SEPTEMBER 1990 £2.75

7747
(e

Don't go around in
circles keeping track of

® Adventure Helpline ® your money
_ @ Exploring the 1541 ® :
. @ Inside Basic Memory @

NOW IS THE TIME
TO CATCH UP ON ISSUES
YOU HAVE MISSED

VOL 2 No.5 JUL/AUG ‘89
FONT FACTORY - Create your
own characters.

HIRES DEMO KIT - Add music
to your favourite picture.
ANIMATOR - Get those sprites
movin,

BORDER MESSAGE SCROLL -
Say what you like along the
bottom of the screen.
TYPIT-128 - Create professional
text layout on your C128
SCREEN COPIES UTILITY -
Download your favourite
screens, including CDU paint
files.

VIDI-BASIC - Graphic based
extension to Basic.

64 NEWS DESK - Become a
Cb4 reporter.

VOL 3 No.3 JAN 90

4 IN A ROW - Connect a row of
counters.

FROGS IN SPACE - Leap to safety
across the space lanes.
BLACKJACK - Don't loose your
shirt.

LORD OF DARKNESS - Defeat
the evil lord in true adventure

style.
MARGO - Fly around and collect
jewels and fuel.

JETRACE 2000 - Have you got
what it takes to be best?
ULTIMATE FONT EDITOR -
Create your own screens, layouts
and characters.

SELECTIVE COLOUR RESTORER
- Design your own system start
up colours.

6510+ UNASSEMBLER -
Transform 6510+ M/C into source
with labels.

TRIVIA CHALLENGE - The first
of 3 files for this superb game.

VOL 2 No.6 SEP/OCT ‘89
MICKMON - An extensive M/C
monitor.

SCRAPBOOK - Collectors and

hobbyists database.
CELLRATOR - Enter the caves
if you dare.

RAINBOW CHASER -

Rainbows means points in this
unusual game.

HIDDEN GRAPHICS - Utilise
those graphic screens.
FORTRESS - Save the world!
Yet again.

DISK HUNTER - Keep tabs on
your disk library.

SUPERFILE - One more for the
record keepers.

VOL 3 No.4 FEB ‘90
COLOUR PICTURE PRINT -
Download your favourite
colour screens.

BASE-ED2 - An update to our
popular database system.

1ST MILLION - Play the market
in this strategy game.

FM-DOS - Enhance your drives
operating system.

GEOS FONTS - A further 4
fonts for Geos users.
HASHING IT - Relative file
programming made easy.
MULTI-SPRITE - Make full use
of up to 24 sprites.
DIRECTORIES EXPLAINED -
Find your way round the
directory jungle.

TRIVIA CHALLENGE - The 2nd
part.

VOL 3 No.1 NOV ‘89

BASIC EXTENSION - Windows
and Icons the easy wa

B-RAID - Vertical scrolling
shoot’em up.
DISKONOMISER - Prudent
disk block saving.

HELP - Design your own
information help screens.
ORSITAL - An arcade style
game with a difference.
PROGRAM COMPARE - Basic
program development has
never been easier.

RASTER ROUTINES - A few
colourful demos.

SPRITE EDITOR 1 - A no
nonsense basic sprite editor.
WABBIT - Help the rabbit
collect his carrots.

VOL 3 No.5 MAR ‘90
PLAGUE - Become your

planets Guardian and
Defender.

SURROUND - Reversi on the
C64

GEOS FONTS - The last of 12
new Geos fonts.

SCREEN SLIDE - Create your
own slideshows.

JOYSTICK TESTER - Put your
stick(s) through the mill.
COLOUR MATCHER -
Mastermind for the younger
players.

SCREEN MANIPULATOR - Full
use of the screen now
obtainable.

VIDEO RECORD PLANNER -
Keep tab on your home
recordings.

TRIVIA CHALLENGE - The 3rd
and final part of the game.

Back issues of CDU are available at £3.25 per issue, which includes postage and packing.
All orders should be sent to:- Select Subscriptions Ltd, 5, River Park Estate, Berkhamsted, Herts, HP4

THL. Please allow 28 days for delivery.

CONTENTS

'S
A simple way of keeping your money straight B

i Disk Driver V4
Volume 3 Number 11 September 1990 5 simple disk utility 6

Autoboot 128
€128 users get easy access to the CDU progs 7

IN THE MAGAZINE Reading between the Lines

Build your own adventure parser 8

Welcome 1.D.OS
Editors comments and instructions 3 Acomprehensive drive utility mn
1581 Internal Disk Commands Price Calculator
Get the most out of your 1581 24 Keep tabs on inflation 16
Adventure Helpline B.OS.S.
The microsope swoops on KRON 27 Yetanother alternative to the standard Basic 17
Adventure Writing Screen Designer/Compiler
Help with software development 29 Impressive screen layouts for all 18
Techno-Info Landscape Routine
Can you help me? No, but | know aman..... 31 Beginners guide to scrolling backdrops 20
Exploring the 1541 Sample Kit 64
Some in depth help for 1541 users reprinted 35 More sampling for all you musicians 22

Hasnain Walji Subscription Rates

Paul Eves UK £33.00

Stuart Cooke Europe £39.00

Jason Finch Middle East £39.30

Deborah Brennan FarEast £41.60

i Designer: Helen Saunders Rest of World £39.70 or $69.00
Distribution: S.M.Distribution Airmail rates on request
Printed By: Gibbons Barford Print Contact: Select Subscriptions. Tel: (0442) 876661

Commodore Disk User s a a published on the 3rd P Limited, 20, Poters
Lane, Kiln Farm, Milton Keynes, MKT1 3HE. Telephone: (0908) 569819 FAX: (0908) 260229. For advertising ring (0908) 569819

Opinions expressed in reviews are the opinions of the reviewers and not necessarily those of the magazine. While every efiortis made
10 thoroughly check programs published we cannot be held responsible for any errors that do occur.

The contents of this publication including all articles, designs, drawings and programs and all copyright and other intellectual property
tights therein belong to Alphavite Publications Limited. Al ights conferred by the law of copyright and other intellectual property
ights and by virtue of international copyright P d Limited and any

reproduction requires the prior written consent of the company ”

©1990 1SN 09530614

INSTRUCTIONS

EDITORS COMMENT

There | was sitting at the blank
monitor screen wondering what to
say for this months editorial spot,
when I was suddenly brought back
to reality by the noxious sounds of
the telephone bell. To say the caller
was somewhat irate would be an
understatement. “What the heck is
happening with my submission” he
wished to know. “Don’t you know its
now nearly eight months since it was
accepted for publication, when is it
going to appear in print”. The simple
answer that | gave him, and this goes
for EVERYONE else that is waiting to
see their masterpieces appear in print
is this; | cannot give ANYONE a
definite date for publication. Please
try to remember that we only publish
approximately ten programs each
issue. We also TRY not to repeat
programs too often. That is to sy, if
we publish a SPRITE EDITOR, we try
not to publish another one 00 soon.
Therefore, trying to select ori
programs gets harder and harder all
the time. On top of this, don't forget
that we are accepting programs each
and every week, therefore the library
of accepted programs is growing at a
greater rate than the publication rate.
All | can say is this: PLEASE be
patient if you have had a
program/article accepted for
publication. We WILL publish it
eventually, its just a matter of time.
(f it is of any consolation to you all,
my own programs, DISK TOOLBOX
and LIBERTE took nearly 15 months
before they appeared in print...and
I'm the Edito

Anyway folks, once again | thank
you all for your fantastic support and
letters of gratitude this past month or
so. It really is heartwarming to know
that the hard work you put into
producing a good quality (which it
is) magazine, is so richly received by
it's readers. Now on with the show....

4

DISK INSTRUCTIONS

Although we do everything possible
to ensure that CDU is compatible
with all C64 and C128 computers,
one point we must make clear is this.
The use of Fast Loaders', ‘Cartridges’
or alternative operating systems such
as ‘Dolphin DOS’, may not
guarantee that your disk will function
properly. If you experience problems
and you have one of the above, then
we suggest you disable them and use
the computer under normal, standard
conditions. Getting the programs up
and running should not present you
with any difficulties, simply put your
disk in the drive and enter the
command.

LOAD"MENU",8,1

Once the disk menu has loaded you
will be able to start any of the
programs simply be selecting the
desired one from the list. It is
possible for some programs to alter
the computers memory so that you
will not be able to LOAD programs
from the menu correctly until you
reset the machine. We therefore
suggest that you turn your computer
off and then on again, before loading
each program.

HOW TO COPY CDU FILES

You are welcome to make as many of
your own copies of CDU programs
as you want, as long as you do not
pass them on to other people, or

people who want to make legitimate
copies, we have provided a very
simple machine code file copier. To
use it, simply select the item FILE
COPIER from the main menu.
Instructions are presented on screen.

DISK FAILURE
If for any reason the disk with your

copy of CDU will not work on your
system then please carefully re-read
the operating instructions in the
magazine. If you still experience
problems then:

1. If you are a subscriber, return it to:
Select Subscriptions Ltd
5, River Park Estate

Berkhamsted

Herts

HP4 THL

Telephone; 0442-876661

2.1f you bought it ‘from a
newsagents,

then return it to:

CDU Replacements
Interceptor Group
Mercury House

Calleva Park
Aldermaston

Berkshire RG7 4QW
Telephone: 0734-817421

Within eight weeks of publication
date disks are replaced free.

After eight weeks a replacement
disk can be supplied from Interceptor
Group for a service charge of £1.00.
Return the faulty disk with a cheque
or postal order made out to
INTERCEPTOR GROUP and clearly
state the issue of CDU that you
require. No documentation will be
supplied.

Please use appropriate packaging,
cardboard stiffener at least, when
returning disk. Do not send back
your magazine, only the disk please.

NOTE: Do not send your disks back
to the above address if its a program
that does not appear to work. Only if
the DISK is faulty. Program faults
should be sent to: BUG FINDERS,
CDU, Alphavite Publications Ltd, Unit
20, Potters Lane, Kiln Farm, Milton
Keynes, MK11 3HF. Thank you.

ON THE DISK

BANKING

A very simple, yet effective program for keeping a track of your bank account.

The following program is for C128
users with 80 column capabilities on
their monitors. It will NOT work in 40
column mode. Secondly, before using
the program ‘Banking 128', ensure you
copy the file onto a blank disk. This is
because the program creates it's own
files and will need lots of disk space.
Last, but ot least, the program on the
disk is a Basic version so that you can
tailor it to meet your own needs.

THE NITTY GRITTY

When the program is loaded and run
for the first time, you will be told there
is no data file on your disk. This is
correct because you have no files at
present. From the displayed menu,
select number 1, which creates a blank
datafile. The program asks for a date,
this must be valid and of the right
format (DD/MM/YY). Don't worry,
anything wrong will be rejected. Once
the datafile has been created, press any
key and the program will try again to
load the datafile. Now you will get
another message, that there s no direct
debit file. This again is correct, because
you do not need to have one. This will
be explained later. You now have to
enter today’s date, same format as
before. The main menu is then
displayed.

MAIN MENU DISPLAY

OPTS EXPLANATION

1 Firstly this sors the records,
then saves them to disk.

IS

o

~

@

RICHARD TANNER

Inputs credits into the system.
i.e.; money into the account
(the explanation field is totally
free text, but you must put
something in).

Inputs debits into the system.
i.e.; money out of the account.
(explanation field is as above,
see option 8 for reason).
Displays the current state of
the account (total money).

You can alter or delete a
record, but you must have the
date of the record handly.

Print a statement to the screen
or printer starting from 2

Sorts the records into date
order, you should hardly ever
need to use this because every
time you save your files, this is
done for you.

Lists all your expenses (Debits),
type in the text to search on
(from the explanation fields on
Credit and Debit) and all the
matching expenses are
displayed and totaled. This is
very handy for adding up all
your cheques etc., don't forget
that you need to give a good
explanation in 2+3.

Takes you to the Direct Debit
Editing menu, see below.

DIRECT DEBITS

his is where you enter your direct
debns 1o be automatically taken out
when loading the program again. You
supply the starting date of the Direct
Debit, the text which when added into
your account records, comes out in the
explanation field, and the amount.

This menu is mainly the same as
the other one, but don't forget this is
another file and you must save it with
option 4, if you don't then when you
load the program back in, all will be
lost.

Once you have set up your Direct
Debits, save them, and now the
program is all set up for your first
automatic withdrawal. Next time you
load the program, all you will need to
do is give today’s date, this must be
correct else the program will take out
the direct debits missing from your
files.

The Direct Debits check the month
before today’s date, this month and
next month. If any of these files are
missing it automatically adds them in.
The best thing to do with the program
is to experiment. If you do not have
any direct debits, don’t worry, the
program will just skip the automatic
direct debit part and put you straight
into the main menu.

If you have any queries regarding
this program, | will be pleased to help.
Just write in to me c/o the magazine. |
hope that this program tidies up your
bank details for you

ON THE DISK

DISK DRIVER V4

Overcome the difficulties of talking to your drive with this latest drive utility program.

The Commodore 64's Basic, as all
programmers know, is sadly lacking
many features. An ideal example of
this is when the user wishes to
communicate with the disk drive
‘Disk Driver V4’ has been devised to
take the workload off the
programmer when they want to use
the disk drive while they are creating
their masterpieces.

Some of you will be saying “But |
have already got these features in my
extended Basic”, granted. Most
extensions however, provide these
features by adding extra commands.
Disk Driver V4 goes one better and
provides all these extra utilties at the
press of a Function key. The format
for which s shown here

Display directory
Validate disk
F3 - Loadafile

F4 - Save a Basic file
F5 - Scratcha file

PAUL COCHRANE

F6 - Rename a file
F7 - Read the error channel
F8 - Initialise dis

Most of the facilities offered are self
explanatory, so | will describe how to
respond to the computer when
prompted.

When the message ‘sure (y/n)’
appears, press the “Y” key if you are
sure it's what you intend, otherwise
press the “N” key. When a list of the
files on the disk are shown, the
computer expects you to select the
file which you want to carry out the
operation on. The highlighted cursor
can be moved up through the files by
pressing the ‘CTRL key, and can be
moved down through the files by
pressing the ‘COMMODORE’ key.
Once the cursor is over the file that
you wish to select, press the space

3966 SCRATCH FILE

O IONOTMOSTMOOOT=I
I= OXM - X JM=m =Nyl
A-ZOWED

C.
(1]1}
IN
RO
RO
AN
[
oM
DRI
EM
AV
SAM
MIS
I1C
W=
EC
LL
LE
RL

bar to select it

When the computer responds
with ‘new name’ or ‘save name’, it
expects you to type in the name that
you wish to call the file. The RUN-
STOP key can be used to exit this
mode.

If you select the same function
key twice without pressing any other
key, the key will not register. This is
to prevent the key being hit twice
quickly which could cause the
computer to crash. To re-enable the
function key press any other key.

PROGRAM INFORMATION
The ‘Disk Driver V4’ machine code
resides in the area of memory from
$C900-$CFO0. The program works
by altering the ‘KEYLOG' vector at
$028F to point to the Disk Driver
routine. As ‘KEYLOG is a kernal
vector, it s reset upon using RUN-
STOP/RESTORE. To restart the
program enter SYS51456.

ON THE DIS

€128 users can now get your CDU disks up and running with this autoboot program.

0BOO BYT $43,542,54D
0BO3 BYT 500,500,500
0BO6 BYT $00,54D,§45
0B09 BYT $4e,$55,500
0BOC BYT $00

0BOD SEI

OBOE LDX #$00

0B10 LDA $0B1C,X
0B13 STA $8000,X
0B16 DEX

0B17 BNE $0B10

0819 JMP $FF4D

0B1C BYT 509,580,509
OBTF BYT $80,$C3,$C2
0B22 BYT $CD,$38,$30
0B25 JSR SFDA3

0B28 JSR SFD50

0B2B JSR $FD15

OB2E JSR SFF5B

0B31 CLI

0B32 JSR $E453

0B35 JSR SE3BF

0B38 JSR $E422

0B3B LDA #505

0B3D LDX #$08

0B3F LDY #501

0B41 JSR $FFBA

0B44 LDA #504

0B46 LDX #$3C

| 0B48 LDY #$80

0B4A JSR SFFBD.

0B4D LDA #$00

0B52 LDX #$FF

0B54 TXS

0BS5 JMP $E386

; ‘cbm
; boot sector control codes

; ‘menu’

; copy program to actostart
; $8000 from $0B1C to end

5 €128 vector - GO64

; ‘CBMB0’
S init YO

; init system constraints
; reset KERNAL

; init screen i

ers elc

; init vectors.

; init Basic

; check memory/title/NEW etc
7 file number

; device

; secondary address
; kernal SETLFS

; filename length

; name address (Io)
; name address (hi)
; kernal SETNAM

; $00=load

; reset stack pointer

; exit via error routine

KARL HOPE

You will all be aware that the C128
has an autoboot feature for disk
users, this useful tool could be a
great time saver for us C128 users
that purchase CDU each month. We
simply have to insert the disk and
turn on the computer to access the
menu

For your convenience, there are
two copies of the program on this
months disk. One being the machine
code (which boots to $0B00 - C128),
the other being a Basic listing of the
disassembly.

For those that may be interested,
here is a copy of the listing.

NOTE: Those of you who are curious
and have studied the C64 ROM will
notice that in a normal initialise the
C64 will reset the stack to #$FB
whilst | have set it to #$FF. The
reason for this is that the C64 holds
return addresses after a JSR on the
stack. My program was loading the
files from the menu and then loading
the menu again straight away. The
extra four bytes usually on the stack
will have been the two addresses at
the beginning of the autostart
program, which naturally point to my
program, this being the reason why it
constantly reran. \

Z

ON THE DISK

READING BETWEEN THE LINES

Any adventurerer will tell you that an adventure is only as good as the parser. Now you can
develop your own with relative ease.

Have you ever told a computer to
‘Chop down the western door with
the axe’, then had a reply like ‘where
did you learn English?”. The “Parser”
utility presented here may come to
your assistance.

This parser is intended for use as
a front end for adventure programs,
but can be used anywhere that you
need a computer to understand
commands. It was written in
machine language because Basic is
simply too slow. This does not,
however, mean that the main
program must also be in machine
language.

THE SYNTAX

The first thing that must be done
when writing a parser is, of course,
to define the syntax of the language.
The basic command structure for this
parser is (verb) (verb supplement)
(object1) (verb supplement)
(preposition) (object2), where an
object is defined as (owner)
(adjective) (noun). EG: Pick up the
leather saddle under the big tree. At
the end of a command, there may be
a full stop, comma, quote or joiner
which may seperate another
command.

