65xx INTERFACING

. Become one with your computer

g THE ULTIMATE UTILITY CARTRIDGE COMES OF AGE!
® ACTION REPLAY MK VI - =
i T T T T FOR CBM6 g i

THE ACTION REPLAY
MK VI WILL LOAD
‘A 200 BI

PROGRAM

¢

E EVER CONCEIVED!

=3
[|
=]

g < T !
///////’. THE MWJ 1:::5“:::.* :IHDI:NDLY AND FEATURE PACKED m

GRaPHICS SUPPORT |18
b & B ¢
ME OF PRESS
(OTiCE.

\CHANGE WITHOUT N

ONLY. £6.99

CONTENTS

Welcome
Editors comments and
instructions

4

Super Snapshot V5
This excellent cartridge
reviewed

65xx Interfacing 8
The series continues
Oops-a-daisy! 1
Afew typographic errors
corrected

Techno-info 37
Our regular helpline feature

Interrupt Pointers
GEOS style pointers the easy

6 Rotatron

Compunet style demo.

wa
Ve Maze Generator 32

SpteDINeS 12 Create your own mazes

Allyou need to create e

platform games

S 25 CharacterExtracor 33

Give yourseffan extra 2Kof BOTIOW those impressive

screen memory char sets

Text Compression 26 Nudge 34

Getto grips with this great FLD made easy

S Window Wiper 26

Hires Animator 28 Alternative methods of

Emulate the film makers redrawing your screens

Commodore Disk User L)
Volume 3 Number 7

May 1990

SPECIALIST

PUBLICATION

Editor: PAUL EVES
Group Editor: STUART COOKE
Production Editor: HILARY CURTIS
Photography: MANNY CEFA
Adventure Correspondenx GORDON HAMLETT
Advertisement Manager: PAUL KAVANAGH
Display Sales Exee: MARA WADE

: TONY FLANAGAN

tributic
Printed By . CHASE WEB LTD, ST VES PLC

SUBSCRIPTION RATES
Here are the rates for subscriptions to CDU with effect from
November 1989

uK £33.00
urope £39.00
s £39.30
£41.60
Rest of the World £39.70 or $69.00
Airmeil rates on request
c rariday

Way, Hemel Hempstead, HP2 7ST. 1elephone [ouz; i
(0442) 66998.

Phillips

| Above are 2 examples of interrupt pointers

necessariy those of the magazine. While wey edrm‘ is made to
thoroughly check programs published we cannot be ponsible
for any erfors that do occur.

The contents of this publication including al artcles, designs, drawings
and programs and all opyrght and ofer ielectual propery nights
PuDlcations. d
w of copyright and other intellectual poperty rights and by virtue of
International copyright converntions are speciical reserved to Argus
Specialst Publications and any reproduction requires the prior written
consent of the Company

c1990

Comme

opefully, if everything has
H goneto plan, this issue should

be the first of the new style. |
hope you like it. We have tried to
make the appearance of the maga-
zine more appealing, yet still retain its
identity as a serious Users magazine.

Since finishing the TRIVIA CHAL-
LENGE' series, | have had a small
number of queries. It appears that
some of you are not managing to
save a working version of the game,
even after following the instructions
correctly. Ifyou are one ofthese people
then please read this before sending
in your disks/letters.

If you have a system that has
everything barthe kitchenssink hooked
up, disconnect EVERYTHING except
yourdiskdrive and monitor/tv screen
The program does ot like Cartridges,
Interfaces, Printers etc etc on-ine
dunng its installation process.

author of the program and
mysslfhave in fact found a small bug
inthe program. SOMETIMES, notvery
often though, the program produces
garbage amongst the questions, or
onthe categories line. He hastried for
8 months to track this problem down
but has had no success. However,
because it only manifests itself so sel-
dom, we feel that it is something you
can live with
To save anyone that is having
trouble getting an up and running
version tearing their hair out, if you
are one of these then send me a biank
disk to the editorial office, and I will
save a copy out for you.

4

That just leaves me to say,
enjoy this months mag. Hope the
programs are to your liking. Don't
forget, if you have any comments,
ideas, suggestions (Keep them
clean] or just simply want to air
your views, pick up your pen and
write to me.

Disk Instructions

We do our bestto make sure that CDU
will be compatible with all versions of
the C64 and C128 computers. One
point we must make clear is that the
use of ‘Fast Loaders, ‘Cartridges’ or
alternative operating systems (Dol-
phin DOS] may not guarantee that
your disk will function properly. Ifyou
use one or more of the above and you
have difficulties, then I suggest you
disable them and use the computer
under normal, standard conditions.
Getting the programs up and
running should not present you with
any difficulties, simply putyour diskin
the drive and enter the command.

Load “MENU",8,1

Once the disk menu has loaded you
will be able to start any of the pro-
grams simply by pressing the let-
L left of the desired
progra

T ‘possible for some pro-
grams to alter the computer’s
memory so that you will not be
able to LOAD programs from the
menu correctly until you reset the

machine. We therefore suggest that
you turn your computer off and
then on before loading each pro-
gram.

How to copy CDU files

You are welcome to make as many of
your own copies of CDU programs as
Yyou want, as long as you do not pass
them on to other people, or worse,
sell them for profit. For people who
want to make legitimate copies, we.
have provided asimple machine code
file copier. To use it, simply select the
item FILE COPIER fromthe main menu.
Instructions are presented on screen.

k Failure

If for any reason the disk with your
copy of CDU will not work on your
system then please carefully re-read
the operating instructions in the
magazine. Ifyou still experience prob-
lems then:
1) If you are a subscriber, return it to:

Select Subscriptions Ltd

5, River Park Estate

Berkhamsted

HERTS. HP4 1HL

Tele: 0442-876661

2) Ifyouboughtitfrom anewsagents,
then return it to:

CDU Replacements

Protoscan

Burrell Road

St. Ives

Cambs

P17 4LE

Tele: 0480495520

(Within eight weeks of publication
date disks are replaced free|

After eight weeks a replacement
disk can be supplied from Protoscan
for a service charge of £1.00. Return
the faulty disk with a cheque or postal
order made out to Protoscan and
clearly state the issue of CDU thatyou
require. No documentation will be
provided

Please use appropriate pack-
aging. cardboard stiffener at least,
when returning disk. Do not send
back your magazine, only the disk
please.

NOTE: Do notsend your disks back to
the above if its a program that does
not appear to work. Only if the DISK
is faulty. Program faults should be
sent to the editorial office marked
FAO bugfinders. Thank you.

Interrupt
sz e]
Pointers

& Menus

Let your C64 show the 16 bit
machines that they do not
have the monopoly on Wimps
By William Phillips

fyou have ever written a Basic pro-
gram, you will have noticed that

iendly applications. The days of
long and cumbersome ‘Do you want
instructions? programs have long dis-
appeared; we are equipped with a

code program. Toload t, select Point-
ers from the menu

After a small delay, you will be
presented with a black screen with a
pointer somewhere in the middle,
and the top line showing the options
available. You will notice that this line
has a foreground and a background
colour on a low resolution screen,
This is unusual and is one of the
features of the pointer code.

When the program starts up, the
device is set to keyboard. To control
the pointer use the keys Q, A, O, and
P.Justin case you couldn'tworkit out
on your own; they move the pointer
up, down, left and right respectively.
Depressing two keys atonce will make
the pointer move diagonally.

When the pointer moves, you
should notice that it starts off at a
certain velocity, and accelerates up to
a maximum velocity. The start of ini-
tial velocity and maximum velocity
are numbers in terms of pixels per
second. The acceleration is a delay. If
X = the acceleration rate, then x+1/
50ths of a second will pass before the
present velocity of the pointer is in-
creased by one up to the maximum
velocity. Ifall this seems alittle compli-
cated, don't worry. It isn't all that
important, but when incorporating

meansof cor h
everyone can pick up easily and varies
little from program to program. It is
called Wimps (Windows, Icons, Menu's
and Pointers).

S0, we know what our programs
need; a more user-riendly environ-
ment. Yet, in Basic, moving pointers
would be very slow indeed, and not
all that smooth either. Obviously, a
little machine code is necessary, and
that, my friends, is why you are read-
ing this article!

The machine code program that
I have written gives a Basic program-
mer control of a moving pointer and
menu bar system. This means that
you can move a pointer around the
screen using a joystick or the key-
board while the program is running,
and also tell the program to inverse
part of a screen line if the pointer is
over it. This is useful for pull down
menu'’s, as you will seein the pointers
program. This program s in Basic and
was written toillustrate the use of the
pointer code. If you play around with
the pointers program, it will probably
help you to understand the pointer

therou ¥ programs,
it is certainly useful to understand
how the pointer works

Looking back at the pointers
program, you will find three options
available to you, namely Preferences,
Storage, or Quit.

You can select any of these by
moving the pointer so that it points to
the desired option, and pressing fire/
return depending on which device is
being used.

1) Preferences
A menu will appear giving you a
whole new set of options. You can
change the acceleration rate, the ini-
tial and maximum velocities, the
control device, the attributes, or leave
the preferences menu. Upon moving
the pointer over one of the options,
you will notice that it inverts and
changes colour, or ‘lights up’. This is
another of the features offered by the
pointer code. With just a few pokes,
you can set the pointer to light up’
parts or all of the line the pointer is
presently pointing to.

Allthe menu’s are reasonably self

explanatory - and that is the beauty
of Wimps it only takes five minutes to
learn how to use a program perfectly,
with the minimum of instructions.

2) storage
The whole point of the preferences
program, apartfrom a demonstration
ofthe pointer code, s thatyou can set
upyour preferred device, velocity and
acceleration settings and then save it
to tape or disk. Working through this
set of menu’s is very easy too — just
type what you wish to call Pointers
program, press T or D for the device
you wish to save it to, and the pro-
gram will save the Pointers program
underyour filename, followed by the
pointer code, saving it as “p.code”. If
you selected tape, a further window
will come up and allow you to posi-
tion the tape before saving.

3) Quit
As you may have guessed, this takes
you out of the program. The screen is
cleared, the pointer interrupt turned
off, and the program ends

We have now seen the three
main uses of the pointer code; the
moving pointer, the bar light up sys-
tem and the background colour on
the top line, and all this runs on
interrupts! All we need to look at now
are the pokes that influence the
pointer code.

Firstly, | will introduce you to the
pointer code program. On the disk it
is called “p.code” and is located from

Secondly, before we delve deeply
into POKEland, you should know
that you cannot use sprites 0 or 1 in
your programs if you are using the
pointer code, as they are used to put
the pointer on the screen.

1) Starting and stopping the
interrupts

SYS 49152 initialises the interrupts. It
also copies the sprite definitions for
sprite 0 and 1 to locations 832-959
where the VIC Il chip can ‘see’ them.
For this reason, you should not poke
this area while the pointer code is
running. If you wish to change the
definition of the pointer, you should
setitup elsewhere in memory where
the VIC Il can ‘see’it, and change the

sprite pointers 2040 and 2041. Loca-
tion 2040 should pointtothe pointer/
icon definition and location 2041

should point to the mask (a border
around the pointer/icon so that the
pointer/icon definition can always be
een, even when surrounded by pix-
els that are the same colour as it.
SYS 49274 suspends the inter-
rupt. This should be done when sav-
ing or loading. To restart the inter-
rupt, use SYS 49152,

2) Top line colour

This feature setsthetop 9 pixel lines of:
the display to a colour of your choice.
The colour corresponds to the normal
CBM colour range, and its number
should be in the range of 0-15 (see
over the page for a copy of the CBM
colour range]. Type

POKE 499332, colour number
to change the colour of the top line
background. If this feature is not
needed, you should set the colour to
the same as that of the background.

i.e. POKE 49332, PEEK (53281)

3) Pointer System

a) Changing device.

When changing devices, you have to
poke two locations.

POKE 49884,x

If X is O then the device is joystick.
If xis 1 then the device is keyboard.

If you set this location to 0 or joystick
mode, you' must also set another
location to tell the computer which
port to read from.

POKE 49337,x
If xis O then the computer reads from

portIl.
Ifxis 1 then the computer reads from
port .

Inotherwords, 49872 isthe lower
8bits of the 9 bit value for x, location
49873 is the last bit (MSB) of this
value, and location 49874 controls
the y position of the pointer.

These registers can also be read
to determine the present position of
the pointer on the screen. These loca-
tions give you the pixel position.
Another tworegisters hold the screen
xandy position.

(0-39 and 0-24 respectively)

PEEK [49886) gives the x position and
PEEK (49885) gives the y position

Al of these registers are updated

every time the pointer is moved.

<) Setting up a bar light up parameter
lock.

You have seen how the inverse
bar system works in the preferences
program. It is controlled by the block
of memory from 679 to 767. To set
this up, you should firstly poke the
dimensions and co-ordinates of the
window into memory:

POKE 680, upper Y co-ordinate of
indoy

POKE 681, lower Y co-ordinate of

windo

POKE 682, left hand side X co-ordi-

nate
POKE 683, right hand side X co-ordi-
nate

In this window, you may notwant
certain options to be available for
some reason. For instance, if you
made a sprite editor program one of
the menu's may have two options
saying ‘Hires' option to be available.
You could omit that option from the
menu, or more simply, you can setup
the parameter block o that the bar
doesn't light up when you move the
pointer over the option. This block of
memory is from 685 to 709 andiis the
block o BARACKNOWLEDGE CODES.

[le
on the screen.

Ifyou let x = the X position, in the
range of 23 to 347 and y = the y
position, in the range of 50 to 249,
the following pokes apply to set the
co-ordinates of the pointer:

the pointer

POKE 49872,x-256*INT(x/256]
POKE 49873,INT(x/256)
POKE 49874,y

Location 685 to the top
line of your window, 686 to the sec-
ond line and so on. If the location
holds a 1 then the bar will light up. If
it holds a 0 then, you guessed i, it
won't

Location 684 determines what
colour the bar will turn when it is
mversed This number is a CBM colour

e (0-
Locanon 679 is used to tell the

bar light up system whether or not to
inverse any bars that are held in the
parameter block. Ifit holds 0, then the
bar system will not inverse any more
bars it comes across - in effect, it is
turned off. If it holds 1, then it is
turned on; all bars that are held in the
parameter block are inversed.

You should be careful to ensure
that the screen does not scroll when
a bar s up, or the screen will Iook a
mess!

One last location that may be
useful is location 710. This, when
peeked will tell you if a bar is lit up
even if location 679 holds a 0. It
should be poked with a 0 before the
interrupts are turned on (as should
location 679).

Well, that's all there is to know
about the control locations, and | wil
leave you with a table of the CBM
colour codes, and a summary of the
locations that are useful. Good luck!

CBM Colour Codes.
Black 0 Orange 8

White 1 Brown 9
Red 2 Pink 10
Cyan 3 DkGrey 11
Purple 4 Mid Grey 12
Green 5 LtGreen 13
Bue 6 LtBlue 14
Yellow 7 LtGrey 15

Useful Locations.

49152 Initialise Interrupts

49274 Suspend Interrupts.

49332 Top line background colour.
49337 Joystick Port 0= Portl 1 = Port

49872 LSB 8 bits of X co-ordinate of

pointer.
49873 MSB bit of X co-ordinate of
pointer.

49874 Y co-ordinate of pointer.
49885Y screen co-ordinate of pointer.
49886 X screen co-ordinate of pointer.
679 Bar light up on/off 0= off 1 = on.
680 Upper Y co-ordinate of window.
681 Lower Y co-ordinate of window.
682 Left hand side X co-ordinate of
window.

683 Right hand side X co-ordinate of
window.

684 Colour of bar.

685709 Bar Acknowledge Codes.
710 ls bar fit up? 0 = No,

Finally, experiment toyour hearts
content, it is the only way of finding
out how things work, and it's great
funl

Steve Carrie begins the third
part of his series which deals
with interfacing with the 65xx
series of microprocessors

L ast time, we saw how easily it
‘was to program the parallel port
from BASIC to provide a simple
but effective data exchange between
two machines (Programs 1 & 2).

Now take a look at Programs 3
and 4. Program 3 is basically an as-
sembly language version of program
1.in that it simply takes a string from
the keyboard, adds a return character
9CHRS (13)) and sends it out byte-by-
byte. The major difference here s the
speed! Both routines are written to
assemble at $C000 and should be
started from BASIC by an SYS 49152
command.

These programs (and all others in
the series| were written using my ASM
assembler which was published in
the June 1989 issue of Your Commo-
dore. Ifyou are using another assem-
bler, it shouldn't be too difficult to
convert the source code format.

Program 4 however salittle more
complicated and consists of two parts,
the setup/foreground section and the
interrupt background section. Once
the interrupt has been set up, the
foreground portion simply loops
round waiting for the background
portion to signal that a string has
arrived. Of course, the foreground
section could be doing a lot more
than just this but for the purposes of
this demonstration we'll just leave it

displaysthe received string and resets
the flag ready for the next communi-

cation. You may stop the program at
any time by pressing the RUN/STOP
key o hitting RUNSTOP/RESTORE.

The background section only
operates when a byte arrives at the
data port (interrupt generated by
FLAG|. The bytes are stored in mem-
ory until a return character (13) is
received wherepon the DATAREADY
flag is set indicating to the main sec-
tion that a string is ready.

(STROBE)

36 WAY AMPHENOL

IWIRING SIDE)

PINS 1.

432
ARE ALL GROUNDED)

FIG7

keyboard scan, cursor flash, etc. A
situation may arise whereby the inter-
face may take a back seat to the
system.
Using the NMI interrupt, the
processor will respond instantly to
the arrival of our data, even if it is
currently servicing an IRQ interrupt,
The reason for this apparently strange
design has alotto dowiththe pseudo-
RS 232 on these computers. Both RS
232 input and output is done by
using NMI interrupts.

The INIT routine sets up the NMI
interrupt vector and also enables the
CIAFLAG interrupt. The main routine
loops around checking the STOP key
($FFF1) and alsothe DATAREADY flag
byte. When DATAREADY is setto $ 80,
the program calls the routine OUT-
PUT to print the received data.

The interrupt routine INTR first
checks the ICR to see if our FLAG
interrupt has occurred. We do this
because the RUNSTOP/RESTORE
keystroke also uses the NMI subsys-
tem. If our FLAG interrupt has not
occurred, we jump to the (aimost)
normal system routine at SFE4C.
When FLAG does occur, we load the
data from PRB and store it in the
buffer. We store the buffer pointer
and check for a return character (13)
which signifies the end of the string.
Iftruethen we set DATAREADY to $80
1o tell the foreground program that
the complete data string s ready.

As a small exercise, you could try

PROGRAM 4 OPERATION

The first thing to note about this
program is that we are not using the
IRQ interrupt as you might expect
The IRQ output of CIA 2 is connected
to the Non-Maskable Interrupt (NMI]
line of the processor. This requires a
slightly different interrupt procedure
from what you might expect. In fact,
for our purposes it is actually better
than using IRQ since the computer's
operating system uses this to perform
the normal system interrupt for the

rewriting program 3 to operate with
a NMI interrupt. It would accept a
string as before but would send it out
under interrupt. Your main program
will have to signal TO the NI routine
that data is ready to go out.

Itisn't as difficult as it may appear
and when | go on to look at the 6526
serial port and the Plus 4's 6529 port,
11l present routines to do just this,
except that you'll have to convert it
for the 6526 parallel port!

What now?

You may be wondering where all this
is leading. Well, one of the annoying
things about the Commodore 64 and
128 is their inability to make use of
parallel printers directly. There are
many inexpensive printers on the
market which interface via a Centron-
ics Parallel Interface. Using a method
similar to that which | have described
above, and with a little clever pro-
gramming, we can use one of these
printers on our machines.

Program 5 does just this for the
C64, and Fig 7 shows the necessary
wiring from the computer to the
printer. The idea here is basically the
same as before except that the sec-
ond computeris replaced by aprinter.
Once loaded (or assembled) into
memory, itmay be installed by issuing
a SYS 49152 command. Relocate it
elsewhere if you need to.

FEATURE

Program 5 Operation

What | have done here is to intercept
5 of the system routines concerned
with I/O. These are OPEN, CLOSE,
CHKOUT, CHROUT and CLRCHN. By
alterating the appropriate vectors |
was able to force the operating sys-
tem to recognise device number 5 as
aparallel printer. This device number
is normally a serial printer or plotter
and the routines simply intercept this
number. The routines, for the most
part, duplicate their kernal equiva-
lents until a suitable cutoff point is
found.

