
HES MON
Hy T«rry Peterson





HES tVDN

By Terry Peterson

I. If You've Never Used a 'Machine Language Monitor1 
Before.

The following section is intended for people who are 
unfamiliar with the uses of a machine language 
(M.L.) monitor program. However, it is not a 
tutorial in the architecture of the VIC or the 6502. 
Nor is it intended to teach 6502 assembly language 
programming. In fact, some knowledge of assembler 
language will be most helpful. It IS intended to 
help the beginner get started in using HESMDN. Even 
those who know nothing about the 6502 or the VIC 
will find some of HESMDN's corrmands useful (see, for 
example, the Interpret Memory corrmand).

If you are familiar with the VIC's screen editor, 
you should have no trouble entering and editing 
HESMDN commands. HESYDN corrmands are entered and 
edited just as are BASIC direct mode corrmands. They 
consist of a single character usually followed by

(C) 1982 Human Engineered Software 1



one or more 'parameters' and a RETURN. The 
parameters consist of hexadecimal numbers or 
character strings and are separated from one another 
by spaces. With one exception (the '#' command) 
numeric parameters must be hexadecimal and do not 
need to be prefixed with '$'. String parameters are 
identified by enclosing them in double quotes (").
If HESYDN doesn't understand a corrmand it will print 
'?', usually just to the right of the bad corrmand.
If the corrmand is understood, but the result is 
inpossible or illegal, e.g., trying to save HESYDN
itself on tape, HESYDN prints a '?' on the following
1 ine.

To use HESYDN, turn your VIC off, insert the HESYDN 
cartridge into the expansion slot in the VIC and 
then turn the power on. You will see the HESYDN 
version number, the programmer's name, the H.E.S. 
copyright message, and the 'cold start' register 
display:

C*
PC IRQ SR PC XR YR SP

;0000 EABF 27 00 00 00 FA

The meaning of this rather cryptic display is as 
follows: The first line 'C*' identifies a cold start 
of HESYDN, that is, starting up from power-on. The 
next line identifies the pseudo 6502 registers 
maintained by HESYDN:

PC = program counter
IRQ = interrupt request vector
SR = status register
PC = accumulator
XR = X register
YR = Y register

2 (C) 1982 Human Engineered Software



The register contents are shown on the third line. 
The quantities shown in the register display (except 
the IRQ) are not the actual register contents, they 
are the numbers HESMDN will use to set the 6502 
registers when instructed to begin execution of a 
M.L. program. IRQ is not a 6502 register, but a RAVI 
'vector' that points to an IRQ interrupt service 
routine. Beginners may ignore this location - but 
better not change it! The ';' at the beginning of 
the last line is really a HESMDN corrmand. It tells 
HESIVDN (if the RETURN key is pressed with the cursor 
on this line) to put the seven numbers that follow 
into the corresponding pseudo registers. Just before 
beginning execution of a M.L. program HESIVDN copies 
the pseudo register contents to the 6502 registers. 
So, for example, i f we want t h e V I C t o p r i n t  'HI.', 
we could first move the cursor up to the line
and alter it to read:

1200 EABF 27 48 49 2E FA

When we press RETURN, the 6502 pseudo program 
counter is set to $1200; while the accumulator, and 
X and Y pseudo registers are set to $48 (ASCII H), 
$49 (ASCII I), and $2E (ASCII .). Now, if we write a 
program at $1200 to print the PC, XR, and YR it will 
print 'HI.' when we execute the HESMDN Go corrmand. 
Let's write such a program using the HESIVDN Simple 
Assembler corrmand, 'A'. Type in the following lines:

A1200 JSR FFD2 
TXA
JSR FFD2 
TYA
3SR FFD2

SP = stack pointer

(C) 1982 Human Engineered Software 3



BRK

The 'A' beginning the first line tells HESIVDN we 
wish to assemble, that is, translate assembly 
mnemonics into machine code. As you press RETURN 
after typing each of the above lines, you will see 
HESIVDN reprint the line, showing the machine code 
generated from the assembly language instruction. 
HESiVDN will then prompt for the next line of program 
by printing the 'A' comnand and the next available 
address followed by a space. So you don't have to 
keep track of what the next address is, just type in 
the assembly language instructions. When you've 
finished the program, just press RETURN and HESiVDN 
will exit this mode. By the way, $FFD2 is one of the 
'Kernal' routines in the VIC's RCMs. It prints the 
contents of the accumulator to the current output 
file--the screen in this case. For further
information on this and other useful RCM routines,
consult the "VIC-20 Programmers' Reference Guide" 
published by Corrmodore.

Now type 'G' and hit RETURN. You should see:

G
HI.
B*

PC IRQ SR PC XR YR SP
;120C EABF 30 2E 49 2E FA

Notice after the 'HI.' is another register display, 
the break entry display identified by 'B*'. This 
means we've re-entered HESiVDN by executing a BRK 
instruction--the one at the end of our short 
program. Now examine the register contents. The PC 
points one address higher than the BRK instruction. 
The X and Y registers and stack pointer are

4 (C) 1982 Human Engineered Software

1



unchanged. The accumulator now has the $2E 
transferred into it by the TYA instruction at $1207. 
Let's play with this a bit. Type 'D1200 120B'. This 
corrmand instructs HESIVDN to 'disassemble' the 
program you just entered.

