C:commodore

LIGHT PEN

VIC
LIGHT PEN

DAMS PRICE ONLY

£17.35

VICMON

THE ULTIMATE PROGRAMING AID FOR THE VIC

Full machine code package with:
 Assembler, Dissassembler,
Fill, Re-locate, Identify, Exchange, Compare,
Printing, Dissassembler etc., etc.
Needs DAMS RAM/ROM board or similar

$$
5 \because \square+V A T
$$

RAM 'N ROM BOARD
 3K RAM
 In Hires area.
 Also space for
 VICAID and
 VICMON
 programming aids.

BUY THE 3K RAM 'N ROM BOARD WITH VICAID AND VICMON WITH MACHINE CODE MANUAL (WORTH £5.00) FROM MOS TECHNOLOGY FOR ONLY $£ 67.85$ + VAT AND GET A FREE VIC LIGHT PEN (WORTH £17.35) VIC REFERENCE GUIDE R.R.P. £14.95 DAMS PRICE £14.50

VIC STARTER KIT

VIC 20
C2N Cassette Deck, 10 Blank Cassettes,
User Manual, Vic Programmers Reference Guide,
1 Joystick.
Worth £238.30 ONLY £214.00 +VAT
(VAT INCL. PRICE = £244.62)
OR VIC 20
With free 3K RAM pack or
Super Cartridge GameONLY

ACCESS \&
BARCLAYCARD
WELCOME

Contents

Editorial

Editor

Pete Gerrard

Advertising Manager

Peter Chandler: tel 01-4393537

Editorial Assistant

Fiona McCormick
Production
Three's Company
Managing Editor
Nick Hampshire

Commodore Computing is published 10 times per year by Nick Hampshire Publications. It is not in any way connected with Commodore Business Machines U.K. Ltd.

Typesetting by
Centrepoint Typesetters Ltd, London Printed by Edwin Snell printers, Yeovil, England.

If you would like to contribute to Commodore Computing, please send articles or programs to: -

Commodore Computing
193 Wardour Street
London WC2

A magazine such as this cannot afford to be editorially biased in favour of anyone, let alone the company we concern ourselves with all the time, namely Commodore.

If it is true that our news and reviews reflect only Commodore hardware and software, which it is, then this is purely because of the nature of the magazine. We are specialists, in a specialised field. Again, many of the new products that we've covered have been produced by Commodore themselves, or at least marketed by them. Hardware such as the new range of products from the Vic 10 up to the 720 series: software such as the Manager and PetSpeed.

There is good reason for this. The new hardware currently undergoing introduction looks very promising, and should maintain the market position of the company for a long while to come. Software items are covered because they offer particularly relevant features in the current state of the computer industry. If many of these are distributed by Commodore, well, all credit to them for acquiring the product in the first place.

Many of our reviews are favourable. We feel it only fair to bring reasonable products (with due criticism where necessary) to your attention. However, this is not always the case. Where a product is sufficiently 'bad' that to acquire it would be a sheer waste of money, again we think it is fair to point this out. If we subsequently receive a strongly worded letter of complaint from the supplier, which has happened, we are here to weather that particular storm.

Dear Sirs,
Can you please forward me details as to how I can obtain back issues of the magazine "Commodore Computing", and under any of its previous titles. I do currently have a magazine subscription with you.

Thanking you in advance for your kind co-operation in this matter, and looking forward to your earliest reply.
Yours sincerely
M. Preece

West Midlands
Dear Mr. Preece,
This is a query that occurs often enough for it to warrant mention here. Commodore Computing made its debut with the April/May issue, and since then you'll have received issues for both June and July. There was an advertisement placed for a March issue of the magazine, but due to the proverbial 'circumstances beyond our control' this never actually appeared.
Consequently, the only back issue we hold are for the April/May, June and July issues.

Earlier that that, and you'll have to go back to Commodore themselves. The magazine was previously called Commodore Club News, and if you addres your query to Margaret Gulliford, at 675 Ajax Avenue, Trading Estate, Slough, Berkshire, I'm sure you'll be able to find the solution to your problem, as Commodore keep telling us.

Dear Sir,

I read with interest the Club News section of the new Commodore Computing magazine. This college has recently set up a CBM User Group to act as a centre for the increasing number of people interested in using Commodore systems particularly for business and educational purposes. We serve largely the North Humberside region and part of North Yorkshire also. I would be obliged if you could tell me whether there is any form of central support or advisory service offered by Commodore or any other source for groups such as ours.

We have a number of CBM computers of various models supported by a number of disc drives, printers and commercial as well as 'home produced' software. We would welcome enquiries concerning our
activities from anyone interested and the person to contact is myself at this college.

The college is actively involved in a range of computing and electronics courses at all levels and we do have available 'educational' and 'business' workshops for those who require them.

Yours sincerely
J. L. Stephenson

Head of Computing Section
East Yorkshire College
of Further Education
West Street
Bridlington
North Humberside
YO15 3EA
Dear Mr. Stephenson
Thanks for an informative letter, and news of your new club. If any of our readers are
interested, I'm sure Mr. Stephenson would welcome any enquiries.

To answer your query on any support and advice from Commodore, since we took over the magazine the Pet User Club effectively died a death, and Commodore are now quite happy to let ICPUG (Independent Commodore Products Users Group) handle everything. I would strongly recommend getting in touch with them, as they can provide valuable assistance in the early days of setting up and getting the whole show rolling.
Also, as ICPUG have an extremely good 'rapport' with Commodore, they're in a fairly good position to provide the kind of information that can only come from knowing the company well: new product news, advance warning of any major changes coming up, and so on.
Finally, however technically skilled your own people might be, within the auspices of ICPUG are such well known names as Harry Broomhall, Mike Todd, et al., who can usually provide the answers to just about any question that may arise.

The person to contact for more information is Mrs. Eli Pamphlett, at 7 Lower Green, Tewyn, Welwyn, Herts.

Dear Sirs,

I have developed a small program, which may be of interest to your readers with an 8032.

After searching in vain through back issues of all my
computer magazines for a short, effective machine code routine for string/substring search and match I decided to tackle the problem myself. The listing below was the result.

The routine tests a main string (S2\$) for the presence of a substring (S1 \$), placing the result in 32767. A result of 0 shows that no match was found. A positive number result indicates that the substring was found in the main string starting at character peek (32767) of the main string. The match takes about 0.01 second and the m / c occupies about 130 bytes once located.

I would be happy to answer any questions from readers on this program.
Yours sincerely
Ron E. Eagle
2 Rusking Crescent
South Shields
Tyne and Wear NE34 9HU

Dear Ron,

Thank you for the letter, and the listing, which we show below. As usual, if any readers come up with an alternative version for the other series of Commodore machines, we'd be delighted to hear from you.

Dear Sirs,

Our school owns a Vic, but unfortunately we cannot afford to buy a printer yet. What I want to do is print out listings of my programs on a Pet printer, but whenever I save a program on tape, then load it into the Pet, although the Pet
says 'Searching', 'Loading', and then 'Ready', with the flashing cursor, the Vic program doesn't appear to be there. Am I doing something drastically wrong, or is there a simple solution?
Yours hopefully
John Ives
Birmingham
Dear John,
The problem is essentially that the Vic's internal memory is stored differently from that of the Pet, and this problem is heightened by the fact that the Vic's own memory moves around as you add various memory expansion cartridges. Consequently, one or two Pokes have to be performed before you can convince the Pet that the program is actually there.

On a Vic with no expansion, once the program is loaded into the Pet you need to:POKE 4096,0:POKE
41,16:CLR
On a Vic with $3 K$ expansion, no changes are required.
One a Vic with more than $3 K$ expansion, you need to:POKE 40,1:POKE 41,18:POKE 4608,0:CLR

Once you've done that you will be able to list the program on the screen, save it to disk, or list it out on the printer. I don't suggest you try and do anything else with it, as Vic programs are not likely to be particularly compatible: the various screen and colour codes may well cause strange things to happen when the program is run.

EXFLAHATION OF THE FROGRAM

New Product News

More Training Courses

Training courses abound these days. One University who have just announced a series is the University of Salford, and in particular the Department of Electronic and Electrical Engineering there. They're holding 4 courses in all, in September of this year, covering the Pet for beginners, getting more from your Pet, the Pet in control, and an introduction to Pet machine code programming. Prices for the courses range from 95 pounds for the first two, which are two day courses, to 55 pounds for the latter two (both one day courses).

If you want to know more, the person to speak to is Mrs. S.R. Hill, on 061-736 5843 extension 248.

Of course, there is also Commodore's own training courses, recently taken over by McDowell Knaggs Associates, and being held in

Manchester and Worcester, as well as the traditional Heathrow site. The four areas that these cover are Basic for beginners, disk file programming, program planning, and assembler language.

The cost of these three day events is 210 pounds, and this covers tuition, documentation, lunch and refreshments. The emphasis is very much on 'hands-on' experience, and if you wish to know more just ring Worcester 28466.

Whilst still on the subject of training, a novel approach has been adopted by Adda, one of the larger Commodore dealers. Although the fees for their courses are quite high, at the end of the day you take home the equipment you were working on. Based around the Vic 20, and intended primarily for businessmen, further details can be found by ringing 01-579 5845.

INSTALLATION SERVICE

Experience is often very valuable when installing your new Commodore System. Mistakes are frequently very costly and waste valuable time.

ONE DAY SERVICE

For a fee of $£ 85$ per day plus expenses a member of staff will help you overcome early difficulties and set you on a suitable path to a successful computerisation.

FULL INSTALLATION SERVICE

This is tailored to your requirements. We can supply extra operations staff, or technical advisors. Extra equipment can be useful if an installation is required by a certain date. As full Commodore Systems Distributors we have experience you will probably need.

MAINTENANCE

Most of the system breakdowns are not hardware faults, but consist of lack of understanding of programs or faults based upon unwise practices. Our staff are trained to assist with system problems, and they are capable of finding the best possible solutions. Maintenance staff will visit your site, diagnose your difficulty and if necessary replace any components needed.
For information concerning this service please contact Brian Homewood or Robert Jones.

COMPUTER SERNICE TO BUSINESS
5 HORNINGLOW STREET, BURTON-ON-TRENT, STAFFS. BURTON (0283) 44968

KINGSLEY COMPUTERS LTD. 132 Desborough Road HIGH WYCOMBE, BUCKS HP112PU

CBM BUSINESS SYSTEMS
VIC HOME COMPUTERS COMPUTER ACCESSORIES AND SUPPLIES

AGENTS FOR CBM APPROVED PRODUCTS

COMMODORE SERVICE CENTRE

New Product News

'Obviously, the Work of an Irate User.'

New Books on the Scene

Everyone's talking about COMAL these days, so perhaps it is only fitting that a number of books are now beginning to spring up concerning the subject. First off the mark was Structured Programming with Comal, by Roy Atherton, and published by Ellis Horwood Ltd. Essentially a comparison between Basic and Comal, the book does move onto the subject its title implies it will. An interesting read, and if you're at all attracted by Comal, definitely worth looking into.

Another new arrival is Beginnng Comal (again from Ellis Horwood) by Borge Christensen, founder father and leading light behind the language. Assuming no prior knowledge, it is basically (if you'll excuse the word) a textbook on the language, and indeed is being used as just that in Denmark, where Comal appears to have made its biggest mark. It contains many, many listings, and not just irrelevant four liners either: more like a complete library of Comal programs.

Our final news on Comal is the launch of the Comal bulletin, a bi-monthly publication which promises to deal with "concepts, applications, standards, teaching and implementations". Once more, Ellis Horwood are the people to contact to find out more.

Word Processing on the Vic

There comes a point, with certain types of software, when you have to ask the question "is it a viable proposition?". Word processing on the Vic must surely fall into that category: scrolling screens are all right, but when you can only see 22 characters at a time, it becomes a bit difficult to remember what you typed at the end of the last paragraph.

Still, if you want to do word processing, then the best package to appear so far has to be Wordcraft 20, distributed by Audiogenic in Reading (Tel. 0734 586334). Written by the author of the original Pet version, it has just about all the features of that program, and also incorporates some of the Vics own specialities, such as sound and colour, for extra user feedback. Coming in the form of a plus in cartridge, and priced at 125 pounds, it looks rather impressive. Next month we'll carry a detailed review of the package.

New Vic Games

As well as producting Wordcraft, Audiogenic have recently also brought out a whole host of Vic programs, mainly games, but a data base and a 'toolkit'-like program have reared their heads as well. I don't know who writes the catalogue descriptions for the games, but some of them are quite . . . well, ludicrous! Take this one, from a game called Cloudburst: ' 'Save the Earth from the downpour of Acid Raindrops and the invasion of the mutant Cloud Hoppers!'". Almost makes you afraid to go anywhere near the game.
The star of the show though has got to be Renaissance, otherwise known to us as Othello. This is one of the best games I've seen on the Vic. You can change sides and playing level, take back moves, set up special games, save games to tape, read them back later, and all with excellent graphics. Even the lowest level (there are 8 in all) plays an excellent game.

More Vic Product News

Computer World in Holland recently announced the introduction of their TDK 20, essentially a ham interface for the Vic.
Costing 89 pounds ex. VAT, this comes in a cartridge that simply plugs into the back of the Vic, or onto an existing expansion board. It includes a RTTY and morse code convertor, and can be attached to various devices to turn it into a message memory keyboard, to start decoding either RTTY or CW, or transmitting RTTY. All told, a nifty little unit.

A really exciting one next, and something the

'The Spats and Violin Case Won't Be Necessary in This Line

Vic world has been waiting for. As you know, the Commodore disk drive for the Vic is a single unit, which means that making backup copies of disks is somewhat difficult, and quite expensive at 396 pounds. Well, B.G.C.C. down in Brighton (Tel. Brighton 507694) have come up with a dual floppy cartridge drive for the Vic. It is a 3 inch microfloppy system, and should retail for around 395 pounds when it makes its first appearance at the end of September. We hope to carry a full review of this as soon as possible.

Petpourri

A whole host of Pet related software and hardware has appeared over the last couple of months. J.J. Lloyd (Tel. 04895 4221) have brought out a low cost $\mathrm{X}-\mathrm{Y}$ digital plotter for the Pet, and since it is addressed via the IEEE bus one must assume therefore that it will work with any models in the range. Known as the PD4, it handles A4 size papaer, and you can acquire from J.J. Lloyd a software package in ROM form, which eliminates mucho effort on your part in writing various software routines to drive the beast. Although only one pen is used at a time, it has a compensatory high speed of $600 \mathrm{~mm} / \mathrm{sec}$, and at a price of 596 pounds plus VAT it puts this particular plotter firmly in the reach of most engineering, industrial and scientific users, which is where it will probably be of most use.

Netkit II from Yorkshire Microcomputers (Tel. 0723 78136) converts your Pet into a terminal, with the ability to communicate with mini and mainframe computers, telex equipment, hand held data capture terminals, and many other

New Product News

scientific and industrial devices. Based on the original Netkit, but significantly upgraded, the entire package comes on board complete with 4 K Eprom's worth of software, and fits quite easily into the Pet.

Another from our overseas friends this time, Datatronic in Sweden. A program called Calc Result, which appears to be a significant improvement on the original program Visicalc. The work matrix size is 32 times as big, and it is a lot easier to use. All in all a very smart package. Try, if you can, to get hold of the quaintly worded leaflet from Datatronic. Their programming is an awful lot better than their English!

InfoPro

Professional Software (Tel. 0707 42184) of Wordpro distribution fame, have announced a new product called Inforpro, which they describe as an Information Management System. Essentially another data base, it does have the ability to link with any of the Wordpro family of programs, and indeed can accept information of any sort as long as it has been filed sequentially. It
works on either the 8032 or 8096 , with a 4040 or 8050 disk drive.

Finally for this month, a new system for indexing on the Pet from Farestead Associates (Tel. 0442 51708). Although they've been running an in-house indexing service for some time now, they're unleashing their program Microindex. onto the market at the end of August. Claims made include taking six hours plus proof reading to enter an 800 entry index, and a cost of between 50 to 60 pounds to compile a 750 index.
Nothing to do with New Products, but
SPACE INVADERS
\$0E01 (3585) - sets speed you move and fire ; normally 2 \$0E09 (3593) - sets invader firing speed ; normally 4 $\$ 0404$ (3598) - sets mother ship speed ; normally 6
\$0623 (1571) contains character after missiles to erase them. Try POKEing with 102 for Wall Invaders.
$80 / 40$ COLUMN TEST
WD $=80$: POKE 32768+1024, 96 : IF PEEK (32767) $=96$ THEN WD $=40$

Where WD is the width of the screen. Thanks Jim!

VIC - 20 Computer (Call now for new low low price)
C2N Cassette Unit
1540 Floppy Unit 1515 Printer
Memory Expansion
3K Ram Expansion 8K Ram Expansion 16K Ram Expansion Super Expander Cart Progs Aid Cartridge Vicmon Cartridge Joystick
3K Store Board
8K Ram Chips Vickit I
39.99 375.00 214.95 110.75
27.50
39.98
68.99
32.50
34.50 30.00

Vickit II
VIC - 20 Dust Cover
C2N Dust Cover Light Pen
Rom Switch Board Expansion Board
*NEW*NEW*NEW*NEW*NEW*NEW* PRINTERS FOR YOUR VIC - 20
SEIKOSHA PRINTER -
The Commodore Printer plugs directly into the VIC - 20 uses $8^{\prime \prime}$ continuous paper up to 80 chars per line with a speed of 30 c.p.s.
214.95

EPSON MX80 F/T PRINTER Uses standard A4 paper or 9.5" paper. 80 characters per line with a speed of 80 c.p.s. (INC. VIC - 20 Interface) 458.99

'DISCOUNT PRICES ON QUALITY PRODUCTS' THE VIC - 20 CENTRE

$$
\begin{aligned}
& \text { ****** NEW } * * * * * * \\
& \text { RABBIT WRITER (Wordprocessor) } \\
& \text { Requires } 8 K \text { or } 16 K \text { Ram, } \\
& \text { *mailmerge* } \\
& \text { includes. } \\
& \text { *left and right hand justification* } \\
& \text { *tape and disk format* } \\
& { }^{*} \text { prints up to } 80 \text { columns* } \\
& \text { *uses } 80 \text { columns }{ }^{*}
\end{aligned}
$$ INTRO PRICE TAPE 9.99 DISK 12.50

RABBIT BASE
Requires 16K RAM Personal information master, ideal for mailing, personal records, stock control and filing.
$\begin{array}{llll}\text { INTRO PRICE TAPE } & 11.99 \\ & \text { DISK } & 13.99\end{array}$
DISK 13.99
*SPECIAL OFFER**SPECIAL OFFER*
VIC - 20 PRINTER + 16K RAM PACK + RABBIT BASE + RABBIT WRITER ALL THIS FOR ONLY 290.00

DON'T FORGET TO SEND OR PHONE

 FOR YOUR FULL FREE CATALOGUE ALL PRICES ARE INCLUSIVE OF VAT, POSTAGE \& PACKING.380 STATION ROAD, HARROW, MIDDX. HA1 2DE Telephone: 01-863 0833

Space Storm	6.99
Ski Run	4.99
Dune Buggy	4.99
Super Worm	4.99
Jungle	4.99
Cosmic Battle	4.99
Frogger	7.99
Rab Functions	4.99
Star Wars	6.99
Amok	6.99
Blitz	4.99
Invader Fall	6.99
Masterwits	6.99
Kiddie Checkers	6.99
Simple Simon	6.99
Alien Blitz	7.99
Functions	4.99
Code Breaker	4.99
Night Flight (3K)	4.99
The Alien (3K)	7.99
Amazing (3K)	6.99
Skymath (3K)	6.99
Spc Division (3K)	6.99
Charset 20 (3K)	4.99
Rabbitwriter (16K)	9.99
Rabbit Base (16K)	11.99
Rabbit Chase	4.99

EXCEPT WHEN STATED

RABBIT CHASE

Rabbit version of the famous arcade game 'Gobbler'. Chase the Rabbit through the carrot fields, eat the lettuces and chase the farmers. Use Joystick or Keyboard.

