i Kﬁ"“f <

"I%

-0.&\,"

N LIMBO 2 -
THE PLANET
DILLON

The Sequel
; ; to Limbo
% ComesAlive

@ Techno-Info

© Geoprogrammer
Reviewed o

" @ Further Adventures

in'C’'e
;HIHNI\II\H\I\H|||'IH HHHI

AND MR JONES
16 SUCK A
ROTTER!

<~ THEN ULL £
SHARE THE REWARD
WITH You!!

FORINFORMATION
LEADING TOA
PROSECUTION
&CONVICTION

THsowPAGNSORSEDEY - AN'Y INFORMATION ON PIRACY SHOULD

E BE PASSED TO F.A.S.T. (THE FEDERATION

AGAINST SOFTWARE THEFT)

L) TELEPHONE 071-497 8973 IS 'II'!I‘I‘ECFYT
o

IN TH

%Y Z

Welcome
Editors comments and instructions

‘Geoprogrammer
We review this Geos assembler/debugger

Further Adventures in ‘C’
More on programming in

Adventure Helpline
Some more help for Kron adventurers

CBM Development Assembler
We iron out some of the bugs

Techno Info
Our guru keeps sorting out the problems.

Software Offer
An offer you cannot turn down

Commadore Disk User is a monthly magazine published on the 3rd Friday of every month. Alphavite Publications Limited, 20, Polters

PR PO E

Volume 3 Number 10 August 1990

21

33

38

41

ON THE DISK
Limbo Il

The sequel to Limbo gets you moving
Screen Designer 128

Screen designing made easy

Database
A database full of features

Letter Maker
Text screens made decidedly pleasing

Functions
Make full use of those function keys

Games List Creator
Keep tabs on your games disks

Dual Diskcopy
Atlast an intelligent disk copy program

Sequencer 64
Musicians have a field day

Security
Put all those broken joysticks to good use

Superboot!
Auto load your programs

Lane, Kiln Farm, Milton Keynes, MKT1 3HF. Telephone: (0908) 569819 FAX: (0908) 260229, For advertising ring (0908) 569819

Opinions expressed in reviews are the opinions of the reviewers and nol necessarly those of the magazine. While every effort is made

10 thoroughly check programs published we cannot be held responsible for any errors that do occur.

The contents of his publication incuding ll arices, e, cstings s rogavs o e Sie |mel\e(lual property

rights therein

roperty

!
L

ights and byvlnucm’ intemational h

Publictions Umied and

eproduction requires the prior witen consentof the company

©1990 1SSN 09530614

20

22

23

26

30

32

=

EDITORS COMMENT

“Old magazines never die! They move on to

A hearty welcome to one and all. Six
weeks ago it appeared that my
world, and that of thousands of other
C64 users, had come to a sudden
and dramatic end.

As you are all aware, Argus
Specialist Publications decided, amid
much controversy, to close down it’s
computer magazine operations. At
the time the future of CDU, YC and
Your Amiga was somewhat
uncertain. | am very pleased to say
that we are now continuing with our
work thanks to the vision of the new
publisher Mr. HASNAIN WALJI -
Managing Director of ALPHAVITE
PUBLICATIONS, UNIT 20, POTTERS
LANE, KILN FARM, MILTON
KEYNES, BUCKS, MK11 3HF -

=

new publishers”

Telephone: 0908 569844, FAX 0908
260229. | for one, would like to take
this opportunity of thanking Mr.
WALJI for his extremely good
business sense in realising what
potential these magazines have for
Co4 users in general. Thank you
HASNAIN.

This issue, believe it or not, has
been put together over a period of 5
days instead of the usual three
weeks, thanks to the marvel of D.T.P.
(Desk Top Publishing if you did not
already know).

With the added resources at our
disposal, we can all look forward to
an even better produced issue next
time round.
Finally, |

would personally like to

R R

TR

thank all of you that have been
concered over my recent illness. |
am glad to report that all operations
have been carried out with great
success, | am now back on my feet.
Now on with this months issue.....

Although we do everything possible
to ensure that CDU is compatible
with all C64 and C128 computers,
one point we must make clear is this.
The use of ‘Fast Loaders’, ‘Cartridges'
or alternative operating systems such
as ‘Dolphin DOS’, may not
guarantee that your disk will function
properly. If you experience problems
and you have one of the above, then
we suggest you disable them and use

the computer under normal, standard
conditions. Getting the programs up
and running should not present you
with any difficulties, simply put your
disk in the drive and enter the
command.

LOAD"MENU" 8,1

Once the disk menu has loaded you
will be able to start any of the
programs simply be selecting the
desired one from the list. It is
possible for some programs to alter
the computers memory so that you
will not be able to LOAD programs
from the menu correctly until you
reset the machine. We therefore
suggest that you turn your computer
off and then on again, before loading
each program.

HOW TO COPY CDU FILES

You are welcome to make as many
of your own copies of CDU
programs as you want, as long as
you do not pass them on to other
people, or worse, sell them for profit.
For people who want to make

legitimate copies, we have provided
a very simple machine code file
copier. To use it, simply select the
item FILE COPIER from the main
menu. Instructions are presented on
screen.

DISK FAILURE
If for any reason the disk with your
copy of CDU will not work on your
system then please carefully re-read
the operating instructions in the
magazine. If you still experience
problems then:

1. 1f you are a subscriber, return it to:

Select Subscriptions Ltd

5, River Park Estate

Berkhamsted

Herts

P4 1THL

Telephone; 0442-876661
2.1f you from a
newsagents,

then return it to:

CDU Replacements

Protoscan Europe PLC

Burrell Road

bought it

St. Ives

CAMBS

PE17 4LE

Telephone; 0480-495520

Within eight weeks of publication
date disks are replaced free.

After eight weeks a replacement
disk can be supplied from Protoscan
for a service charge of £1.00. Return
the faulty disk with a cheque or
postal order made out to
PROTOSCAN and clearly state the
issue of CDU that you require. No
documentation will be supplied.

Please use appropriate packaging,
cardboard stiffener at least, when
returning disk. Do not send back
your magazine, only the disk please.

NOTE: Do not send your disks back
to the above address if its a program
that does not appear to work. Only if
the DISK is faulty. Program faults
should be sent to: BUG FINDERS,
CDU, Alphavite Publications Ltd,
Unit 20, Potters Lane, Kiln Farm,
Milton Keynes, MK11 3HF. Thank
you.

GEOPROGRAMMER -

If you have ever wanted to pi

| have always found that when
programmers talk about assembly
language whether it is on a C64 or
Amiga, they usually make it out to be
some sort of mystical art that only the
super brains of the computer world
can grasp. My motto is; have a go; so
if | unintentionally make Geo-
programmer sound complex, it is only
in the sense that it is sophisticated.
Geoprogrammer is not designed to
teach you assembly language but it
makes things a lttle easier. With it,
BERKELEY SOFTWORKS have shown
their commitment to Geos and the
support in helping users and third
parties to develop their own
application software operating within
the Geos environment. But don't be
mislead as Geoprogrammer will allow
you to write your own stand alone
programs which can be run
completely independent of Geos.
Geoprogrammer is supplied in
usual Berkeley packaging, consisting
of a double sided disk and a 400 page
manual which is written to the usual
high standard. On the disk are the
three main parts of the software,
namely, Geoassembler, Geolinker and
Geodebugger. It also contains files
with the complete Geos operating
system equates and macros and three
sample Geos applications to show
you just how simple it all is. Before
we go any deeper, an equate is a

6

package is just for you

BRIAN SEDGEBEAR

constant or absolute memory address.
A macro is a machine code routine
that is given a name and can be
inserted in any other machine code
and can be called by simply inserting
it's name. Macros can also be a set of
keystorokes or commands called by
single name in Geodebugger.

Berkeley say that Geoprogrammer
is a scaled down version of their
UNIX based development system,
used to produce the Geos operating
system and it's applications. Perhaps a
dlight exaggeration, but it is a superbly
designed development system and
when used in conjunction with the
Commodore RAM expansion units it
provides one of the best debuggers |
have seen on the Commodore 64.
Introductions over, slight pause for
sunlight, refreshments and fresh air,
and we will take a look at a standard
development session

Geoassembler is designed to
convert 6502 assembly language
source code and produce a linkable
object file. Simple enough but
Geoassembler takes it’s source text
from Geowrite, which may seem a bit
strange but does have it's advantages
over many similar products, so our
development must start with
Geowrite. The Geowrite document

roduce your own GEOS environment applications this utility

can contain graphics and can also
contain icon images, all of which will
be automatically converted into
binary data by Geoassembler. Also,
thanks to the Geowrite environment,
lalic or Bold type styles and different
fonts can be included to highlight
importan sections of the source code.
Anything normally done in writing a
document can be done in the source
listing without any effects on the
assembly process.

Because Geoassembler recognises
and uses labels, the source code can
have symbolic names making it much
easier to understand at a later date
How many times have you written a
piece of code only to come back to it
a few months later and not have a
clue what it was supposed to do?
Also, it removes the necessity to
remember important addresses and
routines. Geoassembler even accepts
and distinguishes between local and
global equates as shown in fig 1.

It supports all official MOS
technology mnemonic instructions,
also, support is given to macros which
can reduce the length of the source
code and make it much simpler to
understand by allowing a simple pre-
defined command to replace a
standard or common section of code.
Using macros, a complete library of
sections of code can be constructed in
the same way many software

You might use a macro like this in
your code.

SuBW subtrahend,minuend
;subtract word

Geoassembler could expand this
into the following at the desired
location automatically.

SUBW:

Ida minuend ;get byte value

sec

sbe subtrahend jsubract low byte

sta minuend overwrite minuend
with result

Ida minuend+1 mgh byte with

sbe sublrahendf!
sta minuend+1

In this case, SUBW is
the macro.

the label for

Figure 1

developers use standard blocks of

code fitted together to produce a
program. Fig 1 shows an example of
this at work.

Geoassembler includes a
complete mathematical evaluator and
standard mathematical symbols can
be used in the source code. These are
handled at assembly time and also
increases code readability.

Once the source code is written it
can be saved to disk as a normal
Geowrite document. The next stage is
to load Geoassembler and assemble
the source code into a relocatable
object code file. This is not the final
form as it has no specific address and
true machine code. In this form, it
could be located anywhere in the
computers memory and still operate
correctly once linked to that address
It is good practice to keep a copy of
your routine in this form in case, once
the entire program is complete, you
need to relocate the routine.

The next stage is to use Geolinker
to anchor the relocatable object code
to an absolute address. Geolinker is
also used to connect multiple
relocatable object code files together
to form a complete application that

can occupy the complete computer
memory. Geolinker is capable of
producing Geos VLIR and Sequential
files and also standard Commodore
application files for running outside
Geolinker uses a seperate file
formed in a similar way to our original
source code, using Geowrite to
control the linking process and give
directives, a file name and expression
that affect the linking process.
Geolinker is able to resolve cross-
references involving different
relocatable object code files, wow!.
Sounds complicated but what this
means is, if you have a label which is
used throughout different parts of your
final application and maybe different
files, it need only be defined in one of
the object code files and Geolinker
will carry it across to the other
sections. Perhaps the most impressive
feature of Geos style programming is
the VLIR file, which, typically has one
main resident section and many
overlay modules which are loaded in
over the top of code that is no longer
required, except when a new section
is required. This means that
theoretically, an application many
times greater in size than the
maximum computer memory can be
produced and run. Geolinker will
allow any user to design these
powerful applications with only a few
restrictions.

Finally we come to what is usually
the most time consuming, but
rewarding part of software
development, debugging (as;
does not work first time n’ cnursei
This is where the final part of
Geoprogrammer comes into it's own,
Geodebugger. At first, | was surprised
to see that using Geodebugger, you
leave the Geos environment and
return to a dull plain text display, but
the reason for this is to pack as many
features into memory as possible.
this point | found it vital to have
a Commodore Ram Expansion unit
(REU) in place, as the mini-debugger
which Geodebugger is supposed to
default to (but | discovered that it
stubbornly refused to do, unless |
manually force it is very restric
Not surprising when you consider the
memory restrictions imposed when

Jeos

running the Geos environment,
Geodebugger and sill leaving enough
room for an application. With an
REU, Geodebugger loads the super-
debugger into the expansion Ram
leaving the standard computer
memory almost untouched, providing
a heck of a lot more features.

Differences aside, you can run
your application along side
Geodebugger and interupt it at any
time to alter, single step, set
breakpoints, check registers and
disassemble any code. It includes a
complete expression evaluator and is
therefore capable of disassembling
and labelling the machine code with
your own original labels. It even has a
complete macro language. | was
disappointed to find that there is no
printer support in Geodebugger,
therefore you cannot make a hard
copy of a section of code to take
away and study out in the sun when
bug hunting. | believe this is a bad
omission and cannot see why it was
not provided, expecially when all
other Geos applications have such
good printer support.

All in all, a very desireable
purchase for any aspiring Geos
programmer or C64 programmer for
that matter, also a very useful utility if
you are learning to program in
assembly language. | would like to
see any future versions include better
printer support, and would advise any
serious programmer to invest in a
Commodore memory expansion unit
to make full benefit of the software.

It would be nice to see distributors
supplying Geoprogrammer packaged
with the REU, or Geos packaged with
the REU with a reduction in price as
we have seen with disk drives.

I hope that | did not get too
involved, although I could have
mentioned many other features, but |
hope that | have provided useful
reading for Geos users. If | had just
struggled writing a game using a small
memory monitor | would be feeling
seriously sick.

Suppliers: Financial Systems Software
Ltd, Masons Rhyde, Defford Road,
Per‘hure, Worcs

: £39.95

EIMBORII

Like all good movies, computer games have sequels to the original story. CDU presents for

your pleasure LIMBO Il -

Many of you will recall LIMBO that
was on the DECEMBER 1989 disk of
CDU. Unfortunately, as you may now
realise, our intrepid Editor made one
very tiny error at the time. He put the
wrong version of the game on the
disk, consequently the one published
had a few problems built in

We now present for your
entertainment and amusement the
updated version of the original, aptly
titled LIMBO Il - Planet Dillon. As
before, plug your joystick into port 2
to move Wolthamstow around each
zone. The idea of the game is to clear
all of the blobs off the squares whilst
avoiding the Dillonite guards. Contact
with these o the scrolling background
results in energy loss. Flashing squares
will electrocute you. Blocks with
moving squares on them are random
squares. If you move onto one of
these and press the fire button,
something at random will happen. (It
could be good, bad or extremely
bad). Squares with moving arrows on
them hurl you off in that direction.
That's all there is to it!!

The Editor in one of his more laid
back moments decided that it would
be a good idea, if every now and then
the readers got to know a little about
the programmers that provide us with
our entertainment. So here, for your
inquisitive minds, is a profile on the
author of LIMBO, Steven Pattullo.
Take it away Steve.

8

STEVEN PATTULLO

FULL NAME: Ste Pattullo

AGE:

HEIGHT: 61"

PREVIOUS GAMES: ~ Albert saves the
world again. Albert saves the world
again II. Hyperactive. UFO. UFO II.
UFO Ill. Sphere. Sphere 1. Trivial
Challenge. Limbo. Platformania and
numerous articles on programming.
FAVOURITE FOOD: Anything that's
classed as unhealthy.

WORST FOOD: Vegetabl

FAVOURITE DRINK: Lager (Holstein
Pils on draught).

PETS: One extremely fat Cocker
Spaniel, 2 fish and a younger brother.
HOBBIES: Drinking and playing
snooker.

FAVOURITE GAMES: This is going
back a long way to my Spectrum
days. | would have to go for Manic
Miner, Jet Set Willy and a game that
was never released called Pud Pud.
WORST GAMES: A lot of the stuff
that is being churned out now. The
problem is that people are trying to
make games better and better and
more often than not, you end up with
a game that is only suitable for
someone with an 1Q of 6 million and
has 2 dozen pair of hands. | think
people should go back to the formats
of about 1984-1985. The games that
were around in this period may not
have had the best graphics and sound

Planet Dillon

but they were a damn sight more
playable the a lot of stuif these days. (1
rest my case) {I must admit that | agree
with you Ste...Ed!!}

FAVOURITE SOFTWARE AUTHOR:
Matthew Smith (when he was
around). If he wrote a game today |
would go out and buy a Spectrum.

Thank you Steve for imparting such
wisdom to us. | think as compensation
for putting the wrong game on the
disk originally, you can now give us
your diary of events leading up to
LIMBO 1l being finished. Take it away
(again) Steve.

DAY 1

CDU have asked me to write a diary
for my new game (fame at last). The
game is going to be a follow up to
one of my other games “LIMBO”. So
far | have designed a few graphics but
nothing to write home about. Spend
the rest of the day thinking about the
game plan, various things spring to
mind such as:

1..Is it going to scroll?

2. What style of graphics should | use?
3. What type of sprites are going to be
used?

4. What colour schemes should | use?
The answer to all these questions
s....erm...| don't yet know. Tried to
think of a name for the game, fail,
some intelligent person in the pub
suggested LIMBO I, what an
imagination.

v e
e asavaana:
iaas

Bk

DAY 2

Decided that the game will be a static
screen and the graphic blocks will be
designed so that they can be any one
of 8 colours plus the 2 multicolours.
Wrote the graphic packer, this packs
the screen into 60 bytes instead of
1024, quite a saving me thinks. Fed
some data into the packer in hope of
60 blocks gracing the screen, instead
a mass of junk appeared, (that's a
good start), had a look through the
code, fixed a few bugs, ran the
program again and this time got a
blank screen. It was at this time that |
decided that it would work better with
a character set in memory. Wrote a
small routine to animate the dots in
the middle of the blocks, this worked
first time. Flushed with success | put
the main sprite on the screen,
Uurrrghhhh! In my infinite wisdom |
designed the sprite on a black
background forgetting that the game s
played on a light play area. Changed
the sprite and the colours and tried
again. Looks much better with a black

ELEET

~outline around it. Decided to stop
work while the going’s good.

