
ij
Precision

Books

Supeak^'
THE^BOOK

Dr Bruce Hunt

■ Programming
■ System Design
■ Troubleshooting Guide

SUPERBASE: THE BOOK

A Guide to Database Applications

Dr. Bruce Hunt

Precision Books

1986

First Published 1986 by Precision Software Limited
© Copyright Precision Software Limited 1986

Copyright notice: no part of this publication may be reproduced or

transmitted In any form or by any means, electronic or mechanical.

Including photocopy, recording, or any Information storage or

retrieval system, without permission In writing from the
publisher.

ISBN 1 85231 000 6

Printed by Repro Workshop Limited, Alton, Hampshire, Mastered on

Superscript 128 and Canon LBP-8 A2 Laser Printer,

Precision Software Limited, 6 Park Terrace, Worcester Park, Surrey

KT4 IJZ, England,

USA Distribution: Progressive Peripherals & Software, 464 Kalamath

Street, Denver, CO 80204,

CONTENTS

Introduction 1

PART I: SETTING UP A DATABASE

1 First Steps: Designing Files and Indexes 3

2 Designing the Fields 13

3 More Design Considerations 23

4 Basic Menu Operations 36

PART Zl: THE AUTOMATED DATABASE

5 Using the Command Line 59

6 Programs: Theory, Practice and Management 68

7 Automated Search, Sort, Update and Output 82

8 Reporting 105

PART III: THE PROGRAMMED DATABASE

9 Programming Menus and Input Screens 115

10 Advanced Programming 127

11 Parameterizing the System 156

Appendix: Troubleshooting 160

Index 190

Introduction

Since Superbase 64 was first released in 1983 there have been many
requests for a "Book of the Program". We have been promising one
for almost as long, but every attempt has come to nothing, energy
and resources always being needed for some other project. However,
at last, here it is, a book which although it cannot lay claim to
being definitive, has at least the merit of filling a gap.

I have tried to provide an extension of the Superbase Manual
rather than an alternative to it. This means that everyone
expecting to benefit from the discussions and examples in the text
should really have read the manual first. However, expertise in
Superbase is not required: the book caters for all levels of
familiarity with the Superbase system, and should help people
experimenting at home as much as those trying to set up a serious
office system.

There are three main sections to the book and an appendix. Anyone
looking for a solution to an immediate problem with Superbase
should turn at once to the Troubleshooting appendix. Otherwise,
the three sections are arranged to match increasing levels of
knowledge of the Superbase system.

Part One, Setting up a System, is for users who have recently
acquired Superbase and want to design a database on sound
principles, and for those who feel that their existing systems may
not be doing the best possible job. The chapters take the reader
from the essential process of analysis and design of file
structure, with discussions of topics such as index key
construction methods, screen design, and database components,
through to the core menu options for data entry, database
searching, sorting, and output.

In Part Two, The Automated Database, users can learn how to build
on the foundation of Part One and construct their own simple
Superbase programs. A guide to effective use of the Superbase
command line develops into a worked example of a simple program,
and advise on how to manage a programmed system. The remaining
chapters expand on the topics raised in Part One, showing how to
transform simple menu selections into powerful time-saving
automatic routines. A final chapter concentrates on Superbase's
reporting functions.

Part Three, The Programmed Database, goes further into the
mysteries of the Superbase programming language. Three techniques
for menu creation are discussed in the context of general screen
handling. Then the lengthy Chapter 10 explores many advanced
topics, including multi-file applications, reporting refinements
such as page numbering, database reorganization, and the
'do/perform' metacommand. The last chapter gives some pointers on
how to parameterize a system to gain benefits of increased
flexibility and reduced overhead.

Finally, the Troubleshooting appendix lists the known errors in
all Superbase versions and provides you with a means of
identifying the most common problem areas and how to deal with

1

Introduction

them.

This book owes a great deal to others. My colleagues and friends
in Britain and the United States, as well as the 100,000 Superbase
users around the world, have contributed greatly to the stock of
knowledge on which the book is based. In particular, Simon
Tranmer, the designer of Superbase, has helped me to transform
technical arcana into plainer truths. And we must all salute the
expertise and dedication of the former Superbase Technical Support
Manager, Brian Leighfield.

Before you take the plunge, a word of warning. The examples in the
book have all been tested, and they work as far as we know. But
they are only examples, deliberately simplified for the book,
and they are not intended to be copied directly into a working
system without modification. You should always expect to have to
make a few changes.

2

PART I

SETTING UP A SYSTEM

CHAPTER 1
FIRST STEPS: DESIGNING

FILES AND INDEXES

Have you read the Superbase Manual? In particular, have you worked
through the tutorials? If you want to make the most of this
section of the book you must have some knowledge of the basics of
the Superbase system. I assume that you know, for example, how to
load the program, create a work disk, and set up a database for
yourself. You should also know how to move between the two main
menus and the Select and Maintain submenus, how to select options
from the menu, and how to exit from options when you no longer
need them. All this is covered in the Superbase manual, and you
won't find much guidance at this level of basic operation here. If
you don't know how to do any of the things mentioned above, I
suggest you go back to the manual and look them up (there are
references in either the Table of Contents or the Index). Then
come back to this book and read on.

Anybody can set up a Superbase database after a few hours work,
enter data into it, and retrieve it for screen display or printed
output. But there is a great difference between a system that
reflects a first attempt to understand Superbase, which for some
people is indeed their very first contact with computers, and a
system that incorporates a greater depth of experience. Many
people go through the sometimes frustrating process of setting up
systems, running them for some weeks, and then having to start
again when they realize that they have designed their systems in
such a way that many of Superbase's powerful features cannot be
used. This is the point at which Precision Software receives many
a plea for help. The following pages try to remedy this situation.

My aim is to help you jump over some of the delay in learning what
makes a good system. I do this by concentrating on the underlying
elements of every system, trying to focus on just the menu options
that really matter and how to use them most effectively. Here is a
list of the options I'll be discussing, and the actual elements of
work they correspond to.

file Thinking about your data, deciding how to
group it on the basis of how you plan to use
it, especially how you plan to print it out.

format Designing an "input screen" so that it's
legible and logical; understanding the best
ways to use the different types of data field.

enter Putting record data into the file, amending
select add records already there, and loading up large
select replace numbers of records automatically,
import

select key Calling records back to the screen with the
select n/p/f/1 "key field", flipping through the file, under¬
select current standing the idea of the "current record".

3

Designing Files and Indexes

select match Searching through the file for certain records
find you want to work with, for example to delete,

to sort into a new order, or to print out.

batch Going through the file making changes to some
of the records.

sort Sorting a whole file or a group of records
into a new order, usually prior to printing
them out.

calc Doing calculations on screen

output Producing printed output in the form of lists
or as one record per page; controlling the
appearance of the output; showing lists on the
screen; making lists on disk for use with the
word processor.

If your work includes some of these activities (and if it doesn’t
then perhaps you don’t need Superbase at all) then thinking about
them carefully before you begin to design your system is bound to
produce greater efficiency all round.

File Design
If I had to pick the most important discussion in the book, this
could be it. If you don’t think clearly about the raw material of
a system — the data -- you’ll never manage to get the best out of
it. Imagine the chaos if that ubiquitous example of a file, the
telephone book, was printed in the order of the numbers, or
contained no address information. But if some Orwellian police
force wanted to get a name from a number, how useful a directory
in number order would be. The key to the business of file design
lies in the question "What do I want to do with the file?" but
since there are as many individual purposes as there are
individuals, I shall have to offer only general suggestions to
help you find your own answer to the problem.

Vour Existing Files

The first step in designing a file is to identify the general area
of the application. You can make a start on this by considering
the manual files you keep already. (You should be clear about the
meanings of the words "file" and "records"; the former is a
collection of the latter. A good image is of a card index box; the
box is the "file", and each card is a "record".) Do you have a
name and address file for mailings only? Or is it in fact a
customer file that will be holding account balances, which are
worked out from a separate file of invoices? Or perhaps you only
keep the name and address on each invoice, and you will devise a
way of adding up the balance for each customer when you print out
a list. So, make a rough analysis of the different categories into

4

Designing Files and Indexes

which your data falls; there will be time to refine them later If
necessary. Here Is an example of a typical business database
comprising five files:

Database: WORK

customers
Invoices
Inventory
suppliers
assets

A home database might contain the following files:

Database: HOME

records
books
bills
Inventory
addresses

Working out the main areas Is usually not too hard. The next step
Is to figure out exactly what goes Into each file — not so easy.

'forking Backwards from Printout

Think about the lists or other printed output, such as
personalized standard letters, you want to produce. There Is
always some kind of Internal order In the output, and this can be
used to help determine the components of the file that Is to
produce the output. First of all. Identify the basic unit of the
output. This could be a name and address, or the details of one of
the products a business sells, or any one of thousands of logical
groupings. Then break the basic unit down Into the Individual
elements. This Is sometimes not as straightforward as It seems.

As an example, let's consider a file of names and addresses that
Is to be used to generate labels and data for use In a mall merge.
A name and address may seem to be nothing more than the collection
of these Items, or, as we generally refer to them, "fields”:

name
street
city
state
zip

(I hope British readers will forgive my adoption of the American
convention for classifying addresses.)

A closer look reveals that the first element, name. Is In fact an
assemblage of four separate fields:

title (Mr/Ms etc.)

5

Designing Files and Indexes

initials
surname
suffix (MD/PhD/Jr etc.)

This illustrates a very important part of the process of file
design: breaking the data down into its smallest components. Doing
this gives you maximum flexibility, a set of basic bricks to
manipulate rather than awkward combinations that limit what you
can do. For example, the name and address format we've seen so far
is all right for a label. But suppose you want to address the
recipient personally (which is the whole idea behind direct mail).
You don't want to write "Dear R. B. Jones" but the more personal
"Dear Bob". To do this you need another field:

first name

So now the record format contains all these fields:

title (Mr/Ms etc.)
initials
surname
first name
suffix (MD/PhD/Jr etc.)
street
city
state
zip

This may be all the information that is needed to produce the
desired result of a file of data for use in a mail merge. But that
is by no means the end of the process of designing this file. So
far we have looked only at what the record must contain to produce
the desired result of a flexible mail merge. We must also consider
whether there may be a need for other fields that will increase
the power of the system. This is hard to do unless you know more
about Superbase's capabilities. The two main functions that no
manual system can duplicate are the 'find' and 'sort' menu
options. I'll be looking at both 'find' and 'sort' again later on,
but it's worth considering them both here briefly in the context
of file design.

Fields that Help You Search the File

The first, 'find', allows you to carry out automatic searches of
the database, specifying a large number of values, or "criteria"
as these are called in the manual, which determine whether a
record is to be selected or not. In order for 'find' to work
effectively, you must arrange for fields that can be used for
meaningful searches to appear in the record. In the name and
address file, you could ask Superbase to 'find' all the
individuals in a certain city, by entering the name of the city.
Similarly with searches by state, or even searches using the first
three characters of the zip code. But more is possible.

The crucial realization is that you don't need to restrict the

6

Designing Files and Indexes

fields in the record to the ones that will be printed. For
example, you may know about the position of the individual —
vice-president or managing director or mayor. If you include this
information you can then search the file for all the records that
match the criterion "mayor”, and send letters only to mayors. Or,
you may be dealing with a list of customers. It will help to know
such things as when you last wrote to a customer, and what
category of customer each one is: good, average or poor, for
instance, which you might represent by a one letter code. A, B or
C. So you add three fields to the format: ’position’, ’category’
and ’date last mailed’. Immediately you have this information on
file, you can discriminate among the records and ’find’ only the
ones you want to process, such as:

all managing directors
who live in the London area
are rated as category A
and have not received a letter for two months

You need to think ahead. Even if you don’t know the information
that could be useful for a ’find’ now, maybe you will in a few
months. In any case, you can always add new fields to the end of
the record if need be, or in extreme cases reorganize the
structure of the file completely.

Fields that Help You Change the Order of the Printout

Another exceptionally useful function is the ’sort’ option.
Superbase stores records in the alphabetic order of the index key
field. This is fine as long as the final order of a printed list
is the same. But quite frequently this is not sufficient, even
though alphabetic order may be a necessary component of the
desired result. In the above example of names and addresses, the
records are most conveniently stored in the order of the person’s
surname, so that you can call up an individual record easily to
look at it or change its details. But it is quite likely that
mailings will be done on the basis of the zip code or post code:
this allows you to send out mail on a regional basis, and you may
earn a discount from the post office if you give the letters to
them already sorted.

Superbase lets you change the order in which you output the
records; this is called sorting. (Actually, the database is not
affected by the ’sort’ operation; as I explain in a later section,
’sort’ uses an efficient and economical system of temporary
indexing to achieve its ends.) As with the ’find’ command I
discussed above, ’sort’ can use any field in the record (in fact,
many fields may be used at the same time) to change the order of
the records. Once you realize this you may wish to include some
fields especially for ’sort’ to use. For example, if your name and
address file becomes a file of prospective customers, you may want
to classify them by a field called ’status’, which allows you to
sort the records into status groups, and perhaps print them out
that way.

Designing Files and Indexes

Summary

File design is crucial to the success of your Superbase
application. To start with, you must identify the general data
groupings you will need: your files. Each file contains a set of
individual records of an identical format, each one holding
different data. The data is kept in separate fields, each of which
must have a clear function. When deciding on the fields that will
constitute a file format, follow some simple rules:

1. Break the record down into the smallest components of data.
This gives maximum flexibility.

2. Work backwards from the items you want to see on your printouts
or screen displays.

3. Consider whether you want to be able to process groups of
records from within the file. If you do, will you be able to
'find' them using the existing fields, or will you need to add
some fields specially for classification and database
searching?

4. Will you be able to obtain the desired order of printout from
the existing fields? If not, you may have to add a special
field — or will one of the classification fields do the job?

You should end up with a first draft of the list of fields for the
format of each file. Our example looks like this:

title (Mr/Ms etc.)
initials
surname
first name
suffix (MD/PhD/Jr etc.)
street
city
state
zip
position
category
date last mailed
status

You may well need to modify this list as you learn more about the
details of the different types of fields that can be used in a
format. Most important of these is the index key field, which I
mentioned briefly above, and which leads us into a closer look at
the process of defining the format.

Ordering the File: the Index Key Field
The internal order of the file, comparable to the order of cards
in a card index box, is determined by the index key field,
commonly called the key field or just the key. Each record has one

8

Designing Files and Indexes

key field. The key is stored both separately and in the record
itself, a relationship like that of an entry in a book index to
the page on which the reference occurs. The key is just a way for
the system to look up a record quickly. Although Superbase allows
you to have several records all with the same index key entry
(such as the surname "Smith"), we do not recommend this way of
using the key field. The subject of "duplicate keys", as identical
index key entries are called, is discussed both in the Superbase
Manual and elsewhere in this book, and I shall not go into it
further here. In this book, unless otherwise indicated, all index
key fields are assumed to be for unique entries only.

The index key field is the crux of operating efficiency. This is
no less true in simple systems than in complex programmed
multi-file applications. When you add a record to a file.
Superbase makes an entry in the index. Later, when you go to
output records from the file, the order of entries as they occur
in the index determines the order in which the records appear. So,
you add records for Williams, Baker, Young, and Novak, in that
order, and they will be output in the order:

Baker
Novak
Williams
Young

General Rules for Key Formation
Key Field Length

Set the field length for the key as short as possible. This
reduces the disk space used for storing the index and for
compiling lists of keys with 'find* and 'sort'.

Allowed Characters and Character Sequence

Avoid using characters such as dash (-) or slash (/). Stick to the
characters of the alphabet and numbers. The order of the main
character groups is:

space
numbers 0-9
capital letters
lower case letters

These priorities are illustrated by this list of index keys, which
would be stored in the order:

1smith
llOsmith
2 smith
2smith
2 Smith.a
2 smith.b

9

Designing Files and Indexes

Smith.a
smith.b

Unless the ’.a’ and ’.b' suffixes are used. Superbase will
interpret the keys in each of the last two pairs as duplicates. If
duplicates are being used, 'Smith' will always precede 'smith'.

Dates as Keys

You can't use Superbase's special date fields as keys. To use a
date as a key, first recast it into a form that follows the rules
of sequence. For example, 23rd November 1985 becomes '851123'. All
such keys must be the same length, so dates prior to the 10th of
the month and months prior to October must be padded with a zero:
July 4, 1986 becomes '860704'.

Numeric Keys

If you want to use numbers as index keys, you must ensure that
every key is the same length. If you don't, the normal cardinal
number sequence:

1
2
12
24
154

will be stored as:

1
12
154
2
24

Superbase compares each character position in turn, ignoring the
actual value of the number. To make keys an even length, pad them
with leading zeroes:

001
002
012
024
154

This would allow up to 999 keys; if you need more, increase the
number of zeroes you allow -- but figure this out in advance as it
is quite a job to change the keys of a large number of existing
records.

10

I

Designing Files and Indexes

Using Suffixes to Make Keys Unique

One of the large issues is how to handle keys where the records
are to be stored in order of people's surnames. Do not go for
duplicate keys — this creates more problems than it solves. The
best solution is to make the name an ordinary text field, with the
separate index key being constructed from a combination of the
last name and a unique numeric suffix. For example, the records
for four people called 'smith' would have the keys:

smithOl
smith02
smithOS
smith04

Leading zeroes are used to ensure that all the suffixes will be
the same length, allowing for up 99 smiths in the file. Suffixes
do not have to be numeric — a two character alphabetic code in
the sequence from 'aa' to 'zz' would be Just as effective, but you
might want to use a dot to separate the suffix from the rest of
the name:

smi.aa
smi. ab
smi.ac

In this example I have deliberately not used the whole name.
Usually no more than six characters are needed to differentiate
one name from another, and you can afford to abbreviate it.
However, beware of the pitfalls: 'williams' and 'Williamson' can
only be differentiated at the ninth character.

A commonly raised difficulty is the problem of knowing where you
are in the sequence if you have to add many keys based on the same
name, but not at the same time. Experience suggests that the best
way is to use Superbase's own logic to get quickly to the end of
the sequence, and then write down the new code before entering the
record. I'll go through the actual steps in Chapter 4.

Keys Need Not Be Obviously Meaningful

Although in many cases you will want to ensure that the index key
is meaningful, so that if Mr. Gregory telephones to complain you
can call his record onto the screen merely by typing in 'gregory',
it may be more useful to have meaningless keys. Take a file of
parts for an auto business. The description of any one part — the
nearest you can get to its "name" — may be exactly the same as
for hundreds of other parts. It makes more sense to use the part
number, which is by definition unique. This also allows you to
print out a list of the file by part number without having to sort
it first, as the key order is the required order. The drawback is
that you have to know the part number to call the record back, and
so you will need to have a list printed in description order as
well so that you can look up the part number.

11

Designing Files and Indexes

Structured Keys

Keys can be much less meaningful to a casual observer than a part
number. You may prefer to devise a coded scheme of your own to
help you keep records in an order that cuts down the need for the
'find* and 'sort’ functions. Take a key such as
’d.citi.851101.1423'. Here a banker who regularly makes deposits
or arranges loans with a variety of banks has adopted a scheme
based on transaction type, four letter bank code, the date, and a
unique suffix derived from the 24 hour clock in case more than one
transaction of the same type to the same bank occurs on the same
date.

d Transaction type: d for deposit, 1 for loan. A printout of
the file will list all the deposits and then all the
loans.

citi Bank code. All deposits for Citibank will be grouped
together, as will all loans.

851101 The date. Recast into numeric sequence, it ensures that
the printout lists all transactions of the same type in
date order for each bank.

1423 The time. No two transactions to the same bank can occur
at the same time, so this is a useful way of ensuring
uniqueness as well as preserving the actual order of
events in the printout.

Structured keys really come into their own with programmed
applications, but even a little experience of 'find' will show you
how helpful they can be. Of course, any element of data can be
used as part of such a key: codes for multiple transaction types,
gender identifiers, active/inactive flags, cross-references to
other files in a multi-file system. At this stage, all you need to
do is be sure you understand the principle, so that even if your
first index keys are simple, you will be able to incorporate a
structured element if it's obviously appropriate to your data.

Before going on to consider the other types of field allowed in
Superbase records, come to a provisional decision about what kind
of index keys you want. Don't be too absolute, as the next chapter
may suggest changes to your first ideas.

12

I

CHAPTER 2
DESIGNING THE FIELDS

Text Fields
The text field is the workhorse of the system. If you’re not sure
which type to make a field, go for text. Almost any characters can
be stored in a text field, except for the illegal double quotes
(inverted commas). However, if you use the following, you may
invalidate some of the ways in which 'find' represents its search
criteria:

?*/-><

Notice the dash in particular; this tends to be overlooked when it
appears as a hyphen in a name.

Text fields can be up to 255 characters long, thus extending
across three 80 column lines. Some users complain when they find
that Superbase does not use wordwrap! We tell them gently that
it's not a word processor, and suggest that if they need one they
buy Superscript. Seriously though, it's very tricky to format the
contents of text fields in a printout, so if that's a requirement
you should consider a different approach. A compromise solution is
to set up a number of text fields and be careful when you type the
data in. Here's an example that was needed when the user had to
print out a list of names stored in text fields, but did not want
to have one field per name:

The output:

Tony Rome
Bernard Small
Liz Schwer

The text fields:

Peter Thomas
Daniel Grossmund
Cecil Watson

tX <Ton3f Rome Peter Thomas >
t2 SmaXX Daniel Gxossmund>
f3 <Dias Scimer Cecil Watson >

But notice that if Tony Rome was deleted, Peter Thomas would
appear in his place, as Superbase strips away any leading spaces.
Also, if Daniel Grossmund was eliminated, there is no way to close
up the gap by moving up data from the next field. You would have
to retype it.

Superbase also strips away any spaces between the last character
of data and the end of the text field. So a field that looked
like:

‘name ^ <Bp‘, >

would be stored as just two characters. This is called variable
length storage, and allows Superbase to make good use of the small
disk capacities it often has to work with. So you can afford to

13

Designing The Fields

be generous when setting up text fields. Always allow a few extra
spaces for that longer exception to the rule. (Even if you get it
wrong, it’s easy to fix: re-enter the ’format’ option, position
the cursor inside the field, insert some spaces into it, then
finish the function normally.) However, if you become too
generous, you will find that when you come to finish the
formatting function Superbase gives you the "Record Too Long"
error message. If this happens there’s nothing for it but to
reduce the length of some of the fields.

One disadvantage of long text fields only appears when you print
them out (or view them with ’output'). Superbase prints the whole
length of the field, even if it’s empty or has only one or two
characters in it, unless you include an instruction to shorten it.
Keeping the field length short to begin with can make this extra
instruction unnecessary.

In general, use text fields for any category or analysis fields
you’re going to need for ’find’. Make them longer than the length
of the category code itself, as you want room to type alternatives
in when specifying the ’find’ criteria:

code <a/b>

The field needs to be three characters long even though it will
only be used to store a single letter.

A feature of Superbase is the ability to store numbers in text
fields and refer to them in arithmetic processing. I suggest you
avoid this except in the simplest applications, as it reduces
flexibility. Clearly, this feature conflicts with the principle of
breaking the data down into its smallest components.

Numeric Fields
Numeric fields are relatively simple creatures — all they do is
store numbers, right aligned, to the decimal point if you specify
one.

Numeric fields are automatically checked when you enter data into
them, to ensure that no non-numeric data creeps in. This is very
useful, as you can be sure when using ’find’ or calculating a
total that the results will not be invalidated by a bad piece of
data. There is no provision for checking the range of input data
(for example, whether a number is between one and ten), without
programming the input operation, as explained in Chapter 9.

Date Fields
The properties of date fields are also few. A date must be within
the 20th century, and must be entered in one of two forms:

ddmmmyy
or mmmddyy

14

Designing The Fields

The form is not determined when you set up the date field.
Normally a date field is seven characters long, and displays the
date in one of the forms shown above. If you wish, you can extend
the length of the field to show the day of the week:

1. Set a normal date field, pressing return at the end of it.
2. Cursor left into the field.
3. Insert four spaces.
4. Leave the field.

Dates are stored internally in Julian form, which means they are
basically treated as numbers, not characters. This imposes some
limitations on how you can process date fields.

Like numeric fields, date fields are checked on input. You cannot
enter an invalid date. If you have an eleven character field, the
word "bad" will appear in place of the day of the week if you try
to input an invalid date. As with numeric fields, range checking
beyond the simple question of validity can only be achieved
through programming.

If you need to process dates in a way that conflicts with
Superbase's rules, you must use another kind of field. Usually a
text field is sufficient for storing dates outside the 20th
century, such as 5th November, 1605, or even for 20th century
dates where the form has to include the full year, such as "1986".
Such a field will be no good for sorting, though, and if you need
to sort on non-20th century dates you should recast them into
numeric form and store them as in "16051105" in either a numeric
or a text field; this could appear right next to the text form of
the date.

Constant Fields
This type of field can be very useful and is underused. Basically
a constant field is a text field with a preset value that is
presented each time you add a new record to the file. Typically,
you use constant fields to hold data such as the current tax rate,
or a description that occurs in more than 50% of the records in
the file. When you add a record, the cursor moves into the
constant field, which is already showing the preset value, giving
you the option to accept it by pressing return.

However, you don't have to accept the presented value. You can
edit it. This allows you to set up a constant field to hold the
most frequent content of a field, changing it only when necessary.
Suppose a file of names and addresses referred predominantly to
women. You could set the 'title' field to "Ms", and you would only
need to alter it whenever a man's record was added. Where the
content is longer, considerable typing time can be saved. A
further refinement has the constant field holding partial data
which is always the same, but is completed with different data for
each record. A cautionary word — the maximum length of a constant
field is 32 characters.

15

Designing The Fields

You can change the semi-permanent content of a constant field. If

you do this (by editing the format), all future records will hold

the new value; old records will not be affected. So, if the tax

rate changes, your old records will still hold the old rate.

Result Fields
Result fields are one of the most powerful features of the

Superbase system. Properly used, they can perform a number of

important tasks and significantly reduce effort in other areas,

such as reporting and analysing data. Many people find it helpful

to understand a Superbase result field as a kind of formula,

comparable to the cell based formula of a spreadsheet. Rather

confusingly. Superbase calls the formula a calculation, but I

think that for the purposes of this discussion formula is better.

A result field formula can use many of the same components as a

spreadsheet formula:

arithmetic functions

arithmetic operators

references to other data elements

numeric values

external variable values

Arithmetic Functions

These are neither as extensive nor as specific as those in the

average spreadsheet. There are no 'sum' or 'NPV functions, for

instance. The available functions are those of the BASIC

programming language:

abs

asc
atn

cos
exp

int
len

BASIC string functions are not allowed. In practice, few of these

functions are used, certainly not in the majority of business or

home applications. Nevertheless, they have their uses, as some of

the examples later on in the book will demonstrate.

Arithmetic Operators

The allowed operators are also those of the BASIC language:

+ >

/ (
*)

log

sgn

sin
sqr

tan

val

16

Designing The Fields

<

The same evaluation hierarchy and the same rules of permissible
combinations apply here as do in BASIC, and the introduction to
your BASIC programming manual will give all the necessary
information.

References to Other Data Elements

Other data elements means other fields in the record. You cannot
refer to the result field itself within a formula, so if the
formula for the field [total] was set up like this, while it would
not be illegal, it would produce a loop within the field:

[total]: [total]+[amount]

(In these examples, I place the name of the result field on the
left, and the formula for it on the right. Actual definition of
the formulas is part of the ’format* function.) Such an expression
can form part of a ’batch' updating command, and I shall explain
later how to use ’batch’ to maintain running totals in records.

Usually a result field formula performs a simple calculation such
as adding two fields together:

[total]: [amountl]+[amount2]

This can be extended to include many common calculations:

[total]: ([amount]*[quantity])-[discount]

Note that as date fields hold the date in Julian or numeric form,
they can be used in result fields to compute the number of days
between two dates.

[interval]: [date2]-[datel]

The number of days obtained in such a result field could be used
in another result to compute interest.

As this implies, result fields can refer to other result fields:

[total]: [subtotall]+[subtotal2]+[subtotal3]+[subtotal4]

You must be careful not to allow division by zero, which may be
hard to trap even if you have a version of Superbase that allows
error trapping (C128 or Apple). This error can occur in any
Superbase version when a result field is used to compute an
average figure:

[average]: ([fl]+[f2]+[f3])/[count]

If [count] is zero the error will occur. The only way round this
is to use a special formula, which is quite complex, but too
useful to be omitted:

17

Designing The Fields

[average]: [total]/(([count]=0)+[count])-([count]=0)

*[total]

Here, [total] is the sum of the fields to be divided, and [count]

is the number of occurrences. In BASIC, an expression of the form

(a=b) actually has the value -1 or 0, depending on whether it is

true or false. So a BASIC program of this form will print either

“1 or 0 depending on the value of a input:

10 input a

20 print (a>10)

30 goto 10

Notice that here I use the '>' operator — all operators are valid

bases for the test. We can use such a test in a Superbase result

formula. In the one above, ([count]=0) evaluates to -1 if [count]

has the value of zero, or 0 if [count] has any other value. If

[count] is zero, the expression ensures that the divisor cannot be

zero; but if [count] is not zero, the expression reduces itself to

allow the number in [count] to be used as divisor.

A common fault when entering a formula is the "Formula Too

Complex" error. This usually means that there are too many sets of

parentheses in an order that BASIC cannot evaluate accurately. You

must break your formula down into subformulas, if necessary

treating them as "working fields" on the record format, and

combine the intermediate results to get your final result. I give

some examples below.

Numeric Values

Often, the result field formula is most efficiently constructed

with the aid of a fixed numeric element. An example is the

calculation of a percentage increase of 12 percent:

[total]: [amount]*1.12

A decrease of 10 percent would be rendered:

[total]: [amount]*.9

But what if the percentage is held in a numeric field or a

constant field in the record? A slightly more elaborate formula

produces the desired result dynamically:

[total]: [amount]*(l+([percent]/lOO))

This also handles decreases if they are input in unary negative

form, e.g. -12.

If you want to obtain a percentage of a field, this is the formula

you need:

18

[percentage]: [amount]*([percent]/100)

Designing The Fields

Another important use of numeric elements is to produce a
conditional result depending on the value input into a field. This
is achieved through a combination of work fields and Boolean tests
as used above in the division by zero formula.

The following example produces a labour charge based on an hourly
rate and a number of hours and minutes worked, the latter rounded
up to the nearest quarter of an hour. The rounding up is achieved
through a series of four result fields which produce 25%, 50%, 75%
or 100% of an hour's charge depending on which quarter of the hour
the number of minutes falls into:

[hours]
[minutes]
[rate]

[quarterl]: (0.25*([minutes] >0)*([minutes]<16) [rate]
[quarter2]: (0.5*([minutes]>15)*([minutes]<31))*[rate]
[quarters]: (0.75*([minutes]>30)*([minutes]<46))*[rate]
[quarter4]: (1*([minutes]>45)*([minutes]<61))*[rate]

[charge]: ([hours]*[rate])+[quarterl]+[quarters]+
[quarters]+[quarter4]

Exactly the same principle would apply to the construction of a
discount table within a record, where the discount percentage
would depend on which field produced a non-zero result:

[quantity]
[price]

[breakl]: (0.4*abs([quantity]>500))*[price]
[breaks]: (0.5*([quantity]>400)*([quantity]<501))*[price]
[breaks]: (0.6*([quantity]>300)*([quantity]<401))*[price]
[break4]: (0.7*([quantity]>200)*([quantity]<301))*[price]
[breaks]: (0.8*([quantity]>100)*([quantity]<201))*[price]
[break6]: ([quantity]>0)*([quantity]<101)*[price]

[disc-price]: [breakl]+[breaks]+[breaks]+[break4]
+[breaks]+[break6]

[order-value]: [quantity]*[disc-price]

Here, if [quantity] is greater than 500, [breakl] produces a
figure which is 40% of [price]. Since all the other [break] fields
will then produce zero, the new price, equivalent to a sixty
percent discount, is obtained in [disc-price] by adding all the
[break] fields. When one [break] field produces a positive result,
the others will always produce zero, so only the contents of one
break field are used to produce the final result.

To complicate things still further, you could set up the table
inside the record itself, with constant fields to hold the
percentages of the original price that apply to the break point

19

These fields accept
the input data.

Designing The Fields

values, as well as the break point values themselves:

pt < *4> p2 < •5> p3 < ,6> p4 < .7> p5 < .a> p6 <X*0>
tX <500> t2 <40D> t3 <300> t4 <200> t5 <X00> t6 < Q>

The field [break2] would then look like this:

[break2]: ([p23*([quantity]>[t2])*([quantity]<[tl]+1))
*[price]

The discount table is wholly dynamic, and you need only make
changes to the table fields to alter the automatic discount
calculations.

External Variable Values

This concept only applies to programmed systems, but since it
follows on so logically from the last topic I have decided to deal
with it here. Superbase allows you to set up variables in memory.
These can then be referred to from within a formula. However, if
the values are not set prior to entering or editing record data,
they will be taken as zero. For example, if a program set up two
tables of values to correspond to the [t] and [p] fields above,
they might look like this

10 p(l)=.4:p(2)=.5:p(3)=.6:p(4)=.7:p(5)=.8
20 t(l)=500:t(2)=400:t(3)=300:t(4)=200:t(5)=100

The [break2] field would look like this:

[break2]: (p(2)*([quantity]>t(2))*([quantity]<t(1)+l))
*[price]

PROGRAMMER'S CHALLENGE: Set up a result field to generate a
subscript from a number input to a record field, and use it to
reference an external array, in such a way that only one result
field is needed to determine the discounted price.

Positioning Result Fields

When several intermediate result fields are being used to
determine a final result, the ordering of the fields on the screen
can affect the internal evaluation. If the intermediate fields
occur after the result, no value will appear in the result until
the cursor has moved past them. If such result fields are the
final fields on a screen, the system will jump to the next screen
(if there is one) before you have a chance to see the final
result.

Changing the Format

Whenever you set up a record format with result fields, print out
the 'status' of the file. This is best achieved with the command

20

Designing The Fields

line ’print:status:display’ (you may need ’print;maintain
s:display’ on earlier versions of the program). I advise this
because if you return to the format to insert or delete fields,
which is not uncommon when first setting up a system, changes to
the format can scramble a carefully designed structure. For
example, if you have three result fields:

[result1]
[result2]
[results]

and you delete [resultl], when you come to finish the format you
will find that the sequence of the formulas will have been
disrupted. In such a case, reference to a printout is essential.

Outputting Formulas

This is rather a misnomer, but it is important to realize that
Superbase allows you to do things like multiply and add fields as
you print them out. If your requirement is only to see the results
of calculations on paper, you may wish to avoid putting result
fields into the record format, and instead incorporate them into
an ’output’ command line or program. This can save disk space for
storing the result, and also reduces the size of the file format,
which allows slightly faster operation.

Calendar Fields (Period Fields)
Much of what was said about result fields is also true for
calendar fields, which are simply result fields for dates. There
is no requirement for complex arithmetic formulas where dates are
concerned. Calendar fields always express the result as a date,
not as a number. The most common application is the generation of
one date from another:

[next-appt]: [today3+90

This finds the date 90 days from the date input into the [today]
field. Of course the figure 90 could be replaced by the value in
another field:

[next-appt]: [today]+[interval]

If you program the system, you could set the value of today’s date
into a numeric variable ’day’, and use this formula to enter it
into the record automatically:

[today]: day

Whenever the record is stored, the current value of ’day’ will be
replaced in the record, so you would have to be careful when
editing records at a later date.

21

Designing The Fields

Forced Fields
The forced field is another underused feature of Superbase. It has
its uses, for example the fact that the key field of a record is
automatically made into a forced field. This ensures that the
record cannot be stored in the file unless it has a key -- an
obvious requirement. If you think of the forced field option as a
way of validating your data, its usefulness becomes clear. Any
field can be set as forced, and this will guarantee that the
operator cannot leave it empty. One thing you cannot do with a
forced field is attach a range check to it. You can do range
checks in Superbase, but they must be programmed in.

Replica Fields
A replica field is one that has the same name as another field.
The original field always precedes the replica or replicas in its
position in the format. The commonest use for replicas is to
carry forward a reference such as the index key field across a
multi-screen format, so that the operator can always see it. A
replica field uses only one byte of storage, but it does count as
one of the 127 fields you are allowed per record. You cannot edit
replica fields, nor can you use them as result fields or index key
fields.

CHAPTER 3
MORE DESIGN CONSIDERATIONS

Field Names
Unless you want replica fields, you must ensure that all the field
names within a record format are unique. There are some important rules
to be followed.

Identifying the Actual Field Name

Superbase takes the first group of characters to the immediate left of
the start of the field as the field name. The limit of the group is set
by the first space encountered going from right to left. For example,
here the field name is [name]:

Middle or family name < >

But here it is [family-name]:

Middle or family-name < >

The maximum length of a field name is 12 characters. So if you set up a
field like this:

Middle-or-family-name < >

Superbase will take the field name to be [middle-or-fa]. It takes the
first 12 characters to the right of the first space encountered, which
in this case occurs before the ”m" of "middle".

Legal Characters

We strongly advise you to use only letters, numbers, and the hyphen and
period (full stop) when naming fields. Some other characters are
acceptable, but you must never use the double quotation mark — " —
and these should be avoided:

[]()/* + - =

Likewise, you can use any word in a field name. Even BASIC or Superbase
reserved words may be used, as the method of referring to fields
ensures that the system can always tell the difference.

