C128
System
Guide

Notes fromthe typist

Entering (data typing) the Cormodore 128 System Quide... This entailed far
nmore than | bargained for. This is because not only because the original
text contained errors, which had to be corrected, but al so because sone
useful information and hints were mssing.

| could have witten a separate e-book containing what | feel should have
been included in the C128 System Guide as well (and | still may do that

one day). In stead | added some words here and there to clarify matters,

to avoid wandering off too much fromthe original text. This neans this
e-text is not an exact 1:1 replica of the original, but I"'msure the
authors of the original System Quide wouldn't object (too nmuch). They pro-
bably had to wite the SystemGuide in ajiffie, while | could take as |ong
as | wanted to get the text just right.

This e-text can be both read on-line as be read on paper (after you have
printed it). | suppose nost of you use or have access to a MS-DOS conputer,
and will be able to print the entire C128 System Quide. Tips on both the
e-text viewing and printing can be found bel ow. O course other computer
systens that can handl e large document files, can handle this document just
as wel | as any M5-DCS capabl e computer.

Viewi ng the Cormodore 128 System Cuide on-line

[f you use Wndows95/98/NT 4.0 you can view the e-text using EDI T.COM The
only thing you have to do to see each separate page inits entireis to
performthis little command |ine before you run EDIT. COM

MODE CON LI NES=50

Al as, earlier versions of EDIT.COMuse one line extra, and this results in
one line less to display text. Credits for this "bug" go to Mcro$oft ;-).

Printing the Commodore 128 System Qui de

All 412 pages in the Commdore 128 System CQuide conformto this format:

- no nore than 75 characters wide
- 47 lines high

There are no | eading spaces included in the e-text to sinulate a left nar-
gin. So, when you print the e-text, you have to set the left margin of your
printer manual ly. Look in your printer manual for printer codes.

For PCL conpatible printers (Hew ett Packard), the left margin is set as
fol l ows:

deci mal : 27, 38, 97, (ASCII colum value), 76
hexadecimal: 1b 26 61 (...) 4c

ASCI1 colum value is one or nore ASCII codes for decimal digits (0...9).
The ASCII code for 0 (zero) is 48 (30 in hex), each next digit is one value
higher. To set a margin of 5 colums (the maxinmumfor the e-text), you use
the following string of codes:

deci mal : 27 38 97 53 76
hexadeci mal : 1b 26 61 35 4c

Now, in Ms-DOS (or in a MS5-DOS box) go to the directory where the e-text is
located (using the command CD), and start DEBUG and do the fol | owing:

DEBUG

- N SETLEFT. PCL

- ECS: 100

yyyy: 0100 xx.1b xx.26 xx.61 xx.35 xx.4c {enter}
- RBX {enter}

BX 0000

:0 {enter}

- RCX {enter}

CX 0000

:5 {enter}

- W{enter}

Busy writing 00005 bytes
- Q{enter}

Note: For "xx" and "yyyy" read what your conputer supplies on the screen.
After you have entered a hexadeci mal nunber with the "E' conmand,
type a space for the next entry. Stop the entry process with a push
on the {enter} key.

The nunber of bytes to be witten is contained in registers BX and
CX. For our purposes BX should be zero, and CX should contain the
length of the code string. You can set the register values with the
R command (see above).

Substitute your printer codes for the ones | have supplied above, and ad-
just the value of the CX register accordingly.

Now copy this file to your printer:
COPY SETLEFT. PCL PRN:
And then copy the C128 System Quide to your printer:

COPY C128SG. TXT PR\

Mbst of the e-text | have typed (and corrected) nyself. However,

some of the ASCI| art and some of the appendixes | have copied and adapted
fromthe C64 Programmer's Reference Guide, the e-text version by Ville

Mii kkul a. Al'so, where the original text by Conmodore had shortcomings |
added/ corrected text.

Many thanks to all those people who pointed me to the existing errors in
one of ny earlier publications of the CL28 System Qui de.

November 17, 1999

Rene van Bel zen
mai | to: hurray@sd4al | . nl
http://ww. xs4al |l .nl/

hurray/ cbm

System Qui de
Conmodor e
128
Personal Conput er

(c) Conmodore Electronics, Ltd. 1985. All rights reserved.

Copyright (c) 1985 by Commodore El ectronics Limted
All rights reserved

Thi s manual contains copyrighted and proprietary information. No part of
this publication my be reproduced, stored in a retrieval system or trans-
mtted in any formor by any means, electronic, nechanical, photocopying,
recording or otherw se, without the prior witten permssion of Commodore
El ectronics Limted.

Conmodore BASIC 7.0

Copyright (c) 1985 by Conmodore Electronics Limted; Al rights reserved

Copyright (c) 1977 by Mcrosoft Corp.
All rights reserved

CPIM(R) Plus Version 3.0

Copyright (c) 1982 Digital Research Inc.
All rights reserved

CPIMis a registered trademark of Digital Research Inc.

CONTENTS

C128 SYSTEM GUI DE

CHAPTER | - |

SECTION 1 -
SECTION 2 -

CHAPTER || -

SECTION 3 -
SECTICN 4 -
SECTION 5 -

SECTION 6 -
SECTION 7 -
SECTION 8 -

CHAPTER I'I'] -

SECTION 9 -
SECTION 10

CHAPTER IV -

SECTION 11
SECTION 12
SECTION 13
SECTION 14
SECTION 15

NTRCDUCTI ON

HOWN TO USE THI S GUI DE
OVERVI EW OF THE COMMODORE 128 PERSONAL COWPUTER

USI NG C128 MCDE

GETTI NG STARTED | N BASI C

ADVANCED BAS| C PROGRAMM NG

SOVE BAS| C COMMANDS AND KEYBOARD OPERATI ONS
UNI QUE TO C128

COLCR, ANl MATI ON AND SPRI TE GRAPHI CS

SOUND AND MUSI C I N C128 MODE

USI NG 80 COLUMNS

USI NG C64 MCDE

USING BASIC I N C64 MODE
- STORING AND REUSI NG YOUR PROGRAMS | N C64 MODE

CP/' M MODE

- | NTRODUCTI ON OT CP/M 3.0

- FILES, DI SKS AND DRIVES IN CP/M 3.0

- USING THE CONSCLE AND PRINTER IN CP/M 3.0
- SUMVARY OF MAJOR CP/M 3.0 COVVANDS

- COVMODORE ENHANCEMENTS TO CP/M 3.0

=
w

e
w

D
w

11-

13-
14-
15-

PNeT
W w ww

'
W w www

CHAPTER V - BASIC 7.0 ENCYCLOPAEDI A

SECTION 16 -
SECTION 17 -
SECTION 18 -
SECTION 19 -
SECTION 20 -

APPENDI CES

APPENDI X A -
APPENDI X B -
APPENDI X C -
APPENDI X D -
APPENDI X E -
APPENDI X F -
APPENDI X G -
APPENDI X H -
APPENDI X | -
APPENDI X J -
APPENDI X K -
APPENDI X L -

GLOSSARY

[NDEX

| NTRODUCTI ON

BASI C COVWANDS AND STATEMENTS
BASI C FUNCTI ONS

VARI ABLES AND OPERATI ONS
RESERVED WORDS AND SYMBOLS

BASI C LANGUAGE ERROR MESSAGES
DOS ERROR MESSAGES

CONNECTORS/ PORTS FOR PERI PHERAL EQUI PMVENT
SCREEN DI SPLAY CCDES

ASCI1 AND CHR$ CODES

SCREEN AND COLOR MEMORY MAPS
DERI VED MATHEMATI CAL FUNCTI ONS
MEMCRY MAP

CONTROL AND ESCAPE CODES

MACHI NE LANGUAGE MONI TOR

BASIC 7.0 ABBREVI ATI ONS

DI SK COVWAND SUMVARY

ag-1

In-1

CHAPTER

| NTRODUCTI ON

SECTION 1

How to Use This Quide

1-1

This Commodore 128 System Quide is designed to hel p you make full use of
the advanced capabilities of the Commmodore 128 conputer.

Before you read any further in this System Guide, make sure you have
read the other book that comes with your conputer, the Conmodore 128

Personal Conputer Introductory Guide. This introductory guide contains

inportant information on getting started with the Commodore 128.

If you are primarily interested in using the BASIC | anguage to create
and run your own progranms, you should read Chapter II, USING C128 MODE.
This chapter introduces you to the BASIC programming | anguage as used

in both C128 and C64 nodes, describes the Conmodore 128 keyboard,

defines some advanced conmands you can use in both C128 and C64 nodes,

shows how to use a number of powerful new BASIC commands (including

col our, graphic and sound conmands) that are unique to Cl128 Mde, and
describes how to use the 80-col urm capabilities available in CL28 Mde.

[f you want to use BASIC in C64 Mde, read Chapter 111, USING C64 MOXDE.

If you want to use CP/Mon the Conmodore 128, read Chapter 1V, USING

CP/M MXDE. This chapter tells you howto start up and use CP/Mon the

Cormodore 128. In CP/Myou can choose from thousands of commerci al
sof tware packages, including the PERFECT series (PERFECT WRI TER,
PERFECT CALC, PERFECT FILER). You can also create your own CP/M
pr ogr ans.

[f you want details on the BASIC 7.0 conmands, read Chapter 1V, BASIC
7.0 ENCYCLOPAEDI A. This chapter gives format and usage details on all

BASIC 7.0 commands, statenents and functions.

If, after reading Chapters | through V, you are looking for additional

technical information about a particular Conmodore 128 topic, first

check the Appendices to this System Guide. These appendices contain a

wi de range of information, such as a conplete list of BASIC and DCS

error nessages and a summary of di sk commands. A G ossary follow ng the

Appendi ces provides definitions of conmputing terns.

1-3

For conplete technical details about any feature of the Commodore 128, con-
sul't the Commmodore 128 Programmer's Reference Guide.

1-4

SECTION 2

Overvi ew of the Conmodore

C128 Personal Conput er

2-1

OVERVI EW OF THE COWMMODORE C128 PERSONAL COMPUTER
The Commodore 128 Personal Conputer offers three primary operating nodes:

* C128 Mode
* 64 Mobde
* CPI'M Mode

C128 Mode

In C128 Mbde, the Conmodore 128 Personal Conputer provides access to 128K
of RAM and a powerful extended BASIC | anguage known as BASIC 7.0. BASIC 7.0
of fers over 140 conmands, statements and functions. Cl28 Mbde al so provides
both 40 and 80 col um output and full use of the 92-key keyboard. A built-
in machine l'anguage nonitor allows you to create and debug your own machine
| anguage programs. In C128 Mode you can use a nunber of new peripheral
devices from Conmodore, including a new fast serial disk drive (the 1571),
a nouse, and a 40/80 col um conposite video/RGBI nonitor (the 1901). You
can also use all standard Conmodore serial peripherals.

C64 Mbde

In C64 Mode, the Commodore 128 operates exactly |ike a Conmodore 64 com
puter, allowing you to take full advantage of the wide range of available
C64 software. You also have full conpatibility with all C84 peripherals.

C64 Mode provides BASIC 2.0 |anguage, 40 col um output and access to 64K of
RAM

CP/ M Mbde

In CP/M Mbde, an onboard Z80 microprocessor gives you all the capabilities
of Digital Research's CP/MPlus version 3.0, plus several new capabilities
by Conmodore. The Conmodore 128's CP/ M package, called CP/MPlus, provides
128K of RAM 40 and 80 col umn output, access to the full keyboard, inclu-

ding the numeric keypad and special keys, and access to the new Conmodore

1571 fast serial disk drive as well as standard serial peripherals.

2-3

Chapters Il, 111 and 1V, which include Sections 3 through 15, tell you how
to access and use the capabilities of the three powerful and versatile
operating modes of the Comrmodore 128 Personal Conputer.

Swi t chi ng Between Mbdes

The following chart tells you howto switch to one node from another.
NOTE: |f you are using a Commodore 1901 dual nonitor remenber to nove the
video switch on the monitor fromthe COWGCSI TE or SEPARATED to RGBI when

switching from40 colum to 80 colum display. Reverse this step when
switching from80 to 40 col ums.

MODE SW TCHI NG CHART

FROM
T| OFF C128 C128 64 CPI'M CPI'M
Q 40 COL(1) 80 COL(2) (3) 40 COL(4) 80 COL(5)
e Hemee e Hemee e Hemee e Heeee e Heemeaa +
1] 1. Check that | | 1. Press | 1. Check | 1. Check | 1. Check |
{40/80}		{esc}	that	that	that
key is UP.		key;	{40/80}	{40/80}	{40/80}
2. Turn		release.	keyis	keyis	keyis
computer		2.Press X	UP.	UP.	UP.
ON		key.	2. Turn	2. Remove	2. Renove
		OR	computer	CPIM	CPIM
		1. Check	OFF, then	system	system
		that	O\	disk, if	disk, if
		{40/80}		neces-	neces-
I I	keyis		sary.	sary.	
		UP.		3. Turn	3. Turn
		2. Press		computer	conputer
		{reset}		OFF, then	OFF, then
		button.		O\	O\
e Hemee e Hemee e Hemee e Heeee e Hoeeeaa +

2-4

FROM

T| OFF C128 C128 64 CPI'M CPI'M

Q 40 COL(1) 80 COL(2) (3) 40 COL(4) 80 COL(5)
e Heeee e teeee e Heeee e Hoeee e toeee e +
2| 1. Press | 1. Press | | 1. Press | 1. Press | 1. Check |
{40/80}	{esc}		{40/80}	{40/80}	that
key DOM.	key;		key DOM.	key DOM.	{40/80}
2. Turn	release.		2. Turn	2. Remove	key is
conmputer	2.Press X		conmputer	CP/IM	DOM.
ON	key.		OFF, then	system	2.Renove
	xR		O\	disk from CPIM	
	1. Press			drive, if	system
	{40/80}			neces-	disk fron
	key DOM.			sary.	drive, if
	2. Press			3. Turn	neces-
	{reset}			computer	sary.
	button.			OFF, then	3.Turn
I I			O\	conputer	
I		I I	GFF, then		
I I I I		O\ I			
e Heeee e Heeee e Foeee e toeee e Foeee e +					
3	1.Hold {C}	1. Type	1. Type		1. Turn
key DOMW.	GO64;	GO64;		computer	conputer
2. Turn	press	press		OFF.	OFF.
computer	{return}.	{return}.		2. Check	2. Check
O\	2. The	2. The		that	that
(03]	computer	conputer		{40/80}	{40/80}
1. Insert C64	responds:	responds:		keyis	keyis
cartridge.	ARE YOU	ARE YOU		UP.	UP.
2. Turn	SURE?	SURE?		3. Hol d DO 3. Hol d DOWN	
conputer	TypeY;	TypeY;		{CG} key	{C} key
ON	press	press		while	while
	{return}.	{return}.		turning	turning
				computer	conputer
I I			O\	O\ I	
I		I I R xR			
				1. Turn	1. Turn
				computer	conputer
I I			OFF.	GOFF. I	
				2.1nsert	2.1nsert
				C64 car-	C64 car-
				tridge.	tridge.
				3. Turn	3. Turn
I I I I | power ON.| power ON|
e Heeee e Heeee e Heeee e tomee e Hemee e +

