
Waterloo Structured Basic for the

(:: commodore
COMPUTER

\
\
J

~
~ ...
~

~

~
.

'

~

--t
~

~
~

~
~
~
~

~

~
j

j

j

ail
J
j

~

~
J
~

~
~

~

~

~

~

~

~

~

~

4
~

~

~

Chapter 1

Introduction To Waterloo BASIC

This chapter will serve as an introduction to programming using the
Waterloo BASIC system as implemented on Commodore microcomputers.
Simple examples are used to illustrate the basic principles. The
programming novice will be presented with an overview of the terminology;
the experienced programmer will see examples of how familiar concepts
are implemented in Waterloo BASIC. The various features discussed are
more completely explained in subsequent chapters, and in the Appendices.

1.1 Basic Principles

BASIC is a computer programming language developed initially at
Dartmouth College in New Hampshire. It has been widely used, and many
dialects of the language have appeared over the years. Waterloo BASIC is
the particular version of the language developed on a n um her of computers at
the University of Waterloo.

Example 1.1 illustrates how you could write a BASIC program to
calculate the Fahrenheit equivalent of 100 degrees Celsius. This is too trivial
a problem to be considered for solution using a computer, but
nevertheless, it serves to illustrate a number of important points.

1 REM EXAMPLE 1.1
2 REM A CALCULATION
3 c = 100
4 F = (C*9)/5 + 32
5 PRINT C,F
6 STOP

2 Chapter 1

This example consists of six statements, each preceded by a line number
or statement number. The first two statements are comments which describe
the problem. These comment statements are recognizable by the REM
(remark) which appears immediately following the statement number.
Comments are used to identify and describe the program, and are used
only for documentation purposes; they are not executed by the computer.

The last four statements are executable statements, and will be
processed by the computer in the order in which they appear. Statement 3
causes the value I 00 to be assigned to the variable C. Then statement 4
causes the expression

(C•9)/5 + 32

to be computed, with its value being assigned to F. Note that this
expression is similar to expressions used in algebra, with the * used to denote
multiplication and the / used to denote division.

Since this is the formula used to convert Celsius to Fahrenheit, F
would at this point have the value 212, which is the boiling point of water.
The fifth statement will cause the current values of C and F to be
printed or displayed on the screen, and statement six causes the computer
to terminate execution of the program. These statements are therefore
executed sequentially by the computer, and the entire collection of
statements is ref erred to as a program.

1.2 Line Numbers

It is not necessary to number the statements from 1 to 6, as shown in
Example 1.1. In fact, it is more desirable to number the statements leaving
gaps between the statement numbers in case it should be required to insert a
new statement between two existing statements. Thus a more common form
of the same program appears as Example 1.2.

10 REM EXAMPLE 1.2
20 REM A CALCULATION
30 c = 100
40 F = (C•9)/5 + 32
50 PRINT C,F
60 STOP

Introduction To Waterloo BASIC 3

1.3 Looping

It would be more useful and interesting to calculate F for C having a
number of values, for example I 00, 110, 120, ... etc. This is accomplished
in Example 1.3 by using a loop.

10 REM EXAMPLE 1.3
15 :
20 c = 100
22 :
25 LOOP
30 F = (C•9)/5 + 32
40 PRINT Ct F
45 c = c + 10
47 ENDLOOP
50 STOP

Two new statements have been used, namely LOOP and ENDLOOP, to
determine the beginning and ending of a group of statements which are to
be executed repeatedly by the computer. Thus when Example 1.3 is
executed, the statements

30 F = (C•9)/5 + 32
40 PRINT C, F
45 c = c + 10

are repeated indefinitely. Consequently the computer never stops, and the
program is said to be in an infinite loop, a most undesirable state of affairs.
A method for overcoming this short-coming is illustrated in the next
example.

Notes:

(1) Each time through the loop, the value of C is incremented by
10 in the statement

c = c + 10

(2) The = in BASIC means ''is assigned the value''. Thus this
statement is not an algebraic equation, but means ''calculate the
expression C+ 10 and assign its value to C''. By incrementing C
each time through the loop, a table of values of F for C

··~

!.

'
i

: .
!

i
i

.
'

.
. ;

'
;
;

'
'
I
·' !
·I

;
. '

i ..
. :
: !
: !
. ; ..

I

' I·
'

'
.
. ,
' .
' . . :

' .
1;
.· ,
'• I,
·11
i
:
I
; ..
!

i
•

.,
:1

!i
•
i:

i' :I
!;
I'
I: ..
~
•
' i
1
!
'
' .

.
•
"

" " I
j:
i
" r
•
!:

r
(
l

i
I

'
' ' '

'·
~
:·
•

: 4
r i

Chapter 1
I I
: I
: I

' ;

I '.

; .

f: .. . ;
. I

' '

.
; I

'

l I

' i
!

; '

I .

(3)

(4)

(5)

starting from 100 and increasing in steps of 10 degrees, is

produced.

The reader may have noticed that all statements in the range of
the loop have been indented. This is to make the program more
readable, and has no effect on its operation within the computer.

Until we cover the material in Chapter 4, the reader should assume
that variable names are a single letter, namely A to Z inclusive.

Some of the statements contain only a colon (:). The colon is used
to provide a line of spaces between statements so that the
programs are easier to read. BASIC does not allow _com~letel_y
blank lines in a program, but the colon acts as a blank line since 1t

invokes no action from BASIC. Lines which only contain colons are

called null statements.

1.4 Terminating The Loop

10 REM EXAMPLE 1.4
18 :
20 c = 100
22 :
25 LOOP
30 F = (C•9)/5 + 32
40 PRINT C,F
45 c = c + 10
46 IF C > 200 THEN QUIT
47 ENDLOOP
48 :
50 STOP

Example 1.4 shows how simple it is to cause the computer to terminate
the loop at a desired value of C. A single statement

IF C > 200 THEN QUIT

has been inserted in the loop, and when C is incren1ented to the value 210
the computer will exit f ram the loop, and continue to the statement
immediately following the ENDLOOP statement. In this case that statement
is STOP, so the process is terminated.

Introduction To Waterloo BASIC 5

The quantity C > 200 is known as a relational expression, and when
computed has the value '' true" or '' false ''. The operator > is known as a
relational operator. There are six such operators available, namely

= equals
> greater than
< less than
> = greater than or equal
< = less than or equal
<> not equal to

1.5 Keywords

In this chapter, several BASIC keywords have been introduced.
These include REM, PRINT, STOP, LOOP, END.LOOP, IF, THEN and
QUIT. These are reserved words which cannot be used for any other
purpose in BASIC. There are dozens of such keywords in BASIC; a
complete list is given in the Appendices.

1.6 Spacing Within A Statement

In the various examples blank characters l1ave been used extensively
to improve readability. F'or example, line 20 in Example 1.3 could be
written in various ways as follows:

20 c = 100
20 C=lOO
20 c = 100
20C=l00

All of these are equivalent. The blank characters are used at the
programmer's discretion, and are ignored by the computer.

1.7 Summary

This chapter has introduced many programming terms, and illustrated
their application in the BASIC language. No attempt has been made to
rigorously define the terms. It is suggested that the reader should proceed
immediately to Chapter 2 to learn how to submit these examples to the

,.
j:
I>

'

'

6 Chapter 1

computer, and run them to observe their operation. The definitions of
terms used are covered more rigorously in the Appendices, and in subsequent
chapters.

1.8 Exercises

1.1

1.2

Make the required changes to Example 1.4 to produce a table of
Fahrenheit values for Celsius values ranging from 0 to 100 degrees
in increments of one degree.

Further change the program to produce only those Fahrenheit values
for Cels·ius values ranging from -5 to 20 degrees in increments of 2
degrees.

j 1.3 Further change each of the programs to produce the tables in
reverse order. That is, the highest temperatures should be computed
and printed first, with the lowest at the end of the table. (The
subtraction operator in BASIC is the symbol '-' as in algebra).

I

I

' i

1.4

1.5

Write a program to produce a table showing Fahrenheit to Celsius
conversion values.

With the switch to metric it is important to be able to compare
English units and metric units.

a) Write a program which converts 100 miles to kilometer.s. Use
the conversion factor one kilometer equals 5 /8 of a mile.

b) It is necessary to produce a speedometer with both miles per
hour and kilometers per hour showing on its face in increments of
10 miles per hour and 10 kilometers per hour. Write a program
which produces two lists, the first one showing miles per hour from
O to 100 in 10 miles per hour increments and the corresponding
kilometers per hour values, and the second one showing kilometers
per hour from 0 to 160 in 10 kilometers per hour increments and · the
corresponding miles per hour values.

Chapter 2

Running a BASIC Program

The basic principles of writing a simple BASIC program were described
in Chapter 1. The next step is to enter the program into the computer, and
then put it into operation. This is accomplished using the BASIC editor
and run-time systems. In this chapter many of the features of these two
systems are discussed.

2.1 Signing on to Waterloo BASIC

Waterloo BASIC is implemented as an addition to the existing BASIC
language in the Commodore microcomputer. The method of activating these
extensions differs from machine to machine.

In the case of the VIC-20, simply insert the provided cartridge as
described in the installation guide and turn on the machine. A message
similar to the foil owing will be displayed.

*** WATERLOO BASIC ***
* FOR VIC-20 •

* *
* COPYRIGHT 1983 *
* WATERLOO COMPUTING *
*** SYSTEMS LIMITED***

6655 BYTES FREE

READY

In the case of the Commodore 2000, 4000 or 8000 series computers, you
will have to install an EPROM chip by following the directions which were

!
!
I

••
. ' . ' , I
' : I

. I

. I

'

11
. ii

::

. i
. !

!
. l

i i
. I

J

I I

8 Chapter 2

provided when you obtained Waterloo BASIC. When the chip is properly
installed and the machine turned on, the computer will display a message
similar to the fallowing:

COMMODORE BASIC ###
31743 BYTES FREE

READY

At this time Waterloo BASIC must be activated by typing SYS 9*4096
and pressing the' RETURN key. The computer will respond with

*** WATERLOO STRUCTURED BASIC ***
COPYRIGHT U OF W; (27/4/80)

READY

At this time Waterloo BASIC is active.

Notes:

(1)

(2)

The above procedures are typical but may vary slightly from
machine to machine. If you suspect a difference, consult the
installation procedures provided with the Waterloo BASIC package.

Some Commodore computers operate in lower case mode. If you
have one of these, the programs in this text should be entered
entirely in lower case.

If at anytime you wish to disable the Waterloo BASIC features,
simply remove the cartridge (in the case of the VIC-20) or type SYS
9*4096+ 3 (in the case of the 2000, 4000 or 8000 series machines).

2.2 Typing in a BASIC Program

When you first sign on to Waterloo BASIC you are provided with a
workspace which is empty. You can then enter each line of the pro~ram by
typing it, together with its statement· number, and then. depre.ss1ng the
RETURN key. If you make a mistake simply type the line a~a1n and_ the
computer system will replace the old line with the new line, provided
they have the same statement number.

Running a BASIC Program 9

If you are using a Commodore con·1puter with a 40-column screen or even
a 22-column screen, you may find that the line you wish to enter is too long
to fit on the screen. In these cases, it can ''wrap-around'' onto the next line on
the screen and still be treated as a single line in the program. For instance,
Example 1.4 will appear as follows when entered into the VIC-20 computer.

10 REM EXAMPLE 1.4
18 :
20 C=IOO
22 :
25 LOOP
30 F=(C*9)/5+32
40 PRINT C,F
45 C=C+IO
46 IF C > 200 THEN Q
UIT
47 ENDLOOP
48 :
50 STOP

Notice how program line number 46 is displayed as two lines on the
screen. It is, however, still treated as a single program line by BASIC. Just
remember when typing in a program to hit the RETURN key once at the
end of every ''program'' line even if the cursor wraps around to the next
screen line.

If you wish to check your typing, enter the editor command

LIST

and the contents of the entire workspace will appear on the screen.

The LIST command can be used to display a ''range'' of lines on the
screen. For example

LIST 100-200

will cause all lines between 100 and 200 inclusively to be displayed. The
command

LIST -200

10 Chapter 2

will cause all lines up to and including line 200 to be displayed. The

command

LIST 200-

will cause all lines numbered 200 or greater to be displayed.

2.3 Running a BASIC Program

After you have entered
execution. This is done
RETURN key.

the program
by typing

you are
RUN

ready to
and then

place it into
depressing the

The computer immediately starts executing the BASIC statements
in your workspace, beginning with the first executable statement (the
statement with the lowest statement number). Execution continues from
statement to statement until the STOP statement is encountered, at which

time the message

BREAK IN ''statement number''

appears, and the screen once again displays READY status.

· The ''statement number'' indicates the statement number of the STOP
statement in the program which was executed.

All too often, an error occurs during execution (usually referred to as
''execution time''). For example, if you try to compute the square root of a
negative number, the computer must terminate execution because it is
unable to perform this function. When this happens an error message
appears on the screen. Hopefully the message is self-explanatory, but you
may have to refer to the Appendices for further explanation. When the
reason for the execution-time error has been determined, simply enter the
correction into your workspace, thus modifying your original program, and

RUN it again.

Occasionally the computer will remain in execution endlessly. It
is then said to be in an ''infinite loop''. When this occurs you must use the
STOP key to interrupt operation of the program. This returns the computer
to the READY status, and indicates the line number which was about to be
executed (BREAK message).

Running a BASIC Program 11

2.4 Output from a BASIC Program

When Example 1.4 is run on the computer, the output on the screen
appears as fallows:

100 212
110 230
120 248
130 266
140 284
150 302
160 320
170 338
180 356
190 374
200 392

. On each line the numbers are arranged in 10-position zones or windows.
This means the first number on any line appears in columns l to 10 inclusive
the ~eco?~ n~mber .in colun:ns 11 to 20 inclusive, etc. Each number appear~
left-1ustified in a window, with the sign in the left-most position. When the
sign is positive, this position is left blank.

While the Commodore 8032 allows up to 8 of these windows on a line
t~e PET allows ~nl~ 4 and the VIC-20 only 2. If a program prints into mor~
windows than will fit on a screen, the output will simply ''wrap-around'' onto
the next screen line.

2.5 Saving a BASIC Program

When you have completed your program you may wish to SAVE it on
a cassette. First, insert a blank cassette into the cassette unit and make
sure it is rewound to the start. Next, think of a name for it such as
PROGONE. Then type

SA VE '' PROGONE ''

and depress the RETURN key. The following message will appear on the
screen:

PRESS PLAY & RECORD ON TAPE

·1
i
I

lj
·• :1
j
I
·I
I .
. !

:!

•

l
I
•
'

...

12 Chapter 2

Press PLAY and RECORD simultaneously on the cassette unit and the
computer will respond with OK on the screen, followed by the message

WRITING PROGONE

The complete program in the workspace will be written onto the cassette
tape. When writing is complete, the computer responds with the READY
message.

Occasionally the program will be recorded incorrectly, possibly
because of a faulty tape or because you forgot to press RECORD along
with the PLAY button. It is good practice to VERIFY that it is properly
recorded by using the following procedure:

(i) Rewind the cassette tape.

(ii) Type VERIFY ''PROGONE''. The computer will instruct you to
press PLAY. The tape will be read and verified character-by
character to ensure it matches the content of the workspace.

(iii) When the verification process is complete, the computer
returns to READY status. If the verification process fails, rewind
the tape and try SA VEing the program again, fallowed by another
VERIFY. If the error persists try another tape.

The name you choose for your program can contain up to 16 letters or
digits and should begin with a letter. Actually, your program is stored as a
file, and the name you choose is referred to as the file name.

Although you have SA VEd your program, a copy remains in your
workspace as well. If you wish to erase it from your workspace you should
enter the command

NEW

Then the workspace will be returned to its original status, as if you had just
signed on.

Running a BASIC Program 13

2.6 Loading a BASIC Program from Cassette

At some point in time you will probably want to copy a selected
program from your cassette into your workspace. First, insert the desired
cassette into the cassette unit and make sure it is rewound to the start.
With the system in READY status, simply type

LOAD ''PROGONE"

followed by RETURN and the workspace is automatically cleared. The
message

PRESS PLAY ON TAPE

will be displayed on the screen. Press PLAY and the program will be read
into your workspace.

NOTE: Several programs can be stored on one cassette. They are written one
after another with about I 0 seconds of blank tape separating them.
Each program has a ''header'' which contains its name. If your
cassette already contains a program and you wish to record another,
it is your responsibility to ''fast forward'' the tape to a
position following the recorded program before SA VEing the new
one. This is obviously difficult to do. The only reasonable way to
position the tape is by refraining from rewinding it after the recorded
program has been SAVEd, LOADed or VERIFYed.

When LOADing a program from a cassette which contains several
programs, the proper program is automatically selected using the program
name contained in the header. However, if the programs are named
PROGONE and PROG, in that order, and you attempt to LOAD ''PROG''
you will actually get PROGONE. This is because the computer does not
actually search for PROG, but for a program whose name begin.~ with the
sequence PROG as specified in the LOAD command.

2. 7 Changing a Program

It has been explained that any line in your workspace can be changed
by re-entering it with the same statement number. A line can be completely
erased by typing only the line number, followed by RETURN. Lines can
also be changed using the full screen editor which is described in an
Appendix.

1
I
!

.

14 Chapter 2

2.8 Summary

A number of commands such as LOAD, SAVE, VERIFY, RUN, NEW,
and LIST have been introduced in this chapter. These commands are editor
commands or system commands because they are associated with the
editing, managing and operation of the program.

2.9 Exercises:

2.1

2.2

2.3

Enter each of the examples from Chapter l into the computer and
run them to ensure tha·t the output is as expected. Store these
programs onto a cassette for later reference.

Enter solutions for the Exercises at the end of Chapter 1 and run
the programs to be sure they work.

Try every editor or system command introduced in this chapter
to verify that they work as described.

Chapter 3

The Flavour o Waterloo BASIC

In Chapter 1 simple programs were discussed, and presumably the reader
has entered these examples into the computer, run them, and modified
them in various ways. In this chapter further examples are used to
introduce the reader to additional features of the BASIC language. The
purpose of this chapter is to give the reader a feeling for the ''flavour'' of
the system, and to allow more interesting problems to be attempted before
examining all of the details. Subsequent chapters repeat most of the
material covered, and provide more formal definitions and descriptions.

3.1 Making Headings in BASIC

10 REM EXAMPLE 3.1
13 : ,

15 PRINT ''CELSIUS'', ''FAHRENHEIT''
18 :
20 c = 100
22 :
25 LOOP

30 F = (C•9)/5 + 32
40 PRINT C,F
45 c = c + 10
46 IF C > 200 THEN QUIT
47 ENDLOOP
48 :
50 STOP

' . I

.

' • . I

: !

I

I
·' " " '

: i

' ••
' .
I

I

;
I .
: ;
.

I :
I

16 Chapter 3

Example 3.1 is identical to Example 1.4, except that one additional

statement has been added, namely

PRINT ''CELSIUS'', ''FAHRENHEIT''

When the computer runs the program this statement is encountered before
the loop begins, and the words CELSIUS and FAHRENHEIT are printed in
the first two windows of the first line. These quantities are referred to
as string constants and can be recognized because they are enclosed
between quotation marks. Such string constants can be printed and used

as headings or special text in any window of any line.

The reader should type the program into the system, run it and confirm

that the output appears as follows:

CELSIUS FAHRENHEIT

100 212
110 230
120 248
130 266
140 284
150 302
160 320
170 338
180 356
190 374
200 392

Notice that the words CELSIUS and F AH REN HEIT are printed left
justified in the windows. Actually the numbers are also left-justified but

the '' + '' sign is not printed.

The Flavour of Waterloo BASIC

Example 3.2 shows anoth.er interesting use for t · s ring constants.

10 REM EXAMPLE 3.2
15 :
20 c = 100
22 :
25 LOOP

30 F = (C*9)/5 + 32

4 0 PR I NT '' C = '' , C , '' F = '' , F
45 c = c + 10
46 IF C > 200 THEN QUIT
47 ENDLOOP
48 :
50 STOP

17

H.ere the PRINT ~tatement c.ontains quantities to be printed in four

~ 1 e t e s_econd and fourth are variables. When the program is laced
into execution the output appears as follows: p

c - 100 - F 212 --
c - 110 F - 230 --
c - 120 F - 248 --
c - 130 F - 266 --
c - 140 F - 284 --
c - 150 F - 302 --
c - 160 F - 320 --
c - 170 F - 338 --
c - 180 F - 356 --
c - 190 F - 374 --
c - 200 F - 392 --

NOTE: The output of Example 3.2 conta1·ns · a considerable number of
blank spaces in each line because each of the · d · . win ows is not
completely used.

' I

18 Chapter 3

In fact, on the narrow screen of the VIC-20, it actually prints 2 lines
on the screen for each ''logical'' line of output shown, like this:

c - 100 -
F - 212 -
c - 110 -
F - 230 -
c - 120 -
F - 248 -
c - 130 -
F - 266 -
c - 140 -
F - 284 -
c - 150 -
F - 302 -
c - 160 -
F - 320 -
c - 170 -
F - 338 -
c - 180 -
F - 356 -
c - 190 -
F - 374 -
c - 200 -
F - 392 -

This problem can be overcome by using the fallowing alternative for
line 40.

40 PRINT ''C ='';C,''F ='';F

The only change is that two of the commas have been replaced
by semicolons. When two items in the ''PRINT list'' are separated
by a semicolon, their values are concatenated, with no
intervening spaces, and are printed in the next available window as a
single unit. In the example, the string ''C =" is three characters
long; the value of C is 4 digits (including allowance for a. sig~).
Thus the concatenated data is seven characters long, and will print
in the first window. Similarly ''F = '' is concatenated to the value
of F to form a seven character result which is printed in the second
window. The reader should make this change to Example 3.2 and
observe the output.

The Flavour of Waterloo BASIC 19

3.2 More Examples of Algebraic Expressions

a) In previous examples an expression was calculated, namely

(C•9)/5 + 32

It was noted that this expression is similar to expressions used in algebra.
The corresponding expression for conversion of Fahrenheit to Celsius would
be as fallows:

((F .. 32)*5)/9

Here the subtraction operator - has been introduced, as well as two sets of
parentheses which are nested. First the computer will calculate the innermost
ex_pression, ~amely ~-.32. This quantity will be multiplied by 5, and finally
this result will be d1v1ded by 9. Thus parentheses determine the order in
which expressions are computed, in a manner similar to that used in

lgebra. ,/

The reader should write a program similar to Example 1.4 which
onverts Fahrenheit to Celsius. Run it on the computer to verify that it works
s expected.

) S~ppose it is required to calculate the 6th power of X, and assign
this value to Y. A BASIC statement could be written as follows:

owever, there is a shorter way of accomplishing the same result by using
he exponentiation operator as follows:

y = x t 6

he_ t is a signal to the computer to perform a computation which is
quivalent to multiplying the current value of X by itself 6 times.

Built-In functions can be used to perform common
computations such as the square root. The statement

Y = SQR(2)

ill c.ause the computer to use a previously programmed routine or built-in
unction which is designed to calculate the square root; this routine is invoked

.·

'

.
·.
I

20 Chapter 3

with the use of the letters SQR. The value of the expression contained
in the parentheses following SQR is called the argument and is the
quantity which is submitted to the built-in function called SQR. In this
example the argument is 2; thus Y will be assigned a value which is the
square root of 2. Note that this built-in function will only calculate the
square root if the argument is non·negative.

Examples of other built-in functions are ABS and LOG, for the
calculation of absolute value and logarithm respectively. There are many
more which will be introduced during the course of this text, with a
complete list being available in the Appendices.

10 REM EXAMPLE 3.3
15 :
20 x = 1
25 :
30 LOOP
40 y = x i 3
50 Z = SQR(X)
60 PRINT X,Y,Z
70 X =X + 1
80 IF X > 8 THEN QUIT
90 ENDLOOP
95 :
99 STOP

Example 3.3 is a program which calculates the third powers and tht.
square roots of all integers from 1 to 8 inclusive. Enter this program intc
the computer, run it, and observe the following output:

1 1 1

2 8 1.41421356

3 27 1.73205081

4 64 2
5 125 2.23606798

6 216 2.44948974

7 343 2.64575131

8 512 2.82842713

Note that the third powers are all printed accurately, but in mos"
cases the square roots are terminated after 9 significant digits. OwinP
to hardware limitations, the computer saves only 9 digits internally, ano
this will be the maximum accuracy normally obtained.