Referring to Fields

Whenever you refer to a field, you must place its name between square
brackets. Thus, 'name' on the screen becomes [name] in a command line
or program or result field formula. If you don't do this. Superbase
will treat the name as a BASIC numeric variable, and output or process
it with the value zero.

23

More Design Considerations

Naming Conventions

There aren't any. You can call your fields whatever you want.
However, I recommend strongly that you give fields meaningful
names wherever possible. When you are trying to remember the
fields as you type the parameters of an 'output' command line, it
helps if they are not cryptic gibberish. (On the other hand, some
people maintain that the more bizarre the name the easier it is to
remember. Do your own thing.)

One convention I always use myself is a standard name for the key
field. I almost always call it [code], although I combine [code]
with the appropriate description according to the purpose of the
file. Here are some examples of the code as it might appear in
five different record formats:

Customer code < >

Product code < >

Transaction code < >

Account code < >

Supplier code < >

Very Short Names

There are two situations when field names should be kept as short
as possible. The first is when you have to place many names in a
row across the screen. This may be necessary to preserve the
intelligibility or logic of the input screen -- a very important
consideration. However, the same consideration demands that you
provide the operator with some means of understanding the purpose
of the field. One method is to provide column headings:

More Design Considerations

iiiiiiMiijiiiiiijiiiipIliiiiiiiiiiiiiilililiiilllliiiiiiiliiiliiiiiliiiN^iiiiiiijiiWii^

Quantlts' Oascriptlan^ , Price Tax Total
. HI! Hill I 11 >111'l M Tl Pi T I ll 111 Tl Mj MI ^111’jll'l'l 4MMM MMta* WM MM MM MM MM i

«3<

. >:m<- ^ ■

> d8<

MMMMMMMMM MMm'mmMmIm M«

> vK

> «2<

> v3<

> «.<

> ta<

> t3<

ij4< > d(4< > v4< > t4<

> d5< > v5< > t5<

> a6< > v6< > t6< IIIIB

It is
a 40

easy to see that this format is that of an
column screen, this technique is possible

invoice
without

. Even on
too much

loss of clarity:

Very short field names are useful if you want to ’output' a large
number of fields with one command line. Above, we have six invoice
lines, each of five fields, a total of 30. When you output, two
square brackets must be added to the field name, so even though I
have limited each name to two characters, 120 characters are
needed to refer to all the fields. This is more than the two line
command area of a 40 column screen can handle, though well within
the capability of an 80 column screen. To achieve the desired
result, you would have to program the system and extend the length
of the command line with the 'plus' instruction. This is one of

25

More Design Considerations

the easier programming techniques^ which I explain in Chapter 7.

Field Names in Programs

Also dealt with later in the programming sections is the use of
field names in program loops. In order to avoid explicitly naming
every field when an identical operation is being performed on all
the fields, you must combine an incrementing numeric variable such
as the control variable in a * for ... next' loop with the name of
the field. The field names themselves must obviously be completely
regular so that the program can predict the form of the name
correctly.

Finally, if you have a number of identical or similar files in
your database or databases, consider making the field names the
same in each. If you do this carefully, you will be able to
develop and store command lines and programs which can work with a
multitude of files, saving much effort and disk space.

Visual Design
Even though you may be the only person who uses your database, you
will come to appreciate the benefits of designing the visual
appearance of your record formats with some care. Sooner or later
you will find yourself looking at a screen that you have not used
for some time. What will you do if you can't remember what that
field called "txl" was supposed to be for? If others are to use
the files you set up, the need for effective communication in this
area is paramount.

In general, follow the principles that everything should be as
self-explanatory as possible, and as easy to read as possible. To
this end, make your screens as regular as possible. Here is an
example of an irregular screen:

CUirOHEE code <■ ,■ ^ ■
WDRESS < / >

ctiy < ■ ’ ' -V, ^

This is breaking all the rules — and I have seen worse. The
fields begin at seemingly random column positions, there is no
consistency in capitalization, and some of the abbreviations are
idiosyncratic. There are no divisions corresponding to function.
No use is made of the 1000 character allowance for purely
descriptive text, which covers everything except field names.

More Design Considerations

Careless spelling completes the mess. Yet it is so easy to produce
a clean design:

jkdbiubsses

Customer Code <

Screen 1

Bate < >

..

IMMiii"

Status < >

Here are some guidelines that should help you arrive at
satisfactory layouts:

1. Headings. Treat the screen as a form, and give it a clear
title, separated from the part of the screen used for data
entry. Don't use the word "file"; it's redundant. If your
format has more than one screen, indicate the fact with a
screen number, so you will always know where you are. This is
essential for complex formats with dozens of fields.
Multi-screen formats should have the index key reproduced on
each screen, together with any other data necessary to identify
the record. Use replica fields to duplicate data.

2. Separators. The aim is to improve legibility. Use graphic
characters if they are available, or dashes or equals signs if
you prefer. Graphics characters allow you to design enclosed
boxes for different groups of fields. Blank lines are also
effective, so use them to avoid a crowded feel. You have up to
1000 characters to play with, though these don't go as far as
you might think.

3. Highlights and use of colour. Reverse video is useful to draw
attention to a particular field or area of the screen, but
don't overdo it or the effect will be lost. If you have a
colour monitor, you should definitely set up each file with its
own colour scheme for background, lettering, and border if
available. Then when you select the file or return to the
screen you can tell without reading which one it is. Ensure
that the lettering stands out clearly. If you like you can

More Design Considerations

colour code your files to suit the application: red for
debtors, black for creditors.

3. Field groupings. Here the aim is intelligibility. Often a
record stores several types of information, for example system
data such as the index key, sorting data such as dates or
transaction types, static data such as a name and address,
dynamic data such as an account balance, analysis data such as
search criteria, and textual data such as comments. Each type
of data should be placed separately on the screen, or if
necassary on a separate screen.

4. Multiple screens. Don’t hesitate to use them. To obtain the
next or previous screen while you’re formatting, the commands
are ’fl +’ or ’fl -’ respectively; when viewing with ’select’
use just ’+’ or ’-’ to switch screens. In the example above, I
use ’+...’ to show that there is another screen and remind the
user how to obtain it. The ’-...’ at the lower left of the
second screen would prompt for return to the previous one. It
often makes sense to keep key data on the first screen, and use
other screens for detail or comment fields, especially when you
may want a degree of confidentiality for comments like "Jones
is a lousy credit risk". For very long records that involve
complex result field calculations, you may want to keep a
summary of the final results on the first screen, using replica
fields.

5. Field names. These have been discussed above, but I want to
emphasize the technique of providing subheadings to improve
intelligibility. In the example I used "Analysis Categories" as
a subheading. You can combine subheadings with column
headings to even better effect, especially where the field
names have to be abbreviated:

------- tntoxmatSxxa Hecord---—
Date Package Follow-up Order Value

dl < rl < > Fl < ■Hi
aa < r2 < > £2 < m
dl3 < r3 < > f3 < Bl
d4 < r4 < > £4 < H
d5 < rS < > £5 < HI

> £6 < IHI

6. Prompts. Even if you will not be using a program to prompt the
operator with the correct input, you can still include key
information on the format itself. Suppose a key field consists
of a numeric date and a letter code to make it unique. You can
indicate the required form of input on the screen like this:

28

More Design Considerations

There are one or two drawbacks to using the formatting facilities
extensively. First, the file format takes longer to load when you
select the file. Second, Superbase allows up to three file formats
to be held in memory simultaneously, so that changing from one to
the other is virtually instantaneous. However, the 1000 characters
for descriptive text has to be shared out between all the files in
memory, and if one of them hogs most of the descriptive text then
Superbase has to reload any of the other formats when it’s
selected. This can slow things down, especially in a programmed
application that uses several files; it doesn't matter so much if
you use one file at a time for fairly long periods.

PROGRAMMER’S TIP. Combine standard formats with your own displays

generated from inside the program. This allows you to use flashing

effects and temporary windows for error messages, prompts, file

look-ups, etc,, while keeping the actual formats small enough for

three of them to be held in memory, When displaying error messages

ensure that every message appears in the same screen location,
perhaps near the top or bottom of the screen.

The Database Structure
While I am not proposing to impart a knowledge of the internal
workings of Superbase, I know from experience that a clear
understanding of the most important components and the
relationships between them will help many people to avoid a number
of common errors. The definitions below provide a hierarchy of
Superbase entities from database down to field level.

Database The mass of data from all the files that appear
on the database catalog, which the ’file’ command
displays. On the disk, the database name appears
in upper case, and occupies only one block. This
is because the database name contains only
pointer information, telling the system where
each of the files begins.

File The collection of records identified with a
common format and name, such as "addresses" or
"invoices". A single entry on the database
catalog.

File format The same as "record format" and "file defini¬
tion" . The different terms are used to indicate
the point of view. "Record format" relates the
design of a data input screen to the user who
thinks in terms of individual records. "File
format" generalizes this term and applies it to
the collection of records known as a file, still

29

More Design Considerations

design of a data input screen to the user who
thinks in terms of individual records. "File
format" generalizes this term and applies it to
the collection of records known as a file, still
retaining the sense of a designed layout.

File definition The file format understood as a separate entity
from the database. All the data that you put onto
the screen when you design a record format,
including field names, positions, types, result
field formulas and descriptive text, is stored on
the disk as a file of data. It is essentially the
same as other disk files such as word processed
documents or programs, except that only Superbase
can make sense of it. From the system point of
view it is a file definition, an object that can
be manipulated by copying or deleting like any
other disk file.

Index The part of the database that provides a quick
way of looking up individual record data.
Superbase stores data in 256 byte blocks. Each
such block has certain control information in the
first few bytes, including the file number (its
position in the file catalog, 1 to 15), flags to
indicate whether the block is for index or record
data, and pointers to other blocks. Superbase
registers an error, usually "Index mismatch" or
"Data mismatch" if it does not find what it
expects at any point in this complex structure.
The error condition can usually be cured by
copying the database with a special utility,
issued free with Superbase version 2.

Record The blocks of data, each 123 bytes long, that
comprise the data input into a particular record
format. Records larger than a single block are
chained together with pointers stored in each
block. If this chain is disrupted, for example by
a disk corruption, some data may become
inaccessible.

Field One of the items of data that comprise a record.
Each record can have up to 127 fields, one of
which must be the index key field.

In addition to the database structure described above. Superbase
creates certain other files in the course of normal work. These
are listed below.

Lists The ’find' and ’sort' menu options create
lists of index keys as ordinary disk files. A
list file consists of a number of lines,
maximum length 30 characters, each ending with
a carriage return. Lists are used as external
indexes when retrieving data from a file for

More Design Considerations

are sequential files, and can be loaded or
prepared with Superscript. Help screens are
memos whose names begin with "h” or "h4" or
”h8", depending on the version of Superbase.
You can copy, rename, or delete memos.

Programs In the Superbase context, programs means only
those programs created with the Superbase
’prog' program editor. They are not editable
in BASIC, and BASIC programs cannot be edited
in Superbase. All programs are given the
suffix ".p" when they are first stored on the
disk, but the suffix is not typed when you
’load’, ’execute’, or ’save’ the program. You
can copy, rename, or delete programs, but then
you must type the ".p" suffix.

Output data files These are produced with the ’output to’
variant of the ’output’ conamand. An ’output
to’ file consists of selected fields from the
records of a database file, arranged as a
simple sequential data file. Such files can
have many different structures. They are used
for database reorganization.

Export files

Sequential files

Export files are created with the ’export’
command. They too are sequential files, but no
field selection is possible. The contents of
each record are added to the disk file in
field order. Both output data files and export
files can be ct^ied, renamed, or deleted.

The Commodore 128 version of Superbase
includes an ’open’ command, which opens a
sequential file on the disk. Any kind of
output you do when a file is open is directed
to that file. This makes possible a number of
more advanced operations. When the file is
closed with ’close’, output reverts to normal.
Files created with ’open’ may be copied,
renamed, or deleted.

CAUTION. Be extremely careful when you use commands that affect
disk files. Early versions of Superbase allow you complete freedom

to overwrite files with coimands such as 'find', 'sort', 'output

to', 'memo' and ’export'. 'Find' and 'export' seem to generate the

most mistakes. Remember, never use the name of the file format as

the name of a list or of any other kind of file. If ifou do gou may

have to go through the formatting process from scratch.

31

More Design Considerations

Deleting Records, Files, and Databases
Much confusion exists in this area. People regularly call
Precision Software saying that although they have deleted a file
it still seems to exist on the database catalog, and even if they
manage to remove it from there it persists on the disk. How do we
rid ourselves of these troublesome things?

The difficulty is that a database file has three components; all
must be deleted correctly to remove the file completely. The
components are records, database catalog entry, and file
definition on disk.

Records. Use the 'select delete' option to remove all the records
in turn. Alternatively, write a five line program to do it for you
(see Chapter 6). There are examples elsewhere in this book. You
can tell when all the records have gone by the number of records
indicator against the file name in the database catalog — it
should be zero. Also, you will get an "End of file" message when
you try to flip through the file.

Database catalog entry. When, and only when, all the records have
been deleted, ensure that the file is selected, and use the
'select delete' option one more time. The file name will then
disappear from the database catalog. Now select another file, or
better still reselect the database, and then choose another file.

File definition on disk. The file definition exists on the disk as
an entity quite separate from the database itself, which has now
been dealt with. You may prefer to leave it there, as you could
need it again in the future. But if you want to remove it, select
the 'maintain' submenu, and from it option 8, 'other' . Now type
in;

sO:filename <return>

where "filename" is the file definition you want to get rid of.
After a confirmation check, away it goes. End of story.

File Size and System Design
One of the commonest problems the customer support service at
Precision Software has to deal with is the "Disk Full" situation.
In this section I want to provide some guidelines to help you
design a system that will not encounter this error, which can be
very frustrating and time consuming.

First, try to figure out the average size of your records. The
rules for this are given in the technical appendix to the
Superbase Manual. Here's an example.

In a file of customers, the average number of characters is
thought to be around 150. This includes the customer code, name,
address, city, county, and postcode, as well as telephone number,
account balance, and comments. We also allow one separator in

32

More Design Considerations

between each field. Since Superbase works with blocks of 123
characters, each record will require two blocks, the equivalent of
one Commodore DOS block as used in the "Blocks free" calculation.

On a disk with 150K of space, equivalent to 600 blocks, there will
be room for a maximum of 600 records. But this figure must be
reduced, as we have not allowed for storage of index data.

The average length of the customer code is eight characters. This
allows 32 index keys per Commodore block of 256 bytes. But only
65% of each block is used, to allow room for expansion. So there
will be a maximum of 20 index keys per block. Working backwards
from our estimate of 600 records, we can see that 30 256-byte
blocks will be needed to hold the index data: divide 30 by 4
(number of blocks per IK) to get 7.5K. But this is only the bottom
level of the index.

The higher levels of the index, which is a "tree" structure of
branching pointers and data, follow the same rules as the lowest
level. To point to our 30 index blocks we will need only two more
blocks to hold the 30 index entries at the rate of 20 per block
maximum. Then we will need one more block at the top level holding
just the pointers to the two below it.

Top level: 2 entries, 1 block: 0.25K

Middle level: 30 entries, 2 blocks: 0.5K

Lowest level: 600 entries, 30 blocks: 7.5K

So the total space required for the index is 7.5+0.5+0.25=8.25K.
Add this to the 150K we assumed for the 600 records to begin with,
and we have about 159K of disk space accounted for.

Now give yourself room for manoeuvre. Reduce the number of records
by 20%. This gives a maximum of 480 records for the file.

Here is a summary of the procedure:

1. Calculate average record length in characters. Refer to
technical appendix in Manual.

2. Divide by 123 and round up to nearest integer.
3. Divide by 2 to get number of CBM DOS blocks per record (a).
4. Assign a proportion of the available disk space in K. Multiply

by 4 to get number of 256 byte blocks (b).
5. Divide b by a. Result is maximum number of records (c).

Now adjust for the index.

6. Calculate average length of index key.

33

More Design Considerations

7. Divide into 256 to get number of keys possible per CBM DOS

block.
8. Take 65% of this figure and round down to nearest integer.

This is number of index entries per block (d).

9. Divide c by d (rounding up) to get number of blocks for lowest

level of index (e), and divide by 4 to get number of K

required.
10. Divide e by d for next level of index. Divide by 4 as above.

Repeat this step until the result is 1.
11. Add results of last two steps to get total number of K

required for index.
12. Add this to number of K assigned for records in step 4. If

you've exceeded the disk space, assign less space and go back

to step 4.
13. Reduce maximum number of records by 20%.

Yoii should repeat this calculation for each file in the database.

The reason for the final step, reducing the number of records by a

substantial percentage, is that you must conserve disk space for

creating lists and data files. If you fill the disk right up, you

may find it hard to reorganize the database to recover from the

errors a "disk full" situation can engender.

Volume of Transactions
Some databases are fundamentally static. Once the data has been

entered it changes little. Others involve the addition of new

records, such as invoices, on a daily basis. Whichever type yours

is, it helps to know how often you will run out of disk space. The

maximum number of records is one relevant piece of information.

The frequency of transactions is the other.

You have calculated the number of records you expect to go into
your database. This may have involved calculating the number of
new records that will be added every week or month. Do this now if

you've not already done so.

You now know how often you will need a new disk.

Multi-volume Systems
If you realize as a result of your calculations that a single disk

system will be inadequate, you have two alternatives: opt for a

bigger capacity disk drive such as the 1Mb SFDlOOl or the 10Mb

STIOC (or Sider for Apple users); or plan a multi-volume system

for the smaller drive.

There are two basic types of multi-volume system: those based on

the structure of the data, and those based on time.

A good example of a multi-volume data structure based system is

the London telephone book. Its four volumes divide up subscribers

More Design Considerations

into sections A-D, E-K, L-R, and S-Z. The system allows ro<^ for
growth, and is easy to understand. If you use alphabetic keys you
can adopt a similar system. If these sections are still too large,
subdivide them. There are floppy disk syst^is in the world with 30
or 40 volumes, and they work fine.

A time based system is a little moTB cc»Bplex. T3^ically, such a
system will be an accounting system in one form or another. If so,
try to use one disk per accounting period. Then you can set up end
of month procedures based on whole files without having to do
complicated date based searct^s and sorts.

In this kind of system, it’s iiqportant to maximize efficiency and
ensure accuracy. Almost by definition, control information must be
carried forward from one period to the next. Here are some tips
for achieving a degree of operational efficiency.

1. Set up a disk with all the databases, file formats and any
other files you want on it. Ensure that each file that will
have data carried forward has a **d\aBmy* text field two
characters long as the last field in the format. Do not enter
any record data.

2. Use the single drive backup option to create copies. Create a
year’s suK>ly, plus one or two spares and one to start off next
year.

3. At the end of each period, place My data to be carried forward
into a sequential file. You could do this with ’output to*,
using a single control record with a special key ^ich you put
into a one key list with ’memo'. Or it could be a longer file
consisting of full account informaticm, again created with
’output to’.

4. Use a utility to copy the sequential file with the control data
(you may need more than one for different files) frcmi the
current disk to next mcmth's disk. This is done outside
Superbase.

5. Insert the new disk, select -ttie database and the relevant file,
and ’import’ the control data from the ’output to' file. Repeat
for each file. The dummy text field holds the carriage return
that Superbase places in the ’output to’ file as a record
separator.

Before you do this, be sure you fully understMd the 'output to’
and ’import’ operations. These are discussed in the section on
reorganizing the database in Charter 10.

35

CHAPTER 4
BASIC MENU OPERATIONS

Adding Records to the File
The basic Superbase data entry routine is the 'enter’ option on

Menu 1. There is little to be said about it that is not already

explained in the manual. The option has only one purpose, to add

new records to the selected database file, and few variations of

method during use are possible. However, 'enter' is not the only

way to add new records to a Superbase file: 'select add' ('select

a' is the more common abbreviation) and 'import' are equally

relevant, not to mention the possibilities conferred by the

Superbase programming command 'ask *.

Replicating Records: 'select a'

The difference between 'enter' and 'select a' is that the latter

starts from the basis of an existing record whereas the former

always begins with an empty format. With 'select a', you first

call up any record using one of the options on the 'select'

submenu. When you press 'a' for 'select a', the cursor appears in

the first field of the current screen, which is usually screen 1.

Now you can choose to change the contents of any of the fields,

except for result, calendar, or replica fields. You can edit the

record in the normal way, moving from field to field and from

screen to screen. At any time, you can store it. This means that

by simply making the contents of the key field unique, you can

very quickly produce a duplicate of a record.

When you are entering data in batches, it may pay you to sort it

into a rough order first, so that, for example, all the new

records for a name and address file that share the same surname

can be input together. Then, if you are using index keys based on

name, you can use 'select a' to quickly modify the key for each

new record. If you can also manage to pre-sort the records so
that elements of the address can be carried over from one record
to the next, so much the better. With a little thought, you should

be able to see ways of saving time in any application that

requires frequent entry of new records to a file.

The Problem of Index Key Sequences

I have stressed the importance of avoiding duplicate index keys

except for special applications. The recommended method for

preserving uniqueness in the index key field when there are a

number of identical origins for the key, as in a name and address

file that contains many people called Smith, is to add a numeric

suffix to the alphabetic root:

smithOl

smith02

smithOS
smith04

Basic Menu Operations

smithOS

So far so simple. The problem arises when there are, say,

thirty-four Smiths and you cannot remember which number to give

the Smith whose record must be added next. Here are some

guidelines to help you over the difficulty.

1. Keep a master printout of the file in a readily accessible

form. Reprint it often enough to prevent it becoming hopelessly
out of date.

2. When you add a record that increases the number in a key

sequence, say from ’smith59* to ’smith60*, write the new number

on the printout, and cross out the previous highest.

3. If there isn’t a printout, use Superbase's own logic to find

out what you want. If you tell Superbase to find a record by

looking up the index key — the 'select key' option — it calls

up the record whose key most nearly matches what you enter. If

it can't find a match, it calls up the next record in sequence.

When doing this. Superbase uses a strict letter by letter

comparison method. You can use this to get quickly to the last
record in a sequence:

A. Use 'select k'. When prompted for a key, enter a string of

letters that just misses the last record in the sequence you

want. For exan^le, you want 'smith', so enter 'smj'. Even if

Superbase finds a name beginning 'smj', iHiich is unlikely,

you know that the record on the screen comes immediately
after the last record beginning 'smi*.

B. Now use 'select previous' to call up the previous record in

the sequence. Most often this will be the one that shows the
highest existing number in the key sequence.

C. Use 'select a' or 'enter' to add the new record after making
a note of the required sequence number.

You may need to enter a string longer than two or three

letters. In the above example, all records beginning 'smi' come

before the record beginning 'smj'. So 'smithson' and 'smithers'

will appear when you use 'select p', before you get to

'smith34'. However, the longest string you would need to enter
in this example to be sure of finding 'smith34' as the next

previous record would be 'smith9'.

Converting from Duplicate Keys to Unique Keys

Despite the cautionary notices plastered all over the manual,

several people end up setting up duplicate key files. Most of them

regret it, and would change to unique keys if they could. This is
not too hard, and involves a combination of manual labour and

database reorganization tricks. I discuss it in detail in the

section on reorganization in Chapter 10.

37

Basic Menu Operations

Importing Data

The Superbase ’import’ operation involves taking data from a

simple sequential disk file and storing it in a previously created

Superbase database file.

It’s best to think of importing as a simple way of automating the

intake of data. Whether you are converting from another more

primitive database or simply shovelling records from one Superbase

file to another, ’import’ is extremely useful.

The key thing to remember is that the file format and the

arrangement of data in the disk file must correspond exactly. If

they do not, the operation will become unsynchronized and fail,

usually with an "Invalid FMS parameter" error message.

The data in the disk file must come in the same order as the order

of the fields in the file format. For example, the ubiquitous name

and address file might look like this:

code
name
street
city
state
zip

The disk file must follow the same order:

jonesOl
Barry Jones

234 Main Street
Winesburg

OH

34567
keller04

Wayne Keller

1289 Rose Avenue

Denver

CO
78912

If the data looked like this it could not be imported:

Barry Jones

234 Main Street

Winesburg

OH 34567
Wayne Keller

1289 Rose Avenue

Denver

CO 78912

Basic Menu Operations

The absence of a key and the use of a single line for both state
and zip information leaves only four lines per address, whereas
the file format is set up for six. Two techniques for overcoming
this kind of problem are:

1. Insert blank lines at appropriate places in the data file. You
may have to go through the intermediate step of importing into
a file that matches the disk data file, and using 'output to*
to insert spaces in between existing fields while creating a
new disk data file. Now you can import into a format of any
design.

2. Remember to make your new file a duplicate key file. After
importing the data, print out all the key field entries. Go
through the list writing in any changes needed to create unique
keys. Now edit the file using 'select a' to replicate the
record data with a new index key where necessary. Go back to
the originals and delete them. Print out a new list and check
your work. Finally, use the 'format' option to answer 'n' to
the "Allow duplicate keys" question, thus converting the file
to the preferable format.

A point to remember is that you can import directly into a result
field, and even set one to a false value (that differs from what
would be computed by the formula). You would have to make
Superbase to compute the field to obtain a correct result.

PROGRAMMER'S TIP. Users can become frustrated by the time taken to
store a new record. Batch data entry can be programmed. You use
the 'ask' command to capture data for each field In turn, storing
it in string and numeric variable arrays. This allows input
validation. When a number of records have been entered, the
program loops through the arrays assigning the data to the correct
field names, and stores each record with the 'store' command.

Reviewing the File
Once you have a number of records in your file, you will
undoubtedly want to look at them, if only to check that the
details are correct. Superbase provides a menu of options which
allows you flip through your records quickly and easily. This is
the 'select' submenu. Its options are:

Command Rbbrev. Function

key k look up by key field
current c show current record
next n show next in key sequence
last 1 show last in key sequence
previous P show previous in key sequence
first f show first in key sequence
match m show records to match values
output o dump current record to printer/screen
add a create new record from current

Basic Menu Operations

replace r edit current record and store
delete d remove current record from file

First let’s look at the ’next/last/previous/first' group. Using
these is like flipping through a card index box. Repeated pressing
of ’n’ or ’p’ moves you forward or backward through the file; ’f’
or gives you the first or last record in the file
respectively. If you try ’n' on the last or ’p' on the first
record. Superbase shows the message "End of file".

The ’key’ option provides a way of jumping to any place in the
file, by typing in an index key field, or just a part of one. You
can go to ’smith’, back to ’adams’, and on again to ’mellors’,
each time pressing ’k’ and typing in the key when prompted "Enter
key". The partial key entry feature helps you by allowing quick
movement near to a record whose full key you cannot remember, or
which has a long key that you don’t want to type in full. I always
find it useful to jump to the first of the keys beginning with a
given letter of the alphabet just by typing in "j" or "q" or "v"
or whatever I want. Then I use ’n’ to flip forwards until I find
the record I need.

You will have noticed several references already to the "current
record". This is an important Superbase concept. Every file has
its current record, except when the file has just been selected
and no record has been retrieved from it. Whenever one of the
options I’ve just discussed is used, a record is displayed on the
screen. This is the current record. It remains the current record
until another selection replaces it. This means that you can go
back to the main menu, do calculations, write a memo, even select
another file before returning to the first one, and the current
record will still be there. You summon the current record at any
time with ’select c’; this instantly displays it on the screen.
The concept of the current record becomes very important in
Superbase programs that need to call up records and process them
one by one.

The ’select match’ option is intended to let you call up a
selection of records from the file. As the manual explains, you
type in the values you want onto a blank record format, and
Superbase searches the file for the ones that match your
specifications, showing them one at a time. You call up the next
matching record by pressing ’m’ again, a system that allows you to
use any of the other commands in the interim. Some people don’t
realize that this means that you must force Superbase to terminate
one sequence of matching records before you start another. Do this
by pressing ’1’ to get to the end of the file. Then when you press
’m’ you will see a blank screen ready for you to type values onto.

In my experience, ’select o’ is infrequently used. The most
natural way to use it is to combine it with ’select m’ to call up
a sequence of records, dumping the contents of the ones you want
onto printout. To do this you must first switch output from the
screen to the printer — do this by typing ’print’ while at the
Menu 1 screen, and pressing return. Type ’display’ the same way
after you’ve finished to switch output back to the screen.

Basic Menu Operations

I have already dealt with ’select a’, the command for creating new
records out of old. The ’select replace’ command is your main
record editing command. To use it, first call up the record you
want to edit, using any of the commands available. Then press ’r’,
and the cursor will be positioned in the first field of the
current screen that can be edited. You cannot change the index key
field with ’select r’ — this safeguards the record sequence. Nor
can you edit a result, calendar or replica field. When you’ve
finished, end the command as the manual says (it varies from
Commodore to Apple), and the record will be replaced in the file.

The last command on the submenu is the command for deleting a
record from the file. As with replace, call up the record you want
to delete first, using any of the available commands. Then press
*d’. Superbase asks you to confirm the removal of the record you
are looking at. If you press anything other than ’y’ the operation
is cancelled. If you go ahead, the record is deleted, and
Superbase shows the next record in the key sequence on the screen.

This is fine as long as you don’t want to remove a whole file, or
a group of records. That could be very time consuming.
Fortunately, an automatic record deletion routine is one of the
easiest Superbase programs there is, and it’s covered fully in
Chapter 6.

Searching the File; the "list" Concept
For some people, the concepts of searching and sorting are a
little blurred. Since they are both extremely important in
Superbase, it is worth spending some time on them before getting
into the details of the former.

When we search, we always search for something. This is true in
Superbase too. One of the great advantages of a database is its
ability to hold large quantities of data and yet allow you access
to it in useful ways. In practice, "useful ways" means a lot more
than just making printouts of the files. People want to extract
groups of records from the database by issuing commands, such as
"find the vice presidents of sales and marketing in the states of
California and New York", or the more homely "find the albums on
which Stevie Wonder plays with Aretha Franklin". It’s not a
coincidence that I repeated the word "find"; ’find’ is the
Superbase option that searches the database, and extracts the
records that match the values you input. In fact, ’find’ finds a
"list" of the records that match, as I’ll explain momentarily.

Sorting is quite different from searching. You must be careful not
to let the secondary meaning of the phrase "to sort out", which
indeed implies an element of searching and extracting, become
confused with the use of ’sort’ as a computing term. I go into
more detail about sorting in the next section, but to distinguish
it from searching, we can say that sorting is about rearranging
the order of records, usually just prior to printing them. Sorting
does not involve searching; it’s a quite separate activity.

41

Basic Menu Operations

The "list" of Records

Back to searching. I mentioned a "list". The concept of the list

is absolutely central to Superbase's way of doing things. You

won't be able to use the full power of Superbase if you don't

understand how lists work.

First of all, what is a list? It's just as the name implies, a

list of items. Each item is an index key entry, such as "smithOl"

or "jones99", from a database file. Lists are created by Superbase

as the end result of the 'find' option. They take the form of a

disk file, and so you can easily copy, rename, or delete them. A

list can be any length up to the whole number of records in the

file on which it is based.

How do you refer to a list? Superbase gives every list you make

the same name, usually "hlist" or "hSlist" (it varies slightly

from version to version), unless you give it another name before

you start or rename it afterwards. The list with this name is

known as the "default list". When you refer to it with any of the

commands listed below, you can use just the two double quotation

marks, "".

How do you use lists? A list is a subgroup of the records in a

file, in the form of the index keys of selected records. You can

use the list to process the subgroup in several different ways.

Here is a table of options that shows the range.

Option

output

output to

sort

batch

detail

export

select from

Activity

print or display details

create disk file for word processing

rearrange record order for output

automatic updating of records

output in special report format

dump record contents into disk file

access records one at a time for

processing

How does a list work? Each item in the list is the index key entry

for a record in the database file. When a list is used with one of

the options above. Superbase reads one key from the list, and then

uses it to find the corresponding record in the file (except for

'sort' — see next section), making that record the current

record. When that record has been processed. Superbase reads the

next key, and so on to the end of the list. So I sometimes refer

to the list as a temporary index, which is what it is, although

different from the internal database index described earlier.

Basic Menu Operations

A list is valid as long as no records are added to or deleted from

the file. Also, although I have mentioned only 'find' as a way of

creating a list, there are other ways. You can type one in

yourself with the 'memo' option, or use a word processor such as

Superscript to produce one. If you do this, you must be sure that

every key on the list is valid, or there will be errors when you
go to use it.

The effectiveness of your searching strategies depends on two

things: your understanding of how to specify search values, and

the structure of the record format you want to search. These are

interrelated, and the best way to an understanding of the latter
is through a look at the former.

Hays of Searching the Database

When you select the 'find' option from Menu 1, Superbase presents
you with the first screen of the currently selected file, so that

you can type in the values, or criteria as the manual calls them,

into the fields to which they apply. The record format is shown
with square bracket field end markers to distinguish it from
normal presentation.

name
stxeet

Exact Match

To obtain a match that is exact, except for case differences which

Superbase does not attend to, you include an equals sign:

This will find only records where [name] has the value 'John

Smith' and [city] has the value 'London'. If anything precedes or

follows a criterion used like this with an equals sign, there is

Basic Menu Operations

Smith’ .

Sliding Match

If you want all Smiths, without regard to any of the other
contents of the field, omit the equals sign:

This will come up with all the ’smiths’ in the file. It will also
find Smithers, Smithson, Ladysmith, Hughes-Smith, and Angus
McSmith.

Pattern Matching Characters

The characters ’ *' and ’ ? ’ can be used to match any number and
single characters respectively. You can use ’?’ to help define a
single word in a field:

The string is still matched wherever it occurs in the field, but
we have insisted on finding a space at each end of the word. The
following instances would be matched:

123 Second Avenue
56 Second Street
Forty Second Street Plaza

A more common use of the character is with the equals sign. We
can use the ’*’ only at the end of a string of characters, to
indicate that we don’t care how many characters come after it.
This allows criteria like this:

f
t
o

Basic Menu Operations

Here we are using the special operator to indicate alternatives,
’/’• We are asking for all records where the code begins with ’a’
OR 'b* OR 'c’, AND the city is ’London* OR ’Paris’ OR ’Rome’. We
can also ask for a range of values to be accepted. Suppose the
record format had an [age] field in it; we could request all
records where the age was under 50 and above 30 like this:

pspiSi<5D 3

Note two things: the use of ’&’ to denote ’AND’, and the use of
the comparative operators ’ > ’ and ’ < ’, which you can use for text
fields as well as for number fields (in text fields this sort of
comparison is done on a letter by letter basis). If we actually
wanted the 30 and 50 year olds as well, we would have to change
the criterion slightly:

agpet.:3' 'f.''

This should illustrate the need for care when specifying the
criteria for a search. This is especially true when it comes to
dates. The criterion for all records for October 1985 is as
follows:

>30SEP85&<01NOV85

October itself is not referred to. I wonder how many readers
noticed that this particular criterion is too big for its field?
Date fields are not supposed to be longer than 11 characters. In
practice, many criteria are too long for the field; naturally
Superbase has an answer: the rather jargonish "delayed request
character". On Commodore systems this is the back-arrow key. You
enter it into the field instead of the criterion, like this:

When you press shift/return or Control-R to start the search.
Superbase prompts for the criterion on the command line. On an 80
column system you then have room for about 150 characters of
criterion — more than enough for any sensible request.

Avoiding Meaningless Recjuests

The syntax of search criteria is like a miniature language within
Superbase. As with any language, it is possible to make
meaningless utterances. For example, the criterion ’=Smith&=Jones’
is no good — a field value cannot be simultaneously exactly equal
to more than one thing.

Superbase does not have any priorities in its queries. You cannot
use parentheses to insist that one set of comparisons be done
before another is looked at. So, the criterion ’Paris/London&New
York’ is meaningless. Is it supposed to be ’Paris’ OR ’London and
New York’, or ’Paris or London’ AND ’New York’? Superbase can't
tell.

Basic Menu Operations

Designing the Format to Allow Effective Searching

This leads inexorably to the realization that the record format
must be structured to take into account the kinds of search
requests that will be made.

Suppose a rather different record format where the city is not
part of a name and address, but can be any combination of London,
Paris and New York. If you set up the field like this you could
not search for all possible combinations:

city ' Ttojck >

You would soon run into difficulties like the ones described just
above. Instead, the record must be set up with a separate field
for each possible category, with an indicator such as 'y* or ’n’
in it to show whether the category applies:

Kelt 'tojck <1:1

you can search for any combination:

XtoniSitm I
Paatte * ■ 't4*i ’ 1
Keif

The search will find all records where [London] is 'y’ AND [Paris]
is 'n* AND [New York] is ’y* OR *n*. The third term would exclude
records where [New York] was blank.

An alternative to multiple fields, one for each search category,
is a special purpose selection code field. Such a field must have
a predictable structure to be effective. It could be a constant
field, looking like this:

Each one of the ’x' characters can be replaced by a letter, say
between ’a' and 'e*, so the field contents could range from
<aaaaa> to <eeeee>, with of course any of the ’x’ characters left
unchanged, as in <axxbd> or <xcxee>. Each position and each letter
has its own significance, purely for the purposes of searching.
Now, provided you follow the rules imposed by the structure, you
can extract many different combinations:

??a??/??d??/???e?

This finds *a* or 'd* in the third position, or ’e' in the fourth
position.

bbbcc

This finds ’b’ in the first three positions AND 'c’ in the last
two.