FOR FURTHER DETAILS ON ALL PRODUCTS, PLEASE CALL OR WRITE TO THE ABOVE ADDRESS.

Club News

Pieces of Eight . . .?

This month's club news was going to be about the Watford group of ICPUG, a look at what they're doing, and a report on a club night with them. However, events are such that now we have to turn our attention elsewhere (sorry Stephen: maybe next month), and take a look at events that are potentially of great importance for the computer industry. It's the old story of the big guys against the little guys.

Not too long ago, but long enough to be of significance, one of the Independent groups (IPUG South East) produced a word processing program of astonishing versatility. The author, Simon Tranmer, who works as Technical Support for General Automation, apparently wrote the program because his wife wanted to send a letter to a long lost aunt in Australia, and he decided that what she needed was a word processor. So, he wrote one.

Other Packages

Presumably, Simon had seen the two major packages already in existence for the Pet, namely Wordpro and Wordcraft. Both have their distinctive features, but both have their failings as well. What one will do the other will not, and vice versa. Equally, there are a number of functions which neither of them will do. Rather like taking a shot of gin and a bottle of tonic, the ideal would be to blend to two together, and add a slice of lemon to set the whole thing off.

This is what Simon did. The program, Superscript, combines the best of Wordpro with the best of Wordcraft, and has a number of its own very powerful commands. It is extremely easy to use, it will read files created from either Wordpro or Wordcraft, will read program listings, asoii files, and a whole host of other information.

Better Written

Furthermore, it is obviously better written than either of them, since it allows a lot more text to be stored in memory at any one time. Thus the code must be significantly more compact.
Finally, and most importantly, we come to the price. Whereas Wordcraft cost 425 pounds, and Wordpro 4 costs 395 pounds, Superscript costs just 30 pounds to members of ICPUG, or 35 pounds to non-members. A significant difference! Because of this low price, most retail outlets would probably not take the package: not enough
profit in it for them. Consequently it was being sold via mail order from an address in London.

You will note that I said 'was' being sold from an address in London. It is NOT being sold at the time of going to press, pending legal action. A company who, as they say 'shall remain nameless', have taken out an injunction to prevent Superscript continuing its trail blazing path.

Rip-Off?

This brings us to the importance of the whole issue. Why should anyone take out an injunction? Software piracy perhaps? To say that Superscript is 'ripping-off' another program is the same as saying that a Ford Cortina is a rip-off of a Sherman tank. They both perform the same functions i.e. they get you from A to B, they can go round corners, they have steering wheels etc., but they can hardly be compared.

Fear of competition then? No-one who is in the computer industry can afford not to be afraid of competition, but you do not immediately involve the law because you're afraid of losing business.

Is that the problem, fear of losing business? It would seem immediately obvious that a program selling at thirty pounds which is better than a program selling at round about 400, is going to sell a lot more copies. Through the medium of the ICPUG newsletters punters were going to be kept informed of any changes on the Superscript front, and the backup service normally performed by dealers would have been dealt with that way.

Conclusion

If it is the case that Superscript can not be sold through fear of competition, or indeed for whatever reason someone's decided to take out an injunction, it is a great shame and an indictement on the state of the computer add-on industry. In many cases, prices of software packages are being kept artificially high: if Superscript can do it, why can't everyone else?

Let's hope that this injunction is dropped, and that Superscript re-assumes its place on the market front. By the time you read this, that might already be the case. Will software people take heed and lower their prices? Time alone will tell.

Next month we'll hopefully be back to normal again!

If you have any news of your own user club, details of activities, meetings etc., I'd be grateful to hear from you. Just drop me a line at the address on the masthead.

Education

Educational Software

One of the reasons why the Pet and Vic have made such extensive inroads into the educational world is the amount of good quality software readily available: a computer is only as good as the software that runs on it. Here we take a brief look at just some of the many suppliers around the country.

School Software

Some of these suppliers are in fact schools in their own right, which gives you a fairly good guarantee that the software will be of a high standard, as you can safely assume that it has already been field tested in the school prior to release. One such is the Houghton County Primary School down in Cambridgeshire.

Their programs are, not surprisingly, aimed mainly at the primary school level, and cover such topics as word matching, sentence value, getting to grips with early numeracy skills, and so on. Software for this level is possibly the most difficult to write: children of this age group tend to get tired of doing the same thing very quickly, and so programs have to be carefully structured in order to avoid this.

Happily, Houghton's programs cater for this, and are worth exploring further. They can be reached at Houghton, Huntingdon, Cambridgeshire.

Specialisation

Then there are the more specialised companies, like ESM (Educational Software for Microcomputers). They produce a whole range of programs, covering many topics commonly encountered in the school curriculum. Although principally involved with literary and numeric skills, there are a number of interesting programs covering the biology angle. These latter (and indeed, most of the others) are written by one Russell Wills (with various accomplices), who was the mainstay behind the educational side of Commodore's old PetPack series of cassette programs.

ESM state that the programs can cover both primary and secondary schools, but a read through of their catalogue (and a knowledge of many of the programs) leaves one with the distinct impression that they would be of most use at a secondary level. Either way, further information can be gleaned by telephoning

0945-63444.
Garland Computing are another company who 'specialize in programs for education'. Their latest handout gives details of biological programs, with the promise of animated graphics. Happily, the subjects they cover include nothing more potentially dangerous than Animal Physiology, Plant Physiology, and so on. For full details and a current price list, you're invited to ring 0752-41287.

Inexpensive Companies

A third source of good software are a host of companies who mainly produce general software for all kinds of purposes, but who in turn have quite a number of educational packages, usually inexpensively priced.

To name but a few, Pedro Computer Services (01-250 1481) supply a low cost Pet to TV interface, useful when giving demonstrations in the class, where not everyone can cluster around the Pet screen, and also a CB2 soundbox.

Qwerty Computer Services (0385-67045) supply about 15 million software and hardware add-ons, most of them at a reasonable price. Many of these are suited to education, and any school teacher who's budget is in danger of crumbling ought to consider getting in touch with them.

Simple Software Ltd (0273-504879), have an annoyingly 'Gang Show' type catalogue, but this must not detract from what is a quite acceptable selection of software and hardware. There's not a lot that is specifically aimed at education, but a browse through the items presented should give you an idea or two.

Audiogenic (0734-586334) and Supersoft (01-861 1166) are two well established companies, who have for a long time now been selling software and hardware for the Pet, and lately the Vic as well. Again not too much directly for educational users, although Audiogenic have one or two useful titles in that field. Again, it's interesting to note that a number of Russell Wills' programs are included here: the man certainly gets around.

Conclusion

We haven't listed everyone here: to do so would take up the vast majority of the magazine. In the end it all comes down to the old adage 'you pays your money . . ${ }^{\prime}$. Hopefully we've been able to point you in one or two of the right directions.

We'll continue to explore the educational aspect of Commodore equipment in next month's issue.
A.S.K. announce the first four programs in a series of educational cassettes for the VIC 20. These programs have been written by a team of teachers and professionally programmed specifically for use in the home.
They are of proven educational value, complementing work done at school, yet all the programs are designed to be fun to use - not just once, but over and over again.
We believe that these programs will give you and your family and friends hours of worthwhile enjoyment. They will help your children to learn at home in a relaxed yet stimulating way.

We Want To Count. A program for young children learning to count which involves the numbers 1 to 5 . Children often find it easier to recite numbers than to count things correctly. Four different games give the child a variety of objects to count, and are presented in an exciting and stimulating way. Suitable for children aged 3 and upwards.

Facemaker. This program is designed to help improve spelling, expand vocabulary and sharpen observational skills. There are thousands of characterful faces you can make with the program. Perhaps someone you know? Suitable for children aged 5 to 12 .
Each cassette comes in an attractively labelled box together with a colour booklet which gives detailed loading instructions and tells you how to use the program.
N.B. Because these programs make extensive use of computer memory and colour graphics, a 16K RAM PACK (or 8K RAM
PACK for Numberchaser only) and colour T.V. are essential for their operation.
If you do not have a 16 K RAM PACK, we will be pleased to supply one at the discounted price of $£ 67.50$ with your order for one or more A.S.K. programs.

NO QUIBBLE GUARANTEE

If you are dissatisfied with any A.S.K. program, return it to us within 7 days of delivery and we will give you a full refund without question.
Not convinced? Then see our programs at The Vic Centre, 154 Victoria Road, London W3, opp. North Acton tube.

A.S.K. LIMITED, London House 42 Upper Richmond Road West, London SWl 4 8DD

Twister. A geometric puzzle that will tie you in knots, testing and improving your thinking skills and powers of concentration. The purpose is to rearrange coloured squares so that no row or column contains a repeated colour. Set your own puzzle and test the whole family. Suitable for children aged 8 and upwards.

Number Chaser. A car race provides an opportunity to practice and improve estimating and multiplication skills. You can choose the level of difficulty you want making it different every time you play. Suitable for children aged 5 to 12 .

To A.S.K., Freepost, London SW14 8BR (no stamp required)

Now you can do all accounting with...

without...

the filing,typing and

Silicon Office is the latest microcomputer software program from the Bristol Software Factory.

Designed specifically for use with the Commodore PET 8096, it'll help you run your office with the minimum amount of effort and maximum efficiency.

Think of it like three normal software packages in one, each separate package totally interactive with the other.

For around $£ 4,500$, you can have the complete electronic office, the solution to practically all your business problems. The price includes Commodore hardware, a high quality daisy wheel printer and Silicon Office software.

Silicon Office is made up from a flexible information management system which lets you create and maintain an extensive filing arrangement. Allowing you to search quickly through your records, making cross references between files in order to gain the facts you require.

A highly sophisticated word processing program allows you to generate letters, documents and reports. Letting secretaries get on with the more important tasks.

And a fully comprehensive calculator means you can handle all the number crunching you're ever likely to do in a business situation. Leaving the
accounts department to concentrate on more profitable things.

But that's not all by any means.
Silicon Office also has a special programmability feature which means you or your dealer can expand and tailor the Silicon Office program to your business.

When Silicon Office is used in an everyday business situation, certain command sequences are inevitably repeated. By writing short, very simple programs which are entered into the computer's memory,Silicon Office can perform the necessary tasks, automatically.

And last, but by no means least is an optional communications facility.

It doesn't take much imagination to see the potential of Silicon Office in virtually any line of business.

So to get a better grasp, send away for our brochure. It'll only cost you a stamp. And it could save you a fortune. Or talk to your local Commodore dealer who has all the facts at his fingertips.

You'll soon see how you're much better off with Silicon Office. Than without.
Czcommodore COMPUTER

I can't wait to get my hands on a free copy of the Silicon Office brochure.
Name \qquad
Position
Company \quad
Address_Telephone_ ACC2

I own a Commodore PET (Please tick box) \quad YES \square NO \square
Send to: Bristol Software Factory, PO Box 14,Horley,Surrey.

Languages

As promised last month, Brian Grainger continues his look at Comal.

11) The command LABEL will cause a label to be placed on a line. For example you can type either of the 2 statements below and the COMAL interpreter will accept it in the same way:
0010 LABEL START or
0010 START:
When listing the program it is the second form that will be listed. We can now use the label START as a reference in a goto statement:
N.B. No other statements can occur on a labelled line.
12) The LIST command under COMAL has 2 special features. Firstly it invokes automatic indenting of lines for readability. It is not necessary to type the lines indented it is done automatically. Secondly one can LIST to a file on the disk or cassette. This file can subsequently be merged into any existing program by the ENTER command: LIST "FILENAME" lists the current program to disk under the name FILENAME.
LIST "FILENAME", 1 lists the current program to cassette under the name FILENAME.
LIST 10-50, "FILENAME" will list lines 10 to 50 inclusive to disk under the name FILENAME.
13) The RENUM command will remember an entire program. It has the same syntax as the AUTO command.
14) The RUN command is similar to that of BASIC with one notable exception. Variables are NOT reset to zero or null. Thus no assumptions should be made on the values of undeclared variables in a program.
15) In comparing the BASIC PRINT command with the COMAL equivalent. COMAL looks clumsy. In reality COMAL is much more flexible. BASIC has fixed print zones of length 10. In COMAL one can vary the zone length by the ZONE command: e.g. ZONE: $=5$ will cause items separated by commas in print lists to be printed in zones of 5-character length.

The default value of ZONE length is 0 and not 10 as in BASIC. Thus a comma will cause no separation of variables until zone length has been redefined. In COMAL a semicolon between print items will ALWAYS print 1 space between those items, whether they are numeric or string. It is a true space unlike BASIC which for numerals will print a cursor right after the value. This appears like a space but in reality is not.
16) In COMAL variable names or labels can be up to 16 characters in length. The first character
must be a letter and all 16 are recognised unlike BASIC where only the first 2 are recognised. In COMAL it does not matter if a variable name includes a COMAL keyword. Thus variable names can be chosen which have meaning. One side effect of this is that COMAL keywords must be typed with a following space. Otherwise it will be regarded as a variable name and a syntax error will probably result. One other COMAL restriction on variable names is that the same name CANNOT be used for two different variable types. For example the variables A and A\$ cannot appear in the same segment of program.
17) I have mentioned above that one need not type the spaces necessary to cause line indentation. They are added automatically when the program is LISTed. There are other things that need not be typed as well. Here is the complete list:
The ' \because ' preceding the ' $=$ ' in assignment statements.
The 'OF' in 'CASE . . .OF' statements.
The 'DO' in 'FOR . . .DO' or 'WHILE . . .DO' statements provided the 'DO' is the last word in the statement.
The 'THEN' in 'IF . . .THEN' or 'ELIF . . .THEN' statements provided the 'THEN' is the last word in the statement.
The procedure name following the 'ENDPROC' statement.

In all the above cases the COMAL interpreter will automatically add the relevant words if they have been omitted.
18) The REM' command is accepted in COMAL but the interpreter will replace it with //. REM or // can be used at the end of a COMAL statement or be on a line of its own.
19) It has been stated above that variables cannot be assumed to be null at the start of a program. There is therefore a need for a command which will set a string variable to a blank. The following example will illustrate: SPACE\$(1:60):='"' will set the string SPACE\$ of sixty characters length to a blank. Another facility on string handling is that if a single character is to be referenced it can be done simply as the following example shows:
NAME $\$(5)$ refers to the 5 th character of NAME $\$$. It is not necessary to say NAME $\$(5: 1)$. Thus when the length value is 1 it may be omitted.

As can be seen from the above COMAL has many features that BASIC does not have. I have
left until last one of the most important features: There is syntax checking on input as there is with ZX80/81 BASIC (wash my mouth out!). The interpreter will even leave the cursor at the point where the error is recognised so that the line can be modified quickly before continuing. This means all the statements of a COMAL program are checked for syntax before it is RUN. In BASIC they are not checked until run time and it is up to the programmer to ensure all the lines are executed and checked. This is not at all easy on long and complicated BASIC programs with many loops and branches. To sum up COMAL is an extremely powerful language compared with BASIC which results in easy to read, easy to maintain programs.

COMAL - BASIC commands without COMAL

 equivalentsIn this article on COMAL I want to do two things. Firstly I want to identify those BASIC commands which are not included in COMAL and do not have COMAL equivalents. Secondly I want to identify some problems I have found in using COMAL (rev $0.11)$ whether in using the BASIC2 or BASIC4 version.

Here is a list of BASIC commands not supported by COMAL:
BACKUP, CLR, CMD, COLLECT, CONCAT, COPY, GET, HEADER, ON . . GOTO, RENAME, SCRATCH, VERIFY, WAIT, POS, STR\$, TIME, TIME\$, USR \& VAL.

In addition to the above commands, shortforms are not allowed in COMAL. In particular '?' does not mean PRINT.

It will be seen that most of the commands not implemented are BASIC4 disk management commands. The equivalent BASIC2 sequences also do not appear to exist. I find this somewhat surprising as the means to decode the commands is available in the BASIC ROM.

Here is list of oddities I have found in using COMAL:

1) The command BASIC causes a system error although it is a valid COMAL command.
2) PRINT USING is not implemented. In my opinion the saddest point about using COMAL.
3) SAVE or LOAD to cassette does not work. The commands function but on reloading the file reads as gibberish.
4) When a program with indented lines is ENTERed an error occurs on lines with DIM statements. Just ignore the error. Type return over the displayed line and all will continue normally.
5) When a program is ENTERed from tape an

EOF error occurs as a matter of course. It is not really an error.
6) ZONE: = 1 does not work correctly (it works as if ZONE: $=2$). Use ZONE: $=0$ and it works like ZONE: = 1 !
7) Do NOT send disk commands when a disk is not switched on. A system crash will occur if you do!
8) DEBUG, while being a COMAL command causes a system error. If anybody finds any other problems or has any suggestions as to resolving the above or why they happen, please let me know. Write to me at 73, Minehead Way, Stevenage, Herts. SG1 2HZ.

In programs one very often wants to add a value to a variable so that in BASIC one says $A=A+B$. In COMAL with variable names up to 16 characters long this could get a trifle irritating:-
e.g. VARIABLE: $=$ VARIABLE + VALUE

I have found the above line can be written as VARIABLE: + VALUE. Similarly one can subtract a value (or expression) from a variable by using ' $:-$ '. It does NOT work for multiplication or division however. You will see some examples of this in the COMAL program following this article.

To finish off this short piece I must mention another bug I have found with COMAL. If one ENTERs a program from tape I found that if one subsequently LISTs the program to tape the PET crashes. The solution is to do a SYS 65511 after the ENTER.

This is it for now except to say that after looking at some utilities from the US COMAL Users Group it would appear that the COMAL OPEN command is more detailed than I have identified so far. I have not investigated fully yet but it IS possible to send disk management commands from COMAL. In the meantime have fun with MAGIC SQUARES!

MAGIC SQUARES

The game is played with a board of nine cells. Each cell will have either a white dot or a white circle in it. You change the contents of cells from one symbol to the other by pressing one of the keys on the numeric keypad.

With the cells numbered as follows:

7	8	9
4	5	6
1	2	3

Pressing 1 changes the contents of cells 1-2-4-5
Pressing 2 changes the contents of cells 1-2-3

Languages

Pressing 3 changes the contents of cells 2-3-5-6 Pressing 4 changes the contents of cells 1-4-7 Pressing 5 changes the contents of cells 2-4-5-6-8
Pressing 6 changes the contents of cells 3-6-9
Pressing 7 changes the contents of cells 4-5-7-8 Pressing 8 changes the contents of cells 7-8-9 Pressing 9 changes the contents of cells 5-6-8-9

The game is complete when all the cells except 5 are filled with white dots and 5 is filled with a white circle.
You may give up at any time by pressing 0 . You will then be shown the complete quickest solution. You may also see the quickest solution after you have solved the puzzle yourself.

For each game the PET will tell you the average number of moves to solve the puzzle shown. For a real challenge try to find the quickest solution which is always two moves less than the par score.