Now, move the cursor to the last line, at address 
$120B, and type the following, with the 'A' 
replacing the ',' (also be sure to blank out any 
characters left on the screen after the '8'):

A120B LDA #48 
JMP 1200

We now have a M.L. program that will print 'HI.' 
forever--or until we stop it. Type 'G1200'. Wien you 
tire of watching the stream of 'HI.HI.HI.'s , press - 
no, not the STOP key - the RESTORE key by itself.
The RESTORE key is HESiVDN's super-STOP key. It will 
halt just about any M.L. program (except HESMDN 
itself) when HESiVDN is plugged in. (Exception: If 
you attempt to use RS232 files all bets are off. 
Also, correct operation of RS232 files is not 
guaranteed with HESM3N installed.) To get back to 
our exarrple: after pressing RESTORE you should see a 
clear screen with the following:

S*
PC IRQ SR AI XR YR SP 

;XXXX EABF XX XX XX XX XX

This is the RESTORE entry display, identified by the 
'S*'. The X's are not actually what you will see.
The register contents will depend upon exactly when 
you pressed RESTORE.

If you want to enter a series of bytes into memory,

(C) 1982 Human Engineered Software 5



use the Memory Modify corrmand (:). For example, to 
enter the sequence $01, $02, $03, $04, $05, $06, 
$07... starting at $1234, you type:

:12340102030405060708

HESMDN will respond by reprinting the line with 
alternate bytes in reverse field. Then HESMDN w i 11 
prompt for another line by printing the next 
available address. As with the Assemble comnand, you 
may exit by typing RETURN. Note that this is one of 
the few exceptions to the rule of separating 
parameters with spaces. (There isn't room for the 
spaces on the VIC screen.)

Besides entering programs and data into memory, one 
of the functions of a M.L. monitor is to examine 
programs and data already in memory. HESMDN has 
several corrmands for this purpose; including 
Disassembly (D), (Memory Display (M), and Interpret 
Memory (I). These three corrmands are special in that 
the cursor-up and cursor-down key may be used to 
'scroll' their displays forward and backward through 
memory. The action of this scrolling is easier to 
use than to describe. Think of the text on the 
screen as being on a drum which may be rolled up or 
down using the cursor up/down key. The scrollable 
display type found closest to the edge of the screen 
where new lines will appear is continued in the 
scroll direction. I said it was hard to describe!
Try it. Just type 'DCAD7' and hit RETURN. Then press 
and hold the cursor-down key. To scroll up, go to 
the top of the screen and then hold down the 
cursor-up key.

Other corrmands al low you to hunt for a 
particular sequence of bytes in memory (H), compare 
two blocks of memory for differences (C), or

6 (C) 1982 Human Engineered Software



transfer a block of rremory to a different location 
(T). There are also two advanced functions: 
N--relocate absolute memory references in a program 
and E--change the external references in a program. 
Finally, there are number base conversion and 
hexadecimal arithmetic functions.

(C) 1982 Human Engineered Software



II. Alphabetical List and Description of HESM3N 
Commands.

The following section lists the HESiVDN corrmands in 
alphabetical order describing each in detail and 
giving example(s) of its usage.

A - The Simple Assembler

The HESIVDN simple assembler provides an easy way to 
enter short M.L. programs. It does not have all the 
features found in a complete assembler such as 
HESBAL in HES's 6502 Assembler Package for the VIC, 
but it provides increased convenience compared to 
PCKEing from BASIC or entering hexadecimal codes 
using a more primitive monitor. The syntax of 
HESIVDN's Assembler corrmand is as follows:

A 1111 MVM OOOOO

where '1111' is a four digit hexadecimal address in 
the VIC's RAW, '.VMvV is a standard three character 
assembler mnemonic for a M.L. operation code 
(op-code), such as JSR, LDA, etc. '00000' is the 
'operand' of the op-code. It is beyond our scope 
here to discuss fully the meaning of these 
pararreters--for a complete discussion, consult a 
book on 6502 assembly language programming. See 
Section I for a simple example of A's usage. Notice 
that since all numeric operands MJST be in 
hexadecimal notation the customary '$' preceding 
these numbers is optional; as is the ',' preceding 
'X' or 'Y ' in indexed instruction operands. If 
HESIVDN understands the line, it will reprint it 
showing the corresponding byte(s) of M.L. between

8 (C) 1982 Human Engineered Software



the address and the assembly code. HESiVDN will then 
prompt for the next line of assembly code by 
displaying the next address followed by a space and 
the input cursor. If HESiVDN cannot interpret the 
line, it will print a '?' instead of prorrpting for 
the next line. For example, you type:

A 1200 LDA #41

HESiVDN responds by overprinting your line and then 
prompting for the next line as follows:

A 1200 A9 41 LDA# $41
A 1202

B - Breakpoint Set

There are three different methods to return to 
HES\DN from a M.L. program. The Breakpoint Set 
corrmand is one of them. This corrmand allows you to 
designate an address in a program as a 'breakpoint,' 
that is, a place where the program is to be halted 
and control is to be returned to HESMDN. Breakpoint 
Set also allows you to specify the number of times 
the instruction at this address is to be executed 
before the breakpoint is activated. The breakpoint 
defined with Breakpoint Set is effective ONLY when 
the VIC is executing HESMDN's Qjick Trace corrmand. 
For example, to halt a program, that starts at 
address $1200, on the fifth repetition of the 
instruction at address $1234, you would type:

B 1234 0005 
Q  1200

The first line above sets the breakpoint at $1234

(C) 1982 Human Engineered Software 9



and the repeat count to five. The second line 
initiates the Quick Trace mode of program execution 
(see the Quick Trace corrmand). When address $1234 
has been reached for the fifth time HESIVDN will halt 
execution of the program, display the current values 
of the 6502 registers, and enter the single-step 
mode of execution (see the Walk command).

The second method to return to HESiVDN from a M.L. 
program is to insert a 6502 'BRK' instruction into 
the program. Obviously, since this method requires 
program modification, it may be used only with 
programs in R/Wl. Finally, HESiVDN may be called by 
simply pressing the RESTORE key. In either of these 
last two cases HESIVDN will be re-entered whether or 
not the Quick Trace mode was active. If a BRK 
instruct ion was encountered, the 'break' entry 
register display will be printed showing the 
contents of the 6502 registers. Similarly, if the 
RESTORE key is pressed, the RESTORE entry register 
display is shown. In the latter case, the screen is 
cleared first. The RESTORE key method of HESMDN 
re-entry will work any time the HESiVDN cartridge is 
plugged in--unless an RS232 file has been accessed 
or the 6502 has atterrpted to execute an undefined 
op-code (one that disassembles as '???'). After an 
RS232 file has been attempted HESIVDN may be 
re-entered from BASIC via a BRK instruction. Type 
'SYS8' to cause a break entry.

C  - Compare Memory Blocks

This corrmand corrpares two sections of memory and 
reports any differences by printing the address of 
one member of the mismatched pair(s). The syntax is 
as follows :

10 (C) 1982 Human Engineered Software



C  1111 2222 3333

where 1111 is the start address of the first 
section, 2222 is the end address of the first 
section, and 3333 is the start address of the second 
section--the one to be compared with the first 
section. This corrmand may be stopped (in case a 
large number of .addresses are printed) with the STOP 
key. For example, suppose you have two disk files 
containing (you thought) the same M.L. program 
residing at locations $1400 to $147F. However, when 
you used the BASIC corrmand VERIFY, it said 'VERIFY 
ERROR'. Naturally, you wonder just where the 
difference is. VERIFY can only tell you they differ
SCM: WHERE. Compare (Memory Blocks may be used to find
out: First use HESIVDN's Load corrmand to load one of
the files (See Load). Then move that program to
$1500 using the HESIVDN Transfer Memory Block 
corrmand: T 1400 147F 1500. Next Load the other file. 
Now compare the two files using Compare Memory 
Block:

C 1400 147F 1500

HESiVDN will print a list of all the memory locations 
which differ between the two programs.

(C) 1982 Human Engineered Software 11



D - Disassemble Memory

This corrmand is the inverse of the Assemble command. 
It interprets memory contents as M.L. instructions 
and displays the assembly language equivalent. 
Disassemble is used in two distinct ways. First, it 
may be used to disassemble a section of memory by 
specifying an address range, such as:

D 1111 2222

where 1111 is the start address and 2222 is the end. 
This type of disassembly is convenient when used in 
conjunction with HESMDN's Output Divert command to 
produce a hardcopy listing of a M.L. program.
Second, the disassemble command may be started by 
entering a single parameter, the beginning address:

D 1111

This mode is handy for examining a M.L. program on 
the screen because, once the first line is 
displayed, preceding or subsequent lines of code may 
be disassembled by pressing the cursor-up or 
cursor-down key respectively.

You may alter a program in RAM using the Disassemble 
command's output. If you move the cursor to the line 
you wish to alter, change the byte display (not the 
mnemonic), and press return; HESMDN will alter the 
memory contents and retype the line showing the 
altered bytes and the corresponding disassembly.
Then HESiVDN will prompt for the next line by 
printing the next address and leaving the input 
cursor on the same line. To exit this mode type 
RETURN, just as with the Simple Assembler command.

