Waterloo Structured Basic for the

o el e e el el ey e

i e 1 A0
R R R R R R

T commodore

COMPUTER

DI IJIJIIJIIIISEOLLLELLLLLOLOOLLLLBIIPIIIIDIIIIIIOIOGOIOLYL

Chapter I

Introduction To Waterloo BASIC

This chapter will serve as an introduction to programming using the
Waterloo BASIC system as implemented on Commodore microcomputers.
Simple examples are used to illustrate the basic principles. The
programming novice will be presented with an overview of the terminology;
the experienced programmer will see examples of how familiar concepts
are implemented in Waterloo BASIC. The various features discussed are
more completely explained in subsequent chapters, and in the Appendices.

1.1 Basic Principles

BASIC i1s a computer programming language developed initially at
Dartmouth College in New Hampshire. It has been widely used, and many
dialects of the language have appeared over the years. Waterloo BASIC is

the particular version of the language developed on a number of computers at
the University of Waterloo.

Example 1.1 illustrates how you could write a BASIC program to
calculate the Fahrenheit equivalent of 100 degrees Celsius. This is too trivial
a problem to be considered for solution using a computer, but
nevertheless, 1t serves to illustrate a number of important points.

REM EXAMPLE 1.1
REM A CALCULATION
C = 100

F = (Cx9)/5 + 32
PRINT C,F

1
2
3
4
O
6 STOP

2 Chapter 1

This example consists of six statements, each preceded by a /ine number
or statement number. The first two statements are comments which describe
the problem. These comment statements are recognizable by the REM
(remark) which appears immediately following the statement number.
Comments are used to identify and describe the program, and are used
only for documentation purposes; they are not executed by the computer.

The last four statements are executable statements, and will be
processed by the computer in the order in which they appear. Statement 3
causes the value 100 to be assigned to the variable C. Then statement 4
causes the expression

(C*9)/5 + 32

to be computed, with its value being assigned to F. Note that this
expression is similar to expressions used in algebra, with the * used to denote
multiplication and the / used to denote division.

Since this is the formula used to convert Celsius to Fahrenheit, F
would at this point have the value 212, which is the boiling point of water.
The fifth statement will cause the current values of C and F to be
printed or displayed on the screen, and statement six causes the computer
to terminate execution of the program. These statements are therefore
executed sequentially by the computer, and the entire collection of
statements 1s referred to as a program.

1.2 Line Numbers

It is not necessary to number the statements from I to 6, as shown 1n
Example 1.1. In fact, it is more desirable to number the statements leaving
gaps between the statement numbers in case it should be required to insert a
new statement between two existing statements. Thus a more common form
of the same program appears as Example 1.2.

10 REM EXAMPLE 1. 2
20 REM A CALCULATION
30 C = 100

40 F = (C*9)/5 + 32
50 PRINT C,F

60 STOP

Introduction To Waterloo BASIC 3

1.3 Looping

It would be more useful and interesting to calculate F for C having a

number of values, for example 100, 110, 120, ... etc. This is accomplished
in Example 1.3 by using a /oop.

10 REM EXAMPLE 1.3
19 :

20 C = 100

22

25 LOOP

30 F = (C*9)/5 + 32
40 PRINT C,F

45 C=C+ 10

47 ENDLOOP

50 STOP

Two new statements have been used, namely LOOP and ENDLOOP, to
determine the beginning and ending of a group of statements which are to

be executed repeatedly by the computer. Thus when Example 1.3 is
executed, the statements

30 F = (C*9)/5 + 32
40 PRINT C,F
45 C=C+ 10

are repeated indefinitely. Consequently the computer never stops, and the
program 1s said to be in an infinite loop, a most undesirable state of affairs.

A method for overcoming this short-coming is illustrated in the next
example.

Notes:

(1) Each time through the loop, the value of C is incremented by
10 1n the statement

C=C+ 10

(2) The = in BASIC means ”"is assigned the value”. Thus this

statement 1s not an algebraic equation, but means “calculate the
expression C+10 and assign its value to C”. By incrementing C
each time through the loop, a table of values of F for C

4 Chapter 1

starting from 100 and increasing in steps of 10 degrees, is
produced.

(3) The reader may have noticed that all statements in the range of
the loop have been indented. This is to make the program more
readable, and has no effect on its operation within the computer.

(4) Until we cover the material in Chapter 4, the reader should assume
that variable names are a single letter, namely A to Z inclusive.

(5) Some of the statements contain only a colon (:). The colon 1s used
to provide a line of spaces between statements so that the
programs are easier to read. BASIC does not allow completely
blank lines in a program, but the colon acts as a blank line since it
invokes no action from BASIC. Lines which only contain colons are
called null statements.

1.4 Terminating The Loop

10 REM EXAMPLE 1.4
18 :

20 C = 100

22

25 LOOP

30 F = (C*x9)/5 + 32
40 PRINT C,F

45 C=C=+ 10

46 IF C > 200 THEN QUIT
47 ENDLOOP

48

50 STOP

Example 1.4 shows how simple it is to cause the computer to terminate
the loop at a desired value of C. A single statement

IF C > 200 THEN QUIT

has been inserted in the loop, and when C is incremented to the value 210
the computer will exit from the loop, and continue to the statement
immediately following the ENDLOOP statement. In this case that statement
is STOP, so the process is terminated.

Introduction To Waterloo BASIC 5

The quantity C > 200 is known as a relational expression, and when
computed has the value “true” or “false”. The operator > is known as a
relational operator. There are six such operators available, namely

equals

greater than

less than
= greater than or equal
<= less than or equal
<> not equal to

VAV I

1.5 Keywords

In 'this chapter, several BASIC keywords have been introduced.
The.se include REM, PRINT, STOP, LOOP, ENDLOOP, IF, THEN and
QUIT. These are reserved words which cannot be used for any other

purpose i BASIC. There are dozens of such keywords in BASIC; a
complete list is given in the Appendices.

1.6 Spacing Within A Statement

In the various examples blank characters have been used extensively

to. improve readability. For example, line 20 in Example 1.3 could be
written 1n various ways as follows:

20 C = 100
20 C=100

20 C = 100
20C=100

All of these are equivalent. The blank characters are used at the
programmer’s discretion, and are ignored by the computer.

1.7 Summary

_This cl:napt'er has introduced many programming terms, and illustrated
their application in the BASIC language. No attempt has been made to

figorou_sly define the terms. It is suggested that the reader should proceed
immediately to Chapter 2 to learn how to submit these examples to the

6 Chapter 1

computer, and run them to observe their operation. The definitions of
terms used are covered more rigorously in the Appendices, and in subsequent
chapters.

1.8 Exercises
1.1 Make the required changes to Example 1.4 to produce a table of

Fahrenheit values for Celsius values ranging from O to 100 degrees
in increments of one degree.

1.2 Further change the program to produce only those Fahrenheit values
for Celsius values ranging from -5 to 20 degrees in increments of 2
degrees.

1.3 Further change each of the programs to produce the tables in

reverse order. That is, the highest temperatures should be computed
and printed first, with the lowest at the end of the table. (The
subtraction operator in BASIC is the symbol '-' as in algebra).

1.4 Write a program to produce a table showing Fahrenheit to Celsius
conversion values.

1.5 With the switch to metric it is important to be able to compare
English units and metric units.

a) Write a program which converts 100 miles to kilometers. Use
the conversion factor one kilometer equals 5/8 of a mile.

b) It is necessary to produce a speedometer with both miles per
hour and kilometers per hour showing on its face in increments of
10 miles per hour and 10 kilometers per hour. Write a program
which produces two lists, the first one showing miles per hour from
0 to 100 in 10 miles per hour increments and the corresponding
kilometers per hour values, and the second one showing kilometers
per hour from 0 to 160 in 10 kilometers per hour increments and the
corresponding miles per hour values.

e

r d

A

-

Chapter 2

Running a BASIC Program

The basic principles of writing a simple BASIC program were described
in Chapter 1. The next step 1s to enter the program into the computer, and
then put it into operation. This is accomplished using the BASIC editor

and run-time systems. In this chapter many of the features of these two
systems are discussed.

2.1 Signing on to Waterloo BASIC

Waterloo BASIC i1s implemented as an addition to the existing BASIC

language in the Commodore microcomputer. The method of activating these
extensions differs from machine to machine.

In the case of the VIC-20, simply insert the provided cartridge as
described in the installation guide and turn on the machine. A message
similar to the following will be displayed.

xx WATERLOO BASIC ==*=x
* FOR VIC-20 #

-

*

* COPYRIGHT 1983 *
* WATERLOO COMPUTING =
*** SYSTEMS LIMITED=**=

6655 BYTES FREE

READY

In the case of the Commodore 2000, 4000 or 8000 series computers, you

will have to install an EPROM chip by following the directions which were

8 | Chapter 2

Running a BASIC Program 9

rovided when vou obtained Waterloo BASIC. When the chip is properly If you are using a Commodore coniputer with a 40-column screen or even
P s | 7. a 22-column screen, you may find that the line you wish to enter is too long

;?iﬁgfioi?i ;21?03?1;}-11% turned on, the computer will display a message “@T™ to fit on the screen. In these cases, it can "wrap-around” onto the next line on
: the screen and still be treated as a single line in the program. For instance,

Example 1.4 will appear as follows when entered into the VIC-20 computer.

COMMODORE BASIC
Rig‘;‘?’ BYTES FREE . 10 REM EXAMPLE 1.4
y 18 :
_r . . e A 20 C=10
At this time, Waterloo BASIC must be activated by typing SYS 9*4096 | 09 . 0
and pressing the RETURN key. The computer will respond with will B9 25 1.OOP
30 F=
+** WATERLOO STRUCTURED BASIC *** T 45 Paig;gé / §+32
COPYRIGHT U OF W; (27/4/80) ort sE Ol IO
46 IF C > 200 THEN Q
READY - il
.. ; . , 4’7 ENDL
At this time Waterloo BASIC is active. TR 48 - P
Notes: o I 50 STOP
(1) The above procedures are typical but may vary slightly from __ NOtIICe.hOITJ program‘ line number 46_ 1s displayed 5_15 two lines on the
machine to machine. If you suspect a difference, consult the - Screen.bt 1S,h owever, st.1ll treated as a smgle program line by BASIC. Just
installation procedures provided with the Waterloo BASIC package. rex:llem ot eﬂn typing & progratt to hit the RETURN key once at the
end of every “"program” line even if the cursor wraps around to the next
. screen line.
(2) Some Commodore computers operate in lower case mode. If you e

have one of these, the programs in this text should be entered
entirely in lower case.

[t you wish to check your typing, enter the editor command

(3) If at anytime you wish to disable the Waterloo BASIC features, e 5T

simply remove the cartridge (in the case of the VIC-20) or type SYS

. d ' -
0%4096+3 (in the case of the 2000, 4000 or 8000 series snasdinesy, and the contents of the entire workspace will appear on the screen.

_ The LIST command can be used to display a “range” of lines on the
screen. For example

2.2 Typing in a BASIC Program LIST 100-200

When you first sign on to Waterloo BASIC you are provided with a g B4 will cause all lines bet 100 . , _
workspace which is empty. You can then enter each line of the program by il S nes between and 200 inclusively to be displayed. The

typing it, together with its statement number, and then depressing the
RETURN key. If you make a mistake simply type the line again and the
computer system will replace the old line with the new line, provided

they have the same statement number.

LIST -200

10 Chapter 2 Running a BASIC Program 11

will cause all lines up to and including line 200 to be displayed. The 2.4 Output from a BASIC Program

command -
When Example 1.4 is run on the computer, the output on the screen

appears as follows:

LIST 200-
will cause all lines numbered 200 or greater to be displayed. 100 212
110 230
120 248
2.3 Running a BASIC Program 130 266
140 284
After you have entered the program you are ready to place it 1nto 150 302
execution. This is done by typing RUN and then depressing the 160 320
RETURN key. 170 338
180 356
The computer immediately starts executing the BASIC statements 190 374
200 392

in your workspace, beginning with the first executable statement (the
statement with the lowest statement number). Execution continues from
statement to statement until the STOP statement is encountered, at which

time the message

BREAK IN "statement number"

appears, and the screen once again displays READY status.

" The "statement number” indicates the statement number of the STOP
statement in the program which was executed.

All too often, an error occurs during execution (usually referred to as
rexecution time”). For example, if you try to compute the square root of a
negative number, the computer must terminate execution because 1t 18
unable to perform this function. When this happens an error message
appears on the screen. Hopefully the message is self-explanatory, but you
may have to refer to the Appendices for further explanation. When the
reason for the execution-time error has been determined, simply enter the
correction into your workspace, thus modifying your original program, and

RUN it again.

Occasionally the computer will remain In execution endlessly. It
is then said to be in an "infinite loop”. When this occurs you must use the
STOP key to interrupt operation of the program. This returns the computer
to the READY status, and indicates the line number which was about to be

executed (BREAK message).

On each line the numbers are arranged in 10-position zones or windows.
This means the first number on any line appears in columns 1 to 10 inclusive,
the second number in columns 11 to 20 inclusive, etc. Each number appears

left-justified in a window, with the sign in the left-most position. When the
sign is positive, this position is left blank.

While the Commodore 8032 allows up to 8 of these windows on a line,
the PET allows only 4 and the VIC-20 only 2. If a program prints into more

windows than will fit on a screen, the output will simply "wrap-around” onto
the next screen line.

2.5 Saving a BASIC Program

When you have completed your program you may wish to SAVE it on
a cassette. First, insert a blank cassette into the cassette unit and make

sure 1t 1s rewound to the start. Next, think of a name for it such as
PROGONE. Then type

SAVE "PROGONE"

and depress the RETURN key. The following message will appear on the
screen:

PRESS PLAY & RECORD ON TAPE

Chapter 2

Press PLAY and RECORD simultaneously on the cassette unit and the
computer will respond with OK on the screen, followed by the message

WRITING PROGONE

The complete program in the workspace will be written onto the cassette
tape. When writing is complete, the computer responds with the READY

message.

Occasionally the program will be recorded i1ncorrectly, possibly
because of a faulty tape or because you forgot to press RECORD along
with the PLAY button. It is good practice to VERIFY that 1t 1s properly

recorded by using the following procedure:
(1) Rewind the cassette tape.

(i1) Type VERIFY "PROGONE". The computer will instruct you to
press PLAY. The tape will be read and verified character-by-

character to ensure it matches the content of the workspace.

(iii) When the verification process is complete, the computer ®

returns to READY status. If the verification process fails, rewind
the tape and try SAVEing the program again, followed by another
VERIFY. If the error persists try another tape.

The name you choose for your program can contain up to 16 letters or
digits and should begin with a letter. Actually, your program is stored as a
file, and the name you choose is referred to as the file name.

Although you have SAVEd your program, a copy remains In your
workspace as well. If you wish to erase it from your workspace you should

enter the command

NEW

Then the workspace will be returned to its original status, as if you had just
signed on.

Running a BASIC Program 13

2.6 Loading a BASIC Program from Cassette

At some point in time you will probably want to copy a selected
program from your cassette into your workspace. First, insert the desired
cassette into the cassette unit and make sure it is rewound to the start.
With the system in READY status, simply type

LOAD "PROGONE"

followed by RETURN and the workspace is automatically cleared. The
message

PRESS PLAY ON TAPE

will be displayed on the screen. Press PLAY and the program will be read
into your workspace.

NOTE: Several programs can be stored on one cassette. They are written one
after another with about 10 seconds of blank tape separating them.
Each program has a "header” which contains its name. If your
cassette already contains a program and you wish to record another,
it 1s your responsibility to “fast forward” the tape to a
position following the recorded program before SAVEing the new
one. This is obviously difficult to do. The only reasonable way to

position the tape is by refraining from rewinding it after the recorded
program has been SAVEd, LOADed or VERIFYed.

When LOADing a program from a cassette which contains several
programs, the proper program is automatically selected using the program
name contained in the header. However, if the programs are named
PROGONE and PROG, in that order, and you attempt to LOAD "PROG”
you will actually get PROGONE. This is because the computer does not
actually search for PROG, but for a program whose name begins with the
sequence PROG as specified in the LOAD command.

2.7 Changing a Program

It has been explained that any line in your workspace can be changed
by re-entering it with the same statement number. A line can be completely
crased by typing only the line number, followed by RETURN. Lines can
also be changed using the full screen editor which is described in an

Appendix.

14 Chapter 2

2.8 Summary

A number of commands such as LOAD, SAVE, VERIFY, RUN, NE.W,
and LIST have been introduced in this chapter. These comrﬁnands are editor
| commands or system commands because they are associated with the

editing, managing and operation of the program.

| 2.9 Exercises:

| Enter ecach of the examples from Chapter 1 into the computer and
run them to ensure that the output is as expected. Store these

programs onto a cassette for later reference.

2l Enter solutions for the Exercises at the end of Chapter 1 and run
the programs to be sure they work.

2.3 Try every editor or system command introduced in this chapter
to verify that they work as described.

Chapter 3

I'he Flavour of Waterloo BASIC

In Chapter 1 simple programs were discussed, and presumably the reader
has entered these examples into the computer, run them, and modified
them in various ways. In this chapter further examples are used to
introduce the reader to additional features of the BASIC language. The
purpose of this chapter is to give the reader a feeling for the "flavour” of
the system, and to allow more interesting problems to be attempted before
examining all of the details. Subsequent chapters repeat most of the
material covered, and provide more formal definitions and descriptions.

3.1 Making Headings in BASIC

10 REM EXAMPLE 3.1

13 :

15 PRINT "CELSIUS", "FAHRENHEIT"
18 :

20 C = 100

22 :

25 LOOP

30 F = (C*9)/5 + 32

40 PRINT C,F

45 C=C+ 10

46 IF C > 200 THEN QUIT
47 ENDLOOP

48

o0 STOP

L Y L R e e — L L
—_ - T S =

16

Chapter 3

Example 3.1 is identical to Example 1.4, except that one additional

statement has been added, namely

PRINT "CELSIUS","FAHRENHEIT"

When the computer runs the program this statement 1S encountered_ befm_'e
the loop begins, and the words CELSIUS and FAHRENHEIT are printed 1n

the first two windows of the first line. These quantities are referred to

constants and can be recognized because they are enclosed

as strin |
° stants can be printed and used

between quotation marks. Such string con .
as headings or special text in any window of any line.

The reader should type the program into the system, run it and confirm
that the output appears as follows:

CELSIUS FAHRENHEIT

100 212
110 230
120 248
130 266
140 284
150 302
160 320
170 338
180 356
190 374
200 392

The Flavour of Waterloo BASIC 17

Example 3.2 shows another interesting use for string constants.

10 REM EXAMPLE 3.2

15 :

20 C = 100

22 :

25 LOOP

30 F = (C*x9)/5 + 32

40 PRINT "C =" ,C,"F =" F
45 C=C+ 10

46 IF C > 200 THEN QUIT
47 ENDLOOP

48 :

50 STOP

Here the PRINT statement contains quantities to be printed in four
windows on every line. The first and third quantities are string constants,
while the second and fourth are variables. When the program 1s placed
Into execution the output appears as follows:

Notice that the words CELSIUS and FAHRENHEIT are _prir.lt.ed left-
justified in the windows. Actually the numbers are also left-justified but

the ”+” sign is not printed.

wile 100 F = 212
b = 110 F = 230
C = 120 F = 248
C = 130 F = 266
C = 140 F = 284
C = 150 F = 302
G = 160 F = 320
C = 170 F = 338
ke o 180 F = 356
e 190 F = 374
C = 200 F = 392

NOTE: The output of Example 3.2 contains a considerable number of

blank spaces in each line because each of the windows is not
completely used.

18 Chapter 3

In fact, on the narrow screen of the VIC-20, it actually prints 2 lines
on the screen for each “logical” line of output shown, like this:

100
212
110
230
120
248
130
266
140
284
150
302
160
320
170
338
180
3956
190
374
= 200
= 392

mTaOT OO aOOm OO aamaomaomamama™~Oa
i

This problem can be overcome by using the following alternative for
line 40. |
40 PRINT "C =",;C,"F =", F
The only change is that two of the commas have been replaced
by semicolons. When two items in the "PRINT list” are separated
by a semicolon, their values are concatenated, with no
intervening spaces, and are printed in the next available window as a
single unit. In the example, the string "C =" is three characters
long; the value of C is 4 digits (including allowance for a sign).
Thus the concatenated data is seven characters long, and will print
in the first window. Similarly “F =" is concatenated to the value
of F to form a seven character result which is printed in the second

window. The reader should make this change to Example 3.2 and
observe the output.

The Flavour of Waterloo BASIC 19

3.2 More Examples of Algebraic Expressions

a) In previous examples an expression was calculated, namely

(C*9)/5 + 32

It was noted that this expression is similar to expressions used in algebra.

_ The corresponding expression for conversion of Fahrenheit to Celsius would
be as follows:

((F - 32)%5)/9

Here the subtraction operator - has been introduced, as well as two sets of
paremh'eses which are nested. First the computer will calculate the innermost
“expression, namely F-32. This quantity will be multiplied by 5, and finally

this result will be divided by 9. Thus parentheses determine the order in

u;hu;h cxpressions are computed, in @ manner similar to that used in
algebra.

The reader should write a program similar to Example 1.4 which

converts Fahrenheit to Celsius. Run it on the computer to verify that it works
LS expected.

D) Sl{ppose It 1s required to calculate the 6th power of X, and assign
this value to Y. A BASIC statement could be written as follows:

Y = X*X*X*«X*X*X

owever, there is a shorter way of accomplishing the same result by using
he exponentiation operator as follows:

Y=X1686

he_ P is a signgl to the computer to perform a computation which is
@duivalent to multiplying the current value of X by itself 6 times.

Built-In functions can be used to perform

| common
computations such as the square root. The statement

S

a1l
A

cause tl}e computer to use a previously programmed routine or built-in
tion which is designed to calculate the square root; this routine is invoked

Al
o

A

R e —

R e, S .yt gl el e B R S S5 e L TR TP PP ————————————————— P LS

20 Chapter 3

with the use of the letters SQR. The value of the expression contained

in the parentheses following SQR is called the argument and 1s the
quantity which is submitted to the built-in function called SQR. In this
example the argument is 2; thus Y will be assigned a value which 1s the
square root of 2. Note that this built-in function will only calculate the
square root if the argument is non-negative.

Examples of other built-in functions are ABS and LOG, for the
calculation of absolute value and logarithm respectively. There are many

\

s

The Flavour of Waterloo BASIC 21

_ 3.3 Input During Execution

It 1s often desirable to enter data from the keyboard under program

® control during execution. Example 3.4 is another version of the Celsius-
® to-Fahrenheit conversion program which incorporates this new feature.

The reader should type this program into the computer and run it to

observe 1ts operating characteristics.

10 REM EXAMPLE 3.4

more which will be introduced during the course of this text, with a 15 :
complete list being available in the Appendices. 20 LOOP
30 INPUT C
10 REM EXAMPLE 3.3 40 F = (C*9)/5 + 32 B
15 : 20 PRINT C,F
20 X = 1 60 ENDLOOP
25 : = 65 :
30 LOOP 70 STOP
40 Y =X13]
50 Z = SQR(X) When the computer encounters the statement
60 PRINT X,Y,Z " .
70 X =X + 1 = INPUT C
80 IF X > 8 THEN QUIT ~
90 ENDLOOP » ?" appears on the screen. This "?” is referred to as a prompt and is a
95 : _poignal to the user to enter data. The program then pauses until the user
99 STOP types a number such as 110 and depresses the RETURN key. The

Example 3.3 is a program which calculates the third powers and .tht‘.
square roots of all integers from 1 to 8 inclusive. Enter this program intc

the computer, run it, and observe the following output:

1 1 1

2 8 1.41421356
3 27 1.73205081
4 64 2

o 125 2.23606798
6 216 2.44948974
7 343 2.64575131
8 012 2.82842713

mos*

Note that the third powers are all printed accurately, but 1n o
wing

cases the square roots are terminated after 9 significant digits.

to hardware limitations, the computer saves only 9 digits internally, and

this will be the maximum accuracy normally obtained.