2-5

FROM

T| OFF C128 C128 64 CPI'M CPI'M

Q 40 COL(1) 80 COL(2) (3) 40 COL(4) 80 COL(5)
e Hemee e Hemee e Hemee e Heeee e Heemeaa +
4| 1. Turn disk | 1. Turn disk| 1. Turn disk| 1. Check | | 1. Insert |
drive ON.	drive ON.	drive ON	that		CPIM
2. I nsert	2.1nsert	2.1nsert	{40/80}		utilities
CPIMsys-	CPIMsys-	CP/IMsys-	keyis		diskin
temdisk	temdisk	temdisk	UP.		drive.
indisk	indisk	indisk	2 Turn disk		2. At screen
drive.	drive.	drive.	drive ON		pronpt,
3. Check that	3. Check	3. Check	3.Insert		A> type:
{40/80}	that	that	CPIM		DEVICE
key is UP.	{40/80}	{40/80}	system		CONOUT
4. Turn	keyis	keyis	diskin		= 40COL.
computer	UP.	UP.	drive.		3. Press
ON	4. Type:	4. Type:	4. Turn		{return}.
	BOOT.	BOOT.	computer		
	5. Press	5. Press	OFF, then		
	{return}.	{return}	ON		
e Hemee e Hemeeaa Hemee e Heeee e Hoeeeaa +					
5	1. Turn disk	1. Turn disk	1. Turn disk	1.Press 1. Insert	
drive ON.	drive ON.	drive ON.	{40/80}	CP/M	
2. 1 nsert	2.1nsert	2.1nsert	key DOM.	utilities	
CPIMsys-	CPIMsys-	CP/IMsys-	2.Turn disk] diskin		
temdisk	temdisk	temdisk	drive ON	drive.	
indisk	indisk	indisk	3.Insert	2. At screen	
drive.	drive.	drive.	CPIM	prompt	
3. Press	3. Press	3. Check	system	A> type:	
{40/80}	{40/80}	that	diskin	DEVICE	
key DOM.	key DOM.	{40/80}	drive.	CONOUT	
4. Turn	4. Type:	key is	4.Turn	= 80CaL.	
computer	conputer	DOM.	conputer	3.Press	
ON	BOOT.	4. Type:	OFF, then	{return}.	
	5. Press	BOOT.	ON		
	{return}.	5.Press			
		{return}.			
e Hemee e Hemeeaa Hemee e Heeee e Hoeeeaa +

NOTE: |f you are using a Conmodore 1902 dual nonitor, renenber to nove the
video switch on the monitor from COWOSI TE or SEPARATED to RGBI when

swi tching from 40-colum to 80-col um display; reverse this step when
switching from80 to 40 col ums. Also, when switching between nodes renove
any cartridges fromthe expansion port and any disks fromthe disk drive.

2-6

CHAPTER

2

USI NG C128 MCDE

SECTION 3
Getting Started in Basic

BASI C PROGRAMM NG LANGUAGE . .. oot

Direct MOe ...
Program Mbde

USING THE KEYBOARD ...ttt ettt e

Keyboard Charact er SetS ...t
Using the Command KeySc.ourriiiiiiii s
ROt UM
SNt
Shift LOCK ..o
MOVIiNG the CUFSOr .. e
Using the four Arrow CQursor Keyscoiiiiiiiiiinnnn...
Using the CRSR KEYS ...\ttt e
ENST/ DEL .\ttt e e e
Insterting charaCterscuiiieniiiii e,
Deleting charactersoo i
Using INSerT and DELete together,

(6 L0

CLR HOME e e
Commodore KeYt
Function KeysS ...
Displaying Graphic Characterscoviviienaannn.
Rules for Typing BASIC Language Programs

GETTING STARTED - THE PRINT COMMAND

Printing Numbers i
Using the Question Mark to Abbreviate the PRINT Command ...
Printing TeXtoii
Printing in Different Colorscooviiiiienainn.

Using the Cursor Keys Inside Quotes with the PRINT Command

3-1

[
[N
[N

-15

d
w

d
~

[S A S S i S S S R R A A
OO OWWOWOoLN~N~NOo oo ol ool

5
= e
oo ow©

-12

-12
-12
-13

BEG NNING TO PROGRAM

Wat a Programls
Line Numbers

View ng your Program- The LIST Commandt

A Sinple Loop - The GOTO Conmand
Clearing the Conputer's Menory -
Using Color in a Program.......

EDI TING YOUR PROGRAM

Erasing a Line froma Program..
Duplicating a Line
Replacing a Line
Changing a Line

MATHEMATI CAL OPERATIONS

Mat hematical Cperations
Addition and Subtraction
Mil tiplication and Division
Exponentiation
Order of Qperations

The NEW Command

Using Parentheses to Define the Order of Cperations

CONSTANTS, VARI ABLES AND STRINGS .
Constants
Variables
Strings ...

SAMPLE PROGRAMo

STORI NG AND REUSI NG YOUR PROGRANVS

Formatting a Disk - The HEADER Commandcovvrnn...

SAVEing on Disk
SAVEi ng on Cassette
LOADing fromDisk
LOADI ng from Cassette Tape
Gt her Disk-Related Commands

Verifying a Program..........

Di spl ayi ng Your Disk Directory

-22
-22
-23
-24

-25

BASI C PROGRAMM NG LANGUAGE

The BASIC programmi ng | anguage is a special |anguage that lets you comuni-
cate with your Commodore 128. Using BASIC is one neans by which you
instruct your conputer what to do.

BASIC has its own vocabulary (made up of commands, statenents and func-
tions) and its own rules of structure (called syntax). You can use the
BASI C vocabul ary and syntax to create a set of instructions called a
program which your conputer can then performor "run".

Using BASIC, you can conmunicate with your Conmodore 128 in two ways:
within a program or directly (outside a progran).

Direct Mbde

Your Commodore 128 is ready to accept BASIC conmands in direct node as soon
as you turn on the computer. In the direct mode, you type commands on the
keyboard and enter theminto the conputer by pressing the {return} key.
Mbst BASI C conmands in your Conmodore 128 can be used in direct node as
well as in a program

Program Mbde

I'n program node you enter a set of instructions that performa specific
task. Each instruction is contained in a sequential programline. A state-
ment in a programmay be as long as 160 characters; this is equivalent to
four full screen lines in 40-colum format, and two full screen lines in
80-col um format.

Once you have typed a program you can use it imediately by typing the RUN
command and pressing the {return} key. You can also store the programon
di sk or tape by using the DSAVE (or SAVE) command. Then you recall it from
the disk or tape by using the DLOAD (or LOAD) command. This conmand copies
the programfromthe disk or tape and places that programin the Conmodore
128's memory. You can then use or "execute" the programagain by entering
the RUN conmand. All these conmands are explained later in this section.
Mbst of the time you will be using you computer with prograns, including
programs you yourself wite, and commercially available software packages.
The only time you operate in direct node i s when you are manipul ating or
editing your programs with commands such as LIST, LOAD, SAVE and RUN. As a
rule, the difference between direct node and operation within a programis
that direct node commands have no |ine numbers.

3-3

USI NG THE KEYBOARD

Shown bel ow i s the keyboard of the Conmodore 128 Personal Conputer.

Feoe e +
[BV/TV A Q THLV 40N Fu\fdV N e | TRTRTRTR |
s a I | |1 | lp w f g |1 35 7]
\e/\b/\t/\ L/ \p/\F/\8/\S/ IS AN AR FAN S AN B AR ARV AR |

o o e e Feoe e +

[TNV &N (NN NN NI QIN | LN A A

|] 0+ - b | 117 8 9 4

| VANL/N2/N3NANBINGINTINGINGIN N N JNS/NHAD |\ /N IV T

| |

| fco\/ N NP NN NN NS NN NN NTWIRESY | NN VN

| It QWERTYUI OP @* ST | |4 5 6 -

A A A AN A A A A A AN AN AR AR AV-AY - = B AR AR AN

| |

| TRISV NN NSNS NSNS N NN NTVINVIRE V| NN AN

|| h ASDETFGHIJKIL TRN | |1 2 3||E

I AN Y A A A A A AN AU AR AR AR ARV AR AL VIV IV TN

| | | T|

| TQUSHS N AL NN NN QS A SHY A | \/ \|E

| |= IF Z X CV B NM FT {fulll] |] O JIR

(A AT AN A A A A AN AU AU AV N A U AT /AN ¢ A I JANAN

| |

| [spacebar] |

o o e e +

C L = {caps I ock} Hp = {hel p} L F={line feed} 4 8 = {40/80 dsp}

NS = {no scroll} up = {crsr up} dwn = {crsr down} Ift = {crsr left}

rgt = {crsr right} L A={left arrow |bs = {pound} C H = {clr/hone}

| D={inst/del} contr I = {ctrl} UA={up arrow} RS = {run/stop}

ShL = {shift lock} = {commodore} Cud = {crsr up/down}

Cr = {crsr Ieft/right}

Note: Qutlined key areas can be used in C64 Mde.

Using BASIC is essentially the same in both C64 and Cl128 nodes. Mst of the

keys, and many of the conmands you will learn, can be used to program BASIC

in either node. The keys that are shaded in the diagram above can be used

in C64 node.

3-4

In C128 node you can use all of the keys on the keyboard.

Keyboard Character Sets
The Conmodore 128 keyboard offers two different sets of characters:

- Uppercase letters and graphic characters
- Upper- and | owercase letters

In 80-colum format, both character sets are available sinultaneously. This
gives you a total of 512 different characters that you can display on the
screen. In 40-colum format you can use only one character set at a tine.

When you turn on the Commodore 128 in 40-col urm format, the keyboard nor-
mal |y is using the uppercasel/ graphic character set. This neans that every-
thing you type is in capital letters. To switch back and forth between the
two character sets, press the {shift} key and the {C=} key (the COVWODORE
key) at the same time. To practice using the two character sets turn on
your conputer and press several letters or graphic characters. Then press
the {shift} key and the {C=}(Commodore) key. Notice how the screen changes
to upper- and | owercase characters. Press {shift} and {C=} again to return
to the uppercase and graphic character set.

Using the Command Keys

COVMMAND keys are keys that send messages to the conputer. Sone command keys
(such as {return}) are used by thensel ves. CQther keys such as {shift},
{ctrl}, {C} and {restore}) are used with other keys. The use of each of
the command keys is explained bel ow. The keys used in C128 mode are des-
cribed in Some BASIC Conmands and Keyboard Operations Unique to C128, Using
80- col umns.

Return

When you press the {return} key, what you have typed is sent to the Conmo-
dore 128 computer's nmemory. Pressing the {return} key al so noves the cursor
(the small flashing rectangle that marks where the next character you type
will appear) to the next |ine.

At times you may misspell a conmand or type in something the conputer does
not understand. Then, when you press the {return} key, you probably will
get a nessage |ike SYNTAX ERROR on the screen. This is called an "Error
Message". Appendix A lists the error messages and tells how to correct the
errors.

3-5

Shift

There are two {shift} keys on the bottomrow of the keyboard. One key is
the one on the left and the other on the right, just as on a standard type-
writer keyboard.

The {shift} key can be used in three ways:

1. Wth the upper/lowercase character set, the {shift} key is used like the
shift key on a regular typewiter. Wen the {shift} key is hold down, it
lets you print capital letters or the top characters on doubl e-character
keys.

2. The {shift} key can be used with sone of the other command keys to per-
form special functions.

3. \hen the keyboard is set for the uppercase/graphic character set, you
can use the {shift} key to print the graphic synbols or characters that
appear on the right of the front face of certain keys. See the para-
graphs entitled "Diplaying Gaphic Characters" at the end of this sec-
tion for nore details.

shift Lock

When you press this key down, it locks into place. Then, whatever you type
will either be a capital letter, or the top character of a double-character
key. To release the lock, press down on the {shift |ock} key again.

Mbving the cursor

In C128 node, you can nove the cursor by using either the four arrow keys
located just above the top right of the main keyboard, or the two keys
label ed {crsr}, at the right of the bottomrow of the main keyboard.

Using the four Arrow Cursor keys

In C128 node, the cursor can be noved in any direction sinply by using the

arrow key in the top row that points in the direction you want to nmove the
cursor. (These keys cannot be used in C64 node).

3-6

Using the CRSR keys

In both C128 and C64 node, you can use the two keys on the right side of
the bottomrow of the main keyboard to nove the cursor:

- Pressing the {crsr up/down} key al one noves the cursor down.

- Pressing the {crsr up/down} and {shift} keys together moves the cursor
up.

- Pressing the {crsr left/right} key al one moves the cursor right.

- Pressing the {crsr left/right} and {shift} keys together noves the cursor
left.

You don't have to keep tapping a cursor key to nove nore than one space.
Just hold the key down and the cursor continues to nove, release it when it
reaches the position you want.

Notice that when the cursor reaches the right side of the screen, it
"waps", or starts again at the beginning of the next row. When nmoving
left, the cursor will nove along until it reaches the edge of the screen,
then it will junp up to the end of the preceding line.

You should try to become very famliar with the cursor keys, because noving
the cursor mekes your programming nuch easier. Wth a little practice you
will find that you can nmove the cursor al nost without thinking about it.

I nst/ Del

This is a dual purpose key. INST stands for INSerT, and DEL for DELete.

Inserting Characters

You nust use the {shift} key with the {inst/del} key when you want to
insert characters in a line. Suppose you left some characters out of a line
like this:

VWH LE WERE QUT_

3-7

To insert the missing characters, first use the cursor keys to nove the
cursor back to the error. like this:

VWH LE_VERE QUT

Then, while you hold down the {shift} key, press the {inst/del} key until
you have enough space to add the mssing characters:

VH LE_ WERE QUT

Notice that {inst} doesn't nove the cursor; it just adds space between the
cursor and the character to its right. To make the correction type the nis-
sing {space}, {y}, {o} and {u} like this:

VWH LE YOU WERE OUT

Del eting characters

When you press the {del} key, the cursor nove one space to the left and
erases the character that is there and noves any characters to the right of
the cursor one position to the left. This means that when you want to

del ete sonmething, you move the cursor just to the right of the character
you want to DELete. Suppose you have made a mistake in typing, like this:

PRINT "ERRCER' _
You wanted to type the word ERROR, not ERROER To delete the incorrect E
that precedes the final R position the cursor on the final R When you
press the {del} key, the R automatically mves over one space to the left.
You now have the correct wording Iike this:

PRINT "ERRCR'

Using INSerT and DELete toget her

You can use the INSerT and DELete functions together to fix incorrect
characters. First, nove the cursor one space after the incorrect characters
and press the {inst/del} key by itself to delete the incorrect characters.

