- — r/ MAY 1991 £3.25
- e \. n DM. 1
R iR OF &

Gy vty (4l

e DISK-USER:
& DISK
¥ DOCTOR

Ccaoaa
o =S Es_ :
64-TEL, |
Basic Slide.
usi Basic. |
Nisk Doctor. |

F == S & =
B ks Gl B St

London 081-882 4942 Cheshunt 0992 25323 Peterborough 0733 49696 London W1 071 935 2547
FULL RANGE OF AMIGA, ST, SEGA, 64, SPEC, AMSTRAD, PC, PCW, 2600, XL/XE, BBC
GAULDRON Il FIREBIRD 499 STREET SPORTS INTERNATIONAL SOCCER_GBM 499
MUNSTERS ALTERNATIVE 499 BASEBALL EPYX 499 VENOMSTRKESBACK GREMLN 2.9
NAM MINDSCAPE 7.99 SPACE STATION ‘GARY LINEKARS SUPERSKILLS 399
SLOTCARRACER MINDSCAPE 499 OBLIVION EPYX 7.9 STARCROSS cBm 499
BEYOND THE DARK CASTLE AXE OF RAGE EPYX 499 SUSPENDED cBM 499
499 SUMMER CHALLENGE DEADLINE cBM 49
INDOORSOCCER MINDSCAPE 4.99 MINDSCAPE 499 PARADROID HEWSON 299
FINAL ASSAULT EPYX 499 WINTERCHALLENGE MINDSCAPE 499 MURDEROFFMIAMI CRL .99
EPYX 699 499 SUBLOGIC 9.95
SPYVSPY Il EPYX 499 CHAMPIONSHIP BASEBALL RUNNINGMAN GRANDSLAM 499
SPORTS A RONI EPYX 499 MEDUGENG 499 SUPER SCRAMBLE SIMULATOR 499 |
SPORTS NEWS BASEBALL EPYX 599 LEATHER GODDESSES OF PHOBOS GLIDER PILOT CRL 499
DEATH SWORD EPYX 7.9 MEDIAGENIC 499 HERCULES SLAYER OF THE
IMPOSSIBLEMISSION ~ EPYX 299 EYE OF HORUS LOGOTRON 399 GREMLN 299
THE GAMES STARI LOGOTRON 390 BARL" PSYGNOSIS 499
SUMMER EDITION EPYX 699 FOOTBALLMANAGER PRISM 499 EXOLON HEWSON 299 [
4'4OFFROADRACING _ EPYX 4.99 ADDICTABALL ALLIGATA 399 SHIRLY MULDOWNEYS TOP FUEL
RTSFOOTBA EPYX 499 FOOTBALL MANAGER2 CHALLENGE USGOLD 499
CALIFORNIA GAMES EPYX 499 CONSTRUCTIONKIT PRISM 895 BLASTEROIDS =~ IMAGEWORKS 399
WORLD GAMES EPYX 499 NORTHSTAR GREMLIN 299
SOUND STUDIO BaLLISTIX psvanosis w0 B8
HOME RECORDING STUDI 4.95 NINJA HAMPSTER CRL 399
GEOS INC GEO WRITE GRAPHICS OPERATING ARTURA GREMLIN 499
ITH WORD PROC 9. APACHE STRIKE ACTIVISION 4.99 |
SOUND EXPANDER, M SOUND. NoouLE PAZZAZ cBM 400
ASSEMBLER DEVE 'SCRAMBLE SPIRITS GRANDSLAM 599
PPROGRAMMERS V"U“Es EJA VU RORSOFT 6.99 |
SPECTRUM HOL 499
GRAMMERS TOOL BOX MURDER BY THE DOZEN .99
INTRO 0 BASIC PART 5 OCEAN 499
PACK OF ACES INFILTRATOR I MINDSCAPE 599
INTERNATIONAL KARATE, BOULDERDASH THE FLINTSTONES GRANDSLAM 4.99
WHO DARES WINS, NEXUS MS P 499
BEST OF ELITE 4.99 THUNDER CHOPPER SUB LOGIC 9.95
BOMB JACK, FRANK BRUNOS BOXING e MINDSCAPE 7.90
'SPACE HARRIER, AIRWOLF PACLA GRANDSLAM 780
HOUSE 299 TERRVS BIG ADVENTURE
FIGHT NIGHT, OSMIUM GRANDSLAM 599
GoLpI 6.9 BLOODWYCH IMAGE WORKS 699
BIATHLON, MOONSWEEPER, LAWN TENNIS FIGHTING SOCCER AoTIVSION 499
'SPACE GALLERY, SLALOM, INTRUDER, SQUASH 799
KO BOXING ETG ETC ETC ETC INTRIQUE MiRRoRsoFr 699
KICK BUT 499 BATALLION COMMANDER 6.99
FIST, RAMBO, UCHI MATA, BOP N WRESTLE FE THREE STODGES - MIRRORSORT 599

PERSONAL MONEY MANAGER 995

CONTENTS

DR PR E

Volume 4 Number 7 MAY 1991

ON HE DISK
IN THE MAGAZINE

DISK DOCTOR

WELCOME
A useful utility for Disk Drive Users

Instructions and Editors comment 4

@«

MANAGING STOCKS

ADVENTURE HELPLINE
A Stocks management program for C128 users 7

More help with THE ASTRODUS AFFAIR 9

DISK SLEEVE PRINT BASICS OF BASIC

Another sleeve printer for normal printers 8 Basic programmers get more assistance 10
RASTER MASTER = INTRODUCTION TO MACHINE CODE

Yet another Raster Utility for Graphic freaks 20 Oyr new series is now:well underway 24
64-TEL : g TECHNO-INFO

Transform your C64 into a Teletext service 2 oot man again with all the answers 32
WORDSEARCH NUMBYTES

A puzzle compilers dream come true 31 Finally the last in the series for math freaks 37
BUSI BASIC E ADVENTURE WRITING

Business program makers get a helping hand 39

Jason Finch continues with his tutorial 49

TURBO LOADER
Fast load all your favourite programs

C Use 3rd Friday of every month. Alphavite Publications Limited, 20, Porters
Lane, K Farm, Milon Keynes, MK11 31 Teephones (0908) 63816 FAX: (0508260325, For advertising ring (0908) 569819
Opinions expressed in reviews are the opinions of the reviewers and not necessaril those of the magazine. While every effort is made

cannot be hel any errors that do oceur:

‘The contents of this publication including all articles, designs, drawings and programs and all copyright and other ntellectual property
righs therin belong o Alhavie Publications Limite, All ightsconfered by th law of copyrightand other intellectua property
tights and by virtue of

mpmducuon equites theprior writen consent of (hc company
©1991 1SS 09530614

INSTRUCTIONS

DITORS COMMEN

Most of you will by now have discovered the new price
for CDU. We are very sorry that we have had to make this
increase to the cost of your favourite C64 magazine. Like
everyone else, we are constantly at the mercy of the
general economic climate of the country. However, we
do feel that even at the new price of £3.25, CDU still
gives outstanding value for money and we will endeavour
to continue to keep up the standards.

1 hope you like the new style disk sleeve and disk logo.
Many of you have stated your preference to having the
'VOLUME and DISK number on the disk, instead of on the
sleeve as in the past. | must say that | agree.

This months issue is full of interesting features which |
trust you will find will be of some benefit to you. One of
the programs on the disk, namely "Turbo Loadler" does not
have any text associated with it. This is due to the fact
that we received it too late for printing. However, the
program is self explanatory so it should not present you
with any problems. Please enjoy this issue.

DISK INSTRUCTIONS

Although we do everything possible to ensure that CDU
is compatible with all C64 and C128 computers, one
point we must make clear is this. The use of ‘Fast
Loaders’, ‘Cartridges’ or alternative operating systems
such as ‘Dolphin DOS', may not guarantee that your disk
will function properly. If you experience problems and
you have one of the above, then we suggest you disable
them and use the computer under normal, standard
conditions. Getting the programs up and running should
not present you with any difficulties, simply put your disk
in the drive and enter the command.

LOAD”MENU”,8,1

Once the disk menu has loaded you will be able to start
any of the programs simply be selecting the desired one
from the list. It s possible for some programs to alter the
computers memory so that you will not be able to LOAD
programs from the menu correctly until you reset the
machine. We therefore suggest that you turn your
computer off and then on again, before loading each
program.

HOW TO COPY CDU FILES

You are welcome to make as many of your own copies of
CDU programs as you want, as long as you do not pass

them on to other people, or worse, sell them for profit
For people who want to make legitimate copies, we have
provided a very simple machine code file copier. To use
it, simply select the item FILE COPIER from the main
menu. Instryctions are presented on screen.

DISK FAILURE

If for any reason the disk with your copy of CDU will not
work on your system then please carefully re-read the
operating instructions in the magazine. If you still
experience problems then:

1. 1f you are a subscriber, return it to:
Select Subscriptions Lic
5, River Park Estate
Berkhamsted
Herts
HP4 THL Telephone; 0442

2.1 you bought
then return it to:

from a newsagents,

CDU Replacements
STANLEY PRECISION DATA

TEMS LTD

h Courtyard
|
Veldon North Inclustrial Estate

Telephone; 0536 617
Within eight weeks of publication date disks are replaced
free.

After eight weeks a replacement disk can be supplied
from STANLEY PRECISION DATA SYSTEMS LTD for a
service charge of £1.00. Return the faulty disk with a
cheque or postal order made out to STANLEY PRECISION
DATA SYSTEMS LTD and clearly state the issue of CDU
that you require. No documentation will be supplied.

Please use appropriate packaging, cardboard stiffener at
least, when returning disk. Do not send back your
magazine, only the disk please.

NOTE: Do not send your disks back to the above address
if its a program that does not appear to work. Only if the
DISK is faulty. Program faults should be sent to: BUG
FINDERS, CDU, Alphavite Publications Ltd, Unit 20,
Potters Lane, Kiln Farm, Milton Keynes, MK11 3HF.
Thank you

ON THE DISK

DISK DOCTOR

A simple utility to aid Disk Drive users brought to you by FERGAL MOANE

DISK DOCTOR

Although the Commodore ST,
Disk format is very reliable, it
is not immune to human
mistakes! It is the aim of this
program to try and prevent
some of these mishaps which
can be potentially very costly.
DISK DOCTOR s essentially a
simple program, but could
save some angry words. An
explanation of each item in the
main menu is given below.

@
@
s>
>

CLOSE FILE

ID CHECKER

UNSCRATCH FILE

When you delete a file using the DOS SCRATCH
command, it is luckily not erased from the disk. The
entry in the directory track corresponding to that file is
simply marked as deleted and as such it is ignored by the
DOS. Using this option allows you to recover a deleted
file, provided you give the correct name. Unscratch file
is most effective when used immediately after the delete
command has been issued. This is because the undeleted
file might be overwritten by other material, saved in the
space occupied by the old file

CLOSE FILE

If you use your Cé4 for wordprocessing, you will no
doubt have experienced the loss of a file, usually that
huge 10,000 word masterpiece! Perhaps a disk error or
power cut happened when you were saving the file, and
only part of the file was saved. When you try to load the
partially complete file you get error 60: WRITE FILE
OPEN. This option allows the file to be closed properly
and 10 be loaded back into the wordprocessor. It should
work with all file types, but it is most effective with
SEQUENTIAL FILES.

STORE/RESTORE DIRECTORY

You will probably be aware of the quick format
command available on Commodore drives. I takes the
form OPEN15,8,15,”"NEW:diskname”. Note how the ID
is left out. Its function is to clear out the directory of an
already formated disk and is far faster than reformatting
the entire disk. But what if you have cleared a disk with

1> UNSCRATCH FILE

STORE DIRECTORS
RESTORE DIRECTORY
DISKETTE CHECKER

ALIGNMENT ADJUSTER
8> Dos commaNDs

RESTORE KEY TO RESTART

FIRST PRINCIPLES SOFTHARE

valuable files on itz The directory
has been cleared so the disk is
effectively blank. These two options
provide a limited but useful archival
system for your disks. Store Directory
will read the directory track of a disk
and allow you to give it a name for
storage on another disk. When you
accidentally blank a disk, it is a
simple matter of using RESTORE
DIRECTORY to put the correct
directory track back on the blank
disk. Your files are resurrected! M
advice is to use one disk for storage of all the directory
tracks of your most important disks. Then when an
accidental format occurs, you can refer to the archive
disk for their directory tracks. Remember to note the
names that you give the files for each disk. This method
will also recover from corruptions of the directory track
(error 71:Directory error). Restoring an incorrect
directory would destroy the contents of the disk. Please
note however that this option will NOT recover from a
full format (including ID). With the long format
command, the disk is actually erased and cannot be
recovered

a8

DISKETTE CHECKER

This option allows you to examine the performance of
the drive, the condition of a whole disk or track or a disk
DISK DOCTOR will check the disk and report back the
number of any error that occurs. The main use of this
option is to check to see if disks are actually corrupt and
1o find the location of the error. DISK DOCTOR will try
and allocate any bad blocks, making sure that valuable
data is not put into these dodgy sectors. Note that in a
performance test the disk will be destroyed, so please be
careful

ID CHECKER

When a disk is 1D formatted, the 1D number that you
give in the format command is written on every sector of
the disk. If this track ID number is different from the disk
1D, untold problems can occur. This is usually caused by
swapping disks between a write to the disk and without
initialising the new disk. This command will show up
any incorrect IDs. Skilled people could use a DISK

=== - == === ===l

EE=E

ON THE DISK

EDITOR to change the track ID,

ALIGNMENT ADJUSTER

This is potentially the most useful command that DISK
DOCTOR provides. It makes adjustments to how the disk
drive handles read errors. It will seek using half tracks, so
if the disk is out of alignment with the disk head, chances
of finding the correct track are immediately doubled. You
may also specify the number of times that the disk drive
will try and read a particular track. Again, the more
attempts the drive makes, the better the chances are of
reading the disk correctly. This option will also remove
the irritating ‘WOODPECKER' noise when the drive head
hits the stop after a read error. Choosing this option will
reset the 64, allowing you to attempt to load your
program. | have had considerable success in loading
misaligned or corrupted disks but this is not a miracle
cure for clinically dead disks!

DOS COMMANDS

Finally, this was simply included to allow you to examine
the directory, issue DOS commands and to check the
error channel of the drive. The RESTORE key will return
you to the main menu of DISK DOCTOR at any time.
Good luck in dealing with bad-disk blues!

TIMEWOBKS SOFTWARE SALE

PARTNER 128 (scessory pack cartidge)

wihSdevay)
SWIFTCALC 6 (gpeabsertwih i 9
WORDWRITER 135 (wordprocesor with el checke)
64 (word processor with spel checker)
28 (Sideways prnt uility)

. VALUETIME PRODUCTS

‘These C64 disk software products nor
Offer price £495 each or any 3 for £12.

The Musician (3 different programs 0 compose and play music)
The Artis (3 programs o create multcolour graphics,print your artwork on most
popular printer, design sprites)

Disk Drive Manager load your programs up 0 5 times faster, add e cisk
‘commands, backup your disks)

The Entertainer (3 fustaction arcade
The Entertainer 2 (3 challen
The Entertainer 3 (3 fus-paced act

imes)

P
numeri skill by pl ames)
The Educaior 2 forchildren aged 5-10. An entertaining way t leam 10 el the
time, spel and us the traffic lights)
Electronic Cheque Book (orgnisc, clasify and record your chequebaok
ransactions)

he Home Manager (Wordprocessor, Database, Calcultor and Memo Pad)
Word Wizard 641128 (spelling game with specch)

DTBS, 18 Norwich Avenue, Rochdale, Lancs. OL11 SIZ
Tel: 0706 524304
Send SAE for descriptive list

OFFICIAL DEALER FOR # COMMODORE i+ STAR «

COMPUTERS Okimate 20 Print heads/Ribbons/Paper

Amiga 1500 comprising :
B2000+1084S Monitor+Twin Floppies+
The Works!+Deluxe Paint 3+3 Games
Amiga 500 SCRI

comprising : TV Modulator, 4 Games &
Deluxe Paint 2 £379.00
Amiga 500 Basic Pack comprising :

TV Modulator, Mouse, Workbench 1.3, £319.00 o
Extras Disk, Tutorial, Manuals

£938.00

Comm

Commodore 64C NIGHT MOVES Pack Extomal 3.5° Dk Drive for Amiga pSp. £2 & 59.95

Power Su Pé&p.

Super-G Parallel \MSNEDE for C64/128. p&p.£1 €

{Alows use ofsandard prae prinerson 0 41 55)
P&p.

comprising : Cassette Recorder, 8 Games
&2 Joysticks £149.95
Commodore PC Starter Packs{ ASSEENONTV) PHONE

RS Us

Gitizen 1200, Parsie or R

tar LG-10 Parallel X
Star L 260 Gaour Paralel £209 Superbase 64 or 128
Star LG 24-10 24 pin Multi-font170/57cps X Superscript 64 or 128

Star LC 24-200 24 pin Mut-font 200/67 cps
Star LG 24-200 Colour Version of abov £29¢

ALL PRICES ARE lNcLusIVE OF VAT AT

Mol
Commodore 10845 Stares Gojour Mon

Philips 8833-Il Stereo Colour Monitor
N CERE ack Philips 7502 Green Screen Monitor

Amiga 512K RANGIOG Exp lur Ason roe) P&p.

ommodore 1541-11
ta Recorder. p&p. £2

18 2095

s Port Parallel Printer Gable £ 15.99

SOFTWARE

Free p&p.
Free p&p.

Tasword 64 40780 Col WE-Tape or Disk Free p&p
Mini Office Il for 64 - Dis}

5% CARRIAGE £5 (EXPRESS :10)

17.:
Prices subject to change without notice

8 Ruswarp Lane, WHITBY, N. Yorks YO21 1ND
TEL/FAX: 0947 600065 (9am - 7pm)

ON THE DISK

NANAGING STOCKS

A stock management program for
C128 users

F.A.LATEGAN

Every serious Commodore Disk User has some stock.
Even the others have some experience of the stock
market if they have played “THE FIRST MILLION”,
featured on the February 1990 disk of CDU. If you own
more than one stock in your portfolio, it becomes soon
impossible to really keep track of what is happening to
your stocks.

This program, SOLSTOCK.128 was developed for
people like you. Suffer or Learn (SOL) Stocks is for the
more serious people. f

To Load, switch on the computer with the 40/80 display
key in the down position. Type RUN"SOLSTOCK.128"
and press RETURN. When prompted for the date, type it
in any format which suits you, since it is only for your
information on the print-out. After hitting ‘RETURN the
computer then loads “SOLSTOCKS.12.MC”, the machine
code for the pull-down menus. | used MENU MAKER
128 by NICK GREGORY, published in a previous issue of
CDU. Now that the system is booted, it is time to set up
the stocks.

TUTORIAL

Use the cursor keys to move to NEW INFO. Press the
down arrow or RETURN to select it. Press RETURN again
0 select NEW STOCK DATA. For our example, let's use
the following data.

J) ENTERPRISES INC 300 Stocks
ABC INSURANCE 1000 Stocks
COMMODORE INC 750 Stocks

1500 Stocks
Type XXX to end the input.

Select first the CHANGE menu, then NEW PRICES. You
will have to retype the date because, after the first time
you don't have to retype all the stock info. Just reload the
last stock data, and change the prices. (By loading the
data, you also load the old date). Type the following
prices;

J) ENTERPRISES INC 7.50

ABC INSURANCE 0.75

COMMODORE INC 25.78
57.98

To see what the stocks are worth in total, select
OUTPUT and then SCREEN to see it on the screen, or
PRINTER to have a hardcopy. (Your printer must be
device number 4. | have tested it on the CBM801,803
and the Seikosha SP-180VC). Now for the other options.

DISK - Lets you Save, Load or Replace your stock.

OUTPUT - This is used to view the portfolio.

CHANGE - This is used to type in new prices, to change
a price (to correct a typing mistake for instance without
retyping all the prices), to change the number of stocks,
to change a stock name, to change the date, to add
another stock name and to delete a stock name.

NEW INFO - This is used to compile a new stock
portolio.

REORDER - This is used to order the stock names in
alphabetical order.

HELP - Gives a short help on all of the menu options.

EXIT - This is used to leave the program. WARNING: if
you have not saved you stock data, it will be lost.

ADVANCED TUTORIAL

Continue from the tutorial with the same data. If you
have erased it, enter it again as described in TUTORIAL.

First of all, you have bought stock in a new company,
ROBOTICS ALL. Select CHANGE, and then ADD
STOCK. Enter the name, and the number of stock you
have decided to buy (250 in this example).

Next, you have sold all stock of ABC INSURANCE.
Select CHANGE, and then DELETE STOCK. When ABC
INSURANCE s displayed, type ‘D' to delete it. You have
also bought an additional 500 stocks of CDU. Select
CHANGE, and then CHANGE NUMBER. When CDU
appears, type 2000, otherwise just type RETURN.

At this moment, ROBOTICS ALL's price is still 0 since
you have not yet typed in anything else. To repair this,
select CHANGE, followed by CHANGE PRICE. Type
RETURN until you get to ROBOTICS ALL. Enter the price
as18.3

Now select REORDER, and then ALPHABETICAL
ORDER to order your stock alphabetically. Select
OUTPUT, followed by SCREEN.

Now select DISK, and then SAVE DATA to save the
configuration. Reload it using the LOAD DATA on the
same menu. Select CHANGE, followed by NEW PRICES.
Type the following price

ABC INSURANCE 0.5

cbu 63.03
COMMODORE INC ~ 27.33
ROBOTICS ALL 12.81

You are now ready to attack the LONDON STOCK
EXCHANGE, and remember to look out for future
SUFFER or LEARN programs.

