

The Skyles Electric Works 1541
FLASH! dashed off with the gold at
the Computer Olympics here.

The 1541 FLASH! loaded and saved
programs and files three times faster
than an unenhanced Commodore

7] 1541 disk drive could.
...faster tha_n Faster than any other
any other disk disk drive with com-
drive o patible disk format.

Three times faster!
The device delighted the home
crowd, which watched the 1541
FLASH! set a meetrecord, and leave
its competition in the dust.

Once installed, the 1541 FLASH! is
transparent. Computer operations
all remain unaffected as it speeds up
every disk-related function. The
FLASH! is a permanent installation
with both a software (ROM) and a
hardware component. Through key-
board commands or a hardware
switch, you can even return to the
old, slow loading method—if you
really want to.

And there is nothing new to learn
for the FLASH! No special tricks or

FLASH!
Gets the Gold

€
at the Computer Olympics

techniques. Once it’s in, just watch
itgo.

But if you're really serious about
programming, the 1541 FLASH! is a
gold mine. The manual will show you
how to write software allowing data
transfer to and from the 1541 disk
drive at speeds up to 10 times the
normal.

For programs that usually load
witha “ ‘**’ 8,1” command, just hit
Shift/Run-Stop. A spreadsheet pro-
gram like BUSICALC 3 then loads
in about 25 seconds.

The 1541 FLASH! even adds 21 ex-
tra commands for the Commodore
64 user. Some of these include edit-
ing, programming and loading com-
mands, as well as “DOS Wedge”
commands. You can ignore all these
commands, though, and just enjoy
the rapid disk operations.

it wowed the crowd at the Com-
puter Olympics. Once you see its
sheer speed, you'll know why. Call
its coach, Skyles Electric Works, to
place your order or to get more info.

1541 FLASH!, an add-on assembly, for the Commodore 64/1541 costs only $89.95.

Skyles Electric Works
231E South Whisman Road
Mountain View, CA 94041

(415) 965-1735

Availabie from your local
Commodore 64 dealer or
call 1-800-227-9998.

1541 FLASH! is a trademark of Skyles Electric Works.
Commodore 64 is a trademark of Commodore.

N _J o FNANYA N A TN -
N _J 0 NSRRI N IS N
N A AN AR NER \ W N VEE
N A N AV NEA NN mEm

Expand your Atari® or Commodore®
computer with Digital Devices
U ® PRINT. We make it simple to add
any printer you choose. U ® PRINT
interfaces feature industry standard
Centronics parallel connectors to hook
up an Epson, Star, NEC, C.ltoh,
Okidata, or any other printer.

¢ EXTRA SERIAL PORT FOR DAISY
m CHAINING OTHER PERIPHERALS.

* COMPATIBLE WITH ALL ATARI
HARDWARE AND SOFTWARE.
U ¢ PRINT MODEL A

¢ EMULATION OF COMMODORE
PRINTERS, INCLUDING GRAPHICS.

c= o COMPATIBLE WITH ALL
COMMODORE HARDWARE AND
SOFTWARE.

U e PRINT MODEL C

Compact, easy to install, and
costing only $89.95, U-PRINT gives
you a choice!

PRINTER ACCESSORIES FROM

DIGITAL DEVICES D)

T.M,

PRINTER | | EIVE;

Ever get stuck while your printer
catches up? The PRINTER BUFFER
eliminates waiting by rapidly accepting
data in memory, then relaying it at the
printer’s rate, freeing the computer for
your next job. User-upgradable memory
(16k to 64k) allows up to 32 pages of
data to be stored.

<zZ>»

MODEL
P16 16K $119.95

PRINTER || [V

MODEL
P64 64K $179.95

M= Co20Nn ~2Z»
M- Z -2

Compatible with U-PRINT and
other industry-standard hardware, the
PRINTER BUFFER is the low-cost way
to make your computer even more
productive!

Quality Products Made In USA From

DIGITAL DEVICES d
Corporation

430 Tenth Street, Suite N205 Atlanta, Georgia 30318
In Georgia (404) 872-4430; Outside Georgia (800) 554-4898 ©1984

* ATARI AND COMMODORE ARE REGISTERED TRADEMARKS OF ATARI, INC. AND COMMODORE ELECTRONICS LTD. RESPECTIVELY.

From the editors of $14 .95

A.N.A.L.O.G. Computing

EINEL_LLS

OMPENDIUM

The best ATARI® Home Computer Programs from the first ten issues of A.N.A.L.O.G. Computing Magazine.

The ANALOG Compendium is available at selected book and computer stores, oryou can order itdirect. Send
acheck or money order for $14.95 + $2 shipping and handling to: ANALOG Compendium, P.O. Box 615, Holmes,
PA 19043.

Or you can order by phone with MasterCard or VISA_ Call toll free: 1-800-345-8112 (in PA, call
1-800-662-2444). For orders outside the U.S., add an additional $5 air mail, $2 surface.

MicroMotion

MasterFORTH

It's here — the next generation
of MicroMotion Forth.

o Meefts all provisions, extensions and experimental
proposals of the FORTH-83 Intemational Standard.

o Uses the host operating system file structure (APPLE
DOS 3.3 & CP/M 2X).

e Built-in micro-assembier with numeric local labels.

o Afull screen editoris provided which includes 16 x
64 format, can push & pop more than one line,
user definable controls, upper/lower case key-
board entry, ACOPY utility moves screens within &
between lines, line stack, redefinable controi
keys, and search & replace commands.

e Includes all file primitives described in Kernigan
and Plauger's Software Tools.

e Theinput and output streams are fully redirectable.

o The editor, assemblerand screen copy utilities are
provided as relocatable object modules. They
are brought info the dictionary on demand and
may be released with a single command.

e Many key nucleus commands are vectored. Error
handling, number parsing, keyboard fransiation
and so on can be redefined as needed by user
programs. They are automatically returned to
their previous definitions when the program is
forgotten.

e The string-handling package is the finest and
most complete available.

e Alisting of the nucleus is provided as part of the
documentation.

e The language implementation exactly matches

the one described in FORTH TOOLS, by Anderson

& Tracy. This 200 page tutorial and reference

manua! is included with MasterFORTH.

Floating Point & HIRES options available.

Available for APPLE 1/ 11+/lle & CP/M 2 .x users.

MasterFORTH - $100.00. FP & HIRES -54000 each

Publications

e FORTH TOOLS ~ $20.00

e 83 International Standard - $15.00

e FORTH-83 Source Listing 6502, 8080, 8086 -
$20.00 each.

— Contact:

MicroMotion
12077 Wilshire Blvd., Ste. 506
Los Angeles, CA 90025

(213) 821-4340

No. 76 - October 1984

bl —

Fast Bit Map Plotting. This is the first in a multi-part
series that will discuss the theory of plotting hi-resolution
points, lines and other picture elements in the
Commodore 64 — and provide a collection of assembly
level subroutines to perform these functions. The
subroutines, which may be called from BASIC, provide a
very fast and efficient method of ‘unlocking’ the hi-
resolution capabilities of the Cé4. The second article in
the series will add the routines necessary to draw lines
between points. These will allow the C64 programmer to
generate USR calls that are equivalent to the Applesoft
HPLOT routines, and will let the C64 user convert pro-
grams written for the Apple, such as ‘Plotting Binary
Trees’ in this issue, to the Cé4.

Plotting Binary Trees — Binary trees are a form of
mathematical graph that display interesting properties.
The short program provided calculates all of the informa-
tion required to plot these binary trees on a micro-
computer display. The user may specify the parameters
that govern the ‘growth' of the tree and observe the results
in a very graphic fashion. While the plotting portion of the
program is specific to Applesoft, relying on the HPLOT
function, it should be convertable to almost any other
micro.

Database Management Systems. Approximately
42% of the MICRO readers reported that they use their
systems for database management. This article explores
the significant features of database managers [DBMs) and
can be used as a guide to selecting the appropriate package
for your applications on your computer. Part 1 of the two
part article looks at the DBM features in general and is
applicable to all microcomputers. Part 2, scheduled to
appear in next month’s issue, applies the concepts
developed in Part 1 to evaluate a large number of the
DBMs available for the Commodore 64.

BASIC/ML Data Transfer. Many computer problems
are best solved by combining the ease of BASIC with the
speed of machine language programming. Unfortunately,
BASIC is not as supportive of ML data as it might be. Sure,
you can PEEK and POKE all day, but then you are apt to
lose all of the efficiency and speed you set out to achieve.
Four techniques are presented to permit BASIC and ML
data to work together.

A Very Moving Message. Sometimes an effect that
looks simple can actually be the result of very complex
operations. This article includes a program that allows a
message to be scrolled across the screen of the
Commodore 64 while other activities are going on.
Simple? Not really. As the article shows, it requires a use
of interrupts, split-screen capability and smooth scrolling
to make it work. Each of these concepts is explained and
the resulting demonstration program makes them clear.
The ‘Moving Message' routines can be added to your own
programs to make them look attractive, professional and
make them easier to use.

MICRO

Publisher/Editor-in-Chief
Robert M. Tripp

Associate Publisher
Cindy Kocher

Production Manager
Jennifer Collins

Technical Editor
Mark S. Morano

Technical Editor
Mike Rowe

Advertising Manager
William G. York

Circulation Manager
Linda Hensdill

Office Manager
Pauline Giard

Shipping Director
Marie Ann Wessinger

Comptroller
Donna M. Tripp

Accounting
Louise Ryan

Contributing Editors
Cornelis Bongers
Phil Daley

David Maimberg
John Steiner

Jim Strasma

Paul Swanson
Richard C. Vile, Jr.
Loren Wright

/ANICRO

for the Serious Computerist

OCTOBER

1984

Luther K. Branting

Plotting Binary Trees

Binary Trees are an interesting
form of mathematical graph.
Here is a program to generate
and display them.

Loren W. Wright

Fast Bit Map Piotting
for the Commodore 64

Part 1 of a series of assembly
level routines to support fast hi-
resolution bit map plotting on
the Commodore 64.

Machine Language
I Loops

Chris Williams

Machine language loops are
explored — and some common
misconceptions about them
exposed.

MICRO is published monthly by:

MICRO
P.O. Box 6502
Chelmsford, MA 01824

Second Class postage paid at:
Chelmsford, MA 01824 and additional
mailing offices.
USPS Publication Number: 483470.
ISSN: 0271-9002.
Send subscriptions, change of address,
USPS Form 3579, requests for back issues
and all othe fulfillment questions to:
MICRO
P.O.Box 6502
Chelmsford, MA 01824
or call 617/256-3649.

interactive Input

2 () vty

Mike Dougherty

FORTH screens are presented
that make your application
programs easier to use.

Database

Sanjiva K. Nath

Management Systems

A detailed discussion of the
important features to ook for
in selecting a database
management package.

Subscription Rates: (per year):

U.S. $24.00 or $42.00 for two years
Foreign surface mail: $27.00

Air mail: Europe $42.00

Mexico, Gentral America, Middle East,
North Africa, Central Africa $48.00
South America, South Africa, Far East,
Australia, New Zealand $72.00

Copyright © 1984 by MICRO.
All Rights Reserved.

BASICML Data

3 O Transfer

Mark Jay' Johanson

Four techniques are explored
and implemented to exchange
data between BASIC and
machine level programs.

Rational Joystick
Interfacing

Charles Engelsher

MICRO

A “build-it-yourself” project that
develops an Analog/Digital
capability for the Apple while
exploring A/D techniques.

No. 76 - October 1984

45

68000 p-System
BASIC

Paul Lamar &
Charmaine Lindsay

An examination of major
features of p-System BASIC,
including detailed instructions
for converting to p-System from
Microsoft BASIC.

50

Exec File Utilities
N. D Greene

A collection of eight useful exec
utilities for the Apple that make
life a little easier.

53

Expanding the
Commodore 1541 Disk
Drive Part 1

Michael G. Peltier

Part 1 of a series showing how
to expand the capabilities of the
1541 disk drive used with the
Commodore 64 and VIC-20.

55

A Very Moving
Message

lan Adam

Split screen, fine scrolling and
interrupt techingues are
combined in a useful utility for
the Commodore 64.

60

Interface Clinic
A Mystery !

Ralph Tenny

Problems encountered in using
a Voltage-to-Frequency
Converter on a Commodore 64
are investigated.

65

Quick Cipher Routine

Art Matheny

A method and program to
protect your ‘public data’ using
an random number based
encryption scheme that will
work on any micro.

Departments

59 Feedback

[PUNPR.

b B e ko

R F Pt

3 Highlights
6 Editorial 68 Advertising Index
10 Survey Results 68 Coming Next Month

No. 76 - October 1984 MICRO

— editorial

Autumn is my season for reflection.

Is it possible that MICRO started publication seven
years ago and is now starting its eighth year? Have we
changed much since that first issue in October 19772 Have
we accomplished our original goals? Wondering, 1 went
back to the first issue and reread my editorial. I think that
you might enjoy reading it too, in its original published
form.

Is the 6502 still number one? With the popularity of the
Apple II, Commodore 64, VIC-20, Atari and other
6502-based systems, there is probably no argument now,
but that was not the case back then. Although newer chips
are making their mark, the 6502 continues to be the
leader.

Have we attracted "'individuals who are industrious,
able, cooperative, adventurous and communicative’’ as
readers? Examine the results of the June 1984 survey and
judge for yourself.

If MICRO is the '‘most useful journal'’ for you, then
""We're Still Number One!"’

rngm——

On The Cover

PHOTO LIBRARY CATALOG

FLAGS: © 2 7 8 78 Bi

SUBJECT: TRAVEL, HISTORIC, TRAIMS.
DESCRIPTION PHOTO W BY DATE FRHT
SANTE F =z -3 kW 37 3310
PIViEeThn wy B8383°3 |H 8735/8% $2IN
MT. RUSHMORE B-£563-8 GF 5-H9.,83 324
RIVERBOAT K-€502°5 MR 18,1582 4x%
BIG SUR HN-€58%°-3 MG 483,03 35MM
HR. FOTo S-6809-7 HH 1.81,82 B W
JEocHIP iz;ggszs HH 1i5i2/§§ 435
CREUAEPARD R& 1-i341-9 QY 11743782 2200
TREES C-0iB2-1 8S 499,84 334
SOLDIER C-g102-2 BE 4709783 3x1
HONKEY A-£562-3 AK 2,17,84 B U
F13H A-6562-8 AKX 2.15/84 BoU

When someone mentions ‘Data Base Management', most
of us probably think in terms of business computer-
oriented materials — mailing lists, inventory control and
so forth. DBM's can be used for many personal uses as
well. The cover shows a collection of photographic slides
that can be encoded and selected via a DBM. Other
personal examples could include large record and tape

collections, hobby classification systems and more.

-’/:.'/)4-(%) , 2,7

We're Number One !
An Editorial

We're number one in microcamputer systems. With over twelve thousand KIM-1
microcamputers in the filed and a thousand per month being ordered, plus a
good number of Apple I and Apple II systems, plus a variety of OSI units,
Plus the Jolts, Data Handlers, and other 6502-based systems, plus the huge
numbers of PETs and Microminds that have been ordered, plus a lot of home-
brew 6502 systems - it all adds up to a tremendous number of 6502-based
microcamputer systems in use throughout the world. Adding to this number
are the one and one-half million 650x chips purchased by Atari for some of
their games. We've cane a long way in the past year.

We're number one in microprocessor power. Microchess for the KIM-1 took
1.1K and for the S080A took about 2.5K. Of thirty-one BASICs tested and
reported in Kilobaud, the four 6502 versions placed in the top five spots,
yielding only second place to the Z-80 running at 4 MHz. The 6502's many
addressing modes make it very efficient and easy to program.

We're number one in user participation. Maybe there is some process of
"natural selection" which attracts individuals who are industrious, able,
cooperative, adventurous and communicative to the 6502. While users of
other microprocessor chips have been "spoonfed" via company supported
user notes and user libraries, the 6502 users have been "doing their own
thing” as evidenced by the activity level of many local 6502 groups and
the success of the KIM-1/6502 User Notes.

We're number one since this is our first issue. We would like to really
become the most useful journal in the whole microcamputer field, not the
largest, just the best. We are undertaking the venture with the conviction
that there is a need for a journal to help bring all of the separate parts
of the 6502 world together and with the belief that 6502 users will each
do what they can to support the effort.

6 MICRO

No. 76 - October 1984

by Luther K. Branting

Denver, Colorado

Trees are a form of graph that play a
special role in computer science. Most
artificial intelligence is based upon
tree-like decision paths and trees are
used to model such diverse natural
phenomena as river basins, languages
and plant growth. Graphs of trees also
form an endless variety of fascinating
and beautiful patterns.

A tree is a graph consisting of a
vertex called a root and one or more
line segments branching from the root.
Additional branchings may occur from
the end points of each branch. A binary
tree is a special form of tree in which
the root has exactly two branches and
each of the branches, in turn, has
exactly two more branches. With each
additional branching, or generation,
the number of end points doubles.

Figure 1 shows a two-generation
binary tree. A and B are the first
generation branches. C, D, E and F are
second-generation branches. In this
tree, each left branch is inclined at an
identical angle, LA, from the previous
branch. Similarly, RA is the angle of
each right branch. All the branches are
the same length.

Plofling Binary Trees

RRAABRRIRDARRARINAN

A Program to Plot an

Interesting Class of Graphs:
Binary Trees

2 o

Figure 2 shows the same tree except
that now each left branch is only .6
times as long as the previous branch.

Figure 2

The ratio of each branch to the previous
branch is called the growth factor of the
branch. In general, each tree of this
type can be specified by giving the left
and right branch angles, the left and
right growth factors, the length of the
first two branches and the number of
times the branching is to occur.

The program listed below prompts
the user for the number of generations
of the tree, left and right branch angles
and growth factors and the scale, a

Root

Figure 1

"~

number which is multiplied by the left
and right growth factors to obtain the
lengths of the initial left and right
branches. After the tree is drawn, press-
ing any key will clear the screen and
present the user with the options of
plotting a new tree, sending the tree
just plotted out to a printer, or quitting.

As each new generation is drawn,
the arrays X1(i} and Y1(i) hold the X
and Y coordinates of the end point of
the ith branch of the existing tree. A{i]
holds the angle of the ith branch and
L(i] holds its length. Similarly, X2, Y2,

.A2 and L2 contain the coordinates,

angle and length of each new branch
being drawn. After each generation is
drawn, the values in X2, Y2, A2 and L2
are transferred to X1, Y1, Al and L1 so
that the end points of the current
branches can be used as the starting
points of the new generation of
branches.

When starting out, it is best to use
growth factors between 1 and 0.5.
Angles that are the result of dividing
360 by an integer, like 30, 45, 60 and 72
degrees, seem to produce the most at-
tractive trees. There seems to be an
affinity between angles that are a
multiple of 30 degrees and the growth
factors .618 and 1, and between angles
that are a multiple of 45 degrees and the
growth factors .707 and 1. In the in-
terest of speed and simplicity, the
program does not proportion the tree
being drawn so that it fits within the
screen. It is up to the user to select an
appropriate scale. If the tree is micro-
scopic, try a larger scale. If the tree
falls outside qof the screen, the program
prompts for a smaller scale.

By plotting a series of trees that vary
in their angles and growth factors only
slightly, one can create the illusion of
flowers opening or crystals growing.
Some examples of trees are shown
below. Note that in Figure 3, the end
points of the tree are converging on a

No. 76 - October 1984

MICRO

T R S PTTTC

et R

R S

AR s

s R TR 5

fractal curve similar to the Koch curve
described in Plotting Fractals on Your
Computer, Micro No. 70, March 1984.

The Program

The calculation portion of this program
will work in almost any BASIC. The
plotting assumes the Apple II routines
to HOME (clear screen and home
cursor|, VTAB and HTAB [to position
the cursor] and HPLOT |to plot a line
between two points). If your BASIC
does not have these routines, you must
supply them. Commodore 64 owners:
Loren Wright's Fast Bit Map Plotting,
appearing in this issue, and Fast Line

LEFT ANGLE=
RIGHT ANGLE=

144
144

LEFT GROWTH FACTOR=
RIGHT GROWTH FACTOR=

.618
.618

Plotting, appearing in next issue, will SCALE= 125
provide the mnecessary routines to
implement the Binary Tree Plotting.
Figure 3
0]
1 REM *#* BINARY TREE PLOTTING PROGRAM 229 REM **x PLOT RIGHT BRANCH
5 ONERR GOTO 6@@: 239 HPLOT X1(I),Y1(I) TO X2(RI),Y2(RI)
REM *%x IF TREE IS TOO LARGE TO FIT ON THE 239 REM *** CALCULATE X AND Y COORDIATES OF END
SCREEN, PROMPT FOR A LARGER SCALE POINT OF LEFT BRANCH 0]
1¢ DIM X1(128): DIM Y1(128): DIM X2(128): 248 X2(LI) = X1(I) + SIN (A2(LI)) * L2(LI)
DIM Y2(128) 25¢ Y2(LI) = Y1(I) + COS (A2(LI)) * L2(LI)
2@ DIM A1(128): DIM A2(128): DIM L1(128): 259 REM *x* PLOT LEFT BRANCH
DIM 12(128) 26@ HPLOT X1(I),Y1(I) TO X2(LI),Y2(LI) @)
3¢ HOME : INPUT "GENERATIONS?(RANGE1-7) ;G 27¢ NEXT I
4p IFG> 70RG < 1 THEN GOTO 3¢ 279 REM *x* SHIFT ARRAY VALUES FOR CALCULATION OF
5¢ INPUT "LEFT ANGLE? ";LA NEXT GENERATION o
6@ INPUT "RIGHT ANGLE? ";RA 28¢ FOR I = @ TO SIZE - 1
69 REM *** CONVERT FROM DEGREES TO RADIANS 29¢ X1(I) = X2(I):Y1(I) = Y2(I)
70 LA = LA * 3.14159266 / 180: 30@ L1(I) = L2(I):A1(I) = A2(I)
RA = RA * 3.14159266 / 180 319 NEXT I @)
8¢ INPUT "LEFT GROWTH FACTOR? ";LGF 320 NEXT A
9¢ INPUT "RIGHT GROWTH FACTOR? ";RGF 329 REM *** WAIT FOR A KEY TO BE PRESSED,
1¢@ INPUT "SCALE? ";SCL THEN CLEAR SCREEN o
11¢ HGR2 : REM *¥* CLEAR GRAPHICS SCREEN 33¢ GET A$: TEXT : HOME
119 REM **x INITIALIZE STARTING POINT TO SLIGHTLY 34% PRINT “INPUT:"
ABOVE THE CENTER OF THE SCREEN 35¢ VTAB 6: HTAB 1@: PRINT "Q—TO QUIT"
120 Y1(@) = 86:X1(@) = 140 36@ VTAB 1¢: HTAB 1¢: PRINT "P—TO PRINT TREE" (o)
148 L1(@) = SCL:A1(@) = @ 365 VTAB 14: HTAB 1¢: PRINT "N—FOR NEW TREE"
15¢ SIZE = 1 37¢ CGET A$: IF A$ = "P" THEN GOTO 49¢
16¢ FOR A = 1 TO G 375 1IF A$ = "N" THEN HOME : GOTO 3¢ o
17¢ SIZE = SIZE * 2 38¢ IF A$ < > Q" THEN GOTO 330
171 REM **x SIZE IS THE NUMBER OF END POINTS OF 399 END
THE GENERATION BEING DRAWN 399 REM *xx PROVIDE APPROPRIATE COMMAND FOR YOUR
189 FOR I = @ TO SIZE /2 - 1 PRINTER 0]
185 RI = 2 % I:LI =2 * 1+ 1 4p@ PR# 1: PRINT CHR$ (9);"GDL"
186 REM *** RI IS THE INDEX OF THE RIGHT BRANCH; 41¢ PRINT "LEFT ANGLE= ";LA * 180 / 3.14159266
LI IS THE INDEX OF THE LEFT 42¢ PRINT "RIGHT ANGLE= ";RA * 180 / 3.14159266
189 REM *** CALCULATE ANGLES OF RIGHT AND LEFT 43¢ PRINT "LEFT GROWTH FACTOR= ";LGF
BRANCHES 44@ PRINT "RIGHT GROWTH FACTOR= ";RGF
19¢ A2(RI) = A1(I) + RA:A2(LI) = A1(I) - LA 45¢ PRINT "SCALE= ";SCL
199 REM *** CALCULATE LENGTH OF RIGHT AND LEFT 46@ PRH @ o
BRANCHES 47¢ HOME : GOTO 340
20¢ L2(RI) = L1(I) * RGF:L2(LI) = L1(I) * LGF 6@@ TEXT : HOME :
209 REM **x CALCULATE X AND Y COORDINATES OF END PRINT "TREE PARTIALLY OFF SCREEN.":
POINT OF RIGHT BRANCH PRINT "TRY AGAIN USING SMALLER SCALE": O
219 X2(RI) = X1(I) + SIN (A2(RI)) * L2(RI) GOTO 109
220 Y2(RI) = Y1(I) + COS (A2(RI)) * L2(RI)
8 MICRO No. 76 - October 1984

]
L | | B %__L~4 r_q__#
{ | { |
LEFT ANGLE= 90 LEFT ANGLE= 72
RIGHT ANGLE= 92 RIGHT ANGLE= 72
LEFT GROWTH FACTOR= .727 LEFT GROWTH FACTOR= .618
RIGHT GROWTH FACTOR= . 7@7 RIGHT GROWTH FACTOR= .€18
SCALE= 3@ SCALE= 109
A

LEFT ANGLE= 45 LEFT ANGLE= 72 H
RIGHT ANGLE= 135 RIGHT ANGLE= 36 -
LEFT GROWTH FACTOR= .707 LEFT GROWTH FACTOR= 1
RIGHT GROWTH FACTOR= .707 RIGHT GROWTH FACTOR= .618
SCALE= 6@ SCALE= 30
LEFT ANGLE= 122 LEFT ANGLE= 92
RIGHT ANGLE= 120 RIGHT ANGLE= 3@
LEFT GROWTH FACTOR= 1 LEFT GROWTH FACTOR= . 7Q@7
RIGHT GROWTH FACTOR= 1 RIGHT GROWTH FACTOR= 1
SCALE= 25 SCALE= 25

Additional Examples of Binary Tree Plotting

No. 76 - October 1984 MICRO 9

Portrait of a Serious Computerist
Results of the June 1984 MICRO Survey

What 1s your age?
33% AGE 3¢-39
25 AGE 48-49
20 AGE 2¢-29
14 AGE 5@-59
5 AGE 6@+
4 AGE -19

What 1s your occupation?
194 Engineer
19 Other
17 Professor/teacher
16 Programmer/Analyst
11 Techniclan

6 Student

6 Self Employed

3 Lawyer

2 Doctor

1 Business person

What 1s your formal educational level?
34% Bachelor's degree
33 Advanced degree
16 High school graduate
14 Associate degree
2 Fewer than 12 years
2 Para-professional degree

What is your annual household income before taxes?
24 $50, 000+
19 $40, 800-49,999
17 $20,000-29,999
11 Less than $2¢,0¢0

What microcomputer(s) do you use?
43% Apple II

38 Other

37 Commodore 64

14 Atari

11 VIC

19 PET/CBM

8 0S1

6 AIM

6 KIM

5 Macintosn

5 SYM

4 TRS-8@ Color Computer
4 Other 65@2

4 Other 68¢9

Where do you use the above computers?

94% Home

51 Work

11 School

3 Other

Approximately how much have you spent on your
computer hardware so far?

2% $1000-1999

19 $2000-2999

16 $30008-3999

13 $5009-9999

12 $40080-4999

7 $500-999

7 $18, 000+

2 -$500

Approximately how much do you plan to spend on
your computer hardware in the next year?

345 $500-999

27 -$500

23 $10¢¢-1999
6 $2¢90-2999
2 $300¢-3999
2 $4003-4999
2 $5¢9¢-9999
2 $10, 400+

What additions have you made to your basic system?
82% Disk drives
81 Printer
52 Modem
51 Parallel interface
41 RAM cards
34 Serial interface
19 789 card
15 Graphics Tablet
4 Hard disk
3 68@@@ card
2 68@9 card

What additional hardware changes or upgrades do you
plen to make to your system?
26% Disk drives
25 Modem
23 Printer
13 68@@@ card
13 Hard disk
13 Graphics Tablet
10 RAM cards
7 788 card
5 Serial interface
4 Parallel interface
1 6889 card

Have you ever constructed a computer, computer board,
or major computer equipment?

56% No

41 Yes

Have you switched from one computer to another?
53% No
43 Yes

10

MICRO

No. 76 - October 1984

Approximately how much have you spent on your
computer software so far?

30% $500-999

28 $200-499

15 ~-$209¢
14 $1008-1999
12 $2000+

Approximately how much do you expect to spend on
computer software in the next year?

39% $20@-499

34 -3$20¢

17 $50@-999

5 $1000-1999

3 32000+

How do you use your computer equipment?
74% Word processing

66 Hobby

57 Software development
52 Entertainment

49 Business

42 Database management
48 Educations

35 Telecommunications
35 Graphics

19 Hardware development
11 Other

What languages do you use?

96% BASIC

72 65@2 Assembler
30 Pascal
26 Forth

16 Fortran

15 Other

13 10GO

11 C

9 680@@ Assembler
7 COBOL

5 6809 Assembler
3 APL

3 LISP

If you write programs, what type of programming do
you spend most of your time developing?
429 Software development utilities

37 Other
29 Business applications
7 Games

How would you rate your present microcomputer

knowledge:
Software:
51% Intermediate
oA Advanced
5 Elementary
Hardware:

53% Intermediate
28 Advanced
18 Elementary

Is MICRQ:
55% Just right
31 Not technical enough
4 Too technical

A Few Notes

The 1984 MICRO Survey Form was printed as a self-mailer
in the June 1984 issue. The results were converted to
computer-readable form using an Apple II and an Apple
Graphics Tablet. We have presented here the results that
we felt would be of interest to our readers. We have sorted
each question so that the answers are ranked in descending
order to make the results easier to follow. All figures are a
percentage of the total responses to each question. Since
the results are rounded, they may not always equal exactly
100%. Some may total less than 100% if some readers did
not answer the question. Other questions, in which
reagers might make several choices, will add up to over
100%. For example, ‘‘What microcomputer(s|] do you
use?’’ responses total 195%, indicating that MICRO
readers use, on the average, two (2) microcomputers.

Some Significant Results

Some of the results that I find particularly significant in
characterizing the MICRO reader are:

age (76% are 30 or older|

education level (75% have a Bachelor or Advanced
degree}

use of microcomputers at work (51%] as well as at
home [94%)

amount invested {48% have spent over $3000)

programming knowledge (95% rate themselves as
intermediate or advanced)

programming languages (72% use 6502 assembler,
30% Pascal, 26% FORTH)

hardware skills (41% have built major computer
projects, 81% rate themselves intermediate or
advanced|

This is a pretty heavy group!
Conclusions

We are pleased to see that our readership is so qualified,
that they really are, for the most part, ''Serious
Computerists'’. For the 55% of you that think MICRO is
technically ‘just right’’, we are glad that you are
satisified. For the 31% reporting that we are ''not
technical enough’’, wait until you see what we have in
store for you in upcoming issues! Some sophisticated
theory and programs for adding shading to graphics. A
'build-it-from-scratch’ 68000 co-processor to work with
your Apple or Commodore 64, complete with a 68000
monitor and a 6502 cross assembler. And, if you are into
mathematical applications, a very high-level series on fast
equation solving. And for the 4% who find us ‘'too
technical’’, well, there are literally hundreds of other
computer magazines out there ready to serve your needs.
MICRO will continue to strive to serve those of you who
are really serious about microcomputing.

No. 76 - October 1984

MICRO 11

Fast Bit Map PloTTing

for The Commodore 64

Introduction

The Commodore 64 has a very capable
system of bit map graphics. In the high-
resolution mode two or more colors are
available, and the resolution is 320 dots
across by 200 vertically. In the
multicolor mode four or more colors
are available, with the horizontal
resolution reduced to 160 dots.
However, access to bit-map graphics
from BASIC is poor, requiring a series
of cryptic POKEs, PEEKs, ANDs, and
ORs, instead of PLOT, GRAPHICS, and
COLOR commands. Even worse,
BASIC is very slow at performing the
necessary tasks. Clearing the bit map
(8,000 bytes} takes 30 seconds, and
even changing one of the plot colors
takes several seconds. [presented sim-
ple machine-language routines for
these tasks in a Commodore Compass
article [MICRO 68:43, Jan 1984) and
these routines have been reassembled
to work with XYPLOT and BMCALC.

Another area where a machine-
language program can make a big dif-
ference is in the actual plotting of
points on a bit map screen. In this arti-
cle I present a routine to calculate the
appropriate byte in bit-map memory,
given the x- and y-coordinates of the
desired point. First, for those who want
to '‘load-and-run,’’ I provide a sample
driver routine that uses the values of
the BASIC variables X, Y, and C to
plot, erase, or toggle points on the
HiRes bit-map screen. Those who
would like to see a demonstration of
some simple machine-language
arithmetic will want to read the detail-
ed discussion of the BMCALC routine
later in this article.

The calculation routine may also be
used to convert sprite positions to use a
sprite as a pointer or pen. Other uses in-
clude converting sprites or characters
to bit-map images, and vice versa.
Routines for these applications may be
the subjects of future articles.

by Loren W. Wright
Dracut, Massachusetts

The Commodore 64 has great high
resolution color capabilities bulit-In.
Assembly levei routines are presented to
support fast bit map plotting and to provide
the basis for a hi-res support package.

The XYPLOT Routine

XYPLOT works equally well with
HiRes and multicolor. Once you have
executed INIT the points will be plot-
ted automatically in the current mode.

Using XYPLOT

Be sure you have XYPLOT properly in-
stalled, either with a direct memory
load or with BASIC READ/DATA
routine. After your bit map mode is in
effect, you must initialize once with
SYS 49216. The INIT routine sets up
the proper data for both the clear
routines and BMCALC. Then all you
need to do is set the BASIC variable X
within the allowable range of 0 to 319
(or O to 159 for multicolor], the variable
Y between O and 199, and variable C to
0,1,0r2(0, 1,2, 3, or 4 for multicolor).
Then SYS 49219. That's it!

HiRes:

CO plots a point in background color.
C1 plots a point in foreground color.
C2 toggles the point, i.e., a background
point becomes a foreground point, and
vice versa.

Multicolor:

CO plots a point in background color
{53281}.

C1 plots a point in Color 1.

C2 plots a point in Color 2.

C3 plots a point in Color 3.

C4 toggles the point: 0 becomes 3, 1
becomes 2, 2 becomes 1, and 3
becomes 0.

