P R b

")

PERSONAL COMPLIFER

System Guide

77 3 3333333333330 3

INTRODUCING THE
COMMODORE 128

T eEey

TLELE ’i'f' !'E

& T

LR i..! ! !

i

AN EXTRA PAIR OF
HANDS FOR THE
BUSY EXECUTIVE

———

COMMODORE 128

GRAPHICS ARE
EASY ON YOUR

m:.zﬁ_w:s.ﬂ_:z :,_

i
PERRER N NN

A POWERFUL
LEARNING TOOL AT
HOME OR IN THE
CLASSROOM

SHIP TO SHORE
TELECOMMUNI-
CATING MADE
EASY WITH YOUR
COMMODORE
COMPUTER AND
MODEM

yaaLs

PRODUCTION
PROBLEM SOLVING
ONYOUR
COMMODORE 128

- Bh s i il
. 2 m g‘,‘ é

THE COMMODORE
128 AND STUDENT
HEADING FOR
CLASS

THE BUDGET
FINALLY
BALANCED-
THANKS TO
COMMODORE 128

C128
SYSTEM GUIDE

LI O U (R (Y S Y AT I Y AP Y A T (T I O N

USER’S MANUAL STATEMENT

WARNING:

This equipment has been certified to comply with the limits for a Class B computing device,
pursuant to subpart J of Part 15 of the Federal Communications Commission’s rules, which
are designed to provide reasonable protection against radio and television interference in a
residential installation. If not installed properly, in strict accordance with the manufac-
turer’s instructions, it may cause such interference. If you suspect interference, you can
test this equipment by turning it off and on. If this equipment does cause interference,
correct it by doing any of the following:

® Reorient the receiving antenna or AC plug.

e Change the relative positions of the computer and the
receiver.

® Plug the computer into a different outlet so the computer and
receiver are on different circuits.

CAUTION: Only peripherals with shield-grounded cables (com-
puter input-output devices, terminals, printers, etc.), certified to
comply with Class B limits, can be attached to this computer.
Operation with non-certified peripherals is likely to result in
communications interference.

Your house AC wall receptacle must be a three-pronged type
(AC ground). If not, contact an electrician to install the proper
receptacle. If a multi-connector box is used to connect the com-
puter and peripherals to AC, the ground must be common to all
units.

If necessary, consult your Commodore dealer or an experienced radio-television techni-
cian for additional suggestions. You may find the following FCC booklet helpful: “How to
Identify and Resolve Radio-TV Interference Problems.” The booklet is available from the
U.S. Government Printing Office, Washington, D.C. 20402, stock no. 004-000-00345-4.

Third Printing, November 1986
Copyright © 1985 by Commodore Electronics Limited
All rights reserved

This manual contains copyrighted and proprietary information. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior
written permission of Commodore Electronics Limited.

Commaodore BASIC 7.0

Copyright © 1985 by Commodore Electronics Limited
All rights reserved

Copyright © 1977 by Microsoft Corp.
All rights reserved

CP/M® Plus Version 3.0

Copyright © 1982 by Digital Research inc.
All rights reserved

CP/M is a registered trademark of Digital Research Inc.

- CCC O

[

-

T

C

L.

(R IS IS U

-

]

.

]

1

B

)

-

}

-l

1

-

-

1

I~

-

.

)

]

)

TABLE OF
CONTENTS

Chapter I—Introduction

Section 1—How to Use this Guide
Section 2—Overview of the Commodore 128
Personal Computer

Chapter ll—Using C128 Mode

Section 3—Getting Started in BASIC

Section 4—BASIC Programming

Section 5—Advanced BASIC 7.0 Commands

Section 6—Color, Animation and Sprite Graphics
Statements Unique to the C128

Section 7—Sound and Music in C128 Mode

Section 8—Using 80 Columns

Chapter lll—Using C64 Mode

Section 9—Using the Keyboard in C64 Mode
Section 10—Storing and Reusing Your Programs in
C64 Mode

Chapter IV—Using CP/M Mode

Section 11—Introduction to CP/M 3.0

Section 12—Files, Disks and Disk Drives in CP/M 3.0
Section 13—Using the Console and Printer in CP/M 3.0
Section 14—Summary of Major CP/M 3.0 Commands
Section 15— Commodore Enhancements to CP/M 3.0

Chapter V—Basic 7.0 Encyclopedia

Section 16—Introduction

Section 17—BASIC Commands and Statements
Section 18—BASIC Functions

Section 19—Variables and Operators

Section 20—Reserved Words and Symbols

17
73

93
127
159

169
175

183
191
201
207
217

227
233
305
325
331

Appendices

FrXC—IOMMOUOD>

. BASIC Language Error Messages

. DOS Error Messages

. Connectors/Ports for Peripheral Equipment
. Screen Display Codes

ASCIl and CHR$ Codes
Screen and Color Memory Maps

. Derived Trigonometric Functions
. Memory Map

Control and Escape Codes
Machine Language Monitor
BASIC 7.0 Abbreviations
Disk Command Summary

Glossary

Index

337

349
355
357
361
363
365
367
371
381
385

387
401

. C ¢ C .

P~
LN

I (O

£ =

S .

 C

C

]

—

!

]

~

)

A

1

I .

|

1

]

(v

INTRODUCTION

CHAPTER

s T R e e e e e e s e e [e [t s I

(]

(

)

——

-

s

' 4.

!

[,

SECTION 1
How to Use
this Guide

3

INTRODUCTION-~How to Use this Guide

s T R R e R s [(s s e s e e R e R

)

1

\-

(..

)

-

‘J

"

]

\—

]

\—

o

-

y

L

J

-

o

N

-

How to Use this This Commodore 128 System Guide is designed to help you make
Guide full use of the advanced capabilities of the Commodore 128 com-
puter. Here’s how to use this Guide:

Before you read any further in this System Guide, make sure
you have read the other book packed in the computer carton,
Introducing The Commodore 128 Personal Computer,
which contains important information on getting started with
the Commodore 128.

If you are primarily interested in using the BASIC language to
create and run your own programs, you should first read Sec-
tion 2 of this chapter. This section summarizes the three operat-
ing modes of the Commodore 128. Then read Chapter II, USING
C128 MODE. This chapter introduces you to the BASIC pro-
gramming language as used in both C128 and C64 modes;
describes the Commodore 128 keyboard; defines some
advanced commands you can use in both C128 and C64
modes; shows how to use a number of powerful new BASIC
commands (including color, graphic and sound commands) that
are unique to C128 mode; and describes how to use the 80-
column capabilities available in C128 mode.

If you want to use BASIC in C64 mode, read Chapter I, USING
C64 MODE. You can use all the Commodore 64 BASIC 2.0 com-
mands in C64 mode. Note, however, that the Commodore 128
BASIC 7.0 language provides many more BASIC commands
than BASIC 2.0, and the C128 BASIC commands are more pow-
erful and easier to use than equivalent BASIC 2.0 commands.
Remember, you can use C64 mode to run any of the thousands
of C64 software packages currently available.

If you want to use CP/M on the Commodore 128, read Chapter
IV, USING CP/M MODE. This chapter tells you how to start up
and use CP/M on the Commodore 128. In CP/M mode you zan
choose from thousands of software packages. You can also
create your own CP/M programs.

If you want details on the BASIC 7.0 commands, read ChapterV,
BASIC 7.0 ENCYCLOPEDIA. This chapter gives format and
usage details on all BASIC 7.0 commands, statements and
functions.

If, after reading Chapters | through V. you are looking for addi-
tional technical information about a particular Commodore 128

5 INTRODUCTION—How to Use this Guide

6

topic, first check the Appendices to this System Guide. These
appendices contain a wide range of information, such as a
complete list of BASIC and DOS error messages and a sum-
mary of disk commands. A Glossary following the Appendices
provides definitions of computing terms.

For complete technical details about any feature of the Commodore
128, consult the Commodore 128 Programmer’s Reference Guide.

INTRODUCTION—How to Use this Guide

Y S S S (S GO O R SN SN O

S S N

\
m i
—~

-

~

"}

)

7l

1

.

-1

1

—

1

)

(1

/ J g\

SECTION 2
Overview of the

Commodore €128

Personal
Computer

7

OVERVIEW OF THE COMMODORE C128 PERSONAL
COMPUTER
C128 Mode
C64 Mode
CP/M Mode

TURNING ON YOUR COMMODORE C128

USING SOFTWARE
SWITCHING BETWEEN MODES

INTRODUCTION—Overview of the Commodore C128 Personal Computer

10
1
11
12
13

i e M Y B [s s s s e s s s S Qs [

)

]

]

i-

)

-

)

[—

L

-}

)

\

1

~
y—

B

J

—

)

]

v

-

]

8

-

.

Overview of the
Commodore C128
Personal
Computer

The Commodore 128 incorporates many powerful new features,
including:

B A greatly enhanced BASIC language—Commodore BASIC
7.0—that provides extensive new commands and
capabilities

M 128K of RAM, which can be expanded to 256 or 640K with
optional RAM expansion modules

B 40- and 80-column video output

M Operative with new 1571 fast disk drive

B 2 mHz operation

B CP/M 3.0 operation

B A professional-type keyboard including a full numeric keypad .

B A built-in machine language monitor

B Compatibility with Commodore 64 hardware and software

INTRODUCTION —Overview of the Commodore C128 Personal Computer

The Commodore 128 Personal Computer is actually three computers
in one, offering three primary operating modes:

W C128 Mode
W C64 Mode
B CP/M Mode

Here's a summary of what each mode offers:

C128 Mode

In C128 mode, the Commodore 128 Personal Computer provides
access to 128K of RAM and a powerful extended BASIC language
known as BASIC 7.0. BASIC 7.0—which offers over 140 commands,
statements and functions—has been created by Commodore to
provide better and easier ways to perform many sophisticated pro-
gramming tasks, including those involving graphics, animation,
sound and music. C128 mode also provides both 40- and 80-column
output capabilities and full use of the 92-key keyboard. The keyboard
includes a numeric keypad in addition to Escape, Tab, ALPHA LOCK
and Help keys. A built-in machine language monitor allows you to
create and debug your own machine language programs. You can
use these programs in conjunction with a BASIC program. In C128
mode you can use a number of new peripheral devices from Com-
modore, including a new fast-serial disk drive, a mouse, and a 40/80-
column composite video/RGBI monitor. And you can use all standard
Commaodore serial peripherals.

C64 Mode

In C64 mode, the Commodore 128
operates exactly like a Commodore
64 computer. The Commodore 128
retains all the capabilities of the com-
mercially successful C64, thus allow-
ing you to take full advantage of the
wide range of available C64 software.
You also have compatibility with C64
peripherals, including standard cas-
sette, joystick, user port and serial devices, as well as C64 compos-
ite video monitor and TV outputs.

INTRODUCTION—Overview of the Commodore C128 Personal Computer

C ¢ =

S S S S

N SR S S O

S R

 C

NI

)

Aﬁ

|

B U O R R R B R

Turning On Your
Commodore 128

11

C64 mode provides the BASIC 2.0 language, 40-column output and
access to 64K of RAM. The main keyboard layout, except for the
placement of the function keys, is the same as that of a Commodore
64 computer. All the C64 graphics, color and sound capabilities are
retained, used exactly as on a Commodore 64.

CPIM Mode ®

In CP/M mode, an onboard Z80 microprocessor gives you access to
the capabilities of Digital Research’s CP/M Version 3.0, plus a num-
ber of new capabilities added by Commodore. The Commodore
128's CP/M 3.0 package (also known as CP/M Plus) provides 128K of
RAM, 40- and 80-column output, access to the full keyboard, includ-
ing the numeric keypad and special keys, and access to the new
Commodore 1571 fast serial disk drive and the standard peripherals.
With some exceptions, you will be able to choose from thousands of
popular software programs—already available, and already proven.
(Programs created for a specific computer may not run on the Com-
modore 128. Also, CP/M 3.0 programs on the Commodore 128 may
run somewhat slower than CP/M systems on high-priced machines.)

Chapters 11, Il and IV, which include Sections 3 through 15, tell you
how to access and use the capabilities of the three powerful and
versatile operating modes of the Commodore 128 Personal
Computer.

Before you turn on your Commodore 128, there are a few things to
check to make sure that you get started properly. One thing you
should do before powering up the computer is to make sure the
40/80 key on the top row of the keyboard is set to match your monitor.
For example, if you have a 40-column monitor, the 40/80 key should
be in the up position. If you have an 80-column monitor the 40/80

key should be depressed.

INTRODUCTION—Overview of the Commodore C128 Personal Computer

Using Software

If you are using the Commodore 1902 dual monitor in 40-column
format, the 40/80 key should be up and the slide switch on the front
of the monitor should be in the middle position. In 80-column format
using the 1902 dual monitor, the 40/80 key should be depressed and
the switch on the front of the monitor should be in the extreme right
position.

Regardless of which screen format you are using, check to see that
both the CAPS LOCK and SHIFT LOCK keys are in the up position. If
they’re not, you may get no picture at all because the monitor switch
may be set for the opposite screen, or the screen may display unfa-
miliar symbols. (See Section 5 for a description of all the special keys
used in C128 mode.)

If you are using a MAGIC VOICE speech module, insert the module in
the expansion port and, while holding down the Commodore key,

turn on the power switch. Never plug in any cartridge with the
power turned on.

If you experience difficulty getting a cartridge to power-up in C64
mode, plug in the cartridge with the power off; then hold down the
Commodore key and turn on the computer.

If you have the external CP/M 2.2 cartridge marketed for the Com-
modore 64, do not plug it into the Commodore 128. The Commodore
128 has a Z80 microprocessor already on-board for CP/M 3.0. If you
do plug in the CP/M 2.2 cartridge, it can cause unpredictable results.

If you are using software involving a light pen, plug the light pen into
Controller Port 1, located on the right side of the C128 near the power
switch.

INTRODUCTION—Overview of the Commodore C128 Personal Computer

U I

C C

=

o~

CCCCCC T

Switching
Between Modes

The following chart tells how to switch to one mode from another.

TO FROM
OFF c128 c128 cé64 CPIM CPIM
40 COL 80 COL 40 COL 80 COL
1. Check that 1. Press ESC key; 1. Check that
40/80 key is release. 40/80 key is UP.
UP. 2. PressXkey. - . Remove CP/M Re ,
2. Turn computer OR 2. n computer : system disk from system disk
ON. 1. Check that OFF then ON. drive, if drive, if
40/80 key is : necessary. _necessary.
UP. 3. Turn computer - Turn computer
2. Press RESET OFF, then ON. - OFF, thenON.
button.
1. Press40/80 1. Press Esc key; . 1. Press 40/80 1. Press 40/80 key
8oCOL key DOWN. release. key DOWN. DOWN. o
2. Turncomputer 2. Press X key. 2. Turn computer 2. Remove CP/M
ON. - OR ON. system disk from
A Press 40/80 drive, if
key DOWN. necessary.
. Turn computer
2 gfﬁfngSET OFF, then ON.
1. Hold & key 1. Type Go 64, 1. Type GO 64; . Turn computer
DOWN. - pressHl 5_U,RN.1 press RETURN OFF.
2. Turncomputer 2. T yuter - 2. The computer . Check that 40/
ON. responds: responds: 80 key is UP.
OR ARE YOU SURE? ARE YOU SURE? . Hold DOWN €
1. Insert C64 Type Y; press Type Y; press key while turnin
cartridge. RETURN. RETURN. computer ON.
2. Turn computer OR
ON. . Turn computer
OFF.
. Insert C64
cartridge.
. Turn power ON.

1. Turndiskdrive 1. Tt :
ON. .

Insert CP/M

. Turn disk drive -

Insert CP/M

2. Insert CP/M 2. 2.
system disk in system disk in system disk in
drive drive: drive.
3. Check that 3. Checkthat - 3. Check that
40/80 key is 40/ 40/80 key is
UP. ~ UP
4. Turn computer 4. Type: BOOT 4.
ON. 5. Press RETURN
1. Turn disk drive 1. Turn disk drive . Insert disk with
. . ONn CP/M utilities in
2. IngertCP/M 2. CP/M © 2. InsertCP/M drive.
system disk in system disk in system disk in . Atscreen
drive. drive. drive. 3. Insert CP/M prompt, A) type
3. Press40/80 3. Press40/80 3. Check that system dlsk in DEVICECONDUT: = 48C0|
keyDOWN. keyDOWN. . 40/80 keyis | 3. Pross RETURN.
4. Turn computer 4. . DOwWN.
ON. 5. Pres RETUHN 4. Type: BOOT
Press RETURN

14

NOTE: If you are using a Commodore 1902 dual monitor, remember

to move the video switch on the monitor from COMPOSITE or
SEPARATED to RGBI when switching from 40-column to 80-column
display; reverse this step when switching from 80 to 40 columns. Also,
when changing from CP/M mode to another mode, make sure to
remove the CP/M operating system diskette from the 1571 disk drive, or
else upon reset or power-up, the C128 will BOOT CP/M again.

INTRODUCTION—Overview of the Commodore C128 Personal Computer

(I

-

SO I DO N A G U

(

C

=3

I

n

CHAPTER

.

B

! USING C128 MODE

N

I

1

1 1

1

{

]

N

77 3 3333333333330 3

1

]

1

4 1

1

B I B

n

1

]

B

SECTION 3
Getting Started
in Basic

17

BASIC PROGRAMMING LANGUAGE
Direct Mode
Program Mode

USING THE KEYBOARD
Keyboard Character Sets
Using the Command Keys
Function Keys
Displaying Graphic Characters
Rules for Typing BASIC Language Programs

GETTING STARTED—The PRINT COMMAND

Printing Numbers

Using the Question Mark to Abbreviate the PRINT
Command

Printing Text

Printing in Different Colors

Using the Cursor Keys Inside Quotes with the PRINT
Command

BEGINNING TO PROGRAM
What a Program Is
Line Numbers
Viewing your Program—The LIST Command
A Simple Loop—The GOTO Statement
Clearing the Computer’s Memory—The NEW Command
Using Color in a Program

EDITING YOUR PROGRAM
Erasing a Line from a Program
Duplicating a Line
Replacing a Line
Changing a Line

MATHEMATICAL OPERATIONS
Addition and Subtraction
Multiplication and Division
Exponentiation
Order of Operations
Using Parentheses to Define the Order of Operations

CONSTANTS, VARIABLES AND STRINGS
Constants
Variables
Strings

USING C128 MODE—Getting Started in BASIC

18

SAMPLE PROGRAM

STORING AND REUSING YOUR PROGRAMS
Formatting a Disk—The HEADER Command
SAVEing on Disk
SAVEing on Cassette
LOADing from Disk
LOADing from Cassette
Other Disk-Related Commands

USING C128 MODE —Getting Started in BASIC

41

41
42
44

45
45
46

C C C [L

=

[I

C C C

J 1 1 1

J 1 1 1 1 1 1 3 1

a1

BASIC
Programming
Language

19

The BASIC programming language is a special language that lets you
communicate with your Commodore 128. Using BASIC is one means
by which you instruct your computer what to do.

BASIC has its own vocabulary (made up of commands, statements
and functions) and its own rules of structure (called syntax). You
can use the BASIC vocabulary and syntax to create a set of instruc-
tions called a program, which your computer can then perform or
“run.”

Using BASIC, you can communicate with your Commodore 128 in
two ways: within a program, or directly (outside a program).

Direct Mode

Your Commodore 128 is ready to accept BASIC commands in direct
mode as soon as you turn on the computer. In the direct mode, you
type commands on the keyboard and enter them into the computer
by pressing the RETURN key. The computer executes all direct
mode commands immediately after you press the RETURN key.
Most BASIC commands in your Commodore 128 can be used in
direct mode as well as in a program.

Program Mode

In program mode you enter a set of instructions that perform a spe-
cific task. Each instruction is contained in a sequential program line.
A statement in a program may be as long as 160 characters; this is
equivalent to four full screen lines in 40-column format, and two full
screen lines in 80-column format.

Once you have typed a program, you can use it immediately by typ-
ing the RUN command and pressing the RETURN key. You can also
store the program on disk or tape by using the DSAVE (or SAVE) com-
mand. Then you can recall it from the disk or tape by using the
DLOAD (or LOAD) command. This command copies the program
from the disk or tape and places that program in the Commodore
128's memory. You can then use or “execute” the program again by
entering the RUN command. All these commands are explained later
in this section. Most of the time you will be using your computer with
programs, including programs you yourself write, and commercially
available software packages. The only time you operate in direct
mode is when you are manipulating or editing your programs with

USING C128 MODE—Getting Started in BASIC

Using the
Keyboard

20

commands such as LIST, LOAD, SAVE and RUN. As a rule, the differ-
ence between direct mode and operation within a program is that
direct mode commands have no line numbers.

Shown below is the keyboard of the Commodore 128 Personal
Computer.

Using BASIC is essentially the same in both C64 and C128 modes.
Most of the keys, and many of the commands you will learn, can be
used to program BASIC in either mode. The keys that are shaded in
the figure above can be used in C64 mode. In C128 mode you can
use all of the keys on the keyboard.

USING C128 MODE—Getting Started in BASIC

C C C C

C CCCcCCc b bbb L

[

]

—

J

-

A

]

B

)

—

—-

]

s

]

-~

]

f_

]

Keyboard Character Sets

The Commodore 128 keyboard offers two different sets of
characters:

B Upper-case letters and graphic characters
B Upper- and lower case letters

In 80-column format, both character sets are available simultane-
ously. This gives you a total of 512 different characters that you can
display on the screen. In 40 column format you can use only one
character set at a time.

When you turn on the Commodore 128 in 40-column format, the key-
board is normally using the upper-case/graphic character set. This
means that everything you type is in capital letters. To switch back
and forth between the two character sets, press the SHIFT key and
the € key (the COMMODORE key) at the same time. To practice
using the two character sets turn on your computer and press sev-
eral letters or graphic characters. Then press the SHIFT key and the
G (Commodore) key. Notice how the screen changes to upper- and
lower-case characters. Press SHIFT and € again to return to the
upper-case and graphic character set.

Using the Command Keys

COMMAND keys are keys that send messages to the computer.
Some command keys (such as RETURN) are used by themselves.
Other command keys (such as SHIFT, CTRL, € and RESTORE) are
used with other keys. The use of each of the command keys is
explained below.

Return When you press the RETURN key, what you
have typed is sent to the Commodore 128 com-
puter's memory. Pressing the RETURN key also
moves the cursor (the small flashing rectangle
that marks where the next character you type
will appear) to the beginning of the next line.

At times you may misspell a command or type in
something the computer does not understand.
Then, when you press the RETURN key, you

21 USING C128 MODE—Getting Started in BASIC

Shift

Shift Lock

probably will get a message like SYNTAX
ERROR on the screen. This is called an “Error
Message.” Appendix A lists the error messages
and tells how to correct the errors.

NOTE: In the examples given in this book, the
following symbol indicates that you must press
the RETURN key:

There are two SHIFT keys on the bottom row of
the keyboard. One key is on the left and the
other is on the right, just as on a standard type-
writer keyboard.

The SHIFT key can be used in three ways:

1. With the upper/lower-case character set,
the SHIFT key is used like the shift key on a
regular typewriter. When the SHIFT key is
held down, it lets you print capital letters or
the top characters on double-character
keys.

2. The SHIFT key can be used with some of
the other command keys to perform special
functions.

3. When the keyboard is set for the upper-
casel/graphic character set, you can use the
SHIFT key to print the graphic symbols or
characters that appear on the front face of
certain keys. See the paragraphs entitled
“Displaying Graphic Characters” at the end
of this section for more details.

When you press this key down, it locks into
place. Then, whatever you type will either be a
capital letter, or the top character of a double-
character key. To release the lock, press down
on the SHIFT LOCK key again.

USING C128 MODE—Getting Started in BASIC

(C

(-

(-

.~

U I R AR A R O I S

(-

,_
—~—

C . (

-]

]

)

1

2]

1

)

)

]

]

I R N B

)

]

1

)

B

23

Moving the
Cursor

In C128 mode, you can move the cursor by
using either the four arrow keys located just
above the top right of the main keyboard, or the
two keys labeled CRSR, at the right of the bot-
tom row of the main keyboard.

Using the Four Arrow Cursor Keys

In C128 mode, the cursor can be moved in any
direction simply by using the arrow key in the
top row that points in the direction you want to
move the cursor. (These keys cannot be used in
C64 mode).

Using the CRSR keys

In both C128 and C64 mode, you can use the
two keys on the right side of the bottom row of
the main keyboard to move the cursor:

A
® Pressingthe CRSR key alone moves the cur-
sor down.

A
® Pressing the CRSR and SHIFT keys together
moves the cursor up.

* Pressing the CRSR key alone moves the cur-
sor right.

<
* Pressing the CRSR and SHIF T keys together
moves the cursar left.

You don't have to keep tapping a cursor key to
move more than one space. Just hold the key
down and the cursor continues to move until it
reaches the position you want.

Notice that when the cursor reaches the right
side of the screen, it “wraps”, or starts again at
the beginning of the next row. When moving left,
the cursor will move along the line until it
reaches the edge of the screen, then it will jump
up to the end of the preceding line.

USING C128 MODE—Getting Started in BASIC

Inst/Del

You should try to become very familiar with the
cursor keys, because moving the cursor makes
your programming much easier. With a little
practice you will find that you can move the cur-
sor almost without thinking about it.

This is a dual purpose key. INST stands for
INSerT, and DEL for DELete.

Inserting Characters

You must use the SHIFT key with the INST/DEL

key when you want to insert characters in a line.
Suppose you left some characters out of a line,

like this:

WHILE U WERE OUT

To insert the missing characters, first use the
cursor keys to move the cursor back to the
error, like this:

WHILERWERE OUT

Then, while you hold down the SHIFT key, press
the INST/DEL key until you have enough space
to add the missing characters:

WHILE B U WERE OUT

Notice that INST doesn’t move the cursor; it just
adds space between the cursor and the charac-
ter to its right. To make the correction, simply
type in the missing Y’ and “O”, like this:

WHILE YOU WERE OUT

Deleting Characters

When you press the DEL key, the cursor moves
one space to the left and erases the character

- that is there. This means that when you want to

delete something, you move the cursor just to
the right of the character you want to DELete.
Suppose you have made a mistake in typing, like
this:

PRINT “ERROER”

L

[Z

.—

L C C C L CCecC b &=

(Z

—

24 USING C128 MODE—Getting Started in BASIC

-

)

]

_)

N

]

)

)

N

-}

]

]

1

]

o~

J

Control

Run/Stop

You wanted to type the word ERROR, not
ERROER. To delete the incorrect E that pre-
cedes the final R, position the cursor in the
space where the final R is located. When you
press the DEL key, the character to the right of
the cursor (the R) automatically moves over one
space to the left. You now have the correct
wording like this:

PRINT “ERROR”

Using INSerT and DELete Together

You can use the INSerT and DELete functions
together to fix incorrect characters. First, move
the cursor to the incorrect characters and press
the INST/DEL key by itself to delete the charac-
ters. Next, press the SHIFT key and the INST/
DEL key together to add any necessary space.
Then type in the corrections. You can also type
directly on top of undesired characters, then use
INST to add any needed space.

The Control key is used with other keys to do
special tasks called control functions. To per-
form a control function, hold down the Control
key while you press some other key. Control
functions are often used in prepackaged soft-
ware such as a word processing system.

One control function that is used often is setting
the character and cursor color. To select a color,
hold down the CTRL key while you press a num-
ber key (1 through 8), on the top row of the key-
board. There are eight more colors available to
you; these can be selected with the € key, as
explained later.

This is a dual function key. Under certain condi-
tions you can use the RUN function of this key
by pressing the SHIFT and RUN/STOP together.
It is also possible to use the STOP function of
this key to halt a program or a printout by press-
ing this key while the program is running. How-

USING C128 MODE—Getting Started in BASIC

Restore

CLR/Home

Commodore Key

()

ever, in most prepackaged programs, the STOP
function of the RUN/STOP key is intentionally
disabled (made unusable). This is done to pre-
vent the user from trying to stop a program that
is running before it reaches its normal end point.
If the user were able to stop the program, valu-
able data could be lost.

The RESTORE key is used with the RUN/STOP
key to return the computer to its standard condi-
tion. To do this, hold down the RUN/STOP key
and press RESTORE.

Most prepackaged programs disable the
RESTORE key for the same reason they disable
the STOP function of the RUN/STOP key: to pre-
vent losing valuable data.

CLR stands for CLeaR. HOME refers to the
upper-left corner of the screen, which is called
the HOME position. If you press this key by itself
the cursor returns to the HOME position. When
you use the SHIFT key with the CLR/HOME key;,
the screen CLeaRs and the cursor returns to the
HOME position.

The €= key (known as the COMMODORE key)
has a number of functions, including the follow-
ing ones:

1. The C=key lets you switch back and forth
between the upper/lower-case character
set (which displays the letters and charac-
ters on the top of the keys), and the upper-
case/graphic display character set (which
displays capital letters and the graphics
symbols on the front face of the keys). To
switch modes, press the €= key and the
SHIFT key at the same time.

2. TheC=key also lets you use a second set of
eight colors for the cursor. To get these col-
ors, you hold down the € key while you
press a number key (1 through 8) in the top
row.

USING C128 MODE—Getting Started in BASIC

[B

(=

C C C C - Cc L & e

(.

(

-

)

-

]

]

)

]

~J

)

)

_J

-]

)

]

27

3. If you hold down the €= key while turning on
the computer, you can immediately access
C64 mode.

Function Keys

The four keys located above the numeric keypad (marked F1, F3, F5
and F7 on the top and F2, F4, F6 and F8 on the front) are called func-
tion keys. In C128 and C64 modes, you can program the function
keys. (See the KEY command descriptions in Section 5 of Chapter I
and in Chapter V, BASIC 7.0 ENCYCLOPEDIA). These keys are also
often used by prepackaged software to allow you to perform a task
with a single keystroke.

Displaying Graphic Characters

To display the graphic symbol on the right front face of a key, hold
down the SHIFT key while you press the key that has the graphic
character you want to print. You can display the right side graphic
characters only when the keyboard is in the upper-case/graphics
character set (the normal character set usually available at power-

up).

To display the graphic character on the left front face of a key, hold
down the €= key while you press the key that has the graphic charac-
ter you want. You can display the left graphic character while the
keyboard is in either character set.

Rules for Typing BASIC Language Programs

You can type and use BASIC language programs even without know-
ing BASIC. You must type carefully, however, because a typing erfor
may cause the computer to reject your information. The following
guidelines will help minimize errors when typing or copying a pro-
gram listing.

1. Spacing between words is not critical; e.g., typing
FORT = 1TO10 is the same as typing FOR T =1 TO 10. However,
a BASIC keyword itself must not be broken up by spaces. (See
the BASIC 7.0 Encyclopedia in Chapter V for a list of BASIC key-
words).

2. Any characters can be typed inside quotation marks. Some char-
acters have special functions when placed inside quotation
marks. These functions are explained later in this Guide.

USING C128 MODE—Getting Started in BASIC

Getting Started—
The PRINT
Command

28

3. Be careful with punctuation marks. Commas, colons and semi-
colons also have special properties, explained later in this
section.

4, Always press the RETURN key (indicated in this Guide by

BEELEREE) after completing a numbered line.

5. Never type more than 160 characters in a program line. Remem-
ber, this is the same as four full screen lines in 40-column format,
or two full screen lines in 80-column format. See Section 8 for
more details on 40- and 80-column formats.

6. Distinguish clearly between the letter | and the numeral 1 and
between the letter O and the numeral 0.

7. The computer ignores anything following the letters REM on a
program line. REM stands for REMark. You can use the REM
statement to put comments in your program that tell anyone list-
ing the program what is happening at a specific point.

Follow these guidelines when you type the examples and programs
shown in this section.

The PRINT command tells the computer to display information on the
screen. You can print both numbers and text (letters), but there are
special rules for each case, described in the following paragraphs.

Printing Numbers

To print numbers, use the PRINT command followed by the num-
ber(s) you want to print. Try typing this on your Commodore 128:

PRINT 5

Then press the RETURN key. Notice the number 5 is now displayed
on the screen.

Now type this and press RETURN:
PRINT 5,6

In this PRINT command, the comma tells the Commodore 128 that
you want to print more than one number. When the computer finds
commas in a string of numbers in a PRINT statement, each number
that follows a comma is printed starting in either the 11th, 21st or
31st column on the screen, depending on the length of each number.
If the previous number has more than 7 digits, the following number
is moved to the next starting position, 10 columns to the right. The
C128 always leaves at least 3 spaces between numbers which are

USING C128 MODE—Getting Started in BASIC

C

—m

AR A (O (O U O A A O O

(

C C

-]

]

]

—_

]

)

)

I I B B

]

B I B

)

]

)

J

separated by a comma. If you don’t want all the extra spaces, use a
semicolon (;) in your PRINT statement instead of a comma. The semi-
colon tells the computer not to add any spaces between strings and
numeric variables and numeric constants. Numbers and numeric
variables are printed with either a leading space or a minus sign, and
a trailing space. Omitting a semicolon, a comma, or any separators
acts the same as a semi-colon. Type these examples and see what
happens:

PRINT 5;6 SRETORIE
PRINT 100;200;300;400;500 SRETHRIN=

Using the Question Mark to Abbreviate the PRINT
Command

You can use a question mark (?) as an abbreviation for the PRINT
command. Many of the examples in this section use the ? symbol in
place of the word PRINT. In fact, most of the BASIC commands can
be abbreviated. However, when you LIST a program, the keyword
appears in the long version. The abbreviations for BASIC commands
can be found in Appendix K of this Guide.

Printing Text

Now that you know how to print numbers, it's time to learn how to
print text. It's actually very simple. Any words or characters you want
to display are typed on the screen, with a quote symbol at each end
of the string of characters. String is the BASIC name for any set of
characters surrounded by quotes. The quote character is obtained
by pressing SHIFT and the numeral 2 key on the top row of the key-
board (not the 2 in the numeric keypad). Try these examples:

? “COMMODORE 128” =REFHRN=

? “4*5” SOETHDOA=
Notice that when you press RETURN, the computer displays the
characters within the quotes on the screen. Also note that the sec-
ond example did not calculate 4*5 since it was treated as a string

and not a mathematical calculation. If you want to calculate the
result 4*5, use the following commana:

? 4*5 SREFURRE

You can PRINT any string you want by using the PRINT command
and surrounding the printed characters with quotes. You can com-
bine text and calculations in a single PRINT command like this:

? “4*5= "4*5 =RETURN=

USING C128 MODE—Getting Started in BASIC

30

See how the computer PRINTS the characters in quotes, makes the
calculation and PRINTS the result. It doesn’t matter whether the text
or calculation comes first. In fact, you can use both several times in
one PRINT command. Type the following statement:

? 4*(2 + 3)“ is the same as "4*5

Notice that even spaces inside the quotation marks are printed on
the screen. Type:

?¢ OVER HERE” SREEURR=

Printing in Different Colors

The Commodore 128 is capable of displaying 16 different colors on
the screen. You can change colors easily. All you do is hold down the
CTRL key and press a numbered key between 1 and 8 on the top row
of the main keyboard. Notice that the cursor changes color accord-
ing to the numbered key you pressed. All the succeeding characters
are displayed in the color you selected. Hold down the Commodore
key and press a numbered key between 1 and 8, and eight additional
colors are displayed on the screen.

Table 3-1 lists the colors available on in C128 mode, for both 40- and
80-column screen formats.

Color Code Color Color Code Color
1 Black 9 Orange
2 White 10 Brown
3 Red 11 Light Red
4 Cyan 12 Dark Gray
5 Purple 13 Medium Gray
6 Green 14 Light Green
7 Blue 15 Light Blue
8 Yellow 16 Light Gray
Color Numbers in 40-Column Format
Color Code Color Color Code Color
1 Black 9 Dark Purple
2 White 10 Dark Yellow
3 Dark Red 11 Light Red
4 Light Cyan 12 Dark Cyan
5 Light Purple 13 Medium Gray
6 Dark Green 14 Light Green
7 Dark Blue 15 Light Blue
8 Light Yellow 16 Light Gray

Color Numbers in 80-Column Format

e e e e T A O e e

(

-

)

)

]

]

)

1

_1

I I R

B

)

I

1

)

J

Using the Cursor Keys Inside Quotes with the PRINT
Command

When you type the cursor keys inside quotation marks, graphic char-
acters are shown on the screen to represent the keys. These charac-
ters will NOT be printed on the screen when you press RETURN. Try
typing a question mark (?), open quotes (SHIF Ted 2 key); then press
either of the down cursor keys 10 times, enter the words “DOWN
HERE", and close the quotes. The line should look like this:

? “lelelelele[e[ele]ele: DOWN HERE”

Now press RETURN. The Commodore 128 prints 10 blank lines, and
on the eleventh line, it prints “DOWN HERE". As this example
shows, you can tell the computer to print anywhere on your screen
by using the cursor control keys inside quotation marks.

Beginning to So far most of the commands we have discussed have been per-
Program formed in DIRECT mode. That is, the command was executed as
soon as the RETURN key was pressed. However, most BASIC com-
mands and functions can also be used in programs.

