Intemational Edition: 5050 SEPTEMBER 1984

Structure Tree Utility
Introduction to FORTH
FORTH Multi-Tasking
— Time Series Forecasting
= TWERP e

744707116

The Skyles Electric Works 1541
FLASH! dashed off with the gold at
the Computer Olympics here.

The 1541 FLASH! loaded and saved
programs and files three times faster
than an unenhanced Commodore

7 1541 disk drive could.
...faster tha_n Faster than any other
any other disk disk drive with com-
drive ” patible disk format.

Three times faster!

The device delighted the home
crowd, which watched the 1541
FLASH! set ameetrecord, and leave
its competition in the dust.

Once installed, the 1541 FLASH! is
transparent. Computer operations
all remain unaffected as it speeds up
every disk-related function. The
FLASH! is a permanent installation
with both a software (ROM)and a
hardware component. Through key-
board commands or ahardware
switch, you can even return to the
old, slow loading method—if you
really want to.

And there is nothing new to learn
for the FLASH! No special tricks or

FLASH!
Gets the Gold

Q)
at the Computer Olympics

technigues. Once it’s in, just watch
itgo.

But if you're really serious about
programming, the 1541 FLASH! isa
gold mine. The manual will show you
how to write software allowing data
transfer to and from the 1541 disk
drive at speeds up to 10 times the
normal.

For programs that usually load
witha “ “,8,1” command, just hit
Shift/Run-Stop. A spreadsheet pro-
gram like BUSICALC 3 then loads
in about 25 seconds.

. The 1541 FLASH! even adds 21 ex-
tra commands for the Commodore
64 user. Some of these include edit-
ing, programming and loading com-
mands, as well as “DOS Wedge”
commands. You can ignore all these
commands, though, and just enjoy
the rapid disk operations.

It wowed the crowd at the Com-
puter Olympics. Once you see its
sheer speed, you’ll know why. Call
its coach, Skyles Electric Works, to
place your order or to get more info.

1541 FLASH!, an add-on assembly, for the Commodore 64/1541 costs only $79.95.

S

kyles Electric Works

231E South Whisman Road
Mountain View, CA 94041
(415) 965-1735

Available from your local
Commodore 64 dealer or
call 1-800-227-9998.

1541 FLASH! is a trademark of Skyles Electric Works.
Commodore 64 is a trademark of Commodore.

~ Want to become an Apple expert?

Join the club.
A.P.P.L.E. |

Apple PugetSound Program Library Exchange
The Apple PugetSound Program Library Exchange is the world’s first, oldest, and largest Apple

computer user group. Our membership is comprised of Apple enthusiasts throughout the world, and
we provide support for all levels of technical ability, from beginner to seasoned program author.

A membership in A.P.P.L.E. will bring the Apple owner 7 day per week hotline privileges for techni-
cal assistance when you need it, plus the international magazine Call—A.P.P.L.E., and incredible
discounts on our fully supported, low priced, world famous software products, and hardware.

A.P.P.L.E. i1s a member owned, non-profit service organization. Write today for a free copy of our
magazine and club information, or join by filling out the enrollment coupon

VALUESOFT

A product whase time has come.

T

/5 A.P.P.LE. |
(gpioneering Apple computing |

¥ T

\

Vi 40F-~: N
(IhuL. ‘A AN

Fully supported, guaranteed, high quality software at low prices.

VALU ESO FTI N C LU D ES: 2 word processing programs

exciting games
Uncommon at

|

|

|

|

|

|

|
useful utilities |
|

|

|

|
5

$1 2 . 50 per disk. high quality graphics since 1978.

_ inance and education
program contatns its own finance

Mailto

APPLE

21246 - 68th Ave. S.

Kent. WA 98032

(206) 872-2245

or call our toll-free number
1-800-426-3667

(24 Hrs. Orders Only)

document on disk.

The quality VALUESOFT line of software is available through the App
PugetSound Program Library Exchange.

NEW lilc OWNER?

— MEMBERSHIP $26 one-time
apgplication fee + 825 first year
dues. §51

Z FREEINFO + Call—APPLE
Please send free information

Name
programs for the //c now in stock cy B
Graphics Utilities ::"*' P Zip____ . I
Word Processing Database one JCTSM I
Exp. Date ___ N |

Addit:aonai foreign postage required I
for membership outside the U.S

I
I
|
|
|
I
| Address
I
I
i
!
I
I
|

Apglell i+ ile e 1 Lisa and Maw.nicsn are all teqisteeey liademarks of Apple Camputer Ing

kJom Now and Receive 10 FREE (5-Y4")

Featured This Month

This month we enter into the world of FORTH, in addition
to a varied selection of other exciting subjects, programs
and projects.

Time-Series Forecasting — enter into the world of
Nostradamus with the sagacity of Einstein. This program
uses various forecasting techniques to predict the future,
from interest rates to the Dow Jones. Includes versions for
the Apple, Atari, Commodore 64 and CoCo.

Introduction to FORTH — a look at the world of
FORTH. Who would be interested in FORTH, why, what
features does it offer, its uses and implementations.

Textfile Write Edit Read Program — for all of you Apple
users who have cursed when they wanted to read a text file
and only got an error message. This program is an
invaluable help in writing, reading, and editing text files.

Multi-Tasking for FORTH — this program allows
seperate tasks to run in the 'background’ while still having
the FORTH interpreter available in the ‘foreground.’ A
concept and program with powerful implications.

Transforming dBase II Files — find out how to alter
your dBase II files so that you can use them with
Wordstar/Mailmerge to produce personalized letter forms.

Stepper — who has step-traced his way through an
assembler program only to have to suffer through jumps to
monitor routines? This program saves from this time
consuming annoyance, making debugging a little more
enjoyable.

Structure Tree Utility — nothing is worse than
forgetting the calling structure of a word in FORTH. With
this program you can easily recall which came first — the

chicken or the egg.

68000 Exception Processing — how to take advantage
of the 68000's capabilities, software exception processing
in general and hardware exception processing for the
SAGE.

Graphic Print for C64 Part 3 — the final installment of
this excellent series provides the programs and techniques
required to generate full color pictures on your standard
printer!

Approximating the Square Root of the Sum of

Squares — a fast and time saving method for dealing
with that candidate for ‘the most often used
calculation’ — the square root.

AICRO"

sorrark 1T pAYS FOR
W
LD BE \N THE
Az THIS FACKAGE srou!
amLE MAGAZIND T eR

A5 AVAILABLE FOR THE

BRARY OF EVERY

ST PROGRA NTENANCE OF
NE OF THE 8! TERNAL MAI GE'
onSUMERS auiot LE COMPUTERS RATE INTERNAL AND EX DIAGNOSTICS PACKA!
& APP oncuARD FIRST RATE HECT puTinG FIRGT LEVEL
L8 co com! .
TsELF AP YouR POPULAR 1 PACKAGE

o EASY TO USE- A PERFE

€0
.QOES ONE 108 VERY WELL INDE!

ncs & couruTIR EDUCATY

MATHENA m C1DER

There is only one thing

more important than your 'clpple'

HOW MANY DISKETTES HAVE YOU INITIALIZED WITH YOUR DISK DRIVES AUNNING TOO FAST OR
TOQ SLOW? THINK ABOUT WHAT THAT COULD MEAN

DIO YOU KNQW THAT THE DRIVE SPEED OF YOUR APPLE SHOULD BE AS CLOSE TO

300 APM AS POSSIBLE? LIXE A RECORD OR TAPE S YSTEM VARIES WITH MOTOR SPEED.

S0 DOES A DISKETTE

WHEN WAS THE LAST TIME YOU CLEANED THE READ/WRITE HEADS OF YOUR DRIVES?

THEY SHOULD HAVE BEEN CLEANED LAST MONTH, AND WITH OUR PROGRAMMED

UTILITIES YOU COULD DO 50 AT THE PUSH OF A BUTTON

MOW ABOUT THE WRITE PROTECT SWITCH? IS |T WORKING PROPERLY SO YOU WON'T

DESTAOY YOUR PROGRAM OISKETTE OR PROTECTED DATA?
THERE'S LOTS MORE ANO IT WILL ONLY TAKE 15 WMINUTES A WMONTH TO XEEP YOUR HIGH
TECHNOLOGY EOQUIPMENT RUNNING AT HIGH PERFORMANCE. PREVENT PROBLEMS OR DIAGNOSE
PRQBLEMS AND SAVE YOURSELF ONE OF THOSE DAYS .

WITH MASTER DIAGNOSTICS ANYONE CAN DO IT.

THE PROGRAM THAT PAYS FOR ITSELF

WHEN ORDERING SPECIFY @

O master diagnostics $55.00
) master diagnostics + pus $75.00

DIAL 1-800-835-2246

MASTER DIAGNOSTICS

! A EST
= = - -] 80 COULMM CAAD TEST" PADOLE & SPEA RES C
PRRALLEL CARD TEST PADDLE & BUTION 66T H RES COXOR TESTS
PRODLE DRIFY VEST LISSAIOUS
[| SQUARE WavE RND H
ON BOARD HELP GENERAL MANTENANGE

version Il & Il plus or version //e P ol
—

THE TESTS INCLUOE
MNERWRD ROM 1EST DISK ORIVE SPEED CALIBRATION MONITOR SKEWING YES(S

OFT CARD TEST DRWE Nﬂﬂ REIDIWRIYE TEST MONITOR
VNTE(ZR CARD TEST ITCH TEST
RACARD RAM TEST IVE néAD CLEANING RQUTINES MONITOR TE:
16K RAM CARD TEST* CISK DRIVE MAINTENA MONITOR TESV PATTS
X RAM TEST OC MAYES M‘CROMOO(M 4 TEST MONITDA & TV voxE ALIGNMEM
TEST U] OLOR TESTS

SPEAKEA FUNCTION TEST £ DR
MODULATION mrERNAL MMNTENAM:E RES CO4L0R GENEP‘AIDﬁ

THE +PLUS
Macter Disgnestics + Plus provdas evanything nesded 1o maintan your computer.
The entire package 1 housed P Gr twh Mol Ca36 (3 protact againsl SialKC eRTIHCHY,
X1y and oiher comtaminans.

Incluged in he Xit iy

* THE mnosncs OISKETTE * CRT SCREEN CLEANER
« FORTY PAGE PROCEDURE MANUAL = COMPUTER/DRIVE HOUSING CLEANER
* HEAD CLEANING KIT « REUSEABLE CHAMOIS TIPPED WANDS

®
NIKROM'
Technical Products, Inc.
25 Prospect Street, Leominster MA 01453

2 MICRO

No. 75 - September 1984

Buy this 68000 computer,
nd we’ll give you a 65C02...free.

The MTU-140 has always
been a good deal, because it's

' such a versatile computer.
- Now when you purchase an
- MTU-140 ($3995) you get the

new 65C02 processor chip free.
And, by adding the DATA-
MOVER board ($1080) you’ll
have a 68000 computer to boot .
...plus a total of 335KB RAM
to share between them. The
65C02 is just like the 6502 plus
8 new instructions and 2 new
addressing modes using the
latest high speed CMOS
technology. With the CODOS/
DMXMON operating system,
you choose which processor is
in control. ..or have both
running simultaneously, each
performing flawlessly...the
way MTU computers have
always worked.

Our customers are sold on
the MTU-140. They know we
designed it for thinking people
...to extend their abilities.
They have found it easy to
customize for their own needs
...providing solutions they had
not thought possible. We think
you will agree...the MTU-140
1s tailor-made for people who
need their own professional
computer.

The MTU-140 is fast. At the

32KB in just 2.6 seconds...and
another 20KB in just 1 second!
Plus, both CPU’s can perform
other tasks during disk opera-
tions . . . even service
Iinterrupts. Few computers
offer this freedom...none with
both 65C02 and 68000
processors! Equipped with the
DATAMOVER, the MTU-140
provides:
o 8MHz 68000 plus 256KB RAM
with 2 DMA ports
e 1MHz 65C02 plus 80KB RAM
with multiple DMA ports
e Dual 1MB 8” Floppies for
ultra-reliable operation
¢ DMA disk operations into
memory, no CPU interference
e DMA hi-res Graphics/Text
display, no CPU interference
¢ 96 key detached keyboard with
5 separate cursor keys
¢ 8-bit D/A speech and music
port
¢ Fiber optic iight pen
e 2 Parallel, 1 serial port
¢ Internal expansion card slots
¢ CODOS/DMXMON Operating
system using device inde-
pendent channels
¢ Full screen, bidirectional
scroll editor, handles IMB
files
e MTU-BASIC with graphic &
disk extensions
e Communications with at-
tended/unattended use —
source available
e Graphic editor, slideshow
presentation

touch of a button, you can load | ® ¥Part harmony Instrument

synthesizer music

|

e Over 50 machine language

utilities

Choose from our extensive
selection of software...for the
65C02: MTU-BASIC (std),
MTU-C ($200), MTU-FORTH
($79), 6502/65C02/6511 macro
assembler ($150),...for the
68000: MTU-BASIC 1.5 ($50),
Motorola compatable, macro
cross-assembler ($200),
FORTHG68K-83 (with source
$250), FORTH68K-83 META
COMPILER ($250),...68000
MAGIC/L ($495), Digital
Research CP/M68K with C
language ($call). For word
processing, WORDPIC ($420)
mixes graphics with text. And
you can run any CP/M 2.2
program with the PROGRAM-
MOVER Board (MTU-CP/M,
Z-80A, 64KB RAM-$650) .

For laboratory use, the
MULTI-O System ($1500)
offers IEEE-488 bus, clock
calendar, 2 parallel & 2 serial
ports, 12 bit D/A & A/D (8
channels) with up to 16,000
samples/second, 5,000/second
sustained to disk from MTU-
BASIC! It is fully enclosed...
including connectors, power
supply and all driver software
for interfacing all devices to
CODOS and all languages. And
for signal analysis work, our
DigiSound-16 offers 16-bit
linear, 100,000 samples/second,
variable internal or external
sample clock, 64KB DMA
RAM buffer, and parallel port

- interface to work with any
i computer ($2995).

Interested? Call or write
MTU today for details. We just
made a good deal even
better...with a free 65C02.

MU

Micro Technology Unlimited
2806 Hillsborough St. :
Raleigh, North Carolina 27607
(919) 833-1458

Publisher/Editor-in-Chiet
Robert M. Tripp

Associate Publisher
Cindy Kocher

Production Manager
Jennifer Collins

Technical Editor
Mark S. Morano

Technical Editor
Mike Rowe

Advertising Manager
William G. York

Circulation Manager
Linda Hensdill

Office Manager
Pauline Giard

Shipping Director
Marie Ann Wessinger

Comptroller
Donna M. Tripp

Accounting
Louise Ryan

Contributing Editors
Cornelis Bongers
Phil Daley

David Malmberg
John Steiner

Jim Strasma

Paul Swanson
Richard C. Vile, Jr.
Loren Wright

Dealer Sales Representative
Alison Churchill

MICRO is published monthly by:
MICRO, Chelmsford, MA 01824,
Second Class postage paid at:
Chelmstord, MA 01824 and additional
mailing offices.
USPS Publication Number: 483470.
ISSN: 0271-9002.
Send subscriptions, change of address,
USPS Form 3579, requests for back issues
and all othe fulfillment questions to:
MICRO
P.0O.Box 6502
Chelmsford, MA 01824
or call 617/256-3649.
Subscription Rates: (per year):
U.S. $24.00 or $42.00 for two years
Foreign surface mail: $27.00
Air mail: Europe $42.00
Mexico, Central America, Middle East,
North Africa, Central Africa $48.00
South America, South Africa, Far East,
Australia, New Zealand $72.00

Copyright © 1984 by MICRO. -
All Rights Reserved.

1 Introduction to
FORTH

Kenneth Butterfield

The basic Why's and
Wherefore’s about the
FORTH language.

I Multi-Tasking in
FORTH

Kenneth Butterfield

A Technique and Program
for Running Muitiple Tasks
Under FORTH.

Structure Trees in
z FORTH

Michael Dougherty

A FORTH Utility that Prints
the Structure of a FORTH
Word.

27 Textfile Write Edit
Read Program
(T.W.E.R.P)

N. D. Greene

Now reading, writing, and
editing textfiles is easy.

; Graphic Print for C-64,

Part 3
P —‘_
Michae,[/\f?;y?p\\
:/” \\ >

Add Full Color to Your
Graphic Printouts -Without
a Color Printer.

36 Approximating the
Square Root of the

Sum of the Squares o

Chris Williams

A Very Fast Method of
Calculating this Useful
Function.

|nterface Clinic: A
Major Hardware
Interface

Ralph Tenny

MICRO

Design a major hardware
interface - a receiver
board for the 32K CoCo.

No. 74 - August 1984

How 68000 Uses Exception
Processing to Handle
Software and Hardware.

4 68000 Exception
Processing ————

— ~.

Mike Rosing

5 Transferring dBase Il Alter your dBase |l files

Files For Use With " and use them to produce

Wordstar/Mailmerge // personalized letter forms.

~.__Robert R. Carroll

55 Stepper

Chester H. Page

Step-Trace facility that
allows you to bypass
monitor routines.

A Program to Predict the
Future - That Runs on the

6 Time-Series
Apple, Atari, C64 or CoCo.

Forecasting

Brian Flynn

For the serious
stock market

13 Wizard A game utilizing the 14 Stocker1

C64’s capabilities to

the maximum —
that even lets the
player create his
own material.

investor, a program
for predicting
performance that
can interact with a
time-shared data
base.

13 Person-to-Person

A feature packed
communication
package for the
Apple, that inciudes
a mailing list
capability.

14 MMP-1000C
Modem

A fuil-feature
communications
package for any
Atari, including all
required hardware
and software.

13 Mail Now!

A user-friendly
mailing list program
for the C64.

2 Highlights 68 Books

7 Guest Editorial 69 Catalog

8 Editorial 71 Lyte Bytes

10 Feedback 72 Advertiser Index
11 Spotlight 72 Coming in October

No. 74 - August 1984 MICRO 5

From the editors of
A.N.A.L.O.G. Computing

THE

FINELLG

COMPENDIUM

The best ATARIE Home Computer Programs from the first ten issues of AN ALL.O.G. Computing Magazine.

The ANALOG Compendium is available at selected book and computer stores, or you can order itdirect. Send
acheck or money order for $14.95 - $2 shipping and handling to: ANALOG Compendium, P.0. Box 615, Holmes,
"PA 19043
Or you can order by phone with MasterCard or VISA. Call toll free: 1-800-345-8112 (in PA. call
1-800-662-2444). For orders outside the U.S., add an additional $5 air mail, $2 surface.

—wty PORT7#

by

Languages like FORTH represent an important turning
point for computer users. Until now, computer usage was
managed as a '‘closed shop.’’ Users desiring computer aid
were faced with either working with a software expert who
might not understand their problems, or becoming their
own software expert at the expense of effort applied to the
original problem. In either case, the actual solution to the
user problem was hindered.

In the last decade, the closed shop cycle was being
discarded by several new software environments. Working
in a scientific field which changed far faster than
conventional software support, Charles Moore developed
the language and operating system FORTH. In a sense, this
language placed software development in the hands of the
user. Users were able to quickly develop and 'modify
software without the software middle man. Parallel to
FORTH, the software engineer was also finding similar
help in the environment of UNIX and C. The UNIX/C
combination allowed the nebulous field of software
support to be directly used by the software engineer.
UNIX/C allowed each software engineer to build the tools
needed to analyze, design, write, test and document
software effectively. In education, Seymor Papert was
developing an environment called LOGO to teach
concepts in mathematics and programming. Papert’s
methods were based upon the students writing their own
software rather than being passive subjects for CAI drill
and practice.

From the viewpoint of the user, these languages
represent the true second generation of
software — languages which allow the user to directly
apply a computer to user problems. These second
generation languages may be characterized by the
“toolbox’’ approach to problem solving. Each of the new
computer environments allows the user to construct
individual tools |functions, modules, etc.] which may be
combined to solve problems. Instead of relying on an
intermediate software engineer to design and build a single
program, the second generation languages allow the user
to build upon past software to solve new problems.

The toolbox approach becomes a software metaphor for
the normal human process of learning. Learning typically
consists of building upon previous knowledge. For
example, speech must be learned in steps, each step
building upon the last. A small child will first learn simple
nouns and verbs. These words will be combined into short
sentences to express desires. Adjectives, adverbs and
prepositional phrases are later added to express more
complex desires or ideas. Thus, learning to speak is a
process of building new speech tools upon those
previously learned. This process of synthesis is a natural
and well practiced process for most people. The toolbox
approach utilizes this concept for software development.
{It should be pointed out that this '‘bottom up"’
methodology is not perfect. Just as many children who can
talk must still be taught "'proper’’ English in school, the
building blocks must be rearranged or modified when the
goal at the top is missed.)

Mike Dougherty
Littleton, Colorado

Notice that the toolbox approach complements the
normally advocated '“top down’’ methodology. This is not
bad. Rather, it is a reflection of two different problem
environments. Top down programming was developed to
aid software engineers dealing with complex programming
tasks. Complex software is not limited to large
government projects — even the Apple Lisa's integrated
software required a 200 man-year effort! These systems
require a different methodology than used in a laboratory
or learning environment.

Given a set of requirements, a complex project may be
successfully decomposed, layer by layer, into small, easily
programmed and tested units. This decomposition will
detail the interfaces between software functions and allow
different portions of the software to be developed by
different programmers or teams of programmers.

Although validated by several pilot projects and used in
many actual projects, this top down methodology (called
structured analysis and structured programming by
Yourdon) requires two strong foundations. First, the
software requirements must behave as a ‘‘damped
oscillator.”” Although many requirements change
throughout a project, these changes must converge to zero.
That is, for a final product to be generated, the final
requirements must be set prior to delivery. (In the real
world, this is not always the case!) Top down methods are
not very effective when requirements are vague.

Secondly, the right personnel must be found to perform
the software decomposition. Proper decomposition
requires a well structured, highly analytical thought
process. Unfortunately, most of us do not adequately
possess the skill and talent required for this job. In my
limited experience with complex projects, the front end
decomposition is, simply stated, very difficult. Not only is
the decomposition difficult to do, there are problems in
determining whether the decomposition is correct or even
complete. Finally, the ultimate project success, years
down the schedule, will depend upon proper and valid
decomposition. Good software analysts can easily be
worth their weight in gold.

Who are the readers of MICRO? [suspect that most of
the readers fall into the toolbox category. Like myself,
they are interested in using their personal computers for
solving the wide range of problems encountered in
everyday living, not programming complex U.S. Defense
Projects. Since everyday problems cannot always be
anticipated, the software requirements change
continuously. In addition, it is difficult and cost
prohibitive to find a software ''middle man’’ with as much
knowledge as the user. Only the user fully knows the
problems to be solved. The toolbox approach simply
makes good sense for most MICRO readers.

Where does this leave MICRO? I think that MICRO
should expand to cover these new software environments.
Versions of FORTH are available on most micros; similar
versions of LOGO are supported on both Atari and Apple
(LOGO Computer Systems, Inc.); UNIX is rapidly
becoming the de facto operating system for the 68000

No. 75 - September 1984 MICRO

7

microprocessor family. Details of specific implementa-
tions as well as the general philosophy behind each
software environment need to be covered. Each language
has its own niche with unique advantages and
disadvantages. The languages discussed here are not
free — they do require investment in software, hardware
and effort. By covering these second generation user
languages, MICRO will allow the readers to determine
what they should invest in their current or future personal
computers. These languages are receiving attention from
many sources and I feel that MICRO must seriously
consider their coverage.

Mike Dougherty has worked in the software field since
1977 and is currently a Software Engineer with Martin
Marietta Denver Aerospace in Colorado. He has
specialized in developing real time data acquisition and
control systems. While most of his software has been
written inr assembly language, in the last few yers he has
used FORTH for work and personal projects. He has
submitted several FORTH programs/articles, the first of
which, Structure Trees appears in this issue.

[Editor’s Note: This ‘Guest Editorial* 'is essentially’ a very
thoughtful letter MICRO received from the author in April: Since
it expressed many of our thoughts very eloquently, we obtaiﬁed
permission to use it as an editorial.| ‘

Discover Forth
Join the FORTH Interest Group

The FORTH interest Group (FIG) is a non-profit member-sup-
ported organization, devoted to the Forth computer language.
join our 4700+ members and discover Forth. We provide our
members with the information and services they need, including:

Over fifty local FIG chapters (general and special
c\w? interest) meet throughout the world on a regular
T\ basis

Forth Dimensions magazine is published six times a
year and addresses the latest Forth news. A one
year subscription to FD is free with FIG membership.

The FIG-Tree is the FIG-sponsored, on-line
computer data base that offers members a wealth
of Forth information. Dial (415) 538-3580 using a
modem and type two carriage returns.

Forth publications: a wide variety of high quality and
respected Forth-related publications (listings,
conference proceedings, tutorials, etc.) are available.

\\\ﬁ\qﬁm@

The FIGHOTLINE(415)962-8653,is fully staffed to
heip you.

Qoo
o8
CL

The Job Registry helps match Forth programmers
with potential employers.

All this and more for only $15.00/yr. ($27.00 foreign)
Just call the FIG HOT LINE or write and
become a FIG member (VISA or MC accepted.)

9

Don’t miss our upcoming (415) 962-8653

: ! l& [4 z g
MICRO Goes FORTH

I agree with the position set forth by Mike Dougherty in
the preceeding editorial. Starting with this issue, MICRO
intends to provide regular support for programming in
FORTH. Our recent Reader Survey indicates that
approximately one-fifth of you already program in
FORTH. This means that many of you are capable of
providing FORTH oriented material for MICRO. The
primary thrust should be FORTH programs and utilities
that can be added to other reader’s ‘toolboxes'. Since
FORTH 1is fairly standardized and is available for all
microcomputers, the value of each well-written FORTH
program extends far beyond the bounds of the
microcomputer that it was written on. This should be a
refreshing change from machine specific BASIC and
assembly programs. If you are a FORTH devotee, here is an
opportunity to share your accomplishments and
enthusiasm with other serious computerists.

Of course, if one-fifth of the readership program in
FORTH, then four-fifths do not! For these readers, MICRO
would like to provide introductory tutorials, ‘how-to-get-
started’ projects, buyers guides to FORTH materials for
specific microcomputers, complete applications and
utilities, and overall, an incentive to make the effort to
learn a new language. Make no mistake — it does take
effort. You will have to purchase a version of FORTH for
your system, install it, use an editor that may be totally
different from that which you are familiar with, learn a
whole new way of approaching and solving problems and
memorize a strange, new vocabulary. But, MICRO will be
there to help.

The editors at MICRO are not FORTH experts. We are
just learning to use FORTH. On the one hand, this means
that we will be very sympathetic and understanding about
the difficulties other programmers encounter in getting

‘into FORTH. On the other, it means that we will be very

dependent on those of you who already are experts to
provide the articles and programs that will make FORTH a
successful part of MICRO. If you have never tried FORTH,
try it. If you are a FORTH enthusiast, support it.

Atari

It was not.suprising to find from the Reader Survey that
the two most popular microcomputers were the Apple
{39%) and the Commodore 64 {39%], with Atari (13%) a
distant third. Still, T feel that the Atari family of
microcomputers has many features that should make it
interesting to the serious computerist. Unfortunately it
has: a 'game orientation’ stigma attached to it; a non-
Microsoft BASIC with a number of ‘odd-ball’
constructions — especially in dealing with strings; some
annoying aspects such as the 'beeping’, the 'graphic mode
key’ where the right-hand ‘shift key’ should be, and so
forth. MICRO'’s coverage of the Atari has been weak
relative to that of the Apple and Commodore. This is not
due to our lack of interest! It is due to a lack of good article
submissions on the Atari. Although only about one-third
as many readers own Ataris as own either Apples or C64s, I

6th Annual Forth Convention . L.
November 16.17. 1984 at the POSE‘:"C';'%SS would estimate that we get ten (10) or more submissions
Hyatt Palo Alto in Palo Alto, CA \ CA 94070 for each of these computers to one (1) received for the
Call or write for details. Atari. We try to convert some articles submitted for other
micros to the Atari, {see Time — Series Forecasting in this
8 MICRO No. 75 - September 1984

issuel, but this is a lot of extra work. While it might be
tempting to just drop the Atari, I still have hope for this
micro. Especially now that Jack Tramiel, the man who
took Commuodore to the top, has taken over Atari. While
Atari may currently be down, do not count it out. If those
of you who use Ataris start submitting 'meaty’ articles,
then you will see a lot more in MICRO on the Atari. Let's
hear from you.

Advertisers

The money you pay for your copy of MICRO, whether
through a subscription or at the counter, does not begin to
pay for the cost of producing it. If MICRO was dependent
solely on its distribution revenue, then you would be
receiving an 8 to 12 page newsletter. The additional
revenue required to run MICRO comes primarily from
advertising. Advertisers pay to run ads for one reason: they
want to make sales. How does an advertiser know if his ad
is working in MICRO? While a few have a special
‘department number’ or other encoded information in
their address, most do not. They will only know that you
saw their ad in MICRO and were positively affected by it
If You Tell Them!
When you contact an advertiser to buy a product or for
more information, please tell them that you saw it in
MICRO. You can not over-estimate the effect this will
produce. The size of MICRO is determined primarily by
the amount of advertising. If you want to see MICRO
grow, then
Support Your Advertiser.

Editor-in-Chief

On The Cover

rapgiLy

1 FOUR-GENERATIONS

2 . _FIRST-FaMILY

. GHCAT-GRANDPARENTFS
4. 00— €.*) ADAM AND HEvL
X GRAMDPARECNTYS

[J— — —€."") GRAHMMY AND GHRANDPAN
2 _ _NUCLEAR-FaMHILY

3 PORENTS

4__ 222000 <€.*) MOH ANMNMD DAD

3 CHILDREN

- — €.*'*) JAaCK AND JILt.

For computerists who want to communicate with ‘third
generation’ computers, our tree (a ‘structure tree’ which

was generated by Dougherty’s ‘Structure Tree Utility').

might bring to mind Dr. Moore, who named his solution

FORTH (fourth generation language). As Nature creates

trees of brilliant variety, so can the user of FORTH.
Cover Photo by Cindy Kocher

No. 75 - September 1984

MICRO

&

" New

low price 389 E] ﬂ""
~ Telecomputing
with a difference!

SuperTerm — the only software that communicates with
them alit Information networks such as CompuServe;
business and university mainframes; free hobby butletin
boards.

Professionals and students: SuperTerm’s VT102 emulation

. with Commodore BBS systems {Punter protocol). Special

gets you on-line in style. Advanced video features, graphics,
full-screen editing, 80/132 column through sidescrolling,
extended keyboard — perfect for EDT, DECMail, etc. Even
download your workfiles and edit off-line! Full printer and
editor support; other emutations available.

Researchers and writers: SuperTerm’s built-in text editor
heips you create, edit, print, save, send and receive text

files — articles, stories, reports, inventories, bibliographies — in
short, it’s your information work station. Access
CompuServe, Dow Jones Information Network,
Dialog/Knowledge Index, Western Union’s Easylink, The
Source, and many more. Optional Sprinter accessory saves
printing time and S (see below).

Computer hobbyists: Join in the fun of accessing hundreds
of free bulletin board systems (BBS| for Commodore, Apple,
TRS-80, etc. Text mode with ali BBS systems; up/downioading

protocol for up/downloading with other SuperTerm owners.
Popular “‘redial-if-busy’” feature for use with automodems.

Get the information you need, for business or for fun,
with the software that communicates with them all!

Requires. Commodaore 64, disk drive, and suitable manual- or auto-modem. Printer
optional. Software on disk w/free backup copy Extensive manual in deluxe binder.

SuperTerm's
SPRINTER Accessory569”

With the Sprinter accessory, SuperTerm can perform
concurrent printing - as text appears on your screen, it's
simultaneously printed on your printer. Includes ail necessary
hardware for connecting your parallel printer and computer
via the cartridge port. Simply plug-in and go. Free utility
software for printing and listing as a stand-alone interface.

Reguires. parallet printer such as Epson, Gemuni, Microlne, C.ltoh.
{Min. speed 35 cps.)

Commodore 64 is a trademark of Commodore Electronics, Ltd.

: MICRO inc

- g

—— feedbact

To The Editor

I believe that the most basic need in the micro field is the
tranportability of software from one brand of computer to
another.

I, unfortunately, purchased a good computer that is no
longer very popular. [have converted it to CP/M to relieve
the software problem, but find that even that uses a
nonstandard disk format which is difficult to get
translated from the usual IBM format. Even with CP/M
there are about 20 different disk formats.

I believe in innovation but [find it difficult to
understand why a program written in a high level language
cannot be portable between almost all micro-computers in
some reasonably convenient way.

I'm in the process of determining what my next com-
puter will be. But I do not intend to buy the latest model
every year. The big question is not what is "‘state of the
art’’ or what is fastest, it is what computer is the software
going to be available for in five year or ten years. Now,
most new software is being written for the IBM PC. Even
CP/M-80 is being ignored by many vendors. Until
recently, I thought that maybe I.B.M. would be good for
many years but now I'm almost convinced that technical
limitations will prevent if from being effectively expanded
to larger systems such as UNIX and ADA. However, I do
not think that a Motorola 68000 based system will domin-
ate without the support of at least one large company in a
moderate price range. [know that all software writers

cannot provide all software for all formats and all
languages when almost all computers are different. So why
cannot all computers be provided with a second standard
ASCII disk format which is common to all computers for
the purpose of transporting software and data. Then the
addition of software translaters such as Apple Basic to
Commodore Basic or even Basic to Pascal could reduce a
nasty problem to one that is managable by most users. I
doubt that every one is going to agree on any standard by
which this can be done, so maybe a solution would be for a
technically oriented magazine such as MICRO to publish
the software and hardware specs needed to read from the
various disk formats.

C. M. Nelson
Indianapolis, IN 46256

The following limerick was submitted by Margie Joseph of
Los Angeles, CA.

Though sometimes her memory would slip
And sometimes her mind took a flip,

But now don't dispute'r

She's got a computer

Her memory's a silicon chip.

AICRO

III1IIIIIIIIIIIIIIIIIIIIIIlIIIIIl!I\I!IIIIIIIIIIIIIIIIIIIIIIIIIII\IIlllll|llllllllIIIIIIIIIlIIIIIllllllllllllllﬁilllllllllllllillIlIlIII!lllml\I\l’\l\lilll\l\lllll!lil

tells what they're used for
o Lists Peeks, Pokes and Calls
memory locations

better, faster software writing

shrh).

for just $5.00.

nnnnlnENnLnnnEnLLeEnIE LN nnnus LN

¢ Gives names and locations of various integer
BASIC, Monitor, Applesoft, and DOS routines and

in over 2000

¢ Explains how to use the information for easier,

The revised edition with //e Appendix is now
available at a new low price of only $19.95.(plus $2

For the 35,000 people who already own previous
editions, the //e Appendix is available separately

ADDED APPLE lle
GUIDE & ATLAS ...

SO NOW THERFE’S
NOTHING MORE
TO SAY!

To order, send check or Money Order to:

MICRO INK
P.0.Box 6502
Chelmsford, MA 01824
phone 617/256-3649

RN agnnaarunuugnuoeengE el

(use VISA or MasterCard)

nmnnnnnEEnnnnnRnrnnnnnsnnEn NN sRInnNRrnnnnnnn NN NN

10

MICRO

No. 75 - September 1984

Distributor

Stellation Two

P.O. Box 2342

Santa Barbara, CA 93120
(805) 966-1140

Introduction

The McMill 68000 Coprocessor System is designed for the
Apple II and Ile. It is a peripheral board that enables
the Apple to run 68000 programs. The CPU is a 68008 chip
that utilizes direct memory access logic allowing the 6502
and 68008 to alternate memory cycles. All memory and
I/0O slots can be directly accessed via the 68008. Using
alternating cycles while the 68008 is running, the 6502
continues to execute at one-half speed or faster. Special
address translation logic resolves conflicts among 68000
exception vectors, 6502 zero page and Apple I I/O space
locations. The fact that the McMill 68008 is truly a
coprocessor that runs simultaneous tasks with the 6502 is
a particularly powerful advantage. (During disk access,
game paddle reads and any other timing-loop dependent
functions the 68008 must, of course, be halted.