3-8

Next, press the {shift} key and the {inst/del} key together to add any
necessary space.

Control

The {ctrl} key is used with other keys to do special task called control
functions. To performa control function, hold down the {ctrl} key while
you press some other key. A full list of control sequences is given in
ASCI I, CHR$ and ESC codes. Control functions are often used in prepackaged
sof tware such as a word processing system

One control function that is used often is setting the character and cursor
color. To select a color, hold down the {ctrl} key while you press a nunber
key ({1} throught {8}), on the top row of the main keyboard. There are

ei ght nore colors available to you; these can be selected with the {C}
key, as explained later.

Run/ St op

This is a dual function key. Under certain conditions you can use the RUN
function of this key by pressing the {shift} and {run/stop} key together.
It is also possible to use the STOP function of the key to halt a program
or a printout by pressing this key while the programis running. However,
in nost prepackaged prograns, the STOP function of the {run/stop} key is
intentionally disabled (made unusable). This is done to prevent the user
fromtrying to stop a programthat is running before it reaches its nornal
end point. If the user were able to stop the program valuable data coul d
be | ost.

Restore
The {restore} key is used with the {run/stop} key to return the computer to
its standard condition. Mst prepackaged prograns disable the {restore} key

for the same reason the disable the STOP function of the {run/stop} key: to
prevent |osing valuable data.

CLR/ Horre

CLR stands for CLeaR. HOME refers to the upper left corner of the screen,

3-9

which is called the HOVE position. If you press this by itself the cursor
returns to the HOVE position. Wen you use the {shift} key with the
{clr/hone} key, the screen CLeaRs and the cursor returns to the HOVE

posi tion.

Commodor e key

The {C=} key (known as the {conmodore} key) has a nunber of functions,
including the following ones:

1. When used with the {shift} key, the {C=} key lets you switch between
upper case/ graphi cs mode and upper-/| owercase text nodes.

2. \lhen you're in either node, the {C=} key acts as a shift to let you type
graphi cs symbols pictured on the LEFT front of each key. Just hold down
the {C=} and press teh graphic key you want.

3. Vhen you want to change the color you are typing in to one of the 8
colors listed on the BOTTOM row of the face of the color keys (nunber
keys {1} through {8} on the main keyboard): press {C=} and the color you
want .

4. \hen you want to slow down a scrolling program display, hold down the
{C=} key. The display scrolling speed slows down considerably. \hen you
rel ease this key, the screen scrolling resumes at normal speed.

5. If you hold down the {C=} key while turning on the conputer, you
i medi ately access 64 node.

Function Keys

The four keys above the nuneric keypad (marked F1, F3, F5 and F7 on the top
and F2, F4, F6 and F8 on the front) are called function keys. In both C128
and C64 nodes, you can programthe function keys. (See the KEY command des-
criptions in Section 5 of Chapter Il and in Chapter V, BASIC 7.0 Encycl o-
paedi a).) These keys are often used by prepackaged software to allow you to
performa task with a single keystroke.

Di spl ayi ng Graphi ¢ Characters

To display the graphic synbol on the right front of a key, hold down the
{shift} key while you press the key that has the graphic character you want

3-10

to print. You can display the right side graphic character only when the
keyboard is in the uppercase/graphics character set (one normal character
set usual ly available at power-up).

To display the graphic character on the left front face of a key, hold down
the {C=} key while you press the key that has the graphic character you
want. You can display the left graphic character while the keyboard is in
ei ther character set.

Rul es for Typing BASIC Language Prograns

You can type and use BASIC | anguage programs even w thout know ng BASIC.
You nust type careful ly, however, because a typing error may cause the
conputer to reject your information. The followi ng guidelines will help
mnimze errors when typing or copying a programlisting.

1. Spacing between words is not critical; e.g. typing FORT=1TOLO0 is the
same as typing FORT=1 TO 10. However, a BASIC keyword itself nust not
be broken up by spaces (see the BASIC 7.0 Encycl opaedia in Chapter V for
a list of BASIC keywords).

2. Any characters can be typed inside quotation marks. Some characters have
special functions when placed inside quotation marks, These functions
are explained later in this guide.

3. Be careful with punctuation marks. Commas, colons and semicol ons al so
have special properties, explained later in this guide.

4. Always press the {return} key after conpleting a numbered line.

5. Never type nore than 160 characters in a programline. Renenber, this is
the same as four full screen lines in 40-colum format, or two full
screen lines in 80-colum format. See Section 8 for nore details on 40-
and 80-col ums formats.

6. Distinguish clearly between the letter {I} and the nuneral {1} and
between the capital letter {G and the numeral {0} (zero).

7. The conputer ignores anything following the letters REM on a program
line. REM stands for REMark. You can use the REM statenent to put com
ments in you programthat tell anyone listing the programwhat is happe-
ning at a specific point.

Fol | ow t hese gui delines when you type the exanples and prograns shown in
this section.

3-11

GETTI NG STARTED - THE PRI NT COVVAND

The PRINT conmand tells the conputer to display information on the screen.
You can print both numbers and text (letters), but there are special rules
for each case, described in the follow ng paragraphs.

Printing Nunbers

To print numbers, use the PRINT command fol |l owed by the nunber(s) you want
to print. Try typing this on you Commodore 128:

PRINT 5

Then press the {return} key. Notice the nunber 5 is now displayed on the
screen.

Now type this and press {return}:
PRINT 5, 6

In this PRINT command, the comma tells the Commodore 128 that you want to

print more than one nunber. Wen the conputer finds comms in a string of

nunbers in a PRINT statenent, the output is displayed to the nearest tenth
col um.

If you don't want all the extra spaces, use a semicolon (;) in your PRINT
statenent instead of a comma. The semicolon tells the conputer to print the
nunbers next to each other. A nunber when printed has either a space or a
mnus sign preceding it and a skip character after it. Type these exanples
and see what happens:

PRINT 5;6 {return}

PRI NT 100; - 200; 300; - 400; 500 {ret urn}
Using the Question Mark to Abbreviate the PRINT Command
You can use a quotation mark (?) as an abbreviation for the PRINT conmand.
Many of the exanples in this section use the ? synbol in place of the word

PRINT. In fact, nost of the BASIC commands can be abbreviated. The
abbreviations for BASIC commands can be found in Appendix K of this Guide.

3-12

Printing Text

Now that you know how to print nunbers, it's time to learn howto print
text. It's actually very sinple. Any words or characters you want to dis-
play are typed on the screen, with a quote synbol at each end of the string
of characters. String is the BASIC nane for any set of characters sur-
rounded by quotes. The quote character is obtained by pressing "SH FT" and
the nunber {2} key on top of the main keyboard (not the {2} in the numeric
keypad). Try these exanpl es:

? "COWODORE 128" {return}

? "4*5" {return}

Notice that when you press {return}, the conputer displays the character
within the quotes on the screen. Also note that the second exanpl e did not
calculate 4*5 since it was treated as a string and not a mathematical cal-
culation. If you want to calculate the result of 4*5 use the follow ng
com
mand:

? 4*5 {return}

You can PRINT any string you want by using the PRINT conmand and surroun-
ding the printed characters with quotes. You can conbine text and cal cul a-
tions in a single PRINT conmand |ike this:

? "4*5 = "4*5 {return}

See how the conputer PRINTs the characters in quotes, makes the cal cul ation
and PRINTs the result. It doesn't matter whether the text or calculation
comes first. In fact, you can use both several tines in one PRINT conmand.
Type the fol lowing statenent:

? 4*(2+3)" is the same as "4*5 {return}

Notice that even spaces inside the quotation marks are printed on the
screen. Type:
? " OVER HERE" {return}

Printing in Different Colors

The Conmodore 128 is capable of displaying 16 different colors on the
screen. You can change colors easily. Al you do is hold down the {ctrl}
key and press a numbered key between one and eight on the top row of the
mai n keyboard. Notice that the cursor changes col or according to the num
bered key you pressed. All the succeeding characters are displayed in the

3-13

color you selected. Hold down the {C=} key and press a nunbered key
between one and eight, and eight additional colors are displayed on the
screen.

Table 3-1 list the colors available in C128 mode, for both 40-col um and
80-col um screen formats. The tables al so show the key sequence (CONTROL
key plus nunber key, or {C=} key plus nunber key) used to specify a given
col or.

CONTRQL + Col or {C} + Color
1 Bl ack 1 Orange
2 Wite 2 Brown
3 Red 3 Li ght Red
4 Cyan 4 Dark Gey
5 Purpl e 5 Mddle Gey
6 Geen 6 Light Geen
7 Bl ue 7 Li ght Blue
8 Yel | ow 8 Light Gey

Col ors in 40-Col um For mat

CONTRQL + Col or {C} + Color
1 Bl ack 1 Dark Purple
2 Wite 2 Brown
3 Dark Red 3 Li ght Red
4 Light Cyan 4 Dark Cyan
5 Light Purple 5 Mddle Gey
6 Dark Green 6 Light Geen
7 Dark Bl ue 7 Li ght Blue
8 Light Yellow 8 Light Gey

Col ors in 80-Col um For mat

3-14

Using the Cursor Keys Inside Quotes with the PRINT Command

When you type the cursor keys inside quotation marks, graphic characters
are shown on the screen to represent the keys. These characters will NOT be
printed on the screen when you press {return}. Try typing a question nark
({?}), open quotes ({shift}ed {2} key); then press either of the down
cursor keys 10 times, enter the words "DOM HERE', and close the quotes.
The line should ook like this:

" QU0 HERE

Now press {return}. The Conmodore 128 prints 10 blank lines, and on the
eleventh line, it prints "DOM HERE'. As this exanpl e shows, you can tell
the conputer to print anywhere on your screen by using the cursor control
keys inside quotation narks.

BEG NNI NG TO PROGRAM

So far most of the commands we have di scussed have been performed in DI RECT
mode. That is, the command was executed as soon as the {return} key was
pressed. However, most BASIC conmands and functions can also be used in

pr ogr ans.

What a Programls

A programis just a set of nunbered BASIC instructions that tell your com
puter what you want it to do. These nunbered instructions are referred to
as statements or |ines.

Li ne Numbers

The lines of a progamare nunbered so that the conputer knows in what order
yo want them executed or RUN. The conputer executes the programlines in
nunerical order, unless the programinstructs otherw se. You can use any
whol e nunber fromO0 to 63999 for a |ine nunber. Never use a comma in a line
nunber .

Many of the conmands you have |earned to use in DIRECT node can easily be
made into program statenents. For exanple, type this:

10 ?" COWODORE 128" {return}

3-15

Notice the conputer did not display COWODORE 128 when you pressed
{return}, as it would do if you were using the PRINT command in DI RECT
mode. This is because the nunber, 10, that cones before the PRINT synbol
(?) tells the conputer that you are entering a BASIC program The conputer
just stores the numbered statement and waits for the next input from you.

Now type RUN and press {return}. The conputer prints the words COMMODORE
128. This not the same as using the PRINT conmand in DI RECT node. \What has
happened here is that YOU HAVE WRI TTEN AND RUN YOUR FI RST BASI C PROGRAM as
small as it may seem The programis still in the conputer's nenory, so you
can run it as many times as you want.

Viewi ng your Program - The LI ST Command

Your one-line programis still in the C128 menory. Now clear the screen by
pressing the {shift} and {clr/home} keys together. The screen is enpty. At
this point you may want to see the programlisting to be sure it is still

in menory. The BASIC | anguage is equipped with a command that lets you do
just this - the LIST conmand.

Type LIST and press {return}. The Commodore 128 responds with:

10 PRINT " COVMODORE 128"
READY.

Anytinme you want to see all the lines in your program type LIST. This is
especial l'y helpful if you make changes, because you can check to be sure
the new lines have been registered in the conputer's nemory. In response
to the conmand, the conputer displays the changed version of the line,
lines, or program Here are the rules for using the LI ST conmand:

- To see line n only, type LIST n and press {return}.

- To see fromline nto the end of the program type LIST n- and press
{return}.

- To see the lines fromthe beginning of the programto line n, type
LIST -n and press {return}.

3-16

- To see fromline nl to line n2 inclusive, type LIST nl-n2 and press
{return}.

A Sinple Loop - The GOTO Command

The line numbers in a program have another purpose besides putting your
conmands in the proper order for the conputer. The serve as a reference for
the conputer in case you want to execute the conmand in that line repeti-
tively in your program You use the GOTO command to tell the conputer to go
to a line and execute the command(s) in it. Now type:

20 GOTO 10

When you press {return} after typing line 20, you add it to your programin
the conputer's menory.

Notice that we nunbered the first line 10 and the second line 20. It is
very hel pful to nunber programlines in increments of 10 (that is 10, 20,
30, 40, etc.) in case you want to go back and add lines in between. You can
nunber such added lines by fives (15, 25...), or ones (1, 2...) - in fact,
by any whol e nunber - to keep the lines in proper order. (See the RENUVBER
and AUTO commands in the BASI C Encycl opaedi a.)

Type RUN and press {return}, and watch the words COMMODORE 128 nove down
your screen. To stop the message fromprinting on the screen, press the
{run/stop} key on the left side of the main keyboard.

The two lines that you have typed make up a sinple programthat repeats it-
sel f endl essly, because the second line keeps referring the conputer back
to the first line. The programwll continue indefinitely unless you stop
it or turn off the conputer.

Now type LIST {return} The screen should say:
10 PRINT " COMMODORE 128"
20 GOTO 10
READY.

Your programis still in menory. You can RUN it again if you want to. This
is an inportant difference between PROGRAM node and DI RECT node. Once a

3-17

command is executed in DIRECT node, it is no longer in the conputer's
menory. Notice that even though you used the ? synbol for the PRINT state-
ment, your conputer has converted it into the full command. This happens
when you LI ST any command you have abbreviated in a program

Clearing the Conputer's Menory - The NEW Command

Anytinme you want to start all over again or erase a BASIC programin the
conputer's menory, just type NEWand press {return}. This conmand clears
out the computer's BASIC nenory, the area where programs are stored.