Any other value for C causes nothing to
happen. By the way, this is the same
plot-type useage as SIMON's BASIC.

A sample plotting program:

WW=49152

SYS WW+64

FOR X=@ TO 199
¥=X

SYS WW+67

NEXT X

This makes a straight diagonal line up
from the lower left corner. The routine
assumes a lower left orgin. Failure to
perform INIT, or performing it at the
wrong time, is the only possibly fatal
eIror.

12

MICRO

No. 76 - October 1984

How it Works

The routine must perform the follow-
ing tasks:

1. Determine the values of BASIC
variables X, Y, and C.

2. Invert Y by subtracting it from 199.
3. Set up BMCALC and execute it.

4. Read the contents of the calculated
byte and modify it according to the
value of C.

The subroutine VARSET uses three
C-64 ROM routines to 1] find where
the value of a variable is stored, 2| load
it into the floating-point accumulator,
and 3) convert it into an integer. The
floating-point variables X, Y, and C are
set up by storing the ASCI of the
appropriate letter into $45 and $00 into
$46,

Y is inverted by subtracting it from
199. Since the values of X increase from
left to right, while the bits increase
from right to left within a bit-map byte,
the bit position in HiRes mode is
calculated by first ANDing with 7, then
EORing with 7.

For HiRes mode, a table HRTBL of
eight bit masks is used to calculate the
new value to store back into bit-map
memory. The bit position is used as an
index into the table.

Setting a point to foreground color
means ORing the table value. Setting a
point to background color means EOR-
ing the table value with 255 and AND-
ing the result with the bit-map byte.
Toggling a point is simply a matter of
EORing with the table value.

In multicolor mode, the proper bit
pair is calculated by ANDing and then
EORing the X-coordinate with 3. The
BMCALC routine takes X values in the
range 0 to 319, so the multicolor X
value gets temporarily multiplied by 2
while BMCALC is using it. A table of
four bit-pair masks is used to save the
contents of the other three bit pairs in
the byte. In the toggle mode, another
table is used to read the current
contents of the bit pair so that it can be
inverted

The BMCALC Routine
The Problem

For most plotting on the bit-map
screen, it is convenient to use it as a big
sheet of graph paper with x-coordinates
running from O on the left to 319 on the

right, and y-coordinates running from 0
at the bottom to 199 at the top.
However, bit-map memory is not
organized that way. Instead, it is
organized as if the memory were
character definitions. Each byte codes
for a row of eight pixels.

BYTE@@@ BYTE@@S ... BYTE312
BYTE@@1 BYTE@@9 ... BYTE313
BYTE@®2 BYTE@1@ ... BYTE314
BYTE@®3 BYTE@11 ... BYTE315
BYTE@J@4 BYTE@12 ... BYTE316
BYTE@®5 BYTE@13 ... BYTE317
BYTE@@6 BYTE@14 ... BYTE318
BYTE@@7 BYTE@15 ... BYTE319
BYTE32@ BYTE328 ... BYTE632

Having bit-map memory organized this
way is convenient for setting colors,
since screen memory {which normally
does hold characters) is used for the col-
ors. It is not very convenient for plot-
ting points, though. Following are the
calculations required in BASIC to con-
vert an x,y point to the appropriate byte
and bit in HiRes bit-map memory:

BMLOC=start of bit-map memory

ROW=INT(Y/8)

COLUMN=INT(X/8)

LINE=Y AND 7

BIT=7-(X AND 7)

BYTE=BMLOC+ROW* 320+
COLUMN*8+LINE

To set a pixel to the foreground color:
POKE BYTE,PEEK(BYTE) OR 24BIT
To set a pixel to the background color:

POKE BYTE,PEEXK(BYTE) AND
(255-24BIT)

No wonder plotting a point takes so
long! The machine-language routine
does exactly the same thing, only much
faster. In describing the program, I will
use the same terminology as above.

ROW and COLUMN describe the
character position of the point. ROW
can have values from 0 to 24, and
COLUMN can have values from 0 to
39. There are 1000 different row and
column combinations, just like a
character screen. As well as helping in
calculating the value of BYTE, these
can be used to calculate the appropriate
bytes in character and color memory
for setting and changing colors.

LINE describes the position {0 to 7)
within the '‘character.”” For instance,
byte 322 in the diagram above has a
LINE value of 2.

Putting the Address Together

Each address consists of 16 bits, or two
8-bit bytes. The machine language pro-
gram puts the address together from
different sources.

151413121110 987 6543210

These two bits are determined by the
bank being used by the 6567 (VIC IIJ.
The bank is controlled by bits 0 & 1 of
port A of one of the 6526's [CIA].
However, these bits are inverted |3 in-
dicates bank 0, 2 indicates bank 1,
etc.], so there are two steps involved in
the calculation:

1. Invert the two bits.

2. Get them from positions 0 & 1 to
positions 14 & 15 of the address, or
positions 6 & 7 of its high byte.

151413121110987 6543210

This bit is determined by the location
of the bit map within the bank. If the
bit map is in the lower 8K of the 16K
bank, then bit 13 must be 0. If it is in
the upper 8K, then the bit must be 1.
Bit 3 of register $18 in the 6567 [ad-
dress $D018 or 53272] controls this.

The INIT routine performs the
calculation of bits 13, 14, & 15. The
bank and bit-map location are never
changed in the middle of a plotting ses-
sion, so some speed can be gained by
separating these calculations and per-
forming them once at the beginning.
INIT must be performed while the bit-
map screen is in effect, though. Perfor-
ming INIT while in normal character
mode will likely result in points getting
plotted in page 0, the stack, and your
BASIC program! The result is stored in
BMLOC, and this value is ORed into
the high byte BMPTRI near the end of
the main calculation routine. [n addi-
tion, INIT calculates the start of screen
memory and saves it for use by the
clearing routines.

151413121110987 6543210

Calculating these bits occupies most of
the BMCALC routine. The following
expression represents what we want to
end up with in these bits:

32@*ROW + 8%COLUMN

Multiplication and division in machine
language are not the easiest things, but
it helps when one of the numbers in-
volved is a power of two. Then all you
need to do is shift the other number left
to multiply and right to divide. For in-
stance, to multiply by 64, just shift the

No. 76 - October 1384

MICRO

13

other number six places to the left
(64=216). A 16-bit multiplication works
automatically, if you shift the low
byte, immediately followed by shift of
the high byte. The high byte must be
shifted using a 'rotate’ instruction, so
that the carry will transfer the bit push-
ed out of the low byte.

ASL of low byte:

<7< 6<5< 4< 3-
<2<1<g< ¢

ROL of high byte:

< 7<6< 5< 4< 3-
< 2<1<9<¢C

(Carry from low byte)

You may have noticed that 320 is not a
power of two. However, it does equal
256 + 64, so that simplifies things.

Before we perform the above
calculation, though, we must have
values for ROW and COLUMN. ROW
is INT{YPOS/8} and COLUMN is
INT(XPOS/8). All we have to do is
shift each number three bits to the
right. The INT operation occurs
automatically when the right three bits
fall off without being saved! The only
complication is that XPOS is contained
in two bytes. By first shifting the
accumulator, which starts with the
value of XHI, followed by COLUMN,
which starts with the value of XPOS,
that 9th bit is automatically shifted in-
to the low byte. (This time the rotate
instruction is used on the low byte, so
that it will pick up the carry, contain-
ing the bit pushed from the high byte.]
For convenience, ROW, which starts
with the value of YPOS, is shifted at
the same time. COLUMN and ROW
end up with the correct values for color
calculations.

Acc COLUMN
{value of XHI] {val of XPOS)
godOPBEX XXXXXXXX

ROW ({value of YPOS]
YYYYYYYY

Result after 3 shifts:

Acc |discarded] COLUMN
geoodoed PEXXXXXX

ROW
geadYYYYY

If we rewrite the expression for
calculating bits 3-12, it becomes:

256%ROW + G64¥ROW + 8*COLUMN

The first and third parts of the calcula-
tion are trivial. To get 256*ROW, all
we have to do is add it to the high byte
(BMPTR + 1), rather than the low byte
(BMPTR} of the address. To get
8*COLUMN take XPOS and remove
the three low bits. COLUMN was
calculated by dividing XPOS by 8, so
the only difference between XPOS and
8*COLUMN is the three lost bits.

64*COLUMN is only difficult
because it involves shifting across two
bytes. As I explained above, you shift
the low byte first. The bit pushed off
the left end goes into the carry. If you
then perform a rotate on the high byte,
the carry is shifted into bit O of the high
byte. Six successive shift and rotate
sequences results in a multiplication
by 64.

BMPTR+1 (starts=@) Acc (val of ROW)
gocccpap

After 6 shift & rotate sequences:

PePYYYYY

BMPTR+1 Accumulator

0Oo0QPBYYY YYQPOOQGPS
(Sharp readers may have noticed that I
could have accomplished the same
thing with only two shifts in the
opposite direction, but that's a little
confusing. 64* ROW256*ROW/4)

All that’s left is putting the pieces
together. This is accomplished by ad-
ding up the components. Then BMLOC
is ORed into BMPTR + 1.

151413121110987 6543210

The final three bits are LINE, the byte
{0-7) within the ‘‘character’’. This is
calculated by ANDing 7 with YPOS.
LINE is ORed into BMPTR.

Applying BMCALC

The simplest way to use BMCALC
from BASIC {without a machine
language driver such as XYPLOT] is
outlined below. The bit map should
already be set up and protected, and
probably cleared.

1. Perform INIT with SYS 49216 as
soon as the bit-map mode is entered,
but not before. This needs to be done
only once at the beginning of the pro-
gram, unless you change banks or bit-
map locations.

2. POKE 49168,X AND 255:
POKE 49169,-(X> 255):
POKE 49178,Y

3. 8YS 49222

4. BY=PEEK(251)+256%PEEK(252)

5. POKE BY,PEEK(BY) OR
24(7-(X AND 7))
to plot a foreground point, or

POKE BY,PEEK(BY) AND
255-2¢(7-(X AND 7))

to plot a background point. You can
save a lot of time with a few
enhancements to the above:

1. Substitute a variable for every con-
stant:

F=255: P=256: 2=49222
2. Set up two arrays ahead of time:

FOR I=@ TO 7: P(I)=2¢(7-I):
M(I)=255-P(I): NEXT I

Then, to plot a foreground point:
POKE BY,PEEK(BY) OR P(X AND 7)

To plot a background point:
POKEMBY, PEEK(BY) AND M(X AND 7)

Of course, the ultimate in speed is ob-
tained by skipping BASIC altogether.
You can write a very simple program
that reads numbers from a table and
stores them in the registers XPOS, XHI,
and YPOS. Then enter at label PPLOT.
A little extra caution is necessary to be
sure everything is set up properly.

Enhancements

The most convenient way to use
BMCALC from BASIC would be
something like:

SYS Ww+88,< X expression> ,
<Y expression> , < C expression>

So to draw a vertical line, you could
write:

FOR Y=¢ TO 199
SYS Ww+88,58,Y,1
NEXT Y

Writing such a driver is straight-
forward, but it takes a little more code.
This technique will be covered in a
future article.

Next Month

The power of machine language plot-
ting is amplified with a machine-
language line calculator program and a
driver that automatically reads the
values of BASIC variables X1, Y1, X2,
Y2, and C. Fast line drawing makes a
lot more possible, including animation
of 3-D objects.

14

MICRO

No. 76 - October 1984

1DA

i:***************************: gg;g ﬁg gg DD INIT EOR ;§576 ;%ﬁEgggTB?TS
? .
o j* BIT MAP CALCULATOR WITH ¥ 3333 ;i & LOOP@ I:s))ff fé ng?F% égANK)
;% BASIC-VARIABLE DRIVER * i
i . o8 cg DEX ; ;POS 6 & 7
; 879 D@ FC BNE 1OOP
o ;% BY LOREN W. WRIGHT . Cg7B 8D 1 C@ STA BMLOC
s
,:***************************** ggg ig éé Cg ig‘: igRHI
b .
O°4s POINTR = $FB ;ZERO-PAGE POINTER gggg ‘;;g ég be ggg fé%i ;Sgﬂﬁ‘?siﬁi
’ CP88 A9 2¢ LDA #%00100000 ;LOW 8K
$$0000-$CPPF RESERVED FOR USER Cg8A @D 19 CP NEXTI ORA BMLOC ;SET BIT 5 IF
; Cg8D 8D 1¢ Cg STA BMLOC ;TOP 8K
© ;SYSTEM CONSTANTS Cg9¢ AD 18 D@ LDA 53272 ;GET SCREEN LOC
bl
Co4P BMLOC = $C1¢ ;START BIT MAP (HI) gggg ii Fe Algg i%nlwg?gmm By 4
OC4d SCRHI = BNLOC+1 ;START SCREEN MM (vD)| 22 74 on a ;
Co4P MCFLAG = BMLOC+2 ;MC ON=$1¢—OFF=$00 .
CB4p PGDE = BMLOC+3 ;PLOT HODE OR COLOR gggz o " gg Ooa SoRELOR INBANCH
; CgoD AD 16 D@ DA 53270
o jGENERAL-PURPOSE AND TEMPORARY COAD 29 10 AND #31p ;CHECK FOR
Co4P MASK = BMLOC+4 CgA2 8D 12 C¢ STA MCFLAG ; MULTICOLOR
CoLp TEMP = BMLOC+5 CPAS 60 RTS
OCP4p ENDHI = TEMP ;
PP PATTRN = BMLOC+6 ;PLOT POINT ON BIT MAP SCREEN
CP4p FCOLOR = PATTRN ; FROM BASIC VARIABLES X, Y, & C
s ?
o ;INFO FOR CURRENT BIT-MAP POINT CPA6 A9 58 XYPLOT 1IDA #"X" ;SET UP BASIC
; CPA8 85 45 STA $45 ; VAR X
Co4e XPOS - $CO18 ;LOW & BITS COAR AO 9P DA #p
OCP48 XHI = XPOS+1 ;9TH BIT COAC 85 46 STA $46
Co4P YPOS = XPOS+2 ;TOP LEFT ORIGIN COAE 28 7D C1 JSR VARSET
Co4P YHI = XPOS+3 ;ERROR CHECKING COBL A5 64 IDA $64
CoLP COLUMN = XPOS+4 ;CHARACTER COLUMN CPB3 8D 19 CP STA XHI
OCP4d ROW = XPOS+5 ;CHARACTER ROW COB6 A5 65 IDA 365
; CgB8 8D 18 C9 STA XPOS
;$CO30-$CO3F RESERVED FOR LINE CALC COBB A9 59 IDA #"" ;SET UP BASIC
;USAGE NEXT MONTH COBD 85 45 STA $45 ; VARIABLE Y
c ; CgBF 20 7D C1 JSR VARSET ;$46 IS ZERO
¥ COC2 A9 C7 IDA #199 ;INVERT Y TOP
;% VECTORS FOR ROUTINES cocs 38 SEC ; TO BOTTOM
o i* CgC5 ES 65 SBC $65 ; FOR LOWER-LEFT
Cg4p *= 3CPLP C@PC7 8D 1A CP STA YPOS ; ORIGIN
; COCA A9 0P IDA #p
CO40 4C 7P CF INITV JMP INIT CoCC 8D 1B CP STA YHI
o ; INITIALIZATION COCF A9 43 IDA #'C" ;SET UP VAR C
P43 4C A6 CP PLOTV JMP XYPLOT COD1 85 45 STA $45 ;346 IS STILL @
; USES BASIC X,Y & C TO PLOT PT CgD3 26 7D C1 JSR VARSET
(F#46 4C BB CL CALCV JMP BMCALC ;
; USES XPOS,XHI,YPOS CgD6 AD 12 CP PPLOT LDA MCFLAG ;CHECK FOR
CO49 4C 82 C2 LINEV JMP LNDRAW CODS D@ 3D BNE MCPLOT ; MULTICOLOR
; USES BASIC X1,Y1,X2,Y2,C TO DRAW LINE ;
CCgic 4C P8 C2 HCLRV ~ JMP HCLEAR CgDB 2¢ 8B C1 HRPLOT JSR ERRCHK
; FILL BIT MAP WITH PATTERN CODE D@ 37 BNE HRERRX
COLF 4C 2E C2 CCLRV JMP CCLEAR COE@ 20 BB C1 JSR BMCALC ;CALCULATE
o ; FILL COLOR MEM WITH COLOR ; BIT MAP BYTE
C@52 4C 3D C2 SETIV JMP SETL COE3 AD 18 C DA XPOS
; FILL SCREEN MSB—4 WITH COLOR COE6 29 @7 AND #7
CP55 4C 4E C2 SET2V JMP SET2 COES 49 @7 EOR #7 ;LEFT TO RIGHT
o ; FILL SCREEN LSB-4 WITH COLOR COEA AR TAX
; CPEB BD €D C1 1DA HRTABL,X
;HERE THROUCH $C@6F RESERVED FOR COEE 8D 14 CP STA MASK
;USER'S VECTORS COFL AC 13 CP IDY PMODE ;PLOT MODE IN Y
o ; COFL A2 0P IDX #0
;CALCULATES BIT MAP START FROM COF6 Al FB IDA (POINTR,X) ;GET CURRENT
; BANK SELECTION ; BIT-MAP BYTE
o ; & BIT MAP LOCATION COF8 CP g2 TOGGLE CPY #2 ;TOGGLE MODE
;CALCULATES SCREEN MEM START COFA D@ 05 BNE FGPLOT
; C@FC 4D 14 Cp EOR MASK
cg7g *= $CO7 CPFF 9f 14 BCC FINIS
No. 76 - October 1984 15

c1g1 c@ @1 FGPLOT CPY #1 ; FOREGROUND MODE C19¢ 9¢ ¢9 BCC YCHEK
C1¢3 D@ @5 BNE BGPLOT €192 D@ 16 BNE ERRTRN
C1¢5 @D 14 C@ ORA MASK C194 AD 18 C¢ LDA XPOS 0
Ci¢8 99 @B BCC FINIS €197 C9 4@ CMP #319-256+1
; C199 B@ ¢@F BCS ERRTRN
C1gA C@ @9 BGPLOT CPY #¢@ ; BACKGND/ERASE MODE ;
C1gC D@ @7 BNE FINIS ;NO CHANGE IF >2 C19B AD 1B C@ YCHEK DA YHI O
C1¢E AD 14 Cg@ ILDA MASK ; OR < ¢ C19E D@ @A BNE ERRTRN
€111l 49 FF EOR #%11111111 C1A@ AD 1A C@ LDA YPOS
C113 21 FB AND (POINTR,X) C1A3 C9 C8 CMP #199+1
; C1A5 BY @3 BCS ERRTRN o
C115 81 FB FINIS STA (POINTR,X) ;STORE NEW ;
C117 6@ HRERRX RTS ; VERSION C1A7 A9 @0 NOERR LDA #¢
; C1a9 6@ RTS o)
C118 2¢ AD C1 MCPLOT JSR MCERCK ;
C11B D@ 3E BNE MCERRX C1AA A9 FF ERRTRN LDA #$FF
C11D ¢E 18 C@ ASL XPOS ;SEND BMCALC 2%X C1AC 6@ RTS
C12¢ 2E 19 C@ ROL XHI ; o
€123 2¢ BB C1 JSR BMCALC C1AD AD 19 C§ MCERCK LDA XHI
C126 4E 19 C¢ LSR XHI ;AND RESTORE C1B@ D@ F8 BNE ERRTRN
C129 6E 18 C@ ROR XPOS C1B2 AD 18 C¢ LDA XPOS o)
C12C AD 18 C¢@ LDA XPOS C1B5 C9 Ag CMP #159+1
C12F 29 ¢3 AND #3 C1B7 B¢ F1 BCS ERRTRN
C131 49 @3 EOR #3 ;MASK CONTAINS C1B9 9¢ E@ BCC YCHEK
C133 8D 14 C¢ STA MASK ; BIT-PAIR POS. ; O
C136 AD 13 Cp LDA PMODE ;@-3 FOR COLORS, ;CALCULATE BYTE FROM XHI,XPOS & YPOS
C139 C9 p4 CMP #4 ; 4 TO TOGGLE ;COLUMN & ROW MAINTAINED
C13B F@ 1F BEQ MCTOGL ; FOR CHAR & COLOR CALCULATIONS o
C13D B@ 1C BCS MCERRX ;
C13F AE 14 C@ LDX MASK CiBB AD 18 C@ BMCALC LDA XPOS
C142 F@ @5 BEQ MCNEXT C1BE 8D 1C C@ STA COLUMN
C14s @A MCLOOP ASL A ;SHIFT PMODE TO C1C1 AD 1A CP LDA YPOS O
C145 gA ASL A ; PROPER BIT PAIR C1C4 8D 1D C¢@ STA ROW
Cl46 CA DEX C1C7 AD 19 C¢ LDA XHI
C147 D@ FB BNE MCLQOP C1CA A2 @3 DX #3 ; INTEGER DIVIDE
; C1CC 4A LOOPB ISR 4 ; BY 8 O
C149 8D 15 C@ MCNEXT STA TEMP ;NEW PIXEL DATA C1CD 6E 1C CP ROR COLUMN ;9TH BIT OF
C14C Al FB LDA (POINTR,X) ;GET CURRENT C1D@P 4E 1D Cg LSR ROW ; XPOS FROM XHI
Cl4E AE 14 C@ LDX MASK ; BM BYTE C1D3 Ca DEX o
€151 3D 75 C1 AND SVTABL,X ;SAVE OTHER C1D4 D@ F6 BNE LOOPB
C154 @D 15 C@ ORA TEMP ; 3 BIT PAIRS C1D6 A9 @@ ILDA #9
C157 A2 @@ DX #¢ C1D8 85 FC STA POINTR+1
€159 81 FB STA (POINTR,X) C1DA A2 @6 LDX #6 O
; C1DC AD 1D C¢ LDA ROW ;MULTIPLY BY 64
C15B 6@ MCERRX RTS C1DF @A LOOPC ASL A
H C1E@ 26 FC ROL POINTR+1 0
C15C A2 @9 MCTOGL LDX #¢ C1E2 CA DEX
C15E Al FB LDA (POINTR,X) C1E3 D@ FA BNE LOOPC
C16¢ AE 14 Cg LDX MASK C1E5 85 FB STA POINTR
€163 3D 79 C1 AND STTABL,X C1E7 AD 18 C@ LDA XPOS o)
C166 5D 79 C1 EOR STTABL,X C1EA 29 F8 AND #%111110¢¢ ;SAME AS
C169 A2 @9 IDX #9p C1EC 18 CLC ; 8 % COLUMN
C16B F@ DC BEQ MCNEXT ;ALWAYS C1ED 65 FB ADC POINTR
; C1EF 85 FB STA POINTR O
C16D §1 @2 @4 HRTABL .BYTE 3$@1,382,$04,308,319 C1F1 A5 FC IDA POINTR+1
C172 2¢ 4@ 8¢ .BYTE $2@,348,$80 C1F3 6D 1D Cd ADC ROW ;SAME AS +256%ROW
€175 FC F3 CF SVTABL .BYTE $FC,$F3,$CF,$3F C1F6 6D 19 C@ ADC XHI e}
C179 @3 @¢C 3@ STTABL .BYTE $@3,$0C,$30,$C0 C1F9 ¢D 1¢ C@ ORA BMLOC ;BITS 5, 6, & 7
; C1FC 85 FC STA POINTR+1 ; FROM INIT
;VARIABLE NAME IN $45,346 C1FE AD 1A C@ LDA YPOS
;RETURNS INTEGER IN $64(HI),$65(L0) c291 29 ¢7 AND #4pp@@p111 ;GET LINE O
; C2¢3 @5 FB ORA POINTR ; WITHIN CHAR ROW
C17D 2¢ E7 BP VARSET JSR $B@E7 ;FIND VARIABLE C20¢5 85 FB STA POINTR
C18@ A5 47 LDA $47 ; (ROM ROUTINE) c207 69) RTS o
C182 A4 48 IDY $48 ;LOAD FAC #1 W/ ’
C184 28 A2 BB JSR $BBA2 ; VALUE (ROM) j *CLEARING ROUTINES
C187 2¢ 9B BC JSR $BC9B ; FAC-TO-INT ’
c18A 63 9 BTS $. H_é“,L_%ﬁ (ROM) s ¥INIT MUST HAVE BEEN PERFORMED o
\ ;% AND $C@18 MUST CONTAIN COLOR
s
C18B AD 19 Cf ERRCHX IDA XHI ;% OR PATTERN
C18E C9 @1 cMp #1 ’

16 MICRO No. 76 - October 1984

C2¢8 AD 19 C@ HCLEAR

DA

BMLOC ;ENTRY TO SET BIT

Sine Wave Demo

18 WW=49152

20 GOSUB 8@@@: REM SET UP SCREEN

3@ SYS WW+64: REM INIT

4@ POKE WW+22,@: SYS WW+76: REM CLEAR BIT-MAP
5¢ POKE WW+22,0: SYS WW+82: REM FGD=p

6@ POKE WW+22,1: SYS WW+B5: REM BGD=1

199 C=1: P=3.14159265

11¢ FOR X=¢ TO 319

12¢ Y=1@@+INT(SIN(X*P/16@)%95+.5)

13¢ SYS WW+67: REM PLOT POINT

14@ NEXT X

9¢@ GET T$:IF T$="" THEN 9¢g¢

91¢ GOSUB 81¢¢

999 STOP

80@@ REM HI-RES SETUP

801@ POKE 56578,PEEK(56578) OR 3

802@ POKE 56576,PEEK(56576) AND 252 OR 2

8¢3¢ POKE 53272,PEEK(53272) AND 7 OR 129

8049 POKE 53265,PEEK(53265) OR 32

8@5¢ RETURN

810¢ REM RESTORE CHAR SCREEN

811¢ POKE 56578,PEEK(56578) OR 3
812¢ POKE 56576,PEEK(56576) OR 3
813@ POKE 53272,PEEK(53272) AND 7 OR 16
814@ POKE 53265,PEEK(53265) AND 223
815@¢ RETURN

(REaR & 8YTE"34)

AN ESSENTIAL DISK & MEMORY UTILITY
FOR THE COMMODORE 64 ™ & DRIVE

EASY To USE -HELP - KEYSTROKE COMMANDS

*Disk Track/Sector Editor
*Examine and modify disk sector data
*File Follower - memory for I51 sectors
«Fast 1541 disk compare and error check

*Display Memory and Disk Data
in Hex, ASCII or Screen Code

*Edit full page in Hex or ASCII

*Disassemble memory and disk data
*Search for string
+-Read drive memory
*Free sector map *Use DOS wedge
*Run ML routines *Extensive manual

*Printer screen dump (serial bus)

*Fast machine code! Compatible with
many Basic and monitor programs

*Supports ssrial bus dual disk drive

*Un-new Basic pgms
«Convert Hex/Dec

ALL FOR
$29.95

US Post Pald

QUANTUM SOFTWARE
P.0. BOX 12716, Dept. 64
LAKE PARK, FL 33403

To ORDER: Send check or money order, US dollars
Florida residents add 5%o sales tax
COD add $2. Call 305-840-0249

Commadors 64 is a registersd trademark of Commodore Electronics Ltd.
PEEK A BYTE is a trademark of Quantum Software

C2¢B 85 FC STA POINTR+1 ;MAP TO PATTERN
c2¢D 18 CLC ;SET UP POINTR
O c2pE 69 20 ADC #32¢ ; & ENDHI
€219 8D 15 c¢ STA ENDHI
C213 A9 ¢¢ IDA #9
O C215 85 FB STA POINTR
)
C217 A9 o0 HMAIN DY #9
€219 AD 16 C@ HLOOP ILDA PATTRN ;PAGE CLEAR USED
QO c21C 91 FB INLOOP STA (POINTR),Y ; BY HCLEAR
C21E C8 INY ; AND CCLEAR
C21F D@ FB BNE INLOOP
c)C22l A5 FC LDA POINTR+1 ;ADVANCE PAGE
€223 18 CLC
€224 69 @1 ADC #1
€226 85 FC STA POINTR+1
O 228 CD 15 ¢ CMP ENDHI
C22B D@ EC BNE HLOOP
C22D 68 RTS
O ;
C22E A9 D8 CCLEAR LDA #$D8 ;ENTRY TO SET
C23@ 85 FC STA POINTR+1 ; COLOR MEM TO -
C232 A9 ¢ IDA #@ ; COLOR-MC COLOR 11
O €234 85 FB STA POINTR ;SETUP POINTER
€236 A9 DC LDA #3DC ; & ENDHI
€238 8D 15 C@ STA ENDHI
o C23B D@ DA BNE HMAIN ;ALWAYS
)
€23D AD 16 C@ SET1 IDA FCOLOR ;ENTRY TO SET MC
C240 2A ASL A ; COLOR @1 &
O C241 oA ASL A ; HR BACKGROUND
€242 0A ASL A
C243 @A ASL A
C244 8D 16 C@ STA FCOLOR
O C247 A9 OF IDA #%999@1111 ;TO PRESERVE
€249 8D 14 C¢ STA MASK ; LOW 4 BITS
C24C DY 95 BNE SETCOLOR ;ALWAYS
)
o ; ENTRY TO SET MC COLOR 1¢ & HR
C24E A9 F@ SET2 IDA #%11110000
€250 8D 14 C@ STA MASK
)
© €253 AD 11 C@ SETCOLCR LDA SCRHI ;SET UP POINTR
€256 85 FC STA POINTR+1 ; AND ENDHI
€258 18 CLC
O c259 €9 93 ADC #3
C25B 8D 15 C@ STA ENDHI
C25E A9 9¢ ILDA 4@
O0260 85 FB STA POINTR
€262 A8 TAY
)
€263 Bl FB CLOOP IDA (POINTR),Y ;TAKE WHAT'S
O c265 2p 14 Cp AND MASK ; THERE, KEEP
€268 @D 16 C¢ ORA FCOLOR ;THE OTHER
C26B 91 FB STA (POINTR),Y ; COLOR, CHANGE
o C26D C8 INY ; PROPER 4 BITS
C26E F@ 9D BEQ NEXTPG ; AND PUT IT BACK
C27¢ C@ E8 CPY #$E8 ; SCREEN+$3E7
€272 DP EF BNE CLOOP ; IS END
O C274 A5 FC IDA POINTR+1 ;TEST FOR
€276 CD 15 C@ CMP ENDHI ; LAST PAGE
€279 D@ E8 BNE CLOOP ;CONTINUE IF NOT
C27B Fp 04 BEQ DONE
)
C27D E6 FC NEXTPG INC POINTR+1 ;ADVANCE PAGE
C27F D@ E2 BNE CLOOP
)
€281 6@ DONE RTS
c282 6@ LNDRAW RTS ;NEXT MONTH!
No. 76 - October 1984 MICRO

17

Machine LANGUAGE

by Chris Williams
Ogden, Utah

This is the latest in an informal series
of articles on speed in assembly
language programming. The first arti-
cle was a presentation of techniques.
This one is a discussion of a popular

misconception about machine
language loops.
Readers who are experienced

machine language programmers are
probably frowning right now in reac-
tion to the title and that's good. It was
meant to get their attention. It is they
who are wrong about loops.

How? Well, like any other technical
type, machine language programmers
tend to use educated intuition in
deciding how to perform a given task.
That intuition is the product of
experience. The solutions they’'ve en-
countered in the past tend to get
selected as the best solution for the
problem at hand.

Fine. And yes, I know that's
obvious. But it has a subtle rami-
fication that quite literally has swept
the industry. You see, there’s a pro-
blem. Suppose those solutions en-
countered in the past were wrong?

Examine, if you will, the following
sequence of 6502 assembly language
instructions.

LDA
STA
LDA
STA
LDA
STA
LDA
STA

FVAL
$VALSTR
$VAL+1
$VALSTR+1
$VAL+2
$VALSTR+2
FVAL+3
$VALSTR+3

You've probably never seen that
sort of thing before, especially if it had
gone out to $VAL+9 or $VAL + 10 or
farther.

No, most likely you've seen that
operation done like so:

Loops

Misconceptions About
Machine Language Loops — Exposed

LDX #94

LDA $VAL,X
STA $VALSTR, X
DEX

BNE LOOP

LOoP

And some people would use ...

LDX #09

LDA $VAL,X
STA $VALSTR,X
INX

CPX #@4

BNE LOOP

LOQP

. though they shouldn’t and, if
they’d read my previous article on
speed and counting down, they would
have known better.

But back to the point. Which of the
two ways of LOADing and STOREing
do you prefer? Sure, you like the
second one. Loops are elegant. They're
popular. They're easier to type in. And
your intuition tells you they're just
plain superior.

Let's see. First, let’s examine the
memory storage in Figure 1.

The results there show a healthy
memory savings for the loop. For a
speed comparison, now look at Figure
2.

Hmmm, the byte ratio is 24/11
[24/13 for the wrong way] in favor of
the loop and the speed ratio is 62/32 in
favor of sequence code. Let's observe
here that, if there is no inordinate value
placed on either speed or memory {i.e.,
they’re equally valuable), the larger
memory ratio advantage of the loop is
probably compelling and that would be
the way to go. All who preferred the
loop may congratulate themselves.
Their intuition in this case was correct.

Now then, suppose there was only
one LOAD-STORE pair as shown in

Bytes

Used
LDA $VAL 3
STA $VALSTR 3
LDA $VAL+1 3
STA $VALSTR+1 3
LDA $VAL+2 3
STA $VALSTR+2 3
LDA $VAL+3 3

STA $VALSTR+3 3

24 BYTES
And for the loop:
LDX #@4 2
LOCP LDA 3VAL,X 3
STA $VALSTR,X 3
DEX 1
BNE LOOP 2
11 BYTES

Or, if you insist on doing it wrong:

LDX #¢¢ 2
LOCP LDA 3VAL,X 3
STA $VALSTR,X 3
INX 1
CPX #p4 2
BNE LOOP 2
13 BYTES

Figure 1 Memory Usage

Figure 3. Would anyone use a loop
here?

18

MICRO

No. 76 - October 1984

Machine Cycles

LDA $VAL

STA $VALSTR
LDA $VAL+1
STA $VALSTR+1
LDA $VAL+2
STA $VALSTR+2
LDA $VAL+3
STA $VALSTR+3

P I N .

32 CYCLES

And for the loop:

LDX #94

LOOP LDA $VAL,X
STA $VALSTR,X
DEX
BNE LOOP

PN STV IS SN 8]

2+(15%4)=62 CYCLES

Figure 2 Speed in Machine Cycles

I hope not. The numbers clearly
show the loop to be inferior in both
memory used and speed.

So, the whole issue comes down to
this question. At what point should
you stop writing LOAD-STORE pairs
and start writing loops?

