0
E
2

PI
U3

20
E1

1

PI
U3

20
F3

P
I
U
3
2
0
G
7

PI
U3

20
H1

2

P
I
U
3
2
0
J
4

PI
U3

20
L9

PI
U3

20
M6

P
I
U
3
2
0
N
1

PI
U3

20
N1

3

PI
U3
20
L1
3

NL
K0
IO
1

PI
U3
20
K1
2

NL
K0
IO
2

PI
U3
20
J1
2

NL
K0
IO
3

PI
U3
20
M1
1

NL
K0

JT
AG

EN

PI
U3
20
M1
2

NL
K0

TC
K

PI
U3
20
M1
3

NL
K0
TD
I

PI
U3
20
L1
2

NL
K0

TD
O

PI
U3
20
N1
2

NL
K0
TM
S

P
I
U
3
2
0
E
9

NL
KB

0I
O1

PI
U3
20
G9

NL
KB

0I
O2

PI
U3
20
F1
3

NL
KB

0I
O3

PI
U3
20
F9

NL
KB
0J
TA
GE
N

PI
U3
20
G1
0

NL
KB
0T
CK

P
I
U
3
2
0
D
9

NL
KB

0T
DI

PI
U3
20
F1
0

NL
KB

0T
DO

PI
U3
20
F1
2

NL
KB

0T
MS

PI
R7

00
2

PI
U3
20
B1
3

NL
LE
D0
G

PIR
130

02

PI
U3
20
B1
2

NL
LE
D0
R

PI
R2

90
1

P
I
U
3
2
0
C
5

NL
M1
00
CO
NF
0D
ON
E

PI
R2

80
1

P
I
U
3
2
0
E
7

NLM100nCONF

PI
R3

00
1

P
I
U
3
2
0
C
4

NL

M1
00

nS
TA

TU
S

P
I
U
3
2
0
B
2

NL
M0
RX

P
I
U
3
2
0
G
2

NL
M0

TC
K

P
I
U
3
2
0
F
5

NL
M0
TD
I

P
I
U
3
2
0
F
6

NL
M0

TD
O

PI
U3
20
G1

NL
M0

TM
S

P
I
U
3
2
0
A
2

NL
M0
TX

PI
D1

00
K

PI
R7

00
1

PI
D1

20
K

PIR
130

01

P
I
U
3
2
0
A
6

PI
U3
20
A7

P
I
U
3
2
0
A
8

P
I
U
3
2
0
A
9

PI
U3
20
A1
0

P
I
U
3
2
0
B
1

P
I
U
3
2
0
B
6

P
I
U
3
2
0
B
7

PI
U3
20
B9

PI
U3
20
B1
0

P
I
U
3
2
0
C
1

P
I
U
3
2
0
C
9

PI
U3
20
C1
0

P
I
U
3
2
0
D
6

P
I
U
3
2
0
D
8

PI
U3
20
D1
3

P
I
U
3
2
0
E
1

PI
U3
20
E3

PI
U3
20
E4

P
I
U
3
2
0
E
6

PI
U3
20
E8

PI
U3
20
E1
0

PI
U3
20
E1
2

PI
U3
20
E1
3

PI
U3
20
F1

P
I
U
3
2
0
F
4

P
I
U
3
2
0
F
8

P
I
U
3
2
0
G
4

P
I
U
3
2
0
G
5

PI
U3

20
H1

P
I
U
3
2
0
H
2

PI
U3
20
H3

P
I
U
3
2
0
H
4

P
I
U
3
2
0
H
5

PI
U3
20
H8

P
I
U
3
2
0
H
9

PI
U3
20
H1
0

PI
U3
20
J1

PI
U3
20
J2

P
I
U
3
2
0
J
8

PI
U3
20
K1

PI
U3
20
K2

PI
U3
20
K5

PI
U3

20
K1

3

P
I
U
3
2
0
L
1

P
I
U
3
2
0
L
2

P
I
U
3
2
0
L
3

PI
U3
20
L4

P
I
U
3
2
0
L
5

PI
U3
20
M1

P
I
U
3
2
0
M
2

P
I
U
3
2
0
M
3

P
I
U
3
2
0
M
4

PI
U3
20
N3

P
I
U
3
2
0
N
4

PI
U3
20
N1
1

PI
U3
20
D1
1

NL
PM

OD
10

EN

PI
U3
20
D1
2

NL
PM

OD
10

FL
G

PI
U3
20
C1
2

NL
PM

OD
20

EN

PI
U3
20
C1
3

NL
PM

OD
20

FL
G

PI
U3
20
J1
3

NL
RE
SE
T

P
I
U
3
2
0
B
5

NL
TE
0T
CK

PI
U3
20
A3

NL
TE

0T
DI

PI
U3
20
A4

NL
TE

0T
DO

P
I
U
3
2
0
B
3

NL
TE

0T
MS

PI
U3
20
A5

NL
TE
0U
AR
T0
RX

PI
U3
20
B4

NL
TE
0U
AR
T0
TX

P
I
U
3
2
0
N
2

NL
VD
AC
0P
SA
VE
0N

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

13
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

JO
Y.

S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

162738495

H1
H2

J7 D
SU

B
-9

-M
 U

N
C

 4
-4

0
riv

et
, w

/o
 b

ol
ts

162738495

H1
H2

J3 D
SU

B
-9

-M
 U

N
C

 4
-4

0
riv

et
, w

/o
 b

ol
ts

1 2345 6

G
N

D
7

G
N

D
8

J6 61
PC

6F

G
N

DSE
R

_S
R

Q
SE

R_
D

A
TA

SE
R

_R
ES

ET

SE
R

_C
LK

SE
R_

A
TN

G
N

D

G
N

D

G
N

D

JB
_U

P

JB
_D

O
W

N
JB

_F
IR

E

JB
_L

EF
T

JB
_R

IG
H

T
JB

_A
X

JB
_A

Y

JA
_U

P

JA
_D

O
W

N
JA

_F
IR

E

JA
_L

EF
T

JA
_R

IG
H

T
JA

_A
X

JA
_A

Y
O

E
1

A
2

G
N

D
3

Y
4

V
C

C
5

U
15

N
C

7S
Z1

26
P5

X

G
N

D

5V

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
16

N
C

7S
Z1

26
P5

X

G
N

D

5VSE
R

_C
LK

SE
R_

D
A

TA
F_

SE
R_

D
A

TA
_O

F_
SE

R
_C

LK
_O

F_
SE

R_
D

A
TA

_E
N

F_
SE

R
_C

LK
_E

N

JA
_U

P

JA
_D

O
W

N

JA
_F

IR
E

JA
_L

EF
T

JA
_R

IG
H

T

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
20

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
21

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
22

N
C

7S
Z1

26
P5

X

3.
3V

3.
3V

G
N

D

G
N

D

SE
R

_C
LK

SE
R_

D
A

TA3.
3V

3.
3V

F_
SE

R_
D

A
TA

_I

F_
SE

R
_C

LK
_I

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
24

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
25

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
26

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
23

N
C

7S
Z1

26
P5

X

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

FA
_U

P

FA
_D

O
W

N

FA
_F

IR
E

FA
_L

EF
T

FA
_R

IG
H

T

G
N

D

G
N

D

G
N

D

G
N

D
G

N
D

5%R
86

1M

10
00

V
X

7R

C
13

5
10

0p
F

G
N

D

G
N

D

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
27

N
C

7S
Z1

26
P5

X

G
N

D

5V SE
R

_S
R

Q
F_

SE
R

_S
R

Q
_O

F_
SE

R
_S

R
Q

_E
N

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
28

N
C

7S
Z1

26
P5

X

3.
3V

G
N

D

SE
R

_S
R

Q3.
3V

F_
SE

R
_S

R
Q

_I

S
O

U
R

C
E

1

S
O

U
R

C
E

2

S
O

U
R

C
E

3

S
O

U
R

C
E

4

S
O

U
R

C
E

5

N
C

6

I-L
im

it
7

E
na

bl
e/

Fa
ul

t
8

dv
/d

t
9

G
N

D
10

V
C

C
11

U
33

M
P5

01
0B

D
Q

-L
F-

Z

5V
_J

O
Y

5V
_J

O
Y

5V
_J

O
Y

G
N

D

T1 2N
70

02
,2

15

G
N

D

5V

EN
_5

V
_J

O
Y

_N

C
45

10
µF

C
72

10
µF

G
N

D

G
N

D

1%R
12

3
20

0K

1%R
12

5
20

0K

G
N

D

50
V

X
7R

C
73

1n
F

1%R
12

4
22

R
G

N
D

R
12

2
D

N
P

5V
_J

O
Y

_P
G

T2
2N

70
02

,2
15

G
N

D

3.
3V

R
12

7
4K

7

C
17

9
10
µF

10
V

C
18

0
10
µF

G
N

D
G

N
D

3.
3V

5V

IE
C

 -
15

41
 st

yl
e

D
is

kd
riv

e
R

87

4K
7

R
16

8

4K
7

R
17

0

4K
7

5V 5V 5V

R
16

4
4K

7

R
16

5
4K

7

R
16

6
4K

7
R

16
7

4K
7

R
16

9
4K

7

R
17

1
4K

7

R
17

2
4K

7

R
17

3
4K

7
R

17
4

4K
7

R
17

5
4K

7

PIC4501 PIC4502
CO

C4
5

PIC7201 PIC7202
CO
C7
2

PI
C7

30
1

PI
C7

30
2

CO
C7

3

PIC13501 PIC13502
CO
C1
35

PIC17901 PIC17902
CO
C1
79

PIC18001 PIC18002
CO
C1
80

P
I
J
3
0
1

P
I
J
3
0
2

P
I
J
3
0
3

P
I
J
3
0
4

P
I
J
3
0
5

P
I
J
3
0
6

P
I
J
3
0
7

P
I
J
3
0
8

P
I
J
3
0
9

PIJ30H1 PIJ30H2

COJ3

P
I
J
6
0
1

P
I
J
6
0
2

P
I
J
6
0
3

P
I
J
6
0
4

P
I
J
6
0
5

P
I
J
6
0
6

P
I
J
6
0
7

P
I
J
6
0
8

COJ
6

P
I
J
7
0
1

P
I
J
7
0
2

P
I
J
7
0
3

P
I
J
7
0
4

P
I
J
7
0
5

P
I
J
7
0
6

P
I
J
7
0
7

P
I
J
7
0
8

P
I
J
7
0
9

PIJ70H1 PIJ70H2

COJ
7

PIR8601 PIR8602 CO
R8
6

PI
R8

70
1

PI
R8

70
2 CO
R8
7

PIR12201 PIR12202 CO
R1
22

PIR12301 PIR12302 CO
R1
23

PIR12401 PIR12402 CO
R1
24

PIR12501 PIR12502 CO
R1
25

PIR12701 PIR12702 CO
R1
27

PI
R1

64
01

PI

R1
64

02

CO
R1
64

PI
R1

65
01

PI

R1
65

02

CO
R1
65

PIR
166

01
PIR

166
02

CO
R1
66

PI
R1

67
01

PI

R1
67

02

CO
R1
67

PI
R1

68
01

PI

R1
68

02
 CO
R1
68

PI
R1

69
01

PI

R1
69

02

CO
R1
69

PI
R1

70
01

PI

R1
70

02
 CO
R1
70

PI
R1

71
01

PI

R1
71

02

CO
R1
71

PIR
172

01
PIR

172
02

CO
R1
72

PI
R1

73
01

PI

R1
73

02

CO
R1
73

PI
R1

74
01

PI

R1
74

02

CO
R1
74

PI
R1

75
01

PI

R1
75

02

CO
R1
75

P
I
T
1
0
1

PIT102 PIT103
COT

1

P
I
T
2
0
1

PIT202 PIT203
COT

2

PI
U1
50
1

PI
U1
50
2

P
I
U
1
5
0
3

P
I
U
1
5
0
4

PI
U1
50
5

CO
U1
5

PI
U1
60
1

P
I
U
1
6
0
2

P
I
U
1
6
0
3

P
I
U
1
6
0
4

PI
U1
60
5

CO
U1
6

P
I
U
2
0
0
1

P
I
U
2
0
0
2

PI
U2
00
3

PI
U2
00
4

P
I
U
2
0
0
5

CO
U2
0

P
I
U
2
1
0
1

PI
U2
10
2

P
I
U
2
1
0
3

P
I
U
2
1
0
4

P
I
U
2
1
0
5

CO
U2

1

P
I
U
2
2
0
1

P
I
U
2
2
0
2

PI
U2
20
3

PI
U2
20
4

P
I
U
2
2
0
5

CO
U2
2

P
I
U
2
3
0
1

PI
U2
30
2

PI
U2
30
3

PI
U2
30
4

P
I
U
2
3
0
5

CO
U2

3

PI
U2
40
1

PI
U2
40
2

P
I
U
2
4
0
3

P
I
U
2
4
0
4

PI
U2
40
5

CO
U2
4

P
I
U
2
5
0
1

P
I
U
2
5
0
2

P
I
U
2
5
0
3

P
I
U
2
5
0
4

P
I
U
2
5
0
5

CO
U2
5

PI
U2
60
1

PI
U2
60
2

P
I
U
2
6
0
3

P
I
U
2
6
0
4

PI
U2
60
5

CO
U2
6

P
I
U
2
7
0
1

P
I
U
2
7
0
2

P
I
U
2
7
0
3

P
I
U
2
7
0
4

P
I
U
2
7
0
5

CO
U2
7

PI
U2
80
1

P
I
U
2
8
0
2

P
I
U
2
8
0
3

P
I
U
2
8
0
4

PI
U2
80
5

CO
U2
8

PI
U3

30
1

PI
U3

30
2

P
I
U
3
3
0
3

P
I
U
3
3
0
4

P
I
U
3
3
0
5

P
I
U
3
3
0
6

P
I
U
3
3
0
7

P
I
U
3
3
0
8

PI
U3
30
9

P
I
U
3
3
0
1
0

PI
U3

30
11

 CO
U3
3

PIC17902

PIR12702

P
I
U
2
0
0
1

P
I
U
2
0
0
5

P
I
U
2
1
0
1

P
I
U
2
1
0
5

P
I
U
2
2
0
1

P
I
U
2
2
0
5

P
I
U
2
3
0
1

P
I
U
2
3
0
5

PI
U2
40
1

PI
U2
40
5

P
I
U
2
5
0
1

P
I
U
2
5
0
5

PI
U2
60
1

PI
U2
60
5

PI
U2
80
1

PI
U2
80
5

PIC18002

PI
R8

70
1

PIR12202

PI
R1

68
01

PI
R1

70
01

PI
U1
50
5

PI
U1
60
5

P
I
U
2
7
0
5

PI
U3

30
11

PIC4502 PIC7202
P
I
J
3
0
7

P
I
J
7
0
7

PIR12401

PI
R1

64
01

PI
R1

65
01

PIR
166

01

PI
R1

67
01

PI
R1

69
01

PI
R1

71
01

PIR
172

01

PI
R1

73
01

PI
R1

74
01

PI
R1

75
01

PI
U3

30
1

PI
U3

30
2

P
I
U
3
3
0
3

P
I
U
3
3
0
4

P
I
U
3
3
0
5

PIR12701 PIT203
NL
5V
0J
OY
0P
G

P
I
T
1
0
1

NL
EN

05
V0

JO
Y0

N

PI
U1
50
1

NL
F0
SE
R0
CL
K0
EN

PI
U2
00
4

NL
F0
SE
R0
CL
K0
I

PI
U1
50
2

NL
F0
SE
R0
CL
K0
O

PI
U1
60
1

NL
F0

SE
R0

DA
TA

0E
N

P
I
U
2
1
0
4

NL
F0

SE
R0

DA
TA

0I

P
I
U
1
6
0
2

NL
F0
SE
R0
DA
TA
0O

P
I
U
2
7
0
1

NL
F0

SE
R0

SR
Q0

EN

P
I
U
2
8
0
4

NL
F0
SE
R0
SR
Q0
I

P
I
U
2
7
0
2

NL
F0
SE
R0
SR
Q0
O

P
I
U
2
4
0
4

NL
FA
0D
OW
N

P
I
U
2
5
0
4

NL
FA

0F
IR

E

PI
U2
30
4

NL
FA

0L
EF

T

PI
U2
20
4

NL
FA

0R
IG

HT

P
I
U
2
6
0
4

NL
FA
0U
P

PIC4501 PIC7201

PI
C7

30
1

PIC13502

PIC17901
PIC18001

P
I
J
3
0
8

P
I
J
6
0
2

P
I
J
6
0
7

P
I
J
6
0
8

P
I
J
7
0
8

PIR8602

PIR12501

PIT102

PIT202

P
I
U
1
5
0
3

P
I
U
1
6
0
3

PI
U2
00
3

P
I
U
2
1
0
3

PI
U2
20
3

PI
U2
30
3

P
I
U
2
4
0
3

P
I
U
2
5
0
3

P
I
U
2
6
0
3

P
I
U
2
7
0
3

P
I
U
2
8
0
3

P
I
U
3
3
0
1
0

P
I
J
7
0
9

NL
JA

0A
X

P
I
J
7
0
5

NL
JA

0A
Y

P
I
J
7
0
2

PIR
166

02

PI
U2
40
2

NL
JA

0D
OW

N

P
I
J
7
0
6

PI
R1

67
02

P
I
U
2
5
0
2

NL
JA
0F
IR
E

P
I
J
7
0
3

PI
R1

65
02

PI
U2
30
2

NL
JA
0L
EF
T

P
I
J
7
0
4

PI
R1

64
02

P
I
U
2
2
0
2

NL
JA

0R
IG

HT

P
I
J
7
0
1

PI
R1

69
02

PI
U2
60
2

NL
JA
0U
P

P
I
J
3
0
9

NL
JB

0A
X

P
I
J
3
0
5

NL
JB

0A
Y

P
I
J
3
0
2

PI
R1

73
02

NL

JB
0D

OW
N

P
I
J
3
0
6

PI
R1

74
02

NL
JB
0F
IR
E

P
I
J
3
0
3

PIR
172

02
NL
JB
0L
EF
T

P
I
J
3
0
4

PI
R1

71
02

NL

JB
0R

IG
HT

P
I
J
3
0
1

PI
R1

75
02

NL
JB
0U
P

PI
C7

30
2 PI
U3
30
9

PIC13501

PIJ30H1 PIJ30H2 PIJ70H1 PIJ70H2
PIR8601

PIR12201
PIR12302

PIT103

P
I
U
3
3
0
8

PIR12301 PIR12502
P
I
T
2
0
1

PIR12402
P
I
U
3
3
0
7

P
I
U
3
3
0
6

P
I
J
6
0
3

NL
SE
R0
AT
N

P
I
J
6
0
4

PI
R8

70
2

P
I
U
1
5
0
4

P
I
U
2
0
0
2

NL
SE
R0
CL
K

P
I
J
6
0
5

PI
R1

68
02

P
I
U
1
6
0
4

PI
U2
10
2

NL
SE

R0
DA

TA

P
I
J
6
0
6

NL
SE

R0
RE

SE
T

P
I
J
6
0
1

PI
R1

70
02

P
I
U
2
7
0
4

P
I
U
2
8
0
2

NL
SE

R0
SR

Q

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

14
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

KE
YB

O
A

R
D

.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

1
2

3
4

5
6

7
8

9
10

J5 SM
D

-2
54

-9
13

2-
14

-1
0

1
2

3
4

5
6

7
8

9
10

J1
2

1-
33

80
69

-0

G
N

D

G
N

D

3.
3V

3.
3V

K
_J

TA
G

EN
K

_
T

M
S

K
_

T
D

I
K

_
T

D
O

K
_

T
C

K
K

_I
O

1
K

_I
O

2
K

_I
O

3

i
K

B
i

K
B

P
I
J
5
0
1

P
I
J
5
0
2

P
I
J
5
0
3

P
I
J
5
0
4

P
I
J
5
0
5

P
I
J
5
0
6

P
I
J
5
0
7

P
I
J
5
0
8

P
I
J
5
0
9

P
I
J
5
0
1
0

COJ5

P
I
J
1
2
0
1

P
I
J
1
2
0
2

PI
J1
20
3

PI
J1
20
4

PI
J1
20
5

PI
J1
20
6

P
I
J
1
2
0
7

P
I
J
1
2
0
8

P
I
J
1
2
0
9

P
I
J
1
2
0
1
0

COJ
12

P
I
J
5
0
2

P
I
J
1
2
0
2

P
I
J
5
0
1

P
I
J
1
2
0
1

P
I
J
5
0
8

P
I
J
1
2
0
8

NL
K0
IO

1
P
I
J
5
0
9

P
I
J
1
2
0
9

NL
K0
IO
2

P
I
J
5
0
1
0

P
I
J
1
2
0
1
0

NL
K0
IO

3

P
I
J
5
0
3

PI
J1
20
3

NL
K0

JT
AG

EN

P
I
J
5
0
5

PI
J1
20
5

NL
K0
TC
K

P
I
J
5
0
6

PI
J1
20
6

NL
K0
TD
I

P
I
J
5
0
7

P
I
J
1
2
0
7

NL
K0

TD
O

P
I
J
5
0
4

PI
J1
20
4

NL
K0
TM
S

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

15
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

Fl
op

py
.S

ch
D

oc
Fi

le
na

m
e:20

20
-0

6-
29

[N
o

Va
ria

tio
ns

]
TE

07
65

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

J1
4

W
A

N
N

E2
,5

4-
34

 G
ER

A
D

E

G
N

D

R
ED

W
C

IN
D

EX
M

O
TE

A
D

RV
SB

D
RV

SA
M

O
TE

B
D

IR
ST

EP
W

D
A

TE
W

G
A

TE
TR

C
K

0
W

PT
RD

A
TA

1
SI

D
E1

D
SC

K
C

H
G

R
ED

W
C

IN
D

EX

M
O

TE
A

D
RV

SA
D

IR
ST

EP
W

D
A

TE
W

G
A

TE

TR
C

K
0

W
PT

RD
A

TA
1

SI
D

E1

D
SC

K
C

H
G

1D
IR

1

1B
1

2

1B
2

3

G
N

D
4

1B
3

5

1B
4

6

V
C

C
B

7

1B
5

8

1B
6

9

G
N

D
10

1B
7

11

1B
8

12

2B
1

13

2B
2

14

G
N

D
15

2B
3

16

2B
4

17

V
C

C
B

18

2B
5

19

2B
6

20

G
N

D
21

2B
7

22

2B
8

23

2D
IR

24
2O

E
25

2A
8

26
2A

7
27

G
N

D
28

2A
6

29
2A

5
30

V
C

C
A

31

2A
4

32
2A

3
33

G
N

D
34

2A
2

35
2A

1
36

1A
8

37
1A

7
38

G
N

D
39

1A
6

40
1A

5
41

V
C

C
A

42

1A
4

43
1A

3
44

G
N

D
45

1A
2

46
1A

1
47

1O
E

48

U
7

SN
74

LV
C

H
16

T2
45

D
G

V

3.
3V

5V G
N

D
G

N
D

G
N

D

G
N

D
3.

3V G
N

D

F_
R

ED
W

C

F_
IN

D
EX

F_
M

O
TE

A
F_

D
RV

SA
F_

D
IR

F_
ST

EP
F_

W
D

A
TE

F_
W

G
A

TE

F_
TR

C
K

0
F_

W
PT

F_
RD

A
TA

1

F_
SI

D
E1

F_
D

SC
K

C
H

G

i
FL

O
PP

Y
1 2 3 4

J1
3

St
ift

le
is

te
 4

 P
ol

. 2
,5

4m
m

1 2 3 4

J1
6

St
ift

le
is

te
 4

 P
ol

. 2
,5

4m
m

G
N

D
G

N
D

G
N

D
G

N
D

5V

12
V

_F
U

SE
D

12
V

_F
U

SE
D 5V

R
17

6

4K
7

R
17

7

4K
7

R
18

0

4K
7

R
17

9

4K
7

R
17

8

4K
7

5V 5V 5V 5V 5V

PI
J1
30
1

PI
J1
30
2

P
I
J
1
3
0
3

P
I
J
1
3
0
4
 COJ
13

PI
J1
40
1

PI
J1
40
2

PI
J1
40
3

PI
J1
40
4

P
I
J
1
4
0
5

P
I
J
1
4
0
6

P
I
J
1
4
0
7

P
I
J
1
4
0
8

P
I
J
1
4
0
9

P
I
J
1
4
0
1
0

PI
J1
40
11

PI
J1

40
12

PI
J1
40
13

PI
J1

40
14

P
I
J
1
4
0
1
5

P
I
J
1
4
0
1
6

P
I
J
1
4
0
1
7

P
I
J
1
4
0
1
8

P
I
J
1
4
0
1
9

P
I
J
1
4
0
2
0

PI
J1
40
21

PI
J1

40
22

PI
J1
40
23

PI
J1

40
24

P
I
J
1
4
0
2
5

P
I
J
1
4
0
2
6

P
I
J
1
4
0
2
7

P
I
J
1
4
0
2
8

PI
J1
40
29

PI
J1

40
30

PI
J1
40
31

PI
J1

40
32

P
I
J
1
4
0
3
3

P
I
J
1
4
0
3
4

COJ
14

P
I
J
1
6
0
1

P
I
J
1
6
0
2

P
I
J
1
6
0
3

PI
J1
60
4 COJ

16

PI
R1

76
01

PI

R1
76

02
 CO
R1
76
 PI
R1

77
01

PI

R1
77

02
 CO
R1
77
 PI
R1

78
01

PI

R1
78

02
 CO
R1
78
 PIR

179
01

PIR
179

02 CO
R1
79
 PI
R1

80
01

PI

R1
80

02
 CO
R1
80

P
I
U
7
0
1

P
I
U
7
0
2

P
I
U
7
0
3

P
I
U
7
0
4

P
I
U
7
0
5

P
I
U
7
0
6

P
I
U
7
0
7

P
I
U
7
0
8

P
I
U
7
0
9

P
I
U
7
0
1
0

P
I
U
7
0
1
1

P
I
U
7
0
1
2

P
I
U
7
0
1
3

P
I
U
7
0
1
4

P
I
U
7
0
1
5

P
I
U
7
0
1
6

PI
U7
01
7

PI
U7
01
8

PI
U7
01
9

P
I
U
7
0
2
0

P
I
U
7
0
2
1

P
I
U
7
0
2
2

P
I
U
7
0
2
3

P
I
U
7
0
2
4

P
I
U
7
0
2
5

P
I
U
7
0
2
6

P
I
U
7
0
2
7

PI
U7
02

8

P
I
U
7
0
2
9

PI
U7
03

0

P
I
U
7
0
3
1

PI
U7
03

2

P
I
U
7
0
3
3

P
I
U
7
0
3
4

P
I
U
7
0
3
5

P
I
U
7
0
3
6

P
I
U
7
0
3
7

P
I
U
7
0
3
8

P
I
U
7
0
3
9

PI
U7
04

0

P
I
U
7
0
4
1

PI
U7
04

2

P
I
U
7
0
4
3

P
I
U
7
0
4
4

P
I
U
7
0
4
5

P
I
U
7
0
4
6

PI
U7
04

7

P
I
U
7
0
4
8

CO
U7

P
I
U
7
0
1

P
I
U
7
0
3
1

PI
U7
04

2

P
I
J
1
3
0
4

PI
J1
60
4

PI
R1

76
01

PI
R1

77
01

PI
R1

78
01

PIR
179

01

PI
R1

80
01

P
I
U
7
0
7

PI
U7
01
8

PI
J1
30
1

P
I
J
1
6
0
1

P
I
J
1
4
0
1
8

P
I
U
7
0
6

NL
DI
R

PI
J1

40
14

P
I
U
7
0
5

NL
DR
VS
A

PI
J1

40
12

NL
DR
VS
B

P
I
J
1
4
0
3
4

PI
R1

80
02

PI
U7
01
9

NL
DS

CK
CH

G

P
I
U
7
0
4
3

NL
F0
DI
R

P
I
U
7
0
4
4

NL
F0
DR
VS
A

PI
U7
03

0
NL

F0
DS

CK
CH

G

P
I
U
7
0
3
6

NL
F0

IN
DE

X

P
I
U
7
0
4
6

NL
F0

MO
TE

A

PI
U7
03

2
NL

F0
RD

AT
A1

PI
U7
04

7
NL

F0
RE

DW
C

P
I
U
7
0
3
7

NL
F0
SI
DE
1

P
I
U
7
0
4
1

NL
F0

ST
EP

P
I
U
7
0
3
5

NL
F0

TR
CK

0

PI
U7
04

0
NL

F0
WD

AT
E

P
I
U
7
0
3
8

NL
F0

WG
AT

E

P
I
U
7
0
3
3

NL
F0
WP
T

PI
J1
30
2

P
I
J
1
3
0
3

PI
J1
40
1

PI
J1
40
3

P
I
J
1
4
0
5

P
I
J
1
4
0
7

P
I
J
1
4
0
9

PI
J1
40
11

PI
J1
40
13

P
I
J
1
4
0
1
5

P
I
J
1
4
0
1
7

P
I
J
1
4
0
1
9

PI
J1
40
21

PI
J1
40
23

P
I
J
1
4
0
2
5

P
I
J
1
4
0
2
7

PI
J1
40
29

PI
J1
40
31

P
I
J
1
4
0
3
3

P
I
J
1
6
0
2

P
I
J
1
6
0
3

P
I
U
7
0
4

P
I
U
7
0
1
0

P
I
U
7
0
1
5

P
I
U
7
0
2
0

P
I
U
7
0
2
1

P
I
U
7
0
2
2

P
I
U
7
0
2
3

P
I
U
7
0
2
4

P
I
U
7
0
2
5

PI
U7
02

8

P
I
U
7
0
3
4

P
I
U
7
0
3
9

P
I
U
7
0
4
5

P
I
U
7
0
4
8

P
I
J
1
4
0
8

PI
R1

76
02

P
I
U
7
0
1
3

NL
IN

DE
X

P
I
J
1
4
0
1
0

P
I
U
7
0
3

NL
MO

TE
A

P
I
J
1
4
0
1
6

NL
MO

TE
B

PI
J1
40
4

P
I
J
1
4
0
6

P
I
U
7
0
2
6

P
I
U
7
0
2
7

P
I
U
7
0
2
9

PI
J1

40
30

PIR

179
02

PI
U7
01
7

NL
RD

AT
A1

PI
J1
40
2

P
I
U
7
0
2

NL
RE
DW
C

PI
J1

40
32

P
I
U
7
0
1
2

NL
SI
DE
1

P
I
J
1
4
0
2
0

P
I
U
7
0
8

NL
ST
EP

P
I
J
1
4
0
2
6

PI
R1

77
02

P
I
U
7
0
1
4

NL
TR

CK
0

PI
J1

40
22

P
I
U
7
0
9

NL
WD
AT
E

PI
J1

40
24

P
I
U
7
0
1
1

NL
WG
AT
E

P
I
J
1
4
0
2
8

PI
R1

78
02

P
I
U
7
0
1
6

NL
WP
T

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

16
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

V
G

A
.S

ch
D

oc
Fi

le
na

m
e:20

20
-0

6-
29

[N
o

Va
ria

tio
ns

]
TE

07
65

8 157 146 13 512 411 3 102 91

H1
H2

J1
D

SU
B

-1
5-

F-
H

D
 8

.8
9

G
0

3

G
1

4

G
2

5

G
3

6

G
4

7

G
5

8

G
6

9

G
7

10

B
0

16

B
1

17

B
2

18

B
3

19

B
4

20

B
5

21

B
6

22

B
7

23

IO
B

27

IO
B

28

IO
G

31

IO
G

32

IO
R

33

IO
R

34
R

0
41

R
1

42

R
2

43

R
3

44

R
4

45

R
5

46

R
6

47

R
7

48

U
3A

A
D

V
71

25
B

C
PZ

17
0

G
N

D
1

G
N

D
2

B
LA

N
K

11

S
Y

N
C

12

VA
A

13

G
N

D
14

G
N

D
15

C
LO

C
K

24

G
N

D
25

G
N

D
26

VA
A

29

VA
A

30

C
O

M
P

35

V
R

E
F

36

R
S

E
T

37

PS
AV

E
38

G
N

D
39

G
N

D
40

E
P

49

U
3B

A
D

V
71

25
B

C
PZ

17
0

G
0

G
1

G
2

G
3

G
4

G
5

G
6

G
7

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

G
N

D

G
N

D

G
N

D

V
G

A
_G

re
en

_O
ut

V
G

A
_B

lu
e_

O
ut

V
G

A
_R

ed
_O

ut

V
G

A
_R

ed
_O

ut

V
G

A
_G

re
en

_O
ut

V
G

A
_B

lu
e_

O
ut

1%R
13

75
R

1%R
15

75
R

1%R
16

75
R

G
N

D

G
N

D

G
N

D

VA
A

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D
G

N
D

V
G

A
_I

D
1/

SD
A

V
G

A
_H

Sy
nc

V
G

A
_V

Sy
nc

V
G

A
_I

D
3/

SC
L

V
D

A
C

_C
LK

V
D

A
C

_B
LA

N
K

_N

V
D

A
C

_S
Y

N
C

_N

G
N

D

25
V

X
5R

C
34

10
0n

F
16

V
X

7R

C
35

10
nF

G
N

D

1%R
18

56
0R

25
V

X
5R

C
36

10
0n

F

25
V

X
5R

C1
18

10
0n

F
VA

A

VA
A

R
53

49
R

9

R
44

49
R

9

L7 M
PZ

16
08

S2
21

A
3.

3V

G
N

D
G

N
D

5%R
85

1M
10

00
V

X
7R

C
13

4
10

0p
F

V
D

A
C_

PS
A

V
E_

N
T3 2N

70
02

,2
15

T4 2N
70

02
,2

15

V
G

A
_I

D
3/

SC
L

V
G

A
_I

D
1/

SD
A

3.
3V

3.
3V

R
13

1
10

K

R
13

3
10

K

R
69

10
K

R
13

2
10

K

V
G

A
_S

D
A

V
G

A
_S

C
L

5V 5V

PIC3401 PIC3402
COC

34
PIC3501 PIC3502

COC
35

PI
C3

60
1

PI
C3

60
2

CO
C3
6

PI
C1

18
01

PI

C1
18

02

CO
C1
18

PIC13401 PIC13402
CO
C1
34

P
I
J
1
0
1

P
I
J
1
0
2

P
I
J
1
0
3

P
I
J
1
0
4

P
I
J
1
0
5

P
I
J
1
0
6

P
I
J
1
0
7

P
I
J
1
0
8

P
I
J
1
0
9

P
I
J
1
0
1
0

P
I
J
1
0
1
1

PI
J1

01
2

P
I
J
1
0
1
3

P
I
J
1
0
1
4

P
I
J
1
0
1
5

PIJ10H1 PIJ1
0H2

COJ
1

PI
L7

01

PI
L7

02

COL
7

PIR1301 PIR1302 CO
R1
3

PIR1501 PIR1502 CO
R1
5

PIR1601 PIR1602 CO
R1
6

PIR1801 PIR1802 CO
R1

8

PI
R4

40
1

PI
R4

40
2

CO
R4
4

PI
R5

30
1

PI
R5

30
2

CO
R5

3

PIR6901 PIR6902 CO
R6

9

PIR8501 PIR8502 CO
R8

5

PIR13101 PIR13102 CO
R1
31

PIR13201 PIR13202 CO
R1
32

PIR13301 PIR13302 CO
R1
33

PIT301
P
I
T
3
0
2

P
I
T
3
0
3

COT
3 PIT401

P
I
T
4
0
2

P
I
T
4
0
3

COT
4

P
I
U
3
0
3

P
I
U
3
0
4

P
I
U
3
0
5

P
I
U
3
0
6

P
I
U
3
0
7

P
I
U
3
0
8

P
I
U
3
0
9

P
I
U
3
0
1
0

P
I
U
3
0
1
6

PI
U3
01
7

PI
U3
01
8

P
I
U
3
0
1
9

P
I
U
3
0
2
0

P
I
U
3
0
2
1

PI
U3
02
2

P
I
U
3
0
2
3

P
I
U
3
0
2
7

PI
U3
02
8

P
I
U
3
0
3
1

PI
U3
03
2

P
I
U
3
0
3
3

P
I
U
3
0
3
4

P
I
U
3
0
4
1

P
I
U
3
0
4
2

PI
U3
04
3

P
I
U
3
0
4
4

P
I
U
3
0
4
5

P
I
U
3
0
4
6

P
I
U
3
0
4
7

PI
U3
04
8 CO

U3
A

P
I
U
3
0
1

P
I
U
3
0
2

PI
U3
01
1

P
I
U
3
0
1
2

P
I
U
3
0
1
3

P
I
U
3
0
1
4

PI
U3
01
5

P
I
U
3
0
2
4

PI
U3
02
5

P
I
U
3
0
2
6

P
I
U
3
0
2
9

PI
U3
03
0

P
I
U
3
0
3
5

PI
U3
03
6

PI
U3
03
7

P
I
U
3
0
3
8

P
I
U
3
0
3
9

P
I
U
3
0
4
0

PI
U3
04
9

CO
U3
B

PI
L7

02

PIR6902 PIR13202

PIT301 PIT401

PIR13102 PIR13302

P
I
U
3
0
1
6

NLB
0

PI
U3
01
7

NLB
1

PI
U3
01
8

NLB
2

P
I
U
3
0
1
9

NLB
3

P
I
U
3
0
2
0

NLB
4

P
I
U
3
0
2
1

NLB
5

PI
U3
02
2

NLB
6

P
I
U
3
0
2
3

NLB
7

P
I
U
3
0
3

NL
G0

P
I
U
3
0
4

NLG
1

P
I
U
3
0
5

NLG
2

P
I
U
3
0
6

NLG
3

P
I
U
3
0
7

NL
G4

P
I
U
3
0
8

NLG
5

P
I
U
3
0
9

NLG
6

P
I
U
3
0
1
0

NLG
7

PIC3402
PIC3502

PIC13402

P
I
J
1
0
5

P
I
J
1
0
6

P
I
J
1
0
7

P
I
J
1
0
8

P
I
J
1
0
1
0

PIR1302 PIR1502 PIR1602

PIR1802

PIR8502

P
I
U
3
0
1

P
I
U
3
0
2

P
I
U
3
0
1
4

PI
U3
01
5

PI
U3
02
5

P
I
U
3
0
2
6

P
I
U
3
0
2
7

P
I
U
3
0
3
1

P
I
U
3
0
3
3

P
I
U
3
0
3
9

P
I
U
3
0
4
0

PI
U3
04
9

PI
C3

60
2

PI
U3
03
6

PI
C1

18
02

P
I
U
3
0
3
5

PIC13401 PIJ10H1 PIJ1
0H2

PIR8501

P
I
J
1
0
4

P
I
J
1
0
9

P
I
J
1
0
1
1

P
I
J
1
0
1
3

PI
R4

40
2

P
I
J
1
0
1
4

PI
R5

30
2

PIR1801
PI
U3
03
7

P
I
U
3
0
4
1

NLR
0

P
I
U
3
0
4
2

NLR
1

PI
U3
04
3

NLR
2

P
I
U
3
0
4
4

NLR
3

P
I
U
3
0
4
5

NLR
4

P
I
U
3
0
4
6

NLR
5

P
I
U
3
0
4
7

NLR
6

PI
U3
04
8

NLR
7

PIC3401
PIC3501

PI
C3

60
1

PI
C1

18
01

PI
L7

01

P
I
U
3
0
1
3

P
I
U
3
0
2
9

PI
U3
03
0

PI
U3
01
1

N
L
V
D
A
C
0
B
L
A
N
K
0
N

P
I
U
3
0
2
4

NL
VD

AC
0C

LK

P
I
U
3
0
3
8

NL
VD
AC
0P
SA
VE
0N

P
I
U
3
0
1
2

NL
VD

AC
0S

YN
C0

N

P
I
J
1
0
3

PIR1501
PI
U3
02
8

NL
VG
A0
Bl
ue
0O
ut

P
I
J
1
0
2

PIR1301
PI
U3
03
2

NL
VG

A0
Gr

ee
n0

Ou
t

PI
R4

40
1

NL
VG
A0
HS
yn
c

PI
J1

01
2

PIR13101
P
I
T
3
0
3

NL
VG
A0
ID
10
SD
A

P
I
J
1
0
1
5

PIR13301
P
I
T
4
0
3

NL
VG

A0
ID

30
SC

L

P
I
J
1
0
1

PIR1601
P
I
U
3
0
3
4

NL
VG

A0
Re

d0
Ou

t

PIR13201
P
I
T
4
0
2

NL
VG
A0
SC
L

PIR6901
P
I
T
3
0
2

NL
VG

A0
SD

A

PI
R5

30
1

NL
VG
A0
VS
yn
c

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

17
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

H
D

M
I.S

ch
D

oc
Fi

le
na

m
e:20

20
-0

6-
29

[N
o

Va
ria

tio
ns

]
TE

07
65

D
at

a2
+

1

D
at

a2
 S

hi
el

d
2

D
at

a2
-

3

D
at

a1
+

4

D
at

a1
 S

hi
el

d
5

D
at

a1
-

6

D
at

a0
+

7

D
at

a0
 S

hi
el

d
8

D
at

a0
-

9

C
lo

ck
+

10

C
lo

ck
 S

hi
el

d
11

C
lo

ck
-

12

C
E

C
13

N
C

14

S
C

L
15

S
D

A
16

D
D

C
/C

E
C

 G
N

D
17

+5
V

18

H
ot

 P
lu

g
D

et
ec

t
19

FR
A

M
E

H
1

FR
A

M
E

H
2

FR
A

M
E

H
3

FR
A

M
E

H
4

J4 H
D

M
I C

on
ne

ct
or

H
D

M
I_

T
X

C
_

P

H
D

M
I_

T
X

C
_

N

H
D

M
I_

T
X

0
_

P

H
D

M
I_

T
X

0
_

N

H
D

M
I_

T
X

1
_

P

H
D

M
I_

T
X

1
_

N

H
D

M
I_

T
X

2
_

P

H
D

M
I_

T
X

2
_

N
C

E
C

_A
1

S
C

L_
A

2

S
D

A
_A

3

H
P

D
_A

4

LS
_O

E
5

G
N

D
6

C
E

C
_B

7

S
C

L_
B

8

S
D

A
_B

9

H
P

D
_B

10

V
C

C
5V

11

C
T_

H
P

D
12

5V
_O

U
T

13
G

N
D

14
C

LK
-

15
C

LK
+

16
D

0-
17

D
0+

18
G

N
D

19
D

1-
20

D
1+

21
D

2-
22

D
2+

23
V

C
C

A
24

U
10

TP
D

12
S0

16
PW

R

H
D

M
I_

T
X

C
_

P
H

D
M

I_
T

X
C

_
N

H
D

M
I_

T
X

0
_

P
H

D
M

I_
T

X
0

_
N

H
D

M
I_

T
X

1
_

P
H

D
M

I_
T

X
1

_
N

H
D

M
I_

T
X

2
_

P
H

D
M

I_
T

X
2

_
N

G
N

D

G
N

D
G

N
D

S
C

L_
B

S
D

A
_

B
H

P
D

_
B

S
C

L_
A

S
D

A
_

A
H

P
D

_
A

H
P

D
_

B
5

V
_

H
D

M
I

5
V

_
H

D
M

I

C
E

C
_

A

C
E

C
_

B

C
E

C
_

B

S
C

L_
B

S
D

A
_

B

C
T

_
H

P
D

G
N

D

G
N

D

C
17

1
10

0n
F

G
N

D

C1
17

10
0n

F

G
N

D

C
10

6
10

0n
F

5V

3.
3V

LS
_

O
E

R
48

4K
7

R
73

4K
7

3.
3V

PIC10601 PIC10602
CO
C1
06

PIC11701 PIC11702
CO
C1
17

PIC17101 PIC17102
CO
C1
71

P
I
J
4
0
1

P
I
J
4
0
2

P
I
J
4
0
3

P
I
J
4
0
4

P
I
J
4
0
5

P
I
J
4
0
6

P
I
J
4
0
7

P
I
J
4
0
8

P
I
J
4
0
9

P
I
J
4
0
1
0

P
I
J
4
0
1
1

P
I
J
4
0
1
2

P
I
J
4
0
1
3

PI
J4

01
4

P
I
J
4
0
1
5

P
I
J
4
0
1
6

P
I
J
4
0
1
7

P
I
J
4
0
1
8

PI
J4

01
9

P
I
J
4
0
H
1

P
I
J
4
0
H
2

P
I
J
4
0
H
3

PI
J4

0H
4 COJ4

PIR4801 PIR4802 CO

R4
8

PIR7301 PIR7302 CO
R7

3

P
I
U
1
0
0
1

PI
U1
00
2

PI
U1
00
3

P
I
U
1
0
0
4

P
I
U
1
0
0
5

P
I
U
1
0
0
6

PI
U1
00
7

P
I
U
1
0
0
8

P
I
U
1
0
0
9

P
I
U
1
0
0
1
0

P
I
U
1
0
0
1
1

PI
U1

00
12

PI
U1
00
13

P
I
U
1
0
0
1
4

P
I
U
1
0
0
1
5

P
I
U
1
0
0
1
6

P
I
U
1
0
0
1
7

PI
U1
00
18

P
I
U
1
0
0
1
9

P
I
U
1
0
0
2
0

P
I
U
1
0
0
2
1

PI
U1
00
22

PI
U1
00
23

P
I
U
1
0
0
2
4

CO
U1
0

PIC10601

PIR4802
PIR7302

P
I
U
1
0
0
2
4

PIC11701

P
I
U
1
0
0
1
1

PIC17101

P
I
J
4
0
1
8

PI
U1
00
13

N
L
5
V
0
H
D
M
I

P
I
U
1
0
0
1

NL
CE

C0
A

P
I
J
4
0
1
3

PI
U1
00
7

NL
CE

C0
B

PI
U1

00
12

NL

CT
0H

PD

PIC10602

PIC11702
PIC17102

P
I
J
4
0
2

P
I
J
4
0
5

P
I
J
4
0
8

P
I
J
4
0
1
1

P
I
J
4
0
1
7

P
I
J
4
0
H
1

P
I
J
4
0
H
2

P
I
J
4
0
H
3

PI
J4

0H
4

P
I
U
1
0
0
6

P
I
U
1
0
0
1
4

P
I
U
1
0
0
1
9

P
I
J
4
0
9

P
I
U
1
0
0
1
7

NL
HD

MI
0T

X0
0N

P
I
J
4
0
7

PI
U1
00
18

NL
HD

MI
0T

X0
0P

P
I
J
4
0
6

P
I
U
1
0
0
2
0

N
L
H
D
M
I
0
T
X
1
0
N

P
I
J
4
0
4

P
I
U
1
0
0
2
1

NL
HD

MI
0T

X1
0P

P
I
J
4
0
3

PI
U1
00
22

NL
HD

MI
0T

X2
0N

P
I
J
4
0
1

PI
U1
00
23

N
L
H
D
M
I
0
T
X
2
0
P

P
I
J
4
0
1
2

P
I
U
1
0
0
1
5

N
L
H
D
M
I
0
T
X
C
0
N

P
I
J
4
0
1
0

P
I
U
1
0
0
1
6

NL
HD

MI
0T

XC
0P

P
I
U
1
0
0
4

NL
HP

D0
A

PI
J4

01
9

P
I
U
1
0
0
1
0

NL
HP

D0
B

P
I
U
1
0
0
5

NL
LS

0O
E

PI
J4

01
4

PIR4801

PI
U1
00
2

NL
SC

L0
A

P
I
J
4
0
1
5

P
I
U
1
0
0
8

NL
SC

L0
B

PIR7301

PI
U1
00
3

NL
SD
A0
A

P
I
J
4
0
1
6

P
I
U
1
0
0
9

NL
SD
A0
B

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

18
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

E
th

er
ne

t.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65R

C
T

5

G
N

D
8

Fr
am

e
15

Fr
am

e
16

75
R

75
R

TD
+

1

TD
-

2

R
D

+
3

TC
T

4

R
D

-
6

N
C

7

J1 J2 J3J4 J5 J6J7 J8

75
R

75
R

J1
0A

R
J4

5
- 7

49
90

11
22

2A

R
X

M
3

R
X

P
4

TX
M

5
TX

P
6

X
O

7

X
I

8

R
E

X
T

9

M
D

IO
10

M
D

C
11

R
X

D
1

12
R

X
D

0
13

R
E

F_
C

LK
16

R
X

E
R

17
IN

TR
P

18

TX
E

N
19

TX
D

0
20

TX
D

1
21

C
R

S_
D

V/
PH

YA
D

[1
:0

]
15

LE
D

0/
A

N
E

N
_S

P
E

E
D

23

R
S

T
24

U
4A

K
SZ

80
81

R
N

D
C

A

G
N

D
22

V
D

D
_1

.2
1

V
D

D
A

_3
.3

2

V
D

D
IO

14

G
N

D
25

U
4B K

SZ
80

81
R

N
D

C
A

ET
H

_T
D

_P

ET
H

_T
D

_N

ET
H

_R
D

_P

ET
H

_R
D

_N

ET
H

_L
ED

ET
H

_C
LK

ET
H

_C
R

S_
D

V

ET
H

_R
X

_D
0

ET
H

_R
X

_D
1

ET
H

_R
X

ER

ET
H

_T
D

_P
ET

H
_T

D
_N

ET
H

_R
D

_P
ET

H
_R

D
_N

ET
H

_T
X

_E
N

ET
H

_T
X

_D
0

ET
H

_T
X

_D
1

1%
R

9
6K

49
G

N
D

1%R
5

1K

ET
H

_M
D

IO
ET

H
_M

D
C

1%R
6

1K

ET
H

_I
N

T

3.
3V

6.
3V

X
5R

C
31

47
0n

F

G
N

D

6.
3V

X
7R

C
30

2.
2µ

F

V
D

D
_1

.2
V

3.
3V

L4

B
K

P0
60

3H
S1

21
-T

6.
3V

X
5R

C
28

47
0n

F

6.
3V

X
5R

C
33

47
0n

F

G
N

D

G
N

D

6.
3V

X
5R

C
21

22
µF

6.
3V

X
5R

C
32

22
µF

G
N

D
G

N
D

5%R
12

1M
10

00
V

X
7R

C
29

10
0p

F

G
N

D

25
V

X
5R

C
18

10
0n

F

G
N

D

25
V

X
5R

C
19

10
0n

F

G
N

D

1%
R

10

22
0R

3.
3V

1%R1
1

10
K

ET
H

_L
ED

ET
H

-R
ST

L-
G

N
J1

0B

R
J4

5
- 7

49
90

11
22

2A

R
-G

N
J1

0C

R
J4

5
- 7

49
90

11
22

2A

G
N

D

3.
3V

1%
R

72

22
0R

ET
H

_L
ED

2

i
ET

H
i

ET
H

i
ET

H

i
ET

H

i
ET

H

i
ET

Hi
ET

Hi
ET

H
PIC1801 PIC1802

CO
C1

8

PIC1901 PIC1902
CO

C1
9

PIC2101 PIC2102
COC

21
PIC2801 PIC2802

COC
28

PIC2901 PIC2902
CO
C2
9

PIC3001 PIC3002
CO
C3
0

PIC3101 PIC3102
CO

C3
1

PIC3201 PIC3202
CO

C3
2

PIC3301 PIC3302
CO

C3
3

P
I
J
1
0
0
1

P
I
J
1
0
0
2

P
I
J
1
0
0
3

PI
J1
00
4

P
I
J
1
0
0
5

P
I
J
1
0
0
6

P
I
J
1
0
0
7

PI
J1
00
8

PI
J1

00
15

PI
J1

00
16

 CO
J1
0A

PI
J1

00
9

PI
J1

00
10

CO
J1
0B

PIJ
100

11
PIJ

100
12

CO
J1
0C

PI
L4

01

PI
L4

02

COL
4

PIR501 PIR502 COR
5

PIR601 PIR602 COR
6

PI
R9

01

PI
R9

02

COR
9

PI
R1

00
1

PI
R1

00
2

CO
R1
0

PI
R1

10
1

PI
R1

10
2

CO
R1

1

PIR1201 PIR1202 CO
R1
2

PI
R7

20
1

PI
R7

20
2

COR
72

P
I
U
4
0
3

P
I
U
4
0
4

P
I
U
4
0
5

P
I
U
4
0
6

P
I
U
4
0
7

P
I
U
4
0
8

P
I
U
4
0
9

P
I
U
4
0
1
0

PI
U4
01
1

P
I
U
4
0
1
2

P
I
U
4
0
1
3

P
I
U
4
0
1
5

P
I
U
4
0
1
6

PI
U4
01
7

P
I
U
4
0
1
8

PI
U4
01
9

P
I
U
4
0
2
0

P
I
U
4
0
2
1

PI
U4
02
3

PI
U4
02
4

CO
U4
A

P
I
U
4
0
1

P
I
U
4
0
2

P
I
U
4
0
1
4

PI
U4
02
2

P
I
U
4
0
2
5

CO
U4
B

PIC2102
PIC2802

PI
J1

00
9

PIJ
100

11 PI
L4

01

PIR501
PIR601

P
I
U
4
0
1
4
 PI
U4
02
4

NL
ET

H0
RS

T

P
I
U
4
0
8

NL
ET
H0
CL
K

P
I
U
4
0
1
5

NL
ET
H0
CR
S0
DV

PIR602

P
I
U
4
0
1
8

NL
ET

H0
IN

T

PI
R1

00
2

PI
U4
02
3

NL
ET
H0
LE
D

PI
R7

20
2

NL
ET

H0
LE

D2

PI
U4
01
1

NL
ET

H0
MD

C

PIR502
P
I
U
4
0
1
0

NL
ET

H0
MD

IO

P
I
J
1
0
0
6

P
I
U
4
0
3

NL
ET

H0
RD

0N

P
I
J
1
0
0
3

P
I
U
4
0
4

NL
ET

H0
RD

0P

P
I
U
4
0
1
3

NL
ET
H0
RX
0D
0

P
I
U
4
0
1
2

NL
ET
H0
RX
0D
1

PI
U4
01
7

NL
ET

H0
RX

ER

P
I
J
1
0
0
2

P
I
U
4
0
5

NL
ET

H0
TD

0N

P
I
J
1
0
0
1

P
I
U
4
0
6

NL
ET

H0
TD

0P
 P

I
U
4
0
2
0

NL
ET
H0
TX
0D
0

P
I
U
4
0
2
1

NL
ET
H0
TX
0D
1

PI
U4
01
9

NL
ET
H0
TX
0E
N

PIC1801 PIC1901

PIC2101
PIC2801

PIC2902

PIC3002
PIC3102

PIC3202
PIC3302

PI
J1
00
8

PI
R9

01

PI
R1

10
2

PIR1202

PI
U4
02
2

P
I
U
4
0
2
5

PIC1802
PI
J1
00
4

PIC1902
P
I
J
1
0
0
5

PIC2901

PI
J1

00
15

PI
J1

00
16

PIR1201

PIC3201
PIC3301

PI
L4

02

P
I
U
4
0
2

P
I
J
1
0
0
7

PI
J1

00
10

PI

R1
00

1

PI
R1

10
1

PIJ
100

12
PI

R7
20

1

PI
R9

02

P
I
U
4
0
9

P
I
U
4
0
7

P
I
U
4
0
1
6

PIC3001
PIC3101

P
I
U
4
0
1

NL
VD

D0
10

2V

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

19
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

LE
D

_S
W

_B
U

T.
S

ch
D

oc
Fi

le
na

m
e:20

20
-0

6-
29

[N
o

Va
ria

tio
ns

]
TE

07
65

D
AT

2
1

C
D

/D
AT

3
2

C
M

D
3

V
D

D
4

C
LK

5

G
N

D
6

D
AT

0
7

D
AT

1
8

G
N

D
G

1

G
N

D
G

2

G
N

D
G

3

G
N

D
G

4 9 10

C
ar

d
D

et
ec

t
S
w

it
ch

J2 M
ic

ro
 S

D
 S

oc
ke

t

G
N

D

G
N

D

SD
_D

2
SD

_D
3

SD
_C

M
D

SD
_D

0
SD

_D
1

SD
_C

D

SD
_C

LK

10
V

X
5R

C
22

10
µF

G
N

D
3.

3V

1%
R

52
12

K
1

1%
R

55
12

K
1

1%
R

56
12

K
1

1%
R

57
12

K
1

1%
R

88
12

K
1

R1
19

12
K

1
C

D
/D

AT
3

1

C
M

D
2

V
S

S
1

3

V
D

D
4

C
LK

5

V
S

S
2

6

D
AT

0
7

D
AT

1
8

D
AT

2
9

C
D

10

W
P

11

C
ar

d
D

et
ec

t
S
w

it
ch

G
N

D
12

J1
5

M
M

C
 S

D
 S

oc
ke

t

R
21

12
K

1

R
24

12
K

1
R

25
12

K
1

R
26

12
K

1
SD

2_
D

2

SD
2_

D
3

SD
2_

C
M

D

SD
2_

D
0

SD
2_

D
1

SD
2_

C
LK

SD
2_

C
D

SD
2_

W
P

10
V

X
5R

C
27

10
µF

3.
3V

G
N

D

3.
3V

3.
3V

G
N

D

G
N

D

1%R
27

0R 1%R
32

0R 1%R
33

0R 1%R
34

0R

M
_

T
M

S

M
_

T
D

I

M
_

T
D

O

M
_

T
C

K
SD

_D
2

SD
_D

3

SD
_C

M
D

SD
_D

0

SD
_D

1

SD
_C

LK

1%R
35

0R 1%R
36

0R

ht
tp

://
lin

ux
-s

un
xi

.o
rg

/M
ic

ro
SD

_B
re

ak
ou

t

M
_

R
X

M
_

T
X

1%
R

89
12

K
1

R
12

0
12

K
1

R
12

1
12

K
1

1
8

S3
A

CH
S-

04
TA 2

7
S3

B

CH
S-

04
TA

6
3

S3
C

CH
S-

04
TA 4

5
S3

D

CH
S-

04
TA

1%
R

14
2

12
K

1

1%
R

14
3

12
K

1

1%
R

14
4

12
K

1

3.
3V

G
N

D

C
PL

D
_C

FG
0

C
PL

D
_C

FG
1

C
PL

D
_C

FG
2

1%
R

31
12

K
1

C
PL

D
_C

FG
3

3.
3V

PI
C2

20
1

PI
C2

20
2

CO
C2

2

PI
C2

70
1

PI
C2

70
2

CO
C2

7

P
I
J
2
0
1

P
I
J
2
0
2

P
I
J
2
0
3

P
I
J
2
0
4

P
I
J
2
0
5

P
I
J
2
0
6

P
I
J
2
0
7

P
I
J
2
0
8

P
I
J
2
0
9

P
I
J
2
0
1
0

P
I
J
2
0
G
1

P
I
J
2
0
G
2

P
I
J
2
0
G
3

P
I
J
2
0
G
4
 COJ
2

P
I
J
1
5
0
1

PI
J1
50
2

PI
J1
50
3

P
I
J
1
5
0
4

P
I
J
1
5
0
5

P
I
J
1
5
0
6

PI
J1
50
7

PI
J1
50
8

P
I
J
1
5
0
9

P
I
J
1
5
0
1
0

PI
J1

50
11

PI
J1

50
12

 COJ
15

PI
R2

10
1

PI
R2

10
2

CO
R2

1

PI
R2

40
1

PI
R2

40
2

CO
R2
4

PI
R2

50
1

PI
R2

50
2

CO
R2
5

PI
R2

60
1

PI
R2

60
2

CO
R2
6

PI
R2

70
1

PI
R2

70
2

CO
R2

7

PI
R3

10
1

PI
R3

10
2

CO
R3
1

PI
R3

20
1

PI
R3

20
2

CO
R3

2

PI
R3

30
1

PI
R3

30
2

CO
R3

3

PI
R3

40
1

PI
R3

40
2

CO
R3

4

PI
R3

50
1

PI
R3

50
2

CO
R3

5

PI
R3

60
1

PI
R3

60
2

CO
R3

6

PI
R5

20
1

PI
R5

20
2

CO
R5
2

PI
R5

50
1

PI
R5

50
2

CO
R5
5

PI
R5

60
1

PI
R5

60
2

CO
R5
6

PI
R5

70
1

PI
R5

70
2

CO
R5
7

PI
R8

80
1

PI
R8

80
2

CO
R8
8

PI
R8

90
1

PI
R8

90
2

CO
R8
9

PI
R1

19
01

PI

R1
19

02

CO
R1
19

PI
R1

20
01

PI

R1
20

02

CO
R1
20

PIR
121

01
PIR

121
02

CO
R1
21

PI
R1

42
01

PI

R1
42

02

CO
R1
42

PI
R1

43
01

PI

R1
43

02

CO
R1
43

PI
R1

44
01

PI

R1
44

02

CO
R1
44

P
I
S
3
0
1

P
I
S
3
0
8
 CO
S3
A

P
I
S
3
0
2

P
I
S
3
0
7
 CO
S3
B

P
I
S
3
0
3

P
I
S
3
0
6
 CO
S3
C

P
I
S
3
0
4

P
I
S
3
0
5
 CO
S3
D

PI
C2

20
1

PI
C2

70
1

P
I
J
2
0
4

P
I
J
1
5
0
4

PI
R2

10
1

PI
R2

40
1

PI
R2

50
1

PI
R2

60
1

PI
R5

20
2

PI
R5

50
2

PI
R5

60
2

PI
R5

70
2

PI
R8

80
2

PI
R8

90
2

PI
R1

19
01

PI
R1

20
01

PIR
121

01

P
I
S
3
0
1

P
I
S
3
0
2

P
I
S
3
0
3

P
I
S
3
0
4

PI
R1

42
01

P
I
S
3
0
8

NL
CP
LD
0C
FG
0

PI
R1

43
01

P
I
S
3
0
7

NL
CP
LD
0C
FG
1

PI
R1

44
01

P
I
S
3
0
6

NL
CP
LD
0C
FG
2

PI
R3

10
1

P
I
S
3
0
5

NL
CP
LD
0C
FG
3

PI
C2

20
2

PI
C2

70
2

P
I
J
2
0
6

P
I
J
2
0
1
0

P
I
J
2
0
G
1

P
I
J
2
0
G
2

P
I
J
2
0
G
3

P
I
J
2
0
G
4

PI
J1
50
3

P
I
J
1
5
0
6

PI
R3

10
2

PI
R1

42
02

PI
R1

43
02

PI
R1

44
02

PI
R3

50
2

NL
M0
RX

PI
R2

70
2

NL
M0

TC
K

PI
R3

40
2

NL
M0
TD
I

PI
R3

30
2

NL
M0

TD
O

PI
R3

20
2

NL
M0

TM
S

PI
R3

60
2

NL
M0
TX

PI
J1

50
12

P
I
J
1
5
0
1
0

PI
R1

20
02

NL

SD
20

CD

P
I
J
1
5
0
5

NL
SD
20
CL
K

PI
J1
50
2

PI
R2

10
2

NL
SD

20
CM

D

PI
J1
50
7

PI
R2

40
2

NL
SD
20
D0

PI
J1
50
8

PI
R2

50
2

NL
SD

20
D1

P
I
J
1
5
0
9

PI
R2

60
2

NL
SD
20
D2

P
I
J
1
5
0
1

PI
R1

19
02

NL
SD
20
D3

PI
J1

50
11

PIR

121
02

NL
SD

20
WP

P
I
J
2
0
9

PI
R8

90
1

NL
SD

0C
D

P
I
J
2
0
5

PI
R3

60
1

NL
SD

0C
LK

P
I
J
2
0
3

PI
R3

30
1

PI
R5

60
1

NL
SD

0C
MD

P
I
J
2
0
7

PI
R3

40
1

PI
R5

70
1

NL
SD
0D
0

P
I
J
2
0
8

PI
R3

20
1

PI
R8

80
1

NL
SD

0D
1

P
I
J
2
0
1

PI
R2

70
1

PI
R5

20
1

NL
SD
0D
2

P
I
J
2
0
2

PI
R3

50
1

PI
R5

50
1

NL
SD

0D
3

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

20
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

Po
w

er
M

ai
n.

S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

G
N

D

V
O

U
T

GND 8

Vi
n

1

S
Y

N
C

2
FB

5

Vo
ut

7

S
S

/T
R

K
6

E
N

3

AGND 4

U
12

17
10

50
60

1
G

N
D

G
N

D

10
V

X
5R

C
13

10
0µ

F
10

V
X

5R

C
15

10
0µ

F
10

V
X

5R

C
16

10
0µ

F

50
V

X
7R

C
17

47
0n

F

50
V

X
7R

C
7

47
nF

50
V

X
7R

C
8

47
nF

25
V

X
5R

C
3

22
µF

G
N

D
G

N
D

5V

1%R
2

5K
6

1%R
4

1K
15

4
.6

7
V

G
N

D
G

N
D

12
V

_F
U

SE
D

G
N

D

G
N

D

V
O

U
T

GND 8

Vi
n

1

S
Y

N
C

2
FB

5

Vo
ut

7

S
S

/T
R

K
6

E
N

3

AGND 4

U
14

17
10

50
60

1
G

N
D

G
N

D

10
V

X
5R

C
40

10
0µ

F
10

V
X

5R

C
99

10
0µ

F
10

V
X

5R

C
10

0
10

0µ
F

50
V

X
7R

C
10

2
47

0n
F

50
V

X
7R

C
38

47
nF

50
V

X
7R

C
39

47
nF

25
V

X
5R

C
37

22
µF

G
N

D

G
N

D
G

N
D

12
V

_F
U

SE
D

G
N

D

G
N

D

1%R
19

3K
3

1%R
20

1K
05

3
.3

0
V

3.
3V

1.
8V

GATE8

Vo
ut

7

FA
U

LT
6

S
H

D
N

5

U
V

2

O
V

3

G
N

D
4

Vi
n

1
U

34

LT
C

43
65

IT
S8

#T
R

M
PB

F

1%R
13

9
47

0K

G
N

D

R
13

7

5K
1

R
13

5
10

R
R

13
6

10
R

SR
=

2V
/m

s

G
N

D
16

V
X

5R

C
14

4
10
µF

5
3

4

6
T5

A
A

O
48

32

7
1

2

8
T5

B
A

O
48

32

50
V

X
7R

C
13

9

10
nF G

N
D

O
V

 =
 1

4V
U

V
 =

 1
0V

1%R
13

8
1M

1%R
14

0
27

K

1%R
14

1
37

K
4

1 2
34

L5 9µ
H

G
N

D

1 3 2

J1
1

Po
w

er
 Ja

ck
 2

.1
m

m
 9

0°
 S

M
D

iH
V

D
5

SM
BJ

20
A

, 2
0V

, 6
00

W

PO
W

ER
_G

N
D

12
V

_F
U

SE
D

V
IN

2
31

F2
F1

S1

A
10

1J
1A

V
2Q

00
4

G
N

D

C
PL

D
_A

D
C

1

1%R
15

5
27

K

1%R
16

0
27

K

G
N

D

50
V

X
7R

C
18

1
10

nF

G
N

D

F1

Fu
se

 3
A

 3
5V

 S
M

D
 1

20
6

fa
st

PIC301 PIC302
COC

3
PIC701 PIC702

COC
7

PIC801 PIC802
COC

8
PIC1301 PIC1302

CO
C1

3
PIC1501 PIC1502

CO
C1

5
PIC1601 PIC1602

CO
C1
6

PIC1701 PIC1702
CO

C1
7

PIC3701 PIC3702
CO

C3
7

PIC3801 PIC3802
CO

C3
8

PIC3901 PIC3902
CO
C3
9

PIC4001 PIC4002
CO
C4
0

PIC9901 PIC9902
CO
C9
9

PIC10001 PIC10002
CO
C1
00

PIC10201 PIC10202
CO
C1
02

PIC
139

01
PIC

139
02

CO
C1
39

PIC14401 PIC14402
CO
C1
44

PIC18101 PIC18102
CO
C1
81

PID501 PID502

COD
5

PI
F1

01

PI
F1

02

COF
1

P
I
J
1
1
0
1

PI
J1
10
2

P
I
J
1
1
0
3

COJ
11

P
I
L
5
0
1

P
I
L
5
0
2

P
I
L
5
0
3

P
I
L
5
0
4

COL
5

PIR201 PIR202 COR
2

PIR401 PIR402 COR
4 PIR1901 PIR1902 CO

R1
9

PIR2001 PIR2002 CO
R2
0

PIR13501 PIR13502 CO
R1
35

PIR13601 PIR13602 CO
R1
36

PI
R1
37
01

PIR
137

02

CO
R1
37

PIR13801 PIR13802 CO
R1
38

PIR13901 PIR13902 CO
R1
39

PIR14001 PIR14002 CO
R1
40

PIR14101 PIR14102 CO
R1
41

PIR15501 PIR15502 CO
R1
55

PIR16001 PIR16002 CO
R1
60

P
I
S
1
0
1

P
I
S
1
0
2

P
I
S
1
0
3

PIS10F1 PIS1
0F2

COS
1

P
I
T
5
0
3

PIT504

P
I
T
5
0
5

P
I
T
5
0
6

CO
T5
A

P
I
T
5
0
1

PIT502

P
I
T
5
0
7

P
I
T
5
0
8

CO
T5
B

P
I
U
1
2
0
1

P
I
U
1
2
0
2

PI
U1
20
3

PIU1204

P
I
U
1
2
0
5

PI
U1
20
6

P
I
U
1
2
0
7

PIU1208

CO
U1
2

PI
U1
40
1

P
I
U
1
4
0
2

P
I
U
1
4
0
3

PIU1404

P
I
U
1
4
0
5

P
I
U
1
4
0
6

PI
U1
40
7

PIU1408

CO
U1
4

P
I
U
3
4
0
1

P
I
U
3
4
0
2

P
I
U
3
4
0
3

PI
U3
40
4

PI
U3
40
5

PI
U3

40
6

P
I
U
3
4
0
7

PIU3408
CO
U3
4

P
I
U
1
4
0
3

PIC3902
PIC4001

PIC9901
PIC10001

PIR1901
PI
U1
40
7

PIC802
PIC1301

PIC1501
PIC1601

PIR201
PIR15501

P
I
U
1
2
0
7

PIC302
PIC702

PIC3702
PIC3802

PIC14401

P
I
T
5
0
5

P
I
T
5
0
6

P
I
U
1
2
0
1

PI
U1
40
1

P
I
U
3
4
0
7

PIC18101
PIR15502 PIR16001

NL
CP
LD
0A
DC
1

PIC301
PIC701

PIC801
PIC1302

PIC1502
PIC1602

PIC1702

PIC3701
PIC3801

PIC3901
PIC4002

PIC9902
PIC10002

PIC10202

PIC
139

02

PIC14402

PIC18102

P
I
L
5
0
3

PIR402

PIR2002

PIR14102

PIR16002

PIS10F1 PIS1
0F2

P
I
U
1
2
0
2

PIU1204
PIU1208

P
I
U
1
4
0
2

PIU1404
PIU1408

PI
U3
40
4

PIC1701
PI
U1
20
6

PIC10201
P
I
U
1
4
0
6

PIC
139

01
PIR

137
02

PID501
PI

F1
02

P
I
L
5
0
1

PI
F1

01

P
I
J
1
1
0
1

P
I
L
5
0
4

P
I
S
1
0
2

PIR202 PIR401

P
I
U
1
2
0
5

PIR1902 PIR2001

P
I
U
1
4
0
5

PIR13501 PIT502 PIR13502
PIR13602

PI
R1
37
01

PIU3408

PIR13601 PIT504

PIR13802

PIR14001
P
I
U
3
4
0
2

PIR13902
PI
U3
40
5

PIR14002 PIR14101
P
I
U
3
4
0
3

P
I
S
1
0
3

P
I
T
5
0
1

P
I
T
5
0
3

PI
U1
20
3

PI
U3

40
6

PID502
PI
J1
10
2

P
I
J
1
1
0
3

P
I
L
5
0
2

NL
PO
WE
R0
GN
D

PIR13801
PIR13901

P
I
S
1
0
1

P
I
T
5
0
7

P
I
T
5
0
8

P
I
U
3
4
0
1

NL
VI
N

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

21
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH
 /

TT

P
O

W
ER

.S
ch

D
oc

Fi
le

na
m

e:20
20

-0
6-

29

[N
o

Va
ria

tio
ns

]
TE

07
65

1V

G
N

D
G

N
D

V
O

U
T

5

V
O

U
T

6

V
O

U
T

7

V
O

U
T

8

V
O

U
T

9

V
O

U
T

10

V
O

U
T

11

P
G

N
D

13

P
G

N
D

14

P
G

N
D

15

P
G

N
D

16

P
G

N
D

17

P
G

N
D

18

P
V

IN
19

P
V

IN
20

P
V

IN
21

LL
M

/S
Y

N
C

26

E
N

A
B

LE
27

P
O

K
28

R
LL

M
29

S
S

30

V
FB

31

A
G

N
D

32

AV
IN

33

P
G

N
D

39

N
C

(S
W

)
1

N
C

(S
W

)
2

N
C

3

N
C

4

N
C

(S
W

)
12

N
C

22

N
C

23

N
C

24

N
C

25

N
C

(S
W

)
34

N
C

(S
W

)
35

N
C

(S
W

)
36

N
C

(S
W

)
37

N
C

(S
W

)
38

U
11

EN
63

47
Q

I

25
V

X
5R

C
41

22
µF

G
N

D

1%R
49

20
0K

1%R
50

60
4K

G
N

D

G
N

D
6.