ON THE DISK

A disk sleeve utility for those of us with NORMAL printers by STEVEN BURGESS

@

If your disk-boxes are as disorganised as mine are then,
like me, every time you want to find a program you
probably have to wade through every one of your disks
and directory each one until you find your program
which, almost invariably, is on the very last disk you
come to. Enter the answer.

This program will let you make a brand spanking new

disk sleeve for your disks. But unlike most ordinary plain
white sleeves, this one is going to be different. On the
front of it is going to be a list of the main programs on
your disks. So, when you want to find the disk with your
latest blockbusting computer program on it you simply
flick through your box and, hey presto, you have your
disk. The advert over, let’s get down to business

THE PROGRAM

When the program has loaded, and it is not terribly long
s0 it should only take about half a minute, you are
presented with a menu

The only option you can select at this moment is the
option ENTER PROGRAM NAMES. Before selecting it,
however, you must make sure that you have the disk,
which you wish to create a sleeve for, in the drive. Once
done and drive switched on select the option.

The screen will clear and then the name of the disk
will appear on the screen. Then, one by one, the names
of all the files will be printed and you will be asked
which ones you wish to be printed on the sleeve. Be
careful with which ones you chose, though, because
even files that have been deleted will appear.

Once the entire disk directory has been on the screen
and you have selected which files will be on the sleeve
you are asked to wait while the computer formats the

data. This is so that it will fit into the sleeve design
without over- or underflowing. You are then returned to
the menu.

Selecting the option PRINT OUT SLEEVE will cause
the sleeve 1o printout straight away so be sure to have
the printer set up and some paper i it. The design uses
one full piece of printer paper.

ALONG THE DOTTED LINE

Once the sleeve has been printed and you have removed
the paper from the printer and marvelled sufficiently at
the sheer brilliance of this program, it is time to cut it
out. You cut along the outer edge of the design. And then
you fold along the remaining lines

Then all that remains is for you to glue it together and
pop in your disk and then start all over again.

STRATEGY
ADVENTURE

C64 disks only

INFocom s
B0

BUREAL ORAZY 18-
HICHERS GUOE

LEATHER GODOESS

Shctrsrne
el

POOLOF

INTERSTEL

apRe

LucasFiLM
ZKNCRRACKEY

Moo e L
MCROLEAGUE FOOTEALL
MCROLEIGUEWRESTLAG

WAROFTHELANGE
WARGAVE CONSTA SET

FUGHTSMKTOR)
NGHTMSSONPIGAL
STEALTHMSSON

sst
DUSSONGAUSH
aa

TELARIUM
DRAGONWORLD

wizarp
SUPERSTAR CE HOOKEY

RIAES

e U
s ot s i i rsea a4 po e,

CINTRONICS LTD.

16 Connaught Street,
London W2 2AG

T parien.

ADVENTUR

ADVENTURING

 HELPLINE

The ASTRODUS AFFAIR gets another airing by JASON FINCH

So the merry month of May is upon us and | will
be giving nothing away if I tell you that by the end
of this article you will be on the very edge of
being able to complete the excellent adventure
published by CDU last year, THE ASTRODUS
AFFAIR. Last month | finished by explaining how
to repair the hole that was causing a few problems
and this month | shall explain where you go from
there, including the problem of the stabalization
chamber and how to get from the top level to the
bottom. | shall leave telling you how to replace
the fuses in the crafts drive so that you can fulfil
all of the conditions that allow you to finish the
adventure until next month. Those being having
the generator on, the fuses in the engine room
repaired/replaced, the stabalization chamber
‘active’, the hole in the corridor repaired, the
button pressed for navigation and finally the
correct use of the code ‘XX2V'. The format is the
same as that for previous articles, a general
outline of the method for obtaining the solution to
a certain problem, followed by a section detailing
the systematic way about things. Also in June |
shall provide you with a full map of the Astrodus -
Editor permitting, that is! So, let the Astrodus slide
once again under the microscope...

THE WALL OF OXYGEN

The way into the stabalization chamber is blocked
by a wall of oxygen that is leaking from a ruptured
pipe. Of course you won't have discovered the
chamber yet if you haven't solved this problem, so
it is probably wise to cover this first. Once you
have repaired the hole, though, you need to set up
some situations ready for later on. First you must
drop the globe again and go and switch the power
off. This will enable you to return and move the
globe to the location immediately east of where it
was. Then go and put the power back on. The
globe will be free to move around so long as you
keep out of locations 12 and 15. If you don’t then
not only will the globe be immobilised, so will
your attempts at finishing the adventure! You need
to then go to cross-section B and collect the infra-
red grenade. It is not intended for consumption by
you or drygars so don’t try feeding it to one of
them! It will only result in you being covered by
“steaming drygar meat” with the rest of the bunch
soon making short work of you. The grenade is

intended to be thrown at the wall of oxygen in
location 4. Then you can return to where you
deposited the globe. Skip the next section if you
don’t require further assistance with that problem.

BREAKING THE BARRIER

Once the hole is repaired, DROP the GLOBE and
0 WEST and then SOUTH. Turn the power off by
PRESSing A51X. Return NORTH and then EAST.
GET the GLOBE and go EAST again. Now DROP
the GLOBE and go WEST, WEST and SOUTH.
PRESS A51X a final time to switch the power back
on and go NORTH, EAST and EAST again. The
globe is free to move elsewhere. Now go SOUTH
and DOWN the staircase. GET the GRENADE and
be careful! Go UP, NORTH, EAST, UP another
flight of stairs and then SOUTH, and SOUTH
again to location 4. THROW the GRENADE and
the oxygen will be ignited. You are then free to go
east to the stabalization chamber. However, before
you do that, return to the globe by moving,
NORTH, NORTH, DOWN and WEST.

THE CHAMBER PROBLEM

I bet you haven't got the rope, have you? Well first
things first - you must get the rope which is
probably still in the supplies room, return to the
globe, take it and then tie the rope to it. You can
then go the stabalization chamber. The globe will
be attracted to a point above the silver disc at the
base of the chamber. Because the rope is tied to it,
and the rope dangles against the side of the
platform on which you are standing, you can
simply climb down it to the bottom. That way you
avoid such pleasant messages as “the floor ...
races cheerfully towards you with a squelchy
thud”! To find out exactly what to do, read on;
otherwise skip to the section labelled CONSOLE
QUERIES.

GETTING TO THE BOTTOM

If you don’t have the rope, go to the supplies
room by moving SOUTH, DOWN and WEST. GET
the ROPE and go back EAST, UP and NORTH.
Now GET the GLOBE and TIE the ROPE TO the

ADVENTURING

GLOBE. Now make your way EAST, UP the
staircase and then SOUTH and SOUTH again.
Seeing as how you are free to go east now, do
just that - GO EAST. The globe should be
attracted over the disc and you will be told that
rather than dangle precariously from the roof of
the chamber, you drop off onto the platform. The
observant will notice that “the rope dangles
down..., swinging idly against the platform”. If
that isn’t a cue to enter DOWN, then | don't
know what is!

CONSOLE QUERIES

Once at the bottom you should be informed that
there is a black console set into the wall. Upon
examination you should be told that all four
sides are raised away from the wall. The
perfectly natural thing to do (2). would be to pull
the edges and wait for it to plop into your hand.
So do it! But the writer of the adventure has
played on your curiosity here because everyone
will want to know what the little red button
does. If you press it then you will find out just
why being pressed against a wall with the fioor
rising towards the ceiling isn't really a lot of fun.
Make sure that you are out of the chamber and
back in location 4 before you press the button.
You will then notice that the chamber door

closes and if you were in location 24 you would
be told that the chamber was ‘active’. One more
piece of the puzzle falls into place. Ignore the
next section if you don’t want to spoil the fun!

P-U-L-L-11

EXAMINE the small black CONSOLE and then
PULL its EDGES. When it has dropped into your
hand, go UP and then WEST. Now PRESS the
BUTTON. That was a bit simple wasn't it.

THE END ALREADY

No, not the end of the adventure - the end of
this month’s offering of help. You have learned a
number of things hopefully and next month we
will look at the final problems. Incidentally,
don’t enter location 23 unless you have the
laser! More about that in June. All we now have
to do is open the safe, retrieve the fuses and put
them in the engine room. Then it’s hey presto
and onto another adventure in this long running
quest to provide help. Which would you prefer -
Runaway or the Cranmore Diamond Caper? Do
please let me know! Have fun trying to solve this
month’s adventures and until thirty odd days
have elapsed, see yer!

BASICS OF BASI

=

A series of Basic tutorials designed to make the beginner an expert
JOHN SIMPSON

IMPORTANT ANNOUNCEMENT - Due to unforeseen
technical problems, and the fact the your illustrious
Editor is a bit of a wally, we inadvertently missed out
the start of section two of this series in the MARCH
issue of the magazine. Therefore, before this months
offering gets underway, we present the missing piece for
your enjoyment.

COMMENCEMENT OF PART TWO

Let us begin this session by first writing a small program
which will allow us to get the computer to request some
input of numbers which we can then manipulate and
finally display a result.

Remember to press the return key <CR> after you have
typed in each line.

10 INPUT”FIRST NUMBER”;FIRST <CR>
20 INPUT”SECOND NUMBER”;SEC <CR>
30 LET SUM = FIRST + SEC <CR>

40 PRINT"THE RESULT IS"SUM <CR>

50 END

Once you have typed in the program, lets refresh our
memory of clearing the screen and listing a program
from the last session (part 1)

Perform <CLR>... i.e. hold down the shift key and tap
the CLRIHOME key. Now type, without a line number,
LIST <CR>.

We shall now make the computer execute our program
by typing, RUN <CR>.

As s00n as you do this the i will respond by
printing on a new line below R

10

FIRST NUMBER? (and a flashing cursor)

You are being prompted to type in a number. Should you
type in a letter, or a series of letters, or even numbers and
letters, then the computer will respond with:

2REDO FROM THE START

This shows you that it is able to distinguish between a
number and something else (we'll discuss this more
closely in a short while).

Should you perform a <CR> without typing a number the
computer will fill the variable, FIRST, with the default
value of zero, and then continte to the next line of the
program, the screen will now display:

SECOND NUMBER? [Cursor]

Type i the second number <CR>, and the computer will
respond by displaying on the screen:

THE RESULT IS [first + sec]
READY

Let us examine more closely what has taken place. In

line 10 we used the Keyword INPUT. This is a command

to tell the computer to expect the user to enter something

from the keyboard, and to store it in the variable labelled
IRST. .

You will have noticed that the keyword INPUT can also
be used to print information to the screen. The
information, like the PRINT command’s output, being
enclosed within quotes “...". Make note of the semicolon
(;) following the final quote, and before the label, FIRST.
This is important. Without it the computer will display a
syntax error.

THE SCREEN EDITOR

The cursor can be directed around the screen by using a
combination of the SHIFT key and the cursor keys. The
cursor keys are the two keys next to the right SHIFT key
and marked CRSR with up/down left/right arrows. To
move the cursor down the screen use the cursor
‘up/down’ key, and to move up the screen hold down a
SHIFT key together with the same key. To move the
cursor right use the cursor “left/right’ key, and to move
left hold down a SHIFT key together with the same key.

To edit a part of the program move the cursor.up to line
10, and along the line to the F in FIRST. Now tap the
INST/DEL key at top right, and the label FIRST will shift
o the left, deleting the semicolon. Press <CR>.

You have just used the screen editor. Whenever you do
use this editor to make changes to a line, always
remember to press return to enter the changes into the
program.

PROGRAMMING

We have just deleted a piece of program code, namely
the semicolon, but we can just as easily insert code by
holding down the SHIFT Key and tapping the INST/DEL
key which will shift the code to the right opening up a
space for you 10 enter new code. Move back to the F in
FIRST and try this, then type the semicolon back in and
press return.

If you run through the deletion of the semicolon once
more, then RUN the program (first ensuring that you
move the cursor back down the screen to a clear line).
The computer will respond by displaying a syntax error
message, however, unlike the message which was printed
in part one, where we used a DIRECT COMMAND, this
error will actually print the line number in which the
error occurs. In our case the message will read:

2 SYNTAX ERROR IN 10
READY

You can use the screen editor quite freely to edit a
program, i.e. add code, and delete code. If you find the
need to delete a whole line, all that is required is to type
the line number, on a new line, followed by <CR>. Let's
try this by deleting line 50 in our program:

50 <CR>

Now LIST the program and hey presto! line 50 has gone.
If you decide that you want to get rid of the entire
program, this can be done by typing a Direct Command
(i.e.no line number), namely:

NEW <CR>

Try this. Now we have just deleted our program. This is
a useful command, but one fraught with danger for when
you do NEW a program, it has gone for good! Try LIST
and you will just receive: READY. The program has
gone - with no way to retrieve it.

STRING INPUT

We have just seen that we can easily force the user to
input numbers, albeit only two at a time in the foregoing
program, although if you wanted to place more INPUT
commands plus variable labels you can do so.

We touched briefly on the term strings, earlier in Part 1,
but now we shall look into them in more detail. A string
is a group of alphanumeric characters contained within a
pair of quotes:

“THIS IS A STRING”
“AND SO TO IS THIS ABCD1234”
“1234567890” is also a string

How long can a string be? Well CBM basic does allow
for up to 256 characters, but their is a limitation on a
basic line length of 80 characters, and this will include
the line number and statements, so for the time being we.
will restrict ourselves to 40 characters. Later we will

PROGRANMMING

discuss how to overcome this restriction.

To distinguish between a numerical input, as used earlier,
and a string input the dollar sign ($) is utilised. For the
numerical input we simply type in a label, such as we
did earlier with FIRST, SEC, and SUM. Simply by having
no ‘prefix’, the computer understands that it is dealing
with numbers. The string input, however, is prefixed with
a dollar (§) sign. Right, let’s write a small program
which will demonstrate this by imputing string
information:

10 INPUT”YOUR NAME PLEASE”; N§

20 INPUT”YOUR ADDRESS PLEASE”;A$

30 INPUT”YOUR TELEPHONE NUMBER PLEASE";TS
40 PRINT CHR$(147)

50 PRINT N§.

60 PRINT AS.

70 PRINT TS

80 END.

When you RUN this program you will be asked to type
in your name, spaces are allowed, and as before when
you have typed in your input this is entered by pressing
ZCR>. Next you will be asked to type in your address,
followed by your telephone number.

Before we examine line 40 you may have received a
message which stated:

2EXTRA IGNORED

If you did, then by examining the printed output you will
see that everything that followed the character which
preceded the comma which you typed has not been
printed. What this tells us, loosely, is that CBM Basic
will not accept a comma emplaced within a string, and
will thus terminate any output including the comma
onwards.

Line 40 is a special command, CHR$(147), which tells
the computer to clear the screen - the same as you did
when you used the SHIFT key and INST/DEL key. There
are a lot of numbers we can use within the brackets of
CHRS$(n) to tell the computer to do many things,
however, that s for later.

The computer will create two storage areas, one is used
for variables and constants, and the other is used for
holding strings.

With strings, the same as variables, the maximum length
of a label is two characters although more can be used
for information purposes. | used NS for the name, this
could just as easily have been NAMES, however, with
NA being the significant portion of the label. Note also
the prefix o §

10 let the computer know it is dealing with a string of
characters.

ANOTHER GLANCE AT VARIABLES
AND STRINGS

As well as using INPUT statements 1o assign a variable or
a string 1o a label, they can also be assigned using the
LET statement:

10 LET
20 LET 000

30 LET A$ = “THIS IS A STRING”

40 LET BS = “ABC 123X": REM - A CAR NUMBER PLATE.

If somewhere else in the program you state:

100 PRINTB / A
110 PRINT A$
120 PRINT B$

I'm sure you can work out the resultl (Remember that
the (/) symbol = division).

MULTIPLE STATEMENTS

On line 40 in the program lines above and after the string
“ABC 123X", and before the REMark | placed a colon (:
). The purpose of the colon is to separate statements
which are on the same line, it’s as though you have
started a new line, but without a line number. " It means
the same as this:

40 LET BS$ = “ABC 123X"
50 REM - A CAR NUMBER PLATE

We are allowed to place as many statements as we can
upon each line so long as they are separated by colons.
This does have the advantage of freeing up some
memory, but it often has the disadvantage of making
programs more difficult to follow, and, more importantly,
there are some statements which do require a line all to
themselves. We will discover these particular instances.
as we come to them in the lessons.

However, to round off multiple statements here is an
example of multiple statement lines of code:

10 LET X =34 : LETY = 72 : PRINT X : PRINT Y
20 LET N$ = “YOUR NAME 'YOUR ADDRESS"
30 INPUT N1S : INPUT A1 : PRINT N1$: PRINT A1$.

OUR FIRST LOOP

Ofttimes it is extremely useful to get the program fo run
around a loop - as an example of a need for this is a
delay loop, where you wish to slow down the program
‘execution for some reason. There are two basic methods
available and the first of these is called a FOR...NEXT
loop.

e NEW then <CLR> (i.e. clear the screen), then type
in the following program:

10 PRINT “HELLO”
20 FOR X = 1 TO 1000
25 REM - A DUMMY LINE TO DEMONSTRATE THE

oor
30 NEXT X
40 PRINT “WORLD”
50 END

When you run this program, first HELLO is printed, then
a lengthy delay where, on the following line, WORLD is
printed.

What we have done here is to set up a variable called X
and have given it an initial value of 1. FOR X = 1... We
have also established that the value of X will not
increment above 1000. ...TO 1000. When the program
steps through to the line 30, NEXT X, it will check the
value of X and if it is not greater than 1000 then it will
jump backwards to the statement following the FOR

statement, in our case, line 25 which was a REM placed
there to create a line which actually does nothing of
importance. In a more complex program the distance
between the FOR and the NEXT could be quite large with
several statements being executed in between. Let’s have
alook at a simple example of t

‘THE VALUE OF X IS”
TO10

20 FOR X
30 PRINT A$ X

40 FOR Y =1 TO 1000:NEXT Y
50 NEXT X

60 END

Now if you RUN this program it will print ten lines, each
one telling you what the current value of X is. You will
also observe that we have place one FOR...NEXT loop
inside another, creating two statements on one line. This
is known as ‘nesting’. The outer X loop, iterates ten times
printing the message of AS, and the inner Y loop acts as a
delay, slowing things down. The outer loop will iterate
once, then the inner loop will iterate 1000 times before
the outer loop iterates again. So the inner loop will
iterate 10 x 1000 times

The other basic method for a controlled loop is to set up
a variable, increment the variable and test it to find out if
it has reached a predetermined level, if it has then exit
from the loop. Now if this does sound similar to the
FOR...NEXT loop, then in essence it is, except with this
loop we must determine what action to take upon each
iteration. This will require decision making.

MAKING DECISIONS

The more common method of decision making is to use
the command statements IF...THEN. In other words, IF
this is true, THEN do something, otherwise do something
else. For example, START - IF X = 10 THEN X = 0 AND
END, OTHERWISE X = X + 1 GO BACK TO START.

We will now create another, but smaller, delay loop to
demonstrate the technique:

10 LET
20 PRINT |

PROGRANMMING

30LETI=1+1
40 IF | =< 10 THEN 20
50 PRINT “DONE”

If you run this program it will print the digits from 1 to
10, followed with DONE. But what is actually taking
place?

line 10 initialises a variable labelled | to equal 1.
line 20 immediately prints its value.
line 30 increments | by one.

line 40 evaluates whether | is equal to, or less than, ten
(the symbol =< means equal to or less than), and if it is
will send the computer back to line 20 (THEN 20 means
goto 20). The computer will loop between lines 20 and
40 until the value of | is greater than ten where it will not
goto line 20, but drop through to line 50, which simply
prints DONE, and the program terminates.

Whether we use the FOR... NEXT loop, or a decision
making branch, IF... THEN will very much depend upon
the program we are working on. This is where
experience and knowledge combine, knowing which
method best to use, and this you will gain as we progress
through our subject lessons.

FINALLY, LET’S GET RID OF LET

| have been using the word LET each time | assigned a
value, or a string to a label. Although LET is a keyword,
it is optional whether you wish to use it. Sometimes it
can make the understanding of a program more clear, but
mostly it just uses up a little more memory and execution
time. It is up to you whether you wish to use it, but we
can state:

10X=10

“LET GO”
30 A = A+B/C*D

40 FIRST = 1: SEC = 2

SUMMARY FOR PART TWO

1. In this session we discovered that by using the
keyword INPUT the computer can request the user to
enter numbers which can then be used to either initialise
variables or perform mathematical manipulations upon
them.

2. We also discovered that the computer can judge the
difference between numbers and strings of alphanumeric
characters.

3. We saw that we can use the facilities of the screen
editor to make changes to our code, either deleting
and/or inserting the changes which may be required.

PROGRAMMING

4. We looked into the INPUT of character strings, how
we can program the computer to request information
such as names and addresses, telephone numbers, &etc,
by using the prefix § character. We also noted the
limitation of using the comma within a string; where the
text following the comma will be ignored.

5. We also noted that strings can be up to 256 characters
in length, but, because of line restrictions, we have
temporary limited the length to 40 characters until later
in the series where we will discover the method to
overcome this restriction.

6. Part of this sessions discussion showed that it is also
possible to initialise number variables as well as strings,
by using the LET keyword.

7. By using a colon (:) we can separate multiple
statements on a line, but there are. certain restrictions
when using this option.