I've asked this question of several
assembly language competent friends
and their answers are interesting,
mainly because they were all the same.

""Use a loop when there’s three or
more pairs,’’ they said, almost as one.
""Three is the magic number.”’

I'll bet you agree.

Sorry. The right answer is two.
Examine Figure 4.

You pass memory breakeven at 2
pairs and, indeed, have a one byte ad-
vantage there. The speed ratio is 2:1. At
3 pairs the memory advantage con-
tinues to grow and the speed ratio
shrinks almost not at all. Since the
speed ratio is essentially the same, the
memory factor is decisive, and since we
passed equality there at 2 pairs, then
clearly that was the point at which to
switch over to loops, not at 3 pairs.

This failure in intuition is discon-
certing. One grows to depend on it in
technical fields. It’s usually not that

Bytes Machine
Used Cycles
LDA $VAL 3 "4
STA $VALSTR 3 4
6 BYTES 8 CYCLES
The loop would be:
DX #1 2 2
LOOP LDA $VAL 3 4
STA $VALSTR 3 4
DEX 1 2
BNE LOOP 2 4
11 BYTES 16 CYCLES

Figure 3 The Single LOAD-STORE Pair

deceptive. I suspect it fails us in this
case because a loop requires us to type 5
lines of code for 2 pairs as opposed to 4
lines of code for a sequence, even
though the memory requirement is
less. It's laziness changing our minds
and warping our judgement here, not
logic. Be aware of it.

For three LOAD-STORE pairs:

For two LOAD-STORE pairs:

Bytes Machine LDA $VAL 3 4
Used Cycles STA $VALSTR 3 4
IDA $VAL 3 4 LDA $VAL+1 3 4
STA $VALSTR 3 4 STA $VALSTR+ 3 4
LDA $VAL+1 3 4
STA $VALSTR+1 3 4 _— -—
LDA $VAL+2 3 4 12 BYTES 16 CYCLES
STA $VALSTR+2 3 4
--- --- The loop would be:
18 BYTES 24 CYCLES
1DX #@2 2 2
The loop would be: LOOP LDA $VAL,X 3 4
STA $VALSTR,X 3 5
DEX 1 2
LDX #@3 2 2 BNE LOOP 2 4
LOOP IDA $VAL,X 3 4
STA $VALSTR,X 3 5 ——— —
DEX 1 2 11 BYTES 2+(15%2)=32 CYCLES
BNE LOOP 2 4
11 BYTES 2+(15%3)=47 CYCLES Figure 4 Two vs Three Palr

No. 76 - October 1984

MICRO

19

INTeracTive INput UrTiliTy

by Mike Dougherty
Littleton, Colorado

Ay

L]

AN AN A

AN A A

You Can Improve the Usefulness of Your FORTH
Programs by Adding thlis interactive Input Utility

AAAAT A A\

VA A

Introduction

FORTH contains a rich vocabulary to
output data and information. Words
such as .R, #, TYPE and ."” allow
great flexibility for printing data.
Unfortunately, user input is handled
primarily through the text interpreter.

selection. Each non-blank character in
the current menu selection is high-
lighted by inverse video. The Atari
operating system shadow register,
CHACTL, located at memory address
755, is used to blink the highlighted
characters by the word BLINK. The
user changes the current menu se-
lection by pressing the SELECT or

AR

MENU returns the value of the current
menu selection, 1 to n, where n is the
total number of menu selections.
MENU uses two single precision
numbers located in an ASCII free text
format in line 0 of the menu Screen.
The first number, TOP-MENU, defines
the menu Screen line number (1
through 15} of the first menu selection.

Turnkey applications and users not OPTION consol switch. When the The second number, BOT-MENU, de-
familiar with FORTH often require a START consol switch is pressed, fines the menu Screen line number
more interactive approach. The Input
Utility, Listing 1, defines MENU and
PROMPT to supply some of this
missing interaction. SCR # 26
Q 4 12
Menu 1 96363696 96 9636 9 I 906 96 36936 36 66 X
2 * *
The utility MENU, Screens 55-67, al- 3 * GRADES SELECTION #
lows a FORTH application to display 4 % *
lines 1-15 of a disk Screen as a menu of 5 01T BTN
choices. A choice is selected from the &
menu via the keyboard consol .
switches. Line O of the menu Screen is 7 SELECT one of the following:
reserved for MENU parameters. The 8
entire menu Screen may be created or ? 1) Read Class from Disk
modified with a FORTH text editor. 10 2) Class Modification
A simple menu, Screen # 26, is 11 3) Report Generation
shown in Figure 1. To use this Screen 2 4) Write Class to Disk
as a menu, execute: 13
14
26 MENU 15 Press START to choose SELECTion
Upon execution, the current menu
selection will be set to the first menu Figure 1 Simple Menu
20 MICRO No. 76 - October 1984

{TOP-MENU through 15} of the last
selection. The total number of menu
selections is BOT-MENU - TOP-
MENU + 1 . These selection limits
are read from the menu Screen by the
word SET-LIMITS. MENU makes the
assumption that each menu selection
will take only one video line to display.
When I use MENU, I set the left margin
offset, LEFT-OFFSET, to 2 and limit
each menu selection to a 32 character
line. (My FORTH Screen Editor manip-
ulates half lines of 32 characters with
particular ease.) For vertical spacing,
the top margin offset, TOP-OFFSET, is
set to 2. Extensions to MENU could
allow the spacing offsets to be read
from the first menu Screen line along
with the selection parameters.

MENU relieves the FORTH appli-
cation of the details of displaying text
menus. Instead, the application is only
concerned with responding to the user
selection. Further, the menu wording
may be modified without re-LOADing
the application.

Prompt
The utility PROMPT, Screens 68-72,

allows a FORTH application to prompt
a user to input a single precision integer

within a specified range. The prompt is
repeated until a value within that range
is entered. APX fig-FORTH 1.1 already
defines the word PROMPT to print the
FORTH ‘‘ok’’ message. Since I never
need this function, I let my utility
redefine PROMPT. For any user requir-
ing the old definition of PROMPT, the
Input Utility version should be
renamed.

The prompt text is created with the
' defining word, Screens 68 and 69. For
example, to prompt for examination
grades, a prompt named TEST may be
defined:

1 1¢@ '' TEST Exam Grade (1-1¢¢@): '’

The * defining word will use the
next word in the input stream, TEST,
to create a dictionary entry by the
BUILDS portion of the '’ definition.
The rest of the BUILDS compiles the
input limits from the stack and a
dimensioned string of characters into
the dictionary. The results of the above
PROMPT string is illustrated in Figure
2. Subsequent execution of TEST
leaves the prompt text address, prompt
length, minimum and maximum on
the stack as defined by the DOES
portion of the "' defining word.

The following uses TEST as a
prompt and returns a value in the range
of 1 to 100 inclusively.

TEST PROMPT

The returned value will be a single
precision number on top of the data
stack. PROMPT will not return until a
user number is entered within the
specified range of 1 to 100. In general,
to define and use the prompt XYZ to
input a number between nl and n2:

nl n2 '' XYZ ... prompt text ...'!
XYZ PROMPT

The use of PROMPT relieves the
FORTH application of the burden of
performing range validation for each
input.

Conclusion

The utilities MENU and PROMPT
were defined to solve specific problems
I had with my applications. Obviously,
they can be modified to fit each user's
own needs. The main idea remains to
modify past FORTH definitions to fit
into new situations, saving program-
ming work and time.

for the
CBM C-64

Features
via the remote control input.

interfaces

graphics commands to CBM C64 BASIC

control language.

TO ORDER

- Mass. orders add 5% sales tax
- Dealer Inquiries welcome
P.O.Box 370

Canton, Mass. 02120
(617)828-1209

VIDEO DISK CARTRIDGE

e Interface Cartridge controls one or two laser video disks
@ Provides control of popular players including IR

o Exclusive direct read of frame/chapter video data.
@ Includes integral audio (4w)-video switch matrix
® Extension language adds 40 video disk and HRES

o Optional C64-FORTH/ 79 compatable VIDEO DISK

o On-Board 8-32k EPROM for autoboot of Basic programs

o Extensive Manual describes use, with examples, demo
template programs and video disk resources

o Industrial quality cartridge integrates video disk
configurations and simplifies programming
CBM is a trademark of Commodore Business Machines

Introductory Price
Model 1064 - Single Video Disk Interface Cartridge - $249
Model 2064 - Dual Video Disk Interface Cartridge - $299

- Check, money order, bank card. COD’s add $1.65
- Add $4.00 postage and handling in USA and Canada

- Foreign orders add 20% shipping and handling

PERFORMANCE MICRO PRODUCTS

extensions.
graphics.
screens.
-Disk only.
X’\
)

VISA X

C64-FORTH/79

New and Improved
for the Commodore 64

Cé4-Forth/79™ for the Commodore 64-$99.95
® New and improved FORTH-79 implementation with

® Extension package including lines, circles, scaling,
windowing, mixed high res-character graphics and sprite

e Fully compatible floating point package including
arithmetic, relational, logical and transcendental functions.

e String extensions including LEFT$, RIGHT$, and MID$%.

o Full feature screen editor and macro assembler.

& Compatible with VIC peripherals including disks, data set,
modem, printer and cartridge.

® Expanded 167 page manual with examples and application

® “SAVE TURNKEY” normally allows application program
distribution without licensing or royalties.

(Commodore 64 is a trademark of Commodore)

TO ORDER

-Check, money order, bank card, COD'’s add $1.65
-Add $4.00 postage and handling in USA and Canada
-Mass. orders add 5% sales tax

-Foreign orders add 20% shipping and handling
-Dealer inquiries welcome

PERFORMANCE MICRO PRODUCTS

770 Dedham Street
Canton, MA 02021
(617) 828-1209

VISA

No. 76 - October 1984

MICRO

21

(appw 31a0 ayy Jo Adoo 8 aasg)

<— 7T

€T

(wnu 29ad oT3uls 03 1.I9AUOH) { dOYd YAGWNN THAH 2T
(Butais 3Xd3U Jo SS3IPPY) + <4 <d T

(9YIH 03 BUTIIS WTP 40K) ZAOND a1

(Butays ay3 aaow 03 Ippy) 104 +T THAH 6
(Butais Jo 3a831S QU3 JO Jpy) + LOH 8
4 ¥< 1LoY 4
(Butass wip Ut Yy33ual 9aBg) 10 dHIH dNd - HIAO 9
(39sJJo BUTJa3S 3Xau Y3 248G) U< 4
(S3TWT BUTJd3s TBOTJILWNU putyd) ISOTONT 14 ¥4
(Butais wip J0J 359 IBITY) SYNVTId %€ THAH €
(u apps — apps) HAGWAN-NYOS : ¢

T

[}

(¥EEWON IXAN HOA ONIYIS IIOSV NYOS)

9% # ¥IS

<— 8
4

(%9 Jo usBuaT au3 doaq) ¢ doya 9
(sult Jo ssaappe 393 pus peay) (ANIT) @ #NNIW 4
(apps — gautT) ANTW-HAQY : %
€
(Iaqunu nUSW FUSLINY) #ONIW TTIAVINVA 92 ¢
T
(q4Q4aN 41 Qvad ¥SId ¥V SIOHOA — QNIW A0 ANIT 40 HAQV) @

GG # HOS

<— 6T
»T

IdWOHd ZXX) €T
w'traxey qdwoadr ot ZXX W) 2T
xeuw utw) IT

(

(

(

(:3dwoad ZXx esn puw autjep oy) @T

() 6

(ANEW 92) 8

(:nuaWw 9z UIBIOG 3INVBXI O) 4

()9

((9888) ¢

()

(avol ¥¢) €

(1£37T73aN 2ug pwoT O) ¢
T

(sd1xd £€TT KLITIIN INdNI) @

¥s # HOS

idword 1SAL Jo Alowapy Areuonidi(q

T 9ISy

9
2]

['}]
Lig}

T
e}

M &1
{8t
PLT
9t
=) ¢
vi
£1
zt

Tt

L p1aty

S piaty

Ixa] jdwoag 3
Ixay 3dwoug jo y3jbuaq oz
Buyrulg pauosuawr(g FAWOLG O FIRIG—D ! cmmmmm—mm '
andul jdwouy uoj anjep wnwixep - 00T !
anduil jdwoay 4o} aniep wnwlulg - 1
p4om Bututjag . ayl ur ; Jajutog
<5304 4233 sSpJOM [-— -
H1¥0d4 243 03 sjuiod ¢ SSaJppy
|
1 dJajuroy
<s30Q 3o - -
uorjJod apo) ayl oj sjulod | SS3Jppy
1 43@3jutog
P4OM H1MOd4 Pauliaqg - -
Alsnolraug 03 sS3juUI0d | SSauppy
108 + L
H s
AR S22 S S ISR SRS 2R SRS 2L SRS E Y ——————
* » H E]
* 4 (00T-T1) 3pe.g wex3z 1631 ., 00T 1 » i i
* * H 1
* :3dwoay j1g3L| 3/j3eas) = [,
* * i 0B% + ¢
LA a2 s S22 S R SR SRS ST E L RS RN 2 e ————————— P e————
) A sowayy

Aasevuor3ldig

praty
o1 Jajaue ey

apo]

HutT

awen

No. 76 - October 1884

MICRO

22

<— 17 < H: (00} ST
g1 1L6! 4T
(mou onTBA UD3TAS U3 UINgay) { TOSNOO-13D 6 (aosn 10 3ndinQ) HJAL SIOVIS B LASIJ0-I1JTI €T
TIINO] (squsTq Buylyeay ousy WLl) ONITIVHI- %9 2T
TOSNOD~LED L { SUTT U3 Jo SS3IpPP® B3 398D) NNAN-¥aav I 1T
(pessaad yo3TMs TT3UN 3TBH) NIDId 9 (nuew oy3 U SUTT UdB2 JI04) 0d T 9t g1
TIINN ¢ (doy Astdstp ay3 woxJ s8UTT) SHO # 1AS440-dOL 6
=@ 7TOSNOO-L1I9 Y (Usal0ds 08pTA SU3 9SBIY) NATHIS~HVAI) 8
(DoswaTaI Uo3TAsS TTaUN 31BN) NIDIg £ { sweaed 37wil nusW Y} 39S) SLIWIT-1IS 4
(#yortus —) TOSNOD—QVEY : 2 (J8QqUNU NUSW FUSIIND Y] SABG) T HONTN 9
T (—u) (NTW-XVILSIA © ¢
(SXIM TOSNOD THL ATIWYVS) ¢ v
29 # YOS (o8p1a JO 93°1 oy} woxj sa0vdg) LISAA0-L4TT TIGYIYVA € €
(oept1a jo doj woly s’uyq) LISAA0-dOL TIGVIYVA 2 2
1
<— 4T (NAW XVIdSIQ) @
91 64 # HOS
(91801 8aT3Tsod 03 3I3AU0D) f HOX 4 €T
(g93s7381 M/H TOSUOD 8Y3 399) 80 6LZES 2T
(pepsau JT @sxaaul Nuild) MNITE Tt <—zcat
(Toswod —) TOSNOD-13D : @1 11
_ 6 ¢ 4I0aNZ o1
¢ AIONT 8 d001 6
TIIND =@ L 4o 8
ONV @ 1I8-QIT0S @ OIM 9 (suanjed o38TLI80 U 3ndying) oa ¢ L
(oxez ® LIE-AITOS TT3un 3TsM) NI9dd g (8 WO @ UBU} axow JI) 41 dng- 9
(saByd 3sIBAUT SUF HUTTQ USYL) IASHIANI-NNITE e (—u) SHO : ¢
(suo ® sy IIG-QIT0S JI) 4I QNV & LIG-QIT0S & OlY £ 7
(—) MNITE ¢ 2 (opoo Ae¥ YVTID IJHS +nding) ¢ LIWZ 62T £
1 (—) NIT™OS-UVTIO ¢ 2
(HOLIMS 'TOSNOD IHI AVa¥ ‘MNITd ASHIANI HOJ ONIWIL) @ 1
19 # HOS (SNOILONNd XVIdSIQ NAIHIS) @
8¢ # HOS
< 4T
£ <— €T
A SIBYD 9SJISAUT 8Yj UoO uang v £ 10 TIOVHD 2 2T zT
1ILNR I (appe Teull au3 doaq) ¢ d0uq 1
NV @ LI6-INITE @ Old o (s3do aus jo SUTT WO330Q UL)i (NEW-LOE HEAWAN-NYOS @T
A 3Uo ® LIG-MNITE TTaun 1T8M v NIpdg mu A * SUTT 3UaJIIND JO0J 98BS v i *M.ZH,H @ NNIWN-d0L @
A SIBYD S8S8JIIAUT aU3 JJO uang, v i0 TLOVHD €) 8 A suotado ayz jo sujl dog ayl v~ NTW~dOL HIGWON-NYOS 8
(—) GSUEANI-NNITE * 4 (appe 38 ‘g sujT nuew peay) INTR-HAQY § 4
LI9-)NITd TIdVINYA ¢ w (=) SLINIT-LES * 9
G
A qsT .xUOHo QUWTJL 1831 SO v HHmIQHwMM MMMMWMMW MN M A FUSIIND JO 4OUTT HoSIOS v #EINI'T ITHVINVA s ?
(Ae1dstp a0y 8oa mopsys S0) TLOVHO INVLSNOD 644 2 (2970uD 3891 JO #RUTT US9I35) INAK~LOG TIAVINVA @ &
I (®0TOUD 3ST JO HOUTT UIAIDS) ANZW-dOL TIGVIUVA § 2
1
(MNIT8 WILOVHVHO ESHAANI) @ (INIT ISHIA S:ONAW WOMd SIIWIT NOILOZIAS IAANI) @
P9 # HOS L6 # HOS

23

MICRO

No. 76 - October 1984

-
>
3
< 6 <—cZa 2
8 1T 8
(opow Josand a8yl a103s8Y) £ 10 264 dVMS 4 (9UTT JUSIIND MAU 3Y3 1JI3AUT) ¢ OdATA-IHIANI @1 .
(uor3oeTes s,a8sn By} 195) NOILOITAS-13D 9 (enT®a MU 03 HANIT 39S) i #ANIT 6 4
(nusw auy3 Aerdstq) NNIN-XVIISIA ¢ AIANT 8 m
(I0sand useIos BY3} 3TQTUUI) i026L T Y (nusw sy3 Jo doy su3 o3 Nowg) 8 NNIW-dOL L
(9PoW JOSIND 1USLIND SYU3 9ABS) dVMS 80 26 € (snT®Aa 3dusa jo 3no doaq) doya 9
(puorado —— gnuau) ONIW ° € (wojjoq nusw Sy3 puokaq JI) 41 < @ ONIW-104 dNd g
T (143TTU3TY o3 SulT sy} 81mpdn) +T @ H#ANIT Y
(UEATHA ONZW TVHANID) @ (wrou o3 }0®BQ JUBLIND JIJAUT) OFATA-LHIANI £
L9 # HOS (—) NOILOZTAS~IONVHO * ¢
1
(NOILOTIAS HASH MAN V I1vadn) @
<— ¢T 69 # HOS
(98J9AUT UO posBQ U-T UIniay)¢T — @ NNAW-JOL 8 AANIT »T
(pesseaad 1¥vIs Tr3un dooq) TILNN £
AIANA 4
AIANA 1T
(snutauoco o3 dool ayz Jeld) @ ot < ¢ 4001 £T
(uo1290913s Jasn Iyl s3usyly INOILOFTIS—IAONVHO 6 JIANE [4°
(pessead As NOILJO/LOATIS Sul) asT1d 8 (I8UD PIYLISAUT SY} S403S3Y) 101 Tl
(dooT suy woxj 17xe Feld) T L (379 09pTa au3 dITd) HOX 82T gt o
(IMYLS ST uoias au3 JI) dI = T 9 (XuBTQ U98IDE OIPTA ® JOU JT) 41 dng- 6 o
(pessead yolTas Tosuod ® JI) JI dNd ‘TOSNOO~-QYIY 14 (usaaos syl woaj 934q ® 33)) 201 8 =
(TOSUOd IHYIS TTaun 378M) NIodg Y (S3TWIT JIpPpP® SUTT ULI3MISQ OQ) 0a dvaS + HIAO @Y L
(uotydo 18a7J oy uSTTUSTH) OFATA~LHIANI £ (surT xad s934q gy) +ox 0y 9
(u——">2,) NOILOATIAS-1AD : 2 (1883J0 JI0J 1SNPY) + 8 LIS440-d0L ¢
T (# SUTT @2AT31BTaX 3Y3 39D) - T 8 #ANIT Y
(NOILONAd NOILOTIAS (NIK) @ (o9pTA Jo appe 3uryaels 38D) NZIHOS £
99 # d0S (—) 0FATA-THAANI : 2
I
(SNOIIONN NIFHOS) @
<— 21 %9 # YOS
1T
(SUTT jUSIIND M3U Y} IIIAUTL) ! QEQIA-THIANI T
(enTeA MaU 03 KANIT 39S) i HANIT 6
ATANT 8
(nusw auy3 Jo doj syy o3 yoeg) 2 NNAW-dOL L <— L
(anTeA 93usl jo 1no doaq) do¥d 9 9
(wozjoq nusw syu3 puokaq JI) 4l < O ONIW-L09 dnd 4 (@ sotudead jo Jutjuurdeqg) £ - 996 g
(3u3TTUdTY 0% SUTT sy1 =3swpdn) +T 8 #ANIT Yy (ssaappe 03 1.I8AUOY) x 962 Y
(wIiou 03 NOBQ JUSIIND JIBAUT) 0dATA-LHIANT 4 (aoqunu s8ed wsw TY 9y} 399) 80 9¢T 4
(—) NOILOATAS-AONVHO : T (apps —) NIZHOS * ¢
T T
(NOILOFTAS HASN MAN V ALvadn) @ (SSHYAAY NAAYOS AVIISICQ AHL ILVHENZD) @
9 # ¥0S £9 # UOS
S

‘0pe10[0)y Ut 202dSOI0Y 13AUI(] BIISLIBN UILEWN
Im 10oUriug 21EmIJOS B A[JUSLIND ST PUB / /4] 90UIS P[31) 2IBMIJOS Y]
Ul payIom SEY 9H "INSST §,YIUOW ISe[U PIINIEIJ SEm [PLIOLIPD Isans,
SYH “A3n) 201n0§ JSIQ HLYQd ‘uonvjodiaiu] 3[quivaulT HLYOd
‘HLYOd4 ur saa1] simonng Juipnpout ‘OYDIN ul readde [[1m/saey
1EUL SOUNIN HIYOd JO Ipquinu B uanum sey AuaySnol oI

(s3tnsax dn uet)) ! NIFHOS-HVIID 4
dOda dyms 1T

(yaBuat‘appe jo satdoo doaq d0Y¥d dvus a1

)

(@8uex ut TT3un dog) TIIND FONVYE 6

(g8qunu oT3uts 8 38Y) YAGWIN-L0NT T 8

(3dwoad syz moyg) ddAL dnaeg L

(U®BIOS UBATO B UM 3I835) NIFHOS-YVIAID 9

(@3usx ut anduy TTaun geaday) NIDFg g
i NIWN-IJdWQHd 7

(FONVY: 103 SITWT 248S) i XVW-IdWOUd €

(U — xBW UTW Y33ual Ippv) IdWodd ¢ ¢

T

(LDdNI ¥0d ¥ISN IJWOHd) @

¢L # YOS

<— 6T

T
¢ dJoya £T

d00T 4!

dVMS 11

JIANE at

(anTBA 0a92 ® 0% 3TnBIQ) [6

(dn pesn 3x23 IIDSV) ISTd 8

(BuTass TBOTISWNU 3X9U 3I9AUOY)) HAGWAN-NYOS L
(TTnu ‘3UTT JO pus 3yj3 3ou JI) 41 82 dna 9
(sxsqunu w 8Y3 JO U2®I J04) o0 § dVms g

(8utass IIJSY Jo ssaappy) qvd Y

(BuUTT 3%33 Iasn ayz 3ndul) 104dxd @8 avd £
(wu " 2u U —— W) HIGWAN-LNINI : ¢

T

(ILNdNI 40 ENIT TIHNIS V WOUA SHAGWAN 40 IS V ININI) @

T4 # ¥0S

<—
¢ AIQNT
(9sTB3 01 J8TJ 395) $ a0udg
(wnuixew saoge ST U) gt
JIANT
(osT8y 03 Jvlg 39S) @ doya
(wnwjutw moTs8q ST U) ISTd
(snag 03 88T} 398) T
(24098 J0 wWOWTUTW ST U JI) 41 < — T B NIW-1dWOud dnd
(moTaq Jo wnuiXBWw ST UJT) A1 > +T 8 XVW-I1dWOuUd dnd
(1T -—u) HONVYE ¢
(PSMOTT® SNTBA WNUXBW) XVH-L1dWOYd TIGVIUvA @
(pomOTT® anTeA WNWTUTH) NIW-1dWOHd TIVIUVA @
(ENIVA INANI 4O FONVY ISHEL)
8L #
<
(18pao XBWUTW UT SITWIT HOBLS) £ dYMS <d <d
(3x83 qduwoxd o3 jutod) dVMS +T dVMS
(usBust 3urags wip LU} 399) 80 dna-
(sass ‘unuyxew jdwoad sy 389) +Z2Hd< 8 dna
(anes ‘wnwiutw jdwoxd syl 39n) +2d< 9 dna
(y3duar Japps —) <Sd0a
(395330 gI] wa3sfs 388) i+ NI <4
doyd
(Q/INOD ‘QYOM DNINIAIQ DNIYIS ALVAHD)
€9 #
<—
d001
(ssaapp® JBUO 3XaN) +T
(Axsuorqoyp o3uf oT7dwo)) ‘D 80 dnd
(3uTa3s Ul J19308BIBUD UDBI J04) 0a 9 <H
(3uTI3s MUBTQ-UOU JO 3.I83G) +
(1dwoad jo yzdust samvg) H<
(391p o3ut uzdusr ayydo)) ‘0 d0d - Y¥IAQ
(395JJ0 BuTa3s 3XaU 3Y3 348G) 4<
(s3TWIT T®OTIBWNU JUTL3S PUTL) dSOTONE u I1IOSY
(3x93 Buyass Jo appy) + @ NI @ 911
(3o1p ojuy xsu‘ujw oTydwo)) ¢ ¢ Jyms
(£xuotizolp o3uy sweu ITTdwo)d) STIING >

(3dwoad ® suyjaq)

(w3x8%3 "' 3UTJd3s SWBU , XBUW UTW THYOM ONINIJHZQ IJWOHd IIVIHD)

89 #

oT
7T
€T
et
T

s-—tmmvu\\ot\mog

H3S

o8

S AN N0 Do

a8

25

MICRO

No. 76 - October 1984

Database Management Systems

by Sanjiva K. Nath

San Francisco, California

Detalled Discussion of the Major Components that
make up a Database Management Package

B e I i T T

Introduction

Computers are able to process data at
incredible speeds. They can also store
vast amounts of information in storage
media a miniscule fraction of the size
of filing cabinets. We refer, of course,
to disks, cassettes and diskettes.
Computers can organize information,
sort it and present it to you in any order
that you specify, all at a fraction of the
time that you would take to do the task
manally. Consider, for example,
sorting through a list of about 1000
addresses to extract a few cor-
responding to a specific ZIP code, or
searching through a library card catalog
for books authored by Joe Smith on
the subject of mating rituals of blue
whales. Either of these tasks performed
manually would require, even by the
best estimates, at least a few days. But
a computer can accomplish that in
minutes. You can easily understand,
therefore, why one of the most
common applications of computers is
information management.

Information Management or
Database Management

Computer-assisted information
management begins with organizing
data in the form of records. A record
is the fundamental unit of a large
structure called a database. It contains
information relating to one subject. For
example, in a library card catalog, each
3x5 index card contains information

relating to the bibliography of a book.
Each card is, therefore, a record. A
collection of related records may be
grouped into a file. For example,
a collection of employee records
constitutes a personnel file. And a list
of patients, with their medical history
and insurance details, may form a
patient file.

From Records to Databases

You can further group files containing
related information and create a
database. A simple database may only
consist of one file. For example, a list of
your friends with whom you frequently
correspond, their phone numbers, and
mailing addresses is such a database.
A more complex database, on the other
hand, consists of information
contained in many files. These
databases provide information on a
wide variety of subjects to a larger
audience. They also facilitate
communications between many users
for on-line conferences. One such
database, CompuServe, provides
information on many areas of interest
such as science, education, games,
programming, etc. It also lets you talk
to other computer users and hold
conferences within your computer
club, over the telephone line using your
computer and a modem. You can alse
shop through their special on-line
“vendor service'’.

Another database popular with
investors, is the Dow Jones News and

Information Service that provides stock
quotes [current and historical], profiles
on public corporations and late-
breaking news that may affect the

performance of stocks. These
databases, due to their size and
complexity, are handled by more

powerful mainframe computers.

Due to the organization and large
capacities of databases, many
businesses use them to store any
information pertaining to their
business operations, such as employee
payroll files, accounting records,
customer files, etc.

A database, therefore, is the next
logical step to files in the hierarchy of
information organization. It is an
organization of a large number of files
that may have some inter-related data.
A small business, for example, may
have a database consisting of personnel
files, inventory files, and customer
files. As you see, these files are not
related to each other. However, they
contain information that belongs to
one company. In order to access records
in any one of these files, you access the
database instead of individual files.
The database program will, in turn, call
the appropriate file in memory and
extract the data requested. This type
of file organization benefits users
handling a large number of files
containing related data. Ordinarily, in
order to access any information in
these files, you either have to
remember the file that contains the
specific data or worse, search through

26

MICRO

No. 76 - October 1984

the files one at a time. A database will
not only provide you access to that
particular file, but also other files
that may contain related information.
All you have to do is specify certain
keywords and cross references
recognized by the database.

Applications of Database
Management

We have mentioned the advantages of
computers in handling large amounts
of information and their applications in
database management, especially for
large businesses and organizations in
both government and private sectors.
However, our primary interest in
understanding the principles of
database management is its immediate
applications in our lives. To that
end, we devote the rest of the article
to implementation of database
management systems [DBMS) on
microcomputers such as the
Commodore 64.

Before microcomputers became
widely available, our record-keeping
systems commonly consisted of either
a stack of 3x5 index cards or a cabinet
full of file folders. Each card or file
contained information about one of a
group of similar items {a magazine
article perhaps, or a customer with
whom you correspond) and was filed in
ascending numerical or alphabetical
order.

There are several limitations to
such a filing system. First, the retrieval
of specific records from, say, an index
card file, can only be made at one level;
that is, if the cards containing a mailing
list are arranged in alphabetic order by
the client’s last name, then you can
only access them by last name. If you
wish to access selected cards by a
specific city or zip code, you will have
to search the whole card file. This also
makes record updating very tedious.
Another disadvantage is obvious: you
can not, through such a filing system,
print out a list of all, or selected,
records.

The card index files are most
popular in libraries. They get around
some of the above limitations by
maintaining three index files for each
publication [subject, author and title)
and using lots of cheap labor {students).

The availability of Database
Management Systems (DBMS} on
microcomputers has made possible the
storing of a wide variety of information

on floppy diskettes, thus eliminating
the need for 3x5 card files, large filing
cabinets and hours of labor.
Information in these files may be
indexed in many ways, all of them
defined by you. Furthermore, you may
quickly select and retrieve any records
from file at any time. You may also
print records in a report format. The
fact that these records are maintained
on disk files also makes them much
faster and easier to update than a card
index file. Some sophisticated
programs also allow the merging of
records with text files. This feature is
especially useful for creating
personalized form letters; you can
merge a standard letter with many
addresses and the computer will
automatically print out letters, each
with the appropriate address. A
calculator function, available in a few
programs, even allows you to perform
arithmetic and logical operations on
records containing numeric data.

The applications of database
management systems extend much
further than the examples cited above,
You may store any type of information
that you want by creating your own
fields ({see definition below]. The
program will let you search through
that information, sort it in any order
and generate a list of any or all records
in that database. For example, let us
assume that you have created a
database of your customer accounts in
the United States. You can now
generate a list of your most valued
accounts in the entire U.S., or all
accounts in a specific area.

Another DBMS special feature
mentioned above is the calculator
function. Using this feature, you may
perform calculations on parts of your
records. This is helpful when you wish
to update balance owing in your
customer accounts. The calculations
may be performed on all or selected
records.

In addition to maintaining
customer accounts and mailing lists,
DBMS are also used for other
applications such as stock records,
inventories, contract records, student
records, sales ledgers, invoices,
personnel records, etc.

In the next section, we will suggest
factors to be

some important
considered when you select a database
management program for your

Commodore 64. We will also provide
brief reviews of 15 DBMS programs

currently available for the C-64.

There are many factors that you
might consider, when selecting a
particular DBMS for yourself. The
most important is its application.
Many programs are available, at prices
starting at $25-$30, and going to $150
and above. Some of these are general
purpose programs, whereas others are
specifically designed for one
application. A mailing list, for
example, is a DBMS designed to
maintain a list of names and addresses.
Similarly, there are DBMS designed to
aid teachers in keeping track of student
grades and attendance. If you only need
a DBMS program to maintain, for
instance, a relatively simple mailing
list or inventory file, then the price vs
performance ratio may be an important
consideration. If, however, you need
some sophisticated features in a
DBMS, then an advanced DMBS
system costing $100 to $150 may be a
good investment. In order to help you
evaluate these programs, with respect
to your applications, we will present a
list of criteria that will prove to be
useful. These criteria may be used to
compare the available programs to
determine the price vs performance
ratio of each, and perhaps select the one
that is the best buy. These criteria are
as follows:

Start-Up Options: When you first load
and execute a DBMS program, it offers
(via the main menu] a variety of
options. Using these options, you may
configure the system peripherals from
within the program. These options may
involve printer set-up, DOS
commands, screen background/text
color changes, etc.

Printer set-up, for example, will let
you set up the program for the
particular printer that you have {NEC,
Diablo, Spinwriter or Centronics-type
parallel).

DOS commands refers to accessing
the functions and commands of the
disk operating system from within the
program. This enables you to format a
diskette or obtain the disk directory
without exiting the program.

Changing screen background/text
colors is useful for getting the best
contrast between the background
screen and the text for improved
readability. Although there are up to
256 color combinations available on
the Commodore 64 ([sixteen
background and sixteen text colors),
only a few allow optimuim readability.