The Flavour of Waterloo BASIC 21

3.3 Input During Execution

It is oft.en desirabl.e to enter data from the keyboard under program
control during execution. Example 3.4 is another version of the Celsius
to-Fahrenheit conversion program which incorporates this new feature.
The reader should type this program into the computer and run it to
observe its operating characteristics.

10 REM EXAMPLE 3.4
15 :
20 LOOP
30 INPUT C

40 F = (C•9)/5 + 32
50 PRINT C,F
60 ENDLOOP
65 :
70 STOP

When the computer encounters the statement

INPUT C

''?'' ap th Th. ''?'' . . . pears on e screen. is . is ref erred to as a prompt and is a
ignal to the user to enter data. The program then pauses until the user
typ~s a n~mbe: such as 110 and depresses the RETURN key. The
ar1able C is assigned the value which has been typed, and the computer
oes on to the next statement fallowing the INPUT statement.

This program is designed to permit the user to enter Celsius data
endlessly and have it converted to Fahrenheit. If you have a VIC-20 the

rogram can be interrupted by simultaneously pressing the STOP key and the
ESTORE key in response to ''?''. On the PET or 8032, simply press the
ETURN key in response to ''?''.

1

22 Chapter 3

•

Another version of the program which incorporates a prompt message is
illustrated in Example 3.5.

10 REM EXAMPLE 3.5

15 :
20 LOOP
30 INPUT ''ENTER DEGREES C''; C
40 F = (C*9)/5 + 32
50 PRINT C,F
60 ENDLOOP
65 :
70 STOP

Type this example into the computer and note how. much mor~ pleasant
it is to use the keyboard; you have the feeling of carrying . on a

•
11 ·th the computer The terms interactive computzng or ''conversation w1 · . .

conversational computing are often used to ref er to this type of programming
technique.

N t that the INPUT statement includes the prompting message

rompting message is displayed followed by a question mar · e
~omputer then expects the user to type a value for C and depress RETURN.

The Flavour of Waterloo BASIC 23

3.4 Selection Using IF-ELSE-ENDIF

•
Example 3.6 is a program which converts either Celsius to Fahrenheit or

vice versa.

10 REM EXAMPLE 3.6
15 :

20 PRINT ''TYPE 1 FOR C TO F''

25 PRINT '' OR 2 FOR F TO C''
35 LOOP

40 INPUT ''ENTER 1 OR 2'';T
45 IF T = 1
50
55
60
65
70 ...
75
80

INPUT ''C''; C

F = (C*9)/5 + 32
PRINT C, F

ELSE
INPUT ''F''; F

C = ((F-32)*5)/9
PRINT F,C

85 ENDIF
90 ENDLOOP
99 STOP

The computer first asks the user to enter a I or a 2 depending on which
type of conversion is to be done. This constant is assigned to the variable T.
In the loop one of two separate calculations is made, depending on the
current status of T. The value of T is tested using an IF statement with a
relational expression as follows:

IF T = I

the relational expression has the value ''true'', the statements
immediately following the IF are executed, stopping when the ELSE is

_: encountered. If the relational expression has the value ''false'' the statements
·mmediately following the ELSE are executed, up to the ENDIF. Thus the
IF statement allows the programmer to logically select one of two sets of

· statements, depending on the value of a relational expression. When the IF
LSE-ENDIF combination has been executed, the computer continues
ith the statement following the ENDIF.

.
'

' I
I,

~

24 Chapter 3

IMPORTANT NOTE:

Two distinctly separate kinds of IF statements have been
introduced. The IF-THEN-QUIT is used only to
terminate processing in loops and is a single statement.
The IF-ELSE-ENDIF are three statements used to
select two separate blocks of statements,
depending upon whether the relational expression is
true or false.

Enter the program into the computer_ and run it. Once again you can
terminate its operation by depressing the RETURN key (or STOP and
RESTORE) in response to?.

3.5 Summary

The reader should now have a sufficient introduction to the fundamentals
of programming in BASIC to experiment with a number of interesting
problems. The following exercises which reinforce these fundamental
concepts should be completed before proceeding to subsequent chapters.

3.6 Exercises

3.1 Make the following modifications to the program in Example 3.1.

3.2

Enter the resulting programs into the system and run them.

a) The initial value of C is assigned in line 20. Incorporate
appropriate statements so that this initial value is entered from the
keyboard at execution time. A prompting message should ask
the operator to enter the starting value.

b) The program as modified in a) will produce one table of output.
Incorporate further statements so that the program does not stop
after producing a table, but ''loops'', each time requesting a new
starting value for C. Thus several tables can be produced. The
program can be terminated by depressing RETURN (or STOP and
RESTORE) when the program prompts for the value.

In Example 3.1 the conversion table is printed in incrementF
of 1 O degrees Celsius. Modify the program so that this increment
changes to 2 degrees when C has reached a value of 170 degrees.

The Flavour of Waterloo BASIC 25

3.3

3.4

3.5

3.6

3.7

Further modify the solution for problem 3.2 so that the increment
of 2 degrees is reset to an increment of IQ degrees when c has
reached 180 degrees.

~rite a program which permits the user to type several numbers
~nto the computer, and receive their average as output. Note that
in order to terminate the input a special number will have to
be used and recognized by the program.

Suppose $I 00 is placed in a bank account at the beginning of each
year. Interest of 8 percent is added to the account at the end of
the last da~ of each year. There are no withdrawals. Write a
progra~ which shows the current balance in the account at the end
of the first day of each year, for the first IO years.

Modify the p.rogram for exercise 3.5 so the computer prompts the
.. - user for the interest rate, annual deposit amount, and number of

years, thus making a more general-purpose program.

Marks for a particular course are assigned integer values ranging
from 0 to I 00 inclusive.

A mark below 50 is a failure
A . mark from 50 to 59 inclusive is a D grade
A mark from 60 to 69 inclusive is a C grade
A mark from 70 to 79 inclusive is a B grade
A mark from 80 to 100 inclusive is an A grade.

Write a progr~m which permits the teacher to enter a mark for
ea~h s~ud~nt in the class, and receive as output a statistical report
which ~nd1cates the number of students in each of the five
categories. Use appropriate prompts for the input, and headings in
the output.

Modif"y Example 3.6 so that it terminates if a third value other .
than 1 or 2 is given.

Write a program which converts miles to kilometers or
kilomet~rs to miles. It should ask the user to specify what
c?nvers1on should be done by specifying either a I or 2, and then
give the v~lue to be converted. The reader should ref er to Example
3.6 for guidance. The answer should be displayed on the screen.

-~

' •
I
'

•

26 Chapter 3

3.10 Modify the program in problem 3.9 so that it terminates if a third
value other than 1 or 2 is given.

.. . .. - ------------

Chapter4

Debugging Programs

Writing BASIC programs would be fairly straight-forward if they
always ran properly. Unfortunately this is seldom the case. The process of
finding errors in a program is known as debugging, that is, eliminating
the ''bugs''. This process includes many different techniques for testing
programs and locating errors. Some of these techniques are discussed in this
chapter.

4.1 Immediate Mode

Whenever you enter a BASIC statement without a line number it is
executed immediately. For example, if you type

PRINT ''HELLO''

the word HELLO will be echoed back on the screen as soon as the
statement is entered. This immediate mode of operation seems at first glance
to be of limited use, since it appears that you can only execute one BASIC
s~atement. However it turns out to be quite powerful in the preparation and
debugging of programs.

28

4.2 An Example

10 REM EXAMPLE 4.1
15 :

20 I = 1
30 s = 0
35 :
40 LOOP
50 S = S + I
60 I = I + 2
70 IF I = 100 THEN QUIT
80 ENDLOOP
85 :
90 PRINT S
95 :
97 STOP

Chapter 4

Suppose you have written the program in Example 4.1. You intend it to
calculate the sum of all the odd integers up to 100, namely
1+3 + 5 + 7 + ... +99. When you place the program into execution, nothing
ever appears on the screen, regardless of how long you wait. You are in an
infinite loop. You can recover by depressing the STOP key, which returns
you to READY status. One method of finding the bug is to stare at the
program until it occurs to you what went wrong. A better way is to
examine the current contents of the key variables to see if this gives you a
clue. For example, you could type

PRINT I

Immediate-mode execution takes place and the value of I is displayed
on the screen. You are shocked to find it is 493 or some other ridiculous
value! How could this be, since you carefully arranged to stop the loop
when the value of I reached 100? Hopefully at this point it occurs to you that
I never exactly reaches 100, as it skips from 99 to I 01. However, should you
fail to make this observation you should insert a new line in the program,
namely

55 PRINT I

and place the program into execution again. This will cause the values of I
to be displayed each time through the loop. Surely now you will observe that
it skips from 99 to I 0 I, and you will then change the program by re-entering
line 70 as follows

Debugging Programs 29

70 IF I > 100 THEN QUIT

This techniq_ue of in_terrupting the program and examining the values
assumed by various variables is of inestimable value when debugging larger
and more complex programs.

4.3 Monitoring the Operation of a Program

Some programs are expected to operate for several hours before they
produce the required output. For example, you may want the computer to
sort the. names of all the students at the University of Waterloo into
alphabetical ~rder, and then produce a list. While the program is operating,
you ~re worried because nothing has appeared for 30 minutes or more. You
can interrupt the program with the STOP key. Then a · d. · message
appears in 1cat1ng the statement number which was just about to be
executed, le.t us say n~mber 260 to be specific. You can now ''browse''
aroun? look1~g at. part1a~ results to see if things seem to be going well, all
the time using immediate mode BASIC operations. If you are satisfied
you can resume execution at precisely the proper statement by typing '

CONT

which is an immediate command to transfer control back to statement
260 and the program resumes normal operation.

4.4 Testing the Program in Small Parts

Many programs are quite large and you may wish to test only small parts
of the~, to be sure thos~ parts ~eem to work well. Suppose in Example 4.1
~ou wish to test the 1nstruct1ons contained within the loop. You could
insert a statement as fallows

65 STOP

Then you could set any value you like for T and I, using immediate
mode assignment statements. You could then type

GO TO 50

30 Chapter 4

This would cause statements 50, 60 and 65 to be executed, and the
computer would stop. Then you can examine the current value for T and I to
be sure they have increased as you expected.

4.5 Summary

This chapter has only scratched the surf ace of methodology relative to
debugging and the use of immediate-mode computing. Hopefully it contains
enough guidance to enable the user to begin to develop a debugging
style which will produce effective results in the shortest possible time.

4.6 Exercises

4.1 The fallowing program prints a conversion table relating Celsius
and Fahrenheit temperatures. It is supposed to print the conversion
table from -20 to I 00 degrees Celsius in increments of 10 Celsius
degrees except for the comfort range from 10 to 35 degrees where
it should print the temperatures for every 2 degrees Celsius. After
35 degrees the table is again printed in 10 degree increments. Run
this program and examine the output. Does it work? Attempt to
repair the program so it will work. If you have difficulties, use the
debugging techniques described in this chapter to help you.

c = -20
D = 10

PRINT ''C '' , '' F''
LOOP

IF C=lOO THEN QUIT
F = (C*9)/5 + 32
PRINT C,F
IF C = 10

D = 2
ELSE

IF C = 35
D = 10

END IF
END IF
C = C + D

END LOOP
STOP

Debugging Programs 31

4.2 The program similar to the one in Exercise 4.1 prints a conversion
table relating Celsius and Fahrenheit temperatures. It is
supp.ose~ ~o print the conversion table from -20 to 100 degrees
Celsius in increments of 10 Celsius degrees except for the range from
0 to. 5 degrees where it should print the temperatures for every .2
Celsius. degrees. After 5 degrees the table is again printed in IO
degree 1?crements. Run the program and examine the output. Does it
work? Find the bugs and fix them. If you have difficulties use
the debugging techniques described in this chapter.

c = -20
D = 10

PRINT ''C '' , '' F''

LOOP
IF C = 100 THEN QUIT
F = C(C*9)/5 + 32
PRINT C,F
IF C = 0

D = .2
ELSE

IF C = 5
D = 10

END IF
END IF
C = C + D

END LOOP

r

.

!

. i

'

I
• !

.
• ,
'
' • •
~

.
' •
I
!

•
' !
I

' ' l
'
I

32

Chapter 5

Arithmetic in BASIC

In earlier chapters there have been several examples of arithmetic
operations within BASIC programs. The purpose of this chapter is to
approach the subject more formally, in order to tidy up many of the ideas
which have been introduced.

5.1 Numeric Constants

BASIC programs and the data they process usually contain many
numeric constants, several examples of which follow:

(a) (i)
(ii)
(iii)
(iv)
(v)

(b) (i)
(ii)
(iii)
(iv)
(v)

(c) (i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)

126
-126
0
111222333
-111222333

.126
-.126
.0
111222.333
-111222.333

12.6 E3
12.6 E-3
-12.6 E3
-12.6 E-3
999. 999999 E 13
l .OE33
1.0E-34

34 Chapter 5

Group a) contains a number of examples of integers. Integers
contain no decimal point, as it is assumed to be to the immediate right of the
least significant digit. They can be positive or negative, and can contain at
most 9 digits as shown in examples a) (iv) and a) (v).

Group b) contains several examples of real constants. Each contains a
decimal point, can be positive or negative, and has . at most 9 digits of

• • prec1s1on.

Group c) contains several examples of real constants expressed
using exponent or scientific notation, usually ref erred to as E-notation. In all
cases the signed integer following the E indicates the power of ten
which is used to multiply the number which precedes it. For example 12.6E3
means 12.6 multiplied by 10 to the third power and is therefore
equivalent to 12600. On the other hand l 2.6E-3 is equivalent to .0126
because the -3 indicates that 12.6 should be multiplied by 10 to the -3rd
power, which is equivalent to dividing by 10 to the 3rd power.

E-notation is used to allow the programmer to use very large or very
small constants in the program or data. Example c) (vi) is a number which
is so large it could almost be considered infinite. On the other hand
example c) (vii) shows a number which is so small it could almost be
considered to be zero. All E-notation constants can contain up to 9 digits
of precision. The largest magnitude is approximately 10 to the 38rd
power, and the smallest magnitude, other than zero, is approximately 10
to the -38th power.

The fallowing are examples of errors which can be made when ·using .
numeric constants in BASIC.

142.6.7
1,462,271.439
$126.42
14.E16.2

l 4.6E93

5.2 Numeric Variables

Two decimal points
Cannot use commas
Cannot use $
Cannot use decimal
in exponent part
Too large (overflow)

Numeric variables are used in BASIC for the purpose of being
assigned numeric values. Consider the following examples.

Arithmetic in BASIC 35

a)

b)

c)

In the statement

x = 7.6

the symbol X is a numeric variable, and is assigned the value 7 .6
when the statement is executed.

In the statement

INPUT Y

the sy?1bol Y is a. numeric variable, and is assigned a value when any
numeric constant is entered at the keyboard during execution.

In the statement

PRINT K

the numeric variable K has previously been assigned a numeric
value, and this value is displayed on the screen.

A numeric variable always begins with a letter, and can contain as
~any letters or digits. as can conveniently be used on the line being entered
into the com~uter (1n other words, a numeric variable cannot by typed
partly on one line, and partly on the next). Examples of numeric variables are
as follows:

Notes:

(i) CAT
(ii) G 72
(iii) THISISABIGVARIABLE

(1) Only the first two characters in a real varia hie name are used by
the computer. Consequently if you use the variable names CAT and
CA in your program the computer assumes they are the same
variable. The reason more than two characters are allowed is to
permit m~aningful variable names to be used. Obviously this must
be done with great care if errors are to be a voided.

(2) Variable names cannot be one of the reserved words in BASIC. Thus
SA VE is not a permissible variable name, nor is LOAD, PRINT or

..

36

(3)

Chapter 5

STOP. If you inadvertently use one of these names the computer

will display the message

SYNTAX ERROR IN LINE XXX.

Variable names cannot contain any of the BASIC reserved
words. Thus the variable LOADER is improper since it contains
LOAD. Also RERUN is improper because it contains RUN. In
these cases the computer will also display the message

SYNTAX ERROR IN LINE XXX.

Examples of other erroneous numeric variable names are as follows:

7K Must begin with a letter
C$K Must not contain the special character $
WORD Contains the reserved word OR.

5.3 Numeric Expressions

Any expression which, when evaluated, produces
said to be a numeric expression. Some examples are:

(i) (X + 6.92)/8.6
(ii) (A + T)*(J - 2)
(iii) 7 .493
(iv) K
(v) -K
(vi) A+Bi5
(vii) A+ Bt .5
(viii) A/B*C
(ix) -7.9i2

a numeric result is

The conventions used in evaluating numeric expressions are similar to
those used in algebra. For example in (i) the expression X + 6.92 would
be evaluated first because it is contained in parentheses. The result
would then be divided by 8.6 (recall that the slanted stroke '' /'' is used to

denote the division operator).

Example (ii) introduces ''*'' as the multiplication operator. Here th~ t_wo
expressions A + T and J - 2 are evaluated, and the two results are mult1phed
together. Note that in BASIC the multiplication operator ''*'' must

Arithmetic in BASIC 37

always be used when multiplication is to be done, whereas in algebra we
are allowed an implied multiplication, with the expression written as
(A+ T)(J-2).

Examples (iii) and (iv) are included to show that the simple
numeric constant and numeric variable are each simple cases of numeric

• expressions.

Example (v) introduces the unary minus. This operator is the same
symbol as the subtraction operator, but serves to multiply the value of K
by negative or minus one, thus changing its sign.

Example (vi) introduces the exponentiation operator "j '' . First B j 5 is
evaluated to produce B multiplied by itself five times. Then the result is
added to A. This is because of the priority of operators. The operators in
order of decreasing priority are

t
*and/
+and -

Example (vii) indicates the use of a fractional exponent, namely .5.
Here B is raised to the power .5 to produce the square root of B; the
result is added to A. Note that B must be positive or an error message
would be produced by the computer.

Example (viii) seems to provide two possible results. Will A/B be
evaluated, with the result multiplied by C? Or will B*C be evaluated with
the result divided into A. The rule is that when equal priority operators are
encountered the expression is evaluated from left to right, so the A/B is
evaluated then multiplied by C. It is usually best to use parentheses and
then no possible misunderstanding can occur. Thus the expression could be
written as (A/B)*C.

Example (ix) produces the negative
(-7.9)j2 would produce the same result

5.4 Numeric Assignment Statements

of 7 .9 squared. The
with a positive sign.

The general form of a numeric assignment statement is

numeric variable = numeric expression.

•
expression

38

First, the value of the numeric expression is computed;
assigned to the numeric variable.

Examples are:

(i) SALARY= HOURS * 6.25 - DEDUCTS
(ii) AGE= 7

Chapter 5

this value is then

•
An alternative form of the assignment statement is to use the BASIC
keyword LET as follows:

(i)
(ii)

LET SALARY= HOURS * 6.25 - DEDUCTS
LET AGE = 7

An error frequently caused by beginning programmers is to try to use an
assignment statement such as the following:

x + y = 7 * z

The item to the left of the equals sign is not a variable. Yo~ cannot ~ave an
expression to the left of the equals sign when you are using an assignment
statement.

Arithmetic in BASIC
39

5.5 Some Examples

a) Suppose a loan of $10,000 is to be repaid at the rate of $7 50.00 per
month, payable at the end of each month. This payment is to include
interest of 1 percent per month on the outstanding portion of the loan
(balance). Example 5.1 is a program which calculates the number of months
required to repay the loan. It also prints out a schedule to show the
declining balance, and interest payments.

100 REM EXAMPLE 5.1
110 :
130 BAL = 10000
140 M = 1
160 LOOP
170 I = BAL * .01
190 PRINT M;BAL,I
200 BAL = BAL - (750 - I)
210 M = M + 1

220 IF(BAL*(l+.01))<=750 THEN QUIT
230 ENDLOOP
240 I = BAL * .01
260 PRINT M;BAL,I
270 PRINT
280 PRINT ''MONTHS TO REPAY IS''; M
300 STOP

The first few lines in the program which appear before the main loop
are used for initialization. The numeric variables BAL and M are assigned
their initial values of I 0000 and 1 respectively.

Each time the LOOP is executed the payment schedule for one month is
computed and printed. Then the new balance is recalculated and the
month is incremented by one. The loop is terminated by testing to
determine whether the current balance plus one month's interest (BAL *
(I+ .0 I)) can be covered by the payment of $ 7 50. If so, the final line is
calculated and printed after the exit from the loop. Finally a message is
printed which indicates the total number of months in which payments
must be made to repay the loan completely. The output produced by the
computer appears as follows:

I
!

t

40

1 10000
2 9350 93. 5
3 8693.5
4 8030.435
5 7360.73935
6 6684.34674
7 6001.19021
8 5311.20211
9 4614.31413
10 3910.45728
11 3199.56185
12 2481.55746
13 1756.37304
14 1023.93677
15 284.176139

100

86.935
80.30435
73.6073935
66.8434674
60.0119021
53.1120211
46.1431413
39.1045728
31.9956185
24.8155746
17.5637304
10.2393677
2.84176139

THE NUMBER OF MONTHS TO REPAY IS 15

Notes:

Chapter 5

--.

(1) Quantities may be recorded to several decimal places, even though
they represent dollars and cents. In a subsequent section it is
shown how to truncate and round these numbers.

(2) The reader should note that the decimal points do not line up
vertically. This is because all numeric output is left-justified in the

print window.

(3) In line 270 the PRINT keyword has no associated list of variables
or constants. When the computer executes this statement a line of

blank spaces is printed.

b) Example 5 .2 is identical to the previous example, except that the
program contains an important change of style. Most of the numeric
constants have been replaced by numeric variables which are initialized
once in the initialization portion of the program. For example, each time .01
appears it is replaced by RA TE. This makes the program much easier to
modify when these important parameters change. For example, if the interest
rate becomes 2 percent, it is only necessary to change one line in the

initialization, namely

RATE = .02

Arithmetic in BASIC 41

The ~rogram will now function correctly and produce a corresponding result
for the new rate.

This point of programming style cannot be emphasized too much
Often programs are used repeatedly for years by different p I These. I · h . eop e.
peop e o~ ~~ers w1~ to introduce different data (such as interest rates),
~o the 1n1t1al ass1g?ments of variables will have to be changed. The effort
involve~ to ma~e this. _c?a~ge. becomes relatively trivial if all such changes
can be isolated 1n the 1nit1al1zat1on portion of the program.

100 REM EXAMPLE 5.2
105 :
110 PAY = 750
120 RATE = .01
130 BAL = 10000
140 M = 1
160 LOOP
170 I = BAL * RATE
190 PRINT M;BAL,I
200 BAL = BAL - (PAY - I)
210 M = M + 1
220 IF(BAL•(l+RATE))<=PAY THEN QUIT
230 ENDLOOP
240 I = BAL * RATE
260 PRINT M;BAL,I
270 PRINT
280 PRINT ''MONTHS TO REPAY IS'' ;M
300 STOP

5.6 Numeric Built-In Functions

as In Chapter 3 the built-in _function SQR was introduced, and others such
th ~BS and LC?~ were mentioned. A complete list of available functions and

f
e1rb chara.cter1st1cs can be found in the Appendices. However, a number

0 o servat1ons are useful.

Eve f · . ry unction such as SQR can be considered to be ·
variable h · h · . . a numeric
it is w ic_ is assigned its value when the function is encountered. Thus

ur not p~ss!bl,; to use the numeric variable name SQR for any other

an only be used in conjunction with parentheses which contain the

42 Chapter 5

proper argument. (Note that a few of the functions used in later chapters
can contain more than one argument.)

The arguments used in functions can be expressions. For example
SQR(X + Y * Z) is evaluated by first computing the expression X + Y
* Z, followed by the evaluation of the square root. Note that the value
of the expression must be non-negative in order for the SQR function to
produce a result.

The arguments can also be expressions which contain another function.
For example SQR(SQR(2)) will produce the 4th root of 2.

5. 7 Integer Computations in BASIC

Sometimes it is important to do arithmetic which ignores the fractional
component of a numeric quantity. Consider the following example. Suppose
you wish to calculate the maximum number of quarters (25-cent pieces)
contained in the quantity $3.15. Obviously the answer is 12 with $.15 left
over. To compute this the following BASIC statements could be
incorporated into a program.

QUARTERS = 315/25
PRINT QUARTERS

Unfortunately the answer would appear on the screen as 12.6 because it
is indeed true that $3.15 contains 12.6 quarters! However, since .6 of a
quarter is not legal currency, 12 is the required answer. To obtain an
integer answer for the number of quarters the following statements are used:

QUARTERS = INT(315/25)
PRINT QUARTERS

Note that the built-in function INT (which stands for ''Integer Part'') has
been used. First the expression 315 / 25 is computed to produce 12.6, and
then the integer part, namely 12 is selected and is finally assigned to the
variable QUARTERS.