8. We looked at two methods which can be used for
controlling program loops. The first is the use of the
FOR...NEXT statement, and the other is by using a
variable as a counter in conjunction with the decision
statement IF... THEN.

9. Finally we saw that the LET statement is optional and
can be omitted.

That's just about it. We apologise for missing out all of

e, we hope that it did not confuse you too
much. Before getting on with this months tutorial
proper, we have added a little footnote to finish off
MARCH’s discussion on ARRAYS.

As a footnote to the dimensioning of arrays we are
allowed to dimension several arrays on one line
separated by commas, for example:

10 DIM NAMES$(10), SCORES(10),AA(100),BB(10,6),NN$(2,2)
will separately dimension NAMES - SCORES - AA - BB -
NN$

Finally, we are now up todate with all the tutorial text.
We can now continue where we left off last month. (ie;
PART FOUR).

NB. Some of the programs and program segments in the
tutorials are also listed on this months disk. It is
suggested that you do write the smaller segments.
yourself, but if you should find things a little tricky then
you can load in from the disk. The programs which are
on the disk will be preceded by their save name just
before the tutorial listing. These are BB.EG#<n>, where
n is the example number.

COLOUR, FORMAT, AND
GRAPHICS

We shall now look at methods to control character
colour, cursor positioning, and formatting. The first two,
character colour and cursor positioning use a method of
embedding within text strings the necessary ‘shorthand’
commands to perform such functions.

Formatting has the use of two possible keywords,
namely, TAB() and SPC(), we shall deal with these in a
moment. However, there are other methods for
positioning the cursor. One of which which uses a
machine code routine within the operating system know
as ‘PLOT’, and yet another method which will allow us
to save the current cursor position before we move it to
another screen location, then retrieve it to move back
again. We can also use the embedded cursor controls
held in strings which can then be manipulated by
“cutting up’ the strings. We shall deal with these
methods a little later on in the series.

By using the special graphic keys on the 64 will allow us
to produce very useful graphic features, such as boxes, or
windows within which we can place our text, or borders,
either plain or fancy, to surround our text, and even quite
interesting pictures to enhance our screens.

EMBEDDED COMMANDS

“The thing about using embedded commands within text
strings s that | will have to use abbreviations to let you
know what it is | want you to do. Remember last month
1 told you about performing the screen clear by using the
SHIFT and CLRAHOME keys in conjunction, i.e.

10 PRINT “[SHIFT CLR/HOMEJCLEARING THE SCREEN"
using this method printed a reversed heart symbol. Here

follows a list of the abbreviations for the embedded
commands which I shall be using throughout the series.

ABBREV KEYPRESS REQUIRED

[CR] CRSR LEFT/RIGHT KEY

[ct SHIFT AND CRSR LEFT/RIGHT KEYS
[cD] CRSR UP/DOWN KEY

[cu] SHIFT AND CRSR UP/DOWN KEYS

A number following the cursor controls means press the
key that particular number of times. E.G. [CR5] = CRSR
LEFT/RIGHT key five times.

[HOME] CLR/HOME KEY

[CLR] SHIFT AND CLR/HOME KEYS
[RVSON] ~ CTRL AND 9 KEYS

[RVSOFF] CTRL AND 0 KEYS

[INST] INST/DEL KEY

[DEL] SHIFT AND INST/DEL KEYS
1 SHIFT AND UP ARROW KEYS
[LARROW] LEFT ARROW KEY
[UPARROW] UP ARROW KEY

[SPAC] SPACE-BAR

A number following the space bar means press the
space-bar that number of times. E.G. [SPACTO] = Space-
bar ten times, creating ten blank spaces.

COLOURS

[BLACK] CTRL AND 1 KEYS
[WHITE] CTRL AND 2 KEYS
[RED] CTRL AND 3 KEYS
[CYAN] CTRL AND 4 KEYS
[PURPLE] CTRL AND 5 KEYS
[GREEN] CTRL AND 6 KEYS
[BLUE] CTRL AND 7 KEYS
[YELLOW] CTRL AND 8 KEYS
[ORANGE] CBM AND 1 KEYS
[BROWN] CBM AND 2 KEYS
[LRED] CBM AND 3 KEYS
[GREY1] CBM AND 4 KEYS
[GREY2] CBM AND 5 KEYS
[LGREEN] CBM AND 6 KEYS
[LBLUE] CBM AND 7 KEYS
[GREY3] CBM AND 8 KEYS

GRAPHIC CHARACTERS

[C/LETTER]
[S/LETTER]

CBM AND A LETTER KEY - E.G. [C/A] OR [C/Z]
SHIFT AND A LETTER KEY - E.G. [S/S] OR [$/G]

A number following the C/LETTER OR S/LETTER means
press the letter key that particular number of times. E.G.
[S/F8] = hold SHIFT down and press the letter F eight
times.

Using these abbreviations, or mnemonics (as some like
to call them), we can now choose to add colour to our
printed output, or move the cursor up, down, left and
right, or by using the special graphic symbols create
some neat graphic effects. Let’s have a look at a few
examples of what | mean

BB.EG#1

5 REM *** COLOUR AND CURSOR CHANGES **+

10 PRINT”[CLRI[LGREEN]CLEAR THE SCREEN AND
COLOURS LIGHT GREEN”

20 PRINT”[CD4][LREDITHIS TEXT HAS MOVED
DOWN FOUR LINES”

30 PRINT”[CU3][GREY3]TEXT HAS CHANGED
COLOUR AND MOVED UP”

40 PRINT”[CD4]A MUL‘IICOLOKED [LRED]W[WHITE]
O[GREEN]R[YELLOW]

50 PRINT"[LBLUE][CDZ]COLOUR BACK TO
NORMAL”

BB.EG#2

5 REM *** A LOOK AT REVERSE VIDEO ***

10 PRINT”[CLRI[CD4][LRED][RVSON][SPAC2]A
TITLE/MENU BAR[SPAC2][RVSOFF]

20 PRINT/[WHITEJ[CD]1. MENU ITEM 1"

30 PRINT”2. MENU ITEM 2

40 PRINT”[CD12][CYAN][RVSON][SPAC]PRESS ANY
KEY TO QUIT[SPAC][RVSOFF]”

PROGRANMMING

50 GET AS: IF A$ = ““ THEN 50
60 PRINT”[CLR][LBLUE]”

In this example | have introduced a new command word
in line 50, namely, GET. Let us divert our attention for a
moment and examine this more closely; programmers
tend to use this key word quite a lot.

A method whereby the computer is able to detect when
a user makes a keypress is to employ a system which will
continually check the keyboard to see if a key has been
pressed. Obviously the computer is doing this constantly
from the moment it is switched on. However, we can use
the key word GET to find out what was the very last
keypress a user might have made and then put this
information to our own use. Because the keyboard is all
characters (i.e. letters, numbers, and controls), then we
need to use a string variable to store the value of last
keypress.

In the program above | chose to use the string variable
AS. GET will place the last key press into the variable
AS. Now if no key has been pressed then AS is filled
with the string equivalent of zero, which is referred to as
a ‘null’ string. As you know by using quotes allows the
machine to identify the beginning and the ending of a
string of characters. This, * *, for example, means a
string of a single space, and this, “2”, means a string
which contains only the letter Z. A null string is
represented thus, **

S0, line 50 uses GET and places the result in the variable
A$. The next command on e 50 is an IF...THEN
decision. If AS = “* THEN 50, in other words if A$ is
null then no key has been pressed so go to line 50 and
use GET again. The program will loop forever on line 50
until a key has been pressed. Once a key is pressed then
AS$ will hold a value other than null, therefore, the
decision argument becomes false and so the ... THEN part
of the argument will not be executed which means the
program will “drop through’ line 50 and continue to
execute from line 60.

If you consider the foregoing you will realise that A$ will
hold the value of the character which was pressed. It
readily becomes apparent that you can have a much
greater degree of control over what the user receives
from what the keypress might have been. For example a
few IF...THEN decisions could determine if the key was a
“Y for Yes, or an “N” for No, or whatever. We will be
returning to this quite soon

Back to our examples. Let us now look at what can be
achieved using the graphic symbols as well as the
embedded commands for colour and cursor.

BB.EG#3

5 REM *** GRAPHIC SYMBOLS EXAMPLE *+*

10 PRINT”[CLR][CD8][CR7][BLACK][S/O][C/Y24][S/P]”
20 PRINT”[CR7][C/H][YELLOW]THIS COULD BE A
DIALOGUE[BLACK][C/N]"

30 PRINT”[CR7][C/H][SPAC24][C/N"

40 PRINT”[CR7][C/H][GREEN][SPAC9]BOX...[SPACI][

15

PROGRANMMING

BLACKIIC/N]”
50 PRINT”[CR7][C/H][SPAC24][C/N”
60 PRINT”[CR7][S/L](C/P24](S/@][LBLUE]"

A first sight this may seem a little cryptic, but by
following the abbreviations, as outlined earlier, it
shouldn't prove too much of a hassle. Note also that line
50 is identical to line 30, therefore, instead of typing in
line 50 simply cursor up to line 30 and replace the 3 with
a 5 (remember to press return, and then move the cursor
back down the screen to a blank space ready to type in
line 60). When you have finished typing in this example
and have RUN it, then the screen should be cleared and
a box with the words, THIS COULD BE A DIALOGUE
BOX... within it should appear onto the screen.

If you practice using the embedded controls and the
graphic symbols by simply ‘playing around” with them
using the print command you will soon commit all the
necessary controls and commands to memory. It really is
quite simple.

FORMAT WITH TAB AND SPC

The action of the SPC function is to control the formatting
of data as either an output to the screen or to a logical
file. However, at this stage we shall only look at the
screen function. We can tell the computer how man:

spaces we require the cursor to move by enclosing the
number of spaces required in parenthesis. The number of
the argument (spaces) must be in the range from 0 to 255.

10 PRINT”WE CAN PRINT HERE”;
20 PRINT SPC(10)”AND THERE”

RUN
WE CAN PRINT HERE AND THERE

READY.

From this example you will see that the spaces (10) are
counted from the end of HERE to the beginning of AND.
Also in this example you will have noted the use of a
semi-colon at the end of line 10. This tells the computer
not to perform a carriage return after it has finished
printing the text of line 10, so, therefore, the next print
statement (line 20) will continue printing it’s text upon
the same line. This will indeed prove to be a very useful
facility.

10 PRINT”ONE”SPC(10)"TWO"SPC(8)" THREE”
RUN

ONE TWO THREE

READY.

The action of the TAB function, although it may at first
seem the same, moves the cursor to a relative SPC move
position on the screen given by a numeric argument in
parenthesis but this time starting at the left-most position
of the current screen line. Once again the numeric
argument is in the range from o to 255.

10 PRINT”"NAME” TAB(30) “AMOUNT"”:PRINT
20 PRINT”JOHN" TAB(32) “50”

NAME AMOUNT
JOHN 50
READY.

From this example you can see that the tabulation was
from the start of the line. It counted over both NAME,
and JOHN. Whereas the SPC command counted from the
point where the cursor was currently situated. You can
also see that at the end of line 10 | added a second
PRINT statement on its own. What this achieves is to

rint a carriage return, which gives a row space between
the line, NAME AMOUNT and the line, JOHN

10 PRINT”HELLO"TAB(85) " THERE"
RUN
HELLO
THERE
READY.

That is all for now concerning Tabulation, Embedded
Controls, and Graphic keys. You can create your own
homework(!), and simply play around with the things we
have covered so far. You cannot harm the computer, and
if anything should go wrong with a program you ma
create and the system ‘bombs’ out, simply switch off,
then start again.

POKING AND PEEKING

That subtitle almost sounds as though it could be some
exotic chinese dish!

To POKE means to place a value into a memory location.
To PEEK means to have a look at a memory location and
find out what value it may contain. Of course to either
POKE or PEEK a memory location will require you to
know the address of the memory location you wish to
deal with.

Earlier | explained that the computer has 65,536 bytes of
memory, each byte representing a memory location, and,
each byte can only hold a number from 0 to 255. The
computer’s memory is ‘mapped’ into various areas and
segments for better memory management. There are
areas in this map which will prove to be of great
importance to you as you establish you programming
skills. Table 1. sets out a very generalised memory map.

If you have the Commodore 64 User Manual which came
with the Commodore when it was purchased, then by
turning to page 143 you will find Appendix E, which is a
list of the SCREEN DISPLAY CODES. For the time being
we shall ignore SET 2 and concentrate on SET 1. You
will see that a character is displayed under the SET 1
heading and a number under the POKE heading. What
all of this means, in actual fact, is that if we POKE the

16

value of the character we require, say 1 for the letter A,
into an address of the screen area (see Table 1), then that
letter will be reproduced onto the screen.

Now if you turn to page 149 of the manual you will
discover a pictorial representation of the screen which
lists all the memory addresses. You can see that the
screen is divided into 1000 character squares in a matrix
of 40 squares horizontally by 25 squares vertically. We
usually refer to this as X (columns - 40) by Y (rows - 25).
The start address, commonly referred to as the Screen
Base Address is memory location 1024. Study the screen
memory map on page 149 for a moment and all of this
becomes quite clear.

50 now we shall actually place the letter A onto the
screen. Try writing this short program:

10 PRINT”[CLR]”
20 POKE 1024,1

When you run this you will see that the letter A has been
printed into the first character square. So, the POKE
statement is saying to the computer take the value of 1,
which happens to be the screen code for the letter A, and
place it into the 1,024th byte in the computer’s memory.
Nothing could be more simple, eh?

We can, using that which we have so far learned, do
much more than this, let’s print a whole string of the
letter A. Here we will need a loop to iterate around our
POKE statement. Try t

10 FOR X = 0 TO 999
20 POKE 1024 + X,1
30 NEXT X

When you run this program you will see that it will quite
rapidly fill the screen with letter A’s. You can see that in
line 20 we simply add the value of X to 1024, thereby
incrementing it by one character square each teration of
the loop.

With slight modification we can use the same principle
10 actually list the entire set of the characters of SET 1.
Clear the screen and type in the following short program.

10 PRINT”[CLR][CD8]”
20 FORX = 0 TO 255
30 POKE 1024 + X,X
40 NEXT X

Can you work out why the cursor down command in
line 10 is there?

After you have RUN this program you will see all the
possible characters (256) of the set printed on the screen.
‘The first 128 characters are in normal video and the next
128 characters are identical except they are the reversed
video characters. This tells you that when you actually
use the RVS/ON command the computer simply adds the
value of 128 to the character values in the character
string of the PRINT statement. LE. the letter A = 1 and the

PROGRANMMING

reversed letter A = 128+1 = 129.

POKING COLOUR

The screen we have just been looking at is the character
screen. To use colour changes we must now access
another screen, this is located in a different part of the
Memory Map. The Colour Memory Map (or screen) Base
Address is located at 55296. Once again this is a matrix
of 40 x 25 squares (1000), and you will find a-pictorial
representation of this located on page 150 of the User
Manual. Table 2. lists the values needed to POKE a
colour into the Colour Map. So:

10 POKE 1024,1
20 POKE 55296,3

will print the letter A into the upper left comer square of
the screen, and it will be coloured Cyan.

POKING SCREEN AND BORDER
COLOURS

Naturally we do not wish to confine ourselves to the
Start-up screen and border colours all the time. We
might like to change the screen and border colour
quite often in a program to add to the aesthetics of
things. We might even wish to use the border to
indicate something by allowing it to cycle through
colours.

There are two memory locations which will alow us
10 do such things as | have just described. They are,
address 53280 for the border colour and address
53281 for the screen colour. Using the colour values
as defined in Table 2. we can now POKE a colour to
one, or both of these locations.

10 POKE 53280,0 : POKE 53281,0

Try this and both the border and the screen will turn to
black. Add the following line

20 FOR X = 0 TO 64 : POKE 53280,X : NEXT X

and the border will cycle through all 16 colours four
times. Useful if you need to catch the attention of the
user of your program.

Using the screen colour in conjunction with character
colours can bring your screens alive and make even

dull text input programs into something more
adventurous.

LOOKING AT BYTES - PEEKING

So far we have only POKE values into bytes, but now
we shall look at PEEKing bytes and how this can assist

17

PROGRAMMING

us.

When we wish to look into a memory location to find
out what value is being held their we use the PEEK
statement, or keyword. We must enclose the address
inside brackets. For example, PRINT PEEK(53280) will
print the current colour of the border. Amending the
example border cycle above we could interrupt the
cycle on any given colour and print a message:

20 FOR X = 0 TO 64 : POKE 53280,X
30 IF PEEK(53280)=247 THEN PRINT”YELLOW”
40 NEXT X

You will quickly spot that I have used the value of 147
instead of 7. Why?

Remember, a byte is eight bits, xxxx xxxx which is
four low bits and four high bits looking from right to
left. The four low bits can be in the range from 0 to
15, and the four high bits can be in the range from 16
to 240. Without going into the reason just why, the
high four bits are almost always set to 240, no matter
what number you may poke into the byte. For
example you could POKE 53280,129 - the byte would
look like this, 1000 0001, but faster than you can say
“BLA” the byte will be changed to 1111 0001, which
means the colour of the border will be white, because
the computer only uses the low order bits - the right-
most four bits. After saying all that what this means is
if you want to PEEK the border or screen colours
within a decisional IF...THEN situation, remember to
add 240 to the number of the colour you are looking
for. Phew!

Actually this is not good programming! Because we
only seek a number in the range 0 to 15 we should
perform what is called a logical AND (the code would
look like this - PEEK(53280)AND15), which isolates
and reads only the four low bits of the byte. However,
this is racing ahead of ourselves on our learning curve.
But we will return to this subject.

There is a very useful memory location at 197 (see
Table 1. ZERO PAGE). This location has been set
aside by the operating system to use as a storage byte
for the last keypress a user may have made. In the
February 1991 edition of CDU an article appeared
entitled THE 64s KEYBOARD, if you refer to this
article there is a complete description of this function,
but, more importantly to us at the moment, there is a
table within the article which outlines the numerical
value held in location 197 and its key equivalent (they
are not the same as screen codes). If you plan to use
this location within your programs (and I'm sure you
will eventually), you would be well advised to keep
the table for handy reference.

So, how do we use location 1972 Let us write a small
program which will test for key input and then execute
a print statement when it receives the correct key:
BB.EGH4

5 REM *** A PEEK EXAMPLE ***

10 PRINT”[CLR]PLEASE USE NO PUNCTUATION"
20 INPUT”NAME PLEASE”;N$

30 INPUT”ADDRESS PLEASE”;A$

40 PRINT”[CLRIF1 = NAME”

50 PRINT”F3 = ADDRESS”

60 PRINT”F5 = QUIT”

90 IF K = 4 THEN PRINT N$.

5 THEN PRINT A$
120 IF K = 6 THEN END
130 GOTO 70

When you RUN this program you will be prompted to
enter first your name and then your address. After
which by pressing a function key you will either print
your Name, or Address, or Quit. The thing to note
about this type of user input statement as opposed to
the GET statement we used earlier is that it repeats.
This can prove a useful facility in many cases, but we
shall be discussing user interface systems in much
more detail later. The important point was to enable
us 00 look at another form of PEEK.

If you can’t, for the moment, lay your hands on the
copy of CDU just mentioned then here is a little
rogram which will allow you to look at every
keypress and make up your own table.

10 K = PEEK(197)
20 PRINT K
30 GOTO 10

If you hold any key down it will keep on repeating,
just make a note of the number and the corresponding
key. To stop the program simply press the RUN/STOP
key.

SPRITES AND SOUNDS

We all know of the amazing capability of the
Commodore 64 in it's use of Sprites (also know as
Movable Object Blocks, MOBS), and Sounds (whether
special sound effects or music). To enable us to use
these facilities to their full potential we will need to
constantly POKE and PEEK values to and from the
various areas of memory where the Sprite and Sound
information is stored. 'We shall be covering these
capabilities later in the series.

BEFORE WE CONCLUDE

| would like to draw your attention to page 146,
Appendix F, of the User Manual. Here are listed the
characters from the character set once more, but a
quick observation will soon tell you that many of the
numerical values are much different to those from the
Screen Display Codes on page 143. The Screen
Display Codes are Commodore’s own, and are very
useful when you want to POKE characters to the
screen area - POKEing does have a lot of advantages

18

over PRINTing as we shall soon come to see.
However, there are other aspects where PRINTing has
its own particular advantages.

From the heading of page 146 you will see that these
character codes are referred to as ASCIl and CHRS
codes, you will, on examination also see that some.
codes appear to be empty, truth is they are not, and
they do have functions which we will eventually come
to know. You will also see that there are many other
‘things’ next to the number which do not seem to be
characters, for example 14 = switch to lower case, 8 =
disable the shift key and the CBM key.

The abbreviation ASCII means American Standard
Code for Information Interchange. It is a standard
character encoding system which is now used by the
great majority of computers.

We can use CHRS to convert an ASCII code into its
character equivalent. The numbers must range
between 0 and 255 and be enclosed in parenthesis.

10 PRINT CHR$(65) : REM ASCII FOR A =
THEREFORE THIS COMMAND WILL PRINT THE
CHARACTER A

10 A$ = CHRS(13) : REM 13 = RETURN KEY

10 PRINT CHR$(147) : REM CLEAR THE SCREEN

10 PRINT CHR$(18)
'CHARACTER MODE

: REM TURN ON REVERSE

WCETM IF AS = ““THEN 1
IF A$ = CHRS(160) THEN PRINY" SPACE BAR WAS

PRESSED

30 IF A$ = CHR$(133) THEN PRINT” KEY F1 WAS
PRESSED”

40 IF A$ = “L” THEN PRINT CHR$(14): REM IF
PRESSED SWITCH TO LOWER CASE

50 IF A$ = “U” THEN PRINT CHR$(142): REM IF ‘U’
PRESSED SWITCH TO UPPER CASE

60 IF A$ = CHR$(134) THEN PRINT CHR$(147):REM
KEY F3 CLEARS SCREEN

70 GOTO 10

We shall be dealing with these codes in much more
detail a little later on in the series when we start to
construct more substantial programs.