No. 76 - October 1984

MICRO

27

File Structure and Specifications: The
efficiency of a particular DBMS in
storing and retrieving data from a file
depends primarily upon the file
structure used. Relative files and
random access files provide the fastest
data storage and retrieval. Relative files
have the added advantage that the
record length may be altered. Records
that are stored in sequential files,
however, are only accessible in the
order in which they are stored, so the
last record entered into the file will be
the last record accessed. In order to
implement DBMS functions such as
sorts and searches in sequential files,
the data has to be loaded into memory
completely. This restricts the size of
the file {due to limited memory
available in the computer) and makes it
less versatile. Updating sequential file
records is very time-consuming and
tedious. Most good quality DBMS,
therefore, use relative or random access
files to handle record storage.

Specifications refers to the
limitations a program imposes on the
file and record structures you can
create. For example, a program may
allow a maximum of twenty-five fields
per record and thirty characters per
field in each record. If you wanted to
use that program to record a mailing
list of customers, these specifications
may be sufficient. But if you want to
store abstracts of magazine articles,
you may not have enough space. If you
have a specific application in mind,
you will find it easier to choose a
particular database management
system. Otherwise, the more versatile
a particular program is, usually, the
more favorable it will be with respect
to general applicability.

Advanced Data Handling: This refers
to features such as ‘''sorts’” and
“'searches’’ that are available in most
programs. The sort feature allows you
to arrange the records in your database
in a number of ways. You can sort a file
in either alphabetic or numeric order.
You may use one or more fields to sort
your data. For example, if your
database consists of mailing addresses,
by using the advanced sort feature you
may arrange that list in an alphabetical
order by customer’s last name or by
city. You may also want to rearrange
the same list in numeric order by the
zip code. The search feature lets you
look into your data base for specific
records. You can define the criteria by

using ‘‘conditional’’ statements [such
as IF Last Name = Smith OR City =
New York] and the program will
automatically search for records that
match the criteria defined in the
conditional statements. Sorts and
searches may be performed at one or
multiple levels.

Another feature available in most
advanced DBMS is the ability to set up
calculated fields in your database. This
allows you to perform mathematical
operations on specified fields of your
database file [such as adding tax to the
price of a stock item or averaging
student grades). In many cases, you can
use BASIC’s mathematical operators
for your formulas for the calculated
fields.

Report Generator: A useful function of
a DBMS is its ability to generate user-
defined reports which may contain a
few or all of the records in the file. The
reports may be organized as a table or a
listing, and the fields may be
positioned anywhere on the paper. This
flexibility in defining the report format
makes a program versatile in its
applicability. You can print mailing
labels or get a simple listing of a few
names and addresses. You can also
print selected fields from each record to
form a comparison chart. A good
database system will support many
different types of printer configurations
and print formats.

Special Features: In this category, we
have included the various features of a
program that either add to its
performance and applicability or make
it outstanding in comparison with
other similar programs. For example, a
DBMS might feature an integrated
word processor and a programmable
calculator. This particular package may
be of great value if you plan to use your
DBMS for creating personalized form
letters or keeping track of inventories.
Another system may be designed for

storing bibliographies. Its use 1is
therefore limited to a specific
application.
Glossary
The following terms are most

frequently encountered in the manuals
of database programs:

Add Fields: Suppose you have created a
database of names and addresses of all

your employees. Now you want to add
another field {date of birth or starting
date on the job} to this file. Some
programs will not allow you to add a
field to the pre-existing file. In this case
you will have to start all over again,
create a new file and enter all the
records. The ability to add fields to a
file is a useful feature that very few
programs offer. With most DBMS, you
must design the file structure very
carefully, since you may not be able to
add more fields to your file.

Browse: This feature, available in
most database management systems,
allows you to look at the records in a
file sequentially, starting with the first
one. This 'browsing’ may also be
performed in a reverse order (i.e., if you
are currently working with the 100th
record and you want to view the
preceding few records, then you may
browse in a descending order|.

Calculator: This is a useful feature in a
database management system. It lets
you perform arithmetic calculations on
the numeric data types in your records.
The types of calculations that you can
perform vary from program to program.
The feature, however, adds to the

versatility of the DBMS in its
applications.
Conditional Statement: This

statement consists of logical operators
(such as IF, THEN, GE, LE, EQ) that
may be used to select specific records
from a database. For example, you may
use a statement like, "'IF last name EQ
Smith AND City EQ San Francisco,”’ to
tell the computer to select only records
which have "'Smith’’ in the last name
field and ‘'San Francisco’’ in the city
field.

Database: A databasc is a collection of
information organized in the form of
records. It may be a list of customers’
phones and addresses or an inventory of
items in stock. The term database is
also commonly used in relation to large
information networks such as the
Source or the Dow Jones News
Retrieval service.

Database Management System: Often
abbreviated DBMS; refers to a
collection of computer programs that
facilitate the creation and use of a
database in the form of a file{s}. It is an
electronic filing system that offers
efficiency in data storage and retrieval.

28

MICRO

No. 76 - October 1994

Editing: Once you have entered your
records in a file and want to update a
specific record or you entered some
information incorrectly and want to
correct it, you will be working in the
editing mode of a DBMS. The manner
in which this mode is implemented in
each program and the efficiency with
which your are able to update your
records is considered here.

Field: A field is a specific data type.
This may be the book title in a library
card catalog, or a zip code in a mailing
list. A record consists of many inter-
related fields. Information within a
field may or may not be identical
between records. For example, in a file
containing a mailing list, each record
might contain five fields: name, street,
city, state and zip code of clients. If two
clients live in the same block, their zip
code will be the same; therefore, the
information in those fields will be
identical in the respective records.
Fields may be used to perform sorts and
searches within a file, although some
DBMS will search only on key fields.

File: A collection of records on disk
that are saved under a unique name.
The records consist of identical data
types (fields). For example, you may
have a file containing a list of vendors
that manufacture software for the
Commodore 64. All records in this file
will have identical field structure (i.e.,
all records will contain the name and
address of the vendor and the product
that they manufacture).

Function Keys; The Commodore 64
has four undefined, programmable keys
on the right side of the keyboard. These
keys are often referred to as the
function keys. By using these keys in
conjunction with the shift key, you can
actually perform up to 8 functions in
your program. The function keys add to
the ease and efficiency of using the
features of a certain program. For
example, you can use the function keys
to select various menu options of a
program. Without them, you would
normally have to physically type in
each option.

Help Screen: Some programs display a
list of commands and functions to help
you select the right command for a
specific function. This way, you are not
forced to memorize all the commands
of the system and their specific
functions. This is referred to as a help
screen.

Key: A key is an identifier consisting
of one or more fields. It is used to sort,
search and format output of desired
data elements. If you have a database of
sales records, for example, then you
may identify one or more fields
(salesman, product name, etc) in this
database as key fields. This will enable
you to sort or search the entire database
for specific records by establishing
criteria using these key fields. Some
DBMS will allow searches only on key
fields, while others will search for non-
key fields with a slower process.

Menu-Driven: Many DBMS packages
display the master menu when the
program is first executed. Selection of a
function or option from the master
menu results in the display of another
menu that contains more detailed
features of that particular function.
Such a system or program is called
menu-driven.

On Screen Prompts: These are the
prompts that a program displays on the
monitor screen every time it requires
you to perform a certain task such as
inserting a new disk or change printer
paper, etc. These prompts are very
helpful since they do not require you to
memorize every step that you go
through during the program execution.
The program keeps you informed of the
next step and any inputs that it needs
from you.

Random Access File: A type of disk file
that allows you to directly access
records through the program by
specifying the drive, track and sector
number. These files are not given
names and do not appear in the disk
directory.

Record: A record is a collection of data
items |(fields]. In a personnel file, for
example, the information on each
employee is considered a record. The
maximum number of records that a
database may contain is limited by the
size of each record and available space
on a diskette.

Relative Files: These are similar to
random files, except that the files are
given unique identifiers (file names)
and the record length in the file is
alterable. A relative file may contain up
to 720 records.

Report: A report is a user-defined
printout (or hard copy} of selected
information in the database. Many

different kinds of reports may be
generated by a DBMS such as lists,
forms, tables, etc.

Search: This function allows you to
search a file for specific records that
you have defined with conditional
statements.

Security: A feature available in some
DBMS that allows you to restrict
access to those with a password.

Sequential Files: A file that
sequentially stores data on disk. Access
to data is made in the same order each
time [from the first element in the file
to the last element in the filel. This
type of structure makes searches or
record updating very time-consuming
and tedious.

Sort: This is a function [available in
some DBMS] that allows you to
rearrange the records in your database
alphabetically or numerically. You
may also be able to select (using
conditional statements} the records to
be sorted instead of sorting the whole
file.

Spreadsheet Features: Some DBMS
have built-in features which allow you
to build a spreadsheet from selected
database records.

Start-Up Options: These are the
options available to you through the
program when vyou first load and
execute it. The options are displayed
through the main menu. They may
include printer set-up, disk
initialization, color adjustment, etc.

Word Processor Interfacing: Some
DBMS allow you to create a file from
the database which can be further
processed by a word processor.

Next Month

Part II of this article will deal with
specific database management systems
available for the Commodore 64.

Acknowledgement

Some of the material in this article is
based on work done by the author for:

The Commodore 64 Buyer's Guide,
by Gary Phillips, Terry Silveria and
Sanjiva Nath, published by the R. 1.
Brady Publishing Co., July 1984.

No. 76 - October 1984

MICRO

29

BASIC/ML Data Transfer

by Mark ‘Jay’ Johanson

Germantown, Ohlo

While writing programs using a BASIC
interpreter is very easy and convenient
{or at least, easier and more convenient
than most other methods), I am sure
that I am not alone in the discovery
that BASIC programs sometimes run
extremely slow. The obvious alter-
native is to use machine language, but
writing in machine language, even
with the aid of an assembler, is
significantly more difficult than
writing in BASIC; sometimes it can
become overwhelming.

A common solution to this
dilemma is to write machine-language
subroutines into your BASIC program,
using BASIC for the bulk of the
program because of its convenience,
but using machine language for a few
critical routines for the sake of speed,
choosing routines for which ML will
give significant performance im-
provements. While such a scheme can
be very effective, there are several
problems {opportunities?} which must
be overcome. It is my purpose here to
address one particular problem in-
volved in such programs: transferring
data between the two languages,
specifically on the Commodore Vic-20
and 64. While users of other machines
may be able to make use of some of the
basic principles that I will discuss here,
many of the details are, unfortunately,
tied to the workings of Commeodore’s
BASIC interpreter and operating
system.

In the discussion which follows I
assume that the reader has some
knowledge of 6502 machine language.
As an aid to comprehension, in all my
sample programs, [include the
assembler equivalent of any machine
language code as REMarks following
the POKE values. As it is not my
purpose here to discuss the question of
where to locate an ML routine in
memory, in these examples I will
simply put my ML routines {and data]
in the cassette buffer.

BRI

A
o

A Number of Technilques are Presented to
Transfer Data Between BASIC Programs
and Machine Language Subroutines

PRV

POKEing Along

The most obvious way to make
BASIC's data available to machine
language is via the POKE statement
and, likewise, data can be retrieved by
BASIC with a PEEK function. If you
have been using machine language
routines you are probably familiar with
this technique, so I will only discuss it
briefly here.

In order to use this method, it is
only necessary that you decide on some
specific memory location which is to
hold the data and then cause both
languages to access it. Program 1
demonstrates this by reading in a
number using BASIC, passing it to a
machine language routine which adds
two to it and then using BASIC again to
print out the sum. {And before you
point out that this is a totally inane use
of machine language, let me hasten to
add that it is by no means intended to
be a useful program: it is just a
demonstration.]

Remember that POKE values are
limited to one byte, i.e. 0 thru 255. A
Commodore BASIC integer is two
bytes, so to allow for a full range of
integer values we must use something
more like Program 2. This begins to
illustrate some of the problems with
this method of transferring data: if we
want to pass more than one byte things
begin to get rather involved.

This method has the advantage of
being straightforward and general, but
as the amount of data to be passed
becomes large, all the PEEKs and
POKEs can become very tedious.
Furthermore, the POKE is one of the
slowest instructions on the
Commodore, so if you have a lot of
them, they can slow your program
down.

Using USR

A second method of transferring data
involves the USR function. This
function is seldom used but can be very
handy in certain situations. Before
using it you must first POKE the
address of the machine language
routine into locations 1 and 2 on the
Vic-20, locations 785 and 786 on the
C-64, in the standard low-high format,
ie.

POKE 1,AD AND 255
POKE 2,INT(AD/256)

(for the Vic). It can then be used just
like any other function, ranging from a
simple A=USR(B) to including it
within a complex expression and, just
as for any other function, the value
within the parentheses may itself be an
expression.

When the function is used within a
BASIC statement, control will be
passed to your machine language
routine in a manner similar to what
happens when you use a SYS
statement, and control will be returned
to BASIC when your routine executes
an RTS instruction {or more correctly,
when it executes one more RTS
instruction than it has JSR in-
structions). But when the ML routine
begins, BASIC will have placed the
value found within the parentheses
[the result of the computation if this
was an expression) as a floating point
number in locations 97 thru 101. When
your routine finishes, it should place a
floating-point value in this same
location: this number will be used as
the result of the function. For example,
if you had the BASIC statement:

X=2*USR|A/B +2|-7

30

MICRO

No. 76 - October 1984

then, when your ML routine was
called, the value in locations 97-101
would be the result of the computation
A/B+2. If your routine deposited the
number 5 into this location, then X
would end up being assigned the value
2*5-7, or 3.

If you wish, you may work directly
with these floating-point values.
Unfortunately, floating-point numbers
are very difficult to work with —
personally, aside from a couple of
demonstration routines to prove to
myself that I could do it, I have never
used them. However, Commodore has
graciously provided us with conversion
routines: a floating-to-fixed routine at
location 53674, and fixed-to-floating at
54161. Conveniently, both these rou-
tines use 97 thru 101 as the location for
the floating-point number, the same
location accessed by USR. They use the
A and Y registers for the integer value,
with the most significant byte in A and
the least significant in Y. |According to
the Vic 20 manual, they use memory
locations 20 and 21 for the integer
value. Unfortunately, this does not
appear to be the case. Numbers do
appear there whenever BASIC does an
integer conversion, but these locations
are not accessed by the routines
mentioned above. Perhaps there is
some other routine which moves
values between A:Y and 20-21 but, as
this is a relatively trivial operation, 1
have not bothered to look for such a
routine within the operating system.}

Thus, all the ML routine must do
upon execution is execute the floating-
to-fixed conversion with a JSR 53674,
do whatever work it desires with the
integer value which will now be in A:Y
and then, when it is finished, put the
desired return value in A:Y and execute
the fixed-to-floating routine with a JSR
54161. This is demonstrated in
Program 3 which, again, will simply
add two to the entered number.

The major advantage of the USR
function is that it makes your BASIC
program simpler, faster and more
readable. It is not necessary to do
cumbersome PEEKs and POKEs to
move the data around and the resultant
value of the function can be used
directly in a more complex formula
without any intermediate steps. It does
require two extra instructions in the
ML routine — the JSR’s to do the
conversions — but this is a small

routines end up putting the value into
registers, which you would probably
have taken a couple of instructions to

penalty and, for that matter, these-

do anyway. A bigger drawback is that
you can only get one value into the
function and if you want to use more
than one USR routine in the same
program you may end up having to
continually alter which one is ‘active’
by POKEing values into the USR
vector; that destroys the advantage of
not having to do POKEs to get the data
in. In short, don’t try to use USR for
every ML routine you ever write from
now on; USR is only of value in certain
limited situations. But when it is
helpful, it can make your program
much more elegant and slightly faster.

Make-Believe Registers

I stumbled upon a third method of
transferring data between BASIC and
ML almost by accident. I only recall
seeing it used by someone else once,
and in that instance the writer included
it in a program without explanation.

In the memory maps found in the
Vic-20 and C-64 manuals, for locations
780 thru 783 one finds the cryptic
notes, ‘storage for 6502 A register’,
‘storage for 6502 X register’, etc. I
found no further explanation in the
manual of what these are for, so one
day I became curious about them and
tried some experimenting which led
me to discover this useful fact:
whenever you use a SYS statement in a
BASIC program, before control is
transferred to your routine the system
loads the registers with the values
found at locations 780-783; when your
routine exits, before control is returned
to BASIC the system stores the values
of the registers at these locations.

At first glance, this feature may
seem to be of only marginal value.
Instead of saying POKE 828 N before
calling your ML routine and then
having the ML routine begin with a
LDA 828, you could simply say POKE
780,N and then when your routine
began the desired value would be
waiting in the A register. So big deal,
we’ve saved one instruction. A
somewhat more useful application
would be for an ML routine to leave
data in the registers; the next time this
routine is executed the registers will
appear to have been unchanged by
anything BASIC may have done in the
meantime, because the system will
have saved off the registers when it
finished and then restored them with
the same values when the routine was
re-entered [assuming neither the
BASIC program nor some other ML

routine had modified locations
780-783]. Still, this would only save us
from having to do some POKEs.
However, there is one situation
where this feature can be quite useful,
namely, when we want to use one of
the kernal routines from within a
BASIC program. This is best illustrated
with an example. Commodore BASIC
includes no cursor positioning
command. Thus, if you want to plant
the cursor at a specific location on the
screen using BASIC, about the best you
can do is something like Program 4,
using ‘home’ followed by variable
numbers of ‘down’s and ‘right’s to get
the cursor to the desired location. This
example creates a string with the
maximum number of cursor movement
keys you can use {on the Vic-20], and
then does LEFT$'s on them to get the
desired number. For demonstration
purposes, it simply asks for a row and
column number, prints an asterisk at
that location and then waits for any key
to be struck to tell it to clear the screen
and repeat the process {indefinitely].
But this is inefficient and inelegant.
Hope appears when we note that the
kernal does have a cursor positioning
routine, beginning at location 65520.
However, this expects the row and
column to be in the X and Y registers
respectively, and BASIC cannot
directly modify the contents of the
registers. [The BASIC interpreter is
using the registers constantly while
executing our BASIC program, so even
if BASIC did include an instruction that
modified a register, the inserted value
would quickly be overwritten.| Thus, it
would appear that we are forced to pass
the desired row and column to an ML
routine which will actually load the
registers and execute the call. An
example of this is given as Program 5
which performs the same task as
Program 4, but using the kernal plot
routine instead of strings of cursor
control characters. Note that, even
though the ML routine is trivial, the
program still has to go to a certain
amount of trouble to load and execute
it. Perhaps this is not a terribly heavy
price, but there is a better way.
Program 6 uses the location 780-783
feature to call the kernal plot routine
from BASIC without the need for any
‘ML interface routine’. It performs the
same function as Programs 4 and 5, but
note that actually doing the plot takes
only four statements: three POKE's and
a SYS. (The third POKE is needed
because the plot routine can actually
perform two functions: planting the

No. 76 - October 1984

MICRO

31

cursor at a given location, or telling you
where the cursor is currently sitting. It
decides which function to perform
depending on the contents of the carry
flag, which we here set to zero by
means of the third POKE. This will also
set all the other flags to zero, but, as we
don’t care about their values, it's
easiest to set them all to zero and avoid
any possible confusion.)

As you can see, while it is unlikely
that this facility would be of any help
in passing data into your own routines,
it can greatly simplify the use of
routines from the kernal. By the way,
note that all of this works with the SYS
statement; it does not work with USR.

BASIC’s Backyard

Someone might reasonably ask, “'Why
must we make a copy of the data to
pass to an ML routine? Why not let the
ML routine use BASIC's variables di-
rectly, in the same locations in which
BASIC actually stores them for its own
use?'’ This thought leads to a technique
which is more complex than those I
have discussed previously, but which is
extremely efficient, especially when
there is a great deal of data to be passed.

The obvious hurdle to be overcome
here is finding where BASIC stores its
variables. We could investigate where
the variable table is located and how it
is laid out and then develop a routine to
find any desired variable, but this is not
necessary. BASIC has to do that work
itself all the time, so we can simply let
it do this for us.

If you look at a memory map you
will see that locations 71 and 72 are
described as ‘current variable address’.
Using this clue I experimented a bit and
discovered that these two bytes always
contain the address of the last variable
that you have used in your program.
Thus, if you code a line such as N=0:
POKE 251,PEEK(71]): POKE
252,PEEK({72}, you will put the address
of N into locations 251-252. {Note that
if you entered N=0: Al=PEEK(71}:
A2 =PEEK|72] you would not end up
with the address of N in Al and A2,
because by using two more variables
you will have overlaid the previous
address. You must avoid using any
other variables until you have copied
the address into a safe place. This
essentially means that you must POKE
it somewhere, as that’s the only way
(that I can think of] to move data
without using a variable.) If you
execute a statement such as this at the
beginning of a BASIC program and stow

the variable address in some con-
venient location, an ML routine could
refer to that variable from then on. For
an elementary variable, it is not
necessary to redo the look-up as
Commodore's BASIC will never move
a variable once it has been created (an
array, however, may be moved).

The next issue to be considered is
exactly what you will find at this
address. This depends on the variable
type. If it is a floating-point number, at
the given address will be the five byte
floating-point value. As I mentioned
earlier, floating-point numbers are
difficult to work with using machine
language and so I will dispense with
any further discussion of them here.

More useful are integer variables.
For these the address is that of a two-
byte integer, with the most significant
byte stored first, followed by the least
significant byte. Note that this is the
reverse of the order normally used on
the 6502. (I've forgotten this and
slipped up several times.}

Program 7 uses this technique to
perform the same dull ‘add 2’
operation. A few points are worth
comment here. The most straight-
forward way to use the variable address
is to store it somewhere on page zero
and then use the (addr), Y addressing
mode to access the data. For this
example I have put it at locations 251
and 252, two of the four page zero
locations which Commodore promises
that BASIC will never disturb. Four
bytes is only enough room to store two
variable addresses permanently, so in
real life you would probably have to
store the address elsewhere and then
move it to page zero when it is needed.
This is demonstrated in Program 7B.

While the work that must be done
in BASIC is no more involved than that
required for any other method, the ML
routine does need several extra in-
structions to find the variable. If your
routine is short and only uses a few
bytes of data, this extra work is
probably not worth it. As your routine
becomes larger a few extra instructions
become less significant {as a per-
centage), and, if you must pass a lot of
data back and forth, this technique lets
the ML routine do all the work rather
than BASIC, which is a much more
efficient system.

Speaking of the amount of data to be
passed, consider the following: An
integer occupies two bytes and a
floating-point number 5, but a string
variable may take up to 255 bytes. To
try to pass this much data to an ML

routine by copying it with POKEs
would be extremely cumbersome; this

is where you would save the most by
working on the variable directly.

Program 8 demonstrates this with a
routine to examine a string and replace
every occurrence of a dollar sign with a
pound sign. (Which is about as useful
as reading in a number and adding two
to it.) For string variables, the address
found in locations 71-72 points to a
three byte area containing first a one- !
byte length value and then a two-byte
address of the actual string. Thus we !
must follow two levels of indirection to

get to the actual data; the first address

points us to an area containing, not the

data itself, but rather another address

pointer to follow. Note that while the

address of this three-byte area will

never change during the execution of a

program, the second address, the ad-

dress of the string itself, will change

everytime BASIC modifies the string,

as well as on other occasions when

BASIC does its 'garbage collection’ to

clean up unused areas in string space.

So even if you don't modify the string,

don’t count on it staying put. Have the

ML routine reload this second address

every time it executes.

There is one caution to be borne in
mind when modifying string variables
in place; while you may freely change
the contents of any byte in the string
and you may make the string shorter by
altering the length value, you should
definitely avoid trying to make the
string longer, as you probably have no
idea what may happen to be sitting in
the space following the present con-
tents of the string. Usually this will be
another string wvariable and you
normally don’t want to destroy other
variables. While it is possible in
principle to create a dummy variable
from which you will take the needed
space, you would have to be careful
that the garbage collection routine did
not get invoked at the wrong time and
move your variables in relation to each
other. I have found it far more practical
to let BASIC either do all the
lengthening (by conecatenating strings
together) or to add a bunch of dummy
characters to the end of the string so
that the ML routine need only shorten
it by the number of added bytes that it
decides it doesn’t need. For example,
before executing the ML routine, use
BASIC to add 10 spaces to the end of
the string. If the ML routine then
decides that six extra spaces were
needed, it reduces the length by the
difference, or four bytes.

32

MICRO

No. 76 - October 1984

I tend to prefer this ‘in-place’
method of data transfer because of its
‘cleanness’; the BASIC program isn't
cluttered up with a lot of POKEs, but
simply sets variables just like it would
before a GOSUB. But if only a couple of
bytes of data are being passed, or if the
ML routine is rather short, then the
extra ML code required seems
excessive.

Parting Thoughts

Each of the four methods of transferring

data which I have presented here has its
own uses. The simple PEEK/POKE is
good for small amounts of data and
general ‘quick-and-dirty’ applications;
USR is handy when you want an ML
routine to produce a result which will
be used in an expression, or when the
input to it is the result of an expression;
the register storage area is convenient
for setting up calls to kernal routines;
and working directly in BASIC's
variable area is a help when there is a
large amount of data to be passed,
especially string variables.

I don’t doubt that other techniques
could be found with their own par-
ticular advantages. It's good to have a
variety of techniques at your
disposal — just because something
works well in one situation, don't
assume that that is all you'll ever need.
A monkey wrench is a handy tool: it
can be used on bolts of almost any size
and in a pinch you can use it as a
hammer or a crowbar. But the job will
be a lot easier if you take something in
your toolbox besides a monkey
wrench.

o BML 1

19 REM PROGRAM 1

o 20 REM TRANSFER DATA WITH PEEKS AND POKES
3@ FOR AD=84¢ TO 849:READ B:POKE AD,B:NEXT

11¢ DATA 173,6@,3:REM LDA 828
O 120 DATA 24:REM CLC
13¢ DATA 105,2:REM ADC #2
14@ DATA 141,6@,3:REM STA 828
150 DATA 96:REM RTS
O 2¢p rREM
21¢ INPUT N
220 POKE 828,N
239 SYS 84D
O 24p PRINT PEEK(828)

o BML 2

o 1§ REM PROGRAM 2

20 REM TRANSFER TWO BYTES WITH PEEKS AND POKES
3@ FOR AD=84@ TO 857:READ B:POKE AD,B:NEXT

O 110 DATA 173,60,3:REM LDA 828

120 DATA 24:REM CLC

130 DATA 105,2:REM ADC #2

14@ DATA 141,6@,3:REM STA 828
O 15p DATA 173,61,3:REM 1DA 829

16@ DATA 105,0:REM ADC #9

179 DATA 141,61,3:REM STA 828
O 190 DATA 96:REM RTS

2¢¢ REM

21¢ INPUT N

22(POKE 828,NAND255:POKE 829, INT(N/256)

O 23p sys 84p

249 PRINT PEEK(828)+256*PEEK(829)

BML 3

1 REM PROGRAM 3

2¢ REM TRANSFER DATA VIA USR FACILITY
® 3@ FOR AD=84@ TO 875:READ B:POKE AD,B:NEXT
1¢1 DATA 32,17@,2¢9:REM JSR FIXFL

1¢2 DATA 14@,6@,3:REM STY 828

200 REM

219 INPUT N
22¢ N2=USR(N)
24@ PRINT N2

BML 4

13¢ GOTO 194

BML 5

13@ GOTO 1¢¢@

193 DATA 141,61,3:REM STA 829
110 DATA 173,6@,3:REM LDA 828
120 DATA 24:REM CLC

13@ DATA 1@5,2:REM ADC #2

14@ DATA 141,6@,3:REM STA 828
15@ DATA 173,61,3:REM LDA 829
16@ DATA 1@5,@:REM ADC #@

17¢ DATA 141,61,3:REM STA 829
171 DATA 172,6@,3:REM LDY 828
172 DATA 173,61,3:REM LDA 829
180 DATA 32,145,211:REM JSR FLFIX
19¢ DATA 96:REM RTS

2¢5 POKE 1,72:POKE 2,3

1¢ REM PROGRAM 4

2¢ REM CURSOR POSITIOING WITH DOWN'S AND RIGHT'S
3¢ R$="{HOME,DOWN22}"

49 C$="{RIGHT22}"

1¢@ PRINT"{CLEAR}";:INPUT"ROW,COLUMN';R,C

11¢ PRINT LEFT$(R$,R);LEFT$(C$,C-1); "*";

12¢ GET 1$:IF I$="" THEN 120

1¢ REM PROGRAM 5

2¢ REM CURSOR POSITIOING WITH KERNAL PLOT ROUTINE
3@ FOR AD=84@T085@:READ B:POKE AD,B:NEXT

4@ DATA 174,6@,3:REM LDX 828

5@ DATA 172,61,3:REM LDY 829

6@ DATA 24:REM CLC

7@ DATA 32,248,255:REM JSR PLOT

8@ DATA 96:REM RTS

19@ PRINT"{CLEAR}"; :INPUT"ROW,COLUMN";R,C

11¢ POKE 828,R—1:POKE 829,C-1:SYS 84@:PRINT"*";
12@ GET I$:IF I$="" THEN 120

No. 76 - October 1984

MICRO

33

BML o

1¢ REM PROGRAM 6

2¢ REM CURSOR POSITIOING WITH KERNAL PLOT ROUTINE
AND NO ML INTERFACE

1¢¢ PRINT"{CLEAR}"; : INPUT "ROW, COLUMN";R,C

11¢ POKE 781,R-1:POKE 782,C-1:POKE 783,:

SYS 6552@:PRINT"*";
12¢ GET I$:IF I$="" THEN 12¢
13@ GOTO 1¢¢

BML 7

18 REM PROGRAM 7

2@ REM TRANSFER DATA BY VARIABLE ADDRESS
3@ FOR AD=84@ TO 856:READ B:POKE AD,B:NEXT
4@ DATA 16@,1:REM IDY #1

5@ DATA 24:REM CLC

6@ DATA 177,251:REM LDA (251),Y

7@ DATA 105,2:REM ADC #2

80 DATA 145,251:REM STA (251),Y

9@ DATA 136:REM DEY

1¢@ DATA 177,251:REM LDA (251),Y

110 DATA 1¢5,@:REM ADC #¢

12 DATA 145,251:REM STA (251),Y

130 DATA 96:REM RTS

2¢@ REM GET ADDRESS

219 N%=0:POKE 251,PEEK(71):POKE 252,PEEK(72)
3¢@ REM DO IT

31¢ INPUT N%

32¢ SYS 84@

33¢ PRINT N¢

BML 7B

1¢ REM PROGRAM 7B

2¢ REM TRANSFER DATA BY VARIABLE ADDRESS--
NOT RELYING ON PAGE @ SPACE

3@ FOR AD=84@ TO 866:READ B:POKE AD,B:NEXT

4@ DATA 173,6@,3:REM LDA 828

5@ DATA 133,251:REM STA 251

6@ DATA 173,61,3:REM LDA 829

7@ DATA 133,252:REM STA 252

8@ DATA 16@,1:REM LDY #1

9@ DATA 24:REM CLC

10@ DATA 177,251:REM LDA (251),Y

110 DATA 1¢5,2:REM ADC #2

12¢ DATA 145,251:REM STA (251),Y

13¢ DATA 136:REM DEY

14@ DATA 177,251:REM LDA (251),Y

15¢ DATA 1¢5,8:REM ADC #@

160 DATA 145,251:REM STA (251),Y

17@ DATA 96:REM RTS

20@ REM GET ADDRESS

21¢ N%=0:POKE 828,PEEK(71):POKE 829,PEEK(72)

3@@ REM DO IT

31¢ INPUT N¥

320 SYS 84¢

330 PRINT N%

BML 8

10 REM PROGRAM 8

2¢ REM TRANSFER DATA BY VARIABLE ADDRESS—STRINGS
3@ FOR AD=84@ TQ 874:READ B:POKE AD,B:NEXT
4@ DATA 16@,1:REM IDY #1

45 DATA 177,251:REM LDA (251),Y

5@ DATA 133,253:REM STA 253

55 DATA 20@:REM INY

6@ DATA 177,251:REM IDA (251),Y

65 DATA 133,254:REM STA 254

70 DATA 16@,@:REM IDY #¢

75 DATA 177,251:REM LDA (251),Y

8@ DATA 141,6@,3:REM STA 828

85 DATA 177,253 :REM LDA (253),Y

9% DATA 2@1,36:REM CMP #'$'

95 DATA 2¢8,4:REM BNE +4

10@ DATA 169,92:REM LDA #' {POUND}'

1@5 DATA 145,253:REM STA (253),Y

11¢) DATA 2¢@:REM INY

115 DATA 204,6@,3:REM CPY 828

12¢ DATA 48,24@:REM BMI -16

13¢ DATA 96:REM RTS

20@ REM GET ADDRESS

21@ N$="":POKE 251,PEEK(71):POKE 252,PEEK(72)
3@@ REM DO IT

31¢ INPUT N$

329 SYS 84¢

33@ PRINT N$

INTRODUCING

The EMPRESS

MAINFRAME DECISION SUPPORT
SOFTWARE FOR THE
MICROCOMPUTER

e English Language Front End
e Mainframe Computing Capability
e Command/Menu Driven

Empress Database Manager
available for
DIMENSION, SAGE, and
other Motorola 68000 based machines

EMPRESS TECHNOLOGY INCORPORATED
510 KING STREET
LITTLETON, MASSACHUSETTS 01460
617/486-9601

34

MICRO

No. 76 - October 1584

NEW 128K —MEGA BYTE DUAL DISK DRIVE—80 COLUMN

COMPUTER SYSTEM SALE!

HOME e BUSINESS e WORD PROCESSING

took ATALL YOUGETFORONY G 8D 8B o | 157 PricE

@) B128 COMMODORE 128K 80 COLUMN COMPUTER $ 995.00
(2 4023 - 100 CPS - 80 COLUMN BIDIRECTIONAL PRINTER 499.00
(3 8050 DUAL DISK DRIVE (over 1 million bytes) 1795.00
@ 12" HI RESOLUTION 80 COLUMN MONITOR 249.00
* BOX OF 10 LORAN LIFETIME GUARANTEED DISKS 49 .95
e 1100 SHEETS FANFOLD PAPER 19.95
e ALL CABLES NEEDED FOR INTERFACING 102.05

TOTAL LIST PRICE $3717.95

PLUS YOU CAN ORDER THESE BUSINESS PROGRAMS AT SALE PRICES
LIST SALE LIST SALE
Professional 80 Column Payroll $149.95 $99.00
Word Processor $149.95 $99.00 Inventory $149.95 $99.00
Protessional Data Base $149.95 $99.00 General Ledger $149.95 $99.00

Accounts Receivable $149.95 599.00 Financial Spread Sheet $149.95 $99.00
Accounts Payable $149.95 $99.00

LIST SALE
PRINTER REPLACEMENT OPTIONS : Olympia Executive Letter Quality Serial Printer $699.00 $399.00

(replace the 4023 with the following at these sale prices) - Comstar Hi-Speed 160 CPS 15'2" Serial Business Printer $779.00 $499.00
> Telecommunications Deluxe Modem Package $199.00 $139.00

15 DAY FREE TRIAL. We give you 15 days to try out this SUPER SYSTEM PACKAGE!! If it doesn't meet your expectations, just send it back
to us prepaid and we will refund your purchase price!!