Note that, although the verb
supplement can appear in one of two
places, it can only be in one place in
any one sentence. You cannot say
‘Pick up the axe up’! Also, an object
may be replaced by a pronoun. The
pronoun will be taken as the last
owner/adjective/noun combination
used.

If speech is involved, the
beginning of a command will be (say
verb) (say preposition) (object3) (“).
Quotation marks are required around
the speech so the parser can tell
where it ends when there is more
than one command in the one
sentence. IE: In the sentence, Say to

8

GORDON MOYES

the tall EIf go north and get the axe;
who is going to get the axe, you or
the EIf? Things become much clearer
if you write; Say to the tall EIf “go
north and get the axe”

Many outputs are therefore
required to analyse every word.
Table 1 lists all of the outputs from a
combination routine, which greatly
reduce the number of variables that
need to be used by the main
program.

ACTION/OBJECT
COMBINATION

The action and object combinations
are both called by SYS49161. Their
purpose is to reduce the number of
variables that the main program must
work with. The action combination
combines the verb and the verb
supplement into one variable, the
action. It works like this: If the verb
supplement is equal to zero (not

present) the action equals the verb. If
there is a supplement then the
routine checks through the action list
to see if it can match both the verb
and the supplement to an action. If it
does not succeed then it outputs a
255.

The object combination routine is
similar to the action com|
routine, except that it combines an
adjective and a noun and an
unlimited number of adjectives may
appear in the object lists, instead of
just one. The owner is not combined
and is more or less irrelevant.

THE MAIN PROGRAM

Lines 7000-7070 define the variables
in the machine code program. Note
that the

FNP(X) s same as
PEEK(50040+X) throughout the
program.

Lines 7080-7130 input a

command string from the user and
puts it into the parser input buffer
along with its length.

FNP(X) output

0 Verb 1 Verb position

2 Verb Sup 3 Sup position

45,6 Owner 1,2,3 7,89 Owner position
10,1112 Adj1,23 13,1415 Adj position 1,2,3
16,17,18 Noun 1,2,3 19,2021 Noun position 1,2,3
2 Preposition 23 Preposition position
27 Say verb 28 Say verb position
29 Say prep 30 Say prep position
24 Error (see table 2)

5 More; 0 if end of line reached. 1 if more

26 Say More; 1 if still in quotes and more

31 Action

32 Object 1

33 Object 2

34 Object 3

PA Position in word buffer parser is up te

BF Start of buffer

ou Start of output variables

TABLE 1 - Parser Variables

No error

There is no noun with object
There is no noun with object 2
There is no noun with object 3
Some sentence is leit over after

parse is done

No first quote in say command
Word is not recognised at all

awn—

e

| --.(The position of the word that
the parser got stuck at is in PA)...

TABLE 2 - Errors

Line 7140 points the input buffer
pointer to the first character and
resets the more and saymore
variables so the parser can function
properly.

Line 7150 calls the parser.

Line 7160 checks for any
confusion between a verb
supplement and a preposition. If
there is no preposition, a second
object and a supplement (which can
also be a preposition i.e. on/to) then
they are swapped before line 7170
calls the combination routines.

Lines 7180-7500 print the parser
outputs.

Lines 7300-7320 print out the
word that the parser got stuck at if
there was an error. Note that
unrecognised objects and actions do
not show up at this stage.

Lines 7330-7410 check through
the three objects to see if they are all
recognised or not present. If they are
unrecognised, the program prints out
the unrecognised section by using
the print on list routine.

Lines 7420-7490 check to see if
the action is recognised. If it is not
then the unrecognised action is
printed out with the print on list
routine

Lines 7510-7550 wait until the
space bar is pushed before printing
out another list, if there was more
than one command on the line that
was just entered.

PRINT FROM LIST

When the inputed object is
unrecognised by the main program,
it would be handy to be able to tell
the user this. To use this command,
POKE PA with the list number (see

table 3), POKE PA+1 with the words
position in that list and SYS49158
The main program uses this
command in lines 7370-7400 and
7450-7480 to let the user know of

unrecognised objects and
commands.
PRINT FROM BUFFER

This command s used to print out
unrecognised words. It is called by
$YS49155 when PA contains the
starting position of the word in the
buffer. Note that when an error
occurs, PA will contain the starting
position of the word that the parser
gt stuck at. The main program uses
this command in line 7310 every
time an error occurs 1o let the user
know where it became stuck. The
error number will indicate why the
parser became stuck (see table 1),

THE WORD READER

The purpose of the word reader is to
read in the computers vocabulary.
You can change this around as much
as you like to suit your own
adventure. The starting address can
be changed to suit your needs, but
remember to protect it from Basic

Every word stored is followed by a
number. This is the word number
that is returned by the parser and is
used to group words that mean the
same thing. The word position

NOOO000S

0
0
P
s
s
S
M
E
I

2
Aac
0B
0B
0B
PR
SA
sA
SA
MO
ER
I

2

S i &
number that is returned distinguishes
between words that mean the same
thing so that they can be printed
from the data lists.

Every item of action data must
take the form (action) (verb) (verb
supplement), with a zero byte
marking the end of the list. The first
entry of 1,200,1 translates to: If verb
is 200 (pick) and supplement is 1
(up) then the output will be 1 (the
same as get or take)

tems on the object list are stored
as (object) (noun) (adj1) (adj2)
(adj 1) (255), again with a zero byte
marking the end of the list. Note you
can have as many adjectives as you
require in the list. The first entry of
5,5,5,6,255 therefore means that if
the noun is 5 (horse) and the
adjective is either 5 (skinny) or 6
(small/short) then the output will be a
5. Note that the same output is

Verbs
Verb Supplements
Nouns

Adjectives
Owners

Pronouns

Joiners
Prepositions

Say verbs

TABLE 3 - List Numbers

@NOUEwWN =

ON THE DISK

OBJECTS
North
2 South
x4 fest
4 East
5 Home ;smalliskinny
6 Ef ; short/fat
7 Wl ; tall/blue
8 A ; pointy/wood
|9 Amour ; rustymetal
10 Tree ; big/wooden
1 Bars ; large/metal

12 Saddle ; leather
13 Goblin ; bigffat/orange

14 Door ; north
15 Door ; south
16 Door ; west
17 Door ; east
200 EIf

201 Door

ACTIONS SAY VERBS I
1 Gethtake/pick up 1 Sayfell

2 Discard/leave/put down/ 2 Shoutlyell

throw away

3 Kickhitkill JOINERS

4 Thow 1 Andfthen

5 Gofmovefride

6 Climb/ascend/go up/climb up OWNERS

7 Descend/godown/climbdown 1 Aan/the/my

8 Chopdown

9 Digout PRONOUNS

10 Wear 1 Wthem/him/her
11 Open

12 Close PREPOSITIONS

13 Put -

200 Pick 2 With/using

201 Chop 3 Nearfaround
202 Dig 4 Under

s o
TABLE 4 - Parser Vocabulary 6 To

arrived at if no adjective is supplied.
The main use of this is to check that
only valid adjectives are used, but it
can also be used to seperate between
two different Elves, as in the program
here.

The code preserited here is only a EDITORS NOTE:- | think that this
front end for an adventure program. program enhances our ‘Adventure
1t is up 1o you to substitute the Writing’ series quite considerably.
sample main program given here You should be able to put your new
with your own adventure program. gained knowledge to some good use
Many happy adventures to you!! in the very near future....PAE!

POWER S

JPPLY UNIT, 5'/+" DRIVE £3.50 +

[AMIGA 500]

FLIGHT OPFANTASY.
F29 RETALIATOR RAINBOW

* DELUXE PAINT II

COMMODORESILGUIBINEDRIVE SLTMINE CASE)

C64 DISK DRIVE
50

THE ONLY DRIVE mov,(ommnme Wit THe cgs

« ESCAPE FROM THE PLANET OF THE ROBOT M

=
‘ComPUTERS

S 800 FLIGHT of FANTASY PACK comprisng
TV hioduitor/F2s Retaiator Rainbow 1sianc/

Ama ST BATUAN PACK. Baiman/F 18 StnyDPaint

‘Amiga 500 GLASS OF THE 905 Educatior 52900
Amiga 500 10648 Stereo Col Mo 0500
 UGHT FANTASTIC Pack comprsng: 040 ¢

L can
55 Glasaes - & Games + Paint Prog - Music Prog -

Acads Consiruction KN - Audlo Tape Algn 13999
P Pack comprsing: 4C 1 C2N,

Eheode w 149.95

Commodon PG Starer Packs (AS SEEN ON Tv) FrROM 608.35

PRINTERS
Chizen 1200 Paralelor Commadore
Star LCA0 Paraiel

Star LG-10 Colour Paratel
Star LG26-1024 pin Muli-font 170/57cps.

LIGHT GUN

C64 LIGHT GUN PLUS
GAMES AND UTILITIES

NSt
500 P&l ROkt 2 Eoremtios Rammaly Brstock
won it
oo 10845 Streo Colaur on 25000
£36.50 B B8 Siree Solow hontor b
e Philips 7502 Groen Screen Monitor 85.00
£350 PP

cewaeous
Amiga 12K RAWGock Exp for AS00 8555

PACK. Gommodore 15411 Bk D 12900
C64 LIGHT FANTASTIC ExemlSS G D 1 Amisa isss
c OVWKODORE MPSI230 £159.00 | LIGHT FANTASTIC PACK uper-C 3 Berale Itertace for C84/128 3495
CO\A\AOD MPS INCLUDES - LIGHT GUN 3D Star NL-10 Interface for C54/128. 30.00
£140.00 + £3.00 P Viaawitts 120 - Splichoo 4935
by L /izaStar 128 S veadshnx A Database 5995
O e i
S e a | B S =
w2 By i
10x5.25" DSDD ee0. 8450 | C64 POWER SUPPLY £19.95 BTGRP - o
SODISKBOX 535111175599 | ot MOUSE, MOUSE MAT& A sy JEhciua or v
L Seaeiii os L R e ... £11.50
ey e
R R Delta P Softuwane Led

CROFTON MICRO SUPPLIES =
C.M.S & imereap roan 081-469
EXZE BROCKLEY LONDONSE428D 3246

A0

S Ruswar L, WHTEY, .Yk YO2 N0,
K 537 Soons o =

T TN TAT VT T T ATAT AT T A TN

1093

Getting to grips with Drive operations is easier with
Interactive Disk Operating System.

I you are new to a Commodore disk
drive you are problably thinking
“where’s the Commands?” or “How
do | delete a file?”. Well believe it or
not, the Commodore disk drives do
have commands but they are VERY
difficult to get used to. To delete a
file from a disk you have to type in
the following;

OPEN15,8,15,"S0:filename”:CLOSE15

To delete a file on a BBC machine
you only have to type;

*DELETE filename

Now, which is the easiest to
remember? No competition, the BBC
command system beats Commodores
hands down. Yet the Commodore
disk drives are probably the most
advanced and versatile disk drive
systems available for an 8-bit
machine.

A BIT OF HISTORY

So why are the Commodore disk
drives the most difficult to use? It all
lies with a decision made by
Commodore a long time ago when
the VIC-20 was screaming for a disk
drive. As you will probably know,
the VIC-20 only had 3.5K, so there
was no way that a whole disk
operating system could be crammed
into this micr-machine. Commodore
in their infinate wisdom therefore
decided to put the disk operating

RICHARD DAY

system into the drive itself. This
proved to be both a boon and a
bain, this meant that only slight
alterations had to be made to the
VIC's ROMs and thus saving a lot of
memory, it also meant that the disk
drive could be doing something
while the computer did something
else. It also meant, (and this has only
been utilised recently), that the disk
drive acted like a computer in itself
and two could be connected
together without a computer; once
they had been programmed; and talk
to each other. They could for
example, copy
to the other while the computer did
something totally different.

This was impossible on any other
disk drive system. One problem was
that the disk drive system was serial
which meant that the whole system
was very slow. Unfortunately, or
fortunately depending on how you
look at it, the VIC-20 disk drive had
to be compatible with the all-new,
all-singing, all-dancing new
machine, the Commodore 64. So the
same ROM-on-drive, slow-serial
system was retained. And not much
has changed since then. Anyway,
back to the reason for this article, to
get the drive system communication
through the serial cable has to be
done manually, hence the
complicated commands. Well, now

ON THE DISK

you can say goodbye to those
commands because | have devised a
program which handles all those
commands through a BBC-like
interpreter.

THE INTERACTIVE DISK
OPERATING SYSTEM
(IDOS)

IDOS is an Interactive program for
use with the C64 + disk drive, which
allows the user to manipulate their
disk with ease. Commands range
from the simple LOADing and
SAVing of program files to locking
files against erasure. Other
commands allow the disassembling
of machine code programs directly
off disk without first loading them
into memory.

All commands are accessed
through a very Basic-like interpreter
which allows abbreviations by the
use of a full stop (). This also allows
ALL commands to be accessed from
outside the interpreter i.e. from Basic
programs or direct mode. IDOS does
not need any sort of initialising
except LOADing, so once the
program has be LOADed off disk it is
ready for use, no SYS calls to
remember!

IDOS interacts with the
operating system by use of a vector
system which the C64 uses to test if
there is a cartridge installed
Locations $8004 to $8009 usually
hold garbage, but if it contains $C3,
$C2, $CD, $38, $30 (‘CBM80")
then the machine gives control over
to the vector held in $8000 and
$8001. IDOS simulates this so on
pressing RUN/STOP and RESTORE
the machine jumps to the address
held in $8002 and $8003. Usually
this would stop any warm starts but
a bug (222) in the operating system
also does this if only the RESTORE
button is pressed, 5o IDOS is run by
pressing RESTORE. If RUN/STOP is
also pressed then a normal warm
start occurs, very useful for
breaking out of IDOS or any other
program. -

THE COMMANDS
The commands are shown in BOLD;
< and > denote single parameters,

ON THE DISK

e.g <filename> means a filename is
required NOT enclosed by quotes.
Note: any names that need to
contain spaces MUST use shifted
spaces, (IDOS automatically changes
them to normal spaces), as IDOS
uses spaces as parameter separaters
Any parameters that are enclosed by
{and } are optional and can be
missed out. All <addr>'s are in
HEXadecimal, all other numbers are
in DECimal. Filenames may contain
wildcards (* and ?) for selective
operations. If no filename is given,
“*"is used instead.

LOAD <filename> {<addr>}

This loads a program under the
filename <filename> from the disk
into memory at address <addr>, if no
address is given then the default is
the address specified by the program
header (i.e. where it was saved from.
Minimum abbreviation: L

Example:
>LOAD HIRES.CODE

NOTE: the LOAD/SAVE operations
do not use the normal ROM routines
for LOADing SAVEing, instead IDOS
uses it's own. By using the ROM
routines OPEN,CHKIN,CHKOUT,
CHROUT,CHRIN it does read/write
operations manually. The advantage
of this is that the number of blocks i
loaded can be shown, so you can
immediately see how much of the
program has loaded. It also means
that IDOS has control all the time so
the LOADing and SAVEing can be
stopped by pressing the RUN/STOP
key. Even better, it allows relocation
of LOADing and SAVEing data.

VERIFY <filename> {<addr>}

This is similar to the load, so the
parameters are the same. Unlike the
LOAD though, the program is not
actually entered into memory, just
checked against the revelant
memory. At the end of the VERIFY,
the number of mismatched bytes is
shown, unlike the ROM VERIFY
routine which just shows whether all
of the two memories match, this
routine gives actual numbers so it is
possible to see how drastic the

12

problem is. (Usually with Machine
Code programs, the program alters
itself and so the version on the disk
will be slightly different from the
version in memory, the normal
VERIFY would give VERIFY ERROR
and immediately the user is
convinved that the version on disk is
corrupt).

Example:
>VERIFY HIRES.CODE
Minimum abbreviation VE

SAVE <filename> {L} {<addr>)
{<addr>} {<addr>}
This is probably the most useful
command, it allows a block of
memory to be saved much like the
BASIC SAVE command but a number
of useful additions have been made.
Firstly the command automatically
uses ‘Save & Replace’, (Arrgh! | hear
some of you cry, there has been a lot
of rumours in the corridors of
Commodore about the safety of this
command on the 1541, but there has
been just as many rumours about
ways to beat this bug. One of th
safest is using @0: instead of just @:
Anyway, | own an Oceanic OC-118
which does not have this
bug)...{Editors extra note: I have used
@0: since 1984 and have NEVER had
a problem of any description....Ed!),
which replaces the current version
on disk with the new version. The
‘Save & Replace’ can be switched off
by the REPLACEOFF command (see
ater).

The first (<addr>} is the optional

ADD

start address, if it is not given or ‘0" is
used then the start of current Basic
program is used. (i.e. held in
locations 43 and 44).

The second {<addr>] is the
optional end address, i it is not given
or ‘0" is used then the end of the
current Basic program is used (i.e.
held in locations 45 and 46).

The third {<addr>} is the optional
relocation address, if it is not given
then no relocation occurs. This
allows a block of memory to be
saved from one area in memory but
it will load into another area of
memory. Very useful when saving
sprite or character data.

The (L] is a very quick and useful
way to protect a file against
accidental erasure, it locks the saved
file 5o it cannot be erased (unless you
unlock it of course)

mples:
SAVE IDOS L 8000 AOOO

Will save IDOS onto disk and lock it
(From $8000 to $A000 where IDOS
exists).

SAVE PROGRAM

Will save a Basic program onto disk,
but does not lock it.

Minimum abbreviation:

EXEC <filename> (<addr>} (<addr>},
RUN <filename> {<addr>} [<addr>}

These commands load and execute a
program off the disk. It uses the same
parameters as the LOAD. The first
<addr> is the load address and the
second is the execution address. If no
address is stipulated the program is

o
m 5
OIVOUDCHSCrIMO=TZO- MV

assumed o be a Basic program and
is therefore RUN.

Example:

>EXEC MC-GAME C000

Minimum abbreviations: E for EXEC,
R for RUN

COMMAND <command>

This outputs a normal DOS-type
ccommand such as SO:filename
Minimum abbreviation: C

CAT (<filename>} {<filenames.
DIR {<filename>} [<filename>.
These commands display the
Directory of the current disk, the
filenames are optional and allow for
selective cataloging

Example:
>CAT

Minimum abbreviation: CA for CAT,
D for DIR

PRINT <filename>, DUMP
<filename> (<addr>}, TYPE
<filename>, LIST <filename>
{<linenumber>}, DISS <filename>
{<addr>) f
All these commands display file data
from the disk to the screen but in
different ways. DUMP displays a
Hex and ASCII dump of a file from
<addr> onwards. If no address is
given then the start of the file is used.
PRINT prints out a file onto the
screen, it does not print any control
characters at all. TYPE is like PRINT
but it prints out all characters
including control characters. LIST

L<ADDR>]
UVICE> [<DRIVE> <DEV|

lists a Basic program out from the
disk to the screen from
<linenumber> onwards, if no
linenumber is given then it is listed
from the start. DISS disassembles a
machine code program from the disk
onto the screen from <addrs
onwards. If no address if given then
the start address is used. All these
commands can be used on PRG
USR and SEQ files. The output of a
file to the screen can be paused by
pressing CTRL, SHIFT, SHIFT LOCK
or the COMMODORE KEY, or
stopped by pressing the RUN/STOP
key.