DAY 3

Off to Liverpool to get my Amiga out of
hospital. At the shop | was informed that
it needed a new drive, new mouse, and
several new chips and circuit boards. |
wonder if you can get Amigas into
BUPA? Messed around with my
revamped Amiga for the rest of the day.

DAY 4

Wrote the joystick routine and put in
the screen boundaries. You can now
move the character happily around the
screen. Decided it was time you could
eat the dots so in went the routine to
check what character was under the
sprite. If the character s part of the dot
then remove it from the screen, simple.
This routine will be used to check all of
the other blocks you can touch.

DAY 5
Altered the pick up dot routine o that
when you pick up a dot a hole

ON THE DISK

appears instead of a mess. The
graphic packer was changed slightly
50 a new 4*4 block can be printed to
the screen, this block is made up of all
the same character so it seemed a bit
of a wasted having sixteen characters
the same, and anyway this block will
be rolled around. Wrote the routine to
oll the characters in this block, the
block now rolls in the opposite way to
the way that the joystick is pointing,
hmmmm looks ok but not too good
I'll keep it there for now anyway. Had
a good idea on how to move the
enemy around the levels, VIl try that
tomorrow.

DAY 6

Hopefully the enemy movement
routine will be put in today. The way |
moved the enemy in LIMBO was to
read in the data for direction, speed
and how far the sprite should travel
before switching course. This took up
100 much data for my liking, so in this
game the enemy will follow arrows
around each screen. Wrote the
routine o check this for the first sprite
and assembled it in great
confidence.....well an enemy sprite is
there but he only moves jerkily when
I move the joystick. | have decided

9

that this is illogical and it cannot
possibly happen. After a good ook
through the code | discovered the
bug, the program was jumping past
my sprite move routine unless you
moved the joystick (surprise surprise)
Altered the code so it does access my
sprite routine and low and behold Mr.
Nasty sprite starts to zoom around the.
screen, he comes into contact with
one of my down arrows and goes up.
This is not good. Fixed this small bug.
and he now trundles off in the right
direction which is jolly decent of him.
Had a look at how much raster time |
was using, wish | hadn't bothered, my
latest ultra compact sprite mover
routine takes about half a screen full.
After a long think | decide there’s only
one thing left to do PANIC!11!

Adter a quick pint in the Bradley, |
decided to tackle the raster time bug,
loaded up the program and as if by
magic it had fixed itself! Suits me fine,
who am | to argue? Darren came
down, this is the first time any mortal
from the outside world has seen the
game, overall views...Not bad for a
weeks work. Not bad! | mean what
does he want after a weeks work? 4
thousand non flickering multiplexed
sprites running at the same time as a
72 piece digitised orchestra and a
sampled after dinner speech by the
Queen??? He thought this might
improve it a bit.

DAY 7

Put all seven enemy sprites on the
screen and they follow each other
happily around, they even obey my
direction arrows. Oozing with
confidence a couple more direction
arrows are thrown onto the zone and
they totally ignore these. Hacked
around with the character detection
routine for a bit and everything now
works ok. A few more character
blocks were designed for nasty things,
such as arrows which push you along
in one direction. The game now has a
name courtesy of Julian Dolan, he
came up with ‘The Planet Dillon’
which is really stupid but who cares?
That should do it for today.

DAY 8
Designed the teleport block and

10

animated it. Looked quite good after
10 efforts on the character editor. |
have decided that the enemy will be
allowed to teleport as well as you. |
mean just because they're enemy they
don't have to have all their privelages
taken away. Wrote the code to
teleport you...assembled it....and
CRASH!! Arrrggghhhhhhh!1! Even
restore won't save me this time. This
really annoys me, it should give you a
5 second warning or print up a little
message informing you that it’s about
to lock up. You can now teleport to a
new location on the zone after |
completely rewrote the routine.

DAY 9

Fixed a bug in the teleport routine,
sometimes it teleported you off the
screen which isn’t much use to
anybody. Wrote the routine to move
the arrow blocks that are going to
hurtle you off in a certain direction.
Also checked for you hitting these
blocks, all this works fine for a
change. In went the sprite animator
today, needless to say this did not
work first time. After a couple of bugs
were ironed out the enemy now
stamp around the screen. Won 75
quid on the horses so | had the rest of
the day off.

DAY 10

Put level one in today and worked
out how many bytes | would need
per level to set up colours and
animation etc. Decided to put in an
exploding block if you touch it. It
explodes underneath you so I will
have to use a sprite for this, it would
take up too many characters
otherwise.

DAY 11

Today saw the introduction of the
level selector, this routine works out
what level you are on and gets the
relevant data to set up the sprites etc.
Level one is now playable | am
pleased to say.

DAY 12

No work done today but Desmond
Rigby came round and insisted | put
his name in the diary, Hello
Dez....Happy now?

DAY 13

Oh happy day, my younger brother
has gone to Austria for 10 days (peace
at last). In went in the routine to
colour in the blocks. This proved
rather easy as it was pretty much the
same as the graphic packer. Typed in
all the colour data for level one and
everything looks nice. Each level will
take 171 bytes for everything. This
means | can fit 5 levels into 1K which
suits me fine. Wrote a small routine to
check if you have completed the level
and sent a demo off to Paul Eves.

DAY 14

Wrote the level complete routine, it
looks quite good with a few colour
cycles, then disaster. The computer
locks up courtesy of the CEGB. Even
hurling abuse at it does not work. |
am not impressed.

DAY 15

After yesterdays little disaster | decided
to change the end of level idea, | want
it to be like LIMBO with lots of raster
bars bouncing around the screen.
Wirote a small routine to display 50
colour bars, this was quite time
consuming as you have to do one bar
at atime to get the delays right.

DAY 16

Started to put some different colour bars
into the table and arghhh glitch, glitch,
flicker, flicker. Disaster, all the bars have
distorted. Fixed the glitching but it still
looks terrible so out it went. I'll have to
think of something else now.
of something else and done it. Much
better, it looks a bit like the one from
LIMBO, well it looks extremely similar
1o the one from LIMBO. Ok, | admit it it
1S the one from LIMBO, but who cares, |
don't.

DAY 17

Put most of level 2 in today, it's really
boring typing in loads of numbers but
it's got to be done, finished this off
and went to the pub.

DAY 18

Started off the day by sorting out my
disks, 1 still haven't a clue where
everything is. Found a bug in the
rolling character routine and fixed it.

The rolling characters now look a lot
better. Put in the rest of level 2 and
everything is looking pretty good.
Decided to have a go on the sprite
editor. After an hours worth of effort
all hope is abandoned of churning out
something half decent. Darren
“picasso’ Russell came to see level 2
and he had a major moan and a nag
about the colours. He forced me to
change some of the blocks colours to
blue, I must admit it does look better.
Darren looks smug.....consider
punching him in the nose.

DAY 19

In went the third level today, I'm
getting really fed up of typing in all this
data and I've only done 3 levels. Wrote
the score routine, it doesn’t just add the
score on, it counts it on Ooohhh.

DAY 20

Started off the day by backing up
everything in sight onto a new disk
and drew some new graphics which
took me hours.

DAY 21
Typed in level 4 and had the rest of
the day off.

DAY 22

Oh disaster, the level | saved out
yesterday has turned into a sequencial
file so 1 can't load it back into memory.
Tried to rescue the file but no luck, I'll
just have to type it all in again. This is a
bad day, I've just received a letter
(death threat) from the inland revenue
and | can't find my accounts book
anywhere. Re-typed in level 4 which
‘was extremely exciting, | then managed
to send a command down my serial
port which makes the disk think that it
is write protected (not good).

DAY 23

Designed levels 6, 7 and 8. | then
found out that my enterprise
allowance scheme has expired so |
went into a mass panic.

DAY 24
Job hunting!!

DAY 25
Typed in all the data for the latest

three levels which was immense fun. |
decided it was about time the
exploding block routine went in, 0 in
it went. All that needs doing to it is
the sprites designed for the explosion.
I have decided that the teleporter will
no longer be a teleporter but a
random block that does different
things when you touch it.

DAY 26
Designed some other levels because
that's all had time to do.

DAY 27

Started off the day by drawing the
explosion and enemy number 2.
Loaded up the game and put in the
new sprites, not bad | suppose. Started
some of the routines for the random
block and some of them are really
nasty. (ha ha, | think the strobe routine
is really good). First bug of the day, lots
of little blocks pop up here and there,
very pretty but totally useless. I'm in a
no win situation, | fixed the bug that
kindly distributes blocks all over the
screen and now you cannot eat the
dots HELP!!! | had a look through the
code and found out that one little line
had been put in the wrong place.
Everything is now going ok, so | wrote a
~small program to blank out the random
block when you use it.

DAY 28

Had to re-write a small*part of the
random block routine because one of
the files on the disk was adamant that it
wasn't going to load. More work on the
random block, it now has a lot more
features on it. Designed and keyed in all
of the data for level 8, put in the routine
that counts down your energy and
CRAAASSSHHH! Good job | saved out
the level data before. | haven't lost
much work really. Re-wrote the routines
and saved out before running them, the
same thing happens again even though
it can't possibly. Hal found it at last. |
was thinking there was 4 bytes in the
energy, in fact there are only 3.

DAY 29

Had a discussion with Darren last night
about the game and he decided he
didn't like the exploding block. He
insists that is should electrocute you

instead of blowing you up. This is
equally violent but it saves me a sprite
(ponder, what can I do with another
sprite?). So in went the electrify routine,
it's ok I suppose. Found yet another
thing that needed altering, when you
activate a random block it is replaced
with background characters that take
energy off you, so me being the
generous type | replaced it with the
dead dot graphics. | have decided that
when getting electrocuted, the sprite
will change so that he/she? looks
unhappy. Well would you look pleased
with 20,000 volts going through you? |
think not. Designed the unhappy
character and in he went. Made the
random block more random and added
a new feature. You can now die when
You run out of energy.

DAY 30

Coded the title screen today, pretty
simple stuff. Colours cycling and
glowing. Has anybody got a dancing
flower yet? (no I'm not cracking up)
when they hear music they dance. |
have decided that my game has to
have dancing sunflowers in it.

DAY 31

Designed some graphics for a dancing
sunflower and put it in the bottom
border of the game. Designed another
couple of levels and put them in. The
game is now finished | just need some
other things like game over.

DAY 32

Wote the game over routine today, it
looks quite effective with characters
rolling around at different speeds, also
put another thing in for those of you
that dare press the RESTORE key???

DAY 33 (The final day)
Linked all of the routines up today
and everything is working just fine.
Put the game on a disk and off it went
to Paul Eves. Well all you people in
reader land, that's it, finito end of
game. Hope you like it anyway.

Thank you Ste for a most informative
and interesting diary of events. |
certainly enjoyed playing your latest
offering. | hope everyone else does
also. Ed!

SCREEN DESIGNER

125

A handy utility to help in designing text screens in both 40 and 80 column mode

I'm sure you agree that a nice layout
of menu and help screens makes any
program more user-friendly. In
designing these screens the C64
programmer can choose from a
plethora of available programming
aids, the 128 user however has very
little software available to them. The
utilities described here offer C128
programmer; an easy and familiar
editor to design text screens (40/80
columns). The facility to save the
screens in packed form, optionally
with a loader which enables you to
recall them with lightning speed in
your own programs. Plus a software
switch to tum the 80 column screen
on/off during its raster blanking
period. p

You will need the programs
SCREEN DESIGNER, SCREENLD
CREATOR and V-SWITCH CREATOR
on disk or tape. (All these programs
are provided on the CDU disk).

USING THE DESIGNER

Assuming your C128 is in power-up
state. Start the program by the
command: RUN"SCREEN
DESIGNER”. Three remarks are in
order;

‘The screen type, 40 or 80 column,
on which you execute the RUN
instruction will also be the one you'll
be working on. If you want to load or
save a screen, the program uses the
device which was used most recently
before the program was started. Any
option which would destroy the
contents of the screen you have been
working on is executed only after you
have acknowledged an “are you
sure?” question. The options available
1o you on the menu screen are;

12

D.H.FABER

F1 TO ENTER THE WORK PAGE.
If you start from scratch you will see a
grid, which should help you to place
the characters on the desired position,
with the cursor flashing in the top left
corner. The editor used should be
familiar as it is the same one as used
by Basic. In other words, you have the
same facilities as in direct mode with
all CTRL and ESC codes available. By
pressing RETURN you leave the
workpage and return to the menu. To
avoid lines scrolling off the screen,
scrolling is disabled when you enter
the work page (ESC L enables it
again). A few remarks and wamnings;

Be carefull with deleting and
inserting lines using ESC D and ESC I.
For example, if you insert one blank
line then try to delete it again you will
probably discover you have deleted
the next line as well. This happens
since the editor was originally written
as a line editor to input Basic
statements. Do not accidentally press
CLR, it immediately destroys your
work, no questions asked. You may
not switch to the other screen (ESC X)
and if you do by accident, switch
back immediately. Except for this
ommission the program is, to my
knowledge, reasonably idiot proof.
Once on the workpage, you have one
or more additional options available.
F6 changes the background colour of
the screen. In 80 column only, F7
and F8 toggle the flash and underline
bit of the current attribute respectively.
(And move the cursor by one position
afterwards).

F2 TO PUT A NEW GRID ON THE
WORK PAGE.

This option returns the workpage to
the initial situation.

F3 TO LOAD A SCREEN.

Afile is loaded from the same device
as the screen designer was loaded
from. It is irrelevant if the file starts
with a loader or not (see below) but it
should be of the correct type. (40 or
80 column). Following a succesfull
load you will find yourself on the
workpage.

F4 TO SAVE A SCREEN.

First you are prompted with the
question whether or not you want to
change the colour of spaces and
shifted spaces. Since not only the
characters but also their colours (as
well as the background colour and,
for the 40 column screen, the chosen
character set) are stored, a judicious
choice here allows the pack routine to
produce more compact files. This
option, however, also serves a
purpose of my own. If you are familiar
with my Mouse80 utility (YC
July/August 1989) you may recall that
the mouses’ arrow assumes the colour
of the characters it is moving over,
instead of imposing its colour as the
normal cursor does. By carefully using
shifted spaces and normal spaces and
defining different colours for each,
you can have different colours for the
arrow in different sections of a menu
screen. The next question you have to
answer is whether you wish to save
the screen with or without a loader.
The ins and outs of this matter will be
treated in the next section. For the
time being save an as yet incomplete

scren without loader. Finally, you
have to define a file name and the
program saves the screen on the same
device as the screen designer itself
was loaded from.

F5 QUIT PROGRAM.
When this option is selected a system
reset is performed,

IN YOUR OWN PROGRAMS

Let us assume you have saved a
screen with loader. The loader is a
piece of code written in such a way
that it is relocatable. To you this
means that you can load the file to
almost any address in RAMO and
execute it from there (of course you
may also make it a part of your own
programs). The only forbidden
locations are the 1/O area ($D000-
$E000); no part of the file may be in
the ROM underneath it; also you
should be carefull when using low
addresses which might be used by the
operating system or by the Basic
interpreter. In order for the loader to
do its job there is a certain protocol to
be followed. (Described here for Basic
programmers, assembler fans will find
it easy to translate to their own
requirements).

Three pairs of zero page locations .

should be poked with addresses

(low/high) as follows:

$FA/$FB (250/251) where to put the
characters
$FC/SFD (252/2
colour/attributes.
SFE/SFF (254/255) start address of the
loader

3) where to put

For example, if you have loaded a 40
column file to $9123 (37155) and the
characters should go to the standard
VICII text screen ($0400) and the
colours to the colour ram ($D800),
you should use:

POKE250,0:POKE251,4:POKE252,,0:
POKE253,216:POKE254,35:POKE255
145

Next, you can have the screen shown
by BANKO:5YS37155

For 80 column files the addresses
specified in $FA/SFB (250/251) and
$FC/$FD (252/253) pertain to the
VDC's video ram, normally $0000 for
the characters and $0800 for the
attributes. This procedure works in
direct mode as well, usefull for testing
your screens.

The proper idea is not to unpack
the file to the current screen, but
rather to another location in memory
and set the screen pointers to these

n the work pag

ad 2 screen file

a sereen file

changes the backsround color

Flashes ¢

wnderline:

haracter:

charac

rs PHE

returns to-this wesw

ON THE DISK

locataions afterwards. It is your own
responsibility to ensure that you do
not try to ‘unpack’ and 80 column
files to the 40 column screen and vice
versa. Also, in 40 column mode you
must take care that the packed file
does not overwrite itself. The method
described here is fine if you have only
a few screens to show, else it is a
waste o attach a 388 byte loader to
each screen. A better alternative is
described next

AN ALTERNATIVE LOADER

When you are using any menu or
help screens it is much more efficient
to use a single loader and have the
packed screens at various other
locations in memory. To this end the
designer can save screens without
loader (if you should have forgotten if
a certain file included a loader or not,
or for which screen type it was meant,
read the next section). This section
describes such a loader for the 80
column screen, if you want to write
one yourself for the 40 comumn
screen, | again refer you to the next
section. First let me enlarge upon the
question of relocatability. Most
utilities and programming aids are
wiitten in such a way that they should
be loaded to a specific memory
location. To the user this means a loss
of flexibility. He/She cannot use this
area for their own purposes or use
other utilities that require the same
memory locations. When dealing with
machine code programs one might be
tempted to publish assembler source
listings instead. This is fine if everyone
used the same assembler, but we do
not. One way round this problem is to
try and write completely relocatable
code, containing no absolute
references to memory locations within
the program. If at all possible, this
tends to make the programs longer
than necessary and is feasible only for
relatively small pieces of code.