3V
X

5R

C1
19

47
nF

6.
3V

N
P0

C1
11

22
pF

6.
3V

X
5R

C
6

47
µF

PG
_1

V
0

So
ft-

st
ar

t 3
.8

m
s

R
17

10
K

5V

5V

1.
8V

10
V

X
5R

C
12

0
10
µF

G
N

D

5V

P
G

N
D

2

V
S

E
N

S
E

5

V
O

U
T

7

V
O

U
T

8

A
G

N
D

6

AV
IN

13

E
N

A
B

LE
12

P
V

IN
14

N
C

(S
W

)
1

LL
M

3

V
S

0
11

V
S

1
10

V
S

2
9

N
C

4

N
C

(S
W

)
15

N
C

(S
W

)
16

U
13

EP
53

A
7H

Q
I

G
N

D

1%R
51

10
0R

10
V

X
5R

C
12

1
10
µF

G
N

D

PG
_1

V
0

5V

50
V

X
7R

C
18

3
10

nF

G
N

D

C
PL

D
_A

D
C

2

C
PL

D
_A

D
C

3

50
V

X
7R

C
18

2
10

nF

G
N

D

1V

R
16

2
10

K

R
16

1
10

K

PI
C6

01

PI
C6

02

CO
C6

PI
C4

10
1

PI
C4

10
2

CO
C4

1

PIC11101 PIC11102
CO
C1
11

PIC11901 PIC11902
CO
C1
19

PIC12001 PIC12002
CO
C1
20

PIC12101 PIC12102
CO
C1
21

PIC18201 PIC18202
CO
C1
82

PIC18301 PIC18302
CO
C1
83

PI
R1

70
1

PI
R1

70
2

CO
R1
7

PIR4901 PIR4902 CO
R4

9

PIR5001 PIR5002 CO
R5

0

PI
R5

10
1

PI
R5
10
2

CO
R5

1

PIR16101 PIR16102 CO
R1
61

PIR16201 PIR16202 CO
R1
62

P
I
U
1
1
0
1

P
I
U
1
1
0
2

PI
U1
10
3

PI
U1
10
4

P
I
U
1
1
0
5

P
I
U
1
1
0
6

P
I
U
1
1
0
7

P
I
U
1
1
0
8

PI
U1
10
9

P
I
U
1
1
0
1
0

P
I
U
1
1
0
1
1

P
I
U
1
1
0
1
2

P
I
U
1
1
0
1
3

P
I
U
1
1
0
1
4

P
I
U
1
1
0
1
5

P
I
U
1
1
0
1
6

P
I
U
1
1
0
1
7

P
I
U
1
1
0
1
8

P
I
U
1
1
0
1
9

P
I
U
1
1
0
2
0

PI
U1
10
21

P
I
U
1
1
0
2
2

P
I
U
1
1
0
2
3

P
I
U
1
1
0
2
4

PI
U1
10
25

P
I
U
1
1
0
2
6

PI
U1
10
27

P
I
U
1
1
0
2
8

P
I
U
1
1
0
2
9

P
I
U
1
1
0
3
0

PI
U1

10
31

P
I
U
1
1
0
3
2

P
I
U
1
1
0
3
3

P
I
U
1
1
0
3
4

P
I
U
1
1
0
3
5

P
I
U
1
1
0
3
6

P
I
U
1
1
0
3
7

PI
U1
10
38

P
I
U
1
1
0
3
9

CO
U1
1

PI
U1
30
1

PI
U1
30
2

P
I
U
1
3
0
3

PI
U1
30
4

P
I
U
1
3
0
5

P
I
U
1
3
0
6

P
I
U
1
3
0
7

PI
U1
30
8

PI
U1
30
9

P
I
U
1
3
0
1
0

P
I
U
1
3
0
1
1

PI
U1
30
12

P
I
U
1
3
0
1
3

P
I
U
1
3
0
1
4

P
I
U
1
3
0
1
5

P
I
U
1
3
0
1
6

CO
U1
3

PIC12101
PIR16202

P
I
U
1
3
0
5

P
I
U
1
3
0
7

PI
U1
30
8

PI
C6

01

PIC11101
PIR4901

PIR16102

P
I
U
1
1
0
5

P
I
U
1
1
0
6

P
I
U
1
1
0
7

P
I
U
1
1
0
8

PI
U1
10
9

P
I
U
1
1
0
1
0

P
I
U
1
1
0
1
1

PI
C4

10
2

PIC12001

PI
R1

70
1

PI
R5

10
1

P
I
U
1
1
0
1
9

P
I
U
1
1
0
2
0

PI
U1
10
21

PI
U1
10
27

P
I
U
1
1
0
3
3

PI
U1
30
9

P
I
U
1
3
0
1
0

P
I
U
1
3
0
1
1

P
I
U
1
3
0
1
4

PIC18301 PIR16201
NL
CP
LD
0A
DC
2

PIC18201 PIR16101
NL
CP
LD
0A
DC
3

PI
C6

02

PI
C4

10
1

PIC11902

PIC12002
PIC12102

PIC18202

PIC18302

PIR5002

P
I
U
1
1
0
1
3

P
I
U
1
1
0
1
4

P
I
U
1
1
0
1
5

P
I
U
1
1
0
1
6

P
I
U
1
1
0
1
7

P
I
U
1
1
0
1
8

P
I
U
1
1
0
2
6

P
I
U
1
1
0
3
2

P
I
U
1
1
0
3
9

PI
U1
30
2

P
I
U
1
3
0
6

PIC11102
PIR4902 PIR5001

PI
U1

10
31

PIC11901
P
I
U
1
1
0
3
0

PI
R5
10
2

P
I
U
1
3
0
1
3

P
I
U
1
1
0
1

P
I
U
1
1
0
2

PI
U1
10
3

PI
U1
10
4

P
I
U
1
1
0
1
2

P
I
U
1
1
0
2
2

P
I
U
1
1
0
2
3

P
I
U
1
1
0
2
4

PI
U1
10
25

P
I
U
1
1
0
2
9

P
I
U
1
1
0
3
4

P
I
U
1
1
0
3
5

P
I
U
1
1
0
3
6

P
I
U
1
1
0
3
7

PI
U1
10
38

PI
U1
30
1

PI
U1
30
4

P
I
U
1
3
0
1
5

P
I
U
1
3
0
1
6

PI
R1

70
2

P
I
U
1
1
0
2
8

P
I
U
1
3
0
3

PI
U1
30
12

NL
PG
01
V0

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

22
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

S
O

U
N

D
.S

ch
D

oc
Fi

le
na

m
e:20

20
-0

6-
29

[N
o

Va
ria

tio
ns

]
TE

07
65

1 2 3 4

J9 3.
5R

C
A

G
N

D

1%R
63

15
0R

1%R
65

15
0R

25
V

X
7R

C
12

7
33

nF

25
V

X
7R

C
12

9
33

nF

G
N

D

G
N

D

3.
3V

3.
3V

G
N

D

G
N

D

1%R
62

24
0R

1%R
64

24
0R

10
V

X
5R

C
12

6

10
µF

10
V

X
5R

C
12

8

10
µF

10
V

X
5RC
12

5

10
µF

1%
R

61

24
0R

C
12

4
33

nF

R
59

2K
61

G
N

D

V
_P

V
_N

1%R
60

20
0K

C
12

3
4.

7µ
F

D
6

BA
V

19
9L

T1
G

D
7

BA
V

19
9L

T1
G

D
8

BA
V

19
9L

T1
G

1%
R

54

24
0R

1%
R

66

24
0R

1V

G
N

D

G
N

D

L1
1

M
PZ

16
08

S2
21

A
5V

PW
M

_R

PW
M

_L

O
U

TL
+

1

O
U

TL
-

2

A
D

D
R

3

S
D

A
4

S
C

L
5

M
C

LK
6

B
C

LK
7

G
N

D
8

LR
C

LK
9

SD
AT

A
10

S
A

M
O

D
11

D
V

D
D

12

S
D

13

O
U

TR
-

14
O

U
TR

+
15

P
V

D
D

16

G
N

D
17

G
N

D
18

G
N

D
19

P
V

D
D

20

E
P

21

U
37

SS
M

25
18

C
PZ

-R
7

N
O

T
C

H
EC

K
ED

!!
!

3.
3V A

U
D

IO
_B

C
LK

A
U

D
IO

_L
R

C
LK

A
U

D
IO

_S
D

A
TA

A
U

D
IO

_M
C

LK

G
N

D

nS
D

_A
U

D
IO

2AL1

B
LM

15
PX

12
1S

N
1D

2AL6 B
LM

15
PX

12
1S

N
1D

2AL8 B
LM

15
PX

12
1S

N
1D

2AL9
B

LM
15

PX
12

1S
N

1D

50
V

C
87

47
0p

F
50

V

C
88

47
0p

F

G
N

D
G

N
D

50
V

C
89

47
0p

F
50

V

C
94

47
0p

F

G
N

D
G

N
D

C
86

47
0n

F

G
N

D

FP
G

A
_S

C
L

FP
G

A
_S

D
A

I2
C

 a
dd

r:
0x

34

6.
3V

C
83

47
µF

G
N

D
6.

3V

C
82

47
µF

50
V

C
84

47
0p

F

G
N

D
50

V

C
85

47
0p

F

G
N

D

iI2
S

R
47

4K
7

G
N

D

1 2

J2
2

JS
T-

S2
B

-X
H

-A

1 2

J1
9

JS
T-

S2
B

-X
H

-A

SP
K

L_
P

SP
K

L_
N

SP
K

R
_P

SP
K

R
_N

5V
_P

V
D

D
PIC8201 PIC8202

CO
C8
2

PIC8301 PIC8302
COC

83
PIC8401 PIC8402

CO
C8
4

PIC8501 PIC8502
COC

85

PIC8601 PIC8602
CO
C8
6

PIC8701 PIC8702
CO
C8
7

PIC8801 PIC8802
CO
C8
8

PIC8901 PIC8902
CO
C8
9

PIC9401 PIC9402
CO
C9
4

PIC12301 PIC12302
CO
C1
23

PIC12401 PIC12402
CO
C1
24

PI
C1

25
01

PI

C1
25

02
 CO
C1
25

PI
C1
26
01

PIC
126

02 CO
C1
26

PIC12701 PIC12702
CO
C1
27

PI
C1

28
01

PI

C1
28

02
 CO
C1
28

PIC12901 PIC12902
CO
C1
29

PID601
PID602

PID603

COD
6

PID701
PID702

PID703
CO

D7

PID801
PID802

PID803
COD

8

P
I
J
9
0
1

P
I
J
9
0
2

P
I
J
9
0
3

P
I
J
9
0
4
 COJ
9

PI
J1
90
1

P
I
J
1
9
0
2
 COJ
19

P
I
J
2
2
0
1

P
I
J
2
2
0
2
 COJ
22

PIL101 PIL102

COL
1

PIL601 PIL602

COL
6

PIL801 PIL802

COL
8

PIL901 PIL902

COL
9

PI
L1

10
1

PI
L1

10
2 COL

11

PIR4701 PIR4702 CO
R4

7

PI
R5
40
1

PI
R5

40
2

CO
R5
4

PI
R5

90
1

PI
R5

90
2

CO
R5
9

PIR6001 PIR6002 CO
R6
0

PI
R6

10
1

PI
R6

10
2

CO
R6

1

PI
R6

20
1

PI
R6

20
2

COR
62

PIR6301 PIR6302 CO
R6

3
PI

R6
40

1
PI

R6
40

2

CO
R6
4

PIR6501 PIR6502 COR
65

PI
R6
60
1

PI
R6

60
2

CO
R6
6

P
I
U
3
7
0
1

P
I
U
3
7
0
2

P
I
U
3
7
0
3

P
I
U
3
7
0
4

P
I
U
3
7
0
5

PI
U3
70
6

P
I
U
3
7
0
7

PI
U3
70
8

PI
U3
70
9

P
I
U
3
7
0
1
0

PI
U3
70
11

P
I
U
3
7
0
1
2

P
I
U
3
7
0
1
3

PI
U3
70
14

PI
U3
70
15

P
I
U
3
7
0
1
6

P
I
U
3
7
0
1
7

P
I
U
3
7
0
1
8

P
I
U
3
7
0
1
9

P
I
U
3
7
0
2
0

PI
U3
70
21

CO
U3

7

PI
R5

90
2

PIC8601

PID702

PID802

P
I
U
3
7
0
1
2

PI
L1

10
1

PIC8201
PIC8301

PIC8401
PIC8501

PI
L1

10
2

P
I
U
3
7
0
1
6

P
I
U
3
7
0
2
0
 NL
5V
0P
VD
D

P
I
U
3
7
0
7

NL
AU

DI
O0

BC
LK

PI
U3
70
9

NL
AU
DI
O0
LR
CL
K

PI
U3
70
6

NL
AU

DI
O0

MC
LK

P
I
U
3
7
0
1
0

NL
AU
DI
O0
SD
AT
A

P
I
U
3
7
0
5

NL
FP

GA
0S

CL

P
I
U
3
7
0
4

NL
FP

GA
0S

DA

PIC8202
PIC8302

PIC8402
PIC8502

PIC8602

PIC8702
PIC8802

PIC8902
PIC9402

PIC12302 PIC12402

PIC12702
PIC12902

PID701

PID801

P
I
J
9
0
2

PIR4701

PIR6302

PIR6502

P
I
U
3
7
0
3

PI
U3
70
8

PI
U3
70
11

P
I
U
3
7
0
1
7

P
I
U
3
7
0
1
8

P
I
U
3
7
0
1
9

PI
U3
70
21

PIC12301

PID601
PID602

PI
R5

40
2

PI
R5

90
1

PIR6002

PIC12401
PID603

PIR6001

PI
R6

10
1

PI
R6

60
2

PI
C1

25
01

P
I
J
9
0
1

PI
C1

25
02

PI

R6
10

2

PI
C1
26
01

P
I
J
9
0
3

PIC
126

02
PIC12701

PID703

PI
R6

20
2

PIR6301
PI

C1
28

01

P
I
J
9
0
4

PI
C1

28
02

PIC12901

PID803

PI
R6

40
2

PIR6501

PIL102
P
I
U
3
7
0
1

PIL602
P
I
U
3
7
0
2

PIL801
PI
U3
70
15

PIL901
PI
U3
70
14

PIR4702
P
I
U
3
7
0
1
3

NL
nS
D0
AU
DI
O

PI
R6

40
1

NL
PW

M0
L

PI
R6

20
1

NL
PW

M0
R

PIC8801
P
I
J
2
2
0
2

PIL601
NL

SP
KL

0N

PIC8701

P
I
J
2
2
0
1

PIL101
NL

SP
KL

0P

PIC9401
P
I
J
1
9
0
2

PIL902
NL

SP
KR

0N

PIC8901

PI
J1
90
1

PIL802
NL
SP
KR
0P

PI
R6
60
1

NL
V0
N

PI
R5
40
1

NL
V0
P

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e

23
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

03
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

R
ev

is
io

n_
C

ha
ng

es
.S

ch
D

oc
Fi

le
na

m
e:20

20
-0

6-
29

[N
o

Va
ria

tio
ns

]
TE

08
35

D
es

cr
ip

tio
n

R
EV

R
EV

IS
IO

N
 H

IS
TO

RY

-0
3

IG
1.

 A
dd

ed
 a

 V
RP

 re
si

st
or

 o
n

ba
nk

 6
5;

2.
 L

D
O

 U
33

 is
 c

ha
ng

ed
 o

n
A

D
P7

10
2A

C
PZ

;
3.

 S
ig

na
l F

PG
A

 IO
0

is
 c

on
ne

ct
ed

 o
n

A
E1

8
pi

n
of

 F
PG

A
;

4.
 S

ig
na

l D
B

G
_L

ED
3

is
 c

on
ne

ct
ed

 o
n

A
D

18
 p

in
 o

f F
PG

A
;

5.
 S

ig
na

l M
IO

13
_2

5
co

nn
ec

te
d

to
 J1

 p
in

 3
3

in
st

ea
d

M
IO

25
.

6.
 R

es
is

to
r R

84
 is

 re
m

ov
ed

;
7.

 L
ED

 D
1

m
ov

ed
 o

n
ed

ge
 o

f P
C

B
;

8.
 A

dd
ed

 T
H

T
te

stp
oi

nt
s J

4
on

 C
PL

D
_J

TA
G

EN
, R

76
 w

as
 re

m
ov

ed
;

9.
 S

ig
na

ls
 B

49
_X

X
_X

 a
re

 re
na

m
ed

 in
 B

88
_X

X
_X

;
10

. C
24

1
is

 c
ha

ng
ed

 o
n

1n
F;

11
. L

en
gt

h
of

 C
LK

 si
gn

al
s o

n
R

FA
D

C
 a

nd
 R

FD
A

C
 a

re
 a

dj
us

te
d;

12
. W

ro
ng

 c
on

ne
ct

io
n

on
 U

8
is

 fi
xe

d
(P

C
B

);
13

. W
ro

ng
 c

on
ne

ct
io

n
PG

O
O

D
1

pi
n

of
 U

7
is

 fi
xe

d;

PAB10
0

PAB10
H1 PAB10H

2

COB
1

PAC1
02 PAC101

COC1

PA
C2

01

PA
C2

02

COC
2

PAC30
1

PAC30
2

COC
3

PAC401
PAC40

2 CO
C4

PAC
501

PA
C5

02

COC
5

PAC
601

PA
C6

02

CO
C6

PAC701 PAC7
02

COC7 PAC8
01

PA
C8

02
 COC8

PAC9
01

PAC902

CO
C9

PAC1
001

PAC1
002

CO
C1
0

PAC1101 PAC1102

COC11

PAC1
202 PAC1201

COC12

PAC1301

PAC1302

COC13

PAC1
401

PAC1
402

COC14

PAC1501

PAC1502

COC15
 PAC1601

PAC1602

COC16

PA
C1

70
2

PAC1
701 COC17

PAC1
801 PAC1802

COC18
PAC1

901

PAC1
902 COC19

PAC2001
PAC2002

COC20

PA
C2

10
2

PAC2
101

CO
C2
1

PAC
220

1

PAC
220

2

COC22

PAC2
301

PAC2
302

C
O
C
2
3

PAC2401
PAC2402

COC24

PAC2
501

PAC2
502

CO
C2
5

PAC2
601

PAC2
602

COC26

PAC
270

1

PA
C2

70
2

COC27

PAC2
801

PAC2
802

CO
C2
8

PAC29
01

PAC29
02

COC29

PAC3
002

PAC3
001

CO
C3
0

PAC3
101

PAC3
102

CO
C3
1

PAC3
202

PAC3
201 COC32

PAC3
301 P

AC33
02 CO

C3
3

PAC3
401

PAC3
402

C
O
C
3
4

PA
C3

50
1

PA
C3

50
2 COC35 PAC3
601 PAC3602 COC36

PAC3701

PAC3702

COC37

PAC3
801

PAC3
802

COC38

PAC3
901

PAC3
902

COC39

PAC4001

PAC4002

COC40

PAC
410

1

PAC
410

2
COC41

PAC4
201 P

AC42
02

COC42

PAC4
301

PAC4302

COC43
PA

C4
40

2
PAC4

401

CO
C4
4

PAC4501
PAC45

02
CO
C4
5

PAC4602
PAC4

601 CO
C4
6

PAC4702
PAC4701 CO
C4
7

PAC4
802

PAC4
801

CO
C4
8

PAC4901

PAC4
902

COC49

PAC5
002

PA
C5

00
1

C
O
C
5
0

PAC5
101

PAC5
102

COC51 PAC5
201

PAC5
202 CO
C5
2

PAC530
1

PAC530
2 CO

C5
3

PAC5
401

PAC5
402 CO
C5
4

PAC5
502

PAC5
501 CO
C5
5

PAC5
602

PAC5
601

COC56

PAC5702 PAC5
701

COC57
 PAC5801 PAC5802 CO
C5
8

PAC5
901

PAC5
902

C
O
C
5
9

PAC6
001

PAC6
002

CO
C6
0

PAC6
101

PAC6
102

COC61

PAC6201
PAC6

202

CO
C6
2

PA
C6

30
2

PAC6
301

COC63
PAC6

401

PAC6402

COC64

PAC6
501 P

AC65
02

COC65

PAC6
601

PAC6
602

CO
C6
6

PAC6
701 P

AC67
02

COC67

PAC6
802

PA
C6

80
1

COC68
 PAC6902 PAC6

901

COC69

PAC7002 PAC7001
COC70

PAC7
101 PAC7102

COC71

PAC7201
PAC72

02
CO
C7
2

PAC7
301

PAC7
302

C
O
C
7
3

PA
C7

40
2

PA
C7

40
1

COC74

PAC7501
PAC7502

CO
C7
5

PAC7
601

PAC7
602

COC76

PAC7701

PAC7
702

CO
C7
7

PAC7802 PAC7
801

COC78

PAC7
902

PA
C7

90
1

COC79
PAC8002 PAC8

001
COC80

PAC8
102

PA
C8

10
1

COC81

PAC8202
PAC82

01 CO
C8
2

PAC8302
PAC83

01

CO
C8
3

PAC8
402

PAC8
401 CO
C8
4

PAC8
502

PAC8
501 CO
C8
5

PAC8
602 P

AC86
01 CO
C8
6

PAC8
702 PAC8701 CO
C8
7

PA
C8

80
2

PAC8
801 CO
C8
8

PA
C8

90
2

PAC8
901

CO
C8
9

PAC9002 PAC9
001

COC90

PAC9101

PAC9
102

CO
C9
1

PAC9
201 P

AC92
02

COC92

PAC9
301

PAC9
302

C
O
C
9
3

PA
C9

40
2

PAC9
401

CO
C9
4

PAC9
801 P

AC98
02

COC98

PAC9901

PAC9902

COC99
PAC100

01
PAC100

02
COC100 PAC10
202

PAC10201
CO
C1
02

PAC10601
PAC10602

COC106

PAC11
101

PAC11
102 COC111

PAC
117

01

PAC
117

02

C
O
C
1
1
7

PAC11
801 PAC11802 COC118

PAC11
901

PAC11902

CO
C1
19

PAC
120

01

PAC1
2002

 COC120
PAC1

2101

PAC
121

02

COC121

PAC12
201

PAC
122

02

COC122

PAC
123

02

PAC
123

01

CO
C1
23

PAC12
401

PAC12
402

CO
C1
24

PAC1
2501

PAC
125

02

CO
C1
25

PAC1260
1

PAC12
602 COC126 PAC12

701
PAC12

702
COC127

PAC1280
1

PAC12
802 COC128

PAC12901
PAC12902

COC129

PAC1
3401

PAC1
3402

COC134

PAC135
01

PAC135
02 COC135

PAC13701 PAC13702

C
O
C
1
3
7

PAC13
801

PAC13
802

CO
C1
38

PAC
139

01

PAC13
902 CO
C1
39

PAC14
001

PAC14
002

CO
C1
40

PAC14
101

PAC14102

COC141 PAC14
201

PAC14
202

COC142 PAC14
301 PA

C1430
2

COC143

PAC14
402

PAC14
401

CO
C1
44

PAC14
501

PAC
145

02
CO
C1
45

PAC14
601

PAC14
602

C
O
C
1
4
6

PAC
147

01

PAC
147

02

CO
C1
47

PAC1
4801

PAC1
4802

CO
C1
48

PAC1
4901

PAC1
4902

COC149

PAC15001 PAC15002

C
O
C
1
5
0

PAC15
101 PA

C1510
2

COC151 PAC15
201 PA

C1520
2

COC152

PAC15301
PAC15302

COC153
PAC15

401
PAC15

402

C
O
C
1
5
4

PAC15
501

PAC15
502

CO
C1
55

PAC15
602

PAC15
601

C
O
C
1
5
6

PAC15
701

PAC15
702

C
O
C
1
5
7

PAC
158

01

PAC1
5802

COC158

PAC15
902

PAC15
901

C
O
C
1
5
9

PAC16
002

PAC
160

01

COC160

PAC16
102

PAC16
101

CO
C1
61

PAC
162

01

PAC1
6202

CO
C1
62

PAC16
301

PAC16
302 CO
C1
63

PAC16
401

PAC
164

02

CO
C1
64

PAC
165

02

PAC
165

01

CO
C1
65

PAC16601

PAC16
602

COC166

PAC16
701

PAC16
702

C
O
C
1
6
7
 PAC16

801

PAC16802

COC168
PAC16

901
PAC16

902 CO
C1
69

PAC17002
PAC17001

COC170

PAC
171

01

PAC17
102 CO
C1
71

PAC17
301

PAC17
302

CO
C1
73

PAC17
501

PAC17
502 CO
C1
75

PAC1790
1

PAC1790
2

CO
C1
79

PAC
180

01

PAC18
002

CO
C1
80

PAC
181

01
PAC18

102 CO
C1
81

PAC18
201

PAC18202 CO
C1
82

PAC
183

01
PAC18

302 C
O
C
1
8
3
 PAC18

401

PAC18402
CO
C1
84

PAC18
501

PAC18502

C
O
C
1
8
5

PAC20201 PAC20202

CO
C2
02

PAC24401 PAC24402

CO
C2
44
 PAC24

501

PAC24
502

CO
C2
45

PAC24601 PAC24602

CO
C2
46

PAC24
701

PAC24
702

CO
C2
47

PAC24
801 PA

C2480
2

C
O
C
2
4
8

PAC24
901

PAC24902

CO
C2
49

PAC25
001

PAC25
002

C
O
C
2
5
0

PAC25
201

PAC25
202

CO
C2
52

PAD101
PAD102 PAD103 PAD104

PAD106
PAD105

COD
1

PAD201 PAD202 PAD203 PAD204
PAD20

6
PAD205

CO
D2

PAD301 PAD302 PAD303 PAD304
PAD306 PAD305

CO
D3

PAD401
PAD402

PAD40
3

PAD40
4

PAD406
PAD405

CO
D4

PAD5
02

PAD5
01

CO
D5

PA
D6

01

PA
D6

02

PAD
603

CO
D6

PAD70
1

PAD702

PAD703

COD
7

PAD8
01

PAD8
02

PAD803

COD
8

PAD9
0K

PAD9
0A

COD
9

PAD1
00A

PAD1
00K CO
D1
0

PAD1101 P
AD1102 P

AD1103 PAD1104
PAD1106 P

AD1105
CO
D1
1

PAD1
20K

PAD1
20A

CO
D1
2

PAD140
1

PAD1402

PAD140
3

CO
D1
4

PAF
102

PAF
101

CO

F1

PAH
101

COH

1 PAH2
01

CO
H2

PAH
301

COH

3 PAH5
01

COH
5 PAH7

01
CO
H7

PAH
801

CO
H8

PAJ1
0H1

PAJ1
0H2

PAJ1
06

PAJ1
07

PAJ
108

PAJ1
09

PAJ1
010

PAJ1
011

PAJ1
012

PAJ1
013

PAJ1
014

PAJ1
015

PAJ1
01

PAJ1
02

PAJ1
03

PAJ1
04

PAJ1
05

COJ1

PAJ2
010 PAJ20
9

PA
J2
0G
4

PA
J2
0G
3

PAJ
20G

1

PA
J2

08

PAJ
207

PAJ
206

PAJ
205

PA

J2
04

PAJ
203

PAJ
202

PA

J2
01

PA
J2
0G
2 COJ
2

PAJ3
0H1

PAJ3
0H2

PAJ3
06

PAJ3
07

PAJ3
08

PAJ3
09

PAJ3
01

PAJ
302

 P
AJ30

3
PAJ3

04
PAJ3

05
COJ

3

P
A
J
4
0
1
9

P
A
J
4
0
1
8

P
A
J
4
0
1
7

P
A
J
4
0
1
6

P
A
J
4
0
1
5

P
A
J
4
0
1
4

P
A
J
4
0
1
3

P
A
J
4
0
1
2

P
A
J
4
0
1
1

P
A
J
4
0
1
0

P
A
J
4
0
9

P
A
J
4
0
8

P
A
J
4
0
7

P
A
J
4
0
6

P
A
J
4
0
5

P
A
J
4
0
4

P
A
J
4
0
3

P
A
J
4
0
2

P
A
J
4
0
1

PAJ40H
5

PAJ40H
6 PA
J4

0H
3

PA
J4
0H
4

PA
J4
0H
2

PA
J4

0H
1

COJ4

PA
J5

09

PA
J5
01
0

PA
J5

01

PA
J5

02

PA
J5

03

PA
J5

05

PA
J5

04

PA
J5

06

PA
J5

08

PA
J5

07
 CO

J5

PAJ6
06

PAJ6
02

PAJ6
04

PAJ6
01

PAJ
603

PAJ
605

PAJ6
0F2

PAJ6
0F1

PAJ6
07

PAJ6
08

COJ
6

PAJ7
0H1

PAJ7
0H2

PAJ7
06

PAJ7
07

PAJ7
08

PAJ7
09

PAJ7
01

PAJ
702

 P
AJ70

3
PAJ7

04
PAJ7

05
COJ

7

PAJ8
044

PAJ8
043

PAJ8
042

PAJ8
041

PAJ8
040

PAJ8
039

PAJ8
038

PAJ8
037

PAJ8
036

PAJ8
035

PAJ
803

4
PAJ

803
3

PAJ8
032

PAJ8
031

PAJ8
030

PAJ8
029

PAJ8
028

PAJ8
027

PAJ8
026

PAJ8
025

PAJ8
024

PAJ8
023

PAJ8
022

PAJ8
021

PAJ8
020

PAJ8
019

PAJ8
018

PAJ8
017

PAJ8
016

PAJ8
015

PAJ
801

4
PAJ

801
3

PAJ8
012

PAJ8
011

PAJ8
010

PAJ8
09

PAJ8
08

PAJ8
07

PAJ8
06

PAJ8
05

PAJ8
04

PAJ8
03

PAJ8
02

PAJ8
01

COJ8

PAJ
902

 PAJ90
1

PAJ
903

PAJ

904

PAJ
90H

2
PAJ9

0H1

COJ
9

PAJ100
12

PAJ100
11

PAJ10
010

PAJ1
009

PAJ10
016

PAJ10
015

PAJ10
0H2

PAJ10
0H1

PAJ1
001

PAJ1
002

PAJ10
03

PAJ1
004

PAJ1
005

PAJ1
006

PAJ1
007

PAJ1
008

COJ10

PAJ11
01

PAJ1
102

PAJ1
103

PAJ11
0H1

PAJ110
H2

COJ1
1

PAJ
120

5

PAJ
120

7

PA
J1
20
9

PA
J1
20
3

PAJ
120

1

PA
J1

20
6

PA
J1

20
8

PA
J1
20
10

PA
J1

20
4

PA
J1

20
2 CO

J1
2

PAJ13
0H1

PAJ1
304

PAJ13
03

PAJ1
302

PAJ1
301

CO
J1
3

PAJ140
34

PAJ140
33

PAJ140
32

PAJ140
31

PAJ14
030

PAJ14
029

PAJ14
028

PAJ14
027

PAJ140
26

PAJ140
25

PAJ14
024

PAJ14
023

PAJ14
022

PAJ14
021

PAJ140
20

PAJ140
19

PAJ140
18

PAJ140
17

PAJ14
016

PAJ14
015

PAJ14
014

PAJ14
013

PAJ140
12

PAJ140
11

PAJ14
010

PAJ1
409

PAJ1
408

PAJ1
407

PAJ14
06

PAJ14
05

PAJ14
04

PAJ14
03

PAJ1
402

PAJ1
401

COJ14

PAJ
150

12

PA
J1

50
9

PA
J1

50
1

PA
J1

50
2

PAJ
150

3

PAJ
150

4

PA
J1

50
5

PA
J1

50
6

PA
J1

50
7

PA
J1

50
8

PA
J1

50
10

PA
J1

50
11

PAJ150H
1

PAJ15
0H2

CO
J1
5

PAJ160
H1

PAJ
160

4
PAJ1

603
PAJ

160
2

PAJ
160

1
CO
J1
6

PA
J1
70
9

PA
J1
70
10

PA
J1
70
1

PA
J1

70
2

PA
J1
70
3

PA
J1
70
5

PA
J1

70
4

PA
J1

70
6

PA
J1

70
8

PA
J1
70
7

COJ17

PAJ1
801

PAJ1
802

PAJ
180

3

PAJ
180

4

COJ18
 PAJ1

901

PAJ1
902

COJ19 PAJ2
001

PAJ2
002 COJ20

PAJ210
12

PAJ210
11

PAJ21
010

PAJ2
109

PAJ2
108

PAJ2
107

PAJ2
106

PAJ2
105

PAJ21
04

PAJ21
03

PAJ2
102

PAJ2
101

PAJ21
013

PAJ21
014

COJ21

PAJ2
201

PAJ2
202

COJ22

PA
JB
10
8

PA
JB
10
7

PA
JB
10
5

PA
JB
10
3

PA
JB
10
6

PA
JB
10
4

PA
JB
10
1

PA
JB
10
2

PA
JB

10
11

PA

JB
10

12

PA
JB
10
9

PA
JB

10
10

 PAJB1
0H1

COJB1

PAL1
02 PAL101 CO
L1

PAL2
01

PAL2
02
COL

2

PAL3
01

PAL3
02

COL
3

PAL4
01

PAL4
02

COL
4

PAL5
04

PAL5
03

PAL5
02

PAL5
01

COL
5

PA
L6

02

PAL6
01 CO
L6

PAL7
02

PA
L7

01

CO
L7

PAL802 PAL8
01

CO
L8

PAL902 PAL9
01

CO
L9

PAL1002
PAL100

1 CO
L1
0

PA
L1

10
2

PAL1
101

CO
L1
1

CO
LO
GO
1

PA
P1
06

PA
P1
05

PA
P1
04

PA
P1
03

PA
P1
02

PA
P1
01

PA
P1

01
2

PA
P1

01
1

PA
P1

01
0

PA
P1
09

PA
P1
08

PA
P1
07

PAP
10H

2

PAP
10H

1

COP
1

PA
P2
06

PA
P2
05

PA
P2
04

PA
P2
03

PA
P2
02

PA
P2
01

PA
P2

01
2

PA
P2

01
1

PA
P2

01
0

PA
P2
09

PA
P2
08

PA
P2
07

PAP2
0H2

PAP
20H

1

COP
2

PAP
M10

0

CO
PM
1

PAPM
200

C
O
P
M
2

PAP
M30

0

CO
PM
3

PAPM
400

C
O
P
M
4

PAPM50
0

C
O
P
M
5

PAPM60
0

C
O
P
M
6

PAR102
PAR101

COR
1

PAR2
02

PAR2
01

COR
2

PAR302
PAR301 CO

R3

PA
R4

02

PA
R4

01

COR4

PAR502
PAR501

COR5

PAR602
PAR6

01
COR

6

PAR702
PAR701

COR
7 PA

R8
02

PAR8
01

CO
R8

PAR902
PAR901

COR9

PAR1002
PAR1001

COR10

PAR1102
PAR1101

COR1
1

PAR12
02

PAR1201
COR12 PAR

130
2

PAR
130

1

COR13

PAR1
401

PAR1
402

CO
R1
4

PAR
150

2

PAR
150

1
COR15

PAR
160

2

PAR
160

1

COR16
PA

R1
70

2

PA
R1

70
1 COR17

PAR1802

PAR1
801 COR18

PAR1902
PAR1901

CO
R1
9

PAR2
002

PA
R2

00
1

COR20

PA
R2

10
2

PA
R2

10
1

COR21

PA
R2

20
1

PAR2
202
CO
R2
2

PA
R2

30
1

PAR2
302

CO
R2
3

PAR2
402

PAR2
401

COR24
PA

R2
50

2
PA

R2
50

1

COR25

PAR2
602

PAR2
601

COR26

PAR2
702

PAR2
701

COR27

PAR2802 PAR2
801 COR28 PAR2902 PAR2

901 COR29 PAR3002 PAR3
001 COR30

PAR3
102

PAR3
101

CO
R3
1

PAR3
202

PAR3
201

COR32
PAR3

302
PAR3

301
COR33

PAR3402
PAR3401

COR34

PAR3502
PAR3501

COR35
 PAR3

602
PA

R3
60

1
COR36

PAR3702
PAR3701

COR37
 PAR3802

PAR3801
COR38

 PAR3902
PAR3901

COR39

PAR4
002

PAR4
001

COR40

PAR4102
PAR4101

COR4
1

PAR4
202

PAR4
201

COR42

PAR4302
PAR4301

COR43

PAR4402
PAR4401

COR44

PAR4
502

PAR4
501

COR45

PA
R4

60
1

PA
R4

60
2

CO
R4
6

PAR4
702

PAR4
701 CO
R4
7

PAR4
802

PAR4
801 CO
R4
8

PAR4902 PAR4
901 COR49

PA
R5

00
2

PAR5
001

COR50

PAR5102
PAR5101 COR51

PAR5
202

PAR5
201

CO
R5
2

PAR5302
PAR5301

COR53

PAR5
402

PAR5
401

CO
R5
4

PAR5502
PAR5501

CO
R5
5

PAR5
602

PAR5
601

CO
R5
6

PAR5702
PAR5701

C
O
R
5
7

PA
R5

80
2

PA
R5

80
1

CO
R5
8

PA
R5

90
2

PA
R5

90
1

CO
R5
9

PAR6
002

PAR6
001

COR60

PA
R6

10
2

PA
R6

10
1

CO
R6
1

PAR6
202

PAR6
201

C
O
R
6
2

PAR6
302

PAR6
301

COR63 PA
R6

40
2

PAR6
401

COR64

PAR6
502

PAR6
501

COR65

PA
R6

60
2

PA
R6

60
1

CO
R6
6

PAR6
702

PAR6
701

COR67

PAR6
802

PAR6
801

CO
R6
8

PAR6
902

PAR6
901 CO
R6
9

PAR7
002

PAR7001

CO
R7
0

PAR7
102

PAR7
101

COR71

PAR7202 PAR7
201

CO
R7
2

PAR7
302

PAR7
301 CO
R7
3

PAR
850

2

PAR
850

1

COR85

PAR86
02

PAR86
01 COR86

PAR8
702

PAR8
701

COR87

PAR8
802

PAR8
801

C
O
R
8
8

PAR8902
PAR8901 CO
R8
9

PAR9
002

PAR9
001

COR90

PAR9102
PAR9101

COR91
 PAR9202

PAR9201
COR92

 PAR9302
PAR9301

COR93
 PAR9

402
PAR9

401

COR94

PAR9502
PAR9501

COR95
 PAR9

602
PAR9

601

COR96
 PAR9

702
PAR9

701

COR97

PAR9802
PAR9801

COR98
 PAR9

902
PAR9

901

COR99

PAR10
002

PAR10
001

COR100

PAR10102
PAR10101

COR101

PAR10202
PAR10201

COR102
PAR10

302
PAR10

301

COR103

PAR10402
PAR10401

COR104

PAR10502
PAR10501

COR105

PAR10
602

PAR10
601

COR106

PAR10702
PAR10701

COR107

PAR10802
PAR10801

COR108

PAR10
902

PAR10
901

COR109
PAR11

002
PAR11

001

COR110

PAR11102
PAR11101

COR111

PAR11202
PAR11201

COR112

PAR11
302

PAR11
301

COR113
PAR11

402
PAR11

401

COR114

PAR11502
PAR11501

COR115

PAR11
602

PAR11
601

COR116
PAR11

702
PAR11

701

COR117

PAR11802
PAR11801

COR118

PAR11
902

PAR11
901

COR119

PAR
120

02
PAR

120
01

C
O
R
1
2
0

PAR
121

02
PAR

121
01

C
O
R
1
2
1

PAR12202
PAR12

201

CO
R1
22

PAR12
302

PAR12301 CO
R1
23

PAR12
402

PAR12
401

CO
R1
24

PAR12502
PAR12501 CO
R1
25

PAR12
602

PAR12
601

C
O
R
1
2
6

PAR
127

02
PAR12

701

C
O
R
1
2
7

PAR12
801

PAR12
802

CO
R1
28

PAR12
901

PAR12
902

CO
R1
29

PAR
130

02
PAR13

001

CO
R1
30

PAR13102
PAR13101

CO
R1
31

PAR13202
PAR13201

CO
R1
32

PAR13
302

PAR
133

01

C
O
R
1
3
3

PAR13
402

PAR13
401

C
O
R
1
3
4

PAR13502
PAR13501 CO
R1
35

PAR13602
PAR13

601

CO
R1
36

PAR
137

02
PAR13

701

C
O
R
1
3
7

PAR
138

02

PAR
138

01

CO
R1
38

PAR13
902

PAR13
901

C
O
R
1
3
9

PAR
140

02

PAR
140

01

C
O
R
1
4
0

PAR
141

02

PAR
141

01

CO
R1
41

PAR14
202

PAR14
201

C
O
R
1
4
2

PAR
143

02

PAR
143

01

C
O
R
1
4
3

PAR14
402

PAR14
401

C
O
R
1
4
4

PAR14502
PAR14501 CO
R1
45

PAR
146

02

PAR
146

01
CO
R1
46

PAR14
702

PAR14
701

CO
R1
47

PAR14
802

PAR14
801

C
O
R
1
4
8

PAR15
101

PAR15
102

CO
R1
51

PAR15
201

PAR15
202

CO
R1
52

PAR15
502

PAR15501 CO
R1
55

PAR15
601

PAR15602 C
O
R
1
5
6

PAR15
701

PAR15
702

CO
R1
57

PAR15802
PAR15801

CO
R1
58

PAR15
902

PAR15
901

C
O
R
1
5
9

PAR16
002

PAR
160

01

C
O
R
1
6
0

PAR16102
PAR16

101

CO
R1
61

PAR16
202

PAR
162

01

CO
R1
62

PAR16301

PAR16
302

C
O
R
1
6
3

PAR
164

02

PAR
164

01

CO
R1
64

PAR
165

02

PAR
165

01

CO
R1
65

PAR16
602

PAR16
601

C
O
R
1
6
6

PAR
167

02

PAR
167

01

C
O
R
1
6
7

PAR16
802

PAR16
801

C
O
R
1
6
8

PAR
169

02

PAR
169

01

CO
R1
69

PAR17
002 PAR17001

CO
R1
70

PAR
171

02

PAR17
101

CO
R1
71

PAR17
202 PAR17201 C
O
R
1
7
2

PAR17
302 PAR17301 C
O
R
1
7
3

PAR
174

02

PAR17
401

CO
R1
74

PAR17
502 PAR17501 C
O
R
1
7
5

PAR17
602

PAR17
601

CO
R1
76

PAR17
702

PAR17
701

C
O
R
1
7
7

PAR17
802

PAR17
801

C
O
R
1
7
8

PAR
179

02

PAR
179

01

CO
R1
79

PAR18
002

PAR18
001

C
O
R
1
8
0

PAS1
0F2

PAS1
0F1 PAS

103

PAS1
02

PAS1
01

COS
1

PAS20
5

PAS2
02

PAS
201

PAS2

04

PAS2
03

PAS20
6

COS
2

PAS305
PAS306

PAS307
PAS308

PAS304
PAS303

PAS302
PAS301

CO
S3

COSerial1

PAT10
1

PAT102

PAT10
3

COT
1

PAT20
1

PAT202

PAT20
3

CO
T2

PAT30
1

PAT302

PAT303

CO
T3

PAT401
PAT402

PAT40
3 CO

T4

PAT501
PAT502

PAT503
PAT504

PAT508
PAT507

PAT506
PAT505

CO
T5

PAT60
1

PAT60
2

PAT603

COT
6

PAT703

PAT70
2

PAT701
COT7

PAT803

PAT802
PAT801

COT8

PAT90
3 PAT902

PAT901
COT9

PAT100
3 PAT1002

PAT1001
COT10

PATP
101 COTP1

PAT
P20

1 COTP2

PATP
301 COTP3

PATP
401

COTP4 PATP
501

COTP5

PATP
601

COTP6
PATP

701 COT
P7

PATP
801

COTP8

PAU10AB22 PAU10
AB21 PAU10AB20 PAU10
AB19 PAU10AB18 PAU10
AB17 PAU10AB16 PAU10
AB15 PAU10AB14 PAU10
AB13 PAU10AB12 PAU10
AB11

PAU10
AB10

PAU10
AB9

PAU10
AB8

PAU10
AB7

PAU10
AB6

PAU10
AB5

PAU10
AB4

PAU10
AB3

PAU10
AB2

PAU10
AB1

PAU10
AA22

PAU
10A

A21

PAU10
AA20

PAU
10A

A19

PAU10
AA18

PAU
10A

A17

PAU10
AA16

PAU
10A

A15

PAU10
AA14

PAU
10A

A13

PAU10
AA12

PAU
10A

A11

PAU
10A

A10

PAU
10A

A9

PAU
10A

A8

PAU
10A

A7

PAU
10A

A6

PAU
10A

A5

PAU
10A

A4

PAU
10A

A3

PAU
10A

A2

PAU
10A

A1

PAU10Y22 PAU10
Y21 PAU10Y20 PAU10
Y19 PAU10Y18 PAU10
Y17 PAU10Y16 PAU10
Y15 PAU10Y14 PAU10
Y13 PAU10Y12 PAU10
Y11

PAU10
Y10

PAU1
0Y9

PAU1
0Y8

PAU1
0Y7

PAU1
0Y6

PAU1
0Y5

PAU1
0Y4

PAU1
0Y3

PAU1
0Y2

PAU1
0Y1

PAU10W22 PAU10
W21 PAU10W20 PAU10
W19 PAU10W18 PAU10
W17 PAU10W16 PAU10
W15 PAU10W14 PAU10
W13 PAU10W12 PAU10
W11

PAU10
W10

PAU1
0W9

PAU1
0W8

PAU1
0W7

PAU1
0W6

PAU1
0W5

PAU1
0W4

PAU1
0W3

PAU1
0W2

PAU1
0W1

PAU10V22 PAU10
V21 PAU10V20 PAU10
V19 PAU10V18 PAU10
V17 PAU10V16 PAU10
V15 PAU10V14 PAU10
V13 PAU10V12 PAU10
V11

PAU10
V10

PAU1
0V9

PAU1
0V8

PAU1
0V7

PAU1
0V6

PAU1
0V5

PAU1
0V4

PAU1
0V3

PAU1
0V2

PAU1
0V1

PAU10U22 PAU10
U21 PAU10U20 PAU10
U19 PAU10U18 PAU10
U17 PAU10U16 PAU10
U15 PAU10U14 PAU10
U13 PAU10U12 PAU10
U11

PAU10
U10

PAU1
0U9

PAU1
0U8

PAU1
0U7

PAU1
0U6

PAU1
0U5

PAU1
0U4

PAU1
0U3

PAU1
0U2

PAU1
0U1

PAU10T22 PAU10
T21 PAU10T20 PAU10
T19 PAU10T18 PAU10
T17 PAU10T16 PAU10
T15 PAU10T14 PAU10
T13 PAU10T12 PAU10
T11

PAU10
T10

PAU1
0T9

PAU1
0T8

PAU1
0T7

PAU1
0T6

PAU1
0T5

PAU1
0T4

PAU1
0T3

PAU1
0T2

PAU1
0T1

PAU10R22 PAU10
R21 PAU10R20 PAU10
R19 PAU10R18 PAU10
R17 PAU10R16 PAU10
R15 PAU10R14 PAU10
R13 PAU10R12 PAU10
R11

PAU10
R10

PAU1
0R9

PAU1
0R8

PAU1
0R7

PAU1
0R6

PAU1
0R5

PAU1
0R4

PAU1
0R3

PAU1
0R2

PAU1
0R1

PAU10P22 PAU10
P21 PAU10P20 PAU10
P19 PAU10P18 PAU10
P17 PAU10P16 PAU10
P15 PAU10P14 PAU10
P13 PAU10P12 PAU10
P11

PAU10
P10

PAU1
0P9

PAU1
0P8

PAU1
0P7

PAU1
0P6

PAU1
0P5

PAU1
0P4

PAU1
0P3

PAU1
0P2

PAU1
0P1

PAU10N22 PAU10
N21 PAU10N20 PAU10
N19 PAU10N18 PAU10
N17 PAU10N16 PAU10
N15 PAU10N14 PAU10
N13 PAU10N12 PAU10
N11

PAU10
N10

PAU1
0N9

PAU1
0N8

PAU1
0N7

PAU1
0N6

PAU1
0N5

PAU1
0N4

PAU1
0N3

PAU1
0N2

PAU1
0N1

PAU10M22 PAU10
M21 PAU10M20 PAU10
M19 PAU10M18 PAU10
M17 PAU10M16 PAU10
M15 PAU10M14 PAU10
M13 PAU10M12 PAU10
M11

PAU10
M10

PAU1
0M9

PAU1
0M8

PAU1
0M7

PAU1
0M6

PAU1
0M5

PAU1
0M4

PAU1
0M3

PAU1
0M2

PAU1
0M1

PAU10L22 PAU10
L21 PAU10L20 PAU10
L19 PAU10L18 PAU10
L17 PAU10L16 PAU10
L15 PAU10L14 PAU10
L13 PAU10L12 PAU10
L11

PAU10
L10

PAU1
0L9

PAU1
0L8

PAU1
0L7

PAU1
0L6

PAU1
0L5

PAU1
0L4

PAU1
0L3

PAU1
0L2

PAU1
0L1

PAU10K22 PAU10
K21 PAU10K20 PAU10
K19 PAU10K18 PAU10
K17 PAU10K16 PAU10
K15 PAU10K14 PAU10
K13 PAU10K12 PAU10
K11

PAU10
K10

PAU1
0K9

PAU1
0K8

PAU1
0K7

PAU1
0K6

PAU1
0K5

PAU1
0K4

PAU1
0K3

PAU1
0K2

PAU1
0K1

PAU10J22 PAU10
J21 PAU10J20 PAU10
J19 PAU10J18 PAU10
J17 PAU10J16 PAU10
J15 PAU10J14 PAU10
J13 PAU10J12 PAU10
J11

PAU10
J10

PAU1
0J9

PAU1
0J8

PAU1
0J7

PAU1
0J6

PAU1
0J5

PAU1
0J4

PAU1
0J3

PAU1
0J2

PAU1
0J1

PAU10
H22

PAU
10H

21

PAU10
H20

PAU
10H

19

PAU10
H18

PAU
10H

17

PAU10
H16

PAU
10H

15

PAU10
H14

PAU
10H

13

PAU10
H12

PAU
10H

11

PAU
10H

10

PA
U1

0H
9

PA
U1

0H
8

PA
U1

0H
7

PA
U1

0H
6

PA
U1

0H
5

PA
U1

0H
4

PA
U1

0H
3

PA
U1

0H
2

PA
U1

0H
1

PAU10G22 PAU10
G21 PAU10G20 PAU10
G19 PAU10G18 PAU10
G17 PAU10G16 PAU10
G15 PAU10G14 PAU10
G13 PAU10G12 PAU10
G11

PAU10
G10

PAU1
0G9

PAU1
0G8

PAU1
0G7

PAU1
0G6

PAU1
0G5

PAU1
0G4

PAU1
0G3

PAU1
0G2

PAU1
0G1

PAU10
F22

PAU
10F

21

PAU10
F20

PAU
10F

19

PAU10
F18

PAU
10F

17

PAU10
F16

PAU
10F

15

PAU10
F14

PAU
10F

13

PAU10
F12

PAU
10F

11

PAU
10F

10

PA
U1

0F
9

PA
U1

0F
8

PA
U1

0F
7

PA
U1

0F
6

PA
U1

0F
5

PA
U1

0F
4

PA
U1

0F
3

PA
U1

0F
2

PA
U1

0F
1

PAU10E22 PAU10
E21 PAU10E20 PAU10
E19 PAU10E18 PAU10
E17 PAU10E16 PAU10
E15 PAU10E14 PAU10
E13 PAU10E12 PAU10
E11

PAU10
E10

PAU1
0E9

PAU1
0E8

PAU1
0E7

PAU1
0E6

PAU1
0E5

PAU1
0E4

PAU1
0E3

PAU1
0E2

PAU1
0E1

PAU10
D22

PAU
10D

21

PAU10
D20

PAU
10D

19

PAU10
D18

PAU
10D

17

PAU10
D16

PAU
10D

15

PAU10
D14

PAU
10D

13

PAU10
D12

PAU
10D

11

PAU
10D

10

PA
U1

0D
9

PA
U1

0D
8

PA
U1

0D
7

PA
U1

0D
6

PA
U1

0D
5

PA
U1

0D
4

PA
U1

0D
3

PA
U1

0D
2

PA
U1

0D
1

PAU10C22 PAU10
C21 PAU10C20 PAU10
C19 PAU10C18 PAU10
C17 PAU10C16 PAU10
C15 PAU10C14 PAU10
C13 PAU10C12 PAU10
C11

PAU10
C10

PAU1
0C9

PAU1
0C8

PAU1
0C7

PAU1
0C6

PAU1
0C5

PAU1
0C4

PAU1
0C3

PAU1
0C2

PAU1
0C1

PAU10
B22

PAU
10B

21

PAU10
B20

PAU
10B

19

PAU10
B18

PAU
10B

17

PAU10
B16

PAU
10B

15

PAU10
B14

PAU
10B

13

PAU10
B12

PAU
10B

11

PAU
10B

10

PA
U1

0B
9

PA
U1

0B
8

PA
U1

0B
7

PA
U1

0B
6

PA
U1

0B
5

PA
U1

0B
4

PA
U1

0B
3

PA
U1

0B
2

PA
U1

0B
1

PAU10A22 PAU10
A21 PAU10A20 PAU10
A19 PAU10A18 PAU10
A17 PAU10A16 PAU10
A15 PAU10A14 PAU10
A13 PAU10A12 PAU10
A11

PAU10
A10

PAU1
0A9

PAU1
0A8

PAU1
0A7

PAU1
0A6

PAU1
0A5

PAU1
0A4

PAU1
0A3

PAU1
0A2

PAU1
0A1

COU
1

PA
U2

01

PA
U2

02

PA
U2

03

PA
U2

04

PA
U2

05

PA
U2

06

PA
U2

07

PA
U2

08

PA
U2

09

PA
U2
01
0

PA
U2
01
1

PA
U2
01
2

PA
U2
01
3

PA
U2
01
4

PA
U2
01
5

PA
U2
01
6

PA
U2
01
7

PA
U2
01
8

PA
U2
01
9

PA
U2
02
0

PA
U2
02
1

PA
U2
02
2

PA
U2
02
3

PA
U2
02
4

P
A
U
2
0
2
5

P
A
U
2
0
2
6

P
A
U
2
0
2
7

P
A
U
2
0
2
8

P
A
U
2
0
2
9

P
A
U
2
0
3
0

P
A
U
2
0
3
1

P
A
U
2
0
3
2

P
A
U
2
0
3
3

P
A
U
2
0
3
4

P
A
U
2
0
3
5

P
A
U
2
0
3
6

P
A
U
2
0
3
7

P
A
U
2
0
3
8

P
A
U
2
0
3
9

P
A
U
2
0
4
0

P
A
U
2
0
4
1

P
A
U
2
0
4
2

P
A
U
2
0
4
3

P
A
U
2
0
4
4

P
A
U
2
0
4
5

P
A
U
2
0
4
6

P
A
U
2
0
4
7

P
A
U
2
0
4
8

CO
U2

PAU3
049 PAU3048 PAU3047 PAU3046 PAU3045

PAU3044 PAU3043 PAU3042 PAU3041 PAU3040

PAU3039 PAU3038 PAU3037

PA
U3

03
6

PA
U3

03
5

PA
U3

03
4

PA
U3

03
3

PA
U3

03
2

PA
U3

03
1

PA
U3

03
0

PA
U3

02
9

PA
U3

02
8

PA
U3

02
7

PA
U3

02
6

PA
U3

02
5

PAU3024 P
AU3023 PA

U3022

PAU3021 PAU3020

PAU3019 P
AU3018 PA

U3017

PAU3016 P
AU3015 PA

U3014 PAU
3013 PA

U3
01

2
PA

U3
01

1

PA
U3

01
0

PA
U3

09

PA
U3

08

PA
U3

07

PA
U3

06

PA
U3

05

PA
U3

04

PA
U3

03

PA
U3

02

PA
U3

01

COU3

PA
U4

01

PA
U4

02

PA
U4

03

PA
U4

04

PA
U4

05

PA
U4

06
 PAU407

PAU408 P
AU409 PA

U4010 PAU
4011

PAU4012 PA
U4

01
3

PA
U4

01
4

PA
U4

01
5

PA
U4

01
6

PA
U4

01
7

PA
U4

01
8

PAU4019

PAU4020 PAU4021 PAU4022 PAU4023

PAU4024 PAU40
25

CO
U4

PAU5
0E5

PAU5
0E4

PAU5
0E3

PAU5
0E2

PAU5
0E1

PAU5
0D5

PAU5
0D4

PAU5
0D3

PAU5
0D2

PAU5
0D1

PAU5
0C5

PAU5
0C4

PAU5
0C3

PAU5
0C2

PAU5
0C1

PAU5
0B5

PAU5
0B4

PAU5
0B3

PAU5
0B2

PAU5
0B1

PAU5
0A5

PAU5
0A4

PAU5
0A3

PAU5
0A2

COU
5

PAU601
PAU602

PAU6
03 PAU60
4

PAU605

COU6

PAU701 PAU702 PAU703 PAU704 PAU705 PAU706 PAU707 PAU708 PAU709 PAU7010 PAU7011 PAU7012 PAU7013 PAU7014 PAU7015 PAU7016 PAU7017 PAU7018 PAU7019 PAU7020 PAU7021 PAU7022 PAU7023 PAU7024 PAU7025 PAU7026 PAU7027
PAU7028 PAU7029 PAU7030
PAU7031 PAU7032 PAU7033
PAU7034 PAU7035 PAU7036
PAU7037 PAU7038 PAU7039

