

Introducing
your Commodore 64

Introducing
your Commodore 64

PKMcBride

.. iii ..

Longman:;

Commodore is a registered Trade Mark
of Commodore Business Machines.

This book is intended to help you understand
how your Commodore 64 works, and how to get
the best from it.

At various points you will be presented with
programs illustrating features new to you, but
these are all clearly explained in the text. Type
in the programs very carefully, comparing each
character with the character in the book
Remember to press the RETURN key at the end
of each line, and type RUN and press RETURN
to set the program running.

Longman Group Limited
Longman House. Burnt Mill, Harlow.
Essex CM20 2JE, England
and Associated Companies throughout the
world.

© Longman Group Limited 1984

All rights reserved. No part of this
publication may be reproduced, stored in
a retrieval system or transmitted in any
form or by any means, electronic,
mechanical, photocopying, recording or
otherwise, without the prior permission of
the Copyright owner.

First published 1984

lliBN 0 582 91603 8

Printed in UK by Parkway Illustrated Press,
Abingdon

Designed, illustrated and edited by
ContractBooks,London

The programs listed in this book have been
carefully tested, but the publishers cannot
be held responsible for problems that
might occur in running them.

Contents
Chapter 1
Programming 6

Chapter 2
Printing 10

Chapter 3
Moving the cursor 20

Chapter 4
Save your effort 26

ChapterS
Memory and movement 30

ChapterS
Sound on the 64 54

Chapter 7
Back to BASICs 60

Chapter 8
Time and music 68

Chapter 9
Sprites 76

Chapter 10
Advanced BASIC 102

Chapter 11
Games 116

Chapter 12
The final chord 136

A final[word. 142

Index to BASIC keywords 144

•
Programming

This book will show you how to write computer
programs using your Commodore 64, but what
is a program, and why do you need one? The
simplest answer is that a program tells a
computer to do something, and you need it
because without it the machine can do only very
simple things.

If you think of each of the computer's
commands (the things it can do) as a brick, then
writing a program is like building a house. That
program-house can be almost any shape or size
that you like. It's how you put the bricks
together that counts.

Computers are very logical; some, like the
Commodore 64, have large memories, but all of
them are basically stupid. They will do exactly
what they are told to do, without using any
common sense or imagination at all. When you
write a program to make your computer do
something, you must set out your instructions
simply and clearly, and in precisely the right
order, because the machine will always do what
you say, and not what you mean.

6
Programming

" .•. ,.

.I' ".
" ,

Here's an exercise to get you starting to think
like a programmer. Take a simple job that you
do quite regularly and do not really need to
think about - making a cup of tea, for example -
and break it down into the set of actions and
decisions that make up the whole job.

How do you make a cup of tea?
I Find the kettle.
2 Fill it with water.
3 Plug it in and turn it on.
4 Find the tea pot.
5 Find the tea.
6 Work out how many spoonfuls of tea you

need. One for each person and one for
the pot.

7 Put the right amount of tea in the pot.
8 When the kettle has boiled, pour the

boiling water into the teapot.
9 Shout 'Tea up!'

That's how I make tea - although not everybody
likes it the way I make it.

How do you make tea? Work it out step by
step, and write it all down. This is your
tea -making program.

Your Commodore 64 won't make you any tea,
no matter how carefully you program it, but it
will do many other interesting things. What you
have to do is work out exactly what it has to do,
and type it all in, in carefully numbered stages.

7
Programming

Follow the
arrows

(START) ...
I FIND KETTLE I

"Y

IFILL WITH WATERI
I PUT TO BOIL I ...
I FIND TEAPOT I ...
I FINDTEA I
~

CALCULATE
HOW MUCH TEA

"..

TEA IN POT ...
NO..----------,

... YES

IWATER INPOTI ...

~

'TEA'S READY!'
STOP

8
Programming

WAlTA
MINUTE

That construction of boxes and lines on the
opposite page is known as a FLOWCHART.
Follow the arrows from box to box. If you come
to a diamond shape, then answer the question in
it. Follow the arrow along the path that agrees
with your answer, and carryon from there.

Flowcharts are a very useful way of planning
a program. They make you work out what you
mean, and that is the key to successful
programming. You will meet a lot more of them
as you work through this book, so let's have a
look at the symbols now, to see what they all
stand for.

Oval shapes are used at the start
and end of a program. You don't
write the start instruction in the
program. You start it from outside
the program with the word RUN.

Diamond shapes are for
questions. When the computer
comes to this part of a program it
will branch off one way or the
other, depending upon the answer
it gets.

START

Rectangular boxes hold
instructions.

DO
SOMETHING

YES
T

NO

~

Arrows show the flow of the
program. It is usual to write the
flowchart from the top to the bottom
ofapage.

9
Programming

•
Printing

THEKEYTO
BETTERPRIN

The easiest way to put anything on the screen is
to use the PRINT command. Type in PRINT and
then the quote marks (") -SlilF,T and,~.

Now type in any characters you would like to
see printed. As you work your way around the
keyboard, you might like to explore what the
keys can do. Those letter keys will produce
more than just letters. Hold the Commodore key

C:... down and press a letter key. This gives
you the graphics character on the front left of
the key. Hold the f_';l1 key down while you
are typing and you get the graphic on the front
right.

When you have typed enough - or when the
machine cannot take any more (two full lines is
your limit), type the quote marks again.

The PRINT instruction is ready, and there on
the screen, but it won't be carried out until you
pressRETtfflN; . So pressRE~i and see
what happens.

Do it again and explore the keyboard.

10
Printing

riNG
U I

J K

Press RETURN after each
command and at the end
of each program line.

Press the Commodore and the SHIFT keys
together and look at the screen. Everything
changes! This is because your 64 has two
character sets, not just one. Use the Lower Case
mode when you want to print small and capital
letters and the Commodore graphics. Use the
Upper Case mode when you want to use all of
the graphics characters.

If you have got lower case letters on your
screen now, then press Commodore and
SHIFT together, and push the keyboard back

into Upper Case mode. We want those
graphics.

Here is your first program. It will print a circle
on the screen. You can see the four graphics
that make up the shape on the keys U, I,} and K.
The circle will take two lines on the screen, so
we use two PRINT instructions in a program. If it
only needed one instruction, we could do it
directly.

The instructions are numbered, so the 64
does them in the right order.

1 PRINT "GlEJ"
2 PRINT "~~,,

Type in each line, and press RETURN at the
end of each line. Check that you have done it
correctly, and you are ready to start. Type RUN
(no line number) and RETURN ..

Write a program
to print the little
square shown here.

11
Printing

9@@__ @& ~
~ til t) ~
~ @* •
• "",tl; ~ .. * •• • **"'" til * * * \I Iii Ii> Iil

You can produce some very good pictures
using those graphics on the keys, if you take
enough time and trouble. The examples here
are rather crude, to keep the programs simple.

But your screen may be getting cluttered up.
You have probably got program lines and bits
of printing all over it. Wipe it clean by holding
down . SHIF'F' and pressing iCLRlHOME . This
clears the screen, and takes the cursor - the
square that shows you where you are - back to
its HOME position, the top left corner. If you
press CLRlHOME without the . SHIFT· the
cursor goes home, but the screen isn't cleared.

You have cleared the screen, but you haven't
lost your program. Type in LIST, andRE'I'URN ..
The program will reappear.

The CLRlHOME command can be included
in your program, so that the printing is done on
a nice clean screen. It must come before the
PRINT lines, of course, and there you have a
problem. How do you get a line before number
I? The answer is you can't. Always leave room
for extra lines at the start of your programs, in
case you want to add something afterwards.
You should also leave spaces between the lines
as well, just in case of any future change. To do
this, start your line numbers from 10 (some
people start from 100, so there is even more
space), and number them in lO's.

1fl1 PRINT ••••
2fl1 PRINT. •••

The 64 doesn't mind what numbers you use
for the lines. It works from the lowest number to
the highest, and if there are gaps between the
numbers, it jumps them.

12
Printing

All graphics
characters are
shown in boxes like
this Ta.

~@~
j i)

~~ *Ei~*@
~ * .. Q)~* ~**~ *1ID@f;;l1\D 4j*~ ~~Hjl**

~* 1\). • • Iii @...
~ @>
~Ii)~~@>

* @!~
~ ~ ~~~~

* ••• ~ @.
~ .4i~@ (i ~ @*~Q) *Q)*@@ @

I *
~ Ii) ~~*~ " .. ""'*. * @ (i",,~ * • @ *

lit fi • ~ ~ ••
~ Ql • * Qt •••• •••• @@@@.** @ ~

<-- - - ------ ----- < c[l) _____ -.-~,----~___T_C~-~~

ft~~gr3Jm ___ _
Here's the program to PRINT the matchstick
man, The graphics are all SHIFTed characters,
except for those in line 50, The character in line
10 is got by pressing SHIFT and CLR/HOME, (It
clears the screen and puts the cursor back to
the HOME position, top left corner.) The
characters in line 50 are Commodore key and L
and J respectively,
,---- ---'---------:E!))~o~-T,~-c~,t-- -----,--------

_FI"<'J!~".'.- __ _

Type it in carefully (RETURN after each line)
and RUN it What do you think? Write a
program of your own to PRINT a drawing, First,
type NEW (and RETURN) to get rid of the
original program

13
Printing

10 PRINT " ~ "
20 PRINT "[llD]"

30 PRINT ,,~~ II
40 PRINT "DO"
50 PRINT "[][J"

60 PRINT "1ZI1Sl"

Normal Reversed So far we have only been using characters from
half of the graphics set. Each of the graphics can
be printed REVERSED, which produces quite
different pictures.

[]J-D
At this point you must find a new key !PT:Rp~

- control. This controls the commands on the
front of the number keys. There are colour
controls there as well, and we will get to them
shortly. Let's sort out REVERSE first.

Type PRINT ".. then press !cwnu and
~;QN . Now key in some of the graphics.

Close with quote marks, and RETURN. You can
see the difference that REVERSE makes. For a
start it turns a space into a block, and gives us
four different triangles, which is just as well,
because you need them in the program below,
which draws the tank on page 13.

10
20

30

40

50

60

PRINT II ~" [!; Clears the screen

PRINT II _~~~J;/~"
[BJ Shows reverse on

PRINT II _[BJ __ B"

PRINT "[BJ~ ______ ~"
B Shows reverse off

PRINT

PRINT

II[BJ ________ " _ Shows a space

"~[BJ - ____ - B~" ~ Graphics character

The GRAPHICS FINDER is there to help you
to find your way around the graphics set. The
ones shown are normal (reverse off), and. all but
two of them are from the Upper Case Mode.

In Lower Case Mode theSItl~+.i key gives
you capital letters, while the ;(l,i key still
gives you left -side graphics.

The characters after a REVERSE
ON command will not appear
reversed in the program line. They
are only reversed when you print.

14
Printing

DDIJIJ[JOD

DDDD
SHIFT'O~ijIFT.P SHIFT@ ,SHIFT L smfjrs SHlF'{'A ~tHf'T X SHIF1' z

15
Printing

If you are getting tired of writing in pale blue on
a dark blue screen, change the colour of your
ink by holding down CTRL and hitting one of
the numbered keys (from 1-8). Type in a PRINT
'something' command now, and the 'something'
will appear in the colour of your choice. Work
your way through the colours, typing something
in each. You will notice that some colours do not
work well on a blue screen.

TheCTRL key gets you the first eight
colours. There are a further eight colours, and to
get these, hold down the Commodore key and
press a number. The full list of colours is shown
opposite.

Those symbols are there for a purpose. You
can change the colour of your printing, inside
the PRINT line, just as you can change from
normal to reversed characters.

Type in NEW (and RETURN) to clear any
previous program. Now type:

10 PRINT /I

~CTRL andl

~ BLACK ffil WHITE"

'-CTRL
20 PRINT /I [ffi ~ BLACK ffil WHITE"

REVERSE ON ____ --""

Add more lines to do the same for the other colours.

16
Printlng

and 2

Now that you have found where they all are, and
what they look like, you can try to write a
program to print your name in a coloured
surround. Fred, here, has simply used the
colour blocks you get from Reversed Space.
You might like to use graphics characters to
produce a fancier border.

(CTRL) KEY 0
~ Black ~ Orange

CD White 2 [1j Brown

[£] Red 3 ~ Pink

~ Cyan 4 [Q] Dark grey

a Purple 5 iI Mid-grey

[±] Green 6 [] Pale green

~ Blue 7 [I] Pale blue

~ Yellow 8 EB Pale grey

When you use a colour command
inside a PRINT line, the colour of
the ink does not change until the
characters are printed. The
program line itself remains in the
current ink colour.

17
Printing

Tak.apa

Inside the Commodore 64 there are 65536
places where it can store information. That's
what is meant by 64k. 64 kilobytes of memory
gives you 64 x 1024 different stores. Most of.
these are left empty, for your use, but some are
reserved for the computer. It has to store a lot of
information to be able to manage your
programs. For example, in store number 53280,
the 64 keeps track of the colour number for the
border, and in the store next door, 53281, it
remembers the colour of the screen. You can
change these numbers, if you like, by the use of
a special command - POKE. This puts a number
directly into a store.

POKE 53280,2 (RETURN)

Change the Border colour again by POKEing
another number into store 53280. You can see
the list of the colour codes at the top of page 19.

To change the colour of the screen, POKE the
next store - 53281.

POKE 53281,10
will give you a pink screen.

18
Printing

k •• lill
Celom codes

0 Black 4 Purple 8 Orange 12 Mid-grey
1 White 5 Green 9 Brown 13 Pale green
2 Red 6 Blue 10 Pink 14 Pale blue
3 Cyan 7 Yellow 11 Dark grey 15 Pale grey

The screen colour you get when you switch on
is Blue (6).

The next time you write a picture printing
program, make these your first lines.

10 POKE 53280,... (colour for Border)
20 POKE 53281,... (colour for screen)

CLRlHOME
30 PRINT" ~ .•• " (colour for ink)

Take a. break

END and STOP will both stop the
program. You might think they are
both the same, but they are not.
You can start again after a STOP,
but the END is the end.

10 PRINT "HELLO"
20 STOP
30 PRINT "GOODBYE"
40 END

Run this, and the 64 prints
'HELLO', and then 'BREAK IN LINE
20'. Type in CONT, for CONTinue
and RETURN. The program
restarts, and you will see
'GOODBYE'. Now type in CONT.
Nothing happens.

,

The STOP command is useful when
you are working out your program.
Write in a STOP after each routine
that you want to look at more
closely. When the program stops,
you can examine the screen layout,
or get it to print out any variables
(so that you know what it's
thinking!) or even LIST. As long as
you don't make any changes, then
CONT will restart from the point
where it stopped. If you do correct
an error, or add a line, then the
CONTinue command won't work.
When all is well with the routines,
take out the STOP lines.

END is a much neater way of
ending a program. It doesn't print a
BREAK message.

19
Printing

•
Moving the cursor

EDITIT!

10
pi Ni{:..---==-:­

"~ . ~

20
Moving the cursor

Correcting errors is no problem as
the 64 has an ON-SCREEN
EDITOR. This means that you can
rub out your mistakes, and rewrite
the words, just as if you were
working with pencil and paper -
and a rubber. It also means more
than that. Type a short program
with lots of mistakes in it. Make it
something like this:

. 10 PINT JlWhhop
20 POKER 5321,0
Spot the mistakes!

Delete
Rubbing out is easy, so do that first.
Move the cursor from wherever it
is now to the space just after the R
in POKER. To move the cursor, use
the keys with the arrows on. The
Up and Down key will normally
move the cursor down, but if you
hold SHIFT at the same time, it
goes up. Similarly, the Left/Right
key normally goes to the right, but
SHIFTed, it goes left.

In place? You should be on the
square after the one you want to
delete. Now press INSTIDEL . The
DEL is short for DELete.

Insert
That same key can also be used to
INSerT extra characters. There is
an '8' missing from the number in
line 20. Move the cursor along until
it is on top of the square to the right
of the missing character. Here it
should be over the 'I', as the
number that should be there is
'53281'. Now press SHIfT and
INSTIDEL again. All the

characters to the right of the
cursor, and the one under it, shuffle
one place to the right. Type in the
missing number.

When the line is as it should be,
press RETURN, and the corrected
line replaces the old one.

Line 10 has several mistakes.
The INST/DEL key will allow you to
clear up most of these. You also
need to add an's' and quotes at the
end of the line. That's easy. Just put
the cursor where you want to start
typing, and type.

One last point. If a line, or part of
a line is very badly mistyped, or
you want to change a whole chunk
of it, type over the part you don't
like.

If you want to add a colour
command to a line you have
already written, then you must
create a space for it with INSTI
DEL. You cannot simply type it
over something else.

21
Moving the cursor

~~I IIIIII 11111,
~ II~ .t

. ~

J~~ 111111 111~~1

II 11.,,11 11I1111I ~"

II~~~II III11III ~.~ II

You can include cursor moving commands in
your PRINT lines, just as you can include colour
or reverse commands. It is sometimes easier
and neater to produce small blocks of print by
using a single line with cursor movers in it, than
using several different lines.

PRINT II [I]S[I]PIIIA[I]C[I]E[I]D[I]O[I]U[I]T "

t t (cursorright)

That may look to you as if the 'cursor right'
does the same job as a space. It doesn't. SPACE
actually prints a space, rubbing out anything
that was there before. Cursor right jumps over
anything that may be there. You can prove this
easily enough.

Go back up to the PRINT line and DELete the
first cursor right. It will now print the same
message, but starting a space to the left. Press
RETURN, and the message will appear on the
same line as the original, but to the left. You
should see this:

"SSPPAACC EEDDOOUUTT"

Here's a PRINT line that uses the other cursor
movers to produce the BOX. Type it in carefully,
and see if your BOX looks like the one here. You
can colour the box by including a colour
command at the start of the line.

22
Moving the cursor

~ Reverse on rdown ~ left

PRINT" [[] _____ [Q) rn _ [Q] CD _ CD rn _ rn rn _
t

space

rn CD _ rn CD _ iii [] _ B BOX" ~

I 1 ~
up Reverse off

Anywhere you like
You can put the box anywhere you like on the
screen by including cursor movers in the print
line before the other characters. Try different
combinations of down and right moves, and see
what it takes to make the box appear in the
centre of the screen.

Cursor move commands are just like colour
commands when it comes to editing lines. You
cannot type them over other characters - try it
and see what happens. You must INSerT them.