Example:

>DISS HIRES-CODE

Minimum abbreviations: DU for
DUMP, LI for LIST, DI for DISS, T for
TYPE, P for PRINT

SIZE <filename>

This shows the size of a file in blocks
and bytes, it also shows where the
program would be situated in
memory.

Example:
>SIZE HIRES-CODE
Minimum abbreviation: S1

RENAME <newname> <oldname>
This renames a file on disk from
<oldname> to <newname>.

Example:
>RENAME HIRESCODE HIRES-
CODE

Minimum abbreviation: RE

|ON THE DISK

‘COPY <newname> <oldname>
{<addname> <addname>...|

This copies <oldname> to
<newname> on the disk,
<addname>’s optional and- are
appended onto <newnames

Example:
>COPY HIRES-CODE1 HIRES-CODE
Minimum abbreviation: CO

COMPACT, VALIDATE
These commands validate the current
disk. Equivalent to V0.

Example:
>COMPACT
Minimum abbreviations: COM, VA

SCRATCH <filename>
{<filename...>}, DELETE <filename>
{<filename>...}, ERASE <filename>
{<filename>...}

These commands
<filename>'s from the disk.

remove

Example:

>DELETE HIRES-CODE

Minimum abbreviations: SC for
SCRATCH, DE for DELETE, ER for
ERASE

DISKNAME <diskname>
Renames the current
<diskname>

disk to

Example:
>DISKNAME BASIC PROGRAMS
Minimum abbreviation: DISK

NEW <diskname> {<id>}, FORMAT
<diskname> (<id>}

These commands format the current
disk with the name <diskname> and
1D <id>. WARNING: There is no
“Are your sure’ routine, once the
RETURN key is pressed the
FORMatting will commence.

Example:
FORMAT NEWDISK ID

Minimum abbreviations: N for NEW,
F for FORMAT

INIT
This initialises the current disk.

N THE DISK|

Example:
>INIT
Minimum abbreviation: |

DERR, ERROR
These commands read the disk error
channel and displays it

Example:

>DERR

Minimum abbreviations: DER for
DERR, ERR for ERROR
PROTECT <filename>, LOCK <filename>
These two commands lock the given
file against erasure. Equivalent to the
Lin the SAVE command.

Example:

>LOCK HIRES-CODE

Minimum abbreviations: PRO for
PROTECT, LOC for LOCK

UNPROTECT <filename>, UNLOCK
<filename>
These commands are the reverse of

Example:
>ADDRESS SPRITEDATA 4000
Minimum abbreviation: A

DRIVE <drive>

This changes the drive you are
working on fo <drive>. <drive> must
be between 0 and 3 or the program
will respond with ERROR: ILLEGAL
DRIVE. It does not alter the number
of drive but the device number
which the program uses (see below).

Example:
>DRIVE O
Minimum abbreviation DR

DEVICE <drive> <device> {<drive>}
{<device>...}

This alters the device number which
the program uses for <drive> to
<device>. The program uses 4 preset
device numbers, one for each of the
drives, this command alters these
presets. On loading they are set up as
follows:

the above, i.e. they allow for the DRIVE DEVICE
deletion of the given <filenames. 0 8

1 9
Example: 2 10
UNLOCK HIRES- CODE 3 n
Minim UNL for The d alters the preset

UNLOCK U for UNPROTECT

NOTE: A locked file has a ‘<" after
the file type in the directory.
E.G. 33 “IDOS" PRG<

RECOVER <filename>, UNSPLAT
<filename>

These commands restore a file which
has not been properly closed (i.e. has
an " before the file type). The file
can now be opened and read from so
restoring it.

Example:
>RECOVER FILE

Minimum abbreviation
RECOVER, UNS for UNSPLAT

REC fol

ADDRESS <filename> {<addr>}

This command allows you to change
the LOAD address of any file to
<addr>, if no address is given, then
the start of Basic is used. This is
equivalent to the third <addr> in the
SAVE command.

14

device number for drive <drive> to
device <device>. This may not seem
like a very useful command, but it
can be. Imagine that you own all 4
drives. One of which is a 1541, two
are 1581's and the last is an Oceanic
OC-118N. The 1541 must have a
device number of 8 because you
cannot change it without opening up
the disk drive, the other three do
have device changers and so they are
set t0 9,10 (the two 1581s) and 11
the Oceanic. It is obvious that you
would want one of the two 1581’ to
be drive 0 because they have a
bigger capacity, the OC-118N would
be drive 1, the other 1581 drive 2
and the poor old 1541 would be
drive 3 (because of it's slowness and
bugs). Normally this setup would be
impossible, but with IDOS it is
possible.

Example:
>DEVICEO 819
Minimum abbreviation: DEV

HEX {<dec number>}

This simple command converts a dec
number into a hex number and
displays it.

Example:
>HEX 57344
Minimum abbreviation: H

DEC {<hex number>}

This is the opposite of the above. i.e.
it changes a hex number into a
decimal number.

Example:
>DEC FICA
Minimum abbreviation: DEC

CALL {<addr>}

This command is the same as the
Basic SYS command, it jumps to a
machine code subroutine.

Example:
>CALL C000
Minimum abbreviation: CAL

RESET {<addr>}

This does a system reset and sets the
Basic start address to <addr> (see
below). Equivalent to SYS64738.

Example:
>RESET
Minimum abbreviation: RES.

BASIC {<addr>}

This command sets the start of Basic
1o <addr>, if no <addr> is given then
the current Basic program will be
NEWed.

Example:
>BASIC 0801
Minimum abbreviation: B

COLOUR <border col> <screen
col> <text col>

This command sets the colours of the
screen and the colour presets of
1DOS.

Example:
>COLOUR6 15 6
Minimum abbreviation: COL

PROMPT <prompt-text>
This command sets the prompt for

1DOS, normally it s set to a ‘> but this
command allows you to change it.
Using a backarrow inserts a carriage
return in the string (CHRS$(13)), the text
can be anything up to 40 characters in
length. To get no prompt just type in
PROMP and press RETURN

Example:
>PROMP ENTER COMMAND>
Minimum abbreviation: PROM

ERRON, ERROF, TEXTON, TEXTOFF,
READON, READOFF, REPLACEON,
REPLACEOFF

This set of commands are flag setters.
ERRON and ERROFF control DOS error
messages output. When switched off,
no 00 OK 00 00’ are outputted, but all
others are (eg 30 SYNTAX ERROR 00

00).

TEXTON and TEXTOFF control the
output of certain types of text, these are
the LOADing and SAVEing messages
(BLOCKS $— and ADDRESS §——
$——) and ALL DOS error messages.

READON and READOFF control the
reading of the first two characters in a
file, in program files this refers to the
LOAD address of the file. it is most
useful in DUMPing a file as it allows
you to see how long the file is (the first
two numbers in the dump will be the
LOAD address).

REPLACEON and REPLACEOFF
control the ‘Save and Replace’
command in the SAVE. When it is ON
then the form @0filename will be used,
when it is OFF then the form Ofilename
will be used. | included this because
some people are worried about the
safety of the replace command.

Example:
>ERROFF

Minimum abbreviations: ERRON
for ERRON, ERROF for ERROFF, TE
for TEXTON, TEXTOF for TEXTOFF,
REA for READON, READOF for
READOFF, REP for REPLACEON,
REPLACEOF for REPLACEOFF.

EXIT, QUIT

These commands exit you from
IDOS to the READY prompt in Basic.
This routine will break you out of the
current program (whether it is Basic
or Machine Code).

Example:

>QUIT

Minimum abbreviation: EXI for EXIT,
Qfor QUIT

HELP
This command lists all the
commands with their syntax, useful if
you have forgotten how to use a
command.

Example:
>HELP
Minmum abbreviation: HE

KILL

This command disables IDOS and
exits you from it. It is possible to
restore IDOS easily (see later).

Example:
>KILL
Minimum abbreviation: K

IDOS IN USE
The program is accessed by pressing
the RESTORE button only (either in
program or direct mode) or by typing
5Y532780. The screen colours will
change to the preset colours (altered
by the COLOUR command), there
should be a greeting message and the
disk error channel displayed (unless
ERROFF or TEXTOFF has been
executed).

INTERACTIVE DISK OPERATING

SYSTEM MK4.0

BY RICHARD DAY © 1989

00, OK,00,00

>
A prompt (usually ‘>, but altered by
the PROMPT command) and a
flashing cursor should appear. This
means that IDOS is waiting for an
input, so type in a command along
with any parameters and press
RETURN.

1f IDOS responds with;

ERROR : COMMAND NOT

RECOGNISED

Then you have not typed in a
known command. To exit IDOS type
EXIT, QUIT or their abbreviations. To
perform a normal warm start hold
down the RUN/STOP and press the
RESTORE button.

ON THE DISK

ACCESSING COMMANDS
FROM
| memruned bcfme that all the
commands are available from Basic,
well they are. To access any
command from Basic immediate
mode or program mode type;

5Y532777,<commands>.
The command MUST be in a string
(i.e. inside quotes), this allows the
following:-

5YS32777,"DELETE “+F1$+” “+F2$
Some useful SYS calls are;

5Y532777,<command> Execute
command
Enter IDOS
Enable
IDOS
Disable
1DOS (same
as KILL
command)

SY$32780
SY$32783

SY$32786

GENERAL POINTS

IDOS resides in the block of memory set
aside for cartridges ($8000-$A000), so it
will not work with any sort of cartridge
system installed. IDOS cannot be
relocated at all, even if you were to
change all the references in the
program, the RESTORE entry system
‘would not work.

Now | have a slight confession to make,
there is a bug in the program, but before
You start worrying it can be easily over-
written. Sometimes the UNLOCK/
UNPROTECT routine does not work. |
do not know why, maybe my drive is
playing up, but it is not permanent. If
you do find this bug appearing continue
using the UNLOCK/UNPROTECT
command and CATaloging until the file
is unlocked, believe me it will.

AND FINALLY

And finally, my advice to you is to
experiment, be careful with the disk you
use to begin with just incase you
accidentally erase something you want
The are only a few commands which
actually altet the disk, most just read off
it. | have a copy of this program on every
one of my disks, not because | wrote the
program, but because | find it
indespensible and couldn't do without it.

15

Calculate the buying power of any given sum of money for any year this century with this

Have you ever wondered if your
wages, pocket money or pension
have really kept up with the cost of
living? If you employ someone to do
your gardening, or housework, are
you sure you're keeping up their
salary in real terms? Are recent
increases in your annual
subscriptions to magazines, clubs etc
really needed to keep up with prices?

Certainly, everyone knows the
current yearly increase in the Retail
Price Index (RPI), but calculating
prices over a longer period is another

handy utility.
IAN DALZIEL

matter, even if you know just where
1o get the figures. Have you any idea
at all how much prices have
increased in the last 10 years? Well,
wonder no more, for “Price
Calculator” will answer all your
questions about price increases and
the ‘real value’ of money, not only
for the last 10 years but for any
period this century.

Perhaps you are a club treasurer

CC> COPYRIGHT IAN L DALZIEL 1989
7 WALKER AVENUE

TROON,

AYRSHIRE,

KA10 6SA

FOR INSTRUCTIONS

TO UPDATE THE INDEX

FOR TECHNICAL EXPLANTION
SPACE FOR THE PROGRAM

HOW TO USE THE PROGRAM
EXAMPLE 1
SAY YOU

> x
D ®< < X <um

-ENTER ©.125
PRICE...ENTER 60
TO KNOW THE PRICE.

AR OF KNOWN

AR YOU WISH
89

NSWER IS £1.4

mmZ 6o

I ZO © O oo
m

=2 MM T —AT
M=% ® o ono:

SPACE FOR 3 MORE EXAMPLES

and are preposing an increase in
subscriptions, it will greatly increase
your chances at the AGM if you can
prove the increase is actually less
than prices generally over the period.
When someone tells you how cheap
an item was in say 1960, you will be
able to see at a glance if it was
actually cheaper in real terms

If for example, you have a son or
daughter that has just started work at
a salary of 5,000 pounds per year,
they will be able to compare it with
the salary of their parents when they

started work in 1965 but at 1990
prices. You will be able to astound
your friends with your newfound
knowledge, and if you are a
politician you will be able to prove
anything with statistics!

The program is very user friendly,
all you need to do is to enter the
price you know and the year
applicable, then simply enter the
year you wish to know the price of,
for any year this century. The
information used to perform the
calculations was carefully researched
over a long period of time, but
anyone is welcome to check the
calculations and the program has
help screens to enable you to do so.
You may also update the program as
prices become known for future
years and the program shows you
how to do it. There are four worked
examples in the help screens which
will explain exactly what it is about

B.O.S.S.

MARC BANGS brings to you 23 new commands with his

Basic O

System

ped with the

C128’s own Assembler

After reading Burghard-Henry
Lehmann’s articles on Extending
Basic, published in Your
Commodore, 1 decided to write my
own for you. These routines were
developed using the built in
Assembler on my C128. Because of
the way this extension has been
coded, it is a simple job to extend it
with your own commands. Simply
add your own commands at the end
of the code and make the necessary
branches/jumps.

B.0.S.S. COMMANDS
CLS - Clears the screen.

FAST - Puts the 64 in 2MHz mode for
a speed increase of over 5%

SLOW - Returns to normal speed (re-
enabling the screen).

OLD - Recovers a newed program.
OFF - Turns off the Basic extension.

DISK - Defaults all 1/O to disk. No
secondary address may be passed
whilstin_operation.

TAPE - As above, but defaults to tape.

NORM - Returns to standard. Primary
and Secondary addresses can be
past

HELP - The.all important list of
commands.

CLKON - Turns on the Basic clock.
The clock shows the current value of
IS in the top right hand corner of the
screen. The clock runs off the Basic

interpreter, only being updated while
Basic is being processed. This results
in the clock stopping during an
INPUT statement, or when no
command is being processed. The
clock will also stop if the command
OFF is given. The advantage of this is
that the interrupt is left unused, and
can run some other background
program.

CLKOFF - Turns the clock off.
HIRES - Turns on hi-resolution mode
LORES - Cancels hires mode

FILL - This changes the entire colour
memory of the picture. The syntax is
FILL x where x is a number in the
range 0 to 255. The high nybble of
this number is the paint colour, the
low nybble the canvas. EG: FILLT will
give Black paint on a White canvas.
You should always call FILL after
using the HIRES command for the first
time, otherwise pictures tend to
appear scrambled.

(The last three commands came out
of my use of DOODLE, but should be
compatible with similar art packages).

INK x - Changes the character colour

[ON THE DIsK

to value of x. The range is 0 to 15.

BORDER x - As above but for the
border colour.

BACK x - As above but for the
background colour.

AT X,y - Changes the position of the
cursor to for row and y for column.
EG: AT 12,15:PRINT”HI THERE”
(Note the colon before the Print
statement).

ROM - Simply shows the Kernal
release number of your machine

POINTER on/off - Tums sprite 0 either
on or off. An interrupt is set up,
which enables the sprite to be moved
with a joystick in Port 2. The sprite
can be moved to any position on the
screen but will not wrap perfectly.
The sprite definition is controlled by
location 2040 decimal. | have not
included a default definition, this |
will leave up to your own
imagination.

PCOL x - Changes the colour of the
pointer. (Note that the pointer is not
set as multi-colour).

POS x,y - Enables you to set the
pointer position from 0 to 344 in the
x axis and 0 to 255 in the y. Any
value for x above 255 is handled by
the program, and the x coordinate bit
is set or cleared automatically. The
pointer is still under joystick control,
and that this use of POS will not
interfere with the normal Basic use.

DEFAULT - This acts as if the
following sequence had be entered
LORES:INK14:BORDER14:BACK6

If none of the above commands are
recognised, an error is returned by
the B.O.S.S. and program execution,
if any, is stopped. This is, in effect a
syntax error with a different message.
The ‘SPA” in the message is an
abbreviation for SPANNER, which
just happens to be my computer
handle.

B.O.S.S. is entirely self contained
in the present range of C000 to €700,
which is 40152 to 50944 decimal.

17

ON THE DISK

SCREEN
DESIGNER

Creating your own impressive screens gets another boost
from this handy utility program.

A WARRINER

The utility is made up a of a couple
of routines which will now be
described.

SCREEN COMPILER
(address 52000-52775)
This program copies the current lo-res
screen being displayed and creates a
stand alone machine code program
which will re-create the screen. The
program automatically detects the
video bank, screen address, character
set pointer, colours and colour mode
being used and restores these values
when the screen is re-created.

The compiled code uses ten zero
page addresses from 165 to 174
inclusive. To compile a screen, print
the screen, then sys 52000,AD: where
AD is the address at which the code is
to be compiled, the program will
return the end address of the code. To
re-create the screen simply enter sys
AD. The screen data is not just stored
as a block of data, but is compressed
according to the following method.
The program searches from the start of
the screen memory until the first
character which is not a SPACE (#32) is
found, this is the start of the screen. It
then searches from the end of the
screen, backwards, in the same way
and marks this as the end of the screen.
The screen data is then read in,
compressed and stored. When the
screen is re-created the screen is
cleared and the video parameters are
set,the data is then ‘read and
interpreted as follows:-

If the data value is less than 128
then it is OR’ed with a variable
(REVFLAG), which determines if
reverse video is on or off, and stored to

18

the screen, the current colour variable
(CURCOL) is stored in the
corresponding colour memory.

If the data value is greater kttsaTon
then itis deciphered thus:

If bit 4 is set then bns 0 to 3 hold
the new colour value (CURCOL)

If bit 5 is set then REVFLAG is
flipped, i.e. reverse on becomes
reverse off and vice-versa

If bit 6 is set then there are a
number of characters of the same value
to be repeated, in which case, the next
data byte represents the number of
characters to be done, and, the byte
after that holds the character value to
be used.

More than one bit may be set at a
time

If bits 0 - 6 are zero then this is the
last byte and the routine exits

The program “compiler 52000” on
the disk is a basic loader for “compiler
code”, which is the program itself

SCREEN
DESIGNER/COMPILER
(address 16384-28374)
This program makes it easier to
design and compile screens.

When the program starts you are
presented with the main menu from
which you may select an option by,
moving up or down the menu with
the cursor keys, or, by typing the
initial letter of the option, the options
are as follows:-

DESIGN SCREEN

In the designer you may type in
characters and change colours in the
normal way, but in addition the
function keys will give the following
effects.