0560 INPUT ANSWER\$
0570 UNTIL ANSWER $\$=" Y$ " OR ANSWER $\$=" N "$
0580 IF ANSWER $\$=" N$ " THEN FINISHED: $=$ TRUE
0590 ENDWHILE
0600 /1
0610 //
0620 PROC GETSTARTPOSITION
0630 REPEAT
0640 NEWSTART: =RND (0.511)
0650 UNTIL NEWSTART®OLDSTART AND NEWSTARTO495
0660 OLDSTART:=NEWSTART
0670 ENDPROC GETSTARTPOSITION
0680 //
0690 //
0700 PROC FILLCELLS
0710 DECIMALNO:=NEWSTART
0720 FOR BIT:=1 TO 9 DO
0730 BINARYTODEC:=DECIMALNO MOD 2^BIT
0740 CELL(BIT):=SGN(BINARYTODEC); DECIMALNO:-BINARYTODEC 0750 NEXT BIT
0760 ENDPROC FILLCELLS
0770 //
0780 /1
0790 PROC SOLVEIT
0800 NUMBEROFMOVES:=0
0810 FOR MOVE:=1 TO 9 DO
0820 IF CHECKMOVE (MOVE) THEN NUMBEROFMOVES : +1 ;
SOLUTIONMOVE (NUMBEROFMOVES) :=MOVE
0830 NEXT MOVE
0840 PAR:=NUMBEROFMOVES+2
0850 ENDPROC SOLVEIT
0860 //
0870 //
0880 PROC CHECKMOVE(MOVE)
0890 DECIMALNO:=VECTOR(MOVE); MOVECOUNT:=0
0900 FOR BIT:=1 TO 9 DO
0910 BINARYTODEC:=DECIMALNO MOD 2ヶBIT
0920 DECIMALNO:-BINARYTODEC
0930 IF BINARYTODEC $O O$ THEN
0940 IF BIT=5 THEN
IF CELL(BIT) $=1$ THEN MOVECOUNT: +1
ELSE
IF CELL (BIT) $=0$ THEN MOVECOUNT:+1
ENDIF
ENDIF
NEXT BIT
CHECKMOVE:=MOVECOUNT MOD 2
ENDPROC CHECKMOVE
1030 // [in lines 1070. 1110, 1130 \& 1160 use shifted
1040 // equivalents to those characters in quotes - Ed]
1050 PROC PRINTBOARD
1060 PRINT "<hcsr><7dn>"
1070 PRINT TAB(13)."ODอఎอ2ఎอఎอ2ఎออఎ."
1080 FOR COUNTER1:=1 TO 14 DO
1090 CASE COUNTER1 OF
1100 WHEN 5.10

1120 OTHERWISE
1130 PRINT TAB(13)."]]]"
1140 ENDCASE
1150 NEXT COUNTER1
1160 PRINT TAB(13)."-ออออ1ఎอออ1ออออ="
1170 EXEC PRINTCELLS
1180 ENDPROC PRINTBOARD
$1190 / /$
1200 //
1210 PROC PRINTCELLS
1220 FOR COUNTER1:=1 TO 9 DO
1230 IF CELL (COUNTER1) $=1$ THEN
1240 CHARACTERPOKE: $=81$
1250 ELSE
1260 CHARACTERPOKE: $=87$
1270 ENDIF
1280 SCREENPOS:=33582-((COUNTER1-1) DIV 3$) * 200+$
((COUNTER1-1) MOD 3) *5
1290 POKE SCREENPOS.CHARACTERPOKE
1300 POKE SCREENPOS +1 . CHARACTERPOKE
1310 POKE SCREENPOS+40.CHARACTERPOKE
1320 POKE SCREENPOS+41.CHARACTERPOKE
1330 NEXT COUNTER1
1340 ENDPROC PRINTCELLS
1350 //
1360 //
1370 PROC GETMOVE
1380 REPEAT
1390 PRINT "<hcsr><dn>"
1400 PRINT SPACE\$
1410 PRINT SPACE\$

PAMPER YOUR PET WITH Codewrlter

Write your data base applications programs in a fraction of the time usually required to do so.
Microsystems introduce to PET owners the CODEWRITER, a superb program generator for the 8000 series PET with dual disc drive unit.
Screen layout, data entry validation, screen display of user-defined error messages, screen calculations, searching by any field - all are child's play to CODEWRITER 1. CODEWRITER DISC 2 provides printed reports and menu generators.
Codewriter 1 - $£ 125$
Codewriter Disc 2 - $£ 65$
Dealer enquiries welcome.
Pamper your PET promptly, write or'phone Microsystems Ltd., Summerfield House, Vale, Guernsey, C.I. Tel. (0481) 47377.

MIDLANDS

COMMODORE PET SERVICE CENTRE

Phone Anne on 021-772 8181 about our

1. WORKSHOP \& FIELD REPAIRS

2. BUSINESS SOFTWARE
3. STATIONERY \& SUPPLIES

75 Watery Lane, Birmingham B9 4HW. Telephone: 021-772 8181 (7Lines)

"'INSTANT ROM"
"Instant Rom" ROM/EPROM EMULATORS contain CMOS RAM with internal battery backup. When the power is switched off, data is retained for up to 10 years.
In the PET, a 4 K INSTANT ROM can be fitted in the $\$ 9000$ or $\$ 4000$ socket. Machine-code (and Basic) programs can be stored, and are available at switch-on.
INSTANT ROM saves time. It can be used for long periods; when the program is finally "bug-free", an EPROM can be programmed.
4K INSTANT ROM (ROM socket replacement).............
2K INSTANT ROM (character generator replacement)..
2 K INSTANT ROM (character generator replacement)........................... 539.00
Adaptor GA1 (essential for PET users)
Adaptor GA1 (essential for PET users)....

"G-ROM E"

G-ROM E is a 4 K EPROM which will Auto-run, at switch-on, any Basic or Machine-Code program stored in INSTANT ROM. Basic programs can be stored with a few quick key-strokes. No skill is needed. Programs can now be run without a tape or disk unit, and can be changed without cost to the user. Diagnostic aids are included.
G-ROM E (specify type of PET).
.£25.00
Postage ($£ 1.00$) and VAT are extra. Leaflets are available.
"INSTANT ROM" and "PETCLOCK" are COMMODORE APPROVED PRODUCTS
GREENWICH INSTRUMENTS LIMITED, 22 BARDSLEY LANE, GREENWICH, LONDON SE10 9RF, UK. Tel: 01-853 0868. Telex; 896691 Attn. GIL.

Languages

```
PRINT SPACE$
PRINT "<hcsr><dn>"
PRINT "WHAT IS YOUR MOVE"
PRINT "TYPE 1.2.3.4-5 .6.7.8.9 OR O TO GIVE UP"
INPUT ANSWER$
MOVE:=ORD (ANSWER$)-48
UNTIL MOVE>=0 AND MOVE<=9
IF MOVE=0 THEN
GIVENUP:=TRUE
ELSE
NUMBEROFMOVES :+1
ENDIF
ENDPROC GETMOVE
//
PROC ALTERCELLS
CASE MOVE OF
WHEN 1
CELL(1):=1-CELL(1); CELL(2):=1-CELL(2)
CELL(4):=1-CELL(4); CELL(5):=1-CELL(5)
WHEN 2
CELL(1):=1-CELL(1); CELL(2):=1-CELL(2)
CELL(3):=1-CELL(3)
WHEN 3
CELL(2):=1-CELL(2); CELL(3):=1-CELL (3)
CELL(5):=1-CELL(5); CELL(6):=1-CELL(6)
WHEN }
    CELL(1):=1-CELL(1); CELL(4):=1-CELL(4)
    CELL(7):=1-CELL(7)
WHEN 5
    CELL(2):=1-CELL(2); CELL(4):=1-CELL(4)
    CELL(5):=1-CELL(5); CELL(6):=1-CELL(6)
    CELL(8):=1-CELL(8)
WHEN }
    CELL(3):=1-CELL(3); CELL(6):=1-CELL(6)
    CELL(9):=1-CELL(9)
WHEN 7
    CELL(4):=1-CELL(4); CELL(5):=1-CELL(5)
    CELL(7):=1-CELL(7); CELL(8):=1-CELL(8)
    WHEN }
    CELL(7):=1-CELL (7); CELL(8):=1-CELL (8)
    CELL(9):=1-CELL(9)
    WHEN }
PRINT SPACE\$
```

1850 CELL (5): $=1-\operatorname{CELL}(5)$; CELL(6):=1-CELL (6)
1860 CELL (8) : = 1 -CELL (8); CELL (9):=1-CELL (9)
1870 ENDCASE
1880 SOLVED:=TRUE
1890 FOR COUNTER1:=1 TO 9 DO
1900 IF COUNTER1 $=5$ THEN
1910 IF CELL (COUNTER1)=1 THEN SOLVED:=FALSE
1920 ELSE
1930 IF CELL (COUNTER1) $=0$ THEN SOLVED:=FALSE
1940 ENDIF
1950 NEXT COUNTER1
1960 EXEC PR•INTCELLS
1970 PRINT "<hcsr><dn>"
1980 PRINT SPACE\$
1990 PRINT SPACE\$
2000 PRINT SPACES
2010 PRINT "<hcsr><dn>
2020 PRINT "LAST MOVE WAS";MOVE
2030 PRINT "NUMBER OF MOVES TO DATE IS"; NUMBEROFMOVES
2040 ENDPROC ALTERCELLS
2050 II
2060 //
2070 PROC HITKEYTOGO
2080 REPEAT
2090 PRINT "<hcsr><3dn>
2100 PRINT SPACES
2110 PRINT <hcsr><3dn>
2120 INPUT "PRESS 'RETURN' TO CONTINUE ": ANSWER\$
2130 UNTIL ANSWER\$="'"
2140 ENDPROC HITKEYTOGO
2150 /I
2160 //
2170 PROC SHOWSOLUTION
2180 EXEC FILLCELLS
2190 EXEC PRINTBOARD
2200 FOR NUMBEROFMOVES: $=1$ TO PAR-2 DO
2210 EXEC HITKEYTOGO
2220 MOVE: =SOLUTIONMOVE (NUMBEROFMOVES)
2230 EXEC ALTERCELLS
2240 NEXT NUMBEROFMOVES
2240 NEXT NUMBEROFMOV
2250 EXEC HITKEYTOGO
2260 ENDPROC SHOWSOLUTION

STILL THE FASTEST ANALOGUE INTERFACE FOR YOUR PET! THE ORTHOLOG 181

CONTAINS eight analogue input channels with 8 -bit resolution. Up to 62,500 samples/ second can be fed directly into the Pet.
CONTAINS two analogue output channels with 8-bit resolution. Up to 120,000 samples/ second can be fed out from the Pet.
CONTAINS a $+5,-5$ volt ower supply for your own bench use.
IS SUPPLIED as a completely self-contained unit with all of the cables and connectors needed.
IS SUPPLIED with a comprehensive handbook with programs for collecting or generating data at speeds between 1 sample per hour to 50,000 samples per second and beyond.
THE ORTHOLOG 181 is in use in industrial research laboratories, polytechnics and universities, and in medical and government establishments. It has been used for measuring thermocouple outputs at one sample/minute and for analysing microphone inputs at 62,500 samples/second. It costs only £324 cwo or £349 nett m/a, all-inclusive.
Ortholog Ltd. also supply supporting software and hardware for use with the 181. We offer programs which let you turn your Pet into a sampling and storage oscilloscope for the 0.01 to $20,000 \mathrm{~Hz}$ frequency range and pre-amplifiers for measurements down to 10 microvolts or less. Others items are listed in our brochures.

FOR FURTHER DETAILS OR FREE DEMONSTRATION CONTACT: ORTHOLOG LTD., P.O. BOX 72, EDGWARE, MIDDLESEX HA8 6RD Tel. 01-952 2459

Give your PET a home.... Buy it a PETDESK!

A Commodore approved product.

Specially designed to take any Commodore Pet system. Black leathercloth top and Black metal frame. Paper feed tray, top extension shelf. Concealed cables and 4 way 13 amp plug socket. Mounted on castors. Size $1470 \times 560 \times 675 \mathrm{~mm}$. Delivered flat packed.
Price $£ 189.50$ includes VAT and delivery.
This offer available UK only. Cheques with order to: Tirith Ltd, Pear Tree House, Woughton on the Green, Milton Keynes MK6 3BE. Telephone: (0908) 679528

Don't tear your hair Compufix is there !

If your PET is having a nervous breakdown or your APPLE has bitten it's last byte. Then you need us!!
We are offering fast repairs to faulty systems. Maintenance contracts are available.

Swindon (0793) 694066, 612341/2

FREE PET/CBM COMAL

"The excitement in Europe (over COMAL) seems to be growing by the hour and we look forward to America being able to share in the good fortune of having an easy-to-use, structured, planning language at last."

The power of PASCAL and the ease of BASIC can now be yours with Commodore COMAL, a new programming language from DENMARK. It is being distributed in the USA by the COMAL USERS GROUP. To find out more about COMAL and how you can get a free disk copy of Commodore COMAL, send a large self-addressed stamped (35 cents) envelope to:

COMAL USERS GROUP
5501 GROVELAND TER., MADISON, WI 53716.
Outside USA please add $\$ 2.00$ for airmal and handling.
*PET \& CBM are trademarks of Commodore Business Machines.

Software Review

To quote Professor Tom Stonier, of the School of Science and Society at Bradford University, "A good computer without any software is like a good stereo without any records"'. In other words you may have got one of the best systems in the land, but one which is virtually useless due to the lack of accompanying material.

This month's review looks at four products from a company called A.S.K. Limited (Applied Systems Knowledge), whose aim it is to provide good quality educational software for the Vic.

New Programs

There are a large number of programs available on cassette for the Vic, but unfortunately most of them tend to be on the games side of things, and the few educational packages that do exist are mainly 'one-off' lessons that the pupil or user would rapidly lose interest in. Similarly, the programs are usually aimed at existing tutorial lessons, thus simply repeating what the teacher has already gone through, rather than being aimed at reinforcing what has already been learnt.

Therefore, it makes a refreshing change to be presented with a set of programs that not only maintain ones enthusiasm for using them, but also prefer to back up what may have been taught in the school or college.

Since this is a worthwhile and relatively novel approach, it's worth taking a close look at the company behind all this before examining the individual programs in further detail.

A.S.K. Limited

Managing Director of A.S.K. is a gentleman called Peter Lever, an affable but extremely businesslike person, whose aim is (reasonably enough) to make the company a very successful one, and also (on a less profit-conscious note) to provide a large range of good, competent educational programs for the Vic.

The whole idea behind the packages is to encourage the learner to work from home, and complement the work that has already been done in the traditional classroom environment. Thus the programs are not just 'one-off' lessons, but give a comprehensive approach to whatever particular area is under consideration.

For instance, the two areas that A.S.K. have originally aimed for are mathematical and literacy skills, and at the time of writing they have two programs in each area. The method by which they go about selecting the topics or the programs is quite interesting, and deserves quick mention. Basically they have a team of authors, most of whom are in the teaching environment already,

and thus know the kind of material that is required from the home educational angle.
This team then come up with a list of about 8 or 9 topics in each subject area, and produce a 'script' for each one. This is then presented to a professional team of programmers who come up with the finished goods.

Rampacks

These 'finished goods' are quite sophisticated, and make extensive use of the colour graphics available on the Vic.
As a consequence of this, they majority of the programs will require a 16 K rampack before they can actually be used. This raises an interesting point: how many schools or homes will have, or will be willing to buy, a 16 K rampack? A fairly expensive commodity.

Still, this is the marketing decision that A.S.K. have made, and one by which they stand or fall. To offset this, they are making available 16 K packs themselves, at a reduced cost of 67.50 pounds for each one, provided you buy at least one of their programs.

The Programs

As I said, there are four programs on the market at present, although they hope to expand this up to fifteen by the end of the year, still covering the mathematical and literacy skills.
'We Want To Count' is aimed at the lower end of the scale, for children of three years or upwards. It involves teaching them to count, using the number 1 to 5 , and like all A.S.K. programs this challenge is presented in a game, rather than a stern lesson, format. Four different games, and a fair degree of randomness, make this a good and useful program. It is priced at 8.95 pounds, like all of the programs so far released.
'Number Chaser' is the next one up, aimed at the 5 to 12 year market, and is the only program that doesn't require a 16 K rampack: it needs an 8 K one instead! It all revolves around a car race, and presents the opportunity to improve estimation and multiplication skills. There are a number of levels of difficulty, and thus the program can be made different every time the user comes to run it. As usual, a lot of colourful graphics serve to improve the display, and present 'rewards' for getting correct answers.
'Facemaker' is again aimed at the 5 to 12 years age bracket, and is one of the programs on the literacy side, looking at spelling, vocabulary and increasing observational skills. The idea is to make up faces on the screen, and with skillful use of the high resolution graphics in the program, some quite reasonable displays can be made. As the number of faces is virtually limitless, this is a game that the user can come back to again and again.
'Twister' is the other program they have on the market at present. This is being pointed at a higher level than the others, for 8 year olds and upwards. In effect it is a 2 dimensional version of the well known Rubik Cube, involving moving coloured squares around until you end up with no rows or columns with a repeated colour. As far as this reviewer was concerned, this one was the pick of the crop, but of course the games are all aimed at people at the secondary or junior school level.

Future Plans

The two main driving forces behind the company are the aforementioned Professor Stonier, and Doctor Mike Thorne at the department of Computing Mathematics at Cardiff University.

Tom Stonier has said that by the turn of the century every home will either have, or will have access to, a computer. Thus it is important that there is a good ground base of software, and

A.S.K. are aiming to get there before the end of this century.

The aim of all their programs is to provide interactive entertainment as well as good tuition. A computer is an infinitely patient thing: it, unlike the average teacher, will not lose patience, switch off, have a bad day or whatever, but rather will keep on going ad infinitum (barring intervention from the C.E.G.B.!). Learning at home can also be a lot more fruitful, with the private atmosphere providing the ideal background to absorb information.

As time goes on and more and more programs appear from the company, they anticipate moving onto C.S.E. O-Level topics, as well as maintaining the original scheme of junior subjects. The programs will still have the same kind of format i.e. combining education with entertainment, which is really a very good way of tackling this kind of software.

Summary

Four very good programs, which are well worth your examining in greater detail. With the promise of more to come, it looks like A.S.K. could become a major force on the educational software front, but of course, as with all these things, time alone will tell.
Meanwhile, for further information they can be contacted on 01-876 0102.

Hardware Review

Hewlett Packard Line Plotter

There are a number of graphics plotters around at present that are capable of being interfaced to the Pet. Here we turn our attention to what might be termed the 'Rolls-Royce' of plotters, the HewlettPackard 7470A.

Why Use a Graphics Plotter?

There are many ordinary printers for the Pet, the sort which produce printouts of listings, screen contents, for use with word processing packages, and so on. You can even, with some ingenuity, produce characters on printers that are not normally accessible from the Pet keyboard. However, there comes a point where you cannot reproduce a hard copy of the information you would like.

For instance, you want to produce a coloured bar chart showing your sales figures, you might like a comparison (and hence colour for clarity) chart for some chemical reaction that you're monitoring, or produce a very accurate reproduction of some component diagram. Whatever the reason, you will need a graphics plotter of one kind or another.

First Impressions

A first look at the Hewlett-Packard 7470A is indeed impressive. Securely bound and contained, complete with copious documentation, warranty card etc., it certainly looks the part. I know it's only a small point, but the mains lead even has a plug on it! Taking everything into consideration, the package as a whole sets off to a favourable start in any reviewers (or indeed users) eyes.

Connecting it up to the Pet is simplicity itself. It just plugs straight into the IEEE connector at the back of the disk drive (assuming you're using a complete system), and you're ready to go straightaway.

Documentation

One has always to consider documentation when taking a look at any product. It can sometimes make the difference between a good piece of hardware/software and a merely average piece.
The documentation accompanying the HewlettPackard plotter is sufficient for the job. It does not go overboard, and assumes that you have a fair knowledge of programming: a reasonable enough assumption if you've just spent over 1,000
pounds on buying the product.
Rather, it gives you the basics of how to connect the device up, a complete rundown on all the extra plotting commands now at your disposal, various hints and tips on setting up (what paper to use, what pens to use etc.), and overall does enough to get you going.

Also included is a full list of service and support centres, warranty cards, a business reply form to tell them what you think of the documentation and hardware, and all of this combined serves to give you the (very probably correct) impression that you are dealing with an extremely professional company.

Software Accompaniment

Also provided, at our request rather than an integral part of the package (although I should imagine a quick telephone call would probably do the trick for you) was a disk of some sample demonstration software which put the plotter through its paces. Our thanks go to Andy Palmer of Hewlett-Packard for giving us this, and a word of praise for the help we had from them whilst reviewing the product: the staff were courteous, polite, and always ready to help.

That software was a great help in designing and setting up ones own programs. The plotter can accept something in the order of 60 graphics commands, and seeing these demonstrated rather than going through the often tedious process of trying them all out oneself was a rapid step forward in getting the best out of the device.

