
A
PROGRAMMING
LANGUAGE

Tutorial Manual

A�
PROG RAM N ING

LANGGAGE

Tutorial Manual

Copyright © 1985

Kyan Software
by

1850 Onion Street, Suite 183
San Francisco, CA 94123

COPYRIGHT NOTICE

Kyan Software believes you should be aware of your rights under
the U.S. Federal Copyright Law. We quote for you the provisions
of Section 117 of the Copyright Law which contains limitations on
the rights of copying and adaptation given to owners of computer
programs:

"Not withstanding the provisions of Section 106, it is
not an infringement for the owner of a copy of a computer
program to make or authorize the making of another copy
or adaptation of that computer program provided:

(1) that such new copy or adaptation is created as an
essential step in the utilization of the computer

program in conjunction with a machine and that it
is used in no other manner, or

(2) that such new copy or adaptation is for archival
purposes only and that all archival copies are

destroyed in the event that continued possession

of the computer program should cease to be rightful.

Any exact copies prepared in accordance with the

provision of this section may be leased, sold, or
otherwise transferred, along with the copy from which

such copies were prepared, only as part of the lease,

sale, or other transfer of all rights in the program.
Adaptations so prepared may be transferred only with

authorization of the copyright owner •"

SUBJECT TO THOSE LIMITATIONS, KYAN SOFTWARE GRANTS THE PURCHASER OF

THIS PRODUCT A LICENSE TO USE THIS SOFTWARE UNDER THE TERMS DESCRIBED

IN THE FOLLOWING LICENSE AGREEMENT.

LICENSE AGREEMENT

By purchasing Kyan Pascal you are granted a personal, non-transferable
and non-exclusive license to use the documentation and Program on
a single CPU under the terms stated in this Agreement. T it l e a n d
ownership of the Program remain with Kyan Software;

you, your employee and/or agents are required to protect the con
fidentiality of the Program and documentation. You may not distri
bute or otherwise make the Program or documentation available to
any th i r d p a r t y ;

you may not assign, sublicense or transfer this license and may not
copy or reproduce the Program or documentation for any purpose, except
you may copy the Program into machine readable or printed form for
backup purposes in support of your use of the Program.

Any portion of this Program merged into or used in conjunction with
another program will continue to be the property of Kyan Software.
Kyan Software hereby grants you a non-exclusive license to merge or
use portions of the Program in conjunction with your own programs
provided that: you acknowledge Kyan goftware's copyright and ownership
of these portions in a prominent location on both the magnetic media
and written documentation for your software.

You acknowledge that Kyan Software has a valuable proprietary interest
in the Program and documentation and you are receiving only a LIMITED
LICENSE TO USE the Program and related documentation and that Kyan
Software retains title to the Program and documentation.

YOU MAY NOT USE, COPY. MODIFY, OR TRANSFER THE PROGRAM, OR DOCUMENTATION,
OR ANY COPY, MODIFICATION OR MERGED PORTION, IN WHOLE OR IN PART,

EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS LICENSE. I F YOU DO, YOUR

LICENSE IS AUTOMATICALLY TERMINATED.

TERM: This license is effective until terminated. You may terminate
it at any time by destroying the Program and documentation with all

copies, modifications and merged portions in any form. It will also
terminate upon conditions set forth elsewhere in this agreement or
if you fail to comply with any term or condition of this Agreement •
You agree upon such termination to destroy the Program and documenta
tion together with all copies, modifications and merged portions in
any fo rm.

CONTENTS

Ed

• g •

• Q •

PREFACE o • • • • • s • • • • • • • • • • • •
• •

INTRODUCTION..................... • 8

EDITOR AND COMPILER INSTRUCTIONS (Standard).
The Default File..

. .

The File Directory................

Eddlt lng •
Editing PAINT, an Example.......... • .

. . . .

avlIlg a File •
Compxlz.ng a Fz. le .

R unnlng a F i l e .
Building a Stand-Alone File.

.

P rxntj.ng a Pr o g r a m .
F 1ale Management..........................

Editor Specifications.. •

To Change the Color of Characters...

To Use Both Upper - a n d L o w e r c a s e L e t t er s .
To Halt a Program While It Is Running.

. . .

Saving the HELP File.
. . •

List of Editor and Compiler Commands.
. . . •

EDITOR AND COMPILER INSTRUCTIONS (Advanced)..
dlt l ng o • • • • • • • • o• •

Editor: Block Move Commands... • ... • • •

Editing PAINT, an Example • • • . •

S avlng a F i l e .
The File Directory. •

omp1.1j.ng a r l . l e .
R unnxng a Fj . l e .

P rxntxng a P r o g r a m .
F 1ale Management...

. .

Copying Files from Disk to Disk...........

To Change the Color of Characters.
.

T o Use Both Upper - a n d L o w e r c a s e L e t t er s . .
To Halt a Program While It Is Running..

. . .

L j.st of Commands. •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • • I 10

• • w i w > 3

• • • • • o >4

• • • • • e 14

• • • • • • 16
• • • • • • 16
• • • • • • 16
• • • • • • >7

• • • • • 21

• • • • • 23
• • • • o 24

• • • • • 26
• • • • • 27

CONSTRUCTION PROGRAM...
.

Analysis of Construction.

A lgorxthm.. . •
.

I dents.fxers
.

Write and Read Commands..
.

Input, Output and Printing the Outp
Standard Kyan Pascal Only..

. .

Input, Output and Printing the Outp
Advanced Kyan Pasca l O n l y . . .

.

C '

PART I : SAMPLE PROGRAMS.. • 28

EGO PROGRAM • • • • • • • • • • •• 29
Program Statement and Reserved Words. • . • ..29
Declaration and Program Body. • 29
A nalysxs of Ego. 30

• 31
.31

• • • • • • • • 0 32

ut

ut

• • • • • • • •

• • • • • • • •

• y • • • • • • •

• • • • • • • • •

.32

.33
• • • • • • • •

BOOLEAN PROGRAM......................
Boolean Data Type
Div and Mod Operators.............
Boolean Operato r s
Operator P r ecedence.

MULTI-DIGIT HEXADECIMAL CONVERSION...
A lgorithm.........................
REPEAT UNTIL. .
Scalar Types and Boolean Variables
Subrange Types.
C ASE OF.... .
T he Funct i ons Ord , F r ed , Succ , a n d

Readln •
C ON ST e •

PROGRAM TO FIND THE AVERAGE..............
Readln and Writeln......,.............
Real and Integer Data Types...........
Trunc, Round and Maxin t
Arithmetic Operators..................

SOCIAL SECURITY PROGRAM..................
Relational Operators..................
The IF-THEN Statement.................
The Assignment Statement..............

ALPHABETIZE PROGRAM......................
FirstWord Algorithm...................
String and Char Types
WHILE@ •

FACTORIAL PROGRAM........................
Analysis of Program...................
For Loops and Loop Control Variables..

• • • •

. 3 3
• • • • • • 34

• • • • • • 35
• • • • • • 35
• • • • • • 36
• • • • • • 37
• • • • • • 37

• • • • • • 38
• • • • • • 38
• • • • • • 39
• • • • • • 39

• • • • • • 40
• • • • • • 40
• • • • • • 41
• • • • • o42

• • • • • • 43
• • • • • • 43
• • • • • • 44

• • • • • • 45
• • • • • 045
• • • • • • 45
• o • • • • 46
. . . . , . 4u

• • • • • • 48
• • • • • o49
• • • • • o 49
• • • • • e49
• • • • • • 50
. 50
• • • • • • 51Chr

PROCEDURES..... .
Declaring and Executing Procedures....
Parameter Lists, Actual and Formal....
Variable and Value Parameters.........
Correspondence Between Actual

and Formal Parameters...............
Funct i o n s o . . o o . . . o o . o. . . o. . . .
Declaring Functions...................
The Funct ion Odd. .
Global and Local Variables............
Nesting of Functions and Procedures...
Global and Local Types................
Forward References , . .
Unconditional Branch: GOTO.........,..

PART II : PROGRAMMING TECHNIQUES..................52

• • • 53
• • • 53
. . . 54
• • • 55

• • • 55
• • • 56
.. .56
• • • 57
. . .57
• • • 58
. . .60
.. .60
• • • 61

RRAYS... 62A
Arrays of Arrays and Multidimensional Arrays...63
Adding Two Multidimensional Arrays,..... •64

• • • • • •

• • • • • •

• • • • • •

• • • • • •

The Array As a Parameter , , .
Program Examplel........................
Program Example2. .
E nd of L i n e .
Recursive Funct i ons and Pr ocedures
Copying Arrays .

FI LES •
File Declaration.........
Writing to a File........
Program Store(List)......
Reading a F i l e
Text Fr i e s
Files o f R ecords
Random Files (Advanced Ky

POINTER VARIABLES AND LINKED LISTS...
Pointers and Nodes.
N ew... • • . .
Peek and Poke. .
Linked Lists and NIL..............

)Dispose (Advanced Kyan Pascal Only

RECORDS.... 0.
C opying a Record . . .
P rogram Absolute . . .
Program ElapsedTime
Arrays o f Records . .
WITH • • • • • • • • • • • • • • •
V ariant Records

ETS •S
Operations on Sets......................
Using Sets to Examine the Members

of an Array •

an
• • • • • • • • • • • • •

Pascal Only)

• • • • • •

• • • • • • • 64
• • • • • • • 65
• • • • • • • 66
• • • • • • • 67
• • • • • • • 68
• • • • • • • 68

• • • • • • • 70
• • • • • • • 70
• • • • • • • 71
• • • • • • • 71
• • • • • • • 73
• • • • • • • 74
• • • • • • • 74

• • • • • • • 76
• • • • • • • 77

• • • • • • • 78

• • • • • • • 79
• • • • • • • 79
• • • • • • • 79
• • • • • • • 80
• • • • • • • 80
• • • • • • • 81
• • • • • • • 82
• • • • • • • 83

• • • • • • • 84
• • • • • • • 84
• • • • • • • 84
• • • • • • o85
• • • • • • o 86
. 8 8• • • • •

THE ASSEMBLED PROGRAM AND ITS USES
(Advanced Kyan Pascal Only)

from other Files......................
Including Files, Other Applications......
Assembly Language Routines..... •
Assembler Directives.....................
How to Use Assembly Language Routines to

Modify PASCAL Variables............. •
Passing Parameters through Chain..... • ...
How to Chain Source Code Files...........

• • • • • • 89

• • • • • • 89
• • o • • • 89
• • • • • • 90
• • • • • • 90

• • • • • • 91
• • • • • • 93
• • • • • • 94

How to Include Procedures and Functions

STRING MANIPULATION
Stringo • • • • • • • • • • • • • •
L ength..
Concat • • • • • • • • • • • • • • •
Indexo • • • • • • • • • • • • • • •
Substr i n g

• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

• • • • • o95
• • • • • • 95
• • • • • • 95
• • • • • o96
• • • • • • 96• • • • • • • • • • • • • • • • • • • •

APPENDIX A
PEEK AND POKE EXAMPLE PROGRAMS....................97

APPENDIX B
COMPILER, ASSEMBLER AND RUN-TIME ERROR MESSAGES..103

APPENDIX C
QUICK GUIDE TO KYAN PASCAL.......................105

APPENDIX D
SPECIFICATIONS •el07

WARRANTY,
BACKUP AND REPLACEMENT DISKETTES.... . . . • • .. • • • .112

an
Dear Fr i e n d :

Thank you for purchasing Kyan Pascal for the Commodore 64/128.
The following manual is intended as a reference for both STANDARD
Kyan Pascal and ADVANCED Kyan Pascal. Those chapters which apply
only to STANDARD Kyan Pascal are marked (STANDARD); those chapters
which apply only to ADVANCED Kyan Pascal are marked (ADVANCED).
You will find that most chapters apply to both versions.

STANDARD ~K an Pascal

STANDARD Kyan Pascal offers a very user-friendly programming
environment which is perfect for learning the Pascal language.
It features a P-code compiler, fully-resident software, and other
useful functions which enable you to quickly write, compile and
debug Pascal programs. It is widely used in schools and universities
to teach Pascal to beginning students.

ADVANCED ~K an Pascal

ADVANCED Kyan Pascal is actually two products in one • The
disk contains STANDARD Kyan Pascal plus a second machine code com
piler. It includes all the sophisticated Pascal functions needed
to develop professional quality programs. The built-in assembler,
linking/chaining functions, and other advanced features enable you
to write very large Pascal programs which will run at the maximum
speed possible on the Commodore 6502 microprocessor.

If you purchased the ADVANCED version and are new to Pascal,

as your proficiency in the language grows, you can move up to the
powerful capabilities of the ADVANCED version. If you are an old
hand at Pascal, you can move directly to the ADVANCED version.
We believe you will find the Kyan software has the ability to satisfy
all of your programming needs.

we suggest that you concentrate first on STANDARD Kyan Pascal. Then,

If you have questions or suggestions for improvements in the
software, please let us know. We are always trying to improve our
products and welcome input from our customers.

Thanks again for selecting Kyan Pascal.

Sin r el y ,

omas . Ec W
P resi d en t

TEE/sk

(415) 775-2923kyan software 1e so union street 41s3 san f r ancisco, california 94123

INTRODUCTION

The history of PASCAL goes back to the late 1960s, when Niklaus Wirth, a
professor of computer science, decided that a new approach — a new
language — was needed for teaching programming. W irth introduced PASCAL
as a formal language in 1971.

The two principal aims of PASCAL are "..to make available a l anguage
suitable to teach programming as a systematic discipline based on certain
fundamental concepts clearly and naturally reflected by the language.."
and "to develop implementations of this language which are both r el i a b l e
and efficient on presently available computers" (Jensen and Wirth, "Pascal
User Manual and Report").

PASCAL has become a widely used language for both elementary and advanced
programming. I ts popularity derives from the clarity of programs written
in it and th e e fficency with which it can be implemented within the
computer.

Kyan PASCAL is especially efficient in this regard, because the run time
code and the c ompiler itself are written in assembly language, the
language of the microprocessor integrated circuit.

PASCAL is a self-documenting and self-structuring language. Top-down
programming and modulization are natural outgrowths of its f eatures.
T hese features include, a m ong others, u s er-defined functions a n d
procedures of which modules are built.

Separation of the declaration section from the program body also enforces
good programming technique. A l l the information on constants, types of
variables, and names of v ariables and constants appears in a s i ngle
section rather than being spread throughout the program.

Kyan PASCAL provides features that help the programmer to find the syntax
e rrors that account for over 90X of the errors in programming. O ver 3 0
error messages for syntax are in the compiler. These not only tell the
programmer what types of errors were made but also on which lines the
e rrors o c cu r r e d .

O ne final reason for using PASCAL is its portability. P A SCAL, one o f
today's most popular languages, is implemented on nearly every computer on
the market. Kyan PASCAL is compatible with Standard PASCAL. Programs and
program modules written in K yan PASCAL will run on a mu l titude of
computers: a programmer can develop software on a home computer, transport
it to many other machines, and run the programs immediately.

References

Jensen, Kathleen, and Wirth, Niklaus: "Pascal User Manual and
Springer-Verlag, Berlin, 1974

Kaufman, Elliott B.: "Pascal, A Problem Solving Approach,"
Wesley Inc., Reading, Mass., 1 9 82

Z aks, Rodn e y : "Introduction t o P ASCAL," S y be x I nc . ,
California, 1981

Report , "

Addison

Berkeley ,

EDITOR AND COMPILER INSTRUCTIONS
g~ NDARD KYAN PASCAL

To transfer Standard Kyan PASCAL from the disk to memory, type:

LOAD "PASCAL",8

followed by <RETURN). Striking the <RETURN) key tells the computer that

you have completed your entry. U nless instructed otherwise, you s h o u l d

always press <RETURN) when entering information into the computer.

Your Commodore 64= will search for the program (SEARCHING FOR PASCAL),
then indicate LOADING when Kyan PASCAL is found. C o m p l e tion of l o a ding

will take several minutes, at which point READY will be displayed:

READY
LOAD "PASCAL",8

SEARCHING FOR PASCAL
LOADING
READY

Type RUN to complete the loading task. T h e v e rsion number of your Kyan

PASCAL will appear on the screen followed by instructions to get the help

menu, and finally the prompt symbol ()).

The prompt symbol ()) is a signal from the program, in this case f r om

Kyan PASCAL, that you are to enter something.

READY
LOAD "PASCAL" P8

SEARCHING FOR PASCAL
LOADING
READY
RUN

KYAiV PASCAL VERSION 2.0
COPYRIGHT 1984 BY KYAN SOFTWARE
ALL RIGHTS RESERVED
TYPE "R HELP" TO GET A HELP MENU

You must remove your Kyan PASCAL disk before creating or saving programs.
In general, the time to remove the disk is immediately after loading. You

must then insert a blank disk on which your programs will be saved.

A sample program, called "PAINT," is included on the Kyan PASCAL disk.
this is your first time using Kyan PASCAL, leave the disk in the drive so

that you can use the sample program as you familiarize yourself with the
editor commands.

. . Trademark o f C o mmodore I n c .

STANDARD K yan Pa s c a l

Type R HELP and <RETURN>. A menu of commands that you will use will be
displayed:

BUILD
COMPILE
EDIT
FILE
PRINT
RUN
SCRATCH
RENAME
COPY
MERGE

B [FILE]
C [FILE]
E [FILE]
F [FILE]
P [FILE]
R [FILE]
-SO:FILE
-RO:NEWFILENAME=OLDFILENAME
-CO:NEWFILE=FILE
-CO:NEWFILE=FILE1,FILE2,FILE3

Always press <RETURN> after entering a command.

The Default File

To make PAINT the default file, enter the following:

>F PAINT

PAINT is now the default file because it was the last file name entered
with the F command. Whenever B, C, E , P or R is entered without a file
name, the operation will be performed on PAINT.

The computer will wait for you to choose the next step.

T he Fi l e ~Director

To list the files on your disk, enter D. A mong the files on your Kyan
P ASCAL disk a r e :

HELP HELP$

HELP is an example of a PASCAL source code file similar to one that you
might create. H E LP$ was created by the compiler (discussed later) and is
called an object code file. The dollar sign was added by the compiler as a
means of distinguishing between the two files. However, a file without a
dollar sign is not necessarily source code.

~Edit i e

Programs are stored in separate files. Each program added to the disk
must have its own f ile name consisting of 8 or fewer letters and/or
characters. Spaces are not permitted within a file name.

To enter a new program or change an existing one, enter E or E XXXXXXXX.
If XXXXXXXX is the name of an existing file, the program will appear on
the screen; otherwise, the screen will be blank.

The entering or changing of a program is called editing. Suppose you wish

10

STANDARD K yan P a s c a l

to edit PAINT.

>F PAINT

>E

As soon as <RETURN> is pressed, the program will appear:

PROGRAM PAINT;

TYPE A = ARRAY[1..25,1. .40] OF CHAR;
VAR

V,C : "A;
I,J : I NTEGER;

BEGIN
ASSIGN(V,1024);
ASSIGN(C,-10240);
FOR I : = 2 TO 17 DO

FOR J : = 1 TO 40 DO BEGIN
V"[I ,J] : = CHR(160);
C"[I ,J] : = CHR(I)

END
END.

Fl DONE
F2 SAVE

F3 GOLD
F4 UNDO

F5 TEXT> F7 PAGE>
F6 <TEXT F8 < PAGE

Kyan PASCAL includes an easily learned, full-screen, insert mode editor.
Anywhere you move the cursor, a letter, a number, a space, or even a new
line break may be added. This greatly facilitates editing your program.
(Holding down the up-down <CRSR> key scrolls the screen.)

<INST/DEL> operates (as in Commodore BASIC) by deleting the character,
space, or line break just to the left of the cursor. In addition, the
combination of <SHIFT> and <INST/DEL> deletes coincident to the cursor.

The choice of function key F3, F5, F6, F7, or F8 allows you to go to any
line in the program. F5 takes you to the end of your program; F6 takes
you to the beginning of your program. F 7 and F8 move you forward or
backward 20 lines, respectively. W hen F3 is pressed, the following
instruction appears:

11

STANDARD K yan Pa s c a l

GO TO:
G LINE-NUMBER

SUBSTITUTE:
S/OLD-STRING/NEW-STRING[/?]

FIND FORWARDS:
F [/STRING]

FIND BACKWARDS:
B [/STRING]

f ind commands are two-stage commands. F o r
in the program, press F3. W he n th e a bove

followed by the line number you want to go
take you to the last line.

The go-to, substitute and
example, to ~o to ~an line
instructions appear, enter
to. G followed by zero will

To find the occurrence of ~an ~stria in the program, press F3, then either
F or B followed the the string which is to be found. Fo r e x ample, if
"look out" is to be found, enter:

F3
F/look ou t

T he cursor will go to the first occurrence of "look out" ahead of t h e
p resent cursor position. T o f i nd the second occurrence, enter F3 F
without the string. This process can be repeated until all occurrences of
"look out" have been found. I f you enter F3 B, the occurrence of t he
string in back of the present cursor position will be found.

Maximum string size is 40 characters.