F1 - Centre text on cursor
line.

] - Clear cursor line.

LOGO+F1 - Undo last clear
screen or function
key.

CTRL+F1 - Enter block mode.

In block mode you must follow the
following sequence.

Move cursor to upper left corner of
block and press RETURN.

Move cursor to lower right comer of
block and press RETURN,

The block is now defined and may
be moved around the screen with the
cursor keys, in ad
RETURN - will print the block.
Any COLOUR key will fill the block
with that colour.

F7 - reverses all of the
characters in the
block.

RUNSTOP - will print the block

nd exit

CLR - clears the block and
exits.

Continuing function key definitions

3 - Inserta blank line
and scroll screen
down.

F4 - Scroll screen up to
cursor.

CTRL+F3 - Insert a blank line
and scroll screen up.

LOGO+F3 - Scroll screen down to
cursor

F5 - Reverse on.

F6 - Increment screen
colour.

CTRL+F5 - Increment border
colour.
(SHIFT+CTRL+F5
increments both
screen and border)

LOGO+F5 - Switch cursor off, any
key cursor on

7 - Reverse off.

8 - Switch Forcecolour/

Copycolour mode.
Forcecolour is the normal typing
mode in which the character printed
is the colour of the cursor. In
copycolour mode the character is the

colour of the existing character on
the screen, unless, that colour is the
background colour in which case the
last, selected, colour is used.
CTRL+F7 - Paint with cursor
colour.
In this mode as the cursor moves
over the screen it colours the
characters it moves over, any key,
other than the cursor keys, exits this
mode.
LOGO+F7 - Draw with current
character.
In this mode the character which is
under the cursor when the mode is
selected is printed as the cursor moves
over the screen, the colour is
determined by Forcecolour/
Copycolour.

To exit the designer press RUNSTOP to
return to the main menu, or,
SHIFT+RUNSTOP to call up HELP
screens.

HELP
This will call up the designer help
screens. RUNSTOP returns to main
menu any other key calls second help
screen.

VIDEO PARAMETERS
On this screen you may select the
video bank, screen address, character
set pointer, colour mode and colours
used by the designer and compiled
code. You may also view the selected
character set. Certain addresses are
not available as they are used by the
program. RUNSTOP (o return to main
menu

Toggle

'COMPILE SCREEN

On this screen you will be prompted to
enter the address at which you want
the designer screen code to be
compiled, if you have previously
compiled a screen you will be
informed of the next available address
to allow you to create consecutive
blocks of code, pressing RETURN
without entering anything will
automatically compile at this address.
You will not be allowed to compile
code which overwrites the program,
this is not a problem as you can
compile the code to a different address
and then use the seperate screen
compiler to move it to your desired
location. Once code is compiled you
have the option to save the code in
which case you will be prompted for a
filename. Code may be compiled and
recalled from under the /O area and

se| _Inc Inc Cursor
Screen [Border off
Colour [Colour
nt
h

Reverse|Forces

B
c
P
Wi th
Cursor rent

Colour |Character

ON THE DM

under the Roms, but, only code under
the Basic Rom (40960-49151) may be
saved. The program uses the area
under the Kernal Rom (57344-65535)
as a workspace and so any code
compiled there may be corrupted

RECALL SCREEN

This allows you to put a previously
compiled screen into the designer,
also, all of the video parameters are
read from this code. If no code s found
at the address you specify then you will
be asked if you wish to search for
code, if you do then the program will
search from that address until valid
compiler code is found which is then
loaded into the designer, you may then
exit or continue to search

LOAD/DIRECTORY

Selecting this option allows you o view
the disk directory and load from it. You
are not allowed to load code whose
start address is in the program memory
space. When code is loaded the load
start and end addresses are displayed,
and, if the code s a compiler screen it
is loaded into the designer and a red
asterisk (+) is displayed 1o inform you
this has happened.

QuIT
Reset computer. Re-enter program with
sys 16384,

The program “Screen Designer” (2049-
3014) on the disk is a basic loader and
loading screen for the main program
“scad”

19

[ON THE DISK |

LANDSCAPE ROUTINE

A guide to scrolling |

First and foremost let me just point
out one thing. On some older Cé4's,
the colour memory may need to be
set each time the routine is called, by
POKEing to it. (55296-56295). On
the more recent models, simply
selecting the colour by POKEing
646,n will do the trick. Note that this
is only if the routine does not at first
appear to work.

One of the first questions budding
young programmers ask is; ‘How do
I get to screen to scroll?’ How
indeed? First, the scrolling must be
done from machine code as Basic is
too slow to avoid screen flicker.
Scrolling uses special hardware
provided by the VIC chip. In
essence, all that is needed is to
update a 3 bit (0-7) counter, and let
the VIC chip do the rest. This of
course, does not move the characters
on the screen into different screen
memory locations, but it shits the
whole of the screen several pixels to
the left/right up/down. There are in
fact 2 scroll counters, x-direction
(horizontal) and y-direction (vertical).
To gain the left effect as opposed to
the right effect, you must decrement
the 3 bit counter, and vice versa to
g0 right. The process is the same for
the y-direction. To move characters
on/off the screen, a simple piece of
machine code is needed, which
Copies every character on the screen
either one character to the left/right
up/down. So now we know basically
how scrolling is done, you may be
asking the question; where is all the
mythical registers? A quick
consultation of the users guide will
assist you. The y-direction is bits 0-2
of location 53265 and the x-
direction is bits 0-2 of location
53270. To achieve neat scrolling you
must ‘shrink’ the screen so you can
hide the characters you are putting
onto the screen in the border. If you
don’t do this the whole effect of

20

on the C

64 for b

EDMUND DUMBILL

scrolling is ruined as large gaps move
back and forth at the side of the
screen. To shrink the screen in the x-
direction, you must set bit 3 of
53270 and the y-direction is bit 3 of
53265. One of the most common
uses of scrolling is in providing a
landscape for a spaceship etc in a
game. This is most commonly done

LEFT A BIT, RIGHT A

BIT, DOWN ABIT. ..
SCROLL
»
from right to left, that is

decrementing the 3 bit counter
53270. 1 will now give a program
breakdown of a landscape scrolling
routine.

THE ROUTINE

The routine is a very simple one,
providing a landscape 256 characters
long by 11 lines deep. The landscape
is actually interrupt driven, so your
program can be getting on with its
own business while the landscape
scrolls along. Another aspect of
interrupts is also brought in; the split
screen. As the landscape is only 11
lines deep, we want the other 14
lines to stay still, so the screen is split
at the 12th line. As a novelty, | have
included a variable speed of
scrolling. This is achieved by instead
of scrolling the screen 1 pixel every
50th of a second, scrolling the screen
by any amount stored in a memory
location. The number in this location
consequently becomes the speed
number. As a further novelty, the

screen is made to be in multicolour
mode, and the multicolour changed
constantly. So if the colour memory
contains colours from 8-15 the
characters with that colour
assignment will appear to glitter as
the multicolour changes. The routine
does not actually update the colour
memory, 5o it is advaisable only to
use one colour on the screen. Before
you try to use the landscape routine,
you should POKE the colour memory
to its proper settings for your
landscape. (See note at start of
article).

HOW THE ROUTINE
WORKS

I shall not go into detail as to how
the interrupt routine works, as it does
not pertain particulary to scrolling
(Eric Doyle wrote a series of interrupt
articles in your commodore in 1988-
1989). Every 50th of a second, the
scroll routine is called. On being
called, it decrements the speed
counter and then scrolls one pixel to
the left. The state of the scroll 3 bit
counter at 53270 is actually stored
separately in $COFF. It is checked if
the scroll counter has reached zero,
if 50, it is time to shift the screen one
character to the left, and to reset the
scroll counter. If you did this in
Basic, you would be able to see the
apparent spectacle of the whole
screen shifting back 8 pixels, and
then shifting back 8 pixels again with
the new screen data. Obviously,
machine code is too fast for the eye
to see what is going on. The process
of updating the 3 bit counter is
continued for as long as the speed
counter says. The speed counter is
located at SCOFD. Shifting the whole
screen one character to the left is a
laborious job, of which there are two
ways of going about it. The first way
is the way I've used, which is to shift
one row at a time with seperate

commands and then to shift the new
data in from $C300 onwards. This is
rather a long winded way, and a
better way, but more complicated,
would be to use extensive indirect
addressing to shift all data in and
out. The advantage of a long winded
way is that it is often the faster way,
as in this case. There is a pointer
which keeps track of where the
computer is along the landscape.
This counter is located at SCOFE, and
is decremented every time the screen
is shifted one character to the left. A
few pointers are used from $C200-
$C206. You can try altering them if
you want, $C201-$C202 control
border colour around and below the
landscape, and $C203-5C204 the
screen colour. $C205-$C206 control
the position of the screen split. You
can try splitting the screen at
different places to alter the scroll, but
remember that the shift routine does
not take account of screen split
position.

TO USE THE ROUTINE

The landscape data used by the
computer is at $C300 and ends at
$CDFF. The data is stored as screen
codes not as ASCII data. There is no
easy way to POKE in your landscape

113
TRY SPLITTING THE

SCREEN AT
DIFFERENT PLACES

FOR GOOD EFFECTS
»

data, apart from to write a landscape
designer program. It is probably best
to use a character set that you have
defined especially for the landscape,
but | have designed a landscape that
uses the default character set. To start

WINDOWS 128

Stormg and recalling windows is simplicity itself with this
handy C128 routine.

While designing a short program for
my C128, | decided to use some
windows to make the display more
attractive. Then | remembered how
Commodore had ‘forgotten’ to
include any window saving routines
in the Basic. Thus, | resolved to write
this wedge which would record the
screen contents, (including colour),
everytime a WINDOW command
was reached. Also wedged was an
extension to the command which
would close the current window and
recall the old screen. Up to 9
windows can be opened (10
including the original screen).

So, how do you use the routine?
First of all you will need to load in
the wedge by BLOAD"WINDOWS”
<return>. That will load the routines
into memory from $1400 to §17FF
(5120-6143). Now you should
transfer the routines into both RAM
banks (To avoid crashes when using

JASON DOIG

a variable) and install the wedge.
Enter this; SYS5381:CLR This will
also reset the windows stored to
zero. So any windows previously
opened will be lost. It is a good idea
to place this at the begining of your
programs. The reason for the CLR is
to clear the variable area which has
been moved to make room for the
windows which will be stored in
BANK 1 underneath them. Now
WINDOWS will be installed until the
machine is reset. (after a reset, using
the above SYS call should re-install
WINDOWS without re-loading).

The WINDOW command
operates as normal, except only 9
may be used in a row. Any more and
memory is filled up resulting in a
syntax error being generated (as
opposed to variables being

ON THE DISK

the landscape going simply select it
from the CDU menu or alternatively
load it independantly and type
S§YS49152. For the more inquisitive
amongst you the following is a
breakdown of the main program
code.

$C000-8C025 - Setup variables and
interrupt pointers

$C026-$C065 - Main interrupt
handling routine. Deals with split
screen and border colours.
$C070-$CO7F - Decides whether the
landscape routine should be called,
and calls it if needed.
$COBA-$C15F - Shift screen one
character to the left routine.
Interposed with variables as already
mentioned.

$C160-$C187 - Main scroll routine.

I hope this short introduction into the
art of scrolling will prove to be of
some benefit to you. Especially to the
novices out there in C64 land.

B — — — —

corupted).

To restore screen contents after a
window is finished with enter the
command - WINDOW? - this will
remove the last window opened and
decrease the window counter.

There is another useful feature of
this program. After opening a
window it can be bordered and
shadowed. Use the command
SY55696,<border colour>,<shadow
colour>. This will place a border
around the current window and
shadow it: The colours are from 0 to

One small point to note is that
your variable space is reduced to
about 40K. This should not cause
any problems, but be careful not to
80 overboard with enormous arrays.
The program also uses zero page
250-255 ($FA - $FF) addresses. To
see the wedge in action LOAD and
RUN the program ‘Window demo’
after BLOADING WINDOWS. One
last point worth mentioning.
ALWAYS home the cursor after
opening a new window, otherwise
strange things have been known to
occur (but very rarely).

29

ON THE DISK|

SAMPLE KIT

»d

To compliment last months program ‘Sequencer 64’ by Steve Carrie, | present a sample

The SAMPLE KIT 64 was originally
designed for use by owners of the
excellent digital sound sampler from
Datel Electronics. However, even
those without the sampler hardware,
can have hours of fun by using this
kit, with the accompanying
demonstration sound sample, and in
the process give an indication of
what sampling effects are possible on
the C64.

THE KIT IN USE

The kit enables a sound sample to be
“chopped’ into individual parts,
known as the SAMPLE SPLITS; these
‘sounds’ can then be linked together
in a sequence, known throughout as
the TUNE. Edited tunes can be saved
to disk, and data created can be used
to playback the tunes within your
own programs. To aid in this | have
included a source file named
SAMPLEPLAYER.ASM, which can be
assembled by the MIKRO assembler,
and CDU's very own 6510+

USING YOUR OWN
SAMPLES
The Sample Kit utilises a standard

22

program of my own creation
IAN GOFFE

sample file, which is created with
Datel Electronics “Sampler 64"
software/hardware package. The kit
requires you to save the sample data
from Datel's utility as a full 32K file.
This is a save range of 0-8, (a sample
split of 1); see the sound sampler
instructions manual for more details
of setting the sample save range.
Other sound sampler data files may
be compatible with the kit, but | have
only had chance to use Datel’s unit.
So, if you have another sampler, why
not try it out!

By using a full sample range, a
combination of smaller samples can
be used to include a variety of
instruments, thus giving more reality
to the final tune.

SAMPLE KIT EDITOR
SCREEN

The screen display is split into two
main areas. The top of the screen
comprises of the SPLIT METER, this is
the display on which the sample

splits are tested, and created. The
area below is the CONTROL PANEL,
coming complete with a selection of
“function buttons’.

ACTIVE MODES

Whilst on the editor screen, you can
be in one of two modes of operation,
each is denoted by a particular
coloured border:-

BLACK border - control refers to the
CONTROL PANEL (lower region of
screen).

BLUE border - control refers to the
SPLIT METER (upper screen region).
To toggle between the two modes
press the SPACE BAR.

CONTROL PANEL MODE
The ‘function buttons’ are operated
by positioning a pointer over the
relevant function, and selection
made by pressing fire. All control is
via a joystick in port 2. The available
function buttons are;

Increase step in tune (CRSR up
key - optional).

Play tune - press space to
return from tune.

~

MAT
A typical TUNE could be of the following form:-

Command/Split to play Repeat/parameter
SP 08

wr 05
00 o1
02 10
BLANK 00

Step <Comment>
00 eed 8
01 Delay 05
02 Play sample

split 00 once
03 Play split

02 16 times
04 Exits

3 - Decrease step in tune (CRSR
down key - optional).

4 - Selectarea in tune window to
edit.
5 - Increase parameter of selected

item (; key optional).
6 - Decrease parameter of

selected item (= key optional).
7 - Delete highlighted step in

tur

8 - Insert before highlighted step
in tune.

2 Exit to file menu.

Note that keeping the space bar
depressed (toggling between the two
modes of operation), and at the same
time pressing the fire button, slows
down the effect of a selection. This
can be useful if you seem to race
through values, and require a ‘finer
resolution’ when selecting.

SPLIT METER MODE

The two sample split indicators,
appearing on the meter display
(white=start split; red=end split), can
be moved by using the joystick in the
horizontal, and vertical directions for
each indicator respectively. In effect,
the sample splits partition the
complete sample into 128 different
sounds (shown as hexadecimal 00-
7F). To select a particular split to
edit, use the F1 and F2 keys. Press
fire to test the sound split, and once
the sound is as you require, store the
information by pressing F7. Note that
without pressing F7, no new sample
split information will be stored. The
border will rapidly flash colour to
confirm that data for the sample split
has been saved. For test purposes

only, the speed of the playback can
be changed by pressing the F3 and
F4 keys. The speeds can range from
$00-SFF (0-255), and is the delay
between the processing of bits when
playing back a sample. Note that a
speed of 0 gives the largest delay,
being equivilant of 256. The sound
quality heard in this test mode will
not be as clear as when the tune is
re-played, this is because the screen
interrupts are not disabled, but will
suffice for test purposes.

TUNE FORMAT

The tunes are displayed in the TUNE
WINDOW, this is the area to the
right of the first block of function
buttons. Each step shown in the
TUNE WINDOW comprises of; XX
YY ZZ; where XX relates to either a
value in the range $00-$FF, this
being the sample split number to
play, OR a command:- SP=select
speed to play subsequent sample
splits; WT=cause a specified delay
before the next step in the tune is
processed; RE=command to restart
the tune. A blank space in this area
signifies the end of the tune. The
hexadecimal value referred to by YY
can be either the number of repeats
of a sample (if a value $00-$7F is
specified), or a parameter value to be
used with one of the SP/WT
commands. Note that both the
command RE, and a blank space, do
not take the value of YY into
account. To make either XX or YY as
the field to be edited, select the “<
>" function button. (it will toggle
between XX and YY). A circle marker
will appear above the relevant ‘XX’

ON THE DISK

or “YY’ field. When this appears,
selecting the “+” and “-" function
buttons will increase or decrease the
field value. The value ZZ is the step
number in the tune.

DEMONSTRATION FILES

I have supplied a demonstration file,
and tune/split information. The
relevant sound samples are suffixed
with “.SAM”, tune information with
“.TUN’, and split information with
“.SPL". To listen to the demonstration
file, named MISC, enter FILE menu
selecting the FILE function button
when you wish to load and save
data. From the FILE menu;

select option “LOAD SAMPLE FILE” -
enter name as “MISC.SAM”, select
option “LOAD SPLIT DATA” - enter
name as “MISC.SPL”, select option
“LOAD TUNE DATA” - enter name
as “MISC.TUN". When you have
loaded in the required sets of data,
select the play function button on the
control panel to listen to the demo.

PLAYING A TUNE IN YOUR
OWN PROGRAM:

Enter the file menu by selecting the
FILE button on the editor screen. You
will need to save the SAMPLE SPLIT
DATA, this contains the start and end
addresses for all of the 128 sample
splits. Also, a TUNE DATA file is
required, this contains all the
necessary control codes for speed,
delay timings, and a sequence of
sample splits to play. Most notably, a
copy of the sample file is required to
re-play the tune. The quality of
sound reproduction is greatly
improved by disabling the screen (by
clearing BIT 4 of location $DO11). To
add to this effect, the interrupts are
also disabled with SEI throughout the
playing of the tune. Please refer to
the source file (SAMPLEPLAYER.
ASM) for some documentation on
memory usage and handling of the
tune/sample split data.