Many people have a habit of collecting one-cent coins in an old cigar
box, usually located in the bedroom. This habit drives the government to
distraction, but prevents many holes from developing in pants ' pockets.
Example 5.3 is a program which permits the user to indicate the number of
cents in the collection. The program proceeds to compute the minimum

Arithmetic in BASIC 43

number of coins required to make up this sum, using 5 denominations,
na.mely 50-cent pieces (halves), 25-cent pieces (quarters), I 0-cent ·pieces
(dimes), 5-cent pieces (nickels) and I-cent pieces (pennies). The reader
should study the program to observe the use of the INT built-in function.

100 REM EXAMPLE 5.3
110 PRINT ''HOW MANY CENTS?''
120 INPUT AMT
130 H = INT(AMT/50)
140 BAL = AMT - 50•H
150 Q = INT(BAL/25)
160 BAL = BAL - 25•Q
170 D = INT(BAL/10)
180 BAL = BAL - lO•D
190 N = INT(BAL/5)
200 P = BAL - 5•N
205 PRINT
210 PRINT AMT; ''CENTS COULD BE:''
220 PRINT H, ''HALVES''
230 PRINT Q, ''QUARTERS''
240 PRINT D, ''DIMES"
250 PRINT N,''NICKELS''
260 PRINT P, ''PENNIES''
270 STOP

When the program is run the fallowing output is produced when the
number of cents in the collection is 280.

HOW MANY CENTS?
? 280

280 CENTS COULD BE:
5 HALVES
1 QUARTERS
0 DIMES
1 NICKELS
0 PENNIES

------ - -· -

44 Chapter 5

5.8 Rounding, Truncating and User-Defined Functions

In example 5.1 and 5.2 the output contains several decimal places, even
though it involves money which properly should be printed to the nearest
cent. Consider the following sequence of BASIC statements

10 x - 12.3456789 -
20 x - x + .005 -
30 x - x * 100 -
40 x - INT(X) -
50 x - X/100 -
60 PRINT, X

(i) Statement 20 causes rounding to take place to the nearest cent.

(ii) Statement 30 causes all dollars and cents to appear in the integer
part of X because of the multiplication by 100.

(iii) Statement 40 causes the fractional part of X to be omitted.
•

(iv) Statement 50 shifts the decimal to the left by two places, thus
causing the ''cents'' to be to the right of the decimal.

This series of statements will cause X to be rounded to the nearest cent
before printing. When line 60 is executed the value 12.3 5 will be printed.

The four ''rounding'' statements can be combined into one as follows:

X = INT((X + .005)•100)/100

Since this is a very common requirement, it
permits us to define a user-defined function
follows:

is fortunate
with a single

DEF FNA(X) = INT((X + .005)*100)/100

that BASIC
statement as

This DEF statement defines a function FNA which bas a parameter X.

Consider Example 5.4 which incorporates this function definition in
line 110. The function is used in lines 190 and 260 in the same manner as
built-in function SQR. The variables BAL and I are used as arguments in
separate invocations of FNA, and their rounded, two-decimal version is
returned as the value of FNA.

Arithmetic in BASIC 45

All user-defined function names begin with FN. What follows (in
this case the letter A) is a properly constituted variable name.

Note that user-defined functions are a single BASIC statement
which has the fallowing format:

DEF function name = expression

100 REM EXAMPLE 5.4
105 :
110 DEF FNA(X) = INT((X+.005)•100)/100
115 :

130 BAL = 2000
140 M = 1
150 PRINT ''MONTH'', ''BALANCE'', ''INTEREST''
155 :
160 LOOP
170 I = BAL * .01
190 PRINT M,FNA(BAL),FNA(I)
200 BAL = BAL - (200 - I)
210 M = M + 1
220 IF (BAL•(l+.01))<=200 THEN QUIT
230 ENDLOOP
235 :
240 I = BAL * .01
245 :
260 PRINT M,FNA(BAL),FNA(I)
270 PRINT
280 PRINT ''MONTHS TO REPAY IS''; M
285 :
300 STOP

46 Chapter 5

5.9 Summary

Arithmetic operations appear in arithmetic expressions which include
operands, operators, built-in functions and parentheses. The operands are
either numeric constants or numeric variables. The operators are +, -, *, /,
and t. All calculations proceed retaining 9 digits of precision.

Results of arithmetic operations can be assigned to a numeric variable.
However they can be printed directly without assignment by including them
in the list of items specified in a PRINT statement. For example, the
following statement would produce the result of the expression X + 2.

PRINT X+2

5.10 Exercises

5.1

5.2

5.3

5.4

A retired school teacher has $60, 128.42 in his bank account.
Interest of one-half of one percent is credited at the end of each
month. Assume the teacher must withdraw $1,020.00 for living
expenses at the beginning of each month. Write a program which
calculates the number of months u11til the bank account has
reached a balance which is less than $1,020.00.

Write a program which converts a time in seconds .to a. time in
hours, minutes and seconds. The program should continue in a loop;
each time the user is requested to type a time in seconds, and the
converted time is printed on the screen.

Write a program which computes and prints all the integers up .to
1000 which are perfect squares. (625 is a perfect square because its
square root is 25, which is an integer.) ,•

Write a program which converts a distance in inches to a. dist~nce
in miles, yards, feet and inches. The program_ should. co.nt1nue in a
loop; each time the user is requested to type a distance in inches, and
the converted distance is printed on the screen.

Chapter 6

Hardware-Dependent Limitations

When using a computer, sometimes surprising and unexpected results can
occur. These are usually related to the limitations of the hardware, and it is
helpful to be forewarned. This chapter outlines some of these
problems, and gives partial explanations. It is possible to skip this chapter on
an initial reading of the text, as future chapters do not depend on this
material.

6.1 An Example

10 REM EXAMPLE 6.1
15 :
20 x = 2.0
25 :
30 LOOP
40 Y = SQR(X)
50 PRINT X, Y
60 x = x + . 1
70 IF X = 3.0 THEN QUIT
80 ENDLOOP
85 :
90 STOP

Consider Example 6.1 which tabulates the square roots of the set of
numbers 2.0, 2.1, 2.2, 2.3, ... , 3.0. It would be reasonable to expect this
program to terminate but in fact it does not.

This problem is caused because the computer represents numbers
using binary notation and it is not possible to represent .1 accurately
using this notation. Since the computer must use an appproximation for

48 Chapter 6

.1 it follows that X never actually becomes equal to 3.0 and the
program does not terminate. The program is easily corrected by changing
line 70 as follows:

70 IF X > 3.0 THEN QUIT

It is therefore common to avoid equality tests when terminating
loops. However, if the numbers involved are all integers this problem does
not arise (unless the integers are very large). This is because most
integer values are represented accurately in binary.

To further help the reader understand the problem, perhaps an analogy
using decimal arithmetic would be of assistance. Suppose it is required to
write the fraction one third as a decimal. It is written as .3333333, a
number which never terminates; thus no computer could ever have enough
capacity to accurately represent this fraction, if the computer recorded its
numbers in common decimal notation. If we accept .3333333 as the
approximation it is slightly too small, but the error is less than 1 part in
ten million.

6.2 Another Example

10 REM EXAMPLE 6.2
15 :
20 x - 3.1 -
30 y - 3. 1E20 -
40 z - y - y + x -
50 T - y + x - y -
55 • •

60 PRINT Z,T
65 •

•

70 STOP

In Example 6.2 you would expect Z and T to be assigned identical
values. In actual fact, Z becomes 3.1 and T becomes zero! This happens
because computation of expressions proceeds from left to right, and numeric
constants contain only 9 digits of precision. When computing Z, the quantity
Y-Y is evaluated first, yielding zero; then X is added to produce the
result 3.1. When computing T, the quantity Y + X is evaluated first. Since
the computer retains only 9 significant digits, the result is 3.1 E20 because X
is insignificant relative to Y. Then Y is subtracted producing the zero

Hardware-Dependent Limitations 49

result for T. This points out that operations which are associative in ordinary
algebra are not necessarily associative in BASIC.

6.3 Summary

The rea.der who is. not familiar with computers may be disturbed
by the points made 1n the two examples. However, experienced computer
users have learned over the years to cope with these difficulties, and
they seldom present problems in straight-forward real-life situations. The
most ~erious difficu!t~es arise in complex scientific or engineering
calculations where m1ll1ons of computations are taking place. Since the
numbers used are approximations, the errors can have a tendency to
compound upon one another. In extreme cases the error becomes larger
t~a~ t~e numbers themselves, so the results are meaningless! A separate
d1sc1pl1ne . called numerical analysis examines the propagation of errors.
These studies have yielded good algorithms for solving common scientific
problems keeping the error in the results to a minimum.

I
l
I

50

Chapter 7

String Manipulation in BASIC

Many problems involve the processing of alphabetic data. Examples
include names, addresses, and product descriptions, to name just a few.
BASIC permits the programmer tp manipulate alphabetic data with
reasonable ease. The purpose of this chapter is to introduce the subject of
string processing, and to formalize a number of the pertinent rules of BASIC.

7.1 String Constants

In previous chapters there have been examples in which headings
were produced by printing strings of characters contained between
quotation marks. Examples of these string constants are as follows:

(i) ''DOGS''
(ii) ''CAT''
(iii) '' ''
(iv) '' "
(v) ''IT'S A BOY!''

String (i) and (ii) have lengths of 4 and 3 respectively.

.....
Example (iii) shows a string of 3 blank characters, while example (iv)

illustrates the nu! I string. This null string is of length zero and contains no
characters.

Example (v) illustrates what to do if a string is to contain quotation
arks as in the word IT'S. Double quotes are used to delimit the string, and

he single quote is used within it. A string can have up to 255 characters.

52 Chapter 7

7.2 String Variables

A string variable is a variable which can assume a string constant as
its value. String variables are similar to numeric variables except that they
always end with a ''$'' character. Thus the following are typical string
variables:

A$
NAME$
CTR$

As with numeric variables, they must begin with a letter, and contain no
special characters except of course the final $ character. Only the first 2
characters plus the $ are actually used by the computer.

7.3 String Expressions

There is only one string operator, namely concatenation, which is denoted

by a '' +''. For example,

''CAT'' + ''DOG''

is a string expression which, when executed, causes the two strings to
be joined together (concatenated) to form a single string, namely
''CATDOG''. In a similar fashion, three strings can be concatenated as

follows:

''CAT'' + '' '' + ''DOG''

can be •

to form the string ''CAT DOG''. As many strings
concatenated together as are required in a particular problem.

String variables and string constants can also appear in the same string

expression. For example,

''CAT'' + X$

will concatenate the string ''CAT'' to the current value assigned to the string
variable X$, thus farming a new string.

String Manipulation in BASIC

The foil owing are examples of invalid string expressions.

''CAT'' + 6

''CAT''+ DOG

''CAT'' * ''DOG''

Cannot concatenate a string
with a numeric constant

Here, DOG is not contained
within quotes so is not a
string constant

The * operator is not allowed
in string expressions.

53

Later in this chapter built-in string functions are introduced; they
can also be used in string expressions.

7.4 String Assignment Statements

The general form of a string assignment statement is

string variable = string expression

Examples are:

(i)
(ii)
(iii)
(iv)

X$ = ''CAT'' + ''DOG''
NAME$ =''JOHN HENRY''
T$ = X$ +NAME$
T$ = T$ + T$

. -. . ..

In _each example the string variable on the left of the equals sign is
a_ss1gned th.e value of the string expression on the right. Note in example
(1v) the variable T$ is concatenated to itself to form a string of twice the
original length. .

__ JI

54

7 .5 An Example

10 REM EXAMPLE 7.1
15 :
20 PRINT ''WHAT IS YOUR SURNAME?''
30 INPUT LAST$
40 PRINT "AND YOUR FIRST NAME?''
50 INPUT FIRST$
60 PRINT ''YOUR MIDDLE INITIAL?''
70 INPUT MIDDLE$
75 :
80 FULL$=FIRST$+'' ''+MIDDLE$+''· ''+LAST$
90 PRINT FULL$
95 :
99 STOP

Chapter 7

Example 7 .1 is a program which prompts the user for surname,
first name and middle initial. The three items are entered at the keyboard,
and are assigned to three separate string variables. The full name is
formed by concatenating the three strings together in the proper order. Note
that a period is placed after the initial, and blank characters are inserted
between the components of the full name.

When the program is run, the user is prompted to enter three string
constants. To make things easier, it is not necessary to use the beginning
and ending quotes around the input string. Thus when the surname is
requested you can type either ''SMITH'' or SMITH as a response .. (When
you choose to omit the quotation marks, the string constant must not ·
contain a comma (,) as this becomes a delimiter. This situation is
discussed further in Chapter 8.)

The computer never prints strings on the screen (or on any file device)
with the quotes included. Thus when the full name is printed it appears in a
normal format, for example,

JOHN H. SMITH

It should be noted that in Chapter 2 we discussed the concept of
print ''windows'' which are 10 characters wide. If a string of 10 characters or
longer is printed, it uses two or more of these windows. In fact , if a
string is longer than a line, the output is automatically continued on the
next line, and is said to ''wrap around''.

String Manipulation in BASIC 55

7 .6 Built-In Functions for Strings

. ~hile built-in funct~ons pla~ a mi~or role in most numeric calculations,
it. is rare that a string man1pulat1on operation can be done effectively
~1thout the use of built-in_ functions .. Hence these functions play an
important _role, and appear in many string expressions. The following
examples illustrate _the application of some of the more common functions.
Others can be found In the Appendices.

a). . It is o_ften necessary to select a string of characters from within an
ex1~t1~g string, .thus fo~ming a new string, often ref erred to as a substring.
This IS accomplished using the MID$ function with three arguments as
follows:

Y$ = "ABCDEFGH''
X$ = MID$(Y$,3,4)

The string Y$ is selected, and the new string is formed beginning at
th~ 3rd cha_racter, namely the C , and continuing for 4 characters. Thus the
string X$ will be assigned the value ''CDEF'' and will have a length of 4.

10 REM EXAMPLE 7.2
15 :

20 PRINT ''ENTER A 3-LETTER WORD''
30 INPUT X$
35 :
40 Ll$=MID$(X$,l,l)
50 L2$=MID$(X$,2,l)
60 L3$=MID$(X$,3,l)
70 STRING$=Ll$+'' ''+L2$+'' ''+L3$
75 :
80 PRINT STRING$
85 :
90 STOP

Example 7 .2 illustrates a simple application of this function. It
requests the user· to enter a three-letter word such as CAT. The program
then composes a new string, placing a blank between each letter and the
screen output becomes C A T. '

.. b) Th
e previous example is somewhat restrictive in application because it

processes only 3-letter words. In order to be able to input a word of any

-

56 Chapter 7

length, it would be convenient to have a facility which determines the
length of any given string. The built-in function LEN is used for this purpose.

For example

INPUT X$
N =LEN(X$)
Y$=MID$(X$,N,l)
PRINT Y$

will permit the user to enter a string constant of any reasonable
length; it will be assigned to X$, and then the length is determined and is
assigned to N. Finally the I as t character in the string is selected using the
MID$ function, and it is printed on the screen.

10 REM EXAMPLE 7.3
15 :
20 PRINT ''PLEASE ENTER A WORD''

30 INPUT X$
35 :
40 N=LEN(X$)
50 Y$=MID$(X$,l,l)
60 1=2
70 LOOP
80 IF I>N THEN QUIT
90 Y$=Y$+'' ''+MID$(X$,I,l)
91 I=l+l
92 ENDLOOP

93 :
94 PRINT Y$
99 STOP

Example 7 .3 uses the LEN function to generalize Example 7 .2 so that a
string of any reasonable length can be entered. The output is the same string,
with a single blank inserted between each character. Study this example
carefully to be sure the algorithm is thoroughly understood, because the ·
technique illustrated is commonly used in string processing.

Initially Y$ is a string of length 1 which contains the first character
in X$. Each time the loop is executed a blank character and the next
available character in X$ is concatenated on the right. When all characters in
X$ have been used the loop terminates and the resulting string Y$ is
printed. Note that the input word must contain at least one character.

String Manipulation in BASIC
57

c) ~xample 7.4 is another application of the MID .
user ts asked to input a sentence and th . $ function. Here the
of occurrences of the letter A Th.e pr?grdam is to determine the number
. d' .d I . is is one by comparin
in iv1 ua character in the sentence with ''A '' d . . g every
equal comparison. ' an adding unity to N for each

100 REM EXAMPLE 7.4
110 PRINT ''ENTER A SENTENCE''
120 INPUT S$
130 N=O
140 L=LEN(S$)
150 I=l
160 LOOP
1 70 IF MID$ (S $, I , I) =,,A,,
180 N=N+l
190 ENDIF
200 I=I+l
210 IF I>L THEN QUIT
220 ENDLOOP
230 PRINT ''A OCCURS '' 'N' '' TIMES''
240 STOP

d) Sometimes the programmer would . .

· er e examp e:

N = 256

Y$ = ''TRY '' + N '' TIMES''
PRINT Y$

Here the desire is to print the message

TRY 256 TIMES

However an error occurs because th . .
constants and a . . e string expression contains both string
converted to a stringnumer1c. var1a~le N. The numeric expression N can be

expression using the STR$ function as fallows:

N = 256

Y$ = ''TRY '' + STR$ (N) + '' TIMES''
PRINT Y$

58 Chapter 7

. . ·milar function VAL permits the

programmer to convert. a g be rocessed in arithmetic expressions.
numeric constant so it can p
Consider the example

X$ = '' 1 2 3 . 4 ''
y = VAL(X$)•2

PRINT Y

. '' 3 4'' is converted to a numeric constant
Here the string constant .

12
· . h ltiplied by 2 and the final result

123.4 using the VAL function. It is t en mu '
is printed.

100 REM EXAMPLE 7.5
110 PRINT ''ENTER A SENTENCE''
120 INPUT S$
130 N=O
140 L=LEN(S$)
150 I=l
160 LOOP
170 IF MID$(S$,I,l)=''A''

180 N=N+l
190 ENDIF
200 l=I+l
210 IF I>L THEN QUIT

220 ENDLOOP " TIMES"
230 PRINT ''A OCCURS ''+STR$(N)+
240 STOP

. . . hich ou may want to use the

STR$ function. This program is 1dent1~a the function. Note that only
the PRINT statement has been altere t,? ~sde s'' problem and providing

. d h avoiding the win ow ' l . one string is pr1nte ' t us and observe the resu ts in
output with a nicer format. Try the programs
each case.

e) The LEFT$ function
number of characters
sta tern en ts:

to select a specific
permits the programmer string. Consider the
from the left end of a

IO X$ = ''ABCDEFG''
20 Y$ = LEFT$(X$,3)
30 PRINT Y$

String Manipulation in BASIC
59

The value ABC would be printed because the 3 characters are selected
from the left of X$. Note that LEFT$ has two arguments.

The RIGHT$ function is similar except that the required number
of characters is selected on the right of the string.

7.7 Summary

Note that when a string function returns a string as its value, the
function name always ends in a $, for example MID$. However, when the
function returns a numeric result (such as LEN) the function name
does not end with a $. Properly speaking, the function LEN is not a string
function at all, but is a numeric function. However, it is included in this
chapter because its use is associated with strings.

7 .8 Exercises

7.1 a) Write a program which inputs a three character string such as
CAT and prints the three letters vertically as follows:

7.2

c
A
T

b) Modify the program in a) so that the string can be of any
reasonable length.

a) Write a program which inputs a collection of words one at a
time from the keyboard, and determines the total number of
words of various lengths. The output will be a table as follows:

ONE CHARACTER = 3
TWO CHARACTERS = 2
THREE CHARACTERS = 6
MORE THAN THREE = 12

b) Modify the program for part a) so that several words can be
entered on a single line with each word separated by one or more
spaces.

.
' '
j

i
f
i

I
• I

I
I

i
I
I

I
I
' '
I

I
I
• '
'
'
' • I
!
I
I
I

l
•

I
I
I
• •
' • •
I

' ;
•
f
t
I

.~

60

7.3

Chapter 7

With reference to the Exercise 7.2, modify the output to appear as
follows:

NUMBER OF CHARACTERS

1 * * *
2 * *
3 ******

>3 ************

The number of asterisks corresponds to the number of
occurrences of a word of the size indicated.

7 .4 Write a program which has the following characteristics:

a) Words are read one at a time from the key-board of the
computer.

b) These words are arranged into lines for printing with no line
being longer than the width of the screen. The first word in a line is
printed left-justified in the line. All subsequent words in a line are
separated from other words by exactly one blank character. If there
is not enough space at the end of a line to print the next word,
this space should be left blank, with the next word appearing as the
first word in the fallowing line.

c) When a period (.) is read from the keyboard the program
terminates.

7 .5 Write a program that accepts two integers as input from the
keyboard. The program then must print a rectangle with the two
integers as the length and width, using an asterisk (*) as the
character to outline the rectangle. For example, if 5 and 8 are read
the output should appear as follows:

* * * * * * * *
* *
* *
* *
* * * * * * * *

String Manipulation in BASIC 61

- 7.6 Write a program which reads a message containing only letters
and blank spaces. This message is to be coded into a ''secret
message'' using the fallowing coding rules:

(i) Any letter is replaced by its successor in the alphabet. For
example, A is replaced by B and S by T. The letter Z is replaced by
A.

(ii) Blanks are to remain unchanged.

Note: You will find the built-in functions ASC and CHR$ useful
for solving this problem. They are described in the Appendices.

62

Chapter 8

Simple Input, Output and Files

In all examples introduced to this point, the BASIC program caused
printing to take place on the screen in I 0-character ''windows''. Also, data
has been read into the computer using the INPUT command and the
keyboard. The purpose of this chapter is to generalize these ideas, and
specifically to introduce the concept of a file.

8.1 Output on the Screen

Several examples have been introduced where a number of quantities
are printed on the screen of the computer. For example, the statement

PRINT X$, ''CAT'', Y, 6. 47

will cause four values to be displayed in four 10-character windows. First
the current value of X$ is printed in the first window, assuming it has a
length less than I 0. The string CAT is printed in the second window, the
value of Y in the third, and the numeric constant 6.4 7 in the fourth. All
quantities are left-justified in each window. If the length of X$ is 10 or
greater, as many windows as necessary are used. If there are not enough
windows on the printed line, the computer continues printing on the next
and subsequent lines until all the quantities are printed.

The list of items following the keyword PRINT is referred to as the
output list. The elements of the list are separated by commas and are
referred to as output-list items, or list items for brevity.

Each list item can be a variable name, string
constant or expression. If we execute the statement

• constant, numeric

64 Chapter 8

PRINT (X+2)•6.3

the expression (X + 2)*6.3 is evaluated and the result is printed.

8.2 Input using the Keyboard

The INPUT keyword has been used in many examples. When the
statement

INPUT X

is executed, a ''?'' appears on the screen, and the user is expected to
type some valid numeric constant. If the user types an invalid quantity, such
as CAT, the following error message is displayed

?REDO FROM START

You must then enter a valid numeric quantity to continue.

It is possible to input a list of quantities as follows:

INPUT X , Y$, T

Here the terminal prints the ''?'' and the user normally is expected to
type three quantities, separated by commas. A typical response might be

26.49, CAT, 16

in which case X will be assigned the value 26.49, Y$ the string ~alue
''CAT'', and T the value 16. It is important to observe that the input
quantities must match the input list items ~n both number. and type.
String constants do not require the quotes on input; howe.ver, if the string
to be assigned to Y$ contains a comma or a space, then it must be typed
surrounded by quotes. Thus the response

26. 49, ''JONES, HENRY'' , 16

will assign the string value JONES,HENRY to the variable Y$.

It is not absolutely necessary to type all three items of data _on one line,
separated by commas. They could be placed on three separate lines, or two
on one line and one on the other. However, when more than one data

Simple Input, Output and Files 65

item appears on a line, the items on that line must be separated by commas.
The computer will display a double question mark?? until sufficient data
has been entered.

8.3 Files in BASIC

It is frequently desirable to store data on an external device such as a
cassette. For example, a file could be created which contains the names of all
the students in a class. This file would contain several records, one for
each student. The file is given a name such as STUDENT.

The files are stored on cassette in a form similar to that used to place
music on a tape for use with a tape recorder. Magnetic impulses are written
which are coded to represent the various characters.