Using Color in a Program

To select color within a program you nust include the color selection
information within a PRINT statement. For exanple, clear your conputer's
menory by typing NEWand pressing {return}, the type the follow ng, being
sure to |l eave space between each letter:

10 PRINT " RAI1 NB OW ({return}

Now type line 10 again, but this tine hold down the {ctrl} key and press
the (nuneral) {1} key directly after entering the first set of quote marks.
Rel ease the {ctrl} key and type the {r}. Now hold down the {ctrl} again and
press the {2} key. Release the {ctrl} key and type the {a}. Next hold down
the {ctrl} again and press the {3} key. Continue this process until you
have typed all the letters in the word RAINBONand selected a color between
each letter. Press the {shift} and the {2} keys to type a set of the clo-
sing quotation nmarks and press the {return} key. Now type RUN and press the
{return} key. The conputer displays the word RAINBONwith each letter in a
different color. Now type LIST and press the {return} key. Notice the
graphic characters that appear in the PRINT statenent in line 10. These
characters tells the conputer what color you want for each printed letter.
Note that these graphic characters do not appear when the Conmodore 128
PRINTs the word RAINBOWin different colors.

The col or selection characters, known as control characters, in the PRINT
statenent in line 10 tell the Commodore 128 to change colors. The conputer
then prints the characters that followin the new color until another color
sel ection character is encountered. \While characters enclosed in quotation
marks are usually PRINTed exactly as they appear, control characters are
only displayed within a program LI STing.

3-18

EDI TING YOUR PROGRAM

The fol | owing paragraphs will help you to type in your prograns and nmake
corrections and additions to them

Erasing a Line froma Program

Use the LI ST conmand to display the programyou typed previously. Now type
10 and press {return}. You just erased line 10 fromthe program LI ST your
program and see for yourself. If the old line 10 is still on the screen,
move the cursor up so that it is blinking anywhere on that line. Now, if
you press {return}, line 10 is back in the conputer's nenory.

Duplicating a Line

Hol d down the {shift} key and press the {clr/hone} key on the upper right

side of the main keyboard. This will clear your screen. Now LIST the pro-

gram Move the cursor up again so that it is blinking in the (numeral) "0"
in the line nunbered 10. Now type a {5} and press {return}. You have just

duplicated (i.e. copied) line 10. The duplicated line is nunbered 15. Type
LI ST and press RETURN to see the programwith the duplicated Iine.

Repl acing a Line

You can replace a whole line by typing in the old |ine nunber followed by
the text of the new line, the pressing {return}. The old version of the
line will be erased fromnenory and replaced by the new line as soon as you
press {return}.

Changing a Line

Suppose you want to add something in the middle of a line. Sinply nove the
cursor to the character or space that immediately follows the spot where
you want to insert the new material. Then hold down the {shift} key and the
{inst/del} key together until there is enough space to insert your new
characters.

Try this exanple. Cear the conputer's nenory by typing NEWand pressing
{return}. The type:

10 ? "My 128 IS GREAT" {return}
3-19

Let's say you want to add the word COWODORE in front of the number 128.
Just nove the cursor so that it is blinking on the "1" in 128. Hold down
the {shift} and {inst/del} keys until you have enough roomto type in
COVMMODORE (don't forget to |eave enough roomfor a space after the |ast
letter "E'). Then type in the word COVWODORE.
MATHEMATI CAL OPERATI ONS
You can use the PRINT command to perform cal culations |ike addition, sub-
traction, multiplication, division and exponentiation. You type the cal cu-
lation after the PRINT command.
Addition and Subtraction
Try typing these exanples:

PRINT 6 + 4 {return}

PRINT 50

20 {return}

PRINT 10 + 15 - 5 {return}

PRINT 75 - 100 {return}

PRINT 30 + 40,55 - 25 {return}

PRINT 30 + 40;55 - 25 {return}
Notice that the fourth calculation (75-100) resulted in a negative nunber.
Also notice that you can tell the conputer to make nore than one cal cul a-
tion with a single PRINT command. You can use either a comma or semicolon

in your command, depending on whether or not you want your results printed
tabul ated or next to each other.

3-20

Ml tiplication and Division

Find the asterisk key (*) on the right side of the main keyboard. This is
the synbol that the Conmodore 128 uses for multiplication. The slash (/)
key, located next to the right {shift} key, is used for division.

Try these exanpl es:

PRINT 5*3 {return}
PRI NT 100/ 2 {return}

Exponenti ation

Exponentiation nmeans to raise a nunber to a power. The up arrow key

({up arrow}, located next to the asterisk on the main keyboard, is used for
exponentiation. If you want to raise a nunber to a power, use the PRINT
command, followed by the nunber, the up arrow and the power, in that order.
For exanple, to find out what 3 squared is, type:

PRINT 3{up arrow}2 {return}

Order of Qperations

You have seen how you can conbine addition and subtraction in the sane
PRINT command. If you conbine multiplication or division with addition or
subtraction operations, you may not get the result you expect. For exanple,

type:
PRINT 4 + 6/2 {return}

If you assumed you were dividing 10 by 2, you were probably surprised when
the conputer responded with the answer 7. The reason you got this answer is
that multiplication and division operations are perforned by the computer
before addition or subtraction. Miltiplication and division are said to
take precedence over addition and subtraction. It doesn't matter in what
order you type the operation. In conputing, the order in which mathemti cal
operations are performed is known as the order of operations.

Exponentiation, or raising a number to a power, takes precedence over the
other four mathenatical operations. For example, if you type:

PRINT 16/ 4{up arrow}2 {return}

3-21

the Cormodore 128 responds with 1, because it squares the 4 before it
di vi des 16.

Using Parentheses to Define the Order of Cperations
You can tell the Conmodore 128 which mathematical operation you want per-
formed first by enclosing that operation in parentheses in the PRINT
command. For instance, in the first exanple above, if you want to tell the
conputer to add before dividing, type:

PRINT (4 + 6)/2 {return}
This gives you the desired answer, 5.
[f you want the conputer to divide before squaring in the second exanple,
type:
PRINT (16/4){up arrow2 {return}
Now you have the expected answer, 16.
[f you don't use parentheses, the computer perforns the cal cul ations accor-
ding to the above rules. Vhen all operations in a calculation have equal
precedence, they are performed fromleft to right. For exanple, type:
PRI NT 4*5/10*6 {return}
Since the operations in this exanple are performed in order fromleft to
right, the result is 12 (4*5 =20... 20/10 = 2... 2*6 = 12). If you want to
divide 4*5 by 10*6 you type:

PRI NT (4*5)/(10%*6) {return}

The answer is now .333333333.

CONSTANTS, VARI ABLES AND STRINGS

Const ant s

Constants are nuneric values that are permanent: that is, they do not
change in value over the course of an equation or program For exanple, the
nunber 3 is a constant, as is any nunber. This statement illustrates how
your program uses constants:

3-22

10 PRINT 3

No matter how many tinmes you execute this line, the answer will always
be 3.

Vari abl es

Variables are values that can change over the course of an equation or
program statenent. There is a part of the conputer's BASIC nenory that is
reserved for the characters (number, letters and synbols) you use in your
program Think of this nenory as a nunber of storage conpartnents in the
conputer that store information about your program this part of the com
puter's menory is referred to as variable storage. Type in this program

10 X=5
20 ?X

Now RUN the program and see how the conputer prints a 5 on your screen. You
told the conputer inline 10 that the letter X will represent the number 5
for the remaninder of the program The letter X is called a variable, be-
cause the value of X varies depending on the value to the right of the
equal s sign. W call this an assignnment statement because now there is a
storage conpartnent labeled X in the conputer's nenory, and the number 5
has been assigned to it. The = sign tells the conputer that whatever comes
totheright of it will be assigned to a storage conpartment (a menory
location) labeled with the letter Xto the Ieft of the equals sign.

The variable nane on the left side of the = sign can be either one or two
letters, or one letter and one nunber (the letter MUST cone first). The
nanes can be |onger, but the conmputer only looks at the first two charac-
ters. This neans the names PA and PART woul d refer to the same storage
conpartnent. Also, the words used for BASIC conmands (LOAD, RUN, LIST,
etc.) or functions (INT, ABS, SQR, etc.) cannot be used as nanes in your
programs. Refer to the BASIC Encyclopaedia in Chapter Vif you have any
questions about whether a variable nane is a BASIC keyword. Notice that the
= in assigment statements is not the sane as the mathematical synbol

meani ng "equal s", but rather means allocate a variable (storage conpart -
ment) and assign a value toit.

3-23

In the sanple programyou just typed, the value of the variable X remains
at 5 throughout. You can put calculations to the right of the = sign to
assign the result to a variable. You can mix text with constants in a PRINT
statenent to identify them Type NEWand press {return} to clear the Conmo-
dore 128's menory; then try this program

10 A = 3*100
20 B = 3*200

30 ?"A 1S EQUAL TO'A
40 7B IS EQUAL TO'B

Now there are two variables, labeled A and B, in the conputer's menory,
containing the nunbers 300 and 600 respectively. If, later in the program
you want to change the value of a variable, just put another assignment
statenent in the program Add these lines to the program above and RUN it
agai n.

50 A = 900*30/10
60 B=95 + 32 + 128
70 GOTO 30

You'll have to press the {stop} key to halt the program

Now LI ST the programand trace the steps taken by the conputer. First, it
assigns the value to the right of the = signinline 10 to the letter A It
does the same thing in line 20 for the letter B. Next, it prints the nessa-
ges in lines 30 and 40 that give you the values of A and B. Finally, it
assigns new values to Aand Bin lines 50 and 60. The ol d val ues are repl a-
ced and cannot be recovered unless the conputer executes lines 10 and 20
again. When the conputer is sent to line 30 to begin printing the val ues of
A and B again, it prints the new values calculated in lines 50 and 60.
Lines 50 and 60 reassign the same values to A and B and line 70 sends the
conputer back to line 30. This is called an endless |oop, because Iines 30
through 70 are executed over and over again until you press the {run/stop}
key to halt the program Qher methods of |ooping are discussed later in
this and following two sections.

Strings

Astring is a character or group of characters enclosed in quotes. These
characters are stored in the conputer's nenory as a variable in nuch the

3-24

same way numeric variables are stored. You can also use variable names to
represent strings, just as you use themto represent numbers. Wen you put
the dollar sign ($) after the variable nane, it tells the conputer that the
nane is for a string variable, and not a nuneric variable.

Type NEWand press {return} to clear your conputer's menmory, then type in
the program bel ow.

10 A$ = " COVMIDCRE'

20 X = 128
30 B$ = "COWPUTER'
40Y=1

50 ? "THE "A$; X; B$" 1S NUMBER'Y

See how you can print nuneric and string variables in the same statenent?
Try experimenting with variables in your own short prograns.

You can print the value of a variable in DIRECT node, after the program has
been RUN. Type ?A$;B$; X; Y {return} after running the program above and see
that those four variable values are still in the conputer's nenory

If you want to clear this area of BASIC menory but still |eave your program
intact, use the CLR command. Just type CLR {return} and all constants
variables and strings are erased. But when you type LIST, you can see the
programis still in menory. The NEWconmand di scussed earlier erases both
the programand the variables

SAVPLE PROGRAM

Here is a sanple programincorporating many of the techniques and commands
di scussed in the section

This programcal cul ates the avarage of three nunbers (X, Y and Z) and
prints their values and their avarages on the screen. You can edit the pro-
gram and change the calculations in line 10 through 30 to change the val ues
of the variables. Line 40 adds the variables and divides themby 3 to get
the average. Note the use of parentheses to tell the conputer to add the
nunbers before it divides

3-25

TIP: Whenever you are using nore than one set of parentheses in a
statenent, it's a good idea to count the number of left parentheses
and right parentheses to make sure they are equal

10 X = 46

20Y=173

30 Z = 114

40 A= (X+Y+2)/3

50 ?"THE AVERAGE OF"X; Y;"AND'Z; "I S" A
60 END

STORI NG AND REUSI NG YOUR PROGRAVS

Once you have created your program you will probably want to store it
permanent |y so you will be able to recall and use it at sone later tine. To
do this, you'll need either a Commodore disk drive or the Conmodore 1530
(or 1531) Datassette, or simlar storing device

You will learn several commands that et you communicate between your com
puter and your disk drive or Datassette. These conmands are structured with
the use of a command word fol | owed by several paraneters. Paraneters are
letters, words or symbols in a command that supply specific information to
the conputer, such as a filenane, or a nuneric variable that specifies a
device nunber. Each conmand may have several paraneters. For exanple, the
paraneter of the disk format conmand include a name for the disk and an

i dentifying nunber or code, plus several other paraneters. Parameters are
used in al nost every BASIC command; sone are variabl es which change and
others are constant. These are the paraneters that supply disk information
to the C128 and the disk drive

Di sk Handling Parameters

di sk nane - arbitrary 16 character identifying name you supply
filenane - arbitrary 16 character identifying name you supply
i.d. number - arbitrary two-character identifying code you supply
drive nunber - nust use O for a single disk drive, 0 or 1in a dua

disk drive

3-26

device nunber - a preassigned number for a peripheral device. For
exanpl e, the device number for a Conmodore disk drive
is 8.

Formatting a Disk - The HEADER Conmand

To store prograns on a new (or blank) disk, you nust first prepare the disk
to receive data. This is called "formatting" the disk.

NOTE: Make sure you turn on the disk drive before inserting any disk.

The formatting process divides the disk into sections called tracks and
sectors. Atable of contents, called a directory, is created. Each tinme you
store a programon di sk, the name you assign to that programwll be added
to the directory.

The Commodore 128 has two kinds of formatting conmands. One can be used in
C128 node only, and one can be used in both C64 and C128 node. The follo-

wing describes the C128 mode formatting command only. See your disk drive

manual for the disk handling in C64 node.

The command that formats a diskette is called the HEADER command. It has a
long formand a short form To format a blank (new) disk, you MUST use the
long formas foll ows:

HEADER "di sknanme", 1i.d. [,Ddrive nunber] [,[ON Udevice nunber]

After the word HEADER, you type a name of your choice for the disk, within
quotes. You can choose any name with up to 16 characters. You shoul d choose
di sk names that help you identify what will be stored on the disk.

Fol | ow the diskname with a comma and the letter "I". Now a two character
i.d. Your disk i.d. does not have to be numbers; you can al so choose |et-
ters. You may want to develop a consecutive coding systemfor your disk,
such as Al, A2, Bl, B2.

If you have one single disk drive, just press {return} at this point since
the Commodore 128 automatical |y assumes the drive nunber is 0 and the
device nunber is 8. You can specify these paranmeters if you have more than
one drive or a dual drive.