Installation

The McMill 68008 Coprocessor System board is painless
‘and easy to install. All that is necessary is inserting the
board in one of the peripheral card slots. There aren’t any
additional connections or worries to deal with.

What is Provided

The package includes the McMill coprocessor board,
Hardware Documentation Guide, a Motorola Inc. MC
68000 Microprocessor Programming Card, a floppy disc
entitled Fig Forth, version 1.0 Mountain View press,
hardware warranty (McMill will repair or replace free
of charge any board that is defective within one year of
the original purchase date, damage caused by accident,
misuse, or tampering not included].

You can also order the S-C 68000 Cross Assembler
with the McMill Coprocessor System. This is an excellent
assembler as those who already have their 6502 version
will attest to. All S-C assemblers use the same set of
directives and commands, making adaption to different
chips very easy. The 68000 version has some differences
from the standard S-C Macro Assembler, such as expres-
sions being expanded to 32 bits, and other alterations
necessary to accommodate the code and syntax differences
in the 68000. All variances are clearly documented.
Included in their latest version are 10 new commands and
7 new directives, improving what is already a fine product.

McMill 68000
Coprocessor System

Under a special arrangement with Addison-Wesley
Publishing Company Stellation has been allowed to
provide a monitor from Tim King and Brian Knight's book
‘Programming the M68000."” The book takes the reader
through the world of the 68000 and how to program it. A
floppy disk with their monitor and a debugger is provided.
The monitor/debugger is compatible with the S-C Macro
assemblers source files, allowing easy editting and
assembly.

What is Not Provided

The board itself hasn’t any ROM or RAM. None of the
languages most 68000 users would use are provided,
namely C, Fortran, UNIX, and LISP. Although a version of
C is due to be released, this is still a serious shortcoming.

Documentation

This is where the McMill package is the weakest. The
Hardware Documentation Guide could cover more and
include a schematic diagram that is legible. Expanded
hardware documentation is scheduled for release, which
will hopefully correct the shortcomings of the present
version. The Monitor/Debugger relies on the information
in King and Knight’s ‘Programming the 68000’ for
documentation. The information needed is basically there
but the organization is not. It is organized as a chapter
in a book [which is what it is], not as documentation for
software. Although the Mountain View Press Fig FORTH
is included with the McMill package, you have to send
away to Mountain View Press to get the complete
documentation (for a nominal charge). This strikes me as a
good way to create unhappy and frustrated users. It would
make more sense to charge more for the package and
deliver it complete, rather than inconveniencing and
possibly annoying the user.

Price
The McMill with FORTH is $229.00; with the S-C
Assembler it is $299.00.

Conclusion

This package has its ups and downs. It does gives the
Apple user an inexpensive way of upgrading to a 68000
machine, while not having to give up the familiarity
of his present machine. On the other hand the poor
documentation, lack of on board RAM and ROM, Fortran,
LISP and UNIX are enough to discourage many users. For
those who are soley interested in getting into 68000
Assembler, using the S-C Macro Assembler with the
McMill board is an inexpensive means of doing so. In the
end it depends on what your needs and expectations are as
to whether this is a product for you. AICRO'

No. 75 - September 1984 MICRO

11

DR DA 2N

Super Action Software!

PROGRELSIVE
gGRIPHGRﬂLf

JOFTWARE _

Perplexian Challenger $29.95

[ne incracibly respunsive three-aas joystick control of a
space fighter 1s 1 yaus hands Sprusure raphics orovide
3 aneous disgl astrumentation as well
3¢ a three-dimens w of epace

You, as a olot. must utihize rgnuring fast reflexes o destraoy
mvading shups. ard avoid ther ~erurn fire: Sinultanecusly, you
Mmust maneuver your ship to capture space detris that
remanns fram the explosiers

Cutstanding agrapnics features nclude smooth 3-0
rotations, sgpltt screens, and the mos:t mncrecible high-
cesoluticn hyperspace seguence ever produced

Programmec entirely in machine language. this actior-
strategy game ‘s guaranteed Lo blow you away

All the prctessional features you expect are included
automatic seif-cemc, high score retention. pause, anc
provisions for 1 to 4 players. Add to this. features you den't
expect hke 2asy-loading and music during the load. Perplexian
Challenger 15 a game that brings the arcade experience ta your
haome

y ot your ship

C

Cral. animated vie

.

DENVER, COLORADO

CYBERWORLD 33395

This five-screen arcace adventure packs the computer with
intense graphics and sound! Ynu are a special Cyber|eague
agent In a universe full of hosvle aliens and vicious rabots
Jaystick and keyboard transport you through 3-0 rooms
space oarriers, fleets aof invaders, and warship-ridden
quadrants of space Over 100 sprites, 8§ new character sets,
and dozens of m nd-bogghng sound effects make up this multi-
layered adventure. Animation, action, and strategy all
combined Into a game so extensive that two disk sides are
jammed with game programs and data! Reach the uitimate
rank of admiral and you may carve a niche 1 the permanent
high-score fist. A full-size book quality manual with full-color
covers 1s included to guide you through your most exciting
game experience

wiZOQd $39.95

Jump from ropes to ladders, dodge plummeting boulders and
duck under deadly arrows in your quest for sparkling diamonds,
gleaming bars of gold, and glistening pearls. With joystick in hand
you must explore forty dazling screens, each a new and exciting
adventure. Take the key to unlock rhe doorway to your nexr spine-
ungling level, Each key restores your magical powers, allowing you
ro cast over ren difterent spells. With these magic spells you have the
power 10 overcome vicious creatures, terrifying traps, and perilous

plunges.
Your W'izard 1s reahstically animated in every possible direction.
Dozens of movements are possible — jump over burning fires,

shimmy up or down ropes and ladders, even slip down treacherous
sliding staircases! Magic porrals move your Wizard through midair
and prorect you from a myriad of fully-animared fiendish monsters.
Catch an elevator to the top of the screen and dart through sliding
gates in your quest for magic and treasure.

Wizard's fascinating variety of screens are sure to please and
entertain, and of course you can build an unlimited number of your
own levels using the construction set provided with your game.

Bothmog's Wair s399s

Real-me adveniure excitement at its best Solve counliess
puzzies and slay over a dozen monsters by using the huge
vocabuiary of over 200 words Two challenging difficulty levels
awatt you with over 80 areas. each fuily described in Qld English
scnpt

Menacing monslers, kniving vilains, tallered coge books and
treacherous terrain are just a lew of the situatons you must
overcome in your quest for the thirteen priceless treasures More
than sevenly objects are invaiuable 10 you in your search for glory
and weaith!

A lull-size. thoraughly dlustrated manual is incluaed Featuring
color front and back. book quality. and a fold-out map this
‘extra furlher extends the professioralism of ‘his game The
tollowing are quotes Irom unsolicited testmonials sent to us by
adventurers .n Gothmog s Lair

! have extremely enjoyed Gothmog s Lair and plan o buy mere
adventure games
Scott Tulman
Memphis. TN

Gotnmog s Larr is the pest adventure | ve ever piayed
Dennis Manochio. Jr
Saratcga CA

=PROFESSOR s3495

An m-depth seif-tutorial [or the Commodore 64 on a two-
sided disk. This menu-driven tutorial covers every aspect
of vour C-64—BASIC. keyboard, sound, music. simple and
advanced yraphics. Quizzes test your comprehension at
the end ol maay lessons' On-screen illustrations, sound

effects and full-color inlerantive graphics make learning
easv and interesting. The PROFESSOR is your ONLY chaice
for an all-in-one, thorough tutorial about the Commodure 64!

Supershipper 64

A complete multi-printer shipping systemw which operates

R P ——

¥ e]

ace dalso included

no the inexpensive Commodore 64, Offers all the features
ol mere expensive, more cumbersome husiness soflware al a
law. low price. Full-sereen. full-cursor editing on all dala
entry. Prints imvoices, C.O D. tags. maiding and shipping
fabels. Sorts your customer list aphabetically, by cily stale
nr by salesperson. Keeps camplete records of all invoices
aad accounls on disk — up (o 800 accounts per disk! Auto-
maite backups, product charts and many other lealures

Supershipper 64

statements. bank depasits, past due accounts and daily or
monthly sales repoets. Breaks down sales commissions and
prints all customner’s past Iransactions
inventory control for up 1o 200 dilterent products. Theonly
way to fully computerize your business!

Supershipper Accounting

Supershipper Accounting

The acconunting supplement to the Supershipper 64. Prints

Also provides

$99.95
$79.85

Progressive Peripherals & Software
2186 South Holly, Suite #2, Denver, Colorado 80222

-

TELEX: 888837

Call for mare information or a dealer near you.
(303) 759-5713

(303 757-0830 TWX: 9109971314

Product Name: Wizard

Equip. Req’d: Commodore 64

Price: 39.95

Manufacturer: Progressive Peripherals & Software
2186 South Holly, Suite #2
Denver, CO 80222

Description: If you must have a game, it should at least
utilize the built-in capabilities of your computer to the
maximum. Wizard does! The game is of the “Donkey
Kong’’' genre in which you move around the screen to
reach an ultimate destination, while getting points by
taking treasures and avoiding fatal hazards. Through the
use of sprites, clever sound effects, a superior collection of
options, a large number of screens and many unique
concepts, it goes far beyond similar games. For example,
there are 'spells’ that can be used to ward off calamity.
Some of these, such as ‘invisibility’, can protect you from
harm, but at the same time may make it more difficult for
you to move around the screen since you can only see the
wizard against colored backgrounds. Also, the invisibility
'wears off’ as you use it to avoid destruction. High scores
are automatically maintained on disk.

Pluses: The utilization of the Commodore 64's sprites,
sound, programmable characters and color provide an
excellent demonstration of the capabilities of the
computer and should inspire programmers to improve
their own displays. The game involves more than just the
complex coordination found in many other games. A good
deal of strategy is required to master the game. The game
is even fun to watch while another plays, so that sharing
the game in a multi-player mode is enjoyable. The choice
of screens, speeds, spells and so forth keep the game from
getting repetious, even after many hours of play. The most
significant feature is the ability to generate your own
screens! This goes beyond merely playing the game. This
gives the novice a chance to experience the joy of
‘programming’ a computer to make it do what he wants.
He can design screens as complete as those that come with
the package, with hazards, spells, colors and the like.

Minuses: [t may become habit forming.

Documentation: Very extensive for a game. Provides
more than enough information to play the game and to
Create new screens.

Skill Level: With the variety of speeds and screen
difficulty, the game is suitable for all ages. The new screen
creation is limited only by the users imagination, not any
knowledge or training limitations.

Reviewer: Robert M. Tripp

Product Name: Person-to-Person T
Equip. Reg’d: Apple II, 1T+, 1le - DOS 3.3
Modem recommended-Hayes, Apple or
Novation
Price: $39.95
Manufacturer: Trutec Software, Inc.
1700 Solano Ave.
Berkeley, CA 94707

Description: A full-featured communications program
including a mailing list/telephone list file, auto-dialing,
including secondary carriers, terminal program with auto
log-on and printed output, including form letters and
mailing labels. The entire program is menu-driven with
consistancy of response throughout the program. The 80
page documentation is easy to read and completely
explains any possible questions. The manual includes
many examples of command files.

Pluses: This program has all the bells and whistles of
standard communications/ terminal programs, plus it
incorporates a complete mailing list program with
telephone numbers that can be searched and dialed,
including pass word numbers to carriers such as MCI and
SPRINT. A single keystroke can dia! and log-on to such as
CompuServe and Source, upload electronic mail, check
your mailbox, download its contents, sign off and hangup.

Minuses: None noted.
Skill level required: No prior experience required.

Reviewer: Phil Daley

Product Name: Mail Now
Equip. Req’d: Commodore 64 with disk and printer
Price:
Manufacturer: Cardco, Inc.

313 Mathewson

Wichita, KS 67214
Author: S. & S. Faure and G. Coggin
Description: A user-friendly mailing list program for 600
names per disk with add, delete, modify and sorting
options. The printer options include one or more rows of
labels, repeat labels, and printer codes for double strike,
enhanced, etc. There is also a convert function to change
the file format into one readable by the Write Now! word
Processor.

Pluses: If you are familiar with label systems, the manual
is almost superfluous - the program is thateasy to follow.
The search command quickly and easily can find a string
in any major field. Modify quickly changes any data. The
program performs flawlessly.

Minuses: If you like slapstick comedy, read the manual.
Otherwise just use the program and forget the satire.

Skill level required: No prior knowledge required.

Reviewer: Phil Daley

No. 75 - September 1984 MICRO

13

AT

Product Name: Stockerl

Equip. Req’'d: Apple I, II +, Ile - CP/M only
with Z80 card, TRS80 Mod I1J, 4, II,
12, 16 card

Price: $300.00

Manufacturer: Engineering Management Consultant
P.O. Box 312

Fairfax, Virginia 22030

Description: This package is designed to help the user
forecast stockmarket turning points, enabling better
investment and profit performance.

Pluses: Using a unique Moving Window-Spectral method
Stockerl saves time in stockmarket forecasting. Inputting
of historical data is easy and user friendly {prompting
provided). Stockerl employs a univariate model (one vari-
able in, the same variable out|. Future values are predicted
using historical data which is input in a user oriented data
editor. Data can be entered in a Create mode or Update
mode. Statistical comparison is provided in addition to
graphical representation and comparison. Charts/graphs
are in an easily readible form. One free hour on the
Electronic Forecast Information Service is also included in
the package.

Minuses: If the user is not very familiar with stocks and
forecasting he is apt to be lost with this program. This is

certainly not a program for the uninitiated. At one point
through an error entered into the program we ended up in

0S9

APPLICATION
SOFTWARE

ACCOUNTS PAYROLL
PAYABLE GENERAL
3349 LEDGER $549
with
CASH SMALL
ACCOUNTS JOURNAL BUSINESS
RECEIVABLE INVENTORY

$349 S449 g349

COMPLETE DOCUMENTATION $19.95

0S9 & BASIC 09 ARE TRADEMARK OF
MICROWARE, INC. & MOTOROLA CORP.

SPECIALTY
ELECTRONICS

{405) 233-5564
2110 W. WILLOW — ENID, OK 73701

— e
— o ———

an infinite loop. A second try did not produce this prob-
lem. Unless you are a serious player of the market it would
be hard to justify the cost of this program.

Documentation: The manual provided is clearly laid out
and reasonably easy to read. Instructions and descriptions
are understandable if the user has an understanding of the
subject. It is assumed the user is familiar with his com-
puter's operating system. Technical data is provided, as
are sample case studies, and a bibliography. The manual
does suffer from a number of typos.

Skill level: Intermediate to advanced.

Reviewer: Mark S. Morano

Product Name: MPP-1000C Modem

Equip. Req’d: Any Atari Computer

Price: $149.95

Manufacturer: Microbits Peripheral Products
225 W. Third Street
Albany, OR 97321
503/967-9075

Description: There probably is not any easier way to get
into telecommunications with your Atari. The package
consists of the modem which plugs into a joystick port and
a standard telephone connector; a cartridge containing the
terminal software; and a short manual. The program is
totally menu driven, making it simple for anyone to use.
The following features are supported: display disk drive 1
directory; direct transfer of information between disk and
modem; buffer modem to memory and then copy to a
specified device and visa versa; select between full/half
duplex, ASCII/ATASCII translations, X-modem protocol
on/off, 38/40/80 column display, no/odd/even parity;
auto answer; enter/save/load up to ten phone numbers to
be used to dial number, and more. By combining the
various features, files may be up/down loaded from Atari
Bulletin Boards (BBS], other Ataris and other computers. A
CompuServe demonstration package is included, and,
thoughtfully, a list of bulletin board services listed by
state throughout the country so that you have someone to
talk to when you first get started.

Pluses: Extremely easy to connect, use, and understand.
Minuses: None noted.

Documentation: Basic information is covered well. A
few more examples of combining the various options for
specific tasks would have been useful.

Skill level: Any and all.

Reviewer: Robert M. Tripp

AICRO"

14

MICRO No. 75 - September 1984

:W

to
FORTH

+o®introductionee-

[a]¢ lajt

2] [l ——=1 B F—= B —= 08—

== =

Basic why’s and wherefore’s about the FORTH language.

=10

In the early spring of 1978, I first
learned of FORTH from an
advertisement for PetForth by
Programma International. At the time,
I was doing scientific calculations and
was looking for a language that would
be faster than the Pet BASIC. Another
goal I had for the PET was to use it to
control experiments in a physics
laboratory. I called Programma to find
out if FORTH was suitable for my
needs. The call was transferred to the
programmer who had written PetForth
which really gave me a feeling that I
was getting first class service! My first
question was [s FORTH a good
Language?! and the response was the
classic, I don’t use languages, I just
program them! The question Is FORTH
a good language? rtemained
unanswered. 1 hope to provide my
answer to this question, as well as to
the questions What is FORTH?, and

a] —1[]

[ale=——la]———|a|]c——|a][=———=al o]

by Kenneth Butterfield
Los Alamos, New Mexico

Who would be interested in FORTH!

First, FORTH is more than just a
language. It can be a stand-alone
operating system that provides basic
support for terminal and disk control.
Multi-tasking and multi-user FORTH
systems are available. FORTH also
provides a block structured high level
language that can be used in an
interpreted or compiled mode. Among
some of the block structures provided
are the DO...loop, BEGIN...
WHILE...END, and BEGIN...UNTIL
loops and the IF...ELSE...ENDIF
control structure. On the other hand,
FORTH has been called a pseudo-
machine language because the key
words used for moving data from place
to place are very simple and similar in
use to the techniques used in assembly
language.

FORTH can have all of the above
features because it is an extensible

language. Most implementations of
FORTH have a small kernel written in
machine language and the remaining
80-90% of the language is written in
FORTH. Any new 'words’ ([FORTH's
name for a procedure or subroutine) are
defined using the previously compiled
words. Each new word becomes part of
the FORTH ‘dictionary’ (list of words
or commands) and are available for use
in future definitions. The programs
that you write become part of the
language.

One of the nicest features available
in FORTH is.the on-line interpreter.
Commands may be given to FORTH
from the keyboard in a similar manner
to the ‘immediate mode’ of most
BASIC interpreters. This allows
FORTH to be used as a calculator.
Another use for the interpreter is in
program development and. debugging.
The interpreter allows the programmer

No. 75 - September 1984

MICRO

15

LA N -

to try out a sequence of commands, one
at a time, to verify their consequences.
After the sequence has been shown to
work properly, it can be given a name
and compiled into the language for
future use. A program |[word) is
activated by typing its name in the
interpreter mode, or by entering the
name in the list of names that makes
up the definition of a new word.

FORTH was originally written by
one man, Charles Moore, to provide a
better media for program development
than the languages available at the
time. One of its first uses was in real
time computer graphics where, it is
said, FORTH provided a marked
increase in speed over FORTRAN(1).
The first widespread use of FORTH was
in the computer control of large
telescopes, and FORTH continues to be
the language used at many of the
world’'s largest observatories. In fact,
my early interest in the language grew
when a fellow student informed me
that FORTH was the language he used
when doing his research at the Kitt
Peak Observatory. It seemed to me that
a language that could control a large
telescope should be useful in other
control applications.

More recent uses of FORTH
continue the computer control theme.
Two applications are the control of
robot cameras for special effects in the
motion picture industry(2], and remote
sensing of water depth and speed for aid
in navigation of large barges on inland
waterways(3|. FORTH is still strong in
the area of computer graphics. Charles
Moore has a CAD-CAM system that
runs in 28K of memory{4}. FORTH has
been shown to be very useful in
research laboratory settings where the
experiments vary from day to day. It is
important to have a language that is
flexible, allowing the measurement
[spectrometers, ADC'’s, etc.)] and
control devices (stepping motors or
relays] to be connected in new and
often changing configurations.

New uses for FORTH are being
developed all of the time, and some of
the most exciting are in the area of

artificial intelligence. LISP is the
language usually associated with Al
projects, but there is a marked

similarity in the underlying structures
of LISP and FORTH. Both languages
treat data and programs as lists, and
have the feature that a program can
create and manipulate a list that will
later be used as a program. Programs
written for the two languages are

similar except for the notation. LISP

uses a parenthetical notation while
FORTH wuses a parenthesis free
notation originally derived for formal
logic by a Polish logician, Lukasiewicz.
The difference in usage can be
compared to the difference in using an
algebraic calculator such as produced
by Texas Instruments, versus a
‘Reverse Polish’' calculator from
Hewlett Packard

In the FORTH compiler, new words
are added to the dictionary, and can be
used in the definition of future
programs. The structure of a word
consists of a header section containing
the name of the word and pointer and a
data section. The data can be either a
constant, a variable, a list of variables,
or a list of addresses if the word is an
executable word. It is LISP’s ability to
treat a list as either data or program
that makes it useful for AI
programming. It is not surprising, then,
that FORTH can also be used for Al
applications. What is surprising is that
FORTH may have significant
advantages for some projects.

For instance, in a knowledge-based
system developed by General Electric
to diagnose and troubleshoot large
electric locomotives, a FORTH system
operating on a PDP-11 minicomputer
was found to be smaller and faster then
a LISP system operating on a VAX
computer(2). If you think that such a
system would be out of your reach, a
program recently became available for
CP/M based computers that supplies
an expert system language written in
FORTH. A recent article uses this
language to develop a weather
prediction program(5].

Hopefully, 1 have convinced you
that FORTH is a powerful language
that is useful for many different
applications. Not only has FORTH
been used to control large telescopes
and explore artificial intelligence, it
has been used to program text editors,
data base systems, spreadsheets and, of
course, games. Application programs of
these types are often available from the
same vendor that sells a version of
FORTH for your machine.

If you are interested in FORTH
there are many good sources of
information. Various computer
magazines print articles on FORTH
either occasionally or on an annual
basis. Other sources of information
include newsletters and books.

MICRO has told me that it plans to
publish more FORTH articles now that

their emphasis has returned to reaching
the experienced users. Dr. Dobbs
Journal has had an annual FORTH issue
for several years. It comes out in
September and is usually very good.
Several other magazines have
published an article on FORTH at one
time or another. You might check the
availability of back issues.

One of the best information sources
is the FORTH INTEREST GROUP,
FIG, (PO Box 1105 San Carlos,
CA.94070). FIG publishes a bi-monthly
newsletter and has local chapters in
many cities. Membership in FIG is $15
and includes a subscription to FORTH
Dimensions. FIG also has source
listings of FORTH for many
microprocessors and many
minicomputers. The FIG-FORTH
installation manual is a very
interesting document and I highly
recommend its purchase because it
contains vocabulary listings with
descriptions of the use of each word. It
also contains a complete FORTH
implementation written in FORTH as
an example of how large programs can
be written!

There are several good books
available ranging from introductory
level to advanced application. Starting
FORTH by Brodie is a very good
introductory text with the caveat that
it uses FORTH Inc. syntax. Threaded
Interpretive Languages by Loeliger is a
very good text on the design and
implementation of threaded
interpreters (FORTH 1is only one
example] and would be a good choice
for more experienced computerists.
Mountain View Press, Inc. (PO BOX
4656 Mountain View, CA. 94040} lists
over 30 books and manuals, a dozen of

-these being general descriptions of

FORTH.

One last source that should not be
overlooked is the instruction manual
that comes with a FORTH system.
There are many vendors that supply
FORTH systems, and many of these
have very good documentation that
comes with their product.

This brings up my final topic. If you
decide to get a FORTH system, what
should you buy? As usual, a simple
question like this cannot be answered
simply. First you have to decide
whether to implement your own
version of FORTH using a source
listing (from FIG] or to purchase a
complete system. There are complete
systems for practically every computer
that has been on the market for more

16

MICRO

No. 75 - September 1984

than a few months. In fact, one
computer ({Jupiter Ace at $150) comes
with FORTH as its main language. If
you decide on a complete system you
then have to decide on which FORTH
standard to use.

Most people will want to purchase a
complete system from a vendor. This
has the advantage of having a working
program immediately, and someone to
complain to when it doesn’t function
in the expected manner. The main
standards that exist are original FIG-
FORTH, FORTH79, and FORTHS83.
These are all standards defined by FIG.
Fortunately, FORTHS83 supercedes
FORTH?79 and should become the most
common standard as vendors update
their product. Original FIG-FORTH is
very common and can be extended to
meet the later standards.

Another version of FORTH comes
from FORTH Inc. This company was
started by Charles Moore, so their
FORTH has to be considered as a
standard because it is the 'original’
FORTH. FORTH Inc. produces a very
professional package for many different
computers. They might be considered
the Rolls Royce of FORTH systems.

There are many vendors that

produce a FORTH that does not meet
any of the above standards for one
reason or another. Quite often these
systems have a marked speed
improvement over a standard system.
Be aware, however, that the speed
increase is usually obtained at the
sacrifice of portability to other
machines |including other processors)
which is one of the main benefits of the
standard systems. Another possible
sacrifice that is sometimes made is the
ability to produce ROMable code. Of
course this capability may not be
something you need. Then too, this
ability may not be an option on a
standard system.

My recommendations for personal
use would be to buy a FIG-FORTH
compatible system, and preferably one
that has enhancements to meet
FORTHS83 standards. This type of
system can run programs written for
many different computers. Your first
system should probably be a complete
system purchased from a vendor. If you
are really brave or foolhardy you might
consider the option of configuring your
own system starting with FIG source
code. I have done this for a 6809
computer and succeeded [mostly} in

getting it to work. This is a particularly
good route for someone who has built a
computer from scratch. Implementing
your own system is not easy, but it is
tremendously satisfying when
completed! In any case, FORTH is a
very interesting language that is well
worth learning.

References

1) Marlin Ouverson, Interview with
Charles Moore, FORTH Dimensions
vol. 6, 2, pg. 2, July/Aug. 1983.

2) Kim Harris, Forth Applications
Conference, FORTH Dimensions vol.
6, 2, pg. 31, July/Aug. 1983.

3) Peter J.Largeren, FORTH:
Cheaper than Hardware, FORTH
Dimensions vol. 6, 2, pg. 13, July/Aug.
1983.

4] Robert Berkey, FORMAL 1983: A
Review, Programming Techniques,
FORTH Dimensions vol. 5, 5, pg. 34,
Jan./Feb. 1984.

5] Jack Park, Expert Systems and
the Weather, Dr. Dobbs Journal vol. 9,
4, pg. 24, April 1984,

AICRO"

C64-FORTH/79

New and Improved
for the Commodore 64

Cé4-Forth/79™ for the Commodore 64-$99.95
® New and improved FORTH-79 implementation with

extensions.

» Extension package including lines, circles, scaling,
windowing, mixed high res-character graphics and sprite

graphics.

o Fully compatible floating point package including
arithmetic, relational, logical and transcendental functions.

o String extensions including LEFT$, RIGHT$, and MID$.

o Full feature screen editor and macro assembler.

o Compatible with VIC peripherals including disks, data set,

modem, printer and cartridge.

® Expanded 167 page manual with examples and application

screens.

¢ “SAVE TURNKEY” normally allows application program

distribution without licensing or royalties.

(Commodore 64 is a trademark of Commodore)

TO ORDER
-Disk only.

-Check, money order, bank card, COD’s add $1.65
-Add $4.00 postage and handling in USA and Canada

-Mass. orders add 5% sales tax

-Foreign orders add 20% shipping and handling

-Dealer inguiries welcome

770 Dedham Street
Canton, MA 02021
(617) 828-1209

ATTENTION COMMODORE 64 OWNERS:

software.

merchandise

VISA

Don't worry if you are a
registered owner of our earlier
version, we've got you on
file and this upgrade will only
cost you $10 plus shipping
and handling Dealers. call
us for stock balancing on old

STILL ONLY $4995°
PERFORMANCE MICRO PRODUCTS 2B& Available from:
; Micro-Vv.

DISTRIBUTING. INC
* We will aliow 315 trade cred:t for any other copy, program inat you have purchased toward the
purchase of SUPER CLONE ar $49 95 1 ou must provide your orgd. purchased product and
state why you want ours -nstead This offer may be witharawn at any time

“Is THE CLONE MACHINE really dead?”

Yes, there comes a time when a product grows old and isn't the
latest state of the art. Thank goodness we understand that here at
Micro-W. Our all new version (known as SUPER CLONE) will
surely prove that we are still number one in the back-up business.
You'll still get the old reliable
Clone Machine but we've
added the following:
1) A fast clone copy (approx.
14 minutes) that's simple to use
2) A Super Unguard utilility
that quickly handles errors
20 thru 29 {and you don't
even have to disassemble
your drive like some of our
competitors suggest)
3} A new unique way to
back-up formerly uncopyable

Should've made back-ups with Super Clone

1342B Route 23
Butler. N.J. 07405
CALL: (201)838-9027 To Order

Dealer and Distnbutor Inquiries Invited

No. 75 - September 1984

MICRO

17

Multi-Tasking in FORTH

by Kenneth Butterfield
Los Alamos, New Mexico

SUMMARY

Multi-tasking is a method of allowing
your computer to work on mere than
one program (task} at a time. I present a
program that allows two separate tasks
to run in the ‘background” while still
having the FORTH interpreter
available. in the ‘foreground’. The
sample tasks are a clock display, and an
animated bouncing ball. These can be
replaced by just about anything,
including separate control programs for
'software robots’. I have given enough
detail to allow you to develop other
uses of multi-tasking. '

FORTH is more than a language; it is
an operating system as well. In
addition, FORTH has the advantage of
being changeable, and extendable. This
makes FORTH an ideal media for
learning how to implement various
system operations. This paper will
show how to implement one type of
multi-tasking system. It includes a
demonstration program comprised of
two separate tasks {programs| that
display the time, and a bouncing ball
on the screen while FORTH is waiting
for input from the keyboard.

To run this multi-task system you
will need a fig-FORTH system with an
assembler. The multi-task words will
work on any 6502 based machine with
modification being required only in the
stack partitioning {see section on
extensions]. Stack partitioning is
defined in RESET.POINTERS, and I
have shown partitions for two FORTH
systems. The demonstration is written
for either PET or CBM machines with
version 3 or 4 BASIC. It should be easy
to modify most parts of the
demonstration to work on other
computers.

For those who are very thorough

I=——minl—01ga|ojc—]

O] o]t

A technique and program for running
multiple tasks under FORTH.

[Sle==—==s[o|———|0} —|a} —Jol

proofreaders, the demonstration can be
set up using screens 110, 111, 115, 116,
and 117. Screens 112, and 113 are
useful for debugging. Be sure the
assembler screens for your system are
loaded and then load screen 117. The
other screens will be loaded
automatically. As compilation takes
place you will be told that some words
(KEY, EXPECT) are not unique. When
the prompt appears, run START. If
everything is correct you will have a
clock and a bouncing ball displayed on
the top of the screen. In addition,
FORTH will be ready for input from the
keyboard. Hit a RETURN and you
should get an 'OK' response. Try
adding two numbers and printing the
result. While you are typing, the
display will operate normally.
However, when you hit return it will
stop momentarily while FORTH
interprets the line, and then it will start
up again. Now enter the following line.

: TEST 1@ @ DO I . LOOP ; TEST

Note that the display is halted until
TEST completes. Next enter

.+ TEST1 1@ @ DO I SLEEP . LOCP ; TEST1

This time the display should continue
while the numbers are being printed.
The lesson here is that you can define
any FORTH word so that the multi-
tasking continues simply by inserting
sleep anywhere inside the most active
loop.

If you are the cautious type, or if the
demonstration didn’t work, you will
want to debug each module separately.
Screen 112 contains a simple example
of multi-tasking that can be used to test
screens 110 and 111. If you don’t have a
Pet computer this screen will be the
easiest way to try multi-tasking, since
it won’t require modifying the
demonstration screens to run on your
machine. Each of the tasks in the
demonstration can be tested in a
regular (single-task] FORTH by
removing the SLEEP in KEY, BB, and
CLOCK. Once all of the pieces are
working properly, go back one
paragraph and try again.

A few words are in order regarding
the new input structure used in the
multi-tasking demonstration. It is
based on the FORTH model and stores
every key (including cursor keys!. Both
the back cursor and delete keys will

18

MICRO

No. 75 - September 1884

back up one space. All other cursor
keys are entered as part of the input.
When FORTH tries to interpret the line
you will get errors for any cursor key. If
you want to change the way FORTH
reads in a line all you need to do is
change the definition of EXPECT. This
is how PET INPUT works in Cargil and
Riley’s FORTH. Incidently, you can
modify PET INPUT by adding a SLEEP
in one of the inner loops, and have
much nicer input for the multi-tasking
system.

TYPES OF MULTI-TASKING

There are many techniques that can be

used to implement multi-tasking
programs. These range from being
straightforward to being involved and
complex. Most multi-tasking
techniques are simple in theory
regardless of how difficult they are to
implement. I will describe a couple of
methods, then show how to program
one method using FORTH.

The most familiar method of
performing a series of tasks is to do
them sequentially. In FORTH this is
done by defining a word for each task.
Next, these words are invoked in order,
either from the keyboard or from
another word. In BASIC the tasks
would be a set of subroutines and a
main program would be used to call the
subroutines in order. This method of
multi-tasking is sometimes called the
hen - and - piglets method [1].

The hen-and-piglets method is fine
for simple programs. It requires no
programming overhead. It is simple to
understand, and it is easy to add
another routine into the loop. The
main problem with this method is that
a slow task must finish before any
other task can start. How many times
have you waited for a long printout?
Another problem is that it might be
hard to determine the location for the
RETURN required for each subroutine.
For instance, in a terminal emulator
program, getting characters from the
keyboard and from the modem are
separate tasks. Sending characters to
the CRT and to the modem are other
tasks. Or are they? Characters are sent
to the modem only when received from
the keyboard. Should the task be to get
a character and send it? What if no
character is present? In this case the
task boundary becomes confused if a
RETURN is required.

Another type of multi-tasking is
timesharing. For users of big
computers, timesharing is a well
known, and often cursed, way of life.
Timesharing has advantages, but it is
complex. I am prejudiced against
timesharing because it is almost
synonymous with multi-user systems.
I bought a computer to have it to
myself. On the other hand, timesharing
offers advantages to a single user who
can run more than one task at a time.
An example of this is spooling of
printer output. Spooling means writing
the listing to a disk file (fast), and then
copying the file to the printer [slow|
using a separate task. This task will
share time with all other scheduled
tasks making it lock as though several
things are being done at the same time.

Timesharing is complex because
the time to switch tasks is usually
determined by a clock that interrupts
the CPU. The next task to run is
determined from a list of tasks and
their priorities. This requires some
calculation and adds to the
programming overhead. Fortunately,
there are other methods of multi-
tasking that can also have tasks run at
what appears to be the same time.

SLEEP

The method I am going to implement is
called SLEEP. SLEEP resembles the
hen-and piglets method, but has some
important differences, the main
difference being that each routine is a
closed loop. Instead of a RETURN at
the end of the task, a call to SLEEP is
inserted anywhere in the closed loop of
the routine. SLEEP then changes the
current task to the next task in a list. In
a sense SLEEP plays the part of the
main control loop in the hen-and-
piglets method.

As in the hen-and-piglets method,
tasks are changed under simple and
direct programmer control. There are
no automatic switchings of tasks at
unknown times and places as might
happen in a timeshared system. There
is also no need to write interrupt
handling routines. The order of the
tasks which will be run is determined
by SLEEP. There is no need to calculate
priorities at the time of a switch so
overhead is kept to a minimum.

Unlike the hen-and-piglets method,
tasks do not have to be completed
sequentially. SLEEP can multi-task a

series of routines so that they appear to
run simultaneously. This is possible
because the call to sleep does not have
to be at the end of the routine. If it is
placed inside of a loop [say at a point
that requires waiting for 1/0], then
only one pass through the loop will be
completed before another task is given
time to run. Note that the call to sleep
can be anywhere in the loop. It can be
at the start, the end, or anywhere in the
middle. The programmer can chose a
place that makes sense to him. When
SLEEP next calls [awakens) the
routine, the loop will continue from
where it left off. SLEEP’s ability to run
tasks simultaneously is similar to
time-sharing, so spooling is one of its
possible uses.

One of the main advantages of
SLEEP over hen-and-piglets is that each
task can have its own stacks and
variable storage. If each task has
separate storage for data stack, it will
not interfere with any of the the other
tasks! In fact, two tasks may be the
same program. It is not necessary to
have separate copies of the programs for
each task. Only the data storage needs
to be separate. Of course, tasks can
interact with each other, when desired,
through the use of shared memory.