What a Programls

A program is just a set of numbered BASIC instructions that tells your
computer what you want it to do. These numbered instructions are
referred to as statements or lines.

Line Numbers

The lines of a program are numbered so that the computer knows in
what order you want them executed or RUN. The computer executes
the program lines in numerical order, unless the program instructs
otherwise. You can use any whole number from 0 to 63999 for a line
number. Never use a comma in a line number.

Many of the commands you have learned to use in DIRECT mode
can be easily made into program statements. For example, type this:

10 ? “COMMODORE 128” SREFHRRE

31 USING C128 MODE—Getting Started in BASIC

32

Notice the computer did not display COMMODORE 128 when you
pressed RETURN, as it would do if you were using the PRINT com-
mand in DIRECT mode. This is because the number, 10, that comes
before the PRINT symbol (?) tells the computer that you are entering
a BASIC program. The computer just stores the numbered statement
and waits for the next input from you.

Now type RUN and press RETURN. The computer prints the words
COMMODORE 128. This is not the same as using the PRINT com-
mand in DIRECT mode. What has happened here is that YOU HAVE
JUST WRITTEN AND RUN YOUR FIRST BASIC PROGRAM as small
as it may seem. The program is still in the computer’s memory, so
you can run it as many times as you want.

Viewing Your Program—The LIST Command

Your one-line program is still in the C128 memory. Now clear the
screen by pressing the SHIFT and CLR/HOME keys together. The
screen is empty. At this point you may want to see the program list-
ing to be sure it is still in memory. The BASIC language is equipped
with a command that lets you do just this—the LIST command.

Type LIST and press RETURN. The C128 responds with:
10 PRINT “COMMODORE 128
READY.

Anytime you want to see all the lines in your program, type LIST. This
is especially helpful if you make changes, because you can check to
be sure the new lines have been registered in the computer’s mem-
ory. In response to the command, the computer displays the
changed version of the line, lines, or program. Here are the rules for
using the LIST command. (Insert the line number you wish to see in
place of the N.)

—To see line N only, type LIST N and press RETURN.

—To see from line N to the end of the program, type LIST N- and
press RETURN.

—To see the lines from the beginning of the program to line N,
type LIST-N and press RETURN.

—To see from line N1 to line N2 inclusive, type LIST N1-N2 and
press RETURN.

USING C128 MODE —Getting Started in BASIC
\

CcC Ccccoctcib ot b bbbt bt ocnboE

)

]

)

)

B R R B

]

0 I

]

)

]

)

_J

33

A Simple Loop—The GOTO Statement

The line numbers in a program have another purpose besides put-
ting your commands in the proper order for the computer. They
serve as a reference for the computer in case you want to execute
the command in that line repetitively in your program. You use the
GOTO command to tell the computer to go to a line and execute the
command(s) in it. Now type:

20 GOTO 10

When you press RETURN after typing line 20, you add it to your pro-
gram in the computer’s memory.

Notice that we numbered the first line 10 and the second line 20. It is
very helpful to number program lines in increments of 10 (that is, 10,
20, 30, 40, etc.) in case you want to go back and add lines in
between later on. You can number such added lines by fives (15, 25
...)ones(1,2...)—infact, by any whole number—to keep the lines
in the proper order. (See the RENUMBER and AUTO commands in
the BASIC Encyclopedia.)

Type RUN and press RETURN, and watch the words COMMODORE
128 move down your screen. To stop the message from printing on
the screen, press the RUN/STOP key on the left side of your
keyboard.

The two lines that you have typed make up a simple program that
repeats itself endlessly, because the second line keeps referring the
computer back to the first line. The program will continue indefinitely
unless you stop it or turn off the computer.

Now type LIST EREFHREE. The screen should say:
10 PRINT “COMMODORE 128”
20 GOTO 10
READY.

Your program is still in memory. You can RUN it again if you want to.
This is an important difference between PROGRAM mode and
DIRECT mode. Once a command is executed in DIRECT mode, it is
no longer in the computer’s memory. Notice that even though you
used the ? symbol for the PRINT statement, your computer has con-
verted it into the full command. This happens when you LIST any
command you have abbreviated in a program.

USING C128 MODE—Getting Started in BASIC

Clearing the Computer’s Memory—The NEW Command

Anytime you want to start all over again or erase a BASIC program in
the computer’s memory, just type NEW and press RETURN. This
command clears out the computer’s BASIC memory, the area where
programs are stored.

Using Color in a Program

To select color within a program, you must include the color selec-
tion information within a PRINT statement. For example, clear your
computer’s memory by typing NEW and pressing RETURN, then
type the following, being sure to leave space between each letter:

10 PRINT“SPECTRUM”

Now type line 10 again but this time hold down the CTRL key and
press the 1 key directly after entering the first set of quote marks.
Release the CTRL key and type the *“S™. Now hold down the CTRL
again and press the 2 key. Release the CTRL key and type the “P”.
Next hold down the CTRL again and press the 3 key. Continue this
process until you have typed all the letters in the word SPECTRUM
and selected a color between each letter. Press the SHIFT and the 2
keys to type a set of closing quotation marks and press the RETURN
key. Now type RUN and press the RETURN key. The computer dis-
plays the word SPECTRUM with each letter in a different color. Now
type LIST and press the RETURN key. Notice the graphic characters
that appear in the PRINT statement in line 10. These characters tell
the computer what color you want for each printed letter. Note that
these graphic characters do not appear when the Commodore 128
PRINTSs the word SPECTRUM in different colors.

The color selection characters, known as control characters, in the
PRINT statement in line 10 tell the Commodore 128 to change col-
ors. The computer then prints the characters that follow in the new
color until another color selection character is encountered. While
characters enclosed in quotation marks are usually PRINTed exactly
as they appear, control characters are only displayed within a pro-
gram LISTing.

USING C128 MODE—Getting Started in BASIC

(N B

L

L C

L C C C £ C C

(—

C . &£ .

)

7]

]

)

_1

)

31]

[R B B

)

)

]

-~

J

Editing Your The following paragraphs will help you to type in your programs and
Program make corrections and additions to them.

Erasing a Line from a Program

Use the LIST command to display the program you typed previously.
Now type 10 and press RETURN. You just erased line 10 from the
program. LIST your program and see for yourself. If the old line 10 is
still on the screen, move the cursor up so that it is blinking anywhere
on that line. Now, if you press RETURN, line 10 is back in the comput-
er's memory.

Duplicating a Line

Hold down the SHIF T key and press the CLR/HOME key on the upper
right side of your keyboard. This will clear your screen. Now LIST
your program. Move the cursor up again so that it is blinking on the
“0" in the line numbered 10. Now type a 5 and press RETURN. You
have just duplicated (i.e., copied) line 10. The duplicate line is num-
bered 15. Type LIST and press RETURN to see the program with the
duplicated lines.

Replacing a Line

You can replace a whole line by typing in the old line number fol-
lowed by the text of the new line, then pressing RETURN. The old
version of the line will be erased from memory and replaced by the
new line as soon as you press RETURN.

Changing a Line

Suppose you want to add something in the middle of a line. Simply
move the cursor to the character or space that immediately follows
the spot where you want to insert the new material. Then hold down
the SHIFT key and the INST/DEL key together until there is enough
space to insert your new characters.

Try this example. Clear the computer’s memory by typing NEW and
pressing RETURN. Then type:

10 ? “MY 128 IS GREAT” ZREEHRIE

35 USING C128 MODE—Getting Started in BASIC

Mathematical
Operations

36

Let’s say that you want to add the word COMMODORE in front of the
number 128. Just move the cursor so that it is blinking on the “1" in
128. Hold down the SHIFT and INST/DEL keys until you have enough
room to type in COMMODORE (don't forget to leave enough room for
a space after the E). Then type in the word COMMODORE.

If you want to delete something in a line (including extra blank
spaces), move the cursor to the character following the material you
want to remove. Then hold down the INST/DEL key by itself. The cur-
sor will move to the left, and characters or spaces will be deleted as
long as you hold down the INST/DEL key.

You can use the PRINT command to perform calculations like addi-
tion, subtraction, multiplication, division and exponentiation. You
type the calculation after the PRINT command.

Addition and Subtraction

Try typing these examples:
PRINT 6+ 4
PRINT 50 — 20 SREFGRIE
PRINT 10 + 15— 5 SREFBRIE
PRINT 75-100
PRINT 30 + 40,55 — 25 SREFUREE
PRINT 30 + 40;55 — 25 SREFRIN=

Notice that the fourth calculation (75-100) resulted in a negative

number. Also notice that you can tell the computer to make more
than one calculation with a single PRINT command. You can use
either a comma or a semicolon in your command, depending on

whether or not you want spaces separating your results.

Multiplication and Division

Find the asterisk key (*) on the right side of your keyboard. This is the
symbol that the Commodore 128 uses for multiplication. The slash (/)
key, located next to the right SHIF T key, is used for division.

USING C128 MODE—Getting Started in BASIC

L C C C C & C =

.

C C C & &I

C

9

-]

]

7

)

0

-

)

i I

]

)

)

|

]

~

_J

37

Try these examples:
PRINT 5*3 SREFHRRE
PRINT 100/2 EREFURN=

Exponentiation

Exponentiation means to raise a number to a power. The up arrow
key (1), located next to the asterisk on your keyboard, is used for
exponentiation. If you want to raise a number to a power, use the
PRINT command, followed by the number, the up arrow and the
power, in that order. For example, to find out what 3 squared is, type:

PRINT 312 ZREFURRE

Order of Operations

You have seen how you can combine addition and subtraction in the
same PRINT command. If you combine multiplication or division with
addition or subtraction operations, you may not get the result you
expect. For example, type:

PRINT 4 + 6/2 SREEIRN=

If you assumed you were dividing 10 by 2, you were probably sur-
prised when the computer responded with the answer 7. The reason
you got this answer is that multiplication and division operations are
performed by the computer before addition or subtraction. Multipli-
cation and division are said to take precedence over addition and
subtraction. It doesn’t matter in what order you type the operation. In
computing, the order in which mathematical operations are per-
formed is known as the order of operations.

Exponentiation, or raising a number to a power, takes precedence
over the other four mathematical operations. For example, if you

type:
PRINT 16/412

the Commodore 128 responds with a 1 because it squares the 4
before it divides 16.

USING C128 MODE—Getting Started in BASIC

Constants,
Variables and
Strings

Using Parentheses to Define the Order of Operations

You can tell the Commodore 128 which mathematical operation you
want performed first by enclosing that operation in parentheses in
the PRINT command. For instance, in the first example above, if you
want to tell the computer to add before dividing, type:

PRINT (4 + 6)/2 SRETHRN=
This gives you the desired answer, 5.
If you want the computer to divide before squaring in the second
example, type:

PRINT (16/4)t2 =REFHRN=
Now you have the expected answer, 16.
If you don’t use parentheses, the computer performs the calcula-
tions according to the above rules. When all operations in a calcula-

tion have equal precedence, they are performed from left to right.
For example, type:

PRINT 4*5/10*6

Since the operations in this example are performed in order from left
to right, the resultis 12 (4*5=20...20/10=2...2*6=12). If you
want to divide 4*5 by 10*6 you type:

PRINT (4*5)/(10*6) SREEIREE
The answer is now .333333333.

Constants

Constants are numeric values that are permanent: that is, they do
not change in value over the course of an equation or program. For
example, the number 3 is a constant, as is any number. This state-
ment illustrates how your computer uses constants:

10 PRINT 3

No matter how many times you execute this line, the answer will
always be 3.

USING C128 MODE—Getting Started in BASIC

EZ

I R G O

C C C I

I S

(-

.

200)

)

-l

B

1

N

]

]

|
\—

]

=)

—_

\

]

J

Variables

Variables are values that can change over the course of an equation
or program statement. There is a part of the computer’s BASIC mem-
ory that is reserved for the characters (numbers, letters and sym-
bols) you use in your program. Think of this memory as a number of
storage compartments in the computer that store information about
your program; this part of the computer’s memory is referred to as
variable storage. Type in this program:

10 X=5
20 ?2X

Now RUN the program and see how the computer prints a 5 on your
screen. You told the computer in line 10 that the letter X will repre-
sent the number 5 for the remainder of the program. The letter Xis
called a variable, because the value of X varies depending on the
value to the right of the equals sign. We call this an assignment state-
ment because now there is a storage compartment labeled X in the
computer’s memory, and the number 5 has been assigned to it. The
= sign tells the computer that whatever comes to the right of it will
be assigned to a storage compartment (a memory location) labeled
with the letter X to the left of the equals sign.

The variable name on the left side of the = sign can be either one or
two letters, or one letter and one number (the letter MUST come
first). The names can be longer, but the computer only looks at the
first two characters. This means the names PA and PART would refer
to the same storage compartment. Also, the words used for BASIC
commands (LOAD, RUN, LIST, etc.) or functions (INT, ABS, SQR, etc.)
cannot be used as names in your programs. Refer to the BASIC
Encyclopedia in Chapter 5 if you have any questions about whether a
variable name is a BASIC keyword. Notice that the = in assignment
statements is not the same as the mathematical symbol meaning
“equals”, but rather means allocate a variable (storage compart-
ment) and assign a value to it.

In the sample program you just typed, the value of the variable X
remains at 5 throughout. You can put calculations to the right of the
= sign to assign the result to a variable. You can mix text with con-
stants in a PRINT statement to identify them. Type NEW and press
RETURN to clear the Commodore 128's memory; then try this
program:

10 A=3*100

20 B=3%200

30 ?7“A IS EQUAL TO ”A

40 7B IS EQUAL TO "B

USING C128 MODE—Getting Started in BASIC

40

Now there are two variables, labeled A and B, in the computer’s
memory, containing the numbers 300 and 600 respectively. If, later in
the program, you want to change the value of a variable, just put
another assignment statement in the program. Add these lines to the
program above and RUN it again.

50 A=900*30/10
60 B=95+32+128
70 GOTO 30

You’ll have to press the STOP key to halt the program.

Now LIST the program and trace the steps taken by the computer.
First, it assigns the value to the right of the = signiin line 10 to the
letter A. It does the same thing in line 20 for the letter B. Next, it
prints the messages in lines 30 and 40 that give you the values of A
and B. Finally, it assigns new values to A and B in lines 50 and 60.
The old values are replaced and cannot be recovered unless the
computer executes lines 10 and 20 again. When the computer is
sent to line 30 to begin printing the values of A and B again, it prints
the new values calculated in lines 50 and 60. Lines 50 and 60 reas-
sign the same values to A and B and line 70 sends the computer
back to line 30. This is called an endless loop, because lines 30
through 70 are executed over and over again until you press the
RUN/STOP key to halt the program. Other methods of looping are
discussed later in this and the following two sections.

Strings

A string is a character or group of characters enclosed in quotes.
These characters are stored in the computer’s memory as a variable
in much the same way numeric variables are stored. You can also
use variable names to represent strings, just as you use them to rep-
resent numbers. When you put the dollar sign ($) after the string vari-
able name, it tells the computer that the name is for a string variable,
and not a numeric variable.

Type NEW and press RETURN to clear your computer’s memory,
then type in the program below:

10 A$ =“COMMODORE ”

20 X=128

30 B$ =“ COMPUTER”

40Y=1

50 ? “THE ”A$;X;B$“ IS NUMBER Y

USING C128 MODE—Getting Started in BASIC

C L

L C ¢ & [

C C C C C

(=

{

C

_}

1

1

-J

-]

N I R N B

]

I R

)

]

)

Sample Program

Storing and
Reusing Your
Programs

41

See how you can print numeric and string variables in the same
statement? Try experimenting with variables in your own short
programs.

You can print the value of a variable in DIRECT mode, after the pro-
gram has been RUN. Type ?A$;B$;X;Y after running the program
above and see that those four variable values are still in the comput-
er's memory.

If you want to clear this area of BASIC memory but still leave your
program intact, use the CLR command. Just type CLR (RETURN)
and all constants, variables and strings are erased. But when you
type LIST, you can see the program is still in memory. The NEW com-
mand discussed earlier erases both the program and the variables.

Here is a sample program incorporating many of the techniques and
commands discussed in this section.

This program calculates the average of three numbers (X, Y and Z)
and prints their values and their averages on the screen. You can
edit the program and change the assignments in lines 10 through 30
to change the values of the variables. Line 40 adds the variables and
divides by 3 1o get the average. Note the use of parentheses to tell
the computer to add the numbers before it divides.

TIP: Whenever you are using more than one set of parentheses
in a statement, it's a good idea to count the number of left
parentheses and right parentheses to make sure they are
equal.

10 X=46

20Y=72

30Z=114

40A=X+Y+2)I3

60 ?“THE AVERAGE OF”X;Y;“AND “Z;“IS”A;
90 END

Once you have created your program, you will probably want to store
it permanently so you will be able to recall and use it at some later
time. To do this, you'll need either a Commodore disk drive or the
Commodore 1530 Datassette.

USING C128 MODE—Getting Started in BASIC

42

You will learn several commands that let you communicate between
your computer and your disk drive or Datassette. These commands
are constructed with the use of a command word followed by several
parameters. Parameters are numbers, letters, words or symbols in a
command that supply specific information to the computer, such as
a filename, or a numeric variable that specifies a device number.
Each command may have several parameters. For example, the
parameters of the disk format command include a name for the disk
and an identifying number or code, plus several other parameters.
Parameters are used in almost every BASIC command; some are
variables which change and others are constants. These are the
parameters that supply disk information to the C128 and disk drive:

Disk Handling Parameters

disk name— arbitrary 16 character identifying name
you supply.

file name— arbitrary 16 character identifying name
you supply.

i.d— arbitrary two-character identifier you
supply

drive number— must use O for a single disk drive, 0 or 1
in a dual drive.

device number— a preassigned number for a peripheral
device. For example, the device num-
ber for a Commodore disk drive is
usually 8.

Formatting a Disk—The HEADER Command

To store programs on a new (or blank) disk, you must first prepare the
disk to receive data. This is called “formatting” the disk. NOTE:
Make sure you turn on the disk drive before inserting any disk.

The formatting process divides the disk into sections called tracks
and sectors. A table of contents, called a directory, is created. Each
time you store a program on disk, the name you assign to that pro-
gram will be added to the directory.

The Commodore 128 has two kinds of formatting commands. One
can be used only in C128 mode, and one can be used in both C64
and C128 mode. The following paragraphs describe C128 mode
format commands here. See Chapter Ill on C64 mode for more infor-
mation about C64 programming and disk handling.

USING C128 MODE—Getting Started in BASIC

I B

C =

(R U R O

C C C Cc b b =

)

]

]

|

n

)

-—

]

N B B

]

SN S B

]

-}

0

)

|

The command that formats a diskette is called the HEADER com-
mand. It has a long form and a short form. To format a blank (new)
disk, you MUST use the long form as follows:

HEADER “diskname”, li.d.[,Ddrive number] [,JON]JU device number]

After the word HEADER, you type a name of your choice for the disk,
within quotes. You can choose any name with up to 16 characters.
You should choose disk names that help you identify what will be
stored on the disk.

Follow the diskname with a comma and the letter “I"'. Now a two
character i.d., followed by a comma. Your disk i.d. does not have to
be numbers; you can also choose letters. You may want to develop a
consecutive coding system for your disks, such as A1, A2, B1, B2.

If you have one single disk drive, just press RETURN at this point
since the Commodore 128 automatically assumes the drive number
is 0 and the device number is 8. You can specify these parameters if
you have more than one drive or a dual drive.

The next parameter in the command selects the drive number. Press
the “D” key and if you have a single disk drive, press the zero key
followed by a comma. Dual drives are labeled 0 and 1. The device
number parameter starts with the letter U so press the “U" key fol-
lowed by the preassigned device number for a Commodore disk
drive which is 8.

Here is an example of the long form of the HEADER command:
HEADER“RECS”,IA1,D0,U8 =REFURN=

This command formats the diskette, calling the directory RECS, the

i.d. number A1, on drive O, unit 8.

The default values for disk drive (0) and device number (8) will be
used if none are supplied. This is an acceptable long form of the
HEADER command:

HEADER “MYDISK?”, 123 =REFURN=

The HEADER command can also be used to erase all data from a
used disk, so the disk can be reused as if it were a brand new disk.
Be careful that you don’t erase a disk that contains data you may
want someday.

USING C128 MODE—Getting Started in BASIC

44

The quick form of the HEADER command can be used if the disk
was previously formatted with the long form of the HEADER
command.

The quick form clears the directory, gives it a new name, but keeps
the same i.d. as was previously used. Here is what the quick
HEADER might look like:

HEADER “NEWPROGS”

SAVEing on Disk

In C128 mode, you can store your program on disk by using either of
the following commands:

DSAVE“PROGRAM NAME” =RETURN
SAVE“PROGRAM NAME”,8 =REFURN=

Either command can be used. Remember that the character
sequence “DSAVE” can be displayed on the screen by pressing the
function key labeled F5, or you can type the sequence yourself. The
program name can be any name you choose, up to 16 characters
long. Be sure to enclose the program name in quotes. You cannot
put two programs with the same name on the same disk. If you do,
the second program will not be accepted; the disk will retain the first
one. In the second example, the 8 indicates that you are saving your
program on device number 8. You do not need the 8 with DSAVE,
because the computer automatically assumes you are using device
number 8.

SAVEing on Cassette

If you are using a Datassette to store your program, insert a blank
tape in the recorder, rewind the tape if necessary, and type:

SAVE “PROGRAM NAME” =H

You must type the word SAVE, followed by the program name. The
program name can be any name you choose up to 16 characters.

NOTE: The screen will go blank while the program is being
SAVEd, but returns to normal when the process is completed.

Unlike disk, you can save two programs to tape under the same
name. However when you load it back into the computer, the first
program sequentially on the tape will be loaded, so avoid giving pro-
grams the same name.

USING C128 MODE—Getting Started in BASIC

S

-

U I N O

C L =

C C £

1

]

)

)

-]

S B

]

-

]

;

)

|

]

Once a program has been SAVEd, you can LOAD it back into the
computer’s memory and RUN it anytime you wish.

LOADing from Disk

Loading a program simply copies the contents of the program from
the disk into the computer’s memory. If a BASIC program was
already in memory before you issued the LOAD command, it is
erased.

To load your BASIC program from a disk, use either of the following
commands in C128 mode:

DLOAD“PROGRAM NAME” =RETURNE
LOAD“PROGRAM NAME”,8 =REFURK

Remember, in C128 mode you can use the F2 function key (which
you activate by pressing SHIFT and F1) to display the sequence
DLOAD*, or you can type the letters yourself. In the second exam-
ple, the 8 indicates to the computer that you are loading from device
number 8. Again, like DSAVE, DLOAD assumes the disk-drive device
number is 8. Be careful to type the program name exactly as you
typed it when SAVEing the program, or the computer will respond
“FILE NOT FOUND.”

Once the program is loaded, type RUN to execute. The Commodore
128 has a special form of the RUN command used to LOAD and
RUN the program in C128 mode with one command. Type RUN, fol-
lowed by the name of the program (also known as the filename) in
quotes:

RUN“MYPROG”

LOADing from Cassette

To LOAD your program from cassette tape, type:
LOAD “PROGRAM NAME” =H

If you do not know the name of the program, you can type:

LOAD SREFURR=

and the next program on the tape will be found. While the Datassette
is searching for the program the screen is blank. When the program
is found, the screen displays:

FOUND PROGRAM NAME

USING C128 MODE—Getting Started in BASIC

46

To actually load the program, you then press the Commodore key.

You can use the counter on the Datassette to identify the starting
position of the programs. Then, when you want to retrieve a pro-
gram, simply wind the tape forward from 000 to the program’s start
location, and type:

LOAD

In this case you don’t have to specify the PROGRAM NAME; your
program will load automatically because it is the next program on
the tape.

Other Disk-Related Commands

Verifying a To verify that a program has been correctly
Program saved, use the following command in C128
mode:

DVERIFY“PROGRAM NAME” =REFURNE

If the program in the computer is identical to the
one on the disk, the screen display will respond
with the letters “OK.”

The VERIFY command also works for tape pro-
grams. You type:
VERIFY“PROGRAM NAME”

You do not enter the comma and a device
number.

Displaying Your In C128 mode, you can see a list or directory of
Disk Directory the programs on your disk by using the following
command:

DIRECTORY =REFURN

This lists the contents of the directory. The easy
way is to press the F3 function key. When you
press F3, the C128 displays the word “DIREC-
TORY” and performs the command.

USING C128 MODE—Getting Started in BASIC

. L

C CCCCc - e bbb .

s

C C {

]

0

-l

|

)

]

i [B

]

N

-}

)

1}

]

)

47

For further information on SAVEing and LOAD-
ing your programs, or other disk related informa-
tion, refer to your Datassette or disk drive man-
ual. Also consult the LOAD and SAVE command
descriptions in the Chapter V, BASIC 7.0
Encyclopedia.

khkkkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkkkkhkkkkkkhhkhkkhkhkhkhkkhkkhkkkkkkk

You now know something about the BASIC language and some ele-
mentary programming concepts. The next section builds on these
concepts, introducing additional commands, functions and tech-
niques that you can use to program in BASIC.

USING C128 MODE—Getting Started in BASIC

J 3 3J 33323 J 32 03 00 3 33 33 23

]

1

}

'

1

)

|

1

. —

\

7 3 3 1) 1 1

)

i
\

)

|

1

\

]

l

|

)

SECTION 4 COMPUTER DECISIONS—The IF-THEN Statement
Basic Using the Colon
Programming

LOOPS—The FOR-NEXT Command
Empty Loops—Inserting Delays in a Program
The STEP Command

INPUTTING DATA

The INPUT Command
Assigning a Value to a Variable
Prompt Messages

The GET Command

Sample Program

The READ-DATA Command

The RESTORE Command

Using Arrays
Subscripted Variables
Dimensioning Arrays
Sample Program

PROGRAMMING SUBROUTINES
The GOSUB-RETURN Command
The ON GOTO/GOSUB Command

USING MEMORY LOCATION
Using PEEK and POKE for RAM Access
Using PEEK
Using POKE

BASIC FUNCTIONS
What Is a Function?
The INTEGER Function (INT)
Generating Random Numbers—The RND Function
The ASC and CHR$ Commands
Converting Strings and Numbers
The VAL Function
The STR$ Function
The Square Root Function (SQR)
The Absolute Value Function (ABS)

THE STOP AND CONT (CONTINUE) COMMANDS

49 USING C128 MODE—Advanced BASIC Programming

33 3dJ 3Jd 3333330203 333033334

]

|

1

i
[

)

)~

1

1

1 1

0

1

<

N

B

-]

)

Computer
Decisions—
The IF-THEN
Statement

This section describes how to use a number of powerful BASIC com-
mands, functions and programming techniques that can be used in
both C128 and C64 modes.

These commands and functions allow you to program repeated
actions through looping and nesting techniques; handle tables of
values; branch or jump to another section of a program, and return
from that section; assign varying values to a quantity—and more.
Examples and sample programs show just how these BASIC con-
cepts work and interact.

Now that you know how to change the values of variables, the next
step is to have the computer make decisions based on these
updated values. You do this with the IF-THEN statement. You tell the
computer to execute a command only IF a conditionis true (e.g., IF
X =5). The command you want the computer to execute when the
condition is true comes after the word THEN in the statement. Clear
your computer’'s memory by typing NEW and pressing RETURN,
then type this program:

10J=0

20 ? J,“COMMODORE 128”
30J=J+1

40 IF J¢)5 THEN 20

60 END

You no longer have to press the STOP key to break out of a looping
program. The IF-THEN statement tells the computer to keep printing
“COMMODORE 128" and incrementing (increasing) J untilJ=5is
true. When an IF condition is false, the computer jumps to the next
line of the program, no matter what comes after the word THEN.

Notice the END command in line 60. It is good practice to put an

END statement as the last line of your program. It tells the computer
where 1o stop executing statements.

USING C128 MODE—Advanced BASIC Programming

Below is a list of comparison symbols that may be used in the IF
statement and their meanings:

SYMBOL MEANING

EQUALS

GREATER THAN

LESS THAN

NOT EQUAL TO

GREATER THAN OR EQUAL TO
LESS THAN OR EQUAL TO

You should be aware that these comparisions work in expected

NN AN AN

nn>

mathematical ways with numbers. There are different ways to deter-

mine if one string is greater than, less than, or equal to another. You
can learn about these “string handling” functions by referring to
Chapter V, BASIC 7.0 Encyclopedia.

Section 5 describes some powerful extensions of the IF-THEN con-
cept, consisting of BASIC 7.0 commands like BEGIN, BEND, and
ELSE.

Using the Colon

A very useful tool in programming is the colon (;). You can use the
colon to separate two (or more) BASIC commands on the same line.

Statements after a colon on a line will be executed in order, from left
to right. In one program line you can put as many statements as you
can fit into 160 characters, including the line number. This is equiva-
lent to four full screen lines in 40-column format, and two full lines in
80-column format. This provides an excellent opportunity to take
advantage of the THEN part of the IF-THEN statment. You can tell
the computer to execute several commands when your IF condition
is true. Clear the computer’s memory, type in the following program
and RUN it.

10N=0

15 N=N+1

20 IF N¢5 THEN PRINT N;“LESS THAN 5”:GOTO 15
30 ? N; “GREATER THAN OR EQUAL TO 5”

40 END

USING C128 MODE—Advanced BASIC Programming

C C C &« CcCCC &kl

)

1

1

]

|

]

-

1

1
!

1 1

a0

1

I_

2

1

-l

|

]

[

)

Now change line 10 to read N = 20, and RUN the program again.
Notice you can tell the computer to execute more than one state-
ment when N is less than 5. You can put any statement(s) you want
after the THEN command. Remember that the GOTO 15 will not be
reached until N¢5 is true. Any command that should be followed
whether or not the specified condition is met should appear on a
separate line.

Loops—The In the first RUN of the program used in the previous example, we
FOR-NEXT made the computer print the variable N five times by telling it to
Command increase or “increment’ the variable N by units of one, until the

value of N equalled five; then we ended the program. There is a sim-
pler way to do this in BASIC. We can use a FOR-NEXT loop, like this:

10 FORN=1TO 5

20 ?N; “IS LESS THAN OR EQUAL TO 5”
30 NEXT N

40 END

Type and RUN this program and compare the result with the result of
the IF-THEN program—they are similar. In fact, the steps taken by
the computer are almost identical for the two programs. The FOR-
NEXT loop is a very powerful programming tool. You can specify the
number of times the computer should repeat an action. Let’s trace
the computer’s steps for the program above.

First, the computer assigns a value of 1 to the variable N. The 5 in
the FOR statement in line 10 tells the computer to execute all state-
ments between the FOR statement and the NEXT statement, until N
is equal to 5. In this case there is just one statement—the PRINT
statement.

This is how the computer interprets the inner workings of a FOR . . .
NEXT loop—it operates in much the same way as the IF. .. THEN
example on the previous page. First, the C128 assigns a value of 1 to
the variable N. It then executes all instructions between the FOR and
NEXT keywords. When the NEXT statement is encountered, it tells
the computer to increment the counter variable N (in this case by 1),
compare N to 5 and continue with another cycle through the FOR

... NEXT loop if N =5 is false. The increment defaults to 1 if no other
increment is specified in the FOR statement. After five passes
through the loop, and once N =5 is true, the computer processes
the statement which immediately follows the NEXT statement and
resumes with the rest of the program. Since the computer does not
compare the value of N to the start value of the loop variable until
the NEXT statement is encountered, every loop is executed at least
once.

53 USING C128 MODE—Advanced BASIC Programming

54

Empty Loops—Inserting Delays in a Program

Before you proceed any further, it will be helpful to understand about
loops and some ways they are used to get the computer to do what
you want. You can use a loop to slow down the computer (by now
you have witnessed the speed with which the computer executes
commands). See if you can predict what this program will do before
you runit.

10 A$ = “COMMODORE C128”
20 FORJ=1TO 20

30 PRINT

40 FOR K=1 TO 1500

50 NEXT K

60 PRINT A$

70 NEXT J

80 END

Did you get what you expected? The loop contained in lines 40 and
50 tells the computer to count to 1500 before executing the remain-
der of the program. This is known as a delay loop and is often useful.
Because it is inside the main loop of the program, it is called a
nested loop. Nested loops can be very useful when you want the
computer to perform a number of tasks in a given order, and repeat
the entire sequence of commands a certain number of times.

Section 5 describes an advanced way to insert delays through use
of the new BASIC 7.0 command, SLEEP.

The STEP Command

You can tell the computer to increment your counter by units (e.g. 10,
0.5 or any other number). You do this by using a STEP command with
the FOR statement. For example, if you want the computer to count
by tens to 100, type:

10 FOR X=0 TO 100 STEP 10
20?X
30 NEXT

Notice that you do not need the X in the NEXT statement if you are
only executing one loop at a time—NEXT refers to the most recent
FOR statement. Also, note that you do not have to increase (or

“increment”’) your counter—you can decrease (or “‘decrement”) it
as well. For example, change line 10 in the program above to read:

10 FOR X=100 TO 0 STEP-10

USING C128 MODE—Advanced BASIC Programming

(U SN I AN A AU A AN A SR O B O R

R I

2 B I

]

)

[}
)

10

I

I

1

]

[

B

Inputting Data

The computer will count backward from 100 to 0, in units of 10.

If you don’t use a STEP command with a FOR statement, the com-
puter will automatically increment the counter by units of 1.

The parts of the FOR-NEXT command in line 10 are:
FOR — word used to indicate beginning of loop
X — counter variable; any number variable can be used
1 — starting value; may be any number, positive or nega-
tive
TO — connects starting value to ending value
100 — ending value; may be any number, positive or negative
STEP — indicates an increment other than 1 will be used
— 10 — increment; can be any number positive or negative

The INPUT Command
Assigning a Clear the computer’s memory by typing NEW
Valueto a and pressing RETURN, and then type and RUN
Variable this program.

10 K=10

20 FORI1=1TO K
30 ? “COMMODORE”
40 NEXT

In this program you can change the value of Kin
line 10 to make the computer execute the loop
as many times as you want it to. You have to do
this when you are typing the program, before it
is RUN. What if you wanted to be able to tell the
computer how many times to execute the loop
at the time the program is RUN?

In other words, you want to be able to change
the value of the variable K each time you run the
program, without having to change the program
itself. We call this the ability to interact with the
computer. You can have the computer ask you
how many times you want it to execute the loop.
To do this, use the INPUT command. For exam-
ple, replace line 10 in the program with:

10 INPUT K

USING C128 MODE—Advanced BASIC Programming

Prompt
Messages

Now when you RUN the program, the computer
responds with a ? to let you know it is waiting for
you to enter what you want the value of K to be.
Type 15 and press RETURN. The computer will
execute the loop 15 times.

You can also make the computer print a mes-
sage in an INPUT statement to tell you what
variable it’s waiting for. Replace line 10 with:

10 INPUT“PLEASE ENTER A VALUE FOR
K™K

Remember to enclose the message to be
printed in quotes. This message is called a
prompt. Also, notice that you must use a semi-
colon between the ending quote marks of the
prompt and the K. You may put any message
you want in the prompt, but the INPUT state-
ment must fit within 160 characters, just as any
BASIC command must.

The INPUT statement can also be used with
string variables. The same rules that apply for
numeric variables apply for strings. Don’t forget
to use the $ to identify all your string variables.
Clear your computer’s memory by typing

NEW and pressing RETURN. Then type in this
program.

10 INPUT“WHAT IS YOUR NAME”;N$
20 ? “HELLO ”,N$

Now RUN the program. When the computer
prompts “WHAT IS YOUR NAME?”, type your
name. Don't forget to press RETURN after you
type your name.

Once the value of a variable (numeric or string)
has been inserted into a program through the
use of INPUT, you can refer to it by its variable
name any time in the program. Type ?N$
(RETURN)—your computer remembers your
name.

USING C128 MODE—Advanced BASIC Programming

U I I R

CCC

R I R I

C C C E

(::\

J N R B

]

l

]

I

I B

[B B

1

1

)

I B

57

The GET Command

There are other BASIC commands you can use in your program to
interact with the computer. One is the GET command which is simi-
lar to INPUT. To see how the GET command works, clear the comput-
er's memory and type this program.

10 GET A$

20 IF A$=“" THEN GOTO 10
30 ? AS

40 END

When you type RUN and press RETURN, nothing seems to happen.
The reason is that the computer is waiting for you to press a key. The
GET command, in effect, tells the computer to check the keyboard
and find out what character or key is being pressed. The computer is
satisfied with a null character (that is, no character). This is the rea-
son for line 20. This line tells the computer that if it gets a null charac-
ter, indicated by the two double quotes with no space between them,
it should go back to line 10 and try to GET another character. This
loop continues until you press a key. The computer then assigns the
character on that key to A$.

The GET command is very important because you can use it, in
effect, to program a key on your keyboard. The example below prints
amessage on the screen when Q is pressed. Type the program and
RUN it. Then press Q and see what happens.