0110,STEVENS
0297,WAGNER
0317,RANCOURT
0364,WAGNER
0617,HAROLD
0998,WEICKLER
1203,WILLS
1232,ROTH
1234,GEORGE
1265,MAJOR
1568,POLLOCK
1587,PEARSON
1617,REITER
2028,SCHULTZ
2036,BROOKS
2039,ELLIS
2049,BECKER
2055,ASSLEY
2087,STECKLEY
9999,ZZZZ

,M,17,065,063,085,056,076
,M,15,065,086,085,084,074
,F,16,075,072,070,068,065
,M,16,070,058,090,064,083
,M,17,085,080,080,075,074
,M,16,072,074,075,075,075
,F,16,073,072,072,073,084
,M,17,072,070,070,074,072
,M,18,070,070,071,058,069
,M,16,065,065,068,068,069
,M,17,089,088,085,092,063
,F,15,055,050,049,061,060
,M,17,100,068,069,075,089
,M,18,069,068,075,074,053
,M,18,065,068,069,070,065
,M,17,085,085,085,085,085
,F,15,065,065,065,068,069
,M,16,065,063,060,063,065
,M,15,056,053,085,084,072
,M,99,000,000,000,000,000

Figure 8.1

Consider Figure 8.1 which is a listing of a file called STUDENT. This
file contains 20 records. Each record contains several fields of information
about a student. These fields are student-number, surname, sex, age, and
the marks obtained in 5 courses, namely Algebra, Geometry, English,

--
66

Chapter 8

Physics, and Chemistry. Note that each field quantity terminates with a
comma (except for the last one). This comma is used as a delimiter to

separate the fields.

Another thing to observe is that the 20th record is a sentinel record
which is used to define the end of the file. This record contains a special
student number, namely 9999. The entire record is a ''dummy'' which exists
only to indicate that no further records follow in the file. It will not be
processed normally, but will be used as a signal to terminate processing

when the file is being read.

8.4 Reading a File

Example 8.1 is a program which reads the STUDENT file stored on

cassette and prints out a list of the students' names.

10 REM EXAMPLE 8.1
15 :
20 OPEN 3, 1, 0, ''STUDENT''
25 :
30 LOOP
35 INPUT#3,NO,N$,S$,A,Ml,M2,M3,M4,M5
40 IF N0=9999 THEN QUIT
45 PRINT N$
50 ENDLOOP
55 :
60 CLOSE 3
65 :
70 STOP

In statement 20 the STUDENT file is OPENed for input. This causes
the computer to search for the beginning of the file named STUDENT,
so that it can be read later using INPUT statements. Files cannot be
used unless they first are opened, so all programs will contain one OPEN

statement for each file to be used. In the statement

OPEN 3, 1, 0, ''STUDENT''

the 3 is called a file number (or unit number) and is used as an abbreviated
name for the file throughout the rest of the program. It must always be
used, and can be any number ranging from 1 to 255 inclusive. It is not

Simple Input, Output and Files 67

~ermanently .asso~iated with the file, and can be a different number each
~im.e th~ f1.le 1s used. The 1 is the device number (cassette) and the o
indicates 1t will be used for input.

Li~e 35 contains an INPUT# statement similar to the INPUT statement
~se~ in oth~r exar:iples. The difference is that the file number is used to
1nd1cate that input is to be obtained from the STUDENT file instead
of the keyboard. Also a comma must follow this number.

Line 40 is used t? cause the loop to be terminated. Each time through
th~ loop one record is read from the STUDENT file. This record is always
printed unless the st~dent number is 9999, which indicates the sentinel
recor~. Thus the loop is repeated 20 times, with 20 records read sequentially·
~he first 19 of these are used to print the students' names. This proces~
is ref erred to as sequential reading of the file.

Line 60 causes the STUDENT file to be CLOSEd It is alw I f. · ays necessary
to c ose a ile when the program has finished processing it.

Notes:

(1)

(2)

(3)

The sequence of items in the OPEN statement
indicated. Thus, it is not correct to write

OPEN 3, ''STUDENT'', 1, 0

must be as

The INPUT statement normally contains exactly the number and
type of list items to match the fields in each record in the file.
However the statement

INPUT#3, NUMBER,NAME$

wo~ld cause a record in the STUDENT file to be read, with values
ass~gned to NUMBER and NAME$. The rest of the fields would
be ignored.

~t is. not possible to OPEN a file with the same unit number when
it is al~eady opened. This is one of the reasons the CLOSE
statement ~s neede?. If the CLOSE is omitted in error, the
program will function but the file will remain open. If you have
forgotten to. close a file, you can do so using an immediate
command. Simply type the CLOSE without a statement number.

68 Chapter 8

8.5 Creating a File

The reader may be wondering what process was used to create the
STUDENT file in the beginning. Example 8.2 is a program which will
create a file named TELEPHON which contains names and telephone
numbers of as many persons as you wish.

100 REM EXAMPLE 8.2
105 :
130 OPEN 6,1,2,''TELEPHON''
135 :
150 LOOP
155 PRINT ''ENTER NAME AND PHONE''
160 INPUT NAME$,NUMBER$
1 70 IF NAME$= ''ZZZZ'' THEN QUIT
180 PRINT#6, NAME$; '' , '' ; NUMBER$
190 ENDLOOP
200 PRINT#6, ''ZZZZ, 999- 9999''
220 CLOSE 6
230 STOP

The most important observation to make is that the name and telephone
number are written on the file separated by a comma. This is accomplished
by including the string

'' '' '

in the output list between NAME$ and NUMBER$. This must be done to
provide the field separator in the output file.

NOTES: 1. The 2 in the OPEN statement causes the file named
TELEPHON to be initialized for output.

2. The PRINT# statement is used to write records to the file. T~e
file number 6 is used to indicate writing to the TELEPHON file
instead of the screen.

3. The loop will
read. Note that
telephone number
satisfied.

terminate when the sentinel name ZZZZ is
you must also have typed in a sentinel

as well; otherwise the input list will not be

Simple Input, Output and Files
69

4. After the loop is terminated, a sentinel record is written in
line 200. This is done so that end-of-file can be recognized during
later use of the file.

8.6 Summary

This chapter has been included to introduce the reader to the
funda~ental. conce~ts of input-output using cassette files. The subject of file
processing _is a fairly large one, and complete details are beyond the
scope_ of t~1s text. However, some simple disk and printer operations are
described !~ . the A.ppendices. For a complete description of the input
output f ac1l1t1es which are available, the reader is ref erred to the
Reference Manuals which are supplied with specific devices.

8. 7 Exercises

8.1 The file called STUDENT must be created before it can be used
The object of this exercise is to write a program which prompts th~
user for the appropriate data and creates the file shown in Figure
8.1. The program can be written to contain a loop as follows:

8.2

8.3

LOOP
INPUT X$

IF X$ = ''QUIT'' THEN QUIT
PRINT#2, X$

END LOOP

Each time thr~ugh ~he loop a single record is entered as a string
whose value 1s assigned to X$. Be sure to include this string in
quotes as there are commas in the record. The value of X$ is
then w~itten onto the file whose unit number is 2, thus creating the
record in the proper format.

Write the. rest of the program, run it to create the file, and verify
that the f 1le contents are correct by displaying the entire file.

Write a program which reads the file STUDENT and displays the
names of the male students.

Write a program which reads the file called STUDENT and
calculates the class average for each of the five courses.

70

Chapter 9

Selection

In most programs the instructions to be executed will vary depending on
the data being processed. For example in Chapter 3 a program was
introduced which converted Celsius to Fahrenheit, or vice versa, depending
on the value of a code which is typed. This selection is accomplished using a
set of BASIC statements, namely IF, ELSE, ENDIF and ELSEIF. This
chapter will discuss these statements and their application.

9.1 Termination of Loops

Virtually every program contains one or more loops. Every loop must be
terminated, and all examples to this point have accomplished this using a
special IF statement. For example, the statement

IF NAME$ = ''ZZZZ'' THEN QUIT

is used to terminate the loop in Example 8.2. This IF statement is referred
to as the IF-THEN-QUIT combination as the keywords IF, THEN and
QUIT are necessary. It is used in this text only for terminating loops and
always has the format

IF relational expression THEN QUIT

If the relational expression is ''true'' the loop is terminated; if it is false
the next instruction is executed and the loop continues.

The IF-THEN-QUIT combination
mechanism. This chapter discusses
which is more generally applicable.

is therefore
another type

a special-purpose
of IF combination

.
•
I

I
!

I
' I

72

9.2 The IF-ENDIF Combination

Consider the program illustrated in Example 9 .1.

100 REM EXAMPLE 9.1
105 :
110 OPEN 8, 1, 0, ''STUDENT''
115 :
120 FSUM=O
125 FEMS=O
130 :
135 LOOP
140 INPUT#8,NO,N$,S$,A,Ml
145 IF N0=9999 THEN QUIT
150 IF S$= ''F''
155 FEMS=FEMS+l
160 FSUM=FSUM+Ml
165 ENDIF
170 PRINT NO,N$,S$,Ml
175 ENDLOOP
180 :
185 FAVE=FSUM/FEMS
190 :
195 PRINT ''FEMALE AVERAGE IS '' ;FAVE
200 CLOSE 8
205 :
210 STOP

Chapter 9

The IF used on line 150 is fallowed by the relational expression S$
= ''F'' . If this expression is "true'' the block of statements between the IF
and ENDIF are executed, namely statements 155 and 160. If the
relational expression yields a value which is false, this block of two

statements is not executed.

The effect in Example 9.1 is to calculate the aggregate algebra mark .
for females only, as well as the total number of females. When the loop has
terminated the average algebra mark for females is computed and printed.
The number, name, sex and algebra mark of every student is printed, as
statement 170 is not in the range of the IF-ENDIF block.

To summarize, the IF and ENDIF statements are meant to work together
to define a group or block of statements which may or may not be executed,

Selection 73

depending on the value of the relational express1·0 · d · . n associate with the IF
statement. The statements 1n the block are somet · f d
of the IF-ENDIF combination. imes re erre to as the range

NOTE: Only the first five fields in each record are read . 1·
Th h

. 1n 1ne 140
e ot ers are automatically skipped as th . . .

the list of the INPUT ' ey are not included 1n
statement.

9.3 The IF-ELSE-ENDIF Combination

110 REM EXAMPLE 9 . 2
115 :
120 OPEN 8, 1,0, ''STUDENT''
125 :
130 FSUM=O
135 MSUM=O
140 FEMS=O
145 MALES=O
148 :
150 LOOP
160 INPUT#8,NO,N$,S$,A,Ml
170 IF N0=9999 THEN QUIT
180 IF S$= ''F''
190 FEMS=FEMS+l
200 FSUM=FSUM+Ml
210 ELSE
2 12 MALES=MALES+l
21 4 MSUM=MSUM+Ml
216 ENDIF ,
220 PRINT NO,N$,S$,Ml
230 ENDLOOP
235 :
240 FAVE=FSUM/FEMS
245 MAVE=MSUM/MALES
247 :

250 PRINT ''FEMALE AVERAGE IS ''; FAVE
255 PRINT ''MALE AVERAGE IS '' ;MAVE
257 :
260 CLOSE 8
265 . •

270 STOP

'

I
i
i

'

.
' ' •
l

' • •
i
•
!
•
;

'
.J

74 Chapter 9

Example 9.2 is a slight variation of Example 9.1. Here the algebra
average is calculated for males as well as females. This is accomplished
by incorporating the ELSE statement within the range of the IF-ENDIF.
This separates the range of statements into two blocks or sub-ranges,
namely the statements between the IF and the ELSE, and the ones
between the ELSE and the ENDIF. The former block is referred to as the
true range and the latter as the false range. When the relational
expression (which must always follow the IF keyword) is true, the
statements in the true range are executed; if it is false those in the false
range are ~xecuted. Thus the computer is able to select between two
choices of action, depending on the current value of S$.

9.4 The IF-ELSEIF-ELSE-ENDIF Combination

Suppose it is required to count the number of students in the various
age categories, namely ages 15, 16, 17 and 18. Example 9.3 is a program
which accomplishes this using another BASIC statement, namely ELSEIF.

Selection

110 REM EXAMPLE 9.3
115 :
120 OPEN 8,1,0,"STUDENT''
125 :
130 N5=0
140 N6=·o
150 N7=0
160 N8=0
165 :
170 LOOP
180 INPUT#8,NO,N$,S$,A
190 IF N0=9999 THEN QUIT
200 IF A=l5
210 N5=N5+ 1
220 ELSEIF A=l6
230 N6=N6+1
240 ELSEIF A=l7
250 N7=N7+1
260 ELSEIF A=l8
270 N8=N8+1
280 ELSE

•

290 PRINT ''BAD RECORD''
300 ENDIF
310 PRINT NO,N$,S$,A
320 ENDLOOP
322 :
324 PRINT '' ''
325 PRINT ''TOT15'', ''TOT16'', ''TOTI 7'', ''TOT18''
330 PRINT N5,N6,N7,N8
335 :
340 CLOSE 8
345 :
350 STOP

75

In this example, the range of the IF (the statements between the
IF ~nd ENDIF) is separated into five sub-ranges. The first sub-range,
contained between the IF and the first ELSEIF, is executed only if
A = 15. !he next sub-range, contained between the first and second
ELS.EIFs, IS executed if A = 16. This pattern follows until all the ages are
considered, providing one block of code for each age. The last block of
code, ~etween the ELSE and ENDIF will be executed only if none of the
other~ IS selected. This prints an error message because the file should
contain only ages 15 to I 8 inclusive.

76 Chapter 9

This combination of statements is sometimes referred to as a case
construct because only one of several ''cases'' is selected for processing.

9.5 General Rules Concerning IF-Statements

(1) Every IF statement contains a
the keyword IF.

relational expression fallowing

(2)

(3)

(4)

Every IF-ENDIF combination ends with the ENDIF statement. All
statements between the IF and ENDIF are referred to as the range
of the IF, regardless of which of the three IF-ENDIF
combinations is being considered.

Each of the statements in the range of the IF can be any
statement. This means that the programmer can use other IF
ENDIF combinations within the range of an IF. These are referred
to as nested IF's, and BASIC allows complete flexibility to nest
IF's of all combinations, to any depth of complexity. It should be
pointed out that such nesting makes the program difficult to read
and it is generally advisable to avoid this type of
programming if at all possible.

The indentation of statements is used only to make the program
more readable.

(5) When an IF-ENDIF combination has selected and executed the
appropriate block of code, the processor always proceeds to the ,
statement following the ENDIF statement associated with that IF
combination.

(6) The IF-THEN-QUIT combination discussed at the beginning of the
chapter, and used extensively to terminate loops, can also be used
to terminate IF-ENDIF combinations. For example, if this
statement is executed within any of the sub-ranges or blocks within .
the range of any IF-ENDIF combination, and if its relation
evaluates as ''true'', the next statement to be executed will be the
one immediately following the ENDIF statement associated
with that combination. In other words the processing will exit from
the range of the IF, just as it exited from the range of the LOOP 1

in the case of termination of loops.

Selection 77

9.6 Exercises

9.1 a) Using the file called STUDENT as input, list the names of all
students who have a mark of 80 or more in at least one course.

9.2

9.3

9.4

b) Using the file called STUDENT as input, list the names of all
students who have a mark of 80 or more in at least two courses.

Using the file called STUDENT as input, list the name and marks
for each of the nineteen students. Each mark is to have an asterisk
(*) beside it, if the mark exceeds 79.

Using the file called STUDENT as input, list the name and a letter
grade for each of the nineteen students. The grade is A if the
average mark is 80 or above. The grade is B if the average mark is
between 70 and 79 inclusive; otherwise the grade is z.

Write a program which reads a positive integer number from the
keyb.oard. This ~u.mber is to be printed using 12 positions, filling
all high-order pos1t1ons with asterisks (*) as follows:

If the input is 123 print
If the input is 12345 print

etc.

*********123
*******12345

78

Chapter 10

Repetition

In virtually every BASIC program it is necessary to repeat blocks or
groups of statements. This has been illustrated in many examples using the
LOOP-ENDLOOP con1bination of statements. This chapter summarizes
some of the rules for loops, and introduces several other looping
statements in BASIC.

10.1 Simple Loops

Suppose it is required to calculate the sum of the digits in
integer. For example, if the integer is 27 49, the sum of the digits is

2 + 7 + 4 + 9 = 22

• a given

This type of computation is often useful for calculating a check digit to be
appended to a part number, student number, etc.

80

10 REM EXAMPLE 10.1
15 :
20 INPUT X$
25 :
30 L = LEN(X$)
35 I = 1
45 SUM = 0

50 :
55 LOOP
60 IF I>L THEN QUIT
70 SUM= SUM+ VAL(MID$(X$,I,l))
75 I = I + 1
80 ENDLOOP
85 :
90 PRINT SUM

95 :
99 STOP

Chapter 10 ._

Example I 0.1 is a program which reads a string of ~igits fr?m t~e
keyboard and assigns it to a string variable X$. <'V! e ~se a string var1ab.le in
order to be able to use string functions to s1mpl1fy the comput~t1ons.)
The length of the string is determined, and a loop is repeat~d L times to
add up the digits, one digit for each time through the loop. Finally the sum
is printed.

The group of statements between the LOOP and ENDLOOP
statements is said to be a block which is the range of the loop. All sta_teme?t~
contained in this block are said to be ''within'' the loop, or ''contained in
the loop.

Provision for the loop to be terminated is accomplished_ with the IF
THEN-QUIT combination. Note, that since this statement is pla~ed at the
beginning of the range, the other statements in the loop will not be
executed if the null string is entered at the keyboard.

The loop is initialized by reading in the number, determining its
length and setting I and SUM to their initial values.

Notes:

(1) Normally much of the data to be used in a loop must be initialized
before entering the loop.

Repetition 81

(2) The statements between any LOOP and ENDLOOP
statements will be repeated endlessly, unless some mechanism
such as the IF-THEN-QUIT causes termination. This mechanism
can occur anywhere within the simple loop, to recognize the condition
at the appropriate time.

(3) All statements in the range of the loop are indented for readability.

10.2 Nested Loops

10 REM EXAMPLE 10.2
12 :
15 LOOP
20 INPUT X$
25 IF X$ = ''QUIT'' THEN QUIT
30 L = LEN(X$)
35 I = 1
45 SUM = 0
55 LOOP
60 IF I>L THEN QUIT

70 SUM= SUM+ VAL(MID$(X$,I,l))
75 I = I + I
80 ENDLOOP
90 PRINT SUM
92 ENDLOOP
95 :
99 STOP

Example l 0. 2 is similar to Example l 0.1 except that several numbers
can be read one at a.time, with the sum of the digits computed and printed.
The program is terminated when the string "QUIT" is entered at the key
board.

The reader will notice that this example contains a loop within a loop.
The inside loop is said to be a nested loop, because it is contained in the
range of the outside loop. This inside loop has its own range, which is a sub
range of the range of the outside loop. The statements in the inner loop
are further indented to make it easier to read the program.

The range of the inside loop is a separate block of statements
which is part of the outside loop but is considered to be at a lower level than

82 Chapter 10

the other statements in the outside loop. When the inside loop terminates,
the rest of the statements in the outside loop continue to function until
this outside loop also terminates.

Another way of stating the previous paragraph
statement

•
IS to say that the

IF I > L THEN QUIT

makes provision for only the inside loop to terminate. After it terminates, the
statement

PRINT SUM

is executed and then the
finally terminated when
statement

outside loop
the string

is repeated.
QUIT has

This
been

outside loop
entered, and

•
IS

the

IF X$ = ''QUIT'' THEN QUIT

is executed.

Notes:

(I)

(2)

(3)

(4)

Each loop usually has its own mechanism for termination.

Each loop
example,
statements.

usually has some initialization
the outside loop has no

statements. In this
explicit initialization

The loops can be nested to any desired level. However, such
nesting can make the program more difficult to read and debug.
When several levels of looping are required it is usually
advisable to use Procedures (Chapter 13) to repackage the
program to improve readability.

Because of the indentation, it is clear which ENDLOOP statement
belongs to each of the LOOP statements; however the rule is as
follows:

a) Find all LOOP-ENDLOOP combinations which have no
intervening LOOP or ENDLOOP statements in their
range. These particular combinations are said to be correctly

Repetition 83

paired, or more briefly, paired.

b) Find all LOOP-ENDLOOP combinations which have no
intervening unpaired LOOP or ENDLOOP statements in
their range. These are then paired.

c) Step b) is repeated until all LOOP-ENDLOOP
combinations have been paired.

d) If there are any LOOP or ENDLOOP statements
remaining which have not been paired, the loops are
incorrectly nested.

10.3 Loops with the WHILE-ENDLOOP Combination

10 REM EXAMPLE 10.3
15 :
20 INPUT X$
25 :
30 L = LEN(X$)
35 I = 1
45 SUM = 0
47 :
55 WHILE I <= L
70 SUM= SUM+ VAL(MID$(X$,I,l))
75 I = I + 1
80 ENDLOOP
85 :

90 PRINT SUM
95 :
99 STOP

Example 10.3 is identical to Example 10.1 except that a new statement
has been used, namely

WHILE I <= L

The WHILE statement can only be used to start a loop, and is an
alternative to the LOOP statement. The keyword WHILE is always followed

Y a relational expression. This expression is always evalulated at the

I
i
' I

84 Chapter 10

beginning of the loop, and the statements in the range of the loop are

executed only if its value is ''true''.

The WHILE statement provides no additional function for the
programmer. It is never necessary, but is used to make the program more
readable in some cases. It functions in precisely the same manner as the
foil owing two statements used in Example 10.1.

LOOP
IF I > L THEN QUIT

10.4 Loops with the LOOP-UNTIL Combination

10 REM EXAMPLE 10.4
15 :
20 INPUT X$
25 :
30 L = LEN(X$)
35 I = 1
45 SUM = 0
47 :
55 LOOP
60 IF I>L THEN QUIT
70 SUM= SUM+ VAL(MID$(X$,I,l))
75 I = I + 1
80 UNTIL I > 5
85 :
90 PRINT SUM
95 :
99 STOP

Example 10.4 is identical to Example 10.1 except for an extra
provision. The sum consists only of the first 5 digits in the n~~ber. If the
number has fewer than 5 digits, the sum includes all of the d1g1ts.

Repetition 85

Here a new statement has been introduced, namely

UNTIL I > 5

.

The UNTIL statement can only be used to end a loop, and is an
alternative· to the ENDLOOP statement. The keyword is always followed
by a relational expression. This expression is always evalulated at the end of
the loop, and the loop is terminated if its value is ''true''.

Just as is the case with the WHILE statement, the UNTIL provides
no additional function for the programmer. It is never necessary, but is used
to make the program more readable under the appropriate circumstances.
It functions in precisely the same manner as if the following two statements
were used in its place.

IF I > 5 THEN QUIT
END LOOP

10.5 Loops with the WHILE-UNTIL Combination

10 REM EXAMPLE 10.5
15 :
20 INPUT X$
25 :

30 L = LEN(X$)
35 I = I
45 SUM = 0
47 :

55 WHILE I <= L
70 SUM= SUM+ VAL(MID$(X$,I,l))
75 I = I + 1
80 UNTIL I > 5
85 :
90 PRINT SUM
95 :
99 STOP

Example 10.5 is another version of Example 10.4 which uses the WHILE
at the beginning and the UNTIL at the end of the loop. Note that the
WHILE relational expression is evaluated before each iteration of the loop;
the UNTIL relational expression is evaluated after each iteration of the loop.

d
11 , I
. I ..
!
•

!
•

•

'

86 Chapter 10

10.6 Loops with the FOR-NEXT Combination

Suppose it is required to calculate the sum of the integers from 1 to 8.
The computation to be performed is

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8

Example 10.6 is an illustration of a program which uses the FOR-NEXT
combination of statements for solving this simple problem.

10 REM EXAMPLE 10.6
15 :
25 SUM = 0
27 :
30 FOR I = 1 TO 8
35 SUM = SUM + I
40 NEXT I
45 :
50 PRINT SUM
55 :
60 STOP

The statements in the loop are contained between the FOR and the
NEXT statements. In this case the range of the loop consists of only one

statement, namely

SUM = SUM + I

The loop is repeated for all integer values beginning with 1, up to and

including 8.

The FOR statement always contains an index-variable, in this case I.
This variable is set to the initial value (in this case 1) and the loop is

executed the first time.

The end of the loop is specified with the NEXT statement. This
keyword is always followed by the index-variable name, in this case I. When
this statement is executed the value of the index-variable I is increased by
one. Then the index is checked to be sure its value is not greater than the
terminal value (in this case 8). If the index value satisfies this test, control
returns to the FOR statement and the loop is executed again.