Basic Menu Operations

a&b

This finds any record with an *a* and a ’b' anywhere in the field.
With careful forethought, a very sophisticated system can be set
up using this technique.

Searching for Dates

One example of how to specify a search for all dates for a
particular month has been given above. Basically, you use the
greater than and less than operators, '>’ and ’<’, to indicate the
boundaries of the search. So, ’>31DEC84’ will find all dates for
1985; ’<01NOV85’ finds all dates before November 1985;
^>31DEC84&<01N0V85’ finds all dates between January 1st and
October 31st, 1985; and so on. You can also use the equals sign
operator for single dates, and the OR operator ’/’ where it’s
meaningful.

Often users want to input a date in a program, using the ’ask’
statement, and then base a ’find’ operation on it. This is easy,
but requires some understanding of variables and how to construct
the equivalent of the search criteria screen in a program line
(see Chapters 7 and 10).

Sorting: Rearranging the File
Searching with ’find’ gives you the ability to extract any group
of records from a database file. It produces a list of the index
keys for the records that match the criteria you enter for the
search. The list itself is still in the order of the basic file,
that is in alphabetic index key order. Often, you will want to
print your records in some other order. I have given zip or post
code order as one example. In practice, most files need to be
printed in a sorted order different from the basic index key order
at some time or other. Here are some examples of typical
rearrangements achieved by sorting:

File

names and addresses

customer accounts

invoices

products

personnel

library

Sorted By

zip/post code

balance

customer AND date

product type AND
quantity on hand

date (i.e. seniority)

author AND title

You can see that it is possible to sort by more than one field at
once. In fact. Superbase allows you to sort by as many field names
as you can fit on a command line; this varies between 40 and 80

’ * V

Basic Menu Operations

column versions of the program, and also depends on how long the
field names are. The maximum for a 40 column system is 34 fields,
with a limit of 45 for the 80 column screen. Usually you need no
more than four or five at once, and often just one or two is
adequate.

The ’sort' option is selected from Menu 2. You have to type in the
names of the fields you want Superbase to use in the sort.
Superbase then does the sort, and produces a "list" of the index
keys to the records in the new order. The list produced by 'sort'
is exactly the same kind of thing as the list produced by 'find',
the only difference being that it is not in the basic index key
order of the database file. The change in the order of the keys is
illustrated by this example:

Key Sort Field Sorted List Output order

adams
baker
Charles
douglas

Wyoming
Connecticut
Alabama
Nebraska

Charles
baker
douglas
adams

Alabama
Connecticut
Nebraska
Wyoming

When you select 'sort' you must also specify whether you want to
sort all the records in the file, or just the records whose keys
are in an existing list, which you have previously created with
'find'. This is the meaning of the 'all/from "list"' prompt that
comes up when you select the option.

CAUTION. ’All' and 'from "list”' are alternatives. You should not
type in 'all the records from "hlist"', even though Superbase
would manage to function by taking the last entry, 'from "hlist"',
as the intended one.

Here are some examples of sort commands typed in after the 'sort'
option has been selected:

all on [zip] to "sortlist"

all D- on [balance] to "oustlist"

from "monthlist" on [customer][date] to "chaselist"

all on [product-type][quantity] to "stocklist"

from "" on [date]

all on [author][title] to "booklist"

The second example introduces the idea of the descending sort. The
normal index key order, which I have referred to as alphabetic,
goes from "0" to "Z"; as far as sorting is concerned, this is the
ascending order. But if you want to see your customer records in
order of balance, you probably want to see the largest balance
first. Since this is an order based on decreasing magnitude, we
call it descending order. You obtain a descending sort by placing
the characters 'D-' before the list of sort fields. The term

49

Basic Menu Operations

"descending", also applies to dates, in which descending order
means from most recent to earliest, and to text, in which it means
from "Z" through "z" to "0" (actually the sorting order, for both
ascending and descending sorts, is based on the ASCII code, and
extends to include all printable characters including the space).

Whichever order you choose, the index key itself should not be
included as one of the sort fields (unless it comes before the
final field in the line), since Superbase automatically uses the
key as the final field, thus ensuring that index key order, or its
descending converse, governs the final result. If, in example two,
there were three customers with balances the same, the records
would be in the descending sorted order:

Balance Index Key

2300 smithson
2300 smithers
2300 smith
1900 adams

Normally Superbase can only do either an ascending or a descending
sort. It is possible to set up special result fields in the record
format to produce reciprocals or complements of data elements so
that an apparently ascending sort using such a field in fact
permits output in descending order. I go into this in more detail
in Chapter 7.

The fifth example in the list above shows how to refer to the
default list in a command line. Use "". The same example also
shows that you can omit the name of the destination list, the one
that holds the index keys in their new order. If you do this, the
new list will replace the old one under the same default name,
e.g. "hSlist".

Sorting can be time consuming. To achieve its ends. Superbase has
to read in a group of records, sort them, write the index keys to
a temporary file on the disk, read in the next group, sort it,
merge it with the first group into the temporary disk file, and so
on. If you want to keep sorting time down, reduce the number of
fields used to the minimum, and if possible specify the minimum
number of characters — here is an example of how to specify that
six characters only are to be used when sorting:

all on &6[description]

Automatic Updating
Updating records can be done in two ways: either with the 'select
replace' command, which we've already looked at, or with the
'batch' command, which we consider here.

'Select r' is used for amending the details of individual records.
'Batch', on the other hand, either processes the whole file or
uses a "list" created with 'find'. As with 'sort', when you select

Basic Menu Operations

this option from Menu 2, Superbase presents you with the prompt:

all/from "list" (item list)

You type either 'all’ if you want to update a whole file, or 'from
"listname"' if a subgroup is the target. Then you must specify the
expressions that determine how the updating is to be done.
Basically, an expression consists of a field name on the left of
an equals sign, with an assignment on the right. It's similar to a
BASIC language 'let' instruction:

all [amount]=[amount]+1

This command reads through the whole file record by record. For
each record, it adds one to the [amount] field, and stores the
record. You can use the same kind of arithmetic to achieve
percentage changes as in the result field examples earlier on:

all [amount]=[amount]*1.1

More interestingly, you can include more than one updating
expression in a single command line. However, you may not have any
given field on the left of the equals sign more than once in the
line.

The multiple assignment technique allows you to maintain running
totals in a record format, when the fields have been set up
properly to begin with:

new ainoimt < >
■ miming total < / > ' "V

During data entry, only the [amount] field receives any input. The
objective is to read the file, add the contents of [amount] to
[total], and reset [amount] to zero. The 'batch' command line to
do this is as follows:

all [total]=[total]+[amount];[amount]=0

In a large file with few updates due, you would save time by first
doing a 'find' to produce a list of all the records where [amount]
was greater than zero ('>0'), and telling 'batch' to process the
list instead of all the records.

In the example above, notice the use of the semicolon to separate
the expressions. This is essential.

'Batch' can be used for many other activities, including
totalling, counting, calculating maximum and minimum values, and
doing conditional updating.

Doing Calculations
Since the overall subject at this point is Setting Up a System, it
should be useful to have some idea of what the 'calc' function,

51

Basic Menu Operations

option 5 on Menu 1, is for.

It has no practical relation to the result field formulas we
looked at earlier, though they do in fact use some of the same
internal Superbase code. 'Calc' is most often used to do quick
arithmetic, using BASIC operators, as in these examples, which you
type in after selecting ’calc’ from Menu 1:

23*45 <return>

3456*.15 <return>

144/17 <return>

The result is displayed on the screen until you press return.

You can also use ’calc’ with the fields of the current record. So
you could type, for example:

[amount]/7 < return >

The result is displayed, but the contents of the field are
unchanged. On the other hand:

[amount]=[amount]/7 <return>

inserts the result of the calculation into the [amount] field
itself. To see the result, you would use the ’select c’ option to
display the current record.

Output
This is the final objective of the whole database system. We set
up file formats, enter data, update it, review it, extract lists
from it and sort them, only so that we can, when all is done,
produce some output.

Superbase is very good at this end of the system. It’s best to
think of output as having three directions or modes: printer,
screen or disk (only one at once). The last one, disk output, is
for word processor data files, and is mainly concerned with
listing fields in a certain order. The other two, printer and
screen, are more frequently needed. Most of the points I shall
make in this section apply to both these types of output, but
there are often some small differences between them, even though I
don’t always give details unless it’s important.

When you want to switch output from screen to printer or vice
versa, you must use one of the direct commands ’display’ or
’print’. You type these in from Menu 1, pressing return at the
end. Whichever was typed last determines the direction of all
output until the other is typed.

The ’output’ option is the fourth on Menu 1. When you select it,
you see the same prompt as for ’batch’:

52

Basic Menu Operations

all/from "list" (item list)

As with the other commands, you specify either all the records or
the name of a list that you previously created with 'find'. Then
you go on to specify the items you wish to output. Here is a table
indicating the kinds of element that can be used with this option:

Item Example

field [name] [street] [city]
[amount] [date]

text "Telephone:"
"Current status:"

formulas [amount]*[quantity]
[date]+90
int([amount]/1000)

BASIC variables a$
expressions and amt
functions asc(x$)

You simply type in the names of fields or any of the other
elements you want to output and Superbase produces a list. A
typical 'output' command line looks like this:

all [name][street][city]"Phone:"[telephone]

The resulting list will be:

John Jones 21 Main Street Winesburg Phone: 503 456 7891
Simon Poole 3456 Ocean Blvd San Jose Phone: 715 685 2345
Mary Valdez 1212 Pine Laguna Beach Phone: 912 234 4564
etc.

These are the characteristics of the basic output list:

1. The full length of fields as specified in the format is output.
Trailing spaces are not removed from text fields. This produces
regular columnar output, as above.

2. Numeric fields are output with the full numeric format of nine
character positions before the decimal point, and two after.
There is one extra position for the sign, and one for the
decimal point itself.

3. Every kind of element is output with one space after it. Always
allow for this when calculating the expected position of an
output item.

4. The elements of the 'output' command line appear once for every
record processed.

53

Basic Menu Operations

5. Date fields are output at a length of seven characters.

6. There is no way to perform tests on the records as they are
output.

This kind of output is often all that is needed. However, many
users want to produce more carefully formatted output, and to help
them Superbase provides a number of formatting commands to perform
the following functions:

Command Function

& Truncates text

&5,2 Formats number, e.g. as 99999.99

@x Positions item at column x

@x,y Positions item at column x, row y

Various combinations of these commands, and indeed of a number of
subtler variations on them, all of which are listed in the Manual,
allow output items to be very flexibly manipulated. A typical
command line could be:

all@5[name]@25&5,2[balance]@40[telephone]@5[street]
@5[city]@5&[state][zip]

The resulting output would be:

5 25 40

John Jones
21 Main Street
Winesburg
OH 34567
Simon Poole
3456 Ocean Blvd
San Jose
CA 91232
Mary Valdez
1212 Pine
Laguna Beach
CA 93456

etc.

There are a number of things to notice about this example. I have
included a ruler line to illustrate the effect of the positioning
commands. Each of the name and address items is positioned at the
same column. This ensures a neat format, but you must take care
that the items are mentioned in the command line in the order in
which the printer will physically deal with them — it cannot do
the address and then go back up four lines to print the balance
and phone number. The numeric field, [balance], is positioned at

54

678.89 503 456 7891

1234.00 715 685 2345

456.99 912 234 4564

Basic Menu Operations

column 25; it is printed right aligned, so the 5,2 format results
in leading spaces. The [state] field is truncated of its spaces,
and followed immediately by the [zip] field without a positioning
command. Lastly, there are no blank lines between the records. To
obtain one, you place the additional formatting command ’@1,0' at
the end of the command line.

The example assumes that the [name] field is no more than 18
characters long. 18 characters printed at column 5 brings us to
column 23; add one for the space at the end of the field, and the
next field starts at 25. But what if the [name] field was longer
than 18? Say it was 20. You would see this result:

5 25 40

John Jones

21 Main Street
Winesburg
OH 34567
Simon Poole

3456 Ocean Blvd
San Jose
CA 91232
Mary Valdez

1212 Pine
Laguna Beach
CA 93456

etc.

678.89 503 456 7891

1234.00 715 685 2345

456.99 912 234 4564

Superbase tries to print [balance] at column 25 on the same line
as [name], fails because that column has already been occupied by
the tail end of [name], and prints [balance] at column 25 on the
next line, disrupting the format. If you find fields going adrift
in a printout, this is almost certainly the reason.

Output 'across' or 'down'

The examples we’ve looked so far have all been of output ’across’.
Superbase starts outputting the details of each new record on a
new line. This is the most common form of output, and this is what
is set when Superbase starts up. However, there is another form of
output, ’down’, which is set either by typing it on the command
line or by incorporating it into the main output command line.
Output ’down’ means that Superbase starts every new record on a
new page: "page by page" output.

Page by Page Output

It is quite possible to print the details of each record at any

55

Basic Menu Operations

position on the page. You are not restricted to line by line
output. A command line to illustrate the extreme of this approach
would be:

all down @5,1[name]@55,60[balance]

We would then see the following:

John Jones

(55 lines)

Simon Poole
678.89

(55 lines)

Mary Valdez
1234.00

(55 lines)

456.99

The limitation of 'output down' is that you can only put one item
on each line, and in many cases 'output across' is in fact
preferable for producing documents such as invoices.

Output Parameters

There are a number of direct commands for altering the parameters
of the 'output' function. Each one is typed on the command line
followed by the appropriate value. The values in the examples
below are those set when Superbase starts up.

Page length: plen 66

Text length: tlen 60

Left margin: Imarg 1

56

The 'plen' command sets the maximum
number of lines on the paper at six lines
per inch. The default is for 11 inch
paper. Pre-printed stationery is often
shorter than 11 inches.

This command limits the number of lines
allowed on the paper, effectively
determining the bottom margin. You
determine the top margin by aligning the
top of the paper physically.

The value given sets the left margin. You
may need to use this if the default

Basic Menu Operations

output is crowded against the edge of the
paper. If you do, remember to increase
the right margin by the same amount or
more to avoid compressing the output line
length.

Right margin: rmarg 80 Sets the position of the right hand
margin. The maximum value is 255 for the
printer, 80 for the screen. This makes
"landscape" style printing easy, provided
the printer can handle it.

Spacing: space 0 Sets single, double or triple spacing.
Every line is spaced accordingly, so this
is no good for separating records grouped
as in the example above, although it
would be suitable for one line records.

Continuous print: cont 0 Normally Superbase prints without pausing
for a break between pages. To change
this, type *cont 1' from Menu 1.

Linefeed: Ifeed 1 If the printer overprints all lines, use
'Ifeed 1* to switch linefeed on;
conversely, ’Ifeed 0* should eliminate
unwanted double spacing.

Totalling

A much desired item, that is unfortunately not possible with the
simple 'output’ option. If you want to produce totals from the
fields that you print, you must use the various commands available
for reporting, which I discuss at some length in Chapter 8.

Disk Output

Output to the disk is often required for word processing mail
merge operations. (Of course this is not necessary if you own the
Commodore 128 version of the program, which integrates in memory
with the Superscript word processor from Precision.) Disk output
is achieved with a variation of the ’output’ command, 'output to'.
Basically, you have the option to specify a file name as the
destination of the output. All the possibilities of formatting and
’across’ or ’down' output are allowed, and you can generally
create a data file to suit whatever the word processsor wants. As
far as Precision products are concerned, the ’fill’ subcommand can
be used to specify output compatible with Easy Script or
Superscript. First, an. example of a command line that inserts
commas between the fields:

all across to "datafile" &[name]’’,’’&[street]’’, "&[city]
state] & [zip]

The result would be:

57

Basic Menu Operations

John Jones , 21 Main Street , Winesburg , OH 34567

With 'fill’ the command line looks like this:

all fill to "datafile" [name][street][city]
[state][zip]

The result would be:

John Jones
21 Main Street
Winesburg
OH
34567

Simon Poole
3456 Ocean Blvd
San Jose
CA
91232

Mary Valdez
1212 Pine
Laguna Beach
CA
93456

Notice the blank line inserted after each record.

This ends Part I, Setting Up a System. We have covered all the
important elements of the Superbase system as they are first
encountered by the average user, and indeed by all users as they
first learn the system. In the next section we shall build on this
basis and see how to create a system that uses simple programs to
obtain a significant increase in power and convenience.

PART II

THE AUTOMATED DATABASE

CHAPTER 5
USING THE COMMAND LINE

Beyond the Menus
Many Superbase users are quite content with the menu driven
capabilities of the system, and indeed resist the suggestion that
they might make things easier for themselves if they were to learn
something about programming. The idea of programming apparently
terrifies some people, which is why I introduce the more familiar
concept of automation first. After all, everyone understands the
advantages of an automatic transmission in a car, or an automatic
pilot in a plane. Of course. Superbase is itself an example of
automation in action. Whenever you add a record to the database.
Superbase automatically inserts it in the correct place in the
file. And when you use *find’ to search the file, thousands of
comparisons may be made automatically. Automation, in fact, is
both a purpose and a method.

So, the following pages are not a jump into a swamp of
intimidating jargon, but a natural extension of your understanding
of Superbase from the point you should have reached if you've read
this far — a fairly good sense of the basics of the system, and
of how the main menu options are related and intended to be used.
You are going to learn how to make life easier by automating a
number of repetitious operations, saving both time and the effort
of remembering a lot of tedious detail.

I shall begin with a discussion of the Superbase command line, and
how to use BASIC memory variables to advantage. Before getting
into the first practical example, which deals with deleting
records en masse, I spend some time examining the crucial first
step of planning your actions. The deletion example is followed by
some advice on managing your programs — to prevent you
accumulating disks full of junk. Then we go through the automation
of what I call the "core" activities of the system: searching,
updating, sorting, and output. The section ends with a close look
at the 'report' functions, which allow several powerful analytical
operations on the database.

The Comand Line
Some users have no idea that Superbase has a command line. This
might be considered a proof of the virtues of the system -- you
can run it entirely from the menus — or a tiresome fault -- why
on earth aren't users informed about it with a simple cursor
prompt? On balance, and after much experience of educating
incredulous owners, I incline to the latter view. The command line
is much too valuable to be left as a buried treasure. So our first
job is to excavate it.

What is "the command line"? When you're looking at the normal
Superbase screen, either Menu 1 or Menu 2, you cannot tell from
anything on the screen that it is possible to type anything other
than the menu option function keys. In fact, you can type any key

Using The Comand Line

on the keyboard, except a number, and the characters pressed will
be displayed on the second line of the screen. By typing a valid
Superbase command, such as one of the ones listed on the menus,
and pressing return at the end of it, you directly affect the
system in some way. The commands are not restricted to the menu
options. They can include all the Superbase commands listed in
part two of the Programming Section of the manual, and indeed any
legal direct BASIC command that Superbase does not disallow. If
you type garbage. Superbase will tell you; likewise if you make a
mistake in the command — the "syntax". The only thing you cannot
type directly is a number, but you can always tap the space bar
once to bring up the command line, and then type the number.

Important Commands
The command line is invaluable. It gives you great control over
the state of the system, allowing you to change the parameters for
everything from the number of the current disk unit to the
contents of a single field in a record. Here are some of the most
important commands for operations ranging from database selection
to printer margin setting. You should be familiar with these
commands if you are going to learn to program the system, so I
suggest you read up the summaries in the Manual (Programming
Section, part two)

Every command Is completed by pressing return.

database Sets, or logs in to, the current
database. Obviously a crucial command.
You can set the database on any disk
drive that the system can address. This
applies to a second disk unit provided
Superbase can address it as a separate
unit.

database "sales",8,1 Logs in to a database on drive 1 of a
dual drive unit.

database "sales",9,0 Logs in to a database on drive 0 of unit
9 — a second unit.

database "sales" Logs in to a database on drive 0 of the
current unit; in the case of a single
floppy, this is obviously the only drive.
If you omit the specifier, the system
always looks for a database on unit 8,
drive 0 — it does not look at the most
recently used drive.

(The above examples are for Commodore drives; for Apple users the
logic is the same, but the syntax is different, so refer to your
manual.)

directory The familiar command that shows the disk
contents, also available from the
’maintain* submenu, but very often used
directly, especially in its abbreviated

60

Using The Comand Line

form (see below). The Apple equivalent is
'cat* or ’catalog*.

Selective views of the directory are possible. If you name your
files carefully, you can use the pattern matching characters
and ’?’ to produce partial directory displays. You cannot use
'directory* for this, but must turn to the ’other* option on the
’maintain* submenu, which gives access to most of the Commodore
DOS commands. From the command line, ’maintain other’ with a
request for a display of all files beginning with "a” is achieved
like this:

maintain o "$a*" ’Other’ is abbreviated to its initial
letter, and followed by the Commodore
disk command within double quotation
marks. The same technique can be used for
scratching or copying files with the
appropriate Commodore disk commands.

maintain o "sOijunk" Scratches the file called "junk” from
drive 0.

list If you have a Superbase program in
memory, ’list’ shows the first 23 lines
on the screen. Pressing return scrolls
you through subsequent lines. If no
program is in memory. Superbase gives the
message "No program present"; so if
you’re not sure whether there’s anything
there, use ’list’ to find out. When
you’ve got output set to the printer (see
below), ’list’ prints out the program —
an important safety precaution.

list 100- This variant lists all lines from line
100 onwards.

new A companion command to ’list*. Use ’new’
to clear out any program in memory — not
Superbase itself, but a Superbase
program. You must do this before
selecting ’execute’ from the menu, if you
want ’ execute ’ to prompt for a program
name.

quit The command that does clear out Superbase
itself. Pops you back into BASIC after
closing any open files and generally
tidying up the database. Use with care.

print Whether used on its own, as here, or with
a string or field name, as in the
examples below, ’print’ switches the
direction of output to the printer. It
remains in force until a ’display’ comand
is used. The results of an ’output’

Using The Conmand Line

command, of ’list' or ’status' or
'directory' or 'catalog', will appear on
the printer if one is connected. Note
that the Superbase ' print' on its own
does not cause a linefeed on the printer,
unlike the equivalent BASIC instruction;
to achieve that, you must enter 'print
II III

print "Test" In addition to switching output to the
printer, this command actually prints the
word "Test". Use this as a quick way of
checking that the printer is set up
correctly.

print [name] This example prints data from ther [name]
field of the current record.

display This command is the opposite of 'print',
in that it switches the direction of
output to the screen, until a 'print'
command reverses it.

display @3,10"Screen 1" Displays the message at column 3, row 10.
Display co-ordinates may not exceed 80
for the column (40 where relevant) or 23
for the row (22 for Apple).

display [name][phone] Shows the two fields on the screen one
after the other.

find "listname" An example of how to name an index key
list. When you press return after typing
the name. Superbase opens a new list with
this name, and then calls up the usual
record format with square bracket field
markers for you to enter the search
criteria.

tlen 23 Sets the text length to 23 lines. This
allows you to print out help or memo
screens on single pages. Use 'tlen 60' to
reset to a text length suitable for 11
inch paper.

plen 33 Sets the page length to 33 lines. This
allows you to use normal length paper for
half size pages.

rmarg 132 Sets the right margin on the printer to
column 132. The right hand display margin
is unaffected and remains at the width of
the screen, 40 or 80.

None of the three commands above works for screen display. Only
the next command, 'Imarg', has an effect and thus needs to be

Using The Coomand Line

reset when you change from printed output back to screen output.

Imarg 30 Sets the left margin to column 30. Use
’Imarg’ on its own to reset to the
default value (i.e. the value set in the
"start" program).

pdef 0 The first of the two printer set up
commands, *pdef* is concerned with the
type of character and control codes that
Superbase outputs to the printer. These
can be either Commodore ASCII (values 0,
5, and 6) or standard ASCII (values 1 and
2). Values 1 and 5 are suitable for
printers with Epson compatible control
codes, and values 2 and 6 for printers
with daisywheel type control codes,
normally Diablo compatible. Value 0 suits
Commodore compatible dot matrix printers.

pdev 0 The second of the two printer set up
commands is here used as for a Centronics
parallel interface connected to the
computer's user port. See the Superbase
Manual for details of the parameters
which must be entered for other types of
interface.

(The references for these last two commands apply only to
Commodore versions of Superbase; different parameters and meanings
exist for the Apple version, and are detailed in the appropriate
manual.)

Use of the Coomiand Line
A few tips to reduce frustration and improve efficiency.

Editing Commands

You can move the cursor along the line in either direction with
the normal cursor movement keys. Likewise, the keys for inserting
and deleting are available. The spaces between commands and the
values that go with them are not compulsory — you can just as
well type 'lmarg20' as 'Imarg 20’. In fact, you can leave the line
with any size gaps between the parts of the line, as long as there
are no meaningless characters on it. Use the delete key or the
space bar to remove junk from a line before pressing return, which
you may do with the cursor at any position.

Quotation Marks

Double quotation marks are used to set off the name of a file or
database, or a piece of literal text such as "Hello", or a string

Using The Command Line

for use with 'maintain o' (see above). You can omit the closing

quotation mark provided there is nothing following the relevant

name or text.

Colons and Multiple Commands

A great time saver. You can string any number of commands together

on one line by separating them with colons. Instead of typing:

plen 66 <return>

tlen 60 <return>

Imarg 20 <return>

rmarg 75 <return>

print "Test <return>

you can type:

plen 66:tlen 60:Imarg 20:rmarg 75:print "Test <return>

You are only limited by the size of the command line area -- 159

characters or 79 characters depending on screen width. If your

commands require more space, never mind: for this we have

programs.

Recalling the Command Line

The best feature of the lot. By pressing the back arrow key (<tab>

for Apple), you recall the last command line onto the command line

area. You can now press return to execute it again, or make any

changes you want and then press return. The line can be recalled

as many times as you like, so you can afford to experiment freely,

for example with output lines involving many field names, knowing

that you do not need to retype the bulk of the line.

As the last sentence implies, command lines that are input
following the selection of a menu option such as 'output' are

retained for recall just like lines that originate by being typed

in full. (In some early versions of Superbase you may need to
supply the leading command word corresponding to the menu option

itself before re-executing the line.) Here is a command line for

setting up the printer which is designed to be repeated with

different parameters for 'pdef and 'pdev' until the correct

result is obtained:

pdef0:pdev0:print "Test": <return>

Abbreviating Commands

Commands can be abbreviated in the Commodore systems. The

principle is quite simple: the shortest unique form of the command

longer than one letter is allowed. The final letter of the
abbreviation must be in upper case. Here are abbreviated forms of

some of the more commonly used commands:

Using The Comand Line

database daT

print pri

display diS
maintain mal
directory diR
select seL

output OUT
execute ex

list 11
prog pH

Variables
Remember algebra? All that (a+b) and equation solving stuff.

Variables are like that, but much easier. They work by "standing

for" a value. The value can change — hence the term "variable".

The value of a variable changes either within a program, or

because you assign a new value to it directly. For now, I'm

concerned with how you set up and change variables directly, from

the command line. Later we'll be using variables in programs
extensively.

There are two kinds of variables in Superbase: string and numeric.

They behave exactly like variables in BASIC programs, with one

exception that I'll explain later. String variables are used to

represent text characters such as:

Fred

Julie

salesfile

London

Pennsylvania Avenue

15%

(212) 456 6789

0098

The last three look like they should be numeric, but in fact they

cannot be: "0098" would be just 98 as a number (all leading zeroes

are removed), and the preceding two each have one or more
non-numeric characters in them.

By convention, we refer in the text to the contents of a string

variable within double quotation marks.

Numeric variables must be numbers. They cannot contain any
characters other than 0123456789 and the decimal point. You can,

however, give them a negative value. Some examples:

12
456

789.2356
-1

.3333

65

Using The Command Line

Naming Variables

There is a section in the Superbase Manual about this. Only the

first two letters of a variable name serve to distinguish it from

other variables. String variables must end with a $ sign; numeric

variables must not. Avoid the various Superbase and BASIC command

words.

You should study the Manual and the BASIC programming manual that

comes with the computer to be sure you know what is an allowable

name for each type of variable.

Setting Up Variables

This is done from the command line. You create a variable just by

naming it for the first time as you assign a value to it. You may

use calc if you wish:

calc x$="Henry James" <return>

Or you may use the BASIC command ’let*:

let x=15 <return>

But there is no need. Simply type the name of the variable, an

equals sign, and then the value you wish to assign to the

variable:

x$="Henry":y$="James" <return>

A variable retains its value until a new value is assigned.

Variables can have no value, and are then referred to as null. You

give a string variable a null value like this:

x$="" <return>

or x$=chr$(0) <return>

The latter is better than the former, which can produce an error

if used with the ’asc(x$)’ function. Numeric variables are said to

be null if they are zero.

If you want to clear out all the current variables, type 'clr' on

the command line (’clear’ for Apple).

Variables may be assigned the value of other values:

x$=y$:a=b <return>

You must not mix string and numeric variables. The following

assignments are illegal and would generate an error message:

x$=b:a="Henry" <return>

But of course this is all right:

66

■

Using The Command Line

x$="000345" <return>

as the numbers are behaving like ordinary text characters.

Using Variables

By far the commonest use of variables is in programs, where they
serve a number of purposes, as later examples will show. On the
command line, variables are often used to simplify calculations.
If you want to see the results of multiplying 250 by various
numbers, you can set up a variable to hold 250 and then use
’display’ to see the results of the different calculations.

a=:250 <return>
display a*17.5 <return> (shows 4375.00)

Recall the line with the back arrow key, then edit it to display a
different calculation:

display a*23.65 <return> (shows 5912.50)

The variable a could of course hold the result of a more complex
step in a longer calculation. One thing to be aware of is the need
to separate numeric variables with semicolons:

display a b <return>

will probably show 0.00, because Superbase treats the two
variables as one — ’ab’. But:

display a;b <return>

shows them separately.

There are many more uses of the command line and variables, which
do not impinge on the routine operation of a Superbase database.
As we progress through the remaining chapters, which go into
programming in increasing detail, some of these uses will become
apparent. Others you will discover for yourself once you have made
the connexion between this powerful feature of the system and your
specific requirements. These requirements can only be identified
through careful analysis.

67

CHAPTER 6
PROGRAMS: THEORY, PRACTICE

AND MANAGEMENT

The Need for a Plan
Without a plan, you cannot act really effectively. Perhaps when
you become experienced with Superbase, you will be able to
improvise programs on the spot to meet unusual needs, but as a
relative beginner you are well advised to invest the extra time
needed for analysis and planning. Even experienced programmers
make careless mistakes, and one rarely sees a program more than
five lines long that runs first time.

What do I mean by a plan in this context? Perhaps as a person with
an interest in computers and software you have come across terms
like flow-charts, systems analysis, or even structured
programming. What I am proposing is not a complex and jargon
ridden descent into confusion, but a simple exercise in logic,
really little more than a formal statement of the kind of daily
clerical activity that takes place in any office.

Some Sample Plans
Imagine you are standing in front of a large filing cabinet. You
have a number of jobs to do, which involve searching through the
files in the cabinet, making various lists of the contents, or
changing some of the figures in the files. You don’t do this sort
of thing randomly, I hope. You work out what your objective is,
and the best means of achieving it. Then you go to work, trying
not to go mad with the boredom of such a repetitive task.

The outline plans I give below are intended to show how easily
Superbase can cope with this sort of requirement, once you have
transferred the data into a database — usually the most tedious
part of computerization. After each outline I give the Superbase
instructions that would be needed to make the plan work, omitting
details such as field names. Notice, though, that I have
deliberately written the plans themselves in plain language,
avoiding the use of Superbase terms.

The Debtors List

Everyone in business needs to know who owes how much. If you need
to get cash in, the best way is to call up the people who owe you
the most. This plan is the basis for a program that runs
automatically in the few minutes it takes to get yourself
organized near to a telephone.

1. Open the file of customer records.
2. Find all the records for customers who owe more than $500.
3. Make a list of their names, phone numbers and what they owe.

68

Programs

Superbase instructions: file, find, output.

A Re-ordering List

Instead of laboriously counting inventory, comparing it with the
files, and making endless lists of code numbers and suppliers, you
can let Superbase do the routine work while you do something more
productive. Here is a plan that shows how a program can help you
manage inventory levels more efficiently. It assumes that the
inventory record card for each product you sell contains certain
essential information, such as the minimum level of stock, details
about the supplier, and whether the item is already on order.

1. Open the file of inventory records.
2. Find all the items, with a quantity in stock below the minimum

stock quantity, which are not already on order.
3. Make a list of the item code, description, price, supplier, and

supplier's telephone number.
4. Mark the records to show that these products are now on order.

Superbase instructions: file, find, output, batch.

Updating a Running Total for Each Customer

Here everything depends on the nature of the records you keep. For
this plan to work, it assumes that each customer record shorn both
a running total amount and any outstanding amount that has not
been added to the running total. If there is nothing outstanding,
this amount is set to zero. The program based on the plan would
first of all make a list of all the records where there was an
outstanding amount, and then use that as the basis for the rest of
the processing.

1. Open the customer records file.
2. Read through all the customer records, and if you find an

amount outstanding, add it to the running total for the
customer and reduce the amount outstanding to zero.

3. Show the grand total for the outstanding amounts you found.

Superbase instructions: file, find, calc, batch, display, wed.t.

Dental Patients' Reminders

Provided the dentist keeps the computerized patient records up to
date, there should be an improvement in dental health as the
patients receive timely reminders to make an appointment. The plan
also assumes that the dentist has had some standard letters
pre-printed, to which the program adds just the patient's name and
address and the date of the last visit.

1. Open the file of patients' records.
2. Find all the patients you haven't seen for six months, who had

treatment for gum problems, and who you haven't written to

69

Programs

within the last six weeks.
3. Type out reminder notes for them on the pre-printed half size

notepaper, showing for each patient the name and address and
the date of the last visit.

4. Update the file to show that you have now written to these
patients.

5. Print out labels for the envelopes.

Superbase instructions: file, find, plen, tlen, output, batch.

Valuing a Stamp Collection

Just to show that I am aware that many Superbase users find the
program a valuable adjunct to their hobbies, here is a philatelic
application. The plan reasonably assumes that the record for each
stamp shows which country it is from and the year of issue. The
country information makes it possible to summarize by country.

1. Open the stamp collection file.
2. Find all the stamps in the collection worth more than $20.
3. Put them into order of country and date of issue.
4. Make a list showing the subtotal for each country.

Superbase instructions: report, find, sort, total, subtotal,
detai1, endreport.

The next two plans are slightly more complex, dealing with record
data in ways that are somewhat closer to Superbase than to a
manual system. I have used a few terms that you will recognize
from Chapters 1 and 2.

Verifying Data Accuracy

It’s important that a personal record is filled in accurately.
Superbase can help to do this by imposing checks at the time when
the record is first created. You may not be able to verify
information about a person’s address, but a program can easily
eliminate contradictions between, say, date of birth and age.

1. Open the patient records file.
2. Fill in a record format with the details for the new patient.
3. Check that certain fields, such as age, date of birth, and sex,

are within the ranges allowed for them.
4. If there are any errors, show what they are and insist on

corrections.
5. When the record is correct, add it to the file.
6. Offer the operator options to add another record or quit.

Superbase instructions: file, clear, ask, select current, store,
menu.
Some BASIC instructions would also be needed if this plan were to
be translated into an actual program.

Programs

Rmending Record Data

Perhaps the situation demands that most of the information in a
record is protected against accidental or unauthorized alteration,
although a certain field has to be changed regularly by a filing
clerk. For Superbase, it*s easy to request information from the
keyboard and transfer it to a single specified field, while the
record itself is only displayed for confirmation, with no
possibility of general editing allowed.

1. Open the customer file.
2. Call up the required record using the index key field.
3. Confirm that the displayed record is the right one.
4. Allow the appropriate field to be changed.
5. Confirm that the changed record is correct.
6. Store the changed record back in the file.
7. Offer the operator options to call up another record or quit.

Superbase instructions: file, select key, ask, select current,
store, menu.
As in the previous example, some BASIC Instructions would also be
needed.

In this last example in particular, the steps of the plan seem to
be giving instructions to Superbase to carry out various actions.
This is exactly how you should go about programming. First, you
decide what to do. Then you tell Superbase how to do it. Of
course, you do have to learn the details of how to bend the system
to your will, but you may have noticed two encouraging facts about
the examples: the Superbase instructions include a number of the
menu options which you already know, and certain instructions tend
to be repeated. Because almost every user begins with the menu
options and sets up several files before advancing to the
programming stage, the amount of learning is reduced. The menu
options are generally the bones of the program — the stuff that
has to be learned is the connective tissue. Also, programming
tends to be repetitive, and Superbase is designed to take
advantage of this with its powerful main options, which can handle
a wide variety of different tasks. The result is that you soon
become used to the Superbase vocabulary and able to use it
effectively.

An Example: Programmed Record Deletion
This is the first worked example of programming in this book, and
as such it has to be relatively straightforward, even compared to
the simplicity of most Superbase programs. However, this is not a
trivial example. Deleting records from Superbase files can be an
extremely time consuming and frustrating task if you are
restricted to the menu options alone. Any method of automating the
process is sure to welcomed by many users of the system.

So where do we begin? As the previous chapter insisted, the
prerequisite to any action is a plan of action. The prerequisite

71

Programs

to that is an understanding of the problem — and a thorough
understanding will reveal the solution.

Stating the Requirement
The problem is that from time to time you need to remove data from
your database. Assuming that we are dealing with one file at a
time, there are three possible courses of action:

1. Remove all the records from the file, but keep the empty file
format on the database catalog (the list you see when you use
'file').