For the alternative screen loader to
be described in this section | opted for
a different approach. The program
SCREENLD CREATOR, which can be
started by RUN<name> [ON Ux] in
128 mode, contains apart from the
machine code, a table with addresses
to be relocated. (Much as a linkage-

13

editor does in larger computer
systems). After you have defined the
base address the program saves the
correct code to the same device as it
itself was loaded from. In this way
you can produce code for the
location that is most convenient to
you. The previous screen loader
required you to define the target
addresses for characters and
attributes. This on retrieves these from
the VDC registers and blanks the
screen untill the new screen is
complete. Also, although the loader
itself must be in RAMO the packed
screen files may be located anywhere.
Here’s how to use it.

Poke addresses $FE and $FF
(254/255) with the low/high address
bytes of the screen file, then call the
loader as ‘BANKO:SYSxxxx,B' where
B is 0 or 1 for a screen file in RAMO
and RAM1 respectively. For example,
if the loader is at $9123 (37155) and
the screen file at $A00 (40960) in
RAM1 you would use:
POKE254,0:POKE255,160:BANKO:SY
$37155,1

WRITING YOUR OWN LOADER

If you want to write your own screen
loader it is essential to know the
structure of a screen file. First here’s
how to distinguish between a file
with, and a file without a loader: the
loader starts with a $08 byte (PHP), a
file without never does. Not counting
the optional 388 byte loader the file
starts with a code byte with the
following meaning:

bit7: 0 or 1 for 40/80 column
respectively

bite: 0 or 1 chooses between
character sets (40 column screen
only).

bits: Irrelevant

bitd: 1 (Thus this byte is never $08).
bits0-3 Define the background colour
to be poked to $D020 and $D021 for
the 40 column screen, and to the right
nibble of VDC' register 26 for the 80
column screen.

Next follows two times 1000 (40
column) or two times 2000 (80
column) bytes, the characters and
colour or attributes respectively. The

14

pack routine used is a simple one, it
only caters for strings of bytes
recurring three or more times in a row
and not for recurring patterns of bytes.
Here is how to unpack the file.

First read a count byte, bits 0-6 make
up a number between 0 and 127. If
bit 7 was zero, the next (0-127) +1
bytes should be transported to the
target address. If bit 7 was 1 then the
next byte is to be duplicated (0-127)
+1 times to the target address.

VDC SWITCH

f you experiment with the 2nd loader
described above you will probably
notice it neatly blanks the screen until
the new screen can be turned on
When dealing with the VICII chip,
which handles the 40 column screen,
you have various options to achieve
this effect. For example, you may use
a raster interrupt outside the visible
screen area to redefine the screen

pointers or to turn the screen on or
o, or you could read the value of the
current screen line until it reaches the
desired value and then do whatever it
is you wanted to do,

The VDC chip, responsible for the
80 column screen» does not support
raster interrupts nor can it be switched
off (that is, by software). Nevertheless,
with a little trick the same effecgt can
be achieved. The right nibble of
register 26 defines the background
colour, the left nibble is irrelevant in

multicolour mode (as used here), in
monochrome mode it defines the
foreground colour. Therefore, if the
two nibbles are made equal then
switching between multicolour and
monochrome mode is equivalent to
switching between screen on and off.
Remains the problem of waiting for a
“dark” period. You will know that the
VDC is addressable only through a
gateway of 2 bytes in the /O area,
$D600/$D601 When reading
location $D600 bit 5 is 0 if the beam
is writing part of the screen and 1 if it
is in the blanking period. You have no
means however to know how many
clock periods the beam is away from
entering the visible area again
Therefore the proper procedure is

Wait for the beam to be on-screen.
Wait for the next blanking period. This
way you have sufficient time to
change the contents of the registers.
This method is used in the alternative

loader described above, but it could
also be of use for other purposes in
your own programs. To this end you
should RUN"V-SWITCH CREATOR”
in 128 mode. This program allows
you to create a machine code file for
the base address you select. Since the
piece of code is very small, 86 bytes,
this relocatability is of special
importance. You may use the switch
from Basic as BANKO:SYS<address>
where each call toggles the VDC
screen between on and of.

DATABASE 78

A RAM based disk filing system which is simple to use and understand for all ages

Many people that use computers do so
not simply as a leisure activity, but
also for some serious work. The most
widespread use of any computer is as
a filing system, either for large
multinationals, small businesses or
simply for the man in the street to
keep track of his records. DATABASE
78 is a program that will enable you to
do just that. It is a simple program that
is user friendly and easy for people of
all ages to understand.

One of the first things you will
prompted for on running the program,
is 0 state what type of printer you will
be using, either CBM or STAR LC10-C.
The name of the file that is present, if
there is one, is displayed at the top of
the main menu. From the main menu
the following options are available.

A - START A NEW FILE

This option is self explanatory. It is
used to create a completely new file
from the begining. The maximum

number of records is fixed at 300 and |

the number of fields is fixed at 4. The
top of the screen states that you can
enter a maximum of 78 characters in
each field. The display as you type it
in is how it will appear in the other
options and on the printer. The file will
not accept a nil entry in a field, so you
will have to put something and |
suggest you use a 0. Do not use
«commas or colons as any text entered
after these will be lost. Typing EXIT to
start a new field and then RETURN
will delete that record and return you
10 the main menu.

B - LOAD or UNLOAD FILE
Follow the prompts and use this
option to LOAD an existing file from
your disk. If a file is already loaded
then use it to clear the file before you
load another.

C - SAVE THE FILE
Use this facility to save a new file that
has not been SAVEd before. It can also

C.ESMITH

be used to provide a safety or back-up
copy on a seperation disk from your
working disk. In the latter case use this
last before switching off.

D - DISPLAY FILE (scroll)

This displays the file one record at a
time. You can use the U and D keys to
move UP and DOWN through the file.
The number of each record is
displayed at the top to provide an
indication of your position in the file.
The space bar takes you back to the
main menu.

E - ADD RECORDS
This returns you to the point at which
you left off when making your file
originally. You are also told the record
number you are working on. Don't use
commas or colons as all text entered
after these will be lost. Typing “EXIT”
will return you to the main menu.

F - ALTER RECORD

You are first of all asked to name the
record by its first (main) field. The
display shows you the record as it
exists and askes you which field you
wish to operate on. This question is
then replaced by the field that you
state. After_the field has been altered,
keying RETURN will enter the change
and ask you if you want to alter
another. Keying “Y” will repeat the
process and keying “N” will return
You to the main menu.

G - SORT BY ANY FIELD

You are first asked for the field to work
on. For example, if you enter DATE OF
BIRTH as the name of one of the fields,
it will amange all the records in numeric
order. If you type OCCUPATION, it will
sort all the records of that field into
alphabetical order. This is best
appreciated by experimenting and then
choosing option “D". If you have asked
it 10 sort by the main field you can use

option “V” in the SUB MENU to get a
good idea of the result,

H - SUB MENU (sort and search fields)
This option takes you to.a whole range
of further options, including the
PRINTER option. However, you can
only get to the sub-menu if you have a
file already present in memory.

1 - DISPLAY RECORD (delete option)
You are first asked to name the record
by its main field. The display allows
you to view the record as a seperate
entity but gives you only two choices,
to delete or keep the record in
memory. If you accidently delete a
record from memory, all is not lost as
you should still have it on disk, so long
as you have not used option /",

J - UPDATE DISK FILE

This option will maintain your
running, or working, records up to
date. It automatically deletes your old
file of the same name from the disk
and replaces it with your updated
version, again giving it the same
name. Anything you have deleted
from that file has now gone, and
anything you have added, deleted or
changed will now appear or not at a
later re-load. This option only works of
course when you have LOADed an
existing file from your disk. It should
be the last option you choose if you
have made any changes to your
records, except for option “C”, when
you may want to make a back-up
copy on a seperate disk.

K - DELETE FILE FROM DISK
This option will delete or scraich any
file that you name from your disk. Be
careful how you use this option. An
escape facilty is provided should you
make an error.

L - EXIT PROGRAM

If you choose this option, you are
reminded to update your disk file and

113

a chance of returning to the main
menu is provided. If you continue the
screen clears and the READY prompt
appears.

Z - DIRECTORY DISPLAY

This option will display the contents of
the directory of any disk without losing
your loaded file. It will also indicate
any protected files, which you can
alter to suit your needs.

Database 78 keeps track of how many
records there are present in the loaded
file. At the bottom of the main menu
this number is displayed for your
information.

SUB MENU OPTIONS
M<$S

This is the first of a choice of five
SEARCH and SHRINK routines that are
available. By following the prompts
and entering the data that you want
omitted, a sub file will be produced
made up of records that excludes that
data in the field that you specified. This
is displayed by choosing option “G".

N=$

This option will select all those records
with, for example, all those individuals
born in the same year, or all thosé
vehicles described as red. You must
however state exactly and precisely
what s in the field,

0>=$

In a numeric sort this option will select
for example all those countries with a
population greater than or equal to
that which you specified.

P<s

If this option is used on an alphabetic
field then it could for example make a
sub file in which the names of people
are lower in the alphabet than the
particular letter you specified.

Q CHARACTER GROUP

This is perhaps the most useful of the
first five options. Unlike the other four,
the field contents to be searched do
not have to be precisely stated. For
example, it will search all the fields
under NAME for “log” and come up
with JOE BLOGGS and any other

16

names that contain that combination
of letters.

GENERAL NOTES

In any of the options above, you are
informed if the result is POSITIVE or
NEGATIVE before being returned to
the SUB MENU. Once a sub file has
been created, all the options in the sub
menu operate on THAT sub file, not
on the main file. This includes the
printer option. Once option “W" is
selected and you return to the main
menu, you lose your sub file, unless
you SAVE it under option “R”.

R - SAVE SUB FILE

After using the SEARCH, SHRINK and
SORT options, operating on and
reducing the main file and subsequent
sub files to a final acceptable result,
you can save it to disk. What you
create in effect is another new main
file in its own right. This should of
cource be saved under a new name.

S - DISPLAY SUB FILE

If you enter this option before you use
any of the SEARCH, SHRINK and
SORT options, then what will be
displayed is the main file. Obviously
you cannot display a sub file if you
have not created one. The format is the
same as option “D” in the main menu.

T - SORT SUB FILE BY ANY FIELD
This operates on the sub file in the
same way as option “G” in the main
menu does on the main file.

U - DELETE SUB FILE FROM
MAIN FILE

After using option “Q" in the sub menu,
this option will leave you with a reduced
main file. In effect you will have split
your original main file into two main
fles. Selecting this option automatically
returns you to the main menu.

V - LIST FIRST FIELDS

This provides a list of eight of the first
(main) fields in alphabetic or numeric
order is used after option “T”. The U
and D keys operate in the same way
as option “D” in the main menu. Only
eight fields are listed at once in case
all the fields have used two line
entries.

W - MAIN MENU ** DESTROYS
SUB FILE

Once you have lef the sub menu you
cannot return to it to view your sub
file. The only way you can see your
sub file again is if you SAVE it and
then re-loaded it, or go through the
whole SEARCH process again from
the original main file.

X - CHECK FREE SPACE IN FILE
This may take a few moments, but it
will tell you how much room you
have left for more records. Assuming
that all four fields in every record use
up 78 characters.

Y - SEND TO PRINTER

This option first gives you a choice of
two routes. You can either print out
the whole file or sub file as the case
may be. This may take some time and
a lot of paper if you have a large file.
Or you can choose to print a specified
single record. If you choose the FILE
option it can only of course print out
that file that is present. If you are
using a CBM printer you are then
presented with a choice of upright
expanded printing in one of six
colours or one draft style in black. If
you are using a STAR printer you are
offered a choice of upright expanded
or italic expanded printing in one of
seven colours, plus one draft style in
black italic.

An escape back to the sub menu is
provided. If you are printing a file you
are now asked to check that your
printer is switched on or you can
escape again if you wish. If you are
printing a record you are asked which
one by the first field. If you cannot
remember it all, enter the first few
Jetters or numbers. The computer will
make an effor to offer you a record to
try. Again the chance to escape is
offered. An additional feature when
printing a file using either printer is
choice of fields in addition to the
‘main field. You can print all four fields
or a choice of the second, third or
fourth. This is useful if only a limited
amount of information is needed.

Z - DIRECTORY DISPLAY
This is exactly the same as option Z in
the main menu.

FURTHER ADVENTURES IN ‘C

We continue our look into the pussibllmes of maklng ‘C’ the alternative language for all

“The essential aim of a good
programmer should be to produce
sequentially flowing program code,
with no unconditional jumps
backwards or forwards from section
o section of code”.

STRUCTURE

Any code which is executed
repeatedly should be so constructed
that it is repeated from within a
control loop, and the transfer of
program control should always be
carried out by using the
if...else...do...while command
statements, or the logic equivalents of
these (and, or, not).

There are some programmers who
will often compress several
expressions into just one large
expression which is then sometimes
used as an impressive example of
‘logicus complexicus’, but really the
only function it will serve is to make
the program virtually unreadable.
Personally | would much rather write

them out as a number of single lines -

of code. This makes things so much
easier to read and understand,
especially when returning to a piece
of code which | may have been
working on several weeks, or months,
earlier.

IF...ELSE
Probably one of the most regularly
used control statements of C, and, as
it happens, also one of the simplest.
First we shall look at a couple of
formal examples demonstrating the
logic of the statements.

Formal example 1; IF (expression)
statement A

In this case, if the result of the
EXPRESSION is found to be true then
STATEMENT A will be carried out,
otherwise the next statement of
program code would be executed.
Formal example 2; IF (expression)
STATEMENT A:ELSE STATEMENT B

Here, we can see that if the
EXPRESSION is true then command

8 users
JOHN SIMPSON

will execute STATEMENT A after
which it will skip the ELSE
STATEMENT B. But on the other hand,
if EXPRESSION is found to be false
then command will be passed, via the
ELSE control statement, to
STATEMENT B.

Let us now examine the two
formal examples with a couple of
program examples;

/*...lesson 5...5...else...*/
main()
1

int input;

printf(“Do you enjoy reading the
CDU magazine?

)/ line 1%/

printi(“strike key <Y> for yes, or key
<N> for no.

n“)/* line 2 %/
input=getchar();/* line 3 */
iffinput == 'Y") /* line 4 */

printf(“Well that is good new for the
editor
n");/* line 5 %/

else
printf(“Have you tried reading the
Chinese abacus monthly,

instead?

n)/* line 6 %/

The lesson starts off with the usual
ccomment line followed by main (), the
only function. (Remember, we must
includa a main () function somewhere
with the program). Then comes our
start ‘brace for the statements which
will be incorporated with the
function, and next we set up an
integer type of variable, assigning it
with the name INPUT. Lines 1 and 2
will simply print out our message, as
we discovered in lesson 2 of last
month. Line 3 introduced the C
command getchar(), (more about
these, (), brackets in a later lesson).
Getchar is used to obtain a character
from the keyboard. Once the response
is received, the key value is assigned

to the variable INPUT (note, the
command getchar alway returns an
ASCIl integer value). Line 4 is the first
part of the if...else command. What is
actually occuring here is that variable,
INPUT, is tested to assess if it is equal
to the character ‘Y.

We must enclose the character
being tested for within single quotes
because we are comparing the integer
value of INPUT with a character. The
quotes simply tell the compiler to
convert ‘Y’ into it's ASCII form.

If the value of INPUT is equal to
‘Y" then the result is considered to be
true and so the statement of line 5 will
be executed. However, if the variable
INPUT does not equal the ASCII value
of ‘Y’ then the result is false so
therefore control will drop through to
line 6, and execute the statement held
there. After which we have the
closing brace of the function. (note
also the semi-colon, *;”, after each
statement. As | mentioned in previous
lessons this is very important.).

Before we continue any further |
think a quick refresh on the operations
of “=” and “==" from lesson 4 might
prove useful.

(A) TEST=ACTION

(B) JOHN=PAUL

(C) SUM==RESULT

(D) SEA==GOODTOSWIMIN

In the examples (A) and (B) the
variable on the left is given the value
of the variable on the right - ‘passing
values’. In (C) and (D) we have
examples of equality. One would test
the variable on the left to discover if it
was equal to the one on the right. If it
is, then the result if true if not the
result is false.

The next lesson is intended to
demonstrate just how the IF...ELSE
command can easily produce a range
of controlled branches. The variable
names as INPUT will, once again, be
used 1o store the users key response. |
shall also be introducing a new
command - #INCLUDE <STDIO.H>
which will force the compiler to

i)/

include various definitions within the
main program. Definitions that are
covered by this are the EOF (End of
File) and EOL (End of Line), this
command is not strictly necessary
within this example program but it’s
introduction now will be of value
later.

/* lesson 6....Branches in a function

tree..."/

#include<stdio.h>

main()

intinput;
reply();

middle();
else ifinpi
bottom(;
)

replyl)
1

printi(“...Select a position
print(“TOP...strike key <t>\n);
print(“MIDDLE. strike key <m>\n);
printi(“BOTTOM..strike key \n);
printf(“\n\n\n");

topl)

t
printf(“Wil selecting the top position
bring its just rewards?\n);

middle()
{

printi(“Does sitting upon a fence
mean you can fall either way?\n");
}

bottom()
(s

printi(“Is the weight of the whole
building resting upon the bottom
layer of bricks?\n”);

i

After getting the INPUT variable as
an integer, the program now calls the
function, REPLY(), and executes it. In
essence it prints the first line of text,
with two carriage returns, which is
then followed by a further three lines
of text, and then three carriage
returns.

Once again, as we saw in lesson
5, the variable INPUT is assigned the
ASCII value of whatever key is being
depressed. This value is then tested

18

against the three IF...ELSE statements
which follow. If one of the statements
is found true then control will pass to
the appropriate function. For example
if the user selects key ‘t’, then control
will pass to function TOP() and the
appropriate message will be printed to
the screen after which the program
terminates. However, if a key is struck
which does not correspond with
either *t, ‘m’ or b’ then the program
terminates without further action.