The box was quite small, and could be done
comfortably in one PRINT line. If you want a
larger picture, it is going to take several
separate lines, as you cannot have a program
line of more than 80 characters - 2 lines o.f type
on the screen. Normally, after a PRINT
command, the' cursor moves on, to the start of
the next screen line. This could be awkward if
you were trying to produce a block picture. It .
would mean that your next line would need a set
of cursor movers at the start to shuffle the cursor
across to the right place. Fortunately it can be
avoided. Finish your PRINT line with a
semicolon (;) and the PRINT position stays
wherever that line leaves it.

23
Moving the cursor

Tie DghIPrs

This is how to get the picture of the
Tie fighter.

Program

10 PRINT " [!] @] @] @] @] @] @] ill ill ill ill ill ill ill ";

20 PRINT" []

30 PRINT II [] Q8~

u@]rnrnrnrnrnrnill~

U@]illillillrnrnrnill~

40 PRINT" [] B EIJ [E B IJ @] ill rn ill ill ill rn ill";

50 PRINT "[] ~ 8 EJ II] @] rn ill ill rn ill ill ill ";
" 60 PRINT " [] []

Type it in and try it. Count the cursor movers
carefully. There should be one down move and
seven left moves after the graphics in each of
lines 20 to 50.

24
Moving the cursor

.'
,

~-.-... ~

~; .. , _ - ,~.

I --~ P:roJect- --
- - -

Now design your own spaceship or
use the one below and work out a
set of PRINT lines to put it on the
screen. If you are designing your
own, use squared paper, and start
with a faint pencil sketch of the
outline that you want. Check
through the available graphics to
see how close you can get to your
sketch. Sometimes you will find that
it helps to move the picture slightly
on the grid. Here,· for example, you
want two diagonals to join. The
junction on the left is impossible,
but a small change in the position of
the diagonals allows them to meet
as you wanted.

25
Moving the cursor

OK

•
Save your effort

U5in~a
tape recorder
You should be getting to the point now where
you are producirig some pleasing pictures, and
it's a shame to lose all the hard work and effort
that has gone into them. So, it's about time to get
to grips with the tape recorder. If you haven't
got a cassette player - the Commodore C2N
unit - start saving up for one now.

Setup
The C2N unit plugs into the slot on the back left
of the computer. There is a long cable joining
the two, and that length has a purpose. When
you save a program on tape, it is saved as a
series of magnetic pulses, and your TV set, like
all TV sets, has a fairly strong magnetic field If
the recorder is too close, then the magnetic
pulses that make up your program can be
affected by the TV's magnetism. For the best
results, keep the recorder at least half a metre
from the set.

26
Save your effort

Save
When you have a program that is running the
way you want it, and you want to go on to
something new, or when you have to stop for the
day, but would like to come back to the
program later, then SAVE your program.

The C2N unit must be plugged in already.
Plugging it in when the 64 is turned on can
damage the computer.

Insert a cassette into the unit. The Cl5
computer tapes are ideal, but any good quality
audio tape will do. Start at the beginning of a
new tape, or wind on to a point past your other
programs, if you have already saved some.
Make a note of the tape counter number. This
should be 000 on a new tape.

Side A

000 TIE FIGHTER

020 SAUCER

035 JIM'S TANK

055 SUE'S HOUSE

Think up a name for your program. Keep it
short and simple. It should instantly remind you
of what the program is about. The 64 will be
quite happy to save a program called 'Program
number I' - but you will have forgotten what it
was in a week. 'TIE FIGHTER', 'SAUCER', 'JIM'S
TANK', 'SUE'S HOUSE' are much better names.
A name can be anything you like, as long as it is
not more than 16 characters.

Type:

SAVE "TIE FIGHTER"

(or whatever) and RETURN

The 64 will print

PRESS RECORD & PLAY ON TAPE

27
Save your effort

Record
Do it. The red light on the C2N will
glow to show that it is saving. The
screen will blank, the same colour
as the border, and the tape will
turn.

When the program is saved, you
will get the screen back, with a
READY message on it.

Check
Normally, the C2N will save your
program perfectly, but always
check that it has. To do this, rewind
the tape to the beginning of your
program (find this using the tape
counter numbers).

Type:

VERIFY "TIE FIGHTER"

(or whatever) and RETURN

The 64 now prints

PRESS PLAY ON TAPE

Do it. The screen blanks again,
while the tape turns. The 64 is
searching the tape for your
program. Sometimes when it finds
it, it will print:

FOUND TIE FIGHTER

When it prints a FOUND
message, it will wait for you to tell it
that this is the program you want. If
it is, press the Commodore key,
and it will go on to check the
program. If it has found the wrong
program - perhaps you wound the
tape too far back - then press
space, or one of the letter keys. It
will look further to find another
program.

Sometimes when it finds the
program, the 64 will carry on and
check it without waiting to ask you.
This doesn't matter.

If all is well, and the program that
it has found on the tape agrees with
the one it has in its memory, you
will get an OK report. Your
program is safe on tape. Write its
name and tape counter number on
the cassette label. If you don't get
the OK, then rewind and start
again.

28

Possible problems
1 The connection isn't plugged

in properly - make sure it is
next time.

2 The tape is of poor quality, or
you recorded again and
again over the same piece of
tape - try a new tape.

3 The C2N needs attention.

Load

The recording and reading
head can sometimes move
out of its proper alignment -
have it checked by your
Commodore dealer.

To LOAD the program back into
the 64 another day, follow the same
routine as for VERIFY, but start
with the command:

LOAD "TIE FIGHTER"

(or whatever)

If you don't know where the
program is on the tape, then start at
the beginning. The 64 will tell you
when it has found it.

Save your effort

TRY
AGAIN

..... YES

(START ...

SAVE
ROUTINE

REWIND

VERIFY
ROUTINE

)

.. YES

29
Save your effort

~ YOU CANNOT
SAVE ...

(STOP)

NO • PUT ONE
IN ...

•

:I,~;
:"., ~:;.
~f'

• J •

::~;;;J

Some motorway service stations have recently
introduced a new type of till, which you may
have noticed. Instead of the usual keyboard
with rows of numbers, these have a large grid
with the squares marked 'Coffee', 'Tea', 'Fruit
Juice', 'Egg & Chips', and so on. The assistant
looks at your tray and presses the squares for
the things that you have collected. AB she
presses the board, the prices flash up on the
display, and the machine works out the total at
the end.

How does it work? Obviously it is
computerised and the machine has been told
that coffee = 57p, tea = 45p, fruit juice = 50p,
etc. The till is using its memory. Somewhere in
its memory is a store labelled COFFEE, and
containing the price (57), another labelled TEA,
with 45 in it, and a great many more such stores.

These stores are known as VARIABLES,
because what is in them can vary. The service
station might decide to put up the price of its
drinks, and it can do this by changing the
variables. It will, no doubt, have a program that
allows someone to type in new prices for all the
things that it sells. A section of that program
might look like this:

9000 INPUT COFFEE
9010 PRINT "COFFEE PRICE ="; COFFEE
9020 INPUT TEA
9030 PRINT "TEA PRICE=";TEA

31
Memory and movement

New word
There is a new command there that
you have not yet met - INPUT. This
tells the 64 to wait for someone to
type something in. COFFEE and
TEA are the labels given to the
stores in which it will remember
the numbers that are entered.

Key the program in and run it.
Don't worry about the line numbers
being so big. The 64 doesn't mind
what line numbers you use, as long
as they are not over 65535. If you
prefer, change the line numbers to
lO, 20, 30, and 40. It's the order that
counts.

When the program runs, you will
see a ? and a flashing cursor. The
64 is waiting for an INPUT. Type in
a number, and press RETURN. The
new coffee price will be printed.
INPUT another number for the tea
pnce.

- -- - - -,- Project - - ~
L ,_

Add more lines to collect the prices of other
foodstuffs at the service station. The names that
you use for the variables can be almost anything
you like, but don't start any two variables with
the same two letters. This would confuse the 64.
You can prove this by typing in:

9040 INPUT COCOA
9050 PRINT nCOCOA PRICE =";COCOA
9060 PRINT nCOFFEE PRICE

="; COFFEE
Run it now, and enter different prices for the
drinks. Notice what happens to your coffee
price at the end.

Whan the 64 looks at the variable stores it
only actually looks at the first two letters, so that
here it sees CO(COA) and CO(FFEE).

32
Memory and movement

The COFFEE and TEA variables
are both examples of NUMBER
VARIABLES - stores in which
numbers are kept. The computer
has a second type of store, STRING
V ARIABLES, in which characters
are stored. While number stores
are fixed in size - each store holds
only one number - string stores
can hold single characters, or
whole sets of characters. If you can
put quotes around it and print it on
the screen, then you can put it into
a string variable.

iilli10 INPUT NAME$ 20 PRINT NAME$

Run it, and when you see the
flashing cursor, enter your name, or
any name. Run it again and enter
anything you like from the
keyboard -letters, graphics, or
numbers.

Storage space to let
INPUT is not the only command that puts data
into memory stores. You can also give values to
variables from within the program, by using the
LET command.

10 LET NAME$="FRED"
20 LET WEIGHT=55
30 PRINT NAME$;U WEIGHS";WEIGHT;

UKI LOS."

Take care with your typing when you key in this
example. The different items in that PRINT line
are separated by semicolons (;).

33
Memory and movement

The answer is, the computer does all the work,
but you are the manager. There are certain
rules you must follow, but only a few.

Rulel
You have already met this one. No
two variables of the same type can
start with the same two letters. This
is because the 64 only looks at the
first two letters. Your variable
names can be longer - but that is
for your benefit only.

Rule 1
,:~ .. :. ~ ... ~ " .

34

RUle 2

Rule 2

. " '. ", :', .~.~--,

l '~.' .. " -,

.\-,'•

You cannot use BASIC words as
variable names, or in variable
names. So if you wanted to store a
number that was to be printed on
the screen, you couldn't call its
store "PRINT".

LET PRINT=4

would give you a SYNTAX ERROR
report.

This isn't always obvious. For
example, the service station 'Bacon
& Eggs' store could not be called
BACON, because this contains
"ON", and ON is a BASIC word. You
will find a (more or less) complete
list of the 64's BASIC words on the
card at the back of your User
Manual. If you ever do get a
SYNTAX ERROR report from a line
containing a variable, then try a
different name.

Memory and movement

The computing computer

In the early days of computers the
machines were built to do one
thing - compute, that is, handle
numbers. You will now get about as
much number-crunching power in
a pocket calculator as there was in
the huge machines of thirty years
ago.

The 64 can do all the things a
calculator can do - and more. For
straightforward arithmetic, enter
the sums in the usual way, using
these signs:

+ Addition
Subtraction

* Multiplication
/ Division

PRINT 2+2

makes the computer print "4"

35

?
Rule 3
All variable names MUST start
with a letter. The other characters
in the name can be letters or
numbers, but not graphics
characters or symbols, except
for % and $.

For powers use the form X into
raise X to the power of p. So, 4 i 2
means 42 = 16.

To find square roots, use the
function SQRO. Try this:
PRINT SQR(64). You will see S.

Cube roots, and other roots are a
bit trickier. You have to use the
power si~ with a fraction.
S i 1/3 = JS = 2.

Sl i 1/4 = 4JS1 = 3. (3*3*3*3 = Sl)
The 64 will happily handle any

number up to 999999999 without
fuss. When you get over this it
starts to show the numbers using
SCIENTIFIC NOTATION. Ask the
64 to PRINT 1000000000 and you
will see this" 1.0E+09". This means
1.0 x 1 billion (000000000).

3.6E+ 13 would mean 3.6 x
10000000000000030's) =
36000000000000.

However the computer has its
limits - it cannot cope with
numbers of more than 39 digits.

Memory and movement

Types of variables
String Stores - which must end with
$ - are essentially used for words,
but any characters can be stored
there, including graphics and
numbers. LET N$="l" is a valid
command. The N$ store now holds
the character '1', though it has no
number value.

Number stores are of two types.
REAL variables can hold any type
of number, whole or decimal, up to
an astronomical size. REAL
variables are labelled with the
name only. INTEGER variables can
store whole numbers only, up to a
maximum size of 65535. These must
have a percent sign (%) at the end
of the name. LET NUM% = 999 is
0.K. LET NUM%=99.9 would not
work.

INTEGER variables take up only
2 bytes in memory, while REAL
variables take 5. This can be useful
with a very large program, or
where you want to store great
quantities of numbers. In the types
of programs that we are working
out in this book this advantage does
not count very much, and using real
variables saves us from having to
remember the % sign all the time.

'LET' is not actually necessary. The line 'X= 10'
works just as well as 'LET X = 10'. The 64
assumes you mean LET and writes it in for you.
Including LET in the line helps to make the
program list more readable, but miss it out if
you want to save typing time.

If you ever forget to open a store, but then try
to use it in the middle of a program, the 64 takes
it in its stride. Suppose it met the line 'X=X+2',
and you had never at any point told it what X
was worth to start with. The 64 assumes that the
store is to be opened with a value of O. The
result of that particular line would be that the X
variable would now be worth 2. Likewise, if you
typed 'PRINT Z$' without having said what Z$
was, it would create a store labelled Z$, leave it
empty and print nothing.

36
Memory and movement

The vaJlue of strings If you have a program that requires the user to
enter a number, and the user is the sort who
might press the wrong sort of key by mistake,
then you could have a problem.

INPUT IJANSWER PLEASE "i N

If he typed 'TEN', or 'I AND A BIT', the 64
would recognise that this was not a proper thing
to be put into a number variable, and would
print 'REDO FROM START'.

This won't matter if you don't mind your
screen being messed up, but it would spoil a
carefully designed screen.

You can prevent this by taking the INPUT into
a string variable.

INPUT IJANSWER PLEASE "iN$

Then use the VAL function to find out what, if
anything, the string is worth. If the user has
entered a numeral or a numeral followed by
letters, then V AL(N$) will give the value of the
numeral only. If the answer is anything else,
then V AL(N$) will give a value of O. Here's the
complete crash-proofing routine.

1000 INPUT "ANSWER PLEASE "i N$
1010 IF VAUN$)=0 THEN 1000
1020 LET N=VAUN$)

V AL turns strings into numbers. There's
another function to turn numbers into strings
-STR$(N).

LET A$ = STR$(9): PRINT A$

One small point here: Positive numbers are
always printed with a space to their left. It is in
this space that the minus sign is printed for
negative numbers. This space is taken into the
string when you use the STR$O function. Prove
this by typing in: LET A$ = STR$(9): PRINT
II ffilll;A$

37
Memory and movement

Program _
You have heard of User Friendly programs­
well, this one is User Unfriendly,

10 PRINT "~[QJ ----**** COMMODORE
64 BAS I C V2 ****"

20 PRINT" [QJ -64K RAM SYSTEM __
38911 BASIC BYTES FREE"

30 PRINT "[QJREADY"
40 GOTO 40

Type it in, making sure that you
have four spaces at the start of the
first line, and one at the start of the
second, Now run it. It will, if you
have got your spacing right, give
you a screen that looks just like the
start screen, What happens if you
press a key?

The answer is nothing, The
program is still running - running
round in a tiny circle, The 64 will
normally work through a program
one line at a time, As it finishes one
line it goes onto the next one down,

38

It doesn't have to be this way, You
can make the program go to any
line you want, by using the GOTO
command, If you make it go. back to
the start of the same line, it will
never get anywhere, but neither
will it stop trying!

You can stop this by breaking
into the program. Press RUN/STOP,
GOTO can also do useful things,
and we will come back to it shortly.
Meanwhile, let's really lock the
machine up,

Memory and movement

Change line 40.

40 POKE 1,4

Now run it. Can you get any of the keys to do
anything? There's only one thing to do. Turn off
the machine and start again. This line shows that
you must take care when POKEing about in the
64. The wrong number in the wrong place can
cause chaos. Next time one of your friends, or
family, says that they fancy doing a bit of
programming, offer to set the machine up for
them, and type in a lock-up program. Only use
the second version when you are feeling really
unkind.

Bow IODg is a string?

The classic question is 'How long is
a piece of string?' The smart
answer to this one is 'Twice as long
as half of it.'

Things are different with
computer strings. The 64 can tell
you instantly the length of any
string, or string variable, by using
its LEN function.

PRINT LEN("THIS IS A
LONG STRING.")

(Remember that strings always
have to be enclosed by quotes, and
when you are using functions like
LEN, you have to wrap the whole
lot in brackets.)

39

Did you get 22 for the LENgth of
that string?

Here's another for you to try:

A$="SHORT": PRINT LEN(A$)

This should give you 5.
The LEN function has many uses.

For example, you are laying out a
screen, and you want to make sure
that a particular string appears
centrally. This is no problem if you
know beforehand just how long that
string will be, but you might not. It
could be the user's name, or one of
several possible messages.
Suppose the string, whatever it
might be, is held in the variable
W$. Here's the line that would print
it centrally.

PRINT TAB(20-(LEN(W$)/
2»;W$

20 is the mid point of the screen.
LEN(W$)/2 makes sure that the
print position goes left far enough
for half of the word to be printed
before the middle.

Memory and movement

Passwords
All the best computer systems in big offices
have security systems to stop the wrong people
from looking at certain parts of the program. If
they can have security, why not you? Here's
how to start protecting your programs. The
routine below can be tacked onto the start of
any secret programs.

1 INPUT "PASSWORD ";W$
2 IF W$="OPEN SESAME" THEN

GOTO 10
3 POKE 1,4

10 ••••• ----'

start of main program J

New points
In line I, you are using an INPUT PROMPT. This
is a word or phrase that will be printed on the
screen at the INPUT line. The? and flashing
cursor appear directly after it. INPUT prompts
must be enclosed by quotes, and be followed
by a semicolon and the variable.

Line 2 works the diamond shape in the
flowchart. It does exactly what you would
expect it to. IF the person typed ill the right
password, so that W$ was 'OPEN SESAME',
THEN the program jumps to line 10. If he gets
the password wrong, then the program goes
straight on to the next line instead. In this case
the next line locks up the keyboard and stops
the program.

Time saving tip
You can miss out the GOTO in line 2.
IF THEN la, works just as well.

40
Memory and movement

5
~(\ i

,. .--
(

... .. "
.• ~

..... ..,. ..
I'''':">

./·'~.:I/
.':;!'- ...•.. .- .. ,.