To substitute a new ~ stria f o r ~an ~strin in t h e prog ram e nt,er F 3

f ol l owed by :

S /old string/new string

The old string consists of the words or lines the way they are before the
substitution. The new string consists of the new words or lines that will
take their place. T o replace the string "first" with the string "¹ 1,"
e nter :

F3
S/first/¹ 1

The slashes are called delimiters. One delimiter is used before the old
string and one delimiter is used before the new string. Any character may
be used for a delimiter, but you must choose one that is not used in the
strings. Otherwise, the editor will not find the correct end or beginning
of the string.

Add a t hird delimiter and a "?" after the new string if you want the
editor to stop before making a substitution:

F3
S/first/¹ 1/?

12

STANDARD K yan P a s c a l

If you answer Y when the string if found, the substitution will be made.
If you answer N, the substitution will not be made. I n either case, the
editor will automatically go on to find the next occurrence of the old
string. Y o u ma y a nswer g at any time to quit the search and replace
process.

~Editin PAINT an ~Exam le

Use the cursor <CRSR> keys to go to the end of the line "FOR J := 1 TO 40
DO BEGIN." Then add a period to the end of the line.

You have now entered a change in the program PAINT and are ready to save
t he new vers i o n .

~Savin a Fi l e

Because the Kyan PASCAL disk is write-protected, insert a formatted blank
disk before attempting to save the edited version of PAINT.

To save your program, you can press the function key Fl or F2. Fl differs
from from F2 in that F2 returns you to the editor immediately after
saving the program, whereas Fl requires that you enter E to return to the
e dito r .

If you press F4 (<SHIFT> F3), the changes produced by editing will not be
saved, and the previous version of the program will remain unaltered. F4
is called the undo ~ke

Now press F l t o s a v e PAINT.

~Com ilino a File

Before a PASCAL program can be run, it must be entered into the computer's
memory, compiled and translated into machine language.

To compile the program, enter C. I f there are errors, they will be
counted and listed, and the program cannot be run. If there are no errors,
the error messages will not be displayed.

Enter C to compile the edited version of PAINT. Because of the change you
have made, there will be an error.

>C

0010 FOR J := 1 TO 40 DO BEGIN.
1

(1) " ' " OR "END" EXPECTED

0001 ERRORS

The line with the error is displayed with its line number. The "1"

underneath the line indicates where the error occurred. A description of

13

STANDARD K yan Pa s c a l

the error type is also displayed.

Sometimes, a single error in a program (such as a missing semicolon after
a VAR declaration) will generate multiple errors following it.

There may be too many errors to display at one time on the screen. To see
them all, enter the edit mode, but with the file ERROR$:

>E ERROR$

You may now use the (CRSR> keys to examine each of the errors. The errors
can also be printed by entering:

>P ERROR$

Go back to the edit mode and correct the error you introduced. (PAINT is
still the default file.) Try compilation again. Now there should be no
error message. The program is ready to run.

~Runnin a Fi l e

Enter R after compilation. The default program will run and perform the
tasks it was designed to do. (A program with no errors on compilation may
still be faulty. For example, programming the area of a circle to be "r r"
instead of "3a14~r~r" is an error the compiler will not detect.)

~Buildin a Stand-Alone File

A stand-alone file is a compiled PASCAL program that can be run without
using the Kyan PASCAL disk. T o build the stand-alone file, enter B after
you have compiled your program:

>B (PAINT is still the default file.)

Look at the file directory; it should now include PAINT, PAINT$, and
PAINT/. PAINT is the source code, PAINT$ is the compiled file, and PAINTX
is the stand-alone file. Y ou may now make copies of PAINTX and run these
using the Commodore 64 without Kyan PASCAL.

To run the stand-alone file from Commodore BASIC, type:

LOAD "FILENAMES",8
RUN

In the last example, you would type LOAD "PAINT%",8.

~Printin a ~Pro ram

After editing, enter P or P XXXXXXXX, where XXXXXXXX is the name of the
file. I f y o u h ave a printer, the default program or other program
specified will be printed.

14

STANDARD Kyan P a s c al

File Mana ement

The Commodore 64 provides a set of file management commands that may be
accessed without leaving the Kyan PASCAL environment. These commands may
be used at any time except when a program is running or being edited.

To format a disk enter:

-NO:Name,ID

"Name,ID" is the name you give to your disk (Kyan PASCAL does not use this
identifier}, where ID is restricted to two characters.

To clear the disk of all files, enter:

-NO:Name

To delete a file called "First" and also to delete its compiled version,
" Fir s t $, " e n t e r:

-SO:Firs t

S ometimes a new p rogram will be a variation of or an extension of a n
existing one. T h e f irst step in producing the new program would be to
make a copy of the old one. For example, if "Factor" is to be a copv of
the file named "First," enter:

-CO:Factor=First

To combine the files "Factor" and "Max" and call them "Makeup," enter:

-CO:Makeup=Max,Factor

To change the name of a file named "Smith" to "Jones," enter:

-RO:Jones=Smith

The validate command enables you to clean up your disk. I t increases the
room on the disk by consolidating unused spaces and deleting improperly
closed files. To validate your disk, enter:

If the disk drive loses its place, or for some other reason you wish to
restart, i.e., to initialize it, enter:

All names (identifiers, file names, function names, program names, etc.)
are limited to 8 c h aracters. The editor will accept more than 8
c har"c t e r s , but any characters beyond 8 will be ignored. Therefore,
"WORK/OUT," which has 8 characters including the slash, is equivalent to
"WORK/OUTSIDE."

The editor will accept upper- and lowercase letters within a program, but

15

STANDARD K yan Pa s c a l

they will be equivalent during the running of the program. T h erefore,
"WashOut" and "WASHOUT" will be treated as identical.

However, upper- and lowercase letters are distinguished when used for file
names.

To ~Chan e the Color of Characters

Sometimes it is desirable to change the color of the characters on t he
screen to make them brighter or clearer. To do this, press <CTRL> in
combination with the selected color.

T o Use Both ~U er - a n d L owercase Le t t e r s

To be able to type both upper- and lowercase letters, press the <SHIFT>
and <C=> keys at the same time.

T o Halt a ~Fro ram While It Is ~Rennin

If a program is in an endless loop or if you simply want to stop it, e.g.,
to see at what line it is operating, press <RUN/STOP> in combination with
<RESTORE>.

~Savin the HELF File

Because "HELP" is a useful file, it can be copied onto formatted blank
disks.

1. Type: E HELP <RETURN>
2 . R emove: Ky a n PA SCAL d i s k
3. Insert: Formatted blank disk
4e Type the function key: F2

(F2 is the combination of <SHIFT> and Fl.)

16

STANDARD Kyan P a s c a l

List of Editor and ~Com iler Commands

Here is the complete set of editor and compiler commands:

B B u ild stand-alone module
C C o mpi l e
D L i st directory of file (program) names
E Edi t
F N ame default file
R Ru n
P Pr i nt
Fl (Function key) Exit from editing with save
F2 (Function key) Remain in editing with save
F3 (Function key) followed by:

G Continue editing on line
S Substitute old string / new string
F Find string forward
B F i n d s t r i n g b a ckward

F4 (Function key) Undo editing
F5 (Function key) Continue editing at end
F6 (Function key) Continue editing at beginning
F7 (Function key) Continue editing 20 lines ahead
F8 (Function key) Continue editing 20 lines back
<INST/DEL> Deletes letter or keystroke to the left of the
<INST/DEL>-<SHIFT> Deletes letter or keystroke coincident

<CTRL>-color Changes color of the characters
<RUN/STOP>-<RESTORE> Stops program during run time
E ERROR$ Examine the error file after compilation
-SO: Scratch a file
-RO: Rename a file
-CO: Copy a file or merge several files
-NO: Format a disk or clear all files
-V: Validate a disk
-I: Reinitialize the disk drive

cursor
t o t h e

cursor

17

EDITOR AND COMPILER INSTRUCTIONS

~ADVANC KYAN PASCAL

To transfer Advanced Kyan PASCAL from the disk to memory, type:

LOAD "E",8

followed by <RETURN>. Striking the <RETURN> key tells the computer that
you have completed your entry. U n less instructed otherwise, you should
always press <RETURN> when entering information into the computer.

Your Commodore 64 (Trademark of Commodore Inc.) will search for the
program (SEARCHING FOR E), then indicate LOADING when the Kyan program is
found. C o mpletion of loading will take several minutes, at which point
READY will be displayed:

READY
LOAD "E",8

SEARCHING FOR E
LOADING
READY

Type RUN to complete this task. The version number of your Kyan PASCAL
editor will appear on the screen followed by the prompt (FILE NAME?).

READY
LOAD "E",8

SEARCHING FOR E
LOADING
READY
RUN

EDITOR (1.0)
COPYRIGHT 1985 BY KYAN SOFTWARE

FILE NAME?

A sample program, called "PAINT," is included on the Kyan PASCAL disk. If
this is your first time using Kyan PASCAL, leave the disk in the drive so
that you can use the sample program as you familiarize yourself with the
editor commands.

~Edit i n

The entering or changing of a program is called editing. Suppose you wish
to edit the sample program, PAINT. E n ter the file name PAINT after the
prompt:

FILE NAME? PAINT

18

ADVANCED K yan P a sc a l

Programs are stored in separate files. E ach program added to the disk
must have its own file name consisting of 8 or fewer letters and/or
characters. Spaces are not permitted within a file name.

As soon as <RETURN> is pressed, the program will appear:

PROGRAM PAINT;

TYPE A = ARRAY[1..25,1. .40] OF CHAR;

V,C : "A;
I,J : I N TEGER;

BEGIN
ASSIGN(V,1024);
ASSIGN(C,-10240);
FOR I : = 2 TO 17 DO

FOR J : = 1 TO 40 DO BEGIN
V"[I ,J] : = CHR(160);
C"[I ,J] : = CHR(I)

VAR

END
END.

Fl DONE
F2 SAVE

F3 GOLD
F4 UNDO

F5 TEXT> F7 PAGE>
F6 <TEXT F8 < PAGE

Kyan PASCAL includes an easily learned, full-screen, insert mode editor.
Anywhere you move the cursor, a letter, a number, a space, or even a new
line break may be added. This greatly facilitates editing your program.
(Holding down the up-down <CRSR> key scrolls the screen.)

<INST/DEL> operates (as in Commodore BASIC) by deleting the character,
space, or line break just to the left of the cursor. In addition, the
combination of <SHIFT> and <INST/DEL> deletes coincident to the cursor.

The choice of function key F3, F5, F6, F7, or F8 allows you to go to any
line in the program. F5 takes you to the end of your program; F6 takes
you to the beginning of your program. F 7 and F8 move you forward or
backward 20 lines, respectively. W hen F3 is pressed, the following
instructions appear:

GO TO:
G LINE-NUMBER

SUBSTITUTE:
S/OLD-STRING/NEW-STRING[/?]

FIND FORWARDS:
F [/STRING]

FIND BACKWARDS:
B [/STRING]

19

ADVANCED K yan Pa s c a l

INSERT FILE:
I FILE NAME

CHANGE FILE NAME:
P [FILE NAME]

The go-to, substitute and
example, to ~o to ~an line
instructions appear, enter
to. G followed by zero will

To find the occurrence of ~an ~strin in the program, press F3, then either
F or B followed the the string which is to be found. Fo r e x ample, if
"look out" is to be found, enter:

f ind commands are two-stage commands. F o r
in the program, press F3. W he n t h e a bove
G followed by the line number you want to go
take you to the last line.

F3
F/look ou t

T he cursor will go to the first occurrence of "look out" ahead of t h e
p resent cursor position. T o f i nd the second occurrence, enter F3 F
without the string. This process can be repeated until all occurrences of
"look out" have been found. I f you enter F3 B, the occurrence of t he
string in back of the present cursor position will be found.

Maximum string size is 40 characters.

To substitute a n ew ~strin for ~an ~strin in the p rogram, enter F3
f ol l owed by :

S /old string/new string

The old string consists of the words or lines the way they are before the
substitution. The new string consists of the new words or lines that will
take their place. T o replace the string "first" with the string "¹ 1,"
enter :

F3
S/first/¹ 1

The slashes are called delimiters. One delimiter is used before the old
string and one delimiter is used before the new string. Any character may
be used for a delimiter, but you must choose one that is not used in the
strings. Otherwise, the editor will not find the correct end or beginning
of the string.

Add a t hird delimiter and a "?" after the new string if you want the
editor to stop before making a substitution:

F3
S/first/¹ 1/?

If you answer Y when the string if found, the substitution will be made.
If you answer N, the substitution will not be made. In either case, the
editor will automatically go on to find the next occurrence of the old
string. Y o u m a y a nswer Q at any time to quit the search and replace
process.

20

ADVANCED K yan P a s c a l

Sometimes your PASCAL program will incorporate substantial parts of other
programs. These may be brought into the version you are editing by using
the I command. To include another file in the one Iou are ~e dit i n Erase
the ~ke F3 then enter I and the name of the file to be included:

I File Name

If Iou wish either to ~chan e the name of the file lou are ~editin o r just
to dis la its name Erase the F3 ~ke and then enter P followed ~b the new
file name:

P Fil e Name

If P is entered without a file name, the current file name is displayed.

Editor: Block Move Commands

You may take any section of the program, and move it as a block. To mark
a block: 1) M ove the cursor to the character or space that is at the
beginning and type the Control and 0 keys together, <CTRL>-0. No t i ce how
the entire block is displayed in inverse video as ou move the cursor. 2)
Go to the last character or space in the block. Type <CTRL>-0 to mark the
e nd of t h e b l o c k .

Then entire block will seem to disappear. Actually, it is saved in memory
so that it can be moved to any location you choose.

Move the cursor to the position where you wish the block to be inserted.
Type <CTRL>-P and the block will be "pasted" in the new position. T h ese
commands are sometimes called cut and paste. A s many copies as you wish
may be pasted .

The block move commands are:

first <CTRL>-0 mar ks the start of block
second <CTRL>-0 m arks end of block and puts block into memory (cut)
<CTRL>-P insert the block (paste)

~Editin PAINT an ~Exam le

Use the cursor <CRSR> keys to go to the end of the line "FOR J := 1 TO 40
DO BEGIN." Then add a period to the end of the line.

You have now entered a change in the program PAINT and are ready to save
t he new vers i on .

~Savin a Fi l e

Insert a formatted blank disk before attempting to save the edited version
of PAINT.

To save your program, you can press the function key Fl or F2. Fl differs
from from F2 in that F2 returns you to the editor immediately after
saving the program, whereas Fl requires that you enter E to return to the

21

ADVANCED Kyan Pa s c a l

e dito r .

If y'ou press F4 (<SHIFT> F3), the changes produced by editing will not be
saved, and the previous version of the program will remain unaltered. F4
is called the undo ~ke .

Now press Fl t o s ave PAINT.

T he Fi l e ~Director

To list the files on your disk, you must leave the editor as you did when
you saved the file PAINT above. All the files on the disk will be
displayed when you enter :

LOAD "0",8

When the directory program is loaded enter LIST to display the files.

~Coe ilio e File

Before a PASCAL program can be run, it must be entered into the computer's
memory, compiled and translated into machine language.

To compile the program, enter:

LOAD "C",8

Type RUN followed by <RETURN> after the program has been loaded and the
the prompt: READY is displayed. The compiler program will ask which file
you wish to compile. Enter the name of the file. If there are errors, they
will be counted and listed, and the program cannot be run.

Try to compile the edited version of PAINT. Because of the change you
have made, there will be an error.

LOAD "C",8

SEARCHING FOR "C"
LOADING
READY
RUN

FILE NAME? PAINT
LISTING (Y/N)? Y
HARDCOPY (Y/N)? Y

0010 FOR J := 1 TO 40 DO BEGIN.
1

(1) " ; " OR "END" EXPECTED

0001 ERRORS

22

ADVANCED K yan P a s c a l

The line with the error is displayed with its line number. The "1"

underneath the line indicates where the error occurred. A description of
the error type is also displayed.

Sometimes, a single error in a program (such as a missing semicolon after
a VAR declaration) will generate multiple errors following it.

Notice the two prompts that ask whether to create an Error " Lis t i n g "
and/or "Hardcopy." In the above example the list of errors will be sent
both to the screen and the printer. To list the errors only on the screen
answer Y to "Listing" and N to "Hardcopy."

Go back to the e dit mode and correct the error you introduced. Try
compilation again. Now there should be no error message. The program is
r eady t o r u n .

~Runnin n Fi l e

After a f ile has been successfully compiled a new file will be created
than can be run. F u rthermore, this file ma be run without the K an
PASCAL disk in the system i f the K an librar file "L" is also on t h e
disk.

All executable PASCAL files have the suffix "X." For example to run PAINT
enter :

LOAD "PAINTX" 8

When PAINTX has been loaded from the floppy disk enter RUN:

LOAD "PAINTX",8

SEARCHING FOR PAINTX
LOADING
READY
RUN

The program will run and perform the tasks it was designed to do. (A
program with no errors on compilation may still be faulty. For example,
programming the area of a circle to be "r+r" instead of "3.14+r+r" is an
error the compiler will not detect.)

It is important to remember that the file "L" must be on the same floppy
disk as the executable file "PAINTX" otherwise the program cannot be run.
Notice that when "RUN" is entered, the disk light turns on, indicating
that part of "L" is being loaded into memory. See the section of this
chapter on copying files to learn how to copy the files from one disk to
another .

~Printin n ~Pro rum

Any PASCAL source code file may be printed using PRINTX. For example, to
print the program PAINT enter the following:

23

ADVANCED Kyan Pa s c a l

LOAD "PRINTX",8

W hen the program prompts, enter the file name of the program to b e
p rin t ed :

SEARCHING FOR PRINT%
LOADING
READY RUN
FILE NAME? PAINT

The Commodore 64 provides a set of file management commands that may be
accessed at any time the computer is in the BASIC environment. Thus when a
program is running or being edited the following commands may not be used.

In all of the following commands the disk files must be opened, the
command entered, and the files closed. For example, enter:

OPEN 15,8,15

The disk drive light will go on and when the files are opened it w ill
reply "READY." Next, enter the specific disk drive command. For example
to format a disk enter:

PRINT ¹15,"NO:Name,ID"

"Name,ID" is the name you give to your disk (Kyan PASCAL does not use this

identifier), where ID is restricted to two characters.

When the computer again indicates "READY" close the disk drive files:

CLOSE 15

To clear the disk of all files, without formatting enter:

PRINT¹15,"NO:Name"

The following commands will be illustrated as they appear completed on
the screen. T o d e lete a file called "First" and also to delete its
compiled version, " Fir s t $, " e n t e r :

OPEN 15,8,15
READY
PRINT¹15,"SO:First"
READY
CLOSE 15
READY

S ometimes a ne w p rogram will be a variation of or an extension of a n
existing one. T h e f i rst step in producing the new program would be to
make a copy of the old one. F or example, if "Factor" is to be a copy of
the file named "First," enter:

24

ADVANCED K yan Pa s c a l

OPEN 15,8,15
READY
PRINTg15,"CO:Factor = Fir s t "
READY
CLOSE 15
READY

To combine the files "Factor" and "Max" and call them "Makeup," enter:

OPEN 15,8,15
READY
PRINT415,"CO:Makeup=Max,Factor "

CLOSE 15
READY

READY

To change the name of a file named "Smith" to "Jones," enter:

OPEN 15,8,15
READY
PRINT415,"RO:Jones~Smith"
READY
CLOSE 15
READY

The validate command enables you to clean up your disk. I t increases the
room on the disk by consolidating unused spaces and deleting improperly
closed files. To validate your disk, enter:

OPEN 15,8,15
READY
PRINTg15,"V"
READY
CLOSE 15
READY

If the disk drive loses its place, or for some other reason you wish to
restart, i.e., to initialize it, enter:

OPEN 15,8,15
READY
PRINTP15 "I"
READY
CLOSE 15
READY

~Co ~in Files from Disk to Disk

To run the file copying utility first load the program from the K yan
PASCAL disk to memory. You must load the program from Commodore Basic,
which is indicated by the prompt READY. This is the same procedure as
loading the editor. When the program has loaded type RUN:

25

ADVANCED K yan Pa s c a l

READY
LOAD "COPY", 8

SEARCHING FOR COPY
LOADING
READY
RUN

COPY 1.0
COPYRIGHT 1985 BY KYAN SOFWARE

THIS PROGRAM DUPLICATES PRG FILES ONLY

FILE NAME?

W hen the computer prompts for file name as above enter the name of t he
file to be copied in quotes. The copy program will then prompt for the
source disk (If you wish to copy "L" it is the disk with "L":) and the
destination disk (Where "L" is to go). Press <1KTURN> after inserting
e ach di sk :

FILE NAME? L

INSERT SOURCE DISK

INSERT DESTINATION DISK
READY

The copy program copies PASCAL programs and the Kyan PASCAL library (L)
only.

To ~Chan e the Color of Characters

Sometimes it is desirable to change the color of the characters on t he
screen to make them brighter or clearer. To do this, press <CTRL> in
combination with the selected color.

T o Use Both ~U e r - a n d L owercase Le t t e r s

To be able to type both upper- and lowercase letters, press the <SHIFT>
and <C=> keys at the same time.

T o Halt a ~Pro ram While It Is ~Runnin

If a program is in an endless loop or if you simply want to stop it, e.g.,
to see at what line it is operating, press <RUN/STOP> in combination with
<RESTORE>.