10 ?“PRESS Q TO VIEW MESSAGE”

20 GET A$

30 IF A$ =" THEN GOTO 20

40 IF A$ =“Q” THEN GOTO 60

50 GOTO 20

60 FOR1=1TO 25

70 ? “NOW | CAN USE THE GET STATEMENT”
80 NEXT

90 END

Notice that if you try to press any key other than the Q, the computer
will not display the message, but will go back to line 20 to GET
another character.

Section 5 describes how to use the DO/LOOP and GETKEY state-

ments, which are new and more powerful BASIC 7.0 commands that
can be used to perform a similar task.

USING C128 MODE~-Advanced BASIC Programming

Sample Program

Now that you know how to use the FOR-NEXT loop and the INPUT
command clear the computer’s memory by typing NEW
i e, then type the following program:

10T=0
20 INPUT“HOW MANY NUMBERS”;N

30 FORJ=1TON

40 INPUT“PLEASE ENTER A NUMBER ;X
50T=T+X

60 NEXT

70 A=TIN

80 PRINT

90 ? “YOU HAVE”;N“NUMBERS TOTALING”;T
100 ? “AVERAGE =";A

110 END

This program lets you tell the computer how many numbers you want
to average. You can change the numbers every time you run the
program without having to change the program itself.

Let’s see what the program does, line by line:

Line 10 assigns a value of 0 to T (which will be the running total
of the numbers).

Line 20 lets you determine how many numbers to average,
stored in variable N.

Line 30 tells the computer to execute a loop N times.
Line 40 lets you type in the actual numbers to be averaged.
Line 50 adds each number to the running total.

Line 60 tells the computer to go back to line 30, increment the
counter (J) and start the loop again.

Line 70 divides the total by the amount of numbers you typed
(N) after the loop has been executed N times.

Line 80 prints a blank line on the screen.

Line 90 prints the message that gives you the amount of num-
bers and their total.

Line 100 prints the average of the numbers.
Line 110 tells the computer that your program is finished.

58 USING C128 MODE—Advanced BASIC Programming

L ¢ C C C°C =

C C C C - Cc -

0

) I R B B

e

I

]

§

I D

]

a0 1 3 1 1

;

)

59

The READ-DATA Command

There is another powerful way to tell the computer what numbers or
characters to use in your program. You can use the READ statement
in your program to tell the computer to get a number or character(s)
from the DATA statement. For example, if you want the computer to
find the average of five numbers, you can use the READ and DATA
statements this way:

10T=0
20FORJ=1TO 5

30 READ X
40T=T+X

50 NEXT

60 A=T/5

70 ? “AVERAGE =";A
80 END

90 DATA 5,12,1,34,18

When you run the program, the computer will print AVERAGE = 14.
The program uses the variable T to keep a running total, and calcu-
lates the average in the same way as the INPUT average program.
The READ-DATA average program, however, finds the numbers to
average on a DATA line. Notice line 30, READ X. The READ com-
mand tells the computer there must be a DATA statement in the pro-
gram. It finds the DATA line, and uses the first number as the current
value for the variable X. The next time through the loop the second
number in the DATA statement will be used as the value for X, and
soon.

You can put any number you want in a DATA statement, but you can-
not put calculations in a DATA statement. The DATA statement can
be anywhere you want in the program—even after the END state-
ment. This is because the computer never really executes the DATA
statement; it just refers to it. Be sure to separate your data items
with commas, but be sure not to put a comma between the word
DATA and the first number in the list.

If you have more than one DATA statement in your program, the com-
puter will refer to the one that is closest after the READ statement
being executed at the time. The computer uses a pointer to remind
itself which piece of data it read last. After the computer reads the
first number in the DATA statement, the pointer points to the second
number. When the computer comes to the READ statement again, it
assigns the second number to the variable name in the READ
statement.

USING C128 MODE—Advanced BASIC Programming

60

You can use as many READ and DATA statements as you need in a
program, but make sure there is enough data in the DATA statements
for the computer to read. Remove one of the numbers from the DATA
statement in the last program and run it again. The computer
responds with 270UT OF DATA ERROR IN 30. What happened is that
when the computer executed the loop for the fifth time, there was no
data for it to read. That is what the error message is telling you. Put-
ting too much into the DATA statement doesn't create a problem
because the computer never realizes the extra data exists.

The RESTORE Command

You can use the RESTORE command in a program to reset the data
pointer to the first piece of data if you need to. Replace the END
statement (line 80) in the program above with:

80 RESTORE
and add:
85 GOTO 10

Now RUN the program. The program will run continuously using the
same DATA statement. NOTE: If the computer gives you an OUT OF
DATA ERROR message, it is because you forgot to replace the num-
ber that you removed previously from the DATA statement, so the
data is all used before the READ statement has been executed the
specified number of times.

You can use DATA statements to assign values to string variables.
The same rules apply as for numeric data. Clear the computer’s
memory and type the following program:

10 FORJ=1TO 3

20 READ A$

30 ? AS

40 NEXT

50 END

60 DATA COMMODORE,128,COMPUTER

If the READ statement calls for a string variable, you can place let-
ters or numbers in the DATA statement. Notice however, that since
the computer is READing a string, numbers will be stored as a string
of characters, not as a value which can be manipulated. Numbers
stored as strings can be printed, but not used in calculations. Also,
you cannot place letters in a DATA statement if the READ statement
calls for a number variable.

USING C128 MODE—Advanced BASIC Programming

[N S N A I A

[I R I

I B

[

-

I I B B

]

t

-

1 1

]

1

B S

I I

]

Using Arrays

You have seen how to use READ-DATA to provide many values for a
variable. But what if you want the computer to remember all the data
in the DATA statement instead of replacing the value of a variable
with the new data? What if you want to be able to recall the third
number, or the second string of characters?

Each time you assign a new value to a variable, the computer erases
the old value in the variable’s box in memory and stores the new
value in its place. You can tell the computer to reserve a row of
boxes in memory and store every value that you assign to that varia-
ble in your program. This row of boxes is called an array.

Subscripted If the array contains all of the values assigned to

Variables the variable X in the READ-DATA example, it is
called the X array. The first value assigned to X
in the program is named X(1), the second value
is X(2), and so on. These are called subscripted
variables. The numbers in the parentheses are
called subscripts. You can use a variable or a
calculation as a subscript. The following is
another version of the averaging program,
this time using subscripted variables.

5 DIM X(5)
10T=0
15:
20 FORJ=1TO 5
30 READ X(J)
40 T=T + X@J)
50 NEXT
55:
60 A=TI/5
70 ? “AVERAGE =";A
80 END
85:
90 DATA 5,12,1,34,18

Notice there are not many changes. Line 5is the
only new statement. It tells the computer to set
aside five storage compartments (25 bytes) in
memory for the X array. Line 30 has been
changed so that each time the computer exe-
cutes the loop, it assigns a value from the DATA
statement to the position in the X array that cor-
responds to the loop counter (J). Line 40 calcu-

61 USING C128 MODE—Advanced BASIC Programming

Dimensioning
Arrays

lates the total, just as it did before, but you must
use a subscripted variable to do it.

After you run the program, if you want to recall
the third number, type ?X(3){RETURN). The
computer remembers every number in the array
X. You can create string arrays to store the char-
acters in string variables the same way. Try
updating the COMMODORE 128 COMPUTER
READ-DATA program so the computer will
remember the elements in the A$ array.

5 DIM A$(3)

10 FORJ=1TO 3

20 READ A$(J)

30 ? A$(J)

40 NEXT

50 END

60 DATA COMMODORE,C128,COMPUTER

TIP: You do not need the DIM statement in your
program unless the array you use has more than
10 elements. See DIMENSIONING ARRAYS.

Arrays can be used with nested loops, so the
computer can handle data in a more advanced
way. What if you had a large chart with 10 rows
and 5 numbers in each row. Suppose you
wanted to find the average of the five numbers
in each row. You could create 10 arrays and
have the computer calculate the average of the
five numbers in each one. This is not necessary,
because you can put all the numbers in a two-
dimensional array. This array would have the
same dimensions as the chart of numbers you
want to work with—10 rows by 5 columns. The
DIM statement for this array (we will call it array
X) should be:

10 DIM X(10,5)

This tells the computer to reserve space in its
memory for a two-dimensional array named X.
The computer reserves enough space for 50
numbers. You do not have to fill an array with as
many numbers as you DIMensioned it for, but
the computer will still reserve enough space for
all of the positions in the array.

USING C128 MODE—Advanced BASIC Programming

[

[

. [

(U I A

I IO I A

[

[

(

[

I R N B B

{

N

|

1 1

il

B S N

1

1

1

1

]

63

Sample
Program

Now it becomes very easy to refer to any num-
ber in the chart by its column and row position.
Refer to the chart below. Find the third element
in the tenth row (1500). You would refer to this
number as X(10,3) in your program. The pro-
gram at the bottom of this page reads the num-
bers from the chart into a two-dimensional array
(X) and calculates the average of the numbers in
each row.

Column
Row 1 2 3 4 5
1 1 3 5 7 9
2 2 4 6 8 10
3 5 10 15 20 25
4 10 20 30 40 50
5 20 40 60 80 100
6 30 60 90 120 150
7 40 80 120 160 200
8 50 100 150 200 250
9 100 200 300 400 500
10 500 1000 1500 2000 2500

Programming
Subroutines

The GOSUB-RETURN Command

Until now, the only method you have had to tell the computer to jump
to another part of your program is to use the GOTO command. What
if you want the computer to jump to another part of the program,
execute the statements in that section, then return to the point it left
off and continue executing the program?

The part of program that the computer jumps to and executes is
called a subroutine. Clear your computer’s memory and enter the
program below.

10 A$ =“SUBROUTINE”:B$ = “PROGRAM”
20FORJ=1T05

30 INPUT “ENTER A NUMBER”;X

40 GOSUB 100

50 PRINT B$:PRINT

60 NEXT

70 END

100 PRINT A$:PRINT

110 Z=X12:PRINT Z

120 RETURN

This program will square the numbers you type and print the result.
The other print messages tell you when the computer is executing
the subroutine or the main program. Line 40 tells the computer to
jump to line 100, execute it and the statements following it until it
sees a RETURN command. The RETURN statement tells the com-
puter to go back in the program to the statement following the
GOSUB command and continue executing. The subroutine can be
anywhere in the program—including after the END statement. Also,
remember that the GOSUB and RETURN commands must always
be used together in a program (like FOR-NEXT and IF-THEN), other-
wise the computer will give an error message.

USING C128 MODE—Advanced BASIC Programming

N N T A A A A A AU A SN AN AN SN N B

[[

11 3

B I s [B B

n

]

)

]

r‘j \

n

~J

Using Memory
Locations

65

The ON GOTO/GOSUB Command

There is another way to make the computer jump to another section
of your program (called branching). Using the ON statement, you can
have the computer decide what part of the program to branch to
based on a calculation or keyboard input. The ON statement is used
with either the GOTO or GOSUB-RETURN commands, depending on
what you need the program to do. A variable or calculation should be
after the ON command. After the GOTO or GOSUB command, there
should be a list of line numbers. Type the program below to see how
the ON command works.

10 ? “ENTER A NUMBER BETWEEN ONE AND FIVE”
20 INPUT X

30 ON X GOSUB 100,200,300,400,500

40 END

100 ? “YOUR NUMBER WAS ONE”:RETURN

200 ? “YOUR NUMBER WAS TWO”:RETURN

300 ? “YOUR NUMBER WAS THREE”:RETURN

400 ? “YOUR NUMBER WAS FOUR”:RETURN

500 ? “YOUR NUMBER WAS FIVE”:RETURN

When the value of Xis 1, the computer branches to the first line num-
ber in the list (100). When X is 2, the computer branches to the sec-
ond number in the list (200), and so on.

Using PEEK and POKE for RAM/ROM Access

Each area of the computer’s memory has a special function. For
instance, there is a very large area to store your programs and the
variables associated with them. This part of memory, called RAM, is
cleared when you use the NEW command. Other areas are not as
large, but they have very specialized functions. For instance, there is
an area of memory locations that controls the music features of the
computer.

There are two BASIC commands—PEEK and POKE—that you can
use to access and manipulate the computer’'s memory. Use of PEEK
and POKE commands can be a powerful programming device
because the contents of the computer’s memory locations deter-
mine exactly what the computer should be doing at a specific time.

USING C128 MODE—Advanced BASIC Programming

Using POKE

PEEK can be used to make the computer tell
you what value is being stored in a memory
location (a memory location can store any value
between 0 and 255). You can PEEK the value of
any memory location (RAM or ROM) in DIRECT
or PROGRAM mode. Type:

P = PEEK(2594)
2P

The computer assigns the value in memory
location 2594 to the variable P when you press
RETURN after the first line. Then it prints the
value when you press RETURN after entering
the ? P command. Memory location 2594 deter-
mines whether or not keys like the spacebar and
CRSR repeat when you hold them down. A 128
in location 2594 tells the computer to repeat
these keys when you hold them down. Hold
down the spacebar and watch the cursor move
across the screen.

To change the value stored in a RAM location,
use the POKE command. Type:

POKE 2594,96 =H

The computer stores the value after the comma
(96) in the memory location before the comma
(2594). A 96 in memory location 2594 tells the
computer not to repeat keys like the spacebar
and CRSR keys when you hold them down. Now
hold down the spacebar and watch the cursor.
The cursor moves one position to the right, but it
does not repeat. To return your computer to its
normal state, type:

POKE 2594,128

You cannot alter the value of all the memory
locations in the computer—the values in ROM
can be read, but not changed.

NOTE: These examples assume you are in
bank @. See the description of the BANK
command in Chapter V, BASIC 7.0 Encyclo-
pedia for details on banks. Refer to the
Commodore 128 Programmer’s Reference

USING C128 MODE—Advanced BASIC Programming

L [

[

S S O A S A Y S S (R (N N N I

J R Y R R R |

I

3

B I R B B B

]

0

Basic Functions

67

Guide for a complete memory map of the
computer, which shows you the contents of
all memory locations.

What s a Function?

A function is a predefined operation of the BASIC language that gen-
erally provides you with a single value. When the function provides
the value, it is said to “return” the value. For instance, the SQR
(square root) function is a mathematical function that returns the
root value of a specific number before it is raised to the second
power—i.e., the value returned when multiplied by itself (squared) is
equal to the argument used in the function.

There are two kinds of functions:

Numeric—returns a result which is a single number. Numeric
functions range from calculating mathematical values to speci-
fying the numeric value of a memory location.

String—returns a result which is a character.

Following are descriptions of some of the more commonly used
functions. For a complete list of BASIC 7.0 functions see Chapter V,
BASIC 7.0 Encyclopedia.

The INTEGER Function (INT)

What if you want to round off a number to the nearest integer? You'll
need to use INT, the integer function. The INT function takes away
everything after the decimal point (for positive numbers only). Try
typing these examples:

? INT(4.25) SREFORIE
? INT(4.75) SREFGREE
? INT(SQR(50))

If you want to round off to the nearest whole number, then the sec-

ond example should return a value of 5. In fact, you should round up ,
any number with a decimal of 0.5 and above. To do this, you have to {
add 0.5 to the number before using the INT function. In this way,
numbers with decimal portions of 0.5 and above will be increased by
1 before being rounded down by the INT function. Try this:

? INT(4.75 + 0.5) SRETHRIE !

USING C128 MODE—Advanced BASIC Programming

s

68

The computer added 0.5 to 4.75 before it executed the INT function,
so that it rounded 5.25 down to 5 for the result. If you want to round
off the result of a calculation, do this:

? INT((100/6) + 0.5) SREEHRR=

You can substitute any calculation for the division shown in the inner
parentheses.

What if you want to round off numbers to the nearest 0.01? Instead of
adding 0.5 to your number, add 0.005, then multiply by 100. Let’s say
you want to round 2.876 to the nearest 0.01. Using this method, you
start with:

?(2.876 + 0.005)*100

Now use the INT function to get rid of everythlng after the decimal
point (which moves two places to the right when you multiply by
100). You are left with:

? INT((2.876 + 0.005)*100)

which gives you a value of 288. All that's left to do is divide by 100 to
get the value of 2.88, which is the answer you want. Using this tech-
nique, you can round off calculations like the following to the nearest
0.01:

? INT((2.876 + 1.29 + 16.1-9.534) + 0.005)*100/100 SREFIRRE

Generating Random Numbers—The RND Function

The RND functions tells the computer to generate a random number.
This can be useful in simulating games of chance, and in creating
interesting graphic or music programs. All random (RND) numbers
are nine digits, in decimal form, between the values 0.000000001
and 0.999999999. Typ~ -

? RND (0)

Multiplying the randomly generated number by six makes the range
of generated numbers increase to greater than 0 and less than 6. In
order to include 6 among the numbers generated, we add one to the
result of RND(0)*6. This makes the range 1{X(7. If we use the INT
function to eliminate the decimal places, the command will generate
whole numbers from 1 to 6. This process can be used to simulate the
rolling of a die. Try this program:

10 R= INT(RND(1)*6 + 1)

20?R
30 GOTO 10

USING C128 MODE-—Advanced BASIC Programming

[

I

|

[

I I

L [

[l:‘ [

!

Ly [

-1

)

]

]

_]

—

)

]

I I R N B

8

-

)

_1

]

2]

69

Each number generated represents one toss of a die. To simulate a
pair of dice, use two commands of this nature. Each number is gen-
erated separately, and the sum of the two numbers represents the
total of the dice.

The ASC and CHR$ Functions

Every character that the Commodore 128 can display (including
graphic characters) has a number assigned to it. This number is
called a character string code (CHR$) and there are 256 of them in
the Commodore 128. There are two functions associated with this
concept that are very useful. The first is the ASC function. Type:

?ASC(“Q”) =H

The computer responds with 81. 81 is the character string code for
the Q key. Substitute any character for Q in the command above to
find out the Commodore ASCII code number for any character.

The second function is the CHR$ function. Type:
?CHR$(81) SREFGREE

The computer responds with Q. In effect, the CHR$ function is the
opposite of the ASC function. They both refer to the table of charac-
ter string codes in the computer’s memory. CHR$ values can be
used to program function keys. See Section 5 for more information
about this use of CHR$. See Appendix E of this Guide for a full listing
of ASC and CHR$ codes.

Converting Strings and Numbers

Sometimes you may need to perform calculations on numeric char-
acters that are stored as string variables in your program. Other
times, you may want to perform string operations on numbers. There
are two BASIC functions you can use to convert your variables from
numeric to string type and vice versa.

USING C128 MODE—Advanced BASIC Programming

The STOP and

CONT (Continue)

Commands

70

The VAL The VAL function returns a numeric value for a
Function string argument. Clear the computer’s memory
and type this program:
10 A$ =“64"

20 A=VAL(A9)
30 ? “THE VALUE OF”’;A$;“IS”;A

40 END
The STRS$ The STR$ function returns the string representa-
Function tion of a numeric value. Clear the computer’s
memory and type this program.
10 A=65

20 A$S=STR$(A)
30 ? A“ IS THE VALUE OF”;A$

The Square Root Function (SQR)

The square root function is SQR. For example, to find the square root
of 50, type:

? SQR(50) =H :
You can find the square root of any positive number in this way.

The Absolute Value Function (ABS)

The absolute value function (ABS) is very useful in dealing with nega-
tive numbers. You can use this function to get the positive value of
any number—opositive or negative. Try these examples:

2 ABS(- 10) SRETEER
2 ABS(5)“ IS EQUAL TO "ABS(- 5)

You can make the computer stop a program, and resume running it
when you are ready. The-STOP command must be included in the
program. You can put a STOP statement anywhere you want to in a
program. When the computer “breaks” from the program (that is,
stops running the program), you can use DIRECT mode commands
to find out exactly what is going on in the program. For example, you

can find the value of a loop counter or other variable. This is a power-

ful device when you are “debugging” or fixing your program. Clear
the computer’s memory and type the program below.

USING C128 MODE—Advanced BASIC Programming

[Z

[

f
~

.

(-

(-

—

C C O

 C . C

[

(-

(-

L

N

nl

N

]

-]

_1

)

]

]

]

]

1))

)

]

—

10 X=INT(SQR(630))

20 Y =(.025*80)12

30 Z=INT(X*Y)

40 STOP

45 ? “RESUME PROGRAMMING”
S0A=(X*Y)+ 2

80 END

Now RUN the program. The computer responds with “BREAK IN
40". At this point, the computer has calculated the values of X, Y and
Z. If you want to be able to figure out what the rest of the program is
supposed to do, tell the computer to PRINT X;Y;Z. Often when you
are debugging a large program (or a complex small one), you'll want
to know the value of a variable at a certain point in the program.

Once you have all the information you need, you can type CONT (for
CONTinue) and press RETURN assuming you have not edited any-
thing on the screen. The computer then CONTinues with the pro-
gram, starting with the statement after the STOP command.

kkkkkhkhkkhkhkhkhkkhkhkkhkhkkhkkhkhkhkhkhkhkhkhkkdhhkhkhkhhdhhkhkhkhhhhhhkhhkhkhkkik

This section and the preceding one have been designed to familiar-
ize you with the BASIC programming language and some of its capa-
bilities. The remaining four sections of this chapter describe com-
mands that are unique to Commodore 128 mode. Many Commodore
128 mode commands provide capabilities that are not available in
C64 mode. Other Commodore 128 mode commands let you do the
same thing as certain C64 commands, but more easily. Remember
that more information on every command and programming tech-
nique in this book can be found in the Commodore 128 Program-
mer’s Reference Guide. The syntax for all Commodore 7.0 com-
mands is given in Chapter V| BASIC 7.0 Encyclopedia.

USING C128 MODE—Advanced BASIC Programming

o 0 3 3 3 3 3 33 33 3 3 0 3 3 30 7

N

)

]

]

)

]

]

) R R I R I B

]

Ve

]

]

]

]

SECTIONS
Advanced BASIC
7.0 Commands

73

INTRODUCTION

ADVANCED LOOPING
TheDO/LOOP Statement
Until
While
Exit
The ELSE Clause with IF-THEN
The BEGIN/BEND Sequence with IF-THEN
The SLEEP Command

FORMATTING OUTPUT
The PRINT USING Command
The PUDEF Command

SAMPLE PROGRAM
INPUTTING DATA WITH THE GETKEY COMMAND

PROGRAMMING AIDS

Entering Programs
AUTO
RENUMBER
DELETE

Identifying Problems in Your Programs
HELP
Error Trapping—The TRAP Command
Program Tracing—The TRON and TROFF Commands

WINDOWING
Using the WINDOW Command to Create a Window
Using the ESC key to Create a Window

2 MHZ OPERATION
The FAST and SLOW Commands

KEYS UNIQUE TO C128 MODE
Function Keys
Redefining Function Keys
Other Keys Used in C128 Mode Only
HELP
NO SCROLL
CAPS LOCK
40/80 DISPLAY
ALT
TAB
LINE FEED

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

0333333333393 3339370 73,

]

-}

]

]

—

)

1

)

B I R R

B

]

-

]

]

)

]

Introduction This section introduces you to some powerful BASIC commands and
statements that you probably haven’t seen before, even if you are an
experienced BASIC programmer. If you're familiar with programming
in BASIC, you've probably encountered many situations in which you
could have used these commands and statements. This section
explains the concepts behind each command and gives examples of
how to use each command in a program. (A complete list and an
explanation of these commands and statements may be found in
Chapter V, BASIC 7.0 Encyclopedia.) This section also describes how
to use the special keys that are available to you in C128 mode.

Advanced The DO/LOOP Statement

Looping The DO/LOOP statement provides more sophisticated ways to cre-

ate a loop than do the GOTO, GOSUB or FOR/NEXT statements. The
DO/LOOP statement combination brings to the BASIC language a
very powerful and versatile technique normally available only in
structured programming languages. We'll discuss just a few possible
uses of DO/LOORP in this explanation.

If you want to create an infinite loop, you start with a DO statement,
then enter the line or lines that specify the action you want the com-
puter to perform. Then end with a LOOP statement, like this:

100 DO
110 PRINT “REPETITION”
120 LOOP

Press the RUNISTOP key to stop the program.

The directions following the DO statement are carried out until the
program reaches the LOOP statement (line 120); control is then
transferred back to the DO statemen’ (line 100). Thus, whatever
statements are in between DO and LOOP are performed indefinitely.

Until Another useful technique is to combine the DO/
LOOP with the UNTIL statement. The UNTIL
statement sets up a condition that directs the
loop. The loop will run continually unless the
condition for UNTIL happens.

100 DO:

110 : INPUT “DO YOU LIKE YOUR COMPUTER”;A$
120 LOOP UNTIL A$ =“YES”

130 PRINT “THANK YOU”

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
75 C128 Mode

76

The DO/LOOP statement is often used to repeat
an entire routine indefinitely in the body of a
program, as in the following:

Another use of DO/LOORP is as a counter, where
the UNTIL statement is used to specify a certain
number of repetitions.

Notice that if you leave the counter statement
out (the UNTIL X =25 part in line 70), the num-
ber is doubled indefinitely until an OVERFLOW
error occurs.

While The WHILE statement works in a similar way to
UNTIL, but the loop is repeated only while the
condition is in effect, such as in this reworking
of this brief program:

{ INPUT"DO YOU LIKE YOUR COMPUTER"‘A$
3” LOOP ‘WHILE

An EXIT statement can be placed within the
body of a DO/LOOP. When the EXIT statement is
encountered, the program jumps to the next
statement following the LOOP statement.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

[

,
—~

[

-

\

[

[

[

(

[

[

[

(

{

(-

(-

-

]

)

]

-]

-)

-1

)

]

I I

]

)

]]

]

)

)

The ELSE Clause with IF-THEN

The ELSE clause provides a way to tell the computer how to respond
if the condition of the IF-THEN statement is false. Rather than contin-
uing to the next program line, the computer will execute the com-
mand or branch to the program line mentioned in the ELSE clause.
For example, if you wanted the computer to print the square of a
number, you could use the ELSE clause like this:

Notice that you must use a colon between the IF-THEN statement
and the ELSE clause.

The BEGIN/BEND Sequence with IF-THEN

BASIC 7.0 allows you to take the IF-THEN condition one step further.
The BEGIN/BEND sequence permits you to include a number of pro-
gram lines to be executed if the IF condition is true, rather than one
simple action or GOTO. The command is constructed like this:

IF condition THEN BEGIN:
(program lines):
BEND:ELSE

Be sure to place a colon between BEGIN and any instructions to be
executed and again between the last command in the sequence and
the word BEND. BEGIN/BEND can be used without an ELSE clause,
or can be used following the ELSE clause when only a snngle com-
mand follows THEN. Try this program:

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

Formatting
Output

78

This program asks for a number from the user. IF the number is less
than 100, the statements between the keywords BEGIN and BEND
are performed, along with any statements on the same line as BEND
(except for ELSE). The message “YOUR NUMBER WAS N” appears
on the screen. Line 50 is a delay loop used to keep the message on
the screen long enough so it can be read easily. Then a FOR/NEXT
loop is used to display a message for the number of times specified
by the user. If the number is greater than 100, the THEN condition is
skipped, and the ELSE condition (printing “TOO MANY") is carried
out. The ELSE keyword must be on the same line as BEND.

The SLEEP Command

Note the use of the SLEEP command in line 50 of the program just
discussed. SLEEP provides an easier, more accurate way of insert-
ing and timing a delay in program operation. The format for the
SLEEP command is

SLEEP n

where n indicates the number of seconds, in the range 1 to 65535,
that you want the program to delay. In the command shown in line
50, the 2 specifies a delay of two seconds.

The PRINT USING Command

Suppose you were writing a sales program that calculated a dollar
amount. Total sales divided by number of salespeople equals aver-
age sales. But performing this calculation might result in dollar
amounts with four or five decimal places! You can format the results
the computer prints so that only two decimal places are displayed.
The command which performs this function is PRINT USING.

PRINT USING lets you create a format for your output, using spaces,
commas, decimal points and dollar signs. Hash marks (the # sign)
are used to represent spaces or characters in the displayed result.
For example:

PRINT USING “#S$##it##.##”;A

tells the computer that when A is printed, it should be in the form
given, with up to five places to the left of the decimal point, and two
places to the right. The hash mark in front of the dollar sign indicates
that the $ should float; that is, it should always be placed next to the
left-most number in the format.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

U

[(=

(=

[

C C C C ¢ & L

|

J

)

]

~

]

)

-]

)

]

y——

1

]

B R R

]

]

—_—

J

]

)

If you want a comma to appear before the last three dollar places, as
in $1,000.00, include the comma in the PRINT USING statement.
Remember you can format output with spaces, commas, decimal
points, and dollar signs. There are several other special characters
for PRINT USING, see the BASIC Encyclopedia for more information.

The PUDEF Command

If you want formatted output representing something other than dol-
lars and cents, use the PUDEF (Print Using DEFine) command. You
can replace any of four format characters with any character on the
keyboard.

The PUDEF command has four positions, but you do not have to
redefine all four. The command looks like this:

PUDEF*_, - §”
12314
Here:

e position 1 is the filler character. A blank will appear if you do
not redefine this position.

® position 2 is the comma character. Default is the comma.

e position 3 is the decimal point.

e position 4 is the dollar sign.

If you wrote a program that converted dollar amounts to English
pounds, you could format the output with these commands:

10 PUDEF “ £~
20 PRINT USING “#$it#it.#i#";X

Sample Program This program calculates interest and loan payments, using some of
the commands and statements you just learned. It sets a minimum
value for the loan using the ELSE clause with an IF-THEN statement,
and sets up a dollar and cents format with PRINT USING.

10 INPUT "LOAN AMOUNT IN DOLLARS";A

20 IF A<100 THEN 70: ELSE P=.15

30 I=A*P

40 PRINT"TOTAL PAYMENT EQUALS";

50 PRINT USING "#S#####.#4#";A+I

60 GO TO 80

70 PRINT"LOANS OF UNDER $100 NOT AVAILABLE"
80 END

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
79 C128 Mode

Inputting Data

with the GETKEY

Command

80

You have learned to use INPUT and GET commands to enter DATA
during a program. Another way for you to enter data while a program
is being RUN is with the GETKEY statement. The GETKEY statement
accepts only one key at a time. GETKEY is usually followed by a
string variable (A$, for example). Any key that is pressed is assigned
to that string variable. GETKEY is useful because it allows you to
enter data one character at a time without having to press the
RETURN key after each character. The GETKEY statement may only
be used in a program.

Here is an example of using GETKEY in a program:

1000 PRINT “PLEASE CHOOSE A, B, C, D, E, OR F”
1010 GETKEY A$
1020 PRINT A$;“ WAS THE KEY YOU PRESSED.”

The computer waits until a single key is pressed; when the key is
pressed, the character is assigned to variable A$, and printed out in
line 1020. The following program features GETKEY in more complex
and useful fashions: for answering a multiple-choice question and
also asking if the question should be repeated. If the answer given is
incorrect, the user has the option to try again by pressing the “Y”
key (line 90). The key pressed for the multiple choice answer is
assigned to variable A$ while the “TRY AGAIN" answer is assigned
to B$, through the GETKEY statements in lines 60 and 90. IF/THEN
statements are used for loops in the program to get the proper com-
puter reaction to the different keyboard inputs.

10 PRINT “WHO WROTE ‘THE RAVEN’?”

20 PRINT “A. EDGAR ELLEN POE”

30 PRINT “B. EDGAR ALLAN POE”

40 PRINT “C. IGOR ALLEN POE”

50 PRINT “D. ROB RAVEN”

60 GETKEY A$

70 IF A$=“B” THEN 150

80 PRINT “WRONG. TRY AGAIN? (Y OR N)”

90 GETKEY B$

100 IF B$ =“Y” THEN PRINT “A,B,C, OR D?”:GOTO 60
110 IF B$ =“N” THEN 140

120 PRINT “TYPE EITHER Y OR N—TRY AGAIN”
130 GOTO 90

140 PRINT “THE CORRECT ANSWER IS B.”

145 GOTO 160

150 PRINT “CORRECT!”

160 END

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

L

C C C C C & &t

[

[

(

(-

(-

C C

]

)

]

]

)

I

]

I D R

]

B8 I R

]

n

-]

)

Programming
Aids

GETKEY is very similar to GET, except GETKEY will automatically
wait for a key to be pressed.

In earlier sections, you learned how to make changes in your pro-
grams, and correct typing mistakes with INST/DEL. BASIC also pro-
vides other commands and functions which help you locate actual
progam errors, and commands which you can use to make program-
ming sessions flow more smoothly.

Entering Programs

Auto C128 BASIC provides an auto-numbering pro-
cess. You determine the increment for the line
numbers. Let's say you want to number your
program in the usual manner, by tens. Before
you begin to program, while in DIRECT mode,

type:
AUTO 10 SREFURN=

The computer will automatically number your
program by tens. When you press the RETURN
key, the next line number appears, and the cur-
sor is in the correct place for you to type the
next statement. You can choose to have the
computer number the commands with any
increment; you might choose 5 or even 50. Just
place the number after the word AUTO and
press RETURN. To turn off the auto-numbering
feature, type AUTO with no increment, and
press RETURN.

Renumber If you write a program and later add statements
to it, sometimes the line numbering can be awk-
ward. Using the RENUMBER command you can
change the line numbers to an even increment
for part or all of your program. The RENUMBER
command has several optional parameters, as
listed below in brackets:

RENUMBER [new starting line[,
increment[,old starting line]]]

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unio.
81 C128 Mode

Delete

The new starting line is what the first program
line will be numbered after the RENUMBER
command is used. If you don't specify, the
default is 10. The increment is the spacing
between line numbers, and it also defaults to 10.
The old starting line number is the line number
where renumbering is to begin. This feature
allows you to renumber a portion of your pro-
gram, rather than all of it. It defaults to the first
line of the program. For example,

RENUMBER 40,,80

tells the computer to renumber the program
starting at line 80, in increments of 10. Line 80
becomes line 40.

Notice that this command, like AUTO, can only
be executed in DIRECT mode.

You know to delete program lines by typing the
line number and pressing the RETURN key. This
can be tedious if you want to erase an entire
portion of your program. The DELETE command
can save you time because you can specify a
range of program lines to erase all at once. For
example,

DELETE 10—50

will erase lines 10, 50, and any in between. The
use of DELETE is similar to that of LIST, in that
you can specify a range of lines up to a given
line, or following it, or a single line only, as in
these examples:

DELETE—120

erases all lines up to and including 120
DELETE 120—

erases line 120 and any line after it
DELETE 120

erases line 120 only

I

(

C

e

(

-

USING C128 MODE-—Some BASIC Commands and Keyboard Operations Unique to
82 C128 Mode

C

-]

)

7

]

)

]

I

1

L R B

]

B R R B

1

83

Identifying Problems in Your Programs

When a program doesn’t work the way you expected, an error mes-
sage usually occurs. Sometimes the messages are vague, however,
and you still don’t understand the problem. The Commodore 128
computer has several ways of helping you locate the problem.

Error
Trapping—The
TRAP Command

The Commodore 128 provides a HELP com-
mand that specifies the line in which a problem
has occurred. To actuate the HELP command,
just press the special HELP key on the row of
keys located above the main keyboard.

Type the following statement. It contains an
intentional error, so type it just as is:

10 ?3;4:5;6

When you RUN this one-line program, the com-
puter prints 3 and 4 as expected, but then
responds “SYNTAX ERROR IN 10”. Let's sup-
pose you can'’t see the error (a colon instead of
a semicolon between 4 and 5). You press the
HELP key. (You can also type HELP and press
RETURN.) The computer displays the line again,
but the 5;6 is highlighted to show the error is in
that line.

Usually, if an error occurs in a program, the pro-
gram “crashes” (stops running). At that point,
you can press the HELP key to track down the
error. However, you can use the BASIC 7.0
TRAP command to include an error-trapping
capability within your program. The TRAP com-
mand advises you to locate and correct an error,
then resumes program operation. Usually, the
error-trapping function is set in the first line of a
program:

5 TRAP 100

tells the computer that if an error occurs to go to
a certain line (in this case, line 100). Line 100
appears at the end of the program, and sets up

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

a contingency. Neither line is executed UNLESS
there is an error. When an error occurs, the line
with the TRAP statement is enacted, and control
is directed to another part of the program. You
can use these statements to catch anticipated
errors in entering data, resume execution, or
return to text mode from a graphics mode, to
name just a few options. If you run the DO/LOOP
example (which doubled numbers) without an
UNTIL statement, you can get an OVERFLOW
error and the program crashes. You can prevent
that from happening by adding two lines, one at
the beginning of the program and one at the
end. For this example, you might add these two
lines:

5 TRAP 100
100 IF N)>1 THEN END

Even though N has been much greater than one
for the entire program, the statement isn’t con-
sidered until there is an error. When the number
“overflows” (is greater than the computer can
accept), the TRAP statement goes into effect.
Since N is greater than one, the program is
directed to END (rather than crashing.)

Here is an example in which trapping is used to
prevent a zero from being input for division:

I

C

C [C

L [

C & C L C ¢

USING C128 MIODE-—Some BASIC Commands and Keyboard Operations Unique to
84 C128 Mode

C

-)

)

]

1

)

N

I I T B R

)

]

B

1

Program
Tracing—The
TRON and
TROFF
Commands

Notice the RESUME in line 1100. This tells the
computer to return to the line mentioned (in this
case, 120) and continue. Depending on the error
that was trapped, resuming execution may or
may not be possible.