(START) ...
/ PASSWORD 7

NO

~(STOP)

.... YES

CARRY
ON

T

You should now know how to:
PRINT - using colour and cursor commands.
POKE - screen and border colours.
INPUT - with and without prompts.
GOTo.
Use IF THEN. .. lines.
Use variables.

,- ProJect _
Write a program that asks for the user's name,
and then either prints a friendly message if it is
your name, or an unfriendly one if it is someone
else's.

Add passwords to some of your programs.
Think up some hard-to-guess words to include
in those IF W$ = " .. , , , , , ," THEN ... lines.

41
Memory and movement

Program
Here's a program for a simple number game.
The 64 will 'think' of a number between 1 and
20, and the player has to guess what it is. The
program's numbers start at 100 for a very good
reason - you are going to add a title screen to it
later.

100 LET X= INT(RND(0)*20)+1
110 INPUT "GUESS THE NUMBER ";G
120 IF G>X THEN PRINT "TOO BIG!":

GOTO 110
130 IF G<X THEN PRINT "TOO

SMALL!": GOTO 110
140 PRINT "THAT'S RIGHT"
150 STOP

Type it in and try it. Take care over the first line.
This finds a RaNDom number. RND(O) gives a
random number between a and 1. It's a decimal,
9 digits long, and not the sort of number that
anyone would ever guess. If you want to see
what these random numbers look like, type in:

PRINT RND(0)

*20 multiplies the number by 20 to give a
random number between a and 20.
INT chops off all the decimal bits, leaving a
whole number - an INTEGER.
+ 1 is needed to push it into the 1 to 20 range.
Without it, the numbers would be between a
and 19 (after you had chopped off the decimal
bits).

Try this
This program, as it stands, has to be RUN every
time the number has been guessed correctly.
Add some lines at the end to ask the player if he
wants another go. IF the answer is 'YES' THEN
GO back TO 100. If not, STOP.

You could tidy up the screen by clearing it
before you start the new go.

105 PRINT "~"

42
Memory and movement

IT~mm;
Qf~
~~m

1 5

81

~

beru
.,
~ 9
D

(START)
•

X=RANDOM
NUMBER ...
GUESS, (G) ~

~ TOO
BIG!

~ TOO
SMALL

.NO

RIGHT

T

(STOP)

Multi-statement lines. You can put more than
one command on a line, as long as there is
enough space, and you separate them with
colons(:). This is very handy after
IF THEN. .. statements.

43
Memory and movement

_ Program _ -
And now, a start screen for your number
game. Every good game deserves a title page!
This scatters random numbers all over the
screen, then prints the title in the middle.

10 PRINT /I~"
20 C=0
30 T= INT(RND(0)*40)
40 N=INT(RND(0)*20)+1
50 PRINT TAB(T);N
60 C=C+1
70 IF C<22 THEN GOIO 30
80 PRINT /I[}]@J@J@J@J@J@J@J@]@]@][I][I]

[I] [I] [I] [I] [I] [I] [I] [I] TH INK OF A NUMBER"
90 GET A$: IF A$=/I" THEN GOTO 90

- - - HO.w-it works -

There are two new things in this program.
TAB is the TABulator command, used for
drawing up TABles. PRINT TAB(l2) tells the
computer to start printing at column number 12.
The 64 has 40 columns across the width of the
screen, and these are numbered from 0 to 39.
Line 30 gives you a random number for the TAB
position.

Line 90 introduces a whole new idea. There
are two ways of getting information from the
keyboard, not just one (INPUT).

GET A$ tells the 64 to look at the keyboard
and see if any key has been pressed. The key's
character (if one has been pressed) is to be
stored in the A$ variable. The second half of the
line checks to see if A$ has a value. If it hasn't
then the 64 goes back to the start of the line to
check the keyboard again.

This sort of line is a very neat way of giving
the user control of the program. The screen
appears, and when he is ready, the user can
press any key to move on to the game.

44
Memory and movement

It's a variation on the User Unfriendly READY
screen. Instead of locking the machine up, hold
everything with a
GET A$: IF A$ = "" THEN GOTO ... line.

Follow that with a set of lines to print a
surprise message. 'Go away. I am thinking.' or
'Hang on. Not quite ready.' Another good line
would be this:

PRINT U OUCH. THE ";A$;U KEY IS
SORE ."

Notice the semicolons (;) in that line.
Your routine can have a series of GET A$

traps. One of these could act as a password.
Make the key letter 'P' for 'Pass' and include a
line IF A$= "P" THEN. .. carry on.

45
Memory and movement

Program
Now here is something that you
have always wanted - a program
that prints out the Two Times
Table. Well, it could be useful for a
younger member of the family, and
it doesn't have to be the Two Times
Table. You could adapt the

program to print out the 279 Times
Table, always assuming that you
wanted to learn the 279 Times
Table.

The program has been adapted,
so that it prints Two, Three and
Five Times.

10 PRINT TAB(1) ; liN 0 0"; TAB(1(1J) ; "2 X";
TAB(20) ; "3 X"; TAB(30) ; "5 X"

20 FOR N = 1 TO 12
30 PRINT TAB(1);N;TAB(10);N*2;

TAB(20);N*3;TAB(30);N*5
40 NEXT N

FOR N= 1 TO 12 means, for every number from
1 to 12 It is the firstline of a FOR. .. NEXT
loop. The other end of the loop is line 40, and
NEXT N means go back for another number,
until we reach the last one.

What exactly does line 30 do? Type the
program in and run it, just so that you can see
how those TAB's give neat columns of figures.
There may corne a time when you want to
produce this sort of display.

FOR. .. NEXT loops are very useful for
ANIMATION, and we will get to that shortly, but
first another look at TAB, and its close relation
SPC.

46
Memory and movement

Project -
There are only 39 columns on the
screen. What happens if you try to
use a higher number with TAB?

10 FOR N=0 TO 255
20 PRINT TAB(N) ;"*"
30 NEXT N

What happened? Did you notice
how the asterisks became more
and more spread out? The 64
counts its way to the TAB position.
Whenever it reaches the end of a
line, it drops down to the next. TAB

47

can simplify your PRINT lines.
PRINT TAB(55); .. is easier to

type than PRINT U@]lIllIltm:m:mIl
1Il1Il1Il1Il1Il1Il1Il1Il "

SPC stands for SPaCes. PRINT ..
SPC(lO) .. means leave 10 spaces.
While TAB always starts to count
from the beginning of the line, SPC
counts from the current print
position. Retype that Times Table
program so that you have SPC in .
place of TAB. What difference
does it make?

Memory and movement

".

~-- -"",~- ~~
~--- .~~ -...-.....6. _ ~, --..,

~ , '~'" 7 '-"'"
Type this in, and run it.

10 FOR c= 0 TO 38 /' ~'.... /

20 PRINT II ~rn"; I I A
30 NEXT C .7' .

Did you see it? Add this line to slow it down. I '.

25 FOR D=1 TO 100: NEXT D

This is a Delay Loop. You make the computer
do nothing - which takes next to no time, but ;,,{.
you make it do it for 100 times. That slows it
down a bit.

Try it again. You should now be able to see
the little ball as it moves across the screen.
Change the number in your delay line to alter
its speed.

Try the same thing with a slightly more
complicated graphic - the circle made from the
characters on U, I,J and K. Make sure you get the
right number of cursor movers in the line, and
don't forget the semicolon at the end.

20 PRINT"_[LlSJI~rnrnrn_~~~rnrn";

48
Memory and movement

;'::'.

49

IIU.Y. animation
Time to Do It Yourself. Design a
small image - nothing too
elaborate, and about the same size
as the car shown here. Work out
the PRINT line that you would need
to produce the figure, and make
that the new line 20 for the
program. You must make sure that
the cursor movers push the print
position back to the start of the
picture, but one space to the right.
You must also make sure that you
include a line of blanks down the
left hand side, to rub out the old
unage.

Tidy it up. If you have typed in
the program exactly as given, then
your screen will be getting
cluttered. Add a line to the start of
the program to clear the screen.
You could push the print position
down a few lines, and add some
colour to your picture to improve
the effect.

Memory and movement

Animation doesn't just mean whizzing across the
screen. It means putting life into something. You

f can put life into text by making words flash. '\ Or~ Try this:
____ 10 PRINT II~THIS WILL FLASH."

~ --_ 20 FOR 0=1 TO 100:NEXT 0
// 30 PRINT II~"; TABe 10) ;"ffilF LASH"
~~ 40 FOR 0=1 TO 100:NEXT 0

50 GOTO 10

You can make the flash even more effective
by printing both words reversed, but in
contrasting colours. With careful use of the TAB
or cursor movers, you can pick out any words or
phrases in a screen of text, in this way. Use a
FOR. .. NEXT loop, rather than a simple GOTO

..... , : "'- to limit the number of times your words flash.

It's a bit more complicated, but follows the same
principle as above. Type in two sets of PRINT
lines to produce the two matchstick men shown
here. Put a delay loop after each drawing, and
loop the whole program so that the matchstick
man bobs up and down. The PRINT lines should
print the whole block, spaces and all, to make
sure that each image totally erases the previous
one. Start each set of lines with a 'cursor home'
command.

50
Memory and movement

Exhaustion
When you have got the man
bobbing nicely, alter your program
to include this idea. The Delay
loops that you have at the moment
are fixed- FOR D= 1 TO 200
makes him move at a reasonable
speed. Make the delay variable
instead. Add this line to the start of
the program:

LET WHEN=500
Now change the Delay loops to:

FOR D=1 TO WHEN: NEXT D

51

and add this just before you loop
back to print the first figure again:

LET WHEN =WHEN -10
Each time round the loop, the delay
gets shorter. It's quite an
interesting effect. Design some
matchstick gymnastics of your own.

Time saving tip
When you have two lines the same
in a program, don't type out the
second. Use the cursor to go back
and renumber the first line. Try it,
and see the result by LISTing.

Memory and movement

Going fora
walk

Program
Time now to draw together the
aspects of PRINTed animation that
have been covered in the last few
sections. This shows the way to
move a changing picture across

1111 LET WHEN = 400
2 III FOR T = III TO 37

the screen - in this case the
matchstick man is going for a walk.
Altering the delay time makes him
speed up as he goes.

3 III PRINT /I~"; TABel) ;/lGlI:J-[!l[D[D[D~EJ-[!lUJUJ[]JDD­
[!l[D [D [DO --[!l[[][[][[] O~ -[!l[[][[][[] IZlO 0 [!lUJUJ[I] D

"
40 FOR D= 1 TO WHEN : NEXT D
5111 PRINT /I~"; TABel);/I -GlI:J[!lUJUJUJ-~EJ[!lUJUJ[I]-IZlD

[!l[I][I][I]-DO[!l[I][I][[]- -D[!lUJUJUJ-DD0IIJUJUJ - - - "
60 FOR D= 1 TO WHEN : NEXT D
7111 LET WHEN =WHEN - 1111
80 NEXT T
9 III END

Type this in and run it. If it doesn't work
properly then check through it in this order.

Debugging
1 Are you getting any SYNTAX
ERROR reports? If you are, then
look at the line number indicated,
and check the spelling ofthe
BASIC words. Check also that you
have semicolons (;) and colons (:) in
the right places.

2 Are you getting a NEXT
WITHOUT FOR report? This would

52

show that either you had missed
out the FOR. .. TO. .. line, or, more
likely, that you had mistyped the
variable name.

3 In this type of program the most
likely cause of error will be in the
cursor move commands. One
extra, or one missing, will destroy
the alignment of the pictures.

Memory and movement

NO

C,-_ST_AR_T _____)

I SET DELAY TIME I ...
I STARTTABILOOP I

T
PRINT

1ST DRAWING

DELAY

PRINT 2ND
DRAWING

DELAY

CHANGE
DELAY
TIME

C,-_S_TO_P _____)

53

------- ----Proj"lecf-
- -- - - .. '- - - -

Design your own pictures to move
with this routine. They really need
to be of animals or other figures
where movement involves a
change of shape. Normal round­
wheeled vehicles can be animated
with the simpler routine shown
earlier. You could of course, try a
square wheeled car ... Routines
like this can be included in title
sequences of bigger programs, or
as a 'reward' in some form of testing
program.

You now know how to:
Use random numbers.
Compare numbers.
GET characters from the

keyboard.
Use TAB and SPC in PRINT

lines.
Animate pictures using loops.

Memory and movement

•
SDund Dn the 64

The Commodore 64 can produce
an amazing variety of sounds, but,
unfortunately, even the simplest
sound requires a certain amount of
hard work. The SID chip (Sound
Interface Device) takes up a set of
addresses starting at 54272, in the
64's memory. To program the chip
you have to POKE numbers
directly into SID.

If you intend to do much with the
64's sounds, you will soon find that

Program

coping with 5-figure numbers can
be a real headache. One solution to
this is to put the base address into a
variable: LET SID = 54272. The
addresses of stores higher up in
SID can be referenced to the base
address. POKE SID + 4, ... is the
same as POKE 54276, ... and much
easier to understand.

Type in this program and listen to the sound.

10 LET SID = 54272
20 FOR N= SID TO SID+24:

POKE N,0: NEXT N
30 POKE SID + 24,15
40 POKE SID + 0,0
50 POKE SID + 1,34
60 POKE SID + 5,9
70 POKE SID + 6,75
80 POKE SID + 4,17
90 FOR D= 1 TO 1000: NEXT D

100 POKE SID + 4,16
110 FOR D=1 TO 1000: NEXT D
120 GOTO 80

54
Sound on the 64

You should hear a slow electronic chime. Break
out of the loop with RUN/STOP. If you break out
in mid-chime, the sound will continue. Stop it by
holding down RUN/STOP and pressing
RESTORE. This restores all the system
variables to their normal starting values, turning
off the sound, putting the screen back to dark
blue, and so on.

Dt:JC30D8
TBESIDCHIP

ADDRESS SID+? EFFECT

54272 SID+O } Pitch of note. Voice 1.
54273 SID + 1
54274 SID+2 } Pulse rate
54275 SID+3
54276 SID+4 Waveform. Voice 1
54277 SID+5 Attack/decay. Voice 1
54278 SID+6 Sustain/release. Voice 1
54279 SID+7
54280 SID+8
54281 "
54282 " Voice 2
54283
54284
54285
54286 SID+ 14
54287 SID+ 15
54288 SID+ 16
54289 J Voice 3
54290 "."
54291
54292
54293

} Special effects 54294
54295 SID+23
54296 SID+24 Volume control (0-15)

55
Sound on the 64

- - f':fow it works '
Line 20 goes through all of the
addresses in the SID chip, putting 0
in all of the stores. You must clear
the chip before you start to use it.

Line 30 sets the volume to
maximum, (15). 0 is the minimum.
The actual volume you get
depends also on the TV volume
control. In fact, if the TV volume is
turned right down, you won't hear
anything!

Line 40 and 50 together set the
pitch of the note that is played. The
numbers used here can be

I DECAY

, - ~

anything between 0 and 255. Of the
two, the most important is the
second - SID + 1. POKE a low
number here for a low note, a high
number for a high note. SID+O
gives the fine tuning to the notes.
Try changing the numbers in these
lines to see what difference it
makes.

Line 60 and 70 determine the
ENVELOPE - the SHAPE of the
sound. This is in four parts, even
though it is managed by only two
POKEs.

I I I
I ATTACK I B I SUSTAIN RELEASE

B I 160 I 160
I I
I ~I========~
I
I
I

Volwne level I

The shape of the volwne level for
a wind or string instrwnent.

ATTACK=¢

DECAY

BORMORE

The shape of the sound of a percussion
instrwnent.

RELEASE

BORMORE

56
Sound on the 64

The ATTACK rate is how long it
takes the sound to reach maximum
volume. Percussion instruments -
drum, bell, piano - reach maximum
volume instantly. Wind instruments
like the flute take a fraction of a
second to reach their peak.

The DECAY rate is the time
taken for the volume to go down
from its peak to a lower level at
which it will continue for a while.

The SUSTAIN rate is how long
that lower volume lasts.

The RELEASE rate is how slowly
the note dies away.
Those four parts of the shape are
controlled by SID + S and SID + 6
in this way.

SID +S controls ATTACK and

ATTACK
16

DECAY
10

A shape suitable for a rocket engine
sound effect.

DECAY. The numbers that
determine the length of the
ATTACK phase are 128,64,32 and
16, or any combination of these.
The higher the number, the longer
the phase. 16 is a very short
ATTACK time, 240
(128+64+32+ 16) is the longest.
The DECAY numbers are 8,4,2 and
I, or combinations of them. IS gives
the slowest possible DECAY. The
ATTACK and DECAY numbers are
added together and POKEd as a
single number. POKE SID +S,9
gives an ATTACK rate of 0, and a
DECAYof9. POKE SID+S,9S gives
a medium length ATTACK
(80=64+ 16) and long DECAY (1S).

SUSTAIN
240

RELEASE
15

57
Sound on the 64

POKESID+5
ATTACK DECAY

Any sum of- 128 1 64 1 32 1 16 8 I 4 I 2 I 1

The same procedure applies to
the SUSTAIN and RELEASE rates
that are POKEd into SID +6. In the
example, the number is 75, which
gives a SUSTAIN value of 64 and a
RELEASE value of 11.

If you understand about binary
numbers, you will recognise the
control numbers as being the
decimal values of the bits in a byte.
If you have yet to meet binary
numbers, then come back to this
point after you have tackled
Sprites, where these are covered.

Lines 80 and 100 are both
concerned with the same address
- SID +4. This is the one that
controlled the waveform, the

nature of the note. POKEing this
address makes the sound appear,
and turns it off. The waveform used
here is the TRIANGLE. It has a
mellow sound. POKE SID+4, 17
turns it on, and POKE SID +4,16
turns it off.

The other waveforms and their
reference numbers are shown in
the table. The SAWTOOTH (33,32)
has a 'beepier' sound, and WHITE
NOISE (129,128) will produce a
range of hisses and crackles for
sound effects. Note that the PULSE
waveform is rather unusual, and
needs extra programming to make
it work.

POKESID+6 SUSTAIN RELEASE

Any sum of- 128 I 64 I 32 I

WAVEFORM

Triangle

Sawtooth

Variable pulse

White noise

58
Sound on the 64

16 8 I 4 1 2 I 1

ON OFF

17 16

33 32

65 64

129 128

SOUND

Chime - electronic

Bell

Rocket

Steam Hiss

Steam train

Piano

Try changing the values in these lines, one at a
time, to see what the effects are. You could also
try changing the lengths of the delays. The rate
at which sounds are repeated affects the overall
impression given by the sound.

