DTL-BASIC

7 L

DTL-BASIC &£ By David Hughes

Published by: DATAVIEW WORDCRAFT LTD.
Radix House, East Street,
Colchester, Essex, CO1 2XB

Laadinstructies:

Cassette:

- Stop de cassette in de recorder, typ
“LOAD" en druk op RETURN. Als het
laden klaar is typ dan “"RUN".

Diskette:

Op de diskette staan twee compilers te
weten DTL-BASIC en DTL-BASIC-E. De
eerste is bedoeld voor de 1540/1541
disk-drive en de tweede voor de dubbele
4040 disk-drive. Deze zijn niet door
elkaar te gebruiken!

Verder moet bij elk gebruik van de
compiler de ,.dongle” in de cassette-
poort zitten (met dongle wordt het
blauwe blokje bedoeld dat bij de
diskette geleverd werd).

198400487

DTL BASIC 64

INSTRUCTION
MANUAL

Wmnar nf t‘ha

Mrlllnn Dullar Award
1983

Published by

DATAVIEW WORDCRAFTLTD
Radix House, East Street,
Colchester, Essex. CO1 2XB

l
PAGE

INTRODUCTION TO DTL BASIC 1 ‘
OPERATION OF DTL BASIC

OPERATION OF COMPILED PROGRAMS
COMPILING ERROR CHECKS
COMPATIBILITY

USING THE COMPILER WITH MACHINE CODE
ARITHMETIC FUNCTIONS

OTHER VERSIONS OF DTL BASIC

ERROR CODE LIST 9/10

|
{

m =~ @ o A& O N

INTRODUCTION — DTL-BASIC 64 is a basic compiler
for the CBM 64 that takes an existing program (known
as the Sourca file) and produces the compiled
equivalent of the program (known as the Object file).
The compiled program will run very much faster than the
original program and will also be much smaller.

Compiled programs may run up to 25 times faster inthe
best case but the speed-up factor does depend upon
the program; typical improvements will bein the range 5
to 15 times faster. A fast garbage collection routine is
included that avoids the very long delays that can occur
in programs with a lot of strings. Compiled programs
nomally occupy between 50 and B0% of the space of
the original program.

DTL-BASIC 64 is 100% compatible to CBEM Basic and
programs of up to 12k can be compiled. Also, compiled
programs can use existing machine code subroutines
without any alteration. The compiler can also compile
programs containing extensions to Basic.

OPERATION OF DTL-BASIC 64 — It is usual before
compilng a program o ensure that it is fully debugged,
ie. that it works correctly.

Insert the DTL-BASIC 64 tape in the tape unit, LOAD
and RUN the first program on the tape (DTL-BASIC). Do
not press STOP aamaprngmmﬁrsl loads two files of
machine code. When prompted give the names of the
Source and Object files and any printing requirements.

Start the compilation and follow the instructions to
remove the compiler tape and replace it with the tape
containing the program to be compiled.

Once the program has been loaded by the compiler the
compilation process will start. The compiler makes two

passes through the program (constantly displaying the

number of the line being compiled).

When the second pass is complete (provided that no
errors have been detected) the user is prompted to
insert the tape that is to hold the compiled program in the
tape unit

The compiled program is written to tape and the user is
asked if the Run-Time Library file (RTL-64) is to be
written to tape after the compiled program. The user is
then asked if the Line Numbser file is also to ba written to
tape. Normally RTL-64 will be required but the LN file
will not be (see later for a description of thesae files). The
compilation of the program is now complete and the
user may choose to compile other programs.

OPERATION OF COMPILED PROGRAMS —
Operation of compiled programs is identical to that of
uncompiled programs, ie. compiled programs are
simply LOADED and RUN just like uncompiled
programs.

The first time a compiled program is run after the
machine has been tumed on there will be a delay whilst
it ioads the file RTL-64. Each subsequent time that a
compiled program is run there will not be a delay as it will
detect that RTL-84 is already in memory, RTL-64 is a
library of assembler routines used by compiied

programs.