Y il

ik

.

M-

e il

ariable C is assigned the value which has been typed, and the computer
Boes on to the next statement following the INPUT statement.

This program is designed to permit the user to enter Celsius data
endlessly and have it converted to Fahrenheit. If you have a VIC-20, the

program can be interrupted by simultaneously pressing the STOP key and the
RESTORE key in response to "?”. On the PET or 8032, simply press the

SRETURN key in response to ”?”.

9 Chapter 3

Another version of the program which incorporates a prompt message 1s
illustrated in Example 3.5.

10 REM EXAMPLE 3.5
1B :

20 LOOP

30 INPUT "ENTER DEGREES C";C
40 F = (C*x9)/5 + 32

50 PRINT C,F

60 ENDLOOP

60
70 STOP

Type this example into the computer and note how much more pleasant
it is to use the keyboard; you have the feeling of carrying on a
"conversation” with the computer. The terms interactive computing or

conversational computing are often used to refer to this type of programming

technique.

Note that the INPUT statement includes the prompting message
contained in quotation marks, followed by a semicolon. When executed, the

prompting message is displayed followed by a question mark. The
computer then expects the user to type a value for C and depress RETURN.

The Flavour of Waterloo BASIC 23

3.4 Selection Using IF-ELSE-ENDIF

| Example 3.6 is a program which converts either Celsius to Fahrenheit or
vice versa.

10 REM EXAMPLE 3.6

15 :

20 PRINT "TYPE 1 FOR C TO F"
25 PRINT " OR 2 FOR F TO C"
35 LOOP

40 INPUT "ENTER 1 OR 2":T
45 IF T = 1

o0 INPUT "C":C

55 F = (C+x9)/5 + 32
60 PRINT C,F

65 ELSE

70 INPUT "F":F

75 C = ((F-32)%5)/9
80 PRINT F,C

85 ENDIF

90 ENDLOOP

99 STOP

The computer first asks the user to enter a 1 or g 2 depending on which
type of conversion is to be done. This constant is assigned to the variable T.
In the loop one of two separate calculations is made, depending on the

wcurrent status of T. The value of T is tested using an IF statement with a

relational expression as follows:

IF T =1

: _If the. relational expression has the value “true”, the statements
. immediately following the IF are executed, stopping when the ELSE is
| 'encoun'tered. [T the relational expression has the value “false” the statements
p:mmediately following the ELSE are executed, up to the ENDIF. Thus the
. IF statement allows the programmer to logically select one of two sets of
gStatements, depending on the value of a relational expression. When the 1F-

LSE-ENDIF combination has been executed, the computer continues
ith the statement following the ENDIF.

24 Chapter 3
3.3
IMPORTANT NOTE:
Two distinctly separate kinds of IF statements have been _
introduced. The IF-THEN-QUIT is‘ used only to ¥ i
terminate processing in loops and is a single statement.
The IF-ELSE-ENDIF are three statements used to
select two separate blocks of staten?ent§,
depending upon whether the relational expression is
true or false. g 3
Enter the program into the computer and run it. Once again you can
terminate its operation by depressing the RETURN key (or STOP and
RESTORE) in response to ?.
N 3.6
3.5 Summary |
The reader should now have a sufficient introduction to the fun.dament.als
of programming in BASIC to experiment with a number of interesting 39
problems. The following exercises which reinforce these fundamental
concepts should be completed before proceeding to subsequent chapters.
3.6 Exercises
3.1 Make the following modifications to the program in Example 3.1.
Enter the resulting programs into the system and run them.
a) The initial value of C is assigned In linc::: 20. Incorpora;e
appropriate statements so that this initial value is entered from t]i
keyboard at execution time. A prompting message should as
the operator to enter the starting value.
b) The program as modified in a) will produce one table of output. 53

Incorporate further statements so that the program doe§ not ::,]t:g
after producing a table, but "loops”, each time reques(tlmg da new
starting value for C. Thus several taples can be pro gt}lfaoi:) he
program can be terminated by depressing RETURN (or

RESTORE) when the program prompts for the value.

939

3.2 In Example 3.1 the conversion table 1s printed in increments

of 10 degrees Celsius. Modify the program so that this increment
changes to 2 degrees when C has reached a value of 170 degrees.

The Flavour of Waterloo BASIC 25

Further modify the solution for problem 3.2 so that the Increment

of 2 degrees is reset to an increment of 10 degrees when C has
reached 180 degrees.

Write a program which permits the user to type several numbers
into the computer, and receive their average as output. Note that

in order to terminate the input a special number will have to
be used and recognized by the program.

Suppose $100 is placed in a bank account at the beginning of each
year. Interest of 8 percent is added to the account at the end of
the last day of each year. There are no withdrawals. Write a

program which shows the current balance in the account at the end
of the first day of each year, for the first 10 years.

Modify the program for exercise 3.5 so the computer prompts the

user for the interest rate, annual deposit amount, and number of

years, thus making a more general-purpose program.

Marks for a particular course are assigned integer values ranging
from O to 100 inclusive.

A mark below 50 is a failure

A mark from 50 to 59 inclusive is a D grade

A mark from 60 to 69 inclusive is a C grade

A mark from 70 to 79 inclusive is a B grade

A mark from 80 to 100 inclusive is an A grade.

Write a program which permits the teacher to enter a mark for
cach student in the class, and receive as output a statistical report
which indicates the number of students in each of the five

categories. Use appropriate prompts for the input, and headings in
the output.

Modify Example 3.6 so that it terminates if a third value other
than 1 or 2 is given.

Write a program which converts miles to kilometers or
kilometers to miles. It should ask the user to specify what

conversion should be done by specifying either a 1 or 2, and then
give the value to be converted. The reader should refer to Example
3.6 for guidance. The answer should be displayed on the screen.

26

3.10

Chapter 3

Modify the program in problem 3.9 so that it terminates if a third
value other than 1 or 2 is given.

Chapter 4

Debugging Programs

Writing BASIC programs would be fairly straight-forward if they
always ran properly. Unfortunately this is seldom the case. The process of
finding errors in a program is known as debugging, that is, eliminating
the "bugs”. This process includes many different techniques for testing
programs and locating errors. Some of these techniques are discussed in this

chapter.

4.1 Immediate Mode

Whenever you enter a BASIC statement without a line number it is
executed immediately. For example, if you type

PRINT "HELLO"

the word HELLO will be echoed back on the screen as soon as the
Statement 1s entered. This immediate mode of operation seems at first glance
to be of limited use, since it appears that you can only execute one BASIC
statement. However it turns out to be quite powerful in the preparation and
debugging of programs.

g Chapter 4

4.2 An Example

10 REM EXAMPLE 4.1

1D 3
20 I =1
30 S = 0O
39
40 LOOP

50 S =S + 1

60 I =1 + 2

70 IF I = 100 THEN QUIT
80 ENDLOOP

85 :

90 PRINT S

95 : ~

97 STOP

Suppose you have written the program in Example 4.1. You intend 1t to
calculate the sum of all the odd integers up to 100, namely
1+3+5+7+...+99. When you place the program into execution, nothing

ever appears on the screen, regardless of how long you wait. You are in an

infinite loop. You can recover by depressing the STOP key, which returns
you to READY status. One method of finding the bug is to stare at the
program until it occurs to you what went wrong. A better way is to
examine the current contents of the key variables to see if this gives you a
clue. For example, you could type

PRINT I

Immediate-mode execution takes place and the value of I is displayed
on the screen. You are shocked to find it is 493 or some other ridiculous
value! How could this be, since you carefully arranged to stop the loop
when the value of I reached 100? Hopefully at this point it occurs to you that
[never exactly reaches 100, as it skips from 99 to 101. However, should you
fail to make this observation you should insert a new line in the program,
namely

95 PRINT 1

and place the program into execution again. This will cause t_he values of 1
to be displayed each time through the loop. Surely now you will observe tbat
it skips from 99 to 101, and you will then change the program by re-entering

line 70 as follows

Debugging Programs 29

70 IF I > 100 THEN QUIT

This technique of interrupting the program and examining the values

assumed by various variables is of inestimable value when debugging larger
and more complex programs.

4.3 Monitoring the Operation of a Program

Some programs are expected to operate for several hours before they
produce the required output. For example, you may want the computer to
sort the names of all the students at the University of Waterloo into
alphabetical order, and then produce a list. While the program 1s operating,
you are worried because nothing has appeared for 30 minutes or more. You
can interrupt the program with the STOP key. Then a message
appears indicating the statement number which was just about to be
executed, let us say number 260 to be specific. You can now "browse”
around looking at partial results to see if things seem to be going well, all
the time using immediate mode BASIC operations. If you are satisfied,
you can resume execution at precisely the proper statement by typing

CONT

which is an immediate command to transfer control back to statement
260 and the program resumes normal operation.

4.4 Testing the Program in Small Parts

Many programs are quite large and you may wish to test only small parts
of them, to be sure those parts seem to work well. Suppose in Example 4.1

you wish to test the instructions contained within the loop. You could
Insert a statement as follows

65 STOP

Then you could set any value you like for T and I. using immediate
mode assignment statements. You could then type

GO TO 50

30 Chapter 4

This would cause statements 50, 60 and 65 to be executed, and the
computer would stop. Then you can examine the current value for T and I to
be sure they have increased as you expected.

4.5 Summary

This chapter has only scratched the surface of methodology relative to
debugging and the use of immediate-mode computing. Hopefully it contains
enough guidance to enable the user to begin to develop a debugging
style which will produce effective results in the shortest possible time.

4.6 Exercises

4.1 The following program prints a conversion table relating Celsius
and Fahrenheit temperatures. It is supposed to print the conversion
table from -20 to 100 degrees Celsius in increments of 10 Celsius
degrees except for the comfort range from 10 to 35 degrees where
it should print the temperatures for every 2 degrees Celsius. After
35 degrees the table is again printed in 10 degree increments. Run
this program and examine the output. Does it work? Attempt to
repair the program so it will work. If you have difficulties, use the
debugging techniques described in this chapter to help you.

C = -20

D = 10

PRINT "C", "F"

LOOP
IF C=100 THEN QUIT
F = (Cx9)/5 + 32

PRINT C,F
IF C = 10
D = 2
ELSE
IF C = 35
D = 10
ENDIF
ENDIF
C=C + D
ENDLOOP

STOP

Debugging Programs 3]

4.2

The program similar to the one in Exercise 4.1 prints a conversion
table relating Celsius and Fahrenheit temperatures. It is
supposed to print the conversion table from -20 to 100 degrees
Celsius in increments of 10 Celsius degrees except for the range from
0 to 5 degrees where it should print the temperatures for every .2
Celsius degrees. After 5 degrees the table is again printed in 10
degree increments. Run the program and examine the output. Does it
work? Find the bugs and fix them. If you have difficulties use
the debugging techniques described in this chapter.

C = -20
D = 10
PRINT "C",6 nEw

LOOP

IF C = 100 THEN QUIT
F = C(Cx9)/5 + 32
PRINT C,F
IF C = 0
D= .2
ELSE
IF C =5
D = 10
ENDIF
ENDIF
C=C+D
ENDILOOP

32

Chapter 5

Arithmetic in BASIC

In earlier chapters there have been several examples of arithmetic
operations within BASIC programs. The purpose of this chapter is to
approach the subject more formally, in order to tidy up many of the ideas
which have been introduced.

S.1 Numeric Constants

BASIC programs and the data they process
humeric constants, several examples of which follow:

(vi1)

(a) (1) 126
(11) -126
(111) 0
(1v) 111222333
(V) -111222333
(b) (1) 126
(11) -.126
(111) .0
(1v) 111222.333
(v) -111222.333
(¢) (i) 12.6 E3
(11) 12.6 E-3
(111) -12.6 E3
(1v) -12.6 E-3
(v) 999.999999 E13
(v1) 1.0E33

1.0E-34

usually contain many

34 Chapter 5

Group a) contains a number of examples of integers. Integers
contain no decimal point, as it is assumed to be to the immediate right of the
least significant digit. They can be positive or negative, and can contain at
most 9 digits as shown in examples a) (1v) and a) (v).

Group b) contains several examples of real/ constants. Each contains a
decimal point, can be positive or negative, and has at most 9 digits of
precision.

Group <¢) contains several examples of real constants expressed
using exponent or scientific notation, usually referred to as E-notation. In all
cases the signed integer following the E indicates the power of ten
which 1s used to multiply the number which precedes it. For example 12.6E3
means 12.6 multiplied by 10 to the third power and is therefore
equivalent to 12600. On the other hand 12.6E-3 i1s equivalent to .0126
because the -3 indicates that 12.6 should be multiplied by 10 to the -3rd
power, which is equivalent to dividing by 10 to the 3rd power.

E-notation is used to allow the programmer to use very large or very
small constants in the program or data. Example ¢) (v1) is a number which
is so large it could almost be considered infinite. On the other hand
example ¢) (vii) shows a number which is so small it could almost be
considered to be zero. All E-notation constants can contain up to 9 digits
of precision. The largest magnitude is approximately 10 to the 38rd
power, and the smallest magnitude, other than zero, is approximately 10
to the -38th power.

The following are examples of errors which can be made when using
numeric constants in BASIC.

142.6.7 Two decimal points
1.462,271.439 Cannot use commas
$126.42 Cannot use $
14.E16.2 Cannot use decimal
in exponent part
14.6E93 Too large (overflow)

5.2 Numeric Variables

Numeric variables are used in BASIC for the purpose of being
assigned numeric values. Consider the following examples.

a)

b)

Notes:

(1)

. (2)

Arithmetic in BASIC

33

In the statement

X = 7.6

the symbol X is a numeric variable, and is assigned the value 7.6
when the statement is executed.

In the statement

INPUT Y

the symbol Y is a numeric variable, and is assigned a value when any
numeric constant is entered at the keyboard during execution.

In the statement

PRINT K

the numeric variable K has previously been assigned a numeric
value, and this value is displayed on the screen.

A numeric variable always begins with a letter. and can contain as
many letters or digits as can conveniently be used on the line being entered
Into the computer (in other words, a numeric variable cannot by typed

partly on one line, and partly on the next). Examples of numeric variables are
as follows:

(1) CAT
(1) G72
(1) THISISABIGVARIABLE

Only the first two characters in a real variable name are used by
the computer. Consequently if you use the variable names CAT and
CA in your program the computer assumes they are the same
variable. The reason more than two characters are allowed 1S to

permit meaningful variable names to be used. Obviously this must
be done with great care if errors are to be avoided.

Variabl? names cannot be one of the reserved words in BASIC. Thus
SAVE is not a permissible variable name, nor is LOAD, PRINT or

36 Chapter 5

STOP. If you inadvertently use one of these names the computer
will display the message

SYNTAX ERROR IN LINE XXX.

(3) Variable names cannot contain any of the BASIC reserved
words. Thus the variable LOADER is improper since it contains
LOAD. Also RERUN is improper because it contains RUN. In
these cases the computer will also display the message

SYNTAX ERROR IN LINE XXX.

Examples of other erroneous numeric variable names are as follows:

7K Must begin with a letter
C$K Must not contain the special character $
WORD Contains the reserved word OR.

5.3 Numeric Expressions

Any expression which, when evaluated, produces a numeric result is
said to be a numeric expression. Some examples are:

(i) (X + 6.92)/8.6
(i) (A + T)*{J - 2)

(i11) 7.493
(iv) K

(v) -K

(vi) A+B15

(vii) A+B1.5
(viii) A/B*C
(ix) -7.912

The conventions used in evaluating numeric expressions are similar 1o

those used in algebra. For example in (i) the expression X + 6.92 would
be evaluated first because it is contained in parentheses. The result

would then be divided by 8.6 (recall that the slanted stroke "/" is used to
denote the division operator).

Example (ii) introduces "*” as the multiplication operator. Here th:e two
expressions A + T and J - 2 are evaluated, and the two results are multiplied

together. Note that in BASIC the multiplication operator "*¥7 must

Arithmetic in BASIC | 37

always be used when multiplication is to be done, whereas in algebra we
are allowed an imphied multiplication, with the expression written as

(A+T)(J-2).

Examples (ii1) and (iv) are included to show that the simple
numeric constant and numeric variable are each simple cases of numeric
exXpressions.

Example (v) introduces the wnary minus. This operator 1s the same
symbol as the subtraction operator, but serves to multiply the value of K
by negative or minus one, thus changing its sign.

Example (vi) introduces the exponentiation operator “1”. First B15 is
evaluated to produce B multiplied by itself five times. Then the result is
added to A. This is because of the priority of operators. The operators in
order of decreasing priority are

!
* and /
+ and -

Example (vii) indicates the use of a fractional exponent, namely .5.
Here B 1is raised to the power .5 to produce the square root of B; the
result is added to A. Note that B must be positive or an error message
would be produced by the computer.

Example (viii) seems to provide two possible results. Will A/B be
evaluated, with the result multiplied by C? Or will B*C be evaluated with
the result divided into A. The rule i1s that when equal priority operators are
encountered the expression is evaluated from left to right, so the A/B 1s
evaluated then multiplied by C. It is usually best to use parentheses and

then no possible misunderstanding can occur. Thus the expression could be
written as (A/B)*C.

Example (ix) produces the negative of 7.9 squared. The expression
(-7.9)12 would produce the same result with a positive sign.

¥ 5.4 Numeric Assignment Statements

The general form of a numeric assignment statement 1s

numeric variable = numeric expression.

38 Chapter 5

First, the value of the numeric expression is computed; this value is then

assigned to the numeric variable.

Examples are:

SALARY = HOURS #* 6.25 - DEDUCTS
AGE = 7

(1)
(i1)

to use the BASIC

An alternative form of the assignment statement 1s
keyword LET as follows:

LET SALARY = HOURS * 6.25 - DEDUCTS

LET AGE = 7

(1)
(ii)

An error frequently caused by beginning programmers 1S to try to use an
assignment statement such as the following:

X +Y =7 * Z

The item to the left of the equals sign is not a variable. You cannot have an
expression to the left of the equals sign when you are using an assignment

statement.

Arithmetic in BASIC 39

5.5 Some Examples

a) Suppose a loan of $10,000 is to be repaid at the rate of $750.00 per
month, payable at the end of each month. This payment s to include
interest of 1 percent per month on the outstanding portion of the loan
(balance). Example 5.1 is a program which calculates the number of months

reql{irfed to loan. It also prints out a schedule to show the
declining balance, and interest payments.

100 REM EXAMPLE 5.1
110 :

130 BAL =
140 M = 1
160 LOOP
170 I =
190
200

10000

BAL * .01

PRINT M;BAL, I

BAL = BAL - (750 - 1)

210 M =M+ 1

220 IF(BAL*(1+.01))<=750 THEN QUIT
230 ENDLOOP

240 I = BAL = .01

260 PRINT M;BAL, I

270 PRINT

280 PRINT "MONTHS TO REPAY IS" ;M
300 STOP

The first ff:vEf lines in the program which appear before the main
are u.se-d' tor initialization. The numeric variables BAL and M are assigned
their initial values of 10000 and 1 respectively.

Each time the LOOP is executed the payment schedule for one month is
comput?d and printed. Then the new balance is recalculated and the
month Is incremented by one. The Is terminated by testing to
determine whether the current balance plus one month’s interest (BAL *
(1+.01)) can be covered by the payment of $750. If so. the final line is
ca}culated and printed after the exit from the loop. Finaily a message is
printed which indicates the total number of months in which payments

must be made to repay the loan com
pletely. The output produced
computer appears as follows: R o By 1

40 Chapter 5

1 10000 100

2 9350 93.5

3 8693.5 86.935

4 8030.435 80.30435

5 7360.73935 73.6073935
6 6684.34674 66.8434674
7 6001.19021 60.0119021
8 5311.20211 53.1120211
9 4614.31413 46.1431413

10 3910.45728 39.1045728
11 3199.56185 31.9956185
12 2481.535746 24.8155746
13 1756.37304 17.5637304
14 1023.93677 10.2393677
15 284.176139 2.84176139

THE NUMBER OF MONTHS TO REPAY IS 15

Notes:

(1) Quantities may be recorded to several decimal places, even though
they represent dollars and cents. In a subsequent section 1t 1s
shown how to truncate and round these numbers.

(2) The reader should note that the decimal points do not line up

vertically. This is because all numeric output is left-justified in the
print window.

(3) In line 270 the PRINT keyword has no associated list of variables
or constants. When the computer executes this statement a line of

blank spaces is printed.

b) Example 5.2 is identical to the previous example, except that the
program contains an important change of style. Most of the numeric
constants have been replaced by numeric variables which are initialized
once in the initialization portion of the program. For example, each time .01

Arithmetic in BASIC 11

The program will now function correctly and produce a corresponding result
for the new rate.

This point of programming style cannot be emphasized too much
Often programs are used repeatedly for years by different people These;
people or users wish to introduce different data (such as interest- rates)
so the i1nitial assignments of variables will have to be changed. The efforE

mvolvec} to ma_ke this. .c!'la.nge becomes relatively trivial if all such changes
can be isolated in the initialization portion of the program.

100 REM EXAMPLE 5.2

105 :

110 PAY = 750
120 RATE = .01
130 BAL = 10000
140 M = 1

160 LOOP

170 I = BAL * RATE
190 PRINT M;BAL, I

200 BAL = BAL - (PAY - I)

210 M=M=+ 1

220 IF(BAL=* (1+RATE))<=PAY THEN QUIT
230 ENDLOOP

240 I = BAL #* RATE

260 PRINT M;BAL, I

270 PRINT

280 PRINT "MONTHS TO REPAY IS™ ;M
300 STOP

5.6 Numeric Built-In Functions

- ;gsChapter 3 the built-in function SQR was introduced, and others such
and LOG were mentioned. A complete list of available functions and

I‘ L | ,

appears it is replaced by RATE. This makes the program much easier to
modify when these important parameters change. For example, if the interest
rate becomes 2 percent, it is only necessary to change one line in the

initialization, namely

varifl:leeryx,:ﬁ?:}:l?n such as _SQR can be considered to be a numeric
L 0S nor e ‘blls assigned its value wh'en thff function is encountered. Thus
our poss :‘: to us”e the numeric variable name SQR for any other

POSE, as 1t 1s "reserved” for use as the built-in function. The variable name

S : . : _
RATE = .02 QR can only be used in conjunction with parentheses which contain the

42 Chapter 5§

proper argument. (Note that a few of the functions used in later chapters
can contain more than one argument.)

The arguments used in functions can be expressions. For example
SQR(X + Y * Z) i1s evaluated by first computing the expression X + Y
* 7, followed by the evaluation of the square root. Note that the value
of the expression must be non-negative in order for the SQR function to
produce a result.

The arguments can also be expressions which contain another function.
For example SQR(SQR(2)) will produce the 4th root of 2.

5.7 Integer Computations in BASIC

Sometimes it is important to do arithmetic which ignores the fractional
component of a numeric quantity. Consider the following example. Suppose
you wish to calculate the maximum number of quarters (25-cent pieces)
contained in the quantity $3.15. Obviously the answer is 12 with $.15 left
over. To compute this the following BASIC statements could be
incorporated into a program.

QUARTERS = 315/25
PRINT QUARTERS

Unfortunately the answer would appear on the screen as 12.6 because it
is indeed true that $3.15 contains 12.6 quarters! However, since .6 of a
quarter is not legal currency, 12 is the required answer. To obtain an
integer answer for the number of quarters the following statements are used:

QUARTERS = INT(315/25)
PRINT QUARTERS

Note that the built-in function INT (which stands for “Integer Part”) has
been used. First the expression 315/25 is computed to produce 12.6, and
then the integer part, namely 12 is selected and is finally assigned to the
variable QUARTERS.

Many people have a habit of collecting one-cent coins in an old cigar
box, usually located in the bedroom. This habit drives the government to
distraction, but prevents many holes from developing in pants’ pockets.
Example 5.3 is a program which permits the user to indicate the number of
cents in the collection. The program proceeds to compute the minimum

Arithmetic in BASIC 43

number of coins required to make up this sum, using S5 denominations,
namely 50-cent pieces (halves), 25-cent pieces (quarters), 10-cent pieces
(dimes), S-cent pieces (nickels) and 1-cent pieces (pennies). The reader
should study the program to observe the use of the INT built-in function.