90 DAY IMMEDIATE REPLACEMENT WARRANTY . If any of the SUPER SYSTEM PACKAGE equipment or programs fail due to faulty
workmanship or material we will replace it IMMEDIATELY at no charge!!

Add $50.00 for shipping and handling!!
$100.00 for Alaska and Hawaii orders.
WE DO NOT EXPORT TO OTHER COUNTRIES

Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for E N TE R PR'Z E S WE LOVE OUR CUSTOMERS.

delivery. 2 to 7 days for phone orders | doy express mail! We accept Viso
and MasterCard. We ship C.0.D. to continental U.S. addresses only. BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to order

FLOPPY DISKS SALE *98¢C ea.

Economy Model or Cadillac Quality
LORAN %5 We have the lowest prices! LORAN e

*ECONOMY DiSKS
Good quality 5% " single sided single density with hub rings.

Bulk Pac 100 Qty. 98¢ ea. Total Price
10 Qty. $1.20 ea. Total Price

CADILLAC QUALITY (double density)

¢ Each disk certified * Free replacement lifetime warranty ¢ Automatic dust remover

For those who want cadillac quality we have the Loran Floppy Disk. Used by professionals because they can rely
on Loran Disks to store important data and programs without fear of loss! Each Loran disk is 100% certified (an
exclusive process) plus each disk carries an exclusive FREE REPLACEMENT LIFETIME WARRANTY. With Loran
disks you can have the peace of mind without the frustration of program loss after hours spent in program
development.

100% CERTIFICATION TEST

Some floppy disk manutfacturers only sample test on a batch basis the disks they sell, and then claim they are
certified. Each Loran disk is individually checked so you will never experience data or program loss during your
lifetime!

FREE REPLACEMENT LIFETIME WARRANTY

We are so sure of Loran Disks that we give you a tree reptacement warranty against failure to perform due to faul-
ty materials or workmanship for as long as you own your Loran disk.

AUTOMATIC DUST REMOVER

Just like a record needle, disk drive heads must travel hundreds of miles over disk surfaces. Unlike other floppy
disks the Loran smooth surtface finish saves disk drive head wear during the life of the disk. (A rough surface will
grind your disk drive head like sandpaper). The lint free automatic CLEANING LINER makes sure the disk-killers
{dust & dirt) are being constantly cleaned while the disk is being operated. PLUS the Loran Disk has the highest
probability rate of any other disk in the industry for storing and retaining data without loss for the life of the disk.

Loran is deftinitely the Cadillac disk in the world
Just to prove it even further, we are offering these super LQW INTRODUCTORY PRICES
List $4.99 ea. INTRODUCTORY SALE PRICE $2.99 ea. (Box of 10 only) Total price $29.90
$3.33 ea. (3 quantity) Total price $9.99
All LORAN disks come with hub rings and sleeves in an attractive package.

DISK DRIVE CLEANER 519.95

Everyone needs a disk drive doctor .
(Coupon Price $16.95)

FACTS

e 60% of all drive downtime is directly related to poorly maintained drives.
e Drives should be cleaned each week regardless of use.

e Drives are sensitive to smoke, dust and all micro particles.

e Systematic operator performed maintenance is the best way of ensuring error free use of your computer
system.

The Cheetah disk drive cleaner can be used with single or double sided 5% " disk drives. The Cheetah is an

easy to use fast method of maintaining efticient floppy diskette drive operation.

The Cheetah cleaner comes with 2 disks and is packed in a protective plastic folder to prevent contamination.

List $29.95/ Sale $19.95 * Coupon $16.95

Add $3.00 for shipping, handling and insurance. lllinois residents T 1
please add 6% tax. Add $6.00 for CANADA, PUERTC RICO, HAWAII, p n E c

ALASKA, APO-FPQ orders. Canadian orders must be in U.S. dollars.

WE DO NOT EXPORT TO OTHER COUNTRIES. E N TE R P R I z E S wl . OVE OUR CUSTOMERS:
Enclose Cashiers Check, Money Order or Persanal Check. Allow 14

A : i 1
days for delivery, 2to 7 days for phone arders. 1 day express maill 33.3‘"355’{ 2?:0;?2“& T“(,):}J:'Lmo S 80010

VISA — MASTER CARD — C.O.D.
No C.0.D. to Canada, APO-FPO)|

% DELUXE COMSTAR T/F

80 CPS Printer — $169.00
Tris COMSTAR T/F (Tractor Friction)
PRINTER s exceptionally versatie It
prints 87" x 11" standard size single sheet
stationary or continuous feed computer
paper Bi-directional. impact dot matrix
80 CPS. 224 characters (Centronics
Parallel Intertact)

Premium Quality 120-140 CPS
10" COM-STAR PLUS+
Printer $249.00
The COM-STAR PLUS+ gives you all the
features of the COMSTAR T/F PRINTER
plusa 10" carnage, 120-140CPS.9x9 dot
matrix with double strike capability for 18 x
18 dot matrix (near letter gquatity), high
resolution bit 1image (120 x 144 dot
matrix), undertining, back spacing, left
and right margin settings, true lower
decenders with super and subscripts,
prints standard. italic, block graphics and
special characters It gives you print
quality and features found on printers
costing twice as much! (Centronics
Parailel Interface) (Better than Epson

FXR0). List $499.00 SALE $249.00

Premium Quality 120-140 CPS
15%" COM-STAR PLUS+
Business Printer $349.00

Has ali the features of the 10" COM-STAR
PLUS+ PRINTER plus 15" carnage and
more powertul electronics components to
handle large ledger business forms!
(Better than Epson FX 100). List $599

SALE $349.00

Superior Quality 140-160 CPS
10” COM-STAR PLUS+ IBM
|IBM Pers/Bus Printer $369.00
Has all the features of the 10" COM-STAR
PLUS+PRINTER! Itis especially designed
for all IBM personal computers! 140-160
CPS HIGH SPEED PRINTING 100% duty
cycle. 2K buffer, diverse character fonts,
special symbols and true decenders,

vertical and horizontal tabs.

A RED HOT IBM personal business printer
at an unbelieveable low price of $369.00
(centronics parallel interface)

List $699 SALE $369.00

Superior Quality 160-180 CPS
10" COM-STAR PLUS+ HS
Business Printer $369.00
The Super Com-Star+ High Speed
Business Printer 160-180 CPS has a 10"
carrtage with all the Com-Star+ features
built in! The 15'%" High Speed Business
Printer is espectally designed with more
powerful electronics to handie farger
ledger business forms! Exclusive bottom
feed! (Centronics parallel interface)
15%" printer is also compatable with [BM
Personal/Business Computers! 15%"
Printer List $799.00 SALE $469.00

O Olympia
Executive Letter Quality
DAISY WHEEL PRINTER $379.00

This 1s the worlds finest daisy wheel printer

Fantastic Letter Quality, up to 20 CPS
bidirectionai, will handle 144" forms
width! Has a 256 character print buffer,
special print enhancements. built n
tractor-feed (Centronics Parallel and
RS232C Interface) List $699 SALE $379.

e 15 Da; Free Trial - 1 Year Immediate Reﬁlacement Warrant;

For VIC-20 and COM-64 — $49.00

PARALLEL INTERFACES

————

WE DO NOY EXPORT TO OTHER COUNTRIES.

Add 314 50 tor shipping. handling and insurance. lllincis residents
plecsendd 6% tox. Add 529 00 tor CANADA, PUERTO RICO. HAWAII,
ALASKA. APO-FPO orders. Canadian orders must be in U.S. dollars.

Enciose Cashiers Check. Money Order or Personal Check. Allow 14
days for delivecy, 2to 7 doys for phone orders. | doy express mail!

VISA—~MASTER CARD—We Ship C.Q.D toU S Addresses Only

COM-STAR PLUS+
Print Example:

For Apple computers — $79.00 Atari 850 Interface — $79.00 For ALL IBM Computers — $89.00

PROTECTO

ENTERPRIZES v ontomcuroues

80X 550, BARRINGTON, ILLINOIS 80010
Phone 312/382-5244 to order

ABCDEFGHIJKLMNOPGRSTULUVWXYZ
ABCDEFGHIJKLMNOPGRETUWIXYI 1 23 4836 7890

Rational

Joystick

by Charles Engelsher

Interfacing

Schenectady, New York

A ‘Build-it-yourself’ project that lets
Analog/Dlgital techniques.

you explore

Introduction

Sometimes a seemingly mundane
project like joystick interfacing can
hold a few educational surprises. For
the hardware beginner it provides an
opportunity to complete a simple and
useful item that is at the same time
safe for your Apple and easy on the
pocketbook.

More than that, joystick interfacing
embraces concepts that have widepread
application in other areas of computer
hardware: concepts like single-bit A/D
conversion, the RC time constant,
efficient use of built-in Apple monitor
routines, the wuse of resistive
transduction as a basis for measuring
physical quantities and proper software
scaling of parameters for screen
display.

Obviously, this article is more than
just a description of a simple project. It
provides a vehicle for introducing
important hardware ideas to the novice
as well.

Analog to Digital Conversion

In the real world, physical quantities
vary continuously. A quantity such as
temperature Or position can literally

assume an infinite number of values,
even over a narrow range. Digital
quantities, on the other hand, vary in a
discrete fashion. Simply put, A/D
conversion involves translating a
continuous physical quantity to a
digital format — into zeros and ones.

In all versions of A/D conversion
the physical quantity is first converted
to an electrical quantity. For instance,
a thermistor translates temperature
into a resistance, while thermocouple
would convert temperature into a
voltage level. Such transducers are
really doing nothing more than
providing an electrical analog of the
quantity being measured. This analog
signal could be fed to an amplifier, and
then to some display device such as a
meter.

A/D conversion takes this signal
one step further by translating it into
digital form. One way of doing this is
through multibit conversion, as illus-
rated in Fig. 1A. You need only supply
the right analog signal in the proper
range of voltage (or current), and the
A/D integrated circuit will output an
8-bit data word which can then be read
off the computer data bus. The device
shown has an ''8-bit resolution.’”’ It
provides 256 discrete values —
00000000 through 11111111 in binary.
This scheme would be quite adequate
for temperture measurement between

the freezing and boiling points of water.
Resolution would be 1 degree
Fahrenheit or 1/2 degree Celsius, with
a short range on either side of these
points.

Now suppose you have only a single
output line for the digital data. As you
can see from Fig. 1B, the output of such
a ‘''single-bit A/D converter’’ is a
simple square wave. This is the
situation you're presented with on the
Apple game port analog {paddle) inputs.
Can you make this singlebit — which
can be either HIGH/1 or LOWO —
represent a whole range of values?

Time Constants and Oscillators

Enter the time constant. The solution
to the problem of single-bit A/D
conversion is to make the length or
duration of this square wave vary in
proportion to the analog signal. The
principle involves varying the resistive-
capacitative or RC time constant.
You're probably familiar with
mechanical time constants from every
day experience. Time constants are
best described in terms of exponential
rises and falls in some physical
property of a system, be it velocity,
volume or whatever. Often, the time
constant can be used to cause periodic
or oscillatory motion in the system.
Swinging pendula, flushing toilets and

38

MICRO

No. 76 - October 1984

D7

D6 AID
D5 CONVERTER “7:“"0
10 D4 ELECTRICAL TRANSDUCER L—— A
COMPUTER D3] - ANALOG PHYSICAL
02 | MULTI- QUANTITY
D1 BIT
Do
B AD
v
» , CoN ERTF“ REAL WORLD
COMPUTER f J L ELECTRICAL TRANSDUCER [«———
\ ANALOG PHYSICAL
SINGLE QUANTITY
8T
Figure 1

plucked strings all have intrinsic time
constants that determine how fast they
swing, how quickly they fill and at
what pitch they vibrate. The RC time
constant, the basis of most single-bit
A/D conversion schemes, has the same
implications for electrical systems.

The RC time constant determines
how quickly a capacitor ‘‘fills’’ with
electrons when a voltage is applied.
Fig. 2A shows what happens when you
apply a voltage to a resistor and
capacitor in series. The time constant
is equal to the resistance in ohms times
capacitance in farads. For the circuit
shown, the time constant (TC) is 1
second {1 ohm x 1 farad). The charging
curve is shown to the right of the
circuit. After two TC's it will be about
86 percent charged. After three TC's
the capacitor will be charged up to 95
percent of the applied source voltage
{Vs], about .95 volts.

Fig. 2B shows the case for discharge
of the capacitor after it has been
charged. to the applied voltage Vs of 1
volt. In this case it will be about 63
percent discharged after one TC, 86
percent discharged after two and about
95 percent discharged after 3TC's.
Notice that the percentage figures are

w ORCA/M

—

0 RCA/M 3.5 INCLUDES ORCA UTILITIES
One of only two programs to date to earn the AAA rating from
Peelings Il. ORCA includes a macro assembler with Iocal?abels
and powerful string handling facllitles, a link editor, full screen
text editor, and over 150 prewritten macros. Complete support
for the 85C02 used In the Apple /ic Is standard. “ORCA's true
destiny Is to assemble creations of the greatest sort” (Softalk,

May 1963). Start today!
" A yours fosey $79.95 reg. $99.95

For Limited Time Only

ORCA UTILITIES

How do you make the best 8502 Assembler even better? With a
complete set of utilities to make programming with ORCA a joy!

¢ Disk Initialize, Copy
¢ Object Module Scanner
* Globat Cross Reference

$39.95 reg. $49.95
65816 ORCA/M

Chosen by the designers of the 85C02 and 65816, this add-on
package extends ORCA to handle the new 85816 and 85802
CPU’s. This version supports the 16 bit address bus of the 85802,
and Is perfect for developmental work on the Appie /1.

$39 .95 reg. $49.95

¢ Dissassembler
¢ Symbolic Debugger
+ Macro File Generator

The Best 6502 Assembler in the World

TH
tect §
and !
Ass R
menuy-driven

e Pyte Works nc. o

8000 Wagon Mound Drive NW
Albuquerque, N.M. 87120

(505) 898-8183

ro-

0S
iC or
endly
ine to
pact
. Can

[Mostercars,
N /

P

T.M.

add $3 for shipping
New Mexico Residents
add 4.825%

No. 76 - October 1984

MICRO

39

the same for charging and discharging;
only the ''direction’’ is different.

The formulae below the two curves
describe the voltage rise and fall in the
capacitor in terms of the natural
logarithm, e, which equals 2.718. Its
reciprocal is .37. If you measure charge
or discharge in absolute time T, then
the term e-T/RC is used. If you
measure time with respect to the
number of RC time constants that have
passed (N}, this term becomes (.37-NJ.

The key point of all this is that the
time constant is a basic property of RC
circuits. If you change -either the
capacitance or the resistance, you
change the time constant. (At this
point we're only a few short steps
away from practical single-bit A/D
conversion on the Apple, so stay tuned
a bit longer.)

Rather than belabor the physics of
the situation, consider what happens if
you could attach an RC circuit to an
active electronic device, one which
could provide a periodic charging and
discharging current to the capacitor. By
connecting a resistor and capacitor to
one type of integrated circuit you can
produce oscillations.

For the device shown in Fig. 3A, the
output will be a train of square waves.
The period between successive square
waves is indicated by ''T"’ in the figure.
The reciprocal of this period is the
frequency of the signal. This frequency
can be varied by changing R or c. In this
circuit a variable resistor or poten-
tiometer (technically called a rheostat)
is illustrated, as this is the easiest way
to change the frequency of the square
wave signal.

The oscillator is not the ideal way
to achieve single-bit A/D conversion,
however. One reason is that the output
frequency of such oscillators {the 555
timer being one example| does not
change in direct proportion with
changes in the resistance. Another
reason is that the software necessary
to measure frequency is more complex
and takes longer to execute than the
preferred method: the ONE-SHOT.

One-Shots

A simplified circuit for the preferred
method of single-bit A/D conversion is
shown in Fig. 3B. One-shots produce a
single square wave pulse when set off
by a brief trigger pulse and come in
integrated circuit (IC} form. For many
commonly available one-shot IC’s, the
duration of the square wave output Is
exactly equal to the time constant, that

is, the product R x C. Not only that,
but the variation of the duration of
pulse width varies linearly with (in
direct proportion to} the variable
resistor.

Single-bit A/D conversion using

one-shots entails the same steps as that
for multi-bit conversion:
1. transduction of a physical quantity
into an electrical analog — current to
charge the capacitor in this case,
followed by

2. production of a digital output — a
square wave whose pulse width is
proportional to the RC time constant
(PW = RC].

With the capacitance wvalue held
constant, the pulse width will be
proportional to the resistance.

This is exactly the scheme for A/D
conversion used on the Apple's game
port analog, or paddle, inputs. In the
Apple there are actually four one-shots
on one integrated circuit, the ‘‘quad

Ve
R I
‘ o Vi 1.04
R 1 onm
Ll 63
Vi : 1w
[1 FaRaD [v‘
>0 —|— TIME
T + +
TC 2TC 3TC
TC=RC = 1aac Ve = (1-6TAC)V¢
={(1-37" Ve
Ve
[
1
Vs 1.0
SHORT
I Ve .37-‘
TIME
t } 7
TC 2rc 3TC
Ve = Va0 -TiRC
Figure 2 e
t=1T
A i_T_|
—'Jm OSCILLATOR
B ——————
TO R
COMPUTER T=somse tunctlon of {RC)
T
B |-— PW —-01 —
TO COMPUTER ONE SHOT A
DATA BIT D7 PW=RC
c
FROM COMPUTER TRIGGER
Figure 3

40

MICRO

No. 76 - October 1984

558 timer' as it is called. Bach one-
shot on this IC is connected to its own
pin on the game socket, to which in
turn the user plugs in a variable resistor
{paddle). Two paddle inputs can be
paired, with one for screen x-axis and
one for y-axis. This allows for x,y
display of a shape on the screen through
a joystick or similar device.

The only missing ingredients for
our joystick project are the details of
the joystick circuitry and software
routines used to measure the pulse
width and display results to the screen.
These two elements are interrelated
and will be covered together.

A Practical Joystick Circuit for
Apple

Fig. 4 summarizes the main elements
in any paddle input A/D conversion
scheme: the given software, calcu-
lations for matching time constants
and the basic circuit.

Let's look at the software first.
Apple’s PREAD (paddle read) is a built-
in monitor subroutine which measures
the pulse width of a square wave.
PREAD is located at $FBIE (64286
decimal] in the monitor. It must be
entered with the paddle number {0, 1,
2 or 3] in the X-register. This is done
automatically with the PDL command
from BASIC, but must be done
“manually’’ with a LDX command if
you are programming in assembler.

The first step in PREAD is to trigger
the one-shot so that the square wave
output is initiated. This is done by
accessing location $C070 [STA would
work just well as LDA]J. The Y-register
is used as a counter and is set to zero.
The two do-nothing commands [No
OPeration] are used to fine tune the
counting for the first count.

The body of PREAD is the loop
beginning at PREAD2. With the paddle
number in the X-register, PREAD2
checks the status of the most signif-

PREAD LDA 3C@70
LDY #3090
NOP
NOP

PREAD2 LDA 3C@64,%
BPL DONE
INY
BNE PREAD2
DEY

DONE RTS

or C2 = TC/Rp - C1)
For a 10@K
C2 =

U

$C070

;Trigger paddles
;initialize counter (Y-register)
;compensate for lst count

;paddle # in X-register
;exit if high bit (D7) is zero
;otherwise incr. counter
;continue counting
;unless counter is full
;exit, with value (9-255) in Y.

MAX PREAD LOOP TIME = 255 CYCLES x 12 microsec/cycle
= 3@6@ microsec or 3.96 millisec

HARDWARE TIME CONSTANT (as is w. 15@K pot)
FOR VALUES LESS THAN 15@K USE AN EXTRA CAPACITOR C2
IN PARALLEL WITH INTERNAL CAPACITOR C1 :

TC = (C1 + C2) x Bp

pot this becomes:

3300 uf/10@K - .@22 uf
= .p11 uf

12 msec per cycle

i

.@22 uf x 15¢K
3309 microsec

I

Rp ©-100K

TO BIT
D7 ON DATA -

J L

TRIG

558

BuUS PW=RC

Figure 4

R1=100 ohms

C2=0.011 mf

-HP———‘ =

GAME PORT
PADDLE INPUT
{PINS 8,10,7,11)

icant data bit (D7). If D7 is zero
(positive number in binary notation},
then the square wave must have
returned to zero and you exit PREAD. If
D7 is binary one, then the Y counter is
incremented and the count continues.

However, if Y is incremented past
$FF (255) it becomes zero; this
constitutes an overflow and you again
exit the routine (after decrementing Y
back to 255},

The value of the paddle returned to
the calling routine by PREAD will be
in the Y-register. The calling routine
(e.g., in BASIC or assembler] will then
process this value for display or other
purposes.

PREAD takes 12 microseconds, or
about 3.06 miliseconds for a full count
of 255. Compare this with the
maximum hardware RC time constant
on the paddle. With the standard 150K
paddle potentiometer provided in an
Apple paddle and the .022 uf internal
capacitor on the main board circuitry,
the maximum TC is about 3.3 millisec,
roughly 8 percent more than the
maximum PREAD loop time. This
excess is a safety factor; the paddle pot.
could fall a bit short in its full scale
resistance and still return a full count
of 255.

All you have to do is get a surplus
150K joystick and you're in business,
right? Not quite. When you go to
purchase a '‘bare’’ joystick, you'll have
one heck of a time finding one with
150K pots. (Unless you want to spring
$50 or $60 for a commercial joystick.]
Surplus and mail order 100K joysticks
are readily available for three to five
dollars, however.

Obviously, with such a low
resistance, some capacitance must be
added to each pot in the joystick in
order to bring the maximum RC time
constant up to an acceptable level. A
value of 3.3 milliseconds for TCmax is
used, as this duplicates the safety
margin of Apple joysticks. The circuit
for one paddle input 1s given in at the
bottom of Fig. 4.

By adding a capacitor, C2, in
parallel with the main board capacitor,
C1, the TC value of 3.3 msec can be
realized. The capacitances arc simply
additive in parallel configuration. (The
small current limiting 100 chm resistor
can be ignored.] The calculation for
this added capacitance is given in the
figure. For a 100K pot C2 will be .011
uf. A value of .01 uf is a good starting
approximation; any additional capaci-
tance can be added in parallel to this if
needed.

No. 76 - October 1984

MICRO

41

- PUSHBUTTONS

- 19@K JOYSTICK --
- 330 ohm resistors
DISK CAPACITORS

[SR TN

- Solderless Breadboard Strlp - Radioc Shack (Experimenter 3@@) RS #276-174
- RIBBON CABLE JUMPER 16 pln -- 3 ft. double ended Jumper

momentary contact, normally open RS #275-1547
Radio Shack #271-17¢5

229 to 1909 ohm OK
asst of .@@#1 to .1 mlcrofarad

PERCETI
175 NC&E

swo ANO

x Ry

sSwi1 ANt—
SW2 AN2|—
STB ANJ[-S

POLO PDL3|— [
POL2 POL1
GND

@ N o e 0]

] :
il jé o } Lo

GND

Figure 5

Ax,Ay = 100k pots (JOYSTICK)
Cx,C7 = .005 to .01 m?
Re,A1 = 560 ohms (NOMINAL)

The whole circuit and parts list is
given in Fig. 5. The actual cost of the
parts used will probably be about $10 to
$15 dollars. It’s best to use a solderless
breadboard strip (Experimenter 300
available from Radio Shack) to bread-
board the circuit before wiring itup ina
permanent configuration. Plug one end
of the dual ended DIP [dual-in-line
package) jumper into the game socket
on Apple’s main board and park the
other end into the breadboard. You can
omit the pushbutton switches for the
initial circuit if you wish.

Arbitrarily, paddle O has been
assigned as the X-axis paddle and
paddle 1 as the Y paddle. These
assignments can always be changed
later in software if desired.

Software Scaling

Once you've installed the circuit on the
solderless breadboard, you must test it
out. An easy method entails use of the
LORES screen, but keep in mind that
with any screen display there is a dif-
ference between screen shape and
joystick execution. Fig. 6 illustrates
this disparity.

Assume for the moment that you're
writing the software to display a
LORES joystick-moveable screen
cursor. With a short routine such as
the one in Listing 1, you'll have a clear
idea of the values returned as the
joystick moves about and within its
circular boundary. If you use the
maximum values at each edge of X,Y

T P:=2558

a Pv=0
Pz0 +
-
JOYSTICK [/ P, = 255
EXCURSION |
8
Figure 6

\{ SCREEN

BORDER

P.,Py= 5,35

min min

Px,Py= 245,245

Listing 1

96 REM ~ecmmcmmmmmcme e
97 REM PADDLE VALUES

98 REM —ommmmmmmmmmmee e
99 REM

199 HOME

119 PX = PDL (@):PY = PDL (1)
12¢ PRINT PX,PY

13¢ GOTC 119

paddle excursion (0 and 255), then the
cursor will never reach the corners of
the screen. The reason for this is given
in Fig. 6A.

Instead, you must be sure to scale

the values returned from the joystick so
that the joystick’s excursion includes
the corners of the screen. As an
example, let’s say that the poten-
tiometer X,Y values returned from the
upper left hand corner {Px,min and
Py,min) are 35 and 35, rcspectively.
Similarly, assume that the maximum
paddle values at the lower right hand
corner are 245 and 245 {Px,max and
Py,max). This is shown in Fig. 6B.
Software must convert these values to
the graphics screen ranges.
Note: Since you are breadboarding the
circuit, you should freely change Cx
and Cy and test the Px and Py values
returned from Listing 1. Begin with Cx
and Cy values calculated earlier. If the
.01 uf values are too high, begin with
.005 uf and add capacitance in .001 uf
increments. This will allow you to
achieve the 240 to 250 range for Px,max
and Py,max. Once you've empirically
optimized Cx and Cy values, you can
proceed.

In this example we’ll develop a
short equation to convert paddle values
to mixed LORES coordinates. The
equation for the X axis for LORES is
given in Fig. 7. The LORES X value will
fall in the range of 0 to 39. Sx is the
scale factor, Px the current value
returned from paddle-X, and Px,min is
the value returned from the upper left
hand corner of the screen.

The equation for Sx, which depends
on Px,min and Px,max, is also given in
Fig. 7. Allow a little ‘'dead space’’ on
either side of the extreme points of
upper left to lower right excursion; this
improves joystick action, as you don't
have to jam it at the limit of travel to
get the max and min values. Dead
space is illustrated in Fig. 6B by the
shaded area. Letting Px,max =240 and
Px,min =40, Sx becomes .196 (raised
up one-thousandth.)

42

MICRO

No. 76 - October 1984

X = Su{Px-Px,min)

Xuax
8= — =

Px,max-Px,min

PROGRAM STATEMENT: X

SIMILARLY FOR Y: Y

Figure

7

39
240-40

INT(.196 * (Px - 40))

INT(.196 *{ Py -40))

In BASIC format, the equation
becomes ‘'X=INT{.196*(Px-40}}"" for
the X-axis. A similar calculation and
equation 1is involved for the
Y-coordinates {0 to 39 also in mixed
mode).

The routine in Listing 2 will display
a LORES ''boxel’”” on the screen using
the scaling equations and print out the
paddle values and X,Y coordinates.

Once you're satisfied with joystick
operation, you can hook up the circuit
in Fig. 5 as a permanent installation.
Use a 16-pin IC socket mounted on a
piece of perfboard cut to serve as a lid
for a plastic project box. Radio Shack
has these materials. Mount the socket
at one end and the joystick behind it.
The pushbuttons should be mounted
on either side of the box underneath the
socket. You need only to insert the DIP
jumper plug into this homemade
joystick and you’re in business.

Listing 2
96 REM —eemmmmmmecm e
97 REM LORES JOYSTICK DEMO
98 REM ———mmmmemmmmmmmmm e
99 REM
190 HOME : GR
11¢ PX = PDL (@):PY = PDL (1)
120 X = INT (.196 * (PX - 4@)):
Y = INT (.196 * (PY - 4¢))
13§ IFX< @ THENX = @
140 IF X > 39 THEN X = 39
15¢ IFY< @THENY = ¢
160 IFY> 39 THEN Y = 39
17¢ COLCR= ¢: PLOT XT,YT
18¢ COLOR= 1: PLOT X,Y
19¢ XT = X:¥T = Y
204 PRINT ''PX/X: "';PX;'1 /1,
X, UPY/Y: tUPY; U /TNY
21¢ GOTO 119

Summary and Suggestions

At this point you know how to
construct your own joystick for about
1/4 the price of a commercial unit. If
you followed the sequence up to joy-

stick construction, you’ve learned a bit
about the RC time constant, one-shots
and time interval measurement from
assembly language that is, about
single-bit A/D conversion using a
resistive transducer. For the example
shown, the conversion was from
angular position (a continuous real
world quantity) to LORES coordinates
(digital quantity). Below are a few
project suggestions.

You may want to incorporate the
method for scale calculation in a
routine that automatically calculates
the proper scale factors for X and Y. Sx
and Sy could then be customized for
any joystick, whether homemade or
commercial. Such a feature would be
useful in games and much appreciated
by the game player. Hint: use push-
buttons or keyboard to signal the upper
left and lower right corners of the
joystick's excursion.

You may also want to apply the
same method presented here to develop
the scaling equations and BASIC
statements for HiRes display. You'll
have no trouble with the Y-coordinates
{0-191}, but since the X-coordinate can
range from O to 279, some compromise
will be necessary. You have two
choices:

1. Use the full scale of the X-axis (0 to
279} and calculate Sx accordingly. This
method will result in ‘“‘dropout’’ or
non-plotting of a few points along the
X-axis, but it does give a full range of X
motion when this is needed.

2. Omit plorting the edges of the
X-axis — say 40 points on either side,
This leaves 200 points or so in the
central portion of the X-axis and
prevents full X-axis excursion, which
may or may not be a drawback in
certain applications. It does, however,
provide a point-for-point corre-
spondence between joystick position

and screen positioning of a cursor or
other shape, a necessary feature in
some instances.

An entirely different set of

applications for single-bit A/D
conversion is the use of transducers
other than joysticks. You might want
to use a cheap resistive photocell (e g.,
Radio Shack 276-116) as a light
transducer. Check its resistance in
the range of light intensity you
want to measure with an ochmeter, and
calculate the value of added
capacitance if needed. Thermistors,
which change resistance in response to
temperature changes, provide another
possibility for experiment. Brands such
as Fenwall are available through over-
the-counter and mail order parts
distributors.

Those of you who are comfortable
with assembly language might want to
modify the PREAD routine in one or
more of the following ways:

Write a PREAD routine that will use
double precision counting, that is, one
which increments a 16-bit counter
consisting of two memory locations.
Ideally, these should be in page zero to
increase execution speed. Values
returned will be in the range of 0 to
65535. This is a dramatic increase in
range of measurement. Naturally,
speed will be proportionally reduced so
that the sampling rate will be little
better than once per second.

Have your modified PREAD store a
memory page (256 bytes] or more of
data automatically, under user control.
This maximizes the speed of PREAD,
as all the data is dumped into memory
in quick succession. The data can then
be analyzed and displayed later on. For
proper display, you should make sure
that the sampling intervals between
each data element are equal.

Finally, for joystick applications,
modify PREAD to read the X and Y
resistors in sequence. Naturally, two
page-zero memory locations are the
best choice for the X and Y countcrs.
The advantages of such a dedicated
PREAD routine are two: you avoid the
problem of inaccuracy when you trigger
two paddle inputs in succession, and
you significantly increase joystick
reading speed.

These suggestions just scratch the
surface. Some applications will require
a little electronics background. A little
study on the use of operational ampli-
fier IC's jwhich boost sensitivity of
certain transducers) will serve you in
good stead if you pursue this subject.

No. 76 - October 1984

MICRO

43

~ Want to become an Apple expert?)

Join the club.
A.P.P.L.E.

Apple PugetSound Program Library Exchange

The Apple PugetSound Program Library Exchange is the world’s first, oldest, and largest Apple
computer user group. Qur membership is comprised of Apple enthusiasts throughout the world, and
we provide support for all levels of technical ability, from beginner to seasoned program author.

A membership in A.P.P.L.E. will bring the Apple owner 7 day per week hotline privileges for techni-
cal assistance when you need it, plus the international magazine Call—A.P.P.L.E., and incredible
discounts on our fully supported, low priced, world famous software products, and hardware.

A.P.P.L.E. is a member owned, non-profit service organization. Write today for a free copy of our
magazine and club information, or join by filling out the enrollment coupon

VALUESOFT

A product whose time has come.

T

£ A.P.P.LE. I

pioneering Apple computing I
ooy =iy, |
/ / = NJJI"""" 3

V7 [AEES\\\
Illi".l. " AN
\WEA W} EE~Y

Fully supported, guaranteed, high quality software at low prices.

VALU ESO FT | N C LU DES 2 word processing programs

exciting games
Uncommon at useful utilities

$1 2 . 50 per disk. high quality graphi§s
program contains its own finance and education

I
I
|
\ L[|
SN G Vs o
since 1978, |
Mail (o
APPLE. I
21246 - 68th Ave. S |
Kent. WA 98032
(2061 872-2245 I
or call our toll-free number l
|
I
|
|

document on disk.

The quality VALUESOFT line of software is available through the Appl
PugetSound Program Library Exchange.

NEW Ilc OWNER?

..'R-——————————-l

1-800-426-3667
(24 Hrs. Orders Oniy}

Z MEMBERSHIP §26 one-time
application lee + $25 first vear
dues. 851

Z FREEINFO + Call—-APPLE

Please send free informaton

|
|
I
I
I
I Name___ _ . I
I Address . I
programs for the /ic now in stock oo o
Graphics Utilities | S . R |
Word Processing Database I |
I M/IC VISA#
I Exp. Date. . . _.___ . _ I
|
G | dsonora mgnpos caer |
KJoin Now and Receive 10 FREE (5-Y/47) |L s e e S JJ
Apple .l Il + fie fic ! U sa and Maciniosh are all reqis ered tracemarks of Apple Computer (nc

MICRO

by Paul Lamar

There is nothing more boring than a
standardized computer unless it is a
standardized high level language. Com-
puter hardware design, operating
system design and high level language
design is almost an art form. Just the
right combination of characters and
lines on the screen, the right feel to the
keyboard, the proper ergonomics, etc.
You can always use more speed, RAM
and disk storage, of course. There are
those who would standardize both
hardware {IBM PC ?2?) and software.
This I think would be a mistake. Com-
puter design, operating systems and
high level languages are living and
growing things just as are common
languages (English for example). With
16 megabytes of memory addressing on
the 68000 microprocessor and 100
megabyte, five inch winchester hard
disks available, we have a long way to
g0 in micros, micro operating systems
and in high level computer languages. 1
don't think we should stop here.