Finally, even if you haven't obtained
Datel’s digital sound sampler to
sample your own sounds, | hope you
enjoy playing around with the kit -
hopefully not annoying anybody in
the process....o turn up the volume!

23

FEATURE

Getting to grips with the 1581 disk drive is expl

manner.

in an easy to

PAUL TRAYNOR

1581 Memory

$0000-$1FFF (#0-#8191)
$0000-$00FF (#0-#255)

$0100-$01FF (#256-#511)

disable

$0200-$02FF (#512-#767)
$0300-S03FF (#768-#1023)
$0400-$04FF (#1024-#1279)
$0500-$05FF (#1280-#1535)

$0600-$06FF (#1536-#1791)
$0700-$07FF (#1792-#2047)
$0800-$08FF (#2048-#2303)
$0900-S09FF (#2304-#2559)
SOA00-$OAFF (#2560-#2815)
SOBOO-$OBFF (#2816-#3071)
$0C00-$1FFF (#3072-#8191)

$4000-$SFFF (#16384-#24575
$6000-$7FFF (#24576-#32767)

$8000-SFEFF (#32768-#65279)
$FFOO-SFFFF (#65280-#65535)

The memory can be split into the following areas;

RAM, which can be split into the following;

Zero page, job queue, variables.

The zero page contains many of the important parameters which are required by
DOS. The job queue enables the the controller and DOS to communicate with
each other.

Stack, variables, vectors.

The RAM vector addresses found here are the ones which can be altered to
commands such as scratch or the new command

Command buffer, tables, variables.

Data buffer 0

Data buffer 1

Data buffer 2

Data buffer 2 is the one where the user commands u3-u8 (or uc-uh) will jump to.
Data buffer 3

Data buffer 4

Data buffer 5

Data buffer 6

BAM for first 40 tracks

BAM for last 40 tracks

Track Cache Buffer

The track cache buffer helps to increase the speed of input/output operations. This
is because all access involves whole physical tracks which are stored in the track
cache buffer. If more than one sector is to be read and they are all on the same
track then only one disk access will be performed, further sectors will be read
from the track cache buffer.

Serial Bus /O

1O s controlled by a 8520A CIA chip

Floppy Disk Controller (FDC) 4

The FDC is a Western Digital 1770 or more recently1772

32K ROM, DOS and controller routines
Jump table, vectors

24

The Internal Disk Commands allow
the user to manipulate the memory
of the disk drive. It is also possible to
run machine language programs in
the memory of the drive. As with
Direct Access Commands care must
be exercised when using these
commands, especially if the user has
10 or very litlle experience.

GENERAL RULES

When you are first using Internal
Disk Commands you must be aware
that any error in programming can
lead to the drive hanging up, and the
only way to regain control is to
switch off and then on again. If a
programming error has lead to the
drive motor and green light
remaining on, then the only way to
safely regain control (ie. avoiding
corrupting data) would be to reset
the computer. Therefore | advise that
you should save all programs before
running them.

COMMANDS

Memory Read

With the memory read command
you can access any of the addresses
within the disk drive’s memory.
Memory-read is the drive’s
equivalent of the BASIC PEEK
function, the command format is
shown below.

print#15,”m-r"chr$(l)chr$(hichr$(n)

where; |=memory address low order
h=memory address high order
n=number of bytes

The first example program will
read any address of disk memory and
up to 255 bytes at one time. The
address should be entered in decimal
form.

10
20

open 159,15
input”[down]number of bytes
to read (0O=finish)";n

30 if n<1 then close 15:end

40 if n>255 then 20

50 input’starting at address;ad
60 t(ad/256):I=ad-h*256
70

print#15,”m-r"chr$(l)chr$(h)
chr$(n)

80
90

forj=1ton
get#15,x8:if x$="" then
X$=chr$(0)

print asc(x$);

next j

print

goto 20

100
110
120
130

The second memory-read
example program when run will
determine the type of disk drive, the
device number (x) to be tested is set
in line 10,

10 x=9

20 openl5x,15

30 openlx,8,"#1"

40 print#1,"m-r”chr$(198)chr$
(229)chrs(1)

50 getitl,a$

if asc(a$)=0 then dr$="1581":
else dr$="1571/41"

70 closel
80 closel5
90 printdr$
(13
EXERCISE CARE
WHEN USING DOS
COMMANDS.
b
Memory Write

The memory-write command allows
You to write to any of addresses
within the disk drive’s own RAM.
Memory-write is the drive’s
equivalent of the BASIC POKE
command, the command format is
shown below.

print#15,“m-w”chr$(ljchr$ (hichr$
(n)chr$(d1)chr$(d2)....chr$(dn)
where; I=memory address low order
emory address high order
umber of bytes
di-dn=data bytes

You can write up to 35
consecutive data bytes with one
memory-write command.

Our memory-write example

FEATURE

program will put a machine language
routine into data buffer 2. Operation
of this routine is explained later in
the text.

10 openl5,9,15
20 y=0

30 read x:if x=256 then end

40 print#15,"m-w"chr$(0+y)chr$
(5)chr$(1)chr$(x);

50 y=y+l

60 goto30

70 data 76,7,5,32,229,129,96,

32,241,129,165,118,197,118,
240,252,96,256

Memory Execute

With the memory-execute command
you can execute any routine in drive
memory RAM or ROM. Memory
Execute is the drive’s equivalent of
the BASIC SYS command, the
command format is shown below.

print#15,"m-e"chr$lichr$(h)
where; I=memory address low order
h=memory address high order

To show the memory-execute
command at work, load and run the
memory-write example program,
(note that channel#15 should still be
open), and then enter the following
command in direct mode.

print#15,”m-e”chr$(0)chr$(5)

This first command will switch
the drive activity light on.

This next command will then
switch it off.

print#15,"m-echrs 3)chr$(5)

Block Execute

The block-execute command is a
combination of the direct access
command ‘u1” and the internal disk
command ‘m-e’. The data or
program in the sector will be read
into the buffer and then executed.
The command format is shown
below.

print#15,"b-e:";channel#;drivet;
trackit;sector#
print#15,"b-e:channel# drive#,
tracki sector#”

25

FEATURE

A programming example of the
block-execute command is shown in
the 1581 user’s guide.

USER COMMANDS

User commands tell the 1581 to
execute programs starting at certain
predefined locations or addresses in
it's memory. Below is a table of user
commands and there associated
functions.

User Function
Command

uo Restores default
user jump table
Equivalent of direct
access command
Block-Read
Equivalent of direct
access command
Block-Write

Jump to RAM data
buffer #2, Location
$0500 (#1280)
Jump to RAM data
buffer #2, Location
$0503 (#1283)
Jump to RAM data
buffer #2, Location
$0506 (#1286)
Jump to RAM data
buffer #2, Location
$0509 (#1289)
Jump to RAM data
buffer #2, Location
$050C (#1292)
Jump to RAM data
buffer #2, Location
SOS0F (#1295)
Jump to the reset
tables, Location
SFFFA (#65530)
Power up vector

ul orua

u2 orub

u3 or uc

u4 or ud

u5 or ue

ub or uf

u7 orug

u8 or uh

u9 or ui

uzoryj

The format for sending a user
command is as follows;

print#15,"ucharacter”;

The character is taken from the
above table.

Although there is only space for
three bytes between each of the u
commands (u3-u8) jump-to

26

locations. This is sufficient room for a
machine language JMP command
allowing you to use longer routines
that can be initially called up by ‘u’
commands. To show an example of
the user commands at work load and
run the memory-write example
program, (note that channel#15
should still be open), you will notice
that m-w example program loads the
program into data buffer#2 which is
the one where the user commands,
u3-uB (uc-uh), jump to therefore this
program can be operated by user
commands as well as the ‘memory-
execute’ method previously shown.
When you have run the ‘m-w’
example program enter the following
command in direct mode.

print#15,"u3"

This first command will switch
the drive activity light on.

This next command will then
switch it off.

print#15,"u4”

UTILITY LOADER

The utility loader is the command
which will load a USR file from disk
into disk drive memory where it will
then execute. The format for the
utility loader command is as follows;

print#15,”&0:filename”

USER FILES

A user file has to follow certain
guidelines. I is limited to just one
sector of a disk and this sector is
constructed as below;

Byte
0 Start address low order
Start address high order
2 Number of program

3~ Program code bytes
last checksum

The maximum number of
program code bytes is 251. The
checksum byte will immediately
follow the last program byte. The
checksum is calculated by adding all

the values of the bytes, starting at the
low order start address (byte 0)
,while adding you round down to
zero every time you reach 255.

A method of creating user files is
to open the file as you would a
sequential file (except using ,u,w
instead of ,s,w) and then read into
this file, from data statements for
example, the values of all the bytes
starting at byte 0. Below is the
framework for a program which will
create a user file on disk which can
then be subsequently executed by
the utility loader command.

10 open2,9,2,"0:&filename,u,w”
20 readd:if 56 then 40

30 print#2, chr$(d); :goto 20

40 close2zend

50 datal :rem start address
low order

60 datah :rem start address
high order

70 datan :rem number of
program bytes

80 data

90 data :rem program code

100 data

110 datac :rem checksum

120 data 256 :rem program data
finished

AUTO BOOT LOADER

When any of the following functions
are performed; power up, reset, burst
inquire, burst query,or the initialize
command, a user type file named
“copyright cbm 86, if present, will be
loaded into disk memory and
executed. After executing the program
must call the JCBMBOOTRTN to
return control to the drive. there are
three methods of disabling the
automatic loading of this file;

Setting a flag in the BAM, Byte 7
track 40 sector 1 (there is also a copy
in byte 7 track 40 sector 2)

Setting a flag in drive RAM, The
JDEJAVU jump table vector
mentioned in the user’s guide is at
location $ff60 (#65376) and that uses
the SWITCHAUTO at location $9145
(#37189)

The third method of disabling the
auto boot loader is the simplest and
that is to just rename the file.

ADVENTURING

ADVENTURE HELPLINE

JASON FINCH Continues his aid to those Adventurers stuck in the middle of ‘KRON’

Welcome once again to Adventure
Helpline. The past three issues worth
have concerned themselves with
completing the adventure Kron,
written by Tony Rome and published
by CDU in December 1989.

However, although a solution was
given to each problem, the help
provided was of a very cryptic nature
and not everything was revealed
completely. The next three issties
(including this one) will virtually
duplicate the motions of the first
three but this time each of the fifty-
four locations will be described in
detail and the commands given that
you should type in each location to
successfully complete the adventure.
Not only that, but the results of your
actions are also listed, together with
all exits and where they lead. | am
not going to tell you which ones to
take until the end because they will
be different if a location is visited
twice, once on going somewhere
and again on returning from that
other location. | shall, however,
inform you of directions that you
should not take. Suffice it to say that
following these and the broad
directions given in the other three
articles you can't go far wrong. Each
location has been given a number,
the first being, quite obviously,
number one. The layout is quite self-
explanatory but for the first location |
have provided details of what you
need to know. And in this issue stage
one, the first twenty-three locations,
will be recreated for you. Let the
story begin..

1. At the Lagoon of Stars. Rocks
surround the beach while to the east
stretches the dreaded Sea of Storms,
(this is the main description of the
location exactly how it is worded on
the screen.)

Exits: EAST 2 (this means that by
using the verb ‘east’ you travel to the

location numbered two in this series.
These exits are not necessarily the
only ones because new ones can be
discovered by performing various
operations)

Type: EXAMINE ROCKS - boat
appears (only type what is given in
capital letters. The lower case
represents the results of the action.
This text should only be used on the
first entrance to the location. Upon
returning just go where you see fit.
There may be, like in this case, more
than one line of text, so type the first
followed by the second and third and
50 on)

GET BOAT

(11
ALL THE NICE GIRLS
LOVE A SAILOR
7

2. On the Sea of Storms east of a
cove. The waves scream like angry
vultures waiting to devour their prey
as they rise and fall in a tortuous
thythm.

Exits: WEST 1

Type: HOIST SAILS - allows south
and east movement (to 8 and 3
respectively)

Other info: Do not drop the boat
at any stage when you are in the
open sea.

3. In open sea. The waves lash
mercilessly against the small boat.
Exits: EAST 4, SOUTH 9, WEST 2

4. In open sea. To the south is a
sound of rushing water.

Exits: EAST 5, SOUTH 10, WEST

Other info: Do not go south

5. On the northeast coast of Sark. To

the west is the sea. An old monastery
stands on a cliff overlooking the sea.
The moon moves behind the dark
clouds as they scud across the
gloomy sky.

Exits: WEST 4

Type: WAIT - moonlight reveals
steps

Other info: If you have just
uncovered the steps, go up them. If
coming down, remember to pick
your boat up again as it will have
been left at the bottom of the cliff.

6. In open sea east of a treacherous
rocky inlet off the northwest coast of
Sark. To the south shrouded by mist
is a strange rock. East is open sea.
Exits: EAST 7, SOUTH 12, WEST
6

Other info: You may here cries
here - they come from an eagle
elsewhere in the adventure.

7. In open sea.
Exits: EAST 8, SOUTH 13, WEST
6

8. The sea stretches in all directions
and bearing south is a tiny island.

Exits: NORTH 2, EAST 9, SOUTH
14, WEST 7

9. In open sea there is a sound of
tushing water to the east

Exits: NORTH 3,
SOUTH 15, WEST 8

Other info: The sound of rushing
water to the east is in fact a deadly
whirlpool. Under no circumstances
should move east. It will result in
death.

EAST 10,

10. The boat is caught in a deadly
whirlpool! You are slowly sucked

into its spiral path... There is no
escape...

Exits: none

Other info: This location

represents certain death. Entering

27

ADVENTURING

here results in you being killed
without a chance to escape. Do not
enter this location.

11. In an old Boran monastery which
is mostly ruins now. The once
beautiful stained glass windows are
now either cracked or broken. Steps
lead down to the shore.
Exits: DOWN 5
Type: EXAMINE RUINS - a scroll
appears
TAKE SCROLL
Other info: The only way 1o go is
back down the cliff. When at the
bottom remember to take your boat
again or else you will drown.

12. On the Rock of Akron. A
greenish mist surrounds you and
voices whisper your name... or is it
just the sound of the wind hurrying
across the sea...

Exits: EAST 13, NORTH 6

Type: LISTEN - sound comes from
aclam

OPEN CLAM - this can only be
done if you are holding the bar
which is found in location 16. On
opening the clam you find an old
lamp.
TAKE LAMP

13. In open sea.
Exits: NORTH 7, EAST 14,
SOUTH 18, WEST 12

14. On Refuge Rock a small island
totally surrounded by the Sea of
Storms. A small cave covered with
twigs is almost hidden from view

Exits: NORTH 8, EAST 15,
SOUTH 19, WEST 13, ENTER 22

Type: GET TWIGS

Other info: If here for the first
time, enter the cave by simply typing
ENTER CAVE

15. In open sea
Exits: NORTH 9,
SOUTH 20, WEST 14

EAST 15,

16. On the northwest coast of Sark.
The rocks here are jagged and slippy
under foot. An old withered tree
stands on a ledge a few feet above.

Exits: EAST 6, CLIMB 17 (see
below)

28

Type: GET BAR

THROW ROPE - found in
location 22. The rope will wrap
around the tree

DROP BOAT - otherwise the
branch will snap

CLIMB

111
WHO WANTS TO LUG

A HEFTY BOAT
AROUND?
»

17. On a ledge above the rocks. A
withered tree stands here, its
branches cracked and dry. In the
distance is the Castle of Spells
towering against the skyline.

Exits: DOWN 16

ype: RELEASE EAGLE - it flies
away but leaves a flute

GET FLUTE

GET BRANCH - this will be
needed to provide light later on

DOWN

18. At a rocky inlet on the north
shore of Sark. Cliffs tower above the
waterline... A lone figure stands on
the clifftop!

Exits: NORTH 13

19. Off the north shore of Sark.
Ahead are the Caves of Goth. It is
rumoured that anyone who enters
them never returns to tell the tale...
Exits: NORTH 14, SOUTH 23

20. In the Valley of the Storms, a
narrow water-way cut through solid
rock. A few stones loosen and move
as your boat approaches. To the
north is open sea and south lies the
land you remember so well... Sark!
Exits: NORTH 15, SOUTH 21
Other info: If you go south from
here then you will meet up with
death. Do not enter location 21.

21.In a waterway in the Valley of the
Stones. Suddenly huge rocks fall
from the steep slopesL... They smash
your frail boat into small pieces...

Exits: none

Other info: Like location ten, this
location represents certain death.
There is no escape from the rocks
that fall on you. You will be crushed
and will die.

22. Inside a small cave on Refuge
Rock. This was once a resting place
for Pilgrims crossing the Sea of
Storms.

Exits: OUT 14

Type: GET ROPE

out

23. On the north shore of Sark north
of the great Caves of Goth, an
underground maze of tunnels and
pits. Somewhere in the depths of this
subterranean world is the Cave of Ice
said to hold the ke of freedom.

Exits: NORTH 19, SOUTH 24
(covered next month!)

Well that just about wraps up the first
stage in detailed terms. To best solve
this part you should follow closely the
following location motions (eg: 1-4-3-
2-5 means start in location one, move
1o location four and do whatever you
are instructed in these instructions,
then go to three and do whatever you
must do there, then to two, and so on).
One of the “correct” methods is as
follows: 1-2-3-4-5-11-5-4-3-2-8-14-
22-14-8-7-6-16-17-16-6-12-13-14-19-
23.

If you follow the movements and
do exactly what | have said in each
location you should find it possible to
move between the locations that | have
illustrated and in that order. Just
remember NEVER to enter locations 10
or 21 as these will result in you having
to start over again. Also, there are
twelve locations that represent times
when you are in your boat on the
waters of the Sea of Storms. Never type
DROP BOAT or anything to that effect
or you will drown and remember that
unless you find land you will die from
exposure if you stay in the sea for too
long (about thirty moves). Next month
we shall have a look at the next
seventeen locations which will take
you up o the same point as you were
at the end of part two of this series. So
until then, have fun adventuring...

ON THE DISK|

- ADVENTURE WRITING

Creating your own Adventures becomes more and more feasible as this series continues.

The past couple of parts of this series
have concentrated more on theory
and background rather than the
actual programming of an adventure.
You will have had time to consider
what sort of adventure you would
like and will have been able to pick
and choose what aspects you would
like to include. Now though we shall
actually get to the main PPPS or Pre-
Programming Preparations. “What?? |
thought you said we were
programming this month!”, | hear
you shout. Well we will - but only a
very small amount. The PPPs must
be done so that we can structure the
adventure which, in this case, will be
programmed mainly in BASIC with a
touch of machine code to spice
things up a bit. Remember that text
compression program that | supplied
with the first article? Well the
machine code version of the
decompression routine is on the disk
this month as well as a further two
pictures, again created by Doug
Sneddon.