3-27

The next paranmeter in the command selects the drive number. Press the {d}
key and if you have a single disk drive, press the {zero} key followed by a
{comma}. Dual drives are labeled 0 and 1. The device nunber paraneter
starts with the letter Uso press the {u} key followed by the preassigned
device nunber for a Commodore disk drive which is {8}.

Here is an exanple of the long formof the HEADER conmand:
HEADER' RECS", | AL, DO, U8 {return}

This conmand formats the diskette, calling it "RECS', the i.d. number "Al",
on drive 0, unit 8.

The default values for disk drive (0) and device nunber (8) will be used if
none are supplied. This is an acceptable long formof the HEADER conmand:

HEADER " MYDI SK", 151 {return}

The HEADER command can al so be used to erase all data froma used di sk, so
the disk can be reused as if it were a brand new disk. Be careful that you
don't erase a disk that contains data you may want soneday.

The quick formof the HEADER command can be used if the disk was previously
formatted with the long formof the HEADER command.

The quick formclears the directory, erasing all data in the sane way as
the long form but keeps the same i.d. as was previously used. Here is what
the qui ck HEADER might ook like:

HEADER " NEWPROGS' {ret urn}

SAVEi ng on Di sk

In C128 node, you can store you programon disk by using either of the
fol l owi ng conmands:

DSAVE "program nane" {return}
SAVE "program nane", 8 {return}

Ei ther command can be used. Remenber that the character sequence DSAVE' can
be displayed on the screen by pressing the function key labeled {f5}, or
you can type the sequence yoursel f. The progam nanme can be any nane you
choose, up to 16 characters long. Be sure to enclose the programname in

3-28

quotes. You cannot put two programs with the sane name on the same disk.
If you do, the second programwill not be accepted; the disk will retain
the first one. In the second exanple, the 8 indicates that you are saving
your program on device number 8. You do not need the 8 with DSAVE, because
the conputer automatically assunes you are using device number 8.

SAVEi ng on Cassette

If you are using a Datassette to store your program insert a blank tape in
the recorder, rewind the tape if necessary, and type:

SAVE "program nane" {return}

You nust type the word SAVE, followed by the program name. The program nane
can be any name you choose up to 16 characters.

NOTE: The 40-col umm screen will go blank while the programis being
SAVEd, but returns to normal when the process is conpleted.

Unlike disk, you can save two prograns to tape under the same name. However
when you load it back into the conputer, the first progam sequentially on
the tape will be loaded, so avoid giving programs the same nane.

Once a program has been SAVEd, you can LOAD it back into the conputer's
menory and RUN it anytinme you wi sh.

LOADI ng from Di sk

Loading a program sinply copies the contents of the programfromthe disk
into the conputer's menory. If a BASIC programwas al ready in menmory before

you issued the LOAD conmand, it is erased.

To load your BASIC programfroma disk, use either ot the follow ng com
mands in C128 node:

DLOAD "program nane" {return}
LOAD "program nane", 8 {return}

3-29

Renenber, in C128 mode you can use the {f2} function key (which you acti-
vate by pressing {shift} and {f1} together) to display the sequence DLOAD',
or you can type the letters yourself. In the second exanple, the 8 indi-
cates to the conputer that you are |oading fromdevice number 8. Again,
|ike DSAVE, DLOAD assumes the disk drive device nunber is 8. Be careful to
type the programnane exactly as you typed it when SAVE ng the program or
the conputer will respond FILE NOT FOUND.

Once the programis |oaded, type RUN to execute. The Conmodore 128 has a
special formof the RUN conmand used to LOAD and RUN the programin C128
mode with one conmand. Type RUN, followed by the name of the program (al so
known as the filename) in quotes:

RUN"MYPROG' {ret urn}

LOADI ng from Cassette Tape
To LOAD your program from cassette tape, type:

LOAD "program nane" {return}
[f you do not know the name of the program you can type:

LOAD {return}
and the next programon tape will be found. Wile the Datassette is sear-
ching for the programthe 40 colum screen is blank. Wen the programis
found, the screen displays:

FOUND PROGRAM NANVE

To actually load the program you then press the Conmodore key, or in 128
nmode press the space bar to find the next program on tape.

You can use the counter on the Datassette to identify the starting position
of the programs. Then, when you want to retrieve a program sinple wind the
tape forward from000 to the programs start location, and type:

LOAD {return}
In this case you don't have to specify the program nane; your programwill

load automatical ly because it is the next programon the tape.

3-30

Cther Disk-Related Commands
Verifying a Program

To verify that a program has been correctly saved, use the follow ng com
mand in C128 node:

DVERI FY "program name" {return}

[f the programin the conputer is identical to the one on the disk, the
screen display will respond with the letters "OK".

The VERIFY command al so works for tape programs. You type:
VERI FY "program nane" {return}

You do not enter the comm and a device nunber.

Di spl aying Your Disk Directory

In C128 node, you can see a list or directory of the programs on your disk
by using the follow ng conmand:

DI RECTORY {return}

This lists the contents of the directory. The easy way is to press the {f3}
function key. Wen you press {f3}, the C128 displays the word DI RECTORY and
performs the conmand.

For further information on SAVEing and LOADi ng your prograns, or other disk
related information refer to your Datassette or disk drive manual. Also
consult the LOAD and SAVE command descriptions in the Chapter V, BASIC 7.0
Encycl opaedi a.

kkkkkkkkkk

You now know sonet hi ng about the BASIC | anguage and some el enentary pro-
grammi ng concepts. The next section builds on these concepts, introducing
additional commands, functions and techniques that you can use to program
in BASIC

3-31

SECTION 4
Advanced Basi ¢

Programmi ng

COWPUTER DECI SIONS - The |F-THEN Statementc.cccvvinnn..

Using the Colon ...

LOOPS - The FOR-NEXT CommBNGttt it

Empty Loops -

Inserting Delays ina Program..............coovuuinnn.

The STEP COMMBNG . ..ottt e e e e

[NPUTTI NG DATA

The TNPUT CONMMBNGttt e e e e
Assigning a value to avariable
Prompt MBSSA0ES ...t

The GET COMMBNG . ..ottt et et e e

Sanpl @ Program e

The READ-DATA COMMENGS\ttt e

The RESTORE COMBNGottt ettt e
Assigning values to string variables

Using Arrays

Subscripted Variables
Di MENST ONI NG AT TAYS .« oottt ettt et e e
SanMpl @ Programttt

PROGRAMM NG SUBROUTINESot

The GOSUB- RETURN COMMBNGS ...\ttt ettt e
The ON GOTQY GOSUB COMTBNGS . ..ottt et et et

USING MEMORY LOCATION ...ttt e e e e

Using PEEK and POKE for RAM ACCESS ...

Usi ng PEEK
Usi ng POKE

4-1

-17

-17
-17

-18
-18

-19
-19

BASIC FUNCTIONS

VWhat is a Function?

The | NTEGER Function (INT)

Generating Random Nunbers -

The ASC and CHR$ Functions

Converting Strings and Numbers ...,

The VAL Function
The STR$ Function

The Square Root Function (SQR)c.coviiiiiiiii i
The Absolute Value Function (ABS)cuiiiiiiieniiiiinnnn.

THE STOP AND CONT (CONTI NUE)

4-2

This section describes how to use a nunber of powerful BASIC commands,
functions and progranm ng techniques that can be used in both C128 and C64
nodes.

These conmands and functions allow you to program repeated actions through
I oopi ng and nesting techniques; handle tables of values; branch or junp to
another section of a program and return fromthat section; assign varying
val ues to a quantity - and nore. Exanples and sanple progranms show just how
these BASIC concepts work and interact.

COWPUTER DECI SIONS - The | F-THEN St at ement

Now you know how to change the val ues of variables, the next stepis to
have the conputer make decisions based on these updated val ues. You do this
with the | F-THEN statenent.

You tell the conputer to execute a conmand only IF a condition is true
(e.g. IF X=5). The command you want the conputer to execute when the condi-
tionis true comes after the word THEN in the statement.

Clear your conputer's menory by typing NEWand pressing {return}, then
type in this program

10 J=0

20 J=J+1

30 ? J, " COWODORE 128"
40 IF J=5 THEN GOTO 60
50 GOTO 20

60 END

You no |onger have to press the {stop} key to break out of a | ooping pro-
gram The |F-THEN statement tells the conputer to keep printing "COMMODORE
128" and increnenting (increasing) J until J=5is true. \Wen an IF condi-
tion is false, the conputer junps to the next line of the program no
matter what comes after the word THEN

Notice the END command in line 60. It is good practice to put an END state-
ment as the last line in your program It tells the conputer where to stop
executing statenents.

Below is a list of conparison synbols that may be used in the |F statenent
and their meanings:

SYMBOL MEANI NG

= EQUALS

> GREATER THAN

<> NOT EQUAL TO

>= GREATER THAN OR EQUAL TO
<= LESS THAN OR EQUAL TO

You shoul d be aware that these conparisons work in expected mathemati cal
ways with numbers. There are different ways to determine if one stringis
greater than, less than, or equal to another. You can |earn about these
"string handling" functions by referring to Chapter V, Basic 7.0 Encyclo-
paedi a.

Section 5 describes some powerful extensions of the |F-THEN concept, con-
sisting of the BASIC 7.0 conmands BEG N, BEND and ELSE.

Using the Col on

A very useful tool in programming is the colon (:). You can use the colon
to
separate two (or nore) BASIC commands on the sane |ine.

Statenents after a colon on a line will be executed in order, fromleft to
right. In one programline you can put as many statements you can fit into
160 characters, including the Iine nunber. This is equivalent to four full
screen lines in 40-colum format, and two full lines in 80-colum formt.

This provides an excellent oppurtunity to take advantage of the THEN part
of the IF-THEN statement. You can tell the conputer to execute several com
mands when you |F statenent is true.

Clear the conputer's menory and type in the foll owing progam

10 N1

20 IF N<5 THEN PRINT N, "LESS THAN 5": GOTO 40
30 ? N, "GREATER THAN OR EQUAL TO 5"

40 END

Now change line 10 to read N=20, and RUN the program again. Notice you can
tell the conputer to execute nore than one statement when Nis |ess than 5.
You can put any statement(s) you want after the THEN command. Remenber that
the GOTO 40 will not be reached if Nis true. Any command that shoul d be
foll owed whether or not the specified condition is net should appear on a
separate |ine.

LOCPS - The FOR-NEXT Command

In the programused for the |F-THEN exanple, we made the conputer print
COMMODORE five times by telling it to increase or "increment" the variable
J by units of one, until the value of J equalled five; then we ended the
program There is a sinpler way to do this in BASIC. W can use a FOR NEXT
loop, like this:

10 FOR J=1 TO 5

20 ?J, " COWODCRE 128"
30 NEXT J

40 END

Type and RUN this programand conpare the result with the result of the

| F-THEN program - they are the sane. In fact, the steps taken by the com
puter are alnost identical for the two progranms. The FOR-NEXT loop is a
very powerful progranming tool. You can specify the nunber of tines the
conputer should repeat an action. Let's trace the conputer's steps for the
program above.

First, the conputer assigns a value of 1 to the variable J. The 5 in the
FOR statement tells the conputer to execute all statements between the FOR
statenent and the NEXT statenment, until J is equal to 5. In this case there
is just one statement - the PRINT statenent.

The conputer first assigns 1 to J, it then goes on to execute the PRINT
statenent. Wen the computer reaches the NEXT J statement, J is increnmented
and conpared with 5. If J has not exceeded 5 the conputer |oops back to the
PRINT st atenent.

After five executions of this loop the value of J exceeds 5, the program
drops down to the statement that comes immediately after the NEXT statenent
and continues fromthere. In this case the followi ng statenent is the END
statenent, so the program stops.

Enpty Loops - Inserting Delays in a Program

Before you proceed any further, it will be helpful to understand about

| oops and sone ways they are used to get the conputer to do what you want.
You can use a loop to slow down the conputer (by now you have witnessed the
speed with which the conputer executes conmands). See if you can predict
what this programwill do before you runit.

10 A$=" COMMODCRE 128"
20 FOR J=1 TO 20

30 PRINT

40 FOR K=1 TO 1500
50 NEXT K

60 PRINT A$

70 NEXT J

80 END

Did you get what you expected?

The loop contained in line 40 and 50 tells the conputer to count to 1500
bef ore executing the remainder of the program This is known as a del ay
loop and is often used. Because it is inside the main loop of the program
it is called a nested loop. Nested |oops can be very useful when you want
the conputer to performa nunber of tasks in a given order, and repeat the
entire sequence of commands a certain nunber of tines.

Section 5 describes an advanced way to insert delays through the use of the
new BASIC 7.0 command, SLEEP.

The STEP Conmand

You can tell the conputer to increment your counter by units (e.g. 10, 0.5
or any other nunber). You do this by using a STEP command with the FOR
statenent. For exanple, if you want the conputer to count by tens to 1000,

type:

10 FOR X=0 TO 1000 STEP 10
20 7 X
30 NEXT

Notice that you do not need the X in the NEXT statement if you are only
executing one loop at a time - this is discussed later in this section.
Also, note that you do not have to increase (or "increment") you counter

4-6

- you can decrease (or "decrenment") it as well. For exanple, change line 10
in the program above to read:

10 FOR X=100 TO 0 STEP - 10
The conputer will count backward from 100 to O, in units of 10.

If you don't use a STEP command with a FOR statement, the computer will
automatical ly increment the counter by units of 1.

The parts of the FOR-NEXT conmands are:

FOR - word used to indicate beginning of |oop.

X - counter variable; any nunber variable can be used.

1 - starting value; may be any number, positive, negative or zero.
TO - connects starting value to ending val ue.

100 - ending val ue; may be any nunber, positive, negative or zero.
STEP - indicates an increment other than 1 will be used.

2 - increnent; can be any nunber, positive, negative or zero.

Section 5 describes DO'LOCOP, a new, nore powerful BASIC 7.0 command to per-
forma simlar task to the STEP conmand.

| NPUTTI NG DATA
The | NPUT Conmand
Assigning a value to a variable

Clear the conputer's menory by typing NEWand pressing {return}, and then
type and RUN this program

10 K=10

20 FOR 1=1 TOK

30 ?" COWODORE 128"
40 NEXT

In this programyou can change the value of Kin line 10 to make the com
puter execute the loop as many tines as you want it to. You have to do this
when you are typing in the program before it is RUN. What if you wanted to
be able to tell the conputer how many times to execute the loop at the time
the programis RUN?