BASIC is the easiest to use, most
versatile High Level Language (HLL} so
far. It is easy to learn and fun to write
short programs in. This article is about
a better BASIC.

The p-System has a very nice com-
piler BASIC written by Softech
Microsystems. This BASIC will run on
any machine that runs the p-System.
That includes, but is not limited to,
68000 SAGE, Pinnacle, Micro Craft
Dimension, Hewlett Packard 9816,
Corvus Concept, Analytical Engines
Saybrook and last, but not least, the
8088 IBM PC and all its clones that
have implemented the p-System.
Needless to say, it runs about four
times faster on a 8 megahertz 68000
such as the SAGE than it does on an
IBM PC. The p-System BASIC has all

Rendondo Beach, California

68000 p-System BASIC

& Charmaine Lindsay

the usual basic commands and con-
structs such as IF THEN ELSE, FOR TO
STEP NEXT, ON GOTO and ON
GOSUB, PRINT USING etc. In addi-
tion, it has some unusual extensions.

Units

The UNIT statement is very unusual
and can be used to write BASIC pro-
grams that can be called from another
BASIC program, or a FORTRAN or
Pascal program. This is done by storing
the BASIC program UNIT on disk or in
RAM disk within a “LIBRARY’' of
other UNITS. UNITS are a concept
originally borrowed from assembly
language by Pascal. The author of
Pascal merely changed the name from
“'Called Module’’ to ""UNIT"”'. This is
quite typical of Pascal and other high
level languages. UNITS are a form of
modular programing because they can
be separately compiled and debugged in
the same way as Called Modules can be
separately assembled and debugged in
assembly language.

Believe it or not, you can call a
Pascal subroutine (called a
PROCEDURE in Pascal, subroutines
being dirty words in Pascal] from
within this wonderful BASIC. There
are quite a few Pascal PROCEDURES
available to run on the p-System that
you may want to use in your BASIC
programs. The way you do this is as
tollows:

REM These commands are imbedded
in the BASIC program.

LIBRARY '""UNIT2.LIBRARY"’

[This is the name of a file on disk or in
RAM disk that holds a selection of
“"UNITS'’. These “'UNITS’' are

Wililowdaie, Ontario, Canada

separate, short PASCAL programs that
have PROCEDURES (subroutines) im-
bedded within them, just as a BASIC
program has subroutines imbedded
within).

USES FANCONTROL
(FANCONTROL is the name of a UNIT
that controls the fan. What else ?)

CALL FANON
(Finally we get around to calling the ac-
tual subroutine (I'm sorry PRO-
CEDURE ... shame on you, Paul] that
does the trick.}

We only have to use "'LIBRARY’’ and
“"USES'’ once, at the beginning of our
BASIC program. From then on we can
""CALL’" FANON as many times as we
like.

Line Numbers

A very nice real feature of this BASIC is
the fact that it does not need line
numbers. Line numbers are only need-
ed for GOTOs, Subroutines and IF
THEN ELSE. This feature allows rapid
programing because you can use the
editor to replicate blocks of code. To il-
lustrate, let’s take a block of code such
as Figure 1. This block of code is a
general purpose input routine with
error checking. If we use the program
editor’s copy feature to repeat this
block of code over and over again we
can, with minor modifications to the
block, use this same block to enter
many different variables into our pro-
gram. After we replicate the block, we
put the editor in the exchange mode
and run the cursor down changing one
character in each different variable
name (see Figure 2.)

No. 76 - October 1984

MICRO

45

Another advantage of the scarcity of
line numbers is the possibility of re-
arranging the code after you have
finished programing. Rearranging the
code also makes it much more
understandable and easier to follow.
Rearranging the code makes the pro-
gram neat and progress in a logical
manner, one of the claimed advantages
of Pascal. No need to learn structured
programing. Forget all that
"‘top-down’’ nonsense. No need to
structure your program, just blurt out
your ideas. Get that tricky subroutine,
or algorithm you having been thinking
about, off your chest. You can clean it
up later with this editor. This is the
way to have fun, enjoy life and ex-
perience real freedom in programming.

You move code in the editor by first
deleting the block of code that you
would like to move. Sounds contradic-
tory but don’t worry it works. You will
get used to it. What really happens is all
code that is deleted goes into a Copy
Buffer in RAM. It stays there until you
delete the next block of code which
will then overwrite the Copy Buffer. To
get the last block of code, that you
deleted back out of the Copy Buffer,
you put the cursor where you would

©

&

Are You
Serious About
the 68000 World?

Many MICRO readers have
already expressed their
interest in the 68000 -
through the recent survey
and in letters and
telephone calls. Many
other readers will become
interested as MICRO
presents major 68000
articles, including a ‘build-
it-yourself’ project to add a
68000 processor to an
Apple or Commodore 64.

If you are knowledgeabie
on the 68000, please share
your information with the
rest of us. Send for our new
Writer’s Guide or call us to

discuss your ideas.
\. »

46

like to have that block of code. You
then press ‘'¢’’ for copy. The editor
prompts ‘'Buffer or File Name’' Press b
for the Copy Buffer and the code
magically reappears where you want it.

The same sequence of commands
works for replicating blocks of code as
well as for moving them. We are
digressing into the operation of the
p-System editor which is a whole other
story by itself. Back to p-System
BASIC.

Variables

Another nice feature of this BASIC is
that variables are significant up to 8
characters. This makes the code largely
self commenting. It also makes it quite
easy to come up with new meaningful
names and lessens the need for local
variable names. The worst of the early
BASICs only allowed one letter follow-
ed by one number (A1, G9, etc.).
Later BASICs, such as Applesoft, would
allow as many letters as you like but
would only consider the first two as
significant. BUTTQCKS and BUSTY
are the same variable names in
Applesoft. [That's the one remaining
trouble with computers, they lack
sensuality.

Display and Print

DISPLAY of course, displays it on the
CRT and PRINT actually prints the
results on a real printer. The PRINT
command in BASIC at first confused

and later amused me. When [first
started to program in BASIC on a CRT
ten years ago, I always wondered why it
was called “'PRINT”'. It did not seem
right to call it PRINT when that was
done on a '‘printer’’ not on a CRT. The
use of the word PRINT in BASIC stem-
med from the early days, twenty years
ago of the language when all they had
was a teletype printer as input/output
for their computers running BASIC.
DISPLAY makes more sense if you are
going to display it on a CRT.

Image

The IMAGE statement appears to me
an another unusual feature. I am not
what anybody would call an expert on
BASIC languages. I am familiar with
Microsoft basic as implemented on the
Apple, Commodore and CP/M.
IMAGE to my knowledge does not ap-
pear in Microsoft basic. The IMAGE
statement is referred to by line number
within the USING clause of a DISPLAY
or PRINT statement. For examples:

Example 1:

A = 88.888 {note the lack of a line
number and the LET statement)
10 IMAGE ###.## [line number re-
quired here)

PRINT USING 10:A {again no line
number|

The printer prints ‘'88.89"" with the
.888 rounded to .89.

Basic Compiler IV.§ b5-4

SYSTEM.WRK . TEXT

Figure 1
1 2 1:0 @ rem fig. 1
2 2 1:9 12
3 2 1:9 12 input "lst variable ? ":variablel
42 1:9 43
5 2 1:0 43
6 2 1:90 43
7 2 1:9 43 rem fig. 2. Figure 2
8 2 1:9 43
9 2 1:9 43
19 2 1:9 43 input "lst variable ? ":variablel
1 2 1:9 74 input "2nd variable ? ":variable2
12 2 1:¢ 1605 input "3rd variable ? ":varlable3
13 2 1:¢ 136 input "4th variable ? ":variable4
14 2 1:¢ 167 input "5th variable ? ":varliable$
15 2 1:¢ 198 input "6th variable ? ":variableé
16 2 1:¢ 229 input "7th variable ? ":varlable7
17 2 1:¢ 260 1input "8th varlable ? ":varlable8
18 2 1:0 291
19 2 1:¢ 291
20 2 1:4 291 end

MICRO

No. 76 - October 1984

Example 2:

S$ = “The subtotal is’’
DISPLAY USING 10:5%,A

""The subtotal is 88.89'', is displayed
on the CRT.

Example 3:

20 IMAGE $$###. ## [The double dollar
sign indicates a floating $)
PRINT USING 20:S3%,A

The printer prints '‘The subtotal is
$88.89"".

You don’t have to use IMAGE. PRINT
and DISPLAY USING works in all the
usual ways just like Microsoft BASIC.

Disk File Handling

There are the usual OPEN and CLOSE
statements for RELATIVE and
SEQUENTIAL disk files. RELATIVE
files allow sequential and random ac-
cess at the expense of extra verbiage.
SEQUENTIAL files are of fixed or
variable length. There is a RESTORE
statement that is used to reposition the
internal file pointer to the first record
within a SEQUENTIAL disk file. The

Ease and Speed of Programing

When writing BASIC programs that
needed compiling on lesser operating
systems than the 68000 running the
p-System you had to: write the pro-
gram, save the resulting text file on
disk, load the compiler from disk,
reload the BASIC text file from disk,
compile the code saving the resulting
code file on disk, load the compiled
code from disk and run the program.
This was a long and tedious process
usually taking several minutes. On the
68000 p-System you merely press 'Q’’
for quit the editor, “U’’ for update the
work file {a temporary file in RAM| and
“R’* for run the program. The text file
will automatically be compiled, saved
on disk and the program will run very
quickly. These prompts are always on
the screen in case you forget.

If you have a syntax error in your
program, the compiler will stop and
prompt: Continue ? Quit ? or Edit ? If
you press ‘¢’ or "‘E” for edit the
BASIC text file will be automatically
reloaded from RAM disk in several
seconds and the cursor will be placed

just beyond the error. This is really nice
if you program the way [do, by the trial
and error method.

The Documentation

An interesting aspect of this BASIC is
that: in some cases the description of
the constructs and statements are writ-
ten from the point of view of the Pascal
programer. It is as if the authors of this
BASIC finally realized the limitations
of Pascal and set out to write a BASIC
that incorporated the better aspects of
UCSD Pascal. For example, when
discussing subroutines the authors im-
mediately lapse into a discussion of
"procedure blocks’'. For some reason
they could not quite bring themselves
to just call it a subroutine. By the way,
there are subroutines in assembly
language and they work exactly the
same way as they work in BASIC.

On the whole the documentation is
quite good with lots of examples.
However it is not written for beginners
and some knowledge of Pascal would
be helpful for those few constructs that
are similar to Pascal.

Basic Compiler IV.d b5-4

SYSTEM.WRK. TEXT

RESTORE statement is used to reposi- 1 2 1:¢ g {$N+} Figure 3
tion the pointer to a specific record 2 2 1:¢ 22 forx=1%09
within a RELATIVE file. 3 2 1.6 57 dlsplay "paul"
The ASSIGN statement is used to 4 2 1:4 74 nextx

set up an array on disk just as most 5 2 1:0 76 end
BASICs set up ordinary arrays in RAM. Figure 4
This frees up some RAM for use by the
program. It also results in a permanent =========s==ssss=sss=IssssssssssIssssssasssssssssssssssssssssas
record of the array in case of power Final MC6ggggRi;-¢2 [ﬂ-(ll] COdelfO;‘CP EQﬁADIXAﬂw
failure. Having an array on disk is segment procedure
slower, of cougrse, than having it in segment word offset 17 BASE EQU A1

! Source Object SEG EQU A2
RAM. The ASSIGN statement seems a P_Code N-Code PME EQU A3
little redundunt with the 68000 as the (Dec. Offsets) DATA £QU A6
68000 can directly address 16 s S
megabytes of RAM. Perhaps this
feature would become more useful if) WORD 204,
the maximum size of the arrays was 10 ¢
mega elements rather than only 32K 4 @ 8601 jp—code LAO 1
elements. That way a hard disk could 2 09 jp—code SLDC @
be used to real advantage. The RAM 3 811409 jp-code IDCI 20
disk option can be used with the S 3315 ’p:zzg: gé‘gg IQ(’ERNAL 21
ASSIGN statement to allow larger pro- 9 g :g—code s ¢ !
grams that run almost as fast as arrays 10 A5¢1 ;p-code SRO 1
located in ordinary RAM. Unfortunate- 19: 12 A8 ip-code NATIVE
ly, considering the large memory ad- 13 A8 ;p-code NATIVE
dressing capabilities of the 68000, ar- 14 49E9 9@@C LFA 12(BASE) , A4
rays larger than 32K are unallowed in 18 99CE SUBA.L DATA,A4
ordinary RAM as well. 20 39@C MOVE.W A4,D@

22 3349 991C MOVE.W D@,28(BASE)
continued
No. 76 - October 1984 MICRO 47

The Native Code Generator Figure 4 continued
This feature of the UCSD p-System is 26: 26 3F29 @#g1C MOVE.W 28(BASE),-(SP)
the one feature that [am most excited 3¢ 3F3C 99g1 MOVE.W #1,—(SP)
about. The Native Code Generator, 34 LEAB 9¢@8 JSR 8(PME)
generates a partial assembly language 38 CC ;p—code FLT
text file from a BASIC program listing. 39 F4 ;p-code STRL
See Figures 3 and 4. Unfortunately, at 31: 4P A8 jp-code NATIVE
this time the file is part assembly 41 A8 jp-code NATIVE
language and part p-code text file, [the 42 L9E9 gP14 LEA 20(BASE) , A4
BASIC compiler normally generates ig 99CE SUBA.L DATA, A4
. . 3FgC MOVE.W A4,-(SP)
p-code which is executed by a p-code 50 3F3C 2099 MOVE.W #9,—(SP)
interpreter). At the present time, June 54 LEAB 0008 ISR 8(PME)
1984, there is a bug in the Native Code 58 CC ;p-code FLT
Generator that does not handle 59 F4 ; p—code STRL
backward GOTOs in BASIC properly. 36: 60 A8 ;p—code NATIVE
The original purpose of the Native 61 A8 ;p-code NATIVE
Code Generator was to bypass the 62 6014 BRA L1
p-code interpreter and thereby speed up 38: 64 3F29 ¢p1C L3: MOVE.W 28(BASE) "(§p)
the execution of all high level 68 3¥29 @91C MOVE.W 28(BASE),-(SP)
lan, €s runni nder the p-System. 72 4EAB 0008 IR 8(PME)
guages running u p-Sy
This is a worthwhile and highly 76 F3 sp-code LDRL
. . 77 A8 ;p-code NATIVE
desireable goal for the Native Code 78 3F3C 9001 MOVE.W #1,-(SP)
Generator. The use I have in mind is 82 LEAB {ggs JSR 8(PME)
quite different however. 86 CC ;p-code FLT
In way of explanation the high level 87 C¢ ; p—code ADR
language '‘C'’ also generates an 88 F4 ; p~code STRL
assembly language text file which must 89 A8 jp-code NATIVE
then be run through an assembler to 47: 9@ 3F29 @91C L1: MOVE.W 28(BASE),-(SP)
generate an executable code file. This 94 AEAB 0008 JSR 8(PME)
: : 98 F3 ;p—code LDRL
intermediate assemble language text
. : 99 A8 ;p-code NATIVE
file form gives Fhe programer the oppor- 100 49E9 @@14 LEA 20(BASE) , A4
tunity to exercise detailed control over 104 99CE SUBA.L DATA, A%
the speed of execution of all parts of his 106 3FgC MOVE.W A4,-(SP)
program. This is the reason that *‘C'’ is 108 4EAB 9998 JSR 8(PME)
the preferred high level language for 112 F3 ;p—code LDRL
writing operating systems that control 113 CE ;p-code LEREAL
time critical hardware such as disk 114 A8 ;p-code NATIVE
drives and printers. My own opinion is 115 A8 jp-code NATIVE
that time critical operating systems are 116 3¢1F MOVE.W (SP)+,D@
best written in assembly language. 118 E258 ROR.Y #1,D8
As a general purpose high level 120 6420 Bee L2
T : 57: 122 4EAB ¢@@8 JSR 8(PME)
language *'C'' is a little too cryptic for 126 721A ;p-code SCXG BLIB |26
my taste. [prefer BASIC. In Softech 59: 128 7225 ;p—code SCXG BLIB ,37
p-System BASIC however, running the 61: 139 7247 ;p-code SCXG BLIB ,71
Native Code Generator generated 63: 132 A8 ;p—-code NATIVE
assembly language text file through an 133 A8 jp-code NATIVE
assembler is not possible at the present 134 3F3C ¢@18 MOVE.W #24,-(SP)
time. If the Native Code Generator was 138 3F3C ¢d@8 MOVE.W #8"(§P)
expanded to convert the entire BASIC 142 4EAB 0008 ISR 8(PME)
text file to an assembly language text 146 9D fp—COde LFR
e . 147 A8 ;p—code NATIVE
file it would then be possible to run 148 3F3C @919 MOVE.W #16,(SP)
that assembly language text file 152 LEAB 9908 ISR 8(PME)
through an assembler and generate a 156 7226 ; p—code SCXG BLIB ,38
executable machine language code file. 79: 158 7247 ; p—code SCXG BLIB ;71
The same as in "'C’’. This would result 72: 160 7224 ;p-code SCXG BLIB 242
in unprecedented flexability for this 74 162 A8 ;p-code NATIVE
BASIC. A programer could optimize the 163 A8 jp-code NATIVE
resulting assembly language text file 164 6@9A BRA L3
for speed or change it for detailed hard- 76: 166 AEAB 0008 La: JSR 8 (PME)
ware control. This would give the best 78: 178 ‘fentdwde RPU 2
of both worlds, the speed, flexability 178 9600 ip-eode

48 MICRO No. 76 - October 1984

and detailed control over the speed of
execution of assembly language with
the ease of programing in a simple, easy
to learn high level language. This
BASIC in conjunction with the
p-System Native Code Generator is
very close to this utopia.

Speed of Execution

Speed of execution is not what BASICs
are known for. No one should write a
word processing, spreadsheet, data base
or spelling checker program in any
BASIC, interpreted or compiled. The
presently available compilers are just
not as efficient as a good assembly
language programer at writing code.
Nevertheless, the 8 megahertz 68000
p-System compiled BASIC in p-code
form is three times faster than
Microsoft BASIC running on the IBM
PC. Running the p-code through the
68000 Native Code Generator would
speed it up by another factor of three
except for the floating point routines.
These routines are not changed by the
Native Code Generator. Fortunately,
number crunching is best done by hard-
ware floating point chips.

National Semiconductor has a
floating point chip (16081 or 32081)
that works quite well with the 68000.
Ironically it works faster with the
68000 than with Nationals own 16 bit
microprocessor the 16032. This chip is
capable of dividing a 64 bit floating
point number by another 64 bit floating
point number in approximately 30
microseconds with the 68000 running
at 10 MHZ and the 16081 running at 5
MHZ. That is the total time required to
load and retrieve the operands and store
them in main memory. The 16081 re-
quires only 11 microseconds to do the
actual divide. The 16081 will shortly
be available in a 10 MHZ version. This
will not reduce the time by half but by
somewhat less than half. The reason is
that some finite time, determined by
the speed of the 68000, is necessary to
load the operands into the floating
point chip. Eventually, p-System
BASIC, or some other BASIC will be
available that will support the
68000/16081 combination.

Converting Maicrosoft Basic to

Softech p-System Basic

Using the following rules, with wise
use of the p-System editor commands,
you will be able to convert a typical
Microsoft program to Softech p-System

BASIC in short order. Use them in the
order shown to avoid confusion and
mistakes. These procedures were pro-
vided by Peggy Lakey at SAGE
Computer, Reno, Nevada.

You can transfer your Microsoft
BASIC text files to the p-System receiv-
ing computer using a RS232 serial
printer interface cable on the transmit-
ting computer. Connect this cable to a
RS232 port on the receiving computer.
Any text file that can be printed on
your present printer can be transferred.
The p-System in the SAGE has a utility
program called "TEXTIN". This pro-
gram will convert an ASCII file to the
p-System file format. The resulting
Microsoft BASIC text file in the
p-System computer can then be loaded
into the editor and converted to a
p-System BASIC text file using the
following rules.

1. Change all occurences of ‘i’ to
‘::'. Then search for each of these
and change back those in strings
and quotes, which should not
have been altered.

2. Put an ‘END’ statement at the
end of the program, if not already

present. All other 'END’
statements should be changed to
'STOP'.

3. A statement such as '‘DEFINT
I-N’ should be re-written to read
INTEGER,], K, L, M, N".

4. Any statement 'IF ... GOTO ..’
should be changed to ‘IF
THEN. ..

5. Strings and literal quotes may not
be continued from line to line.
They must be presented on one
line, or displayed in segments, or
concatenated.

6. ‘TAB (X}’ must be followed by ';’.

7. When ‘INPUT’ is used with an
imbedded string as prompt, use
‘' before the variable label, not

8. Change all occurences of ‘PRINT’
to ‘DISPLAY’ wunless you
specifically want an output to go
to the printer.

9. Any time a single statement must
be continued from one line to

another, use the comment
delimiters '{*< CR> "’ to hide the
carriage return from the
compiler.

Example:

1000 IF x < y then (*
*) GOSUB 300 : : DISPLAY x

10. When multiple statements
follow an 'IF’ statement on a line,
those statements will not be
skipped if the ‘IF’ statement
proves false. The following line
of Microsoft:

20X = Y:IFX<> OTHENX = Z:
GOTO 5
30 ..

should be re-written as follows:

20 X = Y IFX = 0 THEN 30
X =7Z:GOTOS5
30 ...
11. Change any command that is
intended to clear the screen to
‘DISPLAY ERASE ALL: '
Any command intended to
display at a given place on the
screen, such as ‘PRINT® 342', or
'HTAB 5 VTAB 6 :PRINT’
should be changed to 'DISPLAY
AT (line, column]:’.
When concatenating strings, use
‘&’ not '+,
Change ‘MID$’ to '‘SEGS’.
Change ‘LEFTS (X$,L]' to 'SEGS$
(X$,1,L}).
Change ‘RIGHTS$ (X$,L)
‘SEG$ (X$,(LEN{X$]-(L-1]),L|".
Change 'GET’ to 'INKEY$ {0}’
(NOTE: these statements do not
always act exactly alike. Check
the definitions in BASIC you are
converting from.)
Subscripted and non-subscripted
variables of the same name are
not allowed in the same program.
For example, if the wvariable
‘A[10)’ and 'A’ are in the same
program, change them to 'A(10),
and 'A__NUTHER'.
In a DIM statement, a variable
name may not be used in the
parenthesis for dimension size.
Thus, DIM X(B,C] is illegal. DIM
X(3,4] would be ok.
Change all function statements
and calls as follows: 'DEF EN
F_name(args)’ is changed to
'DEF f__name{args)’. (add a
FNEND for multiple line
functions, see manual| ‘FN
f _name’ is changed to just
‘f__name’. Be sure all function
names have unique names, and
don’t use regular variable names.
All strings in data statements
must have ‘‘quotes’’d around
them.
In a DIM statement, a variable
name may NOT be used for the
array size.

12.

13.

14.
15.

16. to

17.

18.

19.

20.

21.

22.

No. 76 - October 1984

MICRO

49

Exec Ffle Utilities

by N. D. Greene

Storrs, Connecticut

Introduction

Here are eight exec file utilities which
are useful in writing and examining
programs on the Apple II. They may be
easily entered and saved with the
Textfile Write Edit Read Program
[T.W.E.R.P.) described in the
September 1984 issue of Micro.

Exec files are text files containing
basic commands and/or program line
statements. When these files are
activated by the EXEC [‘“execute'’)
command, they mimic direct keyboard
entry. If an exec file contains only com-
mands, it is possible to exec it without
disturbing any program in memory. For
example, one of the utilities described
below prints a memory map of the cur-
rent program without altering it.
However, exec files containing
program line statements can be used to
quickly change the contents of a pro-
gram. Some examples of this approach
are also described below. Further
details about exec files and their
characteristics are discussed in the disk
operating manual.

Description

The exec files described here range
from simple command statements to
more complex forms. For convenience,
they have been divided into three
general categories.

A Collection of Eight Useful

Exec Utilities for the Apple

Simple Command Routines

Listings 1 and 2 show two simple exec
files which may be used to display the
contents of high resolution graphics
pages one or two without erasing them.
This is in contrast to the normal HGR
and HGR2 commands which activate
page 1 or 2 after erasing their contents.
These files should be entered as listed
using T.W.ER.P. or other text file
writer. Note that the bracketed 1 with
the arrow is used to indicate the first
field and should not be entered. The
question mark, ?, is the shorthand
equivalent of the print command.

Pointer-Based Routines

Certain memory addresses indicate the
locations of program elements or
variables. These addresses are called
“'pointers’”’ and may be used as the
basis of an exec file. Two examples are
shown in Listings 3 and 4. Executing
E.BIN (Listing 3) prints the address and
length of the last loaded binary file.
Listing 4 is a shortened version of a
previously published memory map
exec file {MICRO 43, Dec. 1981} It
finds and displays the program begin-
ning, the program end and other infor-
mation by peeking at the appropriate
pointer addresses. Both of these files
may be used without disturbing a
program in memory.

Piggyback Routines

Some statements such as INPUT can
not be wused as direct keyboard
commands. These deferred-execution
commands must be used within a pro-
gram. The same restrictions apply to
exec files. However, it is possible to
use these restricted commands within
an exec file without permanently alter-
ing a program in memory. This is the
piggyback routine. The exec file adds
some new lines to the existing pro-
gram, runs these lines and then deletes
them leaving the program in its original
form. Typically, high line numbers are
chosen to avoid conflict with existing
line numbers.

Listings 5-8 show several exec files
which use deferred-execution com-
mands via the piggyback method.
E.PTR [Listing 5) shows the contents of
a pointer address. The initial {low byte)
address is input and the program
calculates and prints the contents of
the two-byte address. If 103 is input,
the program start memory will be
shown. E.PTR adds three new high-
numbered lines, the last one containing
a delete command. The file then runs
the lines which ask for an input, print
the results and then conveniently self-
destruct. Actually E.PTR represents a
combination of a piggyback and pointer
exec file,

50

MICRO

No. 76 - October 1984

E.CTR {Listing 6} makes control
characters visible. Control characters,
which are normally invisible in catalog
and program listings, appear as flashing
characters after this file is executed.
This is a useful routine to (1} check
that all DOS commands in a program
contain a control D and {2) find hidden
control characters in catalog names. If
you accidently insert a control
character while saving a program on
disk, it will not load unless the invisi-
ble character is inserted at the proper
point. This is a frustrating experience
and a trick used by some commercial
programs to prevent listing. E.CTR is a
. compressed, piggyback exec file ver-
sion of a conventional program listed
on page 151 of reference 2. This file
writes a one line program at 63999 (the
highest program line permitted in
floating point basic] and then runs it.
The Jine deletes itself when the last
statement is encountered. Pressing
RESET or PR#0 restores normal
printouts.

Two 'capture’’ files are shown in
Listings 7 and 8. These exec files
transfer floating point and integer pro-
grams into text files. But why? There
are two major uses for these files: 1) to
create a library of auto-writing
subroutines and 2} to convert integer
programs into floating point programs.
Both E.CAPA and E.CAPI may be used
to create a library of subroutine exec
files. The desired subroutine is isolated
by deleting all other lines and then cap-
tured in a file by executing the
appropriate cxce routine (E.CAPA for
Applesoft floating point programs or
E.CAPI for integer programs.) E.CAPA
permits a choice of file names; E. CAPI
always creates a file names 'TEXT.I".
Once created, these files may be used
to add subroutines to new programs.
E.CAPA is a one line, self-destructing,
piggyback excc file similar to E.CTR.
E.CAPI is a piggyback version of a pro-
gram listed in page 76 of reference 2.
The first line (field] contains an invisi-
ble, control D hetween the quote
marks.

E.CAPI may also be used to trans-
form integer into floating point pro-
grams. The procedure is as follows.
After installing integer via a language
or hardware card, load the integer pro-
gram to be captured. Then exec E.CAPI
which puts the program into the exec
file, TEXT.I, and saves it on the disk.
Next, convert to floating point and

i i ‘Q,\S/s ‘
1=> POKE49239,8:POKE49236,8: POKEA9234, B : POKELS232,0

Listing 1. E.GR1 . \/52,/
v LV

1=> POKE49239,@:POKE29237,8:POKEA9234,@: POKEA9232,8:END

Listing 2. E.GR2

1=> HOME:?"ADD=";PEEK(43634)+PEEK(43635)%256 -
2=> VTAB3 :?'"LEN=";PEEK(43616)+PEEK(43617)%256 ~ 7

L {
Listing 3. E.BIN ” B - DL J/L\J\"Llﬂ

1=> HOME:?"HI MEMORY= ";PEEK(115)+PEEK(116)%*256
2=> VTAB2:?"STRINGEND= ";PEEK(111)+PEEK(112)%256
3=> VTAB3:?"FREESPACE= *;
PEEK(111)+PEEK(112)%256—(PEEK(109)+PEEK(118)*256)

4=> VTAB4:?"ARRAY END= ";PEEK(1@9)+PEEK(11¢)*256
-VTAB5:?"ARRAY BEG= ";PEEK(1#7)+PEEK(108)*256
VTAB6:?"L0O MEMORY= ";PEEK(1(5)+PEEK(196)*256
VTAB7:?"PROG END = ";PEEK(175)+PEEK(176)%256
VTAB8:?"PROG BEG = ";PEEK(1@3)+PEEK(104)*256

© =3 v
vV V VYV

Listing 4. E.MEM

[1]1=> 6@@@@ HOME:INPUT"A=";A

[2]1=> 61@@@ HOME: ?PEEK(A)+PEEK (A+1)*256
[3]=> 62¢@@ DEL 60008,62000

[4]=> RUN6p@@S

Listing 5. E.PTR

1=> 63999 DATA201,141,24@,21,201,136,249,17,201,128,144,13,
201, 168,176,9,72,132,53,56,233,64,76,249,253,76,24@,253 :
FORI=768T0768+27:READV:POKEI, V:NEXT:
POKES4, @ : POKES5, 3 : CALL1@@2 : DEL63999,63999

2=> RUN639 ’
3999 5oy Conoe CHIMRS

Listing 6. E.CTR

1=> 63999 D$=CHR$(13)+CHR$(4) : HOME: VTABIZ:

pLt u

apf

B

INPUT"CAPTURE FILE NAME==> ";F$:?D$; "@PEN";F$:?D$; "WRITE";F$:
POKE33,30:LIST@,63998:2D$; "CLOSE"; F$: TEXT : DEL63999, 63999 : END

2> RUN63999:END - pp WRE
Listing 7. E.CAPA

1=> 32762 D$=rn

2=> 32763 PRINT D$; "OPEN TEXT.I"
3=> 32764 PRINT D$; "WRITE TEXT.I"
4=> 32765 POKE33,3@:LIST @,32761
5=> 32766 PRINT D$; "CLOSE TEXT.I"
6=> 32767 TEXT:END

7=> RUN 32762

8=> DEL 32762,32767

Listing 8. E.CAPI

No. 76 - October 1984

MICRO

51

execute TEXT.I, which loads the cap-
tured program into memory. At this
point, the original integer program is
now a floating point program which
may be saved in the conventional man-
ner. It is important to remember that
there are ditferences between the com-
mands used by integer and floating
point programs. The new, floating
point version may not work. If so, it
will require appropriate corrections.
However, E.CAPI saves the time of re-
entering and existing integer program.
This procedure works because the
floating point language does not check
for syntax errors until the program is
run. (Fortunate for this approach
- unfortunate for programmers!] The
integer language checks for errors dur-
ing listing, so it is not possible to use
E.CAPA to transform floating point
into integer programs.

Applications

Exec files can be a very powerful pro-
gramming tool. I have a working disk
containing E.MEM, E.GR1l, E.GR2,
E.CTR and E.BIN. Thus, I can examine
memory, look at the contents of either
graphics page, '‘see’”’ hidden control

characters or find the address and
length of any binary file whenever
needed and without disturbing the pro-
gram I have in memory. The names
used here are to remind me these are
exec files — they could be saved
under any other valid name.

I have a second disk containing an
extensive library of exec file
subroutines created by E.CAPA. These
have titles indicating their function
and line number range. Some examples
are: TITLE CENTER 1000-1005; TIME
DELAY 3000-3010; and INPUT
7000-7070. Thus, when writing pro-
grams, I auto-write any subroutines I
need by executing the appropriate file.
After finishing the program, [compress
it by using the renumber routine. Of
course, it is necessary to keep track of,
or use a common set of, variables for
subroutines which are added to an
existing program.

Exec files are both powerful and
dangerous since they mimic keyboard
input. This is especially true of piggy-
back and other exec routines which
modify programs. Be careful when
using a file the first time. Also be con-
scious of the changes caused by ex-
ecuting a file. If 176 is input to E.PTR

(Listing 5} to find the end of the pro-
gram in memory, the answer will be in-
correct since E.PTR adds thrcc new
lines during its execution. In contrast,
E.MEM (Listing 4} which does not
define any new variables, nor add any
program lines, will show the correct
value.

There are numerous other possible
exec file utilities which could be writ-
ten. An obvious example is the code-
pokes program on page 77 of reference 2
which converts machine-language
routines into a series of
basic poke commands.

References

1. N.D. Greene, Textfile Write Edit
Read Program (T.W.E.R.P.},
MICRO, No. 75, September
1983, p. 27.

2. Apple II — The DOS Manual,
Apple Computer, Inc.,
Cupertino, CA 1981.

3. N. D. Greene, Applesoft Memory
Map Display, MICRO, No. 43,
December 1981, p. 96.

consumEnRs QUL APPLE COMPUTERS’

soFTALK 1T pAYS FOR ITSELF

GAZIN!
LK MAGAT o e uSER’

FOR THE

THE BEST PAOGRANS AVAILABLE
R ERNAL

ANO EXT
RD FIRST RATE INTERNAL
appLx ORCHARD o n cOMPUTER
¥
ARY OF EVER'
€ 1N THE LIBA/

€ SHOULD 8

i THIS PACKAG! MATHEMATICS

WAINTENANCE OF
roPULAA compuTing FIRST X

AS
& CompuTIR apucaTIoN €

€vEL DIAGNOSTICS PACKAGE

¥ TO USE. A pERFECT PACKAGE
L INDEED

£n ‘OOES ONE 08 VERY WEU

i~ cw

There is only one thing
more important than your

TOQ SLOW? THINK ABOUT WHAT THAT COULD MEAN

$O OOES A DISKETTE

PROBLEMS AND SAVE YOURSELF ONE OF THOSE DAYS

MASTER DIAGNOSTICS

WHEN ORDERING SPECIFY

version Il & Il plus or version //e

7 master diagnostics
7 master diagnostics + pius

DIAL 1-800-835-224946

PR—

Maintaining it.