Make a note of any interesting sounds that
you find, and record the values for each of the
SID addresses in a table like this.

Postscript
If this much work is involved in producing just
one note, you might think that playing a tune
would be an immense task. Fortunately there
are two programming techniques which make it
much easier. It is time to go 'Back to BASICs'.

SID+O SID + 1 SID+5 SID+6 SID+4

0 34 9 75 17

0 34 10 12 33

0 7 25 249 129

0 99 15 249 129

0 25 24 16 129

0 4-200 10 9 33

69
Sound on the 64

•
Back to BASICs

It very often happens in long programs that
there are particular routines that you need to
use several times - 'Press any key to go on', play
a note, or whatever. It would be tedious to have
to type them every time they were needed.
Subroutines are a way to solve that problem.
You send the program to the subroutine with a
GOSUB command, and make it come back with
a RETURN command.

Type this in, and you will see how it works.

10 PRINT "HELLO"
20 GOSUB 100
30 PRINT "GOODBYE"
40 GOSUB 100
50 STOP

100 PRINT "PRESS ANY KEY TO GO
ON"

110 GET A$: IF A$<>/I"THEN 110
120 GET A$: IF A$ = Ilfl THEN 120
130 RETURN

As the 64 heads for the subroutine, it makes a
note of the line number it was at. When it meets
the RETURN command, 'it checks the GOSUB
stack, to pick up that line number.

60
Back to BASICs

START

'WAIT
FOR IT'

Line 110 is a safety precaution. If you miss it out,
you will find that a heavy key press will send the
program shooting through line 30 and the
subroutine and back without stopping. That line
tells the 64 to wait there if someone is already
pressing a key, and in this way it makes sure
that two separate key strokes are needed to
work the two trips through the subroutine.

61
Back to BASICs

1\

If you have a program where you have added a
title screen, renumber the lines that produce
that screen, so that the routine fits at the end of
the program. Add a RETURN line at the very
end. Now you can use the same screen at the
beginning and at the end of the program, by
sending the computer to it with GOSUB
commands.

Changing the variables
A subroutine doesn't have to do exactly the

same thing every time. If it contains variables,
then these can be changed in the main
program. Here's an example of this idea at
work. The two variables used are T which holds
the TAB position, and W$ which stores a word.
The subroutine flashes the given word at the
given TAB position.

62
Back to BASICs

10 PRINT II ~ THIS IS A
FLASHY TITLE"

20 LET T= 0: LET
W$="THIS": GOSUB 100

30 LET T= 5: LET
W$="IS": GOSUB 100

40 LET T= 8: LET W$=
"A": GOSUB 100

50 LET T = 10: LET W$=
"FLASHY" : GOSUB 100

60 LET T= 17 : LET W$=
"TITLE": GOSUB 100
STOP 70

100
110

120

130

140

150
160

FOR N= 1 TO 10 Colour-
PRINT / white.
"0"; TAB(l);" [IJ";W$
FOR D= 1 TO 50 :
NEXT D /COlOur-
PRINT black.
"0"; TAB (T) ; "1iJ"; W$
FOR D = 1 TO 50 :
NEXT D
NEXT N
RETURN

63

Type it in and try it. Remember
that when you have lines which are
the same or very similar, it is often
quicker to renumber the line and
alter it with the on-screen editor,
than to type out a whole new line.
Line 20 can be easily altered to fit
any of the next four lines.

Note the cursor home and colour
commands in those PRINT lines in
the subroutine. These are essential
if it is to work properly.

When the program is running as
it should, SAVE it, as we wlll be
returning to it later to demonstrate
the next BASIC idea.

Subroutine bugs
If you ever see a RETURN

WITHOUT GOSUB message, then
one of two things has happened.
Either you have used GOTO rather
than GOSUB when you redirected
the program, or there is nothing to
stop the computer from carrying on
from the end of the main program
into the subroutine. That's why line
70 is there in the Flashy Title
program.

Ifa NEXT WITHOUT FOR error
comes up, and you are using
subroutines, then check that you
haven't used the same variable
name in the FOR . NEXT .. loops in
both the main program and the
subroutine.

Back to BASICs

Rewrite lines 20 to 60 of the Flashy Title
program so that they look like this:

20 FOR G= 1 TO 5
30 READ T ,W$
40 GOSUB 100
50 NEXT G
60 DATA 0,THIS,5,IS,8,A,10,FLASHY,17,TITLE

64
Back to BASICs

·,

. : .. ~. ,,~::"'~~~~:'.:';.,

When the 64 meets the READ
command, it goes to the line
marked DATA and READs the first
thing it finds there, storing the
information into a variable. In this
case, it is READing two things at
once. The first piece of DATA is
stored in T, the next in W$. On the
first time through the Gloop, it
picks up 0 and 'THIS', and hands
them over to the flash subroutine.

When it comes back to the
READ command for the second
time, it READs the next two pieces
of DATA, 5 and 'IS'. Each time it
READs, it also pushes a DATA
marker along, so that it knows
where to look next time. It carries
on through the list, until either it
reaches the end of the loop, or it
runs out of data, in which case you
would get an error report.

Reading loops offer a very
efficient way of transferring large
quantities of information into
variables, and can dramatically
reduce the workload in a program
where the same sort of thing is to
happen many times. You can see
this in 'Write your own Quizzes'.

HERE

65
Back to BASICs

"
./

DATA LIST

0

THIS

5

IS

8

A

10

FLASHY

17

TITLE

Watch those DATA lines. Each chunk of data
has quotes round it, and these serve two
purposes. They make clear to you where each
question and answer ends, and they are
sometimes essential. If your data has
punctuation in it, you must enclose it in quotes,
or the computer will be confused. The quotes
are not needed when the data consists of simple
words and phrases.

Program
10 READ Q$,A$
20 PRINT Q$
30 INPUT ANSWER$
40 IF ANSWER$ = A$ THEN 70
50 PRINT "WRONG. THE ANSWER

IS "; A$
60 GOTO 80
70 PRINT "ABSOLUTELY CORRECT."
80 INPUT "ANOTHER GO <YIN)"; G$
90 IF G$="Y" THEN 10

100 STOP
110 DATA "WHO IS THE PRIME

MINISTER OF GREAT
BRITAIN?" ,"MRS. THATCHER"

120 DATA "HOW MANY BASIC BYTES
ARE FREE ON A
COMMODORE 64?" ,/138911"

130 DATA ''WHO WRITES GREAT QUIZ
PROGRAMS?" ,
/I (insert your name here) "

You can, and I hope will, write your own
questions and answers in the DATA lines. You
can have as many as you like. The program will
run on until it runs out of DATA.

66
Back to BASICs

Quiz programs can get very
boring if the questions come up in
the same order every time. They
really need to be chosen at
random. To do that, start your
program like this. (I am assuming
you have 20 questions. Change that
number to fit your program.)

5 RESTORE
10 LET X =

INTCRNDCrll)*2QJ)+1
15 FOR N=1 TO X: READ

QS,A$:NEXT
Change line 90 to send the
program back to line 5.

RESTORE moves the DATA
marker back to the beginning of
the DATA list.

The next two lines get the
computer to READ through the list
a random number of times,
stopping after the Xth time. If the
RESTORE line was not there, then
the 64 would very rapidly run out of
things to read. The question and
answer for the go are the last ones
that were READ.

Using this routine, you will find
that you start to get repetitions after
about ten goes. The more data you
have, the less likely you are to have
questions repeated.

(START) ...
READ

QUESTION &
ANSWER

~

ASK QUESTION ...
/ INPUT 7 ANSWER

'Y

WRONG

YYES

RIGHT

"NO

(STOP)

D
,-- - -- - ~ -- Checkl is'! -- -- - -- ~ ~ ~ --- -- -
I _. _

You know now how to:
1 Produce simple sounds.
2 Use subroutines to repeat
actions. The BASIC commands are
GOSUB and RETURN.
3 Put DATA into variables using
the READ command, with

67

RESTORE as a means of resetting
the data marker to the start of the
list.

You are ready to move onto
more complex sound programs
and sprite graphics.

Back to BASICs

o

•
Time and music

" .'}"

This program shows how you can use a
subroutine and a READ loop to produce a series
of notes. In this example, you will hear a clock
striking the half-hour.

10 SID = 54272
20 FOR N= SID TO SID + 24
30 POKE N,0
40 NEXT N
50 POKE SID +24,15
60 FOR N= 1 TO 8
70 READ HF ,LF
8flJ GOSUB 200
9flJ NEXT N

100 DATA 43,52,34,75,38,126,25,
177,25,177,38,126,43,52,34,75

199 STOP
200 POKE SID + 0,LF
210 POKE SID + 1,HF
22flJ POKE SID + 5,9
230 POKE SID + 6,15
240 POKE SID + 4,33
250 FOR D=1 TO 750: NEXT D
26flJ POKE SID + 4,32
270 FOR D= 1 TO 25flJ: NEXT D
28flJ RETURN

The mUSical
68

Time and music

"i":',~'fi

64

c-- - . - -lhll(1)W"ifw'orKS--- ---
- - - - -

Lines 10 to 50. You only have to clear the SID
chip and set the volume once for each musical
session. In fact, you will find that doing this
every time you played a note would create an
irritating crackle.

Line 70. The two values for each note are
labelled High Frequency and Low Frequency.
The High Frequency is the most important
number. The Low Frequency is the fine tuning
part of the note. The values for the eight notes
are given in the DATA line.

Line 270. This t:reates a short silence
between notes to separate them.

E C DG G D E C

HF LF
E 43 52
D 38 126
C 34 75
G 25 177

Convert the program so that it strikes the hour,
rather than the half-hour. To do this, you must
enclose the set of lines from 60 to 90 in another
loop, so that the sequence of chimes is played
twice. Don't forget to RESTORE at the start of
each trip through the loop.

Next add an INPUT line to ask what hour it is,
and a loop to create the main chimes. Middle C
(HF= 17,LF=37) sounds about right.

110 INPUT "WHAT TIME IS IT If; T
120 FOR N= 1 TO T
130 LET HF = 17: LET LF = 37
140 GOSUB 200
150 NEXT N

69
Time and music

Find a simple tune, or compose one of your
own, and work out the values for the notes. The
central part of the scale of C is shown here, and
a full list of values is given in Appendix M of the
User Manual.

Count how many notes there are in the tune,
and put this number into the READ loop. Type
in the values as DATA lines, taking care to get
the High Frequency and Low Frequency in the
right order.

Time changes
As it stands, the note playing program always
plays notes of the same length. The length of the
note is fixed by those two delay loops. If the
number here is made into a variable, then the
time value can be READ in the same way as the
note values.

250 FOR D= 1 TO WHEN : NEXT D
270 FOR D= 1 TO WHEN/4: NEXT D

Line 70 should now be:

READ HF,LF,WHEN

our

C D E F G A B C' D' E'

70
Time and music

...
own musIc

o

MINIM

CROTCHET

QUAVER

I'inetuning
You will often find with music programs, that
your first stab at a tune doesn't sound quite right.
The time values may be altogether too slow or
fast, or individual notes may have the wrong
time or pitch values. It may help to write a line
into the playing loop to PRINT the notes'
number, pitch and time values. This will make it
easier to identify the bugs.

NOTE

J
J
)

C
D
E
F
G

A

B
C'
D'
E'

71

HF
17
19
21
22
25
28
32
34
38
43

WHEN?

1500

750

375

Time and music

LF
37
63

154
227
177
214
94
75

126
52

t It II l~' '1
LUI" f f ,
~, t II ~'~I t"-"
f ",- f fl f~

You don't need a clock to answer that question -
there's one built into the Commodore. It's not
normally visible, but it's easy enough to find.
Try this.

PRINT TI$

The 64 will print a six figure number, and this
tells you the hours, minutes and seconds since
the machine was turned on. If it said '023607' this
would mean 2 hours, 36 minutes and 7 seconds.

\02 36 01\
This clock ticks over all the time the machine

is running, except when the cassette is in use,
quite independently of anything else that it
might be doing. It is not changed by any
programs - unless you decide you want to
change it. TI$ is a variable, and like all variables
it can be reset.

72
Time and music

"
•

This will turn your computer into an alarm
clock. Write the time in line 10 and line 20 as six
figure numbers. In the example here they are
set for 4.55 and 5 o'clock.

5 PRINT II ~"
10 TI $="045 500"
20 IF TI$="050000" THEN 40
30 GOTO 20
40 SIO =54272
50 FOR N= SIO TO SIO+24: POKE

N,0: NEXT N
60 POKE SIO+24,15: REM VOLUME
70 POKE SIO+1,120: REM HI FREQ

VOICE 1
80 POKE SIO+15,40: REM HI FREQ

VOICE 3
90 POKE SIO+5,9: POKE SIO +6,0:

REM SHAPE OF NOTE
10fll POKE SIO+4,21: REM WAVEFORM
110 FOR 0=1 TO 50 : NEXT 0
120 POKE SIO+4,20
130 FOR D=1 TO 20: NEXT 0
140 GOTO 100

You will need to wait five minutes before the
alarm goes off when you RUN the program.

The bell like sounds are produced by a
technique known as 'ring modulation', which
combines the output of two oscillators (the parts
of the circuit which produce the waveforms).
The normal waveforms only use one oscillator.
Try altering the values in lines 70 and 80 to see
the range of notes that you can produce.

When it's all typed in and checked, set the
program running and go off and make a cup of
tea. When the 64's clock reaches the time you
set in line 20, bells will ring. You have
succeeded in converting your 64 into an
expensive alarm clock, because you can't do
anything else with it while this program is
runnmg.

73
Time and music

The 64 doesn't actually keep track
of time in hours, minutes and
seconds. TI$ just turns it into this
form for your benefit. The clock
works by a straight-forward
counter ticking over 60 times a
second. You can read this counter
directly, by typing PRINT TI.
Convert this to seconds by typing
PRINT TII60. You can't reset TI
directly. 'TI=O' won't work. You can
reset it by changing TI$. Try this
and see.

TI$="000001lY': PRINT
TI$, TI

Because TI works in such small
units of time, it is quite a flexible
way of setting time limits in a game.
Try this one.

Speed test
The 64 prints a random number on
the screen. The player has to press
that number key within a time limit.
This limit is raised or lowered
depending upon how successful he
is. The object of the game is to see
how Iowa limit you can reach.

Program -,
5 PRINT" ~ II

10 LIMIT =12QJ
20 X= INT(RNDC0)*10)
30 PRINT X, LIMIT
40 T I $="0000QJ0"
50 GET A$: IF A$<>"" THEN 50
60 GET A$: IF A$ ="" THEN 60
70 IF TI>LIMIT THEN 100
80 IF VALCA$) =X THEN 120
90 GOTO 50

100 PRINT ''TOO SLOW" : LIMIT =LIMIT + 10
11QJ GOTO 20
120 PRINT ''WELL DONE ": LIMIT =LIMIT -10
130 GOTO 2QJ

74
Time and music

(START) ...
SET LIMIT

RESET CLOCK ...
RND NUMBER

..... YES

~NO

~~
TOO

SLOW

..... YES

This is only the skeleton of the
program; you can make a number
of improvements to it.
1 After each go, send the
program off to a routine to print the
player's new limit, and to ask if he
wants another go. At the moment,
there is hardly time to read the
limit.

75

WELL
DONE

2 Make this into a letter game by
changing the RND line to

20 X=INT(RND(Q)*26)+65:
X$=CHR$(X)

Then print X$ rather than X. The
check line is now a simple "IF A$
=X$... " This could be used for
touch typing practice.

Time and music

• Sprites

A FIRST LOOK Al
This program creates a sprite in
the shape of a parachutist, and
makes him drop slowly down the
screen. It's rather long, but then it
takes a lot of DATA to define a
sprite.

-'~

,~~
""', .~~

-\\'

76
Sprites

5PRITE:5

5 PRINT 1/ ~"
10 FOR N=0 TO 62
20 READ B
30 POKE 12800+N,B
40 NEXT N
50 DATA 1,255,0
60 DATA 15,255,224
70 DATA 127,255,252
80 DATA 255,255,254
90 DATA 192,124,6

100 DATA 128,16,2
110 DATA 64,16,4
120 DATA 32,16,8
130 DATA 16,16,16
140 DATA 8,16,32
150 DATA 4,16,64
160 DATA 2,16,128
170 DATA 1,57,0
180 DATA 1,187,0
190 DATA 1,85,0
200 DATA 1,255,0
210 DATA 0,56,0
220 DATA 0,56,0
230 DATA 0,40,0
240 DATA 0,68,0
250 DATA 0,130,0
260 POKE 2040,200
270 VIC = 53248
280 POKE VIC +0,100
290 POKE VIC +1,0
300 POKE VIC + 39,1
310 POKE VIC + 21,1
320 FOR Y = 0 TO 255
330 POKE V Ie + 1 , Y
340 NEXT Y
350 END

The program is really in two parts.
The lines down to 260 are
concerned with defining the shape
of the sprite. The rest of the lines
put the sprite on screen and move
it. Let's take each part in turn.

77
Sprites

The sprite that you saw on the
screen was composed of a pattern
of dots of light in a grid 24 dots by
21. The information that determines
this dot pattern is held in memory
as a set of numbers. What the
program cannot show is the
relation between the dots and the
numbers, and to understand this
we have to look at binary numbers.

Binary numbers
Our normal (decimal) method of

counting was developed to fit the
fact that humans have ten fingers.
The shepherd counting his sheep,
would count the first ten on his
fingers, then put a pebble in his
pocket to remind him of that group
of ten, and start from one again on
his fingers. When all the flock had
passed through the gate, he could
count the number of pebbles in his
pocket, counting ten for each
pebble, and add on the extra ones

, !.,

that were recorded on his fingers.
In the decimal system, each digit

in a large number is worth 10 times
the amount of the same digit to its
right. So, 999 is worth 900 + 90 + 9,
or9x lOx 1O+9x 10+9.

A computer has no fingers, and
no pockets in which to put pebbles.
What it does have are lots of
circuits where an electric current
can be turned on or off. These are
called BITs, and they are grouped
in eights, into BYTEs.

78
Sprites

BITs and. BYTEs
In a BYTE, the rightmost BIT has a value of 1 if it
is turned on. The BIT to its left is worth 2, and as
you work across to the left, each bit is worth
twice as much as the next, when it is turned on.

128 64 32 16 8 4 2 1

0 1 0 0 1 1 1 0

This byte is worth the same as 78 in decimal.
The bits that are turned on are 64, 8, 4 and 2.