4-7

In other words, you want to be able to change the value of the variable K
each time you run the program without having to change to programitself.
W call this the ability to interact with the conputer. You can have the
conputer ask how many tinmes you want it to execute the loop. To do this,
use the INPUT conmand. For exanple, replace line 10 in the programwith:

10 INPUT K

Now when you RUN the program the conputer reponds with a ? to let you know
it iswaiting for you to enter what you want the value of Kto be. Type 15
and press {return}. The conputer will execute the loop 15 tines.

Pronmpt Messages

You can al so make the conputer print a message in an INPUT statenent to
tell you what variable it's waiting for. Replace line 10 with:

10 I NPUT"PLEASE ENTER A VALUE FOR K"; K

Renenber to encl ose the nessage to be printed in quotes. This message is
called a pronpt. Also, notice that you nust use a semicolon (;) between the
ending quote marks of the pronpt and the K You may put any nessage you
want in the pronpt, but the INPUT statenent nust be 160 characters or |ess,
just as any BASIC command nust.

The INPUT statenent can al so be used with string variables. The sanme rul es
that apply for nuneric variables apply for strings. Don't forget to use the
{$} toidentify all you string variables.

Clear you conputer's menory by typing NEWand pressing {return}. Then type
this program

10 I NPUT"WHAT 1S YOUR NAME"; NVB
20 ? "HELLO "; N

Now RUN the program Wen the conputer pronpts "WHAT IS YOUR NAME?", then
type your name. Don't forget to press {return} after you type your name.

Once the value of a variable (numeric or string) has been inserted into a
programthrough the use of INPUT, you can refer to it by its variable name
any time in the program Type ?N$ {return} - your conputer remenbers your
nane!

The GET Conmmand

There are other BASIC conmands you can use in your programto interact with
the conputer. One is the GET command and is simlar to INPUT. To see how
the GET command works, clear the computer's nemory and type this program

10 GET A%

20 |F A$="" THEN 10
30 ? A$

40 END

When you type RUN and press {return}, nothing seems to happen. The reason
is that the conputer is waiting for you to press a key. The GET command, in
effect, tells the conputer to check the keyboard and find out what
character or key is being pressed. The conputer is satisfied with a null
character (that is, no character). This is the reason for line 20. This
line tells the conputer that if it gets a null character, indicated by
doubl e quotes with no space in between them it should go back to line 10
and try to GET another character. This |oop continues until you press a
key. The conputer then assigns the character on that key to AS.

The GET command is very inportant because you can use it, in effect, to
program a key on your keyboard. The exanple below prints a nessage on the
screen when {q} is pressed. Type the programand RUNit. The press {q} and
see what happens.

10 ?"PRESS Q TO VI EW MESSAGE"

20 GET A$

30 IF A$="" THEN 20

40 IF A$="Q' THEN 60

50 GOTO 20

60 FOR 1=1 TO 25

70 ? "NOWI CAN USE THE GET STATEMENT"
80 NEXT

90 END

Notice that if you try to press any key other than the {q}, the conputer
will not display the message, but will go back to line 20 to GET anot her
character.

Section 5 describes how to use the GETKEY statement, which is a new and
nor e
poverful BASIC 7.0 conmand that can be used to performa simlar task.

Sanpl e Program

Now that you know how to use the FOR-NEXT | oop and the INPUT conmand, clear
the conputer's menory by typing NEW{return}, then type the follow ng
program

10 T=0

20 | NPUT" HOW MANY NUVBERS'; N

30 FOR J=1 TON

40 | NPUT" PLEASE ENTER A NUMBER'; X
50 T=T+X

60 NEXT

70 A=T/N

80 PRINT

90 ? "YQU HAVE"; N'NUMBERS TOTALING "T
100 ? "AVERAGE = "; A

110 END

This programlets you tell the conputer how many nunbers you want to ave-
rage. You can change the nunbers every time you run the program without
having to change the programitself.

Let's see what the program does, line by |ine:

Line 10 assigns a value of 0 to T (which will be the running total of
the nunbers).

Line 20 lets you determne how many nunbers to average, stored in
variable N

Line 30 tells the conputer to execute a loop N tines.

Line 40 lets you type in the actual nunbers to be averaged.

Line 50 adds each number to the running total.

Line 60 tells the conputer to increnent the counter (J) and | oop back
to line 30 while the counter (J) <= N

Line 70 divides the total by the anount of nunbers you typed in (N
after the loop has been executed N tines.

Line 80 prints a blank line on the screen.

Line 90 prints the message that gives you the amount of nunbers and
their total.

Line 100 prints the average of the nunbers.

Line 110 tells the conputer that your progamis finished.

4-10

The READ- DATA Conmands

There is another powerful way to tell the computer what nunbers or charac-
ters to use in your program You can use the READ statenent in your program
to tell the computer to get a nunber or character(s) fromthe DATA state-
ment. For exanple, if you want the conputer to find the average of five
nunbers, you can use the READ and DATA statenents this way:

10 T=0

20 FR J=1 TO 5

30 READ X

40 T=T+X

50 NEXT

60 A=T/5

70 ? "AVERAGE ="; A
80 END

90 DATA 5,12,1, 34,18

When you RUN the program the conputer will print AVERAGE = 14. The program
uses the variable T to keep a running total, and cal culates the average in
the same way as the INPUT average program The READ-DATA average program
however, finds the nunbers to average on a DATA line. Notice line 30, READ
X. The READ command tells the conputer there must be a DATA statenment in
the program It finds the DATA line, and uses the first number as the cur-
rent value for the variable X The next time through the loop the second
nunber in the DATA statenent will be used as the value for X, and so on.

You can put any nunber you want in a DATA statenent, but you cannot put
calculations in a DATA statenent. The DATA statenent can be anywhere you
want in the program- even after the END statement, or as the first program
line. This is because the conputer never really executes the DATA state-
ment; it will just refer toit. Be sure to separate your data items with
conmas, but be sure not to put a comma between the word DATA and the first
nunber in the list.

If you have nore than one DATA statement in your program the conputer will
start READing fromthe first DATA statenent in the programlisting when the
programis RUN. The conputer uses a pointer to remnd itself which piece of
data it read last. After the conputer reads the first number in the DATA
statenent, the pointer noves to the next number. WWhen the conputer cones
to the READ statenment again, it assigns the value the pointer indicates to
the variable in the READ statenent.

4-11

You can use as many READ and DATA statenent as you need in a program but
make sure there is enough data in the DATA statenents for the computer to
READ. Rermpve one of the nunbers fromthe DATA statement in the |ast program
and RUN it again. The conputer responds with ?0UT OF DATA ERROR IN 30. What
happened i s that when the computer executed the loop for the fifth tine,
there was no data for it to read. That is what the error message is telling
you. Putting too nuch into the DATA statenent doesn't create a problemin
this program because the conputer never realizes the extra data exists.

The RESTORE Command

You can use the RESTORE conmand in a programto reset the data pointer to
the first piece of data if you need to. Replace the END statenment (line 80)
in the program above with:

80 RESTORE
and add:
85 Q01O 10

Now RUN the program The programwill run continuously using the sane DATA
stat enent.

NOTE: |f the conputer gives you an QUT OF DATA error nessage, it is because
you forgot to replace the nunber that you renoved previously fromthe DATA
statenent, so the data is all used before the READ statenent has been exe-

cuted the specific number of times.

Assigning val ues to string variables

You can use DATA statements to assign values to string variables. The sane
rules apply as for nunmeric data. Clear the conputer's menory and type the
fol l owi ng program

10 FOR J=1 TO 3

20 READ A%

30 ? A$

40 NEXT

50 END

60 DATA COWMODORE, 128, COMPUTER

4-12

If the READ statement calls for a string variable, you can place letters or
nunbers in the DATA statenent. Notice however, that since the computer is
READi ng a string, numbers will be stored as a string of characters, not as
a val ue which can be manipul ated. Nunbers stored as strings can be printed,
but not used in calculations. Aso you cannot place letters in a DATA
statement if the READ statenent calls for a nunber variable.

Using Arrays

You have seen how to use READ-DATA to provide many val ues for a variable.
But what if you want the conputer to remenber all the data in the DATA
statenent instead of replacing the value of a variable with the new data?
What if you want to be able to recall the third nunber, or the second
string of characters?

Each time you assign a new value to a variable, the conputer erases the old
value in the variable's box in menory and stores the newvalue inits
place. You can tell the conputer to reserve a row of boxes in memory and
store every value that you assign to that variable in your program This
row of boxes is called an array.

Subscripted Vari abl es

If the array contains all of these values assigned to the variable X in the
READ- DATA exanple, it is called the X array. The first value assigned to X
inthe programis called X(1), the second value is X(2), and so on. These
are called subscripted variables. The nunbers in the parentheses are called
subscripts. You can use the value of a variable or the result of a calcu-
lation as a subscript. The following is another version of the averaging
program this time using subscripted variables.

5 DIM X(5)

10 T=0

20 FOR J=1 TO 5

30 READ X(J)

40 T=T+X(J)

50 NEXT

60 A=T/5

70 ? "AVERAGE ="; A
80 END

90 DATA 5,12, 1,34,18

4-13

Notice there are not many changes. Line 5 is the only new statement. It
tells the conputer to set aside five boxes in menmory for the X array. Line
30 has been changed so that each tinme the computer executes the loop, it
assigns a value fromthe DATA statement to the position in the X array that
corresponds to the loop counter (J). Line 40 calculates the total, just as
it did before, but you nust use a subscipted variable to doit.

After you RUN the program if you want to recall the third nunber, type:
?X(3) {return}
The conputer renenbers every nunber in the array X

You can create string arrays to store the charachters in string variables
the same way. Try updating the COWODORE 128 COVPUTER READ- DATA program so
the computer will remenber the el enents in the A$ array.

5 DI M A$(3)

10 FOR J=1 TO 3

20 READ A$(J)

30 2 A$(J)

40 NEXT

50 END

60 DATA COVMODORE, 128, COVPUTER

TIP: You do not need the DIMstatement in your programunless the array you
use has more than 10 el enents, see the next paragraaf, Dinensioning Arrays.

Di nensi oni ng Arrays

Arrays can be used with nested | oops, so the computer can handle data in a
nore advanced way. Wat if you had a large chart with 10 rows and 5 nunbers
in each row Suppose you wanted to find the average of the five nunbers in
each row. You could create 10 arrays and have the conputer cal cul ate the
average of the five numbers in each one. This is not necessary, because you
can put all the nunbers in a two-dinensional array. This array woul d have
the sanme dinensions as the chart of nunbers you want to work with - 10 rows
by 5 colums. The DIMstatenent for this array (we will call it array X)
shoul d be:

10 DI M X(10, 5)

4-14

This tells the conputer to reserve space in its nenory for a two di men- 10 DIM X(10,5), A(10)

sional array naned X. The conputer reserves enough space for 50 nunbers. 20 FOR R=1 TO 10
You do not have to fill an array with as many nunbers as you DI Mensioned it 30 T=0
for, but the conmputer will still reserve enough space for all the positions 40 FOR C=1 TO 5
inthe array. 50 READ X(R, Q)
60 T=T+X(R O
70 NEXT C
Sanpl e Program 80 A(R =T/5
90 NEXT R
Now it becones very easy to refer to any nunber in the chart by its colum 100 FOR R=1 TO 10
and row position. Refer to the chart below. Find the third elenent in the 110 PRINT "ROW#"; R
tenth row (1500). You would refer to this nunber as X(10,3) in your 120 FOR C=1 TO 5
program 130 PRINT X(R Q)
The foll owing programreads the numbers fromthe chart into a two-dimen- 140 NEXT C
sional array (X) and calculates the average of the nunbers in each row 150 PRINT "AVERAGE ="; A(R)
160 FOR D=1 TO 1000: NEXT
170 NEXT R
180 DATA 1,3,5,7,9
Col um 190 DATA 2,4,6,8,10
---------- R R R 200 DATA 5, 10, 15, 20, 25
Row | 1 2 3 4 5 210 DATA 10, 20, 30, 40, 50
---------- e i 220 DATA 20, 40, 60, 80, 100
1 | 1 3 5 7 9 230 DATA 30, 60, 90, 120, 150
2 | 2 4 6 8 10 240 DATA 40, 80, 120, 160, 200
3 5 10 15 20 25 250 DATA 50, 100, 150, 200, 250
4 | 10 20 30 40 50 260 DATA 100, 200, 300, 400, 500
5 | 20 40 60 80 100 270 DATA 500, 1000, 1500, 2000, 2500
6 | 30 60 90 120 150 280 END
7 40 80 120 160 180
8 | 50 100 150 200 250
9 | 100 200 300 400 500
10 | 500 1000 1500 2000 2500

4-15 4-16

PROGRAMM NG SUBRQUTI NES
The GOSUB- RETURN Conmands

Until now, the only method you have had to tell the conputer to junp to
anot her part of your programis to use the GOTO conmand. Wat if you want
the conputer to junp to another part of the program execute the statements
inthat section, then return to the point it left off and continue execu-
ting the progranf

The part of programthat the conputer junps to and executes is called a
subrouti ne.

Clear your conputer's menory and enter the program bel ow.

10 A$="SUBROUTI NE": B$=" PROGRAM'
20 FOR J=1 TO 5

30 INPUT "ENTER A NUMBER'; X

40 GOSUB 100

50 PRINT B$: PRINT

60 NEXT

70 END

100 PRINT A$: PRI NT

110 Z=X{up arrow}2: PRINT Z

120 RETURN

This programwill square the nunbers you type and print the result. The
other print messages tell you when the conputer is executing the subroutine
or the main program Line 40 tells the conputer to junmp to line 100, exe-
cute it and the statements following it until it sees a RETURN command. The
RETURN statenent tells the computer to go back in the programto the line

i medi ately follow ng the GOSUB conmand and continue executing. The subrou-
tine can be anywhere in the program- including after the END statenent.
Also, renenber that the GOSUB and RETURN conmands nust al ways be used to-
gether in a program (like FOR-NEXT and | F-THEN), otherwi se the computer
will give an error nessage.

The ON GOTQ) GOSUB Conmands

There is another way to make the conputer junp to another section of your
program (cal l ed branching). Using the ON statenent, you can have the com
puter decide what part of the programto branch to, based on a cal cul ation

or keyboard input.

4-17

The ON statenent is used with either the GOTO or GOSUB- RETURN conmands,
dependi ng on what you need the programto do. A variable or calculation
shoul d be after to ON command. After the GOTO or GOSUB conmand, there
shoul d be a list of line nunbers. Type in the program below to see how the
ON conmand wor ks.