NEXT MONTH

Next issue we shall be exploring the world of random
numbers and how we can generate them, and use
them in and event timing

We shall also return to strings and have a look at just
how easily we can cut them up, and manipulate the
pieces. Further to this we shall construct a real time
digital clock just for fun.

So until next month, happy finger tapping....

PROGRANMMING

TABLE 1.
A GENERALISED MEMORY MAP OF THE C64.
OCATION
R USAGE NOTES
DDRESS
0-255 ZERO PAGE VITAL
ADDRESSES
256-511 THE STACK DISCUSSED
LATER
512799 CCONTROL NOT MUCH
AREA FOR US
780-819 STORAGE & AWAY OF USING
VECTORS OPSYS
819-1023 TAPE DISCUSS LATER
BUFFER
1024-2023 SCREEN SCREEN IS
SITUATED HERE
2040-2047 SPRITE DATA DEAL WITH THIS
POINTERS LATER
2048-40959 BASIC PROG OUR PROGRAM
SPACE SPACE
40960-49151 BASIC BASIC INTERPRETER
INTERPRETER
4915253247 FREE RAM FORM/C
PROGRAMS
53248-57343 INPUT/OUTPUT WE WILL USE THIS
DEVICES AREALOTS
57344-65535 OPERATING THE BRAINS OF
SYSTEM THE COMPUTER

TABLE 2
CCOLOURS AND THEIR NUMERICAL VALUE

0= BLACK
1- WHITE
2 - RED

- CYAN
4- PURPLE

13 - LIGHT GREEN
14 LIGHT BLUE
5 - GREY 3

YELLOW

bbb,

ON THE DISK

Yet another Raster utility hits the streets. (Doesn’t anyone program anything else these days ?)

DAVID B

RYSON |

Many utilities now are usually repeats of the same utility
some time ago, but better (or perish the thought, worse!)
This is why | decided to re-invent the wheel, and its
name is “RASTER MASTER” With this utility, you can
make up colour data for raster bars, and presentation of
your own demos and games would be both easier and
better. RASTER MASTER works by changing the colour
on every raster line of the screen. Before starting, if you
have not come across the term “RASTER”, it is a VERY
fast beam that draws the picture in a television, and
travels across the screen, starting from the top and
finishing at the bottom.

GETTING STARTED

When you first load RASTER MASTER and press a key
you are presented with a virtually blank screen - but
don't despair! Pressing “F7” will take you into the help
screen, and you can immediately absorb information
there if you don't like reading instructions. The reason
why the screen is virtually blank is because no colour
data is in memory, therefore to see example colour bars,
press “L” on the HELP SCREEN to load a file. Type in the
filename “DEMO.COL” and it will load the file from
disk. There is also more example files called
“DEMO2.COL" and “DEMO3.COL” which you can load
in a similar manner. If you do not wish to load or save a
file, press any other key to exit, although it is advisable
that you press “F7” again, as pressing another key might
activate a function accidentally.

USING THE EDITOR

When you have done this, the screen should display lots
of pretty colour bars. You can edit the colours by
moving up and down with the cursor keys and pressing
“A” and “S" to move through the colours of the line that
the cursor is on. If you want an even prettier effect, try
pressing RETURN a few times. This should scroll the
colours up, down or not at all, depending on how man

times you pressed it. If you have one of those tellies that
display the whole screen range, you may notice a slight
glitch at the left-hand edge. You can disable the borders
if you don't like it or think it looks better by pressing the

ey.

B ke

BLOCK COMMANDS

One of the powerful commands in the editor is the block

20

commands. To memorise a block, press 17 at the start
of the block and “2 at the end. You do not see anything
happening when doing this and, obviously, you' must
press “2” further down than “17. Once you have
grabbed a block, you can duplicate it at another position
by pressing “3”, "or if you want a mirror-image of the
block press BACKARROW. This is very time-saving when
making colour bars that are symmetrical.

THE COLOUR TABLE

The colour table is a stretch of memory which holds all
the colours for each raster line. It is in the usual format,
i.e. one byte per colour, and can be 192 bytes maximum
(which means 192 raster lines, which is the most you
can display on the editor screen) The program actually
manipulates 256 lines, as you can see when you try
inserting colours off the screen, and deleting them back
on again. The colour table can be saved out when on
the help screen and then be loaded into a demo or a
game to be used - in fact, you could use it with Andy
Partridges famous raster bars routine, featured in an
earlier issue of CDU, but more about this later. The end
of the colour table is signified by a thin white line, which
you can move about with the keys “P” and “L”. When
you load a colour table, there is no need to set this, as
the program does it automatically. This is why, when
saving a colour table, you should always set the white
line to the correct place.

USING IT IN YOUR OWN
PROGRAMS

On the disk is a small example program
(“RASTERBARS.BAS) which shows how you can display
raster bars in your own programs, even if you don't use
machine code. First, you have to load the machine code
file which displays the colour bars, called
“RASTERBARS.MC” and also the colour data which you
saved previously (you did save it, didn't you?) Remember
there is absolutely no need to use my display routine, as
the colour data is in standard form, therefore it is
possible to use your own if you have knowledge of
machine code. In your program call this routine at the
start using “SYS 52224 but before it is ready to run, you
must tell the program how you want the colours
displayed. The length of the colour data is important
(which is displayed IN HEXADECIMAL on the help
screen of the RASTER MASTER editor) as well as what
vertical line you want your colour bars to start. You can
choose any line ranging from $32 (50 decimal, top of

display) to $F9 (249 decimal, botiom of display) in the
visible area. If you look at the example program on the
disk, you will find the “POKES” that have to be made
once you have decided on the starting line, and the
colour data length.

TECHNICAL DETAILS

The editor starts at the address 40888 and is
approximately 2K long. The area of memory that the
program is based is in the range from 40888-53247
($9FB8-$CFFF) | have opted for the rarely-used
extended colour mode of the VIC, so | could display the
cursor without the colour lines interfering with it. Note
that this program can be used with basic programs, if
that is any help, as the only zero-page locations it
uses are $FB-SFF. The “RASTERBARS.MC” program
occupies locations $CCO0-$CDFF (52224-52735) and
the colour data for it and RASTER MASTER is
addressed at $C700 (50944)

FINAL MESSAGE

I think all the other commands | have not covered are
self-explanatory. | am sorry that | have not included a
routine to print the directory of a disk or command
the disk drive, but if you are that desperate, you can
press “RUN/STOP” and “RESTORE” and load the
directory into basic and issue commands as normal

ON THE DISK

When

§ RASTER
have

B et S S s g
I MASTER
40888 to

rSie Lk o 5RAEY e BS°B30T MGy
thoe

program

i haut .

IRRIRER .- o xcv rnew r1 ron weer 1r weeoed
o]

data. 1
hope that this utility comes into great use, or if you don't
really program at all, have fun fiddling about with it!

ENENT (DEC_COLOUR

& CENGTH
B BLOCK

HERE , PRESS:

[Use your C64 as a TELETEXT terminal.

by S.OLATUNBOSUN

]

101 About 64-Te1 103 61-Tel k

key

104 Making the
most of Co4

165 How to hook up
external sound

110

Computer crossword

screen copied to ram

This is an information storage and retrieval program. It
allows users to view it's pages in an atiractive and simple
way. New pages can be created to add to those already
available. This is done using the on-line Editor. The user
can use 64-Tel in whatever way he or she wants. For
example, the pages could be used to hold vital GCSE
study notes. Alternatively the pages may be used for
addresses as well as hints and tips for users that send
disks to each other. The 64-Tel service is like Teletext TV.
What's more, it has the added touch of being more
interactive and personal. Its simplicity in use will
convenience both the novice and expert programmer.

HOW TO USE 64-TEL

Either select from the CDU menu, or load ‘64-TEL',8,1
followed by SYS36864.

21

e T

ON THE DISK

You will be greeted with a simple 64-TEL logo. At this
stage the program prompts you to enter the present time.
First enter the hours followed by the minutes then
seconds. The inputs must be two digits. (Eg: 8 o'clock
would be 08). Enter the current date in the same way.
When you have finished there will be some disk
accessing as the index page is listed. You are now in a
“Teletext' service. Pages from 100-199 can be entered by
the user. The requested page will be loaded from disk.
Note that the index page resides in memory for prompt
access. This page appears if page 100 or an unavailable
page is requested. All pages available on the disk are
found by pressing ‘P". That is basically how to use the
program. Some other operational keys are given below.

F1 is go into Editor mode.

F7 is leave 64-Tel. (Do not use RUN STOP/RESTORE).
SPACEBAR Reveal stop. Its use is to show up hidden
characters. Useful for answers to jokes and questions! |
have also activated the external voice of the SID chip.
This will allow you to listen to an external sound source
whilst reading the 64-TEL pages. I find that some light
jazz music accompanies my viewing quite well!

THE EDITOR

Creating your own, or editing existing pages is a very simple
process. When you use F1 to enter the Editor from 64-TEL, a
cursor will appear in the top left hand of the screen. You can
now Edit the screen in anyway you wish. The available
editing area is 40*23 characters. (The top screen line is used
by 64-TEL-and the bottom screen line displays function
messages). All the control stops are available. Therefore you
can use the cursor keys to position the cursor. The SHIFT
plus CLEARHOME keys to clear the screen, maybe CTRL
and 3 to change the text to RED. The following functions are
also available.

F1 - Return to 64-TEL.

F2 - Sets page (Background) colour. ontinuous pressing of
72 will scroll through all 16 colou

F3 - Toggle UPPER/LOWER case. Use F3 instead of
CBM/SHIFT to properly register the type case of the page.

F4 - Remove a page from disk. The page removed is the one
currently specified by the page number. Use F7 before using
F4.

F5 - Toggle FLASH/REVEAL mode. Flash mode is indicated
by the cursor flashing. Entering the Editor from 64-TEL
automatically sets it to reveal mode.

F6 - Save a page to disk. The saved page is labelled with the
current page number. Use F7 beforehant

F7 - Enter the new page number. A ‘1" will appear in the top
left of the screen, just enter two more digts.

F8 - Copy SCREEN to RAM. (More on this later)

CBM - This is the Editors reveal key. The spacebar is already
being used for Editing purposes. CBM will let you see how
your reveal CLR-UP is working

When you have finished designing your page and are ready
to save it to disk, press F8. (This is essential otherwise the
page you later on load back from disk may look quite
different). Next, press F6 to save your page. Continue editing
or creating new pages, or return to 64-TEL through F1

FLASHING CHARACTERS

Flashing characters can emphasise parts of the screen,
making them immediately noticeable. Introduce FLASH
CHARS in the following way. Design all of your page first
and copy it to RAM (F8). Now put the Editor into flash
mode (F5) (You will notice this as the cursor slowly
flashes). Now move the cursor to the character you want
to flash. Put a SPACE in it's place (In other words, hit the
space bar). Set the text colour of the flashing characters
beforehand using the standard CTRL/CBM 1-8, with all
the flashing characters introduced. Use F6 to save the
page to disk. That's it!!

TO SOUND SOURCE

SCREEN COPIED TO RAM

REVEAL MODE

Reveal mode works in the same way as above, except
that the characters are hidden and do not appear until
you press CBM in the Editor, or SPACE in 64-TEL. Follow
the same procedure as above for the FLASH characters,
but remember to have the Editor in REVEAL mode.

A FRESH START

The user may want to create his/her own pages on a fresh
disk. They can either:

1. Insert a new formatted disk into the drive.
2. Use the Editor to remove all existing pages. Then from
Basic use the command OPEN15,8,15,”50:B":CLOSE15
to scratch the PBAM file. (The PBAM file is a page block
availability map, like the 1541's BAM, which the ‘P’
operation in 64-TEL uses the available pages).

When 64-TEL is then RE-RUN, a disk error will occur as
the program tries to load the index page. Ignore this and
start creating your pages. It is a good idea to write your
index page first. This can always be Edited later, but its
initial presence is to stop disk error occurring next time
64-TEL is used. If you forget which pages you have
created, use the key ‘P’ operation in 64-TEL

NOTE - The disk containing the pages need not be the
same disk as holding the 64-TEL program.

22

15 mar

Go to editor
Leave 64-TEL
Display available pages

Brace = RESEAT¥nI¥3cACRSABOISTs

Editor

- Beturn to G4-TEL

Ae~oaawnk |3

Amm
v

3

o

COMMANDS

HOW IT WORKS

An assembler listing, M/C 64-TEL, is provided on the
disk. The program is full machine code and is interactive
with an IRQ interrupt routine. (Which handles the clock
display update and the dual background colour screen).
The program consists of two main parts, 64-TEL and the
EDITOR. 64-TEL handles PAGE and PBAM disk loading
whilst the EDITOR deals with the page saving. The 64's
memory is used in the following way.

$A000-$FFFF - Kernal ROM, /O, Basic etc.
$9000-$9A00 - 64-TEL program

$1900-$8FFF - RAM.

$1800-$18FF - PBAM (Used ares $1864-$18C8).
$1400-$17FF - Index page colour.

$1000-813FF - Index page text

$0C00-$09FF - Current page colour.

$0800-SOBFF - Current page text

$0400-$07FF - Text screen display.

$0000-$03FF - Operating system and Basic ROM use.

The portion loaded and saved to disk each time is
memory area $0800-$1000. The contents of a current

age colour area reflect somewhat colour ROM at
$DB00-$DBFF. The current page text is ‘identical’ to
screen RAM, $0400-$0800.

PAGE BLOCK AVAILABILITY MAP

The PBAM works in the following way. X = Page Next
(100-199).

A = PEEK($1800+X). If A = 0 then page not available. A =
SFF page available.

Screen RAM really runs from $0400-$7BFF. Therefore 4
of the spare addresses of $07C0-$07FF are used.

$07E8/$OBEB - Screen background colour.
$07E9/$OBEQ - Flash/Reveal mode.

$07EA/$OBEA - Upper/Lower case mode.
$07EB/SOBEB - Page next.

$SOBEB-SOBEB have the same contents as $07E8-SO7EB.

Locations $07E8 and $07E9 are used by the interrupt

23

ON THE DISK

routine. If a viewed page has a non-black background
colour, you will notice 2 RASTER screen splits. One
below the top screen line, the other above the bottom
screen line. Between these 2 RASTER splits a different
colour background can be used instead of the black line
that appears on the top and bottom screen lines
FLASH/REVEAL mode works by altering VICMEM address
$D018. This states where the screen display will start.
The IRQ routine will set $D018 to display the screen-at
$0400 or $0800. The IRQ routine operating from a
RASTER IRQ runs at 100Hz. The keyboard scan routine
in ROM is called on every other IRQ call. Therefore it
runs at normal pace. The operating systems normal
interrupt mechanism at address $DCOD was disabled to
avoid any possible screen flicker.

64-TEL is situated just below Basic ROM. Area $C000-
SCFFF s used too frequently, and besides, putting 64-TEL in
this area would have made it incompatible with the

TURBO disk loader.
If you are feeling quite ambitious you can try the following;

POKE44,25:POKE6400,0:NEW
LOAD"64-TEL",8,1:NEW

Now you can use 64-TEL in conjunction with any Basic
program that you may be developing or running. For
example, instead of thumbing through your manual just run
64-TEL (5YS36864) and load up that help page from disk.
When you have finished, exit from 64-TEL and continue
with whatever you was doing previously. Your Basic code
can use up to about 30K before it starts to corrupt 64-TEL
While in Basic you can see that 64-TEL is still active
through the continuously updated clock. You can remove
this by hitting RUN/STOP and RESTORE.

FINALLY

1 have included a simple demo program to illustrate how
64-TEL can be used with a Basic program. If you have
followed the commands above (POKE44 etc), then load the
demo program and run it. Your own programs should not
alter the IRQ vector at $0314-$0315 or your program will
hang up. WARNING, 64-TEL handles no disk errors.
Therefore it is not failsafe. However, if all the guide lines
are followed properly then everything should be Okay.

PROGRANMMING

i

L Our tutorial into Machine Code programming continues, by J Simpson.]

”A series of lessons designed for the beginner to enter the
world of machine code programming on the commodore
64.” That's what the man said, and that’s exactly what this
series of tutorials hopes to bring you.

PART TWO - EIGHT-BIT ADDITION

Last month we constructed (albeit rather clumsily) an
eight-bit addition routine. We shall now construct a
modified version of an addition routine.

10 $C000

20 ;

30 ADDITION LDA VALUET
40 (ell(e:

50 ADC VALUE2
60 STA SUM

70 RTS

80 VALUET BYT 20

90 VALUE2 BYT 20

100 SUM BYTO

110 END

LINE 10 this line organises where in memory the routine
will locate from. If this was a sub-routine called on a
regular basis from within a program then this line would
be omitted.

LINE 30 starts with our routine label called, ADDITION
and the first mnemonic instruction LDA tells the processor
10 load the Ac with the value held in the memory byte
labelled VALUET. " If this was a subroutine then it is the
label, ADDITION, which would be called (more about
calling subroutines later in the series).

LINE 40 clears the carry (flag) ready to be set if the
addition overflows the byte, i.e. if the value becomes
greater than 255.

LINE 50 adds the value of the memory byte, VALUE2, plus
the value of the carry bit (in this case 0, because we
cleared it earlier), to the contents of the Ac (which held the
value of VALUE1).

LINE 60 stores the total now held in the Ac into the
memory location SUM.

LINE 70 ends the routine with a return to the caller.

LINES 80 to 100 are the three memory locations set aside
for variable data storage.

LINE 110 is the assembler directive to terminate assembly.

Within a program which required the addition of the two
bytes, VALUET and VALUE2, would be the necessary code
which would place the values required into these two data
bytes ready for computation (we shall look at this more
closely when we start discussing subroutines).

EIGHT-BIT SUBTRACTION
When programming we will also require the use of
subtraction just as much as addition, so let us construct
another small routine which does just that.

10 * = $C000

20 g

30 SUBTRACT LDA VALUE1
40 SEC

50 SBC VALUE2
60 STA SUM
70 RTS

80 VALUEl BYT50

90 VALUE2 BYT 40

100 SUM BYTO

110 END

As you can easily see, there is not a great deal of difference
between the two routines, ADDITION and SUBTRACT.
The differences, apart from the values held in the variable
data bytes, is confined to Lines 40 and 50.

LINE 40 this instruction is the opposite of CLC, in that SEC
means SEt the Carry. In other words the carry bit (flag) is
now equal to 1.

LINE 50 instead of adding with carry we now SuBtract
with Carry. This allows to subtract from the Ac the data at
the specified address without a borrow.

In our example we first loaded the Ac with the contents of
VALUET (50). We then subtracted the contents of VALUE2
(40) from the Ac. And stored the result in SUM (10).
During the subtraction process we used the carry flag to
test for an underflow, if the result of the subtraction had
been less than zero, then the carry flag would have
become clear.

24

G s R i o T e i R e R L Sl o S

Understanding the full implications of using the Carry will
ecome more clear when we look at 16 bit addition and
subtraction.

SIXTEEN-BIT ADDITION

An eight-bit addition will only allow the addition of
numbers within the range of 0 1o 255. For more practical
operations it is necessary to use ‘multi-precision’ and to
add numbers which use sixteen bits or more. I shall
demonsirate addition on 16-bits, but they can readily be
extended to 24, 32 or more bits. We always use multiples
of eight-bits or a byte. Check this example:

10 ADDITION LDA VALl
20 CLC

30 ADC VAL2
40 STA SUM

50 LDA VALT+1
60 ADC VAL2+1
70 STA SUM+1
80 RTS

90 VAL1 BYT 255,160
100 VAL2 BYT 237,46
no SUM BYT 0,0

120 END

First of all let us examine the numbers we are adding
together. The first pair of numbers held in the two bytes of
VAL1 and VALI+1 represent 41215 (SAOFF). The second
pair of numbers held in VAL2 and VAL2+1 represent
12013 ($2EED). We store the low eight-bits of the 16-bit
number in the first byte, followed by the high eight-bits in
the second byte.

You probably know that it is standard to store a large value
in the Low/high byte formula but if you are unsure just
how | came to arrive at 255 (lo), 160 (hi) VAL1, and 237
(Io), 46 (hi) VAL2 | will explain. To calculate the high and
low bytes of a 16-bit number, that s a number in the range
0f 0 10 65536, we must first find the hi-byte. This is simply
done by dividing the 16-bit number by 256, and ignoring
any fractional parts. To obtain the lo-byte we then subtract
the hi-byte from the original number and multiply the
result by 256. A simple line of BASIC code will do this for
us, namely:

10 NU = <NUMBER TO SPLIT>:HI = INT(NU/256):LO =
NU-INT(HI)*256

Most good assemblers will have some form of number
conversion command and if you convert the decimal
number into its hex equivalent then it is simple to split the
number into Hi/Lo bytes (e.g. SAOFF = SAQ and $FF.
$2EED = $2E and $ED), this would then be incorporated
into your code using a suitable pseudo-op.