100 REM EXAMPLE 5.3

110 PRINT "HOW MANY CENTS?"
120 INPUT AMT

130 H = INT(AMT/50)

140 BAL = AMT - 50=H

150 Q = INT(BAL/25)

160 BAL = BAL - 25x*Q

170 D = INT(BAL/10)

180 BAL = BAL - 10#*D

190 N = INT(BAL/5)

200 P = BAL - 5%*N

205 PRINT

210 PRINT AMT;"CENTS COULD BE:"
220 PRINT H, "HALVES™"

230 PRINT Q, "QUARTERS™"

240 PRINT D, "DIMES"™

250 PRINT N, "NICKELS™"

260 PRINT P, "PENNIES™"

270 STOP

When the program is run the following output is produced when the
number of cents in the collection is 280.

HOW MANY CENTS?
? 280

280 CENTS COULD BE:

5 HALVES

1 QUARTERS
0 DIMES

1 NICKELS
0 PENNIES

All user-defined function names begin with FN. What follows (in

5.8 Rounding, Truncating and User-Defined Functions | ‘
this case the letter A) is a properly constituted variable name.

In example 5.1 and 5.2 the output contains several decimal places, even
though it involves money which properly should be printed to the nearest
cent. Consider the following sequence of BASIC statements

Note that user-defined functions are a single BASIC statement
which has the following format:

DEF function name = expression

10 X = 12.3456789
20 X = X + .005
30 X = X * 100 100 REM EXAMPLE 5.4
40 X = INT(X) 105 -
50 X = X/100 110 DEF FNA(X) = INT((X+.005)*100)/100
60 PRINT, X 115 :
130 BAL = 2000
(1) Statement 20 causes rounding to take place to the nearest cent. 140 M = 1
150 PRINT "MONTH" , 'BALANCE" , "INTEREST?"
(11) Statement 30 causes all dollars and cents to appear in the integer 155
160 LOOP

part of X because of the multiplication by 100.

190 PRINT M,FNA(BAL),FNA(I)

200 BAL = BAL - (200 - 1I)

210 M =M+ 1

220 IF (BAL*(1+.01))<=200 THEN QUIT
230 ENDLOOQOP

235 :

240 I = BAL * .01

245 :

260 PRINT M,FNA(BAL),FNA(T)
270 PRINT

280 PRINT "MONTHS TO REPAY IS":'M
285 :

300 STOP

(111) Statement 40 causes the fractional part of X to be omitted.

(iv) Statement 50 shifts the decimal to the left by two places, thus
causing the “cents” to be to the right of the decimal.

This series of statements will cause X to be rounded to the nearest cent
before printing. When line 60 is executed the value 12.35 will be printed.

The four “rounding” statements can be combined into one as follows:

X = INT((X + .005)*100)/100

Since this is a very common requirement, it is fortunate that BASIC
permits us to define a wuser-defined function with a single statement as

follows:
DEF FNA(X) = INT((X + .005)*100)/100
This DEF statement defines a function FNA which has a parameter X.

Consider Example 5.4 which incorporates this function definition in
line 110. The function is used in lines 190 and 260 in the same manner as

built-in function SQR. The variables BAL and I are used as arguments i_n
separate invocations of FNA, and their rounded, two-decimal version 1s

returned as the value of FNA.

46 Chapter 5

5.9 Summary

Arithmetic operations appear in arithmetic expressions which include
operands, operators, built-in functions and parentheses. The operands are
either numeric constants or numeric variables. The operators are +, -, *, /,
and 1. All calculations proceed retaining 9 digits of precision.

Results of arithmetic operations can be assigned to a numeric variable.
However they can be printed directly without assignment by including them
in the list of items specified in a PRINT statement. For example, the
following statement would produce the result of the expression X+2.

PRINT X+2

5.10 Exercises

5.1 A retired school teacher has $60,128.42 1n his bank account.
Interest of one-half of one percent is credited at the end of each
month. Assume the teacher must withdraw $1,020.00 for living
expenses at the beginning of each month. Write a program which
calculates the number of months until the bank account has
reached a balance which 1s less than $1,020.00.

5.2 Write a program which converts a time in seconds to a time In
hours, minutes and seconds. The program should continue in a loop;
each time the user is requested to type a time in seconds, and the
converted time is printed on the screen.

5.3 Write a program which computes and prints all the 1ntegers up to
1000 which are perfect squares. (625 is a perfect square because its

square root is 25, which is an integer.) °

5.4 Write a program which converts a distance in inches to a distance
in miles, yards, feet and inches. The program should continue in a
loop; each time the user is requested to type a distance in inches, and
the converted distance is printed on the screen.

Chapter 6

Hardware-Dependent Limitations

When using a computer, sometimes surprising and unexpected results can
occur. These are usually related to the limitations of the hardware, and it is
helptul to be forewarned. This chapter outlines some of these
problems, and gives partial explanations. It is possible to skip this chapter on

an nitial reading of the text, as future chapters do not depend on this
material.

6.1 An Example

10 REM EXAMPLE 6.1

15 :

20 X = 2.0
25 :

30 LOOP

4() Y = SQR(X)
o0 PRINT X,Y
60 X=X+ .1
70 IF X = 3.0 THEN QUIT

80 ENDLOOP
85 :

90 STOP

Consider Example 6.1 which tabulates the square roots of the set of

numbers 2.0, 2.1, 2.2, 2.3, ..., 3.0. It would be reasonable to expect this
Program to terminate but in fact it does not.

This problem is caused because the computer represents numbers

using b_inary notation and it is not possible to represent .1 accurately
using this notation. Since the computer must use an appproximation for

48 Chapter 6

.1 it follows that X never actually becomes equal to 3.0 and the
program does not terminate. The program is easily corrected by changing
line 70 as follows:

70 IF X > 3.0 THEN QUIT

It is therefore common to avoid equality tests when terminating
loops. However, if the numbers involved are all integers this problem does
not arise (unless the integers are very large). This 1s because most
integer values are represented accurately in binary.

To further help the reader understand the problem, perhaps an analogy
using decimal arithmetic would be of assistance. Suppose 1t is required to
write the fraction one third as a decimal. It 1s written as .3333333, a
number which never terminates; thus no computer could ever have enough
capacity to accurately represent this fraction, if the computer recorded its
numbers in common decimal notation. If we accept .3333333 as the
approximation it is slightly too small, but the error is less than 1 part in

ten million.

6.2 Another Example

10 REM EXAMPLE 6.2
15 :

20 X = 3.1

30 Y = 3.1E20
40 7Z =Y - Y + X
50 T =Y + X - Y
DO !

60 PRINT Z,T

65

70 STOP

In Example 6.2 you would expect Z and T to be assigned 1dentical
values. In actual fact, Z becomes 3.1 and T becomes zero! This happens
because computation of expressions proceeds from left to right, and numeric
constants contain only 9 digits of precision. When computing Z, the quantity
Y-Y is evaluated first, yielding zero; then X is added to produce the
result 3.1. When computing T, the quantity Y+X is evaluated first. Since
the computer retains only 9 significant digits, the result is 3.1E20 because X
is insignificant relative to Y. Then Y is subtracted producing the zero

Hardware-Dependent Limitations 49

result for 1. This points out that operations which are associative in ordinary
algebra are not necessarily associative in BASIC.

6.3 Summary

The reader who 1s not familiar with computers may be disturbed
by the points made in the two examples. However, experienced computer
users have learned over the years to cope with these difficulties, and
they seldom present problems in straight-forward real-life situations. The
most serious difficulties arise in complex scientific or engineering
calculations where millions of computations are taking place. Since the
numbers used are approximations, the errors can have a tendency to
compound upon one another. In extreme cases the error becomes larger
than the numbers themselves, so the results are meaningless! A separate
discipline called numerical analysis examines the propagation of errors.
These studies have yielded good algorithms for solving common scientific
problems keeping the error in the results to a minimum.

BARRE AL SR ——

50

Chapter 7

String Manipulation in BASIC

Many problems involve the processing of alphabetic data. Examples
include names, addresses, and product descriptions, to name just a few.
BASIC permits the programmer to manipulate alphabetic data with
reasonable ease. The purpose of this chapter is to introduce the subject of
string processing, and to formalize a number of the pertinent rules of BASIC.

7.1 String Constants

In previous chapters there have been examples in which headings

were produced by printing strings of characters contained between
quotation marks. Examples of these string constants are as follows:

(i) "DOGS "
(ii) "CAT"

(iii) " "
(iv) nw
(V) "IT'S A BOY!™"

String (i) and (ii) have lengths of 4 and 3 respectively.

Example (iii) shows a string of 3 blank characters, while ex:amplc (1v)

dlustrates the null string. This null string 1s of length zero and contains no
Characters.

B

.

Example (v) illustrates what to do if a string 1S to contain quotation
¥marks as in the word IT’'S. Double quotes are used to delimit the string, and
wlihe single quote is used within it. A string can have up to 255 characters.

59 Chapter 7 String Manipulation in BASIC 53

7.2 String Variables The following are examples of invalid string expressions.

A string variable is a variable which can assume a string constant as
its value. String variables are similar to numeric variables except'that tl}ey
always end with a "$” character. Thus the following are typical string

variables:

"CAT” + 6 Cannot concatenate a string
with a numeric constant

"CAT” + DOG Here, DOG is not contained
within quotes so is not a

AS string constant
NAME$ 1 7 1" % .
CTR$ CAT DOG The * operator is not allowed

In string expressions.
As with numeric variables, they must begin with a letter, and contain no

special characters except of course the final § character. Only the first 2

Later in this chapter built-in string functions are introduced; they
characters plus the $ are actually used by the computer.

can also be used in string expressions.

7.3 String Expressions 7.4 String Assignment Statements

There is only one string operator, namely concatenation, which 1s denoted
by a "+”. For example,

The general form of a string assignment statement is

string variable = string expression

" C AT " + " DOG "
Examples are:

is a string expression which, when executed, causes the two strings ;0
be joined together (concatenated) to form a single string, nargey
"CATDOG”. In a similar fashion, three strings can be concatenated as

follows:

(i) X$ = "CAT” + "DOG’

(i) ~ NAMES = "JOHN HENRY"
(i) T$ = X$ + NAMES$

(iv) T$ =TS + T$

" C AT " + LA . | i + " DOG "

In each example the string variable on the left of the equals sign 1is
assigned the value of the string expression on the right. Note in example

(1v) the variable T$ is concatenated to itself to form a string of twice the
original length.

to form the string "CAT DOG”. As many strings can be
concatenated together as are required in a particular problem.

String variables and string constants can also appear In the same string
expression. For example,

"CAT" + X$

will concatenate the string "CAT” to the current value assigned to the string
variable X$, thus forming a new string.

54 Chapter 7 Strmg Manipulation in BASIC 55

7.5 An Example 7.6 Built-In Functions for Strings

While built-in functions play a minor role in most numeric calculations

10 REM EXAMPLE 7.1

15 :
20 PRINT "WHAT IS YOUR SURNAME?™"

30 INPUT LAST$
40 PRINT "AND YOUR FIRST NAME?"

50 INPUT FIRST$
60 PRINT "YOUR MIDDLE INITIAL?"

70 INPUT MIDDLES$

4D i

80 FULL$=FIRST$+" "+MIDDLE$+". "+LAST$
90 PRINT FULL$

95 :

99 STOP

Example 7.1 is a program which prompts the user for surname,

first name and middle initial. The three items are entered at the keyboard, ¢

and are assigned to three separate string variables. The full name is
formed by concatenating the three strings together in the proper order. Note
that a period is placed after the initial, and blank characters are inserted

between the components of the full name.

When the program is run, the user is prompted to enter three string
constants. To make things easier, it is not necessary to use the beginning
and ending quotes around the input string. Thus when the surname is
requested you can type either "SMITH"” or SMITH as a response. (When

you choose to omit the quotation marks, the string constant must nor

contain a comma (,) as this becomes a delimiter. This situation 1s
discussed further in Chapter 8.)

The computer never prints strings on the screen (or on any file dev_ice,)
with the quotes included. Thus when the full name is printed 1t appears 1n a

normal format, for example,

JOHN H. SMITH

It should be noted that in Chapter 2 we discussed the concept of
print “windows” which are 10 characters wide. If a string of 10 character§ or
longer is printed, it uses two or more of these windows. In fact, if a
string is longer than a line, the output is automatically continued on the

next line, and is said to "wrap around”.

it_ 1s rare that a string manipulation operation can be done etfectively
}mthout the use of built-in functions. Hence these functions play an
important role, and appear in many string expressions. The following

examples illustrate the application of some of the more common functions.
Others can be found in the Appendices.

a)‘ ‘It 1S o‘ftcn necessary to select a string of characters from within an
existing string, thus forming a new string, often referred to as a Substring.

;‘“;]is 1s accomplished using the MIDS$ function with three arguments as
ollows:

Y$ = "ABCDEFGH"
X$ = MID$(Y$,3,4)

The string Y$ is selected, and the new string is formed beginning at
th§ 3rd cha.racter, namely the C, and continuing for 4 characters. Thus the
string X$ will be assigned the value "CDEF” and will have a length of 4.

10 REM EXAMPLE 7.2
15 :

20 PRINT "ENTER A 3-LETTER WORD"
30 INPUT X$

35 :

40 L1$=MID$(X$,1,1)

o0 L2$=MID$(X$,2,1)

60 L3$=MID$(X$,3,1)

70 STRINGS$=L1$+" "+L2%+" "41.3%
75 :

80 PRINT STRINGS

85 :

90 STOP

Example 7.2 illustrates a simple application of this function. It.

o Tequests the user to enter a three-letter word such as CAT. The program

then composes a new string, placing a blank between each letter, and the
screen output becomes C A T.

b) The previous example 1s somewhat restrictive in application because it
processes only 3-letter words. In order to be able to input a word of any

56 Chapter 7

length, it would be convenient to have a facility _which detel:mines the
length,of any given string. The built-in function LEN 1s used for this purpose.

For example

INPUT X$

N =LEN(X$)
Y$=MID$(X$,N, 1)
PRINT Y$

will permit the user to enter a string constant of any .reasonabl_c
length; it will be assigned to X$, and then the length is determined and 1is

assigned to N. Finally the /ast character in the string is selected using the
MIDS$ function, and it is printed on the screen.

10 REM EXAMPLE 7.3

;g PRINT "PLEASE ENTER A WORD"
30 INPUT X$

39

40 N=LEN(X$)

50 YP=MID$(X$,1,1)

60 1I=2

70 LOOP

80 IF I>N THEN QUIT

90 Y$=Y$+" "+MIDS(X$,1,1)
91 I=1+1

92 ENDLOOP

93 :

94 PRINT Y$

99 STOP

Example 7.3 uses the LEN function to generalize Exam_plfhlzas;)wtslli;;nga
! . d. The output is the s ,,
string of any reasonable length can be entere ‘
withga singli blank inserted between each character. Study this example

carefully to be sure the algorithm is thoroughly understood, because the

technique illustrated is commonly used in string processing.

Initially Y$ is a string of length 1 which contains the first character

r xt .
in X$. Each time the loop is executed a blank character and the ne

] acters 1n
available character in X$ is concatenated on the right. Wher_l all ctI;?rll' N
X$ have been used the loop terminates and the resultml% scterg
printed. Note that the input word must contain at least one chara :

String Manipulation in BASIC 57

¢) Example 7.4 is another application of the MIDS$ function. Here the
user 1s asked to input a sentence and the program is to determine the number
of occurrences of the letter A. This is done by comparing every

individual character in the sentence with "A”, and adding unity to N for each
equal comparison.

100 REM EXAMPLE 7.4

110 PRINT "ENTER A SENTENCE™"
120 INPUT S$

130 N=0

140 L=LEN(S$)

150 I=1

160 LOOP

170 IF MID$(S$,I,1)="A"
180 N=N+1

190 ENDIF

200 I=1+1

210 IF I>L THEN QUIT
220 ENDLOOP

230 PRINT "A OCCURS " ,N," TIMES"
240 STOP

d) Sometimes the programmer would like to include a numeric constant as
part of a character string. Consider the example:

N = 256
Y$ = "TRY " + N " TIMES"
PRINT Y$

Here the desire is to print the message
TRY 256 TIMES

However an error OCCurs

because the string expression contains both string
constants

and a numeric variable N. The numeric expression N can be
converted to a string expression using the STR$ function as follows:

N = 256
Y$ = "TRY " .+ STRE(N) + " TIMES"
PRINT Y$

- Chapter 7

Now the desired result is achieved. A similar function VAL permits the
programmer to convert a string constant containing a prr:)perly formed
numeric constant so it can be processed in arithmetic expressions.
Consider the example

X$ = "123.4"
Y = VAL(X$)*2
PRINT Y

Here the string constant "123.4” is converted to a numeric; constant
123.4 using the VAL function. It is then multiplied by 2, and the final result
is printed.

100 REM EXAMPLE 7.5

110 PRINT "ENTER A SENTENCE"
120 INPUT S$

130 N=0O

140 L=LEN(S$)

150 1=1

160 LOOP

170 IF MID$(S$,1I,1)="A"
180 N=N+1

190 ENDIF

200 I=1+1

210 IF I>L THEN QUIT

220 ENDLOOP

230 PRINT "A OCCURS "+STR$(N)+" TIMES"
240 STOP

Example 7.5 shows another situation 1n which you may wailt to ustet;l};et
STRS function. This program is identical to that of Example 1.4, ex:}fpt .
the PRINT statement has been altered to use thf function. N(:jtc jvidiny
one string is printed, thus avoiding the "windows problem, ar:h Irjésults ii
output with a nicer format. Try the programs and observe the

each case.

e) The LEFTS function permits the programmer 10 selef.(::t a ;pfcﬁig
number of characters from the left end of a string. Lonside

statements.

10 X$ = "ABCDEFG"
30 PRINT Y$

P /.1

String Manipulation in BASIC 59

The value ABC would be printed because the 3 characters are selected
from the left of X$. Note that LEFTS$ has two arguments.

The RIGHTS function is similar exce

pt that the required number
of characters is selected on the right of

the string.

7.7 Summary

Note that when a string function returns 2

function name always ends in a b, for example MIDS. However, when the
function returns a numeric result (such as LEN) the function name

does not end with a §. Properly speaking, the function LEN is not a string

function at all, but is a numeric function. However, it is included in this
chapter because its use is associated with strings.

string as its value, the

| | 7.8 Exercises

a) Write a program which inputs

| a three character string such as
CAT and prints the three letters

vertically as follows:

- > QO

at a
, and determines the total number of

words of various lengths. The output will be a table as follows:

TWO CHARACTERS =
THREE CHARACTERS = 6
MORE THAN THREE = 12

ONE CHARACTER = 3
2

b) Modify the program for part a) so that several words

can be
entered on a single line with each word separated by one or more
spaces.

60

7.3

7.4

Fed

Chapter 7

With reference to the Exercise 7.2, modify the output to appear as
follows:

NUMBER OF CHARACTERS

] **=*
2 & *
REEEEEERE S

S>3 kokokok ok ok ok ok k ok kX

The number of asterisks corresponds to the number of
occurrences of a word of the size indicated.

Write a program which has the following characteristics:

a) Words are read one at a time from the key-board of the
computer.

b) These words are arranged into lines for printing with no line
being longer than the width of the screen. The first word in a line 1s
printed left-justified in the line. All subsequent words 1n a line are
separated from other words by exactly one blank character. If there
is not enough space at the end of a line to print the next word,
this space should be left blank, with the next word appearing as the
first word in the following line.

¢c) When a period (.) is read from the keyboard the program

terminates.

Write a program that accepts two integers as input from the

keyboard. The program then must print a rectangle with the two
integers as the length and width, using an asterisk (*) as the
character to outline the rectangle. For example, if 5 and 8 are read
the output should appear as follows:

*

* ok %k Kk Kk ¥

* % * *

¥ #* % *

* % Kk Xk ¥ ok

*

String Manipulation in BASIC 61

7.6

Write a program which reads a message containing only letters
and blank spaces. This message is to be coded into a “secret
message” using the following coding rules:

(1) Any letter is replaced by its successor in the alphabet. For

example, A 1s replaced by B and S by T. The letter Z is replaced by
A.

(11) Blanks are to remain unchanged.

Note: You will find the built-in functions ASC and CHRS useful
for solving this problem. They are described in the Appendices.

62

Chapter 8

Simple Input, Output and Files

In all examples introduced to this point, the BASIC program caused
printing to take place on the screen in 10-character "windows”. Also, data
has been read into the computer using the INPUT command and the
keyboard. The purpose of this chapter is to generalize these ideas, and

) specifically to introduce the concept of a file.

8.1 Output on the Screen

Several examples have been introduced where a number of quantities
are printed on the screen of the computer. For example, the statement

PRINT X$, "CAT", Y, 6.47

will cause four values to be displayed in four 10-character windows. First

g the current value of X$ is printed in the first window, assuming it has a

length less than 10. The string CAT is printed in the second window, the
value of Y in the third, and the numeric constant 647 in the fourth. All
quantities are left-justified in each window. If the length of X$ is 10 or

v greater, as many windows as necessary are used. If there are not enough

windows on the printed line, the computer continues printing on the next
and subsequent lines until all the quantities are printed.

The list of items following the keyword PRINT is referred to as the
output list. The elements of the list are separated by commas and are
referred to as output-list items, or list items for brevity.

Each list item can be a variable name, string constant, numeric
constant or expression. If we execute the statement

64 Chapter 8

PRINT (X+2)*6.3

the expression (X+2)*6.3 1s evaluated and the result is printed.

8.2 Input using the Keyboard

The INPUT keyword has been used in many examples. When the
statement

INPUT X

i1s executed, a "?” appears on the screen, and the wuser 1is expected to
type some valid numeric constant. If the user types an invalid quantity, such
as CAT, the following error message is displayed

?REDO FROM START

You must then enter a valid numeric quantity to continue.

It 1s possible to input a list of quantities as follows:

INPUT X, Y$, T

Here the terminal prints the ”"?” and the user normally is expected to
type three quantities, separated by commas. A typical response might be

26 .49, CAT, 16

in which case X will be assigned the value 26.49, Y$ the string value
"CAT”, and T the value 16. It is important to observe that the input
quantities must match the input list items in both number and type.
String constants do not require the quotes on input; however, if the string
to be assigned to Y$ contains a comma or a space, then it must be typed

surrounded by quotes. Thus the response

26.49, "JONES,HENRY", 16

will assign the string value JONES,HENRY to the variable Y3$.

e

It is not absolutely necessary to type all three items of data on one line, -

separated by commas. They could be placed on three separate lines, or two
on one line and one on the other. However, when more than one data

am—-

s e

Simple Input, Output and Files 65

item appears on a line, the items on that line must be separated by commas.
The computer will display a double question mark ?? until sufficient data

has been entered.

8.3 Files in BASIC

It 1s frequently desirable to store data on an external device such as a
cassette. For example, a file could be created which contains the names of all
the students in a class. This file would contain several records, one for
each student. The file 1s given a name such as STUDENT.

The files are stored on cassette in a form similar to that used to place
music on a tape for use with a tape recorder. Magnetic impulses are written
which are coded to represent the various characters.

0110, STEVENS ,M,17,065,063,085,056,076
0297, WAGNER ,M,15,065,086,085,084,074
0317, RANCOURT ,F,16,075,072,070,068, 065
0364, WAGNER ,M,16,070,058,090,064,083
0617, HAROLD ,M,17,085,080,080,075,074
0998, WEICKLER ,M,16,072,074,075,075,075
1203 ,WILLS ,F,16,073,072,072,073,084
1232 ,ROTH ,M,17,072,070,070,074,072
1234, GEORGE ,M,18,070,070,071,058,069
1265,MAJOR ,M,16,065,065,068,068,069
1568, POLLOCK ,M,17,089,088,085,092,063
1587, PEARSON ,F,15,055,050,049,061, 060
1617 ,REITER ,M,17,100,068,069,075, 089
2028, SCHULTZ ,M,18,069,068,075,074,053
2036 , BROOKS ,M,18,065,068,069,070,065
2039,ELLIS ,M,17,085,085,085,085,085
2049, BECKER ,F,15,065,065,065,068,069
2055,ASSLEY ,M,16,065,063,060,063,065
2087 ,STECKLEY ,M,15,056,053,085,084,072
9999 ,77277 ,M, 99,000, 000,000,000, 000
Figure 8.1

| Consir?ler Figure 8.1 which is a listing of a file called STUDENT. This
file contains 20 records. Each record contains several fields of information
about a student. These fields are student-number, surname, sex, age, and

g T the marks obtained in 5 courses, namely Algebra, Geometry, English,

e

o Chapter 8 Simple Input, Output and Files 67

permanently associated with the file, and can be a different number each

time the file is used. The 1 is the device number (cassette) and the O
indicates it will be used for input.