Youmay OPEN achannel in BASIC
as follows;

OPEN <logical file #5, 5, <secondary
address>

where logical file # is as per a normal
printer open statement and secon-
dary address may be 10 (enable line
feed send) or anything else for no line
feeds. You may list a program as per
normal; e.q.

OPEN 1, 5, 10: CMD 1: LIST

The beauty of this system is that if
your parallel printer goes offiine, the
routine will stop sending data and
will wait until the printer comes on-
line again. Most parallel printers have
data buffers of some kind so there s a
possibility that the computer will re-
turn to your control long before the
listing stops!

You may also notice from the
wiring diagram that | have connected
an extra line to pin 12 of the Amphe-
nol plug from pin M on the userport.
This is line 2 from port A which is
otherwise unused. I've used this as a
paper-end detector in the software
and it will cause a Device Not Present
error if it is high.

The routine lives at $C000 and
should be transparent to most of your
programs. | can't speak for commer-
cial software of course but it should
be OK foryour own use. Normal serial
printing may be done using device
number 4.

I hope you find it useful.

Next time we will pick up the
thread of our investigation into the
facilties of the 6526 CIA.

the joys of being an
Editor is taking all the flak
hen you make a whoj

ping bo en you make sev-
eral the flak

Casting his critical eye over the
FEBRUARY issue of the magazine he
has found faults in MULTI-SPRITE
(Pages 26-29). DIRECTORIES EX-
PLAINED (Pages 30-32) and
TECHNO INFO [Pages 39-40). In the
ve found a fault
Jith SCREEN SLIDE

DIRECTORIES EXPLAINED

Page 31, first column, line 14 should

read OPEN15, 8, 15: OPENS, 8, 8,

P: e 39 should
THE

ond column, fine 11
\mum xw PRINT#8, AS

second column, line 20

\m.mwmr’rwmm BP: 87 FN*

e FN' represents the file nu

(07, remember there are 8 en-
tries per sector) and ‘B’ is the value
listed in the ‘Byte by Byte’ section of
this article.

March Issue
SCREEN SLIDER

/e cleared the screen due to the
ntioned fiick. Instead
should give the parameter a value c
M e s

wmlvl»d until they are switd
using SYS49152.0. It will also aut
m.’mmHy prepare
/e I the readers

e g
that may have experienced problems
due to the above errors. We also

ellent programs.

'i/(s!eq-e-sdooi i/(s!eq-e-sdoo

FEATURE

COMVIVIODORE

delivered to your door FREE!*

That's right, if you take out a year's subscription to
Comimodors DiskUscs wewill make e ik it delivered
r door each month at no extra charge".
Just £l the coupon below and send it 1o the adress given
with a cheque, money order or credit card instructions to
cover the cost of the subscription. We'l do the rest.

UK: £33.00; EUROPE: £39.00; MIDDLE EAST: £39.30;
FAR EAST: £41.60; REST OF THE WORLD: £39.70
or USA: 569.00
Airmail Rates on Request.

* Overseas subscription rates include postage.

Please commence my subscription to Commodore Disk UM—|
with the issue. 1 enclose

| cheauemoney order for ... e made |

payable to ARGUS SPECIALIST PUBLICATIONS

| Or Debit my Access/Visa |

| N[IITIITIITIIIIID I
Valid from ©

| signature |

| Name |
Address :

| Posteode |

Send this form with your remittance 1o
| SELECT SUBSCRIPTIONS LTD & River Park Estate, |
| Bilet Lane, BERKHAMSTED, Hers P4 IHL |
United Kingdom

Sprite Driver

A comprehensive utility for
sprite manipulation and games
design

By William Christie

Sprite Driveris a powerful utiity which
will enable the setting up of interrupt-
driven sprite movement patterns. ‘up
to 255 pattern ‘screens’ can be de-
signed and each screen can be ac-
cessed using a single POKE. Briefly,
sprite movement patterns — the route
a particular sprite will take as it travels
around the screen - are entered as
basic DATA statements. A call to the
Driver routine (SYS 49152 will redi-
rect the NMI interrupt and start de-
coding and executing the data held
in pattern memory. Each sprite (up to
8 can be controlled] is then manipu-
lated according to its pre-defined
movement pattern.

The driver provides a large num-
ber of features to enable complex
sprite patterns to be designed. These
features include sprite movement in
any one ofthe 8 ‘compass’directions,
sprite positioning/plotting, movement
speed, the setting up of data point-
ers, sprite colours, sprite on/off, and
multicolour on/off. In-addition, a
powerful sprite animator is present
and control over animation speed
and the animation parameters is
possible. Sound can also be imple-
mented, and here you can define and
play a particular sound effect using
any or all of the 3 voices. It is also
possible to synchronise a pre-defined
sound effect with up to 2 animation
frames for each sprite. Voices can be
shared between sprites. Sprite anima-
tion, sound synchronisation and col-
our information can be shared be-

12

ON THE DISK

DETIRXAIIRF = BBE

tween more than one pattern screen.
A facility for plotting text/graphics
characters onto the screen is also
provided.

Remaining facilities include the
setting up of loop structures, whereby
Yyou can instruct execution to jump
back to a pre-set point within a par-
ticular sprite pattern. You can also
halt execution from a fraction of a
second to hours/days, or perma-
nently, or for a random period of
time, or conditionally. Lastly, a POKE
feature - operating over the whole of
the 64's memory has been incorpo-
rated together with automatic screen
advance and a sprite-sprite ‘seek’
feature. Each feature is identified by a
single number _(between 0-28 and
between 252-255). I've called these
numbers FLAGS as they determine
what action is to be taken by the
driver. A description of all available
features and their correct syntax now
follows.

Sprite Driver Features

- Instructs execution to jump back
to the pre-defined start (see feature
22) of the current sprite pattern.

1,X -~ Moves sprite right until its X co-
ordinate matches

2,X-Moves sprite left untilit matches
X.

3,Y - Moves sprite up the screen until
its Y co-ordinate reaches

4,Y — Moves sprite down the screen
until it reaches Y.

5,0/1,X,Y - Plot sprite at X, setting
its Most Significant Bit X (MSBX] to the
value held in “0/1". e.q. 5,1,20,150
plots the sprite at 20, 150 setting its
MSBX to 1

6,LB,HB— Halts execution of the cur-

rently sprite for the delay value heldin
LB,HB. A value of 255,0 gives a delay
of approximately 1.8 seconds. For
each increment of the HB value 1.8
secondsare added tothe overall delay.
Longer delays can be obtained by
appending the desired number of
“6,LB,HB" after each other or incorpo-
rating the delay within a loop. The
length of the delay (and the speed of
execution ofallfeatures| also depends
on the setting of the NMI timers (at
56580-56583). These can be altered
via the POKE feature:

7,SPEED (0-255) - Sets the move-
ment speed of the current sprite. Due
to the way this routine was pro-
grammed, avalue of O represents the
slowest speed, and increasing values
from 1 to 255 will slow down the
sprite.

8,0/50, (multicolour] multicolour2)
~ This sets the multicolour status of
AlLLsprites. If “0/>0"is zero then multi-
colour is OFF for all sprites and you
insert “8,0" into the DATA statement
only. To set a particular sprite(s) to
multicolour mode you determine its
bitposition (sprite0=0,,, B
its decimal equivalent [sprite ’
2 8,,,7=128). You then add the
decimalvalues foreachspretogether
and insert it after the “8,". You must
then enter the appmpna(e multicol-
ours. e.q. 8,255,0,2 would turn on
multicolourfor allsprites and set mcol
to black(0) and mcol2 to red|2). You
would normally enter this feature only
once, since it effect remains for all
pattern screens (make sure that the
first/start screen contains this feature)
9,shape pointer - Sets the current
sprite’s shape pointer. This feature
alsoturns off the current sprite anima-
tion — so you don't need to enter a
“12,0” before hand.

10,l00p repeat number - Set start
of loop and loop execution number
(the number of times the loop will be
executed). Only one loop can be
running (for each sprite] at any one
time, i.e. you can't have nested ioops.
Once the current loop has finished
you can then execute another. The
demo screens 1 and 4 make use of it
to produce a coloured bar effect in
the screen border

11 - Go back to the loop start and
repeat for thé pre-set value

12,0/1, (Lowptr, Hiptr, Speed,
animation counter/0,0/1) - This
is the sprite animator. If the first “0/1"
after the “12” s set to 0 the animator

is turned off for that sprite, and you
then enter only “12,0”. Toturn on the
animator you enter “12,1, followed

shape pointers for the animation
(Lowptr should be lower than Hiptr)
Speed is the animation speed, where
I=fastest, O=slowest, with 1-255
decreasing the speed.

next parameter, if st to a
non-zerovalue, willinstruct the driver
to animate in the chosen method for
alimited number of times, afterwhich
animation is turned off for that sprite.
A zero value causes animation to
continue always.

The final parameter, “0/1", sets
thetype ofanimation. Avalue of O will
cause animation to proceed from
Lowptr to Hiptr+1. After Hiptr+1 ani-
mation s reset back to Loptr and
started again.

A“0/1” value of | causes anima-
tion to proceed from Lptrto Hiptrand
then from Hiptr to Loptr and repeat.
This is designed to save sprite defini-
tionmemoryandis mainly used when
the second half of an animation se-

uence is identical, but the reverse of
the first half. Note, however, that in
this case the actual Hiptr value is
entered and not Hiptr+1.
13,18, HB, Poke value (0-255) —
This feature is identical to the POKE
command in Basic. It takes a number
and stores it into memory location
HBLB. This s actually a very powerful
feature on its own, as it aliows pokes
10 all of the the 64's memory (and
even to the driver program itself])
With it you can repeat all of the func-
tions the Basic POKE command al-
lows, eg. alter screen colours, alter
memory configuration (bank
switching), alter the NMI inter-
rupt speed (poke 56581, value] —
thus altering the speed of execu-
tion of the sprite driver (and of
sprite_movements,

14,LB,HB, Colour, Character1,
Character 2,,,, Char (n-up to
254), 0 - This feature allows you to
printtextor any other graphic charac-
ter onto the screen at screen address
HBLB. Each character is given the
colour specified. The routine works
by using CBM POKE codes - please
refer to your computer manual for a
table of these codes.

5,0-255 — Turn on/off sprites. This
feature affects all 8 sprites in an iden-
tical way to feature 8. .g. 15,0 tums

off (disables’ all sprites, 15,3 turns on
sprites 1 and 2 only.

6, sprite colour - Sets the sprite
Sk o aies B
17, voice (1-3), Pulose Hi, AttDec,
siwef Volana HF LF< Wave-
form - This feature defines and plays
a sound. Please refer to your com-
puter manual for selecting suitable
values for each parameter.

18,X - Move sprite right and up
until X is reached.

19,X - Move sprite left and up until X
is reached.

20,X - Move sprite left and down
until X s reached.

21,X - Move sprite right and down
until X s reached

22 - Define start point. This feature
enables you to set the return point for
execution to jump back to upon
encountering feature 0. This allows
you'to beginyour pattern data for the
current sprite with initialising instruc-
tions e.g. set sprite colours, speed,
animation, etc. you would theninsert
flag 22 followed by the actual move-
ment data. At the end of this you
insert flag 0.

23, Pointer1, Pointer2, Voice (1-
3), Pulse Hi, AttDec, SusRel,
Volume, HF, LF, Waveform - This
feature synchronises a sound effect
‘with animation pointers 1 and 2. This
is useful for footstep-type effects,
where pointers | and 2 would repre-
sent the shape pointers correspond-
ing to the sprite’s foot hitting the
ground as it walks in each direction
{e.g. right and left). As this feature is
carried over from one screen to the
next then careful planning will save

ory.
245 Arimation Speed (0-255) -
This allows the animation speed of a
previously defined animation se-
quence to be altered without affect-
ing or having to re-initialise the ani-
mation. The bird in the first screen of
the demo shows this feature in ac-
tion. Notice also how the synchro-
nised sound FX alters to match the
peed.

25,animation counter - This a-
lows you to alter the animation
counter of a running animation se-
quence. Its effect is identical to that
seenin feature 12, that is, a non=zero
valuewill cause animation to proceed
in the pre-determined manner until
the counter reaches zero, after which
animation is turned off. A zero value
causes animation to continue always.

26.LB.HB- This is the random WAIT/
HALT feature. It works in an identical
manner to the normal WAIT feature
(6,LB,HB] except that the LB value is
randomized. e.g. 26, any number,0
will cause execution of the current
sprite to halt for between 0 and 1.8
seconds. Onthe otherhand, 26,LB,HB

seconds. This routine, integrated into
the normal WAIT routine, makes use
of the CIA timer.

27,LB,HB - This is the condi-
tional version of the WAIT feature.
In this case, execution of the cur-
rent sprite will halt at this point if
the memory location HBLB con-
tains zero. Any value other than
zero will cause the following fea-
ture to be executed. As a result,
you should use the POKE feature
(13) to set that location to the ap-
propriate value. This is also a very
useful command s it allows you to
set up situations where, for ex-
ample, an ‘alien’ is blocking a
particular exit out of a screen,
Only by completing a task (and
POKEing that location with a non-
zero value] will you be allowed to
exitthat screen. Another use could be
where certain sprite patterns are only
used if you have successfully com-
pleted a number of levels in a game.
Demo screen 5 makes use of it to
synchronise the movement of ail
sprites before they move off the lad-

er.
28,SPRITE (0-7),LB,HB _ With this
feature you can instruct any sprite to
seek out the current sprite. To use it
you should first set location HLBL to
zero with the POKE feature. Execu-
tion will continue at that point until
HBLB is set to a non-zero value. Look
at DEMO screens 4 and 5 to see it at
work

The final 3 features enable automatic
access to different sprite screens.
252,screen number (1-255-never
zerol) - This instructs the driver to
begin execution of sprite patterns
comprising the specified screen
number.

253 - Instructs the driver to move to
the current screen+

254 - Instructs the driver to move to
the current screen-
255-Thisisapermanent halt feature
and causes execution of the current
sprite to halt permanently. It can be

13

used in situations where sprites are
not moving around the screen, or in
cases where you are not using all 8
sprites for a particular screen. In fact,
if you are not using a particular sprite
youmustinsertthis flag otherwise the
driver will attempt to execute the next
byte (usually a pointer to the next
sprite] and may crash. (normally,
though, if the driver comes across an
unrecognised flag it will report this to
you - see Error Debugging later)

Entering Patterns:-

Now that you know the range of
features offered how doyou go about
entering them into basic DATA state-
ments, and how do you allocate each
feature to each sprite? The Basic entry
program, SPDRIVER BAS, supplied ori
the disk should allow you to achieve
this with some considerable easel

Certain rules apply when enter-
ing pattern data, and this program
contains a number of error-checking
lines that help you keep to the ex-
pected entry format. This means that
you will have to structure the data
statements when dealing with each
sprite, but you'll find this to be of
great advantage later on.

To begin with, the DATA state-
ments are at the end of the program
Each sprite’s pattern data is entered
one ata time and separated by a 1"
Sprite 1 is always the first sprite pat-
tern defined, followed by sprites 2-8,
in that order. When the last pattern
(sprite 8) has been entered you insert
a 2" instead of a *-1". It makes the
layout much easier to follow if you
select suitable line numbers for each
sprites data. | would suggest that
sprite 1 is given lines 1100-1199,
sprite 2, 1200-1299, etc. In fact, the
error-checking lines report the cur-
rent sprite number and screen num-
ber if an error has been detected
(missing 1", “-2", sprite data) and so,
by following this layout you should
find few problems in debugging er-
rors of this type. So, to recap, you
should end up with the following:-
1100-1198DATA,,,, spritel pattern,,,
1199 DATA-1
1200-1298DATA, ., sprite2 patten,,,
1299 DATA-1

etc for sprites 3-7

1800-1898 DATA,,, sprite8 pattern,,,

14

1899 DATA -2
Remember, if you are not using a
particular sprite you should insert a
255" and then a *-1°/"-2", as appro-
priate. So, having defined the first
screen of sprite patterns and termi-
nated with a *-2", all further screens
are entered in a similar manner.
Remember, also, that the first DATA
statements of each screen refer to
sprite 1, and the following refer to
sprites 2-8, respectively.

1150 DATA 23, 129, 132, 1,0, 3,0,
15, 5, 5, 129 :REM synchronise SFX
with shape pointers 129 and 132,
using voicel

1160 DATA 5, 0, 50, 100 :REM plot
spriteat 50, 100 and setits MSBX to 0.
1170 DATA 22 :REM set return point.
1180 DATA 1,20 :REM move sprite
right until x=20 ~ this will automati-
cally set its MSBX to 1.

1190 DATA 2, 50 :REM move sprite

s22ssssessrrrsrrsrssarsnsess
reseesed e dtecerrrnaliellelnne

trrrrsreeeseeTeTISITTTITYISISISI YIRS

srrrTrIITIILILIILLILILRSSISISSISISISILIIYIIYISLSY

The numbering of each screen is
such that each screen is always the
previous screen+1, and that the first
patter screen definedisalways screen
number 1. When you have defined
the last screen you then enter a 9"
after the 2"

Example:

Suppose you wanted a sprite to start
at 50, 100 with its MSBX set to 0, and
travel to the right until it has reached
20, 100 with its MSBX set to 1 (right-
most side of the screen), and then
travel back and repeat. You could
enter something like the following:-
1100 DATA 15, 1 :REM turn on sprite
1 (and off all others)

1110DATAB, 1,0,2 :REM Setmulticol-
our on for sprite 1 (off for all others)
and set mcoll to black (0) and mcol2
to red(2).

1120 DATA 16,3 :REM set sprite col-
our to cyan|(3).

1130 DATA7,5 :REM setsprite speed
1140 DATA 12,1, 128, 133, 10, 0,0
REM set up animation.

left until x=50 - its MSBX will be set to
0.

1195 DATA 0 :REM go back to pre-set
return point.
1199 DATA-1 :REM no more pattern
data for that sprite.

As you can see, the actual move-
ment segment represents the last 6
bytes of the pattern, with the remain-
ing 32 bytes representing those fea-
tures that are needed to initialise the
sprite. You can also see why feature
22 (setreturn point) and 0 (go back to
return point) are needed ~ you don't
want the sprite to be plotted at 50,
100 all the time (it won't get any-
where, otherwisel), and the anima-
tion will be reset each time.

Running the Demo

The Basic program supplied on the
disk contais some demo screens
incorporatedintothe data statements
This program also has a number of
other useful routines to enable the
design of each pattern to be made
more easily. This aspect is discussed

later on. However, for DEMO pur-
poses, | will describe the necessary
steps to take to get it up and running.
First, load in the program - type
LOAD “SPRITE DRIVER', or select it
from the menu, then press RETURN.
After the program has loaded, type
RUN. After the main entry program
has loaded you will be asked if you
require certain programs and data.
You should type “Y" at this point. You
willthen, in turn, be asked if you want
toload in each file. Again, you should
pe “Y" after each prompt. Next,
you'll be asked if you need to enter
the contents of the data statements
(containing the DEMO patterns into
pattern memory (POKE into $6000-
S6FFF). Type V" here. After a pause
the program will ask you if you want
to save the pattern data. If you enter
“Y" the program will ask for a file
name and save pattern memory (not
the basic DATA tatements—the driver
acts only on pattern memory]. It is
only that amount of pattern memory
used up by your sprite patterns (the
DEMO patterns, in this case] that is
saved. If you do type “Y" ensure,
before hand, that an appropriate disk
is in the disk drive. The program
appends a *.PD’” onto the end of the
file name. The choice, here, is up to
you, but saving pattern memory will
allow you to use it later on in your
own applications without having to
go through the process of loading in

i <
:

IO

and running the basic entry program.
Next, you will be asked if you wish to
run the pattern constructor. Type "N
here ~ the full operation of this mod-
ule s detailed later. The program will
then ask you if you wish to run the
sprite driver. Enter *Y" here. finally,
you will be asked if you wish to run
the Sprite Driver with the DECRUNCH
program (see Screen Designer). You
should enter *Y" here also. If you
answer ‘N here you will exit this
basic program and the Sprite Driver
will be running under interrupt. You
wil then see the first screen (screen 1)
of sprite patterns being executed. To
access each further screensimply type
“poke 824, screen number 1-5, for the
DEMO screens

If, on the other hand, you enter
Y to this last question then you
should see the first graphics screen
together with the first sprite pattern
screen being run. The following
controls are now provided:-

Pressing “F1” will access the next
graphics screen and sprite pattern
screen.