Finally, and to end this months
lessons, we will now take a look at
the WHILE command
statements for passing control from
one statement to another. Here then
follows a formal example of a
DO...WHILE situation.

Formal example; Do statement
while (Expression)

Here the statement will be
executed whilst the expression is not
true. This is a structure for creating
control loops, for example, as lesson 7
will demonstrate.

/* lesson 7...do while or not to do
while...*/

main()

{

intc;

1

do

{

print(“Do while, da dah da do
while do\n");
c=ctl;

while c<=4;
1f

The single function called main sets
up an integer variable called ¢ and
assigns to it the value of 1. The next
program sted will do the print
statemenmt and then increment the
varialbe ¢ by one. (In fact, “C”
contains a very much more
sophisticated method for handling
increments and decrements which |
shall discuss in detail in a future
lesson). Finally the statement WHILE
C<=4; means that while the counter ¢
is equal to or less than 4 then loop
back to the DO part of the function
and execute it once more. As soon as
¢ reaches 5 the loop has ended and
the function will terminate.

In this example the test was carried

out after the increment operation. This
is fine when you know that a certain
course of action has been carried out
for the first time, or iteration, or when
you wish the loop to terminate after
carrying out a statement. We can also
write a few lines of code without
using the DO part of the DO...WHILE
combination, and that will increment
¢ before execution of the statement.
Lesson 7(a) is an example.

/* lesson 7(a)..not so much a do, just

awhile..”/

main()

intc;
<L
while(c<=4)

}

printf(“While away the hours
without the hint of a do\n");
c=cH;

)

As | said, the test for C reaching its
optimum value has been made before
execution of the statement. This
allows the loop to be terminated after
the increment and before the
statement is executed. (NB: Note the
way the braces are used to divide the
different program sections in the
example programs. This allows one to
follow the program logic much more
easily as we shall see in leater lessons
which will give much more detailed
and complicated programs).

SUMMARY

1. The introduction of controlled
program flow using the IF...
THEN...DO...WHILE expressions.

2. The introduction of the “C”"
ccommand GETCHAR(); which is
used to pick up character input
from the keyboard.

3. GETCHAR(); always returns an
ASCIl integer value.

4. The introduction of
#INCLUDE<STDIO.H>

5. Several functions were included in
lesson 5. Note that at the
completion of a function the
program terminates.

Later | will demonstrate the three

methods of exit from a control loop or

function, these are namely,

BREAK...CONTINUE...RETURN.

Another novel way of sending information to friends or writing program notes is catered for

Letter Maker is one of those “fu
utility programs that pops up from
time to time. It does not really
provide a utility in the true sense of
the word, but is fun to use and can
produce some fairly impressive
results.

The idea behind the utility is
simple. It allows the user to produce
nice pages of text that are both
colourful and musical, without the
normal laborious job of writing long
lenghty letters. (lets face it, who
really enjoys writing letters to friends
and reletives anyway??).

Using the program is simplicity

ROBERT TROUGHTON

itself. Just select the option from the
main CDU menu, once activated sit
back and compose your screens.
Below is a quick run down of
available options. There are plenty of
on-screen instructions so you should
not have too much difficulty in using
this simple, short but fun utility.

MAIN EDITOR

Fl: Page forward
F2 Page backward
Centre line

ey e cran
A o0 BLAe OF i sos Eaveaton Fock]
A 5001084 Srerea ot n =9
o s LG FTASTIC Pce cmors s
COMMODORE TS CI DISK DRIVE, STTMLINE CASE, oG 30 Qs Gamar S o e o0
e TR BRI e
THE ONLY DRIVE 100% COMPA' TS 120
Commadoe PG Suir Packs (AS SEEN ON T¥) Frow s083%
AMIGA o
LIGHT OF FANTASY e S ms
F29 RETALIATOR % RAINBOW ISLAND Ll 8%
S e btont 17057cs Bene
% DELUXE PAINT Il B St 20 cSnecmaies oy stock PHONE
wowro
O maioe 10845 Stoeo Colour Mon 0m
LIGHT GUN £36.50 s 8833 Stereo Colour Monitor]
PR 700 e s oo
C64 LIGHT GUN PLUS B50PeP
GAMES AND UTILITIES weeLLnEous
HLE EGRADEPACK _ z Cormadar k11 Dk O, i
Eommedore G Da Rocorr £
oot Sk e o g Fr]
oo NiPST0 Fise0 | LIGRT FANTASTIC PACK oy b
COMMODOREMPS INCLUDES - LIGHT GUN 3D tar NL-10 Inter 3900
c219 | GAMES, PAINT PACKAGE, e ot frrd
SEIKOSHA SP_180V (Co) £1499 | DATA RECORDER, GAMES L5 et -y Asatr Wy D Un asises
T00% ERROR it o
o | DISKS|erors aecorom] [Ve st onee s
100357 DSDD. TS| “LOAD-IT DATA REC£3500 Stberscrpi 4o 128 Fr]
103525 DSDD 2450 | Co4 POWER SUPPLY 51995 B Cove oo i
: 'ALL PRICES ARE INGLUSIVE OF VAT AT 1
e o | G
: . 2. rice ot 1o changs wiht ot
ATICES S P s
MOUSE HOLDER s CARRIAGE £1.50
...... s
CROFTON MICRO SUPPLIES
C.M.S G\ himrean oap. 081-469
EYZX BROCKLEY LONDONSE428D 3246

F5: Options menu

DEL: Delete character

CLR: Clear screen / home
cursor

INST: Insert character

CRSR: Move cursor around

screen

HOME: Homes the cursor

CBMI: Inserta line

CBMD: Delete a line

RETURN: Carriage return

Thanks must go to Richard Rinn
(DEEK) for providing me with the
music that accompanies this

progam. Thanks DEEK.

UNCTIONS

With this utility you can assign strings
and character codes to a total of sixteen
function keys, and save a machine
code file, maximum 200 characters,
which can be loaded on top of a BASIC
program without destroying it. The
function keys are defined for use in
DIRECT MODE only, and their aim is to
be an aid in the development of BASIC
programs. The sixteen keys available
are accessed as follows:

FKEY NO. ACCESSED VIA

1-4 F1,F3,F5and F7 ONLY

5-8 F1,F3,F5and F7 PLUS SHIFT
9-12 F1, F3, F5 and F7 PLUS
COMMODORE KEY

13-16 F1,F3, F5 and F7 PLUS CTRL
KEY

I will now describe each of the
available options in turn.

VARIOUS FUNCTIONS 1,2 and 3
These are the first 3 options available
from the main menu, each offering
eight of the most popular (fixed]
definations. Details are given
concerning the method in which your
next defination will be accessed, and
on selecting a defination you will be
offered a carriage return.

STRING FUNCTIONS

As various functions, except that the
available definations are all under the
category of String Functions.

DIRECT DEFINATION

Where as the previous options
consisted of FIXED definations, this
option gives you much more versatility
as functions can be defined more
specifically. Selecting options 1-7 will
allow you to add to the defination
chosen, for example;

LOAD'S',8

POKES53280,x

SYS64738

Obviously, to defined every possible
command/statement would be

20

STUART WESTBROOK

impractical, so selecting option 8
allows you to define anything you like,
simply enter your defination {carefully
as you cannot use the delete key} and
press return.

EDIT OPTIONS
After selecting edit options you will be
presented with the following options;

1. INSERT CHARACTER CODE
(CHRS)

Select the function number that you
wish to define as a character code,
and enter any code between 0-255.
Refer to any manual or a list of

codes.

2. DELETE DEFINATION(S)
You are given the opportunity to.
delete ALL definations, replying
will give you the option to delete
any SINGLE defination.

3. REPLACE DEFINATION

After selecting the function number
to be replaced, you are returned to
the main menu to redefine the
function chosen.

4. SWAP POSITIONS

Enter the first function number you
wish to swap (press return), and
then enter the second. If either of
the function numbers equal 17 then
you will be returmed to the main
‘menu with no alterations made,
otherwise the definations are
swapped and you are returned to
the edit options menu.

PRINT DEFINATIONS

Remembering how you have defined
each function can be very difficult, and
for this reason there is the option to
print a list containing each function
number, it's access method and
defination. You are given a prompt
concerning whether your printer,
device 4, is ready for use or not. To
continue when the printer is not ready

If you have ever wanted to
make better use of those
virtually inaccessible function
keys, then this program is the
one for you.

could mean the loss of all data or may
even crash the program. The printout
may contain blank lines, this indicates
that the defination above the blank line
contains a carriage return. Additional
details are added to the end of the list.

SAVE MACHINE CODE PROGRAM
This is the programs most important
option, it allows you to save your
definations in machine code format to
either Tape or Disk, meaning that it will
not only load much faster but it can
also be loaded over a Basic program
without destroying it. Again, be sure
that the device chosen is ready for use,
otherwise it could result in loss of data
or worse. Please note that the machine
code is loaded independently of the
FUNCTIONS program.

QUIT PROGRAM

If you have completed your definations
and saved your machine code version,
you may quit the program and execute
the machine code by 5Y549152.

THE MACHINE CODE

Once saved, this is loaded
independently of the FUNCTIONS
program and is loaded as follows;
LOAD'filename’,x,1 where x is the
device number. To execute the
machine code enter SYS49152. To
disable the function keys type
PRINTUSR(1) to reactivate enter
PRINTUSR(0).

ADDITIONAL KEYS

CTRL and A equals Auto repeat

CTRL and C equals Remove auto repeat
CTRL and @ equals Pause system

CTRL and A equals Remove pause

DEMONSTRATIONS

To demonstrate the use of FUNCTIONS
there are 2 example files on the disk. To
see them in operation, select
DEMO 1 or DEMO 2 from the menu,
or load direct. Once in memory you
‘may activate them by SYS49152.

Adventure Helpline

Jason Finch provides more help for those that are stuck with CDU’s Kron adventure.

Here we are already with the third
article in this section of the Adventure
Helpline series, covering the epic
adventure Kron, written by Tony
Rome. In the two previous articles |
have explained, through subtle (or
otherwise!) clues, how you can make
your way through the first two stages
of the adventure - the Sea of Storms
and the great subterranean system of
caves. Last month | left you in the
Valley of the Dead looking at the
Castle of Spells that is over a deep lake
10 the south. The problem was how to
get over this lake and into the castle. |
provided you with two cryptic hints
and hope that you have successfully
made it across. But in case you are still
hurling large objects at your computer,
the next paragraph explains how it is
ne.

Firstly, do you remember when
you released an eagle when it had
become trapped in a crevice some
while ago? It left behind a flute and -
you will find that the eagle will return

play this flute. If all goes according to
plan, the eagle will swoop, pick you
up and carry you over the lake, letting
you drop safely onto the castle
battlements. You are now in the third
and final stage of the adventure.

This section contains possibly the
most important and baffling sequence
of puzzles - how to get passed the
prison guard and rescue princess Zora
without being killed by the ogre or
falling asleep! That is not an insult to
the author - you will find out what |
really mean a bit later on. Once you
are on the battlements, the only way
out that you can see is by a staircase
that leads downwards. This would
seem the most obvious way to enter
the main castle and so do that - go
down. You should find yourself at the
foot of the stone staircase with a
passage to the north. You should
follow this passage until you come to

the Alchemists Chamber. Take
whatever is on offer but do not open it
- the jar contains a strange potion that
induces tiredness. Also, make sure that
you do not stay around too long in the
laboratory.

At this stage you should walk
straight through the large hall that is
found on the other side of the
staircase. You will then find yourself in
a magic room with the walls slowly
closing in around you. I shall be a little
cruel here and refuse to tell you what
to do! - just remember what the guru
told you was on the scroll because this
is the time that the walls may move
your senses! One step in the wrong
direction and you will be confronted
by an ogre that kills you immediately.

When you have found your way
into the castle dungeons you will meet
the guard who is keeping watch of the
princess. Here you will need the jar of
sleeping potion. Open it and the drop
it on the floor. It takes a little while to
act but find somewhere else to wait or
else you will find that it is you that is
asleep. It is best to back-track your last
two movements, north to the circular
room and then whichever way it was
to get back to the passage that
originally lead you into the circular
room. Then come back again straight
away to the dungeon. That will take
four moves by which time the guard
should be in the land of nod.

You can then search him and
rescue the princess. But your quest is
not finished because you must still get
back to the Cave of Ice. And of course
you must negotiate that circular room
and set of passage-ways correctly
again to avoid meeting a ver
unfriendly ogre! You should eventually
end up back in the large hall with
princess Zora. However, Balzan is
waiting for you and fires a deadly
beam right in your direction. You
should find a way to shield (clue)
yourself and reflect his beam straight

back so he hits himself.

You will then be able to open the
chest and grab hold of your findings.
You may also find that a candle will be
of use when you go south. Once you
are in the room you should look
around once again to recognise where
you are. Examine one of the mirrors
and then do what they do in all the
good films to what you find. Look
around once again and then with the
candle make your way down the
staircase that you have just uncovered.
If you do not take the candle with you
then it is goodbye adventurer!

You will find yourself trapped,
confronted by a silver door to the
north. Now what else have you found
back in stage two that was silver??
Upon examination of the door you are
told that only those who know the
password can open it. So just type in
whatever was written on the particular
item from stage two and hey presto the
door should swing open so make you
escape. Now you will finally find
yourself miraculously transported back
1o the Cave of Ice which you were told
holds the key to completion of the
game. Ice and snow cover the roof but
just try examining the roof a bit further
and something may just uncover tself!
I will not tell you what to do here. It is
sufficient to say that there is a cord
and you have a knife that has not been
used yet. Recover the crown and the
give your magic ring a rub. You will be
whisked away and now that you have
Zora with you, the adventure has been
successful and is complete. Well
done!!

Next month | shall provide you
with some more invaluable
information regarding Kron and its
many locations and puzzles - some
more difficult to solve than others as
this article has hopefully shown! This
will allow you to complete Kron very
easily and relatively quickly so until
then - have fun adventuring!!

21

- GAMES LIST
creator

Keep a record of all your games disks with this versatile and novel utility

Games List Creator is a utility that
enables you to keep a record of all
your games disks, which when run
will display your lists in a pleasing
and musical manner. To use the
program is simplicity itself as no
knowledge of machine code
programming is neccessary. First of all
take a blank formatted disk and copy
the program GAMELIST CREATOR
from the COU disk. Load and run the
GAMELIST CREATOR program which
will then present you with the main
menu screen. There are four options
on the menu which are;

1. Create a new list

2. Add to an old list

3. Create a new scrolling message
4. Run games list

Option 1 is the first one that you will
have to use. {Options 2 and 4 will not
work unless you have already used
option 11

First of all to create a new list take
option 1. When activated you will be
displayed a message telling you to
type “Q” when finished. Remember
this. Press any key to continue with
your choice. Displayed in the top left
corner s an asterisk, this is now your
cursor. Below is a message asking you
to enter the title of a game, then a
message saying how many games you
have entered and finally a message
informing you of the option you are

22

JOHN KAY

in. To enter a game title simply type
the name and press return to store the
name in memory. Repeat this
operation until all your titles are
entered. Once finished, type “Q" and
you are then ready to save your list to
disk for future recall. First of all, any
old “Games Lists” are wiped and your
new listis saved to disk.

Consider you have now just
purchased a few more new games
and you want to add them to your lst.
Simply load and run your newest
Games List program and select option
2 from the main menu. Entering the
new names is the same as for option
1. Please note that whilst using
options 1 and 2 any characters except
#and $ can be used. A game title can
be up to 29 characters long. The
program allows for 14K for the list,
which should be sufficient for over
1000 titles.

CREATE NEW SCROLLING
MESSAGE

In the bottom border the program
incorporates a scrolling message.
What this message is, s entirely up to
you. When you take this option, you
will first be asked the question Size of
space (1-5)? This means how much
space you want between each word

on the message. It is recommended
that 2 or 3 is chosen. You will now
see the asterisk at the top left of the
screen and the message “End here”, at
the bottom left. Type in your message
using the keys A-Z only. Do not press
the return key until you have finished
typing in your message. Do not worry
about the words splitting or appearing
to be joined up. The program
incorporates a word wrap facility.
Once the program has read your
message and stored it on disk, press
any key to continue.

RUN GAMES LIST
Now for the big one, your list is up to
date, you have created a nice witty
message and you now want to see it
all in action. Option 4 of the main
menu will enable you to do this. The
program will display a list of 2 files
which will needed to be loaded, press
any key to start the load. When they
have finished loading any key will run
the games list. When run you will be
faced with a static screen, this is for
people with cartridges that wish to
freeze out the program. The static
screen drops a little hint that it is
waiting for you to press fire on your
joystick. So insert your joystick into
Port 2 and press fire. Once you have
viewed a screen press fire for the next
screen. Have fun!!

Typing “EXIT” will return you to
the main menu.

At last, an Intelligent Twin Single drive disk copier is provided for those luckily enough to have

Oh no! not another disk coypying
program (yawn). Let it be said at the
outset that this particular disk copier
does not pretend to be so marvellous
as to make all other disk copying
utilities obsolete overnight, but | hope
you willfind it different enough to be
equally useful where the occasion
demands.

Disk copying utilities come in
many forms. Some may be provided
as part of a word processor or other
software package for making backups,
or they can be short Basic programs
with a little machine code support as
can be found for instance in the book

“Anatomy of the 1541 Disk Drive”, or

they can be ‘turbo’ backup cartridges,
or provided as part of an alternative
operating system such as GEOS. They
each have their own merits. Geos can
copy individual files or a whole disk
very fast; the simple Basic program
versions are convenient and simple to
use, if somewhat slower.

There are a few anomalies with
the majority of copiers in that
invariably, for example, the copy ends
up as a complete exact relica of the
original, because the copy has been
made exactly the same, that is to say
sector for sector. This means that, due
to much re-saving, modifying and
extendinf of your files, some of these
have consequently become ‘spread
about’ the disk because there are no
more ‘local’ sectors free. Because of
this fact, your copy will be in the
same mess as your original. It would
be nice if one could make a tidied-u
version instead, each file saved to the
copy individually, and not as part of a

more than one disk drive

MIKE HOLMES

mish-mash pattern of blocks. Perhaps
even the directory entries can be re-
organised in a more orderly manner.