Physics, and Chemistry. Note that each field quantity terminat?s '_with a
comma (except for the last one). This comma is used as a delimiter to

separate the fields.

Line 35 contains an INPUT# statement similar to the INPUT statement
used in other examples. The difference 1s that the file number is used to

indicate that input 1s to be obtained from the STUDENT file instead
of the keyboard. Also a comma must follow this number.

Another thing to observe is that the 20th record 18 a ser:ztinel recoird
which is used to define the end of the file. This record contfms 2 spet?lal
student number, namely 9999. The entire record_ IS a ”d}lmmy V}f’thh ex1sts
only to indicate that no further records follow‘ in the file. _It will not .be
processed normally, but will be used as a signal to terminate proccssing

Line 40 i1s used to cause the loop to be terminated. Each time through
when the file is being read.

the loop one record is read from the STUDENT file. This record is always
printed unless the student number 1s 9999, which indicates the sentinel
record. Thus the loop i1s repeated 20 times, with 20 records read sequentially;

the first 19 of these are used to print the students’ names. This process
is referred to as sequential reading of the file.

8.4 Reading a File

Example 8.1 1s a program which reads the STUDENT file stored on

cassette and prints out a list of the students’ names. Line 60 causes the STUDENT file to be CLOSEd. It 1s always necessary

to close a file when the program has finished processing it.
10 REM EXAMPLE 8.1

15 : Notes:

20 OPEN 3,1,0, "STUDENT"

25 (1) The sequence of items in the OPEN statement must be as
30 LOOP o indicated. Thus, it 1S not correct to write

35 INPUT#3,NO,N$,S$,A, M1, Mz, Mo, M=,

40 IF NO=9999 THEN QUIT OPEN 3, "STUDENT", 1,0

45 PRINT N

50 ENDLOOP (2) The INPUT statement normally contains exactly the number and
55 : type of list items to match the fields in each record in the file.
60 CLOSE 3 However the statement

65

70 STOP

INPUT#3, NUMBER,NAME$

in statement 20 the STUDENT file is OPENed -for input. This CE;?;S
the computer to search for the beginning of the file namec‘i STUD t b,
<o that it can be read later using INPUT statements. Files cannot b€

used unless they first are opened, SO all programs will contain one OPEN
statement for each file to be used. In the statement ‘)

would cause a record in the STUDENT file to be read, with values

assigned to NUMBER and NAMES. The rest of the fields would
be 1gnored.

It 1s not possible to OPEN a file with the same wunit number when

it 1s already opened. This is one of the reasons the CLOSE
statement 1s needed. If the CLOSE 1s omitted in error, the
program will function but the file will remain open. If you have
forgotten to close a file, you can do so using an immediate
command. Simply type the CLOSE without a statement number.

OPEN 3, 1, 0, "STUDENT"

the 3 is called a file number (or unit number) and is used as an ibb]i::itii
name for the file throughout the rest of the program. It mus alt i); o
used, and can be any number ranging from 1 10 255 inclusive.

Chapter 8 Simple Input, Output and Files
68

69

_ 4. After the loop is terminated, a sentinel record 1S written
8.5 Creating a File

line 200. This is done so that end-of-
later use of the file.

in
file can be recognized during
The reader may be wondering what process was used to create the

! ! - Inni .2 i1s a program which will
ENT file in the beginning. Example 8 .
Slsgt[e) a file named TELEPHON which contains names and telephone

| 8.6 Summar
numbers of as many persons as you wish. y

This chapter has been included to introduce the reader to the
100 REM EXAMPLE 8.2 fundamental concepts of Input-output using cassette files. The subject of file
105 : processing is a fairly large one, and complete details are beyond the
" ’
130 OPEN 6,1, 2, "TELEPHON scope of this text. However, some simple disk and printer operations are
135 : described in the Appendices. For a co
150 LOOP

155 PRINT "ENTER NAME AND PHONE"

160 INPUT NAME$, NUMBER$
170 IF NAME$="ZZZZ" THEN QUIT
180 PRINT#6 ,NAMES$; ", " ; NUMBERS$

190 ENDLOOP
200 PRINT#6,"ZZZZ,999-9999"

220 CLOSE 6
230 STOP

The most important observation to make is that the name and tele{)ilsﬁgz
number are written on the file separated by a comma. This 1s accomp

by including the string

LA |
y

in the output list between NAMES$ and .NUMBER$. This must be done to
provide the field separator in the output file.

NOTES: 1. The 2 in the OPEN statement causes the file named
TELEPHON to be initialized for output.

2 The PRINT# statement is used to write records to tht:Hfg)l?\..I 'I;ih[z
file number 6 is used to indicate writing to the TELEP

instead of the screen.

3. The loop will terminate when the sentinel name ZZZ'[Z'HS
read. Note that you must also have‘ typeq in E'lljsentl <
telephone number as well; otherwise the 1npul list will no

satisfied.

mplete description of the Input-
output facilities which are available. the reader s referred to the

Reference Manuals which are supplied with specific devices.

8.7 Exercises

8.1 The file called STUDENT must be created before it can be used.

The object of this exercise is to write a program which prompts the
user for the appropriate data and creates the file shown

in Figure
8.1. The program can be written to contain a loop as follows

LOOP
INPUT X$
IF X$ = "QUIT"™ THEN QUIT
PRINT#2, X$ -
ENDLOOP

Each time through the loop a single record is entered as 3 string
whose value is assigned to X$. Be sure to include this string in

quotes as there are commas in the record. The value of X§ is
then written onto the file whose unit number 1s

2, thus creating the
record in the proper format.

Write the rest of the program, run 1t to create the file. and verify
that the file contents are correct by displaying the entire file.

8.2 Write a program which reads the file STUDENT and displays the

names of the male students

8.3 Write a program which reads the file called STUDENT

and
calculates the class average for each of the five courses.

710

Chapter 9

Selection

In most programs the instructions to be executed will vary depending on
the data being processed. For example in Chapter 3 a program was
introduced which converted Celsius to Fahrenheit, or vice versa, depending
on the value of a code which is typed. This selection 1s accomplished using a

set of BASIC statements, namely [F, ELSE, ENDIF and ELSEIF. This
chapter will discuss these statements and their application.

9.1 Termination of Loops

Virtually every program contains one or more loops. Every loop must be
terminated, and all examples to this point have accomplished this using a
special IF statement. For example, the statement

IF NAME$ = "ZZZZ" THEN QUIT

1s used to terminate the loop in Example 8.2. This IF statement is referred
to as the IF-THEN-QUIT combination as the keywords IF, THEN and

QUIT are necessary. It 1s used in this text only for terminating loops and
always has the format

IF relational expression THEN QUIT

If the relational expression is “true” the loop is terminated; if it is false
the next instruction is executed and the loop continues.

The IF-THEN-QUIT combination 1s therefore a special-purpose
mechanism. This chapter discusses another type of IF combination
which is more generally applicable.

79 Chapter 9

9.2 The IF-ENDIF Combination

Consider the program illustrated in Example 9.1.

100 REM EXAMPLE 9.1

105 :

110 OPEN 8,1,0, "STUDENT?"
115 :

120 FSUM=0

125 FEMS=0

130 :

135 LOOP

140 INPUT#8,NO,N$,S$,A, Ml
145 IF NO=9999 THEN QUIT

150 IF S$="F"

1909 FEMS=FEMS +1

160 FSUM=FSUM+M1
165 ENDIF

170 PRINT NO,N$,S$,Ml
175 ENDLOOP

180 :

185 FAVE=FSUM/FEMS

190 :

195 PRINT "FEMALE AVERAGE IS " ;FAVE
200 CLOSE 8

205

210 STOP

The IF used on line 150 is followed by the relational expression S%
= "F”. If this expression is "true” the block of statements between the IF

and ENDIF are executed, namely statements 155 and 160. If the
relational expression yields a value which is false, this block of two

statements is not executed.

The effect in Example 9.1 is to calculate the aggregate algebra mark
for females only, as well as the total number of females. When the loop has

terminated the average algebra mark for females 1s computed_ and_ printed.
The number. name, sex and algebra mark of every student is printed, as
statement 170 is not in the range of the IF-ENDIF block.

To summarize, the IF and ENDIF statements are meant 10 work together
to define a group or block of statements which may or may not be executed,

Selection

depending on the value of the relational expression associated with the IF

statement. The statements in the block are sometimes referred to as
of the IF-ENDIF combination.

NOTE: Only the first five fields in each record are read in line 140.
The others are automatically skipped, as they are not included in

the list of the INPUT statement.

9.3 The IF-ELSE-ENDIF Combination

110 REM EXAMPLE 9.2

115 :

120 OPEN 8,1,0, "STUDENT"
125 :

130 FSUM=0

135 MSUM=0

140 FEMS=0

145 MALES=0

148

150 LOOP

160 INPUT#8,NO,N$,S$,A, M1

170 IF NO=9999 THEN QUIT
180 IF S$="F"

180 FEMS=FEMS +1
200 FSUM=FSUM+M1
210 ELSE

212 MALES=MALES+1
214 MSUM=MSUM+M1
216 ENDIF

220 PRINT NO,N$,S$,M1
230 ENDLOOP
235 :

240 FAVE=FSUM/FEMS

245 MAVE=MSUM/MALES
247 -

250 PRINT "FEMALE AVERAGE IS ", FAVE

255 PRINT "MALE AVERAGE IS
257 :

260 CLOSE 8

265

270 STOP

" :MAVE

the range

14 Chapter 9

Example 9.2 is a slight variation of Example 9.1. He_re the algebra
average is calculated for males as well as females. This is accomplished
by incorporating the ELSE statement within the range of the IF-ENDIF.
This separates the range of statements into two blocks or sub-ranges,
namely the statements between the IF and the ELSE, and the ones
between the ELSE and the ENDIF. The former block 1s referred to as the
true range and the latter as the false range. When tl:ne relational
expression (which must always follow the IF keyword) s true, the
statements in the true range are executed; if it is false those in the false
range are executed. Thus the computer is able to select between two

choices of action, depending on the current value of S§.

9.4 The IF-ELSEIF-ELSE-ENDIFK Combination

Suppose it is required to count the number of students 1n ‘the various
age categories, namely ages 15, 16, 17 and 18. Example 9.3 1s a program
which accomplishes this using another BASIC statement, namely ELSEIF.

Selection _ 75

110 REM EXAMPLE 9.3

115 :

120 OPEN 8,1,0,"STUDENT?"
125 &

130 N5=0

140 N6=0

150 N7=0

160 N8=0

165 :

170 LOOP

180 INPUT#8,NO,N$,S$., A
190 IF NO=9999 THEN QUIT
200 IF A=15

210 NS5=NS5+1

220 ELSEIF A=16

230 N6=NG6+1

240 ELSEIF A=17

250 N7=N7+1

260 ELSEIF A=18

270 N8=N8+1

280 ELSE |
290 PRINT "BAD RECORD"
300 ENDIF

310 PRINT NO,N$,S$ A
320 ENDLOOP

322

324 PRINT ""

325 PRINT "TOT15","TOT16","TOT17", "TOT18"
330 PRINT N5,N6,N7,N8

335 :

340 CLOSE 8

345 :

350 STOP

In this example, the range of the IF (the statements between the
IF and ENDIF) is separated into five sub-ranges. The first sub-range,

_ contained between the IF and the first ELSEIF, 1s executed only if

——

~ A = 15. The next sub-range, contained between the first and second
¥ ELSEIFs, is executed if A = 16. This pattern follows until all the ages are
. considered, providing one block of code for each age. The last block of
w code, between the ELSE and ENDIF will be executed only if none of the

others is selected. This prints an error message because the file should

) contain only ages 15 to 18 inclusive.

76 Chapter 9

This combination of statements is sometimes referred to as a case

construct because only one of several "cases” is selected for processing.

9.5 General Rules Concerning IF-Statements

(1) Every IF statement contains a relational expression following
the keyword IF.

(2) Every IF-ENDIF combination ends with the ENDIF statement. All
statements between the IF and ENDIF are referred to as the range
of the IF, regardless of which of the three IF-ENDIF
combinations is being considered.

(3) Each of the statements in the range of the IF can be any |

statement. This means that the programmer can use other IF-
ENDIF combinations within the range of an IF. These are referred
to as nested IF's, and BASIC allows complete flexibility to nest
IF’s of all combinations, to any depth of complexity. It should be
pointed out that such nesting makes the program difficult to read
and it is generally advisable to avoid this type of
programming if at all possible.

(4) The indentation of statements is used only to make the program
more readable.

(5) When an IF-ENDIF combination has selected and executed the
appropriate block of code, the processor always proceeds to the
statement following the ENDIF statement associated with that IF

combination.

(6) The IF-THEN-QUIT combination discussed at the beginning of the
chapter, and used extensively to terminate loops, can also be used
to terminate IF-ENDIF combinations. For example, 1if this

statement is executed within any of the sub-ranges or blocks within .

the range of any IF-ENDIF combination, and if its relation
evaluates as ”true”, the next statement to be executed will be the

one immediately following the ENDIF statement associated °

with that combination. In other words the processing will exit from

the range of the IF, just as it exited from the range of the LOOP:

in the case of termination of loops.

W7

F 4

Selection o

9.6 Exercises

9.1

9.4

a) Using the file called STUDENT as input, list the names of all
students who have a mark of 80 or more in at least One course.

b) Using the file called STUDENT as input, list the names of all
students who have a mark of 80 or more in at least two courses.

Using the file called STUDENT as input, list the name and marks

for each of the nineteen students. Each mark 1S to have an asterisk
(*) beside it, if the mark exceeds 79

Using the file called STUDENT as input, list the name and a letter

grade for each of the nineteen students. The grade 1s A if the

average mark is 80 or above. The grade is B if the average mark is
between 70 and 79 inclusive: otherwise the grade is Z.

Write a program which reads a positive integer number from the

keyb‘oard. This number is to be printed using 12 positions, filling
all high-order positions with asterisks (*) as follows:

[f the input is 123 print RERETEEE¥] 23
If the input is 12345 print FEERRED] 2345
ete.

78

Chapter 10

Repetition

In virtually every BASIC program it is necessary to repeat blocks or
groups of statements. This has been illustrated in many examples using the
LOOP-ENDLOOP combination of statements. This chapter summarizes
some of the rules for loops, and introduces several other looping
statements in BASIC.

10.1 Simple Loops

Suppose it is required to calculate the sum of the digits in a given
integer. For example, if the integer is 2749, the sum of the digits 1s

2+7+4+9=22

This type of computation is often useful for calculating a check digit to be
appended to a part number, student number, etc.

80 Chapter 10

10 REM EXAMPLE 10.1

1.3 &

20 INPUT X$
295

30 L = LEN(X$)
30 1 = 1

45 SUM = O

50 :

55 LOOP

60 IF I>L THEN QUIT

70 SUM = SUM + VAL(MID$(X$,1,1))
75 I =1 + 1

80 ENDLOOP

85 :

90 PRINT SUM

95 :

99 STOP

Example 10.1 is a program which reads a string of digits from the

keyboard and assigns it to a string variable X$. (We use a string variable in

order to be able to use string functions to simplify the computations.)
The length of the string is determined, and a loop is repeated L times to
add up the digits, one digit for each time through the loop. Finally the sum

1s printed.

The group of statements between the LOOP and ENDLOOP

statements is said to be a block which is the range of the loop. All statements
contained in this block are said to be ”“within” the loop, or “contained 1n”

the loop.

Provision for the loop to be terminated is accomplished with the IF-

THEN-QUIT combination. Note, that since this statement is placed at the
beginning of the range, the other statements in the loop will not be

executed if the null string is entered at the keyboard.

The loop is initialized by reading in the number, determining its

length and setting I and SUM to their initial values.

Notes:

(1) Normally much of the data to be used in a loop must be initialized

before entering the loop.

Am—

T A

A s

A

AR

A

A

e

-

e :

a— _

ap—

Repetition Q1

The statements between any LOOP and ENDLOOP
statements will be repeated endlessly, unless some mechanism
such as the IF-THEN-QUIT causes termination. This mechanism

can occur anywhere within the simple loop, to recognize the condition
at the appropriate time.

All statements in the range of the loop are indented for readability.

10.2 Nested Loops

10 REM EXAMPLE 10.2

12 :

15 LOOP

20 INPUT X$

25 IF X$ = "QUIT" THEN QUIT
30 L = LEN(X$)

35 I =1

45 SUM = 0

55 LOOP

60 IF I>L THEN QUIT

70 SUM = SUM + VAL(MID$(X$,1,1))
75 I =T + 1

80 ENDLOOP

90 PRINT SUM

92 ENDLOOP

95 :

99 STOP

Example 10.2 is similar to Example 10.1 except that several numbers

can be read one at a time, with the sum of the digits computed and printed.

The reader will notice that this example contains a loop within a loop

The inside loop is said to be 1 nested loop, because it is contained in the
range of the outside loop. This inside loop has its own range, which is a sub-
range of the range of the outside loop. The statements in ,the inner oo

are further indented to make it easier to read the program. ’

whighhe- range of the i‘nside loop is a scparate block of statements
1S part of the outside loop but is considered to be at a lower level than

82 Chapter 10

the other statements in the outside loop. When the inside loop terminates,
the rest of the statements in the outside loop continue to function until
this outside loop also terminates.

Another way of stating the previous paragraph is to say that the
statement

IF I > L THEN QUIT

makes provision for only the inside loop to terminate. After it terminates, the
statement

PRINT SUM

1s executed and then the outside loop is repeated. This outside loop is
finally terminated when the string QUIT has been entered, and the
statement

IF X$ = "QUIT" THEN QUIT
1S executed.
Notes:
(1) Each loop usually has its own mechanism for termination.

(2) Each loop usually has some initialization statements. In this
example, the outside loop has no explicit initialization

statements.

(3) The loops can be nested to any desired level. However, such
nesting can make the program more difficult to read and debug.
When several levels of looping are required it is usually
advisable to wuse Procedures (Chapter 13) to repackage the

program to 1mprove readability.

(4) Because of the indentation, it 1s clear which ENDLOOP statement
belongs to each of the LOOP statements; however the rule 1s as

follows:

a) Find all LOOP-ENDLOOP combinations which have no
intervening LOOP or ENDLOOP statements 1n their
range. These particular combinations are said to be correctly

Repetition 83

paired, or more briefly, paired.

b) Find all LOOP-ENDLOOP combinations which have no

intervening unpaired LOOP or ENDLOOP statements in
their range. These are then paired.

c) Step b) is repeated until all LOOP-ENDLOOP
combinations have been paired.

d) If there are any LOOP or ENDLOOP statements
remaining which have not been paired, the loops are
incorrectly nested.

10.3 Loops with the WHILE-ENDLOOP Combination

10 REM EXAMPLE 10.3
15 :

20 INPUT X$

28 1

30 L = LEN(X$)

35 1T =1

45 SUM = 0O

47 .

090 WHILE I <= L

70 SUM = SUM + VAL(MID$(X$,1,1))
75 I =1 + 1

80 ENDLOOP

89 :

90 PRINT SUM

Y5 :

99 STOP

Example 10.3 is identical to Example 10.1 except that a new statement
has been used, namely

WHILE I <= L

The‘WHILE statement can only be used to start a loop, and is an
alternative to the LOOP statement. The keyword WHILE is always followed

Oy a relational expression. This expression 1s always evalulated at the

R4 Chapter 10

beginning of the loop, and the statements in the range of the loop are
executed only if its value 1s "true”.

The WHILE statement provides no additional function for the
programmer. [t is never necessary, butis used to make the program more
readable in some cases. It functions in precisely the same manner as the

following two statements used in Example 10.1.

LOOP
IF I > L THEN QUIT

10.4 Loops with the LOOP-UNTIL Combination

10 REM EXAMPLE 10.4

1 ¢

20 INPUT X$
20

30 L = LEN(X$)
35 I = &%

45 SUM = O

47

55 LOOP

60 IF I>L THEN QUIT

70 SUM = SUM + VAL(MID$(X$,1,1))
75 I =1 + 1

80 UNTIL I > 5

85

90 PRINT SUM

95 :
99 STOP

Example 10.4 is identical to Example 10.1 ~ except for

provision. The sum consists only of the first 5 digits in the number. If the

number has fewer than 5 digits, the sum includes all of the digits.

an extra

Repetition 33

Here a new statement has been introduced, namely

UNTIL I > 5

The UNTIL statement can only be used to end a loop, and is an
alternative to the ENDLOOP statement. The keyword is always followed

by a relational expression. This expression is always evalulated at the end of
the loop, and the loop is terminated if its value is “true”.

Just as 1s the case with the WHILE statement, the UNTIL provides
no additional function for the programmer. It is never necessary, but is used
to make the program more readable under the appropriate circumstances.

It functions in precisely the same manner as if the following two statements
were used 1n its place.

IF I > 5 THEN QUIT
ENDLOOP

10.5 Loops with the WHILE-UNTIL Combination

10 REM EXAMPLE 10.5
15 :

20 INPUT X$

25 ;

30 L = LEN(X$)
30 1 =1

45 SUM = 0

47

09 WHILE I <= L

70 SUM = SUM + VAL(MID$(X$,I,1))
75 I = I

80 UNTIL I
85

90 PRINT SUM
95 :
99 STOP

Example 10.5 is another version of Example 10.4 which uses the WHILE

at the beginqing and the UNTIL at the end of the loop. Note that the
WHILE relational expression is evaluated before each iteration of the loop:;
¢ the UNTIL relational expression is evaluated after cach iteration of the loop.

B e L ——

Chapter 10 Repetition R7

36

Example 10.7 calculates the sum of the odd integers from | to 99

inclusive. Notice we have introduced the STEP keyword in the FOR
statement. This causes the NEXT statement to increment I by two rather
than one.

10.6 Loops with the FOR-NEXT Combination

Suppose it is required to calculate the sum of the integers from 1 to 8.
The computation to be performed 1s

10 REM EXAMPLE 10.7

19 :

25 SUM = 0O

27 :

30 FOR I = 1 TO 99 STEP 2
35 SUM = SUM + I

1 + 2 +3 +4+5 +6 + 74+ 8

Example 10.6 is an illustration of a program which uses the FOR-NEXT
combination of statements for solving this simple problem.

10 REM EXAMPLE 10.6

15 - 40 NEXT I

25 SUM = O 45 :

97 - o0 PRINT SUM

30 FOR I =1 TO 8 an ¢

35 SUM = SUM + T 60 STOP

40 NEXT 1

45 - Example 10.8 illustrates the nested FOR loop. Here a table of the sum of
50 PRINT SUM thfe integers from ! to N. for all N ranging from 5 to 20 is calculated 0d
55 - prmtf-:d. Note that the terminal value of the index-variable for the i e
60 STOP loop is itself a variable, namely J. et

the
one

The statements in the loop are contained between the FOR and
NEXT statements. In this case the range of the loop consists of only

statement, namely

10 REM EXAMPLE 10. 8
15 :

25 FOR J = 5
30 SUM = 0

TO 20

SUM = SUM + 1

40 SUM = SUM + 1
The loop is repeated for all integer values beginning with 1, up to and 45 NEXT I
including 8. 50 PRINT J,SUM
05 NEXT J
The FOR statement always contains an index-variable, in this case . 57
This variable is set to the initial value (in this case 1) and the loop 1s 75 STOP

executed the first time.