PAU7040 PAU7041 PAU7042 P
AU7043 PAU7044 PA

U7045 PAU7046 PAU
7047 PAU7048

CO
U7

PA
U8

01

PA
U8

02

PA
U8

03

PA
U8

04

PA
U8

05

PA
U8

06

PA
U8

07

PA
U8

08

PA
U8

09

PA
U8
01
0

PA
U8
01
1

PA
U8
01
2

PA
U8
01
3

PA
U8
01
4

PA
U8
01
5

PA
U8
01
6

PA
U8
01
7

PA
U8
01
8

PA
U8
01
9

PA
U8
02
0

PA
U8
02
1

PA
U8
02
2

PA
U8
02
3

PA
U8
02
4

P
A
U
8
0
2
5

P
A
U
8
0
2
6

P
A
U
8
0
2
7

P
A
U
8
0
2
8

P
A
U
8
0
2
9

P
A
U
8
0
3
0

P
A
U
8
0
3
1

P
A
U
8
0
3
2

P
A
U
8
0
3
3

P
A
U
8
0
3
4

P
A
U
8
0
3
5

P
A
U
8
0
3
6

P
A
U
8
0
3
7

P
A
U
8
0
3
8

P
A
U
8
0
3
9

P
A
U
8
0
4
0

P
A
U
8
0
4
1

P
A
U
8
0
4
2

P
A
U
8
0
4
3

P
A
U
8
0
4
4

P
A
U
8
0
4
5

P
A
U
8
0
4
6

P
A
U
8
0
4
7

P
A
U
8
0
4
8

CO
U8

PA
U9

01

PA
U9

02

PA
U9

03

PA
U9

04

PA
U9

05

PA
U9

06

PA
U9

07

PA
U9

08

PA
U9

09

PA
U9
01
0

PA
U9
01
1

PA
U9
01
2

PA
U9
01
3

PA
U9
01
4

PA
U9
01
5

PA
U9
01
6

PA
U9
01
7

PA
U9
01
8

PA
U9
01
9

PA
U9
02
0

PA
U9
02
1

PA
U9
02
2

PA
U9
02
3

PA
U9
02
4

P
A
U
9
0
2
5

P
A
U
9
0
2
6

P
A
U
9
0
2
7

P
A
U
9
0
2
8

P
A
U
9
0
2
9

P
A
U
9
0
3
0

P
A
U
9
0
3
1

P
A
U
9
0
3
2

P
A
U
9
0
3
3

P
A
U
9
0
3
4

P
A
U
9
0
3
5

P
A
U
9
0
3
6

P
A
U
9
0
3
7

P
A
U
9
0
3
8

P
A
U
9
0
3
9

P
A
U
9
0
4
0

P
A
U
9
0
4
1

P
A
U
9
0
4
2

P
A
U
9
0
4
3

P
A
U
9
0
4
4

P
A
U
9
0
4
5

P
A
U
9
0
4
6

P
A
U
9
0
4
7

P
A
U
9
0
4
8

CO
U9

P
A
U
1
0
0
1

P
A
U
1
0
0
2

P
A
U
1
0
0
3

P
A
U
1
0
0
4

P
A
U
1
0
0
5

PA
U1

00
6

P
A
U
1
0
0
7

P
A
U
1
0
0
8

P
A
U
1
0
0
9

PA
U1

00
10

PA
U1

00
11

PA

U1
00

12

PA
U1

00
13

PA

U1
00

14

PA
U1

00
15

PA
U1

00
16

PA

U1
00

17

PA
U1

00
18

PAU
100

19
PA

U1
00

20

PA
U1

00
21

PA

U1
00

22

PA
U1

00
23

PA

U1
00

24
 COU10

PAU1101
PAU1102

PAU1
103

PAU1
104

PAU1105

PAU1
106 PAU11020

PAU11021 P
AU11022 PA

U11023

PAU11024 PAU11025

PA
U1

10
7

PAU11
026

PA
U1

10
8

PA
U1

10
9

PAU
110

10
PAU

110
11

PAU
110

12
PAU

110
13

PAU
110

14
PAU

110
15

PAU
110

16
PAU

110
17

PAU
110

18
PAU

110
19

PAU11
027

PAU11
028

PAU11
029

PAU11
030

PAU11
031

PAU11
032

PAU11
033

PAU11
034

PAU11
035

PAU11
036

PAU11
037

PAU11
038

PAU
110

39

COU1
1

PAU
120

8
PA
U1
20
7

PA
U1
20
6

PA
U1
20
5

PA
U1
20
4

PA
U1
20
3

PA
U1
20
2

PA
U1
20
1

C
O
U
1
2

PAU
130

16
PAU

130
15

PA
U1

30
8

PA
U1

30
7

PAU13
014

PAU13
013

PAU13
012

PAU13011

PAU13
010

PAU1
309

PAU1
306 P

AU13
05

PAU1304

PAU1
303 P

AU13
02 PA

U130
1

COU13

PAU
140

8
PA
U1
40
7

PA
U1
40
6

PA
U1
40
5

PA
U1
40
4

PA
U1
40
3

PA
U1
40
2

PA
U1
40
1

C
O
U
1
4

PA
U1

50
5

PA
U1

50
4

PA
U1
50
3

PA
U1
50
2

PA
U1
50
1

CO
U1
5

PA
U1

60
5

PA
U1

60
4

PA
U1
60
3

PA
U1
60
2

PA
U1
60
1

C
O
U
1
6

PAU170
4

PAU1
703

PAU1
702 PAU170

1
CO
U1
7

PA
U1
80
5

PA
U1
80
4

PA
U1

80
3

PA
U1

80
2

PA
U1

80
1

COU18

PA
U1
90
5

PA
U1
90
4

PA
U1

90
3

PA
U1

90
2

PA
U1

90
1

COU19

PA
U2
00
5

PA
U2
00
4

PA
U2

00
3

PA
U2

00
2

PA
U2

00
1

C
O
U
2
0

PA
U2
10
5

PA
U2
10
4

PA
U2

10
3

PA
U2

10
2

PA
U2

10
1 CO
U2
1

PAU2205
PAU2204 PAU2203

PAU2202
PAU2201

CO
U2
2

PAU2305
PAU2304 PAU2303

PAU2302 P
AU2301

CO
U2
3

PAU2405
PAU2404 PAU2403

PAU2402 PAU24
01
CO
U2
4

PAU2505
PAU2504 PAU2503 P

AU2502
PAU2501

C
O
U
2
5

PAU2605
PAU2604 PAU2603

PAU2602
PAU2601

CO
U2
6

PA
U2

70
5

PA
U2

70
4

PA
U2
70
3

PA
U2
70
2

PA
U2
70
1

CO
U2
7

PA
U2

80
5

PA
U2

80
4

PA
U2
80
3

PA
U2
80
2

PA
U2
80
1

CO
U2
8

PAU29
0E5

PAU29
0E4

PAU29
0E3

PAU29
0E2

PAU29
0E1

PAU29
0D5

PAU29
0D4

PAU29
0D3

PAU29
0D2

PAU29
0D1

PAU29
0C5

PAU29
0C4

PAU29
0C3

PAU29
0C2

PAU29
0C1

PAU290B5 PAU290B4 PAU290B3 PAU290B2 PAU290B1

PAU29
0A5

PAU29
0A4

PAU29
0A3

PAU29
0A2

PAU29
0A1

CO
U2
9

PA
U3

00
5

PA
U3

00
4

PA
U3

00
3

PA
U3

00
2

PA
U3

00
1

CO
U3
0

PA
U3

10
5

PA
U3

10
4

PA
U3

10
3

PAU3
102

PA
U3

10
1

CO
U3
1

PAU32
0N13

PAU32
0N12

PAU32
0N11

PAU32
0N10

PAU32
0N9

PAU32
0N8

PAU32
0N7

PAU32
0N6

PAU32
0N5

PAU32
0N4

PAU32
0N3

PAU32
0N2

PAU32
0N1

PAU32
0M13

PAU32
0M12

PAU32
0M11

PAU32
0M10

PAU32
0M9

PAU32
0M8

PAU32
0M7

PAU32
0M6

PAU32
0M5

PAU32
0M4

PAU32
0M3

PAU32
0M2

PAU32
0M1

PAU32
0L13

PAU32
0L12

PAU32
0L11

PAU32
0L10

PAU32
0L9

PAU32
0L8

PAU32
0L7

PAU32
0L6

PAU32
0L5

PAU32
0L4

PAU32
0L3

PAU32
0L2

PAU32
0L1

PAU32
0K13

PAU32
0K12

PAU32
0K11

PAU32
0K10

PAU32
0K9

PAU32
0K8

PAU32
0K7

PAU32
0K6

PAU32
0K5

PAU32
0K4

PAU32
0K3

PAU32
0K2

PAU32
0K1

PAU32
0J13

PAU32
0J12

PAU32
0J11

PAU32
0J10

PAU32
0J9

PAU32
0J8

PAU32
0J7

PAU32
0J6

PAU32
0J5

PAU32
0J4

PAU32
0J3

PAU32
0J2

PAU32
0J1

PAU32
0H13

PAU32
0H12

PAU32
0H11

PAU32
0H10

PAU32
0H9

PAU32
0H8

PAU32
0H7

PAU32
0H6

PAU32
0H5

PAU32
0H4

PAU32
0H3

PAU32
0H2

PAU32
0H1

PAU32
0G13

PAU32
0G12

PAU32
0G11

PAU32
0G10

PAU32
0G9

PAU32
0G8

PAU32
0G7

PAU32
0G6

PAU32
0G5

PAU32
0G4

PAU32
0G3

PAU32
0G2

PAU32
0G1

PAU32
0F13

PAU32
0F12

PAU32
0F11

PAU32
0F10

PAU32
0F9

PAU32
0F8

PAU32
0F7

PAU32
0F6

PAU32
0F5

PAU32
0F4

PAU32
0F3

PAU32
0F2

PAU32
0F1

PAU32
0E13

PAU32
0E12

PAU32
0E11

PAU32
0E10

PAU32
0E9

PAU32
0E8

PAU32
0E7

PAU32
0E6

PAU32
0E5

PAU32
0E4

PAU32
0E3

PAU32
0E2

PAU32
0E1

PAU32
0D13

PAU32
0D12

PAU32
0D11

PAU32
0D10

PAU32
0D9

PAU32
0D8

PAU32
0D7

PAU32
0D6

PAU32
0D5

PAU32
0D4

PAU32
0D3

PAU32
0D2

PAU32
0D1

PAU32
0C13

PAU32
0C12

PAU32
0C11

PAU32
0C10

PAU32
0C9

PAU32
0C8

PAU32
0C7

PAU32
0C6

PAU32
0C5

PAU32
0C4

PAU32
0C3

PAU32
0C2

PAU32
0C1

PAU32
0B13

PAU32
0B12

PAU32
0B11

PAU32
0B10

PAU32
0B9

PAU32
0B8

PAU32
0B7

PAU32
0B6

PAU32
0B5

PAU32
0B4

PAU32
0B3

PAU32
0B2

PAU32
0B1

PAU32
0A13

PAU32
0A12

PAU32
0A11

PAU32
0A10

PAU32
0A9

PAU32
0A8

PAU32
0A7

PAU32
0A6

PAU32
0A5

PAU32
0A4

PAU32
0A3

PAU32
0A2

PAU32
0A1

COU32

PAU
330

11
PAU33010 P

AU3309

PAU3308 PAU3307

PAU3306 PAU3305 PAU3304 PAU3303

PAU3302 PAU3301

C
O
U
3
3

PA
U3
40
5

PA
U3
40
6

PA
U3
40
7

PA
U3
40
8

PA
U3
40
4

PA
U3
40
3

PA
U3
40
2

PA
U3
40
1

CO
U3
4

PA
U3
50
5

P
A
U
3
5
0
6

P
A
U
3
5
0
7

P
A
U
3
5
0
8

PA
U3
50
4

P
A
U
3
5
0
3

P
A
U
3
5
0
2

P
A
U
3
5
0
1

COU35

PAU3601
PAU3602 PAU3603 PAU3604

PAU3606
PAU360

5
COU36

PAU3701 PAU3702

PAU3703 PAU3704 PAU3705
PA

U3
70

6
PA

U3
70

7
PA

U3
70

8
PA

U3
70

9

PAU
370

10

PAU37011 P
AU37012 PA

U37013

PAU37014 PAU37015

PAU
370

16

PAU
370

17
PAU

370
18

PAU
370

19
PAU

370
20

PAU37
021

COU37

PA
U3

80
1

PA
U3

80
20

PAU3802

PAU3
803 P

AU38
04

PAU3805 PAU3806

PAU3
807 P

AU38
08 PA

U380
9

PAU38010 PAU38011

PAU38012 PAU38013 PAU38014 PAU38015 PAU38016

PAU38017 PAU38018 PAU38019

PAU380
21

CO
U3
8

P
A
U
3
9
0
5

P
A
U
3
9
0
6

P
A
U
3
9
0
7

P
A
U
3
9
0
8

PA
U3
90
4

PA
U3
90
3

PA
U3
90
2

PA
U3
90
1

COU39

PAU4001
PAU4002 PAU4003 PAU4004

PAU4005

COU40

PAU4101
PAU4102 PAU4103 PAU4104

PAU4105

COU41

PAU4201 PAU4202
PAU4203 PAU4204

PAU4205

COU42

PAV102 PAV101

CO
V1

PAC4
601

PAC4701
PAC4

801

PAC1
2101

PAC15301

PAC15
401

PAC15
501

PAC15
601

PAC15
701

PAC
158

01

PAL3
02

PAR16
202

PAU10
H12

PAU10K12
PAU10M12

PAU10P12

PAU10
R11

PAU1
305

PA
U1

30
7

PA
U1

30
8

PA
U1
40
3

PAC
601

PAC9
01

PAC1
001

PAC1101

PAC2001
PAC2401

PAC4
201

PAC4
301

PAC4
401

PAC4901

PAC5
601

PAC6
901

PAC7001 PAC7
101

PA
C7

40
1

PAC7
601

PAC11
101

PAC14
001

PAC14
101

PAC14
201

PAC14
301

PAC
147

02
PAC1

4802

PAC1
4902

PAC15001

PAC15
101

PAC15
201

PAR4
901

PA
R5

90
2

PAR16102

PA
U1

0H
8

PAU
10H

10

PAU1
0J7

PAU1
0J9

PAU10
J11

PAU1
0K8

PAU1
0L7

PAU10
L11

PAU1
0M8

PAU1
0N7

PAU10
N11

PAU1
0P8

PAU10
P10

PAU1
0R7

PAU1
0R9

PAU1
0T8

PAU10
T10

PAU1105

PAU1
106

PA
U1

10
7

PA
U1

10
8

PA
U1

10
9

PAU
110

10
PAU

110
11

PAC101

PA
C2

01

PAC401

PAC
501

PAC1201

PAC1
401

PA
C2

10
2

PAC
220

1

PAC2
501

PAC2
601

PAC
270

1

PAC2
802

PAC3
902

PAC4001

PA
C5

00
1

PAC5
101

PAC5
201

PAC530
2

PAC5
401

PAC5
501

PAC5
701

PAC5801

PAC5
901

PAC6
001

PAC6
101

PAC6201 PAC6
301

PAC6
401

PAC6
501

PAC6
601

PAC6
701

PA
C6

80
1

PAC7
702

PAC8
601

PAC9
001

PAC9101

PAC9
201

PAC9
301

PAC9
801

PAC9901

PAC100
01

PAC10601

PAC13701

PAC13
801

PAC15
901

PAC
160

01

PAC16
101

PAC16
401

PAC16601

PAC16
701

PAC16
801

PAC16
901

PAC17002

PAC17
301

PAC17
501

PAC1790
2

PAC18
501

PAC24401

PAC24
501

PAC24601

PAC24
701

PAC24
801

PAC24
901

PAC25
001

PAC25
201

PAD105

PAD205 PAD305 PAD405

PAD702

PAD8
02

PAD1
00A

PAD1105

PAD1
20A

PA
J2

04

PA
J5

02

PAJ1
009 PAJ100
11

PA
J1

20
2

PAJ
150

4

PA
J1

70
4

PAJ
180

3

PA
JB
10
6

PAL4
01

PAL7
02

PAL1002

PAR102

PAR301

PAR501

PAR6
01

PAR702 PA
R8

02

PAR1901

PA
R2

10
1

PAR2
401

PA
R2

50
1

PAR2
601

PAR2802

PAR2902
PAR3002

PAR4
802

PAR5
202 PAR5502 PAR5
602 PAR5702

PAR6
801

PAR6
902

PAR7
302

PAR8
802

PAR8902

PAR11
901

PAR
120

01

PAR
121

01

PAR
127

02

PAR12
801

PAR12
901

PAR13202

PAR14502

PAR
146

01
PAR14

701

PAR14
802

PAR15
102

PAR15
202

PAR16
302

PAS301
PAS302

PAS303
PAS304

PAT30
1

PAT401

PAU10
A17

PAU
10A

A7

PAU
10A

A17

PAU10
AB4 PAU10AB14

PAU10
B14

PAU1
0C1

PAU10
C21

PAU10
D18

PAU10
E15

PA
U1

0F
2

PAU10
F12

PAU10
F22

PAU10
G19

PA
U1

0H
6

PAU10
H16

PAU1
0J3

PAU10
J13

PAU10K20

PAU10
L17

PAU1
0M4 PAU10M14

PAU1
0N1

PAU10
N21

PAU10P18

PAU1
0R5

PAU10
R15

PAU1
0T2 PAU10T12 PAU10T22

PAU1
0U8

PAU10
U11

PAU10
U19

PAU1
0V6 PAU10V16

PAU1
0W3

PAU10
W13

PAU10
Y10 PAU10Y20

P
A
U
2
0
3
1

P
A
U
2
0
4
2

PA
U4

01
4

PAU5
0B4

PAU601 PAU605

PAU701

PAU7031

PAU7042

P
A
U
8
0
3
1

P
A
U
8
0
4
2

PA
U9
02
4

P
A
U
9
0
3
1

P
A
U
9
0
4
2

PA
U1

00
24

PA
U1
40
7

PAU170
1

PAU170
4

PA
U1

80
1

PA
U1
80
5

PA
U1

90
1

PA
U1
90
5

PA
U2

00
1

PA
U2
00
5

PA
U2

10
1

PA
U2
10
5

PAU2201 PAU2205

PAU2301 PAU2305 PAU2401 PAU2405

PAU2501 PAU2505

PAU2601 PAU2605

PA
U2
80
1

PA
U2

80
5

PAU290B4

PAU29
0D1

PAU29
0E4

PA
U3

00
1

PA
U3

00
5

PA
U3

10
1

PA
U3

10
5

PAU32
0C6

PAU32
0C7

PAU32
0C8

PAU32
0D4

PAU32
0D10

PAU32
0F2

PAU32
0F7

PAU32
0F11

PAU32
0G3

PAU32
0G6

PAU32
0G8

PAU32
0G11

PAU32
0H7

PAU32
0H11

PAU32
0J3

PAU32
0J11

PAU32
0K3

PAU32
0K4

PAU32
0K9

PAU32
0L6

PAU32
0L7

PAU32
0L8

P
A
U
3
5
0
7

PAU3606

PAU37012

PAU38014

PA
U3
90
2

PA
U3
90
3

P
A
U
3
9
0
8

PAU4001 PAU4005

PAU4101 PAU4105

PAU4201 PAU4205

PAC
165

02

PAC20202 PAL100
1 PAU32

0D3

PA
C8

02

PAC1301

PAC1501

PAC1601

PAC
410

2

PAC
117

01

PAC
120

01

PAC18
002

PAJ8
040

PAJ8
042

PAJ1
304

PAJ
160

4

PAL1
101

PAR2
01

PA
R1

70
1

PAR3702 PAR3802 PAR3902 PAR4
002 PAR4102 PAR4
202 PAR4302 PAR4
502

PAR5101

PAR7
102

PAR8
701

PAR9
002 PAR9102 PAR9202 PAR9302 PAR9
402 PAR9502 PAR9
602

PAR9
702 PAR9802 PAR9
902

PAR10
002 PAR10102 PAR10202 PAR10
302 PAR10402 PAR10502 PAR10
602 PAR10702 PAR10802 PAR10
902

PAR11
002 PAR11102 PAR11202 PAR11
302

PAR11
402 PAR11502 PAR11
602

PAR11
702 PAR11802

PAR12202

PAR13102

PAR13
302

PAR15501

PAR16
801

PAR17001

PAR17
601

PAR17
701

PAR17
801

PAR
179

01
PAR18

001

PA
U2

07

PA
U2
01
8

PAU707

PAU7018

PA
U8

07

PA
U8
01
8

PA
U9

07

PA
U9
01
8

PA
U1

00
11

PAU
110

19 PAU11020

PAU11021

PAU11
027

PAU11
033

PA
U1
20
7

PAU1
309 P

AU130
10

PAU13011

PAU13
014

PA
U1

50
5

PA
U1

60
5

PA
U2

70
5

PAU
330

11

PAC
171

01

P
A
J
4
0
1
8

PA
U1

00
13

PAC45
02

PAC72
02

PAJ3
07

PAJ7
07

PAR12
401

PAR
164

01
PAR

165
01

PAR16
601

PAR
167

01
PAR

169
01

PAR17
101

PAR17201
PAR17301

PAR17
401

PAR17501

PAU3301 P
AU3302

PAU3303 PAU3304

PAU3305

PAR12
701

PAT20
3

PAU32
0G13

PAC82
01

PAC83
01

PAC8
401

PAC8
501 PA

L1
10

2

PAU
370

16

PAU
370

20

PAC30
2

PAC7
02

PAC3702

PAC3
802

PAC14
401

PAJ1
301

PAJ
160

1

PAT505
PAT506

PA
U1
20
1

PA
U1
40
1

PA
U3
40
7

PAC2
302

PAL2
01 PAU1

0K9
PAU1

0L9

PAU10
M10

PAU10
E19

PA
U3

70
7

PAU
10F

19

PA
U3

70
9

PAU10
D16

PA
U3

70
6

PAU10E16

PAU
370

10

PAC2
301

PAL3
01

PAU10
K10

PAU10
W10

PAU3016

PAU10Y12

PAU3017

PAU10AB12

PAU3018

PAU
10A

A11

PAU3019

PAU10
AB11

PAU3020

PAU10
Y11

PAU3021

PAU10
AB10

PAU3022

PAU
10A

A10

PAU3023

PAD20
6

PA
P1
04

PAU1
0A1

PAD204
PA

P1
01

0

PA
U1

0B
1

PAD201
PA
P1
03

PA
U1

0B
2

PAD203
PA
P1
09

PAU1
0C2

PAD306
PA
P1
02

PA
U1

0D
1

PAD304
PA
P1
08

PAU1
0E1

PAD401
PA
P2
08

PA
U1

0D
2

PAD406
PA
P2
07

PAU1
0E2

PAD301
PA
P1
01

PA
U1

0F
1

PAD303
PA
P1
07

PAU1
0G1

PAD40
3

PA
P2
02

PAU1
0E3

PAD40
4

PA
P2
01

PA
U1

0F
3

PAD1103
PA
P2
04

PA
U1

0H
5

PAD1101
PA

P2
01

0

PAU1
0J5

PAD1106
PA
P2
09

PAU1
0G4

PAD1104
PA
P2
03

PA
U1

0H
4

PAJ8
03

PAR11801

PA
U2
02
3

PAJ8
05

PAR11
701

PA
U2
02
2

PAJ8
07

PAR11
601

PA
U2
02
0

PAJ8
09

PAR11501

PA
U2
01
9

PAJ8
011

PAR11
401

PA
U2
01
7

PAJ
801

3
PAR11

301

PA
U2
01
6

PAJ8
015

PAR11201

PA
U2
01
4

PAJ8
017

PAR11101

PA
U2
01
3

PAJ8
019

PAR11
001

PA
U8
02
3

PAJ8
021

PAR10
901

PA
U8
02
2

PAJ8
023

PAR10801

PA
U8
02
0

PAJ8
025

PAR10701

PA
U8
01
9

PAJ8
027

PAR10
601

PA
U8
01
7

PAJ8
029

PAR10501

PA
U8
01
6

PAJ8
031

PAR10401

PA
U8
01
4

PAJ
803

3
PAR10

301

PA
U8
01
3

PAJ8
022

PAR7
101

PA
U8
01
2

PAJ
803

4
PAR3901

PA
U9
01
4

PAJ8
04

PAR9801

PA
U2
01
2

PAJ8
06

PAR9
701

PA
U2
01
1

PAJ8
08

PAR9
601

PA
U2

09

PAJ8
010

PAR9501

PA
U2

08

PAJ8
012

PAR9
401

PA
U2

06

PAJ
801

4
PAR9301

PA
U2

05

PAJ8
016

PAR9201

PA
U2

03

PAJ8
018

PAR9101

PA
U2

02

PAJ8
020

PAR9
001

PA
U9

05

PAJ8
028

PAR4
201

PA
U3

00
2

PAJ8
030

PAR4101

PAU3
102

PAJ8
032

PAR4
001

PA
U8

05

PAJ8
026

PAR4301

PA
U8

09

PAJ8
038

PAR3701

PA
U9

03

PAJ8
037

PAR10101

PA
U9

02

PAJ8
035

PAR10201

PA
U9
01
6

PAJ8
039

PAR10
001

PA
U9
01
3

PAJ8
041

PAR9
901

PA
U8

03

PAJ8
024

PAR4
501

PA
U8
01
1

PAJ8
036

PAR3801

PA
U8

02

PAU1
0W9

P
A
U
1
0
0
1

P
A
J
4
0
1
3

P
A
U
1
0
0
7

PAR12
601

PAU10
V13

PAU
10H

13

PAU4104

PAU10
G15

PAU4204

PAU10J14

PAU60
4

PAU10J22

PAU4004

PAC
181

01

PAR15
502

PAR
160

01

PAU32
0D2

PAC
183

01

PAR
162

01

PAU32
0C2

PAC18
201

PAR16
101

PAU32
0D1

PAR14
201 PAS308

PAU32
0A12

PAR
143

01 PAS307

PAU32
0C11

PAR14
401 PAS306 PAU32

0A11

PAR3
101 PAS305

PAU32
0B11

PAR15
901

PAU32
0H6

PAJ2
101

PAU32
0L10

PAJ2
102

PAU32
0N10

PAJ21
03

PAU32
0M10

PAJ21
04

PAU32
0N9 PAJ2
105

PAU32
0M9 PAJ2
106

PAU32
0N8

PAJ2
107

PAU32
0M8

PAJ2
108 PAU32

0N7

PAJ2
109

PAU32
0N6

PAJ21
010

PAU32
0M7

PAJ210
11

PAU32
0M5

PAJ210
12

PAU32
0N5

PAR14
801 PAT603

PAU32
0E5

PAV101

PAU10C22

PAU29
0A3

PAU10
M15

PA
U1

00
12

PAU10L14

PAU32
0J10

PAU10
L13

PAU32
0K10

PAJ140
18

PAU706

PAU10
A21

PAU29
0D3

PAU
10D

21

PAU29
0D2

PAU10C20

PAU29
0C4

PAU10A20

PAU29
0D4

PAU10
B20

PAU29
0D5

PAU10
A19

PAU29
0E3

PAU10
E21

PAU29
0E2

PAU10E22

PAU29
0E1

PAJ14
014

PAU705

PAJ140
12

PA
U9
02
2

PAJ140
34

PAR18
002

PAU7019

PAT10
1

PAU32
0H13

PAU1
0K6

PAU4024

PAU1
0L4

PAU408

PAU1
0K4

PA
U4

01
5

PAR602

PA
U4

01
8

PAR1002

PAU4023

PAR7202

PAU10R14

PAU1
0J6

PAU4011 PAR502

PAU1
0L5

PAU4010

PAJ1
006

PA
U4

03

PAJ10
03

PA
U4

04

PAU1
0P4

PA
U4

01
3

PAU1
0L1

PAU4012

PAU1
0M6

PA
U4

01
7

PAJ1
002

PA
U4

05

PAJ1
001

PA
U4

06

PAU1
0L3

PAU4020

PAU1
0K3

PAU4021

PAU1
0J4

PAU4019

PAU10
L19

P
A
U
2
0
2
5

P
A
U
8
0
2
5

PAU10
K19

P
A
U
2
0
2
6
 PAU10K18

P
A
U
2
0
2
7

PAU10
K21

P
A
U
2
0
2
9

PAU10M22

P
A
U
2
0
3
0

PAU10L20 P
A
U
2
0
3
2

PAU10J20

P
A
U
2
0
3
3

PAU10
J21

P
A
U
2
0
3
5
 PAU10K22

P
A
U
2
0
3
6

PAU
10H

17

P
A
U
8
0
2
6

PAU10
H20

P
A
U
8
0
2
7

PAU10G20

P
A
U
8
0
2
9

PAU10
J15

P
A
U
8
0
3
0

PAU
10H

19

P
A
U
8
0
3
2

PAU10M20

P
A
U
8
0
3
3

PAU10N22

P
A
U
8
0
3
5

PAU10
H18

P
A
U
8
0
3
6

PAU10
N13

P
A
U
8
0
3
7

PAU
10A

A19

P
A
U
9
0
3
5

PAU10P16

P
A
U
2
0
3
7

PAU10
R17

P
A
U
2
0
3
8

PAU10P20

P
A
U
2
0
4
0

PAU10R16

P
A
U
2
0
4
1

PAU10U18

P
A
U
2
0
4
3

PAU10V18

P
A
U
2
0
4
4

PAU10W20

P
A
U
2
0
4
6

PAU10
W21

P
A
U
2
0
4
7

PAU10
P15

P
A
U
9
0
4
4

PAU10
R19

PA
U3

00
4

PAU10W22

PA
U3

10
4

PAU10
N15

P
A
U
8
0
4
4

PAU10
AA20

P
A
U
8
0
4
0

PAU10P14

P
A
U
9
0
4
6

PAU10
W17

P
A
U
9
0
4
7

PAU10
V17

P
A
U
9
0
3
3

PAU10N14

P
A
U
9
0
3
6

PAU10T18

P
A
U
8
0
4
6

PAU10AB18

P
A
U
8
0
3
8

PAU10R18

P
A
U
8
0
4
7

PAU10
U17 PA

U8
01

PAU10G18

P
A
U
8
0
4
8

PAU10V22

PA
U2

01

PAU10
U21

P
A
U
2
0
4
8

PAU1
0P5

PAU7043

PAU1
0N5

PAU7044

PAU10
G17

P
A
U
9
0
2
7

PAU1
0R1

PAU7030

PAU10L18

PA
U8
02
4

PAU1
0M2

PAU7036

PAU10
L21

PA
U2
02
4

PAU1
0M5

PAU7046

PAU
10H

15

P
A
U
9
0
2
9

PAU1
0P1

PAU7032

PAU1
0P6

PAU7047

PAU10
N17

P
A
U
9
0
3
2

PAU
10A

A21

PA
U1
50
1

PAU10Y18

PA
U2
00
4

PAU10
Y19

PA
U1
50
2

PAU10
Y21

PA
U1
60
1

PAU10AB22

PA
U2
10
4

PAU10Y22

PA
U1
60
2

PA
R5

80
2 PAU10

AB21

P
A
U
9
0
3
0

PAU10AB20
PA
U2
70
1

PAU10
AA18

PA
U2

80
4

PAU10U20
PA
U2
70
2

PAU1
0M1

PAU7037

PAU1
0M3

PAU7041

PAU1
0N2

PAU7035

PAU1
0N4

PAU7040

PAU1
0N3

PAU7038

PAU1
0P2

PAU7033

PAU10
F16

PAU2404

PAU10
E17

PAU2504

PAU10
F14

PAU2304

PAU
10F

13

PAU2204

PAU10C14

PAU2604

PAU10
P17

P
A
U
9
0
4
0

PAU
10F

15

P
A
U
9
0
3
8

PAU
10F

21

P
A
U
9
0
4
1

PAU10
C15

P
A
U
9
0
4
3

PAU10
W19

P
A
U
9
0
3
7

PAR302

PAU10
G11

PAU32
0J6

PAR8
01 PAU1

0U12

PAU32
0K6

PAR6
802

PAU10N12

PAU32
0G12

PAU10
M13

PAU32
0J9

PAU10K16

PAU32
0L11

PAR15
101

PAU10
A15

PAU3601

PAU3705

PAU38012

P
A
U
3
9
0
6

PAR15
201

PAU10A16

PAU3603

PAU3704

PAU38011

P
A
U
3
9
0
5

PAU10V12

PAU32
0J5

PAU10
R13

PAU32
0J7

PAU10
U13

PAU32
0K7

PAU10
T13

PAU32
0K8

PAU10L16

PAU32
0K11

PAU10Y14

PA
U3

03

PAU10W14

PA
U3

04

PAU
10A

A15

PA
U3

05

PAU10
AB15

PA
U3

06

PAU10
Y13

PA
U3

07

PAU10
AA14

PA
U3

08

PAU
10A

A13

PA
U3

09

PAU10
AB13

PA
U3

01
0

PAB10
0

PAC1
02

PA
C2

02

PAC30
1

PAC40
2

PA
C5

02

PA
C6

02

PAC701

PAC8
01

PAC902

PAC1
002

PAC1102

PAC1
202

PAC1302

PAC1
402

PAC1502

PAC1602

PA
C1

70
2

PAC1
801

PAC1
901

PAC2002

PAC2
101

PAC
220

2

PAC2402

PAC2
502

PAC2
602

PA
C2

70
2

PAC2
801

PAC29
02

PAC3
002

PAC3
102 PAC3

202

PAC3
302

PAC3
402

PA
C3

50
2

PAC3701

PAC3
801

PAC3
901

PAC4002

PAC
410

1

PAC4
202

PAC4302

PA
C4

40
2

PAC4501

PAC4602
PAC4702

PAC4
802

PAC4
902

PAC5
002

PAC5
102

PAC5
202

PAC530
1

PAC5
402

PAC5
502

PAC5
602

PAC5702

PAC5802

PAC5
902

PAC6
002

PAC6
102

PAC6
202 PA

C6
30

2

PAC6402

PAC6
502

PAC6
602

PAC6
702

PAC6
802 PAC6902

PAC7002 PAC7102

PAC7201

PAC7
301

PA
C7

40
2

PAC7502

PAC7
602

PAC7701

PAC7
801

PA
C7

90
1

PAC8
001

PA
C8

10
1

PAC8202 PAC8302
PAC8

402

PAC8
502

PAC8
602

PAC8
702

PA
C8

80
2

PA
C8

90
2

PAC9002

PAC9
102

PAC9
202

PAC9
302

PA
C9

40
2

PAC9
802

PAC9902

PAC100
02

PAC10
202

PAC10602

PAC
117

02

PAC11902

PAC1
2002

PAC

121
02

PAC
123

02
PAC12

402

PAC12
702

PAC12902

PAC1
3402

PAC135
02

PAC13702

PAC13
802

PAC13
902

PAC14
002

PAC14102

PAC14
202 PAC14

302

PAC14
402

PAC
145

02
PAC14

602

PAC
147

01
PAC1

4801

PAC1
4901

PAC15002

PAC15
102

PAC15
202

PAC15302

PAC15
402

PAC15
502

PAC15
602

PAC15
702

PAC1
5802

PAC15
902

PAC16
002

PAC16
102

PAC1
6202

PAC16

302

PAC
164

02
PAC

165
01

PAC16
602

PAC16
702

PAC16802

PAC16
902

PAC17001

PAC17
102

PAC17
302

PAC17
502

PAC1790
1

PAC
180

01

PAC18
102 PAC18202 PAC18
302

PAC18402 PAC18502

PAC20201

PAC24402

PAC24
502

PAC24602

PAC24
702

PAC24
802

PAC24902

PAC25
002

PAC25
202

PAD102

PAD202 PAD302 PAD402

PAD70
1

PAD8
01

PAD1102

PAH
101

PAH2
01

PAH
301

PAH5
01

PAH7
01

PAH
801

PAJ1
05

PAJ1
06

PAJ1
07

PAJ
108

PAJ1
010

PAJ
206

PAJ2
010

PAJ
20G

1
PA
J2
0G
2

PA
J2
0G
3

PA
J2
0G
4

PAJ3
08

P
A
J
4
0
2

P
A
J
4
0
5

P
A
J
4
0
8

P
A
J
4
0
1
1

P
A
J
4
0
1
7

PA
J4

0H
1

PA
J4
0H
2

PA
J4

0H
3

PA
J4
0H
4

PA
J5

01

PAJ6
02

PAJ6
07

PAJ6
08

PAJ7
08

PAJ8
01

PAJ8
02

PAJ8
043

PAJ8
044

PAJ
902

PAJ1
008

PAJ
120

1

PAJ1
302

PAJ13
03

PAJ1
401

PAJ14
03

PAJ14
05

PAJ1
407

PAJ1
409

PAJ140
11

PAJ14
013

PAJ14
015

PAJ140
17

PAJ140
19

PAJ14
021

PAJ14
023

PAJ140
25

PAJ14
027

PAJ14
029

PAJ140
31

PAJ140
33

PAJ
150

3

PA
J1

50
6

PAJ
160

2
PAJ1

603

PA
J1

70
2

PA
J1
70
10

PAJ
180

4

PAJ2
001

PAJ21
013

PAJ21
014

PA
JB
10
1

PA
JB
10
2 PAJB1

0H1

PAL2
02

PAL5
03

PA
P1
05

PA
P1

01
1

PA
P2
05

PA
P2

01
1

PA
R4

02

PAR901

PAR1102

PAR12
02

PAR
130

2

PAR
150

2

PAR
160

2

PAR1802

PAR2
002

PAR3
102

PAR4
701

PA
R5

00
2

PA
R5

80
1

PAR6
302

PAR6
502

PAR6
702

PAR
850

2

PAR86
02

PAR12501

PAR
141

02

PAR14
202

PAR
143

02
PAR14

402

PAR15
601

PAR15
701

PAR15801

PAR16
002

PAS1
0F1

PAS1
0F2

PAS2
02

PAS20
5

PAT102

PAT202
PAT60

2

PAT70
2

PAT802

PAT902

PAT1002

PAU1
0A2

PAU1
0A3

PAU1
0A5

PAU1
0A7

PAU1
0A8

PAU1
0A9

PAU10
A10

PAU10
A11 PAU10A12 PAU10A22

PAU
10A

A2

PAU10
AA12

PAU10
AA22

PAU10
AB9

PAU10
AB19

PA
U1

0B
3

PA
U1

0B
5

PA
U1

0B
7

PA
U1

0B
8

PA
U1

0B
9

PAU
10B

10

PAU
10B

11

PAU10
B12

PAU
10B

19

PAU1
0C3

PAU1
0C4

PAU1
0C6

PAU1
0C8

PAU1
0C9

PAU10
C10

PAU10
C11 PAU10C12 PAU10C16

PA
U1

0D
3

PA
U1

0D
4

PA
U1

0D
6

PA
U1

0D
8

PA
U1

0D
9

PAU
10D

10

PAU
10D

11

PAU10
D12

PAU
10D

13

PAU1
0E4

PAU1
0E5

PAU1
0E7

PAU1
0E8

PAU1
0E9

PAU10
E11 PAU10E12 PAU10E20

PA
U1

0F
5

PA
U1

0F
7

PA
U1

0F
8

PA
U1

0F
9

PAU
10F

11

PAU
10F

17

PAU1
0G5

PAU1
0G6

PAU1
0G7

PAU1
0G8

PAU1
0G9

PAU10
G10 PAU10G12 PAU10G14

PA
U1

0H
1

PA
U1

0H
7

PA
U1

0H
9

PAU
10H

11

PAU
10H

21

PAU1
0J8

PAU10
J10 PAU10J12 PAU10J18

PAU1
0K5

PAU1
0K7

PAU10
K11

PAU10
K15

PAU1
0L2

PAU1
0L8

PAU10
L15 PAU10L22

PAU1
0M7

PAU10
M11

PAU10
M19

PAU1
0N6

PAU1
0N8 PAU10N16

PAU1
0P3

PAU1
0P7

PAU1
0P9

PAU10
P11

PAU10
P13

PAU1
0R8

PAU10
R10 PAU10R12 PAU10R20

PAU1
0T7

PAU1
0T9

PAU10
T11

PAU10
T17

PAU1
0U4

PAU1
0U9

PAU10
U10 PAU10U14

PAU1
0V1

PAU10
V11

PAU10
V21

PAU1
0W8 PAU10W18

PAU1
0Y5

PAU10
Y15

PA
U2

04

PA
U2
01
0

PA
U2
01
5

PA
U2
02
1

P
A
U
2
0
2
8

P
A
U
2
0
3
4

P
A
U
2
0
3
9

P
A
U
2
0
4
5

PA
U3

01

PA
U3

02

PAU3014 PAU3015
PA

U3
02

5
PA

U3
02

6

PA
U3

02
7

PA
U3

03
1

PA
U3

03
3

PAU3039

PAU3040 PAU3
049

PAU4022 PAU40
25

PAU5
0B3

PAU6
03

PAU704
PAU7010

PAU7015
PAU7020 PAU7021 PAU7022 PAU7023 PAU7024 PAU7025

PAU7028

PAU7034

PAU7039
PAU7045

PAU7048

PA
U8

04

PA
U8
01
0

PA
U8
01
5

PA
U8
02
1

P
A
U
8
0
2
8

P
A
U
8
0
3
4

P
A
U
8
0
3
9

P
A
U
8
0
4
5

PA
U9

01

PA
U9

04

PA
U9
01
0

PA
U9
01
5

PA
U9
02
1

P
A
U
9
0
2
5

P
A
U
9
0
2
6

P
A
U
9
0
2
8

P
A
U
9
0
3
4

P
A
U
9
0
3
9

P
A
U
9
0
4
5

P
A
U
9
0
4
8

PA
U1

00
6

PA
U1

00
14

PAU
100

19

PAU
110

13

PAU
110

14
PAU

110
15

PAU
110

16
PAU

110
17

PAU
110

18
PAU11

026

PAU11
032

PAU
110

39

PA
U1
20
2

PA
U1
20
4
PAU

120
8

PAU1
302

PAU1
306

PA
U1
40
2

PA
U1
40
4
PAU

140
8

PA
U1
50
3

PA
U1
60
3

PAU1
702

PA
U1

80
3

PA
U1

90
3

PA
U2

00
3

PA
U2

10
3

PAU2203

PAU2303 PAU2403

PAU2503

PAU2603

PA
U2
70
3

PA
U2
80
3

PAU29
0A1

PAU290B3

PAU29
0C1

PAU29
0E5

PA
U3

00
3

PA
U3

10
3

PAU32
0A1

PAU32
0A13

PAU32
0B8

PAU32
0C3

PAU32
0D5

PAU32
0D7

PAU32
0E2

PAU32
0E11

PAU32
0F3

PAU32
0G7

PAU32
0H12

PAU32
0J4

PAU32
0L9

PAU32
0M6

PAU32
0N1

PAU32
0N13

PAU33010

PA
U3
40
4

P
A
U
3
5
0
6

PAU3602

PAU3604
PAU360

5

PAU3703

PA
U3

70
8

PAU37011

PAU
370

17
PAU

370
18

PAU
370

19

PAU37
021

PAU3
808

PA
U3
90
1

PA
U3
90
4

P
A
U
3
9
0
7

PAU4003

PAU4103
PAU4203

PAD103
PAJ1

801
PAR12

802

PAU10
G21

PAD104
PAJ1

802
PAR12

902

PAU10G22
PAU10

D22

PAU290B2

PAU10
B22

PAU29
0A4

P
A
J
4
0
9

PAU10
AB1

PA
U1

00
17

P
A
J
4
0
7

PAU
10A

A1

PA
U1

00
18

P
A
J
4
0
6

PAU10
AB2

PA
U1

00
20

P
A
J
4
0
4

PAU10
AB3

PA
U1

00
21

P
A
J
4
0
3

PAU10
AB5

PA
U1

00
22

P
A
J
4
0
1

PAU
10A

A5

PA
U1

00
23

P
A
J
4
0
1
2

PAU1
0Y1

PA
U1

00
15

P
A
J
4
0
1
0

PAU1
0W1

PA
U1

00
16

PAU1
0Y8

P
A
U
1
0
0
4

P
A
J
4
0
1
9

PA
U1

00
10

PAU10W12

PA
U1

80
2

PAJ1
408

PAR17
602 PAU7013

PAJ7
09

PAR1
401

PAJ7
05

PA
R4

60
1

PAJ
702

PAR16
602

PAU2402

PAJ7
06 PAR

167
02

PAU2502

PAJ7
03

PAR
165

02

PAU2302

PAJ7
04

PAR
164

02

PAU2202

PAJ7
01

PAR
169

02

PAU2602

PAJ3
09

PA
R2

20
1

PAJ3
05

PA
R2

30
1

PAJ
302

PAR17
302

PA
U9

09

PAJ3
06

PAR
174

02

PA
U9
01
1

PAJ3
03

PAR17
202

PA
U9

08

PAJ3
04

PAR
171

02

PA
U9

06

PAJ3
01

PAR17
502

PA
U9
01
2

PA
J5

08

PA
J1

20
8

PAU32
0L13

PA
J5

09

PA
J1
20
9

PAU32
0K12

PA
J5
01
0

PA
J1
20
10

PAU32
0J12

PA
J5

03

PA
J1
20
3

PAU32
0M11

PA
J5

05

PAJ
120

5

PAU32
0M12

PA
J5

06

PA
J1

20
6

PAU32
0M13

PA
J5

07

PAJ
120

7

PAU32
0L12

PA
J5

04

PA
J1

20
4

PAU32
0N12

PAU10A14

PAU32
0E9

PAU10
A13

PAU32
0G9

PAU10
C13

PAU32
0F13

PAU
10B

13

PAU32
0F9

PAU10
E13

PAU32
0G10

PAU
10D

15

PAU32
0D9

PAU10E14

PAU32
0F10

PAU10
D14

PAU32
0F12

PAR7
002

PAU32
0B13

PAR
130

02

PAU32
0B12

PAU10
AB8

P
A
U
1
0
0
5

PAR2
901 PAU32

0C5 PAR2
801

PAU32
0E7

PAR3
001 PAU32

0C4

PAR3502

PAU32
0B2

PA
J1
70
1

PAR2
702

PAR15602

PAU32
0G2

PA
J1
70
9

PAR3402

PAU32
0F5

PA
J1
70
3

PAR3
302

PAU32
0F6

PA
J1
70
5

PAR3
202

PAU32
0G1

PAR3
602

PAU32
0A2 PAJ14

010

PAU703

PAJ14
016

PA
U9
02
0

PAB10
0

PAD140
1

PAD1402

PAC1
701

PA
U1
20
6

PAC1802
PAJ1

004
PAC1

902
PAJ1

005

PAC29
01 PAJ10
015

PAJ10
016 PAR1201

PAC3
201

PAC3
301

PAL4
02

PA
U4

02

PAC3602
PA

U3
03

6

PAC7
302 PAU3309

PAC7501

PAJ2
002

PAR13
402 PAR14501 PAT60
1

PAC7802
PAR1

402 PAT803 PAU4102

PAC7
902 P

AR22
02 PAT703 PAU602

PAC8002
PAR2

302 PAT90
3

PAU4002
PAC8

102 P
AR

46
02

PAT100
3 PAU4202

PAC10201
PA
U1
40
6

PAC11
102

PAR4902
PAR5

001
PAU11

031

PAC11802
PA

U3
03

5
PAC11

901
PAU11

030

PAC
123

01

PA
D6

01

PA
D6

02

PAR5
402

PA
R5

90
1

PAR6
002

PAC12
401

PAD
603

 PAR6
001

PA
R6

10
1

PA
R6

60
2

PAC1
2501

PAJ90
1

PAC
125

02

PA
R6

10
2

PAC1260
1

PAJ
903

PAC12
602

PAC12
701 PAD703 PAR6

202

PAR6
301

PAC1280
1

PAJ
904

PAC12
802

PAC12901 PAD803

PA
R6

40
2

PAR6
501

PAC1
3401

PAJ1
0H1

PAJ1
0H2

PAR
850

1

PAC135
01

PAJ3
0H1

PAJ3
0H2

PAJ7
0H1

PAJ7
0H2

PAR86
01

PAC
139

01
PAR

137
02

PAC18
401

PAD140
3

PAU3
807

PAD5
01

PAF
102

PAL5

01

PAD9
0K

PAR6
701

PAD1
00K

PAR7001

PAD1
20K

PAR13
001

PAF
101

PAJ11

01

PAJ1
013

PAR4402
PAJ1

014
PAR5302

PAJ10
010 PAR1001 PAR1101 PAJ100
12

PAR7
201

PAL1
02 PAU3701

PAL5
04

PAS1
02

PA
L6

02
 PAU3702 PAL8

01 PAU37015

PAL9
01 PAU37014

PAR2
02

PA
R4

01

PA
U1
20
5

PAR902 PAU409

PAR1
801 PAU3037

PAR1902
PA

R2
00

1
PA
U1
40
5

PAR5102 PAU13
013

PAR12
201

PAR12
302 PAT10
3 PAU3308

PAR12301
PAR12502 PAT20

1

PAR12
402

PAU3307

PAR12
602

PAR15
902

PAU1
703

PAR13
401

PAS2
03

PAS20
6

PAR13501 PAT502 PAR13502
PAR13602 PAR13

701
PA
U3
40
8

PAR13
601 PAT504

PAR
138

02

PAR
140

01
PA
U3
40
2

PAR13
902

PA
U3
40
5

PAR
140

02

PAR
141

01

PA
U3
40
3

PAR16301 PAU38013

PAT501
PAT503

PATP
501

PAU10
K17

PATP
601

PAU10
N19

PATP
701

PAU10N20

PATP
801

PAU10
D20

PAR4
702

PAU10
F18

PAU37013

PA
R1

70
2

PAU11
028

PAU1
303

PAU13
012

PAU32
0D11

PA
U3
50
4

PAR14
702

PAU32
0D12

P
A
U
3
5
0
3

PAC14
501

PAC14
601

PA
P1
06

PA
P1

01
2

PA
U3
50
5

PAU32
0C12

P
A
U
3
5
0
1

PAR
146

02

PAU32
0C13

P
A
U
3
5
0
2

PAC
162

01
PAC16

301
PA
P2
06

PA
P2

01
2

P
A
U
3
5
0
8

PAD5
02

PAJ1
102

PAJ1
103

PAL5
02

PAT701

PAT801

PAT901

PAT1001

PAU10
H22

PAR6
401

PAU1
0L6

PAR6
201

PA
U1

0F
4

PAU10
U15

PAU3041

PAU10
V15

PAU3042
PAU10T14

PAU3043

PAU10
Y17

PAU3044

PAU10Y16

PAU3045

PAU10
AB17

PAU3046

PAU10
AA16

PAU3047

PAU10AB16

PAU3048

PAJ14
030

PAR
179

02

PAU7017

PAJ1
402

PAU702

PAU32
0J13

PAV102

PATP
101

PAU10T16

PAT
P20

1

PAU10U16

PATP
301

PAU10W16

PATP
401

PAU10
J19

PAU
10B

21

PAU29
0C3

PAR4
801

PAU10
AB7

P
A
U
1
0
0
2

P
A
J
4
0
1
5

P
A
U
1
0
0
8

PA
J1

50
10

PAR

120
02

PAU
10D

17

PA
J1

50
5

PAU
10B

17

PA
J1

50
2

PA
R2

10
2

PAU10
B16

PA
J1

50
7

PAR2
402

PAU10
B18

PA
J1

50
8

PA
R2

50
2

PAU10C18

PA
J1

50
9

PAR2
602

PAU10
C19

PA
J1

50
1

PAR11
902

PAU
10B

15

PA
J1

50
11

PAR

121
02

PAU10
C17

PAJ20
9

PAR8901

PAU1
0K1

PAJ
205

PA
R3

60
1

PAU1
0G2

PAJ
203

PAR3
301

PAR5
601

PAU1
0J2

PAJ
207

PAR3401 PAR5701

PA
U1

0H
2

PA
J2

08

PAR3
201

PAR8
801

PA
U1

0H
3

PA
J2

01

PAR2
701

PAR5
201

PAU1
0J1

PAJ
202

PAR3501 PAR5501

PAU1
0K2

PAR7
301

PAU1
0V9

P
A
U
1
0
0
3

P
A
J
4
0
1
6

P
A
U
1
0
0
9

PAJ
603

PA
U9
01
7

PAJ6
04

PAR8
702

PA
U1

50
4

PA
U2

00
2

PAJ
605

PAR16

802

PA
U1

60
4

PA
U2

10
2

PAJ6
06

PA
U9
01
9

PAJ6
01

PAR17
002

PA
U2

70
4

PA
U2
80
2

PAJ140
32

PAU7012

PAR701

PAU10
T19

PAU5
0C2

PAU10R22 PAU5
0D2

PAU10
P21 PAU5

0C4

PAR101 PAU10
R21 PAU5

0D4

PAU10P22

PAU5
0D3

PAU10L12

PAU5
0B2

PAC8
801

PAJ2
202

PAL6
01

PAC8701
PAJ2

201
PAL101

PAC9
401

PAJ1
902

PAL902
PAC8

901

PAJ1
901

PAL802

PAJ140
20

PAU708

PA
JB
10
4

PAR15
702

PAU32
0B5

PA
JB

10
10

PAU32
0A3

PA
JB
10
8

PAU32
0A4

PA
JB

10
12

PAU32
0B3

PA
JB
10
3

PAU32
0A5

PA
JB
10
7

PAR15802

PAU32
0B4

PAJ140
26

PAR17
702

PAU7014

PAD9
0A PAU10U22

PAC
122

02

PA
R6

60
1

PAU1
0M9

PAC12
201

PAR5
401

PAU10
L10

PAC3
401

PA
C3

50
1

PAC3
601

PAC11
801

PA
L7

01

PAU3013

PA
U3

02
9

PA
U3

03
0

PAU10
W11

PA
U3

01
1

PAU
10A

A9

PAU3024 PAU3038

PAU32
0N2

PAU10
V10

PA
U3

01
2

PAC3
001

PAC3
101

PA
U4

01

PAJ1
03

PAR
150

1

PA
U3

02
8

PAJ1
02

PAR
130

1

PA
U3

03
2

PAR4401
PA
U1
80
4

PAJ1
012

PAR13101 PAT303

PAJ1
015

PAR
133

01 PAT40
3

PAJ1
01

PAR
160

1

PA
U3

03
4

PAR13201 PAT402

PAU10
W15

PAR6
901 PAT302

PAU10
T15

PAR5301

PA
U1
90
4

PAR
138

01

PAR13
901

PAS1
01

PAT507
PAT508

PA
U3
40
1

PAU10V14

PA
U1

90
2

PAJ14
022

PAU709

PAJ14
024 PAU7011

PAJ14
028 PAR17
802

PAU7016

PAU38016

PAU38017 PAU38018 PAU38019

PA
U3

80
20

PA
U3

80
1

PAU3802

PAU3
803 P

AU38
04

PAU3805

MEGA65 R2 SCHEMATICS

V-28

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

of
23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

TE
07

65
.S

ch
D

oc
Fi

le
na

m
e:20

19
-0

3-
11

D
ef

au
lt

TE
07

65

M
ou

nt
.H

ol
e

3.
2m

m
M

ou
nt

.H
ol

e
3.

2m
mM

ou
nt

.H
ol

e
3.

2m
m

U
_E

th
er

ne
t

Et
he

rn
et

.S
ch

D
oc

G
N

D
G

N
D

G
N

D

U
_L

ED
_S

W
_B

U
T

LE
D

_S
W

_B
U

T.
Sc

hD
oc

U
_H

D
M

I
H

D
M

I.S
ch

D
oc

U
_S

Y
S_

M
A

X
10

_C
TR

L
SY

S_
M

A
X

10
_C

TR
L.

Sc
hD

oc

M
ou

nt
.H

ol
e

3.
2m

m
M

ou
nt

.H
ol

e
3.