Pressing “F3” will access the pre-
vious graphics and sprite pattern
screens. (In the DEMO, 5 graphics
screens and 5 sprite pattern screens
are provided).

A number of other control keys
are provided, and these allow you to
construct your own sprite patterns
more easily by allowing you full

movement control over sprite 1 and
allowing control over the shape
pointer and colours of that sprite. In
the DEMO, however, sprite 1 isn't
used until screen 5 and so no effect
will be seen here until this screen is
reached. For DEMO purposes, press
F1’ or F3' only. You can, if you wish,
exitthis program by pressing the run/
stop’ key. If you do this then typing
POKE 824, pattern screen number
willaccess the selected pattern screen.
To see the DEMO graphics screens
type POKE 1022, 1:POKE 820,L8 (1-5
for the DEMOJ:POKE 821, HB (0 for
the DEMO): SY5 52480 [to DECRUNCH
and printthatscreen|. Pressing ‘RUN/
STOP""RESTORE" will exitthe Driver.

Using the Sprite Pattern Con-
structor

Part 1.

Despite its name, this module does
notactually insert patterns into DATA
statements. It does, however, pro-
vide full control over sprite 1, allow-
ing you to move it around the screen
and alter things such as sprite col-
ours, multicolour on/off, and the
shape pointer. It's an invaluable aid,
though, especially when used with
the Decrunch program.

The disk program "SPDRIVER.BAS"
contains pattern data for demo pur-
poses in its data statements. You
should first delete these by removing
alllines past 1000. The easiestway to
do this is by loading in a utility pro-
gram that has a delete function (e.g.
the Devaid utility by Paul Eves, pub-
lished in_the March/April 1989
issue of CDU). Then load in the
SPDRIVER.BAS program (this,
later referred to as the Entry
program, is loaded into $0801 since
we are not using the Loader pro-
gram|. Next, deleteall lines past 1000,
Now disable the utilty program —
most are disabled by typing “RUN/
STOP"+ “RESTORE", otherwise, things
such as re-defined function keys will
affect the program. You should now
alter the file names in lines 36,
40, and 44 to match your own
previously saved sprites, re-de-
fined characters and graphic
screens, respectively (alterna-
tively, you can use the default
names to load in the demo files]
Next, save the program using a
suitable name (I would suggest you
add a “blank” at the end of the

15

name]. You should now proceed as
follows. Load in the program called
“SPDRIVER LOADER". Now list the
program and alter the name of the
program in line 20 to match your
previously saved Entry program
above - if required. Next, run the
program. This places the main
program at $7001, avoiding mem-
ory clashes with sprite, charac-
ter, etc data.

You will now be asked which files
toload in. answer these questions as
appropriate to your needs. Next, you
are asked if you want to enter the
pattern data into pattern memory.
Type "N” here since you are stillin the
process of designing these patterns,
You will then be asked if you wish to
run the pattern constructor - type “Y*
here. Finally, you are asked if you
want to use the Decrunch program
also. Type “Y" ifrequired, making sure
the ‘decrunch.mc” and graphicscreen
files are in memory. If you are not
using the Decrunch program then
type “N". Either way, you will be
presented with the first graphics
screen or a blank screen, as appropri-
ate. You will also see a single sprite,
coloured white. From here, the fol-
lowing controls are provided:-

F1: Will access the next graphics
screen.
F3: Access the previous graphics
screen
M Toggle multicolour on/offfor sprite

c. Increase sprite colour register.
Colour will wrap round from 15 to 0.
F5: Increase multicolour] and wrap
round if required.

F7: Increase multicolour2 and wrap
round if required.

+ Increase sprite shape pointer (+1)
~: Decrease sprite shape pointer
1)

. Move sprite right.

Move left.

Move up.

Z: Move down.

1: Move up+left.

2: Move up+right

Q: Move down+left.

W: Move down+right.

1: Increase ink (info bar) colour.

R: Toggle ROM/RAM characters
SPACE-BAR: Print sprite X,Y co-ordi-
nates, shape pointer, sprite colour,
mcoll, and mcol2 - in that order - at
thetop of the screen. This key mustbe
pressed after each sprite movement

or other alteration to see the most up-
to-date information.

To use this module as an aid to
constructing sprite movement pat-
terns, first select the required shape
pointer (+/~keys). If you intend to use
animationthen selectasuitable frame/
pointer within that animation. Next,
choose appropriate colours for the
sprite (make sure multicolour is set if
needed). Now move the sprite to the
start position within the screen and
press the space-bar. Note down the
information presented — you will in-
sert these into data statements later
on. If the sprite is to remain in a fixed
position throughout that screen then
move to PART 2. Otherwise, proceed
as follows. Move the sprite using the
appropriate keys tothe end of the first
partof the required pattern [i.e. move
it in one straight line until you have
reached the desired end position)
Now, look up the feature table and
write down the appropriate flag —
e.g. ifthe sprite was moving rightyou
would write down “1”. Having done
this, press the space-bar and write
down the appropriate X or Y co-ordi-
nate corresponding to that flag/fea-
ture~write this down next tothe flag
Remember, if the sprite is altering its
MSBX bit then you may have to move
it again [sprites are moved until their
X co-ordinates are the same as the
final destination co-ordinate, irrespec-
tive as to whether this occurred in the
MSBX=1 or 0 region of the screen)
Now, repeat this procedure until the
required pattern for that sprite has
been completed.

Part 2.
Having encoded the pattern informa-
tion for one sprite you can now go on
to build up each pattern for the re-
mainder sprites in the same way. Re-
member, if you are not using a par-
ticular sprite you must write down
(and later insert) a "255 in its
pattern area. Once one screen of
patterns has been defined you can
then, if you wish, enter further
pattern screens in an identical
manner to the above.

Part 3

With all pattern information for ea(h
sprite now written down you

begin to enter them into DATA e
ments. Simply follow the instructions

ber, also, to insert the
appropriate sprite and multicolour on/
off values.

Sprite/Character data Incom-
patibility

Programmers who use sprites and re-
defined characters will be aware of
the clashes of memory between these
and basic program space. If you look
at the memory map you will see that
the regions between $1FCO-$3FFF
(sprite and character data), $4000-
$5FFF [crunched graphics screens),
$6000-S6FFF (pattern memory] and
$CO00-SCFFF [the Driver and De-
crunch programs) have been pre-allo-
cated. Note that pattern memory can
extend up to $FFFF — a lower limit of
$S6FFF is imposed by the entry pro-
gram to allow the entry program it-

self, to sit in the area above this
Taking the above into account, | have
provided a loader program, called
"SPDRIVER LOADER", which sets the
start of Basic to $7001. the program
thenloads inand runsthe main Sprite
Driver. Bas program, where you can
now run the DEMO patterns or con-
structyour own. As a result, problems
of memory clashes with data and the
Basic program should not now occur.
The only problem now is that you
only have amaximum of $3000 bytes
for the basic entry program [contain-
ingyour pattern data in its Data state-
ments). Taking memory and screen
pointers into account (see Memory
Format later) this should allow you
about 2800-decimal bytes of actual
pattern data before getting an ‘Out
Of Memory' error. This should be
enough for most purposes — if you
look at the sprite patterns for many
platform games, for example, you'l
notice that their movement patterns
are very simple and in many of their
screens only a few sprites are used
(and, thus, the minimum amount of
memory possible is used up - while at
the sametime maintaining the game’s
interest). On the other hand, itwould
be easy, at first, to go overboard
using this utility and design patterns
as complicated as possible. The best
advice here is to try to achieve a
balance between pattern complexity
and memory usage. If you do find
that you need more memory then

thereis asolution-loadin the Spdriver
bas program without going through
the loader. This places the program
into $0801 (normal basic start point).
Youcannow use memory up to $ 5FFF
- though you cannot use sprites, re-
defined characters, graphics screens
(and the Decrunch program). Also,
Yyou cannot now use the loader pro-
gram to load your entry program into
$7001 - you'l get an Out Of Memory
errorifyou do. In this case, to see your
patterns at work you should first save
the entry program and then run it
You can now proceed to load in all
required files and run the Driver and
Decrunch - all necessary routines are
at the start of the entry program and
are thus unaffected by graphics and
pattern data. Your sprites and re-de-
fined characters will, however, over-
write the latter half of the entry pro-
gram (containing the data statements)
and this is why you must save the
entry program beforehand.

Re-defined Characters and
Sprites

These have to be pre-defined, either
manually or using one of the many
available sprite and character editors.
I use the excellent “3 into 1 plus”
graphics editor by Tony Crowther,
published in the Nov/Dec issue of
CDU. Sprites and characters must
occupy only the area $1FCO-S3FFF.

The DEMO sprites use the area be-
tween $1FCO-$377F, while the re-
defined characters occupy $3800-
$4FFF. The Decrunch program con-
tains a subroutine, called via SYS
52858, which copies ROM characters
to the block $3800-$3FFF. If you use
this facility for your own characters
then you should switch in these char-
acters using POKE 53272,31

Error Debugging

Earlier on | mentioned that pattern
entry formaterrors are easily detected
bythe Basic entry program. The error-
checking lines here should ensure
that you end up with pattern data for
each sprite in the correct format. In-
addition to this, the Sprite Driver,
itself, has a builtin error-reporting
routine. This routine is only entered
when the Driver comes across an
unrecognised flag (if you remember,
the first number of each feature is
referred to as the flag, and it tells the
Driver which particular feature to
execute]. If an unrecognised flag is
seen then the following occurs: inter-
rupts are first turned off, then if you
look at the top of the screen you will
be first told that an unknown flag has
been detected. Then you are told
what actually caused the error - PEEK
(250), the current sprite being looked
at-PEEK (251), andthe currentscreen
number—PEEK (252]. You'll find these
three pieces of information, together
with the format of the data state-
ments, to be of great value as you
proceed to debug the offending flag.
To pin-point this fiag within your data
statements you do the following:-

1. Take a note of the screen number.
You will now be able to determine
that screen of pattern data from the
data statements.

2. Note down the current sprite
number. A value of 0-7 will be seen
here, where 0 refers to those data
lines containing the pattern for sprite
1, avalue of 1 refers to those contain-
ing the pattern for sprite 2, etc —
within the pattern screen.

3. Now, note the offending flag and
proceed tq look for it within those
lines. Having located the flag you can
then correct the fault. As you can see,
you should be able to correct such
errors quickly and with considerable
ease. Inmost cases the error will be as

17

HAGIC

CORE 000000
_ —

a result incorrectly incorporating
parameters associated with a particu-
larfeaturee.g. "8,0"and "8,3,2,0" are
perfectly valid, where the first version
switches off multicolour for all sprites
~ you DO NOT now add mcoll and
mcol2 after this, as in the second
version (if you think about this then
thisactually makes sense, sinceit saves
memory). Pay particular attention to
the animator, sound and character
plot features. With practice, you
should see very few of these errors
cropping up.

Pattern Memory Format

The format I initially used was to allo-
cate a fixed amount of memory for
each pattern, giving 80 bytes max
However, this allowed for only 6.4
screens of pattern data per $1000
(#4096) memory locations — not a
lotl. And also, it led to considerable
memory wastage ifyou didn't use the
full 80 bytes. It was, on the other
hand, easy to program and compre-
hend during the development stages
However, amuch better technique is
used in the final version. The new
method makes use of memory point-
ers (a similar technique is used in the
Crunch/Decrunch programs|. Here,
each pattern screen begins with a
pointer to the first byte of the next
screen. Each individual sprite pattern
also begins with a pointer, but this
time it points to the next sprite pat-
tern. Accessing each screen and sprite
pattern is thus very fast (simply a case
of switching pointers). However, the

CROSSES 2 HI 00000

main advantages of this method are
that memory wastage does not now
occur, and you can have individual
sprite patterns of any length ~ from
one byte to several thousand bytes, if
needed. On the disadvantage side,
there is an overhead of 18 bytes per
pattern screen, but this is a minor
point since the advantages far out-
weigh any disadvantage.

Cona Io(anom t0 avoid [hex):-
57, ssed by Crunch
50 5D, z o (both
versions).
FB-FF, 2, 4E, 4F Sprite Driver.
Free Memory for use with condi-
tional features (e.g. poke, condi-
tional wait, sprite-sprite seek):-
CEDI1-CFFF, and any other area not
used by your programs. Note that
you cannot use the GETCHAR.MC
program with the Sprite Driver, or the
CRUNCH/DECR MC file with the prite
pattern entry program.

When using this utility SYS 49152
will, as mentioned before, begin
execution of the first pattern screen.
However, SYS 49157 will re-execute
the current screen. This allows you to
re-set the current pattern screen after
e.g. a ‘death’ sequence.

Finally, the sprite driver program
contains a small routine to provide
character animation effects — these
can be seen in the demo (e.g. con-
veyorbelt]. You can use this routinein
your own programs if you wish the
redefined characters correspond to
SHIFT+(N,M,O,P, and T) in bank
$3800-S3FFF. Character animation is
turned on by incorporating “13, 16,
192, 1" into your pattern data, and

th
Basic entry program — this is why you
must specify the end (and, thus, start)
of each screen and sprite pattern
through the use of 1" and 2" in the
data statements.

Memory Map (in hex):-

0801-2092 Screen Designer.
IFCO-377F
3800-3FFF Re-defined char-
acters.
4000-5FFF Crunched screen
data.
6000-6FFF Sprite Pattern

- data.
7000-9FFF Sprite Pattern
Entry prog.
8000-8490 Crunch/
Decrunch.mc
A000-BFFF RAM under
ROM UNUSED.
€000-C99D Sprite Driver.mc
C200-CC18 Getchar.mc rou
tines
CDO0-CEDO Decrunch.me
CEDI1-CFFF UNUSED.
DOOO-FFFF RAM under ROM
UNUSED.

tumedoff f*13,16,192,0"
Bear in mind that if the routine is
turned on then memory correspond-
ing to these characters will be cor-
rupted

Screen Designer

This utility allows the user to design a
series of game screens. These can be
saved and then re-oaded at a later
date for further additions or modifica-
tions. Finished screens can then be
used in your own programs

To use this utility load in and run
the program “SCREEN DESIGNER".
You will then be asked to enter in a
screen number between 1 and 255
(the crunch/decrunch programs ac-
tually address two-byte screen num-
bers but you'll find it virtually impos-
sible to store more than 255 screens
in memory). The exact number of
screens aliowed will depend on the
complexity of each screen. Note that
ifyou are using this program with the
sprite driver make sure that each
graphics screen number is the same
as its corresponding sprite pattern
screen. With all numeric inputs in this

program pressing the back-arrow (just
above the “CTRL" key) will allow you
to re-enter a number if you make a
mistake.

Once a screen number has been
entered you will be presented with a
blank screenand a cursor atthe centre.
Screens are now built up character by
character using the keyboard. From
here, the following features, which
act only on the current screen, are
provided:-

F1 -Increase border colour and wrap
around if require
F2 - Increase background colour.
F3 - Changes the colour of every
occurrence of the character under
the cursor to that of the cursor. You
will not be able to select colours cur-
rently used by any occurrence of that
character in the current screen — this
enables the preservation of screen
features present as a result of colour
differences between identical charac-
ters.
F5 — All occurrences of the current
character under the cursor will be
swapped with the character selected
by the next key-press. Control charac-
ters, such as CRSR movement and
colour will be ignored until a valid
character has been entered.
F7 — Pressing this key gives access to
the main screen processing options.
Fromherethefollowing are provided:-
AD - Loads in previously saved
screens, character sets, or the disk
directory if you enter “S"
SAVE - Saves all screens in memory.
MEM - Displays where the nextscreen
will be placed in memory in both

decimal and hex. Screens occupy
$4000-$5FFF and an “Out of Crunch
Memory” error will be flagged to you
if your last screen tries to exceed this.
LIST - will list all screen numbers as
they are stored in memory. This is
useful for checking that there are no
two screens with the same screen
number. A maximum of 140 screens
can be listed at one time. If you do
manage to squeeze in more than 140
screens then pressing any key willlist
those remaining. The current screen
will be cleared so make sure thatit has
been CHRUNCHed previously.

NUM -Allows you to alter the current
screen number.

VIEW — Allows you to quickly view
a range of screens.

GOTO - Will decrunch and print the
specified screen.

BGN - Selecting this option will reset
crunch screen memory back to the
tart.

WIPE ~ Use this option to clear the
current screen.

OPY - Copies the character set to
$3800-$3FFFF. Use this feature to
make aRAM copy of the character set
before loading in your re-defined
characters (which must, of course, be
compatible with this bank). By the
way, copying screens is very simple.
Simply GET the required screen, then
setits NUMber and finally CRUNCH it.
RAM —Turns on the RAM copy of the
character set (this is done by poking
53272 with 31)

MCOL12 - Pressing “O” will toggle
character multicolour on/off for the
current screen. Multicolours 1 and 2

can be altered by pressing keys “1”
and “2". "Press RETURN - To enter the
screen editor from here. By the way,
to print multicolour characters onto
the screen simply press the CBM logo
key+keys 1-8 to turn on multicolour
and select an appropriate colour for
colour RAM. Now, all characters typed
will be in multicolour mode. To print
in_normal colour mode press
“CTRL"+keys 1-8 to select a colour.
Multicolour and normal colour char-
acters can exist on the same screen at
the same time. You may want to
consult your computer manual for
more information about this mode.

CRUNCH - Crunches the current
screen and colour memory into a
compact form and appends it onto
the end of the last screen crunched.
Each crunched screen is also given a
header which contains the current
screen number, background and
border colours, multicolour status and
multicolours 1 and 2

DEL-This option allows you to delete
a screen or range of screens. Here,
the following are valid if you wish to
delete more than one screen: N1-N2
deletes all screens within the range
N1-NZinclusive, -N and N-will delete
all screens up to and including N and
all screens after and including N,
respectivel;

RENUM - Will renumber all screensin
memory (the first screen is always
given the number 1). You are re-
quired to enter a suitable increment
number, though in most cases this
number will be 1.

ALT - This useful option allows you to
alter the number of any screen in
memory. You are asked to enter the
target screen number (the one to be
altered) and then the new screen
number you wish it to take.

Both the INSerT and DEL:ete key
routines have been re-written to pre-
vent scrolling problems; you cannot
push or pull characters from one
screen line to the next. The cursor
colour can be altered in the normal
wayi.e. viathe CTRL and commodore
keys. You cannot, however, clear a
screen using the CLR key (it would be
100 easy to press this key by mistake).
To clear a screen you should use the
Wipe option from the main menu

F7).

Custom character sets must be
pre-defined and should be compat-
ible with bank $3800-$3FFF. Here,

19

you should bear in mind that the F7
menu is printed with the assumption
that the memory area defining the
alpha-numeric characters should be
compatible with the normal ROM
version - don't define graphic charac-
ters here.

| mentioned above that if you
require to reduce the amount of
memory your screens take up then
you should make them less ‘compli-
cated". The next section gives you an
idea of how to do this by explaining
the memory format and how the
crunching and decrunching process
works.

Memory Format

were more than 256 bytes in length,
The root of this problem, though, lies
in the method of screen crunching,
which produces crunched screens of
variable length. It is this variability
Wwhich leads to the use of a system of
memory pointers [pointers also allow
fast access to each screenl). In con-
trast, if each crunched screen had a
fixed length then manipulations such
as accessing and deleting a screen
would be relatively easy by compari-
son. Such a system is used with ‘Block
Screens’ — which [l say little more
about!