90 VALT BYT SFESAO

orif your assembler uses the pseudo-op, hex
100 VAL2 HEX ED21

25

PROGRAMMING

1 we now look at the 16-bit addition program you will see
that lines 10 10 40 are just the same as in the 8-bit addition
program, however when we add the two Hi-bytes of
VAL1+1 and VAL2+1, we did not precede the addition
with a CLC instruction (we only use CLC at the beginning
of an addition). This means we add together the two Hi-
byte values plus the value of the carry. In the case of our
addition this is what took place:

When VAL2 was added it took the value held in the Ac
(taken from VAL1) which took it beyond the range of a
byte, 255. This resulted in the carry bit being set (1). Now
the carry will represent 256 to be added to the Hi-byte, or
adding 1 to bit 0 in the Hi-byte (which has the column
value of 256). The balance, 236, which was left in the Ac
is then stored in SUMT at line 40. Then lines 50 to 70
added together the values held in VAL1+1, VAL2+1, plus
the carry. We know the carry bit was set, so we carry over
256 to be added to the result of VAL1+1 and VAL2+1.
Here is a graphic example of what took place:

(LOW BYTE)

%1111 1111
%1110 1101

= 492 %1110 1100 CARRY = 1
(REPRESENTING 256)
- CARRY 256

SUM1 236 %1110 1100

(HI BYTE)

VAL1+1 = 160 %1010 0000

+VAL2+1 = 46 90010 1110

+CARRY = 1 %0000 0001 (The first column
represents 256)

SUMI+1 207 %1100 1111

16-BIT VALUE OF RESULT = 53228 SCFEC %11001111
11101100

SIXTEEN-BIT SUBTRACTION

10 SUBTRACT ~ LDA VALI
20 SEC

30 SBC VAL2
40 STA SUM

50 LDA VALT+1
60 SBC VAL2+1
70 STA SUM+1
80 RTS.

90 VAL1 BYT $FF,$A0
100 VAL2 BYT $ED, $2E
110 sUM BYT $00,500
120 END

PROGRAMMING

Subtraction is the reverse of addition. We SEt the Carry to
one at the start of the operation, and if the result of the lo-
byte becomes a minus number then the carry is cleared
and thus the lo-byte would have borrowed from the hi-
byte (the value of 255). The result would be correct when
the hi-byte is calculated because we have borrowed the
least significant bit (the right-most bit) from the hi-byte
during the calculation. If the result of the lo-byte
subtraction did not underflow, then the carry would
remain set which would indicate a “no-borrow” condition.
Study the two programs, addition and subtraction until you
are familiar with them. Try using different values, and
stepping through each line of code with a paper and
pencil noting how the changes occur (tracing, or single
stepping, on paper is explained more fully towards the end
of this months article).

MULTIPLICATION
(GETTING TRICKIER)

The multiplication of binary numbers is somewhat more
complex. For reasons that only Commodore will know
they omitted instructions to perform either multiplication
or division.

It s not necessary for me to explain how we multiply two
numbers in decimal notation, we all learned this at school.
The method for multiplying two binary numbers is exactly
the same. Let us multiply 5 x 3:

(5)
&)

101 Multiplicand (MPD)
X 011 Multiplier (MPR)

101 Partial Product (PP)
000

(15) 01111 Result (RES)

The multiplication s performed by multiplying the right-most
digit of the Multiplicand by the Multiplier, then one multiplies
the next digit and so on. We offset the digits to the left by one
position. Or, equivalently we could say that the partial
product had been ‘shifted” one position to the right before
adding.

In order to perform multiplication the computer will operate
the same as we did above. It will ‘shift’ each line one place to
the right then add together all of the lines. However, because
we are dealing with a full byte, eight bits, then the computer
must shift all eight lines, or eight ‘shifts’

Here is a routine to multiply two eight bit numbers (8 x 8
multiply).

10INIT LDA#0 ;SET Ac TO ZERO
STATMP ; ZERO THE TEMPORARY DATA
ADDRESS

30 STARES ; AS WELL AS THE RESULT BYTES
LO)

40 STA RES+1 ND (HI)
LDX #8 ; WE ARE USING THE X INDEX
REGISTER AS A COUNTER

26

60 MULTIPLY

70 LSRMPR ;SHIFT MULTIPLIER RIGHT

80 BCC NOADD ; TEST CARRY, IF CLEAR NO
ADDITION SO BRANCH

90 LDARES ; LOAD Ac WITH LO-BYTE OF
RESULT

100 CLC ; PREPARATION TO ADD

110 ADCMPD ; ADD MULTIPLICAND TO

RESULT

120 STARES ; NOW SAVE LO-BYTE OF RESULT

130 LDARES+1; ADD REST OF SHIFTED
MULTIPLICAND (HI-BYTE)

140 ADC TMP ; ADD TEMPORARY DATA

BYTE

150 STARES+1 ; SAVE HI-BYTE OF RESULT

160 NOADD

170 ASLMPD ; LEFT SHIFT MULTIPLICAND

180 ROLTMP ;LEFT SHIFT AND SAVE BIT

190 DEX ; DECREMENT THE COUNTER

200 BNEMULTIPLY ; IF NOT FINISHED DO IT

AGAIN

210 RTS

220

230 TMP BYTO

240 RES BYT0,0

250 MPD BYTS

260 MPR BYT3

270 END

Because we are doing eight-bit multiplication we will have
1o test each bit of the multiplier (MPR), but unfortunately
there is no instruction with which we can sequentially test
the bits. It is only the bits (flags) in the status register (SR)
which can conveniently be tested. This is a limitation of
most microprocessors, and as a result of this limitation it
will be necessary to shift the byte and test the bit. What
actually occurs when shifting is that every bit in the byte
will move right or left by one position. The bit which is
shifted out of the byte, or “@alls’ of the end, is placed into
the carry bit of the SR. Fig 1 demonstrates the ‘shift’ (you
will note that the figure demonstrates the left shift, or ASL,
to study a right shift, or LSR, then simply reverse the
direction of the arrows). There are different possibilities
depending on the shifted ‘bit’ but more of this will be
discussed later.

However, since we need to test each of the eight bits of the
Multiplier, and since we can easily test the carry bit, then
we must shift the Multiplier by one position eight separate

shift

A A A A A A A Ao

carry

figl

times - its right-most bit will fall” into the carry bit (flag)
where we will test it each time in order to take the
appropriate action. Next the Partial Product (PP) which is
accumulated with each of the successive additions will
equire the use of sixteen bits, obviously multiplying two
eight bit numbers could produce a 16-bit result (255 x 255

G e N e R e L R

= 65025). Unfortunately the 6510 has few internal
registers which means that the Partial product, the
Multiplier, and the Multiplicand cannot be stored within
the 6510 itself. Therefore we must set aside some RAM
memory locations, or external registers, within which to
store them (Partial product into RES and RES+1, Multiplier
into MPR, and Multiplicand into MPD). We will shift the
Multiplicand left and into an address labelled TMP prior to
adding it to the Partial product (RES, RES+1).

We shall now examine this routine in more detail. There
are several important points to discuss, as well as the
instructions which we have not covered before. It is very
important, when developing good software, be it games,
utilities or even demos, to have a thorough understanding
of the multiplication issue.

DETAILED EXAMINATION

Lines 10 to 40 are quite simple, we have dealt with load

and store instructions, and so they do not require further

explanation, save to say that if this is an often caHed

routine from within a larger program, then it is good

programming practice to zero the temporary data byle and
e two-byte result before execution.

Line 50 LDX #8. This is our first use of the X index
register and we are going to use it within this routine
merely as a loop counter. So, by using the # symbol, the
same as the LDA instruction, we have instructed the CPU
that the value following it is the literal value of 8 which we
store within the X register and not the contents of memory
location 8. We are using the counter in order to stop
shifting the MPR at the right time. We need eight shifts,
one for each bit, so each time a shift occurs we decrement
the X index register. As soon as the value of the X register
reaches zero the multiplication has finished.

Line 70 LSR MPR. This instruction means ‘Logical Shift
Right' the contents of the byte MPR. We must test the least
significant bit (that is, the right-most bit) of the MPR, and,
as | indicated earlier, this cannot be done with a single
instruction. So first we must ‘shift” it, then we must test the
carry bit to find out if the bit shifted out was a 1 or a 0, and
use this to either branch or not. If the bit was a 0 then this
indicates a ‘no addition’ situation.

Line 80 BCC NOADD. Test the the value of the carry flag.
BCC NOADD means ‘Branch if Carry (bit) is Clear’ to the
address labelled NOADD. If the carry is clear, then this
tells us that the bit shifted out of the byte was a zero and so
it does not require to be added.

This is our first encounter with a branch instruction. So far
the routines we have dealt with have all been sequential.
In other words each instruction being executed after the
previous one. Obviously we need to perform logical tests,
such as testing the carry bit, which will direct us to another
part of the program, similar to the IF...THEN of Basic.
Branch instructions perform such functions. In our branch
instruction BCC the CPU will branch to a new address if
the carry bit = 0, in other words the next instruction at
address NOADD (i.e. line 170 - ASL MPD). If the test fails,

PROGRANMMING

in other words the carry was set (=1) then no branch
would occur thus program execution would continue with
the next instruction after BCC NOADD.

Line 90 10 150 The test failed and the carry bit is set. We
must add the MPD to the Partial product (here the RES
registers). The MPD is held in TMP and MPD. The 16 bits
of the Partial product are held in RES and RES+1. We
simply add together the two 16-bit numbers as we did in
the 16-bit addition of the earlier program (Sixteen-bit
Addition).

LDA RES - the Ac is loaded with the lo-byte of RES.

CLC - prior to any addition the carry bit must be cleared
ADC MPD - add the MPD to the Ac which already
contains RES lo-byte

STA RES - store the result of the low part of the addition in
RES lo-byte (the carry will be either set or clear depending
upon the result of the addition, and any carry which may
have been generated will carry over to the hi-order part of
the result)

LDA RES+1
ADC TMP
STA RES+1

These three instructions complete our 16-bit addition. We
have now added the MPD to RES, however we must still
shift it by one position to the left in anticipation of the next
add.

Line 170 ASL MPD - “Arithmetic Shift Left’ will shift the
contents of the register MPD one position to the left, the low
part of the Multiplicand. However we cannot lose the bit
which falls off the left end of the byte. It ‘drops’ into the
carry but we cannot leave it there because it would quickly
be destroyed when we perform our addition. It must,
therefore, be placed into a semi-permanent location. We
use TMP for this.

Line 180 ROL TMP - ‘ROtate Left’ the contents of TMP. This
is different to SHIFT in that it performs the same function but
with the additional feature that the bit in the carry is forced
into the right-most bit position and the bit which “alls’ off
the end is placed into the carry (see Fig 2. Rotates. The
igure demonstrates the left rotate, ROL, to demonstrate a
right rotate, or ROR, simply reverse the direction of the
arrows). So the bit which fell off the left-most end position,
during execution of the previous instruction ASL MPD (line
170), and held in the carry, will now be forced into the right-
most position of the register TMP.

This finishes with the arithmetic operations of the routine
but we must still test whether the operation has been
performed a full eight times.

A AR DA A A

27

PROGRANMMING

Line 190 DEX - ‘DEcrement index register X'. If X contains.
8then its contents will contain 7 after this operation.

Line 200 BNE MULTIPLY - ‘Branch if the result (in this
case, of the X decrement) is Not Equal to zero’ to memory
address MULTIPLY (Line 60). This is another test-and-
branch instruction. While the X index register decrements
10 a non-zero value the CPU will automatically branch
back to the the memory address following the branch
instruction, in this program, MULTIPLY. If X has
decremented to zero then the result of the test will be false
and so the CPU will execute the next sequential
instruction.

The flag used for this test is the Z flag (See Status Register -
Part 1)

Line 210 RTS - returns to the part of the main program
which called this multiplication routine.

use the space-bar to ‘step’ through each line of the
program. Al of the registers are displayed in binary digits
which will give you a much clearer picture of exactly what
is taking place, especially during the ‘shift’” and ‘rotate’
instructions

It is not the best of programs, just the ‘bare bones’ but it
will prove sufficient for our purpose of a clearer
understanding of ML. After you have used the trace,
maybe after several times, you will fully understand the
mechanism by which instructions manipulate the contents
of memory, of the CPUs registers ‘Ac’ and ‘X, and just
how the carry bit (flag) ‘C’, is being used.

You can, if you wish, create your own trace program on
paper and verify that the program works by hand. Every
time that a routine is written it s often checked thoroughly
by hand to ascertain that its result will be correct.
DIAGRAM 1. Shows an example of a hand trace

The first instruction is LDA #0. After this is executed the
contents of the X register are unknown, o eight dashes

DIAGRAM 1
ve | wsmwenon

(ol DA

)
O

o

00

AT

FENUITLY

Ty |

[BRoRD

e

Lines 230 to 260 are the memory locations for the various
external registers used in this routine.

THE TRACE PROGRAM

It is very important, if you wish to program efficiently in
ML, that you fully understand such a typical program as
the 16-bit multiply routine in complete detail. | have
introduced you to many new instructions, and the routine
is much longer than any previous. | strongly suggested,
before you continue, that you load the program called
TRACE, which can be found on this months disk. It is a
BASIC program which simulates the ML routine and will
step, o trace, through each instruction of the multiply
routine displaying each of the registers used and updating

. them during each teration. It is simple to use, just input,
when requested, the multiplicand and the multiplier, then

would indicate this. The A register would contain zero, so
eight zeros would be placed under the A heading. You
would place the relevant binary bits under the MPR and
MPD. The C-bit and the TMP, RES, and RES+1 registers
are undetermined, so these would also contain dashes.
The next instruction STA TMP will change the dashes in
TMP 10 zeros, and so on with each instruction. I've started
the frst of the eight iterations for you but it is up to you to
inish it.

Using the hand trace method in conjunction with the
BASIC trace program will allow you to verify that which
you do by hand. Al of this will, essentially, teach you very
good programming practice and technique and will ensure
that when you start writing your own programs you will
create more fluent programs.with fewer ‘bugs’ or logic
errors to iron out.

BACK TO MULTIPLYING

28

There are many ways in which a program can be written,
in fact the 8 x 8 bit multiply that we have just developed is
such a case. We can always find ways to modify and
sometimes improve a program. For example we could
have shifted the result by one position 1o the right before
adding it to the multiplicand instead of shifting the
multiplicand to the left before adding. What are the
advantages of such modification? Well we would not
have needed the temporary register, TMP - a saving of one
memory location! This is not such a drawback, unless we
are really pushed for memory. However, it might make
the program run somewhat faster, and this can’ be very
important.

Effective programming requires us to spend time looking at
detail so that we can reduce the length of a program, and
improve its execution speed. Using shifts for the result
and the multiplier consume instructions and time.
“trick’ which we can use in multiply algorithms is that
every time the multiplier is shifted to the right then a bit
position on the left is freed up. We can also see that the
first result will take up, at the most, nine bits and that after
the next shift the result will be increased by one bit again.
What this boils down to is that we can reserve one
memory location for the result (or partial product) and
then use the bit positions which are being freed up by the
multiplier as it is shifted. Now we are going to shit the
MPR (multiplier) right which will free a bit position to the
left. We will enter the left-most bit of result into this
position that has become free. We will use the X register
as our counter for the number of bits being shifted.
Unfortunately the CPU only has one internal register
which can be shifted, and that is the Accumulator.
Because we are going to shift both the result and the
multiplier we need to determine which one we should put
into the Ac. Well, since the result must be added to the
MPD every time a set bit is shifted out, and since the CPU
also adds something only to the Ac, then the result is best
served using the Ac. The other numbers will reside in
memory locations.

Ac (result high-byte) and RES (result low-byte). MPR and
MPD will be as before. So, then, here is our alternative 8
x 8 bit multiplier:

10 MULT LDA #0

PROGRANMMING

them to zero.

Line 30 LDX #8 once again we shall use the X register for
our shift counter, so this is initialised to the value of 8.

Line 40 LSR MPR the same as the earlier routine, we shift
the multiplier to right.

Line 50 BCC NOADD the result of the shift has two
possibilities, either the carry is set or clear. If clear, then
no addition is required so branch, otherwise continué with
the next instruction which is to perform the addition.

Line 60 and 70 CLC
ADC MPD

We must always clear the carry before addition (and we
know it must have been set simply to have reached this
stage of the program). So we add the multiplicand to the
accumulator (the Ac holds the high-byte of the result).

Line 80 and 90 ROR A
OR RES

this is the Partial Product held in Ac and RES. By shifting
(rotating) the Ac right one bit, the lefi-most bit will ‘drop
off” into the carry. The carry bit is then rotated into the
RES (result low) register which holds the low-byte of the
result.

line 100 and 110 DEX
BNE LOOP

simply test the X index and if it has not yet reached zero,
then branch back to LOOP for the next iteration.

Line 120 RTS return from subroutine to caller.

Line 13010 150 are the memory registers we are using for
our data.

If you examine this modified routine you will see that it
uses around half the number of instructions, and, as a
result of this, and the selection of the correct registers, it

T TR T ——

20 STARES will execute a lot faster.

30 LDX #8 A straightforward program design will work, but with a
40 LOOP LSRMPR little thought we can make it work more efficiently.

50 BCC NOADD

60 CLc IN CONCLUSION

70 ADC MPD e o)

80 NOADD RORA Well, we have covered a lot of tricky ground this month,
90 ROR RES but never-the-less it is ground that needed to be covered.
100 DEX Examine the addition and subtraction programs, and
110 BNE LOOP create your own. See just how you might improve on
120 RTS things. | recommend that you use the trace program until
! ig EEPSR gﬁg you fully understand the first 8 x 8 bit multiply program,

then move on to the second program and compare the
two. Note the changes and just how they can improve
efficiency. You can create your own trace program on
paper, as | outlined earlier, this will clearly show you how
things like the registers and the shifts work.

Line 10 and 20. LDA #0
STARES Until Next Month.....

here we are using the Ac for the high byte of the result,
and RES for the low byte of the result. ‘So we initialise

29

“."Money well
pent”

5§
YC/CDU
Jan 90

N TR
IED AND
VTEs-rED OVER
700,000 S0Lp NS
UROPE

printers (PS80, 803 et bt s
TN SO e
ul BASICToolkit Adbtionat Using POWER CARTRIDGE you can work The HAKDCOPY functin Sutomaticaly

AT il ot ontdet, 5 10 s it iryiis et {46 ard 1K
Uiy proganming s eimgig e o e comm car be Ml ol Rrapmics o come.

B gy used nyour own progtams B

AUDIO HARDCOPY REPEAT o s vy o o decide a £

oo mos AT NOGe aUbio Normalimersprting K8
ooR Hbs T SArE e prites PET ancions are 5
Ditere kv UNNEw N
DoKE o 2

FIND. oo 8L0AD A s ehul """""r language rig tor PSET O - Self detection SenaliCentronics.

RENUMBER - As0 modities il he FSET 1 E9SON mode on:

OB GO i yout Comodare memony avlabe o FSEY 3 _ SMTHCORONA mode an
Sles ot ot s program proamming FSET 3 T he prining 0 depecst Onthe ack o the POWER CARTRIOGE
o e e o Ao R wichom omaLana PSS FARDCOR e e et Bt Presg O
Gspcen; froyhes Nasze Htton makes s SECIAL HENG sppea o
rser Selup of prnter ype e
TokocAr Fanit oot Do PSET i T encon vl wrk with ary
st s psET s - aimage mode e
Th ol commnds o e e LT M e towerUper cose snd
Your progra g o Sening Comrl Codes continue
4 A P e i 000
PR 1) ey, modited s wsic
L s Sl rier an ewes RESEY
I P e erport bl o
Iy e s su S e coniy s or BACKUP ey ot DIk e
Usig POWER CARTRIDGE you can fosd HARBEOR i S o g G s
up o s mes faser irom dik EEINTERTOOM vy e O 0 ¥t BiowD ot
TR DA Commans i o e your e ey e OV
oun program et 10 e PSFT L1 ot RESET AL RESET 0 4y program

oloAD DveR IR ey T A

Eiectie o nerace that
st wect owice
Geect o 3 it 4 connected o the ot
oSk SET s o User o Wkocon aam moment oo ot
MKGE o S proramecan 1 prnt) Compodorechrcers on rscopy o
e Epion and companbie prers o
oisx Wi DISK you <an send. T ritermriace hat 3 variety of et
ot Sy o g g s
FARGCOM o sreens oy oy on Seral MONTTOR
Tek:091 450 1975 304 490 1919 Fax 09 490 1918
ESHEMICIIHOAN: fer: Access|Visa welcome - Cheques or P/O payable to BDL
GATESHEAD - 0730 il VAT,
120 poselpack total 1830 incl VAT.
TYNE AND WEAR Eurap(amenmu .50. eas 30 d .50
NEB 1RS Scandinavian Hai Orderan ries o Bhiab Elektronik, Box 216, Norrealie 76123,
T+ 46 176 3425 Fa: 176 340

Bitcon Devices Ltd ENGLAND PORT ENQUIRIES wch'onz

ON THE DISK

WORDSEARCH

Create your very own customised WORDSEARCH puzzles with ease .

Are you mad about those wordsearch puzzles? Wouldn't
you just love to make your own customised
wordsearches to baffle your friends and colleagues (and,
if you lose the grid showing all the answers, even
yourself.)

Well, my dear friend, read on and all your dreams will
be realised. All your hopes fulfiled and all your friends
and colleagues will hate your guts.

When the program has loaded via the C.D.U. menu,
you will be presented with another menu. The options
are as follows:

CREATE WORDSEARCH

This option
cannot not be
selected, and you
shouldn’t try, until
you have either
loaded a list of
words or have typed
in a new set. When
you have, however,
it sets up the
wordsearch grid.
When it has placed
all the words in
your list it prints out
the grid without all
the extra letters so
that you can easily
see where your
words are. Have the
printer ready.