2. Remove all the records, the file format from the catalog, and
the file definition from the disk — total deletion.

3. Remove only a group of records from the file.

1 shall develop each of these possibilities into a small program.
For now. I'll skip the practical steps of how to write the
program, except to say that you use the 'prog' option from Menu 2.
Later in this chapter I deal with the mechanics of writing
programs and storing them for future use.

Deleting All the Records
The objective is to remove all the records from the file, while
leaving the file format on the database catalog for future use.
Here is the plan:

1. Open the file; in the example, it's called "customers".
2. Remove the records automatically.
3. Leave the file format unaffected.
4. Return to the menu.

There are some menu options we can use in the construction of the
program: 'file' opens the file for us, and 'select delete', from
the 'select' submenu, is able to delete the current record. If we
can use the latter repetitively, we should be able to create a
short efficient program. So here's the first line of the program:

100 file "customers"

Every line of a program must have a line number* This is used
internally, and it doesn't matter what interval you use between
line numbers. It's a good idea to leave ample room for inserting
new line numbers into the sequence. This first line uses the
'file' option from the menu, followed by the file name inside
double quotation marks. Next, we select the first record in the
file, just to position ourselves correctly for the deletion that
comes next:

200 select f

Notice how 'first' is abbreviated to 'f: this is standard for the
options on the 'select' submenu. Next, deletion of the current

Prograis

record, the one we’ve just selected:

300 select d

CAUTION. You may be used to Superbase reouestlng confirmation
before executing a record deletion when you choose 'delete' from
the submenu; this Is not done when 'select d’ ±s used In a
program.

This disposes of the current record. Superbase now automatically
selects the next record In the file, making it the new current
record. Before we can go back to delete it, however, we must check
to see that we have not reached the end of the file, as executing
a record deletion at the end of the file has a fairly drastic
consequence — it removes the file format, which we specifically
want to avoid. Here’s the end of file check:

400 eof menu

The line uses the abbreviation ’eof’ to test for the condition of
end of file. Only if that condition is true — it really is the
end of the file — does Superbase carry out any instructions to
the right of ’eof’ on the line. In this case we have simply the
instruction ’menu’, which directs the program to display Menu 1
and return control to the user. If the ’eof’ condition is false —
no, it is not yet the end of the file — Superbase carries on with
the next and last instruction, which is to go back to the line
that deletes the current record:

500 goto 300

Let’s simplify this sequence with a flowchart diagram:

73

Prograis

Flowcharts can be very useful for clarifying your thoughts when it
comes to making decisions within the program, but too much
emphasis on the technique can, in my opinion, interfere with the
process of learning how the language itself works. One advantage
of the flowchart is that you can see more clearly the meaning of
the programming term "loop", which we use to indicate that an
operation is performed more than once. Here the loop is from line
500 to line 300; lines 300, 400, and 500 will be executed
repetitively until the end of the file is reached, when control
returns to the menu. Here’s the final version:

100 file "customers"
200 select f
300 select d
400 eof menu
500 goto 300

PROGRAMMER’S CHALLENGE. What would happen if the file had no
records in it to begin with?

Before moving on to the next example, let’s shorten the program by
placing more than one command on a line where possible:

100 file "customers":select f
200 select d:eof menu
300 goto 200

Notice that we cannot use the line:

100 file "customers":select f:select d:eof

Programs

menu:goto 100

The instruction *goto 100’ would never be executed, as it occurs
to the right of the ’eof’ conditional.

Deleting All the Records and the File Definition
The objective is to remove all the records from the file, removing
the file format from the database catalog, and the file definition
from the disk. Here is the plan:

1. Open the file, for example, ’’customers".
2. Remove the records automatically.
3. Remove the file format.
4. Remove the disk file.
5. Return to the menu.

Basically, the program is the same as the last one, with two
additions. This time I’ll give the full listing and then explain
it:

100 file "customers”:select f
200 select d:eof 400
300 goto 200
400 select d
500 maintain o "sO:customers"
600 menu

The first line is the same: open the file and position to the
first record. The second line deletes the current record and if
the action detects the end of the file transfers control to line
400; if it’s not ’end of file’, line 300 transfers control back to
line 200 to delete the next record.

Line 400 is the first addition. It deliberately executes one more
'select d' in the empty file. When this is done. Superbase removes
the file name from the database catalog; if you use 'file' or
'maintain c’ the name will no longer be there.

Line 500 is the second addition. It uses the 'maintain other'
option, which I discussed in the previous chapter, to pass a
command to the Commodore Disk Operating System (Apple users have a
different set of disk commands) which instructs it to 'scratch'
(abbreviated 's’) the file called "customers" from drive 0 of the
disk unit. This erases the file definition, meeting the
requirement of step 4 of the plan. Finally, the 'menu' command
transfers control back to the user at the main menu.

So, to remove a file completely, there are three steps:

1. Delete all the records.
2. Delete once more to remove the file name from the database

catalog.
3. Scratch the file from the disk.

75

Programs

Deleting a Group of Records from a File
This is easier than the last job in that there is by definition no
requirement to remove the file itself, either from the database
catalog or the disk — "a group of records" implies that there
will be some remaining in the file.
Here is the plan:

1. Open the file, for example, "customers".
2. Remove the records from the specified list automatically.
3. Return to the menu.

For this program I assume that you have already used 'find' to
create an index key list, called "hSlist". As before. I'll give
the full listing and then explain it:

100 file "customers"
200 select from "hSlist":eol menu
300 select d: goto 200

The first line is almost the same; it opens the file, but does not
position to the first record. The reason for this is that we are
using the instruction 'select from "listname"' to position
precisely to each of the records whose index key appears in the
list. If the file were to contain five records with index keys:

adams
baker
Charles
david
edwards

and "hSlist" contained just:

baker
edwards

then the first execution of 'select from "hSlist"' would call up
the record with the key "baker", and the second execution of the
command would call up the record keyed by "edwards". So all the
positioning, or calling up of current records, is done with this
command. There is no need for 'select f to call up the first
record in the file.

Line 200 executes the 'select from' instruction. In the above
example, what would happen on the third execution? Just as when we
were deleting all the records in a file we had to use 'eof to
test for the end of the file each time a deletion was done, here
we test for the end of the list with 'eol'. It works in exactly
the same way, only allowing the commands to the right of itself to
be executed if it is true that the end of the list has been
reached. So, 'eol menu' controls the end of the program.

Line 300 contains the deletion instruction. It works as before,
removing the current record and making the next record in the file

Prograis

into the current record. However, this time there is no use for
the next record, as the positioning is done with the separate
»select from \ to which the last instruction in the program, on
the same line, transfers control.

Managing Your Programs
This section brings together some of the common sense rules for
the everyday use of Superbase programs. If you tried out any of
the programs in the last chapter, you may already have discovered
some of the rules for yourself. If you haven't yet written a
program and can't see what the fuss is about, please take it on
trust that unless you consciously manage your programs you can
easily drift into a situation in which you have dozens of small
routines spread across numerous different disks, and can never
find the one you want. All the benefits gained from automating
Superbase operations can be lost.

Writing a Program
1. Starting from Menu 1, type:

new <return>

This clears out any existing program from the program area
inside Superbase.

2. Press return to. select Menu 2, and then select option 5,
'prog'. This is the special Superbase program editor. When you
select 'prog', you see a blank screen with the cursor
positioned at the top left corner.

3. Type in the program lines, beginning each one with a line
number. Enter the instructions you want in the order you want
them, with due regard for the two elements of every program:

Syntax. Every detail of each line must be correct.

Logic. The program must follow the plan correctly.

I give a number of editing tips at the end of the chapter, but
here I must stress that you should always put the name, date,
author and purpose of the program at the beginning, like this:

1 rem Program "Istdel.p", Author BH, Date 12/12/85
2 rem Purpose to delete records using a list
3 rem Last modification 1/1/86

The date of last modification is very important.

4. When you have finished writing the program, quit from 'prog'
with 'fl STOP' or Control-Q. This returns you to Menu 1.

77

Programs

Storing a Program
Whether it’s a new program or a modified old one, you must put a
copy on the disk before you execute it. If there's an error in the
logic, you could lose the carefully typed in program lines --
maybe hours of effort — as the program goes into an
uninterruptible loop, or inadvertently quits from Superbase (it
doesn't happen often, but remember Murphy’s law!).

On the command line, type:

save "name <return>

"Name" is the name you choose for your program. Superbase supplies
a ".p" extension, so if you type "Istdel" and press return.
Superbase will create a file on the disk called "Istdel.p".

The name you give should be unique, unless you want Superbase to
overwrite an existing program of the same name. Sometimes this is
useful, but if especially if you are experimenting with several
versions of the same program, you must be careful to distinguish
them. One method is the addition of a version number to the name:

Istdel.1.p
Istdel.2.p

But remember that the length of the program name is limited to 16
for Commodore systems and 30 for Apple (less for ProDOS),
including the ".p" extension.

You can store programs on any valid drive by including the drive
specifier. For Commodore systems this is done by typing the
specifier before the program name. This does not form part of the
name itself: ’save "0:Istdel" <return>'.

Executing a Program
When it comes to executing the program, you have four possible
situations:

1. While still inside the ’prog' program editor, type:

run <return>

This immediately executes the program.

2. From Menu 1, if the program you want is already in Superbase's
memory, select ’execute’, option 7 on the menu. This
immediately executes whatever is in memory. If there’s nothing
in memory (perhaps you typed 'new *), 'execute * prompts you to
enter the name of the program you want. Type it in and press
return. Superbase searches for this program on the disk.

3. To call up the program from the disk and execute it all in one
go, type:

Prograns

execute "name <return>

This automatically clears out any program already in memory.

4. You may want to look at or edit the program without running it
automatically. In this case, use the 'load* command:

load "name <return>

Now, if you want to execute it, type 'run* or select the
'execute * option.

Looking at a Program
Sometimes it's convenient to look at the program in memory without
using 'prog'. The quickest way to get the maximum number of lines
on the screen is to type on the command line:

list <return>

If you are going to have several programs as part of your system,
you must keep a folder with the listings of all the programs in
it. This is a valuable extra safety measure, and it can help avoid
duplicated effort. To obtain a printout of the program in memory,
first set up the printer, then type on the command line:

print:list:display <return>

If you have wide paper, you may be able to set the right margin to
179, the maximum width of a Superbase program line in an 80 column
system. Use 'rmarg*. You can also list a Superbase program to a
disk file. I explain how in Chapter 11.

Your Program Library
It is vital that you keep track of all the programs in the system.
As I said above, you must keep hard copies of every program
listing. Here are some other suggestions to help you run a tight
ship:

1. Label every disk clearly, with disk name and id (volume number
for Apple). If possible, attach a list of what's on the disk to
the disk sleeve.

2. Keep library disks that contain a spare copy of every program
you write, in addition to the working backup disks.

3. Print out a directory listing for each disk. Do this by typing
on the command line:

print:directory:display <return>

If you follow these simple rules your Superbase system stands a

79

Programs

chance of remaining easy to manage.

Editing a Program
If you write a program, you’ll have to change it. This is
inevitable. No program of any size is bug free, certainly not when
it is first used. So you need to be able to use the 'prog' editor
fluently to make changes to program lines. As a preliminary, you
need to load the program you want:

1. On the command line, type:

load "name <return>

This obtains the program you want from the disk.

2. Either select the 'prog' option from Menu 2, or type 'prog' on
the command line. This enters the program editor, positioning the
cursor at the beginning of the program. If you want to position at
a specific line number, you can type:

prog 999 <return>

where 999 represents the number you want.

Editing Tips

You must learn the editor's facilities for yourself. They are all
described in the first part of the Programming Section of the
Superbase Manual. The keystrokes here refer to Commodore versions
of Superbase. Apple users should substitute their equivalents.

1. To position quickly to the end of a program, first clear the
screen with 'SHIFT/CLR', then press the cursor up arrow once.

2. Always press return on a line to register any editing changes.

3. Use 'shift / return' frequently to display the actual program
code when editing, as your changes may obscure the real state
of the line you're working on.

4. Learn and use the abbreviations for Superbase instructions.

5. Create duplicate lines quickly by typing the new line numbers
over the original as many times as the number of duplicates you
want, pressing return each time. Then use 'shift / return' to
display the new lines.

6. To keep a program line available but non-executable — so you
won't have to type it in again — insert 'rem' after the line
number. Remove the 'rem' when you want the line to be active
again.

Programs

7. When developing a program, make the last line to execute:

999 wait:prog
or 999 prog 100

This causes the program to pause when it finishes until you
press return, when it re-enters the program editor. The second
version takes you to the indicated line number — you can set
it to take you to the part of the program you are working on.

8. Similarly, use 'wait' within the program at any time to make it
pause until you hit return. More drastically, 'stop' as a
program line causes the program to do just that — stop dead.
The Superbase 'stop', unlike the BASIC 'stop', does not allow
you to continue execution from the next line. Use these as
temporary aids to getting the program right, and remove them
when it's finished.

9. You can manually renumber a whole group of lines starting at a
high line number, say 9000, to temporarily remove them from the
main code. Put a 'stop' Immediately before them to stop them
ever being executed. If you need them again, renumber them —
carefully — to a new position in the program. ('Renumber' is a
valid command only in Superbase 128.)

If you absorb and do your best to follow the advice I give in this
chapter, you should find life with Superbase a lot easier. As you
will start to see in the chapters that come next, programs can be
constructed to handle just about every Superbase task, and once
you get into the habit the programs used for quick solutions can
increase in number dramatically, leading to a state of labyrinth¬
ine confusion.

CHAPTER 7
AUTOMATED SEARCH, SORT,

UPDATE AND OUTPUT

Part I dealt with the essentials of setting up a Superbase system.
I covered the topics of file design, entering data, searching the
file, sorting, updating and producing output. Now we are ready to
string together some of these fundamental activities into
automated sequences — programs. But before we do, let's review
the context in which the program is assumed to be operating.

Unless a certain minimum level of design is carried through, a
Superbase system is unlikely to be capable of being programmed
effectively. Files that lack search fields cannot be analysed into
subgroups. If the need to sort is not anticipated, you are limited
to output in the order of the index key only. It all comes back to
the original design of the file, which must hold your data in
fields that allow all the variations in output that you will need.
Remember, the smaller the elements of the data, the more
flexibility you have.

At the other end of the system, you must be clear about the
details of the output you want. Do you want unstructured dumps of
the record data, or tidy line by line tables? Perhaps you use
pre-printed stationery, or you want to integrate Superbase's
output with your word processor. Whatever the details of your
requirements, you must think them through from beginning to end,
from input to output, from file design to report layout. When
this has been done, it becomes possible to create programs that
take advantage of the system's internal consistency, making a
collection of data into a responsive source of analysis and
information.

The Flow of Events
We are dealing mainly with the menu options of Superbase. There
may be a need for other instructions in the programs we create,
but at the centre of them are the key processing commands for
selection, ordering, updating and output: 'find', 'sort', 'batch'
and 'output' respectively. These can be be combined in a number of
ways, such as:

At its simplest, a Superbase program has just two steps. If it
had one, it might just as well be a command line -- although there

82

Automated Processing

are users who prefer to keep one line programs to save themselves
the chore of typing field names. The diagram above, a simple
flowchart, shows that you can have a program that first searches
the file for a subgroup of records, then updates that group. With
’batch* there is no need for the data to be processed in other
than index key order. Not so when output is required. Then sorting
is frequently part of the process:

So we have what is essentially a three step program, although in
many cases the sort is not required and it reverts to the simpler:

find

I
output

Of course there are times when a subgroup is not needed. Then it
is ’find’ that can be omitted:

sort

output

In the next chapter we shall see that the number of steps
increases significantly when the various instructions associated
with the Superbase report generator are included, but for now we
can contemplate with satisfaction the elegant power of a system
that can achieve so much with so little. In BASIC, a program might
well need fifty lines to achieve what Superbase does in three. And
having contemplated, let ’ s move on to the first of the core
processing commands, ’find’.

83

Automated Processing

Automated Searching: 'find'
The purpose of 'find' is to generate an index key list that
identifies a subgroup of records in the main file. The list can
then be used by a number of Superbase options to process the
subgroup alone, leaving the rest of the file unaffected. In Part
1, I looked at 'find' purely as a menu option, whereas here I
shall be treating it as a program instruction. Although the syntax
for 'find' used in this way is new to you, the logic of the
various kinds of search criteria is the same. If you are not yet
familiar with 'find', it might be advisable to check up on it
before proceeding, as I shall not be repeating earlier
explanations.

Naming the List

A 'find' program line has two parts: the basic instruction, and
the search criteria. Here is an example of a simple line:

10 find "hSlist" where [name] is "=Jones"

The list name, which is the word inside quotes right after 'find',
can be any name, or simply the empty double quotes — "" — to
refer to the system's default list, "hSlist". The default list is
just a term for the list that Superbase creates automatically if
you don't name one. The blank record format as supplied by the
menu option is here replaced by a single criterion in the form of
a "where clause" — a construction that specifies the value to be
matched in a particular field. I'll be looking at where clauses in
more detail in a moment.

You don't have to use the where clause. If it's omitted like this:

10 find "newlist"

Superbase calls up the usual blank record format, exactly as if
the option had been called from the menu. The difference is that
once the 'find' instruction has been completed, the program goes
on to execute the next line automatically. It's a good idea to
keep to a convention regarding list names. As well as making the
list name reflect its function, you can use the word "list" or an
abbreviation of it as part of the list name:

newlist
credit.1st
alist
blist
clist
list.may
list.jun
1st.dr.8602

If you have a dual drive system (not a dual unit system) you can
save space on the database disk by creating the list on the other
drive. Use a drive specifier:

Automated Processing

0:list.2

If the naming convention uses a standard prefix such as "list" you
can use it to gain a quick selective view of the lists on the disk
with this command:

mal o"$0:list*"

You can add to an existing list (Superbase creates the list if it
does not exist). The command is:

10 find "daylist,a"

This can be useful when you need to sort and print out say once a
week but must update the file dally. Each day, you could use
’find' to tag the records to bo printed out onto a single list,
and 'batch' to update the file. The weekly sort puts the list into
final order for printing. You would have to avoid deleting records
from the file to be sure that the keys in the final sorted list
were still all valid.

The ",a" extension to the list name could also be used for
"picking" individual records: adding specific index keys to a list
as you browse through a file with 'select', although the file
would have to be pretty short for this to be workable. Here's the
procedure:

10 find "picklist, a" where [key] is

With this one line program in memory, you browse through the file
with 'select'. At any time, you can return to Menu 1 and press f7
for 'execute'. Superbase takes the back arrow as an instruction to
request the search criterion on the command line. You type in the
exact key or keys (as in "=Smith/=Jones/=Brown" etc. — don't
forget the equals signs) that you want to add to the list and
press return. Superbase searches the whole file — hence the need
for a short one — adds any keys it finds to the list and returns
to the menu. You can then resume browsing. There is a more
efficient way of achieving this end that is acceptable for any
size file, which I discuss in Chapter 10.

The 'where' Clause

As I indicated above, this is the programmed equivalent of the
blank screen into which you type the search criteria. The 'where'
clause specifies a field name followed by the word 'is' and either
a criterion within quotation marks or a string variable. I'll
leave the use of variables until the next section.

You can have multiple criteria after the 'where', separated by
semicolons. You may not repeat a field name. The maximum number of
criteria for each 'find' depends on the length of the field names,
the length of the criteria, and whether you have a 40 or 80 column

85

Automated Processing

screen. If you can’t fit all the criteria you want into a program
line, you have to call up the blank screen and enter them
manually; this is done by restricting the line to:

10 find "alist"

Using this technique the maximum number of search criteria is
practically unlimited.

The formats of the various types of criteria are essentially the
same as for the 'select match' command discussed in a previous
chapter. This is true for text and numeric searches, pattern
matching, sliding searches, and both range and alternative based
searches. Here are the programmed equivalents of the search
criteria discussed in Chapter 4. First, exact matches in two
fields:

10 find "" where [name] is ’'=John Smith"; [city] is
"^London"

A sliding match only, within the [name] field:

10 find "" where [name] is "Smith"

Pattern matching search combined with sliding match in the
[street] field only:

10 find "" where [street] is "? second ?"

Exact search in [code] field for all entries beginning with "c",
plus exact search in [zip] field for all entries beginning with
"069":

10 find "" where [code] is "=c*"; [zip] is "=069*"

The opposite, specifically excluding entries beginning with "c":

10 find "" where [code] is "#c*"; [zip] is "=069*"

Search across multiple [comment] fields terminated in [status]
field:

10 find "" where [comment-1] is "whales-"; [status]
is "*"

Search for [code] entries beginning with "a", "b" or "c", plus any
one of the three cities specified:

10 find "" where [code] is "=a*/=b*/=c*"; [city] is
"London/Paris/Rome"

Search for a range within the [age] field:

10 find "" where [age] is ">30&<50"

The same, but including the 30 and 50 year olds:

..V

Automated Processing

10 find where [age] is ">29&<51"

The same, but excluding the 30 to 50 year olds:

10 find where [age] is ”<30/>50"

Searching for dates in a particular month:

10 find "" where [date] is ”>30Sep85&<01Nov85"

Note that although this finds all dates in October 1985, the month

itself is not referred to. Dates are a special case, all the more

important for being so often required during ’find’. This example

shows how to construct a ’where’ clause for a range of dates,

which is useful, but not as useful as a program that requests new

date information every time the program is executed.

A way of inputting criteria for a search each time a ’find’

program runs is by means of the back arrow delayed request

character, which I referred to earlier in this chapter. If you put

this character in the ’where’ clause instead of a specific

criterion. Superbase will request input for the specified field

(or fields) on the command line. This is easy, but there are
editing tricks involved. Since the back arrow key has a special

function within the ’prog’ program editor you have to enter it in

one of two ways. Either you type the program line on the command

line, or, in the program editor, you assign the ASCII code value

of the character to a string variable and use that in the ’where’
clause.

If you use the command line approach, tap the space bar first to

call up the command line area, then type the line number (being
careful not to use the line number of an existing line), then the

’find’ line in full, enclosing the back arrow character in

quotation marks, as in this example:

<space> 10 find "" where [name] is —” <return>

Pressing return enters the numbered line into the program area.

You can now enter ’prog’ and edit the line further if need be. If
you want to set this up entirely within ’ prog ’, you must use a

string variable:

10 a$=chr$(95): rem 95 is ascii for back arrow

20 find "" where [name] is a$; [city] is a$; [zip] is a$

Notice that a$ can be repeated as often as you wish.

Unfortunately, this approach does not work with dates, which have

to be handled using the ’ask’ statement; this is discussed in

Chapter 9.

87

Automated Processing

Automated Updating: 'batch'
The ’batch’ command is used either to update the file or part of a

file, or to perform fairly simple calculations on the file using

variables set up for the purpose. Often, ’batch’ is used following

a ’find’ command. ’Find’ identifies a group within the file that

needs updating, and then ’batch’, like an automatic editor, goes

through the list and makes the necessary changes. At its simplest,

a program to do this would have two lines:

10 find "orderlist” where [amount] is ">0”

20 batch from ’’orderlist" [total] = [total]+ [amount];

[amount]=0

The program makes a list of all records where the outstanding

amount is above zero, then, for each of the records on the list,

adds the amount to the [total] field and resets the [outstanding]

field to zero. The example obviously refers to numeric fields

only. We could of course update text fields just as easily,

placing the new value for the field within quotation marks:

10 find "checklist" where [status] is "not done"

20 batch from "checklist" [status]="ok"

Notice in the first example that ’batch’ allows multiple update

clauses, separated by semicolons, rather like ’find’. In ’batch’,

you may not modify a field with a field that has already been

modified in the same line. This would be illegal:

20 batch from ’”’ [status]="ok";[status-a]=[status]

The reason for the rule is that Superbase updates the record

according to the values in its fields when it is first read from

the disk.

Using 'batch' to Calculate Totals

Now let’s turn to the first serious use of variables in this
exploration of Superbase: for computing totals. ’Batch’ has two

main functions: reading records and updating them. We can make use
of the record reading function to perform certain useful jobs,

such as counting the number of records in a list, adding up totals

for any of the fields in a record, finding averages from the two

previous operations, finding maximum and minimum values for

fields, and providing displayable results. To do this we need to

precede the ’batch’ operation with some program lines that set up

the numeric variables we want. Although Superbase in fact

initializes every new numeric variable to zero, it is a rule of

programming that the variables are defined and initialized at the

start of the program. Here’s the simplest example, a program that

counts the records in a list:

10 t=0
20 batch from "" t=t+l

30 display t

88

fiutooated Processing

40 wait

As 'batch' reads each record on the list, it adds one to the

previous value of t, which acts as a tally. If t were not set to

zero in line 10, the initial value could be wrong, in which case

the error would be transmitted through to the end of the

operation. It's important to notice the final two lines here;

we'll be using them a lot. If you don't instruct Superbase to show

its results and then pause, it will just go back to the menu. The

'wait' instruction ensures that the user must press return to

terminate the program, and the result of the preceding 'display*

thus remains on the screen until a key is pressed.

It is also possible to have a running display of the variable t as

the batch operation proceeds. This is achieved by placing the

variable on its own at the end of the program line:

20 batch from "" t=t+l;@0@4,4"Running total is:”t

As the example shows, the statement will also accept positioned

text items. The next example shows how to add up totals for two
fields, and display the results:

10 tl=0:t2=0

20 batch from "" tl-tl+Camount];t2=t2+[total]

30 display "Total for amount field:"tl

40 display "Total for total field: "t2

50 wait

Now the two types of operation can be combined to produce a count,
totals, and averages:

10 t=0:tl=0:t2=0

20 batch from "" t=t+l;tl=tl+[amount];t2=t2+[total]

30 display "Total for amount field:"tl;"Average:"tl/t
40 display "Total for total field: "t2;"Average:"t2/t

50 display "Count of records in list:"t

60 wait

There is no reason at all why the counting operations should not

be included in the line we used earlier to update the file. It
would look like this:

20 batch from "" t=t+l; tl=tl+[amount]; t2=t2+[total]

+[amount]; [total]=[total]+[amount]; [amount]=0

We are careful to increment (jargon for add to) the total variable

tl for [amount] before resetting [amount] to zero. However, to

obtain a valid grand total, we must increment t2 with both [total]

and [amount], as we are not allowed to refer to [total] after

[amount] has been added to it. A trifle complex, but it does a lot

of work.

89

Automated Processing

Maximum and Minimum Field Values

The next example is somewhat more difficult to grasp. We can use

’batch’ to work out maximum or minimum values for any given field,

say [amount]. This is done by evaluating a Boolean expression such

as ([amount]<mx) each time a record is read, and using the result

to determine whether the [amount] field in the current record

counts as the new maximum or minimum figure. At the end, a

variable contains the highest or lowest figure encountered during

the operation. The sequence of operations is crucial; here is the

code for obtaining a maximum value:

10 x=0: rem x will evaluate to 0 or -1 for each record

20 max=0: rem max is incremented when [amount] is higher

30 batch all x=([amount]<max)+l; max=max+([amount]*x)

“(max*x)

40 display "Maximum value of amount field is:"max

50 wait

Here’s how it works. The first expression, ’x=([amount]<max)+l’,

evaluates to 0 if the [amount] field in the record is less than

the current value of max, or 1 if [amount] is greater than max.

The second expression, ’max=max+([amount]*x)-(max*x)’, leaves max

as it was if x is 0, but if x is 1 it first adds the new [amount]

to max and then subtracts the old value of max, leaving max equal
to the new [amount].

The operation to obtain a minimum value is almost exactly the

same, but we must initialize the variable min to its highest
possible value instead of zero:

10 x=0: rem x will evaluate to 0 or -1 for each record

20 min=999999: rem min decrements when [amount] is lower

30 batch all x=([amount]>min)+l; min=min+([amount]*x)

-(min*x)

40 display "Minimum value of amount field is:"min

50 wait

The ’<’ sign in the first expression becomes ’>’, but otherwise

there is no logical change in the line.

Automated Sorting: 'sort'
Sorting is always an intermediate step in a series of Superbase

operations, never an end in itself. The end result of sorting a

database file is a list of the index keys to the records in the
file, arranged in the order specified in the ’sort’ instruction.

The database file itself remains unchanged, both in index key

content and order. The list you end up with can be used in any

command that uses lists, but it only makes sense with ’output’,

’detail’, which is one of the ’report’ group of commands, or the

programmed equivalents of these, a sequence of selection and print

or display statements.

The objective is always to present the records from the file in a

Automated Processing

different order from the basic index key order. You might want to

store a file of customer records in the basic order of name, but

print them out in the order of the cities where they live. In this

case you would sort on the city field before printing:

10 sort all on [city] to "sortlist"

There are several examples of ’sort’ commands in Chapter 4,

illustrating the syntax for sorting on more than one field, using

a list instead of the whole file, using the default name "hSlist"
as the name of the sorted list, and for achieving a descending

sort.

Many of Superbase’s commands let you use BASIC expressions in

combination with field names from the record format. For example,

this kind of display command is perfectly valid:

display left$([name],3) <return>

Provided there is a currently selected record, the first three

letters of the [name] field will be displayed. This is useful,

particularly in more advanced programming. However, no such

expressions are allowed with ’sort’. A line like this is illegal:

10 sort all on mid$([name],3,3) to "sortlist"

The only variable factor is the length of the basis for

comparison, which is specified with the truncation character ’&’,

as in this line:

10 sort all on &15[name] to "sortlist"

A Digression: How 'sort* Works

The above example would use the first 15 characters of [name] as a

basis for comparison, instead of the default 10. Sorting works by

assembling in memory a string made up of the comparison strings

from all the specified fields, followed by the record key. This

sort string is then ordered with the sort strings from succeeding

records until the memory is full, when Superbase writes a special
file, "hslist". "Hslist" contains index keys only if the ’sort’

was accomplished in just one phase, but if the memory space for

sorting is filled up on the first phase, and another phase is

needed. Superbase temporarily stores the full sort string for each

record in "hslist". Since the maximiim length of the sort string is

254 characters, "hslist" can become very large, so if you are
planning a big ’sort’, involving many fields and a large file,

ensure that there is sufficient room on the disk. After the final

phase. Superbase merges the keys from the sort strings in memory
with the keys from "hslist", eventually producing the destination

list that was specified in the ’sort’ statement.

91

Automated Processing

Record Formats Designed for Sorting

The requirement to use only simple field names, as in the previous
example, and to avoid BASIC string functions rules out a lot of
clever manipulation of record order based on the index key, which
as you will recall can easily be designed with several component
parts, each having a special meaning. But all is not lost. If you
design your record format carefully, you can set up fields
specially for use with sort operations. Here's an example:

code <c±tx*aa.0123 >

sort-1 <aa >

sort-2 <0123 >

"Citi" is an alphabetic bank code, "aa" is a type code that shows
what kind of transaction this is, and "0123" denotes the day and
the month. The two fields, [sort-1] and [sort-2] exist purely for
use during sorting. They reproduce information from the main index
key, and allow the file to be sorted in several useful ways, such
as:

by type code
by month and day
by month and day within type code
by type code within month and day

For aesthetic reasons, such fields are normally tucked away on a
screen by themselves, away from the main record data.

Perhaps you are thinking, "Surely this doesn't mean I have to type
that information in all over again?" You don't. Remember 'batch'?
We can use it to copy the data from the [code] field into the
[sort-1] and [sort-2] fields — automatically. Let's suppose you
have just entered in some records with index keys of the kind
shown above. Your program to find the new records, update them,
and then sort the file by month and day within type code would
look like this:

5 a$=chr$(0): rem To detect empty fields
10 find "" where [sort-1] is "="+a$
20 batch from "" [sort-1]=mid$([code],6,2);
[sort-2]=right$([code],4)
30 sort all on [sort-1][sort-2] to "sortlist"

This uses the BASIC string handling functions 'mid$' and 'right$',
which allow you to refer to portions of a variable, or, as in this
example, a Superbase field name. Check the explanations in your
BASIC manual, as you should be familiar with them and other
similar functions before attempting to do much programming. An
essential prerequisite of using such functions in this way is that

Automated Processing

they always refer to the same portion of the field. To ensure
this, you must take care that the original keys are all of the
same length.

What happens if the contents of a sort field are the same in
another record, or in several records? If there is another sort
field in the line, it determines the sorted order. So, if we had
two records with the same type code -- [sort-1] — but different
day/month codes — [sort-2] — the records would be sorted by
[sort-2]:

aa 0123
aa 0124
ab 0123
ac 0123
ac 0127

But what if the contents of the final sort field in the line are
the same in more than one record? In this case, the index key
itself determines the order. If you have specified unique keys for
the file, all will be well. But if you have used duplicate keys.
Superbase will not be able to produce satisfactory results, losing
its way either when reading the index keys from a list made with
*find’, or when you go to output using the sorted list. So, as
I’ve advised before, avoid duplicate keys.

The idea of special fields can be put to other uses. I have
explained earlier that Superbase allows either an ascending or a
descending sort, but not both. However, there are times when you
may want to combine the two. For instance, following through the
current example, you may want to produce a list by month and day
with the transactions for each day listed in order of magnitude,
from largest to smallest. This requires a sort by [sort-2] in
normal ascending order, with the amount on each record sorted in
descending order. To achieve this, you need to set up a result
field that subtracts the actual amount from a number larger than
the largest allowed in the numeric field format. Here is the
extended record format, with the numeric format and result field
calculation shown to the right of the relevant fields:

To illustrate this further, let's consider a series of amounts and
their corresponding complements as calculated by [sort-3]:

93

Automated Processing

[amount]

12.50
456.23
999.95

1008.00
5887.01
9995.00

[sort-3]

9987.50
9543.77
9000.05
8992.00
4112.99

5.00

Now, when the file is sorted by [sort-3] in normal ascending
order, the order of magnitudes in [amount] is reversed. The
largest [amount], 9995.00, comes first, because its corresponding
[sort-3], 5.00, is the smallest. The line to sort using the
month/day code and the special calculation looks like this:

10 sort all on [sort-1][sort-3] to "sortlist"

Later, when you go to output using the sorted list, the printout
will show the month/day codes in ascending order and the amounts
in descending order:

0123 9995.00
0123 5887.01
0123 456.23
0126 7568.50
0126 856.00
0126 45.00
0127 3002.00
0127 563.12
0202 9112.00
0202 750.00

You can use the same technique with date fields, but the result
field formula should be based on the largest possible Superbase
date: 31 December, 1999. This has the numeric value 36525, so a
formula that produced a complement to a field called [date] would
be:

36525-[date]

Finally, a slightly more advanced trick for obtaining a similar
capability with text fields. The objective is to generate a sort
field that will allow a reversal like this:

Input data
for [textfield]

Print order

’Batch' is useful, but we also need a string variable set to

94

m

Automated Processing

10 a$="000000”:rem Enough zeroes to cope
20 batch all x=len([textfield]);Csort-4]=
left$(a$,6-x)+[textfield]

The contents of {sort-4] will bo:

00004B
OOOlOA
00032G
00621C

This corresponds to the desired print order shown above, so all
you have to do is sort on [sort-4] and output using the resulting
list.

Automated output: 'output'
So far this chapter has covered the major processing activities of
searching the database, updating records, and sorting. Now we look
at the end product of most systems: output. This can be automated
too, so that complex and lengthy commands can be stored in
permanent form and recalled with just a few keystrokes.

Let's recapitulate the most important features of 'output', which
I explained in a previous chapter:

1. 'Output' is a repetitive command: it processes either the whole
file or the records whose keys appear in a list named in the
command line, outputting specified details record by record.

2. There are three kinds of output: screen, printer, and disk
file. You select screen output with 'display', printer with
'print', and disk file with the variant syntax 'output ... to
"filename"'. Whichever of 'display' or 'print' was last used
remains in force until its converse is used.

3. You can include different kinds of item in your 'output' line:
fields, text, formulas and BASIC variables, expressions and
functions.

4. You can make the output items appear either 'across' the paper,
line by line, or 'down', page by page with one item per line.
These commands are alternates, like 'print' and 'display'.

5. Positioning commands allow you to set the row and column for
any item.

6. Formatting commands allow you to set the shape of numeric
items, remove trailing spaces, output blank lines, or cut
fields short to a specified number of characters.

7. There are a number of commands to determine such things as
margins, pause at end of page, and length of paper.

95

Automated Processing

The procedure for automating the ’output’ line is basically very
simple. You just write a normal program line with the ’output’
syntax following it:

10 output all [name][street][city]"Phone:"[telephone]

Methods of formatting and positioning have already been explained,
together with the differences between line by line and page by
page style output. Before going on to some more advanced ways of
dealing with output in programs. I’ll show how the examples from
the previous chapter translate into program lines. The
straightforward unformatted line by line style of output is
achieved with lines like the one above. A more complex line is
this:

10 output all @5[name] @25&5,2[balance] @40[telephone]
@5[street] @5[city] @5&[state] [zip]

Which produces:

John Jones 678.89 503 456 7891
21 Main Street
Winesburg
OH 34567

A similar line omitting the [balance] and [telephone] fields would
be suitable for single column labels.

Page by page output could be obtained as follows:

10 output all down @5,1[name] @55,60&5,2[balance]

Two examples of disk file output for word processing are, first, a
file with commas between the fields:

10 output all across to "datafile" &[name]","
&[street]","&[city]","&[state]&[zip]

Second, a file in a format suitable for Easy Script or
Superscript:

10 output all fill to "datafile" [name][street][city]
[state][zip]

Programming for Output

Once you have decided to use Superbase’s programming feature for
your output, you gain certain advantages:

* You can separate out the statements for ’print’, ’display’,
’across’ and ’down’.