NOTE: When the FOR loop is completed I has a value of 9.

Repetition
87

Example 10. 7 calculates the sum of the odd · t f .
1

. . in egers rom 1 to 99
inc us1ve. Notice we have introduced the STEP k d ·

Th
. eywor 1n the FOR

statement. is causes the NEXT statement to · I b
than one. increment Y two rather

10 REM EXAMPLE 10.7
15 :
25 SUM = 0
27 :
30 FOR I = I TO 99 STEP 2
35 SUM = SUM + I
40 NEXT I
45 :

50 PRINT SUM
55 :
60 STOP

~xample 10.8 i1lustrates the nested FOR loop. Here a t bl f h
the integers from 1 to N ~ . a e o t e sum of

10 REM EXAMPLE 10.8
15 :

25 FOR J = 5 TO 20
30 SUM = O

35 FOR I = I TO J
40 SUM = SUM + I
45 NEXT I
50 PRINT J,SUM
55 NEXT J
57 :

75 STOP

88

Notes:

(1)

(2)

(3)

(4)

Chapter 10

The FOR statement has the general form

FOR index-variable = A TO B STEP C

A, B, and C are all numeric expressions, and their values can be
any real constants. Thus it is permissible to have a statement such ,.

as

FORK= 63.5 TO 21.5 STEP -.5

which causes K to begin with a value of 63.5, and be reduced by
. 5 each time through the loop, with a terminal value of 21. 5.

The STEP keyword can be used with a negative value. In this
case the value of the index-variable will be decreased when the
NEXT statement is encountered. Looping will terminate
when the value of the index-variable becomes less than the

terminal value.

Statements in a FOR loop are always executed once, even though ·
one might expect otherwise. For example in the statement

FOR I = 6 TO 4 STEP 2

the increment is 2 and therefore positive. When executed for the
first time the index-variable I is assigned the value 6. This already
exceeds the terminal value 4, so you might expect the FOR loop
to terminate immediately; however it is always executed once since
the test is performed when the NEXT statement is encountered.

Any statement can be placed within the range of the FOR loop.

(5) A FOR loop cannot be terminated prematurely using the IF-THEN
QUIT combination.

Repetition
89

10.7 Summary

The o?ly looping mechanism actually required to solve an
problem is the LOOP-ENDLOOP with IF-THEN-QUIT y computing
chapters. The other ·statements introduced . th' h' used in previous

· h · · In is c apter are
enr1c ment prov1d1ng convenience to th an
readability in appropriate circumstances. e programmer, and enhanced

10.8 Exercises

10.1

10.2

10.3

Write a pro~ram which uses the file STUDENT as
each record in approximately the following format:

e.g.

110 STEVENS
65
63
85
56
76
- ..

AVERAGE 69

•
input and prints

w· .rite a program which uses the file STUDENT .
prints the names of the . as input and

ve on y one name.

w·

days in the month and th ~ f name of the month, number of
begins. ' e ay o the week on which the month

• •
'
' .

90

10.4

Chapter l 0

a) Write a program which prints a triangle of asterisks (*) which

is similar to the following:

*
**

The input to the program is the size of _the ~riangle, in .this case 4,
which is the number of rows in the vertical side of the triangle.

b) Write a program
to the foil owing:

*
**

c) Write a program
the fallowing:

* * * *
* * *

* *
*

which produces triangles which are similar

which produces triangles which are similar to

Chapter 11

Relational Expressions

Relational expressions have been introduced informally in earlier
chapters. The purpose of this chapter is to give further examples and
introduce the logical operators AND, OR, and NOT.

11.1 Simple Relational Expressions

· Relational expressions are used in IF,
statements, and have been included
Examples are:

(i) SEX$ - '' F '' -
(ii) NUMBER - 9999 -
(iii) NUMBER < 0
(iv) AGE <> 19
(v) 16 > 14
(vi) ''CAT'' - '' CAT'' -
(vii) ''CAT'' -- ''CAT ''
(viii) ''CAT'' < ''DOG''

ELSEIF, WHILE and UNTIL
in most programs in this book.

Each of these expressions has a value ''true'' or ''fal se ''. In example (i)
the current value assigned to the string variable SEX$ is compared to the
string constant ''F''. If they are identical, the expression has a value of
true, otherwise it is false.

In Example (iii) the expression will be true only if the current value of
NUMBER is negative.

Example (iv) illustrates the use of the symbols < > to mean "not equal
to''. Thus if AGE is not equal to 19, the expression is true.

j

92 Chapter 11

Example (v) is a special case because no variables are involved. Since
16 is greater than 14 the expression is always true.

Example (vi) illustrates an important point. The two string constants
''CAT'' and '' CAT'' are not equal because the latter has 4 characters
beginning with a blank. It is always good policy when comparing strings
to have them the same size, with leading blank spaces removed. It is also
true that ''CAT'' and ''CAT " (example vii) are not equal, even though the
blank is on the right. For two strings to be equal they must be of the same
length. In Example (viii) the expression is true because strings can be
compared, and the usual ordering between letters of the alphabet applies
here.

The reader may be wondering why examples (i) and (ii) are not
assignment statements. In fact , they could be assignment statements, but for
purposes of this discussion they are assumed to be the relational expression in
an IF, ENDIF, WHILE, or UNTIL statement. The computer detects that
they are relational expressions by examining the context in which they are
used.

11.2 Relational Operators

As has been mentioned in Chapter l, there are six relational
operators as follows:

= equals
> greater than
< less than
> = greater than or equal
< = less than or equal
< > not equal

These operators are binary, which means that there are always two
operands, one on each side of the operator. Thus in example (iv) of the
previous section, AGE and 19 are operands and < > is the operator. The
two operands are always of the same kind, either string expressions or
numeric expressions. It would make no sense to try to compare a string of
characters to a number. When the operands are expressions they are
evaluated before the relational expression is computed. Thus with the
relational expression

AGE .. 14 >= TEST+l

Relational Expressions
93

the two numeric expressions AGE-14 and TEST+ I a d . . . re compute and then
the relational operator > = 1s applied to the two valu · ld' . es, }'le 1ng a result of
either true or false.

ll.3 Compound Relational Expressions

Relational expressions can be combined using th I · I e og1ca operators

e o owing examples: ·

(i) (SEX$ = ''F'') AND (AGE > 17)

(ii) (SEX$ = ''F'') AND ((AGE :: 17) OR (AGE< 10))

(iii) NOT (SEX$ = ''F'')

The compound relation in example (i) will be true
and AGE > I 7 are both true.

only if SEX$ = '1 F'1

In example (ii) the sub-expression

(AGE = 17) OR (AGE< 10)

is evaluated first, because this expression is enclos~d in

e. is va ue is then used w. th th I
SEX$ = ''F'' t d 11 11 •

1 e resu t of sub-expression
o pro uce true only if both values are true.

In exa 1 c···) h
If S ~p ,~ ,,11.1 t e NOT is used to reverse the value of SEX$ = ''F''.

EX$ - F is true, then N OT(SEX = ''F'') 1·s fal d . -' se, an vice versa.

11.4 Logical Operators

(1)

The three logical operators are defined as follows:

AND· I~ a binary operator whose two operands are relational
~xpresshions .. If ~h: two expressions are true, the resulting operation is
rue, ot erw1se it 1s false.

I
!

L

94 Chapter 11

(2) OR is a binary operator whose two operands are relational
expressions. If either of the two expressions is true the result of the
operation is true, otherwise it is false.

(3) NOT is a unary operator whose operand is a relational
expression. If the value of the operand is true, the result of the
operation is false; if the value of the operand is false, the result is

true.

The operators have the following priority with respect to each other:

NOT
AND and OR

For example, a NOT operation takes precedence over an AND or OR,
provided there are no parentheses. Of course, the usual conventions
with respect to parentheses are used, with the expression in the inner
most parentheses being evaluated first.

Three levels of operators have been described in this text. In order of

decreasing priority they are

(i) arithmetic operators or string operators
(ii) relational opera tors
(iii) logical opera tors

Therefore in an example such as

NOT X + 3 > 6

the numeric expression X + 3 is calculated. Then the relational expression
X + 3 > 6 is evaluated. Finally the result is operated ·upon with the logical
operator NOT. Incidentally the whole expression should have been
written with parentheses for readability, as follows

NOT ((X + 3) > 6)

11.5 Summary

Relational expressions play an indispensable role in most computer
programs. The logical operators AND, OR, and NOT provide considerable
flexibility in the construction of compound relational expressions. However,

Relational Expressions
95

the reader should be warned that Jarge compl I · . . ' ex re at1on ·

be used with discretion. Clarity is often intro~u~~~ t. b ere~ore they should
even when these are n_ot strictly required beca f h y _us~ng parentheses,

use o t e pr1or1ty rules.

11.6 Exercises

11. l

11.2

11.3

11.4

Using the file STUDENT as input, write a
the . names of all the male students who
received a mark of less than 80 in algebra.

program which prints
are age 1 7 and have

Using the file STUDENT as input w .1
the names of the male students wh~ ar;1 n:t a program which prints
average mark exceeding 79. age 17, and who have an

Using the file STUDE · .

Using the file STU o · .

under. ' an w o are sixteen years of age and

96

Chapter 12

Tables

Many applications require the use of tables or matrices (also called
arrays or vectors) to store data in a convenient form. This chapter introduces
several features which make this type of processing convenient to program.

The various features are illustrated with a series of examples to
demonstrate the concepts.

12.1 Example 12.1

Suppose it is required to read a list of words into the computer and
print the entire list in reverse order of input. All of the words would have to
be stored in a table in the computer, because the first output line cannot
be printed until the last word has been read.

-,

98 Chapter 12

A table of variables can be formed using the DIM statement, as in

Example 12.1.

10 REM EXAMPLE 12.1
15 :
40 DIM NAME$(4)
45 :
50 PRINT ''TYPE FIRST NAME''
60 INPUT NAME$(1)
62 PRINT ''TYPE SECOND NAME''
64 INPUT NAME$(2)
66 PRINT ''TYPE THIRD NAME''
68 INPUT NAME$(3)
70 PRINT ''TYPE FOURTH NAME''
72 INPUT NAME$(4)
74 PRINT ''NAMES IN REVERSE ARE''
76 PRINT NAME$(4)
78 PRINT NAME$(3)
80 PRINT NAME$(2)
82 PRINT NAME$(1)
85 :
90 STOP

Statement 40 uses the DIM keyword to declare a table which has five
entries or elements. These elements are variables which can be individually
referenced as NAME$(0), NAME$(1), NAME$(2), NAME$(3) AND
NAME$(4). The integer contained in parentheses is often called a subscript.
It is also referred to as the index of the table entry.

Example 12.1 is designed to read four names and store them in turn in
four elements of the table namely NAME$(1), NAME$(2), NAME$(3) and
NAME$(4). Then the elements are selected in reverse order, and printed.

Tables

Notes:

(I)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

99

The table contains five elements which have indices O, I, 2, 3, and
4. The range of indices is said to be 0 to 4 inclusive. Example 12.1
does not use .the entry with index O.

The table defined in the DIM statement
elements as required.

can have as many

If several tables are needed they can be declared in separate DIM
statements; alternatively one DIM statement can be used as follows:

DIM NAME$(4), MARK(5)

A table can have elements which are string variables or numeric
variables, but not both.

The index or subscript is an integer value which must be within the
appropriate range. If the index is a non-integer value the BASIC
system will automatically convert it to an integer using ~ounding.

!he quantities within parentheses in a DIM statement denote the
ind~~ o~ the last entry in the tables. These quantities are always
pos1t1ve integers or numeric variables.

DIM state~ents are usually placed near the beginning of the
program to improve readability. In any case they must appear prior
to the use of one of the table elements being defined.

In constructing the names for tables, we obey the same rules as
for regular variables.

.,
,.
'·
' ,.
" ~:

!.
' ., ,.
I·
I

" !
'
i .
i
!
' .
I
I
' ; .
:·
j·
, I
. I

• . '
. i

' : ..

r

I

' i
'

.
, I
I .

I
.

I ..
'. '.
! . . .
' !
!
!
;

' '
'
'

100 Chapter 12

12.2 Example 12.2

Example 12.1 is obviously a very cumbersome way of writing the
program, especially if a large table were involved. Exa_mple 12.2 is an
improved version which takes fewer statements to write, and produces
similar output.

1 0 REM EXAMPL.E 12 . 2
15 :
20 DIM NAME$(4)
25 :
30 FOR I = 1 TO 4
40 PRINT ''NAME PLEASE''
50 INPUT NAME$(1)
60 NEXT I
65 :
70 PRINT ''NAMES IN REVERSE ARE''
75 :
80 FOR I = 4 TO 1 STEP -1
85 PRINT NAME$(I)
90 NEXT I
95 :
99 STOP

In this example the index of the table NA ME$ is a varia blc I w.hi~h is
assigned appropriate values as the loops are executed. In fact, this index
can be any numeric expression.

Tables

12.3 Example 12.3

100 REM EXAMPLE 12.3
105 :

.

130 OPEN 6, I, 0, ''STUDENT''
135 :·
140 DIM MK(5)
145 :
150 LOOP

101

160 INPUT#6,NO,N$,S$,A,MK(l),MK(2),MK(3),MK(4),MK(5)
170 IF N0=9999 THEN QUIT
180 SUM=O
190 FOR I = 1 TO 5
200 SUM = SUM + l\1K(I)
210 NEXT I
220 AVE= SUM/ 5
230 PRINT NO;N$;AVE
240 ENDLOOP
245 :
250 CLOSE 6
255 :
260 STOP

In this example all records in the STUDENT file are read in turn. For
~ach record the 5 marks are read into a table called MARK, and the average
ts computed; then the student's number, name, and average is printed.

102

The output appears on the screen as follows:

110 STEVENS 69
297 WAGNER 78.8
317 RANCOURT 70
364 WAGNER 73
617 HAROLD 78.8
998 WEICKLER 74.2
1203 WILLS 74.8
1232 ROTH 71.6
1234 GEORGE 67.6
1265 MAJOR 67
1568 POLLOCK 85.2
1587 PEARSON 55
1617 REITER 80.2
2028 SCHULTZ 67.8
2036 BROOKS 67.4
2039 ELLIS 85
2049 BECKER 66.4
2055 ASSLEY 63.2
2087 STECKLEY 70

Chapter 12 Tables

12.4 Example 12.4

100 REM EXAMPLE 12.4
105 :
140 DIM X(IOO)
145 :
150 J = 0
155 :
160 LOOP
170 PRINT ''NUMBER PLEASE''
180 INPUT NUMBER
190 IF NUMBER < 0 THEN QUIT
200 J =· J + I
210 X(J) = NUMBER
220 ENDLOOP
225 :
230 SUM = 0
235 :
240 FOR I = I TO J
250 SUM = SUM + X(I)
260 NEXT I
265 :
270 AVE = SUM/J
275 :
280 PRINT ''THESE ARE ABOVE AVE''
285 :
290 FOR I = I TO J
300 IF X(I) > AVE
310 PRINT X(I)
320 ENDIF
330 NEXT I
335 :
340 STOP

103

In this example a table X of 101 entries is defined. Then up to 100
positive numbers are read from the keyboard and stored in the table. The
average is computed and then all entries whose value exceed this
average are printed. Note that the variable J is used to store the current size
of the table. Even though the table can have up to 101 entries, only J of
them are used when the program is run.

104

12.5 Example 12.5

100 REM EXAMPLE 12.5
110 :
130 OPEN 6, 1, 0, ''STUDENT''
135 :
140 DIM AGESUM(4)
145 :
150 FOR I = 1 TO 4
160 AGESUM(l) = 0
170 NEXT I
175 :
180 LOOP
190 INPUT#6,NO,N$,S$,A
200 IF NO = 9999 THEN QUIT
210 INDEX = A - 14
220 AGESUM(INDEX) = AGESUM(INDEX)+l
230 ENDLOOP
235 :
240 PRINT ''AGE'', ''COUNT''
245 :
250 FOR I = 1 TO 4
260 PRINT 1+14,AGESUM(I)
270 NEXT I
275 :
280 CLOSE 6
285 :
290 STOP

Chapter 12

Suppose it is desired to count the number of students in the
STUDENT file for each of the ages 15, 16, 17, and 18. In Example 12.5
the table AGESUM is defined to accumulate the four totals as the
computation proceeds. Thus AG ESUM(1) will contain a running total for all
students who are age 15; AGESUM(2) will be used for age 16,
AGESUM(3) for age 17 and AGESUM(4) for age 18. In line 210 the
INDEX of the table is computed by subtracting 14 from A. Thus the
ages 15, 16, 1 7, 18 are ''translated'' to index values 1, 2, 3, 4 respectively
so they will be in the proper range.

Tables
105

12.6 Two Dimensional Tables

Sometimes it is usefu.l to have tables which contain rows and columns.
~or example the following table indicates the number of females and males
in each of the four age groups for records in the STUDEN T FILE

AGE FEMALES MALES
15 2 2
16 2 4
17 0 6
18 0 3

This table has four rows and two columns and
Example 12.6 is a program which produces this t~ble.

contains 8 entries.

106

100 REM EXAMPLE 12.6
105 :
130 OPEN 6, 1, 0, ''STUDENT''
135 :
140 DIM COUNT(4,2)
145 :
150 FOR I = 1 TO 4
160 FOR J = 1 TO 2
170 COUNT(I,J) = 0
180 NEXT J
190 NEXT I
195 :
200 LOOP
210 INPUT#6,NO,N$,S$,A
220 IF NO = 9999 THEN QUIT
230 AGE = A - 14
240 IF S$ = ''F"
250 SEX = 1
260 ELSE
270 SEX = 2
280 ENDIF
290 COUNT(AGE,SEX)=COUNT(AGE,SEX)+l
300 ENDLOOP
305 :
310 PRINT ''AGE'', ''FEMALES'', ''MALES''
315 :
320 FOR I = 1 TO 4
330 PRINT 1+14,COUNT(I,l),COUNT(I,2)
340 NEXT I
345 :
350 CLOSE 6
355 :
360 STOP

Chapter 12

The two-dimensional table COUNT is defined in line 140 as follows

140 DIM COUNT(4,2)

. · g two indices, which are Eight entries are referenced in the ~rogra~ us1n d . r 230 and will
11 d AGE and SEX. The AGE index is calculate in tne . 240

ca e . . I h IF block between hnes
have a value between I and 4 1nclus1ve. n t e . d the sex value of
and 280 inclusive the sex value ''F'' is translated to 1 an f 1 2

' · d · th proper range o or · ''M'' to 2, thus calculating the SEX in ex in e

Tables
107

When the table is printed beginning in line 320 the output is produced
as 4 lines, one line for each row. Each row contains three numbers, one
for age and one for each sex.

The table COUNT actually has 15 entries since the first subscript
can take . the values 0 through 4 and the second subscript 0 through 2.
We did not use the value 0 for either subscript in this example.

12. 7 Multi-Dimensional Tables

The BASIC system permits the use of tables with an arbitrary
number of dimensions. While very large dimensions are seldom practical it is
useful to have the facility available if needed. To declare a table of 5
dimensions you could write

DIM TABLE (20, 40, 6, 8, 2)

This will create a table of 21 x 41 x 7 x 9 x 3 = 162729 entries! When
using such large tables remember that the computer is of limited size,
and you could easily exhaust the space available.

12.8 Summary

In many practical programming situations, one or more tables will
be necessary. It is therefore important to learn this facility thoroughly. The
foil owing exercises will provide the necessary practice.

12.9 Exercises

12. l

12.2

Write a program which reads the 19 records in the file
STUDENT and stores them in a table. The program then
determines the student with the highest mark in algebra and prints
that record.

a) Write a program which reads several words from the keyboard
and stores them in a ta hie. The program then chooses the smallest
word in the alphabetic sequence and prints it.

b) Expand on the program so that each of the words is printed
in sequence, thus producing an alphabetic listing of all the words.

108

12.3

12.4

Chapter 12

c) Use the program in b) to enter each of. the characters o~ ~he
key-board as single-character '' word~'' . In this way a ~o~plete 11s~1ng
of all of the available characters will be produced 1n alphabetical
order". This order is known as the collating sequence of the character
set, and may be different for different types of computers.

A cryptogram is a common form of puzzle which presents. a s:ring
of text (message) in a coded form to the reader. The object 1s ~o
decode the message so it makes sense. In a cryptogram each letter 1s
replaced by a different letter of the alphabet. For example the
word CAT might be written as ZTB where C, A and T are
encoded as Z, T and B respectively. This correspondence can be set
up as a table wjthin the computer.

a) Write a program which permits the
characters as an encoding table. Then a
from the keyboard, and the encoded
printed.

user to input the
sentence should be read

sentence subsequently

b) Modify the program so that the encoded sentence
from the keyboard to produce the original sentence.

can be read

Write a program which reads the 19 records in the .file
STUDENT and stores them in a table. The program then pr1~ts
the entries in the table one at a time but in d~scend1ng
sequence by algebra mark, the highest a_Ig.ebra mark first. You
might consider finding the entry conta1n1ng the largest. algebra
mark, printing that entry, replacing it by zero and repea·t1ng the
process for all entries in the table.

Chapter 13

Procedure Subprograms

In previous chapters there are a number of examples of built-in
functions which have been provided as part of the BASIC system. This
chapter explains how the programmer can construct other functional units
called procedure subprograms which may be useful for the partict1lar problem
being considered. Procedures can be used as a means of packaging the
program into meaningful units , making it more readable and easier to
maintain.

13.1 An Introduction to Procedure Structures

The reader is requested to review Example 12.3 which is a program to
read the STUDENT file, calculate the average of the five marks for each of
the 19 students in the file, and print a listing of the student number,
name and average for each student.

Example 13. l is another version of the same program. It introduces
three new keywords, namely CALL, PROC, and ENDPROC, located at
lines 160, 600, and 660 respectively. The two keywords PROC and
ENDPROC define a group of statements which is called a procedure. In the
example, the procedure consists of the 7 statements between lines 600 and
660 inclusive. The name of the procedure is AVERAGE. The procedure
name always follows the keyword PROC, and consists of as many letters or
digits as desired; it must start with a letter, and all letters and digits
are significant. That is, the procedure name CAT is different from the
procedure name CA. In the example, the procedure calculates the
average of the 5 marks, and assigns its value to A VE in line 650.

110

100 REM EXAMPLE 13.l
105 :
110 DIM M(5)
115 :
120 OPEN 6, 1 , 0, ''STUDENT''
125 :
130 LOOP

Chapter 13

14 O INPUT# 6 , NO ;N$, S $, A , M (1) , M (2) , M (3) ' M (4) ' M (5)
150 IF NO = 9999 THEN QUIT
160 CALL AVERAGE
170 PRINT NO,N$,AVE
180 ENDLOOP
185 :
190 CLOSE 6
195 :
200 STOP
205 :
206 :
600 PROC AVERAGE
605 :
610 SUM = 0
620 FOR I = 1 TO 5
630 SUM = SUM + M(I)
640 NEXT I
645 :
650 AVE = SUM I 5
655 :
660 ENDPROC

b t i· 100 and 200 inclusive are referred to as the mainline progra
e ween 1ne ' h h ram is RUN it

and the procedure is called a subprogram. W en _t ~ prog 'he
begins to execute at the first statement in the ma1nl1ne program. When t

statement in line 160 is executed, namely

CALL AVERAGE

· the procedure named the com uter causes the statements in . .

h · bl AVE The mainline program resumes at line value to t e var1a e · . · · d
after execution of the ENDPROC statement. The mainline program is sat
to have called the procedure subprogram.

Procedure Subprograms
I I I

The purpose of this example has been to describe how a procedure
is defined, and explain the mechanics of its operation. Jn the following
sections we explain some of the reasons procedures are used, and
describe their other properties.

13.2 Segmenting a Program Using Procedures

Most real-life programs are quite large, and can contain hundreds or
thousands of statements. The program becomes difficult to read and
understand. One of the most important uses of procedure subprograms
is to package the program into smaller segments, each of which performs a
specific well-defined operation or function.

Example 13.2 is another version of Example 12.4 which demonstrates
this '

1
repackaging'' of a program.

The program has been packaged into four components - the mainline
program and three procedures.

(i)

(ii)

(iii)

(iv)

The procedure READNUMBERS causes several numbers to be read
from the keyboard and stores them in a table called X. The value of
the variable J will indicate the number of entries which have been
read and stored in the table after the procedure has been called.

The procedure CALCA VERAGE uses entries in the table X, and
the value of J, as data and calculates the average of the values in
the table. This is assigned to the variable A VE.