The end of the loop is specified with the NEXT statement. This

keyword is always followed by the index-variable name, in this case . When
this statement is executed the value of the index-variable | 1s increased by
one. Then the index is checked to be sure its value 1s not greater than the
terminal value (in this case 8). If the index value satisfies this test, control

returns to the FOR statement and the loop is executed again.

NOTE: When the FOR loop is completed I has a value of 9.

33

Notes:

(1)

(2)

(3)

(4)
(5)

Chapter 10

The FOR statement has the general form
FOR index-variable = A TO B STEP C

A, B, and C are all numeric expressions, and their values can be

any real constants. Thus it is permissible to have a statement such g

as
FOR K = 63.5 TO 21.5 STEP -.5

which causes K to begin with a value of 63.5, and be reduced by
.5 each time through the loop, with a terminal value of 21.5.

The STEP keyword can be used with a negative value. In this
case the value of the index-variable will be decreased when the
NEXT statement is encountered. Looping will terminate
when the value of the index-variable becomes less than the
terminal value.

Statements in a FOR loop are always executed once, even though
one might expect otherwise. For example in the statement

FOR I = 6 TO 4 STEP 2

the increment is 2 and therefore positive. When executed for the
first time the index-variable I is assigned the value 6. This already
exceeds the terminal value 4, so you might expect the FOR loop
to terminate immediately; however it is always executed once since
the test is performed when the NEXT statement is encountered.

Any statement can be placed within the range of the FOR loop.

A FOR loop cannot be terminated prematurely using the IF-THEN-
QUIT combination.

Repetition
89

10.7 Summary

The only looping mechanism actually

problem is the LOOP-ENDLOOP with IF-THEN-QUIT, used in previ
cha.pters. The other statements introduced in this cliapter e
enrichment providing convenience to the

readability in appropriate circumstances.

required to solve any computing

are an
programmer, and enhanced

10.8 Exercises

10.1 Write a program which uses the file STUDENT as input and print
each record in approximately the following format: o
e.g.
110 STEVENS

65

63

85

o6

76

AVERAGE 69

10.2 Write a program which uses the file STUDENT as

prints the names of the students,
there are 19 students, the

| imput and
with three names on each line. As

last line will have only one name.

prints a calendar page f '
Mg | page 1or a given month.
program accepts as input the name of the month, number of

days in the month. a d
beains, » and the day of the week on which the month

950 Chapter 10

10.4 a) Write a program which prints a triangle of asterisks (*) which
is similar to the following:

e 3
* %
¥ ok %

*x %k kX

The input to the program is the size of the triangle, in this case 4,
which is the number of rows in the vertical side of the triangle.

b) Write a program which produces triangles which are similar
to the following:

*
* ok
k k &

¥ &k ¥k %k

¢) Write a program which produces triangles which are similar to @

the following:

Chapter 11

Relational Expressions

Relational expressions have been introduced informally in earlier

chapters. The purpose of this cha - .
_ _ pter 1s to give further
introduce the logical operators AND, OR, and NOT. examples and

11.1 Simple Relational Expressions

Relational expressions are used in IF, ELSEIF, WHILE and UNTIL

statements, and have been incl . .
‘ uded in most progr ;
Examples are: programs in this book.

(1) SEX$ = "pF»
(ii) NUMBER = 9999
(iii) NUMBER < 0
(iv) AGE <> 19

(V) 16 > 14

(vi) "CAT" = " CAT"
(vii) "CAT" = "CAT
(viii) "CAT" < "DOG"

. Each of these exgressions has a value “true” or ’false”. In example (1)
current value assigned to the string variable SEX$ is compared to the

string constant “F”. If th | '
. ey are i1dentical, the express;
true, otherwise it is false. pression has & value of

In Example (iii) the e on wi -
NUMBER i negatgve. xpression will be true only if the current value of

- I::[);am?le (iv) i}lustrates the use of the symbols <> to mean "not equal
- I'hus 1f AGE is not equal to 19, the expression 1s true.

95 Chapter 11

Example (v) is a special case because no variables are involved. Since
16 is greater than 14 the expression is always true.

Example (vi) 1illustrates an 1mportant point. The two string constants
"CAT” and " CAT" are not equal because the latter has 4 characters
beginning with a blank. It 1s always good policy when comparing strings
to have them the same size, with leading blank spaces removed. It is also
true that "CAT” and "CAT " (example vii) are not equal, even though the
blank is on the right. For two strings to be equal they must be of the same
length. In Example (vii1) the expression is true because strings can be
compared, and the usual ordering between letters of the alphabet applies
here.

The reader may be wondering why examples (1) and (i) are not
assignment statements. In fact, they could be assignment statements, but for
purposes of this discussion they are assumed to be the relational expression in
an IF, ENDIF, WHILE, or UNTIL statement. The computer detects that
they are relational expressions by examining the context in which they are
used.

11.2 Relational Operators

As has been mentioned in Chapter [, there are six relational

operators as follows:

= cquals

> greater than

less than

greater than or equal
less than or equal
not equal

These operators are binary, which means that there are always two
operands, one on each side of the operator. Thus in example (iv) of the
previous section, AGE and 19 are operands and <> is the operator. The
two operands are always of the same kind, either string expressions or
numeric expressions. It would make no sense to try to compare a string of
characters to a number. When the operands are expressions they are
evaluated before the relational expression is computed. Thus with the
relational expression

AGE«14 “u TESTS1

Relational Expressions 93

the two numeric expressions AGE-
the relational operator > =
either true or false.

.].4 and TEST+1 are computed and then
is applied to the two values, yielding a result of

11.3 Compound Relational Expressions

Relational expressions can be combined

AND, OR, and NOT to produce other r
the following examples:

the logical operators
elational expressions. Consider

(i) (SEX$ = "F") AND (AGE > 17)
(11) (SEX$ = "F") AND ((AGE = 17) OR (AGE < 10))
(iii) NOT (SEX$ = "pn)

The compound relation in exam

ple (I) WI” be t 71 —_ T
and AGE > 17 are both true. e Wy B REX3 ¥

In example (ii) the sub-expression

(AGE = 17) OR (AGE < 10)

Is evaluated first, because {his €Xpression is enc

sub-expression result will be true if either of the relational expressions has a

;r;)e(galus. }"his value is then used with (he result of sub-expression
= "F” to produce "true” only if both values are true.

losed in parentheses. The

In example (iii) the NOT is used to

If SEX$ = "F” iq reverse the value of SEX$ =

HFH.
true, then NOT(SEX = "F") is false, and vice versa

11.4 Logical Operators

The three logical opcrators are defined as follows:
(1) AND is a binary operator whose two operands

expresswns.‘lf the two expressions are true, the resultin
true, otherwise it is false.

are relational
g operation is

04 Chapter 11

(2) OR is a binary operator whose two operands are relational
expressions. If either of the two expressions is true the result of the

operation is true, otherwise it is false.

(3) NOT is a unary operator whose operand 1s a relational
expression. If the value of the operand is true, the result of the
operation is false; if the value of the operand is false, the result is

true.

The operators have the following priority with respect to each other:

NOT
AND and OR

For example, a NOT operation takes precedence over an AND or OR,
provided there are no parentheses. Of course, the usual conventions
with respect to parentheses are used, with the expression in the nner-

most parentheses being evaluated first.

Three levels of operators have been described in this text. In order of
decreasing priority they are

(1) arithmetic operators or string operators
(11) relational operators
(111) logical operators

Therefore in an example such as

NOT X + 3 > 6

the numeric expression X+3 is calculated. Then the relational expression
X+3 > 6 is evaluated. Finally the result is operated upon with the logical
operator NOT. Incidentally the whole expression should have been
written with parentheses for readability, as follows

NOT((X+3) > 6)

11.5 Summary

Relational expressions play an indispensable role 1n .most cgmputer
programs. The logical operators AND, OR, and NOT prowc!e considerable
flexibility in the construction of compound relational expressions. However,

Relational Expressions 05

1€ ge, complex relational expressions
difficult to understand and make debugging difficult. Therefore they shoifg

be used with discretion. Clarity is often introduced by using parentheses
even when these are not strictly required because of the priority rules |

11.6 Exercises

11.1 Using the file STUDENT as Input, write 2 program which prints

the names of all the male students wh
- O are age 17
received a mark of less than 80 in algebra. : i

11.2 Using the file STUDENT as Input,
the names of the male students
average mark exceeding 79.

write a program which prints
who are not age 17, and who have an

11.3 Using the file STUDENT as Input,
the names and marks

the highest average mark.

Write a program which prints
of both the male and female students with

I1.4 Using the file STUDENT as input,

the names and marks of both the

the highest average mark, and who
under.

write a program which prints
male and female students with

drc sixteen years of age and

96

Chapter 12

Tables

Many applications require the use of tables or matrices (also called
arrays or vectors) to store data in a convenient form. This chapter introduces
several features which make this type of processing convenient to program.

The various features are illustrated with a series of examples to
demonstrate the concepts.

12.1 Example 12.1

Suppose it is required to read a list of words into the computer and
print the entire list in reverse order of mput. All of the words would have to

be stored in a rable in the computer, because the first output line cannot
be printed until the last word has been read.

98 : Chapter 12 Tables

99
A table of variables can be formed using the DIM statement, as in Notes:
Example 12.1. (1) The table contains five elements which have indices 0, 1, 2. 3. and
4. The range of indices is said to be 0 to 4 inclusive. Example 12.1
10 REM EXAMPLE 12.1 does not use the entry with index 0.
15
40 DIM NAMES$ (4) (2) The table defined in the DIM statement
45 :

can have as many

. elements as required.
50 PRINT "TYPE FIRST NAME"

60 INPUT NAME$ (1)

62 PRINT "TYPE SECOND NAME"
64 INPUT NAME$ (2)

66 PRINT "TYPE THIRD NAMET™
68 INPUT NAME$ (3)

70 PRINT "TYPE FOURTH NAME"
72 INPUT NAME$ (4)

74 PRINT "NAMES IN REVERSE ARE"
76 PRINT NAMES$ (4)

78 PRINT NAMES$ (3)

80 PRINT NAME$ (2)

82 PRINT NAMES$ (1)

85

90 STOP

(3) It several tables are needed they can be declared in separate DIM
statements; alternatively one DIM statement can be used as follows:

DIM NAME$(4), MARK(5)

(4) A table can have elements which are string variables or numeric
variables, but not both.

(35) The index or subscript is an integer value which must be within the
appropriate range. If the index is a non-integer value, the BASIC
system will automatically convert it to an Integer using rounding.

(6) T'he quantities within parentheses in a DIM statement denote the

index of the last entry in the tables. These quantities are always

Statement 40 uses the DIM keyword to declare a table which has five positive integers or numeric variables.

' ' hich can be individually
entries or elements. These elements are variables w
referenced as NAMES$(0), NAMES$(1), NAVIE$(2), NAMES$(3) AND
NAMES$(4). The integer contained in parentheses is often called a subscript.
It is also referred to as the index of the table entry.

(7) DIM statements are usually placed near the beginning of the

program to improve readability. In any case they must appear prior
to the use of one of the table elements being defined.

Example 12.1 is designed to read four names and store them tn turn In

four elements of the table namely NAMES$(1), NAMES(2), NAME$(3) an
NAMES$(4). Then the elements are selected in reverse order, and printead.

(8) In constructing the names for tables, we obey the same rules as
for regular variables.

100 Chapter 12 Tables 101

12.2 Example 12.2 12.3 Example 12.3

Example 12.1 is obviously a very cumbersome way of writing the 100 REM EXAMPLE 12 .3

program, especially if a large table were involved. Example 12.2 is an 105 -
improved version which takes fewer statements to write, and produces 130 OPEN 6,1,0, "STUDENT"
similar output. 135 :
140 DIM MK(5)
10 REM EXAMPLE 12.2 145 :
15 : 150 LOOP
20 DIM NAME$ (4) 160 INPUT#B,NO,N$,S$,A,MK(1),MK(2),MK(3),MK(4),MK(5)
25 : 170 IF NO=9999 THEN QUIT
30 FOR I =1 TO 4 180 SUM=0
40 PRINT "NAME PLEASE" 190 FOR I =1 TO 5
50 INPUT NAME$(I) 200 SUM = SUM + MK(I)
60 NEXT 1 210 NEXT 1
65 220 AVE=SUM/5H
70 PRINT "NAMES IN REVERSE ARE" 230 PRINT NO;N$:AVE
75 - 240 ENDLOOP
80 FOR I = 4 TO 1 STEP -1 245
85 PRINT NAMES$ (1) 250 CLOSE 6
90 NEXT 1 205 :
95 260 STOP
99 STOP

In this example all records in the STUDENT file are read in turn. For
f-::ach record the 5 marks are read into a table called MARK, and the average
IS computed, then the student’s number, name, and average is printed.

In this example the index of the table NAMES is a variable I w.hitlrh 1S
assigned appropriate values as the loops are executed. In fact, this index

can be any numeric expression.

102 Chapter 12 Tables 103

The output appears on the screen as follows: 12.4 Example 12.4

110 STEVENS 69 100 REM EXAMPLE 12.4

297 WAGNER 78.8 105 : |
317 RANCOURT 70 140 DIM X(100)
364 WAGNER 73 145 .

617 HAROLD 78.8 150 J = 0O

998 WEICKLER 74.2 155 -

1203 WILLS 74.8 160 LOOP

1232 ROTH 71.6
1234 GEORGE 67.6
1265 MAJOR 67
1568 POLLOCK 85. 2
1587 PEARSON 55
1617 REITER 80. 2

170 PRINT "NUMBER PLEASET"
180 INPUT NUMBER

190 IF NUMBER < O THEN QUIT
200 J =J + 1

210 X(J) = NUMBER

220 ENDLOOQP

2028 SCHULTZ 67.8 295 .
2036 BROOKS 67.4 230 SUM = O
2039 ELLIS 85 235 -

240 FOR I =1 TO J
250 SUM = SUM + X(I)
260 NEXT T

265 :

270 AVE = SUM/J

275 : |

280 PRINT "THESE ARE ABOVE AVE"
285 :

290 FOR I =1 TO J
300 IF X(I) > AVE
310 PRINT X(I)

320 ENDIF

330 NEXT T

335 :

340 STOP

2049 BECKER 66.4
2055 ASSLEY 63.2
2087 STECKLEY 70

'11‘1 this example a table X of 101 entries is defined. Then up to 100
positive 1:1umbers are read from the keyboard and stored in the table. The
average 1s computed and then all entries whose value exceed this
average are printed. Note that the variable J is used to store the current size

of the table. Even though the table can have up to 101 entries, only J of
them are used when the program 1s run.

Tables 105

104 Chapter 12

12.6 Two Dimensional Tables
12.5 Example 12.5

100 REM EXAMPLE 12.5 For example the following table indicates the number of females

and males

110 - in each of the four age groups for records in the STUDENT FILE

130 OPEN 6,1,0,"STUDENT™"

135 : AGE FEMALES MALES

140 DIM AGESUM(4) 15 2 2

145 16 2 4

150 FOR I =1 TO 4 17 0 6

160 AGESUM(I) = O 18 0 3

170 NEXT I

175 This table has four rows and two columns, and contains 8 entri
180 LOOP Example 12.6 is a program which produces this table. e

190 INPUT#6 ,NO,N$,S$ A
200 IF NO = 9999 THEN QUIT
210 INDEX = A - 14

220 AGESUM(INDEX) = AGESUM(INDEX) +1
230 ENDLOOP

230 !

240 PRINT "AGE", "COUNT"

245

250 FOR I =1 TO 4

260 PRINT I+14,AGESUM(I)
270 NEXT 1

275

280 CLOSE 6

285 :

290 STOP

Suppose it is desired to count the number of students in the
STUDENT file for each of the ages 15, 16, 17, and 18. In Example 12.5
the table AGESUM is defined to accumulate the four totals as the
computation proceeds. Thus AGESUM(1) will contain a running total for all
students who are age 15; AGESUM(2) will be used for age 16,
AGESUM(3) for age 17 and AGESUM(4) for age 18. In line 210 the
INDEX of the table is computed by subtracting 14 from A. Thus the
ages 15, 16, 17, 18 are "translated” to index values 1, 2, 3, 4 respectively
so they will be in the proper range.

o Chapter 12

100 REM EXAMPLE 12.6

105 :

130 OPEN 6,1,0, "STUDENT"
135 ?

140 DIM COUNT (4, 2)

145 :

150 FOR I =1 TO 4

160 FOR J =1 TO 2

170 COUNT(I,J) = O

180 NEXT J

190 NEXT I

190

200 LOOP

210 INPUT#6 ,NO,N$,S$ A
220 IF NO = 9999 THEN QUIT

230 AGE = A - 14
240 IF S$ = "F"
250 SEX = 1
260 ELSE

270 SEX = 2

280 ENDIF

290 COUNT (AGE, SEX)=COUNT (AGE , SEX) +1
300 ENDLOOP

305)

310 PRINT "AGE" ., "FEMALES",6 "MALES

315 :

320 FOR I =1 TO 4

330 PRINT I+14,COUNT(I,1),COUNT(I, 2)
340 NEXT 1

345

350 CLOSE 6

30D 3

360 STOP

The two-dimensional table COUNT is defined in line 140 as follows

140 DIM COUNT (4, 2)

Eight entries are referenced in the program using two - 1n]4£_11ce52,3x8h:;}21 i;el,
called AGE and SEX. The AGE index 1s calculat;d in line e
have a value between 1 and 4 inclusive. In the IF i:)lock between I o 2
and 280 inclusive, the sex value "F” is translated to 1 and the s?xl va2
"M” to 2, thus calculating the SEX index in the proper range of 1 or 2.

Tables 107

When the table is printed beginning in line 320 the output

as 4 lines, one line for each row. Each row contains
for age and one for each sex.

1S produced
three numbers, one

The table COUNT actually has 15 entries since
can take the values O through 4 and the second
We did not use the value 0 for either subscript in this

the first subscript

subscript 0 through 2.
example.

12.7 Multi-Dimensional Tables

The BASIC system permits the use of tables with an
number of dimensions. While very large

useful to have the facility available
dimensions you could write

arbitrary
dimensions are seldom practical it is

tf needed. To declare a table of 5

DIM TABLE (20, 40, 6, 8, 2)

This will create a table of 21 x 4] x 7 X 9 x 3 = 162729 entries! When
using such large tables remember that the

computer 1s of limited size,
and you could easily exhaust the space available

12.8 Summary

In many practical programming situations, one or more tables
be necessary. It is therefore important to learn this facil

following exercises will provide the necessary practice.

will
ity thoroughly. The

12.9 Exercises

12.1 Write a program which reads the 19 records in the file

STUDENT and stores them in a table. The program then

determines the student with the highest mark in algebra and prints
that record.

2.2 a) Write a program which reads several words from the keyboard

and stores them in a table. The program then chooses the smallest
word in the alphabetic sequence and prints it.

b) Expand on the program so that each of the words is printed
In sequence, thus producing an alphabetic listing of all the words.

108

12.3

12.4

Chapter 12

c) Use the program in b) to enter each of the characters on the
key-board as single-character “words”. In this way a complete listing
of all of the available characters will be produced in "alphabetical
order”. This order is known as the collating sequence of the character
set, and may be different for different types of computers.

A cryptogram is a common form of puzzle which presents a string
of text (message) in a coded form to the reader. The object is to

decode the message so it makes sense. In a cryptogram each letter 1s
replaced by a different letter of the alphabet. For example the
word CAT might be written as ZTB where C, A and T are
encoded as Z, T and B respectively. This correspondence can be set
up as a table within the computer.

a) Write a program which permits the user to input the
characters as an encoding table. Then a sentence should be read
from the keyboard, and the encoded sentence subsequently

printed.

b) Modify the program so that the encoded sentence can be read
from the keyboard to produce the original sentence.

Write a program which reads the 19 records in the file
STUDENT and stores them in a table. The program then prints
the entries in the table one at a time but in descending
sequence by algebra mark, the highest algebra mark first. You
might consider finding the entry containing the largest algebra
mark, printing that entry, replacing it by zero and repeating the
process for all entries in the table.

Chapter 13
Procedure Subprograms

Irf previous chapters there are a number of examples of built-in
functions which have been provided as part of the BASIC system. This
chapter explains how the programmer can construct other functional units
ca!led procedure subprograms which may be useful for the particular problen;
being considered. Procedures can be used as a means of packaging the

program into meaningful units, making it more readable and easier to
maintain.

13.1 An Introduction to Procedure Structures

The reader is requested to review Exam | |
ple 12.3 which is a program to
read the STUDENT file, calculate the average of the five marks for each of

the 19 students in the file, and print a listing of the student number
name and average for each student. |

Example 13.1 is another version of the same program. It introduces
t}lree new keywords, namely CALL. PROC, and ENDPROC, located at
lines 160, 600, and 660 respectively. The two keywords PROC and
ENDPROC define a group of statements which is called a procedure. In the
exam.ple, tl:lﬁ procedure consists of the 7 statements between lines 600 and
660 inclusive. The name of the procedure is AVERAGE. The procedure

| :jlgqle always. follqws the keyword PROC, and consists of as many letters or
p d181ts as desired; it must start with a letter, and all letters and digits

are significant. That is, the procedure name CAT is different from the

procedure name CA. In the example, the procedure calculates the
average of the 5 marks, and assigns its value to AVE in line 650.

o Chapter 13

100 REM EXAMPLE 13.1

105 :

110 DIM M(5)

115 :

120 OPEN 6,1,0, "STUDENT"
125 :

130 LOOP

140 INPUT#6 ,NO,'N$,S$,A,M(1),M(2),M(3),M(4),M(5)
150 IF NO = 9999 THEN QUIT |
160 CALL AVERAGE

170 PRINT NO,N$, AVE
180 ENDLOOP

185 :

190 CLOSE 6

190

200 STOP

205 :

206 :

600 PROC AVERAGE

605 :

610 SUM = O

620 FOR I =1 TO 5

630 SUM = SUM + M(1)
640 NEXT I

645

650 AVE = SUM / 5

65O

660 ENDPROC

The statements at the beginning of the program, namely those
between line 100 and 200 inclusive, are referred to as the mainline program
and the procedure is called a subprogram. When the program is RUN, 1t
begins to execute at the first statement in the mainline program. When the
statement in line 160 is executed, namely

CALL AVERAGE

the computer causes the statements in the procedur.c qamed
AVERAGE to be executed, namely lines 600 to 660 inclusive. This assigns a
value to the variable AVE. The mainline program resumes at line 17_0
after execution of the ENDPROC statement. The mainline program is said
to have called the procedure subprogram.

Procedure Subprograms

The purpose of this example has been
1s defined, and explain the mechanics o

sections we explain some of the reasons
describe their other properties.

to describe how a procedure

f its operation. In the following
procedures are used. and

13.2 Segmenting a Program Using Procedures

Most real-life programs are quite large,

thousands of statements. The program becomes difficult to read and
understand. One of the most tmportant uses of procedure subprograms

1S to_ {mckage t}'le program into smaller segments, each of which performs a
specific well-defined operation or function.

and c¢an contain hundreds or

| Example 13.2 is another version of Example 12.4 which demonstrates
this “repackaging” of a program.

The program has been packaged into four components

- the mainline
program and three procedures.

(1) The procedure READNUMBERS caus

from the keyboard and stores them in a table called X. The value of

the variable J will indicate the number of entries which have been
read and stored in the table after the procedure has been called.

€s several numbers to be read

(11) The procedure CALCAVERAGE uses entries in the table X. and

the value of' J, as data and calculates the average of the values in
the table. This is assigned to the variable AVE.

(111) The procedure PRINTNUMBERS uses the entries in the table. the

valule of J and the value of AVE as input and prints a list of the
entries which is above average.