10 ?"ENTER A NUMBER BETWEEN ONE AND FI VE
20 INPUT X

30 ON X GOsuUB 100, 200, 300, 400, 500

40 END

100 ?"YOUR NUMBER WAS ONE": RETURN

200 ?"YOUR NUMBER WAS TWO': RETURN

300 ?"YOUR NUMBER WAS THREE": RETURN

400 ?"YOUR NUMBER WAS FOUR': RETURN

500 ?"YOUR NUMBER WAS FI VE": RETURN

When the value of Xis 1, the conputer branches to the first line nunber in
the list (100). Wen X is 2, the computer branches to the second nunber in
the Iist (200), and so on.

USI NG MEMORY LCCATI ON
Usi ng PEEK and POKE for RAM Access

Each area of the conputer's memory has a special function. For instance,
there is a very large area to store your progranms and the variabl es asso-
ciated with them This part of memory, called RAM is cleared when you use
the NEWcommand. OQther areas are not as large, but they have very specia-
l'ized functions. For instance, there is an area of menory |ocations that
controls the nusic features of the conputer.

There are two BASIC keywords - PEEK and POKE - that you can use to access
and mani pul ate the computer's nemory. Use of the PEEK function and the POKE
command can be a powerful programmng device because the contents of the
conputer's menory |ocations determne exactly what the conputer should be
doing at a specific tinme.

4-18

Usi ng PEEK

PEEK can be used to make the computer tell you what value is being stored
inanemory location (a nenory location can store any val ue between 0 and
255). You can PEEK the value of any nenory |location (RAMor ROM in DI RECT
or PROGRAM rode. Type:

P=PEEK(2594) {return}
? P {return}

The conputer assigns the value in menory |ocation 2594 to the variable P
when you press {return} after the first line. Then it prints the val ue when
you press {return} after entering the ? P conmand. Menory |ocation 2594
deternines whether or not keys |ike the SPACEBAR and CRSR repeat when you
hol d them down. A 128 in location 2594 tells the conputer to repeat these
keys when you hol d them down. Hold down the SPACEBAR and watch the cursor
nmove across the screen.

Usi ng POKE
To change the value stored in a RAM | ocation, use the POKE command. Type:
POKE 2594, 96 {return}

The conputer stores the value after the comma (i.e. 96) in the nemory loca-
tion before the conma (i.e. 2594). A 96 in nenory location 2594 tells the
conputer not to repeat keys |ike the SPACEBAR and CRSR keys when you hol d
them down. Now hol d down the SPACEBAR and watch the cursor. The cursor
noves one position to the right, but it does not repeat. To return your
conputer to its normal state, type:

POKE 2594, 128 {return}

You cannot alter the value of all the nenory locations in the conputer -
the values in ROMcan be read, but not changed.

NOTE: These exanpl es assune you are in bank 0. See also the descrip-

tion of the BANK conmand in chapter V, BASIC 7.0 Encycl opaedia for
details on banks.

4-19

BASI C FUNCTI ONS
VWhat is a Function?

A function is a predefined operation of the BASIC | anguage that generally
provi des you with a single value. \lhen the function provides the value, it
is saidto "return" the value. For instance, the SQR (square) functionis a
mat hemati cal function that returns the value of a specific nunber when it
is raised to the second power - i.e., squared.

There are two kinds of functions:

Nuneric - returns a result which is a single nunber.
Nuneric functions range fromcal cul ating mathematical val ues to
specifying the nuneric value of a nmenory |ocation.

String - returns a result which is a character.

Fol l owing are descriptions of some of the nore conmonly used functions. For
a conplete list, see Chapter V, BASIC 7.0 Encycl opaedi a.

The | NTEGER Function (INT)

What if you want to round off a nunber to the nearest integer? You'll need
to use INT, the integer function. The INT function takes away everything
after the decimal point. Try typing these exanples:

? INT(4.25) {return}
? INT(4.75) {return}
? INT(SQR(50)) {return}

[f you want to round off to the nearest whole number, then the second
exanpl e should return a value of 5. In fact, you should round up any nunber
with a decimal above 0.5. To do this, you have to add 0.5 to the nunber
before using the INT function. In this way, nunbers with decimal portions
equal to or above 0.5 will be increased by 1 before rounding down by the
INT function. Try this:

? INT(4.75+0.5) {return}
The conputer added 0.5 to 0.75 before it executed the INT function, so that

it rounded 5.25 down to 5 for the result. If you want to round off the
result of a calculation, do this:

4-20

? INT((100/6)+0.5) {return}

You can substitute any calculation for the division shown in the inner
par ent eses.

What if you want to round of f nunbers to the nearest of 0.01? Instead of
adding 0.5 to your number, add 0.005, then multiply by 100. Let's say you

want to round 2.876 to the nearest 0.01. Using this nmethod, you start with:

?(2.876 + 0.005)*100 {return}
Now use the INT function to get rid of everything after the deci mal point
(which moves two places to the right when you multiply by 100). You are
left with:

?INT((2.876 + 0.005)*100) {return}
which gives you a value of 288. All that's left to dois divide by 100 to
get the value of 2.88, which is the answer you want. Using this technique,
you can round of f calculations like the following to the nearest of 0.01:

?INT(((2.876+1.29+16.1-9.534) + 0.005)*100) {return}

Generating Random Numbers - The RND Function
The RND function tells the conputer to generate a random nunber. This can
be useful in simlating ganes of chance, and in creating interesting
graphics or nusic programs. All random (RND) nunbers are nine digits, in
decimal form between the value 0.000000001 and 0.999999999. Type:

? RND(0) {return}

Ml tiplying the randomly generated nunber by six makes the range of gene-

rated numbers increase to greater than 0 and less than six. In order to in-

clude 6 (and exclude zero) among the nunbers generated, we add one to the
result of RND(0)*6. This makes the range 1

10 R=(I NT(RND(1) *6+1)

20 ? R
30 GOTO 10

4-21

Each number generated represents one toss of a die. To sinulate a pair of
dice, use two conmands of this nature. Each nunber is generated separately,
and the sumof the two nunbers represents the total of the dice.

The ASC and CHR$ Functions

Every character that the Conmodore 128 can display (including graphic
characters) has a nunber assigned to it. This nunber is called a character
string code (CHR$) and there are 255 of themin the Cormodore 128. There
are two functions associated with this concept that are very useful.

The first is the ASC function. Type:
? ASC(Q {return}

The conputer responds with 81. 81 is the character string code for the {q}
key. Substitute any key for {qg} in the command above to find out the Com
nmodore ASCI | code nunber for any character.

The second function is the CHR$ function. Type:
? CHR$(81) {return}

The conputer responds with Q In effect, the CHR$ function is the opposite
of the ASC function. They both refer to the table of character string codes
inthe conputer's menory. CHR$ val ues can be used to program function keys.
See the Section 5 for nore information about the use of these functions.
See Appendix E of this Quide for a listing of ASC and CHR$ codes.

Converting Strings and Nunbers

Sonetinmes you may need to performcal culations on nuneric characters that
are stored as string variables in your program Cher times, you may want
to performstring operations on nunbers. There are two BASIC functions you
can use to convert your variables fromnuneric to string type and vice
versa.

4-22

The VAL Function

The VAL function returns a nuneric value for a string argunent. Clear the
conputer's menory and type in this program

10 A$="64"

20 A=VAL(A$)

30 ? "THE VALUE OF "; A$;" 1S";A

40 END

The STR$ Function

The STR$ function returns the string representation of a numeric val ue.
Clear the conputer's menory and type this program

10 A=65

20 A$=STR$(A)

30 ? A"I'S THE VALUE OF "; A$

The Square Root Function (SQR)

The square root function is SQR For exanple, to find the square root of
50, type:
? SQR(50) {return}

You can find the square root of any positive nunber in this way.

The Absol ute Val ue Function (ABS)

The absol ute value (ABS) is very useful in dealing with negative nunbers.
You can use this function to get the positive value of any nunber, positive
or negative. Try these exanpl es:

? ABS(-10) {return}

? ABS(5)"IS EQUAL TO'ABS(-5) {return}

THE STOP AND CONT (CONTI NUE) COMMANDS

You can meke the conputer stop a program and resune running it when you
are ready. The STOP command nust be included in the program You can put a
STOP command anywhere you want to in a program Wen the conputer "breaks"
fromthe program (that is, stops running the progranm, you can use DI RECT
mode commands to find out exactly what is going on in the program

4-23

For exanple, you can find the value of a loop counter or other variable.
This is a powerful device when you are "debuggi ng" or fixing your program
Clear the conputer's menory and type the progam bel ow.

10 X=1 NT(SQR(630))

20 Y=(.025*80){up arrow}?2
30 X=I NT(X*Y)

40 STCP

50 FOR J=0 TO Z STEP Y
60 ? "STOP AND CONTI NUE"
70 NEXT

80 END

Now RUN this program The conputer responds with BREAK IN 40. At this
point, the conputer has cal cul ated the values of X, Y and Z. If you want to
be able to figure out what the rest of the programis supposed to do, tell
the conputer to PRINT X VY; Z

Often when you are debugging a large program (or a conplex snall one),
you'll want to know the value of a variable at a certain point in the
program

Once you have all the information you need, you can type CONT (for

CONTi nue) and press {return} assumng you have not editing anything on the
screen. The conputer then CONTinues with the program starting with the
statement after the STOP command.

EREE SRR SRR EREERREERRERREERREERRERRERRRERRERRERRERRERRRERRERRERRERREEREEREEEEE]

This section and the preceding one have been designed to famliarize you
with the BASIC programming | anguage and its capabilities. The remaining
four sections of this chapter describe conmands that are unique to Com
modore 128 node. Some Conmodore 128 node conmands provide capabilities that
are not available in C64 node. Other Conmodore 128 node commands |et you do
the sane things as a certain C64 command, but more easily. The syntax for
all Commodore 7.0 commands is given in Chapter V, BASIC 7.0 Encycl opaedi a.

4-24

SECTION 5
Sone BASI C Conmands and Keyboard Operations Unique to C128

ENTRODUCTI ON ..t e e 5-3
ADVANCED LOOPING .« . oottt ettt e et e 5-3
The DOLOOP Stat eMBNt ...ttt 5-3
UNTL L e 5-3

MH LE 5-4

EXI T 5-5

The ELSE Clause with IF-THENo e 5-5
The BEG N'BEND Sequence with IF-THENcciiiiiiiiin... 5-5
The SLEEP COMMBNG\ttt 5-6
FORMATTING QUTPUT ..ottt 5-6
The PRINT USING CommaNdoiiteite e 5-6
The PUDEF COMMBNG\ttt et et e 5-7
SAMPLE PROGRAM . . oottt e e et 5-8
| NPUTTI NG DATA WTH THE GETKEY COMMAND e e e 5-8
PROGRAMM NG ALDS . o e 5-9
ENtering Program ... 5-9
AUTO e 5-9
RENUMBER 5-10
DELETE . 5-10
Identifying Problems in Your Programscciiivenannnn. 5-11
HEL P 5-11
Error Trapping - The TRAP Commandc.covvviiiinnnnnn.. 5-11
Program Tracing - The TRON and TROFF Commands 5-13
WINDON NG .« . 5-14
Using the WNDOW Cormand to Create a Wndowc.on... 5-14
Using the ESC Key to Create a Wndowccovviiiiinnnnn... 5-15

5-1

2 MHZ OPERATION . oot 5-16
The FAST and SLOW COMMBNGASvve ettt e e 5-16
KEYS UNTQUE TO CL28 MODE . ..ottt e 5-17
FUNCET 0N KBYS vttt 5-17
Redefining Function Keys ...t 5-17
CGther Keys Used in C128 Mode Only ... 5-18
HEL P 5-18

NO SCROLL vttt e ettt 5-19
CAPS LOCK ..ttt ettt e e e e 5-19

40/ 80 Dl SPLAY ..ttt 5-19
AL 5-19

B 5-19
LINE FEED . ..o 5-19

5-2

| NTRODUCTI ON

This section introduces you to some powerful BASIC commands and statenents
that you probably have not seen before, even if you are an experienced
BASI C programmer. If you are familiar with programming in BASIC, you have
probably encountered many situations in which you could have used these
conmands and statenents. This section explains the concepts behind each
conmand and gives exanples of how to use each conmand in a program (A com
plete list and an explanation of these commands and statenents may be found
in Chapter V, BASIC 7.0 Encyclopaedia.) This section also describes howto
use the special keys that are available to you in Cl128 node.

ADVANCED LOCPI NG
The DO LOCP St at enent

The DO LOOP statenent provides nore sophisticated ways to create a | oop
than do the GOTO, GOSUB or FOR/NEXT statenents. The DO LOOP statement com
bination brings to the BASIC | anguage a very powerful and versatile tech-
nique normal Iy only available in structured progranm ng | anguages. W

di scuss just a few possible uses of DOLOOP in this explanation.

If you want to create an infinite loop, you start with a DO statenent, then
enter the line or lines that specify the action you want the conputer to
perform Then end with a LOOP statenent |ike this:

100 DO

110 PRINT "REPETI TI ON'
120 LOCP

Press the {run/stop} key to stop the program

The directions follow ng the DO statenent are carried out until the program
reaches the LOOP statenent (line 120); control is then transferred back to

the DO statement (line 100). Thus any statements in between DO and LOOP are
performed indefinitely.

UNTI L

Anot her useful technique is to conbine the DOLOOP with the UNTIL state-
ment. The UNTIL statement sets up a condition that directs the |oop. The

5-3

loop will run continually unless the condition for UNTIL happens.

100 DO I NPUT "DO YOU LI KE YOUR COMPUTER'; A%
110 LOOP UNTIL A$="YES'
120 PRINT "THANK YOU'

The DO LOOP statement is often used to repeat an entire routine indefinite-
ly in the body of a program as in the following:

10 PRINT " PROGRAM CONTI NUES UNTIL YOU TYPE ' QUIT "
20 DO UNTIL A$="QUIT"

30 | NPUT " DEGREES FAHRENHEIT"; F

40 C=(5/9)*(F-32)

50 PRINT F;"DEGREES FAHRENHEI T EQUALS "; C, " DEGREES CELCI US'
60 I NPUT "AGAIN OR QUIT"; A$

70 LOOP

80 END

Anot her use of DO'LOOP is as a counter, where the UNTIL statement is used
to specify a certain nunber of repetitions.

10 N=2*2

20 PRINT"TWO DOUBLED EQUALS'; N

30 DO UNTIL X=25

40 X=X+1

50 N=N+2

60 PRI NT"DOUBLED'; X+1;"TIMES..."; N
70 LOOP

80 END

Notice that if you leave the counter statement out (the UNTIL X=25 part in
line 30), the nunber is doubled indefinitely until an OVERFLOWerror
occurs.