The procedure PRINTNUMBERS uses the entries in the table, the
value of J, and the value of A VE as input and prints a list of the
entries which is above average.

The mainline program is used to call the three procedures, in
the proper sequence. This happens when statements 150, 160 and 170
are executed. For example, when line 150 is executed, the procedure
name READNUMBERS is encountered. This causes the
statements numbered 500 to 590 to be executed. Similarly in line
160 and 170 the procedures CALCAVERAGE and
PRINTNUMBERS are called.

...

112

100 REM EXAMPLE 13.2
105 :
140 DIM X(lOO)
145 :
150 CALL READNUMBERS
160 CALL CALCAVERAGE
170 CALL PRINTNUMBERS
180 STOP
186 :
500 PROC READNUMBERS
505 :
510 J = 0
520 LOOP
530 PRINT ''NUMBER PLEASE''
540 INPUT NUMBER
550 IF NUMBER < 0 THEN QUIT
560 J = J + 1
570 X(J) = NUMBER
580 ENDLOOP
585 :
590 ENDPROC
596 :
800 PROC CALCAVERAGE
805 :
810 SUM = 0
820 FOR I = 1 TO J
830 SUM = SUM + X(I)
840 NEXT I

850 AVE = SUM / J
858 :
860 ENDPROC
865 :
900 PROC PRINTNUMBERS
902 :
905 PRINT ''NUMBERS ABOVE AVG ARE''
910 FOR I = 1 TO J
920 IF X(I) >AVE
930 PRINT X(I)
940 ENDIF
950 NEXT I
955 :
960 ENDPROC

Chapter 13
Procedure Subprograms 113

Notes:

(1)

(2)

The line-number range for each of the three procedures has
been chosen to start with an artificially high statement number.
This is to separate the procedures from one another, and to
permit the programmer to easily increase the number of statements
within the procedure, if the need should arise.

The procedures are separated from each other, and from the
mainline by null statements. This is to cause a separation in the
listing, thus making the program easier to read.

13.3 Some Rules about Procedures

I.

2.

All variables used in the two example programs have a global
definition. For example, assume a variable X has been assigned a
value 6 in the mainline program. When a procedure subprogram
is executed, this variable can be used , and if desired it can be
altered. As well, any variable introduced in the subprogram is
''known'', and therefore can be used by all other subprograms, as well
as the mainline program.

In the examples, procedure subprograms have been called by the
mainline program. In fact, procedure subprograms may also be
called by other procedure subprograms.

3. A procedure always is terminated with an ENDPROC statement.
The QUIT statement is never used to terminate a procedure.

13.4 Summary

Large programs should always be written as a collection of modules,
each of which performs a specific task. The Waterloo BASIC facility to
define procedures provides a useful mechanism for creating these modules.

•

-.
I
!

114 Chapter 13

13.5 Exercises

13 .1

13.2

13.3

a) Please refer to Example 7 .5 in Chapter 7. This program computes
the number of occurrences of the letter A in a given sentence.
Repackage this program so it becomes a procedure. The
procedure should compute the number of occurrences.

b) Generalize the procedure in part a) so that it will determine
the number of occurrences of any given character in any given string.
Do this by assigning values for two variables ((i) number of
occurrences and (ii) the string) prior to calling the procedure.

c) Use the procedure of part b) to write a program which computes
the total number of vowels in a given sentence.

Write a procedure which determines the lowest entry in an array of
string constants. Use this procedure to print a list of the names of
students in the file called STUDENT, in alphabetical sequence.

a) In Exercise 12.4 the program repeatedly finds the entry with the
highest algebra mark. Write this part of the program as a
procedure subprogram which computes the position of the entry in
the table.

b) Modify the procedure in a) so that it will work for any one of the
marks in the entry.

Appendix A

BASIC Language

A program in the BASIC language is composed of statement
lines. Each line consists of a statement number followed by one of the
BASIC statements described in this Appendix. Successive lines in a
BASIC program are arranged in ascending order by statement number.

Note:

(1)

(2)

The statement number can be any positive integer in the range l
through 63999.

A statement line can be up to 80 characters long.

(3) Blank characters in a statement line are ignored by the computer
unless they are part of a string constant. However, they can be
used to improve the readability of the program.

St.atement lines are normally entered directly from the keyboard.
E~te~1ng . a line with the same number as an existing line causes the
~xist1ng _line to be replaced by the new one. Entering a line number by
itself, with no BASIC statement following, causes an existing line with
that number to be deleted.

. Almost all BASIC statements can be entered at the keyboard
without the accompanying line number. This causes the statement entered to
~.e ex:cuted immediately and is sometimes called ''direct mode'' or
immediate mode''. The statement is not saved, however, and if it is to be

116 Appendix A

executed again, it must be re-entered. This is useful at times when
debugging a program or doing simple calculations.

In the following descriptions, a string expression is an expression that
produces a string; a numeric expression is an expression that produces a
number.

A. l Assignment Statement

Syntax:

LET variable = expression
or
variable = expression

,0peration:

The ''expression'' may be a numeric or string expression. It is evaluated
and the result is assigned to ''variable". A numeric expression must be
assigned to a numeric variable and a string expression must be assigned
to a string variable.

Example:

10 LET X = 2+A*3
20 A$ = ''ABC''+B$

A.2 CALL Statement

Syntax:

CALL procedure-name

Operation:

Execution of this statement causes control to transfer to the procedure with
the specified ''procedure-name". This procedure is defined by the PROC
and ENDPROC statements. After the statements in the procedure are
executed, control returns to the statement fallowing the CA.LL statement.

BASIC Language
117

Example:

10 CALL FACTORIAL
.

This statement causes the statements in the procedure FACTORIAL b
executed; then control returns to the statement c-011 · t to e 11 owing s atement 1 O.

A.3 CLOSE Statement

Syntax:

CLOSE logical-file

Operation:

This statement r~leas~s a file pr.eviously opened with the

A.4 CMD Statement

This statement is used t . f .
Commodore co o inte~ ace with external devices attached to the

in e appropriate Commodore manuals.

A.5 CONT Statement

Syntax:

CONT

Operation:

This statement c I b · . . t an on y e issued in ,, direct mode'' It allows th
o resume execution after it h b . e program

execution of a STOP or EN;s een stoppe~ by the Stop-key, or the
after an error d. . . statement. This statement cannot be used
command h b' any ed1t1ng of the program, or after a NEW or CLR

as een use .

118 Appendix A

A.6 DATA Statement

Syntax:

DATA constant, constant, ...

Operation:

The DAT A statement defines data items to be read by READ
statements. The "constant'' can be numeric or string. If string constants are
to contain colons (:), commas (,) or blanks, they must be enclosed in
double-quotes (''). If the string contains a quote mark it must be a single -

quote (').

Example:

200 DATA 3.4, -1E4, ''HELLO'', IT'S, BOY

A. 7 DEF Statement

Syntax:

DEF FNname(argument) = expression

Operation:

When this statement is encountered during execution, a user-created
arithmetic function is defined with the name FNname. The function name
must be composed of the letters FN followed by a valid arithmetic
variable name. Only one argument is allowed which can be used as a
dummy variable in the expression. Other variables from the program may be
used in the function definition. User-defined string functions are not allowed.

Example:

10 DEF FNA(X) = l/X

This statement defines a function FNA(X) which computes the inverse of X.
Thus FNA(4) would have the value .25.

BASIC Language
119

A.8 DIM Statement

Syntax:

DIM variable-name(dimension, ...), ...

Operation:

This statement causes an array with the name ''variable-name'' t

be created containing a number of elements equal to the product of all ·t
0

number of d1mens1ons and a DIM statement can define an arbitrary
nu?1ber of ~rrays: All array elements are initialized to zero or the null
string. ~ach d1mens1on can be specified by either a constant or a variable,
and def1~es a ~ange o~ elements numbered from O to the specified dimension.
If a. variable is specified as a dimension, it must have been defined in a
previously executed statement.

Example:

10 DIM A(40,2),B$(N)

define~ two arrays. Array A contains (40+1)*(2+1) = 123
numeric elements. Array B$ contains N +I string elements.

I.

1:

.
' 1

I
•
i
i
~

' •

120 .. t\.ppendix A

A.9 ELSE Statement

Syntax:

ELSE

Operation:

This statement must be used in conjunction with the IF and ENDIF

I. ·f· the beginning of a block of statements to be executed statements. t spec1 1es . . b
when all previous corresponding IF or ELSE IF cond1t1ons were found to e
false. Execution continues to the corresponding END IF statement.

Example:

100 IF A < 0
110 l=-1
120 PRINT ''A IS NEGATIVE''
130 ELSE
140 I= 1
150 PRINT ''A IS NOT NEGATIVE''

160 ENDIF

In this example, lines 110 through 120 are executed if A is less t~an zero,

h · 1. 140 through 150 are executed In each case, execution then ot erw1se 1nes ·
continues with the statement following line 160.

BASIC Language 121

A.10 ELSEIF Statement

Syntax:

ELSEIF condition

Operation:

This statement must be used in conjunction with the IF and ENDIF
statements. If all previous corresponding IF or .ELSEIF conditions were
found to be false, the specified ''condition'' is evaluated. If it is found to
be true, execution continues with the next statement and proceeds until
a corresponding ELSEIF, ELSE or ENDIF is encountered. Control then
·transfers to the first statement following the corresponding ENDIF. If the
condition is found to be false, control is transferred to the next
corresponding ELSEIF, ELSE or ENDIF.

Example:

100 IF A<O
110 I=-1
120 PRINT "A .IS NEGATIVE''
130 ELSEIF A>O
140 I= 1

150 PRINT "A IS POSITIVE''
160 ELSE
170 l=O

180 PRINT ''A IS ZERO''
190 ENDIF

In this example, lines 110 through 120 are executed if A is negative; lines
140 through 150 are executed if A is positive; otherwise lines 170 through
180 are executed. In each case, execution continues with the statement
following line 190.

;

' ! •
i I

122

A.11 END Statement

Syntax:

END

Operation:

This statement terminates the execution of a
command can be used to resume execution at the
END statement.

Example:

10 END

A.12 ENDIF Statement

Syntax:

END IF

Operation:

Appendix A

program. The CONT
statement fallowing the

This statement specifies the end of a block of statements whose
execution depends on some condition or conditions. The beginning of the .
block and the first condition are specified by the IF statement.

BASIC Language 123

A.13 ENDLOOP Statement

Syntax:

END LOOP

Operation:

This statement specifies the end of a block of statements to be
executed repeatedly. The beginning of the block is specified by the LOOP or
WHILE statements.

Example:

10 l=l
20 WHILE I<3
30 PRINT I, SQR(I)
40 l=I+l
50 END LOOP

In this example statements 30 and 40 are repeated until I becomes greater
than or equal to 3.

A.14 ENDPROC Statement

Syntax:

ENDPROC

Operation:

This statement specifies the end of a procedure or block of statements
exe~ut~d when an appropriate CALL statement is encountered. The
beginning of the block of statements is defined by the PROC statement
When the ENDPROC statement is executed, control transfers to th~
statement following the CALL statement which invoked the procedure.

124
Appendix A

A.15 FOR Statement

Syntax:

FOR Index = Start TO Stop STEP Iner

Operation:

This statement defines the beginning of a block of statements to be
executed repeatedly and the end of this block of statements is specified
by the NEXT statement. "Index" must be a numeric variable and
''Start'', ''Stop'' and ''Iner'' must be numeric expressions. When the FOR
statement is encountered during execution, ''Index'' is set to the value of
''Start''. Then the statements between the FOR and NEXT statements
are executed. When the NEXT statement is encountered, the value of
''Iner'' is added to ''Index''. If ''Iner'' is positive and ''Index'' is greater than
"Stop", or, if "Iner" is negative and "Index" is less than "Stop",
execution continues with the statement following the NEXT statement.
Otherwise, the statements between the FOR and NEXT statements are
repeated. If STEP ''Iner'' is omitted, "Iner'' is assumed to be 1.

Example:

10 FOR I = 0 TO 4 STEP 2
20 PRINT I, I*I
30 NEXT I

This example lists the even numbers from 0 through 4 and their squares.

A.16 GET Statement

Syntax:

GET variable

Operation:

The GET statement causes a single character to be read from the
keyboard. "Variable" can be a numeric or string variable. If no character is
available when this statement is executed, ''variable'' is still given a value. It
is set to '''' if it is a string variable, or 0 if it is a numeric variable.

BASIC Language 125 [

Example:

10 LOOP
20 GET A$
30 IF A$ <> '' ''
40 PRINT A$
50 END IF

•

60 ENDLOOP

This example prints each key, as it is struck, on a separate line.

A.17 GET# Statement

Syntax:

GET#n, Variable

Operation:

This statement causes a single character

statement. "Variable" can be a . e~n ope.ned with the OPEN
available when th1·s statement . numer1cdo~, string variable. If no character is

is execute va · bl '' · -11 ·
It is set to '''' ·r ·

1
· · . ' ria e is st1 given a value

I 1 is a string variable or 0 if it is a numeric variable. .

Example:

10
20
30
40

OPEN 1 ' 1 , 0, ''DATAFILE''
GET#! ,A$
PRINT ASC(A$)
IF A <>"" GOTO 20

This example
screen.

lists characters f h rom t e tape file ''DATAFILE'' on the

126

A.18 GOSUB Statement

Syntax:

GOSUB statement-number

Operation:

Appendix A

transfer to the statement with
continues until a RETURN

Execution of this statement causes contra~ to
the specified ''statement-number". Ex~cut1on.
statement is encountered at which time control returns to the

statement following the GOSUB statement.

Example:

10 I=4
20 GOSUB 100
30 I=8
40 GOSUB 100

50 END
60 :
100 K=l
11 O FOR J = 1 to I
120 K=K*J
130 NEXT J
140 PRINT K

150 RETURN

. f t · I 4 and factorial 8 by This example computes and prints a_c o~1a . 50

A.19 GO TO Statement

Syntax:

GO TO statement-number

Operation:

transfers control to the statement with the specified This statement
b

,,
''statement-num er ·

BASIC Language

Example:

10 l=l
20 PRINT I, I*I
30 l=I+l
40 GOTO 20

127

This example prints numbers and their squares on the screen indefinitely
until terminated by the STOP key.

A.20 IF Statement

Syntax:

IF condition

Operation:

This statement specifies the beginning of a block of statements whose
execution depends on some condition or conditions. The end of the block is
specifies by the END IF statement. When executed, the ''condition'' is
evaluated. If it is found to be true, execution continues with the next
statement, and proceeds until a corresponding ELSEIF, ELSE or ENDIF
is encountered. Control then transfers to the first statement following the
corresponding ENDIF. If the condition is found to be false, control is
transferred to the first corresponding ELSEIF, ELSE or ENDIF.

Example:

10 IF A>O
20 B=SQR(A)
30 PRINT A, B
40 ENDIF

In this example, the A and its square root are printed if A is non-negative.

128 Appendix A

A.21 IF-GO Statement

Syntax:

IF condition GOTO statement-number

IF condition THEN statement-number

Operation:

This statement causes the specified ''condition'' to be evaluated. If it is
true, control is transferred to the specified ''statement-number''.

Otherwise control continues with the next statement.

Example:

10 I=l
20 PRINT I, I•I
30 l=I+l
40 IF I<=lO GOTO 20

This example prints the numbers from

the screen.

A.22 IF-THEN Statement

Syntax:

IF condition THEN statement

Operation:

1 through 10 and their squares on

This statement causes the specified ''condition'' to be evaluated. If it is true,
the specified ''statement'' is executed, otherwise it is not.

Example:

10 INPUT X
30 IF X<O THEN PRINT ''X IS NEGATIVE''

This example reads a number from the keyboard and prints a message if

it is negative.

BASIC Language

A.23 IF-THEN-QUIT Statement

Syntax:

IF condition THEN QUIT

Operation:

129

This statement must occur within th
by LOOP and ENDLOOP WHI~ block of statements defined
UNTIL, WHILE and UNTIL ' IF E and ENDLOOP, LOOP and

th
· · ' or and ENDIF Wh

e spec1f1ed condition is evaluated If ·1 . c . en encountered
t

~ · 1 is 1ound to b t '
rans.1erred to the statement c 11 . e rue, control is

h
1 o owing the block f t

t e statement following the ENDLOOP U o s atements; that is
' NTIL or ENDIF. '

Example:

100 LOOP
110 INPUT
120 IF N$
130 SUM =
140 ENDLOOP

''ENTER NUMBER'' ; N$
= ''STOP'' THEN QUIT
SUM + VAL(N$)

In . this example, lines 110 h
unt I N$ b t rough l 30 will be repeated!

. I ecomes equal to the string ''STOP'' Th Y. e~ecuted
will detect this condition . e statement in line 120
following line 140. and control will be transferred to the statement

J

130

A.24 INPUT Statement

Syntax:

INPUT variable, ...
or
INPUT ''prompt string''; variable, ...

Operation:

Appendix A

These statements cause data to be read from the keyboard, converting ,
the data to numbers or strings as specified by the type of the "variable''s. An
optional prompt may be specified as ''prompt string" followed by a semi
colon (;). The input data items must be separated by commas and
must match the variables in both number and type. If the types don' t
match, the message ''?REDO FROM START'' appears and all the data
items for that request must be re-entered. If too many data items are entered,
the warning ''?EXTRA IGNORED" is typed. If too few data items are
entered, a '' ??'' prompt is issued and additional data must be entered.

Example:

10 INPUT ''ENTER THREE NUMBERS'' ; A, B , C
20 PRINT A*A, B*B, C*C

This example issues a prompt, reads 3 numbers, and prints their
squares. The user must type 3 numeric constants separated by commas.

BASIC Language
1 3 I

A.25 INPUT# Statement

Syntax:

INPUT#n,variable, ...

Operation:

This statement causes data to be transferred fro
converting the data to numbers or st . m ~~e spec1f1ed log1cal file,
"variable"s. The logical file mustr1~gs asb spec1f1ed by the type of the
statement. Input data items in th f 1 ave een opened with the OPEN
and must match the variables . e ' e must . be separated by commas
DA TA ERROR'' . . in type, otherwise the message ''?BAD

is displayed. ·

A.26 LOOP Statement

Syntax:

LOOP

Operation:

This statement specifies the be . .
executed repeated! Th g1nn1ng of . a block of statements to be
UNTIL statements~· e end of the block is specified by the ENDLOOP or

Example:

10
20
30
40
50

LOOP
INPUT X
IF X<O THEN QUIT
PRINT SQR(X)

END LOOP

In this example, st t
negative. a ements 20 through 40 are repeated until X becomes

132 Appendix A

A.27 NEXT Statement

Syntax:

NEXT index

Operation:

This statement defines the end of a block of statements that are to be
executed repeatedly. The beginning of the block is specified by the FOR
statement. A description of the function of this combination of statements
is found with the FOR statement description. The variable ''index'' in the
NEXT statement must have the same name as the variable ''index'' in
the corresponding FOR statement. If ''index'' is omitted, it is assumed to
be the same as ''index'' in the corresponding FOR statement.

A.28 ON-GOTO Statement

Syntax:

ON variable GOTO stnuml, stnum2, ...

Operation:

This statement causes control to transfer to another statement, depending
on the value of the numeric variable ''variable''. If ''variable'' = I, then
control transfers to the statement numbered '' stnum 1 ''; if ''variable"= 2,
then control transfers to the statement ''stnum2"; etc. If "variable"=O or is
greater than the number of statement numbers specified, execution
continues with the next statement. If ''variable" is <0 or > 255, the message
''ILLEGAL QUANTITY'' is printed.

Example:

10
20
30

INPUT I
ON I GOTO 400, 500, 600
• • •

In this example, if I= 2, control goes to statement 500. If I =4, control goes to
statement 30.

BASIC Language 133

A.29 ON-GOSUB Statement

Syntax:

ON variable GOSUB stnuml, stnum2, ...

Operation:

This statement causes control to transfer to another statement depending
on the value of the number ''variable''. If ''variable''= I, control goes to
the statement numbered ''stnum l ''. If ''variable'' =2, control goes to the
statement numbered ''stnum2''. If ''variable''=O or is greater than the
number of statement numbers specified, control goes to the next statement.
If ''variable'' is <0 or >255, the message ''ILLEGIAL QUANTITY'' is
printed. If control transfers to a specified statement number; execution
continues until a RETURN is encountered, then control returns to the
statement following the ON-GOSUB.

A.30 OPEN Statement

Syntax:

OPEN logical-file, 1, secondary-addr, ''filename''

Operation:

This statement prepares a file on the tape cassette for processing. The
''logical file'' can be any number between I and 25 5 and is used in
1!'1PUT#, PRINT#, GET#, and CLOSE statements pertaining to this
file. The ''secondary address" can be 0, 1, or 2. A 0 means the file is to
be processed with INPUT# statements; a I means it is to be processed with
PRINT# statements. A 2 means processing will be with PRINT# statements
and an ''end-of-tape'' mark is to be written when the CI ... OSE statement is
encountered.

A.31 POKE Statement

This statement is used to interface with the computer at the machine
language level. It's use is beyond the scope of this text. Information on this
statement can be found in the appropriate Commodore manuals.

134

A.32 PRINT Statement

Syntax:

PRINT expression, ...
or
PRINT expression; ...

Operation:

Appendix A

This statement displays the value of the expressions on the screen. If two
expressions are separated by commas (,), the second is aligned to begin at t~e
beginning of a 1 O-character "window''. Items of 10 characters or. longer will
use multiple windows. If two expressions are separated by s.em1-colons. (;),
they are printed with no intervening spaces. However: numeric expressions
are always printed with a sign character preceding (- ?r blank). and a
blank character fallowing. If a PRINT statement ends with a semi-colon
(;), the cursor will be positioned immediat~ly. fallowing the l~st character
printed; otherwise it is positioned at the beg1nn1ng of the next line.

Example:

10 PRINT ''HELLO'' ; A$

This prints "HELLO'' immediately followed by the value of the string A$.

A.33 PRINT# Statement

Syntax:

PRINT#n,expression, ...
or
PRINT#n,expression; ...

Operation:

This statement transfers the value of the expressions to the specified logical
file n. This logical file must have been opened with the O~EN_ statemen~
If two expressions are separated by commas (,), the second is aligned at th
beginning of a 10-character window. I terns of 10 characters or longe.r
will use multiple windows. If two expressions are separat~d by semi
colons (;), no intervening spaces are created in the logical file. However,

BASIC Language 135

numeric expressions are always printed sign character preceding (- or
blank) and a blank character following. If the PRINT# statement does
not end with a semi-colon (;), a ''carriage-return'' character (CHR$(13))
is transferred to the file after the last item.

Example:

10 PRINT#3,''HELLO '';N$

This causes the strings ''HELLO '' and N$ to be transferred to the
file represented by logical file number 3. A carriage-return character is
appended to the end.

A.34 PROC Statement

Syntax:

PROC procedure-name

Operation:

This statement specifies the beginning of a procedure or block of
statements to be executed when an appropriate CALL statement is
encountered in the program. This CALL statement will reference the
''procedure-name'' defined in the PROC statement and the end of the
block of statements is specified by the ENDPROC statement. The
procedure name can be composed of an arbitrary number of characters.

Example:

100 PROC CHAR-COUNTER
110 SUM=O
120 l=LEN(S$)
130 WHILE I>O
140 IF MID$(S$,l,l)=C$
150 SUM=SUM +l
160 ENDIF
170 ENDLOOP
180 ENDPROC

136
Appendix A

This example is a procedure which will compute the number of
occurrances of the character C$ in the string S$. The result is SUM. The
procedure would be executed when the statement

CALL CHAR-COUNTER

was encountered in the program.

A.35 READ Statement

Syntax:

READ variable, ...

Operation:

This causes data to be moved from DATA statements into the specified
''variable''s. Data items are moved into variables in the order found on the
DAT A statement. When the data on one data statement is exhausted, data
items are retrieved from the next one. If too few data items are found, the
message "?OUT OF DAT A" is given. The data items must match the type of

the variable into which they are being moved.

Example:

READ I, A$, B$

This example would read a numeric constant and two string constants
from DATA statements, assigning them to I, A$ and B$ respectively.

BASIC Language

A.36 REM Statement

Syntax:

REM any characters

Operation:

The compu~er does not process the REM statement.
documentation to be provided in the program.

Example:

10 REM THIS IS AN EXAMPLE.
20 REM WRITTEN BY J. WALTERS.

A.37 RESTORE Statement

Syntax:

RESTORE

Operation:

137

It is included to allow

Execution of this statement allows the RE
specified in DAT A t AD statements to re-read data

Example:

10 RESTORE

I . .