26

ADVANCED K yan P a s c a l

List of Commands

Load "E",8
Ioad nCn
Load "PRlmX",8

Load the editor program
Load the compiler program
Load the print program
Load the list directory programttgt1

Here is the complete set of editor commands:

<INST/DEL> Deletes letter or keystroke to the left of the cursor
<INST/DEL>-<SHIFT> Deletes letter or keystroke coincident to the cursor
<CTRL>-0 start/stop block
<CTRL>-P inser t b l ock
Fl (Function key) Exit from editing with save
F2 (Function key) Remain in editing with save
F3 (Function key) followed by:

G Continue editing on line
S Substitute old string / new string
F Find string forward
B F i n d s t r i n g b ackward
I Include File
P Rename Fi l e

F4 (Function key) Undo editing
F5 (Function key) Continue editing at end
F6 (Function key) Continue editing at beginning
F7 (Function key) Continue editing 20 lines ahead
F8 (Function key) Continue editing 20 lines back

Here is a list of file management commands useful while in BASIC mode:

SO: Scratch a file
RO: Rename a file
CO: Copy a file or merge several files
NO: Format a disk or clear all files
V: Validate a disk
I: Reinitialize the disk drive

Other commands:

<CTRL>-color Changes color of the characters
<RUN/STOP>-<RESTORE> Stops program during run time

27

PART I

SAMPLE PROGRAMS

EGO PROGRAM

The first program shows how to print a message.

PROGRAM Ego(Output);

BEGIN
M rite l n ;
W rite l n ;
Writeln('My name is Sam Smith.')

END.

This program will put the message "My name is Sam Smith" on the screen or
p rin t e r .

~pro ram Statement and Reserved horde

T he name of the program is Ego. It appears after the word PROGRAM. T o
end the statement which names the program we use a semicolon (;). I f w e
did not use the semicolon, the computer might think that the n ext
statement, "BEGIN," was part of the program name.

PASCAL has a precise vocabulary. P art of this vocabulary consists of
words that cannot be used by the programmer as names within his or her
program. P ROGRAM and BEGIN are two such "reserved" words. I t would be
illegal to use the word "program" for the name of the program. R e served
words will be written in capital letters when they appear in programs in
this manual.

As a general rule, do not use any of the vocabulary of PASCAL for the name
of anything within the program. I n addition to reserved words, this
includes predefined words such as Integer, Read, and others whose meaning
i s consistent from one implementation of PASCAL to another. I n t h i s
manual, all predefined words will be written with only the starting letter
capitalized (except EOF and EOLN, which are acronyms for "end of file" and
" end of l i n e ") .

Of course, comments (which appear between parentheses and asterisks like
this-) and literals ('which appear between parentheses and single quotes
like this') are not restricted.

Declara t i o n and ~pro ram ~Bod

Every PASCAL program has two main parts: the declaration and the ~ro ram

~hod

The above program begins with a statement of the name of the program.
Some programs also include lists of constants and variables. T h e n aming
of the program, constants and variables constitutes the declaration part
of th e p r o g ram.

After the declaration is the portion of the program where computations,
input, and output can occur. I t is denoted by the word BEGIN and is
called the program body. The word END followed by a period lets the

29

computer know where the program body ends.

The indentation of statements in Ego and other programs in this manual is
intended to help clarify the program structure; it is not recognized by
the compiler.

~A ssi s i s o f ~E o

The first statement declares the name of the program, which is Ego.

The next line, BEGIN, tells the computer the following statements are part
of th e p r o g ram body.

The third and fourth statements (Writeln, short for "write line") create
two blank lines on the screen before the message.

The fifth statement causes the message to appear on the screen or on the
p rin t e r :

My name is Sam Smith.

30

CONSTRUCTION PROGRAM

The second program we are g oing to run will calculate the cost of
constructing an apartment building, given the hours worked, the rate of
pay, and the cost of materials.

PROGRAM Construction(Input, Output);
(~Dollar units are thousands~)

CONST
Material = 325 .0 ;

VAR
Hours, Rate, Labor, Total : Real;

BEGIN
Mriteln (' Enter hours worked and rate of pay');
R eadln (Hours , Rat e) ;
L abor : = Hour s Ra t e ;
Tota l : = Labor + Material;

Writeln (' Labor = $', Labor : 8:3, ' Total = $', Total : 8:3)
END.

Anslrsis of Construction

The objective of the program is to calculate the Labor cost and Total cost
for the construction project. The calculation of these costs will depend
on the Hours worked and the Rate of pay during those hours.

The first part of the program gives the names of th e p rogram, the
constants, and the variables. In PASCAL, user-defined names are called
identifiers.

The fixed cost of the materials is given by the identifier Material and is
$325,000.

Notice how the variables are listed after the reserved word VAR. "Real, "
although not a reserved word, is predefined and specifies that all the
variables that precede it are Real numbers.

The first statement in the program body writes the following line on the
screen:

" Enter hours worked and r a t e o f p a y "

The second statement reads the values for Hours and Rate which the user
enters on the keyboard. Once these values are known, the Labor and Total
costs can be calculated by the third and fourth statements in the program
body.

The final statement in the program body writes the Labor and Total costs
on the sc r een .

31

~A1 or i t hm

Step 1: Get the values of hours worked (Hours) and rate of pay (Rate).

Step 2: Multiply Hours times Rate to get the cost of the labor (Labor).

Step 3: Add the constant 325000 (Material) to Labor to get the total cost
(Total) .

Step 4: Output the Labor and Total costs.

Identifiers

An identifier is a name. I t can be the name of a PASCAL program or
program subsection, or it can be the name of some quantity that is used in
a PASCAL program. J ust as in algebra we can define a constant, C= 5 , i n
PASCAL we can say :

CONST
C = 5

The rules for constructing an identifier are: (1) it must start with a
letter (A — Z or a — z), and (2) any combination of letters and numbers
may follow. Although more than 8 characters may be used, only the first 8
will distinguish one identifier from another. The compiler does not
distinguish between upper- and lowercase letters.

Write and Read Commands

Write, Writeln, Read, and Readln (short for "read line") commands pass
information to and from the computer. R ead and Readln enter data from
the keyboard into the computer; Write and Writeln send data to the screen
o r pr i n t e r .

The terms Input and Output should appear in parentheses after the program
name to tell the compiler that data will be transfered into and out off
memory.

~In ut and ~Out ut and ~Printin the ~Out ut — STANDARD RYAN PASCAL ONLY

After the program "Construction" was named, the two standard PASCAL terms,
Input and Output, appeared in parentheses. Technically the compiler sees
these terms as identifing a files:

PROGRAM Average(Input, Output);

Files allow information to go to
addressable memory space of the
PASCAL, information input at the
information output to the CRT goes

A nother useful output is the non-standard "Printer." If some o f t h e
output is to go to the printer as well as to the CRT screen, " Prin t e r "
must be included in the declaration section of the program as if it were a
file of characters, viz. Text:

and from places outside the directly
computer. I n t his i mplemenation of
keyboard goes into the Input file, and
into the Output file.

32

VAR P ri nt e r : Tex t ;

Every Write and Writeln statement to be printed also includes "Printer":

Writeln (Printer, ' Labor = $ ' , La b o r : 8 : 3 ,
'Total = $', Total:8:3);

~Kn ut nnd ~Out ut nnd ~Printin the ~Out ut — ADVANCED KYAN PASCAL ONLY

After the program "Construction" was named, the two standard PASCAL terms,
Input and Output, appeared in parenthese. T echnically the compiler sees
these terms as identifing a file:

PROGRAM Average(Input, Output);

Files allow information to go to and from places outside the directly
addressable memory space of the computer. I n t h i s i mplemenation of
PASCAL, information input at the keyboard goes into the Input file, and
information output to the CRT goes into the Output file.

I t is also useful to be able to define the output as the printer. To d o
this the non-standard Kyan PASCAL procedures, PRON and PROFF, are used to
redirect the Output to the printer or back to the screen. These procedures
are in the file PR.I which must be included in the declaration part of the
program. For example in the preceeding program:

PROGRAM Construction(Input,Output);

CONST M a terial = 325 . 0 ;

VAR Hours, Rate, Labor, Total : Real;

0i P R . I

BEGIN
Writeln (' Enter hours worked
R eadln (Hours , Ra t e) ;
L abor : = Hour s Ra t e ;
T ota l : = Labor + Material;

PRON; (g
Writeln (' Labor = $', Labor
PROFF; (=

END.

(*include procedure to redirect output*)

and rate o f p a y ') ;

redirect Output to printer ~)
8:3, ' Total = $', Total : 8:3)
redirect Output to screen .)

Readln

When data is read from the keyboard using Readln, m ore than one variable
may be input as in:

R eadln (Hours , Ra t e) ;

Data entered at the keyboard must include spaces or (RETURN) to
distinguish the variables. I n the examples below, Hours would get the
value 10000 and Rate would be set to 14.20:

33

Example A: 1 0000 1 4 . 20 <RETURN>

Example B: 1 0000 <RETURN> 14 .20 <RETURN>

CONST

Use of constants, CONST, makes programs easier to read and maintain.
Suppose next year the cost of materials rises to $330,000. Also suppose
that we had not used the constant, Material, and instead had said the
total cost was:

Tota l : = Labor + 3 2 5 . 00

In order to c hange the materials cost we would have to reanalyze the
program, because in many programs a constant appears more than once. We
would have to find every occurrence of 325,000. Then, we would have to
make sure each time that it wasn't some other constant, such as Taxes.

It is much easier to go to the CONST declaration and change "Material
325.00" to "Material = 330.00. "

34

PROGRAM TO FIND THE AVERAGE

The following program finds the average of two numbers.

PROGRAM Average(Input, Output);
(+Computes the average of two numbers~)

VAR
X l, X2 , Average : R e a l ;

BEGIN
(~Read the two numbers"".)
Write (' First number = ');
Readln (Xl) ;
Write (' Second number = ');
Readln (X2);

(= Compute Average"")
A verage : = (Xl + X2)/2;

(" Print Average"".)
Writeln (' Average = ' , Average : 9 : 2)

END.

The following is a sample run of Average:

Firs t nu mber = 12
Second number = 8

Average = 10.00

In this book, data entered on the keyboard will be underlined.

Readln and Writeln

"Write (' First number =')" c auses " F i r s t num b e r = " t o a ppear on t he
screen. The user then enters the first number, which in the above example
is 12. I f the program had used "Writeln (' First number =')," there would
have been a <RETURN> and the user would have had to enter 12 on the line
below the prompt.

"Readln (Xl)" enters data from the keyboard into the computer. T he ent i r e
line is read, up to and including the <RETURN>. However, the data that is
assigned to Xl depends on what type Xl is. For example, suppose the data
entered at the keyboard is "123 RALPH <RETURN>" and that Xl is Char type.
Then Xl equals 1. The remaining characters and <RETURN> are lost. If Xl
is of the type ARRAY[1..9] OF Char, then Xl equals 1,2,3, , R,A,L,P,H; o n l y
the <RETURN> is lost. Finally, if Xl is of the type Integer, then Xl
equals 123, and the remaining characters and the <RETURN> are lost. (Note:
the preceding data types will be fully discussed in later sections of the
manual.)

Suppose we wish to assign the input data 123 and RALPH be assigned to two
variables, Xl and X2, respectively. Let Xl be of type Integer and X2 be an
array [1..6] of type Char. Then "Read (Xl)" followed by "Read (X2)" will
accomplish this task. T h e R ead s tatement differs from the Readln

35

statement in that any input data not of the type of the v ariable in
parentheses is left over for the next Read or Readln statement.

Because the remaining characters up to and including the <RETURN) are not
cleared after "Read (X2)" above, the <RETURN) will be read as the f i r s t
entry in the next Read or Readln statement. In most programs this is not
desirable. T his problem could be corrected by changing the statement to
" Readln(X2). " A n alternate method of assigning data to these variables
would be "Readln (X l ,X2) . "

Real and ~l ate e r D a t a ~T ea

Real numbers in PASCAL are positive or negative numbers represented in
scientific (floating point) or decimal notation. Examples a r e 12 .8 ,
3.456E+11, and -2.5555E+4. A number in decimal notation must have at least
one digit before and one digit after the decimal point. Very large or very
small numbers are best handled in scientific notation.

The statements following the declaration of the variable Z are equivalent:

VAR
Z : Real ;

BEGIN
Z : = -345 55 •
Z := -3.4555E+02

END.

In the program to find the average, Xl and X2 were declared to be of the
type Real. The range of values that may be assigned to Xl or X2 is from
+9.9999999999E-99 t o + 9 .9999999999E+99.

Suppose we wi s h t o declare an Integer variable, En. A d e claration
statement for En would be written as:

VAR
E n : I n t e g e r ;

Integer numbers must be within the range -32768 to +32767.

If arithmetic expressions are formed by mixing Integer and Real types, the
result will be expressed as a Real type.

When a Real or Integer number is written, the format specifies how many
spaces are reserved for it and other details of how it will appear in
print or on the screen. N o tice in the Writeln statement that the size of
the space reserved for the Real number is 9:2. This means that the number
is to be printed in decimal notation. If the format were simply 9, the
number would be printed in scientific notation. The format for Integers
never needs to be larger than "5" because of the range limitation.

The format 9:2 reserves nine spaces total. This includes one space for
the sign and one space for the decimal point. Finally, two spaces are
reserved for the digits following the decimal.

I f a number has fewer digits than the number of spaces reserved for it ,
the correct number will appear, but the compiler will fill in the extra
spaces with blanks or zeroes. I f a number in decimal format has more

36

digits than the number of spaces reserved for it, a run-time error will
occur. Programmers must think ahead when using the decimal format.

Run-time errors also occur when a number is out of range. For example, if
X is an Integer that has the value -32800, an error will occur.

Real numbers are limited to 13 significant digits. W r iting a format that
reserves more than 13 spaces for a Real number will not make the number
more accurate. The computer will present the correct number, with the
digits beyond 13 filled in with blanks or zeroes. On the o ther hand,
c alling for fewer than 13 digits does not take advantage of all t h e
a ccuracy ava i l a b l e .

Truce R o und and Naxin t

The truncate function (Trunc) takes a decimal or floating point number and
disposes of the non-Integer portion, leaving an Integer value. R o u nd
gives the integer value closest to the floating number by adding 0.5
before truncating. For example:

Trunc(5.9) = 5 ;
Trunc(75.3E-01) = 7 ;

Round(5.9) = 6 ;
Round(75.3E-01) = 7 ;

The maximum size of any Integer number is 32767 or -32767. Trunc or Round
will cause an error if either operates on a Real number larger than +
32767.

Maxint is the standard PASCAL constant whose value is the maximum Integer
size. I n t h is edition of PASCAL, Maxint= 32767. I t will vary with
different computers and compilers.

Arithmetic ~0 erator a

PASCAL uses the following arithmetic operators for Real and Integer data:

Add
Subtract
Multiply
Divide

Multiplication and division are performed before addition and subtraction.
For example:

6 + 8/ 2 = 10 , not 7 .

37

SOCIAL SECURITY PROGRAM

The following program calculates the amount of social security tax to be
deducted f r o m each paycheck.

PROGRAM SocialSecurity(Input, Output);

CONST
TaxRate = 0.075;
TaxMaximum = 4275.0;

VAR
H ours, Rate , T axNow, TaxToDate : Rea l ;

BEGIN
(+Read hours, rate, and tax to date~)
W rite l n ;
W rite l n ;
Write (' Hours worked = ');
Readln (Hours);
Write (' Hourly rate = $');
R eadln (Rate) ;
Write ('Soc Sec tax paid to date = $');
Readln (TaxToDate) ;

(Compute Soc Sec Tax for this period")
TaxNow : = Hours"Rate TaxRate;

(~Test: IF TaxToDate + TaxNow is > Tax
Maximum THEN TaxNow must be recalculated~)
IF TaxToDate + TaxNow > TaxMaximum THEN

BEGIN
TaxNow : = TaxMaximum — TaxToDate;
TaxToDate : = TaxMaximum
END (~IF t rue~)

ELSE (~IF fa l se")
T axToDate : =TaxNow + TaxToDate;

(~Write Results<)
Writeln ('Soc Sec Tax This Pay Period = $',TaxNow :8:2) ;
Writeln ('Soc Sec Tax To Date = $ ',TaxToDate : 8 : 2)
END.

Relational ~0 crate r s

There are six relational operators that may be used to decide which of two
b ranches will be taken within a program. One branch is taken if t h e
relationship is true, the o ther if it is false. The six r elational
o perators a r e :

e qual t o
n ot equal t o
l ess t h an
g reater t h a n
less than or equal to
greater than or equal to

38

In the program Social Security, IF the condition is true, THEN the tax for
the present pay period, TaxNow, must be recalculated. O t herwise, the
program skips the recalculation steps.

The IF-THEN Statement

Notice in the program above that there are two program steps following the
IF statement. T hese are grouped between a BEGIN-END pair so that both
will be performed when the IF statement is true. (O therwise, only the
first statement, TaxNow, would be associated with IF-true, and the second
statement, TaxToDate, would be o utside IF-THEN control and would be
p erformed regard l ess .)

For program clarity, the comment (~IF true+) has been placed to signify
the end of the program branch that will be executed if the condition is
t rue.

Sometimes it is necessary to include some program statements for when the
IF condition is False. These are added after the reserved word ELSE:

IF TaxToDate + TaxNow > TaxMaximum THEN

TaxNow : = TaxMaximum — TaxToDate;
TaxToDate : = TaxMaximum

END (IF t rue)
ELSE(~IF false~)

BEGIN

T axToDate : = TaxNow + TaxToDate;

The statement following ELSE will only be executed if "TaxToDate + TaxNow
> TaxMaximum" is false.

There is no semicolon after END (~IF true") above. I t is incorrect to
terminate the statement preceding ELSE with a semicolon.

The Assi nment Statement

Although the equal sign was listed above as a relational operator, the
difference between equal (=) and the assignment operator (:=) might not be
clear. If we examine an assignment statement from another program, the
difference becomes clear:

AgeNow := Bi r t h days + AgeNow;

T his statement is meant to recalculate the variable, AgeNow. T h e o l d
value of AgeNow is on the right and the new value of AgeNow is on t he
left. In general, when the assignment symbol (:=) is used, the result is
on the left.

The equal operator is used almost exclusively to determine which of two
branches will be taken following a conditional statement. The only time
the equal operator is used like an assignment statement is in a CONST
d eclara t i o n .

39

ALPHABETIZE PROGRAM

This program illustrates the use of data in the form of words. I t f i nds
the alphabetically first word on a list and counts the total words in the
list. S ince the size of the list is not known in advance, a signal word,
stop, is used to indicate the end of the list.

PROGRAM FirstWord(Input, Output);
(+This program selects the alphabetically first word and counts
the total words tested~)

CONST
Signal = '+' ;

TYPE
String = ARRAY [1..15] OF Char;

VAR
Word, LeastWord : String;
L oopCount : I nt e g e r ;

BEGIN
(Each time through the loop, increment t h e
counter, LoopCount, and save the least word)

Write('Enter a word or "+": ');
Readln(Word) ;
L eastWord : = Word ;
LoopCount : = 0 ;
WHILE Word[1] <) Signal DO

BEGIN
IF Word < LeastWord THEN

LeastWord : = Word;
LoopCount : = LoopCount + 1 ;
Write('Enter a word or "+": ');
Readln(Word)

END; (."WHILE LOOP")
W rite l n ;
W rite l n ;
Writeln(LoopCount:5, ' words were ente red . ') ;
Writeln(LeastWord, ' is alphabetically first.')

END.

Firsttlord ~A 1 or i t h m

Step 1: Input the first word on the list to be alphabetized.

Step 2: Initialize variables: LeastWord = Word, LoopCount = 0

Step 3: Begin WHILE loop. Exit WHILE loop when Word = "+."

Step 3a: (WHILE loop) Input the next Word.

Step 3b: Increment LoopCount.

40

Step 3c: IF current Word is alphabetically first, LeastWord = Word.

Step 4: Output LeastWord and LoopCount.

~Strin a n d Cha r ~T e s

So f ar only two types of data have been discussed, Real a n d Int e g e r .

Another t y p e , Char , i s a predefined type that d e n o tes a v ariab l e ,
c onstant, or o t her p i e c e of data that is in the f orm o f a single

character.

Suppose we define a variable, Digit, to be of the type Char:

V AR Digit : Ch a r ;

This means Digit will always be a single "printable" character. I t may be
a letter, a number, or a symbol. In addition, it could be a space or a

<RETURN), but control characters such as "<CTRL) g" are not allowed.

Although digits such as '1' (single quotes are used to denote Char values)

m ay be o f t h i s t y pe, t hey are not the same as In tegers an d o r d i n a r y

arithmetic may not be performed on them.

Another type of data is called String • A ny string of c h a r a c t ers a n d

s paces, s u c h as "is alphabeticallv first," constitutes a string • W h e n
string data are entered on the keyboard, the end of the string is signaled

by <RETURN).

In Kyan PASCAL, the following statement declares a String:

String = ARRAY [1..15] OF Char

Since String is user defined, any number of characters may be specified,

although 15 c h a racters are used in"FirstWord." When a word with fewer

than 15 l e tters is entered in this program, Readln will f ill i n the

remaining places with blanks. I f a word with more than 15 letters is

entered, the extra letters will be ignored.