12 (C) 1982 Human Engineered Software



E - External Relinker

This corrmand is rather difficult to understand, but 
the effort is worth it! Basically, this corrmand 
facilitates the transport of M.L. programs from one 
6502-based computer to another (PET, VIC, etc.) by 
translating the system calls of one computer to 
those of another. Of course the capabilities of 
these computers are different so one cannot always 
achieve a perfect translation, but at least a 
functioning version can be made without completely 
rewriting the program. The heart of this conmand is 
a table of corresponding addresses. This table 
contains four-byte entries consisting of pairs of 
addresses. These address pairs are the addresses in 
the respective computer operating systems that 
perform a given task. Typically these will be 
addresses in the ROM firnrware of the computers. The 
correspondence table must be supplied by you. Lists 
of corrmon RCM routine addresses in various 6502 
computers have appeared in several places, most 
notably in COMPUTE! magazine (e.g., "VIC Memory Map 
Above Page Zero", GCMPUTE! Vol. 4, No 1, p. 181) 
and, for the PET, in "PET/CBM Persona 1 Computer 
Guide" by Osborne and Donahue.

For example, suppose you have loaded a M.L. program 
intended to run in a PET with BASIC 4.0 ROMs. We 
will assume it is in locations $1200 to $13FF. Many 
of its external subroutine calls are probably of the 
form JSR $FFxx. The subroutines at these addresses 
are all almost identical in function to those of the 
same address in the VIC because these entry points 
are in a 'jump table' set up for the purpose of 
standardizing system calls between the different 
PET/CBM and VIC ROM sets. So what's the problem? Any 
subroutine call in the address range $B000 to $FF00

(C) 1982 Human Engineered Software 13



probably also has an equivalent in the VIC, but it's 
at a different address! This is where External 
Relinker comes in. External Relinker will find such 
subroutine calls and replace them with the 
corresponding VIC RGV! routine calls--if we can 
identify the correct replacement (this is where the 
published RCM maps come in). If we already have a 
correspondence table constructed in an earlier 
session with External Reiinker, we sirrply load it 
using the Load corrmand. But, if we don't have a 
table, External Relinker will use our answers to its 
queries to construct one we may save for future use. 
For the present example, suppose we have no table, 
just two RCM maps. We want to construct a table 
starting at $1000, so we start it by entering four 
zeroes (four zeroes denote that that is the last 
entry in the table) using the Fill Memory Block 
corrmand:

F 1000 1003 00

Then we start External Relinker:

E 1200 13FF 1000 B000 FF00

The first two parameters tell External Relinker 
where the start and end of the program we are 
working on are. The third says where the 
correspondence table starts. The last two give the 
address range we're interested in relinking. At this 
point External Relinker will start disassembling our 
program from $1200 to $13FF, looking for references 
to addresses in the specified range of $B000 to 
$FF00. When it finds such an address It will first 
consult the correspondence table which starts at 
$1000 - if no entry for the address is found, it 
will show the disassembled line containing the

14 (C) 1982 Human Engineered Software



unknown address and wait for the entry of the 
correspondence address. We will look up the PET 
address in the published table, find its equivalent 
in the VIC table, type the VIC address over the one 
on the screen, and press RETURN. HESiVDN will add the 
new correspondence to its table, alter the address 
reference in the program and then continue its 
search. On the next occurence of this address HESIVDN 
will automatically make the specified replacement.

F - Fill Memory Block

This corrmand is used to set a section of memory to a 
particular value. The syntax is as follows:

F 1111 2222 33

where 1111 and 2222 are the first and last addresses 
(inclusive) of the section to be filled and 33 is 
the hexadecimal quantity to be written. See, for 
example, the usage in the example of External 
Relinker.

G - Go (execute program)

This corrmand transfers control of the VIC to a M.L. 
program; that is, it starts execution of the M.L. 
program. It may be used with or without an address 
parameter. If no address parameter is given, 
execution is begun at the address shown in the 
program counter (PC) of the Register Display 
corrmand. For example you may exit HESMDN and 'warm 
start' BASIC by typing:

G C474

(C) 1982 Human Engineered Software 15



The VIC w i 11 respond, "READY.". For another example, 
see Section I.

H - Hunt for a Sequence

This corrmand locates a specific sequence of bytes in 
memory. It has two forms, as follow:

H 1111 2222 33 44 55 ___
H 11 1 1 2222 "A6CDE___ "

where 1111, 2222 are the first and last addresses of 
the range of memory to be searched and 33, 44, etc., 
are the hexadecimal byte(s) to be found, separated 
by spaces. The second form allows the bytes to be 
specified as characters enclosed by quotes. For 
example to find all subroutine calls to the 
character output routine ($CB47) in the VIC RCM's we 
would type:

H C000 FFFF 20 47 CB

HESiVDN responds with a list of all such subroutine 
calls. Note that, as usual, the low and then high 
order bytes of the address were specified.