IMPLEMENTATION OF SLEEP

There are several general
considerations that need to be kept in
mind when implementing a SLEEP
system. Each task should either be an
endless loop, or have some way of
removing itself from the list of tasks.
There needs to be a way to call SLEEP.
There needs to be a way to set up new
tasks. And last, there needs to be a way
to switch stacks, variable memory, and
program control.

For the sample multi-tasking
system implemented here, each of the
tasks will be an endless loop. This
keeps the system easier to understand
by removing spurious FORTH words.
Many problems will require that the
tasks be endless loops, so this system is
useful as it stands. For instance, in the
terminal emulator program mentioned
earlier, the tasks that monitor the
keyboard and modem continuously
check for receipt of characters. When a
character is received from either the
keyboard or the modem, it is stored in
the appropriate buffer. A third task will
check to see if the modem buffer has

No. 75 - September 1984

MICRO

19

anything in it. If there is a character, it
will be written to the screen. Then the
task will loop back to the start. A
fourth task would monitor the
keyboard buffer and send characters to
the modem. All four tasks would be
endless loops. They would be written
and debugged independently of each
other, simplifying the programming
effort. In each of the four tasks, a single
call to SLEEP would be added
somewhere in the loop to tie the
system together.

FORTH provides a simple way to
call sleep. All that needs to be done is
to compile the name SLEEP somewhere
within the main loop of the task. This
can be done directly or indirectly.
Because one of the better places to put
SLEEP is at the end of a loop, one way
to compile SLEEP indirectly is to
redefine LOOP, REPEAT, UNTIL, etc.
This makes programming look
identical to a non-SLEEP environment.
One problem with this approach is that
more than one SLEEP may be
compiled. This makes a task sleep
more times then necessary. The task
will still run but at a slower pace and
with more overhead for the SLEEP
program. Even though indirect
compilation of SLEEP can be slower, I
generally use it because it is easier.
Words that work in a normal FORTH
environment need only to be reloaded
using the new loop words to work with
SLEEP.

The initialization of the FORTH
SLEEP system has several steps. Tasks
must be added to the list of tasks to
run. Separate stacks [and variable
storage areas) must be set up. The
return stacks for each of the tasks must
be initialized. The last step is to start
the system. In the example given on
screen 112 these steps are done by
running NEW.TASKS and MAIN.
NEW.TASKS uses RESET.POINTERS
to create separate return and data
stacks for each task, and uses
INIT.TASK to initialize the return
stack. MAIN starts the multi-tasking
system after it has been initialized. It
also serves as the list of tasks to rum.

MAIN, the main control word,
awakens four tasks over and over until
the break or stop key is pressed. Each
task prints its number and then puts
itself to sleep. When it is reawakened,
it executes the AGAIN to loop back.
Thus, the output is a list of the task
numbers printed repeatedly in order.

In the example, the data and return
stacks have been partitioned into five
pieces by RESET.POINTERS. One
piece is for each of four slave tasks and
one is for the main task. INIT.TASK
pushes the parameter field address
(PFA] of the word acting as a task onto
the appropriate location in the return
stack. The data stack needs no
initialization.

The key to changing tasks is the
word SWITCH. SWITCH saves the
current stack pointers, resets the stack
pointers for the next task, and transfers
control. The actual transfer is
performed by the FORTH word ;S.

In ordinary operation, ;S is
compiled into a colon definition by ;.
Hence, it serves as a return from
subroutine. ;S pops an address off the
return stack and places it in the IP
(instruction pointer} register. ;S
finishes with a jump to NEXT which
loads the W register from the address in
the IP. NEXT concludes by jumping
indirectly via the W register to machine
language code. (That's three levels of
indirection in ;S.)

The words TS1, TS2, TS3, and TS4
are required for SWITCH to work
properly. They push the task number
on the data stack and, more
importantly, set up the return stack for

the eventual return to MAIN. The
return stack preparation is devious.

The : used to define TS1, etc., compiles
the word DOCOL. DOCOL is
FORTH's jump to subroutine. It pushes
the current value of the IP onto the
return stack. The ; (actually ;S} of TS1
is never executed. After the stacks have
been switched, the jump to ;S at the
end of SWITCH is performed instead.

‘This passes control to a new task

[TASK1]. The new task will execute
until it reaches SLEEP. The stacks are
switched again, and finaly the return
address pushed to the return stack by
TS1 is loaded into the IP. Control is
now returned to MAIN. Hence, the
SWITCH located in SLEEP serves as the
; for TS1 and vice versa. Similar actions
occur for TS2, TS3 and TS4.

The initialization of the return
stack can now be understood. (See
definition of INIT.TASK.) TASK1 will
put the PFA on the data stack. The PFA
is then stored on the return stack, ready
to be used by SWITCH. The array RP
contains the initial values for each of
the separate return stack pointers. The
return stack is located in page one of

memory. The stack grows toward low
memory, and the stack pointer points
to the next available address. [See
Figure 1.] Thus $0101 is added to the
value obtained from RP when the
storage address for initializing the
return stack is calculated. The PFA of
the task is used because it points to the
list of code field addresses [CFA's) of
the words comprising the task. Hence,
it is the address of an address that
points to machine code. Counting the
return stack pointer, the three levels of
indirection needed for ;S are now
evident. [A more complete discussion
of the FORTH inner interpreter is
contained in reference 4].

address value return stack

pointer
@1BF
P1BE v
¢1BD PFA HI
p1BC PFA LO
@1BB eee == RP=BB

Figure 1. Initial return stack#1
where PFA is the parameter
field address of the task
that will be TASK1.

EXTENSIONS OF THE EXAMPLE

There are several points to consider
when wusing SLEEP with a more
complex set of tasks. These points
include determining the size of the
stacks and the technique used to store
the list of tasks to be switched. You
will also need to consider what types of
FORTH words are suitable for multi-
tasking and where to place any variahle
torage.

An example of where things can go
wrong can be easily demonstrated.
While the demonstration {screen 117)
is operating define the following word.

: BALL 4 12 3p@ @ DO MOVE POS DRAW SLEEP
LOOP DROP DROP ;

This BALL looks like BB except that it
runs for only 300 times. When you run
it, however, it doesn’t act at all the
same. In fact, the original ball is also
acting very strange. What went wrong?
The problem is that both BB and BALL
use the variables DX and DY. When
one of them needs to change direction,
the direction for both is changed. This
is an example of tasks sharing data
when they shouldn’t. To fix this

20

MICRO

No. 75 - September 1984

problem either BALL should be
redefined starting from the definition of
DX and DY, or DX and DY should be
stored on the stack instead of in
variables. Since each tasks has its own
stack, there will be no interaction.

In the 6502 version of FORTH, the
data stack and return stacks are limited
in the amount of memory that they
have available. The FORTH return
stack uses the 6502 stack pointer. This
limits the size of the stack to one page
of memory. In addition, The terminal
input buffer (TIB) uses some of the
same space. Therefore, it is very
important to estimate the size for each
of the tasks to be multi-tasked and to
partition the stack memory
accordingly. Two bytes of the return
stack are used for each level of nesting
of FORTH words. In addition, each
active DO LOQP requires another four
bytes, two bytes for the index counter,
and two for the counter limit.

The data stack has even less space
available then the return stack. FORTH
sets aside part of the zero page of
memory for this stack and uses the
6502 X register as a stack pointer. Zero
page is also used for the IP W, and other
FORTH registers. To make matters
worse, the PET uses half of zero page
for the operating system. Other
computers may also reserve zero page
storage.

The exact location of the data stack
limits will vary from one vendor’s
version to another. For FULLFORTH,
the stack is from 4 to 6E. For FORTH
by Cargil and Riley, the stack is from
20 to 88. SO can be used to find the start
(high limit} of the data stack. SO is a
user variable that is normally used
during an ABORT to set the data stack
pointer. The lower limit is a little
harder to find. You will have to
decompile the word 2STACK [2]. Most
versions of FORTH come with a word
to perform this function. If your
version does not, you will have to do it
by hand.

If either of the stacks is not long
enough for the multi-tasking system
you are implementing, then you will
have to set up separate stack storage
areas for each task. SWITCH will need
to be modified to copy the various
stacks into and back out of the separate
storage areas. If care is taken in the
rewriting of SWITCH, only the

currently used parts of the stack will be
copied. This care will minimize the
time needed to switch from one task to
another. The advantage of stack
swapping is that each task can have a
full sized data and return stack. The
disadvantage is that the overhead time
(the time spent while not doing the
required tasks| is larger than for
partitioned stacks.

Another consideration when
implementing multi-tasking is the
method which is used for saving the list
of tasks to be executed. MAIN serves
this function in the current example.
Using the technique illustrated by
MAIN, it is possible to change tasks at
any time, even while multi-tasking is
going on. However, there will always
be the same number of active tasks. If
you only want three tasks, NUL.TASK
can.used to replace one of the active
tasks. The price paid will be the time
spent switching to and from
NUL.TASK. The following line can be
used to replace task 2 by NUL.TASK.

' NUL.TASK RP 24C@ 1p1+!

Any of the other tasks can be similarly
replaced simply by changing the ‘2’ to
the proper number.

If it is absolutely required that the
number of tasks be variable, some
other technique must be developed to
switch from one task to another.
Screen 113 is one way that it can be
done. The variable NUM.TASK is used
to store the current number of tasks.
The constant MAX.TASKS is the
maximum number of allowed tasks. A
new word TASK.SWITCH replaces
TS1, TS2, TS3 and TS4. SLEEP will
still be used by each of the tasks to
return to NEW.MAIN. NEW . MAIN
uses a DO LOOP index to determine
which task to execute next. When all of
the current tasks have been called
once, it loops back to the BEGIN.
NUM.TASK is used to set the number
of active tasks for this set of calls.

This new technique allows the
adding or subtracting of tasks, but the
initialization and task removal
problems are more complicated than
with the original system. You will need
to consider what to do when task 2 is to
be removed while task numbers 3 and 4
are still required. There are also
problems associated with adding a new
task to a list of tasks that have been in

operation for a period of time. In this
case only the new task’s stacks should
be initialized. If all of the stacks were
initialized, each would ‘forget’
everything that it had already
accomplished. In many situations that
could be a disaster. I have not given any
listings for solving these problems
because the solutions depend upon
whether stack partitioning or stack
switching is being used.

With either MAIN or NEW.MAIN
there are some important
considerations for the tasks
themselves. First, tasks must be colon
definitions. Tasks should either be
endless loops [BEGIN...AGAIN)}, or
provisions for termination of the task
will be required. Each task must call
SLEEP somewhere within the main
loop of the task. The last consideration
has to do with the storage of any
variables used by the separate tasks.

The best place to store variables is
on the data stack. If a FORTH variable
is used for storage, and more than one
task uses that variable, there is a good
possibility for confusion. This problem
can be formally stated as: tasks used in
a multi - tasking system have to be
reentrant. Reentrant means that two
versions of the same task can run at the
same time (but not necessarily in
synchronization). It isn’t always
possible to use the data stack, and there
are at least two solutions for variable
storage provided by FORTH.

When only a small number of
variables are required, defining USER
variables is a good solution. A user
variable is used just like a regular
variable. The advantage is that USER
variables are addressed indirectly
through the user pointer (UP). The UP
can be changed for each task to point to
separate user table areas. Of course
these areas must be set aside and
protected. 1If USER variables are used
then SWITCH should be expanded to
include switching the UP. 6502
FORTH has 128 bytes set aside for the
original user table, and the first 48
variables are pre-defined as system
variables. These system variables will
need to copied into each of the user
tables during initialization.

If your application needs more
storage than is available in USER
variables, separate vocabularies for
each task might be a solution. This

No. 75 - September 1984

MICRO

21

SCR # 119
@ CR ." TASK SWITCHING ROUTINES " BASE @ HEX
(STORAGE FOR TASK STACK POINTERS)
(ROOM FOR 5 BYTES)
@ VARIABLE RP 3 ALLOT ® VARIABLE SP 3 ALLOT
@ VARIABLE TASK# (CURRENT ACTIVE TASK)
CODE SWITCH (INDEX...) (SWITCHES TO NEW TASK)
(GET OLD AND NEW TASK NUMBERS)
TASK# 1DY, @ ,X LDA, TASK# STA, INX, INX,
(SAVE PRESENT POINTERS)
9 TXA, SP ,Y STA, TSX, TXA, RP ,Y STA,
19 (SET NEW POINTERS)
11 TASK# LDY, RP ,Y IDA, TAX, TXS, SP ,Y LDA, TAX,
12
13

1
2
3
4
5
6
7
8

(SWITCH TO NEW TASK)
' ;S JMP,
14 BASE | —>

SCR # 111

@ CR ." TASK SWITCH—2 " BASE @ HEX
1 : SLEEP @ SWITCH ;
2 : TS1 1 SWITCH ; (SWITCH TO TASK 1)

3 : TS2 2 SWITCH ; (SWITCH TO TASK 2)

4 : TS3 3 SWITCH ; (SWITCH TO TASK 3)

5 : TS4 4 SWITCH ; (SWITCH TO TASK 4)

6 : NUL.TASK BEGIN SLEEP AGAIN ;

7 (TASK INITIALIZATION WORDS)

8 : RESET.POINTERS (INIT. POINTERS)

9 E8 1RP + C! 8B 2 RP + C! 6B 3 RP + C! 54 4 RP + C!

19 80 LSP +C! 502SP+C! 49 3 SP +C! 38 4 SP + C!

11 ; (68 1SP ... 30 ... 20 ... 14 IS FOR FULLFORTH+)

12 : INIT.TASK (ADDR, INDEX....) { INDEX IS TASK NUMBER)
13 RP + C@ 1@1 + SWAP OVER ! (ADDR IS CFA OF WORD)
14 '* SLEEP CFA SWAP 2 + ! (NEEDED FOR FIRST RUN)

15 : BASE ! ;S

SCR # 112

@ CR ." MULTI-TASKS FOR FORTH " BASE € DECIMAL

1 : MAIN BEGIN ." MAIN" TS1 TS2 TS3 TS4 ?TERMINAL UNTIL ;
2 : TASK1 BEGIN CR ." TASK 1 " SLEEP AGAIN ;

3 : TASK2 BEGIN CR ." TASK 2 " SLEEP AGAIN ;

4 : TASK3 BEGIN CR ." TASK 3 " SLEEP AGAIN ;

5 : TASK4 BEGIN CR ." TASK 4 " SLEEP AGAIN ;

6 : NEW.TASKS (INITIALIZE STACKS AND RUN MAIN RUN LOOP)
7 RESET.POINTERS

8 " TASK1 1 INIT.TASK

9 ' TASK2 2 INIT.TASK
1¢ ' TASK3 3 INIT.TASK
11 ' TASK4 4 INIT.TASK

12 MAIN
13 " ALL DONE "
14 ;

15 BASE ! (RESTORE BASE) ;S

SCR # 113

@ CR ." NEW MAIN LOOP ROUTINE "

1 @ VARIABLE NUM.TASK (CURRENT NUMBER OF ACTIVE TASKS)
2 4 CONSTANT MAX.TASK (MAXIMUM NUMBER OF TASKS)

allows for the use of standard variables
and arrays. Each task, with all of its
storage variables and arrays, will have
to be compiled into a vocabulary. If the
same FORTH word will be used for two
of the tasks, then it will have to be
loaded twice, once into each
vocabulary. Vocabularies offer as much
storage as you have memory. The only
disadvantage is that the PFA’s of words
that will be tasks may be a little more
difficult to obtain. Thus, the
initialization process may be more
complicated then in the example.

CONCLUSION

The answer to the question What are
the objectives of a multi- tasking
system?! will depend on who is asking
the question. Most people would agree
that the first two objectives are to
switch between tasks (programs) and to
avoid having tasks interfere with each
other. Two other objectives, mutually
exclusive, are to make the task
switching transparent to the user and
to optimize input/output operations.
There is a set of implementation
requirements that will have to be
satisfied for whatever set of objectives
is chosen. I have covered many of these
requirements in the text, but an
explicit listing of them might be in
order. Multi-tasking requires a method
of:

1) initializing the system
2] maintaining separate task data
storage

3] initiating the task switching
4] adding new tasks

5| terminating tasks that have been
completed.

All of this must be done in a way that
minimizes the time required. After all,
multi-tasking is useless if the tasks
never get a chance to run.

The FORTH program described in
this paper describes how to implement
the type of multi-tasking called SLEEP.
The key word in this program is
SWITCH. SWITCH trades the system

3 : TASK.SWITCH SWITCH ; (REQUIRED TO SUPPLY ;))) >
4+ NEW.MAIN and task variables associated with the
5 BEGIN NUM.TASK @ 1+ 1 DO I I . TASK.SWITCH LOOP old task for those variables associated
6 ?TERMINAL UNTIL with the new task. Because of its
7 ; importance, SWITCH has been coded
8 ;S in machine language. All of the other
22 MICRO No. 75 - September 1984

FORTH words are high level
definitions. Very little time penalty is
incurred for the high level words
because these words are used
infrequently. The balance between
machine language and FORTH words
in this program was chosen to illustrate
the point that the speed of operation of
a program can often be improved when
only a small piece is written in
machine language. [Since the initial
submission of this article, two related
articles on multitasking have appeared.
See references 5 and 6.]

REFERENCES

1) A Simple Implementation of
Multi - tasking, by Wendell Brown,
BYTE, Vol 6, 10, Oct. 1981, pg 176

2) fig ~ FORTH 6502 Assembly Listing,

SCR #

g CR .
: TI 141 C8 256 * @ 142 C@ @ D+ DROP 256 Ux 143 C@ @ D+ ;
: SEG @ # # DROP DROP ;
: EMITTIME LOC SEG COLON SEG COLON SEG ;
: SMH 6@ M/MOD ROT DROP 36@@ M/ SWAP @ 6@ M/ SWAP ;
: TIME BASE @ DECIMAL TI SMH EMITTIME BASE ! ;

CLOCK BEGIN TIME SLEEP AGAIN ;

CR

NSOV NN

115
" TIME FUNCTION " BASE @ DECIMAL

: COLON 58 HOLD ;

." BOUNCING BALL "

1 VARIABLE DX 1 VARIABLE DY
: XCHECK DUP @=
1¢ : YCHECK DUP @=
11 : POS OVER OVER 4@ * + 32768 + ;

: LOC -32728 HID ! ;

OVER 38 > OR IF DX @ MINUS DX ! ENDIF ;
OVER 5 > OR IF DY @ MINUS DY ! ENDIF ;
: DRAW 128 TOGGLE ;

12 : MOVE YCHECK SWAP XCHECK DX @ + SWAP DY @ + ;
13 : BB 1 3 POS DRAW
BEGIN MOVE POS DRAW SLEEP AGAIN DROP DROP ;
15 BASE | —>

14

SCR #
@ CR

116

." DEFINE NEW FORTH SYSTEM INPUT STRUCTURE " BASE € HEX
1 CODE (KEY) XSAVE STX, FFE4 JSR, XSAVE LDX, PUSH@A JMP, FORTH

by W.F. Ragsdale, Sept. 1980, Forth 2 : CRSON 1@@ A7 ! ; (TURN CURSOR ON)
Interest Group, PO Box 1105, San 3 : CRSOFF 1 A8 C! BEGIN AA C@ UNTIL 1 A7 C! ; (CURSOR OFF)
Carlos, Ca. 94070 4 : KEY CRSON BEGIN (KEY) SLEEP -DUP UNTIL CRSOFF ;
. R 5 : EXPECT (TERMINAL INPUT MEMORY-2)
3) fig — FORTH Installation Manual, by 6 OVER + OVER DO KEY DUP 9D = IF DROP 14 ENDIF DUP 14 = (DEL?)
W.F. Ragsdale, Nov. 1980 7 IF OVER I = DUP R> 2 — + >R - ELSE (NOT DEL) DUP @D = .
4) fjg-—FORTH Interpreters, by C. H. 8 IF (RETURN) LEAVE DROP BL @ ELSE DUP ENDIF §
Ting, FORTH Dimensions Vol 6, #1, 9 ICl @11+ ! ENDIF EMIT LOOP DROP ;
May/June 1984, pg 12 1¢ : MQUERY TIB @ 46 EXPECT @ IN ! ; (LINE INPUT)
, $e 11 : MQUIT (RESTART, INTERPRET FROM TERMINAL)
5) A Simple Multitasker, by Ray | 15 g BIK | [COMPILE] [BEGIN RP! CR MQUERY INTERPRET
Duncan, FORTH Dimensions, Vol 5, 13 STATE @ @= IF ." OK " ENDIF AGAIN ;
#2, July/August 1983, pg 20 14 BASE ! ;S
6) A Simple Multitasking
Environment, by Martin B. Perti, SCR # 117 :
F?R/TAH D“f;%‘;s"onzz Vol 5, #2, @ CR ." MULTI-TASKING FORTH " BASE @ DECIMAL :
July/August 1983, pg 1 116 LOAD 115 LOAD
2 6 USER S¢@ 8 USER R@ -
e e 3 : MAIN BEGIN TS3 TS1 TS3 TS4 TSI AGAIN ; I
Ken recently completed his graduate ;* : SngET(PCIJ};gé;éIZE' STACKS AND START MULTI-FORTH) ol
ifgr‘:e H&ig’;?gs atg;e Uﬁ;:ersgzeolf 6 (NEXT 2 LINES HOOK INTERPRETER INTO SYSTEM)
N . L ¢ 7 1SP+CESPC!1RP+CERS!
programming sma ,Computers Or over 8 * MQUIT CFA ' QUIT ! O
15 years, and doesn’t trust a computer 9 ' MQUIT 1 INIT.TASK
that he can’t carry, or software that 10 ' BB 3 INIT.TASK
doesn’t come with the source code. He 11 ' CLOCK 4 INIT.TASK
has worked in a variety of fields, 12 MAIN ; HEX &
ranging from ranching in Colorado, to 13 : STOP ' @ CFA ' QUIT ! COLD ; v
Laser development at the Los Alamos 14 (STOP WILL RETURN TO REGULAR FORTH SYSTEM) g
National Laboratory. 15 BASE I ;S ol
o |
0
MNICRO"
No. 75 - September 1984 MICRO 23

b

“ ‘

~ Structure Trees
in

;/

|

h‘“fi F ORTH
"({A'\n el by Michael Dougherty
\‘7’{ A FORTH utility that prints Littleton, Colorado
w the structure of a FORTH word.

‘*\‘\\ . 7:i,L o A i‘. =

Introduction

SCR # 76
When modifying a program, it is useful @ (STRUCTURE TREE UTILITY 831 BYTES) &
to know the calling structure of that 1
program. That is, given a FORTH word, 2 (To load the utility:)
XYZ, what is every FORTH word used i E 76 LOAD) o
to define XYZ for all calling levels 5 (TREE Usage: %
down to the FORTH machine language 6 (To list the Structure Tree)
primitives? A graphical representation 7 (of word XYZ:) 0
of the calling structure is known as a 8 (TREE XYZ)
“structure chart’’ (refer to Structured 9
Design by Yourdon and Constantine). 19 o
“"Structure tree’’ is the text equivalent. 1 —>
In FORTH, a Structure Tree is an
indented listing of each ''colon SCR # 77
Svecflrgl;fsr;d t‘c’)vg:firfiltl'?:t il;rdl.:ORTH ¢ @ VARIABLE LEVEL (Current level of TREE branch) ©
1 1¢) VARIABLE MAX-LEVEL (Maximum TREE branch level)
For example, assume that the 5
following FORTH words have been 3 : NULL ; (Dummy def to get : cfa value) O
defined: 4 ' NULL CFA @ CONSTANT COLON (Pointer to code of : word)
5 "' ;8 CFA CONSTANT SEMICOLON (Terminating CFA of : word)
A1 6 O
B 2 +; 7 ' @BRANCH CFA CONSTANT '@BRANCH (Words compiling arguments)
S C 3 8 ' BRANCH CFA CONSTANT 'BRANCH
D ABC/; 9 ' LIT CFA CONSTANT 'LIT
. ABAB ; 14 ' CLIT CFA CONSTANT 'CLIT 0]
. FE ABD AR ; 11 ' (LOOP) CFA CONSTANT 'LOOP
’ 12 ' (+LOOP) CFA CONSTANT '+LOOP
X 13 ' (" CFA CONSTANT '
A Structure Chart for word E is 12 (3]
shown in Figure 1. An equivalent 15 —>
Structure Tree is shown in Figure 2. {In
this case, the Structure Tree shows the X o
calling levels of only the application SCR # 78
words.} For every colon definition, all @ (DRAW A BAR FOR THE CURRENT LEVEL)
words comprising that word’s defini- 1
tion are printed in an indented fashion. 2 : BAR (length _‘>) o
For example, in Figure 2, word D in 2 _DngéF g ;grliiﬂ;‘h chzziztgri)
line #8 is at level 1. Lines 8 through 16 5 ASCII EMIT (Print a Ear)
comprise the Structure Tree of the 6 LOOP @)
word D covering levels 1 through 3. " ENDIF ;
After the word, /, the level is back 8
to 1 and the Structure Tree of D is 9 > 8]
completed. As can be seen, the
Structure Tree contains redundancy
not found in the Structure Chart. o
24 MICRO No. 75 - September 1984

E
1___AB
2 a
3 1
2 B
Figure 1. Sample Structure Chart. s 2
3 +
1__D
2 A
3 1
2 B
= 2
= +
2 C
3 3
#79 2 _____ /
(CASE STATEMENT BY DR. C. E. EAKFR, FORTH DIMENSIONS [V2,#3]) 1___AB
2 A
: DOCASE ?COMP CSP @ !CSP 4 ; IMMEDIATE S 1
2 B
: << 4 ?PAIRS COMPILE OVER COMPILE = COMPILE @BRANCH 3)
HERE @ , COMPILE DROP 5 ; IMMEDIATE 3T +
1 > 2> 5 ?PAIRS COMPILE BRANCH HERE @ , Figure 2. Sample Struture Tree
SWAP 2 [COMPILE] ENDIF 4 ; IMMEDIATE (for Structure Tree Utility)
: ENDCASES 4 ?PAIRS COMPILE DROP
BEGIN SP@ CSP @ = = WHILE The Structure Tree serves as a
2 [COMPILE] ENDIF REPEAT ‘‘roadmap’’ of the FORTH application.

CSP 1 ; IMMEDIATE As in a roadmap, the Structure Tree

does not tell how execution travels

- through the words. Instead, the
: SCR # 8@ Structure Tree provides all the words
@ (PRINT THE ARGUMENT) which could be called during the
1 execution of a specific word. When
: 2 : PRINT-ARG (addr n — addr) modifying another programmer’s code
3 [or your own after a sufficient amount
10 é DOiAS<E< D DUPCE . 14 >> (Skip/print 1 byte) of time), knowing who calls whom will
6 2<< 2+0DUP @. 2+ >> (Skip/print 2 bytes) lgelphldentéfy the words which should
7 3 << 2+ DUP CE SWAP 1+ SWAP (Skip/print n bytes) ¢ changed.
8 @ DO (For len of string)
9 DUP C@ (Get a dim str char) Tree
14 EMIT { Print 1t)
11 1+ (Next string addr) The Structure Tree Utility, TREE, is
12 LOOP >> defined in Listing 1. TREE generates a
13 ENDCASES ; Structure Tree from the application
14 dictionary in memory. Once the TREE
15 —> and application are LOADed, the
SCR # 81 Structure Tree of word XYZ is printed
@ (MOVE PFA ON STACK TO NEXT WORD) by:
1
2 : MOVE-WORD (addr — addr+offset) TREE XYZ
3 DUP @ (Get cfa compiled at ptr)
4 DOCASE (Check for speclal move) The output may be directed to the
5 "@BRANCH < < 2 PRINT-ARG > > (Skip 2 byte offset) printer bY the Atari flg-FORTH word
6 'BRANCH < < 2 PRINT-ARG > > (SkJ:.p 2 byte offset) PON. Since FORTH is a highly nested
7 'LIT < < 2 PRINT-ARG > > (Skip 2 byte value) Janguage, a Structure Tree listing can
8 'CLIT < < 1 PRINT-ARG > > (Skip 1 byte value) Lo
9 '100P << 2 PRINT-ARG > > (Skip 2 byte offset) be quite lengthy. (The Structure Tree of
19 '+L00P < < 2 PRINT-ARC >> (Skip 2 byte offset) """ requires two and a half pages!] To
11 o << 3 PRINT-ARG > > (Skip string till ") limit the nested listing, two parameters
12 SWAP 2 + SWAP (Skip only the ptr itself) are used in TREE. If a definition of a
13 ENDCASES ; word is below the current value of
14 FENCE, the Structure Tree will not
15 —> continue to a lower level for that

particular ‘tree branch.’’ Further, the

No. 75 - September 1984 MICRO 25

maximum level of the Structure Tree
may be limited by the variable MAX- o
LEVEL. In either case, a Structure Tree
branch will be terminated when TREE

encounters a word not defined as a SCR # 82

colon definition (i.e., VARIABLE, @ (PRINT THE NAME WHOSE CFA IS POINTED TO BY STACK ADDR) %)
CONSTANT, CODE, ¢tc.]. TREE may 1

be aborted while listing by simply § : PH(IJET“NAME E;ddrl'_’; tput)

ressing an n) ew Lllne 1or outpu

D on enccstion, TREF determines | & BVELE3 8 (prins me deved umter)

N 5 LEVEL @ 3 * BAR (Output a bar 3*LEVEL)

the parameter field address {pfa) of the 6 @ (Get the cfa)

next input word with '‘tick’”” {’). The n 24 (Move to the pfa) O
name is printed and DO-TREE is used 8 NFA (Move to nfa)

to print the actual Structure Tree. DO- 9 ID. ; (Print name)
TREE basically executes a loop until 19

there are no parameter field addresses 1 —> 0o
on the stack (i.e., when variable LEVEL

goes to zero). If the parameter field

address on top of the stack does not SCR # 83 O
point to the end of the definition {;S}, ? (PRINT A WORD TREE)

Fhe name of that wprd is printed with 2 . DO-TREE (pfa —)

mdentatlon. determined by. L‘E.VEL. IF 3 1 LEVEL 1 (Init level to first) O
the. word is a colon definition not 4 BEGIN (Until the stack is empty)
defined below FENCE, and LEVEL is 5 ?TERMINAL IF ABORT ENDIF (Abort TREE if key pressed)

less than MAX-LEVEL, then this new 6 DUP @ SEMICOLON = @= IF (If not at a ;S word) o)
pfa is pushed onto the stack, LEVEL is 7 DUP PRINT-NAME (Print the word down below)
incremented, and the loop repeated. 8 DUP @ @ COLON = (If lower word 1s & : def)
When the end of the colon definition is 9 LEVEL @ MAX-LEVEL @ < AND (...and less than MAX-LEVEL)
reached, the pfa is popped off the stack, 10 OVER @ FENCE @ > AND IF (...and greater than fence) ©
DO-TREE moves the pfa to the next ié éU;‘E;E; :! E gotd:;n t? th? {:;xz ievei ;

word, LEVEL is decremented and the 13 —> €L the pia ob that leve

loop again repeated. When LEVEL goes O
to zero, the last pfa has been popped

and DO-TREE is finished. SCR # 84

The only problem with the FORTH
dictionary is that words such

(PRINT A WORD TREE, CONT'D) O

¢
1
as BRANCH, LIT, and ." compile 2 ELSE (Not a colon)
arguments directly into the word 3 MOVE-WORD (Move over to next)
being TREEed. The word MOVE- 4 ENDIF %
WORD is designed to Sklp these 5 ELSE (End of a colon definiticn)
o 6 -1 LEVEL +! (Pop up to next level)
compiled arguments. If vyour o DEOP (Drop the addr pointer)
application has additional defining 8 MOVEVWORD (Move over) &
words which compile arguments into 9 ENDIF
the definition, then MOVE-WORD will 10 LEVEL @ @#= UNTIL ; { Until stack is empty)
have to be extended. 11 o)
12 —>
Conclusion
When faced with modifying a FORTH SCR # 85 ©
application written by another ? (| USER ENTRY FOR TREE)
programmer, the Structure Tree)
generated by TREE can be an invaluable § ’ Tﬁgg (... TREE word ...) O
tool. The Structure Tree allows one 4 [COMPILE] (Get pfa of next input word)
to determine how a word is reached 5 DUP NFA ID. (Print word to be TREEed)
during cxecution, as well as who the 6 DO-TREE (Print Structure Tree of pfa) O
word calls. 7 CR ;
8
Reference 9 ;s 8]

Structured Design, Fundamentals of a
Discipline of Computer Program and AICRO

Systems Design by Edward Yourdon and 8]
Larry L. Consrantine.

26 MICRO No. 75 - September 1984

:W

Text Write Edit Read Program
(T.W.E.R.P.)

Now reading, writing and editing textfiles
is easy.

Introduction

Sequential text files provide a method
for quickly storing and retrieving data.
They are essential for data-based
programs (such as telephone number
listing, accounts receivable, etc.). Also,
they have other useful applications.
Programs can be shortened by storing
variables and strings in a text file and
loading them after the program is run
(viz. during the first few lines). If
formatted properly, text files may be
used as exec files which greatly extend
programming flexibility. For example,
it is possible to rewrite a program while
it is running using an exec file.
Unfortunately, text files are hard to
use. There is no direct command to list
their contents. You cannot '‘see’’ them
except indirectly. Files may contain
extra data or spaces and it is often
difficult to check for these conditions.
To write an exec file it is necessary to
create a cumbersome exec file program.
The Textfile Write Edit Read
Program (T.W.E.R.P.} was written to
help write and edit text files. Using
the program it is possible to read any
sequential text file and to add, remove
or edit any line within the file. Error

by N.D. Greene
Storrs, Connecticut

trap routines detect and prevent user
mistakes.

Program Description

A program listing is shown in Figure 1.
The main program is only five lines
long ({lines 10-50]. It calls a series
of subprograms to perform various
functions (e.g. load, read, save]. These
subprograms call other subroutines to
run frequently used operations. The
program has been written in modular
form with the modules separated by
remark statements. These are used
only to make it easier to review the
listing — they are not required to run
the program.

It may be helpful to briefly review
the program, since it contains several
routines which might be useful in your
programs. TWERP uses a command
rather than a self-prompting menu. The
program does not ask questions; it
waits for user commands. No cursor
appears unless the user has activated
a command which requires further
input. Nine, single, keystroke
mnemomic commands [e.g.,, <R>
READ) are used, and they remain in
view at all rtimes. A keypress is

detected with the WAIT command
{line 1200/ and its value returned as K$.
This is examined and the program is
routed to the appropriate subprogram
using the short routine in lines 30-50.
If any key other than a code key is
pressed, the control is returned to line
30.

Files are loaded from either the
keyboard or disc. As prompted by the
program, entering K activates the
keyboard mode. Entering three *'s
terminates entry. Since the length of
a text file is often unknown, it is
difficult to read it completely without
an out of data error and program
termination. This problem is avoided
by using the ONERR command (line 5}
and then reading a disc text file until an
error occurs. Line 1000 tests for the out
of data error code (5). If it is present,
the file is closed and the total number
of lines (fields) is calculated by
subtracting 1 from the value of the loop
counter, I, that caused the error.

The file in memory may be
reviewed by the <R> READ
command. It may be saved at anytime
(with the option of changing its name].
Adding or deleting lines is done by
algorithms which insert or remove

No. 75 - September 1984

MICRO

27

lines and then renumber the file.
Adding a line except at the end of the
file, displaces the original lines
upward. For example, if
a new line number 3 is inserted, the
original line number 3 becomes 4, the
original line number 4 becomes 5, and
so on. Similarly, if a line is deleted,
all lines with greater numbers are
displaced downward. If the < E> EDIT
command is chosen, the current line is
displayed together with a new, blank
line for entering changes. This new line
replaces the original.

The commands for catalog, print
and quit simply list the contents of the
current disc, print the file in memory
or end the program. The printout
should work with most printers.
However, if special commands are
needed, these may be entered at line
830 [printer on] and line 850 [printer
off}.

Error traps start at line 1000. As
noted before, this line is used to detect
the end of a data file. Lines, 1010,
1030 and 1040d are a universal error
routine which may be used in any
program. Line 1020 tests to see if any

records are in memory.