When String and Char values are assigned in a program statement, quotes

are used:

VAR

BEGIN

W ord : S t r i n g ;
L etter : C h a r ;

Nord : = 'Help
Letter : = 'A';

The number of characters in a String must be correct. T hus, t h e r e a r e 1 1
blanks in Word, which is defined as a 15-character String. Char is always
a single c h a r a c t e r .

WHILE

The WHILE loop is repeated as long as the specified condition is true. If
there is more than one statement in the loop, BEGIN and END must be used
to mark the boudaries. Usually indentation is used to c larify the
boundaries of the loop (although indentation has no significance to the
compiler) .

A program would never exit from the following loop, because Exl will never
equal or exceed the test value:

PROGRAM Never;

CONST
Alpha = 4 .6 ; Pi = 3 . 1 4 ;

VAR
E xl,Ex2 : R e a l ;

BEGIN
Exl : = Alpha;

WHILE Exl (5.432 DO

E xl : = Exl — 1 . 00 ;
Ex2 : = Ex l ~P i

END (~WHILE".)

BEGIN

END.

42

FACTORIAL PROGRAM

The following program calculates the factorial function of a given number.
The f a ctorial function is used quite frequently in an a lysis of
probabilities.

PROGRAM CalcFactl(Input, Output);
(~This p rogram computes n! where n= In teger -)
(+The result is an Integer~)

VAR Number,LoopCount,Factorial : Integer;

BEGIN
W rite l n ;
W rite l n ;
Writeln('This program calculates the factorial'
Writeln('of an Integer, N.');
Write('Enter a value. N = ');
Readln(Number);

Factor ia l : = 1 ;
FOR LoopCount : = 1 TO Number DO

BEGIN
Facto r i a l : = Factorial LoopCount

END;("FOR~)

Writeln;Writeln;
W ritel n (' N ' ! = ' ,Factor ia l : 6)

END.

~A oal s i s o f ~Pro ram

If a number is equal to zero or one, its factorial is defined as one. In
all other cases n! = 1".2+3".. . (n- l) ~ n .

1. I n p u t N (N umber) .

2. Initialize N! (Factorial) = 1 .

3. Begin FOR loop. Start with LoopCount = 1 .
Increment LoopCount until

Loop Count = N (Number) .

value f orF or each pass through the loop, calculate a n e w
F actor i a l :

Factor i a l = Factorial LoopCount.

4. Output N! (Factorial).

43

FOR ~Loo s and ~Lop Control Variable

CalcFactl uses the FOR loop, which increments a loop control variable from
some initial value to some final value. Although the l oop c o n t r o l
variable is an Integer, in other uses of the FOR loop it might. b e an
alphabetic character (Char).

The FOR loop may also decrement the loop control variable if written in
the following form:

FOR LoopCount : = Number DOWNTO 1 DO

44

BOOLEAN PROGRAM

PROGRAM DivLesn(Input, Output);

V AR X,W,Z : I n t e g er ;

Correct : B o o l ean ;
Ans : Char ;

BEGIN
Ans : = 'Y' ;
WHILE Ans = 'Y' DO

BEGIN
Write('Enter an Integer ') ;Readln(X);
Write('One of the factors is ') ;Readln(W);
Write(X : 3 , ' div i ded by ' , W : 3 , ' i s ');
Readln(Z);
Correct := (X MOD W = 0) AND (X DIV W = Z);

BEGIN
Write('Correct! Another? Enter Y or N ');
Readln(Ans) END(IF THEN")

ELSE
BEGIN
Write('Incorrect. Try again? Enter Y or N ');
Readln(Ans) E ND (~I F ELSE"")

END (~WHILE")
END.

IF Correc t THEN

Boolean Data ~T e

Boolean is a predefined type. B oolean type expressions, variables, and
constants are always in one of two states: t hey are either in the True
state or the False state.

In the program above, the IF statements are executed only when Correct
equals True. Correct is a Boolean variable which is true when both of the
parenthetical statements following it are true (see DIV and MOD operators
below).

The AND operator means that both equalities in parentheses must be True;
o therwise, C orrect w il l b e false and the next two s t a tements w i l l be

skipped.

DIV aad MOD ~O erato r s

T he DIV and MOD o perators give the quotient and the remainder of a
division problem when the divisor and dividend are both of the t y pe
Integer. The general form is:

Integerl DIV Integer2 (= quo t i en t ")
Integerl MOD Integer2 (~ = remainder".)

For example, if Integerl = 14 and Integer2 = 4, then 14 DIV 4 = 3 and 14
MOD 4 = 2.

45

Boolean ~O e r a t o r a

Up to this point we have discussed only the manipulation of R eal a nd
Integer type data. T his included the add, subtract, multiply and divide
operators. There are also Boolean operators:

NOT
OR
AND

Boolean o p erators follow the rules of formal logic and can be diagramed
in truth tables.

NOT: False = NOT True
True = NOT False

An example of NOT: A coin is flipped. If it is NOT heads (True), it is
tails (False). If it is NOT tails (False), it is heads (True).

OR: True = True OR False
True = Fa ls e OR True
True = True OR True
False = False OR False

An example of OR: Two cars are racing. The race is over (True) whenever
car A crosses the finish line OR car B crosses. Only one condition has to
be True for the result to be True.

False = True AND False
False = False AND True
True = True AND True
False = False AND False

AND:

An example of AND: T he environment is clean (True) only when both the
air AND water are clean. B oth conditions have to be True for the result
to be True. AND is also illustrated by the program DivLesn.

~O crater P r ecedence

Operations within parentheses are performed first. For example: 4"(5+1) =
2 4, w h i l e (4~ 5) + 1 = 21. I f parentheses are nested, the operation within
the innermost pair is done first: 3 (2+(6/2)) = 15.

However, it is not always necessary to use parentheses, because operator
precedence is predefined: operations of higher precedence are performed
before operations of lower precedence. If the levels are equal, it does
not matter which is performed first.

46

The five levels of precedence in PASCAL are:

1st — Highest Precedence: ()

2nd — Level of Precedence: NOT

3rd — Level of Precedence: +, /, AND, DIV, MOD

4th — Level o f P r e cedence: + , — , OR

5th — Lowest Precedence:

47

• f
• O •

1
2

• 3 •
: = 4 ;
• 5 •
• 6 •
• 7 •
• 8 •
• 9 •
•]O •

l l ;
12;
13;
14;
15

MULTI-DIGIT HEXADECIMAL CONVERSION

The following program converts a hexadecimal number into a decimal number.

PROGRAM Hexadecimal(Input, Output);
(+Hexadecimal to base ten+)

TYPE
YesNo = (Yes,No);

VAR
Digit, Signal : Char;
Number, OldNumber : Integer;
Answer : Y esNo;
Continue : B o o l e an ;

BEGIN
OldNumber : = 0 ;
Write('Enter the most significant-far left-digit ');
Readln(Digit);

REPEAT
CASE Digit OF

'O' : Number
'1' : Number
'2' : Number
'3' : Number
'4' : Number
'5' : Number
'6' : Number
'7' : Number
'8' : Number

Number
'A' : Number
'B' : Number
'C' : Number
'D' : Number
'E' : Number
'F' : Number

END (+CASE+);

OldNumber : = Number + OldNumber"16;
(~The more significant digit (OldNumber) is a power of 16

times greater than the next digit (Number) <)
Writeln('Is there another digit');
Write('after this one (Yes/No)? ');
Readln(Signal) ;
IF (S i gnal = ' Y') OR (S i gna l = 'y') THEN

• 7

Answer : = Yes
ELSE
Answer : = No;

IF Answer = Yes THEN
BEGIN

C onti nu e : = True ;
Write (' Enter the next digit ');
Readln (Digit)

E ND (+IF Answer t r u e)
ELSE

48

Continue := False;
UNTIL NOT(Continue);

Writeln;Writeln;
Writeln('The decimal equivalent is ', OldNumber : 6)
END.

~A 1 or i t h m

1. Initialize OldNumber : 0
2. Input the most significant Digit
3. REPEAT

3a. Convert Digit to decimal Number
3b. OldNumber : = Number + OldNumber+16
3c. Is there another digit?

3ca. IF NOT(Continue) = False, input the next most significant
digi t

4. UNTIL NOT(Continue) = True
5. Output base ten number (OldNumber)

REPEAT UNTIL

The REPEAT UNTIL loop is very much like the WHILE loop discussed earlier.
The statements in the loop are repeated until the specified c ondi t i o n
becomes True. (The WHILE loop continues until the condition becomes
False.) It is important to note that the REPEAT UNTIL condition is tested
at the end o f the loop rather than at the beginning like t h e W H ILE
c ondi t i o n .

Scalar ~T)es and Boolean Variables

In the program above, Hexadecimal, Answer is a scalar variable. S c alar
variables are used when there is a short list of names, words, numbers, or
other legal identifiers that the variable might be. A "scalar type," which
is user defined, gives the possible values of a scalar variable. L i sted
below are two scalar types:

TYPE
DaysWeek = (Non,Tue,Wed,Thur,Fr i ,Sat ,Sun);
PayRate = (Regular, Overtime);

The scalar variables below may take on any of the values listed in t he
type declaration, but no others.

VAR
Day : DaysWeek;
Rate : P ayRate;

The following declaration of PayNames is illegal because the values in a
scalar type cannot be defined in terms of any other type. Because quotes
a re u s e d , 'A' a nd 'B ' a r e o f t he t y p e Char , and 'Other' is a s tring.
Without quotes they are simply identifiers, and are therefore acceptable.
Characters or strings cannot be used, nor can integers or real numbers.

T YPE PayNames : (' A ' , 'B', 'Other') ;

49

The only exception to this rule is explained below in the definition of a
scalar t y p e s u b range.

A Boolean variable is much like a scalar variable where the type would be:

TYPE
Boolean = (True, False) ;

In the program above, the variable Continue can be either True or False.
Whether Continue is t rue or false is determined by the a ssignment
statement. where Continue is (:=) True when Answer i s (=) Y or y .

~Subran e ~T >es

The subrange type is a form of the scalar type where only the first and
last value or item within the range have to be specified. For example, if
the variables Component, IC, and Resistance are to take on a range of
values and each of the possible values is known from the beginning of the
program, then they might be declared as follows:

TYPE
CompType = (Resis,Cap,Trans, Diode,OpAmp,

Rgltr,Osc,GateArray,Trnfr,Coil);
ResRange = 1. . 100 ;
ICrange =OpAmp..GateArray;

VAR
Component : C ompType;
Resistance : R e sRange;
IC : I C r a nge;

Both ResRange and ICrange in this example are subrange types. (CompType
is a scalar type.) R e sRange is a subrange of the Integer type. I C range
is a subrange of CompType declared before it.

Although ResRange is an example of a subrange of the type Integer, scalar
types of the type Integer are not permitted. This restriction precludes
the inadvertent redefining of a predefined type.

CASE OF

Sometimes, especially in programs that use scalar type variables, a series
of IF..THEN tests may need to be employed. To take the place of t hese
tests, the CASE OF statement may be used. The following are equivalent:

CASE Digit OF
'O' : Number : = 0 ;
'1' : Number : = 1 EN D ;

I F Dig i t = 'O' THEN

I F Dig i t = '1 ' THEN
Number : =1;

Number : =0 ELSE

50

T he Funct i ons ~Ord F r e d Su c c and C h r

Scalar type variables are declared in a particular order, or scale. Often
the order of these items is of significance and can be used in a program.
This is made possible by the functions Ord (order) and Fred (preceding),
and Succ (succeeding). One example is the days of the week:

TYPE
DaysWeek = (Sun,Mon,Tue,Wed,Thur,Fri,Sat);

The items in the list are called the values. Each item is an identifier
(i.e., it must start with a letter followed only by letters or numbers).

T he first value in the type Days is Sun. The seventh value is Sat. T h u s
both these statements are true:

Ord(Sun) = 0 ;
Ord(Sat) = 6 ;

The day succeeding Sun is Mon, and the day preceding Fri is Thur. Both
these statements are true:

Succ(Sun) = Mon;
P red(Fr i) = Thur ;

If two scalar types are declared, s ome of the items in the two lists will

have the same ordinal value. For example, if the days of the week and the
months of the year are declared, both Tue and Mar will have the ordinal
value 2 .

There is an ASCII character corresponding to every Integer from 1 to 128.
The function Chr (Character) gives the ASCII character corresponding to
an Integer specified in parentheses, e.g., "Chr(2)." This Integer may be
the ordinal value of a scalar element. (However, Chr is not the inverse
function of Ord.)

Chr(2) = STX;

STX is a nonprintable ASCII character used in some compilers to mark the
start of a text file. The ordinal values corresponding to the characters
'A' , 'B' , '1' , and '2 ' are shown below. The quotes around the characters
denote that they are of the type Char and are not undefined variables or
Integers .

Chr(65) = 'A' ; Chr(66) = 'B'; Chr(49) = ' 1 ' ; Chr(50) = ' 2 ' ;

PART II

PROGRAMMING TECHNIQUES

52

PROCEDURES

The following section explains a technique for breaking down long programs
into simple and easy to understand modules called procedures. With a
little rewriting, any procedure can be made into a program by itself.

Procedures may or may not communicate with the main program or o ther
procedures. I f they do, a list of parameters is generally declared. In
the following example, the parameters are Xl and X2.

PROCEDURE ExchgVal(VAR Xl,X2 : Real);
(+Values of Xl and X2 are exchanged")

VAR Y : Real;

BEGIN
Y := X l ;
Xl : = X2;
X2 : = Y;

END;

~D ec lari n a nd ~Executin P ROCEDURES

The following outline lists the steps necessary in using the procedure
ExchgVal in a program, Demo. The program is divided into three main
sections :

The first section, the declaration part of the program, was discussed
e arl i e r .

The second section is the declaration of the procedure (or procedures).

The third section is the body of the program, where the procedure is
a ctual l y u s e d .

1. Declaration section of main program, Demo.
la. Declare program name.

lb. If there were program constants or ~t es to

lc. Declare program variables A, B.
declare, they would be in this section.

2. D e c l a r e ~ rocedure Ex c hgyal .

2b. If there were local constants or ~t)es to declare, they would

2c. Declare procedure local variable Y.
2d. Procedure ~bod : the executable statements are declared here, but

be in this section.

not executed.

3. M a i n ~ r o r a m ~bod
3a. Enter two numbers from keyboard: A, B.
3b. Exchange A and B by ~executi n Pr oc e dure, Ex c hgVal.
3c. Output numbers, A and B, to the screen.

53

PROGRAM Demo(Input, Output);
(+Shows result of procedure ExchgVal')

V AR A, B : R e a l ;

PROCEDURE ExchgVal(VAR Xl,X2 : Real);
(+Values o f X l a n d X 2 a r e e x c hanged"".)
V AR Y : Real ;
BEGIN

Y := X 1 '
X1 : = X2;
X2 : = Y

END(*Procedure ExchgVal~) ;

BEGIN (+Demo)
Write (' Enter two numbers: ');
Readln (A,B);
E xchgVal (A , B) ;
W rite l n ;
Writeln ('Now first = ' ,A : 7 : 2 , ' and second = ' ,B : 7 : 2)

END.

Suppose the values to be exchanged are 5.8 and 11.15. Th e s c reen will
show the following (user entries are underlined):

Enter two numbers: 5 . 8 1 1. 15

Now f i r s t = 1 1.15 an d s e c o n d = 5.8

Parameter Lists Actual and Formal

Because a procedure is a program within a program, there must be a way of
getting data into and out of the procedure. In the above example, the
variables Xl, X2, A , a nd B provide this means. T hese variables are
examples of parameters. P a rameters may be variables, constants, and even
o ther pa rameters .

When parameters are listed in parentheses after the procedure name in the
declaration part of the program, as are Xl and X2, they are part of the
formal ~ arameter list.

PROCEDURE ExChgVal(VAR Xl,X2 : Real);

When parameters such as A and B appear in parentheses after the procedure
name in the body of the program, they are part of the actual ~ arameter
l i s t .

ExChgVal(A,B);

Obviously, the formal parameters Xl and X2 are variables of the type Real,
as are the actual parameters, A and B. R eal numbers such as 4e3 and 6.7
me.v also have been used. Actual and formal parameters must match.

54

Although the formal parameter list is written within parentheses>
be arranged to look more like the declaration section of a program •
following are identical:

PROCEDURE Calculate(A, B : Real; VAR X : Real; Y : Integ r);

PROCEDURE Calculate(
A , B : R e a l ;

VAR
X : Real ;
Y : I n teger) ;

Variable and Value Parameters

N otice that in the following formal parameter list, only some o f t h e

Xl, X2, Y). Variable parameters are used for both input to the procedure
aod output from the procedure. A value ~arameter, such as Z, is formal
parameter that is not preceded by a declaration such as VAR, and can be
used only to input data to the procedure:

PROCEDURE OtherVal(VAR Xl, X2 : Real; Z : Real; VAR Y : Integer);

Although Z may change value during the execution of the procedure, the new
value of Z is not communicated to the main program.

The following statements might occur within the body of the program when
the procedure OtherVal is to be executed:

OtherVal(A, B, 5 .0 , D) ;
OtherVal(C, B, A/10.0, E);

Notice that arithmetic operators and values (such as Integers) can appear
in a list of actual parameters if the corresponding parameter is a value
parameter. A n e r ror is generated if the corresponding parameter is a
v ariabl e o n e .

Corres ondence Between Actual and Formal Parameters

The following rules must always be obeyed:

1) Th e n umber of actual parameters in each set of parentheses must be
exactly the same as the number of formal parameters.

2) The parameter types must be consistent. Thus, the main program (which
uses the procedure OtherVal) may declare:

VAR
A ,B,C : Real ;
D ,E : I n t e g er ;

The names of the variables in a procedure may be the same as names used in
other procedures or in the main program.

55

Functions

Functions are similar to procedures in that both use parameters, but
different in that a function takes the values input (viz., the parameter
values) and returns a single value which is identified by the function
name. F o r e xample, the function Sqr(X) returns the value of X squared
when given some value of X. Thus, when X equals 12, Sqr(X) equals 144.

A few of the most commonly used mathematical functions are included in
Kyan PASCAL (X is a Real number or Integer):

Abs(X)
Sqr(X)
Sqrt(X)
Sin(X)
Cos(X)
Arctan(X)
Ln(X)
Exp(X)

Additional functions can be defined by the user.

Absolute value of X
T he square o f X
The square r oo t o f X
The sine of X (X is in radians)
The cosine of X (X is in radians)
The arctangent of X (result is in radians)
The natural logarithm of X
e ra i sed t o t h e p ower X

~Declarin Functions

A user-defined function is a simple procedure that uses only value
p arameters. The elements of a function are illustrated below. T h e y
include the function name, Cosine Law (CsLaw), the formal parameter list
(A, B, Theta : Real), the result type (Real), the local declaration (VAR C

Real), and the function body (BEGIN...END).

PROGRAM Trig(Input, Output);
VAR

E ,H1,W1,Angl ,AngX : Rea l ;

FUNCTION CsLaw (A, B, Theta : Real) : Real;
(+Returns the length of side, C, opposite the angle Theta")

C : Real ;

BEGIN
C := A~A + B~B;
CsLaw : = C — 2.0 A B~Cos(Theta)

END;(+PROCEDURE~)

VAR

BEGIN
Readln(H1,W1,Angl,AngX);
E := 1 • 0 + CsLaw(H1,W1,Angl)""Sin(AngX)

END.(+PROGRAM Trig~)

Like value parameters in procedures, the parameters of a function do not
change their values outside the function. The function returns o nly a
single value, the result (CsLaw), whereas a procedure may return as many
values as there are variable parameters listed.

56

When a function is used in a program, a separate statement to call it up
is not required. For example, CsLaw can be called up by relational'or
arithmetic statements such as the following:

E := 1 + CsLaw(H1,W1,Angl)~Sin(AngX);

A p r ocedure, h o wever, d oes r equire a s e parate statement [e.g. ,
OtherVal(A,B,C,D);]. This i s b ecause the identifier of a function has
some value, viz., the result, but the identifier of a procedure does not
h ave a va l u e .

The Funct ion Odd

The function Odd(parameter) returns the value True when the parameter is
odd or the value False when the parameter is even. I t is important t h a t

the parameters used with Odd be of the type Integer.

For example, if the variable Number equals 3, then:

Odd(Number) = True

Thus, this function turns Integer data into Boolean data.

Global and Local Variables

When a v ariable is declared in the main program, it is called a global
variable. W hen a variable is declared within a function or procedure, it
is called a local variable. P a rameters are neither local nor g l obal
variables, although they are used to pass values of global variables to
and f rom the p r ocedure.

PROGRAM Alpha(Input, Output);
VAR Al : Real ;

A3,A4 : Char ;

PROCEDURE Other (VAR AA1:Real; AA3:Char);
VAR BB1:Integer ;
BEGIN

A4 := 'Y' ;
B B1 '= 5
A A1 := 1 5 .3

END;(Procedure)

(v44 is ~ l ob a l ")
(~BBl i s lo ca l *)

BEGIN
Other(A1,A3);
IF A4 = 'Y' THEN
Writeln('A4 is global');
IF Al = 15.3 THEN
Writeln('AA1 is a formal parameter')

END.(+Program Alpha)

The statements in the body of a function or procedure manipulate a variety
of variables and parameters. Variables must be appropriately defined in
order for the program to function properly:

57

1) They can be declared in the global declaration section.
(VAR Al :Real ; A3,A4:Char;)

A variable that has been declared in the main program may be used in a
function or procedure in a global manner. The variable A4 is used in this
way:

A 4 : = 'Y',

Every time the procedure Other is called, A4 is given the value 'Y' and
the statement in the main program, A4 = ' Y' , becomes t r u e .