Anyway, back to the format used
with this utilty. Routines such as de-
lete, get, list, etc were eventuall
perfected and are part of the disk file

Theformatcl fosel

on the way in which Basic programs
are stored. Experienced Basic pro-
grammers will know that a system of
memory pointers s used, where each
basic line is preceeded in memory by
a pointer to the next line. Line num-
bers are implemented to allow spe-
cific access to each line. A zero byte
terminates each line and the end of a
program is signalled when a pointer
points to two consecutive zero bytes
With this in mind | came up with the
following system. The base address
was setto $4000 (this s easily altered,
though). At locations $4002/3 a
pointer is inserted which points to the
end of the first screen. There then
follows the screen number, in LB/HB
format, and then the screen data, in
a crunched format. This, then, com-
prises the first screen. Further screens
are added in the same way. Each
screen pointer points to the LB of the
next screen pointer. As this system is
so close to basic | thought that | could
use the basic ROM routines to do
things like accessing (GETing) any
screen, delete screens and then use
the LNKPRG routine to re-chain the
memory pointers, etc. However, one
main problem was encountered here.
This problem was eventually traced to
the fact that the basic ROM routines
were written in such a way that a
maximum of 256 bytes (including
zero) could be addressed at each
basic line, and this is the reason why
each basic line s limited to 256 bytes.
So, there was no alternative but to re-
write the delete and re-chain rou-
tines. These had to be able to allow
deletionsto be made onscreenswhich

20

GETCHAR.MC

A 1 to this format is
implemented where locations $4000/
1 hold a pointer to the end of the last
screen. This tells the Crunch program
where to append the nextscreen and
also allows the Screen Designer op-
tion MEM (display where next screen
is placed in memory) to be pro-
grammed easily.

Now that you know how screens
are stored and how a system of point-
ers is utilised, how are screens actu-
ally crunched?

The technique used here is a
modification of a method based on
character repeats. With this method
the crunch program scans a screen
from the top left to the bottom
right and determines if any char-
acter sequence consists of the same
character. If it doesn't then a spe-
cific ‘flag’/byte is inserted into
memory followed by a straight
‘dump’ of the mixed character
sequence. A zero byte then deter-
mines the end of that sequence. If a
repeat is found then another flag/
byteis inserted into memory followed
by the character code and then the
number of repeats in LB, HB format.
The whole screen is scanned and
converted in this way until the com-
plete crunched version is produced
Then, since the program knows the
current memory location (which is
where the next screen will go) it can
now insert that location into the
pointer at the start of the newly
crunched screen. It also enters this
location into $4000/1 (thus, updat-
ing it). What, then, about colour
memory? Well, at the same time as
scanning screen memory the crunch

program also scans colour memory.
In this case, though, a colour flag
followed by a colour code is entered
into the current screen crunch posi-
tion onlyfthe current colour memory
location holds a colour that is differ-
ent to the previous location ~ and
only if the previous screen location is
not a space character. The net result
is that colour memory is integrated
into screen crunch memory. In this
way, a large memory saving is
achieved. The bestway to explain this
isviaan example. Suppose the screen
is blank except for the word “LAST
SCREEN" s in purple. We would then
have as the crunched version:-

LB, HB, LB, HB, 255,
255550S IR0, 2
2522103

The two pointers point to where the
next screen will be added. The 255, 1
then changes the colour to white
1,text, 255, 5, text, O then signifies a
sequence of mixed characters with a
colour change to purple at the word
LAST, and a mixed character termina-
tion at the zero byte. There then
follows 2, E, 2, 0 whichrepresents the
double Ein SCREEN. The last letter, N,
isthenrepresentedby 1, N, 0. Finally,
the remaining spaces comprising the
rest of the screen is represented
by 2,, 2113

The above system will produce
a reasonable memory saving, but
by modifying this method further
we can save even more memory.
The following, then, is the final
outcome of these madifications:-
ch, LB=character repeat.
254, ch, ch,,,ch (n), O=mixed charac-
ters.
255, C=alter colour.
The above version makes use of the
fact that character repeats of over
255 occur very rarely in most games
{and more soin platform-type games)
Thus, we save one byte since a Hi-
byte counter is not used. However,
should a repetition of over 255 occur
then a further two bytes would be
used to count the remaining repeti-
tions (representing an increase of one
byte over the old system). The ‘ch
above is the CBM screen character/
poke code. You may notice a number
of apparent problems with this sys-
tem.First, byallowinga colour-change
flag (byte 255) to be integrated into a
mixed character sequence (saving

b R T ey

more memory) then we cannot now
use character 255 (normally areverse-
CBM logo+B). Secondly, the use of
the number 254 as a mixed character
identifier means that we cannot now
use this character (reverse-CBM
logo+V). Lastly, since zerois used asa
mixed character terminator then we
cannot now use its character equiva-
lent (normally a “@"]. To prevent this
use if your screens have been de-
signed using the “GETCHAR.MC"
routines (used by the Screen Designer)
then you will be unable to select
either ofthe characters “®” or reverse-
CBM logo+B/V (poke codes 0,254
and 255). | hope, though, that this
will prove to be only a minor problem.

If you are using the crunch/de-
crunch programs on their own then
the crunch routine also makes a pre-
check for these characters. If found
then their screen locations are high-
lighted.

The Decrunch program then
reverses the above process (simply a
matter of acting appropriately to each

screen). Further use of SYS $8000
(and POKE 821/1 with appropriate
screen numbers) will cause all further
screens to be added onto the end of
the previous screens. POKE 820/1,
screennumberfollowed by SYS $8300
(or sys SCDOO if you are using the file
DECRUNCH.MC) will decrunch and
print out the chosen screen.

Memory location 2 is used by
these programs to pass on informa-
tion to the user according to the
following:- if it contains O then all is
well. A 1 means that the decrunch
program has failed to find a specified
screen. Ifthe location contains 2 then
an illegal character (the three men-
tioned above -codes 0, 254 and 255)
has been used in the current screen.
~In this case the screen will need to
be crunched. Finally, a 128 means
that no more memory is available for
crunched screens.

One possible use for this utility is
with loading the disk directory. Load
in any directory and list it. Now
poke1022,0: poke820/1, number

flag). Note that this
clear the last screen before printing
the next — it prints on top of the last
screen (after all, there’s no need for a
CLR]. This means that screens are
printed faster and also gives asmooth
transition between the last screen
and the next.

Both the decrunch and crunch
programs can be used on their own.
The file “CR/DECRMC" should be
loaded in. You should then set the
first screen to the start of memory
using POKE 1022,0. POKE 820,LB:
POKEB21,HB then sets the screen
number. SYS $8000 will crunch the
current screen (and also sets 1022 to
1 enabling the next screen to be
appended onto the end of the first

(sc mber) and SYS$8000
to crunch it. If the directory is too
large to fit onto one screen then list
the reaming part and crunch it again
(don't poke 1022,0 this time). You
can repeat this with more than one
directory if you wish. You can even
write comments onto the screen and
alter screen colours before crunch-
ing. From now on, to look at any
directory simply POKE1022,1
POKE820/1, 'screen number.
$Y5$8300. POKEing 1022 with 1 only
has to be done once - it tells the de-
crunchprogramthatthere arescreens
in memory.

You ~can also use the
‘GETCHAR MC" file on its own. Look
at lines 290365 on the Screen De-

signer for a list of SYS calls and their
actions. You should also list each
routine in the program to tell you of
any parameters you should set up
before hand. The F1-F7 keys work as
for the Screen Designer, though the
F7 key returns control back to basic -
you'llhave towrite your own routines
o give access to each of the SYS calls
from here. Pressing F7 also removes
the centre 4lines (using the routine at
51218). To return these lines and
colour information you should SYS
51243

Loading the Demo Screens

Five example screens are held on the
disk in the file "SCREEN 5”. To load
them in press “F7” and then “L". Now
press ‘D" to load from the disk. Next,
type in the name of the file and press
return. Control will then return to the
editor. You should now load in the re-
defined characters—but before doing
this, press “F7” and then P to make
aRAM copy of the character set. Now
proceed to load in the characters
Using the filename “CHARS". To view
each screen use the GET option from
the menu. Five screens are provided
(numbered 1-5). The re-defined char-
acters correspond to keys SHFT+A-U.

Finally, you can easily alter the
amount of memory available for your
crunched screens. Load in the file
“CRUNCH/DECR.MC" and POKE
33464/5 with the new end of crunch
memory address. This value should
be greater than 4096*4 ($4000) —
the start of crunch memory.

Platform Encoder

This final module will allow the player
to take control of sprite 0 and move it
around the screen. Screen features,
such as ropes/ladders, objects, walls,
etc, are detected in an encoded for-
mat. This means that all screens are
required to be encoded and entered
as basic DATA statements.

with the Sprite Driver, each
feature is identified by a unique flag/
number. All available features together
with their correct syntax now follows.
1,X1,X2,0 - This defines aspace in a
platform, with X1 and X2 defining the
leftandright hand edges of the space.
At this point | should mention that all
features described relate to a plat-
form Y co-ordinate (see DATA format

21

later). Note also that all features end

with a zero and that all parameters

must have values between 1 and
5

255
2,X1,X2,Yend, 1/4,0 - Rope/
Ladder - X1 and X2 are the left
and right edges, Yend is the Y co-
ordinate of the end of the ladder. If
“1/4” = 1 or 2 then the ladder
extends upwards, with a value of 1
allowing the player to move up or
down and a value of 2 allowing
movement upwards ONLY. A value
of 3 or 4 applies to ladders extend-
ing downwards, and 3 allowing
movement down or up and a value
of 4 allowing movement down ONLY.
Toencode arope simply makeX1 and
X2 the same value (you will be unable
to move left or right now — meaning
you won't fall off the rope). Unfortu-
nately, you cannot have ladders that
cross the boundary of MSBX=0 into
MSBX=1 (make surethatladderswhich
fall in the area of the screen covered
by sprite X=1-255, MSBX=0 also end
in that area, and similarly with X=1-
255, MSBX=1. When defining ropes/
laddersifyou wish the playerto fall off
the bottom when moving down then
either define an “invisible” platform at
Yend which consists of a space ex-
tending across the whole screen, or if
a previously defined platform is the
same as Yend then make that part of
the platform corresponding to the
rope/ladder X1 and X2 a space. If on
the other hand, you wish the player
to stop at the bottom of the rope/
ladder (.. and not fall off] then make
sure Yend is not a platform Y co-ordi-
nate. To prevent the player from
moving up off the top of a rope you
should define the rope extending
down from within a space.

4,X, Yend, 0 (no feature 3, 5, 9,
10, 11) - Defines a wall. Yend is the
minimum Y co-ordinate you must
reachtojump overthewall. Ifthe wall
is >2 pixels in width then you may
have to define the wall twice, one
each for walking into each side of the
wall (x values will be different).

6, X1, X2, Yend, 1/2, 1/2, (LB/
HB], Speed, 0 - This defines a lift.
Yend is the destination Y co-ordinate
you (sprite 0] will reach. If the first 1/
2isa 1 then the lift moves up, avalue
of 2 moves you down. If the second
1/2is 1 thenyou leave out the LB, HB
vales and enter the speed (1=fast,
255=slow). If 1/2 s 2 then you enter

22

LBHB ~ a memory address which
must hold a non-zero value for the lift
to operate (free memory can be found
in $9BO0-S9FFF)

7, X1,X2, Speed, 1/2, 0 - This
defines a conveyor, If 1/2 is 1 then
you move right; a 2 moves you left.
Note that conveyors can’ extend
across the whole of the screen,
though this will require two_defi-
nitions of the same conveyor. To do
this define the first half of the
conveyor in the MSBX=0 area of
the screen with X2=255, then
define the second half in the MSBX=1
area with X1=1 (make sure you enter
an “11” as mentioned before.

8, X, 1/2, (LB/HB) — This defines a
ground object. If 1/3=1 then you lose
alife if you reach this point. You must
also leave out the LB, HB values. If 1/

I
£
Ll
B

L K]

3=2 then you insert LB, HB. Reaching
this point now sets HBLB to | (use
with conditionalfeatures). A 1/3 value
of 3 clears location HBLB (sets it to
zero] ~ remember to include the
address. These last two features can
also be used to communicate with
conditional features of the sprite
driver.

12, X, 1/2, (LB,HB), Xnew, Ynew,
172, 0 - This defines a transport
(moving within a screen). If 1/2=2
then LB, HB must be entered and that
location setto 1 to operate. Witha 1/
2 value of 1 you leave out LB, HB,

Xnew and Ynew are the destination
sprite Xand Y co-ordinates. If the final
1/2=1 then sprite 0's MSBX is cleared.
Avalue of 2 sets it to 1

13,X, 172, (LB,HB), SX+1, 1/2,
(X, ¥,1/2), 0 - This feature allows
passage into other screens. “1/2,
(LB,HB)" function as per feature 12.
$Xand Y are the destination screen’s
X and Y co-ordinate (remember to
add 1 to each value]. If the following
172is setto 1 then you enter “0" after
this, and you are transported to the
given screen, setting sprite 0's X and
Y coordinate to the default values
(see DATA format ater). If 1/2=2 then
you enter the new sprite X and Y co-
ordinates followed by 1/2 9MSBX=0
or 1, respectively)

14,X,0 - This final feature should be
enteredinthelastscreen. Upon reach-
ing X the game is reset back to the
beginning. Al collectable objects re-
appear. The current score is carried
over/not reset.

Collectable Objects

Collectable objects are defined sepa-
rately in line numbers 6000 onwards,
and consist of a single character. A
maximum of 7 objects are allowed
per screen. They take the following
rmat:-
X1,X2,0/1,Y1, Y2, CH, CHr, Col, LB,
HB, Sc/0
X1, X2 and Y1, Y1 define the left,
right, top and bottom edges of the
object (X1<X2,Y1<Y2) - as the sprite
hits it. Use the Screen Designer to
determine these values by moving
the sprite firstly to right until it just hits
the object. Now press the spacebar
and note down the X co-ordinate.
Repeatthis hitting the object from the

right and then from the top and
bottom of the object. If 0/1=0 then
the object is in the MSBX=0 area of
the screen. If this value equals | then
the sprite’s MSBX must equal 1 to hit
it. CH is the CBM poke code of the
original character while CHr is the
code of the character replacing CH
one taken (Thus you don't have to
leave a blank space once the objectis
taken). Col is the colour of both CH
and CHr. LB and HB is the screen
address of the object. This is calcu-
lated automatically by using the “X”
function of the Screen Designer. Sc/0
if>0is the score to be added once the
objectistaken. IF THIS VALUE IS ZERO,
however, then you gain a life once
you take the object (useful in later
screens of a gamel. If you do not use
the full 7 objects in a screen then you
must pad out the remaining objects
with 11 zero's per unused object.

Data Format

Each screen is given a header of 5
bytes. The first two bytes are the
screen X and Y values (note that you
enter the actual number - don't add
1). The next three bytes are sprite 0's
default X and Y co-ordinates and its
MSBX value (0/1). These are the co-
ordinates the sprite is given if the
player loses a life or enters another
screen with the sprite X and Y values
unspecified (see feature 13). Youthen
enter your encoded screens platform
by platform in the following manner:-
Line No, Y, 888, data, 11, data, 0 (or
9,999)

Line No is the current Basic line
number. Y is the platform Y co-ordi-
nate (sprite Y value standing on the
platform).

You must then enter “888" - this is
where the pointer to the next plat-
form s inserted (automatically). After
this you enter all those features on
that platform that can be hit by the
sprite when its MSBX=0 (ie 1t 4/5 ths
of the screen from the left). Remem-
ber to enter-after each feature. Ifyou
do not have any features after this
point on the screen (ie MSBX=1) you
enter another 0 and begin encoding
the next platform (the last feature
thus ends with two 90s. If, however
you do have features that can only be
reachedwhen MSBX=1 thenyou enter
11 after the last 0. You then enter the
remaining features of that platform

followed by 0 (from last feature), 0.
Jump Right/Left Data

This data defines the movement of
the sprite as it jumps. You are free to
redefine this table. To do this you
should select appropriate values from
the following:

0 moves sprite Y-1

1 moves sprite X+/-1

2 moves sprite X+/-1 and Y1

3 moves sprite Y+1

4 UNUSED

5 moves sprite X+/-1 and Y-1

6 signals the last byte.

These values should be entered in
place of those currently present in
lines 1340-1359.

To begin encoding your own screens
you should first load in the program
*PLAT.BAS" the delete lines 1400-1870
(leaving the 17}, and also delete lines
600-8999 (leaving the “27). You
should now save the program using
a suitable name e.qg. PLAT.BLANK.

Example

Imagine a screen (number 1,0) that
consists of two platforms - one with
sprite Y co-ordinate of 100 and the
other with a Y value of 170. The
screen also has one ladder with X1
and X2=50 and 64 in the MSBX=0
area. The ladder starts on platform
Y=170 and extends up to platform
Y=100. On platform Y=170 there is a
conveyor that extends from X=200
(MSBX=0) to X=20 (MSBX=1]. There s
alsoadoor to screen 2, 0 on platform
Y=100 at X=25 (MSBX=1), and you
wish the player to start at X=100,
Y=100, MSBX=0.

These co-ordinates will have been
previously determined by using the
Screen Designerand moving the sprite
overthese objects, pressing the space-
bar and noting down the relevant
values

To represent this in DATA format
you first enter the 5 header bytesi.e.
screenX,Y, SpriteX, Y, 0/1. The actual
values entered would be “1,0, 100,
100, 0". Onanew lineyou then enter
all objects on the first platform (at the
top of the screen|. This line would
appear as:-

100,888, 2,50, 64,170,3,0, 11,13,
254,311 0; 0

The first 100 is the platform Y co-
ordinate followed by 888 (pointer)
“2, 50, 64, 170, 3, 0" defines the
ladder extending downwards - every
ladder, thus, has to be defined twice
if you want the player to be able to
walk onto both ends of a ladder. If,
however, the player can jump onto a
ladder then you can, if you wish,
define the ladder only once. The next
byte (1) tells the computer that
features after this point can only be
hit when the sprite's MSBX=1. The
final feature defined, *13, 25, 1, 3, 1,
1.0, 0 allows the player to enter
screen 2, 0. Note, however, that one
is added to each screen number— this
avoids the use of zero’s, which would
confuse the program into thinking
that the end byte of that feature has
been reached. Not that this feature is
unconditional (no LB, HB) and that
default sprite X, Y values are to be
used when entering the next screen,

This then is the encoded version
ofthefirst platform (remember to add
an extra zero after the last feature
defined on each platform). The next
platform (Y=170) would appear as:-

170,888, 2,50, 64,100, 1, 0,7, 200,
255,30,1,0,11,7,1,20,30,1,0,9

As before, you enter the platform Y
then 888. The ladder is now defined
a second time with Yend=100 and
the ladder direction setto 1 (allowing
movement up or down). The con-
veyor is now defined in the MSBX=0
area. Note that X2=255. The remain-
ing segment of the conveyor is now
defined in the MSBX=1 area of the
screen [via the use of “11”. Note that
Xi=1

Since this is that last feature on
the last platform of the screen you
enter a 9" after the last zero

This then is the encoded version
of the whole screen. further screens
can be added next (or at a later date
- after saving the program)

In General

Each platform encoded should be
less than 253 bytes in length, though
this should_pose few, if any, prob-
lems 7

There s no limit to the number of
features you can have per platform/
screen, though the gameplay will slow
down if too many features are pres-

23

ent. Games can be made more com-
plex by the use of conditional features
e.g. walking over a switch which
allows another feature e.g.
become functional. Note that the
player can also communicate with
the sprite driver by the use of “poke”
function of feature “8” and any condi-
tional feature in the driver. The driver
can also be made to affect the player
in that a sprite can switch on/off any
of the conditional platform features.
Anote of warning here; when using
conditional features be sure to use
free RAM/memory (see the memory
map) and to keep track of memory
locations used, and for what pur-
ose.

Error debugging here can, atfirst,
bea difficult process. The main points
to remember are to define each plat-
form clearly (don't define two plat-
forms on one line], and to pay close
attention to the parameters associ-
ated with each feature and any muiti-
functionfeature. Separate eachscreen
with REM lines. You can also include
REM's between platforms to make
future alterations easier.

en designing games you
should startwith the screen designer.
This is the easiest module to use since
allfunctions are automatic. Make sure,
though, that no lifts or rope/ladder
extend across the MSBX=0 to MSB;
region of the screen — you'll have to
use the ‘pattern constructor’ module
of the sprite driver to check this. Do
not enter collectable objects
(platform.mc does this) but do note
down their screen addresses — given
in their LB, HB format. You should
then be able to encode your screens|

rlaven 3
it

24

Both the platform encoder and sprite
driver will take some practice to get
used to, however, once mastered it
shouldn't take you long to complete
one game screen.