' . !
I j

--------- --........ ,_, _ _ ..,......_ _ _ --··· ,, ·-·--·-··--.. -.

138
Appendix A

A.38 RETURN Statement

Syntax:

RETURN

Operation:

This statement must be used in a block of statements executed as the
result of a GOSUB statement being encountered in the program. It
causes control to transfer to the statement fallowing the corresponding
GOSUB statement. GOSUB-RETURN constructs can be nested to an
unspecified level, depending on the characteristics of the active

program.

A.39 STOP Statement

Syntax:

STOP

Operation:

This statement terminates the execution of a program. A message
be used ''BREAK IN LINE xxxx'' is issued. The CONT command can

to resume execution at the statement following the STOP statement.

Example:

400 STOP

A.40 SYS Statement

This statement is used to interface with the computer at the machine
language level. It's use is beyond the scope of this text. Information on this
statement can be found in the appropriate Commodore manuals.

BASIC Language 139

A.41 UNTIL Statement

Syntax:

UNTIL condition

Operation:

This statement specifies the end of a bl k f
di

. oc o statements to be
repeate y executed. The beginning of the block of st t . . .
the LOOP or WHILE a ements is spec1f1ed by

statements. The specified '' d · · ,, ·
evaluated after the enclosed block of statem t . con It1on IS · · . en s is executed once If th

· e con it1on IS found to be t . .
statement following the UNTIL. rue, execution continues at the

Example:

10 l=l
20 LOOP
30 PRINT I' SQR(I)
40 l=I+l
50 UNTIL I>lO

In this example the numbe

repeatedly until I b and 40 are executed once and then
ecomes greater than IO.

A.42 WAIT Statement

This statement is used to interface . h h
language level It's u . b wit t e computer at the machine-

. se 1s eyond the s f h' statement can be f d . h .cope o t is text. Information on this
oun in t e appropriate Commodore manual.

140 Appendix A

A.43 WHILE Statement

Syntax:

WHILE condition

Operation:

This statement specifies the beginning of a block of statements to be
repeatedly executed. The end of the block of statements is specified by the
ENDLOOP or UNTIL statements. The specified ''condition'' is
evaluated before the enclosed block of statements is executed. If the
condition is found to be true, the enclosed block of statements is executed;
then control returns to the WHILE where the condition is evaluated again.
If the condition is found to be false, execution continues at the
statement after the ENDLOOP or UNTIL.

Example:

10 INPUT I
20 WHILE I<3
30 PRINT
40 l=I+l
50 ENDLOOP

In this example, statements 30 and 40 will be executed only and as long as I
remains less than 3. If I is set to 4 in statement 10, then statements 30 and
40 would not be executed at all.

AppendixB

System Commands

When the computer has typed READY, it is waiting for a command
specifying the next action to be perf armed or for a staten1ent to be added to
the BASIC program. These system commands are described below.

B.1 CLR Command

Syntax:

CLR

Operation:

This resets the status of a BASIC program so that all variables are zero or
null, and the system looks as if the program had just been loaded or typed in.

Example:

CLR

B.2 LIST Command

Syntax:

LIST stnuml-stnum2

Operation:

The LIST command displays the program in the workspace on the screen.

142 Appendix B

h '' 2 '' If '' t 2 '' It displays lines numbered from ''stnum l '' thr~~g stnum · ,,s num ,,
is omitted, the program is listed from '' stnum 1_ ~o the ,,end. If '' stnum 1
is omitted, the program is listed from the ~eg1nn1ng to stnum2 . If only
LIST is specified, all lines in the program are listed.

Example:

LIST 100-

This command lists statement lines from line I 00 to the end of the program.

B.3 LOAD Command

Syntax:

LOAD ''program-name''

Operation:

This command loads a program with the name ''program-name''

the t cassette into the workspace. Any previous BASIC from ape ,, · t
program in the computer will . be erased. If ''program-name 1s no
specified, the next file on the tape is loaded.

B.4 NEW Command

Syntax:

NEW

Operation:

This command clears the workspace of all programs, variables and data.

System Commands 143

B.5 RUN Command

Syntax:

RUN statement-number

Operation:

This command causes the program in the workspace to begin execution
at the specified ''statement-number''. If the statement number is omitted,
execution begins at the lowest numbered statement. RUN does an implied
CLR command before starting to execute the program.

B.6 SA VE Command

Syntax:

SAVE ''program-name''

Operation:

This command saves the BASIC program in the workspace onto the tape
cassette giving it the name ''program-name''. If '' program-name'' is
not specified, the program is saved but is not given a name.

B. 7 VERIFY Command

Syntax:

VERIFY "program-name''

Operation:

This command compares the program in the workspace with the program
named "program-name" on the tape cassette. If "program-name" is omitted,
the. workspace program is compared with the "next" file on the tape.
This command is often used to make sure the "SA VE" command was
successful.

_j

144

AppendixC

Intrinsic Functions

The following functions are ''built-in'' to the Commmodore BASIC
System. Most of them take one or more arguments. Jn the description of
each function, we will use the term S$ to indicate a ''string argument''
and N or M to indicate a ''numeric argument''. A string argument can
be a string variable, constant, or expression; numeric argument can be a
numeric variable, constant, or expression.

C.1 String Functions

C.1.1 ASC Function

Syntax:

ASC(S$)

Operation:

The ASC function takes one string argument. It returns the ASCII code
equivalent of the first character in the specified string as an integer value. If
S$ is null, the message ''ILLEGAL QUANTITY'' is displayed.

I

146 Appendix C

Example:

10 X=ASC(''ABC'')

This example sets X to the value 65 which is the ACSII code for "A''.

C.1.2 CHR$ Function

Syntax:

CHR$(N)

Operation:

The CHR$ function
I-character string which
numeric argument.

Example:

10 A$=CHR$(66)

takes one
corresponds

numeric argument. It returns a
to the ASCII code specified as the

This example returns the character ''B'' (ASCII code 66).

C.1.3 LEFT$ Function

Syntax:

LEFT$(S$,N)

Operation:

The LEFT$ function takes two arguments. The first is a string argument
and the second is a numeric argument. The function returns a string
composed of the left most N characters of the string S$. If N is not an
integer, only the integer part is used.

Intrinsic Functions 147

Example:

10 A$= LEFT("ABCDEF'',2)

This example sets A$ to the string ''AB''.

C.l.4 LEN Function

Syntax:

LEN(S$)

Operation:

The LEN function takes one
specified string as an integer.

string argument. It returns the length of the

Example:

10 l=LEN(''ABCD'')

This example sets I to the value 4.

C.1.5 MID$ Function

Syntax:

MID$(S$,N,M)

Operation:

The MID$ function takes thr . · . and the th ee a.rguments. The first IS a string argument
0 er two are numeric argu t Th f · composed of M h m~n s. e unction returns a string

e s ring If either N M · · integer part is used. . . or IS not an integer, only the

Example:

IO A$=MID$(''ABCDE'', 3, 2)

148 Appendix C

This example sets A$ to the string ''CD''.

C.1.6 RIGHT$ Function

Syntax:

RIGHT$(S$,N)

Operation:

The RIGHT$ function takes two arguments. The first is a string argument
and the second is a numeric argument. The function returns a string
composed of the right-most N characters of the string S$. If N is not an
integer, only the integer part is used.

Example:

10 A$ = RIGHT(''ABCDEF'', 2)

This example sets A$ to the string ''EF''.

C. t. 7 STR$ Function

Syntax:

STR$(N)

Operation:

The STR$ function takes one numeric argument. It returns a string
which contains the characters that compose the number N.

Example:

10 A$= STR$(327.03)

This example sets A$ to the string'' 327.03''.

Intrinsic Functions 149

C.1.8 VAL Function

Syntax:

VAL(S$)

Operation:

The VAL function takes one string argument. It converts the
chara~ters in the specified string to a numeric value. The string must
contain the correct characters to compose a proper numeric constant. If
they do not, the VAL function returns zero.

Example:

1 0 X = VAL ('' 3 . 416 '')

This example converts the string ''3.416'' to the numeric value 3.416, and
assigns it to X.

C.2 Arithmetic Functions

C.2.1 ABS Function

Syntax:

ABS(N)

Operations:

The ABS function takes one numeric
number equal to the absolute value of N.

Example:

10 X = ABS (- 3)

This example sets X to 3.

argument. It returns a positive

..

150 Appendix C

C.2.2 A TN Function

Syntax:

ATN(N)

Operation:

The ATN function takes one numeric argument. It returns a number
representing the arctangent of N, where N is expressed in radians.

Example:

10 A = ATN(.03)

A is set to .0299910049.

C.2.3 COS Function

Syntax:

COS(N)

Operation:

The COS function takes one numeric argument. It returns a number
equal to the cosine of N, where N is expressed in radians.

Example:

10 X = COS(2)

This example sets X to -.416146836.

Intrinsic Functions 151

C.2.4 EXP Function

Syntax:

EXP(N)

Operation:

The EXP function takes one numeric argument. It returns a number
equal to the constant '' e'' (approx. 2. 71828183) raised to the power N.

Example:

10 X = EXP(3.l)

This example returns 22.1979513.

C.2.5 INT Function

Syntax:

INT(N)

Operation:

The INT function takes one numeric argument. It returns an integer
equal to the largest integer which is less than or equal to N.

Example:

10 A= INT(2.l)
20 B = INT(-2.1)

In this example, A is set to 2 and B is set to -3 .

.

152 Appendix C

C .. 2.6 LOG Function

Syntax:

LOG(N)

Operation:

The LOG function takes one numeric argument. It returns the natural
logarithm of N. (i.e. log to the base '' e'' (2.71828183)). The numeric
argument N must be greater than zero.

Example:

10 A = LOG(B)

C.2. 7 1t Function

Syntax:

1t

Operation:

This function takes no arguments. It is used to provide the value of the
numeric constant 7t (pi) which is 3.14159265. It can be used anywhere this

number is required.

Example:

c = 7t •10

This example assigns C the value 31.4159265, which is the circumference
of a circle with diameter 10.

Intrinsic Functions 153

C.2.8 RND Function

Syntax:

RND(N)

Operation:

The RND function takes one numeric argument. It returns a pseudo
random number between 0 and 1. Repeated calls to RND will generate
a sequence of random numbers. (If the argument is a negative number the
same number is returned on each call to RND.) '

Example:

10 PRINT 10 + RND(0)•8

This example generates a random number between 10 and 18.

C.2.9 SGN Function

Syntax:

SGN(N)

Operation:

The SGN function takes one
negative, SGN returns -I·

'

•
numeric argument . If the argument is

if positive, it returns + 1; and if zero it returns O.

Example:

10 A= SGN(-32.1)

This example sets A to -1.

154 Appendix C

C.2.10 SIN Function

Syntax:

SIN(N) •

Operation:

The SIN function takes one numeric argument. It returns a number
equal to the sine of N, where N is expressed in radians.

Example:

10 B = SIN(3)

This example sets B to the sine of 3 which is .14112.

C.2.11 SQR Function

Syntax:

SQR(N)

Operation:

The SQR function takes one numeric argument. It returns a number
equal to the square-root of N. The argument N must not be a negative
number. If it is negative the message ''?ILLEGAL QUANTITY" will
be displayed. Accuracy is + 5E-10.

Example:

10 PRINT SQR(l4)

This prints the square root of 14 which is 3.74165739.

Intrinsic Functions 155

C.2.12 TAN Function

Syntax:

TAN(N)

Operation:

The TAN function takes one numeric argument. It returns a number
equal to the tangent of N, where N is expressed in radians.

Example:

10 A= TAN(l)

This sets A to the tangent of I which is 1.55740772.

C.3 Special Purpose Functions

C.3.1 FRE Function

Syntax:

FRE(N)

Operation:

The FRE function takes a dummy numeric argument. It returns a number
which is equal to the number of ''bytes'' of free space remaining in the
~omputer for program lines and variables. Each character in a program
line u.sually occupies one ''b)'·te'' of storage; each numeric variable
occupies 7 bytes of storage; each character in a string occupies one
byte ~f storage. Each time the FRE function is used, the system will
consolidate all unused bytes of storage in an operation called ''garbage
collection''.

·Example:

10 X=FRE(O)

•

156 Appendix C

This statement assigns a number to X equal to the number of bytes of
storage available.

C.3.2 PEEK Function

This function is used to interface with the computer at the machine-language
level. Its use is beyond the scope of this text. Information on this function
can be found in the appropriate Commodore manuals.

C.3.3 POS Function

Syntax:

POS(N)

Operation:

This function takes a dummy numeric argument. It returns a number
equal to the column number of the cursor at that time. The cursor position
is zero after the return key has been pressed. (The ''HOME'' and ''CLR'' keys
do not affect the POS function).

Example:

10 PRINT POS(O)

This statement will print a number equal to the current column number of
the cursor.

C.3.4 SPC Function

Syntax:

SPC(N)

Operation:

The SPC function is used to skip over a specified number of positions
on the screen. Characters already on the screen are not modified. The

Intrinsic Functions 157

numeric operand N defines the number of columns to be skipped. If N is
less than 0 or greater than 255, the message '' ?ILLEGAL QUANTITY'' is
displayed.

Example:

10 PRINT "A"; SPC(lO); ''B"

This statement will skip 10 positions between printing the character ''A" and
the character ''B''.

C.3.5 ST Function

Syntax:

ST

Operation:

This function takes no t It b argumen s. returns a num er representing the
status of t~e ~ost recent input-output operation. Since the meaning of the
num~~rs ·~ d1ff erent f ?r different devices, consult the manual describing
spec1f1c devices for .d.eta1ls. The cassette unit returns the following status
values for the spec1f1ed error conditions.

0
4
8
16
32
64

-128

- no errors.
- a short block was read.
- a long block was read.
- unrecoverable error or verify mismatch.
- checksum error
- end of file detected.
- end of Tape detected.

158 Appendix C

C.3.6 TAB Function

Syntax:

TAB(N)

Operation:

The TAB function is used to position the cursor at a specific column on
the screen. Characters already on the screen are not modified. The numeric
operand N defines the column number. Columns are number~d from 0 and
wrap around to succeeding lines on the screen. If the cursor is already past
the column specified by N, no spacing is perf armed. The message
''?ILLEGAL QUANTIT.Y'' will be displayed if the number N is less than
0 or greater than 255.

Example:

1 0 PR I NT ''A'' ; TAB (2 0) ; '' B ''

This statement prints the character ''A '' in colun1n zero and the character
''B'' in column 20.

C.3. 7 TI Function

Syntax:

TI

Operation·:

This function takes no arguments and is used to provide the value of the
real-time clock in the Commodore BASIC System. It always contains a
number which represents the time since the machine was turned on in
units of 1/60ths of a second.

Example:

10 PRINT TI/60

This example prints the number of seconds since the machine was turned on.

Intrinsic Functions 159

C.3.8 Tl$ Function

Syntax:

TI$

Operation:

This function is used to maintain a 24-hour clock in a BASIC program. It
contains a string of 6 characters, the first two representing hours, the
next two representing minutes, and the last two representing seconds.
The clock can be ''set'' by assigning the appropriate string to TI$.
Subsequently it can be used by referencing Tl$.

Example:

10 TI$ = ''102417''
•

This statement sets the 24-hour clock to I 0 hours, 24 minutes and 1 7
seconds past midnight. hours and 3 minutes later, the statement

20 PRINT TI$

was executed, the string '' 15271 7'' would be displayed.

C.3.9 USR Function

This function is used to interface with the computer at the machine-language
level. Its use is beyond the scope of this text. Information on this function
can be found in the appropriate Commodore manuals. ·

160

AppendixD

Reserved Words

Various words in the BASIC language are used for special purposes.
These words cannot be used anywhere in a program (except comments) for
any other than their special purpose. Specifically, they cannot be used as
variable names or as parts of variable names. Illegal use of these reserved
words usually causes the message ''?SYNTAX ERROR'' to occur. For
example, the variable name MORE cannot be used because it contains the
reserved word OR imbedded in it.

ABS END IF LEFT$ POS STEP
AND END LOOP LEN PRINT STOP
ATN ENDPROC LET PRINT# STR$
ASC EXP LIST PROC SYS

LOAD
CALL FN LOG QUIT TAB(
CHR$ FOR LOOP TAN
CLOSE FRE READ THEN
CLR MID$ REM TO
CMD GET RESTORE
CONT GET# NEW RETURN USR cos GO NEXT RIGHT$ UNTIL

GOSUB NOT RND
DATA GOTO RUN VAL
DEF ON VERIFY
DIM IF OPEN SAVE

INPUT OR SGN WAIT
ELSE INPUT# SIN WHILE
ELSEIF INT PEEK SPC(
END POKE SQR

•

162

AppendixE

Full-Screen Editing

The Commodore microcomputers have a full-screen editor which allows
the user to modify the text appearing on the screen. It is possible to change
or delete characters and also to insert new characters. The next fe~·
paragraphs describe how these functions work.

E.1 The Keyboard and The Screen

Although the keyboard is not connected to the screen, every time we strike
a key, the character corresponding to that key will appear on the screen.
Where does this character appear? There is a bright flashing square on the
screen called a cursor and when a key is struck the cursor is replaced by·---
the character and the cursor moves one position to the right.

If one wishes to place characters at different points on the screen, the
cursor can be moved to the appropriate position by using the two cursor
control keys on the keyboard. These keys are marked with the letters
CRSR. The cursor can be moved either to the left or right, or up or down
by repeatedly depressing one of the keys. The left or up motions can be
obtained by depressing the SHIFT key at the same time as the appropriate
CRSR key is depressed. The reader might wish to experiment with these
keys.

If the cursor is at the extreme right of the screen, then moving the
cursor one more position to the right will force the cursor to appear on the
extreme left and one line lower. Moving the cursor to the extreme left and
then moving one more position to the left will force the cursor to move to
the extreme right and one line higher. This operation is called wrap-around.

164 Appendix E

Moving the cursor to the top or bottom of the screen will cause
different effects. The cursor can not be moved beyond the top of the screen
with the CRSR key. If the cursor is placed at the bottom of the screen
and then the CRSR key is used to move the cursor lower, everything on the
screen shifts up one line. This means the top line on the screen disappears
and a blank line appears at the bottom. This particular effect is known as

scrolling.

The CLEAR/ HOME key is also used to manipulate the cursor. If
you depress this key the cursor moves to the upper left corner of the screen.
If you depress this key and SHIFT at the same time then the screen is
cleared and cursor moves to the upper left corner.

The following sections describe how to use the cursor to edit a line.

E.2 Changing Characters

Move the cursor to the character to be changed, type the new
character and depress RETURN.

In the statement

100 x = x + 3

the 3 can be changed to a 2 by moving the cursor onto the 3, typing 2 and

depressing RETURN.

Full-Screen Editing

E.3 Deleting Characters

165
..
..

Move the cursor to the character which is one character to the right of
the one to be deleted. Depress the Delete key once for each character to be
deleted and then depress RETURN. J

In the statement

100 x = y + 73.5

the 73.5 can be changed to .5 by moving the cursor to the period (.) and
depressing the Delete key twice followed by RETURN.

E.4 Inserting Characters

Move the cursor to the character which is to appear to the right of the
new chararacter and depress the Insert key. A blank space will appear and
the character to be inserted can now be typed. The insert key must be
depre~sed for _each. new character to be inserted. After all characters have
been inserted 1n a line, depress the RETURN key.

In the statement

100 x = y + .5

the .5 ~an be chan.ged to 73.5 by moving the cursor to the period (.),
depressing Insert twice, then typing 7 followed by 3 followed by RETURN.

I

\

166 Appendix E

E.5 Replacing or Deleting an Entire Line

To replace or delete an entire line in BASIC, type the line number
followed by the new text and then depress the RETURN key. If no text
appears after the line number then the line is deleted.

To delete the statement

100 x = x + .3

type the statement number 100 followed by RETURN.

To replace the statement

100 x = x + .3

by

100 y = y - . 5

type the statement number 100 followed by ''Y = Y - .5'' and a RETURN.

Notes:

(1)

(2)

You must always depress the RETURN key after al~ ~hanges have
been made to a line; otherwise the line will not be mod1f1ed.

Editing on the screen may cause a program listing to appear
strange. If you are not sure what you have done to a program then
use LIST to obtain a new copy on the screen.

AppendixF

Messages in BASIC

The BASIC system displays a number of messages to inform the
user about the type of activity which is occurring, and to indicate
whether a previous operation caused an error.

F.1 Possible BASIC Error Messages and Meanings

A number of errors often occur in programs as they run. The BASIC
system analyses a program as it is running and if an error is detected an error
message is displayed on the screen. This appendix lists the error
messages and describes some probable causes for the errors.

The error messages are mostly of the form

?error message in XXX

or

error message in XXX

where XXX is a line number in the BASIC program. A small number of
the messages do not refer to a specific line and hence do not contain a line
number. Once an error is detected by BASIC it is often not possible
to continue execution of the program. You can usually determine whether the
program has failed by examining the text acc.ompanying each message in
this Appendix. Variables within the statement in error and the program

168 Appendix F

retain their values so they may be examined to determine the cause of the
error.

F.1.1 ??

The INPUT statement continues to function until acceptable data
has been received. When not enough data has been typed in response to
INPUT, a double question mark (??) is printed until enough data is received.

10 INPUT A,B,C
RUN
?1
??2
??3
READY.

F.1.2 BAD SUBSCRIPT

An attempt was made to reference a matrix element which is outside the
dimensions of the matrix. This may happen by specifying the wrong number
of dimensions or a subscript larger than specified in the original DIM
statement.

DIM A(2,2)
A(l,1,1)=2
?BAD SUBSCRIPT ERROR
READY.
A(10, 10)=2
?BAD SUBSCRIPT ERROR
READY.

Messages in BASIC 169

F.1.3 CAN'T CONTINUE

Program execution cannot be resumed via a CONT command. There are four
possible reasons: 1) no program exists. 2) a new line was just typed in. 3) the
program has not recently been run. 4) an error just occurred.

10A$='HELLO'
CONT
'CAN'T CONTINUE ERROR'
READY.

F.1.4 DIVISION BY ZERO

Zero as a divisor would result in numeric overflow - thus it is not allowed.
When this message appears, it is most expedient to list the statement and
look for division operators.

?DIVISION BY ZERO ERROR IN 10
LIST 10
10A=B/C
?C
0

F.1.5 FORMULA TOO COMPLEX

This message is only pertinent to string expressions and indicates that
BASIC does not have enough space to evaluate the whole string. This
problem can be solved by breaking the string into two smaller strings in two
statements and then combining these two strings in a third statement.

?FORMULA TOO COMPLEX

F.1.6 ILLEGAL DIRECT

INPUT and DEF cannot be used in direct commands; this error indicates
that one of these commands has been tried in that mode.

?ILLEGAL DIRECT ERROR

' '

I

..

170 Appendix F

F.1.7 ILLEGAL QUANTITY

This error occurs when a function is accessed with a parameter out of
range. This error may be caused by:

(I) A matrix subscript not in the range 0 to 32767

X(-l)=Y
?ILLEGAL QUANTITY ERROR

(2) LOG (negative or zero argument)

(3)

(4)

(5)

(6)

(7)

(8)

SQR (negative argument)

Call of USR before machine language subroutine has been
patched in.

Use of string functions MID$, LEFT$, RIGHT$, with length
parameters not in the range 1 to 25 5.

Index on ... GOTO out of range.

Addresses specified for PEEK, POKE, WAIT and SYS not in the
range 0 to 65535.

Byte parameters ot· WAIT, POKE, TAB and SPC not in the
range 0 to 255.

POKE 32768,1000
?ILLEGAL QUANTITY ERROR
READY.

F.1.8 INVALID IF

An IF statement is constructed incorrectly

IF A=B CALL XYZ
INVALID IF ERROR IN XXX

Messages in BASIC 171

F.1.9 NEXT WITHOUT FOR

Either a NEXT is improperly nested or the variable in a NEXT statement
corresponds to no previously executed FOR statement.

10 FOR l=l TO 10
20 NEXT
30 NEXT
?NEXT WITHOUT FOR ERROR
READY.

10 FOR 1=1 TO 10
20 NEXT J
?NEXT WITHOUT FOR ERROR
READY.

F.1.10 OUT OF DATA

A READ statement was executed but all of the data statements in the
~rogr~~ have been read. The program tried to read too much data, or
1nsuff1c1ent data .was included in the program. Depressing carriage return
when the cursor is on a READY message sometimes yields this error
because the message is interpreted as READ Y.