HOW MANY GISKETTES HAVE YOU INITIALIZED WITH YOUR DISK DRIVES RUNNING TCO FAST OR

DID YQU KHOW THAT THE QRIVE SPEEC OF YOUR APPLE SHOULG BE AS CLOSE TO
100 APM AS POSSIBLE? LIKE A RECORD OR TAPE SYSTEM YARIES WITH MOTOR SPEEQ

WHEN WAS THE LAST TIME YOU CLEANED THE REAQ/WRITE HEADS OF YOUR DRIVES?
THEY SHOULD WAVE BEEM CLEANED LAST MONTH, AND WITH QUR PROGRAMMED
UTILITIES YOU COULD DO $O AT THE PUSH OF A BUTTON

HOW ABOUT THE WRITE PROTECT SWITCH? 1S IT WORKING PROPERL Y SO YOU WON'T
DESTROY YOUR PROGRAM DISKETTE OR PROTECTED DATA?

THERE'S LOTS MORE AND IT WILL ONLY TAKE 15 MINUTES A MONTH TQ XEEP YOUR HIGH
TECHNOLOGY EQUIRMENT AUNNING AT HIGH PERFORMANCE PREVENT PROBLEMS OR DIAGNOSE

WITH MASTER DIAGNOSTICS ANYONE CAN DO IT.
THE PROGRAM THAT PAYS FOR ITSELF

O
L}

$55.00

$75.00

THE TESTS (NCLUDE

MOTHERBOARC ROM TEST DISK DRIVE SPEED CALIBRATION Mommﬂ SKEWING [ESTS
APPLE RD "EST IVE HEAD READ/WWE TESY o8 A MODUATDR
NTEGER CARD TEST WRITE PROTECT CA \s
HEAR ORIVE nEAED cwwms mﬂnh mmmﬂ rsxv MEE rss‘
DISK DRIVE MAINT!

S NANCE
AU A DC HAYES MICROMODEM 1} TEST Mﬂm 5 W VDKE AUGNM[NT
£ cnulm wo 1EST* PADOLE 4 SPEAKER TEST 10 RES COLOA TESTS
PRRALLEL CARG TEST PADOLE & BUTTON TEST
SPEAKER FUNCTION [EST PADDLE DRIFT “EST LISSAIOUS

SOUARE WALE MODULATION

INTERNAL MAINTENANCE
ON BOARC HELP FOF C

™E - PLUS

Master Disgrestics « Plua povides sverything nesded 10 Matan your com
The eniire pmq- " NoUsed 1n Our Dwn moided Case 1D Protect agdinst StanC electrCity,
X2y 3nd other conlaminants.

Inr.lud.d in the it
E Ducnosncs ISKETTE * CHT SCREEN CLEANER

« FOATY PAGE PnocEDuaE MANUAL « COMPUTER/DAIVE HOUSING CLEANER

+ HEAD CLEANING XIT * REUSEABLE CHAMOIS TIPPED WANDS

NiKROM'

Technical Products, Inc.
25 Prospect Street, Leominster MA 01453

52

MICRO

No. 76 -

October 1934

Expanding the ' _
Commodore 54|
Disk Drive

A Muiti-Part Series on the 1541.
Part 1: Expanding the User Commands

Introduction

This is the first part of a three part arti-
cle discussing ways to expand the
Commodore 1541 Disk Drive. Part 1
covers expanding the DOS by explain-
ing the operation of the '‘U0"
command and showing how to install
the "UA’’ thru "'UP" commands. Part
2 will explain how to expand the disk
drive’s RAM, including theory, con-
struction, installation and testing of a
4K expansion RAM. The advantages
and disadvantages of expanding the
RAM will be discussed. Part 3 will
describe expanding the I/Q operations
to include parallel access to and from
the Commodore 64, as well as adding a
Centronix-type printer port to dump
data for the disk directly to a parallel
printer.

The User Command

The User Command [*'UA'’ thru " UJ"’,
or "Ul” thru ""U:") is provided to
allow a machine language programmer
to install custom commands and to
define parameters for these commands.
The user command takes the form:

Biography

Mike is an electronics technician, technical
writer, inventor of electronics devices, and
designer of video games. After experiencing
an clectronic failure on his personal 1541
disk drive, he discovered that a lack of
serious documentation for this device. He is
author of the 1541 Single Drive Floppy Disk
Maintenance Manual, published by Peltier
Industries, 1984.

"x" or "UX:" + CHR$(parameter 1)
+ CHR$(parameter 2) ...

In practice, the ''x" is replaced by an
index character which defines the loca-
tion which is to be executed. Table 1
defines the valid index characters and
their associated execution addresses in
the 1541 memory.

Table 1

Index Character Address Executed
$CD5F
$CD97
$0500
$08503
$0506
$8509
$@58C
$@50F
$FF@L
$EAAD

G H @I O M E O Ow e

Location $CDSF is the entry point for
the read block routine. Location
$CD97 is the entry point for the write
block routine. Locations $0500 thru
80511 constitute the user jump table.
The jump table is provided by the user
and typically contains a three byte JMP
instruction for each index character.
Each of these jump instructions, when
executed, causes a jump to the entry
point of a user-provided routine in
order to process the custom command.
Index character I causes a jump to
$FFO1, but this has no practical value.
Index character J causes a jump to
$EAAO which is the entry point for the
power-up reset routine.

by Michael G. Peltier
Wichita, Kansas

Parameters such as track number, sec-
tor number, byte count and pointers
may accompany the user command.
Parameter values are one byte,so they
must be between 0 and 255, inclusive.
Consider the following example:

“UD: " + CHR${parameter 1)
+ CHR$(parameter 2) + ...

Parameter 1 will be located at address
$0203, parameter 2 will be located at
address $0204, and so forth. Up to 38
parameters may be used. The
parameters may be read by the user-
provided routine at the locations listed
in Table 2.

Table 2

PARAM LOCATION PARAM LOCATION

No. 76 - October 1984

MICRO

1 $0203 20 $0216
2 $0204 21 $@217
3 $0205 22 $0218
4 $0206 23 $0219
5 $0207 24 $021A
6 $0208 25 $021B
7 $0209 26 $@21C
8 $020A 27 $021D
9 $020B 28 $@21E
19 $020C 29 $@21F
11 $020D 30 $0220
12 $020F 31 $0221
13 $020F 32 $0222
14 $021¢ 33 $0223
15 $@211 34 $0224
16 $@212 35 $0225
17 $0213 36 $0226
18 $0214 37 $0227
19 $0215 38 $0228

53

Expanding the User Command

The user command may be expanded to
include index characters A thru P. This
gives the programmer 16 new com-
mands to work with. Locations $006B
and $006C, respectively, contain the
low and high bytes of the starting loca-
tion of the user address table. The user
address table differs from the user jump
table discussed earlier in that the user
address table has only two bytes per
index character. These bytes are the
low and high bytes of the locations to
be executed. In the unexpanded mode,
$006B contains $EA and $006C con-
tains $FF. These addresses point to the
user address table starting at $FFEA.
The user address table contains the
following information:

Table 3

Address Contents Index Vector
$FFEA $5F A $CD5F
$FFEB $CD
$FFEC 397 B $CD97
$FFED $CD
$FFEE $09 C $0500
$FFEF $95
$FFFY $93 D $9593
$FFF1 $05
$FFF2 $06 E $0506
$FFF3 $25
$FFF4 $99 F $8599
$FFF5 305
$FFF6 $dcC G $d50C
$FFF7 $@5
$FFF8 $0F H $@50F
$FFF9 $85
$FFFA $91 I $FF@1
$FFFB $FF
$FFFC $AP J $EAAQ
$FFFD $EA

Notice that locations $FFEE thru $FFF9
in the user address table contain vec-
tors which point to the user jump table
in locations $0500 thru $0511.
Although only 10 index characters are
shown in the table, DOS will support
up to 16, giving a total table length of
32 bytes (two bytes per command). To
expand the user command to include
all 16 index character (A thru P),
change the user address table pointer at
$006B {low byte} and $006C {high byte)
to point to a 32 byte USER table in
RAM. Enter the table in the following
format:

Table 4

Address Contents Index
p+d $5F A
p+l $CD
p+2 $97 B
p+3 $CD
p+4 low byte vector C
p+5 high byte vector
p+6 low byte vector D
p+7 high byte vector
p+38 low byte vector P
p+31 high byte vector

(p = user address table base pointer
contained in $@@6B and $@@6C)

Note that it is necessary to set p+1 thru
p+3 to the values shown in order to
preserve the read block (U1 or UA| and
the write block (U2 or UB) commands.
If, however, the read and write block
commands are not needed, then the
above locations may be used for other
vectors. Each of the vectors in the
above table point to entry points of the

user-provided routine. The new table in
RAM may be created or altered by the
user. As in the unexpanded mode, the
expanded mode also allows the use of
parameters 1 thru 38.

To return to the unexpanded mode, use
the “U0" command. This command
sets the user address table pointer back
to $FFEA, which restores the original
user table.

Using all 16 expanded user commands
may be difficult due to the lack of
useable RAM for programming. Up to
1K of RAM may be used for program-
ming (buffers 0 thru 3, $0300-306FF).
However, as these buffers are filled
with programs, they are no longer
available for data transfer, thus reduc-
ing the number of file which may be
opened at any one time. This problem
will be solved in Part 2 of this article by
expanding the 1541 RAM to 6K. This
will be accomplished with a plug-in 4K
RAM module that you can build
yourself.

“On Nov.15,

opta fnend
who smokes.”

Help a friend get through the day without a cigarette.
They might just quit forever. And that's important. Because
good friends are hard to find. And even tougher to lose.

THE GREAT AMERICAN SMOKEOUT

?AMERICAN CANCER SOCIETY"

Larry Hagman

54

MICRO

No. 76 - October 1984

A Very Moving Message

Split Screen, Fine Scroliing and Interrupt Techniques
Combined in a Useful Utility for the Commodore 64

Summary

Here’s a program you can very quickly
type into your Commodore 64. It will
add to your computer’s usefulness and
show off some of its good features at
the same time. The program runs a
‘marquee-type’ message across the
screen of the computer. This feature
allows you to use the C64 as part of an
‘electronic bulletin board’ application,
either alone or in combination with
other programs. The message and its
configuration can be custom-tailored to
suit your needs. The program takes ad-
vantage of the computer's fine-
scrolling capabilities to move the
message smoothly and evenly across
any part of the screen.

The Moving Message

Here's another application for home or
club ... the computer as a moving
message display device. This is a flashy
way to leave a message for others in
your family, or you can use it to an-
nounce schedules or special events in a
club environment. You can even add it
in to other programs and use the
message to give instructions, advice in
an adventure game and so on, while the
other program is running. This little
machine-language routine will run a
continuous marquee-type message
across either the top or the bottom of
the screen, or any other line that you

by lan Adam

Vancouver, British Columbla, Canada

choose. The message that it runs can be
up to 255 characters long, enough to
cover most typical applications. The
message or the way it is displayed can
be changed easily to suit your needs.
About the only limitation is your
imagination!

Using the program is very simple.
All you need to do is type in the BASIC
program for your computer, being sure
to SAVE a copy, then run it. You will
then be asked to specify where on the
screen you want the message to appear
and to enter it according to the instruc-
tions. That’s all there is to it! Your
message will appear as if by magic,
sliding continuously across the screen.
Once it is working, it will continue to
do so until you stop it.

The program shows off a number of
very interesting features of your com-
puter which we’ll look at in a moment.
In particular, note that it runs on an
‘interrupt’ basis. This means that it
will continue to run when the program
that loaded it is finished. You can even
load in and run a different program and
the message will still be displayed in
most cases. The simplest way to stop
the message is to press the RUN/STOP
and RESTORE keys simultaneously. It
can be restarted by typing SYS 49152.

For those who are interested in the
details, the BASIC program loads in a
machine-language program that does
the serious work. This program is
located in the spare RAM beginning at
49152. A commented assembly listing
of the machine code is included in case
you want to see how it works, but
you'll still need the BASIC program to
load in your message.

Additional Instructions

Once it is debugged and working, here
are some additional instructions you
may find useful in operating the
display.

1. Changing text color: simply POKE
location 49248 with a number from 0
to 15 to change the color of the text in
the banner.

2. Background color: the color of the
screen background and display
background cannot be changed in the
usual way {with a POKE to location
53281). The new locations to POKE are
49267 for the screen color and 49266
for the background of the message.

3. Changing the message: type GOSUB
9750 and follow the prompts to enter a
new message. [alternatively, you can

No. 76 - October 1984

MICRO

55

19
2¢
30
4
5@

8¢
9¢

10¢
11¢
120
13¢
14¢
15¢
160
17¢
18¢

PRINT CHR$(147)

PRINT " MOVING MESSAGE 64:
PRINT "
PRINT " BY IAN ADAM{DOWN}

PRINT "THIS PROGRAM SCROLLS A BANNER MESSAGE
ACROSS THE SCREEN USING

GOSUB 9509

PRINT "{DOWN}

*PRESS RETURN TO LOAD MESSAGE.{UP}":INPUT A$
GOSUB 96@@:GOSUB 9758

PRINT "{DOWN4}ADJUSTMENTS: {DOWN}

PRINT "POKE 49248, TEXT COLOUR

PRINT "POKE 49266, COLOUR OF BANNER

PRINT "POKE 49267, COLOUR OF MAIN SCREEN
PRINT "SYS 49152 ENABLE MESSAGE

PRINT "GOSUB 96@@ CHANGE MESSAGE LOCATION
PRINT "GOSUB 975@¢ NEW MESSAGE

END

9480 REM READ AND POKE DATA INTO MEMORY

95¢¢
951¢

FOR I=49152 TO 49273
READ A:POKE I,A

9520 T=T+A:NEXT
953¢ IF T-15669 THEN PRINT "CHECKSUM ERROR -

DOUBLE-CHECK DATA! ":STOP

9548 RETURN

958¢
9600
961¢
962¢
9630
9640
9650
9660
967¢
9680

REM WHICH LINE ?
PRINT "{DOWN}PICK ANY LINE FOR THE MESSAGE
PRINT "1 IS TOP LINE, 25 IS BOTTOM LINE
INPUT "WHICH LINE";N%

IF N3< 1 OR N%> 25 THEN 9610

X=4@*NT+768

Y=X AND 255

POKE 49245,Y:POKE 49250@,Y

X=(X-Y) /256

POKE 49246,X:POKE 49251,X+212

9690 X=42+8%N%
97¢@ POKE 49271,X:POKE 49270,X+8

971¢
973¢
975¢
976¢
977¢
978¢

9790
98¢¢
981¢
985¢
9864
987¢
988¢@
989¢
9914
993¢
9944
995¢
9964
997¢
998¢

9998

RETURN

REM ENTER MESSAGE

A$=CHR$(164) :PRINT CHR$(147);

FOR I=1 TO 255:PRINT A$; :NEXT

PRINT CHR$(215)

PRINT "{DOWN}

TYPE MESSAGE AT TOP OF SCREEN, USING

PRINT "LOTS OF SPACE, MOVE CURSOR DOWN TO {1W}

, THEN PRESS RETURN

POKE 631,19:POKE 198,1

INPUT A$

A=49273:B=1¢23

FOR I=1 TO 255:S=PEEK(B+I)

IF S=1¢@ THEN S=32

POKE A+I,S:NEXT

POKE 53265,27:SYS 49152:RETURN

REM ENTER DATA CAREFULLY !!!

DATA 12¢,169,127,141,13,22¢,169,1,141,26,208,
169,23,141,2¢,3,169,192

DATA 141,21,3,88,96,173,25,208,141,25,2¢8,162,0,
189,114,192,141,33

DATA 208,189,116,192,141,22,2¢8,189,118,192,141,
18,2¢8,138,73,1,141,3¢

DATA 192,249,3,76,188,254,165,162,41,7,73,7,141,
116,192,2¢1,7,208

DATA 38,174,12¢,192,232,236,121,192,2¢8,2,162,4,
142,120,192,16@,216,189

DATA 122,192,153,232,6,169,15,153,232,218,232,
236,121,192,208,2,162,0

DATA 209,208,234,76,49,234,0,6,7,200,8,241,0,
255

enter the message by poking the screen
codes into memory beginning at loca-
tion 49274].

4. Changing the location on the screen:
type GOSUB 9600 and follow the
prompts to change the location on the
screen. Note that if you have not
selected the top of the screen for the
message, then scrolling the screen will
create a bit of a mess.

5. Spacing: the moving message will
have greater impact if you spread it out
a bit, adding lots of spaces or other
characters such as asterisks. The full
length of the message is normally
displayed, taking 34 seconds to scroll
across the screen of the Cé64. The
message will then repeat indefinitely.
It is normally best to operate the pro-
gram that way, but if you have a short,
urgent message that you want to repeat
more often, you can POKE its length
into location 49273. If you want to
display a very long message, your pro-
gram can simply divide the message in-
to segments of 255 characters and
change the segment occasionally.

Technical Features

This program demonstrates a number
of the special features of your
Commodore 64. If you're not 'into’
machine language or details of the com-
puter you can just skip over this sec-
tion, since you don't need to know all
the details in order to run the program.
However, if you want to know a bit of
what makes the machine tick, then
read on.

The BASIC program you see is a
‘loader’ for a machine language routine
that, in effect, becomes part of the
computer’s operating system. This ap-
proach shows off at least three of your
computer's special features:

1. modifying the interrupt routine.

2. split screen techniques.

3. fine scrolling and other control
registers on the video chip.

Here's a little more on how each of
these works:

Interrupt routine

Sixty times each second, the computer
‘interrupts’ what it’s doing to carry out
some housekeeping chores - checking
the keyboard, updating the clock,
washing the dishes and so on. In order
to do this, it jumps to a special routine
in memory that contains the instruc-
tions. The computer needs to know
where this ‘interrupt routine’ 1is

56

MICRO

No. 76 - October 1984

located, so it stores the address in a .
pointer, held in locations $0314 and ’ MOVING MESSAGE PROGRAM
0315 {decimal numbers 788 and 789]. : FOR USE ON THE COMMODORE 64
The address normally held in that ;
pointer is $EA31 on Commodore 64. ; BY IAN ADAM
What we will do is change the pointer ;
so that it directs the computer to our ; SYS 49152 TO ENABLE THE
routine instead. Our routine will take ; MOVING MESSAGE DISPLAY.
care of moving the message one step j
across the screen; when it’s finished, o2 CLOCK EQU $A2
! @314 IRQPTR EQU $@314
we return control to the normal 0328 SCRN EQU $0328
routine, to take care of the usual D@12 VICRST EQU $D@12
housekeeping tasks. D@16 VICCTL EQU $D@16
D@19 VICIRQ EQU $D@19
Split screen technique Dg1A VICIMR EQU $DG1A
D@21 VICBGC EQU $D@21
The picture on your TV or monitor is gggg gégim ggg :gggg
formed by a series of horizontal scan EA3L OLDIRQ EQU $EA31
lines projected sequentially from top to FEBC CLNUP EQU $FEBC
bottom of the screen. The video chip in ;
the computer keeps track of where the Cooe ORG $C@d@ ; ROUTINE RESIDES IN UPPER RAM
raster scan line is on the screen and will ;
alert you at any point on the screen you Cdog 78 SETUP SEI ; BLOCK OUT INTERRUPTS
request. This is handy for switching CodL A9 7F LDA #$7F
various displays in and out on different gggé ig g]i DC igﬁ ;égiCR 3 TURN OFF HARDWARE TIMER
parts of the screen, resulting in al o) o STA VICIMR ; ENABLE RASTER INTERRUPTS
display that could be, for example, part COgB A9 17 LDA #MOVER
graphics and part text. Thisis knownas | - cggp gp 14 g3 STA IRQPTR ; RESET IRQ POINTER TO START
a split screen. 10 A9 C@ IDA /MOVER ; OF NEW PROGRAM
In this case, we will ask the chip to C@12 8D 15 @3 STA IRQPTR+1
generate an interrupt twice on each c@15 58 CLI ; RE-ENABLE INTERRUPTS
screen: first, when the scan line gets to @16 69 RTS ; RETURN TO BASIC
the beginning of our message, we will ;
select the color of the screen to suit. C@17 AD 19 D@ MOVER LDA VICIRQ ; ACK INTERRUPT TO
We will also adjust the horizontal posi- ggi‘g ig ég D¢ PNTER ig; X;%RQ i gé’;igEgHig BYTE +1
1 3 ’
I;?;:sni;lrilrfr?;ﬂ :fle T t?ﬂﬁ;‘g EEZ C1F BD 72 C@ IDA COLOR,X ; GET BACKGROUND COLOR
. . . ! C@22 8D 21 D@ STA VICBGC ; AND STORE IT
video chip indicates it has reache.d the C@25 BD 74 C@ LDA CONFG,X ; GET SCREEN CONFIG.
bottom of our message line, we will set Cg28 8D 16 D@ STA VICCTL ; AND STORE IT
the screen color, position and width } ¢gop BD 76 Cg LDA RASTR,X ; GET NEXT RASTER VALUE
back to normal. We will also take this C@2E 8D 12 D@ STA VICRST ; AND STORE IT
opportunity to slip the display a little C@31 8A TXA ; LOOK AT POINTER
to the left, while it is out of sight [so C@32 49 91 EOR #$01 ; FLIP IT QVER
that it won't flicker). C@34 8D 1E C@ STA PNTER+1 ; AND STORE FOR NEXT TIME
C@37 Fo @3 BEQ SLIDE
C@39 4C BC FE JMP CLNUP ; IF MESSAGE NO ON, GET OUT.

Fine scrolling)

’

. . . . ; IF THE MESSAGE IS NI EING SCANNED

It is fairly easy to write a program like ! RELOCATE IT SO ,HSIATO%{E DISPS.XY 1S ’
- . ’

this to jump the message across the ; NOT JERKY.

screen one letter at a time - in fact, you

H
can even do it using BASIC. However, C@3C A5 A2 SLIDE LDA CLOCK SET SYSTEM CLOCK BYTE

’
this program uses the capability of the C@3E 29 @7 AND #$07 ; CONVERT INTO DECREASING SCAL
C64 to move the display across the CPag 49 @7 EOR #3@7 ; FOR A SMOOTH SCROLL
screen one pixel at a time. This results C@42 8D 74 C@ STA CONFG 3 SAVE FOR NEXT TIME
in a very smooth scrolling effect, as Ca45 C9 @7 CMP #3¢7 i IF 7, THEN SCROLL MESSAGE 1E
C@47 D@ 26 BNE EXIT ; IF NOT 7, BYPASS THESCROLL

there are eight pixels to each character.
You have no doubt seen this feature us- ’

C@49 AE 78 C§ SCROLL LDX POSITN WHERE IN THE MESSAGE?

ed k?eforf_:, although you may not have Co4C B8 INX : MOVE OVER ONE SPACE o)
realized it. It is often used by games to C@4D EC 79 CP CPX LENGTH ; ARE WE AT THE END ?

create an illusion of horizontal motion cg5¢ DY @2 BNE CONTIN ; NO, SO CONTINUE

on part of the screen, for example to C@52 A2 9f LDX #3$¢¢ ; YES, SO START OVER o
move traffic from side to side in frog C@54 8E 78 C@ CONTIN STX POSITN ; SAVE FOR NEXT TIME

games, or to scroll helicopter battles C@57 A@ D8 LDY #$D8 ; Y REGISTER IS SCREEN INDEX

sideways. ;

No. 76 - October 1984 MICRO 57

One Final Message
O ©P59 BD 7A C@ GETCHR LDA MESAG,X ; GET A LETTER OF MESSAGE Try this program in your machine - I'm
C@s5c 99 28 @3 STA SCRN,Y ; AND DISPLAY IT ON SCREEN sure you'll find it useful and it gives a
C@5F A9 @F 1LDA #$0F few more ways to put your powerful
o C@61 99 28 D7 STA SCOL,Y ; POKE COLOR OF TEXT home computer to practical use. I'll
; award a prize for the most imaginative
i SCRN AND SCOL ARE OFFSET VALUES FOR application I hear of. Meanwhile, may
; START OF SCREEN DISPLAY AND COLOR the power be with you!
(0] ; MEMORY. THEY ARE CHANGE BY THE BASIC
; LOADER IF NECESSARY.
; Biography
CP64 E8 INX
O cges ¢ 79 co CPX LENGTH ; END OF MESSAGE ?
CP68 DY 92 BNE NEXT ; NO Ian Adam is a Transportation Engineer
Co6A A2 O LDX #$0¢ ; YES, CONTINUE FROM START with the City of Vancouver, British
O ; Columbia. Home to mountains, killer
CP6C €8 NEXT INY ; NEXT SCREEN POSITION whales, and lots of rain, British
C@éD D@ EA BNE GETCHR ; MORE TO DO? Columbia is known locally as ‘Lotus
o CPEF 4C 31 EA EXIT JMP OLDIRQ ; OVER AND OUT Land’. After dealing with the routines
; of traffic and transit through the city all
; gg%ﬁ&gﬁ%fﬂggﬁég&%cx 10 day, Ian filjlds' routing information
. around the inside of a computer an
O ce72 00 9o ,COLOR DBY ¢ ideal way to relax. While also program-
Cg74 o9 of CONFG DBY ¢ ming on the VIC 20, Apple II and IBM
C@76 90 99 RASTR DBY @ PC, his preference is for the
O cg78 oo POSITN BYT @ Commodore 64. Unfortunately, he
c@79 ¢ LENGTH BYT @ must share this with his wife Linda and
Ca7a @@ MESAG BYT ¢ ; START OF MESSAGE AREA his two sons Paul and Doug_
o Cp7B END

What’s Where in the Apple?

The Complete Memory Map and Guide to the Apple Il
Apple Il Plus

* % *

Apple 1
Every Apple user needs this book, for it provides the
most detailed description available of Apple Il
firmware and hardware.

The names and locations of various Monitor, DOS,
integer BASIC, and Applesoft routines are listed, and
information is provided on their use.

* The address in hexadecimal (useful for assembly programming) $FC58
* The address in signed decimal (useful for BASIC programming) (-938)
* The common name of the address orroutine [HOME]
* Information on the use and type of routine \SE\
* Adescription of the routine

Related register information

The 150 plus page “GUIDE"” portion of the book shows
you how to use the information in the memory maps.
Applesoft and Integer BASIC users will find
information which will speed up and streamline
programs. Assembly ianguage users will gain access
to routines which will simplify coding and interfacing.
Both BASIC and assembly language users will find
this book helpful in understanding the Apple I, and
essential for mastering it!

The easy-to-read format includes:

* * %

Apple lle

The 100 plus page “Memory Map” provides a
numerical Atias and an alphabetical Gazetteer that
guides you to over 2,500 memory locations of
PEEKs, POKEs, and CALLs.

CLEAR SCROLL WINDOW TO BLANKS.
SET CURSOR TO TOP LEFT CORNER
............... (A- Y-REGS ALTERED)
Over 250 pages of information in an 8 x 11 format.
Over 35,000 copies already sold at $24.95.
Revised, third edition now just $19.95 at your dealer,
bookstore, or directiy from:
MICRO, P.O. Box 6502, Cheimsford, MA 01824
617/256-3849
[We accept VISA and MasterCard]
and we pay all shipping and handling!

Mass. Residents add 5% sales tax.

58 MICRO

No. 76 - October 1984

—— feedback

Dear Harvey,

In response to your letter in MICRO, June 1984, 1
offer the following.

First, with the exception of addition of a second
time series and third label, the Quickplot{tm) routine
which is part of Quicktrieve supplied by Commodity
Systems Inc., 200 W. Palmetto Park Road, Boca Raton,
FL 33432 (305/392-8663), does what you want with
either daily commodity futures or stock or stock options
data which they sell. Unfortunately, the program is
supplied only in compiled form and is intimately tied to
acquisition through their system on a regular basis.

I expect to eventually write my own program of that
nature, if the demand develops. In the meantime, I do
my plots on an MX-100 with substantially higher
resolution than Apple Hi-Res graphics. A sample is
enclosed. I have several years of use of Apple in
commodity trading, If this interests you, or any MICRO
reader, feel free to write.

Jere Murray

Seldovia Paint Software
Box 237

Seldovia, AK 99663

Portion of Sample Commodity Chart
{The whole chart is 15 by 25)

Dear Mr. Tripp:

I'm delighted to find the lead article on the Dvorak
keyboard in your July 1984 issue. There is, indeed, a
growing awareness of the inherent awkwardness of the
QWERTY keyboard arrangement.

After 20 years of QWERTY in my daily work, 1
switched to Dvorak in 1965, cold turkey. [was never
sorry, not even one day, though for the first six weeks or
so my usual 80 wpm began again from 15 to 20 wpm
and slowly became 35, then 60, and a year later 100
plus. I cannot imagine going back, although my two
daughters, trained from high school on Dvorak, had to
switch to QWERTY in order to obtain employment in
their chosen line of work. Those were pre-
microcomputer years. Now, there's no problem getting
the new ANSI Standard Keyboard {ASK, which is Dvorak
with the numeral row left in the old ascending
arrangement) on virtually any computer. The article
neglected to mention the 1983 action of the American
National Standards Institute in adopting Dvorak's ASK
variant officially. Many persons might take Dvorak more
seriously once they realize that it has official blessing.

It is not even mentioned by Radio shack, more's the
pity!, that SCRIPSIT has the ASK keyboard arrangement
resident. For those who use SCRIPSIT 2.0, a simple
patch on a working master is all that's required to
convert their keyboard {from TRSDOS Ready, PATCH
SCRIPSIT ADDFA FD7 CD8). Thus, Radio Shack is
among the very first computer manufacturers, along
with IBM and Apple, to recognize the value of the new
keyboard, in spite of their apparent modesty. Apple Ilc
has a hardware switch for using either keyboard at will.

The DSK is everything it’s touted to be, and more.
There are a growing number of converts to ASK. But
since DSK and ASK are in the public domain, why try to
persuade anyone that there’'s an advantage in switching
away from QWERTY, since there’'s no money to be
made? It's a rare person who believes that a gift can
come sans strings attached. I can use QWERTY at 35
wpm, DSK and ASK as 100. It is not easy to learn to use
more than one of them, since there is a tendency to
overlap, just as a foreign language user slips an
occasional native word into his conversation. But it does
give me a basis for objective evaluation of all three: I
pronounce Dvorak superlative in all respects. ASK is a
beautiful compromise.

Sincerely,
Waldo T. Boyd

P.O. Box 86
Geyserville, CA 95441

No. 76 - October 1984

MICRO

59

A Mystery !

by Ralph Tenny
Richardson, Texas

VEFCs Explained!

Most modern VFCs work on a charge balancing principle
which minimizes error producing influences. Charge

At first glance, the Commodore 64 seems to be ideally balancing is done by charging a capacitor from an external
suited for timing and counting measurements. That is, it source for a while, then quickly discharging it from an in-
has two Time of Day clocks and two independent counters ternal calibrated source. The internal discharge rate is con-
for our use, and all of them produce interrupts. However, I stant, and the external charging rate is proportional to the
developed a number of frustrations while trying to use external voltage. [The length of time for external charging
these features to calibrate a Voltage-to-Frequency is set by the external voltage.] With a large external
Converter {VFC). Let’s get some background on VDCs and voltage, the capacitor is charged rapidly, so the switch-
their calibration; then I'll explain my frustrations. If any over to discharge comes quickly. The switch signal [see
one of you can solve the problems more neatly than I did, Figure 2a} is brought out for our use, and its frequency is
the podium is yours! Just write me ¢/0o MICRO and tell me directly proportional to the external voltage. The Teledyne
your solution. 9400 VFC used in this experiment also furnishes a square
Figure 1 shows the circuit of the VFC as implemented wave at half the output frequency (Figure 2b). We will use
on the User Port adapter reported several columns back both in the experiment to be discussed.
(MICRO 70:54, March 1984}. {For those who haven't seen A number of very good VECs are available at quite low
that report, skip forward to the section on the User Port prices. Typical specifications are: 0.01% linearity to 10
Adapter.) U1 is the VFC, which requires + and - 5V power KHz and 0.0025% gain stability with temperature. At full
supplies. U2 is a low-power inverter which runs from + 5V scale (10 V input = 10 KHz}, the measurement resolution
and produces about -4.5 V. Only a few connections are is better than 13 bits! A 13-bit A/D converter is several
made to the User Port for this circuit: +5V, Common, times more expensive, depending on how fast the conver-
PB7 and CNT2. Depending on the operating mode, you sion is. Even at 1 V input (1 KHz), the resolution is almost
will count pulses or the time between two pulses, depen- 10 bits. The tradeoff is that full-resolution measurements
ding on the calibration mode. require one second to complete. Also, the measurements
R".‘ Py AT
»/\/'\{-'\ 1 1% T [_u——
Rt SRS 1 @
2 15 5 2
1MPUT ¥ z 1
EE/\ T z 0 1z _1 3 —E‘ uz [
[L1 1] — = 5
Rz & 1 T 01
% 4 s 4
1 S 1o . F-2 ouT
5 E {1 —
[< e
— 1 5 — F out
T -5y
l————» canmnoN
Farts List for VFC
R1 ~ 19¢ Kohm, Carbon Film. ZS%, 1/4 watt
R2 - 1 Megohm, Metal Film, 1%, 1/4 watt
3 - 10 Kohm, Carbon Film, S%, 1/4 watt
R4, RS - B.2 Kohm, Carbon Film, S%, 1/4 watt
R6 — 518 Kohn, Metal Film, 1%, 1/4 watt
R7 - 3@ Kohm, Cermet, single turn, 1/8 or 1/4 watt
C1 - 2230 pF, mica or NFO ceramic capacitor
Figure 1 C2 - 1999 pF, mica or NF0O ceramic capacitor
CZ - 10 uF Tantalum Dipped electralytic capacitor
. . . C4 - 189 uF Aluminum electrolytic capacitor
VFC Analog/Digital Converter Circuit Ul - Teledyne 9484 VFC
U2 - Intersil ICL766@ DC Converter

60 MICRO No. 76 - October 1984

need two bytes of memory for storage of each test result. If
you don't need high resolution, use one-tenth second
measurement periods to save time and memory space.

r

L

]

Figure 2 Output Waveforms from the VFC

Calibration Woes

Two calibration points are needed on this particular VFC.
First, I need to set the frequency output for 10 KHz with 10
V input, and then minimize the zero offset. Zero offset
affects the accuracy at very low input voltage, so the
frequency is adjusted to 20 Hz at 20 mV input. This
calibration must use a period measurement to get ade-
quate resolution.