2) They can be declared in the local declaration section.
(VAR BB1 : Integer;)

A variable declared only in the procedure may be used. The variable BB1 is
used locally in the program:

BB1 := 5 ;

Because BB1 was not declared in the main program, if the statement "BB1 =

5" were to appear in the main program, it would make no sense a nd t h e
compiler would generate an error message.

3) They can be listed in the formal parameter section.
[Other (VAR AA1 : Real; AA3 : Char) ;]

Passing values through global variables is not recommended because it
m akes it difficult to keep track of incoming and outgoing data: it i s
better to use actual and formal parameters.

The following section extends the preceding defin'.tions of global and
local to more general cases where a variable is relatively global or
relatively local. T hi s o ccurs when there are several functions and
p rocedures shar i n g v a r i a b l e s .

~Nestle of Functions and Procedures

Functions an d p rocedures may be n ested within other functions or
procedures. Th e d eclaration section of a program is illustrated below
with nested boxes to represent the concept called "scope." The innermost;
box, Phasel is within the scope of both CsLaw and PhaseDis, while CsLaw is
only within the scope of the main program, PhaseDis.

Because of the top-down structure of PASCAL, the procedures or functiona
declared first have greater scope than those declared later. Id e ntifiere
~of variables and ~te~s in the outer boxes are ~lobal relative to t h e
inner boxes. Identifiers that are declared in ~rocedures o f ~ r e s t e r ~sco e
are ~lobal relative to procedures of lesser ~sco e.

Thus, values of variables may be passed from a procedure of greater scope
to one of lesser scope either by parameters or by global variables of the
procedure o f g r e a te r s c o pe .

58

PROGRAM PhaseDis;
VAR Heightl, Widthl, Anglel, Angle2, Dist : Real;

FUNCTION CsLaw(A,B,Theta : Real) : Real; VAR C : Real;

PROCEDURE Phasel(H1,W1,Angl,AngX : Real; VAR D : Real)
VAR E : Real ;

BEGIN
E := 1 + CsLaw(H1,Wl,Angl)+Sin(AngX);
D := 1 . 22+C
E ND;(+Phase Declara t i o n)

BEGIN
C := A~A + B~B;
CsLaw : = C — 2~A~B Cos(Theta)

E ND;(~CsLaw Declara t i o n)

BEGIN

END.(PhaseDis~)

Notice how the scope of a variable is determined the moment it is declared
and remains in effect until the end of the procedure, function or main
program in which it was declared.

The scope of the variables can be represented more clearly by showing only
the declaration sections of the program, functions, and procedures:

• •

program: PhaseDis
variables declared: Heightl, Widthl, Anglel, Angle2, Dist

funct i on : CsLaw
v ariab les dec l a r ed

(formal parameters): A,B,Theta
(local variables): C

procedure: Phasel
v ariab les dec l a r ed

(formal parameters): Hl, Wl, Angl, AngX, D
(local variables): E

In this example, C is global to Phasel. The new value for C is passed to
Phasel as soon as CsLaw is executed. Use of global variables in this way
is not recommended. Values should be passed to and from functions and
procedures only through parameters.

Compare the following version of the program PhaseDis to the previous one.
The procedure Phasel is no longer nested within CsLaw. C i s n o l o nger
global relative to Phasel because CsLaw no longer has greater scope than
Phasel. Th e s tatement using C in Phasel had to be dropped, because it
would no longer be syntactically correct.

It is possible, and often desirable, in a long program to reuse names in
several places but with different meanings. A s long as the scope of one
definition of such a name does not not encompass another definition, there

59

will be no conflict.

PROGRAM PhaseDis;
VAR Heightl, Widthl, Anglel, Angle2, Dist : Real;

FUNCTION CsLaw(A,B,Theta : Real) : Real; VAR C : Real;
BEGIN
C := A~A + B~B;
CsLaw : = C — 2+A+B~Cos(Theta)
E ND;(~CsLaw Declara t i o n ~)

PROCEDURE Phasel(H1,WI,Angl,AngX : Real) ;
V AR E : Rea l ;
BEGIN
E := 1 + CsLaw(H1,W1,Angl)"Sin(AngX)
E ND;(~Phase Declara t i o n)

BEGIN

END.(PhaseDis)
• •

Global aod Local ~Taa

User-defined types such as scalar types may be local or global. T he same
r ules o f s c ope app l y .

Forward References

Calling, i.e., executing, a p rocedure or function before it has been
defined is called a forward reference. Whenever a forward reference is
used in a PASCAL program, it must be declared as shown in the third line
of the following program:

PROGRAM Compute(Input, Output);
VAR X : I n t e g er ; Y : Re a l ;

FUNCTION Factor(Z : Integer) : Integer; FORWARD;

PROCEDURE Bisect(Alpha : Integer; Beta : Real);
BEGIN
Beta : = Beta + A l pha Fac t o r (Alpha)
END;(-PROCEDURE=)

FUNCTION Factor ;
CONST LargeNum = 12345;
BEGIN

F acto r : = LargeNum MOD Z
END;(~FUNCTION~)

BEGIN
Write('Enter an Integer ') ;Readln(X);
Write('Enter a decimal number ') ; Readln(Y);
Bisect(X,Y);
Y := Fact o r (X) Y ;
Writeln;Writeln('Answer is ',Y)

END.

60

The procedure Bisect is able to execute the function Factor because the
latter is declared as a forward reference before Bisect is d eclared.
Notice that the forward reference declaration includes the fo r mal
parameter list; later, when Factor is fully declared, the parameters and
the FORWARD declaration are not repeated.

Unconditional Branch: GOTO

Although it. is not ordinarily done, PASCAL statements may be labeled to
allow unconditional branching, such as from a REPEAT UNTIL loop.

A label (i.e., statement number) in PASCAL is an Integer followed by a
colon and placed before a statement in a program. The maximum size of a
label is four digits. L abels must be declared just like variables and
constants. Th e f ollowing statements might occur in a program with a
forward j u mp:

PROGRAM Example(Input, Output);
LABEL 22, 35 ;
V AR A : I nt e g e r ;

BEGIN

22:
A := 0 ;
Writeln('A= ' ,A :4) ;
A := A + 1 ;
IF A (5 THEN GOTO 22 ELSE GOTO 35;
Writeln('Skip Me');
Writeln('The End')35:

END.

The unconditional jump, which may be either forward or backward in the
program, is written as follows:

GOTO label;

L abels used in a function or procedure must be declared locally. G O T O
jumps can be u sed to jump forward or backward within a f u nction or
procedure, or to leave a function or procedure to enter the main program,
but cannot be used to jump from the main program to enter a function or
procedure.

61

ARRAYS

Most of the types of data that have been discussed so far are limited to
single values. (Integer and Real both imply a single number; Char implies
a single character; and Boolean is either the value True or False.)

However, some kinds of data are not conveniently divided into components.
This is the case with words or strings, which were discussed previously. A
string, such as "butter" is actually a collection of characters. This is
the identifying characteristic of an a rray: an a rray i s a lways a
collection of one of the simpler data types.

A vector, such as the direction of a spaceship in flight, is a nother
example of an array. T h e clearest and most correct way to handle such
data is to put parentheses around the components (X, Y, Z) to clarify that
they represent a single direction.

Arrays are declared in PASCAL as follows:

Array Type = ARRAY[Subscript Type] OF Element Type

l . ~Arra ~t>es are always user defined.

2. T h e ~subscri t ~t e sp ecifies the size of the array and assigns a
number to each of the elements of the array. See examples below.

3. The element ~t e may be any standard or user-defined type. A l l the
elements in an array must be the same type.

The amount of memory space allocated for an array is determined by t he
subscript type. If an array of characters is not filled because the input
is smaller than the array size, the remaining spaces are set to blanks.
However, unused array spaces of other types are not determined.

Example Program:

PROGRAM Graphic;
TYPE

S tr i n g = ARRAY[1..15] OF Char;
CoordnType = (X,Y,Z);
VectorType = ARRAY[CoordnType] OF Real;

VAR
Vector : V e c t o r Type;
W ord : S t r i n g ;

BEGIN
V ector [X] := 3 . 0 ;
V ector [Y] := 5 . 0 ;
Vector [Z] : = 4 . 0 ;
Word : = 'First Point

END.

The first array, String, may be used to handle words or phrases that have
15 characters, including blanks. Integers (1 to 15) identify the elements
o f th e a r r a y .

62

The second array declares that each vector consists of 3 numbers. (Each
one is a direction in three-dimensional space.) The elements of this array
are identified not by Integers, but by CoordnType, a user-defined type.
Any scalar type may index an array.

~Arra s of ~Arra s and Multidimensional ~Arra s

If we wished to represent a paragraph that contained up to 50 words, we
might define it as an array of String (i.e., an array of an array):

TYPE
S tr i n g = ARRAY[1..15] OF Char;
Paragraph = ARRAY[1..50] OF String;

Use of the a rray Paragraph could prove to be a w a steful programming
technique because it reserves a lot of memory space for what might turn
out t o b e a s h or t p a r a g raph.

The array Paragraph is an example of a multidimensional array. The array
MatxType below is also multidimensional. MatxType is a two-dimensional
array of numbers. (It is not necessary for the dimensions of the matrix to
be the same size, although in this one they are, 3 elements each.)

Two ways of declaring MatxType are:

TYPE
Row = ARRAY[1..3] OF Real;
MatxType = ARRAY[1..3] OF ROW;
(-Each element of MatxType is a row)

TYPE
MatxType = ARRAY[1..3, 1 . . 3] OF Real;
(Subscripts are row number, column number)

VAR

Char;
O F Str i n g ;

S tr i ng ;

It is important to recognize which subscript refers to which dimension in
such arrays. The significance of this is illustrated by the following
example, in which a name, i.e., a string, is copied from a list:

TYPE
S tr i n g = ARRAY[1..14] OF
TableType = ARRAY[1..100]

T able : T a b l eType ; Nam e
BEGIN

F OR I : = 1 TO 14 DO
T able[2,I] : = Name[I]

(+Name is written into the
END.

One way to remember which subscript is first is
of the array type. The first subscript type
gives the first subscript, S, in Table[S,P];
gives the second subscript, P.

TYPE
TableType = ARRAY[1..100] OF ARRAY[1..14] OF Char;

s econd row of t a b l e)

I : I n t e g e r ;

to rewrite the declaration
in the declaration below
the second subscript type

63

~Addio Two Multidimensional ~Arra s

The following program adds two 3 X 3 matrices. To find the sum of two
matrices, the corresponding elements (those with identical row and column
s ubscripts) are added to form the elements of the sum matrix. I n t h i s
program, the first matrix is entered in matrix form into the computer's
memory. T he elements of the second matrix are then added, one at a time,
to the elements of the first matrix. Thus, the sum matrix is formed
without the computer's ever having "seen" the second matrix.

PROGRAM AddMatrix(Input, Output);

TYPE
MatxType = ARRAY[1..3,1 . .3] OF Real;

FOR SubSRow : = 1 TO 3 DO

VAR
Matrix : MatxType;
S ubSRow, SubSCol : I nt e g e r ;
(~Subscripts of the matrices")
A ddEle : R e a l ;
(~Elements of 2nd Matrix)

BEGIN
FOR SubSRow : = 1 TO 3 DO

FOR SubSCol : = 1 TO 3 DO
BEGIN
Write('Matrixl element ',SubSRow : 3, SubSCol : 3, ' i s ');
Readln(Matrixl[SubSRow,SubSCol]);
(~Inputs the elements of first Matrix")
END;(~FOR)

FOR SubSCol : = 1 TO 3 DO
BEGIN
Write('Matrix2 element ',SubSRow : 3, SubSCol : 3, ' i s ');

(" Inputs the elements of second Matrix')
Matrix[SubSRow,SubSCol] : = AddEle + Matrix[SubSRow,SubSCol]
END;(+FOR loops")

Writeln;Writeln('The sum of the two matrices is:');
W rite l n ;
FOR SubSRow : = 1 TO 3 DO

BEGIN
W rite l n ;
FOR SubSCol : = 1 TO 3 DO
Write(Matrix[SubSRow,SubSCol] : 7:3)
END;(QFOR)

END.

Readln(AddEle) ;

The ~Arra A s a P a r ameter

In the procedure below (ShOrder), an array (SubArry) is used as a variable
parameter :

PROCEDURE ShOrder(First, Last: Integer; VAR SubArry: NumbArray);

If SubArry were to be passed as a value parameter, VAR would be deleted.
(But this would take twice as much memory space, because an extra copy of

64

the array would be set up for use in the procedure.)

Individual elements of an array may also be passed as parameters, such as
the third element of Vector, viz. Vector[Z]:

PROCEDURE CheckPoint (Vector[Z] : Real);

~Pro ram ~Exam lel

T his program is used to order a small subset of a list of u p t o 1 5 0
numbers. B e yond six numbers in th e s ubset, the procedure becomes
inefficient.

The ordering of the subset is accomplished by the procedure ShOrder, which
works as follows: pairs of elements in the subset are compared, starting
with the first and second elements. I f the first element is greater than
the second, they are exchanged. This is repeated for the second and third
elements, etc. As long as any exchanges have taken place anywhere in the
list, this procedure will repeat again for the entire list. When no
exchanges have taken place, the list is in order.

PROGRAM Examplel(Input, Output);
CONST MaxNumbs = 150;
TYPE NumbArray = ARRAY[1..MaxNumbs] OF Real ;
VAR First, Last, Subscript: Integer; BigArry: NumbArray;

P ROCEDURE Exchg(VAR A,B: Real) ;
VAR C: Real ;

BEGIN (" Procedure Exchg".)
C = A '

A : = B;
B = C

END;(Procedure Exchg~)

PROCEDURE ShOrder(First, Last: Integer; VAR SubArry: NumbArray);
(@Orders a list of numbers, subset of full list)
VAR NumbIndex : Integer;

Exchanged : Boolean;

REPEAT
Exchanged : = Fal s e ;
FOR NumbIndex : = Fi rs t T O (L a s t - 1) DO
IF SubArry[NumbIndex]) SubArry[NumbIndex+1]

THEN BEGIN (Exchange if out of order.")
Exchg(SubArry[NumbIndex],SubArry[NumbIndex+1]);
Exchanged : = True
END;(+Exchg,THEN~)

UNTIL Exchanged = False (If one of the elements was exchanged,
the test must be repeated until all elements are in order 5
Exchanged remains Fal se")

END;(+Procedure ShOrder>)

BEGIN(~Main Program~)
Writeln('Enter a list of numbers to be ordered.');
Writeln('After each number press the return key.')
Writeln('After last number enter 0 and press');
Writeln('return to stop.');

BEGIN

65

S ubscrip t := 0 ;
REPEAT

S ubscrip t : = Subscr ip t + 1 ;
Write('Entry Number ' , Subscr i p t : 3 , ' i s ') ;
Readln(BigArry[Subscript])

UNTIL BigArry[Subscript] = 0 . 0 ;
Writeln('Between which "Entry Numbers" should');
Writeln('this list be ordered? First :');
Readln(First); Writeln('Last :');
Readln(Last) ;
ShOrder(First, Last,BigArry);
W rite l n ;
F OR Subscrip t : = First TO Last DO
Writeln(BigArry[Subscript]: 7:3, ',Entry Number', Subscript: 3)
END.

PROGRAM ~Exam le2

In the following program, the procedure ShOrder is modified to sort a two
dimensional array. T h e new procedure ShAlph, is used to alphabetize a
list of 6 words, each of which has no more than 15 letters. The procedure
Exchg exchanges the position of two consecutive words in the array.

The two-dimensional word array used in this program can be visualized as
fol l ows :

help
program
difficult
easy
should
be

The first subscript gives the horizontal position of a letter; the second
subscript gives the vertical position. T hus, the "r" in "program" would
be subscripted (2,2), the "d" in "should" would be subscripted (6,5), etc.

PROGRAM Example2(Input, Output);

CONST MaxLetters = 15 ; MaxWords = 6;
T YPE Str i n g = ARRAY[1..MaxLetters] OF Char;

WordArray = ARRAY[1..MaxWords] OF String;
VAR WordMatrix: WordArray; WordIndex: Integer;

PROCEDURE Exchg(VAR WordMatrix: WordArray; WordIndex: Integer);

V AR C: St r i n g ;
BEGIN

C := WordMatrix [WordIndex];
WordMatrix[WordIndex] := WordMatrix[WordIndex+1];
WordMatrix[WordIndex+1] : = C

END;(=Procedure Exchg")

PROCEDURE ShAlph(VAR WordMatrix: WordArray);
(Alphabetize word list (= 6 words)
VAR WordIndex: Integer; Exchanged: Boolean;

66

BEGIN
REPEAT(+Until all words are in order+)
Exchanged : = False;(edll words are in ord® i f none need t o b e

exchanged+)
FOR WordIndex : = 1 TO MaxWords — 1 DO IF
WordMatrix [WordIndex] > WordMatrix[WordIndex + 1]
THEN BEGIN (+FOR Loop, Test all in WordMatrix+)

ExChg(WordMatrix, WordIndex);
Exchanged : = True ;

END;(+IF+)
UNTIL Exchanged = False;

END;(+Procedure ShAlph+)

BEGIN(+Main Program+)
Writeln('Enter six words, each with a maximum of');
Writeln('15 letters. After each word press the');
Writeln('RETURN key. ');
WordIndex : = 0;
REPEAT

WordIndex : = WordIndex + 1 ;
Write('Word number ', WordIndex :3, ' i s ');
Readln(WordMatrix[WordIndex])

UNTIL WordIndex = MaxWords;

ShAlph(WordMatrix);
W rite l n ;
Writeln('Alphabetized Words: ');
FOR WordIndex : = 1 TO MaxWords DO

W rite l n ;
Writeln(WordMatrix[WordIndex]);

END.

E nd of L i n e

The character that terminates a line of data on the keyboard is the end of
line character, EOLN (<RETURN> key). The statements

Read (Letter) ;
IF KOLN THEN

may be used to control input from the keyboard, because the THEN statement
will only be executed when a <RETURN> is entered. E OLN stays True until
additional data are entered through a Read or Readln statement.

EOLN is used to control data entry below:

Writeln('Enter four words. End each word');
Writeln('with the RETURN key ');
FOR WordIndex : = 1 to 4 DO
BEGIN
Lette r I n dex : = 0;
WHILE NOT EOLN DO
BEGIN
Lette r I n dex : = Let te r I ndex + 1 ;
Read(WordMatrix[WordIndex,LetterIndex])
END;(+WHILE+)

67

Writeln('Preceding word had ', LetterIndex :3, ' l e t t e r s . ') ;

END;(+FOR+)

The above lines allow wo s to be entered, one letter at a time, into a
list. E ach EOLN signifies the end of a word, i.e., the end of a row in
the array WordMatrix. I f W o rdMatrix is declared to be of the s ize
[1..4,1..15], when a word has fewer than 15 letters, the unused places
will be filled with blanks. I f a word is longer than 15 letters, the
excess letters will not be saved.

Readln

R ecursive Pr ocedures and Funct i o n s

A procedure or function that calls itself is said to be recursive. I n
Progam Example2, it is possible to rewrite ShAlph to make it recursive.
Typical of recursive procedures, ShAlph has fewer statements than before,
but in the compiled machine code it will be longer.

I

PROCEDURE ShAlph (WordMatrix : Word Array);
VAR WordIndex : Integer;
BEGIN

FOR WordIndex : = 1 to MaxWords — 1 DO
IF(WordMatrix[Wordlndex)]) WordMatrix[WordIndex+1])
THEN BEGIN

ExChg(WordMatrix,WordIndex);
ShAlph(WordMatrix)

END
END;(PROCEDURE")

As rewritten, ShAlph tests the words from the first word to the last. If
any of the words are out of alphabetical order, they are exchanged and
ShAlph begins again. W hen ShAlph is called recursively, the index to the
array is reset to the beginning.

There are two u ses for recursion: 1) where logical decisions occur
repetitively as above, and 2) when computing a function in the form of
some repetitive function, such as N! = N~(N-1)~(N-2) . . . [N - (N- 1)] .

~Co i~in ~Arra s

If two arrays have the same subscript type and element type, the values of
one may be c opied to the other using a simple assignment statement.
Notice that it is not necessary to specify the subscripts when copying.

VAR Matrixl, Matrix2 : ARRAY [1..3,1. .3] OF Real;

BEGIN M a trixl := Mat r i x 2 ;

Values may be assigned to string array variables by using single quotes
around the characters to be included. T his is illustrated in the example
below. B l anks are assigned because the string array size is larger than
the word being put into it:

68

PROGRAM CopyArrays;
TYPE St r i ng = ARRAY[1..16] OF Char;
VAR Wor dl, Word2 : String;

BEGIN
Wordl : = ' In i t i a l
Word2 : = Word l ;
Word2[8] := ' s ' ;
Writeln(Word2)

END.

In this program, Word2 is given the value "Initials" with eight
blanks.