For additional information on error trapping, see
the error functions ERR$, EL and ER, described
in Chapter V, BASIC 7.0 Encyclopedia.

When a problem in a program occurs, or you do
not get the results you expect, it can be useful to
methodically work through the program and do
exactly what the computer would do. This pro-
cess is called tracing. Draw variable boxes and
update the values according to the program
statements. Perform calculations and print
results following each instruction.

Tracing may show you, for example, that you
have used a GOTO with an incorrect line num-
ber, or calculated a result but never stored it in a
variable. Many program errors can be located
by pretending to be the computer, and following
only one instruction at a time. Your C128 can
perform a type of trace using the special com-
mands TRON and TROFF (short for TRace ON
and TRace OFF). When the program is run, with
TRACE ON the computer prints the line num-
bers in the order they are executed, as well as
any results. In this way, you may be able to see
why your program is not giving the results you
expected.

Type any short program we have used so far, or
use one of your own design. To activate trace
mode, type TRON in DIRECT mode. When you
run the program, notice how line numbers
appear in brackets before any results are dis-
played. Try to follow the line numbers and see
how many steps the computer needed to arrive
at a certain point. TRON will be more interesting
if you pick a program with many branches, such
as GOTO, GOSUB and IF-THEN-line number.
Type TROFF to turn trace mode off before con-
tinuing.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

Windowing

You don't have to trace an entire program. You
can place TRON within a program as a line prior
to the program section causing problems. Put
the word TROFF as a program line after the trou-
blesome section. When you run the program,
only the lines between TRON and TROFF will be
bracketed in the results.

Windows are a specific area of the screen that you define as your
workspace. Everything you type (lines you type, listings of programs,
etc.) after setting a window appears within the window’s boundaries,
not affecting the screen outside the window area. The Commodore
128 provides two methods of creating windows: the WINDOW com-
mand and ESCAPE key functions.

Using the WINDOW Command to Create a Window

The Commodore 128 BASIC 7.0 language features a command that
allows you to create and manipulate windows: the WINDOW com-
mand. The command format is:

WINDOW top-left column, top-left row, bottom-right column,
bottom-right row [,clear option]

The first two numbers after WINDOW specify the column and row
number of where you want the top left corner of the window to be;
the next two numbers are the coordinates for the bottom right cor-
ner. Remember that the screen format (40 or 80 columns) dictates
the acceptable range of these coordinates. You can also include a
clear option with this command. If you add 1 to the end of the com-
mand, the window screen area is cleared, as in this example:

WINDOW 10, 10, 20, 20, 1

Here's a sample program that creates four windows on the screen, in
either 40- or 80-column format.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

L =

C C ¢ & ¢ (=

L

C C L CC C C =

10 PRINT"I]" :REM CLEAR THE SCREEN

20 A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ" 4

30 B$=A$+A$+AS o

20 FOR I=1TO 25 :PRINT B$:NEXT :REM FILL SCREEN WITH CHARACTERS
50 WINDOW 1 ,1 ,8 ,20 :REM DEFINE WINDOW 1.

60 PRINT"£R"

63 REM THE PREVIOUS LINE FILLS WINDOW 1 WITH RED
65 REM HOLD DOWN <CONTROL> THEN PRESS THE (RED) TO GET THE "£"
67 REM HOLD DOWN <CONTROL> THEN PRESS THE ' (RVS ON) TO GET THE "
80 WINDOW 15,15,39,20,1 :REM DEFINE 2ND WINDOW s
PRINT ":“:‘B$;A$:REM FILL WINDOW WI
ONTROL> THEN PRESS THE
:REM DEFINE 3RD | o
LI :REM SELECT YELLOW AND LIST IN WINDOW
115 REM HOLD DOWN <CONTROL> THEN PRESS THE 8 KEY (YELLOW) TO GET THE "~
120 WINDOW 5,5,33,18,1 :REM DEFINE 4TH WI N TOP OF THE OTHER TH
130 PRINT“a“-PRINTA$ LIST: REM CHANGE CO T A$ AND LIST IN W
140 REM HOLD DOWN <COMMODORE> THEN PRESS ¢

150 REM IN 80 COLUMN MODE THE "a" CHAR DISPLAYS PURPLE '
160 REM ALL COLOR CHANGE CHARACTERS ARE ONLY DISPLAYED WITHIN QUOTES

CTERS
i EEN) TO GET THE nen

1

}

]

]

]

i

]}

1

1

Using the ESC Key to Create a Window
To set a window with the ESC (Escape) Key, follow these steps:

1. Move the cursor to the screen position you want as the top
left corner of the window.

2. Press the ESC key and release it, and then press T.

3. Move the cursor to the position you want to be the bottom
right corner of the window.

4. Press ESC and release, then B. Your window is now set.

You can manipulate the window and the text inside using the ESC
key. Screen editing functions, such as inserting and deleting text,
scrolling, and changing the size of the window, can be performed by
pressing ESC followed by another key. To use a specific function,
press ESC and release it. Then press any of the following keys listed
for the desired function:

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
87 C128 Mode

88

@ Erase everything from cursor to end of screen window
Automatic insert mode

Set the bottom right corner of the screen window (at the
current cursor location)

Cancel insert mode

Delete current line

Set cursor to non-flashing mode

Set cursor to flashing mode

Enable bell (by Control-G)

Disable bell

Insert aline

Move to the beginning of the current line

Move to the end of the current line

Turn on scrolling

Turn off scrolling

Return to normal (non-reverse video) screen display
(80-column only)

Cancel quote mode

Erase everything from the beginning of line to the cursor
Erase everything from the cursor to the end of the line
Reverse video screen display (80-column only)

Change to block cursor (Hll) (80-column only)

Set the top left corner of the screen window (at the current
cursor location)

Change to underline cursor (_) (80-column only)

Scroll screen up one line

W Scroll screen down one line

X Toggle between 40 and 80 columns

Y Restore default TAB stops

Z Clear all TAB stops

<C =-0VIOVO ZSrxX&-—IOTMMUO W>

Experiment with the ESCape key functions. You will probably find
certain functions more useful than others. Note that you can use the
usual INST/DEL key to perform text editing inside a window as well.

When a window is set up, all screen output is confined to the “box”
you have defined. If you want to clear the window area, press SHIFT
and CLEAR/HOME together. To cancel the window, press the CLEAR/
HOME key twice. The window is then erased, and the cursor is posi-
tioned in the top left corner of the screen. Windows are particularly
useful in writing, listing and running programs because they allow
you to work in one area of the screen while the rest of the screen
stays asiis.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

L

-

-

L

S B

S R T |

(-

-

-

]

)

)

S~

1

)

]

\~

!

]

I I

)

|

1

!

0

1

2 MHz The FAST and SLOW Commands

Operation The 2 MHz operating mode allows you to run non-graphic programs

in 80-column format at twice the normal speed. You can switch nor-
mal and fast operation by using the FAST and SLOW commands.

The FAST command places the Commodore in 2 MHz mode. The
format of this command is:

FAST

The SLOW command returns the Commodore 128 to 1 MHz mode.
The default speed for the Commodore 128 microprocessor (8502) is
1 MHz. The format of this command is:

SLOW

Keys Unique To Function Keys

€128 Mode The four keys on the Commodore 128 keyboard on the right side

above the numeric keypad are special function keys that let you save
time by performing repetitive tasks with the stroke of just one key.
The first key reads F1/F2, the second F3/F4, the third F5/F6, and the
last F7IF8. You can use functions keys 1, 3, 5, 7 by pressing the key
by itself. To use function keys 2, 4, 6 and 8, press SHIFT along with
the function key.

Here are the standard functions for each key:

F1 F2 F3 F4
GRAPHIC DLOAD“ DIRECTORY SCNCLR
F5 F6 F7 F8
DSAVE* RUN LIST MONITOR

Here’s what each function involves:

KEY 1 enters one of the GRAPHICS modes when you supply
the number of the graphics area and press RETURN.
The GRAPHICS command is necessary for giving graph-
ics commands such as CIRCLE or PAINT. For more on
GRAPHICS, see Section 6.

KEY 2 prints DLOAD “ on the screen. All you do is enter the
program name and end quotes and hit RETURN to load
a program from disk, instead of typing out DLOAD your-
self.

KEY 3 lists a DIRECTORY of files on the disk in the disk drive.

KEY 4 clears the screen using the SCNCLR command.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
89 C128 Mode

KEY 5 prints DSAVE * on the screen. All you do is enter the
program name, and press RETURN to save the current
program on disk.

KEY 6 RUNs the current program.

KEY 7 displays a LISTing of the current program.

KEY 8 lets you enter the Machine Language Monitor. See
Appendix J for a description of the Monitor.

Redefining Function Keys

You can redefine or program any of these keys to perform a function
that suits your needs. Redefining is easy, using the KEY command.
You can redefine the keys from BASIC programs, or change them at
any time in direct mode. A situation where you might want to rede-
fine a function key is when you use a command frequently, and want
to save time instead of repeatedly typing in the command. The new
definitions are erased when you turn off your computer. You can
redefine as many keys as you want and as many times as you want.

If you want to reprogram the F7 function key to return you to text
mode from high-resolution or multicolor-graphic modes, for example,
you would use the key command in this fashion:

KEY 7,“GRAPHIC 0” + CHRS$(13)

CHR$(13) is the ASCII code character for RETURN. So when you
press the F7 key after redefining the key, what happens is the com-
mand “GRAPHIC 0" is automatically typed out and entered into the
computer with RETURN. Entire commands or series of commands
may be assigned to a key.

Other Keys Used in C128 Mode Only

Help As noted previously, when you make an error in
a program, your computer displays an error
message to tell you what you did wrong. These
error messages are further explained in Appen-
dix A of this manual. You can get more assis-
tance with errors by using the HELP key. After
an error message, press the HELP key to locate
the exact point where the error occurred. When

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

DI B

{

L L C C ¢ (=

(

(.

)

)

—

i

2)

J

-

1

I R

]

")

|

)

]

|

B B

[

No Scroll

Caps Lock

40/80 Display

Alt

you press HELP, the line with the error is high-
lighted on the screen in reverse video (in 40
column), or underlined (in 80 column output).
For example:

?SYNTAX ERROR IN LINE 10 Your computer
displays this.

HELP You press HELP.

10 PRONT “COMMODORE COMPUTERS”
The line with the mistake is highlighted in
reverse if in 40-column output, or underlined
in 80-column output.

Press this key down to stop the text from scroll-
ing when the cursor reaches the bottom of the
screen. This turns off scrolling until you press
the NO SCROLL key again.

When the keyboard is in upper/lower case
mode, this key lets you type in all capital letters
without using the SHIFT key. The CAPS LOCK
key locks when you press it, and must be
pressed again to be released. CAPS LOCK only
affects the lettered keys.

The 40/80 key selects the main (default) screen
format: either 40 or 80 column. The selected
screen displays all messages and output at
power-up, or when RESET, reset or RUN/STOP/
RESTORE are used. This key may be used to set
the display format only before turning on or
resetting the computer. You cannot change
modes with this key after the computer is
turned on. Section 8 provides an explanation of
40/80 column modes.

The ALT key allows programs to assign a special
meaning to a given key or set of keys.

Unless a specific application program redefines
it, holding down the ALT key and any other key
has no additional effect.

]

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
99 C128 Mode

92

Tab This key works like the TAB key on a typewriter.
It may be used to move the cursor to the next
tab position. Tabs are set every 8th column
starting from column 1. :

Line Feed Pressing this key advances the cursor to the
next line, similar to a cursor down key.

khkkhkhkhkhhkhkhhkhkhkhhhkhkkdkkhkkhkkkkkkkdkkkkk

This section covers only some of the concepts, keys and commands
that make the Commodore 128 a special machine. You can find
further explanations of the BASIC language in the BASIC 7.0
Encyclopedia in Chapter V.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

(-

r—
—~

S U

-

C C C C [C C &

el

C

P I B)

]

-

1

t

1 1 1 1

U RN O U R R

]

]

SECTION 6

Color, Animation

and Sprite
Graphics
Statements
Unique to the
c128

93

GRAPHICS OVERVIEW
Graphics Features
Command Summary

GRAPHICS PROGRAMMING ON THE COMMODORE 128
Choosing Colors
Types of Screen Display
Selecting the Graphic Mode
Displaying Graphics on the Screen
Drawing a Circle—The CIRCLE Command
Drawing a Box—The BOX Command
Drawing Lines, Points and Other Shapes—The DRAW
Command
PAINTing Outlined Areas—The PAINT Command
Displaying Characters on a Bit-Mapped Screen—
The CHAR Command
Changing the Size of Graphic Inages—The SCALE
Command
Creating a Graphics Sample Program

SPRITES: PROGRAMMABLE, MOVABLE OBJECT BLOCKS
Sprite Creation
Sprite Definition Mode—The SPRDEF Command
Sprite Creation Procedure in SPRite DEFinition Mode
Using Sprite Statements in a Program
Drawing the Sprite Image
Storing the Sprite Data with SSHAPE
Saving the Picture Data in a Sprite
Turning on Sprites
Moving Sprites with MOVSPR
Creating a Sprite Program
Adjoining Sprites
Storing Sprite Data in Binary Files
BSAVE
BLOAD

USING C128 MODE—Color, Animation and Sprite Graphics Statements

110

125
126

7331333 333333333330

[R

]

-]

_1

t

1

]

]

_J

Graphics
Overview

95

In C128 mode, the Commodore 128 BASIC 7.0 language provides
many new and powerful commands and statements that make
graphics programming much easier. Each of the two screen formats
available in C128 mode (40 columns and 80 columns) is controlled by
a separate microprocessor chip. The 40-column chip is called the
Video Interface Controller, or VIC for short. The 80-column chip is
referred to as the 8563. The VIC chip provides 16 colors and controls
all the highly detailed graphics called bit-mapped graphics. The 80-
column chip, which also offers 16 colors, displays characters and
character graphics. The new BASIC graphics commands are not
supported in 80 column output, though you can program the 80
column chip to support a bit map display with your own machine
language programs. Thus, all detailed BASIC graphic programs in
C128 mode must be done in 40-column format.

Graphics Features

As part of its impressive C128 mode graphics capabilities, the Com-
modore 128 provides:

¢ 13 specialized graphics commands

® 16 colors

¢ Six different display modes

¢ Eight programmable movable objects called SPRITES
e Combined graphics/text displays

All these features are integrated to provide a versatile, easy-to-use
graphics system.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

96

Command Summary
Here is a brief explanation of each graphics commanad:

BOX — Draws rectangles on the bit-map screen

CHAR — Displays characters on the bit-map screen

CIRCLE — Draws circles, ellipses and other geometric
shapes

COLOR — Selects colors for screen border, foreground,
background and characters

DRAW — Displays lines and points on the bit-map screen

GRAPHIC — Selects a screen display (text, bit map or split-
screen bit map)

GSHAPE — Retrieves the text-string variable stored by

SSHAPE

MOVSPR — Positions or moves sprites on screen

PAINT — Fills area on the bit-map screen with color

SCALE — Setsthe relative size of the images on the bit-map
screen

SPRDEF — Enters sprite definition mode to edit sprites

SPRITE — Enables, colors, sets sprite screen priorities, and
expands a sprite

SPRSAV — Stores a text string variable into a sprite storage
area and vice versa

SSHAPE — Stores the image of a portion of the bit-map
screen into a text-string variable

Most of these commands are described in the examples in this sec-
tion. See Chapter V, BASIC 7.0 Encyclopedia, for detailed format and
information on all graphics commands and functions, including those
not discussed in this section.

USING C128 MODE'—Color, Animation and Sprite Graphics Statements

[IR I

I S

C £ =

C

 C £ C

-

-

2

-]

]

)

a1 1]

B N

)

-]

T)

Graphics
Programming on
the C128

97

The following section describes a step-by-step graphics program-
ming example. As you learn each graphics command, add itto a
program you will build as you read this section. When you are fin-
ished, you will have a complete graphics program.

Choosing Colors

The first step in graphics programming is to choose colors for the
screen background, foreground and border. To select colors, type:

COLOR source, color

where source is the section of the screen you are coloring (back-
ground, foreground, border, etc.), and eolor is the color code for the
source. See Figure 6-1 for source numbers, Figure 6-2 for 40-
column-format color numbers, and Figure 6-3 for 80-column-format
color numbers.

Number Source

0 40-column background color (VIC)
1 Foreground for the graphics screen (VIC)
2 Foreground color 1 for the multicolor screen (VIC)
3 Foreground color 2 for the multicolor screen (VIC)
4 40-column (VIC) border (whether in text or graphics
mode)
5 Character color for 40- or 80-column text screen
6 80-column background color (8563)
Figure 6-1. Source Numbers
Color Code Color Color Code ___ Color
1 Black 9 Orange
2 White 10 Brown
3 Red 1 Light Red
4 Cyan 12 Dark Gray
5 Purple 13 Medium Gray
6 Green 14 Light Green
7 Blue 15 Light Blue
8 Yellow 16 Light Gray

Figure 6-2. Color Numbers in 40-Column Output

USING C128 MODE—Color, Animation and Sprite Graphics Statements

Types of Screen
Display

98

Color Code Color Color Code Color
1 Black 9 Dark Purple
2 White 10 Dark Yellow
3 Dark Red 1 Light Red
4 Light Cyan 12 Dark Cyan
5 Light Purple 13 Medium Gray
6 Dark Green 14 Light Green
7 Dark Blue 15 Light Blue
8 Light Yellow 16 Light Gray

Figure 6-3. Color Numbers in 80-Column Output

Your C128 has several different ways of displaying information on the
screen; the parameter “source” in the COLOR command pertains to
different modes of screen display. The types of video display fall into
four categories.

The first one is text display, which displays only characters, such as
letters, numbers, special symbols and the graphics characters on
the front faces of most C128 keys. The C128 can display text in both
40-column and 80-column screen formats.

The second and third categories of display modes are used for highly
detailed graphics, such as pictures and intricate drawings. This type
of display mode includes standard bit-map mode and multicolor bit-
map mode. Bit-map modes allow you to control each and every indi-
vidual screen dot or pixel (picture element). This allows consid-
erable detail in drawing pictures and other computer art. These
graphic displays are only available in 40-column format. The
80-column display is dedicated to text display.

The difference between text and bit-map modes lies in the way in
which each screen addresses and stores information. The text
screen can only manipulate entire characters, each of which covers
an area of 8 by 8 pixels on your screen. The more powerful bit-map
mode exercises control over each and every pixel on your screen.

The fourth type of screen display, split screen, is a mixture of the first

two types. The split-scren display outputs part of the screen as text
and part in bit-map mode (either standard or multicolor). The C128 is

USING C128 MODE—Color, Animation and Sprite Graphics Statements

C C C C

L L =

L L [

I P S

1 2 1

]

| —

l

l

11 1

1 1 1 1

]

]

)

capable of this because it uses two separate parts of the computer’s
memory to store the two screens: one part of the text, and the other
for the graphics screen.

Type the following short program:

10 COLOR 0,1: REM TEXT BACKGROUND COLOR = BLACK

20 COLOR 1,3: REM FOREGROUND COLOR FOR BIT MAP
SCREEN = RED

30 COLOR 4,1: REM BORDER COLOR = BLACK

This example colors the background black, the foreground red and
the border black.

Selecting the Graphic Mode

The next graphics programming step is to select the appropriate
graphic mode. This is done using the GRAPHIC command, whose
format is as follows:

GRAPHIC Mode [,c][,;s] or GRAPHIC CLR

where mode is a digit between 0 and 5, cis eitheraOor 1 andsis a
value between 0 and 25. Figure 6-4 shows the values corresponding
to the graphic modes.

=
o
o
o

Description
40-column standard text
Standard bit map
Standard bit map (split screen)
Multicolor bit map
Multicolor bit map (split screen)
80-column text

ABhWON-=-O

Figure 6-4. Graphic Modes

The parameter ¢ stands for CLEAR. Figure 6-5 explains the values -
associated with CLEAR. '

C Value Description
0 Do not clear the graphics screen
1 Clear the graphics screen

Figure 6-5. CLEAR Parameters

USING C128 MODE—Color, Animation and Sprite Graphics Statements

100

When you first run your program, you will want to clear the graphics
screen for the first time, so set ¢ equal to 1 in the GRAPHIC com-
mand. If you run it a second time, you may want to leave your picture
on the screen, instead of drawing it all over again. In this case, set c
equalto 0.

The s parameter specified where the start of the text screen in split-
screen mode is to begin at the line after the specified line number. If
you omit the s parameter and select a split-screen graphic mode (2
or 4), the text screen portion is displayed in rows 20 through 25; the
rest of the screen is bit mapped. The s parameter allows you to
change the starting line of the text screen to any line on the screen,
ranging from 1 through 25. A zero as the s parameter indicates the
screen is not split, and is all text.

The final GRAPHIC command parameter is CLR. When you first
issue a bit-map graphic command, the Commodore 128 allocates a
9K area for your bit-mapped screen information. 8K is reserved for
the data for your bit map and the additional 1K is dedicated for the
color data (video matrix). Since 9K is a substantial block of memory;,
you may want to use it again for another purpose later on in your
program. This is the purpose of CLR. It reorganizes the Commodore
128 memory and gives you back the 9K of memory that was dedi-
cated to the bit-map screen, so you can use it for other purposes.

The format for CLR is as follows:
GRAPHIC CLR

When using this format, omit all other GRAPHIC command
parameters.

Add the following command to your program. It places the C128 in
standard bit-map mode and allocates an 8K bit-map screen (and 1K
of color data) for you to create graphics.

40 GRAPHIC 1,1

The second 1 in this command clears the bit-map screen. If you do
not want to clear the screen, change the second 1 to O (or omit it
completely).

NOTE: If you are in bit-map mode and are unable to return to

the text screen, press the RUN/STOP and RESTORE keys at the
same time, or press the ESC key followed by X, to return to the

USING C128 MODE—Color, Animation and Sprite Graphics Statements

L [

I I I I

I I

[

L [[[

CCC o

e s

]

11 1]

[N I N I R

I

101

80-column screen. Even though you can only display graphics
with the VIC (40-column) chip, you can still write graphics pro-
grams in 80-column format. If you have the Commodore 1902
dual monitor and you want to view your graphics program while
it is running, you must select the 40-column output by switching
the slide switch on the monitor to 40-column output.

Displaying Graphics on the Screen

So far, you have selected a graphics mode and the colors you want.
Now you can start displaying graphics on the screen. Start with a
circle.

Drawing a To draw a circle, use the CIRCLE statement as
Circle—The follows:

CIRCLE 60 CIRCLE 1, 150, 100,40,40
Command

This displays a circle in the center of the screen. The CIRCLE state-
ment has nine parameters you can select to achieve various types of
circles and geometric shapes. For example, by changing the num-
bers in the CIRCLE statement in line 60 you can obtain different size
circles or variations in the shape (e.g., an oval). The CIRCLE state-
ment adds power and versatility in programming Commodore 128
graphics in BASIC. The meaning of the numbers in the CIRCLE state-
ment is explained under the CIRCLE listing in Chapter V, BASIC 7.0
Encyclopedia.

On your Commodore 128 screen, the pointwhere X = 0andY = 0
is at the top left corner of the screen, and is referred to as the HOME
position. In standard geometry, however, the point where X and Y
both equal O is the bottom left corner of a graph. Figure 6-6 shows
the arrangement of the X (horizontal) and Y (verticle) screen coordi-
nates and the four points at the corners of the C128 screen.

X Coordinate
0,0 319,0
Y Coordinate
0,199 319,199

Figure 6-6. Arrangement of X and Y Coordinates

USING C128 MODE—Color, Animation and Sprite Graphics Statements

102

Drawing a Box— Now try a box. To draw a box, type:

The BOX
Command 80 BOX1,20,100,80,160,90,1

This draws a solid box to the left of the circle. To find out what the
numbers in the box statement mean, consult Chapter V, BASIC 7.0
Encyclopedia. The BOX statement has seven parameters you can
select and modify to produce different types of boxes. Change the
foreground color and draw the outline of a box to the right of the CIR-
CLE with these statements:

90 COLOR1,9:REM CHANGE FOREGROUND COLOR
100 BOX1,220,100,280,160,90,0

Experiment with the BOX statement to produce different variations
of rectangles and boxes.

Drawing Lines, You now know how to select graphic modes and

Points and colors and how to display circles and boxes on

Other Shapes— the screen. Another graphics statement, DRAW,

The lets you draw lines on the screen just as you

DRAW Command would with a pencil and a piece of paper. The
following statement draws a line below the
boxes and circle.

120 DRAW 1,20,180 TO 280,180

Here’s what the numbers mean:

¢ 1 is the color source (in this case the foreground)
¢ 20 is the starting X (horizontal) coordinate

¢ 180 is the starting Y (verticle) coordinate

¢ 280 is the ending horizontal coordinate

* 180 is the ending verticle screen coordinate.

To erase a drawn line, change the source (1) in the DRAW statement
to 0. The line is drawn with the background color which erases the

line. Try using different coordinates and other sources to become
accustomed to the DRAW statement.

The DRAW statement can take another form that allows you to
DRAW a line, change direction and then DRAW another line, so the
lines are continuous. For example, try this statement:

130 DRAW 1,10,20 TO 300,20 TO 150,80 TO 10,20

This statement DRAWS a triangle on the top of the scren. The four
pairs of numbers represent the X and Y coordinates for the three
points of the triangles. Notice the first and last coordinates are the

USING C128 MODE—Color, Animation and Sprite Graphics Statements

L C C [C C C

L

L L L C C

[

o 11 1 1]

[R

11 1

N

B

103

same, since you must finish drawing the triangle on the same point
you started. This form of draw statement gives you the power to
DRAW almost any geometric shape, such as trapezoids, parallelo-
grams and polygons.

The DRAW statement also has a third form.
You can DRAW one point at a time by specifying the starting Xand Y
values as follows:
150 DRAW 1,150,175
This statement DRAWSs a dot below the CIRCLE.
As you can see, the DRAW statement has versatile features which

give you the capability to create shapes, lines points and a virtually
unlimited number of computer drawings on your screen.

PAINTing The DRAW statement allows you to outline
Outlined areas on the screen. What if you want to fill
Areas—The areas within your drawn lines? That's where the

PAINT Command PAINT statement comes in. The PAINT state-
ment does exactly what the name implies—it
fills in, or PAINTS, outlined areas with color. Just
as a painter covers a canvas with paint, the
PAINT statement covers the areas of the screen
with any of the 16 colors. For example, type:

160 PAINT 1,150,97

Line 160 PAINTS the circle you have drawn in line 60. The PAINT
statement fills a defined area until a specified boundary is detected
according to which source is indicated. When the Commodore 128
finishes PAINTing, it leaves the pixel cursor at the point where PAINT-
ing began (in this case, at point 150,97).

Here are two more PAINT statements:

180 PAINT 1,50,25
200 PAINT 1,225,125

Line 180 PAINTS the triangle and line 200 PAINTS the empty box.

*IMPORTANT PAINTING TIP: If you choose a starting point in
your PAINT statement which is already colored from the same
source, the Commodore 128 will not PAINT that area. You must
choose a starting point which is entirely inside the boundary of
the shape you want to PAINT. The starting point cannot be on

USING C128 MODE~—Color, Animation and Sprite Graphics Statements

the boundary line of a pixel that is colored from the same
source. The source numbers of the screen coordinate and the
coordinate specified in the PAINT command must be different.

Displaying Characters on a Bit Mapped Screen—The CHAR
Command

So far, the example program has operated in standard bit map mode.
Bit map mode uses a completely different area of memory to store
the screen data than text mode (the mode in which you enter pro-
grams and text). If you enter bit map mode, and try to type charac-
ters onto the screen, nothing happens. This is because the charac-
ters you are typing are being displayed on the text screen and you
are looking at the bit map screen. Sometimes it is necessary to dis-
play characters on the bit map screen, when you are creating and
plotting charts and graphs. The CHAR command is designed espe-
cially for this purpose. To display standard characters on a bit map
screen, use the CHAR statement as follows:

220 CHAR 1, 11,24,“GRAPHICS EXAMPLE”

This displays the text “GRAPHICS EXAMPLE" starting at line 25,
column 12. The CHAR command can also be used in text mode,
however, it is primarily designed for the bit map screen.

Changing the Size of Graphic Images—
The SCALE Command

The Commodore 128 has another graphics statement which offers
additional power to your graphics system. The SCALE statement
offers the ability to scale up (enlarge) or scale down (reduce) the size
of graphic images on your screen. The SCALE statement also
accomplishes another task, which can be explained as follows.

In standard bit-map mode, the 40-column screen has 320 horizontal
coordinates and 200 vertical coordinates. In multicolor bit map

USING C128 MODE—Color, Animation and Sprite Graphics Statements

L [[

_

[

[

CCCC [

L [

L

I I R

]

]

L

S R R D R N (O N R R

1]

105

mode, the 40-column screen has only half the horizontal resolution
of standard bit map mode, that is, 160 by 200. This reduction in reso-
lution is compensated for by the additional capability of using one
additional color for a total of three colors, within an 8 by 8 character
matrix. Standard bit map mode can only display two colors within an
8 by 8 character matrix.

The SCALE command allows you to size your graphic images on a
scale of 0-32767 in both the X and Y directions, instead of only the
320 by 200 default scale.
To SCALE your screen, type:

SCALE 1, x,y

and the screen coordinates range from 0 to 32767 whether you are
in standard or multicolor high-res mode. The default for SCALing is
1023 by 1023 if X and Y are not specified in the SCALE command.
To turn off SCALEIng, type:

SCALE 0
and the coordinates return to their normal values.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

106

Creating a Sample Graphics Program

So far, you have learned several graphics statements. Now tie the
program together and see how the statements work at the same
time. Here’s how the program looks now. The color statements in

lines 70, 110, 140, 170, 190 and 210 are added to display each object

in a different color.

10 COLOR 0,1 :REM SELECT BKGRND COLOR
20 COLOR 1,3 :REM SELECT FORGRND COLOR
30 COLOR 4,1 :REM SELECT BORDER COLOR
GRAPHICI, 1 :REM SELECT STND HI RES
o}

100 BOX,220, 100 280,160,90,0:REM BOX

110 COLOR 1,8 :REM CHANGE FORGRND COLOR
120 DRAW 1,20,180 TO 280,180:REM DRAW LINE
130 DRAW 1 10,20 TO 300,20 TO150,80 TO 10,20:REM DRAW TRIANGLE
140 COLOR 15 :REM CHANGE FORGRND COLOR
150 DRAW 1, 150 175:REM DRAW 1 POINT

160 PAINT 1 150,97:REM PAINT CIRCLE

170 COLOR 1,5 'REM 'CHANGE FORGRND COLOR
‘180 PAINT 1,50,25:REM PAINT TRIANGLE

190 COLOR 1,7 2REM CHANGE FORGRND COLOR
200 PAINT 1,225,125:REM PAINT BOX

Here's what the program does:

e Lines 10 through 30 select a COLOR for the background, fore-
ground and border, respectively.

¢ Line 40 chooses a graphic mode.

e Line 60 displays a CIRCLE.

¢ Line 80 DRAWs a colored-in BOX.

e Line 100 DRAWSs the outline of a box.

¢ Line 120 DRAWSs a straight line at the bottom of the screen.

¢ Line 130 DRAWSs a triangle.

e Line 150 DRAWs a single point below the CIRCLE.

¢ Line 160 PAINTs the circle.

¢ Line 180 PAINTSs the triangle.

¢ Line 200 PAINTSs the empty box.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

I I

.

(

. C C =

[

[

-]

-]

2]

_)

1

]

)

)

]

1

_]

1

)

)

]

]

_J

e Line 220 prints the CHARacters “GRAPHICS EXAMPLE" at
the bottom of the screen.

e Line 230 delays the program so you can watch the graphics
on the screen, switches back to text mode and colors the
characters black.

If you want the graphics to remain on the screen, omit the GRAPHIC
statement in line 230.

Here are some additional example programs using the graphics
statements you just learned.

90 Fonx=aorozso STEP10
100 CIRCLE1,I,100,50,50
110 NEXT ,
120 COLOR 1,7
130 FORI=50T0280 STEP10
140 CIRCLE1,I,100,25,25
150 NEXT

160 FORI=1T07500: NEXT:

GRAPH!

10 GRAPHIC 1,1
20 COLORO,1 ‘
30 COLOR4,1 Ll
40 FORI=1TO50 : ‘
50 2= 1NT(((RND(1))*16)+1)* 1
60 COLOR1,Z -
70~x-1NT(((RND(1))*3o)+1)*10
Y=INT(((RND(1))*20)+1)*10
U-INT(((RND(I))*30)+1)*10

120 NEXT
130 SCNCLR
140 GOTO40

107 USING C128 MODE—Color, Animation and Sprite Graphics Statements

108

Type the examples into your computer. RUN and SAVE them for
future reference. One of the best ways to learn programming is to
study program examples and see how the statements perform their
functions. You’ll soon be able to use graphics statements to create
impressive graphics with your Commodore 128.

If you need more information on any BASIC statement or command,
consult the Chapter V, BASIC 7.0 Encyclopedia.

You now have a set of graphic commands that allow you to create an
almost unlimited number of graphics displays. But Commodore 128
graphics abilities do not end here. The Commodore 128 has another
set of statements, known as SPRITE graphics, which make the crea-
tion and control of graphic images fast, easy and sophisticated.
These high-level statements allow you to create sprites—moveable
graphic objects. The C128 has its own built-in SPRite DEFinition abil-
ity. These statements represent the new technology for creating and
controlling sprites. Read the next section and take your first step in
learning computer animation.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

L C

(Z

(

.
~

C

r,_.
L\.,.,

AN I B S S G

[

—

(-

L.

(=

C

]

)

]

-]

)

)]

)

B D B

I

]

)

]

]

]

Sprites:
Programmable,
Movable Object
Blocks

109

You already have learned about some of the Commodore 128’s
exceptional graphics capabilities. You've learned how to use the first
set of high level graphics statements to draw circles, boxes, lines and
dots. You have also learned how to color the screen, switch graphic
modes, paint objects on the screen and scale them. Now it's time to
take the next step in graphics programming—sprite animation.

If you have worked with the Commodore 64, you already know some-
thing about sprites. For those of you who are not familiar with the
subject, a sprite is a movable object that you can form into any
shape or image. You can color sprites in 16 colors. Sprites can even
be multicolor. The best part is that you can move them on the
screen. Sprites open the door to computer animation.

Sprite Creation

The first step in programming sprites is designing the way the sprite
looks. For example, suppose you want to design a rocket ship or a
racing car sprite. Before you can color or move the sprite, you must
first design the image. In C128 mode, you can create sprites in these
three ways:

1. Using SPRite DEFinition mode (SPRDEF)
2. Using the new SPRITE statements within a program
3. Using the same method as the Commodore 64.

Sprite Definition Mode—The SPRDEF Command

The Commodore 128 has a built-in SPRite DEFinition mode which
enables you to create sprites on your Commodore 128. You may be
familiar with the Commodore 64 method of creating sprites, in which
you are required to either have an additional sprite editor, or design a
sprite on a piece of graph paper and then READ in the coded sprite
DATA and POKE it into an available sprite block. With the new Com-
modore 128 sprite definition command SPRDEF, you can construct
and edit your own sprites in a special sprite work area.

To enter SPRDEF mode, type:

SPRDEF

and press RETURN. The Commodore 128 displays a sprite grid on
the screen. In addition, the computer displays the prompt:

SPRITE NUMBER?

Epter anumber between 1 and 8. The computer fills the grid and
displays the corresponding sprite in the upper right corner of the
screen. From now on, we will refer to the sprite grid as the work area.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

110

The work area has the dimensions of 24 characters wide by 21 char-
acters tall. Each character position within the work area corres-
ponds to 1 pixel within the sprite, since a sprite is 24 pixels wide by
21 pixels tall. While within the work area in SPRDEF mode, you have
several editing commands available to you. Here’s a summary of the
commands on the following page:

Sprite Definition Mode Command Summary

CLR key—Erases the entire work area

M key—Turns on/off multicolor sprite

CTRL 1-8—Selects sprite foreground color 1-8

C= 1-8—Selects sprite foreground color 9-16

1 key—Sets the pixel at the current cursor location to the
background color

2 key—Sets the pixel at the current cursor location to the
foreground color

3 key—Sets the pixel at the current cursor location to
multicolor1

4 key—Sets the pixel at the current cursor location to
multicolor2

A key—Turns on/off automatic cursor movement

CRSR keys—Moves the cursor (+) within the work area
RETURN—moves cursor to the start of the next line
HOME key—Moves cursor to the top left corner of work area.
X key—Expands sprite horizontally

Y key—Expands sprite vertically

Shift RETURN—Saves sprite from work area and returns to
SPRITE NUMBER prompt

C key—copies one sprite to another

STOP key—Turns off displayed sprite and returns to
SPRITE NUMBER prompt without changing the sprite
RETURN key—(at SPRITE NUMBER prompt) Exits
SPRDEF mode

Sprite Creation Procedure in SPRite DEFinition Mode

Here's the general procedure to create a sprite in SPRite DEFinition
mode:

1.
2.