The largest value any byte can have is
255 = 128+64+32+16+8+4+2+1. Of course,
the computer can handle much larger numbers
than this, but not in a single byte.

The sprite pattern has 24 dots in each row,
and these are managed by 3 numbers, one for
each set of 8 dots. When defining sprites,
therefore, we have to convert each row of dots
into three binary numbers, and change these to
decimal numbers.

With practice, you can get quite fast at this.
You may find the Dot pattern to number
conversion table (pages 82-83) useful at first.

Stage 1I.
The first stage of defining a sprite is to sketch
out your design on squared paper, and shade in
the dots that will give you the shape you want.
Divide the sprite up into three columns of eight
dots each, and convert the patterns to numbers.
Keep a record of these numbers in a table like
the one shown on page 81.

79
Sprites

Stage 2
The second stage is to transfer
those numbers into memory.
Exactly where you put them is up to
you. The free memory area starts at
address 2048, and goes through to
40959. However, your BASIC
program has to fit in the first part of
that space, and if you use the
addresses over 16383 (the 16k
mark) you will have problems. The
VIC chip - the part of the 64 that
handles graphics - can only look at
16k of memory at a time, and it is

Dotpattem

normally set to look at the first 16k.
Sprite definition numbers have

been put from address 12800. It's
far enough up memory to leave lots
of space for the BASIC program,
and there's still space for another
54 sprite pictures as well.

The loop at the beginning of the
Parachutist program READs the
sprite DATA into the block of
memory starting at 12800, and
going on to 12862. If you compare
the numbers in those DATA lines
with the Number Set worked out

80
Sprites

o 0
o 0
1 1
1 1
1 0
o 0
1 0
0 1
o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 0

Binary pattem Number set

o 0 o 0 1 1 1 1 1 1 1 1 1 o 0 o 0 o 0 o 0 1 255 0
o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 o 0 o 0 15 255 224
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o 0 127 255 252
1 0 255 255 254
o 0 o 0 0 o 1 1 1 1 1 o 0 o 0 o 0 o 1 1 0 192 124 6
o 0 o 0 o 0 o 0 1 0 o 0 o 0 o 0 o 0 o 1 0 128 16 2
0 0 0 10 0 o 0 o 1 o 0 0 0 o 0 0 0 0 1 0 0 64 16 4
0 0 0 10 0 o 0 o 1 o 0 o 0 o 0 0 0 1 0 0 0 32 16 8
1 0 o 0 o 0 o 0 1 0 o 0 o 0 0 0 1 0 0 0 0 16 16 16
o 1 0 10 0 o 0 o 1 o 0 o 0 o 0 1 0 0 0 0 0 8 16 32
o 0 1 0 o 0 o 0 1 0 o 0 o 0 1 0 o 0 o 0 0 4 16 64
o 0 o 1 o 0 o 0 1 0 o 0 o 1 o 0 o 0 o 0 0 2 16 128
o 0 o 0 1 0 o 1 1 1 o 0 1 0 o 0 o 0 o 0 0 1 57 0
o 0 o 0 1 1 o 1 1 1 o 1 1 0 0 0 o 0 o 0 0 1 187 0
o 0 o 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 85 0
o 0 o 0 1 1 1 1 1 1 1 1 1 0 o 0 o 0 o 0 0 1 255 0
o 0 o 0 o 0 o 1 1 1 o 0 o 0 o 0 o 0 o 0 0 0 56 0
o 0 o 0 o 0 o 1 1 1 o 0 o 0 o 0 o 0 o 0 0 0 56 0
o 0 o 0 o 0 o 1 o 1 o 0 o 0 o 0 o 0 o 0 0 0 40 0
o 0 o 0 o 0 1 0 o 0 1 0 o 0 o 0 o 0 o 0 0 0 68 0
o 0 o 0 o 1 o 0 o 0 o 1 o 0 o 0 o 0 o 0 0 0 130 0

next to the dot pattern, you will see
that the numbers are stored one
row at a time, working from left to
right and from top to bottom.

This sets the SPRITE POINTER
for the first sprite to the address
12800. 2040 is the address of the
sprite pointer. 200 x 64 gives the
number 12800. If you wanted to
define a second sprite, then you
would put its data in the block
starting at 12864, (201 x 64 = 12864).
Bear this in mind when deciding
where to put sprite data. Whatever
address you choose it must be a
multiple of 64, or you will not be
able to set the sprite pointers
properly.

Slage3
The last, and an important, part of
the sprite definition routine is to tell
the 64 where you have put the data
for the sprite. This is line 260. POKE
2040,200.

81
Sprites

Dot pattem to number conversion table

1 45 89
2 46 90
3 47 91
4 48 92
5 49 93
6 50 94
7 51 95
8 52 96
9 53 97

10 54 98
11 55 99
12 56 100
13 57 101
14 58 102
15 59 103
16 60 104
17 61 105
18 62 106
19 63 107
20 64 108
21 65 109
22 66 110
23 67 III
24 68 112
25 69 113
26 70 114
27 71 115
28 72 116
29 73 117
30 74 118
31 75 119
32 76 120
33 77 121
34 78 122
35 79 123
36 80 124
37 81 125
38 82 126
39 83 127
40 84 128
41 85 129
~ 86 130
43 87 131
44 88 132

82
Sprites

133 177 221
134 178 222
135 179 223
136 180 224
137 181 ~5
138 182 226
139 183 '227
140 184 228
141 185 229
142 186 230
143 187 231
144 188 232
145 189 233
146 190 234
147 191 235
148 192 236
149 193 237
150 194 238
151 195 239
152 196 240
153 197 241
154 198 242
155 199 243
156 200 244
157 201 245
158 202 246
159 203 247
160 204 248
161 205 249
162 206 250
163 207 251
164 208 252
165 209 253
166 210 254
167 211 255
168 212
169 213
170 214
171 215
172 216
173 217
174 218
175 219
176 220

83
Sprites

VIC - the Video Interface Chip - is the part of
the 64 which controls the screen; its colours,
graphics and other characters and, most
importantly for you, the sprites.

It is located in the 64's memory at the
addresses starting from 53248. You will have
noticed in the Parachutist program how this
address was stored in the variable VIC, just to
make life easier. Four numbers were POKEd
into the VIC chip to make the sprite appear.
This is the absolute minimum. You must give the
X position (horizontal), and Y position (vertical)
and the sprite colour code, and you must turn
the sprite on.

Look at the table and work out which POKE
did which. (We were working with sprite 0.)

As you can see from the table, there are eight
sprites, numbered 0 to 7. You could, if you
wanted, alter the Parachutist program so that
there are eight parachutists. You do not have to
wnte in READ and DATA lines for those extra
seven sprites. They can all share the same
sprite pattern. The lines needed to add another
three sprites are shown here.

84
Sprites

x y Colour Tum on
Pomter
address

Sprite 0 VIC+O VIC+ 1 VIC+39 VIC+21,1 2040

Sprite 1 VIC+2 VIC+3 VIC+40 VIC+21,2 2041

Sprite 2 VIC+4 VIC+5 VIC+41 VIC+21,4 2042

Sprite 3 VIC+6 VIC+7 VIC+42 VIC+21,8 2043

Sprite 4 VIC+8 VIC+9 VIC+43 VIC+21, 16 2044

Sprite 5 VIC+ 10 VIC+ll VIC+44 VIC+21,32 2045

Sprite 6 VIC+ 12 VIC+ 13 VIC+45 VIC+21,64 2046

Spnte 7 VIC+ 14 VIC+ 15 VIC+46 VIC+21,128 2047

260 FOR P=2040 TO
2043:POKE Set sprite pointers.
P ,200: NEXT P

280 POKE VIC +121, 5121
281 POKE VIC +2,75 X positions - Spnte 0 has been
282 POKE V Ie +4, 11lHZl moved to the left.
283 POKE VIC +6,125

291 POKE VIC +3,121 } 292 POKE VIC +5,0 Y positions.
293 POKE VIC +7,0

301 POKE VIC +40,2 } 302 POKE VIC +41,7 Colours - choose your own.
303 POKE VIC +42,9

31121 POKE VIC +21,15 } Turn on sprites - see below.

331 POKE VIC +3,Y } 332 POKE VIC +5,Y Y positions in loop.
333 POKE VIC +7,Y

85
Sprites

Line 310 needs some explanation. For all of the
other POKEs here, there is a different address
for each sprite. Only ONE address is used for
turning on sprites. Each BIT of the byte at
VIC+21 acts as an ON/OFF switch for a sprite.
Look down the fifth column in the table and you
will see that the numbers form a binary pattern.
"POKE VIC +21,15" turns on sprites 0, 1,2 and 3.
(l +2+4+8 = 15)

1 Use the table to work out the POKEs needed
to produce the other four parachutists.

Set
- sprite pointers to 200 to get the pattern
- X and Y values. Either number can be

anything between 0 and 255. I have spaced
them out in gaps of 25 dots, and started all of
them at 0, which is off the top of the screen. Try
your own placings.

- colours. Use the same colour codes here
that you use when setting screen and border
colours.

Change line 310 so that all the sprites are
turned on. POKE VIC + 21,255 for all eight.

2 Line 320 (FOR Y = 0 TO 255) starts the
parachutists above the top of the screen, and
makes them fall below the bottom. At what Y
value is a sprite first fully on screen, and what
value would leave it standing on the bottom
edge?

Add

321 PRINT II~"; Y
322 FOR D = 1 TO 251ZJ:NEXT D

and make a note of the Y values.

86
Sprites

When you are working with the VIC or SID
chips, it makes a lot of sense to put the base
address into a variable, as we have done, but
there is a catch. If, for any reason, the base
address is lost, then you finish up POKEing a
number into an address at the very start of the
system. This could be disastrous. You saw the
effect of POKE I, 4 in the Lock-Up program!
There are several ways in which this might
happen, so be on your guard.

1 Mistyping the variable name. VUC + I, ..
BIC + I, .. VJC + I, .. all have the same effect.
The 64 assumes you want a new variable called
VUC, BIC or VJC and sets it up for you - with a
value ofO. Add I, and there you are with a
Lock-Up line. You might find it safer to label the
variable V, rather than VIC. There's less room
for error.

2 Erasing the line in which the base address is
set. It can happen.

3 Starting the program with GOTO, not RUN,
and missing the line in which the base address
is set. It is perfectly safe to start the program by
instructing the 64 to GOTO the first line of a
routine that you want to test, as long as the
variables are set within the lines, and before
they are used. Whenever you make a change to
a program all the variables are wiped clear.

87
Sprites

If you tried the second exercise in the last
section, you should have found that the sprites
are first fully visible (going downscreen) with a
Y value of 50. When Y is 229 the parachutist
appears to stand on the bottom edge of the
screen area, and he has completely
disappeared when Y reaches 250. Let's explore
the X values.

The parachutist sprite isn't really appropriate
for this - unless you like to imagine that a strong
wind is blowing him across the screen. Create a
new sprite; one more suited to horizontal
motion. The one here is a Class S4 Scout
Vehicle of the Andromedan Imperial Space
Force. You may prefer to design one of your
own. If you do, then record the number set
beside the pattern.

Use a routine like the one in the Parachutist
program on page 77 to store your sprite data in
the block of memory from 12800, then add these
lines.

300
310
320
330
340
350
360
370
380

POKE 2040,200
VIC = 53248
POKE VIC +0,0
POKE VIC +1,100
POKE VIC +39,7
POKE VIC +21,1
FOR X = 0 TO 255
POKE VIC +0,X
NEXT X

(choose your own colour)

88
Sprites

Now run the program and see what
happens.

The sprite stops about three­
quarters of the way across the
screen. The screen is 40 character
columns across, which is 320 dots,
and the largest number you can
POKE is 255. When you want to
take something onto the right of the
screen, you have to bring another

address into play - VIC + 16. This
works like VIC + 21. One address
manages all the sprites. Add these
lines to your program:

390 POKE VIC +16,1
400 FOR X = 0 TO 10QJ
410 POKE V Ie +0, X
420 NEXT X
430 POKE VIC +16,0

0 0 0
0 0 0
0 0 0
0 0 0

255 224 0
127 224 0
127 128 0
63 0 0
35 240 0
46 254 0
34 177 0
58 48 128
99 191 255

127 255 254
255 255 248

63 255 128
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Add lines to slow the action down and print out
the X values, so that you can find the points at
which the sprite enters and leaves the screen.

89
Sprites

SIZ€on SP

POKE VIC+29, 1

90
Sprites

,/

POKE VIC+23,l

II Size
Sprites can be made to appear double length,
double height or double size. To enlarge your
sprite in the X direction, use this line:

POKE V Ie + 29,1
To enlarge in the Y direction:

POKE VIC +23,1
Use both lines to create a double size sprite.
Both these addresses work the same way as
VIC + 21 and VIC + 16. POKE VIC + 23,2
would make sprite 1 double height. If you
decide to use a sprite that is to be enlarged in
one direction only, then your best approach is to
design it on a stretched grid. This will help to
keep the proportions right.

2 Speed
You already know how to slow down action by
including a delay line in the routine, but how
about speeding up?

Normally a FOR. .. NEXT ... loop works
through the range of numbers one at a time. You
can alter this by the use of STEP.

FOR N=1 TO 15 STEP 2
will only go through 1,3,5,7,9,11,13 and 15.

It covers the same range, but misses half the
numbers out, thus halving the time it takes to
reach the end. The STEP can be any size you
like. Change lines 360 and 400 in your program
so that they read:

FOR X= 0 TO 255 STEP 4
The S4 Scout vehicle has found a new burst of

speed. Increase the STEP still further and watch
the effect.

You can also STEP backwards. Your
movement does not have to be left to right.

FOR X = 255 TO 0 STEP -1
This will move the sprite (at normal speed)

from right to left.

91
Sprites

It is possible to use three different colours on M 1 .
the same sprite. This program shows how. It t
creates a sprite in the shape of a flower with a U 1'­
red and yellow head, and green leaves. The
sprite has also been made double sized so that
you can see it better.

,- . - ----- - -' - ,,- -.. '. - - - , - - --- - - --- I
f Pr(i)gl0arn. . I

-, ' ._--- ,- ~'" --

5 PRINT II l!l "
10 FOR N= 12800 TO 12862
20 READ 8: POKE N,8
30 NEXT N
40 DATA 2,138,0,10,170,128,10,170,

128,10,170,128,10,186,128,10,254, .'
128,2,254,0

50 DATA 10,254,128,10,186,128,10,
170,128,74,154,128,82,154,1,16,
16,5,20,16,20

60 DATA 20,16,84,21,16,84,21,17,
84,21,81,84,5,85,80,1,85,64,0,84,0

100 POKE 2040,200
110 VIC = 53248
120 POKE VIC+0,100:POKE VIC+1,100
130 POKE VIC+39,7
140 POKE VIC+37,5
150 POKE VIC+38,2
160 POKE VIC+28,1
170 POKE VIC+23,1: POKE VIC+29,1
180 POKE VIC+21,1

92
Sprites

r'- - --- -- -1f1~Q,w.1t WQlKS.-- ~-, ---,
'-'- _ _ _ _ _ _ _ _ _ L_ _ _---'-- _ ~

Lines 40 to 60 carryall the data for the sprite.
Squeezing the pattern into a few lines like this
saves typing and saves memory space, but it is
not quite so easy to spot your mistakes and
correct them. Using a separate DATA line for
each row of pattern numbers is a safer but
slower way to enter your data.

Lines 130 to 160 set the colours. VIC + 39 is
the normal sprite colour. VIC + 37 is multi­
colour 1, and VIC + 38 is multi-colour 2. POKE
VIC + 28,1, turns on the multi-colour mode for
sprite O.

Type in the program and run it. Look at the
sprite carefully and you will notice that the
outline is not as smooth as it has been on other
sprites. This is still true if you reduce it back to
its normal size by POKE VIC +23,0: POKE VIC
+29,0.

When a sprite is in multi-colour mode, the
smallest possible unit that you can define is two
dots wide. A single dot (or rather a single BIT) is
enough to tell the VIC chip whether to colour a
point or leave it blank. In multi-colour mode
there are four possibilities for each part of the
sprite -leave blank, use multi-colour 1, use
multi-colour 2 or use sprite colour. It takes a pair
of BITs to carry this information.

93
Sprites

.. []I MULTI-COLOUR 1

1-1'1 rIJ SPRITE COLOUR

IIfII I?/(t,~i!:] MULTI-COLOUR 2

CD CD BACKGROUND

POKE VIC+37,5

POKE VIC+39,7

POKE VIC+38,2

If both BITs in the pair are 0, then the
corresponding two dots will be left blank. If the
BIT on the right of the pair is 1, but the other 0,
then both dots will be given the colour set by
multi-colour 1. When the left BIT only is 1, the
two dots are sprite colour. If both bits are 1, then
both dots become multi-colour 2.

You need a slightly different grid from normal
when designing multi-coloured sprites. Draw
your vertical lines so that you have twelve
columns of two dots each. When you are first

94
Sprites

working with multi-colour mode, you will find it
helpful to draw up two grids for each sprite. On
one you will design the coloured image, and
then shade it in. The second grid is used to
translate the colours into dot-pair patterns.
Copy the outlines of your design onto this, and
then work through each colour area, shading in
the appropriate dot or dots to give the colour
you want there. This dot pattern can then be
changed into numbers in the usual way.

95
Sprites

2
10
10
10
10
10
2

10
10
10
74
82
16
20
20
21
21
21
5
1
0

138 0
170 128
170 128
170 128
186 128
254 128
254 0
254 128
186 128
170 128
154 128
154 1

16 5
16 20
16 84
16 84
17 84
81 84
85 80
85 64
84 0

MWlti-co!ourecli. multiple sprites
When you set the multi-colours, you set them for
all the sprites though the sprite colours can be
changed as usual. Add these lines to your
program. They will put two more flowers on the
screen, one of them blue, the other pale green.
Both the new flowers have red centres and
green leaves, because these are multi-colours.

100 POKE 2040,200:POKE
2041,200:POKE 2042,200

121 POKE VIC+2,150:POKE VIC+3,100
122 POKE VIC+4,200: POKE VIC+5,100

130 POKE VIC+39,7:POKE VIC+40,14:
POKE VIC+41,13
I

160 POKE VIC+28,7
170 POKE VIC+23,7: POKE VIC+29,7
180 POKE VIC+21,7

Add more lines to fill the screen with brightly
coloured flowers. Try different colours for the
centres. (Multi-colour 2). Red does not combine
very well with some colours.