These files are “AW-DECOM.MC”,
“PIC2" and “PIC3" respectively. The
assembly language source file is also
here for machine code programmers
to have a look at, filed as “AW-
DECOM.SRC". There are plenty of
extra comments to tell you exactly
what each step is doing and it is
compatible with the 6510+
assembler, published by CDU a little
while back. To load the actual code
you use the standard ,8,1 suffix and
execute the code with SY$49408.
Before doing this you must enter
POKE2,L where ‘L’ represents the
length in bytes of the compressed
data. With this routine you can only
have compressed data up to 254
characters in length but an
experienced machine language
programmer should be able to alter
the code to allow more. If you only

JASON FINCH

program in BASIC, never mind

To see it in action in my AW-
COMPRESS program, published with
the first article, you should load and
run that program as it stands and
then press RUN/STOP when it has set
itself up with the main screen. Then
delete lines 540 to 675 inclusive and
replace them with: 540 POKE 2,CL:
SYS 49408. Of course, you must
have first loaded the code, so delete
the command CLR at the very start
and replace it with: 5 A=A+1: IF A=1
THEN LOAD”AW-DECOM.MC”,8,1
Now you can insert this issue’s disk
and RUN the program. The code will
load and everything will be the

CABIN

same, other than the speed at which
the decompressed text is printed!

Right then, a minor change of
subject! The very first thing to do
when writing an adventure is to
come up with an idea for what your
adventure will be about. Will it be
fantasy or modelled on reality? What
will be the setting? - A castle, a
fictional world, a house or a futuristic
setting are all possible ideas. This is
the creative stage. Draw yourself a
diagramatic outlook of your
adventure landscape. My adventure
will be set in a fantasy world and
Figure One shows my idea.

This will be a very small
adventure but you can see the main
components. Once you have got a
basic idea of what will happen in

DENSE
_FOREST

FIGURE 1

29

ON THE DISK

your adventure you should create a
“square map"”. This should be much
more diagramatic with squares
representing individual locations
with lines linking them. There are a
multitude of different methods of
map drawing that you could use but
for simplicity and what I call “ease of
expansion” use the squares method
to begin with. It is a lot easier to add
locations than with other methods.

If you want to make an adventure
more difficult then make certain
“linking paths” one-way. By this |
mean that going north to one
location does not necessarily mean
that by then going south again you
return to the same place. By
incorporating features like this you
can very easily design a “location
obstacle”. This is something like a
maze and in that case you can make
all directions possible “exits” but
only have one that moves you to a
new location. The others retum you
to the start of the “maze” whilst
others could keep you in the same
location. By ensuring that the
descriptions of these locations are
the same, the player can become lost
relatively easily. The example
adventure, Demad, incorporates a
very simply three location maze
which is represented by locations
nine to eleven in Figure Two, the
square map.

A number of terms were used in
the last paragraph that | shall now
clarify. They are all quite simple but |
shall explain them to ensure that you
fully understand. Don't forget that
this PPP stage is very important.
During your programming you must
have something to refer to. But first
those terms - and a few others.

“Linking paths” are merely the
lines that are shown on your square
map so that you can easily see which
directions are available from a
specific location and to which
location it leads. The path is not a
physical part of your adventure. You
could just as easily draw the squares
touching with gaps in their sides, but
it is not as clear.

“Location obstacles” are features
of your adventure that hinder the
progress of the player. They are

30

related to the actual location and in
which directions the player can leave
that location. This could be a maze
as mentioned earlier or could be a
light/dark situation. This could take
the form of a dark tunnel where the
player’s movement is restricted until
a lamp, for example, is lit, whereby
new directions are made available.
“Exits” is the term that describes

FIGURE 2

which directions a player can move.
If on a mountain path that runs north
10 south, the possible exits are north
and south. New exits can be made
available under different
circumstances. For example, wearing
a magic ring could “open up” an exit
to the east that may lead into a cave
in the mountain.

“Actual obstacles” are things
found in the locations, or rooms as |
shall now call them. For example if a
large boulder prevented you moving
west and it was possible to somehow
shift it to “open up” the new exit,
then this boulder is termed an actual
obstacle.

“Objects” are exactly what they
say. They are found in the rooms and
are the things than can be picked up,
dropped, opened, closed and so on.
In the previous example the boulder
whould also be defined as an object.
Some food, a key, a cupboard and a
bag of coins are all examples of
objects.

Once you have drawn your
“square map” and have decided on

the general descriptions of the
rooms, you should mark on the
positions of the actual obstacles. You
should have a ratio of about per five
to seven rooms. This will require
some thought. Next you must decide
on how they will be overcome - for
example the boulder could be
pivotted out of the way using a
strong piece of wood. Don't make
the solutions too obvious but then
again don’t make them so
outrageously stupid that no-one
would be able to solve them. If the
latter is the case then the player is
likely to quit and put your adventure
away to gather dust!

The objects that solve puzzles
can be termed “solution objects”
and all others “collection objects”.
The latter could be something like a
gold coin that is needed to complete
the game. Obviously, the solution
objects and the actual and location
obstacles should be placed with care
as thought must be involved to
ensure that the solution objects are
available before the obstacles are
encountered. It would be no good
placing the piece of wood to shift the
boulder somewhere “after” the
boulder. There is quite a bit more to
say about solution and collection
objects which | shall cover at the
start of the next article. For now,
though, it's your tur to do a bit of
programming!

What we need to design for next
month is an input routine. This is
very important because it is how the
player conveys his commands to the
computer and adventure program.
You could use a standard INPUT
command but a much better one
would be specialised to accept only
certain characters and length of
input. Have a go at that yourself - |
shall provide my version next month
together with routines to get and
display text and graphics and
describe the present location. These
can be adapted for your own use but
will eventually be found in my
adventure; Demad. Splitting up the
input and analysing it comes later
on. Until next month, when we shall
have a true programming session, get
planning your own adventure!

TECHNO-INFO

EBTTERS

Problem solver JASON FINCH helps a few more readers out.

Dear CDU,
I smoke whilst at the keyboard and
this has resulted in my keyboard
accumulating ash and going
haywire. After dismantling the
computer and blowing out the
keyboard with a footpump the
problem was temporarily rectified.
However it occurred again after
about a week and required the same
treatment. There will come a time
when the problem won't be solved
in this manner and | wondered if
you knew of some supplier who can
supply me with a replacement
keyboard.

Derrik Nash, The British Forces.

Dear Derrik,

a company in Birmingham
supply replacement
keyboards. They are HRS Electronics
Plc and their address is Garretts
Green Lane, Birmingham, B33 OUE.
The telephone number is 021-789-
7575 and the keyboards are about
forty pounds (including VAT) for a
C64 keyboard and around twenty-
four pounds for C64C keyboards.
However, you will have to contact
them for the exact prices. You may,
though, be able to get one cheaper
by finding someone who has an old
64 that has possibly a number of
faulty chips or has been damaged in
some other way and is of no use. You
could then use the keyboard from
that computer or alternatively some
computer stores will have ones left
from computers that they have been
asked to repair but then it has been
found that it would be
uneconomical. | was able to get hold
of one for only five pounds! The best
bet though would be to contact HRS.

Dear CDU,
1 hope you can help me with the
next problem. | want to use a

Commodore 8050 dual floppy disk
drive with my Commodore 64
computer. The User Manuals says
that by acquiring the Commodore
64 IEEE Interface Expansion Card it
is possible to attach any IEEE disk
drive. So | know that I need an IEEE
interface but | cannot find any
supplier that stocks these here in
Holland. Maybe you can help me to
solve my problem. | would
appreciate any help or information
you can give me that can help me to
use my 8050 dual drive.

Hans Sjoerds, Holland.

Dear Hans,

1 am pleased to be able to tell you
that there is a company here in
England that stock the item that you
are looking for. They are Meedmore
Limited and are based at 28 Farriers
Way, Netherton, Merseyside, L39
4XL. The stock number for the
Commodore 64 IEEE Interface
Expansion Card is A0141 and it costs
just short of eighty pounds. This
includes VAT and postage in the UK,
although | am not sure what
arrangements are made and what
costs are incurred by sending to
other countries. | hope | have been
able to set you on your way.

Dear CDU,
| own GEOS which | must say is a

which 1 proudly own most, but is
there any way | can have a pound

sign. It is very annoying w
letter to someone when you cannot
print a pound sign. | have created
my own font with a pound sign but
it is not displayed when you press
the pound sign key, but when the
“at” key is pressed. | have only just
found out that this sign appears as a
‘@ if you print it out using the NLQ
mode or Draft mode. Only on High

mode will a pound sign appear.
Please could you help me.
Matthew Langner, Hatfield.

Dear Matthew,

What you must do is alter the
appropriate DIP switch on your
printer so that the BASIC line
OPEN4,4:PRINT#4, CLOSE4
produces a pound sign to be
displayed. Then keeping this switch
set like that, which | think is the one
dealing with international fonts, load
up GEOS and type your letter.
Whenever you want a pound sign to
be displayed use the hash mark (#).
Then when you output in NLQ
mode, the printer should display a
pound sign instead of the hash mark.
Thanks go from me to FSSL for
providing that bit of information.

Dear CDU,
1 am writing to ask if you could
solve a little problem | have with a
program on the CDU disk Volume 3
Number 8. The file is the POPP
program for the C128 computer. The
problem is that when I load it into
memory | get an Illegal Quantity
error in line number ten. | hope you
can solve this for me.

A.G.Jones, Hull.

Dear MrJones,

Line number ten of the said program
contains only one statement - a
WINDOW command. The only
possible cause for error that | can
imagine is that you are attempting to
execute the program in the standard
forty column mode. This means that
the value for the horizontal width of
the window is reduced to a
maximum ef 39. But the command
specifies a width of 79 and therefore,
unless you are in eighty column
mode, an Illegal Quantity error will
be generated.

31

LETTERS

Dear CDU,
I wonder if you would be good
enough to answer the following
couple of questions. | have recently
acquired a second CBM1541 drive
and after a slight repair the machine
is as good as new. Is it an advantage
and to what uses can | put it?
R.J.Pike, Lichfield.

Dear Mr.Pike,

Having a second drive is certainly
advantageous even though it may not
seem 50 at the start. This will make
itself increasingly apparent as you buy
new software or your needs are
increased and you will find more and
more uses for the new drive. Copying
of disks (your own - not piracy,
please!) is far quicker using two drives
because it eliminates the need to keep
swapping the source and destination
disks. Also, you have effectively got
twice as much space o access at the
same time. If using a word-processor
or spreadsheet you could have the
main system disk in one drive and
your work disk in the other. Then if
the program needed to keep
accessing the main disk you wouldn't
need to keep swapping them around.
Also there are many uses for a second
drive when programming and | am
sure that more of them will make
themselves apparent as you use it
more and time goes on.

Dear CDU,

There appears to be some faults on
the CDU disk that I received recently
(June issue). None of the 128
programs are found by the drive for a
start. Also when trying the Sprite.Bas
demo it instructs one to load the
Sprite Basic program but pressing the
space bar results in the screen going
dead, no cursor, no activity. Other
programs at fault are the Aleatory
Music which, after loading, produces
a syntax error in 17190. The copier
program is also faulty. After pressing
either F5 or F7 there is no activity at
all. With regard to the new menu - |
do not like it. When using the cursor
to select a program it is only possible
to go down the program list, using
SHIFT does not enable on to go back

32

up the selections again, and | found it
only too easy to overshoot the
selected program. I have sent the disk
back to Select Subscriptions but hope
you can shed some extra light on the
subject.

E.C.Amesbury, Weston-Super-Mare.

Dear Mr.Amesbury,

It certainly sounds as though the disk
was corrupt and | hope that the
replacement copy will work when
you receive it. However, there may be
some other reason for certain
programs not working. The 128 ones
for example. These do not load using
some 1571 drives because they are
protected. This protection must be
removed using a disk editor o a
directory editor before the programs
will load. Alternatively put the drive
in 1541 mode. The reason for the
Sprite.Bas program not working could
be the fault of a fastload cartridge of
some description that you have fitted.
List line 30 - the last statement should
be SYS64738. If it is this then the
computer should reset itself. You will
have to wait a couple of seconds
before the power-up message appears
Aleatory Music can also produce
errors if a cartridge is active because
of the way it is “decompressed” out to
its standard length. If it still produces
an error when you get it back, try it
without anything else other than the
drive and monitor attached. | cannot
see what the problem with the menu
is. Itis programmed to respond to the
SHIFT and cursor down key so that
upward movement is possible. These
are all only possible causes for the
separate errors, of course it may be
that parts of the disk have been
cormupted in transit

Dear CDU,
The main reason for writing is o find
out how to get multicolour sprites.
The user manual does not help much
(not at all really). I would also like to
know how to get the computer to
automatically enter data created
from a sprite editor program | have
written. | need to enter about ten
lines. 1 hope you can help.

David Mayes, Kent.

Dear David,

First of all, multicolour sprites are
controlled by register number 28 in
the VIC-II chip, location number
53276. To switch on multicolour
mode by entering POKE 53276
PEEK(53276) OR 2AN where ‘N’ is
the number of the sprite from zero to
seven inclusive. To switch off
multicolour mode use POKE 53276,
PEEK(53276) AND 255-(2AN). If you
understand binary then the eight
sprites are represented by the eight
bits of location 53276, sprite zero
being the far right bit zero, and sprite
seven being the far left bit seven
Thus is you wanted sprites 0,1,4 and
6 to be multicoloured the value to

enter would be the decimal
equivalent of 01010011 which is 83,
Thus you would type POKE

53276,83. As for entering the data,
there are a number of ways. By far
the simplest is to get the computer to
print out a line as if you had typed it,
then to print a statement such as
GOTO 500 beneath that and then to
exit the program. Before doing this
the keyboard buffer is loaded with
two carriage returns. Then when the
program exits, the line will be
entered and the GOTO 500
statement executed which returns to
the program. However there is one

huge problem with this. Whenever a
line is entered into the computers
memory, all variables are cleared. If
this does not matter then the
previous technique is fine. The other
method is too complicated to explain
here but involves actually playing
out with memory contents and
pointers. If you want to store a few
variables then POKE them to some
location (679-767 are handy) before
exiting and then retrieve them by
PEEKing the same location upon
returning. | hope that the technique
is suitable because on the disk you
will find a program filed as
“TECHNO INFO” that will ask you to
enter a value between 1 and 100.
That many random numbers are then
generated and stored in blocks of
eight as DATA statements. | have
fully REMmed the program so that
you can see what is happening. |
hope I have been of some assistance.

Dear CDU,

1 would like to react to two letters |
read in your May 1990 issue. Maybe
1 can be of some help to the writers.
My first remark is for Mr.Booth from
Bristol. He experienced trouble with
the Power Cartridge. Purely by
coincidence | met another C64 user
the very day I received CDU who
had suffered from similar effects.
Here is the story: His C64 (old
model) broke down - one of the
ClAs blew up, making some
operations very hard. So he bought a
new one. It worked perfectly until
he installed the Power Cartridge.
Without it there was no problem. So
he switched computers - back to the
old one. Result - trouble. He
borrowed another 64 from a friend
and connected it. Result - system
going haywire. In a last attempt he
replaced the power supply block of
his new 64 with the one of his old
64. Result - all computers worked
perfectly (apart from the one with
the broken CIA of course).
Conclusion - the fault might be in
the power supply. To control this he
fetched his multimeter and checked
out the voltages. And here comes
some confusion | don’t understand -

on the 5 volt supply pin of his oldest
power supply (which worked) he
found a voltage of 4.65V and on the
new supply (the one with the
problem) he measured 5.05V.
Anyway my conclusion still is that it
might be helpful to have your power
supply checked out, for this may be
the cause of your trouble. My
second remark is for Adam Trickett
of Leeds. He asked if there is a
GEOS printer driver for the Citizen
120D. Well, here is some good news
for him: there is such a specific
driver, however not in England. |
would like to send it to you, but |
think that could mean problems
with respect to copyrights, for it was
published in a German magazine,
64er Sonderheft Nr.28 some time
ago. But don’t panic: if you write a
letter to their publisher, | am sure
they would be willing to help you.
Their address is: Markt & Technik
Verlag AG, Hans Pinselstrasse 2,
8013 Haar bei Munchen, West
Germany. Now don’t t
advertising for your “rivals”, for
64er publishes lots of good articles
and programs and 1 often buy their
magazine at my local newspaper
shop, but my postman brings me
CDU every month at home, for
CDU has the programs on a disk,
whereas 6der gives me blue fingers!
Keep up the good work!

Jan Kerkhof, Belgium.

Dear Jan,

1 cannot thank you enough for all this
information and I hope that
everything will be sorted out for the
people that have experienced
problems with BDLs excellent Power
Cartridge. | hope Adam can write
German! That's a joke of course, |
would expect that there is someone
there that can read English. Thanks
once again for the info.

Dear CDU,

With reference to Simon Searle’s
letter requesting a copy of Laser
BASIC. I have a tape version of White
Lightning which contains BASIC
LIGHTNING which is almost the
same as Laser BASIC which Ocean

LETTERS

repackaged. Also included is a
version of Forth designed for writing
games. All manuals are in a good
condition and | would like ten

pounds.
Raymond Hoben, Dumbarton,
Scotland.

Dear Raymond,

Thanks for your letter. If, Simon, you
would like to buy this piece of
software from Raymond at a cost of
ten pounds then | would like you to
get in touch with me again to confirm
everything. | will then pass your
address on 1o Raymond and you two
can take things from there.

Dear CDU,
Can you please help me. What |
would like is for you to ask whether
any of your readers has a copy of the
Laser BASIC Compiler for the 64. |
am willing to pay for it.

D.Beeley, Manchester.

Dear CDU,
With reference to the letter in
Techno Info from Adam Trickett in
the May 1990 issue, | think the
problem may be that the compiler is
supposed to compile Laser BASIC and
not standard BASIC programs,
although 1 am not sure. I have Laser
BASIC and | have been trying to get
hold of the compiler for a while so if
itis no good to Adam I would like to
ask if he will set if to me (original
with instructions please). So if you
could please print this letter | would
be extremely grateful.

M.Le-Vallois, Paisley, Scotland.