To find all occurences of the string 'READY' (there 
is only one, at $C378), we would type:

H COOO FFFF "READY"

I - Interpret Memory

This corrmand displays the contents of memory as 
'ASCII' characters. It is similar to the Memory

16 (C) 1982 Human Engineered Software



Display command except that it shows sixteen 
characters per line. It may be used with either one 
or two parameters and its output may be scrolled 
just as with the Disassemble corrmand. For example, 
to see the table of BASIC's keywords and error 
messages, type:

I C000 C300

L - Load 'Program'

This command 'loads' (i.e., reads) a 'program' into 
memory from an external device such as tape or disk. 
The loaded material need not actually be a program. 
For example, it may be a section of memory 
containing a data table for External Relinker that 
was saved to tape or disk using the Save corrmand. 
However, the most common use of Load is to retrieve 
M.L. programs from tape or disk. Note that HESMDN's 
Load should NCT normally be used to load a BASIC 
program. The syntax of Load is as follows:

L "programame" 11

where 'programname' is the name of the file to be 
loaded (be sure to include the double quote marks) 
and '11' is the device number from which to load. If 
the device number is omitted, the tape drive will be 
assumed; if the filename is also amitted, the first 
file found on the tape will be loaded. For exarrple:

L "YAHTZEE" 08

The above loads YAHTZEE from device eight, the disk 
dr ive.

(C) 1982 Human Engineered Software 17



This comnand displays the contents of memory in 
hexadecimal notation. It is similar to the 
Disassemble corrmand in that it may take either one 
or two addresses as parameters. The two-parameter 
form displays from the first address to the second; 
the one-parameter form shows eight bytes beginning 
with the address given. Also like the Disassemble 
comnand, the output of Memory Display may be 
scrolled up or down with the cursor-up and 
cursor-down key. For example:

M  C 000 C040

shows from $C000 through $C047 in hex, eight bytes 
per line. To see more, press cursor-up or -down.

N - New Locator

This corrmand is a relative of the External Relinker 
comnand. It has a different general purpose, 
however. New Locator is designed to convert absolute 
address references in a M.L. program from one memory 
range to another. It is typically used following a 
Transfer Memory Block corrmand to relocate a program 
in memory. For example, suppose you have just moved 
a M.L. program from $1200-$1280 to $1300-$1380 using 
T. Any address references within the program now 
point $0100 too low. New Locator can fix this. Type:

N 1300 1380 0100 1200 1280

The meaning of the above line is as follows: 
Disassemble from $1300 to $1380 checking for 
addresses in the range $1200 to $1280. Add $0100 to 
any such addresses. If we had moved a table of 
addresses, for example a 'jump table' (pairs of

18 (C) 1982 Human Engineered Software



numbers of addresses, low byte followed high byte), 
instead of actual machine code; we would put a 'W' 
following the last parameter to tell New Locator to 
treat the memory contents as pairs of address bytes 
rather than M.L. . The general syntax for New Locator 
is the fo1lowing:

N 1111 2222 3333 4444 5555 [W]

where 1111 and 2222 specify the actual memory range 
to scan, 3333 is the 'offset' to add to adjusted 
addresses, 4444 and 5555 specify the address range 
of references which are to be adjusted, and W  (if 
present) specifies that the scanned range is a table 
of 'words' with no op-codes. If not in the 'word 
table' mode, New Locator will halt and display any 
line of machine code it can't disassemble.

O  - Output Divert

This command is HESIVDN's equivalent to BASIC's GVE) 
corrmand. It allows HESIVDN's output to be printed on 
the VIC printer or stored in a disk file instead of 
being displayed on the screen. This is the preferred 
method to get HESIVDN's output on a device other than 
the screen. Output Divert has a number of options. 
The complete syntax of the command is:

011 22 "f ilename"

where '11' is the device address where the output is 
to be sent (normally 04 for the printer), '22' is 
the 'secondary address' of the device (typically 02 
to 0E for the disk drive), and 'filename' is the 
filename to be used for storing the output (see your 
disk drive documentation). All of these parameters

(C) 1982 Human Engineered Software 19



are optional. If you merely type 'O' HESIVDN will 
open a file to device 4, the printer, and start 
diverting its output. If you type 'O' when the 
output is already being diverted, the file will be 
closed and the output will be directed to the screen 
again. That is, typing 'O' 'toggles' Qjtput Divert 
on and off. If you want explicitly to revert to 
screen output, type '03F'. The secondary address and 
filename default to 'none' since they are not needed 
by the printer. For more information about filenames 
and secondary addresses, consult the documentation 
for the device to which you wish to divert HESMDN's 
output.

P - Print Screen

This command is a limited version of Output Divert. 
It copies the current screen display to printer or 
disk. It's just like having a snapshot of the 
current screen image. The parameters of Print Screen 
are the same as for Output Divert, except there is 
no toggling because Print Screen automatically 
reverts to screen output at the completion of the 
screen copy. Note: Print Screen will 1SDT copy high 
resolution graphics.