Note that due to memory limita-
tions imposed by the object table of
plat.mcyou are limited to a maximum
of 32 game screens.

Finally, due to its complexity the
chances of encountering problems
when using this system for the first
time is probably quite high. To start
off with, make your screens simple,
with few platforms and features. Then
gradually build up to more complex
screens as you become more familiar
with the format of each feature.

Memory Map

$0800-onwards Plat.bas
$8000-$8F9D Plat.mc
$9000-5999F Object table (32
screens)

$99A0-$9A7F Object condition table
$9ABO-S9AFF Jump right/left data.
$9B00-$9FFF Free memory for use
with condition features.

Note that Plat.bas will, if large
enough, extend into the sprite and
character definition areas. If this
happens (you'll notice (Drrupledspnle
shapes) you should load in your
sprites after running o Bas.
Note also that there is no provision
made to allow you to save a com-
plete game - this would require
the saving of the whole of memory
from $0800-$D000. This would mean
very long saving and loading times.
You would not be able to use a Disk
Turbo program since most use mem-
ory within the area occupied by the

jame. As a result, to run a game you
should load in the Spdriver.Loader
program and run it, then press RUN/
STOP+RESTORE and finally load in
PLAT.BAS and runit. This will give you
aSYSs address. Simply move the cursor
over it to run the game. For those
fortunate enough to own a “back-up”
cartridge e.g. the Expert/Action re-
play you can make a back-up copy of
the game by breaking into the initial
screen. You should now be able to
load n the game using the cartridge’s
fastloader.

AMIGA C128

* FREE 10S

SEIKOSHA SP

[C64 DISK DRIVE| £3.50 p&ep

MODORE 1541 Gl DISK DRIVE, SLIMLINE CASE,
POW)
| THE ONLY DRIVE 100% COMPATIBLE WITH THE C64/128 | e cou/i28

NLY;
0STAR GA 5389
UK VERSION .Ncum Mousp WORKBENCH

13, BUILT N DISK DRI

% NEW BATMAN PACK

LIGHT FANTASTIC UPGRADE PACK

COMMODORE MPS1230 £159.00
150V
STAR LCI0 COLOUR (C64)£229.00

ER SUPPLY UNIT, 5//+* DRIV

[EMcAswm g

£5.00 P&P

LIGHT GUN £36.50
COALIGHTGUNPLUS £3.50 P&P

GAMES AND UTILITIES

LIGHT FANTASTIC PACK
INCLUDES - LIGHT GUN 3D
ES, PAINT PACKAGE,

(Cot) £149.00

5 DSDI
S DISK BOX 535
100 DISK BOX 5257

DISK BOX 35"

DISKS

100% ERROR
S £140.00 + £5.00 P&P

10335 DD £9.50 | C64 DATA RECORDER ... £2450

10552 £450 | \LOAD-IT" DATA REC£35.00

DATA RECORDER, GAMES

£599 | Co4 POWER SUPPLY
€64 MOUSE, MOUSE mn
HOLDI

NOUSE HOLDER

oot
CARRIAGE £1.50

BnE

C.M.S CROFTON Mluw 5llrrur,s 01-469

lmocl(u:v l.oNDoN su 280 3246

Add an extra 2K of screen
storage to your C64 with this
handy utility

By Phillipe Bastings

orking on a big computer
might not be so exciting
as working on my good
old C64, butat least, it gives me ideas
of programs to develop for the C64!

One feature that is very useful
when developing a program is the
possibility of scrolling up or down the
screenortorestore the previous screen
1o see what you typed some minutes
earlier and then to come back to the
current screen.

From now on this feature is avail-
able on your Commodore 64 thanks
to this handy utility.

SCREENS adds 2 Kb of screen
memory to the usual 1 Kb (1024-
2023). Every time the screen scrolls
up, SCREENS will store the line that is
going to disappear, the top line of the
screen, to another place in memory
and gives you the possibility to bring
that line back to the current screen
simply by pressing a function key and
withoutlosing any information of the
current screen

Note that only the characters are
saved, butnotthe colours. This should
not disturb you as long as you don’t
change the current colour every time
Yyou enter a new program linel

As mentioned above, a simple
key press will bring the previous text
back to the current screen. The 8
function keys are redefined in this
way:

PREVIOUS LINE

PREVIOUS PAGE

NEXT LINE

F4 => NEXT PAGE

5 => LIST

LIST + CARRIAGE RETURN
CLEAR CURRENT SCREEN +
CURSOR HOME [same as SHIFT/CLR-

HOME)
F8=>CLEARALL SCREENS + CURSOR
HOME

How it Works

At initialization (SYS 51152) the KER-
NAL ROM is copied into RAM (PEEK

(1)=53). This is necessary to redirect
the usual scrolling up routine (59626)
t0 a new routine.

Every time the system is calling
the scrolling up routine, SCREENS
scrolls up screen 3 losing line 0, then
stores line 0 of screen 2 to line 24 of
screen 3, then scrolls up screen 2,
then storesline 0 ofthe currentscreen
to line 24 of screen 2 and finally
returns control to the system's own
scrolling up routine.

As you might guess, this causes a
ot of memory moving every time the
system performs a scrolling up of the
screen. You will be aware of this
when listing a program, as you will
notice that the speed is reduced.
Figure 1 shows what is going on.

When you press function key F1,
the opposite is happening, except
that nothing is lost. Line 24 of the
current screen is stored to line 0 of
screen 3 using a 40 bytes long buffer.
(See Figure 2]

The same is happening when
using function keys F2 or F4, except
thatin this case a 1 Kb buffer is used.
This buffer uses the 1 Kb of RAM just
before the Basic interpreter (39960-
40959). This should not disturb your
basic programs as long as they are
notlonger than 37 Kb. The only thing
you have to be aware of is that Basic
stores strings variables starting from
the top ofthe free basic RAM. So ifyou
type in DIRECT MODE, AS="YOUR
COMMODORE", then type PRINT AS,
the string A$ is displayed. But f in the
meantime you press function key F2
or F4, the variable AS will be de-

have used machine language of
course, but also a routine of the Basic
interpreter (41919) that moves one
block of memory from one place to
another. This is the reason why |
could not use the RAM under the
Basic ROM for the storage of the two
more screens and for the 1 Kb buffer.
SCREENS redirects the scrolling
up routine of the KERNAL, but also
the IRQ vectors (788-789) for execu-
tion of the SCREENS routines when a
function key is pressed. When a basic
program is running, SCREENS deacti-
vates the function keys, but when the
basic program stops, SCREENS will
automatically reactivate them.

How Memory Is Used

49152-50151 : SCREEN 2
50152-51151 : SCREEN 3
51152-52140 : ML + IRQ ROUTINES

828-882 : TRANSFER FROM ROM TO
RAM. THIS AREA IS ONLY USED AT
INITIALIZATION

39960-40959 : BUFFER

Some zero page locations are also
used as working storage areas. These
locations are 2 and 251 to 254.

How to Start with Screens

When you want to work with
SCREENS, select the program from
the menu. The machine code will be
poked into memory and initialization
will take place. Amessage will appear
on the top of the screen when the
program is ready

Load a basic program ortypein a

stroyed by the buffer. This is not true program.
: E
s scntens werns

& Bk

when a program is running because
the functionkeys are disabled and are
automatically re-enabled when the
basic programs stops!

You will notice when using the
function keys, how fast everything
happens although 4 Kb of memory
are moved every time. To do this |

Ifyou press RUN/STOP RESTORE,
SCREENS will be deactivated. To reac-
tivate, type SYS 51152. Note that
when SCREENS isinitialized, all screens
are cleared. (Same as F8)

REMARK : SCREENS might not work
correctly with some cartridges!

25

Data compression techniques
explored in an easy to under-
stand method
By Neil Higgins

atechnique which is primarily con-
cerned with reducing the memory
used by a block of data, and pro-
grams stored on disk. Even though
this method has been written and
tested on the Commodore 64 it will
easily convert for use on any other
computer, especially if you have a
knowledge of machine code.

Ingeneral, youwil find that most
computer files contain large amounts
of repeated numbers, this is particu-
larly soin programs containing graph-
ics data such as hires screens, charac-
ter sets and sprites. We can exploit
this fact, and in some cases depend-
ingon the contents of the ile, achieve
savings of up to 50% and more. You
may be thinking, what s gained from
making a file smaller? Well the most
obvious advantages are that it will
occupy less disk space, and the time
taken to load the file could be consid-
erably reduced (especially under
normal load conditions on a 1541]
Imagine you are writing the nextblock
busting arcade conversion and you
suddenly find that the graphics are
going to need more memory than
what is available, what do you do?
Scrap the game? No, you could split
the game and turn it into a multi-
loader which are a bit of a pain, or a
better alternative might be to com-
press some of the data and squeeze it
into one file.

Probably the most common
method of compression, which relies
on the data containing long runs of
repeated characters, Run Length
Encoding. If you take a look at Dia-
gram 1(a) you will see a string of
characters, which could be encoded
more compactly by replacing each

l nthisarticlel would like to examine

repeated part with a count of the
number of times it is repeated, fol-
lowed by the characteritself. We could
say that we have 4 B's followed by 5
A's etc, which continuing to the end
of the string would compress into
that of Diagram 1(b), and as you can
see we have achieved a saving of 10
characters (48%). Note, it is pointless
to encode a run of less than three
characters, since two characters
(count, char) are needed for encod-
ing. The major fault with this routine
is that the string to be encoded must
only contain letters or else when we
come to decompress the string back
to its original state we won't be able
to distinguish whether we have a
normal digit or a count for the next
character. We can solve this problem
quite easily by using another charac-
ter in the encoding process, for sim-
plicity we will call this the ‘marker’,
now each appearance of this charac-
ter signals that the next two charac-
ters consist of a (count, char) pair, just
like the previous method. To make

this a lttle clearer take a look at Dia-
gram 1(c) in which we have used the
letter Z as the marker to encode the
string in Diagram 2(a). With the use of
a marker though, we have reduced
the saving from 10 to 6 characters
(29%) but the method is more effi-
cient because we can now use digits
or any other character in the string.
One problem which may occur is the
appearance of the market character
in the string, we cannot afford to
ignore this, so what we now have to
dois encode every letter Z asif it had
been repeated, or else it could be
disastrous because the decode rou-
tine would interpret every letter Z as
a marker. If you take a look at Dia-
gram 2(a) you can see our string
contains five ‘Z's after encoding we
end up with Diagram 2(b) in which
the first Z, even though it is not re-
peated has been encoded with a
count of one. Another method that
can be used to encode a marker, is to
use a count of zero, that is 0 would

representany occurrence of the letter.
Z, but as you can see in Diagram 2(c)
after encoding we have ended up
with string three characters bigger
than the original 2(a) which defeats
our objective. At this stage | must
point out that in some cases you will
end up with a bigger string even after
compression, otherwise you could
continually apply the methods until
the string is very small, which is just
not possible! Soitis entirely up to you
as to which method you prefer to
encode the marker, but for the rest of:
this article we willstick with the first of
a (marker, count, marker). There is a
simple way we can find a marker
which would result in the most effi-
cient compression, but could add a
considerable over-head intime, espe-
cially on large blocks of memory or
files. Can you guess what it is?

Keep reading and all will be re-
vealed (hal).

Okay, thats most of the theory
out of the way, we shall now take a
lookat converting all this information
to work on the 64. In fact we do not
need to change much, its just a case
of using numbers instead of charac-
ters, asmost of you should know each
memory location in the 64, can only
hold avaluein the range 0-255 ($00/
SFF hex). Knowing this, lets imagine
we have a block of memory contain-
ing a small program and some graph-
ics data that we we want to com-
press, first of all we need to choose a
suitable number to use as the marker,
and as | mentioned before there is a
way of finding one. What we have to
do s search the whole block for any
number that does not appear, or
appears the least times. However, if
wewere doing this on a large block of:
memory, even using machine code, it
could take a long time, so a quick
alternative is whats needed. The
number | tend to use as a marker is
239 (SEF), for the only reason that it
is not used as an op code in the 6510
instruction set, so the chances of it
being in the object code are pretty
remote, of course we have no way of
telling what numbers make up the
graphics data, unless the search
method is used. If you take a look at
Diagram 3(a) you will see sixteen
hexadecimal numbers just as they
might be displayed using a monitor,
they have been compressed into
Diagram 3(b) using the marker SEF,
and thats it, just a basic change from
characters to numbers.

On the disk is a machine code

26

ON THE DISK

program called compression that puts
allthis theory to the test, in that it will
compress and decompress any num-
ber of bytes (default is 16). The pro-
gram was written using the 6510+
assembler but should be compatible
with most assemblers that use Basic
source files. Itis well documented but
1 would first recommend you to read

| itthoroughly (get a isting if you have
a printer] before trying it out, that

‘ way you can be sure how it really
works. The routines were actually

written for a program | was develop-
3 ing which compressed data as it was
foading from disk, and as you know
¢ the disk only outputs one byte at a
time, hencethe need totore the first,
inputthe second byte, compare them
for any repeats, and so on. You might
like to put all this knowledge into
practice and use the routines as a
base for writing your own program
compressor/compactor, if you do
decide to have a go then | wish you
good luck.

- (a) BBBBAAAAADDDECCCCCCFF
| (b) 4B5A3DE6CFF
(¢) Z4BZSADDEZ6CFF

Diagram 1

(a) ZCCCCBBEZZZZEEEE
(b)) 212Z4CBBEZ4ZZ4E
(¢) Z6Z4CBBEZ0Z0Z0Z0Z4E

Diagram 2

(:a) AC 00 00 00 00 00 7F BC
FF FF FF FF EF 70 6E 55

(b) AC EF 05 00 7F BC EF 04
EF EF 01 EF 70 OE 55

Introduces an easier way to
pay for your subscription
You can now subscribe to COMMODORE DISK
'USER by Direct Debit, a new service we are able to
offer to our readers.
Paying for your subscription by Direct Debit is
quick and easy and has advantages:
% Only one piece of paper to sign - simply complete
the Direct Debit Instruction.
% Your bank does all the work - they will make
payments on your behalf.
* Automatic renewal of yom subscription - no more
delays and issues miss
* Post free subscriptions.
% Special Subscriber Only offers
If you've been thinking about subscribing to
COMMODORE DISK USER then now is the time
0 do so - it’s never been easier and it only costs
£33.00 a year!
If you want to receive a regular supply of the best
guide to Commodore 64 software available, then
subscribe today by Direct Debit, simply complete
and return the order form below.

IS s e sJCOMMODORE DISK USER st the
annual rate of

INSTRUCIIONS T YOUR BANK TO PAY DIRECT
Please complete Parts 1 to 5 to instruct your Bank to make
payments directly from your account.

Originator Identification Number (81 S| 21921 7]
LTheManager— Bankple

2. Name of Account Holder
3. Account
Number [TTTTTT1]
4. Bank
soring Cote[T] (1] [T

5. Your instructions to the bank and signature.

« Linstruct you to pay Direct Debits from my account at the
request of Argus Specialist Publications in respect of my
Subscription Advice.

« The amounts are variable and may be debited on various dates.

* T understand that Argus Specialist Publications may change the
amounts and dates only after giving me prior notice.

« Lvill inform the bank in writing if I wish to cancel this
instruction.

* Lunderstand that if any Direct Debit is paid which breaks the
terms of this instruction, the bank will make & refund.

Signature(s) Date
Title Mx/ Mrs/ Miss

Diagram 3 0 = zero character

osteode otk
Return hisform t: Selct Subscrptions L. § Rivr Park Extate
Billet Lane, BERKHAMSTED, Herts HP4 1HL. CDDD/1

27

Animator

Get those single or multicolour
images animated just like the
movies with this easy to use

utility
By K. Hall

reating Hi-esimagesthat have
animation is not the easiest of
tasks on the C64. This utility,
which is a concept | have had for a
long time, should take some of the
hard work out of it
To start designing your character
for further use you should run the
basic programme DESIGNER OFFSETS
which pokes into the memory a series
of offsets for the X and Y coordinates
during the drawing routine, after
Ioading the ANIMATEMC programme.
There is a simple demo pro-
gramme included which uses the file
created fromthe designer (thisis called
TESTI and i suffixed with .ANM) and
afile called SPRITE FILE 1
The demo contains three main
routines which show a Hires charac-
teroperating ininterrupt-drivenmode,
a hires plot routine showing an ab-
stract simulation of resonance, and a
basic driven Hires character showing
how information about the charac-
ters position can drive a hardware
prite.

The Hires animator program was
created to take the heartache out of
designing a sequence of animated
images in single or multicolour mode.
The concept originally came about
after | thought that it might be pos-
sibleto create theillusion of changing
the position of an actor's body from a

28

range of photographs to give the
impression of doing avariety of stunts
while the actor was safely drinking
ginand tonics in the local pub. All the
hard work would be done by com-
puter to generate a scene in the film,
From this rather grandiose idea came

of apparent movement can be varied
for both the arms and the legs of the
character created.

When | first came up with the
idea for this programme, | wrote the
algorithm to recreate the images in
Laser Basic, and the method employed

thisrather
obviously due to the restrictions of
memory and the C=64s 320 * 200
resolution, a lot cruder than any that
would be required for sequences in a
film. (Since writing this programme |
have watched a video of “The Run-
ning Man" where a similar idea to the
one | originally had was used in the
story to create the effect of Ben
Richards fighting with another man,
when it was in fact a stunt man with
a computer generated overlay of a
digitised photograph). Perhaps some-
day | might, with a different algo-
rithm to the one I'm using here, be
able to create something a ot more
realistic than this for a computer to
use, (I'm thinking of the Amiga next)
using perhaps a collage of digitised
images and a Video to bring this
about. However until then you might
find these a useful series of routines
until both you and | are slightly richer.

The programme will create a series
ofimages and reverse them from one
single image drawn using a joystick
(or mouse in joystick mode] in either
two colours or multicolour modeusing
bit mapped memory, and allow you
to save them for Use in your own
programmes. Each image can be half
the height of the screen and up to
quarter of the width and the amount

) by
bit and manipulate the legs and arms
accordingly. As you can imagine this
was a rather slow and tedious busi-
ness and took something ke 15 to 20
minutes to generate just 7 images
(yawn). Then when | decided to see
how well | could cope with this idea
in assembly language, it being the
first major piece of work | have at-
tempted in this medium, | went back
to the drawing board and worked on
creating the other images whilst the
first was being drawn and then the
final images being reversed only on
completion of the first. This all began
something like three years ago and |
finished the bulk of the source code
then. | would have had the whole
thing completed and debugged a
long time ago but for the fact that in
the meantime | have completed an A
level in Computer Science, City and
Guilds Cobol (Yawn again. Cobol is a
bit like having an attack of verbal
diorrhea, whenyou've grown upwith
Basic which is more concise and to
the point. Unlike mel] and Systems
Analysis whilst my wife has brought
two children’into the world. Its only
recently that I've had a good bash at
trying to debug the main animation
routines, such as when the character
moved from right to left all | seemed

to get was a screen full of garbage
(this took me ages to figure out what
was going wrong and it was some-
thing quite simple at the end of the
day). Finally the technicolour version
arrived and here it is.

Designer instructions

First of all you will need to load a short
Basic programme. This asks whether
youwillwantto design in multicolour
made or not. You will then be asked
for the background and other
colour(s). Next you wil be asked for
the offset factor for the character
designer. The greater the value for
this, the more extreme the movement
you will get for the character you will
design. Avalue of O will give a statue,
butremember, to avoid overstepping
the characters dimensions the pro-
gramme will reduce the amount of

programmes offsets are set to ma-
nipulate the data for figures facing
this direction. On pressing RETURN
thecharacters Hires Data are reversed.
Actually this is not strictly true as in
Multi-colour mode there are two bits
to represent each pixel. Therefore
with a normal reverse routine colour
1 would become colour 2 and vice
versa. (Colours 0 and 3 would remain
unchanged). There are two different
routines to deal with two colour or
multi colour modes, thoughyou actu-
ally need not worry about this as
they're called automatically depend-
ing on which one you're in

Option 2)

This allows you to generate the arm
movementofeither one or both arms.
You will probably want to create the
effect of just seeing one arm. Key
commands are the same for option 1.
Option 3)

e 3%

high offset factor which | have re-
stricted to 2.5. The programme will
then poke into memory the data
needed to adjust the legs of your
creation. Nextyou will have to repeat
the operation for the arms (you will
draw themaintorso, head and legsin
onegothen add the arms afterwards)
Again the data s poked into memory
and finally you will get the chance to
access the main design menu, which
has six options.