Secondly, there is the irksome
business of disk swapping, though if
you have only one drive you have no
choice. But if you have two, some
copiers still insist on the disks being
swapped as they only have the other
option of copying to the back of the
same disk with a double sided drive
(eg. Superscript). Geos will copy from
device 8 to 9 and vice versa but not
without the first problem mentioned
above. And of course, many copiers
format the destination disk as new as a
matter of course, in order to be able to
put down this duplicate image pattern,
as naturally it is not expected that
there may be any existing files on the
destination disk to be preserved. If
there are, these will disappear. But
then some copiers cannot format the
disk themselves, just to add to the
confusion. So what if you just want to
add the contents of disk A to those
already existing on formatted disk B?
Copy each file individually? A process
that can become very tedious to say
the least.

Suffice to say then that to put an
end to all these inconveniences,
“Intelligent Twin Single Disk Drive
Copier” was created. It is “Intelligent’
in that the program tries to cope with
any probable complications that
might arise in the copying process,
like for example, some source file
won't read properly, or the destination

won't write or verify due to either
corrupt data or misaligned tracks.
Such problems usually completely
crash a conventional copier, and of
course, if the destination copy hasn't
been properly finished off, you can't
even access the information that has
been saved onto it so far. Also, as a
further aid to the poor human
operator, Diskcopier does not require
endless disk swapping, as two
seperate drives are used. Therefore,
having got Diskcopier on its way you
can then leave it to get on with it.
Another variation on a theme, then,
which I'm sure you will find a useful
addition to your armoury of uitlity
programs.

To start, BOTH disk drives must be
ON, and one of these must ALREADY
be configured as device 9. The
program is loaded from device 8 by
LOAD"DISKCOPY.BAS",8,1 or select
“DISKCOPY” from the main CDU
menu. The screen fills up with rubbish
from the top down and then a little
while later the start-up message will
appear. Below this is the message
“Dri device 8 - drive b: =
device 9 - Insert Source Disk in Drive
a: and Destination Disk in Drive b:
Key RETURN when ready”. This being
done, keying RETURN brings you to
the selection from a directoy list stage.

Diskcopier does not copy sector
by sector, but file by file sing a list of
filenames from the directory of the
source disk. The message is “Enter
directory mask ‘$" followed by
wildcards “*? andor filetype
identifiers ‘p/s/u’ as necessary.” Below
this the first required symbol, ‘$", is

23

ON THE DISK

already given as part of a line to be
INPUT from the keyboard, followed
by a flashing cursor. You can press
RETURN and Diskcopier will assume
that you want everythin, (ie. ‘$) to be
copied from the source disk in the
order that it appears in the directory
Alternatively, you can re-organise the
file entries for the destination disk
using the wildcards or filetype
identifiers. ‘$temp*’ for example, will
only produce a list of files to copy
beginning “temp”, of any filetype. Or,
“$temp*=p’ will only produce the
same but which are PRG (programs).
Or you could copy all “programs’ first
with ‘$*=p’, then when Diskcopier
has finished with these, rerun it to
copy all the SEQ files with ‘$*=s’, and
then again for anything else, which
can be done with just *$" again.

This last is possible because, after

you've written a directory mask,
Diskcopier loads in the directory from
drive a: according to the mask. This is
also listed on the screen so that you
can see what you're going to get, in
the usual directory format. If you
didn't quite get what you wanted it is
possible to abort Diskcopier with

RUN/STOP RESTORE (but do it
quickly), and to restart it with ‘r"

After listing the directory, another
message appears, “Overwrite any
duplicate files (y/n)2”, and you just
key ‘y’ or ‘n’ as appropriate. It is this
feature that makes it possible to copy
a select group of files first, and then
anything else otherwise left out by
universal mask ‘$', because keying ‘n’
10 preserve files with duplicate names
causes Diskcopier to ignore the files
it's already put on the destination disk,
and instead go directly to the next. It
also provides the means of protecting
data on the destination disk if it
already has files to which those from
drive a: are being added, just in case
there are any with identical names
The default is ', so even just keying
RETURN for this last query will ensure
the safe option of no over-writing,

From this point on, Diskcopier
requires no more human intervention,
so after a hard day’s programming or
word processing you can leave
Diskcopier to make your backup copy
while you go away and have your tea
(It might be prudent though to hang
around a minute to ensure that the

ource

isk
Destination Disk

next stage is completed without any
hitches).

Because the very next thing that
Diskcopier will do is to initialise the
destination disk (drive b), which
causes the disks ID and BAM to be
read by the DOS. If this fails then
either there is no disk in the drive, in
which case Diskcopier is going to get
nowhere, o the disk is a new one
straight out of the box and so is
unformated. If a disk is unformatted
then Diskcopier formats the disk as
new, using for convenience the
diskname and 1D of the source disk,
automatically. Furthermore, and even
if the disk is formatted, the destination
disk is tested.

If the destination disk initialised
ok, then Diskcopier assumes that at
least the directory track can be read
from and written to alright, and hence
also the tracks adjacent. But in
addition, and even if a new disk was
formatted, a check is made on the two
opposite extremes of the available
disk surface. ie: tracks 1 and 35. All
sectors of track 1 are test loaded into a
DOS buffer, and then similarly all
sectors of track 35. If there were no

problems then it would be fair to say
that the disk if a healthy disk in drive
b:. If any of these tests fail then,
instead of reformatting the destination
disk to make good - a definate no-no,
since it may have valuable data on it
already, even if it is a bit out of
alignment or old and worn -
Diskcopier throws up this quaint fatal
error message in lurid pink; “Serious
problem with destination disk.
Operations aborted, unsafe to
continue. Replace or reformat disk in
drive b: before re-attempting copy”

If however everything’s gone
according to plan, then the files will
be copied one at a time, in sequence
using the directory list. At the
commencement of each file a line
appears on screen. “Copying
a:<filename>", and below this a line
of blue dots should appear. The
appearance of each dot signals the
successful transfer of one equivalent
sector full of data. | said that
Diskcopier does not copy sector by
sector, but for convenience it still
transfers data in 254 byte chunks,
since one character at a time is much
t00 slow. the very last chunk may not
make up a complete 254 byte, so just
those remaining to the end are sent.
This display of blue dots is included
as a diagnostic aid; if the display
freezes then a drive has hung-up and
has to be reset. Each dot should
appear after an interval of around one
second - any faster means that either
drive a: is not reading or drive b: is
not writing, in which case Diskcopier
must be stopped with RUN/STOP
RESTORE and restarted from the
beginning. If this still doesn’t work
then the drives must be reset and re-
configured, and the whole process
restarted from scratch.

A screen display builds up of the
filenames copied with their adjacent
sector count (in groups of blue dots),
which is useful for verifying the
sizes. One or two problems can occur
here. If some part of the source file
won't read properly, Diskcopier abors
further attempts and announces,
“Can't read a:<filename>, going to
next item”. However, everything that
has been successfully lifted so far IS
saved to the destination, and the

destination file is closed properly. You
then at least have a properly
structured partial copy.

Whether or not the previous file
copied completely, the next filename
is extracted from the list and this
copied next, and so on. The other
serious error is where it is discovered
that the destination disk is not that
good after all (both drives are
continually quizzed for errors), in
which case we get the pink “serious
problem” message again, and the
program stops. BUT, whatever state
the destination disk is in it has
something on it that is retrievable by
normal means.

The last problem that can occur is
that the destination disk become full
up, because the files that have just
been transferred to it may not all be all
the it has in total. (Possibly had some
files on it-already). This generates the
“Disk full” message, and then
Diskcopier erases the file it just tried to
save but which didn't fit, and ends

Diskcopier comes into its own
when making a good copy from a
lousy “dodgy disk”, with misaligned
tracks, cormupted sectors, scratches or
whatever. Diskcopier won't be put off
until it has at least attempted to read
and transfer something from every
single file, however long it takes. The
ratty source disk may put up a vailant
resistance, but Diskcopier won't give
in without a considerable struggle.
You cannot quarantee that such
copies will be perfect, but at least you
may have something that can be

ON THE DISK

rescued.
At the very end, Diskcopier
generates a report list of any files that
proved impossible to read from source
completely. The list caters for up to a
maximum of ten filenames with read
problems, which | would have
thought was quite enough. This is so
that if you've been away, you will
know that one or more copies are
incomplete on the destination disk
Any eleventh and above problem files
are ignored since the list is already
full. But if there were no read
problems you will never see the
report message “Incompletely
copied:-” and the list.

Generally the time taken to copy a
disk is proportional to the amount of
data transferred. A completely full
source disk should take around
twenty minutes, and correspondingly
less time for less storage or a
specifically selected directory list. The
standard DOS read/write techniques
are retaind, if a bit slow, for reliability.
For the reason Diskcopier is
independent as far as is practicable,
5o that while it is copying a disk you
can be getting on with something
else.

And finally, you can update
backups of ‘working’ disks through
the “y” option of the “Overwrite any
duplicate files” query prompt.
Diskcopier always erases duplicate
files on the destination first, then saves
the new drive a: version as new, as
opposed 1o using the less than ideal
“@:" command,

25

Musicians amongst us will be

Sequencer 64 is a simple MIDI data
sequencer program which works in
conjunction with the ‘Datel Midi
Interface’ and allows up to eight
sequences, each with up to eight
tracks, to be recorded and then
played back either singly (sequence
mode), or in a user-set sequence (song
mode). In song mode, it is possible to
play back up to 8 sequences, each of
which may be repeated several times.

Track edit facilities are provided to
allow simple or extensive corrections
to be carried out on recorded data. A
track-timing auto-correction facility is
also provided

Screen diplays are easy to follow
and certain features available through
the function keys are displayed along

the bottom of the screen. The status of *

any track in the currently selected
sequence is displayed through a set of
track-status indicators.

It is possible to save single
sequences or complete sequence-
groups (songs) to disk. Disk catalogue
and command facilities are also
available. Sequences, and each of
their tracks, may be given names and
a MIDI channel re-direction facility is
included

The program generates an internal
clock with recording resolutions of 24
or 48 pulses-per-quarter-note (PPQN).
MIDI timing data may be sent out
through the MIDI OUT terminal along
with normal channel data. The
internal clock may be by-passed and
timing information received through
the MIDI IN terminal thus allowing
the program to be synchronised to
external equipment.

MAIN SCREEN LAYOUT
The screen is arranged into a number

26

with this MIDI

for the humble C64

STEVE CARRIE

of boxes containing different
information about the current state of
the program. These are the General
Info, Sequence Info, Track Info,
Clock/Song Info and Control boxes.
The bottom line on the screen
displays 4 possible operations
accessible via the four function keys.
A further 8 options are available when
the SHIFT or COMMODORE keys are
held down (four options each). On
pressing either COMMODORE or
SHIFT keys you will see the bottom
line change to display new options.
Above this, there is a blank line which
is used at various times to display
information or request further
keyboard input. This is the

STATUS/REQUEST line.

CLOCK/SONG INDICATOR BOX

In the middle of the screen (well,
almost) you will see the
CLOCK/SONG indicator box. Rather
than counting time, this clock counts
musical intervals based on a 4/4 time
signature (4 beats to the bar, beat on
quarter note). The rightmost pair of
digits count the number of PPQN, the
middle pair count the number of beats
(1/4 notes) and the leftmost three
count the number of measures (bars).
There would appear to be two clocks
in this box, but one is the sequence
end indicator which simply shows at
which measure and beat the current
sequence ends on (in other words, the
length of the sequence). As the clock
counts up, a metronome click will

sound through the TV/Monitor
speaker on each beat. The click on
the first beat in the measure will
sound higher than the rest.

This box also shows information
relating to the organisation of
sequences in a chain (song). The
numbers along the top and the arrow
below show the current position in
the song (the SEQ song pointer - not
to be confused with the MIDI song
pointer). This may be moved by
pressing the up-arrow key. In order to
make up a song, you must first assign
one or more sequences to song
positions. You do this by holding
down the CTRL key and pressing one
of keys 1 thru 8. A number will
appear in the space below the song
pointer. This is the sequence number
for that song position. Keep pressing
CTRL <number> until the desired
sequence number is shown. If a dash
is shown, no sequence has been
assigned. You may assign the
sequence numbers in any order, as
many times as you like up to the limit
of 8 sequences, and since each
sequence may be repeated up to 8
times, the potential for fairly long
musical sequences exists, limited only
by the memory of the machine.

In order to play the song, you must
put the program into SONG mode by
pressing the M key. You cannot record
MIDI data in song mode and therefore
the RECORD function is disabled. The
song is started by pressing the PLAY
key (Space Bar) and will continue
until the SPACE BAR is pressed again.
Should the External Clock Source
option be selected, pressing the STOP
key on the external source will halt
the song.

CONTROL BOX

Above the status line, you will see the
control indicator box. The controls
here are analogous to a tape recorder
with PLAY, RECORD, FAST-
FORWARD, REWIND, STOP and
PAUSE. The SPACE BAR alone
functions as the PLAY key, but when
pressed along with the SHIFT key
(effectively the RECORD key), the
program will begin recording. In
RECORD or PLAY mode, the SPACE
BAR acts as the STOP key. Whatever

mode is in operation, the control
indicators will reflect the current
status. If you have just loaded
SEQUENCER 64, the STOP indicator
will be ‘lit’. Assuming you have
connected up your equipment, hold
down the SHIFT key and press the
SPACE BAR. The RECORD and PLAY
indicators will light up and the clock
indicator will begin to count. If this is
the first track in a sequence, recording
will continue until the STOP key
(SPACE BAR) is pressed. The clock
end indicator will be set and any
further recordings will continue until
the clock reaches this point.

SEQUENCE INFORMATION

The SEQUENCE information box is
located in the top-centre area and is
composed of two columns. The first of
these is the sequence number column
containing eight numbers
corresponding to eight sequences.
The CURRENT SEQUENCE is shown
by the highlighted number in this
column. The current sequence is
chosen using the SHIFTED < (previous
sequence) and > (next sequence)
keys. The TRACK information box will
be updated to reflect the status of the
tracks in the selected sequence.
Alongside each number, there is a
nine-character space for the sequence
name. You may enter a sequence
name by holding down the
COMMODORE key and pressing F3.
You will be prompted on the request
line to enter up to nine characters
followed by RETURN. The name will
then appear alongside the current
sequence number.

TRACK

name is displayed alongside the
number of the track in the NAME
column. To name a track, move the
current track indicator to the required
position, hold down the
COMMODORE key and press F1. You
will be prompted on the request line
to enter up to 4 characters, followed
by RETURN. The string will then
appear in the NAME column.

The track STATE column reflects
the current status of each track in the
current sequence. A track with no
data in it will show CLEAR. A track
with data in it normally shows ST'BY
(standby). In record mode the current
track shows *REC* (record). In play
mode, a track will show PLAY> unless
it has been muted in which case it
will show MUTED. This system allows
you to see what any track in the
sequence is doing at any time.

The MC, (or MIDI CHANNEL)
column shows which channel the
data shall be output on (regardless of
which channel it was recorded on). If
no number is displayed, the data will
be output as it was recorded,
otherwise it will be output on the
indicated channel. You may change
the channel by holding down the
SHIFT key and pressing the key (1-8)
relating to the track number.

GENERAL INFORMATION

The GENERAL information box is
located down the left-hand side of the
screen and is further divided into a
number of areas. At the top, the
TEMPO indicator displays the current
internal clock speed in Beats-Per-
Minute (based on a 4/4 time
signature). Initially, this is set to 120
. This may be altered

The TRACK information box is
located towards the top-right of the
screen. There are four columns labled
NAME, £ (track number), STATE and
MC. In the track number column, one
of the numbers will be highlighted.
This indicates the CURRENT TRACK;
i.e. the track in which data will be
recorded, should record mode be
activated. You may change the current
track using the unshifted > (next track)
and < (previous track) keys.

Each track may be given a name of
up to 4 characters in length. The

using me + and - keys to increase and
decrease this number respectively.
The range is 20 to 200 beats-per-
minute.

Below this, we have the PPQN
indicator, intitially set to 24. You may
change this using key F5 (Set PPQN).
PPQN may be set to 24 or 48. The
higher this number the greater the
recording resolution. After pressing
F5, the status line shows a number of
options for the PPQN value; F1
selects 24, F3 selects 48 and F7 exits
without changing the value. On

27

ON THE DISK

3
4
S
]
7
8

choosing F1 or F3 you are warned
that changing the PPQN value clears
memory and you must press Y to
change or N to exit without changing
the value. When using the External
Clock Source option, use a PPQN
value corresponding to the clock rate
or your source.

Next, we have the Memory
Indicator which reflects the remaining
amount of free memory. When this
falls below 50 bytes, recording is not
possible and some data must be
cleared before recording may
proceed. Below the memory
indicator, we have the sequence
repeat indicator. This shows how
many times the current sequence will
play during playback. This is a value
from 1 to 9 or * (infinate). You may
alter this value for the current
sequence using the * key. Below this
we have the function indicator area
The corresponding “light” will be ‘lit
when a function is activated. The
various functions are described
below.

or record playthrough is
toggled using the X key. When in

28

VDU N

record mode, data received will be
passed to the MIDI out terminal as it is
received. Note that the enforced midi
channel for the current track will be
used for xthru data. (See the TRACK
INFO box description of the MC
controls)

SYNC, or MIDI SYNC is toggled using
the S key. When activated, START,
STOP and MIDI CLOCK data is sent
out over the MIDI OUT terminal at a
rate of 24 clocks-per-quarter-note. You
cannot activate SYNC when using an
external clock source.