The subroutines are used by the
various subprograms extensively. All
inputs are entered via the input
anything subroutine*. Commas and
other characters forbidden by the
normal input command may be entered

and this routine limits the length of : A
\ TWERP, text file manipulation is

lines to 255 characters. Backspacing
erases characters - a very helpful
feature. The wait routine mentioned
above, waits for a keypress by checking
address 49152 for a value greater than
128. It then converts this value into a
normal ACSII character and stores it is
K$. The wait address is then reset by a
poke to 49168 This is an excellent
routine for single keystroke menus.
The wink cursor is a similar
subroutine, frequently used by Beagle
Bros.* in their commercial programs.
It loops through the wait and reset
addresses while overprinting to achieve
a blinking effect. Center title is also
a useful programming tool. The caption
to be centered is sent to the subroutine
as an MS$ string together with the
desired vtab, V. Since arrow labels are
used throughout the program, it was

written here as a subroutine.

Program Applications

This program works with Apple II, I +

and II/e Computers**. Errors may
occur if it is run on systems with
DOS moved to a language card. Using

altmost_as easy as_prograrmiming in
BASIC. It is especially easy to create
exec files, one of the more powerful and
less used routines available in
Applesoft**. TWERP also provides an
easy way to rename text files and/or to

transfer them to another disk.
Acknowledgements

Thanks to R.H. Gandhi for his helpful
suggestions and to L. Fosdick for
supplying the input anything routine
and his permission to use it in this
program.

*Written by L. Fosdick, E. G. & G
Princeton Applied Research, Princeton, NJ

*Beagle Bros, Inc., San Diego, CA

**Registered Trademark

0 GOSUB 119¢: PRINT : VTAB 21:

Listing 1
o
TEXTFILE WRITE EDIT READ PROGRAM
lo (T.W.E.R.P)
3¢ CALL 54915: GOSUB 12¢¢: FOR I = 1 TO 9:
N.D. GREENE IF K$ = MID$ ("LRSADECPQ",I,1) THEN 5@
COPYRIGHT (C) 1983 49 NEXT
o T=Z=Z===-===z=-==Z=============S=======3 5@ ON I GOSUB l@@,Z@@,B@@,A@Q,5@@,6@@,7@@,8@@;
5 D$ = CHR$ (13) + CHR$ (4): DIM S$(509): 0P, 30
POKE 44452,19: POKE 446@5,18: 60 REM
(o) ONERR GOTO 10@g@ 61 REM LOAD FILE
6 REM 62 REM
7 REM MAIN PROGRAM 1#¢ HOME : VTAB 1¢: HTAB 5: PRINT "FILE NAME:";
8 REM 119 V = 20:M$(1) = " D DISK < K> KEYBOARD":
O 1p HOME :vV = 1¢: M$(2) = "< D> DISK <K> KEYBOARD": GOSUB 121¢:
M$ = "TEXTFILE WRITE EDIT READ PROGRAM": IF K3 < > ™" AND K$ < > "K" THEN 11¢
GOSUB 119¢:V = 12 : M$ = "(T.W.E.R.P.)": 12¢ VTAB 2@: HTAB 1: CALL - 868:

IF K$ = "K" THEN F$ = "KEYBOARD":ST = 1:

FOR I = 1 TO 4@: PRINT GOTO 179
"=t;: NEXT 13¢ VTAB 1¢: HTAB 16: GOSUB 11¢¢
20 VTAB 22: 14¢ F$ = T$: PRINT D$; "VERIFY";F$:

o PRINT "< C> CATALOG"™ TAB{ 17)"<A> ADD" TAB(32) PRINT D$; "OPEN";F$:: PRINT D$; "READ";F$:
"< P> PRINT";: HOME:V = 1@:M$ = "LOADING FILE.": GOSUB 119@:
PRINT <L1> LOAD" TAB(17)"<D> DELETE" TAB(32) FOR I = 1 TO 5¢@:5S$(I) = "

o 1< S> SAVE ";: PRINT "<R> 15¢ GET K$:
READ"™ TAB(17)" <E> EDIT" TAB(32)"< Q> QUIT"; IF K3 < > CHR$ (13) THEN S$(I) = S$(I) + K$:
:VTAB 4: POKE 35,20 GOTO 150

]

28 MICRO No. 75 - September 1984

(continued)

16¢ PRINT "..";: NEXT : GOTO 3¢
GOSUB 119@: PRINT : PRINT :
FOR I = ST TO 5¢@: PRINT
18¢ NX = I: GOSUB 123@: GOSUB 11¢@:S$(I) = T$:
IF S$(I) = mex*o THEN N = I — 1:V = 1¢:
M$ = "ENTRY ENDED AT LINE NO: " + STR$ (N):
HOME : GOSUB 119¢:
GOTO 3¢
19¢ NEXT
191 REM
192 REM
193 REM
2¢¢ GOSUB 1¢2¢: HOME : FOR I = 1 TO N:NX = I:
GOSUB 123@: PRINT S$(I): IF
PEEK (37) < 17 THEN 22¢
V = 2¢:M$(1) = "PRESS ANY KXEY FOR MORE":
M$(2) = "PRESS ANY < KEY> FOR
MORE: GOSUB 121@: HOME
NEXT : GOTO 3¢
REM
REM
REM
GOSUB 1@2¢: HOME
PRINT "FILE NAME:
Vv = 2¢:
M$(1) = "< S> SAVE
M3(2) = " S SAVE <C>
CHANGE E EXIT": GOSUB 121:
FOR I =1 TO 3: IF K$ = MID$
("SCE",I,1) THEN 330
NEXT
ON I GOTO 34@,37@,380,31¢
V = 1§:M$ = " SAVING FILE "
HOME : GOSUB 119@: PRINT D$"OPEN"F$:
PRINT D$"DELETE"F$: PRINT
D$MOPEN"F$:PRINT D$'"WRITE"F$
FOR I = 1 TO N: PRINT S$(I): NEXT :
PRINT "CLOSE": HOME :V = 1f§:M$ =
"FILE SAVED": GOSUB 119¢: GOTO 3¢
VTAB 14: HTAB 5: PRINT "NEW NAME: ";:
GOSUB 11¢¢:F$ = T$: GOTO 3¢¢
HOME : GOTO 3¢
REM
REM
REM
GOSUB 1¢2@: HOME : VTAB 1¢: HTAB 5:
PRINT "ADD LINE NO: ";: GOSUB 11¢¢:
NA = VAL (T$): IFNA < 1 ORNA > N +1
THEN 4¢¢
IF NA = N+ 1 THEN ST = N + 1: GOTO 17¢
HOME : VTAB 1¢:NX = NA: GOSUB 123@:
GOSUB 11¢¢
Vo= 20:M$(1) =

READ FILE

21¢

22¢
221
222
223
300

SAVE FILE

: VIAB 1f: HTAB 5:
";F$
31¢

32¢
338
349
35¢

369

37¢

380
381
382
383
&

ADD LINES

419
420
430 "<A> ADD E EXIT™:
M$(2) = " A ADD <E> EXIT": GOSUB
1214:1 = N + 1: IF K$ = "A" THEN 469
IF K$ = "E" THEN 380
GOTO 430

S$(I) = S$(I - 1):I =
IF I = NA GOTO 48¢
GOTO 46@

440
450

460 I-1:

479

17¢ HOME :V = 1:M$ = "ENTER => x*** <= TQ STOP":

C CHANGE <E> EXIT"™:

484

481
482
483
500

516

52

53¢
54
550
560

57¢

571
572
573
6@

61¢

620

630
640
65¢

651
652
653
708

704
785
706
8¢g

81¢
820
83¢
840

850
86¢

O
S$(I) = T$:N = N + 1: HOME :V = 18: O
M$ = "ADDED LINE NO: " + STR$ (NA):
GOSUB 119¢: GOTO 3@
REM o
REM DELETE LINES
REM
GOSUB 1§2@: HOME : VTAB 1§: HTAB 5:
PRINT "DELETE LINE NO: ";: GOSUB O
11¢@:ND = VAL (T$): IF ND < 1 OR ND > N THEN 5¢¢
HOME : VTAB 1¢:NX = ND: GOSUB 123@:

PRINT S$(ND)

¥ = 20:M$(1) = " D DELETE <E> EXIT": o
M$(2) = "< D> DELETE E EXIT":

GOSUB 121@: IF K$ = "D" THEN 55¢

IF X$ = "E" THEN 38§ (%)
GOTO 52¢

IF ND = N THEN N = N — 1: GOTO 57¢

FOR I = ND TO N — 1:S$(I) = S$(I + 1):

NEXT :N = N -1 O
HOME :V = 1§:M$ = "DELETED LINE NO: ":

GOSUB 119¢: PRINT ND: GOTO 3¢

REM o
REM EDIT LINES

REM

GOSUB 1¢2¢: HOME : VTAB 1@: HTAB 5:

PRINT "EDIT LINE NO: ";: GOSUB 11¢¢: a)
NE = VAL (T$): IF NE < 1 OR NE > N THEN 6¢¢

HOME : VTAB 8:NX = NE: GOSUB 123¢:

PRINT S$(NE): PRINT : PRINT : GOSUB

123¢: GOSUB 11¢¢ o
V = 2¢:M$(1) = "<A> ADD E EXIT™:

M$(2) = " A ADD <E> EXIT": GOSUB

121@:IF K$ = "A" THEN 650 o
IF K$ = "E" THEN 38@

GOTO 62¢

S$(NE) = T$: HOME :V = 19:

M$ = "EDITED LINE NO: " + STR$ (NE): O
GOSUB 119¢: GOTO 3¢

REM

REM CATALOG

REM o
HOME : PRINT D$; "CATALOG":V = 20:

M$(1) = "PRESS ANY < KEY> TO CONTINUE

:M$(2) = "PRESS ANY KEY TO CONTINUE": o
GOSUB 121¢: GOTO 380

REM

REM PRINT

REM O

GOSUB 1¢2¢: HOME :V = 18:

M$ = "TURN PRINTER ON": GOSUB 1198:V = 13:

M$(1) = "< S> START E EXIT":

M$(2) = " S START <E> EXIT": GOSUB 121@:

IF K$ = "S" THEN 83§

IF K$ = "E" THEN 38@

GOTO 809 le)
PR# 1: PRINT

FOR I =1 TO N:

PRINT CHR$ (91);I; CHR$ (93);"=>
PR# ¢

V = 12:M$ = "PRINTOUT COMPLETED": HOME :
GOSUB 119¢: GOTO 3@

";S$(I): NEXT

O

O

(Continued on next page)

No. 75 - September 1984

MICRO

29

MicroMotion

MasterFORTH

It's here — the next generation
of MicroMotion Forth.

o Meets all provisions, extensions and experimental
proposals of the FORTH-83 Intemational Standard.

o Uses the host operating system file structure (APPLE
DOS 3.3 & CP/M 2.x).

e Built-in micro-assembier with numeric local iabels.

o Afullscreen editoris provided which includes 16 x
64 format, can push & pop more than one line,
user definable controls, upper/lower case key-
board entry, ACOPY utility moves screens within &
between lines, line stack, redefinable control
keys, and search & replace commands.

e Includes all file primitives described in Kernigan
and Plauger's Software Tools.

o The input and output streams are fully redirectable.

e Theeditor, assemblerand screen copy utilities are
provided as relocatable object modules. They
are brought into the dictionary on demand and
may be released with a single command.

o Many key nucleus commands are vectored. Error
handling. number parsing. keyboard translation
and so on can be redefined as needed by user
programs. They are cutomatically returned to
their previous definitions when the program is
forgotten.

e The string-handling package is the finest and
most complete available.

e A listing of the nucleus is provided as part of the
documentation.

o The language implementation exactly matches
the one described in FORTH TOOLS, by Anderson
& Tracy. This 200 page tutorial and reference
manual is included with MasterFORTH,

Floating Point & HIRES options available.
Available for APPLE Il/114+/lte & CP/M 2.x users.
MasterFORTH - $100.00. FP & HIRES -$40.00 each
Publications

e FORTH TOOLS - $20.00

e 83 international Standard - $15.00

e FORTH-83 Source Listing 6502, 8080, 8086 -
$20.00 each.

Su v

<

4

Contact:

~ T

MicroMotion
12077 Wilshire Bivd., Ste. 506
Los Angeles, CA 90025

(213) 821-4340

30

862
863
864
90

op4
995
9¢6
1000

1919
1920

1930
1940

1059
1¢51
1952
1054
1055
1100
1119
1129
113¢
1149
115¢
116¢
1179
1189
1182
1183
1184
119¢

1192
1193
1194
1209

{continued)

(&
REM
REM QUIT
REM °
TEXT : POKE 44452,22: POKE 446@5,21: HOME :

POKE 216,@: END

REM o
REM ERROR TRAPS
REM
IF PEEK (222) = 5 THEN PRINT D$; "CLOSE":
N=1-1: HOME : VIAB 1§: HTAB 12: ©
PRINT N;" RECORDS LOADED": GOTO 3@
HOME :V = 12:M$ = "ERROR CODE:": GOSUB 119¢:
PRINT PEEK (222): GOSUB 1@4@: GOTO 389 o

IF N = ¢ THEN HOME :V = 12:
M$ = "NO RECORDS IN MEMORY": GOSUB 119¢:
GOSUB 1@4%: GOTO 38¢
RETURN 6]
FLASH :V = 1f§:M$ = "OPERATOR ALERT":
GOSUB 119¢: NORMAL :V = 2@:
M$(1) = "PRESS ANY < KEY> TO RESET":

M$(2) = "PRESS ANY KEY TO RESET":
GOSUB 121@: RETURN

REM

REM SUBROUTINES Q
REM

REM INPUT ANYTHING

REM

T$ = "k = @ o
GET K$:J = ASC (K$): IF J = 8 THEN 115¢

IF J = 13 THEN RETURN

IF K = 255 THEN 111§ o
PRINT K$;:T$ = T$ + K$:K = K + 1: GOTO 1119

IF K = ¢ THEN 1119

PRINT K$;" ";K$;:K = K - 1: IF K = @ THEN 11¢9

T$ = LEFT$ (T$,K): GOTO 1119
RETURN : REM

REM

REM CENTER TITLE

REM o

VTAB V: HTAB 21 -
RETURN

REM (2
REM WAIT FOR KEYPRESS

REM

WAIT 49152,128:

LEN (M$) / 2: PRINT M$;:

K$ = CHR$ (PEEK (49152) — 128): POKE 49168,¢: O
RETURN
12¢1 REM
12¢2 REM WINK CURSOR o
12¢4 REM
1219 SPEED= 22@:M$ = M$(1): GOSUB 1190:M$ = M$(2):
GOSUB 119¢:K = PEEK (49152):
IF K < 128 THEN 121¢
1220 K$ = CHR$ (K — 128): SPEED= 255: POKE 49168,8:
RETURN
1221 REM
1222 REM ARROW LABEL O
1223 REM
1239 PRINT : HTAB 1: INVERSE : PRINT NX;: NORMAL :
PRINT "=> ";: RETURN ')
AICRO™ @
MICRO No. 75 - September 192

4
“«

Graphic Print for C-64

In the first two parts of this series, we
developed a program to produce a
graphic screen dump for most popular
non-Commodore printers. The fast
machine language program can be used
to print graphic files from a number of
popular graphic programs. In this last
installment, we will show how to get
full-calor printouts using your existing
dot-matrix printer.

Introduction

The graphic print program described in
the last two issues will give a HiRes or
MULTIcolor graphic dump in various
dot patterns — the density of the dot
patterns is proportional to the darkness
of the actual colors used in the picture.
Sixteen different patterns are used so
that even two colors that look identical
on a black and white monitor can be
distinguished on the printout. What
can be better than this? Color. There
are several methods that you can use to
get full-color hard copies of graphic
displays created on your Commodore
64,

One method is to use a good quality
35mm camera with color film and
shoot the pictures displayed on your
color monitor. This is probably the best
way to create slides for presentations.
The third party graphic programs
available for the Commodore 64 will
create outstanding title slides, graphs,
bar charts, and pictures. This method
can also be used to create larger color
prints, but this can be expensive for a
full-page enlargement.

A second method is to buy a color
printer or plotter. Several new color
dot-matrix printers have recently been
introduced; some use multi-color
ribbons, some use ink-jet technology.
You can get one for $600-$1000 + . If
you want to create a lot of color prints,

Part 3

by Michael J. Keryan

Tallmadge, Ohio

Add full color to your graphic printouts
without a color printer.

you can probably justify one. If you
don’t yet have a printer and are
thinking of getting a color dot-matrix
printer for general-purpose use, make
sure it can produce a good sharp black
letter. Many of these color printers
produce only 3 colors, and create black
by mixing all 3; black letters may
appear as smeared gray. Color plotters
are used mainly for very high
resolution line plots, graphs, and
charts. They are not generally used for
dumping color pictures, but software
could be written to do this by drawing a
large number of short lines. However,
this would be extremely slow.

A third method [and the one
described in this article) is to use color
ribbons with your existing dot-matrix
printer. If you have a good quality
graphic printer, want full-page
printouts in color only occasionally,
and are willing to invest some of your
time but not much money, this method
is for you. It works by overprinting the
same printout several times, once for
each ribbon color.

Color Ribbons

The first thing you will need is a set of
color ribbons. A number of printer

supply firms sell ribbons in various
colors for most popular printers at
about 30% higher cost than the
standard ribbons. The ribbon cartridges
are exactly the same as your black
ribbons; the only difference is the color
of the ink on the ribbon. Note that a set
of ribbons is used — one for each
color — multicolor ribbons are not
used. Another way to obtain a set of
color ribbons is to ink your own. You
can buy new, uninked ribbons, place
them in your old cartridges, and use
one of the new mechanical inking
gadgets that wind the ribbon while
applying ink.

How many colors will you need!?
Well that depends on the type of
pictures you want printed and on the
colors that you can obtain. You
certainly do not need all 16 colors that
the Commodore 64 can produce. Many
of these can be created from
combinations and varying patterns of
other colors. If you can find them, use
black, blue, red, and yellow. All the
other colors can be generated from
these. Unfortunately, I could not find a
source for yellow ribbons (if you know
where I can get a yellow Prowriter
ribbon, let me know/, so I used black,
blue, red, green, and brown. With

No. 75 - September 1984

MICRO

31

these, all colors except yellow and
orange can be generated.

Keep the ribbon cartridges in plastic
bags that can be sealed to keep the ink
from drying out. Make sure the rollers
in the cartridges turn smoothly.
Nothing is more frustrating than
having a ribbon stick halfway through
the last color of a five color printout.

Helpful Hints

As previously noted, the color prints
are made by printing over the same
page (or pages) several times, once for
each color. A lot of things can go wrong
while you’'re doing this. Here are a few
pointers that I've picked up in the last
several months; they may save you
some time and grief:

1. Be prepared to spend an hour or more
to get a few prints. If you are only
printing one, make several copies — 3
or 4 to be safe. That way if a ribbon
jams or a page is misaligned, the others
should still be good. Save up your
pictures to be printed and do them all
in one session. This will reduce the
number of ribbon swaps.

2. If you are using pin-feed paper,
prepare the paper beforehand. The perfs
tend to tear apart when moving the
paper up and down several times to get
all colors printed. A partially torn perf
will catch and cause the paper to jam.
Prior to printing, take out the paper,
tape over the perfs with scotch tape,
and then place it back in your printer.
You can even form a continuous loop
with several sheets, avoiding the need
to backtrack the platen.

3. Prior to printing the first color on
each page, draw an index line in pencil,
aligning the mark to some stationary
point on the printer carriage or frame.
For subsequent colors, make sure this
alignment mark is in the same place.
4. A misalignment of even one dot
(1/72 inch] is quite noticeable. If a
misalignment is obvious while printing
a page, turn off the printer with the off-
line or select switch on the printer,
then try to align the page by adjusting
the platen. Although you won't be able
to save the current page, subsequent
pages (see tip 1) should then end up
perfectly aligned.

5. Some printers have a panel that must
be removed when changing ribbons. A
micro switch will not allow printing
when this panel is removed. To save
you some time, remove this panel and
tape down the micro switch to defeat
it. Then leave the panel off while you
are getting your color prints.

Even by using all the above pre-
cautions, I've yet to get correct align-
ment of all colors on the first page of 4
copies that I print. My average is about
50% of all copies with no noticeable
misalignment. But the results are
rewarding.

Color Print

A BASIC program to create color
printouts is given in Listing 1. This
program is based on the program in last
month’'s MICRO. All the machine
language routines are the same. The
only changes necessary are the printer
matrix codes for each color. These
codes change with each ribbon color.
The program first loads, from diskette,
the machine language routines
GDUMP + MOVE", then jumps to line
2000. Here the type of picture is
selected. Then in lines 2120-2250 the
printer specific information is defined.
Change the values for variables PT,
NT, and SD for your printer/interface
set-up, then save the revised program.
The picture file is then loaded into
memory from disk. While loading this
file, the CRT will display the following
menu:

i

AFTER PICTURE LOADS, PRESS:
P FOR BLACK/WHITE PRINT

COLOR PRINT:
B FOR BLACK RIBBON
N FOR BROWN RIBBON
U FOR BLUE RIBBON
R FOR RED RIBBON
G FOR GREEN RIBBON

E TO EXIT

The program works as last months
program for black/white printouts
when pressing P. For color prints, first
set up the paper and the first ribbon,
then press the key that corresponds to
that color. After one {or more) prints of
that particular color are finished,
change the ribbon, set up the paper
back to the beginning, then press the
key for the new color. Keep this up
until all required colors are printed.
Then press E to exit.

The color pattern information in
matrix CM (see lines 2350-2360] is
POKEd to the machine language
routine in lines 1150-1320, then the
printer dump is executed (line 1330).
This loop is repeated for each color.

Dots are printed for each combina-
tion of screen color and ribbon color

containing an X in the table below. A
high density of dots is printed for dark
colors, a lower density for lighter
colors.

Ribbon Color
Screen

Color Black Brown Red Green Blue

Black X - -
White - - -
Red - - X
Cyan - - -
Purple - - X ~
Green - - -
Blue - -
Yellow - X

Orange - X X X -
Brown - X

Light Red
Gray 1

Gray 2
Light Green
Light Blue
Gray 3

i

!

>
b |

| == |

[

[B

(B {
> 1

If you have ribbons of different
colors or would like to experiment with
different shades or color codes, change
the data in lines 4000-4050. Line 4000
contains the pattern codes as described
in part 1 of this series. The other DATA
lines {one line for each ribbon) point to
the O to 15th term in line 4000. There
are 16 entries in each line, one entry for
each color (0 black, 1 white, etc.). All
zeroes in these lines will print no dots
for those color/ribbon combinations.

The programs described in this 3 part
series of articles can be obtained on
1541 format disks for $15 (US) from
MICRO |{disk number MD-4].

[Editors Note: The picture on page 22 of the
July issue (part 2 of this series) is titled
“MIDDLE EARTH'" and was created by
Wayne Schmidt of New York City, using
Doodle by City Software and is a demo on
the Doodle disk. Credit was nadvertantly
omitted.]

Michael J. Keryan has written a number of
articles in MICRO, BYTE, and COMPUTER
and ELECTRONICS involving machine
language utility programs and hardware
add-ons for various microcomputers,
including OSI, TRS-80 and Commodore 64.
His DOES -IT program the
capabilities of the C64 by implementing
keyboard-callable language
routines and supporting
machine language programs appeared in
recent issues of MICRO (January chrough
April/May 19841.

to extend

machine
swapping of

32

MICRO

No. 75 - September 1984

33

MICRO

No. 75 - September 1984

‘ Listing 1
; 1¢@@ REM BASIC PROGRAM TO SUPPORT GDUMP 218¢
1@@5 REM PROVIDES COLOR PRINTOUTS 219¢ NT = @¢: REM INTERFACE TYPE
i 1¢1¢ REM M.J.KERYAN 3-3@-84 2209 : REM CONNECTION = ¢
o 1920 : 2219 REM OTHERS =1
= 1@3@ IF A=@ THEN A=1: LOAD" GDUMP+MOVE",&,1 2229
1949 IF A=1 THEN A=2: GOTO 20¢¢ 223¢ SD = 6: REM SECONDARY ADDRESS
e 195@ POKE 2@491,PT: POKE 2@492,SD 2249 . REM FOR TRANSPARENT
{1 © 106¢ POKE 20493 ,NT: POKE 2@487,NP 2259
1@7¢ SYS GT 226Q GT = 218@8 + (TY-1)*3
1¢8¢ IF TY=2 OR TY=4 THEN MD=PEEK(5327@): 227¢ IF GT> 2182¢ THEN GT=2182¢
o MD=3-((MD AND 16)/16): POKE 2@494,MD 228@ IF TY=1 THEN 300¢
i 1498 IF TY=3 OR TY=5 THEN POKE 2@494,3 229@ PRINT"{DOWN2}NOW PUT IN DISK WITH THE PICTURE FILE."
11¢@ IF TY=6 THEN POKE 2@494,0 237@ INPUT"{DOWN}NAME OF PICTURE";NM$
. 1119 GETK$:IF K$< > ""THEN 1110 231¢ PRINT"{DOWN}AFTER PICTURE LOADS, PRESS:"
O 112¢ GETK$:IF K$=r" THEN 1129 232@ PRINT" P FOR BLACK/WHITE PRINT"
113@ IF K$="P" THEN SYS 2@48@: GOTO 18p¢ 2321 PRINT
114p IF K$="E" THEN 18¢@ 2322 PRINT" COLOR PRINT:"
L 115@ C=@: IF K$="B" THEN C=1 2323 PRINT® B FOR BLACK RIBBON"
“ © 116 IF K$="N" THEN C=2 2324 PRINT" N FOR BROWN RIBBON™

1179 IF K$="R" THEN C=3 2325 PRINT" U FOR BLUE RIBBON"
118p IF K$="G" THEN C=4 2326 PRINT" R FOR RED RIBBON™
© 1198 IF K$="U" THEN C=5 2327 PRINT" G FOR GREEN RIBBON"
12¢@¢ IF C=¢ THEN 1119 2329 PRINT
13¢@ FOR M=@ TO 15: MM=21182+M: NN=21198+M 233¢ PRINT" E TO EXIT"
131¢ POKE MM,CM(C,M): POKE NN,CM({@,M) 2340 DIM CM(5,15)
132 NEXT M 2350 FOR I=@ TO 5: FOR J=@ TO 15
1330 SYS 2@48@: GOTO 111§ 2360 READ MM: CM(I,J)=MM: NEXTJ: NEXTI
1800 : REM QUIT 2379 IF TY=4 THEN LOAD "2 "+NM$+"*m, 8,1
o 184@ POKE 53265, (PEEK(53265)AND223) 238¢ IF TY< > 4 THEN LOAD NM$+"#",8,1
1850 POKE 53270, (PEEK(53270) AND207) 2909
186% POKE 53272,21 30@% REM CREATE A SIMON'S BASIC PROGRAM
187¢ POKE 5328@,6: POKE 53281,15: POKE 646,0 3010 Q$=CHR$(34)
188¢ PRINT"{CLEAR}": END 3@2¢ PRINT"{CLEAR}1 IF A=1 THEN A=2:
20@® POKE 5328@,6: POKE 53281,15: POKE 646,0 LOAD"Q$" GDUMP+MOVE"Q$",8,1"
2¢1¢ PRINT"{CLEAR,DOWN2}WHICH TYPE OF PICTURE?" 3@3@ PRINT"2 IF A=@ THEN A=1: GOTO 7
2p2@% PRINT 3@4@ PRINT"3 POKE 29491, "PT" :POKE 20492, "SD
2@3@ PRINT" 1 SIMON'S BASIC" 3¢5@ PRINT"4 POKE 20493, "NT" :POKE 20487, "NP":
2¢4@ PRINT" 2 ULTRABASIC—64" SYS 218p8"
] 2¢5@ PRINT" 3 DOODLE" 3@60 PRINT"5 A=PEEK(5327@): A=(A AND 16)/16"
4 o 2p6@¢ PRINT™ 4 KOALAPAINTER" 3¢7@ PRINT"6 A=3-A: POKE 20494,A: SYS 2@48@: END"
: 2@7¢ PRINT™ 5 SLIDESHOW" 3(8¢ PRINT"7 REM APPEND YOUR PROGRAM HERE™"
: 2¢8¢ PRINT™ 6 SLIDESHOW — INVERTED" . e 3@9¢ PRINT "SAVE"Q$"SIMON.GDUMP"Q$",8"
2¢9¢ INPUT" m;TY 31¢0¢ POKE 631,19: FOR A=632 TO 639: POKE A,13: NEXT A
O 2104@pF TY< 1 OR TY> 6 THEN 20¢¢ 311¢ POKE 198,9: NEW
2119 : 4P@@ DATA @,5,32,18,64,20,1,48,159,165,98,
212¢ PT = @: REM PRINTER TYPE 139,219,135,89,255
21-3@ : REM NEC/FROWRITER = @ 4@16 DATA li,@,@,@,@,@,@,@,Q,@,Q,lZ,l},@,@,}
Q Lup . REM EPSON OR SIMILAR = 1 4920 DATA ¢,0,0,0,0,0,8,2,4,15,8,0,0,0,0,0
215@ H 4@3@ DATA Q;Q)lsygygygygyQ)é)@)gjg)g)g)g)g
216¢ NP = 3: IF PT=1 THEN NP = 2 44O DATA 9,0,9,5,0,15,0,0,2,0,0,9,0,9,9,0
0 217@ : REM REPEAT CODE 4@5@ DATA @,@,@,ll,l@,@,ls,@,@,@,@,@,@,@,l@,@
° AICRO'
o

34 MICRO No. 75 - September 1984

There are three ways to learn 6502 Assembly Language on your Apple Computer:

Hard Easy Easiest

w 20,
0 a0
¥ 35
‘ 0

OTHERASSEMBLERS LISA ED PAC

LISA v2.6

I = e e 77
&R il =
'}l Ui i A iy ‘ W 7
e ez I i i
m i il !") i L 2
| Vg s I :\,'f \
b 7 Ui iy ‘ al
l} Judd DIRECTORY i ol
% | A v-wu;& I ' 1108
,H " “ 4 b “'1 ‘ fl“ @ 7)
R = =0 1 N
| Bl i ! ® \ Ay
;l | 7 }[41 }‘ Jj‘/ : i h/
! + : ph
‘ 1 i 4}”,) 5 7R)—A}‘ .
! WAT TR 7 i ‘r§‘|| fl 1 il 2 /] 1)
! Youg il || i 7
i == Iy] { '
I i { A :
i i e ! 7 i
I & | 4 [P
== = 7///1,/ = 22
= I
S e = 2 7,
= il /r“\ | i
LA
od g e Easie a e A Ed Pa
0 de at le g assemb extreme po or yo 0 a 0 make the most of yo o) assemb guage 0
porta e 0 0 e top selling prog able fo e Apple e assembly language? B e g 650
Sl guage pieceo e e o) ow. Because ere e d on Package 0 e e 0 p
O speed emb ang ge on o e e oulad otne e [ake
e agP 0eg A 8] e orite embler of peg e d prote e are Appie o e a e ed 650
emb guage g A a e othe emble ombined. More C € availabie fo A ding books by D dge, R
de aure dR otto Rand de 00-page g 6502 Assemb anguage ded e AEdP
e e P D/A etof 650 bro e a e progra g assemb ang ge ea B Andto ose 0 0
e done e SP D/A 0 e gs are o) ded o] dedthe D D of extended
editor fo d A SO e e d a e de A Debugge 0 e A d P powe
debugge onito e g and debugging 650 atle guage eeze
P P 9 9 ag d
a org o

:W

Qad

\bu\(
,
QO % \07 W

A ot

pir”

1

Approximating the Square Root

of the Sum
of the Squares

A fast method of calculating
this useful function.

If I were asked to make a list of what I
thought were the most often executed
computer calculations in the world,
very near the top of that list would b
the following equation:

S=SQR((X**2.) + 5 (Y*%2.))

This square root of the sum of the
squares calculation is used for all kinds
of different things. It crops up in
electronics, in physics, in geometry,
and in just about every other
imaginable field. It is widely used

because it is the equation for
calculating the magnitude of two
rectangular components — of

anything. It tends to be a repetitive
calculation, especially in the world of
graphics and animation where
computers are called on to perform it
hundreds of times.

Since this is true, a computer
technique that will save just one
microsecond executing the calculation
is precious. Using such a technique in a
repetitive application subtracts one
microsecond from the execution time
for each loop and you wind up finishing
your task much faster than vyou
otherwise would have.

Bearing all that in mind, consider
the value of the following technique; it
saves tens or hundreds of microseconds
for each repetition.

Skeptical? Don’t be. The method is
incredibly simple. It is incredibly fast.
It is, without further ado:

// g

/
SPRIME=a*X + b*Y //

That’s it.
It's an approximation, of course,

and add the resthwice
{.125*3=.375]. That's-still much fgste

—_———1Ifcidently,

but ase, keep reading. With the/
~ chpice of a and b the peak error
of this approximation is a grand total of
4.01 pércent. No misprint there, a
maxjiriium error of 4.01 percent.

Ah, good. You're paying attention
again. Now then, think of how much
faster your computer will be able to do
SPRIME=a*X + b*Y than it could
S=SQR{(X**2.] + {Y**2.).

The optimal (from a minimal peak
error perspective} values of a and b are
a=0.961 and b=0.398, to three
decimal places. Use those and SPRIME
will never vary from S by more than
4.01 percent. For those of you who
haven't realized it yet, you probably
will never see graphics errors that
small.

For the assembly language inclined
readers, here’s another tidbit of value.
Suppose we choose values of a and b
that are related to powers of two. The
a*X and b*Y operations then become
simple shifts of X or Y an amount equal
to what the power of two a or b is.
Doing that is thousands of times faster
than a full-fledged floating-point
multiply.

two. The values are a=1. (ng'problem
and b=.375, agaih to three

power 1 hav
more than just a simple shift. Namely, /
shift ¥-three times to the right (.125*

than arlxﬂoaﬁ{-m)int multiply”
this combipation of
coefficients yields a peak ¢
percent.

ooQg

by Chris Williams
Ogden, Utah

Is there a catch? Yes, but it's a small
one. Your X must be greater than Y. If

isn’t to start with, simply switch
coefficients. T -

A similar procedure can be done i
3-D. In that case, we'd be approxi-
mating R=SQR([(X**2.] + (Y**2.] +
(Z**2.}]], and we'd do so with
RPRIME = ({(a*X) + (b*Y] + (c*Z})).
The optimal, binary-related coeffi-
cients are a=1.0, b=.375 and ¢c=.25.
The peak error is 9.68 percent. This is
allowing a maximum right shift of
three. You could achieve superior peak
error performance if you shifted more,
but you'd lose significance as bits were
shifted off the end of the byte. Three
seems a good compromise.

Accompanying this article is a
program that demonstrates the validity
of the above claims. It’s written in
Applesoft, but there’'s nothing
particularly machine dependent in it,
so you should be able to get it to run on
any BASIC machine.

The outputs are shown in Fig.2. The
S value represents the results from
Applesoft’s straightforward
SQR((X**2.) + (Y**2.)) calculation.
SPRIME 1is the approximation value.
Both are computed for 0 < X/Y < 1.0
in steps of 0.1. Error is computed as a
percentage and is {{S - SPRIME| / S} *

. Si iiéléogn%l:sx-ae&\mo.
ou _havex little) So that’s it. It's a good technique.