Q  - Quick Trace

This corrmand is used after the Breakpoint Set 
corrmand in debugging M.L. programs. It takes one or 
zero parameters just like the Go corrmand. If 
specified, the parameter gives the address at which 
to begin execution. If omitted, execution begins at 
the PC shown in the register display. The difference 
between Qjick Trace and Go is that a breakpoint,

20 (C) 1982 Human Engineered Software



defined with the Breakpoint Set command, is only 
recognized in the Quick Trace mode of execution--the 
breakpoint will be ignored if execution is begun 
with the Go command. Program execution is much 
slower with Quick Trace than with Go because Quick 
Trace is really just a fast version of the Walk 
(single step) corrmand. Using Quick Trace, 
instructions are executed one at a time and HESIVDN 
is re-entered after each. This process continues 
until the defined breakpoint is reached. For an 
example of Quick Trace usage, see the Breakpoint Set 
corrmand.

R - Register Display

This command displays HESMDN's current 6502 pseudo 
register contents as well as the current interrupt 
request (IRQ) RAM vector. The IRQ vector is shown as 
a convenience to the programner who wishes to use 
this vector to run interrupt-driven or 'background' 
routines. This vector may be altered like any of the 
register contents; however, extreme caution must be 
exercised in so doing because the replacement is 
made IMVEDIATELY, not at the time of execution of a 
Go corrmand. Therefore, the interrupt handling 
routine must be in place BEFORE the IR3 vector is 
al tered.

There are no parameters for the Register Display 
command, just type 1R'. To alter the register 
contents, move the cursor to the line beginning with 
';' and overwrite the display. Then hit RETURN and 
the contents will be altered. Note that the display, 
except.as noted for the IK3 vector, shows the 
contents of the 6502 registers at the time HESMDN 
was entered. These registers will be set by HESMDN

(C) 1982 Human Engineered Software 21



to the values shown in the register display just 
prior to beginning execution of a program using the 
Go, Qjick Trace, or Walk commands. For a fuller 
discussion of the meaning of this display, see 
Sect ion I.

S - Save 'Program'

This corrmand saves the contents of a specified range 
of memory to an external device as a non-relocating 
'program' file. The 'non-relocating' part means that 
the program may be reloaded from tape using BASIC's 
LCAD command. The syntax of Save is as follows:

S "filename" 11 2222 3333

where 'filename' is the filename to be used (don't 
forget the double quote marks), '11' is the device 
number on which to save (01 for the tape and 08 for 
the disk drive). '2222' is the beginning address. 
'3333' is the last address PLUS ONE of the memory 
area to be saved. All the parameters must be given, 
except that in tape saves the 'filename' may be null 
(""). For example, to save a M.L. program residing 
from $1 500 to $1DFF to the disk as 'APROCRAVi' , type:

S "APROGRAvl" 08 1500 1E00

Again, notice the last parameter is one byte higher 
than the last program address. Also, note that 
HESMDN's Save should 1SOT be used to save BASIC 
programs because HESM3N saves programs as absolute, 
not relocatable, files.

22 (C) 1982 Human Engineered Software



T - Transfer Memory Block
This comnand transfers the contents of a block of 
memory to another area. Its syntax is as follows:

T 1111 2222 3333 
where 1111, 2222 are the first and last address (not 
last-plus-one) of the block to move and 3333 is the 
starting address where the block is to be moved to.

U - (Test Color RAVI)
U has no parameters. It tests the color RAM for 
proper function and prints 'CK' if they are working. 
If there is a bad byte, its address will be printed.

V - Verify RAM Function
This comnand tests a section of RAM for proper 
function. Its syntax is:

V 1111 2222
where 1111, 2222 are the first and last memory 
locations of the block to test. HESVDN will keep 
cycling the test over the address range specified 
until the STOP key is pressed (it may be necessary 
to hold it down for a second or two). At the 
successful completion of each test of the memory 
block, HESiVDN wi 11 print a and sound a 'beep' to 
show it is working. If a memory location fails the 
test, HESiVDN wi 11 print its address followed by a 
binary number showing the data incorrectly stored. 
The bits of the number are shown most significant 
(bit 7) to least significant (bit 0) left to right. 
The bits of the RAM location that are different from 
the test data are printed in reverse field. Using 
the information printed on the screen together with 
the tables shown in Appendix A it will usually be 
possible to pinpoint the bad RAM IC(s). Note that if 
you 'test' addresses that contain no RAVI, a 
seemingly randan pattern of numbers will be printed.

(C) 1982 Human Engineered Software 23



W  - Walk Program

This comnand causes single-step execution of a 'M.L. 
program under user control. It, like Go and Quick 
Trace, may be used without a parameter to begin at 
the register display 'PC' location; or it can accept 
one parameter that specifies the starting address.
To exit the Walk mode, press the STOP key. To step 
as rapidly as the registers can be printed, press 
the SP/'CE bar. To step at the key repeat rate, press 
a normally repeating key, e.g., the cursor down key. 
To take one step only, press a normally 
non-repeating key, e.g., the left-arrow key. The 'J ' 
key has a special function in Walk mode. It causes 
HESIVDN to continue execution at full speed until a 
return-from-subroutine instruction is executed. For 
example, type:

W  CAD7

HESIVDN will begin execution at $CAD7--the carriage 
return, linefeed output RCM routine. After executing 
the instruction at that address HESIVDN wi 11 halt, 
showing the register contents and a disassembly of 
the next instruction the VIC wi 11 execute if Walk is 
continued. The display in the above example is as 
foilows:

25 OD 00 00 FA
,CAD9 20 47 CB JSR$CB47

The first of the two lines above shows the 6502 
register contents in the same order as the Register 
Display comnand: SR PC XR YR SP. This example 
assumes HESIVDN has just been cold started, otherwise 
the registers - except the accumulator - may differ 
from those shown here. The second line shows that

24 (C) 1982 Human Engineered Software



the VIC w i 11 next do a subroutine call to $CB47, the 
character output routine used by BASIC. To continue, 
press any key except STCP or 'J' (no need to hit 
RETURN). Suppose we press the left-arrow key once. 
HESiVDN will now show two more lines:

25 OD 00 00 F8
,CB47 20 09 El JSR$E109

Now we see the VIC is at location $CB47 about to 
execute a subroutine call to $E109. Notice the stack 
pointer (SP) has been decremented by two because the 
return address for the JSR instruction was 'pushed' 
on the stack before the jump to $CB47 was executed. 
Let's press the left-arrow once more:

25 0D 00 00 F6
,E109 20 D2 FF JSR$FFD2

Here we finally get to a place where the VIC is 
going to a 'Kernal' routine we can recognize: the 
character output routine $FFD2. Since this routine 
is documented in the VIC literature, we know exactly 
what it will do: print the character $0D in the 
accumulator. Therefore, we needn't single step 
further through that routine. So we press the 'J 1 
key. HESVDN shows (after a blank line--where the 
carriage return was printed):

20 0D 00 00 F6
,E10C B0 E8 BCS$E0F6

Now the VIC is at the point just following the JSR 
$FFD2 instruction. The 'carry' bit (bit 0) of the 
status register (SR=$20) is clear (0), so the branch 
on carry set (BCS) will not be taken. At this point 
we may continue to single step through this

(C) 1982 Human Engineered Software 25



subroutine by pressing left-arrow; return to the 
next higher level of code (SP=$F8) by pressing 'J '; 
or quit the Walk corrmand by pressing STOP.

X - Exit to BASIC

This corrmand gives control to the VIC's BASIC 
interpreter. It has two forms. The first form '>C' 
has the same effect as if the VIC were turned off 
and then back on without the HESiVDN cartridge 
plugged in except that HESiVDN may be entered by 
pressing RESTORE. The second form 'X' causes a 'warm 
start' of BASIC, similar to pressing RESTORE when 
HESiVDN is not plugged in. Your first exit to BASIC 
from HESiVDN after turning on the VIC should be an 
'XC', otherwise BASIC may misbehave. To achieve, 
with the HESVDN cartridge in place, the same effect 
as pressing STOP in RESTCRE without HESIVDN: First 
press RESTCRE. Then type 'X' and hit RETURN.

// - Convert Decimal to Hexadecimal

This command prints the hexadecimal equivalent of a 
decimal number. If the decimal number is negative it 
shows the two's complement 16-bit hex equivalent and 
the corresponding positive decimal number. For 
exarrp le:

# 1234

HESiVDN shows (on the same line):

// 1234 =$04D2 1234

26 (C) 1982 Human Engineered Software



This corrmand prints the decimal equivalent of a 
hexadecimal number. For example:

$ ABCD

HESIVDN shows (on the same line):

$ ABCD 43981

+ - Hexadecimal Addition

This corrmand prints the sum of two hexadecimal 
numbers in hex and decimal. All four digits, 
including leading zeroes if needed, must be used. 
Example:

+ 1234 5678

HESIVDN shows (beginning on the same line):

+ 1234 5678 =$68A2 26798

- - Hexadecimal Subtraction

This comnand prints the difference of two 
hexadecimal numbers in hex and decimal:

- 1234 5678

HESiVDN shows (beginning on the same line):

- 1234 5678 =$BBBC 48060

Notice that the decimal number in this exarrple is 
positive even though we would expect the result of

(C) 1982 Human Engineered Software 27



this subtraction to be negative. This is because 
the two-byte number $BBBC doesn't retain the 
information that the result is negative. If you 
want to know the true negative decimal result, 
either type in the operands in the reverse order, 
or type:

- 0000 BBBC =$4444 17476

So, the true decimal value of the difference 
$ 1234-$5678 is -17476.