(1v) The mainline program is used to call
the proper sequence. This happens when

are executed. For example, when line 150 s executed, the procedure
name READNUMBERS s encountered. This causes the

statements numbered 500 to 590 to be executed. Similarly in line

160 and 170 the
procedures CALCAVERAGE d
PRINTNUMBERS are called. .

the three procedures. in
statements 150, 160 and 170

111

112

100
105
140

145 :

150
160
170
180
186
500

516 15

510
520
930
040
550
560
570
080
085
590

596 :

800

805 :

810
820
830
840
850

858 :

860

860 :

300
902
905
910
920
930
940
950
955
960

Chapter 13 Procedure Subprograms 113

Notes:
REM EXAMPLE 13.2

(1) The line-number range for each of the three procedures has
been chosen to start with an artificially high statement number.
This 1s to separate the procedures from one another, and to

permit the programmer to easily increase the number of statements
within the procedure, if the need should arise.

DIM X(100)

CALL READNUMBERS
CALL CALCAVERAGE
CALL PRINTNUMBERS
?TOP (2) The procedures are separated from each other, and from the
mainline by null statements. This is to cause a separation in the

PROC READNUMBERS listing, thus making the program easier to read.

J =0

LOOP
PRINT "NUMBER PLEASE"
INPUT NUMBER

13.3 Some Rules about Procedures

1, All variables used in the two example programs have a global

IF NUMBER < O THEN QUIT o |
¥ w ? ok d Q deﬁmtw{i. For example, assume a variable X has been assigned a
= value 6 in the mainline program. When 2 procedure subprogram
X(J) = NUMBER : d - - : . .
ENDLOOP Is executed, this variable can be used, and if desired it can be
, gltered_ As well, any variable introduced in the subprogram is
];ZNDPROC known”, and therefore can be used by all other subprograms, as well

as the mainline program.

RAGE
PROC CALCAVERAG In the examples, procedure subprograms have been called by the

mainline program. In fact, procedure subprograms may also be

SUM = O called by other procedure subprograms.

FORI =1TO J
SUM = SUM + X(I)

NEXT I

AVE = SUM / J

A procedure always is terminated with an ENDPROC statement.
The QUIT statement is never used to terminate 2 procedure.

ENDPROC 13.4 Summary

Pj‘ROC PRINTNUMBERS Large programs should always be written as a collection

each of which
define procedure

/S of modules,
performs a specific task. The Waterloo BASIC facility to

PRINT "NUMBERS ABOVE AVG ARE" . _
s provides a useful mechanism for creating these modules.

FOR I =1 TO J
IF X(I) > AVE
PRINT X(I)
ENDIF
NEXT I

ENDPROC

114 Chapter 13

13.5 Exercises
13.1 a) Please refer to Example 7.5 in Chapter 7. This program computes
the number of occurrences of the letter A in a given sentence.
Repackage this program so it becomes a procedure. The
procedure should compute the number of occurrences.

b) Generalize the procedure in part a) so that it will determine
the number of occurrences of any given character in any given string.
Do this by assigning values for two variables ((1) number of
occurrences and (ii) the string) prior to calling the procedure.

¢) Use the procedure of part b) to write a program which computes
the total number of vowels in a given sentence.

13.2 Write a procedure which determines the lowest entry in an array of
string constants. Use this procedure to print a list of the names of
students in the file called STUDENT, 1n alphabetical sequence.

13.3 a) In Exercise 12.4 the program repeatedly finds the entry with the

highest algebra mark. Write this part of the program as a
procedure subprogram which computes the position of the entry in
the table.

b) Modify the procedure in a) so that it will work for any one of the
marks in the entry.

Appendix A

BASIC Language

A program in the BASIC language is
lines. Each line consists of a statement number followed by one of the
BASIC statements described in this Appendix. Successive lines in a
BASIC program are arranged in ascending order by statement number.

composed of statement

Note:

(1) The statement number can be any positive integer in the range 1
through 63999,

(2) A statement line can be up to 80 characters long.

(3)

Blank characters in a statement line are ignored by the computer

unless 'they are part of a string constant. However. they can be
used to improve the readability of the program.

Statement lines are normally entered directly from

Entering a the keyboard.

e | line with the same number as an existing line causes the
c¢xisting line to be replaced by the new one. Entering a line number by

itself, with no BASIC statement following, causes an existing
that number to be deleted.

line with

_thAlmost all BASIC statements can be entered at the keyboard
W S .
PpWithout the accompanying line number. This causes the statement entered to

E_e ¢xecuted immediately and is sometimes called "direct mode” or
‘. immediate mode”. The statement is not saved, however, and if it is to be

1é Appendix A

executed again, it must be re-entered. This is useful at times when

debugging a program or doing simple calculations.
In the following descriptions, a string expression is an expression that

produces a string; a numeric expression is an expression that produces a
number.

A.1 Assignment Statement

Syntax:
LET variable = expression
or
variable = expression
Operation:

The "expression” may be a numeric or string exprcssiqn. It is‘ evaluated
and the result is assigned to "variable”. A numeric expression must be
assigned to a numeric variable and a string expression must be assigned
to a string variable.

Example:

10 LET X 2+A*3
20 A$ = "ABC"+B$

A.2 CALL Statement

Syntax:

CALL procedure-name
Operation:

Execution of this statement causes control to transfer to the procedure with
the specified "procedure-name”. This procedure 1s def.med by the PROC
and ENDPROC statements. After the statements in the procedure are
executed, control returns to the statement following the CALL statement.

BASIC Language 117

Example:

10 CALL FACTORIAL

This statement causes the statements in the procedure FACTORIAL to be
executed; then control returns to the statement following statement 10.

A.3 CLOSE Statement

Syntax:

CLOSE logical-file

Operation:

This statement releases a file previously opened with the

OPEN
statement. The logical file number is then available for use with anothe

r file.

A.4 CMD Statement

This statement is
Commodore comp
on this statement

used to interface with external devices attached to the
uter. Its use is beyond the scope of this text. Information
can be found in the appropriate Commodore manuals.

A.S CONT Statement

/

a Syntax:
CONT

Operation:

This statement can only be issued in "direct mode”.

0 resume execution after it has been sto
execution of a STOP

Wafter an error, any edi
P command has been used.

It allows the program

. pped by the Stop-key, or the
or END statement. This statement cannot be used

ting of the program, or after a NEW or CLR

118 Appendix A

A.6 DATA Statement
Syntax:
DATA constant, constant, ...
Operation:
The DATA statement defines data items to be read by READ

statements. The “constant” can be numeric or string. If string constants are
to contain colons (), commas (,) or blanks, they must be enclosed in

double-quotes (”). If the string contains a quote mark it must be a single -

quote ().
Exampie:

200 DATA 3.4, -1E4, "HELLO", IT'S, BOY

A.7 DEF Statement
Syntax:

DEF FNname(argument) = expression
Operation:
When this statement is encountered during execution, a user-created
arithmetic function is defined with the name FNname. The function name
must be composed of the letters FN followed by a valid arithmetic
variable name. Only one argument is allowed which can be used as a
dummy variable in the expression. Other variables from the program may be
used in the function definition. User-defined string functions are not allowed.
Example:

10 DEF FNA(X) = 1/X

This statement defines a function FNA(X) which computes the inverse of X.
Thus FNA(4) would have the value .25.

BASIC Langu
Bhage 119

A.8 DIM Statement

Syntax:

DIM variable-name(dimension,.. .)

L J - -

Operation:

This statement causes an array ~ with the name “variable-name” t

Ee_ crea-ted containing a number of elements equal to the product of all 'tO
dimensions”, each incremented by 1. An array can have an arbitr ry
number of dimensions and a DIM statement can define an arbitrary
nuEnber of arrays. All array elements are initialized to zero or the 31'1317
string. l_Each dimension can be specified by either a constant or a vari Itlallﬁl

and defines a range of elements numbered from 0 to the specified dimerrllzior?

If L+ variable is specified as a dimension, it must have been defined In
previously executed statement.]

Example:

10 DIM A(40,2),B$(N)

defines two arrays. Array A

: contains (40+1)* =

ng clements.

Appendix A
120

A.9 ELSE Statement
Syntax:
ELSE

Operation:

This statement must be used in conjunction with the IF and ENDIF

statements. It specifies the beginning of a block of stat_e}*ncnts to be executte)d
when all previous corresponding IF or ELSEIF conditions were found to be

false. Execution continues to the corresponding ENDIF statement.

Example:

100 IF A KO

110 I=-1

120 PRINT "A IS NEGATIVE"

130 ELSE

140 I=1

150 PRINT "A IS NOT NEGATIVE"
160 ENDIF

In this example, lines 110 through 120 are executed 1f A 1S less t!‘lan zt;r;;
otherwise lines 140 through 150 are executed. In each case, execution

continues with the statement following line 160.

BASIC Language 121

A.10 ELSEIF Statement

Syntax:
ELSEIF condition

Operation:

This statement must be used in conjunction with the [F and ENDIF
statements. If all previous corresponding IF or ELSEIF conditions were
found to be false, the specified “condition” is evaluated. If it 1s found to
be true, execution continues with the next statement and proceeds until
a corresponding ELSEIF, ELSE or ENDIF is encountered. Control then
transfers to the first statement following the corresponding ENDIF. If the

condition is found to be false, control is transferred to the next
corresponding ELSEIF, ELSE or ENDIF.

Example:
100 IF A<O
110 I=-1

120 PRINT "A IS NEGATIVE™"
130 ELSEIF A>0

140 I=1

150 PRINT "A IS POSITIVE"
160 ELSE

170 I=0

180 PRINT "A IS ZERO"

190 ENDIF

In this example, lines 110 through 120 are executed if A is negative; lines
140 through 150 are executed if A is positive; otherwise lines 170 through

180 are executed. In each case, execution continues with the statement

following line 190.

122 Appendix A BASIC Language 173

A.11 END Stat t A.13 ENDLOOP Statement
; atemen

Syntax: Syntax:
ENDLOOP
END
Operation: Operation:

This statement specifies the end of a block of statements to be
executed repeatedly. The beginning of the block is specified by the LOOP or
WHILE statements.

This statement terminates the execution of a program. The .CONT |
command can be used to resume execution at the statement following the

END statement.

Example:
Example:
10 I=1
10 END 20 WHILE 1I<3
30 PRINT I, SQR(I)
40 I=1+1
A.12 ENDIF Statement 50 ENDLOOP

Syntax: In this example statements 30 and 40 are repeated until I becomes greater
than or equal to 3.
ENDIF
Operation:

A.14 ENDPROC Stat t
This statement specifies the end of a block of statements whose emen

execution depends on some condition or conditions. The beginning of the

Syntax:
block and the first condition are specified by the 1F statement.

ENDPROC

Operation:

This statement specifies the end of a procedure or block of statements
executed when an appropriate CALL statement is encountered. The
beginning of the block of statements is defined by the PROC statement.
When the ENDPROC statement is executed, control transfers to the
statement following the CALL statement which invoked the procedure.

124 Appendix A BASIC Language

125

A.15 FOR Statement Example:
10 LOOP
20 GET A$
30 IF A$ <> "
40 PRINT A$
50 ENDIF
60 ENDLOOP

Syntax:
FOR Index = Start TO Stop STEP Incr

Operation:

This statement defines the beginning of a block of statements to be
executed repeatedly and the end of this block of statements is specified
by the NEXT statement. "Index” must be a numeric variable and
"Start”, "Stop” and “Incr” must be numeric expressions. When the FOR
statement is encountered during execution, "Index” is set to the value of
rStart”. Then the statements between the FOR and NEXT statements
are executed. When the NEXT statement 1s encountered, the value of
"Iner” is added to "Index”. If "Incr” is positive and "Index” is greater than
"Stop”, or, if "Incr” s negative and “Index” is less than "Stop”,
execution continues with the statement following the NEXT statement.
Otherwise. the statements between the FOR and NEXT statements are
repeated. If STEP "Incr” 1s omitted, "Incr” is assumed to be 1.

This example prints each key, as it is struck, on a separate line

A.17 GET# Statement

Syntax:

GET#n, Variable

Operation:

l"{")h{s slta;ement causes a single character to be read from the specified

Sti:a lic nvwhlcbh logical file must have been opened with the OPEN
ment. "Variable” can be a numeric ' |

_ . or string variable. If no character is

?:?ﬂable wﬂer_l t.hI.S statement 1s executed, "variable” is still given a value

S set to "7 1f 1t is a string variable or O if it is a numeric variable |

Example:

10 FOR I = 0 TO 4 STEP 2
20 PRINT I, I=*1

30 NEXT 1
Example:

This example lists the even numbers from O through 4 and their squares.

10 OPEN 1,1,0, "DATAFILE"
20 GET#1,A$

30 PRINT ASC(A$)
40 IF A <>"" GOTO 20

A.16 GET Statement

Syntax:

Thi ‘
his example lists characters from the tape file "DATAFILE” on the

GET variable sCreen.

Operation:

The GET statement causes a single character 1o be read from the
keyboard. "Variable” can be a numeric or string variable. 1f no character 1S
available when this statement is executed, rvariable” is still given a value. It
‘s set to ”” if it is a string variable, or O if it 1s a numeric variable.

BASIC Language
SHag 127

126 Appendix A
Example:
A.18 GOSUB Statement
. | 10 I=1
yntax: 20 PRINT I, I#*1I
30 I=1+1
GOSUB statement-number 40 GOTO 20

Operation: . .
- This example prints numbers and their squares on the screen indefinitely

| until terminated by the ST
Execution of this statement causes control to transfer to the statement with Y OP key.

the specified “statement-number”. Execution continues until a RETURN
statement ‘s encountered at which time control returns to the

statement following the GOSUB statement.

A.20 IF Statement

Syntax:
Example:
IF condition
10 I=4
20 GOSUB 100 Opf:ration:
30 I=8
40 GOSUB 100 - o
50 END gxh;zuﬁate?em specifies the begigning of a block of statements whose
60 -) ecifie(;n bepenltlis on some condition or conditions. The end of the block is
YO0 R} cgaluated I}t{ 't c ENDIF statement. When executed, the “condition” is
{10 FOR Jel to 1 statcmem. dlt 1Is found to be true, execution continues with the next
190 Kuked L eme ,tan dprocceds until a corresponding ELSEIF, ELSE or ENDIF
130 NEXT J - Oﬁg_ereéNControl then tran_si?ers to the first statement following the
140 PRINT K transfé)rred”}[g . DI‘F. If the cond.ltlon 1S found to be false, control is
150 RETURN 0 the first corresponding ELSEIF, ELSE or ENDIF.

| Example:
This example computes and prints factorial 4 and factorial 8 by

using the GOSUB statement to call the routine in lines 100 through 150. 10 IF A>0O

20 B=SQR(A)
30 PRINT A,B

A.19 GO TO Statement 40 ENDIF

Syntax: o '
S example, the A and its square root are printed if A is non-negative

GO TO statement-number

Operation:

This statement transfers control to the statement with the specified
"statement-number”.

128 Appendix A

A.21 TF-GO Statement

Syntax:
IF condition GOTO statement -number

IF condition THEN statement - number

Operation:

This statement causes the specified “condition” to be evaluated. If 1t 18
true, control is transferred to the specified “statement-number”.

Otherwise control continues with the next statement.

Example:
10 I=1
20 PRINT I, I=*1
30 I=I+1

40 IF I<=10 GOTO 20

This example prints the numbers from 1 through 10 and their squares on

the screen.

A.22 IF-THEN Statement

Syntax:

IF condition THEN statement

Operation:

This statement causes the specified “condition” to be evaluated. If 1t 1s true,
the specified "statement” 18 executed, otherwise it is not.

Exampie:

10 INPUT X
30 IF X<0 THEN PRINT "X IS NEGATIVE"

This example reads a number from the keyboard and prints a message tf

it 1S negative.

BASIC Language
129

A.23 IF-THEN-QUIT Statement

Syntax:

IF condition THEN QUIT

Operation:

This statement must occur within the block of state .
- men
?JYNTEO(;SHI LaEdandENl?l\];OOP, WHILE and ENDLOOP, IfSO(l;jlgfI;]sg
o~ Spt’:éified iy elelL’ é)r IF" and ENDIF. When encountered,
ramsforesd to th aluated. If 1t is found to be true, control
¢ statement following the block of statements: th
the statement following the ENDLOOP, UNTIL or ENDIF nts; that

1S
1S,

Example:

100 LOOP

110 INPUT "ENTER NUMBER" :N$

120 IF N$ = "STOP" THEN QUIT
130 SUM = SUM + VAL(N$)
140 ENDLOOP

In thi -
-t 112$cx§emple, lines 110 through 130 will be repeatedly executed
comes equal to the string "STOP”. The statement in line 120

will detect this conditi
on :
Fillwing: T L and control will be transferred to the statement

130 Appendix A

A.24 INPUT Statement

Syntax:

INPUT variable, . ..
or
INPUT "prompt string"; variable,...

Operation:

These statements cause data to be read from the keyboard, converting
the data to numbers or strings as specified by the type of the “variable’s. A_n
optional prompt may be specified as "prompt string” followed by a semi-
colon (;). The input data items must be separated by commas and
must match the variables in both number and type. If the types don't
match, the message "7REDO FROM START"” appears and all the data
items for that request must be re-entered. If too many data items are entered,
the warning "?EXTRA IGNORED” is typed. If too few data 1tems are
entered, a ”"??” prompt is issued and additional data must be entered.

Example:

10 INPUT "ENTER THREE NUMBERS" ;A,B,C
20 PRINT Ax*A, B*B, C*C

This example issues a prompt, reads 3 numbers, and prints their
squares. The user must type 3 numeric constants separated by commas.

BASIC Language 131

A.25 INPUT# Statement

Syntax:

INPUT#n,variable, . . .

Operation:

This statement causes data to be transferred from the s
converting the data to numbers or

“variable”s. The logical file
statement. Input data items

and must match the variable
DATA ERROR” is displayed.

‘ pecified logical file,
strings as specified by the type of the
must have been opened with the OPEN
in the file must be separated by commas
S 1n type, otherwise the message “?BAD

A.26 LOOP Statement

Syntax:

LOOP

Operation:

Example:

10 LOOP
20 INPUT X
30 IF X<0 THEN QUIT

40 PRINT SQR(X)
50 ENDLOOP

In this example, statements 20 through 40 are

_ repeated |
negative, P until X becomes

139 Appendix A

A.27 NEXT Statement

Syntax:
NEXT index
Operation:

This statement defines the end of a block of statements that are to be
executed repeatedly. The beginning of the block is specified by the FOR
statement. A description of the function of this combination of statements
is found with the FOR statement description. The variable “index” in the
NEXT statement must have the same name as the variable "index” In
the corresponding FOR statement. If “index” is omitted, it is assumed to
be the same as “index” in the corresponding FOR statement.

A.28 ON-GOTO Statement
Syntax:

ON variable GOTO stnuml, stnum2, ...
Operation:

This statement causes control to transfer to another statement, depending
on the value of the numeric variable "variable”. If "variable”=1, then
control transfers to the statement numbered “stnuml”; if "variable”=2,
then control transfers to the statement "stnum?2”; etc. If “variable”=0 or 1S
greater than the number of statement numbers specified, execution

continues with the next statement. If “variable” is <0 or >253, the message
"ITLLEGAL QUANTITY” is printed.

Example:

10 INPUT 1
20 ON I GOTO 400, 500, 600
30

In this example, if 1=2, control goes to statement 500. If 1=4, control goes to
statement 30.

BASIC Language

133
A.29 ON-GOSUB Statement
Syntax:
ON variable GOSUB stnuml, stnum2,
Operation:
This statement causes control to transfer to another statement depending

on the value of the number "variable”. If ”variable”=1. control goes to
the statement numbered "stnuml”. If “variable”=2, control goes to the
statement numbered “stnum?2”. If “variable”=0 or is greater than the
number. of statement numbers specified, control goes to the next statement
[f "variable” is <0 or >255, the message "ILLEGIAL QUANTITY” i;

printed. If control transfers to a specified statement number; execution

continues until a RETURN is encountered, then control
statement following the ON-GOSUB. returns to - the

A.30 OPEN Statement

Syntax:

OPEN logical-file, 1, secondary-addr, "filename"

Operation:

This statement prepares a file on the tape cassette for processing. The

“logical file” can be an
y number between 1 and 255 and is used in
INPUT#, PRINT#, GET#, and CLOSE statements pertaining to this

glc. The ”secor?dary address” can be 0, 1, or 2. A 0 means the file is to
P; flzo;essed with INPUT# statements; a | means it is to be processed with
statements. A 2 means processing will be with PRINT# statements

“® A.31 POKE Statement

Thi ' ' ‘
S statement is used to interface with the computer at the machine-

]an : ‘
Staii?ge level. It's use) beyond the scope of this text. Information on this
€nt can be found in the appropriate Commodore manuals.

134 Appendix A

A.32 PRINT Statement
Syntax:

PRINT expression,...
or
PRINT expression;...

Operation:

This statement displays the value of the expressions on the screen. If two
expressions are separated by commas (,), the second is aligned to begin at the
beginning of a 10-character "window". Items of 10 characters or longer will
use multiple windows. If two expressions are separated by semi-colons (;),
they are printed with no intervening spaces. However, numeric exXpressions
are always printed with a sign character preceding (- or blank) and a
blank character following. If a PRINT statement ends with a semi-colon
(;), the cursor will be positioned immediately following the last character
printed; otherwise it is positioned at the beginning of the next line.

Example:
10 PRINT "HELLO";A$

This prints "HELLO” immediately followed by the value of the string AS.

A.33 PRINT# Statement

Syntax:

PRINT#n,expression, . ..
or
PRINT#n,expression;. ..

Operation:

This statement transfers the value of the expressions to the specified logical
file n. This logical file must have been opened with the OPEN statement.
If two expressions are separated by commas (,), the second is aligned at the
beginning of a 10-character window. Items of 10 characters or longer
will use multiple windows. If two expressions are separated by semi-
colons (;), no intervening spaces are created n the logical file. However,

BASIC Language 135

numeric expressions are always printed sign character !
preceding (- or
blank) and a blank character following. If the PRINT# statemen% (does

flOt end with a serr.li-colon (;), a "carriage-return” character (CHR$(13))
is transferred to the file after the last item.

Example:

10 PRINT#3,"HELLO ";N$

This causes the strings "HELLO ” and N$ to be transferred to the

file represented by logical file number 3. A carri _
: riage-ret
appended to the end. ge-return character is

A.34 PROC Statement

Syntax:

PROC procedure-name

Operation:

This statement specifies the beginning of a procedure or block of
statements to be executed when an appropriate CALL statement is
fncountered iIn the program. This CALL statement will reference the
procedure-name” defined in the PROC statement and the end of the

blOde of statements is specified by the ENDPROC statement. The
procedure name can be composed of an arbitrary number of characters.

Example:

100 PROC CHAR -COUNTER
110 SUM=0

120 I=LEN(S$)

130 WHILE I>0

140 IF MID$(S$,1,1)=C$
150 SUM=SUM +1
160 ENDIF

170 ENDLOOP

180 ENDPROC

136 Appendix A BASIC lLanguage

137

This example is a procedure which will compute the number of A.36 REM Statement

occurrances of the character C$ in the string S$. The result is SUM. The

procedure would be executed when the statement Syntax:

CALL CHAR - COUNTER REM any characters

was encountered in the program. Operation:

The computer does not process the REM statement. It is included to allow

A.35 READ Statement documentation to be provided in the program.

Syntax: Example:

10 REM THIS IS AN EXAMPLE.
20 REM WRITTEN BY J. WALTERS.

READ variable, . ..

Operation:

This causes data to be moved from DATA statements into the specified A.37 RESTORE Statement
rvariable”s. Data items are moved into variables in the order found on the
DATA statement. When the data on one data statement is exhausted, data
tems are retrieved from the next one. If too few data items are found, the
message "70UT OF DATA" is given. The data items must match the type of
the variable into which they are being moved.

Syntax:

RESTORE

Operation:

Example:

Executi '
cution of this statement allows the READ statements to re-read data

cneci) .
pecified in DATA statements. It resets the system to process the DATA

READ I, A$, B$
statements from the beginning.

This example would read a numeric constant and two string constants

from DATA statements, assigning them to I, Ad and B$ respectively. Example:

10 RESTORE

138 Appendix A

A.38 RETURN Statement
Syntax:
RETURN

Operation:

This statement must be used In a block of statements executed as the

result of a GOSUB statement being encountered in the program. It
causes control to transfer to the statement following the corresponding

GOSUB statement. GOSUB-RETURN constructs can be nested to an
unspecified level, depending on the characteristics of the active

program.