2m
m

M
ou

nt
.H

ol
e

3.
2m

m
G

N
D

G
N

D
G

N
D

PM
1

FI
D

U
-D

O
T

- s
m

al
l

PM
2

FI
D

U
-D

O
T

- s
m

al
l

PM
3

FI
D

U
-D

O
T

- s
m

al
l

PM
6

FI
D

U
-D

O
T

- s
m

al
l

PM
5

FI
D

U
-D

O
T

- s
m

al
l

PM
4

FI
D

U
-D

O
T

- s
m

al
l

U
_S

O
U

N
D

SO
U

N
D

.S
ch

D
oc

U
_B

13
B

13
.S

ch
D

oc

U
_B

14
B

14
.S

ch
D

oc

U
_B

15
B

15
.S

ch
D

oc

U
_B

16
B

16
.S

ch
D

oc

U
_B

34
B

34
.S

ch
D

oc

U
_F

PG
A

-C
FG

FP
G

A
-C

FG
.S

ch
D

oc

U
_F

PG
A

-M
G

T
FP

G
A

-M
G

T.
Sc

hD
oc

U
_F

PG
A

-P
W

R
FP

G
A

-P
W

R
.S

ch
D

oc

U
_J

O
Y

JO
Y

.S
ch

D
oc

U
_K

EY
B

O
A

R
D

K
EY

B
O

A
R

D
.S

ch
D

oc

U
_P

O
W

ER
PO

W
ER

.S
ch

D
oc

U
_P

ow
er

M
ai

n
Po

w
er

M
ai

n.
Sc

hD
oc

U
_V

G
A

V
G

A
.S

ch
D

oc

U
_E

X
T_

H
EA

D
ER

EX
T_

H
EA

D
ER

.S
ch

D
oc

U
_E

X
P_

Sl
ot

EX
P_

Sl
ot

.S
ch

D
oc

U
_F

lo
pp

y
Fl

op
py

.S
ch

D
oc

Se
ria

l
Se

ria
l1

Se
ria

ln
um

be
r 6

,3
 x

 6
.3

m
m

1
0R

2
S/

N
1

Se
ria

ln
um

be
r

PIH101

COH
1

PIH201

CO
H2

PIH301

COH
3

PIH501

COH
5

PIH701

COH
7

PIH801

CO
H8

CO
PM
1

CO
PM
2

CO
PM
3

CO
PM
4

CO
PM
5

CO
PM
6

P
I
S
0
N
1
0
1

P
I
S
0
N
1
0
2

CO
S0
N1

CO
Se

ri
al

1

PIH101
PIH201

PIH301
PIH501

PIH701
PIH801

P
I
S
0
N
1
0
2

P
I
S
0
N
1
0
1

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e2

of
23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

EX
T_

H
E

A
D

E
R

.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

G
N

D

G
N

D
G

N
D

G
N

D

B
3

5
_

L2
_

N
B

3
5

_
L2

_
P

B
3

5
_

L3
_

N
B

3
5

_
L3

_
P

B
3

5
_

L4
_

N
B

3
5

_
L4

_
P

B
3

5
_

L5
_

N
B

3
5

_
L5

_
P

B
3

5
_

L6
_

N
B

3
5

_
L6

_
P

B
3

5
_

L1
_

N
B

3
5

_
L1

_
P

1 2 3 4

G
N

D
5

V
C

C
6

7 8 9 10

G
N

D
11

V
C

C
12

P1 PM
od

 2
x6

 S
M

D
 H

os
t S

oc
ke

t 9
0°

1 2 3 4

G
N

D
5

V
C

C
6

7 8 9 10

G
N

D
11

V
C

C
12

P2 PM
od

 2
x6

 S
M

D
 H

os
t S

oc
ke

t 9
0°

B
3

5
_

L1
2

_
P

B
3

5
_

L1
2

_
N

B
3

5
_

L1
0

_
P

B
3

5
_

L1
0

_
N

M
_

T
M

S

M
_

T
D

I

M
_

T
D

O
M

_
T

C
K

G
N

D
1

3.
3V

5

G
N

D
2

V
IO

6

A
3

B
7

C
4

D
8

E
9

F
10

H
12

G
11

G
N

D
H

1

U
A

R
T

T
C

K

T
D

O

T
D

I

T
M

S

JB
1

TE
07

90
-B

as
e

SM
T

1
2

3
4

5
6

7
8

9
10

J1
7

SM
D

-2
54

-9
13

2-
14

-1
0

G
N

D

T
E

_
T

M
S

T
E

_
T

D
I

T
E

_
T

D
O

T
E

_
T

C
K

G
N

D
G

N
D

G
N

D

3.
3V

TE
_U

A
RT

_R
X

TE
_U

A
RT

_T
X

C
13

8
47

0n
F

G
N

D

3.
3V

C
13

7
47

0n
F

G
N

D

C
PL

D
 C

O
N

FI
G

3

2

1 4

5

6

D
2

W
E-

TV
S-

82
40

13

G
N

D
B

3
5

_
L1

_
N

3

2

1 4

5

6

D
3

W
E-

TV
S-

82
40

13

G
N

D

3

2

1 4

5

6

D
4

W
E-

TV
S-

82
40

13

G
N

D

B
3

5
_

L6
_

N
3

2

1 4

5

6

D
11

W
E-

TV
S-

82
40

13

G
N

D

1 2 3 4

J1
8

11
09

90
03

7

G
N

D

G
R

O
V

E_
SC

L0
G

R
O

V
E_

SD
A

0
R

12
8

4K
7

R
12

9
4K

7

G
ro

ve
 C

O
N

N

PM
O

D
 C

O
N

N

3

2

1 4

5

6

D
1

W
E-

TV
S-

82
40

13

G
N

D

G
R

O
V

E_
SC

L0

G
R

O
V

E_
SD

A
0

G
N

D
6

IN
7

E
N

1
1

E
N

2
4

FL
G

2
3

O
U

T2
5

O
U

T1
8

FL
G

1
2

U
35

A
P2

19
6S

G
-1

3

3.
3V

C
16

3
47

0n
F

C
14

6
47

0n
F

10
V

C
14

5
10
µF

10
V

C
16

2
10
µF

10
V

C
16

4
10
µF

G
N

D
G

N
D

G
N

D
G

N
D

PM
O

D
1_

V
C

C

PM
O

D
2_

V
C

C

PM
O

D
1_

V
C

C

PM
O

D
2_

V
C

C

G
N

D

G
N

D

PM
O

D
1_

FL
G

PM
O

D
2_

FL
G

PM
O

D
1_

EN
PM

O
D

2_
EN

R
14

6
10

K
R

14
7

10
K

PM
O

D
1_

V
C

C

PM
O

D
2_

V
C

C

i
CP

LD
_J

TA
G

B
3

5
_

L6
_

P
B

3
5

_
L1

2
_

P
B

3
5

_
L4

_
P

B
3

5
_

L1
0

_
P

B
3

5
_

L4
_

N
B

3
5

_
L1

0
_

N

B
3

5
_

L1
2

_
N

B
3

5
_

L1
_

P

B
3

5
_

L2
_

N
B

3
5

_
L2

_
P

B
3

5
_

L3
_

N
B

3
5

_
L3

_
P

B
3

5
_

L5
_

P
B

3
5

_
L5

_
N

i
TE

_J
TA

G

R
15

6
4K

7

G
N

D R
15

7
4K

7

G
N

D
G

N
DR

15
8

10
K

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

PIC13701 PIC13702
CO
C1
37

PIC13801 PIC13802
CO
C1
38

PIC14501 PIC14502
CO
C1
45

PIC14601 PIC14602
CO
C1
46

PIC16201 PIC16202
CO
C1
62

PIC16301 PIC16302
CO
C1
63

PIC16401 PIC16402
CO
C1
64

PI
D1

01

PI
D1

02

PI
D1

03

PI
D1

04

PI
D1

05

PI
D1

06
 COD
1

PI
D2

01

PI
D2

02

PI
D2

03

PI
D2

04

PI
D2

05

PI
D2

06
 COD

2

PI
D3

01

PI
D3

02

PI
D3

03

PI
D3

04

PI
D3

05

PI
D3

06
 COD

3

PI
D4

01

PI
D4

02

PI
D4

03

PI
D4

04

PI
D4

05

PI
D4

06
 CO
D4

PI
D1

10
1

PI
D1

10
2

PI
D1

10
3

PI
D1

10
4

PI
D1

10
5

PI
D1

10
6 CO
D1
1

PI
J1
70
1

PI
J1
70
2

PI
J1
70
3

PI
J1
70
4

P
I
J
1
7
0
5

P
I
J
1
7
0
6

P
I
J
1
7
0
7

P
I
J
1
7
0
8

P
I
J
1
7
0
9

P
I
J
1
7
0
1
0

COJ
17

PI
J1
80
1

P
I
J
1
8
0
2

P
I
J
1
8
0
3

P
I
J
1
8
0
4
 COJ

18

P
I
J
B
1
0
1

PI
JB
10
2

P
I
J
B
1
0
3

P
I
J
B
1
0
4

PI
JB
10
5

P
I
J
B
1
0
6

P
I
J
B
1
0
7

P
I
J
B
1
0
8

PI
JB
10
9

PI
JB

10
10

P
I
J
B
1
0
1
1

P
I
J
B
1
0
1
2

PI
JB
10
H1

CO
JB

1

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4

P
I
P
1
0
5

P
I
P
1
0
6

P
I
P
1
0
7

P
I
P
1
0
8

P
I
P
1
0
9

P
I
P
1
0
1
0

P
I
P
1
0
1
1

PI
P1
01
2

COP
1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4

P
I
P
2
0
5

P
I
P
2
0
6

P
I
P
2
0
7

P
I
P
2
0
8

P
I
P
2
0
9

P
I
P
2
0
1
0

PI
P2
01
1

P
I
P
2
0
1
2

COP
2

PIR
128

01
PIR

128
02

CO
R1
28

PI
R1

29
01

PI

R1
29

02

CO
R1
29

PIR
146

01
PIR

146
02

CO
R1
46

PIR
147

01
PIR

147
02

CO
R1
47

PIR15601 PIR15602 CO
R1
56

PIR15701 PIR15702 CO
R1
57

PIR15801 PIR15802
CO
R1
58

P
I
U
3
5
0
1

PI
U3
50
2

PI
U3
50
3

P
I
U
3
5
0
4

PI
U3
50
5

PI
U3
50
6

P
I
U
3
5
0
7

P
I
U
3
5
0
8

CO
U3
5

PIC13701

PIC13801

PIC16401

PI
D1

05

PI
D2

05

PI
D3

05

PI
D4

05

PI
D1

10
5

PI
J1
70
4

P
I
J
1
8
0
3

P
I
J
B
1
0
6

PIR
128

01

PI
R1

29
01

PIR
146

01

PIR
147

01

P
I
U
3
5
0
7

PI
D2

06

P
I
P
1
0
4

NL
B3

50
L1

0N

PI
D2

04

P
I
P
1
0
1
0

NL
B3

50
L1

0P

PI
D2

01

P
I
P
1
0
3

NL
B3

50
L2

0N

PI
D2

03

P
I
P
1
0
9

NL
B3

50
L2

0P

PI
D3

06

P
I
P
1
0
2

NL
B3

50
L3

0N

PI
D3

04

P
I
P
1
0
8

NL
B3

50
L3

0P

PI
D4

01

P
I
P
2
0
8

NL
B3

50
L4

0N

PI
D4

06

P
I
P
2
0
7

NL
B3

50
L4

0P

PI
D3

01

P
I
P
1
0
1

NL
B3

50
L5

0N

PI
D3

03

P
I
P
1
0
7

NL
B3

50
L5

0P

PI
D4

03

P
I
P
2
0
2

NL
B3

50
L6

0N

PI
D4

04

P
I
P
2
0
1

NL
B3

50
L6

0P

PI
D1

10
3

P
I
P
2
0
4

NL
B3

50
L1

00
N

PI
D1

10
1

P
I
P
2
0
1
0

NL
B3

50
L1

00
P

PI
D1

10
6

P
I
P
2
0
9

NL
B3

50
L1

20
N

PI
D1

10
4

P
I
P
2
0
3

NL
B3

50
L1

20
P

PIC13702

PIC13802

PIC14502
PIC14602

PIC16202
PIC16302

PIC16402

PI
D1

02

PI
D2

02

PI
D3

02

PI
D4

02

PI
D1

10
2

PI
J1
70
2

P
I
J
1
7
0
1
0

P
I
J
1
8
0
4

P
I
J
B
1
0
1

PI
JB
10
2

PI
JB
10
H1

P
I
P
1
0
5

P
I
P
1
0
1
1

P
I
P
2
0
5

PI
P2
01
1

PIR15601 PIR15701
PIR15801

PI
U3
50
6

PI
D1

03

PI
J1
80
1

PIR
128

02
NL
Gr
ov
e0
SC
L0

PI
D1

04

P
I
J
1
8
0
2

PI
R1

29
02

NL

Gr
ov

e0
SD

A0

PI
J1
70
1

PIR15602
NL

M0
TC

K

P
I
J
1
7
0
9

NL
M0
TD
I

PI
J1
70
3

NL
M0

TD
O

P
I
J
1
7
0
5

NL
M0

TM
S

P
I
J
B
1
0
1
1

PI
JB
10
9

PI
JB
10
5

P
I
J
1
7
0
8

P
I
J
1
7
0
7

P
I
J
1
7
0
6

PI
D1

06

PI
D1

01

P
I
U
3
5
0
4

NL
PM

OD
10

EN

PIR
147

02
PI
U3
50
3

NL
PM

OD
10

FL
G

PIC14501
PIC14601

P
I
P
1
0
6

PI
P1
01
2

PI
U3
50
5

P
I
U
3
5
0
1

NL
PM

OD
20

EN

PIR
146

02
PI
U3
50
2

NL
PM

OD
20

FL
G

PIC16201
PIC16301

P
I
P
2
0
6

P
I
P
2
0
1
2

P
I
U
3
5
0
8

P
I
J
B
1
0
4

PIR15702
NL
TE
0T
CK

PI
JB

10
10

NL

TE
0T

DI

P
I
J
B
1
0
8

NL
TE

0T
DO

P
I
J
B
1
0
1
2

NL
TE

0T
MS

P
I
J
B
1
0
3

NL
TE
0U
AR
T0
RX

P
I
J
B
1
0
7

PIR15802
NL
TE
0U
AR
T0
TX

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e3

of
23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

EX
P

_S
lo

t.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

J8 12
0-

04
4-

60

C
64

_A
1

C
64

_A
2

C
64

_A
3

C
64

_A
4

C
64

_A
5

C
64

_A
6

C
64

_A
7

C
64

_A
8

C
64

_A
9

C
64

_A
10

C6
4_

A
11

C
64

_A
12

C
64

_A
13

C
64

_A
14

C
64

_A
15

C
64

_A
0

G
N

D
G

N
D

G
N

D
G

N
D

C
64

_D
0

C
64

_D
1

C
64

_D
2

C
64

_D
3

C
64

_D
4

C
64

_D
5

C
64

_D
6

C
64

_D
7

C
64

_G
A

M
E

C
64

_N
M

I

C
64

_R
O

M
H

C
64

_R
O

M
L

C
64

_B
A

C
64

_D
M

A

C
64

_E
X

R
O

M

C
64

_C
LO

C
K

C
64

_I
R

Q
C6

4_
RW

C
64

_I
O

1

C
64

_I
O

2

C
64

_R
ES

ET

C
64

_O
2

1D
IR

1

1B
1

2

1B
2

3

G
N

D
4

1B
3

5

1B
4

6

V
C

C
B

7

1B
5

8

1B
6

9

G
N

D
10

1B
7

11

1B
8

12

2B
1

13

2B
2

14

G
N

D
15

2B
3

16

2B
4

17

V
C

C
B

18

2B
5

19

2B
6

20

G
N

D
21

2B
7

22

2B
8

23

2D
IR

24
2O

E
25

2A
8

26
2A

7
27

G
N

D
28

2A
6

29
2A

5
30

V
C

C
A

31

2A
4

32
2A

3
33

G
N

D
34

2A
2

35
2A

1
36

1A
8

37
1A

7
38

G
N

D
39

1A
6

40
1A

5
41

V
C

C
A

42

1A
4

43
1A

3
44

G
N

D
45

1A
2

46
1A

1
47

1O
E

48

U
8

SN
74

LV
C

H
16

T2
45

D
G

V

F_
C

64
_A

1
F_

C
64

_A
2

F_
C

64
_A

3
F_

C
64

_A
4

F_
C

64
_A

5
F_

C
64

_A
6

F_
C

64
_A

7

F_
C

64
_A

8
F_

C
64

_A
9

F_
C

64
_A

10
F_

C6
4_

A
11

F_
C

64
_A

12
F_

C
64

_A
13

F_
C

64
_A

14
F_

C
64

_A
15

F_
C

64
_A

0

F_
C

64
_N

M
I

F_
C

64
_R

O
M

H

F_
C

64
_R

ES
ET

F_
C

64
_O

2

F_
C

64
_D

0
F_

C
64

_D
1

F_
C

64
_D

2
F_

C
64

_D
3

F_
C

64
_D

4
F_

C
64

_D
5

F_
C

64
_D

6
F_

C
64

_D
7

F_
C

64
_G

A
M

E

F_
C

64
_R

O
M

L
F_

C
64

_B
A

F_
C

64
_D

M
A

F_
C

64
_E

X
R

O
M

F_
C

64
_C

LO
C

K

F_
C

64
_I

R
Q

F_
C6

4_
RW

F_
C

64
_I

O
1

F_
C

64
_I

O
2

C
64

_A
1

C
64

_A
2

C
64

_A
3

C
64

_A
4

C
64

_A
5

C
64

_A
6

C
64

_A
7

C
64

_A
8

C
64

_A
9

C
64

_A
10

C6
4_

A
11

C
64

_A
12

C
64

_A
13

C
64

_A
14

C
64

_A
15

C
64

_A
0

1D
IR

1

1B
1

2

1B
2

3

G
N

D
4

1B
3

5

1B
4

6

V
C

C
B

7

1B
5

8

1B
6

9

G
N

D
10

1B
7

11

1B
8

12

2B
1

13

2B
2

14

G
N

D
15

2B
3

16

2B
4

17

V
C

C
B

18

2B
5

19

2B
6

20

G
N

D
21

2B
7

22

2B
8

23

2D
IR

24
2O

E
25

2A
8

26
2A

7
27

G
N

D
28

2A
6

29
2A

5
30

V
C

C
A

31

2A
4

32
2A

3
33

G
N

D
34

2A
2

35
2A

1
36

1A
8

37
1A

7
38

G
N

D
39

1A
6

40
1A

5
41

V
C

C
A

42

1A
4

43
1A

3
44

G
N

D
45

1A
2

46
1A

1
47

1O
E

48

U
2

SN
74

LV
C

H
16

T2
45

D
G

V

C
64

_D
0

C
64

_D
1

C
64

_D
2

C
64

_D
3

C
64

_D
4

C
64

_D
5

C
64

_D
6

C
64

_D
7

C
64

_N
M

I

C
64

_R
O

M
H

C
64

_R
ES

ET

C
64

_O
2

C
64

_G
A

M
E

C
64

_R
O

M
L

C
64

_B
A

C
64

_D
M

A

C
64

_E
X

R
O

M

C
64

_C
LO

C
K

C
64

_I
R

Q

C6
4_

RW

C
64

_I
O

1

C
64

_I
O

2

1D
IR

1

1B
1

2

1B
2

3

G
N

D
4

1B
3

5

1B
4

6

V
C

C
B

7

1B
5

8

1B
6

9

G
N

D
10

1B
7

11

1B
8

12

2B
1

13

2B
2

14

G
N

D
15

2B
3

16

2B
4

17

V
C

C
B

18

2B
5

19

2B
6

20

G
N

D
21

2B
7

22

2B
8

23

2D
IR

24
2O

E
25

2A
8

26
2A

7
27

G
N

D
28

2A
6

29
2A

5
30

V
C

C
A

31

2A
4

32
2A

3
33

G
N

D
34

2A
2

35
2A

1
36

1A
8

37
1A

7
38

G
N

D
39

1A
6

40
1A

5
41

V
C

C
A

42

1A
4

43
1A

3
44

G
N

D
45

1A
2

46
1A

1
47

1O
E

48

U
9

SN
74

LV
C

H
16

T2
45

D
G

V

F_
H

A
D

D
R

_D
IR

F_
LA

D
D

R
_D

IR
F_

A
D

D
R

_E
N

F_
C

TR
L_

EN
F_

C
TR

L_
D

IR
F_

D
A

TA
_D

IR
F_

D
A

TA
_E

N

5V
5V

5VG
N

D
G

N
D

G
N

D

G
N

D
G

N
D

G
N

D

JB
_U

P

JB
_D

O
W

N
JB

_F
IR

E

JB
_L

EF
T

JB
_R

IG
H

T

5V

3.
3V

3.
3V

3.
3V

G
N

D

G
N

D

G
N

D

3.
3V

F_
SE

R_
A

TN
F_

SE
R

_R
ES

ET
SE

R
_R

ES
ET

SE
R_

A
TN

FB
_U

P

FB
_D

O
W

N
FB

_F
IR

E

FB
_L

EF
T

FB
_R

IG
H

T

i
CA

RT

i
CA

RT

i
CA

RT
i

CA
RT

i
CA

RT

i
CA

RT
i

CA
RT

i
CA

RT

i
CA

RT
i

CA
RT

i
CA

RT

F_
A

D
D

R
_E

N
i

CA
RT

M
O

TE
B

D
RV

SB
F_

D
RV

SB
F_

M
O

TE
B

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
30

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
31

N
C

7S
Z1

26
P5

X

G
N

D

G
N

D

3.
3V

3.
3V

3.
3V

3.
3V

C
64

_D
0

C
64

_D
1

C
64

_D
2

C
64

_D
3

C
64

_D
4

C
64

_D
5

C
64

_D
6

C
64

_D
7

C
64

_G
A

M
E

C
64

_R
O

M
L

C
64

_B
A

C
64

_D
M

A

C
64

_E
X

R
O

M

C
64

_C
LO

C
K

C
64

_I
R

Q
C6

4_
RW

C
64

_I
O

1

C
64

_I
O

2

C
64

_A
1

C
64

_A
2

C
64

_A
3

C
64

_A
4

C
64

_A
5

C
64

_A
6

C
64

_A
7

C
64

_A
8

C
64

_A
9

C
64

_A
10

C6
4_

A
11

C
64

_A
12

C
64

_A
13

C
64

_A
14

C
64

_A
15

C
64

_A
0

C
64

_N
M

I

C
64

_R
O

M
H

C
64

_R
ES

ET

C
64

_O
2

R
37

4K
7

R
38

4K
7

R
39

4K
7

R
40

4K
7

R
41

4K
7

R
42

4K
7

R
43

4K
7

R
45

4K
7

R
71

4K
7

R
90

4K
7

R
91

4K
7

R
92

4K
7

R
93

4K
7

R
94

4K
7

R
95

4K
7

R
96

4K
7

R
97

4K
7

R
98

4K
7

R
99

4K
7

R
10

0
4K

7
R

10
1

4K
7

R
10

2
4K

7
R

10
3

4K
7

R
10

4
4K

7
R

10
5

4K
7

R
10

6
4K

7
R

10
7

4K
7

R
10

8
4K

7
R

10
9

4K
7

R1
10

4K
7

R1
11

4K
7

R1
12

4K
7

R1
13

4K
7

R1
14

4K
7

R1
15

4K
7

R1
16

4K
7

R1
17

4K
7

R1
18

4K
75V 5V

G
N

D

i
EX

P

i
EX

Pi
EX

P

i
EX

P i
EX

P

i
EX

P

i
EX

P i
EX

P

i
EX

P

i
EX

P

i
D

A
TA

i
A

D
R

i
A

D
R

P
I
J
8
0
1

P
I
J
8
0
2

P
I
J
8
0
3

P
I
J
8
0
4

P
I
J
8
0
5

P
I
J
8
0
6

P
I
J
8
0
7

P
I
J
8
0
8

P
I
J
8
0
9

P
I
J
8
0
1
0

P
I
J
8
0
1
1

P
I
J
8
0
1
2

PI
J8
01
3

PI
J8

01
4

PI
J8
01
5

PI
J8

01
6

P
I
J
8
0
1
7

P
I
J
8
0
1
8

P
I
J
8
0
1
9

P
I
J
8
0
2
0

P
I
J
8
0
2
1

P
I
J
8
0
2
2

PI
J8
02
3

PI
J8

02
4

PI
J8
02
5

PI
J8

02
6

P
I
J
8
0
2
7

P
I
J
8
0
2
8

P
I
J
8
0
2
9

P
I
J
8
0
3
0

P
I
J
8
0
3
1

P
I
J
8
0
3
2

PI
J8
03
3

PI
J8

03
4

PI
J8
03
5

PI
J8

03
6

P
I
J
8
0
3
7

P
I
J
8
0
3
8

P
I
J
8
0
3
9

P
I
J
8
0
4
0

P
I
J
8
0
4
1

P
I
J
8
0
4
2

PI
J8
04
3

PI
J8

04
4 COJ

8

PI
R3

70
1

PI
R3

70
2

CO
R3

7 PI
R3

80
1

PI
R3

80
2

CO
R3

8 PI
R3

90
1

PI
R3

90
2

CO
R3

9 PI
R4

00
1

PI
R4

00
2

CO
R4

0 PI
R4

10
1

PI
R4

10
2

COR
41 PI
R4

20
1

PI
R4

20
2

CO
R4

2 PI
R4

30
1

PI
R4

30
2

CO
R4

3 PI
R4

50
1

PI
R4

50
2

CO
R4

5 PI
R7

10
1

PI
R7

10
2

CO
R7

1 PI
R9

00
1

PI
R9

00
2

COR
90 PI
R9

10
1

PI
R9

10
2

CO
R9

1 PI
R9

20
1

PI
R9

20
2

CO
R9

2 PI
R9

30
1

PI
R9

30
2

CO
R9

3 PI
R9

40
1

PI
R9

40
2

CO
R9

4 PI
R9

50
1

PI
R9

50
2

COR
95 PI
R9

60
1

PI
R9

60
2

CO
R9

6 PI
R9

70
1

PI
R9

70
2

CO
R9

7 PI
R9

80
1

PI
R9

80
2

CO
R9

8 PI
R9

90
1

PI
R9

90
2

CO
R9

9 PI
R1

00
01

PI

R1
00

02

CO
R1
00

PI
R1

01
01

PI

R1
01

02

CO
R1
01

PIR
102

01
PIR

102
02

CO
R1
02

PIR
103

01
PIR

103
02

CO
R1
03

PI
R1

04
01

PI

R1
04

02

CO
R1
04

PI
R1

05
01

PI

R1
05

02

CO
R1
05

PIR
106

01
PIR

106
02

CO
R1
06

PIR
107

01
PIR

107
02

CO
R1
07

PI
R1

08
01

PI

R1
08

02

CO
R1
08

PI
R1

09
01

PI

R1
09

02

CO
R1
09

PI
R1

10
01

PI

R1
10

02

CO
R1
10

PI
R1

11
01

PI

R1
11

02

CO
R1
11

PIR
112

01
PIR

112
02

CO
R1
12

PI
R1

13
01

PI

R1
13

02

CO
R1
13

PI
R1

14
01

PI

R1
14

02

CO
R1
14

PI
R1

15
01

PI

R1
15

02

CO
R1
15

PIR
116

01
PIR

116
02

CO
R1
16

PIR
117

01
PIR

117
02

CO
R1
17

PI
R1

18
01

PI

R1
18

02

CO
R1
18

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8

P
I
U
2
0
9

P
I
U
2
0
1
0

P
I
U
2
0
1
1

PI
U2
01
2

P
I
U
2
0
1
3

PI
U2
01
4

PI
U2
01
5

P
I
U
2
0
1
6

P
I
U
2
0
1
7

P
I
U
2
0
1
8

P
I
U
2
0
1
9

P
I
U
2
0
2
0

P
I
U
2
0
2
1

PI
U2
02
2

P
I
U
2
0
2
3

P
I
U
2
0
2
4

P
I
U
2
0
2
5

P
I
U
2
0
2
6

PI
U2
02
7

P
I
U
2
0
2
8

P
I
U
2
0
2
9

P
I
U
2
0
3
0

P
I
U
2
0
3
1

P
I
U
2
0
3
2

P
I
U
2
0
3
3

P
I
U
2
0
3
4

PI
U2
03
5

P
I
U
2
0
3
6

PI
U2
03
7

P
I
U
2
0
3
8

PI
U2
03
9

P
I
U
2
0
4
0

P
I
U
2
0
4
1

P
I
U
2
0
4
2

PI
U2
04
3

PI
U2
04
4

P
I
U
2
0
4
5

P
I
U
2
0
4
6

P
I
U
2
0
4
7

PI
U2
04
8

COU
2

P
I
U
8
0
1

P
I
U
8
0
2

P
I
U
8
0
3

P
I
U
8
0
4

P
I
U
8
0
5

P
I
U
8
0
6

P
I
U
8
0
7

P
I
U
8
0
8

P
I
U
8
0
9

P
I
U
8
0
1
0

P
I
U
8
0
1
1

PI
U8
01

2

P
I
U
8
0
1
3

PI
U8
01

4

PI
U8
01

5

P
I
U
8
0
1
6

P
I
U
8
0
1
7

P
I
U
8
0
1
8

P
I
U
8
0
1
9

P
I
U
8
0
2
0

P
I
U
8
0
2
1

PI
U8
02

2

P
I
U
8
0
2
3

P
I
U
8
0
2
4

P
I
U
8
0
2
5

P
I
U
8
0
2
6

PI
U8
02

7

P
I
U
8
0
2
8

P
I
U
8
0
2
9

P
I
U
8
0
3
0

P
I
U
8
0
3
1

P
I
U
8
0
3
2

P
I
U
8
0
3
3

P
I
U
8
0
3
4

PI
U8
03

5

P
I
U
8
0
3
6

PI
U8
03

7

P
I
U
8
0
3
8

PI
U8
03

9

P
I
U
8
0
4
0

P
I
U
8
0
4
1

P
I
U
8
0
4
2

PI
U8
04

3

PI
U8
04

4

P
I
U
8
0
4
5

P
I
U
8
0
4
6

P
I
U
8
0
4
7

PI
U8
04

8

COU
8

P
I
U
9
0
1

P
I
U
9
0
2

P
I
U
9
0
3

P
I
U
9
0
4

P
I
U
9
0
5

P
I
U
9
0
6

P
I
U
9
0
7

P
I
U
9
0
8

P
I
U
9
0
9

PI
U9
01
0

PI
U9
01
1

PI
U9
01
2

PI
U9
01
3

P
I
U
9
0
1
4

P
I
U
9
0
1
5

P
I
U
9
0
1
6

P
I
U
9
0
1
7

P
I
U
9
0
1
8

P
I
U
9
0
1
9

PI
U9
02
0

P
I
U
9
0
2
1

P
I
U
9
0
2
2

P
I
U
9
0
2
3

P
I
U
9
0
2
4

P
I
U
9
0
2
5

P
I
U
9
0
2
6

P
I
U
9
0
2
7

PI
U9
02
8

PI
U9
02
9

P
I
U
9
0
3
0

P
I
U
9
0
3
1

P
I
U
9
0
3
2

P
I
U
9
0
3
3

PI
U9
03
4

P
I
U
9
0
3
5

PI
U9
03
6

PI
U9
03
7

PI
U9
03
8

P
I
U
9
0
3
9

P
I
U
9
0
4
0

P
I
U
9
0
4
1

P
I
U
9
0
4
2

P
I
U
9
0
4
3

PI
U9
04
4

P
I
U
9
0
4
5

PI
U9
04
6

P
I
U
9
0
4
7

P
I
U
9
0
4
8

CO
U9

P
I
U
3
0
0
1

PI
U3
00
2

P
I
U
3
0
0
3

P
I
U
3
0
0
4

P
I
U
3
0
0
5

CO
U3
0

P
I
U
3
1
0
1

P
I
U
3
1
0
2

PI
U3
10
3

PI
U3
10
4

P
I
U
3
1
0
5

CO
U3
1

P
I
U
2
0
3
1

P
I
U
2
0
4
2

P
I
U
8
0
3
1

P
I
U
8
0
4
2

P
I
U
9
0
2
4

P
I
U
9
0
3
1

P
I
U
9
0
4
2

P
I
U
3
0
0
1

P
I
U
3
0
0
5

P
I
U
3
1
0
1

P
I
U
3
1
0
5

P
I
J
8
0
4
0

P
I
J
8
0
4
2

PI
R3

70
2

PI
R3

80
2

PI
R3

90
2

PI
R4

00
2

PI
R4

10
2

PI
R4

20
2

PI
R4

30
2

PI
R4

50
2

PI
R7

10
2

PI
R9

00
2

PI
R9

10
2

PI
R9

20
2

PI
R9

30
2

PI
R9

40
2

PI
R9

50
2

PI
R9

60
2

PI
R9

70
2

PI
R9

80
2

PI
R9

90
2

PI
R1

00
02

PI
R1

01
02

PIR
102

02

PIR
103

02

PI
R1

04
02

PI
R1

05
02

PIR
106

02

PIR
107

02

PI
R1

08
02

PI
R1

09
02

PI
R1

10
02

PI
R1

11
02

PIR
112

02

PI
R1

13
02

PI
R1

14
02

PI
R1

15
02

PIR
116

02

PIR
117

02

PI
R1

18
02

P
I
U
2
0
7

P
I
U
2
0
1
8

P
I
U
8
0
7

P
I
U
8
0
1
8

P
I
U
9
0
7

P
I
U
9
0
1
8

P
I
J
8
0
3

PI
R1

18
01

P
I
U
2
0
2
3

NL
C6

40
A0

P
I
J
8
0
5

PIR
117

01

PI
U2
02
2

NL
C6

40
A1

P
I
J
8
0
7

PIR
116

01

P
I
U
2
0
2
0

NL
C6

40
A2

P
I
J
8
0
9

PI
R1

15
01

P
I
U
2
0
1
9

NL
C6

40
A3

P
I
J
8
0
1
1

PI
R1

14
01

P
I
U
2
0
1
7

NL
C6

40
A4

PI
J8
01
3

PI
R1

13
01

P
I
U
2
0
1
6

NL
C6

40
A5

PI
J8
01
5

PIR
112

01

PI
U2
01
4

NL
C6

40
A6

P
I
J
8
0
1
7

PI
R1

11
01

P
I
U
2
0
1
3

NL
C6

40
A7

P
I
J
8
0
1
9

PI
R1

10
01

P
I
U
8
0
2
3

NL
C6

40
A8

P
I
J
8
0
2
1

PI
R1

09
01

PI
U8
02

2

NL
C6

40
A9

PI
J8
02
3

PI
R1

08
01

P
I
U
8
0
2
0

NL
C6
40
A1
0

PI
J8
02
5

PIR
107

01

P
I
U
8
0
1
9

NL
C6
40
A1
1

P
I
J
8
0
2
7

PIR
106

01

P
I
U
8
0
1
7

NL
C6
40
A1
2

P
I
J
8
0
2
9

PI
R1

05
01

P
I
U
8
0
1
6

NL
C6
40
A1
3

P
I
J
8
0
3
1

PI
R1

04
01

PI
U8
01

4

NL
C6
40
A1
4

PI
J8
03
3

PIR
103

01

P
I
U
8
0
1
3

NL
C6
40
A1
5

P
I
J
8
0
2
2

PI
R7

10
1

PI
U8
01

2

NL
C6
40
BA

PI
J8

03
4

PI
R3

90
1

P
I
U
9
0
1
4

NL
C6
40
CL
OC
K

P
I
J
8
0
4

PI
R9

80
1

PI
U2
01
2

NL
C6

40
D0

P
I
J
8
0
6

PI
R9

70
1

P
I
U
2
0
1
1

NL
C6

40
D1

P
I
J
8
0
8

PI
R9

60
1

P
I
U
2
0
9

NL
C6

40
D2

P
I
J
8
0
1
0

PI
R9

50
1

P
I
U
2
0
8

NL
C6

40
D3

P
I
J
8
0
1
2

PI
R9

40
1

P
I
U
2
0
6

NL
C6

40
D4

PI
J8

01
4

PI
R9

30
1

P
I
U
2
0
5

NL
C6

40
D5

PI
J8

01
6

PI
R9

20
1

P
I
U
2
0
3

NL
C6

40
D6

P
I
J
8
0
1
8

PI
R9

10
1

P
I
U
2
0
2

NL
C6

40
D7

P
I
J
8
0
2
0

PI
R9

00
1

P
I
U
9
0
5

NL
C6
40
DM
A

P
I
J
8
0
2
8

PI
R4

20
1

PI
U3
00
2

NL
C6

40
EX

RO
M

P
I
J
8
0
3
0

PI
R4

10
1

P
I
U
3
1
0
2

NL
C6

40
GA

ME

P
I
J
8
0
3
2

PI
R4

00
1

P
I
U
8
0
5

NL
C6

40
IO

1

PI
J8

02
6

PI
R4

30
1

P
I
U
8
0
9

NL
C6

40
IO

2

P
I
J
8
0
3
8

PI
R3

70
1

P
I
U
9
0
3

NL
C6
40
IR
Q

P
I
J
8
0
3
7

PI
R1

01
01

P
I
U
9
0
2

NL
C6

40
NM

I

PI
J8
03
5

PIR
102

01

P
I
U
9
0
1
6

NL
C6

40
O2

P
I
J
8
0
3
9

PI
R1

00
01

PI
U9
01
3

NL
C6

40
RE

SE
T

P
I
J
8
0
4
1

PI
R9

90
1

P
I
U
8
0
3

NL
C6

40
RO

MH

PI
J8

02
4

PI
R4

50
1

P
I
U
8
0
1
1

NL
C6

40
RO

ML

PI
J8

03
6

PI
R3

80
1

P
I
U
8
0
2

NL
C6

40
RW

P
I
U
9
0
2
2

NL
DR

VS
B

P
I
U
2
0
2
5

P
I
U
8
0
2
5

NL
F0

AD
DR

0E
N

P
I
U
2
0
2
6

NL
F0

C6
40

A0

PI
U2
02
7

NL
F0
C6
40
A1

P
I
U
2
0
2
9

NL
F0

C6
40

A2

P
I
U
2
0
3
0

NL
F0
C6
40
A3

P
I
U
2
0
3
2

NL
F0

C6
40

A4

P
I
U
2
0
3
3

NL
F0

C6
40

A5

PI
U2
03
5

NL
F0

C6
40

A6

P
I
U
2
0
3
6

NL
F0

C6
40

A7

P
I
U
8
0
2
6

NL
F0
C6
40
A8

PI
U8
02

7
NL
F0
C6
40
A9

P
I
U
8
0
2
9

NL
F0
C6
40
A1
0

P
I
U
8
0
3
0

NL
F0
C6
40
A1
1

P
I
U
8
0
3
2

NL
F0
C6
40
A1
2

P
I
U
8
0
3
3

NL
F0
C6
40
A1
3

PI
U8
03

5
NL
F0
C6
40
A1
4

P
I
U
8
0
3
6

NL
F0
C6
40
A1
5

PI
U8
03

7
NL

F0
C6

40
BA

P
I
U
9
0
3
5

NL
F0

C6
40

CL
OC

K

PI
U2
03
7

NL
F0

C6
40

D0

P
I
U
2
0
3
8

NL
F0
C6
40
D1

P
I
U
2
0
4
0

NL
F0

C6
40

D2

P
I
U
2
0
4
1

NL
F0
C6
40
D3

PI
U2
04
3

NL
F0

C6
40

D4

PI
U2
04
4

NL
F0

C6
40

D5

P
I
U
2
0
4
6

NL
F0

C6
40

D6

P
I
U
2
0
4
7

NL
F0

C6
40

D7

PI
U9
04
4

NL
F0
C6
40
DM
A

P
I
U
3
0
0
4

NL
F0
C6
40
EX
RO
M

PI
U3
10
4

NL
F0

C6
40

GA
ME

PI
U8
04

4
NL

F0
C6

40
IO

1

P
I
U
8
0
4
0

NL
F0

C6
40

IO
2

PI
U9
04
6

NL
F0
C6
40
IR
Q

P
I
U
9
0
4
7

NL
F0

C6
40

NM
I

P
I
U
9
0
3
3

NL
F0

C6
40

O2

PI
U9
03
6

NL
F0

C6
40

RE
SE

T

P
I
U
8
0
4
6

NL
F0

C6
40

RO
MH

P
I
U
8
0
3
8

NL
F0
C6
40
RO
ML

P
I
U
8
0
4
7

NL
F0

C6
40

RW

P
I
U
8
0
1

NL
F0

CT
RL

0D
IR

PI

U8
04

8
NL
F0
CT
RL
0E
N

P
I
U
2
0
1

NL
F0

DA
TA

0D
IR

PI
U2
04
8

NL
F0

DA
TA

0E
N

P
I
U
9
0
2
7

NL
F0
DR
VS
B

P
I
U
8
0
2
4

NL
F0
HA
DD
R0
DI
R

P
I
U
2
0
2
4

NL
F0
LA
DD
R0
DI
R

PI
U9
02
9

NL
F0
MO
TE
B

P
I
U
9
0
3
2

NL
F0
SE
R0
AT
N

P
I
U
9
0
3
0

NL
F0
SE
R0
RE
SE
T

P
I
U
9
0
4
0

NL
FB

0D
OW

N

PI
U9
03
8

NL
FB
0F
IR
E

P
I
U
9
0
4
1

NL
FB

0L
EF

T
P
I
U
9
0
4
3

NL
FB

0R
IG

HT

PI
U9
03
7

NL
FB

0U
P

P
I
J
8
0
1

P
I
J
8
0
2

PI
J8
04
3

PI
J8

04
4

P
I
U
2
0
4

P
I
U
2
0
1
0

PI
U2
01
5

P
I
U
2
0
2
1

P
I
U
2
0
2
8

P
I
U
2
0
3
4

PI
U2
03
9

P
I
U
2
0
4
5

P
I
U
8
0
4

P
I
U
8
0
1
0

PI
U8
01

5

P
I
U
8
0
2
1

P
I
U
8
0
2
8

P
I
U
8
0
3
4

PI
U8
03

9

P
I
U
8
0
4
5

P
I
U
9
0
1

P
I
U
9
0
4

PI
U9
01
0

P
I
U
9
0
1
5

P
I
U
9
0
2
1

P
I
U
9
0
2
5

P
I
U
9
0
2
6

PI
U9
02
8

PI
U9
03
4

P
I
U
9
0
3
9

P
I
U
9
0
4
5

P
I
U
9
0
4
8

P
I
U
3
0
0
3

PI
U3
10
3

P
I
U
9
0
9

NL
JB

0D
OW

N

PI
U9
01
1

NL
JB
0F
IR
E

P
I
U
9
0
8

NL
JB

0L
EF

T
P
I
U
9
0
6

NL
JB

0R
IG

HT

PI
U9
01
2

NL
JB
0U
P

PI
U9
02
0

NL
MO

TE
B

P
I
U
9
0
2
3

PI
U8
04

3

P
I
U
8
0
4
1

P
I
U
8
0
8

P
I
U
8
0
6

P
I
U
9
0
1
7

NL
SE
R0
AT
N

P
I
U
9
0
1
9

NL
SE
R0
RE
SE
T

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e4

of
23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
13

.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

i
B

13

i
B

13

G
N

D

IO
_L

17
N

_T
2_

13
U

16
IO

_L
17

P
_T

2_
13

T1
6

IO
_L

16
N

_T
2_

13
W

16
IO

_L
16

P
_T

2_
13

W
15

IO
_L

15
N

_T
2_

D
Q

S
_1

3
T1

5
IO

_L
15

P
_T

2_
D

Q
S

_1
3

T1
4

IO
_L

14
N

_T
2_

S
R

C
C

_1
3

V
15

IO
_L

14
P

_T
2_

S
R

C
C

_1
3

U
15

IO
_L

13
N

_T
2_

M
R

C
C

_1
3

V
14

IO
_L

13
P

_T
2_

M
R

C
C

_1
3

V
13

IO
_L

12
N

_T
1_

M
R

C
C

_1
3

W
12

IO
_L

12
P

_T
1_

M
R

C
C

_1
3

W
11

IO
_L

11
N

_T
1_

S
R

C
C

_1
3

Y
12

IO
_L

11
P

_T
1_

S
R

C
C

_1
3

Y1
1

IO
_L

10
N

_T
1_

13
W

10
IO

_L
10

P
_T

1_
13

V
10

IO
_L

9N
_T

1_
D

Q
S

_1
3

AA
11

IO
_L

9P
_T

1_
D

Q
S

_1
3

A
A

10
IO

_L
8N

_T
1_

13
A

B
10

IO
_L

8P
_T

1_
13

A
A

9
IO

_L
7N

_T
1_

13
A

B
12

IO
_L

7P
_T

1_
13

AB
11

IO
_L

6N
_T

0_
V

R
E

F_
13

Y
14

IO
_L

6P
_T

0_
13

W
14

IO
_L

5N
_T

0_
13

A
A

14
IO

_L
5P

_T
0_

13
Y

13
IO

_L
4N

_T
0_

13
A

B
15

IO
_L

4P
_T

0_
13

A
A

15
IO

_L
3N

_T
0_

D
Q

S
_1

3
A

B
13

IO
_L

3P
_T

0_
D

Q
S

_1
3

A
A

13
IO

_L
2N

_T
0_

13
A

B
17

IO
_L

2P
_T

0_
13

A
B

16
IO

_L
1N

_T
0_

13
A

A
16

IO
_L

1P
_T

0_
13

Y
16

IO
_0

_1
3

Y
17

B
A
N

K
 1

3

V
C

C
O

_1
3

A
A

17

V
C

C
O

_1
3

A
B

14

V
C

C
O

_1
3

V
16

V
C

C
O

_1
3

W
13

V
C

C
O

_1
3

Y
10

U
1A

X
C7

A
10

0T
-2

FG
G

48
4C

C
51

47
0n

F
C

52
47

0n
F

C
54

47
0n

F

C
1

4.
7µ

F

C
50

4.
7µ

F
C

2
47
µF

i
B

13

G
0

G
1

G
2

G
3

G
4

G
5

G
6

G
7

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

V
D

A
C

_C
LK

V
D

A
C

_B
LA

N
K

_N

V
D

A
C

_S
Y

N
C

_N

3.
3V

i
B

13

V
G

A
_H

SY
N

C

V
G

A
_V

SY
N

C

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
18

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
19

N
C

7S
Z1

26
P5

X

C
LO

C
K

_F
PG

A
_M

R
C

C

R
SV

D
0

R
SV

D
1

R
SV

D
2

H
SY

N
C

V
SY

N
C

H
SY

N
C

V
SY

N
C

3.
3V

3.
3V

G
N

D

G
N

D

3.
3V

3.
3V

TP
1

Te
st

po
in

t 0
.8

m
m

TP
2

Te
st

po
in

t 0
.8

m
m

TP
3

Te
st

po
in

t 0
.8

m
m

R
SV

D
0

R
SV

D
1

R
SV

D
2

O
E

/S
T

1
G

N
D

2

C
LK

3
V

D
D

4
U

17

Si
T8

00
8B

I-
73

-X
X

S-
10

0.
00

00
00

E
G

N
D

3.
3V

C
77

47
0n

F
G

N
D

1%R
12

6

22
R

V
G

A
_S

D
A

V
G

A
_S

C
L

1%R
15

9

22
R

C
PL

D
_C

LK

PIC101 PIC102 COC
1

PIC201 PIC202
COC

2
PIC5001 PIC5002 CO

C5
0

PIC5101 PIC5102
COC

51
PIC5201 PIC5202

CO
C5
2

PIC5401 PIC5402
CO
C5
4

PI
C7

70
1

PI
C7

70
2

CO
C7

7

PI
R1

26
01

PI

R1
26

02

CO
R1
26

PI
R1

59
01

PI

R1
59

02

CO
R1
59

P
I
T
P
1
0
1

CO
TP

1

P
I
T
P
2
0
1

CO
TP

2

P
I
T
P
3
0
1

CO
TP

3

P
I
U
1
0
A
A
9

PI
U1
0A
A1
0

PI
U1
0A
A1
1

PI
U1
0A
A1
3

PI
U1
0A
A1
4

PI
U1
0A
A1
5

PI
U1
0A
A1
6

PI
U1
0A
A1
7

PI
U1
0A
B1
0

PI
U1
0A
B1
1

PI
U1
0A
B1
2

PI
U1
0A
B1
3

PI
U1
0A
B1
4

PI
U1
0A
B1
5

PI
U1
0A
B1
6

PI
U1
0A
B1
7

P
I
U
1
0
T
1
4

PI
U1
0T
15

P
I
U
1
0
T
1
6

P
I
U
1
0
U
1
5

P
I
U
1
0
U
1
6

P
I
U
1
0
V
1
0

P
I
U
1
0
V
1
3

PI
U1
0V
14

P
I
U
1
0
V
1
5

P
I
U
1
0
V
1
6

P
I
U
1
0
W
1
0

P
I
U
1
0
W
1
1

P
I
U
1
0
W
1
2

P
I
U
1
0
W
1
3

P
I
U
1
0
W
1
4

PI
U1
0W
15

P
I
U
1
0
W
1
6

PI
U1
0Y
10

PI
U1
0Y
11

P
I
U
1
0
Y
1
2

PI
U1
0Y
13

P
I
U
1
0
Y
1
4

P
I
U
1
0
Y
1
6

P
I
U
1
0
Y
1
7
 CO
U1
A

P
I
U
1
7
0
1

P
I
U
1
7
0
2

P
I
U
1
7
0
3

P
I
U
1
7
0
4

CO
U1

7

P
I
U
1
8
0
1

P
I
U
1
8
0
2

PI
U1

80
3

PI
U1
80
4

P
I
U
1
8
0
5

CO
U1
8

P
I
U
1
9
0
1

P
I
U
1
9
0
2

PI
U1

90
3

PI
U1
90
4

P
I
U
1
9
0
5

CO
U1
9

PIC101
PIC201

PIC5001
PIC5101

PIC5201
PIC5401

PI
C7

70
2

PI
U1
0A
A1
7

PI
U1
0A
B1
4

P
I
U
1
0
V
1
6

P
I
U
1
0
W
1
3

PI
U1
0Y
10

P
I
U
1
7
0
1

P
I
U
1
7
0
4

P
I
U
1
8
0
1

P
I
U
1
8
0
5

P
I
U
1
9
0
1

P
I
U
1
9
0
5

P
I
U
1
0
W
1
0

NLB
0

P
I
U
1
0
Y
1
2

NLB
1

PI
U1
0A
B1
2

NLB
2

PI
U1
0A
A1
1

NLB
3

PI
U1
0A
B1
1

NLB
4

PI
U1
0Y
11

NLB
5

PI
U1
0A
B1
0

NLB
6

PI
U1
0A
A1
0

NLB
7

PI
R1

26
01

P
I
U
1
0
V
1
3

N
L
C
L
O
C
K
0
F
P
G
A
0
M
R
C
C

PI
R1

59
01

NL

CP
LD

0C
LK

P
I
U
1
0
Y
1
4

NLG
0

P
I
U
1
0
W
1
4

NLG
1

PI
U1
0A
A1
5

NLG
2

PI
U1
0A
B1
5

NLG
3

PI
U1
0Y
13

NLG
4

PI
U1
0A
A1
4

NLG
5

PI
U1
0A
A1
3

NLG
6

PI
U1
0A
B1
3

NLG
7

PIC102
PIC202

PIC5002
PIC5102

PIC5202
PIC5402

PI
C7

70
1

P
I
U
1
7
0
2

PI
U1

80
3

PI
U1

90
3

P
I
U
1
0
W
1
2

P
I
U
1
8
0
2

NL
HS

YN
C

PI
R1

26
02

PI
R1

59
02

P
I
U
1
7
0
3

P
I
U
1
0
U
1
5

NLR
0

P
I
U
1
0
V
1
5

NLR
1

P
I
U
1
0
T
1
4

NLR
2

P
I
U
1
0
Y
1
7

NLR
3

P
I
U
1
0
Y
1
6

NLR
4

PI
U1
0A
B1
7

NLR
5

PI
U1
0A
A1
6

NLR
6

PI
U1
0A
B1
6

NLR
7

P
I
T
P
1
0
1

P
I
U
1
0
T
1
6

NL
RS
VD
0

P
I
T
P
2
0
1

P
I
U
1
0
U
1
6

NL
RS
VD
1

P
I
T
P
3
0
1

P
I
U
1
0
W
1
6

NL
RS
VD
2

P
I
U
1
0
W
1
1

N
L
V
D
A
C
0
B
L
A
N
K
0
N

P
I
U
1
0
A
A
9

NL
VD

AC
0C

LK

P
I
U
1
0
V
1
0

NL
VD

AC
0S

YN
C0

N

PI
U1
80
4

NL
VG

A0
HS

yn
c

PI
U1
0W
15

NL
VG
A0
SC
L

PI
U1
0T
15

NL
VG

A0
SD

A

PI
U1
90
4

NL
VG

A0
VS

yn
c

PI
U1
0V
14

P
I
U
1
9
0
2

NL
VS

YN
C

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e5

of
23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
14

.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

i
B

14

i
B

14

G
N

D

S
P

I-
C

S

S
P

I-
D

Q
O

S
P

I-
D

Q
2

S
P

I-
D

Q
3

S
P

I-
D

Q
1

3.
3V

i
B

14

i
B

14
IO

_2
5_

14
N

15

IO
_L

24
N

_T
3_

A
00

_D
16

_1
4

R
17

IO
_L

24
P

_T
3_

A
01

_D
17

_1
4

P
16

IO
_L

23
N

_T
3_

A
02

_D
18

_1
4

N
14

IO
_L

23
P

_T
3_

A
03

_D
19

_1
4

N
13

IO
_L

22
N

_T
3_

A
04

_D
20

_1
4

R
16

IO
_L

22
P

_T
3_

A
05

_D
21

_1
4

P
15

IO
_L

21
N

_T
3_

D
Q

S
_A

06
_D

22
_1

4
P

17
IO

_L
21

P
_T

3_
D

Q
S

_1
4

N
17

IO
_L

20
N

_T
3_

A
07

_D
23

_1
4

T1
8

IO
_L

20
P

_T
3_

A
08

_D
24

_1
4

R
18

IO
_L

19
N

_T
3_

A
09

_D
25

_V
R

E
F_

14
R

14
IO

_L
19

P
_T

3_
A

10
_D

26
_1

4
P

14
IO

_L
18

N
_T

2_
A1

1_
D

27
_1

4
U

18
IO

_L
18

P
_T

2_
A

12
_D

28
_1

4
U

17
IO

_L
17

N
_T

2_
A

13
_D

29
_1

4
A

B
18

IO
_L

17
P

_T
2_

A
14

_D
30

_1
4

A
A

18
IO

_L
16

N
_T

2_
A

15
_D

31
_1

4
W

17
IO

_L
16

P
_T

2_
C

S
I_

B
_1

4
V

17
IO

_L
15

N
_T

2_
D

Q
S

_D
O

U
T_

C
S

O
_B

_1
4

A
B

20
IO

_L
15

P
_T

2_
D

Q
S

_R
D

W
R

_B
_1

4
A

A
19

IO
_L

14
N

_T
2_

S
R

C
C

_1
4

V
19

IO
_L

14
P

_T
2_

S
R

C
C

_1
4

V
18

IO
_L

13
N

_T
2_

M
R

C
C

_1
4

Y
19

IO
_L

13
P

_T
2_

M
R

C
C

_1
4

Y
18

IO
_L

12
N

_T
1_

M
R

C
C

_1
4

W
20

IO
_L

12
P

_T
1_

M
R

C
C

_1
4

W
19

IO
_L

11
N

_T
1_

S
R

C
C

_1
4

V
20

IO
_L

11
P

_T
1_

S
R

C
C

_1
4

U
20

IO
_L

10
N

_T
1_

D
15

_1
4

A
B

22
IO

_L
10

P
_T

1_
D

14
_1

4
A

B
21

IO
_L

9N
_T

1_
D

Q
S

_D
13

_1
4

Y
22

IO
_L

9P
_T

1_
D

Q
S

_1
4

Y
21

IO
_L

8N
_T

1_
D

12
_1

4
A

A
21

IO
_L

8P
_T

1_
D

11
_1

4
A

A
20

IO
_L

7N
_T

1_
D

10
_1

4
W

22
IO

_L
7P

_T
1_

D
09

_1
4

W
21

IO
_L

6N
_T

0_
D

08
_V

R
E

F_
14

T2
0

IO
_L

6P
_T

0_
FC

S
_B

_1
4

T1
9

IO
_L

5N
_T

0_
D

07
_1

4
R

19
IO

_L
5P

_T
0_

D
06

_1
4

P
19

IO
_L

4N
_T

0_
D

05
_1

4
U

21
IO

_L
4P

_T
0_

D
04

_1
4

T2
1

IO
_L

3N
_T

0_
D

Q
S

_E
M

C
C

LK
_1

4
V

22
IO

_L
3P

_T
0_

D
Q

S
_P

U
D

C
_B

_1
4

U
22

IO
_L

2N
_T

0_
D

03
_1

4
R

21
IO

_L
2P

_T
0_

D
02

_1
4

P
21

IO
_L

1N
_T

0_
D

01
_D

IN
_1

4
R

22
IO

_L
1P

_T
0_

D
00

_M
O

S
I_

14
P

22

IO
_0

_1
4

P
20

B
A
N

K
 1

4

V
C

C
O

_1
4

M
14

V
C

C
O

_1
4

P
18

V
C

C
O

_1
4

R
15

V
C

C
O

_1
4

T2
2

V
C

C
O

_1
4

U
19

V
C

C
O

_1
4

Y
20

U
1B

X
C7

A
10

0T
-2

FG
G

48
4C

C
58

47
0n

F
C

59
47

0n
F

C
60

47
0n

F
C

61
47

0n
F

C
55

4.
7µ

F

C
57

4.
7µ

F
C

53
47
µF F_

C
64

_D
2

F_
C

64
_D

3

F_
C

64
_D

4

F_
C

64
_D

5

F_
C

64
_D

6

F_
C

64
_D

7

F_
D

A
TA

_D
IR

F_
D

A
TA

_E
N

F_
C

64
_N

M
I

F_
C

64
_R

ES
ET

F_
C

64
_O

2

F_
C

64
_D

M
A

F_
C

64
_C

LO
C

K

F_
C

64
_I

R
Q

F_
SE

R_
D

A
TA

_O

F_
SE

R
_C

LK
_O

F_
SE

R_
D

A
TA

_E
N

F_
SE

R
_C

LK
_E

N

F_
SE

R
_C

LK
_I

F_
SE

R_
D

A
TA

_I

F_
SE

R_
A

TN

FB
_U

P

FB
_D

O
W

N

1%R
58

1K
G

N
D

C
E

C
_

C
LK

ET
H

_L
ED

2

D
9

LE
D

 R
ed

 L
TS

T-
C

19
1K

R
K

T1%
R

67

24
0R

G
N

D
U

LE
D

U
LE

D

F_
SE

R
_R

ES
ET

F_
C

64
_R

O
M

H

F_
C

64
_G

A
M

E

F_
C

64
_R

O
M

L

F_
C

64
_B

A

F_
C

64
_E

X
R

O
M

F_
C6

4_
RW

F_
C

64
_I

O
1

F_
C

64
_I

O
2

F_
C

TR
L_

D
IR

F_
SE

R
_S

R
Q

_I

F_
SE

R
_S

R
Q

_O

F_
SE

R
_S

R
Q

_E
N

F_
C

64
_D

0
F_

C
64

_D
1

PIC5301 PIC5302
CO
C5
3

PIC5501 PIC5502 CO
C5
5

PIC5701 PIC5702 CO
C5
7

PIC5801 PIC5802
CO
C5
8

PIC5901 PIC5902
CO
C5
9

PIC6001 PIC6002
CO
C6
0

PIC6101 PIC6102
CO
C6
1

PI
D9

0A

PI
D9

0K

COD
9

PI
R5

80
1

PI
R5

80
2 CO
R5
8

PI
R6

70
1

PI
R6

70
2

COR
67

PI
U1
0A
A1
8

PI
U1
0A
A1
9

PI
U1
0A
A2
0

PI
U1
0A
A2
1

PI
U1
0A
B1
8

PI
U1
0A
B2
0

PI
U1
0A
B2
1

PI
U1
0A
B2
2

PI
U1
0M
14

PI
U1
0N
13

P
I
U
1
0
N
1
4

P
I
U
1
0
N
1
5

P
I
U
1
0
N
1
7

P
I
U
1
0
P
1
4

P
I
U
1
0
P
1
5

P
I
U
1
0
P
1
6

P
I
U
1
0
P
1
7

PI
U1
0P
18

PI
U1
0P
19

P
I
U
1
0
P
2
0

P
I
U
1
0
P
2
1

P
I
U
1
0
P
2
2

P
I
U
1
0
R
1
4

P
I
U
1
0
R
1
5

PI
U1
0R
16

P
I
U
1
0
R
1
7

PI
U1
0R
18

PI
U1
0R
19

P
I
U
1
0
R
2
1

P
I
U
1
0
R
2
2

PI
U1
0T
18

P
I
U
1
0
T
1
9

P
I
U
1
0
T
2
0

P
I
U
1
0
T
2
1

P
I
U
1
0
T
2
2

PI
U1
0U
17

P
I
U
1
0
U
1
8

P
I
U
1
0
U
1
9

PI
U1
0U
20

P
I
U
1
0
U
2
1

PI
U1
0U
22

P
I
U
1
0
V
1
7

P
I
U
1
0
V
1
8

P
I
U
1
0
V
1
9

P
I
U
1
0
V
2
0

P
I
U
1
0
V
2
2

P
I
U
1
0
W
1
7

P
I
U
1
0
W
1
9

P
I
U
1
0
W
2
0

P
I
U
1
0
W
2
1

PI
U1
0W
22

PI
U1
0Y
18

P
I
U
1
0
Y
1
9

PI
U1
0Y
20

P
I
U
1
0
Y
2
1

P
I
U
1
0
Y
2
2
 CO
U1
B

PIC5302
PIC5501

PIC5701
PIC5801

PIC5901
PIC6001

PIC6101
PI
U1
0M
14

PI
U1
0P
18

P
I
U
1
0
R
1
5

P
I
U
1
0
T
2
2

P
I
U
1
0
U
1
9

PI
U1
0Y
20

P
I
U
1
0
V
1
9

NL
CE

C0
CL

K

P
I
U
1
0
R
1
4

NL
ET

H0
LE

D2

PI
U1
0N
13

NL
F0

C6
40

BA

PI
U1
0A
A1
9

NL
F0

C6
40

CL
OC

K

P
I
U
1
0
P
1
6

NL
F0
C6
40
D0

P
I
U
1
0
R
1
7

NL
F0
C6
40
D1

P
I
U
1
0
P
2
0

NL
F0

C6
40

D2

PI
U1
0R
16

NL
F0
C6
40
D3

P
I
U
1
0
U
1
8

NL
F0
C6
40
D4

P
I
U
1
0
V
1
8

NL
F0
C6
40
D5

P
I
U
1
0
W
2
0

NL
F0
C6
40
D6

P
I
U
1
0
W
2
1

NL
F0

C6
40

D7

P
I
U
1
0
P
1
5

NL
F0
C6
40
DM
A

PI
U1
0R
19

NL
F0
C6
40
EX
RO
M

PI
U1
0W
22

NL
F0

C6
40

GA
ME

P
I
U
1
0
N
1
5

NL
F0
C6
40
IO
1

PI
U1
0A
A2
0

NL
F0
C6
40
IO
2

P
I
U
1
0
P
1
4

NL
F0
C6
40
IR
Q

P
I
U
1
0
W
1
7

NL
F0

C6
40

NM
I

P
I
U
1
0
V
1
7

NL
F0
C6
40
O2

P
I
U
1
0
N
1
4

NL
F0
C6
40
RE
SE
T

PI
U1
0T
18

NL
F0

C6
40

RO
MH

PI
U1
0A
B1
8

NL
F0
C6
40
RO
ML

PI
U1
0R
18

NL
F0

C6
40

RW

PI
U1
0U
17

NL
F0
CT
RL
0D
IR

P
I
U
1
0
V
2
2

NL
F0
DA
TA
0D
IR

P
I
U
1
0
U
2
1

NL
F0

DA
TA

0E
N

P
I
U
1
0
N
1
7

NL
F0
SE
R0
AT
N

PI
U1
0A
A2
1

NL
F0
SE
R0
CL
K0
EN

PI
U1
0Y
18

NL
F0
SE
R0
CL
K0
I

P
I
U
1
0
Y
1
9

NL
F0

SE
R0

CL
K0

O

P
I
U
1
0
Y
2
1

NL
F0

SE
R0

DA
TA

0E
N

PI
U1
0A
B2
2

NL
F0

SE
R0

DA
TA

0I

P
I
U
1
0
Y
2
2

NL
F0
SE
R0
DA
TA
0O

PI
R5

80
2

PI
U1
0A
B2
1

NL
F0

SE
R0

RE
SE

T

PI
U1
0A
B2
0

NL
F0

SE
R0

SR
Q0

EN

PI
U1
0A
A1
8

NL
F0
SE
R0
SR
Q0
I

PI
U1
0U
20

NL
F0
SE
R0
SR
Q0
O

P
I
U
1
0
P
1
7

NL
FB

0D
OW

N

P
I
U
1
0
W
1
9

NL
FB

0U
P

PIC5301
PIC5502

PIC5702
PIC5802

PIC5902
PIC6002

PIC6102

PI
R5

80
1

PI
R6

70
2

PI
D9

0K

PI
R6

70
1

PI
U1
0P
19

P
I
U
1
0
T
2
0

P
I
U
1
0
T
2
1

P
I
U
1
0
V
2
0

P
I
U
1
0
T
1
9

NL
SP

I0
CS

P
I
U
1
0
R
2
2

NL
SP

I0
DQ

1

P
I
U
1
0
P
2
1

NL
SP

I0
DQ

2

P
I
U
1
0
R
2
1

NL
SP

I0
DQ

3

P
I
U
1
0
P
2
2

NL
SP

I0
DQ

O

PI
D9

0A

PI
U1
0U
22

NL
UL
ED

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e6

of
23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
15

.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

i
B

15

i
B

15

G
N

D

IO
_2

5_
15

M
17

IO
_L

24
N

_T
3_

R
S

0_
15

M
16

IO
_L

24
P

_T
3_

R
S

1_
15

M
15

IO
_L

23
N

_T
3_

FW
E

_B
_1

5
K

16
IO

_L
23

P
_T

3_
FO

E
_B

_1
5

L1
6

IO
_L

22
N

_T
3_

A
16

_1
5

L1
5

IO
_L

22
P

_T
3_

A
17

_1
5

L1
4

IO
_L

21
N

_T
3_

D
Q

S
_A

18
_1

5
J1

7
IO

_L
21

P
_T

3_
D

Q
S

_1
5

K
17

IO
_L

20
N

_T
3_

A
19

_1
5

L1
3

IO
_L

20
P

_T
3_

A
20

_1
5

M
13

IO
_L

19
N

_T
3_

A
21

_V
R

E
F_

15
K

14
IO

_L
19

P
_T

3_
A

22
_1

5
K

13
IO

_L
18

N
_T

2_
A

23
_1

5
M

20
IO

_L
18

P
_T

2_
A

24
_1

5
N

20
IO

_L
17

N
_T

2_
A

25
_1

5
N

19
IO

_L
17

P
_T

2_
A

26
_1

5
N

18
IO

_L
16

N
_T

2_
A

27
_1

5
L1

8
IO

_L
16

P
_T

2_
A

28
_1

5
M

18
IO

_L
15

N
_T

2_
D

Q
S

_A
D

V
_B

_1
5

M
22

IO
_L

15
P

_T
2_

D
Q

S
_1

5
N

22
IO

_L
14

N
_T

2_
S

R
C

C
_1

5
L2

0
IO

_L
14

P
_T

2_
S

R
C

C
_1

5
L1

9
IO

_L
13

N
_T

2_
M

R
C

C
_1

5
K

19
IO

_L
13

P
_T

2_
M

R
C

C
_1

5
K

18
IO

_L
12

N
_T

1_
M

R
C

C
_1

5
H

19
IO

_L
12

P
_T

1_
M

R
C

C
_1

5
J1

9
IO

_L
11

N
_T

1_
S

R
C

C
_1

5
J2

1
IO

_L
11

P
_T

1_
S

R
C

C
_1

5
J2

0
IO

_L
10

N
_T

1_
AD

11
N

_1
5

L2
1

IO
_L

10
P_

T1
_A

D
11

P
_1

5
M

21

IO
_L

9N
_T

1_
D

Q
S

_A
D

3N
_1

5
K

22
IO

_L
9P

_T
1_

D
Q

S
_A

D
3P

_1
5

K
21

IO
_L

8N
_T

1_
A

D
10

N
_1

5
G

20
IO

_L
8P

_T
1_

A
D

10
P

_1
5

H
20

IO
_L

7N
_T

1_
A

D
2N

_1
5

H
22

IO
_L

7P
_T

1_
A

D
2P

_1
5

J2
2

IO
_L

6N
_T

0_
V

R
E

F_
15

H
18

IO
_L

6P
_T

0_
15

H
17

IO
_L

5N
_T

0_
A

D
9N

_1
5

H
15

IO
_L

5P
_T

0_
A

D
9P

_1
5

J1
5

IO
_L

4N
_T

0_
15

G
18

IO
_L

4P
_T

0_
15

G
17

IO
_L

3N
_T

0_
D

Q
S

_A
D

1N
_1

5
H

14
IO

_L
3P

_T
0_

D
Q

S
_A

D
1P

_1
5

J1
4

IO
_L

2N
_T

0_
A

D
8N

_1
5

G
16

IO
_L

2P
_T

0_
A

D
8P

_1
5

G
15

IO
_L

1N
_T

0_
A

D
0N

_1
5

G
13

IO
_L

1P
_T

0_
A

D
0P

_1
5

H
13

IO
_0

_1
5

J1
6

B
A
N

K
 1

5

V
C

C
O

_1
5

G
19

V
C

C
O

_1
5

H
16

V
C

C
O

_1
5

J1
3

V
C

C
O

_1
5

K
20

V
C

C
O

_1
5

L1
7

V
C

C
O

_1
5

N
21

U
1C

X
C7

A
10

0T
-2

FG
G

48
4C

C
64

47
0n

F
C

65
47

0n
F

C
66

47
0n

F
C

67
47

0n
F

C
62

4.
7µ

F

C
63

4.
7µ

F
C

4
47
µF

3.
3V

F_
C

64
_A

1

F_
C

64
_A

6

F_
C

64
_A

7

F_
C

64
_A

8

F_
C

64
_A

9
F_

C
64

_A
10

F_
C6

4_
A

11

F_
C

64
_A

12

F_
C

64
_A

13

F_
C

64
_A

14

F_
C

64
_A

15

F_
C

64
_A

0

F_
H

A
D

D
R

_D
IR

F_
LA

D
D

R
_D

IR

F_
A

D
D

R
_E

N

A
D

0_
P

A
D

0_
N

A
D

8_
P

A
D

8_
N

A
D

1_
P

A
D

1_
N

A
D

2_
P

A
D

2_
N

R
SV

D
_M

R
C

C

i
B

15

A
D

0_
P

A
D

0_
N

A
D

8_
P

A
D

8_
N

A
D

1_
P

A
D

1_
N

A
D

2_
P

A
D

2_
N

1%R
74

47
K

1%R
76

10
K

1%R
78

10
K

C
13

1
33

nF

G
N

D

1%R
80

47
K

1%R
82

10
K

1%R
84

10
K

C
13

3
33

nF

G
N

D

1%R
73

47
K

1%R
75

10
K

1%R
77

10
K

C
13

0
33

nF

G
N

D

1%R
79

47
K

1%R
81

10
K

1%R
83

10
K

C
13

2
33

nF

G
N

D

JA
_A

X

JA
_A

Y

JB
_A

X

JB
_A

Y

F_
M

O
TE

BF_
D

RV
SB

FP
G

A
_T

X
FP

G
A

_R
X

F_
C

TR
L_

EN

C
T

_
H

P
D

FP
G

A
_R

ES
ET

_N
D

BG
_U

A
RT

_T
X

D
BG

_U
A

RT
_R

X

G
N

D

TP
6

TP
4

TP
5

TP
7

F_
C

64
_A

4

F_
C

64
_A

5

F_
C

64
_A

2

F_
C

64
_A

3

PIC401 PIC402
COC

4
PIC6201 PIC6202 CO

C6
2

PIC6301 PIC6302 COC
63

PIC6401 PIC6402
COC

64
PIC6501 PIC6502

COC
65

PIC6601 PIC6602
CO
C6
6

PIC6701 PIC6702
CO
C6
7

PIC13001 PIC13002
CO
C1
30

PIC13101 PIC13102
CO
C1
31

PIC13201 PIC13202
CO
C1
32

PIC13301 PIC13302
CO
C1
33

PI
R7

30
1

PI
R7

30
2

CO
R7
3

PI
R7

40
1

PI
R7

40
2

CO
R7
4

PIR7501 PIR7502 CO
R7
5

PIR7601 PIR7602 CO
R7
6

PI
R7

70
1

PI
R7

70
2 CO
R7
7

PI
R7

80
1

PI
R7

80
2 CO
R7
8

PI
R7

90
1

PI
R7

90
2

CO
R7
9

PI
R8

00
1

PI
R8

00
2

CO
R8
0

PIR8101 PIR8102 CO
R8
1

PIR8201 PIR8202 CO
R8
2

PI
R8

30
1

PI
R8

30
2 CO
R8
3

PI
R8

40
1

PI
R8

40
2 CO
R8
4

P
I
T
P
4
0
1

CO
TP

4

PI
TP
50
1

CO
TP

5

P
I
T
P
6
0
1

CO
TP

6

P
I
T
P
7
0
1

CO
TP

7

PI
U1
0G
13

P
I
U
1
0
G
1
5

P
I
U
1
0
G
1
6

P
I
U
1
0
G
1
7

P
I
U
1
0
G
1
8

P
I
U
1
0
G
1
9

PI
U1
0G
20

PI
U1
0H
13

PI
U1
0H
14

P
I
U
1
0
H
1
5

P
I
U
1
0
H
1
6

PI
U1
0H
17

P
I
U
1
0
H
1
8

P
I
U
1
0
H
1
9

P
I
U
1
0
H
2
0

P
I
U
1
0
H
2
2

P
I
U
1
0
J
1
3

P
I
U
1
0
J
1
4

P
I
U
1
0
J
1
5

PI
U1
0J
16

P
I
U
1
0
J
1
7

P
I
U
1
0
J
1
9

P
I
U
1
0
J
2
0

PI
U1
0J
21

P
I
U
1
0
J
2
2

P
I
U
1
0
K
1
3

P
I
U
1
0
K
1
4

PI
U1
0K
16

PI
U1
0K
17

P
I
U
1
0
K
1
8

PI
U1
0K
19

PI
U1
0K
20

P
I
U
1
0
K
2
1

P
I
U
1
0
K
2
2

P
I
U
1
0
L
1
3

P
I
U
1
0
L
1
4

P
I
U
1
0
L
1
5

P
I
U
1
0
L
1
6

P
I
U
1
0
L
1
7

PI
U1
0L
18

PI
U1
0L
19

P
I
U
1
0
L
2
0

P
I
U
1
0
L
2
1

P
I
U
1
0
M
1
3

P
I
U
1
0
M
1
5

P
I
U
1
0
M
1
6

P
I
U
1
0
M
1
7

PI
U1
0M
18

PI
U1
0M
20

P
I
U
1
0
M
2
1

P
I
U
1
0
M
2
2

P
I
U
1
0
N
1
8

P
I
U
1
0
N
1
9

P
I
U
1
0
N
2
0

P
I
U
1
0
N
2
1

P
I
U
1
0
N
2
2

CO
U1
C

PIC401
PIC6201

PIC6301
PIC6401

PIC6501
PIC6601

PIC6701
P
I
U
1
0
G
1
9

P
I
U
1
0
H
1
6

P
I
U
1
0
J
1
3

PI
U1
0K
20

P
I
U
1
0
L
1
7

P
I
U
1
0
N
2
1

PIC13001
PIR7502

PI
R7

70
1

PI
U1
0G
13

NL
AD
00
N

PIC13002
PI

R7
30

2
PIR7501

PI
U1
0H
13

NL
AD

00
P

PIC13101
PIR7602

PI
R7

80
1

PI
U1
0H
14

NL
AD

10
N

PIC13102
PI

R7
40

2
PIR7601

P
I
U
1
0
J
1
4

NL
AD

10
P

PIC13301
PIR8202

PI
R8

40
1

P
I
U
1
0
H
2
2

NL
AD

20
N

PIC13302
PI

R8
00

2
PIR8201

P
I
U
1
0
J
2
2

NL
AD

20
P

PIC13201
PIR8102

PI
R8

30
1

P
I
U
1
0
G
1
6

NL
AD

80
N

PIC13202
PI

R7
90

2
PIR8101

P
I
U
1
0
G
1
5

NL
AD
80
P

P
I
U
1
0
M
1
5

NL
CT

0H
PD

P
I
U
1
0
L
1
4

NL
DB

G0
UA

RT
0R

X

P
I
U
1
0
L
1
3

NL
DB

G0
UA

RT
0T

X

PI
U1
0L
19

NL
F0

AD
DR

0E
N

PI
U1
0K
19

NL
F0
C6
40
A0

P
I
U
1
0
K
1
8

NL
F0
C6
40
A1

P
I
U
1
0
K
2
1

NL
F0

C6
40

A2

P
I
U
1
0
M
2
2

NL
F0
C6
40
A3

P
I
U
1
0
L
2
0

NL
F0
C6
40
A4

P
I
U
1
0
J
2
0

NL
F0

C6
40

A5

PI
U1
0J
21

NL
F0

C6
40

A6

P
I
U
1
0
K
2
2

NL
F0

C6
40

A7

PI
U1
0H
17

NL
F0

C6
40

A8

P
I
U
1
0
H
2
0

NL
F0

C6
40

A9

PI
U1
0G
20

NL
F0
C6
40
A1
0

P
I
U
1
0
J
1
5

NL
F0
C6
40
A1
1

P
I
U
1
0
H
1
9

NL
F0
C6
40
A1
2

PI
U1
0M
20

NL
F0
C6
40
A1
3

P
I
U
1
0
N
2
2

NL
F0

C6
40

A1
4

P
I
U
1
0
H
1
8

NL
F0
C6
40
A1
5

P
I
U
1
0
G
1
8

NL
F0
CT
RL
0E
N

P
I
U
1
0
G
1
7

NL
F0
DR
VS
B

PI
U1
0L
18

NL
F0
HA
DD
R0
DI
R

P
I
U
1
0
L
2
1

NL
F0
LA
DD
R0
DI
R

P
I
U
1
0
H
1
5

NL
F0
MO
TE
B

P
I
U
1
0
M
1
3

NL
FP
GA
0R
ES
ET
0N

PI
U1
0K
16

NL
FP
GA
0R
X

P
I
U
1
0
L
1
6

NL
FP
GA
0T
X

PIC402
PIC6202

PIC6302
PIC6402

PIC6502
PIC6602

PIC6702

PI
R7

70
2

PI
R7

80
2

PI
R8

30
2

PI
R8

40
2

P
I
U
1
0
L
1
5

PI
R7

30
1

NL
JA

0A
X

PI
R7

90
1

NL
JA

0A
Y

PI
R7

40
1

NL
JB

0A
X

PI
R8

00
1

NL
JB

0A
Y

PI
TP
50
1

PI
U1
0K
17

P
I
T
P
6
0
1

P
I
U
1
0
N
1
9

P
I
T
P
7
0
1

P
I
U
1
0
N
2
0

PI
U1
0J
16

P
I
U
1
0
J
1
7

P
I
U
1
0
K
1
3

P
I
U
1
0
K
1
4

P
I
U
1
0
M
1
6

P
I
U
1
0
M
1
7

PI
U1
0M
18

P
I
U
1
0
M
2
1

P
I
U
1
0
N
1
8

P
I
T
P
4
0
1

P
I
U
1
0
J
1
9

NL
RS
VD
0M
RC
C

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e7

of
23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
16

.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

i
B

16

i
B

16

G
N

D

IO
_2

5_
16

F2
1

IO
_L

24
N

_T
3_

16
G

22
IO

_L
24

P
_T

3_
16

G
21

IO
_L

23
N

_T
3_

16
D

21
IO

_L
23

P
_T

3_
16

E
21

IO
_L

22
N

_T
3_

16
D

22
IO

_L
22

P
_T

3_
16

E
22

IO
_L

21
N

_T
3_

D
Q

S
_1

6
A

21
IO

_L
21

P
_T

3_
D

Q
S

_1
6

B
21

IO
_L

20
N

_T
3_

16
B

22
IO

_L
20

P
_T

3_
16

C
22

IO
_L

19
N

_T
3_

V
R

E
F_

16
C

20
IO

_L
19

P
_T

3_
16

D
20

IO
_L

18
N

_T
2_

16
F2

0
IO

_L
18

P
_T

2_
16

F1
9

IO
_L

17
N

_T
2_

16
A

19
IO

_L
17

P
_T

2_
16

A
18

IO
_L

16
N

_T
2_

16
A

20
IO

_L
16

P
_T

2_
16

B
20

IO
_L

15
N

_T
2_

D
Q

S
_1

6
E

18
IO

_L
15

P
_T

2_
D

Q
S

_1
6

F1
8

IO
_L

14
N

_T
2_

S
R

C
C

_1
6

D
19

IO
_L

14
P

_T
2_

S
R

C
C

_1
6

E
19

IO
_L

13
N

_T
2_

M
R

C
C

_1
6

C
19

IO
_L

13
P

_T
2_

M
R

C
C

_1
6

C
18

IO
_L

12
N

_T
1_

M
R

C
C

_1
6

C
17

IO
_L

12
P

_T
1_

M
R

C
C

_1
6

D
17

IO
_L

11
N

_T
1_

S
R

C
C

_1
6

B
18

IO
_L

11
P

_T
1_

S
R

C
C

_1
6

B
17

IO
_L

10
N

_T
1_

16
A

14
IO

_L
10

P
_T

1_
16

A
13

IO
_L

9N
_T

1_
D

Q
S

_1
6

A
16

IO
_L

9P
_T

1_
D

Q
S

_1
6

A
15

IO
_L

8N
_T

1_
16

B
13

IO
_L

8P
_T

1_
16

C
13

IO
_L

7N
_T

1_
16

B
16

IO
_L

7P
_T

1_
16

B
15

IO
_L

6N
_T

0_
V

R
E

F_
16

D
15

IO
_L

6P
_T

0_
16

D
14

IO
_L

5N
_T

0_
16

D
16

IO
_L

5P
_T

0_
16

E
16

IO
_L

4N
_T

0_
16

E
14

IO
_L

4P
_T

0_
16

E
13

IO
_L

3N
_T

0_
D

Q
S

_1
6

C
15

IO
_L

3P
_T

0_
D

Q
S

_1
6

C
14

IO
_L

2N
_T

0_
16

E
17

IO
_L

2P
_T

0_
16

F1
6

IO
_L

1N
_T

0_
16

F1
4

IO
_L

1P
_T

0_
16

F1
3

IO
_0

_1
6

F1
5

B
A
N

K
 1

6

V
C

C
O

_1
6

A
17

V
C

C
O

_1
6

B
14

V
C

C
O

_1
6

C
21

V
C

C
O

_1
6

D
18

V
C

C
O

_1
6

E
15

V
C

C
O

_1
6

F2
2

U
1D

X
C7

A
10

0T
-2

FG
G

48
4C

C
91

47
0n

F
C

92
47

0n
F

C
93

47
0n

F
C

98
47

0n
F

C
68

4.
7µ

F

C
90

4.
7µ

F
C

5
47
µF

3.
3V

FA
_U

P

FA
_D

O
W

N
FA

_F
IR

E

FA
_L

EF
T

FA
_R

IG
H

T

FB
_F

IR
E

D
Q

0

D
Q

1

D
Q

2

D
Q

3
D

Q
4

D
Q

5

D
Q

6

D
Q

7

RW
D

S

H
_C

LK

C
S0

H
_R

ES

R
FU

A
2

R
E

S
E

T
A

4

R
FU

A
5

C
K

B
2

V
C

C
B

4

R
FU

B
5

V
S

S
B

3

C
K

B
1

C
S

A
3

D
Q

2
C

4
R

FU
C

5

R
W

D
S

C
3

V
S

S
Q

C
1

D
Q

1
D

2

D
Q

3
D

4

D
Q

4
D

5

D
Q

0
D

3

V
C

C
Q

D
1

D
Q

6
E

2

V
C

C
Q

E
4

V
S

S
Q

E
5

D
Q

5
E

3

D
Q

7
E

1

R
FU

C
2

N
C

/V
S

S
A

1

U
29

IS
66

W
V

H
8M

8B
LL

-1
00

B
1L

I

RW
D

S
C

S0

H
_R

ES

H
_C

LK

G
N

D

3.
3V

G
N

D
G

N
D

3.
3V

C
25

47
0n

F
C

26
47

0n
F

D
Q

0
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6
D

Q
7

SD
2_

D
2

SD
2_

D
3

SD
2_

C
M

D

SD
2_

D
0

SD
2_

D
1

SD
2_

C
LK

SD
2_

C
D

SD
2_

W
P

G
R

O
V

E_
SC

L0
G

R
O

V
E_

SD
A

0

A
0

5

A
1

4
V

S
S

2

S
D

A
3

S
C

L
1

V
C

C
6

U
36

24
A

A
02

5E
48

T-
I/O

T
G

N
D

R
15

1
4K

7

R
15

2
4K

7

G
N

D

3.
3V

C
17

5
47

0n
F

G
N

D

3.
3V

FP
G

A
_S

C
L

FP
G

A
_S

D
A

PW
M

_S
PE

A
K

ER

FP
G

A
_S

C
L

FP
G

A
_S

D
A

K
B_

JT
A

G
EN

K
B

_
T

M
S

K
B

_
T

D
I

K
B

_
T

D
O

K
B

_
T

C
K

K
B

_I
O

1
K

B
_I

O
2

K
B

_I
O

3

SP
EA

K
ER

_M
U

TE
_N

TP
8

FB
_L

EF
T

FB
_R

IG
H

T

+
-

B
1

B
at

te
rie

ha
lte

r C
R

12
20

G
N

D

S
D

A
11

G
N

D
8

N
C

6

X
2

1

IR
Q

/F
O

U
T

13

N
C

15

S
C

L
12

VB
AT

7

X
1

20

X
2

2

X
2

3

X
2

4

X
2

5

X
1

19

X
1

18

X
1

17

X
1

16

N
C

9

N
C

10

N
C

21

V
D

D
14

U
38

IS
L1

20
20

M
IR

Z

I2
C

ad
dr

: 0
x6

F
fo

r R
TC

I2
C

ad
dr

: 0
x5

7
fo

r S
R

A
M

6.
3V

C
18

4
47

0n
F

G
N

D
6.

3V

C
18

5
47

0n
F

G
N

D

D
14

BA
T5

4C

G
N

D

3V

FP
G

A
_S

C
L

FP
G

A
_S

D
A

R
16

3
4K

7

I2
C

ad
dr

: 0
x5

0
3.