* You can separate the statements that change the parameters of
the output, such as page length or continuous print flag.

Automated Processing

* You can print (but not display) column headings before starting
the output.

* You can set up variables for use in the ’output' line.

Usually it's best to keep all the statements that control the
output together, near the beginning of the program:

10 print:across:plen 33:tlen 30:cont 1

This line switches on printer output, line by line, with a paper
length of 33 lines allowing 30 lines of printing (i.e. a three
line bottom margin). Continuous printing is also set.

Likewise, if you will be needing variables, set them up at the
beginning of the program:

10 s$=” ":c$=",":cr$=chr$(13)

Here, s$ will be used to print a space, c$ a comma, and cr$ a
carriage return. In the following example, cr$ ensures a blank
line before each record.

The other advantage is the ability to do direct printing before
you begin the main output. In this example, 'print' is used to
produce a main heading and column headings:

20 print @22"CUSTOMER LIST"@1@5,0"Name and address'*
@28"Balance"@39''Telephone**
30 output all cr$@5[name3 e26&5,2[balance] @39[telephone]
@5[street] @5[city] @5&[state] [zip]

Notice that although the column positioning parameters 5 and 39
are the same for both the column headings and the elements in the
'output' line, the parameter for "Balance" is different; this is
because is better to align the heading of a numeric column with
the right end of its field. You can easily incorporate simple
graphic effects by printing lines of dashes at appropriate places:

20 print @22"CUST0MER LIST"@1@5,0"Name and address"
@28"Balance"@39"Telephone"
25 print @5"-"
30 output all cr$@5[name] @26&5,2[balance] @39[telephone]
@5[street] @5[city] @5&[state] [zip]

If you had the foresight to assign the dashes to a variable you
could use it in more than one place:

15 d$="-"
20 print @22"CUST0MER LIST"@1@5,0"Name and address"
@28"Balance"@39"Telephone"@5d$
25 output all @5[name] @26&5,2[balance] @39[telephone]
@5[street] @5[city] @5&[state] [zip]@5d$

Your output would look like this:

97

Automated Processing

CUSTOMER LIST

Name and address Balance Telephone

John Jones
21 Main Street

678.89 503 456 7891

Winesburg
OH 34567

Mary Valdez
1212 Pine

456.99 912 234 4564

Laguna Beach
CA 93456

A great improvement for a small effort.

Labels

Before we move on, a word about label printing. Superbase comes
with a special Superbase program for labels, which is described in
help screens and/or the Manual, depending on your version. This
program is really intended for use when you require multiple
columns of labels. Single columns of labels are best printed with
a simple 'output' program. You just print all the name and address
details at the same column position, separating one label from the
next by printing the necessary number of carriage returns:

10 cr$=chr$(13):rera Set cr$ as carriage return
20 output all @5[name]@5[street]@5[city]
@5&[state][zip]crcrcrcrcr$

We have four lines of name and address ([state] and [zip] being on
the same line), and I'm assuming that the number of lines from the
top of one label to the top of the next is nine; that means we
must print five carriage returns to keep the printout regular.

Extending the Output Line: 'plus'

'Output' needs a small program if it is to be used most
effectively. The reason for this is that when 'output' is selected
as a menu option the number of field names that you can type in is
limited by the length of the command area: either 79 or 159
characters, depending on screen column mode. The maximum for a 79
character line is 25, assuming you have single character field
names. Since Superbase allows up to 127 fields per record,
'output' in menu mode can only be used to about 25% capacity. Even
the longer line allows no more than one third capacity. The
solution lies in the secondary Superbase statement, 'plus'. This
provides a way of extending an 'output' program line over as many
lines as you need.

Extended lines are less likely when you are printing line by line,
as only a few fields can often exceed the usual 80 columns of a

Automated Processing

printed line. But when a wider printer is in use, or the output is
to be printed page by page, the need for several lines of output
fields is not uncommon.

First, let’s take an earlier example and reshape the line purely
to illustrate the use of ’plus’:

20 output all @5[name] @25&5,2[balance] plus
30 @37[telephone] @5[street] plus
40 @5[city] @5&[state] [zip] plus
50 @5d$

As you can see, ’plus’ is typed as the last word on each line that
is to be followed by an extension of the main line. The main
’output’ statement itself is not repeated, and the final line must
not have ’plus’ at the end. In effect, all the lines from 20 to 50
are one line.

(’Plus’ can be used with some other statements: these are listed
in the Manual in the Programming section, part 2. You cannot use
’plus’ with ’find’, ’batch’, or ’sort’.)

Now let’s consider an example where ’plus* would be essential to
obtain the desired result. Suppose we are using a file format set
up like an invoice, holding not only the customer’s name and
address but the invoice information as well. Such a file might
look like this:

This is a total of 34 fields, so ’plus’ is definitely needed. Now
imagine a typical invoice form. The customer’s name and address
appears at top left, and below it on the right is the invoice
number and the date. Then the lines of the invoice appear.

Automated Processing

followed by the tax and total information. An ’output' program to
print the invoice details at the correct points on the invoice
form could look like this:

10 print:across
20 output all @1,1[name]@1,2[street]@1,3[city]plus
30 @l,4&[state][zip]@45,5[number]@45,6[date]plus
40 @l,9&5,0[ql] @15[dl] @40[pl] @55[tl] plus
50 @l,10&5,0[q2] @15[d2] @40[p2] @55[t2] plus
60 @l,ll&5,0[q3] @15[d3] @40[p3] @55[t3] plus
70 @l,12&5,0[q4] @15[d4] @40[p4] @55[t4] plus
80 @l,13&5,0[q5] @15[d5] @40[p5] @55[t5] plus
90 @l,14&5,0[q6] @15[d6] @40[p6] @55[t6] plus
100 @55,16[subtotal]@55,17[tax]@55,18[total]

The program would produce this kind of output:

Mary Valdez
1212 Pine
Laguna Beach
CA 93456

33.98
10.35
0.00
0.00
0.00
0.00

45.33
3.17

48.50

The program prints each invoice record on a new form, starting
each one at column 1, row 1 — the position of the [name] field.
Notice how on lines 40 to 90 the row specifier is included only
once, with the first item on the line. The other items are
positioned on the same line, until a new row specifier is
encountered.

Automated Processing: A Summary
In the next chapter. I’ll be looking at the group of statements
associated with Superbase’s ’report’ function. But before we move
on, a summary of the kinds of programmed operations we’ve covered
in this chapter will help to drive home the message that life with

100

00123

Janl386

2 Plant holders 16.99
3 Seedling trays 3.45

Automated Processing

Superbase can be made ridiculously simple. This diagram represents
the key activities as aspects of a single function: Superbase
programming.

Program management:
prog, save, load,

execute

Searching: find Updating: batch

Sorting: sort

Superbase
Programming

Output: output

Format control:
plen, tlen, etc.

All you, the user, have to do is decide which are your standard
operations, and then for each one work out the sequence of steps,
code it, and store it on disk. Then a simple command of the form:

execute "programname" <retum>

will run the entire operation while you either sit back and watch
or get on with something more congenial or productive.

Finally, a sample program that combines many of the operations we
have looked at separately in this chapter. This invoice processing
program is designed to do a nximber of jobs:

1. Search the invoices file for all invoices for the month of
December 1985 with an outstanding balance.

2. Sort them by customer, date and order of magnitude.

3. Print out a credit control report detailing invoice number,
customer name, date, invoice total, current balance, and
customer's telephone number.

4. Ask the operator to Insert the invoice stationery in the
printer.

5. Search the file for all invoices with a status of "new".

6. Print out the new invoices.

101

pr’

Automated Processing

of "printed".

8. Ask the operator to insert the normal stationery.

9. Print a summary list of the new invoices, with a figure for
the total billed.

10. Ask the operator to insert the roll of labels in the printer.

11. Print out labels for the invoices.

12. Ask the operator to insert the normal stationery.

13. Reset format parameters, display a "Finished" message, and
return to the menu.

The program makes some important assumptions about the invoice
record format, which you should know before trying to understand
how it works. The record format is basically like the one shown
above, but with some extra fields:

[balance] Set to the same value as [total] when the invoice is
first raised, but is then reduced as payments come
in. If it is not zero, the balance is outstanding.

[telephone] Holds the customer's telephone number.

[status] A constant field set to "new" when the invoice is
first raised, later updated to "printed".

[sort-1] A field that computes a value to allow the invoice
amount to be sorted in descending order while the
customer and date fields are sorted in ascending
order.

10 rem Program name "invoice-1"
12 rem
14 rem *** SET UP INITIAL VALUES ***

16 rem
20 cl$=chr$(147):rem To clear the screen
24 cr$=chr$(13):rem To be used for label printing
26 pr$="Press return when ready";rem Used often
28 t=0:rem Initialize total for 'batch' count
30 file "invoices
42 rem
44 rem *** FIND AND SORT OVERDUE INVOICES ***
46 rem
50 find "inv.list" where [balance] is ">0";[status] is
"=printed"; [date] is ">30NOV85&<01JAN86
60 sort from "inv.list" on [name][date][sort-1]
to "inv.sort"
72 rem
74 rem *** SET PARAMETERS, PRINT CREDIT CONTROL LIST ***
76 rem
80 print:across:space l:cont 1

102

Automated Processing

80 print:across:space Ircont 1
90 output from "inv.sort" [number][name][date]2[total]
&5,2[balance][telephone]
92 rem
94 rem *** CHANGE STATIONERY, RESET PARAMETERS ***
96 rem
100 display cl$"Put invoice stationery in printer"
@l,3pr$:wait
110 space 0
112 rem
114 rem *** FIND AND PRINT NEW INVOICES ***
116 rem
120 find "new.inv.list" where [status] is "new"
130 print
140 output from "new.inv.list" all @1,1[name]
@1,2[street]@1,3[city]plus
145 @l,4&[state][zip]@45,5[number]@45,6[date]plus
150 @l,9&5,0[ql] @15[dl] @40[pl] @55[tl] plus
160 @l,10&5,0[q2] @15[d2] @40[p2] @55[t2] plus
170 @l,ll&5,0[q3] @15[d3] @40[p3] @55[t3] plus
180 @l,12&5,0[q4] @15[d4] @40[p4] @55[t4] plus
190 @l,13&5,0[q5] @15[d5] @40[p5] @55[t5] plus
200 @l,14&5,0[q6] @15[d6] @40[p6] @55[t6] plus
210 @55,16[subtotal]@55,17[tax]@55,18[total]
222 rem
224 rem *** UPDATE NEW INVOICES, GET TOTAL ***
226 rem
230 batch from "new.inv.list" [status]="printed";
t=t+[balance]
232 rem
234 rem *** CHANGE, RESET, PRINT SUMMARY ***
236 rem
240 display cl$"Put normal stationery in printer"
@l,3pr$:wait
260 print:space 1
270 output from "new.inv.list" [number][name][balance]
278 rem Total in next line comes from 230
280 print cr$"Total:";&5,2t
282 rem
284 rem *** CHANGE, RESET, PRINT LABELS ***
286 rem
290 display cl$"Put label roll in printer"
@l,3pr$:wait
300 rem Format for 9 line labels
310 plen 9:tlen 9:space 0:print
320 output from "new.inv.list" @5[name]@5[street]
@5[city]@5&[state][zip]crcrcrcrcr$
322 rem
324 rem *** CHANGE, RESET, FINISH ***
326 rem
330 display cl$"Put normal stationery in printer"
@l,3pr$:wait
350 plen 66:tlen 60
360 display cl$"Finished"@1,3pr$:wait
370 menu

103

Automated Processing

When you have digested the program and understood what it' s
intended to do, you'll be ready to move on to studying Superbase's
reporting functions, which allow you to analyse the data in your
files to a much greater extent than the statements we have looked
at so far.

CHAPTER 8
REPORTING

Superbase's report generator is invoked by selecting the 'report'
option from Menu 1. It then presents you with a series of nine
questions about what you want the report to do. When you've
supplied the answers. Superbase creates a small program, no
different from the ones we've been looking at, in the program
area. You then have the option to store the program as it is on
the disk, or edit it first. In this chapter I'm going to assume
that we are programming a report from scratch, just as if we had
selected 'prog' from Menu 2. The report generator is a little
difficult to understand unless you have some understanding of the
group of statements involved, and I think most users will
appreciate it better after learning to program rather than before.
So we shall begin with a review of the six special statements that
together constitute the reporting function.

The Report Statements
The idea of reporting has two aspects: the production of well
presented printout, and the analysis of data. Between them, the
six report statements take care of these two requirements. The
first two, 'report' and 'endreport*, are there mainly to define
the beginning and end of a report program. The next, 'title',
gives you the ability to print headings on every page. 'Subtotal'
is for use with sorted lists, and lets you print out totals for
subgroups of records. 'Total' counts and accumulates totals for
fields in the record format. And 'detail' actually prints the
lines that comprise the body of the report.

Defining Report Style Output: 'report*

'Report' indicates that the other statements in the group are
active. It is always the first statement in the group, though it
need not be the first in the program. 'Report' in fact acts just
like 'file', in that it selects a file from the database catalog
and if necessary finds the file definition on the disk and loads
it up, opening the file in the process. Like 'file', 'report'
requires the name of the file to be used. Inside double quotation
marks:

10 report "invoices"

Terminating Report Style Output: 'endreport*

This statement signifies to Superbase that the other statements in
the group are inactive. The three functions described next are
disabled. 'Endreport' is always the last statement in the group,
though it need not be the last in the program. It does not
deselect the current file, which remains the one opened by
'report'.

105

Reporting

'Endreporf also acts as an output statement. You can place any of
the elements usually associated with ’output’ after it, and
position and format them using the normal commands. This allows
’endreporf to be used to print out the totals that have been
accumulated during the print run by the ’total’ statement, as well
as to print any standard messages such as "End of Report":

10 report "invoices"

100 endreport "Final Totals are:"tl;t2;t3 plus
110 @1,0"End of Report"

Headings on Every Page: ‘title’

For a report to look acceptably professional, it must have at
least one line of heading on each page. Superbase allows as many
lines of heading as you want. They are all described with the
’title’ statement, and when a report is being printed Superbase
prints the headings you specify each time it starts a new page,
the exact point at which a page starts being determined by the
’plen’ and ’tlen' statements. (Actually, if 'report' has been
executed, the heading specified in a ’title’ statement will print
out each time there is a page change, regardless of whether the
other ’report’ commands are in use.)

I cannot recommend too strongly that you design your reports on
paper before you begin to code them. You can buy layout forms from
office stationers which show the standard width of 132 columns
(this width is derived as the result of 11 inches printed at 12
characters per inch, I believe), in zones of 10 columns. All you
have to do is position your headings as you want them to appear,
whether your printout is to be at 80 or 132 columns width, and
work out the starting column position of each item. This then
becomes the positioning parameter in the ’title’ line or one of
the other lines of the report. So, if your heading "SALES REPORT"
is to appear at column position 34, the line looks like this:

20 title @34’’SALES REPORT"

This general method of positioning elements of the headings
benefits from some specific guidelines:

1. Multiple lines of heading are obtained by inserting blank lines
when required. You can use ’plus’ to extend the ’title’
statement if necessary.

2. Insert blank lines either with a variable set to chr$(13) -- a
carriage return — or the command ’@1,0’:

20 title @34"SALES REPORT"@1@1,0"CUSTOMER NAME"

or

106

Reporting

15 cr$=chr$(13)
20 title @34"SALES REPORT"cr$@5"CUSTOMER NAME"

3. For column headings, align the start of the heading for a text
or date item with the left of the item, but for numeric items
align to the right of the item:

ACCOUNT BALANCE
jacksonOl 34.50

4. Use dashes to make your column headings easier to read:

- BALANCES -
MONTH YEAR TO DATE

456.89 2000.89

5. Use the Superbase underlining commands, *@-' and ’@+', to
switch underlining on for all or individual items (provided
your printer supports the feature):

20 title @34e+"SALES REPORT"@1@1,0@+"CUSTOMER NAME"

This also produces reverse video for screen displays, whether
you are using report statements or not.

6. People often like the main heading to be central on the page.
If you prefer, you can use this simple formula, which involves
setting the words of the heading into a variable:

15 hd$="CUSTOMER LIST"
20 hp=(80-len(hd$))/2:rem 80 is report width
22 rem hp is horizontal position for any length title
25 title @hp;hd$

7. There is no provision for footings as such but you can cheat by
making the first line of your title into a footing line and
adjusting the page break so that it comes next, followed by the
actual title:

10 title @34"End of page footing" @1@1,0 plus
20 @34"SALES REPORT"

8. Page numbering is not provided directly, but there is a
reliable method of achieving this with a slightly complex use
of the * total' statement in conjunction with 'title'. I explain
this in Chapter 10.

Counting, Totalling, and Subtotalling: 'total' and 'subtotal'

Although these two statements have very different functions, I am
discussing them together because of their inextricably close
relationship in practice. Let's consider them briefly in turn.

107

Reporting

’Subtotal' is essentially an output statement that is acted on
only under certain conditions. It allows Superbase to detect the
end of a group of records, such as all those for a particular
customer or city. It does this by checking the contents of a field
in the record each time it reads a new record. (In fact it only
checks the first 16 characters.) You simply specify the name of
the field to be checked:

10 subtotal [customer]

This is known as the subtotal break field. You would usually
follow the subtotal break field with a printed message that
includes the amount for the group of records just printed, for
which [customer] was the same:

10 subtotal [customer] "Subtotal for above group:"si

The variable si is one of the special subtotal variables which are
controlled by the 'total' statement. It will be set to accumulate
the value you want to print out for each group, say the customer
balance. After si is printed when a change in [customer] occurs,
it is set to zero, and then starts to accumulate a value for the
new group. The changes occur like this:

Customer Balance Value of si

jones
jones
jones

* smith

34.56
123.45
23.50
45.00

34.56
158.01
181.51

0.00

* 'Subtotal' detects the change in [customer],
prints out 181.51, sets si to zero, and adds
the new balance for Smith:

smith 45.00 45.00

'Total' does the counting during a report, and provides the
variables to be printed out by 'subtotal' lines. Basically,
'total' allows you to decide what is to happen each time Superbase
outputs a record. Your options are limited to assigning values to
variables, but there are still many powerful functions at your
disposal:

1. The total variables. These are the variables tO, tl, t2, t3,
t4, t5, t6, t7, t8 and t9. You specify a field to be
accumulated throughout the report, and Superbase adds the
contents of the field from each record it outputs:

10 total tl=tl+[balance]

At the end of the report, the value of the variable is the
total amount for the field. Normally, you print it out with the
'endreport' statement (see above).

108

Reporting

2. The subtotal variables. These are the variables sO, si, s2,

s3, s4, s5, s6, s7, s8 and s9. You specify a field to be

accumulated throughout the report:

10 total tl=tl+[balance];sl=sl+[balance]

(Notice the semicolons, they are essential.) Superbase adds

[balance] to si each time it outputs a record, until a

'subtotal’ line detects a change in a break field, causing

Superbase to print si and reset it to zero. Superbase then adds

the [balance] from the new record to si, and the process

continues.

These are the two main purposes of the ’total* line, but the

others are nearly as important.

3. Counting. Any variable can be used to provide an overall count

of the records output during a report. This is done by adding

one to it on each pass:

10 total c=c+l

To count subgroups, you must use one or more of the subtotal

variables sO to s9, as Idiese are the only ones that can be

reset by a ’subtotal* line.

4. Averages. Once you have obtained a count, you can obtain

averages to be printed out in either a * subtotal * or
’endreport* line:

10 total tl=tl+[balance];c=c+l;s0=s0+l;sl=sl+[balance]

20 subtotal [customer] "Records in group:"@40s0plus si

21 rem See CAUTION below to explain si on above line

25 @l"Subtotal balances:"@4081 plus

30 @1"Average subtotal balance:"@40sl/s0

80 endreport "Number of records:"@40c plus

85 ei"Total balances:”@40tl plus

90 @1"Average balance:"@40tl/c

5. Retaining the subtotal break field. The ’total’ line is mainly

used for numeric acciimulation. However, you can also use it to

assign values to string variables. A ccxnmon use for this is to

keep track of the contents of the subtotal break field:

10 total cu$=[customer];sl=sl+[balance]

Superbase assigns the value of the [customer] field to cu$ each

time a record is output. It does this only after acting on a

’subtotal’ line; this means that
if a change in [customer] is detected, the old value of

[customer] is still available for the ’subtotal’ line itself:

20 subtotal [customer] "Subtotal for customer"cu$@40sl

109

Reporting

The actual printout might look like this:

Customer Balance

Jones

Jones

Jones

34.56

123.45

23.50

Subtotal for customer Jones 181.51

Smith

Smith

45.00

678.89

Subtotal for customer Smith 723.89

Williams 90.00

etc.

CAUTION. Even though you can use ’plus' to extend a ’subtotal'
line, you must always make sure that any subtotal variables that
are to be reset to zero appear on the first line. They may appear
after the 'plus' — the only time this Is allowed — but won't be
printed until their next mention:

20 subtotal [customer] plus si

25 "Subtotal for customer:" si

Printing Record Details: 'detail'

This statement is very similar to ’output'. It works by reading

records from a database file, either using an index key list or

the whole file as a source. Each time a record is read, the fields
you have specified, or other elements such as variables, text, or
formulas, are output to screen or printer, depending on which is
in force from an earlier statement. So a typical 'detail' line

could look like this:

30 detail from "sortlist"[customer][balance]

[telephone]

As with 'output', you can use any of the formatting or positioning

commands, and the 'plus' statement to extend the line. You can

specify 'across' or 'down', 'display' or 'print'. The one thing

you can't do is output to a disk file, at least not directly (for

the Commodore 128 a special statement has been introduced to allow

this, and there is a roundabout way of doing it with other

Commodore machines.)

One important difference between 'output' and 'detail' is that

with the latter you can omit the 'all' or 'from "listname"' that

is compulsory with the former. A line like this is acceptable:

30 detail [customer][balance][telephone]

no

Reporting

This line would output only the details from the current record;

it would be up to you to select a record from the file in another

part of the program, probably using 'select next' or 'select from

"listname"'. This allows you to perform any kind of processing in

between selecting the record and printing details from it. Often

this processing will take the form of checking to see that the

record meets certain criteria: a way of combining searching and

reporting in one operation. I give an example of a program that
does this in Chapter 10.

Hoh the Report Stateients Work Together
The key report statements work together in a report program to

ensure that presentation and analysis, the two aspects of the

operation, are coordinated. After the 'report', 'title', 'total',
and ' subtotal' statements have set up the parameters for the
program, this is the sequence of events:

1. 'Detail' is the trigger for the other statements. Read a record

2. If the line count exceeds the number permitted by 'tlen',
execute 'title' on a new page.

3. If any of the subtotal break fields are different in the

current record from their values in the previous record,
execute the appropriate 'subtotal' line.

4. Output the elements specified in the 'detail' line.

5. Execute the 'total' line •

6. Read the next record, and continue processing until

7. At the end of the file or list, execute the 'endreport' line.

Example Report Program 1

This program adapts the example I used to summarize the previous
chapter:

10 rem Program name "invoice-1"
12 rem

14 rem *** SET UP INITIAL VALUES ***
16 rem

20 cl$=chr$(147):rem To clear the screen

24 cr$=chr$(13)

26 pr$=”I^ress return when ready”:rem Used often
28 hl$="CREDIT CONTROL REPORT":pl=(80-len(hl$))/2

,30 h2$="NEW INVOICE SUMMARY":p2=(80-len(h2$))/2

32 file "invoices
42 rem

44 rem *** FIND AND SORT OVERDUE INVOICES ***

46 rem
50 find "inv.list" where [balance] is ">0";[status] is

"=printed"; [date] is ">30NOV85&<01JAN86"

60 sort from "inv.list" on [name][date][sort-1]

to "inv.sort"

111

'

Reporting

72 rem

74 rem *** SET PARAMETERS, PRINT REPORT ***

76 rem

80 print:across:space l:cont 1
85 report "invoices

90 title @pl;hlcr@l"NUMBER NAME DATE

TOTAL BALANCE TELEPHONE"cr$
91 rem

92 rem *** TOTALS, SUBTOTALS, COUNTS, CUSTOMER ***
93 rem

95 total tO=tO+l;tl=tl+[total];t2=t2+Cbalance];

s0=s0+l;sl=sl+[total];s2=s2+[balance];cu$=[name]
96 rem

97 rem *** AT BREAK, DO SUBTOTALS, AVERAGES, COUNT ***
98 rem

100 subtotal [name]"Subtotals for customer"

cu$plus sO si s2:rem *** CLEAR SUBTOTALS ***
105 @47&5,2sl &5,2s2 plus

110 @1"Averages for customer"cu$@47&5,2sl/s0
&5,2s2/s0 plus

115 @1"Number of invoices"@47&2,OsO
116 rem

117 rem *** PRINT RECORD DETAILS ***
118 rem

120 detail from "inv.sort" @1[number][name][date]

&5,2[total]&5,2[balance][telephone]
121 rem

122 rem *** AT END, PRINT ANALYSIS OF DATA ***
123 rem

125 endreport @l,0"Grand totals" @47&5,2tl &5,2t2 plus

130 @1"Overall averages" (a47&5,2tl/t0&5,2t2/t0 plus

135 @l"0verall number of invoices"@47&2,OtO plus

140 @1"Gross amount pald"e47&5,2tl-t2plus

145 @l"Percentage unpaid"@47&5,2(t2*100/tl);"%"
150 rem

152 rem *** FINISH ***

154 rem

160 plen 66:tlen 60:space 0:cont 0

165 display cl$"Finished"@l,3pr$:wait
170 menu

Many of the lines in the program are included purely to document

the different sections of the code. When you remove them, you can

see that the main part of the report is accomplished in very few

lines, fewer still if you make allowances for the use of ’plus'.

In the 'endreport' section, I have deliberately included two extra

calculations to illustrate the possibilities of formulas as part
of the report. You can of course use them in other places, such as

the 'subtotal' and 'detail' lines.

PROGRAMMER'S CHALLENGE. What is the formula to compute a ratio of
amount billed to amount paid off for each customer, and how would
you print it?

112

Reporting

Example Report Program 2

This is a summary report, which takes advantage of the ability to

use 'detail* without specifying any fields or data to be output.

The form of the line is simply:

10 detail from "sortlist";

The semicolon is essential. When this is used, all the other

report statements are still active, so totals will be accumulated

and subtotal break fields will all be checked even though there is

no body to the report. This is the whole point: we can skip the

detail, and still obtain useful results. For our example, we'll

imagine a sales statistics file with one record for each sale,

looking like this:

ooda
product type

< > •
>

Mlo0 mrmm . / 4 >
salos tdcount >

A basic format for a simple job. The aim of the report is to

produce a summary of sales figures for product types broken down

into areas. Here's the report:

10 file "stats

20 sort all on [type][area] to "sortlist"

30 report "stats

40 title @34 "SALES SUMMARY"@1@1,0

50 total tl=tl+[amount];sl=sl+[amount];plus

60 s2=s2+[amount];plus

70 ty$=[type];ar$=[area]

90 subtotal [area]@11"Subtotal for area"ar$;@50sl
100 subtotal [type]@21"Subtotal for type"ty$;@65s2

110 detail from "sortlist";

120 endreport @1,0@21"Total amount"@65tl

The printout will look like this abstract scheme:

Subtotal for area CA 300.00

Subtotal for area NY 300.00

Subtotal for type A 600.00

Subtotal for area CA 250.00

Subtotal for area NY 250.00

Subtotal for type B 500.00

113

Reporting

Total amount 1100.00

This technique has one big weakness. If the contents of the [area]

subtotal break field do not change at the same time as the

contents of the [type] subtotal break field, the report will fail

to print a final [area] subtotal before the [type] subtotal, and

will actually aggregrate the unprinted subtotal with the first

subtotal for the new type. This problem can only be overcome by

using 'select from* and inserting 'if statements to check the

contents of the fields as they change, which is what you would do

in a similar BASIC program.

With this summary report we come to the end of this part of the

book. The Automated Database. If you have followed the examples
and put some of their principles into practice, you should be able

to construct and run a Superbase database using just a small

number of tried and tested programs. You will be able to eliminate

almost completely the tedium of typing in long command lines,

struggling to remember field names, and coping with the inevitable

typing mistakes and errors of logic. The next step, when you've

reached this stage, is to tie all the small programs together into

one big one — the Programmed Database.

114

PART III

THE PROGRAMMED DATABASE

CHAPTER 9
PROGRAMMING MENUS AND

INPUT SCREENS
This chapter integrates the material of previous chapters,

explaining how to set up a menu driven application that brings the

major functions of the database together as programs that can be

selected and run automatically. In the following chapters I go on

to discuss a number of topics of perennial interest to Superbase

users, illustrated with examples of more advanced programming. But

before I begin the discussion of menus, I must offer some general

advice about programming. I do this with serious hesitation, not

only because I recognize my own limitations as a programmer, but

also because among the many Superbase programmers in the world

there are undoubtedly some experts who have their own decided

opinions. Well, I am not setting out to offend anyone's

preconceptions, just to establish some ground rules for those who

need them.

Anyone who wants to program Superbase regularly should treat it as

an exercise in learning to use a new programming language. That is

what Superbase really is, despite the menus, which are no more
than snapshots of some of the main statements shown in a user

friendly form. Of course. Superbase is very similar to BASIC, and

for this reason I strongly recommend that dedicated Superbase

programmers make themselves familiar with that language,

preferably a Commodore or Apple version, before getting in too

deep with Superbase. Use a good textbook with lots of easy

examples. Make sure you know how the following elements of the

language function:

Variables:

Functions:

Operators:

Branching:

Loops:

Conditionals:

String, numeric, and array types

String and numeric

+-*/"=<> and or

goto

gosub return

for ... to ... step

next

if ... then ... else

Program structure depends on the purpose of the program, but there

are a few fundamentals that are common to most programs of any

length. Programs are usually divided into three parts:

initialization, main code, and subroutines. There may also be a

part for storing data to be used in the program.

The first part of a program is initialization. This refers to such

things as setting up any variables and tables (arrays) of data to

be used later in the program, opening the files that the program

will require, as well as perhaps displaying an initial screen and

115

Programing Menus

requesting any critical run time parameters.

Logically, the next part of a program is the main code. This steps
through the sequence of operations that accomplish the desired
goal, whether this is selection from a menu or the production of
invoices. At the end of the main code, the program should exit
after ensuring that all is in order in its world of data and
variables — no open files or records that have not been updated.

Any parts of a program that are repeated can be placed in
subroutines to which the main code branches when necessary.
Subroutines should be structured like small programs within the
main program, with their own variables, initialization, calls to
other more general subroutines, and carefully controlled exit
points. Some programmers believe that the lines containing
subroutine code should be placed near the beginning of a program,
before the main code section, as this yields a small increase in
speed, but as far as Superbase is concerned the difference will be
minimal.

Data storage. In a Superbase program, like a BASIC program, 'data'
statements are conventionally placed at the end of the program.

Program style is again a matter for individual preference, but
these general precepts will, I hope, meet with general approval.

Make the program legible. When possible, space out the different
parts of the code with 'rem* statements. Commodore BASIC is very
unhelpful when it comes to presenting code, and there is no way to
indent 'for ... next' loops, for example, or to keep the syntax
properly spaced out on a line.

Comment often. Explain to the reader what each part of the program
is doing. You may not be the only person ever to look at the code.
Of course, if your version of Superbase allows only 4K of program,
you will be tempted to break this rule, especially as shorter
programs also load more quickly and take up less room on the disk.
Even so, comment where possible, even if the version you use is
not the one you print out for your records.

KISS. Keep it simple, stupid. Avoid excessively fancy contortions
in the code. They may gratify your sense of intellectual
superiority, but they will perplex and infuriate both you and
others six months from now when the bug has to be fixed by noon.
Try to be satisfied with the elegance of the obvious. Of course,
there will be times when results cannot be obtained without a
descent into obscurity, or when memory limitations impose
terseness.

Flow downhill. Try to keep the flow of program control moving in
one direction, from beginning to end, except for those programs
that mainly consist of one big loop.

If you consider that the preceding paragraphs are on the whole
meaningful to you, you're probably ready to come to terms with the
next subj ect, constructing a menu program.

Programing Menus

A Menu Driven Systei
We can define a menu driven Superbase application as a system in
which the main functions are obtained, or accessed, from a single
point of overall control. Superbase itself is menu driven, and you
can call any of its primary functions from the main menus. Menus
offer options to the user, who can select one by entering a number
or pressing a letter key. Structurally, a Superbase application
menu can be represented as a node:

Add new records

Amend existing
records

Search database

Update file

MENU

Print master list

Output for word
processor

Display selections

Exit to Superbase

Each function is a separate program, which is executed when the
user selects it from the menu. When the executed program is
finished, it reloads and executes the original menu program. On
the screen, the menu is more likely to be a list:

KT KAZM MDfU

1 Add DM records

2 Aaond mMimtlng rmoorda

3 SMTch databAM

4 Update film

5 Print saatar Hat

6 Output fbor vord prooasaor

7 Display aaifictlons

8 Exit to Suparbasa

Enter option:

So, how do we obtain a menu like the above on the screen? There
are three main ways of doing it: using help screens, using
database file formats, and direct coding.

117

Programing Menus

Method 1: Help Screen

The first method is the simplest. You use the Superbase ’memo’
function to design a screen, typing in the descriptions and
numbers of the options, a heading for the menu, and any boxes,
underlining, etc. that you want (and the keyboard allows). You
also type in a prompt, such as the "Enter option:" message above.
You then store this memo screen on the disk, and by giving it a
name beginning with "h" or "h8" (depending on your version), you
make it available to the Superbase ’help’ command. This means that
a file called "hSmenul" can be displayed on the screen in its
entirety with the simple program line:

10 help "menul

Notice that I have deliberately omitted the "h8" at the beginning
of the name -- ’help' always supplies it before looking for the
file on the disk.

Method 2: Database File Format

The second method, using database file formats, is the least
obvious. You use the ’ format ’ option to design up to four menu
screens, using the drawing facilities as you please and typing in
the option numbers and descriptions as above. The four formats are
stored as a normal data file, so you need to put one field on each
of the screens you design. Use the key field on the first screen
and text field replicas of it on subsequent screens.

This file is then selected with a normal ’file’ statement, which
is accompanied by a ’screen’ statement to decide which of the
formats to display, and a ’select c* to display it:

10 file "menus":screen 0:select c

With ingenuity, you can ring the changes on ’screen n’ to produce
very fast displays of even the maximum of four menus, each with a
number of options on it. Each time you display a screen, though,
you must handle the single field on it. I usually obscure it by
displaying the "Enter option" message over it, having carefully
positioned the field in the right place to begin with.

Method 3: Direct Coding

The third method, direct coding, is closest to BASIC. You just use
’display’ with the option numbers and descriptions, positioning
them at the column and row you want:

10 display @30,3"! Add new records"
20 display @30,5"2 Amend existing record"
30 display @30,7"3 Search database"

This is fast, but not as fast as the previous method, and it can
consume a lot of memory space, which could often be put to better

118

Programing Menus

use. However, if for some reason you want the bells and whistles
of a Superscript style duckshoot menu, you can have them —
provided you've got unlimited time for programming!

Example Menu Program

Overall, the first method is preferable. It involves less
programming and the time taken to display a help screen is no
longer than that required to load a long file definition.
Moreover, the overhead for having one of the current files
dedicated to a menu function is unacceptable when a multi-file
application is needed. Here is an example of a menu display and
selection using a help screen:

10 rem Superbase menu program
18 rem
20 rem *** LOAD PROGRAM NAMES INTO ARRAY ***
28 rem
30 for i=l to 7:read prg$(i):next
38 rem
40 rem *** MENU STARTS HERE ***
48 rem
50 help "menul"
60 display @0034,20(3+"
70 wait op: if(op<l)or(op>8)then 70
80 if op=8 then menu
90 load prg$(op):rem *** END OF PROGRAM ***
98 rem
100 rem *** PROGRAM NAMES FOR LINE 30 ***
102 rem
110 data newrec,amdrec,srcdb,updfile,prtmast,wp,disp

This is in effect a seven line program. Line 110 holds the names
of the seven programs that correspond to menu items one through
seven. Line 30 reads the program names into an array, prg$(n).
Line 50 displays the help screen that contains the menu, and line
60 displays a reversed space after the "Enter option" prompt,
purely for cosmetic reasons, as the input does not in fact take
place at this point. Line 70 does the job of getting a key from
the keyboard. Since I have requested a numeric variable, op, no
alphabetic key will be accepted. The line also checks to see
whether the value of op is within the range of options, one to
eight. If it is not, the user is forced to input a new number.
Line 80 tests to see whether option 8, exit to Superbase, has been
selected; if it has, the program exits. Line 90 ends the program
by loading and executing the program from the element of the
prg$(n) array that corresponds to the selected option.

Using "start.p" to Display a Menu
It would be convenient to have this menu displayed as soon as
Superbase is loaded. This is made possible by the "start" program.
Everyone who owns Superbase has used this program, even if only a
minority have ever investigated it as a program. It sets up system

119

Programnlng Menus

parameters like margins and line spacing, draws a box on the
screen with Superbase’s name inside, and asks for input of a
database name and a file name. That's all. Although these
functions are useful, they are not essential. The most important
thing about the "start" program is its name. Superbase always
looks for a program with this name on the disk you insert after
the start up menu comes up (the one with "Remove Program Disk",
etc). (If you have not placed a copy of "start" on your work disk.
Superbase says "File Not Found"; this does not prevent you from
selecting a database and file and carrying on normally.)