A.39 STOP Statement

Syntax:
STOP

Operation:

This statement terminates the execution of a program. A message
"BREAK IN LINE xxxx” 1s issued. The CONT command can be used

to resume execution at the statement following the STOP statement.

Example:

400 STOP

A.40 SYS Statement

This statement is used to interface with the computer at th? machi@-
language level. It's use is beyond the scope of this text. Information on this

statement can be found in the appropriate Commodore manuals.

BASIC Language 139

A.41 UNTIL Statement

Syntax:

UNTIL condition

Operation:

This statement specifies the end of a block of statements to be
repeatedly executed. The beginning of the block of statements is specified by
the LOOP or WHILE statements. The specified “condition” is
evaluated after the enclosed block of statements is executed once. If the
condition is found to be false, control returns to the beginning LOOP or

WHILE. If the condition is found to be true, execution continues at the
statement following the UNTIL.

Example:
10 I=1
20 LOOP
30 PRINT I, SQR(I)
40 I=1I+1

200 UNTIL I>10

In this example, the numbers from | through 10 would be printed along

with their square roots. Statements 30 and 40 are executed once and then
repeatedly until I becomes greater than 10.

A.42 WAIT Statement

This statement is used to interface with the computer at the machine-

l:atmguage level. It's use is beyond the scope of this text. Information on this
Statement can be found in the appropriate Commodore manual.

140 Appendix A

A.43 WHILE Statement
Syntax:
WHILE condition

Operation:

This statement specifies the beginning of a block of statements to be
repeatedly executed. The end of the block of statements is specified by the
ENDLOOP or UNTIL statements. The specified “condition” 1s
evaluated before the enclosed block of statements is executed. If the
condition is found to be true, the enclosed block of statements iS executed;
then control returns to the WHILE where the condition is evaluated again.

If the condition is found to be false, execution continues at the
statement after the ENDLOOP or UNTIL.

Example:

10 INPUT 1
20 WHILE I<3
30 PRINT
40 I=1+1
50 ENDLOOP

In this example, statements 30 and 40 will be executed only and as long as 1
remains less than 3. If I is set to 4 in statement 10, then statements 30 and
40 would not be executed at all.

Appendix B
System Commands

\th'cn the computgr has typed READY, it is waiting for a command
specitying the next action to be performed or for a statement to be added to
the BASIC program. These system commands are described below.

B.1 CLR Command

Syntax:

CLR

Operation:

Iilllls ;is;ttshthe status of a BAlSIC program so that all variables are zero or
, e system looks as if the program had just been loaded or typed 1n.

Example:

CLR

B.2 LIST Command

Syntax:

LIST Stnuml - stnum?

Operation:

The LIS !
I command displays the program in the workspace on the screen.

142 Appendix B

It displays lines numbered from ”"stnuml” through “stnum?2”. If :stnum2”
is omitted, the program is listed from “stnuml” to the ”end. If "stnuml
is omitted, the program is listed from the beginning to stnum?2”. If only

LIST is specified, all lines in the program are listed.

Example:

LIST 100-

This command lists statement lines from line 100 to the end of the program.

B.3 LOAD Command
Syntax:

LOAD "program-name"

Operation:

This command loads a program with the name ”prggram-name

from the tape cassette into the workspace. Any prewous" B_ASIC
erased. If "program-name” 1s not

program in the computer will | be
specified, the next file on the tape is loaded.

B.4 NEW Command
Syntax:

NEW

Operation:

This command clears the workspace of all programs, variables and data.

System Commands 143

B.S RUN Command

Syntax:

RUN statement-number

Operation:

This command causes the program in the workspace to begin execution
at the specified "statement-number”. If the statement number 1S omitted,
execution begins at the lowest numbered statement. RUN does an implied
CLR command before starting to execute the program.

B.6 SAVE Command
Syntax:
SAVE "program-name"
& Operation:
This command saves the BASIC program in the workspace onto the tape
cassette giving it the name ‘program-name”. If “program-name” is
not specified, the program is saved but is not given a name.
B.7 VERIFY Command
Syntax:
VERIFY "program-name"

Operation:

This command compares the program 1n the workspace with the program
named "program-name” on the tape cassette. If "program-name” is omitted,
the workspace program is compared with the “next” file on the tape.

This command is often used to make sure the "SAVE” command was
successful.

144

Appendix C

Intrinsic Functions

The following functions are "built-in” to the Commmodore BASIC
System. Most of them take one or more arguments. In the description of
cach function, we will use the term S$ to indicate a ‘string argument”
and N or M to indicate a "numeric argument”. A string argument can
be a string variable, constant, or expression; numeric argument can be a
numeric variable, constant, or expression.

C.1 String Functions

C.1.1 ASC Function
Syntax:
ASC(S$)
Operation:
The ASC function takes one string argument. It returns the ASCII code

equ_ivalent of the first character in the specified string as an integer value. If
S$ is null, the message "ILLEGAL QUANTITY"” is displayed.

"

Appendix C @ Intrinsic Functions 147

146

Example:

Example:
10 A$ = LEFT("ABCDEF", 2)

10 X=ASC("ABC")
This example sets X to the value 65 which is the ACSII code for "A”". @ 1his example sets A$ to the string "AB”.

C.1.2 CHRS Function C.1.4 LEN Function

Syntax: Syntax:
CHR$ (N) LEN(S$)
Operation: Operation:
The CHRS$ function takes one numeric argument. It returns a The_]jEN f}mction t"{lkes one string argument. It returns the length of the
the specified string as an integer.

|-character string which corresponds to the ASCII code specified as

numeric argument.,
Example:

Example:
P 10 I=LEN("ABCD")

(66) T'his example sets I to the value 4.

This example returns the character "B” (ASCII code 66).
C.1.5 MIDS$ Function

C.1.3 LEFTS Function
Syntax:

Syntax:
MID$ (S$,N,M)

LEFT$(S$,N)) Operation:
The :
e l\t/{]IeDSOtt;mctlon takes three arguments. The first is a string argument
Somposed fe;/[tWo are numeric arguments. The function returns a string
0 characters from the string S§, beginning with the N'th

character of the strin S$. If eithe n Y
_ o . If either N ' ' 0 e
i B h or M is not an integer, only th

Operation:

The LEFT$ function takes two arguments. The first is a string argument
and the second is a numeric argument. The function returns a string

composed of the left most N characters of the string S$. If N is not an

integer, only the integer part is used.
Example:

10 A$=MID$ ("ABCDE", 3, 2)

148 Appendix C Intrinsic Functions 149

This example sets A$ to the string "CD”". C.1.8 VAL Function

¥ Syntax:

C.1.6 RIGHTS Function
VAL(S$)
Syntax:
Operation:

RIGHT$(S$,N)
The VAL function takes one string argument. It converts the

characters in the specified string to a numeric value. The string must

contain the correct characters to compose a proper numeric constant. [f
they do not, the VAL function returns zero.

Operation:

The RIGHTS$ function takes two arguments. The first 18 a string argument
and the second is a numeric argument. The function returns a string
composed of the right-most N characters of the string S$. If N is not an
integer, only the integer part is used.

Example:

10 X = VAL("3.416")
Example:

This example converts the string “3.416” to the numeric value 3.416, and

10 A$ = RIGHT("ABCDEF",2) assigns it to X.

This example sets A$ to the string "EF”.
C.2 Arithmetic Functions

C.1.7 STRS Function

Syntax: C.2.1 ABS Function
STR$(N) Syntax:

Operation: ABS (N)

The STR$ function takes one numeric argument. It returns a string Operations:

which contains the characters that compose the number N.

@ Ihe ABS function takes one numeric argument. [t returns a positive

Example: number equal to the absolute value of N.

10 A$ = STR$(327.03) Example:

This example sets A$ to the string ” 327.03". 10 X = ABS(-3)

p | his example sets X to 3

150 Appendix C Intrinsic Functions 151

C.2.2 ATN Function C.2.4 EXP Function

Syntax:

Syntax:
ATN(N) EXP(N)
Operation: Operation:

The ATN function takes one numeric argument. [t returns a number

. . . The EXP function takes one numeric argument. It returns a number
representing the arctangent of N, where N is expressed in radians.

equal to the constant "¢ (approx. 2.71828183) raised to the power N.

Example: Example:

10 A = ATN(.03) 10 X = EXP(3.1)

A is set to .0299910049. This example returns 22.1979513.

C.2.3 COS Function C.2.5 INT Function

Syntax:

Syntax:
COS (N) INT(N)
Operation: Operation:

The COS function takes one numeric argument. It returns a number

' _ _ _ The INT function takes one numeric argument. It returns an Integer
equal to the cosine of N, where N is expressed in radians.

equal to the largest integer which is less than or equal to N.

Example: Example:

10 X = COS(2)

i
-
>
il

INT(2.1)
INT(-2.1)

N
-
oo
[

This example sets X to -.416146836.

In this example, A is set to 2 and B is set to -3.

152 Appendix C Intrinsic Functions 153

C.2.6 LOG Function C.2.8 RND Function

Syntax: Syntax:
LOG (N) RND(N)
Operation: Operation:

The LOG function takes one numeric argument. It returns the natural
logarithm of N. (i.e. log to the base "e” (2.71828183)). The numeric
argument N must be greater than zero.

The RND function takes one numeric argument. It returns a pseudo-

random number between O and 1. Repeated calls to RND will generate

a sequence of random numbers. (If the argument is a negative number, the
same number 1s returned on each call to RND.)

Example: Example:

10 A = LOG(B) 10 PRINT 10 + RND(0)*8

C.2.7 7 Function This example generates a random number between 10 and 18

Syntax: C.2.9 SGN Function
(8 Syntax:

Operation: SGN(N)

This function takes no arguments. It is used to provide the value of the Operation:

numeric constant 7 (pi) which is 3.14159265. It can be used anywhere this

number is required. | |
1 The SGN function takes one numeric argument. If the argument is

negative, SGN returns -1; if positive, | : i i
Example: » 11D , 1t returns +1; and if zero it returns O.

c 10 Example:
= TU *

: ; : 1 = ;
This example assigns C the value 31.4159265, which 1s the circumference O A = SGN(-32.1)

of a circle with diameter 10.

This example sets A to -1.

154 Appendix C Intrinsic Functions 155

C.2.10 SIN Function C.2.12 TAN Function

Syntax: Syntax:
SIN(N) TAN(N)
Operation: Operation:

The TAN function takes one numeric argument. It returns a number
equal to the tangent of N, where N is expressed in radians.

The SIN function takes one numeric argument. It returns a number
equal to the sine of N, where N is expressed in radians.

Example: Example:

10 B = SIN(3) 10 A = TAN(1)

This example sets B to the sine of 3 which is .14112. This sets A to the tangent of 1 which is 1.55740772.

C.3 Special Purpose Functions
C.2.11 SQR Function

e C.3.1 FRE Function
SRR Syntax:
Operation: FRE(N)
The SQR function takes one numeric argument. It returns a number |
Operation:

equal to the square-root of N. The argument N must not be a negatiw_f'e
number. If it is negative the message "?ILLEGAL QUANTITY"” will

be displayed. Accuracy is +5E-10. The FRE function takes a dummy numeric argument. It returns a number

which is equal to the number of "bytes” of free space remaining in the
_ computer for program lines and variables. Each character in a program
®line usually occupies one "byte” of storage; each numeric variable
P occupies 7 bytes of storage; each character in a string occupies one
byte of storage. Each time the FRE function is used, the system will

consolidate all unused bytes of storage in an operation called "garbage
collection”.

Example:

10 PRINT SQR(14)

This prints the square root of 14 which i1s 3.74165739.

Example:

10 X=FRE(0)

156 Appendix C Intrinsic Functions 157

numeric operand N defines the number of columns to be skipped. If N is

less than O or greater than 255, the message “"?ILLEGAL QUANTITY” is
displayed.

This statement assigns a number to X equal to the number of bytes of
storage availabile.

C.3.2 PEEK FKunction Example:

This function is used to interface with the computer at the machine-language 10 PRINT "A"; SPC(10); "B™"
level. Its use is beyond the scope of this text. Information on this function

can be found in the appropriate Commodore manuals. This statement will skip 10 positions between printing the character A" and

the character "B”.

C.3.3 POS Function
C.3.5 ST Function

Syntax: o
yntax:
POS (N)
ST
Operation: o .
peration;

This function takes a dummy numeric argument. It returns a number
equal to the column number of the cursor at that time. The cursor position
is zero after the return key has been pressed. (The "HOME"” and "CLR” keys

do not affect the POS function).

This function takes no arguments. It returns a number representing the
status of thf: most recent input-output operation. Since the meaning of the
numbers is different for different devices, consult the manual describing

specific devices for details. The cassette unit returns the following status

Example: values for the specified error conditions.

10 PRINT POS(0) 0 - no errors.
4 - a short block was read.
This statement will print a number equal to the current column number of 3 - a long block was read.
the COINOT. 16 - unrecoverable error or verify mismatch.
32 - checksum error

64 - end of file detected.

C.3.4 SPC Function -128 - end of Tapc detected.

Syntax:

SPC(N)
Operation:

The SPC function is used to skip over a specified number of positions
on the screen. Characters already on the screen are not modified. The

158 Appendix C

C.3.6 TAB Function
Syntax:

TAB(N)
Operation:
The TAB function is used to position the cursor at a specific column on
the screen. Characters already on the screen are not modified. The numeric
operand N defines the column number. Columns are numbered from 0 and

wrap around to succeeding lines on the screen. If the cursor is already past
the column specified by N, no spacing is performed. The message

"9 ILLEGAL QUANTITY” will be displayed if the number N is less than
0 or greater than 235.
Example:

10 PRINT "A"; TAB(20); "B"

This statement prints the character “A” in column zero and the character
“B” in column 20.

C.3.7 TI Function
'Syntax:

TI1
Operation:
This function takes no arguments and is used to provide the value of the
real-time clock in the Commodore BASIC System. It always contains a
number which represents the time since the machine was turned on in
units of 1/60ths of a second.
Example:

10 PRINT TI/60

This example prints the number of seconds since the machine was turned on.

Intrinsic Functions 159

C.3.8 TI%$ Function .
Syntax:
TI$

Operation:

This function is used to maintain a 24-hour clock in a BASIC program. It
contains a string of 6 characters, the first two representing hours, the
next two representing minutes, and the last two representing seconds.
The clock can be “set” by assigning the appropriate string to TIS.
Subsequently it can be used by referencing TIS$.

Example:

10 TI$ = "102417"

This statement sets the 24-hour clock to 10 hours, 24 minutes and 17
seconds past midnight. hours and 3 minutes later, the statement

20 PRINT TIS$

was executed, the string "152717” would be displayed.

C.3.9 USR Function

This function is used to interface with the computer at the machine-language

level. Its use is beyond the scope of this text. Information on this function
can be found in the appropriate Commodore manuals.

160

Appendix D

Reserved Words

Various words in the BASIC language are used for special purposes.
These words cannot be used anywhere in a program (except comments) for
any other than their special purpose. Specifically, they cannot be used as
variable names or as parts of variable names. Illegal use of these reserved
words usually causes the message "?SYNTAX ERROR” to occur. For

_ example, the variable name MORE cannot be used because it contains the

reserved word OR imbedded in it.

ABS ENDIF LEFT$ POS STEP
AND ENDLOOP LEN PRINT STOP
ATN ENDPROC LET PRINT# STR$
ASC EXP LIST PROC SYS
LOAD

CALL FN LOG QUIT TAB(
CHR$ FOR LOOP TAN
CLOSE FRE READ THEN
CLR MID$ REM TO
CMD GET RESTORE
CONT GET# NEW RETURN USR
COS GO NEXT RIGHTS UNTIL

GOSUB NOT RND
DATA GOTO RUN VAL
DEF ON VERIFY
DIM IF OPEN SAVE

INPUT OR SGN WAIT
ELSE INPUT# SIN WHILE
ELSEIF INT PEEK SPC(
END POKE SQR

162

Appendix E

Full-Screen Editing

The Commodore microcomputers have a full-screen editor which allows
the user to modify the text appearing on the screen. It is possible to change
or delete characters and also to insert new characters. The next few
paragraphs describe how these functions work.

E.1 The Keyboard and The Screen

Although the keyboard is not connected to the screen, every time we strike
a key, the character corresponding to that key will appear on the screen.
Where does this character appear? There is a bright flashing square on the
screen called a cursor and when a key is struck the cursor is replaced by —
the character and the cursor moves one position to the right.

If one wishes to place characters at different points on the screen, the
cursor can be moved to the appropriate position by using the two cursor
control keys on the keyboard. These keys are marked with the letters
CRSR. The cursor can be moved either to the left or right, or up or down
by repeatedly depressing one of the keys. The left or up motions can be
obtained by depressing the SHIFT key at the same time as the appropriate

CRSR key is depressed. The reader might wish to experiment with these
keys.

If the cursor is at the extreme right of the screen, then moving the
@ CUrsor one more position to the right will force the cursor to appear on the
extreme left and one line lower. Moving the cursor to the extreme left and
then moving one more position to the left will force the cursor to move to
o the extreme right and one Jine higher. This operation is called wrap-around.

164 Appendix E

Moving the cursor to the top or bottom of the screen will cause
different effects. The cursor can not be moved beyond the top of the screen
with the CRSR key. If the cursor is placed at the bottom of the screen
and then the CRSR key is used to move the cursor lower, everything on the
screen shifts up one line. This means the top line on the screen disappears
and a blank line appears at the bottom. This particular effect is known as

scrolling.

The CLEAR/HOME key is also used to manipulate the cursor. If

you depress this key the cursor moves to the upper left corner of the screen.

If you depress this key and SHIFT at the same time then the screen 1s

cleared and cursor moves to the upper left corner.

The following sections describe how to use the cursor to edit a line.

E.2 Changing Characters

Move the cursor to the character to be changed, type the new

character and depress RETURN.
In the statement

100 X =X + 3

the 3 can be changed to a 2 by moving the cursor onto the 3, typing 2 and

depressing RETURN,

Full-Screen Editing 165

E.3 Deleting Characters

Move the cursor to the character which is one character to the right of

the one to be deleted. Depress the Delete ke
y once for each ch
deleted and then depress RETURN. character to be

In the statement

100 X = Y + 73.5

the 73.jj can be changed to .5 by moving the cursor to the period (.) and
depressing the Delete key twice followed by RETURN.

E.4 Inserting Characters

Move the cursor to the character which is to appear to the right of the
new chararacter and depress the Insert key. A blank space will appear and
the character to be inserted can now be typed. The insert key must be
depre?.sed for each new character to be inserted. After all characters hav

been inserted in a line, depress the RETURN key. e

In the statement

100 X=Y+.5

:lhe .S can be chan-ged to 73.5 by moving the cursor to the period (.)
epressing Insert twice, then typing 7 followed by 3 followed by RETURN. |

166 Appendix E

E.5 Replacing or Deleting an Entire Line
To replace or delete an entire line in BASIC, type the line number

followed by the new text and then depress the RETURN key. If no text
appears after the line number then the line is deleted.

To delete the statement

100 X =X+ .3

type the statement number 100 followed by RETURN.

To replace the statement

[
<
e

W

100 X

by

[
at
O

100 Y

type the statement number 100 followed by Y = Y - .5” and a RETURN.

Notes:

(D) You must always depress the RETURN key after all changes have
been made to a line; otherwise the line will not be modified.

(2) Editing on the screen may cause a program listing to appear
strange. If you are not sure what you have done to a program then

use LIST to obtain a new copy on the screen.

Appendix F

Messages in BASIC

The BASIC system displays a number of messages to inform the

user about the type of activity which is occurring, and to indicate
whether a previous operation caused an error.

F.1 Possible BASIC Error Messages and Meanings

A number of errors often occur in programs as they run. The BASIC
system analyses a program as it is running and if an error is detected an error
message 18 displayed on the screen. This appendix lists the error
messages and describes some probable causes for the errors.

The error messages are mostly of the form
Terror message in XXX

or

where XXX is a line number in the BASIC program. A small number of
the messages do not refer to a specific line and hence do not contain a line
numbe{'. Once an error is detected by BASIC it is often not possible
to continue execution of the program. You can usually determine whether the
program has failed by examining the text accompanying each message in
this Appendix. Variables within the statement in error and the program

168 Appendix F

retain their values so they may be examined to determine the cause of the
error.

F.1.1 ??

The INPUT statement continues to function until acceptable data
has been received. When not enough data has been typed in response to
INPUT, a double question mark (??) is printed until enough data 1s received.

10 INPUT A,B,C
RUN

?21

P2

2?23

READY .

F.1.2 BAD SUBSCRIPT

An attempt was made to reference a matrix element which 1s outside the

dimensions of the matrix. This may happen by specifying the wrong number
of dimensions or a subscript larger than specified in the original DIM

statement.

DIM A(2,2)
A(1,1,1)=2

?BAD SUBSCRIPT ERROR
READY .

A(10,10)=2

?BAD SUBSCRIPT ERROR
READY .

Messages in BASIC 169

F.1.3 CAN'T CONTINUE

Program execution cannot be resumed via a CONT command. There are four

possible reasons: 1) no program exists. 2) a new line was just typed in. 3) the
program has not recently been run. 4) an error just occurred.

10A$="HELLO"'

CONT
'"CAN'T CONTINUE ERROR'

READY .
F.1.4 DIVISION BY ZERO
Zero as a divisor would result in numeric overflow - thus it is not allowed.
When this message appears, it is most expedient to list the statement and

look for division operators.

?DIVISION BY ZERO ERROR IN 10

LIST 10
10A=B/C
?2C

O

F.1.5 FORMULA TOO COMPLEX

This message is only pertinent to string expressions and indicates that
BASIC does not have enough space to evaluate the whole string. This
problem can be solved by breaking the string into two smaller strings in two
statements and then combining these two strings in a third statement.

?FORMULA TOO COMPLEX

F.1.6 ILLEGAL DIRECT

INPUT and DEF cannot be used in direct commands: this error indicates
that one of these commands has been tried in that mode.

?ILLEGALﬁDIRECT’ERROR

170 Appendix F Messages in BASIC 171

F.1.7 ILLEGAL QUANTITY F.1.9 NEXT WITHOUT FOR

Either a NEXT is improperly nested or the variable in a NEXT statement
corresponds to no previously executed FOR statement.

This error occurs when a function is accessed with a parameter out of
range. This error may be caused by:

(1) A matrix subscript not in the range 0 to 32767 10 FOR I=1 TO 10

20 NEXT
X(-1)=Y 30 NEXT
?ILLEGAL QUANTITY ERROR ?NEXT WITHOUT FOR ERROR
READY .

(2) LOG (negative or zero argument)
10 FOR I=1 TO 10

(3) SQR (negative argument) 20 NEXT J
?NEXT WITHOUT FOR ERROR
(4) Call of USR before machine language subroutine has been READY .

patched in.

(5) Use of string functions MID$, LEFTS$, RIGHTS, with length F.1.10 OUT OF DATA

parameters not in the range 1 to 255.
A READ statement was executed but all of the data statements in the

Progrz?n:l have been read. The program tried to read too much data, or
insufficient data was included in the program. Depressing carriage return

when the cursor is on a READY message sometimes yields this error
because the message is interpreted as READ Y.

(6) Index on ..GOTO out of range.

(7) Addresses specified for PEEK, POKE, WAIT and SYS not in the
range 0 to 635535.

(8) Byte parameters of WAIT, POKE, TAB and SPC not 1n the READY .
range O to 255. ?0UT OF DATA ERROR
READY .

POKE 32768, 1000
? ILLEGAL QUANTITY ERROR
READY .

F.1.8 INVALID IF

An IF statement i1s constructed incorrectly

IF A=B CALL XYZ
INVALID IF ERROR IN XXX

172 Appendix F

F.1.11 OUT OF MEMORY

This message may appear while entering or editing a program as the
text completely fills memory. At run time, assignment and creation of
variables may also fill all variable memory. Array declarations consume
large arecas of memory even though a program may be rather short. The
maximum number of FOR loops and simultaneous GOSUBs allowed are
dependent on each other and this maximum capacity may be exceeded.