Dear Mr.Beeley/Le-Vallois,

We seem to have a little conflict here.
Obviously now, Mr.Beeley, you know
of someone with the Laser Compiler
who, for one reason or another, was
not over impressed with it. Mr.Le-
Vallois, you have picked up on a
possible cause but of course we do
not know whether Adam Trickett
really wants to sell this piece of
software or not. If both MrBeeley and
Mr.Le-Vallois would please write to
me telling me of the maximum that

33

LETTERS

they would pay or an amount that
they would want to pay | would be
grateful. Also Adam, could you please
get in touch again and tell me
whether you are prepared to sell the

software, and if so how much you
would want for it. In the meantime,
anyone else who has a copy of it that
they would sell, please write to me
with details of how much you would

ask for it. | am sure that somehow all
this will work itself out and we may
even be able to satisfy both Mr.Beeley
and Mr.Le-Vallois. I look forward to
your further correspondence.

TIP OF THE MONTH

Well all my pleas seem to have paid off but we still have
only had the following two tips sent to us from you
readers. If anyone else has any piece of information that
they think may be useful then please send it in to us. The
first one is a little batch of POKEs and comes to you
courtesy of Mr D.Beeley in Manchester:

POKE?775,200 will disable the LIST command, and
POKE?75,167 will return to normal
POKE774,226:POKE775,252 will result in the computer
resetting itself if the LIST command is entered.
POKE649,0 will disable the keyboard, and POKE649,10
will return to normal. This should be used from within a
program because otherwise you can't type the second
POKE to return to normal!

POKEB08,254 will prevent the use of RUN/STOP, and
POKE808,237 will return it to normal.

The second tip is slightly longer and more complex and
was sent in by Steve Williams, coincidently also from
Manchester. It concerns the use of CDU MENU KIT
written by Neil Higgins (Volume 3, Number 2):

I have found a way to get the menu as the first file on
your disk without the use of a disk editor. Firstly, take a
formatted disk and put it in your drive! Then type 10
REM and press RETURN, then type SAVE “NAME”,8
where NAME represents the name of the program to go
in the menu. Repeat the save instruction as many times
as you need, saving each time with a different title for
each program. Ensure that the title you give matches the
title from the first part of each program (especially if it is
in multiple parts). Switch off and then on again before
the next bit! Load the CDU MENU KIT and replace the
disk with all your titles on. When the program asks if
you want to include something you should say yes and
include them all. Now sort out your colours and when
you have done that save the finished menu to a different
newly formatted disk. All you have to do now is save
each separate program complete with any extra parts
with the file copier from CDU if you feel that way
inclined. Then switch off and on again and type
LOAD"*",8,1. Your personalised menu is already at the
start of your disk-full of goodies. All without the need
for a directol r. It may look a little long winded
when you first Innk at this but it's not when you get

tuck in. If you haven't been able to put your menus at
s your disks before because you didn't have a

=)

|
directory editor then you have no excuse now, have |
you!

Thanks must go to both Mr.Beeley and Mr.Williams for
those tips, Hopeiully some more of you will come up |
with some others now that you see it really is possible to
get your tips published! Please everyone remember the
NEW ADDRESS if you have any programming problems
or general queries, or if you want to have something
published in the Tip of the Month section (please mark
your envelope with the word TIP). The new address, as
published last month, is: CDU Techno Info, 11 Cook
Close, Brownsover, Rugby, Warwickshire, CV21 1NG.
Please note that this is only the address for Techno Info.
All other correspondence and contributions should be
sent to the main address to be found elsewhere in this
publication. See you all again next month!

f@; ZADVERT IS IN
PRINT, IS IT PROPER?

Most advertisements are perfectly proper:

Alew are not,

The Advertising Stand
monitors over 850 advertiseme
compliance with the rules in th
Practice.

S0 when you question an advertiser, they have to
answer 1o us.

T find out mumzhnnllhtm!rnllm
ASA. please write 10 the addr

Advertising Standards \ullmrm
Department X. Brook House, Torrington
Place, London WCIE THN

rds Authority not only
very month, it ensures
trict Gode of Adverlising

34

FEATURE

EXPLORING THE 1541

Learn more about the inner workings of your 1541 disk drive

Now that you have purchased your
1541/1570 disk drive,what can you
do with it? Well the simple answer is,
nothing, until you understand how
and why it works. By the end of this
article, you should have grasped
some knowledge into the inner
workings of this ‘Rectangular Box',
Hopefully, your usage of the drive
will benefit from what you are about
o rea

Newcomers to the world of the
1541 will probably only use the drive
for storing programs, perhaps they
are not aware that you can use the
drive for a lot more. The more
experienced users will by now be
saying to themselves: ‘Here we go
again, heard it all before’. Before you
g0 rushing off to make a cup of
Coffee though, read on....Is never too
late to learn new things.

This article is MAINLY for the
1541/1570 users, although much of
the infois also pertinent to the 1571.
Where possible, | will give examples
for both units. (For example,
everyone is aware that to
communicate with the 1541 you use
BASIC 2.0 commands, but for the
1571 you can also use BASIC 7.0
commands.) How do you go about
learning about something like the
1541, the first thing you should know
is how the information is stored on
the diskettes that you spend your well
earned money on. To be able to
understand that, you need to know
how a diskette is made up.

Information is stored on the diskette
on TRACKS. On a standard 1541 di
there are 35 of these tracks. Each
track is made up of a number of
SECTORS. The sectors are the areas
that contain the bytes of data. Each
sector holds 256 bytes. The tracks are
numbered from the outside to the
centre. Therefore, as you get nearer
the centre of the diskette, the less
number of sectors each track holds.

S WICKHAM

(See 1541 layout). Of these 35 tracks,
there’s one very important one, this is
track 18. Track 18 is known as the
BAM(Block allocation map) and and
the DIRECTORY track. The BAM
shows us what tracks and sectors
contain information and which do
not, and the Directory track tells us
about each file that is stored on the
disk. (See 1541 layout). Before we go
into more detail, opposite is the layout
of the tracks, and the sectors of the
1541, together with the sort of

SEQUENTIAL FILE
FORMAT

BYTE DEFINITION

ALl BUT FINAL SECTOR

0, Track and sector of next
sequential data block

2255 254 bytes of data

FINAL SECTOR

Null ($00), followed by
number of valid data
bytes in sector

2012 Last bytes of data. Any
remaining bytes are
garbage & can be

information that they contain. ignored

PROGRAM FILE FORMAT RELATIVE FILE FORMAT

BYTE DEFINITION BYTE DEFINITION

FIRST SECTOR DATA BLOCK

01 Track and sector of next 0,1 Track and sector of next
block in program file 1 data block

23 Load address of program 2255 254 bytes of data. Empty

4255 Next 252 bytes of prg records contain SFF (all

info stored as in comp
mem.(keywords
tokenized)

KEMAINING FULL SECTORS
Track and sector of next
block in program file1

2255 Next 254 bytes of prg
info stored as in comp
mem.(keywords
tokenized)

FINAL SECTOR

01 Null (500), followed by
number of valid data
bytes in sector

201 Last bytes of prg info
stored as in comp
mem.(keywords
tokenized).

The end of a BASIC file is marked by

three zero bytes in a row. Any

remaining bytes in the sector are

garbage and may be ignored.

binary ones) in the first
byte followed by $00 (all
binary zeroes) to the end
of the record. Partially
filled records are padded
with nulls ($00)

SIDE SECTOR BLOCK

01 Track and sector of next
side sector block

2 Side sector number (0-5)

3 Record length

4-5 Track and sector of first
side sector (number 0)

6-7 Track and sector of
second side sector
(number 1)

89 Track and sector of third
side sector (number 2)

10-1 * Track and sector of fourth
side sector (number 3)

1213 Track and sector of fifth
side sector (number 4)

14-15 Track and sector of sixth

35

FEATURE

side sector (number 5)
Track and sector pointers
0 120 data blocks

DIR FILE FORMAT, TRACK
18 SECTORS 1-19

16-255

BYTE DEFINITION

01 Track and sector of next
directory block

231 File entry 1

‘ 34-63 File entry 2
66-95 File entry 3

‘ 98-127 File entry 4
130-159 File entry 5

: 162-191 Fileentry 6
194-223 Fileentry 7

‘ 226-255 File entry 8
STRUCTURE OF EACH

INDIVIDUAL DIRECTORY
ENTRY
BYTE CONTENTS DEFINITION

0 128+type File type OR'ed

indicate properly
closed file.

(if OR’ed with
$C0 instead, file
is locked)

[with $80 to

Track and sector

of first data block

File name padded

with shifted spaces

Rel file only. Track

| and sector of first

side sector

Relfile only.

: Record length
2225 UNUSED

\ 2627 “Track and sector

\ of replacement file

duringan

@SAVEOr@OPEN

Number of blocks

infile, stored as a

two-byte integer

\ in normal lo-byte

‘ hi-byte format

| 2829

‘ The above information tells you how

36

DISKETTE FORMATS & LAYOUTS

Block distribution by Track
Track Numbers ~ Range of Sectors ~ Total Sec S.Sided D.Sided
HEX DEC HEX DEC HEX DEC
$01-$11 01-17 $00-$14 0020 $15 21 YES YES
$12:$18 18-24 $00-$12 0018 $13 19 YES YES
$19-$1E 25-30 $00-$11 0017 §12 18 YES YES
$1F-$23 31-35 $00-$10 00-16 $11 17 YES YES
$24-$34 36-52 $00-$14 0020 $15 21 NO YES
$35-$38 53-59 00§12 00-18 $13 19 NO YES
$3C-$41 60-65 $00-511 0017 $12 18 NO YES
$42-546 66-70 $00-$10 0016 $11 17 NO YES
BAM FORMAT 1541 - TRACK 18 SECTOR 0
BYTENUMBER CONTENTS DEFINITION
0 18 Track of next directory block. Always 18
1 1 Sector of next directory block. Always 1
5 65 ASCII chararacter A indicating
1541/51/71/4040 format
3 Double sided flag. Ignored on 1541
4 Number of sector available on track 1
5 Track 1, sector 0-7 availability map
6 Track 1, sector 8-16 availability map
7 Track 1, sector 17-23 availability map
8 Number of sector available on track 2
9 Track 2, sector 0-7 availability map
10 ‘Track 2, sector 8-16 availability map
" ‘Track 2, sector 17-23 availability map
-..ETC DOWN TO...
140 Number of sector available on track 35
141 ‘Track 35, sector 0-7 availability map
142 ‘Track 35, sector 8-16 availability map.
143 ‘Track 35, sector 17-23 availability map
144159 Disk name padded with shifted spaces
(CHRS(160)}
160-161 160 Shifted space (CHR$(160)}
162-163 Disk ID
164 160 Shifted space (CHR$(160)}

165-166 ASCII representation of 2A which are
respectively the DOS version (2) format
type 1540/41/51/71/4040/2030

167-170 Shifted spaces (CHR$(160)}

171-255 Nulls [CHR$(0)}, not used

1571 DRIVE AS ABOVE EXCEPT:-
3 Double sided flag:$80=Double Sided,
$00=Single Sided

171-220 Nulls [CHRS$(0)], not used

221-237 Number of sector available track 36-52
(each sector by each byte)

238 0 Number of sector available track 53

(always 0, all sectors allocated

239244 Number sector available tk 54-59(each
tk by each byte)

245-250 Number sector available tk 60-65(each
tk by each byte)

251-255 Number sector available tk 66-70(each tk

by each byte)

each track and sector is made up, and
what information is contained therein.
Later in the article, | will explain just
HOW the information is written to the
disk. Before we get too technical
though, 1 want to show you some of
the commands available to you and
how we use them. The table below
shows you the various commands
available, (Using BASIC), both for the
1541/1570 and for the later version

1571,

After the

table | will

demonstrate exactly how to use each
one in turn. Using BASIC 2.0 the
general format is:- OPEN15,8,15:

PRINT#15,
OPEN15,8,15

“command”:CLOSE15 or

,"command

letter0:information”:CLOSE15.

(NOTE:-

The first 15 in the
OPEN/CLOSE command

is not

mandatory. This i just the file number

we allocate

to the command.

(Normally though 15 is most widely

used).

HOUSEKEEPING

COMMANDS

BASIC 2.0

NEW “NO:disk name,disk id”

corpy “CO:new fi Id file”

RENAME “RO:new nam=old name”

SCRATCH “S0:file name”

VALIDATE “VO”

INITIALIZE “10”

BASIC 7.0

NEW HEADER'disk name”,iddv

COPY COPY’old file’TO"new
file”

RENAME RENAME"old name"TO"

lew name”

SCRATCH SCRATCHfile name”

VALIDATE COLLECT

INITIALIZE “10"

FILE COMMANDS

BASIC 2.0

LOAD LOAD"filename”,8 or
LOAD"filename”,8,1

SAVE SAVE"filename”,8

VERIFY VERIFY"filename”,8

OPEN ‘OPEN(n,8,channel,”
Oflenamele type,
direction”

CLOSE CLOSEfn

PRINT# PRINT#fn,data list

GET# GET#fn,variable list

INPUT# INPUTHn,variable list
BASIC 7.0
BLOAD BLOADfilename”
Bank#,Start address
BSAVE BSAVEfilename”
Banks# Start address TO
end address
BOOT BOOTfilename”
OPEN DOPEN#fn,
“filename”{record
lengthl, (W)
CLOSE DCLOSE#n
RECORD RECORD#fn,record
number{,offset}
PRINT# PRINT#fn,data list
GET# GET#fn,variable list
INPUT# INPUT#in variable list
DIRECT ACCESS
COMMANDS
BLOCK-ALLOCATE “B-A",0jtrack;
sector
BLOCK-EXECUTE “B-E";channel,
! ssector
BLOCK-FREE “B-FOjtrack;
sector
BUFFERPOINTER “B-P";channel;
e
BLOCK-READ “U1”;channel,0;
track;sector
BLOCK-WRITE “U2"channel,0;
track;sector
MEMORY-EXECUTE ~ “M-E’CHRS
(<address|CHRS
(>address)
MEMORY-READ “M-R'CHRS
(<address)CHR$.
(>address)CHR$.
(number of bytes)
MEMORYWRITE “M-W'CHRS
(<address|CHRS
(>address|CHRS
(number of bytes)
CHRS(data byte)
CHR$(data byte)
£tc
USER ‘Uchar"
UTILITY LOADER *“&0:fle name”
BURST

{1571 onlyl “U
char"+characterls)

Commands intended for the drive are
sent over a CHANNEL.
Communication with the disk drive
can be achieved over any 1 of 15
channels. Channel 15 however is

FEATURE

reserved as the COMMAND channel.
Data transfer over this channel is as
follows:- Opening the channel
(OPEN)

Data transfer (PRINT)

Close the channel (CLOSE)

When you initially open the channel,
you specify a logical file number, this
number must be in the range of 1 to
127, the device number of the drive,
(this is normally 8 for single units),
and a secondary address. (15 for the
command channel. The logical file
number is used in any subsequent
commands, any number of
commands can be sent until the
channel is closed. These commands
must be referenced by the logical file
number first used in the OPEN
statement

NEW - Formatting a diskette

The command NEW formats a
diskette, that is to say, it prepares a
new diskette for receiving data. As in
all commands, the command word
NEW can be reduced to a single letter.
EG N=NEW. R=RENAME. For clarity,
I will show all commands in their
condensed format. That is to say that
instead of OPEN 15,8,15:PRINT
#15,"NEW:name,id". | will use the
much shorter method of
OPEN15,8,15,"n:name;id". Therefore
to Format a new diskette we use the
command:-

OPEN15,8,15,"N:name,id”

COPY - Copying files
This command allows the user to
copy a file already present on the
diskette The command is however
seldom used, it's only real benefit is in
the ability to combine several
SEQUENTIAL files together to make
one larger file. This method cannot be
employed on PROGRAM files though.

OPEN15,8,15,"C:new file=old
file1,old file2,0ld file 3"

RENAME -.Renames a file with a new
name

This command allows the user to
change the name of a file on disk. It
works on all file types.

37

FEATURE

OPEN15,8,15,"Rinew
name=old name”

SCRATCH - Scratch a file
This command allows you to get rid
of any redundant files. It has the
added advantage that you may
scratch more than one file at a time.

OPEN15,8,15,"S:prog 1"
- this would get rid of prog1 only
OPENI5,8,15,"S:prog 1, prog

prog
- this would scratch all 3 files.

(Later on you will leam how you can
RECOVER files that have been
scratched by mistake).

VALIDATE - Validate diskette

This command allows you to ‘Clean
up’ or Validate your diskette
Whenever you Scratch a program, the
program itself is still on the disk. All
that happens is that the entry for that
program is removed from the
directory Validating your diskette
makes the space of scratche'd files re-
usable.

OPEN15,8,15,"V"

INITIALIZE - Initializing the diskette
The DOS, or Disk operating system,
requires a BAM, (Block allocation
map), to be present on each disk. If
you should change disks in the drive
when using it, the DOS will not know
that you have a different disk in the
drive. Therefore it will be working on
the old BAM. To combat this, you can
initialize the drive. This forces the
DOS to read the new BAM.

OPEN15,8,15,"1"

Now that we have dealt with the
basic commands for talking to the
drive, lets go on to the more exciting
commands. These commands are
known as the ‘Direct Access’
commands. Once you understand the
concept behind these commands, and
what they are capable of, then
programming the drive in BASIC is far
more entertaining. However, before |
0 into more detail about these
commands, | feel it is time we had a

38

[1541 mEMORY MAP
DRIVE ADDRESSES
DEC

0
1
2
3
4

HEX

50000
50001
50002
50003
$0004
$0006-0007
$0008-0009
$000A-000B
$000C-000D
$O00E-000F
$0012-0013
$0014-0015
$0016-0017
$0020-0021
$0030-0031
$0039

S003A
$003D
$003F
$0043
50047

$0049
$S004A
$0051

$0069
$006A
$006F-0070
$0077
$0078
$0079
$S007A
$007C
$007D
$007F
$0080
$0081

$0082
50083
50084
50085
$008B-008D
$0094-0095
$0099-009A
$009B-009C
$009D-009E
$009F-00A0
S00AT-00A2
$S00A3-00A4
$00A5-00A6
$00B5-00BA

19
120
121

122
124
125
127
128
129
130
131

132
133
139-141
148-149
153-154
155-156
157-158
159-160
161-162
163-164
165-166
181-186

DESCRIPTION

Command code for buffer 0
Command code for buffer 1
Command code for buffer 2
Command code for buffer 3
Command code for buffer 4
Track and sector for buffer 0
Track and sector for buffer 1
Track and sector for buffer 2
Track and sector for buffer 3
Track and sector for buffer 4
1D for drive 0

1D for drive 1

D

Flag for head transport

Buffer pointer for disk controller

Constant 8, mark for beginning of data block
header

Parity for data buffer

Drive number for disk controller

Buffer number for disk controller

Number of sectors per track for formatting
Constant 7, mark for begining of data block
header

Stack pointer

Step counter for head transport

Actual track number for formatting

Step size for sector division (10)

Number of read attempts (5)

Pointer to address for M and B commands
Device number + $20 (32 dec) for Listen
Device number + $40 (64 dec) for Talk
Flag for listen (/0)

Flag for talk (/O)

Flag for ATN from serial bus receiving
Flag for EOI from serial bus

Drive number

Track number

Sector number

Channel number

Secondary address

Secondary address

Data byte

Work storage for division

Actual buffer pointer

Address of buffer 0 $0300

Address of buffer 1 $0400

Address of buffer 2 $0500

Address of buffer 3 $0600

Address of buffer 4 $0700

Pointer to input buffer $0200

Pointer to buffer error message $0205
Record number LO, block number LO J

Record number HI, block number HI
Wite pointer for REL file

Record length for REL file

Pointer in record for REL file

Side sector number

Pointer to data block in side sector
Pointer to record in REL file

Buffer number

Buffer for command string

Track side-sector
Sector side-sector
Length of input line
Number of file names
File control method

Buffer for error messages
Number of free blocks

$00BB-00CO 187-192

$00C1-00C6 193-198

$00C7-00CC 199-204

$00D4 212

$00D5 213

$00D6 214

$00D7 215

$00E7 231 File type
$00F9 249

$0100-0145 256-325 Stack
$0200-0228 512552

$024A 586 File

50258 600 Record length
50259 601

$025A 602

50274 628

$0278 632

$0297 663

$0280-0284 640-644 Trackof a file
$0285-0289 645649 Sectorofafile
$02D5-02F9 725761

SO2FA-02FC 762764

$0300-03FF 768-1023 Buffer 0
$S0400-04FF 1024-1279 Buffer |
$0500-05FF 1280-1535 Buffer 2
S0600-06FF 1536-1791 Buffer 3
$0700-07FF 1792-2047 Buffer 4

look at the ‘Memory Map’ of the
1541. To be able to program the drive
efficiently, you will need to know its
inner workings better. This is very
important once you begin to
experiment with M/C programs.