The Hardware

The particular version of the plotter we were examining retails at 1,021 pounds excluding VAT, although there are two other versions also suitable for the Pet: these are approximately 60 pounds more expensive. Comparable in size to the old Commodore 3022 printer, it is rather lighter than that particular printer, and thus portability is very easy.

Connection to the Pet is via the IEEE bus, and the plotter is programmed using a mixture of Basic, and its own graphics programming language HP-GL. This consists mainly of two letter codes which bear some resemblance to the required action. For example, PU initiates Pen Up, and so on.

Two colour plotting is possible by use of two
pens: the plotting arm grabs the relevant one as and when required. This action can be controlled either via hardware or software. Plotting is done using a scale of 'plotter units'. Each unit is 0.025 millimetres in length, and is the smallest move the plotter can make. Using this system of measurement, the plotter has a plotting space of 10,900 units in the X direction and 7,650 units in the Y direction, using A4 paper.
A nice feature when plotting is that, if for some reason you're about to begin plotting points outside the range of the paper, the arm will hold the pen until your plot comes back into range again, and off it will start once more.

Using HP-GL, all plotting is relative to two scaling points P1 and P2. These have their default values at power up, but can easily be altered again either from hardware or software. Reasons for altering them at all would be, for example, producing two equal plots by starting off at two equal scaling points, doing reduced size copies of plots by redefining a new plotting area, and so on.

Finger Tip Control

As well as being programmed from software, there is an extensive range of controls built into the machine itself.

There is a panel of 13 switches to the right of the plotting area (you can see it in the photograph). These perform a variety of functions, and can be used to draw plots when the plotter is not connected up to the Pet. Buttons exist to move pens forwards, backwards, left and right, and pressing two buttons simultaneously will cause the pen to move diagonally. A further button controls the speed of movement, and two more determine whether the pen is up or down.

Buttons marked P1 and P2 move the pen to the scaling points mentioned earlier. Many of these buttons have dual purposes. For instance, the one which controls the speed of movement can also be used to halt program execution whilst plotting, for as long as the button is held down. However, this is where I found the one fault with the plotter. It certainly halted execution, but on releasing the button again the program did not start from where it left off: there was a slight jump away from the last point plotted.

The final two of the 13 switches are an Enter button, wich has a variety of useful purposes, and a View button, which allows you to suspend printing and get a complete view of the plot so far.

Ease of Use

We found the plotter very easy to install and use,
both from a programming point of view and a hardware point. There was a power up test (or confidence test as they call it in the manual) just to check that everything was working correctly. Programming, once you'd got used to the two letter commands, was quite straightforward, and made easier by the programmer's reference card provided. This gave a summary of all the commands available. Looking at the sample programs given also helped.

Interfacing routines to ones own programs was simple enough, and programming the 7470A soon became second-nature. Certainly as easy as any of the existing Commodore printers, or indeed any other printer that I've come across.

Technical Overview

We've already covered most of the points of interest. Only two other main areas need to be covered here. The plotter is designed to work both in the States and over here, and as you know Stateside they work to a different convention as regards paper size. Consequently there is a rocker switch at the rear of the plotter which can be set to either US standard or A4 size.

Five further rocker switches are used to determine the plotter address value, set at 05 when the printer leaves the factory. You can place the plotter in listen-only mode by setting all five switches to 1: in this mode the plotter doesn't have an address, but listens to all data transmitted on the bus. Not particularly useful.

Summary

An easy to use peripheral for any Commodore computer with an implemented IEEE port. At 1021 pounds it is perhaps a trifle expensive, but you are paying for an excellent machine, well documented and well backed-up in terms of servicing and technical help. Hewlett-Packard have a reputation for producing good, reliable, robust equipment: the 7470A graphics plotter lives up to that reputation.

Highly recommended.

Book Review

This month a look at two books covering very different aspects of Pet usage, namely Structured Programming with Comal, by Roy Atherton, and Pet Interfacing, by James Downey and Steven Rogers.

Structured Programming with Comal

Both last month and this we've had a feature on Comal, so you should have a fair idea now of what the language is all about. Roy Atherton, who wrote this book (available from Ellis Horwood/Wiley, at a price of 6.90 pounds for the paperback version: at 18.50 pounds leave the hardback version alone!), is one of the U.K.'s leading spokesmen on Comal.

Before taking a look at the book, a few words on Comal itself. As I'm sure you know, Comal was first designed by Borge Christensen in Denmark, and was intended to combine the simplicity of Basic with the structure of Pascal. In other words, an easy to learn, and also easy to understand, language. Its popularity has grown enormously in the last few months, and now we're beginning to see the first of the books appearing.

Roy has long been respected as a spokesman for the art of the good, sound programming, and now not only in Basic. Comal is the ideal language for a programmer such as this, and his enthusiasm shows in the book. All of the major concepts he introduces are lavishly illustrated with many programmed examples, which makes a change from the usual rhetoric aimed at the user.

The art of Comal

The art of the book is the art of Comal itself, for without the language we would never have had the book. Both follow the same styles: aimed at the beginner, simple enough to understand, no nonsense method of writing, and above all a clarity that would make it an excellent book (and indeed language) for the student to computer programming.

Basically (sorry, but there are times when you can't avoid using the word) Roy goes through a gentle introduction to the language, covers the various statements in the language, moves onto structured programming in Basic (thus showing how Comal scores in this area), and then finally a number of chapters on general programming ideas.

[^0]topics that very rarely go hand in hand. With this book, thankfully they do. If you're interested in Comal programming (and more and more people are becoming so), then this is well worth investigating. Computer teachers and lecturers especially ought to take note.

Pet Interfacing

This particular book is published by Howard W. Sams and Co., at a cost of 11.85 pounds, and should be available from any major computer bookstore, or indeed any bookshop with a large range of computer books.

Much has been written about the use of the Pet as a controller of other scientific instruments: indeed, this ability to interface with the outside world is one of the main reasons for the success and longevity of the machine. Why change a winning formula?

Commodore Computing (and of course Commodore Club New of old) published many articles on the use of the Pet in this field. This particular issue, for instance, sees a lengthy article by Allan Potten on some of the many uses of the User Port.

Inner Contents

The book covers both the IEEE port and the User port, and drops off at a number of interesting topics en route, leaving you with a fair sprinkling of ideas worthy of further development.

The first couple of chapters provide an introduction to what the Pet consists of, and also gives instructions for the building of a breadboard for access to the User Port. This board is subsequently used as the basis for all the user port subjects subsequently tackled. Many of these are extremely interesting, and cover much more than the usual serial input/output and analogue to digital conversion.

The memory expansion port comes next, with an equally large number of projects for you to tackle, before moving onto a general chapter on interfacing per se. The final part of the book takes a detailed look at the IEEE port, including using the Pet as an IEEE controller, and as a listener/talker.

To round off an excellent book there are copious appendices, giving flow charts, assembler listings etc.

Summary

A very good book, well and clearly written. For anyone who wants to dive around the Pet, getting it talking to all manner of devices, and who can handle a soldering iron, this is a must.

Butterfield

Compiler Comments

I don't want to become involved in the Great Debate about compilers. On the other hand, it's almost irresistible to dive in and add a few footnotes. You'll find no product reviews here. Just a little talk about what's involved.

For BASIC?

Some languages were designed for compilers. In fact, the compiler was designed first, and whatever it turned out you had to type in ended up as the language. FORTRAN started more or less this way. To put compilers in perspective, we have to do a little historical work.

Once, long ago, there were no interactive computers. You punched up a deck of cards and if you were lucky an operator would run them sometime that week. Most of the results came back saying something like SYNTAX ERROR (does that sound familiar?). There was no point in having an interpreter language; you wouldn't be there to watch it happen. We had FORTRAN and COBOL and others . . .

The first FORTRANS, for example, were tricky. If you used a variable called DIGIT, it would turn out to be a floating-point number; on the other hand a variable called NUMBER would be fixedpoint. Heaven help you if you typed TOTAL $=$ TOTAL +1 ; you'd get a ?MIXED MODE error notice and have to recode TOTAL $=$ TOTAL +1.0 to fix it. To input or output you needed to give more than the command: an extra line called FORMAT was needed, written in advanced gibberish. Honest.

Many of these problems have been fixed up over the years - you did know that there was more than one FORTRAN, didn't you? - but the style remains. The programmers have to adapt to the machine, and interactive is still an alien concept.

And Now, BASIC . . .

Along came BASIC. It's a loose language: you don't have to dimension some arrays; strings wander all over; sometimes you can have FOR and NEXT items that don't match (bad practice, but it can be done) . . . and interactive users love it.

What's the problem? Things that are not clearly defined by BASIC. Let's look at a few of them.

Strings may be the worst thing that a compiler has to deal with. BASIC doesn't tell the compiler

'I Know It’s Our Computer's Mistake, Mr. Hill, But It Would Be Easier in the Long Run if You Did Change Your Name to ZP4/QE/70K.'
how big any string is likely to be - ever. INPUT X $\$$ gives no hint as to the size of string X\$. The poor compiler has a grim choice: allow maximum space for all strings and waste a lot of memory; or bounce the strings around as they change. The first alternative costs you program size; you write this little program that says DIM A\$(1000) and the compiler immediately reports OUT OF MEMORY since it tries to allocate 255000 bytes for the array. The second alternative costs you time; no matter what you call it, some sort of garbage collection will have to take place. And then people complain because they expect compilers to produce fast fast code.

At first glance we think that the whole object of compiling is to get speed. But we don't give the compiler enought information to work up a really fast program. It's obvious that FOR J=1 TO 10 can run faster if we treat J as an integer. Unfortuntely, we're not allowed to code FOR J\% . . . so the compiler will have to figure it out for itself. And what will it do with FOR $\mathrm{J}=\mathrm{A}$ TO B? Until A is computed, we cannot know if it's integer or not.

It's obvious to us. We wrote the program. But the dumb compiler can't read our minds; and BASIC doesn't give enough explicit information to do the job.

One last example. It's one of the annoying things about BASIC that we sometimes have to code things like GET $=1, \mathrm{X} \$$: IF $\mathrm{X} \$={ }^{\prime}$ "' THEN X $\$=\operatorname{CHR} \(0) mostly to cover failings in BASIC itself. If I were hand-coding into machine

Butterfield

language, I could replace the whole thing with one instruction, because I know that Machine Language doesn't have the "fault" that's in BASIC. But a poor compiler can't know that. It sees the GET instruction and codes it . . . and it must add to the coding to generate the BASIC "fault" if it wants to be compatible. Then it must proceed to the IF statement and work through the coding to fix that same fault.

The Choices.

The compiler designer has a choice. He can code for 99% compatibility, tracking everything that BASIC does quite exactly (including the faults). In doing so, he'll create a package in which almost anything will compile successfully. But - the compiled machine language will be doing most of the things that BASIC does, and won't be much faster than BASIC.

On the other hand, the designer can ask the user to make changes to his program before compilation that will help the process. He may also have things that compile from BASIC in a non-standard manner. He may make arbitrary decisions on BASIC structures - all FOR loop variables will be fixed-point, for example. And the
compiler may question the user during compilation: How large is string $\mathrm{M} \$$ likely to be? Can J be fixed-point? The user has to work harder, but the end product runs faster.

Either way, the compiled program is not likely to be smaller in size than its BASIC source. It's difficult to code 100 IFJ 5THENPRINT''J IS'"; J in less than the 19 bytes that BASIC uses. And good compilers add extra arithmetic - fixed-point addition, for example - that takes up overhead space.

Why Compile?

It's your choice. If you have a program that runs for five hours, you will probably be delighted with a paltry four-to-one compiler speedup. If you want protection against listing, a compiler will do a good job of instant obfuscation.

Don't lose perspective. A program that spends most of its time waiting for an operator or for a printer won't speed up much under compilation.

Machine Language Programmers will be happy to know that they are not yet obsolete. Compilers can do a useful job. But until they get the brains equivalent to a human's judgement, they won't replace hand coding.

How to buy a word processing program...

First, go to your CBM/PET dealer and see at least two wordprocessing programs. Second, make sure that one of those you see is a WORDFORM from LANDSOFT.

We are serious when we say you should see more than one. Everyones wordprocessing requirements are different. You will want to ensure that the package you buy will do all you require. But also you will not want to pay for functions you don't need.

There are two LANDSOFT word-
difference in price on return of the other program.

So don't be talked into a very expensive program until you have satisfied yourself that one of the WORDFORMs will not do all you want. Buying another program and then becoming aware of the WORDFORM excellence would be most frustrating.

WORDFORM versions for 3032, 4032 and $8032 £ 75+$ VAT.

WORDFORM II for 8032 only $£ 150$ + VAT. processors - WORDFORM and WORDFORM II. They are both exceptional programs. You may well find that WORDFORM will do everything you need, but should you ever want to update to WORDFORM II, we will always supply for the

LandSoft

28 Sheen Lane,
London SW14 8LW.
Telephone: 01-399 2476/7
SUPERIOR PROGRAMS FOR THE CBM/PET MICROCOMPUTER

Applications

A Glass Teletype Listing
Basic 4 only

\qquad

Applications

" $\because 41 玉$ 玉

"

": $94354+4+8+5=5$ 巨5 5
"

:
$\because \equiv$ ■5

"
"

":
"


```
"
Memon
80 E% lum% ध|=ich
remet%
三䏝
    FE irq =r \Xi| Nr थ+ =%
```



```
:0418 E5 20 10 b夕 20 e4 ++ =2
```



```
* 0420 5- dE +1 EE wg 20 dz++
* 042 5- ¢4 50 05 20 10 に% 20
```



```
" 0408 55 d4 59 0ए ES dS ES dl
" 0440 20 ES +5 =2 E5 20 =6 ++
```



```
" D4EO b% =5 EE 18 ES 50 E5 kS
"# 04ES =S =9 1E 05 m7 91 ¢4 2c
*" ब4नE 23 ES 10 03 40 +15 04 20
.# 0478 e4+++0+3 59 03 d0 05
." ब450 巳9 25 E巳 +2 "9 1E #5
```



```
": 0490 20 d2+f40 61 04 =2 50
```



```
*: D4=S 67 1912 29 7+ E9 41 90
```

```
```

*" 058 95 0e 12 d3 49 40 50 4E

```
```

*" 058 95 0e 12 d3 49 40 50 4E

* 0550 45 20 57 4E 41 53 53 20
* 0550 45 20 57 4E 41 53 53 20
*:0585 d4 45 40 45 54 59 50 45
*:0585 d4 45 40 45 54 59 50 45
* E5ge get 11 c1 52 49 41 44 4e
* E5ge get 11 c1 52 49 41 44 4e
* 0595 45 20 d3 4+ 46 54 57 41
* 0595 45 20 d3 4+ 46 54 57 41
":05-0 52 45 20 cc 54 44 2e Ed
":05-0 52 45 20 cc 54 44 2e Ed
*:0505 11 54 4+ 20 59 4+ 55 20
*:0505 11 54 4+ 20 59 4+ 55 20
** 0560 45 55 50 45 43 54 204%
** 0560 45 55 50 45 43 54 204%
." E56E 49 4e 45 2e 45 45 45 44

```
```

." E56E 49 4e 45 2e 45 45 45 44

```
```



```
```

* E5E 41 4= 2= 20 4+ 42 54 41

```
```

* E5E 41 4= 2= 20 4+ 42 54 41
*"05d0 49 4e 20 ES d2 dS 2E 20
*"05d0 49 4e 20 ES d2 dS 2E 20
* 05de 54 43 45 4e 20 50 52 45
* 05de 54 43 45 4e 20 50 52 45
*: 05e0 5S 53 20 41 4E 59 20 4%
*: 05e0 5S 53 20 41 4E 59 20 4%
* 05eg 45 59 2e 05 93 12 ct 4e
* 05eg 45 59 2e 05 93 12 ct 4e
." 05+E 20 40 49 4e 45 2e Dd 11
." 05+E 20 40 49 4e 45 2e Dd 11
."05+5 ce 4+52 20 43 4+ 4e 54
."05+5 ce 4+52 20 43 4+ 4e 54
*" 060 52 4+ 4c 2d dE 20 55 53
*" 060 52 4+ 4c 2d dE 20 55 53
* DE0E 45 20 de dE dS 20 54 49
* DE0E 45 20 de dE dS 20 54 49
." 0510 45 4e 20 de 2e Ed Em E0
." 0510 45 4e 20 de 2e Ed Em E0
* DEIS E| 12 c+4E 4E 20 4% 49

```
```

* DEIS E| 12 c+4E 4E 20 4% 49

```
```


" ब518 14 2g de +f 4c E1 巨4 c9

" 55953 घe 12 a3 49 40 59 4に

". 055 E 44540455450545
" $\because 55 \mathrm{E}$ ब 11 に1 52 49 41 44 4E
". 058 45 20 d3 $4+46545741$
: घ5戶 52 4520 E54 44 2e dd

: 450455950454520
. 056 45 4E 45 25 46 45 45 44

: 05841 46 26 20 $4+425441$

. 050544845462056545

" $\because 5+6$ 巨 $4+52$ 2巨 $424+4=54$

-
reedy.
$=v=4$ to munitor r Erter promign Es listed．ther

T.A.L. COMPUTER DIVISION

AN INTELLIGENT CHIP

D.O.S. commands as per Universal Wedge program, and a sequential file reader.
?INTELLIGENT CHIP? Yes. The same chip will work in $\$ 9000, \$$ A000 and $\$$ B000 locations with Pet Basic 2 and up.

£20 C.W.O.

11 High Street, Leighton Buzzard, Beds. Tel: (0525) 372114

STOP PRESS: Amateur radio operators. R.T.T.Y. plug-in module for Pets and Vics. S.A.E. for further details.

Commodore CBM systems are dependable, efficient, versatile, easy to maintain. That's why so many companies, big and small make their move through

Electron House Industrial Estate Church Street Ware SG12 9ES

Telephone Ware (0920) 68926/7

PET HARD DISKS

The Small Systems HARDBOX acts as an intelligent controller for up to Corvus Winchester drives.

- PET DOS 1 and 2 compatibility
- Multi user capability on Corvus Drives
- 16 Megabyte max file size
- 65535 max records per relative file
- Over 2000 files on 5 MB drive

Price. . .. £495

PET MINI-WINI

The MW-1000 Mini-Winchester is a compact desk-top unit that just plugs into the PET - gives you up to 12 Mb of hard disk storage under CP/M or PET DOS or both!!
At the flick of a switch, this amazing unit allows you to have:-

- The whole disk under CP/M (plus 60K of RAM and Z80)
- The whole disk under PET DOS
- Half of the disk under PET DOS and half under CP/M!
No changes to the PET or ROMS are required - just plug in and go.

2Mb - 2336
Prices include CP/M Utilities, 60K RAM and Z80.

PET CP/M

SOFTBOX and CP/M SOFTWARE
SOFTBOX allows the PET to run the worlds most popular operating system for micros. Operates with PET floppies and/or a Hard disk system.
Comprehensive range of CP/M software available ask for our Catalogue.
newlow
Softbox (with RS232 + Hard disk interfaces as price
standard)

IEEE-488

IEEE-488 SERIAL INTERFACE
TYPE C.
IEEE-488 SERIAL INTERFACE
TYPE B300
40 char input buffer
IEEE-488 ADDRESSABLE PARALLEL INTERFACE TYPE A100.
£106
TYPE G.P.I. AP MICROPROCESSOR BASED
IEEE-488 BI DIRECTIONAL INTERFACE £275
IK input buffer standard 59 K max.
TV/VIDEO MONITOR INTERFACES
RS 232C TO 20mA CURRENT LOOP ADAPTER.

PETSPEED

Optimising Basic Compiler £240
DEVELOPMENT TOOLS
S10/CP/M
8048 family in circuit emulator $£ 550$
8748 programmer................................... $£ 395$
Prom emulator.................................... £29
Range of cross assemblers for most popular
micros.
. 95
8048 BASIC compiler
£195
COMPLETE PET and HP-85 SYSTEMS
small systems engineering limited
24 Canfied Place, London NW6 3BT. Telepnone: 328 7 145 Telex $264 / 388$

Interfacing

Dump Mate: A Multi-Load System

The original multi-load system was part of our AV-8101 video-audio interface for the Commodore 2000 series computers, as shown below.