Option 1)

This allows you to draw the main part
of the body and legs and has slightly
different key commands depending
on whether you're in hires or multi-
colour mode.

In hires mode, pressing E will toggle
the mode of drawing between eras-
ing and drawing the foreground
colour. The crosshair shows the point
atwhich drawing will occur, this and
the border will switch between red
and green depending on this mode.
Pressing C will clear the screen and
character data.

In Multi colour mode pressing keys
1,2,3 and 0 will switch between col-
ours and C will also clear the screen
and character data.

Pressing RETURN in both modes will
return you to the main menu (after a
very short delay in which the charac-
ter data is reversed.)

You should always draw your charac-
ter facing from left to right as the

Nowisyourchanc you'
created. Move the joystick left £
right to animate your character. Press
the fire button to exit.

Option 4) and 5

These allow you to save and load
your design to either tape or disk
Type in T or D for device of your
choice. You will only be allowed 10
characters for the filename. An exten-
sion of ANM is added to the filename
automatically in either load or save
modes so that you can distinguish
these files later.

Not only is the design saved but also
whether it was muiti colour and the
colours originally picked by the user
Option 6]

Restarting the utility allows you to
change the offsetvalues for the differ-
ent frames. However this will also
clear the existing design in memory,
50 be careful

Using Your Design From Ba-
sic

The animation routines can be run as
an interrupt driven routine or directly
byaloop routine from basic. Sincethe
designer was written using a plot
pixel routine | have given the basic
programmer the facility to plot and
unplot points on the hires screen.

Sys Routines and Poke or Peek loca-

i

ns.
ABASE:5 1290

Location holding Hires screen vector
LO-BYTE. For those unfamiliar with HI

and LO-BYTE vectors then you will
need to realise that the Commodore
usessixteen bitsto find any locationin
memory, which is two bytes. It is
standard formatto store vectors as LO
byte, Hi byte, in fact this is how the
machine is wired up for indirect
addressing routines in machine code.
E.G. Location 49152 is $C000 in
Hexadecimal or Base 16. Therefore to
address this location from a two byte
vector the o byte would contain Oi.e.
49152-(INT(49152.256]*256), and
the hi byte 192 ($C0 in Hexadecimal)
i.e. INT(49152)/256

BASE+1
Hires screen vector HIBYTE
AER4917
Routine to print standing figure (ei-
ther facing to the left (RILE=1) or to
the right (RILE=0)
ALOOP:49837
Routine to exclusive or an 80*96
pixels block of memory from start
address held in lo hi format at loca-
tions $FD and SFE (253 and 254
decimal) to $FB and $FC (251 and
252 decimal)
ANIM:49450
Interrupt driven animation routines.
Both animation routines (this oneand
NANIM) will read the joystick port 2
automatically.
AOFF:49475
Routine to switch off interrupt driven
character routine.
ASTE:49890
Routine torestore variables for ALOOP

Bottom of memory clear vector H-

BYTE

CLS:49235

Routine to set video matrix to start at
C00.

5
CMEM:49246
Clear memory of video matrix to cok
ours set by user during his design of
character. This routine reads 49157
which hold the nybbles for the video
matrix (now at $5C00) and 49158 for
the colour ram ($D800 to $DBFF).
COLOUR:50982
When in four colour mode, setting
this location to 0,1,2 or 3 will plot
location in background colour or
colours 1,2, and 3 respectively
CT:50236
Top of memory clear vector HI-BYTE
DX:49359
Location storing direction in x axis of
joystick in port 2. (1 for right move-

29

ment. 255 for left movement)

DY:49360

Location storing direction in y axis of

joystick in port 2. (Either 1 or 255)

ERASE:50981

When plotting pixels in two colour

mode, setting this location to 1 will

erase pixels, setting to 0 will draw
ixels

FIRE:49361

Location holding the value of 1 when

Joystick fire button pressed.

HL:49919

Extreme left hand side co-ordinates

for Hires Character. HI-BYTE.

HR:49921

Extreme right hand side co-ordinates

for Hires character. HI-BYTE.

HX:50983

Position in x axis to plot hires co-

ordinate. LO-BYTE (i.e. 0-255). Note

in 4 colour mode, the co-ordinates

stil run from 0 to 319 which the plot

routine converts this to a two bit

Position in x axis to plot hires co-
ordinate. HI-BYTE (i.e. positions 256
10 320 minus 256)

HY:50985

Position in y-axis to plot hires co-
ordinate.

INIT:49362

Routine to initialize a character at the
left hand side of the screen. This can
take a lot of pain out of setting up a
character for animation.

11:49918

Extreme left hand side co-ordinates
for Hires character. LO-BYTE.
LR:49920

Extreme right hand side co-ordinates
for Hires character. LO-BYTE.
MODE:49711

bl TG gt s

96.

PAUSE:50192

Location to hold value PV to slow
down animation routine (0=fastest,
255=fastest)

PLOT:50901

Routine to plot pixel at HX,HY and in
colour COLOUR (4-colour mode) or
ERASE (2-colour mode)

PV:l6

Value held at location PAUSE to slow
down animation routine.

PX:49924

Location holding number of charac-
ter blocks moved by hires character.
PY:49925

Location holding number of charac-
ter blocks moved down by hires char-
acter

RILE:49916

Location telling you whether the
character is moving right to left (1) or
left to right (0]

SBANK:49205

Routine tosetbank that the VIC-ll chip
will rend to bank 1. Again for those
unfamiliar with the banks used by the
commodore 64, | will explain. The
VICHI chip can only “see” 16K at any
onetime. Therefore anything thatthe
programmerwishestofitonthe screen
including screen memoryitself, sprites
and character set must all be in that
16K block. (This is not quite true but
for the purposes of brevity you will
have to take it for granted.) The pro-
grammer therefore has the choice of
4 banks of memory to choose from of
which the default is 0. Memory regis-
ter $DDO0 (56576}, bits 0 and 1 are
used to set the Bank and $DO18
(53272) to set the screen (or video
matrix) memory and the character
dot data base (or hires pixel data)
SCHBASE:49224

code instruction
whether routine is to be vnlerrup(or
non interrupt driven i.e. 96 for non
interrupt or 108 for interrupt.
MULTI:49152

Thislocation stores whetheryour hires
character is in multicolour mode(1) or
two colour (0. Poking this location
with 1 or 0 will be used in the PLOT
routine

MVE:49917

Location tellingyouwhether the hires
character is moving (1] or standing
till (0).

NANIM:49490

Noninterrupt animation routine. Can
only be used after setting MODE to

character baseto $6000
whichwill be used for the hires screen.
SULUE:49912
Location of top left hand corner of
character on screen LO-BYTE
SULUE+1
HIBYTE of top left hand corner of
character.

Memor
$C000to $CE00. Mainanimationand
design routines.

$A000 to $BFFF. Reversed character
images.

$8000 to $9FFF. Hires character
images.

$6000 to $7FFF. Hires Pixel memory.
$4000 to $4800. Tables to set offsets
of character animation design.
54000 to $5BFF. Sprite Definitions
during animation.

For ease of programming when us-
ing Hires Animator it will probably be
more convenientto setup the charac-
ter using the SYS INIT routine. Alterna-
tively you will have to set LL, LR, HL,
HR, RILE (0], MVE (0), SVLUE and
SVLUE+1, then call AER, PX and PY
routines. See the demo routines to
see how it's done.

ASTE, ALOOP, probably need not be
used but I've left them there for any-
body who wants to use them for
more complex routines. Note that
with the new bank now set to 1 and
the video matrix at $5C00 then the
sprite pointers start at location 24568

8).

a

MODE is set for interrupts as a
default and will only need to be
changed when using NANIM. If your
using RILE as part of an initializing
routine from basic, thenit can only be
setto 0 asthe reversed characters f.e.
those facing Right to Left) are stored
under basic ROM and this needs to be
switched out via a machine code
routine.

The co-ordinates for the 16
characters created by the designer
are $8000, $8050, $80A0, $80FO,
$59040, $9090, $90EO, SAOFO,
$SAOAD, $A050, $A000, $BI30,
$BOEO, $B090, $B040.

Finally for anyone interested in

changing the animation effects
created by the designer then the data
lines in the DESIGN OFFSETS
programme are set up as follows.

The values are in groups of four,
and represent how each pixel from

WPE:49297 row 47 downwards on the leg and
Routinetoclear B*256 row 21 for the arm are
t0 CT*256 moved in each frame from the
YD:49926 standing figure you draw, to create

Switch on movement in\y axis of hires
character (0=off, 1=on].

SYS 50222 can be used to wipe out
memory from $6000 to SBFFF.
HINTS and TIPS.

two arms and two legs. The first two
are for one arm and leg (X and) and
the second two for the second arm
andleg. These offsets are notrequired
afteryou have designed the character.

]

ON THE DISK E
i

ON THE DISK

by orbit round the

matically minded,
e to work out a
any time, given
the angles (from
or and tertiary in
e angles of major,
iny.

A, +30 CosA,

15 Cos A, + 160

y=100SinA, +30SinA, - 15SinA, +
160

For those not of a mathematical na-
ture, all you need do is remember
what | éxplained about the orbits
beforel

To load the demo, use the CDU
menu, or type:

LOAD "ROTATRON",8
RUN

Once the title screen appears, you
can press SPACE to start the demo.
After that, the keys are displayed on a
help screen, along with the current
rotation speeds, which can be ac
cessed at any time by pressing “1".
(Except on the title screent)

Inc

ASP.

Comets 3
F7> Future

S

!
\P&p/
*TOP QUALITY
* SMART
* EASY TO USE

READER SERVICES

Telephone your order
(0442) 665

DERS

FOR YOUR VALUABLE
COLLECTION OF

COMMODORE DISK
USER

MAGAZINES

3 N =

Please supply
inc pap

'COMMODORE DISK USER BINDERS @ £6.80 6ach

Total bleto ASP)
NAME
ADDRESS
strobes and b: :
sprites: SPACE> Chang s
Or debit my.
Expiry

ACGESS/VISA

Have fun

Ploase allow 28 days for delivery

31

Maze Generator

If you enjoy mazes but would
prefer to construct your own
then this program is for you
By C. Makepeace

allow you to make a limitless

amount of your own. The mazes
are designed in machine code and
are thus very quickly done. You can
have a maze of any dimensions de-
signed from tiny 2x2 to huge 63x255
mazes which will keep you stumped
for hours!

The mazes start at the top-left of
the maze and end at the bottom-
right. The way the mazes are de-
signed is such that there is only one
possible route through. In fact, be-
tween any two points, there is only a
single route.

Once the computer has finished
the mazes, you can either print them
onthescreen or to the printer. If your
printer has this facility, you may con-
dense the characters to subscript size
and print very dense mazes.

Everything you will need to know
about using the maze program is
contained on the disk in the form of a
computer tutorial which you run and
experiment with different sizes of
mazes. Within this tutorial there is
also a short game where you have to
guide a little blob around the maze
and collect five diamonds randomly
scattered about. Once these have all
been collected, you must make for
the exit at the bottomight of the
screen. If you wish, you can have
another blobmoving aroundthe maze
‘which you must avoid.

How the mazes are created: On
the disk is a BASIC equivalent of the
maze designer which may help you
understand how the mazes are con-
structed. The array which contains
the data for printing out the final
maze is stored in M%(H,V). The com-
puter moves randomly around this
array making a path throughiitand as
it does s, it keeps a Togbook’ (in the
array P%(P)) of all its moves using the
numbers 1 to 4 to represent Up,
Down, Left and Right. Inevitably the
computer will run into a deac-end

I fyou enjoy solving mazes, this will

32

where it can to nowhere. When this
happens, it uses the logbook in P%(P|
to move back along its own path until
it finds part of the maze it has not
been to before. The computer does
this until all the array (M%(H,V)) has
been used up. When this happens,
the computer will come to its last
dead end, then back-track all the way
to the start, upon which it will print
out the resulting maze. The key to
only having one path is that the
computer never doubles back on it
self thus making a loop within the
maze

Technical note: Within the tuto-
rial, the term ‘page’ is used. The C64
has, as you know, 64K of memory.
This memoryis splitupinto 256 ‘pages’
each 256 bytes long. For instance,
the screen memory starts on page 4
hence: POKE 4*256,1 will put an A’
at the top-eft of the screen.

So, if you wish to have the maze
memory start anywhere other than
the start of BASIC (which is most
convenient), you will have to decide

ich page you are going to put it
on. Avoid the areas above page 160

(hex: $AO) as this is where the BASIC
ROMis stored and the programwon't
work. Also avoid any pages below
page 8 as these contain information
which will crash the computer if
changed.

How to calculate how much
memory your maze is going to use:
Theamouint of memory used depends
mostly on the horizontal and vertical
dimensions, the larger they are, the
more memory is used. To find out
how much, the horizontal dimension
must fit into one of these categories:

0-63, 031, 0-15, 07, 0-3, or 0-1

i.e. a 28x10 maze would be [to the
computer] a 31x10 maze and a 8x3
maze would be a 15x3 maze. Once
you have the computer-dimensions,
add 1 to both, find the product and
then round up to the nearest 256
bytes (i.e. 400 goes to 512 and 750
goes to 768). This will tell you how
many bytes the maze will use.

Some examples:

A 20x10 maze:
“This fits into the 0-31 category so:

(31+1)*(10+1) = 32*11 = 352 bytes.
352 bytes to the nearest 256 gives
512 bytes or 2 pages.

The biggest possible is a 63*255

(63+1)*(255+1) = 64 * 256 + 16384
(64 pages)

Thisis ahuge maze [about 4 A4 pages
of compressed subscriptl) hence 16K
of memory being used. (If a BASIC
equivalent of the maze designer were
to be used, it would require about at
least the full 64K of memo

Aword of caution: if you intend
to design large mazes, a lot of mem-
ory may be required. To allow for this,
do not have a large BASIC program in
memory as there may not be enough
space. If the computer accidentally
starts to write over $A000 (the ROM)
then the end of the maze will be
corrupted or the computer may crash.
If in any doubt, work out how much
memory is to be used and then check
whether it will fit in. Also on the disk
is a program to calculate the amount
of memory to be used by amaze, filed
as MAZE MEMORYCHK.

A simple but powerful utility
that will scan the whole of
memory for character sets, and
allow you to save them to disk
By Neil Higgins

his is a simple but powerful
I utility that will scan the whole
of memory for character sets,
and allow you to'save them to disk. Al-
though | do not expect you to go
around pinching every character set
you can find, it can be used to see
how certain fonts and backgrounds
have been defined for idea’s in de-
signing your own graphics
Since the extractor needs to view
all the memory | have supplied two
versions, onesits in low memory from:
40966163 ($1000-$17FF) and the
other in high memory from:36864-
38911 ($9000-$97FF). You will of
course only need to load one version
at a time, but if you cannot find a
particular set, lets say using the low
version, then you should re-oad the
program being scanned, followed by
the high version, that way you can be
sure of scanning the whole of mem-
ory. Bothversions transfer the charac-
ter setinto the default Bank 0, so that
no memory is destroyed using bank
switching and moving the screen, the
only area of memory that cannot be
seen is from 0-2047 ($0000-$07FF)
which contains zero page and screen
memory, it is very rare that a charac-
ter set is placed here anyway. Experi-
enced programmers will have noticed
that both versionssitin an area which
isacharacterromimage, whichmeans
thereis less chance thatthey will over-
write any character sets, even so |
have still allowed you to look at three
areas because there may be sets just
being stored.
So the only character sets that
cannot be seen by each versionare as
follows:-

CHARACTER EXTRACTOR

LOW VERSION

$0000-$07FF = Zero page/screen
$3000-$37FF = Character Set store
$1000-$17FF = Extractor Code

HIGH VERSION
$0000-$07FF = Zero page/Screen
$3800-$3FFF = Character Set Store
$9000-$97FF = Extractor Code

When you have loaded and started
one of the extractors you will see in
the top half of the screen all available
key actions, while the middie of the
screen displays the character setwith
its original address in decimal and
hex. All key actions are exactly the
same in both versions and do the
following:-

F1 = Multicolour #1 ($D022)
F3 = Multicolour #2 ($D023)
F5 = Screen Colour (SD021)

F7 = Character Colour

F8 = Exit to Basic

M = Toggle Multicolour On/Off
+ = Next Character Set

- = Previous Character Set

(C)>1989 NMiS6

llhw“
$0800

= Save Current Set
Disk Directory

D

If you exit to Basic by pressing F8 the
extractor will still be in memory and
can be restarted using the appropri-
ate SYS command. All disk operations
areto device 8, ifyouwantto save the
current set then press S then enter a
filename and press return.

LOADING THE EXTRACTORS

First of all load in and RUN a program
you wish to look at, now reset the
computer (a reset button is provided
onmost cartridges| finally load one of
the character extractors with the fol-
lowing:-

LOW VERSION

Enter LOAD "CHAREX/HIGH",8, 1 (Re-
tum) then start it with SYS 36864
(Return)

Alternatively, select one from the disk

enu. So that no memory is cor-
rupted, it would be wise to load them
straight from the disk as above, in-
stead of using the menu.

Flexible Line Distancing ex-
plained, in laymans terms
By Jason Finch

March 1990 issue of CDU, was

an introductory utility to test the
feasibility of a program such as
NUDGE, my latest offering to readers
of CDU.

Like SCREEN SLIDER it relies upon
the development of a technique
known as Flexible Line Distancing
However, the main section of Nudge
involves much more complex pro-
gramming methods and, unlike the
former utility, requires extremely pre-
cise timings. If the routine is slowed
down by just one timing cycle (very
fast indeed — in fact, approximately
one millionth of a second. Theres a
little proof of this laterl] then the
display will fiicker and the slide will
not work. For this reason the main
keyboard is not scanned whilst the
slide is in progress and control is not
returned to BASIC untilitis complete.
It is also necessary to disable sprites
whilst the interrupts that make the
effect possible are in operation.

The slides must first be prepared
forinthe same way as those in SCREEN
SLIDER. This allows a flicker-free dis-
play prior to an upward scroll but is
also convenientfora downward scroll.
You must bear in mind that with the
former, the screen that is about to be
scrolled is theoretically visible in its
entirety and the sections that you
cannot see are merely positioned out
of the display window.

You must set up the computer for
thescrollusing one ofthe three simple
commands that will be described later.
Itis then that you display your screen
however you would as if it were to
simply appear. This may be by using
the standard PRINT command or
POKEing to the screen. You would
also change to multicolour, bitmap or
whatever mode you wished to use at
this point. If you plan to change loca-
tion 53265 then you should read
carefully the section later on, that
discusses this. You would then use
oneofthe other commands o initiate
the scrolling — the computer will re-
turn to BASIC the moment that it
finishes. Despite there being only
three commands the routine is amaz-
ingly versatile, allowing you to change

S SCREEN SLIDER, published inthe

34

ON THE DISK

Nudge

not only the direction and speed of
the slides but also what will happen
afterwards and the spaces between
each line. Now we get to the point of
Nudge and so before explaining the
operating instructions a few words
on what the routine actually does
and what you should see on the
screen.