To determine the type of memory error, type ?FRE(0). It there are a large
number of bytes available, 1t 1s most likely a FOR-NEXT or GOSUB

problem.

10 GOSUB 10

RUN

?0UT OF MEMORY ERROR IN 10

READY . |

?FRE(O)

7156

(This is a FOR-NEXT or GOSUB problem.)

F.1.12 OVERFLOW

Numbers resulting from computations or input that are larger than

170141183 E + 38 cannot be represented in BASIC’'s number tormat.

Underflow is not a detectable error but numbers less than 2.93873588

E-39 are indistinguishable from zero.

?1E40
?OVERFLOW ERROR
READY .

Messages in BASIC 173

F.1.13 REDIM'D ARRAY

After a matrix was dimensioned, another dimension statement for the
same matrix was encountered. For example, an array variable is defined by

default when 1t 18 first wused, and later a DIM statement is
encountered.

A(5)=6

DIM A(10,10)
?REDIM'D ARRAY ERROR
READY .

F.1.14 REDO FROM START

This error is not actually a fatal error but is a diagnostic printed when

data supplied to the INPUT statement i '
k' 1s alphabetic wh -
quantity 1s required. P wihen a numeric

10 INPUT A
RUN
?ABC

?REDO FROM START
?

F.1.15 RETURN WITHOUT GOSUB

A RETURN statement was encountered without a previous GOSUB

statement being executed.

CLR
RETURN

?RETURN WITHUT GOSUB ERROR

174 Appendix F

F.1.16 STRING TOO LONG

Attempt by use of the concatenation operator to create a string more than
255 characters long.

10 AS="TA"
20 FOR I=1 TO 10:A%$=A%:NEXT

30 A$=A%+A%
40 NEXT
?2STRING TOO LONG ERROR

READY .

F.1.17 SYNTAX

BASIC cannot recognize the statement you have typed. This error is
caused by such things as missing parentheses, illegal characters, incorrect

punctuation, or a misspelled keyword.

RUIN
?SYNTAX ERROR

READY .

F.1.18 TYPE MISMATCH

The left-hand side of an assignment statement was a numeric variable
and the right-hand side was a string, or vice versa; or a function which
expected a string argument was given a numeric one, or Vice versa.

A$=5
?TYPE MISMATCH ERROR
READY .

F.1.19 UNDEF'D STATEMENT

An attempt was made to GOTO, GOSUB or THEN to a statement
which does not exist.

GOTO A
?UNDEF'D STATEMENT ERROR

READY .

Messages in BASIC 175

F.1.20 UNDEF'D FUNCTION

Reference was made to a user defined function which had never been
defined.

X=FNA(3)

?UNDEF'D FUNCTION ERROR
READY .

F.1.21 UNDEFINED PROC

The program attempts to call a procedure which has never been defined.
An example follows.

100 CALL ABC

(end of program)
(The procedure was not defined)
UNDEFINED PROC ERROR IN XXX

F.1.22 UNMATCHED STRUCTURE

The structure starting with LOOP, WHILE or IF has no corresponding
ENDLOOP or ENDIF statement. An example illustrates this error.

10 IF A<B

(end of program)
UNMATACHED STRUCTURE ERROR IN XXX.

176 Appendix F

F.2 Operating System Messages and Meanings

The BASIC system also monitors the reading of files from a cassette
and displays messages to indicate errors that have occurred.

F.2.1 BAD DATA

Numeric data was expected but alphabetic data was received when
obtaining input from a special device.

F.2.2 DEVICE NOT PRESENT

The requested device is not attached to the computer. The status indicator

will have a value of 2 which corresponds to a time out. This error may
happen on OPEN, CLOSE, CMD, INPUT#, GET#, or PRINT?.

OPEN 5,4,3 'FILE'

?DEVICE NOT PRESENT ERROR
READY .

F.2.3 FILE NOT FOUND

The named file specified in OPEN or LOAD was not found on the device
specified. In the case of tape I/O an end of tape mark was encountered.

Messages in BASIC 177

F.2.4 FILE NOT OPEN

The operating system must have device number and command
information provided by the OPEN statement. If an attempt is made to read
or write a file without having done this previously, then this message
appears:

CLR

INPUT#10,A

?FILE NOT OPEN ERROR
READY .

F.2.5 FILE OPEN

This error indicates an attempt to redefine file parameter information
by repeating an OPEN command on the same file twice.

OPEN 1,4,1

OPEN 1,4,1

?FILE OPEN ERROR
READY .

F.2.6 LOAD

Only occurs when loading a program from cassette tape. This means that
there were more than 31 errors in the first tape block or that there were
crrors in exactly the same corresponding positions of both blocks.

178 Appendix F

| F.2.7 NOT INPUT FILE

?: Tape files, once opened for writing, cannot be read without fi.rst closing
the file, rewinding the tape and opening the file for INPUT. This message

appears when an attempt is made to read an output file: A ppen dix G
10 OPEN 1,1,1

20 INPUT #1,A
?NOT INPUT FILE ERROR

READY .

Input and Output to Disks and Printers

i e e
i ——_ o ——

F.2.8 NOT OUTPUT FILE

Tape files cannot be read and updated in place. For example device O is

] it. : . . : .
the keyboard and a program cannot write to Chapter 2 introduced some basic concepts in manipulating

programs. The commands SAVE, LOAD and VERIFY were used to store

10 OPEN 1,0 and retrieve program files on cassette tape. Chapter 8 showed how the

20 PRINT#1 statements OPEN, CLOSE, INPUT# and PRINT# can be used to create
?NOT OUTPUT FILE ERROR and process data files on tape.
READY .

In the following sections, we will see how these facilities can also

be used to manipulate program and data files on the Commodore disk and

F.2.9 VERIFY printer.

The contents of memory and a specified file do not compare.

G.1 Simple Output to the Printer

The Commodore printer is connected to the computer through an external

bus connector. A program can produce printed output by writing a file to the
printer.

1000 REM EXAMPLE G. 1
1010 :

1020 OPEN 1,4

1030 X=1

1040 WHILE X<=10

1050 PRINT#1 , X, SQR(X)
1060 X=X+1

1070 ENDLOOP

1080 CLOSE 1

1090 STOP

—

180 Appendix G

In Example G.1 the OPEN statement designates the printer, device
number 4, as logical file 1. Any lines PRINTed to this logical file will

appear on the printer. Line 1050 will be executed 10 times and produce a
table of the square roots of the numbers from 1 through 10. When the output
is complete, the CLOSE statement is used to "disconnect” the printer from

logical file 1.

G.2 Listing a Program on the Printer

It is often desirable to produce a copy of a program on paper for
reference or documentation. However, the LIST command displays the
program statements on the primary output device, namely the screen. It
is possible, however, to assign the printer as the primary output device, and
then list the program there. To do this, type the following two statements at

the keyboard.

OPEN 1,4
CMD 1

These statements prepare the printer, device 4, as the "primary output
device”. Now, typing commands at the keyboard causes the response to be

printed on the printer. Simply type

LIST

and the statements of the current program will be listed on the printer.

When this operation is complete and the cursor reappears, the
printer must be “disconnected” as the primary output device by typing the

two commands:

PRINT#1
CLOSEI1

Everything should now be back to normal and the screen should operate

as before.

Input and Output to Disks and Printers 181

G.3 Preparing to Use the Disk

The Commodore disks can be wused to store and retrieve both
program and data files. Each diskette is first prepared for use by a process
called “"NEWing”. This erases all information from the diskette and
prepares it to contain any new data or programs.

The disk can contain two diskettes at one time. These are inserted in
drive O or drive 1, indicated on the front of the unit. The command:

OPEN 1,8,15,"NO: TEST, 99"

will cause the diskette in drive O of the disk (device 8) to be “NEWed” and
given a name of TEST with id of 99. During this operation, the light on the
disk associated with drive 0 will be on. When the light goes out, the
process 1s complete and the command:

CLOSE 1

should be issued. If an error occurs during this process, the “error light” in
the centre of the disk unit will be on. Consult the Commodore manual
for error diagnostic procedures.

Once a diskette has been "NEWed”, this procedure need not be
r?peated unless all the information is to be erased. However, each subsequent
time a diskette is to be used, it must be "initialized” using the command

OPEN 1,8,15,"10"

This "initializes” the diskette in drive 0 for use by the computer. The
command

CLOSE 1

shon:tld then be issued. Programs and data files can now be stored and
retrieved from the diskette.

Notes:

(1) In the OPEN commands above, the 1 is any logical file number.
T}_le 8 refers to the disk unit which is device 8. The number 15 in the
third parameter denotes the “command channel”.

182 Appendix G Input and Output to Disks and Printers 183

NOTE: Files created with the SAVE command are said to be files of

(2) The INITIALIZE operation must be done whenever a diskette
type PRG.

is inserted into the drive.

G.4 Storing Programs on Disk (.5 Data Files on Disk

One of the most powerful facilities provided with a disk is the
ability for the program to process files of data. Information can be stored
and analyzed and new data created.

Once a diskette has been "NEWed” and “Initialized”, programs can
be stored on it in the form of program files. Simply type the command

SAVE "0 :PROGRAM", 8
100 REM EXAMPLE G. 3

and a file named PROGRAM will be created on the diskette in drive O 105 -
containing the program currently in the workspace. The “0:” at the front of 130 OPEN 6,8,5,"0: TELEPHON, SEQ, WRITE"
the name designates the drive number. The ”,8” specifies disk drive 8. 135 :

150 LOOP

155 PRINT "ENTER NAME AND PHONE"
160 INPUT NAME$, NUMBERS$

170 IF NAME$="ZZZZ" THEN QUIT
180 PRINT#6,NAMES$: ", " : NUMBERS
190 ENDLOOP

It is possible, although infrequent, that the SAVE operation may

terminate successfully, (i.e. the error light is off) but the program will be
stored incorrectly. The VERIFY command, described in Chapter 2, can

be used to validate the SAVE operation. Type

VERIFY "O:PROGRAM", 8 195 .
200 PRINT#6,"ZZZZ,6999-9999"
and the contents of the specified file are compared to the program in the 220 CLOSE 6
workspace. 225
230 STOP

At some later time, you may want to copy the program from disk
back into the workspace. Make sure the diskette is inserted correctly and

initialized. Then type

Example G.3 is the same as FExample 8.2 in that it creates a file
of names and telephone numbers. The OPEN statement in line 30, however,
specifies that the file is to be created on the diskette in drive O of device
8. The third parameter specifies that buffer number 5 in the disk is to be
used for temporary storage. This is referred to as the "secondary address” and
can be any number from 2 through 14. If more than one file is open at the

same -time on the same device (i.e. number 8) the secondary address must
be unique for each file that is open.

LOAD "0O:PROGRAM" K8

this causes a copy of the program to be loaded into the workspace.

The above commands can be used to store many programs on a single
diskette. They can be selectively “"LOADed” by specifying the appropriate

name. It is possible to load a program specifying only the first few
characters of the name. Typing

The fourth parameter, enclosed in quotes, denotes the drive number,
name, type and access of the file. The parameter:

LOAD "0Q:PRs" 8 "0:TELEPHON, SEQ, WRITE"

specifies a file named TELEPHON on drive 0 is to be a sequential file

will load the first program encountered whose name begins with the
(SEQ) and is to be written (WRITE) using PRINT# statements.

character sequence "PR”.

184 Appendix G

Data records are written to the file in line 180 and line 200 much the
same way as they were written to cassette in example 8.2. When all
desired records have been written, the CLOSE command is 1ssued.

NOTE: When using disks connected via the IEEE port, the PRINT
statements must appear as follows:

180 PRINT#6,NAMES$;", " ;NUMBERS$; CHR$(13);
200 PRINT#6,"ZZZZ,999-9999" ;CHR$(13) ;

To recall the information stored in a sequential disk file, another
program must be written.

Input and Output to Disks and Printers 185

OPEN 1,8,15,"S0: TELEPHON"
CLOSE 1

are used to send the command

"SO: TELEPHON"

to the command channel (15) of disk drive 8. The parameter specifies a
file named TELEPHON on drive 0 is to be scratched (S).

When the disk detects an error, a red light on the disk panel 1s turned
on. The nature of the error can be discovered by reading certain information

from the disk’s “command channel”. For example, the statements

100 REM EXAMPLE G. 4

105 : B OPEN 1,8, 15

130 OPEN 6,8,4,"0: TELEPHON, SEQ, READ" INPUT#1, E$,M$,T$,S$
135 PRINT E$, M$, T$, S§,
150 LOOP

would cause 4 strings to be read from the command channel (15) of the

disk and displayed on the screen. The nature of the error is contained in the
strings as follows:

160 INPUT#6,NAME$, NUMBER$
170 IF NAME$="ZZZZ" THEN QUIT
180 PRINT NAME$,NUMBERS$

190 ENDLOOP

290 CLOSE 6 E$ - the number of the error message
220 :

230 STOP MS - the text of the error message

Example G.4 reads the names and telephone numbers from the file I'$ - 00 or the track number where the error occurred

TELEPHON and prints them on the screen. The OPEN statement
assigns logical file number 6 to the file TELEPHON on the diskette 1n
drive 0 of device number 8. The secondary address of 4 specifies that
disk buffer number 4 is to be used for this file. The file 1s sequential
(SEQ) and is to be read (READ) using INPUT# statements.

S$ - 00 or the sector number where the error occurred

I[f E$ is 00, then no error was detected and everything can proceed as

n?rmal. Other values indicate errors which are described in the appropriate
disk manual.

Records are read from the file using the INPUT# statement in the

normal manner. When all records are read, the file 1s CLOSEd in line 220. _
G.7 The Disk Directory

Each diskette can contain a number of separate program and data files.
Consequently, each diskette contains a "directory” to enable the system to

keep t.racl_(.of these files. It is possible to display this directory by first
LOAD:ing it into the workspace and then LISTing it on the screen. Type

G.6 Removing a File from Disk

A file can be removed from the disk by sending 1t a special command
via the “command channel”. This is done by using the secondary address 15.

For example, the statements
P LOAD "$0" . 8

- Appendix G
1

to load the directory of the diskette in drive O of disk device number 8.
(LOAD "$1”,8 would load the directory for drive 1.) Then type

LIST

to display this directory on the screen. It should look something like this:

0 "TEST " 99

1 "PROGRAM" PRG
” WETLE A" SEQ
3 "FILE B" SEQ
57 "SAILOR" PRG

606 BLOCKS FREE.

By referring to the first line, we can see that this dil.'cctory qzscrlbgs
the contents of the diskette in drive 0. It is called TEST w1tl}! an | ;1(\)4 ”e
of 99 and currently contains 4 files. These are called P”RF)GR ! :
"FILE A”, "FILE B”, and "SAILOR" occupying 1,3,3, and 57 dl?jk blt:)f:r S
respectively. A disk block consists of 256 characters ?r bytes F)f ata. W(;
of the files, namely "PROGRAM" and ”SAILOR, contain *pl;qull;altl:e
(type PRG); the others are sequential data files (type SEQ). This diske

can contain an additional 606 disk blocks of programs or data.

NOTE: Program and data files can be given names up tq 16 characters in
“ length. If longer names are specified, only the first 16 characters

are used.

Index

$-character, 52

? prompt, 21, 64
7?7 prompt, 64, 168

1, 19
n, 152

ABS, 20, 149
AND, 93
argument, 41
arithmetic, 33
limits, 172
arrays, 97, 119
ASC, 145
assignment statements, 116, 174
numeric, 37
string, 53
ATN, 150

BASIC language, 115

blank characters, 115

BREAK IN statement number,
10

CALL, 109-111, 116, 172, 175
case construct, 76
character data, 15
CHRS, 146
CLEAR key, 164
CLOSE, 66-67, 117
CLR, 14]
CMD, 117, 180
collating sequence, 107
comments, 1, 137
concatenation, 52
constants, 2

numeric, 33

string, 15, 51
CONT, 117, 169

conversational, 22
COS, 150

187

CRSR, 164
cursor keys, 163

DATA, 118, 171

debugging, 27
examining variables, 28
monitoring execution, 29
testing, 29

DEF, 45, 118, 169

DIM, 98, 100, 106, 119, 168.

173

direct mode, 27, 115

disks, 181
directory of files, 185
error detection, 185
file names, 186
initialization, 181
LOAD, 182
NEWing, 181
READ, 184
removing files, 184
SAVE, 182
SEQ, 183-184
VERIFY, 182
WRITE, 183

division, 36

E-notation, 34
editor, 9
changing characters, 164
deleting characters, 165
deleting lines, 166
inserting characters, 165
replacing lines, 166
ELSE, 23, 73. 75, 120
ELSEIF, 75, 91, 121
END, 122
ENDIF, 23, 72-73, 75, 122
ENDLOOP, 2, 79, 123
ENDPROC, 109-110, 123
erTors

messages, 167
ST function, 157

188

execution, 10

EXP, 151

exponent notation, 34

exponentiation, 19, 37

eXpressions
algebraic, 19
compound relational, 93
numeric, 2, 36
relational, 4, 71, 91
wrong answers, 43

false, 4

fields, 65

file numbers, 66

files, 63, 176, 179
comma, 638
creating, 68
external, 635
field separator’s, 68
fields 1n, 65
input from, 66
names, 12
on disk, 183
on IEEE disks, 184

printer, 179
program, 12
records 1n, 65
sentinel record, 66, 63
sequential, 67
FN, 118
FNname, 45
FOR, 86, 124, 171
FOR-NEXT, 86
index value, 86
index variable, 86
FRE, 155
full-screen editor, 163
functions, 175
arguments, 19, 41
Arithmetic, 149
built-in, 19, 145
numeric, 41
special purpose, 155

Index

string, 535, 145
user-defined, 44

GET, 124

GET#, 125

global definition, 113
GO TO, 126
GOSUB, 126, 172

hardware dependencies, 47
HOME key, 164

[F, 23, 72-73, 75, 91, 127, 170
case construct, 76
false range, 74
general rules, 76
nesting, 76
range of, 23, 73
true range, 74
IF-ELSE-ENDIF, 23, 73
[F-ELSEIF-ELSE-ENDIF, 74
[F-ENDIF, 72
[F-GO, 128
[F-THEN, 1238
IF-THEN-QUIT, 4, 24, 71, 79,
88, 129
immediate mode, 27, 115
index, 124 |
indexing, 100
INPUT, 21, 64, 130, 168-169,
173
INPUT#, 66-67, 131
INT, 42, 151
integer computations, 42
integers, 34
interactive, 22
interrupting a program, 10, 21

keyboard, 163
keywords, 3, 35
list of, 161

Index

LEFTS, 58, 146, 170
LEN, 55, 79, 147
LET, 116
line numbers, 1-2
LIST, 9, 141
LOAD, 13, 142, 177
from disk, 182
loading a program, 13
LOG, 20, 152, 170
LOOP, 2, 79, 84, 131
range of, 3
LOOP-ENDLOOP, 2, 82
LOOP-UNTIL, 84
loops, 2, 79
infinite loops, 3
initialization of, 80
nested, 81
range of, 80
termination of, 80

mainline, 110

MIDS$, 55, 79, 147, 170
modifying a program, 10, 13
modules, 113

multiplication, 36

NEW, 12, 142
NEXT, 86, 132, 171
NOT, 93

null string, 51

ON-GOSUB, 133
ON-GOTO, 132, 170
OPEN, 66-67, 133
operators
arithmetic, 36
logical, 93
priority of, 37, 94
relational, 92
OR, 93
Ooutput
character data, 16
numeric data, 16

output lists, 63
overflow, 172

packaging a program, 111
parentheses, 94
nested, 19
PEEK, 156, 170
pi, 152
POKE, 133, 170
POS, 156
PRINT, 134
output list, 63
windows, 11, 16
with comma, 16
with semicolon, 18
PRINT#, 134
printers, 179
PROC, 109-110, 135
procedures, 109, 116
program, 2
program listing, 180
programming style, 41
prompt
7, 21
message, 21

READ, 136, 171
real numbers, 34
records, 65
sentinel, 66
REM, 1, 137
repetition, 79
RESTORE, 137
RESTORE key, 21, 24
RETURN, 138
RETURN key, 8, 10, 22, 24

RIGHTS, 59, 148, 170
RND, 153

rounding, 44
RUN, 10, 143

running a program, 10

189

LS. I ey -,

190

SAVE, 11, 143
to disk, 182
saving a program, 11
scientific notation, 34
screen, 163
scrolling, 164
segmenting a program, 111
selection, 71
sentinel records, 66
sequential files, 67
SGN, 1353
signing on
Commodore 2000, 7
Commodore 4000, 7
Commodore 8000, 7
VIC-20, 7
SIN, 154
spacing, 3
SPC, 136, 170
SQR, 19, 44, 154, 170
ST, 157
statement numbers, 1
range, 115
statements, |
STEP, 87
STOP, 10, 1338
STOP key, 21, 24
stopping a program, 10, 21
STRS, 57, 148
strings, 15, 169, 174
comparison of, 92
conversion of, 57
INPUT with, 54
length of, 51, 55
null, 351
substrings of, 55
STUDENT file, 65-66
style, 40
subprograms, 109-110
subroutines, 109
subscripts, 98
substrings, 55

Index

subtraction, 37
SYNTAX ERROR, 35

SYS, 138, 170

TAB, 158, 170

tables, 97, 168, 170
character data, 98
columns, 1035
elements of, 98
multi-dimensional, 107
numeric data, 101
range of indices, 938
rows, 105
subscripts, 98
two-dimensional, 103

TAN, 155

TELEPHON files, 68

TI, 158

TIS, 159

time, 158

TO, 87

true, 4

truncating, 44

unary minus, 37
UNTIL, 84-85, 91, 139
USR, 159, 170

VAL, 58, 79, 149
variables, 2-3
index, 99
initialization, 39
keywords 1n, 335
naming, 35
numeric, 34
scope of, 113
string, 15, 52
vectors, 97
VERIFY, 12, 143, 178
to disk, 182
VIC-20, 7-8

Index

WAIT, 139, 170
WHILE, 83, 85, 91, 140
WHILE-ENDLOOP, 83
WHILE-UNTIL", 85

windows, 16, 54
workspace, 8

wrap-around, 8, 17, 54, 163

19]

A“USER FRIENDLY” COMPUTER

The new VIC computer is designed to be the most user
friendly computer on the market...friendly in price, friendly
in size, friendly to use and expand.

With the VIC, Commodore is providing a computer system
which helps almost anyone get involved in computing
quickly and easily...with enough built-in expansion features
to let the system “grow” with the user as his knowledge
and requirements become more sophisticated.

VIC owners who wish to learn more about computing
should ask their Commodore dealer about these other self-
teaching and reference materials:

¢ VIC LEARNING SERIES... a library of self-teaching books
and tapes/cartridges which help you learn about computing
and other subjects. Volume | in the VIC Learning Series is
called “Introduction to Computing...On the VIC”. Volume I
is called “Introduction to BASIC Programming”.
Subsequent titles will include Animation, Sound and Music,
and more.

e VIC PROGRAMMER’S REFERENCE GUIDE...a
comprehensive guide to the VIC20 Personal Computer,
including important information for new and experienced
programmers alike.

e VIC-PROGRAM TAPES, CARTRIDGES AND DISKS...a
growing library of recreational, educational and home utility
programs which let you use the VIC to solve problems,
develop learning skills, and play exciting television games.
These easy-to-use programs require no previous computer
experience.

r commodore

COMPUTER

1200 Wilson Drive, 3370 Pharmacy Ave.,
West Chester, Agincourt,
Pennsylvania, 19380 Ontario, Canada
U.S.A. M1W 2K4

Copyright© 1982 by Commodore Business Machines, Ltd.
All rights reserved.

This manual is copyrighted and contains proprietary information. No part of this publica-
tion may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior
written permission of COMMODORE BUSINESS MACHINES.

Printed in Canada

AN TTCCTECCECCETCTROCATEAAAAAAARAARAA QX A Bk G