Right now, let’s go on to the
‘Direct Access Commands’. These
commands will all be in BASIC,
(Machine Coder’s be patient).

Looking at the memory map, you
can see that there are 5 buffers.
However, only 4 are free for your use.
(Buffer 4 is normally used for the
BAM). Also please note that when
using Seq and Rel files at the same
time, buffer 3 is also not available
because the Directory uses it. When
you wish to use a buffer, you first
have to OPEN a channel and specify
which buffer you wish to use. For
example OPEN 1,8,2,"#2" would
open the channel to Buffer number 2.
However it is good practice to not
specify the actual buffer number but
let the DOS select it for e Vuu
achieve this by OPENing x,x,x,”
your selected buffer contains
Alphanumeric Data, and is not over

88 chars in length. You can use the
INPUT# command. (Providing the
data is separated by a carriage return).
Otherwise you have to use the GET#
command. Remember though, that
when using GET# it does not allow for
null values, therefore we have to
check for it via
IFAS=""THENA$=CHR$(0).

Before we go any further there are
4 things you must remember:-

1. The PRINT# statement sent to the
command channel 15, sends a
direct access command to the DOS

. APRINT# statement to channels
2 through to 14 sends data to a
buffer.

3. An INPUT# or GET# statement to
channel 15 returs any error
messages.

4. An INPUT# or GET# statement to
channels 2 through 14 reads data
from a buffer.

The Block-read command tells the

1541 to read a sector from the disk

into your openend buffer. (Strictly

speaking this is known as a DIRECT

ACCESS FILE). Because the first byte

FEATURE |

of the block does not get read with the
Block-read command this command
can be shortened to UT or B-R. The
Block-write command allows us to
copy the buffer contents onto the
desired sector on the disk. Block-read
can be shortened to B-W or U2
Therefore, the obvious advantage to
this command is to READ data into a
buffer, alter it, then re-write it back to
the disk. The Block-Allocate, or B-A
command allows the user to reserve
blocks on a disk The main purpose of
this command is to prevent data from
being overwritten. The Block-free or
B-F command is the opposite (o the B-
A command. It tells the the BAM
which blocks to make available. The
Bufferpointer command, shortened to
B-P is o tell the DOS just where you
wish to start reading or writing data
toffrom.

The Block-execute, shortened to
B-E is quite-a powerful command. In
essence, you read a sector from the
disk into your previously opened
buffer. The contents are then executed
as a machine code program from
within the buffer. In practice when
using this command, you specify the
buffer number in the OPEN command

Along with the Direct access
commands above, you have a few
commands that allow you to access
the DOS. (Disk Operating System).
These are: A.Memory-read
B.Memory-write and Memory-
execute, shortened to M-RM-W and
M-E respectively.

1 will now give a few examples of
the Direct Access commands in
operation. Feel free to experiment, but
always make sure that you work on
disk with no important data on it.
(Mistakes DO happen).

NOTE:- When using the D/A
commands, there are two methods

available. Either may be used
depending upon your own
preference:-

Method A is PRINT#15,

“U1:"channel numberdrive

Method B is PRINT#15,"U1
channel number drive”

If using method B remember to
leave a space between each item
inside the quotation marks.

39

[FEATURE

BLOCK READ

Suppose you wished to follow a
program through on the disk by track
and sector without actually reading
the data. To do this you need to
follow the path of the “Link. bytes.
That is the 2 bytes at the start of each
block that tells you the track and
sector of the next block. See Fig. 1.

BUFFER POINTER

Suppose you wish to read the diskette
name from within a program. As you
know the name starts at position 144
of track 18, sector 0. Normally you
would have to read the first 143 bytes
and ignore them. However the DOS
has an easier way. You can point to
any position within the buffer by the

1 OPENS38,15 ;Opens the command
channel
2 OPEN4,84,#" ;Opens the direct access
file,(no specific buffer)
3 INPUT"Track and sector” JTRSE
4 PRINTH8,"U1:"40;TRSE iReads contents of
desired Track/Sector into
buffer
5 GET#4,7$,5$;Reads the first two bytes
of the buffer
6 TR=ASC(T$+CHRS$(0)):SE=ASC(S$+CHR$(0)) ;Converts string variable
to integer, allowing for
null string
7 IFTR=0THENCLOSE4:CLOSEB:END JIflast track then finish
8 PRINTTrack number is: “TR,"Sector number is: “SE ;print them out
9 GOTO4 iRepeat process
FIGURE 1
1 OPEN8S,15 ;Open command channel
2 OPEN4,84,"#" ;Open direct access file
3 PRINT#8,"U1:"4;0;18,0 ;Read contents of desired
Track/sector into buffer
4 PRINT#8,"B-P:"4;144 ;Point to where we want to start
reading from
5 FORX=1TO16 ;Length of disk name
6 GET#4,X$:IFX$=CHRS(160)THENS ;If shifted space end
7 PRINTX$:NEXT jprint out read next letter
8 CLOSE4 :CLOSEB:END
FIGURE 2
1 OPENSS, 15
2
3
4 -p:4;14:
5 X$="NEW DISK NAME"
6 IFLEN(X$)<1 6THENX$=X$+CHR$(160:GOTO6
7 PRINT#4,XS; ;Change the contents
of the buffer
8 PRINT#8,"U2y iWrite contents back
to disl
9 PRINT#8,"1":CLOSE4:CLOSEB:END iRe-initialize drive
and finis|
FIGURE 3

40

B-P command The bytes are
numbered 0-255 in the buffer, the
buffer pointer can be set to zero
automatically by the use of the U1
command though. See Fig. 2.

BLOCK-WRITE

Block-write, is used in conjunction
with the block-read command. It
allows one to write the contents of a
buffer onto the disk at any desired
position. The command does NOT
alter the contents of the buffer.(You do
this task yourself). In the following
example we will be changing the disk
name that we read with the previous
example. See Fig. 3

BLOCK-ALLOCATE

When using Program, Sequential or
Relative files on a disk, the BAM is
being constantly updated as to blocks
that are allocated. This prevents
blocks from being overwritten.
However, when we use Direct Access
files, these are NOT allocated in the
BAM, therefore there is a danger that
they could be over-written. To
prevent this from happening we can
use the Block-Allocate command If
we try to Allocate a block that has
already been allocated, we will be
given the error message 65,NO
BLOCK,T,S (T and S are the next
higher numbered free blocks
available).

The syntax for using the Block
allocate command is:- B-A drive
track sector The following example
would mark track 17 sector 5 as being
allocated in the BAM

1 OPEN88,15
2 PRINT#8,"B-A0;17;5

BLOCK-FREE
As indicated by it's name, this
command frees any allocated blocks
and marks them in the BAM as being
free to use.

If you wished to make the above
track and sector free to use you would
use the following

OPEN8,8,15
PRINT#8,"B-F:"0;17;5

NOTE: Allocating and freeing blocks
has an effect only on blocks that are
used by Prg,seq and rel files by the
DOS. The B-W and B-R commands
do not check the BAM before
overwriting blocks. Using these
commands you can write to blocks
marked as allocated in the BAM. If,
for instance, you have a disk that
contains only Direct access files, it i
unnecessary to allocate written blocks
because no other files will be written
on the diskette. Therefore in this case
you could use‘the directory blocks in
track 18 and therefore have 672
blocks available on the diskette.

To give you an example of the use
of this. One could store a menu
program onto track 18, thus space-on
the diskette is not wasted by the
menu.

BLOCK-EXECUTE
Block-execute is used when you wish
to read a block from the disk into a
buffer then execute the contents as a
machine code program. The syntax
for the command is: B-E channel drive
track sector. When using the B-E
command, the buffer number is
usually given in the OPEN command,
just in case the M/C prog is not
relocatable. IE: OPEN4,8,4,"#2".

1 OPENS8,15
2 OPEN4,8,4,"#2"
3 PRINT#8,"B-E:"4;0,14;6

This would read the contents of track 14,
sector 6 The B-E command is used in
conjunction with the B-R and Memory
Execute commands that follow.

MEMORY COMMANDS

There are three memory commands
that we will deal with. They are
Memory Read, (M-R) Memory write,
(M-W) and Memory execute, (M-E).
All these commands pre-supposes are
knowledge of the inner workings of
the DOS and a knowledge of
6502/6510 code.

The syntax for the Memory read
command is:-

M-R CHR$(LO) CHR$(HI)
{(CHRS (numben)}

CHR$(LO) is the low byte of the
address in DOS that is to be read.
CHRS$(HI) is the high byte of the
address in DOS that is to be read
CHR$(number) is the OPTIONAL
extra parameter indicating how many
bytes to read.

In the following two examples,
example 1 shows how to read how:
many free blocks are remaining on
the disk. Example 2 shows how to
read the disk name.

1 OPENBS,15

2 PRINT#8,"M-R'CHR$(250)
CHRS(2)

3 GET#8,XS:FX$=""THENX$=
CHRS$(0)

4 PRINTH8,"M-R'CHR$(252)

CHR$(2)

GET#8,Y$:IFY$=""THENY$=CHR

$(0)

PRINTASC(X$)+256°ASC(Y$)
CLOSE8

~o

1 OPEN88,15

2 PRINT#8,"M-R"CHR$(144)CHR$
(7)CHRS(16)

3 INPUT#8,X$

4 PRINTXS

5 CLOSES

Memory write is the complimentary
command to Memory read. Witing can
only beaccomplished to DOS Ram,
page zero, stack and the buffers. I is
possible 10 send more than 1 byte with
this command. The command syntax is
as follows:

M-W CHRS(LO) CHRS(HI)
CHR$(NUMBER) CHR$(DATA)
CHRS(DATA) efc etc...

Finally, the Memory execute command
will call up and execute a machine code
program that resides in DOS memory.
The routine MUST end with an RTS. The
syntax for the command is as follows:-

M-E CHRS(LO) CHRS(HI)

You can not only execute your own
routines writien with the use of the M-W
command, but also the DOS ROM
routines.

So now that we have skirted the
subject of Direct Access and Memory

FEATURE

commands, just what exacly is possible.
“The following table lis just a few ideas
that readly spring to mind:-

A You can manipulate the sectors
and change the BAM

You can make changes to the
Director

You can make changes to files
You can protect files from
accidental erasure

You can CLOSE files that are still
OPENed

You can read and alter any sector
that you desire

You can prevent directories from
being viewed

You can prevent directories from
being loaded into memory

You can recover lost or damaged
files

You can create data structures that
the DOS would not normally
recognise

You could place a menu program
within the directory track thus.
saving space

You could put a simple form of
“Protection’ on the disk to prevent
illegal pirating of a fle.

=

T o 48 0. S s B

i e

Really the st is boundless. Only your
own imagination will set the limits of
what can be achieved by the use of these
commands. | cannot stress the
importance of making sure you do not
use important disks for your experiments.

As you are no doubt aware, the 1541
uses the GCR, (Group Coded Recording),
method of storing data onto the disk. If
you want to know more about this
method, | refer you to ‘Your
Commodore, issue JUNE 1986, page
75-77. All 1 will say on the subject is that
by using this method, more information
can be stored on the disk than you think
i possible.

1 hope that this article as given you a
better understanding of the 1541, and of
how to useit. There are many things that
I have left out, but these are all covered
by the many publications that you can
buy. There is not enough space here to
explain everything in detail. Study the
listings of some of the programs in this
issued, and of previous issues. Practice,
Experiment but above all else...Have
funll!

41

Lineage: 59 por word. (+VAT)

Fing fornformation o seres bookinge/ciscouns.
Al advertisements in this section must be prepaid.

rate card (available on reques)
Make cheques payable to Alphavite Publications Ltd.

ALPHAVITE Pusucmous LTD., 20 POTTERS LANE, KILN FARM, MILTON

KEYNES, MK11 3HF.

(0908) 569819

OFTWARE | —SERVICES

ONLY POOLS AND HORSES

FOOTBALL BOXFORM £14.95 cass £17.95 disk
Not a gimmicky plaything but a genuine statistical analysis of
footballform the sole objective of which is to improve the chances
of winning on the pools or fixed odds. Written by a pools expert
the program has forecast over 50% more draws than would
be expected by chance. Homes, aways & draws are shown in
order of merit and true odds given for every match. Merit tables
show at a glance the teams currently in form and those having a
lean spell. Separate AUSTRALIAN POOLS program included in the
price.

RACING BOXFORM & HANDICAP WINNER

: £14.95 cass £17.95 disk
Two programmes for the price of one. aoxmm. weighs up a race by
considering the many facets of form. Easily amended to suit the
user's ideas. HANDICAP WINNER shows the value for money bets.
Over 1000 winners every year and ON DERBY DAY 1980 THE
PROGRAM GAVE THE WINNERS OF 7 OUT OF 9 HANDICAPS. 20/1
10/1 7/1 11/24/1 4/1 6/4. PROBABLY THE BEST DAY'S RESULTS
EVER ACHIEVED, WITH OR WITHOUT A COMPUTER.

SPECIAL OFFER: Al the above for £24.95 (disks £29.95) plus a
FREE program to work out almost any bet. So good it's used by
: bookies.

Why pay BOXoft CLEVER th getthe BEST.
Advertised for five years in the sporting and computer press.
BOXOFT (CDU), 65 Allans Meadow, Neston,
South Wirral, L64 95Q
Cheque/P.0.AccessiVisa Tel 051-336-2668 (24 hrs)

SILVER WING SOFTWARE bbb b
‘THE DEDICATED C64 P.D. LIBRARY 128 Power Unit m
We have he best & latest qualy CaueN Damsete s
domos,utiies & games avaiabe. Tl A+
NLY £200 on e SN

For the best benefts & power from

599
xS hS bl i Fowacitos e nlose VAT § 789 GO

For uriss send an SAE [0

22 Curzon Siret Derby, D€ 365
el 0352 207210

FULL TERMS
AND CONDITIONS
ARE AVAILABLE
ON REQUEST
TO ADVERTISE
RING
(0908) 569819

Lineage: 53p per word. (+VAT)
‘Semi isplay: £11.80 (+ VAT per singe

uamn centimere. Min size 2cm,

SeND.

reque
are no reimbursements for canceltons.

Tenclose my cheque/postal order for £
(Delete as neces:

for

insertions, made payable to Alphavite Publications.

poTTES MILTON Kevn e

PLEASE DEBIT My ACCESSVISA GARONO: [| | |

]

R o |

EXP. DATE.

£ FOR INSERTIONS

Name

Address.

Daytime Tel No Signature
O FORSALE O SOFTWARE O SPECIALOFFERS 0 REPARS

Postcode
Date

0 HARDWARE O Disks

Action,
Strategy.,

Adventure...
GANIESYYY

the Great C64 & 128 Cassette Games Offer

e emie

Fed up with listings, want a break from programming? Then
we've got just the thing for you.

W'ere offering the following games on two cassettes at
the ridiculously low price of £3 (for both) including
post and packing.

So what’s on offer?

Flimbo’s quest, Finders keepers, Kentilla, Logic, Microdot,
Rainbow chaser, Spots.. all these plus instructions.
Al you have to do is fill in the coupon, (photocopies

accepted) and return it to....
ALPHAVITE PUBLICATIONS Ltd, 20 Potters Lane Kiln Farm,
Milton Keynes MK11 3HF.

Please send me 2 cassettes of games.
1 enclose my cheque/postal order for £3 made payable to ALPHAVITE PUBLICATIONS LTD.

Or debit my Access/VisaNumber [[[[[[[[[[[[[[[]]

Expiry Date Signature ...
Name Address

Postcod
Allow 28 days for delivery w

RETAILERS

| oper

e

AUO HARDCAT - RENUMBER
Ao HADCon K o s veRiry
coion At NixGe ADIo

| Sect Wio TRACE

| DHETE KBy UNNEw
DOKE st QUi
Dume st MoNirox

| Ko o O ' poweriul machine langusge monio
Byt T e o e B, walable and aves i of

b ! Commoire ey s o

(On he Back o he POWER CARTRIDGE
v e Buron. Preving ths
Ston mabes s SPECIAL MEN sppes on

| il
T ———— T iy
Ll] pfe

Bos . Lo
Ao on s
LT TR L v and ewes BT
COONC EHER. S py e b o

TARDCOR it S B Disk

DloAD ovemn DI
DsaE mesce DRiCE

FARDCOM o

88 BEWICK ROAD
GATESHEAD
TYNE AND WEAR
N

ES 1RS

Bitcon Devices Ltd ENGLAND

Tk 091 499197 aad 50 919 P 01 40 118
+ Vizs welcome Cheques or PIO payable to 8DL

uu.,mm«um silgack oal 1813 ncl VAT.
Ty 550

ope orders add £
(lndmxvl:» Mail Order a

MONIOR

T eade andulesto: Bhiab Elektronik, Box 216, Norrealjs 76123,
N T 46176 13425 o 176 0401
FRADE AND EXPORT ENQUIRIES WELCOME