You will usually have to turn your C64 off to
return to normal- before you do, remember to
SAVE the program.

96
Sprites

Sprite look up tables

SPRITE SPRITE X POSITION
POINTER 0-255

0 2040 VIC+O

1 2041 VIC+2

2 2042 VIC+4

3 2043 VIC+6

4 2044 VIC+8

5 2045 VIC+ 10

6 2046 VIC+ 12

7 2047 VIC+ 14

Multi coloW' sprites
POKE VIC+37, colour code, multicolour I
POKE VIC+38, colour code, multi-colour 2
POKE sprite colour as normal, then turn on multi­
colour mode (VIC+ 28)

Single address controls

YPOSITION
0-255

VIC+l

VIC+3

VIC+5

VIC+7

VIC+9

VIC+ 11

VIC+13
VIC+15

ENLARGEX~ VIC+29

ENLARGEY t VIC+23

SPRITE ON FAR RIGHT VIC+ 16

MULTI-COLOUR MODE VIC+28

TURN ON SPRITES VIC+21

The number POKE'd here should be the sum of the
codes of the sprites that you want to affect.

Thus, POKE VIC+23, 12 would enlarge upwards
sprites 2 and 3.

Sprite codes

97
Sprites

COLOUR

VIC+39

VIC+40
VIC+41

VIC+42

VIC+43

VIC+44

VIC+45
VIC+46-

\
/'-

START)
READ

SPRITE
PATTERNS

SETSP[,ITE
POINTER VARIABLE

START MOVE LOOP

MOVE SPRITE

GOSUB. CHANGE
SPRITE POINTER

VARIABLE

COMPUl
You saw in the section on graphics
how to animate your pictures by
printing blocks of graphics. Sprites
allow for even better animation
effects. You can get smoother
movement, and more detailed
changes in your figures. The next
program is fairly complex, so we
will take it in stages.

The first stage is to get these two
designs into the memory. You
could do this by writing two READ
loops:

FOR N=12800 TO 12862
READ B: POKE N,B
NEXT N
FOR N= 12864 TO 12926
READ ... etc.

You can also do it by creating a
second loop around the READ loop.

New idea
FOR T=0 TO 1
FOR N=0 TO 62
READ B: POKE 12800 +
64*T +N,B
NEXT N,T

-- - --- -- -- - -- - - H'O'w it works - - - - -- -- -1
-- - - -'- -- - - -

The T loop makes the program
go through the N loop two times.
That complex expression in the
POKE statement works out the
address. The very first number,
when T =0 and N=O, will go to
address 12800 (= 12800 + 64*0 + 0).
The next goes to 12801
(= 12800 + 64*0+ 1). When it
comes to the data for the second

pattern, the formula gives 12864 as
the first address. (12800 + 64 * 1 +0)

It may seem a lot of trouble to
take for the sake of saving the odd
line, but in fact, this is a very
compact piece of programming.
You can use this for any number of
sprites. The only change you have
to make is to the number in the first
line.

98
Sprites

ERANIM~ ON

99
Sprites

1 128 0
3 192 0
3 224 0
3 192 0
1 128 0
3 192 0
3 192 0
3 192 0
3 240 0
2 240 0
3 64 0
3 192 0
1 224 0
1 224 0
3 112 0
3 112 0
6 48 0
6 48 0

12 56 0
14 60 0
15 0 0

1 128 0
3 192 0
3 224 0
3 192 0
1 128 0
3 192 0
3 192 0
3 192 0
3 240 0
2 240 0
3 64 0
3 192 0
1 192 0
3 192 0

63 192 0
62 192 0
48 192 0
32 192 0
o 192 0
o 224 0
o 240 0

100
Sprites

1
3
3
3
1
3
3
3
3
2
3
3
3
0
0
0
1
7
6
3
1

1
3
3
3
1
3
3
3
3
2
3
3
1
1
1
1
3
3
3
3
3

128 0
192 0
224 0
192 0
128 0
192 0
192 0
192 0
240 0
240 0

64 0
192 0
192 0

. 224 0
240 0
224 0
192 0
192 0
192 0
224 0
240 0

128 0
192 0
224 0
192 0
128 0
192 0
192 0
192 0
240 0
240 0
64 0

192 0
240 0
248 0
184 0
240 0
224 0
112 0
56 0

128 0
192 0

Here's the rest of the program. Notice that the
address for the sprite pointer is held in the
variable SP, and that the routine which changes
SP is written as a subroutine.

311.111.1 S P=2011.1 : POKE 20411.1 , S P
310 VIC = 53248: POKE VIC +0,0:

POKE VIC+1, 100
3211.1 POKE VIC +39,0:POKE VIC +23,1:

POKE VIC+29,1:POKE VIC+21,1
330 FOR X=0 TO 255 STEP 4:

POKE VIC+0,X
340 GOSUB 500 : POKE 2040,SP
350 FOR D=1 TO 150: NEXT D
3611.1 NEXT X
3711.1 END .

511.111.1 IF SP=2011.1 THEN SP=201: RETURN
510 IF SP=201 THEN SP=200: RETURN

Each time the program goes through the loop at
lines 330 to 360, the sprite is moved four dots
forward and the sprite pointer variable is
changed so that it appears that the legs are
actually moving. The delay time can be
increased so that you can see the individual
moves more clearly.

1 The movement is rather jerky at
the moment. This is because there
are only two pictures per step.
Walt Disney cartoons normally
have sixteen frames (separate
pictures) for every second. Smooth
the movement by adding the two
sprite patterns shown here. If you
used the 'compact' READ loop, you
will need to change the first line to:

FOR T=0 TO 3
Add in your extra DATA lines.

This can be done quite quickly by
renumbering and editing the
existing lines. The first twelve rows
of all these patterns are the same.

Alter the SP subroutine to this:

510 IF SP=201 THEN
SP=202: RETURN

520 IF SP=202 THEN
SP=203:RETURN

530 IF SP=203 THEN
SP=200:RETURN

2 Add a further routine so that the
man walks right across the screen
and off the far side. You must
POKE VIC + 16,1 to do this. Loop
the whole of that routine so that he
starts off again from the left. POKE
VIC + 16,0 before he starts again.

101
Sprites

•
Advanced BASIC

For some years, big businesses have been
using computers to store and process theIr
accounts and files. Now that computers are so
much cheaper and more efficient, an increasing
number of smaller businesses, and even clubs
and societies are acquiring then own machines.
What do they use them for?

In business, the first thing to computerise is
the wage packets. Calculating wages is a matter
of strict routine and simple arithmetIc - at which
computers excel. The routine to calculate the
gross weekly wage needs only to take the
hourly rate and multiply it by the number of
hours worked. Calculating tax, overtime and
bonuses is only a little more complicated.

102
Advanced BASIC

1000 BLOGGWAGE=BLOGGRATE*BLOGGHOURS
1010 BROWNWAGE=BROWNRATE*BROWNHOURS
1020 GREENWAGE=GREENRATE*GREENHOURS

This program could get very long if the firm was
of any size, There has to be a more efficient way
of doing it and there is, The answer is to use
ARRAYS,

An array is a set of memory stores, all with the
same name, but with different reference
numbers. Here, the EMPLOYEE$ array holds
the names of all the workers. The RATE,
HOURS and GROSS arrays hold the necessary
figures. EMPLOYEE$(l) is Mr Bloggs, RATE(l)
is 4.00, HOURS(l) IS 40 and WAGE(l) is 160.00.
The computer can handle all of the staff wages
with a simple looped program.

1000 FOR N=1 TO 5
1010 LET WAGE(N)=RATE(N)*HOURS(N)
1020 PRINT "WAGE FOR ";

EMPLOYEE$ (N) ;"="; WAGE (N)
1030 NEXT N

Remarks to remmd you

Readability is very important in
programs. You must be able to
read through your program listing
and understand what is going on.
This isn't too much of a problem
when you are writing the program
because everything is still fresh in
yourmirtd. Yem knew what all the
variable names mean, and how
they link together. You know what
each part of the program does. But
will you still know when you come
back to it in a few months' time?

The REM statement allows you to

write remarks in the program list.
You can write anything you like
after a REM. The 64 will ignore it
all.

100 LET A= 6
101 REM NUMBER OF

ALIENS

300 IF B$ = "H" THEN
GOTO 400121

31121 REM HELP PAGE AT
4121121121

103
Advanced BASIC

Arrays give you a very flexible and powerful
way of handling data. Suppose, for example,
that you wanted to know which employee had
earned most in that week. When there are only
five names on the list, it is very simple to scan
the table and pick up the highest figure in the
WAGE column, but what if the firm had a
hundred, or a thousand employees? The
computer could soon find the answer for you.

3000 BASE=0: MOST=0
3010 FOR N=1 TO 5
3020 IF WAGE(N»BASE THEN MOST=N:

BASE=WAGE(N)
3030 NEXT N
3040 PRINT MOST

This starts by opening two stores, BASE and
MOST. The MOST store will be used to collect
the reference number of the highest WAGE
figure. The BASE is used for comparison. On the
first run through the loop, it finds that Blogg's
WAGE is higher than the BASE figure (0), so it
changes the BASE to 160, and stores 1 in MOST.
Next time round, it discovers that Brown's
WAGE is higher than 160, and it changes the
BASE, and MOST stores again. Green's figure is
lower than the BASE, so the computer moves on
to Lewis' WAGE. This is higher than the 201 now
stored in BASE, and the two checking stores are
reset. The final WAGE is lower, so nothing
happens that time.

104
Advanced BASIC

EMPLOYEE RATE HOURS WAGE 1 ...

Blaggs, F. D. 4.00 40 160.00

Brown, T. S. 6.30 32 201.60

Green, I. 4.00 35 140.00

Lewis, B. S. 8.00 30 240.00

Prior, J. 3.60 40 144.00

EMPLOYEE$ RATE HOURS WAGE

1 Blaggs, F. D. 4.00 40 160.00

2 Brown, T. S. 6.30 32 201.60

3 Green, I. 4.00 35 140.00

4 Lewis, B. S. 8.00 30 240.00

5 Prior, J. 3.60 40 144.00

At the end of the loop, the computer has 4 in
the MOST store. It can pick out the name of the
highest paid worker by using this as a reference
number in the EMPLOYEE array.
EMPLOYEE$(4) is 'Lewis'.

Arrayed variables can be handled just like
ordinary variables as well. They can be
changed by LET and INPUT commands. At the
end of the year, the boss of our little business
may decide to do a salary review, rewarding his
best workers with improved hourly rates.

7000 REM SALARY REVIEW: RATE
RESET

7010 INPUT IJEMPLOYEE'S REFERENCE
NUMBER ?"; ERN

7020 PRINT IJ NAME IS ";
EMPLOYEE$(ERN)

7030 INPUT IJNEW RATE ?";RATE(ERN)

105
Advanced BASIC

Arrays can be for strings, integers (whole
numbers) or real numbers. A single array can
have as many elements as the memory will
allow. This means you could store about 8000
real numbers, or 20000 integers or 40000
characters.

I You must tell the 64 what size of array you
want using the DIM (DIMension) command.
DIM GAME$(5) sets up a string array with 5
stores. DIM N(2000) sets up a number array to
hold a maximum of 2000 numbers. The DIM
command must only be given once - it's no
good deciding you want to make it bigger in the
middle of a program.

2 Exception. If you only want small arrays -
eleven stores or less - then you can miss out the
DIM command, and the 64 will set up the array
for you, just as it will set up variables if you miss
out the LET ... line. Missing out your DIM lines
is not a good habit to get into.

3 The same rules apply to array names that
apply to variable names. Start with a letter; don't
start two with the same two letters; end with a $
if it's a string array, and don't include any BASIC
words in the name.

4 The array reference number must be a
whole number. All arrays start from 0 and the
highest number is fixed by the DIM line.
DIM A(6) creates seven stores A(O),A(l) .. A(6).

106
Advanced BASIC

'-1-

/1
W$(5) AR~~ELLO"

-.~" W$(O) "GOODBYE"

W$(l) "HOW ARE YOu?"
W$(2) "IT's 5.45 pm" W$(3)

W$(4) " "
W$(5)

! . ~-I-

N(12) ARRAY
3.33 N(O) 297

N(l) 43.2
N(2) 1
N(3) 0

N(4) 52673
N(5) 66

N(6) 12.532

N(7) 778965321
N(8) 0

---NhT (,rQ9)1 0

N(lO) 0
~--hN.T(llll) 0

N(l2~) _-1-__

107 SIC AdvancedBA

I-lighest and
This program uses the same kind of routine as
the WAGES sorter. When you run it, you will be
asked to type in eleven numbers, one at a time.
Use any numbers you like, and in any order that
you fancy. The program will sort through and
pick out the highest and the lowest.

5 PRINT "~"
10 DIM N(11ll)
20 HBASE =0: HI =Ill
30 lBASE =999: lO=0
40 FOR T=0 TO 10
50 INPUT "NUMBER ";N(T)
60 NEXT T
70 FOR T=0 TO 10
80 IF N(T»HBASE THEN HBASE

=N(T): HI =T
90 IF N(T)<lBASE THEN lBASE =

N(T): lO=T
100 NEXT T
110 PRINT "HIGHEST ";N(HI)
120 PRINT "lOWEST ";N(lO)

It doesn't much matter what value you give to
LBASE at the start, as long as it is bigger than at
least some of the numbers that it will find in the
array.

Just to show how flexible this array handling
is, add these few lines to the program, and it WIll
calculate the total and average as It runs
through the loop:

35 SUM=0
95 SUM =SUM +N (T)

130 PRINT "TOTAl =";SUM
140 PRINT "AVERAGE =";SUM/11

(You couldn't call the variable TOTAL, as it
includes TO)

108
Advanced BASIC

owest
/" .'

"'i(.~~
#" 'P'~- _~# -II: I 'hI.

oS. r~ ;,:."'- J
.~ If' $~ .6 ,!
~"j /". 73./1 (p.-?:;1

:C&6. ..i:;;>t ;;.
U·· "'y' .V· y'. ~h;,}"~tj.~,,
14' ,., 3
~.' ::l9~l.~.',.~}.:~. 56",
\ .. 'f 'Ski,,,, '.
.', ,

1y "

t ',~~t:..< .
\:/!\ U"
of" .. ' -~'\

'>.' ..

"HIGH" & "LOW" STRINGS

"A"<"B"

"AARDVARK" < "ANTELOPE"

I. "MARGARINE" > "BUTTER"

;'999" > "i 000000"

You can compare strings as well as numbers.
but with these 'hIghest' and 'lowest' refers to
their ASCII codes, so the comparison IS
essentially alphabetical Adapt the program to
take in a list of names and find the first and last.
Change the array name to N$(lO), HBASE=O
should become HBASE$="AAA"; LBASE=999
becomes LBASE$= "ZZZ". Change all the
variables names in the same way, and alter the
printed comments to something more suitable.
Try the program with a variety of different
words and names. You will find that the
comparison works on the whole word, not just
the first letter. "ANIMAL" is lower than "ANT"
because "T" (the third letter, and the last in
ANT) has a higher ASCII code than "I". If you
compare numbers inside strmg variables, then
you can get odd results, as it is the ASCII codes
that count here, not the values of the numbers.

For a full list of ASCII codes, see
AppendIX F m your User Manual.

109
Advanced BASIC

TRU H NDLOGIC

7futh
Computers value truth - don't we all- but being
computers they value it in terms of numbers. A
false statement is worth nothing - a true
statement is worth - 1. You can see this by
typing:

X=99: PRINT X=99

Now type:.

PRINT X=66

What does it print this time?
The evaluation works on strings as well.

A$=liTEST": PRINT A$=liTEST"

Did it print '-l'?
You can use the value of truth idea as a way of
compressing IF ... THEN. .. lines. Suppose you
wanted to control the movement of a sprite, so
that its X position was increased when the
player pressed '2', and decreased when he
pressed '1'. You could use a pair of
IF ... THEN. .. lines.

100 GET A$: IF A$=li" THEN 100
110 IF A$ =li1" THEN X=X-1
120 IF A$=li2" THEN X=X+1

The two lines 110 and 120 could be replaced
by this:

110 X=X+CA$=li1")-CA$=li2")

110
Advanced BASIC

As the truth function gives you - 1 for a true
statement, you have to reverse this with the sign
outside the bracket. That line takes 1 from X
when A$ = '1' and adds when it IS '2',

If you want to change X in steps of more than
1, then include a multlplier m the line, Here the
keystroke will add or take 4,

110 X=X+(A$="2")*4 -(A$="1")*4

ThIs little routine shows truth at work.

10 PRINT" ~"
20 X=20
30 PRINT TAB(X) ;"*"
40 GET A$
50 X=X+(A$="1") *2-(A$="2") *2
60 GOT030

GJ
~ PRESS

III
Advanced BASIC

Logic
The Commodore 64, like most computers, has
LOGICAL OPERATORS. These are another
means of testing truth.

AND checks to see if two statements are true.
OR compares two statements to see if either,

or both are true.
Add this line to the last program:

55 IF X<=8 OR X>=30 THEN GOTO 40

If the value of X reaches either of the limits then
the program will loop back to miss the PRINT
line.

Write in a line of your own so that the
program will stop if either '3' or '4' is pressed.

Add another line. This shows the use of AND.
It tests for the two conditions - X must be less
than or equal to 10 AND A$ must be '5' to make
the program stop.

53 IF X<=10 AND A$=//5" THEN STOP

You can combine AND and OR, but think the
line through carefully first, and test it afterwards
to make sure it does what you want. This line
ought to let you stop the program by pressing '5'
when the X value is either 1 0 or less, or 30 or
more.

53 IF X<=10 OR X>=30 AND A$=//5"
THEN STOP

Test it. What happens when you push the
asterisk to the left limit? Run it again and push it
to the right. This line actually tests for two
conditions - either X<= 10 (and nothing else)
OR X>=30 AND A$="5". This wasn't quite what
you wanted.

Enclose the first part of the line in brackets.
That way it will test the two values of X before it
looks at the A$.

53 IF (X<=10 OR X>=31l)) AND
A$=//5" THEN STOP

112
Advanced BASIC

COMPARISONS

= equals
< >is not equal to

LOGIC

AND - are both
statements true?

>=is more than or equal to
< = is less than or equal to OR - is either true?

are both true?