STEP mode is activated (and
deactivated) using the O key. When
activated, the status line requests key
input for the step interval which ma
be 1/4, 1/8, 1/16 or 1/32 note. (keys
F1, F3, F5 and F7). When in step
mode, the clock will stop after the
chosen interval and you must press
RETURN to allow it to advance. Press
O again to turn step mode off.

CAPTV, or Captive Play Through,
when activated (using the P key)
allows data in the MIDI IN terminal to

AEoon0no

be passed directly through to the
MIDI OUT termianl. No other
function may be performed. (hence
the name CAPTIVE) and you must
press a key {0 tun it off. You can use
this to test a MIDI network.

COUNT, or Count In mode is toggled
using the | key. When activated, a
record session will be preceeded by a

two-measure count in before
recording actually begins. Any data
received during this time is still
recorded and thus program control
changes may be sent to SEQUENCER
64 before play actually begins. You
will hear the metronome click during
count-in through the TV/Monitor
speaker.

SONG (song mode) s toggled using the
M key. When active, song mode allows
up to eight sequences o be played in a
predefined order which is set up in the
CLOCK/SONG box described earlier. In
song mode, the RECORD function is
disabled and you must switch song
mode off to record more data

INTCK/EXTCK. This indicates the

current clock source. The internal
clock is probably accurate enough for
most applications but there may be a
need to sync the computer with an
outside source. Toggle the clock mode
using the C key. In INTCK mode, all
data received is recorded, including
MIDI clock and STOP/START DATA.
In EXTCK mode, MIDI clock, START
and STOP data is NOT recorded and
is used to synchronise the computer
with the rest of the system.

THE TRACK EDITOR

The SEQ Track editor allows you to
make alterations to data stored in the
current track. When you enter the
Track Edit screen, the data contained
in the current track is moved to high
memory where it is to be
manipulated. On exit from the editor
the data is returned to low memory. A
considerable amount of memory
management is performed when this
happens and there may be a delay
when most of the memory arena is
used up.

After recording MIDI data in a
track, hold down the SHIFT key and
press the E key. The Track edit screen
will appear. MIDI events are listed in
four columns; Event Time, Event Type,

MIDI Channel (channel messages-

only) and Event Data. At the outside
edges of the display area, there are
two arrows which indicate the current
event. To move the pointer, press the
CURSOR DOWN key or SHIFTED
CURSOR UP. The screen will scroll
up or down as required.

Along the bottom of the screen
you will see the functions available
through pressing the appropriate
function keys; MODIFY, DELETE,
INSERT and EXIT. A CTRL-E keystroke
will exit without saving any changes
made. These operations take effect at
the current pointer position. For
example, pressing the DELETE option
removes the current event from the
screen. When INSERT is pressed, a
MIDI event list is displayed. Simply
press the appropriate key for the type
of event that you want to insert. The
new event will be inserted into the list
at the current position and may now
be modified.

The MODIFY option allows you to

alter any part of the current event.
After pressing F1., a highlighted cursor
appears and may be moved between
columns by using the CURSOR
RIGHT key or SHIFTED CURSOR
RIGHT key. The data in the current
column may be altered using the +
and - keys. You may then leave
MODIFY by pressing the RETURN
key.

If the event type is a NOTE ON or
NOTE OFF, the first data value is
shown as a musical note; e.g. C4 (4th
octave C). Otherwise, the data shown
is a 3-digit decimal number. A NOTE
ON event with a velocity value of
zero will be shown as a NOTE OFF
but should the velocity value be
altered to be non-zero then the event
will be shown as NOTE ON.

SEQUENCER 64 CONTROL KEY
SUMMARY

FUNCTION KEYS - (UNSHIFTED)
F1 - Disk Directory
F3 - Disk Command
F5 - Set PPQN value
F7 - Auto-Correct Current Track

FUNCTION KEYS - (SHIFTED)
FI - Save Sequence to disk
F3 - Load Sequence from disk
F5 - Save entire song to disk
F7 - Load entire song from disk

FUNCTION KEYS -
KEY)

F1 - Name track
F3 - Name sequence
F5 - Delete track
F7 - Delete sequence

(COMMODORE

SWITCH CONTROL KEYS

- Change mode (song/sequence)
- Clock source (intck/extck)

- Captive playthrough

Record playthrough

- Record count-in

- Sync data output

- Step mode

ov—-xvNnz

TAPE TRANSPORT CONTROLS

Cursor Right - Fastforward (1 beat
steps)

Cursor Down - Rewind (1 beat steps)

Cursor Left - Fastforward (1 pulse
steps)

CursorUp - Rewind (1 pulse
steps)

SPACEBAR - Play

SHIFT/SPACE - Record (current
tracl

= - Pause

HOME - Rewind to start of
sequence

s(QUl NCE/TRACK CONTROLS

1thru 8

- Mute/Unmute track
(also works in play)
SHIFT1thru 8 - Change current track

MIDI channel
CTRL 1 thru 8 - Assign sequence to
song position

. - Alter sequence repeat
value

A - Alter song pointer
position

< - Select previous track
as current

> - Select next track as
current

SHIFT< - Select previous

sequence as current

SHIFT > - Select next sequence
as current

CTRLX - Exit Sequencer 64

CTRLC - Clear Sequencer 64
memory

SHIFTE - Enter track editor

TRA(‘K EDITOR CONTROLS

- Abort (don't save

changes)

Cursor Down - Select next event as
current

Cursor Up - Select last event as
current

Fl - Modify current event

(IN MODIFY)
+ - Increment current
column value
Decrement current
column value

Cursor Right - Select next column
as current

Cursor Left - Select previous
column as current

Return - Exit modify

F3 - Delete current event

F5 - Insert at current
position

F7 - Exit track edi

29

ON THE DISK

PHUR

Put your broken joysticks to good use with this handy utility

Have you ever broken a joystick
trying to score that all important goal
using International Football on level
nine? If so, this program will put that

Tim Walters

Foil

Insulation Tape

Figure 1 J

30

broken joystick into good use.

How would you like to make
your bedroom, study or even the
whole house fully secure using your
64 and a broken joystick? Read on o
find out just how to achieve this.

Before getting down to
technicalities, a word of warning
NEVER cut the joystick wire while it
is still plugged into the computer and
NEVER TOUCH THE RED AND
BLACK WIRES TOGETHER as this
will short circuit the computer and
blow a fuse.

To start with, ensure that the
joystick is NOT plugged into the
computer, cut the wire as close to the
joystick as possible. Then, if it is a
Quickshot Il model, remove the
handle and take out the fire button
pressure pads by cutting the wires. If
it is not a Quickshot and your
joystick does not have any pressure
pads then use two pieces of tin foil as
shown in figure 1. Now trim the
seven core wire so that only BLACK
and BROWN are exposed and join
these wires to pressure pads or foil
pieces as shown in figures 2a and 2b,

Once complete load the file SEC
V1.00 from the menu. The outer
border will flash and a message

Join & Insulate

=

Brown/Orange

Figure 2a

Joystick Wire Jol hera

———{=]

Figure 2b

be displayed, if not then recheck
your wiring. If all is working then this
wire can go under the carpet as
shown in figure 4, or some similar
place.

Version 3 of Security, SEC V3.00,
is identical to version 2 except for
one main addition, it stores the
information onto disk. This is useful
if your mother is prone to turn the
computer off as soon as she sees the
red light burning. Ensure that you
have a blank formatted disk ready
and insert it into the drive as soon as
the program is loaded. If a pressure
pad is depressed or the door is
opened or closed, the time and
description of the event will be
stored on disk, as well as being

‘Close door to stop alarm’ will be
displayed in the centre of the screen.
Plug the wire in PORT 1, the screen
should continue to flash. If it does
not flash then the black and brown
wires must be touching. If the screen
was flashing then press the pressure
pad or touch the foil pieces together,
the screen should now stop flashing.
If it does not stop, then check the
wiring and also check that the plug is
in Port 1. If all is correct and the
flashing stops then the next stage is -
installation. A door hinge is an
excellent place for both pressure pad
and foil, see figure 3. For the wire to
reach you might have to extend it. If
you are lucky enough to have games
good enough to break two joysticks
then the second version, SEC V2.00,
can also be used.

Remove the pressure pad as
before and cut the wire as close to
the joystick as possible then trim the
seven core wire so that only BLACK

—

Drawing Pin

o

Hinge

Pressure Pad

displayed on the screen.

Foil Pads

Figure 3

and ORANGE are exposed, instead
of BLACK and BROWN. Join the
bare wires to the pressure pad as
shown in figure 2. Load the program
SEC V2.00 from the menu. Enter the
time when prompted, plug in your

Carpet

Pressure Pad

P

fiirst wire (the wire joined to the
door] into Port 1 and close your
door. If all is correct the screen will
display ‘door shut. Scanning....." now
plug the new wire into Port 2 and
depress the pad, a message ‘pressure
pad depressed at HHMMSS' should

Figure 4
sl

31

Single key loading with autorunning for both Basic and
Machine Code programs is provided for with this smart utility

BARRY GRAHAM

Superboot! creates a short machine code
autoboot program that will load and
execute a Basic or Machine Code
program automatically from a single
load command, just like a commercial
program. BUT THAT'S NOT ALL. The
autoboot file can load and exectte any
machine code routine, before loading
and running your main program. If you
have a disk turboloader that loads into
high memory, your boot program will
load and activate the turbo before speed
loading and running your main
program. All with just one load
command.

The key to the operation of
Superboot! is the boot symbol (1) that is
addded to the filename of the autoboot
program. It distinguishes the autoboot
from your main program and can be
used to load and execute a machine
code program named “I” before the
main program loads.

If you copy a turboloader to disk and
name it “!” you can turboload and run all
programs on the disk by creating dual
load autoboot files with Superboot! using
“1” as the boot symbol. You can use
another symbol, “+” for example, for
autoboot files that load only a main
program or “#” for autoboots that preload
and activate a graphics utilty called “#”
before autobooting your main program.
Do not use the symbols @, * or 7, as these
have a special meaning to DOS.

CREATING AN AUTOBOOT

Place the disk that contains the main
program you wish to boot in the disk
drive. The autoboot must be saved to the
same disk. When Superboot! is run, you
will be asked to enter the name of the
main program. This should be the name
of the final program that the autoboot
will load. Superboot! automatically adds
a boot symbol to the front of this
filename when the autoboot is saved, so
the name of your main program is
limited to fifteen characters. The
program tests this and will print an error
message if the length is exceeded.

32

Superboot! then asks you to choose a
boot symbol. Enter a symbol of your
choice o press RETURN to accept the
default “1”. The exclamation mark was
chosen because it is conveniently
located next to the quote mark on the
keyboard. Change this symbol if you
wish. After you enter the symbol the
name of your autoboot file is displayed.

You will then be asked to enter the
SYS address 10 start your main program.
If your main program is machine code
enter this address as a decimal number.
Press RETURN if the main program is
wiitten in Basic. Superboot! assumes that
Basic programs will load at the current
address of Basic (normally 2049). If you
want your Basic program to load at
some other address, you must alter the
location of Basic with the appropriate
pokes before autobooting your program.

Next you will be asked to enter the
SYS address to activate the first loaded
program, (the first load is always a
machine code program). Enter the SYS
address as a decimal number. Press
RETURN if you do not require a first
program to be loaded. If no SYS address
is entered the autoboot will load only
your main program. If you only want to
load the first program without executing
it; enter 138 as the SYS address, this is a
direct return used by the operating
system. Note that the first load must be
saved on the same disk as your main
program and be renamed with a one
character name that matches your boot
symbol. This program does not have to
be a turbo, any machine code routine
can be loaded and activated before your
main program autoboos.

When the input is complete,
Superboot! assembles and saves a short
machine code autoboot program to disk
which contains the load options you
requested. The drive status message
should indicate a successful save and
instructions for autobooting your
program are printed on the screen.

HOW THE AUTOBOOT WORKS
Most autoboots depend on the same
principle. The program loads low in
memory and overwrites a key address
used by the operating system. In this case
it is the Basic warm start vector at
locations $0302-$0303. When the load
is complete the system performs a warm
start and jumps 1o the new addrss which
is the start of the machine code routine
contained in the autoboot. If the first load
option has been requested, the routing
first loads a machine code program with
asingle character name matching the first
character in the autoboot name. A jump
is performed to the SYS address of the
first program. On return, the Basic
command “NEW" is executed to allow a
further load. The main program is then
loaded, the original warm start vector is
reinstated and the end address of the
loaded program is stored. If the main
program is Basic, the operating system is
pointed 1o the start of the program. The
command “CLR” is performed and the
program lines are rechained in case the
program has been relocated. The boot
program then jumps to Basic and the
program runs. If the main program is
machine code, a jump to the SYS address
is performed affer the load end address is
stored.

RESTRICTIONS
There are a few precautions that should
be observed:

The main program to be loaded can
be either Basic or machine code, but the
filename must not be more than fifteen
characters in length.

Your fist load program is optional but
must be written in machine code if you
use on. Enter a SYS address of 138 for the
program to load only without executing.
The main program should not load over
your first load unless this is intentional.
NEVER load a main program over a
turboloader. Programs that load over
locations $02A7-$0303 cannot be loaded
by the autoboot. (They autoboot anyway).
Relocate Basic manually before
autobooting a Basic program that does not
load at the normal start of Basic (S0801).
Remember to copy your first loaded
program to the same disk as your autoboot
and main program, then rename it with
the first character of your autoboot.

Various assembler packages have
been reviewed in magazines recently.
Some reviews have dealt with those
assemblers which are suited to the
GEOS environment while others have
covered the C128. For the C64, |
beleive the best value for money is
the Commodre Development
Package. It contains a full featured
assembler which is not appreciated
and consequently not used to its
fullest extent. Unfortunately part of
the problem is due to the usual
standard of Commodore docu-
mentation which is poor, and the rest
is caused by a few minor bugs! (Note:
These are the views of the author of
this article and not necessarily those
of the magazine. Ed!!)

| have heard a number of
complaints from people about not
being to use the macro facility and
this set me thinking. | have been using
macros on this assembler for about 3
years without any problems, so why
didnt they work for others? The
complaints, not being specific, made
it difficult to comment. Recently
however | have been putting together
some of my programs and, in the
process, reviewing and reworking the
macros. In effect | was putting
together a macro library when
assembly errors started to appear. |
now understand what the problems
are! | can however offer solutions
which may be of interest to other
users of this excellent development
package.

In trying to explain the bugs, a
basic understanding of how the
Macro Assembler works is required.
Essentially, assembly occurs on a line-

of the bugs ironed out.

MIKE GREGORY

by-line basis with a loose definition
for a line’ being all the text from one
carriage retun to the next. This i just
as you would expect. A line has
generally the following format;

(LABEL) (OPCODE) (OPERAND)
(COMMENTS)

where the brackets are used to
indicate fields which may be optional.
This again is not new information, the
point | wish to stress however is that
the fields must be seperated.
Normally at least one ‘space’ is used
to separate fields, but if the
programmer uses more than one, to
improve on screen format, these are
accepted, but ignored, by the parser
routines.

Lines of text are read from a file
and the file used is dependent upon
the Assembler’s directives (the ‘dot’
commands). Assembly starts by using
a designated disk source file supplied
by the programmer as part of the
initial prompts. If a FIL directive is
encountered in this file, the file is
closed and then re-opened using the
filename given in the directive. To all
intents and purposes the original file is
finished with and will not be accessed
again. If however a LIB occurs, the
original file is only put on hold. It is
not closed but, instead, a second file
is opened and reading continues from
the new file. Thijis is the reason that
you cannot have a .LIB withing a .LIB,
you would have too many files open.

package is put under the microscope and some

Once the .LIB file has been completed
1o its .END, the file s closed and input
is redirected to come from the original
file.

The macro facility is designed to fit
in with this input process. Essentially,
in Pass 1, the macro name and its text
are read into a ram disk. This needs to
occur before any calls to the macro
are made. When a call is then made it
causes input to come from this ram
disk rather than a disk file. The
process is directly comparable with
the .LIB directive except that a new
file does not have to be opened. Since
the macro text is stored more-or-less
as written but without any

unnecessary spaces, macros ban be
inspected at $8800 in ram after an
assembly run. This address is correct
for my version of the Assembler. It
starts with the message ‘CBM
RESIDENT ASSEMBLER VO90282'.
The storage format is as follows:

Examination of the text itself will

33

r
!
!
|

show that fields are separated by a
single space and that lines end in a
carriage return. When a line starts
with an opcode, an extra space is
added to produce an indent. As is
normal, all of the pointers are given in
low byte/high byte format. For the
parameter values the storage format is
a zero-ending name. Where a
parameter does not exist, its pointer is
$0000. Also since the internal
symbols.labels (21-29) are filled out,
whilst being read in during pass 2, the
same macro can produce different
expanded code depending upon the
supplied parameters! More on this
later. One other point worth
mentioning is that a macro is
recognised by the parser by being a
label having an assigned value of
$FFFF. This means that you cannot
have a label at this address.

Now on to the bugs themselves.
Here’s a short macro, called PAUSE,
that should count to 64K. The code
fragment is incomplete and not
intended to execute on its own, it
serves only to demonstate BUG 1.

1000 ;BUGI DEMO
1010 .MAC PAUSE

1020 LDY #0
1030 LDX #0
1040 21 INX
1050 BNE 21
1060 INY
1070 BNE 21
1080 .MND

1090 ;

1100 *=$C000

110 PAUSE
1120 END

You'll find it hard to believe that this
simple piece of code produces so
many errors during assembly! Try it.
You should get one ‘non-
alphanumeric’ error and four
“undefined symbol errors. Do the
assembly without entering an object
filename, (at the first prompt just enter
CR), to speed things up. I'll supply a
better fix later, but can you note for
now that if line 1110 is changed to;
1110 PAUSE ;call macro

then assembly proceeds without
error! Also, if the internal label 21" is
changed to 22’, then the problem

34

disappears. | can use an example
given in the menu to demonstrate
BUG 2. The following macro is
supposed to allocate storage space;

1000 ;BUG 2 DEMO
1010 .MAC DECL ; declared storage
1020 21 . WOR O

1030 *=*+22
1040 .MND
1050 ;

1060 *=$C000

1070 DECL AA5 ; call macro
1080 ;

1090 END

Again, you will find that it will not
assemble. This time we are given a
single ‘non-alphanumeric’ error
message. Unfortunately there is now
simple fix along the lines given above
for this bug. We must do a little
patching.