Try it.

for
icroprocessor Implementation by W.
homas Adams and John Brady, IEEE
Micro, October 1983

36

MICRO

No. 75 - September 1384

15
12.5
S
1
S=(1x2 + (v)]”
X=10
10
0
0 1 2 3 4 5 6 7 8 9 10
Y
15
12.5
SPRIME
10
SPRIME = (.961)*X + (.398)*Y
T X=10
Figure 1. Graphs show how
nearly identical the 0
two functions are. 0 1 2 3 4 5 6 7 8 9 10
Y
'
5 REM ERROR VALIDATION PROGRAM
S SPRIME ERROR (%) 6 REM BY C WILLIAMS, 3/84
1 10.9498756 19.008 . 416678098 1¢ HOME : VTAB 1 (]
2 1¢.198@39 10.406 2.03922505 2@ PRINT S";: HTAB 15: PRINT "SPRIME"; :
3 19.4403065 10.8p4 3.48355178 HTAB 28: PRINT "ERROR (%)"
4 19.7783296 11.2@2 4, 39795888 3@ POKE 34,2: VTAB 3 o
5 11.1803399 11.6 3.7535541 40 FOR Y = 1 TO 14.
6 11.6619038 11.998 2.88200115 50 X = 10.
7 12.2065556 12.396 1.55198879 60 S = ((X1t2)+(Yt2)) 8.5
8 12.8062485 12.794 0956445798 7@ SPRIME = {@.961 * X) + (9.398 ¥ Y) (&)
9 13.4536241 13.192 1.94463627 8¢ DF = ABS ((S - SPRIME) / S) * 19@.
19 14.1421356 13.59 3.98418847 9¢ PRINT Y;: HTAB 4: PRINT S;: HTAB 15:
PRINT SPRIME;: HTAB 28: PRINT DF o
Figure 2. Validity Program Outputs igg %T
ANCRO

No. 75 - September 1984 MICRO 37

FLOPPY DISKS SALE *$1.19 ea.

Economy Model or Cadillac Quality
LORAN:z#%%" We have the lowest prices! LORAN s

*ECONOMY DISKS
Good quality 5% " single sided single density with hub rings.

Bulk Pac 100 Qty. $1.19 ea. Total Price $119.00
10 Qty. 1.39 ea. Total Price 13.90

CADILLAC QUALITY (double density)

e Each disk certitied e+ Free replacement lifetime warranty ¢ Automatic dust remover

For those who want cadillac quatity we have the Loran Floppy Disk. Used by professionais because they can rely
on Loran Disks to store important data and programs without fear of loss! Each Loran disk is 100% certified (an
exclusive process) plus each disk carries an exclusive FREE REPLACEMENT LIFETIME WARRANTY. With Loran
disks you can have the peace of mind without the frustration of program loss after hours spent in program
development.

100% CERTIFICATION TEST

Some floppy disk manufacturers only sample test on a batch basis the disks they sell, and then claim they are
certified. Each Loran disk is individually checked so you will never experience data or program loss during your
lifetime!

FREE REPLACEMENT LIFETIME WARRANTY

We are so sure of Loran Disks that we give you a free replacement warranty against failure to perform due to faul-
ty materials or workmanship for as long as you own your Loran disk.

AUTOMATIC DUST REMOVER

Just like a record needie, disk drive heads must travel hundreds of miles over disk surfaces. Unlike other floppy
disks the Loran smooth surface finish saves disk drive head wear during the life of the disk. (A rough surface will
grind your disk drive head like sandpaper). The lint free automatic CLEANING LINER makes sure the disk-killers
(dust & dirt) are being constantly cleaned while the disk is being operated. PLUS the Loran Disk has the highest
probability rate of any other disk in the industry for storing and retaining data without loss for the life of the disk.

Loran is definitely the Cadillac disk in the world
Just to prove it even further, we are offering these super LOW INTRODUCTORY PRICES
List $4.99 ea. INTRODUCTORY SALE PRICE $2.99 ea. (Box of 10 only) Total price $29.90

$3.33 ea. (3 quantity) Total price $9.99

All LORAN disks come with hub rings and sleeves in an attractive package.

DISK DRIVE CLEANER °19.95

‘Everyone needs a disk drive doctor

FACTS

* 60% of all drive downtime is directly refated to poorly maintained drives’

¢ Drives should be cleaned each week regardless of use.

* Drives are sensitive to smoke, dust and all micro particles.

¢ Systematic operator performed maintenance is the best way of ensuring error free use of your computer
system.

The Cheetah disk drive cleaner can be used with single or double sided 5% " disk drives. The Cheetah is an

easy to use fast method of maintaining efficient floppy diskette drive operation.

The Cheetah cleaner comes with 2 disks and is packed in a protective plastic folder to prevent contamination.

List $29.95/ Sale $19.95 * Coupon $16.95

Add $3.00 for shipping, handling and insurance. illinois residents
please add 6% tax. Add $6.00 for CANADA, PUERTO RICO, HAWAI, p

ALASKA, APO-FPO orders. Canadian orders must be in U.S. dollars.

WE DO NOT EXPORT TO OTHER COUNTRIES. ENTERPRIZES -t oecvsiomens
Enclose Cos_hiers Check, Money Order or Personal Check. Allow 14 BOX 550, BARRINGTON, ILLINOIS 60010
days for delivery, 210 7 days for phone orders, 1 day express mail! Phone 31213825244 to order

VISA — MASTER CARD — C.O.D.
No C.0.D. to Canada, APO-FPO |

NEW 128K —MEGA BYTE DUAL DISK DRIVE—80 COLUMN

COMPUTER SYSTEM SALE!

HOME ¢ BUSINESS ¢ WORD PROCESSING

<=

A
=]

100 CPS

4023 Printer

(If ordered
before11/1/84

Dualsb?ssl?Drive $89500
==l

B128 Computer List Price $3717.95

128 K

12” Hi Res Monitor

LOOK AT ALL YoU GET For onLy $ 89 5.

LIST PRICE
$ 99500
1795 00
100 CPS - 80 COLUMN BIDIRECTIONAL PRINTER 499 00
12" HI RESOLUTION 80 COLUMN GREEN OR AMBER MONITOR 249 00
BOX OF 10 LORAN LIFETIME GUARANTEED DISKS 49.95
1100 SHEETS FANFOLD PAPER 1995

e ALL CABLES NEEDED FOR INTERFACING 102 05

TOTAL LIST PRICE $ 3717.95

B128 COMMODORE 128K 80 COLUMN COMPUTER
8050 DUAL DISK DRIVE tover 1| milion bytes)

@
@
3) 4023
@

Printer replacement options (replace the 4023 with the following at these sale prices)

LIST SALE
$699 00 $ 399.00
$77900 $ 499.00
$ 199 00 $139.00

* Olympia Executive Letter Quality Serial Printer
* Comstar Hi-Speed 160 CPS 151" Serial-Business Printer
* Telecommunications Deluxe Modern Package

Plus You Can Order These Business Programs At Sale Prices

Protessignar 80 Crlumn

Nord Protessac

LIST SALE LIST SALE

14995 $99.00 Payroll
lnventnory

314995 $99 00
149 93 99.00

Pratessinnal Ddta Base 14995 99 00
AnchwmSts Recenabie - X 149 95 99.00
Ar counts Payable 149 95 99.00

General Ledger 14995 99.00
Fimancial Spread Sheet 149995 99.00
Pragram Generator 149 98 99.00

15 DAY FREE TRIAL We give you 15 days to try out ttus SUPER SYSTEM PACKAGE' Hf it doesn't imeet your expec
tat gns. just send it back to us prepaid and we will refund your purchase price!

90 DAY IMMEDIATE REPLACEMENT WARRANTY Ifany ofthe SUPER SYSTEM PACKAGE egquipmentor orograms
fail due to faulty workmanship or material we will replace (1t IMMEDIATELY at no charge!!

Write or Call For Free Catalog and Spec Sheets!!
e orsers PROTECTO

ITdd $50.00 for shipping and handling!!
$100.00 for Canada, Puerto Rico, Hawaii orders. I
{ WE DO NOT EXPORT TO OTHER COUNTRIES | ENTERPR'ZES (WE LOVE OUR CUSTOMERS:
Enclose Cashiers Check. Money Order or Personal Check Allow i BOX 550, BARRINGTON, ILLINOIS 60010
14 days for delivery, 2 1o 7 days for phone orders. i gay express Phone 312/382-5244 to order
| mail! Canada orders must be in U.S. dollars. We acceptVisaand
MasterCard. We ship CO D to U S addresses only

No. 75 - September 1984 MICRO 39

. e ar . ar ar

40

@SANYO MONITOR SALE!

80 Columns x 24 lines
Green text display
56900 Easyto read - no eye strain
Up front brightness control
High resolution graphics
Quick start - no preheating
Regulated power supply

Attractive metal cabinet
UL and FCC approved

Q" Data Monitor

e 15 Day Free Trial - 90 Day Immediate Replacement Warranty

12" Hi-Resolution Amber or Green Screen Monitor $119.00
this is a 1000 Line, 80 Column, High Resolution Monitor with crisp clear
text that is easy to read! A must for Word Processmg' Includes special

Software Discount coupon.
List $249.00 SALE $119.00

14" Hi-Resolution Color Monitor $229.00

This 14" color monitor has the sharpest and clearest resolution of any
color monitor we have tested! Beautiful color contrast! Also compatible
with video recorders. Includes special Software Discount coupon.

List $399.00 SALE $229.00 (IBM Compatable)

* LOWEST PRICES « 15 DAY FREE TRIAL » 90 DAY FREE REPLACEMENT WARRANTY
* BESTSERVICEINU.S.A. » ONE DAY EXPRESS MAIL » OVER 500 PROGRAMS » FREE CATALOGS
—
pleasemdd 6% tax. Add $20.00 for PCANADA PUERTO RICO. HAWAII

ALASKA, APOFPOodo Canadian orders must be in U.S. dollar I no I Ec I o

WE DO NOT EXPORT TO OTHER COUNTRIES. s w
IWE LOVE OUR CUSTOMERS)
Enclose Coshiers Check. Money Order ar Personol Check. Aliow 14 ENTERPR'ZE

days for delivary. 2107 days for phone orders. | day express mail! BOX 550, BARRINGTON, ILLINOIS 80010
VISA MASTERCARD — €00 Phone 312/382-5244 to order

Add $10.00 for shipping, handling and insurance. iltinais residents

MICRO No. 75 - September 1384

“* DELUXE COMSTAR T/F
80 CPS Printer — $169.00
This COMSTAR T F (Tractor Friction)
PRINTER s exceptionally versatie It
prints 84" x 11" standard size single sheet
stationary or contmuous feed computer
paper Bi-cirectional, impact dot matrix,
80 CPS. 224 characters (Centromos

Paraltel Intertact)

Premium Quality 120-140 CPS
10" COM-STAR PLUS+
Printer $269.00
The COM-STAR PLUS+ gives you al the
features of the COMSTAR T7F PRINTER
plus a 10" carrage, 120 140 CPS, 9x 9 dot
matrix with doubie strike capabihty for 18 x
18 dot matrix (near letter quahity), high
resolution bit 1mage (120 x 144 dot
matrix), underhining, back spacing, left
and right margin settings. true lower
decenders with super and subscripts.
prints standard. italic. block graphics and
special characters It gives you print
quality and features found cn printers
costing twice as much! (Centronics
Parallel Interface) (Better than Epson

FX80) List $499 00 SALE $269.00

FANTASTIC COMPUTER PRINTER SALE
J

Premiurn Quality 120-140 CPS
15%"COM-STAR PLUSH+
Business Printer $379.00

Has all the “eatures of the 10" COM-STAR
PLUS+ PRINTER plus 15" carnage and
mare powerful electronics components to
handle large ledger business forms!
(Better than Epson FX 100) List $599
SALE $379.00.

Superior Quality 140-160 CPS
10” COM-STAR PLUS+

IBM Pers/Bus Printer $389.00
Has all the features of the 10" COM-STAR
PLUS+PRINTER! Itis especially designed
for ali 1BM personal camputers! 140 160
CPS HIGH SPEED PRINTING 100% duty
cycle, 2K buffer, diverse character fonts.
special symbols and true decenders,
vertical and horizontal tabs.
A RED HOT IBM personal business printer
at an unbelieveable low price of $389.00
plus one year immediate replacement

warranty (zentronics parallel interface)
List $699 SALE $389.00

Superior Quality 160-180 CPS
10" COM-STAR PLUS+
Business Printer $399.00
This SUPER HIGH SPEED COM-STAR
PLUS + PRINTER 160-180 CPS has a 10"
carriage with all the COM-STAR PLUSH+
features built in' [ts especialiy designed
witn more powertul electronics to handle
larger ledger business forms' Exclusive
bottom feed! (Centronics parailei
Interface) also compatable with all |1BM
Personal/Business Computors!t One year
immediate replacement warrant—y_——
List $699 SALE $399
15%" Printer List $/99 SALE $499.

@ Olympia
Executive Letter Quality
DAISY WHEEL PRINTER $399.00
This is the worlds finest daisy wheet printer
Fantastic Letter Quality, up to 20 CPS
bidirectional, will handle 1447 forms
width! Has a 256 character print bulfer,
special print enhancements. built in
tractor-feed (Centromics Parallel and
RS232C Interface) List $699 SALE $399.

For VIC-20 and COM-64 — 349 00

PARALLEL INTERFACES

For Apple computers — $79.00 Atari 850 Interface — $79.00 For ALL IBM Computers — $&9 00

¢15 Day Free Trial -180 Day Immediate Replacement Warranty

l Add $14.50 for shipping, handling and insurance. WE DO NOT EXPORT l

TO OTHER COUNTRIES EXCEPT CANADA.

I Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days |

for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada

orders must be in U.S. dollars. VISA — MASTER CARD ACCEPTED. We

} ship c.O.D.

PROTECTO

ENTERPRIZES (WE LOVE OUR CUSTOMERS;

BOX 550, BARRINGTON, ILLINOIS 80010

Phone 312/382-5244 to order

- ——— —————— - ———]

COM-STAR PLUS+
Print Example:

No. 75 - September 1984

MICRO

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPURBTUVUWXYZ 1 23 4S8 & 7890

41

SCRIPT-64 EXECUTIVE WORD PROCESSOR

(80 Columns in Color)

40 or 80 columns in color or black and white; turns your computer into a Business
Machine!

Rated best by COMMODORE. This is the finest word processor available. Features in-
clude line and paragraph insertion/deletion, indentation, right and left justification,
titles, page numbering, characters per inch, etc. All features are easy to use and under-
stand. With tabs, etc. SCRIPT-64 even includes a 250 word dictionary/spelling checker to
make sure your spelling is correct. The dictionary is user customizable to any technical
words you may use. Furthermore, all paragraphs can be printed in writing and everyday
letters are a snap. To top things off, there is a 100 page manual and help screens to
make learning how to use SCRIPT-64 a snap. This word processor is so complete we |
can’t think of anything it doesn’t have. When combined with the complete database you
have a powerful mailmerge and label program that lets you customize any mailing list
with personalized letters. List $99.95. Sale $59.00. *Coupon Price $49.00. (Disk only.)

SCRIPT-64 20,000 WORD DICTIONARY

Allows you to check spelling on 20,000 most often mispelled words! List $29.95. Sale
$19.95. *Coupon Price $12.50 (Disk only.)

SCRIPT-64 COMPLETE DATABASE

(Plus Mail Merge and Labels)

This powerful DATABASE is user friendly and makes any information easy to store and
retrieve. The user defines the fields and then can add, change, delete, and search for
any category wanted! Must be used with the SCRIPT-64 EXECUTIVE WORD PROC-
ESSOR. When combined with the Executive Word Processor you can search out any
category (zip codes, even hair color, etc.)) and print super personalized letters! 600
names can be sorted and formulated on each disk in any order or category! Will handle

any size mailing list by changing or adding disks! List $69.00. Sale $39.00. *Coupon
Price $29.00.

* LOWEST PRICES » 15 DAY FREE TRIAL * 90 DAY FREE REPLACEMENT WARRANTY
* BEST SERVICE IN U.S.A. « ONE DAY EXPRESS MAIL « OVER 500 PROGRAMS * FREE CATALOGS

E N TE R P R I Z E S WE LOVE QUR CUSTCMERS)

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to order

WE SHIP C.O.D. HONOR VISA AND MASTER CHARGE
ADD $3.00 SHIPPING FOR C.0.D. ADD $2.00 MORE
SPECIAL SERVICES:

One Day — Express Mail add $10.00

]
“ OI m 'I a EXECUTIVE LETTER QUALITY
. "DAISY WHEEL PRINTERS"

World's Finest Computer Printer
List Price $699 SALE $399

e Daisywheel printer, bidirectional with special print
enhancements. ’

e Print speed up to 20 characters per second.

e 10, 12, and 15 characters per inch.

e 256 character print buffer.

e 144" forms width.

e Print line width: 115, 138, and 172 characters.

e Serial RS-232-C and parallel Centronics interface
ports built-in.

e Built-in bidirectional forms tractor.

e QOperating status control panel.

Executive Letter Quality Printer

World's Finest

“"Combination” Printer/Typewriter
List Price $799 SALE $489

e Superb computer printer combined with world’s finest
electronic typewriter!

® Better than IBM selectric — used by world’s largest
corporations!

® Two machines in one — just a flick of the switch!

e Superb letter quality correspondence — home, office,
word processing!

e Extra large carriage — allows 14-1/8" paper usage!

e Drop in cassette ribbon — express lift off correction or
eraser up to 46 characters!

® Precision daisy wheel printing — many type styles!

e Pitch selector — 10, 12, 15 CPS, Automatic relocate key!

e Automatic margin control and setting! Key in buffer!

e Electronic reliability, built in diagnostic test!

e Centronics parallel interface built-in

Executive Letter Quality Printer/ Typewriter

15 Day Free Trial - 90 Day Immediate Replacement Warranty
= e

COM 64 — VIC-20 INTERFACE $59.00
APPLE INTERFACE $79.00

r-;ldd $17.50 for shipping, handling and insurance. llinois residents pleease-.|
add 6% tax. Add $35.00 for CANADA, PUERTO RICO. HAWAII, ALASKA,
APA-FPO orders. Canadian orders must be in U.S. dollars.

WE DO NOT EXPORT TO OTHER COUNTRIES.

Enclose Cashiers Check, Money Order or Personal Check. Aliow 14 days
delivery, 2 to 7 days for phone orders, 1 day express mail!

VISA — MASTERCARD — C.0.D.
Uo C.0.D. to Canada, APO-FPO

PROTECTO

E N TE R P R l z E s (WE LOVE OUR CUSTOMERS)

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382.5244 to order

L_—

We're continuing with the design of an output adapter for
the expansion port of a Radio Shack Color Computer. This
adapter will interconnect an Epson MX-80 printer, a
Commodore 64, a 32k Color Computer and a 64k Color
Computer. The two 64k computers will input to the 32k
Color Computer, which will serve as a printer buffer for
both the other machines. The interface card will plug into
the 32k machine and perform all the interface functions
needed except for power sensing. A smart power box will
sense when either computer is turned on, and power up
the 32k machine. This machine must then self-boot and
begin sensing when either computer sends data to be
printed.

Last month's column gave a set of specifications for the
four ports needed to accomplish the interfacing. These
ports are:

1. Parallel input from the Commodore. This input actually
comes from a The Connection serial-parallel converter
currently used with the Epson/Commodore combination.
This choice was made to insure continued compatibility
with all Commodore software currently being used.

2. Parallel output to the printer.
3. Serial input from the 64k Color Computer.
4. Serial output |unassigned).

Figure 1 shows the schematic of the interface board.
Ports 1 and 2 are implemented using a 6522 Versatile
Interface Adapter, which gives two 8-bit I/O ports, two
16-bit timers, automatic input/output handshake, and
synchronous serial communication. Each of the major
functions can issue an interrupt, and a separate interrupt
input is associated with each port.

The serial communications will be performed by a
6850 ACIA with switch-selectable baud rates of 300, 600,
1200 and 2400. This device is a programmable UART
{Universal Asynchronous Receiver/Transmitter) which
furnishes status output and input lines capable of
managing I/O handshaking. Both receiver and transmitter
sections can issue interrupts.

The specifications also call for a Busy signal capability
on both parallel ports. This is required to be sure of
compatibility with any printer or other parallel input or
output device which may be used to drive it. The Busy
signals will be programmed to be compatible with Epson
and similar printers. The output Busy signal (used on the
parallel input port] is held in a 74LS75 4-bit latch which
connects to the upper nibble on the CoCo data bus. The
Busy input from the parallel output port is gated onto the
data bus with a 7418126 4-bit tri-state buffer. Both the
latch and the tri-state buffer have three unassigned
channels which could be used for any single-bit 1/0
desired.

Baud rate generation was discussed in detail last time,
except that the baud selection switches were ornitted from
the illustration. The corrected version and proper pin
connections are shown in Figure 1 (U1 and U2}. These two
ICs form a programmable counter which resets itself each
time the output pattern conforms to the bit pattern
programmed into the switches.

by Ralph Tenny

Richardson, Texas

The address decoding design was mentioned last time
also. The circuit shown and the description given last time
was incomplete. It also seems best to use three device
SELECT signals instead of four. The reason is that the
original SELECT signal for the parallel ports conflicts with
disk port address space. This design is not intended for use
with a disk, but could be if one of the several multi-pack
interface units was in use. So, the design shown in Figure 1
has three SELECT signals: $FF50 for the parallel ports,
$FF60 for the serial ports and $FF70 for the BUSY latch
and BUSY flag input.

In addition to the SELECT signals, certain other
decoding must be done. The 74LS75 quad latch is not a
bus-oriented device, so it has no SELECT input. All it has
is an active-high GATE pin which allows the output to
follow the input as long as GATE is high. The latch must
be forced to capture only that data written to $FF70.
The SELECT signal is active-low, so it must be inverted to
properly gate the latch. Also, the Read/Write* {R/W*)
signal must be used to ensure that only WRITE data is
captured, that is, when R/W* is low. One section of U5
pulses the GATE line high only when both SELECT and
R/W* are low.

The 74LS125 tri-state gate also has no SELECT, and
connects the input to the bus when the four (one for each
section) enable lines are high. Also, this must happen only
when the CPU is trying to read the data bus. So, a section
of U5 inverts R/W* to enable a third section of U5. When
both SELECT and {R/W*}* are low, the BUSY signal from
the printer is allowed onto the data bus.

Additional decoding is necessary for both the ACIA and
the VIA. Both have multiple registers, and REGISTER
SELECT (RS} inputs. The 6522 VIA has four RS inputs
which are connected to address lines AD0-AD3, so that 16
internal registers can be selected. Almost all these
registers can be read and written, just like normal memory
locations. The ACIA has four registers that occupy only
two memory addresses. Only one RS line is used |driven
by ADO), which means that there are two Read Only
registers and two Write Only registers. This causes extra
programming overhead, which will be discussed when we
have hardware ready to program!

Certain other circuit features and possibilities need to
be discussed. First, the interrupts generated on the ACIA
and VIA are shown connected to the IRQ* input. There
could be a conflict with some CoCo software, so if this
device is used as a general I/O board on an active
computer, this should be moved to the NMI* input. Both
the ACIA and VIA maintain an internal record of which
section caused an interrupt, so each needs to he polled to
determine which device caused the interrupt.

The VIA contains two counters which could have been
programmed to make the proper clock frequencies for the
ACIA. However, the normal hardware output for the
counters are 1/O lines already dedicated to parallel I/0.
Another alternative exists. The counters will cause an
interrupt, so the interrupt service routine could force a
read of [for example) $FF30. The keyboard PIA in CoCo
will respond, but so will pin 13 of U2. This decode strobe

44

MICRO

No. 75 - September 1984

i sy [i[e[8] * [¢]s]+][3]z]] PorT2 o5y
] " -0
Figure 1 I g n r[* M Vee €51 | om sTROBE*
oKX @ 19 40 E
i iz <} Q4 - PRS 10 > PAS DATAD Z
at a2 cDYOLB b3 PR 66 5| PAL 1 ST
[} 4+ PB2 PA2 2 =
024 2 12 ¢s522
cn4024 *las , P83 |13 via | PA3 3 %
s Qs _~ PB4 * .| PA4 4 T
<« 8%+ PBS] ;s | PAS s -
Ml L TYTAI ol PAS 6 3
a e RE P87 17 q A7 7 ra]
8 ACk¥% cBl|,g - cAaz2 (ackh®) o]
I (8usy catlas sal8se YA m
AUD RAT D&y &Sl api AT
ClLock [Dllyy 3| B92 ADZ PorT!
—{7¢é 15— 2l y, ;5‘_LADB
Q2 03
1 !B” 3o 25— a
2 MLS) i @5 29 2{— IRQ*
3 i 741582 08|, o
ENOUT EMIN De
4 it 27
= ol EXI® 07 2¢
. q |ENZ” 22 3¢ |
R/w*
s i REET SV
L Commp N
1| 8] 1o [T‘ \ [
PorT3 4 [V S T » L
31 Sl ® 22 p@ 2l o7 3
z 2] repata 2 D2 s] recsizs o
[SlrTse 2¢ D2) [
" 3 A os 13 it
E c8so LI
3 AC/A 19 ol 43] 0] 7
2 § lrxoaTa 17 oy 1 2 5 6
I 2¢fcrs ‘6 LT | 3] 98 s
PoRT 4 15 by j ARAEERAE e
3 R/w*] 7 9
106 RS 3 T
Ivllq" ”AL:D Commen N L T4 11
¥| 4 %[| ~| 9 2 * 6 * E
Q| aof Q
< <~‘i*51222 Yalalaaldad Feould
iJ [] [L[I CoCo Expansion prve-in 2| | [T 1%
™
could be used to toggle a flip-flop at twice the period of the (@ @]3 [;z & Bv fr @ @Q)
desired baud rate clock.
This timer-generated baud clock would only be AN ESSENTIAL DiISK & MEMORY UTILITY
practical on a dedicated machine such as I will be using. FOR THE COMMODORE 64 ™ & DRIVE
Also, it is advisable to put the VIA on NMI* and the ACIA EASY TO USE - HELP - KEYSTROKE COMMANDS
on IRQ*. Only the timer interrupt is time critical, but the] K/S Edit
STROBE* line should have reasonably prompt response to q'::a;irn?and er::::il;y di's::e“m_ data
maintain high throughput for input data. The ACIA . File Follower - memory for 151 sectors
buffers a second character and will assert BUSY if »Fast 154} disk compare and error check
necessary. However, the data throughput on even 2400 Display Memory and Disk Data
baud serial will not be greatly affected by a short BUSY in Hex, ASCIl or Screen Code
hold on transmission. _ -Edit full page in Hex or ASCII
. ng other loo§e ends: If you should desug to have :Eull -Disassemble memory and disk data
eight-bit parallel input and output at $FF70, it is possible . .
. . - Search for string * Un-new Basic pgms
to use an octal latch in place of U8 and an octal tri-state .
: . A -Read drive memory - Convert Hex/Dec
buffer in place of U7. The required decoding is slightly Do d
different, and will be shown in next month’s column. "Free sector map - Use DOS wedge
The second loose end is that I promised to examine the *Run ML routines -Extensive manual
bus loading in detail to decide if this interface board *Printer screen dump [serial bus)
needed to be buffered from the innards of CoCo. The *Fast machine code! Compatible with
answer is yes; on two counts. First, the power loading many Basic and monitor programs
(drive current furnished by the 6809 CPU] on the address DISKETTE CAN BE BACKED Up!!
lines is approaching the maximum specified value. This o ron
loading will reduce the bus’s ability to drive a capacitive QUANTUM SOFTWARE
load 1 d In th d ol h L. P.O. BOX 12716, Dept. 64 $29.95
oad at normal speed. In the second place, the capacitive LAKE PARK, FL 33403 S Post Paid
loading for the address bus is very close to, or exceeding,
the rated maximum. Therefore, this board does need To Oroer: Send check or money order, US dallars
. R ro . . Fiorida residents add 5% sales tax
buffering. The calculation, circuitry and other COO add §2. Call 305-840-0249
i i i i om. e a registere: ademark Commadare Electronics Ltd.
considerations will be presented next time also. AICRO" Commodare 84 is a ceglstarad trademark of Commodore Eleseranics Led
No. 75 - September 1984 MICRO 45

o

Complete Apple
Modem °129

Single-Slot 300 Baud Direct-Cannect Modem for
Apple Il 11+ lle and Franklin computers

FEATURES OF THE NETWORKER ™

@ DIRECT CONNECT - No acoustic coupling neeges
Twe modular teiephcne acxs - one for phone - one
tor ine
SINGLE CHIP MODEM tor greater reiiabity
ON BOARD FIBRMWARE contans a term nar pro-
gram
@ ON BOARD SERJIAL NTERFACE - no ex'ra cards ‘¢
&) o Software seiectable data tormat 7 or 8 dala
SIS 0ne Or twe S10C bits. add or even panity fuil or
nalt deplex
3) 300 BAUC sofrware selectable 1or 117 baud
fs\ SWITCH CONTROL tor answer anginate s 1s next io
keyboard
/7Y CARS ER DETECT LED gives you nne stalus at 4
gance
ALL THIS PLUS
+ COMPLETE with NETWORKER SOFTWARE 0 give
¥OU
. Iex! trapping of entire Qisplay inic RAM memory
= Jisx storage capabi ity far att trapped Tex!
- On screen menu and status ndcacrs
+ FREE SUBSCRIPTION TO THE SCURCE the popu-
lar dial up infermatice system
+ SOFTWARE COMPATIRILITY - with 3" commor
Apple communicatinn sottware
+ COMPATIBLE a:th toin rotary ang tone phcites
FCU APPRUVED - Made n JUSA
CNE YEAR MANUFACTURER'S WARRANTY

NETWORKER “ INCLUDES A
COMPLETE PACKAGE

XPTOTLTET SAf AN I Sy R
£ Onone N s}
= Netwnrker soflwars 00 2 §5K i8530y 10 Tun
< JOMp ge ASTLCHDT Mty

NETMASTER * COMMUNICATIONS
SOFTWARE

Fcr $179 we :nclude with the NETWORKER the
NETMASTER Commurications Software for ad-
varced users NETMASTER wiil let you transler
games computer graphics, programs. sales re-
oods. cocuments - lact any Apple tle gt any size
— o anetner computer. arrectly from disk to cisk
witrout errors ever througr noisy phone lines

To Order
Call Toll Free

800-824-7888 Continental US

Ask for operator #592

5
¢

T1XTY

(3]

"NIUBY

é JOB ENTERPRISES INC
P O Box 269
6 @ Ayer MA 01132

For rranstering informaticn between computers
NETMASTER s superb error checking and high
speed are an unbeatable combination With a NET-
MASTER on each end. you can transfer informa-
tion three to fve times iaster than other commu-
nicaticns packages like Visterm * or ASCH ™
Express Error tree
Your best buy in modem history The Networker,”
a plug-n single-slot direct connect modem for the
Apple Il lamiiy ¢f computers Send electronic mall
to a friend or business assoc:ate. use your school s
cgmputer, access hundreds of ccmputer bulleun
Boards or thousands of data pases for up-to-the-
minute news. scons. weather. airline. and stock in-
formation

MAIL ORDERS

PLEASE WRITE NUMBER OF ITEMS IN BOX
[NETWORKER 8129

T NETMASTER 879

M
800-824-7919 Alaska and Hawaii ™ NETWORKER/NETMASTER COMBO $179
aor anywhere) the world @
I
916-929-9091 visa® .‘.33?2.?.'.‘?!2” €.0.0.
|0 5o oRDERS ADD S3 oC

Send Orders ang Mane Checrs Payabie o

SIGNATURE

There s abso.Ltely motning e'se to ouv You get
the modem tcard communicaton so'tware and a
valuable subscriphon to Americas cremer nior-
mation service. THE SOURCE ~ For $'26 ts ar
unbeatabie value

This is the modem that does nta's ana goes it ior
less The Apple Communicaticns Card .s ¢r boarg
s0 no other interface is needed Its 300 baud. the
most commenly used modem soeed Arda it comes
complete with NETWORKER Commun catiors
Sottware on an Apple-comparnble disk gnong vou
features no modem offers

Like the abiity to ‘ock on-screen messages nto
your Apple s RAM, and then move the nformation
orte a disk for easy relerence and review A termi-
nal program that turns your computer into a com-
munications command center. with on-screen elp
menus. conbiruous uopdates of memory Lsage car-
rier presence. and commumicaltion status

But NETMASTER s not stutty It will talk to those
other communications packages. but they cor:
work as fast and they dont check errors ke NET-
MASTER. And NETMASTER doesnt oniy work
with the NETWORKER modem. Evern f ycu
already have another modem for your Apple. NET-
MASTER s an outstanding value 1n communi-
cations software. so we sell NETMASTER by itse!f
for $79. NETMASTER requires 48« cf RAM. one
disk drive. and the NETWORKER or another
modem

WE EVEN GIVE YOU SOMEONE TO
TALK TO!

Your purchase of the NETWORKER with or without
NETMASTER comes complete w.th a mempership
to THE SOURCE, with its n¢rmai registration fee
fully waved THE SOURCE will out a worid of elec-
tronic information anc communicatior services at
your fingertips - instantly Electronic mail ard com-
puter corferercing Current news anc sports Valu-
able business and financ.al ‘nformaucr Travel ser-
vices A wealth of infcrmation about personal
computing Even games. Ali fuily corpatibie with
your equipment. and ready tc use at ance

NAME
ADORESS _
CfY . STATE L. P .
Mass . residents add 5% sales tax
Total Enclosed
~ MASTERCARD UUVISA " CHECK oD
CARD NUMBER EXPIRES

1Credit Cacg orders Tust e s.gned:

JQB Enterprises Incorporated

. P.0. BOX 269. AYER MASSACHUSETTS 01432
All Prices Quoted are for Prepaid Orders — Prices Subject to Change Without Notice

,N»»uur:’///
=

—— featune

The 68000 microprocessor has many
attributes found on mini and main
frame computers. These include
system and user modes, levels of
interrupts and error recovery from bad
software. Compared to 8 bit
microprocessors like the 6502 and
6809, the 68000 seems incredibly
complex.

Fortunately, the designers of the
68000 came up with a logical and
straight forward method of handling all
the complexities. The purpose of this
article is to describe ‘'‘exception
processing’’ on the 68000. The
following parts will give examples of
how to take advantage of the 68000's
capabilities. Part 2 will cover software
exception processing in general; Part 3
will cover hardware exception
processing for the Sage II.

Status Register

Like other microprocessors, the 68000
has a status register. This holds the
carry, overflow, zero and negative bits
which are found on all
microprocessors. The 68000 has
additional bits called trace, interrupt
mask and supervisor state. The bit
positions within the status register are
shown in Table 1.

Table 1 - Status Register

Bit Description
MSB 15 Trace Mode
14 Unused
13 Supervisor State
12-11 Unused
1¢-8 Interrupt Mask
7-5 Unused
4 Extend (X bit)
3 Negative
2 Zero
1 Overflow
LSB) Carry

R R R R R RPN NO O

68000 Exception Processing

by Mike Rosing
Littleton, Colorado

=5 Sloj———alall 10 fali

= ol al

68000 uses exception processing to handle

software and hardware.

CIL 1GI1 1E3L [a]

ali i[aj 1L

Bits 0-7 are called the user byte and
bits 8-15 are called the system byte.
The trace mode bit is useful for tracing
programs one instruction at a time.
The interrupt mask determines what
level of interrupt can be processed,
lower levels being ignored. We will get
into those bits later. For now the
supervisor state is most important.

If you have ever written a program
on an 8 bit machine which accessed
every byte in I/O space {like C000 to
CFFF on the Apple 2] you will
appreciate the separation of user state
and supervisor state on the 68000.
When the 68000 is in user state, it can
not access the system byte of the status
register. Nor can it access addresses
which are specified to be in supervisor
space.

Register A7 is also affected by the
supervisor state bit. If the bit is set A7
points to the supervisor stack pointer.
When the supervisor state bit is clear
A7 points to the user stack pointer.
Most systems keep these stacks in
different areas of memory.

Exceptions

Once the 68000 goes to user state, it
can not change the supervisor state bit.
Unless an exception occurs, the 68000
will stay in user state. Since exceptions
can be forced by software, this is not a
problem. In fact, it ensures program
integrity since exceptions are all
outside the vsers normal needs.
Exceptions include interrupts,
hardware errors, software errors and
traps. Interrupts are caused by external
devices. Hardware errors are part of
external logic to the 68000. Software
errors include division by zero and

registers out of bounds.
similar
interrupt.

All 68000 exceptions go thru four
steps. Step one is to make a copy of the
status register. This ensures that after
the exception is handled the processor
can return to its original state. The
supervisor state bit is set putting the
processor in supervisor mode and sets
the stack pointer to the supervisor
stack.

Step two determines the vector
number of the exception. This vector is
a pointer to the code which the 68000
will execute to take care of the
exception. In some cases this number is
placed on the bus by an external device.
In other cases the vector number is
generated by the 68000.