69

RECORDS

Some kinds of data are most conveniently handled as a mixture of several
types. A n example of mixed type data is the date: "January 1, 1987" is a
string of characters followed by two Integers • PASCAL allows the user to
define mixed data types as records:

TYPE
DateType = RECORD

Month: ARRAY[1..10] OF Char;
Day: Integer;
Year: I n t e g er

END;(+DateType~)

VAR DateRec: DateType;

DateType is the identifier of a record type with three fields, and DateRec
is the identifier of a variable of the type DateType. The general form of
the declaration of a record and its fields is:

TYPE
Identifier = RECORD

f ie l d l : t ype l ;
field2: type2;
field3: type3;

END;
etc.

The last field in a record does not need to be terminated by a semicolon.
The three fields in the record DateType are Month, Day, and Year.

The statement below is one way to refer to a record variable. It uses the
form "identifier. field."

Writeln (DateRec.Year: 5:0);

Another way to refer to record variables is to use the WITH statement:

WITH DateRec DO
BEGIN

Readln(Month) ;
Readln(Day);
Readln(Year)

END; (~WITH DateRec")

All three record variables are read using the WITH format.

~C o r~in a R e c o r d

If two records are of the same type, it is possible to use a s i mple
assignment to transfer the value of one to the other:

70

VAR
DateRecl, DateRec2: DateType;

BEGIN
DateRecl : = DateRec2;

This copies all the fields of DateRec2 into DateRecl without having to
list them. I n t h is case, the Boolean comparison below would have the
value True .

DateRec2 = DateRecl

~Pro ram Absolu t e

Using data in the form of a record, it is easy to write a p rogram to
calculate the absolute value of a complex number. The formula for the
absolute value is the same as that for the distance from a point to the
o rig i n .

PROGRAM Absolute(Input, Output);
(~Finds the absolute value of a complex number)

TYPE
ComplexType = RECORD

R ealPart : R e a l ;
ImagPart : Real

END(."ComplexType Record.");

VAR
ComplexNum : ComplexType; Abs : Real;

BEGIN WITH ComplexNum DO
BEGIN
Write('The real part = ') ; Re a d l n (RealPar t) ;
Write('The imaginary part = ') ; R eadln(ImagPart) ;
Abs : = Sqrt (Sqr(RealPart) + Sqr (ImagPart)) ;
Writeln; Writeln((' Absolute Value = ' , Abs: 10:2)

END(<With)
END.

In the program that follows, the approximate time elapsed since January 1,
1980 is computed. All months are assumed to be of equal length, 30 days,
a nd al l ye a r s a r e 36 5 days l o n g .

71

VAR

PROGRAM ElapsedTime(Input, Output);
(Since Starting Time.)

CONST
StartDay = 1;
StartMonth = 1;
StartYear = 1980;

TYPE
DateType = RECORD

Day : 1. . 31 ;
Month : 0 . . 12 ;
Y ear : I n t e g e r

END;(=DateType Record ")

B: Integer ;
D ateRec: DateTy pe ;
InMonth: ARRAY[1 • .3] OF Char;

BEGIN
Write (' MONTH (upper case, first 3 lett)
Readln (InMonth);
WITH DateRec DO
BEGIN
W rite (' D A Y = '); Readln (D a v) ;
W rite (' Y E A R = '); Readln (Y e a r)

END;('WITH reads D ateRec ".)
DateRec.Month : = 0;

IF InMonth = 'JAN' THEN DateRec .Month : = 1 ;
IF InMonth =' F EB' THEN DateRec.Month : = 2 ;
IF InMonth ='MAR' THEN DateRec.Month := 3;

IF InMonth = 'APR' THEN DateRec.Month
IF InMonth =' MAY' THEN DateRec.Month : = 5;
IF InMonth =' JUN' THEN DateRec.Month : = 6;
IF InMonth = 'JUL' THEN DateRec .Month : = 7 ;
IF InMonth ='AUG' THEN DateRec.Month := 8;

IF InMonth ='SEP' THEN DateRec • M onth := 9 ;
IF InMonth =' OCT' THEN DateRec.Month := 10;

IF InMonth ='NOV' THEN DateRec.Month := ll;

IF InMonth =' D EC' THEN DateRec.Month : = 1 2 ;
B := (DateRec.Day — StartDay)+ 30'".(DateRec.

IF DateRec.Month = 0 THEN
Writeln('Format error in Month') ELSE

Writeln('Days since Starting Time = ' B: 8

Month — StartMonth) +
365-(DateRec.Year — S t a r t Y e a r) ;

END.

In this program the record type contains three sets of Integers. O n l y a

s ubset of the type Integers is used for Month and Day. I n th e range o f

values for Month, 0 is included to check that a three-letter abbreviation

i s input correctly. E rr o r - c hecking statements are always part o f a

professionally written program.

T he re c ord f i el d D a t e R ec.Month could h a v e been th e s c a l ar type
(JAN,FEB..DEC), but this would not have enabled a direct comparison with

the input, which is in the form of strings: 'JAN', 'FEB'. .'DEC' • Th i s i s
because 'JAN', a string, is not equal to JAN, an identifier •

72

~Arre s o f R e c ords

Suppose the quality control department of a company wished to calculate
the failure rate of each of thek parts in a gearbox or some other machine.
Although 5000 of these machines were built, only 500 of them have come
back for service. The first step in such a program would be to declare an
a ppropr i a t e a r r a y o f r ec o r ds .

To construct an array of records, the following format is used:

TYPE
Array Type = ARRAY[Subscript Range] OF Record Type;

VAR
Array Var i a b l e : A rr a y T y pe ;

A particular element in such an array can be specified as follows:

Array Variable[Subscript].Field

In the program below, "Failures," the array is a set of records consisting
o f the serial number (Serial Num), the gear number(Gear), the date o f
failure (FailDate) and the date the gearbox was put into service
(Star tDate) .

"Failures" i s used to calculate the time between when the unit was placed

in service and when a part failed. S urviveTime is a function similar to
the program ElapsedTime, which was previously discussed.

PROGRAM Failures(Input, Output);
CONST

GearCount = 50; (~50 par t s i n g e a r box ')
Fai l Coun t = 500;
MachCount = 5000;

TYPE
DateType = RECORD
Month: 0..12; Day: 0..31; Year: Integer

END;(RECORD"")

FailType = RECORD
SerialNum: Integer;
FailDate: DateType;

END;(~RECORD")

G ear: I n t e g e r ;
StartDate: DateType

VAR Failure: ARRAY
[1..FailCount] OF FailType;

FUNCTION
SurviveTime(VAR FailDate, StartDate: DateType): Integer;

SurviveTime : = (FailDate.Day-StartDate.Day) +
BEGIN

30"(FailDate.Month-StartDate.Month) +
365~(FailDate.Year-StartDate.Year)

END; (FUNCTION.".)

73

BEGIN
Writeln('The first gearbox to fail lasted

SurviveTime(Failure[1].FailDate, Failure[1].StartDate): 5);
Writeln('It was serial 0"', Failure[1].SerialNum: 9)

END.(~PROGRAM~)

The first Writeln statement specifies two fields (FailDate and StartDate)
of the first record of the array Failure:

SurviveTime(Failure[1].FailDate, Failure[1].StartDate)

This statement calls the function SurviveTime, which then calculates the
time to failure of the first machine.

WITH

Some programs that use records can be made more compact by using the WITH
statement to access the fields of the array:

PROGRAM Entry;

TYPE InputType = RECORD
Money: Real; Name: ARRAY[1..15] OF Char;
MonDate, DayDate,YearDate: Integer
END;(""RECORDS)

VAR InputVar: InputType;

BEGIN WITH InputVar DO BEGIN
Money : = 25 . 50 ; Name : = 'Full Moon Inc.
MonDate : = 4 ; Day D a t e : = 30 ; Year D a t e : = 1952
END;(WITH'".)

Writeln(InputVar.Name, ' gave' , I n p u t Var .Money: 6 : 2 , ' on' ,
InputVar.MonDate: 3, ' / ' , I nputVar.DayDate: 3 , ' / ' ,
I nputVar .YearDate : 3)

END.

The WITH statement is used with record variables, such as InputVar in the
program above. It allows the fields of a record to be accessed withou t
repeating the name of the record.

Variant Records

In many applications of the record type, there are two or more records
that have most, but not all, their fields in common. The variant record
is constructed for such cases.

For example, an auto repair shop owner wishes to keep a record of each
repair in order to bill his customers later. His customers are either
individuals or companies. I n both cases, he wants to know the labor and
p arts used as well as invoice number and customer's name and address. I n
the case of companies, he also wants to know their requisition number.
The two records are nearly the same:

74

TYPE Invoicel = RECORD
InvoiceNum, Labor, Parts: Integer;

CusName,CusAddr: S t r i n g ;
S ocSec: St r i n g
END;(=RECORD'")

TYPE Invoice2 = RECORD
InvoiceNum, Labor, Parts: Integer;

CusName,CusAddr: S t r i n g ;
ReqNum: Integer

For convenience, these may be combined into a si ngle variant
record, named Invoice, by use of the CASE statement:

TYPE
Invoice = RECORD
InvoiceNum,Labor, Parts: Integer;

CusName,CusAddr: S t r i n g ;
CASE Custmr: Integer OF

1 : (ReqNum: Integer) ;
2 : (SocSec: St r i n g)

• W 1~

Suppose a variable of type Invoice is named Bill:

VAR Bill: Invoice;

Then, to refer to the billing number of either an individual or company,

the auto shop would use "Bill.InvoiceNum." To refer to the requisition
n umber of a c o m p a ny , "Bill.ReqNum" would be used. The latter number does

not exist for individuals.

75

SETS

Another type of data that may be declared in PASCAL is the set type. Sets
may have up to 256 members. The general format for the declaration of a
set t ype i s :

Identifier = SET OF Base Type;

The base type must be a scalar type (but not Real).

For example, if the numbers from 10 to 25 are the base type, the prime and
nonprime numbers from 10 to 25 are two possible set variables:

PROGRAM ExSetl(Input, Output);
TYPE

NumType = SET OF 10. . 25 ;
VAR

Prime, NotPrime: iVumType;
N : In t eger ;

BEGIN
P rime : = [11,13,17,19,23];
N otPr ime : = [10,12,14,15,16,18,20,21,22,24,25];
Write('Enter a number between 10 and 25 '); Readln(iV);
IF N IN Prime THEN Writeln('That is a prime') ELSE
IF N IN NotPrime THEN Writeln('Not a prime') ELSE
Writeln('That is not between 10 and 25)

END.

Notice that the declaration does not specify what numbers constitute the
set variables, only that they must be some set of Integers between 10 and
25. The numbers constituting the variables are assigned in the program as
shown.

There are many similarities between a set type and a scalar type. In
f act, the scalar type Numbers has the same range of values for i ts
elements as the elements (members) of the set type NumType:

TYPE
Numbers = 10 . . 2 5 ;
NumType = SET OF Numbers;

VAR
Prime : NumType;
NotPrime : NumType;
Prim : Numbers;
NotPrim : Numbers;

Numbers differs from NumType in that the elements in a scalar type are
ordered, whereas they are not ordered in a set. (This allows the
declaration of subranges of scalar types such as TYPE First(i t : Jan . .N a r ,
a subrange of TY PE Year.)

The differences between Prime and Prim are twofold:

1. Scalar variables such as Prim can have only one value at a
time, whereas set variables can include 0 to 256 values.

76

For example, if all the prime Integers and all the non-prime
Integers from 10 to 25 were to be listed, the list would be
exactly all the Integers from 10 to 25. T his is equivalent
to the PASCAL statement below, where Full Set has b een
declared to be of the type
NumType:

F ullSet : = Prime + NotPrime

There are three basic operations on sets: Union, Intersection, and
Difference. Consider the following program:

PROGRAM Assign;
TYPE

Numbers = SET OF 1. . 9 ;
VAR

Prime : Numbers;
Odd : Numbers;
Test : Numbers;

BEGIN
Prime : = [1,2,3,5,7] ;
Odd : = [1,3,5,7,9] ;

The two sets Prime and Odd may be combined in three ways:

T est : = Prime + Odd;(~Union = [1,2,3,4,5,7,9]~)
T est : = Prime O dd;(~Intersection = [1,3,5,7]~)
T est : = Prime — Odd;(~Difference =[2])

In addition to the three basic set operators, there are seven set
relational operators. These result in either a True or a False output and
are exactly parallel to the arithmetic relational operators previously
discussed.

Setl = Set2
Setl < > Set 2
S etl <= Set2
S etl >= Set2
S etl IN Set 2

E quali t y
Inequality
Subset
Superset
SetMembership

The set membership operator is True if the element is a member of SET1.

It is not necessary to declare a set type to use sets. T h e f o llowing
program uses the set of failing grades : [F,NP].

77

VAR

StuGrade = RECORD

PROGRAM Finals(Input, Output);
CONST ClassSize = 30 ;
TYPE

GradeType = (A,B,C,D,F,P,NP,I) ;

StudentID : Integer;
Grade : Gr adeType

END;(RECORD.)

ClassGrades : ARRAY[1..ClassSize] OF StuGrade;
N : I n t e g e r ;
LettGra : ARRAY[1..2] OF CHAR;

BEGIN
FOR N : = 1 TO ClassSize DO
BEGIN Write('Student ',ClassGrades[N].StudentID,
Readln(LettGra);
IF LettGra = 'F ' THEN ClassGrades[N].Grade;=F;
IF LettGra = 'NP' THEN ClassGrades[N].Grade; =NP;
IF ClassGrades [N].Grade IN [F,NP] THEN

Writeln('Too Bad') ELSE Writeln('Good't')
END (FOR)

END.

~Usia Sets to Examine the Members of an ~Arra

In the program below, the set operator "IN" is used to examine the members
o f an array that contains all of the test scores of a s tudent in a
mathematics class. T h is process is repeated for all of the students in
t he c l a ss .

By outputing the total number of tests failed or postponed by students in
the class, the program aids in evaluating overall class performance.

PROGRAM TestGrades(Input, Output);
CONST ClassSize = 30;
TYPE

GradeType = (A,B,C,D,F,I ,P,NP);
GradeSet = SET OF GradeType;
StuGrades = RECORD

StudentID: Integer;
Grades: ARRAY[1..25] OF GradeType

END;(RECORD")
VAR

ClassGrades: ARRAY[1..ClassSize] of StuGrades;
N,M,I: Integer;

BEGIN
(<Statements would be inserted here to input class grades")

G radeSet : = [F,NP,I];
FOR N : = 1 TO ClassSize DO FOR M := 1 TO 25 DO
IF ClassGrades[N].Grades[M] IN GradeSet THEN
I : = I + 1 ;
Writeln('In this class ' , I : 3 , ' tests were ') ;
Writeln('either failed, not passed or put off')

'Enter final grade= ');

I • O s

END.

78

FILES

In PASCAL, files are the means of input and output of data. A Read o r
Readln statement calls for input; a W r ite or Writeln statement produces
output . When information is entered at the keyboard, it goes into a
PASCAL file called Input. When information is output to the display, it
is sent to a file called Output.

Files can also be used by the programmer as a data type. What programmer

created files have in common with Input and Output files is that they are
sequential and that information is read to them and written from them one

element at a time.

P rogrammer-crea t e d f iles enable data to be stored on magnetic t ape o r

floppy discs: a p i ece of data assigned to a file variable can be saved.

In contrast, when files are not used, values assigned to variables are
stored in the computer's directly accessible memory, which is lost wh en
the power is turned off.

Since the data in a file is on magnetic tape or a floppy disk, the size of

the computer's directly accessible memory is not a limitation as it is in
other data types: f i les give the programmer a great deal of extra memory

to work with. However, working with files has the disadvantage of slowing
the access time. This can become critical in real time programs.

Files
type.
until
last),

are unique in that they are the only completely sequential da ta

In fact, data items stored in a file cannot be used in a program

they are transferred sequentially, one element at a time (first to
from the file.

File Declaration

Before a file can be used in a program, it must be declared. T h e f i r st
step in declaring a file is to specify the file name in parentheses after

the program name:

PROGRAM Store(Input, Output, Listl);

This tells the computer that at least some of the data used by the program
will come from a file other than Input.

Next, in the variable declaration section, the variable type comprising
the file is specified:

VAR Listl : FILE OF Integer;

Here, the elements of the file Listl are Integers. A file may also contain

c haracters o r R e a l nu m b e r s . Arrays, sets, and records made of Integers,
characters, or Real numbers are also allowed.

~Vritin to a File

In order to store data in a file, we first must open the file for writing.

This is done by using the Rewrite statement, which also clears the file of

any data pre~iously stored in it.

79

Rewrite (L i s t l) ;

To actually put data into the opened file, two more statements are
necessary :

L is t l
*

: = J ;
P ut(Lis t l) ;

"Listl"" (which is i dentical to "Listll") is called a file buffer
variable. B e fore the value of an element can be Put into a file, it must
be temporarily assiged to a file buffer variable. Th e f i rst statement
above assigns the value J to the file buffer variable.

The Put statement is used to write the value J from the file buffer into
the file. T h e f i rst value entered goes to the first element position.
The next value entered goes to the second element position, and so on. It
is impossible to read from or write to a file without starting from the
first position.

The only memory space reserved for file variables is for the file buffer
variable. (If Listl is a file of Integer, Listl" will be assigned two
bytes.) T his is because a file exists outside the memory space of t he
computer.

The following program stores the Integers 11 to 945 in a file named Listl:

PROGRAM Store(Input, Output,Listl);

VAR
Listl : FILE OF Integer;

J : I n t e g e r ;

BEGIN
Rewrite (L i st l) ;
FOR J : = 11 TO 945 DO

BEGIN
Lis t l " : = J ;
Put(Li s t l)
END

END.

~Readin e Fi l e

Before a file can be read, it must be opened for reading. T his requires
use of the command Reset:

Reset (L i s t l) ;

The first element read is always the first element that was entered: just
as a f ile must be written from beginning to end, it m ust b e r e ad
sequentially. I n a d dition, reading requires that the values of t he
elements be assigned to a file buffer variable:

80

A Get statement must be used to get all elements of the file a fter t he
first one. Thus, if J is the first element of the file, K is the second,
and L is the third, the following statements get the first three elements:

J := L i s t l " ;
G et(List l) ;
K := L i s t l " ;
G et(List l) ;
L := L i s t l "

Usually the number of elements in a file is not known; t h e r e f ore, to get

all the data from a file, the file should be read until the end of file

marker (EOF) is found • The end of file marker is always at the end of the

file furthest from the first element. T h e f o llowing statements write all

the elements of the file.

R eset (Lis t l) ;
WHILE NOT EOF(Listl) DO
BEGIN

J : = L istl" ; Wr i t e l n (J) ; Ge t (L i st l)
END;

S ometimes a s p e c ific e l ement i n a file i s sough t. Th e follo w i n g

statements find and write all the elements of the file equal to 77 (List l "
is the file buffer variable.):

R eset (Lis t l) ;
WHILE NOT EOF(Listl) DQ
BEGIN

IF 77 = Listl" THEN Writeln(Listl" :4);
Get(List l)

END;

T ext F i l e s

Because files of characters are so frequently used, PASCAL has a standard

type of file, called Text, that is predefined as " Text = F I L E O F Char."
To create a file of text, include the file name after the program name and

also declare it as a variable:

PROGRAM WordProc(TextFileName);

VAR TextFileName : Text ;

Although the i n put and output of a text file may be handled in the same
way as th e i n p u t and output of other types of files, the f o l l o wing
simplifications may be used:

Read(TextFileName, Identifier);

can take the place of

Identifier : =TextFileName"; Get(TextFileName);

Also:

Write(TextFileName, Identifier);

can take the place of

TextFileName" :~Identifier; Put(TextFileName);

If no text file name is included in a Read or Write statement, the file
accessed will be Input or Output, respectively. (Note: so m e P ASCAL
compilers will give an error message if no text file name is given and
Input and Output have not been declared.)

Files of Records

Most files are files of records. In the following example, the status of
each truck in a company's fleet is kept in a file called BigRigFile.

PROGRAM Trucks(Input, Output,BigRigVar);

String = ARRAY[1..16] OF Char;
TruckType R e cord

N extSrvc : I nt e g e r ;
I D : S t r i n g ;
Status : (OnRoad, MachShop)

END;(WruckType+)
BigRigFile = FILE OF TruckType;

VAR
BigRigVar : BigRigFile;

TYPE

Sl : S tr i ng ;

BEGIN(+Body of Trucks Program+)
Reset(BigRigVar);
WHILE NOT EOF(BigRigVar) DO
BEGIN

BEGIN
Writeln;Writeln('Truck O', I D) ;
IF BigRi~Var".Status = OnRoad THEN

Sl : = On the r oad
ELSE Sl : ' In t h e s h op
Writeln('Status is ', Sl, ' Next Serv i ce i s

Get(BigRigVar)
END (+WHILE LOOP+)

END.

N extSrvc : 7)

Random Files — ADVANCED KYAN PASCAL ONLY

Although standard PASCAL does not include random access files, there are
many instances where a program might wish to access only part of a file
and that part might be in the middle of a file or at the end, making
sequential access very slow.

Most files in A dvanced Kyan Pascal have been changed from sequential

82

storage to relative storage to allow random access of the elements in the

f ile. (However please note that files of Char (text) or files of Boolean,
remain sequential files.) The elements of a relative file must be less
than 128 bytes in size.