Before fixing these problems it is a
worthwhile exercise to examine their
causes. A hex memory dump for the
macro area after attempting to
assemble BUG 1 demo shows the
following;

88005041 55534520 ; padded name
8806 48 88 ; start of next

8808 OF 9C

macro
; pointer to 71
label

8800 44 45 43 4C 20 20

8806 28 88

8808 07 9C

8B0A 0A 9c

880C 8819

881A 58 58 3F 31 20 88 57 0D
8822 2A 3D 2A 2B 3F 32 0D
8829 0D

992A 00

9C07 41 41 00
9C0A 35 00

Observant readers (all) will immedately
recognise the ‘H’ which appeared in the
assembly listing. The character
corresponding to $88 s unprintable and

causes the non-alphanumeric error.
However it is obvious that the text is
merely the foreward pointer to the start
of the next macro! The clues given
earlier allow us to deduce that the bug
only involves 21 and does not occur if
text is given on the same line as the
macro call. The following code
fragment relates to part of the macro
handler (see fig. 1)

1.am not sure that my comments for
lines #2C0f-$2C18 are correct, however
it is somewhat irrelevent since from the
discussion above we should expect the
same outcome if no files exists after the
macro name as if only comment exists.
The code above shows that the only
difference between the two situations is
that lines $2C0f-$2C18 are executed if
the macro call is commented or if
parameters are supplied, but not
otherwise. The actual bug occurs by
having incorrect entry conditions for the
subroutine at $2C87. We can correct
this by re-ordering the lines;

2C0AAD 7809 LDA $0978
2C0D 8D 8009 STA $0980
2C10AD 7909 LDA $0979
2C138D 8109 STA $0981
2C1620D115 JSR $15D1
2C199015 BCC $2C30

A simpler alternative would appear to be;
200D 90 24 BCC $2C33

which cuts out the subroutine call
entirely when there is no field following
the macro call. The effect of BUG 2 can
be seen by examing the macro storage
area at $8800 after assembling the
demo. A memory dump is as follows;

; padded name
; next macro

; pointer to 21

; pointer to 22

;o other parameters
textof line 1

;line 2

; blank line

; end macro

;21 label
;22 value

As can be seen from the text of the
first line the .WOR directive text is
missing. A spurious value of $88
together with the W seem to have

28F9 A9 01 LDA #50
2BFB 20 CE 2C ISR $2CCE
2BF3 AO 11 LDY #$11
2000 A9 00 LDA #3500
2C029110 STA ($10),Y
2004 88 DEY

2C05 10 FB BPL $2C02
2C07 8D 82 09 STA $0982
2C0A20 D1 15 JSR $15D1
200D 90 21 BCC $2C30
2C0F AD 79 09 LDA $0978
2C12 8D 80 09 STA 50980
2C15AD 7909 LDA $0979
2C18.8D 81 09 STA 50981
2C1B 20 4F 2C JSR $2C4F
2C1E90 10 BCC $2C30
2020C9 2C CMP #52C
2C22 F0 06 BEQ $2C2A
2024 20 F1 29 JSR $29F1
2027 4C 1B 2C IMP $2C18
2C2A 2087 2C ISR $2C87
202D 4C 18 2C IMP $2C18
2C30 20 87 2C JSR $2C87
2033 60 RTS.

+set ($10) to point to
; parameter pointer

et parameter pointers
er

; zero parameter counter
; first char after macro
; branch if no char

up storage pointers
; for internal labels

 get first char in field
; branch if semi colon

; branch if comma
; evaluate parameter value
 repeat for next parameter
 parameter 0 zero

; tepeat for next parameter
; parameter 10 zero,

; and end

Figure 1

been picked up. The remainder of this
particular macro seems to be ok. The
values for the parameters are also ok.
The following code fragment is the
part of the parser routine that reads
the macro defination into the ram disk
macro storage during pass 1 (Fig. 2).

The start of the bug is fairly obvious.
The routine at $2AC3 to store the
character ought to be saving the full
stop which indicated the assembler
directive. The accumulator has
however been overwritten by
preserving the storage pointers! This
part of the problem can be fixed by
using the Y index register to preserve
the pointers.

2AB7AC7609 LDY $0976
2ABABC7C09 STY $097C
2ABDAC7709 LDY $0977
2ACO8C7D 09 STY $097D

The rest of the problem is at $2ADD
where, if the first character after the
full stop is not an ‘M, since Y is zero
the remainder of the line is ignored!
This is fixed by redirecting the branch
at $2AA8 5o as to continue reading
the same file;

2ADD DO C9 BNE $2AB1

If all of the above corrections are
made, both demo macros should
assemble without errors and a few
useful macros can now be developed.
1 will now show you how macros are
coded and will also demonstrate
some other features of the Assembler
Package which are either not well
documented or are not known.
USING THE CBM MACRO
ASSEMBLER

Earlier in this article | showed how the
bugs in the CBM Macro Assembler
could be fixed. If you have made the
necessary -corrections to the code we
can now proceed to develop and use
the macro facility. It is a feature well
worth using because of its
effectiveness in allowing your coding
to be developed as modules.

Listing 1 is a small ‘equates’
library. 1 would strongly urge you to
build up a similar file of your own.
The label names are generally the
same as those used in published
books such as the Programmers
Reference Guide or the Complete
Commodore Inner Space Anthology. It
should give ready access to common
entry points used in the Basic and
Kernal ROMs. Notice that, since the
file is to be used as a library and will

be called by the .LIB directive, it
finishes with a .END.

The routines listed are described in
most machine language text books so
I will not dwell on them here. Lines
1080 and 1120, which start with a >
symblol may be of interest. They are a
form of hidden comment. The lines
will list from the Editor but will not
appear in the assembly listing!

Seven macros are supplied in
listing 2. Macro 1 and Macro 4, | have
indicated how to use conditional
assembly feature. The conditional
directives are .IFE and .IFN which
translate to “if equal to zero” and “if
not equal to zero’ respectively. Both
refer to the expression in the field
immediately following the directive.
Note that the field is separated by at
least one space. The conditional Iexl
must appear within the ‘<" and
symbols. They are easy to el
if you see them as a pair of stylised
braces. The opening symbol is the first
field after the expression and on the
same line whereas the closing symbol
is placed at the end of the text as the
first symbol on a new line. The effect
of conditional assembly in the first
macro is that the code will only be
generated if the program counter (*) is
at the start of basic ($0801) when the
macro is called. That is when
*=$0801 is zero. Macro 4 is more
complex. Depending on whether or

35

2AA3 AB FF LDX #$FF
2AAS BE 6E 08 STX $086E
2AAB 20 3F 2B JSR $2B3F
2AAB 90 E6 BCC $2A93
2AAD C9 2E CMP #$2E
2AAF FO 06 BEQ $2AB7
2AB120CA29 SR $29CA
2AB44CAB2A IMP $2AA8
2AB7 AD 76 09 LDA $0977
2ABABD7C09 STA$097C
2ABDAD7709 LDA $0977
2AC08D7D09 STAS$097D
2AC320CA29 ISR $29CA
2AC6 A0 00 LDY #500
2AC8 20 3F 28 JSR $2B3F
2ACB 90 C6 BCC $2A93
2ACDBD7E09 LDA $097E
2AD020CA29 JSR $29CA
2AD3AD7E09 LDA S097E
2AD6D96620 CMP $2066,Y
2AD9 F0 22 BEQ $2AFD
2ADB C0 01 CPY #501
2ADD DO B4 BNE $2A93
2ADF C9 41 CMP #$41
2AE1 DO C5 BNE $2AA8
2AE3 20 3F 2B JSR $2B3F
2AE6 90 AB BCC $2A93
2AEB 943 CMP #3543
2AEA DO C5 BNE $2AB1
2AECAD7A09 LDA S097A
2AEF 8D 76 09 STA $0976
2AF2 AD 7B 09 LDA $0978
2AF5 8D 77 09 STA $0977
2AFB A9 26 LDA #526.
2AFA 4C 47 2C IMP $2C47
2AFD C8 INY

2AFE C0 03 CPY #503
2B00 DO C6 BNE $2AC8

 set line pointer

; read first char
 next line if no char
test i ull stop
branch if directive
 else store char
 and get next

; preserce pointers

+to macro storage

; store char

 zero counter
 get next char

; next line if none
 temp save

 store char
 recover it

test for MND

; continue next
 not MND

 next line unless M
Jtestif A

 next char if not
gt next char

; next line if none
Htestif C

 branch if not C

s exit with MAC
;in MAC error
test for MND.

; fall thru if MND
Figure 2

not a zero is supplied as parameter 4
(24), different code is produced! It
should be stressed however that in
order for this to work, if a label is to
be used for the name address, then
the label must be defined before the
macro is called. Put simply, the
assembler needs to know during Pass
1 which code section will be
generated otherwise the counter
which is used to assign values to
labels will get lost. Macro 6
demonstrates how to call a macro
from within a macro. It is no different
to calling a macro in normal code.
One important general point is that
the supplied parameters are seperated
by commas. Do not use spaces in
them to sepearte them. The handler
code at $2BF9 takes a space to be the

36

end of the parameter field! This will
cause an ‘undefined symbol” error.

Listing 3 puts it all together in a short
program.

1000 listing 3

1010 jprogram to demonstrate
1020 ;mike gregory july 1989
1030 ;

1040 .OPT NOLIST

1050 LIB LISTING 1

1060 .LIB LISTING 2

1070 .OPT LIST

1080 ;

1090 *=*0801

1100 BASIC;run start

mo ;

1120 JMP CODE;climb over storage
130 ;

1140 ADDR BYTE O

1150 WORD

1160 INBUFF .BYTE O

1170 *=5+40

180 ;

1190 CODE TEXTask for input

PROMPT
1200 STRIN INBUFF,16;get input
1210 CURSETO,12;about midscreen

1220 FOPEN2,8,2,INBUFF;open file

1230 LDX#2

1240 JSR CHKIN;make fle input

1250 STRIN ADDR,2;read two bytes

1260 FCLOSE2;close file

1270 FERROR INBUFF;read error
channel

1280 JSR CLRCHN;estore normal /o

1290 LDA INBUFF+1

1300 ORA INBUFF+2

1310 CMP #0"

1320 BNE EXIT;no address if file error

1330 LDA ADDR+2

1340 LDX ADDR+1;convert hex to dec

1350 JSR LINPRT;and print

1360 EXITRTS

1370 ;

1380 TEXT BYT CLS,CRLF, THIS
ROUTINE

1390 .BYTE ‘WILL DETERMINE THE

1400 .BYTE ‘LOAD’ CRLF/ADDRESS

1410 .BYTE ‘A PROGRAM',CRLF,

CRLF

1420 .BYTE ‘PLEASE ENTER FILE
NAME',0

1430 ;

1440 END

The use of the .OPT directive in lines
1040 and 1070 is worth mentioning.
You may not always want the full list of
equates or all the macros printed in the
assembly listing. This is how the listing
is switched off. Also the default settings
will cause the macros not to be
expanded in the assembly listing. Only
the macro call will be printed. This is
sufficient for macros which have been
tried and tested but during development
an expansion of the code is often
required. This expansion is switched on
and off by the GENERATE and
NOGENERATE options as is;

.OPT GEN
or .OPT NOG

Remember that this class of directive
can be used in combination;

-OPT LIST,GEN
or .OPT NOL,NOG

One other assembler bug that come to
mind from listing 3 is that you should
never add a comment field on the same
line as either a FIL or .LIB directive. The

ccomment will cause a “file not found’
error! | have a fix for this, but the
situation is easily avoided. Any avid
readers wishing o fix it themselveds will
find the relevant code at $11B0. You
should consider what happens when a
“space’ occurs after the filename. This
piece of code also prevents the use of
filenames which have spaces in them!
Listing 4 is a short demo for how the
Assembler will produce different coding
depending upon the form of the
supplied parameters. Again the code is
not intended to do anything other than
demonstrate the point. It should be
remembered that the parameter text is
supplied verbatim to the parser routines.

The assembly listing will show the
different codes which are generated.

1 hope you find this article of some
use and value. lts purpost is not to
provide a program that finds a file load
address but to demonstrate what can be
done with the CBM Assembler, and, in
particular with macros. It should show
that quite complex programs can be
developed speedily by using a good,
sound macro library. The ability to get
an idea up and running quickly often
helps to maintain the initial enthusiasm.
Once it is running, the code can be
optimised for memory space or for
execution speed if required.

37

TECHNOINFO

Our resident agony aunt sifts through more of your technical queries.

Dear CDU,

I am considering buying an Amiga
500 but wish to know if | can use it
with my Commodore 1902 colour
monitor which | currently use with a
C128D. The 1902 has compo:
video, RGB and RF sockets and so |
guess that at least one of these
would be compatible with the
Amiga. However, | am not sure if
the resolution would be as good as
the new 1084 monitor used with the
Amiga.

R.).Cranton, Somerset.

Dear Mr.Cranton,

Both the 1084 and 1902 monitors.
are medium resolution monitors and
50 | can see no reason for the Amiga
not to produce a decent image on
your particular monitor. It must allow
an analog RGB display and have a
separate connection for the audio
output, unless of course you plan to

link it with a stereo system. If there is *

any difference in resolution then |
can only think that it would be so
slight as to be unnoticeable.

Dear CDU,

I write to you concerning the
excellent Hi-Res Demo Kit by Neil
Higgins (Jul/Aug 1989) and the
subsequent plea for help in the
February edition of Techno Info. The
disk contained a program which
creates a file that then loads the
demo created, and also loads and
executes a BASIC program once the
spacebar has been pressed. Th
utility works well with the original
demo contained on the disk which
has been compacted - it does not
however work with any demo
created in its original format. Also
could you please tell me how to use
character sets created by Font
Factory 89 in my own programs
once they have been saved to disk.

e

38

Perhaps it would be worth having a
program support section where you
give details or hints on how results
can be best achieved when using
CDU such as how to incorporate the
ilities for your own use.
J.Mullen, Coatbridge.

Dear MrMullen,

Thanks for pointing this error out - |
admit defeat! | must sincerely
apologise to Scott Mathieson who
originally requested the program and
to all other readers who have tried
this out. Hopefully this sort of thing
will never happen again. Now that
grovelling is over, how to rectify the
fault - it is a simple matter of
changing one number and is related
to the machine code starting address
of the demo. The compacted one
had a start address of 2080 and
normal ones use 2115. Therefore,
load the program PROB1 from the
disk and then list line number 215.
Change the first part so that the data
reads: 215 DATA 0,32,213,255,
32,67,8,... It is the 67 that is
different. Then save it back to the
CDU disk. With regard to Font
Factory you should add the following
lines to the start of your program: 1
A=A+1: IF A=1 THEN LOAD
“filename”,8,1 and then to enable
the new set include a line like 2
POKE 53272,28 in your program. |
think that telling the users how to
operate a particular program and
utilise it fully is really up to the
programmer himself. The whole
purpose of the instructions in his
contribution text is to not only reveal
how to use the program, but also
how to incorporate things created by
it in your own programs. Therefore, if
anyone is considering submitting
anything please remember that not
everyone knows everything about
your program and so it is quite
important that you cover every detail

that people need to know. As for a
program support section, that is part
of the service that Techno Info offers.
Should anyone, like yourself, have a
query about any program that CDU
has published then simply drop us a
line at the address given at the end.
Thanks once again for pointing out
my mistake - no supper for me
tonight!

Dear CDU,
With my C64, 1541 and MPS801 |
use Precision Softwares SuperScript
word-processor for correspondence.
To improve printing quality and
produce Norwegian letters | bought
an Olympia ESW1000C daisywheel
printer said to be compatible with
the C64. | cannot, however, find
anyone to tell me how to make the
ESW1000C print from the word-
processing program. Having
discovered your magazine recently |
hope that you can advise me.

Knut Sjovorr, Orpington.

Dear Knut,

Unfortunately the only thing that |
can suggest s that, with SuperScript
and printer manuals in hand, you go
very carefully through the defaults
file that is supplied with the word-
processor and change everything
relevant according to what your
printer manual states. This file covers
all sorts of things and is the only way
that | can think of that the program
can be configured to your printer.
Sorry that I cannot be of any more
help.

Dear CDU,

First of all many thanks for a very
good disk magazine. The next reason
for writing is to ask for some help. |
have a €128, 1571 disk drive and
the MPS1200P printer and as you

can imagine | am really pleased to
see the C128 programs. But | am
really fed up this month (June). I have
tried every way possible to load them
but they will still not load. Is it me,
have tested the computer and it loads
other programs without problems,
but the program POPP and C128
Converter/Maths Aid will not load. |
would be most grateful of any help.
David Taylor, Nuneaton.

Dear David,

1 can safely say that itis not you that is
at fault, unless you are not using the
DLOAD command. You do not
mention what the problem with
loading s but I suspect that you get a
file not found error. This is not
uncommon. A lot of 128/1571 setups
produce the same result and | have
found that it is due to the files being
individually write-protected, that s -
having a less than sign after the file
type in the directory. You must use a
disk editor to remove this protection -
it is a simple matter of changing a
byte. But most directory editors have a
facility to unprotect a file
Alternatively use the program |
supplied with my Directories
Explained article in the February 1990

issue. If that does not work then the _

next most common cure is to move
the file entry to the top of the
directory.