If true -1
If false eJ

113
Advanced BASIC

sor
Have you ever played those games
where there is a 'Roll of Honour'? If
your score is high enough, then you
are included in the list, and the list
is sorted into order each time there
is a new entry.

There are several ways in which
you can sort a list of numbers, or
strings, and of these, the Bubble
Sort technique is probably the
easiest to explain. It is similar to the
Highest - Lowest routine. Type it in
and enter a set of eleven assorted
numbers.

10 DIM N(10)
20 FOR T=0 TO 10
30 INPUT uNUMBER ";N(T)
40 NEXT T
50 SPARE =0
60 FOR T=0 TO 9
70 IF N(T)<N(T+1) THEN

SPARE =N (T) :
N (T) =N (T + 1) :
N(T+1)= SPARE

80 NEXT T
90 I F SPARE <> 0 THEN

50
100 FOR T=0 TO 10
110 PRINT N(T)
120 NEXT T

ROLL OF HONOUR

GRANDAD
EUGENIUS
BILL
BAD TED
FRED

114
Advanced BASIC

50000
40000
35240
30000
26540

This sorts the numbers into order,
highest first. Look at one trip
through the loop, when T=6. Let's
suppose that N(6)=33 and
N(7)=47. N(6) is less than N(6+ 1)
so it reorders the pair. The 33 from
N(6) is put into the SPARE store for
safe-keeping. N(6) then takes the
47 from N(7), and N(7) gets its new
value - 33 - from the SPARE. On
anyone trip through the loop
several pairs of numbers may be

Before

~3

shuffled in this way. At the end of
the loop, the computer checks to
see if the SPARE store has been
used. If it has, then it goes back and
runs through them again. There
will come a time when all the
numbers have been sorted into
order, and on the next trip through
the loop, the SPARE will not be
changed from the a given to it at
line 50. This routine will not sort a
list that includes a O. Why not?

After

Alter the bubble sort program so that it will sort
a set of names into order. You will need to make
the same sort of changes here that you did when
making the Highest - Lowest program into an
alphabetical one.

115
Advanced BASIC

•
Games

re
The PRINT statement is not the only way to get
characters on the screen. You can also POKE
characters directly into the screen memory.
The 64 keeps a track of what's on the screen in a
1000-byte block of memory starting at address
1024. Try it.

POKE 1024,81: POKE 1024+54272,0

This will make a solid circle appear in the top
left corner.

The memory block holds the screen
information in logical order. The numbers run
from left to right, working down from the top.

POKE 1025,81: POKE 1025+54272,0

This puts a second blob to the right of the first.
Add 40 to move down a line.

POKE 1065,81: POKE 1065+54272,0

A third blob appears below the second.

116
Games

o

o

1024

•

55296

RED

Try this program if you want to see the way
the screen fills, and the characters that are
available. It works through the screen and
through the character set at the same time. The
screen is run through the N loop. The character o . codes are held in X

5 POKE 53281,1
10 X=0

.' .~'p~}'?/'~"
.;"

20 FOR N=1024 TO 2023
30 POKE N,X
40 X=X+1
50 IF X=256 THEN LET X=0
60 NEXT N

Type it in and run. Now press the Commodore
and SHIFT keys together to see the second
character set.

The codes used in screen POKEs are not the
same as the ASCII codes. Look them up in
Appendix E of the User Manual when you want
to use them.

117
Games

=A~ -~-.----

The screen memory only holds the character
codes. It knows nothing about colour, as this is
stored in a separate block of memory starting at
55296. To put a red blob in the top left, using
POKEs, you would need this.

POKE 1024,81: POKE 55296,2
The colour codes used here are the same as the
colour codes for the screen and border POKEs.

Having to calculate both screen and memory
positions could be hard work, and it certainly
leaves lots of room for error, but fortunately
there is a simple way to make sure that you
colour the right square. The colour memory
follows the same pattern as the screen memory,
and the difference between the screen address
and the colour memory address for any square
is always 54272.

POKE 1500,42: POKE 1500+54272,1
This should give you a white asterisk about

halfway down the screen. Using a variable to
hold the screen address saves a little typing in
the long run, and reduces the chances of error
even more.

P=1600:POKE P,42:POKE P+54272,0

118
Games

Characters and codes

Do take care with your screen POKEs. If you
mistype and POKE above the screen, or below
the screen, then you will have problems.

POKE 1IlH2J0,42

This will put a number m the tape buffer!
Other low numbers can cause chaos. Those first
1000 bytes of memory hold vital informatlOn
about the operating system.

POKE 2088,42

Now you have gone off the bottom of the
screen, and the POKE has finished up in your
BASIC program.

Look for the lines in the MINEFIELD program
that prevent any accidents like these.

Computers can only understand
numbers. Letters have no meaning
to them until they have been
converted to numbers. Fortunately
for you and me, they do this
themselves, but sometimes you will
want to use those code numbers
directly.

The computer prints 65. Try
another letter, or a number of a
graphic. The character must be
inside quotes, inside brackets.

You can reverse the process
with the CHR$ function. Try it.

PRINT CHR$(6S)

What do you get?
The ASCII codes apply to more

than just characters. Anything
which can be written into a PRINT
line has an ASCII code.

PRINT
CHR$(18);CHR$(30);CHR$(6S)
This turns Reverse on, (18),

In Appendix F of the User
Manual there is a full list of the
ASCII codes - the code numbers of
the characters. If you want to know
the code of a character, look it up
here - or try this. It finds the code
of the letter 'A'.

PRINT ASC ("A")
changes the colour of the ink to
green (30) and prints the letter 'A'.

119
Games

Here's a game that uses the screen and colour
memories. The object of the game is to reach
the bottom right corner, without treading on a
mine. It's a bit bare at the moment, so that you
can see the main routines more clearly. When
you've got it running, you might like to improve
the presentation and add some sound effects. I
have used asterisks (code 42) to indicate mines,
and a blob (code 81) to show the player's
position.

Program
10 POKE 53281,7:PRINT JJ ~"
20 FOR N=1 TO 50: P=

INT(RND(0)*1000)+1024
30 POKE P,42: POKE P+54272,7:

NEXT
40 PL = 1024: LIVES = 5
50 POKE PL,81:POKE PL+ 54272,1
60 GET A$: IF A$<>JJ" THEN 60
70 GET A$: IF A$=""THEN 70
80 IF A$=JJU" AND PL>1064 THEN

PL=PL-40
90 IF A$=JJD" AND PL<1984

THEN PL~PL+40
100 IF A$=JJL" AND PL>1025

THEN PL=PL-1
110 IF A$ =JJR" THEN PL=PL+1
120 IF PEEK(PL)=42 THEN 200
130 POKE PL,81: POKE PL+ 54272,1
140 IF PL = 2023 THEN 300
150 GOTO 60

120
Games

Lines 20 and 30 put 50 asterisks on the screen at
random places, but colour them yellow, the
same colour as the screen.

The routine from 60 to 110 works the key
controls. The keys 'U, D, L, R' move the player.
Notice the checks built into the lines to stop the
player from wandering off the top, and bottom
edge of the screen.

That triple loop at line 200 produces a flashing
asterisk when you tread on a mine.

- -- --~ - - - -- - - - --

190 REM SHOW MINES AND LIVES LEFT
200 FOR T= 1 TO 20: FOR COL =0 TO 1:

POKE PL+54272,COL: FOR 0=1 TO 25
205 NEXT 0: NEXT COL: NEXT T
210 LIVES = LIVES -1: PRINT

/I [§] LIVES"; LIVES
220 FOR N=1024 TO 2023: IF PEEK(N)

=42 THEN POKE N+54272,0
230 NEXT N
240 I F LIVES =0 THEN 400
250 PRINT /I[§] ________ "

260 FOR N=1024 TO 2023:
POKE N+ 54272,7: NEXT N

270 GOTO 50
300 PRINT /I [§] MADE IT WITH"; LIVES;

/I LIVES LEFT."
310 END
40flJ PRINT /I [§] YOU HAVE RUN OUT OF

LIVES ."
410 END

121
Games

HANGMAN
The gallows

•••••••••••••••••••••••••••••••••• l1li ••••••••••••••••• 0 • ... ". . ..
...
" , '.
,

. . . ' ..

....

. . . .
,

, ,

2

. . . .

: ..
" 0°: ,

3 : .. .
.. . 5 . .0·

o •• ~ • eo ••••••••••••••••••••••• 0:' •• .: ••••••
~ ~ .~

....... ' /'

,
.. 9: . eo.· :8 .

•• 0°

;. .;

... :
, ,

I : . , . ,
0 •••• ,: •• 0.

Design your own gallows if you prefer, but make the
drawing appear in 10 sections.
1000 PRINT "(First section)"
1010 RETURN
1100 PRINT "(Second section)"
1110 RETURN

1900
1910

etc. to
PRINT "(Last section)"
RETURN

122
Games

5 PRINT II ~ "
10 DIM NCZ0)
20 RESTORE
30 X=INT CRNDC(lJ)*2(1J)+1
40 IF NeX)=1 THEN 30
50 NeX) =1
60 FOR T=1 TO X: READ W$

NEXT T
70 HIT =0: MISS=0
80 L=LEN e W$) : Z$ =W$
90 PRINT II~@]@]@][I][I]";: FOR T=1 TO L

PRINT u_ ";: NEXT
100 GET L$: IF L$<>'IIf THEN 1Ql0
110 GET L$: IF L$=//" THEN 110
120 FIND =0
130 FOR T=1 TO L
140 IF L$ = MIDeW,T,1> THEN

GOSUB 400: FIND=1
150 NEXT T
160 IF FIND =1 THEN 200
170 MISS =MISS+1
180 ON MISS GOSUB 1000,1100,1200,1300,

1400,1500,1600,1700,1800,1900
190 IF MISS =10 THEN 250
200 I F HIT =L THEN 220
210 GOTO 10Ql
220 PRINT //[IlWELL DONE.": GOTO 300
250 PRI NT // [II YOU ARE HANGED!"
260 PRINT //THE WORD WAS "; Z$
300 INPUT //ANOTHER GAME ey IN) I/;A$
310 IF A$=/IY" THEN 20
320 IF A$ =//N" THEN 350
330 GOTO 300
350 END
400 HIT=HIT +1
410 PRINT //[II@]@] ":PRINT TAB<T*2);L$
420 W$=LEFT$eW$, T-1)+// I/+RIGHT$(W$,L-T>
430 RETURN

1000 REM DRAWING ROUTINE
2000 DATA COMPUTER,BASIC,LOOP,ARRAY,

VARIABLE,STRING,INTEGER, RANDOM
2020 DATA RETURN,FLOWCHART,PROGRAM,

ROUTINE,MEMORY,POKE,CURSOR
2030 DATA READ,NEXT,PRINT,GOSUB,

CHARACTER

123
Games

Game plan

Hangman is a good game, and it's also a good
way of introducing string slicing and program
design.

This is the most complex program that we
have tackled so far, so let's trace the process
from idea to flowchart to BASIC. The first stage
is to write down how the game works when it is
played by two humans.

1 The first player thinks of a
word, and tells the other person
how many letters it has - usually by
marking a line for each letter on a
piece of paper.

4 If the guess was a bad one, then
the first player draws a little more
of the Hangman drawing.

5 The game ends either when the
second player has guessed all the
letters, or when the hangman
picture is complete. 2 The second player tries to

guess the letters that make up the
word.

3 If he guesses a letter which is in
the word, then the first player
writes it into the correct place on
the line.

This game outline can then be
converted into a block flowchart.
Some parts of that flowchart will
convert to single lines of BASIC;
others will become whole routines.

1 Set up game (lines 10 to 90)
The words for the game are all written into the
DATA lines at 2000 onward. You want the
computer to get one of these at random - but
you also want to make sure that it does not pick
the same word twice. This means that you have
to keep a record of the words that have been
used. The array N(20) is used to store the
reference numbers of the words. Each time the
computer finds a random number, it checks the
NO array to see if it has been used. If it hasn't,
then the number is marked off, and the DATA
list is read to find the word.

Lines 70 to 80. You need HIT and MISS
counters, the length of the word, and a copy of
the word. Line 90 prints a spaced out row of
dashes for the letters.

124
Games

(START) ...
SETUP
GAME

T

COLLECT
GUESS AND
COMPARE ...

.....
DRAW

HANGMAN

T

NO

.... yES

C __ ST_OP_)

WRITE IN
LETTER

125
Games

(
.... yES

STOP)

2 Collect guess and compare
GET L$ is used, rather than INPUT L$. You
could use an INPUT line, but you would have to
make sure that you fixed its position with a
PRINT line using cursor commands beforehand.
If you didn't, you could ruin the display. GET L$
avoids the bother.

Line 140 introduces a new function - MID$.
This looks at a section of the word.

MID$ must be followed by the word (or string
variable), the number of the first letter you want
to look at, and the number of letter you want.

If W$ = "COMPUTER" then:

M I D$ (W$, 3 ,3) = "PUT" (3 letters from the third on)
MID$(W$,6,2) ="ER" (2 letters from the sixth) __ -~~----jt-\ '~'''''
There are two other string slicing functlOns,

and both are used in the subroutine at 400.
LEFT$(W$,3) will slice off the first three letters
of the word. RIGHT$(W$,3) shces off the last
three letters.

In hne 420 "LEFT$(W$, T-l)" slices off that
part of the word up to the found letter.
"RIGHT$(W$,L-T)" takes the remainder of the
word to the right of the letter. That hne doesn't
just chop up the word, it puts it back together
again. The plus signs join strings together. The •
effect of this line is to replace the found letter V·.·. ' ;-'
with a space. This is to stop cheats. \ ./

W$= "PROGRAM"
L$="A"
L$=MID$(W$,6, 1) so T=6
LEFT$(W$,T-1)="PROGR"
RIGHT$(W$,L-T)="M"
W$="PROGR"+" "+"M"="PROGR M"

3 .All found?
A single line covers this. All you need to check
is that there have been as many HITs (good
guesses) as there are letters.

126
Games

...

"

4 Draw hangman
This part of the program has been left for you to
do, apart from the first two lines. Line 170 simply
counts MISSes. Look closely at the next line.
This uses a new BASIC command.
ON ... GOSUB

When MISS= 1, this line sends the program to
the subroutine at 1000; when it is 2, the program
goes to 1100; when MISS=3, it goes to 1200, and
so on. ON ... GOSUB ... replaces a set of
IF ... THEN ... lines.

IF MISS =1 THEN GOSUB 1000
IF MISS =2 THEN GOSUB 1100

The other form of this command is
ON ... GOTo. .. , where it works in exactly the
same way. ON ... Go. .. can be used wherever
the values that could come after ON form a
simple series, 1,2,3,4,5,6, ... If the values for
which you are checking are -3,65,999,2345 then
you must use IF ... THEN ... lines.

To work out the drawing subroutines, use the
sketch given with the program list, or design
your own ten part picture. Each of the ten
subroutines will then consist of a PRINT line,
containing lots of cursor commands to get the
print position to the right place, and the
graphics for that part of the picture. A second
line contains RETURN.

1000 PRINT II [!]DJ@J@]@]@]@]@]@]@]ill
ill ill [IJ ill ill ill ill ill ill [TI ill ill ill ffil. -_ -"

1010 RETURN

5 Bung?
Another simple check line to see if the MISS
counter has reached 10.

Stop
Rather than end the program after one run
through, an 'Another Go?' routine has been
included. You should note that the program
restarts from the RESTORE line for the next go.

127
Games

PEEK allows you to find out what is
going on inside the 64. It will tell
you the contents of any address,
just as POKE will let you change
the contents of an address. Most of
the time, when we are working in
BASIC, it shouldn't matter too much
just exactly what is going on inside,
as long as the 64 gets on with the
job. Some of the more
sophisticated sprite routines need
PEEKs, and there IS one particular

address which is of great interest.
Address 197 picks up

keystrokes. PEEK(l97) is like the
GET statement, but far more
flexible.

The number that you get from
PEEK(197) will always be between
o and 64. '64' shows that no key is
being pressed. The numbers
produced by the other keys are
shown here.

C= Commodore 64

BOJ[]]QJmrnrn[f][]][]][]][±]QO
57 56 59 8 11 16 19 24 27 32 35 40 43 4

I CTRL I @] ~ [[] [[] [1J m DO IT] [QJ m ~ 0
62 9 14 17 22 25 30 33 38 41 46 49

~ i.~.lg m w [Q] ITJ [QJ [BJ []J w IT] D CJ ~ [
10 13 18 21 26 29 34 37 42 45 50 53

Ic= I r-I S-HI-FT---'I W [Xl [£J [YJ [j] [ill [MJ D 0 OJ I SHIFT
12 23 20 31 28 39 36 47 44 55

I SPACE BAR 60 I

128
Games

I'~
~~
'c-------~

I~ IINSTI HOME DEL fl
51 0 4

1] I RESTORE I f3
34 5
~.::T~:Ri\ I f5

1 6

ITJB fl
7 2 3

HZ) IF PEEK(197)= 64 THEN 10
20 PRINT PEEK(197): GOTO 10

Here's another routine to show how you could
use the PEEK to control the flow of a program.
Type it m and see.

10 X =0
20 PRINT X
30 X=X+1
40 IF PEEK(197)<>64 THEN 40
50 GOTO 20

As long as no key is touched, the program
keeps printing. Hold down a key to stop it, and
watch it start up immediately you take your
finger off.

- - _. Projects . -

1 Try writing a GET line that would do the
same.

2 Change line 40 to this to create the reverse
effect. Now the program will only run when you
hold down a key:

40 IF PEEK(197)=64 THEN 40

Look out for the use of PEEK(197) in the
SKI-SPRITE game.

129
Games

0":';'

§

' • •
'.r-

130
Games

1.
." "

!I -,
f.,.

;p"

"-,
--.....

.....

::?
"

j

~

In 'SKI SPRITE', the aim is to keep the skier
clear of the asterisks as he rushes down the
screen. Steer left and right with the @i~keys.

The game ties together several of the sprite
handling techniques and keyboard control. It
also introduces a new idea - COLLISION
DETECTION. There are two PEEKs that will tell
you if a sprite has 'hit' a character, or another
sprite. The one we are using here checks for
sprite-character collisions.

PEEK(VIC + 31) will have a value of 1 if sprite
o hits a character; a value of 2 if sprite 1 collides;
4 for sprite 2, etc.

PEEK(VIC+30) checks for sprite-sprite
collisions, using the same codes. So, a value of 3
here would show that sprites 0 and 1 had
crossed paths.