Clear the work area by pressing the shift and CLR/HOME keys at
the same time.

If you want a multicolor sprite, press the M key and an additional
cursor appears next to the original one. Two cursors appear
since multicolor mode actually turns on two pixels for every one
in standard sprite mode. This is why multicolor mode is only half
the horizontal resolution of standard high-res mode.

USING C128 MODE—Color, Animation and Sprite Graphics Statements
‘; o

(N GO U N A AN (O G (R (A G (R G S A AR R A

]

]

]

]

]

-

]

]

]

]

)

)

]

2]

]

]

]

J

Select a color for your sprite. For colors between 1 and 8, hold
down the CONTROL key and press a key between 1 and 8. To
select color codes between 9 and 16, hold down the Commo-
dore (€=) key and press a key between 1 and 8.

Now you are ready to start creating the shape of your sprite. The
numbered keys 1 through 4 fill in the sprite and give it shape. For
a single color sprite, use the 2 key to fill a character position
within the work area. Press the 1 key to erase what you have
drawn with the 2 key. If you want to fill one character position at a
time, press the A key. Now you have to move the cursor manually
with the cursor keys. If you want the cursor to move automati-
cally to the right while you hold it down, do not press the A key
since it is already set to automatic cursor movement. As you fill
in a character position within the work area, you can see the
corresponding pixel in the displayed sprite turn on. Sprite editing
OCCUrs as soon as you edit the work area.

In multicolor mode, the 3 key fills two character positions in the
work area with the multicolor 1 color, the 4 key fills two character
positions with the multicolor 2.

You can turn off (color the pixel in the background color) filled
areas within the work area with the 1 key. In multicolor mode, the
1 key turns off two character positions at a time.

While constructing your sprite, you can move freely in the work
area without turning on or off any pixels using the RETURN,
HOME and cursor keys.

. Atany time, you may expand your sprite in both the vertical and

horizontal directions. To expand vertically, press the Y key. To
expand horizontally, press the X key. To return to the normal size
sprite display, press the X or Y key again.

When a key turns on AND off of the same control, it is referred to
as toggling, so the X and Y keys toggle the vertical and horizontal
expansion of the sprite.

. When you are finished creating your sprite and are happy with

the way it looks, save it by holding down the SHIFT key and
pressing the RETURN key. The Commodore 128 SAVEs the sprite
data in the appropriate sprite storage area. The displayed sprite
in the upper right corner of the screen is turned off and control is
returned to the SPRITE NUMBER prompt. If you want to create
another sprite enter another sprite number and edit the new
sprite just as you did with the first one. If you want to display the
original sprite in the work area again, enter the original sprite

USING C128 MODE—Color, Animation and Sprite Graphics Statements

112

number. If you want to exit SPRITE DEFinition mode, simply
press RETURN at the SPRITE NUMBER prompt.

8. You can copy one sprite into another with the “C” key.

9. If you do not want to SAVE your sprite, press the STOP key. The
Commodore 128 turns off the displayed sprite and returns to the
SPRITE NUMBER prompt.

10. To EXIT SPRite DEFinition mode, press the RETURN key while
the SPRITE NUMBER prompt is displayed on the screen when no
sprite number follows it. You can exit under either of the follow-
ing conditions:

Immediately after you SAVE your sprite (shift RETURN),
Immediately after you press the STOP key

Once you have created a sprite and have exited SPRite DEFinition
mode, your sprite data is stored in the appropriate sprite storage
area in the Commodore 128's memory. Since you are now back in the
control of the BASIC language, you have to turn on your sprite in
order to see it on the screen. To turn it on again, use the SPRITE
command. For example, you created sprite 1 in SPRDEF mode. To
turn it on in BASIC, color it blue and expand it in both the X and Y
directions enter this command:

SPRITE 1,1,7,0,1,1,0

Now use the MOVSPR command to move it at a 90-degree angle at a
speed of 5, as follows:

MOVSPR 1,90 # 5

The SPRITE and MOVSPR commands are discussed in greater detalil
in the next section.

Now you know all about SPRDEF mode. First, create the sprite, save
the sprite data and exit from SPRDEF mode to BASIC. Next turn on
your sprite with the SPRITE command. Move it with the MOVSPR
command. When you're finished programming, SAVE your sprite
data in a binary file with the BSAVE command.

See Storing Sprite Data in Binary Files later in this section for
more information on the BSAVE and BLOAD commands.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

C C ¢ . C &t oL

C C C

(=

-

(

C

]

-]

A

)

-]

]

{
|

1]

S E R I RN N B B

)

Using Sprite Statements in a Program

This method uses built-in statements so you don’t have to use any
aids outside your program to design your sprite, as the other two
methods require. This method uses some of the graphics statements
you learned in the previous section. Here's the general procedure.
The details will be added as you progress.

1. Draw a picture with the graphics statements you learned in
the last section, such as DRAW, CIRCLE, BOX and PAINT.
Make the dimensions of the picture 24 pixels wide by 21 pix-
els tall in standard bit map mode or 12 pixels wide by 21 tall in
multicolor bit map mode.

2. Use the SSHAPE statement to store the picture data into a
string variable.

3. Transfer the picture data from the string variable into a sprite
with the SPRSAV statement.

4. Turn on the sprite, color it, select either standard or multi-
color mode and expand it, all with the SPRITE statement.

5. Move the sprite with the MOVSPR statement.

Drawing the Sprite Image

Here are the actual statements that perform the sprite operations.
When you are finished with this section, you will have written your
first sprite program. You'll be able to RUN the program as much as
you like, and SAVE it for future reference.

The first step is to draw a picture (24 by 21 pixels) on the screen
using DRAW, CIRCLE, BOX or PAINT. This example is performed in
standard bit map mode, using a black background. Here's the state-
ments that set the graphic mode and color the screen background
black.

5 COLOR 0,1 :REM COLOR BACKGROUND BLACK
10 GRAPHIC 1,1 :REM SET STND BIT MAP MODE

The following statements DRAW a picture of a racing car in the
upper-left corner of the screen. You already learned these state-
ments in the last section.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

5 COLOR 0,1

10

15

20
22

GRAPHIC 1,1
BOX 1,2,2,

DRAW 1,11,10 TO
DRAW 1,30,10 TO
DRAW 1,11,20 TO
DRAW 1,30,20 TO

45
DRAW 1,17,10 TC

28,10

15,10
34,10
15,20

TO 15,18 TO 11,18
TO 34,18 TO 30,18

TO 15,28 TO 11,28

TO
TO
TO

TO 26,30 TO 19,30 TO 17,10 :REM CAR BODY

11,10: REM UP LEFT WHEEL
30,10:REM RGHT WHEEL
11,20:REM LOW LFT WHEEL
30,20:REM LO RGHT WHEEL

DRAW 1,26,28

34,20 TO 34,28 TO 30,28 TO

TO 19,28

BOX 1,20,14,26,18,90,1

BOX 1,150,35,195,40,90,1:REM STREET
BOX 1,150,135,195,140,90,1:REM STREET

BOX 1,150,215,195,220,90,1:REM STRT

'BOX 1,50,180,300,194
'CHAR 1,18,23,"FINISH" =

114

RUN the program. You have just drawn a white racing car, enclosed
in a box, in the upper-left corner of the screen. You have also drawn
a raceway with a finish line at the bottom of the screen. At this point,
the racing car is still only a stationary picture. The car isn’t a sprite
yet, but you have just completed the first step in sprite
programming—creating the image.

Storing the Sprite Data with SSHAPE

The next step is to save the picture into a text string. Here's the
SSHAPE statement that does it:

45 SSHAPE A$,11,10,34,30:REM SAVE THE PICTURE IN A
STRING

The SSHAPE command stores the screen image (bit pattern) into a
string variable for later processing, according to the specified
screen coordinates.

The numbers 11, 10, 34, 30 are the coordinates of the picture. You
must position the coordinates in the correct place or the SSHAPE
statement can't store your picture data correctly into the string varia-
ble A$. If you position the SSHAPE statement on an empty screen
location, the data string is empty. When you later transfer it into a
sprite, you'll realize there is no data present. Make sure you position
the SSHAPE statement directly on the correct coordinate. Also, be
sure to create the picture with the dimensions 24 pixels wide by 21
pixels tall, the size of a single sprite.

The SSHAPE statement transfers the picture of the racing car into a
data string that the computer interprets as picture data. The data

USING C128 MODE—Color, Animation and Sprite Graphics Statements

(:

(—

(-

C C C C

(-

C C C C & &

L

(

l
|

)

]

-]

]

_)

]

]

)

)

]

o) 1)

]

9

string, A$, stores a string of zeroes and ones in the computer’s mem-
ory that make up the picture on the screen. As in all computer graph-
ics, the computer has a way it can represent visual graphics with bits
in its memory. Each dot on the screen, called a pixel, has a bit in the
computer’s memory that controls it. In standard bit-map mode, if the
bit in memory is equal to a 1 (on), then the pixel on the screen is
turned on. if the controlling bit in memory is equal to a 0 (off), then
the pixel is turned off.

Saving the Picture Data in a Sprite

Your picture is now stored in a string. The next step is to transfer the
picture data from the data string (A$) into the sprite data area so you
can turn it on and animate it. The statement that does this is SPRSAV.
Here are the statements:

50 SPRSAV A$,1:REM STORE DATA STRING IN SPRITE 1
55 SPRSAV A$,2:REM STORE DATA STRING IN SPRITE 2

Your picture data is transferred into sprite 1 and 2. Both sprites have
the same data, so they look exactly the same. You can't see the
sprites yet, because you have to turn them on.

Turning on Sprites

The SPRITE statement turns on a specific sprite (numbered 1
through 8), colors it, specifies its screen priority, expands the sprite’s
size and determines the type of sprite display. The screen priority
refers to whether the sprite passes in front of or behind the objects
on the screen. Sprites can be expanded to twice their original size in
either the horizontal or vertical directions. The type of sprite display
determines whether the sprite is a standard bit map sprite, or a mul-
ticolor bit mapped sprite. Here are the two statements that turn on
sprites 1 and 2.

60 SPRITE 1,1,7,0,0,0,0:REM TURN ON SPR 1
65 SPRITE 2,1,3,0,0,0,0:REM TURN ON SPR 2

Here's what each of the numbers in the SPRITE statements mean;
SPRITE #,0,C,PX,Y,M

—Sprite number (1 through 8)

O —TurnOn(O=1)or Off (O=0)

C —Color (1 through 16)

P —Priority—If P=0, sprite is in front of objects on the screen
If P=1, sprite is in back of objects on the screen

USING C128 MODE—Color, Animation and Sprite Graphics Statements

116

X —If X=1, expands sprite in horizontal (X) direction
If X =0, sprite is normal horizontal size
Y —IfY=1, expandspriteinvertical (Y)direction
If Y =0, sprite is normal vertical size
M —If M=1, spriteis multicolor
IfM=0, spriteisstandard

As you can see, the SPRITE statement is powerful, giving you control
over many sprite qualities.

Moving Sprites with MOVSPR

Now that your sprite is on the screen, all you have to do is move it.
The MOVSPR statement controls the motion of a sprite and allows
you to animate it on the screen. The MOVSPR statement can be used
in two ways. First, the MOVSPR statement can place a sprite at an
absolute location on the screen, using vertical and horizontal coordi-
nates. Add the following statements to your program:

70 MOVSPR 1,240,70:REM POSITION SPRITE 1—X=240, Y=70
80 MOVSPR 2,120,70:REM POSITION SPRITE 2—X=120, Y=70

Line 70 positions sprite 1 at sprite coordinate 240,70. Line 80 places
sprite 2 at sprite coordinate 120,70. You can also use the MOVSPR
statement to move sprites relative to their original positions. For
example, place sprites 1 and 2 at the coordinates as in lines 70 and
80. You want to move them from their original locations to another
location on the screen. Use the following statements to move sprites
along a specific route on the screen:

80 MOVSPR,1,180 # 6:REM MOVE SPRITE 1 FROM THE TOP
TO THE BOTTOM
87 MOVSPR 2,180 # 7:REM MOVE SPRITE 2 FROM THE TOP
TO THE BOTTOM

The first number in this statement is the sprite number. The second
number is the direction expressed as the number of degrees to move
in the clockwise direction, relative to the original position of the
sprite. The pound sign (#) signifies that the sprite is moved at the
specified angle and speed relative to a starting position, instead of
an absolute location, as in lines 70 and 80. The final number speci-
fies the speed in which the sprite moves along its route on the
screen, which ranges from 0 through 15.

The MOVSPR command has two alternative forms. See Chapter V,
BASIC 7.0 Encyclopedia for these notations.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

[

(

-

(

C C =

C

C C C

C ¢ & C

]

]

]

]

2

!

B e R

B D I B B

[

)

_)

-}

90

117

Sprites use an entirely different coordinate plane than bit-map coor-
dinates. The bit-map coordinates range from points 0,0 (the top left
corner) to 319,199 (bottom right corner). The visible sprite coordi-
nates start at point 24,50 and end at point 344,250. The rest of the
sprite coordinates are off the screen and are not visible, but the
sprite still moves according to them. The off-screen locations allow
sprites to move smoothly onto and off of the screen. Figure 6-7 illus-
trates the sprite coordinate plane and the visible sprite positions.

29 (510)-——'——
) "’”""

VISIBLE VIEWING AREA

NTSC*
40 COLUMNS
25 ROWS

208 (s00)~

250 (sFA) -

-—— 220 (SE5)
-— - 250 GFA)
! i

"L
1 |
]]
| | 1
488 (s1€8) 24 (s18) 320 (s140) 344 ($158)

Figure 6-7. Visible Sprite Coordinates

Now RUN the entire program with all the steps included. You have
just written your first sprite program. You have created a raceway
with two racing cars. Try adding more cars and more objects on the
screen. Experiment by drawing other sprites and include them in the
raceway. You are now well on the way in sprite programming. Use
your imagination and think of other scenes and objects you can
animate. Soon you will be able to create all kinds of animated com-
puter “movies.”

To stop the sprites, press RUN/STOP and RESTORE at the same
time.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

Creating a Sprite Program

You now have a working sprite program example. Here's the com-
plete program listing:

5 COLOR 0,1
10 GRAPHIC 1,1
15 BOX 1,2,2,45,45 &
20 DRAW 1,17,10 TO 28,10 TO 26,30 TO 19,30 TO 17,10 :REM CAR BODY
2 DRAW 1,11,10 TO 15,10 TO 15,18 TO 11,18 TO 11,10: REM UP LEFT WHEEL
'DRAW 1, 30,10 TO 34 10 TO 34 18 TO 30,18 TO 30,10:REM RGHT WHEEL
‘ 11,28 TO 11,20:REM LOW LFT WHEEL
130,28 TO 30,20:REM LO RGHT WHEEL

/ :.20'14 26,18,90,1
35 BOX 1,150,35,195, 40 90 1:REM STREET
' 0, 135 195 140 90 1:REM STREET
15,195,220,90,1:REM STRT

42 BOX 1,50,180,300,194

44 CHAR 1,18,23, "FINISH"

45 SSHAPE A$,11,10,34,30:REM SAVE SPR IN A$
50 SPRSAV A$,1:REM SPRO DATA «

55 SPRSAV AS$,2:REM SPR1 DATA

60 SPRITE 1,1,

+0,0,0,0:REM SPR1 ATTRIB
TE COORD. 240,0
SOLUTE COORD. 120,0
DEGREES RELATIVE TO 240,0
DEGREES RELATIVE TO 120,0

Here's what the program does:

¢ Line 5 COLORs the screen black.

¢ | ine 10 sets standard high-resolution GRAPHIC mode.

¢ Line 15 DRAWSs a box in the top-left corner of the screen.

* Lines 20 through 32 DRAW the racing car.

® Lines 35 through 44 DRAW the racing lanes and a finish line.

* Line 45 transfers the picture data from the racing car into a
string variable.

¢ Lines 50 and 55 transfer the contents of the string variable
into sprites 1 and 2.

® Lines 60 and 65 turn on sprites 1 and 2.

* Lines 70 and 80 position the sprites at the top of the screen.

¢ Lines 85 and 90 animate the sprites as through two cars are
racing each other across the finish line.

118 USING C128 MODE—Color, Animation and Sprite Graphics Statements

(- ([

(-

L

(-

[

(I A

(I

(-

—

(

-

L

]

)

i

]

]

)

]

]

_)

]

0 e

]

_J

-

119

In this section, you have learned how to create sprites, using the
built-in C128 graphics statements such as DRAW and BOX. You
learned how to control the sprites, using the Commodore 128 sprite
statements. The Commodore 128 has two other ways of creating
sprites. The first is with the built-in SPRite DEFinition ability, as
described in the following paragraphs. The other method of creating
sprites is the same as that used for the Commodore 64; see the C64
Programmer’s Reference Guide for details on this sprite-creation
technique.

Adjoining Sprites

You have learned how to create, color, turn on and animate a sprite.
An occasion may arise when you want to create a picture that is too
detailed or too large to fit into a single sprite. In this case, you can
join two or more sprites so the picture is larger and more detailed
than with a single sprite. By joining sprites, each one can move inde-
pendently of one another. This gives you much more control over
animation than a single sprite.

This section includes an example using two adjoining sprites. Here’s
the general procedure (algorithm) for writing a program with two or
more adjoining sprites.

1. Draw a picture on the screen with Commodore 128 graphics state-
ments, such as DRAW, BOX and PAINT, just as you did in the race-
way program in the last section. This time, make the picture twice
as large as a single sprite with the dimensions 48 pixels wide by 21
pixels tall.

2. Use two SSHAPE statements to store the sprites into two sepa-
rate data strings. Position the first SSHAPE statement coordinates
over the 24 by 21 pixel area of the first half of the picture you drew.
Then position the second SSHAPE statement coordinates over
the second 24 by 21 pixel area. Make sure you store each half of
the picture data in a different string. For example, the first
SSHAPE statement stores the first half of the picture into A$, and
the second SSHAPE statement stores the second half of the pic-
ture in BS.

3. Transfer the picture data from each data string into a separate
sprite with the SPRSAV statement.

4. Turn on each sprite with the SPRITE statement.

5. Position the sprites so the beginning of one sprite starts at the
pixel next to where the first sprite ends. This is the step that actu-

USING C128 MODE—Color, Animation and Sprite Graphics Statements

ally joins the sprites. For example, draw a picture 48 by 21 pixels.
Position the first sprite (1, for example) at location 10,10 with this
statement:

100 MOVSPR 1,10,10

where the first number is the sprite number, the second number is
the horizontal (X) coordinate and the third number is the vertical
(Y) coordinate. Position the second sprite 24 pixels to the right of
sprite 1 with this statement:

200 MOVSPR 2,34,10

At this point, the two sprites are displayed directly next to each

other. They look exactly like the picture you drew in the beginning

of the program, using the DRAW, BOX and PAINT statements.

6. Now you can move the sprites any way you like, again using the
MOVSPR statement. You can move them together along the same
path or in different directions. As you learned in the last section,
the MOVSPR statement allows you to move sprites to a specific
location on the screen, or to a location relative to the sprite’s origi-
nal position.

The following program is an example of adjoining sprites. the pro-
gram creates an outer space environment. it draws stars, a planet
and a spacecraft similar to Apollo. The spacecraft is drawn, then
stored into two data strings, A$ and B$. The front of the spaceship,
the capsule, is stored in sprite 1. The back half of the spaceship, the
retro rocket, is stored in sprite 2. The spacecraft flies slowly across
the screen twice. Since it is traveling so slowly and is very far from
Earth, it needs to be launched earthward with the retro rockets.
After the second trip across the screen, the retro rockets fire and
propel the capsule safely toward Earth.

Here’s the program listing:

USING C128 MODE—Color, Animation and Sp}ite Graphics Statements

C C = L

 C [C

 C C =

R N B

(

C

5 COLOR 4,1:COLOR 0,1:COLOR 1,2:REM SELECT BLACK BORDER & BKGRND, WHITE FRGRD
10 GRAPHIC 1,1:REM SET HI RES MODE
17 FOR I= 1T040 i
=INT(RND(1)*320)+1:REM DRAW STARS
f=INT(RND(1)*200)+1:REM DRAW STARS
RAW 1,X,Y:NEXT :REM DRAW STAR
30X 0, 0 5,70,40,,1:REM CLEAR BOX .
-BOX 1,1,5,70,40:REM BOX-IN SPACESHIP
2OLOR 1,8:CIRCLE 1,190,90,35,25:P 1,190,95:REM DRAW & PAINT PLANET
IRCLE 1,190,90,65,10:CIRCLE 1,19 € :COLOR 0,1
DRAW 1,10,17 TO 16,17 TO 32,10 TO : +30 TO 16,23 TO 10,23 TO 10,17
DRAW 1,19,24 TO 20,21 TO 27,25 TO 26 28 REM BOTTOM WINDOW

DRAW 1,20,19 TO 20,17 TO 29,13 TO 30,18 TO 28,23 TO 20,19:REM TOP WINDOW
AINT 1 13 20:REM PAINT SPACESHIP . .

RAW 1, 34 10 TO 36,20 TO 34,30 TO }30 TO 46,20 TO 45,10 TO 34,10:REM SP1
'DRAW 1,45,10 TO 51,12 TO 57,10 TO 57,17 TO 51,15 TO 46,17:REM ENGl

- DRAW 1,46,22 TO 51,24 TO 57,22 TO 57,29 TO 51,27 TO 45,29:REM ENG2

PAINT 1, 40 15;PAINT 1,47,12:PAINT 1,47,26:DRAW 0,45,30 TO 46,20 TO 45,10

5 DRAW 0, 34 14 TO 44,14 :DRAW 0,34,21 TO 44, 21: DRAW 0,34, 28 TO 44,28

SSHAPE A$,10,10,33,30:REM SAVE SPRITE IN A$

BS$,34,10,57,30:REM SAVE SPRITE IN BS

A$,1:REM SPRl DATA

B$,2:REM SPR2 DATA

1,1,3,0,0,0,0:REM SET SPR1 ATTRIBUTES

2,1,7,0,0,0,0:REM SET SPR2 ATTRIBUTES
1,1
2

+150 ,150:REM ORIGINAL POSITION OF SPR1
»172 ,150:REM ORIGINAL POSITION OF SPR2
1,270 # 5 :REM MOVE SPR1 ACROSS SCREEN
2,270 # 5 :REM MOVE SPR2 ACROSS SCREEN
OR I= lTO 5950 :NEXT:REM DELAY
2 MOVSPR 1,150,150:REM POSITION SPR1 FOR RETRO ROCKET LAUNCH
‘MOVSPR 2,174,150:REM POSITION SPR2 FOR RETRO ROCKET LAUNCH
MOVSPR 1,270 # 10 :REM SPLIT ROCKET
 MOVSPR 2,125 # 5 :REM SPLIT ROCKET
_FOR 1I= 1TO 1200:NEXT:REM DELAY
RITE 2,0:REM TURN OFF RETRO ROCKET (SPRZ)
OR I=1TO 20500:NEXT:REM DELAY
‘GRAPHIC 0,1:REM RETURN TO TEXT MODE

Here's an explanation of the program:

® Line 5 COLORs the background black and the foreground
white.

¢ Line 10 selects standard high-resolution mode and clears the
high-res screen.

* Lines 17 through 21 DRAW the stars.

* Line 23 BOXes in a display area for the picture of the space-
craft in the top-left corner of the screen.

¢ Line 24 DRAWSs and PAINTSs the planet.

* Line 25 DRAWSs the CIRCLEs around the planet.

* Line 26 DRAWSs the outline of the capsule portion of the
spacecraft.

121 USING C128 MODE—Color, Animation and Sprite Graphics Statements

¢ Line 28 DRAWSs the bottom window of the space capsule.

¢ Line 35 DRAWSs the top window of the space capsule.

e Line 38 PAINTSs the space capsule white.

* Line 40 DRAWS the outline of the retro rocket portion of the
spacecraft.

¢ Line 42 and 43 DRAW the retro rocket engines on the back of
the spacecraft.

® |ine 44 PAINTSs the retro rocket engines and DRAWS an out-
line of the back of the retro rocket in the background color.

¢ Line 45 DRAWSs lines on the retro rocket portion of the space-
craft in the background color. (At this point, you have dis-
played only pictures on the screen. You have not used any
sprite statements, so your rocketship is not yet a sprite.)

® Line 47 positions the SSHAPE coordinates above the first half
(24 by 21 pixels), of the capsule of the spacecraft and stores it
in a data string, A$.

e Line 48 positions the SSHAPE coordinates above the second
half (24 by 21 pixels) of the spacecraft and stores it in a data
string, BS$.

¢ Line 50 transfers the data from A$ into sprite 1.

® Line 55 transfer the data from B$ into sprite 2.

e Line 60 turns on sprite 1 and colors it red.

® Line 65 turns on sprite 2 and colors it blue.

* Line 82 positions sprite 1 at coordinate 150,150.

® [ine 83 positions sprite 2, 24 pixels to the right of the starting
coordinate of sprite 1.

¢ Lines 82 and 83 actually join the two sprites.

¢ | ines 85 and 87 moves the joined sprites across the screen.

¢ Line 90 delays the program. This time, delay is necessary for
the sprites to complete three trips across the screen. |f you
leave out the delay, the sprites do not have enough time to
move across the screen.

¢ |ines 92 and 93 position the sprites in the center of the
screen, and prepare the spacecraft to fire the retro rockets.

® Line 95 propels sprite 1, the space capsule, forward. The
number 10 in line 95 specifies the speed in which the sprite
moves. The speed ranges from 0, which is stop, to 15, which
is lightning fast.

® Line 96 moves the expired retro rocket portion of the space-
craft backwards and off the screen.

® Line 97 is another time delay so the retro rocket, sprite 2, has
time to move off the screen.

® Line 98 turns off sprite 2, once it is off the screen.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

. C C

(-

(-

C C C - b &

L C

C:

)

]

| R

—

]

-]

]

I

B

B S R

1

J

123

¢ Line 99 is another delay so the capsule can continue to move
across the screen.
® Line 100 returns you to text mode.

Working with adjoining sprites can be more interesting than working
with a single sprite. The main points to remember are: (1) Make sure
you position the SSHAPE coordinates at the correct locations on the
screen, so you save the picture data properly; and (2) be certain to
position the sprite coordinates in the correct location when you are
joining them with the MOVESPR statement. In this example, you posi-
tioned sprite 2 at a location 24 pixels to the right of sprite 1.

Once you master the technique of adjoining two sprites, try more
than two. The more sprites you join, the better the detail and anima-
tion will be in your programs.

The C128 has two additional SPRITE commands, SPRCOLOR and
COLLISION, which are not covered in this chapter. To learn about
these commands, refer to Chapter V, the BASIC 7.0 Encyclopedia.

Storing Sprite Data in Binary Files

The Commodore 128 has two new commands, BLOAD and BSAVE,
which make handling sprite data neat and easy. The “B” in BLOAD
and BSAVE stand for BINARY. The BSAVE and BLOAD commands
save and load binary files to and from disk. A binary file consists of
either a portion of a machine language program, or a collection of
data within a specified address range. You may be familiar with the
SAVE Command within the built-in machine language monitor. When
you use this SAVE command, the resulting file on disk is considered
a binary file. A binary file is easier to work with than an object code
file since you can load a binary file without any further preparation.
An object code file must be loaded with a loader, as in the Commo-
dore 64 Assembler Development System; then the SYSTEM com-
mand (SYS) must be used to execute it.

You're probably wondering what this has to do with sprites. Here’s
the connection. The Commodore 128 has a dedicated portion of
memory ranging from decimal address 3584 ($0E00Q) through 4095
($OFFF), where sprite data is stored. This portion of memory takes
up 512 bytes. As you know, a sprite is 24 pixels wide by 21 pixels tall.
Each pixel requires one bit of memory. If the bit in a sprite is off
(equal to 0), the corresponding pixel on the screen is considered off
and it takes on the color of the background. If a pixel within a sprite is

USING C128 MODE—Color, Animation and Sprite Graphics Statements

124

on (equal to 1), the corresponding pixel on the screen is turned onin
the foreground color. The combination of zeroes and ones produces
the image you see on the screen.

Since a sprite is 24 by 21 pixels and each pixel requires one bit of .
storage in memory, one sprite uses up 63 bytes of memory. See Fig-
ure 6-8 to understand the storage requirements for a sprite’s data.

12345678 12345678 12345678

Each Row = 24 bits = 3 bytes
Figure 6-8. Sprite Data Requirements

A sprite requires 63 bytes of data. Each sprite block is actually made
up of 64 bytes; the extra byte is not used. Since the Commodore 128
has eight sprites and each one consists of a 64-byte sprite block, the
computer needs 512 (8 X 64) bytes to represent the data of all eight
sprite images.

USING C128 MODE—Color, Animation and Sprite Graphics Statér’hents '

(G R BN IR

C

[

L

C C C

C C [C

)

-]

1

;

)

]

]

—

)

—

)

-

]

]

]

)

—

1

~.
g

125

The eptire area where all eight sprite blocks reside starts at memory
location 3584 ($0E0Q) and ends at location 4095 ($0FFF). Figure 6-9
lists the memory address ranges where each individual sprite stores
its data.

$OFFF (4095 Decimal)

]—Sprite 8
$0FCO

]—Sprite 7
$OF80

]—Sprite 6
$0F40

$0F00

]—Sprite 4
$0ECO

]—Sprite 3

]—Sprite 5

$0E80

]—Sprite 2
$0E40

]—Sprite 1
$0E00 (3584 Decimal)

Figure 6-9. Memory Address Ranges for Sprite Storage

BSAVE Once you exit from the SPRDEF mode, you can
save our sprite data in binary sprite files. This
way, you can load any collection of sprites back
into the Commaodore 128 neatly and easily. Use
this command to save your sprite datainto a
binary file:

BSAVE “filename”, B0, P3584 TO P4096

The binary filename is a name you give to the file. The “B0” specifies
that you are saving the sprite data from bank 0. The parameters
“P3584 TO P4096™ signify you are saving the address range 3584
($OEOQQ) through 4095 ($0FFF), which is the range where all the sprite
data is stored.

You do not have to define all of the sprites when you BSAVE them.
The sprites you do define are BSAVEd from the correct sprite block.
The undefined sprites are also BSAVEd in the binary file from the
appropriate sprite block, but they do not matter to the computer. Itis

USING C128 MODE—Color, Animation and Sprite Graphics Statements

easier to BSAVE the entire 512 bytes of all eight sprites, regardiess if
all the sprites are used, rather than BSAVE each sprite block individ-

ually.

BLOAD Later on, when you want to use the sprites
again, just BLOAD the entire 512 bytes for all of
the sprites into the range starting at 3584
($0E00) and ending at 4095 (30FFF). Here's the
command to accomplish this:

BLOAD “filename”[, BO, P3584]

Use the same filename you entered when you BSAVEd your original
sprite data. The “B0” stands for the bank number 0 and the P3584
specifies the starting location where the binary sprite data file is
loaded. The last two parameters are optional.

NOTE: When you BLOAD sprite data into the sprite storage area, all
the data that was previously there is overwritten with the
binary sprite data file. If you used SPRite DEFinition mode to
create sprites, BSAVE them before you BLOAD new data, or
your original data will be lost.

kkkhkkkhkhkkhkhhkhkhkhkkhkkhkhkhhkhkhhkhhkhkhhkhkhkhhhkhhkhkhkhkhkhkhkhkkhkkkkhkkkk

In this section you have seen how much the new Commodore 7.0
BASIC commands can simplify the usually complex process of cre-
ating and animating graphic images. The next section describes
some other new BASIC 7.0 commands that do the same for music
and sound.

126 USING C128 MODE—Color, Animation and Sprite Graphics Statements

L C C

CCCCCcoCcrCrCoCcCoCo e

(Z

-

)

]

_)

N

7

]

B

}

]

~

7

I

)

1

)

)

SECTION 7

Sound and Music

in©128 Mode

127

INTRODUCTION

THE SOUND STATEMENT
Writing a SOUND Program
Random Sounds

ADVANCED SOUND AND MUSIC IN C128 MODE
A Brief Background: The Characteristics of Sound
Making Music on the Commodore 128
The ENVELOPE Statement
The TEMPO Statement
The PLAY Statement
The SID Filter
The FILTER Statement
Tying your Music Program Together
Advanced Filtering

CODING A SONG FROM SHEET MUSIC

USING C128 MODE—Sound and Music in C128 Mode

129

130
132
136

138
138
140
140
143
143
147
150
151
152

154

73 339072333177 373773939399

V

)

B

)

)

-]

]

]

I

]

]

i

]

n

n

Introduction

The Commodore 128 has one of the most sophisticated built-in
sound synthesizers available in a microcomputer. The synthesizer,
called the Sound Interface Device (SID), is a chip dedicated solely to
generating sound and music. The SID chip is capable of producing
three independent voices (sounds) simultaneously. Each of the
voices can be played in one of four types of sounds, called wave-
forms. The SID chip also has programmable Attack, Decay, Sustain
and Release (ADSR) parameters. These parameters define the qual-
ity of a sound. In addition, the synthesizer has a filter you can use to
choose certain sounds, eliminate others, or modify the characteris-
tics of a sound or sounds. In this section you will learn how to control
these parameters to produce almost any kind of sound.

To make it easy for you to select and manipulate the many capabili-
ties of the SID chip, Commodore has developed new and powerful
BASIC music statements.

Here are the new sound and music statements available on the
Commaodore 128:

SOUND
ENVELOPE
VOL
TEMPO
PLAY
FILTER

This section explains these sound statements, one at a time, in the
process of constructing a sample musical program. When you are
finished with this section, you will know the ingredients that go into a
musical program. You'll be able to expand on the example and write
programs that play intricate musical compositions. Eventually, you'll
be able to program your own musical scores, make your own sound
effects and play works of the great classical masters such as
Beethoven and contemporary artists like the Beatles. You can even
add computer-generated music to your graphics programs to create
your own “videos.”

USING C128 MODE—Sound and Music in C128 Mode

The SOUND
Statement

130

The SOUND statement is designed primarily for quick and easy
sound effects in your programs. You will learn a more intricate way of
playing complete musical arrangements with the other sound state-
ments later in this section.

The format for the SOUND statement is as follows:
SOUND VC, FREQ, DUR], DIR[, MIN[, SV[, WF[, PWI]1l]

Here’s what the parameters mean:
VC —Select VoiCe 1,20r3

FREQ—Set the FREQuency level of sound (0-65535)

DUR —Set DURation of the sound (in 60ths of a second)
(0-32767)

DIR —Set the DIRection in which the sound is incremented/
decremented

0 = Increment the frequency upward
1 = Decrement the frequency downward
2 = Oscillate the frequency up and down

MIN —Select the MINimum frequency (0-65535) if the
sweep (DIR) is specified

SV —Choose the Step Value for the sweep (0-32767)
WF —Select the Wave Form (0-3)

0 = Triangle
1 = Sawtooth
2 = Variable Pulse
3 = White Noise
PW —Set the Pulse Width, the width of the variable pulse
waveform

Note that the DIR, MIN, SV, WF and PW parameters are optional.

USING C128 MODE—Sound and Music in C128 Mode

(. [C

L C C O =

[~

IR A I R

—

(

-

~

(

)

]

3}

-}

N

i

n

]

-]

-]

]

]

)

)

1}

2

]

The first parameter (VC) in the SOUND statement selects which
voice will be played. The second parameter (FREQ) determines the
frequency of the sound, which ranges from 0 through 65535. The
third setting (DUR) specifies the amount of time the sound is played.
The duration is measured in 60ths of a second. If you want to play a
sound for one second, set the duration to 60, since 60 times 1/60
equals 1. To play the sound for two seconds, specify the duration to
be 120. To play the sound 10 seconds, make the duration 600, and so
on.

The fourth parameter (DIR) selects the direction in which the fre-
quency of the sound is incremented or decremented. This is referred
to as the sweep. The fifth setting (MIN) sets the minimum frequency
where the sweep begins. The sixth setting (SV) is the step value of
the sweep. It is similar to the step value ina FOR . . . NEXT loop. If
the DIR, MIN and SV values are specified in the SOUND command,
the sound is played first at the original level specified by the FREQ
parameter. Then the synthesizer sweeps through and plays each
level of the entire range of frequency values starting at the MIN fre-
guency. The sweep is incremented or decremented by the step value
(SV) according to the direction specified by the DIR parameter and
the frequency is played at the new level.

The seventh parameter (WF) in the SOUND command selects the
waveform for the sound. (Waveforms are explained in detail in the
paragraph titled, Advanced Sound and Music in C128 Mode.)

The final setting (PW) in the SOUND command determines the width
of the pulse width waveform if it is selected as the waveform param-
eter. (See the Advanced Sound discussion for an illustration of the
pulse width waveform.)