ENTER WORD LIST

This option allows you to enter the word list. You can
choose how many words you want to enter but |
wouldn't g0 t0o high. Once you have typed in a word
there is no going back, except to start afresh, so make
sure you type very carefully indeed.

SAVE WORD LIST
Allows you to save your word list to diskette. Asks for
filename and then saves as a sequential fle.

PRINT OUT WORDSEARCH

by STEVEN BURGESS

Prints the Wordsearch grid out to the printer. The grid is
30x30 and uses thirty printer lines. Between each letter
across there is one space.

PRINT OUT WORD LIST
Prints out the word list currently in memory.

LOAD WORD LIST
Allows you 1o load a previously created word list from
diskette:

END
This simply returns you to the Cé4 startup screen. If you
pressed it by mistake then switch on the drive, insert the
C.D.U disk and type: SYS 2152

Fa Do HOW IT
Ik Puw WORKS
NAEIFD
The wordsearch grid
is created on a
random
the
computer decides
which way the word
will run, and there are
eight different ways.
Then it will decide
upon the x and y
coordinates in the grid
where the will start. It
checks first the
word will fit and, if it
will, if there are any
other letters in its path. If there aren't then it places the
word. If there are, and the word can still be placed
because it can safely cross through the other word then
the word is placed. If neither of these two are true then
the computer chooses another direction, another x and

another y coordinate. This data can be seen flashing up
on the screen when you select CREATE WORDSEARCH.

FOOTNOTE: This program was.written with the aid of
LASER BASIC, from the OCEAN 1Q range of utilities. It
was compiled with LASER COMPILER.

For owners of LASER BASIC, there is, on the disk, a
copy of the source program which you can mess about
witl

LETTERS

Can you solve my problem Dad? Not,

When | closed last month I told you that | would bring In the years BC (Before CDU) | used to buy the
you news of a program that gave FULL DISK JACKET it's Commodore games ‘comics’ for the software and
compatibility with the STAR LC10C. Well, here it is. A hardware adverts. What | would like to see, therefore, in
couple of people, namely MR CLIFF KENDALL OF CDU is perhaps more adverts? Especially from companies
CUMBRIA and MR DENIS REDINGTON OF ESSEX, very such as Datel Electronics, etc. Secondly, size - not so
kindly sent me copies of the program that they had much a criticism, rather a point of view. | would like to
modified for use with the above printer. | had to choose see more features in the magazine and for this | would be
one and, because they were bath of a high quality, | had willing to pay extra and still consider it good value for
to go on a first come first served sort of basis which meant money. What this really points to is that the magazine is
that MR KENDALL was the lucky man. On the disk this ~ great. Keep up the good work!

month you will find his program, filed as “STAR FDJ". | - David Brown, Newport.

hope that everyone will appreciate his work. This month | e
have selected ten letters from the mailbag for you to 'Dear David,
peruse at your leisure, three of which are from outside the n
UK which makes me very happy. To everyone that has | a
sent letters and hasn't yet received a formal reply, please
bear with me. Due to the volume of letters that we receive
at the TECHNO INFO HQ it just isn't possible to answer
them all personally. The great majority of you will receive
replies as soon as it is possible and a few of you will be
privileged enough to receive a telephone call from yours
truly if you supply your number!! Anyway, if you don’t -
receive a reply straight away, please do not send me
copies of your leter asking what has happened. This only
confuses both myself and my filing system! From this day
on | am guaranteeing that everyone will have a reply
either by post or in the magazine eventually, and as
always, any disks sent to me will be returned. Please have |
patience. Well, now that that is over, let's get on with this
month’s selection of letters. | hope that you find them to
be both interesting and useful.

OCP AND THE 120D

THANKS FOR CDU
Dear CDU,

Dear CDU, Help! Could you please send me information on how to
I doubt that I will be the first this year to praise your ~configure a Citizen 120D printer for use with the OCP
magazine for its content, but | feel that | should make my ~Advanced Art Studio. Thanking you in anticipation.
feelings known. I have only recently found out about Norman Merritt, Cambridge.
CDU and was, 10 say the least, pleased that someone had
the sense to bring out a magazine for those who realise
that computers are for more than just vegetating their
brain on games. Especially do I find “Techno-Info”
interesting as it helps everyone to get more from their
machine - even us lowly ones that know very little
machine code. However, if | was to be critical, I would
say that it lacked only two things. Firstly, advertisements.

i

do the trick and give you the option of double density
printing as well.

DIVISION SUMS

Dear CDU,

I need a bit of advice (and a devil of a lot of instruction!).
The attached algorithm for calculating the date of Easter
Sunday was taken from the “Scientific American”
magazine many years ago. When I came across it the other
day | decided 10 try to convert it into a C128 program but
found it beyond my capabilities. And 5o | come to you. A
few of the steps ask for the remainder of a division sum to
be isolated and others say the same thing about the
quotient. Can this be done on this toy machine of mine?
All the best and my thanks for a good, readable magazine
even if you can't help me on this occasion!

Eric Frost, West Sussex.

Dear ric,
First of all, why do you say that the C128 is a “toy”
machine? The C128 can be turned, through a few pieces of
relatively inexpensive hardware, into a very powerful
machine. Secondly and more importantly, | can help you. If
you are performing the sum N/D (variable N’ divided by
 variable D) then you can calculate the quotient by using
the formula Q=INTIN/D). This takes just the whole number
part of the answer. For example, 164/29=5.655 (5,
remainder 19). The INT function isolates the number before
decimal point so the quatient can be found quite easily.
The formula for the remainder is a little more complicated
but can be found with a little mathematical trickery:
((N/DJ- INT(N/D)) *D. To use the previous example again;
- ‘N/D'=5.655, ‘INT(N/D)'=5 and therefore the expression in
 the brackets is equal (0 5.655 minus 5 which is 0.655. By
multiplying this by the original number that you were
dividing by, you will get 0.655 times 29 which you should
find is near enough 19, which is indeed the remainder. You
therefore have those two equations for calculating the
 quotient, @, and the remainder, R. Hopefully that will have
been of some assistance.

SNAIL TRAIL

Dear CDU,

If | may be permitted | am sure | can solve at least some of
the problems posed by your correspondent PAULETTE
YVES (Volume 4, Number 4, Feb 1991). Firstly she should
tell her advertising manager that his salary can stay at five
figures but in future these will be £123.45 per month. The
employee who took an unscheduled holiday in Germany
should be told, “We congratulate you on your personal
initiative and we don't know how we could manage
without you but from Monday we are going to tryl” Auf
Wiedersehen, Pet (or C64)! Also by allowing your stud
snails 1o feed off your neighbour's lettuces you can cut
feeding costs drastically. Software to control the whole
operation must be in machine code. This will increase the
speed of various snail activities, especially breeding
propensity, and will stimulate production and make a lot of

LETTERS

snails very happy. A suitable piece of software is marketed
by GASTROPOD (Gets All Snails Tabulated Releasing
Overwhelming Piles Of Data). | confess | am just a little
surprised that PAULETTE YVES, whose name bears a
striking resemblance to that of our revered Editor, did not
approach him with the business problems as he has shown
initiative and competence in keeping CDU magazine alive
with the minimum of annoyance to readers.

NEDWOB (whose name bears a striking resemblance to
A.H.Bowden), Bishop's Stortford.

Dear Mr.Bowden,

1 must thank you for writing in with that help for Paulette. |
presume that your last remark is a favourable one for Sir
Eves but | must admit that | had not spotted the similarity
between Paulette’s name and that of our great Editor. The
world is full of coincidences, isn't it! I'd like also to thank
you for the interesting expenditure pie charts that you
included with your original letter which we unfortunately
can't print here. Thanks once again for your
cormespondence, such a great reply to the spoof letter.

TAPE TO DISK

Dear CDU,

I'm a C64 owner and ever since | saw your mag I've been
one of your many fans. Well, | think I should ge straight to
the point so: 1) I've recently bought a 15411l disk drive and
1'am transferring all my games from cassette to disk.
However, I'm facing problems with the multistage or
muliiload (or whatever they're called) games - the ones that
when you finish one level, then loads the next one. Could
you give any help? 2) Where can | find a book telling me
what the machine language commands are equivalent to in
BASIC. Could you publish it? Quite difficult, right? 3) Is
there a possibility of transforming the ILS program for the
C128 into one for the C64 (I own the ACTION REPLAY
MKVI - will the SLIST command help?). Thanking you in
advance. Keep up with the good work and try to put in
more competitions.

John Kopsidas, Greece.

Dear John,

The secret for converting tape multiload games to disk lies
in the conversion of tape load routines to disk load
routines. This is of course a drag to do and so is best left to
a backup cartridge. You say you have AR6 but that doesn't
really help because it doesn't cater for multiload things.
Trilogic's EXPERT Cartridge will be able to help you. It isn't
really possible to relate machine code commands to BASIC
ones because machine code is so sort of “raw” and down
to the bare minimum. One machine code command may
require several BASIC ones (and vice versa). However, a
number of them can be directly transposed and hopefully if
the King of all Editors, Paul Eves, has done his job, you
should find a table elsewhere in the Techno-Info section
illustrating some of the more common relationships.
Regarding ILS, it is not possible to convert the program for
use on the Co4 directly. Another version would need to be
witten. The SLIST command idea might work but it would
be very tedious and take an eternity, and besides, the BASIC
program is very long and you may get an OUT OF

33

S

LETTERS

GEOS COMPATIBILITY

Dear CDU,

| hope that you can be of some help to me. | have a 64C
and disk drive and a BROTHER HR-5 printer. The problem
is when | load my GEOS disk and | set everything up to start
to write, when | get to print what | have typed in my printer
does not work. | have set the printer up as Commodore
Compatible. Is this that my printer is not compatible with
GEOS? I have tried setting my printer with various DIP
switches but to no good. Have | bought a pig in a poke or
can you set me in the right direction? Also I wonder if you
can tell me where | can obtain the following books. | have
asked the publishers but they don't sell them now. Any help
would be appreciated as | reckon that with all the 64Cs that
are still being sold, other users would like to get some
books to help them. The books are: The Complete
Commodore 64 ROM Disassembly by P.Gerrard and
K.Bergin; Impossible Routines for the Commodore 64 by
K.Bergin; Further Adventures 64, Will you still love me
when I'm 642, Advanced BASIC and M/C for the 64, Sprites.
and Sound on the 64, all by P.Gerrard; and Sound Effects
and Music on the 64 by W.Tumer and A.Velta. Hoping that
you can be of help.

H.Lane, Clwyd.

128 QUERIES

Dear CDU,
Last year | purchased a Commodore 128D computer which
has a 1571 disk drive, MPS-801 printer and a colour
‘monitor. This is the very first computer | have ever owned.
This system was chosen above the IBM range - the reason
being because it is so user-friendly and | felt it was the ideal

computer for the whole family to use. | now buy your
magazine each month. There are a couple of problems at
the moment that have me confused. Some of your
programs load in the 80 column mode. What does this
mean exactly? The other problem is that on some of them
they have a less than sign after the file type in the directory.
You say that if one uses a disk editor to remove this
protection one can then load the program. Please could
you explain how one goes about doing this and also where
would 1 get a disk editor. Also, how does one move the file
entry to the top of the directory? Could you possibly also
give me some information on whom | may contact in the
UK for the purchase of software by mail. Hoping you can
be of assistance to me and also, keep up the good work in
your magazine.

B.G.Carroll, South Africa.

CHEATS NEVER PROSPER

Dear CDU,
I have been struggling with machine code for some time. |

34

f

use 6510+ Assembler, Trilogic Expert Cartridge, and
Codemaster - all indispensable in my quest for
enlightenment. CDU is also indispensable and is probably
as near perfection as possible. Of course CDU should be
published weekly and the low price is too low. My only
interest in games is what they can teach me about coding. |
have a BASIC loader for a cheat for Spindizzy. It does not
appear to work. GOOD! | don't want to cheat or even play
Spindizzy. | am more interested in what it does, how it does
it, and why it doesn’t. The loader starts as follows: 10 REM |
LIED, 20 F=679 and then it goes on to read in a load of
DATA and store it at that 679 onwards. Conerting it all to
machine code | get: SEI, LDA #$34, STA $01, LDX #506,
LDA $0708,X, STA $00DFX, DEX, BPL somewhere, LDA
#$37, STA $01, CLI, RTS. Now for the questions. This
routine is supposed to be loaded beginning at address 679.
Monitering reset memory | get: 02A5 00 BRK, 02A6 01 00
ORA ($00,X), 02A8 00 BRK. | guess that 02A6 01 00 ORA
(800,X) is there for the benefit of the C64 or perhaps is a
product of the cartridge used to reset memory. Question:
What is 02A6 01 00 ORA ($00,X) for? Loading the short
machine code routine to the specified address causes
problems for address 02A6 because the next address is
02A8 - it is supposed to load at 02A7 which is obviously
wrong because the instruction at 02A6 takes two bytes. So
should I move it to 02A8 and SYS it at 680 decimal? The
machine code routine sets the interrupt flag, alters the
memory layout, copies some locations across then resets
the memory map to default. More questions: I think it is a
spoof. Hence the REM statement ‘I LIED in the loader
because it just appears to copy blank memory to blank
memory. Am | wrong? If so, what does it do? The only
thing | can say is that bit 2 of location 1 is zero. Apologies
for the garbled nature of this letter. | normally use
GeoWrite but my printer’s not well. Thanks for any help.
Jim Wyatt, Derby.

Dear Jim,

Glad you think that CDU is near perfection. Sorry it can't
be published weekly though! To answer your questions,
you have firstly misinterpreted the machine code I'm
afraid. You have not taken into account the lo-hi byte
storage system. The commands that you identify as LDA
$0708,X and STA SOODFX are in fact LDA $0807,X and
STA $DFO00,X. This then perhaps makes more sense.
because the codes for the “I LIED” statement will be poked
into memory high up. Spindizzy would | presume check
this location high up in memory to see whether the text
‘was there. If so, cheat mode enabled! | don't think that it is.
a spoof. If it does not in fact work then remove the space
before the REM and the “I”. That may then help the
proceedings. The reason why you get spurious results
upon resetting and reading memory is that the area in
question is filled with null and important bytes when the
machine is reset. Nothing can be stored there permanently
50 10 speak, like it can at places elsewhere in memory. By
permanently | mean the code will still be there after a
reset, not after switching off and then on again. The code
that you disassembled means absolutely nothing and is just
the null byte information. To summarise then, the program
is probably all right and seems to do something and it is
just that that section of memory is reset itself upon resetting
of the machine.

LETTERS

110 VOLT PRINTER PROB

Dear CDU,

My problem is with a STAR NEX1000 printer that was
purchased in the USA along with a CD Grappler. This
system worked perfectly on my brother’s Commodore 64
system IN the USA, but when hooked up similarly (with
the appropriate 110 volt power supply) and using the same
PRINTSHOP package, as again used in the USA, printing
occurred but in a haphazard manner. | have enclosed a
copy of a letter heading using this system for your perusal
and any comment you would care to make to rectify this
problem would be appreciated. I do recall, but as this time
cannot find, a problem being stated with a STAR printer in
a previous issue of CDU where it was stated, as |
remember, that the ‘internal” clock’ was causing the fault.
Could this be? If so, what is the remedy as it seems to me
that all talk of compatibility with Commodore 64s by STAR
is hogwash. Not that it isn’t a good printer, it's superb, but
my MPS-801 is far more compatible. | will close with a
heartfelt thanks to all your staff. Pick at this letter as you

wish.
A.).Blackwell, Northants.

Dear Mr.Blackwell, .
First of all I must thank you for sending in a sample of what
was going on with your printer. It certainly would seem
that it is the intemal clock that is playing up because each
time you produced the letter head, it was doing the same
thing which points to a fault that is not just random. It is
due to the USA supply being sixty hertz frequency and not
50Hz like it is in the UK. The voltage is only one part of
the problem. The printer will be expecting a frequency
higher than that given to it which will, in simple terms,
confuse it. | think that Tandy shops sell converters although
most large, good electrical companies will be able to tell
you the best thing to buy. You need a supply frequency of
50Hz. Failing that | can't see why the printer is playing up.
Regarding STAR compatibility - I can say with total
confidence that talk of compatibility with Commodore is
NOT hogwash. | have a STAR LC10 printer myself and am
most satisfied with it. It works with printing program
s

that | have and as of yet | have come across no problem:
with it. With a bit of luck | will have been of some
assistance. . e

DISK FORMATTED?

Dear CDU,

First of all, from February - happy birthday to Techno-Info,
and long live CDU! Here is my problem: in a BASIC
program of my own (C64 and 1541), | need to write a data
file to disk. Past experience told me to be slightly cautious,
50 1 told the program to perform some tests before writing
the file. I'm able to test the following within the program: It
the drive is on, if there is a disk in the drive, if the file already
exists and needs to be scratched. But I'm not able to test if the
disk in the drive is already formaited. Could you help?
Roland Dept, Belgium.

Dear Roland,
The only way to check whether or not a disk has been

35

LETTERS

UPDATE

Now to this month's Techno-Info Update. There is just one
thing to report back on. MR SIMON COLLINS OF NORTH
HUMBERSIDE has informed us of the POKES that MR
SANDERSON OF SOUTH AFRICA was after in the
December 1990 issue. They relate to the game ‘GAME OVER’
and provide infinite lives for it. You should load up the game,
reset the computer, and then enter: POKE 15244,234: POKE
15245,234: SYS2304. Thanks very much for that little bit of
help, Simon.

TIP OF THE MONTH

‘This month you are going to have to put up with a tip from
me I'm afraid. Please keep those tips rolling in and 1 shall
publish any that will be of general interest to the readers. But
for now, I'm going to give a few hints out to users of BASIC.
In all the reference books that I've read there is always
something to the effect “The programmer should ensure that
loops are complete before B Breake out of them?. but
never tells you how to go about that. Following are just a few
little simple hints for BASIC programmers. Imagine you have
the following program:

10 FORT=1TO 10
20 IF A$(T)="END” THEN 50
30

NEXT
40 PRINT “NOT FOUND”: STOP
50...rest of program

‘This would exit with the BASIC stack confused. It s the same
as performing a GOSUB and then not RETURNing from it
properly (Try RUNning the following: 10 GOSUB 10 - the
computer gets c because you never have a RETURN
command executed correctly). Always ensure that for every
GOSUB there is a RETURN. Errors occur if there is a
RETURN without a GOSUB but not the other way around.
Be careful. But back to the loops. Just use a flag:

10 F=0: FOR T=1T0 10
20 IF AS(T)="END” THEN
30 NEXT: IF F=1 THEN 50
40 PRINT “NOT FOUND”: STOP
50...rest of program

Many of you who already write complicated BASIC
programs will have thought that that was below you. Just go

back and check your loops and I bet you'll be surprised how
many times you jump out of loops without finishing them.

Finally, if your program pauses for a while now and then for
no apparent reason, it is because all unwanted variables are
being disposed of. To rectify it, execute the command
G=FRE(0) or similar (by that | mean the variable ‘G’ can be
changed) at regular intervals. If your program has a menu,
give the command just before the menu s displayed. In that
way you will get a number of very short pauses instead of
one or two very long ones.

1 hope that a lot of you will find those quick tips useful.
Remember that if you do have any tips then send them to me
at the normal Techno-Info address for publication. What's
more, if you have any hardware or programming problems,
no matter how complex they may seem, please do not
hesitate to write to us and we'll do our best to sort them out
for you. The address is, as always: Cou TECHNO-INFO, 11
COOK CLOSE, BROWNSOVER, RUGBY, WARWICKSHIRE,
CV21 ING. See you all next time when it will be June, the
month of my birthday - so I expect lots of cards to arrive by
the first!! See yer then.

Some machine code commands and the equivalent BASIC
statements for JOHN KOPSIDAS OF GREECE:

ADC #x0G A=A+xx+C: IF A>255 THEN A=A-256: C=1
Al ; A=A+PEEK(x00)+C: IF..THEN as above
AND #xx; A=(A AND xx)

ASLA; effectively A=A*2

ASL xux; effectively POKE xx00x, PEEK(0000%2

BCC xxxx and BCS xxxx; IF C=0 THEN xoox and IF
c=

CLCa and C=1

PV f/b BEQ B IE A= THEN .

cw oocx 1/b BNE yyyy: IF PEEK(xxm)<>A THEN

L% tox 7 BEQ e 1F Xwx THEN xoxx

DEC xxxx; POKE xxxx, PEEK(x00x)-1: to 255 if =0
INC x006; POKE xxxx, PEEK(xxx0)+1: to 0 if =255

INX and INY; X=X+1 and Y=Y+1: check as for ADC

Xx

JMP xxxx; GOTO xx00¢

JSR xxx;” GOSUB xuxx
=xx

LDA 000 A-PEEK(g00)

LDA xxx0X; A=PEEK(x

LDA (xx),Y; -PEEK((PEEK(xthEEK(xxH)*256)+Y)
LDX/LDY as appropriate for LI

LSR as for ASL but divide not multlply

NOP very short 1t paise

x; xx)
oR xxxx,V A (A 'OR PEEK(xcxxY)
RTS; RETUR
SBC gy A= e
STA 006 POKE XA
STA xx00Y; POKE xx
STA (xx),Y; POKE (PEEK(xx)+PEEK(xx+1)‘256)+V A
STXSTY s appropriate or ST
TAX and TXA; X=A and A=X
TAY and TV o TAX/TXA

36

PROGRAMMING

- o
e
Ry uﬁ.-

2 4
0 4

j‘,;:';;;;';;m'h";ﬁf

i

-
e
et a0
neet B
e B e

 th bt i
’:,“,:t’.n,u.u.‘,:g:,n.

ecimal number.
e

e e
oo

e,
3 V.,..,‘:Jfﬁ.’f'fa’ﬁ:““
TR

o
)

e G e
03020745

.