As you will know [hopefully], the
screen’ consists of 25 rows of 40
characters. Each row is made up of
eight pixels vertically, creating an
overall height of 200 pixels. A line
scans the display many times a sec-
ond to build up the picture. This is
called the raster line and can be inter-
cepted at any position by machine
code routines to change the screen
display at any vertical position. This is
how affects such as split-colour bor-

ders are achieved and more recently
programmers are discoveringincreas-
ingly impressive effects that can be
created. ‘never mind if you don't
understand machine code ~ follow
my simple instructions and you can't
go far wrong

I'am sure you will have seen
games that scroll screens vertically
very smoothly. These do not use the
same technique - Nudge allows one
screen to be cleared from the display
or one to enter it a little differently to
the norm, and completely independ-
ently of colour, mode and bank
number. Each of the 25 lines of the
screen can be introduced or made to
fall away separately at a designated
speed, orlarger sections of the screen
can be moved together. To under-
stand this better you should see the

|

Programming and Design by Jason Finc
Demo picture by Doug Sneddon

demonstration program. To help you
a bit first, | have dreamed up an
apprcpnate analogy.
imagine twenty-five people lined
up along awall, all facing one way —
at ninety degrees to you who is look-
ing through a window with only the
people and the wall visible. Each
person represents one line of the
screen and the wall the background,
althoughwe have torotate the whole
situation through ninety degrees.
Each person in turn waits a short
while before walking off out of your
field of view, creating a gap between
each person. When all have gone you
will not see the people although they
all still exist - all you see is the back-
ground. You caninstructthese people
as to how fast they should walk, the
length of the 24 gaps between them
and what they should do afterwards
— should they all return to their origi-
nal positions or should they remain
out of view. These could then be
replaced by 25 different people who
could then run back into your field of
vision ata different speed, with differ-
ent spacings and so on. You should
now be prepared for the operating
instructions
The code onthe CDU disk, filed as
“N.CODE", loads to 49152 in mem-
ory, its end address being 50007. The
various operations are performed via
three SYS calls from BASIC. These are
as follows: SY$49330,a,d will prepare
the interrupts for a scroll in direction
with
happen afterwards. Each one must

be given a numeric value and if both
are zero then all interrupts will be
switched off. This should be done
before you access the disk drive or
cassette deck. The same operation
will be performed after the proposed
scrollif ‘a’ takes a value of zero. If ‘a’is
a one then the interrupts will remain
enabled. This means that screens
about to be scrolled upward can be
forced not to appear for a split-sec-
ond before they are actually scrolled.
Finally, d' mustbeaoneforan upward
scroll and a two for a downward
scroll. In the former case the display
will apparently disappear. ‘It can be
thoughtof as being positioned below
the display area. ‘in the latter case
there will be no apparent change.
SY549333,x will start the slide in
the direction specified by the
SY549330instruction andwithaspeed
represented by 'x’. This is a numeric
value between zero and nine inclu-
sivewith nine being the fastest. fyou
have not prepared the interrupts
beforehand with the SY549330 call
then a Syntax Error will be generated

numbers can be omitted. The only
limitations with this command are
that 24" must be a non-zero value
and the total nl+n2+..+n23+n24
must be eight or more. The lowest
value any one number can be is zero
and the highestis 26, one more than
the total number of lines onthe screen.
If any of these rules are not adhered
to then an ‘illegal Quantity Error will
be generated by the routines. The
only other limitation, of course, is the
physical length of a BASIC line - 80
characters

One other thing that you should
be aware of is related to the way in
which the VICHI chip works when
shifting the screen vertically by one
pixel. Sofaras graphics are concerned,
the memory is divided into four blocks
of 16K. On power-up the computer
uses block zero which occupies loca-
tions zero through to 16383 inclu-
sive. When you are using the routine,
unless the fast address in the block of
memory that is being used is a zero,
black fines will appear in between
lines as they are scrolled. Therefore
youshould ensurethatlocation 16383
holds avalue of zero (POKE16383,0)
However, with this routine i have
included thisin the code and sowhen
ascrollis prepared and again when it
isinitiated the computer checks to see
what block of 16K is being used and
stores a value of zero in the appropri-
atelocation automatically. This should
not create any problems unless you
have a large BASIC program that
would usually use location 16383
The only other address that may need
to be altered by you is 1536 bytes
“earlier” in memory than that needed
usually. For block zero this is memory
address 14847 ($39FF). This will only
need to be altered if you want to use
extended background mode and is
notaltered automatically by the code
~ you will need to do it yoursef.

Thelastpointis to dowith location

Otherwise, and
control is not returned to BASIC unul
the slide has finished
5Y549336,n1,n2...n23, n24 will
set the spacings between the lines as
they are scrolled into our out of the
display for the next and subsequent
scrolls. They represent the actual
number of physical screen lines (sets
of eight pixels). If N1 takes a value of
255 then the computer will use the
default set of values and the other

53265 cation that controls
bitmap mode, 24/25 rows and is the
location around which the whole
method for shifting the screen in the
way that Nudge does is based. When
ascrollis preparedwiththe SY549330
command the contents of bits 3-6 of
location 53265 arestoredintolocation
49453. Any attempt after that to
change location 53265, for example
to display a bitmap picture, will be
pointless. Once a scroll has been

35

prepared you must alter location
49453 and not 53265. You should
store only bits 3-6: POKE49453, (X
AND 120) where X is your desired
value for 53265. You can see this in
action when the bitmap picture is
displayed and extended background
mode used in the Nudge
demonstration thatis on the disk (see
lines 45 onwards).
ow more about the
demonstration program. To load it,
select the program NUDGE from the
menu. The code will then be loaded
together with some graphics created
by a friend of mine, Doug Sneddon.
The demo is a simple BASIC program
thatillustrates what can be done using
Nudge. Also on the disk s a ile called
“N.SAVE-REL"whichwill notonly allow
you to save the main code to your
own disk but it will also give you the
option ofrelocating the code. You are
somewhat limited to the number of
places to which you can relocate it
because of branch instructions in the
machine code. If one has to cross a
certain boundary then an extra timing
cycle is required and the routine is
thrown out of sync.
Inthe memory of the Commodore
64 there are 256 blocks of 256 bytes
of memory. Each of these is called a
page. Page zero is locations 0-255,
page one is 256-511 and so on. You
can only relocate code with the start
address being the first in a page. The
computer will ask you for the start
address of the code or the page
numberwhich can be givenin decimal
or hex if you add the dollar sign

prefix. A number greater than 255
will tell the computer that you wish
that to be the start location and a
numberless than that will signify that
thisis your desired page number. The
code can be situated in the BASIC
programming area or in the 4K at
49152 onwards. The only restriction
is that the start address is equivalent
tothe start of a page. The call address
{usually 49330) will be displayed and
you will be asked to confirm your
Selection. The code will then be saved
to disk device number eight. If you
only want to save the code and do
not want to relocate it then simply
type 49152 for the start address or
192 for the page number.

That is all | plan to say on the

operation and theory behind the
slides. Just load up the demo and list
itif you like to see the methods used
to achieve the different effects. But
more importantly, experiment with it
yourself and find a use for it in your
own programs!

I bet you thought that | had
forgotten my proof of the speed of
one memory cycle. Well, although it
doesn't really have anything to do
withthe program, here goes! You will
need a monitor for this - use the fill
instruction to fill the memory from
$0810 to $9800 with SEA bytes (F
0810 9800 EA). This is the machine
code NOP instruction and takes 2
cycles to perform. Return to BASIC
and type POKE38911,96. This wil
merely allow the computer to return
from the machine code routine. Now
type the following line:

TI$000000":5YS2064:PRINT TI

The computer will pause for a short
while whilst the 36847 instructions
are carried out. Each takes 2 cycles ~
atotal of 73694 memory cycles. The
value contained in the variable Tl is
the number of 60ths of a second that
ittook. You should get a value of five
or six. Divide 73694 by your answer
and then multiply by sixty to obtain
the approximate number of cycles in
onesecond. You should get avaluein
the region of about three quarters of
a million cycles in every second. Not
quite one million - but don't forget
the BASIC instructions in between]

The sacks at CDU HQ are
bulging at the seams, here’s a
few examples

Dear CDU,

I am now hooked on CDU after
buying the last couple of mags. It's
great value, informative and o
disks are fantastic, alon
programs and the routines. Bu(1
have a problem! | have been trying
without success to write a routine
to put on the front of my own
programs and games to make the
coloured flashing border when my
games and routines are loading.
Please could you help by putting a
routine on the disk or by printing a
listing to type in.

David Lomax, Merseyside.

E

Dear David,

Thank you for the kind comments
about CDU. The solution lies in the
Test-STOP vector at locations 808 and
809 ($0328/$0329). What you need
to do is write a short machine code
routine to change the border colour
orsimplyincrementitto cycle through
all the colours. The TestSTOP vector
then has to be changed to point to
your routine. It usually points to
SF6ED, the values in 808 and 809
being 237 and 246. If you do pro-
gram in machine code then remem-
ber that your routine must end with a

JMP $FGED instruction and not an
RTS. However, in case you do not
programinmachine code |was going
to provide the necessary listing but |
have gone one setup further and so
on this issue’s disk you will find a
program filed as “PROB1". What it
does is create a file, which is saved as
“LOADER". This is a one block ma-
chine code program and once you
have supplied a name for a program
that you want it to load, you will be
ableto type LOAD "LOADER",8, 1. The
autobooting program will then al-
most immediately initialise the flash-
ing border routine and then continue
toload and then RUN your program,
after having first cleared the screen.
50, load up and RUN the file PROBI
and then follow the on-screen in-
structions. As with everything there is
one minor point about which you
should know. Any BASIC program
that is loaded by the loader MUST
startwith a CLR command fyouwant
itto run correctly. Simply add it to the
start of the first line or create a new
one. It really isn't too much to ask, is
it?11 hope you find the routine useful

Dear CDU,
I'have purchased some books but |
cannot find anything on scrolling
a map which | could use in my
program. | enclose an idea for a
character editor and scrolling map
that I would like to use, leaving the

bottom four lines of the screen free
for messages and so on. If you
know where | could purchase the
above or how about giving the
program in your magazine? | hope
you can assist.
Mr H. Field, Kent.

Dear Mr. Field,

You do not mention whether you
plan on this being one of the super-
smooth sort of scrolling maps or just
arough scrolling one. Ishall therefore
take the easier of the two options —
the rough scroll. This does not rely on
shifting the screen and “raster splits”
and is therefore less complex. On this
issue's disk you will find a machine
code program filed as"PROB2”. Once
loaded (with the 8,1 suffix] you will
have three “commands” at your dis-
posal. They will allow you to shift the
map about, read in the character and
colour at a specified position and
finally, display a specified part of the
overall map, which you mentioned
would be eighty characters horizon-
tally by forty characters vertically. You
didnotstatewhetheryour mapwould
have different colours but | have al-
lowed for this just in case. All of the
information for the map is stored
under the interpreter ROM, thereby
disrupting no BASIC memory, with
the character information (in POKE
codes) starting at 40960 (SA000) and
the corresponding colour data at
45056 ($B00O) onwards. The rou-

37

tines are activated with BASIC SYS-
calls. The first being SYS49152,n
where '’ represents the direction in
which the shift will occur. It takes the
valueszero, one, twoorthree, thereby
shifting the visible area up, down, left
and right respectively. The routine
has its own checks to see whether the
boundaries have been reached. The
second routine simply retums the
character number and colour of a
specified location in the larger map
andtakesthe form SYS49155,xy. X is
in the range 079 and 'y’ in the range
0-39. The number and colour can
then be read by PEEking locations
251 and 252. The last routine is called
with SYS49158,xy and will display
the map with X' and 'y’ being the top
left corner's co-ordinates. Your origi-
nal specification that four lines should
remain clear at the bottom has been
kept. Also on the disk is a demonstra-
tion of the routines in action, which s
filed as “PROB2.1". I have compressed
itso thatitoccupies less disk space but
once it has ‘decompressed itself and
is running, simply press the RUN/
STOP key. Then you can have a look
atthe BASIC program and you should
have no problems using the routines
inyour editor program. Incidently the
*x'and "y’ coordinates of the last part
of the map displayed are stored at
49161 and 49162 respectively and
represent the top left hand corer. To
store new sections of the map use the
formula ADDRESS=BASE+Y*80+X
where BASE is either 40960 or 45056
and X and Y are the co-ordinates in
the necessary ranges. To save the
map you will have to switch out the
interpreter ROM. If this poses any
problems you can change the loca-
tions of the character and colour in-
formation by POKE49270, A: POKE
49339, A: POKE 49289, B: POKE
49357, B where A is the character
info start divided by 256 and B is the
start of the colour information di-
vided by 256. The present values are
160 and 176. Or ifyou don't want to
do that, then wait for next month's
Techno Tip, when | plan to present a
short machine code save routine that
caters for memory under the inter-
preter ROM. For now, though, | hope
you find the routines a help.

Dear CDU,
Having read the article on the

Power Cartridge in January’s CDU,
1 sent off for one. When it arrived
it went straight into the 64 - the
only problem was that | found it to
beincompatible with the older type
of Commodore 64. | came to this
conclusion after trying it on sev-
eral other computers belonging to
friends. The problem is that the
computer locks up when you try to
reset it, thereby making the car-
tridge useless. | have telephoned
BDL twice although nobody seems
to know why it is not compatible
with the older 64. | would like to
know if anybody else has had the
SOSE and whether it can
be rectified.

MrA. Boom Bristol.

Dear Mr. Booth,

We have not had any other queries
about the compatibility of the car-
tridge. It could be that yours has a
faulty chip, unless of course all Power
Cartridges suffer from this problem
and | would therefore like to hear
from anybody else who has spotted a
similar fault and shall report back in a
future ssue fthatis the case. | cannot
provide any information on how to
rectify the problem and I can there-
fore only suggest that you send your
cartridge back to BDL or simply buy a
different type of cartridge ~ perhaps
the Expert or one of the Super Snap-
Shot or Action Replay series, to name
but a few. Sorry that | cannot be of
any more help.

Dear CDU,

Iam inquiring into a few aspects of
the GEOS package. My version is
quite old now, being V1.3, and the
problems could have been cor-
rected. Firstly, is there a printer
driver available for the Citizen
120D. Currently | am using the
MPS-801 driver. Secondly, is it
possible to print the pages of the
documents separately. Using the
MPs-801 driver the whole docu-
mentis printed all at once. Thirdly,
how difficult is it to write GEOS
programs and finally, could you
recommend any good compilers. |
have the Laser Compiler from
Ocean 1Q but it rarely works, and
when it does, the code it produces
is as slow as BASIC. | had heard
that Petspeed was the best but |

thought it went out of production
many years ago, until, thatis, I saw
an advert for it!

Adam Trickett, Leeds.

Dear Adam,

There is no printer driver available
specifically for the Citizen 120D.
However, if you have it connected
through the serial port then you
should use the MPS-1200 printer driver
although you may need to change
the setting of the line feed DIP switch.
With regard to your second query, |
would suggest that you fork out and
purchase the geoWriters Workshop
fromFSSL (addresslater). Thisisversion
2.1 and is a great improvement on
V1.3. It allows much more control
over your document, including a
better printer option that allows you
to select the start and end pages for
printing. You can set these the same,
thereby printing just the one sheet. |
have no experience of attempting to
programaGEOS application although
there are two commercially available
products that assist. They are Becker
BASIC 64 and geoProgrammer 64,
both available through FSSLaithough
quite expensive — near enough forty
and fifty pounds respectively. Becker
BASIC adds over 270 commands and
allows you to write your own GEOS
applications in a form of BASIC.
GeoProgrammer is a complete
assembly language development
package for GEOS. | would
recommend that you write to FSSL,
requesting their latest catalogue
which provides further information
on both these products. The address
is FSSL, Masons Ryde, Defford Road,
Pershore, Worcestershire, WR10 1AZ.
Ontothe compilers. | personally own
the Blitz compiler from SuperSoft
although Petspeed is a far superior
package and | would recommend
that you go about purchasing that
package. You could use the C-Zap
compiler published in CDU quite a
while back (March/April 1988 or if
you are adventurous you could buy
the book ‘Compiler Design and
Implementation on the 64 and 128",
again from FSSL. It has 280 pages of
information on writing your own and
includes aworking compiler. It costs
£12.95 and there is an optional
program disk containing the programs
listed in the book, costing £7.95
Pleasant purchasing!!

Dear CDU,

Ihave been reading your magazine
since issue one and | find it very
good. The reason for my writing is
to make contact with other C64
users. | live in Belgium and it is very
difficult to get programs and so on
for the C64. I would like you to
publish my letter sothatany English
users couid contactme. My address
is as follows: Van den Driessche
Jos, Lakborslei 78, 2100 Deurne/
Antwerp, Belgium. Many thanks.

Jos Van den Driessche, Belgium.

Dear Jos,

Itis always nice to receive letters from
countries other than England. There
really isn't much else for me to say on
this issue other than | hope that many
CDU readers will take up your
invitation.

Dear CDU,

I have recently upgraded from a
C64 to a 128 with Oceanic disk
drive and an MPS-801 printer
coupled to the old faithful portable
colour television. As you can
appreciate the 80 column mode of

other hand fork out a large sum of
money and buy a dual monitor with
a switch. | am afraid that | have just
upgraded as well and that's what |
shall have to do do. But less of my
problems - this is the readers’ page! |
hope I have been of some assistance.

Dear CDU,
Thank you for printing my letter in
the February issue of

regarding the problem | had
my STAR LC10 Colour Printer.
Although | much appreciated your
comments, | had already been in
contact with FSSL and acquired
the package that you recom-
mended. You may also be
interested to know that GEOS V2.0
will also produce colour on the
Commodore 64 and STAR LC10C

h number

ion. After
eight letters and four telephone
calls to various people the only
help that gotme printing was given
by yourselves and Mr Tim Harris at
FSSL. | have included a few
printouts for you to judge the
results of the STAR LC10C. Thanks

ith

a standard television. | have
recently been offered a
monochrome monitor with the
specifications provided and my
query is, can this monitor be used
with a Commodore 128 in the 80
column mode andiif so what cables
and connections are required?
Mr R. Grundy, Doncaster.

Dear Mr. Grundy,

It certainly is annoying that standard
televisions can't support these 80
column modes. But from the
specifications you have provided |
can solve the problem. On the back of
the 128, immediately to the left of the
user port is a nine pin socket
resembling a joystick port. This is
labelled with RGBI which stands for
Red/Green/Blue/Intensity. That in
itself doesn't mean much but if you
connect your monitor to that then
you should be able to obtain your 80
Column mode. However there is one
drawback — you won't have 40
columns any more! What you really
need to do is have your monitor and
television set side by side and then
use each one as required. Or on the

again and pi p up the high
standard of CDU.
Mr C. Best, Nottingham.

Dear Mr Best,
Thank you for replaying to CDU with
the good news. | am sorry that it was
a little too late but it is always great
when things work out. Thanks also
for the information about GEOS. | am
surethatalotof people will be rushing
to their computers to try that onel

Erratum

Ithoughtlwould take this opportunity
to inform you of a couple of small
errors in my ‘Cheats, Pokes and all
that! feature in the March 1990 issue
~not my fault, | hasten to add. | gave
alittle program to give you an “auto-
pilot” mode on the game ‘Quad’
Unfortunately line 80 contained two
mistakes. The number 249 should be
inserted between the 41 and 141
and the number 77 near the end
should in fact be a 72. The complete
line should therefore read

80 DATA208, 41, 249, 141, 16, 20,
173,169, 72, 96

Your ball may disappear occasionally

R T TV

but it will return ~ that's due to my
forgetting the original numbers that |
put in and doing the unpardonable
thing of erasing my word-processor
backup and throwing away the
thousands of jotter pads on which |
scribbled my findings!

39

The cartridge gets an uplift. Is it
worth forking out for the
extras? We investigate on your
behalf

By S.Wickham

he controversy that surrounds
I Cartridge Utiities will be with
us for many years to come.
Apart from the obvious legal ques-
tions there are anumber of moral and
ethical ones appertaining to the use
of such utilities. Whether you are a
great believer in their role or whether
you think they should be banned is a
matter of personal preference. One
thing cannot be denied though, and
that s that they give the dedicated
programmer some very useful ammu-
nition in their arsenal of program-
ming aids.

Of all the cartridges on the mar-
ket, the one that does not seem to get
much publicity, yet in my opinion is
one of the best, is Super Snapshot
from LMS TECHNOLOGIES of Can-
ada. This little piece of wizardry gets
an uplift in the form of SUPER SNAP-

Choices galore!