USING C128 MODE—Sound and Music in C128 Mode

132

Writing a SOUND Program

Now it's time to write your first SOUND program. Here's an example
of the SOUND statement:

10 VOL 5
20 SOUND 1, 4096, 60

RUN this program. The Commodore 128 plays a short, high-pitched
beep. You must set the volume before you can play the sound state-
ment, so line 10 sets the VOLume of the sound chip. Line 20 plays
voice 1 at a frequency of 4096 for a duration of 1 second (60 times 1/
60). Change the frequency with this statement:

30 SOUND 1, 8192, 60

Notice line 30 plays a higher tone than line 20. This shows the direct
relationship between the frequency setting and the actual frequency
of the sound. As you increase the frequency setting, the Commodore
128 increases the pitch of the tone. Now try this statement:

40 SOUND 1, 0, 60

This shows that a FREQ value of 0 plays the lowest frequency (which
is so low it is inaudable). A FREQ value of 65535 plays the highest
possible frequency.

Now try placing the sound statement withina FOR . . . NEXT loop.
This allows you to play the complete range of frequencies within the
loop. Add these statements to your program:

50 FOR | = 1 TO 65535 STEP 100
60 SOUND 1, I, 1
70 NEXT

USING C128 MODE—Sound and Music in C128 Mode

N I R

-

-

I

I B

(I I

I R

(

-

-

1

—

!

)

)

]

n

o0

;.

1

1

-]

)

]

)

N

This program segment plays the variable pulse waveform in the
range of frequencies from 1 through 65535, in increments of 100,
from lowest frequency to highest. If you don’t specify the waveform,
the computer selects the default value of waveform 2, the variable
pulse waveform.

Now change the waveform with the following program line (60) and
try the program again:

60 SOUND 1,1,1,0,0,0,0, 0

Now the program plays-voice 1, using the triangle waveform, for the
range of frequencies between 1 and 65535 in increments of 100.
This sounds like a typical sound effect in popular arcade games. Try
waveform 1, the sawtooth waveform, and see how it sounds with
this line:

60 SOUND 1,1,1,0,0,0,1,0

The sawtooth waveform sounds similar to the triangle waveform
though it has less buzz. Finally, try the white noise waveform (3).
Substitute line 60 for this line:

60 SOUND 1,1,1,0,0,0, 3,0

Now the program loop plays the white noise generator for the entire
range of frequencies. At first, there is a low-pitched rumbling sound.
As the frequency increases in the loop, the pitch increases and
sounds like a rocket taking off.

USING C128 MODE—Sound and Music in C128 Mode

134

Notice that so far, we have not specified all of the parameters in the
SOUND statement. Take line 60, for example:

60 SOUND 1,1,1,0,0,0, 3,0
The three zeros following 1, |, 1 pertain to the sweep parameters

within the SOUND statement. Since none of the parameters is speci-

fied, the SOUND does not sweep. Add this line to your program:
100 SOUND 1, 49152, 240,1, 0, 100,1,0

A A A ﬂwk
Voice —[
Frequency

Duration
Sweep Direction
Minimum Sweep Frequency
Step Value for Sweep
Waveform
Pulse Width for Variable Width

Waveform

Line 100 starts the sweep frequency at 49152 and decrements the
sweep by 100 in the downward direction, until it reaches the mini-
mum sweep frequency at 0. Voice 1, using the sawtooth waveform
(#1), plays each SOUND for four seconds (240 * 1/60 sec.). Line 100
sounds like a bomb dropping, as in many “shoot 'em up” arcade
games.

Now try changing some of the parameters in line 100. For instance,
change the direction of the sweep to 2 (oscillate); change the mini-
mum frequency of the sweep to 32768; and increase the step value
to 3000. Your new SOUND command looks like this:

110 SOUND 1, 49152, 240, 2, 32768, 3000, 1

Line 110 makes a siren sound as though the police were right on
your tail. For a more pleasant sound, try this:

110 SOUND 1, 65535, 250, 0, 32768, 3000, 2, 2600

This should remind you of a popular space-age TV show, when the
space crew unleashed their futuristic weapons on the unsuspecting
aliens.

Until now, you have been programming in only one voice. You can
produce interesting sound effects with the SOUND statement using

USING C128 MODE—Sound and Music in C128 Mode

IR I

[

-

E

I I

I IR U AU U A

(-

[

—

]

]

|

;.

]

1

135

up to three voices. Experiment and create a program which utilizes
all three voices.

Here'’s a sample program that will help you understand how to pro-
gram the Commodore 128 synthesizer chip. The program, when run,
asks for each parameter, and then plays the sound. Here’s the pro-
gram listing. Type it into your computer and RUN it.

""FREQUENCY (0~ 65535)’
7"DURATION (0-32767)"

Here's a quick explanation of the program. Lines 10 and 20 PRINT
the introductory messages on the screen. Lines 30 through 50
INPUT the voice, frequency and duration parameters. Line 60 asks if
you want to enter the optional SOUND parameters, such as the
sweep settings and waveform. If you don’t want to specify these
parameters, press the “N” key and the program jumps to line 130
and plays the sound. If you do want to specify the optional SOUND
settings, press the “Y” key and the program continues with line 80.
Lines 80 through 110 specify the sweep direction, minimum sweep
frequency, sweep step value and waveform. Line 120 INPUTSs the
pulse width of the variable pulse waveform only if waveform 2 (varia-
ble pulse) is selected. Finally, line 130 plays the SOUND according to
the parameters that you specified earlier in the program.

Line 140 asks if you want to hear the SOUND again. If you do, press
the “Y" key; otherwise, press the “N” key. Line 150 checks to see if
you pressed the “Y” key. If you did, program control is returned to
line 130 and the program plays the SOUND again. |f you do not press

USING C128 MODE—Sound and Music in C128 Mode

the “Y" key, the program continues with line 160, which returns pro-
gram control to line 10 and the program repeats. To stop the Sound
Player program, press the RUN/STOP and RESTORE keys at the
same time.

Random Sounds

The following program generates random sounds using the RND
function. Each SOUND parameter is calculated randomly. Type the
program into your computer, SAVE it and RUN it. This program illus-
trates how many thousands of sounds you can produce by specify-
ing various combinations of the SOUND parameters. Here's the
listing:

 SOUND V, 0, 0, DIR, 0, 0, W, P
0 GOTO10 i 4 i

PRINT"VC FREQ DIR MIN SV WF
PRINT" f
V=INT(RND(1)*3)+1:REM VOICE i
F=INT(RND(1)*65535) :REM FREQ
D=INT(RND(1)*32767) :REM DURATION
DIR=INT(RND(1)*3) :REM STEP DIR
M=INT(RND(1)*65535) :REM MIN FREQ
S=INT(RND(1)*32767) :REM STEP VAL
W=INT(RND(1)*4) :REM WAVEFORM
P=INT(RND(1)*4095) :REM PULSE W
PRINTV; F;DIR;M;S;W;P:PRINT:PRINT
SOUND V, F, D, DIR, M, S, W, P-
SLEEP 4

Lines 10 and 20 PRINT parameter column headings and the under-
line. Lines 30 through 100 calculate each SOUND parameter within
its specific range. For example, line 30 calculates the voice number
as follows:

30 V = INT(RND(1)*3) + 1

The notation RND (1) specifies the seed value of the random num-
ber. The seed is the base number generated by the computer. The 1
tells the computer to generate a new seed each time the command
is encountered. Since the Commodore 128 has three voices, the
notation * 3 tells the computer to generate a random number within
the range O through 3. Notice, however, there is no voice 0, so the

136 USING C128 MODE—Sound and Music in C128 Mode

[

[

[

(-

-

[

I N

[

N B

=

]

]

]

!

N

)

B

I

i~

]

]

1

]

]

-l

]

N

+ 1inline 30 tells the computer to generate a random number in the
range between 1 and 3. The procedure for generating a random
number in a specific range is to multiply the given random number
times the maximum value of the parameter (in this case, 3). |f the
minimum value of the parameter is greater than zero, add to the ran-
dom number a value that will specify the minimum value of the range
of numbers you want to generate (in this case, 1). For instance, line
40 generates a random number in the range between 0 and 65535.
Since the minimum value is zero in this case, you do not need to add
a value to the generated random number.

Line 110 PRINTSs the values of the parameters. Line 120 plays the
SOUND specified by the random numbers generated in lines 30
through 100. Line 130 delays the program for 4 seconds while the
sound is playing. Line 140 turns off the SOUND after the 4 second
delay. All sounds generated by this program play for the same
amount of time, since they are all turned off after 4 seconds with line
140. Finally, line 150 returns control to line 10, and the process is
repeated until you press the RUN/STOP and RESTORE keys at the
same time.

So far you have experimented with sample programs using only the
SOUND statement. Although you can use the SOUND statement to
play musical scores, it is best suited for quick and easy sound
effects. The Commodore 128 has other statements designed specifi-
cally for song playing. The following paragraphs describe the
advanced sound and music statements that enable you to play com-
plex musical scores and arrangements with your Commodore 128
synthesizer.

USING C128 MODE—Sound and Music in C128 Mode

Advanced Sound
and Music in
C128 Mode

A Brief Background: The Characteristics of Sound

Every sound you hear is actually a sound wave traveling through the
air. Like any wave, a sound (sine) wave can be represented graphi-
cally and mathematically (see Figure 7-1).

Figure 7-1. Sine Wave

The sound wave moves (oscillates) at a particular rate (frequency)
which determines the overall pitch (the highness or lowness of the
sound).

The sound is also made up of harmonics, which are accompanying

L ¢ C & & L =

L

multiples of the overall frequency of the sound or note. The combina-
tion of these harmonic sound waves give the note its qualities, called
timbre. Figure 7-2 shows the relationship of basic sound frequencies

138

and harmonics.

RESULTANT WAVE

FUNDAMENTAL (1ST HARMONIC)

2ND HARMONIC 3RD HARMONIC

Figure 7-2. Frequency and Harmonics

The timbre of a musical tone, (i.e., the way a tone sounds,) is deter-
mined by the tone’s waveform. The Commodore 128 can generate
four types of waveforms: triangle, sawtooth, variable pulse and
noise. See Figure 7-3 for a graphic representation of these four
waveforms.

USING C128 MODE—Sound and Music in C128 Mode

I N

[

C

—

[

L =

o)

=

i

]

-~
—

)

]

]

i I

1

B

7

1

]

~

]

AN

AN N/

SV

SAWTOOTH

l=—PULSE WIDTH —*1

VARIABLE
PULSE

NOISE

Figure 7-3. Sound Waveforms Types

139 USING C128 MODE—Sound and Music in C128 Mode

140

Making Music on the Commodore 128

The ENVELOPE The volume of a sound changes throughout the

Statement duration of the note, from when you first hear it
until it is no longer audible. These volume quali-
ties are referred to as Attack, Decay, Sustain
and Release (ADSR). Attack is the rate at which
a musical note reaches its peak volume. Decay
is the rate at which a musical note decreases
from its peak volume to its midranged (sustain)
level. Sustain is the level at which a musical
note is played at its midranged volume. Release
is the rate at which a musical note decreases
from its sustain level to zero volume. The ENVE-
LOPE generator controls the ADSR parameters
of sound. See Figure 7-4 for a graphical repre-
sentation of ADSR. The Commodore 128 can
change each ADSR parameter to 16 different
rates. This gives you absolute flexibility over the
ENVELOPE generator and the resulting proper-
ties of the volume when the sound is originated.

Figure 7-4. ADSR Phases

One of the most powerful Commodore 128
sound statements—the one that controls the
ADSR and waveform—is the ENVELOPE state-
ment. The ENVELOPE statement sets the differ-
ent controls in the synthesizer chip which
makes each sound unique. The ENVELOPE
gives you the power to manipulate the SID syn-
thesizer. With ENVELOPE, you can select partic-
ular ADSR settings and choose a waveform for
your own music and sound effects. The format
for the ENVELOPE statement is as follows:

ENVELOPE el,a[,d,s[,r[,wf[,Pw]]1]]]

USING C128 MODE—Sound and Music in C128 Mode

AU B N B

o

C =& C CCCc & Cc Cc &

[

1]

-1

1

)

—

]

1

1

;

-

-1

1)

]

Here’'s what the letters mean:

e — envelope number (0-9)
a — attackrate (0-15)
d — decayrate (0-15)
s — sustain level (0-15)
r — release rate (0-15)
wf — waveform—O0 = triangle
1 = sawtooth
2 = pulse (square)
3 = noise
4 = ring modulation
pw — pulse width (0-4095)

Here are the definitions of the parameters not
previously defined:

Envelope -The properties of a musical
note specified by the wave-
form and the attack, decay,
sustain and release settings
of the note. For example, the
envelope for a guitar note
has a different ADSR and
waveform than a flute.

Waveform -The type of sound wave
created by the combination
of accompanying musical
harmonics of a tone. The
accompanying harmonic
sound waves are multiples
of, and are based on the
overall frequency of the
tone. The qualities of the
tone generated by each
waveform are recognizably
different from one another
and are represented graphi-
cally in Figure 7-3.

Pulse Width-The length of time between
notes, generated by the
pulse waveform.

Now you can realize the power of the ENVE-
LOPE statement. It controls most of the musical
qualities of the notes being played by the sound

141 USING C128 MODE—Sound and Music in G128 Mode

synthesizer. The Commodore 128 has 10 prede-
fined envelopes for 10 different musical instru-
ments. In using the predefined envelopes you
do not have to specify the ADSR parameters,
waveform and pulse width settings—this is
already done for you. All you have to do is spec-

ters are chosen automatically by the Commo-
dore 128. Here are the preselected envelopes
for different types of musical instruments:

Envelope Wave-

Number Instrument Attack Decay Sustain Release form Width
0 Piano 0 9 0 0 2 1536
1 Accordion 12 0 12 0 1

2 Calliope 0 0 25 0 0

3 Drum 0 5 5 0 3

4 Flute 9 4 4 0 0

5 Guitar 0 9 2 1 1

6 Harpsichord 0 9 0 0 2 512

7 Organ 0 9 9 0 2 2048
8 Trumpet 8 9 4 1 2 512

9 Xylophone 0 9 0 0 0

Figure 7-5. Default Parameters for ENVELOPE Statement

Now that you have a little background on the
ENVELOPE statement, begin another example
by entering this statement into your Commodore
128.

10 ENVELOPE 0, 5, 9, 2, 2, 2, 1700

This ENVELOPE statement redefines the default
piano envelope (0) to the following: Attack = 5,
Decay = 9, Sustain = 2, Release = 2, wave-
form remains the same (2) and the pulse width
of the variable pulse waveform is now 1700. The
piano envelope will not take on these properties
until it is selected by a PLAY statement, which
you will learn later in this section.

142 USING C128 MODE—Sound and Music in C128 Mode

ify the envelope number. The rest of the parame-

N I I

(-

-

L

- C C C C C =

[[[

[

-

]

1]

0)

]

I I

1

n

]

I R

-]

The TEMPO
Statement

The PLAY
Statement

The next step in programming music is setting
the volume of the sound chip as follows:

20 VOL 8

The VOL statement sets the volume of the sound
chip between 0 and 15, where 15 is the maxi-
mum and O is off (no volume).

The next step in Commodore 128 music pro-
gramming is controlling the tempo, or speed of
your tune. The TEMPO statement does this for
you. Here's the format:

TEMPO n

where n is a digit between 1 and 255 (and 255
is the fastest tempo). If you do not specify the
TEMPO statement in your program, the Com-
modore 128 automatically sets the tempo to 8.
Add this statement to your musical example
program:

30 TEMPO 10

Now it's time to learn how to play the notes in
your song. You already know how the PRINT
statement works. You play the notes in your tune
the same way as PRINTIng a text string to the
screen, except you use the PLAY statement in
place of PRINT. PRINT outputs text, PLAY out-
puts musical notes.

Here's the general format for the play statement:

PLAY“string of synthesizer control
characters and musical notes”

The total number of characters (including musi-
cal notes and synthesizer control characters)
that can be put into a PLAY command is 255.
However, since this exceeds the maximum
number of characters (160) allowed for a single
program line in BASIC 7.0, you have to concate-
nate (that is, add together) at least two strings to
reach this length. You can avoid the need to
concatenate strings by making sure your PLAY
commands do not exceed 160 characters, i.e.,

USING C128 MODE—Sound and Music in C128 Mode

one program line in length. (This is equivalent to
four screen lines in 40-column mode, and two
screen lines in 80-column mode.) By doing this,
you will produce PLAY command strings that
are easier to understand and use.

To play musical notes, enclose the letter of the
note you want to play within quotes. For exam-
ple, here’s how to play the musical scale:

40 PLAY“CDEFGAPB”

This plays the notes C, D, E, F, G, Aand B in the
piano envelope, which is envelope 0. After each
time you RUN this example program you are
creating, hold down the RUN/STOP key and

press the RESTORE key to reset the synthesizer
chip.

You have the option of specifying the duration of
the note by preceding it in quotes with one of
the following letters:

W-Whole note

H -Half note

Q -Quarter note

I -Eighth note

S -Sixteenth note

The default setting, if the duration is not speci-
fied, is for Whole (W) notes.

You can PLAY a rest by including the following in
the PLAY string:

R-Rest

You can instruct the computer to wait until all
voices currently playing reach the end of a mea-
sure by including the following in quotes:

M-Wait for end of measure

The Commodore 128 also has synthesizer con-
trol characters you can enclose within quotes in
a PLAY string. This gives you absolute control
over each note and allows you to change syn-
thesizer controls within a string of notes. Follow

USING C128 MODE—Sound and Music in G128 Mode

I B

[

—
—

(

C C C C C

I

[

[

C L

1

-

.

]

1

|

1

11

_

]

1

]

B I I

the control character with a number in the allow-
able range for that character. The control char-
acters and the range of numbers for each are
shown in Figure 7-6. The “n” following the con-
trol character refers to the number you select
from the specified range.

Control Default
Character Description Range Setting
Vn Voice 1-3 1
On Octave 0-6 4
Tn Envelope 0-9 0
Un Volume 0-15 9
Xn Filter 0 = off, 0

1=on

Figure 7-6. Sound Synthesizer
Control Characters

Although the SID chip can process these con-
trol characters in any order, for the best results,
place the control characters in your string in the
order that they appear in Figure 7-6.

You don't absolutely have to specify any of the
control characters, but you should to maximize
the power from your synthesizer. The Commo-
dore 128 automatically sets the synthesizer
controls to the default settings in Figure 7-6. If
you don’t assign special control characters, the
SID chip can PLAY only one envelope, one voice
and one octave without any FILTERing. Specify
the control characters to exercise the most con-
trol over the notes within your PLAY string.

If you specify an ENVELOPE statement and
select your own settings instead of using the
default parameters from Figure 7-5, the enve-
lope control character number in your PLAY
string must match the envelope number in your
ENVELOPE statement in order to assume the
parameters you assigned. You don’t have to
specify the ENVELOPE statement at all if you
just want to PLAY the default envelope settings
from Figure 7-6. In this case, simply select an
envelope number with the (T) control character
in the PLAY statement.

USING C128 MODE—Sound and Music in C128 Mode

Here's an example of the PLAY statement using
the SID chip control characters within a string.
Add this line to your program and notice the
difference between this statement and the
PLAY statement in line 40.

50 PLAY “V20O5T7US XOCDEFGAB”

This statement PLAYS the same notes as in line
40, but voice 2 is selected, the notes are played
one octave higher (5) than line 40, the volume
setting is turned down to 5 and the FILTER is
specified as off. For now, leave the filter off.
When you learn about FILTERing in the next
section, you can come back and turn the filter
on to see how it affects the notes being played.
Notice line 50 selects a new instrument, the
organ envelope, with the T7 control character.
Now your program PLAYS two different instru-
ments in two of the independent voices. Add
this statement to PLAY the third voice:

60 PLAY “V3 06 T6 U7XOCDEFGAB”

Here’s how line 60 controls the synthesizer. The
V3 selects the third voice, O6 places voice 3 one
octave higher (6) than voice two, T6 selects the
harpsichord envelope, U7 sets the volume to 7
and X0 leaves the filter off for all three voices.
Now your program PLAYS all three voices, each
one octave higher than the other, in three sepa-
rate instruments, piano, organ and harpsichord.

So far, your PLAY statements only played whole
notes. Add notes of different duration by placing
duration control characters in your PLAY string
as follows:

70 PLAY “V206 TOU7XOHCDQEFIG
ASB”

Line 70 PLAYs voice 2 in octave 6 at volume
level 7 with the redefined piano envelope (0) on
and filter turned off. This statement PLAYs the
notes C and D as half notes, E and F as quarter
notes, G and A as eighth notes and B as a six-
teenth note. Notice the difference between the

USING C128 MODE—Sound and Music in C128 Mode

I I

C C C [

L.

N A I

U B I O

2]

|]

a0

-1 1 1]

]

]

]

N

147

The SID Filter

piano envelope in line 40 and the redefined
piano envelope in line 70. Line 40 actually
sounds more like a piano than line 70.

You can PLAY sharp, flat and dotted notes by
preceding the notes within quotes with the fol-
lowing characters:

#— Sharp
$— Flat
.— Dotted

A dotted note plays one-and-a-half times longer
than a note that is not dotted.

Now try adding sharp, flat and dotted notes with
this statement:

80 PLAY “V104T4U8X0O.HCDQ#EFI
$GAS#B”

Line 80 PLAYS voice 1 in octave 4 at volume
level 8 with the flute envelope turned on and the
filter turned off. It also PLAYS C and D as dotted
half notes, E and F as sharp quarter notes, G
and A as flat eighth notes and B as a sharp dot-
ted sixteenth note. You can add rests (R) at any
place within your PLAY string. The spaces in the
new PLAY statement examples are not neces-
sary. They are used only for readability.

Up until now your statement examples have left
the filter off within the sound synthesizer and
have not realized the true power behind it. Now
that you have digested most of the sound and
music statements and the SID control charac-
ters, move on to the next section to learn how to
enhance your musical quality with the FILTER
statement.

Once you have selected the ENVELOPE, ADSR,
VOLume and TEMPO, use the FILTER to perfect
your synthesized sounds. In your program, the
FILTER statement will precede the PLAY state-
ment. First you should become comfortable
with generating the sound and worry about FIL-
TERing last. Since the SID chip has only one

USING C128 MODE—Sound and Music in C128 Mode

filter, it applies to all three voices. Your comput-
erized tunes will play without FILTERing, but to
take full advantage of your music synthesizer,

use the FILTER statement to increase the sharp-

ness and quality of the sound.

In the first paragraph of this section, The Char-
acteristics of Sound, we defined a sound as a
wave traveling (oscillating) through the air at a
particular rate. The rate at which a sound wave
oscillates is called the wave’s frequency. Recall
that a sound wave is made up of an overall fre-
qguency and accompanying harmonics, which
are multiples of the overall frequency. See Fig-
ure 7-2. The accompanying harmonics give the
sound its timbre, the qualities of the sound
which are determined by the waveform. The
filter within the SID chip gives you the ability to
accent and eliminate the harmonics of a wave-
form and change its timbre.

The SID chip filters sounds in three ways: low-
pass, band-pass and high-pass filtering. These
filtering methods are additive, meaning you can
use more than one filter at a time. This is dis-
cussed in the next section. Low-pass filters out
frequencies above a certain level you specify,
called the cutoff frequency. The cutoff fre-
guency is the dividing line that marks the bound-
ary of which frequency level will be played and
which will not. In low-pass filtering, the SID chip
plays all frequencies below the cutoff frequency
and filters out the frequencies above it. As the
name implies, the low frequencies are allowed
to pass through the filter and the high ones are
not. The low-pass filter produces full, solid
sounds. See Figure 7-7.

USING C128 MODE—Sound and Music in C128 Mode

I I I

-

—_—

[

T C CCC bbb &L

I

1

1

-]

]

1]

Jo 1 1 1 1 1 1

1

AMOUNT PASSED

CUTIOFF

FREQUENCY

Figure 7-7. Low-pass Filter

Conversely, the high-pass filter allows all the
frequencies above the cutoff frequency to pass
through the chip. All the ones below it are fil-
tered out. See Figure 7-8. The pass filter pro-
duces tinny, hollow sounds.

AMOUNT PASSED

CUTOFF
]

FREQUENCY

Figure 7-8. High-pass Filter

The band-pass filter allows a range of frequen-
cies partially above and below the cutoff fre-
guency to pass through the SID chip. All other
frequencies above and below the band sur-
rounding the cutoff frequency are filtered out.
See Figure 7-9.

AMOUNT PASSED

CUTIOFF

FREQUENCY

Figure 7-9. Band-pass Filter

149 USING C128 MODE—Sound and Music in C128 Mode

The FILTER
Statement

The FILTER statement specifies the cutoff fre-
quency, the type of filter being used and the
resonance. The resonance is the peaking effect
of the sound wave frequency as it approaches
the cutoff frequency. The resonance determines
the sharpness and clearness of a sound: the
higher the resonance, the sharper the sound.

This is the format of the FILTER statement:
FILTER cf, Ip, bp, hp, res
Here's what the parameters mean:

cf —Cutoff frequency (0-2047)

Ilp —Low-passfilter0 = off, 1 = on
bp -Band-pass filter 0 = off, 1 = on
hp -High-pass filter 0 = off, 1 = on
res —Resonance (0-15)

You can specify the cutoff frequency to be any
value between 0 and 2047. Turn on the low-pass
filter by specifying a 1 as the second parameter
in the FILTER statement. Turn on the band-pass
filter by specifying a 1 as the third parameter
and enable the high-pass filter with a 1 in the
fourth parameter position. Turn off any of the

three filters by placing a 0 in the respective posi-

tion of the filter you want to disable. You can
enable or disable one, two or all three of the
filters at the same time.

Now that you have some background on the
FILTER statement, add this line to your sound
program, but do not RUN the program yet.

45 FILTER 1200, 1, 0, 0, 10

Line 45 sets the cutoff frequency at 1200, turns
on the low-pass filter, disables the high-pass and
band-pass filters and assigns a 10 as the reso-
nance level. Now go back and turn the filter on
in your PLAY statements by changing all the X0
filter control characters to X1. Reset the sound
chip by pressing the RUN/STOP and RESTORE
keys and RUN your sound program again.
Notice the differences between the way the

USING C128 MODE—Sound and Music in C128 Mode

L L C &£ =

.

[

[[[

I I

[

1 1

B R

-

1 1

notes sound and how they sounded without the
filter. Change line 45 to:

45 FILTER 1200, 0, 1, 0, 10

The new line 45 turns off the low-pass filter and
enables the band-pass filter. Press RUN/STOP
and RESTORE and RUN your sound program
again. Notice the difference between the low-
pass and band-pass filters. Change line 45 again
to:

45 FILTER 1200, 0, 0, 1, 10

Reset the sound chip and RUN your example
program again. Notice the difference between
the high-pass filter and the low-pass and band-
pass filters. Experiment with different cutoff
frequencies, resonance levels and filters to per-
fect the music and sound in your own programs.

Tying Your Music Program Together

Your first musical program is complete. Now you can program your
favorite songs. Let’s tie all the components together. Here’s the pro-
gram listing. Don’t be alarmed, this is the same program you built in
this section except the print statements are added so you know

11 1 1 1

I R

N

which program lines are being played.

USING C128 MODE—Sound and Music in C128 Mode

162

Line 10, the ENVELOPE statement, specifies the envelope for piano
(0), which sets the attack to 5, decay t0 9, sustain to 2 and release to
0. It also selects the variable pulse waveform with a pulse width of
1700. Line 15 sets the VOLume to 8. Line 20 chooses the TEMPO to
be 10. ‘

Line 35 FILTERs the notes that are played in lines 30 through 115. It
sets the FILTER cutoff frequency to 1200. In addition, line 35 turns
off the low-pass and band-pass filters with the two zeros following
the cutoff frequency (1200). The high-pass filter is turned on with the
1 following the two zeros. The resonance is set to 10 by the last
parameter in the FILTER statement.

Line 30 PLAYS the notes C, D, E, F, G, A, Biin that order. Line 45
PLAYS the same notes as line 30, but it specifies the SID control
characters U5 as volume level 5, V2 as voice 2 and 05 as octave 5.
Remember, the SID control characters allow you to change the syn-
thesizer controls within a string and exercise the most control over
the synthesizer. Line 65 specifies the control characters U7 for vol-
ume level 7, V3 for voice 06 for octave 6 and X0 to turn off the filter.
Line 65 PLAYS the same notes as lines 30 and 45, but in a different
volume, voice and octave.

Line 85 has the same volume and octave as line 65, and it specifies
half notes for the notes C and D, quarter notes for the notes E and F,
eighth notes for notes G and A and a sixteenth note for the B note.
Line 105 sets the volume at 8, voice 1, octave 4 and turns off the
filter. It also specifies the C note as a dotted half note, E as a sharp
quarter note, G and A as flat eighth notes and B as a dotted sharp
sixteenth note.

Advanced Filtering

Each of the previous FILTERing examples used only one filter at a
time. You can combine the SID chip’s three filters with each other to
achieve different filtering effects. For example, you can enable the
low-pass and high-pass filters at the same time to form a notch
reject filter. A notch reject filter allows the frequencies below and
above the cutoff to pass through the SID chip, while the frequencies
close to the cutoff frequency are filtered. See Figure 7-10 for a
graphic representation of a notch reject filter.

USING C128 MODE—Sound and Music in C128 Mode

[

[

[

C C L L C CC C &

[

[

I I N B

]

[N B

[I e R B R

]

153

——

AMOUNT PASSED

CUTOFF
FREQUENCY
Figure 7-10. Notch Reject Filter

You can also add either the low-pass or high-pass filter to the band-
pass filter to obtain interesting effects. By mixing the band-pass filter
with the low-pass filter, you can select the band of frequencies
beneath the cutoff frequency and below. The rest are filtered out.

By mixing the band-pass and the high-pass filters, you can select the
band of frequencies above the cutoff frequency and higher. All the
frequencies below the cutoff are filtered out.

Experiment with the different combinations of filters to see all the
different types of accents you can place on your musical notes and
sound effects. The filters are designed to perfect the sounds created
by the other components of the SID chip. Once you have created the
musical notes or sound effects with the SID chip, go back and add
the FILTERIng to your programs to make them as crisp and clean as
possible.

Now you have all the information you need to write your own musical
programs in Commodore 128 BASIC. Experiment with the different
waveforms, ADSR settings, TEMPOs and FILTERing. Look in a book
of sheet music and enter the notes from a musical scale in sequence
within a play string. Accent the notes in the string with the SID con-
trol characters. You can combine your Commodore 128 music syn-
thesizer with C128 mode graphics to make your own videos or “mov-
ies,” complete with sound tracks.

USING C128 MODE—Sound and Music in C128 Mode

Coding A Song
from Sheet Music

154

This section provides a sample piece of sheet music and illustrates
how to decode notes from a musical staff and translate them into a
form the Commodore 128 can understand. This exercise is substan-
tially faster and easier if you know how to read music. However, you
don’t have to be a musician to be able to play the tune on your Com-
modore 128. For those of you who cannot read music, Figure 7-11
shows how a typical musical staff is arranged and how the notes on
the staff are related to the keys on a piano.

21pp!

G|A|B|C|D|E|(F|G|A|B|IC|D|E|F|G|A|B|C|D|E|F

—= t '—FF
e ;dzﬁfi‘; ==
,__F:t-f 1
c' Middle C
(o}

Figure 7-11. Musical Staff

Figure 7-12 is an excerpt from a composition titled Invention 13
(Inventio 13 in Italian), by Johann Sebastian Bach. Although this com-
position was written a few hundred years ago, it can be played and
enjoyed on the most modern of computer synthesizers, such as the
SID chip in the Commodore 128. Here are the opening measures of
Invention 13.

©COPYRIGHT
SHEET MUSIC COURTESY
OF C.F. PETERS, CORP,

NEW YORK Invent iO 13

Figure 7-12. Part of Bach’s Invention 13

USING C128 MODE—Sound and Music in C128 Mode

I N

[[

R N

J

.

I I I

L L [

[

[]

]

)

_J

[

)

7]

]

]

_]

]

_]

]

]

ey

The best way to start coding a song into your Commodore 128 is by
breaking the notes down into an intermediate code. Write down the
upper staff notes on a piece of paper. Now write down the notes for
the lower staff. Precede the note values with a duration code. For
instance, precede an eighth note with an 8, precede a sixteenth note
with a 16, and so on. Next, separate the notes so the notes on the
upper staff for one measure are proportional in time with the notes
for one measure on the lower staff.

If the musical composition had a third staff, you would separate it so
the duration is proportional to the two other upper staffs. Once the
notes for all the staffs are separated into equal durations, a separate
dedicated voice would play each note for a particular staff. For
example, voice 1 would play the upper staff, voice 2 will play the 2d
staff and voice 3 would play the lowest staff if it existed.

Let’s say the upper staff begins with a string of four eighth notes. In
addition, say the lower staff begins with a string of eight sixteenth
notes. Since an eighth note is proportional in time to two sixteenth
notes, separate the notes as shown in Figure 7-13.

Vi= 8A 8B 8C 8D

V2= 16D16E 16F16G 16A16B 16C 16D
Figure 7-13. Synchronizing Notes for Two Voices

Since the synchronization and timing in a musical composition is
critical, you must make sure the notes in the upper staff for voice 1,
for example, are in time agreement with the notes in the lower staff
for voice 2. The first note in the upper staff in Figure 7-13isan A
eighth note. The first two notes for voice 2 are D and E sixteenth
notes. In this case, you must enter the voice 1 eighth note in the
PLAY string first, then follow the voice 2 sixteenth notes immediately
after it. To continue the example, the second note in Figure 7-13 for
voice 1 (the upper staff) is a B eighth note. The B eighth note is equal
in time to the two sixteenth notes, F and G, which appear in the bot-
tom staff for voice 2. In order to coordinate the timing, enter the B
eighth note in the string for voice 2 and follow it with the two six-
teenth notes, F and G, for voice 2.

USING C128 MODE—Sound and Music in C128 Mode

As arule, always start with the note with the longer duration. For
example, if a bar starts with a series of two sixteenth notes on the
lower staff for voice 2 and the upper staff starts with an eighth note
for voice 1, enter the eighth note in the string first since it must play
for the duration while the two sixteenth notes are being fetched by
the Commodore 128. You must give the computer time to play the
longer note first, and then PLAY the notes of shorter duration, or else
the composition will not be synchronized.

Here's the program that plays /nvention 13. Enter it into your C128,
SAVE it for future use, and then RUN it.

340

) K$ = "V2011FV104SCO3AV201 IDV103SFAV

REM INVENTION 13 BY BACH
TEMPO 6
PLAY"V104T7U8X0":REM VOICE 1=0ORGAN
PLAY"V204T0U8X0" :REM VOICE 2”13;
REM FIRST MEASURE e . :
A$="V201IAV103IEVZOZQAVIO3SAO4C03BEV202I#GV103SB04DV104ICV202$AEM“
$—"v1o4IEv2025Ao3cv1o3I#szoszEv1o4IEvzoszo3D"
REM SECOND MEASURE ;
C$="V203ICV103SAEV202TAV103SA04CYV202 _V103SBEV2021EV103SBO4D"
D$="V104ICV202SAEV103IAV202SA03CV104QRV202SBEBO3D"

REM REM THIRD MEASURE
E$="V203ICV104SREV202IAV104SCEV203ICV103SA04CV2021AV102SEG"
F$~"v1o3IFV203SDOZAV103IAV2025FAV10 V202SDFV1041FV201SA02C"

REM- FOURTH MEASURE o
G$—"V201IBV104SFDV202IDV103SBO4DV2021GV103SGBV2021BV103SDF“
H$-"V103IEV202SGEV103IGVZOZSEGV104I O2SCEV104IEV201SGB"
REM FIFTH MEASURE .
I$="V201IAV104SECVZOZICV1038A04CV1

Js$= "v201IGV103SDBv201IBV103SGBV103I
REM SIXTH MEASURE = »

V202SDFV1041DV201SB0O2D"
/202SCEV104ICV2018A02C" |

IDV201SG02GV103IBV202SFG"
M$‘“V201IAV104SC03AV202I#FV1 BV104SDO3BV202I#GV104SDF"
'REM SEVENTH MEASURE "
,Ns—"vzozIcv104SEcv2021Av1o4 ' » 048FEV2021$BV104SDC"
O$—"V202I#GV103SBO4CV202IFVIO4SDEVZOZIDV104SFDV201IBV104S#GD"
REM EIGHTH MEASURE
PS“"V202I#GV104SBDV202IAV104SCAV202IDV104SFDV202IEV103SBO4D"
Q$="V2021FV103S#GBV202I#DV104SC03AVC.ZIEV103SEAVZOZIEV103SB#G"
REM NINTH MEASURE

R$="V201HAV103SAECEO2QA"
PLAY AS:PLAY B$:PLAY CS$:PLAY D$:PLAY E$
PLAY F$:PLAY G$:PLAY H$:PLAY IS$:PL :
PLAY K$:PLAY M$:PLAY N$:PLAY O$:PLAY P$
PLAY Q$:PLAY R$

156 USING C128 MODE—Using 80 Columns

-

]

-]

]
'
-

]

]

2]

]

]

]

]

-]

]

)

]

_]

]

)

)

157

You can use the technigues described in this section to code your
favorite sheet music and play it on your Commodore 128.

kkkkkkkkhkkhkhkkkhkhkhkkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkhkkhkhkhkhkhkhkkx

You now have been introduced to most of the powerful new com-
mands of the BASIC 7.0 language that you can use in C128 mode. In
the following section you will learn to use both 40- and 80-column
screen displays with the Commodore 128.