28 (C) 1982 Human Engineered Softwa



III. Things to be careful about when using HES.VDN

The BASIC interpreter has control of the VIC at all 
times when BASIC is running. This means that the 
worst that's likely to happen if your BASIC program 
has an error is that BASIC will issue a 'SYNTAX 
ERRCR' message and stop your program. A M.L. 
monitor, on the other hand, must allow its user to 
take complete control of the VIC to execute certain 
corrmands. So, if your M.L. program has an error and 
you attempt to execute it using the Go corrmand, the 
likely result is that the VIC wi 11 go 
catatonic--that is, even the RESTCRE key may not 
bring back HESMDN. In this event you will have to 
turn the power off and back on to get back to 
HESMDN. You may avoid this catastrophe by using the 
Walk cotmnand to check out your program. 
Nevertheless, you can still send the VIC to 
never-never land by attempting to Walk through an 
instruction that disassembles as '???'. These 
instructions are 'unirrplamented op-codes'. They do 
not have a defined result. Many of them cause the 
6502 to 'crash'--that is, enter a state from which 
it may be recovered only by powering on again.

HESiVDN uses 33 bytes near the bottom of the machine 
stack ($120-$141) for its variable storage. Most 
M.L. programs do not use a sufficiently large 
amount of the stack to interfere with this 
storage--but it is a possibility to be aware of. 
Large, complex BASIC programs sometimes do use 
enough of the stack to interfere with these 
locations. And finally, RS 232 files will not 
currently work correctly when HESMDN is plugged in.

(C) 1982 Human Engineered Software 29



IV. Acknowledgements

The seeds of HESIVDN are contained in the public 
domain monitor programs for the PET/CBM computers 
known as MICRQVDN and EXTRAM3N. These programs, 
while not directly useful in the VIC environment, 
provided at least the general framework and the 
philosophy of user-friendliness which distinguish 
them and HESIVDN from other M.L. monitors of the 
author's experience.

VIC, PET, and CBM are trademarks of Commodore.

COPYRIGHT NOTICE

Copyright (C) 1982 by Human Engineered Software. All 
rights reserved. No part of this publication may be 
reproduced in whole or in part without the prior 
written permission of HES. Unauthorized copying or 
transmitting of this copyrighted software on any 
media is strictly prohibited.

Although we make every attempt to verify the accuray 
of this document, we cannot assume any liability for 
errors or omissions. No warranty or other guarantee 
can be given as to the accuracy or suitability of 
this software for a particular purpose, nor can we 
be liable for any loss or damage arising from the 
use of the same.

30 (C) 1982 Human Engineered Software



Appendix A: Locating bad RAVI chips

The Verify Memory corrmand shows both the address 
and bit location of bad bits that it finds. The 
table below will help to use that knowledge to 
identify the RAVI chip responsible for the error.
The RAVI IC's are roughly arranged in rows, numbered 
from the front of the board, and columns, lettered 
from right to left. The letters are printed on the 
board near the front. The normal RAVI IC's are all 
in columns A and B. If the Verify Memory reverse 
field bits are in the high nybble - bits 4 to 7 
(the left four bits of V's display), the bad IC is 
in column A. Bad bits in the low nybble (bits 0 to 
3) are in IC's in column B. The color nybble RAM IC 
tested by the U corrmand is in column C, row 3. To 
positively identify a RAM IC notice that somewhere 
in the gibberish printed on top of the IC are the 
numbers '2114', the type number.

Notice the gap in addresses between rows two 
and three. The addresses in this gap are in 
IC's in the 3K expander cartridge. Addresses 
above $1FFF are in the other expansion 
cartr idges.

ROX NUVBER ADDRESS RANGE

6
5
4
3
2

$ lC00-$1FFF 
$1800-$1BFF 
$1400-$17FF 
$1000-$13FF 
$0000-$03FF

(C) 1982 Human Engineered Software 31



Appendix B: The HESM3N Corrmands in Brief

The following is a condensed list of HESiVDN's 
corrmands for quick reference. Brackets ([]) 
denote optional parameters.

A 1111 MVM OOOOOO - Simple Assembler 
B 1111 2222 - Breakpoint Set 
C  1111 2222 3333 - Compare Memory Block 
D 1111 [2222] - Disassemble
E 1111 2222 3333 4444 5555 [W] - External Relinker
F 1111 2222 33 -Fill .Memory Block
G [1111] - Go
H 1 1 11 2222 33 44 55___ or

1111 2222 "XXXXX...." - Hunt for sequence
I 1111 [2222] - Interpret Memory 
L "name" 11 - Load Program 
M  1111 [2222] - .Memory Display
N 1111 2222 3333 4444 5555 [W] - New Locator
O  [11 [22 ["name"]]] - Output Divert 
P [11 [22 ["name"]]] - Print Screen 
Q  [1111] - Quicktrace 
R - Register Display 
S "name" 11 2222 3333 - Save Program
T 1111 2222 3333 - Transfer Memory Block
U - Test Color RAM
V 1 1 11 2222 - Verify RAVI 
W  [1111] - Walk 
X[C] - Exit to BASIC
# 11111 - Decimal to Hex 
$ 1111 - Hex to Decimal 
+ 1111 2222 - Hex Addition
- 1111 2222 - Hex Subtraction
:111 122334455667788 - .Memory Modify 
;1111 2222 33 44 55 66 77 - Register Modify 
,1111 11 [22 [33]] XXXX - Di sassembly Mod i fy

32 (C) 1982 Human Engineered Software