The implication of the fact that the name is what’s important
about "start" is that you can modify it to include any statements
that you want. You can remove the display of the box and
"Superbase", and you can specify a database and a file by name
rather than requesting user input. You could even write an
entirely new program and call it "start". What sort of program? A
menu, of course. Here is an example of a start program that sets
the system parameters, selects database and file, and then calls
up a menu as in the previous example.

10 rem Superbase start program
18 rem
20 rem *** SET SYSTEM PARAMETERS ***
28 rem
30 Imarg l:rmarg 80:rem margins
40 plen 66:tlen 60:rem page & text length
50 pdev 4:pdef 0:rem printer device 4 cbm code
60 Ifeed 0:cont l:rem no line feeds, continuous print
70 space 0:across:screen 0
74 rem
76 rem *** SELECT DATABASE AND FILE ***
78 rem
80 database "sales":file "customers"
98 rem
100 rem *** LOAD PROGRAM NAMES INTO ARRAY ***
118 rem
120 for i=l to 7:read prg$(i):next
128 rem
130 rem *** MENU STARTS HERE ***
138 rem
140 help "menul"
150 display @0@34,20@+" ";
160 wait op: if(op<l)or(op>8)then 160
170 if op=8 then menu
180 load prg$(op):rem *** END OF PROGRAM ***
184 rem
186 rem *** PROGRAM NAMES FOR LINE 120 ***
188 rem
190 data newrec,amdrec,srcdb,updfile,prtmast,wp,disp

Extended Menu Programs
Earlier I stated that each of the options on the menu is normally
a separate program. It may well be possible, if the code in these

120

Programming Menus

programs is short enough, to incorporate it it the main menu
program itself. While this blurs the structure of the menu and its
dependent satellites, it allows faster execution, and if one or
more of your options is used often, you should certainly consider
this move. Here’s the first menu program amended to allow database
searching and review of the records in the current "hSlist":

10 rem Superbase menu program
20 rem *** LOAD PROGRAM NAMES INTO ARRAY ***
30 for i=l to 7:read prg$(i):next
40 rem *** MENU STARTS HERE ***
50 help "menul"
60 display @0@34,20@+”
70 wait op: if(op<l)or(op>8)then 70
72 if op=3 then 200
74 if op=7 then 300
80 if op=8 then menu
90 load prg$(op):rem *** END OF PROGRAM ***
100 rem *** PROGRAM NAMES FOR LINE 30 ***
110 data newrec,amdrec,dummy,updfile,prtmast,wp,dummy
198 rem *** CODE FOR MENU OPTIONS ***
200 find
210 goto 50
300 output from "" [code][name][balance][telephone]
310 goto 50

Notice that in line 110 two of the program names have been changed
to "dummy", and that following each option the program returns to
line 50 to display the menu.

Designing Your Own Input Screens
Once you have become aware of the possibility of programming in
your own menus, you will probably start to wonder whether you can
do more to program Superbase’s screen displays. You certainly can.

Users often want to create their own alternatives to the Superbase
menu options ’enter’ and ’select replace’ or ’select add’. Another
common need is for introductory screens, where the operator is
asked for some input, such as a password or a date, before the
main program proceeds. Superbase has two input statements, ’ask’
and ’wait’, and one output statement, ’display’, which you have
already seen at work.

The 'ask' Statement

The ’ask’ statement is for inputting data of any length up to 254
text characters. It is self-validating in that if you specify a
numeric input variable only numeric input will be accepted. Here
are the basic forms of ’ask’:

10 ask x$
20 ask X

121

Programing Menus

These two variants cause the command line to display the prompt
"Enter ?"; you must type in a response followed by return. Return
on its own is not permitted, neither is a space, but zero may be
typed in for the numeric variable. If you try and input a
non-numeric variable to x, you will get an error message; when you
press return, the program executes the line again.

10 ask @10,5;x$

This displays a cursor at column 10, row 5; validation is the
same. The next example, valid for both x and x$, displays the
prompt message on screen, and then accepts the input:

10 ask @10,5"Please enter your name: ";x$

If you omit the positioning command, the message appears on the
command line, preceded by the word "Enter". You can also use 'ask'
to input directly into a record format, field by field. The
following program shows how:

90 clear:select c
100 ask "code"[code]:select c
110 ask "name"[name]:select c
120 ask "street"[street]:select c
130 ask "city"[city]:select c
140 ask "state"[state]:select c
150 ask "zip"[zip]:select c
160 ask "telephone"[telephone]:select c
170 ask "amount"[amount]:select c
180 ask "date"[date]:select c
190 store

The first line clears the record format and produces a blank
record to be filled in, then shows it on the screen with 'select
current'. Each of the following lines inputs one field and
displays the record format updated with the new item. (If you
input just a string of numbers such as a zip code. Superbase
formats them as a number, i.e. with two decimal places and a
leading space for the sign. To overcome this anomaly, type in a
space before the number.) At the end, 'store' puts the new record
into the file. Each item is typed in on the command line, not into
the field itself. The program can request fields to be entered in
any order. Numeric and date fields are validated automatically,
but you can also intervene in the input process to check the
contents or range of any field. Suppose [code] may not begin with
the digit "2"; the program can be modified like this:

90 clear:select c
100 ask ’’code" [code]: if left$([code], 1) = "2" then 100
105 select c
110 ask "name"[name]:select c
etc.

Input will be forced back to the same line until a legal code is
entered.

Programing Menus

Be aware of two types of problem. First, you cannot skip fields.
Numeric and date fields can accept 0, but text fields must have at
least one character. More seriously, you cannot move from field to
field to edit the contents, as you can with ’enter’ or ’select r’,
without some rather fancy programming, which is generally not
worth the memory space. You have to recall the record at a later
time to edit it.

If you prefer, you can include positioning commands to cause the
input to be done in the actual field position on the screen. You
must also specify the maximum length of the input string, which is
done with the ’&’ command followed by the length of the field:

90 clear:select c
100 ask &10@12,2[code]
110 ask &24@12,4[name]
120 ask &24(ai2,6[street]
etc.

We dispense with both the prompt string and the ’ select c ’, but
there is still no way of editing the fields once you have left
them unless you add more code.

A little known feature of the ’ask’ statement is that it accepts
whatever is at and to the right of the cursor position when return
is pressed. This means that you can display some characters on the
screen, and then position to the first one and do an ’ask’ into a
string variable. When the operator presses return the variable
will hold all the characters to the right, as well as the one
under the cursor. Try this short demonstration program:

100 display @5,10'*This is the string to be input"
105 display @5,11"(Press return)
110 ask @5,10x$
120 display @5,13’’x$="+x$:wait

Clever programmers use tricks like this for selecting files or
options from a display, but it is not an essential part of the
’ask’ repertoire.

The 'watt' Statement

The difference between ’wait’ and ’ask’ is that the former only
accepts single key input, whereas the latter can accept strings up
to 254 characters long. ’Wait’ is thus used for the ubiquitous
"Press any key to continue" routine that inserts a pause in the
execution of a program, usually so the operator can read a screen
message. In Superbase, whenever you see the message "Waiting" on
the command line you know that a program is executing the ’wait’
statement.

10 wait a
20 wait a$
30 wait

123

Progranming Menus

The first line accepts only numeric input; we used it earlier in
the menu program. The second line accepts any key, and preserves
the value in the variable a$. The third line accepts any key, but
does not preserve its value, and is the most suitable when a pause
pure and simple is required. Line 20 allows you to trap the input
key, test its value, and act accordingly. Another use is to
provide a quick way of ascertaining the ASCII value of the key;

20 wait a$:display asc(a$):wait

’Wait’ does not display the input key. This makes it suitable for
accepting passwords. Here is a program that allows the user a
number of tries at a password before denying access:

20 at=3:rem number of attempts
30 ln=5:rem length of password
40 for j=lto at
45 x$=""
50 display chr$(147)@5,5"Enter password:@+"
100 for i=lto In
110 wait a$
120 x$=x$+a$
130 next i
140 if x$<>"super"then display "Failed!:goto 150
145 display "0K!":goto 180
150 display @5,10"Attempt";&l,0j;"of";&l,Oat;"failed"
155 wait
160 next j
170 display @5,12"Attempts failed — access denied!"
175 quit
180 load "menu"

The j ’for ... next’ loop controls the number of attempts, while
the i ’for ... next’ loop accepts five successive key inputs,
building up the full password in x$. This is then compared in line
140 with the correct password, and the program acts appropriately
depending on the results. If you use the ’protect’ statement (see
Manual) on a password program, you can stop anyone looking at it.
This includes yourself -- so ensure you have the unprotected
original locked away safely.

Another common use of ’wait’ is to obtain the response to what I
call a confirmation prompt, often taking the form "Are you sure?
(y/n)". Here the job is to verify the input as quickly as
possible:

100 display @l,22"Are you sure? (y/n)"@0;:wait a$
110 if a$<>"y"and a$<>"Y"and a$<>"n"and a$<>"N«
then 100

The lengthy line 110 can be replaced with the preferable ’instr’
function if this is available in BASIC:

110 if instr("YyNn",a$,l)=0 then 100

124

Programing Menus

The 'display' Statement

'Display' is very widely used in screen handling programs. It
allows precise positioning of characters and truncation of text
strings, as well as the reverse video effect. Its effect is
controlled by the 'across' / 'down* pair of statements, so if you
start to see "End of page" during the display check this first.
Here are some of the possible forms 'display' can take:

10 display "John Smith";
20 display (a+"John Smith"
30 display @1,14"John Smith"
40 display &4"John Smith"
50 display @l,14@+"John Smith"
60 display @0@l,14"John Smith"

Line 10 does a straightforward display, but the semicolon at the
end stops the cursor from moving to the next line, so line 20
shows a reverse display on the same line. Line 30 uses column and
row positioning, and line 40 shows how to truncate the display.
Line 50 illustrates how attempting to do a display at a position
that is prior to the current cursor position causes an "End of
page", while line 60 shows the correct way to reposition on the
screen without forcing the new page. The '@0' positioning command
in line 60 should always be used in conjunction with the other
coordinates to reset the display counter (an internal event) if
you want to display above or to the left of the cursor position
without disrupting what's already on the screen.

Drawing Boxes

In a fully programmed display, users often want to use boxes to
emphasize parts of the screen. 'Display' can be used to draw such
boxes, but the code is like BASIC and there are no special
windowing statements:

10 rem drawing boxes
15 rem w width - h height - r row - c column
14 rem
16 rem *** PARAMETERS FOR 6 BOXES ***
18 rem
20 w=20:h=10:r=5:c=10:gosub 60:b$="l":gosub 90
25 w=4:h=3:r=2:c=34:gosub 60:b$="2":gosub 90
30 w=10:h=2:r=18:c=3:gosub 60:b$="3"rgosub 90
35 w=6:h=6:r=8:c=70:gosub 60:b$="4"rgosub 90
40 w=15:h=8:r=12:c=40:gosub 60:b$="5"rgosub 90
45 w=30:h=l:r=4:c=45:gosub 60:b$="6"rgosub 90
50 wait:menu: rem **** END OF PROGRAM ****
52 rem
54 rem *** BOX DRAWING SUBROUTINE ***
56 rem
60 h$="":for i=lto w-2:h$=h$+"-^rnext
65 display e0@c,r;"r"+h$+"n":rem TOP CORNERS
70 for i=lto hrdisplay @c,r+i;"|"Qc+w-l;"|":next
75 display @c,r+h+1;"L"+h$+"Jl":rem BTM CORNERS

125

Programing Menus

80 return
82 rem
84 rem *** TEXT IN BOX SUBROUTINE ***
86 rem
90 display @0@c+l,r+l;b$:return

It may not be the fastest thing you ever saw, but it does the job.
Lines 10 to 45 simply pass the size and position parameters for
the six boxes. Lines 60 ‘ to 75 build up a horizontal bar in h$,
display it with corners added, display the sides in a 'for ...
next' loop, then display the bottom bar and corners. You can
substitute your own characters for the Commodore graphics I have
used if you prefer. Line 90 shows how to position a text item
inside the box after it's been drawn.

Error Messages

In this category I include all text messages that your program
puts on the screen to help the user understand how to act when a
mistake has been made, but not of course Superbase's own error
messages, which are displayed on the command line. This includes
both complex errors and simple ones like "Password incorrect".
It is important to keep your programs predictable, so decide on a
particular area of the screen that you want to reserve for
messages, and stick to it in all programs. Error messages are best
handled by a subroutine, like this:

1 rem *** SET UP SPACES TO CLEAR LINE ***
5 rem
10 sp$=" ":sp$=sp$+sp$+sp$
14 rem
16 rem *** EXAMPLE ERROR MESSAGES ***
18 rem
20 e$=" Please type six characters ":gosub 60
30 e$=" Date must be in form ddmmmyy ":gosub 60
40 e$=" Range is 1 to 9 "igosub 60
50 wait:menu
54 rem
56 rem *** ERROR DISPLAY SUBROUTINE ***
58 rem
60 display @0@1,22@+e$@56"Press return to continue";
70 wait:display @0@1,22sp$;e0:return

The routine puts the message on the bottom line of the screen,
showing it in reverse video for emphasis. Line 10 has the job of
building the sp$ string that is used in the subroutine to clear
the line after the message has been displayed — an essential
feature that is sometimes overlooked.

126

CHAPTER 10
ADVANCED PROGRAMMING

This chapter is dedicated to the unknown Superbase user, the
intrepid traveller who has struggled through despair to attain
that tenebrous object of desire, the perfect program. Some of the
solutions on offer in the following pages will certainly be known
to some users, but not to all. Likewise, some of them will be
inferior to those developed by others, for programs can always be
improved; but if our answers enlighten just one darkness, they
have served their purpose.

Searching with User Input Criteria
The requirement is for a programs that allows the user to input
data which is then used in a ’find’ operation. The problem is in
constructing the where clause so that the input data is joined
with the operator, such as ’>’ or ’&’, so that Superbase can
understand it. Basically, the operator is placed inside quotation
marks, and the variable is concatenated with the ’+’ sign:

10 find where [name] is "="+nm$

If nm$ were equal to "jones”, this would be the same as saying:

10 find "" where [name] is "=jones”

You can use any of the operators in this way. However, there are a
number of complications, especially where numeric and date fields
are concerned. First, let’s see what you have to do for a numeric
field:

10 ask "amount";x
20 find where [balance] is ">"+str$(x)

You input the amount into a numeric variable, x; this ensures it
is a valid number, not a string. Then, for the ’find’ line, you
must treat x as a string, because this is all that ’find’
understands when it’s looking at the line. Use the ’str$’
function, as shown above. This is a little confusing, as you can
still type a number directly into the quotation marks in a ’find’
line:

20 find where [balance] is ">"+str$(x)+"&<1000”

But that’s the way you have to do it.

Dates are more complicated still. You have to type the date into a
string variable, and this means that you must validate it before
you use it in a ’find’ line. Use the ’date' statement, which
returns zero for an invalid date and the month number for a valid
one:

10 ask "date";dt$
20 date dt$,m:if m=0 then 10

127

Advanced Programing

This ensures that only a good date is entered, so the search can
go ahead:

30 find "" where [date] is "=”+dt$

A frequent problem is the need to have the operator enter a date
as the basis for a search, say "1FEB86", when in fact it is all
dates after and including the entered date that are wanted. As
Superbase does not have the ’>=' operator for dates, it is up to
the program to reduce the input date — a string — by one, to
"31JAN86" in the example, so that the search will catch all dates
after that. This involves two extra steps: assigning the string to
a date field, which is capable of being manipulated
arithmetically; and reconverting the date field to a string for
the search. (In this case we are using a date field from the
record format purely to assist in the program, not in order to
store information in it.) We must also ensure that the input
string is seven characters long (ddmmmyy or mmmddyy):

10 ask dt$
15 if len(dt$)<>7then 10
20 date dt$,m
25 if m=0then 10
30 [date]=dt$:[date]=[date]-1:convert [date],dt$
40 find""where [date]is">"+dt$

A similar technique can be used to find a range of dates between
and including two input dates. However, a more sophisticated
approach is needed if we want to make the operator's life easier
by asking for only the three letters of the month when a search
for all the dates in a particular month is called for. It's a
little clumsy to use an array of month abbreviation strings and
the number of days in each month when Superbase's own facilities
can do the job just as efficiently. Here's the program:

100 ask &3"month abbreviation";m$
102 rem
103 rem *** VALIDATE DATE, GET MONTH £ ***
104 rem
105 if len(m$)<>3 then 100
110 m$="01"+m$+"86":date m$,m:if m=0then 100
112 rem
114 rem *** GET TWO DATE NUMBERS ***
116 rem
120 [date]=m$:dl=[date]-1:d2=[date]+31
122 rem
123 rem *** LAST DAY OF PREVIOUS MONTH ***
124 rem
125 convert dl,dl$
126 rem
127 rem *** FIRST DAY OF NEXT MONTH ***
128 rem
130 d2=d2-l:convert d2,d2$:date d2$,ml
135 if mlOm then 130
140 d2=d2+l:convert d2,d2$

128

Advanced Programing

142 rem
144 rem *** SEARCH ***
146 rem
160 find""where Cdate3is">”+dl$+"&<"+d2$

First we get a three character identifier ("feb"), then we add a
day and a year and validate it ("01feb86"). This is m$, and the
month number is m. In line 100 we set up two numeric dates, dl and
d2, respectively one less and 31 greater than the original m$. By
adding 31 we ensure that d2 is a date in the next month; exactly
which one does not matter. Then we use 'convert' to make dl into
the last date of the previous month, dl$ ("31jan86"). Now, we have
to make d2 equal to the first date in the next month (i.e.
"01mar86"). In line 130 we decrease d2 by one, 'convert' it, and
get its month number, ml, with 'date', which in line 135 we
compare with the original, m. If necessary these steps are
repeated. When ml and m are the same, we're on the last day of the
original month ("28feb86"), so we just increase d2 by one and it's
equal to the first day of the next month. After using 'convert'
once more we have the two dates in string form, dl$ and d2$,
"31jan86" and "01mar86", ready for use with 'find'. It's more
complicated to describe than it is to program, but it works quite
satisfactorily.

Programed Selection of Records
Record selection is one of the more frequently used Superbase
options, and in programs there are two main t3fpes of requirement:
reproducing the functions of the 'select' submenu, and selection
by key from an index key list created with 'find' or 'sort'. We'll
look at the 'select' submenu functions first. Although you can use
'select' by itself as a program statement, this is rarely
satisfactory; Superbase does not allow you to stay at the submenu
level without special interpretation of the keyboard input.
Therefore you will need code that can use the submenu functions
flexibly and effectively.

The single most important function is selection by index key,
which allows you to call up a record within one or two seconds.
This is very useful, and can be made even more convenient when the
input, selection, and display are programmed in.

The first requirement is simply to accept a key string and find a
record. For this 'select k' is sufficient:

10 select k:select c:wait

You are asked to enter a key; Superbase then finds the record, but
it is only displayed when 'select c' is executed, and unless
'wait' delays it, the display will be momentary before Superbase
returns to the menu.

This is fine, but there are times when you want either to validate
the key input or to position the input elsewhere than on the
command line, which is where 'select k' is restricted to. For this

129

Advanced Programing

we just add ’ask’:

10 ask @5,5"Please enter index key: ";k$
20 if k$="illegal" then 10
30 select k$:select c:wait

Line 20 is meant to illustrate the possibilities for validation.

Another requirement for selecting is to call up the last in a
series of records with a sequence of keys such as:

smithOl
smith02
smith03
smith04
smithOS
smith06

The aim is often to find out the value of the last numeric suffix
so that a key can be made for a new record that does not duplicate
an existing one. The method involving the fewest reads of the file
is this:

10 ask @5,5"Please enter name: ";k$
20 k$=k$+"999"
30 select k$:select p:select c:wait

The user enters the name, but no sequence number, and the program
supplies "999". 'Select k' using this string gets the next record
after the last one in the target sequence, which a 'select
previous' obtains as the current record ready for display. This
code can be combined with programmed record entry to generate keys
automatically, avoiding tedious manual searching for the last
record in a sequence.

What happens if the key you input does not have a corresponding
record in the file, or one which corresponds only in part?
Superbase has two special statements for testing the validity of a
'select k' operation: 'nmat' and 'pmat'. The first, 'nmat', is
"true" if Superbase cannot find any key that matches. If the index
keys were all for "smith" as above, and I entered "williams",
'nmat' would be true. Like any conditional statement, 'nmat' only
allows the statements to the right of itself on the same program
line to be executed when it is true:

10 k$="williams"
20 select k$
30 nmat display "No key for";k$:wait:menu

The second test, 'pmat', is true only if Superbase finds a partial
match; 'pmat' acts the same way as 'nmat'. A partial match needs
defining carefully. If the keys are all for Smiths, as above, the
following entries would all produce a condition of true for
'pmat':

130

smithO

Advanced Programing

smith
smit
smi
sm
s

However, all the following would make 'pmat' false:

smithl
smitha
thompson
t

A program that performs a full test on * select k' could look like
this:

10 ask "key";k$
20 select k$
30 pmat ms$="Partial:goto 100
40 nmat display "No key":wait:goto 10
50 ms$="Found";
100 display ms$;"key — Press return"
110 wait:select c:wait:menu

Slightly different code is needed depending on whether you are
searching to see whether a record is or is not present in the
file. In the above example, line 50 acts on the assumption that
the key is found, after ruling out the other two possibilities. To
achieve the other objective, the program would be recast like
this:

10 ask "key";k$
20 select k$
30 nmat ms$="No key":goto 100
40 pmat ms$="Partial key":goto 100
50 display "Key exists":wait:goto 10
100 display ms$;"exists -- Press return"
110 wait:select c:wait:menu

It may be that selecting by key is only one of the options that
are required. You may also want to browse in the file, change from
screen to screen, or take other action such as appending the key
of the record you're looking at to a list for output later on.
This example shows a way of programming the browsing operation; I
shall cover record key picking later.

First we present a blank record format:

10 clear:n=0:mx=3:select c

The variable mx is the maximum number of screens for this file; n
is the current screen. Now 'ask* is used to show a list of the
options on the command line, resembling the 'select* submenu
itself:

20 ask&l"k/f/n/p/l/q/+/-";op$

131

Advanced Progranniing

The "q" option is so we know when to quit. ’Wait' cannot be used

as it always clears the command line. Next we validate the input

with a very useful little routine that applies in many similar

situations:

30 e=0:rem Flag to register OK when 1

40 m$="kfnplq+-":rem All legal keys

50 for i=l to len(m$)

60 if mid$(m$,(i-l)*l+l,l)=op$ then p=i:e=l

70 next i

80 if e=0 then 20:rem Key was not valid!

(Normally such a routine would be a separate subroutine for use by

other pieces of code, with m$ and op$ as standard parameters.) Now

we can act on the variable p, which registered the position in the

test string of the selected option:

85 on p goto 90,100,110,120,130,140,150,160

90 select k:goto 200

100 select f:goto 200

110 select n:goto 200

120 select p:goto 200

130 select l:goto 200

140 menu

150 n=n+l:if n>=mx then n=mx:goto 200

160 n=n-l:if n<0 then n=0

200 screen n:select c:goto 20

Lines 90 through 130 execute a ’select' option, and jump to 200

which displays the current screen and returns to the top for the

next selection. Lines 150 and 160 control the selection of screen

within a multi-screen format, using the variable n for the screen

number (0 through 3). The variable mx holds the maximum number of

screens for the current file.

Selecting from a List: 'select from'
One of the disadvantages of the ’output’ statement is that while

it is able to read records using an index key list there is no way

to intervene in the process. The statement reads and outputs all

in one go, if you like. And yet there are inevitably times when

you want to do things like check whether a certain field in a

record is empty, or perform calculations, or look up a value in a

memory array, before the output takes place. For this. Superbase

has the statement 'select from "list"’. It is quite

straightforward:

10 select from "h81ist":eol 100

20 if [code]="smith01" then 10

30 if [balance]<1 then 10
40 detail [code][name][balance][telephone]

50 goto 10
100 display "Finished":wait:menu

132

Advanced Programing

Line 10 selects the first record from the list, making it the

current record. The 'eol* statement acts in the same way as the

'eof conditional, testing at each selection to see whether the

end of the list has been reached; if it has, control passes to

line 100. Lines 20 and 30 represent the opportunities for

processing the records provided with ’select from’. Both of them

cut short the process and go back to get the next record. Line 40

uses ’detail’ to output the required fields. Note especially that

’detail’ is here used without either ’all’ or ’from "list"’. This

causes it to refer to the current record only, namely the one read

by ’select from’ four lines earlier. Line 50 returns control to

line 10 to read the next record.

Multi-file Applications: 'link'
Although Superbase is far from being a relational database, it

does have the ability to use any item of data from a record in one

file as the index key for a record in another file. This function

is sometimes described as semi-relational.

The benefit of being able to link from one file to another lies

mainly in the economies of disk space that can be achieved, but

also in the fact that programs can easily switch from one file to

another to update it. An example of both benefits together would

be a system in which the creation of an invoice record updates

both the customer record balance and the inventory file, and the

invoice printing program reads the customer’s name and address

from one file and the invoice details from another. In short, the

database can be made smaller and faster.

There is a group of four statements which control the different

aspects of linking. We’ll start by taking a look at what they do:

setlink This specifies the link between one file, sometimes

called the main file, and another. You are assumed to be

in the main file, "filel", and you set a link to

another, "file2":

10 file "filel":setlink ’’file2"

elink Undoes the link. When a link is in use. Superbase
switches between the two files, and if you interrupt the

program you may end up with the ’setlink’ file as the

current file. Superbase shows this by displaying ’+’

instead of '=’ to the right of the File Selected message

on the main menus. ’Elink’ cancels the link, but if '+’

is showing you will find that the ’setlink’ file becomes

the current file. It’s a good idea to execute an ’elink’

at the start of a program that uses linking, especially

when you’re developing it, to cancel any links

inadvertently left in place:

5 elink
10 file "filel":setlink "file2"

133

Advanced Programing

link This switches from the main file to the ’setlink' file

and attempts to find a record in it. The key for the

search, which is just the same as a 'select k', is

specified before 'link' is executed. The key can be

specified as either a field or a string variable; if it

is omitted. Superbase uses the index key of the current

record as the default:

10 link [oust.ref]

10 link k$

10 link

rlink When you have finished processing the 'setlink' file,

'rlink' returns to the current record in the first file.

There are two main reasons for linking between files. Either you

want to look something up from another file, or you want to add a

record to it. Let's consider first a simple example of looking up
data.

10 file "invoices":setlink "customers"

20 ask "invoice number";k$:select k$

30 link [cust.ref]

40 display [code][name][telephone][balance]:wait
50 rlink

60 goto 20

The program obtains an invoice number in k$, uses this as an index

key, and reads an invoice record. It then uses one of the fields

in the invoice record, [cust.ref], as the index key for the linked

file of customer records. On finding the customer record whose key

field, [code], is the same as [cust.ref], the program displays

some of the record details. Then it returns from the link in line
50, and loops back to line 20.

CAUTION. Whether you use a field or a variable as the linking
element, it must not be empty, or you will see the message
"Invalid FMS Parameter".

You should really use 'nmat' and 'pmat' to ensure that none of the

operations are invalid. These commands are equally useful with

both 'select k' and 'link', which function in the same way:

10 file "invoices":setlink "customers"

20 ask "invoice number";k$:select k$

22 pmat 20

24 nmat 20

30 link [cust.ref]

32 pmat 50

32 nmat 50

40 display [code][name][telephone][balance]:wait

50 rlink

60 goto 20

Now let's reverse the example, and suppose that the application

requires us to use a reference in the customer record to call up

134

Advanced Programing

all the invoices for a particular customer. This is a classic

master and transaction file relationship. The program assumes one

critical fact: that all the index keys for the invoices contain

the reference from the customer record as the first part of the
key:

Reference from customer record: smithOl

Invoice number (index key): smithOl.OOl

smithOl.002

smithOl.003
smithOl.004

smithOl.005

Now we can use an ’if’ statement to test whether all the invoices

for a particular customer reference have been read and displayed:

5 elink

10 file "customers":setlink "invoices"

20 ask "customer code";k$:select k$

22 pmat 20

24 nmat 20

30 ir$=[inv.ref]:f=len(ir$)

35 link ir$

40 nmat display "No invoices":goto 60
45 if left$([number],f)<>ir$ then 60

50 display [number][date][total][balance]:

select n:goto 45

60 rlink:wait:goto 20

Line 30 sets [inv.ref] into a variable, ir$. Variables are often

required in link processing, as the fields from one file cannot be

referred to while the other is current. Variables, however, are

independent, and are suitable for holding data from the one file
which is needed in the other. Here, the link to the invoice file

is made in line 35. Once into the invoice file, the program loops

from line 50 to line 45, alternately testing the validity of the

current record against the original invoice reference in ir$, and
displaying details prior to reading the next record in sequence in

the file. The variable f measures the length of ir$, and ensures

that the correct portion of each new invoice number is tested

against ir$. Once a record whose key does not match ir$ is
detected in line 45, the link is terminated and the program loops

back to line 20 to ask for another customer code.

As it stands, this program is pretty basic. But the addition of

some more display statements and use of reverse video could soon

convert it into a very useful inquiry routine.

The other major requirement for linked file processing is to be

able to create records in a main file and a linked file. Here the

logic of the program is determined by the fact that when Superbase

returns from a link it comes back to the current record, and a

blank record that has had data entered into it does not count as a

current record until it has been stored. Consequently the program

must create the main file record after the link file record. The

135

Advanced Programing

plan for the program is this:

1. Select main file

2. Assemble link key
3. Link to linked file using link key
4. Create record: *clear*; enter data; 'store’

5. Return to main file
6. Create record: 'clear'; enter data; 'store’

In step 3, we are concerned with the results of the ’link’ in case

a record with the new key already exists. ’Nmat' and ’pmat’ should

be used to test for this condition.

A common variation on this scheme is the program that looks up

data from another file prior to putting it into a new record in

the main file. The plan is the same except that step 4 obtains

data and returns with it instead of creating a record. The

important thing is that the main file record is created after the
'rlink'.

Reporting Refinements
Printer Features

Superbase includes just one feature for enhancing the printed

quality of reports: the underlining command, which can be either

'@+* or '0-'. If you want to take advantage of the features

offered on most dot-matrix and daisywheel printers, you need to

know how to control the printer directly from within Superbase.

Fortunately, this is extremely easy.

Almost all print features are obtained by sending a string of

control characters to the printer. Often, the first character in

the sequence has the ASCII value of 'escape', code number 27;

these are called escape sequences. Whatever the sequence of

characters required, you can manage it satisfactorily in
Superbase, first assembling the code values in a string variable,
then using 'print' to send the string straight to the printer.

Suppose the control codes for switching on bold face printing were

27 and 14, in that order. Your program lines should look like

this:

10 p$=chr$(27)+chr$(14)

20 print p$

Notice especially the use of the ' + ' sign to concatenate the

strings of the separate codes. This is essential. A line that uses

the semicolon instead would almost certainly not work; as

Superbase outputs a space after every separate item, the sequence

recieved by the printer would include a space in the middle:

10 print=chr$(27);chr$(14):rem Equals ESCAPE <space> 14

The control string does not have to be sent in a separate
statement. It can form part of a regular output line, using

136

Advanced Programing

whichever of the cofmaands ’print*, ’detail’ and ’output’ is
appropriate:

10 output all [name][telephone]p$[balance]n$

Here, p$ sends a control string, say to switch on italic printing,

and n$ sends another, to switch back to normal printing. The

possibilities are limited only by what your printer is capable of
doing.

Eliminating the Page Break

Sometimes you may want to print on continuous stationery without

the default page break. This is a function of the difference

between the values set for ’plen’ and ’tlen’, which the "start"

program takes as 66 and 60 respectively, causing a skip of six
lines at the foot of each page.

If you want to eliminate the page break, make the two values the
same:

10 plen 66:tlen 66

Remember to reset them for normal printing.

Printing the Screen: CTRL-P and CTRL-0

The screen dump option is sometimes thought by naive users to be

the main way of obtaining printed copies of records. In fact it is

intended as an occasional convenience. However, there are

circumstances in which the screen dump is valuable, when you want

hard copies of your record formats or memo screens or help

screens. A simple CTRL-P normally suffices, but you may find if

you use the function repeatedly that every third CTRL-P seems to

fail mysteriously.

The reason is that Superbase counts the printed lines against the

current value for ’tlen’, normally 60. As the length of record

format and memo screens is 23 lines, two CTRL-P’s take the counter

to 46, leaving insufficient room for the third screen. The

solution is to set ’tlen’ to 46, which causes Superbase to start a

new page after every two printouts.

The CTRL-0 option is not available in all versions of Superbase.

It is similar to CTRL-P, except that the top two lines of the

screen are also printed. The option is intended to facilitate

documentation of the system. Note that you would have to set

’tlen' to 50 to permit repeated printout with CTRL-0.

Page Numbering

The lack of automatic page numbering in the Superbase report

generator has sometimes been raised a source of irritation. We

137

Advanced Programing

have recently discovered a way of achieving quite satisfactory

page numbering using the facilities of the system itself. This is

far better than having to resort to counting the lines printed and

placing the result in a title subroutine that cannot use the

'title* statement. Here is an example of a routine that prints

page numbers:

10 report "customers"
20 pn=l:pl=66:h=ll:rem h is title + footing lines

25 plen pl:tlen 60:rem 6 footing lines
30 title "CUSTOMER LIST"@60"PAGE:"&2,Opn;crcr

"CUSTOMER"@20"BALANCE"@30"TELEPHONE"cr$
40 total tl=tl+l;x=abs(tl+l+(h*pn)=pn*pl);pn=pn+x

50 detail all [name]&5^2@20Cbalance]@30[telephone]

60 endreport

The key to the program is in line 40, the total line. We take
advantage of the 'total' command's ability to count lines

automatically, and record the number of lines output with each

record in the variable tl. Next, the variable x takes a value each

time a record is output, either 0 or 1. This value is worked out

as a test of the equality of two expressions. The left hand

expression evaluates a figure based on the line count, tl. The

right hand side evaluates a figure based on the current page

number, pn, times the page length in lines, pi. The last

expression on the line increments the page number itself. Whenever

X is 0, that is on all lines except the last, pn is incremented by

0, i.e. it is unaffected. But whenever the two are equal, which

only occurs at the end of a page, the page number is incremented

by one ready for the next page. The actual page number is of

course printed as part of the 'title* line. It works!

If you plan to use this routine, be sure you set up the initial

variables correctly. The page number, pn, is set to whatever you

want, normally 1. The variable h holds the total number of lines

that are not printed as part of the body of the text — the lines
printed in 'title', and the difference between the values for

'plen' and 'tlen'. Finally, use a variable for 'plen'; I have used

pi, which reappears on line 40 as part of the key expression in

the middle.

Retaining Subtotal Values

Although for most purposes the output of a subtotal as part of

report directly after the subgroup from which it is derived is

adequate, there are times when it is desirable to retain the

subtotal for each group, so that at the end of the report all the

subtotals can be output as a summary, or perhaps expressed as a

percentage of the whole.

The method for achieving this goal is similar to that for page

numbering, in that we make use of the built in features of the

report commands. In particular, the 'total' line of the report

serves to regulate the general processing. Here is a program that

illustrates the techniques involved:

Advanced Programing

10 r$=chr$(13)

14 rem

16 rem *** DIMENSION SU(N) TO MAX GROUPS ***

18 rem

20 dim su(20)

22 rem

24 rem *** REPORT STARTS HERE ***

26 rem

28 report "customers

30 title @30"ARRAY SUBTOTALS"plus

35 rr@l"CODE"@14"STATE"@20"BALANCE"

40 total n=abs(s3=0);s2=s2+n;plus

45 s3=s3+[balance];su(s2)=s3;s$=[state]

50 subtotal [state]"Subtotal for state";plus s3

55 s$+": "@30&8,2s3

60 detail from ""@1[code]@14[state]plus

65 @20&7,2[balance]

70 endreport rr

74 rem

76 rem *** DISPLAY RETAINED SUBTOTALS ***

78 rem

80 display " Number of groups: "&2,0s2;

85 for i=lto s2:

90 display @39"Subtotal for group"+str$(i);

"was:"&7,2su(i)

95 next:wait:menu

The first step is to dimension an array with sufficent elements to

store a subtotal for each of the groups encountered in the report.

You must estimate this in advance, but it does not matter if you

overestimate. If you underestimate, your print program will fail
after doing most of the printout — most frustrating, so it might

be a good idea to count the number of subgroups in a separate
program.

The 'total' line is again the key. In it, there are a number of

expressions, some of which are normal report functions, while some

are purely for the special purpose of the program. So,

's$=[state]' just assigns the name of the state to a string
variable for use in the 'subtotal' line, and 's3=s3+[balance]'

functions as a normal accumulator, also printed out on the

'subtotal' line, where it is cleared to zero on each change of

subtotal group.

The aim of the other expressions, which work together, is to store

the subtotal that accumulates in s3 in the su(n) array, increasing

the array element subscript each time the subgroup changes. The

variable s2 subscripts the array, and increases by one each time n

in the previous expression takes the value 1, which it does only

when the subtotal itself is zero — that is, at the beginning of

each new group. In this way, the subscript is always ready for the

next subgroup, leaving the amount accumulated in the previous

element as the retained subgroup total, thus achieving the aim of

the program.