USING C128 MODE—Using 80 Columns

3 A s e e N N s (s s e Ny Ny Ao s s N Nes O

.

)

SECTION 8

Using 80 Columns

1]

N

]

]

]

]

]

-]

]

]

]

]

159

INTRODUCTION
THE 40/80 KEY
VIDEO PORTS AND MONITORS
Connecting a Monitor
Types of Monitors
Composite Monitors
RGBI Monitors
Dual Monitors
USING PREPACKAGED 80-COLUMN SOFTWARE
CREATING 80-COLUMN PROGRAMS

USING 40 AND 80 COLUMNS TOGETHER

USING C128 MODE—Using 80 Columns

161
161
162
162
162
162
163
163
163
163

164

2733733333333 3333333

]

,T—'{ Introduction In C128 and CP/M modes, you can choose between a 40- and 80-
column screen display. You can even use both in a single program.

Each screen size has special uses. The 40-column screen is the
same size screen the Commodore 64 uses. With the 40-column
screen you can use the Commodore 128's full graphics capabilities.
You can draw circles, graphs, sprite characters, boxes and other
shapes in high-resolution or multicolor graphic modes. You can also

-

use sprites.
~
I3 . . ,
’ If you are using an 80-column display, you get twice the number of
_ characters per screen line. In 80-column mode, you can use the

standard graphic characters and colors available through the
keyboard.

You can also write programs using two monitors to take advantage
of both screen display formats with each monitor screen performing
different aspects of the program. For example, text output could be
displayed on the 80-column monitor while graphics output could be
seen on the 40-column monitor.

I D B

The 40/80 Key You can use the 40/80 key to set the screen width as either 40 or 80
columns. Pressing this key will only have an effect when one of the
following actions is taken:

1. Power isturned ON.

2. The RESET button is pressed.

3. The RUN/STOP and RESTORE keys are pressed simultane-
ously.

The 40/80 key acts like a SHIFT/LOCK key: it locks when you press it,
and does not release until you press it again. If this key is up (not
pressed) when one of the three conditions above occurs, the screen
is set to 40 columns. If before power-up you press the key down,
causing it to lock, and one of the three conditions listed above then
occurs, the screen is set to 80 columns. Once the computer is run-

]

1

]

]

;"'7 ning in one screen format (40 or 80 columns), you cannot switch to

- the other format using the 40/80 key. In this case you must press and
release the ESC key and then press the X key.

~

b

P

7

161 USING C128 MODE—Using 80 Columns

)

Video Ports and Connecting a Monitor

Monitors

Make sure that you connect your monitor properly to the ports on the
back of your computer. There are two openings: one is labeled
VIDEO and one is labeled RGBI.

VIDEO is the connecting port for 40-column composite video moni-
tors while RGBI is used for 80-column monitors. Dual monitors like
the Commodore 1902, which can display either 40-column compos-
ite or 80 column RGBI screens, are connected to both ports.

Types of Monitors
Composite Composite monitors are designed to display 40-
Monitors column output on their screens. Examples of

composite monitors are the Commodore 1701
and 1702 monitors. These monitors can be used
for all 40-column programs and programming in
all three modes. However, they cannot be used
for 80-column work.

162 USING C128 MODE—Using 80 Columns

(-

(

e

-

-

-

C C C =

S I

[

(

[

)

]

~

]

)

)

]

]

]

]

]

]

]

]

]

J

]

Using
Prepackaged 80-
Column Software

Creating 80-
Column Programs

163

RGBI Monitors RGBI monitors are specially designed to display

80-column output. Although RGBI stands for
Red Green Blue Intensity, RGBI monitors can be
either color or monochrome (single color). The
most popular monochrome monitors use green
or amber displays. An RGB! monitor connected
to the RGBI port can handle 80-column output in
both C128 and CP/M modes.

Dual Monitors Dual monitors like the Commodore 1902 can
provide either a composite video (40-column) or
RGBI (80-column) display. A dual monitor con-
nects to both video ports. A switch on the moni-
tor lets you select either screen output. The 40/
80 key on your computer determines the type of
screen display upon power-up. Make sure the
40/80 key setting corresponds to the 40/80
column slide switch setting on the front control
panel of the monitor. NOTE: You can still switch
back and forth between 40 and 80 column out-
put by pressing and releasing the ESC key and
then pressing the X key, regardless of which
position the 40/80 key is in.

Most CP/M programs utilize an 80-column screen, as do many of the
other buisness application packages you can use in C128 mode.
Since the width of a normal printed page is 80 columns, an 80-
column wordprocessor can display information on the screen
exactly as that information will appear on paper. Spreadsheet pro-
grams often specify an 80-column format, in order to provide enough
space for the necessary columns and categories of information.
Many database packages and telecommunications programs also
require or can use an 80-column screen.

In addition to running prepackaged software, the 80-column screen
width can be useful in designing your own programs. You've proba-
bly noticed what happens when you type a line that is wider than 40
columns on a 40-column screen. The lines “wrap around”—that is,
they continue onto the next screen line. This may cause confusion in
reading the line, and can even lead to programming errors. An
80-column screen helps eliminate these problems. In general,

an 80-column screen allows for a clearer screen and better
organization.

USING C128 MODE—Using 80 Columns

Using 40 and 80
Columns Together

164

The main advantage of 40-column composite video output is the
availability of bit mapped graphics, while 80 columns gives you out-
put for word processing and other business applications. |f you have
two monitors, you can write programs that are “shared’, using the
text features 80 columns affords you and the graphics of 40
columns. A special command, (GRAPHIC 1,1) can be used within a
program to transfer the execution of graphics commands to the 40-
column display. If you have a dual monitor (one that can display both
40- and 80-column formats) you can place GRAPHIC 1,1 statements
in your program so that graphics will be output in 40-column screen
format. In order to view the graphic output, however, you will need to
change the video switch on the monitor to 40 columns. If you write a
program like this, it might be a good idea to include on-screen direc-
tions to the user to change the video switch.

For example, you might write a program which asked the user to
input data, then created a bar graph based on the user’s input. The
message “CHANGE TO 40 COLUMN TO VIEW GRAPH” would tell
the user to switch modes and see the results.

As noted previously, you can switch between the 80- and 40-column
formats after power up, with the ESCape/X sequence.

USING C128 MODE—Using 80 Columns

O

— C £ C ¢ & &t

(N O

(-

-

-

(

-

)

]

]

]

]

The following example shows how dual screens can be used within a
program:

10 IF RGR(0)= "THEN 80:REM CHECK FOR 40 'COLUMN TEXT MODE‘ IF TRUE GO TO

‘90 GRAPHIC 2,1 :CHAR 1,8,18,"BIT MAP/TEXT SPLIT SCREEN“
'100 FOR I= 70 TO 220 STEP 20 :CIRCLE 1 I, 50 30,30 :NEXT
110 NT TO 80 COLUMN

HEkMONITORfSW

O THE MIDDLE" :

Each screen display format offers certain advantages; yet the two
types of displays can be combined in a program to complement
each other. Using a 40-column screen, you get the full power of
advanced BASIC graphics. The 80-column display gives you more
space for your own programs. In addition, it lets you run the wide
variety of software designed to run on an 80-column screen.

khkkhkhkkkhkhkhkkhkhkkkhkhkhkkhkhkhkhkkhkkhkkhkhkhkkhkkhkhkhkkkkhkhkhkkhkhkhkhkkkhkhkhkkkhkhkkkkkkx

The sections of this chapter have introduced you to the many fea-
tures and capabilities provided by the Commodore 128 in C128
mode. The following chapter tells you how to use the Commodore
128 in C64 mode.

165 USING C128 MODE—Using 80 Columns

7397 313303 3333333330 3

CHAPTER

USING C64 MODE

- C C C C ¢ ¢ oev b et oo

23 37 3 3373 333333333030

]

-]

1

]

)

]

—

]

a0

]

1

1

)

I

]

|~

]

1

]

—~
'

]

SECTION 9
Using the

Keyboard In C64

Mode

169

USING BASIC 2.0

KEYBOARD CHARACTER SETS

USING THE TYPEWRITER-STYLE KEYS

USING THE COMMAND KEYS

MOVING THE CURSOR IN C64 MODE
PROGRAMMING FUNCTION KEYS IN C64 MODE

USING C64 MODE—Using the Keyboard in C64 Mode

171
171
171
171
17
172

-

- 93 3 31 3333333333333 7

)

]

1

]

J

]

]

1

JN B R

)

[

)

)

)

USING BASIC 2.0 The entire BASIC 2.0 language built into the Commodore 64 com-
puter has been incorporated into the BASIC 7.0 language of the
Commaodore 128. You can use the BASIC 2.0 commands in both
C128 and C64 modes. Refer to Sections 3 and 4 in Chapter Il for a
description of these commands.

Keyboard In the keyboard illustration in Section 3, the shaded keys are the
Character Sets ones that can be used in C64 mode. The keyboard in C64 mode has
the same two character sets as in C128 mode:

—Upper-casel/graphic character set
—Upper/lower-case character set

When you enter C64 mode, the keyboard is in the upper-case/
graphic character set, so that everything you type is in capital let-
ters. In C64 mode you can only use one character set at atime. To
switch back and forth between character sets, press the SHIFT key
and the €= key (the COMMODORE key) at the same time.

Using The As in C128 mode, you can use the typewriter-style keys in C64 mode

Typewriter-Style to type both upper-case letters (capitals) and lower-case letters

Keys (small letters). You can also type the numerals shown on the top row
of the main keyboard. In addition, you can type the graphics symbols
on the fronts of the keys.

Using The Most COMMAND keys (i.e., the keys that send messages to the com-

Command Keys puter, like RETURN, SHIFT, CTRL, etc.) work the same in C64 mode

as they do in C128 mode.

The only difference is that in C64 mode, you can only move the cur-
sor by using the two CRSR keys at the bottom-right corner of the
main keyboard. (In C128 mode, you can also use the four arrow keys
located just above the top right side of the main keyboard.)

Moving The In C64 mode, you use two CRSR keys on the main keyboard and the
Cursorin C64 SHIFT key to move the cursor, as described in Section 3.
Mode

171 USING C64 MODE—Using the Keyboard in C64 Mode

Programming
Function Keys In
C64 Mode

172

The four keys to the right side of the keyboard, just above the
numeric keypad, are called function keys. The keys are marked F1,
F3, F5 and F7 on the tops and F2, F4, F6 and F8 on the fronts. These
keys can be programmed—that is, they can be instructed to per-
form a specific task or function. For this reason, these keys are
often called programmable function keys.

You must hold down the SHIFT key to perform the functions associ-
ated with the markings on the front of the keys—that is, F2, F4, F6
and F8. Therefore, these keys are sometimes called the SHIF Ted
programmable function keys.

The function keys in C64 mode do not have a printed character
assigned to them. They do, however, have CHR$ codes assigned. In
fact, each of them has two CHR$ codes—one for when you press
the key by itself, and one for when you press the key while holding
down the SHIFT key. To get the even-numbered function keys, hold
down the SHIFT key while pressing the function key. For example, to
get F2, hold down SHIFT and press F1.

The CHR$ codes for the F1-F8 keys range from 133 to 140. However,
the codes are not assigned to the keys in numerical order. The keys
and their corresponding CHR$ codes are as follows:

F1 CHR$(133)
F2 CHR$(137)
F3 CHR$(134)
F4 CHR$(138)
F5 CHR$(135)
F6 CHR$(139)
F7 CHR$(136)
F8 CHR$(140)

You can use the function keys in your program in several ways. To do
this, you'll need to use the GET statement. (See Section 4 for a
description of the GET statement.) As an example, the program
below prepares the F1 key to print a message on the screen.

10 ? “PRESS F1 TO CONTINUE”
20 GETAS

30 IF A$()CHR$(133) THEN 20
40 ? “YOU HAVE PRESSED F1”

USING C64 MODE—Using the Keyboard in C64 Mode

R B

[

C

C

C C C C £ & L =

(N N S |

)

-1

]

1

1]

]

-

)

]

)

]

)

0

]

173

Lines 20 and 30 do most of the work in this program. Line 20 makes
the computer wait until a key is pressed before executing any more
of the program. Note that when the command immediately after
THEN is a GOTO, only the line number is necessary. Also note that a
GOTO command can GOTO the same line it is on. Line 30 tells the
computer to go back and wait for another key to be pressed unless
the F1 key has been pressed.

USING C64 MODE—Using the Keyboard in C64 Mode

<1 37 3739 3333373377373 33503

J

]

]

-]

)

11

]

!

]

9

(==

)

]

)

]

~-

SECTION 10
Storing And
Reusing Your

Programs in C64

Mode

FORMATTING A DISK IN C64 MODE

THE SAVE COMMAND
SAVEing on Disk
SAVEing on Cassette

THE LOAD AND RUN COMMANDS
LOADing and RUNning from Disk
LOADing and RUNning from Cassette

OTHER DISK-RELATED COMMANDS
Verifying a Program
Displaying Your Disk Directory
Initializing a Disk Drive

USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

177

177
177
178

178
178
178

179
179
179
179

33 3J 33 23 233 3J 3 333 33 3 33 3

]

]

)

S D

]

]

-1

]

|

)

1

1

)

Formatting a Disk
in C64 Mode

The SAVE
Command

177

Once you have edited a program, you will probably want to store it
permanently so that you will be able to recall and use it at some later
time. To do this you'll need either a Commodore disk drive or the
Commodore Datassette.

To store programs on a new (or blank) disk, you must first prepare the
disk to receive data. This is called formatting the disk. Make sure that
you turn on the disk drive before inserting any disk.

To format a blank disk in C64 mode, you type this command:

OPEN 15,8,15: PRINT# 15,“NO:NAME,|D”

In place of NAME, type a disk name of your choice; you can use up
to 16 characters to identify the disk. In place of ID, type a two-
character code of your choice (such as W2 or 10).

The cursor disappears during the formatting process. When the cur-
sor blinks again, type the following command:

CLOSE 15 =RE

NOTE: Once a disk is formatted in C64 or C128 mode, that disk can
be used in either mode.

Il

You can use the SAVE command to store your program on disk
or tape.

SAVEing on Disk

If you have a Commodore disk drive, you can store your program on
disk by typing:

SAVE “PROGRAM NAME”,8

The 8 indicates to the computer that you are using a disk drive to
store your program.

The same rules apply for the PROGRAM NAME whether you are
using disk or tape. The PROGRAM NAME can be anything you want
it to be. You can use letters, numbers and/or symbols—up to 16
characters in all. Note that you must enclose the PROGRAM NAME
in quotation marks. The cursor on your computer disappears while
the program is being SAVEd, but it returns when the process is com-

pleted.

USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

The LOAD and
RUN Commands

178

SAVEing on Cassette

If you are using a Datassette to store your program, insert a blank
tape in the recorder, rewind the tape (if necessary) and type:

SAVE “PROGRAM NAME”

Once a program has been SAVEd, you can LOAD it back into the
computer’s memory and RUN it anytime you wish.

LOADing and RUNning from Disk
To load your program from a disk, type:
LOAD“PROGRAM NAME” 8 SRETORN=
Again, the 8 indicates to the computer that you are working with a
disk drive.

To RUN the program, type RUN and press {(RETURN).

LOADiIng and RUNning from Cassette

To LOAD your program from cassette tape, type:
LOAD “PROGRAM NAME”

If you do not know the name of the program, you can type:
LOAD SREFHRE

and the next program on the tape will be retrieved.

You can use the counter on the Datassette to identify the starting
position of the programs. Then, when you want to retrieve a pro-

gram, simply wind the tape forward from 000 to the program'’s start
location, and type:

LOAD =RETURNE

In this case, you don’t have to specify the PROGRAM NAME; your
program will load automatically because it is the next program on
the tape.

NOTE: During the LOAD process, the program being LOADed
is not erased from the tape; it is simply copied into the com-
puter. However, LOADing a program automatically erases any

BASIC program that may have been in the computer’s memory.

To RUN the program, type RUN and press (RETURN).

USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

C C ¢ .

o

{_

.

[

C C C C & & &l

[

)

]

]

]

}

i

|

]

]

N R A

]

)

I T

[

J

Other Disk- Verifying A Program
Related

Commands To verify that a program has been correctly saved or loaded, type:

VERIFY“PROGRAM NAME”,8

If the program in the computer is identical to the one on the disk, the
screen display will respond with the letters “OK.”

The VERIFY command also works for tape programs. You type:

Note that you do not need to enter the comma and the number 8,
since 8 indicates that you are working with a disk program.

Displaying Your Disk Directory
To see a list of the programs on your disk, first type:
LOAD“$”,8

The cursor disappears during this process. When the cursor re-
appears, type:
LIST =REFURN

A list of the programs on your disk will then be displayed. Note that
when you load the directory, any program that was in memory is
erased.

Initializing A Disk Drive

If the disk drive’s ready light is blinking, it indicates a disk error. You
can restore the disk drive to the condition it was in before the error
occurred by using a procedure called INITIALIZING. To initialize a
drive, you type:

OPEN 1,8,15,“I”:CLOSE 1 SREFUEN

If the light is still blinking, remove the disk and turn the drive off,
thenon.

For further information on SAVEing and LOADing your programs,
refer to your disk drive or Datassette manual. Also consult the
LOAD and SAVE command descriptions in Chapter V, BASIC 7.0
Encyclopedia.

179 USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

17 37 3 3 237377 377713733333

CHAPTER

USING CP/M MODE

R U o O e ot Y A O Y Y S Y Y R o O

13 33 3 3333333333333

]

)

)

]

_)

]

]

I

]

1

1

)

1

—

)

1

]

SECTION 11
Introduction To
CPIM 3.0

183

WHAT CP/M 3.0IS
WHAT YOU NEED TO RUN CP/M 3.0
GETTING STARTED WITH CP/M 3.0
Loading or Booting CP/M 3.0
The Opening CP/M Screen Display
THE COMMAND LINE

Types of Commands
How CP/M Reads Command Lines

USING CP/M MODE—Introduction to CP/M 3.0

185
185

186
186
186

188
188
189

3331 3333333333333 3

]

)

—

]

]

1

1

]

]

)

_1

—

1

)

]

WhatCP/IM 3.01s CPIM is a product of Digital Research, Inc. The version of CP/M used
on the Commodore 128 is CP/M Plus Version 3.0. In this chapter,
CP/M is generally referred to as CP/M 3.0, or simply CP/M. This chap-
ter summarizes CP/M on the Commodore 128. For detailed informa-
tion on CP/M 3.0, fill out and return the order form included in this
chapter.

CP/M 3.0 is a popular operating system for microcomputers. As an
operating system, CP/M 3.0 manages and supervises your comput-
er’s resources, including memory and disk storage, the console
(screen and keyboard), printer, and communication devices. CP/M
3.0 also manages information stored in disk files. CP/M 3.0 can copy
files from a disk to your computer’s memory, or to a peripheral
device such as a printer. To do this, CP/M 3 places various programs
in memory and executes them in response to commands you enter
at your console. Once in memory, a program executes through a set
of steps that instructs your computer to perform a certain task.

You can use CP/M to create your own programs, or you can choose
from the wide variety of available CP/M 3.0 application programs.

What You Need to The general hardware requirements for CP/M 3.0 are a computer
Run CPIM 3.0 containing a Z80 microprocessor, a console consisting of a keyboard
and a display screen, and at least one floppy disk drive. For CP/M 3.0
on the Commodore 128 Personal Computer, the Z80 microprocessor
is built-in; the console consists of the full Commodore 128 keyboard
and an 80-column monitor; and the disk drive is the new Commodore
1571 fast disk drive. The CP/M system is packed, in disk format, in
the computer carton. The material on disk includes the CP/M 3.0
system and an extensive HELP utility program, as well as a number
of other utility programs.

NOTE: Although CP/M can be used with a 40-column monitor, only
40 columns can be displayed at one time. To view all 80 columns of
the display, you must scroll the screen horizontally by pressing the

CONTROL key and the appropriate cursor key (left or right).

CP/M can also be used with the 1541 disk drive. In this case only
single-sided GCR disks may be used, and the speed of operation will
be one-eighth to one-tenth the speed using the 1571 disk drive.

185 USING CP/iM MODE—Introduction to CP/M 3.0

Getting Started
With CP/IM 3.0

The following paragraphs tell you how to start or “boot”” CP/M 3.0,
how to enter and edit the command line.

NOTE: Before you start to use CP/M, you should make a backup
copy of your CP/M disk data. Follow the procedure for copying disks
described in Section 12.

Loading Or Booting CP/IM 3.0

Loading or “booting” CP/M 3.0 means reading a copy of the operat-
ing system from your CP/M 3.0 system disk into your computer’s
memory.

You can boot CP/M 3.0 in several ways. If your computer is off, you
can boot CP/M by first turning on your disk drive and inserting the
CP/M 3.0 system disk, and then turning on the computer. CP/M 3.0
will load automatically. If you are already in C128 BASIC mode, you
can boot CP/M 3.0 by inserting the CP/M system disk into the drive
and then typing the BASIC command BOOT. CP/M 3.0 will then load.
In C128 mode, you can also boot CP/M by inserting the system disk
and pressing the RESET button.

If you are in C64 mode, and you want to enter CP/M mode, first turn
off the computer. Then load the CP/M system disk in the drive and
turn on the computer.

Caution: Always make sure that the disk is fully inserted in the 1571
drive before you close the drive door.

In CP/M 3.0 on the Commodore 128, the user has a 59K TPA (Tran-
sient Program Area), which in effect is user RAM.

The Opening CPIM Screen Display

After CP/M 3 is loaded into memory, a message similar to the follow-

ing is displayed on your screen. (The screen shown here is the
80-column format.)

USING CP/M MODE—Introduction to CP/M 3.0

AR U I N

[

. O [

L C C [

C C

(-

-

-}

]

;

]

_)

]

]

l-

-]

N

]

_J

1

-]

]

—

]

]

€M 3.8 On the Comwdore 128

]

1 A0S 87

An important part of the opening display is the following two-
character message:

A)

This is the CP/M 3.0 system prompt. The system prompt tells you
that CP/M is ready to read a command entered by you from your
keyboard. The prompt also tells you that drive A is your default drive.
This means that until you tell CP/M to do otherwise, it looks for pro-
gram and data files on the disk in drive A. It also tells you that you are
logged in as user O (the default user number, indicated by the
absence of any user number).

NOTE: In CP/M a single disk drive is identified as drive A. This is
equivalent to unit number 8, drive 0 in C128 and C64 modes. Usually,
the maximum number of drives in CP/M 3.0 is 16. However, on the
Commaodore 128 the number of drives is limited to four physical
drives, identified as A, B, C or D) and one logical or virtual drive,
identified as drive E. See page 198 for more information on the
virtual drive E.

USING CP/M MODE—Introduction to CP/M 3.0

The Command
Line

188

CPIM 3.0 performs tasks according to specific commands that you
type at your keyboard. These commands appear on the screen in
what is called a command line. A CP/M 3.0 command line is com-
posed of a command keyword and an optional command tail. The
command keyword identifies a command (program) to be executed.
The command tail can contain extra information for the command,
such as a filename or parameters. The following example shows a
command line.

A)DIR MYFILE

Throughout this chapter, the characters that a user would type are in
slanted (italic) bold face type to distinguish them from characters
that the system displays. In this example, DIR is the command key-
word and MYFILE is the command tail. To send the command line to
CPIM 3.0 for processnng press the RETURN key, as indicated in

this book by the =8

As you type characters at the keyboard, they appear on your screen.
The cursor moves to the right as you type. If you make a typing error,
press either the INST/DEL key or CTRL-H to move the cursor to the
left and correct the error. CTRL is the abbreviation for the CONTROL
key. To specify a control character, hold down the CTRL key and
press the appropriate letter key. (A list of control characters and their
uses is given in Section 13.)

You can type the keyword and command tail in any combination of
upper-case and lower-case letters. CP/M 3.0 interprets all letters in
the command line as uppercase.

Generally, you must type a command line directly after the system
prompt. However, CP/M 3.0 does allow spaces between the prompt
and the command keyword.

Types Of Commands

CP/M 3.0 recognizes two different types of commands: built-in com-
mands and transient utility commands. Built-in commands execute
programs that reside in memory as a part of the CP/M operating
system. Built-in commands can be executed immediately. Transient
utility commands are stored on disk as program files. They must be
loaded from disk to perform their task. You can recognize transient
utility program files when a directory is displayed on the screen
because their filenames are followed by a period and COM (.COM).
Section 14 presents lists of the CP/M built-in and transient utility
commands.

USING CP/M MODE —Introduction to CP/M 3.0

[

~

L

[[

~

[

PNEN

[C

C C C CCC

(.

-

(

L

1

]

]]

—

]

11

189

For transient utilities, CP/M 3.0 checks only the command keyword.
Many utilities require unique command tails. If you include a com-
mand tail, CP/M 3.0 passes it to the utility without checking it. A
command tail cannot contain more than 128 characters.

How CP/M Reads Command Lines

Let’s use the DIR command to demonstrate how CP/M reads com-
mand lines. DIR, which is an abbreviation for directory, tells CP/M to
display a directory of disk files on your screen. Type the DIR keyword
after the system prompt and press RETURN:

A)DIR

CP/M responds to this command by displaying the names of all the
files that are stored on whatever disk is in drive A. For example, if the
CPI/M system disk is in disk drive A, a list of filenames like this
appears on your screen:

A:CPM+ SYS:CCP COM:HELP COM:HELP HLP:KEYFIG COomM
A:KEYFIG HLP:FORMAT COM:PIP COM:DIR COM:COPYSYS COM

CP/M 3.0 recognizes only correctly spelled command keywords. If
you make a typing error and press RETURN before correcting your
mistake, CP/M 3.0 repeats or “echoes” the command line, followed
by a question mark. For example, suppose you mistype the DIR
command, as in the following example:

A)>DJR =RE
CP/M replies with:
DJR?

This tells you that CP/M cannot find a command keyword spelled
DJR. To correct typing errors like this, you can use the INST/DEL key
to delete the incorrect letters. Another way to delete characters is to
hold down the CTRL key and press H to move the cursor to the left.
CPI/M provides a number of other control characters that help you
edit command lines. Section 13 tells how to use control characters
to edit command lines and other information you enter at your
console.

DIR accepts a filename as a command tail. You can use DIR with a
filename to see if a specific file is on the disk. For example, to check
that the file program MYFILE is on your disk, type:

A)DIR MYFILE =BE

USING CP/iM MODE—Introduction to CP/M 3.0

190

CP/M 3.0 performs this task by displaying either the name of the file
you specified, or the message:

No File

Be sure you type at least one space after DIR to separate the com-
mand keyword from the command tail. |If you do not, CP/M 3.0 re-
sponds as follows:

A)DIRMYFILE =BE3
DIRMYFILE?

NOTE: The Digital Research Inc. COPYSYS command, normally
used in copying CP/M systems disks, is not implemented on your
computer. As described in Section 13, page 199, your Commodore
128 uses a different method to prepare a new system disk. To obtain
information on this method, type:

HELP COPYSYS

at any system prompt. Be sure to include a space between HELP
and COPYSYS.

USING CP/M MODE—Introduction to CP/M 3.0

L [C

L C C CCCCCC

L

1

]

B R R

B I I S B O

N

]

1]

1

1

SECTION 12

Files, Disks and
Drives in CRP/M

3.0

WHAT IS A FILE?
CREATING A FILE

NAMING A FILE
File Specification
Drive Specifier
Filename
Filetype
Password
Sample File Specification
User Number
Using Wildcard Characters to Access More Than
One File
Reserved Characters
Reserved Filetypes

CP/M SYSTEM FILES
CP/M +.SYS
CCP COM
Other.COM Files
WHAT IS ON YOUR CP/M DISK

HOW TO MAKE COPIES OF YOUR CP/M 3.0 DISKS
AND FILES

USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

193
193

193
193
194
194
194
195
195
195

196
196
197

198
198
198
198

199

199

A

J 3 3 3d1 3 33 33 33 3dJ 32 3 3 4 3 3 3 a1

[N T N B

]

1 1

S0 I R R R

a1

Whatls A File?

Creating A File

Naming A File

193

One of CP/M’s most important tasks is to access and maintain files
on your disks. Files in CP/M are fundamentally the same as in C128
or C64 modes—that is, they are collections of information. However,
CP/M handles files somewhat differently than do C128 and C64
modes. This section defines the two types of files used in CP/M; tells
how to create, name and access a file; and describes how files are
stored on your CP/M disks.

As noted above, a CP/M 3.0 file is a collection of information. Every
file must have a unique name by which CP/M identifies the file. A
directory is also stored on each disk. The directory contains a list of
the filenames stored on that disk and the locations of each file on the
disk.

There are two kinds of CP/M files: program (command) files, and
data files. A program file contains a series of instructions that the
computer follows step-by-step to achieve some desired result. A
data file is usually a collection of related information (e.g., a list of
names and addresses, the inventory of a store, the accounting
records of a business, the text of a document).

There are several ways to create a CP/M file. One way is to use a text
editor. The CP/M text editor ED is used to create and name a file. You
can also create a file by copying an existing file to a new location;
you can rename the file in the process. Under CP/M, you can use the
PIP command to copy and rename files. Finally, some programs
(such as MAC, a CP/M machine language program) create output
files as they process input files.

The ED and PIP commands are summarized in Section 14, together
with other commonly used CP/M commands. Details on these and all
other CP/M 3.0 commands may be found in the CP/M Plus User’s
Guide, which you can obtain by responding to the offer on the card
inserted in this chapter.

File Specification

CP/M identifies every file by a unique file specification. A file speci-
fication can have four parts: a drive specifier, a filename, a file-
type and a password. The only mandatory part is the filename.

USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

Drive Specifier

Filename

Filetype

The drive specifier is a single letter (A-P) fol-
lowed by a colon. Each disk drive in your system
is assigned a letter. When you include a drive
specifier as part of the file specification, you are
telling CP/M to look for the file on the disk cur-
rently in the specified drive. For example, if you
enter:

B:MYFILE =RE

CP/M looks in drive B for the file MYFILE. If you
omit the drive specifier, CP/M 3.0 looks for the
file in the default drive (usually A).

A filename can be from one to eight characters
long, such as:

MYFILE

A file specification can consist simply of a
filename. When you make up a filename, try to
let the name tell you something about what the
file contains. For example, if you have a list of
customer names for your business, you could
name the file:

CUSTOMER

so that the name gives you some idea of what is
in the file.

To help you identify files belonging to the same
category, CP/M allows you to add an optional
one- to three-character extension, called a file-
type, to the filename. When you add a filetype to
the filename, separate the filetype from the
filename with a period. Try to use letters that tell
something about the file's category. For exam-
ple, you could add the following filetype to the
file that contains a list of customer names:

CUSTOMER.NAM

When CP/M displays file specifications, it adds
blanks to short filenames so that you can com-
pare filetypes quickly. The program files that
CPI/M loads into memory from a disk have the
filetype COM.

USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

I I

[[[

[

L L C C C C CC =

[

[0 R D R B

1

]

11 1 1]

1

I

1 1

195

Password In the Commodore 128’s CP/M 3.0 you can
include a password as part of the file specifica-
tion. The password can be from one to eight
characters. If you include a password, separate
it from the filetype (or filename, if no filetype is
included) with a semicolon, as follows:

CUSTOMER.NAM;ACCOUNT

A password is optional. However, if a file has
been protected with a password, you MUST
enter the password as part of the file specifica-
tion to access the file.

Sample File A file specification containing all four possible

Specification elements consists of a drive specification, a
primary filename, a filetype and a password, all
separated by the appropriate characters or
symbols as in the following example:

A:DOCUMENT.LAW;SUSAN

User Number

CPI/M 3.0 further identifies all files by assigning each one a user
number which ranges from 0 to 15. CP/M 3.0 assigns the user num-
ber to a file when the file is created. User numbers allow you to sepa-
rate your files into 16 file groups.

The user number always precedes the drive identifier except for
user 0, which is the default user number and is not displayed in
the prompt. Here are some examples of user numbers and their
meanings.

4A) User number 4, drive A
A) User number 0, drive A
2B) User number 2, drive B

You can use the built-in command USER to change the current user
number like this:

A) USER RESURIE
The screen displays:
ENTER USER #:
You enter a 3 and press
3A)

. The screen display is then:

USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

196

If you want to return to the normal A) prompt, you simply enter the
USER command, like this:

3A) USER SRETGREE
The screen prompts you to:
ENTER USER #:
If you then enter a O, the screen prompt returns to the A) format.

Most commands can access only those files that have the current
user number. However, if a file resides in user 0 and is marked with a
system file attribute, the file can be accessed from any user number.

Using Wildcard Characters to Access More Than One File

Certain CP/M 3.0 built-in and transient commands can select and
process several files when special wildcard characters are included
in the filename or filetype. A wildcard is a character that can be used
in place of some other characters. CP/M 3.0 uses the asterisk (*) and
the question mark (?) as wildcards. For instance, if you use a ? as the
third character in a filename, you are telling CP/M to let the ? stand
for any character that may be encountered in that position. Similarly,
an * tells CP/M to fill the filename with ? question marks as indicated.
A file specification containing wildcards is called an ambiguous files-
pec and can refer to more than one file, because it gives CP/M 3.0 a
pattern to match. CP/M 3.0 searches the disk directory and selects
any file whose filename or filetype matches the pattern. For exam-
ple, if you type:

then CP/M 3.0 selects all files whose filename end in TAX and whose
filetype is .LIB.

Reserved Characters

The characters in Table 12-1 have special meaning in CP/M 3.0, so
do not use these characters in file specifications except as indi-
cated.

USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

L [

[

I I

. C C C &£ - L

I

]

1 0 1

31 1 1 1 1

I I

1

Table 12-1. CP/M 3.0 Reserved Characters
Character Meaning

¢S, I[]

tab space file specification delimiters

carriage return

: drive delimiter in file specification

filetype delimiter in file specification
password delimiter in file specification
comment delimiter at the beginning of a com-

’

mand line

*? wildcard characters in an ambiguous file specifi-
cation.

O&H N + = option list delimiters

[] option list delimiters for global and local options.

0 delimiters for multiple modifiers inside square
brackets for options that have modifiers.

1$ option delimiters in a command line.

Reserved Filetypes

CP/M 3.0 has already established several file groups. Table 12-2 lists
some of their filetypes with a short description of each.

Table 12-2. CP/M 3.0 Reserved Filetypes

Filetype Meaning

ASM Assembler source file

BAS BASIC source program

COM Z80 or equivalent machine language program
HEX Output file from MAC (used by HEXCOM)
HLP HELP message file

$$% Temporary file

PRN Print file from MAC or RMAC

REL Output file from RMAC (used by LINK)

SUB List of commands to be executed by SUBMIT
SYM Symbol file from MAC, RMAC or LINK

SYS System file

RSX Resident System Extension (a file automatically

loaded by a command file when needed)

197 USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

CPIM System
Files

CPM +.SYS

CCR COM

Other
. COM Files

198

The following information is important for technically oriented users
who may want to create their own programs in CP/M mode.

CPM + . SYS is the main CP/M 3.0 system file. It contains all parts of
the system that remain permanently resident in memory: the Basic
Input/Output System (BIOS), which loads into the top of memory; the
Basic Disk Operating System (BDOS), which loads into memory
immediately below the BIOS; and the System Parameters, which
load into the bottom page of memory.

On booting CP/M the Console Command Processor (CCP) is loaded

into memory immediately below the BDOS. The remaining memory,

below CCP and above page 0, known as the Transient Program Area
(TPA) is the area into which applications are loaded. CP/M 3.0 on the
C128 has a TPA of 59K.

CCP processes any input in response to the system prompt (A))). It
contains the built-in commands listed in Table 14-1, and also supports
the 14 console editing commands listed in Table 13-1.

Any word entered in response to the system prompt which is not one
of the built-in commands is treated by CCP as a transient command.
When a transient command is encountered, CCP attempts to find
and execute a file whose name is the command word plus the .COM
extension. If CCP does not find such a file on the currently logged
disk, the command word is displayed, followed by a question mark.
CCP then redisplays the system prompt. If more than one word is
entered in response to the system prompt, all words after the first
are treated as parameters to be passed to the transient command.

A language or applications program is loaded and run by invoking it
as if it were a command. All CP/M programs include a .COM file. As
shown in the following pages, the CPM + . SYS and CCP. COM files
are contained on the CP/M system disk.

The other . COM files are transient commands (see Table 14-2). The
file HELP. COM displays messages about the C128 CP/M system and
its commands. If you are not familiar with CP/M and have no other
manuals or books about it, you can print out any HELP you look at.
Press CONTROL and P to send any screen output to the printer;
press CONTROL P again to turn off this facility. If you are printing and
do not want pauses after each screen is printed, enter HELP C128
CP/M [NOPAGE] and follow the directions given on the screen.

USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

C C C [

. C C C C C L C

[I A

[

)

~

_]

]

)

2]

_]

]

]

)

]

)

_]

-

—

]

_]

]

What Is On Your You can get a list of what is on your CP/M system disk by inserting a

CPIM Disk

disk into a disk drive and entering a DIR command. You can get a
detailed listing of system programs, including program size and num-
ber of records, by entering the following form of the DIR command:

DIR [FULL]
Shown below is a typical display in response to a DIR[FULL]
COMMAND.
Directory For Drive A: User 0
Name Bytes Recs Attributes Name Bytes Recs Attributes
CCP COM 4k 25 Dir RW COPYSYS COM 1k 3 Dir RW
CPM+ SYS 23k 184 Dir RW DIR COM 15k 114 Dir RW
FORMAT COoM Sk 35 Dir RW HELP COM 7k 56 Dir RW
HELP HLP 83k 664 Dir RW KEYFIG CoM 10k 75 Dir RW
KEYFIG HLP 9k 72 Dir RW PIP CcoM 9k 68 Dir RW

166k Total Records = 1296 Files Found = 10

Total Bytes
166 Used/Max Dir Entries For Drive A: 16/ 64

Total 1k Blocks

How To Make You can back up your CP/M 3.0 disks, using either one or two disk
Copies Of Your drives. The back-up disks can be new or used. You might want to
CPIM 3.0 Disks format new disks, or reformat used disks with an appropriate CP/M
And Files disk formatting program. If the disks have been used previously, be

sure that there are no other files on the disks.

To make backups use the format and PIP utility programs found on
your CP/M system disk. FORMAT formats the disk as either a C128
single-sided or double-sided diskette.

Making Copies With a Single Disk Drive

You can copy the contents of a disk to another disk with a single
Commodore disk drive (1541 or 1571). First type:

A) FORMAT

and follow the instructions given on the screen. For instance, the
following sequence of commands creates a bootable CP/M system
disk. First, when the copy disk is formatted, type:

A) PIP E:=A: CPM +. SYS
When the CPM + . SYS file is copied, you type:
A)-PIP E:=A: CCP. COM

If you want to copy everything on a disk, use the following command
sequence:

A) FORMAT
A) PIPE:=A: *.*

199 USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

The system will prompt you to change disks as required.

Use drive A as the source drive and drive E as the destination drive.
Drive E is referred to as a virtual drive—that is, it does not exist as
an actual piece of hardware.

Making Copies With Two Disk Drives

This section shows how to make distribution disk back-ups on a sys-
tem that has two drives: drive A and drive B. Your drives might be
named with other letters from the range A through D. To make a copy
of your CP/M 3.0 system disk, first use the FORMAT utility to copy
the operating system loader. Make sure that your distribution system
disk is in drive A, the default drive, and the blank disk is in drive B.
Then enter the following command at the system prompt:

A) PIP B: =A: CPM +. SYS

During the copying process, you will be prompted to place the
source disk in drive A and the destination or copy disk in drive B.

When you have copied the CPM + SYS file you use the PIP com-
mand to copy the CCPCOM file. You now have a copy of the operat-
ing system only. To copy the remaining files from the system disk,
enter the following PIP command:

A)PIP B: = A:*.*

This PIP command copies all the files in your disk directory to drive B
from drive A. PIP displays the message COPYING followed by each
filename as the copy operation proceeds. When PIP finishes copy-
ing, CP/M 3 displays the system prompt, A).

Now you have an exact copy of the system disk in drive B. Remove
the original system disk from drive A and store it in a safe place. As
long as you retain the original in an unchanged condition, you will be
able to restore your CP/M program files if something happens to your
working copy.

USING CP/M MODE—Commodore Enhancements to CP/M 3.0

L.

-

(-

« C

(-

C C O C

(-

L

—
——

(

,_.

N

)

2]

]

)

]

)

]

)

]

]

]

-

]

_]

B I

]

SECTION 13

Using the Console

and Printer in
CPIM 3.0

201

CONTROLLING CONSOLE OUTPUT

CONTROLLING PRINTER OUTPUT

CONSOLE LINE EDITING

USING CONTROL CHARACTERS FOR LINE EDITING

USING CP/M MODE—Using the Console and Printer in CP/M 3.0

203
203
203
204

J 3 223 3 3 322 333 33333333330

)

)

)

]

)

]

]

]

)

]

]

]

-]

_)

]

]

1

Controlling
Console Output

Controlling
Printer Output

Console Line
Editing

203

This section describes how CP/M 3.0 communicates with your con-
sole and printer. It tells how to start and stop console and printer
output, and edit commands you enter at your console.

Sometimes CP/M 3.0 displays information on your screen too quickly
for you to read it. To ask the system to wait while you read the display,
hold down the CONTROL (CTRL) key and press S. A CTRL-S key-
stroke sequence causes the display to pause. When you are ready,
press CTRL-Q to resume the display. If you press any key besides
CTRL-Q during a display pause, CP/M 3.0 sounds the console bell.
Pressing the NO SCROLL key will also pause the system and place a
pause window on the status line at the bottom of the screen (line 25).
To resume the display, press NO SCROLL again.

Some CP/M 3.0 utilities (like DIR and TYPE) support automatic pag-
ing at the console. This means that if the program’s output is longer
than the screen can display at one time, the display automatically
halts when the screen is filled. When this occurs, CP/M 3.0 prompts
you to press RETURN to continue. This option can be turned on or
off using the SETDEF command.

You can also use a control command to echo (that is, display) con-
sole output to the printer. To start printer echo, press CTRL-P. A beep
occurs to tell you that echo is on. To stop, press CTRL-P again. (There
is no beep at this point.) While printer echo is in effect, any charac-
ters that appear on your screen are listed at your printer.

You can use printer echo with a DIR command to make a list of files
stored on a floppy disk. You can also use CTRL-P with CTRL-S and
CTRL-Q to make a hard copy of part of a file. Use a TYPE command
to start a display of the file at the console. When the display reaches
the part you need to print, press CTRL-S to stop the display, CTRL-P
to enable printer echo, and then CTRL-Q to resume the display and
start printing. You can use another CTRL-S, CTRL-P, CTRL-Q
sequence to terminate printer echo.

NOTE: Not all printers will respond properly to the CTRL-P
command.

As noted previously, you can correct simple typing errors by using
the INST/DEL key or CTRL-H. CP/M 3.0 also supports additional line-
editing functions that you perform with control characters. You can
use the control characters to edit command lines or input lines to
most programs.

USING CP/M MODE—Using the Console and Printer in CP/M 3.0

Using Control
Characters for
Line Editing

By using the line-editing control characters listed in Table 13-1, you
can move the cursor left and right to insert and delete characters in
the middle of a command line. In this way you do not have to retype
everything to the right of your correction.

In the following sample example, the user mistypes PIP, and CP/M
3.0 returns an error message. The user recalls the erroneous com-
mand line by pressing CTRL-W and corrects the error (the underbar
character represents the cursor):

AYPOP A:=B:*." (PIP mistyped)

POP?

AYPOP A:=B:*.* (CTRL-W recalls the line)

A>POP A:=B:*.* (CTRL-B moves cursor to beginning of line)
A>POP A:=B:*.* (CTRL-F moves cursor to right)

A)PP A:=B:*.* (CTRL-G deletes error)

A)PI_PI A:=B:*.* (type | corrects the command name)

After the command line is corrected, the user can press RETURN
even though the cursor is in the middle of the line. A RETURN key-
stroke, (or one of the equivalent control characters) not only exe-
cutes the command, but also stores the command in a buffer so that
you can recall it for editing or reexecution by pressing CTRL-W.

When you insert a character in the middle of a line, characters to the
right of the cursor move to the right. If the line becomes longer than
your screen is wide, characters disapper off the right side of the
screen. These characters are not lost. They reappear if you delete
characters from the line or if you press CTRL-E when the cursor is in
the middle of the line. CTRL-E moves all characters to the right of the
cursor to the next line on the screen.

Table 13-1 gives a complete list of line-editing control characters for
the CP/M 3.0 system on the Commodore 128.

Table 13-1. CP/M 3.0 Line-editing Control Characters

Character Meaning
CTRL-Aor Moves the cursor one character to the left.
SHIFT-LEFT
CURSOR
CTRL-B Moves the cursor to the beginning of the com-

mand line without having any effect on the con-
tents of the line. If the cursor is at the beginning,
CTRL-B moves it to the end of the line.

USING CP/M MODE—Using the Console and Printer in CP/M 3.0

(-

(-

,_

[

- (- (0 (- [0 L

(=

(- (C [C

-

]

N

)

L~ ~ _— — - —

]

)

]

]

-]

-1

B

-]

)

)

]

"]

°)

-

205

Table 13-1. CP/M 3.0 Line-editing Control Characters

Character
CTRL-E

CTRL-F or
RIGHT
CURSOR

CTRL-G

CTRL-H

CTRL-

CTRL-J

CTRL-K
CTRL-M

CTRL-R

CTRL-U

CTRL-W or
TCRSR !

(Continued)
Meaning

Forces a physical carriage return but does not

send the command line to CP/M 3.0. Moves the
cursor to the beginning of the next line without

erasing the previous input.

Moves the cursor one character to the right.

Deletes the character at current cursor position.
The cursor does not move. Characters to the
right of the cursor shift left one place.

Deletes the character to the left of the cursor
and moves the cursor left one character posi-
tion. Characters to the right of the cursor shift
left one place.

Moves the cursor to the next tab stop. Tab stops
are automatically set at each eighth column.
Has the same effect as pressing the TAB key.

Sends the command line to CP/M 3.0 and
returns the cursor to the beginning of a new line.
Has the same effect as a RETURN or a CTRL-M
keystroke.

Deletes to the end of the line from the cursor.

Sends the command line to CP/M 3.0 and
returns the cursor to the beginning of a new line.
Has the same effect as a RETURN or a CTRL-J
keystroke.

Retypes the command line. Places a # charac-
ter at the current cursor location, moves the
cursor to the next line, and retypes any partial
command you typed so far.

Discards all the characters in the command line,
places a # character at the current cursor posi-
tion, and moves the cursor to the next line. How-
ever, you can use a CTRL-W to recall any char-
acters that were to the left of the cursor when
you pressed CTRL-U.

Recalls and displays previously entered com-

mand line both at the operating system level and
within executing programs, if the CTRL-W is the

USING CP/M MODE—Using the Console and Printer in CP/M 3.0

206

Table 13-1. CP/M 3.0 Line-editing Control Characters
(Continued)

Character Meaning

first character entered after the prompt. CTRL-J,
CTRL-M, CTRL-U and RETURN define the com-
mand line you can recall. If the command line
contains characters, CTRL-W moves the cursor
to the end of the command line. If you press
RETURN, CP/M 3.0 executes the recalled
command.

CTRL-X Discards all the characters left of the cursor and
moves the cursor to the beginning of the current

line. CTRL-X saves any characters right of the
cursor.

USING CP/M MODE—Using the Console and Printer in CP/M 3.0

. L C

=

(-

.

(

-

(-

_—

[‘

(-

—~—

(

(- L

(-

C

)

_)

-

)

)

)

—

_)

~
\/—]

)

~
o

-)

)

2)

SECTION 14
Summary Of
Major CP/M 3.0
Commands

207

THE TWO TYPES OF CP/M 3.0 COMMANDS
BUILT-IN COMMANDS

TRANSIENT UTILITY COMMANDS
REDIRECTING INPUT AND OUTPUT
ASSIGNING LOGICAL DEVICES

FINDING PROGRAM FILES

EXECUTING MULTIPLE COMMANDS
TERMINATING PROGRAMS

GETTING HELP

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

209
209
210
212
212
213
213
214
214

)3 0 0 D333 3033033303330

)

2)

)

)

2)

_]

2]

]

2]

2}

-]

_)

)

1

_J

]

)

)

The Two Types of
CPIM 3.0
Commands

Built-In
Commands

209

As noted in Section 11, a CP/M 3.0 command line consists of a com-
mand keyword, an optional command tail, and a RETURN keystroke.
This section describes the two kinds of commands the command
keyword can identify, and summarizes individual commands and
their functions. The section also gives examples of some commonly
used commands. In addition, the section explains the concept of
logical and physical devices under CP/M 3.0. This section then tells
how CP/M 3.0 searches for a program file on a disk, tells how to exe-
cute multiple commands, and how to reset the disk system. Finally,
the section explains how to use the HELP command to get informa-
tion on various CP/M topics including command formats and usage,
right at the keyboard.

There are two types of commands in CP/M 3.0:

¢ Built-in commands—which identify programs in memory
¢ Transient utility commands—which identify program files
on a disk

CP/M 3.0 has six built-in commands and over 20 transient utility com-
mands. You can add utilities to your system by purchasing various
CP/M 3.0-compatible application programs. If you are an experi-
enced programmer, you can also write your own utilities that operate
with CP/M 3.0.

Built-in commands are parts of CP/M 3.0 that are always available
for your use, regardless of which disk you have in which drive. Built-
in commands are entered in the computer’s memory when CP/M 3.0
is loaded, and therefore execute more quickly than the transient
utilities. Table 14-1, on the next page, lists the Commodore 128 CP/M
3.0 built-in commands.

Some built-in commands have options that require support from a

related transient utility. The related transient utiltiy command has the
same name as the built-in command and has a filetype of COM.

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

Transient Utility

Commands

210

Command
DIR

DIRSYS

ERASE

RENAME
TYPE

USER

Table 14-1. Built-in Commands
Function
Displays filenames of all files in the directory
except those marked with the SYS attribute.

Displays filenames of files marked with the SYS
(system) attribute in the directory.

Erases a filename from the disk directory and

releases the storage space occupied by the file.

Renames a disk file.

Displays contents of an ASCII (TEXT) file at your
screen.

Changes to a different user number.

Some of the major CP/M 3.0 transient utility commands are listed in
Table 14-2. (The actual list of transient commands may change from
time to time as the CP/M system is updated or added to.) When you
enter a command keyword that identifies a transient utility, CP/M 3.0
loads the program file from the disk and passes that file any
filenames, data or parameters you entered in the command tail.

NOTE: The built-in commands, DIR, RENAME, and TYPE have
optional transient extensions.

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

S S

(-

—~

_

(

(-

[

—_—

[~

(-

{:

—_

C{

(-

(-

-

o)

)

)

)

)

-]

)

]

)

]

-]

]

]

]

]

]

]

Name
DATE

DEVICE
DIR

DUMP
ED
ERASE
GENCOM

GET

FORMAT
HELP

INITDIR

KEYFIG
PATCH

PIP
PUT

RENAME

SAVE

SET

SETDEF

SHOW
SUBMIT
TYPE

Table 14-2. Transient Utility Commands

Function

Sets or displays the date and time.

Assigns logical CP/M devices to one or more
physical devices, changes device driver proto-
col and baud rates, or sets console screen size.

Displays directory with files and their character-
istics.

Displays a file in ASCII and hexadecimal format.
Creates and alters ASCl| files.

Used for wildcard erase.

Creates a special COM file with attached RSX
file.

Temporarily gets console input from a disk file
rather than the keyboard.

Copies files.

Displays information on how to use CP/M 3.0
commands.

Initializes a disk directory to allow time and date
stamping.

Allows redefinition of keys

Displays or installs patches to CP/M system.

Copies files and combines files.

Temporarily directs printer or console output to
a disk file.

Changes the name of a file, or a group of files
using wildcard characters.

Saves a program in memory to disk.

Sets file options including disk labels, file attri-
butes, type of time and date stamping and pass-
word protection.

Sets system options including the drive search
chain.

Displays disk and drive statistics.

Automatically executes multiple commands.
Display contents of text file (or group of files, if
wildcard characters are used) on screen (and
printer if desired).

211 USING CP/M MODE—Summary of Major CP/M 3.0 Commands

Redirecting Input
and Output

Assigning Logical
Devices

212

CP/M 3.0’s PUT command allows you to direct console or printer
output to a disk file. You can use a GET command to make CP/M 3.0
or a utility program take console input from a disk file. The following
examples illustrate some of the capabilities offered by GET and PUT.

You can use a PUT command to direct console output to a disk file
as well as to the console. With PUT, you can create a disk file con-
taining a directory of all files on that disk, as shown in Figure 14-1.

AYPUT CONSOLE OUTPUT TO FILE DIR.PRN
PUTTING CONSOLE OUTPUT TO FILE: DIR.PRN

AYDIR

A: FILENAME TEX : FRONT TEX : FRONT BAK : ONE BAK : THREE TEX
A: FOUR TEX : ONE TEX : LINEDIT TEX : EXAMP1 TXT : TWO BAK
A: TWO TEX : THREE BAK : EXAMP2 TXT

AYTYPE DIR.PRN

A: FILENAME TEX : FRONT TEX : FRONT BAK : ONE BAK : THREE TEX
A: FOUR TEX : ONE TEX : LINEDIT TEX : EXAMP1 TXT : TWO BAK
A: TWO TEX : THREE BAK : EXAMP2 TXT

Figure 14-1. PUT Command Example

A GET command can direct CP/M 3.0 or a program to read console
input from a disk file instead of from the keyboard. If the file is to be
read by CP/M 3.0, it must contain standard CP/M 3.0 command lines.
If the file is to be read by a utility program, it must contain input
appropriate for that program. A file can contain both CP/M 3.0 com-
mand lines and program input if it also includes a command to start
a program.

The minimal Commodore 128 CP/M 3.0 hardware includes a console
consisting of a keyboard and screen display, and a 1571 disk drive.
You may want to add another device to your system, such as a
printer or a modem. To help keep track of these physically different
input and output devices, Table 14-3 gives the names of CP/M 3.0
logical devices. It also shows the physical devices assigned to these
logical devices in the Commodore 128 CP/M 3.0 system.

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

C

(-

ot

L C C

- O C C C C &

C

)

)

'

-}

)

-]

]

]

]

]

]

j

-

_)

]

1

]

S~
'

]

Table 14-3. CP/M 3.0 Logical Devices

Logical Physical Device
Device Name Device Type Assignment
CONIN: Console input Keys
CONOUT: Console output 80 COL or 40 COL
AUXIN: Auxiliary input Null
AUXOUT: Auxiliary output Null
LST: List output PTR1 or PTR2

You can change these assignments with a DEVICE command.

Finding Program If a command keyword identifies a utility, CP/M 3.0 looks for that
Files program file on the default or specified drive. It looks under the cur-
rent user number, and then under user O for the same file marked
with the SYS attribute. At any point in the search process, CP/M 3.0
stops the search if it finds the program file. CP/M 3.0 then loads the
program into memory and executes it. When the program termi-
nates, CP/M 3.0 displays the system prompt and waits for your next
command. However, if CP/M 3.0 does not find the command file, it
repeats the command line followed by a question mark, and waits for
your next command.

Executing In the examples so far, CP/M 3.0 has executed only one command at
Multiple atime. CP/M 3.0 can also execute a sequence of commands. You
Commands can enter a sequence of commands at the system prompt, or you

can put a frequently needed sequence of commands in a disk file,
using a filetype of SUB. Once you have stored the sequence in a disk
file, you can execute the sequence whenever you need to with a
SUBMIT command.

213 USING CP/M MODE—Summary of Major CP/M 3.0 Commands

Terminating
Programs

Getting Help

You can use the two keystroke command CTRL-C to terminate pro-
gram execution or reset the disk system. To enter a CTRL-C com-
mand, hold down the CTRL key and press C.

Most application programs that run under CP/M and most CP/M tran-
sient utilities can be terminated by a CTRL-C. However, if you try to
terminate a program while it is sending a display to the screen, you
may need to press a CTRL-S to halt the display before you enter
CTRL-C.

CPI/M 3.0 includes a transient utility command called HELP that will
display a summary of the format and use for the most common CP/M
commands. To access HELP, simply enter the command:

AYHELP

You can press the HELP key instead of typing the word HELP and
pressing the RETURN key.

The list of available topics is then displayed, like this:
Topics available:
C128~CP/M COMMANDS CNTRLCHARS COPYSYS DATE DEVICE

DIR DUMP ED ERASE FILESPEC GENCOM
GET HELP HEXCOM INITDIR KEYFIG LIB

LINK MAC PATCH PIP (COPY) PUT RENAME
RMAC SAVE SET SETDEF SHOW SID
SUBMIT TYPE USER XREF

NOTE: Some of the topics listed are not included with the basic
CP/M system. These topics are supplied when the user purchases
the additional CP/M materials, including manuals and disks, by filling
out the order form preceding page 219.

Suppose you type:
HELP) PIP

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

.

I R

(-

C =

o C [£ =

C L L T

)

]

_)

]

a

]

)

7

I R R

]

)

N

]

i

215

CP/M then displays the following information:
PIP (COPY)
Syntax:
DESTINATION SOURCE

PIP d: {Gn}pilespec {[Gn]} = filespec {[o]} Y . - {[o]}

Explanation:

The file copy program PIP copies files, combines files,
and transfers files between disks, printers, consoles, or
other devices attached to your computer. The first
filespec is the destination. The second filespec is the
source. Use two or more source filespecs separated by
commas to combine two or more files into one file. [o] is
any combination of the available options. The [Gn] option
in the destination filespec tells PIP to copy your file to
that user number.

PIP with no command tail displays an * prompt and
awaits your series of commands, entered and processed
one line at a time. The source or destination can be any
CP/M 3.0 logical device.

The HELP facility provides information like this on all the CP/M 3.0
built-in and transient utility commands. If you want information on a
specific area, you can type HELP subject after the system prompt,
where subject is a command tail describing the subject you are inter-
ested in. For example:

A) HELP PIP
A) HELP DIRSYS

You can refer to HELP any time you need information on a specific
command. Or you can just browse through HELP to broaden your
knowledge of CP/M 3.0.

USING CP/M MODE—Summary of Major GP/M 3.0 Commands

'O 3 3 3373333333739 7373 7

)

)

]

]

)

»

]

_]

}

58 [[

1

]

—

1

1

2]

]

SECTION 15
Commodore

Enhancements To

CPIM 3.0

217

KEYBOARD ENHANCEMENTS
KEYFIG
Defining a Key
Defining a String
Using ALT Mode

SCREEN ENHANCEMENTS
MFM DISK FORMATS

USING CP/M MODE—Commodore Enhancements to CP/M 3.0

219
219
220
220
221

221
222

I3 73 33 3333377333373 737

)

n

-}

]

]

I B

]

]

)~

)

1

]

]

]

)

]

Keyboard
Enhancements

219

Commodore has added a number of enhancements to CP/M 3.0.
These enhancements tailor the capabilities of the Commodore 128
to those of CP/M 3.0. They include such things as a selectively dis-
played disk status line, a virtual disk drive, local/remote handling of
keyboard codes, programmable function keys (strings), and a num-
ber of additional functions/characters that are assigned to various
keys. This section describes these enhancements.

Any key on the keyboard can be defined to generate a code or func-
tion, except the following keys:

Left SHIFT key
Right SHIFT key
Commodore key
CONTROL key
RESTORE key
40-80 key

CAPS LOCK key

In defining a key, the keyboard recognizes the following special func-
tions. To indicate these functions, hold down the CONTROL key and
the right SHIFT key, and press the desired function key simultane-
ously.

Key Function
CURSORLEFTkey Defines key
CURSOR RIGHT key Defines string (points to function
keys)
ALT key Toggles key filter

KEYFIG

The KEYFIG utility program allows you to alter the definition of
almost ANY key on the keyboard. The only keys that you CANNOT
modify are: the SHIFT keys, the SHIFT LOCK key, the CONTROL key,
the 40/80 DISPLAY key and the COMMODORE key. At each step,
options are presented in menu form. You can scroll through the
options in the menus by using the up and down arrow keys at the top
of the keyboard:; pressing the return key selects the choice that is
highlighted.

At almost any point, you can exit the program by typing ‘CTRL C’ (the
CONTROL and C keys simultaneously).

USING CP/M MODE —Commodore Enhancements to CP/M 3.0

220

Defining A Key

A user can define the code that a key can produce. Each key has
four possible definitions: Normal, Alpha Shift, Shift and Control. The
Alpha Shift is toggled on/off by pressing the Commodore key. After
entering this mode, a small box will appear on the bottom of the
screen. The first key that is pressed is the key to be defined. The
current HEX (hexadecimal) value assigned to this key is displayed,
the user can then type the new HEX code for the key, or abort by
typing a non-HEX key. The following is a definition of the codes that
can be assigned to a key. (In ALT mode, codes are returned to the
application; see ALT Mode below.)

Code Function
00h Null (same as not pressing a key)
O1hto7Fh Normal ASCII codes
80h to 9Fh String assigned
AOh to AFh 80-column character color
BOh to BFh 80-column background color
COh to CFh 40-column character color
DOh to DFh 40-column background color
EOh to EFh 40-column border color
FOh Toggle disk status on/off
F1h System Pause
F2h (Undefined)
F3h 40-column screen window right
F4h 40-column screen window left
F5h to FFh (Undefined)
Defining A String

This function allows the user to assign more than one key code to a
single key. Any key that is typed in this mode is placed in the string.
To access this function, press CTRL, RIGHT SHIFT and RIGHT CUR-
SOR. Then press the key to be defined. The user can see the results
of typing in a box at the bottom of the screen.

NOTE: Some keys may not display what they are. To provide the user
with control over the process of entering data, the following tive spe-
cial key functions, are available. To access these functions, press
the CONTROL and right SHIFT keys and the desired function keys.

Key Function
RETURN Complete string definition
+ (on main keyboard) Insert space into string
— (on main keyboard) Delete cursor character
Left arrow Cursor left
Right arrow Cursor right

USING CP/iMi MODE—Commodore Enhancements to CP/M 3.0

S

L L

C C

C [

L C =

c L (=

=

)

]

)

—

]

_—
V
i

—

1

-1

m

-]

]

1

1

1

1

)

i

)

)

1

Screen
Enhancements

221

Using ALT Mode

ALT mode is a toggle function (that is, it can be switched between
ON and OFF.) The default value is OFF. This function allows the user
to send 8-bit codes to an application.

The default screen in CP/M 3.0 emulates an ADM31 terminal. The
following screen functions emulate ADM 3A operation, which is a
subset of ADM31 operation.

CTRLG
CTRLH
CTRLJ
CTRLK
CTRLL
CTRLM
CTRLZ
ESC = RC

Sound bell

Cursor left

Cursor down

Cursor up

Cursor right

Move cursor to start of current line (CR)

Home cursor and clear screen

Cursor position where R is the row location (with
values from space to 8) and C is the column loca-
tion (next values from space to 0), referenced to
the status line

Additional functions in ADM31 mode include:

ESCT
ESCt
ESCY
ESCy
ESC: i
ESC *

ESCQ
ESCW
ESCE
ESCR

Clear to end of line

Clear to end of screen

Home cursor and clear screen (including the
status line)

Insert character
Delete character
Insert line
Delete line

* ESC ESC ESC color# sets a screen color from a table of 16
color entries. (These are the same color values listed in Chapter
I, Section 6, Figure 6-2.) The color # will be set as follows:

20h to 2Fh physical character color
30h to 3Fh physical background color
40h to 4Fh physical border color (40 column only)

50h to 5Fh logical character color
60h to 6Fh logical background color
70hto 7Fh logical border color (40 column only)

NOTE: Physical and logical colors have the same default values.

USING CP/IM MODE—Commodore Enhancements to CP/M 3.0

MFM Disk
Formats

222

The visual effects associated with following functions are visible only
with the 80-column screen format.

ESC) Half intensity
ESC(Full intensity
ESC G4 Reverse video ON
* ESCG3 Turn underline ON
ESC G2 Blink ON
* ESC G1 Select the alternate character set
ESC GO All ESC G attributes OFF

*NOTE: This is NOT a normal ADM31 sequence.

For non-Commodore CP/M programs you will probably need to spec-
ify the format of the CP/M program disk. Format in this case refers to
a particular way of arranging the data on a disk. These disk formats
(referred to as MFM formats) generally are designed to match the
specific capabilities of the system for which the particular CP/M
program was created.

When used with the fast 1571 disk drive, the Commodore 128 sup-
ports a variety of double density MFM disk formats (for reading and/
or writing), including:

Epson QX10 (512 byte sectors, double sided, 10 sec-
tors per track)

IBM-8 SS (CP/M 86) (512 byte sectors, single sided, 8 sectors
per track)

IBM-8 DS (CP/M 86) (512 byte sectors, double sided, 8 sectors
per track)

KayPro Il (512 byte sectors, single sided, 10 sectors
per track)

KayPro IV (512 byte sectors, double sided, 10 sec-
tors per track)

Osborne DD (1024 byte sectors, single sided, 5 sectors
per track)

When you insert one of these disks into the disk drive and try to
access it, the system senses the type of disk with respect to the
number of bytes per sector and the number of sectors per track. If
the disk format is not unique, a box is displayed near the bottom left
corner of the screen, showing which disk type you are accessing.
The system requires you to select the specific disk type by scrolling
through the choices given in this window. Note: The choices are
given one at a time; scroll through using the right and left arrow keys.
Type RETURN when the disk type that you know is in the disk drive is
displayed. Typing CONTROL RETURN will lock this disk format so
that you will not need to select the disk type each time you access
the disk drive.

USING CP/M MODE—Commodore Enhancements to CP/M 3.0

(C C

C C C C & & C ¢

(L & C C C =

-

1

I~

]

i~

[~

~]

)

(—

1

I

]

I~

)

}

I~

)

EPSON is a registered trademark of EPSON Corp.

IBM is a registered trademark of International Business
Machines Corp.

Kaypro is a registered trademark of Kay Computers, a division
of Non-Linear Systems.

Osborne is a registered trademark of Osborne Computer Corp.

khkhkkkhkkkkhkhkhkkhkhkhkhkhhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkkkhkkkkik

The sections in this chapter provide a summary of the structure and
wide-ranging capabilities of CP/M 3.0 For detailed information on any
facet of CP/M 3.0, you should respond to the offer described on the
card included in this chapter. In return you will receive a copy of the
Digital Research, Inc. book, CPIM Plus User’s Guide.

223

7773333737773 07797

)

-}

.

}

o«

-

8

]

]

-

_]

-}

-]

]

Y

_)

-l

_)

]

.;(—

BASIC 7.0 ENCYCLOPEDIA

CHAPTER

Al

B R (0 S S J B RS O N RN B R RN S R s

)

),

_}

-

1

.

i
{

1 1]

1

-

]

SECTION 16
Introduction

227

ORGANIZATION OF ENCYCLOPEDIA
COMMAND AND STATEMENT FORMAT

BASIC 7.0 ENCYCLOPEDIA—Introduction

229
229

a3 3J 3333303333033 3333

)

—
'

]

2}

2)

-~

)

-]

[

)

)

L,

]

Organization of This chapter lists BASIC 7.0 language elements. It gives a complete
Encyclopedia list of the rules (syntax) of Commodore 128 BASIC 7.0, along with a
concise description of each.

BASIC 7.0 includes all the elements of BASIC 2.0. The new com-
mands, statements, functions and operators provided in BASIC 7.0
are highlighted in color.

The different types of BASIC operations are listed in individual sec-
tions, as follows:

1. COMMANDS and STATEMENTS: the commands used to
edit, store and erase programs; and the BASIC program
statements used in the numbered lines of a program.

2. FUNCTIONS: the string, numeric and print functions.

3. VARIABLES AND OPERATORS: the different types of vari-
ables, legal variable names, arithmetic operators and logical
operators.

4. RESERVED WORDS AND SYMBOLS: the words and sym-
bols reserved for use the BASIC 7.0 language, which cannot
be used for any other purpose.

Command and The commands and statements definition in this encyclopedia are
Statement Format arranged in the following format:

Command name— AUTO

Brief definition— —Enable/disable automatic line numbering

Command format— AUTO [line#]

Discussion of This command turns on the automatic line-numbering fea-
format and use— ture. This eases the job of entering programs, by automati-

cally typing the line numbers for the user. As each program
line is entered by pressing RETURN, the next line number is
printed on the screen, and the cursor is positioned two
spaces to the right of the line number. The line number
argument refers to the desired increment between line
numbers. AUTO without an argument turns off the auto line
numbering, as does RUN. This statement can be used only
in direct mode (outside of a program).

EXAMPLES:

AUTO 10 Automatically numbers program lines in
Example(s)— increments of 10.

AUTO 50 Automatically numbers lines in increments
of 50.

AUTO Turns off automatic line numbering.

229 BASIC 7.0 ENCYCLOPEDIA—Introduction

230

The boldface line that defines the format consists of the following
elements:

?LOAD “program name” [,DO,U8]

t 1

keyword argument additional arguments
(possibly optional)

The parts of the command or statement that must be typed exactly
as shown are in capital letters. Words the user supplies, such as the
name of a program, are not capitalized.

When quote marks (* ") appear (usually around a program name or
filename), the user should include them in the appropriate place,
according to the format example.

KEYWORDS, also called reserved words, appear in upper-case
letters. Keywords are words that are part of the BASIC language.
They are the central part of a command or statement, and they tell
the computer what kind of action to take. These words cannot be
used as variable names. A complete list of reserved words and sym-
bols is given in Section 20.

Keywords may be typed using the full word or the approved abbrevi-

ation. (A full list of abbreviations is given in Appendix K). The keyword
or abbreviation must be entered correctly or an error will result. The

BASIC and DOS error messages are defined in Appendices A and B,
respectively.

ARGUMENTS, also called parameters, appear in lower-case letters.

Arguments complement keywords by providing specific information
to the command or statement. For example, the keyword load tells
the computer to load a program while the argument tells the com-
puter which specific program to load. A second argument specifies
from which drive to load the program. Arguments include filenames,
variables, line numbers, etc.

SQUARE BRACKETS [] show optional arguments. The user selects
any or none of the arguments listed, depending on requirements.

ANGLE BRACKETS () indicate the user MUST choose one of the
arguments listed.

BASIC 7.0 ENCYCLOPEDIA—Introduction

C C £ C -

L C C C C ([

(=

c

)

|

i,

_}

J

!

‘::‘}

7

-

-]

i .

)

]

1

]

L~

231

A VERTICAL BAR | separates items in a list of arguments when the
choices are limited to those arguments listed. When the vertical bar
appears in a list enclosed in SQUARE BRACKETS, the choices are
limited to the items in the list, but the user still has the option not to
use any arguments. If a vertical bar appears within angle brackets,
the user must choose one of the listed arguments.

ELLIPSIS ... asequence of three dots means an option or argu-
ment can be repeated more than once.

QUOTATION MARKS “ ” enclose character strings, filenames and
other expressions. When arguments are enclosed in quotation
marks, the quotation marks must be included in the command or
statement. Quotation marks are not conventions used to describe
formats; they are required parts of a command or statement.

PARENTHESES () When arguments are enclosed in parentheses,
they must be included in the command or statement. Parentheses
are not conventions used to describe formats; they are required
parts of a command or statement.

VARIABLE refers to any valid BASIC variable names, such as X, A$,
T%, efc.

EXPRESSION refers to any valid BASIC expressions, such as
A+B+2, .5*X+3),etc.

BASIC 7.0 ENCYCLOPEDIA—Introduction

a3 3 3333 3 3J 3 33 303330270 73

]

]

-]

1

[R

L N B

n

]

]

)

-]

a

SECTION 17
BASIC Comman
and Statements

ds

233

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

737 173137 3333731797737 937373

.

]

)

]

11

]

1 1

-

N

]

I R

-

APPEND

AUTO

—Append data to the end of a sequential file.

APPEND #logical file number,“filename”[,Ddrive number]
[(ON|,)Udevice]

This command opens the file having the specified filename, and
positions the pointer at the end of the file. Subsequent PRINT#
(write) statements will cause data to be appended to the end of this
logical file number. Default values for drive number and device num-
ber are 0 and 8 respectively.

Variables or expressions used as filenames must be enclosed within
parentheses.

EXAMPLES: Append # 8, “MYFILE” OPEN logical file 8
called *MYFILE" for
appending with
subsequent PRINT#
statements.

Append # 7, (A$),D0,U9 OPEN logical file
named by the
variable in A$ on
drive 0, device
number 9, and
prepare to APPEND.

—Enable/disable automatic line numbering
AUTO [line#]

This command turns on the automatic line-numbering feature. This
eases the job of entering programs, by automatically typing the line
numbers for the user. As each program line is entered by pressing
RETURN, the next line number is printed on the screen, and the cur-
sor is positioned two spaces to the right of the line number. The line
number argument refers to the desired increment between line num-
bers. AUTO without an argument turns off the auto line numbering,
as does RUN. This statement can be used only in direct mode (out-
side of a program).

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

BACKUP

BANK

236

EXAMPLES:

AUTO 10 Automatically numbers program lines in increments of 10.
AUTO 50 Automatically numbers lines in increments of 50.

AUTO Turns off automatic line numbering.

—Copy the entire contents from one disk to another on a dual disk
drive

BACKUP source Ddrive number TO destination Ddrive
number [(ON|,)Udevice]

This command copies all the files from the source diskette onto the
destination diskette, using a dual disk drive. With the BACKUP com-
mand, a new destination diskette can be used without first format-
ting it. This is because the BACKUP command copies all the infor-
mation on the diskette, including the form