In step three, the program counter is
pushed on the supervisor stack
followed by the status register copy
made in step one. If the exception is a
bus or address error, more information
will be pushed on the stack during this
step.

Step four sets the program counter
to the address found in step two and
normal execution resumes.

The address pointers used by the
68000 in step two are located at
addresses O thru $3FF. Every four bytes
represents a 32 bit pointer. This is
enough room for 256 pointers.
Multiplying the vector number by four
gives the address of the pointer. This in
turn has the address of the code to
execute.

The first 64 exception vectors have
specific meanings. For example, vector
number 5 is the divide by zero
exception. Vectors 48 thru 63 are
reserved for future use. Vectors 64 thru
255 are user definable.

Traps are
to a software generated

No. 75 - September 1984

MICRO

47

Table 2 — Software Exception Vectors Table 3 — Hardware Exception Vectors
Vector Number Hex Address Description Vector Number Hex Address Description
3 C Address error] [} Reset
4 10 Illegal instruction 2 8 Bus error
5 14 Zero divide 15 3C Uninitialized interrupt
6 18 CHK instruction 24 60 Spurious interrupt
7 1C TRAPV instruction 25-31 64-7C Autovector interrupts
8 2¢ Privilege violation 64-255 19@-3FC User interrupts
9 24 Trace
19 28 Line 191¢ emulator
11 2C Line 1111 emulator
32-47 8@-BC TRAP instructions

Software Exceptions

Table 2 shows the vector numbers and
locations for the software exceptions. A
short description of each is given here.
Actual examples will be given in Part 2
of this article.

Address error: Attempt was made to
reference word or long word address on
an odd boundary.

Illegal instruction: Attempt was
made to execute data. Patterns $4AFA,
$4AFB and $4AFC are ''permanently
illegal’’ according to Motorola.

Zero divide: Attempt to divide by
zero using DIVU or DIVS instructions.

CHK instruction: The check
instruction is used to compare a
register against bounds. If not in proper
range the exception occurs.

TRAPV instruction: Exception
taken if overflow bit is set.

Privilege violation: Attempt was
made in user mode to change system
byte of status register.

Trace: If the trace bit is set in the
status register, the exception is taken
at the end of each instruction. This
pointer should be set to a debugger or
monitor.

Line 1010 and Line 1111 emulator:
68000 instructions which have $A or
$F as the first nibble will come here.
Motorola has a set of instructions
defined for the 68020 such as floating
point operations. The purpose of these
traps is to enable emulation of the
68020 by the 68000 for downward
compatability.

TRAP instructions: These can be
compared to software interrupts of 8 bit
microprocessors. There are 16 available

traps on the 68000.

Hardware Exceptions

Table 3 shows the hardware vectors. I
call them hardware because the support
chips placed around the 68000
determine how these vectors
generated.

are

Bus error: When pin 22 goes low on
the 68000 this exception is processed.
Usually a system is designed so any
attemrpt to access memory which does
not exist will pull this low.

Uninitialized interrupt: If an MMU
{memory management unit] is attached
to the 68000 it can generate this vector.

Spurious interrupt: If bus error goes
low while an interrupt is being
processed this exception is taken.

Autovector interrupts: Designed for
use with 6800 peripherals. Almost all
systems built to date use these as the
only interrupts.

User interrupts; Space for interrupts
generated using ‘‘normal’’ interrupt
processing. Very few manufacturers
use this because autovectoring is much
simpler.

To understand how to use the
68000 exception processing a few
examples are necessary. Part 2 of this
article will discuss software exceptions
which can be programmed on any
68000 system. Examples of hardware
exceptions will be given in Part 3.
These examples will be for a specific
computer but the main ideas are
transportable to other machines.

Part 2: Software Exceptions

In the first part of this article, the
68000 exception processing was
described in the theoretical sense. This

Listing 1 o
* initialize trap vector
&
lea trapzero, al get trap address
move. 1l a0, $8¢ put into vector location
O
* execute software exception
tra #
P ? o
* go back to user mode
move #d,sT clear all of status register O
rts
% code executed by trap #¢ instruction O
trapzero:bset #5,(sp) set supervisor bit in old status word
rte return from exception Is)

48

MICRO

No. 75 - September 1984

section's purpose is to create a better
understanding of the 68000 exception
processing activity by using concrete
examples.

When an exception occurs, the
68000 copies the status register, gets
the vector number, pushes the program
counter and previous status register on
the supervisor stack and jumps to the
address stored for this vector.

As an extremely simple example the
code in Listing 1 is actually very
powerful.

The first two lines in Listing 1
initialize vector number 32. The
sixteen trap instructions use vectors
32 +1n where n is in the range zero to
fifteen. These two lines of code point
out the flexability of the 68000
exception system. The exception
processing code may be anywhere in
memory. It also points out how simple
it is to change exception vectors.

The trap instruction is the same as a
software interrupt instruction on a
6502 or 6809. The program counter and

afterwards. This is slightly different
from the trap instruction.

Unimplemented instructions are
similar to the privilege violation. The
program counter pushed on the system
stack points to the offending code. This
is very useful as shown in the next
example.

Suppose we have an application
where 64 bits are required. As an
example we create an instruction
which has the following format:

Nibble Hex value Meaning
3 F Line 1111 emulator
2 B Addition
1 B,2,4,6 Register
@ #,2,4,6 pair
Nibble 3 forces exception

processing on vector number 11
{address $2C). Nibble 2 can be used to

specify one of 16 instructions. For this
example only one is used. Nibble 1
specifies the source register pair. Since
we want to add 64 bits, we will need
two registers to hold the result. Zero
means registers d0 and d1. Six means
register d6 and d7. We will take odd
numbers to be errors. Nibble 0 specifies
the destination register pair.

Listing 2 shows how an emulator
might be written. It first saves all the
data registers. Errors are just ignored.
Since any registers might be used, all
are saved into memory. The source and
destination register pairs are converted
to memory offsets. These memory
contents are then added. Notice that
the add with extend instruction is not
as flexable as the add instruction. This
is a minor drawback of the 68000.

Initialization of the emulator
requires the first line of Listing 2. This
puts the address of the emulator into its
appropriate vector.

status register are pushed onto the ..
supervisor stack. The number in the Listing 2)
instruction determines which vector is
chosen. Trap instructions are always .
immediate mode. The trap number is ¥ initlalize line 1111 emulator and call it for testing o
added to 32, then multiplied by 4. This .
gives the address of the trap code. In move. 1 line111l,$2c
this case address $80 contains the move 1,d2 o
address of trapzero. move 2,d4

The address stored in location $80 -de.w $r@24
is put into the program counter. rts o
Execution now begins as usual. In this . .
case, bit five of the byte pointed to by * emulator code for 64 bit addition of registers
the supervisor stack is set. Remember
that this is a copy of the status register. line1111: movem.l d¢-d7/a@,savezone save data. . o
When the RTE is executed, the status move.l 2(sp),af point to lnSFI‘uctlon
register is pulled from the stack. Bit move (ag),d¢ getfnstzl'uctlon
five happens to be the supervisor state btst @,d0 even destination? o
bit. When the program counter is bne error nope
pulled from the stack we return to the btst 4,d9 even source?
instruction following the trap #0. bne error no again o

We have now gone from user mode and 7,d¢ create _
to supervisor mode and the system is at 1s1 2,40 destination offset
our command. Depending on the move (a@),d1 create
operating system, this can be end $70,41 source O
extremely dangerous. After playing st 2,d1 offset .
with the system we may want to return lea savezone, aff point to data ‘
to user mode. This is done by clearing move. 1l 4(ad,d1),d2 get lower source t.nts. .
the supervisor state bit in the status add.1 d2,4(af,d0) add to lower destination bits
register (sr|. move.1 (af,d1),d2 get high source bits '

If an attempt were made at move. 1 (ad,40),d3 get h%gh destination bits o
executing the move #0,sr in user mode addx.1 d2,d3 add with elftent'l
the privilege violation exception move.1 d3, (ag,d0) reset destination
{vector number 8] would occur. In this érror: movem.1 S&Vezone,dﬁ-d?/aﬁ' restore new data .
case the program counter pushed on the add.1 2,2(sp) point to next 1nstruct1<?n o
stack points to the instruction in rte return from exception
violation, not the instruction savezone: .ds.l 9 space for 9 longwords

end o

No. 75 - September 1984 MICRO 49

Execution is done by placing a word
in the middle of normal code. Most
assemblers require a construct shown
in Listing 2 as .dc.w $F024.

When normal execution gets to this
instruction exception processing takes
over. Since the high nibble is $F =
1111 (base 2], vector number eleven is
executed. This is just our emulator.
Notice that we added 2 bytes to the
program counter before returning from
the exception. This prevents an infinite
loop.

The trace exception is also a
software interrupt. Like the trap
instruction the program counter
pushed on the stack points to the next
instruction to be executed. This
happens because the trace exception
processing always occurs between
instructions. To make effective use of
the trace exception, one must know the
I/0 port addresses for efficient
debugging.

Unlike the previous exceptions, the
address error can occur anytime an
effective address for a word or longword
is on an odd byte. This is usually in the
middle of an instruction execution.
Because of this, more information is
pushed on the supervisor stack during
the third step of exception processing.
This includes the instruction register
which holds the first word of the
offending instruction. The program
counter is usually two to four bytes
past this point. After the instruction
register comes the effective address
which is going to be odd. This is a
longword. The Ist word pushed on the
stack includes the function code, a
read/write bit and an instruction bit.

The function code corresponds to
the 3 bits FCO, FC1 and FC2 on the
68000. These determine user or
supervisor mode and program or data
space. The read/write bit tells whether
the access was during a read or write.
The instruction bit tells if the error
occured on an instruction. An address
error on an instruction will occur on a
line of code such as JMP [AOj where
AQ is odd. The jump instruction itself
will be executed, but an address error
will occur as soon as AQ is transferred
to the program counter.

To fully wutilize these error
exceptions, one has to send
information to the programmer. This
usually involves input and output. The
final section of this article gives
examples of hardware interrupts for
I/0 on a specific machine.

Part 3: Hardware Exceptions

The previous two parts of this article
have described 68000 exception
processing which was valid for any
system. This final portion is specific to
the Sage 2 because hardware exceptions
are caused by the physical wiring
connected to the 68000.

Hardware exceptions include reset,
interrupts and bus error. Each of these
are physically wired to the 68000. On
the; Sage, the reset is performed by
power on, or by pressing the reset
button on the back of the machine.

The bus error line on the Sage will
be activated if the address strobe line is
not released within two microseconds.
Even the slowest EPROM's are faster
than this. Usually one gets this error
when attempting to access an address
such as $4D696B65.

Interrupts are generated whenever
any of the interrupt lines go low. All
lines low indicates a level 7 interrupt.
All lines high indicates no interrupt.
The Sage is built with an LS148 priority
encoder attached to the interrupt lines.
This ensures that the 68000 sees only
the highest level interrupt yet to be
processed.

Reset Processing

During reset the 68000 looks for a
system stack pointer at vector number
0. This is located at address 000000. It
then reads the program counter from
vector number 1 at address 000004. On
the Sage these addresses are located in
RAM. How does the Sage turn on at a
known address?

When the reset line goes low a latch
is cleared which relocates the monitor
EPROMs to address 000000. The first
longword in the EPROM is $400 which
is the startup system stack. The next
longword is $FEO03C which becomes
the program counter.

On the Sage, addressing the
EPROMs at addresses in the $FE0000
range relocates the EPROMs to

$FE000C. Thus, as soon as the program
counter address hits the bus, the
EPROM: are where they need to be and
the 68000 is initialized.

The only way to change the reset
system on the Sage is to burn new
EPROMs. For most users this should be
unnecessary.

Bus Error Processing

The bus error exception is exactly
the same as the address error described
in part two previously. It is proccssed
whenever the bus error line (pin 22]
goes low. To appreciate why this is
useful in two microseconds on the
Sage, remember that the 68000 is an
asychronous device. DTACK has to go
low before the address lines are
released. The processor enters wait
states until DTACK is returncd. It is
perfectly happy to wait forever.

To avoid external circuitry which
computes whether an address is valid it
is much simpler to put on a timer. The
timer is run at the start of each bus
access and off when no bus access takes
place. As long as the timer never runs
out no bus error can occur. If no wait
states are ever used, a complete bus
access will require 250 nanoseconds
and a complete instruction will require
500 nanoseconds [or more}. A single
wait state is 125 nanoscconds. Thus 16
wait states will go by before a bus error
occurs.

This discussion is specific to the
Sage only. Other systems will have
different methods of generating bus
errors. The access address is pushed on
the stack in any case, and this is
important to display for debugging
purposes.

Interrupt Processing

According to the 68000 manual,
normal interrupt processing requires
the interrupting device to put its vector
number on the lower data bus. This
number should be greater than 64. This
method allows for a total of 192
interrupts of any desired level. The
implementation is not so easy in
hardware. I don’t know of any 68000
based machines which use this
capability.

The lack of "‘normal” interrupts is
due to the 68000 having autovector
interrupts. By pulling the VPA line low
{pin 21} during an interrupt
acknowledge the 68000 looks at the
interrupt level input lines {pins 23-25}.
This value is added to 24 to get the
exception vector.

Level 7 is used for RAM parity
errors. Levels 4, 5 and 6 are used for the
IEEE port, the terminal input port and
the floppy disk controller respectively.
The level one interrupts are processed
thru an Intel priority interrupt
controller for eight interrupts. All

50

MICRO

No. 75 - September 1884

interrupts are autovectored and no
provision was made far '‘normal’’
interrupt processing as defined by
Motorola.

The eight level one interrupts
include two clock timers, the terminal
receive ready, the terminal and remote
transmit ready, a ring detect, printer
acknowledge and software generatable
inputs. In order to give an example of
interrupt processing on the 68000, we
will mask all but the terminal USART
generated interrupts.

The terminal interface chip is an
Intel 8251A. This chip generates an
interrupt whenever a character is
received, as well as when it is ready to
transmit a character.

The code shown in Listing 3 is very
simple and should not be used for any

generates a level one interrupt via the
8259." The level one interrupt
autovectors to termout. Since we set it
up for only one possibility, the 8259
interrupt level is ignored. However, in
a real systern we would then have to
pick the correct place to go to handle
the interrupt.

The character is moved from the
output buffer to the transmitter of the
USART. The get pointer is bumped and
the interrupt is ended.

At this point DO equals D1 so we
return to the stop instruction. The
USART generates a transmitter empty
interrupt so we again vector to the
termout routine. At this point D2

equals D3 meaning the buffer is empty
(or overflowed!|. The endout point
turns the transmitter enable off. Return
from interrupt again finds DO and D1
equal putting us at the stop instruction.

Even at 19.2K baud the trans-
mission of characters is 100 times
slower than the processor. This is only
an example to show how interrupts can
be used to run I/O in background while
68000 processes data in foreground.

To summarize, remember that
exceptions all have vectors which point
to the code which handles them. Any
exception vector can be changed on any
computer to suit the needs of your
program.

real application because it does not Listing 3 ©
save registers. It is a good example to
follow though. The first line of code * Assume baud rates set up and 8259 initialized o
puts the processor into supervisor frap 4o go to supervisor mode
mode [see page 48, Listing 1). The move.b #%11011111,3FFC@43 mask off all interrupts
mask on the next line prevents all | » except terminal transmit
interrupts except the USART transmit transmit)
ready from entering the 8259. Next the move.1 #termout, $64 autovector 1
autovector addresses are set to the move.l #termin, $74 autovector 5
interrupt codes. Registers are used lea inbufr, ap pointer to input buffer
directly for this example and are iea outbufr,al pointer to output buffer
initialized. The 5 turns the USART on | 7
. . noveq #0,40 set

fqr transmission anq reception of data. noveq #9,d1 up o
Finally, the stop instruction moves moveq #g,d2 get and
$2000 into the status register and halts noveq 40,43 put pointers
processing. on: move.b #5, #FFC73 enable transmission and

When an interrupt occurs the reception
processor executes code starting at the | wait: stop #$2000 wait for interrupt
interrupt in question. If the USART is emp.b d¢,d1 char came in?
ready to transmit the termout interrupt beq walt no,went out o
will execute. If a character comes in . move. b (a0,d@), (a1,d3) move from input to output

: u

frgm the keyboard, the termin code | P eddib 41,40 bump input get pointer
will execute. When the processor eddl.b #1,d3 bump output put pointer o
returns from the interrupts the code bra on enable transmission
following the stop is executed.

To follow this, suppose the | x terminal output interrupt handler
processor is halted. We press a key on | termout: move.b #$C, $FFCP41 set up 8259 for read ©
the terminal which is transmitted to move.b $FFCP4L,d4 get interrupt level
the USART. The USART causes move.b #320, $FFCH4L clear interrupt
interrupt level 5 and the 68000 :-mp-b giégit gizae:g iiansmit" o)

: : e I

autovectors to termin. The chargcter is moge.b (a1,d2) ,SFFCETL cond out char
PU1led from the USART' clearlng the eddi.b #1,d2 bump get pointer
interrupt. We store it into the input rte end of interrupt o
buffer and bump the input buffer | . 4045, nove.b #4,3FFCO73 disable transmission
pointer. After returning from the rte
interrupt, the 68000 checks to see if a
character came in. * terminal input interrupt handler o

A character was received so DO is | termin: nove.b $FFC@721,d4 get input char
not equal to D1. The character is move.b d4,(ad,d1) put into input buffer
moved to the output buffer and eddi.b #1,d1 bump put pointer e}
pointers are incremented. The Emp-b ggéirll ;z: g;:‘og‘l’;xer?
transmitter is gnabled and the mg\ie.b 40, $FFCU73 © disaéle eceive
processor halts again. . . endin: rte end of interrupt O

Since the transmitter is empty, it \
No. 75 - September 1984 MICRO 51

O

Transferring dBase II Files
For Use With
Wordstar/Mailmerge

O

by Robert R. Carroll
Woodland Hills, California

O

Alter your dBase Il files and use them
to produce personalized letter forms.

When wusing the popular programs
dBASE II and Wordstar/Mailmerge in
business, an opportunity often presents
itself where the two can be used
together to produce personalized form
letters. On the surface, it would
seem that this should be no problem;
however, there exists certain
peculiarities in each program that
forces a bit of thought as to how to
manipulate dBASE II files so that
Mailmerge sees just what it needs to
perform correctly with all types of
data. If you're not careful, you will
undoubtedly find form letters loaded
with unwanted spaces due to the
trailing blanks leftover from the fixed
field lengths of your data from dBASE
II's .DBF (data] files. Or worse,
embedded commas in your data will
confuse Mailmerge to the point where
it won't track your data correctly. In
either case your letters will look far
from personal. This article will explore
a simple yet effective method for
flawlessly transferring dBASE 1I data
files for this use.

O

Of the many books and articles
written on these programs, none has
come 1p with a simple, easy-to-use
method of transferring the data files.
Typical schemes require writing an
external BASIC program or using a
word processor in a lengthy, hard-
to-remember procedure. dBASE 1I
provides all the functions necessary
to make the transfer complete without
resorting to difficult external measures.
Besides, many users of these programs
don’t have the time, inclination or
prograrnming knowledge to use them.

Now, let’'s look at a sample dBASE
II .DBF file called DATA.DBF which
contains mailing list data. Using
dBASE II's LIST STRUCTURE
command we see the following:

. USE DATA

. LIST STRUCTURE
STRUCTURE FOR FILE: A:DATA.DBF
NUMBER OF RECORDS: ¢¢gg3

DATE OF LAST UPDATE: 23/15/84
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
@#1 MRMRS C P04
@p2 FIRSTNAME o 915
@#P3 LASTNAME o @15
@@4 COMPANY o @20
@@5 STREET o @20
gg6 CITY o 915
@@7 STATE C o094
g@8 ZIP o o6
% TOTAL *¥ P2098

We can see that each field has a
specific width determined by the user
at the time the database was created.
dBASE 1I will reserve this width for
the data when it is stored on disc,
whether the actual data fills up the
entire width or not. For example, a
LASTNAME of Deltawashington fills
up our field width of 15 characters
quite nicely. However, Stein leaves us
with 10 trailing blanks which will be
carried right into our form letter if we
don’t get rid of them somehow. Let’s
enter some sample data to clarify the
example.

52

MICRO

No. 75 - September 1384

Rec # MRMRS FIRSTNAME LASTNAME COMPANY

30301 Mr. John H. Stein Tate and Sons

pop@2 Mrs. Joanne T. Houseman Melt, Inc.

0083 Ms. Toni J. Deltawashington Lewls, Jones, and Co.

STREET CITY STATE ZIP

24 Lake Avenue Chicago 1L 68606
978 Tulips Street New York NY 1¢¢19
11678 Riverside Dr. Burbank ca 91356

Now suppose we want to use this data to create a personalized form letter
called FORMLTR written using Wordstar/Mailmerge. The letter might read as
follows:

. .FORMLTR

.op (to omit page number in printout)

.df DATATEXT.TXT (datafile created from dBASE II file DATA.DBF)
.rv MRMRS, FIRSTNAME , LASTNAME , COMPANY, STREET,CITY,STATE,ZIP
(tells Mailmerge to read values in specific order)

Dear &MAMRS& &LASTNAMEG&:

We regret to inform you that we cannot use &COMPANY& in this
year's exhibition. Thank you for your interest.

Sincerely,
Clyde T. Newshandler

.pa(to begin new page)

If we don’t remove the trailing blanks we would get something like:

Dear Mr, Stein

We regret to inform you that we cannot use Tate and Sons in
this year's exhibition. Thank you for your interest.

The blanks in the text of the letter automatically tell the reader a computer
is talking at him. Also, Mailmerge must see its data separated by commas and
if a piece of data has a comma embedded in it, the entire piece must be enclosed
in quotes. For example, in our Rec # 00002, the COMPANY field contains
Melt, Inc. Mailmerge must see "Melt, Inc.”’ so that it doesn't confuse the
embedded comma with a field separator and think that "'Inc.”’ is the next data
field. In this unfortunate occurrence, the tracking of all the data would be one
field off for the rest of the letters generated. Thus we might get:

Dear 1¢@19 Ms.:

We regret to inform you that we cannot use Toni J. in this

WordStar$269
Pro Pack$369

Novation

APPLE CAT II
300 Baud, Auto Answer,
Auto Dial, FREE Software

9199

NOVATION
1200 BAUD SPECIAL $529
1200 BAUD UPGRADE $339
DISK DRIVES
Concorde Clil $189
Rana Blite |....................... $229
RanaBlite ll $369
Rana Blite lll...................... $475
MODEL
11512” Amber Hi-Res 5429
210 12" Composite-RGB 5289
400 12" RGBMed-Res $299
410 12" RGB Hi-Res $349
415 12" RGB Super Hi-Res $399

12629 N. Tatum Blvd.
Suite 242
Phoenix, AZ 85032

Call: 602-957-3619

$2 PHONE REBATE
-WITH ANY ORDER

SHIPPING CHARGES

0-100 $ 5
101-200 % 8
201-300 $10
301- up $15
All prices are for cash or check—
Visa/Mastercard add 3%

No. 75 - September 1984 MICRO

53

Not very professional. Luckily, Mailmerge will also accept an overkill
method of data separation: enclosing all data in quotes and separating them
with commas. This seems like it would be more work, but actually it is the
uniformity of this approach that makes this method work. And dBASE II does
all the work for us.

Now let’s try the conventional method of creating text files from dBASE II
database files. While in dBASE II use the command:

. USE DATA
. COPY TO datatext DELIMITED WITH"

If we now examine the file DATATEXT.TXT {the . TXT extension is
automatically assigned by dBASE II} using Wordstar or a suitable command
like CP/M’s TYPE, we'll see that all data is enclosed in quotes but with all the
trailing blacks carried right along like this:

"Mr. ', "John H.
"24 Lake Avenue

", "Stein " "Tate and Sons "
n "Chicago ", vTT, ", "6@6@6 L "Mrs. "

Well, that’s no good. Let’s try the other way of creating text files from dBASE II
files:

. USE DATA
. COPY TO datatext DELIMITED WITH,

Using this method, all data will be separated by commas and the trailing blanks
will be trimmed from each piece of data like this:

Mr.,Jonhn H.,Stein,Tate and Sons,24 Lake Averue,Chicago,IL.6p6@6,
Mrs.,Joanne T.,Houseman,Melt,Inc.,97@ Tulips Street,New York,NY,
1¢¢19,Ms.,Toni J.,Deltawashington,Lewis, Jones, and Co.,11678
Riverside Dr.,Burbank,CA,91356

Unfortunately, embedded commas {like in Melt, Inc.) will cause incorrect
data tracking as we discussed earlier. Obviously this won’t work with all data
types either.

Fortunately, there is a trickier way to create text files with dBASE II which
allows the full power of the program to be running at the same time. If the
command SET ALTERNATE TO
datatext.txt is used followed by SET
ALTERNATE ON, everything shown
on the screen will be sent to the file USE DATA
datatext.txt. So, we can write a short SET TALK OFF
dBASE II program stripping away the SET RAW ON
trailing blainks from the data using SET ALTERNATE TO datatext.txt
the TRIM funciton and insert the SET ALTERNATE ON
proper punctuation so Mailmerge gets DO WHILE .NOT. ECF

just what it wants. And, as an added ? '"' , TRIM(MRMRS) y TN,
bonus, since the full power of dBASE ? '"' , TRIM(FIRSTNAME) , "', ',!
II is available, we can ''filter’” the ? '"' , TRIM(LASTNAME) , '"' , ',
usable data for our form letters much ? '"' , TRIM(COMPANY) y MY
more efficiently than we could by ? """ , TRIM(STREET) , TN,
simply using the COPY TO command ? '"' » TRIM(CITY) y T,
line. ? tnt | TRIM(STATE) , o,
For our example, the following ?7 ', TRIM(ZIP) s M
program could be written in dBASE II: SKIP

ENDDO

SET ALTEENATE OFF

The SET TALK OFF command
stops dBASE 1II from sending comments
to the screen as it makes calculations
or skips to the next record. SET RAW
ON eliminates single spaces between
fields which when defaulted to OFF is
the normal way dBASE II will LIST or
DISPLAY data. Keep in mind that
everything sent to the screen will
appear in the file datatext.txt.

Using the above dBASE II program
on our sample file data.dbf will yield
the following result automatically
given the filename datatext.txt by
dBASE II:

HMI-. "

"John H.",

"Stein™,

"Tate and Sons",

124 Lake Avenue",
"Chicago",

HILH,

||6¢6¢6u,

"Mrs. n,

"Joanne T.",
"Houseman",

"Melt, Inec.",

"g7@ Tulips Street",
"New York",

HNY ll)

"1gp19m,

HMS . H,

"Toni J.",
"Deltawashington”,
"Lewis, Jones and Co",
111678 Riverside Dr.",
"Burbank",

I|CA H,

"91356",

We can see that this format adheres
to all of Mailmerge's rules. Each piece
of data is separated by commas, trailing
blanks trimmed and enclosed in quotes
to protect embedded commas within
data fields.

An extra added bonus is that our
original dBASE II command file used to
create the datatext.txt file is easily
modified for use with other dBASE II
DBF files by changing the field names
only via Wordstar or dBASE II's Modify
Command. The rest remains intact.

If you do any work at all with these
programs and form letters, you'll find
this method unbeatable.

AICRO’

54 MICRO

No. 75 - September 1984

——— e |
e ————————)

A Step-Trace facility with
a handy twist.

Have you ever tried to debug a
machine-language program by step-
tracing it and found that you were
looking at a lot of instructions that you
had not written? This can be slow and
annoying.

The reason for this phenomenon is
obvious — all JSR calls to MONITOR
routines get traced through step-by-
step and this is distracting. I decided
that I wanted a step-trace program that
would display only my instructions,
i.e., any call to a monitor subroutine
would be handled as a single step
operation, no matter how many
monitor steps were actually involved.

For background, I studied
Peterson's Step-Trace in MICRO on the

E

R

by Chester H. Page
Silver Spring, Maryland

Apple, Volume 2. That program
mimics the Step-Trace facility that was
in the old monitor ROM before the
days of AutoStart. He added a few
features such as interrupted trace. In
addition to the nuisance of dissecting
all monitor subroutines used in your
program, this Step-Trace program has a
problem with COUT — it hangs up.
My modification avoids this problem
because COUT is not dissected. In fact,
I can step-trace a program which calls
for printing a word on the screen, then
activating the printer and repeating the
print operation on paper! To do this
requires one special procedure: instead
of changing output hooks at $36/37
{which would cause a hang-up) the
hooks are changed directly in DOS at

$AA53/AA54.
For a final touch, my stepper
program is relocatable and can be

BRUN at any location that avoids the
program to be debugged.

The step-tracing displays of
instructions and user registers are
placed on screen lines 0 to 19; user
CQUT output appears in lines 22 and
23. Lines 20 and 21 maintain a gap for
better appearance. The right-hand end
of the gap lines is used for special
storage, so exhibits a peculiar
combination of characters. The reason
for this unconventional storage
location 1is to avoid possible
interference with user programs which
may use any available zero-page space

No. 75 - September 1984

MICRO

55

With these toolSess

S-C Macro Assembler - Combined editor/assem-
bler includes 29 commands and 20 directives, with
1 macros. conditional assembly. global replace, edit, and
i more. Well-known for ease-of-use and powerful features.
! Thousands of users in over 30 countries and in every tvpe
: of industry attest to its speed, dependability. and user-
friendliness. Blends power. simplicity, and performance to
! provide the optimum capabilities to both beginning and
i professional programmers. With 100-page manual and
1 u&unucud,$92_50

Cross Assembler Modules - Owners of the S-C Macro
Assembler may add the ability to develop programs for
other systems. We have modules for most of the popular
1 chips. at very reasonable prices

\ 6800/01/02.................. $32.50
6805 . . $32.50
6809 $32.50
68000 $50.00
Z-80 ... $32.50
PDP-11 ...l $50.00
8048l $32.50
| 8051l $32.50
} 8080/85 $32.50

ﬁ 1802/04/05 $32.50

All of the cross assemblers retain the full power of the §-C
Macro Assembler. You can develop programs for burning
into EPROMs, transfer through a data-hink, or direct
execution by some of the plug-in processor cards now on
the market.

Apple Assembly Line - Monthly newsletter for assembly
language programmers, beginner or advanced. Tutorial
arucles; advanced techniques; handy utility programs:
commented listings of code in DOS and Apple ROMs:
reviews of relevant new books, hardware, software; and
more! $18peryear(add$3 for first class posiage in USA.
Canada, Mexico: add 813 postage for other countries).

S-C Software Corporation
2331 Gus Thomasson, Suite 125
Dallas, Texas 75228

(214) 324-2050

and may use the empty spaces in DOS
for data storage. This special storage
area is for (1) the split-screen window
data, (2) storage of output-hook data
and [3) storage of the XQT {execute
instruction] area. The old monitor
ROM wuses $3C/44 for XQT, but
$3E/3F gets overwritten by GETNUM.
For this reason, the XQT area had to be
re-initialized before each user step. I
preferred to avoid this repetition
because I use a lengthy initialization
routine for relocatability. The problem
is in the two jump instructions that
follow the user command which was
copied to XQT. These two jumps are
for the normal no-branch return and
the special return when relative-jump
branches are taken. Since these jumps
are to routines within the stepper
program, they must be inserted by a
code-locating routine. I preferred
running this just once at the beginning
of the program.

STEPPER is conventional except for
one major departure. After a user
instruction is copied to XQT, it is
examined to see if it calls an address in
the monitor. If so, the instruction is

executed directly instead of being
simulated and stepped through. In the
case of an indirect jump, the indicated
jump address is examined for location.
If it is in the monitor, it is displayed
and the instruction executed.

To use STEPPER, load the program to
be debugged {at $nnnn|, enter HOME,
then BRUN STEPPER, AX at any
convenient location. Your program can
be stepped through by entering nnnnS,
followed by entering an S for each
successive step. Alternatively, nnnnT
will produce a continuous trace of
successive steps which can be
interrupted by pressing any key and
restarted with T, or shifted to single
steps with S.

STEPPER can be tested on STEPPER
DEMO. STEPPER DEMO includes
subroutines, direct jumps and indirect
jumps, both within itself and to the
monitor and hook changing. To run,
BLOAD STEPPER DEMO, enter
HOME, BRUN STEPPER and enter
300T. The word “TEST'" should be
printed on the bottom screen line, then
the printer activated and ''TEST"
printed on paper.

Listing 1 Note: Mr. Page uses the S-C Macro FDDA— PRBYTE EQU $FDDA
] Assembler, published by FDED- COUT EQU $FDED
o S-C Software Corporation FE@@- BL1 EQU $FE@Q
FE75- A1PC EQU $FE75
E3 2SS ST LSLILIL LSS SRS SLE S S S FF}A- BELL EQU $FF3A
: * STEPPER * FF3F- RESTORE EQU $FF3F
|1 O * CHET PAGE * FF4A— SAVE EQU $FF4A
39 3 3 3 % J 33 ¥ 93 I K I KK KKK KK KX FFA7— GETNUM EQU $FFA7
.OR $7000 FF58- RTRN EQU $FF58
.TA $8p0 FFBE- TOSUB EQU $FFBE
© * .TF STEPPER FFC5- ZMOD@ EQU $FFC5
gp22- W EQU $22 FFC7- ZMODE EQU $FFC7
P@2F— LENGTH EQU $2F FFCC- CHRTBL EQU $FFCC
| © @p33- PROMPT EQU $33 *
‘ P@34— YSAV EQU $34 *INITIALIZE WINDOW AREAS
| pe3A- PCL EQU $3A *
! ¢@3B~ PCH EQU $3B 7000- A9 @@ LDA #¢
| O g@3C— INDPTR EQU $3C 70P2- 85 22 STA W
f PpL8— STATUS EQU $48 7004 8D 72 @6 STA UW+2
‘ P10~ STACK EQU $100 7007- A9 14 LDA #$14
lo P66E- OUTPRT EQU 3$66E 7009- 85 23 STA W+l
1 @OEF- XQT EQU $6EF 70@B- A9 13 1DA #$13
; 670~ UW EQU $670 7@@D- 85 25 STA W+3
1 | 0674~ TV EQU $674 700F- A9 16 IDA #$16
(3 AAS3- HOOK EQU $AAS53 7¢11- 8D 79 @6 STA UW
Code- KBRD EQU $C@@@ 7@14~ A9 18 1DA #$18
F882- INSDS1 EQU $F882 7816~ 8D 71 @6 STA UW+1
F8D@— INSTDSP EQU $F8D@ 7019- A9 17 1DA #$17
o F948— PRBLNK EQU $F948 7@1B- 8D 73 96 STA UW+3
F954- PCADJ2 EQU $F954 *
F956~ PCADJ3 EQU $F956 7@1E- AD 53 AA LDA HOOK
5] FAD7- REGDSP EQU $FAD7 7021~ 8D 6E @6 STA OUTPRT
FC22- VTAB EQU $FC22 7024— AD 54 AA LDA HOOK+1
FD67- GETLNZ EQU $FD67 7¢27- 8D 6F 96 STA OUTPRT+1
56 MICRO No. 75 - September 1984

*

*

* INITIALIZE XEQ RETURNS

702A- 2@ 58 FF JSR RTRN
7@2D- B8 CLV

702E- 50 #7 BVC NB
7030— 2 4A FF NBRN JSR SAVE
7933- 38 SEC

7@34- B8 CLV

*RELAY TO PCN3 LOCATE NBRN

% AND INSERT JUMP

7835~ 5@ 6D BVC PCN3A1
7¢37- BA NB TSX

7038~ CA DEX

7939~ 18 CLC

793A- BD 99 91 LDA STACK,X
703D 69 P4 ADC #4
7@3F- 8D F3 @6 STA XQT+4
7942 E8 INX

7¢43- BD 99 91 LDA STACK,X
7046— 69 9@ ADC #0
7948 8D F4 96 STA XQT+5
7P4B- A9 4C LDA #$4C
794D~ 8D F2 @6 STA XQT+3
7@5@— 8D F5 @6 STA XQT+6
7853- 2¢ 58 FF JSR RTRN
7¢56— B8 CLV

7857- 50 @F BVC BR
7059- 18 BRAN CLC

705A- AQ 01 IDY #1
795C— Bl 3A LDA (PCL),Y
7@5E- 29 56 F9 JSR PCADJ3
7P61- 85 3A STA PCL
7063 98 TYA

7964— 38 SEC

7065- B8 CLV

¥RELAY TO PCN2 LOCATE BRAN

% AND INSERT JUMP

7966~ 5@ 3E BVC PCN2A1
7068—- BA BR TSX

7069— CA DEX

796A- 18 CLC

7@6B- BD 9@ #1 LDA STACK,X
7P6E- 69 B4 ADC #4
7878~ 8D Fé 96 STA XQT+7
7973 E8 INX

7@¢74- BD 99 @1 LDA STACK,X
7977- 69 99 ADC #9
7979 8D F7 @96 STA XQT+8
*

7@7C— D8 STRT CLD

7@7D- 2@ 34 FF JSR BELL
7¢80- A9 2A CONT LDA #$2A
7@82— 85 33 STA PROMPT
7084~ 2@ 67 FD JSR GETLNZ
7087~ 2@ C7 FF JSR ZMODE
7P8A- 2@ A7 FF NXTI JSR GETNUM
7@8D— 84 34 STY YSaV

*IS IT STEP? IS IT TRACE?