My first frustration came when trying to calibrate the
full-scale response of this VFC. I have been using
HESMON®4 for all of my hardware and interfacing ex-
periments, with mostly good results. The first idea I had
for full-scale calibration was to operate the TOD clock on
U2 (NMI interrupt} with one second interrupts. None of
the several reference books I have mentions how to set the
TOD interrupts, except in a general way. Setting the TOD
clock is supposed to be done beginning with the
Hours/AM-PM register and finishing with the Tenth
Second register. The clock starts running when the Tenth
Second register is loaded, so that the starting time can be
precisely controlled. Setting the Alarm is supposed to be
the same, except that BIT7 of each register is supposed to
be set also.

The bit map of the TOD registers looks like this:
ADDR REG BIT7 BITé BIT5 BIT4 BIT3 BIT2 BIT1 BIT@
DD@8 SEC/10 @]]] 8 T4 T2 T1
DD@9 SEC] SH4 SH2 SH1 SL8 SL4 SL2 SL1
DDgA MIN @ MH4 MH2 MH1 ML8 ML4 ML2 ML1
DDgR HRS PM @ ¢ HH1 HI8 HL4 HL2 HLl

Note that the registers are arranged in ascending order,
with time kept in BCD. The first hurdle is that HESMON
reads and writes eight bytes in its memory modifying
mode, reading from low to high. So, if you manage to get
the clock running with HESMON, reading the time reads
the Hours register last, stopping the clock. Similarly,
writing via memory modification writes the Tenth Second
register first instead of last, failing to start the clock. The
clock can be started using this brief program:

A2 93 LDX #3083 ; MOVE FOUR NUMBERS
BD @¢C C# GET LDA BUFR,X ; GET DATA

9D @8 DD STA $DD@8,X ; AND WRITE IT

CA DEX ; IN REVERSE ORDER
1¢ F7 BPL GET ; LOOP

o0 BRK ; HESMON STOP

@A §F 1E BUFR BYT HRS,MIN,SEC,STEN

; SAMPLE SETTINGS

HRS EQU 19
MIN EQU 15
SEC EQU 39
STEN EQU 96

The clock starts easily with that program segment. Using
several similar segments to set the ALARM function
apparently failed each time. At least, I couldn’t find an in-
terrupt service routine which demonstrated interrupt
operation!

My intent had been to use one-second interrupts from
the TOD clock to calibrate the VEC. In this operation, the
VEC pulse output is connected to CNT2 so that Timer B
accumulates pulses from the VFC. Eventually, I devised
this program to generate one second interrupts for that

purpose:

CE 99 20 DEC 32009 ; REP COUNTER

19 99 BPL KI ; RESET INTERRUPT
A9 99 LDA #p9 ; STOP TIMERS

8D ¢F DD STA $DD@F ; TIMER B

8D gE DD STA $DD@E ; TIMER A

o0 BRK ; RETURN TO HESMON
AD gD DD KI LDA $DD@D ; RESET INTERRUPT
Ly RTI ; END INTERRUPT SERVICE
A9 D5 LDA #3D5 ; SET TIMER A

8D @4 DD STA $DD@4 ; FOR @.1 SECONDS
A9 27 LDA #327

8D @#5 DD STA $DD@5

A9 29 LDA #3999 ; NEED 1¢ TIMER

8D 90 2¢ STA $2000

A9 FF LDA #$FF ; FULL COUNT IN TIMER B
8D @§6 DD STA $DD@6

8D @7 DD STA $DD@7

A9 1 LDA #$¢1 ; SET NMI* VECTOR
8D 18 93 STA $@318

A9 2¢ LDA #320

8D 19 @3 STA $@319

A9 81 LDA #$81 ; ENABLE TIMER A

8D D DD STA $DDED ; INTERRUPT

A9 99 LDA #$@9 ; START TIMER B

8D @F DD STA $DD@F ; IN ONE-SHOT MODE
A9 91 LDA #$01 ; START TIMER A

8D @E DD STA $DD@E ; IN FREE-RUN MODE
4LC 42 C§ LP JMP LP ; TIGHT LOOPS 1

No. 76 - October 1984

MICRO 61

When you RUN this program it should come back with the
HESMON prompt almost immediately. Examine memory
at $DD06-DDO7 (count in Timer B registers). The record-
ed count with +5V input will probably be about $1388.
There are two ways to calibrate this circuit. The first is to
input a precise voltage [such as 10.0V} and adjust the value
of R1 so the count is exactly $2710 (10,000 decimal). The
second is to put in a known voltage near full scale and
record the count. From these values you can then compute
a counts/volt and compute other voltages using this value.
Here's an example:

9.3V input yields $244A or 9290 decimal.
9290/9.3 = 998.9 counts/volt.

If you get a count of 6320 decimal, the voltage is
6320/998.9 or 6.39V. The computations above were
rounded off somewhat. It is unrealistic to keep all the
digits your calculator gives you!. If you can calibrate this
circuit to 0.5%, three digit resolution can exceed the
accuracy available to you, depending on the input voltage.

Most analog devices have zero offset, and VFCs are no
exception. The zero offset calibration experiment was a
really major frustration. The calibration should be done
with 20 mV input [output 20 Hz]. By measuring the period
of the VFC output with a timer counting the processor
clock, significant resolution is possible. My original plan
was to drive the FLAG input with the VFC output. FLAG
is an edge-sensitive input, which means that once the line
has been driven low it must go high before another inter-
rupt can be generated. Also, the first interrupt must be
cleared before another interrupt will be issued. (Clearing
any interrupt of the 6526 CIA is accomplished by reading
the Interrupt Control Register.)] To make a bitter story
short, there apparently was severe interaction between any
program using FLAG and the HESMON cartridge. The pro-
gram below reads the half-period of the F/2 output. it
waits until F/2 goes high, then low, and starts the counter.
When F/2 goes high again, the counter is stopped. Con-
nect the F/2 output to BIT6 of the User Port. Enter this
program and run it repeatedly with a .02 V input to the
VFC. Check the Timer B count after each run and adjust
R7 until you get 51020 counts ($C74C]. Note: since the
timer starts at $FFFF and counts down, $FFFF - $§C74C =
38B3. That is, the counter will show $38B3 when the
adjustment is correct.

78 SEI ; DISABLE IRQ*
A2 @F LDX #$@F ; COUNTER START

AQ 09 LDY #$00 ; COUNTER STOP

A9 FF LDA #$FF ; SET COUNTER B FOR

8D @6 DD STA $DD@6 ; MAXIMUM COUNT

8D @7 DD STA $DD@7

2C g1 DD IN1 BIT $DD@1 ; TEST FOR F/2 LOW

5¢ FB BVC IN1 ; LOOP IF LOW

2C g1 DD IN2 BIT $DD@1 ; TEST FOR HIGH

7@ FB BVS IN2 ; LOOP WHILE HIGH

8E @F DD STX $DD@F ; START COUNTER

2C @1 DD IN3 BIT $DD@1 ; TEST FOR LOW

50 FB BVC IN3 ; WAIT FOR LOW TO STOP
8C @F DD STY $DD@F ; THEN TURN OFF COUNTER
Ji) BRK ; BACK TO HESMONS1

It was particularly irritating to have to resort to software
loops as the only available way to make this calibration
measurement! Remember: If you can make Commodore

1 p—— CIRCUIT COMMON—/ 1

2 +35 V 2

3 RESETY—m 3

4 CNT1 4

S SF1 5

b6 H—————CNT2— &

7 SF2 7

g————FC2x—— 8| 2
u 9 ATN 9| 4
S |12 3 VAC 19 | —
E |11 ? VAC——11 | F
R [12 ——CIRCUIT COMMON 12| 1

A —CIRCUIT COMMON—13 | N
F B FLAG2¥ — 23
O c FBZ 2215
R D PB1 2?1 (D
T E PRZ2 3 | C

F PR3 19 | K

H FR4 18 | E

J FBS 17 (7T

K FBS& 16

L FR7 15

M FA2 14

N ——CIRCUIT COMMON 4

Figure 3
Wiring Chart for User Port Adapter

user interrupts work well with HESMON or another
debugger, tell us how!

You should be aware of some constraints on using this
type of program for calibration against the processor clock.
I tested that program with 5 V input to the VFC [about 5
KHz output]. Without the SEI instruction, internal inter-
rupts would scramble about one sample in four. Even with
the SEI, one in seven samples were stretched; I have no ex-
planation. At the real calibration point, (20 Hz output],
the signal was somewhat variable. Pulse jitter due to noise
pickup was visible on an oscilloscope, but not to the
extent shown in the data. The final calibration was done
using an average of ten samples. The observed jitter in the
data was +29%.

62 MICRO

No. 76 - October 1984

User Port Adapter

Anytime you interface to a computer, it is much easier if
you have a special work area for your experiments. The
User Port is on the left rear of the Commodore 64, with a
place to plug on an edge-card connector. I developed a
simple adapter which extends the User Port around near
the front of the computer. Figure 3 shows the circuitry
between the User Port and the extender cable. This adapter
1s simply a short piece of experimenter perf-board with a
dual-readout 12 position connector soldered to it. The con-
nector fits the User Port, and a 24 pin IC socket is
mounted on the perf-board. A flat cable with 24 pin
headers on each end carries the User Port connections to
the front of the C-64. This end of the flat cable plugs into
any of several breadboards and permanent boards which
are experimental circuits or permanent interfaces.

Future Projects

For those who might be following the design discussion of
networking my three computers, I'm still planning to
report on the bus loading of the interface detailed in the
previous column, and discuss a full eight-bit wide I/O port
to replace the four-bit ports shown last month. The inter-
face project has been temporarily slowed to meet other
deadlines, and to order some interface breadboard cards to
build the interface on. When the interface project gets
under way again (probably by next column], at least two
such breadboard cards will be discussed and the parts
layout shown. In addition, the support software will be
outlined.

Updates & Microbes

BASIC Hex Loader, Micro #73, page 65:
Line 9 in listing 2 had a ‘-’ inserted by the typesetter. It
should read:

9 MS> ME THEN PRINT "™XX";:I=6:J=11

The Hex Loader was written to work with any
Microsoft-like BASIC. Since the Atari's BASIC is
significantly different, particularly in the area of string
manipulation, a special version is required. Here is the
Hex Loader modified for the Atari.

1@ DIM X3(4),HX$(50)
11 READ X$:Z=LEN(X$):GOSUB 17:MS=X:Z=2
12 READ HX$:J=1
13 X$=HX$(J,J+1)
14 IF X$=XX THEN END
15 IF X$=YY THEN GOTO 12
16 GOSUB 17:POKE MS,X:MS=MS+1:J=J+2:GOTO 13
17 X=@:FOR I=1 TO Z:Y=ASC(X$(I,I)):
IF Y> 57 THEN Y=Y-7
18 Y=Y-48:X=X*16+Y:NEXT I:RETURN

Sample DATA Statements

1¢@ DATA 60@ Starting Address
161 DATA A57A8D7¢YY Hex Data

Surplus Electronic Stock on Sale

Since we have gone out of the manufacturing business,

we have a limited amount of surplus stock for sale.

Check these items:

Keytronic Keyboards: w/Numeric Pad $75
[Superior keyboard, listed at $200]

Video Plus |; for AIM/SYM/IKIM $75
[Originally $2951]
Video Plus |I: Improved Version $125

[Hundreds sold for $375]

Proto Plus: WireWrap or Solder $25
[8 x 10 ”*, top quality, were $75]

Memory Plus: 8K RAM, up to 8K EPROM $50
[Add memory for your projects, were $245]

Dram Plus: 16K RAM expandable to 128K ... $200

[Includes EPROM programmer, 2 VIA’s, and much morel
[Recently soid for $325]

FOCUS: 6809 Development System . $2000
[Dual Density/Double Sided Disks, RS-232, IEEE-488 bus,

FLEX Operating System. Originally $3995]
Miscellaneous Parts: Send SASE for complete list.

Diskettes: Ten (10) used — but still useful $10
[Specify ' or 8'°. Some single density, most doublel
[Sold in batches of ten only — definitely ‘As Is’]
Printers: A variety of printers from $50
[from an oid BASE 2 to

a high-quality Daisy wheel terminal.

Send for specifications and make us an offer!]

While all boards and parts are sold “'As Is”, they come
from our ‘‘Ready-to-Ship’’ stock and should be in
excellent condition. Boards come with complete
documentation.

Money Back Guarantee: Return any product
within two weeks and receive a full refund.

The Computerist, Inc.
P.0. Box 6502
Chelmsford, MA 01824

617/256-3649

No. 76 - October 1984

MICRO 63

f‘~ R TR PRI

8” by 10” Prototyping and Custom Circuit Board

Professional Quality
P Double-Sided with Gold Plated Edge Connectors
r0t0 Address and Data Buffering
Address Decoding Circuitry
Pl us Patterns for Special Devices
Large 8 by 10 inch Work Area
Patterns ftor Soldering or Wire-Wrap

000000000000000000000000000000
000000000000000000000000000000
0000000000000 00000000000000000

oo oo..o. R
. ® ..l!.l.. 00 o
...............

. Special Etch Patterns for: tess

:::::::::::::::::o Voltage Regulators .~000:::::::::::::::: ...’. ...0.0.I...l..° g.::EEE:EE°

. ceeceeecsescsssecsecs)focccceccces

Large and Small Transistors "« {IIIIIEEEEEERRES R E-SRARRRRRERE:

+ DB-25 Connectors for RS-232 i{{{iiiiiifiiiisij{HITHIIL:

;. Standard 0.10 Connectors {jiiiifiifiififfitiii-{iiifiinii:
H e TR S HHTTHIT
i pR T (R e
H s e :
~ T TR e TR

o |. Large Universal DIP Pattern Area for: "Uili1i1ili:
el M, Wire-Wrapping or Soldering R TR
s {itily DIP sizes from 8-pin to 40-pin ‘Wil
4 mmms Volt and Ground Busses M
2 i, Crovision for Decoupling Capacitors jjji
i — T T T T
S
one :—\——occ.oo :
> sinees Pre-Etched Circuits for: 0 :
Spedin gty) Address Decoder i e T g TR

T
T
T
T

L'w Toeener Bi-Directional Data Line Buffers !!i!i!!!!!!!!!!

o Junnssanst o, JUOONBNNEE o JRODIDIINY C_ontrol SI nal Buffers l!!!!’i"'!'!l!

L)
o r'"}m W) lllliill!lliii!!l!ll! AT
) LAAA XX X (A A AKX R A AR K

f A o..oo...ooo..ooo...o p p MNLD s
3())II) oo...o-oo..ooo..oo‘)(L’I IIIII‘(

T T,

Hundreds of these Proto Plus boards were sold for $50 to $75 dollars. Since we are
no longer actively in the PC board market, we are offering the remaining stock at a
great discount.

Now Only $25.00 While Supplies Last.
The Ideal Board for the Interface Clinic and other MICRO Projects.

s 38
r‘wli :::ll\l—_}—— Address Line Buffers "'.!"'!!"'!"!“l

=4
>
><
>-<'

>-< >
>4
=8 _
e
=+
-
>4

4
>

C-

—4
=0

o=8

b—¢

>
C<
L

e —— " G — — T — V——— it — — — — — o — fn —— i T —) G — T T G S n. W S . — ——— — —— — —— — —

We have a limited supply of other boards — Video Plus, Dram Plus, Memory Plus, Flexi Plus,
Keytronic keyboards and other “‘good stuff””. No reasonable offer refused. For a complete list, send a
self-addressed, stamped business-size envelope to: Surplus List
The Computerist, Inc.
P.O. Box 6502
Chelmsford, MA 01824

A A

RRAIIINA

Quick Cipher Routine

Profecting Your Information

by Art Matheny
Lutz, Florida

Before storing a program or data on a
public mass storage device or trans-
mitting it over a public communi-
cations channel, it may be wise to
encipher it. This short 6502 machine

Symmary T TTTTTTTTTmmmmEmEmETTmTT TTTTTTTTTT
In less than three seconds this 6502 How You Can Keep Your Information Private —
machine language subroutine can Even While Using Public Communications
encode 24 kilobytes into a cipher that is

difficult to crack. The same routine Channels and Databases

decodes the data just as quickly. e T e e e e e e e e e — = =

language subroutine quickly encodes a :
specified range of memory. The same S RERRRR -
subroutine decodes the data to recover ;CIPHER
the original memory contents. The s RRHRHHKE o
routine takes less than three seconds ;
(with a 1 MHz clock] to encode or ;QUICK CIPHER ROUTINE 3
decode 24 kilobytes. This is short ;BY ART MATHENY .,
compared to the time it usually takes i TaMPA, FL :
. ; _
Zloats;ore or transmit the same amount of ' ENCODES OR DECODES o :
;A RANGE OF MEMORY [
The contents of the memory range ;
could be a BASIC program, machine ;
code, data tables, or a combination of ; THE FOLLOWING 2-BYTE POINTER o |
all of these. it does not matter since ;CAN BE LOCATED AT ANY
every byte in the specified range under- 5 CONVENIENT ZERO-PAGE ADDRESS
goes transformation. Cryptographers ;
call‘ the original memory contents the OOFB ,PTR EQU $FB .Z-PAGE POINTER o
plaintext, and they call the transformed)
data the ciphertext. The goal is to z
design a code such that if any code- ;CHOOSE CONVENIENT ORIGIN.
breaker gets hold of the ciphertext, he ;THE FOLLOWING IS THE START OF
would have a hard time recovering the ;THE CASSETTE BUFFER FOR
plaintext. ; COMMODORE 64 OR VIC-2@.
The simplest scheme [have seen ;
used for encryption of computer ; .
memory is as follows: One picks any g33C . ORG $33C o)
number between 1 and 255 to use as a ’
key‘. The ciphertext 4is produced by ;JUMP TABLE
performing an exclusive-or (EOR] of ; [
this byte with every byte of the ;
plaintext. To recover the plaintext, $33C 4C 44 93 JMP CIPHER
EOR the same key with every byte of @#33F 4C 79 @3 JMP RND
the ciphertext. The trick is that two ; O
EOR instructions with the same byte
No. 76 - October 1984 MICRO 65

g342
9343
P344
9345
@346
#348

@34
@34D
P34F
#352

@354
@356
8359
@358

$35D
@35F
@361

9363
p366
@368
p36B
g36D
@36F

9370
#371
373
@376
@377
@374
@37D
@37E
@380
9382
@385
9387
9388
#384
@388

12
34
56
78
g¢ @8

AD 46

AD 47
85 FC

Ap 90
20 79
51 FB
91 FB

E6 FB
D@ @2
E6 FC

AD 48
C5 FB
AD 49
E5 FC
B@ E7
6@

18
A2 @3
BD 42
CA
7 42
9D 42
CA
g F7
A2 @3
FE 42
D¢ @3
CA
1¢ F8
60

23
23

23

23
@3

23

3
23

23

)

; ARGUMENTS

)

SEED BYT $12 ;POKE ANY 4-BYTE
BYT $34 ;SEED HERE.
BYT $56 ;USE SAME SEED AT
BYT $78 ;DECODING TIME

FIRST BYT ¢,8 ;STARTING ADDR

LAST BYT $FF,$67 ;FINAL ADDR

;COPY STARTING ADDR TO Z-PAGE
CIPHER LDA FIRST
STA PTR
LDA FIRST+1
STA PTR+1
;EOR MEMORY BYTE WITH RANDOM BYTE
LDY #0
CIP1 JSR RND
EOR (PTR),Y
STA (PTR),Y
; INCREMENT MEMORY POINTER
INC PTR
BNE CIP2
INC PTR+1
;LAST BYTE YET
CIP2 LDA LAST
CMP PTR
LDA LAST+1
SBC PTR+1
BCS CIP1
RTS

’

;RANDOM NUMBER GENERATOR
; RETURNS RANDOM BYTE IN THE .A REGISTER

’

RND CLC
LDX #3
LDA SEED,X
DEX
RND1 ADC SEED,X
STA SEED,X
DEX
BPL RND1
LDX #3
RND2 INC SEED,X
BNE RND3
DEX
BPL RND2
RND3 RTS
END

Art Matheny was a physics teacher before he took up full-time program-

has no net effect. This simple code
disguises the data alright, but it is
nothing more than a simple substi-
tution code, which can be cracked by
age-old methods. The code-breaker can
determine the substitution table
without ever having figured out that
the EOR instruction was used.

My scheme also uses the EOR
instruction, but first a fast random
number routine generates values to
EOR with the data. The key in this case
is a four-byte SEED value, which deter-
mines the pseudo-random sequence.
Decoding is accomplished by calling
the same routine with the SEED bytes
reset to the key values. At the start of
encoding, any four bytes can be poked
into the SEED locations. Because these
bytes are modified by the program, they
must be reset to the same key values at
the start of decoding. The FIRST and
LAST addresses of the memory range
must also be set. All of these arguments
are located immediately following the
jump table at the start of the program.

You do not have to use the partic-
ular random number generator given
here. Any routine that generates one-
byte values will work. The one
included here was originally published
in MICRO #51 [August 1982). In this
application, its main virtues are that it
is fast {about 69 cycles) compared to
more sophisticated routines and that it
generates an extremely long non-
repeating sequence. You mmay even
choose to invent your own personal
number generator. It does not have to
be perfectly random, rather use some
scheme that is so unlikely that the
code-breaker would fail to guess it.
Since many numbers need to be gener-
ated, speed is important. The main
point is that the number sequence
must be deterministic, while not
appearing so. The sequence should be
determined by some a seed value,
which functions as the key of the code.
The random number generator must
return a random byte in the A register.

All that is required to use the
routine, once you have it loaded is to
set the seed bytes and the starting and
ending address of the information to be
encoded. The addresses are stored in
normal low/high byte order (at $0346
and $0348 in this version]. Then, make
a subroutine call to CIPHER through its
jump table vector {JSR $33C) from an
assembly program or a SYS call from

o ming. He is now employed at the University of South Florida as BASIC [SYS 828). Your encoded/decod-
assistant in scientific computing for the College of Natural Sciences. At ed information will replace your
home he programs on his Apple I, Commodore 64 and VIC-20. original information.

66 MICRO No. 76 - October 1984

Complete Apple
Modem 129

Single-Slot 300 Baud Direct-Connect Modem for
Apple Il, i+, lle and Franklin computers

FEATURES OF THE NETWORKER ~

DIRECT CONNECT - No acoustic coupling needed
Two modular telephone :acks - one for phone - one
tor ine

SINGLE CHIP MODEM tur greater rebab.ty

ON 80ARD FIRMWARE contains a term nar pro-
gram

Oiv BOARD SERIAL INTERFACE - ng extra cards ¢
oLy Software selectable data tormat T ar 8 cata
015 ONe a7 twG 10 bits 2dd or even panty full or
nait duplex

300 BAUD software serecrable far 117 naug
SWTCH CONTROL for answer org:nae s °s next °g
Keyboara ’

CARRIER DETECT LED gves you 1re s'alus at a
gianne

THIS PLUS

COMPLETE witn NETWNRKER SOFTWARE 1o give
yOu

« Text trapping of entire d:splay :ntc RAM memoery
« Disx strrage capabiey for at rappec tex

- 0N screen meny ang states ndIcatcrs

FREE SLBSCRIPTICN T(O THE SOURCE the popu-
ar 413 up information system

SOFTWARE COMPATIBILITY — with aii commor
App'e cammun-cahon software

COMPATIBLE wi'n hotn o3y and tone phones

« FCC APPROVED - Mage :n USA

CNE YEAR MANLEACTURER 5 WARRANTY

@

@

@

AlL

NETWORKER " INCLUDES A
COMPLETE PACKAGE

: “.;chuya‘r’)ph()“ 'n
. ‘jezworker Sattwgre o
«Lompiete BSineD

3 Jise 240y 0 LN
TanLa

NETMASTER * COMMUNICATIONS
SOFTWARE

For $179 we nclude with the NETWORKER the
NETMASTER Communications Software for ad-
vanced users NETMASTER wil let you tansfer

games. compller grachics. programs sales -e-

ports. documerts - nfact any Agple file of ary size
1o arother computer directly ‘rom disk to cisk

w.thout errors even through noisy phane hines

To Order
Call Toll Free

800-824-7888 Continental US
800-824-7919 Alaska and Hawaii

or anywhere in the world
916-929-9091
Ask for operator #592

O

JAB ENTERPRISES INC
P 0. Box 269

\6) @ Ayer MA 01432

For transtering information between computers,
NETMASTER s superb error checking and high
speed are an unbeatable compination With a NET-
MASTER on each end. you can transfer informa-
tion three to five times faster than other commu-
nicators packages lke Visiterm ™ or ASCII
Express. Error free
Your best buy in modem history. The Networker.”
a plug-in single-s.ot direct connect modem (or the
Apple !l tam:ly of computers Send electromc mail
10 a fnena or business associate. use your schoct s
computer. access hundreds of computer builetin
boards or thousands of data bases for up-to-the-
minute news. spors. weather, airfine, and stock in-
formation

MAIL ORDERS

PLEASE WRITE NUMBER OF ITEMS IN BOX
[NETWORKER 8129
[NETWORKER'NETMASTER COMBO

[_ NETMASTER 8§79
$179

C.0D.
00 ORDERS ADD $3 00

Seag Orgers arg Make Chegxs Piyaoe 1¢

JQB Enterprises Incorporated

P.0. BOX 269. AYER MASSACHUSETTS 01432

There s apsolutely nothing eise to buy You get
the modem board. commurnication software. and a
valuable subscription to America.s premier infor-
mation service. THE SOURCE ~ For $129 its an
unbeatable value

This 1s the modem that goes 1t ail and does 't for
less The Apple Communications Card s on board
sG no other interface 1s needed Its 300 baud. the
most commonly used modem speed And it comes
complete with NETWORKER Communicat:ons
Software on an Apple-compatible disk giving you
features no modem offers

L'ke the abiiity to Jock on-screen messages nto
your Apple s RAM, and then move the informaticn
onto a disk for easy reference and review A term--
nai program that turns your computer into a com-
munications command center with on-screen "help
menus. continuous updates of memory usage car-
ner presence, and communication status

But NETMASTER s not stuffy It will talk to those
other communications packages. but they dont
work as fast and they don't check errors like NET-
MASTER. And NETMASTER doesnt only work
with the NETWORKER modem Even f you
already have another modem for your Apple. NET-
MASTER 15 ar outstanding value in communi-
cations software. so we sell NETMASTER by itself
for $79. NETMASTER requires 48k of RAM. one
disk drive. and the NETWORKER or another
modem

WE EVEN GIVE YOU SOMEONE TO
TALK 70!

Your purchase of the NETWORKER with or without
NETMASTER comes complete with a membership
to THE SOURCE. with its normal registration fee
fully waived THE SQOURCE will put a world of elec-
trontc infarmaton and communication services at
your fingertips — instantly Electronic mai and com-
puter conferencing Current news and sports Valu-
able business and financial information Travel ser-
vices A wealth of information about personal
computing Even games All fully compatible with
your equipment. and ready to use at orce

NAME ______ _ I
ADORESS ___ S ————
oIy e __STATE 2P
Mass. residents add 5% sales tax
Total Enclosed
~ MASTERCARD TVISA — CHECK)
CARD NUMBER EXPIRES

SIGNATURE _

|Creqt Card orders must be signed)

Ail Frices Quoted are tor Prepaid Orders — Prices Subject to Change Without Notice

Advertiser’'s Index

Analog Compendium 2
Byte Works 39
Cal APPLE. 44
Computerist 63, 64
Digital Devices 1
Empress 34
JQB Enterprises 67
MICRO 58 & 68
MicroDisks, Inside Back Cover
MicroMotion 3
Nikrom Technical Products 52
Peltier Industries Back Cover
Performance Micro Products 21
Protecto Enterprizes 35, 36, 37
Quantum Software 17
Skyles Electric Works Inside Front Cover

Coming in November —

{0 Building a High-Performance Low-Cost

68000 Microcomputer System

by Henning Spruth

Build this 68000 system that interfaces to
your microcomputer to make use of the /O
capabilities you already own. This multi-part
project includes the schematic and part lists,
a 68000 resident monitor and a 68000 cross
assembler.

Solid Shape Drawing

by Richard Rylander

Part 1 of a multi-part series that will expand
your understanding of graphics as well as
your microcomputer’s graphic capabilities. It
includes a set of programs and routines that
assist in generating more complex shapes
complete with realistic shading.

Fast Plotting of Lines and Functions on the
Commodore 64

by Loren W. Wright

Part 2 of this series provides routines to draw
straight lines between points and other
simple functions - using fast assembly
language subroutines callable from BASIC.

. . and many other features for the Serious
Computerist!

MICRO Book Sale —

Save 50%

The following selected titles are being offered to MICRO readers for

a limited time at half price.

MICRO on the Apple Volume 1
MICRO on the Apple volume 2
MICRO on the Apple Volume 3

M |CRO on the 0S|

Mastering Your VIC-20

Mastering Your Atari

Orders must be prepaid and received by November 15, 1984.

MasterCard and Visa accepted.

WAS
$24.95 $12.45
$24.95 $12.45
- $24.95 $12.45
MICRO on the Apple Three Volume Set$59.95 $29.95

Each volume contains over thirty (30) programs on diskette
and a 200 plus page book explaining the programs.

$19.95

Almost 200 pages of articles, programs and reference materials.

$19.95

Eight BASIC projects on cassette to teach and entertain.

$19.95

Eight BASIC projects on diskette including music, sorting and games.

NOW
You must mention
’MICRO Special’’
to receive this
special price.

Send your order
to:

$9.95 MICRO
P.0. Box 6502
Chelmsford, MA
01824

$9.95
$9.95

Or phone:
617/256-3649

Mass. Residents add 5% sales tax.

68

MICRO

No. 76 - October 1984

MD-1
Apple

MD-2
cé4

MD-4
C64

MD-5
Apple

MicroDisks

Master Disk Directory

Charles Hill Dec 1983/Feb 1984
A utility that collects all of your disk directories
onto a single disk which may be sorted and
printed. Equivalent to some commercial
packages that sell for over $100.00!

DOES-IT Monitor

Michael J. Keryan Jan — May 1984
An integrated set of assembly language
routines that expand the capabilities of your
Commodore 64. Included are help screens for
the DOS Wedge, a timer/alarm function, many
useful functions that may be called directly
from the keyboard via the RESTORE
key — without disturbing the currently
running program, a debugging monitor,
procedures to ‘hide’ machine language and
BASIC program under ROM, and much more. A
must for all serious Commodore users.
(NOTE: A complete package including some
new features plus complete documentation is
now available for $29.95. See the ad elsewhere
in this issue)

Graphic Printer Dump

Michael J. Keryan July — Sept 1984
A printer utility that interfaces with five of the
main graphic packages to provide
extraordinary printer output on a variety of
printers. The prints are full size and may even
be in color — with a regular printer! Get the
most out of your graphic efforts.

CMPRSS: Improved Compression Program
lan. R. Humphreys July 1984
Compress your Applesoft code by:
Concatenating statements;
Removing text of REM statements;
Removing LETSs;
Removing variable names from NEXT
statements; and,
Truncating variable names.
CMPRSS allows you to freely comment your
programs, without paying the penalty of
running out of variable space.

Ordering instructions:
To avoid errors, please order by Number, Name

The Best Programs From MICRO

Ready-to-Run

MD-6
Apple

MD-7
Atari

MD-8
cé64

MD-9
Apple

MD-10
Cé64

Least Squares Curve Fitting and

Time Series Forecasting

Brian Flynn March 1984/September 1984
Two sophisticated data analysis techniques
are presented in easy-to-use programs. The
Least Squares Curve Fitter accepts a series of
data and calculates the t-statistic, F-statistic,
standard error of the estimate and the Durbin-
Watson statistic. The Time Series Forecasting
program accepts periodic data (weekly,
monthly, annualily, } and provides five
different techniques for forecasting the future
trends from the observed data. These two
programs provide the basis for stock analysis,
scientific data reduction and more.

HILISTER

J. Morris Prosser July/August 1984
A machine language program that can list to
the screen an Applesoft program, a block of
disassembled memory, a disk catalog, a
memory dump in hex and/or ASCII, or almost
anything else. it then supports moving to the
beginning or end of the information, '‘paging’
through one screenful-at-a-time, moving
forward or backward one line-at-a time, and
optionally highlighting any individual line by
inverting it.

Fast Bit Map Plotting

Loren W. Wright Oct/November 1984
A collection of assembly level subroutines to
perform high-speed plotting of points, lines and
other functions. These may be readily called
from BASIC, or may be used as the basis for
custom graphic packages.

(This MicroDisk will be available in November)

MICRO, P.O. Box 6502, Cheimsford, MA 01824

617/256-3649

Mass. Residents add 5% sales tax.

and Microcomputer. Name

MicroDisks are $15.00 each, including shipping.

MicroDisks are only $10.00 each to Micro Address

Subscribers. You must include the subscription

number from your MICRO label when ordering

to qualify for this special price. City State Zip
MD No. Program Name Microcomputer O VISA O MasterCard O Check

Acct No. Expires

Enter Subscriber Number from MICRO Label for Discount

MAINTAIN YOUR 1541 DISK DRIVE

= . zﬂ 1541 wsimriomne

. s
& - S . oy IAINTENANCE MAMUAL

Using the 1541 SINGLE DRIVE FLOPPY DISK >
~ MAINTENANCE MANUAL By Michael G. Peltier : -
i il d L
; (198 pages, 118 IMSI 4539?5)) = .
i . (:' & (t M l'r
E % y) P g
‘bchd ' g ‘ . - H
. ; i -5 ¢ i

(> % ==
4
(o . Y- ST%
N@iﬁrsmmc_e GUIDE By ﬁ:@: G;y_ tier
&

ARD-101

ﬂ FETER SOUSTAES e
T3 W Doris / Wiceta, KB STESR

Keep your disk drive on track with the ARD-101
@Qnmer;hﬂeference Disk for 1541 disk drives, $15. 95)

"'5“1:’-»_ . ;
> -'-'.g' For dealer inquiries contaet authorized P! disfrib J
% ...j‘i .
-
. goale Road
II// UTEI' Cherry Hil, N Sey 08003
ting SERVICES INC. 220585

For dlstrlbutor and other inquiries contact:

4—KPEL
PI INDUS

" INCORPORATED [785 N. Doris