The function Seek has been included in Kyan PASCAL to access parts of
relative files, called elements that might be in the anywhere in a file.
This procedure is used as follows:

Seek(F,N); (+ Position the buffer of file F at the Nth element~)
Put(F) (~ Put contents of the file buffer into Nth element~)

(+ Either Put or Get follow Seek +)
Get(F); (~ Get contents of Nth file element and put in buffer')

T he first element of a file has the element number 1. A s w as s ta te d

previously the first element of a file is the first element put (using the
PASCAL procedure Put) into a file. Most often, the elements of a file are
PASCAL record types. In that case the 1st element of the file is its 1st
record and its Nth element is its Nth record.

Readln(i);

PROGRAM SeekDemo;
TYPE Str ing = ARRAY[1..32] OF Char;
VAR F: FILE OF String; C: Char;

PROCEDURE RdRec;
VAR i: In teger ;
BEGIN
Write('Record Number? ');
Seek(F,i);
Get((F);
IF NOT EOF(F) THEN Writeln(F")

END;

PROCEDURE WrRec;
VAR i: In teger ;
BEGIN

Write('Record Number? ') ; Rea dl n (i) ;
Write('Data? ') ; Readl n (F ") ; (+ assign data to file buffer ~)
Seek(F,i);
Put(F)

END.

(+ EOF is true if element empty ~)

BEGIN
Reset(F,'DATA');

Writeln('R-Read W-Write Q-Quit '); Readln(C);
IF C ='R' THEN RdRec; IF C ='W' THEN WrRec;

UNTIL C =' Q'
END.

REPEAT

If it were d e s i red to open a file for the first time, o r to c l ear an
existing file of all data the procedure Rewrite would have been used. The
above program assumes the file "Data" may have useful information in i t ,
so the procedure Reset is used to open it instead.

POINTER VARIABLES AND LINKED LISTS

Pointers and Nodes

V AR C o un t : I nt eg e r ;

BEGIN Count : = 54 ;

If we could examine the computer's memory, we would find that the above
statements put 54 into specific memory locations. Just for the sake of
this discussion, assume that 54 goes into memory locations 12156 and
12157.

Count = 5 12156
4 12157

T here is another way t o g e t 54 into memory and that way is t o u s e
p ointer s :

VAR Locate : " Integer ;

BEGIN New(Locate) ;
Locate " : = 54 ;

If we could now examine the computer's memory, we would again find 54 in
specific memory locations, perhaps 11343 and 11344. W e would also find
that the value 11343 is stored in memory:

Locate = 1 1 1338
1 11339
3 1 1340
4 1 1 341
3 1 1342

Locate " = 5 1 1343
4 11344

Locate is the group of memory locations that ~oint to the place in memory
where 54 is stored. There was no such "pointer" in the first example.

Locate is called a fainter variable, while Locate" is called stored data
or a node. Th e pointer symbol (" or 0) appears on the left side of the
Type in th e poi nter variable d e claration (Locate : " Integer) , but
on the right of an identifier for stored data (Locate" := 54).

It is also possible to declare ~ointer tvyes such as:

TYPE LocateType = " Integer ;

New

New is the standard PASCAL procedure used to assign memory locations to a
pointer variable. E ach time the New statement is executed, a new set of
locations is assigned to Locate.

If we deleted the New statement from the example above, the computer might

84

put 54 into memory locations occupied by other data. T his would p r o b a b l y
c ause run t i m e e r r or s .

Peek and Poke

Although New allows us to put data into memory, we have no idea where in
memory the data is going. P e e k and Poke give us the power to examine or

change the data in specific memory locations.

P eek and P oke a r e most often used with memory locations t ha t h a v e a

dedicated function such as specifying a character on the screen, the color

of a character, or a sound emitted from the speaker •

Suppose we w ish to check what actually is in memory locations 11343 and
11344:

VAR Locate : " Integer ;

BEGIN Assign(Locate, 11343);

Assign(Locate, 11344) ;
Write(Locate");

Write(Locate");

Although " Assign(Loca te , 1 1343)" is not part of standard Pascal, it i s

included in Kyan PASCAL • When the Assign statement is used with a Write
statement, the result is a Peek.

In standard PASCAL it is not possible to decide where in memory to store
data • The compiler makes that decision. H o w e v er the Kyan PASCAL Assign
statement allows us t o Po k e d ata into a specific memory l o c a tion as
fol lows :

VAR Locate : " Integer ;

BEGIN Assign(Locate, 11343);

Assign(Locate, 11344)
Locate" : = 4.

Locate" : = 5;

In the Commodore 64, location 1024 maps the first character on the screen.

T he screen is 40 characters wide by 25 characters tall. T he fo ll o w i n g

program uses Poke to put white periods into a rectangular area from the

top to the middle of the screen.

PROGRAM Dots;
CONST NRow = 25; NCol = 40;
TYPE Screen = ARRAY[1..NRow,l . .NCol] o f C h a r ;
VAR Colormem, Charmem

:
" Screen; I , J : I n t eger ;

BEGIN
Assign(Charmem, 1024);
Assign(Colormem, -10240);
FOR I : = 1 TO 12 DO FOR J : = 1 TO NCol DQ

BEGIN Charmem" [I,J]
Colormem" [I,J] : = Chr(l)

END
END.

In the Poke above, an Integer value (1024) is assigned to a p o i n t e r
variable (Charmem). This is where in memory Charmem"[1,1] will be stored.
To Poke "." into the specified memory location, we assign it to Charmem".

The procedure New is not used with a Poke: the next memory location (1025)
is automatically mapped to the next Charmem" in the loop. Each element in
the array, Charmem"[I,J], takes one memory space; thus, the entire array
is mapped into memory locations 1024 to 1503.

S uppose Charmem is defined as above, but now we wish to Peek a t t h e
character displayed at the upper left hand corner of the screen:

BEGIN
Assign(Charmem, 1024);
Write(Charmem"[1,1])

END.

Some memory locations exceed 32767, the maximum Integer size allowed in
Kyan PASCAL. In those cases, the equivalent memory location is a negative number

Equiv. Mem. Loc . = Mem. Loc. — 65536

Linked Lists and NIL

In addition to being used with Peek and Poke, pointers are used in linked
lists, which allow a database to be of variable size.

Below is a program that has a pointer variable, Appointm, which points to
t he location of a Record, AppointRec (just as Locate pointed to t h e
location of an Integer). Each record is an appointment including time and
person t o meet .

PROGRAM Meetings(Input, Output);
TYPE Str i n g = ARRAY[1..15] OF Char;

TimeType = (Hr,Min,Day,Mon,Yr);
AppointRec = RECORD
Person : S tr i ng ;
Time : ARRAY[TimeType] OF Integer

END(+RECORD~);
VAR Appointm : "AppointRec;

BEGIN
New (Appointm) ;
Appointm".Person : = 'Ernie
New (Appointm);
Appointm".Person : = 'Bob
New (Appointm) ;
Appointm".Person : = 'Gina
Writeln (Appointm".Person)

END.

It is important to notice that each time another name is entered , t he
pointer is moved to a new location:

New(Appointm) ;

Although the above sequence of statements inputs three names into memory,

86

each with a different pointer, it does not provide for retrieval of any of
the names except the last. When Writeln is executed, "Gina" will be
p rint ed .

In the example that follows, a pointer type, Appointer, is declared; and
the appointment record ird.udes a pointer, Link, that will link all the
records and thus allow all the data to be retrievable:

PROGRAM Sinter(Input,Output);
T YPE St r i n g = ARRAY[1..15] OF Char;

TimeType = (Hr,Min,Day,Mon,Yr);
Appointer = "AppointRec; (+Pointer Type)
AppointRec = RECORD

L ink : A p po i n t e r ;
P erson : S t ri n g ;
Time : ARRAY[TimeType] OF Integer

END;(~AppointRec RECORD".)

VAR A p pointm, Pt : Appointer; (Pointer Variables~)

BEGIN
Pt : = N IL ;
New(Appointm);
Appointm".Person : = 'Ernie
Appointm".Link : = Pt ;

Pt := Appointm;

New(Appointm) ;
A ppoin t m " . P e r so n : = 'Bob
Appointm".Link := Pt ;

Pt := Appointm;

New(Appointm) ;
Appointm".Person : = 'Gina
Appointm".Link : = Pt

END.

The list of appointments is now retrievable because the " next " po i n t e r

(i.e., the linking pointer) is included in each record as the pointer
f i e l d , "Link . "

The standard PASCAL identifier NIL is used to indicate the last element in
the list. Rec o rds are linked backward (first in = l ast out) . NI L
indicates the last element to be retrieved:

1 •

l •

t

t

P ointer " . L i n k := NIL ;

In the program above, Appointm points to the first name to be retrieved,
Appointm".Link points to the second, and (Appointm".Link)".Link (NIL)
points to the third. The following statements output the names contained
in the three linked records:

WHILE Appointm () NIL DO
BEGIN

Writeln(Appointm".Person);
Pt := Appointm".Link;
A ppoint m : = Pt

END;(+WHILE)

87

~Dis ose — ADVANCED KYAN PASCAL ONLY

When pointers and lists are created by the procedure New, they remain in
memory even after the list to which they point is no longer used and all
the elements on the list have been removed.

The following statement frees the memory location at Appointm". It must be
used for each of the elements of the list if all the memory locations on
the list are to be freed:

Dispose(Appointm)

88

THE ASSEMBLED PROGRAM AND ITS USES (ADVANCED KYAN PASCAL ONLY)

How to Include Procedures and Functions from Other Files

Kyan PASCAL facilitates the inclusion of a user defined library of
procedures and functions during compilation time. That is, procedures and
functions that are used in many programs may be declared each in a file of
its own and easily included for use in many programs.

To include a function or procedure in a program use the following format:

¹'i FileName

A pound sign (¹) must appear in column 1 and i (for include) in column
two. (Note: Use ¹I if in upper case mode and ¹i if in upper case and lower
c ase mode>.) The name of the file (in which the declaration of t h e
function or procedure is written) fo l l ows.

For example, the program HELLO was discussed in the Editor and Compiler
chapter at the beginning of this book. W r itten as a procedure the f i l e
H ello would b e :

PROCEDURE Hello;
BEGIN
Writeln('Hello, world')

END;

The file Hello may be be included in any program by using the format just
discussed:

PROGRAM Main;
¹ i He l l o
BEGIN

Hello ;
END.

Use the same name for the procedure or function as the f ile name.
Although it is possible to use different names, such would be poor style.

Files that are included may be any text file, not just procedures and
functions. It is important to try to visualize the insertion of the lines
of the included file in place of the ¹i "FileName" line.

89

~A saemtl ~L an ua e Rout i n es

Kyan PASCAL accepts in-line assembly code, which enables the user to
create many powerful routines and not be limited by the structure of
standard PASCAL. I n -line assembly routines do have one restriction
though: they must appear in the body of the program, procedure, or
function, i.e. they must appear between the BEGIN and END.

Some distinction must be made if the computer is to tell whether or not to
interpret the lines that follow as assembly language or PASCAL. Assembly
language lines are simply left as they are during compilation.

If the lines that follow are to be in assembly language they should begin
with the pound sign (¹) in column 1 and the letter "A" (or "a" i f i n
upper/lower case mode) in column 2. End the assembly language lines with
the pound sign in column 1. For example the procedure Delay is written
with in-line assembly language:

PROCEDURE Delay;
BEGIN
¹A

WLOOP DEY
LDY ¹100

BNE WLOOP

(+ IMPORTANT !>I +)
(+ LABELS MUST START IN COL. 1 +)
(+ ONLY LABELS START IN COL. 1 +)

END;

It is important not to use labels in the assembly language routines that
begin with the letter "L." The compiler uses the labels Lxxxxx (xxxxx is
a number) and if you use labels that begin with L, it is likely to fail.

Assembler Directives

Assembler directives are also known as pseudo-code because they appear in
t he assembly language listing of a program but are not part o f t h e
language of the microprocessor. I nstead they are part of the language of
the assembler .

Kyan PASCAL has six assembler directives. (They must not start in column 1
because they would be mistaken for labels.)

ORG
EQU
DB
DW

o rig i n
equate
d efine by t e
define word
least significant byte
most significant byte

ORG is used to tell the assembler that the following code is to start at
the specified memory location.

When a label is given a value using the directive EQU that value will be
substituted for the label throughout the program when the program is

90

converted to object code. Anotherwords EQU defines constants.

DB and DW are used in building tables and strings that reside in certain
parts of the assembly code. When the program executes, the values placed
by these directives may be read by setting the index register to t he
address in program where the DB or DW statements are, then loading the
value at the index register.

When the > and < operators are used with a label or immediate value in a
program, either the least significant byte or most significant byte is
extracted. For example, the following equalities are true:

>$FF01 = $0001
<$FF01 = $00FF

Parentheses are not allowed in assembler directives. E x pressions are
evaluated from left to right. T h ere is no precedence of one d irec t i v e
o ver another .

How to Use ~Assembl Routines to ~Nodif pascal Variables

If the above assembly language routine were to be inserted into a PASCAL
program it would cause a delay every time the program came to the place in
w hich it was inserted. I t does not modify any of the values of t h e
variables in the PASCAL program.

In order to use assembly code to modify PASCAL variables, the location of
these variables must be known, T hese locations are never absolute, but
always relative to a pointer maintained by the compiler called LOCAL. The
location of PASCAL variables may also be calculated relative to the stack
pointer (SP).

In the example that follows in-line assembly code puts the value of the
PASCAL variable "Cee" into the A accumulator of the microprocessor:

PROCEDURE Zen(Alt,Bee,Cee : Integer);

m ,n : I n t e g e r ;
BEGIN

¹a

VAR

LDY 7
LDA (SP),Y

END;

The f i rst line loads the Y accumulator with 7 the distance that Cee is
from SP. (The first variable declared is the first one on the stack and
the one furthest from SP.) The offset from SP is calculated by adding 3
to the space taken by variables following the declaration of Cee:

91

Offset(of Cee above SP) = 3 bytes + Last-in Stack bytes

Since 2 bytes are required for each integer variable and both "m" and "n"

are pushed on the stack after Cee, the total offset is 7 = 3 + 2+2.

The secondline of the assembly code loads the accumulator A with the value
in memory that is stored at where SP is pointing plus 7:

bottom of stackSP

toward
The stack g r ows

lower memoryCee

Bee

Alt
LOCAL t op of s t a c k

The offset from LOCAL is simply the total space taken by v ariab l es
preceeding and including the declaration of Cee:

Offset(of Cee below LOCAL) = First-in Stack bytes + Cee bytes

The offset from LOCAL is 6 bytes, due to the Integer variables Alt and Bee
which are pushed before Cee and 2 bytes for Cee itself.

The 3 b ytes added to the value in the stack pointer are 3 b ytes are
preserved at the top of the stack for stack linkage.

The 6502 X register is used by the compiler as a stack pointer. I t is

~v er ~im ortant to save and restore the X ~re ister if Xou need to use it.

92

The following table designates how many bytes of memory each t ype of
variable or constant is provided on the stack:

Real 8 by t e s
Integer 2 b yt es
Char 1 byt es
Boolean bytes
Pointer 2 by t e s
ARRAY[i • .n] OF Char n by te s
ARRAY[l..n] OF Boolean n by te s
ARRAY[i • .n] OF Integer 2+n bytes
Value Parameter(Real) 8 bytes
V alue Parameter(Integer) 2 byt e s
Value Parameter(Char, Boolean) 1 bytes
Value Parameter

(ARRAY[a] OF Char, Boolean) n bytes
Value Parameter

(ARRAY[n] OF Integer)
Variable Parameters(A11)

2+n bytes
2 by t e s

Variable parameters are the parameters in the p arentheses of the
declaration of a procedure or function. They differ from value parameters
because memory space is not allocated for the value of the variable but
only for a pointer to a variable outside the procedure or function. Since
each pointer takes two bytes, each variable parameter takes two bytes.

I n PASCAL programs all the declarations come before the body o f t h e
program, function or procedure thus, the location of the variables is
easily calculated. A lways calculate the location of th e v ariables
relative to the beginning of the procedure, function, or program in which
they appear .

It is inappropriate and misleading to calculate the stack location of
variables based on their relative scope in the program, i.e. based on
variables outside the scope of the ones in-line with the assembly code.

Predef ined Label s

The following table gives the absolute locations of SP, LOCAL, and T.
The first two pointers maintained by the compiler contain the addresses

of the bottom and top of the Pascal variables stack and are two bytes

long. The last label is the start of the temporary registers. There
can be up to 16 temporary labels going from T to T+15.

SP EQU 4
LOCAL EQU 2
T EQU 16

~Passim Parameters ~three h Chain

Parameters passed from one executable program to another executable
program using Chain are passed by value and are only passed forward; i.e.,
to the next file to be run.

The parameters passed are the ones in that match type and position in the
declaration section of the program. A l l parameters that follow any
parameter that does not match cannot pass values through Chain.

93

PROGRAM Alpha;
VAR

A ,B,C : I n t e g e r ;
X : I n t e g e r ;
P : Char;

BEGIN

PROGRAM Beta;
VAR

D ,E,F : I n t e g e r ;
Y : Real;
L : Char ;

BEGIN

If program Alpha calls program Beta through file the values of A, B and C
are passed to D, E and F. Y d oes not match and a value is not passed.
Although L matches P, no value is passed because it follows the mismatch
of the parameters Y and X.

How to Chain Source Code Files

Sometimes a program is broken into sections that are to be loaded from the
floppy disk when and where they are needed. T his strategy i s cal l ed
chaining .

To chain files together:

• • •

PROGRAM MyExample;
BEGIN

C hain('NextOne') ;

END.
• • •

The file to be included may be named either be a string constant, as
a bove, o r a n a r r a y o f ch a r a c t e r s .

The next statement executed will be the first statement in "NextOne."

94

STRING MANIPULATION

~Stein

String is not a predefined PASCAL type; however, in order to use the Kyan
PASCAL string manipulation functions and procedures it must be declared in
the programs that use it.

As stated in previous chapters a string is simply an array of characters:

CONST
Maxstr i ng = 10;

TYPE
String = ARRAY[1..Maxstring] OF Char;

(+ = 10 as an example ~)

Maxstring must also be declared as a constant to whatever va l u e i s
appropriate to the use of String in the program.

To use string procedures and functions in a program, along with the above
declarations, the file containing the specific function or procedure you
wish to use must be included using the Pi format in the procedures and
functions d eclaration section of the p rogram. The th re e st r ing
manipulation functions and one procedure are Length, Index, Substring and
Concat. F o r e xample, in order to use Substring, include the file
Substr i n g . I :

PROGRAM MyExample;
CONST
Maxstr i ng = 10;

TYPE
String = ARRAY[1..Maxstring] OF Char;

gi S u bstring.I
BEGIN

(+ = 10 as an example +)

The file containing the string manipulation function or procedure always
is appended with .I as above. All the examples that follow use Maxstring =

10, although any value up to Maxint may be used.

~Len th

A string ends with the first blank space or the last character in t he
array. Length, a nonstandard function, r eturns the length of a String.
For example, s uppose:

95

CONST
PROGRAM MyExample;

Maxstring = 10;
TYPE

String = ARRAY[1..Maxstring] OF Char;

s : St r i n g ;
gi L en g th . I

BEGIN
s := 'abed
IF (Length(s) = 4) THEN Writeln('This is true');

VAR

END.

Concat

Concat is an ab breviation of concatenate which means to put two strings

together to produce a third. I f Sl = 'ANY ' and S2 = 'BODY
then S3 = 'ANYBODY ' where the program calls:

Concat(S1,S2,S3);

Index

Index is a functions that returns the position of one string
another. If Index is used to find the position of Sl := 'a

S2 : = 'baby then the following statement is true:

within
in

Index(S1,S2) = 2;

If the S2 is not found in Sl, then the value of Index = O.

Substrin

Substring extracts part of a string, indicated by its two indices m and n.
If a string of length 1 is to extracted from Sl := 'abed s tart i n g
at the second position then the value for Substring would be
lb

Substring(S1,2,1) = 'b (+ This has a t r u e v a l u e +)

APPENDIX A
PEEK AND POKE EXAMPLE PROGRAMS

~pro ram ~Gra h

The program below draws lines on the CRT screen based on pixel-mapped
coordinates which start with 0,0 at the lower left hand corner and go to
199,319 in the upper right hand corner.

For example, to draw the line that starts at 25,30 and ends at 100,120,
enter the following while running the program:

25 30 100 120 <REIGN>

Wait for the screen to be cleared before entering coordinates.

Do not be concerned that the screen remains blank when you are entering
these numbers. The pointers to the screen are now mapped by the lines you
are entering and not the characters you type.

To exit the program and return to the mode where you can see what you
enter, let one of the coordinates be negative. (If the program is exited
by <RESTORE>-<RUN/STOP>, the pointers to the screen will not be restored.)