L e

s it S
i
U

i i

=

T

wof -~

e

o

.

o

w“’,‘:.,;...u:«:
Al i
e ore

gned B ;;:~:¢N~3;n¢'\ A%
e

i)
cussion. | hop

it Ll BLLSS L

A Subscribe
| noW X NN

= ; And Save £8

OR KICK YOURSELF FOR THE REST

OF THE YEAR. .. &

We've gone mad and are offering you a once only opportunity of receiving
Commodore Disk User’s next twelve issues for the staggeringly low price of
£25*if you live in the U.K. We will even post it to you free as well.

Published monthly —
COMMODORE DISK USER is the answer to every Commodore computer owner’s dream. The disk supplied with the
magazine contains a variety of readly to use, high quality computer programs —no more lengthy typing in of listings. The:
scope of the programs is wide, varying from games to business software and high-powered disk utilties - and the disk would
retail for at least £50.00 if bought independently.
Of course, that isn't all. The magazine, besides containing full and comprehensive instructions for using the disk, is a
complete computer journal in its own right, with news, reviews, programming, competitions and general interest features.

Don’t Delay Respond Today

PRIORITY ORDER FORM
. BN N B BN BN B B N B S e e .

Please commence my subscription to Commodore Disk User with the eSS,
. madepayable to ALPHAVITE PUBLICATIONS LTD., 1

‘ ,
Bls R lals LSRR
ignature. Name. I

I ddre
1 1

Post code

Tenclose chequefpostal order for £ :
ordebitE. ... fiom iy AccessVs Card No:

| R —

I Cut out and send this form with your remittance to I
Subscriptions Manager, Alphavite Publications Ltd., 20 Potters Lane, Kiln Farm, Milton Keynes, MK11 3HE.

—---—-——------J

* Rates refer 10 subscriptions sent post ree to UK addresses. Overseas rates on request

ON THE DISK

BUSIBASIC

Now you can develop your own Business programs with ease by FERGAL MOANE

Basic is ideally suited to writing ‘serious’ programs like
databases or utilities, where speed is not necessary. It is
easy to learn and debug, and a great deal of memory
management is done for you. Arrays and strings are easy
to store and manipulate. Unfortunately, Basic 2 is not
very helpful in easing the workload. This is where
Busibasic comes in. It fifty-odd commands give you a
full WIMP environment and assist with /O and variable
manipulation. It has an interpreter as large as the C64's
(8K) but still leaves you with 34K for yourselft

POINTS TO NOTE

There are a few things to note about the Busibasic
operating system.

1) All ordinary programs will work in the Busibasic
environment, but obviously Busibasic programs will only
work with Busibasic present.

2) There are a number of commands which use the
system interrupt. These will not operate at the same time,
and the last executed command will have priority.

3) Watch out for Basic strings corrupting Busibasic!
Locations 52 and 56 should always be below 144. A
crash will nearly always be the result of corruption.

MEMORY ALLOCATION

Although Busibasic takes up a huge 8K of RAM, you are
left with 34K free for Basic. The area from $C000-$D000
and $9000-$A000 are strictly reserved and any attempt
to overwrite these areas will crash your program. Zero
Page is used extensively, especially locations $FB-SFE.
There is no room in the machine for any other machine
code, except by lowering Basic.

Busibasic has no preference for screen and graphics data.
It does not force any particular location for graphics, and
most commands will detect the new screen location and
adjust accordingly.

MEMORY MAP
HEX LOCATION DESCRIPTION
0000-00FA BASIC WORKSPACE
00FB-00FF BUSIBASIC PARAMETER BLOCK
0100-02A6 STACK AND ZERO PAGE

02A7-02CC TEMP. DATA AREA

0300-03FF COMMAND VECTORS AND BUFFER
0400-07E7 SCREEN

07FB-07FF ICON POINTERS

0800-8FFF MAIN BASIC AREA (34K)

9000-9FFF INTERPRETER AND COMMAND CODE 1
A000-BFFF BASIC ROM/WINDOW STORAGE
COO0-CFFF COMMAND CODE 2

DO00-DFFF VIC SID CIA 10 142

E000-FFFF KERNEL ROM/FREE STORAGE AREA

BUSIBASIC USERS GUIDE

An alphabetical summary of commands follows. Error
massages are discussed and a command summary is
given.

Syntax: $hexnumber
See also: %

The dollar sign allows hexadecimal numbers to be used
in variables, expressions or commands. Just precede the
hex number by the dollar sign and it’s decimal
equivalent will be calculated and processed.
EG. SYS $9400

POKE $D000,$FF

PRINT $FF

%
Syntax: %binarynumber
See also: §

The percent sign followed by a binary number will allow
the use of binary constants. Binary numbers are
especially useful in setting individual bits in a byte.

EG. POKE 54296,%10001011

@
Syntax: @”disk command”
OR @
or @$
See also: DOS
The ampersand takes the place of the DOS command for

sending commands to the disk drive. It has been

50

ON THE DISK

included for compatibility with other DOS Support
programs.See DOS for a full description of syntax

.DEFPROC
Syntax: .DEFPROC procname (optional parameters)
See also: .PROC .ENDPROC

DEFPROC defines a procedure. Anyone who has used
BBC Basic will know how useful a procedure is. It is in
effect a mini-program, separate from the rest of the
program, which can be called at any time and
parameters passed to it. .DEFPROC defines a procedure
with the name procname. This name can be up to 128
characters long and is used to reference the procedure
with the .PROC command. The optional parameters
allow variables to be specified inside brackets separated
by commas. These variables can be passed from the main
program to the procedure and used there.

EG. 10 DEFPROC WAIT(Ni
20 TI$="0¢
30 IF INT(TI/GO) <N THEN 30
40 .ENDPROC
50 PROC WAIT(5)
60 SEC=10
70 PROC WAIT(SEC)

This procedure allows a program to be paused for a
certain number of seconds. The procedure is completely
independent of the main program. It is impossible to give
a full explanation of procedures in this small space, but
see the demo program for examples.

.ENDPROC
Syntax: .ENDPROC
See also: .DEFPROC .PROC

LENDPROC specifies the end of a procedure. The
_ENDPROCs are paired with the last .DEFPROC. Note
ow the area of program marked by a
_DEFPROC/ENDPROC is completely ignored until it is
called by a .PROC command. Procedures ha
in front of the command for easy identi
procedure command. It is possible to exit before an
'ENDPROC

.PROC
Syntax: .PROC procname(optional parameters)
See also: .DEFPROC .ENDPROC

.PROC references a previously defined procedure with
the name procname. Control is passed o the procedure
and any variables transferred. Execution resumes at the
next command after the .PROC when a .ENDPROC is
encountered. It is similar to the GOSUB/RETURN
construction. Note that the correct number of values
must be supplied, but these may be different variables
from the ones specified in the .DEFPROC command. This
gives increased flexibility. See the example above. The
procedure stack can handle around 25 procedures at
once. See the error message dictionary.

ARROW
Syntax: ARROW speed,colour
See also: POINTER

ARROW allows parameters to be specified for the
POINTER command. The smaller the speed value, the
faster the pointer moves. The colour parameter follows
normal colour codes.

BAR
Syntax: BAR screen location, colour,height
See also: LOCATE BOX WSTORE WDISPLAY

BAR draws a vertical solid bar with resolution of one
pixel. It uses character graphics, and is therefore
compatible with ordinary text. The bar is always eight
dots wide. Screen location is the number from 1024 to
2024 where the bar is to start in the screen matrix. Height
is in pixels: This command allows quite complex
histograms to be drawn very quickly. It is invaluable
when representing data, and is very effective when
combined with boxes and windows.

BEEP
Syntax: BEEP

See also: BOFF

BEEP sets up a ‘blip’ once a key is pressed. This facility is
found on expensive computers, and gives programs that
professional touch. It is interrupt driven and will continue
until RUN STOP/RESTORE is pressed, BOFF is executed,
or it is cancelled by another interrupt comman

BINPUT
Syntax: BINPUTX,Y,”prompt string”,length,variable

Busibasic INPUT is an extended INPUT command. The
Commodore form can be crashed easily and has a
number of weak points. This allows the input of a value,
string or numeric, to the specified variable. It will occur
at the specified XY position and will not exceed the
length given. Editing is supported, but the cursor cannot
move out of the given area. Once RETURN is pressed,
control s returned to your program, with the variable
specified containing the input. Note that the prompt
string is optional.

Synlax BOFF
See also:

This command switches the keybeep off. It will also kill
any other undesired interrupt commands and return the
HIV to normal

Symax BOX startX,finishX,startY,finishY,top line,bottom
line,colour,reverse flag

40

MCh S e

See also: WSTORE WDISPLAY

BOX draws a character graphic box of the specified
dimensions. It can be used to outline options or menus,
and is especially useful with the Window commands. It
can outline a specified window to give a professional

effect. The top and bottom line allow two lines to be
drawn inside the main box. This allows the highliting of
an option, or the underlining of a title. They are Y values
only, and should fall between startY and finishY. The
reverse flag will fill in the box with the foreground colour
if itis 1, or any other value will draw an empty box. See
the demo program for effective use of the BOX
command.

EG. BOX 10,30,5,14,6,13,1,0

CLINE
Syntax: CLINE linenumber
See also: CLS LOCATE

CLINE clears a horizontal line of the screen. Linenumber
is a Y value between 0 and 24. It allows clearing of
certain parts of the display without disturbing other
screen data. It can also be used for special clear screen
effects,

as
Syntax: CLS
See also: CLINE

GE

simply clears the screen without any silly hearts or
$(147) . God knows why Commodore left this
command out in the first place!

COLOUR
Syntax: COLOUR cursor,background,screen
See also:

COLOUR simply sets up the three co
without having to use any POKEs in
locations.

urs of the screen
It to remember

41

ON THE DISK

DAPPEND
Syntax: DAPPEND"filename”
See also: DLOAD

DAPPEND joins a program from disk onto the end of the
one curently in memory. This allows the construction of
tried and tested subroutines on disk to be appended to

your latest program. Try and make sure that the line
numbers are different or problems could occur. Use the
DLIST command to make this check

DIR
Syntax: DIR
See also: DOS @

DIR displays the directory of the disk in the drive
without disturbing any memory. Scrolling of the
directory can be slowed by holding down the CTRL
key.

1ST
Syntax: DLIST"filename”
See also: TYPE

DLIST will st the Basic program specified directly from
disk. This means that the program is not loaded, and
other programs can be examined without disturbing the
current Basic program. Lines can be grabbed by DLISTing
to the correct place, pressing STOP and pressing
RETURN over the correct lines. This has proved to be a
very useful command. See TYPE for listing other filetypes
Note that DLIST is not very reliable with control
characters or BUSIBASIC commands.

DLOAD
Synatx: DLOAD" filename”
See also: DSAVE DAPPEND

DLOAD merely loads the specified Basic program from
disk. No ,8 is needed after the filename. DLOAD"*" is
much neater than LOAD"*",8

DOKE
Syntax: DOKE location, 16 bit value
See also:

DOKE performs a double-byte POKE. It will split the 16
bit value into high and low bytes and store them at
location and location+1 in the correct order. This is
useful for setting vectors, start of Basic etc. and it is
improved when you realise that hex or binary values can

Syntax: DOS”command”
OR DOS

OR DOS$
See also: @ DIR

DOS is a multi-function command that addresses the disk

ON THE DISK

operating system. DOS”command” will send any
command that would normally be sent by
OPEN15,8,15,"command”:CLOSE 15. It allows the
scratching and copying of files etc. See the drive
handbook for more information. These commands are
essential when working with business programs.

DOS will display the contents of the disk error channel in
reverse video. It will explain the cause of the flashing
LED on the drive. DOS should be used after every major
disk access.

DOS$ will display the disk directory to the screen. See
DIR for more information.

DSAVE
Syntax: DSAVE”filename”
See also: DLOAD

Saves the current Basic program to disk with the specified
filename. A save with replace can be executed by
placing @: in front of the filename.

DUMP
Synatx: DUMP
See also: FKEY

Performs a dump of the text screen to a device 4 printer.
This is a relatively fast method, and takes care of ASCII
conversions. If a printer is not connected, the screen will
be dumped to the screen! You may like to assign this
command to one of the function keys for a one-key
screen dump.

FAST
Synatx: FAST
See also: SLOW

FAST increases the processor clock rate by switching off
the screen and sprites and setting interrupts to a
minimum. A speed increase of around 10% is usual. This
is useful in speeding up operations where the screen is
not necessary.

FKEY
Syntax: FKEY”F1,F3,F5,F7,F2,F4,F6,F8”
See also: BOFF

FKEY will assign your own definitions to the eight
function keys. The function keys are already defined by
Busibasic as below:

SYS $9400 will restore these definitions after RUN
STOP/RESTORE. BOFF will disable the function keys.
When defining your own function keys, there is a limit
of ten characters on each key. A carriage return is
signified by a back arrow. Separate each definition by a
comma.

ICON
Synatx: ICON icon number,flag
See also: SETICON POSICON PTRICON

ICON enables or disables one of eight icons. Icons run
from 0-7 and are sprites. They follow all the rules for
sprites, and the four ICON commands take the place of
the dozens of pokes necessary for sprites. Icons can be
designed with any sprite editor. They are useful in giving
a graphic representation of a program or operation and
are essential in a WIMP environment. See the
Programmer’s Reference Guide for an easy introduction
to icons/sprites and the techniques associated with them.
Flag determines whether the icon is to be switched on or
off - 0 is off and 1 is on.

INSTRING
Syntax: INSTRING target string,search string,result
See also: VARPTR

INSTRING finds the occurrence of one string within
another string. It is useful in anything requiring a search
facility. The target string is compared with the search
string, and the first occurrence of the search string within
the target string is noted. This value is passed back in the
result variable

EG. INSTRING A$,B$, RESULT
Result will now contain the position of the first
occurrence of B$ within A$.

Jjoy
Syntax: JO
See also: Borr MENU

JOY provides a useful editing facility. It allows you to
position the cursor by using a joystick in port 2. It
simulates the appropriate cursor key press, and can
therefore be used within programs requiring cursor
movement. It is interrupt driven so BOFF will disable
JOY. The fire-button simulates the RETURN key.

KEYW;
Symax K[VWAIT
See also:

KEYWAIT will wait indefinitely for a keypress. This saves
the use of GET and is useful in many applications. This
command is not ideal for receiving a value from the
keyboard, but location 2 will contain the value that
would have been in location 197. See a reference guide
for details of these values.

42

LOCATE
Syntax: LOCATE x,y
See also:CLINE

LOCATE positions the cursor at the x,y position where x
is less than 40 and y is less than 25. Use this in
conjunction with the print command for accurate text
positioning. It is faster and neater than cursor commands
in quotes.

Syntax: LOWER
See also: UPPER

LOWER switches to the C64’s lower-case business mode
character set. This reduces the graphics characters
available to you, but is essential for wordprocessing.
Note that graphics characters used in BOX and BAR ma
be affected. This command should be avoided if you are
moving your character sets.

MENU
Syntax: MENU return variable%,choice array(0),zone
See also: WSTORE JOY

MENU creates drop down menus similar to those found
on the Amiga. It stores the screen before the menu is
displayed, and replaces it after the choice has been
made. Return variable should be an integer; this will
contain the number of the chosen option. An
ON..GOSUB structure could be used to handle this
choice.

The choice array should be a one dimensional string
array. The element 0 is displayed at the top of the menu
as a title and cannot be chosen. The other elements (up
to 23) should be strings of eight characters or less. These
choices can be scrolled up and down with the cursor
keys, or joystick by using the JOY command. The current
option is highlighted in black. Control is returned to your
program once a choice has been confirmed by pressing
the Return key.

Zone ranges between 0 and 4 and determines where the
menu will appear on screen. 0 is flush to the left border
while 4 is flush to the right border.

eg. MENU RT%,A$(0),2

MENU stores it's screen information in the same area as
the window commands. To avoid corrupting windows,
create a dummy window which fills the screen. This will
take up the correct amount of space for the MENU screen
store, and avoid touching other windows. You should of
course not use that particular window.

oL
Syntax: OLD
See also: QUIT

OLD will resurrect a Basic program after a reset or a
NEW command. It will restore pointers and give a listing

43

ON THE DISK

to the screen. OLD is a very useful and reliable
command which will save some angry words.

POINTER
Syntax: POINTER
See also: ARROW JOY

POINTER will display a joystick driven pointer on-screen.
It is controlled by the port 2 joystick and cannot move off
the screen. The routine will take control of your program
until the fire button is pressed, indicating that a screen
item has been selected. You can then get three items of
information about the pointers location.

251 - X co-ordinate 0-39
252 - Y co-ordinate 0-24
253 - screen code of character under cursor

PEEK the above locations to find the correct information.
The X and Y co-ordinates are most useful as they relate to
screen positions rather than sprite positions. Use this to
decide which action to take.

The cursor speed and colour can be changed with the
ARROW command. Note that the pointer occupies one
of the eight icons available.

The cursor keys and space can be used to control the
pointer.

POP
Syntax: POP
See also:

POP is used to make a premature escape from a
subroutine. Subroutines can be branched out of, but the
return address is leit on the stack and clogs it up. This
results in an eventual OUT OF MEMORY error. POP
allows the program to ignore the existence of a
subroutine. This means that POP is used just before a
jump out of a subroutine. This might just be a saviour to
your program structure!

POSICON
Syntax: POSICON icon number,X,Y
See also: PTRICON ICON SETICON

This command POSitions an ICON. The icon number is
the standard identifier from 0-7. X and Y are in the
normal sprite ranges. Experiment to find the border
positions on your monitor. There is no need to fiddle
about with the MSB of X - X numbers over 255 will be
automatically calculated. Note that the other three
commands must be used before the icon becomes.
visible.

PTRICON .
Syntax: PTRICON icon number,design block
See also: POSICON ICON SETICON

PTRICON sets the PoinTeR to the appropriate ICON. This

ON THE DISK

is essential to tell Busibasic where your icon definition
starts in memory. The design block is calculated by
dividing the e e P bk by 64. For
most applications where bank 0 is in use, just divide the
address by 64.

eg. 12288 /64 =192
start address/ 64 = design block

QuIt

Syntax: QUIT

See also: OLD

QUIT will return to the normal Commodore operating
system. It will make Busibasic invisible to the system, but
still in memory. Basic programs are not affected by the
QUIT command. You can return to Busibasic by typing.
SYS 37888. This means that you can exit and return to
Busibasic at will.

REVERSE
Syntax: REVERSE screen location,number of characters
See also: CLINE

REVERSE toggles specified characters between reverse
and ordinary mode. This is useful for highlighting a title,
or for drawing a bar. It is thousands of times faster than
it's Basic equivalent. The screen location should be the
number between 1024 and 2024 in the screen matrix
where the reverse should start. The number of characters
is obviously the number of screen positions that should
be reversed. This could be useful in conjunction with the
POINTER to indicate what has been selected.

SETICON
Syntax: SETICON icon

1,colour2

Yex)
See also: POSICON PTKICON ICON

SETICON sets up parameters for icons. The type should
be 0 for hi-res and 1 for multicolour. Colour is obvious.
Xexp and Yexp determine if expansion is_switched on
or off on the icon, 0 for off and 1 for on. Priority dictates
the priority of the icon over the background, 0
background and 1 icon. The two following colours are
only specified if the icon is in multicolour mode. All
colours are from 0 to 15. SETICON should be used along
with the other commands to make an icon visible.

SLEEP
Syntax: SLEEP time
See also:

SLEEP makes your program pause for a specified amount
of time. This allows the user time to read displays etc.
and avoids the use of clumsy FOR..NEXT loops. The time
should be between 1 and 255. For a rough guide,
multiply the time figure by 4 for the time in seconds. This
of course varies with the interrupt rate

44

SLOW
Syntax: SLOW
See also: FAST

SLOW restores the screen and reverts to normal speed
after a FAST call. It should ONLY be used after FAST has
been used. This is because FAST stores essential
information in the parameter block at 251. If this has
been corrupted by other Busibasic commands, the
SLOW command will crash the C64.

SORT
Syntax: SORT array name
See also: VARPTR

SORT performs a speedy sort of a string array into
alphabetically ascending order. This is a very useful
command in business programs. The array name should
only be the first one or two letters of the array name (i..
no'$ string identifier). The array should be one
dimensional and have more than one element. See the
error messages for more information.

TYPE
Syntax: TYPE “filename,filetype”
See also: DLIST

TYPE displays the contents of a file directly to the screen.
This often results in rubbish, but it is very successful with
sequential files. Basic programs should be displayed with
the DLIST command. The filetypes are shown below:

S - sequential

P - program

L - relative

U - user

See also: LOWER

UPPER returns the C64 to the default capitals/graphics
character set.

VARPTR
Syntax: VARPTR variable,return variable
See also: S¢

VARPTR will return the start address of the variable. It
will store the address in the return variable specified.
This command is limited in it's usefulness.

WCLR
Syntax: WCLR
See also: WDELETE WLOAD

WCLR clears the area under the Basic ROM for the
storage of windows. It MUST be used before any window
ccommands, and it is wise to include it at the start of your
program. The windows will not work without first being

R T o T

CLeaRed. This does not apply if you are loading in
previously created windows.