By means of the spare inverter-driver on this board, programs could be dumped from the master computer to about twenty slave units. In order to increase its capability to load programs to up to sixty slaves, when so required, the first "Dump-Mate", a multi-output driver, was built.

However, with the introduction of the Commodore 8032 and 4032 (12" screen), the multi-load system used in the 2001 was no longer possible, as all six inverters of the 7406 I.C. were now required for the video interface. This problem was overcome by the redesign of the "Dump-Mate" into a self-contained, external type multi-loader.

Each of the four outputs can be connected to up to twenty "slave" computers by means of the cassette-ports interface assembly shown below.

Connection between the input of the DumpMate and the output of the master computer is made by a short length of five-conductor cable with "DIN" plugs (PREH $=71418-50$) on both ends.

The output socket at the computer end is wired as per diagram below:

Figure " A " is used for PET 2001 series with the AV-8101 interface and dump circuit, while figure " B " is the wiring required for use with the regular 2000, 4000 and 8000 series computers.

Another way of connecting the Dump-Mate to the computer is shown below:

In this manner, any PET computer can be utilized as the master unit, however, the cassette port will not be available for program loading.

The following is a short "how to" guide:

1. Be sure that the power to all equipment is OFF before connecting or disconnecting cables.
2. When everything is in place, switch on all units, including the Dump-Mate.
3. LOAD a program into the master computer.
4. The slave computers requiring this program should now type:

NEW return
LOAD return

Interfacing

5. The monitors of these units should now show:

SEARCHING

6. On the master unit, type:

SAVE "name" return
7. Push the "dump" switch.
8. After about seven seconds, the "data" light will go off and the slave monitors will show:

$$
\begin{aligned}
& \text { FOUND "name" } \\
& \text { LOADING }
\end{aligned}
$$

9. Push the "dump" switch again.
10. The "data" light will stay on until the program is loaded, at which time READY. and flashing cursor should appear on all monitors.
11. Typing RUN return will execute the program.

Construction

Although the circuit is simple enough to use direct point-to-point wiring, for convenience sake. However, our unit was built on two $2 \frac{1}{2}^{\prime \prime} \times 1 \frac{3}{4}^{\prime \prime}$ printed circuit boards, mounted back-to-back on a "'U'"-bracket.

Etching and drilling guides, with a components placement diagram has been included.

Dwerty Computer Services

20 Uorcester Road, Пewton Hali,Durham Tel. (0385) 67045

PET PRODUCTS

$\begin{aligned} & \text { I. F. } 1 \\ & \text { I. F. } 2 \end{aligned}$	Soundbox	£16.50
	Programmable Sound \&	
	Music Generator	£30.00
I. F. 3	Light Pen	£16.50
I. F. 4	TV/Video Interface (9' screen PETs only)	£33.50
$\begin{aligned} & \text { I. F. } 5 \\ & \text { I. F. } 6 \end{aligned}$	Reset/Restore Button	£8.80
	Disk on + Error indicator (Green/Red/Audio)	£11.95
I. F. 7	Disk Safety Device	£11.95
I. F. 8	E-Socket Rom Expansion	£12.95
	Basic 4 Extramon to fit above	£8.95
$\begin{aligned} & \text { I. F. } 10 \\ & \text { I. F. } 11 \end{aligned}$	EPROM Burner	£35.00
	ROM n' RAM 2 K	£25.00
	4K	£30.00
	Battery back-up 4	£6.00
I. F. 14	Extended Basic Rom (2 ROM set)	£30.00
I. F. 15* Switch Unit		£11.00
		switch.
D $£ 1.40$ to cover post \& packing add 15% VAT: S.A		
ARCLAYCARD AND ACCESS ORDERS ACCEPTED (Also after $6.00 \mathrm{p}, \mathrm{m}$, and weekends)		

1 -Hammond	1454G	Case
1 -Hammond	166G12	Transformer
1 -Preh	71200-050	Socket
4-Switchcraft	3501-FP	Connectors
$1-\mathrm{N} / \mathrm{O}$ pushbutt	- Grayhill	
1-L.E.D. Mount		
1-3-wire AC Co	d Assy.	
1-AC Cord Reta	ner - Heyco	
2-Marrette Con	ectors	
1-"U' Bracket		
1-7406 IC		
1-7805 Regula	(TO-3 pkg)	
1-2N3906		
1-L.E.D.		
$2-1 \mathrm{~N} 4001$ diod		
1-10 microfd	5 v Tant. Cap	
1-10 microfd	5 v Elco	
1-100 microfd	35v Elco	
1-470 ohm resis	stor	
6-2200 ohm re	istor	
1-22 K-ohm res	stor	

Editor's Note

Dump-Mate was built originally for PET/CBMs, but it will also work with the VIC-20 since the cassette interface is identical to the PETs.

Sound and Vision

Two Handed Sketching

"Two Handed Sketching" is aimed at age groups 5 to 105 years young. The urge to doodle is ageless. Your 8K or larger PET computer is a means to satisfy that urge. With this program, one can move a pen over 4,000 possible screen locations in eight different directions and with five different types of control commands plus the option to print a hard copy screen dump.

After working the program a few times, you
suddenly realize you have not scratched the surface of its possibilities. Cubics, curves, figures within figures, dot drawings, faces, machines, chemical, biological, mathematical, graphical, geographic, and just abstract forms that take on meaning as you view them all crowd in upon you.

The principles of drawing the screen with two hands is shown in Figure 1. A simplified flow chart is shown in Figure 2. In my opinion, the hour spent punching in the program is well worth the effort.

A VIC adaptation of "TWO HANDED SKETCHING" is a straight-forward conversion. With a little extra effort, the addition of colour would add spice.

Sound and Vision

$400 \mathrm{~KB}=158$: REM KEYBOARD COUNTER NEW ROMS 410 IF PEER $(51234)=0$ THEN KB=525: REM
420 DATA $64,0,128,64,-64,-128,0,-64$
430 FOR $1=0$ TO $7:$ READ $C(I): N E X T$ I:REM SETS UP DATA FOR PRINT OUT 500 REM**TWO HANDED SKETCHING******
SIO REM**BY PRES MARSHALL*********
S11 REM**BY PRES MARSHALL**********
S11 REM**191 GOULD ST, WALPOLEMA M**
513 REM*COPYRIGHT $1982 * * * * * * * * * * * * *$
600 PRINT"DO YOU WANT INSTRUCTIONS?
610 PRINT:PRINT "HIT [Y] FOR YES"
630 POKE KB, O:WAIT KB, $1:$ GETAS:IF AS="" THEN 630
640 IF AS="Y". THEN AS="": DE=1:GOTO 40000
650 IF AS="N" THEN AS="": GOTO 700
670 AS="":PRINT "TRY AGAIN": GOTO 630
700 DIM SY(15): REM SYMBOL ARRAY
705 DIM DRS(
710 PRINT""
800 PORE 59468,12
810 DATA $32,123,126,97,108,98,127,252,124,255,226,236,225,254,251,160$
830 READ SY(I): REM SET UP SYMbOL ARRAY
840 NEXT I
900 PYZ $=0: P X \%=0$
1000 REM START OF PROGRAM
1010 IF DE=1 THEN GOTO $50000:$ REM IF DEMO FLAG IS SET GO TO 50000
1100 GOSUB 18000
1210 IF PY\& >49 THEN GOSUB 25000
1220 IF PYZ <0 THEN GOSUB 30000
1300 GOSUB 20000
1400 GOTO 1100
18000 REM SET UP A SET OF DIRECTIONS TO MOVE THE TARGET DOT WITH A GET
18110 IF PEEK (KB) $=0$ THEN GOTO 18240 : REMIF NOTHING IN KEYBOARD BUFFER GO ON

18140 IF $C \$=44$ "THEN $D X=-1: D Y=0:$ REMLEFT
18150 IFC $\$=2 "$ THEN $D X=0: D Y=1:$ REMDOWN
18160 IFC $\$=" 8$ " THEN $D Y=-1: D X=0:$ REM UP
18170
$1 F C S=" 3 "$ THEN DX=1:DY=1:REM SE
18150
18180 IFCS="7" THEN DX=-1:DY=-1:REM NW
18190 IFCS="1" THEN DX=-1:DY=1:REMSW
18200 IFCS="9" THEN DX=1:DY=-1:REM NE
18210 IF C $\$=$ "T" THEN ER=0:HP=0:REM SETS DOT TO LEAVE ITS TRACE
18220 IF CS="R" THEN PRZ=0:PYZ=0:DY=0:DX=0:REM SET DOT TO ZERO POSITION
18230 IF $\mathrm{CS}=$ "E" THEN ER=1:HP=0:REM SETS DOT TO ERASE AS IT MOVES
18240 IF $\mathrm{C} \$=" \mathrm{~S}=\mathrm{THEN}$ GOTO $35000:$ REM GO TO A FLASHIND DOT SUB
18250 IFC $\$=$ "H" THEN HP $=1: E R=0$: REMARK SETS FLAG TO HOP OVER EXISTING DOTS
18260 IF $C \$=" P "$ THEN GOSUB 62000
18260 RF CSN
21000 REM SUB TO PRINT PX\% AND PY\% ON A 50 BY 80 COORDINATE GRAPE
21050 RO-2:REM RO= ROW OF QUADRANT SYMBOL
21060 IF PYZ/2=INT(PYZ/2) THEN RO=1
21100 CO $0=2:$ REM CO COLUMN OF QUADRANT SYMBOL
21100 CO-2:REM CO=COLUMN OF QUADRA
21110 IF PXZ/2=INT(PKZ/2) THEN CO $=1$
21200 rem character position on screen $=$ C
21200 REM CHARACTER POSITION ON SCREEN=CP
$21210 \mathrm{CP}=32768+40 *($ INT $(P Y Z / 2))+1 N T(P X Z / 2)$
21300 REM SET UP NEW QUADRANT LOCATIONS NQ
21310 IF RO=1 AND $C O=1$ THEN NQ $=2$
$\begin{array}{llll}21320 \text { IF } \mathrm{RO}=1 & \text { AND } C O=2 \text { THEN } & \mathrm{NQ}=8 \\ 21330 \text { IF RO=2 AND } & C O=1 & \text { THEN NQ }=1\end{array}$
21340 IF RO=2 AND CO=2 THEN NQ $=4$
21350 REM IN ABOVE QUADRANTS READ $1,2,4,8$
21500 REM PEEK TO FIND OLD CHARACTER VALUE AND THEN ADD NEW QUADRANT VALUE
21510 PK=PEEK (CP): REM PK =PEEKED OLD SYMBOL. OV= OLD ARRAY VALUE
21530 REM SEARCH ARRAY FOR
61405 \#NOTSGNENZWAIT*\# I=0 TO 15
21550 IP SY(I) $=$ PK THEN OV=I GOTO
21550 IF SY(I)=PK THEN OV-I:GOTO 21600
21600 rem new character value (nv) is old character value (ov) ored with new
21610 REM QUADRANT VALUE (NQ).
21615 IF ER=1 THEN GOTO 21710.
$21620 \mathrm{NV}=0 \mathrm{~V}$ OR NQ
65 REM PORE NEW CHARACTER

21660 IP HP=1 THEN POKE (CP) $\mathrm{SY}(\mathrm{SV})$
21670 RETURN
21670 RETURN
21700 remark carry out an brase routine
21710 IF OV AND NQ THEN NV $=0 \mathrm{OV}-\mathrm{NQ}$: GOTO 21780
21780 POKE (CP), SY (NQ)
$21790 \mathrm{FOR} \mathrm{I}=0$ TO $40: \mathrm{NEXT}$ I:PORE(CP), SY(LV)
25000 REMURN SUB FOR SCREEN JUMP AS MOVING DOT HITS BOTTOM OF SCREEN
25010 PRINT
25020 PY $Z=P Y Z-2$
25030 RETURN
30000 REM SUB TO MOVE SCREEN UP ONE LINE
30010 FOR I=0 TO 959
$30020 \mathrm{MK}=\mathrm{PEEK}(33727-\mathrm{I})$
3020
30030 PORE $33727-$ I) , 32
30040 PORE (33727-I +40), MK
30050 NEXT I
30060 PY\% $=$ PY\% +2
30070 RETURN
35000 REM SUb to hold a flashing dot
on the screen until another entry
35010 DX=0:DY=0:
35020 POKE (CP), $\mathrm{SY}(\mathrm{NQ})$
35030 FOR I $=0$ TO 40 :NEXT I: POKE (CP), SY(0)
35040 FOR I=0 TO $40:$ NEXT
35060 IF PEEK (525) $=0$ THEN GOTO 35020
35070 RETURN
40000 REM ROUTINE TO GIVE program use instructions.
40005 PRINT "" 40010 PRINT "THIS PROGRAM MOVES A DOT BY THE USE OF"
40010 PRINT "THIS PROGRAM MOVES A DOT BY
40020 PRINT "TWO HANDS TO DRAW SKETCHES
40020 PRINT " TWO HANDS TO DRAW SKETCHES
40030 PRINT "THE LEFT HAND IS HELD OVER
40030 PRINT "THE LEET HAND IS HELD OVER THE KEYBOARD"
40050 PRINT "THE RIGHT HAND WORKS WITH $[1,2,3,4,6,7,8,9]$,
40060 PRINT "S $=$ STOP DOT MOVEMENT"
40070 PRINT "EERASE DOTS"
40080 PRINT "R=RETURN DOT TO UPPER LEFT SCREEN"
40090 PRINT "T=TRACE DOTS ON SCREEN"
40100 PRINT:PRINT:PRINT"FOR THE RIGHT HAND THE NUMBER 5 IS"
40110 PRINT "CONSIDERED THE HUB.THE NUMBERS 1 TO $9 "$

0130 PRINT "DOT OUTWARD FROM THIS HUB IN ANY OF 8 "
0200 PRINT "DIRECTIONS" O TO NEXT INSTRUCTION HIT ANY KEY"
40400 PORE KB, 0 : WAIT KB, $1:$ GET A $\$:$ IF A $\$=$ "" THEN GOTO 40400
40410 A $\$=" 1$
40420 GOTO 40500
40500 PRINT"DOUBLE KEYING"
40510 PRINT: PRINT "HOLD ONE KEY DOWN AND INTERMITTANTLY "
40520 PRINT " PRESS ANOTHER KEY
40530 PRINT:PRINT "EXAMPLE:HOLD DOWN E [ERASE KEY]"
40540 PRINT "AND INTERMITTANTLY PRESS
40560 PRINT "WILL BE LEFT ON THE SCREEN."
40570 PRINT:PRINT:PRINT "EXPERIMENT TRY OTHER COMBINATIONS."
40580 PRINT"SOME WILL WORK TOGHETEER SOME WILL NOT. "
40590 Print "develop your own technique."
4059 S PRINT:PRINT:PRINT "HIT P FOR EARD COPY"
40600 PRINT:PRINT:PRINT TO START HIT ANY REY
40910 A $\$=" \mathrm{n}:$ GOTO 700
50000 REM SUB TO RUN DEMONSTRATION PROGRAMS

50010 DRS=DRS+"RE22222222222222T3332222222226888888889963222222336669988912226"
S0015 DR $\$=$ DR $\$+" 6669988844426666999889999111122222233669$ E888877T777"
50030 POR K=1 DEMO
$50040 \mathrm{c} \$=\mathrm{MIDS}(\mathrm{DR} \$, \mathrm{~K}, 1)$
$50050 \mathrm{DD}=\mathrm{ASC}(\mathrm{C} \$)$
50060 IF DD>64 THEN DD $=D D-64$
50070 POKE (32798), DD
50080 GOSUB 18130:REMARR PLOT
50085 GOSUB 20000:REM PLOT
50090 NEXT K
50100 PRINT"TO GO ON HIT ANY KEY
50105 POKE(KB), $0:$ WAIT (KB), $1:$ GET AS:IF AS="" THEN GOTO 50105
50130 PRINT "HIT [Y] FOR YES OR [N] FOR NO"
50140 POKE (KB), $0:$ WAIT (KB), $1: G E T$ AS $\$ 1 F A \$=\| "$ THEN GOTO 50140

50160 IF AS $=$ ="N" THEN DE=0: REM RESET DEMO FLAG
50170 IF AS<>"Y" AND AS<>"N" THEN PRINT"TRY AGAIN": GOTO 50130
50180 PY $Z=0: P X Z=0$
50180 PYZ=0:PXZ $=$
50210 DY $=0: D X=0$
50220 GOTO 1000
61000 REM SUB TO DO A CHECRED GET
$61010 \quad \mathrm{Tl}=\mathrm{TI}$
$61020 \mathrm{cCS}=\mathrm{CS}$
61030 GETCS:IFCS="" AND (TI-T1)<10 THEN 61030
61040 IF C\$<>"" THEN GOTO 61060
61050 IF $C \$=" \mid$ AND (TI-T1) >10 THEN $C \$=C C S:$ RETURN
61060 FOR $G=1$ TO LEN(VAS)
61070 IF C $\$=$ MIDS(VAS, G, 1) THEN RETURN
61080 NEXT G: GOTO 61030
62000 REM AXIOM SCREEN DUMP
62010 OPEN 4,4 : CMD 4 : PRINT CHRS (8) +CHRS(15);
$62020 \mathrm{RS}(0)=\mathrm{CHR} \(146)
62030 RS (1) $=$ CHR $\$(18$)
62040 FOR $\mathrm{I}=32768$ TO 33767
62040 FOR $I=32768$ TO 3376
62060 PRINT RS(INT(P/128)) +CHRS(P+C(P/32));
62070 NEXT I
62075 CS="R"

CB2 Amplifier

This tidy little circuit came from Ted Evers of Toronto. Connect it to the User Port CB2 line, ground, and one of the 12 volt pins inside the machine, and you've got CB2 sound (with optional headphones jack to prevent raging parents, teachers and wives).

Programming Tips

Sound Synthesis on a Pet

Computer music making provides an endless source of interest. Most simple programs produce "square wave" sounds which, while not unpleasant, are certainly not very interesting and quite unlike any real musical instrument. This article describes how it is possible to produce a wide variety of different sound qualities using the PET microcomputer.

The range of different sounds available is virtually infinite and there is endless scope for experiment. Various musical instruments can be closely mimicked from a bassoon to a banjo and a full-blown organ sound can be produced with a range of stops to control the quality or "timbre" of the note. All sorts of special effects can be produced and, used in conjunction with an oscilloscope, the program is a valuable teaching aid towards understanding the physics of music.

The ability of microprocessors to synthesise waveforms is well known, but, to output the sort of complex waveforms used in music at sufficient frequency, an array of numerical values must be produced in advance - a tedious and timeconsuming task. However, the formidable combination of a powerful high-level language such as BASIC with the speed of machine language subroutines, makes it possible to produce an enormous variety of complex waveforms with a good range of audio frequencies.

The result is a "music machine" which can be played either from the keyboard or under program control, the latter providing scope for playing intricate combinations of notes at dazzling speed. It is also possible through the use of random numbers and some control routines for the computer to compose and play his own music.

An 8 bit digital to analogue (D/A) convertor will be required for connection to the user port e.g. I/C ZN425E available from Radiospares. A good sound can be obtained by feeding the output direct to an audio amplifier although further refinement is possible through the use of tone filters.

Physics of Music

The waveforms produced by a musical instrument can be extremely complex but a simple example, that of a flute, is shown in fig (i). Each instrument has its unique waveform and it is this which gives it a particular quality or timbre.

It can be shown that it is possible to build these complex waveforms by addition of simple waves called sine waves so called because they are described by the SINE function in mathematics. The sound produced by a sine wave is a pure tone.

An example of the addition of sine waves is given in fig (ii). A typical musical sound contains a rich mixture of harmonics in various proportions and sometimes the fundamental may be virtually absent. In music the frequency of a note is called the pitch.

Digital Synthesis

It is possible to produce a waveform by digital means via a D/A convertor. A number at the O/P port produces a voltage proportional to that number but only discreet steps are possible. 256 different voltages can be produced by an 8 bit output.