3V

X
2

X
1

A
0

1

A
1

2

A
2

3

V
S

S
4

S
D

A
5

S
C

L
6

W
P

7

V
C

C
8

U
39

24
LC

12
8-

I/S
T

G
N

D

G
N

D G
N

D

3.
3V

3.
3V

FP
G

A
_S

C
L

FP
G

A
_S

D
A

I2
C

ad
dr

: 0
x5

4

P
I
B
1
0
0

CO
B1

PIC501 PIC502
COC

5

PIC2501 PIC2502
CO
C2
5

PIC2601 PIC2602
CO
C2
6

PIC6801 PIC6802 CO
C6
8

PIC9001 PIC9002 CO
C9
0

PIC9101 PIC9102
CO
C9
1

PIC9201 PIC9202
CO
C9
2

PIC9301 PIC9302
CO
C9
3

PIC9801 PIC9802
CO
C9
8

PIC17501 PIC17502
CO
C1
75

PIC18401 PIC18402
CO
C1
84

PIC18501 PIC18502
CO
C1
85

P
I
D
1
4
0
1

P
I
D
1
4
0
2

PI
D1

40
3

CO
D1
4

PI
R1

51
01

PI

R1
51

02

CO
R1
51

PIR
152

01
PIR

152
02

CO
R1
52

PIR16301 PIR16302 CO
R1
63

P
I
T
P
8
0
1

CO
TP
8

P
I
U
1
0
A
1
3

P
I
U
1
0
A
1
4

P
I
U
1
0
A
1
5

P
I
U
1
0
A
1
6

P
I
U
1
0
A
1
7

P
I
U
1
0
A
1
8

P
I
U
1
0
A
1
9

PI
U1
0A
20

P
I
U
1
0
A
2
1

PI
U1
0B
13

P
I
U
1
0
B
1
4

P
I
U
1
0
B
1
5

P
I
U
1
0
B
1
6

P
I
U
1
0
B
1
7

PI
U1
0B
18

PI
U1
0B
20

PI
U1
0B
21

P
I
U
1
0
B
2
2

P
I
U
1
0
C
1
3

P
I
U
1
0
C
1
4

PI
U1
0C
15

P
I
U
1
0
C
1
7

P
I
U
1
0
C
1
8

PI
U1
0C
19

P
I
U
1
0
C
2
0

P
I
U
1
0
C
2
1

P
I
U
1
0
C
2
2

PI
U1
0D
14

P
I
U
1
0
D
1
5

P
I
U
1
0
D
1
6

P
I
U
1
0
D
1
7

PI
U1
0D
18

P
I
U
1
0
D
1
9

P
I
U
1
0
D
2
0

PI
U1
0D
21

P
I
U
1
0
D
2
2

P
I
U
1
0
E
1
3

P
I
U
1
0
E
1
4

P
I
U
1
0
E
1
5

P
I
U
1
0
E
1
6

P
I
U
1
0
E
1
7

P
I
U
1
0
E
1
8

PI
U1
0E
19

P
I
U
1
0
E
2
1

P
I
U
1
0
E
2
2

PI
U1
0F
13

PI
U1
0F
14

PI
U1
0F
15

P
I
U
1
0
F
1
6

P
I
U
1
0
F
1
8

P
I
U
1
0
F
1
9

PI
U1
0F
20

P
I
U
1
0
F
2
1

P
I
U
1
0
F
2
2

P
I
U
1
0
G
2
1

P
I
U
1
0
G
2
2

CO
U1
D

P
I
U
2
9
0
A
1

PI
U2

90
A2

PI
U2

90
A3

P
I
U
2
9
0
A
4

P
I
U
2
9
0
A
5

P
I
U
2
9
0
B
1

P
I
U
2
9
0
B
2

P
I
U
2
9
0
B
3

P
I
U
2
9
0
B
4

P
I
U
2
9
0
B
5

P
I
U
2
9
0
C
1

P
I
U
2
9
0
C
2

P
I
U
2
9
0
C
3

P
I
U
2
9
0
C
4

P
I
U
2
9
0
C
5

P
I
U
2
9
0
D
1

P
I
U
2
9
0
D
2

P
I
U
2
9
0
D
3

PI
U2
90
D4

P
I
U
2
9
0
D
5

PI
U2
90
E1

P
I
U
2
9
0
E
2

P
I
U
2
9
0
E
3

PI
U2

90
E4

PI
U2

90
E5

CO
U2
9

P
I
U
3
6
0
1

PI
U3
60
2

PI
U3
60
3

PI
U3
60
4

PI
U3
60
5

P
I
U
3
6
0
6
 CO
U3
6

P
I
U
3
8
0
1

PI
U3
80
2

PI
U3
80
3

P
I
U
3
8
0
4

P
I
U
3
8
0
5

P
I
U
3
8
0
6

PI
U3
80
7

P
I
U
3
8
0
8

P
I
U
3
8
0
9

P
I
U
3
8
0
1
0

P
I
U
3
8
0
1
1

PI
U3
80
12

P
I
U
3
8
0
1
3

PI
U3
80
14

PI
U3

80
15

P
I
U
3
8
0
1
6

P
I
U
3
8
0
1
7

PI
U3
80
18

PI
U3
80
19

P
I
U
3
8
0
2
0

PI
U3

80
21

 CO
U3
8

P
I
U
3
9
0
1

P
I
U
3
9
0
2

P
I
U
3
9
0
3

P
I
U
3
9
0
4

P
I
U
3
9
0
5

P
I
U
3
9
0
6

P
I
U
3
9
0
7

P
I
U
3
9
0
8

CO
U3
9

PIC501 PIC2501
PIC2601

PIC6801
PIC9001

PIC9101
PIC9201

PIC9301
PIC9801

PIC17501

PIC18501

PI
R1

51
02

PIR
152

02

PIR16302

P
I
U
1
0
A
1
7

P
I
U
1
0
B
1
4

P
I
U
1
0
C
2
1

PI
U1
0D
18

P
I
U
1
0
E
1
5

P
I
U
1
0
F
2
2

P
I
U
2
9
0
B
4

P
I
U
2
9
0
D
1

PI
U2

90
E4

P
I
U
3
6
0
6

PI
U3
80
14

P
I
U
3
9
0
2

P
I
U
3
9
0
3

P
I
U
3
9
0
8

P
I
U
1
0
C
2
2

PI
U2

90
A3

NL
CS
0

P
I
U
1
0
A
2
1

P
I
U
2
9
0
D
3

NL
DQ
0

PI
U1
0D
21

P
I
U
2
9
0
D
2

NL
DQ
1

P
I
U
1
0
C
2
0

P
I
U
2
9
0
C
4

NL
DQ
2

PI
U1
0A
20

PI
U2
90
D4

NL
DQ
3

PI
U1
0B
20

P
I
U
2
9
0
D
5

NL
DQ
4

P
I
U
1
0
A
1
9

P
I
U
2
9
0
E
3

NL
DQ
5

P
I
U
1
0
E
2
1

P
I
U
2
9
0
E
2

NL
DQ
6

P
I
U
1
0
E
2
2

PI
U2
90
E1

NL
DQ
7

P
I
U
1
0
F
1
6

NL
FA
0D
OW
N

P
I
U
1
0
E
1
7

NL
FA

0F
IR

E

PI
U1
0F
14

NL
FA

0L
EF

T
PI
U1
0F
13

NL
FA

0R
IG

HT

P
I
U
1
0
C
1
4

NL
FA
0U
P

PI
U1
0F
15

NL
FB

0F
IR

E

P
I
U
1
0
F
2
1

NL
FB

0L
EF

T

PI
U1
0C
15

NL
FB

0R
IG

HT

PI
R1

51
01

P
I
U
1
0
A
1
5

P
I
U
3
6
0
1

PI
U3
80
12

P
I
U
3
9
0
6

NL
FP

GA
0S

CL

PIR
152

01

P
I
U
1
0
A
1
6

PI
U3
60
3

P
I
U
3
8
0
1
1

P
I
U
3
9
0
5

NL
FP

GA
0S

DA

P
I
B
1
0
0

PIC502 PIC2502
PIC2602

PIC6802
PIC9002

PIC9102
PIC9202

PIC9302
PIC9802

PIC17502

PIC18402
PIC18502

P
I
U
2
9
0
A
1

P
I
U
2
9
0
B
3

P
I
U
2
9
0
C
1

PI
U2

90
E5

PI
U3
60
2

PI
U3
60
4

PI
U3
60
5

P
I
U
3
8
0
8

P
I
U
3
9
0
1

P
I
U
3
9
0
4

P
I
U
3
9
0
7

P
I
U
1
0
G
2
1

NL
Gr
ov
e0
SC
L0

P
I
U
1
0
G
2
2

NL
Gr

ov
e0

SD
A0

P
I
U
1
0
D
2
2

P
I
U
2
9
0
B
2

NL
H0

CL
K

P
I
U
1
0
B
2
2

P
I
U
2
9
0
A
4

NL
H0
RE
S

P
I
U
1
0
A
1
4

NL
KB

0I
O1

P
I
U
1
0
A
1
3

NL
KB

0I
O2

P
I
U
1
0
C
1
3

NL
KB
0I
O3

PI
U1
0B
13

NL
KB

0J
TA

GE
N

P
I
U
1
0
E
1
3

NL
KB

0T
CK

P
I
U
1
0
D
1
5

NL
KB
0T
DI

P
I
U
1
0
E
1
4

NL
KB

0T
DO

PI
U1
0D
14

NL
KB

0T
MS

P
I
B
1
0
0
 P
I
D
1
4
0
1

P
I
D
1
4
0
2

PIC18401
PI
D1

40
3

PI
U3
80
7

PIR16301
P
I
U
3
8
0
1
3

P
I
T
P
8
0
1

P
I
U
1
0
D
2
0

P
I
U
1
0
A
1
8

P
I
U
1
0
D
1
6

P
I
U
1
0
D
1
9

P
I
U
1
0
E
1
8

PI
U1
0E
19

P
I
U
1
0
F
1
9

PI
U1
0F
20

PI
U2

90
A2

P
I
U
2
9
0
A
5

P
I
U
2
9
0
B
1

P
I
U
2
9
0
B
5

P
I
U
2
9
0
C
2

P
I
U
2
9
0
C
5

P
I
U
3
8
0
6

P
I
U
3
8
0
9

P
I
U
3
8
0
1
0

PI
U3

80
15

PI
U3

80
21

P
I
U
1
0
E
1
6

NL
PW
M0
SP
EA
KE
R

PI
U1
0B
21

P
I
U
2
9
0
C
3

NL
RW

DS

P
I
U
1
0
D
1
7

NL
SD

20
CD

P
I
U
1
0
B
1
7

NL
SD
20
CL
K

P
I
U
1
0
B
1
6

NL
SD

20
CM

D

PI
U1
0B
18

NL
SD
20
D0

P
I
U
1
0
C
1
8

NL
SD
20
D1

PI
U1
0C
19

NL
SD
20
D2

P
I
U
1
0
B
1
5

NL
SD
20
D3

P
I
U
1
0
C
1
7

NL
SD

20
WP

P
I
U
1
0
F
1
8

NL
SP
EA
KE
R0
MU
TE
0N

P
I
U
3
8
0
1
6

P
I
U
3
8
0
1
7

PI
U3
80
18

PI
U3
80
19

P
I
U
3
8
0
2
0
 NL
X1

P
I
U
3
8
0
1

PI
U3
80
2

PI
U3
80
3

P
I
U
3
8
0
4

P
I
U
3
8
0
5

NL
X2

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e8

of
23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

B
34

.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

IO
_0

_3
4

T3

IO
_L

1P
_T

0_
34

T1

IO
_L

1N
_T

0_
34

U
1

IO
_L

2P
_T

0_
34

U
2

IO
_L

2N
_T

0_
34

V
2

IO
_L

3P
_T

0_
D

Q
S

_3
4

R
3

IO
_L

3N
_T

0_
D

Q
S

_3
4

R
2

IO
_L

4P
_T

0_
34

W
2

IO
_L

4N
_T

0_
34

Y
2

IO
_L

5P
_T

0_
34

W
1

IO
_L

5N
_T

0_
34

Y
1

IO
_L

6P
_T

0_
34

U
3

IO
_L

6N
_T

0_
V

R
E

F_
34

V
3

IO
_L

7P
_T

1_
34

A
A

1

IO
_L

7N
_T

1_
34

A
B

1

IO
_L

8P
_T

1_
34

A
B

3

IO
_L

8N
_T

1_
34

A
B

2

IO
_L

9P
_T

1_
D

Q
S

_3
4

Y
3

IO
_L

9N
_T

1_
D

Q
S

_3
4

A
A

3

IO
_L

10
P

_T
1_

34
A

A
5

IO
_L

10
N

_T
1_

34
A

B
5

IO
_L

11
P

_T
1_

S
R

C
C

_3
4

Y
4

IO
_L

11
N

_T
1_

S
R

C
C

_3
4

A
A

4

IO
_L

12
P

_T
1_

M
R

C
C

_3
4

V
4

IO
_L

12
N

_T
1_

M
R

C
C

_3
4

W
4

IO
_L

13
P

_T
2_

M
R

C
C

_3
4

R
4

IO
_L

13
N

_T
2_

M
R

C
C

_3
4

T4

IO
_L

14
P

_T
2_

S
R

C
C

_3
4

T5

IO
_L

14
N

_T
2_

S
R

C
C

_3
4

U
5

IO
_L

15
P

_T
2_

D
Q

S
_3

4
W

6

IO
_L

15
N

_T
2_

D
Q

S
_3

4
W

5

IO
_L

16
P

_T
2_

34
U

6

IO
_L

16
N

_T
2_

34
V

5

IO
_L

17
P

_T
2_

34
R

6

IO
_L

17
N

_T
2_

34
T6

IO
_L

18
P

_T
2_

34
Y

6

IO
_L

18
N

_T
2_

34
A

A
6

IO
_L

19
P

_T
3_

34
V

7

IO
_L

19
N

_T
3_

V
R

E
F_

34
W

7

IO
_L

20
P

_T
3_

34
A

B
7

IO
_L

20
N

_T
3_

34
A

B
6

IO
_L

21
P

_T
3_

D
Q

S
_3

4
V

9

IO
_L

21
N

_T
3_

D
Q

S
_3

4
V

8

IO
_L

22
P

_T
3_

34
A

A
8

IO
_L

22
N

_T
3_

34
A

B
8

IO
_L

23
P

_T
3_

34
Y

8

IO
_L

23
N

_T
3_

34
Y

7

IO
_L

24
P

_T
3_

34
W

9

IO
_L

24
N

_T
3_

34
Y

9

IO
_2

5_
34

U
7

B
A
N

K
 3

4

V
C

C
O

_3
4

A
A

7

V
C

C
O

_3
4

A
B

4

V
C

C
O

_3
4

R
5

V
C

C
O

_3
4

T2

V
C

C
O

_3
4

V
6

V
C

C
O

_3
4

W
3

U
1E

X
C7

A
10

0T
-2

FG
G

48
4C

IO
_2

5_
35

L6

IO
_L

24
N

_T
3_

35
N

5
IO

_L
24

P
_T

3_
35

P
6

IO
_L

23
N

_T
3_

35
M

5
IO

_L
23

P
_T

3_
35

M
6

IO
_L

22
N

_T
3_

35
N

2
IO

_L
22

P
_T

3_
35

P
2

IO
_L

21
N

_T
3_

D
Q

S
_3

5
P

4
IO

_L
21

P
_T

3_
D

Q
S

_3
5

P
5

IO
_L

20
N

_T
3_

35
P

1
IO

_L
20

P
_T

3_
35

R
1

IO
_L

19
N

_T
3_

V
R

E
F_

35
N

3
IO

_L
19

P
_T

3_
35

N
4

IO
_L

18
N

_T
2_

35
L4

IO
_L

18
P

_T
2_

35
L5

IO
_L

17
N

_T
2_

35
J6

IO
_L

17
P

_T
2_

35
K

6
IO

_L
16

N
_T

2_
35

M
2

IO
_L

16
P

_T
2_

35
M

3
IO

_L
15

N
_T

2_
D

Q
S

_3
5

L1
IO

_L
15

P
_T

2_
D

Q
S

_3
5

M
1

IO
_L

14
N

_T
2_

S
R

C
C

_3
5

K
3

IO
_L

14
P

_T
2_

S
R

C
C

_3
5

L3
IO

_L
13

N
_T

2_
M

R
C

C
_3

5
J4

IO
_L

13
P

_T
2_

M
R

C
C

_3
5

K
4

IO
_L

12
N

_T
1_

M
R

C
C

_3
5

G
4

IO
_L

12
P

_T
1_

M
R

C
C

_3
5

H
4

IO
_L

11
N

_T
1_

S
R

C
C

_3
5

G
3

IO
_L

11
P

_T
1_

S
R

C
C

_3
5

H
3

IO
_L

10
N

_T
1_

A
D

15
N

_3
5

H
5

IO
_L

10
P

_T
1_

A
D

15
P

_3
5

J5

IO
_L

9N
_T

1_
D

Q
S

_A
D

7N
_3

5
J2

IO
_L

9P
_T

1_
D

Q
S

_A
D

7P
_3

5
K

2
IO

_L
8N

_T
1_

A
D

14
N

_3
5

G
2

IO
_L

8P
_T

1_
A

D
14

P
_3

5
H

2
IO

_L
7N

_T
1_

A
D

6N
_3

5
J1

IO
_L

7P
_T

1_
A

D
6P

_3
5

K
1

IO
_L

6N
_T

0_
V

R
E

F_
35

E
3

IO
_L

6P
_T

0_
35

F3
IO

_L
5N

_T
0_

A
D

13
N

_3
5

F1
IO

_L
5P

_T
0_

A
D

13
P

_3
5

G
1

IO
_L

4N
_T

0_
35

D
2

IO
_L

4P
_T

0_
35

E
2

IO
_L

3N
_T

0_
D

Q
S

_A
D

5N
_3

5
D

1
IO

_L
3P

_T
0_

D
Q

S
_A

D
5P

_3
5

E
1

IO
_L

2N
_T

0_
A

D
12

N
_3

5
B

2
IO

_L
2P

_T
0_

A
D

12
P

_3
5

C
2

IO
_L

1N
_T

0_
A

D
4N

_3
5

A
1

IO
_L

1P
_T

0_
A

D
4P

_3
5

B
1

IO
_0

_3
5

F4

B
A
N

K
 3

5

V
C

C
O

_3
5

C
1

V
C

C
O

_3
5

F2

V
C

C
O

_3
5

H
6

V
C

C
O

_3
5

J3

V
C

C
O

_3
5

M
4

V
C

C
O

_3
5

N
1

U
1F

X
C7

A
10

0T
-2

FG
G

48
4C

G
N

D

C
12

4.
7µ

F

C
15

9

4.
7µ

F

G
N

D

C
16

6
47

0n
F

C
16

7
47

0n
F

C
16

8
47

0n
F

C
16

9
47

0n
F

C
16

0

4.
7µ

F

C
16

1

4.
7µ

F

B
3

5
_

L1
2

_
P

B
3

5
_

L1
2

_
N

B
3

5
_

L1
0

_
P

B
3

5
_

L1
0

_
N

i
B

35

B
3

5
_

L3
_

P
B

3
5

_
L3

_
N

B
3

5
_

L2
_

P
B

3
5

_
L2

_
N

B
3

5
_

L4
_

N
B

3
5

_
L4

_
P

B
3

5
_

L1
_

P
B

3
5

_
L1

_
N

B
3

5
_

L6
_

N
B

3
5

_
L6

_
P

B
3

5
_

L5
_

P
B

3
5

_
L5

_
N

i
B

35
i

B
34

i
B

34

H
D

M
I_

V
S

H
D

M
I_

H
S

H
D

M
I_

C
LK

H
D

M
I_

D
E

H
D

M
I_

D
0

H
D

M
I_

D
1

H
D

M
I_

D
2

H
D

M
I_

D
3

H
D

M
I_

D
4

H
D

M
I_

D
5

H
D

M
I_

D
6

H
D

M
I_

D
7

H
D

M
I_

D
8

H
D

M
I_

D
9

H
D

M
I_

D
1

0

H
D

M
I_

D
1

1

H
D

M
I_

D
1

2

H
D

M
I_

D
1

3

H
D

M
I_

D
1

4

H
D

M
I_

D
1

5

H
D

M
I_

D
1

6

H
D

M
I_

D
1

7

H
D

M
I_

D
1

8

H
D

M
I_

D
1

9

H
D

M
I_

D
2

0

H
D

M
I_

D
2

1

H
D

M
I_

D
2

2

H
D

M
I_

D
2

3

H
D

M
I_

D
2

4

H
D

M
I_

D
2

5

H
D

M
I_

D
2

6

H
D

M
I_

D
2

7
H

D
M

I_
D

2
8

H
D

M
I_

D
2

9
H

D
M

I_
D

3
0

H
D

M
I_

D
3

1
H

D
M

I_
D

3
2

H
D

M
I_

D
3

3
H

D
M

I_
D

3
4

H
D

M
I_

D
3

5
S

C
L_

A

S
D

A
_

A

H
P

D
_

A

C
E

C
_

A

LS
_

O
E

H
D

M
I_

S
P

D
IF

H
D

M
I_

S
P

D
IF

O
U

T

H
D

M
I_

S
C

L

H
D

M
I_

S
D

A

H
D

M
I_

IN
T

3.
3V

3.
3V

3.
3V

3.
3V

F_
R

ED
W

C

F_
IN

D
EX

F_
M

O
TE

A

F_
D

RV
SA

F_
D

IR

F_
ST

EP

F_
W

D
A

TE
F_

W
G

A
TE

F_
TR

C
K

0
F_

W
PT

F_
RD

A
TA

1

F_
SI

D
E1

F_
D

SC
K

C
H

G

PW
M

_L

PW
M

_R
ET

H
_T

X
_E

N
ET

H
_T

X
_D

0
ET

H
_T

X
_D

1

ET
H

_R
X

_D
0

ET
H

_R
X

_D
1

ET
H

-R
ST

ET
H

_C
R

S_
D

V

ET
H

_C
LK

ET
H

_M
D

IO
ET

H
_M

D
C

ET
H

_R
X

ER
SD

_D
2

SD
_D

3
SD

_C
M

D

SD
_D

0

SD
_D

1

SD
_C

LK

SD
_C

D

PIC1201 PIC1202 CO
C1
2

PIC15901 PIC15902 CO
C1
59

PIC16001 PIC16002 CO
C1
60

PIC16101 PIC16102 CO
C1
61

PIC16601 PIC16602
CO
C1
66

PIC16701 PIC16702
CO
C1
67

PIC16801 PIC16802
CO
C1
68

PIC16901 PIC16902
CO
C1
69

PI
U1
0A
A1

PI
U1
0A
A3

P
I
U
1
0
A
A
4

PI
U1

0A
A5

P
I
U
1
0
A
A
6

P
I
U
1
0
A
A
7

PI
U1

0A
A8

PI
U1
0A
B1

P
I
U
1
0
A
B
2

P
I
U
1
0
A
B
3

PI
U1
0A
B4

PI
U1

0A
B5

P
I
U
1
0
A
B
6

PI
U1

0A
B7

PI
U1

0A
B8

P
I
U
1
0
R
2

P
I
U
1
0
R
3

PI
U1
0R
4

PI
U1
0R
5

P
I
U
1
0
R
6

P
I
U
1
0
T
1

PI
U1
0T
2

P
I
U
1
0
T
3

P
I
U
1
0
T
4

P
I
U
1
0
T
5

PI
U1
0T
6

P
I
U
1
0
U
1

P
I
U
1
0
U
2

P
I
U
1
0
U
3

P
I
U
1
0
U
5

P
I
U
1
0
U
6

PI
U1
0U
7

PI
U1
0V
2

P
I
U
1
0
V
3

P
I
U
1
0
V
4

P
I
U
1
0
V
5

P
I
U
1
0
V
6

P
I
U
1
0
V
7

P
I
U
1
0
V
8

P
I
U
1
0
V
9

PI
U1
0W
1

P
I
U
1
0
W
2

P
I
U
1
0
W
3

PI
U1
0W
4

P
I
U
1
0
W
5

PI
U1
0W
6

P
I
U
1
0
W
7

P
I
U
1
0
W
9

P
I
U
1
0
Y
1

P
I
U
1
0
Y
2

P
I
U
1
0
Y
3

P
I
U
1
0
Y
4

P
I
U
1
0
Y
6

P
I
U
1
0
Y
7

P
I
U
1
0
Y
8

PI
U1
0Y
9

CO
U1
E

P
I
U
1
0
A
1

P
I
U
1
0
B
1

PI
U1

0B
2

PI
U1

0C
1

P
I
U
1
0
C
2

P
I
U
1
0
D
1

P
I
U
1
0
D
2

P
I
U
1
0
E
1

P
I
U
1
0
E
2

P
I
U
1
0
E
3

P
I
U
1
0
F
1

PI
U1

0F
2

P
I
U
1
0
F
3

P
I
U
1
0
F
4

PI
U1

0G
1

P
I
U
1
0
G
2

P
I
U
1
0
G
3

PI
U1

0G
4

P
I
U
1
0
H
2

P
I
U
1
0
H
3

P
I
U
1
0
H
4

PI
U1

0H
5

P
I
U
1
0
H
6

PI
U1

0J
1

PI
U1

0J
2

P
I
U
1
0
J
3

P
I
U
1
0
J
4

PI
U1

0J
5

PI
U1

0J
6

PI
U1

0K
1

P
I
U
1
0
K
2

P
I
U
1
0
K
3

PI
U1

0K
4

P
I
U
1
0
K
6

P
I
U
1
0
L
1

P
I
U
1
0
L
3

P
I
U
1
0
L
4

P
I
U
1
0
L
5

PI
U1

0L
6

PI
U1

0M
1

P
I
U
1
0
M
2

P
I
U
1
0
M
3

P
I
U
1
0
M
4

P
I
U
1
0
M
5

P
I
U
1
0
M
6

PI
U1

0N
1

PI
U1

0N
2

P
I
U
1
0
N
3

P
I
U
1
0
N
4

PI
U1

0N
5

P
I
U
1
0
P
1

PI
U1

0P
2

P
I
U
1
0
P
4

P
I
U
1
0
P
5

P
I
U
1
0
P
6

PI
U1

0R
1

CO
U1
F

PIC1201
PIC15901

PIC16001
PIC16101

PIC16601
PIC16701

PIC16801
PIC16901

P
I
U
1
0
A
A
7

PI
U1
0A
B4

PI
U1

0C
1

PI
U1

0F
2

P
I
U
1
0
H
6

P
I
U
1
0
J
3

P
I
U
1
0
M
4

PI
U1

0N
1

PI
U1
0R
5

PI
U1
0T
2

P
I
U
1
0
V
6

P
I
U
1
0
W
3

P
I
U
1
0
A
1

NL
B3

50
L1

0N

P
I
U
1
0
B
1

NL
B3

50
L1

0P

PI
U1

0B
2

NL
B3

50
L2

0N

P
I
U
1
0
C
2

NL
B3

50
L2

0P

P
I
U
1
0
D
1

NL
B3

50
L3

0N

P
I
U
1
0
E
1

NL
B3

50
L3

0P

P
I
U
1
0
D
2

NL
B3

50
L4

0N

P
I
U
1
0
E
2

NL
B3

50
L4

0P

P
I
U
1
0
F
1

NL
B3

50
L5

0N

PI
U1

0G
1

NL
B3

50
L5

0P

P
I
U
1
0
E
3

NL
B3

50
L6

0N

P
I
U
1
0
F
3

NL
B3

50
L6

0P

PI
U1

0H
5

NL
B3
50
L1
00
N

PI
U1

0J
5

N
L
B
3
5
0
L
1
0
0
P

PI
U1

0G
4

N
L
B
3
5
0
L
1
2
0
N

P
I
U
1
0
H
4

N
L
B
3
5
0
L
1
2
0
P

P
I
U
1
0
W
9

NL
CE

C0
A

P
I
U
1
0
K
6

NL
ET

H0
RS

T

P
I
U
1
0
L
4

NL
ET
H0
CL
K

PI
U1

0K
4

NL
ET
H0
CR
S0
DV

PI
U1

0J
6

NL
ET

H0
MD

C

P
I
U
1
0
L
5

NL
ET

H0
MD

IO

P
I
U
1
0
P
4

NL
ET

H0
RX

0D
0

P
I
U
1
0
L
1

NL
ET

H0
RX

0D
1

P
I
U
1
0
M
6

NL
ET

H0
RX

ER

P
I
U
1
0
L
3

NL
ET
H0
TX
0D
0

P
I
U
1
0
K
3

NL
ET
H0
TX
0D
1

P
I
U
1
0
J
4

NL
ET

H0
TX

0E
N

P
I
U
1
0
P
5

NL
F0

DI
R

PI
U1

0N
5

NL
F0
DR
VS
A

PI
U1

0R
1

NL
F0

DS
CK

CH
G

P
I
U
1
0
M
2

NL
F0
IN
DE
X

P
I
U
1
0
M
5

NL
F0

MO
TE

A

P
I
U
1
0
P
1

NL
F0

RD
AT

A1

P
I
U
1
0
P
6

NL
F0

RE
DW

C

PI
U1

0M
1

NL
F0
SI
DE
1

P
I
U
1
0
M
3

NL
F0

ST
EP

PI
U1

0N
2

NL
F0
TR
CK
0

P
I
U
1
0
N
4

NL
F0

WD
AT

E

P
I
U
1
0
N
3

NL
F0

WG
AT

E

PI
U1

0P
2

NL
F0

WP
T

PIC1202
PIC15902

PIC16002
PIC16102

PIC16602
PIC16702

PIC16802
PIC16902

P
I
U
1
0
Y
2

N
L
H
D
M
I
0
C
L
K

P
I
U
1
0
T
5

NL
HD
MI
0D
0

P
I
U
1
0
T
4

NL
HD
MI
0D
1

P
I
U
1
0
R
3

NL
HD
MI
0D
2

P
I
U
1
0
T
1

NL
HD
MI
0D
3

PI
U1
0T
6

NL
HD
MI
0D
4

P
I
U
1
0
U
1

N
L
H
D
M
I
0
D
5

P
I
U
1
0
U
5

NL
HD
MI
0D
6

P
I
U
1
0
U
6

NL
HD
MI
0D
7

P
I
U
1
0
U
2

N
L
H
D
M
I
0
D
8

P
I
U
1
0
U
3

N
L
H
D
M
I
0
D
9

P
I
U
1
0
V
4

N
L
H
D
M
I
0
D
1
0

PI
U1
0V
2

N
L
H
D
M
I
0
D
1
1

P
I
U
1
0
V
3

N
L
H
D
M
I
0
D
1
2

P
I
U
1
0
V
5

N
L
H
D
M
I
0
D
1
3

PI
U1
0W
1

NL
HD

MI
0D

14

P
I
U
1
0
W
2

N
L
H
D
M
I
0
D
1
5

P
I
U
1
0
Y
1

NL
HD

MI
0D

16

P
I
U
1
0
Y
3

N
L
H
D
M
I
0
D
1
7

PI
U1
0W
4

N
L
H
D
M
I
0
D
1
8

P
I
U
1
0
W
5

NL
HD

MI
0D

19

P
I
U
1
0
V
7

N
L
H
D
M
I
0
D
2
0

P
I
U
1
0
V
8

N
L
H
D
M
I
0
D
2
1

PI
U1
0A
B1

NL
HD

MI
0D

22

PI
U1
0W
6

NL
HD

MI
0D

23

P
I
U
1
0
A
B
2

NL
HD

MI
0D

24

P
I
U
1
0
W
7

N
L
H
D
M
I
0
D
2
5

PI
U1
0A
A3

N
L
H
D
M
I
0
D
2
6

P
I
U
1
0
Y
7

NL
HD

MI
0D

27

P
I
U
1
0
A
B
3

NL
HD

MI
0D

28

P
I
U
1
0
Y
4

NL
HD

MI
0D

29

P
I
U
1
0
A
A
4

N
L
H
D
M
I
0
D
3
0

PI
U1

0A
A5

N
L
H
D
M
I
0
D
3
1

PI
U1

0A
B5

NL

HD
MI

0D
32

P
I
U
1
0
Y
6

NL
HD

MI
0D

33

P
I
U
1
0
A
A
6

NL
HD

MI
0D

34

P
I
U
1
0
A
B
6

NL
HD

MI
0D

35

P
I
U
1
0
R
2

NL
HD
MI
0D
E

PI
U1
0R
4

NL
HD
MI
0H
S

PI
U1
0Y
9

N
L
H
D
M
I
0
I
N
T

P
I
U
1
0
T
3

N
L
H
D
M
I
0
S
C
L

PI
U1
0U
7

NL
HD

MI
0S

DA

PI
U1
0A
A1

N
L
H
D
M
I
0
S
P
D
I
F

PI
U1

0A
A8

N
L
H
D
M
I
0
S
P
D
I
F
O
U
T

P
I
U
1
0
R
6

NL
HD
MI
0V
S

P
I
U
1
0
Y
8

NL
HP

D0
A

PI
U1

0A
B8

NL

LS
0O

E

P
I
U
1
0
G
3

PI
U1

0L
6

NL
PW

M0
L

P
I
U
1
0
F
4

NL
PW

M0
R

PI
U1

0A
B7

NL

SC
L0

A

PI
U1

0K
1

NL
SD

0C
D

P
I
U
1
0
G
2

NL
SD

0C
LK

PI
U1

0J
2

NL
SD
0C
MD

P
I
U
1
0
H
2

NL
SD

0D
0

P
I
U
1
0
H
3

NL
SD
0D
1

PI
U1

0J
1

NL
SD

0D
2

P
I
U
1
0
K
2

NL
SD

0D
3

P
I
U
1
0
V
9

NL
SD
A0
A

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e9

of
23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

FP
G

A
-C

FG
.S

ch
D

oc
Fi

le
na

m
e:20

19
-0

3-
11

D
ef

au
lt

TE
07

65

FP
G

A
_

P
R

O
G

_
B

1%
R

3

1K
FP

G
A

_
D

O
N

E

S
P

I-
S

C
K

G
N

D

3.
3V

C
14

10
0n

F
G

N
D

S
P

I-
C

S

S
P

I-
D

Q
O

S
P

I-
D

Q
1

S
P

I-
D

Q
2

S
P

I-
D

Q
3

C
LK

B
2

G
N

D
B

3

V
C

C
B

4
C

S
C

2

W
P

/IO
2

C
4

D
O

/IO
1

D
2

D
I/I

O
0

D
3

H
O

LD
/R

E
S

E
T/

IO
3

D
4

U
5A

S2
5F

L2
56

SA
G

B
H

I2
0

N
C

A
2

N
C

A
3

N
C

A
4

N
C

A
5

N
C

B
1

N
C

B
5

N
C

C
1

N
C

C
3

N
C

C
5

N
C

D
1

N
C

D
5

N
C

E
1

N
C

E
2

N
C

E
3

N
C

E
4

N
C

E
5

U
5B

S2
5F

L2
56

SA
G

B
H

I2
0

i
FP

G
A

_J
TA

G

B
O

O
TM

O
D

E
=

M
A

ST
ER

 S
PI

i
SP

IF
LA

SH

S
P

I-
S

C
K3.

3V

3.
3V

D
X

N
_0

N
9

D
X

P
_0

N
10

V
R

E
FN

_0
L9

V
R

E
FP

_0
M

10

V
N

_0
M

9
V

P
_0

L1
0

C
FG

B
V

S
_0

U
8

P
R

O
G

R
A

M
_B

_0
N

12

IN
IT

_B
_0

U
12

D
O

N
E

_0
G

11

M
2_

0
U

9
M

1_
0

U
10

M
0_

0
U

11

C
C

LK
_0

L1
2

TM
S

_0
T1

3
TC

K
_0

V
12

TD
O

_0
U

13
TD

I_
0

R
13

VC
C

BA
TT

_0
E

12

V
C

C
A

D
C

_0
K

10

G
N

D
A

D
C

_0
K

9

V
C

C
O

_0
F1

2

V
C

C
O

_0
T1

2

B
A
N

K
0

U
1G

X
C7

A
10

0T
-2

FG
G

48
4C

3.
3V

FP
G

A
_

IN
IT

3.
3V

1%R
8

4K
87

3.
3V

L2 B
K

P0
60

3H
S1

21
-T

G
N

D

A
G

N
D

A
G

N
D

A
G

N
D

AV
C

C

C
23

47
0n

F

A
G

N
D

L3 B
K

P0
60

3H
S1

21
-T

AV
C

C
1.

8V
1%R

7

4K
87

3.
3V

G
N

D

C
17

0

4.
7µ

F
G

N
D

1%R
1

4K
87

3.
3V

FP
G

A
_

T
M

S

FP
G

A
_

T
D

I
FP

G
A

_
T

D
O

FP
G

A
_

T
C

K

V
_P

V
_N

16
V

X
7R

C
12

2
10

nF

FP
G

A
_P

R
O

G
_B

1%R
68

4K
87

3.
3V

G
N

D

2
31 4

5
6

S2 SP
U

J1
91

50
0

G
N

D

G
N

D

R
13

4

49
R

9

3.
3V

1%R
14

8
4K

87 T6 2N
70

02
,2

15

3.
3V

1%R
14

5
4K

87

G
N

D

CP
LD

_J
TA

G
EN

/R
ES

ET
_B

TN
R

ST
_B

TN

16
V

X
7R

C
75

10
nF

J2
0

JU
M

PE
R

2.
54

-2

G
N

D

i
SP

IF
LA

SH

i
C

FG i
C

FG

i
C

FG PI
C1

40
1

PI
C1

40
2

CO
C1

4

PIC2301 PIC2302 CO
C2
3

PIC7501 PIC7502
CO

C7
5

PIC12201 PIC12202
CO
C1
22

PIC
170

01
PI
C1
70
02

CO
C1
70

PIJ2001 PIJ2002 COJ
20

PI
L2

01

PI
L2

02

CO
L2

PI
L3

01

PI
L3

02

CO
L3

PI
R1

01

PI
R1

02
 COR
1

PI
R3

01

PI
R3

02

CO
R3

PI
R7

01

PI
R7

02
 COR
7

PI
R8

01

PI
R8

02
 CO
R8

PIR6801 PIR6802 CO
R6
8

PI
R1

34
01

PI

R1
34

02

CO
R1
34

PIR14501 PIR14502 CO
R1
45

PIR14801 PIR14802 CO
R1
48

P
I
S
2
0
1

P
I
S
2
0
2

P
I
S
2
0
3

P
I
S
2
0
4

P
I
S
2
0
5

P
I
S
2
0
6

COS
2

P
I
T
6
0
1

PIT602 PIT603
CO

T6

P
I
U
1
0
E
1
2

PI
U1
0F
12

P
I
U
1
0
G
1
1

P
I
U
1
0
K
9

PI
U1
0K
10

P
I
U
1
0
L
9

PI
U1
0L
10

PI
U1
0L
12

PI
U1

0M
9

P
I
U
1
0
M
1
0

P
I
U
1
0
N
9

P
I
U
1
0
N
1
0

P
I
U
1
0
N
1
2

P
I
U
1
0
R
1
3

PI
U1
0T
12

PI
U1
0T
13

PI
U1
0U
8

P
I
U
1
0
U
9

P
I
U
1
0
U
1
0

P
I
U
1
0
U
1
1

P
I
U
1
0
U
1
2

P
I
U
1
0
U
1
3

P
I
U
1
0
V
1
2
 CO
U1
G

PI
U5
0B
2

P
I
U
5
0
B
3

P
I
U
5
0
B
4

P
I
U
5
0
C
2

P
I
U
5
0
C
4

PI
U5
0D
2

PI
U5
0D
3

P
I
U
5
0
D
4
 CO
U5
A

P
I
U
5
0
A
2

P
I
U
5
0
A
3

PI
U5
0A
4

PI
U5
0A
5

P
I
U
5
0
B
1

P
I
U
5
0
B
5

P
I
U
5
0
C
1

P
I
U
5
0
C
3

PI
U5
0C
5

P
I
U
5
0
D
1

P
I
U
5
0
D
5

P
I
U
5
0
E
1

PI
U5
0E
2

PI
U5
0E
3

P
I
U
5
0
E
4

P
I
U
5
0
E
5

CO
U5
B

PI
L3

02

PI
C1

40
1

PI
C1
70
02

PI
R1

02

PI
R3

01

PI
R7

02

PI
R8

02

PIR6801

PIR14502
PIR14802

PI
U1
0F
12

PI
U1
0T
12

PI
U1
0U
8

P
I
U
1
0
U
1
1

P
I
U
5
0
B
4

PIC2302

PI
L2

01

P
I
U
1
0
K
9

P
I
U
1
0
L
9

P
I
U
1
0
M
1
0

PIC2301

PI
L3

01

PI
U1
0K
10

PIR14801 PIT603
NL

CP
LD

0J
TA

GE
N0

RE
SE

T0
BT

N

PI
R3

02

P
I
U
1
0
G
1
1

NL
FP

GA
0D

ON
E

PI
R8

01

P
I
U
1
0
U
1
2

NL
FP

GA
0I

NI
T

PIR6802
P
I
U
1
0
N
1
2

N
L
F
P
G
A
0
P
R
O
G
0
B

P
I
U
1
0
V
1
2

NL
FP

GA
0T

CK

P
I
U
1
0
R
1
3

NL
FP

GA
0T

DI

P
I
U
1
0
U
1
3

N
L
F
P
G
A
0
T
D
O

PI
U1
0T
13

NL
FP

GA
0T

MS

PI
C1

40
2

PIC7502

PIC
170

01

PIJ2001

PI
L2

02

P
I
S
2
0
2

P
I
S
2
0
5

PIT602 P
I
U
1
0
E
1
2

P
I
U
1
0
U
9

P
I
U
1
0
U
1
0

P
I
U
5
0
B
3

PI
R1

34
01

P
I
S
2
0
3

P
I
S
2
0
6

P
I
S
2
0
1

P
I
S
2
0
4

P
I
U
1
0
N
9

P
I
U
1
0
N
1
0

P
I
U
5
0
A
2

P
I
U
5
0
A
3

PI
U5
0A
4

PI
U5
0A
5

P
I
U
5
0
B
1

P
I
U
5
0
B
5

P
I
U
5
0
C
1

P
I
U
5
0
C
3

PI
U5
0C
5

P
I
U
5
0
D
1

P
I
U
5
0
D
5

P
I
U
5
0
E
1

PI
U5
0E
2

PI
U5
0E
3

P
I
U
5
0
E
4

P
I
U
5
0
E
5

PIC7501

PIJ2002

PI
R1

34
02

PIR14501 P
I
T
6
0
1

NL
RS
T0
BT
N

PI
R7

01

P
I
U
5
0
C
2

NL
SP

I0
CS

PI
U5
0D
2

NL
SP

I0
DQ

1

P
I
U
5
0
C
4

NL
SP

I0
DQ

2
PI

R1
01

P
I
U
5
0
D
4

NL
SP

I0
DQ

3
PI
U5
0D
3

NL
SP

I0
DQ

O

PI
U1
0L
12

PI
U5
0B
2

NL
SP
I0
SC
K

PIC12202
PI

U1
0M

9
NL
V0
N

PIC12201
PI
U1
0L
10

NL
V0
P

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

0
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

FP
G

A-
M

G
T.

S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

M
G

TP
R

X
N

3_
21

6
C

9
M

G
TP

R
X

P
3_

21
6

D
9

M
G

TP
TX

N
3_

21
6

C
7

M
G

TP
TX

P
3_

21
6

D
7

M
G

TP
R

X
N

2_
21

6
A

10
M

G
TP

R
X

P
2_

21
6

B
10

M
G

TP
TX

N
2_

21
6

A
6

M
G

TP
TX

P
2_

21
6

B
6

M
G

TP
R

X
N

1_
21

6
C

11
M

G
TP

R
X

P
1_

21
6

D
11

M
G

TP
TX

N
1_

21
6

C
5

M
G

TP
TX

P
1_

21
6

D
5

M
G

TP
R

X
N

0_
21

6
A

8
M

G
TP

R
X

P
0_

21
6

B
8

M
G

TP
TX

N
0_

21
6

A
4

M
G

TP
TX

P
0_

21
6

B
4

M
G

TR
E

FC
LK

1N
_2

16
E

10
M

G
TR

E
FC

LK
1P

_2
16

F1
0

M
G

TR
E

FC
LK

0N
_2

16
E

6
M

G
TR

E
FC

LK
0P

_2
16

F6
M

G
TR

R
E

F_
21

6
F8

M
G

TA
V

TT
B

5

M
G

TA
V

TT
B

7

M
G

TA
V

TT
C

8

M
G

TA
V

TT
B

9

M
G

TA
V

TT
B1

1

M
G

TA
V

TT
C

4

M
G

TA
V

C
C

D
6

M
G

TA
V

C
C

D
10

M
G

TA
V

C
C

F9

M
G

TA
V

C
C

E
8

M
G

TA
V

C
C

F7

U
1H

X
C7

A
10

0T
-2

FG
G

48
4C

G
N

D

G
N

D

G
N

D

G
N

D

P
I
U
1
0
A
4

PI
U1

0A
6

P
I
U
1
0
A
8

PI
U1
0A
10

PI
U1

0B
4

P
I
U
1
0
B
5

PI
U1

0B
6

P
I
U
1
0
B
7

PI
U1
0B
8

PI
U1

0B
9

PI
U1
0B
10

P
I
U
1
0
B
1
1

P
I
U
1
0
C
4

P
I
U
1
0
C
5

P
I
U
1
0
C
7

P
I
U
1
0
C
8

P
I
U
1
0
C
9

P
I
U
1
0
C
1
1

P
I
U
1
0
D
5

P
I
U
1
0
D
6

P
I
U
1
0
D
7

P
I
U
1
0
D
9

P
I
U
1
0
D
1
0

P
I
U
1
0
D
1
1

P
I
U
1
0
E
6

PI
U1
0E
8

P
I
U
1
0
E
1
0

PI
U1
0F
6

P
I
U
1
0
F
7

PI
U1

0F
8

P
I
U
1
0
F
9

P
I
U
1
0
F
1
0
 CO
U1
H

P
I
U
1
0
A
8

PI
U1
0A
10

P
I
U
1
0
B
5

P
I
U
1
0
B
7

PI
U1
0B
8

PI
U1

0B
9

PI
U1
0B
10

P
I
U
1
0
B
1
1

P
I
U
1
0
C
4

P
I
U
1
0
C
8

P
I
U
1
0
C
9

P
I
U
1
0
C
1
1

P
I
U
1
0
D
6

P
I
U
1
0
D
9

P
I
U
1
0
D
1
0

P
I
U
1
0
D
1
1

PI
U1
0E
8

P
I
U
1
0
F
7

PI
U1

0F
8

P
I
U
1
0
F
9

P
I
U
1
0
A
4

PI
U1

0A
6

PI
U1

0B
4

PI
U1

0B
6

P
I
U
1
0
C
5

P
I
U
1
0
C
7

P
I
U
1
0
D
5

P
I
U
1
0
D
7

P
I
U
1
0
E
6

P
I
U
1
0
E
1
0

PI
U1
0F
6

P
I
U
1
0
F
1
0

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

1
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

FP
G

A
-P

W
R

.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

C
69

4.
7µ

F

C
70

4.
7µ

F

C
76

4.
7µ

F

C
46

4.
7µ

F

C
47

4.
7µ

F

G
N

D

G
N

D

G
N

D

1V
1.

8V

C
71

4.
7µ

F

C
74

4.
7µ

F

1V

C
44

4.
7µ

F

1V

C
48

4.
7µ

F

1.
8V

G
N

D

V
C

C
B

R
A

M
J1

1

V
C

C
B

R
A

M
L1

1

V
C

C
B

R
A

M
N

11

V
C

C
A

U
X

H
12

V
C

C
A

U
X

K
12

V
C

C
A

U
X

M
12

V
C

C
A

U
X

P
12

V
C

C
A

U
X

R
11

V
C

C
IN

T
H

10

V
C

C
IN

T
H

8

V
C

C
IN

T
J7

V
C

C
IN

T
J9

V
C

C
IN

T
L7

V
C

C
IN

T
K

8

V
C

C
IN

T
M

8

V
C

C
IN

T
N

7

V
C

C
IN

T
P

8

V
C

C
IN

T
P

10

V
C

C
IN

T
R

7

V
C

C
IN

T
R

9

V
C

C
IN

T
T1

0

V
C

C
IN

T
T8

U
1I

X
C7

A
10

0T
-2

FG
G

48
4C

G
N

D
A

3
G

N
D

A
2

G
N

D
A

7
G

N
D

A
5

G
N

D
A

9

G
N

D
A1

1

G
N

D
A

12

G
N

D
A

A
2

G
N

D
A

22

G
N

D
A

B
9

G
N

D
A

B
19

G
N

D
A

A
12

G
N

D
A

A
22

G
N

D
B

12

G
N

D
B

19

G
N

D
C

3

G
N

D
B

3

G
N

D
C

16

G
N

D
D

3

G
N

D
C

6

G
N

D
C

10

G
N

D
C

12

G
N

D
D

12

G
N

D
D

4

G
N

D
D

8

G
N

D
E

4

G
N

D
E

5

G
N

D
D

13

G
N

D
E

9
G

N
D

E
7

G
N

D
E1

1

G
N

D
F1

1

G
N

D
F1

7

G
N

D
E

20

G
N

D
F5

G
N

D
G

6

G
N

D
G

7

G
N

D
G

8

G
N

D
G

5

G
N

D
G

12

G
N

D
G

14

G
N

D
G

9

G
N

D
G

10

G
N

D
H

1

G
N

D
J1

0

G
N

D
J1

2

G
N

D
J1

8

G
N

D
H

7

G
N

D
H

9

G
N

D
H

11

G
N

D
H

21

G
N

D
J8

G
N

D
K

7

G
N

D
K1

1

G
N

D
M

19

G
N

D
K

5

G
N

D
M

7

G
N

D
M

11

G
N

D
K

15

G
N

D
L2

G
N

D
L8

G
N

D
L2

2

G
N

D
N

16

G
N

D
P

3

G
N

D
N

6

G
N

D
N

8

G
N

D
P1

1

G
N

D
P

13

G
N

D
R

8

G
N

D
P

7

G
N

D
P

9

G
N

D
R

12

G
N

D
R

20

G
N

D
R

10

G
N

D
T9

G
N

D
T7

G
N

D
T1

1

G
N

D
U

4
G

N
D

T1
7

G
N

D
W

8

G
N

D
Y

5

G
N

D
Y

15

G
N

D
U

14

G
N

D
V

1

G
N

D
V1

1

G
N

D
V

21

G
N

D
W

18

U
1J

X
C7

A
10

0T
-2

FG
G

48
4C

G
N

D

1V

C
14

9

10
0µ

F

C
14

8

10
0µ

F

C
14

7

10
0µ

F

C
9

47
0n

F
C

10
47

0n
F

C1
1

47
0n

F
C

20
47

0n
F

C
24

47
0n

F
C

42
47

0n
F

C
43

47
0n

F
C

49
47

0n
F

C
56

47
0n

F
C

14
0

47
0n

F
C

14
1

47
0n

F
C

14
2

47
0n

F
C

14
3

47
0n

F

G
N

D

1V G
N

D

1V

V
CC

IN
T

C
A

PS

V
C

C
B

R
A

M
 C

A
PS

V
C

C
A

U
X

 C
A

PS

C
15

0
47

0n
F

C
15

1
47

0n
F

C
15

2
47

0n
F

C
15

3
47

0n
F

C
15

4
47

0n
F

C
15

5
47

0n
F

C
15

6
47

0n
F

C
15

7
47

0n
F

C
15

8
47
µF

PIC901 PIC902
CO

C9

PIC1001 PIC1002
CO
C1
0

PIC1101 PIC1102
CO
C1
1

PIC2001 PIC2002
CO
C2
0

PIC2401 PIC2402
CO
C2
4

PIC4201 PIC4202
CO

C4
2

PIC4301 PIC4302
CO
C4
3

PIC4401 PIC4402 CO
C4
4

PIC4601 PIC4602 CO
C4
6

PIC4701 PIC4702 CO
C4
7

PIC4801 PIC4802 CO
C4
8

PIC4901 PIC4902
CO
C4
9

PIC5601 PIC5602
CO
C5
6

PIC6901 PIC6902 CO
C6
9

PIC7001 PIC7002 CO
C7
0

PIC7101 PIC7102 CO
C7
1

PIC7401 PIC7402 COC
74

PIC7601 PIC7602 CO
C7
6

PIC14001 PIC14002
CO
C1
40

PIC14101 PIC14102
CO
C1
41

PIC14201 PIC14202
CO
C1
42

PIC14301 PIC14302
CO
C1
43

PIC14701 PIC14702 C
OC
14
7

PIC14801 PIC14802 C
OC
14
8

PIC14901 PIC14902 C
OC
14
9

PIC15001 PIC15002
CO
C1
50

PIC15101 PIC15102
CO
C1
51

PIC15201 PIC15202
CO
C1
52

PIC15301 PIC15302
CO
C1
53

PIC15401 PIC15402
CO
C1
54

PIC15501 PIC15502
CO
C1
55

PIC15601 PIC15602
CO
C1
56

PIC15701 PIC15702
CO
C1
57

PIC15801 PIC15802
CO
C1
58

P
I
U
1
0
H
8

PI
U1

0H
10

PI

U1
0H

12

P
I
U
1
0
J
7

P
I
U
1
0
J
9

P
I
U
1
0
J
1
1

PI
U1
0K
8

P
I
U
1
0
K
1
2

P
I
U
1
0
L
7

P
I
U
1
0
L
1
1

P
I
U
1
0
M
8

P
I
U
1
0
M
1
2

P
I
U
1
0
N
7

P
I
U
1
0
N
1
1

P
I
U
1
0
P
8

PI
U1

0P
10

P
I
U
1
0
P
1
2

P
I
U
1
0
R
7

P
I
U
1
0
R
9

PI
U1

0R
11

P
I
U
1
0
T
8

P
I
U
1
0
T
1
0
 CO
U1

I

P
I
U
1
0
A
2

PI
U1
0A

3

PI
U1
0A

5

P
I
U
1
0
A
7

P
I
U
1
0
A
9

P
I
U
1
0
A
1
1

PI
U1
0A
12

PI
U1
0A
22

P
I
U
1
0
A
A
2

PI
U1
0A
A1
2

PI
U1
0A
A2
2

PI
U1
0A
B9

PI
U1
0A
B1
9

P
I
U
1
0
B
3

P
I
U
1
0
B
1
2

P
I
U
1
0
B
1
9

PI
U1
0C

3

P
I
U
1
0
C
6

P
I
U
1
0
C
1
0

P
I
U
1
0
C
1
2

P
I
U
1
0
C
1
6

PI
U1
0D

3

P
I
U
1
0
D
4

P
I
U
1
0
D
8

P
I
U
1
0
D
1
2

PI
U1
0D
13

PI
U1
0E

4

P
I
U
1
0
E
5

P
I
U
1
0
E
7

P
I
U
1
0
E
9

PI
U1
0E
11

P
I
U
1
0
E
2
0

PI
U1
0F

5

P
I
U
1
0
F
1
1

P
I
U
1
0
F
1
7

PI
U1
0G

5

PI
U1
0G

6

P
I
U
1
0
G
7

P
I
U
1
0
G
8

P
I
U
1
0
G
9

PI
U1
0G
10

PI
U1
0G
12

P
I
U
1
0
G
1
4

P
I
U
1
0
H
1

P
I
U
1
0
H
7

PI
U1

0H
9

PI
U1
0H
11

P
I
U
1
0
H
2
1

P
I
U
1
0
J
8

P
I
U
1
0
J
1
0

PI
U1
0J
12

PI
U1
0J
18

P
I
U
1
0
K
5

P
I
U
1
0
K
7

P
I
U
1
0
K
1
1

PI
U1
0K
15

P
I
U
1
0
L
2

P
I
U
1
0
L
8

P
I
U
1
0
L
2
2

P
I
U
1
0
M
7

PI
U1
0M
11

P
I
U
1
0
M
1
9

P
I
U
1
0
N
6

P
I
U
1
0
N
8

P
I
U
1
0
N
1
6

PI
U1

0P
3

P
I
U
1
0
P
7

P
I
U
1
0
P
9

P
I
U
1
0
P
1
1

PI
U1
0P
13

PI
U1

0R
8

P
I
U
1
0
R
1
0

P
I
U
1
0
R
1
2

P
I
U
1
0
R
2
0

PI
U1

0T
7

PI
U1

0T
9

P
I
U
1
0
T
1
1

P
I
U
1
0
T
1
7

P
I
U
1
0
U
4

PI
U1
0U
14

PI
U1

0V
1

P
I
U
1
0
V
1
1

P
I
U
1
0
V
2
1

P
I
U
1
0
W
8

PI
U1
0W
18

PI
U1

0Y
5

P
I
U
1
0
Y
1
5

CO
U1

J

PIC4601
PIC4701

PIC4801
PIC15301

PIC15401
PIC15501

PIC15601
PIC15701

PIC15801

PI
U1

0H
12

P
I
U
1
0
K
1
2

P
I
U
1
0
M
1
2

P
I
U
1
0
P
1
2

PI
U1

0R
11

PIC901
PIC1001

PIC1101
PIC2001

PIC2401
PIC4201

PIC4301

PIC4401

PIC4901
PIC5601

PIC6901
PIC7001

PIC7101
PIC7401

PIC7601

PIC14001
PIC14101

PIC14201
PIC14301

PIC14702
PIC14802

PIC14902

PIC15001
PIC15101

PIC15201

P
I
U
1
0
H
8

PI
U1

0H
10

P
I
U
1
0
J
7

P
I
U
1
0
J
9

P
I
U
1
0
J
1
1

PI
U1
0K
8

P
I
U
1
0
L
7

P
I
U
1
0
L
1
1

P
I
U
1
0
M
8

P
I
U
1
0
N
7

P
I
U
1
0
N
1
1

P
I
U
1
0
P
8

PI
U1

0P
10

P
I
U
1
0
R
7

P
I
U
1
0
R
9

P
I
U
1
0
T
8

P
I
U
1
0
T
1
0

PIC902
PIC1002

PIC1102
PIC2002

PIC2402
PIC4202

PIC4302

PIC4402

PIC4602
PIC4702

PIC4802 PIC4902
PIC5602

PIC6902
PIC7002

PIC7102
PIC7402

PIC7602

PIC14002
PIC14102

PIC14202
PIC14302

PIC14701
PIC14801

PIC14901

PIC15002
PIC15102

PIC15202

PIC15302
PIC15402

PIC15502
PIC15602

PIC15702
PIC15802

P
I
U
1
0
A
2

PI
U1
0A

3

PI
U1
0A

5

P
I
U
1
0
A
7

P
I
U
1
0
A
9

P
I
U
1
0
A
1
1

PI
U1
0A
12

PI
U1
0A
22

P
I
U
1
0
A
A
2

PI
U1
0A
A1
2

PI
U1
0A
A2
2

PI
U1
0A
B9

PI
U1
0A
B1
9

P
I
U
1
0
B
3

P
I
U
1
0
B
1
2

P
I
U
1
0
B
1
9

PI
U1
0C

3

P
I
U
1
0
C
6

P
I
U
1
0
C
1
0

P
I
U
1
0
C
1
2

P
I
U
1
0
C
1
6

PI
U1
0D

3

P
I
U
1
0
D
4

P
I
U
1
0
D
8

P
I
U
1
0
D
1
2

PI
U1
0D
13

PI
U1
0E

4

P
I
U
1
0
E
5

P
I
U
1
0
E
7

P
I
U
1
0
E
9

PI
U1
0E
11

P
I
U
1
0
E
2
0

PI
U1
0F

5

P
I
U
1
0
F
1
1

P
I
U
1
0
F
1
7

PI
U1
0G

5

PI
U1
0G

6

P
I
U
1
0
G
7

P
I
U
1
0
G
8

P
I
U
1
0
G
9

PI
U1
0G
10

PI
U1
0G
12

P
I
U
1
0
G
1
4

P
I
U
1
0
H
1

P
I
U
1
0
H
7

PI
U1

0H
9

PI
U1
0H
11

P
I
U
1
0
H
2
1

P
I
U
1
0
J
8

P
I
U
1
0
J
1
0

PI
U1
0J
12

PI
U1
0J
18

P
I
U
1
0
K
5

P
I
U
1
0
K
7

P
I
U
1
0
K
1
1

PI
U1
0K
15

P
I
U
1
0
L
2

P
I
U
1
0
L
8

P
I
U
1
0
L
2
2

P
I
U
1
0
M
7

PI
U1
0M
11

P
I
U
1
0
M
1
9

P
I
U
1
0
N
6

P
I
U
1
0
N
8

P
I
U
1
0
N
1
6

PI
U1

0P
3

P
I
U
1
0
P
7

P
I
U
1
0
P
9

P
I
U
1
0
P
1
1

PI
U1
0P
13

PI
U1

0R
8

P
I
U
1
0
R
1
0

P
I
U
1
0
R
1
2

P
I
U
1
0
R
2
0

PI
U1

0T
7

PI
U1

0T
9

P
I
U
1
0
T
1
1

P
I
U
1
0
T
1
7

P
I
U
1
0
U
4

PI
U1
0U
14

PI
U1

0V
1

P
I
U
1
0
V
1
1

P
I
U
1
0
V
2
1

P
I
U
1
0
W
8

PI
U1
0W
18

PI
U1

0Y
5

P
I
U
1
0
Y
1
5

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

2
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

SY
S_

M
AX

10
_C

TR
L.

S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

B
A

N
K

 1
A

B
A

N
K

 1
B

IO
_1

A
/A

D
C

1I
N

1/
D

IF
FI

O
_R

X
_L

1N
D

1
IO

_1
A

/A
D

C
1I

N
2/

D
IF

FI
O

_R
X

_L
1P

C
2

IO
_1

A
/A

D
C

1I
N

3/
D

IF
FI

O
_R

X
_L

3N
E

3
IO

_1
A

/A
D

C
1I

N
4/

D
IF

FI
O

_R
X

_L
3P

E
4

IO
_1

A
/A

D
C

1I
N

5/
D

IF
FI

O
_R

X
_L

5N
C

1
IO

_1
A

/A
D

C
1I

N
6/

D
IF

FI
O

_R
X

_L
5P

B
1

IO
_1

A
/A

D
C

1I
N

7/
D

IF
FI

O
_R

X
_L

7N
F1

IO
_1

A
/A

D
C

1I
N

8/
D

IF
FI

O
_R

X
_L

7P
E

1

IO
_1

B
/D

IF
FI

O
_R

X
_L

14
N

F4
IO

_1
B

/D
IF

FI
O

_R
X

_L
14

P
G

4

IO
_1

B
/D

IF
FI

O
_R

X
_L

16
N

H
2

IO
_1

B
/D

IF
FI

O
_R

X
_L

16
P

H
3

A
D

C
_V

R
E

F
D

3

IO
_1

B/
JT

A
G

E
N

E
5

IO
_1

B/
TM

S/
D

IF
FI

O
_R

X_
L1

1N
G

1
IO

_1
B/

TC
K/

D
IF

FI
O

_R
X_

L1
1P

G
2

IO
_1

B
/T

D
I/D

IF
FI

O
_R

X
_L

12
N

F5
IO

_1
B

/T
D

O
/D

IF
FI

O
_R

X
_L

12
P

F6

A
N

A
IN

1
D

2

R
E

FG
N

D
E

2

V
R

E
FB

1N
0

H
1

V
C

C
IO

1A
F2

V
C

C
IO

1B
G

3

U
32

A

10
M

08
SA

U
16

9C
8G

B
A

N
K

 2

IO
_2

/D
IF

FI
O

_R
X

_L
19

N
J1

IO
_2

/D
IF

FI
O

_R
X

_L
19

P
J2

IO
_2

/D
IF

FI
O

_R
X

_L
21

N
M

1
IO

_2
/D

IF
FI

O
_R

X
_L

21
P

M
2

IO
_2

L2
IO

_2
/D

IF
FI

O
_R

X
_L

28
N

K
1

IO
_2

/D
IF

FI
O

_R
X

_L
28

P
K

2
IO

_2
/P

LL
_L

_C
LK

O
U

TN
/D

IF
FI

O
_R

X
_L

27
N

M
3

IO
_2

/P
LL

_L
_C

LK
O

U
TP

/D
IF

FI
O

_R
X

_L
27

P
L3

IO
_2

/C
LK

0N
/D

IF
FI

O
_R

X
_L

18
N

G
5

IO
_2

/C
LK

0P
/D

IF
FI

O
_R

X
_L

18
P

H
6

IO
_2

/C
LK

1N
/D

IF
FI

O
_R

X
_L

20
N

H
5

IO
_2

/C
LK

1P
/D

IF
FI

O
_R

X
_L

20
P

H
4

IO
_2

/D
P

C
LK

0/
D

IF
FI

O
_R

X
_L

22
N

N
2

IO
_2

/D
P

C
LK

1/
D

IF
FI

O
_R

X
_L

22
P

N
3

V
R

E
FB

2N
0

L1

V
C

C
IO

2
K

3

V
C

C
IO

2
J3

U
32

B

10
M

08
SA

U
16

9C
8G

B
A

N
K

 3

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
1N

L5

IO
_3

/D
IF

FI
O

_R
X

_B
2N

M
4

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
1P

L4

IO
_3

/D
IF

FI
O

_R
X

_B
2P

M
5

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
3N

K
5

IO
_3

/D
IF

FI
O

_R
X

_B
4N

N
4

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
3P

J5

IO
_3

/D
IF

FI
O

_R
X

_B
4P

N
5

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
5N

N
6

IO
_3

/D
IF

FI
O

_R
X

_B
6N

N
7

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
5P

M
7

IO
_3

/D
IF

FI
O

_R
X

_B
6P

N
8

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
7N

J6

IO
_3

/D
IF

FI
O

_R
X

_B
8N

M
8

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
7P

K
6

IO
_3

/D
IF

FI
O

_R
X

_B
8P

M
9

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
9N

J7
IO

_3
/D

IF
FI

O
_T

X
_R

X
_B

9P
K

7

IO
_3

N
12

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
10

N
M

13

IO
_3

/D
IF

FI
O

_R
X_

B1
1N

N
10

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
10

P
M

12

IO
_3

/D
IF

FI
O

_R
X_

B1
1P

N
9

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
12

N
M

11
IO

_3
/D

IF
FI

O
_T

X
_R

X
_B

12
P

L1
1

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
14

N
J8

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
14

P
K

8

IO
_3

/D
IF

FI
O

_T
X

_R
X

_B
16

N
M

10
IO

_3
/D

IF
FI

O
_T

X
_R

X
_B

16
P

L1
0

V
R

E
FB

3N
0

N
11

V
C

C
IO

3
L8

V
C

C
IO

3
L7

V
C

C
IO

3
L6

U
32

C

10
M

08
SA

U
16

9C
8G

B
A

N
K

 5
IO

_5
/D

IF
FI

O
_R

X
_R

1P
K

10

IO
_5

/D
IF

FI
O

_R
X

_R
2P

K1
1

IO
_5

/D
IF

FI
O

_R
X

_R
1N

J1
0

IO
_5

/D
IF

FI
O

_R
X

_R
2N

L1
2

IO
_5

/D
IF

FI
O

_R
X

_R
7P

K
12

IO
_5

L1
3

IO
_5

/D
IF

FI
O

_R
X

_R
7N

J1
2

IO
_5

/D
IF

FI
O

_R
X

_R
8P

J9

IO
_5

/D
IF

FI
O

_R
X

_R
9P

J1
3

IO
_5

/D
IF

FI
O

_R
X

_R
8N

H
10

IO
_5

/D
IF

FI
O

_R
X

_R
9N

H
13

IO
_5

/D
IF

FI
O

_R
X

_R
10

P
H

9

IO
_5

/D
IF

FI
O

_R
X_

R
11

P
G

13
IO

_5
/D

IF
FI

O
_R

X
_R

10
N

H
8

IO
_5

/D
IF

FI
O

_R
X_

R
11

N
G

12

V
R

E
FB

5N
0

K
13

V
C

C
IO

5
J1

1

V
C

C
IO

5
H

11

U
32

D

10
M

08
SA

U
16

9C
8G

B
A

N
K

 6

IO
_6

/D
IF

FI
O

_R
X

_R
18

P
F1

2

IO
_6

/D
IF

FI
O

_R
X

_R
18

N
E

12

IO
_6

C
13

IO
_6

/D
IF

FI
O

_R
X

_R
27

P
F8

IO
_6

/D
IF

FI
O

_R
X

_R
28

P
B

12
IO

_6
/D

IF
FI

O
_R

X
_R

27
N

E
9

IO
_6

/D
IF

FI
O

_R
X

_R
28

N
B1

1

IO
_6

/D
IF

FI
O

_R
X

_R
29

P
C

12

IO
_6

/D
IF

FI
O

_R
X

_R
30

P
B

13
IO

_6
/D

IF
FI

O
_R

X
_R

29
N

C
11

IO
_6

/D
IF

FI
O

_R
X

_R
30

N
A

12

IO
_6

/D
IF

FI
O

_R
X

_R
31

P
E

10

IO
_6

/D
IF

FI
O

_R
X

_R
31

N
D

9

IO
_6

/D
IF

FI
O

_R
X

_R
33

P
D

12

IO
_6

/D
IF

FI
O

_R
X

_R
33

N
D

11

IO
_6

/C
LK

2P
/D

IF
FI

O
_R

X
_R

14
P

G
9

IO
_6

/C
LK

2N
/D

IF
FI

O
_R

X
_R

14
N

G
10

IO
_6

/C
LK

3P
/D

IF
FI

O
_R

X
_R

16
P

F1
3

IO
_6

/C
LK

3N
/D

IF
FI

O
_R

X
_R

16
N

E
13

IO
_6

/D
P

C
LK

3/
D

IF
FI

O
_R

X
_R

26
P

F9

IO
_6

/D
P

C
LK

2/
D

IF
FI

O
_R

X
_R

26
N

F1
0

V
R

E
FB

6N
0

D
13

V
C

C
IO

6
G

11

V
C

C
IO

6
F1

1

U
32

E

10
M

08
SA

U
16

9C
8G

B
A

N
K

 8
IO

_8
/D

IF
FI

O
_R

X
_T

14
P

C
10

IO
_8

/D
IF

FI
O

_R
X

_T
15

P
A

8
IO

_8
/D

IF
FI

O
_R

X
_T

14
N

C
9

IO
_8

/D
IF

FI
O

_R
X

_T
15

N
A

9

IO
_8

/D
IF

FI
O

_R
X

_T
16

P
B

10

IO
_8

/D
IF

FI
O

_R
X

_T
17

P
A

10

IO
_8

/D
IF

FI
O

_R
X

_T
17

N
A1

1

IO
_8

/D
IF

FI
O

_R
X

_T
18

N
E

8

IO
_8

/D
IF

FI
O

_R
X

_T
19

P
A

7

IO
_8

/D
IF

FI
O

_R
X

_T
19

N
A

6

IO
_8

/D
IF

FI
O

_R
X

_T
20

P
B

6

IO
_8

/D
IF

FI
O

_R
X

_T
21

P
A

4
IO

_8
/D

IF
FI

O
_R

X
_T

20
N

B
5

IO
_8

/D
IF

FI
O

_R
X

_T
21

N
A

3

IO
_8

/D
IF

FI
O

_R
X

_T
22

P
E

6

IO
_8

/D
IF

FI
O

_R
X

_T
23

P
B

3

IO
_8

/D
IF

FI
O

_R
X

_T
23

N
B

4

IO
_8

A
5

IO
_8

/D
IF

FI
O

_R
X

_T
26

P
A

2

IO
_8

/D
IF

FI
O

_R
X

_T
26

N
B

2

V
R

E
FB

8N
0

B
7

IO
_8

/D
E

V
_C

LR
N

/D
IF

FI
O

_R
X

_T
16

N
B

9

IO
_8

/D
E

V
_O

E
/D

IF
FI

O
_R

X
_T

18
P

D
8

IO
_8

/C
O

N
FI

G
_S

E
L

D
7

I_
8/

N
C

O
N

FI
G

E
7

IO
_8

/C
R

C
_E

R
R

O
R

/D
IF

FI
O

_R
X

_T
22

N
D

6

IO
_8

/N
ST

AT
U

S
/D

IF
FI

O
_R

X
_T

24
P

C
4

IO
_8

/C
O

N
F_

D
O

N
E

/D
IF

FI
O

_R
X

_T
24

N
C

5

V
C

C
IO

8
C

8

V
C

C
IO

8
C

7

V
C

C
IO

8
C

6

U
32

F

10
M

08
SA

U
16

9C
8G

G
N

D
N

13
G

N
D

N
1

G
N

D
M

6
G

N
D

L9
G

N
D

J4
G

N
D

H
12

G
N

D
G

7
G

N
D

F3
G

N
D

E1
1

G
N

D
D

5
G

N
D

C
3

G
N

D
B

8
G

N
D

A
13

G
N

D
A

1

V
C

C
A

1
K

4

V
C

C
A

2
D

10

V
C

C
A

3
D

4

V
C

C
A

4
K

9

V
C

C
_O

N
E

H
7

V
C

C
_O

N
E

G
8

V
C

C
_O

N
E

G
6

V
C

C
_O

N
E

F7

U
32

G

10
M

08
SA

U
16

9C
8G

G
N

D

G
N

D

C
24

8
47

0n
F

G
N

D

C
24

5
47

0n
F

G
N

D

C
24

4
47

0n
F

G
N

D C
25

0
47

0n
F

G
N

D

C
25

2
47

0n
F

G
N

DC
24

9
47

0n
F

G
N

DC
24

6
47

0n
F

G
N

D C
24

7
47

0n
F

G
N

D

M10_NCONF

R
30

10
K

CP
LD

_J
TA

G
EN

/R
ES

ET
_B

TN

i
B

an
k5

R
29

10
K

R
28

10
K

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V3.

3V

M
10

_C
O

N
F_

D
O

N
E

M
10

_N
ST

AT
U

S

M
10

_N
C

O
N

F

M
10

_C
O

N
F_

D
O

N
E

C
20

2

47
0n

F

G
N

D

i
B

an
k2

i
B

an
k1

i
B

an
k3

i
B

an
k6

i
B

an
k8

M
10

_N
ST

AT
U

S

3.
3V

3.
3V

M
_

T
M

S

M
_

T
D

I
M

_
T

D
O

M
_

T
C

K

M
_

T
X

3.
3V

L1
0

M
PZ

16
08

S2
21

A

FP
G

A
_P

R
O

G
_B

D
12

LE
D

 R
ed

 L
TS

T-
C

19
1K

R
K

T
1%R

13
0

24
0R

3.
3V

D
10

LE
D

 G
re

en
 L

TS
T-

C
19

1K
G

K
T

1%R
70

24
0R

3.
3V

LE
D

_R

LE
D

_G

V
D

A
C_

PS
A

V
E_

N

C
PL

D
_C

FG
0

C
PL

D
_C

FG
1

C
PL

D
_C

FG
2

C
PL

D
_C

FG
3

PM
O

D
1_

FL
G

PM
O

D
2_

FL
G

PM
O

D
1_

EN

PM
O

D
2_

EN

C
17

3
47

0n
F

G
N

D

C
16

5

4.
7µ

F

H
D

M
I_

PD

K
B

_
T

D
I

K
B

_
T

C
K

K
B

_I
O

1

i
K

B

i
K

B

K
_J

TA
G

EN

K
_

T
M

S

K
_

T
C

K
K

_
T

D
I

K
_

T
D

O

K
_I

O
1

K
_I

O
2

K
_I

O
3

3.
3V

_R
EF

M
_

R
X

T
E

_
T

M
S

T
E

_
T

D
I

T
E

_
T

D
O

T
E

_
T

C
K

TE
_U

A
RT

_R
X

TE
_U

A
RT

_T
X

LE
D

_G

LE
D

_R

FP
G

A
_

T
M

S

FP
G

A
_

T
D

I
FP

G
A

_
T

D
O

FP
G

A
_

T
C

K

FP
G

A
_

D
O

N
E

FP
G

A
_

IN
IT

EN
_5

V
_J

O
Y

_N

i
K

B

K
B

_
T

M
S

i
K

B

K
B

_
T

D
O

i
K

B

i
K

B
K

B
_I

O
2

K
B_

JT
A

G
EN

i
K

B

5V
_J

O
Y

_P
G

K
B

_I
O

3
i

K
B

C
PL

D
_C

LK

FP
G

A
_R

X

FP
G

A
_T

X

D
BG

_U
A

RT
_T

X
D

BG
_U

A
RT

_R
X

FP
G

A
_R

ES
ET

_N

1 2 3 4 5 6 7 8 9 10 11 12 13 14

J2
1

Pi
n

H
ea

de
r 2

.5
4

2R
ow

 1
4P

in
s

G
N

D

C
PL

D
_D

B
G

0
C

PL
D

_D
B

G
1

C
PL

D
_D

B
G

2
C

PL
D

_D
B

G
3

C
PL

D
_D

B
G

4
C

PL
D

_D
B

G
5

C
PL

D
_D

B
G

6
C

PL
D

_D
B

G
7

C
PL

D
_D

B
G

8
C

PL
D

_D
B

G
9

C
PL

D
_D

B
G

10
CP

LD
_D

BG
11

C
PL

D
_D

B
G

0

C
PL

D
_D

B
G

1

C
PL

D
_D

B
G

2

C
PL

D
_D

B
G

3

C
PL

D
_D

B
G

4

C
PL

D
_D

B
G

5

C
PL

D
_D

B
G

6

C
PL

D
_D

B
G

7

C
PL

D
_D

B
G

9
C

PL
D

_D
B

G
8

CP
LD

_D
BG

11

C
PL

D
_D

B
G

10
C

PL
D

_A
D

C
1

C
PL

D
_A

D
C

2
C

PL
D

_A
D

C
3

PI
C1

65
01

PI

C1
65

02
 CO
C1
65

PIC17301 PIC17302
CO
C1
73

PI
C2

02
01

PI

C2
02

02

CO
C2
02

PIC24401 PIC24402
CO
C2
44

PIC24501 PIC24502
CO
C2
45

PIC24601 PIC24602
CO
C2
46

PIC24701 PIC24702
CO
C2
47

PIC24801 PIC24802
CO
C2
48

PIC24901 PIC24902
CO
C2
49

PIC25001 PIC25002
CO
C2
50

PIC25201 PIC25202
CO
C2
52

PI
D1

00
A

PI
D1

00
K

CO
D1
0

PI
D1

20
A

PI
D1

20
K

CO
D1
2

PI
J2

10
1

PI
J2

10
2

P
I
J
2
1
0
3

P
I
J
2
1
0
4

P
I
J
2
1
0
5

PI
J2

10
6

PI
J2

10
7

P
I
J
2
1
0
8

P
I
J
2
1
0
9

PI
J2
10
10

PI
J2
10
11

P
I
J
2
1
0
1
2

P
I
J
2
1
0
1
3

P
I
J
2
1
0
1
4
 COJ

21

PI
L1

00
1

PI
L1

00
2

CO
L1

0

PI
R2

80
1

PI
R2

80
2

CO
R2
8

PI
R2

90
1

PI
R2

90
2

CO
R2
9

PI
R3

00
1

PI
R3

00
2

CO
R3
0

PI
R7

00
1

PI
R7

00
2

CO
R7
0

PIR
130

01
PIR

130
02

CO
R1
30

P
I
U
3
2
0
B
1

P
I
U
3
2
0
C
1

P
I
U
3
2
0
C
2

P
I
U
3
2
0
D
1

P
I
U
3
2
0
D
2

P
I
U
3
2
0
D
3

P
I
U
3
2
0
E
1

P
I
U
3
2
0
E
2

PI
U3
20
E3

PI
U3
20
E4

P
I
U
3
2
0
E
5

PI
U3
20
F1

P
I
U
3
2
0
F
2

P
I
U
3
2
0
F
4

P
I
U
3
2
0
F
5

P
I
U
3
2
0
F
6

PI
U3
20
G1

P
I
U
3
2
0
G
2

P
I
U
3
2
0
G
3

P
I
U
3
2
0
G
4

PI
U3

20
H1

P
I
U
3
2
0
H
2

PI
U3
20
H3

CO
U3
2A

P
I
U
3
2
0
G
5

P
I
U
3
2
0
H
4

P
I
U
3
2
0
H
5

P
I
U
3
2
0
H
6

PI
U3
20
J1

PI
U3
20
J2

P
I
U
3
2
0
J
3

PI
U3
20
K1

PI
U3
20
K2

P
I
U
3
2
0
K
3

P
I
U
3
2
0
L
1

P
I
U
3
2
0
L
2

P
I
U
3
2
0
L
3

PI
U3
20
M1

P
I
U
3
2
0
M
2

P
I
U
3
2
0
M
3

P
I
U
3
2
0
N
2

PI
U3
20
N3

CO
U3
2B

P
I
U
3
2
0
J
5

P
I
U
3
2
0
J
6

P
I
U
3
2
0
J
7

P
I
U
3
2
0
J
8

PI
U3
20
K5

P
I
U
3
2
0
K
6

P
I
U
3
2
0
K
7

PI
U3
20
K8

PI
U3
20
L4

P
I
U
3
2
0
L
5

P
I
U
3
2
0
L
6

P
I
U
3
2
0
L
7

PI
U3
20
L8

PI
U3
20
L1
0

PI
U3
20
L1
1

P
I
U
3
2
0
M
4

P
I
U
3
2
0
M
5

P
I
U
3
2
0
M
7

PI
U3
20
M8

PI
U3
20
M9

PI
U3
20
M1
0

PI
U3
20
M1
1

PI
U3
20
M1
2

PI
U3
20
M1
3

P
I
U
3
2
0
N
4

P
I
U
3
2
0
N
5

PI
U3
20
N6

P
I
U
3
2
0
N
7

PI
U3
20
N8

P
I
U
3
2
0
N
9

PI
U3
20
N1
0

PI
U3
20
N1
1

PI
U3
20
N1
2

CO
U3
2C

PI
U3
20
G1
2

PI
U3
20
G1
3

PI
U3
20
H8

P
I
U
3
2
0
H
9

PI
U3
20
H1
0

PI
U3

20
H1

1

PI
U3
20
H1
3

P
I
U
3
2
0
J
9

PI
U3
20
J1
0

PI
U3

20
J1

1

PI
U3
20
J1
2

PI
U3
20
J1
3

PI
U3
20
K1
0

PI
U3
20
K1
1

PI
U3
20
K1
2

PI
U3

20
K1

3

PI
U3
20
L1
2

PI
U3
20
L1
3

CO
U3
2D

PI
U3
20
A1
2

PI
U3
20
B1
1

PI
U3
20
B1
2

PI
U3
20
B1
3

PI
U3
20
C1
1

PI
U3
20
C1
2

PI
U3
20
C1
3

P
I
U
3
2
0
D
9

PI
U3
20
D1
1

PI
U3
20
D1
2

PI
U3
20
D1
3

P
I
U
3
2
0
E
9

PI
U3
20
E1
0

PI
U3
20
E1
2

PI
U3
20
E1
3

P
I
U
3
2
0
F
8

PI
U3
20
F9

PI
U3
20
F1
0

PI
U3
20
F1
1

PI
U3
20
F1
2

PI
U3
20
F1
3

PI
U3
20
G9

PI
U3
20
G1
0

PI
U3
20
G1
1

CO
U3
2E

P
I
U
3
2
0
A
2

PI
U3
20
A3

PI
U3
20
A4

PI
U3
20
A5

P
I
U
3
2
0
A
6

PI
U3
20
A7

P
I
U
3
2
0
A
8

P
I
U
3
2
0
A
9

PI
U3
20
A1
0

PI
U3
20
A1
1

P
I
U
3
2
0
B
2

P
I
U
3
2
0
B
3

PI
U3
20
B4

P
I
U
3
2
0
B
5

P
I
U
3
2
0
B
6

P
I
U
3
2
0
B
7

PI
U3
20
B9

PI
U3
20
B1
0

P
I
U
3
2
0
C
4

P
I
U
3
2
0
C
5

P
I
U
3
2
0
C
6

P
I
U
3
2
0
C
7

PI
U3
20
C8

P
I
U
3
2
0
C
9

PI
U3
20
C1
0

P
I
U
3
2
0
D
6

PI
U3
20
D7

P
I
U
3
2
0
D
8

P
I
U
3
2
0
E
6

P
I
U
3
2
0
E
7

PI
U3
20
E8

CO
U3
2F

P
I
U
3
2
0
A
1

PI
U3

20
A1

3

P
I
U
3
2
0
B
8

P
I
U
3
2
0
C
3

P
I
U
3
2
0
D
4

P
I
U
3
2
0
D
5

PI
U3
20
D1
0

PI
U3

20
E1

1

PI
U3

20
F3

P
I
U
3
2
0
F
7

P
I
U
3
2
0
G
6

P
I
U
3
2
0
G
7

PI
U3
20
G8

P
I
U
3
2
0
H
7

PI
U3

20
H1

2

P
I
U
3
2
0
J
4

PI
U3
20
K4

P
I
U
3
2
0
K
9

PI
U3

20
L9

PI
U3

20
M6

P
I
U
3
2
0
N
1

PI
U3

20
N1

3

CO
U3
2G

PIC17301

PIC24401
PIC24501

PIC24601

PIC24701

PIC24801

PIC24901

PIC25001

PIC25201

PI
D1

00
A

PI
D1

20
A

PI
L1

00
2

PI
R2

80
2

PI
R2

90
2

PI
R3

00
2

P
I
U
3
2
0
C
6

P
I
U
3
2
0
C
7

PI
U3
20
C8

P
I
U
3
2
0
D
4

PI
U3
20
D1
0

P
I
U
3
2
0
F
2

P
I
U
3
2
0
F
7

PI
U3
20
F1
1

P
I
U
3
2
0
G
3

P
I
U
3
2
0
G
6

PI
U3
20
G8

PI
U3
20
G1
1

P
I
U
3
2
0
H
7

PI
U3

20
H1

1

P
I
U
3
2
0
J
3

PI
U3

20
J1

1

P
I
U
3
2
0
K
3

PI
U3
20
K4

P
I
U
3
2
0
K
9

P
I
U
3
2
0
L
6

P
I
U
3
2
0
L
7

PI
U3
20
L8

PI
C1

65
02

PI
C2

02
02

PI
L1

00
1

P
I
U
3
2
0
D
3

NL
30
3V
0R
EF

PI
U3
20
J1
3

NL
5V
0J
OY
0P
G

P
I
U
3
2
0
D
2

NL
CP

LD
0A

DC
1

P
I
U
3
2
0
C
2

NL
CP

LD
0A

DC
2

P
I
U
3
2
0
D
1

NL
CP

LD
0A

DC
3

PI
U3
20
A1
2

NL
CP
LD
0C
FG
0

PI
U3
20
C1
1

NL
CP
LD
0C
FG
1

PI
U3
20
A1
1

NL
CP
LD
0C
FG
2

PI
U3
20
B1
1

NL
CP
LD
0C
FG
3

P
I
U
3
2
0
H
6

NL
CP

LD
0C

LK

PI
J2

10
1

PI
U3
20
L1
0

NL
CP

LD
0D

BG
0

PI
J2

10
2

PI
U3
20
N1
0

NL
CP

LD
0D

BG
1

P
I
J
2
1
0
3

PI
U3
20
M1
0

NL
CP

LD
0D

BG
2

P
I
J
2
1
0
4

P
I
U
3
2
0
N
9

NL
CP

LD
0D

BG
3

P
I
J
2
1
0
5

PI
U3
20
M9

NL
CP

LD
0D

BG
4

PI
J2

10
6

PI
U3
20
N8

NL
CP

LD
0D

BG
5

PI
J2

10
7

PI
U3
20
M8

NL
CP

LD
0D

BG
6

P
I
J
2
1
0
8

P
I
U
3
2
0
N
7

NL
CP

LD
0D

BG
7

P
I
J
2
1
0
9

PI
U3
20
N6

NL
CP

LD
0D

BG
8

PI
J2
10
10

P
I
U
3
2
0
M
7

NL
CP

LD
0D

BG
9

PI
J2
10
11

P
I
U
3
2
0
M
5

NL
CP

LD
0D

BG
10

P
I
J
2
1
0
1
2

P
I
U
3
2
0
N
5

NL
CP

LD
0D

BG
11

P
I
U
3
2
0
E
5

NL

CP
LD

0J
TA

GE
N0

RE
SE

T0
BT

N

PI
U3
20
J1
0

NL
DB

G0
UA

RT
0R

X
PI
U3
20
K1
0

NL
DB

G0
UA

RT
0T

X

PI
U3
20
H1
3

NL
EN

05
V0

JO
Y0

N

P
I
U
3
2
0
J
6

N
L
F
P
G
A
0
D
O
N
E

P
I
U
3
2
0
K
6

NL
FP

GA
0I

NI
T

PI
U3
20
G1
2

NL
FP

GA
0P

RO
G0

B

P
I
U
3
2
0
J
9

NL
FP
GA
0R
ES
ET
0N

PI
U3
20
L1
1

NL
FP
GA
0R
X

P
I
U
3
2
0
J
5

NL
FP

GA
0T

CK

P
I
U
3
2
0
J
7

NL
FP

GA
0T

DI

P
I
U
3
2
0
K
7

NL
FP

GA
0T

DO

PI
U3
20
K8

N
L
F
P
G
A
0
T
M
S

PI
U3
20
K1
1

NL
FP
GA
0T
X

PI
C1

65
01

PIC17302

PI
C2

02
01

PIC24402
PIC24502

PIC24602

PIC24702

PIC24802

PIC24902

PIC25002

PIC25202
P
I
J
2
1
0
1
3

P
I
J
2
1
0
1
4

P
I
U
3
2
0
A
1

PI
U3

20
A1

3

P
I
U
3
2
0
B
8

P
I
U
3
2
0
C
3

P
I
U
3
2
0
D
5

PI
U3
20
D7

P
I
U
3
2
0
E
2

PI
U3

20
E1

1

PI
U3

20
F3

P
I
U
3
2
0
G
7

PI
U3

20
H1

2

P
I
U
3
2
0
J
4

PI
U3

20
L9

PI
U3

20
M6

P
I
U
3
2
0
N
1

PI
U3

20
N1

3

PI
U3
20
M1

NL
HD
MI
0P
D

PI
U3
20
L1
3

NL
K0
IO
1

PI
U3
20
K1
2

NL
K0
IO
2

PI
U3
20
J1
2

NL
K0
IO
3

PI
U3
20
M1
1

NL
K0

JT
AG

EN

PI
U3
20
M1
2

NL
K0

TC
K

PI
U3
20
M1
3

NL
K0

TD
I

PI
U3
20
L1
2

NL
K0

TD
O

PI
U3
20
N1
2

NL
K0
TM
S

P
I
U
3
2
0
E
9

NL
KB

0I
O1

PI
U3
20
G9

NL
KB

0I
O2

PI
U3
20
F1
3

NL
KB

0I
O3

PI
U3
20
F9

NL
KB

0J
TA

GE
N

PI
U3
20
G1
0

NL
KB
0T
CK

P
I
U
3
2
0
D
9

NL
KB
0T
DI

PI
U3
20
F1
0

NL
KB

0T
DO

PI
U3
20
F1
2

NL
KB

0T
MS

PI
R7

00
2

PI
U3
20
B1
3

NL
LE
D0
G

PIR
130

02

PI
U3
20
B1
2

NL
LE
D0
R

PI
R2

90
1

P
I
U
3
2
0
C
5

NL
M1
00
CO
NF
0D
ON
E

PI
R2

80
1

P
I
U
3
2
0
E
7

NLM100nCONF

PI
R3

00
1

P
I
U
3
2
0
C
4

NL
M1
00
nS
TA
TU
S

P
I
U
3
2
0
B
2

NL
M0
RX

P
I
U
3
2
0
G
2

NL
M0

TC
K

P
I
U
3
2
0
F
5

NL
M0
TD
I

P
I
U
3
2
0
F
6

NL
M0
TD
O

PI
U3
20
G1

NL
M0
TM
S

P
I
U
3
2
0
A
2

NL
M0
TX

PI
U3
20
N1
1

P
I
U
3
2
0
N
4

PI
U3
20
N3

P
I
U
3
2
0
M
4

P
I
U
3
2
0
M
3

P
I
U
3
2
0
M
2

P
I
U
3
2
0
L
5

PI
U3
20
L4

P
I
U
3
2
0
L
3

P
I
U
3
2
0
L
2

P
I
U
3
2
0
L
1

PI
U3

20
K1

3

PI
U3
20
K5

PI
U3
20
K2

PI
U3
20
K1

P
I
U
3
2
0
J
8

PI
U3
20
J2

PI
U3
20
J1

PI
U3
20
H1
0

P
I
U
3
2
0
H
9

PI
U3
20
H8

P
I
U
3
2
0
H
5

P
I
U
3
2
0
H
4

PI
U3
20
H3

P
I
U
3
2
0
H
2

PI
U3

20
H1

PI
U3
20
G1
3

P
I
U
3
2
0
G
5

P
I
U
3
2
0
G
4

P
I
U
3
2
0
F
8

P
I
U
3
2
0
F
4

PI
U3
20
F1

PI
U3
20
E1
3

PI
U3
20
E1
2

PI
U3
20
E1
0

PI
U3
20
E8

P
I
U
3
2
0
E
6

PI
U3
20
E4

PI
U3
20
E3

P
I
U
3
2
0
E
1

PI
U3
20
D1
3

P
I
U
3
2
0
D
8

P
I
U
3
2
0
D
6

PI
U3
20
C1
0

P
I
U
3
2
0
C
9

P
I
U
3
2
0
C
1

PI
U3
20
B1
0

PI
U3
20
B9

P
I
U
3
2
0
B
7

P
I
U
3
2
0
B
6

P
I
U
3
2
0
B
1

PI
U3
20
A1
0

P
I
U
3
2
0
A
9

P
I
U
3
2
0
A
8

PI
U3
20
A7

P
I
U
3
2
0
A
6

PI
D1

20
K

PIR
130

01

PI
D1

00
K

PI
R7

00
1

PI
U3
20
D1
1

NL
PM

OD
10

EN

PI
U3
20
D1
2

NL
PM

OD
10

FL
G

PI
U3
20
C1
2

NL
PM

OD
20

EN

PI
U3
20
C1
3

NL
PM

OD
20

FL
G

P
I
U
3
2
0
B
5

NL
TE
0T
CK

PI
U3
20
A3

NL
TE

0T
DI

PI
U3
20
A4

NL
TE

0T
DO

P
I
U
3
2
0
B
3

NL
TE

0T
MS

PI
U3
20
A5

NL
TE
0U
AR
T0
RX

PI
U3
20
B4

NL
TE
0U
AR
T0
TX

P
I
U
3
2
0
N
2

NL
VD
AC
0P
SA
VE
0N

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

4
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

S
O

U
N

D
.S

ch
D

oc
Fi

le
na

m
e:20

19
-0

3-
11

D
ef

au
lt

TE
07

65

1234

J9 3.
5R

C
A

G
N

D

PW
M

_L

PW
M

_R

1%R
63

15
0R

1%R
65

15
0R

25
V

X
7R

C
12

7
33

nF

25
V

X
7R

C
12

9
33

nF

G
N

D

G
N

D

3.
3V

3.
3V

G
N

D

G
N

D

1%R
62

24
0R

1%R
64

24
0R

10
V

X
5R

C
12

6

10
µF

10
V

X
5R

C
12

8

10
µF

10
V

X
5RC
12

5

10
µF

1%
R

61

24
0R

C
12

4
33

nF

R
59

2K
61

G
N

D

V
_P

V
_N

1%R
60

20
0K

C
12

3
4.