*¥ IS IT <CR>?

7@8F— C9 EC CMP #$EC
7¢91- F@ 1E BEQ ENT
7¢93- C9 ED CMP #$ED
7095~ F@ 13 BEQ TRACE
7¢97- C9 C6 CMP #$C6
7¢99- D@ 1C BNE MCMD
7@9B- 2@ C5 FF JSR ZMOD@
7@9E- 20 @@ FE JSR BL1
7¢A1- B8 CLV
70A2- 5¢ DC BVC CONT

*RELAYS
70a4— 50 58 PCN3A1

7046— 5@ 58 PCN2A1
7¢A8- 5@ D2 STRT1
7BAA— AD @@ C@ TRACE

*STOP ON ANY KEY

BVC PCN3A2
BVC PCN242
BVC STRT
LDA KBRD

* WAIT FOR NEXT, REPEAT STEP

7@AD- 3@ 15

7PAF- C6 34

7@B1- 2@ C7 FF ENT
7@B4~ B8

7@B5- 5@ 12

*TRY MONITOR COMMANDS
*SEARCH MON CHARS

7¢B7— A@ 17 MCMD
7@B9- 88 CHRS
7¢BA— 3@ CO

BMI AGIN
DEC YSAV
JSR ZMODE
CLV

BVC STEP

1DY #$17
DEY
BMI STRT

*CMP WITH TABLE, TRY AGAIN

* FOUND, PROCEED
7@BC- D9 CC FF
7¢BF- D@ F8

7(C1- 2¢ BE FF
7@C4— A4 34 AGIN
7¢C6— B8

CMP CHRTBL,Y
BNE CHRS

JSR TOSUB
LDY YSAV

CLV

*GET NEXT COMMAND, ADR TO PC

* DISPLAY INSTRUCTION
* RESET OUTPUT PORT

79C7- 59 C1 BVC NXTI
70C9- 2¢ 75 FE STEP JSR A1PC
7¢CC- 2¢ D@ F8 JSR INSTDSP
7@CF- AD 6E 96 LDA OUTPRT
7¢D2- 8D 53 AA STA HOOK
7¢D5— AD 6F @6 LDA OUTPRT+1
7gD8— 8D 54 AA STA HOOK+1
7¢DB- A2 @2 1DX #2
*¥NOP'S TO XEQ AREA

7@DD— A9 EA XQIN LDA #$EA
7@¢DF- 9D EF @6 STA XQT,X
7¢E2- CA DEX

7PE3- D@ F8 BNE XQIN

*

* COPY USER COMMAND

*

7PE5— A2 @@ 1LDX #¢
7PE7- Al 3A 1DA (PCL,X)
7PE9- DP 17 BNE NOTBRK
*SET SCREEN OUTPUT

7PEB- A9 F@ LDA #3FQ
7PED- 8D 53 AA STA HOOK
7@F@—- A9 FD 1DA #$FD
7@F2—- 8D 54 AA STA HOOK+1
7@F5- 20 82 F8 JSR INSDS1
7PF8— 2¢ D7 FA JSR REGDSP
7@FB— B8 CLV

*RELAY

78FC- 50 AA BVC STRT1
7@FE- 5@ 7B PCN3A2 BVC PCN3A3
7199- 5¢ 7B PCN242 BVC PCN2A3

*

* EXAMINE OPCODE
*
7102— A4 2F NOTBRK
7104— C9 2@

7106— D@ @A

*IT IS JSR

*IS IT IN MONITOR?
*YES, SO EXECUTE, NO,
71¢8- Bl 3A

71¢A- C9 F8

71¢C- Bg 71

LDY LENGTH
CMP #320
BNE TRYJMP

SIMULATE
DA (PCL),Y
CMP #$F8
BCS EX1

No. 75 - September 1984

MICRO

57

710E- 98 73 BCC SJSR1
7110- 50 B2 AGIN2 BVC AGIN
7112- C9 4C TRYJMP CMP #$4C
7114- D@ @8 BNE TRYIND
*IT IS JMP

*IS IT TO MONITOR?
*YES, EXECUTE NO, SIMULATE

7116- Bl 3A LDA (PCL),Y
7118- C9 F8 CMP #3F8
711A- B@ 69 BCS EX2
711C- 9@ 69 BCC SJMP
711E- C9 6C TRYIND CMP #3$6C
712¢- D@ 67 BNE TRYRTS
*INDIRECT JUMP

7122- B1 3A LDA (PCL),Y
7124— 85 3D STA INDPTR+1
7126- 88 DEY

7127- B1 3A oA (PCL),Y
7129~ 85 3C STA INDPTR
712B- B1 3C LDA (INDPTR),Y
*¥IS IT TO MONITOR? SIMULATE

712D- C9 F8 CMP #3F8
712F- 9@ 45 BCC SIND1

*

* DISPLAY MONITOR ADDRESS
*

7131~ AD 53 AA LDA HOOK
7134 8D 6E @6 STA OUTPRT
7137~ AD 54 AA LDA HOOK+1
7134- 8D 6F @6 STA OUTPRT+1
713D- A9 F@ LDA #$F@
713F- 8D 53 AA STA HOOK
7142- A9 FD LDA #$FD
7144- 8D 54 AA STA HOOK+1
7147 A9 8D LDA #$8D
7149- 2¢ ED FD JSR COUT
714C- 20 48 F9 JSR PRBLNK
714F— 29 48 F9 JSR PRBLNK
7152— 2 48 F9 JSR PRBLNK
7155- A9 A4 LDA #$A4
7157- 2@ ED FD JSR COUT
715A- B1 3C LDA (INDPTR),Y
715C- 2@ DA FD JSR PRBYTE
715F- 88 DEY

716¢- B1 3C LDA (INDPTR),Y
7162- 2¢ DA FD JSR PRBYTE
7165- AD 6E @6 LDA OUTPRT
7168- 8D 53 AA STA HOOK
716B— AD 6F @6 LDA OUTPRT+1
716E- 8D 54 AA STA HOOK+1

*

7171 A4 2F LDY LENGTH
7173~ B8 CLY

7174 50 43 BVC USER1
7176~ a4 2F SIND1 LDY LENGTH
7178- 38 SEC

7179~ B@ 4E BCS SIND
¥RELAYS

717B- 5¢ 34 PCN3A3 BVC PCN3
717D~ 5¢ 3¢ PCN243 BVC PCN2
717F- B@ 3A EX1 BCS USER2
7181- 5¢ 8D AGIN1 BVC AGIN2
7183- 99 38 SJSR1 BCC SJSR
7185- B@ 32 EX2 BCS USER1
7187~ 9¢ 3F SJMP1 BCC SJMP
7189~ C9 6¢ TRYRTS CMP #$60

718B- F@ 1E BEQ SRTS
718D C9 40 CMP #340
718F- F@ 16 BEQ SRTI
7191- 29 1F AND #3$1F

7193- 49 14 EOR #314
7195- C9 @4 CMP #4

*SET UP BRANCH, RETURN TO BRAN
7197- F@ @2 BEQ XQ2
7199~ B1 3A XQ1 LDA (PCL),Y
719B- 99 EF @6 XQ2 STA XQT,Y
71GE- 88 DEY

719F- 1§ F8 BPL XQ1
¥RESTORE USER REGISTERS, EXEC USER CMD
71A1- 20 3F FF JSR RESTORE
71A4— 4C EF 06 JMP XQT
*SIMULATE RTI

71A7- 18 SRTI CLC

71A8- 68 PLA

71A9- 85 48 STA STATUS
*SIMULATE RTS

71AB- 68 SRTS PLA

71AC- 85 3A STA PCL
71AE- 68 PLA

71AF- 85 3B PCN2 STA PCH
71B1- 2@ 54 F9 PCN3 JSR PCADJ2

71B4— 84 3B STY PCH
71B6- 18 CLC
71B7- 99 18 BCC NEWP
*RELAYS

71B9- 5@ 43 USER1 BVC USER4
71BB- 5¢ 36 USER2 BVC USER3
*SIMULATE JSR

*SIMULATE RETURN TO STACK

71BD- 18 SJSR CLC

71BE- 20 54 F9 JSR PCADJ2
71C1- AA TAX

71C2- 98 TYA

71C3- 48 PHA

71C4— 8A TXA

71C5— 48 PHA

71C6- AP @2 LDY #2
*SIMULATE JUMP

71C8- 18 SIMP CLC

*SIMULATE INDIRECT JUMP
71C9- B1 3A SIND LDA (PCL),Y

71CB- AA TAX
71CC- 88 DEY

71CD- B1 34 LDA (PCL),Y
71CF- 86 3B STX PCH
71D1- 85 3A NEWP STA PCL
71D3- B@ F3 BCS SJMP
71D5— AD 53 AA NEWP2 LDA HOOK
71D8- 8D 6E @6 STA OUTPRT
71DB- AD 54 AA LDA HOOK+1
71DE- 8D 6F @6 STA OUTPRT+1
71E1- A9 F@ LDA #3FQ
71E3- 8D 53 AA STA HOOK
71E6— A9 FD LDA #$FD
71E8- 8D 54 AA STA HOOK+1
71EB- 2¢ D7 FA JSR REGDSP
71EE- B8 CLV

¥RELAY TO AGIN

71EF- 50 90 BVC AGIN1
71F1- 5@ E2 NEWP1 BVC NEWP2

*

*EXECUTE MONITOR ROUTINE
*

*TF MONITOR SUBROUTINE SET UP RETURN

¥AND CONVERT JSR TO JMP

71F3- 18 USER3 CLC
71F4— 20 54 F9 JSR PCADJ2
71F7- AA TAX
71F8- 98 TYA
71F9- 48 PHA

58

MICRO

No. 75 - September 1984

Listing 2

1000 HHEHRRERIHHRER KK

71FA- 8A TXA
71FB- 48 PHA 1#1¢ * STEPPER DEMO *
71FC— AQ @2 LDY #2 1020 *RFRRHERRERXHRENER
*EXECUTE MONITOR ROUTINE 1030 -OR $30¢
71FE- A9 6§ USER4 LDA #36¢ 1949 -TA $80¢
72¢¢- 8D F2 @6 STA XQT+3 1950 .TF STEPPER DEMO
7203~ Bl 3A 1 LDA (PCL),Y FDED- 146¢ COUT .EQ $FDED
72¢5- 99 EF ¢6 STA XQT,Y pop6- 178 PTR .EQ $6
7208- 88 DEY @3p¢- 20 11 @3 1980 JSR TEXT
7209~ 18 F8 BPL .1 @3@3- A9 @8 1490 LDA #¢
*IF JSR, CONVERT TO JMP @3@¢5- 8D 53 AA 11¢@ STA $AA53
72¢B- C9 2¢ CMP #$2¢ @3¢8- A9 C1 1114 LDA #$C1
72¢D- D@ @6 BNE .2 @3¢a- 8D 54 AA 112¢ STA $AAS4
7208F- A9 4C LDA #34C @3¢D- 26 11 @3 113¢ JSR TEXT
7211~ C8 INY @310~ 00 1149 BRK
_ 7212- 99 EF @6 STA XQT,Y @311~ A9 8D 115¢ TEXT LDA #$8D
7215- A2 §3 2 LDX #3 @313~ 2¢ ED FD 116¢ JSR COUT
3 ¥SAVE TRACE WINDOW DATA @316~ A9 D4 1170 LDA #3D4
7217- B5 22 SVT LDA W,X 318~ 20 44 @3 1180 JSR T1
7219~ 9D 74 @6 STA TW,X @31B- A9 C5 119¢ LDA #$C5
721C- CA DEX @31D- 2¢ 47 93 1200 JSR T2
721D~ 1§ F8 BPL SVT @32¢- A9 D3 1210 LDA #$D3
i 721F— A2 ¢3 LDX #3 @322~ 20 4F @3 122¢ JSR T5
¥LOAD USER-WINDOW DATA @325~ 2¢ 58 FF 1239 JSR $FF58
o 7221- BD 7¢ @6 LDU IDA UW,X @328~ 20 54 @3 1240 JSR T7
1 7224— 95 22 STA W,X @32B- A2 41 125¢ LDX #WORD
; 7226— CA DEX @32D- AQ @3 126¢ LDY /WORD
7229- 2¢ 22 FC JSR VTAB @331- 84 @7 1280 STY PTR+1
722C- 2@ 3F FF JSR RESTORE @333- A0 00 129¢ LDY #0
722F- 2¢ EF @6 JSR XQT @335- BL @6 13@¢@ PRINT LDA (PIR),Y
7232- 20 4A FF JSR SAVE $337- F¢ @7 1319 BEQ DONE
7235~ A2 @3 LDX #3 @339~ 2@ ED FD 1329 JSR COUT
*SAVE USER-WINDOW DATA @33C- C8 133¢ INY
. 7237- B5 22 SVU LDA W,X @33D- 4C 35 @3 1348 JMP PRINT
7239- 9D 78 @6 STA UW,X @348~ 60 135 DONE RTS
: 723C- CA DEX @341~ D4 8D @@ 1368 WORD .HS D4SD@@
723D- 10 F8 BPL SVU B344~ 4C ED FD 137¢ T1 JMP COUT
723F- A2 @3 LDX #3 @347- 6C 4A @3 1388 T2 JMP (T3)
© *LOAD TRACE-WINDOW DATA @34A- 4C 1398 T3 .DA #T4
: 7241- BD 74 @6 LDT LDA TW,X §34B- @3 1400 .DA /T4
T244— 95 22 STA W,X @34C- 4C 3C FF 1419 T4 JMP $FF3C
lo 7246~ CA DEX @34F- 6C 52 3 1420 T5 JMP (T6)
7247- 1@ F8 BPL LDT @352- ED FD 1438 T6 .HS EDFD
7249- A9 4C IDA #34C @354 6C 57 @3 1440 T7 IMP (T8)
j 724B- 8D F2 @6 STA XQT+3 @357~ 58 FF 1450 T8 .HS 58FF
*RECOVER RETURN ADDRESS DA DAta
: 724E- 68 PLA 'Creates constants or variables in your
4 724F- 85 3A STA PCL program...The value of the expression, as one
o 7251- 68 PLA or two bytes, is stored at the current loca-
1 7252- 85 3B STA PCH tion. If a label is present, it is defined as the
7254— E6 3A INC PCL address where the first byte of data is stored.’
: 7256- D@ @2 BNE .2 .
lo 7258- E6 3B INC PCH ;E{S Hex String ¢ hex digits (BRh B
7250- A2 00 2 LDX #9 onverts a string o ex digits | ...hj}
7250 B8 g to binary, ~two digits per byte, ar_ld stores
¥RELAY TO NEWP2 them starting at .the_ current location. If a
10 7250 50 92 BVC NEWPL label is present, it is defined as the address
where the first byte is stored.’
.TF Target File
5] ‘Causes the object code generated to be stored
on a binary file, rather than in memory.’
.TA Target Address
For those who aren’t using an S-C Assembler, to the right| ‘Sets the target address at which the object-
are definitions of those commands which are unique to code will be stored during assembly.’
this assembler. The following are from the 'S-C Macro| @R Origin
Assembler’ by Bob Sander-Cederlof, copyright 1982, S-C[Sets the program origin and the target address
Software Corporation. to the value of the expression. Program ori-
gin is the address at which the object program
will be executed.’ AICRO"
No. 75 - September 1984 MICRO 59

Lag oL 318 TV

Mastering Your VIC-20
Mastering Your Commodore 64

The 8 programs, “run-ready” on disk (C-64) or

tape (VIC-20) and explained in the 160-192 page

book, each demonstrate important concepts of

BASIC while providing useful, enjoyable software.

Programs include:

* Player — compose songs from your keyboard,
save, load and edit for perfect music

* MicroCalc — display calculation program that
make even complex operations easy

¢ Master — aone or two person guessing game

¢ Clock — character graphics for a digital clock

VIC-20 with tape & book just $19.95
C-64 with disk & book (avail. Sept.) just $19.95

Look for us at the
International Software Show
Toronto, September 20-23

MICROCalc for C-64

The Full Screen Calculator
Easier to use than spread sheets

T ——
Mastering Your VIC-20
Mastering Your Commodore 64
A Better Way To Learn BASIC

Eight major programs to enjoy
while you are learning

™ Jmnul SESE
H ! T e IT}[‘[’I_A_;\
I [RSN | mualy Y \
- . SEEEERSEERGRIL BERL i .
‘ T
N 1 I Ay
: m fuu W
:] YN
1] ! S T EEN
S RN
1 1R [EEEA .V SEnENE
I i SENE TOITIEN
+ T \\ H” T ‘Y;‘Y! %rb
EERE f
rH T | EEBEESRER ANE TN
i ‘ SEEEREIE
% 1 ri | i T ‘\‘
; I i 1 i /
1 ot
1 T e i
< Sdlssaanst |
1 ! ') D N
T - At e ey e -+
BHie I s S St
‘ Y h R Mg e !

\\ e //
g ~ ‘\3 %

MICROCalc for C-64

This on-screen calculator comes with diskette and
48-page manual offering a wide variety of useful
screens, and a great way to learn BASIC expressions
if you don’t already know them.

¢ Unlimited calculation length & complexity

¢ Screens can be linked and saved on disk/cassette
¢ Build a library of customized screens

* Provide formatted printer output

Diskette & 48-page manual just $29.95

For the Freshest Books, Buy Direct!

No prehandled books with bent corners
Books come direct to your door

No time wasted searching store to store

24 hours from order receipt to shipment

No shipping/handling charges

No sales tax (except 5% MA res.)

Check, MO, VISA/MC accepted (prepaid only)

The Computerist Bookcart
P.O. Box 6502, Chelmsford, MA 01824
For faster service, phone: 617/256 — 3649.

ce0@00@

Time-Series Forecasting

by Brian Flynn
Vienna, Virginia

A program io predict the future.

Requirements: Apple II, Commodore
64, Atari, or CoCo with Flex

Prophets and pundits since time
immemorial have tried to peer into that
murky and mysterious region of
shifting shadows and dancing dreams
called the future. These seers and
soothsayers have plied their fortune-
telling trade using every sort of
contrivance imaginable: everything
from shooting stars and playing cards to
chicken entrails and crystal balls.

Today you can join this elite group
of mystics and Merlins by using the
time-series forecasting program
presented here. It's written in a
‘generic BASIC' and runs nicely on a
machine with minimum memory. And
while the forecasts of yesteryear were
often as illusory as a maintenance-free
automobile or a meek and mild
Klingon, the microcomputer
projections can have a sound scientific
basis.

After first explaining what a ‘'time
series’’ is, we’ll show you how to use

the microcomputer program to predict
future interest rates. We'll describe the
program'’s forzcasting techniques

1. Least-Squares Trend
2. Semi-Averages

3. Percent Changes

4. First Differences, and
5. Past Averages

and give you hints on when to use each.
What's a Time Series?

A time series is a group of observations
on a variable, in chronological order, at
a set frequency. Monthly sales, weekly
income, annual gross national product
and the numter of Americans flying to
London every August are examples.

The adjective ‘‘time’’ means that
our observations are tallied at equal
calendar intervals. And the noun
"series’” means that we have more
than one data point. Hence, a ''time
series’’ records a variable’s past and
time-series forecasting projects its
future using historical observations.

As the sage says, the past is
prologue, or so we hope.

Real-World Example:
Whither Interest Rates?

The future level of interest rates in the
economy concerns most of us,
borrowers and lenders alike. If we're
thinking about financing a new house
or car, for example, and if interest rates
are falling, then delay will save us
dollars. But we're better off buying now
if interest rates are rising.

Suppose the dogs of debt are
muzzled for a change, however, and
that we strut proudly to the teller's
window to lend instead of to borrow.
Cash in hand and nirvana in mind, we
decide to plop down $5K for a money-
market certificate - maturing
somewhere between 3 months and 2
1/2 years. If interest rates are headed
downward, locking in a relatively high
rate now for as long as possible (2 1/2
years) is sound strategy. With rising
interest rates, on the other hand, we're
better off with a shorter maturity.

There's only one catch to this nice
“‘buy-low sell-high’’ kind of advice.
How do we know if future interest rates
will rise or fall? To try and find out,

No. 75 - September 1984

MICRO

61

let's use the time-series forecasting
routine. Our first step is to gather
historical data, with our bountiful
harvest shown in Table 1. This
sequence of numbers qualifies as a time

Table 1

Interest Rates on
3-Month Treasury Bills

Year: Month Percent
1982: 8 8.68
9 7.92
19 7.71
11 8.97
12 7.94
1983: 1 7.86
2 8.11
3 8.35
4 8.21
5 8.19
6 8.79
7 9.¢8
8 9.34
9 9.9¢
19 8.64
11 8.76
12 9.09
1984: 1 8.9¢
2 9.99
3 9.52
4 9.69

series: the observations are in
chronological order {August 1982 to
April 1984) at a set frequency
(monthly).

After keying our figures into the
computer, with the program prompting
us at every turn, the microcomputer
indicates that future interest rates can
be predicted using any of these
extrapolation techniques: (1) Least-
Squares Trend, (2} Semi-Averages, {3}
Percent Changes, {4) First Differences,
and (5) Past Averages.

We can predict as far into the future
as we care or dare, using one method
after another, until all reasonable
alternatives are exhausted.

We now explain each technique in
detail.

Least-Squares Trend

In Least-Squares Trend the micro-
computer forecasts by extrapolating an
historically fitted regression line into
the future. As Figure 1 shows, the
technique satisfies an urge that almost
all of us have had: to draw a line
through a plot of points to best reflect
the apparent trend.

The microcomputer estimates the
line using a statistical technique called
"'ordinary least squares''. Our
dependent variable, interest rates, is
regressed on a lone explanatory
variable, ‘‘time’’. Observations on the
latter are generated internally by the
program, with August 1982 corres-

ponding to 1 (the first time period),
September 1982 corresponding to 2 {the
second time period}, and so on. April
1984 corresponds to 21 since we have
21 months worth of data.

Technically, the microcomputer
estimates our linear equation so that
the sum of squared deviations of our
observations from the line is as small
as possible; hence the term ‘'least
squares’’.

Taking a practical example, let's
forecast interest rates in January 1985.
We ask the microcomputer to project
nine months ahead, from May 1984. It
responds with the forecasts of Table 2.

Least-Squares Trend
3-Month Treasury Bill Rate Versus Time

Percent
10.0 T

95 J.

4 + + + i 3

6 7 8 S 10 11 12 841 2 3

Figure 1

+

4

FORECASTS
METHOD: LEAST-SQUARES TREND
PERIOD (22)= 9.46
PERIOD (23)= 9.53
PERIOD (24)= 9.61
PERIOD (25)= 9.69
PERIOD (26)= 9.77
PERIOD (27)= 9.84
PERIOD (28)= 9.92
PERICD (29)= 19
PERIOD (3¢)= 10.97

FORECASTS
METHOD: SEMI-AVERAGES
PERIOD (22)= 9.62
PERIOD (23)= 9.72
PERIOD (24)= 9.81
PERIOD (25)= 9.9
PERIOD (26)= 9.99
PERIOD (27)= 10.¢8
PERIOD (28)= 1¢.18
PERIOD (29)= 1@.27
PERIOD (3¢)= 18.36

FORECASTS
METHOD: PERCENT CHANGES
PERIOD (22)= 9.86
PERIOD (23)= 10.93
PERIOD (24)= 1¢.21
PERIOD (25)= 10.4
PERIOD (26)= 19.58
PERIOD (27)= 18.77
PERIOD (28)= 19.96
PERIOD (29)= 11.16
PERIOD (3¢)= 11.36

62

MICRO

No. 75 - September 1984

METHOD: FIRST DIFFERENCES

PERIOD (22)= 9.86

PERIOD (23)= 10.03
PERIOD (24)= 1¢.2

PERIOD (25)= 18.37
PERIOD (26)= 1@¢.54
PERIOD (27)= 1¢.71
PERIOD (28)= 10.88
PERIOD (29)= 11.¢5
PERIOD (39)= 11.22

FORECASTS

PERIOD (22)= 9.75
PERIOD (23)= 9.81
PERIOD (24)= 9.87
PERIOD (25)= 9.93
PERIOD (26)= 9.99
PERIOD (27)= 18.¢5
PERIOD (28)= 1¢.11
PERIOD (29)= 1¢.18
PERIOD (38)= 1¢.24
FORECASTS

PERIOD (22)= 9.74
PERIOD { 23)= 9.79
PERIOD { 24)= 9.84
PERIOD (25)= 9.89
PERIOD (26)= 9.94
PERIOD (27)= 9.99
PERIOD (28)= 18.@4
PERIOD (29)= 1¢.99
PERIOD (3¢)= 1¢.14

A big advantage of Least-Squares
Trend over traditional regression
routines is that we know future values
of the explanatory variable (''time’’|
with absolute certainty. With the latter
technique we don't. Using the rate of
inflation instead of '‘time'’ to predict
interest rates, for example, leaves us
the problem of estimating the price
level in January 1985 before we can run
our model.

Semi-Averages

The method of Semi-Averages is
somewhat akin to Least-Squares Trend.

Method of Semi-Averages

Step 1
Percent
10.0T

9.5T

.

L ! L ' L [l Iy L
*

T : :

1 i i L
+— +——t—— —t——t
828 9 10 111283:12 3 4 5 ¢ 7 8 9 1011128412 3 4

n P} i } i i i

In the first step the microcomputer divides our time series
into two roughly equal parts, and computes the mean of
each [8.1% and 9.1% respectively.)

Step 2

Percent

9.1%

8.1%

e

T el i i (| i -] 3 I (1 F R S| - bd
= L) L] LJ L] ¥ T L] v T L L 4 L v L A i b M v L}
82:8 9 10 111283:12 3 4 5 6 7 8 9 10 11128412 3 4

In the second step the microcomputer fits a line through
the two means. The points on the line represent our
{orecasts.

Figure 2

Namely, the microcomputer divides
our time series into two roughly equal
parts and computes the mean of each.
Then it fits a line through the two
points, with values on the line
representing our forecasts. Figure 2
details the process.

Percent Changes

The Percent Change routine works as
its name implies. The microcomputer
first computes the percent delta
between the last two values of our time
series: 100*[9.69 — 9.52]/9.52 =

No. 75 - September 1984

MICRO

63

1.79%, or 1.0179 in index form. Then
it applies this factor to future periods.

Hence, the predicted interest rate in
May 1984 is 9.69*1.0179 = 9.86%.

The technique of Percent Changes
is usually best suited to short-term
forecasts, say up to two or three periods
ahead and for cases where observations
are highly correlated from one period to
another. Examples include using
monthly data to forecast next quarter’s
Dow Jones Average or foreign trade
deficit.

As a general rule, leave long-term
prognostications to Least-Squares
Trend or to the method of Semi-
Averages. An exception is when you
strongly believe that very recent data
will heavily influence the future. An
example might be a sharp jump in the
inflation rate which in turn fuels the
fear of future price hikes and, hence,
becomes a self-fulfilling prophecy.

First Differences

The First Difference routine works a lot
like its Percent Change colleague.
Namely, the difference instead of
percent change between the last two
values of the time series is used as the
factor to forecast future values.

For our data, this difference is
9.69 — 9.52 = 0.17. Hence, interest
rate forecasts for May and June using
this technique are 9.86% (9.69 + 0.17)

and 10.03%
respectively.

Once again, the method of First
Differences is a short-run forecasting
tool. You might want to compare it to
Percent Changes in making 2 or 3
period forecasts. Your predictions are
probably strongest where the two
methods agree and weakest where they
diverge. The comparison, in other
words, should give you a “‘warm
fuzzy'' or a ''rigid frigid’’, or perhaps
both.

(9.86 + 0.17],

Past Averages

Finally, the Past Average routine
computes Percent Changes and First
Differences using any number of past
values, with you telling the
microcomputer how many.

For example, the mean of the past
two first differences is (9.69 — 9.52)
+ {9.52 — 9.09} all divided by 2, or
0.30. The microcomputer in this case
predicts a May 1984 interest rate of
9.69 + 0.30 = 9.99%.

The Past Average procedure is
ideally suited to forecasting situations
where a string or subset of past values
is deemed most important. It ignores
the long-term drift captured by Least-
Squares Trend and the method of Semi-
Averages, and avoids the short-run bias
of Percent Changes and First
Differences.

Summary

A time series is a group of observations
on a variable, in chronological order, at
a set frequency. Your microcomputer
program forecasts future values of a
time series using these extrapolation
techniques: (1) Least-Squares Trend,
(2} Semi-Averages, |[3] Percent
Changes, (4] First Differences and (5)
Past Averages.

All five methods suggest that
interest rates will rise in the near
future. And all five invoke the adage
““The past is prologue.’’ If it isn't, then
perhaps we ought to have Madame
Zelna read our palms!

Listing Notes:

Brian Flynn provided the original
programs for the Apple II. Mike Rowe
has modified these so that they can
work on the Commodore 64, Atari and
the CoCo (with Flex), as well as the
Apple. The Listing 1 contains the
“'generic’’ code. This will not work
without the system specific
subroutines provided below. Listings 2
through 5 provide the required
subroutines for the Apple, Commodore
64, Atari and CoCo (with Flex)
respectively. These additional routines
must be added to Listing 1 in order for
the program to work on any
microcomputer.

Listing 1
1¢ REM
20 REM
30 REM
32 REM

TIME-SERIES FORECASTING
BY BRIAN FLYNN

MAY 1984

MODIFIED FOR COMMODORE 64,
34 REM BY MIKE ROWE, JULY 1984
4@ REM INITIALIZE

5@ GOSUB 10¢9

6§ REM ENTER DATA

7@ GOSUB 3¢¢¢

8@ REM EDIT DATA

9@ GOSUB 35¢¢

1¢@ REM CHOOSE METHOD

11¢ GOSUB 5¢p@

12¢) REM FORECAST

13 IF CH <> 6 THEN GOSUB 55@@: GOTO 11§

148 END

e s 32 R R TSRS SIS SRS SL LSS SIS S S SRS Y

INSERT SUBROUTINES FOR YOUR MICROCOMPUTER HERE
TR S TR R R RS R e s Y a T

10@@ REM INITIAIZE
1019 REM TITLE

1915 DIM C$(6)

1¢2¢ GOSUB 15¢¢

1¢3¢ REM INSTRUCTIONS
1940 GOSUB 2009

1¢5@ REM CHOICES

1¢6@ GOSUB 25¢¢

1¢7¢ RETURN

150¢ REM TITLE

151¢ GOSUB 3¢¢

ATARI AND FLEX
155@ RETURN

202¢ DATA 15¢
2830 READ MN
2049 DIM Y(MN)

206@ GOSUB
207¢ PRINT
2¢8@ PRINT
209¢ PRINT
21¢@ PRINT
211¢ PRINT
212¢ PRINT
213@ PRINT
214@ PRINT
215¢ VT=22:
PRINT
216¢ GOSUB
217¢ RETURN

300

6090

250@ REM CHOICES

251¢ DATA LEAST-SQUARES TREND, SEMI-AVERAGES,
PERCENT CHANGES

2520 DATA FIRST DIFFERENCES, PAST AVERAGES, NONE

152 VT=1(: HT=15: GOSUB 4@@: PRINT "TIME-SERIES"
153@ VT=11: HT=15: GOSUB 4@@: PRINT "FORECASTING"
154¢ FOR D = 1 TO 1¢@@: NEXT D

20@® REM INSTRUCTIONS
201 REM MAXIMUM NUMBER OF OBSERVATIONS

2@5@ REM INSTRUCTIONS

" THIS PROGRAM FORECASTS FUTURE VALUES™"
"OF A TIME SERIES USING A HOST OF THEND-"
"ANALYSIS TECHNIQUES.™"

" THE MAXIMUM NUMBER OF OBSERVATIONS"
"ALLOWED IS ";MN;"."