A waveform produced digitally is shown in Fig (iii). To produce complex waveforms a large number of steps are required. Notice the distinction between the machine output cycle and the audio cycle. The output cycle may contain 1 audio cycle for a low note or several audio cycles for a high note. There must be a whole number of audio cycles in an output cycle since to produce a note of reasonable length the output cycle is repeated several times.

The digitally produced waveform can be regarded as the combination of an audio frequency wave of large amplitude and the stepping frequency wave which is of small amplitude, as shown in fig (iv). It is important to ensure that the stepping frequency is beyond the audio range (greater than 15000 Hz) but since the amplitude is small some compromise is possible. Each output step (AB in fig (iv)) takes a finite time which for the PET is a minimum of about 15μ s and if we choose 256 steps per output cycle (a figure convenient for the internal architecture of the microprocessor) this gives a time per O / P cycle of about 4 ms or a frequency of about 250 Hz . If the output cycle contained 1 audio cycle a note corresponding to middle C on the piano would be produced. Higher frequencies must be achieved by having a greater number of audio-cycles per output cycle but the resolution suffers as there are then fewer steps per audio cycle. In addition these must be multiples of the
basic frequency i.e. $500 \mathrm{~Hz}, 750 \mathrm{~Hz}$ etc. Intermediate frequencies may be obtained by varying the length of the output step $A B$, thus stretching or compressing the waveform (see fig (iv)).

However in order to "tune the instrument" i.e. produce a certain desired note, the frequency must not only be variable but capable of fine adjustment. This means that a large number of possible times for AB must be available to achieve a number of closely spaced notes. These should ideally be separated by a semitone which is the smallest interval used in Western music, corresponding to the interval between a white and a black note on the piano.

The output step $A B$ must therefore be made considerably longer.

Since the minimum possible change in $A B$ is 2 $\mu \mathrm{s}, \mathrm{AB}$ must be at least $100 \mu \mathrm{~s}$ in length giving around 40 possible variations in frequency with a basic frequency (1 audio cycle per output cycle) of around 40 Hz . This is about right for a really low note. However, the stepping frequency is then down to about 10 k Hz which is in the upper audio range but is accepted since it is of very small amplitude.

When a machine language output routine is designed taking these considerations into account it proves possible to produce nearly two octaves of a well-tuned major scale. Readjustment of the pitch values can produce a good minor scale but it is impossible to produce a full range of semitones while retaining other desirable qualities. The lowest notes (having the longest step time $A B$) suffer a little from high

Programming Tips

frequency interference from the stepping previously mentioned but it is of low amplitude and in practise not noticeable some distance from the speaker. With the inevitable lengthening of $A B$ previously described, for middle range notes, 4 audio cycles must be included in one output cycle. This cuts the number of steps per audio cycle to 64 but is still sufficient for quite complex waveforms although once more than 4 harmonics are added there is a progressive deterioration in quality due to various secondary effects.

Notes on Machine Language Output Program

 HEX' Hexadecimal numbers"L" gives length of note - POKED from BASIC " P " gives pitch of note - POKED from BASIC " A " \& " B " give starting address of array to be used

No attempt has been made to equalise the times for output steps. Equalisation by e.g. insertion of extra No Ops, would inevitably slow up the output cycle which would necessitate a reduction in the resolution of the waveform. This lack of equalisation is a cause of background noise on the output but in practise this is hardly noticeable.

The PET uses a 60 Hz interrupt routine which suspends program execution every $1 / 60$ of a second while internal "housekeeping" such as scanning the keyboard takes place. This must be disabled during output or a strong 60 Hz tone is produced. Disabling the interrupt results in a loss of control by the operator while a note is being produced i.e. note length must be preset and cannot be controlled by holding down a key.

Notes on the BASIC program

Lines 5 to 24 load the machine language program into the second cassette buffer which is untouched by BASIC.
Line 25 contains variables for the starting address of arrays. The first array occupies the first cassette buffer and part of the second. This can be used even if all the normally available RAM is taken by a BASIC music program.
Lines 26 to 40 load the arrays which control the quality or timbre of the note.
Line 30 contains a pure tone (1st harmonic or fundamental).
Line 31 combines 1 st and 2 nd harmonics.
Line 32 combines 1 st, 2 nd , and 3rd harmonics.
Line 33 produces very low notes.
Line 34 gives an oboe-type sound.
Line 35 contains a simple harmonious chord (containing a third and a fifth).

The numbers in front of the SIN functions must
not add up to more than 127. These numbers represent the amplitudes of the wave components. The number 128 at the end represents the datum level around which the output oscillates from 0 to 255 .
Line 45 sets the user port to the output state and places the starting address of the machine language program in RAM locations 1 and 2 for use by the $A=\operatorname{USR}(0)$ routine .
Line 48 and 49 contain the variables representing the pitch of the notes (doh, ray, me etc.).
Line 50 clears the screen and GETS a character. If desired, instructions for the user could be printed on the screen at this point.
Lines 51 to 56 control the timbre of the note by placing the starting address of the array to be used in the machine language program.
Lines 154 to 157 control the length of the note produced when played from the keyboard.
Lines 160 to 184 are used to play on the keyboard via the subroutines located from lines 200 to 225. Note the large number of IF statements which take time to execute and introduce a gap between notes. These can be pruned if speed is the essence; e.g. the note quality could be selected from a subroutine as required.
Lines 200 to 224 contain the subroutines for the notes produced. Q controls the length of the note and the numbers can be replaced by variables if extra speed is needed. P and L are the addresses in memory of the numbers controlling the pitch and length of the notes. Any value from 1 to 256 can be placed at L but only the range $152-191$ is allowed for P.

Once the timbre of the note has been selected, if the RUN/STOP key is pressed followed by GOTO 1000, PET will play "Auld Lang Syne" and will "sing" the words on the screen. (Note acquaintance has a c before the q unlike the printed program).

GOTO 2000 produces the "Sailor's Hornpipe" with a range of speeds available from slow to faster than the "Last Night of the Proms".
The "Hornpipe" is a much more economical program than "Auld Lang Syne" making use of the same subroutines as the "keyboard play" part of the program. This represents a later stage of program development. Note Q is only changed when the note length changes.

The program although perfectly useable as it stands is still only in skeleton form and considerable development is possible.

After typing in the program you are strongly advised to save it on cassette before attempting to RUN. With the use of machine language,
program errors often result in a loss of machine control with the consequent necessity for retyping. If the cassette is used after running the program must be RUN again before use as it makes use of the cassette buffers.

To calculate the starting address of arrays In order to decide the starting addresses of arrays as in line 25 and to POKE the starting address of a particular array as in lines 51 and 56 it is necessary to have some knowledge of the way instructions are stored in memory.

Each memory location contains an 8-bit binary
code which is conveniently represented in Hexadecimal notation. HEX numbers use 16 symbols i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, for the numbers decimal 0 to 15 . Decimal 16 is then represented as HEX' 10, decimal 17 as HEX' 11 etc. Decimal 256 is HEX' 100 and decimal 4096 is HEX' 1000.
As an example take the array whose starting location in 5632 in line 25. This is 1600 in HEX.

HEX' 1600 is put in 2 successive memory locations, HEX' OO is placed at location DEC' 912 and HEX' 16 at location DEC' 913. Now HEX' 00 $=$ DEC $^{\prime} 0$ and HEX' $16=$ DEC $^{\prime} 22$ so to load the

FLOWCHART FOR MACHINE CODE OUTPUT ROUTINE

Programming Tips

starting address of the array，POKE 912，0 ：POKE 913，22．

One array consists of 256 （HEX＇100）Bytes and therefore the next array can be located at HEX＇ 1700 which is DEC＇5888．To load this address POKE 912，00：POKE 913，23．

When choosing the starting addresses for arrays other than the one in the cassette buffers， the memory limitations of the machine must be considered．

Total Memory	Memory limit decimal	Memory limit HEX
4 K	4096	1000
8 K	8192	2000
16 K	16384	4000
32 K	32768	8000

On all machines the first 1 K is taken by the operating system and Basic Programs start after DEC＇ 1024 which is HEX＇0400．On a 4K PET， 3 arrays might be located at HEX＇OCOO，HEX＇ ODOO and HEX＇OEOO while more arrays could reasonably be used on an 8 K PET，say 6 at starting addresses HEX＇1900，1AOO，1BOO， 1COO，1DOO，1EOO．In all cases the top few hundred bytes of memory should be reserved for the storage of BASIC variables．
Note each array takes $\frac{1}{4} \mathrm{~K}$ of memory which thus cannot be used for a BASIC program．

Playing your PET

Keys Z，X，C and V are used to preselect the length of the note and keys $1,2,3,4,5,6$ preselect the＂timbre＂of the note．To play a scale on the keyboard start with the key R and progress to the right．

If some note keys are depressed after the program has started to RUN PET will announce that it is ready to play with a burst of music since the notes are stored in the keyboard buffer which can contain up to 10 characters．

Despite having to preselect the note lengths required，with practise considerable dextęrity can be achieved．（It is an instrument to be learned like any other）．

Each note produced by this program has a constant amplitude throughout its length．It is possible to produce an＂amplitude envelope＂for the waveform by which means the growth and decay of a piano note or a plucked string can be simulated．In addition the first part of the waveform may be specially modified thus providing the characteristic attack of a musical instrument．Virtually any sound can be synthesised from bubbling water to birdsong or space－age effects to simple speech sounds．

SOUND SYNTHESIS ON A PET MICROCOMPUTER BY DAVID G．BROWN JAN 1980 36 PARKHEAD CRESCENT SHEFFIELD S119RD

[^1]```
1122 POKEF,M1 : FOKEL, 32 : A=USR(0)
1123 PRINT"TO
1124 POKEF, S1:POKEL, 38: }\textrm{F}=\textrm{USR}(0
1126 POKEP,L1:POKEL, 128:A=USR(0)
1127 PRINT"SHOULD"
1128 FOKEP,D2:FOKEL,51:A=USR(B)
1129 PRINT"AULD "
1129 PRINN MOLL POKEP,S1:FOKEL, 58: A=USR(日)
1131 PRINT"MMPMPHQU
1132 FOKEPP,M1:POKEL, 16:A=USR(日)
1134 POKEP,M1:POKEL, 32:A=USR(0)
1135 PRINT"FNCE
1136 POKEP,D1:POKEL, 26:A=USR(B)
1136 FOKEP,D1:P
1138 POKEF,R1:POKEL, 43: A=USR(0)
1139 PRINT"FOR"
1140 POKEP,D1:FOKEL, 13:A=USR(0)
1142 POKEF,R1:FOKEL, 29:A=USRC0
1143 PRINT"FOR "; % A=USR(0
1144 POKEP,M1:POKEL, 16:A=USR(0)
1145 PRINT"THE ";
1147 PRINT"SAKE
1148 POKEP, D1: FOKEL, 38:A=USR(0)
1149 PRINT"OF ";
1150 POKEP, LQ:FOKEL, 11:A=USR(0)
1152 POKEP, LQ:FOKEL,21:A=USR(a)
1153 PRINT"LANG "
1154 POKEP,SQ:FOKEL, 19:A=USR(a)
1155 FRINT"S'NE
1156 FOKEP,D1:FOKEL, 77: A=USR(日)
1160 GOKEP,D1:P
2000 REM HORNPIPE
2004 PRINT":HORNPIPE":PRINT"NURERESS NUMBER FOR SPEEI
2005 S=1
2005 S=1
2007 IFS>1THEN2010
2008 G0T02006
2010 Q=4*S:G0SUB220
2012 GOSUB218
2014 0=2*S:G0SUB220
2016 G0SuB206
2020 Q=4*S:G0SUB214
2022 GOSUB212
2024 G0SUB212
2026 G0SUB214
```


## DO YOU PLOT GRAPHS？

This is the affordable answer．The new Hewlett Packard 7470A two pen graph plotter connects directly to your Commodore Pet（no interface required）．

For full graphic output of Graphs，Pie Charts， Histograms，Overhead Transparencies，also with full Digitising facilities．

Supplied complete with cable，programming manual and sample program listing at：

$$
\mathbf{£ 9 9 9}+\mathbf{V . A . T .}
$$

10 days approval against official orders．
For further information or a demonstration contact：

> C.S.E. (Computers)
> 12 Wokingham Road
> Reading, Berks.
> Tel: Reading (0734) 61492

P．S．Also available for Apple．

```
2030 GOSUB218
2032 G0SUB220
2034 G0SUB224
2034 G0SUB224
2036 G0sub222
2040 Q=2*S:GOSUB222
2040 Q=2*S:GOSUB222
2042 GOSUB208
2046 Q=4*S:G0SuB208
2046 Q=4*S:G0
2050 G05UB204
2052 GOSUB208
2954 Q=2*S:GOSUB214
2056 GOSUB214
2062 GOSUB218
2064 G0SUB220
2064 GOSUB220
2068 G0SUB216
2070 G0SUR214
2072 GOSUB216
2074 GOSUB214
2076 GOSUB212
2078 GOSUB210
2080 GOSUR212
2084 G0SUB208
2086 G0SUR206
2088 G0SUB206
2090 G0SUE204
2092 G0SUB202
2094 G0SUB206
2096 G0SUB202
2098 G0SUR206
2100 605u8204
2162 GOSUR208
2104 G0SUB206
2106 G0SUP219
2108 G0SUB208
2112 Q=2*S:G0SUB210
2112 0=2**:G0S
2116 Q=1*S:G0SUB206
2116 Q=1*S:G0SUB206
READY.
```



# $C=$ <br> commodore COMPUTER <br> <br> BRING TO YOU, NOW ON CASSETTE AND DISK <br> <br> BRING TO YOU, NOW ON CASSETTE AND DISK GAMES OF THRILLS \& SKILL FOR ALL THE FAMILY 

 GAMES OF THRILLS \& SKILL FOR ALL THE FAMILY}

## NEW PROGRAMS

Best of Arcade brings together the three most popular Petpack games, Invaders, Cosmic Jailbreak and Cosmiads. These old favourites have been updated to run on olcolumn machines alsol MPD 121 BEST OF ARCADE $\mathbf{5 2 2 5 0}$ - DISK PACK
Best of Treasure Trove gives you twenty of the best games from the Treasure Trove series, including four arcade-type games, Night Drive, Car Race, Breakout and Money Table! There are simulation games, brainteasers and more, making this package the best value ever in games!
MPD 122 BEST OF TREASURE TROVE $\{22.50$ - DISK PACK
Assembler Tutorial is an extremely well thought out cassette-based package which teaches Assembly Language programming. Now for the irs self cou cand IP 124 ASSEMBLER TUTORIAL S50.00 P 124 ASSEMBLER TUTORIAL 850.00
Resident Assembler for all PETs
With excellent documentation and examples MP119RAMP $£ 22.50$
Disk Packs available in either 8050 - D8 format or
3040/4040 - D4 format. Please state D8 or D4
Prices include VAT and P\&P

## PUB GAMES

This latest disk package brings you five totally new games, never before seen on a PET screen! The programs will all run on 80 -column machines also!
DISASTEROIDS - Your mission - pilot your spaceship through the treacherous asteroid belt using your lasers to blast as many asteroids as possible. The PET version of the famous arcade game!
STELLAR WARS - Your spaceship is being pursued by the fighter ships of the evil Empire. You must take control of the ship's laser cannon. Get the fighters in your sights and blast away. The future of the universe depends on your skill and accuracy.
WARt - You are the captain of the British torpedo boat. You must steer your ship through the minefield to destroy the four shore bases. Unfortunately, you anly have two torpedos at a time, so you must get through the minefield again to rearm. Prove that we still rule the waves!
STAR FIGHT - The Alien Invaders are coming again! Control your laser cannon to blast their ships out of the sky and destroy their missiles and bombs. Accuracy and quick reflexes are essential.
DEPTH CHARGE - Your mission - seek out and destroy the enemy submarines. They are armed with mines which they release to float up a you. You must control the position of your ship and fire your depth charge to destroy as many subs and mines as possible without being hit. MPD 123 PUB GAMES $122.50^{\circ}$ - DISK PACK These games are mallable separatry onn-Cassette ains-9-0ach!
$\bullet$

MANUFACTURED AND DISTRIBUTED BY AUDIOGENIC LTD. AVAILABLE FROM GOOD DEALERS, OR DIRECT FROM:

AUDIOGENIC, P.O. BOX 88, READING, BERKS.
Tel: (0734) 586334

## Basic Programs

## More Input and Output

This is a follow-up of a previous article published in Volume 3 of CPUCN in two parts, issues Nos. 10 \& 11.
Beginners are advised to read these but this articles does contain a brief introduction. It does not deal with the "internal architecture of the PET and is written for those practical users who wish their micro to communicate with the "outside world". It deals mainly with the "User Port" but starts with some references to Input/Output in general.
What is meant by Input/Output? The keyboard provides Input only and the screen mainly Output, although a light pen can be said to provide screen input. A list of the more usual types of I/O is given in Table 1. All except the last item, interfaces, will

Types of input/Output