PROGRAM GRAPH;
TYPE CHARMEM=ARRAY [0..7999] OF CHAR;

SCREENMEM=ARRAY [Oaa1023] OF CHAR;
BLANK=SET OF 0..255;
BLKARRAY=ARRAY [0..249] OF BLANK;

VAR I,X,Y:INTEGER; HIGHRES:"CHARMEM;
SCREEN:"SCREE%KM;
BANK:"CHAR;
SCRADD:"CHAR;
MODE:"CHAR;
BLK BLANK
BLANKHIG:"BLKARRAY;
Xl,X2,Y1,Y2,PIXEL:INTEGER;
ENDFLAG,XINC,YINC,RAMP:INTEGER;
SLOPE,SLOPEINV:REAL;
MULTI:"CHAR

FUNCTION ORF(BYTE:CHAR;NUM:INTEGER):

TYPE CONVERT=RECORD
CHAR;

CASE SELECT: INTEGER OF
1:(PART:INTEGER);
2:(MASK:BLANK)
END;(+RECORP')

VAR CONV:CONVERT;DUMMY:BLANK;

BEGIN
CONV.PART : = ORD(BYTE);
CASE NUM OF
0:DUMMY : [7] ;
1: DUMMY: ma[6];

97

• ~ • • ~ •

5]
4]
3]
2]
1]
0]

2: DUMMY
3: DUMMY
4. DUMMY
5: DUMMY
6: DUMMY
7: DUMMY
END;
CONV.MASK: = CONV.MASK + DUMMY;
ORF : = CHR(CONV.PART);

END;

BEGIN
ASSIGN(SCREEN,23+1024);
ASSIGN(HIGHRES,24+1024);
ASSIGN(BANK,-8960);
ASSIGN(SCRADD,-12264);
ASSIGN(MODE,-12271);
ASSIGN(BLANKHIG,24~1024);
ASSIGN(MULTI,-12266);

(+ERASE SCREEN+)
BLK : = [];
FOR I : = 0 TO 249 DO
BLANKHIG"[I] : = BLK;

(+HIGH RESOLUTION GRAPHICS ON~)
BANK" := CHR(198);
SCRADD" : = CHR(120);
MODE

*
:= CHR(59);

MULTI" : = CHR(8);
(+BLACK PIXELS, RED BACKGROUND+)
FOR I : = 0 TO 1023 DO
SCREEN"[I] : = CHR(2);

READ(X1,Y1,X2,Y2);
WHILE (Xl> =0) AND (Xl< =319) AND (Yl> 0)

AND (Yl< =199) AND (X2> =0) AND (X2<=319)
AND (Y2>=0) AND (Y2<=199) DO

BEGIN

ENDFLAG : = 0;

IF X2>Xl THEN XINC : = 1;

IF Y2>Y1 THEN YINC : = 1;
IF Y2 =Y1 THEN

BEGIN
SLOPE : = 0;

RAMP : = 2;

END
ELSE

BEGIN
IF X2 =X1 THEN
BEGIN

SLOPEINV : = 0;
RAMP : = 1;

END
ELSE
BEGIN

• ~ • • ~ •

SLOPE : = (Y2-Yl)/(X2-Xl);
SLOPEINV : = (X2-Xl)/(Y2-Yl);
IF ABS(SLOPE))=1 THEN RAMP : =1

ELSE RAMP =2;
END;

END;
REPEAT
BEGIN

(+DRAW A PIXEL+)
PIXEL :~ ((199-Y) MOD 8)+8+(X DIV 8)

+ ((199-Y) DIV 8)+320;
HIGHRES

* [PIXEL]: =ORF(HIGHRES"[PIXEL], X MOD 8);

CASE RAMP OF
1:BEGIN

IF Y =Y2 THEN ENDFLAG:=1;
Y:=Y+YINC;
X:=ROUND((Y-Yl)+SLOPEINV +Xl);

END
2:BEGIN

IF X=X2 THEN ENDFLAG:=1;
X:=X+XINC;
Y:=ROUND(SLOPE+(X-Xl) +Yl) ;

END
END;(KASE RAMP+)

END;
UNTIL ENDFLAG = 1;
READ(Xl,Y1,X2,Y2);
END;
(+RESTORE FOR EDITOR+)
BANK" :~ CHR(199);
SCRADD" : = CHR(22);
MODE" := CHR(27);
END.(+PROGRAM GRAPH+)

The memory for high resolution graphics is described using an array of
8000 characters (bytes) located, in the example, 4k below the stack. In
Kyan PASCAL the stack starts at H9000 (hexadecimal) with the compiler
resident or HDOOO in the stand- alone mode. U sing the nonstandard Assign
f unction, a pointer to the array is initialized at H6000 (24+1024). T h e
screen m e mory must be i n t h e s ame 16k b ank (Commodore h a rdware
limitations) and is an array of 1024 characters. Th e p o inter to t h e
screen array is initialized at 23+1024, 1k below the high resolution
character memory. The various pokes needed to point the graphics chip at
the arrays are done by pointers to the required Commodore registers.

In order to linearize the way the Commodore maps the array into pixel
elements, a number of calculations must be performed including an "or"

f unct i on . "ORF" is defined using a variant record to p erform the
o perat i on .

Once the pixels are turned on, some code is added to read in the starting
point Xl,Y1 and the end point X2,Y2. There is no way to prompt or display
the coordinate numbers, since the standard I/O points to another memory
area.

99

Although t h e spe e d o f d r awing t he line is no t opt imized, t h e
initialization of the b ackground is, I n stead of i nitializing each
character, the program uses a zero set (32 bytes) and loops only 250
times. The set equate uses in-line machine code and is extremely fast.

~Pro ram ~Sri tes

The following program places a small red square in different positions on
the CRT screen. It is similar to the previous program in that the screen
is remapped. When you type:

100 100 <REIGN>

the numbers do not appear, but the small red square appears in the
posit ion 100,100.

In order to restore the screen to the editor, enter one or more negative
coordinates such as:

-200 300 <RETURN>

The program is called Sprites because it uses sprite graphics and in
particular sprite 0, which is the small red square. Note that coordinates
less than 50, such as 48,100 are off the screen: the upper right hand
corner of t h e sc reen i s 50 ,50.

PROGRAM SPRITES;
TYPE CHARMEM=ARRAY[0..7999] OF CHAR;

SCREENMEM=ARRAY[0..1023] OF CHAR;
SPRITEMEM=ARRAY[0..7 ,0 . . 63] OF CHAR;
ROMMEM=ARRAY[0..2047] OF CHAR;
COLORMEM ARRAY[0..999] OF CHAR;
SPRITECOLOR ~ ARRAY[0..7] OF CHAR;

VAR I,J,K,X,Y:INTEGER;
HIGHRES: *CHARMEM;
SCREEN:"SCREENMEM
BANK:"CHAR;
SCRADD:"CHAR;
MODE:"CHAR;
INTER:"CHAR;
SELECT:"CHAR;
ROM:"ROMMEM;
COLOR:"COLORMEM;
SPRITE:"SPRITEMEM;
SPRTEN:"CHAR;
SPRITEX:"CHAR
SPRITEY:"CHAR;
SPRCOLOR:"SPRITECOLOR;

BEGIN
ASSIGN(SCREEN,23+1024);
ASSIGN(HIGHRES,24+1024);
ASSIGN(BANK,-8960);
ASSIGN(SCRADD,-12264);
ASSIGN(MODE,-12271);
ASSIGN(INTER,-9202);

ASSIGN(SELECT,1);
ASSIGN(ROM,-12288)'
ASSIGN(COLOR,-10240);
ASSIGN(SPRITE,2241024);
ASSIGN(SPRTEN,-12267);
ASSIGN(SPRITEX,-12288);
ASSIGN(SPRITEY,-12287);
ASSIGN(SPRCOLOR,-12249);

(+SPRITE GRAPHICS ON+)
BANK" :~ CHR(198);
SCRADD" :~ CHR(120);
MODE " :~ CHR(27);

(+POINT TO SPRITES+)
SCREEN"[1016] := CHR(96);

(' COPY CHAR ROM TO ~)
J :~ ORD(INTER");
INTER" : CHR(0);
K :~ ORD(SELECT");
SELECT" :~ CHR(2);
FOR I :~ 0 TO 2047 DO
HIGHRES"[I] : = ROM"[I];

SELECT" : = CHR(K);
INTER" : CHR(D);

(' COLOR CHARACTERS+)
FOR I : 0 TO 999 DO
COLOR"[I] :~ CHR(14);

FOR I.:~ 0 TO 1000 DO
SCREEN"[I]:~ CHR(I MOD 20);

FOR I :~ 0 TO 63 DO
SPRITE"[O,I] : = CHR(255);

(®ENABLE SPRITE %)
SPRTEN" : CHR(l) ;

(+COLOR SPRITP')
SPRCOLOR"[0] :~ CHR(2);

(~MOVE SPRITE~)
READ(X,Y);
WHILE (X>W) AND (Y> 0) DO
BEGIN
SPRITEX" :~ CHR(X);
SPRITEY" :~ CHR(Y);
READ(X,Y);

END;

(+RESTORE FOR EDITOR+)
SPRTEN" :~ CHR(0);
BANK" : CHR(199);
SCRADD" : = CHR(22);
MODE" :~ CHR(27);

END.

The Sprites program uses the same screen and character memory as t h e
program before it, G r aph. T h e c h a racter memory couldbe reduced
significantly if the number of character types actually used is smaller.
In Sprites, the first 2k of the character ROM is copied to RAM, and the
first 20 characters of the alphabet are placed repetitively on the screen
by writing them out to the first 1000 locations of screen memory. The
last 8 memory locations of the screen point to the sprites. Sprite 0 i s
in location 1016 of the screen.

In general, a sprite is defined as an array of 64 characters, and there
are 8 sprites available at one time. The Commodore graphics chip is
progrmmned using pointers as in Graph.

This program provides most of the framework for developing very complex
s prite graphics and saves much time in getting started. T h e d a t a
structures are generalized and not used fully by the e x a m p le . For
instance, all potentially active sprites can be stored in the [0..7,0..63]
array, while only Sprite 0 is is enabled in the example.

102

APPENDIX B
COMPILER AND RUN-TIME ERROR MESSAGES

~C om ile r E r r o r ~Messe es

l .
2.
3 •
4.
5.
6.
7 •
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

s yntax e r r o r
unexpected end of input
array dimension expected
to or downto expected
type specification expected
ordinal type expected

: expected
, expected
; or end expected
compiler directive expected
do expected
end expected

expected
identifier expected
[expected
constant e x pected
(expected
of expected
type identifier expected
. expected
program expected
] expected
) expected

expected
. . expected
then expected
unsigned integer expected
file name expected
can't open file
illegal file name
; or until expected
missing end statement(s)
extraneous end statement(s)
; or c ase expected

expected

103

A ssembler Er ro r ~Memos es — ADVANCED KYAR PASCAL ONLY

1. A
2. L
3. M
4. U
5. 0
6 . S
7 • J

addressing mode error
label required with EQU
multiply defined symbol
undefined expression
unrecognisable opcode
syntax error
branch address i s ou t o f r a nge

Rss-Time Er ror ~Memos es

1. bad subscript
2. too many active files
3. file not active
4. set element out of range
5 . h eap over f l ow
6. bad l n (a rgument)
7. bad exp(argument)
8. r e ad past eof
9. out of memory
10. arithmetic overflow

(Maximum is 5 files)

(End of Fi l e)

104

APPENDIX C
(}UICK GUIDE TO KYAN PASCAL

Predefined Types:
Integer, Boolean, Real, Char, Pointer,
(scalar va lues . .)

Predefined File Types:
Input, Output, Text,

Standard Kyan Pascal Only — Printer

Predefined Procedure to Redirect Output File:
(Advanced Kyan Only)

PRON, PROFF

Compound Types (Reserved Words)
ARRAY[..] OF... RECORD OF..
S ET OF... F I L E OF. .

Predefined Functions with Real or Integer Parameters:+
Abs(Real or Integer), Arctan(Real or Integer),
Cos(Real or Integer), Exp(Real or Integer),
L n(Real or I n t e g e r) , Round(Real),
Sin(Real or Integer), Sqr(Real or Integer),
Sqrt(Real or Integer), Trunc(Real)

Predefined Functions with Other Parameters+
O rd(scalar) , P re d (s c a l a r) , Succ (s c a l a r) ,
C hr(Integer), Odd(Integer) , E OF(f i l e) ,
KOLN(Text file)

Predefined File Procedures:
Reset(f i l e) , G et (f i l e) , Rewr i t e (f i l e) ,
P ut(fi le) , P a g e (f i l e) , R e a d (. .) , R e a d l n (. .) ,
W rite(..) , W r i t e l n (. .)

Advanced Kyan Pascal Only — Chain(file), Seek(file, record number)

Predefined Pointer Procedures:
New(pointer)

Advanced Kyan Pascal Only — Dispose(pointer)

Predefined Non-standard Pointer Procedures:
Assign(pointer, integer)

Predefined Constants:
True, False, Maxint

Value Reserved for Unassigned Pointer:
NIL

Conditional Instructions (Reserved Words):
IF-THEN-ELSE, WHILE-DO, REPEAT-UNTIL,
FOR-TO-DO, FOR-DOWNTO-DO

+ Allowed parameter types appear in parentheses

105

Operators (Reserved Words):
Arithmetic Operators: DIV, MOD
Boolean Operators: AND, NOT, OR, IN

Operators (Reserved Characters) :
Arithmetic Operators: + — + /
Relational (Comparison) Operators:

Miscellaneous Reserved Characters:
Punctuat i on : .

,

', . ' ' () []
P ointer : " (equivalent to f)

Grammatical Identifiers (Reserved Words):
CONST, FUNCTION, LABEL, PROCEDURE,
PROGRAM, RECORD, TYPE, VAR,
BEGIN..END, CASE..OF... GOTO, WITH..DO..

Pre-Compilation Instructions (Non-standard)
4i.....g (inc lude file)
f a.. . . . 4 (include assembly code)

String Functions and Procedures (Non-standard)
(String and Maxstring must be declared)
Length(string), Concat(string, string, string),
Index(string, string), Substring(string, integer, integer)

106

APPENDIX D
SPECIFICATIONS

Integer: Range of -32768 to +32767
Maxint = 32767

Real: Range of - 1 . 0 0E+99 to +1 . 00E+99
Precision of 13 decimal digits

Char: Character
Printable and nonprintable ASCII characters
corresponding to ordinal values 0 to 256

Pointer: Represented by 16-bit Integer

SET: Maximum number of members is 256

Requirements: Disk Drive

Maximum Program Size (Standard Kyan Pascal)
Kyan PASCAL in Memory: 23K-bytes
Stand-Alone Mode: 23K-bytes + 16K-bytes (data only)

Maximum Program Size : 40K-bytes

Significant Identifier Length: 8 characters

Significant File Name Length: 8 characters

Advanced Kyan Pascal Only :
Variable and Parameter Stack: Pointer to top at 0002

Maximum Relative File Element Size : 128 bytes
Pointer to bottom at 0004

107

Memory Maps — Standard K an Pascal Onl

Ryan PASCAL Environment Sta nd-Alone Environment

I nterpr e t e r
$800-$33FF

I nterpre t e r
$800-$33FF

11K l lR

User
Program &

Data
$3400-$8FFF

User
Program &

Data
$3400-$CFFF

(39K)23K

E ditor &
Compiler

$9000-$FFFF
(28K)

+ Stack starts at $8FFF
a nd grows toward l o w

++ Stack starts at
$CFFF and grows
toward low memory.memory.

+++ User program is loaded starting at $3400. In both environ
ments the maximum program size is 23K. Heap starts at end of
user program and grows toward high memory. I n t h e s t and
alone environment an additional 16K is available for data.

108

Memory Map — Advanced K an Pascal Onl

User Program

Stack

L ibrar y

+ User program is loaded starting at $0800 and grows toward high memory.

++ Stack starts at $A7FF and grows toward low memory.

++++ Library is located from $A800 to $CFFF.

109

INDEX

C

Actual Parameter..........55,56

Arithmetic Functions.........56
Array •� • • • •62

py o • 64) 68
Multidimensional.........64,68
Of Records. 73

Assembler Directive..........90
Assembly Routines............90

ssign.. 85
Assignment o • • • • • • • • • • • • • • • • • • 39
B ody (of program).. 2 9
Boolean.. 4 5 ,46

uffer. .79B

Case Selector • . 7 4
hz' • 51C

CIRlln • • • • • • • • o • • • • • • • • • • • • • • • 93
r • 41

omments • 29
Constant

Cal • 53
clarat1on. 29

1fference. 77p
D1spose.. 88
D

own'to • 44D
U1 Lor • 9) 18E

Element
Of Array. 62

f Sets • 76O
E
E

1eld.. 70F
118S • 79F
Input • • • • • • • • • • • • • • • • • • 32)79
Management.. 15 , 24
Outputs • • • • • • • • • • • • • • • 32) 33) 79
Random Access.. 83

F
Formal Parameter.....,.......54
Forward Reference. 60
Functions. 56

eCurS1Ves • • • • • • • • • • • • • • • • • • 68
G

1 0 ba 1 • • • o • • • • • • • • • • • • • • • • • • • 5 7

dent1fier • .3 1t
Sco pe Of.. 58

t
t
I nteger. .36
I nput. .3 2 ,3 3

• •

• • • • • • • • • • • • • • • • • • 8 • • • • • • •

• • • • • • 8 • • • • • • • • • • • • • • • 8 • • •

• • • • • • 8 • • • • • • • • • • • • • • • • • • •

• • • • • • • • 8 • • • • • • • • • • • • • • • • •

• •

• • • • 8 • • • • • • • • • • 8 • • • • • • • • •

• •

• •

• • • • • • • 8 • • • • • • • • • • • • • •

M

Intersection.................77
b81 • • • • • • • • • • • • • • • • • • • o • • • • 61

L
al • 57

ember •76
. s • • • • • • o • • • • • • • • • • • s . . 37

M«ry M S Ps soooss • os • ooo108 , 1 0 9
M

8W s • 84
N

odes • 84
N
Odd(the function)............57
Operator

Arithmetic. o os o . o 37
Relational..................38
S8'ts • 76

O

ut put o • 32
Parameter.. 54 , 57

V slue... .5 5
Variable.55

P88ks • 85
POiIlteZ' • 85
Poke • 86
Precedence.. 46
PZ'ed s • 51
PZ'i Il t 8 Z' • 3 2
Printing

Source code. 23
Program output 33

Procedure..53
Recursive.68

PUt.. • • . • 80
ead... 32

Readln.. 33 ,35
Real. o...36
Recordssoosoo • .s • oossos. • .oos 70

Ar ray of . 73
Copy. o • .70
Fi18 Of • • • • • • • • • • • • • • • • • 82
yar1ant . 74

Recurs1on.. 68
R888't • 81
Rewr1te. • 80
OUIldo • 37

Scalar. • • • • • • • • • • • • • • • • • • • 49)76
Scope...56 ,59
Seek... 82
Set.. 76
S'taCk o • • • • • • • • • • • • • • • 92) 1 08 • 1 09
Stand-Alone. • • • • • • • • • • • • • • • • • 14
S tZ'i ng . • • • • • • • • • • • • • • • • • • • 4 1 • 97
Succ • 51

• • • • 8 • • • • • • • • • • 8 • • • • • • 0 • • • •

• •

• • • • • 8 • • • • • • • 8 • • • • • • • • • • • •

• •

• • • • • • • • • 8 • • • • • • • • • • • • • • 8

g s os • • • • • • • • • • • • • • • • • • 58

• + ' • • • • • • • • • • • • • • I • •

• •

110

Subrange s . s . s . s . s5 0
T ext • s81
T ru n c s s s s s s ss s . s • s s ss s s . s s s . s3 7

Union • 77
Value • 51
Variantsss • • • • • • • • • • • • • • • • • • • 74
Variable
G lobal. .5 7
Locals • 57

WHILEs • 42
WITH s • 74
Write. 3 2 ,33
W rite l n . . . s ss . . . s s s . s35

SOFTWARE MEDIA L

Kyan Software warrants to the original consumer purchaser of Xyan PASGQ.
for a period of ninety (90) days from the date of purchase that the
recording medium, and only the recording medium, on which the software
program is recorded will be free f rom defects in materials a n d
workmanship. Defective media returned by purchaser to Ryan Software
during that ninety day period will be replaced free of charge provided
that the returned media has not been subjected to abuse, unreasonable use,
mistreatment, neglect or excessive wear.

Following the initial ninety day period, defective media will be replaced
for a $9.50 replacement fee. To qualify for replacement, defective media
must be returned postage paid in protective packaging to:

Kyan Software
1850 Union St. $183 , San F r anc i s co , CA 94123

Defective media must be accompanied by (1) proof of purchase, (2) a brief
statement describing the defect, (3) a $9.50 check payable to Ryan
Software (if beyond the ninety day warranty period), and (4) y'our return
address.

THIS WARRANTY IS LIMITED TO THE RECORDING MEDIA ONLY AND DOES NOT APPLY TO
THE SOFTWARE PROGRAM ITSELF WHICH IS PROVIDED "AS IS."

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, WHETHER ORAL OR WRITTEN,
EXPRESS OR IMPLIED. A N Y A P P L ICABLE IMPLIED WARRANTIES INCLUDING
WARRANTIES OF MERCHANTABILITY AND FITNESS ARE HEREBY LIMITED TO NINETY
DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR INCIDENTAL DAMAGES
RESULTING FROM A BREACH OF ANY APPLICABLE EXPRESS OR IMPLIED WARRANTIES
ARE HEREBY EXCLUDED.

Some states do not allow limitations on how long an implied warranty lasts
or do not allow the exclusion or limitation of incidental or consequential
damages, so the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights and you may also have other
rights which vary from state to state.

112