"CHANGE LINE 202¢ FOR A DIFFERENT LIMIT.™"
HT=14: GOSUB 4@¢:
"PRESS ANY KEY ";

84

MICRO

No. 75 - September 1984

2530 FOR I = 1 TO 6 5@5@ VT=2%I+3: HT=1¢: GOSUB 4@@: PRINT I;". ";C$(I)
254 READ C$(I) 506@ NEXT I i
255¢ NEXT I 5@7@ VT=19: HT=1@: GOSUB 4¢0: :
256¢ RETURN PRINT "YOUR CHOICE = ? ';
3@@¢ REM ENTER DATA 5@8@ GOSUB 8@@: GOSUB 6¢¢ :
3919 GOSUB 309 5¢9¢ CH = VAL(XX3$)
3@2¢ PRINT " PLEASE ENTER OBSERVATIONS ON YOUR TIME" 51¢¢ IF CH < 1 OR CH > 6 THEN 5¢80 :
3@3¢ PRINT “SERIES. HIT 'RETURN' WHEN THROUGH." 5110 RETURN &
3040 N = MN 55¢@ REM MAKE PROJECTIONS
3¢5¢ BK$ = " 551¢ REM NUMBER OF FUTURE PERIODS ,
3060 FOR I = 1 TO MN 5520 GOSUB 6000
3p7¢ VT=6: HT=1: GOSUB 4@@ 553@ REM PROJECTIONS -
3@75 PRINT "PERIOD #(";I;") = "; 554% GOSUB 30@ o |
3¢8¢ GOSUB 7¢@ 555¢ IF CH <> 5 THEN VT=12: HT=13: GOSUB 4@@: '
3099 IF XX$ = "" THEN N = I-1: I = MN: GOTO 3120 PRINT "FORECASTING ...";

3149 IF XX$ <> "" THEN Y(I) = VAL(XX$) 556@% ON CH GOSUB 65¢0,7000,7500,8000, 8508 o
3119 VT=6: HT=18: GOSUB 4@@: PRINT BK$ 557¢ REM DISPLAY

312¢ NEXT I 558@ GOSUB 115@¢

313¢ REM CHECK FOR ENOUGH DATA 559¢% RETURN

3149 IF N > 2 THEN RETURN 6@@¢ REM NUMBER OF FUTURE PERIQDS
315@ VT=21:HT=1:GOSUB 4@@ 601¢ GOSUB 300

316@ PRINT "SORRY, AT LEAST 3 OBSERVATIONS NEEDED !'": 6@2¢ PRINT "THE LAST PERIOD OF YOUR TIME SERIES IS"

GOSUB 8@@d: GOTO 3@49 6@3@ PRINT "NUMBER ";N;m™. :
35¢¢ REM EDIT DATA 6@4@ PRINT :
351¢ FOR L = @ TO INT((N-1)/1¢) 6@5¢ PRINT "HOW MANY PERIODS INTO THE FUTURE DO YOU"
352¢ REM DISPLAY DATA 6@6@ VT=5: HT=2@: GOSUB 4@@: PRINT BK$;: GOSUB 8@@:

353@ GOSUB 4@¢¢ VT=5: HT=1: GOSUB 4@¢ @)
354@ REM CORRECT DATA 6@7¢ PRINT "WANT TO FORECAST ? ";: GOSUB 7¢¢

355@ GOSUB 45¢0 6@8¢ NF = VAL(XX$)

356@ NEXT L 6@9@ IF NF < 1 THEN 6@6¢

357¢ RETURN 61¢¢ REM CHECK FOR ENOUGH MEMORY -
4P@@ REM DISPLAY DATA 6119 T = N+NF: IF T <= MN THEN RETURN

4p1p GOSUB 309 612p VT=22: HT=1: GOSUB 4@@

4@2¢ PRINT "THESE ARE VALUES OF YOUR TIME SERIES:" 6125 PRINT "SORRY, ONLY ";MN-N; -
43¢ FOR J = 1 TO 10 " MORE PERIODS ALLOWED.";: GOTO 6@6@

LPLY M = J+L¥1§ 613@ RETURN

4L@58 IF M > N THEN 4¢6@ 65¢@® REM LEAST-SQUARES TREND

455 VT=J+3: HT=1: GOSUB 4@¢: 6510 REM KEY SUMS (5]

PRINT "PERIOD (";M;") = m;¥Y(M) 65208 SX = @:5Y = @:XQ = @:YQ = @#:CP = ¢ 3
4P6@ NEXT J 6530 FOR I = 1 TO N :
4(¢7¢ RETURN 6548 SX = SX+1 j
45@9 REM CORRECT DATA 655¢ SY = SY+Y(I)
4519 VT=16: HT=1: GOSUB 4¢¢: 6560 XQ = XQ+I*I

PRINT MCORRECTIONS (Y/N) ? 6578 YQ = YQ+Y(I) ¢+ 2
452¢) GOSUB 8¢@: GOSUB 6¢@ 6580 CP = CP+Y(I)*I o
453@ IF XX$ = "N" THEN 4660 659¢ NEXT I
4540 IF XX$ <> Y THEN 4520 66¢@ REM A & B
455¢ VT=18: HT=1: GOSUB 4@@: 6619 B = (N*CP-SX*SY)/(N%XQ-SX*SX) :

PRINT "WHAT IS THE NUMBER OF THE DATUM TO" 6620 A = (SY-BxSX)/N (&)
456¢ VT=19: HT=16: GOSUB 4@@: PRINT BK$: GOSUB 8¢¢ 663@ REM FORECASTS -
4565 VT=19: HT=1:GOSUB 4@@ 6640 FOR I = N+1 TO T
457¢ PRINT "BE CORRECTED ? ";: GOSUB 7¢¢ 665¢ Y(I) = A+BxI o
459¢ Q = VAL(XX$) 666@ NEXT I
46p9 IF Q > =(1+L*1@) OR Q < =N OR Q < =(1@+L*1@) 667¢ RETURN

THEN 461@ 7¢@@ REM METHOD OF SEMI-AVERAGES
46@5 VT=21:HT=1:GOSUB 4@@ 7019 REM NUMBER OF POINTS IN EACH GROUP O
46@6 PRINT "OUTSIDE BOUNDS SHOWN, PLEASE TRY AGAIN.": 70920 G1 = INT(N/2)

GOTO 4560 793¢ G2 = N-G1
461¢ VT=23: HT=1: GOSUB 4@@: GOSUB 8¢9 7849 REM GROUP MEANS
462¢ PRINT "NEW VALUE = ";: GOSUB 79 7050 Y1 = @:X1 = ¢ o
4640 Y(Q) = VAL(XX$) 7968 FOR I = 1 TO G1
465@ GOSUB 4@@@: GOTO 4510 7@78 Y1 = Y1+Y(I)

466@ RETURN 7¢8¢ X1 = X1+I o
5@@@ REM CHOOSE METHOD 7099 NEXT I
5@1¢ GOSUB 3¢¢ 7100 Y1 = Y1/G1:X1 = X1/G1
5@20 PRINT "FUTURE VALUES OF YOUR TIME SERIES ARE" 711¢ REM MEANS OF SECOND GROUP
5@3@ PRINT "PROJECTED USING ANY OF THESE METHODS:" 7120 Y2 = §:X2 = @ (@)
5@4¢ FOR I = 1 TO 6 7130 FOR I = G1+1 TO N

No. 75 - September 1984 MICRO 65

7140 Y2 = Y2+4Y(I)
7150 X2 = X2+1
O 7160 NEXT I
717¢ Y2 = Y2/G2:X2 = X2/G2

i 7180 B = (Y2-Y1)/(X2-X1)
7199 REM Y-INTERCEPT
7200 A = Y2-B*X2
721¢ REM FORECASTS
o 7220 FOR I = N+1 TO T
7230 Y(I) = A+B*I
= 724@ NEXT I
725@ RETURN
75@@ REM PERCENT CHANGE
751¢ FOR I = N+1 TO T
7520 Y(I) = Y(I-1)*Y(I-1)/Y(I-2)
7530 NEXT I
© 7549 RETURN
8099 REM FIRST DIFFERENCE
891¢ FOR I = N+1 TO T
8020 Y(I) = 2*Y(I-1)-Y(I-2)
O gg3g NEXT 1
8@¢4¢ RETURN
85@@ REM PAST AVERAGE
© 8510 PRINT "JOULD YOU LIKE TO USE AN AVERAGE OF"
8520 PRINT "PAST:"
853@ VT=4: HT=1¢: GOSUB 4@@: PRINT "1. % CHANGES"
854@ VT=6: HT=1¢: GOSUB 4@@:
PRINT "2. FIRST DIFFERENCES"
855@ VT=8: HT=1¢: GOSUB 4@@:
PRINT "3. ACTUAL VALUES"
856@ VT=12: HT=1¢: GOSUB 4@@: PRINT "CHOICE = ? *;
8579 GOSUB 8@@: GOSUB 6@@
858¢ AV = VAL(XX$)
8599 IF AV < 1 OR AV > 3 THEN 857¢
86@@ IF AV = 1 THEN T$ = "PERCENT CHANGES™
861¢ IF AV = 2 THEN T$ = "FIRST DIFFERENCES"
8629 ON AV GOSUB 9009,90008,950¢
8630 GOSUB 3¢¢
8640 VT=12: HT=13: GOSUB 4¢@:
PRINT "FORECASTING ..."
865@ ON AV GOSUB 10@0@, 10500, 11000
o 866 RETURN
9p@@ REM % CHANGES OR FIRST DIFFERENCES
9¢1¢ VT=15: HT=1: GOSUB 4¢@:
PRINT "HOW MANY PAST ";T$
“{ @ 9P2@ VT=16: HT=22: GOSUB 4@@: PRINT BK$: GOSUB 809
i 9@3@ VT=16: HT=1: PRINT "DO YOU WANT TO USE ? ";:
GOSUB 7¢¢
9@4@ PP = VAL(XX$)
O ogsp IF PP < 1 THEN 9920
9¢6@ IF PP < N THEN RETURN
: 9@7@ VT=22: HT=1: GOSUB 4¢¢
| © 9¢8¢ PRINT "SORRY, ONLY ";N-1;" ARE AVAILABLE":
GOTO 9@2¢
95@¢ REM ACTUAL VALUES
951¢ VT=15: HT=1: GOSUB 4¢@:
&) PRINT "HOW MANY PAST ACTUAL VALUES WOULD"
952@ VT=16: HT=19: GOSUB 4@@: PRINT BK$: GOSUB 809
9530 VT=16: HT=1: GOSUB 4@@:
PRINT "YOU LIKE TO USE ? ";: GOSUB 7¢@
954@ PP = VAL(XX$)
955@¢ IF PP < 1 THEN 952¢
956¢ IF PP <= N THEN RETURN
O 9578 VT=22: HT=1: GOSUB 40¢
958@ PRINT "SORRY, ONLY ";N;" ARE AVAILABLE":
GOTQ 9520
1¢¢@@ REM PERCENT CHANGES
O 1pp19 REM PAST AVERAGE
10029 PC = ¢

1¢@3@ FOR I = N TO N-PP+1 STEP-1

10048 PC = PC+Y(I)/Y(I-1)
1095¢ NEXT I
10@6¢ PC = PC/PP

10@7@ REM FORECASTS

16980 FOR I = N+1 TO T

19098 Y(I) = Y(I-1)*PC

19109 NEXT I

1¢11¢ RETURN

1¢5@¢@ REM FIRST DIFFERENCES
1¢51@ REM PAST AVERAGE

1¢52¢ FD = @

16530 FOR I = N TO N-PP+1 STEP-1

19549 FD = FD+Y(I)-Y(I-1)
1055@ NEXT I
1956@ FD = FD/PP

1¢57@ REM FORECASTS
19580 FOR I = N+1 TO T
10599 Y(I) = Y(I-1)+FD
19603 NEXT I

1¢61@ RETURN

11¢@@ REM ACTUAL VALUES
11¢1¢ REM PAST AVERAGE
11020 AC = @
11038 FOR I = N TO N-PP+1 STEP-1
11040 AC C+Y(I)

11¢5@ NEX
11069 AC C/PP

11¢7¢ REM FORECASTS

11080 FOR I = N+1 TO T

11099 Y(I) = AC

11109 NEXT I

1111¢ RETURN

115@@ REM DISPLAY

1151¢ FOR L = @ TO INT((NF-1)/1@)

11520 REM HEADING

11539 GOSUB 12009

1154¢ REM BODY

1155@ GOSUB 13@00

11560 NEXT L

1157@ RETURN

12000 REM HEADING

12¢1¢ GOSUB 3¢¢

12¢2@¢ F$ = "===============s======z======z===z=====z
12¢3@ PRINT F$

12949 VT=2: HT=16: GOSUB 4@@: PRINT "FORECASTS"
12¢5@ PRINT F$

12¢6@ VT=5: HT=1: GOSUB 4@@: PRINT "METHOD: ";C$(CH);
12¢7¢ IF CH = 5 THEN GOSUB 125¢¢

12¢8@ RETURN

125@@ REM PAST AVERAGE

1251¢ PRINT " OF ;PP

1252@ VT=6: HT=9: GOSUB 490

1253@ IF AV = 1 THEN PRINT "% CHANGES"

o3 u

A
I
A

1254¢ IF AV = 2 THEN PRINT "FIRST DIFFERENCES"
1255@ IF AV = 3 THEN PRINT "ACTUAL VALUES"
1256¢ RETURN

13@¢@@ REM BODY
13¢1¢ FOR J = 1 TO 19
13020 M = J+L*1@+N
13¢3¢ IF M > T THEN 13940
13935 VT=J+7: HT=1: GOSUB 4@@:
PRINT "PERIOD (";M;" Y= ";Y(M)
1304@ NEXT J
13¢5¢ VT=21: HT=1: GOSUB 4@@: PRINT F$
13069 VT=22: HT=14: GOSUB 40@:
PRINT "PRESS ANY KEY ";
13¢7@¢ GOSUB 6¢9
13¢8@ RETURN

66

MICRO

No. 75 - September 1984

Subroutines
20¢ REM FLEX SUBROUTINES

299
300

REM *x CLEAR DISPLAY **
PRINT CHR$(11);CHR$(27); "X";CHR$(24); :RETURN

399
400

REM %% POSITION CURSOR **
IF VI> @ THEN PRINT CHR$(11);:
FOR II=1 TO VT:PRINT:NEXT II
IF HT> @ THEN PRINT TAB(HT);
RETURN

410
420

499
500

REM %% POSITION CURSOR AND SPACE %
GOSUB 4@@: PRINT SPC(SP);: RETURN

599
600
619

REM ** GET CHARACTER ROUTINE **
INPUT XX$: IF XX$="X" THEN XX$="v
RETURN

699
([

REM %% INPUT ROUTINE *#*
GQTO 60¢

799
80
8p1

REM #% MAKE SOUND (OPTIONAL) **
RETURN : REM ADD CODE HERE TQO MAKE A
REM SOUND IF YOU SO DESIRE !!

I IR H IR R KK
2p® REM COMMODORE SUBROUTINES

299 REM
3@¢¢ PRINT

** HOME AND CLEAR DISPLAY **
“{CLEAR} "; :RETURN

399 REM #* POSITION CURSOR **
4@¢ PRINT "{HOME}";

419 FOR XX=1 TO VT:PRINT :NEXT XX
42¢ IF HT> @ THEN PRINT TAB(HT);
43¢ RETURN

499 REM %% POSITION CURSOR AND SPACE **
5¢¢ GOSUB 4@@: PRINT SPC(SP);: RETURN

599 REM % GET SUBROUTINE *¥
6¢¢ Xx$=un

61p GET XX$: IF XX$="" THEN 614
62¢ RETURN

699 REM *% INPUT SUBROUTINE **
70@ PRINT {SPACE1(,BACKSPACE1@};: INPUT XX$: RETURN
799 REM %% MAKE SOUND (OPTIONAL) ¥+

80¢ RETURN : REM ADD CODE TO MAKE A

81 REM SOUND IF YOU SO DESIRE !!!

30336 636263 363 33 0 2 2 ¥ 2

499
500

REM ** POSITION CURSOR AND PRINT SPACES **
GOSUB 4@@: PRINT SPC(SP);: RETURN

599
600

REM %% GET SUBROUTINE *#
GET XX$: RETURN

699
700

REM #% INPUT SUBROUTINE **
INPUT XX$: RETURN

799
8¢

REM %% MAKE SOUND *#
PRINT CHR$(7);: RETURN

3636 336 9 363 3636 3 36 3 3636 4 336 .36 3 % 336 36 % 9 3 %

*%% ATARI VERSION *#%

20@ REM ATARI SUBROUTINES

REM *% HOME AND CLEAR DISPLAY **
PRINT CHR$(125);:RETURN

299
308

REM %% POSITION CURSOR #*
POSITION HT,VT:RETURN

399
400

REM #* POSITION CURSOR AND PRINT SPACES **
GOSUB 4@
FOR I=1 TO SP:PRINT CHR$(32):NEXT I:RETURN

499
500
510

REM *% GET SUBROUTINE #*
GET #1,X:XX$=CHR$(X) : RETURN

599
600

699
700

REM *% INPUT SUBROUTINE **
INPUT XX$:RETURN

799 REM %% MAKE SOUND ¥
80¢ RETURN
81¢% REM ADD YOU OWN SOUND IF DESIRED
%¥%% THE NEXT TWO LINES MUST BE ADDED ¥
1015 DIM BK$(1@),Xx$(18),T$(28),F$(40)
1016 OPEN #1,4,0,"K:"
%% LINE 106@ AND LINES 25¢@ TO 256¢ MUST BE DELETEDf@
¥%* REPLACE LINES 5@5@ AND 1206@ AS FOLLOWS:

©
5@5@ VT=2%I+3:HT=1¢:GOSUB 4@@:PRINT I;". ;:

GOSUB 140¢¢

12060 VT=5:HT=1:GOSUB 4@@:PRINT "METHOD: ';: o
GOSUB 14005

*%% ADD THE FOLLOWING SUBROUTINE S

1400¢ ON I GOTO 14¢1¢,1402¢, 14030, 14048, 14050, 14060

14085 ON CH GOTO 14¢10,140820,14030, 14040, 14050, 14060
36393 T 3 I 3 3 293 I3 99 39 3 I R lAﬂlﬂ PRINT "LEAST—SQUARES THEND"} :RETURN o
14¢2¢ PRINT "SEMI-AVERAGES"; :RETURN
200 REM APPLE II SUBROUTINES 14@3¢ PRINT "PERCENT CHANGES";:RETURN
14P49 PRINT “FIRST DIFFERENCES"; :RETURN o
299 REM * HOME AND CLEAR DISPLAY ¥X 1495@ PRINT "PAST AVERAGES"; :RETURN
3¢@ HOME : RETURN 1406@ PRINT "NONE"; :RETURN
399 REM ** POSITION CURSOR ** o
4P@ IF VT> @ THEN VTAB(VT)
41¢ IF HT> @ THEN HTAB(HT)
42¢ TETURN
No. 75 - September 1984 MICRO 67

Title: Mastering Your Atari Through Eight BASIC Projects
Author: the staff of MICRO magazine, Tom Marshall ed.
Price: $19.95, disk included

Publisher: Prentice-Hall

Using a 'learning-by-doing’ approach the reader is

quickly taught how to write, modify, and expand his own
programs.
A diskette is included which contains complete running
programs to begin with. The eight projects include Micro
Calc, a miniature spreadsheet; Master, a guessing game;
Atari Clock; Word Detective; Atari Player, a music
program; Breakup, an exciting game; Sorting, sorts graphic
bars and telephone directory; Programmable Characters,
add extra plotting resolution while retaining most normal
characters in the Atari character set. Each project is
designed to teach the reader a specific aspect of
programming — string manipulation, BASIC
functions, random numbers and flags, ON...GOSUB,
character graphics, animation, sorting methods, plus
many more. There are listings for all the progrars, clear
operating instructions, examples and figures. Each
programming element is explained with clarity and related
to the project the reader is working on. This book presents
learning and mastery with hands-on experience and fun.
This is the second in a series of ‘Mastering’ books, the first
was for the Vic-20, the next is for the Commodore 64.

Level: Beginner to intermediate.

Title: The Apple Ilc Book
Author: Bill O'Brien
Price: $12.95

Publisher: Bantam Books

Bantam was selected by Apple to be among those who
introduced the Ilc. Providing information that is useful to
novices and advanced users, it includes data not found in
the owner's manual. Compatability, configuration, DOS
3.3 and ProDOS are all covered. The addition of
peripherals features mice, touchpads, graphics tablets, and
the new ‘flat screen.” BASIC {Applesoft) is explained in as
much as one can in three chapters. Graphics is also touch-
ed upon. Telecommunications - i.e. the connections of
modems, bulletin boards, etc. are dealt with in one
chapter. Another chapter is devoted to troublcshooting,
hardware and software problems. The four most used ap-
plications — Word Processing, Databases, Spreadsheets,
and Communications are introduced and reviewed. The
last chapter contains vital information on user groups,
bulletin boards, magazines and books. The appendices
contain hardware information, technical stats and Escape
codes. This books covers a lot of ground and hence is
limited in the depth of coverage. However it does contain
a great deal of useful information and has gathered some
information not easily found elsewhere.

Level: beginner to advanced.

Title: Getting On-Line
Author: M. David Stone
Price: $14.95

Publisher: Prentice-Hall, Inc.

The field of telecommunications is constantly growing
and at a startling rate. Finding out how, what and where is
a time consuming and often confusing task. It is the pur-
pose of this book to help both the novice and old-hand at
sorting out what they need, where to get it, and how to use
it. The first six chapters explain what you need before you
actually go on-line. Chapter 1 Information Utilities — a
look at what is available and where it came from, ex-
amines kinds of information utilities and data bases.
Chapter 2 Hardware Utilities — covers dumb terminals,
smart terminals and computers as terminals. Chapter 3
Hardware I — deals with modems, baud rate, signaling
standards, connecting a modem, direct connect vs.
acoustical connect modems and choosing a modem.
Chapter 4 Software Part I — alook at available features,
computers as dumb and smart terminals, smart terminal
programs; basic features and additional capabilities.
Chapter 5 Software Part I — the nitty gritty, RS-232,
short reviews and helpful hints regarding some popular
micros, CP/M computers, dual processor machines and
modems. Chapter 7 Search Strategy deals with how to go
about organizing your search for information, with tips
that can save you money and time. The rest of the book
consists of a catalog of information and an index. The
catalog is of the various utilities {Dow Jones, The Source,
etc.], and free services {Public Access Bulletin Boards).

Level: Beginner to advanced.

Title: Introduction to C

Author: Paul M. Chirlian

Price: $15.95

Publisher: Matrix Publishers, Inc.

As the title says this is an introduction to the program-
ming language C. It is designed so that even those who
have no previous programming experience will be able to
learn C. Starting out with some basic ideas about com-
puter operation, it moves on to some of the fundamental
concepts of programming in C. Fundamental arithmetic
operations are explained: integer, floating-point, hierar-
chy, mixed mode, constants, etc. The next area is basic
input, output and character operations including the use of
the 'printf’ statement and strings. The author stresses
structured programming and documentation, devoting a
large section of the book to these topics. The debugging
process is outlined, a subject seldom covered. There are a
number of good exercises and over 70 example programs.
Arrays, pointers, and manipulations are covered in detail.
File handling is discussed, input/output redirection, disk
files, and command line input of data. The appendices
contain C Keywords, C Operators, and the ASCII Codes.
Chirlian has chosen to follow the standards set forth by
Brian W. Kernighan and Dennis M. Ritchie in their book
‘The C Programming Language,’ Prentice-Hall,
Englewood Cliffs, N.J. 1978. This book and Chirlian’s are
considered the standard books on C programming.

Level: Beginner to intermediate.

AICRO

68

MICRO No. 75 - September 1984

__W

Name: Computereyes
System: Apple I Series &
Compatibles
Name: Cardboard/5 Memory: 48K pet
System: Commodore 64 :

Language: Applesoft & DOS 3.3
Description: This product allows
greater flexibility of use to switch
select any cartridge slot or
combination of cartridge slots. The
22 color coded lights emit diodes to
give status indication. Each slot has
four LEDS and two toggle switches
for indication and control. It allows
the user supply power to a cartridge
without allowing it to auto-start or
to effect other operations.

Description: This is a slow-scan
device that connects any standard
video source (video tape recorder,
video camera, videodisk, etc.) and
the Apple's game I/O socket. A
multi-scan mode provides realistic
grey-scale images. Included in the
package: interface module, cable,
software support on disk, owner's
manual and also comes with a one
year warranty. Versions for other

Price: $79.95 popular computers will be available
Available: Cardeo, Inc. soon.
31.3}11\([3thewson Price: $129.95 -
Wichita, KS 67214 $10.00 demo disk (not
required)

Available: Digital Vision, Inc.
14 Qak Street - Suite 2
Needham, MA 02192
(617) 444-9040

BOUNTY HUNTER

Journey back with us into the days of Jessie James and
Billy the Kid where the only form of justice was a
loaded revolver and a hangman’s noose. In this full-
length text adventure, you play the role of Bounty
Hunter, battling against ruthless outlaws, hostile
Indians, wild animals and the elements of the
wilderness with only your wits and your six gun.
Average solving time: 30-30 hours. If you love adven-

tures, this one is a real treat. Available for COMMO-
DORE 64, the VIC-20 (with expander), and COLECO
ADAM. See your dealer.

51925,

Published by:

/X%Star -Byte, Inc.

A Drvision of Robinson-Halpern Company

2564 Industry Lane * Norristown, PA 19403 ¢ 215-539-4300

ADAM is a trademark of Coleca, Inc. COMMQODORE 64 is a trademark of Commodore
Business Machines, Inc. VIC-20 is a trademark of Commodore Business Machines, Inc.

No. 75 - September 1984 MICRO 69

Name: Microsport
Microcomputers Model
MMC/02

System: AIM 65, Apple II, Atari
400,800, Commodore

X Name: Cheatsheet
CBM/PET series, KIM-1, System: Commodore VIC 20,
KIM-4, Vic-20, MTU C-64
1300 and motherboards,
Ohio Scientific 600 and Description: These are plastic
others, Synertek SYM-1. laminated keyboard overlays

designed to fit over the keyboard
surrouading the keys with
commands and controls grouped
together for easy references. The
latest cheatsheets available are:
Logo ({sheet 1], Logo (sheet 2,
advanced), Pilot, Easy Calc,
Printer-1526, The Manager,
Multiplan, Practicalc 64 (& plus),
Printer (Epson-RX-80], Superbase
64, The Consultant, Sprites Only
and blanks. This brings the total
cheatsheets available to 33.

Description: The Model MMC/02
is a complete microcomputer on a
4.5 by 6.5 PC board. It features a
6502 microprocessor, 1K Ram
standard, 4K ROM/EPROM socket,
2K RAM or ROM/EPROM
expansion and BUS for ading up to
16 1/0 devices. Three basic versions
are available. The MMC can operate
from a regulated plus 5VDC power
source. The CPU addresses a total of
8K, enough for most control
applications. There is a prototyping

area as well as spare gates. Price: $3.95 plus $1.00 shipping
per order
Price: From $159.00* Available: Cheatsheet Products
Available: R.J. Brachman P:Q Box 8299
Associates Inc Pittsburgh, PA 15218
P.O. Box 1077 (412) 456-7420

Havertown, PA 19083
(215) 622-5495

wmicrobe
EMC

UNLIMITED PROFIT POTENTIAL

WATCH OUT WALL STREET!! Now available on Hloppy disk for . , ,
brokers and active traders. The AMAZING computer program In Micro No. 73 (July] Ian R. Humphreys 'CMPRSS

«STOCKER 1» uses new Moving Window-Spectral algorithrn to fore- i i -
cast stock/commaodity market TURNING POINTS—not mere trend program the following lines should read:
line/moving averages. Affordable! Easy to use!

LSED BY STOCK/COMMODITY BROMERS & ACTIVE TRADERS
Parhaps you t00 ar2 ready for the STOCKER! challenge !

2 8D F6 STA BJP+1
N E W ! Your own perscnal forecast. ggg,? 8D F7 g; STA BJP+2
COMPARE 71cre s JUSE nothing quitte like it «STOCKERT » ilabl
«STOCKER1 » forecast for the Dow Jones available for 92E5 A9 A9 1bA #< MESS1
;g?]nt)srég?:]géerage daily closing with your cur- IEM. PC, PC. o1y XT NSNS 932E A9 EE PRT].A LDA #< MESSlA
Dom Jones neustrias averase APPLE TI.II+,Ile- 7
No cr sorecasc eeriows 16 2T ? 0z 1 @ @ @ @ with Z-8@ card 9 gg 69 FF ADC #$FF
rainLues r % ariar > iissueisserrees TRSE@ MODIII, 4, 9492 85 93 STA NEWPTR+1
557 6F ACTUAL GNG FOREGRST FUR COMPAR 8GN II,12:1€ 45 i 7 mum
5299 WASTER/VIS/ DHECK
INCLUDES FREE HOUR m?“mgf,, SEAVICE NOTE: It is the policy of Micro to not include all of the
hex code for assembled text. Due to space limitations we
ENGINEERING include only the first three bytes of the assembled
T o e MANAGEMENT message. This practice is carried throughout all of our
TN CONSULTANT assembler listings. We apologize for any confusion this
B R St e . .
ours may have presented and also any inconvenience to those
LV e T DEURT b0 Boxan who are not using an assembler.
WEEKLY / MONTHLY / QUARTERLY too
Invest Trade Options Futures Fairfax, Va. 22030
Dmes your brower sees STOCKERLD ° Tel.: (703} 425-1296.

70 MICRO No. 75 - Saptember 1984

——byre byzes

by Mark S. Morano

It all started two months ago when I received a call
from the BES (Bureau of Encryption Services). They were
having trouble with data security between their micros
and mainframes. The problem was thought to be origin-
ating from inside. Regardless of what new encryption
methods were developed, the unknown informant would
render them useless. And so the Bureau had decided to
seek outside help. Due to our years of experience in the
field, Micro was given the job. Our resident expert in
this area, Mike Rowe, was assigned the task of developing
new encryption methods that would prove effective
against prying thieves.

All went well until three weeks ago when Mike went
on vacation. He called on the day he was to return saying
he'd been delayed by a death in the family. We immed-
iately informed the BES of the delay and the reason for it.
The following day the Bureau contacted his family. They
hadn't heard from him. Needless to say there had been no
funeral. We were told to call the Bureau immediately if we
heard from Mike. They assured us that they would locate
him, but a week passed and still no sign of Mike. I began
to worry. I have known Mike for a long time and knew he
wasn't the kind of guy to up and disappear. The whole
thing sounded strange. That is, until the other night.

I was working late, downloading some files from a
local mainframe we use for mass storage. While looking at
the catalog I noticed a file named 'test.mr’. It was nothing
unusual to find a test file, but we never used the extension
‘mr’. T downloaded the file to check it out. At first it
seemed to be a garbled mess, as though something strange
happened during transmission. I decided that there must
have been a surge on the wires, or a lost handshake
somewhere, so I downloaded again. As I did I thought
about the strange extension — ‘mr’ — of course, Mike
Rowe — it must be one of his work files, but he always
named his ‘temp.tst’. I started to examine the file more
closely; it still seemed like a bad transmission to me.
Perhaps I would find a clue on his desk. After ummaging
around piles of paper, [found what I was looking for, a
folder marked'Top Secret’ in big red letters with hand-
painted stars and spaceships scattered about. With folder

in hand I went back to my desk. I printed out Mike's file,
carefully perused it, and then started pouring through the
‘Top Secret’ folder in hope of an answer. As I sifted
through countless encryption methods, I suddenly came
upon one dated three days before Mike went on vacation.
He had mentioned he was onto something hot and had
pulled an all nighter the Thursday before he left. As I
compared his examples and ‘test.mr’ I knew I had it. Two
hours later I had decoded the mystery file.

At first I thought it was a gag, but it scon became
evident it wasn't. The text explained that he had been
picked up by a couple of woman; the next thing he
remembered was passing out. He woke to find himself
locked in a room with a desk, a couple of terminals, a
printer and a modem. He was instructed over an intercom
to recompose the latest encryption method he had devised.
He was able to convince his captors that he had to access
some files from the mainframe Micro used. While online
he sent over this dummy work file I had found. I later
found out he had given this new encryption method to the
Bureau before he left for vacation. It seems that now
someone else wanted it too. Mike stated in ‘test.mr’ that
his method would be used to send important data over the
lines sometime during the next month. He asked me to in-
form the Bureau of his plight, destroy 'test.mr’ and any
files associated with his work. His last request was that I
quickly come up with some alternate encryption methods
for the BES to use in place of his.

Well, in all honestly, [have limited experience in this
area. So 1 decided to tap the brains of some people I know.
After considering different suggestions, I finally came to
the conclusion that you, the readers of Micro, could prob-
ably help the most. By gathering a variety of encryption
methods, I could distill one final product that would
ensure security and stymy any intruder. And so, I ask you
to help me out in this time of need. Please send your
encryption schemes and solutions to me, using the sen-
tence 'When the crow flies west, the sun shall set in the
east.’ Any encryption methods you can or have devised
will be of great value and an important link in forging a
chain that only Mike Rowe himself could crack.

No. 75 - September 1984

MICRO 71

H
it
E
‘
|
|

Coming in October —
< ’
Advertiser’s Index
Analog R 6 — . .
O Plotting B
Call APPLE oo 1 otting Binary Trees
- by Luther K. Branting
Cardco, Inc. 69 Cravhic disol f ke decisi hs ai
Cheatsheet Products 70 raphic displays o tljee'h Ae ecision paths aid
Digital Vision 69 using and understanding this type of graph
Engincering Management 70 =
Hayes Microcomputer Products Back Cvr L Fat Bit Map Plotting
JQB Enterprises, 46 by Loren Wright
Lazerware 35 Assembly language routines to support bit map
MICRO 60,1ns Back Cvr plotting on the Commodore 64
Micro Motion oL 8.30
M¥cr0 Techpolqu FJnhmlted 3 0 Data Base Comparisons
Micro-W Distributing L. 17 ..
. . by Sanjiva Nath
Midwest MICIO 9 Di X £ the f look for i lecti
Nikrom Technical Products 2 1scussion of the leatures to 00. Orinselecting
Performance Micro 17 a data base manager for your micro
Progressive Peripherals, 12
Protecto 38,39,40,41,42,43 U Rational Joystick Interfacing
Quantum Software 45 by Charles Engelsher
RJ. Brachman 70 A 'built-it yourself’ project to add a joystick to
S-C Software ... 45 our system and learn about A/D conversion
y y
Skyles Electric Works Ins Front Cvr
Spcci;lty Electronics ;; O FORTH Input Utility
tar Byte 6 b .
3 e N y Mike Dougherty
Such-A-Deal Software ... 53 A method of providing interactive text input for
better applications
Solution to last month’s (#74 July)
Lyte Bytes puzzle.
\
¢[BIR | lo
QIRIE
RIAIS|E Al
E | ITIV|E]Y
T A
ARAIEE I IXTEIL
'] AT EIRIN|E
P 0 C|AlCIHIE
E l MVILIAIT
LA D
\
R glel)
PL/IA
0 S1A /
| [T|A AlR
0 E
clir
L]
MICRO No. 75 - September 1984

This famous book now contains the most comprehensive description of firmware
and hardware ever published for the whole Apple Il family. A new section with
guide, atlas and gazeteer now provides Apple lle specific information.

* Gives names and locations of various Monitor, * Allows easy movement between BASIC and
DOS, Integer BASIC and Applesoft routines and Machine Language
tells what they’re used for * Explains how to use the information for easier,

* Lists Peeks, Pokes and Calls in over 2000 better, faster software writing
memory locations

This expanded edition is available at the new low price of only $19.95

For the 35,000 people who already own previous editions,
the lle Appendix is available separately for just $5.00.

S et S S D D G S S Y 0 D D S e S A R S S S S D D A D D e D S G5 A S e S S G S G0 G S e e - e

Please send me:
What’s Where in the Apple @ $19.95 ea.

'
1

'

1

i

(Plus $2.00 per copy shipping/handling) Name H

]

1

Apple /le Appendix @ $5.00 ea. - Address :
(includes shipping charges) 1

1

Mass residents add 5% salestax$ _____ City State Zip !

Total Enclosed $ ______ Signature

] O Check O VISA O MasterCard
For faster service

'
1

1

1

1

1

i

Phone 617/256-3649 E
—

1

1

1

!

Acct # Expires

- MICRO, P.O. Box 6502, Chelmsford, MA 01824

"My Apple’s
telephone just
called up the

home office!”

Communicating is so easy with a com-

plete telecomputing system from Hayes.

Just f)lug it in—and the world is your

Apple. Hayes Smartmodem 300™ is the
convenient direct-connect modem for
the Applellc. And Hayes Micromodem
Ile*is the easily installed board modem
for the Applell, Ile, 111, and Apple Plus.
Packaged with Smartcom ™

companion #

software,

both provide !
a complete
telecomputin
system. And best of all, both systems
are from Hayes, the established tele-
computing [eader!

We connect you to all the right
places. Bulletin boards, databases.,
information services—naturally. And
that's just the beginning. Let your
A;éf)le plan your travel itinerary,
including flight numbers, hotel and
rental car reservations. Watch it
retrieve and analyze daily stock and
options prices. Work at home and
send reports to and from your office.
You can even do your gift shopping
by computer!

Would you care to see our menu?
Make your selection. Really. With
Smartcom I, you just order up what

Smartmodem 300 and Smartcom | are trademarks and Micromodem Ie is a r
Apple Computer, Inc. Touch-Tone is a registered service mark of American Telephone and Telegraph. C

.\\'_."s(.\ - -"_ y_ ti‘i-\ } A .

you want to do. The program guides
you along the way. You can create, list,
name, send, receive, print or erase
files right from the menu. From the
very first time you use it, you'll find
telecomputing with Hayes as easy
as apple pie!

We've got your number! We know

that you want a system that's flexible,
W versatile and accommo-
dating The Smart-

— modem 300/Smartcom I

WW ‘ ; system accepts ProDOS™
DOS 3.3, Pascal and CP/M"operating

systems. The Micromodem Ile/
Smartcom I system accepts DOS 3.3,
Pascal and CP/M operating systems.
Smartcom I also provides you with
a directory of the files stored on your

disk. And will answer calls to your sys-

tem, without your even being there.
Your %)ple s telephone goes any-
where the phone lines Fo. Hayes
modems allow your Apple to commu-
nicate with any Bell-103 modem
over ordinary telephonelines. You
simplirl connect directly into a mod-
ular phone jack, to uﬁ’se orm both
TouchTone*and pulse dialing. Hayes
Smartmodem 300 and Micromodem
Ile both transmit at 110 or 300 bits per
second, in either half or full duplex.

jstered trademark of Hayes Microcomputer Products, Inc.
I’fﬁsis aregistered trademark of Digil

Follow the leader. Over the years
we've built our reputation as the
telecomputing leader by developing

uality products that set industry stan-

gards. Now we invite you to see for
yourself {'ust how simple it is to add
erful, easy to use telecomputing
capabilities to your Agple computer
with a complete, ready-to-go system
from Hayes. Visit your Hayes dealer
for a hands-on demonstration. And
geton line (i ===
with the
wlc_)lrld.
ayes,
We'rzehere

Ha{es Microcomputer Products, Inc.
5923 Peachtree Industrial Blvd.
Norcross, Georgia 30092. 404/441-1617.

A;plple is a registered trademark, and ProDOS is a trademark of

Research. Inc. ©1984 Hayes Microcomputer Products, Inc.

’

F 4