```
Cassette units (via. cassette ports l& 2)
Printers (via. the IEEE port usually)
Disk Units (via. the IEEE port)
Sound " boxes " output only
Light pens input only
joysticks input only
video output output only
Interfaces input or output, any port or ports
```

probably be self-contained plug-compatible units which will operate via more or less simple commands, and should in any case be well documented. Some interfaces too will come into this category but in many cases the end use of an interface will be highly specific to the user and he will be expected to write or purchase the necessary software.

Returning briefly to the keyboard this is an input device "par excellence" and its functions are quite amazing. It is not just like a typewriter keyboard, as might seem to be the case at first sight, and a few moments reflection on what can be done via the keyboard and how the PET keeps track of keypresses shows that it is a very sophisticated device indeed. Try PRINT PEEK (158) after you have pressed a number of keys (not more than nine) and you will find it knows! Input by keyboard is of course entirely manual... or is it? I have made an electromechanical keypresser and such devices
are available commercially.
The management of I/O to cassettes, disks, printers, video screens and the like is a fascinating subject but I will only refer to one minor aspect of cassette operation in order to illustrate a very simple form of output.

## PRograM No. 1.

Cassette motor control.

10 FRINT"TRESS FLFY ON CRSSETTE \# 1"
20 FORI $=1$ TO200
30 PRINT"コ" INFUT"SECS: MOTOR OFF": S
35 INFUT"SECS. MOTOR ON"; T
40 FOKE59411,60
50 FORI $=1$ TO10 006 S : HENT
60 FOKE59411.53
70 FORI = 1 TO1000 0 T : NE NT
$8060 T 040$
Program 1 demonstrates how you can turn the cassette motor on and off at will and is the basis of the various tape positioning programs which enable you to locate a specific place on tape using for example the fast forward control. If however you have an audio cassette unit modified for use with your micro then it will probably have sound output. You can then intersperse screen text or displays with pre-recorded sounds, music or speech in near perfect synchronism.

Since the cassette motor is driven by a 6 volt 250 ma. supply it is also possible to operate any other device controllable by such a voltage and current. You can also switch the supply on with POKE 59411,16 and off with POKE59411,1 but these suggestions are not offered with any guarantees, the risks are yours! Nevertheless I have used these procedures without any undue side effects, as yet.

There is obviously a conflict with normal cassette use and the possible applications are clearly limited, so we come to the User Port and the possibility of eight lines programmable either as imputs or outputs.

The signals which appear on the various lines of the port are TTL ones i.e. nominally 0 or 5 volts, and can supply only small amounts of current. The CBM User Port Cookbook says a maximum of 250 milliamps and this presumably means only a few milliamps per line. The consequences of taking more could be expensive. To avoid such hazards I purchased a Communikit (Mektronic Consultants of Manchester) as described in my previous article. This plugs into the User Port and also needs a supply of between 8 and 24 volts. This supply can be switched on and off via any of the eight channels.

## User Port Applications

The first example assumes that you are familiar with the instructions for turning the signals on the

## Basic Programs

port on and off using POKE 59459,x (sets the Data Direction Register A or DDRA to binary value " $x$ ") and POKE 59471, $y$ to put "data" on the port. The "data" i.e. whether the signals are 0 or 5 volts is read by PEEK (59471), which reads the contents of the DATA REGISTER A or DRA.


This is described in greater detail in my previous article so if you find this confusing (I find it confusing!!!! . . . I also described the use of a " 555 " times circuit see Figure 1. This measures the time constant of the resistance/capacitor network R1/C1, and I suggested a number of possible applications. Since then I have constructed an automatic photo-sedimentometer curve tracer . . . EH? To explain - one way of studying the properties, such as the particle size, of fine powders is to suspend them in water and allow them to settle. Naturally the larger particles settle first and the finer ones will settle slowly. Each particle can be considered to approximate in shape to a sphere and thus to settle at varying speeds according to Stoke's Law
$v=\frac{r^{2}(D-d) g}{4.5 n}$
where $v$ is the velocity, $r$ the radius of the particle, $D$ its density and $d, n$ the density and viscosity of
the liquid it is suspended in! I leave this as an "exercise to the student" to work out what the settling velocity of the fine clay particles should have been in the following experiment. The sedimentometer consisted of a transparent plastic bottle (a shampoo bottle) containing my suspension of fine clay in water. I used a 6 volt 50 ma . pygmy lamp as the light source and shone it through the suspension onto an ORP-12 to detect the amount of light passing. The lamp and photo-detector were simply taped on to the bottle with black PVC tape as shown in Figure 2.


In this application I used a 25 mfd . capacitor and a 15 k resistor in series with the ORP-12. The program used is given as Program No. 2. This demonstrates the use of an ARROW chip for plotting purposes, hence the strange (?) symbol $\theta \mathrm{G}$ and the odd $\mathrm{Z}=1$ ! It also explains the SYS 40960 at the beginning. You can use instead any of the many plotting techniques available such as $\operatorname{DEFN}(\mathrm{Z})=32767-40-\mathrm{Y}-\mathrm{X}$ and then plotting with POKE Z, 65 or whatever, or make use of the routine at address 59479 e.g. POKE 148, X : POKE 216, Y : SYS 59479 followed by PRINT".." or any symbol you prefer.

The same technique could be used to make an

## PROGRAM No. 2 .

## Photosedimentometer curve plotter

[^2]automatic titration apparatus and a chemist could I am sure think up many more uses．
My next project was a little too ambitious for my engineering skills，even using Meccano in the best traditions of that early designer of computers Herman Zuse！I constructed an X－Y plotter．This used two low voltage electric motors driving lengths of screwed rod in captive nuts on the $X$ and $Y$ carriages．These motors cost only about 30 to 40 p and the rest of the bits and pieces came from the scrap drawer so this must be one of the cheapest X－Y plotters yet produced．I would not describe it as fast or，in any way I built it，very accurate but it did work and if I can do it almost everyone else could do it better！A diagram is given in Figure 3，and it will be seen that I used pen－lift since the power available was small and the rigidity of the construction poor．Fibre tip pens

（i．e．multi－colour plotting）were used to give a series of dots which enabled high definition to be obtained if you could wait long enough．The program I used is Program No． 3.

## Analogue／Digital Conversion

You will see that a great variety of input can be carried out fairly simply using switched input methods i．e．the simplest form of digital input． The Communikit can also accept 8 －bit parallel input using the control lines CA－1 and CB－2 but this is somewhat outside the scope of this article． However since the outside world deals more frequently in analogue type variables such as
voltage，current，temperature，pressure，time and so on i．e．constantly varying parameters it is of interest to examine how these can be handled by a computer．In other words the somewhat daunting subject of data handling．

```
PROGRAM NO. }3
```

X - Y Plotter.

100 POKE59459， 255 ：R＝59471：FOKER，
110 PRINT PRINT＂JTEST FROGRAM＂
20 FRINT：PRINT
30 FRINT：FRINT＂FRESS F TO OPERATE PEN LIFT＂
149 FRINT：PRINT＂R TO OPERATE REVERSE
150 PRINT：FRINT＂
，TO RUN X－MOTOR
1EQ PRINT：FRINT＂Y TO RUN Y－MOTOR＂
165 PRINT：FRINT＂TO REVERSE MOTORS FRESS T（FOR XREV．），Z（XREV．）＂
179 GETA丰：IFA $\$=$＝＂THEN17 10
180 IFA $=$＂F＂THENSG日
190 IFF $\ddagger=$＂R＂THENG日G
209 IFA $=$＝＂ x ＂THENTGG
216 IFF $=" \because " T H E N S O G$
220 IFA末＝＂T＂THEN90日
230 IFA $=$＝＂でTHEN10日に
504 FOKER， 1
510 FORI $=1$ TO50 0 ： NEXT
520 FOKER，0：G0T0170
600 POKER． 2
610 FORI $=1$ TO50日 ：NEXTI
6206070176
710 FORI $=1$ TO500 ： HEXT ：FOKER，
720 G0T0170
800 FOKER， 8
810 FORI $=1$ TO200 ： NE （ ：FOKER； 0
820 GORTO170
900 FOKER，10：FORI $=1$ TO200 ：NEXT
905 FOKER， 9
910 GOTO
1000 FOKER， $6:$ FORI $=1$ TO500 ：NEXT
1005 POKER， 6
1016 GOTO170
1015 FOKER， 1
READT＇．
Small amounts of data are readily handled via keyboard entry，more data can be stored as data statements but one finds that such subjects as mailing lists soon exhaust even 32 K of memory and one resorts to data files stored on tape and then on disk and then ．．．

But analogue data is available in almost infinite amounts so one has to resort to sampling techniques and statistical procedures．There are however relatively simple applications such as finding the position of a potiometer spindle or a joystick control lever．

In fact this is exactly what the timer circuit of Figure 1 does．Two snags which limit the usefulness of this device are（a）the speed of the basic program and（b）the fact that a voltage cannot be input and measured easily．The first snag can be overcome by using a machine code program which enables a measurement to be carried in microseconds rather than milliseconds． A suitable program has been published in the ＂PET REVEALED＂providing you are aware of the necessary change（FO 07 to FO F7）．A slightly simplified version with the TIM monitor format and BASIC program to accompany it is Program 4．A simple plotting program now gives you realistic screen movements and I was surprised to

## Basic Programs

find that I could detect mains hum picked up by rather long input leads and thus quite unwittingly plot sine curves! This was all the more surprising since when I first examined the data being fed in it appeared to be varying rapidly and wildly with apparent randomness and it was only when plotted that its true nature was obvious.


The second snag is not so easily overcome unless you buy a purpose built A/D converter so I tried a simpler solution, a 75 p chip the 4151 . The circuit shown in Figure 4 will convert a voltage of $0-10$ to a frequency of $0-10 \mathrm{kHz}$ and is obviously only a little more complex than the " 555 " timer circuit. If connected to the input of a timer circuit which has an R/C or frequency constant of greater than 10 kHz the frequency and thus the voltage input may be measured. (A. 001 uF capacitor and a 10 k resistance is suitable).


## Problems

If you are thinking of starting up in this field these comments may be of use. Some may seem obvious or elementary but if you are concentrating on one aspect then a trivial problem can seem to be very baffling, for a time at least, and I find myself thinking up all sorts of explanations other than the obvious.

1. If you have peripherals connected to your PET make sure that they are switched on. Strange effects are produced by peripherals which are plugged in but not powered. I had this experience first with a printer and even called in an engineer who was most puzzled. His diagnostic tests indicated a faulty chip and he spent two fruitless hours changing chips without success.
2. I wired in an LED to show that I had my battery supply connected . . . fine . . . but it did not tell me when the battery was too flat to operate the system . . . ouch! I also spent some time looking for the source of apparent total failure until I realised that the failure was in my test leads.
3. Beware of voltage spikes and induced voltages in long or unsuitably placed leads. Arrange your wiring with care and avoid unwanted peaks by connecting diodes or capacitors across relays, switches and the like.

> PROGRAM No. 5.
> IF $\quad A=B$ THEN $\ldots .$.

```
5 REM...IS H = E ?
10 A=,01:E=1,100
20 FRINTA, E
20}\mathrm{ PRINTH,E
30 IFA=ETHENFPRINT"'TE
MQ PR
```

4. And now two "problems"' with BASIC. The first is the infamous INPUT crash i.e. accidentally pressing return when input is required. I fell into this trap while demonstrating a program to a group of people (it always happens this way) and then somewhat confused typed a number and again pressed return. Yesss you guessed right I had of course deleted a program line . . . and an essential one at that. POKE 14,1 before INPUT solves this problem.

The other problem which I find even highly experienced programmers suffer from is the IF A $=B$ variety! This is demonstrated in Program No. 5. No prizes are offered for the explanation but one way to avoid the problem is to use greater or less than statements or IF ABS (A-B) . 00001 THEN . . .
5. Finally I had some difficulty to start with in
getting all the appropriate bits and pieces together and in finding really good books on the subject. Some radio spares shops are remarkably unhelpful if you ask for items for computer use, some computer shops are also unhelpful unless you wish to buy an x-thousand pounds system! Tandy shops are useful suppliers of odds and ends but they too seem to "act funny" if you mention a PET! The pages of the computer journals contains more useful information as to suppliers of odds and ends but you should find out if you have a "computer breaker" in your neighbourhood . . . an invaluable source of cheap goodies.

As to books your County Library will doubtless have a phenomenal stock of books on computers, mainly unsuitable for our purposes. I have however found "Micro Computer Interfacing" by Bruce A. Artwick (Prentice Hall) 1980 to be very helpful. The CBM "User Port Cookbook" has some useful information but it does not rise much above the general level of CBM literature, the accompanying cassette is almost farcical for a beginner! (It is in any case only a recorded version of the program printed in the Cookbook).


By contrast the manual accompanying the Communikit is an excellent example of how to produce a manual and I only wish that they would prepare a more comprehensive manual in addition to their listing one.

Of course if you don't wish to bother with all this detail you can buy a ready built unit complete with A/D converters, 16 -bit accuracy (.0015\%) bi-directional control, relay switching, IEEE and RS 232 interfaces built in, variable baud rates, voltage/current signal shaping, plug in user oriented boards and LED or digital displays!


## Basic Programs

## Programs For Your VIC 20

## Programs for the Vic

Two games programs for the Vic，both utilising programmable high resolution graphics，colour and sound，and containing all instructions for playing the game within the program．These are written for the unexpanded Vic，so remove those RAM packs before going into action．

SPRCE PIRATES－VIC 20

```
1. FOKE36878.15
12=PEEK (829)
 F19(20THEN14 EK (826)
```



```
MASE
 POKE56, PEEK(56)-2: POKE52, PEEK(56)-2:POKE51,PEEK(55) CLR
I6 FORI=464T0496:READJ: POKECC+I,J:NEXT: POKEVI +5,255
 IATA129,66,36,0,Q,36,66,129,24,24,24,24,,6,126,126,255,
 I2=PEEK (829): I9=PEEK (826):S=PEEK(827)*25:IF19),9THENS=S+(PEEK(826)-1)*6300
 $2=5:60SUB500:Y=25:T T="MOTHERSHIP-<=-2MYSTERY" T2 ="#1 PIRATE-@-25
 IPIY=GTHENI2=50
```



```
 FRINT FRINT :FORI=1TO5:FRINT"WN
```



```
 FORK=1T05: IF13(K)=1 THENPOKEZ(K),32:00T043
 IFI4=9िNDRHI (4)<.02THENI 4 =1:BU=7724
 IFI4=1THENPOKEBU, 32: BU=BU+1:POKEBU+1,61:POKEBU,}
 IFI4=1PNDBU>=7743THENI4=0: POKEBU,32: POKEBU +1,32
 IFX,.STHENPOKEZ(K),32:Z(K)=Z(K)+XZ(K):POKEZ(K), 日: POKEZ(K)+30720,5
 GOSUB200
 FPEEK (Z(K)+1)=7
 MZ(K) \=80990.5
 NEXT:GETR& IFA$="Q"THEN99
 POKES6869, 240: POKE56, 30:POKE52, 30 CLR:PRINT"TMOSCHNHINO SECTOR
 PRINT"OISTARDATE "TIE:RUN
 IFZ=17THENC=8077:G0SUB220
 IFZ=41THENC=3980:G0SUB228
 IFZ=18THENC=8083: G0SUB22
 MM=32:FORI=C-22TOC-330STEP-22: POKEI +22,MMM:IFPEEK (I-22)=0THEN300
 MMI=PEEK (I-22):IFMM=610RMM=60THENGOSUB350
 2POKE1,33:IFEU=I-22THENPOKEI,32:I=C-330:GOT0224
 NEXT FOKEI+22,32: RETURN , PI, %2, 58: POKEI+30698,2
 POKE36855,0:POKE1,32:POKEI-22,58: POKEI+30698,2
 FORIE==2 : 1=S1+1:PRINT"$SCORE"S:I=C-352:13(K)=1:S2=S2+1:IFS)=12000THENS=S-1200
 3 IFS1/20=INT (S1/20)ANDS1<OOTHEN990
 IFS2=5THENGOSUB50日: }%=\psi+25:FORJ=1\mathrm{ T05: I3(J) =0 : NEXT : GOT022
 V=INTRND(7)*4+1)*50:POKEBU+1,32: POKEBU,58
 FORDE=15RIN"*SCORE"S POKET,N2:RETURN S6877,0: 14=0: POKEEU, 32
 S=S+V:PRINT"#SCORE"S:POKEI, 32:RETURN
 IFS2<SSTHENRETURN
 FORI=OTO
 POKECC+1,J
 NEXT:S2=0
 DATA102,102,60,231,189,50,102,66,66
 DATA60,126,159,254,62,34,34,102
 RETURN (1) POKE829, 12: IFS-6300)0THENPOKE827, ($-6300)/25 POKE826, PEEK (826)+1
 OT0100
 M0, FORI=1TOLENST&):PRINTMID*(T*,I, 1); FORDE=1TO70:NEXT NEXT PRINT RETUPN
 POKE8102,58:POKE8105,58:POKE8099,58
```



```
 9018 FORDE=255T0120STEP-1: POKE36877, DE FORD=1TO30: NEXT NEXT
 FOKE36877, P:PRINT"\ANOTHER GOT(Y/N)
 M,
 IFH="N"THENPOKE826,日:POKE827, Q: POKE829, 0:G0T09036
 36 POKE56,30: PRINT":Z"'POKE36869, 240:POKE36879,27 CLR:END
READY.
```

CONQUEST－VIC 20

REM CONOUEST EY E．J．SLADE
FORI $=826$ TO835 POKEI 255 HEXT
POKE3679,93 FOKE36869, 242
12 PRINT"3-ONQUES": PRI
12 PRINT" 1 OUR AIM $1 S^{\prime}$
13
PRINT" MTO KILL ALL THE "
PRIT"ANASY KHIGHTS "
13 PRINT" 日TTO KILL RLL THE"
4 PRINT"NHSTY KNIGHTS
I5 PRINT" NHO GRE HIDING
16 PRINT" HRROUND THE CASTLE."
is PRINT" T INPUT DIFFICULTY": PRINT"MI (1-9)"
19 GETDH: IFDHE="THEN19
20
DF $=$ VAL
DHF




Space Pirates is an Invaders type game， whereby rows of aliens wander across the screen，and you have to shoot them down．You have three laser bases from which to do this．

Conquest has you defending a castle， attempting to shoot down the marauding knights with your catapult before time runs out．

## System

Some time ago, I developed a program written in both BASIC and machine language. The machine language part of the program formed a large library of assembler-coded subroutines, which could be called from a BASIC program by using the SYS command. The SYS command, although providing a useful interface to machine code, is rather limited if used in its standard form. The main problem arises from the fact that entrypoints have to be specified as absolute addresses, as in SYS 826, for example. Consequently, any changes made to subroutines at the assembler level, which alter start-addresses, or entry points, involve updating SYS calls in the main BASIC program. Other languages, like FORTRAN, allow the user to call subroutines by name, including subroutines written in assembler. Being able to call a subroutine by name not only eases the task of program maintenance and development, but it also greatly enhances the 'readability' of the program. In a large program, readability and ease of maintenance become significant design criteria, so therefore I decided to implement a call-by-name mechanism within BASIC. By describing the implementation in detail, I hope that others will derive the same benefits as I did from using the call-by-name approach.

But first, for those of you who are not familiar with the subroutine-calling conventions offered by other programming languages, a few words of explanation. As you probably know, a call to a subroutine in BASIC requires the use of the GOSUB command, and any parameters needed by the subroutine have to be established in variables prior to making the call. So, a typical program segment of BASIC code, which calls a cursor-positioning subroutine, for example, might look like this:-
$1110 \mathrm{X}=5$ : REM SET X COORDINATE
$1120 \mathrm{Y}=9$ : REM SET Y COORDINATE
1130 GOSUB 5000: REM-POSITION CURSOR
Now if we were using FORTRAN as our programming language, then the same segment of program could be coded as:-

## CALL CURSOR(5,9)

Comparing the two calling sequencies above, it is obvious that the FORTRAN code is far more 'readable' than the equivalent BASIC version for
two reasons. Firstly, by using a meaningful name, even without annotating the code, the function of the subroutine can be easily surmised just by looking at the call. By comparison, if the REM statements were removed from the BASIC version, it would be virtually impossible to determine the function of the GOSUB without actually looking through the subroutine code and analysing the program logic. Secondly, parameter passing is considerably more elegant in the FORTRAN version than in the BASIC equivalent. If we now look at how assembler-coded subroutines are called from BASIC, we see that the call to our cursor-positioning subroutine becomes even less readable, as the following example illustrates:-

1110 POKE 23569,X
1120 POKE 23570,Y
1130 SYS 23571
Imagine how cryptic a BASIC program would look if there were calls to thirty or more assembler subroutines! Surely it would be better if one could call the cursor-addressng routine by:-

## 1110 SYSTEM, '"CURSOR",5,9

Well you can, and in this first article I shall start to tell you how.

For the moment, and for the sake of simplicity, let us study a small assembler-subroutine library consisting of just two routines: The first routine, when called, forces the screen display into lowercase mode, and the second routine performs the complimentary function of forcing upper-case, or graphics, mode. Under normal circumstances, we would need to have a uniquely coded SYS call to invoke each of the library subroutines. But, using the call-by-name scheme, we can dispense with the usual style of SYS call. Instead, we route all SYS calls to what is called a 'dispatcher'. The dispatcher figures out which subroutine has been requested, and passes control to the appropriate entry point. To understand how this works, we need to take a close look at the structure of our sample library. As explained already, the library contains two routines, which are used to change the screen display mode. As well as these two 'user' routines, the library also contains the dispatcher routine, which is the only routine that is ever called directly from a BASIC program. When the dispatcher receives control from a BASIC SYS call, it scans the SYS call line for a sixcharacter, space-filled name, and uses the name to perform a 'look-up' in the dispatcher's entry-

# Machine Code 

point-table. The entry-point-table contains, in addition to the subroutine names, all the subroutine start addresses. When the dispatcher finds the requested name, it pushes the appropriate start address onto the stack. Then, via an RTS instruction, it gives control to the called subroutine. If you look at listing 1 , you will see exactly how the dispatcher, the entry-point table, and the library subroutine are put together. Lines 1 through 36 of the listing contain declarations of the ROM routines, constants, variables, and pointers which are used by the dispatcher and library routines. (As a general tip, you will find that code is much easier to read and maintain if you religiously avoid using constant values when coding instructions). Including commentary, lines 37 through 135 contain the actual dispacter routine. The label 'SYSTEM', at line 58, marks the point where control is received from the BASIC SYS call. Following the dispatcher routine is the entry-point-table (E.P.T.). Label 'EPTAB', at line 155 , marks the start of the table. For each library subroutine there is a two-line entry in the E.P.T. The first line uses the assembler .BYTE directive to generate the subroutine name. Note well that the name given between single-quotes, if less than six characters, must be space-filled. The second line of each entry uses the assembler .DBYTE directive to generate the subroutine start-address minus one. Why minus one? Well, as stated earlier, the dispatcher passes control to the library subroutine by pushing an address onto the stack,
and then executing an RTS instruction. The RTS instruction computes its target address by popping the stack and adding 1 , so entry-point addresses are always generated as one less than the actual start address. As new library subroutines are added, it is quite a simple task to code new E.P.T. entries. The last part of the listing, lines 164-207, contains the actual library, or user, subroutines.

Now that we have studied the structure of the library, let us move on to see how a BASIC program accesses the subroutines. Listing 2 shows a simple BASIC program, that illustrates just how easy it is to make calls to the library. Lines $10-30$ show a fairly standard method of booting a machine-coded segment, in this case our library. Line 30 assumes that the library has been assembled, loaded, and saved in a file called 'USER-LIB'. Line 50 is interesting - not only does it assign the dispatcher start-address to the BASIC variable 'TEM', but in so doing, allows the more usual 'SYS 24576 to be cosmetically coded as the pseudo-keyword: SYSTEM.

Well, there you have it, a useful call-by-name facility, which requires little effort to implement, and which provides the twin benefits of improved readability and easier program maintenance.

In my next article, I shall describe how the call-by-name technique can be developed to allow 'SYSTEM' calls to include parameters. The article will also include listings of some very useful assembler subroutines.

| 6062 <br> 0602 <br> 00044 <br> 0065 <br> 0606 <br> 0007 <br> 0068 <br> 0009 <br> 0010 <br> 0011 <br> 0012 <br> 0813 <br> 0014 <br> 0015 <br> 6016 <br> 6017 <br> 0018 <br> 6019 <br> 0420 <br> 0421 <br> 0622 <br> 0423 <br> 0624 <br> 0625 <br> 0026 <br> 4627 <br> 0022 <br> 0639 <br> 0462 <br> 6034 |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

[^3]X<2\mathrm{ THEN
40
50 TEM=24576
60 FOR I=1 TO 12
70 FRIHT"* IM GETTHHG GOUD UIERAT:OHS
80 HEMT
90 FEM FHI NOH WE CHLL THE LIBRARY
100 STGTEM, "CAGEUP"
110 SUSTEM, "CAGELO"
120 GOTO 100
REFD''

```

Just for fun ... Snoopy on a Vic20!