Collision codes

Sprite number 0 1 2 3 4 5 6 7

Collision Code 1 2 4 8 16 32 64 128

The sprite DATA lines have not been included
in the program list. You will find it easier to type
them in correctly if you work directly from the
designs. Y O,u can, of course, always alter the
designs to suit yourself.

131
Games

132
Games

0
48
48
56
56
60
60
28
30
31
15
3
0
0
0
0
0
0
0

224
240

240
120
120
121
59
47
47
31
22
22
15
9

15
7
7
7
3
3
1
0
0

60 0
126 0
219 3
255 3
231 7
231 7
126 14
60 14

126 60
255 252
255 240
255 192
255 0
255 0
255 0

42 0
84 0

255 0
255 0
255 7
255 15

231 15
231 30
231 30
231 158
231 220
195 244
129 244

0 248
0 104
0 104
0 240
0 144
0 240

129 224
129 224
129 224
195 192
195 192
195 128
195 0

0 0

- - --- 'p -- -- -- -- - - - - -
. 'rogr3J!Jl

5 PRINT "~"
10 REM SKI SPRITE
20 FOR N=0 TO 1:FOR

T=0 TO 62
30 READ B: POKE 12800

+ 64*N +T,B
40 NEXT T: NEXT N
50 DATA •••.

200 VIC =53248
210 POKE VIC,100:POKE

VIC +1,100:REM
SPRITE FOR TOP
HALF

220 POKE
VIC+2,100:POKE VIC
+3,121:REM SPRITE
FOR LEGS

230 POKE VIC+39,2:POKE
VIC +40,2: POKE
2040,200: POKE
2041,201

240 HIT=0: POKE VIC
+31,0: REM NO
COLLISIONS YET

250 PRINT " ~ (24 down
cursors)": POKE
53281,1:POKE
53280,1

260 POKE VIC +21,3
270 X=100
280 T=INT(RND(0)*40):

PRINT TAB(r> ;"*"
290 IF PEEK(197><> 64

THEN GOSUB 1000
300 IF PEEK(VIC+31»1

THEN GOSUB 2000:
IF HIT =5 THEN 400

310

320
400

410

420
430
440

1000

1010
1020

1030
1040

1050
2000
2010
2020

2030

2040

2050
2060

2070

2080
2090

133
Games

IF RND(0».2 THEN
PRINT:GOTO 290
GOTO 280
PRINT "YOU HAVE
CRASHED ONCE TOO
OFTEN !"
INPUT "ANOTHER GAME
(Y IN) "; A$
IF A$ ="Y" TH EN 200
IF A$<>"N" THEN 410
END

REM MOVE SPRITE
ACCORDING TO KEYS
P=PEEK(197>
X=X+(P=47>*2
-(P=44)*2
X=X+(X>255)*2-(X<0)*2
POKE VIC,X : POKE
VIC +2,X
RETURN
REM COLLISION
HIT =HIT+1
FOR N=1 TO 20 :FOR
COL=6 TO 7
POKE VIC +39,COL:
POKE VIC+40,COL
FOR D=1 TO 50:
NEXT D
NEXT COL: NEXT N
POKE VIC +39,2:
POKE VIC +40,2
PRINT " ~ (24 down
cursors)":
POKE VIC+31,0
RETURN

How.it works .
Two sprites are used here to give a
larger and clearer image. Sprite 0
sits on top of sprite 1, and the
horizontal position for both sprites
is held in the variable X.

Line 240: You must clear the
collision address before you try to
use it. The HIT counter keeps a
tally of collisions. You are allowed 5
on anyone run. The limit can be set
to anything you like.

Line 250: This pushes the print
position to the bottom of the screen,
so that the asterisks begin to print
from there. The screen and border

are set to snow-white.
Line 280: This prints an asterisk

at a random TAB position.
Line 300: Here you are asking

the 64 to check if the lower sprite
(number 1) has collided- i.e., is
PEEK(VIC+31)=2, but it might just
happen that the top sprite collides
at the same time, in which case the
PEEK would give you 3. This caters
for either possibility.

Line 310: This controls how many
asterisks appear on the screen.
Eight times out of ten, the program
will go back to the keystroke line

,"

134
Games

. -
.i

...... ,.

(290) and miss the asterisk print
line. Change that random limit to
increase, or reduce the frequency
of the asterisks.

400-440 When the INPUT line
appears, you will notice a lot of
commas and full stops. These have
been collected into the INPUT
BUFFER during the course of the
game. It looks a bit messy, so add
this line to empty the buffer before
the INPUT.

405 GET A$: IF A$<>""
THEN 405

'f":

--- .':'{'~., -=------
.....

1000-1050 The sprite is
controlled by the @ and ~ keys.
If you would prefer tb use other
keys then look up their code
numbers on the Take a Peek
reference chart.

1030 stops the X value from
wandering out of range. If it does
go over 255 or under 0, then this
corrects it before the POKE line.

2000-2090 You could add some
sound effects in here. If you do,
then you would be advised to
recolour your screen. White
screens and borders make some
TV sets buzz!

135
Games

•
The final chord

Make more music
It's time to put your improved BASIC
knowledge to work and convert your computer
keyboard into an organ keyboard. The
following program makes the number keys
(from 1 to 8) play notes in the key of C. Once it is
working properly, you can extend this to make
more music with the other keys.

. -- Program . '

5 PRINT J/~" 100
10 REM ORGAN
20 DIM P(8,3) 110
30 FOR T=1 T08: FOR

N=1T03:READ P(T,N): 120
NEXTN,T

40 DATA 56,17,37,59,19,63,8,
21,154,11,22,227,16,
25,177,19,28,214 130

50 DATA 24,32,94,27,34,75 140
60 S=54272
70 FOR N=S TO S+24:

POKE N,0: NEXT N 150
80 POKE S+24,15 160
90 POKE S+5,0:POKE S+6,32

170

136
The final chord

PRINT H PRESS KEYS 1
TO 8 TO PLAYH
IF PEEK(197)=64
THEN 110
X=PEEK(197): FOR
T=1 TO 8: IF
P(T,1)=X THEN N=T:
GOTO 140
NEXT T: GOTO 110
HI = P(N,2): LO=
P(N,3): POKE S+1,HI:
POKE S,LO
POKE S+4,17
IF PEEK(197)=64
THEN POKE S+4,16
GOTO 110

To make this program work, we
are using an array. The arrays you
saw earlier were all one­
dimensional-like a list. The array
used here is two-dimensional. You
could think of it as a table like the
one on this page. The array we use
is labelled P(8,3). It has 8 rows and
3 columns. In the first column is
stored the PEEK code for the key,
in the second column is the HI
frequency for the pitch; and the
third column stores the LOw
frequency.

The table here shows the data
for the array. The dotted lines
enclose that part of the table which
is written mto the program. The
rest can be added, by you, later.

NOTE'
C 0

D I

E ;
F i

G I

A 0

B D

C' I

D'
E'
F'
G'
A'
B'

-~------------~--~~---
KEY/CODE HI LO

1/56 17 37
2/59 19 63
3/8 21 154
4111 22 227
5116 25 177
6119 28 214
7/24 32 94
8/27 34 75
9/32 38- 126
0/35 43 52
+/40 45 198
-/43 51 97
£/48 57 172

~~~lL /51 64 188 

- - -. -Profects-
. -

1 Extend the 'organ' keys to cover 
the top row from 1 to CLRlHOME. 
The table gives you all the data you 
need for this. Your range of notes 
will then be from middle C to top B. 

2 Change the sounds. This has 
been written with the Triangle 
waveform (POKE S+4, 17). Try 
using the Sawtooth waveform 
instead for a more 'electronic' 
sound 

The Pulse waveform offers even 
more variety of textures. To use 
this, POKE S+4,65 to turn it on, and 
POKE S+4,64 to turn it off. You will 
also need to add a line. With the 
Pulse waveform, you have to set 
the Pulse rate before anything 
happens. This is controlled by two 
POKEs - S+2 and S+3. Of these 
S+3 is the most important. Its value 

can be anythmg between 0 and 15. 
The higher the number, the 
'thinner' the sound. S+ 2 gives a fine 
tuning edge to the waveform. Add 
this line for a start, and adjust the 
numbers later to suit yourself 

95 POKE S+3, 7: POKE 
S+2,50 

3 Change the envelope. The 
envelope is the shape of the sound 
- the ATTACKIDECA Y, SUSTAIN/ 
RELEASE rates. At the moment the 
envelope is shaped to give a flat, 
organ-like sound, as this allows for 
an easy slide between notes. Try 
changing line 90 to this: POKE 
S+5,9: POKE S+6,32. 

Try different values in that line 
and see what effects you can 
produce. 

137 
The final chord 



SID has three voices, though so far we have 
used only one. The second and third voices 
work in exactly the same way as the first, and 
the SID numbers follow an easy pattern. Look at 
the table. All the numbers for voice 2 are seven 
more than the equivalent numbers for Voice 1. 
Voice 3 numbers are seven more again. 

This plays a C chord: 

10 SID=54272: FOR N=SID TO SID 
+24: POKE N,0: NEXT 

20 POKE SID+24,15 
30 POKE SID+5,9:POKE SID+6,40 
40 POKE SID+12,9:POKE SID+13,40 
50 POKE SID+19,9:POKE SID+20,40 
60 POKE SID+1,17:POKE SID+ 0,37 
70 POKE SID+8,21:POKE SID+7,154 
80 POKE SID+15,25:POKE SID+14,177 
90 POKE SID+4,33:POKE SID+11,33: 

POKE SID+18,33 
100 FOR D=1 TO 1000: NEXT D 
110 POKE SID+4,32:POKE SID+11,32: 

POKE SID+18,32 
138 

The final chord 

\ 
\. 



? 
IF 

/ 
.' /" 

'\' ... 

~ /V .:. 

r .'., 

t \ 
.~ 

v ";.~,,, 
......... ~ .... 

! 

If you don't like the sound of this chord, then try 
changing to a Triangle waveform. Alter the 33's 
in line 90 to 17's. (You will need to change line 
110 to turn them off.) You can experiment with 
different values for the shapes of the notes -
lines 30 to 50. They don't all have to be the 
same. 

Whatever the final sound you come up with, it 
has all been rather a lot of work for one chord. It 
needn't be just for one chord, of course. This 
can be made into a subroutine, and called up 
whenever you need it in a program. You can 
change the chord that is played by putting the 
High and Low frequencies into variables, and 
send different sets of notes to your subroutine. 

You can even write a routine that will playa 
chord on the strength of just one note value. All 
music follows very strict mathematical rules, 
and the relation between the notes of a chord of 
anyone type is always the same, no matter what 
the chord. To understand this you have to look 
at those High and Low frequencies a little more 
closely. 

VOICE 1 VOICE 2 VOICE 3 

Pitch-low SID+O SID+7 SID+ 14 

-high +1 +8 +15 

Pulse rate - fine tune +2 +9 +16 

-main +3 +10 +17 

Waveform +4 + 11 + 18 

Attack/decay rate +5 +12 +19 

Sustain/release rate +6 +13 +20 

Volume SID+24 

139 
The final chord 



Frequencies 
The FREQUENCY of a note is the 
number of times per second that it 
makes the air vibrate. The faster 
the vibrations, the higher the note 
sounds. 

computers, handles big numbers in 
two bytes - a HIGH BYTE and a 
LOW BYTE. If you look back at the 
last program you will see that the 
High and Low frequencies for C 
are 17 and 37. The frequency of C 
is 4389. Use your 64 to multiply 17 
by 256, and then add 37 to the total. 
You should get a result of 4389. 

The Commodore 64 can produce 
notes with frequencies as low as 
268 beats per second, and as high 
as 64814 beats per second. This 
covers a range of eight octaves -
much the same as a piano. What it 
can't do is cope with any of these 
frequency values in a single byte. 
The highest number you can POKE 
into an address is always 255. 

To turn any two-byte number 
into a decimal, multiply the second 
byte (the High byte) by 256, and 
add the first (Low byte). If you don't 
fancy the maths, type this program 
in. It will work out frequencIes for 
you. The 64, like most home 

10 INPUT H HIGH FREQUENCY ";HI 
20 INPUT HLOW FREQUENCY ";LO 
30 F = HI*256 +LO 
40 PRINT HFREQUENCY ="; F 
50 GOTO 10 

You can turn this on Its head and convert big 
numbers to two-byte form with a program like 
this: 

10 INPUT H BIG NUMBER ";BN 
20 HI = INT(BN/256) 
30 LO = BN-HI*256 
40 PRINT HHIGH BYTE"; HI ,HLOW BYTE 

"; LO 
50 GOTO 10 

(This may seem like a long way to go to a 
shortcut, but we are getting there!) 

CHORD SHAPES follow set patterns. A Major 
chord consists of the first, third and fifth notes of 
a scale. The chord C has the notes C, E and G, 
from the scale GD,E,F, G,A,B,C. These intervals 
are mathematical. Multiply the frequency of the 
first note by 1.26 to get the frequency of the 
second. Multiply this by 1.18 to get the third. 

140 
The final chord 



At last, here it is. The give-me-a-
note chord-playing subroutine. 

1000 S=54272:FOR N=S TO 
S+24:POKE N,0: 
NEXT N 

1010 POKE S+24,15 
1020 POKE S+5,9: POKE 

S+6,40 
1030 POKE S+12,9: POKE 

S+13,40 
1040 POKE S+19,9: POKE 

S+20,40 
1050 GOSUB 1200: 

BN=BN*1.26 
1060 POKE S+1 ,HI: 

POKES+0,LO 
1070 GOSUB 1200: 

BN=BN*1 .18 
1080 POKE S+8,HI: POKE 

S+7, LO 

Projects 
You can improve this by taking the 
first line out of the subroutine, and 
putting it at the very start of your 
program. This avoids the crackle 
as the computer clears the sound 
chip. 

For a minor chord, change the 
second half of line 1050 to 
BN =BN* 1.19, and the second half 
ofline 1070 to BN=BN*1.25. 

For a major seventh, change line 
1070 to BN=BN* 1.141. 

141 

1090 GOSUB 1200 
1100 POKE S+ 15, HI: POKE 

S+14,LO 
1110 POKE S+4,33: POKE 

S+11,33: POKE 
S+18,33 

1120 FOR D=1 TO WHEN: 
NEXT D 

1130 POKE S+4 ,32: POKE 
S+11,32: POKE 
S+18,32 

1140 END 
1200 HI = INHBN/256) 
1210 LO =BN-HI*256 
1220 RETURN 
To make this work, set a value for 
BN corresponding to the frequency 
of the bottom note of the chord, and 
a value for WHEN to fix the length 
of the sounds. 

SAMPLE FREQUENCY TABLE 

HI LO FREQ 

C 17 37 4389 

D 19 63 4927 

E 21 154 5530 

F 22 227 5859 

G 25 177 6577 

A 28 214 7382 

B 32 94 8286 

C 34 75 8779 

The final chord 



A final word 

I hope this book has helped to introduce you to 
your Commodore 64. You should by now have a 
reasonable grasp of most of the Commodore's 
BASIC, and of handling its sounds and sprites. 
There are still areas that have not been touched 
- machine code, file-handling and some of the 
more advanced mathematics. However, you 
know enough now to be able to write a whole 
range of programs of your own, and I hope you 
have gained enough confidence with the 
machine to feel ready to tackle the more 
complex areas of programming. 

When you sit down to write your own 
programs, take them from the 'Top down'. Start 
with a very clear idea of what the program is 
supposed to do. Then break the program down 
into its main parts, and draw up an outline 
flowchart. The next stage is to look at the 
separate routines that will make up the blocks of 
the program. Some of these may have to do 

142 
A final word 



things that you have never tried before. Other 
routines will be based on what you already 
know well. 

Solve your problems before you start, if you 
can. Tackle the hardest parts first, and try and 
work out the routines by themselves - not as 
part of your overall program It is much easier to 
test out a new technique in a 10 line program, 
rather than as a 10 line routine in a 200 line 
program! 

Ideally, you should be able to assemble a 
program out of tried and trusted routines. That 
way, your de-bugging sessions will be limited 
to making sure that the routmes lmk together 
properly. It may look quicker to scrap all this 
preparation, and just get in there and hack, but 
in the long run, it takes longer. 

And finally, a thought for when things get 
tough. Nothing's impossible - it's just that you 
haven't found the way to do it - yet. 

143 
A final word 



Index to BASIC keywords 

The numbers refer to the first page on which 
the keyword is covered. 

AND 112 
ASC U9 
CHR$ 119 
CONT 19 
DATA 64 
DIM 106 
END 19 
FOR ... TO. .. 46 
GET 44 
GOSUB 60 
GOTO 38 
IF ... THEN ... 37 
INPUT 31 
INT 42 
LEFT$ 126 
LEN 39 
LET 33 
LIST 12 
LOAD 28 
MID$ 126 
NEW 13 
NEXT 46 
ON ... GOTO/GOSUB 
OR 112 
PEEK 128 
POKE 18 
PRINT 10 
READ 64 
REM 103 
RESTORE 67 

RETURN 60 
RIGHT$ 126 
RND 42 
RUN 9 
SAVE 27 
SPC 47 
SQR 35 
STEP 91 
STOP 19 
STR$ 37 
TAB 44 
TI 74 
TI$ 72 
VAL 37 
VERIFY 28 

127 

144 
Index 





aunc:h you !5elf 
into progra i ning 

Introducing your COlmmodore 64 
All the practical advice you need to start programming. 

ACTION PACKED PROGRAMS 
Introducing your Commodore 64 gives you instant 

on-screen results. Right from the start you will be working 
on powerful program listings - each one fully explained 
and illustrated. These listings will become the basis for 

your skills and give you results fast. 

NEW PROGRAMMING SKILLS 
In Introducing your Commodore 64 you will discover the 

starting points for powerful programming. You will 
discover how to explore the potential of your micro. Best 
of all you'll discover how to write dynamic and exciting 

programs. 

NYBBLE BY NYBBLE, BYTE BY BYTE 
Introducing your Commodore 64 works at making it 

easier for you. There 's no unnecessary jargon. If you need 
to know it's clearly explained - and then practised. 

It's as simple as that. 

GET RESULTS - FAST. 
INTRODUCING YOUR COMMODORE 64 

••• T ••• 
J. ... ongman ::: 
C~omputer 
B(Joks 

* 

ISBN 0-582-91603-8 

9 780582 916036 