A copy of RTL-64 need not follow every mn'piln:l
program on the tape, all that is nnmssary is to ensure
that when the first compiled program is RUN after the
machine has been turned on the tape in the tape unit
contains a copy of RTL-64

Note that CONT cannot be used with compiled
programs. SYS 2061 can be used instead of CONT.
When a compiled program is stopped then variables
can be printed on the screen (for debugging) just like
uncompiled programs.

ERRORS — The compiler performs exhaustive checks
whilst compiling and reports all errors found. For each
arror the line that contains the error is displayed
followed by an error code (see the Appendix).

A different type of error message may occur during Pass
2 if a program contains a GOTO or a GOSUB to a line
that does not exist. The error message takes the form of
the line number of the line containing the GOTO or
GOSUB followed by a “U", eg. 23510 U means that line
23510 contains a reference to an undefined line.

When a compiled program is run many further checks
are made for errors that cannot be found during
compilation. Such errors will generate similar messages
to uncompiled programs (eg. NEXT WITHOUT FOR
ERROR) but will give the address of the error rather
than the line number.

The lineé number may be found by means of the ERROR
LOCATE program supplied on the compiler tape.
ERROR LOCATE uses the Line Number (LN) that may
optionally be produced by the compiler. The procedure
for locating the line in the program at which the error
occurred is

— make a note of the address of the error;

— if the LN file was not created when the program was
compiled then re-compile the program and create it;
— load and run ERROR LOCATE;

— when requested key in the program name and the
address of the error;

— put the tape containing the appropriate LN file in the
tape unit;

— ERROR LOCATE will scan the LN file and find and
display the mumber of the line at which the ermor
occurred.

COMPATIBILITY — DTL-BASIC 64 is 100%
compatible with CBM Basic. This means that existing
programs can be compiled without any alterations being
necessary. DTL-BASIC 64 also keeps the layout of
page zero, the variable and array lists the same as for
the interpreter. This means that programs using
machine code subroutines and PEEKS and POKES can
also be compiled without alteration. The only proviso is
that programs should not alter themselves or attempt to
move the variable list by means of POKES.

DTL-BASIC 64 has a special feature to enable
extensions to Basic to be compiled successtully, It is
quite common for standard CBM Basic to be extended
by means of extra statements types implemented by
assembler routines in ROM or RAM. The way that
extensions are handled by the compiler is as follows

— when tha compiler finds a staterent that starts with a
character that it does not recognise then the compiler
generates a warning message (because it is not sure
whather the statement is an extension or a syntax error),
— the compiler assumes that the statement is an
extension and embeds the statement in the compiled
program exactly as it appears in the uncompiled
program.,

— when a compiled program is run then when any
extension statements are to be obeyed control is
passed to the interpreter which invokes the assembler
subroutines to implement the extension. Thase
subroutines work correctly because they find the
memory organisation exactly the same as for

uncompiled programs,;

Note that assembler routines that implement extensions
will notwork correctly if they reside in memory locations
used tohold RTL-64 ($A000 — $BFFF) or the memory
used by the fast garbage collection routine (SDO00 —
$FFFF). The normal location for assembler routines is
either $CO00 to SCFFF or below $A000.

INTEGER ARITHMETIC — One very important way
that the compller speads up programs is by using
integer arithmetic wherever possible, ie. for operations
between two integers. Even though the CBM interpreter
suppors integers it always converts them o reals
{sometimes called floating point) before performing any
arnthmetic operation. Real arithmetic is very very much
slower than integer arithmetic and for this reason the
DTL-BASIC 64 provides true integer arithmetic.