7µ
F

D
6

BA
V

19
9L

T1
G

D
7

BA
V

19
9L

T1
G

D
8

BA
V

19
9L

T1
G

1%
R

54

24
0R

1%
R

66

24
0R

1V

1 2

J1
9

JS
T-

S2
B

-X
H

-A

PW
M

_S
PE

A
K

ER

1%R
15

0
15

0R
25

V
X

7R

C
17

4
33

nF

G
N

D

3.
3V

G
N

D

1%R
14

9

24
0R D

13

BA
V

19
9L

T1
G

G
N

D

SP
EA

K
ER

_M
U

TE
_N

16
V

X
5R

C
17

8
1µ

F

G
N

D

1%R
15

4

22
K

1%R
15

3

22
K

25
V

C
0G

, N
P0

C
17

2

2.
2n

F

10
V

C
17

6

10
µF

3.
3VG

N
D

L1
1

M
PZ

16
08

S2
21

A

6.
3V

X
5R

C
17

7

47
0n

F

S
B

1

BY
PA

S
S

2
VI

N
+

3
V

IN
-

4
V

O
U

T1
5

V
C

C
6

G
N

D
7

V
O

U
T2

8

U
37

TS
49

90
IS

T

PIC12301 PIC12302
CO
C1
23

PIC12401 PIC12402
CO
C1
24

PI
C1

25
01

PI

C1
25

02
 CO
C1
25

PI
C1

26
01

PI

C1
26

02
 CO
C1
26

PIC12701 PIC12702
CO
C1
27

PI
C1

28
01

PI

C1
28

02
 CO
C1
28

PIC12901 PIC12902
CO
C1
29

PI
C1

72
01

PI

C1
72

02

CO
C1
72

PIC17401 PIC17402
CO
C1
74

PIC
176

01
PIC

176
02 CO

C1
76

PI
C1

77
01

PI

C1
77

02

CO
C1
77

PIC17801 PIC17802
CO
C1
78

PID601
PID602

PID603

COD
6

PID701
PID702

PID703
COD

7

PID801
PID802

PID803
COD

8

PID1301
PID1302

PID1303
CO
D1
3

P
I
J
9
0
1

P
I
J
9
0
2

P
I
J
9
0
3

P
I
J
9
0
4
 COJ
9

PI
J1

90
1

PI
J1

90
2 COJ

19

PI
L1

10
1

PI
L1

10
2 CO
L1

1

PI
R5

40
1

PI
R5

40
2

CO
R5
4

PI
R5

90
1

PI
R5
90
2

CO
R5

9

PIR6001 PIR6002 CO
R6
0

PI
R6

10
1

PI
R6
10
2

CO
R6

1

PI
R6

20
1

PI
R6

20
2

CO
R6
2

PIR6301 PIR6302 CO
R6
3

PI
R6

40
1

PI
R6

40
2

CO
R6

4

PIR6501 PIR6502 CO
R6

5

PI
R6

60
1

PI
R6

60
2

CO
R6
6

PI
R1

49
01

PI

R1
49

02

CO
R1
49

PIR15001 PIR15002 CO
R1
50

PI
R1

53
01

PI

R1
53

02

CO
R1
53

PI
R1

54
01

PI

R1
54

02

CO
R1
54

P
I
U
3
7
0
1

PI
U3
70
2

PI
U3
70
3

P
I
U
3
7
0
4

P
I
U
3
7
0
5

PI
U3
70
6

PI
U3
70
7

PI
U3
70
8

CO
U3
7

PI
R5
90
2

PID702

PID802

PID1302
PI

L1
10

2

PIC12302 PIC12402

PIC12702

PIC12902

PIC17402

PIC
176

02

PIC17802

PID701

PID801

PID1301

P
I
J
9
0
3

PIR6302
PIR6502

PIR15002

PI
U3
70
7

PI
J1

90
2

PI
U3
70
8

PIC17801

PI
U3
70
2

PI
U3
70
3

PI
C1

77
02

PI

R1
54

01

PIC
176

01 PI
L1

10
1

PI
U3
70
6

PIC17401
PI

C1
77

01

PID1303

PI
R1

49
02

PIR15001

PI
C1

72
02

PI
J1

90
1

PI
R1

53
02

P
I
U
3
7
0
5

PI
C1

72
01

PI
R1

53
01

PI
R1

54
02

P
I
U
3
7
0
4

PI
C1

28
02

PIC12901

PID803

PI
R6

40
2

PIR6501
PI

C1
28

01

P
I
J
9
0
1

PI
C1

26
02

PIC12701

PID703

PI
R6

20
2

PIR6301
PI

C1
26

01

P
I
J
9
0
2

PI
C1

25
02

PI
R6
10
2

PI
C1

25
01

P
I
J
9
0
4

PIC12401
PID603

PIR6001

PI
R6

10
1

PI
R6

60
2

PIC12301

PID601
PID602

PI
R5

40
2

PI
R5

90
1

PIR6002

PI
R6

40
1

NL
PW

M0
L

PI
R6

20
1

NL
PW

M0
R

PI
R1

49
01

NL
PW
M0
SP
EA
KE
R

P
I
U
3
7
0
1

NL
SP
EA
KE
R0
MU
TE
0N

PI
R6

60
1

NL
V0
N

PI
R5

40
1

NL
V0
P

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

5
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

JO
Y.

S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

162738495

H1
H2

J7

D
SU

B
-9

-M

162738495

H1
H2

J3

D
SU

B
-9

-M

1 2345 6

G
N

D
7

G
N

D
8

J6 61
PC

6F

G
N

DSE
R

_S
R

Q
SE

R_
D

A
TA

SE
R

_R
ES

ET

SE
R

_C
LK

SE
R_

A
TN

G
N

D

G
N

D

G
N

D

JB
_U

P

JB
_D

O
W

N
JB

_F
IR

E

JB
_L

EF
T

JB
_R

IG
H

T
JB

_A
X

JB
_A

Y

JA
_U

P

JA
_D

O
W

N
JA

_F
IR

E

JA
_L

EF
T

JA
_R

IG
H

T
JA

_A
X

JA
_A

Y
O

E
1

A
2

G
N

D
3

Y
4

V
C

C
5

U
15

N
C

7S
Z1

26
P5

X

G
N

D

5V

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
16

N
C

7S
Z1

26
P5

X

G
N

D

5VSE
R

_C
LK

SE
R_

D
A

TA
F_

SE
R_

D
A

TA
_O

F_
SE

R
_C

LK
_O

F_
SE

R_
D

A
TA

_E
N

F_
SE

R
_C

LK
_E

N

JA
_U

P

JA
_D

O
W

N

JA
_F

IR
E

JA
_L

EF
T

JA
_R

IG
H

T

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
20

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
21

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
22

N
C

7S
Z1

26
P5

X

3.
3V

3.
3V

G
N

D

G
N

D

SE
R

_C
LK

SE
R_

D
A

TA

3.
3V

3.
3V

F_
SE

R_
D

A
TA

_I

F_
SE

R
_C

LK
_I

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
24

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
25

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
26

N
C

7S
Z1

26
P5

X

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
23

N
C

7S
Z1

26
P5

X

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

FA
_U

P

FA
_D

O
W

N

FA
_F

IR
E

FA
_L

EF
T

FA
_R

IG
H

T

G
N

D

G
N

D

G
N

D

G
N

D
G

N
D

5%R
86

1M

10
00

V
X

7R

C
13

5
10

0p
F

G
N

D

G
N

D

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
27

N
C

7S
Z1

26
P5

X

G
N

D

5V SE
R

_S
R

Q
F_

SE
R

_S
R

Q
_O

F_
SE

R
_S

R
Q

_E
N

O
E

1

A
2

G
N

D
3

Y
4

V
C

C
5

U
28

N
C

7S
Z1

26
P5

X

3.
3V

G
N

D

SE
R

_S
R

Q
3.

3V

F_
SE

R
_S

R
Q

_I

S
O

U
R

C
E

1

S
O

U
R

C
E

2

S
O

U
R

C
E

3

S
O

U
R

C
E

4

S
O

U
R

C
E

5

N
C

6

I-L
im

it
7

E
na

bl
e/

Fa
ul

t
8

dv
/d

t
9

G
N

D
10

V
C

C
11

U
33

M
P5

01
0B

D
Q

-L
F-

Z

5V
_J

O
Y

5V
_J

O
Y

5V
_J

O
Y

G
N

D

T1 2N
70

02
,2

15

G
N

D

5V

EN
_5

V
_J

O
Y

_N

C
45

10
µF

C
72

10
µF

G
N

D

G
N

D

1%R
12

3
20

0K

1%R
12

5
20

0K

G
N

D

50
V

X
7R

C
73

1n
F

1%R
12

4
22

R
G

N
D

R
12

2
D

N
P

5V
_J

O
Y

_P
G

T2
2N

70
02

,2
15

G
N

D

3.
3V

R
12

7
4K

7

C
17

9
10
µF

10
V

C
18

0
10
µF

G
N

D
G

N
D

3.
3V

5V

PIC4501 PIC4502
CO
C4
5

PIC7201 PIC7202
CO
C7
2

PI
C7

30
1

PI
C7

30
2

CO
C7

3

PIC13501 PIC13502
CO
C1
35

PIC17901 PIC17902
CO
C1
79

PIC18001 PIC18002
CO
C1
80

P
I
J
3
0
1

P
I
J
3
0
2

P
I
J
3
0
3

P
I
J
3
0
4

P
I
J
3
0
5

P
I
J
3
0
6

P
I
J
3
0
7

P
I
J
3
0
8

P
I
J
3
0
9

PIJ30H1 PIJ30H2

COJ
3

P
I
J
6
0
1

P
I
J
6
0
2

P
I
J
6
0
3

P
I
J
6
0
4

P
I
J
6
0
5

P
I
J
6
0
6

P
I
J
6
0
7

P
I
J
6
0
8

COJ
6

P
I
J
7
0
1

P
I
J
7
0
2

P
I
J
7
0
3

P
I
J
7
0
4

P
I
J
7
0
5

P
I
J
7
0
6

P
I
J
7
0
7

P
I
J
7
0
8

P
I
J
7
0
9

PIJ70H1 PIJ70H2

COJ
7

PIR8601 PIR8602 CO
R8

6

PIR12201 PIR12202 CO
R1
22

PIR12301 PIR12302 CO
R1
23

PIR12401 PIR12402 CO
R1
24

PIR12501 PIR12502 CO
R1
25

PIR12701 PIR12702 CO
R1
27

P
I
T
1
0
1

PIT102 PIT103
COT

1

P
I
T
2
0
1

PIT202 PIT203
CO

T2

PI
U1
50
1

PI
U1
50
2

P
I
U
1
5
0
3

P
I
U
1
5
0
4

PI
U1
50
5

CO
U1
5

PI
U1
60
1

P
I
U
1
6
0
2

P
I
U
1
6
0
3

P
I
U
1
6
0
4

PI
U1
60
5

CO
U1
6

P
I
U
2
0
0
1

P
I
U
2
0
0
2

PI
U2
00
3

PI
U2
00
4

P
I
U
2
0
0
5

CO
U2
0

P
I
U
2
1
0
1

PI
U2
10
2

P
I
U
2
1
0
3

P
I
U
2
1
0
4

P
I
U
2
1
0
5

CO
U2
1

P
I
U
2
2
0
1

P
I
U
2
2
0
2

PI
U2
20
3

PI
U2
20
4

P
I
U
2
2
0
5

CO
U2
2

P
I
U
2
3
0
1

PI
U2
30
2

PI
U2
30
3

PI
U2
30
4

P
I
U
2
3
0
5

CO
U2
3

PI
U2
40
1

PI
U2
40
2

P
I
U
2
4
0
3

P
I
U
2
4
0
4

PI
U2
40
5

CO
U2
4

P
I
U
2
5
0
1

P
I
U
2
5
0
2

P
I
U
2
5
0
3

P
I
U
2
5
0
4

P
I
U
2
5
0
5

CO
U2
5

PI
U2
60
1

PI
U2
60
2

P
I
U
2
6
0
3

P
I
U
2
6
0
4

PI
U2
60
5

CO
U2
6

P
I
U
2
7
0
1

P
I
U
2
7
0
2

P
I
U
2
7
0
3

P
I
U
2
7
0
4

P
I
U
2
7
0
5

CO
U2
7

PI
U2
80
1

P
I
U
2
8
0
2

P
I
U
2
8
0
3

P
I
U
2
8
0
4

PI
U2
80
5

CO
U2
8

PI
U3

30
1

PI
U3

30
2

P
I
U
3
3
0
3

P
I
U
3
3
0
4

P
I
U
3
3
0
5

P
I
U
3
3
0
6

P
I
U
3
3
0
7

P
I
U
3
3
0
8

PI
U3
30
9

P
I
U
3
3
0
1
0

PI
U3

30
11

 CO
U3
3

PIC17902

PIR12702

P
I
U
2
0
0
1

P
I
U
2
0
0
5

P
I
U
2
1
0
1

P
I
U
2
1
0
5

P
I
U
2
2
0
1

P
I
U
2
2
0
5

P
I
U
2
3
0
1

P
I
U
2
3
0
5

PI
U2
40
1

PI
U2
40
5

P
I
U
2
5
0
1

P
I
U
2
5
0
5

PI
U2
60
1

PI
U2
60
5

PI
U2
80
1

PI
U2
80
5

PIC18002

PIR12202

PI
U1
50
5

PI
U1
60
5

P
I
U
2
7
0
5

PI
U3

30
11

PIC4502 PIC7202
P
I
J
3
0
7

P
I
J
7
0
7

PIR12401

PI
U3

30
1

PI
U3

30
2

P
I
U
3
3
0
3

P
I
U
3
3
0
4

P
I
U
3
3
0
5

PIR12701 PIT203
NL
5V
0J
OY
0P
G

P
I
T
1
0
1

NL
EN

05
V0

JO
Y0

N

PI
U1
50
1

NL
F0
SE
R0
CL
K0
EN

PI
U2
00
4

NL
F0
SE
R0
CL
K0
I

PI
U1
50
2

NL
F0

SE
R0

CL
K0

O

PI
U1
60
1

NL
F0

SE
R0

DA
TA

0E
N

P
I
U
2
1
0
4

NL
F0

SE
R0

DA
TA

0I

P
I
U
1
6
0
2

NL
F0
SE
R0
DA
TA
0O

P
I
U
2
7
0
1

NL
F0

SE
R0

SR
Q0

EN

P
I
U
2
8
0
4

NL
F0
SE
R0
SR
Q0
I

P
I
U
2
7
0
2

NL
F0
SE
R0
SR
Q0
O

P
I
U
2
4
0
4

NL
FA
0D
OW
N

P
I
U
2
5
0
4

NL
FA

0F
IR

E

PI
U2
30
4

NL
FA

0L
EF

T

PI
U2
20
4

NL
FA

0R
IG

HT

P
I
U
2
6
0
4

NL
FA
0U
P

PIC4501 PIC7201

PI
C7

30
1

PIC13502

PIC17901
PIC18001

P
I
J
3
0
8

P
I
J
6
0
2

P
I
J
6
0
7

P
I
J
6
0
8

P
I
J
7
0
8

PIR8602

PIR12501

PIT102

PIT202

P
I
U
1
5
0
3

P
I
U
1
6
0
3

PI
U2
00
3

P
I
U
2
1
0
3

PI
U2
20
3

PI
U2
30
3

P
I
U
2
4
0
3

P
I
U
2
5
0
3

P
I
U
2
6
0
3

P
I
U
2
7
0
3

P
I
U
2
8
0
3

P
I
U
3
3
0
1
0

P
I
J
7
0
9

NL
JA
0A
X

P
I
J
7
0
5

NL
JA
0A
Y

P
I
J
7
0
2

PI
U2
40
2

NL
JA

0D
OW

N

P
I
J
7
0
6

P
I
U
2
5
0
2

NL
JA
0F
IR
E

P
I
J
7
0
3

PI
U2
30
2

NL
JA

0L
EF

T

P
I
J
7
0
4

P
I
U
2
2
0
2

NL
JA

0R
IG

HT

P
I
J
7
0
1

PI
U2
60
2

NL
JA
0U
P

P
I
J
3
0
9

NL
JB
0A
X

P
I
J
3
0
5

NL
JB
0A
Y

P
I
J
3
0
2

NL
JB

0D
OW

N

P
I
J
3
0
6

NL
JB
0F
IR
E

P
I
J
3
0
3

NL
JB

0L
EF

T

P
I
J
3
0
4

NL
JB

0R
IG

HT

P
I
J
3
0
1

NL
JB

0U
P

PI
C7

30
2 PI
U3
30
9

PIC13501

PIJ30H1 PIJ30H2 PIJ70H1 PIJ70H2
PIR8601

PIR12201
PIR12302

PIT103

P
I
U
3
3
0
8

PIR12301 PIR12502
P
I
T
2
0
1

PIR12402
P
I
U
3
3
0
7

P
I
U
3
3
0
6

P
I
J
6
0
3

NL
SE
R0
AT
N

P
I
J
6
0
4

P
I
U
1
5
0
4

P
I
U
2
0
0
2

NL
SE
R0
CL
K

P
I
J
6
0
5

P
I
U
1
6
0
4

PI
U2
10
2

NL
SE

R0
DA

TA

P
I
J
6
0
6

NL
SE
R0
RE
SE
T

P
I
J
6
0
1

P
I
U
2
7
0
4

P
I
U
2
8
0
2

NL
SE

R0
SR

Q

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

6
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

KE
YB

O
A

R
D

.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

1
2

3
4

5
6

7
8

9
10

J5 SM
D

-2
54

-9
13

2-
14

-1
0

1
2

3
4

5
6

7
8

9
10

J1
2

1-
33

80
69

-0

G
N

D

G
N

D

3.
3V

3.
3V

K
_J

TA
G

EN
K

_
T

M
S

K
_

T
D

I
K

_
T

D
O

K
_

T
C

K
K

_I
O

1
K

_I
O

2
K

_I
O

3

i
K

B
i

K
B

P
I
J
5
0
1

P
I
J
5
0
2

P
I
J
5
0
3

P
I
J
5
0
4

P
I
J
5
0
5

P
I
J
5
0
6

P
I
J
5
0
7

P
I
J
5
0
8

P
I
J
5
0
9

P
I
J
5
0
1
0

COJ5

P
I
J
1
2
0
1

P
I
J
1
2
0
2

PI
J1
20
3

PI
J1
20
4

PI
J1
20
5

PI
J1
20
6

P
I
J
1
2
0
7

P
I
J
1
2
0
8

P
I
J
1
2
0
9

P
I
J
1
2
0
1
0

COJ
12

P
I
J
5
0
2

P
I
J
1
2
0
2

P
I
J
5
0
1

P
I
J
1
2
0
1

P
I
J
5
0
8

P
I
J
1
2
0
8

NL
K0
IO

1
P
I
J
5
0
9

P
I
J
1
2
0
9

NL
K0
IO
2

P
I
J
5
0
1
0

P
I
J
1
2
0
1
0

NL
K0
IO

3

P
I
J
5
0
3

PI
J1
20
3

NL
K0

JT
AG

EN

P
I
J
5
0
5

PI
J1
20
5

NL
K0
TC
K

P
I
J
5
0
6

PI
J1
20
6

NL
K0
TD
I

P
I
J
5
0
7

P
I
J
1
2
0
7

NL
K0

TD
O

P
I
J
5
0
4

PI
J1
20
4

NL
K0
TM
S

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

7
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

Fl
op

py
.S

ch
D

oc
Fi

le
na

m
e:20

19
-0

3-
11

D
ef

au
lt

TE
07

65

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

J1
4

W
A

N
N

E2
,5

4-
34

 G
ER

A
D

E

G
N

D

R
ED

W
C

IN
D

EX
M

O
TE

A
D

RV
SB

D
RV

SA
M

O
TE

B
D

IR
ST

EP
W

D
A

TE
W

G
A

TE
TR

C
K

0
W

PT
RD

A
TA

1
SI

D
E1

D
SC

K
C

H
G

R
ED

W
C

IN
D

EX

M
O

TE
A

D
RV

SA
D

IR
ST

EP
W

D
A

TE
W

G
A

TE

TR
C

K
0

W
PT

RD
A

TA
1

SI
D

E1

D
SC

K
C

H
G

1D
IR

1

1B
1

2

1B
2

3

G
N

D
4

1B
3

5

1B
4

6

V
C

C
B

7

1B
5

8

1B
6

9

G
N

D
10

1B
7

11

1B
8

12

2B
1

13

2B
2

14

G
N

D
15

2B
3

16

2B
4

17

V
C

C
B

18

2B
5

19

2B
6

20

G
N

D
21

2B
7

22

2B
8

23

2D
IR

24
2O

E
25

2A
8

26
2A

7
27

G
N

D
28

2A
6

29
2A

5
30

V
C

C
A

31

2A
4

32
2A

3
33

G
N

D
34

2A
2

35
2A

1
36

1A
8

37
1A

7
38

G
N

D
39

1A
6

40
1A

5
41

V
C

C
A

42

1A
4

43
1A

3
44

G
N

D
45

1A
2

46
1A

1
47

1O
E

48

U
7

SN
74

LV
C

H
16

T2
45

D
G

V

3.
3V

5V G
N

D
G

N
D

G
N

D

G
N

D
3.

3V G
N

D

F_
R

ED
W

C

F_
IN

D
EX

F_
M

O
TE

A
F_

D
RV

SA
F_

D
IR

F_
ST

EP
F_

W
D

A
TE

F_
W

G
A

TE

F_
TR

C
K

0
F_

W
PT

F_
RD

A
TA

1

F_
SI

D
E1

F_
D

SC
K

C
H

G

i
FL

O
PP

Y
1 2 3 4

J1
3

St
ift

le
is

te
 4

 P
ol

. 2
,5

4m
m

1 2 3 4

J1
6

St
ift

le
is

te
 4

 P
ol

. 2
,5

4m
m

G
N

D
G

N
D

G
N

D
G

N
D

5V

12
V

_F
U

SE
D

12
V

_F
U

SE
D 5V

PI
J1
30
1

PI
J1
30
2

P
I
J
1
3
0
3

P
I
J
1
3
0
4
 COJ
13

PI
J1
40
1

PI
J1
40
2

PI
J1
40
3

PI
J1
40
4

P
I
J
1
4
0
5

P
I
J
1
4
0
6

P
I
J
1
4
0
7

P
I
J
1
4
0
8

P
I
J
1
4
0
9

P
I
J
1
4
0
1
0

PI
J1
40
11

PI
J1

40
12

PI
J1
40
13

PI
J1

40
14

P
I
J
1
4
0
1
5

P
I
J
1
4
0
1
6

P
I
J
1
4
0
1
7

P
I
J
1
4
0
1
8

P
I
J
1
4
0
1
9

P
I
J
1
4
0
2
0

PI
J1
40
21

PI
J1

40
22

PI
J1
40
23

PI
J1

40
24

P
I
J
1
4
0
2
5

P
I
J
1
4
0
2
6

P
I
J
1
4
0
2
7

P
I
J
1
4
0
2
8

PI
J1
40
29

PI
J1

40
30

PI
J1
40
31

PI
J1

40
32

P
I
J
1
4
0
3
3

P
I
J
1
4
0
3
4

COJ
14

P
I
J
1
6
0
1

P
I
J
1
6
0
2

P
I
J
1
6
0
3

PI
J1
60
4 COJ

16

P
I
U
7
0
1

P
I
U
7
0
2

P
I
U
7
0
3

P
I
U
7
0
4

P
I
U
7
0
5

P
I
U
7
0
6

P
I
U
7
0
7

P
I
U
7
0
8

P
I
U
7
0
9

P
I
U
7
0
1
0

P
I
U
7
0
1
1

P
I
U
7
0
1
2

P
I
U
7
0
1
3

P
I
U
7
0
1
4

P
I
U
7
0
1
5

P
I
U
7
0
1
6

PI
U7
01
7

PI
U7
01
8

PI
U7
01
9

P
I
U
7
0
2
0

P
I
U
7
0
2
1

P
I
U
7
0
2
2

P
I
U
7
0
2
3

P
I
U
7
0
2
4

P
I
U
7
0
2
5

P
I
U
7
0
2
6

P
I
U
7
0
2
7

PI
U7
02

8

P
I
U
7
0
2
9

PI
U7
03

0

P
I
U
7
0
3
1

PI
U7
03

2

P
I
U
7
0
3
3

P
I
U
7
0
3
4

P
I
U
7
0
3
5

P
I
U
7
0
3
6

P
I
U
7
0
3
7

P
I
U
7
0
3
8

P
I
U
7
0
3
9

PI
U7
04

0

P
I
U
7
0
4
1

PI
U7
04

2

P
I
U
7
0
4
3

P
I
U
7
0
4
4

P
I
U
7
0
4
5

P
I
U
7
0
4
6

PI
U7
04

7

P
I
U
7
0
4
8

CO
U7

P
I
U
7
0
1

P
I
U
7
0
3
1

PI
U7
04

2

P
I
J
1
3
0
4

PI
J1
60
4

P
I
U
7
0
7

PI
U7
01
8

PI
J1
30
1

P
I
J
1
6
0
1

P
I
J
1
4
0
1
8

P
I
U
7
0
6

NL
DI
R

PI
J1

40
14

P
I
U
7
0
5

NL
DR
VS
A

PI
J1

40
12

NL
DR
VS
B

P
I
J
1
4
0
3
4

PI
U7
01
9

NL
DS

CK
CH

G

P
I
U
7
0
4
3

NL
F0
DI
R

P
I
U
7
0
4
4

NL
F0
DR
VS
A

PI
U7
03

0
NL

F0
DS

CK
CH

G

P
I
U
7
0
3
6

NL
F0

IN
DE

X

P
I
U
7
0
4
6

NL
F0

MO
TE

A

PI
U7
03

2
NL

F0
RD

AT
A1

PI
U7
04

7
NL

F0
RE

DW
C

P
I
U
7
0
3
7

NL
F0
SI
DE
1

P
I
U
7
0
4
1

NL
F0

ST
EP

P
I
U
7
0
3
5

NL
F0

TR
CK

0

PI
U7
04

0
NL

F0
WD

AT
E

P
I
U
7
0
3
8

NL
F0

WG
AT

E

P
I
U
7
0
3
3

NL
F0
WP
T

PI
J1
30
2

P
I
J
1
3
0
3

PI
J1
40
1

PI
J1
40
3

P
I
J
1
4
0
5

P
I
J
1
4
0
7

P
I
J
1
4
0
9

PI
J1
40
11

PI
J1
40
13

P
I
J
1
4
0
1
5

P
I
J
1
4
0
1
7

P
I
J
1
4
0
1
9

PI
J1
40
21

PI
J1
40
23

P
I
J
1
4
0
2
5

P
I
J
1
4
0
2
7

PI
J1
40
29

PI
J1
40
31

P
I
J
1
4
0
3
3

P
I
J
1
6
0
2

P
I
J
1
6
0
3

P
I
U
7
0
4

P
I
U
7
0
1
0

P
I
U
7
0
1
5

P
I
U
7
0
2
0

P
I
U
7
0
2
1

P
I
U
7
0
2
2

P
I
U
7
0
2
3

P
I
U
7
0
2
4

P
I
U
7
0
2
5

PI
U7
02

8

P
I
U
7
0
3
4

P
I
U
7
0
3
9

P
I
U
7
0
4
5

P
I
U
7
0
4
8

P
I
J
1
4
0
8

P
I
U
7
0
1
3

NL
IN

DE
X

P
I
J
1
4
0
1
0

P
I
U
7
0
3

NL
MO

TE
A

P
I
J
1
4
0
1
6

NL
MO

TE
B

P
I
U
7
0
2
9

P
I
U
7
0
2
7

P
I
U
7
0
2
6

P
I
J
1
4
0
6

PI
J1
40
4

PI
J1

40
30

PI
U7
01
7

NL
RD

AT
A1

PI
J1
40
2

P
I
U
7
0
2

NL
RE
DW
C

PI
J1

40
32

P
I
U
7
0
1
2

NL
SI
DE
1

P
I
J
1
4
0
2
0

P
I
U
7
0
8

NL
ST
EP

P
I
J
1
4
0
2
6

P
I
U
7
0
1
4

NL
TR

CK
0

PI
J1

40
22

P
I
U
7
0
9

NL
WD
AT
E

PI
J1

40
24

P
I
U
7
0
1
1

NL
WG
AT
E

P
I
J
1
4
0
2
8

P
I
U
7
0
1
6

NL
WP
T

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

8
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

V
G

A
.S

ch
D

oc
Fi

le
na

m
e:20

19
-0

3-
11

D
ef

au
lt

TE
07

65

8 157 146 13 512 411 3 102 91

H1
H2

J1
D

SU
B

-1
5-

F-
H

D
 8

.8
9

G
0

3

G
1

4

G
2

5

G
3

6

G
4

7

G
5

8

G
6

9

G
7

10

B
0

16

B
1

17

B
2

18

B
3

19

B
4

20

B
5

21

B
6

22

B
7

23

IO
B

27

IO
B

28

IO
G

31

IO
G

32

IO
R

33

IO
R

34
R

0
41

R
1

42

R
2

43

R
3

44

R
4

45

R
5

46

R
6

47

R
7

48

U
3A

A
D

V
71

25
B

C
PZ

17
0

G
N

D
1

G
N

D
2

B
LA

N
K

11

S
Y

N
C

12

VA
A

13

G
N

D
14

G
N

D
15

C
LO

C
K

24

G
N

D
25

G
N

D
26

VA
A

29

VA
A

30

C
O

M
P

35

V
R

E
F

36

R
S

E
T

37

PS
AV

E
38

G
N

D
39

G
N

D
40

E
P

49

U
3B

A
D

V
71

25
B

C
PZ

17
0

G
0

G
1

G
2

G
3

G
4

G
5

G
6

G
7

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

G
N

D

G
N

D

G
N

D

V
G

A
_G

R
EE

N
_O

U
T

V
G

A
_B

LU
E_

O
U

T

V
G

A
_R

ED
_O

U
T

V
G

A
_R

ED
_O

U
T

V
G

A
_G

R
EE

N
_O

U
T

V
G

A
_B

LU
E_

O
U

T

1%R
13

75
R

1%R
15

75
R

1%R
16

75
R

G
N

D

G
N

D

G
N

D

VA
A

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D
G

N
D

V
G

A
_I

D
1/

SD
A

V
G

A
_H

SY
N

C

V
G

A
_V

SY
N

C

V
G

A
_I

D
3/

SC
L

V
D

A
C

_C
LK

V
D

A
C

_B
LA

N
K

_N

V
D

A
C

_S
Y

N
C

_N

G
N

D

25
V

X
5R

C
34

10
0n

F
16

V
X

7R

C
35

10
nF

G
N

D

1%R
18

56
0R

25
V

X
5R

C
36

10
0n

F

25
V

X
5R

C1
18

10
0n

F
VA

A

VA
A

R
53

49
R

9

R
44

49
R

9

L7 M
PZ

16
08

S2
21

A
3.

3V

G
N

D
G

N
D

5%R
85

1M
10

00
V

X
7R

C
13

4
10

0p
F

V
D

A
C_

PS
A

V
E_

N
T3 2N

70
02

,2
15

T4 2N
70

02
,2

15

V
G

A
_I

D
3/

SC
L

V
G

A
_I

D
1/

SD
A

3.
3V

3.
3V

R
13

1
10

K

R
13

3
10

K

R
69

10
K

R
13

2
10

K

V
G

A
_S

D
A

V
G

A
_S

C
L

5V 5V

PIC3401 PIC3402
COC

34
PIC3501 PIC3502

COC
35

PI
C3

60
1

PI
C3

60
2

CO
C3
6

PI
C1

18
01

PI

C1
18

02

CO
C1
18

PIC13401 PIC13402
CO
C1
34

P
I
J
1
0
1

P
I
J
1
0
2

P
I
J
1
0
3

P
I
J
1
0
4

P
I
J
1
0
5

P
I
J
1
0
6

P
I
J
1
0
7

P
I
J
1
0
8

P
I
J
1
0
9

P
I
J
1
0
1
0

P
I
J
1
0
1
1

PI
J1

01
2

P
I
J
1
0
1
3

P
I
J
1
0
1
4

P
I
J
1
0
1
5

PIJ10H1 PIJ1
0H2

COJ
1

PI
L7

01

PI
L7

02

COL
7

PIR1301 PIR1302 CO
R1
3

PIR1501 PIR1502 CO
R1
5

PIR1601 PIR1602 CO
R1
6

PIR1801 PIR1802 CO
R1

8

PI
R4

40
1

PI
R4

40
2

CO
R4
4

PI
R5

30
1

PI
R5

30
2

CO
R5

3

PIR6901 PIR6902 CO
R6

9

PIR8501 PIR8502 CO
R8

5

PIR13101 PIR13102 CO
R1
31

PIR13201 PIR13202 CO
R1
32

PIR13301 PIR13302 CO
R1
33

PIT301
P
I
T
3
0
2

P
I
T
3
0
3

COT
3 PIT401

P
I
T
4
0
2

P
I
T
4
0
3

COT
4

P
I
U
3
0
3

P
I
U
3
0
4

P
I
U
3
0
5

P
I
U
3
0
6

P
I
U
3
0
7

P
I
U
3
0
8

P
I
U
3
0
9

P
I
U
3
0
1
0

P
I
U
3
0
1
6

PI
U3
01
7

PI
U3
01
8

P
I
U
3
0
1
9

P
I
U
3
0
2
0

P
I
U
3
0
2
1

PI
U3
02
2

P
I
U
3
0
2
3

P
I
U
3
0
2
7

PI
U3
02
8

P
I
U
3
0
3
1

PI
U3
03
2

P
I
U
3
0
3
3

P
I
U
3
0
3
4

P
I
U
3
0
4
1

P
I
U
3
0
4
2

PI
U3
04
3

P
I
U
3
0
4
4

P
I
U
3
0
4
5

P
I
U
3
0
4
6

P
I
U
3
0
4
7

PI
U3
04
8 CO

U3
A

P
I
U
3
0
1

P
I
U
3
0
2

PI
U3
01
1

P
I
U
3
0
1
2

P
I
U
3
0
1
3

P
I
U
3
0
1
4

PI
U3
01
5

P
I
U
3
0
2
4

PI
U3
02
5

P
I
U
3
0
2
6

P
I
U
3
0
2
9

PI
U3
03
0

P
I
U
3
0
3
5

PI
U3
03
6

PI
U3
03
7

P
I
U
3
0
3
8

P
I
U
3
0
3
9

P
I
U
3
0
4
0

PI
U3
04
9

CO
U3
B

PI
L7

02

PIR6902 PIR13202

PIT301 PIT401

PIR13102 PIR13302

P
I
U
3
0
1
6

NLB
0

PI
U3
01
7

NLB
1

PI
U3
01
8

NLB
2

P
I
U
3
0
1
9

NLB
3

P
I
U
3
0
2
0

NLB
4

P
I
U
3
0
2
1

NLB
5

PI
U3
02
2

NLB
6

P
I
U
3
0
2
3

NLB
7

P
I
U
3
0
3

NL
G0

P
I
U
3
0
4

NLG
1

P
I
U
3
0
5

NLG
2

P
I
U
3
0
6

NLG
3

P
I
U
3
0
7

NL
G4

P
I
U
3
0
8

NLG
5

P
I
U
3
0
9

NLG
6

P
I
U
3
0
1
0

NLG
7

PIC3402
PIC3502

PIC13402

P
I
J
1
0
5

P
I
J
1
0
6

P
I
J
1
0
7

P
I
J
1
0
8

P
I
J
1
0
1
0

PIR1302 PIR1502 PIR1602

PIR1802

PIR8502

P
I
U
3
0
1

P
I
U
3
0
2

P
I
U
3
0
1
4

PI
U3
01
5

PI
U3
02
5

P
I
U
3
0
2
6

P
I
U
3
0
2
7

P
I
U
3
0
3
1

P
I
U
3
0
3
3

P
I
U
3
0
3
9

P
I
U
3
0
4
0

PI
U3
04
9

PIR1801
PI
U3
03
7

P
I
J
1
0
1
4

PI
R5

30
2

P
I
J
1
0
1
3

PI
R4

40
2

P
I
J
1
0
1
1

P
I
J
1
0
9

P
I
J
1
0
4

PIC13401 PIJ10H1 PIJ1
0H2

PIR8501

PI
C1

18
02

P
I
U
3
0
3
5

PI
C3

60
2

PI
U3
03
6

P
I
U
3
0
4
1

NLR
0

P
I
U
3
0
4
2

NLR
1

PI
U3
04
3

NLR
2

P
I
U
3
0
4
4

NLR
3

P
I
U
3
0
4
5

NLR
4

P
I
U
3
0
4
6

NLR
5

P
I
U
3
0
4
7

NLR
6

PI
U3
04
8

NLR
7

PIC3401
PIC3501

PI
C3

60
1

PI
C1

18
01

PI
L7

01

P
I
U
3
0
1
3

P
I
U
3
0
2
9

PI
U3
03
0

PI
U3
01
1

N
L
V
D
A
C
0
B
L
A
N
K
0
N

P
I
U
3
0
2
4

NL
VD

AC
0C

LK

P
I
U
3
0
3
8

NL
VD
AC
0P
SA
VE
0N

P
I
U
3
0
1
2

NL
VD

AC
0S

YN
C0

N

P
I
J
1
0
3

PIR1501
PI
U3
02
8

NL
VG
A0
Bl
ue
0O
ut

P
I
J
1
0
2

PIR1301
PI
U3
03
2

NL
VG

A0
Gr

ee
n0

Ou
t

PI
R4

40
1

NL
VG
A0
HS
yn
c

PI
J1

01
2

PIR13101
P
I
T
3
0
3

NL
VG
A0
ID
10
SD
A

P
I
J
1
0
1
5

PIR13301
P
I
T
4
0
3

NL
VG

A0
ID

30
SC

L

P
I
J
1
0
1

PIR1601
P
I
U
3
0
3
4

NL
VG

A0
Re

d0
Ou

t

PIR13201
P
I
T
4
0
2

NL
VG
A0
SC
L

PIR6901
P
I
T
3
0
2

NL
VG

A0
SD

A

PI
R5

30
1

NL
VG
A0
VS
yn
c

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e1

9
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

H
D

M
I.S

ch
D

oc
Fi

le
na

m
e:20

19
-0

3-
11

D
ef

au
lt

TE
07

65

V
S

Y
N

C
2

H
P

D
30

TX
C
–

32
TX

C
+

33

TX
0–

35
TX

0+
36

TX
1–

39
TX

1+
40

TX
2–

42
TX

2+
43

IN
T

45

C
E

C
48

C
E

C
_C

LK
50

H
E

A
C

-
51

H
EA

C
+

52

D
D

C
S

C
L

53

D
D

C
S

D
A

54

S
C

L
55

S
D

A
56

D
35

57
D

34
58

D
33

59
D

32
60

D
31

61
D

30
62

D
29

63
D

28
64

D
27

65
D

26
66

D
25

67
D

24
68

D
23

69
D

22
70

D
21

71
D

20
72

D
19

73
D

18
74

D
17

78

C
LK

79

D
16

80
D

15
81

D
14

82
D

13
83

D
12

84
D

11
85

D
10

86
D

9
87

D
8

88
D

7
89

D
6

90
D

5
91

D
4

92
D

3
93

D
2

94
D

1
95

D
0

96

D
E

97

H
S

Y
N

C
98

B
lu

e

G
re

en

R
ed

V
id

eo

Pi
xe

lCH
D

M
I

U
6A

A
D

V
75

11
K

ST
Z

D
S

D
0

3

D
S

D
1

4

D
S

D
2

5

D
S

D
3

6

D
S

D
4

7

D
S

D
5

8

D
S

D
_C

LK
9

S
P

D
IF

10

M
C

LK
11

I2
S

0
12

I2
S

1
13

I2
S

2
14

I2
S

3
15

S
C

LK
16

LR
C

LK
17

P
D

38

S
P

D
IF

_O
U

T
46

A
ud

io
U

6B

A
D

V
75

11
K

ST
Z D
V

D
D

1

G
N

D
18

D
V

D
D

19

G
N

D
20

PL
V

D
D

21
G

N
D

22

G
N

D
23

P
V

D
D

24

P
V

D
D

25

B
G

V
D

D
26

G
N

D
27

R
_E

X
T

28

AV
D

D
29

G
N

D
31

AV
D

D
34

G
N

D
37

AV
D

D
41

G
N

D
44

M
V

D
D

47

D
V

D
D

49

G
N

D
75

D
V

D
D

76

D
V

D
D

77

G
N

D
99

G
N

D
10

0

Po
w

er
U

6C

A
D

V
75

11
K

ST
Z

D
at

a2
+

1

D
at

a2
 S

hi
el

d
2

D
at

a2
-

3

D
at

a1
+

4

D
at

a1
 S

hi
el

d
5

D
at

a1
-

6

D
at

a0
+

7

D
at

a0
 S

hi
el

d
8

D
at

a0
-

9

C
lo

ck
+

10

C
lo

ck
 S

hi
el

d
11

C
lo

ck
-

12

C
E

C
13

N
C

14

S
C

L
15

S
D

A
16

D
D

C
/C

E
C

 G
N

D
17

+5
V

18

H
ot

 P
lu

g
D

et
ec

t
19

FR
A

M
E

H
1

FR
A

M
E

H
2

FR
A

M
E

H
3

FR
A

M
E

H
4

J4 H
D

M
I C

on
ne

ct
or

H
D

M
I_

T
X

C
_

P
H

D
M

I_
T

X
C

_
N

H
D

M
I_

T
X

C
_

P

H
D

M
I_

T
X

C
_

N

H
D

M
I_

T
X

0
_

P
H

D
M

I_
T

X
0

_
N

H
D

M
I_

T
X

1
_

P
H

D
M

I_
T

X
1

_
N

H
D

M
I_

T
X

2
_

P
H

D
M

I_
T

X
2

_
N

H
D

M
I_

T
X

0
_

P

H
D

M
I_

T
X

0
_

N

H
D

M
I_

T
X

1
_

P

H
D

M
I_

T
X

1
_

N

H
D

M
I_

T
X

2
_

P

H
D

M
I_

T
X

2
_

N

H
D

M
I_

V
S

H
D

M
I_

H
S

H
D

M
I_

C
LK

H
D

M
I_

D
E

H
D

M
I_

S
P

D
IF

H
D

M
I_

S
P

D
IF

O
U

T

H
D

M
I_

S
C

L

H
D

M
I_

S
D

A

H
D

M
I_

IN
T

C
E

C
_A

1

S
C

L_
A

2

S
D

A
_A

3

H
P

D
_A

4

LS
_O

E
5

G
N

D
6

C
E

C
_B

7

S
C

L_
B

8

S
D

A
_B

9

H
P

D
_B

10

V
C

C
5V

11

C
T_

H
P

D
12

5V
_O

U
T

13
G

N
D

14
C

LK
-

15
C

LK
+

16
D

0-
17

D
0+

18
G

N
D

19
D

1-
20

D
1+

21
D

2-
22

D
2+

23
V

C
C

A
24

U
10

TP
D

12
S0

16
PW

R

H
D

M
I_

T
X

C
_

P
H

D
M

I_
T

X
C

_
N

H
D

M
I_

T
X

0
_

P
H

D
M

I_
T

X
0

_
N

H
D

M
I_

T
X

1
_

P
H

D
M

I_
T

X
1

_
N

H
D

M
I_

T
X

2
_

P
H

D
M

I_
T

X
2

_
N

G
N

D

G
N

D
G

N
D

S
C

L_
B

S
D

A
_

B
H

P
D

_
B

S
C

L_
A

S
D

A
_

A
H

P
D

_
A

G
N

D

G
N

D

C
E

C
_

C
LK

H
P

D
_

B
5

V
_

H
D

M
I

5
V

_
H

D
M

I

C
E

C
_

A

C
E

C
_

B

H
P

D
_

A

C
E

C
_

A

S
C

L_
A

S
D

A
_

A

C
E

C
_

B

S
C

L_
B

S
D

A
_

B

LS
_

O
E

C
T

_
H

P
D

G
N

D

L1 M
PZ

16
08

S2
21

A

G
N

D
G

N
D

G
N

D

C
83

10
0n

F
C

82
10

0n
F

C
81

10
0n

F

G
N

D
L8 M

PZ
16

08
S2

21
A

G
N

DC
96

10
0n

F

G
N

D

L9 M
PZ

16
08

S2
21

A

G
N

DC
10

8
10

0n
F

G
N

D

D
V

D
D

_H
D

M
I

D
V

D
D

_H
D

M
I

PL
V

D
D

_H
D

M
I

AV
D

D
_H

D
M

I

M
V

D
D

_H
D

M
I

PL
V

D
D

_H
D

M
I

G
N

DC
10

9
10

0n
FG

N
D

C
97

10
0n

F

AV
D

D
_H

D
M

I

L6 M
PZ

16
08

S2
21

A

G
N

DC1
15

10
0n

F

G
N

D

M
V

D
D

_H
D

M
I

C
85

10
nF

G
N

D
G

N
D

G
N

D

C
86

10
nF

C
87

10
nF

C
10

4
10

nF

G
N

D

C1
12

10
nF

G
N

D

C1
10

10
nF

G
N

D

G
N

D

C1
16

10
nF

G
N

D
G

N
D

G
N

DC
84

10
0n

F

G
N

DC
88

10
nF

G
N

DC
17

1
10

0n
F

G
N

DC1
17

10
0n

F

G
N

D C
10

6
10

0n
F

C
10

1
10

0n
F

G
N

D

C
10

3
10

0n
F

R
14

88
7R

G
N

D
AV

D
D

_H
D

M
I

C
10

5
10

nF

G
N

D

6.
3V

C
78

1µ
F

6.
3V

C
79

1µ
F

D
V

D
D

_H
D

M
I

6.
3V

C
94

1µ
F

C
95

10
0n

F

G
N

D
G

N
D

C
80

10
µF

C
89

10
µF

C
10

7
10
µF

C1
13

10
µF

C1
14

10
µF

1%
R

46
2K

1%
R

47
2K

1%
R

48
2K

R
22

49
R

9
R

23
49

R
9

H
D

M
I_

D
0

H
D

M
I_

D
1

H
D

M
I_

D
2

H
D

M
I_

D
3

H
D

M
I_

D
4

H
D

M
I_

D
5

H
D

M
I_

D
6

H
D

M
I_

D
7

H
D

M
I_

D
8

H
D

M
I_

D
9

H
D

M
I_

D
1

0
H

D
M

I_
D

1
1

H
D

M
I_

D
1

2
H

D
M

I_
D

1
3

H
D

M
I_

D
1

4
H

D
M

I_
D

1
5

H
D

M
I_

D
1

6
H

D
M

I_
D

1
7

H
D

M
I_

D
1

8
H

D
M

I_
D

1
9

H
D

M
I_

D
2

0
H

D
M

I_
D

2
1

H
D

M
I_

D
2

2
H

D
M

I_
D

2
3

H
D

M
I_

D
2

4
H

D
M

I_
D

2
5

H
D

M
I_

D
2

6
H

D
M

I_
D

2
7

H
D

M
I_

D
2

8
H

D
M

I_
D

2
9

H
D

M
I_

D
3

0
H

D
M

I_
D

3
1

H
D

M
I_

D
3

2
H

D
M

I_
D

3
3

H
D

M
I_

D
3

4
H

D
M

I_
D

3
5 5V

3.
3V

3.
3V

3.
3V

1.
8V

H
D

M
I_

PD

PI
C7

80
1

PI
C7

80
2

CO
C7

8

PI
C7

90
1

PI
C7

90
2

CO
C7

9

PIC8001 PIC8002
CO

C8
0

PIC8101 PIC8102
CO

C8
1

PIC8201 PIC8202
CO

C8
2

PIC8301 PIC8302
CO
C8
3

PIC8401 PIC8402
CO
C8
4

PIC8501 PIC8502
CO

C8
5

PIC8601 PIC8602
CO

C8
6

PIC8701 PIC8702
CO

C8
7

PIC8801 PIC8802
CO
C8
8

PIC8901 PIC8902
CO

C8
9

PIC9401 PIC9402
CO
C9
4

PIC9501 PIC9502
CO

C9
5

PIC9601 PIC9602
CO

C9
6

PIC9701 PIC9702
CO

C9
7

PIC10101 PIC10102
CO
C1
01

PIC10301 PIC10302
CO
C1
03

PIC10401 PIC10402
CO
C1
04

PIC10501 PIC10502
CO
C1
05

PIC10601 PIC10602
CO
C1
06

PIC10701 PIC10702
CO
C1
07

PIC10801 PIC10802
CO
C1
08

PIC10901 PIC10902
CO
C1
09

PIC11001 PIC11002
CO
C1
10

PIC11201 PIC11202
CO
C1
12

PIC11301 PIC11302
CO
C1
13

PIC11401 PIC11402
CO
C1
14

PIC11501 PIC11502
CO
C1
15

PIC11601 PIC11602
CO
C1
16

PIC11701 PIC11702
CO
C1
17

PIC17101 PIC17102
CO
C1
71

P
I
J
4
0
1

P
I
J
4
0
2

P
I
J
4
0
3

P
I
J
4
0
4

P
I
J
4
0
5

P
I
J
4
0
6

P
I
J
4
0
7

P
I
J
4
0
8

P
I
J
4
0
9

PI
J4

01
0

PI
J4

01
1

P
I
J
4
0
1
2

P
I
J
4
0
1
3

P
I
J
4
0
1
4

PI
J4

01
5

PI
J4

01
6

P
I
J
4
0
1
7

P
I
J
4
0
1
8

P
I
J
4
0
1
9

PI
J4

0H
1

P
I
J
4
0
H
2

P
I
J
4
0
H
3

P
I
J
4
0
H
4
 COJ

4

PI
L1

01

PI
L1

02

COL
1

PI
L6

01

PI
L6

02

COL
6

PI
L8

01

PI
L8

02

COL
8

PI
L9

01

PI
L9

02

COL
9

PIR1401 PIR1402 CO
R1
4

PIR2201 PIR2202 CO
R2
2

PIR2301 PIR2302 COR
23

PI
R4

60
1

PI
R4

60
2

CO
R4

6
PI

R4
70

1
PI

R4
70

2

CO
R4

7
PI

R4
80

1
PI

R4
80

2

CO
R4

8

P
I
U
6
0
2

P
I
U
6
0
3
0

P
I
U
6
0
3
2

PI
U6
03
3

P
I
U
6
0
3
5

P
I
U
6
0
3
6

P
I
U
6
0
3
9

P
I
U
6
0
4
0

PI
U6
04
2

PI
U6
04
3

PI
U6
04
5

PI
U6
04
8

P
I
U
6
0
5
0

P
I
U
6
0
5
1

P
I
U
6
0
5
2

P
I
U
6
0
5
3

P
I
U
6
0
5
4

P
I
U
6
0
5
5

P
I
U
6
0
5
6

PI
U6
05
7

P
I
U
6
0
5
8

P
I
U
6
0
5
9

P
I
U
6
0
6
0

PI
U6
06
1

PI
U6
06
2

P
I
U
6
0
6
3

P
I
U
6
0
6
4

P
I
U
6
0
6
5

PI
U6
06
6

PI
U6
06
7

P
I
U
6
0
6
8

P
I
U
6
0
6
9

P
I
U
6
0
7
0

PI
U6
07
1

P
I
U
6
0
7
2

P
I
U
6
0
7
3

P
I
U
6
0
7
4

P
I
U
6
0
7
8

P
I
U
6
0
7
9

PI
U6
08
0

P
I
U
6
0
8
1

P
I
U
6
0
8
2

P
I
U
6
0
8
3

P
I
U
6
0
8
4

PI
U6
08
5

P
I
U
6
0
8
6

P
I
U
6
0
8
7

P
I
U
6
0
8
8

PI
U6
08
9

PI
U6
09
0

P
I
U
6
0
9
1

P
I
U
6
0
9
2

P
I
U
6
0
9
3

PI
U6
09
4

PI
U6
09
5

P
I
U
6
0
9
6

P
I
U
6
0
9
7

P
I
U
6
0
9
8
 CO
U6
A

P
I
U
6
0
3

P
I
U
6
0
4

P
I
U
6
0
5

P
I
U
6
0
6

P
I
U
6
0
7

P
I
U
6
0
8

P
I
U
6
0
9

PI
U6

01
0

P
I
U
6
0
1
1

P
I
U
6
0
1
2

P
I
U
6
0
1
3

PI
U6

01
4

PI
U6

01
5

P
I
U
6
0
1
6

P
I
U
6
0
1
7

PI
U6

03
8

PI
U6

04
6

CO
U6
B

P
I
U
6
0
1

PI
U6
01
8

PI
U6

01
9

P
I
U
6
0
2
0

P
I
U
6
0
2
1

P
I
U
6
0
2
2

P
I
U
6
0
2
3

PI
U6

02
4

PI
U6

02
5

PI
U6

02
6

PI
U6
02
7

P
I
U
6
0
2
8

P
I
U
6
0
2
9

PI
U6
03
1

P
I
U
6
0
3
4

P
I
U
6
0
3
7

PI
U6

04
1

P
I
U
6
0
4
4

P
I
U
6
0
4
7

PI
U6

04
9

PI
U6
07
5

P
I
U
6
0
7
6

P
I
U
6
0
7
7

PI
U6
09
9

P
I
U
6
0
1
0
0

CO
U6
C

PI
U1
00
1

PI
U1
00
2

P
I
U
1
0
0
3

P
I
U
1
0
0
4

PI
U1
00
5

PI
U1
00
6

P
I
U
1
0
0
7

P
I
U
1
0
0
8

P
I
U
1
0
0
9

P
I
U
1
0
0
1
0

PI
U1

00
11

P
I
U
1
0
0
1
2

P
I
U
1
0
0
1
3

PI
U1
00
14

P
I
U
1
0
0
1
5

P
I
U
1
0
0
1
6

P
I
U
1
0
0
1
7

P
I
U
1
0
0
1
8

PI
U1
00
19

PI
U1
00
20

P
I
U
1
0
0
2
1

P
I
U
1
0
0
2
2

PI
U1
00
23

PI
U1
00
24

CO
U1
0

PI
L1

01

PI
L8

01

PI
L9

01

PIC10601

PIC11302
PI

L6
01

PI
R4

60
2

PI
R4

70
2

PI
R4

80
2

PI
U1
00
24

PIC11701

PI
U1

00
11

PIC17101

P
I
J
4
0
1
8

P
I
U
1
0
0
1
3

NL
5V
0H
DM
I

PIC8902
PIC9601

PIC9701
PIC10101

PIC10301
PIC10401

PIC10501
PI

L8
02

PI
U6

02
4

PI
U6

02
5

P
I
U
6
0
2
9

P
I
U
6
0
3
4

PI
U6

04
1

PI
U6
04
8

PI
U1
00
1

NL
CE

C0
A

P
I
J
4
0
1
3

P
I
U
1
0
0
7

NL
CE

C0
B

P
I
U
6
0
5
0

NL
CE

C0
CL

K

P
I
U
1
0
0
1
2

NL
CT

0H
PD

PIC8002
PIC8101

PIC8201
PIC8301

PIC8401
PIC8501

PIC8601
PIC8701

PIC8801

PIC9401
PIC9501

PI
L1

02

PIR2201
PIR2301

P
I
U
6
0
1

PI
U6

01
9

PI
U6

04
9

P
I
U
6
0
7
6

P
I
U
6
0
7
7

PIC8001
PIC8102

PIC8202
PIC8302

PIC8402
PIC8502

PIC8602
PIC8702

PIC8802

PIC8901

PIC9402
PIC9502

PIC9602
PIC9702

PIC10102
PIC10302

PIC10402
PIC10502

PIC10602

PIC10701
PIC10802

PIC10902
PIC11002

PIC11202

PIC11301
PIC11401

PIC11502
PIC11602

PIC11702
PIC17102

P
I
J
4
0
2

P
I
J
4
0
5

P
I
J
4
0
8

PI
J4

01
1

P
I
J
4
0
1
7

PI
J4

0H
1

P
I
J
4
0
H
2

P
I
J
4
0
H
3

P
I
J
4
0
H
4

PIR1402

P
I
U
6
0
3

P
I
U
6
0
4

P
I
U
6
0
5

P
I
U
6
0
6

P
I
U
6
0
7

P
I
U
6
0
8

P
I
U
6
0
9

P
I
U
6
0
1
1

P
I
U
6
0
1
2

P
I
U
6
0
1
3

PI
U6

01
4

PI
U6

01
5

P
I
U
6
0
1
6

P
I
U
6
0
1
7

PI
U6
01
8

P
I
U
6
0
2
0

P
I
U
6
0
2
2

P
I
U
6
0
2
3

PI
U6
02
7

PI
U6
03
1

P
I
U
6
0
3
7

P
I
U
6
0
4
4

PI
U6
07
5

PI
U6
09
9

P
I
U
6
0
1
0
0

PI
U1
00
6

PI
U1
00
14

PI
U1
00
19

P
I
U
6
0
7
9

N
L
H
D
M
I
0
C
L
K

P
I
U
6
0
9
6

N
L
H
D
M
I
0
D
0

PI
U6
09
5

NL
HD
MI
0D
1

PI
U6
09
4

NL
HD
MI
0D
2

P
I
U
6
0
9
3

NL
HD
MI
0D
3

P
I
U
6
0
9
2

N
L
H
D
M
I
0
D
4

P
I
U
6
0
9
1

N
L
H
D
M
I
0
D
5

PI
U6
09
0

N
L
H
D
M
I
0
D
6

PI
U6
08
9

NL
HD
MI
0D
7

P
I
U
6
0
8
8

NL
HD
MI
0D
8

P
I
U
6
0
8
7

N
L
H
D
M
I
0
D
9

P
I
U
6
0
8
6

N
L
H
D
M
I
0
D
1
0

PI
U6
08
5

NL
HD

MI
0D

11

P
I
U
6
0
8
4

NL
HD

MI
0D

12

P
I
U
6
0
8
3

NL
HD

MI
0D

13

P
I
U
6
0
8
2

N
L
H
D
M
I
0
D
1
4

P
I
U
6
0
8
1

N
L
H
D
M
I
0
D
1
5

PI
U6
08
0

N
L
H
D
M
I
0
D
1
6

P
I
U
6
0
7
8

NL
HD

MI
0D

17

P
I
U
6
0
7
4

NL
HD

MI
0D

18

P
I
U
6
0
7
3

N
L
H
D
M
I
0
D
1
9

P
I
U
6
0
7
2

N
L
H
D
M
I
0
D
2
0

PI
U6
07
1

NL
HD

MI
0D

21

P
I
U
6
0
7
0

NL
HD

MI
0D

22

P
I
U
6
0
6
9

N
L
H
D
M
I
0
D
2
3

P
I
U
6
0
6
8

N
L
H
D
M
I
0
D
2
4

PI
U6
06
7

N
L
H
D
M
I
0
D
2
5

PI
U6
06
6

NL
HD

MI
0D

26

P
I
U
6
0
6
5

NL
HD

MI
0D

27

P
I
U
6
0
6
4

NL
HD

MI
0D

28

P
I
U
6
0
6
3

N
L
H
D
M
I
0
D
2
9

PI
U6
06
2

N
L
H
D
M
I
0
D
3
0

PI
U6
06
1

NL
HD

MI
0D

31

P
I
U
6
0
6
0

NL
HD

MI
0D

32

P
I
U
6
0
5
9

N
L
H
D
M
I
0
D
3
3

P
I
U
6
0
5
8

N
L
H
D
M
I
0
D
3
4

PI
U6
05
7

N
L
H
D
M
I
0
D
3
5

P
I
U
6
0
9
7

NL
HD
MI
0D
E

P
I
U
6
0
9
8

NL
HD
MI
0H
S

PI
R4

80
1

PI
U6
04
5

NL
HD

MI
0I

NT

PI
U6

03
8

NL
HD
MI
0P
D

PI
R4

60
1

P
I
U
6
0
5
5

NL
HD

MI
0S

CL

PI
R4

70
1

P
I
U
6
0
5
6

N
L
H
D
M
I
0
S
D
A

PI
U6

01
0

NL
HD
MI
0S
PD
IF

PI
U6

04
6 N
LH

DM
I0

SP
DI

FO
UT

P
I
J
4
0
9

P
I
U
6
0
3
5

P
I
U
1
0
0
1
7

NL
HD

MI
0T

X0
0N

P
I
J
4
0
7

P
I
U
6
0
3
6

P
I
U
1
0
0
1
8

NL
HD

MI
0T

X0
0P

P
I
J
4
0
6

P
I
U
6
0
3
9

PI
U1
00
20

N
L
H
D
M
I
0
T
X
1
0
N

P
I
J
4
0
4

P
I
U
6
0
4
0

P
I
U
1
0
0
2
1

N
L
H
D
M
I
0
T
X
1
0
P

P
I
J
4
0
3

PI
U6
04
2

P
I
U
1
0
0
2
2

NL
HD

MI
0T

X2
0N

P
I
J
4
0
1

PI
U6
04
3

PI
U1
00
23

NL
HD

MI
0T

X2
0P

P
I
J
4
0
1
2

P
I
U
6
0
3
2

P
I
U
1
0
0
1
5

N
L
H
D
M
I
0
T
X
C
0
N

PI
J4

01
0

PI
U6
03
3

P
I
U
1
0
0
1
6

N
L
H
D
M
I
0
T
X
C
0
P

P
I
U
6
0
2

NL
HD
MI
0V
S

P
I
U
6
0
3
0

P
I
U
1
0
0
4

NL
HP

D0
A

PI
C7

90
2

P
I
J
4
0
1
9

P
I
U
1
0
0
1
0

NL
HP

D0
B

PI
U1
00
5

NL
LS

0O
E

PIC11402
PIC11501

PIC11601
PI

L6
02

P
I
U
6
0
4
7

PIR1401
P
I
U
6
0
2
8

PI
C7

90
1

PIR2302

P
I
U
6
0
5
1

PI
C7

80
2

P
I
J
4
0
1
4

PI
C7

80
1

PIR2202
P
I
U
6
0
5
2

PIC10702
PIC10801

PIC10901
PIC11001

PIC11201
PI

L9
02

P
I
U
6
0
2
1

PI
U6

02
6

P
I
U
6
0
5
3

PI
U1
00
2

NL
SC

L0
A

PI
J4

01
5

P
I
U
1
0
0
8

NL
SC

L0
B

P
I
U
6
0
5
4

P
I
U
1
0
0
3

NL
SD
A0
A

PI
J4

01
6

P
I
U
1
0
0
9

NL
SD
A0
B

11

22

33

44

D
D

C
C

B
B

A
A

D
at

um
:

B
la

tt
20

vo
n

23

N
um

m
er

:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

Ze
ic

hn
er

:
Tr

en
z

E
le

ct
ro

ni
c

G
m

bH

E
th

er
ne

t.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65R
C

T
5

G
N

D
8

Fr
am

e
15

Fr
am

e
16

75R
75R

TD
+

1

TD
-

2

R
D

+
3

TC
T

4

R
D

-
6

N
C

7

J1 J2 J3J4 J5 J6J7 J8

75R
75R

J1
0A

RJ
45

 -
74

99
01

12
22

A

R
X

M
3

R
X

P
4

TX
M

5
TX

P
6

X
O

7

X
I

8

R
E

X
T

9

M
D

IO
10

M
D

C
11

R
X

D
1

12
R

X
D

0
13

R
E

F_
C

LK
16

R
X

E
R

17
IN

TR
P

18

TX
E

N
19

TX
D

0
20

TX
D

1
21

C
R

S_
D

V/
PH

YA
D

[1
:0

]
15

LE
D

0/
A

N
E

N
_S

P
E

E
D

23

R
S

T
24

U
4A

K
SZ

80
81

R
N

D
C

A

G
N

D
22

V
D

D
_1

.2
1

V
D

D
A

_3
.3

2

V
D

D
IO

14

G
N

D
25

U
4B K

SZ
80

81
R

N
D

C
A

ET
H

_T
D

_P

ET
H

_T
D

_N

ET
H

_R
D

_P

ET
H

_R
D

_N

ET
H

_L
ED

ET
H

_C
LK

ET
H

_C
R

S_
D

V

ET
H

_R
X

_D
0

ET
H

_R
X

_D
1

ET
H

_R
X

ER

ET
H

_T
D

_P
ET

H
_T

D
_N

ET
H

_R
D

_P
ET

H
_R

D
_N

ET
H

_T
X

_E
N

ET
H

_T
X

_D
0

ET
H

_T
X

_D
1

1%
R

9
6K

49
G

N
D

1%R
5

1K

ET
H

_M
D

IO
ET

H
_M

D
C

1%R
6

1K

ET
H

_I
N

T

3.
3V

6.
3V

X
5R

C
31

47
0n

F

G
N

D6.
3V

X
7R

C
30

2.
2µ

F

V
D

D
_1

.2
V

3.
3V

L4

B
K

P0
60

3H
S1

21
-T

6.
3V

X
5R

C
28

47
0n

F

6.
3V

X
5R

C
33

47
0n

F

G
N

D

G
N

D

6.
3V

X
5R

C
21

22
µF

6.
3V

X
5R

C
32

22
µF

G
N

D
G

N
D

5%R
12

1M
10

00
V

X
7R

C
29

10
0p

F

G
N

D

25
V

X
5R

C
18

10
0n

F

G
N

D 25
V

X
5R

C
19

10
0n

F

G
N

D

1%
R

10

22
0R

3.
3V

1%R1
1

10
K

ET
H

_L
ED

ET
H

-R
ST

L-G
N

J1
0B

RJ
45

 -
74

99
01

12
22

A

R
-G

N

J1
0C

RJ
45

 -
74

99
01

12
22

A

G
N

D

3.
3V

1%
R

72

22
0R

ET
H

_L
ED

2

i
ET

H
i

ET
H

i
ET

H

i
ET

H

i
ET

H

i
ET

H
i

ET
H

i
ET

H
PIC1801 PIC1802

CO
C1

8

PIC1901 PIC1902
CO

C1
9

PIC2101 PIC2102
COC

21
PIC2801 PIC2802

COC
28

PIC2901 PIC2902
CO
C2
9

PIC3001 PIC3002
CO
C3
0

PIC3101 PIC3102
CO

C3
1

PIC3201 PIC3202
CO

C3
2

PIC3301 PIC3302
CO

C3
3

P
I
J
1
0
0
1

P
I
J
1
0
0
2

P
I
J
1
0
0
3

PI
J1
00
4

P
I
J
1
0
0
5

P
I
J
1
0
0
6

P
I
J
1
0
0
7

PI
J1
00
8

PI
J1

00
15

PI
J1

00
16

 CO
J1
0A

PI
J1

00
9

PI
J1

00
10

CO
J1
0B

PIJ
100

11
PIJ

100
12

CO
J1
0C

PI
L4

01

PI
L4

02

COL
4

PIR501 PIR502 COR
5

PIR601 PIR602 COR
6

PI
R9

01

PI
R9

02

COR
9

PI
R1

00
1

PI
R1

00
2

CO
R1
0

PI
R1

10
1

PI
R1

10
2

CO
R1

1

PIR1201 PIR1202 CO
R1
2

PI
R7

20
1

PI
R7

20
2

COR
72

P
I
U
4
0
3

P
I
U
4
0
4

P
I
U
4
0
5

P
I
U
4
0
6

P
I
U
4
0
7

P
I
U
4
0
8

P
I
U
4
0
9

P
I
U
4
0
1
0

PI
U4
01
1

P
I
U
4
0
1
2

P
I
U
4
0
1
3

P
I
U
4
0
1
5

P
I
U
4
0
1
6

PI
U4
01
7

P
I
U
4
0
1
8

PI
U4
01
9

P
I
U
4
0
2
0

P
I
U
4
0
2
1

PI
U4
02
3

PI
U4
02
4

CO
U4
A

P
I
U
4
0
1

P
I
U
4
0
2

P
I
U
4
0
1
4

PI
U4
02
2

P
I
U
4
0
2
5

CO
U4
B

PIC2102
PIC2802

PI
J1

00
9

PIJ
100

11 PI
L4

01

PIR501
PIR601

P
I
U
4
0
1
4
 PI
U4
02
4

NL
ET

H0
RS

T

P
I
U
4
0
8

NL
ET
H0
CL
K

P
I
U
4
0
1
5

NL
ET
H0
CR
S0
DV

PIR602

P
I
U
4
0
1
8

NL
ET

H0
IN

T

PI
R1

00
2

PI
U4
02
3

NL
ET
H0
LE
D

PI
R7

20
2

NL
ET

H0
LE

D2

PI
U4
01
1

NL
ET

H0
MD

C

PIR502
P
I
U
4
0
1
0

NL
ET

H0
MD

IO

P
I
J
1
0
0
6

P
I
U
4
0
3

NL
ET

H0
RD

0N

P
I
J
1
0
0
3

P
I
U
4
0
4

NL
ET

H0
RD

0P

P
I
U
4
0
1
3

NL
ET
H0
RX
0D
0

P
I
U
4
0
1
2

NL
ET
H0
RX
0D
1

PI
U4
01
7

NL
ET

H0
RX

ER

P
I
J
1
0
0
2

P
I
U
4
0
5

NL
ET

H0
TD

0N

P
I
J
1
0
0
1

P
I
U
4
0
6

NL
ET

H0
TD

0P
 P

I
U
4
0
2
0

NL
ET
H0
TX
0D
0

P
I
U
4
0
2
1

NL
ET
H0
TX
0D
1

PI
U4
01
9

NL
ET
H0
TX
0E
N

PIC1801 PIC1901

PIC2101
PIC2801

PIC2902

PIC3002
PIC3102

PIC3202
PIC3302

PI
J1
00
8

PI
R9

01

PI
R1

10
2

PIR1202

PI
U4
02
2

P
I
U
4
0
2
5

P
I
U
4
0
1
6

P
I
U
4
0
7

PI
R9

02

P
I
U
4
0
9

PIJ
100

12
PI

R7
20

1

PI
J1

00
10

PI

R1
00

1

PI
R1

10
1

P
I
J
1
0
0
7

PIC3201
PIC3301

PI
L4

02

P
I
U
4
0
2

PIC2901

PI
J1

00
15

PI
J1

00
16

PIR1201

PIC1902
P
I
J
1
0
0
5

PIC1802
PI
J1
00
4

PIC3001
PIC3101

P
I
U
4
0
1

NL
VD

D0
10

2V

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e2

1
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

LE
D

_S
W

_B
U

T.
S

ch
D

oc
Fi

le
na

m
e:20

19
-0

3-
11

D
ef

au
lt

TE
07

65

D
AT

2
1

C
D

/D
AT

3
2

C
M

D
3

V
D

D
4

C
LK

5

G
N

D
6

D
AT

0
7

D
AT

1
8

G
N

D
G

1

G
N

D
G

2

G
N

D
G

3

G
N

D
G

4 9 10

C
ar

d
D

et
ec

t
S
w

it
ch

J2 M
ic

ro
 S

D
 S

oc
ke

t

G
N

D

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

G
N

D

SD
_D

2
SD

_D
3

SD
_C

M
D

SD
_D

0
SD

_D
1

SD
_C

D

SD
_C

LK

10
V

X
5R

C
22

10
µF

G
N

D
3.