WDELETE
Syntax: WDELETE window number
See also: WCLR

WDELETE will delete the specified window from the
buffer. It will free up memory for other windows. Make
sure the window already exists or you will get a
WINDOW ERROR

WDISPLAY
Syntax: WDISPLAY window number,X,Y,flag
See also: WSTORE

WDISPLAY displays a previously stored window to the
screen. A copy of the stored window is left in the buffer.
The window contents will be displayed at the X and Y
cursor position specified. This is flexible, as the X and Y
positions for displaying need not be the same as those
when storing the window.

Flag has an important bearing on how the window will
be displayed:

flag= 0 the window will overwrite the screen

flag= 128 the window will have reversed colours
flag= 64 the window is swapped with the screen
flag= 192 the window will have reversed colours

The last two values are potentially most useful, as
repeating the command will restore the original display
after the window has been used

WLOAD
Syntax: WLOAD"filename”,8
See also: WSAVE

WLOAD will load a previously stored set of windows into
the buffer area under the Basic ROM. This means that
windows can be created and stored outside your
program, and your program can access them as they are
needed. The inclusion of this command means that the
number of windows is only limited by disk space. Note
that WCLR is not necessary if WLOAD is used.

WSAVE
Syntax: WSAVE”filename”,8
See also: WLOAD

WSAVE saves the 8K window buffer area under the Basic
ROM to disk. Windows can be created and stored outside
of your program, and WLOADed when needed. This
shortens your program, and provides scope for a huge
amount of information to be stored on disk and accessed
when required. WSAVE will only save the number of
windows that have been used, therefore using as little
disk space as possible.

WSTORE

45

ON THE DISK

Syntax: WSTORE window number,X,Y,width,height
See also: WDISPLAY BOX

This command is the heart of the window operating
system. It stores a specified section of the screen to an 8K
bufer, assigning it a unique window number. Note that a
border is not drawn around the windows, the BOX
command has been designed for this purpose. You should
make sure that all parameters are correct or you will get a
WINDOW ERROR. See the Error Dictionary for an
explanation of the numbers. Be sparing with your width
and height settings or you will run out of memory.

ERROR DICTIONARY

Busibasic issues it's own errors, as well as modifying
some existing ones. The error checking in most routines is
secure, but you should calculate correct parameters
beforehand to avoid mistakes. An explanation of errors is
given below.

2ARRAY NOT FOUND

A string array has been referenced in a SORT command
which does not exist. Make sure that your array has been
dimensioned properly.

2.END WITHOUT PROC

An ENDPROC has been found without a corresponding
.DEFPROC. Th similar to ZRETURN WITHOUT
GOSUB. Mkae sure that all procedures have associated
.DEFPROCs and .ENDPROCs and you will have no
bother. Note that the line number specified is the line in
which the procedure has been called by PROC

2ILLEGAL VARIABLE

An array variable has been used as a parameter in a
procedure. This is not allowed.

NO .END FOUND

A .DEFPROC has been found but with no .ENDPROC
associated with it. Always close each procedure with a
.ENDPROC

INOT ENOUGH ELEMENTS

A string array has been specified in a SORT statement and

it has only one element. An array of one string cannot be
sorted!

20UT OF MEMORY

ON THE DISK

The 256 byte procedure buffer has been filled and there
is no more room for procedure definitions. There is room
for approx. 25 definitions in one program, though this
amount is rarely exceeded. You could also have too
many nested FOR...NEXT or GOSUB...RETURN
structures. Try using POP to escape from subroutines.

2SYNTAX ERROR

The Busibasic interpreter cannot understand your Basic
program line, and the error cannot be included in the
other categories. Check the spelling of the command,
that parameters are in range, that commas are in the right
places and that you have supplied the correct amount of
parameters.

2TOO MANY DIMENSIONS

The SORT command can only deal with arrays of one
dimension.

2TYPE MISMATCH

Busibasic expected a certain variable type which was not
provided. Maybe you put a string in place of a number
or vice-versa. This can also occur if the variable type
expressed in a .PROC is not the same as in the
associated .DEFPROC

2UNDEF. PROCEDURE

You have called a procedure by a name which cannot be
found in a .DEFPROC command. Check the spelling of
both procedure names

2WINDOW ERROR

You have made some error in a window related

command. Their numbers and meanings are listed
below:

ERROR MEANING

1 SYSTEM FAILURE-RELOAD
BUSIBASIC

NO WINDOW EXISTS
WINDOW ALREADY EXISTS
BAD X

BAD Y

BAD WIDTH

BAD HEIGHT

BAD X + HEIGHT

BAD Y + HEIGHT

BAD WINDOW NUMBER
NO MEMORY AVAILABLE

CENTUEWN

23

DEMO PROGRAM

The Busibasic demo program is loaded from Busibasic
by typing DLOAD”BUSIDEMO”. It is an attempt to
demonstrate how a file handling desktop environment
could be created. It is not an elegant piece of
programming, but it works and it shows off the system
and it's commands. It could be improved further by the
utilisation of windows, icons and properly structured
subroutines.

When writing this | noticed something odd. | have set the
pointers for strings and Basic storage at 52-53 and 55-56
to $BFFF, just below Busibasic. This is to ensure that it
does not get corrupted. But during development, |
noticed that the Basic 2 system kept resetting the string
pointer to $A000. This is in spite of the fact that the
highest legal address in 55 and 56 was still $8FFF! This
results in the frequent corruption of the Busibasic
operating system by variables. s this a bug in the ROMs
or my programming ? Either way, you will have to be
very careful about variables; save your program
regularly.

When the desktop is up and running you have a joystick
or cursor-keys controlled pointer. The bar at the bottom
is disk status. The bar on the right is the amount of space
on the current disk. The bigger the bar, the more space
available. The bar along the top gives free memory and
the three pull down menus. The centre window is where

all dialog takes place. Click on any of these
components and they will react. Below is a
description of the menu functions:

DISK: Normal disk commands. Type the required J6
, and click on cancel or confirm when prompted.
Exit will leave this menu.

VIEW: The most important menu. DIR will slowly
read the directory in from disk into an array. It will
display the filenames in blocks of ten. Click on
continue at the bottom of the window to see more
filenames. DIR should only be used when a new
disk has been inserted. LIST will display the
filenames again without any disk access. Click on
any of the filenames to load that particular file. This
is active at any time when a filename is in the dialog
window. The file is presumed to be Basic. SORT will

46

sort the directory into alphabetical order. DUMP will
print the directory 1o a device 4 printer. When used with
sort,, this is a very powerful asset. Use DIR to return to
the normal format directory.

SPECIAL: Gives a number of options to exit the program.
Choose BUSI to end and list the desktop and BASIC 2 to
reset and exit Busibasic

The desktop program is really self-explanatory. Untidy

but functional. Why no try customising the desktop for
your own needs to really get the hang of Busibasic?

CLOSING POINTS

It is difficult to summarise the working of a new Basic
language within the constraints of a magazine. There is
bound to be something that | have forgotten to mention.
My advice: experiment.

The demo program provided should point the way to the
using of the commands in a program

There may even be some programming oversights on my
part!

If you have any bother using Busibasic, you can contact
me through the magazine.However, exam pressure may
postpone a reply. | certainly use Busibasic to make my
programming life easier - | hope that you find the same
use for it. The Editor may even consider publishing
programs written with Busibasic. Why not try your luck
and submit your masterpiece - it may earn you some
money!

BUSIBASIC COMMAND SUMMARY

$ hexnumber
% binarynumber

@”disk command”
@$

-DEFPROC procname (optional parameters)
.ENDPROC

ON THE DISK

-PROC procname (optional parameters)
ARROW speed, colour

BAR screen location, colour;height
BEEP

BINPUT,x,y,”prompt string” length,variable
BOFF

BOX x1,x2,y1,y1,top line,bottom
line,colour,reverse flag

CLINE screen line
gl s

COLOUR cursor,background,screen
DAPPEND “filename”
DIR
DLIST “filename”
DLOAD “filename”
DOKE location,16-bit value
0S

DA
DOS”disk command”
DOS$

DSAVE “filename”
DUMP

FAST

SLOwW
FKEY”f1,f3,15,17,§2,f4,f6, 8"

ICON icon number,flag
INSTRING target string,search string,result
Joy

KEYWAIT

LOCATE x,y

LOWER

MENU return variable%,choice array(0),zone
oLD

POSICON icon number,x,y
PTRICON icon number,design block
UIT

REVERSE screen location,number of characters
SETICON

icon number,type, colour,Xexp, Yexp, priority,
col1,col2

SLEEP time

SLOW

SORT array name

TYPE “filename filetype”

UPPER

VARPTR variable,return variable

WCLR

WDELETE window number

WDISPLAY window number,x,y,flag
WLOAD “filename”,8

'WSAVE “filename”,8

WSTORE window number,x,y,width, height

47

ON THE DISK

BASIC SLIDER

Another routine for producing pleasing text.

by DAVID READ

I was at my computer one night, experimenting with
strings and the commands that deal with them, when,
quite by accident, | discovered a small routine that could
improve the presentation of a program with a large
number of text screens,

HOW IT WORKS

The routine works by taking one character from the
string, then two, and so on, and. printing them on the
beginning of the line. (the word THIS would print S, 1S,
HIS and THIS.) This gives the efiect of the line sliding
across the screen.

This vers simele text-sliding techniaue
uses two Key BRSIC cowwands:

RIGHTS 2nd LEN(AS$).

1o the sUbroUTIee WILL
be exelained Later, as will how to et
1610 $00r own eroaraws.

Press any ks

The routine, filed on the disk as SLIDER.SUB, when
given a line of text 40 characters long in AS$, will slide it
across the line on the screen character by character,
which would make the screen more interesting to look
at. To use the routine is easy. Just make these two
commands part of your program:

eg.

10 A$="TEXT 40 CHARACTERS LONG”
20 GOSUB 10000

30 ...restof program ...

The routine supports user-defined characters, and will
not interrupt the variables in a program, as long as AS

letter, by adding the following line to the routine

10007 FOR <variable>=0 to <delay>:NEXT <variable>
DEMONSTRATION

Also on the disk is a demonstration program called

Basic Slider, which shows how the routine works with
another program, and uses user-defined characters

48

Here

to know avout
use the sobrovtine

(from the program CHARS.MC) as a example of the
effects that can be made. You then have the option of
loading the Basic Slider routine, restarting the
demonstration to have another look at the explanations,
or resetting the computer.

MERGING IT IN

You can put the routine into your own program by
loading the SLIDER.SUB program from the disk and
building your program around it, or using a MERGE
command from a version of extended basic, or you can
use this method, which is slightly more complicated.

Merging one program into another requires resetting the
start of the BASIC locations to the end of your current
program. You can find where your program lies by
PEEKing locations 51 and 52. You then set the start of
BASIC locations to these values, and you can now load
the routine in. Once it has loaded, POKE 43,1 and POKE
44,8 to get your original program back.

If you wish to use the character set in your own
programs, you must put these two lines at the front of
your program:

1A=A+1:IF A=1 THEN LOAD "CHARS.MC",8,1
2 IF A=2 THEN POKE 53272,24
To switch off the characters, type POKE 53272,21

BASIC SLIDER

Basic Slider is only a simple way of sliding text. A
machine code version would slide the text much more
smoothly, and would allow colours and sound to be used
as well, but as this is beyond me (at the moment)
perhaps a talented machine code programmer will come
Up with a better version.

Is the proaram that sL1ded that

\ast Plece of TeXt...-

00Ld now everything there Is
the Basic SLider, and can

10 9005 oWe erograws.

ADVENTURING

This is only a short Adventure Writing just to finish off the
section on character animation. In the next article we
will start on the programming aspects of the adventure.
Yippee! | will have finished with the theory and ideas
behind writing an adventure so we will be able to
embark on how to actually get the thing up and running.

COMMUNICATIONS

Here of course we are not thinking of setting up our own
telephone network or anything throughout the adventure;
we are talking about the player communicating on a one-
to-one basis with the other characters. You must also bear
in mind how the computer will tell the player what
actions the other character is performing, if any, and also
what is happening elsewhere in the adventure if it is of
importance.

TALK TO THE ANIMALS

The most obvious way in an adventure that the player
talks to the animals and other characters is by way of the
SAY and ASK commands. These usually take the form
SAY HELLO TO THE ELF. However, you may want to
make your adventure so that quote marks are required
around the speech. This is probably best because it
clearly defines what the player wishes to say. And how
are you going to make your adventure cope with inputs
that are “around the wrong way” such as SAY TO THE
ELF HELLO. Quote marks make it easier to instantly pick
out the text: SAY TO GANDALF “PICK UP THE AXE”. |
won't go to deeply into the way that your program will
analyse that particular command - that will be talked
about next month. Suffice it to say that the program will
take the word(s) immediately following “TO" to be the
character and the word(s) in the quotes to be what you
want 1o say. It really s as simple as that. You must make a
clear distinction between SAY and ASK if you are to
include the ASK option. You should ensure that SAY
“HELLO” TO THE ELF creates a suitable response
whereas something like ASK THE ELF “HELLO” sounds
obviously strange. You usually ASK a question, not a
statement.

Character Animation comes to a close JASON FINCH

RESPONSES

When the program has sussed out who it is you want to
talk to and what it is you wish to say, the computer must
decide what a suitable reply for that character would be.
This is a simple form of Al (Artificial Intelligence to most
people). You must choose how complex you want the
communications side of your adventure to be. If you
have no characters then all well and good, you don’t
need to worry about communicating, but the more
characters you have, and the more you want the player
to rely on speaking to others (which shouldn't be too
much!) then the more complicated your speech analysis
routine will become. If it isn't all that important then you
can have a set of fixed responses to certain statements or
questions. Otherwise you can have the routine “think”
out what sort of question is being answered and then put
together a reply. For instance, the former may result in
the computer displaying “The little man says ‘no’” if you
say to him PUT THE CUP ON THE TABLE, whereas the
more advanced reply routine may say “The little man
says he wants to hold the cup”. This response would be
changed if you said PUT THE SWORD ON THE TABLE
or something. | hope that will give you some food for
thought on the complexity of your routines and whether
you actually need a super-advanced system.

WHAT’S HAPPENING?

The last word for now on communications is telling the
player what other characters are actually doing. Most of
this will be discussed in the programming aspects section
next time, but for now just give a bit of thought to the
personalities that your characters, if any!, will have. In
The Hobbit there was one character that constantly
talked to himself. Fine, so you display messages like “The
elf talks quietly to himself”. But movement is harder to
do. The ideas are simple enough, “The guard leaves the
room”. But how will it be possible to tell whether he can,
and how will the computer know where he should then
be placed? All will be revealed next month!!

With a bit of luck this won't have extended too far onto a
second side, if at all. So without further ado, | shall SAY
“CHEERIO FOR NOW” TO THE READERS! See you all
again next time, | hope.

49

MO

SOFTWARE

T TED PO LIBRA
IN OUR SECOND YEAR OF SUPPLYING 64 PD, WE STILL CONTINUE TO

\RCADE, E & ADVENTURE. SOME OF Wi
COMMERCIAL GURLITV WE RS NOT ONLE THE CEADING. S0
846D, BT WE ALSO CFFER FHEE EXPERT ASSISTANCE SHOULD ANY
GRAMMING OF P PROBLENS A
R COPY OF GUR LATESY ST SEND AN snmws FOLLOWING
ADORESS, Aummvm SEND £200 FOR AMORE DETALED
MPUTERISED LIST § A FEW sxrm DEMOS.
WING SOFTW/
135 GALLOWBROOK LANE,

BIRMINGHAM . B45 9TG

Lineage: 58p per word. (+VAT)
Semi display: £11.50 plus VAT per single column centimetre
minimum 2cm. Ring for information on series bookings/discounts.

CDU CLASSIFIED DEPAY RrMEur ALPHAVITE PUBLICATIONS LTD,,
20 POTTERS LANE, KILN FARM, MILTON KEYNES, MK11 3HF.

SispEEEaT

9NLY POOLS AND HORSES

e e
-

...mzszz:mwf--‘.

aunne*"“ o

R
POOLS PLANNER by the same author. Full details given of 369
easily entered block perms ranging from 9 to 73960 lines and
from 12 to 56 selections. All are accepted by the pools firms
and are checked in seconds by your compute

CLASSIFIED COUPON
ALL CLASSIFIED ADVERTISEMENTS MUST BE PRE-PAID.
‘THERE ARE NO REIMBURSEMENTS FOR CANCELLATIONS.
CDU CLASSIFIED DEPARTMENT, ALPHAVITE
PUBLICATIONS,

20 POTTERS LANE, KILN FARM, MILTON KEYNES, MK11 3HE.
RATESLneage 38 prvor (AT, Sei pay £1150 (VAT persngle
olumn om minimum size 2c scounts 2
1 enciose my Cheque/Postal Order for £ Jor
el At Piticatons
Dokt 6 necessary)

Ecmm"““ T

insertions,

feeer.
BOXOFT (CDU) 65 Allans Meadow,
Neston, South Wirral L64 95Q
Chque/PO/Acceslesa Tel:051-336-2668
e

W
PTG

2

PAIRS

084, C4d.

1281541 £40.i

Tivos monthwarary week voureed
‘SPARES

WORTHING

3 7
COMPUTERS |[zor1+-020™ 1.

Tel: 0903 210861 |[sses.

oasis coupuren services
Demt

7 WARWICK ST o :7':;’,"2&:;" e
WORTHING]
WEST SUSSEX
oo =SS HOME WORKERS WANTED
o
rangeof§Bitand || {Maling Envelopes)
16 Bit) .
Software and
ipherals.

atire: Ba
JFORSALE UISOFTWARE LISPECIALOFFERS (LOTHER

27 WOODSIDE PLACE
GLASGO G37QL.

Silca presents some great| FIREE DELIVERY

offers on the award winning Nt Day - Anywhee i the UK mainand

range of high quality dot| FREEF STARTER KIT
or

matrix printers from Citizen. ih £2995 - With very Cizen e from Sica

Each Gitizen printer is built in
cass, | FREE COLOUR KIT

Worh 3885 - Wi Swi 9 g Swi 24 ptas

R]
ey Gz i puchases fom Sikca.

WINDO 'S 3.0

Fee Windons 30 drvr - 1 th Sica St K.

I

Tchncal supor hlpine open i o

MADE IN THE UK

s st manufactued o hgn Sndars

144 otk 24 Rk 192 nﬁﬁr 24 i

TIZEN 120D + | CITIZEN 124D |SWIFT 9 - COLOUR! | SWIFT 24 - COLOUR!

T Gizan 1200+

Lo
B T e T e e

" 00

pin Printhead
© Piint Spaod i44cps Drant
Ty

s e

"IVAT = £20585 lxum Fce “SVAT = £217.35

e i R
mn O —
HHE 8 FREE TAR ER K
[1
ey
= L

y Gilizen printer from Silca Jete with the Silca
Printe Startr K, ncluding everyhing you nesd 1 get up and un-
W priter /mmediae, FREE OF GHARGE!

bels on Tacior Foed
Foe

ey o i an wal e s S Prer NOFMAL FP.
St Koy o KT 500 sl £2 5 i
Sic pric of 2455 -5 of ARP! I

WAL OROER: e The Mo, Ral ey 10 Sacup et DAVE 405
'GP ope: s S g Eebin
2 T Gt o, London. WP OB

?
i
5
¥

4T v Vo o, Sl Kt B 0 o TSR

19V, Sun. et e
G0 54,14 The News,Patherey Ao, Sdeup. ke, DTS 40X\

r-
1 PLEASE SEND CITIZEN PRINTER INFORMATION |}

z';“:zt.:::m.m’.“.“m;::ﬁ°""“;.,:z:f:.1r,:;;‘::“'.’:';“;‘L’;:‘;.,W:::.E‘::;r;g Address: %

L e R I
Eisee R i
e SILICA gy o o !
e o o o 1 1
EEs

e S Sy o

% GYSTEMS Pl oy

THE COMPLETE
COLOUR SOLUTION

the
YOu cap b:; A

e si
900d g
Shor g 7.0

wth Digiyigy,

Get the most out of your Amiga by adding

“The Complete Colour Solution”
The Worlds ultimate creative leisure product for your
Amiga. Capture dynamic high resolution images into
your Amiga in less than one second.

1S con
the paered, Vi pr W1E1® quay
it af get® I've sqn oMo
 prics, “°*" On any

Images can now be grabbed from either colour
video camera, home VCR or in fact any still video
source. The traditional method of holding three
colour fiters in front of your video camera i certainly
a thing of the past. Because Vidi splits the RGB
colours electronically there are no focussing o
movement problems experienced by some of our
slower compeitors. Lighting is also less of an issue
as light is not being shut out by lens filters. Put all
this together with an already proven Vidi- ® Grab mono images from any video
Amiga/VidiChrome combination and achieve what e
is probably the most consistant and accurate high
quality 4096 colour images ever seen on the Amiga.

b gt
*Actual umetouched digtised screenshot”

® Capture colour images from any still
video source.
® Digitise up t0 16 mono frames on a

1meg Amiga.
The colour solution is fully compatible with all e Animate 16 shads images at different
Amiga’s from standard AS00 1o the ultimate A3000. speeds.
| RAM is required to get up and ® Create windows in both mono. & colour.
@ Cut & Paste areas from one frame to
You will see from independant review another.
comments that we are undoubtedly their first choice @ Hardware and software brightness &

contrast control

and that was before the complete solution was o e oo reau o eiacsard

launched. If you have just purchased your Amiga
and are not sure what to buy next, then just read

send for

o