To achieve as fast a compiled program as possibie all
real variables that can be should be converted to
integers. One way of doing this is to put % characters
after all references to the variables. This can be a lot of
work so DTL-BASIC 64 includes a feature to do the
conversion automatically during compilation. This is
done by means of a directive to the compiler held in a
REM statement, eg. REM ** C5(A,B.C) means Convert
the Specified variables to integer (in this case variables
and/or arrays A,B or C). Similarly REM ** CE(X,Y)
means Convert all variables and arrays to integer
excluding those named. Note that the directive MUST
be at the start of the program (before any non-REM
statements).

If a program using integers does not work correctly then
recompile with the first staterments of the program REM
“* 51, This selects Special Integer (SI) mode which
affects the operators divide and exponentiation. These
operators differ from the other operators in that even
when both parameters are integer they can give a real
result. In normal compiled programs these operators
will give an integer result for integer operands; this is
much faster and is usually what is required but in some
cases may not be, eg. when B9 hold 3 the expression
B%/2" 4 will yield 6 on the interpreter and 4 when
compiled in normal mode. The use of Sl mode forces
divide and exponentiation to give a real result in such
cases and therefore gives the same result as the
interprater,

OTHER VERSIONS —DTL-BASIC 64 is also available
on disk and this version has many advantages over the
tape version, eg. compilation is faster and much more
convenient, any size of program may be compiled,
chained programs may share variables, the variable list
may be located where desired in memory to leave space
for such things as Sprite data etc., a special feature is
provided for high speed Sprite movement.

A special version of the disk compiler
DTL-PROTECTOR 64 is available that produces
programs protectedby a security key (or dongle) that fits
on control port 2. For programs which are to be sold
DTL-PROTECTOR provides a very high degree of
security against software piracy.

A user of the tape version of DTL-BASIC 64 may
upgrade to the disk compiler, contact Dataview
Wordcraft for details.

Dataview Wordcraft can also supply separately the full
compiler manual which describes both the disk and tape
compilers. This manual gives a much more
comprehensive description of the facilities of the
compilers than is possible here. Contagt Dataview
Wordcraft for details.

The DTL-BASIC COMPILER is also available for
Commodore 3000, 4000, B0O0O and 700 senes
machines.

Dataview Wordcraft Ltd,
Radix House,

East Street,

Colchester,

Essex. CO12XB

ERROR
NUMBER

wl
0w o~ 3 RN -

B e |
L3 P =k

14
15
16
17
18
19

APPENDIX
ERROA CODE LIST

CAUSE OF ERROR

syntax error

wrong type of operand

no 'TQ" where one expected

illegal array subscript

no '} where one expected

no ‘(" where one expected

no '," where one expected

no ‘;" where one expected

no ‘THEN' or ‘GOTO" where one expected
no ‘GOTO’ or "GOSUB'where one expected
no ‘FN' where one expécted

constant too big(either > 255 or < 0)
expression too complex

(shouldn't occur if program is OK on
Interpreter)

syntax error in expression

too many ‘)'s

ilegal operator in string expression

type mismatch

illegal statement type (CONT or LIST)
pragram too big

{shouldn'’t occur for disk based versions if
program is OK on Interpreter)

10

ERROR
NUMBER

REEBUBREBRLEBBURRENNY

APPENDIX
ERROR CODE LIST

CAUSE OF ERROR

a function name must be real

FOR variable cannot be an array element
wrong number of subscripts
integer too big

negative number illegal

cannot set ST, T1,DS or DS$

function variable must be real

no function where one expected

no operator or separator where one expected
type mismatch in relational expression

no line number where one expected

no operand where one expected

illegal CS or CE statement

bracket missing from CS or CE statement
too many conversion varlables (> 128)
error in CSorCE;no ', or '= >' alter name
error in CS or CE;no '% ' where one expected
converted name clash in CS or CE

no '="whare one expected

detault array found in overlay

too much DATA text (maximum amount of
DATA text Is approximately 8500 bytes for
the single drive compiler and 6500 bytes for
the tape compiler — there is no limit for the

dual drive compiler)