3V

1%
R

52
12

K
1

1%
R

55
12

K
1

1%
R

56
12

K
1

1%
R

57
12

K
1

1%
R

88
12

K
1

R1
19

12
K

1

3.
3V

C
D

/D
AT

3
1

C
M

D
2

V
S

S
1

3

V
D

D
4

C
LK

5

V
S

S
2

6

D
AT

0
7

D
AT

1
8

D
AT

2
9

C
D

10

W
P

11

C
ar

d
D

et
ec

t
S
w

it
ch

G
N

D
12

J1
5

M
M

C
 S

D
 S

oc
ke

t

R
21

12
K

1

R
24

12
K

1
R

25
12

K
1

R
26

12
K

1
SD

2_
D

2

SD
2_

D
3

SD
2_

C
M

D

SD
2_

D
0

SD
2_

D
1

SD
2_

C
LK

SD
2_

C
D

SD
2_

W
P

10
V

X
5R

C
27

10
µF

3.
3V

G
N

D

3.
3V

3.
3V

G
N

D

G
N

D

1%R
27

0R 1%R
32

0R 1%R
33

0R 1%R
34

0R

M
_

T
M

S

M
_

T
D

I

M
_

T
D

O

M
_

T
C

K
SD

_D
2

SD
_D

3

SD
_C

M
D

SD
_D

0

SD
_D

1

SD
_C

LK

1%R
35

0R 1%R
36

0R

ht
tp

://
lin

ux
-s

un
xi

.o
rg

/M
ic

ro
SD

_B
re

ak
ou

t

M
_

R
X

M
_

T
X

1%
R

89
12

K
1

R
12

0
12

K
1

R
12

1
12

K
1

1
8

S3
A

CH
S-

04
TA 2

7
S3

B

CH
S-

04
TA

6
3

S3
C

CH
S-

04
TA 4

5
S3

D

CH
S-

04
TA

1%
R

14
2

12
K

1

1%
R

14
3

12
K

1

1%
R

14
4

12
K

1

3.
3V

G
N

D

C
PL

D
_C

FG
0

C
PL

D
_C

FG
1

C
PL

D
_C

FG
2

1%
R

31
12

K
1

C
PL

D
_C

FG
3

PI
C2

20
1

PI
C2

20
2

CO
C2

2

PI
C2

70
1

PI
C2

70
2

CO
C2

7

P
I
J
2
0
1

P
I
J
2
0
2

P
I
J
2
0
3

P
I
J
2
0
4

P
I
J
2
0
5

P
I
J
2
0
6

P
I
J
2
0
7

P
I
J
2
0
8

P
I
J
2
0
9

P
I
J
2
0
1
0

P
I
J
2
0
G
1

P
I
J
2
0
G
2

P
I
J
2
0
G
3

P
I
J
2
0
G
4
 COJ
2

P
I
J
1
5
0
1

PI
J1
50
2

PI
J1
50
3

P
I
J
1
5
0
4

P
I
J
1
5
0
5

P
I
J
1
5
0
6

PI
J1
50
7

PI
J1
50
8

P
I
J
1
5
0
9

P
I
J
1
5
0
1
0

PI
J1

50
11

PI
J1

50
12

 COJ
15

PI
R2

10
1

PI
R2

10
2

CO
R2

1

PI
R2

40
1

PI
R2

40
2

CO
R2
4

PI
R2

50
1

PI
R2

50
2

CO
R2
5

PI
R2

60
1

PI
R2

60
2

CO
R2
6

PI
R2

70
1

PI
R2

70
2

CO
R2

7

PI
R3

10
1

PI
R3

10
2

CO
R3
1

PI
R3

20
1

PI
R3

20
2

CO
R3

2

PI
R3

30
1

PI
R3

30
2

CO
R3

3

PI
R3

40
1

PI
R3

40
2

CO
R3

4

PI
R3

50
1

PI
R3

50
2

CO
R3

5

PI
R3

60
1

PI
R3

60
2

CO
R3

6

PI
R5

20
1

PI
R5

20
2

CO
R5
2

PI
R5

50
1

PI
R5

50
2

CO
R5
5

PI
R5

60
1

PI
R5

60
2

CO
R5
6

PI
R5

70
1

PI
R5

70
2

CO
R5
7

PI
R8

80
1

PI
R8

80
2

CO
R8
8

PI
R8

90
1

PI
R8

90
2

CO
R8
9

PI
R1

19
01

PI

R1
19

02

CO
R1
19

PI
R1

20
01

PI

R1
20

02

CO
R1
20

PIR
121

01
PIR

121
02

CO
R1
21

PI
R1

42
01

PI

R1
42

02

CO
R1
42

PI
R1

43
01

PI

R1
43

02

CO
R1
43

PI
R1

44
01

PI

R1
44

02

CO
R1
44

P
I
S
3
0
1

P
I
S
3
0
8
 CO
S3
A

P
I
S
3
0
2

P
I
S
3
0
7
 CO
S3
B

P
I
S
3
0
3

P
I
S
3
0
6
 CO
S3
C

P
I
S
3
0
4

P
I
S
3
0
5
 CO
S3
D

PI
C2

20
1

PI
C2

70
1

P
I
J
2
0
4

P
I
J
1
5
0
4

PI
R2

10
1

PI
R2

40
1

PI
R2

50
1

PI
R2

60
1

PI
R5

20
2

PI
R5

50
2

PI
R5

60
2

PI
R5

70
2

PI
R8

80
2

PI
R8

90
2

PI
R1

19
01

PI
R1

20
01

PIR
121

01

P
I
S
3
0
1

P
I
S
3
0
2

P
I
S
3
0
3

P
I
S
3
0
4

PI
R1

42
01

P
I
S
3
0
8

NL
CP
LD
0C
FG
0

PI
R1

43
01

P
I
S
3
0
7

NL
CP
LD
0C
FG
1

PI
R1

44
01

P
I
S
3
0
6

NL
CP
LD
0C
FG
2

PI
R3

10
1

P
I
S
3
0
5

NL
CP
LD
0C
FG
3

PI
C2

20
2

PI
C2

70
2

P
I
J
2
0
6

P
I
J
2
0
1
0

P
I
J
2
0
G
1

P
I
J
2
0
G
2

P
I
J
2
0
G
3

P
I
J
2
0
G
4

PI
J1
50
3

P
I
J
1
5
0
6

PI
R3

10
2

PI
R1

42
02

PI
R1

43
02

PI
R1

44
02

PI
R3

50
2

NL
M0
RX

PI
R2

70
2

NL
M0

TC
K

PI
R3

40
2

NL
M0
TD
I

PI
R3

30
2

NL
M0

TD
O

PI
R3

20
2

NL
M0

TM
S

PI
R3

60
2

NL
M0
TX

PI
J1

50
12

P
I
J
1
5
0
1
0

PI
R1

20
02

NL

SD
20

CD

P
I
J
1
5
0
5

NL
SD
20
CL
K

PI
J1
50
2

PI
R2

10
2

NL
SD

20
CM

D

PI
J1
50
7

PI
R2

40
2

NL
SD
20
D0

PI
J1
50
8

PI
R2

50
2

NL
SD

20
D1

P
I
J
1
5
0
9

PI
R2

60
2

NL
SD
20
D2

P
I
J
1
5
0
1

PI
R1

19
02

NL
SD
20
D3

PI
J1

50
11

PIR

121
02

NL
SD

20
WP

P
I
J
2
0
9

PI
R8

90
1

NL
SD

0C
D

P
I
J
2
0
5

PI
R3

60
1

NL
SD

0C
LK

P
I
J
2
0
3

PI
R3

30
1

PI
R5

60
1

NL
SD

0C
MD

P
I
J
2
0
7

PI
R3

40
1

PI
R5

70
1

NL
SD
0D
0

P
I
J
2
0
8

PI
R3

20
1

PI
R8

80
1

NL
SD

0D
1

P
I
J
2
0
1

PI
R2

70
1

PI
R5

20
1

NL
SD
0D
2

P
I
J
2
0
2

PI
R3

50
1

PI
R5

50
1

NL
SD

0D
3

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e2

2
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH

Po
w

er
M

ai
n.

S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

G
N

D

V
O

U
T

GND 8

Vi
n

1

S
Y

N
C

2
FB

5

Vo
ut

7

S
S

/T
R

K
6

E
N

3

AGND 4

U
12

17
10

50
60

1
G

N
D

G
N

D

10
V

X
5R

C
13

10
0µ

F
10

V
X

5R

C
15

10
0µ

F
10

V
X

5R

C
16

10
0µ

F

50
V

X
7R

C
17

47
0n

F

50
V

X
7R

C
7

47
nF

50
V

X
7R

C
8

47
nF

25
V

X
5R

C
3

22
µF

G
N

D
G

N
D

5V

1%R
2

5K
6

1%R
4

1K
15

4
.6

7
V

G
N

D
G

N
D

12
V

_F
U

SE
D

G
N

D

G
N

D

V
O

U
T

GND 8

Vi
n

1

S
Y

N
C

2
FB

5

Vo
ut

7

S
S

/T
R

K
6

E
N

3

AGND 4

U
14

17
10

50
60

1
G

N
D

G
N

D

10
V

X
5R

C
40

10
0µ

F
10

V
X

5R

C
99

10
0µ

F
10

V
X

5R

C
10

0
10

0µ
F

50
V

X
7R

C
10

2
47

0n
F

50
V

X
7R

C
38

47
nF

50
V

X
7R

C
39

47
nF

25
V

X
5R

C
37

22
µF

G
N

D

G
N

D
G

N
D

12
V

_F
U

SE
D

G
N

D

G
N

D1%R
19

3K
3

1%R
20

1K
05

3
.3

0
V

3.
3V

1.
8V

GATE8

Vo
ut

7

FA
U

LT
6

S
H

D
N

5

U
V

2

O
V

3

G
N

D
4

Vi
n

1
U

34

LT
C

43
65

IT
S8

#T
R

M
PB

F

1%R
13

9
47

0K

G
N

D

R
13

7

5K
1

R
13

5
10

R
R

13
6

10
R

SR
=

2V
/m

s G
N

D16
V

X
5R

C
14

4
10
µF

5
3

4

6
T5

A
A

O
48

32

7
1

2

8
T5

B
A

O
48

32

50
V

X
7R

C
13

9

10
nF

G
N

D

O
V

 =
 1

4V
U

V
 =

 1
0V

1%R
13

8
1M

1%R
14

0
27

K

1%R
14

1
37

K
4

1 2
34

L5 9µ
H

G
N

D

1 3 2

J1
1

Po
w

er
 Ja

ck
 2

.1
m

m
 9

0°
 S

M
D

iH
V

D
5

SM
BJ

20
A

, 2
0V

, 6
00

W

PO
W

ER
_G

N
D

12
V

_F
U

SE
D

V
IN

2
31

F2
F1

S1

A
10

1J
1A

V
2Q

00
4

G
N

D

C
PL

D
_A

D
C

1

1%R
15

5
27

K

1%R
16

0
27

K

G
N

D

50
V

X
7R

C
18

1
10

nF

G
N

D

PIC301 PIC302
COC

3
PIC701 PIC702

COC
7

PIC801 PIC802
COC

8
PIC1301 PIC1302

CO
C1

3
PIC1501 PIC1502

CO
C1

5
PIC1601 PIC1602

CO
C1
6

PIC1701 PIC1702
CO

C1
7

PIC3701 PIC3702
CO

C3
7

PIC3801 PIC3802
CO

C3
8

PIC3901 PIC3902
CO
C3
9

PIC4001 PIC4002
CO
C4
0

PIC9901 PIC9902
CO
C9
9

PIC10001 PIC10002
CO
C1
00

PIC10201 PIC10202
CO
C1
02

PIC
139

01
PIC

139
02

CO
C1
39

PIC14401 PIC14402
CO
C1
44

PIC18101 PIC18102
CO
C1
81

PID501 PID502

COD
5

P
I
J
1
1
0
1

PI
J1
10
2

P
I
J
1
1
0
3

COJ
11

P
I
L
5
0
1

P
I
L
5
0
2

P
I
L
5
0
3

P
I
L
5
0
4

COL
5

PIR201 PIR202 COR
2

PIR401 PIR402 COR
4 PIR1901 PIR1902 CO

R1
9

PIR2001 PIR2002 CO
R2
0

PIR13501 PIR13502 CO
R1
35

PIR13601 PIR13602 CO
R1
36

PI
R1
37
01

PIR
137

02

CO
R1
37

PIR13801 PIR13802 CO
R1
38

PIR13901 PIR13902 CO
R1
39

PIR14001 PIR14002 CO
R1
40

PIR14101 PIR14102 CO
R1
41

PIR15501 PIR15502 CO
R1
55

PIR16001 PIR16002 CO
R1
60

P
I
S
1
0
1

P
I
S
1
0
2

P
I
S
1
0
3

PIS10F1 PIS1
0F2

COS
1

P
I
T
5
0
3

PIT504

P
I
T
5
0
5

P
I
T
5
0
6

CO
T5
A

P
I
T
5
0
1

PIT502

P
I
T
5
0
7

P
I
T
5
0
8

CO
T5
B

P
I
U
1
2
0
1

P
I
U
1
2
0
2

PI
U1
20
3

PIU1204

P
I
U
1
2
0
5

PI
U1
20
6

P
I
U
1
2
0
7

PIU1208

CO
U1
2

PI
U1
40
1

P
I
U
1
4
0
2

P
I
U
1
4
0
3

PIU1404

P
I
U
1
4
0
5

P
I
U
1
4
0
6

PI
U1
40
7

PIU1408

CO
U1
4

P
I
U
3
4
0
1

P
I
U
3
4
0
2

P
I
U
3
4
0
3

PI
U3
40
4

PI
U3
40
5

PI
U3

40
6

P
I
U
3
4
0
7

PIU3408
CO
U3
4

P
I
U
1
4
0
3

PIC3902
PIC4001

PIC9901
PIC10001

PIR1901
PI
U1
40
7

PIC802
PIC1301

PIC1501
PIC1601

PIR201
PIR15501

P
I
U
1
2
0
7

PIC302
PIC702

PIC3702
PIC3802

PIC14401

P
I
T
5
0
5

P
I
T
5
0
6

P
I
U
1
2
0
1

PI
U1
40
1

P
I
U
3
4
0
7

PIC18101
PIR15502 PIR16001

NL
CP
LD
0A
DC
1

PIC301
PIC701

PIC801
PIC1302

PIC1502
PIC1602

PIC1702

PIC3701
PIC3801

PIC3901
PIC4002

PIC9902
PIC10002

PIC10202

PIC
139

02

PIC14402

PIC18102

P
I
L
5
0
3

PIR402

PIR2002

PIR14102

PIR16002

PIS10F1 PIS1
0F2

P
I
U
1
2
0
2

PIU1204
PIU1208

P
I
U
1
4
0
2

PIU1404
PIU1408

PI
U3
40
4

PI
U3

40
6

PI
U1
20
3

P
I
T
5
0
1

P
I
T
5
0
3

P
I
S
1
0
3

PIR14002 PIR14101
P
I
U
3
4
0
3

PIR13902
PI
U3
40
5

PIR13802

PIR14001
P
I
U
3
4
0
2

PIR13601 PIT504

PIR13502
PIR13602

PI
R1
37
01

PIU3408

PIR13501 PIT502

PIR1902 PIR2001

P
I
U
1
4
0
5

PIR202 PIR401

P
I
U
1
2
0
5

P
I
L
5
0
4

P
I
S
1
0
2

PID501
P
I
J
1
1
0
1

P
I
L
5
0
1

PIC
139

01
PIR

137
02

PIC10201
P
I
U
1
4
0
6

PIC1701
PI
U1
20
6

PID502
PI
J1
10
2

P
I
J
1
1
0
3

P
I
L
5
0
2

NL
PO
WE
R0
GN
D

PIR13801
PIR13901

P
I
S
1
0
1

P
I
T
5
0
7

P
I
T
5
0
8

P
I
U
3
4
0
1

NL
VI
N

11

22

33

44

D
D

C
C

B
B

A
A

D
at

e:
P

ag
e2

3
of

23

N
um

be
r:

Ti
tle

:
M

E
G

A
65

02
R

ev
.

A
4

C
op

yr
ig

ht
:T

re
nz

 E
le

ct
ro

ni
c

G
m

bH
 /

TT

P
O

W
ER

.S
ch

D
oc

Fi
le

na
m

e:20
19

-0
3-

11

D
ef

au
lt

TE
07

65

1V

G
N

D
G

N
D

V
O

U
T

5

V
O

U
T

6

V
O

U
T

7

V
O

U
T

8

V
O

U
T

9

V
O

U
T

10

V
O

U
T

11

P
G

N
D

13

P
G

N
D

14

P
G

N
D

15

P
G

N
D

16

P
G

N
D

17

P
G

N
D

18

P
V

IN
19

P
V

IN
20

P
V

IN
21

LL
M

/S
Y

N
C

26

E
N

A
B

LE
27

P
O

K
28

R
LL

M
29

S
S

30

V
FB

31

A
G

N
D

32

AV
IN

33

P
G

N
D

39

N
C

(S
W

)
1

N
C

(S
W

)
2

N
C

3

N
C

4

N
C

(S
W

)
12

N
C

22

N
C

23

N
C

24

N
C

25

N
C

(S
W

)
34

N
C

(S
W

)
35

N
C

(S
W

)
36

N
C

(S
W

)
37

N
C

(S
W

)
38

U
11

EN
63

47
Q

I

25
V

X
5R

C
41

22
µF

G
N

D

1%R
49

20
0K

1%R
50

60
4K

G
N

D

G
N

D6.
3V

X
5R

C1
19

47
nF

6.
3V

N
P0

C1
11

22
pF

6.
3V

X
5R

C
6

47
µF

PG
_1

V
0

So
ft-

st
ar

t 3
.8

m
s

R
17

10
K

5V

5V

1.
8V

10
V

X
5R

C
12

0
10
µF

G
N

D

5V

P
G

N
D

2

V
S

E
N

S
E

5

V
O

U
T

7

V
O

U
T

8

A
G

N
D

6

AV
IN

13

E
N

A
B

LE
12

P
V

IN
14

N
C

(S
W

)
1

LL
M

3

V
S

0
11

V
S

1
10

V
S

2
9

N
C

4

N
C

(S
W

)
15

N
C

(S
W

)
16

U
13

EP
53

A
7H

Q
I

G
N

D

1%R
51

10
0R

10
V

X
5R

C
12

1
10
µF

G
N

D

PG
_1

V
0

5V

50
V

X
7R

C
18

3
10

nF

G
N

D

C
PL

D
_A

D
C

2

C
PL

D
_A

D
C

3

50
V

X
7R

C
18

2
10

nF

G
N

D

1V

R
16

2
10

K

R
16

1
10

K

PI
C6

01

PI
C6

02

CO
C6

PI
C4

10
1

PI
C4

10
2

CO
C4

1

PIC11101 PIC11102
CO
C1
11

PIC11901 PIC11902
CO
C1
19

PIC12001 PIC12002
CO
C1
20

PIC12101 PIC12102
CO
C1
21

PIC18201 PIC18202
CO
C1
82

PIC18301 PIC18302
CO
C1
83

PI
R1

70
1

PI
R1

70
2

CO
R1
7

PIR4901 PIR4902 CO
R4

9

PIR5001 PIR5002 CO
R5

0

PI
R5

10
1

PI
R5
10
2

CO
R5

1

PIR16101 PIR16102 CO
R1
61

PIR16201 PIR16202 CO
R1
62

P
I
U
1
1
0
1

P
I
U
1
1
0
2

PI
U1
10
3

PI
U1
10
4

P
I
U
1
1
0
5

P
I
U
1
1
0
6

P
I
U
1
1
0
7

P
I
U
1
1
0
8

PI
U1
10
9

P
I
U
1
1
0
1
0

P
I
U
1
1
0
1
1

P
I
U
1
1
0
1
2

P
I
U
1
1
0
1
3

P
I
U
1
1
0
1
4

P
I
U
1
1
0
1
5

P
I
U
1
1
0
1
6

P
I
U
1
1
0
1
7

P
I
U
1
1
0
1
8

P
I
U
1
1
0
1
9

P
I
U
1
1
0
2
0

PI
U1
10
21

P
I
U
1
1
0
2
2

P
I
U
1
1
0
2
3

P
I
U
1
1
0
2
4

PI
U1
10
25

P
I
U
1
1
0
2
6

PI
U1
10
27

P
I
U
1
1
0
2
8

P
I
U
1
1
0
2
9

P
I
U
1
1
0
3
0

PI
U1

10
31

P
I
U
1
1
0
3
2

P
I
U
1
1
0
3
3

P
I
U
1
1
0
3
4

P
I
U
1
1
0
3
5

P
I
U
1
1
0
3
6

P
I
U
1
1
0
3
7

PI
U1
10
38

P
I
U
1
1
0
3
9

CO
U1
1

PI
U1
30
1

PI
U1
30
2

P
I
U
1
3
0
3

PI
U1
30
4

P
I
U
1
3
0
5

P
I
U
1
3
0
6

P
I
U
1
3
0
7

PI
U1
30
8

PI
U1
30
9

P
I
U
1
3
0
1
0

P
I
U
1
3
0
1
1

PI
U1
30
12

P
I
U
1
3
0
1
3

P
I
U
1
3
0
1
4

P
I
U
1
3
0
1
5

P
I
U
1
3
0
1
6

CO
U1
3

PIC12101
PIR16202

P
I
U
1
3
0
5

P
I
U
1
3
0
7

PI
U1
30
8

PI
C6

01

PIC11101
PIR4901

PIR16102

P
I
U
1
1
0
5

P
I
U
1
1
0
6

P
I
U
1
1
0
7

P
I
U
1
1
0
8

PI
U1
10
9

P
I
U
1
1
0
1
0

P
I
U
1
1
0
1
1

PI
C4

10
2

PIC12001

PI
R1

70
1

PI
R5

10
1

P
I
U
1
1
0
1
9

P
I
U
1
1
0
2
0

PI
U1
10
21

PI
U1
10
27

P
I
U
1
1
0
3
3

PI
U1
30
9

P
I
U
1
3
0
1
0

P
I
U
1
3
0
1
1

P
I
U
1
3
0
1
4

PIC18301 PIR16201
NL
CP
LD
0A
DC
2

PIC18201 PIR16101
NL
CP
LD
0A
DC
3

PI
C6

02

PI
C4

10
1

PIC11902

PIC12002
PIC12102

PIC18202

PIC18302

PIR5002

P
I
U
1
1
0
1
3

P
I
U
1
1
0
1
4

P
I
U
1
1
0
1
5

P
I
U
1
1
0
1
6

P
I
U
1
1
0
1
7

P
I
U
1
1
0
1
8

P
I
U
1
1
0
2
6

P
I
U
1
1
0
3
2

P
I
U
1
1
0
3
9

PI
U1
30
2

P
I
U
1
3
0
6

P
I
U
1
3
0
1
6

P
I
U
1
3
0
1
5

PI
U1
30
4

PI
U1
30
1

PI
U1
10
38

P
I
U
1
1
0
3
7

P
I
U
1
1
0
3
6

P
I
U
1
1
0
3
5

P
I
U
1
1
0
3
4

P
I
U
1
1
0
2
9

PI
U1
10
25

P
I
U
1
1
0
2
4

P
I
U
1
1
0
2
3

P
I
U
1
1
0
2
2

P
I
U
1
1
0
1
2

PI
U1
10
4

PI
U1
10
3

P
I
U
1
1
0
2

P
I
U
1
1
0
1

PI
R5
10
2

P
I
U
1
3
0
1
3

PIC11901
P
I
U
1
1
0
3
0

PIC11102
PIR4902 PIR5001

PI
U1

10
31

PI
R1

70
2

P
I
U
1
1
0
2
8

P
I
U
1
3
0
3

PI
U1
30
12

NL
PG
01
V0

APPENDIX W
Supporters & Donors

• Organisations

• Contributors

• Supporters

W-2

The MEGA65 would not have been possible to create without the generous support
of many organisations and individuals.

We are still compiling these lists, so apologies if we haven’t included you yet. If you
know anyone we have left out, please let us know, so that we can recognise the con-
tribution of everyone who has made the MEGA65 possible, and into the great retro-
computing project that it has become.

ORGANISATIONS
The MEGA Museum of Electronic Games & Art e.V. Germany
EVERYTHING

Trenz Electronik, Germany
MOTHERBOARD

Hintsteiner, Austria
CASE

GMK, Germany
KEYBOARD

W-3

CONTRIBUTORS
Andreas Liebeskind Dr. Canan Hastik
(libi in paradize) (indica)
CFO MEGA eV Chairwoman MEGA eV

Gürçe I�ıkyıldız Simon Jameson
(Gurce) (Shallan)
Tools and enhancements Platform Enhancements

Russell Peake Stephan Kleinert
(rdpeake) (ubik)
Bug Herding Destroyer of BASIC 10

Alexander Nik Petra Wayne Johnson
(n0d) (sausage)
Early Case Design Manual Additions

Ralph Egas Lukas Kleiss
(0-limits) (LAK132)
Business Advisor MegaWAT Presentation Software

Lucas Moss Maurice van Gils
(Maurice)

MEGAphone PCB Design BASIC 65 example programs

Daren Klamer
(Impakt)
Manual proof-reading

W-4

SUPPORTERS
@11110110100 Arne Neumann Christian Gräfe
3c74ce64 Arne Richard Tyarks Christian Heffner
8-Bit Classics Axel Klahr Christian Kersting
Aaron Smith Balaz Ondrej Christian Schiller
Achim Mrotzek Barry Thompson Christian Streck
Adolf Nefischer Bartol Filipovic Christian Weyer
Adrian Esdaile Benjamin Maas Christian Wyk
Adrien Guichard Bernard Alaiz Christoph Haug
Ahmed Kablaoui Bernhard Zorn Christoph Huck
Alan Bastian Witkowski Bieno Marti-Braitmaier Christoph Pross
Alan Field Bigby Christopher Christopher
Alastair Paulin-Campbell Bill LaGrue Christopher Kalk
Alberto Mercuri Bjoerg Stojalowski Christopher Kohlert
Alexander Haering Björn Johannesson Christopher Nelson
Alexander Kaufmann Bjørn Melbøe Christopher Taylor
Alexander Niedermeier Bo Goeran Kvamme Christopher Whillock
Alexander Soppart Boerge Noest Claudio Piccinini
Alfonso Ardire Bolko Beutner Claus Skrepek
Amiga On The Lake Brett Hallen Collen Blijenberg
André Kudra Brian Gajewski Constantine Lignos
André Simeit Brian Green Crnjaninja
André Wösten Brian Juul Nielsen Daniel Auger
Andrea Farolfi Brian Reiter Daniel Julien
Andrea Minutello Bryan Pope Daniel Lobitz
Andreas Behr Burkhard Franke Daniel O’Connor
Andreas Freier Byron Goodman Daniel Teicher
Andreas Grabski Cameron Roberton (KONG) Daniel Tootill
Andreas Millinger Carl Angervall Daniel Wedin
Andreas Nopper Carl Danowski Daniele Benetti
Andreas Ochs Carl Stock Daniele Gaetano Capursi
Andreas Wendel Manufaktur Carl Wall Dariusz Szczesniak
Andreas Zschunke Carlo Pastore Darrell Westbury
Andrew Bingham Carlos Silva David Asenjo Raposo
Andrew Dixon Carsten Sørensen David Dillard
Andrew Mondt Cenk Miroglu Miroglu David Gorgon
Andrzej Hłuchyj Chang sik Park David Norwood
Andrzej Sawiniec Charles A. Hutchins Jr. David Raulo
Andrzej Śliwa Chris Guthrey David Ross
Anthony W. Leal Chris Hooper de voughn accooe
Arkadiusz Bronowicki Chris Stringer Dean Scully
Arkadiusz Kwasny Christian Boettcher Dennis Jeschke
Arnaud Léandre Christian Eick Dennis Schaffers
Arne Drews Christian Gleinser Dennis Schierholz

W-5

Dennis Schneck Frank Haaland Hendrik Fensch
denti Frank Hempel Henning Harperath
Dick van Ginkel Frank Koschel Henri Parfait
Diego Barzon Frank Linhares Henrik Kühn
Dierk Schneider Frank Sleeuwaert Holger Burmester
Dietmar Krueger Frank Wolf Holger Sturk
Dietmar Schinnerl FranticFreddie Howard Knibbs
Dirk Becker Fredrik Ramsberg Hubert de Hollain
Dirk Wouters Fridun Nazaradeh Huberto Kusters
Domingo Fivoli Friedel Kropp Hugo Maria Gerardus v.d. Aa
DonChaos Garrick West Humberto Castaneda
Donn Lasher Gary Lake-Schaal Ian Cross
Douglas Johnson Gary Pearson IDE64 Staff
Dr. Leopold Winter Gavin Jones Igor Ianov
Dusan Sobotka Geir Sigmund Straume Immo Beutler
Earl Woodman Gerd Mitlaender Ingo Katte
Ed Reilly Giampietro Albiero Ingo Keck
Edoardo Auteri Giancarlo Valente Insanely Interested Publishing
Eduardo Gallardo Gianluca Girelli IT-Dienstleistungen Obsieger
Eduardo Luis Arana Giovanni Medina Ivan Elwood
Eirik Juliussen Olsen Glen Fraser Jaap HUIJSMAN
Emilio Monelli Glen R Perye III Jace Courville
EP Technical Services Glenn Main Jack Wattenhofer
Epic Sound Gordon Rimac Jakob Schönpflug
Erasmus Kuhlmann GRANT BYERS Jakub Tyszko
ergoGnomik Grant Louth James Hart
Eric Hilaire Gregor Bubek James Marshburn
Eric Hildebrandt Gregor Gramlich James McClanahan
Eric Hill Guido Ling James Sutcliffe
Eric Jutrzenka Guido von Gösseln Jan Bitruff
Erwin Reichel Guillaume Serge Jan Hildebrandt
Espen Skog Gunnar Hemmerling Jan Iemhoff
Evangelos Mpouras Günter Hummel Jan Kösters
Ewan Curtis Guy Simmons Jan Peter Borsje
Fabio Zanicotti Guybrush Threepwood Jan Schulze
Fabrizio Di Dio Hakan Blomqvist Jan Stoltenberg-Lerche
Fabrizio Lodi Hans Pronk Janne Tompuri
FARA Gießen GmbH Hans-Jörg Nett Jannis Schulte
FeralChild Hans-Martin Zedlitz Jari Loukasmäki
First Choice Auto’s Harald Dosch Jason Smith
Florian Rienhardt Harri Salokorpi Javier Gonzalez Gonzalez
Forum64. de Harry Culpan Jean-Paul Lauque
Francesco Baldassarri Heath Gallimore Jeffrey van der Schilden
Frank Fechner Heinz Roesner Jens Schneider
Frank Glaush Heinz Stampfli Jens-Uwe Wessling
Frank Gulasch Helge Förster Jesse DiSimone

W-6

Jett Adams Kevin Thomasson Marco van de Water
Johan Arneklev Kim Jorgensen Marcus Gerards
Johan Berntsson Kim Rene Jensen Marcus Herbert
Johan Svensson Kimmo Hamalainen Marcus Linkert
Johannes Fitz Konrad Buryło Marek Pernicky
John Cook Kosmas Einbrodt Mario Esposito
John Deane Kurt Klemm Mario Fetka
John Dupuis Lachlan Glaskin Mario Teschke
John Nagi Large bits collider Mariusz Tymków
John Rorland Lars Becker Mark Adams
John Sargeant Lars Edelmann Mark Anderson
John Traeholt Lars Slivsgaard Mark Green
Jon Sandelin Lasse Lambrecht Mark Hucker
Jonas Bernemann Lau Olivier Mark Leitiger
Jonathan Prosise Lee Chatt Mark Spezzano
Joost Honig Loan Leray Mark Watkin
Jordi Pakey-Rodriguez Lorenzo Quadri Marko Rizvic
Jöre Weber Lorenzo Travagli Markus Bieler
Jörg Jungermann Lorin Millsap Markus Bonet
Jörg Schaeffer Lothar James Foss Markus Dauberschmidt
Jörg Weese Lothar Serra Mari Markus Fehr
Josef Hesse Luca Papinutti Markus Fuchs
Josef Soucek Ludek Smetana Markus Guenther-Hirn
Josef Stohwasser Lukas Burger Markus Liukka
Joseph Clifford Lutz-Peter Buchholz Markus Merz
Joseph Gerth Luuk Spaetgens Markus Roesgen
Jovan Crnjanin Mad Web Skills Markus Uttenweiler
Juan Pablo Schisano MaDCz Martin Bauhuber
Juan S. Cardona Iguina Magnus Wiklander Martin Benke
JudgeBeeb Maik Diekmann Martin Gendera
Juliussen Olsen Malte Mundt Martin Groß
Juna Luis Fernandez Garcia Manfred Wittemann Martin Gutenbrunner
Jürgen Endras Manuel Beckmann Martin Johansen
Jürgen Herm Stapelberg Manzano Mérida Martin Marbach
Jyrki Laurila Marc ”3D-vice” Schmitt Martin Sonnleitner
Kai Pernau Marc Bartel Martin Steffen
Kalle Pöyhönen Marc Jensen Marvin Hardy
Karl Lamford Marc Schmidt Massimo Villani
Karl-Heinz Blum Marc Theunissen Mathias Dellacherie
Karsten Engstler Marc Tutor Mathieu Chouinard
Karsten Westebbe Marc Wink Matthew Adams
katarakt Marcel Buchtmann Matthew Browne
Keith McComb Marcel Kante Matthew Carnevale
Kenneth Dyke Marco Beckers Matthew Palmer
Kenneth Joensson Marco Cappellari Matthew Santos
Kevin Edwards Marco Rivela Matthias Barthel

W-7

Matthias Dolenc Mikael Lund Paul Kuhnast (mindrail)
Matthias Fischer Mike Betz Paul Massay
Matthias Frey Mike Kastrantas Paul Westlake
Matthias Grandis Mike Pikowski Paul Wögerer
Matthias Guth Mikko Hämäläinen Pauline Brasch
Matthias Lampe Mikko Suontausta Paulo Apolonia
Matthias Meier Mirko Roller Pete Collin
Matthias Mueller Miroslav Karkus Pete of Retrohax.net
Matthias Nofer Morgan Antonsson Peter Eliades
Matthias Schonder Moritz Peter Gries
Maurice Al-Khaliedy Morten Nielsen Peter Habura
Max Ihlenfeldt MUBIQUO APPS,SL Peter Herklotz
Meeso Kim Myles Cameron-Smith Peter Huyoff
Michael Dailly Neil Moore Peter Knörzer
Michael Dötsch Nelson Peter Leswell
Michael Dreßel neoman Peter Weile
Michael Fichtner Nicholas Melnick Petri Alvinen
Michael Fong Nikolaj Brinch Jørgensen Philip Marien
Michael Geoffrey Stone Nils Andreas Philip Timmermann
Michael Gertner Nils Eilers Philipp Rudin
Michael Grün Nils Hammerich Pierre Kressmann
Michael Habel Nils77 Pieter Labie
Michael Härtig Norah Smith Piotr Kmiecik
Michael Haynes Norman King Power-on.at
Michael J Burkett Normen Zoch Przemysław Safonow
Michael Jensen Olaf Grunert Que Labs
Michael Jurisch Ole Eitels R Welbourn
Michael Kappelgaard Oliver Boerner R-Flux
Michael Kleinschmidt Oliver Brüggmann Rafał Michno
Michael Lorenz Oliver Graf Rainer Kappler
Michael Mayerhofer Oliver Smith Rainer Kopp
Michael Nurney Olivier Bori Rainer Weninger
Michael Rasmussen ONEPSI LLC Ralf Griewel
Michael Richmond oRdYNe Ralf Pöscha
Michael Sachse Osaühing Trioflex Ralf Reinhardt
Michael Sarbak OSHA-PROS USA Ralf Schenden
Michael Schneider Padawer Ralf Smolarek
Michael Scholz Patrick Becher Ralf Zenker
Michael Timm Patrick Bürckstümmer Ralph Bauer
Michael Traynor Patrick de Zoete Ralph Wernecke
Michael Whipp Patrick Toal Rédl Károly
Michal Ursiny Patrick Vogt Reiner Lanowski
Michele Chiti Paul Alexander Warren Remi Veilleux
Michele Perini Paul Gerhardt (KONG) Riccardo Bianchi
Michele Porcu Paul Jackson Richard Englert
Miguel Angel Rodriguez Jodar Paul Johnson Richard Good

W-8

Richard Menedetter Simon Lawrence Thomas Schilling
Richard Sopuch Simon Wolf Thomas Tahsin-Bey
Rick Reynolds spreen.digital Thomas Walter
Rico Gruninger Stefan Haberl Thomas Wirtzmann
Rob Dean Stefan Kramperth Thorsten Knoll
Robert Bernardo Stefan Richter Thorsten Nolte
Robert Eaglestone Stefan Schultze Tim Krome
Robert Grasböck Stefan Sonnek Tim Waite
Robert Miles Stefan Theil Timo Weirich
Robert Schwan Stefan Vrampe Timothy Blanks
Robert Shively Stefano Canali Timothy Henson
Robert Tangmar Stefano Mozzi Timothy Prater
Robert Trangmar Steffen Reiersen Tobias Butter
Rodney Xerri Stephan Bielmann Tobias Heim
Roger Olsen Stephen Jones Tobias Köck
Roger Pugh Stephen Kew Tobias Lüthi
Roland Attila Kett Steve Gray Tommi Vasarainen
Roland Evers Steve Kurlin Toni Ammer
Roland Schatz Steve Lemieux Tore Olsen
Rolf Hass Steven Combs Torleif Strand
Ronald Cooper Stewart Dunn Torsten Schröder
Ronald Hunn Stuart Marsh Tuan Nguyen
Ronny Hamida Sven Neumann Uffe Jakobsen
Ronny Preiß Sven Stache Ulrich Hintermeier
Roy van Zundert Sven Sternberger Ulrich Nieland
Rüdiger Wohlfromm Sven Wiegand Ulrik Kruse
Ruediger Schlenter Szabolcs Bence Ursula Förstle
Rutger WIllemsen Tantrumedia Limited Uwe Anfang
Sampo Peltonen Techvana Operations Ltd. Uwe Boschanski
Sarmad Gilani Teddy Turmeaux Vedran Vrbanc
SAS74 Teemu Korvenpää Verm Project
Sascha Hesse The Games Foundation Wayne Rittimann
Scott Halman Thierry Supplisson Wayne Sander
Scott Hollier Thieu-Duy Thai Wayne Steele
Scott Robison Thomas Bierschenk Who Knows
Sebastian Baranski Thomas Edmister Winfried Falkenhahn
Sebastian Bölling Thomas Frauenknecht Wolfgang Becker
Sebastian Felzmann Thomas Gitzen Wolfgang Stabla
Sebastian Lipp Thomas Gruber Worblehat
Sebastian Rakel Thomas Haidler www.patop69.net
Şemseddin Moldibi Thomas Jager Yan B
Seth Morabito Thomas Karlsen Zoltan Markus
Shawn McKee Thomas Laskowski Zsolt Zsila
Siegfried Hartmann Thomas Marschall Zytex Online Store
Sigurbjorn Larusson Thomas Niemann
Sigurdur Finnsson Thomas Scheelen

W-9

W-10

Bibliography

W-12

[1] N. Montfort, P. Baudoin, J. Bell, I. Bogost, J. Douglass, M. C. Marino, M. Mateas,
C. Reas, M. Sample, and N. Vawter, 10 PRINT CHR $(205.5+ RND (1));: GOTO 10.
MIT Press, 2012.

[2] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling with exception-
less system calls.” in Osdi, vol. 10, 2010, pp. 1–8.

[3] Actraiser, “Vic-ii for beginners: Screen modes, cheaper by the
dozen,” 2013. [Online]. Available: http://dustlayer.com/vic-ii/2013/4/26/
vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen

Index-1

http://dustlayer.com/vic-ii/2013/4/26/vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen
http://dustlayer.com/vic-ii/2013/4/26/vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen

Index-2

INDEX

Index-4

, (comma), 8-22, 8-39
.bit files, 5-4
.cor files, 5-4
.mcs files, 5-4
.prm files, 5-4
: (colon), 8-22, 8-39, 8-40
<> (not equal to), 8-31
$00 (PORTDDR), G-16
$00 (STOPTX), P-11
$01 (PORT), G-16
$01 (STARTTX), P-11
$D0 (RXNORMAL), P-11
$D4 (DEBUGVIC), P-11
$DC (DEBUGCPU), P-11
$DE (RXONLYONE), P-11
$F1 (FRAME1K), P-11
$F2 (FRAME2K), P-11

ABS, B-12
ADC, H-17, H-61, H-116
ADCQ, G-14, H-117
ALR, H-17
altpal, 17-8
Amiga™style audio, L-17
ANC, H-18
AND, 8-44, B-13, H-19, H-62, H-118
ANDQ, G-14, H-118
APPEND, B-14
ARR, H-19
ASC, B-15
ASL, H-20, H-63
ASLQ, G-14, H-119
ASR, H-64
ASRQ, H-120
ASSEMBLE, K-10
ASW, H-65
ATN, B-16
audio cross-bar switch, Q-23
audio mixer, Q-23
AUTO, B-17

BACKGROUND, 8-44, B-18
BACKUP, B-19

BANK, B-20
BASIC 65 Commands, B-210

APPEND, B-14
Examples, B-14

AUTO, B-17
Examples, B-17

BACKGROUND, 8-44, B-18
Examples, B-18, B-79

BACKUP, B-19
Examples, B-19

BANK, B-20, F-4
Examples, B-20, B-149,

B-156–B-158, B-184,
B-213, B-228, B-233

BEGIN, B-21
Examples, B-21, B-22, B-190

BEND, B-22
Examples, B-21, B-22, B-190

BLOAD, B-23
Examples, B-24, B-138,

B-184, B-206, B-213,
B-228

BOOT, B-25
Examples, B-25

BORDER, 8-44, B-26
Examples, B-26, B-40, B-79

BOX, B-27
Examples, B-27, B-28

BSAVE, B-29
Examples, B-30

BUMP, B-31
Examples, B-31, B-45

BVERIFY, B-32
Examples, B-32

CATALOG, B-33
Examples, B-33, B-34

CHANGE, B-35
Examples, B-35

CHAR, B-36
Examples, B-37, B-79

CIRCLE, B-39
Examples, B-40

Index-5

CLOSE, B-41
Examples, B-37, B-40, B-41,

B-43, B-79, B-86, B-99,
B-104, B-121, B-127,
B-147, B-148, B-151,
B-159, B-177, B-181,
B-182, B-192, B-196

CLR, B-42
Examples, B-42, B-104,

B-127, B-138, B-147,
B-148, B-151, B-177,
B-182, B-192, B-196,
B-205, B-218, B-231

CMD, B-43
Examples, B-43, B-145

COLLECT, B-44
Examples, B-44

COLLISION, B-45
Examples, B-45

COLOR, B-46
Examples, B-142, B-144

CONCAT, B-47
Examples, B-47

CONT, 8-39, B-48
Examples, B-48

COPY, B-49
Examples, B-50, B-220

CURSOR, B-52
Examples, B-52, B-167, B-176

DATA, B-53
Examples, B-53, B-59, B-127,

B-168, B-174, B-214
DCLEAR, B-54

Examples, B-54
DCLOSE, B-55

Examples, B-55, B-96, B-97,
B-102, B-103, B-112,
B-122, B-163, B-170,
B-208

DEF
Examples, B-57, B-91, B-92,

B-104, B-127, B-147,

B-148, B-151, B-177,
B-180, B-182, B-192,
B-196, B-197, B-231

DEF FN, B-57
DELETE, B-58

Examples, B-58
DIM, B-59

Examples, B-5, B-59, B-93,
B-96, B-97, B-110, B-112,
B-122, B-140, B-171,
B-208

DIR, B-60
Examples, B-34, B-60, B-197

DISK, B-61
Examples, B-61, B-105, B-197

DLOAD, B-62
Examples, B-62, B-132, B-197

DMA, B-63, F-4
Examples, B-63

DMODE, B-64
DO, B-65

Examples, B-65, B-86, B-98,
B-99, B-102, B-103, B-110,
B-130, B-205, B-225,
B-234

DPAT, B-68
DSAVE, B-71

Examples, B-71, B-111
DVERIFY, B-73

Examples, B-73
EDMA, B-76

Examples, B-76
ELLIPSE, B-78

Examples, B-79
ELSE, B-80

Examples, B-89, B-109, B-217
END, 8-39, B-81

Examples, B-45, B-53, B-59,
B-77, B-81, B-84, B-85,
B-109, B-175, B-176,
B-186, B-214, B-217,
B-221

Index-6

ENVELOPE, B-82
Examples, B-82, B-155

ERASE, B-83
Examples, B-83

EXIT, B-86
Examples, B-86, B-99, B-110

FAST, B-88
Examples, B-88

FILTER, B-89
Examples, B-89

FIND, B-90
FONT, B-92
FOR, 8-7, B-93

Examples, B-45, B-53, B-57,
B-59, B-89, B-91–B-93,
B-112, B-122, B-134,
B-140, B-156, B-162,
B-163, B-168, B-170,
B-174–B-177, B-180,
B-202, B-209, B-214,
B-216, B-218–B-223,
B-232, B-236

FOREGROUND, 8-44, B-94
Examples, B-79

GET, B-98
Examples, B-21, B-65, B-86,

B-98, B-99, B-130, B-225,
B-234

GET#, B-99
GETKEY, B-100

Examples, B-37, B-40, B-79,
B-100, B-104, B-121,
B-147, B-148, B-151,
B-159, B-196

GO64, B-101
Examples, B-101

GOSUB, B-102
Examples, B-65, B-89, B-102,

B-103, B-115, B-130,
B-144, B-176, B-225,
B-234

GOTO, 8-46, B-103

Examples, B-21, B-48, B-89,
B-98, B-100, B-102, B-103,
B-110, B-112, B-115,
B-122, B-144, B-183,
B-186, B-198, B-208,
B-216, B-220, B-232

GRAPHIC, B-104
Examples, B-104, B-127,

B-147, B-148, B-151,
B-177, B-182, B-192,
B-196

HEADER, B-105
Examples, B-105

HELP, B-106
Examples, B-106

HIGHLIGHT, B-108
IF, 8-30, B-109

Examples, B-13, B-21, B-22,
B-31, B-40, B-69, B-70,
B-77, B-80, B-81,
B-84–B-86, B-89,
B-98–B-100, B-102, B-103,
B-109, B-110, B-112,
B-115, B-122, B-141,
B-144, B-146, B-160,
B-170, B-179, B-183,
B-186, B-190, B-208,
B-210, B-216, B-217,
B-232

INPUT, 8-17, 8-24, B-110
Examples, B-80, B-86, B-99,

B-102, B-103, B-109,
B-110, B-112, B-122,
B-170, B-208, B-217

INPUT#, B-111
INSTR, B-113

Examples, B-113
KEY, B-116

Examples, B-4, B-116, B-117,
B-142, B-144

LET, 8-15, B-120
Examples, B-120

Index-7

LINE, B-121
Examples, B-86, B-99, B-104,

B-121, B-122, B-147,
B-148, B-151, B-177,
B-192, B-196, B-208

LINE INPUT#, B-122
LIST, 8-11, 8-12, B-123

Examples, B-43, B-123, B-145
LOAD, B-124

Examples, B-117, B-125,
B-126, B-205

LOADIFF, B-126
Examples, B-127

LOOP, B-130
Examples, B-65, B-86, B-98,

B-99, B-102, B-103, B-110,
B-130, B-225, B-234

MERGE, B-132
Examples, B-132

MONITOR, B-135
Examples, B-135

MOUSE, B-136
Examples, B-136, B-142,

B-144, B-179
MOVSPR, B-137

Examples, B-45, B-138, B-205
NEW, B-139

Examples, B-139
NEXT, B-140

Examples, B-40, B-45, B-53,
B-57, B-59, B-77, B-84,
B-85, B-89, B-91–B-93,
B-96, B-97, B-112, B-122,
B-127, B-134, B-138,
B-140, B-156, B-162,
B-163, B-168, B-170,
B-174–B-177, B-180,
B-202, B-205, B-209,
B-214, B-216,
B-218–B-223, B-232,
B-236

OFF, B-142

Examples, B-17, B-111,
B-117, B-136, B-142,
B-176, B-179

ON, B-143
Examples, B-52, B-111,

B-115, B-117, B-125,
B-126, B-136, B-144,
B-167, B-176, B-179,
B-197, B-198

OPEN, B-145
Examples, B-41, B-43, B-86,

B-99, B-104, B-127, B-145,
B-147, B-148, B-151,
B-177, B-182, B-192,
B-196

PAINT, B-147
Examples, B-147, B-148

PALETTE, B-148
Examples, B-40, B-104,

B-127, B-147, B-148,
B-151, B-181, B-192,
B-196

PEN, B-151
Examples, B-40, B-79, B-104,

B-121, B-147, B-148,
B-151, B-177, B-182,
B-192, B-196

PLAY, B-153
Examples, B-82, B-89, B-154,

B-155, B-183, B-216,
B-232

POLYGON, B-159
Examples, B-159

PRINT, 8-11, B-162
Examples, B-4, B-12, B-13,

B-15, B-16, B-21, B-22,
B-31, B-38, B-41–B-43,
B-45, B-48, B-51, B-53,
B-56, B-57, B-59, B-70,
B-72, B-77, B-80, B-81,
B-83–B-87, B-89,
B-91–B-93, B-95, B-99,

Index-8

B-102, B-103, B-106,
B-107, B-109, B-110,
B-112, B-115, B-118,
B-119, B-122, B-128,
B-129, B-131, B-133,
B-134, B-140, B-141,
B-144, B-146, B-149,
B-150, B-156, B-160,
B-162, B-163, B-165,
B-167, B-168, B-170,
B-174–B-182, B-184,
B-186, B-190, B-193,
B-199, B-202,
B-207–B-211,
B-213–B-215,
B-217–B-223,
B-227–B-229, B-236

PRINT USING, B-164
PRINT#, B-163
RCURSOR, B-167

Examples, B-167
READ, B-168

Examples, B-53, B-59, B-168,
B-174, B-214

RECORD, B-169
Examples, B-170

REM, B-171
Examples, B-5, B-18–B-22,

B-24, B-26, B-31, B-38,
B-40, B-41, B-43, B-45,
B-50, B-52, B-53, B-55,
B-57–B-59, B-61, B-63,
B-65, B-67, B-76, B-77,
B-79–B-81, B-83–B-86,
B-88, B-89, B-91, B-92,
B-98–B-100, B-102–B-104,
B-109, B-110,
B-112–B-115, B-117,
B-120–B-123,
B-125–B-127, B-130,
B-131, B-136, B-139,
B-142, B-144, B-145,

B-147–B-151,
B-155–B-163, B-166,
B-170–B-173, B-176,
B-177, B-179–B-183,
B-185–B-190, B-192,
B-193, B-196–B-198,
B-200–B-204, B-206,
B-208, B-210,
B-217–B-220, B-222,
B-223, B-225, B-228,
B-231, B-233–B-235

RENAME, B-172
Examples, B-172

RENUMBER, 8-38, B-173
Examples, B-173

RESTORE, B-174
Examples, B-127, B-139,

B-174, B-196
RESUME, B-175

Examples, B-77, B-84, B-85,
B-175, B-221

RETURN, B-176
Examples, B-45, B-89, B-102,

B-103, B-115, B-144,
B-176

RMOUSE, B-179
Examples, B-179

RREG, B-184
Examples, B-184, B-213

RUN, B-189
Examples, B-4, B-42, B-48,

B-53, B-57, B-59, B-91,
B-92, B-106, B-112, B-133,
B-156, B-167, B-170,
B-177, B-181, B-182,
B-189, B-202, B-214,
B-219, B-222, B-223

SAVE, B-191
Examples, B-117, B-191

SCNCLR, B-192

Index-9

Examples, B-40, B-104,
B-127, B-138, B-176,
B-177, B-182, B-205

SCRATCH, B-193
Examples, B-193

SCREEN, B-194
Examples, B-37, B-40, B-79,

B-104, B-121, B-127,
B-147, B-148, B-151,
B-159, B-177, B-181,
B-182, B-192, B-196

SET, B-197
Examples, B-104, B-127,

B-147, B-148, B-151,
B-177, B-182, B-192,
B-196, B-197

SLEEP, B-200
Examples, B-89, B-127,

B-138, B-176, B-192,
B-196, B-200

SOUND, B-201
Examples, B-201

SPEED, B-203
Examples, B-203

SPRCOLOR, B-204
Examples, B-204

SPRITE, B-205
Examples, B-45, B-185,

B-187, B-188,
B-204–B-206

SPRSAV, B-206
Examples, B-206

STEP, 8-13, B-209
Examples, B-57, B-89,

B-91–B-93, B-140, B-170,
B-209, B-216, B-219,
B-232

STOP, 8-39
SYS, B-212

Examples, B-25, B-184, B-213
TEMPO, B-216

Examples, B-82, B-155,
B-216, B-232

THEN, 8-30, B-217
Examples, B-13, B-21, B-22,

B-31, B-69, B-70, B-77,
B-81, B-84–B-86, B-89,
B-98–B-100, B-102, B-103,
B-109, B-110, B-112,
B-115, B-122, B-141,
B-144, B-146, B-160,
B-170, B-179, B-183,
B-186, B-190, B-208,
B-210, B-216, B-217,
B-232

TO, B-220
Examples, B-19, B-30, B-35,

B-45, B-47, B-50, B-53,
B-57, B-59, B-89,
B-91–B-93, B-112, B-122,
B-125, B-126, B-134,
B-140, B-162, B-163,
B-168, B-170, B-172,
B-174–B-177, B-180,
B-197, B-202, B-205,
B-209, B-214, B-216,
B-218–B-223, B-232,
B-236

TRAP, B-221
Examples, B-77, B-84, B-85,

B-175, B-221
TROFF, B-222

Examples, B-222, B-223
TRON, B-223

Examples, B-222, B-223
TYPE, B-224

Examples, B-112, B-224
UNTIL, B-225

Examples, B-65, B-98, B-102,
B-103, B-110, B-130,
B-225, B-234

USING, B-226

Index-10

Examples, B-57, B-91, B-92,
B-165, B-219, B-227

VERIFY, B-230
Examples, B-197, B-230

VIEWPORT, B-231
Examples, B-231

VOL, B-232
Examples, B-82, B-155,

B-216, B-232
WAIT, B-233

Examples, B-233
WHILE, B-234

Examples, B-65, B-130,
B-225, B-234

WINDOW, B-235
Examples, B-235

BASIC 65 Functions
ABS, B-12
ASC, B-15
ATN, B-16
CHR$, B-38
COS, B-51
DEC, B-56
ERR$, B-85
EXP, B-87
FN, B-57, B-91
FRE, B-95
FREAD, B-96
FWRITE, B-97
HEX$, B-107
INT, B-114
JOY, B-115
LEFT$, B-118
LEN, B-119
LOG, B-128
LOG10, B-129
LPEN, B-131
MID$, B-133
MOD, B-134
PEEK, B-149
PEEKW, B-150
PIXEL, B-152

POINTER, B-156
POKE, B-157
POKEW, B-158
POS, B-160
POT, B-161
RCOLOR, B-166
RGRAPHIC, B-177
RIGHT$, B-178
RND, 8-45, B-180
RPALETTE, B-181
RPEN, B-182
RPLAY, B-183
RSPCOLOR, B-185
RSPEED, B-186
RSPPOS, B-187
RSPRITE, B-188
RWINDOW, B-190
SGN, B-198
SIN, B-199
SPC, B-202
SQR, B-207
STR$, B-211
TAB, B-214
TAN, B-215
USR, B-228
VAL, B-229

BASIC 65 Operators
AND, 8-44, B-13
NOT, B-141
OR, B-146
XOR, B-236

BASIC 65 System Commands
EDIT, B-74

BASIC 65 System Variables
DS, B-69
DS$, B-70
DT$, B-72
EL, B-77
ER, B-84
ST, B-208
TI, B-218
TI$, B-219

Index-11

BBR0, H-65
BBR1, H-65
BBR2, H-66
BBR3, H-66
BBR4, H-67
BBR5, H-67
BBR6, H-67
BBR7, H-68
BBS0, H-68
BBS1, H-68
BBS2, H-69
BBS3, H-69
BBS4, H-69
BBS5, H-70
BBS6, H-70
BBS7, H-70
BCC, H-20, H-71
BCS, H-21, H-71
BEGIN, B-21
BEND, B-22
BEQ, H-21, H-71
bgcolor, 17-7
BIT, H-22, H-72
BITMAPS, K-11
BITQ, G-14, H-121
blink, 17-8
BLOAD, B-23
blocked, 8-21
BMI, H-22, H-72
BNE, H-23, H-73
BOOT, B-25
BORDER, 8-44, B-26
bordercolor, 17-6
BOX, B-27
box, 17-11
BPL, H-23, H-73
BRA, H-74
BREAKPOINT, K-16
BRK, H-23, H-74
BSAVE, B-29
BSR, H-75
BUMP, B-31

BVC, H-24, H-75
BVERIFY, B-32
BVS, H-24, H-76

CATALOG, B-33
cellcolor, 17-8
cgetc, 17-17
CHANGE, B-35
CHAR, B-36
character, 8-13
character set, 8-13
CHR$, B-38
cinput, 17-18
CIRCLE, B-39
CLC, H-25, H-76
CLD, H-25, H-76
CLE, H-77
clearattr, 17-8
CLI, H-26, H-77
CLOSE, B-41
CLR, B-42
clrscr, 17-5
CLV, H-26, H-78
CMD, B-43
CMP, H-26, H-48, H-78, H-122
CMPQ, H-122
COLLECT, B-44
COLLISION, B-45
COLOR, B-46
CONCAT, B-47
conionit, 17-3
CONT, 8-39, B-48
context dependent, 8-19
COPY, B-49
copyright, ii
COS, B-51
CPQ, G-14
cprintf, 17-17
CPUHISTORY, K-20
CPUMEMORY, K-15
cputc, 17-14
cputcxy, 17-16
cputdec, 17-15

Index-12

cputhex, 17-15
cputnc, 17-14
cputncxy, 17-16
cputs, 17-15
cputsxy, 17-16
CPX, H-27, H-79
CPY, H-28, H-80
CPZ, H-80
cross-bar switch, audio, Q-23
CURSOR, B-52

DATA, B-53
DCLEAR, B-54
DCLOSE, B-55
DCP, H-28
DEBUGCPU, P-11
DEBUGMON, K-18
DEBUGVIC, P-11
DEC, B-56, H-29, H-81
DEF FN, B-57
DELETE, B-58
DEQ, G-14, H-123
DEW, H-81
DEX, H-30, H-82
DEY, H-30, H-82
DEZ, H-83
Digital Audio, L-17
digital video, M-9
DIM, B-59
DIR, B-60
Direct Mode, 8-18
DISASSEMBLE, K-5, K-16
DISK, B-61
DLOAD, B-62
DMA, B-63
DMA Audio, L-17
DMODE, B-64
DO, B-65
DOPEN, B-66
DPAT, B-68
DS, B-69
DS$, B-70
DSAVE, B-71

DT$, B-72
DVERIFY, B-73

EDIT, B-74
EDMA, B-76
EL, B-77
ELLIPSE, B-78
ELSE, B-80
END, 8-39, B-81
ENVELOPE, B-82
EOM, H-83
EOR, H-30, H-84, H-124
EORQ, G-14, H-124
ER, B-84
ERASE, B-83
ERR$, B-85
Errors

Extra Ignored, 8-22
Illegal Direct, 8-18
Syntax, 8-4
Type mismatch, 8-17

EXIT, B-86
EXP, B-87
Extra Ignored, 8-22

FAST, B-88
FILL, K-17
fillrect, 17-10
FILTER, B-89
FIND, B-90
FLAGWATCH, K-17
Flash Menu, I-5
flushkeybuf, 17-18
FN, B-57, B-91
FONT, B-92
FOR, 8-7, B-93
FOREGROUND, 8-44, B-94
FRAME1K, P-11
FRAME2K, P-11
FRE, B-95
FREAD, B-96
Freeze Menu, I-5
FWRITE, B-97

Index-13

Games
Guess the number, 8-33

GET, B-98
GET#, B-99
getcharsetaddr, 17-5
getcolramoffset, 17-4
GETKEY, B-100
getkeymodstate, 17-18
getmapedpal, 17-10
getpalbank, 17-9
getpalbanka, 17-9
getscreenaddr, 17-4
getscreensize, 17-5
GO64, B-101
gohome, 17-12
GOSUB, B-102
GOTO, 8-46, B-103
gotox, 17-12
gotoxy, 17-12
gotoy, 17-13
GRAPHIC, B-104
Guess the number, 8-33

HEADER, B-105
HELP, B-106, K-16
HEX$, B-107
HIGHLIGHT, B-108
highlight, 17-7
hline, 17-11
HYPERTRAP, K-14

I/O
blocking, 8-21

IF, 8-30, B-109
Illegal Direct Error, 8-18
IMDH™, M-9
INC, H-31, H-85
INPUT, 8-17, 8-24, B-110
INPUT#, B-111
INQ, G-14, H-125
INSTR, B-113
INT, B-114

Integrated Marvellous Digital
Hookup™, M-9

INTERRUPTS, K-18
INW, H-85
INX, H-32, H-86
INY, H-32, H-86
INZ, H-86
ISC, H-32

JMP, H-33, H-87
JOY, B-115
JSR, H-34, H-87

kbhit, 17-18
KEY, B-116
Keyboard

matrix, D-4
KIL, H-34

LAS, H-35
LAX, H-36
LDA, H-36, H-88, H-126
LDQ, G-14, H-126
LDX, H-37, H-89
LDY, H-38, H-89
LDZ, H-90
LEFT$, B-118
LEN, B-119
LET, 8-15, B-120
light pen, Q-21
LINE, B-121
Line Drawing, L-13

DMA Option Bytes, L-13
LINE INPUT#, B-122
Lines

editing, 8-25
renumbering, 8-38
replacing, 8-25

LIST, 8-11, 8-12, B-123
LOAD, B-124
LOADIFF, B-126
LOADMEMORY, K-18
LOG, B-128

Index-14

LOG10, B-129
LOOP, B-130
LPEN, B-131
LSR, H-38, H-90
LSRQ, G-14, H-127

MAP, G-8–G-10, H-91
MEGA Flash, I-5
MEMORY, K-6, K-18
Memory banking, G-8–G-10
MERGE, B-132
MID$, B-133
mixer, audio, Q-23
MOD, B-134
MOD-file style audio, L-17
MONITOR, B-135

Enhanced MEGA65 ROM
Monitor, K-7

Matrix Mode/Serial Monitor
Interface, K-12

Standard C65 ROM Monitor, K-3
MONITOR Commands

ASSEMBLE, K-10
BITMAPS, K-11
BREAKPOINT, K-16
CPUHISTORY, K-20
CPUMEMORY, K-15
DEBUGMON, K-18
DISASSEMBLE, K-5, K-16
FILL, K-17
FLAGWATCH, K-17
HELP, K-16
HYPERTRAP, K-14
INTERRUPTS, K-18
LOADMEMORY, K-18
MEMORY, K-6, K-18
REGISTERS, K-19
SETMEMORY, K-19
SETPC, K-17
TRACE, K-19
UARTDIVISOR, K-15
WATCHPOINT, K-19

MOUSE, B-136

movedown, 17-13
moveleft, 17-13
moveright, 17-14
moveup, 17-13
MOVSPR, B-137

name spaces, 8-17
NEG, H-92
NEW, B-139
NEXT, B-140
NO SCROLL, 8-47
NOP, H-39
NOT, B-141
not equal, 8-31

OFF, B-142
ON, B-143
OPEN, B-145
OpenROMs, 13-4
operators

relational, 8-30
OR, B-146
ORA, H-40, H-92, H-128
ORQ, G-14, H-129

PAINT, B-147
PALETTE, B-148
PEEK, B-149
PEEKW, B-150
PEN, B-151
PHA, H-41, H-93
PHP, H-41, H-93
PHW, H-94
PHX, H-94
PHY, H-94
PHZ, H-95
PIXEL, B-152
PLA, H-42, H-95
PLAY, B-153
PLP, H-42, H-95
PLX, H-96
PLY, H-96
PLZ, H-97

Index-15

POINTER, B-156
POKE, B-157
POKEW, B-158
POLYGON, B-159
PORT, G-16
PORTDDR, G-16
POS, B-160
POT, B-161
PRINT, 8-11, B-162
PRINT USING, B-164
PRINT#, B-163
Programmes

editing, 8-25
replacing lines, 8-25

quote mode, 8-35

RCOLOR, B-166
RCURSOR, B-167
READ, B-168
RECORD, B-169
REGISTERS, K-19
Registers

$D000, M-35
$D001, M-35
$D002, M-35
$D003, M-35
$D004, M-35
$D005, M-35
$D006, M-35
$D007, M-35
$D008, M-35
$D009, M-35
$D00A, M-35
$D00B, M-35
$D00C, M-35
$D00D, M-35
$D00E, M-35
$D00F, M-35
$D010, M-35
$D011, M-35
$D012, M-35
$D013, M-35