READY.
?OUT OF DATA ERROR
READY.

172 Appendix F

F.1.11 OUT OF MEMORY

This message may appear while entering or editing a program as the
text completely fills memory. At run time, assignment and creation of
variables may also fill all variable memory. Array declarations consume
large areas of memory even though a program may be rather short. The
maximum number of FOR loops and simultaneous GOSUBs allowed are
dependent on each other and this maximum capacity may be exceeded.
To determine the type of memory error, type ?FRE(O). If there are a large
number of bytes available, it is most likely a FOR-NEXT or GOSUB

problem.

10 GOSUB 10
RUN
?OUT OF MEMORY ERROR IN 10
READY.
?FRE(O)
7156
(This is a FOR-NEXT or GOSUB problem.)

F.1.12 OVERFLOW

Numbers resulting from computations or input that are larger than
1.70141183 E + 38 cannot be represented in BASIC's number format.
Underflow is not a detectable error but numbers less than 2.93873588
E-39 are indistinguishable from zero.

?1E40
?OVERFLOW ERROR
READY.

Messages in BASIC 173

F.1.13 REDIM'D ARRAY

After a matrix was dimensioned, another dimension statement for the
same matrix was encountered. For example, an array variable is defined by
default when it is first used, and later a DIM statement is
encountered.

A(5)=6
DIM A(l0,10)
?REDIM'D ARRAY ERROR
READY.

F.1.14 REDO FROM START

This error i~ not actually a fatal error but is a diagnostic printed when
data . su~pl1ed . to the INPUT statement is alphabetic when a numeric
quantity 1s required.

10 INPUT A
RUN
?ABC
?REDO FROM START
? •

F.1.15 RETURN WITHOUT GOSUB

A RETURN statement d · was encountere without a previous GOSUB
statement being executed.

CLR
RETURN
?RETURN WITHUT GOSUB ERROR

..

174 Appendix F

F.1.16 STRING TOO LONG

Attempt by use of the concatenation operator to create a string more than
255 characters long.

10 A$='A'
20 FOR l=l TO IO:A$=A$:NEXT
30 A$=A$+A$
40 NEXT
?STRING TOO LONG ERROR
READY.

F.1.17 SYNTAX

BASIC cannot recognize the statement you have typed. This error is
caused by such things as missing parentheses, illegal characters, incorrect
punctuation, or a misspelled keyword.

RUIN
?SYNTAX ERROR
READY.

F.1.18 TYPE MISMATCH

The left-hand side of an assignment statement was a numeric variable
and the right-hand side was a string, or vice versa; or a function which
expected a ~-tring argument was given a numeric one, or vice versa.

A$=5
?TYPE MISMATCH ERROR
READY.

F.1.19 UNDEF'D STATEMENT

An attempt was made to GOTO, GOSUB or THEN to a statement
which does not exist.

GOTO A
?UNDEF'D STATEMENT ERROR
READY.

Messages in BASIC 175

F.1.20 UNDEF'D FUNCTION

Reference was made to a user defined function which had never been
defined.

X=FNA(3)
?UNDEF'D FUNCTION ERROR
READY.

F.1.21 UNDEFINED PROC

The program attempts to call a procedure which has never been defined.
An example follows.

100 CALL ABC
•

•

•

(end of program)
(The procedure was not defined)
UNDEFINED PROC ERROR IN XXX

F.1.22 UNMATCHED STRUCTURE

The structure starting with LOOP, WHILE or IF has no corresponding
ENDLOOP or ENDIF statement. An example illustrates this error.

10 IF A<B
•

•

•

(end of program)
UNMATACHED STRUCTURE ERROR IN XXX.

.

i 176 Appendix F
!

.
I

'

F.2 Operating System Messages and Meanings

The BASIC system also monitors the reading of files from a cassette
and displays messages to indicate errors that have occurred.

F.2.1 BAD DATA

Numeric data was expected but alphabetic data was received when
obtaining input from a special device.

F.2.2 DEVICE NOT PRESENT

The requested device is not attached to the comp~ter. The sta.tus indicator
will have a value of 2 which corresponds to a time out. This error may
happen on OPEN, CLOSE, CMD, INPUT#, GET#, or PRINT#.

OPEN 5,4,3 'FILE'
?DEVICE NOT PRESENT ERROR
READY.

F .2.3 FILE NOT FOUND

The named file specified in OPEN or LOAD was not found on the device
specified. In the case of tape 1/0 an end of tape mark was encountered ..

Messages in BASIC 177

F.2.4 FILE NOT OPEN

The operating system must have device number and command
information provided by the OPEN statement. If an attempt is made to read
or write a file without having done this previously, then this message
appears:

CLR
INPUT#IO,A
?FILE NOT OPEN ERROR
READY.

F.2.5 FILE OPEN

This error indicates an attempt to redefine file parameter information
by repeating an OPEN command on the same file twice.

OPEN 1,4,l
OPEN 1,4,l
?FILE OPEN ERROR
READY.

F.2.6 LOAD

Only occurs when loading a program from cassette tape. This means that
there were more than 31 errors in the first tape block or that there were
errors in exactly the same corresponding positions of both blocks.

178 Appendix F

F.2.7 NOT INPUT FILE

Tape files, once opened for writing, cannot ~e read without fi.rst closing
the file, rewinding the tape and opening the file for. INPUT. This message
appears when an attempt is made to read an output f tie:

10 OPEN 1,1,1
20 INPUT #1,A
?NOT INPUT FILE ERROR
READY.

F.2.8 NOT OUTPUT FILE

Tape files cannot be read and update~ in .place. For example
the keyboard and a program cannot write to 1t.

10 OPEN 1,0
20 PRINT#!
?NOT OUTPUT FILE ERROR
READY.

F.2.9 VERIFY

The contents of memory and a specified file do not compare.

device 0 is

Appendix G

Input and Output to Disks and Printers

Chapter 2 introduced some basic concepts in manipulating
programs. The commands SA VE, LOAD and VERIFY were used to store
and retrieve program files on cassette tape. Chapter 8 showed how the
statements OPEN, CLOSE, INPUT#, and PRINT# can be used to create
and process data files on tape.

In the fallowing sections, we will see how these facilities can also
be used to manipulate program and data files on the Commodore disk and
printer.

G.1 Simple Output to the Printer

The Commodore printer is connected to the computer through an external
bus connector. A program can produce printed output by writing a file to the
printer.

1000 REM EXAMPLE G.l
1010 :
1020 OPEN 1,4
1030 X=l
1040 WHILE X<=IO
1050 PRINT#l,X,SQR(X)
1060 X=X+l
1070 ENDLOOP
1080 CLOSE I
1090 STOP

,
f

.

'
.!

180 Appendix G

In Example G.1 the OPEN statement designates th~ pri.nter, . devi~e
number 4, as logical file 1. Any lines PRINTed to this logical file will
appear on the printer. Line I 050 will be executed 10 times and produce a
table of the square roots of the numbers from 1 through 10. When the output
is complete, the CLOSE statement is used to ''disconnect'' the printer from

logical file I.

G.2 Listing a Program on the Printer

It is often desirable to produce a copy of a program on paper for
reference or documentation. However, the LIST command displays the
program· statements on the primary output devi_ce, namely the s~reen. It
is possible, however, to assign the printer as the prima~y output device, and
then list the program there. To do this, type the f ollow1ng two statements at

the key board.

OPEN 1,4
CMD 1

These statements prepare the printer, device 4, as the ''primary output
device''. Now, typing commands at the keyboard causes the response to be
printed on the printer. Simply type

LIST

and the statements of the current program will be listed on the printer.

When this operation is complete and the cursor reappears, the
printer must be ''disconnected'' as the primary output device by typing the

two commands:

PRINT#l
CLOS El

Everything should now be back to normal and the screen should operate

as before.

Input and Output ·to Disks and Printers 181

G.3 Preparing to Use the Disk

The Commodore disks can be used to store and retrieve both
program and data files. Each diskette is first prepared for use by a process
called ''NE Wing''. This erases all information from the diskette and .i

prepares it to contain any new data or programs.

The disk can contain two diskettes at one time. These are inserted in
drive 0 or drive 1, indicated on the front of the unit. The command:

OPEN 1,8,15,''NO:TEST,99''

will cause the diskette in drive 0 of the disk (device 8) to be "NE Wed'' and
given a name of TEST with id of 99. During this operation, the light on the
disk associated with drive 0 will be on. When the light goes out, the
process is complete and the command:

CLOSE 1

should be issued. If an error occurs during this process, the ''error light" in
the centre of the disk unit will be on. Consult the Commodore manual
for error diagnostic procedures.

Once a diskette has been ''NEWed'', this procedure need not be
repeated unless all the information is to be erased. However, each subsequent
time a diskette is to be used, it must be ''initialized" using the command

OPEN 1,8,15,''10"

This ''initializes'' the diskette in drive 0 for use by the computer. The
command

CLOSE 1

should then be issued. Programs and data files can now be stored and
retrieved from the diskette.

Notes:

(I) In the OPEN commands above, the I is any logical file number.
The 8 refers to the disk unit which is device 8. The number 15 in the
third parameter denotes the ''command channel''.

182

(2)

Appendix G

The INITIALIZE operation must be done whenever a diskette
is inserted into the drive.

G.4 Storing Programs on Disk

Once a diskette has been ''NEWed'' and ''Initialized'', programs can
be stored on it in the form of program files. Simply type the command

SAVE ''0: PROGRAM'', 8

and a file named PROGRAM will be created on the diskette in drive 0
containing the program currently in the workspace. The ''O:'' at the front of
the name designates the drive number. The '' ,8'' specifies disk drive 8.

It is possible, although infrequent, that the SA VE operation may
terminate successfully, (i.e. the error light is off) but the program will be
stored incorrectly. The VERIFY command, described in Chapter 2, can
be used to validate the SA VE operation. Type

VERIFY ''0: PROGRAM'', 8

and the contents of the specified file are compared to the program in the
workspace.

At some later time, you may want to copy the program from disk
back into the workspace. Make sure the diskette is inserted correctly and
initialized. Then type

LOAD '' 0 : PROGRAM'' , 8

this causes a copy of the program to be loaded into the workspace.

The above commands can be used to store many programs on a single
diskette. They can be selectively ''LOADed'' by specifying the appropriate
name. It is possible to load a program specifying only the first few
characters of the name. Typing

LOAD ''0: PR•'', 8

will load the first program encountered whose name begins with the
character sequence ''PR''.

Input and Output to Disks and Printers 183

NOTE: Files created with the SA VE command are said to be files of
type PRG.

G.S Data Files on Disk

One of the most powerful facilities provided with a disk is the
ability for the program to process files of data. Information can be stored
and analyzed and new data created.

100 REM EXAMPLE G.3
105 :

130 OPEN 6, 8, 5, ''0: TELEPHON, SEQ, WRITE''
135 :
150 LOOP

155 PRINT ''ENTER NAME AND PHONE''
160 INPUT NAME$, NUMBER$

1 70 IF NAME$= ''ZZZZ" THEN QUIT
180 PRINT#6, NAME$; '' , '' ; NUMBER$
190 ENDLOOP
195 :

200 PRINT#6, "ZZZZ, 999- 9999''
220 CLOSE 6
225 :
230 STOP

Example G.3 is the same as Example 8.2 in that it creates a file
of names and telephone numbers. The OPEN statement in line 30, however,
specifies that the file is to be created on the diskette in drive O of device
8. The third parameter specifies that buffer number 5 in the disk is to be
used for temporary storage. This is ref erred to as the ''secondary address'' and
can be any number from 2 through 14. If more than one file is open at the
same time on the same device (i.e. number 8) the secondary address must
be unique for each file that is open.

The fourth parameter, enclosed in quotes, denotes the drive number,
name, type and access of the file. The parameter:

"0: TELEPHON, SEQ, WRITE''

specifies a file named TELEPHON on drive O is to be a sequential file
(SEQ) and is to be written (WRITE) using PRINT# statements.

184 Appendix G

Data records are written to the file in line 180 and line 200 much the
same way as they were written to cassette in example 8.2. When all
desired records have been written, the CLOSE command is issued.

NOTE: When using disks connected via the IEEE port, the PRINT
statements must appear as follows:

180 PRINT#6, NAME$;'' , '';NUMBER$; CHR$ (13) ;
200 PRINT#6,''ZZZZ,999-9999'';CHR$(13);

To recall the information stored in a sequential disk file, another
program must be written.

100 REM EXAMPLE G.4
105 :
130 OPEN 6, 8, 4, ''0: TELEPHON, SEQ, READ''
135 :
150 LOOP
160 INPUT#6,NAME$,NUMBER$
170 IF NAME$=''ZZZZ'' THEN QUIT
180 PRINT NAME$,NUMBER$
190 ENDLOOP
220 CLOSE 6
225 :
230 STOP

Example G.4 reads the names and telephone numbers from the file
TELEPHON and prints them on the screen. The OPEN statement
assigns logical file number 6 to the file TELEPHON on the diskette in
drive 0 of device number 8. The secondary address of 4 specifies that
disk buffer number 4 is to be used for this file. The file is sequential
(SEQ) and is to be read (READ) using INPUT# statements.

Records are read from the file using the INPUT# statement in the
normal manner. When all records are read, the file is CLOS Ed in line 220.

G.6 Removing a File from Disk

A file can be removed from the disk by sending it a special command
via the ''command channel". This is done by using the secondary address 15.
For example, the statements

Input and Output to Disks and Printers

OPEN 1,8,15,''SO:TELEPHON"
CLOSE 1

are used to send the command

''SO: TELEPHON''

185

to the command channel (15) of disk drive 8. The parameter specifies a
file named TELEPHON on drive 0 is to be scratched (S).

When the disk detects an error, a red light on the disk panel is turned
on. The nature of the error can be discovered by reading certain information
from the disk's ''command channel''. For example, the statements

OPEN 1,8,15
INPUT#!, E$,M$,T$,S$
PRINT E$, M$, T$, S$,

w.ould cau~e 4 strings to be read from the command channel (15) of the
disk and displayed on the screen. The nature of the error is contained in the
strings as fallows:

E$ - the number of the error message

M$ - the text of the error message

T$ - 00 or the track number where the error occurred

S$ - 00 or the sector number where the error occurred

If E$ is 00, then no error was detected and everything can proceed as
n?rmal. Other values indicate errors which are described in the appropriate
disk manual.

G.7 The Disk Directory

Each diskette can contain a number of separate program and data files.
Consequently, each diskette contains a ''directory'' to enable the system to
keep ~rac~ . of these files. It is possible to display this directory by first
LOADtng it into the workspace and then LISTing it on the screen. Type

LOAD ''$0", 8

186 Appendix G

to load the directory of the diskette in drive 0 of disk device number 8.
(LOAD ''$1 '' ,8 would load the directory for drive 1.) Then type

LIST

to display this directory on the screen. It should look something like this:

0 ''TEST
1 ''PROGRAM"
3 ''FILE A''
3 "FILE B"
57 ''SAILOR"
606 BLOCKS FREE.

" 99
PRG
SEQ
SEQ
PRG

By ref erring to the first line, we can see that this directory describes
the contents of the diskette in drive 0. It is called TEST with an id code
of 99 and currently contains 4 files. These are called ''PROGRAM'',
"FILE A'', ''FILE B", and ''SAILOR" occupying 1,3,3, and 5 7 "disk blocks''
respectively. A disk block consists of 256 characters or bytes of data. Two
of the files, namely ''PROGRAM'' and ''SAILOR", contain programs
(type PRG); the others are sequential data files (type SEQ). This diskette
can contain an additional 606 disk blocks of programs or data.

NOTE: Program and data files can be given names up to 16 characters in
length. If longer names are specified, only the first 16 characters
are used.

Index

$-character, 52

? prompt, 21, 64
?? prompt, 64, 168

t' 19

1t, 152

ABS, 20, 149
AND, 93
argument, 41
arithmetic, 33

limits, 172
arrays, 97, 119
ASC, 145

•
assignment statements, 116, 17 4

numeric, 37
string, 53

ATN, 150

BASIC language, 115
blank characters, 115
BREAK IN statement number

10

CALL, 109-111, 116, 172, 175
case construct, 7 6
character data, 15
CHR$, 146
CLEAR key, 164
CLOSE, 66-67, 117
CLR, 141
CMD, 11 7, 180
collating sequence, I 07
comments, I, 13 7
con ca ten a ti on, 5 2
constants, 2

numeric, 33
string, 15, 51

CONT, 117, 169
conversational, 22
cos, 150

'

CRSR, 164
cursor keys, 163

DAT A, 118, 1 71
debugging, 27

examining variables, 28
monitoring execution, 29
testing, 29

DEF, 45, 118, 169
DIM, 9 8, 1 00, 1 0 6, 1 1 9, 16 8,

173
direct mode, 2 7, 115
disks, 181

directory of files, 18 5
error detection, 18 5
file names, 186
initialization, 181
LOAD, 182
NEWing, 181
READ, 184
removing files, 1 84
SAVE, 182
SEQ, 183-184
VERIFY, 182
WRITE, 183

division, 36

E-notation, 34
editor, 9

changing characters, 164
deleting characters, 165
deleting lines, 166
inserting characters, 165
replacing lines, 166

ELSE, 23, 73, 7 5, 120
ELSE IF, 7 5, 91 , 121
END, 122
ENDIF, 23, 72-73, 75, 122
ENDLOOP, 2, 79, 123
ENDPROC, 109-110, 123
errors

messages, 16 7
ST function, 157

1

187

188

execution, 10
EXP, 151
exponent notation, 34
exponentiation, 19, 37

• expressions
algebraic, 19
compound relational, 93
numeric, 2, 36
relational, 4, 71, 91
wrong answers, 48

false, 4
fields, 65
file numbers, 66
files, 63, 176, 179

comma, 68
creating, 68
external, 65
field separator's, 68
fields in, 65
input from, 66
names, 12
on disk, 183
on IEEE disks, 184
printer, 1 79
program, 12
records in, 65
sentinel record, 66, 68
sequential, 67

FN, 118
FNname, 45
FOR, 86, 124, 171
FOR-NEXT, 86

index value, 86
index variable, 86

FRE, 155
full-screen editor, 163
functions, 175

arguments, 19, 41
Arithmetic, 149
built-in, 19, 145
numeric, 41
special purpose, 15 5

string, 55, 145
user-defined, 44

GET, 124
GET#, 125
global definition, 113
GO TO, 126
GOSUB, 126, 172

hardware dependencies, 4 7
HOME key, 164

Index

·1F, 23, 72-73, 75, 91, 127, 170
case construct, 7 6
false range, 7 4
general rules, 7 6
nesting, 76
range of, 23, 73
true range, 7 4

IF-ELSE-ENDIF, 23, 73
IF-ELSEIF-ELSE-ENDIF, 74
IF-ENDIF, 72
IF-GO, 128
IF-THEN, 128
IF-THEN-QUIT, 4, 24, 71, 79,

88, 129
immediate mode, 27, 115
index, 124
indexing, 100
INPUT, 21, 64, 130, 168-169,

173
INPUT#, 66-67, 131
INT, 42, 151
integer computations, 42
integers, 34
interactive, 22
interrupting a program, 10, 21

keyboard, 163
keywords, 5, 3 5

list of, 161

Index

LEFT$, 58, 146, 170
LEN, 55, 79, 147
LET, 116
line numbers, 1-2
LIST, 9, 141
LOAD, 13, 142, 1 77

from disk, 182
loading a program, 13
LOG, 20, 152, 170
LOOP, 2, 79, 84, 131

range of, 3
LOOP-ENDLOOP, 2, 82
LOOP-UNTIL, 84
loops, 2, 79

infinite loops, 3
initialization of, 80
nested, 81
range of, 80
termination of, 80

mainline, 110
MID$, 55, 79, 147, 170
modifying a program, 10, 13
modules, 113
multiplication, 36

NEW, 12, 142
NEXT, 86, 132, 171
NOT, 93
null string, 51

ON-GOSUB, 133
ON-GOTO, 132, 170
OPEN, 66-67, 133
operators

arithmetic, 36
logical, 93
priority of, 37, 94
relational, 92

OR, 93
output

character data, 16
numeric datd., 16

output lists, 63
overflow, 172

packaging a program, 111
parentheses, 94

nested, 19
PEEK, 156, 170
pi, 152
POKE, 133, 170
POS, 156
PRINT, 134

output list, 63
windows, 11, 16
with comma, 16
with semicolon, 18

PRINT#, 134
printers, 179
PROC, 109-110, 135
procedures, I 09, 116
program, 2
program listing, 180
programming style, 41
prompt

?, 2 I
message, 21

READ, 136, 171
real numbers, 34
records, 65

sentinel, 66
REM, 1, 137
repetition, 79
RESTORE, 137
RESTORE key, 21, 24
RETURN, 138
RETURN key, 8, 10, 22, 24
RIGHT$, 59, 148, 170
RND, 153
rounding, 44
RUN, 10, 143

•

running a program, 1 0

189

190

SAVE, 11, 143
to disk, 182

saving a program, 11
scientific notation, 34
screen, 163
scrolling, 164
segmenting a program, 111
selection, 71
sentinel records, 66
sequential files, 67
SGN, 153

• • s1gn1ng on
Commodore 2000, 7
Commodore 4000, 7
Commodore 8000, 7
VIC-20, 7 .

SIN, 154
spacing, 5
SPC, 156, 170
SQR, 19, 44, 154, 170
ST, 157
statement numbers, 1

range, 115
statements, 1
STEP, 87
STOP, 10, 138
STOP key, 21, 24
stopping a program, I 0, 21
STR$, 57, 148
strings, 15, 169, 174

comparison of, 92
conversion of, 57
INPUT with, 54
length of, 51, 55
null, 51
substrings of, 5 5

STUDENT file, 65-66
style, 40
subprograms, 109-110
subroutines, 109
subscripts, 98
substrings, 5 5

subtraction, 3 7
SYNTAX ERROR, 35
SYS, 138, 170

TAB, 158, 170
tables, 97, 168, 170

character data, 98
columns, 105
elements of, 98
multi-dimensional, 107
numeric data, 101
range of indices, 98
rows, 105
subscripts, 98
two-dimensional, 105

TAN, 155
TELEPHON files, 68
TI, 158
TI$, 159
time, 158
TO, 87
true, 4
truncating, 44

unary minus, 3 7
UNTIL, 84-85, 91, 139
USR, 159, 170

VAL, 58, 79, 149
variables, 2-3

index, 99
initialization, 39
keywords in, 3 5
naming, 35
numeric, 34
scope of, 113
string, 15, 52

vectors, 97
VERIFY, 12, 143, 178

to disk, 182
VIC-20, 7-8

Index Index

WAIT, 139, 170
WHILE, 83, 85, 91, 140
WHILE-ENDLOOP, 83
WHILE-UNTIL", 85

windows, 16, 54
workspace, 8
wrap-around, 8, 17, 54, 163

191

A "USER FRIENDLY" COMPUTER
The new VIC computer is designed to be the most user
friendly computer on the market... friendly in price, friendly
in size, friendly to use and expand.

With the VIC, Commodore is providing a computer system
which helps almost anyone get involved in computing
quickly and easily ... with enough built-in expansion features
to let the system "grow" with the user as his knowledge
and requirements become more sophisticated.

VIC owners who wish to learn more about computing
should ask their Commodore dealer about these other self
teaching and reference materials:

• VIC LEARNING SERIES ... a library of self-teaching books
and tapes/cartridges which help you learn about computing
and other subjects. Volume I in the VIC Learning Series is
called "Introduction to Computing .. . On the VIC". Volume II
is called "Introduction to BASIC Programming".
Subsequent titles will include Animation, Sound and Music,
and more.

• VIC PROGRAMMER'S REFERENCE GUIDE ... a
comprehensive guide to the VIC20 Personal Computer,
including important information for new and experienced
programmers alike.

•VIC-PROGRAM TAPES, CARTRIDGES AND DISKS ... a
growing library of recreational, educational and home utility
programs which let you use the VIC to solve problems,
develop learning skills, and play exciting television games.
These easy-to-use programs require no previous computer
experience.

(= commodore
COMPUTER

1200 Wilson Drive,
West Chester,

Pennsylvania, 19380
U.S.A.

3370 Pharmacy Ave.,
Agincourt ,

Ontario, Canada
M1W2K4

Copyright © 1982 by Commodore Business Machines, ltd.
All rights reserved.

This manual is copyrighted and contains proprietary information. No part of this publica
tion may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior
written permission of COMMODORE BUSINESS MACHINES.

Printed in Canada