Dear CDU,
I have a C128 and 1571 and a 1901
monitor but this months disk (June)
seems not to work correctly. | was
able to get the games working but the
programs that | wanted - no way.
Aleatory Music was still announcing
that it was loading code after an
hour. After attempting to load the
Personal Organiser Page Printer in
both 1541 and 1571 modes all I got
was a file not found error. The C128
Converter/Maths Aid did load
successfully but then | was faced with
a blank screen for an hour. | would
be very grateful if you could point
out where the errors lie, whether
with my limited experience or with
the programming.

W.Nisbet, Plymouth.

Dear Mr.Nisbet,

There were no errors with the
software and | cannot see why
Aleatory Music and C128
Converter/Maths Aid did not work.
Possibly with the latter your monitor
was not in eighty column mode
although 1 presume that you tried
that. The problem with POPP and
the file not found error is as
described in the previous letter. If
you (and Mr.Taylon) would like to
return your disk to me at Techno Info
then I shall have a look to see what |
can do in the way of rectifying any
problems. Please mark your package
REQUESTED.

Dear CDU,

In the June 1990 issue of CDU you
presented two programs on the disk
which 1 found especially useful
Sprite Generator 2 and Sprite Basic.
Although | have been able to use
both programs separately, when
using Sprite Basic | have not
managed to load a sprite definition
produced by using Sprite Generator
2. 1 would be most grateful if you

and supply a routine which would

solve my problem. Thanking you in

anticipation of your assistance.
Alexander Sendler, Bedford.

Dear Alexander,

It is possible to load and operate
Sprite Basic and then to load and
use a sprite created with Sprite
Generator 2, 50 | can only assume
that you are doing something wrong.
Therefore | shall just go over the
procedure. Load Sprite Generator 2
and create your shapes. Then save
them 10 a disk, remembering first to
reset the drive if you loaded the
program from the menu. Then
switch everything off and load Sprite
Basic. Again, if loaded from the
menu you should reset the drive.
When you have initialised Sprite
Basic load the sprite data
remembering the ,8,1 suffix. Then
use the relevant commands - SPRXY,
SPRAT, SPRSLOT and SPRITE (in that
order) - to display the sprite. Make
sure you follow very carefully the

instructions in the magazine. Your
sprite should appear. Perhaps the
fault is in using the wrong pointer
areas for the sprites in Sprite
Generator 2. Sprite Basic requires
that a sprite has a pointer (slot) value
that is over 32 but also preferably
over 128. That means that if, when
you save the data from the generator
program, you are giving values of
less than $2000 or more than $4000
then you are using the wrong areas.
Also ensure that the pointer value on
the editting screen is 128 or more
(580 in hex). Other than that | can
provide no more help. | hope you
will be able to get it to work now.

Dear CDU,

With reference to the CDU April
1990 Techno Info, you published a
letter from a person named Stuart
Smith of Manchester who asked
whether it is possible to have an
eighty column display on a C64.
Actually it IS possible. In the Your
Commodore magazine of January
1988 there is a listing of a program
to have this facility. The program
uses the graphic bitmap screen and
one can use the normal BASIC
facilities. But there are some
restrictions. Only one colour can be
used at a time and you have less
memory. The screen memory map
for instance is twice as large as
usual. When I program (in BASIC) |
have a little problem with REM
statements. It is that | cannot type
shifted letters in REM statements.
For example, typing 10 REM (shift)
C (shift) B (shift) M only results in
10 REM LEN PEEK FOR when the
program is listed. Why can I not use
shifted letters in REM statements
and why are they replaced by
BASIC keywords? How can this
problem be rectified? Thirdly, | am
going to buy a printer but | am not
sure which one to buy. | am
interested in the Commodore
version of the Star LC-10. Is it fully
compatible with the C64 and its
software, or is it better to buy an
MPS1200 or Citizen 120D printer?
Also, is it worth buying the colour
version and if so is it compatible

39

with PrintPic that you published in
the February issue? | will use it
mainly for word-processing but also
for program listings and dumping
graphic screens. Finally, with regard
to PrintPic, and although | do not
own a printer, | think that if people
load a Koala File picture and then
select the Trilogic option for
printing, everything will still work. If
this does work then owners of the
excellent Advanced OCP Art Studio
drawing package can also use
PrintPic by converting their files
using the program TECHNO INFO
that was featured on the April 1990
disk. That program converts from
OCP to Koala File format. Please let
me know if the above really does
work and with what type of printers
it works. Also could you kindly
answer the other questions that |
have asked in this rather long letter.

Ludwig Flask, Malta.

Dear Ludwig,

Thankyou very much for your letter
all the way from Malta. On your first
point | would actually contest you
and say that | DID tell Stuart that it
was possible - using the bitmap
screen as you said. But the
programming techniques are far too
complex for me to explain it here
because for a start all outputs to the
screen of any kind have to be
rerouted to a routine to calculate the
positions and definitions of the
characters, and screen editting also
becomes very difficult to tackle. If
you would kindly forward me a
photocopy of the program listing or
a disk containing the program then |
will forward it on to Stuart. The
reason for the keywords appearing is
because all BASIC programs are
tokenised/encoded using shifted
(and some other) characters for the
keywords. Therefore when you list
the program with these characters in
the REM statements they are
decoded to the keywords that they
represent. To overcome the problem
you must put the computer in quote
mode. That is the reason for having
to enclose any DATA that contains
non-alphanumeric characters within
quotation marks. Simply by applying

40

the same theory to REM statements
you will be able to have the shifted
characters. Place one (and only one)
quotation mark - shifted two -
immediately after the REM
command. On your next point about
printers | am not going to elaborate
too much. It is impossible to say
whether or not the Star LC-10, or
any other printer for that matter, will
be compatible with every piece of
software that has been or will be
produced. Most things, though, work
fine. Whether to choose a Star over
an MPS or a Citizen must be decided
by you. It is best to get a
demonstration of each and make up
your mind from there. The Star LC-
10 (colour version) is compatible
with PrintPic. Your final point is
slightly more difficult to answer
specifically because | am still
waiting for my colour printer to
arrive and so | cannot test the
program (incidentally, it will NOT
work with standard black only
ribbon printers). In theory it works
because when PrintPic is operated
the picture appears with all colours
correct (except background - change
with F1). | can therefore see no
reason why it would not work.
Could somebody please try this out
(using a Koala File or OCP converted
picture with PrintPic) for us and tell
Us what happens. Be careful with the
prefix to Koala File pictures - to
obtain the reversed spade symbol
use the Commodore key and one. |
hope I have been of assistance.

Dear CDU,

I have been trying for a number of
weeks to sell my MPSB01 printer that
is in immaculate condition but
everyone around where | live either
already has or does not want a
printer. So it may be slow and a little
noisy in comparison to todays
printers but at only forty pounds
(which includes postage) you would
think people would be clammering
for it. It is fitted with a special chip to
provide true descenders and three
other fonts although the switch for
this needs slight attention - a bit of
soldering that | could do myself if
someone asked nicely. | really cannot
understand how anyone without a
printer, so long as you do not want it
for really professional things, could
afford not to buy it. It will even
support GEOS and dumps graphic
screens with ease. Please, Techno
Info, could you help me.

Jason Finch, somewhere in England.

Dear Jason,

Well | certainly cannot understand
why no-one wants it. Who really
cares if it is unidirectional because if
something does its job | say grab it
before somebody else does. I, myself,
find it very difficult to resist the
temptation. If anyone does want to
buy this superb printer then please get
in touch with us at the address below.
You never know, Jason may even
accept a tiny bit less depending upon
how quick you ask for it. | wish you
all the best with selling it Jason.

SOFTWARE OFFER!!

For all those readers that have missed
out on previous issues of CDU, we
are providing special compilation
disks of a number of programs that
have appeared on the disks in the
past. The disks each cover a specific
topic, ie Sound/Music programming,
Machine code programming, Basic
programming etc etc. The first two of
these new compilation disks are
available now. Disk number 1 is a
Machine Code special and Disk
number 2 is devoted to General
Utilites.

To obtain the disks, simply fill out
the coupon below and send with your
remittance to the address as stated.

DISK 1 - Machine
Code Special

disk is made up of the following
program

LINK and CRUNCH. Once a machine
code program has been writen it
often occupies several different areas
of memory and doesn't necessarily
use the space as eficiently as it could.
The LINKER and CRUNCHER have
been devised to help you correct this
and save the need for Basic loaders

PSYMON. Psymon is a machine code
monitor program for use with the
C64. There are two versions, one
located at 36884 and the other at

49152, This is because you may want
to use the area of memory where the
monitor is actually located. There are
a total of 20 commands available to
the user. This is a good monitor for
those that are not too experienced in
machine code.

LOCATION FINDER. It gets pretty
boring looking through object code to
find out just which page zero
locations it's messing up. Take the
legwork out of it with this simple
program. Location Finder simply tells
you which memory locations a piece
of object code is using, including
those all_important zero page
locations. The information it provides
could be vital if you want to
incorporate a piece of object code
into your own programs.

ZMON. We tend to get over obsessed
with 6510 programming, forgetting
that lurking inside our C128's there is
a perfectly good Z80 microprocessor.
Zmon makes this processor available
to the built-in Machine Language
Monitor. No longer is it necessary to
import a machine-specific operating
system like CP/M to try out the Z80.
Just prefix your MONITOR command
with and ZMON will
automatically invoke the Z80 to carry
tout

DISK TURBO. Disk Turbo, once
installed, should speed up your disk
saves and loads by a factor of around
ten times. The only limitation to the
program is that it allows for a
maximum program of 189 block
programs to be Turboloaded,
however, this should not present too
many problems.

6510+ ASSEMBLER. Use this
assembler once and you may never
need another aid to writing machine

code programs. This assembler is a
valuable aid both for writing
professional machine code programs
and for learning about programming,
It is a three pass assembler which
allows the use of labels and contains
extra commands that speed the
production of code by permitting
merging routines from tape or disk.

MICKMON. Get to grips with your
programming techniques with this
powerful Machine Language Monitor.
Mickmon is designed for use on a
C64 with a 1541 or compatible disk
drive. In addition to monitoring the
computers own internal state,
MICKMON has commands that
access the disk drives memory, and
can even address the surface of the
disk itself. It also has powerful extras
not found on other monitor programs.

6510+ UNASSEMBLER. To comp-
liment the 6510+ assembler program,
we have provided the unassembler
which is specific for this particular
assembler. Once used, you will
discover just exactly how valuable an
unassembler can be as part of your
arsenal of programming utilities. An
unassembler makes the inspection of
machine code programs a pleasure
instead of a burden.

BAR PROMPTS. Professional looking
menu driven programs and
applications can be achieved by this
simple machine code program. All
you are ever likely to need to produce
these impressive results are contained
in this one short program.

SPEEDY UNASSEMBLER. Like the
6510+ unassembler above, this
program is specific to the Speedy
Assembler that has been produced by
Your Commaodore for the past 4 years.
Finding your way round long

il

SPECIAL OFFER

forgotten code is now that much
easier. A program no serious machine
code programmer should be without.

That concludes the list of programs
that appear on the first, Machine
Code Special, compilation disk.

DISK 2 - General
Utilities

This disk
programs:

made up of the following

DIRECTORY DESIGNER. Sort out
your disks with this versatile and
powerful disk utility. Typical of
Commodore to make such
wonderful computer as the C64 then
hide all it's power so that using it is, to
say the least, cumbersome. This
program allows the user access to the
world of the Disk Drive DOS without
the need to cram megabytes of
knowledge into their head.

DISK LIBRARIAN. This program is best
described as a superb disk-filing
system, as opossed to program. In
essence the program allows the user to
order their files on their disks into two
large databases. These databases are

the Chronological file and Categories
files. Keeping tabs on all your programs
has never been this easy.

DISK TOOLBOX. This program may
well be the ultimate in disk utilities.
Just about everything you need is here
to give you total disk-based
happiness. The program incorporates
such things as A Monitor, Extended
Basic Commands, Disk Drive Editor,
File Copier and extensive disk based
utilities to make life easier for the
programmer/program developer. Not
1o be missed.

DATA MAKER. Data maker is a useful
machine code utility for converting
memory locations to Data statements.
This has a varied range of
applications. For example, machine
code programmers may want to
convert their coding to a Basic loader
for those who do not have an
assembler. Also it could be used to
convert sprite data, and add this as
DATA statements at the end of the
resident Basic program.

DEVAID. Devaid, which is short for
Development Aid, adds no less than
41 new commands to the resident
C64 Basic. It gives the programmer a
very powerful army of new
commands to aid the development of
programs written in Basic. Some of
the commands can be used both in
Direct mode as well as Program
mode, provided the main program is
in memory.

BASE-ED. Base-Ed is a random access
database allowing a maximum of 500
records per disk which may be
entered then subsequently viewed,

Please send me
I enclose a cheque/postal order for

Name
Address.

Copies Disk No. 1 @ £5.95 each
Copies Disk No. 2 @ £5.95 each

(Made payable to Alphavite Publications Ltd.)

Send to: Alphavite Publications Ltd., CDU Software Offer, 20 Potters
Lane, Kiln Farm, Milton Keynes, MK11 3HF.

Postcode

42

rectified, deleted and interrogated.
Each record can have a maximum of
39 fields but the record length must
not exceed 255 characters.

SCRAPBOOK. This program is a type
of database and as its name suggests,
it is used rather like the scrapbook
you probably had as a child. This may
seem fairly unuseful, but for many
applications it has advantages over
the traditional database organisation.
Information is stored not as records
with set fields, but rather as pages.

PROGRAM COMPARE. Any Basic
program developer knows the
headaches that can be caused
whenever you modify or alter a large
Basic program. The inevitable GOTO
or GOSUB that gets missed out. The
line you delete by mistake, then forget
what it was originally etc etc. All
these headaches are a thing of the
past. With this program, you can
compare different versions of your
program, either on screen or via your
printer, and instantly see where any
corrections, modifications, dele
etc etc occur.

SPREADSHEET 64. A really superb
Spreadsheet program for the Co4
written in WEOS Basic (Window
Environment Operating System). This
spreadsheet program will aid any
company or household to follow the
flow of money. This helps in
forecasting figures and in budgeting.
The program is easy to use and is very
user friendly.

TEXTED. A compact but powerful
program which may meet all your
wordprocessing needs. Texted is a
wordprocessor which provides most
of the features found on commercial
programs, coupled with easy icon
selected commands and advanced
printer and disk interaction.

That concludes the list of programs on
the second, General Urilities, special
compilation disk.

Look out for two more compilation
disks, Graphics programming and
Sound/Music programming, coming
your way shortly.

Linoage: 53p per word. (+VAT)
Semi display: £11.50 plus VAT per single column centimetre minimum 2cm.

Ring for information on series bookings/discounts

All advertisements in this section must be prepaid.

Advertisements are accepted subject to the terms and conditions printed
on the advertisement rate card (available on request).

Make cheques payable to Alphavite Publications Ltd.

Send your requirements to:

CLASSIFIED DEPARTMENT

ALPHAVITE PUBLICATIONS LTD., 20 POTTERS LANE, KILN FARM,
MILTON KEYNES, MK11 3HF.

B = (0908) 569819

OF P FrOCOF

SILVER WING SOFTWARE
SwERwNesoFwaRe | [, o seavices
We have the best latest qal NGIRTER
demos, utiles Games avalabi o e couuovone 3/ DISKS 57/ DISKS
‘ONLY £200 on Tape or Disk } s DS/0D 46 DSDD 23 BATMANPACK £365
Feetesbrdis gt o g e ||| oswo 65 oS0 Eh AUGHTFAIASY
oy oo o i o i sisss
ot ou Fa sond a0 SAE i mssorsos 510
SILVER WING SOFTWARE i PRI EAGH G AT AND PRICE EAGH NG AT 556
125 CALLOWBROOK LANE, o siesil b
S e o TO AT LOCKABLE BOXES LOCKABLE BOXES NEC EXTERNAL
o v g for o CAP_ CAP cap AP 31/2 DRIVE ...£60

40-04 B0-6575 50-£525100-£650 1084DMON£209

PRICES INCLUDE VAT NO QUIBBLE GUARANTEE
POST ADD £3__ NEXT DAY ADD £7

0
FULL TERMS AND 12 SANDERSON HOAD, WESTONING,
(0936) 775080 or (0525) 718666 Fax (0525) 715789
CONDITIONS ARE

AVAILABLE ON REQUEST | 'coumoooneummes CALL

CALL 0908 569819

0908 569819 i

ADVERTISE

Linooge: 83p s o
splay: £11.50 (+
ories discounts available

sified advertisements must be pre-paid

<

OFF A A AN

LASSIFIED DEPARTMENT. ALPHAVITE PUBLIGATIONS, 20 POTTERS LANE,
KILN FARM, MILTON KEYNES, MK11 3HF.

1 enclose my cheque/postal order for £ for insertions, made payable to Alphavite Publications.
(Delete as necessary)
PLEASE DEBIT MY ACCESS/VISA CARD NO:

1 [EXP. DATE.
€ FOR INSERTIONS
Name
Address. Postcode
Daytime Tel No Signature Date
Q FoRSALE aLorrers O RePaRs O HAROWARE O DISks

~“Money well
spent”
YC/CDU

© TVVV‘Z
RIED AN
T
TESTED - Oveq

-000 SOLD INS

16K
operating Y

e
e

tem

r POWER CARIRIDCE

il s gty o o o progtems

e e

MERGE DEvice

Tek 091 490 1975 and 90 1919 Fax 091 470 1918
To order Access Visa welc heques or PIO payable to BDL

Uicordersadd 01,30 post ack totl 1819 inc. VAT.
Europe orders add £1.50. 240
Scandinavian Mail om.u..u ade
SWEDEN. Tel - 46 176 16415 Fo: 176 18401
TRABE AND EXFORT ENGUIRIES WELCOME

s to: Bhiab Elektronik, Box 216, Norrealje 76123,

Bitcon Devices Ltd