100
110
120 rem netherlands
130 poke56, peek(56)-2:run140
140 cs=peek (56)*256
150 c \(\$=\mathrm{chr} \$\) (34)
160 poke36879,42:poke36869,255
170 print"[clr,ctrl2,8cd,7sp]@abcdef
180 print"
hijklmn
190 print"
200 print"
210 print"
pqrstuv
z[\]
!"с\$'\#\$\% \&
220 print" ()**,-."
230 readx:ifx=-1then260
240 fori=xtox +7 :reada:pokei, a:next
250 goto230
260 geta\$:ifa\$=""then260
270 print"[clr,ctrl7]";:poke36879,27
275 poke36869,240:poke56, peek(56)+2
278 end
\(280 \operatorname{data} 7424,0,0,0,0,0,0,0,0\)
290 data7168,0,0,0,0,0,3,12,16
300 data \(7176,3,4,9,19,247,23,11,12\)
310 data7184, 192,48,200,228,247,231

315 data200,48
320 data7192, 0, 0, 0, 0, 3, 252, 0,64
330 data \(7200,0,0,7,56,192,0.0,0\)
340 data7208,0,0,192,48, 12, 3, 0,0
350 data7216, \(0,0,0,0,112,136,232,248\)
360 data7232,32,64, 128,131,132,132
365 data132,68
370 data \(7240,15,24,48,225,65,33,33,33\)
380 data7248, 192, 128, 128,0,0,0,0,0
390 data7256, 64, 0,31,32,64, 128,128
395 data 128
400 data \(7264,0,0,255,0,0,0,0,0\)
410 data \(7272,0,3,252,0,0,0,6,57\)
420 data7280,240, 0, 0, 0, 0, 0, 0, 128
430 data \(7296,66,33,16,12,3,0,0,0\)
440 data7304, 33, 192.0, 0, 0, 224,31.0
450 data \(7312,0,128,64,48,15,0,255,0\)
460 data7320,64.32,31,0.31.248,68,250
470 data \(7328,0,0,224,64,129,2,4,8\)
480 data \(7336,74,105,99,132,7,8,16,32\)
490 data \(7344,64,224,32.192,128,0,0,0\)
500 data \(7376,1,1,3,3,6,6,9,9\)
510 data7384, 209, 160, 96, 100, 194. 225
515 data208,168
520 data7392,208,56,7,0,0,0,128,64
530 data \(7400,64,128,0,224,24,4,2,1\)
540 data7432, 0, 0, 0, 0, 0, 0, 1, 254
550 data \(7440,18,18,38,38,76,148,20,40\)
560 data \(7448,228,230,232,103,49,30,1\)
565 data 1
570 data7456, 120, \(8,48,16,224,2,2,2\)
580 data \(7456,120,8,48,16,224,2,2,2\)
590 data7464, 1, 1,2,4,56,8,8,7
600 data7472, 0, 0, 0, 0, 0, 0, 0,252
610 data7488,1,63,15,255,0,0,0,0
620 data7496,0,255, 128,255, 0, 0, 0, 0
630 data \(7504,40,200,16,224,0,0,0,0\)
640 data7512, 63, 64, 128, 127,0,0,0,0
650 data7520, 1, 0, 0,255, 0, 0, 0,0
660 data7528,255,0,36,255,0,0,0,0
670 data7536,2, 146,252, 128,0,0,0,0
680 data-1
ready.

'Then It's Agreed. At 12:35 P.M., We All Break Down Just for Fun.'

\section*{PET ASSEMBLER \& DISASSEMBLER}

Available for all PETs 8 K and upwards, 2001 to 8032 .
Full details, CPUCN July '81.
Assembler handles data tables in Decimal, Hex., or ASCII.

On Cassette:
Assembler
£15.00
Dissembler
£10.00
On Disk (8050 only, BASIC 4): Both Programmes
£28.00

Specify machine type
Patrick Walshe,
Loughteague, Stradbally, Laois, Ireland

FOR EXCELLENCE AND DEPENDABILITY AND USE ON MOST MICROCOMPUTERS

ALPHATRONICS MICROPROCESSOR APPLICATIONS LTD., Norfolk House, 435 Silbury Boulevard, Central Milton Keynes MK9 3HB Telephone: (0908) 663906 Telex: 825016 ROCOCO G

\section*{PROGRAMMER PRODUCT SUPPORT}

\section*{Colchester}

We are both Software publishers and Hardware suppliers, having achieved an annual turnover in sales approaching \(£ 3 \mathrm{~m}\) over the last \(21 / 2\) years.
Our requirement is for a Programmer with experience of CBM operating systems and the 6502 Assembler to join our Software Support Group. Excellent salary and conditions can be negotiated.
For full details, please phone or write to:
```

Mr. Sid Newman,
General Manager,
Dataview Ltd.,
Portreeves House,
East Bay,
Colchester,
Essex, CO1 2XB
Telephone: Colchester (0206) 865835

```

\section*{ADVERTISER'S INDEX}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{30Alpha Business Systems} \\
\hline & A.S.K. \\
\hline \multicolumn{2}{|l|}{2Audiogenic} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2, 13...............Bristol Software Factory}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{32Chaswood} \\
\hline \multicolumn{2}{|l|}{55C.I.L.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{.................Comal Users Group}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{4Dataview} \\
\hline \multicolumn{2}{|l|}{7Dynatech} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{1Impetus} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\(\qquad\) J.J. Lloyd Instruments \\
8. Kingsley Computers
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(6 L a n d s o f t ~\)} \\
\hline \multicolumn{2}{|l|}{9.................Level Ltd.} \\
\hline \multicolumn{2}{|l|}{7.................... Mass Micros} \\
\hline \multicolumn{2}{|l|}{8 Ortholog} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{..................Peach Data Services}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2................. Qwerty Computer Services}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{0.................. Small Systems Engineering} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(6\). Stack Computer Services Ltd.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{19................ Tirith} \\
\hline \multicolumn{2}{|l|}{54.................Patrik Walshe} \\
\hline & Wirt Microsy \\
\hline
\end{tabular}

\title{
A NOTICE TO ALL \\ PET LOVERS
}

\title{
INTRODUCE YOUR PETS TO OURS \\ AND SOLVE YOUR INTERFACE PROBLEMS
}

Only £195.00

Only \(£ 195.00\)

THE PUP
* 4 ANALOGUE INPUTS (12BIT)

* 2 ANALOGUE OUTPUTS (12 BIT)
* 4 RELAY OUTPUTS
* 4 LOGIC INPUTS

When connected to the "PET" User Port the PUPI gives you all the above features together with an operating system in EPROM, which interacts with Basic's variables, giving extremely simple operation. Inputs and outputs are \(\pm 10 \mathrm{~V}\) and relays are rated at 10VA. Logic inputs can be used for microswitch sensing etc.

HIGH SPEED A/D CONVERTER
THE PUSS
* 4 ANALOGUE INPUTS (12 BIT)
* 50 MICROSECOND CONVERSION
* STOP AND START TRIGGERS
* DATA ACQUISITION SOFTWARE

Using an operating system in EPROM, the PUSSI provides a high speed A-D Converter with 4 multiplexed inputs, which is under control of either software, or remote start/stop triggers. A-D Conversion can be carried out from Basic, or Machine Code, with up to 1500 readings entered directly into memory at a software determined rate.
```

CL MICROSYSTEMS LTD. DECOY RD., WORTHING, SUSSEX BN 14 8ND. TELEX: 87515 WISCO G ATTMIC TEL: (0903) 210474

```

\section*{Write, phone or to}
obtain further information circle number

\section*{STACK STOREBOARD (memory expansion unit)}

Power up your VIC-20 to a MASSIVE 32k COMPUTER!!
ony \(£ 49.00\) (plus VAT) for 3k and expandable to 27 k on the same board.

\section*{STACK 8k RAMPACK}

Use this upgrade pack to increase memorr size on Stack Storeboard by \(8 k\) a time. NEW LOWER PRICE!! only
£29.00
(plus VAT)

\section*{STACK LOW COST RS232 INTERFACE}

Allows you to use a serial printer with your VIC-20.
£22.99 (plus VAT)

\section*{STACK LOW COST 3k MEMORY}

The lowest costing memory addition gives you \(6^{1} 2 \mathrm{k}\) of user memory on our VIC-20. Also allows you to use those quality games which demand 3 k of Hi-Res Graphics! Socket at rear allows you to stack up further accessories.
ony \(£ 25.99\)
(plus VAT)

Fits into the port at the rear of the Stack Storeboard or the Stack Low Cost 3k
Fits into the port at the rear of the Stack Storeboard or the Stack Low Cost 3 k
Memory and enables you to use up to 4 cartridges in addition to the extra Memory and enables you to use up to 4 cartridges in addition to the extra
memory on the Storeboard or 3k Memory. Each slot can be switched in or

\section*{STACK VICKIT SERIES}

A series of ROMs which greatly simplifies programming and enhance the qualities of your VIC-20. Fits into Stack ROM SWITCHBOARD or Stack STOREBOARD.

\section*{VICKIT}

Offers HELP to programmers.... it also offers AUTO. DELETE DUMP. FIND. OFF RENUMBER. STEP. TRACE
£25.00
Special Offer Price if Purchased with STOREBOARD

\section*{VICKIT II}

A 4k ROM offering ALL THE FEATURES OF VICKIT plus.....TEXT. GRAPHICS. LINE. CLEAR. DRAW. PUT FILL. SET. POINT
ony £29.00
(plus VAT)
Other exciting additions to the VICKIT series due soon!

\section*{Contact your local Commodore VIC dealer for details.}

Stack Computer Services Limited, 290-298 Derby Road, Bootle, Merseyside. 051-933 5511. Telex: 627026.```

[^0]: Summary
 Learning about programming, and learning about good programming at the same time, are two

[^1]: REFHT＇．

 5 nImW（E2）

 10 DATA $120,160,64,162,0,169,122,2,141,79,232,76,176,3,234$ | DATA234 |
 | :--- |
 | IATA $234,234,234,234,234,234,234,234$ | IHTA $34,234,234,234,234,234,234,234$

 DATA2 $34,234,234,234,234,234,234$
 DATAES2，208，204，136，208，199，88，96
 29 FGPN $=1$ TOE
 2 REATV（N）
 FOREG05＋N，VEN2
 $\mathrm{HH}=634: \mathrm{EB}=5632 \cdot \mathrm{CC}=5668: \mathrm{DD}=6144: \mathrm{EE}=6400: \mathrm{FF}=6656: \mathrm{GG}=6912: \mathrm{HH}=7168: \mathrm{JJ}=7424$ FOPX＝6TO2＊π STEF2 $* \pi / 256$
 POKEAF + A，INT（ 127 （SIN（ $4 * *$ ）$)+128$

 $49=\mathrm{H}+1$ ． HEXT
 $43 \mathrm{ME=186}: \mathrm{R} 2=184: \mathrm{D} 2=1 \mathrm{B2}: T 1=181: \mathrm{L} 1=179: \mathrm{S} 1=176: \mathrm{F} 1=173: \mathrm{M} 1=1$ P1：R1＝168： $\mathrm{D} 1=164$
 49
 $40=162: L D=157: S 0=152: F=91 E: L=906: Q=2$
 EO PRIAT＂コ＂：GETAま
 51 IFA $=" 1$＂THENFOKE $912,122:$ POKE $913,2:$ G0T050
 5 IFA $==$＂2＂THENFOKE912， $9:$ FOKE913，22：G0TO5日
 63 IFA士＝＂3＂THENFOKE912， $0:$ POKE913， $23:$ G0T050

 154 IFA $=$＝ 2 ＂THENQ $=64: 60 T 050$
 155 IFA $\ddagger=" X "$ THEN $0=8:$ G0TOS 9
 156 IFA $=$＂C＂THENG $=4$ ： 00 TO55

 162 IFA $\$="$ W＂THENGOSUB2日2
 162 TFA 1 ＝＂W＂THENGOSUB202
 166 IFR $=$＝＂R＂THENGOSUE206
 168 IFA $\$=$＂T＂THENGOSUE206
 IFA $=$＂Y＂THENGOSUE210
 IFA $=$＂U＂THENGOSUE 212
 IFA $=="$ I＂THENGOSUB214
 IFA $=" 1$ THENGOSUB214
 IFA $==" 0 " T H E N G O S U B 216 ~$
 176 IFA $=$＂O＂THENGOSUB216
 178 IFA末 $=$＂F＂THENGOSUB218
 180 IFA $\$=" \uparrow$＂THENGOSUE220
 182 IFA $\$=$＂＂＂THENGOSUB222
 134 IFA $=">$＂THENGOSUB224
 185 GOTOSQ
 209 POKEF，SO ：POKEL， $77 / \mathrm{Q}: \mathrm{A}=\mathrm{USR}$（ （a）
 291 RETURN
 202 FOKEF，LQ：POKEL，85，Q： $\mathrm{A}=\mathrm{USR}$（0）
 203 RETURN
 205 RETUPN TG：POKEL， $36 / \mathrm{Q}: \mathrm{A}=\mathrm{USR}$（0）
 206 POKEF， DI ： $\mathrm{POKEL}, 102 / \mathrm{Q}: \mathrm{F}=\mathrm{USR}$（ 0 ．
 207 RETURN
 208 FOKER，R1 ：FOKEL $115 / 0$ ： $\mathrm{A}=\mathrm{USR}$（日）
 209 RETURN
 210 FOKEF， 111 ： $\mathrm{POKEL}, 128 \mathrm{ra}: \mathrm{A}=\mathrm{USR}$（ 0 ）
 212 FOKEF，$F 1$ ：FOKEL， $137 / Q: A=U S R(0)$ 3 RETURN
 4 POKEF，$\Omega 1$ ： $\mathrm{FOKEL}, 154$ ，$Q: A=U S R(\theta)$ 15 RETURH
 16 POKEF．L1 ：POKEL ． $171,0: A=U S R(\theta)$
 17 RETURN
 218 FOKEF，T1 ：FOKEL，192／Q：$A=$ USR（0）
 220 FOKEP，D2：FOKEL，205／Q： $\mathrm{A}=\mathrm{USR}$（ 0 ）
 221 RETUFIN
 222 POKEF，R2：FOKEL，230／R：$A=U S R(a)$
 23 RETURN
 24 FOKEP，M2 ：FOKEL， $230, Q: A=U S R$（ 0 ）
 225 RETUFH
 1006 REM FULD LANG SYHE
 1091 FRINT＂TNWNOW
 1098 FOKEF，SQ FOKEL， 19 ：$=U S R(0)$
 1099 PRINT＂AULD＂
 1100 FOKEF，D1 FOKEL ， 38 ： $\mathrm{A}=\mathrm{U}$ UR（日）
 1101 PRIHT＂AOUJ＂
 1102 POKEP，I1：FOKEL， 13 ： $\mathrm{A}=\mathrm{USR}$（ 0 （ $)$
 103 FRINT＂AINT＂
 104 FOKEF；I1：FOKEL， 26 ： A $=115 \mathrm{SC}$（ （ $)$
 105 PRINT＂RNCE＂
 1106 POKEF，M1：FOKEL， 32 ： $\mathrm{A}=\mathrm{USR}(\theta)$
 1107 PRINT＂BE
 1109 POKEF，R1：FOKEL， $29: \mathrm{A}=\mathrm{USR}$（a）
 1199 PRINT＂FOR＂
 1110 POKEP，I1：POKEL， $13: A=U S R(9)$
 1112 POKEF，R1：POKEL， 29 ：$A=U S R(B)$
 1113 FRINT＂R＂
 1114 POKEF，M1：POKEL， $16: \mathrm{A}=$ USR（G）
 1115 PRINT＂ND＂＂
 1116 POKEF，R1： $\mathrm{FOKEL}, 14: \mathrm{A}=\mathrm{USR}$（ （a）
 1117 FRINT＂ME＂
 1118 POKEF，I1： $\mathrm{FOKEL}, 38: \mathrm{A}=\mathrm{USR}$（a）
 1119 PRINT＂YER
 1121 FRINT，D1：POKEL ，13：$A=U S R(0)$

[^2]: 5 STS40960
 10 FRINT"? FLOT OF LIGHT INTENSITY US TIME
 11 FRINT"
 15 FRINT" ${ }^{2}$ TRFNSMISSION
 20 FORI = 1 T020
 25 PRINT" I" NEXT
 30 PRINT"
 $110 \mathrm{~N}=59459: \mathrm{K}=255: \mathrm{T}=59471: \mathrm{J}=\mathrm{J}+1$
 120 FOKEH, $\times: F O R I=1$ TOIO: NEXT
 130 FOKEN, X-1
 130 FOKEN, $X-$
 150 POKEN.
 $170 \mathrm{~B}=\mathrm{TI}$
 180 IFFEEK $\left(T^{\prime}\right)>1$ THEN18区
 190 C=TI
 $200 \mathrm{C}=\mathrm{C} T \mathrm{I}-\mathrm{L} \geqslant / 30: \mathrm{T}=\mathrm{C}-\mathrm{E}$
 $200 \quad \mathrm{X}=\mathrm{T} I-L$
 $210 \quad 2=1: 45$
 220 IF J=E日THEN 250
 220 IF J=86T
 $\begin{array}{ll}240 & \text { GOTO110 } \\ 250 & \text { WAIT5 } 5410,4,4\end{array}$
 260 RUN
 FEERIT'

[^3]:

 | $\mathrm{G}=$ \$ EF G6 | HFITE HOT FOUHII $=$ S't |
 | :---: | :---: |
 | -vhLUS = \$BD9S | EVALUATES A EASIC EXFRESSIOH |
 | $\because T F L I=\$$ EEF5 | SCAHS PAS | HTFLI $=$ EEEFS \quad SCAHS FAST A COHTHA STRTHG $=$ \&CTES SETS UF CHARACTER STRING FNTE

 ## Machine Code

 LISTHE 2,

    ```
    10 FOKE 53.112
    20 %=%+1
    30 IF ```