$D014, M-35
$D015, M-35
$D016, M-35
$D017, M-35
$D018, M-35
$D019, M-35
$D01A, M-35
$D01B, M-35
$D01C, M-35
$D01D, M-35
$D01E, M-35
$D01F, M-35
$D020, M-35, M-38, M-41
$D021, M-35, M-38, M-41
$D022, M-35, M-38, M-41
$D023, M-35, M-38, M-41
$D024, M-36, M-38, M-41
$D025, M-36, M-38, M-42
$D026, M-36, M-38, M-42
$D027, M-36
$D028, M-36
$D029, M-36
$D02A, M-36
$D02B, M-36
$D02C, M-36
$D02D, M-36
$D02E, M-36
$D02F, M-38, M-42
$D030, M-36, M-38
$D031, M-38
$D033, M-38
$D034, M-39
$D035, M-39
$D036, M-39
$D037, M-39
$D038, M-39
$D039, M-39
$D03A, M-39
$D03B, M-39
$D03C, M-39
$D03D, M-39
$D03E, M-39

Index-16

$D03F, M-39
$D040, M-39
$D041, M-39
$D042, M-39
$D043, M-39
$D044, M-39
$D045, M-39
$D046, M-39
$D047, M-39
$D048, M-42
$D049, M-42
$D04A, M-42
$D04B, M-42
$D04C, M-42
$D04D, M-42
$D04E, M-42
$D04F, M-42
$D050, M-42
$D051, M-42
$D052, M-42
$D053, M-42
$D054, M-42
$D055, M-42
$D056, M-42
$D057, M-42
$D058, M-42
$D059, M-42
$D05A, M-42
$D05B, M-42
$D05C, M-42
$D05D, M-42
$D05E, M-42
$D05F, M-42
$D060, M-42
$D061, M-42
$D062, M-42
$D063, M-42
$D064, M-42
$D065, M-42
$D068, M-42
$D069, M-42
$D06A, M-42

$D06B, M-42
$D06C, M-42
$D06D, M-43
$D06E, M-43
$D06F, M-43
$D070, M-43
$D071, M-43
$D072, M-43
$D073, M-43
$D074, M-43
$D075, M-43
$D076, M-43
$D077, M-43
$D078, M-43
$D079, M-43
$D07A, M-43
$D07B, M-43
$D07C, M-43
$D080, Q-11
$D081, Q-11
$D082, Q-11
$D083, Q-11
$D084, Q-11
$D085, Q-11
$D086, Q-11
$D087, Q-11
$D088, Q-11
$D089, Q-11
$D08A, Q-11
$D100 – $D1FF, M-39
$D200 – $D2FF, M-39
$D300 – $D3FF, M-39
$D600, O-3
$D601, O-3
$D602, O-3
$D603, O-3
$D604, O-3
$D605, O-3
$D606, O-3
$D609, O-4
$D60B, O-4
$D60C, O-4

Index-17

$D60D, O-4
$D60E, O-4
$D60F, O-4
$D610, O-4
$D611, O-4
$D612, O-4
$D615, O-4
$D616, O-4
$D617, O-4
$D618, O-4
$D619, O-4
$D61A, O-4
$D61D, O-4
$D61E, O-4
$D620, O-4
$D621, O-4
$D622, O-4
$D623, O-4
$D625, O-4
$D626, O-4
$D627, O-4
$D628, O-4
$D629, O-5
$D640, G-17, G-33
$D641, G-17, G-33
$D642, G-17
$D643, G-17, G-33
$D644, G-17, G-34
$D645, G-17, G-34
$D646, G-17, G-34
$D647, G-17, G-34
$D648, G-17, G-34
$D649, G-17, G-34
$D64A, G-17, G-34
$D64B, G-17, G-34
$D64C, G-17, G-34
$D64D, G-17, G-34
$D64E, G-17, G-34
$D64F, G-17, G-34
$D650, G-17, G-34
$D651, G-17, G-34
$D652, G-17, G-34

$D653, G-17, G-34
$D654, G-17, G-34
$D655, G-17, G-34
$D656, G-17, G-34
$D657, G-17, G-34
$D658, G-17, G-34
$D659, G-17, G-34
$D65A, G-17
$D65B, G-17
$D65C, G-17
$D65D, G-17
$D65E, G-17
$D65F, G-17
$D660, G-17
$D661, G-17
$D662, G-18
$D663, G-18
$D664, G-18
$D665, G-18
$D666, G-18
$D667, G-18
$D668, G-18
$D669, G-18
$D66A, G-18
$D66B, G-18
$D66C, G-18
$D66D, G-18
$D66E, G-18
$D66F, G-18
$D670, G-18, G-34
$D671, G-18, G-34
$D672, G-18, G-34
$D673, G-18
$D674, G-18
$D675, G-18
$D676, G-18
$D677, G-18
$D678, G-18
$D679, G-18
$D67A, G-18
$D67B, G-18
$D67C, G-18, G-34

Index-18

$D67D, G-18, G-34
$D67E, G-18, G-34
$D67F, G-18, G-34
$D680, Q-19
$D681, Q-19
$D682, Q-19
$D683, Q-19
$D684, Q-19
$D686, Q-19
$D68A, Q-19
$D68B, Q-14
$D68C, Q-14
$D68D, Q-14
$D68E, Q-14
$D68F, Q-14
$D690, Q-14
$D691, Q-15
$D692, Q-15
$D693, Q-15
$D6A0, Q-13
$D6A1, Q-15
$D6A2, Q-13
$D6AE, Q-19
$D6AF, Q-19
$D6B0, Q-21
$D6B1, Q-21
$D6B2, Q-21
$D6B3, Q-21
$D6B4, Q-21
$D6B5, Q-21
$D6B7, Q-21
$D6B8, Q-21
$D6B9, Q-21
$D6BA, Q-21
$D6BB, Q-21
$D6BC, Q-21
$D6BD, Q-22
$D6BE, Q-22
$D6C0, Q-22
$D6E0, P-9
$D6E1, P-9
$D6E2, P-9

$D6E3, P-9
$D6E4, P-9
$D6E5, P-9
$D6E6, P-9
$D6E7, P-9
$D6E8, P-9
$D6E9, P-9
$D6EA, P-9
$D6EB, P-9
$D6EC, P-9
$D6ED, P-9
$D6EE, P-9
$D6F4, Q-25
$D6F5, Q-25
$D6F8, Q-25
$D6F9, Q-25
$D6FA, Q-25
$D6FB, Q-25
$D6FC, Q-25
$D6FD, Q-25
$D700, L-20
$D701, L-20
$D702, L-20
$D703, L-20
$D704, L-20
$D705, L-20
$D70E, L-20
$D70F, G-22
$D710, G-18
$D711, L-20, Q-25
$D71C, L-20
$D71D, L-20
$D71E, L-20
$D71F, L-20
$D720, L-20
$D721, L-20
$D722, L-20
$D723, L-20
$D724, L-20
$D725, L-20
$D726, L-20
$D727, L-20

Index-19

$D728, L-20
$D729, L-20
$D72A, L-20
$D72B, L-20
$D72C, L-20
$D72D, L-20
$D72E, L-20
$D72F, L-21
$D730, L-21
$D731, L-21
$D732, L-21
$D733, L-21
$D734, L-21
$D735, L-21
$D736, L-21
$D737, L-21
$D738, L-21
$D739, L-21
$D73A, L-21
$D73B, L-21
$D73C, L-21
$D73D, L-21
$D73E, L-21
$D73F, L-21
$D740, L-21
$D741, L-21
$D742, L-21
$D743, L-21
$D744, L-21
$D745, L-21
$D746, L-21
$D747, L-21
$D748, L-21
$D749, L-21
$D74A, L-21
$D74B, L-21
$D74C, L-21
$D74D, L-21
$D74E, L-21
$D74F, L-21
$D750, L-21
$D751, L-21

$D752, L-21
$D753, L-21
$D754, L-21
$D755, L-22
$D756, L-22
$D757, L-22
$D758, L-22
$D759, L-22
$D75A, L-22
$D75B, L-22
$D75C, L-22
$D75D, L-22
$D75E, L-22
$D75F, L-22
$D768, G-22
$D769, G-22
$D76A, G-22
$D76B, G-22
$D76C, G-22
$D76D, G-22
$D76E, G-22
$D76F, G-22
$D770, G-22
$D771, G-22
$D772, G-22
$D773, G-22
$D774, G-22
$D775, G-22
$D776, G-22
$D777, G-22
$D778, G-22
$D779, G-22
$D77A, G-22
$D77B, G-22
$D77C, G-22
$D77D, G-22
$D77E, G-22
$D77F, G-22
$D780, G-22
$D781, G-22
$D782, G-22
$D783, G-22

Index-20

$D784, G-22
$D785, G-22
$D786, G-22
$D787, G-22
$D788, G-23
$D789, G-23
$D78A, G-23
$D78B, G-23
$D78C, G-23
$D78D, G-23
$D78E, G-23
$D78F, G-23
$D790, G-23
$D791, G-23
$D792, G-23
$D793, G-23
$D794, G-23
$D795, G-23
$D796, G-23
$D797, G-23
$D798, G-23
$D799, G-23
$D79A, G-23
$D79B, G-23
$D79C, G-23
$D79D, G-23
$D79E, G-23
$D79F, G-23
$D7A0, G-23
$D7A1, G-23
$D7A2, G-23
$D7A3, G-23
$D7A4, G-23
$D7A5, G-23
$D7A6, G-23
$D7A7, G-23
$D7A8, G-23
$D7A9, G-23
$D7AA, G-23
$D7AB, G-23
$D7AC, G-23
$D7AD, G-23

$D7AE, G-24
$D7AF, G-24
$D7B0, G-24
$D7B1, G-24
$D7B2, G-24
$D7B3, G-24
$D7B4, G-24
$D7B5, G-24
$D7B6, G-24
$D7B7, G-24
$D7B8, G-24
$D7B9, G-24
$D7BA, G-24
$D7BB, G-24
$D7BC, G-24
$D7BD, G-24
$D7BE, G-24
$D7BF, G-24
$D7C0, G-24
$D7C1, G-24
$D7C2, G-24
$D7C3, G-24
$D7C4, G-24
$D7C5, G-24
$D7C6, G-24
$D7C7, G-24
$D7C8, G-24
$D7C9, G-24
$D7CA, G-24
$D7CB, G-24
$D7CC, G-24
$D7CD, G-24
$D7CE, G-24
$D7CF, G-24
$D7D0, G-24
$D7D1, G-24
$D7D2, G-24
$D7D3, G-24
$D7D4, G-25
$D7D5, G-25
$D7D6, G-25
$D7D7, G-25

Index-21

$D7D8, G-25
$D7D9, G-25
$D7DA, G-25
$D7DB, G-25
$D7DC, G-25
$D7DD, G-25
$D7DE, G-25
$D7DF, G-25
$D7E0, G-25
$D7E1, G-25
$D7E2, G-25
$D7E3, G-25
$D7FA, G-18
$D7FB, G-18
$D7FD, G-18
$D7FE, G-18
$DC00, N-3
$DC01, N-3
$DC02, N-3
$DC03, N-3
$DC04, N-3
$DC05, N-3
$DC06, N-3
$DC07, N-3
$DC08, N-3
$DC09, N-3
$DC0A, N-3
$DC0B, N-3
$DC0C, N-3
$DC0D, N-3
$DC0E, N-3
$DC0F, N-3, N-4
$DC10, N-6
$DC11, N-6
$DC12, N-6
$DC13, N-6
$DC14, N-6
$DC15, N-6
$DC16, N-6
$DC17, N-6
$DC18, N-6
$DC19, N-6

$DC1A, N-6
$DC1B, N-6
$DC1C, N-6
$DC1D, N-6
$DC1E, N-6
$DC1F, N-6
$DD00, N-4
$DD01, N-4
$DD02, N-4
$DD03, N-4
$DD04, N-4
$DD05, N-4
$DD06, N-4
$DD07, N-4
$DD08, N-4
$DD09, N-4
$DD0A, N-4
$DD0B, N-4
$DD0C, N-5
$DD0D, N-5
$DD0E, N-5
$DD0F, N-5
$DD10, N-7
$DD11, N-7
$DD12, N-7
$DD13, N-7
$DD14, N-7
$DD15, N-7
$DD16, N-7
$DD17, N-7
$DD18, N-7
$DD19, N-7
$DD1A, N-7
$DD1B, N-7
$DD1C, N-7
$DD1D, N-7
$DD1E, N-7
$DD1F, N-7
53504 – 53759, M-39
53760 – 54015, M-39
54016 – 54271, M-39
53248, M-35

Index-22

53249, M-35
53250, M-35
53251, M-35
53252, M-35
53253, M-35
53254, M-35
53255, M-35
53256, M-35
53257, M-35
53258, M-35
53259, M-35
53260, M-35
53261, M-35
53262, M-35
53263, M-35
53264, M-35
53265, M-35
53266, M-35
53267, M-35
53268, M-35
53269, M-35
53270, M-35
53271, M-35
53272, M-35
53273, M-35
53274, M-35
53275, M-35
53276, M-35
53277, M-35
53278, M-35
53279, M-35
53280, M-35, M-38, M-41
53281, M-35, M-38, M-41
53282, M-35, M-38, M-41
53283, M-35, M-38, M-41
53284, M-36, M-38, M-41
53285, M-36, M-38, M-42
53286, M-36, M-38, M-42
53287, M-36
53288, M-36
53289, M-36
53290, M-36

53291, M-36
53292, M-36
53293, M-36
53294, M-36
53295, M-38, M-42
53296, M-36, M-38
53297, M-38
53299, M-38
53300, M-39
53301, M-39
53302, M-39
53303, M-39
53304, M-39
53305, M-39
53306, M-39
53307, M-39
53308, M-39
53309, M-39
53310, M-39
53311, M-39
53312, M-39
53313, M-39
53314, M-39
53315, M-39
53316, M-39
53317, M-39
53318, M-39
53319, M-39
53320, M-42
53321, M-42
53322, M-42
53323, M-42
53324, M-42
53325, M-42
53326, M-42
53327, M-42
53328, M-42
53329, M-42
53330, M-42
53331, M-42
53332, M-42
53333, M-42

Index-23

53334, M-42
53335, M-42
53336, M-42
53337, M-42
53338, M-42
53339, M-42
53340, M-42
53341, M-42
53342, M-42
53343, M-42
53344, M-42
53345, M-42
53346, M-42
53347, M-42
53348, M-42
53349, M-42
53352, M-42
53353, M-42
53354, M-42
53355, M-42
53356, M-42
53357, M-43
53358, M-43
53359, M-43
53360, M-43
53361, M-43
53362, M-43
53363, M-43
53364, M-43
53365, M-43
53366, M-43
53367, M-43
53368, M-43
53369, M-43
53370, M-43
53371, M-43
53372, M-43
53376, Q-11
53377, Q-11
53378, Q-11
53379, Q-11
53380, Q-11

53381, Q-11
53382, Q-11
53383, Q-11
53384, Q-11
53385, Q-11
53386, Q-11
54784, O-3
54785, O-3
54786, O-3
54787, O-3
54788, O-3
54789, O-3
54790, O-3
54793, O-4
54795, O-4
54796, O-4
54797, O-4
54798, O-4
54799, O-4
54800, O-4
54801, O-4
54802, O-4
54805, O-4
54806, O-4
54807, O-4
54808, O-4
54809, O-4
54810, O-4
54813, O-4
54814, O-4
54816, O-4
54817, O-4
54818, O-4
54819, O-4
54821, O-4
54822, O-4
54823, O-4
54824, O-4
54825, O-5
54848, G-17, G-33
54849, G-17, G-33
54850, G-17

Index-24

54851, G-17, G-33
54852, G-17, G-34
54853, G-17, G-34
54854, G-17, G-34
54855, G-17, G-34
54856, G-17, G-34
54857, G-17, G-34
54858, G-17, G-34
54859, G-17, G-34
54860, G-17, G-34
54861, G-17, G-34
54862, G-17, G-34
54863, G-17, G-34
54864, G-17, G-34
54865, G-17, G-34
54866, G-17, G-34
54867, G-17, G-34
54868, G-17, G-34
54869, G-17, G-34
54870, G-17, G-34
54871, G-17, G-34
54872, G-17, G-34
54873, G-17, G-34
54874, G-17
54875, G-17
54876, G-17
54877, G-17
54878, G-17
54879, G-17
54880, G-17
54881, G-17
54882, G-18
54883, G-18
54884, G-18
54885, G-18
54886, G-18
54887, G-18
54888, G-18
54889, G-18
54890, G-18
54891, G-18
54892, G-18

54893, G-18
54894, G-18
54895, G-18
54896, G-18, G-34
54897, G-18, G-34
54898, G-18, G-34
54899, G-18
54900, G-18
54901, G-18
54902, G-18
54903, G-18
54904, G-18
54905, G-18
54906, G-18
54907, G-18
54908, G-18, G-34
54909, G-18, G-34
54910, G-18, G-34
54911, G-18, G-34
54912, Q-19
54913, Q-19
54914, Q-19
54915, Q-19
54916, Q-19
54918, Q-19
54922, Q-19
54923, Q-14
54924, Q-14
54925, Q-14
54926, Q-14
54927, Q-14
54928, Q-14
54929, Q-15
54930, Q-15
54931, Q-15
54944, Q-13
54945, Q-15
54946, Q-13
54958, Q-19
54959, Q-19
54960, Q-21
54961, Q-21

Index-25

54962, Q-21
54963, Q-21
54964, Q-21
54965, Q-21
54967, Q-21
54968, Q-21
54969, Q-21
54970, Q-21
54971, Q-21
54972, Q-21
54973, Q-22
54974, Q-22
54976, Q-22
55008, P-9
55009, P-9
55010, P-9
55011, P-9
55012, P-9
55013, P-9
55014, P-9
55015, P-9
55016, P-9
55017, P-9
55018, P-9
55019, P-9
55020, P-9
55021, P-9
55022, P-9
55028, Q-25
55029, Q-25
55032, Q-25
55033, Q-25
55034, Q-25
55035, Q-25
55036, Q-25
55037, Q-25
55040, L-20
55041, L-20
55042, L-20
55043, L-20
55044, L-20
55045, L-20

55054, L-20
55055, G-22
55056, G-18
55057, L-20, Q-25
55068, L-20
55069, L-20
55070, L-20
55071, L-20
55072, L-20
55073, L-20
55074, L-20
55075, L-20
55076, L-20
55077, L-20
55078, L-20
55079, L-20
55080, L-20
55081, L-20
55082, L-20
55083, L-20
55084, L-20
55085, L-20
55086, L-20
55087, L-21
55088, L-21
55089, L-21
55090, L-21
55091, L-21
55092, L-21
55093, L-21
55094, L-21
55095, L-21
55096, L-21
55097, L-21
55098, L-21
55099, L-21
55100, L-21
55101, L-21
55102, L-21
55103, L-21
55104, L-21
55105, L-21

Index-26

55106, L-21
55107, L-21
55108, L-21
55109, L-21
55110, L-21
55111, L-21
55112, L-21
55113, L-21
55114, L-21
55115, L-21
55116, L-21
55117, L-21
55118, L-21
55119, L-21
55120, L-21
55121, L-21
55122, L-21
55123, L-21
55124, L-21
55125, L-22
55126, L-22
55127, L-22
55128, L-22
55129, L-22
55130, L-22
55131, L-22
55132, L-22
55133, L-22
55134, L-22
55135, L-22
55144, G-22
55145, G-22
55146, G-22
55147, G-22
55148, G-22
55149, G-22
55150, G-22
55151, G-22
55152, G-22
55153, G-22
55154, G-22
55155, G-22

55156, G-22
55157, G-22
55158, G-22
55159, G-22
55160, G-22
55161, G-22
55162, G-22
55163, G-22
55164, G-22
55165, G-22
55166, G-22
55167, G-22
55168, G-22
55169, G-22
55170, G-22
55171, G-22
55172, G-22
55173, G-22
55174, G-22
55175, G-22
55176, G-23
55177, G-23
55178, G-23
55179, G-23
55180, G-23
55181, G-23
55182, G-23
55183, G-23
55184, G-23
55185, G-23
55186, G-23
55187, G-23
55188, G-23
55189, G-23
55190, G-23
55191, G-23
55192, G-23
55193, G-23
55194, G-23
55195, G-23
55196, G-23
55197, G-23

Index-27

55198, G-23
55199, G-23
55200, G-23
55201, G-23
55202, G-23
55203, G-23
55204, G-23
55205, G-23
55206, G-23
55207, G-23
55208, G-23
55209, G-23
55210, G-23
55211, G-23
55212, G-23
55213, G-23
55214, G-24
55215, G-24
55216, G-24
55217, G-24
55218, G-24
55219, G-24
55220, G-24
55221, G-24
55222, G-24
55223, G-24
55224, G-24
55225, G-24
55226, G-24
55227, G-24
55228, G-24
55229, G-24
55230, G-24
55231, G-24
55232, G-24
55233, G-24
55234, G-24
55235, G-24
55236, G-24
55237, G-24
55238, G-24
55239, G-24

55240, G-24
55241, G-24
55242, G-24
55243, G-24
55244, G-24
55245, G-24
55246, G-24
55247, G-24
55248, G-24
55249, G-24
55250, G-24
55251, G-24
55252, G-25
55253, G-25
55254, G-25
55255, G-25
55256, G-25
55257, G-25
55258, G-25
55259, G-25
55260, G-25
55261, G-25
55262, G-25
55263, G-25
55264, G-25
55265, G-25
55266, G-25
55267, G-25
55290, G-18
55291, G-18
55293, G-18
55294, G-18
56320, N-3
56321, N-3
56322, N-3
56323, N-3
56324, N-3
56325, N-3
56326, N-3
56327, N-3
56328, N-3
56329, N-3

Index-28

56330, N-3
56331, N-3
56332, N-3
56333, N-3
56334, N-3
56335, N-3, N-4
56336, N-6
56337, N-6
56338, N-6
56339, N-6
56340, N-6
56341, N-6
56342, N-6
56343, N-6
56344, N-6
56345, N-6
56346, N-6
56347, N-6
56348, N-6
56349, N-6
56350, N-6
56351, N-6
56576, N-4
56577, N-4
56578, N-4
56579, N-4
56580, N-4
56581, N-4
56582, N-4
56583, N-4
56584, N-4
56585, N-4
56586, N-4
56587, N-4
56588, N-5
56589, N-5
56590, N-5
56591, N-5
56592, N-7
56593, N-7
56594, N-7
56595, N-7

56596, N-7
56597, N-7
56598, N-7
56599, N-7
56600, N-7
56601, N-7
56602, N-7
56603, N-7
56604, N-7
56605, N-7
56606, N-7
56607, N-7
ABTPALSEL, M-43
ACCESSKEY, O-5
ADDRBANK, L-20
ADDRLSB, L-20, L-22
ADDRLSBTRIG, L-20
ADDRMB, L-20, L-22
ADDRMSB, L-20
ALGO, Q-11
ALPHADELAY, M-43
ALPHEN, M-43
ALRM, N-3, N-5
ALRMAMPM, N-6, N-7
ALRMHOUR, N-6–N-8
ALRMJIF, N-6–N-8
ALRMMIN, N-6–N-8
ALRMSEC, N-6–N-8
ALT, Q-11
ASCFAST, G-34
ASCIIKEY, O-4, O-5
ATTR, M-39
AUDBLKTO, L-20, L-22
AUDEN, L-22
AUDWRBLK, L-22
AUTO2XSEL, Q-19
B0ADEVN, M-38, M-39
B0ADODD, M-38, M-39
B0PIX, M-39
B1ADEVN, M-39
B1ADODD, M-39
B1PIX, M-39

Index-29

B2ADEVN, M-39
B2ADODD, M-39
B2PIX, M-39, M-40
B3ADEVN, M-39, M-40
B3ADODD, M-39, M-40
B3PIX, M-39, M-40
B4ADEVN, M-39, M-40
B4ADODD, M-39, M-40
B4PIX, M-39, M-40
B5ADEVN, M-39, M-40
B5ADODD, M-39, M-40
B5PIX, M-39, M-40
B6ADEVN, M-39, M-40
B6ADODD, M-39, M-40
B6PIX, M-39, M-40
B7ADEVN, M-39, M-40
B7ADODD, M-39, M-40
B7PIX, M-39, M-40
BADEXTRA, G-18
BASHDDR, O-4, O-5
BBDRPOS, M-42, M-43
BCST, P-9
BITPBANK, M-43
BLKD, L-22
BLNK, M-36
BMM, M-36
BORDERCOL, M-35, M-36,

M-38, M-40, M-41, M-43
BP16ENS, M-43
BPCOMP, M-39, M-40
BPM, M-40
BPX, M-39, M-40
BPY, M-39, M-40
BRCOST, G-19
BSP, M-35, M-36
BTPALSEL, M-43
BUSY, Q-11
C128FAST, M-36
CALCEN, G-25
CALXDELTALSB, Q-21, Q-22
CALXSCALELSB, Q-21, Q-22
CALXSCALEMSB, Q-21, Q-22

CALYDELTALSB, Q-21, Q-22
CALYDELTAMSB, Q-21, Q-22
CALYSCALELSB, Q-21, Q-22
CALYSCALEMSB, Q-21, Q-22
CARTEN, G-19
CB, M-35, M-36
CDC00, Q-19
CH0BADDR, L-20, L-22
CH0CURADDR, L-20, L-22
CH0EN, L-22
CH0FREQ, L-20, L-22
CH0LOOP, L-22
CH0RVOL, L-20, L-22
CH0SBITS, L-20, L-22
CH0SGN, L-22
CH0SINE, L-22
CH0STP, L-22
CH0TADDR, L-20, L-22
CH0TMRADDR, L-20, L-21, L-23
CH0VOLUME, L-20, L-23
CH1BADDR, L-21, L-23
CH1CURADDR, L-21, L-23
CH1EN, L-23
CH1FREQ, L-21, L-23
CH1LOOP, L-23
CH1RVOL, L-20, L-23
CH1SBITS, L-21, L-23
CH1SGN, L-23
CH1SINE, L-23
CH1STP, L-23
CH1TADDR, L-21, L-23
CH1TMRADDR, L-21, L-23
CH1VOLUME, L-21, L-23
CH2BADDR, L-21, L-23
CH2CURADDR, L-21, L-23
CH2EN, L-23
CH2FREQ, L-21, L-23
CH2LOOP, L-23
CH2LVOL, L-20, L-23
CH2SGN, L-23
CH2SINE, L-23
CH2STP, L-23

Index-30

CH2TADDR, L-21, L-23
CH2TMRADDR, L-21, L-23
CH2VOLUME, L-21, L-23
CH3BADDR, L-21, L-23
CH3CURADDR, L-22, L-24
CH3EN, L-24
CH3FREQ, L-21, L-22, L-24
CH3LOOP, L-24
CH3LVOL, L-20, L-24
CH3SBITS, L-21, L-24
CH3SGN, L-24
CH3SINE, L-24
CH3STP, L-24
CH3TADDR, L-22, L-24
CH3TMRADDR, L-22, L-24
CH3VOLUME, L-22, L-24
CHARPTR, M-42, M-43
CHARSZ, O-3
CHR16, M-43
CHRCOUNT, M-42, M-43
CHRXSCL, M-42, M-43
CHRYSCL, M-42, M-43
CLOCK, Q-11
CMDANDSTAT, Q-19
COLPTR, M-42, M-44
COMMAND, P-9, Q-11
CONN41, O-5
CPUFAST, G-34
CRAM2K, M-40
CRC, Q-11
CROM9, M-40
CSEL, M-36
D0IMG, Q-15
D0MD, Q-15
D0P, Q-15
D0STARTSEC0, Q-14, Q-15
D0STARTSEC1, Q-14, Q-15
D0STARTSEC2, Q-14, Q-15
D0STARTSEC3, Q-14, Q-15
D0WP, Q-15
D1IMG, Q-15
D1MD, Q-15

D1P, Q-15
D1STARTSEC0, Q-14, Q-15
D1STARTSEC1, Q-15
D1STARTSEC2, Q-15
D1STARTSEC3, Q-15
D1WP, Q-15
DATA, O-3, Q-11
DATARATE, Q-13
DBGDIR, Q-13
DBGMOTORA, Q-13
DBGWDATA, Q-13
DBGWGATE, Q-13
DBLRR, M-44
DD00DELAY, N-8
DDRA, N-3–N-5
DDRB, N-3–N-5
DEBUGC, M-43, M-44
DENSITY, Q-13
DIGILEFTLSB, Q-25
DIGILEFTMSB, Q-25
DIGILLSB, Q-25
DIGILMSB, Q-25
DIGIRIGHTLSB, Q-25
DIGIRIGHTMSB, Q-25
DIGIRLSB, Q-25
DIGIRMSB, Q-25
DIR, Q-11
DISKIN, Q-11
DIVBUSY, G-25
DIVISOR, O-3
DIVOUT, G-22, G-25
DMADSTMB, G-34
DMALADDR, G-34
DMASRCMB, G-34
DRQ, Q-12
DRXD, P-9
DRXDV, P-9
DS, Q-11, Q-12
DSKCHG, Q-12
ECM, M-36
EN018B, L-24
ENTEREXIT, G-34, G-35

Index-31

EQ, Q-12
ETRIG, L-20, L-24
EV1, Q-22
EV2, Q-22
EXGLYPH, M-44
EXSID, G-35
EXTIRQS, M-44
EXTSYNC, M-40
F4502, G-35
FAST, M-40
FCLRHI, M-44
FCLRLO, M-44
FDC2XSEL, Q-19
FDCVARSPD, Q-19
FILLVAL, Q-19
FLG, N-3, N-5
FNRASTER, M-42, M-44
FNRST, M-44
FNRSTCMP, M-44
FRAMECOUNT, G-18, G-19
FREE, Q-12
FRMERR, O-3
GEORAMBASE, G-34, G-35
GEORAMMASK, G-34, G-35
GESTUREDIR, Q-22
GESTUREID, Q-22
H1280, M-40
H640, M-40
HDSCL, O-5
HDSDA, O-5
HICKED, G-34, G-35
HOTREG, M-44
HPOS, M-39, M-40
HSYNCP, M-44
HTRAP00, G-17, G-19
HTRAP01, G-17, G-19
HTRAP02, G-17, G-19
HTRAP03, G-17, G-19
HTRAP04, G-17, G-19
HTRAP05, G-17, G-19
HTRAP06, G-17, G-19
HTRAP07, G-17, G-19

HTRAP08, G-17, G-19
HTRAP09, G-17, G-19
HTRAP0A, G-17, G-19
HTRAP0B, G-17, G-19
HTRAP0C, G-17, G-19
HTRAP0D, G-17, G-19
HTRAP0E, G-17, G-19
HTRAP0F, G-17, G-19
HTRAP10, G-17, G-19
HTRAP11, G-17, G-19
HTRAP12, G-17, G-19
HTRAP13, G-17, G-19
HTRAP14, G-17, G-19
HTRAP15, G-17, G-19
HTRAP16, G-17, G-19
HTRAP17, G-17, G-19
HTRAP18, G-17, G-19
HTRAP19, G-17, G-20
HTRAP1A, G-17, G-20
HTRAP1B, G-17, G-20
HTRAP1C, G-17, G-20
HTRAP1D, G-17, G-20
HTRAP1E, G-17, G-20
HTRAP1F, G-17, G-20
HTRAP20, G-17, G-20
HTRAP21, G-17, G-20
HTRAP22, G-18, G-20
HTRAP23, G-18, G-20
HTRAP24, G-18, G-20
HTRAP25, G-18, G-20
HTRAP26, G-18, G-20
HTRAP27, G-18, G-20
HTRAP28, G-18, G-20
HTRAP29, G-18, G-20
HTRAP2A, G-18, G-20
HTRAP2B, G-18, G-20
HTRAP2C, G-18, G-20
HTRAP2D, G-18, G-20
HTRAP2E, G-18, G-20
HTRAP2F, G-18, G-20
HTRAP30, G-18, G-20
HTRAP31, G-18, G-20

Index-32

HTRAP32, G-18, G-20
HTRAP33, G-18, G-20
HTRAP34, G-18, G-20
HTRAP35, G-18, G-21
HTRAP36, G-18, G-21
HTRAP37, G-18, G-21
HTRAP38, G-18, G-21
HTRAP39, G-18, G-21
HTRAP3A, G-18, G-21
HTRAP3B, G-18, G-21
HTRAP3C, G-18, G-21
HTRAP3D, G-18, G-21
HTRAP3E, G-18, G-21
HTRAP3F, G-18, G-21
IFRXIRQ, O-3
IFRXNMI, O-3
IFTXIRQ, O-3
IFTXNMI, O-3
ILP, M-36
IMALRM, N-7, N-8
IMFLG, N-7, N-8
IMODA, N-3, N-5
IMODB, N-3, N-5
IMRXIRQ, O-3
IMRXNMI, O-3
IMSP, N-7, N-8
IMTB, N-7, N-8
IMTXIRQ, O-3
IMTXNMI, O-3
INDEX, Q-12
INT, M-41
IR, N-3
IRQ, Q-12
ISBC, M-36
ISSC, M-36
J21H, O-4, O-5
J21HDDR, O-4, O-5
J21L, O-4, O-5
J21LDDR, O-4, O-5
JMP32EN, G-35
JOYSWAP, O-5
KEY, M-38, M-41, M-42, M-44

Keyboard, O-4, O-5
KEYEN, P-9
KEYLEFT, O-5
KEYUP, O-5
KSCNRATE, O-4, O-5
LATCHINT, G-25
LED, Q-12
LINESTEP, M-42, M-44
LJOYA, O-5
LJOYB, O-5
LOAD, N-3, N-5
LOST, Q-12
LPX, M-35, M-36
LPY, M-35, M-36
M65MODEL, O-5
MACADDR1, P-9
MACADDR2, P-9, P-10
MACADDR3, P-9, P-10
MACADDR4, P-9, P-10
MACADDR5, P-9, P-10
MACADDR6, P-9, P-10
MALT, O-5
MAPEDPAL, M-43, M-44
MAPHI, G-34, G-35
MAPHIMB, G-34, G-35
MAPLO, G-34, G-35
MAPLOMB, G-34, G-35
MATHIN0, G-22, G-25
MATHIN1, G-22, G-25
MATHIN10, G-23, G-25
MATHIN11, G-23–G-25
MATHIN12, G-24, G-25
MATHIN13, G-24, G-25
MATHIN14, G-24, G-25
MATHIN15, G-24, G-25
MATHIN2, G-23, G-25
MATHIN3, G-23, G-25
MATHIN4, G-23, G-25
MATHIN5, G-23, G-26
MATHIN6, G-23, G-26
MATHIN7, G-23, G-26
MATHIN8, G-23, G-26

Index-33

MATHIN9, G-23, G-26
MATRIXEN, G-35
MC1, M-35, M-36, M-38, M-41,

M-44
MC2, M-35, M-36, M-38, M-41,

M-44
MC3, M-36, M-38, M-41, M-44
MCAPS, O-5
MCM, M-36
MCST, P-10
MCTRL, O-5
MIIMPHY, P-9, P-10
MIIMREG, P-9, P-10
MIIMVLSB, P-9, P-10
MIIMVMSB, P-9, P-10
MISBC, M-37
MISSC, M-37
MIXREGDATA, Q-25
MIXREGSEL, Q-25
MLSHFT, O-5
MMEGA, O-5
MONO, M-41
MOTOR, Q-12
MRIRQ, M-37
MRSHFT, O-6
MSCRL, O-6
MULBUSY, G-26
MULTINA, G-22, G-26
MULTINB, G-22, G-26
MULTOUT, G-22, G-26
NOBUF, Q-12
NOCRC, P-10
NOEXROM, G-21
NOGAME, G-21
NOMIX, L-24
NOPROM, P-10
NORRDEL, M-44
Number, M-43, M-44
OCEANA, G-21
OMODA, N-3, N-5
OMODB, N-3, N-5
OSKALT, O-6

OSKDEBUG, O-6
OSKDIM, O-6
OSKEN, O-6
OSKTOP, O-6
OSKZEN, O-6
OSKZON, O-6
PAL, M-41
PALBLUE, M-39, M-41
PALEMU, M-44
PALGREEN, M-39, M-41
PALNTSC, M-44
PALRED, M-39, M-41
PBONA, N-3, N-5
PBONB, N-3, N-5
PCH, G-34, G-35
PCL, G-34, G-35
PCODE, Q-11, Q-12
PFLAGS, G-34, G-35
PIRQ, G-35
PNMI, G-35
PORT00, G-34, G-35
PORT01, G-34, G-35
PORTA, N-3–N-5
PORTB, N-3–N-5
PORTF, O-4, O-6
PORTFDDR, O-4, O-6
POTAX, O-4, O-6
POTAY, O-4, O-6
POTBX, O-4, O-6
POTBY, O-4, O-6
POWEREN, G-21
PREFETCH, G-21
PROT, Q-12
PTYEN, O-3
PTYERR, O-3
PTYEVEN, O-3
PWMPDM, Q-25
RASLINE0, M-43, M-44
RASTERHEIGHT, M-43, M-44
RC, M-35, M-37
RDCMD, Q-12
RDREQ, Q-12

Index-34

READBACKLSB, Q-25
READBACKMSB, Q-25
REALHW, O-6
REGA, G-33, G-35
REGB, G-34, G-35
REGX, G-33, G-35
REGZ, G-33, G-35
RESERVED, G-25, G-26, M-43,

M-44
RIRQ, M-37
RMODA, N-4, N-5
RMODB, N-4, N-5
RNF, Q-12
ROM8, M-41
ROMA, M-41
ROMC, M-41
ROME, M-41
ROMPROT, G-35
RSEL, M-37
RST, M-37, P-10
RST41, O-6
RSTCMP, M-43, M-44
RSTCOMP, M-43, M-45
RSTDELEN, M-45
RSVD, G-35
RUN, Q-12
RXBF, P-9, P-10
RXBLKD, P-10
RXEN, O-3
RXOVRRUN, O-3
RXPH, P-9, P-10
RXQ, P-10
RXQEN, P-10
RXRDY, O-3
S0X, M-35, M-37
S0Y, M-35, M-37
S1X, M-35, M-37
S1Y, M-35, M-37
S2X, M-35, M-37
S2Y, M-35, M-37
S3X, M-35, M-37
S3Y, M-35, M-37

S4X, M-35, M-37
S4Y, M-35, M-37
S5X, M-35, M-37
S5Y, M-35, M-37
S6X, M-35, M-37
S6Y, M-35, M-37
S7X, M-35, M-37
S7Y, M-35, M-37
SBC, M-35, M-37
SCM, M-35, M-37
SCREENCOL, M-35, M-37, M-38,

M-41, M-45
SCRNPTR, M-42, M-45
SDBSH, O-6
SDCLK, O-6
SDCS, O-6
SDDATA, O-6
SDR, N-3–N-5
SE, M-35, M-37
SECTOR, Q-11, Q-12
SECTOR0, Q-19
SECTOR1, Q-19, Q-20
SECTOR2, Q-19, Q-20
SECTOR3, Q-19, Q-20
SEXX, M-35, M-37
SEXY, M-35, M-38
SHDEMU, M-45
SIDBDRWD, M-42, M-45
SIDE, Q-11, Q-12
SMTH, M-45
SP, N-4, N-5
SPH, G-34, G-35
SPL, G-34, G-36
SPMOD, N-4, N-5
SPR0COL, M-36, M-38
SPR16EN, M-42, M-45
SPR1COL, M-36, M-38
SPR2COL, M-36, M-38
SPR3COL, M-36, M-38
SPR4COL, M-36, M-38
SPR5COL, M-36, M-38
SPR640, M-45

Index-35

SPR6COL, M-36, M-38
SPR7COL, M-36, M-38
SPRALPHAVAL, M-43, M-45
SPRBPMEN, M-42, M-45
SPRENALPHA, M-43, M-45
SPRENV400, M-43, M-45
SPRHGHT, M-42, M-45
SPRHGTEN, M-42, M-45
SPRMC0, M-36, M-38, M-41,

M-42, M-45
SPRMC1, M-36, M-38, M-41,

M-42, M-45
SPRPALSEL, M-43, M-45
SPRPTR16, M-45
SPRPTRADR, M-42, M-43, M-45
SPRPTRBNK, M-43, M-45
SPRTILEN, M-42, M-45
SPRX64EN, M-42, M-45
SPRXSMSBS, M-42, M-45
SPRYADJ, M-43, M-45
SPRYSMSBS, M-43, M-45
SPTRCONT, M-46
SRPYMSBS, M-43, M-46
SSC, M-35, M-38
STEP, Q-11, Q-12
STRM, P-10
STRTA, N-4, N-5
STRTB, N-4, N-5
SWAP, Q-12
SXMSB, M-35, M-38
SYNCMOD, O-3, O-4
SYSCTL, O-4, O-6
TA, N-4, N-5
TALATCH, N-6–N-8
TARGANY, Q-15
TB, N-4, N-5
TBDRPOS, M-42, M-46
TEXTXPOS, M-42, M-46
TEXTYPOS, M-42, M-46
TIMERA, N-3–N-5
TIMERB, N-3–N-5
TK0, Q-12

TOD50, N-4, N-6
TODAMPM, N-4, N-6–N-8
TODEDIT, N-6
TODHOUR, N-3, N-4, N-6–N-8
TODJIF, N-3, N-4, N-6–N-8
TODMIN, N-6–N-8
TODSEC, N-3, N-4, N-6–N-8
TOUCH1XLSB, Q-21, Q-22
TOUCH1XMSB, Q-21, Q-22
TOUCH1YLSB, Q-21, Q-22
TOUCH1YMSB, Q-21, Q-22
TOUCH2XLSB, Q-21, Q-22
TOUCH2XMSB, Q-22
TOUCH2YLSB, Q-22
TOUCH2YMSB, Q-22
TRACK, Q-11, Q-13
TXEN, O-4
TXIDLE, P-10
TXPH, P-10
TXQ, P-10
TXQEN, P-10
TXRST, P-10
TXSZLSB, P-9, P-10
TXSZMSB, P-9, P-10
UARTDATA, G-34, G-36
UFAST, O-6
UNIT0INA, G-24, G-26
UNIT0INB, G-24, G-26
UNIT0OUT, G-24, G-26
UNIT10INA, G-24, G-26
UNIT10INB, G-24, G-26
UNIT10OUT, G-25, G-26
UNIT11INA, G-24, G-26
UNIT11INB, G-24, G-26
UNIT11OUT, G-25, G-26
UNIT12INA, G-24, G-26
UNIT12INB, G-24, G-26
UNIT12OUT, G-25, G-27
UNIT13INA, G-24, G-27
UNIT13INB, G-24, G-27
UNIT13OUT, G-25, G-27
UNIT14INA, G-24, G-27

Index-36

UNIT14INB, G-24, G-27
UNIT14OUT, G-25, G-27
UNIT15INA, G-24, G-27
UNIT15INB, G-24, G-27
UNIT15OUT, G-25, G-27
UNIT1INA, G-24, G-27
UNIT1INB, G-24, G-27
UNIT1OUT, G-24, G-27
UNIT2INA, G-24, G-27
UNIT2INB, G-24, G-27
UNIT2OUT, G-24, G-27
UNIT3INA, G-24, G-27
UNIT3INB, G-24, G-28
UNIT3OUT, G-24, G-28
UNIT4INA, G-24, G-28
UNIT4INB, G-24, G-28
UNIT4OUT, G-25, G-28
UNIT5INA, G-24, G-28
UNIT5INB, G-24, G-28
UNIT5OUT, G-25, G-28
UNIT6INA, G-24, G-28
UNIT6INB, G-24, G-28
UNIT6OUT, G-25, G-28
UNIT7INA, G-24, G-28
UNIT7INB, G-24, G-28
UNIT7OUT, G-25, G-28
UNIT8INA, G-24, G-28
UNIT8INB, G-24, G-28
UNIT8OUT, G-25, G-28
UNIT9INA, G-24, G-29
UNIT9INB, G-24, G-29
UNIT9OUT, G-25, G-29
UNUSED, O-4, O-6
UPDN1, Q-21, Q-22
UPDN2, Q-21, Q-22
USEREAL0, Q-15
USEREAL1, Q-15
V400, M-41
VDRQ, Q-20
VEQINH, Q-20
VFAST, M-46
VFDC0, Q-20

VFDC1, Q-20
VFLOP, G-36
VGAHDTV, M-46
VICIII, Q-20
VICMODE, G-34, G-36
VIRTKEY1, O-4, O-7
VIRTKEY2, O-4, O-7
VIRTKEY3, O-4, O-7
VLOST, Q-20
VPOS, M-39, M-41
VRFOUND, Q-20
VRNF, Q-20
VS, M-35, M-38
VSYNCP, M-46
VWFOUND, Q-20
WATCHDOG, G-34, G-36
WGATE, Q-13
WRCMD, Q-13
WREN, G-29
WTREQ, Q-13
XINV, Q-22
XPOS, M-42, M-46
XSCL, M-35, M-38
YINV, Q-22
YSCL, M-35, M-38

relational operators, 8-30
REM, B-171
RENAME, B-172
RENUMBER, 8-38, B-173
RESQ, H-129
RESTORE, B-174
RESUME, B-175
RETURN, B-176
revers, 17-7
RGRAPHIC, B-177
RIGHT$, B-178
RLA, H-43
RMB0, H-97
RMB1, H-97
RMB2, H-98
RMB3, H-98
RMB4, H-99

Index-37

RMB5, H-99
RMB6, H-99
RMB7, H-100
RMOUSE, B-179
RND, B-180
RND(), 8-45
ROL, H-43, H-100
ROLQ, G-14, H-130
ROR, H-44, H-101
RORQ, G-14, H-131
ROW, H-101
RPALETTE, B-181
RPEN, B-182
RPLAY, B-183
RRA, H-45
RREG, B-184
RSPCOLOR, B-185
RSPEED, B-186
RSPPOS, B-187
RSPRITE, B-188
RSVQ, H-132
RTI, H-45, H-102
RTS, H-46, H-102
RUN, B-189
RWINDOW, B-190
RXNORMAL, P-11
RXONLYONE, P-11

SAVE, B-191
SAX, H-46
SBC, H-47, H-48, H-103, H-133
SBCQ, G-14, H-134
SBX, H-48
scientific notation, 8-45
SCNCLR, B-192
SCRATCH, B-193
SCREEN, B-194
SEC, H-49, H-103
SED, H-49, H-104
SEE, H-104
SEI, H-49, H-105
SET, B-197
set16bitcharmode, 17-6

setcharsetaddr, 17-4
setcolramoffset, 17-4
setextendedattrib, 17-6
sethotregs, 17-6
setmapedpal, 17-10
SETMEMORY, K-19
setpalbank, 17-9
setpalbanka, 17-9
setpalentry, 17-10
SETPC, K-17
setscreenaddr, 17-3
setscreensize, 17-5
SGN, B-198
SHA, H-50
SHX, H-50
SHY, H-51
SIN, B-199
SLEEP, B-200
SLO, H-51
SMB0, H-105
SMB1, H-106
SMB2, H-106
SMB3, H-106
SMB4, H-107
SMB5, H-107
SMB6, H-107
SMB7, H-108
SOUND, B-201
SPC, B-202
SPEED, B-203
SPRCOLOR, B-204
SPRITE, B-205
SPRSAV, B-206
SQR, B-207
SRE, H-52
ST, B-208
STA, H-53, H-108, H-135
STARTTX, P-11
STEP, 8-13, B-209
STOP, 8-39, B-210
STOPTX, P-11
STQ, G-14, H-135

Index-38

STR$, B-211
string, 8-13
STX, H-53, H-108
STY, H-53, H-109
STZ, H-109
SYNTAX ERROR, 8-4
SYS, B-212

TAB, B-214, H-110
TAN, B-215
TAS, H-54
TAX, H-54, H-110
TAY, H-55, H-110
TAZ, H-111
TBA, H-111
TEMPO, B-216
textcolor, 17-7
Texture Scaling, L-15
THEN, 8-30, B-217
TI, B-218
TI$, B-219
TIB, Q-8, Q-11
TO, B-220
togglecase, 17-6
TRACE, K-19
Track Information Block, Q-8, Q-11
TRAP, B-221
TRB, H-112
TROFF, B-222
TRON, B-223
TSB, H-112
TSX, H-55, H-113
TSY, H-113
TXA, H-56, H-114

TXS, H-56, H-114
TYA, H-56, H-115
TYPE, B-224
Type mismatch error, 8-17
TYS, H-115
TZA, H-115

UARTDIVISOR, K-15
underline, 17-8
unequal, 8-31
UNTIL, B-225
USING, B-226
USR, B-228
Utility Menu, I-5

VAL, B-229
variable, 8-8

numeric, 8-15
string, 8-15

VERIFY, B-230
VIEWPORT, B-231
vline, 17-12
VOL, B-232

WAIT, B-233
Warnings

Extra Ignored, 8-22
WATCHPOINT, K-19
wherex, 17-14
wherey, 17-14
WHILE, B-234
WINDOW, B-235

XAA, H-57
XOR, B-236

Index-39

Index-40

About the MEGA65 Book

C64 and C65 program and peripheral compatibility ... amazing
sound ... true arcade-class graphics ... beautifully finished hardware
... full mechanical keyboard ... rich networking capabilities and one
of the fastest 6502-class processors avaiable make the MEGA65
truly unique for home, business or educational use.

The MEGA65 Book collects into a single huge volume all the infor-
mation you need to know about your MEGA65. Collecting all of the
key information of the various MEGA65 user’s guides and reference
manuals in once place, this book provides detailed information on
every topic, including BASIC programming, sound, graphics, network-
ing, assembly language programming, cross-platform development,
including using high-level languages like C or KickC, the MEGA65’s
powerful 8-bit chipset, and how to use its powerful FPGA core to
implement other computer systems.

This book is the must-have reference for the MEGA65, that every
user, whether beginner or advanced, should have with them when
exploring the full potential of the MEGA65.

With authors including professional writers, university lecturers and 8-
bit experts, the content is both accessible and extensive. Beginners
will find detailed explanations of how to get started, while advanced
users will find highly detailed technical information on the inner work-
ings of every aspect of the MEGA65.

In short, this book is designed for you to get the most out of the
MEGA65’s extensive capabilities.

ISBN 123-45-67890-12-8

1 234567 890128

the MEGA Museum of Electronic Games & Art e.V. http://mega65.org

Editor: Dr. Paul Gardner-Stephen.

http://mega65.org

	I PREFACE
	Introduction
	Welcome to the MEGA65!
	Other Books in this series

	II GETTING TO KNOW YOUR MEGA65
	Setup
	Unpacking and connecting the MEGA65
	Rear Connections
	Side Connections
	MEGA65 screen and peripherals
	Optional Connections
	Operation
	Using the MEGA65
	THE CURSOR

	Getting Started
	Keyboard
	Command Keys
	RETURN
	SHIFT
	SHIFT LOCK
	CTRL
	RUN STOP
	RESTORE
	THE CURSOR KEYS
	INSerT/DELete
	CLeaR/HOME
	MEGA KEY
	NO SCROLL

	Function Keys
	HELP
	ALT
	CAPS LOCK

	The Screen Editor
	Editor Functionality

	Configuring your MEGA65
	Important Note
	Formatting SD cards
	Installing ROM and Other Support Files
	ROM File
	Support Files

	On-boarding
	Configuration Utility
	Input Devices
	Chipset
	Video
	Audio
	Network

	Cores and Flashing
	What are cores, and why do they matter?
	Model types

	Bitstream files
	File types
	Where to download

	Selecting a core
	Installing an upgrade core for the MEGA65
	Installing other cores
	Creating cores for the MEGA65
	Replacing the factory core in slot 0
	Understanding The Core Booting Process

	Floppy Disks And D81 Images
	Terminology
	The Freezer

	III FIRST STEPS IN CODING
	How Computers Work
	Computers are stupid. Really stupid
	Making an Egg Cup Computer

	Getting Started in BASIC
	Your first BASIC programs
	Exercises to try

	First steps with text and numbers
	Exercises to try

	Making simple decisions
	Exercises to try

	Random numbers and chance
	Exercises to try

	Text Processing
	Characters and Strings
	String Literals
	String Variables
	String Statements
	Simple Formatting
	Suppressing New Lines
	Automatic Tab Stops
	Tabs Stops and Spacing

	Sample Programs
	Palindromes
	Simple Ciphers

	C64, C65 and MEGA65 Modes
	Switching Modes from BASIC
	From MEGA65/C65 to C64-mode
	From C64 to MEGA65/C65-mode
	Entering Machine Code Monitor Mode

	The KEY Register
	Exposing Extra C65 Registers
	Disabling the C65/MEGA65 Extra Registers
	Enabling MEGA65 Extra Registers
	Traps to look out for

	Accessing Memory from BASIC 65
	The MAP Instruction

	IV SOUND AND GRAPHICS
	Graphics

	V HARDWARE
	Using Nexys4 boards as a MEGA65
	Building your own MEGA65 Compatible Computer
	Working Nexys4 Boards
	The Nexys4 board
	The Nexys4DDR board
	The Nexys A7

	Power, Jumpers, Switches and Buttons
	Micro-USB Power
	External Power Supply
	Other Jumpers and Switches
	Connections and Peripherals
	Communicating with your PC
	Onboard buttons

	Keyboard
	Some key mappings with a USB keyboard

	Preparing microSDHC card
	Preparation Steps

	Loading the bitstream from QSPI
	Preparation Steps

	Useful Tips

	VI CROSS-PLATFORM DEVELOPMENT TOOLS
	Emulators
	Using The Xmega65 Emulator
	Using the Live ISO image
	Creating a Bootable USB stick or DVD
	Getting Started
	Other Features of the Live ISO

	Data Transfer and Debugging Tools
	m65 command line tool
	Screenshots using m65 tool
	Load and run a program on the MEGA65
	Reconfigure the FPGA to run a different bitstream
	Remote keyboard entry
	Unit testing and logging support
	Using unit tests with C
	Using unit tests with BASIC 65
	BASIC 65 example

	M65Connect
	mega65_ftp
	TFTP Server
	Converting a BASIC text file listing into a PRG file

	Assemblers
	C and C-Like Compilers
	MEGA65 libc

	MEGA65 Standard C Library
	Structure and Usage
	conio.h
	conionit
	setscreenaddr
	getscreenaddr
	setcolramoffset
	getcolramoffset
	setcharsetaddr
	getcharsetaddr
	clrscr
	getscreensize
	setscreensize
	set16bitcharmode
	sethotregs
	setextendedattrib
	togglecase
	bordercolor
	bgcolor
	textcolor
	revers
	highlight
	blink
	underline
	altpal
	clearattr
	cellcolor
	setpalbank
	setpalbanka
	getpalbank
	getpalbanka
	setmapedpal
	getmapedpal
	setpalentry
	fillrect
	box
	hline
	vline
	gohome
	gotoxy
	gotox
	gotoy
	moveup
	movedown
	moveleft
	moveright
	wherex
	wherey
	cputc
	cputnc
	cputhex
	cputdec
	cputs
	cputsxy
	cputcxy
	cputncxy
	cprintf
	cgetc
	kbhit
	getkeymodstate
	flushkeybuf
	cinput
	VIC_BASE

	BASIC Tokenisers

	VII APPENDICES
	Accessories
	BASIC 65 Command Reference
	Commands, Functions and Operators
	BASIC 65 constants
	BASIC 65 variables
	BASIC 65 arrays
	Keywords And Tokens Part 1
	Keywords And Tokens Part 2
	Tokens And Keywords Part 1
	Tokens And Keywords Part 2

	BASIC command reference
	ABS
	AND
	APPEND
	ASC
	ATN
	AUTO
	BACKGROUND
	BACKUP
	BANK
	BEGIN
	BEND
	BLOAD
	BOOT
	BORDER
	BOX
	BSAVE
	BUMP
	BVERIFY
	CATALOG
	CHANGE
	CHAR
	CHR$
	CIRCLE
	CLOSE
	CLR
	CMD
	COLLECT
	COLLISION
	COLOR
	CONCAT
	CONT
	COPY
	COS
	CURSOR
	DATA
	DCLEAR
	DCLOSE
	DEC
	DEF FN
	DELETE
	DIM
	DIR
	DISK
	DLOAD
	DMA
	DMODE
	DO
	DOPEN
	DPAT
	DS
	DS$
	DSAVE
	DT$
	DVERIFY
	EDIT
	EDMA
	EL
	ELLIPSE
	ELSE
	END
	ENVELOPE
	ERASE
	ER
	ERR$
	EXIT
	EXP
	FAST
	FILTER
	FIND
	FN
	FONT
	FOR
	FOREGROUND
	FRE
	FREAD
	FWRITE
	GET
	GET#
	GETKEY
	GO64
	GOSUB
	GOTO
	GRAPHIC
	HEADER
	HELP
	HEX$
	HIGHLIGHT
	IF
	INPUT
	INPUT#
	INSTR
	INT
	JOY
	KEY
	LEFT$
	LEN
	LET
	LINE
	LINE INPUT#
	LIST
	LOAD
	LOADIFF
	LOG
	LOG10
	LOOP
	LPEN
	MERGE
	MID$
	MOD
	MONITOR
	MOUSE
	MOVSPR
	NEW
	NEXT
	NOT
	OFF
	ON
	OPEN
	OR
	PAINT
	PALETTE
	PEEK
	PEEKW
	PEN
	PIXEL
	PLAY
	POINTER
	POKE
	POKEW
	POLYGON
	POS
	POT
	PRINT
	PRINT#
	PRINT USING
	RCOLOR
	RCURSOR
	READ
	RECORD
	REM
	RENAME
	RENUMBER
	RESTORE
	RESUME
	RETURN
	RGRAPHIC
	RIGHT$
	RMOUSE
	RND
	RPALETTE
	RPEN
	RPLAY
	RREG
	RSPCOLOR
	RSPEED
	RSPPOS
	RSPRITE
	RUN
	RWINDOW
	SAVE
	SCNCLR
	SCRATCH
	SCREEN
	SET
	SGN
	SIN
	SLEEP
	SOUND
	SPC
	SPEED
	SPRCOLOR
	SPRITE
	SPRSAV
	SQR
	ST
	STEP
	STOP
	STR$
	SYS
	TAB
	TAN
	TEMPO
	THEN
	TI
	TI$
	TO
	TRAP
	TROFF
	TRON
	TYPE
	UNTIL
	USING
	USR
	VAL
	VERIFY
	VIEWPORT
	VOL
	WAIT
	WHILE
	WINDOW
	XOR

	Special Keyboard Controls and Sequences
	PETSCII Codes and CHR$
	Control codes
	Shifted codes
	Escape Sequences

	The MEGA65 Keyboard
	Hardware Accelerated Keyboard Scanning
	Latin-1 Keyboard Map

	Keyboard Theory of Operation
	C65 Keyboard Matrix
	Synthetic Key Events
	Keyboard LED Control
	Native Keyboard Matrix

	Decimal, Binary and Hexadecimal
	Numbers
	Notations and Bases
	Decimal
	Binary
	Hexadecimal

	Operations
	Counting
	Arithmetic
	Logic Gates

	Signed and Unsigned Numbers
	Bit-wise Logical Operators
	Converting Numbers

	System Memory Map
	Introduction
	MEGA65 Native Memory Map
	The First Sixteen 64KB Banks
	Colour RAM
	28-bit Address Space

	$D000 – $DFFF I/O Personalities
	CPU Memory Banking
	C64/C65 ROM Emulation
	C65 Compatibility ROM Layout

	45GS02 Microprocessor
	Introduction
	Differences to the 6502
	Supervisor/Hypervisor Privileged Mode
	6502 Illegal Opcodes
	Read-Modify-Write Instruction Bug Compatibility
	Variable CPU Speed
	Slow (1MHz – 3.5MHz) Operation
	Full Speed (40MHz) Instruction Timing
	CPU Speed Fine-Tuning
	Direct Memory Access (DMA)

	Accessing memory between the 64KB and 1MB points
	C64-Style Memory Banking
	VIC-III ``ROM'' Banking
	VIC-III Display Address Translator
	The MAP instruction
	Direct Memory Access (DMA) Controller
	Flat Memory Access

	Accessing memory beyond the 1MB point
	Using the MAP instruction to access >1MB
	Flat-Memory Access

	Virtual 32-bit Register

	C64 CPU Memory Mapped Registers
	New CPU Memory Mapped Registers
	MEGA65 CPU Maths Acceleration Registers
	MEGA65 Hypervisor Mode
	Reset
	Entering / Exiting Hypervisor Mode
	Hypervisor Memory Layout
	Hypervisor Virtualisation Control Registers
	Programming for Hypervisor Mode

	45GS02 & 6502 Instruction Sets
	Addressing Modes
	Implied
	Accumulator
	Q Pseudo Register
	Immediate Mode
	Immediate Word Mode
	Base Page (Zero-Page) Mode
	Base Page (Zero-Page) Quad Mode
	Base Page (Zero-Page) X Indexed Mode
	Base Page (Zero-Page) Quad X Indexed Mode
	Base Page (Zero-Page) Y Indexed Mode
	Base Page (Zero-Page) Base Y Indexed Mode
	Base Page (Zero-Page) Z Indexed Mode
	Base Page (Zero-Page) Quad Z Indexed Mode
	Absolute Mode
	Absolute Quad Mode
	Absolute X Indexed Mode
	Absolute Quad X Indexed Mode
	Absolute Y Indexed Mode
	Absolute Quad Y Indexed Mode
	Absolute Z Indexed Mode
	Absolute Quad Z Indexed Mode
	Absolute Indirect Mode
	Absolute Indirect X-Indexed Mode
	Base Page Indirect X-Indexed Mode
	Base Page Quad Indirect X-Indexed Mode
	Base Page Indirect Y-Indexed Mode
	Base Page Quad Indirect Y-Indexed Mode
	Base Page Indirect Z-Indexed Mode
	Base Page Quad Indirect Z-Indexed Mode
	32-bit Base Page Indirect Z-Indexed Mode
	32-bit Base Page Indirect Quad Z-Indexed Mode
	32-bit Base Page Indirect Mode
	32-bit Base Page Indirect Mode
	Stack Relative Indirect, Indexed by Y
	Relative Addressing Mode
	Relative Word Addressing Mode

	6502 Instruction Set
	Opcode Map
	Instruction Timing
	Addressing Mode Table
	Official And Unintended Instructions

	4510 Instruction Set
	Opcode Map
	Instruction Timing
	Addressing Mode Table

	45GS02 Compound Instructions

	Developing System Programmes
	Introduction
	Flash Menu
	Format/FDISK Utility
	Keyboard Test Utility
	MEGA65 Configuration Utility
	Freeze Menu
	Freeze Menu Helper Programmes
	Hypervisor
	OpenROM

	MEGA65 Hypervisor Services
	General Services
	$00:$00 – Get Hypervisor Version
	$00:$38 – Get Current Error Code (geterrorcode)
	$00:$3A – Setup Transfer Area for Other Calls (setup_transfer_area)

	Disk/Storage Hypervisor Calls
	$00:$02 – Get Default Drive (SD card Partition)
	$00:$04 – Get Current Drive (SD card Partition)
	$00:$06 – Select Drive (SD card Partition)
	$00:$08 – NOT IMPLEMENTED Get Disk Size
	$00:$0A – NOT IMPLEMENTED Get Current Working Directory
	$00:$0C – Change Working Directory
	$00:$0E – NOT IMPLEMENTED Create Directory
	$00:$10 – NOT IMPLEMENTED Remove Directory
	$00:$12 – Open Directory (opendir)
	$00:$14 – Read Next Directory Entry (readdir)
	$00:$16 – Close Directory (closedir)
	$00:$18 – Open File (openfile)
	$00:$1A – Read From a File (readfile)
	$00:$1C – NOT IMPLEMENTED Write to a File (writefile)
	$00:$1E – NOT IMPLEMENTED Create File (mkfile)
	$00:$20 – Close a File (closefile)
	$00:$22 – Close All Open Files (closeall)
	$00:$24 – NOT IMPLEMENTED Seek to a Given Offset in a File (seekfile)
	$00:$26 – NOT IMPLEMENTED Delete a File (rmfile)
	$00:$28 – NOT IMPLEMENTED Get Information About a File (fstat)
	$00:$2A – NOT IMPLEMENTED Rename a File (rename)
	$00:$2C – NOT IMPLEMENTED Set time stamp of a file (filedate)
	$00:$2E – Set the current filename (setname)
	$00:$30 – Find first matching file (findfirst)
	$00:$32 – Find subsequent matching file (findnext)
	$00:$34 – Find matching file (one only) (findfile)
	$00:$36 – Load a File into Main Memory (loadfile)
	$00:$3C – Change Working Directory to Root Directory of Selected Partition
	$00:$3E – Load a File into Attic Memory (loadfile_attic)

	Disk Image Management
	$00:$40 – Attach a D81 Disk Image to Drive 0
	$00:$42 – Detach All D81 Disk Images
	$00:$44 – Write Enable All Currently Attached D81 Disk Images
	$00:$46 – Attach a D81 Disk Image to Drive 1

	Task and Process Management
	$00:$50 – NOT IMPLEMENTED Get Task List
	$00:$52 – NOT IMPLEMENTED Send Message to Another Task
	$00:$54 – NOT IMPLEMENTED Receive Messages From Other Tasks
	$00:$56 – NOT IMPLEMENTED Write Into Memory of Another Task
	$00:$58 – NOT IMPLEMENTED Read From Memory of Another Task
	$00:$60 – NOT IMPLEMENTED Terminate Another Task
	$00:$62 – NOT IMPLEMENTED Create a Native MEGA65 Task
	$00:$64 – NOT IMPLEMENTED Load File Into Task
	$00:$66 – NOT IMPLEMENTED Create a C64-Mode Task
	$00:$68 – NOT IMPLEMENTED Create a C65-Mode Task
	$00:$6A – NOT IMPLEMENTED Exit and Switch to Another Task
	$00:$6C – NOT IMPLEMENTED Context-Switch to Another Task
	$00:$6E – NOT IMPLEMENTED Exit This Task
	$00:$70 – Toggle Write Protection of ROM Area
	$00:$72 – Toggle 4510 vs 6502 Processor Mode
	$00:$74 – Get current 4510 memory MAPping
	$00:$76 – Set 4510 memory MAPping
	$00:$7C – Write Character to Serial Monitor/Matrix Mode Interface
	$00:$7E – Reset MEGA65
	$01:$00 – Enable Write Protection of ROM Area
	$01:$02 – Disable Write Protection of ROM Area

	System Partition & Freezing
	$02:$00 – Read System Config Sector Into Memory
	$02:$02 – Write System Config Sector From Memory
	$02:$04 – Apply System Config Sector Current Loaded Into Memory
	$02:$06 – Set DMAgic Revision Based On Loaded ROM
	$02:$10 – Locate First Sector of Freeze Slot
	$02:$12 – Unfreeze From Freeze Slot
	$02:$14 – Read Freeze Region List
	$02:$16 – Get Number of Freeze Slots
	$03:$XX – Write Character to Serial Monitor/Matrix Mode Interface

	Secure Mode
	$11:$XX – Request Enter Secure Mode
	$12:$XX – Request Exit Secure Mode
	$32:$XX – DEPRECATED Set Protected Hardware Configuration
	$3F:$XX – Freeze Self

	Machine Language Monitor
	Introduction
	C65 ROM Standard Machine Language Monitor
	Table of C65 ROM Standard Monitor Commands
	Calling the Monitor
	addresses and numbers
	D : DISASSEMBLE
	M : MEMORY

	Enhanced Machine Language Monitor
	Table of MEGA65 Enhanced Monitor Commands
	Calling the Monitor
	addresses and numbers
	Assembler
	A : ASSEMBLE
	B : BITMAPS

	MEGA65 Matrix Mode Monitor Interface
	Table of Matrix Mode Monitor Commands
	Calling the Monitor
	# : Hypervisor trap enable/disable
	+ : Set Serial Interface UART Divisor
	@ : CPUMEMORY
	? or H : HELP
	B : BREAKPOINT
	D : DISASSEMBLE
	E : FLAGWATCH
	F : FILL
	G : SETPC
	I : INTERRUPTS
	J : DEBUGMON
	L : LOADMEMORY
	M : MEMORY
	R : REGISTERS
	S : SETMEMORY
	T : TRACE
	W : WATCHPOINT
	Z : CPUHISTORY

	F018-Compatible Direct Memory Access (DMA) Controller
	F018A/B DMA Jobs
	F018 DMA Job List Format
	F018 11 byte DMA List Structure
	F018B 12 byte DMA List Structure
	Performing Simple DMA Operations

	MEGA65 Enhanced DMA Jobs
	Texture Scaling and Line Drawing
	Audio DMA
	Sample Address Management
	Sample Playback frequency and Volume
	Pure Sine Wave
	Sample playback control

	F018 ``DMAgic'' DMA Controller
	MEGA65 DMA Controller Extensions
	Unimplemented Functionality

	VIC-IV Video Interface Controller
	Features
	VIC-II/III/IV Register Access Control
	Detecting VIC-II/III/IV

	Video Output Formats, Timing and Compatibility
	Integrated Marvellous Digital Hookup™(IMDH™) Digital Video Output
	Connecting to Naughty Proprietary Digital Video Standards

	Frame Timing
	Physical and Logical Rasters
	Bad Lines

	Memory Interface
	Relocating Screen Memory
	Relocating Character Generator Data
	Relocating Colour / Attribute RAM
	Relocating Sprite Pointers and Images

	Hot Registers
	New Modes
	Why the new VIC-IV modes are Character and Bitmap modes, not Bitplane modes
	Displaying more than 256 unique characters via "Super-Extended Attribute Mode"
	Using Super-Extended Attribute Mode
	Full-Colour (256 colours per character) Text Mode (FCM)
	Nibble-colour (16 colours per character) Text Mode (NCM)
	Alpha-Blending / Anti-Aliasing
	Flipping Characters
	Variable Width Fonts
	Raster Re-write Buffer

	Sprites
	VIC-II/III Sprite Control
	Extended Sprite Image Sets
	Variable Sprite Size
	Variable Sprite Resolution
	Sprite Palette Bank
	Full-Colour Sprite Mode

	VIC-II / C64 Registers
	VIC-III / C65 Registers
	VIC-IV / MEGA65 Specific Registers

	6526 Complex Interface Adaptor (CIA) Registers
	CIA 6526 Registers
	CIA 6526 Hypervisor Registers

	4551 UART, GPIO and Utility Controller
	C65 6551 UART Registers
	4551 General Purpose I/O & Miscellaneous Interface Registers

	45E100 Fast Ethernet Controller
	Overview
	Differences to the RR-NET and similar solutions
	Theory of Operation: Receiving Frames
	Accessing the Ethernet Frame Buffers
	Theory of Operation: Sending Frames
	Advanced Features
	Broadcast and Multicast Traffic and Promiscuous Mode
	Debugging and Diagnosis Features

	Memory Mapped Registers
	COMMAND register values

	Example Programs

	45IO27 Multi-Function I/O Controller
	Overview
	F011-compatible Floppy Controller
	Multiple Drive Support
	Buffered Sector Operations
	Reading Sectors from a Disk
	Track Auto-Tune Function Deprecated
	Sector Skew and Target Any Mode
	Disk Layout and 1581 Logical Sectors
	FD2000 Disks
	High-Density and Variable-Density Disks
	Track Information Blocks
	Formatting Disks
	Write Pre-Compensation
	Buffered Sector Writing
	F011 Floppy Controller Registers

	SD card Controller and F011 Virtualisation Functions
	SD card Based Disk Image Access
	F011 Virtualisation
	Dual-Bus SD card Controller
	Write Gate
	Fill Mode
	Selecting Among Multiple SD cards
	SD Controller Command Table

	Touch Panel Interface
	Audio Support Functions
	Miscellaneous I/O Functions

	Reference Tables
	Units of Storage
	Base Conversion

	Flashing the FPGAs and CPLDs in the MEGA65
	Suggested PC specifications
	Warning
	Installing Vivado
	Installing the FTDI drivers
	Linux drivers
	Windows drivers

	Flashing the main FPGA using Vivado
	Flashing the CPLD in the MEGA65's Keyboard with Lattice Diamond
	Flashing the MAX10 FPGA on the MEGA65's Mainboard with INTEL QUARTUS

	Trouble shooting
	Hardware
	No lights when powering on

	Vivado
	RAM requirements

	mega65_ftp
	Missing Library

	Model Specific Features
	Detecting MEGA65 Models
	MEGA65 Desktop Computer, Revision 3 onwards
	MEGA65 Desktop Computer, Revision 2
	MEGAphone Handheld, Revisions 1 and 2
	Nexys4 DDR FPGA Board

	Schematics
	MEGA65 R3 Schematics
	MEGA65 R2 Schematics

	Supporters & Donors
	Organisations
	Contributors
	Supporters

	INDEX