139

Advanced Prograiming

At the end of the program, a separate routine prints out the
values of the array, with the final value of the subscript, s2,
controlling the end of the loop. The value of s2 also indicates
how many subtotal groups there were.

Concatenating Strings for Output

If you want to produce output in which the space that Superbase
prints after each element is eliminated, typically when a line of
elements separated by commas is required, you must concatenate
strings with the sign. However, a line of this form:

10 output all across [name]+”,"[street]+”,"

produces this effect:

Adams , 21 Main Street ,
Baker , 345 North Avenue ,
etc.

The full length of the field is output. The truncation command
cannot be used to achieve the desired result. The solution is to
set a variable to close up the gap and then print the comma. For
screen output the cursor left character works:

5 l$=chr$(157)
10 output all across &[name];1$+",”;^[street];1$+","

For printed output the backspace character should do the job,
provided your printer supports it.

More About Key Lists
Empty Lists

Sometimes the result of a ’find* can be a list with no entries in
it — an empty list. This poses special problems. In very early
versions of the program attempting to select from such a list
actually caused an error. There is a way around this problem, but
if you own one of these early Superbases, you need an update! The
method is rather cumbersome, but effective. You must first create
a dummy list on your disk with one entry in it. Do it with ’find’,
specifying one unique key from any of your files. When you have a
dummy list, the following program will work:

10 find "testlist" where [name] is "smith"
20 maintain o "cO:list2=0:dummylist,testlist"
30 for i=l to 2:select from "list2":eol 50
40 next i
50 if i<3 then display "List was empty":wait:menu
60 select from "testlist"
etc.

After ’find’ has created "testlist", the program creates a list

Advanced Prograaming

called "list2" (you must make sure there’s no file of this name on
the disk before you start) by concatenating "testlist" and
"dummylist"; neither of these is affected. If the subsequent test
reveals that the 'for ... next' loop only selected once from
"list2" before detecting the end of list condition, then
"testlist" has no entries in it.

When Superbase was modified to allow the 'eol' test to detect an
empty list on the first attempt to select from it, such
circumspection became unnecessary; you can now check the list
before you go on to process it. However, there is still the
problem of what to do if, having established that the list is not
empty, you want to start again at its beginning. Before the
'close' command was introduced, many users thought they had to
read all the way to the end of the list before they could get back
to the first key. Not so. We use one limitation of the program
against another. You still need a dummy list, this time one with
nothing in it. Then you can set up a test like this:

10 find "testlist" where [name] is "smith"
20 e==0: select from "testlist":eol e=l
30 if e=l then display "List was empty":wait:menu
40 select from "dummylist"
50 select from "testlist"
etc.

If "testlist" has no entries, the variable e is set to 1, and line
30 acts accordingly. If "testlist" has an entry, the program
forces Superbase, which can only have one list open at once, to
close "testlist" by opening "dummylist". Immediately afterwards
the same logic allows us to re-open "testlist", starting of course
with the first entry, the one we want. The example above assumes
that you need to reopen the list from the beginning, and it would
of course be possible to carry straight on from line 20 into the
main processing after extablishing that the list was not empty.

The Apple version of Superbase introduced the 'close' command
specifically to make this programming judo unnecessary. Life is
much easier:

10 find "testlist" where [name] is "smith"
20 select from "testlist":eol display "List was
empty":wait:menu
30 close
40 select from "testlist"
etc.

Line 20 will detect an empty list and terminate the program. If
the list is not empty, line 30 closes it, allowing line 40 to
begin the main processing with the first key on the list.

Finally, the 'count' command, introduced to the Commodore 128
version, provides the perfect solution, eliminating the need for a
test read from the list altogether:

10 find "testlist" where [name] is "smith"

141

Advanced Prograniing

20 count x: if x=0 then display "List was empty":
wait:menu
30 select from "testlist"
etc.

'Count' assigns the number of iterations of the previous command
to a numeric variable. It works with these commands:

find batch
sort output
detail import
export select from

Adding Selected Keys to a List: Picking

When you are browsing through a file, you may sometimes want to be
able to tag the index key of the record you are looking at onto a
list to be used in a later operation. I shall refer to this
operation as "picking". If you have several records to pick at
once, the problem is not so acute. The solution is to set up a
special status field for this operation, and put a value into it
with 'select r'. Later, a 'find* statement obtains the list in the
usual way; 'batch* can be used to reset the status field:

10 find "" where [status] is "y"
20 batch from "" [status]*""

If there are no convenient criteria for selecting a single record
from among the others with 'find*, which would be an inefficient
method anyway as 'find* always reads the whole file, you need a
special program. As a precondition you must set up one of your
database files as a working file, one that does not store the
usual kind of data records but instead just a single record
containing a single field, the index key, which need be only two
characters long, with a value of "aa". Once this is set up, a
combination of selecting the record from which to pick the key,
'link*, and 'output to* can achieve the desired result:

20 file "dummy.a":find"hSappd"where [key]is"99"
30 file "customers":setlink "dummy.a":select f:goto 50
40 select n:eof menu
50 select c:ask "confirmation (y/n/x):";op$
60 if op$="x"then menu
70 if op$="n"then 40
80 if op$="y"then 100
90 goto 50:rem op$ was out of range
100 cd$=[code]
110 link
120 output all to "hSappd,a"cd$
130 rlink:goto 40

Line 20 creates a list, here called "hSappd", which has nothing in
it. We know it has nothing in it because the only record in the
file "dummy.a" has a key of "aa", and the 'find' is looking for
"99". The reason for the empty list is that later we will want to

Advanced Programing

append the selected code to it, and you cannot append to a
non-existent list.

Next, lines 30 to 90 set up the main file and the link file, and
browse through the main file, validating the input option op$ and
acting according to its value. If op$ is "x", the program exits.
If op$ is "n", the program selects and displays the next record
from "customers". If op$ is "y", the key is appended by the next
piece of code.

In line 100, the required index key is set into cd$. A ’link'
switches to the link file, but we are not interested in any of its
record data. Instead, line 120 outputs just the cd$ variable to
disk, tagging it to "hSappd". Because there is only one record in
"dummy.a", the ’all’ part of the statement results in only one
iteration — cd$ is added only once. And because we do not mention
a field name, cd$ is the only item that is appended to the list.
To finish off, line 130 returns to the main file and resumes the
selection and display processing.

The Metacommand: 'do'/'perform'
I call this the metacommand because it functions at a higher level
than all the other Superbase commands, which actually serve as
parameters for it. I shall be referring to the command as ’do’
throughout this section, as most users of Superbase know it by
this name. However, if you own a version of Superbase for the
Commodore Plus/4 or 128 computers, the name of the command is
’perform’. In the following examples, these users should
substitute ’perform’ for ’do’.

’Do’ has two main uses. It provides a way to process the fields in
records on the basis of field names either input through the
keyboard or obtained from some other source. And it allows you to
construct record formats with highly structured field names and
process them in a short loop rather than one by one. The latter
use may in fact be generalized to cover all instances where
program code can be shortened by employing ’do’.

Let’s consider the first use. If you think about it, there is no
way you can request the input of a field name and then assign a
value to that field, or refer to it at all, using the statements
we have looked at so far. This does not work:

10 nm$="smith"
20 ask "field name";f$
30 f$="["+f$+"]"
40 f$=nm$

No actual field can be referred to with f$. However, ’do’ allows
you to construct the entire assignment statement of line 40 in a
string variable and execute it as such:

10 nm$="smith"
20 ask "field name";f$

143

Advanced Programing

30 d$="["+f$+"]=nm$"
40 do d$

You have to watch carefully how the variable, which I refer to as
the ^do’ string (maximum length 80 characters), is assembled. Here
we have four components:

nm$
[
f$
] =

All except f$, the name of the field, are enclosed in double
quotation marks. Actually, the best way to check the validity of
your *do’ statement is to use ’display* as a debugging aid:

10 nm$="smith"
20 ask "field name”;f$
30 d$="["+f$+"]=nm$"
40 display d$

If line 40 displays a valid Superbase statement, you can
confidently substitute ’do* for ’display'. In our example, if the
user input "name" to line 20, line 40 would produce this display:

[name]=nm$

The use of literals produces another problem: you cannot put
double quotes within double quotes. You must first assign the
double quotation mark character to a variable, and then include it
in the ’do’ string. The ASCII value of the double quotation mark
is 34, so line 10 here will assign it to a string:

10 q$=chr$(34)
20 d$="display"+q$+"smith"+q$
30 do d$

Line 20 assembles a ’do’ string that would display as:

display "smith"

When line 30 is executed, it just displays the content of the
literal, "smith".

’Do’ can only execute one command at a time — you cannot have
multiple commands separated by colons. However, it is possible to
place multiple assignment statements in the ’do’ string, by
adopting the syntax of the ’calc’ command, which permits the use
of semicolons. As long as you are referring to field names.
Superbase assumes that the ’calc’ syntax is intended:

10 nm$="Smith":st$="234 Main Street"
20 d$="[name]=nm$;[street]=st$"
30 do d$

But if you wish to assign values to variables, you must specify

144

Advanced Prograining

PROGRAMMER’S CHALLENGE. Try to write a program in Superbase or
BASIC that Identifies a variable and operates on It without
explicitly referring to it. This was the problem for which 'do’
provided the solution.

New Files for Old: Reorganizing the Database
The best planned database invariably proves inadequate after
you’ve been using it for a few weeks. When that happens, you
probably need to redesign the record formats, and if you have been
programming, adjust menus and programs accordingly. But the most
serious job is the transfer of your data from one file to another,
or even from one database to another. That is what I shall be
concentrating on in this section. Much of the discussion also has
relevance to the particular problems engendered by the ’’Disk Full"
error, which is covered in the Troubleshooting appendix.

'Export' and 'Import'

First we'll look at the easiest case: the extraction of data from
one file and the insertion of it into another, where both files
are exactly the same in format. For this, you should use 'export'
and then 'import'. The correct sequence of steps is as follows:

1. Set up a new file format to receive the data. Select 'other'
from the 'maintain' submenu, and type in:

cO:newformat=0:oldformat <return>

If you want the new format on a different disk in drive 1 of a
dual drive unit, type:

cl:newformat=0:oldformat <return>

This results in a identical copy of your file format under a
new name. It is not yet part of a database, nor is there any
data in it.

2. Select the database in which you want the new file to exist.
Select the 'file' option, and type in the name of the new
format you created in the last step. Obviously it must be on
the same disk. Superbase responds:

File does not exist: create it?

You respond "y". Superbase then finds the new format on the
disk and makes it part of the database by inserting the name in
the 'file' catalog. There are no records in the file yet.

3. Select the database in which the original file exists, and
select the file. Now select 'export' from the 'maintain'
submenu. To the prompt "Enter export file name", type in the
name of a file that can hold the data in sequential format on
the disk before you import it into the other file. The name you

Advanced Programing

type here must not be the name of either the original or the
new file format. Superbase now outputs a stream of the data
from the original file; this takes a little time.

4. When the ’export' is complete, select the new database and
file. Make sure that the export file you created in the last
step is on the same disk as the new database if you have a
single drive unit. Now select the ’import’ option from the
’maintain’ submenu. To the prompt "Enter import file name",
type in the name of the export file you created in the last
step. Superbase now reads the data from the export file and
inserts it into the fields of the new format; this continues
until all the data has been read. You end up with a brand new
file of records in a new database.

CAUTION: Possible Consequences of 'import' Failure

Store a record, ensuring that the control Information about the
database files and Indexes Is always up to

not done until WWWM] 1 riTH rtf ifTTa
falls for some
key field, generating the " error, the

Is In
loss of data. None of the following operations Is allowed:

quit
file
database
restart
power down
exit to Superscript

database. If 'Import' falls. Immediately use 'store' or 'select
replace'. Either of these commands will cause the database
controls to be properly updated.

'Output to' and 'Import'

If the formats are not identical, the situation is more complex.
You must either use ’output to’ to create a disk file and then
’import’ it as above, or, if you want the operation to be wholly
automatic, write a special program. ’Output to’ is the easiest
option. Here’s the procedure:

1. Either set up a new format or copy a new format from an old one
and select it as in steps 1 and 2 above.

2. If you’re working with an existing format, select the ’format’
option, and make any modifications you want, such as adding or
deleting fields, changing their order or their names, or adding
new screens. Whether it’s a new or an existing format, add a

147

Advanced Programing

dununy text field at the end of the record format. It can have
any name, say [dummy], and need be only two characters long.
This field is needed to catch the extra return character that
the ’fill' statement adds to the data from each record.

3. Select the original file, and then the 'output' option. Type in
the following syntax:

all fill to "datafile" [fieldl][field2] <return>

The name of "datafile" must be unique. You can output from a
list if you want to transfer only a subset of the original
file. Your own field names can be in any order and can be a
selection from the fields in the format, but must correspond in
number and type to the fields in the new format. You must
specify any result or calendar fields by name — don't leave
them out or substitute variables. If you have any new fields in
the new format, insert a string or a numeric variable at
appropriate points in the 'output' line; set the variables to a
space and zero respectively first:

a$=" ":a=0 <return>
output all fill to "datafile" [fieldl]aa
[field2]a <return>

4. Select the new file, and then the 'import' option, as in step 4
above. If there are any errors, delete any records that have
been added to the new file before attempting another 'import'.

5. With the new file selected, use 'format' to remove the [dummy]
field from the end of the record format.

File to File Transfer

There is even more flexibility if you use a program to transfer
data from one file to another. The basic procedure is to read a
record from the old file, assign all the field contents to
variables, swap to the new file, assign the variables to the
fields of a blank format and store it, and then return to the old
file to process the next record:

10 file "old
20 select f
30 a$=[code]:b$=[description]:c=[date]:d=[amount]
40 file "new
50 clear:[code]=a$:[description]=b$:
[date]=c:[amount]=d:store
60 file "old":select n:eof menu
70 goto 30

Notice that in line 30 the [date] field is assigned to a numeric
variable; a string variable here would cause an error. In this
method, you do not need to specify any result fields. 'Store'
forces Superbase to calculate them before adding the record to the
file.

Advanced Programing

\n advantage of this method of transferring data is is that there
is no need for the intermediate sequential file used in the
methods described above, saving considerable disk space. In fact,
if you make the program delete the original record in the "old"
file in line 60, that space will be re-used by the next ’store’,
and the overall size of the database will hardly change at all.

Database to Database Transfer

If you want to transfer data from one database to another, even if
they are on different disk units, this program is the one to use.
The following example shows how to switch databases, and assumes
that the "old" file is on unit 8, the "new" file is on unit 9, and
the unit has been.set up correctly:

10 database "db.one",8,0:file "old
20 select f
30 a$=[code]:b$=[description]:c=[date]:d=[amount]
40 database "db.two",9,0:file "new
50 clear:[code]=a$:[description]=b$:
[date]=c:[amount]=d:store
60 database "db.one",8,0:file "old":select n:eof menu
70 goto 30

The program will necessarily run quite slowly, because it has to
reselect database and file twice for each record, but it will get
the job done.

With further refinement, versions of this program can be used to
take data from more than one file and join it together in another,
or conversely to distribute data from one file among others,
either in the same database or in another one, on the disk unit
and drive of your choice. An embarrassment of riches.

Switching from Duplicate to Unique Keys

From time to time, a user discovers that duplicate keys are
awkward customers, and decides to switch to unique keys. This is
essentially an easy task that makes use of some of the procedures
explained above. The new requirement is to add a unique key to the
file. This is the recommended method:

1. Set up a new record format as in the previous guidelines. If
using ’output to’, include a dummy text field. Ensure that the
format has a key field long enough for five digits. Do not
allow duplicate keys.

2. In the old format, add a text field to the end of the format,
five characters long, called [newkey].

3. On the command line, type the following:

n=10000 <return>

149

Advanced Prograiiming

batch all n=n+l;x$=str$(n);[newkey]=right$(x$,4) <return>

This inserts a unique number into [newkey] in each record, in
the sequence 0001, 0002, 0003, etc.

4. Use * output to ’ together with * import ’, or one of the program
listings above, to transfer data to the new file, making sure
that the fields are assigned correctly, in particular that the
[newkey] field is assigned to the key field of the new file.

The new file will hold the records in the same order as the old
file, but with unique keys. If you prefer, you can modify the
'batch* statement to construct keys based on an alphabetic element
of one of the text fields in the old file.

Miscellaneous Tips
Dates
There are users who need to work out such things as the day of the
week from an input date. To them these routines are dedicated.
Here is a program that illustrates five different date checking
routines. The first part of the program displays a short menu and
accepts input of a date in either American or European format. The
second part contains the code for the five menu options. Comments
and explanations follow.

10 rem
20 rem *** SET UP REFERENCE VARIABLES ***
30 rem
40 d3$="SatSunMonTueWedThuFri"
50 d7$="SaturdaySundayMondayTuesdayWednesday
ThursdayFriday”
55 of$="0109152128374551"
60 rem
70 rem *** MENU AND SELECTION ***
80 rem
90 display chr$(147)@10,2"Date Functions
100 display @10,4"1 Get year number"
110 display @10"2 Get day of month
120 display @10"3 Get day of week number
130 display @10"4 Get short day of week
140 display @10"5 Get long day of week
150 display @10,10"Choose
160 wait a:if a<lor a>5then 160
170 display chr$(147)
180 rem
190 rem *** GET DATE, SET VARIABLES ***
200 rem
210 ask "date";dt$:date dt$,n:if n=0then 210
220 [date]=dt$:dt=[date]:convert [date],dt$
230 rem
240 rem *** BRANCH TO OPTION, LOOP TO MENU ***
250 rem
260 on agosub 310,350,410,460,520

150

Advanced Programiing

270 wait:goto 90
280 rem
290 rem *** GET YEAR NUMBER ***
300 rem
310 yr$=right$(dt$,2):display yr$:return
320 rem
330 rem *** GET DAY OF MONTH, EITHER FORMAT
340 rem
350 x=asc(left$(dt$,l))
355 if x>51 then mn=val(mid$(dt$,4,2)):goto 370
360 mn=val(left$(dt$,2))
370 display fii2,Omn;:return
380 rem
390 rem *** GET DAY OF WEEK: SAT=1 ***
400 rem
410 wn=(dt-int(dt/7)*7)+l
420 display &2,Own;:return
430 rem
440 rem *** GET DAY OF WEEK: ABBRV. ***
450 rem
460 wn=(dt-int(dt/7)*7)+l
470 da$=mid$(d3$,(wn’*^3)-2,3)
480 display da$:return
490 rem
500 rem *** GET DAY OF WEEK: FULL ***
510 rem
520 wn=(dt-int(dt/7)*7)+l
530 dl=val(mid$(of$,(wn*2-l),2))
540 d2=val(mid$(of$,((wn+1)*2-1),2))
550 da$=mid$(d7$,dl,d2-dl)
560 display da$:return

Option 1: Obtaining the Year Number

Line 310. The variable yr$ holds the two digit year. If you want,
expand it by prefixing "19": *yr$="19"+yr$*. Or, convert it into a
number with 'yr=val(yr$)’.

Option 2: Obtaining the Day of the Month,
Independent of Input Format

Lines 350-370. The code puts the ASCII value of the first
character of the date string dt$ into a variable, x. If x is
greater than 51, the day of the month is not at the front of dt$,
so it must be in the middle. The variable mn holds the day number.

Option 3: Obtaining the Number of the Day of the Week

Lines 410-420. Saturday is taken as day 1, because of the way the
expression in line 410 works. It takes the Julian date number, and
subtracts from it the nearest multiple of seven, adding one to the
result to avoid a result of zero for Saturday. The value in wn is
the day number of the week. It is used in both the following
calculations.

151

Advanced Programming

Option 4: Obtaining a Three Character Abbreviation
for the Day of the Week

Lines 460-480. The string d3$ holds all the abbreviations for the
days of the week. The code first calculates wn as above, then uses
it to extract the corresponding three characters from d3$ into
da$.

Option 5: Obtaining the Day of the Week String

Lines 520-560. The string d7$ holds the days of the week, and the
string of$ holds a series of two character offsets that point to
the start of each day in d7$. The code calculates wn as above,
then uses it to work out two offsets for d7$, one for the start of
the day, the other for the start of the next day. These give both
the location of the substring and its length. The variable da$
holds the day.

PROGRAMMER'S CHALLENGE. Options 3, 4, and 5 can be made noticeably
more elegant If you set up some user defined functions to compute
the variables wn, dl, and d2,

A final word about the 'date' statement. You can use it to set the
date format as well as to validate dates. I suggest you put it in
the "start" program if this is of concern to you:

10 date "01JAN84"
or
10 date "JAN0184"

Conditional Updating with 'batch'
Although you can use lists for a number of operations, you cannot
'find' from a list. By combining Boolean expressions with 'batch',
we can force Superbase to update only those records that fulfil
certain criteria. This example uses a list, and updates records
where the [balance] field is greater than 1000:

100 batch from ""n=abs([balance]>1000);
[amount]=[amount]+1000*n

There are some restrictions. You can only use the operators > < >=
<= and <>. The equals sign alone is not allowed. Text strings are
not allowed, so you can only test numeric fields; and because the
effect of the update depends on the value of the numeric variable
n in the final expression, only numeric fields may be updated.

You can, however, compare dates in the first expression, though
you must put the value of the dates into numeric variables first.
This example updates only those records where the date field holds
a date in December 1985:

advanced Prograning

50 clear:[date]="30NOV85":dl=[date]
60 [date]="01JAN86":d2=[date]
100 batch all n=abs([date]>dl)*abs([date]<d2);
[amount]=[amount]+1000*n

With some refinement, the program could request user input and
update the file, eliminating the need for a separate 'find'
operation. However, 'batch* used in this way is quite slow, as all
the records in the file have to be read and rewritten.

Prograning the Conand Area
For the completely customized look, you have to program the
command area of Superbase, to hide the normal display. This
program does it:

10 h$=chr$(19):u$=chr$(145):ro$=chr$(18):rf$=chr$(146)
20 b$="Reptile Rentals Inc.
Superbase System"
30 bl$=" ***** main menu *****

H

40 d$=" "+h$+u$+ro$+b$+bl$+rf$
50 display d$
60 ask @2,2"Enter ";x$

The first line sets up variables holding control codes for home,
cursor up, reverse field on. and reverse field off. The next two
lines set up the strings that will be displayed on the top two
lines of the screen. The first should be one shorter than the
screen width, the second should equal the screen length. Line 40
creates a single string from a space and the necessary control
variables concatenated with the display strings. Line 50 displays
it, and then the program can continue as normal. Almost any
statement disturbs the top two lines, so you should put the
display code into a subroutine and call it as necessary.

Using 'peek' and 'poke'
These two BASIC statements are useful for such things as changing
the screen colours directly, or switching off automatic repeat on
the keyboard. They work by looking at and changing the contents of
memory, and if used carelessly could in theory cause Superbase to
damage your database. For this reason, they are limited to the
command line; you cannot use them in a program.

Duplicate Keys
While I have emphasized the desirability of avoiding duplicate
index keys, there are many users who for various reasons prefer to
keep them. These users cannot make proper use of the 'find' option
unless they devise another way of reading from a list than the
normal closed iteration of commands like 'output' and 'detail'.
The following program shows a way of using a link file holding the

153

Advanced Programing

index keys from a ’find' as a way of reading records correctly
from a main file:

10 elink
30 file "index":setlink "data"
80 select f
84 rem
86 rem *** LINK ON INDEX FILE RECORD KEY ***
88 rem
90 k$=[key]
100 link k$:nmat 180
110 pmat 180
120 rem
122 rem *** CHECK CRITERIA AND PROCESS ***
124 rem
130 if [code]=k$ and [amount]>2000then 150
140 goto 180
150 display [code][description][amount][result]
152 rem
154 rem *** GET NEXT DATA FILE RECORD ***
156 rem
160 select n:eof 180
170 goto 130
172 rem
174 rem *** RETURN FROM LINK ***
176 rem
180 rlink
182 rem
184 rem *** GET NEXT INDEX KEY FILE RECORD ***
186 rem
190 select n:eof 220
200 if [key]=k$then 190
210 goto 90
212 rem
214 rem *** END OF INDEX KEY FILE ***
216 rem
220 display "End of report":wait:menu

An index key list can be imported into a special one field format
(with duplicate keys allowed in this case), but this will generate
the "Invalid FMS Parameter" error at the end of the import
process. This is caused by the extra return that Superbase appends
to the end of a key list. You should immediately execute a 'store'
or a 'select r' on the file to avoid possible loss of data (see
above, on possible consequences of 'import' failure'). Despite the
error, the above program should work satisfactorily.

The program links on the first key from the index file. If it
finds a matching record in the data file, it checks to see whether
the record fulfils the same criteria as were used in the original
'find'. This is essential. If it does, record details are output
— any processing could be substituted here. Then the program,
still in the data file, reads the next record. This is how it
accesses records with duplicate keys, which are only available to
a sequential 'select n'. The process of comparison, processing,
and reading is repeated until a key that does not match the 'link'

Advanced Programing

key is found. The program then returns to the index file. There,
it reads through any further records with the same key; their
details will already have been output. When it finds a different
key, it returns to line 90 to assign it to k$ for linking. The end
of the program is determined by the index key file.

155

CHAPTER 11
PARAMETERIZING THE SYSTEM

The best starting point for the concepts discussed in this short
chapter is the Superbase "start" program, which we have already
encountered in connexion with menu programs. "Start" gives you
control over the initial conditions in which your Superbase system
functions. You can extend this idea considerably. With care, you
can set up one or more files that exist specifically to enhance
the flexibility of your system. More than one type of file can be
used. You can have both database files with file formats dedicated
to system parameters, and library files created with ’memo' to
hold sets of variables in textual form. On the output side, you
can create sequential files from of Superbase functions such as
'directory' and 'status', as well as the more usual data files. A
survey of the attributes and purposes of these types of file
follows.

Database Files
The file is created in exactly the same way as any other database
file format, with the commands 'file' and 'format'. The
information held in the file varies according to the type of
system, but some typical fields might be held in this form:

When the system is first used, company details are entered here.
The advantage of such a system is that any report program which
needs to print such details does not have to hold them as part of
itself; it Just reads them from this record and prints them. This
principle can save a noticeable amount of memory if adopted for
all report programs.

156

i

Parameterizing the System

Keeping track of the date allows your system to prompt for certain
kinds of action; for example a month end set of updating and
reporting routines could be run automatically. If you kept more
extensive date information, the system could remind you of
appointments, approaching deadlines, or the interval since you
last went to the dentist or saw the bank manager.

Taking backups regularly should become a habit for all except
those whose data has no value to them. If you store details of
backups you stand more chance of keeping to a system and avoiding
expensive and frustrating failures.

Transaction numbers can be held here, read into variables at the
start of processing, and then written back to this record at the
end of it. During processing, each time a new record is created
the transaction number is incremented. This automates a standard
accounting procedure, and if things go wrong it’s easy to edit the
record and reset the transaction numbers. The same principle can
be used to keep track of the last key added, very useful if your
index keys follow a predictable sequence that the data entry
program can use to generate the next key.

The file update record fields are updated every time your system
detects that a file has been changed or had a record added to it.
A field would hold the value "yes" if its file had been updated.
This data can be used in conjunction with the backup details to
ensure that backups are done only when necessary.

By extension, a record format like the one above could be used for
all kinds of data storage specific to the application. You could
store flags to show that a particular file needed updating — more
economical than a flag in each record of the file. Fields could be
used to store figures for the maximum number of records permitted
in a file; the system could then warn you of an approaching "Disk
Full" condition.

Sequential Files: 'dump' and 'set'
These two Superbase commands can be extremely useful.
Respectively, they save and load plain sequential files from the
disk.

'Dump'. When you're programming, typing 'dump <return>' on the
command line gives you an instant look at the values of all the
variables in your file, except for array data. This can be quite
an aid to debugging.

If you type 'dump "filename" <return>', the results are much the
same, but are placed in a disk file. The variables are listed one
per line. This provides an alternative method of storing
parameters for your system to use later on. If you only want to
dump some of the variables in the system, make sure that the ones
you don' t want to dump are held in array elements. A further
function is to preserve variables from one program for use by
another.

157

Parameterizing the System

You can write specified variables to a disk file, by using the
technique that I described in the section on "picking" records.
You set up a database file with only one record in it, consisting
of a single key field, contents immaterial. Then you assemble the
strings you want in the program that is to do the outputting:

10 c$=chr$(34): rem Double quotation marks
20 al$="a$="+c$+"+a$:a2$="b$="+c$+b$

If a$ had the value "John" and b$ had the value "Smith", variables
al$ and a2$ would have the respective values:

a$="John
b$="Smith

This will allow a future 'set* command to read them successfully.
The remainder of the output routine selects the dummy file and
executes an 'output' command:

30 output all down to "dumpfile" al$ a2$

The line could of course be extended with 'plus', so there is no
practical limit to the number of variables that can be manipulated
in this way. Remember that if you prefix the dump file
appropriately, you can view it with 'help*.

'Set*. The converse of 'dump*, 'set* is always followed by a file
name. It reads the data from the file line by line, assigning it
to the specified variables. A typical 'set* file, which might have
been created by 'dump* or 'memo* or by other more esoteric means,
looks like this:

dt$="01JAN86"
tn$="000456"
e=l
ar(l)=34.23
ar(2)=890.50

Note that although you can 'set* data into an array by this means,
you cannot write it out again with 'dump*.

One advantage of using 'set* in a program is that it allows you to
set up variables or execute some Superbase commands such as
'display' without explicitly including them in the code of the
main program. Superbase executes each line of the 'set' file in
turn (internally using the * do/perform* statement), as it reads it
from the disk. This keeps memory usage down, but the penalty is
that execution of the statements in a 'set* file is very slow,
especially when a 1541 disk drive is being used. The other
disadvantage lies in the temptation to the programmer not to
document the variable assignment. It can be quite mystifying to
look at code that suddenly starts using variables that do not seem
to have been assigned values.

158

Paraieterizing the Systei

Sequential Files for System Output
The Commodore 128 version of Superbase includes a command *open'.

This is invaluable for creating disk files from the various

sources of output in the Superbase system. It works like this:

1. On the command line, type:

open "filename” <return>

2. Now select just about any Superbase operation that produces

output, either for the screen or the printer. When you execute

it, the output will go to the named disk file rather than the

normal output destination. Options include:

output

detail

print

display

status

directory

catalog

list

3. When the operation is complete, type ’close*.

The resulting data file can be manipulated like any other. It can

be edited with 'memo*, viewed with ’help’, read by a word

processor such as Superscript, or even imported into a Superbase

database file (in some cases you might have to preprocess the file

with ’memo’ or Superscript to eliminate blank lines)

A final word. Although the above procedure is for C128 Superbase

users, you can in fact perform a similar operation with Superbase

on the Commodore 64, although we must emphasize that this is a

convenience rather than an official feature of the program.

Instead of ’open’ and ’close’, you use the ’pdev’ command to

reassign the output device identity from the printer to the disk

unit:

10 pdev 8,8,8
20 print "program listing"

30 list

40 pdev 0

This program would list the current Superbase program to a disk

file. Line 20 opens the file, 30 executes the command — you would

substitute one of the commands in step 2 above at this point —

and line 40 is the essential equivalent of ’close’, which must

follow before any other kind of output is attempted (my use of the

parameter 0 for ’pdev’ here is only an example; you would put in

your normal parameters, usually those set in the "start" program).

You must use ’pdev’ to close the file immediately if the operation

fails, or you could be left with an open file on the disk.

159

APPENDIX

TROUBLESHOOTING

APPENDIX
TROUBLESHOOTING

Nobody's perfect. However careful you are out there, things go

wrong. Sometimes this is due to your not understanding the

program, but it can have physical causes, and there have indeed

been a few bugs in Superbase over the years. In this appendix,

descriptions of the commonest causes of users' problems are

followed by a detailed listing of all the known bugs in all

versions of Superbase.

We strongly recommend that you obtain the latest version of

Superbase, which has had all these bugs removed, and comes with a

useful utility program which allows you to copy and usually

recover damaged databases. Superbase version 2 uses disk space
more efficiently, too.

To obtain a new disk, registered users should contact, in the UK:

Precision Software Ltd., 6 Park Terrace, Worcester Park, Surrey

KT4 7JZ. Telephone 01-330 7166. Telex 8955021 PRECIS G.

In the USA:

Progressive Peripherals and Software, 464 Kalamath Street, Denver,
CO 80204. Telephone (303) 825 4144.

Physical Errors
Superbase will not Load

The program disk may be faulty. Try the backup copy. If both fail,
suspect another cause.

On the C128, ensure that the 40/80 key is down if you are using

RGBI 80 column output, up if using the video output.

Move the monitor or TV well away from the disk drive. Frequency

emissions can interfere with loading. They can also come from the

local power supply or electrical equipment.

The disk drive read/write heads may need re-aligning, even if the

problem does not show up with all your programs.

Ensure all equipment is switched on if connected, and connected
properly.

Some printers can interfere with the I/O chip. Problems have been

experienced with the 1515, 1526 and DPS 1101. The 1515 needs a ROM

upgrade, the 1526 needs a revision 7 upgrade from Commodore. To

test for this problem, try loading with the printer disconnected.

Interfaces, especially serial ones, can interfere with the I/O
chip. Non-compatible IEEE interfaces may also cause trouble.

Precision Software recommend the Brain Boxes brand of interfaces.

Troubleshooting

Cartridges, changes to ROM, or any software or hardware item that

affects device addressing may prevent Superbase from loading

properly.

The computer may be faulty! It happens.

Persistent Read/write Errors

The disk unit may need servicing: the heads may need aligning, the

I/O chip could be faulty, or the power supply might be failing.

The disk surface may be contaminated, either by a substance or

through exposure to a powerful magnetic source such as a telephone
(don't put the phone on the disk, ever). Poor quality (cheap)

disks fail more frequently than better quality ones.

Printer Errors and/or Garbage Printout

The 'pdef and 'pdev' commands must be correctly executed for the
type of printer.

If your interface converts output characters to suit your printer.

Superbase' s output may not arrive at the printer in the same form

in which Superbase sends it. As a general rule. Superbase needs

only the simplest of interfaces; for example, for a standard

Centronics parallel printer connected to a Commodore 64 or 128, a

cable from the user port to the printer is all that's needed (set

'pdev O').

Apple users please note that Superbase supports only the Apple

Parallel card and the Apple Super Serial card. Other cards may

work, but unpredictably.

PET / 700 / B128 users requiring interfaces that convert RS232 to

IEEE or Centronics to IEEE. In the UK, recommended interfaces are

Small Systems Engineering B300, Aculab, or IBEC.

See also Output errors.

Disk Errors
Disk Full

This can be quite serious, and can result in a data or index

mismatch if the error occurred during a write to a database file.

Mismatches are discussed below.

After the disk full error, the simplest solution is to start using

the backup disk as the master. Create space to ensure the disk

full error does not recur. Start work with a new disk as soon as

possible. Also, take a backup of the backup before you start work.

161

Troubleshooting

In no circumstances should you do any kind of write operation on a

disk that has produced the disk full error.

If you have Superbase version 2, use the "utility" program on the

Superbase disk to recover and copy the database to a new disk.

This also compresses it. You may lose the data that was being

written when the disk full error occurred, unless you were already

using version 2.

If you have Superbase version 1, life is not so easy. If there is

any space on the disk after deleting lists, help files, etc., use

the 'output to* command to extract record data a little at a time

using a series of key lists created with 'find*. For example, put

=a' as the criterion for the key field to extract all records

whose keys begin with "a". After using 'output to', copy the data

file to another disk with a non-Superbase utility. (If you have a

dual drive — but not twin units — both the key lists and the
data files may be created directly on the other drive.) Copy the

file definition(s) across too. Recreate the database, name the

database files, modify each one with a dummy text field at the

end, and import the data. See the section on Database
Reorganization (Chapter 10) for further details.

Purchase of Superbase version 2 ±s strongly recommended.

Commodore DOS Error Messages

Refer to your Commodore Disk Drive Manual. Superbase does not
create these errors, it just reports them.

Database, File and Record Errors

Caution is necessary as an error of this type may manifest during

an operation which did not cause it.

Data or Index Mismatch

An error of this type is caused by a discrepancy between actual

and predicted block control information.

Copy and repair the database with the Superbase version 2

"utility" program if possible. If not, follow the method described

above to transfer data to a new disk. See Database Reorganization

in Chapter 10 for further details.

If 'output to' fails because it cannot read a record in the file,

and there is a significant amount of record data after the record

with the error in it, you may need to write a program to store the

data in another file from which it can be output successfully.

1. Use 'batch' to count from the start of the file to the point at

which the error occurred.

Troubleshooting

2. Then use the count to control the end of a loop that starts at
the beginning of the file, reads a record, assigns the field
data to variables, switches to another file and stores the
data, and then returns to the original file and deletes the
source record before processing the next record (remember,
’select n’ is not necessary after 'select d').

3. Write a similar program to start at the last record in the file
and read backwards to the point at which the error occurred,
storing the data in a new file.

"File Definition Invalid" when Selecting File

Often caused by having used the name of a database file as the
name of a key list, data file, memo, or word processing file.
Rename or delete the offending file. Reselect the database. Then
use 'file' to select the file. When prompted to create it, respond
"y". Redraw the format as it was before, ensuring that the order
and types of the fields are correct; the position on the screen
does not matter. After completing the 'format' you should be able
to access the records without difficulty. See Chapter 3 for
explanation of file definitions in relation to the database
itself.