Any utilty must, if it is to succeed,
offer the user as many options as is
possible. Bearing this in mind, SUPER
SNAPSHOT V5 cannot be faulted.
Indeed, if the number of options
available is the main criteria of a utili-

OPERATING
MANUAL

LMS TEC HNOLOG

Super Snhapshot

V5

ties importance, then this cartridge is
streetsahead ofanything elsearound.
Justlookatthis istof possible options
Disk Copier(s]

File Copier

Parameter Copier

DOS Support

Boot Sector Support

Turbo DOS

40

Screen Copy (With Sprites)
Games Monitor

Machine Code Monitor
Track and Sector Editor
Drive Monitor

Video RAM Monitor

REU Monitor

Sprite Monitor

Sound Sample Monitor
Character Set Monitor
File Reader

Extra Basic Keywords
1571 Support

BBS Support

Cartridge RAM Expansion

Even the most sceptical amongst
us has to agree that this is one heck of
alist. Itis fair to say that some of these
facilties are accessible from the sup-
porting system disk. However, uniike
the other products available, you do
not have to program SUPER SNAP-
SHOT V5 before you can use it

Select but a few

Ialways wish that | could show every
feature of a utility like this one. Unfor-
tunately, space never allows my in-
dulgence, therefore | have selected

Jjust a few of what in my opinion are
the more important aspects of the
cartrid

The nucleus of any good car-
tridge has got to be its ability to
monitorwhatis happening inside the
computers memory. Not only to
monitor it, but to alter and amend it
as you so desire. SUPER SNAPSHOT
M/C Mornitor, next a Monitor for
Sprites, Monitor for Characters, Moni-
tor for Sound. The Drives internal
memory can be Monitored, as canthe
REU (Ram Expansion Unit] and Video
RAM.

Those of you that have read my
reviews before will know that my
favourite utility of any cartridge has
always been the M/C Monitor. The
built in transparent monitor on this
cartridge is excellent. Teaching ma-
chine code is not the intention of this
review, therefore | will not attempt it
Suffice to say that if you examine the
following table you will be impressed
by the commands available to you.

M/L Monitor Commands

A Assemble Code
BR St Break point
C Compare Memory
D Disassemble Memor
(Sadly lacking on my Dolphin
DOS

Fill Memo
Go [to and execute)
Hunt through memory
(Hex, Dec or ASCIl)
Interpret Memoy

Display I/ registers
Load File

Display Memor

Output (Screen, Drive or
Printer)

Display Registers

Save File

Disable Sprite Collision
Disable Sprite to Background
Colision

Disable Sprite to Sprite
Coliision

Transfer Memory

Exit the Monitor

(The way you entered moni
T

éﬂgm;. B=Egs Ton

“
3

X

or)
XM Exit to Sub-Menu System

1 Modify Memory

i Modify Registers

. Modify Disassemble

Hexto Decimal Conversion
#+ Decimal to Hex Conversion

TEXT
]

TEXT DUMP TO PRINTER

ORAPHICS DUMP TO PRINTER

AUE T0 DISK
LOAD FROM DIS|

: RETURN TO SUB-SVSTEM MENU

7o

Enable Decimal Entry
Disk Directory

1/O Modify

Read Error Channel
Set Device Default
Sets Bank in REU

Accesses the C128 Video RAM

SHREGHAY B¥ BB VEGH

PSHOT S. MONITORS
6. SHAPTERM
7. RESUME

1]
i
i

iy
same as the above. All one needs to
dotoaccessitis to puta *n (where n
signifies device number) in front of
the command. The drive monitor is
obviously very useful for transferring
the contents of the buffers into the
computers memory, where you can
examine, modify and then’ replace

a1

e ey]

them back into the drives memory.

Graphically Speaking

Sprite designing, like Character de-
signing has always been alaboriously
long job, even for those of us that
think we are ok at it. No matter how
proficient you are, there are no real
quick methods. There are, however,
ways of making this task a ittle easier.
One of these is of course to ‘pinch’
someone elses ideas. (Don't forget,
you cannot pinch the design and
incorporate them in your own com-
mercially available programs). The
Sprite and Character Monitors come
to your aid. With these facilities you
cany examire, modly, add. to and / / OPERATING
generally play around with any Sprite % MANUAL

or Character you like. The on-screen
representation of the creations you
are working on, is clear and full of the
necessary information.

. SUPER
OG" GNAPSHOT

Sounds Great!

What surely must be a first from LMS
Technologies is the Sample Monitor. |
have to admit that | haven't come SUPER
across one before. |also havetoadmit, SNAPSHOT
that if there is one field of computer STEM DISK
useage | fall down in, it's Sound and
Music. | know absolutely nothing at
all on the subject. So what exactly is
the Sample Monitor.

A sound sample is a way of re-
cording any sound as a series of
numbers. Itis the same method used
in synthesizers and CD's. With the
Sample Monitor you can capture these
sounds and by using the PLAYER
module on the system disk, you can
incorporate them into your own
programs

The instructions in the manual
make the job of capturing a sample,
then saving it out for later use in your
own programs, relatively easy.

FILE SYSTEM a
DISK COPIER

NIBBLER

PARAMETER COPIER

Eletire thi> SELECT OPTION >_
One of the nicer facilities offered by
Super Snapshot V5, is the ability to
freeze a screen and save it out to disk
as a picture file. Various formats are
catered for here including Koala, Run
Hires, Doodle, Blazing Paddles.
Another good feature is that you
can also save the sprites. Once you
have the screen you desire in mem-

EXIT (NO BOOT)
ECT OPTION >

BB DDDDDDDDDDS

I 070702070 707070 70 10 700 K0
XX
2232

DBDDADDODDDDDDDDDDDDNG|

4z

T A YRR |

mem

bu

8
s
S
S
$
S
$
S
$
S
S
S
S
S
S
S
§i
S
S
g
b
S

[e
TBTRTI TRV
DD

TTVTVVT VT TV VTV VDDV VDY
MMMMMMMMMMMmEMAEmEmEmm

ory, you simply press the button on
the cartridge and you enter a sub-
menu. The screen type is displayed

- which includes one of five types
Standard bit mapped. Standard
Character. Multi colour bit mapped.

Multi colour text or just text.
A large variety of printers are
catered for in the dumps, including a
few of the more popular colour print-
ers. As an exercise into the possibil-
ties this feature offers, | tried the fo-
| =5

I loaded one of my games into
memory. | saved out the screen in
! question, including the sprites. | then
ran the saved picture through a con-
‘ vertor program, which saved out an

F _HEM

T oy’
¥ OTHER KEV TO aBo

RY IS

TO BE CLEARED!

JO_CONEIRM

RETURN TO SUB-SYSTEM MENU
(PRESS Hddss TO0 VIEW

i

brushes. From here | completely rede-
signed the original screen and reposi-
tioned the sprites. Finally, | resaved
the changed screen and converted it
back to a Cb4 picture file. | then
obtained a colour print out of my
modified screen. Al in all, a very sat-
isfactory and rewarding aspect of this
cartridge.

Round up Time

Alot of you will be disappointed that
I haven't mentioned the Copiers,
Nibblers, Parameter Utilities and Back-
up programs available. The question
of the morality and ethics of these
opnons is one which will always be

into Dpam(il and converted them to

upon. Suffice to say
that vf you do want to make PER-

i

SONAL backups, then the facilties
offered by Super Snapshot V5 are
excellent.

In conclusion | will say this. If you
are thinking of buying a Cartridge to
updateyour collection, or if you want
to buy one for the first time, then
Super Snapshot V5 offers excellent
value for money. | would go so far as
to say thatif a C128 switching facility
had been incorporated, similar to the
Warp25, then you would never need
to remove this cartridge from the
back of your machine.

Supplier: FS.S.L Ltd
Brices£39.95

a3

Basic and 6510 are not the
only languages out there.
Discover the joys and pains of
an alternative language

By Andy Partridge

ortran is nota programming lan-
Fquage 1 would go out and buy,

but this version is quite good. It
just falls down seriously in a few
places

The first thing you must do when
creating a Fortran program is enter a
source file (Your instructions for the
computer), and funnily enough, this
is where the first problem is. There is
no dedicated editor for entering the
source in this package. The instruc-
tion manual suggests you use aword-
processor that outputs sequential files,
orfailing thatyou can enter the source
using the BASIC ediitor (LE. 10.
when you turn on the computer) and
prefix all Fortran lines with " Also,
after entering saving a file using the
Basic editor, you have to load a pro-
gram to convertitinto a SEQ file. Why
no dedicated editor? It would have
been alot easier! What f you come up
with an error after all that loading/
saving? You have to go all the way
back to the beginning. Not Good!

The next step is to compile your
program. This is where the main job
of the Fortran package comes in.
<<Compiling a program’ means that
your Source file is converted into
machine/code that the 64 under-
stands, and thus allows the program
to be executed.>>.

The compiler is quite fast, and
you have the option to send the source
to the printer as it is being compiled
A pause and abort mode is also sup-
ported. For users with two drives, you
can take the source off one disk and
compile it onto another. Still, even
with all these options, should an error
come up it's back to the beginning
you go!

aa

REVIEWS

Compiled modules can be linked
together to form larger modules. This
is done in the linker, where options
again exist to make hardcopys, use
multiple drives and full error read-
outs

Once the code is compiled and
saved, it can be loaded and run. A
basic line with a SYS XXX to start the
code s include, so no other mucking
around has to be done.

PROGRAM TEST
. Exi

OPENS5.4

READ (3.%)
00 10 = 10,1 70

A=l (Z+A)-2)/ 14
50 FORMAT(THE NAME IS ', A10)

IF (LEQ 10) THEN
WRITE (5.) |

Other options exist on the main
menu to translate the Basic program
intoaSEQfile, andto change colours.
A HELP option is there also. This is a
goodidea, and it explains each of the
options available on the main menu

Al'in all, this is not really a pro-
gram | would recommend someone
unless they were interested in learn-
ing the language, or as part of a
school project (I had to learn PASCAL,
for example, as part of my GCSE
Computing coursel] As | said in the
beginning, it's a good version, but it
isn't very well presented or thought

@mple program

CHARACTER NAME (20)

INTEGER FLAGS s o Ave
JONES

WRITE (0.4) PLEASE ENTER YOUR NAME

WARITE (5.50) NAME
ITINUE

WRITE (5.%) FLAGS())
IF

out fully in places.

his version of the langy
most of the commands in it. it can
handle REAL, INTEGER, LOGICAL and
CHARACTER DATA. There
Tngormmﬂm functio

s (EXP,
TABS, POW, FLUAT
nd AMOD)
Complete list of FORTRAN Com-
mands:

. FLAGS (7)/4.56.7

ALL - Transfers program control to
the specified subroutine.
CALL EXEC - Allow direct access to
user of kernal machine code routines.
CLOSE - Close an Opened communi-
tion channel
OMMENTS - Allows embedded
documentation in programs
COMMON - Allow arrays in subrou-

tines to share same memory.
CONTINUE - Allows block structuring
of a program.

DATA - Give values to variables.
DIMENSION ~ Define size of arrays.
DO - Allow looping on a group of

ment ‘Do this

END - Indicate the
unit
ENDCOMMON ~ M.
mmand arrays.
END IF — Marks end of a block IF
statement.
FORMAT - Structure /O information.
FUNCTION - Define beginning of a
Sub-routine

d of a program

ks the end of

0-and-so.
~ If... then do.

REVIEWS

name (7717)
OPEN - Open communication chan-

n

PAUSE - Stops program until

pressed of a certain time as passed.

PROGRAM - To name a program

READ - Get data from keyboard or

device.

RETURN - Return from a subprogram

STOP - Stops program and returns to
SIC.

BA
SUBROUTINE ~ Define beginning of
ubprogram.

~ Specify type of data in a vari-

ble.

WAIT - Halt pr
length of time.
WRITE - Write data on screen.

am for a specified

Sample Fortran Program (Written in
Basic Editor)

10: PROGRAM TEST

20: * THIS PROGRAM WILL WRITE A
30: * LIST OF THE ODD NUMBERS
40: * FROM 1 TO 10 TO A PRINTER
50: INTEGER A, B

90L 10 CONTINUE
100: CLOSE 4

110: STOP.

120: 100 FORMAT (1
130: END

No not a new way to clean
your windows, but an
attractive way of changing
your monitor screen

By Mike Benn

c omputer graphics now domi-
nate television programs with
tumbling credits and other
tricks performed with outrageously
expensive computer power. The 8 bit
home computer can't hope to com-
pete with such graphics but it can
borrow the more simple less memory
intensive effects.

One such effectis the screen wipe
which makes a transition from one
scene to another. A wipe can give a
more professional look for example to
a platform type game, instead of an
instant change of screens.

WINDOW WIPER s a graphics
utility which offers a number of wipes
to include in your own programs.
They can be games using multiple
screens or perhaps some form of video
presentation

The program works with pre-
designed screens which can be read-
ily drawn up using a character/sprite
designer. Full control over colours,
character set, screen and type of wipe
are manipulated from within the
program. Pre-designed screens can
be stored and grabbed from almost
anywhere in computer memory (See
OUT OF BOUNDS)

The program uses two types of
Wipe, character wipeand screen wipe.
Acharacter wipe uses asingle charac-
ter of your choice it can be part of the

46

resident character set or one you
have designed. A screen wipe Uses
the updated screen to wipe over the
screen currently being displayed.
There is no restriction on using both
types of wipe alternately or in any
combination you choose.

ASYS call is used to set the vari-
ables and set the wipe type and is as
follows:-

Y49152,5L,MD,CH,CS,CC,BO,BI,
B2,BR,WP

= Screen Location (The ad-
dress of the scource screen).
= Screen Mode (0 = HIRES 1 =

MULTICOLOUR].
CH = Character number [RANGE =
0-255)
CS = Character set [DEFAULT = 20
[5ee 64 Ref. Guide for details)

CC = Character colour (HIRES
0-15/MULTIRANGE = 8-15)
Background colour [RANGE

RANG
BO
=0-15)

Bl =Background colour | RANGE
= 0-15]

=Background colour 2 [RANGE
5)

BR = Border colour RANGE = 0-
15).

WP = Wipe type (see Table).

\X/lpe Table

= Instant screen fil
GedE R
2 = Screen wipe down

3 = Character wipe down
4 = Screen wipe up

5 = Character wipe up

6 Screen wipe left to right

7 Character wipe left to right
8 Screen wipe right to left

9 = Character wipe right to left
10 = Screen slat wipe

11 = Character slat wipe

12 = Screen rain wipe

13 = Character rain wipe

14 Instant clear screen

15 = RETURN TO BASIC

A second SYS call is available to load
pre-designed screens. User screens
are often saved to the same address
and willin turn be loaded back to that
same address. It's clear that if you
want to load more than one screen at
a time there is a need to redirect
loading of a screen to anew location.
The following SYS call works as fol-
lows:- SYS 49155,DV,SL

SL =SCREEN LOCATION towhich
you want the screen to be loaded.
DV = DEVICE number (8 = DISK/1
= TAPE)

Out of Bounds

The following areas should be avoided
at all cost. The program will fail or
worse.

000-2048 ($000-$0800)
49152-51456 ($C000-$C9000)
53248-57343 ($DO00-$DFFF)

To see WINDOW WIPER in action
select WIPER from the menu. This
BASIC program will load all the other
parts 50 just sit back and watch.

Lineage: 53p per word. (+ VAT)
Semi display: £11.50 plus VAT per single column centimetre minimum
ing f ion on series

==

mu section must be prepaic
Advertisements a cepted subject to rms and conditions
printed on the adverlisement rale card (avallable on request.

Make cheques payable to ASP Ltd.

Send your requirements to:

CLASSIFIED DEPARTMENT

ASP LTD. ARGUS HOUSE,

BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST.

0442 66551

PRIGE EAGH ING AT AND
LOCKABLE BOXES

CAP CAP

084 80-6575

PRICES INCLUDE VAT
ST ADD £3

WESTONING LTD

m
DS/DD.......... 46p
DSHD., G oep.

SRR e

LOCKABLE aot:s

CAP
& 5525 100° 5550 1084D MON

12 SANDERSON ROAD, WESTONING,
BEDFORD MKA5 5Y
Tele. (0836) 775060 or (0525) 718668 Fax (0525) 715789

REPAIRS

COMMODORE REPAIRS,

SPARES DS

e
'AMIGA 500

M.CE. SERVICES
39, Albert i el

T moni warranty Forprice
s e 11 e Stamp (Site
‘moca)

e REPAIRS, Qutways,

i, Pelyn, Laos, Comual
PL SN T (0509 20352

TO ADVERTISE
IN CDU CALL

BATMAN PACK ~£355
p FUGHT FANTASY

Sl ors o
SI2KRAM£56
WITHCLOCK .62

NO QUIBBLE GUARANTEE
D £7
S FLANAGAN ON

0442 66551

COMMODORE SPARES
& REPAIRS

REPAIRS

PUBLIC DOMAIN SOFTWARE
for the C64/128.

ffom £375 parcin
Sona SAE o phone o e catsogue
Bt mods)

Kingsway Computer Semices
R s
s22 o (0742) 750623

L

COMBIETE |_SERVICES |
THE COUPON Elrorrrne 25 cgo:ﬂmggoﬂE SUPPLIES
BELOW OR S e e gg
Shet b
Dbl s‘:r.‘::,:?, b bR, | | s
TO ADVERTISE ;

(Delete as necessary)

Y / AT)
e e S Bpicy ET110 (VAT) br singe conrkycarlineur: i size 2

I'enclose my Cheque/Postal Order for £ Soarlores Sumee.

PLEASE DEBIT MY ACCESS/BARCLAYCARD NO

ineage: 53p per word (+ V/

Soris iscolnts avalable on request All lasified adverisements must be pre-paid
There are no reimbursements for cancellation:

END TO CDU ADVERTISEMENT DEPARTMENT, ARGUS HOUSE, BOUNDARY WAY,
HEMEL HEMPSTEAD, HP2 7ST

insertions, made payable to Argus Spe

st Publications.

|1 2 0) (1 5 E R

[TTTT exe. oare

£ FOR . .INSERTIONS

Name Postcode .

Daytime Tel No. e Signature ? erogtsss DI
Ororsate [JsoFTware E\ sPECIALOFFERS [JREPAIRS [1HARDWARE [IDpisks

A ponwertul BASICToolkit dditonat

pinters (MPSOY, B2 801 e bt sl

Rl ot oy U 18 30 e e i vt 3t dtinguhes bewesn HIRES and LORTS
Cimpihes poGAMMING and debugging, fecorder The Tape commands can be Mulolaut graphes e cometed nto
e your awn program

i & 5
9}7_'

A powertul machine nguage mONOr pSET 0 - Sl detecton SeralCentromic
ey e e o ST Ol
modore m aiole o PSET 3 SmiTh CORONA mode anl PR
broramming FSET 3 Turnd the prning 0 degreest - On heback o the u
AR work T BASICAON, KRNAL st FSET 4 FARDCOR g for ere s R Button. Pessing th
G s Pas021526 S AN e
psit Sefup of priter type:
FARDCAT Pttt Diecron; €18 - Bitamage mode, e w8 vork wth g
5 5 L1 s s s o 3

The oolkit commands can be used in < Coumat

Usng FOWR CARTIDGE o can ot

Sos oo
Ao WaOn W

[? PNT X Ean .
= o

e R S

RESET ALL - R1SE Y of oy o

e e \L?N.K:Axh‘v:u,’ﬁ.r(;,":‘.“ avery Tom ! koIS
DSWE MERGE DRVICE Getect 3 protr s connected Tark
oisk Sl Bus o Un HARDCOPY- At 4 moment s ot
MERGE o BASIC programs can Bl i oo charcers on otiony
e merged inis one Epon and ompatiie rver Y CORTING
oisk With DISK s can send The primecimmenace hi & sanety of st atemeanh oo ca ren
Commands drect to your Up posSbies 1t can produc i
e FARDCO o screems mor oty on Seral

Bk = |

NEB 1RS
Bitcon Devices Ltd ENGLAND

10 prog
MONITOR - Takes ou o the Machine
linguase Momor

T 091490 1975 and 9901919 Fax 091 470 1918
order: Access|Visa welcome - Cheques or P/O payable to BDL
i
UK orders 2d £1.20 post/pack total - £18.19incl. VAT.
Europe orders add £250. Overseas add £3.50

candina ik, Box 216, Noretalje 76123,
'SWEDEN. Tel: - 46 176 18425 Fax: 176 18401
TRADE AND EXPORT ENQUIRIES WELCOME