"No Fields Defined" when Accessing File

Caused by quitting from 'format' before defining any fields or
after erasing all existing fields. First, execute 'database' and
then 'file' to try and reset the file definition. If you still get
an error, then scratch the file definition, and create the one you
want under another name. Copy it to the original name, then select
'database' followed by 'file'.

"Syntax Error" when Selecting a Record

This error can be perplexing. The system stops for no apparent
reason when reading a file, and gives this error. You didn't do
anything! The error is caused by an earlier action which Superbase
cannot detect.

The usual cause is an illegal character in the record data, most
commonly the double quotation mark, chr$(34). Use these commands:

a$=chr$(34)
find where [fieldl] is a$+"-’'

[Fieldl] stands for the first field in your format. This creates a
list, probably with just one key in it.

Dispose of the error with this procedure:

1. Select the record with the error. Even though you get the
"Syntax Error" message, this is still the current record.

163

Troubleshooting

2. Use 'display* to show the contents of each numeric or date
field in turn. The bad one will produce the same error message.

3. Use 'calc' to set the offending field to zero.

4. If the unwanted character is in a text field, you should be
able to use 'select r' to edit it out.

5. Store the record.

Syntax errors can also be caused by modification of the record
format. If you insert or delete a field at any point other than
the end of the format, you may cause Superbase to try to assign
invalid data to a date or numeric field. Solution: change all
field types to text and review the contents. Make the necessary
changes.

’’Formula Too Complex”

This can occur in 'format' or in program execution. The usual
cause is too many sets of parentheses in a result field
calculation or a BASIC expression.

Illegal 'do/perform' strings can also produce this error.

’’Invalid Calculation : Re-enter”

Occurs during 'format' while entering a result field calculation.
Causes can be the wrong number of parentheses, or an invalid field
name, function or operator.

’’Screen Deselected”

Applicable to C128 only. In 80 column mode, selection of a 40
column file format from 'file', or the use of the 'mode' command,
disables the 80 column screen, and shows the above message.

Similar action starting from 40 column mode disables the 40 column
screen, but no message is shown.

See the Superbase Manual, Appendix G.

Failure to Achieve Duplicate Keys

Caused by over-eager key pressing and keyboard buffer not
clearing. Solution: stick rigidly to this sequence at the end of
'format':

fl <RUN/ST0P> <y>

or CTRL-C for Apple versions

164

Troubleshooting

Solve existing problems by re-entering * format’ and terminating it
carefully.

Output and Other Record Processing Errors

Printer Features Inaccessible

Generally caused by code type confusion where the printer requires
standard as opposed to Commodore ASCII codes.

Superbase works internally in Commodore ASCII. If your printer
requires normal ASCII codes, and you have set ’pdef^ accordingly,
then Superbase converts all printable characters to ASCII before
sending them. This can cause a problem if you are attempting to
send a specific control sequence.

For example, if you want to send ESC E 65, as
’chr$(27) + "E"+chr$(65) \ the "E" will be converted internally to
its true ASCII value, which is what the printer requires. However,
Superbase also converts the character 65, as this is a lower case
"a" in Commodore format, and it emerges as 97 — the true ASCII
value of "a”. The control sequence is thus invalid.

Unfortunately, if you set 'pdef* to output Commodore ASCII codes,
the sequence still comes out wrong because the value of "E" is not
what the printer requires.

Solutions: If your printer requires ASCII codes, set the correct
'pdef* value for normal printing. When you need to send a control
sequence, first reset ’pdef 0* to switch to Commodore ASCII. Then
send the sequence expressed entirely as character strings, using
true ASCII values:

chr$(27)+chr$(69)+chr$(65)

Superbase sends the codes for the printer without converting them.
When the control sequence has been sent, switch back to your
normal ’pdef’.

Alternatively, leave the code set for true ASCII. Determine the
actual ASCII character required, i.e. 65 is in fact "A", and send
that instead:

chr$(27)+"EA"

This allows you to send features in the middle of an output line.

Overflow

If a number is too big for its output format, either in a record
field or in output controlled with ’&x,y', hash symbols are
displayed:

Troubleshooting

mmmM
Extend the field format or change the output format.

Fields Appear in \arong Column

Allow for the extra space after each item. Allow for defaults —
the full length of a text field as defined in the record format,
14 places for a numeric field (9,2 plus one for sign, one for
decimal point, and one at the end). Use formatting commands (see
Chapter 4).

If the margins are set too close together, output is disrupted.

Fields Appear on yjrong Line

This is most often caused by trying to print at a column position
already covered by output data earlier in the line. See previous
item on default field lengths. Unformatted numeric fields require
10 positions to the left of the decimal point. As above, check the
margins•

Unwanted Blank Line

Check the 'space' and 'Ifeed' commands. A blank line can be caused
by outputting a character at the end of a line, in column 39/40 or
79/80 (depending on screen width). A semicolon after the final
character should eliminate the problem.

Wrong Field Appears

You used the wrong field name. See Chapter 3.

Records Appear in Wrong Order

This is due to a problem inherent in the use of duplicate keys.
Switch to unique keys. See Chapter 10.

Total Failure to Output or Process

Is the printer on line?

May be caused by illegal characters in the record or a file
corruption.

*Find' Does Not Work

If the 'find* operation hangs up or puts no records in the list

Troubleshooting

when you know there should be some, there are various possible
causes:

Reserved search criteria characters may be in the record data.
Solution: remove such characters, pick keys one by one (see
Chapter 10).

The disk may be full.

'Sort' Does Not Work

'Sort' cannot work properly with duplicate keys: each attempt to
access a duplicate key only accesses the first key in the
sequence.

To sort on a text field containing numbers, ensure that all
entries are of the same length, padded if necessary with leading
zeroes.

Illegal characters in the fields being compared can cause failure.

A full disk prevents Superbase from creating the intermediate or
final sort files.

"Out of Memory" on Import

This error can occur if Superbase tries to import strings longer
than 255 characters. Such strings can be created inadvertently by
'output across to', which does not insert carriage return
characters between fields. Data exported from a non-Superbase
system could cause this error.

"Invalid FMS Parameter" on Import

Commonest cause is trying to put a carriage return only into a key
field. Ensure that the structure of the record format corresponds
to the structure of the fields in the import file. If you rename
the import file to start with "h" or "h8" as appropriate, you can
look at its contents with 'help'.

Illegal characters may also cause this error.

Loss of Data Following Import Error

If you import records and then the import fails, you will probably
still be able to see record data in the file into which you were
importing. But if you quit from Superbase, you may find in the
next session that the data has disappeared. This is because an
error during 'import' prevents Superbase from writing essential
control information to disk. At the start of a new session, the
lack of this information makes it impossible for Superbase to
locate the record data. Always do a 'store' or a 'select r' before

167

Troubleshooting

quitting if you've had this error. See Chapter 10.

Miscellaneous

No Help

The 'help' screens are stored on the Superbase program disk. When
you create a training disk. Superbase copies them onto it. If you
want the 'help' screens on another disk, you must either copy them
onto it yourself, or use the Training Disk Creation option on the
start up screen, then remove items you don't want.

When entering the name of a 'help' screen, or a list or other file
you want to view with help, omit the "h" (or "h8" or "h4" if
appropriate). 'Help' supplies the correct prefix automatically.

No "labels'* or "delete" Programs

These programs are supplied on the Superbase disk, and should be
transferred to your own disk before use.

The Superbase 64 version 1 and Superbase Apple version is called
"labels".

Superbase version 2 and Superbase 128 have two programs, one
called "labels", the other "makelabels". "Delete" is only
available on these versions.

Use 'load' to load the program from the Superbase disk. Switch
disks, and 'save' the program under the same name onto your work
disk.

168

Troubleshooting

Guide to Known Problems
Ask &>128 fails

Version/Machine: 2,02 / 64:96:700/8128:264:All

Ask for string >128 characters — loses first character.

Ask allowed too much edit

Version/Machine: 1,0C / 64:96:700/8128

During Ask command could edit out of ask field length.

Ask fails with negative number

Version/Machine: 1,08 / 64:96:700/8128

Ask [number] would not accept a negative input.

Ask for field wrong result

Version/Machine: 1,08 / 64:96:700/8128

Ask [field] when record invalid, i.e. EOF, gives wrong result.

Record has failed to clear but is invalid due to condition such as
EOF. Entering field value causes results to be evaluated
incorrectly.

Ask length error

Version/Machine: 1,07 / 64

Ask not setting required length sometimes allows nulls.

Backup dual drive

Version/Machine: 1,08/ 64:96:700/8128

Closed database after dual drive backup. Had to execute database
command again.

8ackup single drive 8096

Version/Machine: 1,0N / 96

Try to execute single drive backup — crashed machine.

Backup crashed after reading 113 blocks of the source disk. No
4040 versions released.

Batch clears screen

Version/Machine: 1,0N / 64:96:700/8128

Executing a batch command cleared the screen.

169

Troubleshooting

Calc failure

Version/Machine: 1.08 / 64

Calc failed to execute after first parameter.

calc Ea]=x;[b]=y Following parameters would not get executed if a
preceding field was involved in a result that did not have all its
parameters set.

Calc from menu

Version/Machine: 1.06 / 64

Does not prompt enter calculation displays numbers.

Only occurs if current record invalid

Calc when blank fields

Version/Machine: l.OE / 64:96:700/8128

Calc where blank fields now clearing properly.

Calendar field >11 characters

Version/Machine: 2.02 / et al.

If calendar field >11 characters then got rubbish.

Cannot set a result

Version/Machine: 1.0a / 64:96:700/8128

Certain fields not accepted in a result formula.

Fields 32,34,39,40,41,42,44,46 could not be involved in a result.

Centronics Printer Problems

Version/Machine: 1.09 / 64

Could not set margins, tlen or plen properly on Centronics
printers.

Margins got reset to 40 columns. Used screen size as page size on
Centronics.

Command lines >120 characters

Version/Machine: l.OE / 64:96:700/8128

System would not allow command lines > 120 characters.

Conditional to invalid line
Version/Machine: l.OL / 64:96:700/8128

e.g. EOF 20 where line 20 does not exist — went to next line.

Troubleshooting

Cursor out of range
Version/Machine: l.OD / 64:96:700/3128

Could send cursor out of range with ask command etc.

Data length in excess
Version/Machine: l.OL / 64:96:700/3128

If data particular length then stored 256 bytes too much.

If null at end of data falls on page boundary then fails. Can
cause system crash when retrieving record.

Data length in excess 2
Version/Machine: l.OQ / 64:96:700/3128

If reading record created by previous bug crashed machine.

If null at end of data falls on page boundary then fails. Can
cause system crash when retrieving record - now fixed.

Data mismatch duplicate keys
Version/Machine: l.OD / 64:96:700/3128

Entering many records with duplicate key caused data mismatch.

Occurs if enough duplicate keys to fill index block.

Data mismatch/Delete error
Version/Machine: 1.00 / 64:96:700/3128

If record stored twice when not current record caused error.

Record is stored and immediately stored again usually under
program control. The second store will replace the current record.
Storing a record does not make it current, so could replace wrong
one.

Database command
Version/Machine: 1.03 / 64

Database did not clear all file definitions or current file.

Could give mismatch errors if disk swap then database command
without file command.

Database names only 16 characters
Version/Machine: 2.02 / RIIdos3.3

171

Troubleshooting

Should allow names up to 30 characters.

Date entry/display failure
Version/Machine: 1,04/64

Date entry or conversion caused return to menu.

Only occurred after dump command executed.

Date field on bottom line
Version/Machine: l.OL / 64:96:700/3128

Could not set date on bottom line of screen in format.

Date field on bottom line
Version/Machine: l.ON / 64:96:700/3128

Date set on bottom line in last column — wraps screen.

If you set a date on the last column the end marker appeared
the top of the screen. Could not erase it.

Del in program editor
Version/Machine: 2.02 / All

Del command not working properly.

Delete file index mismatch
Version/Machine: 1.05 / 64

Deleting last record gives index mismatch.

Delete record crash
Version/Machine: 1.05 / 64

Delete a record crashes machine, leaving data mismatch.

Deleted space problem
Version/Machine: 2.02 / 64:96:700/3128:264:All

Deleted space not re-used for index blocks.

Detail only failure
Version/Machine: l.OE / 64:96:700/3128

Could not use detail command for current record.

Troubleshooting

Detail should be able to just send the detail from the record
selected if all or from are not used but it didn’t work properly.

Disk full failure
Version/Machine: 2.02 / 64:96:700/3128:264:All

Disk full not handled correctly.

If disk got full during index update then could not complete
storing data in the index : system left in indeterminate state.

Display wrong position
Version/Machine: l.OC / 64

Line wrap on screen causing display position to be wrong.

Occurs if data printed longer than screen width.

Do string^ failure
Version/Machine: 1.07/64

Do would not set a string variable properly,

do "a$* ... fails to set string correctly.

Dump null strings garbage
Version/Machine: 1^07/64

Dumping null strings i.e. a$= gave rubbish on screen.

Dump second page garbage
Version/Machine: 1.09/64

Second page of dump would give garbage.

Dump to device 08
Version/Machine: 1.08/64

Could only dump to device number 8.

Did not allow any disk device <> 8.

Duplicate key problems
Version/Machine: l.OE / 64:96:700/3128

Index failure when many duplicate keys inserted & deleted.

173

Troubleshooting

End field last line/column
Version/Machine: 2.02 / All

Did not handle a field which ended on the last column of the last
line.

End of page unexpected
Version/Machine: 1.07 / 64

If display @x,y where y=current line or Imarg >0 failed.

If column not zero or Imarg not zero then display at a particular
line failed and gave end of page message.

Enter can edit form
Version/Machine: 1.07/64

If key exists in enter can then edit form around field.

After error mode set incorrectly allowing screen edit.

Enter cursor left failure
Version/Machine: l.OE / 64:96:700/B128

If long field cursor left fails if after 127th position.

Enter insert on last character
Version/Machine: l.OC / 64:96:700/8128

In Enter if on last character of field could do insert.

Insert at this position corrupted screen layout. Should have been
disallowed.

Enter Keg exist hang/clear
Version/Machine: l.OJ / 64:96:700/8128

If enter on screen <>0 and key exist could clear or hang.

Export failure
Version/Machine: 1.05 / 64

If down set then export giving extra returns.

Could not import an export file.

174

Troubleshooting

Export failure data mismatch
Version/Machine: 1.03/64

Export stopped If data mismatch encountered.

Data mismatch now made soft error to export command. Clears buffer
and continues exporting.

Export failure fms parameter
Version/Machine: 1.05/64

Export stopped if fms parameter error encountered.

FMS error now made soft error to export command. Clears buffer and
continues exporting.

Export from "name” "name"
Version/Machine: 2.02 / 64:96:700/3128:264

Added syntax export from "name" "name".

Field name or brackets error
Version/Machine: 1.07/64

If using 12 character field names got error incorrectly.

Also gave invalid line re-enter if in program edit mode.

Field names can't be used
Version/Machine: 1.07/64

Typing a valid field name gives an error.

Only happens if SORT used then return pressed to exit to menu.

File definition corrupting
Version/Machine: 1.07/64

Losing part fields on entry, colours wrong,screen funny.

Errors usually attributable to parameters for another file in a
multi-file system being applied to current file after 4th file
command.

File Definition Invalid
Version/Machine: l.OE / 64:96:700/3128

Could overwrite file def by finding a list with same name.

File names should not have been used for lists.

175

Troubleshooting

File fails to create
Version/Machine: l.OJ / 64:96:700/3128

System fails to put user in format if file does not exist.

Do File "xx". Create it? "n" then do file with same name did not
go to format. On 64 screen goes all same colour.

File manager problem duplicate keys
Version/Machine: 2.02 / 64:96:700/3128:264

Enter duplicate key, esc q, select c, select r.

Screwed up file somehow as select c did not reselect record.

File manager problems
Version/Machine: l.OP / 64:96:700/3128

1/Many duplicate keys 2/Many deletes and adds.

1/ If many duplicates added can cause index split to fail. 2/
After many deletes and adds can cause index to become unsorted if
problem left then delete errors can occur.

Filename problem
Version/Machine: 1.07 / 64

Cannot use filenames >16 characters i.e. l:abcdefghijklmnop.

FMS Parameter Error
Version/Machine: 1.09/64

Using a key list with blank lines in it gives error.

Blank line taken as a key with length 0 this is an error in FMS.

Format allowed record >1108
Version/Machine: 1.07 / 64

Format not recognizing record too long.

System failed if record stored in format too large. Crash on
storing/selecting record.

Format Crash
Version/Machine: 1.07 / 64

Too many comments in format crashed system.

Troubleshooting

Garbage displayed etc.

Format crash record >1108
Version/Machine: l.OG / 64

Format not recognizing record too long if new file.

Only if a new file — existing file extensions are ok.

Format field at bottom right
Version/Machine: 1,0L / 64:96:700/8128

Format now allows fields terminating at bottom right corner.

Format loses comments
Version/Machine: 1.0H / 64:96:700/8128

Record too long in format caused system to lose comments.

Format losing numeric format
Version/Machine: 1.07 / 64

Numerics empty during re-format or 1 character at enter.

Format or file error
Version/Machine: l.OK / 64:700/8128

Screen roll on B128/700/B128 program loss on 64 on certain files.

Format when file exists
Version/Machine: 1.03 / 64

File command on existing file went into format.

Unexpected entry into format option. This problem occurred when
using a multi-file system. Did not recognize file as existing.

Function key cause crash
Version/Machine: l.OK / 700/8128

If function key defined > 10 characters with no space in front.
Causes system crash.

Garbage on screen
Version/Machine: 1.07 / 64

Garbage on screen if list stopped with quotes mode on.

177

Troubleshooting

If list stopped with uneven number of quotes on screen.

Get command added
Version/Machine: l.OC / 64:96:700/3128

Get command allowed on this version onward.

Graphics in fieldnames
Version/Machine: 1,03 / 64:96:700/3128

If graphic in front of fieldname then taken as part of name.

Undesirable to have graphics in names. Users don't always realize
why they cannot refer to the name.

Graphics in format Apple lie
Version/Machine:2,02 / AIIc

Inverse video in format changed to graphics.

When changing screens inverse upper case changed to graphics.

Help/Memo in program
Version/Machine 1,09 / 64

Help or memo command using string variable failed.

Help a$ did not find correct file.

If then failure in direct mode
Version/Machine: 1,0C / 64:96:700/3128

If then command from status line invalid but not trapped.

Executed program in memory from unknown line number.

Illegal quantity error
Version/Machine: 1,09 / 64

Unexpected error -- will not repeat if line reexecuted.

Error happens after record stored.

Import gave Out of Memory
Version/Machine: 1,0L / 64:96:700/3128

If no file definition in memory import tries then gives out of
memory error.

Troubleshooting

Import textual date allowed
Verslon/Machtne: l.OE / 64:96:700/3128

If date is in text form could not import it.

Index mismatch reading
Version/Machine: 1.02 / 64

Get index mismatch error on reading record.

Index block has got to 255 characters long. File manager cannot
then read the index block. Data is ok.

Invalid Numeric Result
Version/Machine: l.OR / 64:96:700/3128

Calculation gives invalid numeric result or rounding error.

If field format 6,2 or 7,2 then calculation like 12.01-12 gives a
result in BASIC like 9.99999997e-03 as rounding is not done by
Superbase.

Invalid parameter error
Version/Machine: 1.09 / 64

Unexpected error will not repeat if line reexecuted.

Error happens after record stored.

Invalid screen number
Version/Machine: 1.07 / 64

Invalid screen number error not stopping program.

Program continues after error encountered.

Key > 30 characters
Version/Machine: l.OL / 64:96:700/3128

Key field could be made > 30 characters by insert in format.

FMS allowed you to store keys > 30 but did not retrieve record
correctly. Overwrote part of record.

Key exists invalid
Version/Machine: 1.05 / 64

Key exists error when key does not exist.

179

Troubleshooting

Can occur if record deleted then re-entered.

Key field corrupted
Version/Machine: l.OL / 64:96:700/3128

Key field appears corrupted if multi-file system.

When key fields are in different positions in two files the system
does not swap the positions with the file.

Link working slowly
Version/Machine: 1.07 / 64

Link loading file definition when already loaded.

List with no keys
Version/Machine: l.ON / 64:96:700/3128

Using a blank key list gave message FMS parameter error.

If you found a list but had no entries in it then using the list
afterwards would give error message and end routine.

Load/Save 1 character names
Version/Machine: 1.07 / 64

One character names did not get .p appended.

Maintain other failure
Version/Machine: 1.07 / 64

Maintain other cannot evaluate string properly.

Command failing to evaluate properly, also clearing screen.

Maintain other new
Version/Machine: 1.09 / 64

Could not use the new command in maintain other.

Command required for dual drive systems.

Match dates using
Version/Machine: l.ON / 64:96:700/3128

Could not match dates using backarrow to enter date later.

Troubleshooting

Match failure
Version/Machine: l.OC / 64:96:700/3128

Match failed to find if fields contained / or &.

Match failure (sliding)
Version/Machine: 1.03 / 64:96:700/3128

Match found all records where numeric field =0.

Sliding match said record matched if passed a numeric field of 0.

Menu waiting etc
Version/Machine: 1.07 / 64

When waiting for a key an invalid key highlights cursor.

New dlsJc wrong drive
Version/Machine: l.OS / 64:96:700/3128264

Did new on wrong drive.

New page failure
Version/Machine: 1.03 / 64:96:700/3128

@l,5"test"@3,5"test” did not force new page.

Should have given new page as cursor is past column 3 on line 5
after > printing first ’test’. Failure only occurs if second
statement refers to the same line as the first.

No error message In format
Verslon/Machlne: l.OR / 64:96:700/3128

On some versions Error messages did not appear in format.

Messages: No key defined / No fields defined / Too many fields /
Too many comments / Record too long.

No tone on 64
Verslon/Machlne: l.OQ / 64

On version l.OP the tone would not sound.

Out of Memory
Verslon/Machlne: 1.09 / 64

Run or load in a program did not clean stack.

Troubleshooting

Gave out of memory after many iterations as gosubs etc. left on
stack.

Out of Memory error
Version/Machine: 1.07 / 64

Unexpected out of memory problem.

Caused by any conditional: nmat, pmat, eol, eof, if...then. All
above required colons following them otherwise can give out of
memory error.

Output all no parameter (date fields)
Version/Machine: l.OQ / 64:96:700/3128

Output all with no parameters garbage after date field.

Got information from previous field if it was longer than the date
field.

Output from list
Version/Machine: 1.03 / 64

If no fields specified then not using list.

First record came from list then all records from file afterwards.

Output gives field names
Version/Machine: l.OA / 64:96:700/3128

Output to Device <> 8 if all fields gives field names.

Output numeric format wrong
Version/Machine: l.OF / 64:96:700/3128

Numeric format of field incorrect when output.

Caused by format resetting due to plus command. If plus not used
then ok.

Print command
Version/Machine: 2.02 / All

Print command from menu failed if no parameters.

Print problems (4022)
Version/Machine: 1.00 / 64:96:700/3128

4022 did not like nulls being sent to it.

Troubleshooting

Printed lines backwards / no upper case etc.etc. Maybe affected
other printers

Print/Btsplay wrong position
Version/Machine: 1.07/64

Print affecting display position and vice-versa.

Interaction between screen and print positions.

Printer screen dump
Version/Machine: 1.07 / 64

CTRL p homing cursor after completion.

Printer wrong case
Version/Machine: 1.02/64

Printing to 1515/1525/1526 gives wrong case.

Cannot print lower case on 1515/1525/1526 printers as using sa255
added secondary address option to pdev command. Made default sa7.

Printing list cannot stop
Version/Machine: 1.07 / 64

Once printing a program could not stop it.

Printing numeric
Verslon/Machlne: 1.06 / 64

Printing numbers across a page — break not working.

If trying to print 9.62 and page break occurs at 9. then second
page may show 6324567...

Prog editing crashes
Verslon/Machlne: 1.02 / 64

System crashes while editing program.

If length of program at multiple of 256 characters then editing
causes machine to crash. Cannot recover.

Prog first line number wrong
Verslon/Machlne: 1.09 / 64

Unexpected error will not repeat if shift return etc.

183

Troubleshooting

Error happens after record stored.

Prog line >128 characters
Version/Machine: l.OE / 96:700/8128

Backarrow in Prog to go to previous line >128 then cursor left.

Failed to cursor left if line > 128 characters.

Protected prog will not run
Version/Machine: l.OC / 64:96:700/8128

After protected program load and attempt list will not run.

Quit after error in format
Version/Machine: 1.00 / 64:96:700/8128

If error in format like record too long and stop pressed.

Left file in indeterminate state.

Record count high
Version/Machine: 1.07 / 64

Count of records from CAT in region 65530+.

Records contain trailing zeroes
Version/Machine: 2.02 / 64:96:700/8128264

Trailing zeroes should not be stored on disk.

Rem or Data with square brackets
Version/Machine: l.OL / 64:96:700/8128

Gave field name or brackets error.

Replica fields not set
Version/Machine: l.OC / 64:96:700/8128

System did not copy to replica fields on some conditions.

Report generator
Version/Machine: 1.07 / 64

Report could generate command lines > 79 characters.

Could not edit long lines produced by report generator.

184

Troubleshooting

Report no file >8 character name
Version/Machine: 2.02 / 64:96:700/8128264:All

If using Report from menus did not allow filename >8 characters.

Restore Failure
Version/Machine: 1.08/ 700/8128

Data restore not working on 700/B128.

Result failure
Version/Machine: l.OK / 64:96:700/8128

Cfield40]+ something would not work.

You cannot define a calculation to be the 40th field + something
else due to the internal compression of the field name.

RS232 on 700/8128 fails
Version/Machine: l.ON / 700/8128

Trying to use rs232 printer on 700/B128 fails.

Error message i/o error £3 or system hang.

Screen dump with rmarg 080
Version/Machine: l.OM / 700/8128

Would not screen dump if margins >80.

Select match
Version/Machine: 1.07 / 64

Select match not asking for parms after file.

Only occurs if match in progress then file swapped.

Select match where failure
Version/Machine: 1.03 / 64

Could not match if non-constant constant field.

Select match always looked for constant field to be default value.
If constant edited then could not find it.

185

Troubleshooting

Set failure null string
Version/Machine: 1.07 / 64

Set failed if null string in file.

Would fail if set file created by memo.

Setllnk Invalid FMS Parameter
Version/Machine: 1.06 / 64

Setlink command will not work.

Setllnk Invalid FMS Parameter
Version/Machine: 1.07/64

Setlink command will not work after database command.

Single drive 8250 backup
Version/Machine: l.OQ / 64:96:700/8128

Single 8250 backup added.

Sort all using & failed
Version/Machine: 2.02 / All

The & operator was not accepted in sort (Apple only).

Sort clears screen
Version/Machine: l.ON / 64:96:700/8128

Executing a sort command cleared the screen.

Sort missing records
Version/Machine: l.OS / 64:96:700/8128

Cannot sort if sort fields contain square brackets.

Fields should not contain square brackets. Not fixed.

Sort numeric falling
Version/Machine: 2.02 / 64:96-.700/8128264:All

Numeric sort fails on numbers usually integers.

Speed up loading files/progs
Version/Machine: 2.00 / 64:96:700/8128264

Rewrite of the sequential file handler.

186

Troubleshooting

Stop key not stopping print
Version/Machine: 1.05 / 64:

During top of page printing may be impossible to stop.

If plen/tlen/title set to values such that title is always forced

and print cannot continue, it is impossible to use stop key.

Subtotal not clearing
Version/Machine: l.OE / 64:96:700/3128

Subtotal does not clear if comes after a colon.

Colon taken to be end of line even if in quotes.

Syntax error on backup
Version/Machine: l.OQ / 64:

On version l.OQ single drive backup gave syntax error.

Text fields only 251 characters
Version/Machine: 2.02 / All

Would not allow text fields >251 characters.

Use of + crash
Version/Machine: l.OC / 64:

Entering command using the + key if shifted crashes prog.

Shifted + key not a valid operator.

187

Troubleshooting

Notes

188

Troubleshooting

Notes

189

Index

adding data records 36-39, 122
importing 39

replicating 36

alphabetic order 7
analysis fields 14

ASCII key value 124

ask statement 121-123
automation 59, 100-101

example program 102-103
averages 89, 109

backup 157

batch updating 50-51, 88-90,

152-153

averages 89

conditional 152-153
maximum value 90

minimum value 90

record count 89

running display 89

totals 88-89

blank line 97, 106, 166

boxes drawing routine 125-126

brackets, square 23

calculations 4, 51

calendar fields 21

column headings 97, 107

command area, programmed 153
command line 59-67

abbreviations 64
editing 63

multiple commands 64
quotation marks 63

recalling 64

commands, important 60-63
concatenation of strings 140

confirmation prompt 124

constant fields 15
continuous printing 57

control codes, screen 153

counting records 89, 109

criteria see searching

current record 40, 110, 133

data 3, 6

data entry, batch 39

data mismatch 162-163

database 29,60

database reorganization 146-

190

150

database to database 149

duplicate to unique keys 149
file to file 148

identical format 146-147

import failure during 147

non-identical format 147

database structure 29-31
date fields 14-15

extended 15

searching for 127-129

date routines 150-152
date, sorting by 94

date, setting format 152
date, today's 21

date, tracking 157

debugging 157

delayed search request 46, 87
deleting 32, 71-77

records 32, 41, 71-77

catalog entry 32, 75

file definition 32, 75

descending sort 49, 93, 94

detail output command 110, 133
directory 60

disk file output 57, 96, 146-
150, 159

disk full 34, 146, 157, 161

disks, multi-volume 34-35
display command 62

display statement 125
display @0 125

division by zero 17

do statement 143-145

dump files 157-158

duplicate keys 9, 11, 37, 93,
149-150, 153-155, 164

Easy Script 57, 96

editing records 41

editing programs 80

end of file 73

end of list 76

enter data 3

error message routine 126

errors 160-168

data mismatch 162-163
disk 161

disk full 161-162
DOS 162

file definition invalid 163
find 166

formula too complex 164

import data loss 167

Index

index mismatch 162-163
invalid calculation 164
invalid FMS parameter 167
loading 160
no delete program 168
no fields defined 163
no help available 168
no labels program 168
out of memory 167
overflow 165
printer 161
printer features 165
printout 161
read/write 161
screen deselected 164
sort 167
syntax error 163
wrong column output 166
wrong field output 166
wrong line output 166
wrong field output 166

export file 31, 146-147
extended command and program
lines See plus

field names 23-26, 28
conventions 24
identifying 23
in programs 26
legal characters 23
referring to 23
very short 24

fields 5, 8-12, 13-22, 30
analysis 14
calendar 21
constant 15
date 14-15
forced 22
index key 8-12
numeric 14
replica 22
result 16-21
text 13-14
see also under individual
field types

file definition 30
deleting 32, 75
invalid 163

file design 4-8, 26-29
file format 29
file review 39-41, 131-132
files, export 31
files, sequential 31, 157-159
files, output data 31

files, database 4, 30, 156
find see search
find command 62
flowcharts 74, 83
footings 107
forced fields 22
formatted output 54
formula too complex 164
formulas see result fields

headings, column 97, 107
headings, page 106
headings, central 107

importing data 38, 147-149
index 30, 33

mismatch 162
index key fields:

allowed characters 9
character sequence 9
dates 10
duplicate see duplicate keys
key matching test 130-131
length 9
linking with 133-136
meaning 11
numeric 10
searching on 40, 129, 132
sequences 36, 130
structure 12
suffixes 11
uniqueness 11

input screen 3, 121-126
invalid calculation 164
invoices 25, 99-100, 101, 135

keys see index key field

labels 98
line spacing 57
linefeed 57
linking files 133-136, 154

creating records 134-135
link statements 133-134
lookup 134
master/transaction files 135

list command 61
lists 30, 41-43, 76, 85, 132,

191

140-143, 153-155

appending to 85, 142-143

command line 62

default 42

duplicate keys 153-155
empty 140-142

importing 154

naming 62, 84

referring to 42

select from 132

use of 42

lookup files 134

mail merge 6

margin commands 62, 63

matching records 40, 130-131

maximum field value 90

menus 117-121

database file format 118

direct coding 118

example programs 119, 120,
121
extended 120-121

help screen 118

metacommand; do/perform 143-145
minimum field value 90

multiple files see linking

multiple screens 28

new command 61

no fields defined 163

no match 130-131

nmat 130-131, 134

numeric fields 14

searching for 127

output 52-58, 95-100, 140

across 55, 95

basic 53

current record 110

direction of 52, 95

down 55, 95

elements for 53,95

formatted 54, 95

paged 55

positioned 54, 95

summary 9 5

switching 52, 95, 159

output disk files 31, 57, 96

output parameters 56, 95

continuous printing 57

margins 56, 57
page length 56

spacing 57

text length 56

overflow 165

page break, eliminating 137

page length 56, 62

page numbering 107, 137-138

partial match 130-131

passwords 124

peek 153

perform statement see do

picking records 85, 142-143

plus 25, 98, 99, 110

pmat 130-131, 134

poke 153

print command 61, 62

print continuous 57

printed output see output

printer control 136, 165

printer set up commands 63

program plans 68-71

programmer's challenge 20, 74,
112, 146, 152

programmer's tip 29, 39

programs 31, 68, 72-81,

115-116

batch update 89, 90, 153
box drawing 125

command area 153

database transfer 149

date 128-129, 150-151

deleting records 71-77
display 125

do 143-145

duplicate keys 154

error message 126

extended lines 99-100

file transfer 148

find 127

input 122, 123

invoice processing 102-103

labels 98

linking 134, 135

list testing 140-142

menus 119, 120, 121

output 97

page numbering 138

password 124

picking records 142

record selection 130-132

reports 111-112, 113

Index

start 120
subtotal retention 139

programs, managing 77-81
debugging 157
editing 80-81
executing 78
library 78
loading 79
looking at 79
printout 79
saving 78
storing 78
writing 77

quit command 61

records 4, 30
adding/entering 36-39, 122
current 40, 110, 133
deleting 32, 41
editing 41
format, programmed input
122-123
picking 85, 142-143

reorganize database see
database reorganization

replica fields 22
replicating records 36
report:

generator 105
programs 111-112, 113
summary 113
statements 105-111

report refinements 136-140
concatenation of strings 140
eliminating page break 137
page numbering 137-138
printer control 136
screen dump 137
subtotal retention 138-139

result fields
changing 20
conditionals 19
data elements 17
discount table 19
division by zero 17
external variables 20
functions 16
numeric values 18
operators 16
outputting 20
percentages 18

positioning 20
retrieval, record see
search, select, file review

running totals 51

screen deselected 164
screen design 26-29

guidelines 27-28
dump 137

screen input 3, 121-126, 153
screens, multiple 28
search 4, 6, 41, 43-48, 83,
84-87

with user input 127-129
searching, ways of 43-48,
86-87

and/or logic 45, 86
dates 46, 48, 87, 127-128
delayed request 46, 87
exact match 43, 86
exclusion 86
fields for 47
meaningless 46
months 128-129
numeric 127
pattern matching 44, 86
selection code 47
sliding match 44, 45, 86

select submenu 39, 129
selection, programmed 129-133

from list 132
index key 129

sequential file 31, 157-159
set files 158
sort 4, 7, 48-50, 83, 90-95

formats for 7, 92
spacing, line 57
square brackets 23
start program 119-121, 156
subtotal break field 108

retaining 109
subtotal variables 108-109

setting to zero 110
subtotals 107-109, 138-139
summary report 113
Superbase (version 2) 160, 162
Superscript 57, 96
syntax error 163
system design 32-35

text fields 13-14
illegal characters in 13

193

Index

leading spaces 13
numbers in 14
variable length 13

text length 62
titles 106-107
total variables 108
totals 57, 89, 106, 107-110

running 51
transaction numbers 157
transaction volume 34

underlining 107
updating see batch updating

validation of input 14, 15,
22, 122, 130
variable length data storage 13
variables 65-67, 97

naming 66
numeric 65
setting up 66
string 65
using 67

volume of transactions 34

wait statement 123-124
where clause 84, 85, 127

194

01-8001

$' H95f

nesooK
Superbase is recognized as a leading database system for Apple and
Commodore computers, with more than 100,000 users of 10 national
language versions worldwide. Its menu-driven approach to file manage¬
ment makes it very easy to use, but the great appeal of Superbase lies in
its built-in programming language, an extended version of BASIC. Mastery
of this language is the key to developing sophisticated custom applica¬
tions.

Superbase: The Book is the first in-depth guide to using the Superbase
system, from first steps through to advanced programming techniques. Dr.
Hunt shows the computer novice how to set up Superbase files, and how
to search the database to extract useful and informative output. He de¬
scribes how simple programs can help in automating a Superbase system,
and explores many of the more sophisticated and powerful features with
the help of programming examples. The wealth of hints, tips and examples
makes Superbase: The Book essential reading for all Superbase users.

Dr. Bruce Hunt holds degrees from the University of Cambridge and the
University of Caigary. A founder member of Precision Software, Dr. Hunt
has been continuously involved with the Superbase project since 1983.
This book reflects Dr. Hunt’s wide experience of user’s needs, refined in
th&Superbase)seminars he has fun in the UK, the USA and the Far East.

UK £11.95
USA $15.95

Commodore/Apple Computers
ISBN 185231 000 6