VWHI LE
The WHILE statenent works in a simlar way to UNTIL, but the loop is re-
peated only while the condition is in effect, such as in the rewrking of
the last brief program

100 DO INPUT "DO YQU LI KE YOUR COVPUTER'; A$

110 LOOP WH LE A<>"YES'

120 PRINT "THANK YOU'

5-4

EXIT

An EXIT statement can be placed within the body of a DO'LOOP. \hen the EXIT
statenent is encountered, the programjunps to the next statenent followi ng
the LOOP statenent.

The ELSE O ause with |F-THEN

The ELSE clause provides a way to tell the conputer how to respond if the
condition of the IF-THEN statenent is false. Rather than continuing to the
next programline, the conputer will execute the command or branch to the
programline nentioned in the ELSE clause. For exanple, if you wanted the
conputer to print the square of a nunber, you could use the ELSE clause
like this:

10 INPUT "TYPE A NUMBER TO BE SQUARED'; N
20 IF N<100 THEN PRINT N¢N: ELSE 40

30 END

40 ?"NUMBER MUST BE < 100": GOTO 10

Notice that you nust use a colon (:) between the |F-THEN statement and the
ELSE cl ause.

The BEG N BEND Sequence with I F-THEN

BASIC 7.0 allows you to take the IF-THEN condition one step further. The
BEG N BEND sequence pernits you to include a nunber of programlines to be
executed if the IF condition is true, rather than one sinple action or
GOTO. The conmand is constructed |ike this:

I'F condition THEN BEG N:
(programlines):
BEND: ELSE

Be sure to place a colon (:) between BEG N and any instruction to the com
puter, and again between the last command in the sequence and the word
BEND. BEG N/ BEND can be used without an ELSE clause, or can be used fol -

I owing the ELSE clause when only a single command fol lows THEN and nul tiple
commands fol low the ELSE clause (of course BEG N BEND can al so be used both
after THEN and ELSE). Try this program

5-5

10 INPUT A

20 | F A<100 THEN BEG N ?"YOUR NUMBER WAS'A
30 SLEEP 2: REM DELAY

40 FOR X=1 TO A

50 ?"TH S IS AN EXAVPLE OF BEG N BEND'

60 NEXT X

70 ?"THAT' S ENOQUGH": BEND: ELSE ?"TOO MANY"
80 END

This program asks for a nunber fromthe user. IF the number is |ess than
100, the statement between the keywords BEG N and BEND are perforned, al ong
with any statements on the sane |ine as BEND (except for ELSE). The message
"YOUR NUMBER WAS" n appears on the screen. Line 30 is a delay used to keep
the message on the screen long enough so it can be read easily. Then a
FOR/'NEXT | oop is used to display a nessage the nunber of tinmes specified by
the user. If the nunber is greater than or equal to 100, the part after the
THEN condition is skipped, and part after the ELSE condition (printing
"TOO MANY") is carried out. The ELSE keyword nmust be on the sane line as
BEND.

The SLEEP Command

Note the use of the SLEEP command in line 30 of the programjust discussed.
SLEEP provides an easier, nore accurate way of inserting and timng a delay
in programoperation. The format of the SLEEP command is:

SLEEP n

where n indicates the number of seconds (rounded down to a whol e number of
seconds), in the range of 0 to 65535, that you want the programto del ay.
In the conmand shown in line 30, the 2 specifies a delay of two seconds.

FORMATTI NG QUTPUT
The PRINT USI NG Conmand

Suppose you were witing a sales programthat calculated a dollar anmount.
Total sales divided by nunber of sal espeopl e equal s average sal es. But per-
forming this calculation might result in dollar amounts with four or five
decimal places! You can format the result the conputer prints so that only
two decinmal places are displayed. The conmand which performs this function
is PRINT USING

5-6

PRINT USING lets you create a format for your output, using spaces, commes,
decimal points and dollar signs. Hash marks (the {#} sign) are used to re-
present spaces or characters in the displayed result. For exanple:

PRINT USI NG " #$####H#H. ##"; A

tells the conputer that when Ais printed, it should be in the formgiven,
with up to six places to the left of the decimal point, and two places to
the right. The hash mark in front of the dollar sign indicates that the {$}
should float, that is, it should always be placed next to the |eft-nost
nunber in the format.

If you want a comma to appear before the last three dollar places (as in
$1,000.00), include the comm in the PRINT USING statenent. Renenber you
can format output with spaces, conmas, decimal points, and dollar signs.
There are several other special characters for PRINT USING see the BASIC
Encycl opaedia for nore information.

The PUDEF Command

[f you want formatted output representing sonething other than dollars and
cents, use the PUDEF (Print Using DEFine) command. You can replace any of
four format characters with any character on the keyboard.

The PUDEF command has four positions, but you do not have to redefine all
four. The command | ooks like this:

PUDEF " , . $"
1234

Here:
* position 1 is the filler character. A blank will appear if you do
not redefine this position.
* position 2 is the comma character. Default is the comma.
* position 3 is the decimal point.
* position 4 is the dollar sign.

If you wote a programthat converted a dollar amount to English pounds,
you could format the output with these conmands:

10 PUDEF " ,.{pound}"
20 PRINT USI NG "#S###4. ##": X

5-7

SAMPLE PROGRAM

This programcal cul ates interest and | oan paynments, using sone of the com
mands and statements you just learned. It sets a mininmumvalue for the |oan
using the ELSE clause with an | F-THEN statement, and sets up a dollar and
cents format with PRINT USING

10 I'NPUT "LOAN AMOUNT | N DOLLARS'; A

20 I F A<100 THEN 70: ELSE P=.15

30 I=A*P

40 ?"TOTAL PAYMENT EQUALS';

50 PRINT USI NG "#$#H###H:. ##"; Atl

60 GOTO 80

70 ?"LOANS UNDER $100 ARE NOT AVAI LABLE"
80 END

I NPUTTI NG DATA W TH THE GETKEY COWVAND

You have learned to use the INPUT and GET commands to enter DATA during a
program Another way for you to enter data while a programis being RUNis
with the GETKEY statenent. The GETKEY statenent accepts only one key at a
time. GETKEY is usually followed by a string variable (A$ for exanple). Any
key that is pressed is assigned to that string variable. GETKEY is useful
because it allows you to enter data one character at a time wthout having
to press the RETURN key after each character. The GETKEY statenent may only
be used in a program

Here is an exanpl e of using GETKEY in a program

1000 PRINT "PLEASE CHOOSE A, B, C D, ERF
1010 GETKEY K$
1020 PRINT A$;" WAS THE KEY YOU PRESSED."

The conputer waits until a single key is pressed; when the key is pressed,
the character is assigned to variable A$, and printed out in |ine 1020.

The foll owing program features the GETKEY in more conpl ex and useful
fashions: for answering multiple-choice question and also asking if the
question shoul d be repeated. If the answer given is incorrect, the user has
the option to try again by pressing the {y} key (line 80). The key pressed
for the nultiple choice answer is assigned to variable A$ while the "TRY
AGAIN' answer is assigned to B$, through the GETKEY statenents in |ine 60

5-8

and 90. |F/THEN statements are used for loops in the programto get the
proper conputer reaction to the different keyboard inputs.

10 PRINT "WHO WROTE ' THE RAVEN ?"

20 PRINT "A. EDGAR ELLEN PCE'

30 PRINT "B. EDGAR ALLEN PCE'

40 PRINT "C. | GOR ALLEN PCE"

50 PRINT "D. ROB RAVEN'

60 CETKEY A$

70 1F A$="B" THEN 150

80 PRINT "VRONG. TRY AGAIN? (Y R N)"

90 CGETKEY B$

100 I'F B$="Y" THEN PRINT "A,B,C OR D': GOTO 60
110 I'F B$="N'" THEN 140

120 PRINT "TYPE EITHER Y OR N - TRY AGAIN'
130 GOTO 90

140 PRINT "THE CORRECT ANSWER IS B."

145 GOTO 160

150 PRINT " CORRECT!"

160 END

GETKEY is very simlar to GET, except GETKEY will wait for a key to be
pressed.

PROGRAMM NG Al DS

In earlier sections you |earned how to make changes in your prograns, and
correct typing mistakes with {inst/del}. BASIC al so provides other commands
and functions which hel p you locate actual progranming errors, and commands
whi ch you can use to make programming sessions flow nore smoothly.

Entering Prograns

AUTO

C128 BASIC provi des an auto-nunbering process. You determne the increnent
for the line numbers. Say you want to nunber your programin the usual man-

ner, by tens. Before you begin to program while in DI RECT node, type:

AUTO 10 {return}

5-9

The conputer automatically nunbers your progranms by tens. After you enter a
line and press the {return} key, the next line nunber appears, and the cur-
sor is in the correct place for you to type the next statement. You can
choose to have the computer nunber the conmands with any increnent; you

m ght choose 5 or even 50. Just place the nunber after the word AUTO and
press {return}. To turn off the auto-nunbering feature, type AUTOwith no
increment, and press {return}.

RENUMBER

If you wite a programand |ater add statenents to it, sonetimes the line
nunbering can be awkward. Using the RENUMBER command you can change the
line numbers to an even increment for part or all of your program The
RENUMBER command has several optional parameters, as listed belowin
brackets:

RENUMBER [new starting line] [,[increment] [,old starting line]]

The new starting line is what the first programline wil be nunbered after
the RENUMBER conmand is used. If you do not specify, the default is 10. The
increnent is the spacing between line numbers, and it also defaults to 10.
The ol d starting line nunber is the l'ine number where the renunbering is to
begin. This feature allows you to renunber a portion of your program
rather than all of it. It defaults to the first line of the program For
exanpl e:

RENUMBER 40, , 80

tells the conputer to renunber the programstarting at line 80, in incre-
nents of 10. Line 80 becones |ine 40.

Notice that this command, |ike AUTO, can only be executed in DI RECT node.

DELETE

You know how to del ete programlines by typing the line nunber and pressing
the {return} key. This can be tedious if you want to erase an entire por-
tion of your program The DELETE command can save you time because you can
specify a range of programlines to erase all at once. For exanple:

DELETE 10-50

5-10

will erase line 10, 50, and any in between. The use of DELETE is simlar to
that of LIST, in that you can specify a range of lines up to a given line
or following it, or asingle line only, as in these exanples

DELETE -120

erases all lines up to and including 120
DELETE 120-

erases line 120 and any line after it
DELETE 120

erases line 120 only

I dentifying Problenms in Your Prograns

When a program does not work the way you expected, an error nmessage usual -
Iy occurs. Sonetinmes the nessages are vague, however, and you still do not
understand the problem The Commodore 128 conputer has several ways of

hel ping you locate the probl em

HELP

The Conmodore 128 provides a HELP command that specifies the line in which
a problem has occurred. To actuate the HELP conmand, just press the special
{hel p} key on the row of keys |ocated above the main keyboard

Type the following statement. It contains an intentional error, so type it
just as is:

1073;4:5;6
When you RUN this one-line program the conputer prints 3 and 4 as expec-
ted, but then responds ?SYNTAX ERROR IN 10. Suppose you cannot see the
error (a colon instead of a semcolon between 4 and 5). You press the
{hel p} key. (You can also type HELP and press {return}.) The conputer dis-
plays the line again, but the 5;6 is highlighted to showthe error is in
that part of the line:

1073;4:5;6

Error Trapping - The TRAP Command
Usual Iy, if an error occurs in a program the program "crashes" (stops run-

5-11

ning). At that point, you can press the {help} key to track down the error
However, you can use the BASIC 7.0 TRAP conmand to include an error-
trapping capability within your program The TRAP command advi ses you to
locate and correct an error, then resune program operation. Usually, the
error trapping function is set in the first line of a program

5 TRAP 100

tells the conputer that if an error occurs to go to a certain line (inthis
case, line 100). Line 100 appears at the end of the program and sets up a
contingency. Neither line is executed UNLESS there is an error. Wen an
error occurs, the line with the TRAP statenent is enacted, and control is
directed to another part of the program You can uses these statements to
catch anticipated errors in entering data, resune execution, or return to
text node from graphics mde, to name just a few options. If you run the
l'ast DO'LOOP exanple (with doubled nunbers) without an UNTIL statenent, you
can get an OVERFLOWerror and the program crashes. You can prevent that
from happeni ng by adding two lines, one at the beginning and one at the
end. For exanple, you might add these two |ines:

5 TRAP 100
100 I'F N<1 THEN END

Even though N has been nmuch greater than one for the entire program the
statement is not considered until there is an error. Wen the nunber
"overflows" (is greater than the conputer can accept), the TRAP statenent
goes into effect. Since Nis greater than one, the programis directed to
END (rather than crashing).

Here is an exanple in which trapping is used to prevent a zero from being
input for division

10 TRAP 1000

100 INPUT "I CAN DI VIDE BY ANY NUMBER, G VE ME A NUMBER TO DI VI DE"; D
110 I'NPUT "WHAT SHOULD | DIVIDE IT BY";B

120 A=D'B

130 PRINT D;"DIVIDED BY ";B; "EQUALS "; A

140 END

1000 I'F B=0 THEN PRINT"EVEN | CAN T DO THAT"

1100 INPUT "PICK A DI FFERENT NUMBER'; B: RESUME 120

Notice the RESUME in line 1100. This tells the conputer to return to the
line mentioned (in this case, 120) and continue. Depending on the error

5-12

that was trapped, resuming executing may or may not be possible.

For additional information on error trapping, see the error functions ERRS,
EL and ER, described in Chapter V, BASIC 7.0 Encycl opaedi a.

Program Tracing - The TRON and TROFF Cormmands

When a problemin a programoccurs, or you do not get the result you ex-
pect, it can be useful to methodically work through the programand do
exactly what the conputer would do. This process is called tracing. Draw
vari abl e boxes and update the val ues according to the program statenents.
Performcal cul ations and print results followi ng each instruction. (Al
done by hand, using the programlisting as a guideline.)

This kind of tracing may show you, for exanple, that you have used a GOTO
with an incorect line number, or calculated a result but never stored it in
a variable. Many programerrors can be |ocated by pretending to be the com
puter, and following only one instruction at a tine.

Your C128 can performa type of trace using the special conmands TRON and
TROFF (short for TRace ON and TRace OFF). Wen the programis run, with
TRace ON, the conputer prints the line nunbers in the order they are exe-
cuted. In this way, you may be able to see why your programis not giving
the results you expect ed.

Type any short programwe have used so far, or use one of your own design.
To activate trace node, type TRON in DI RECT node. When you run the program
notice how line numbers appear in brackets before any results are dis-
played. Try to follow the line nunbers and see how many steps the conputer
needed to arrive at a certain point. TRONw Il be nore interesting if you
pick a programw th many branches, such as GOTO, GOSUB and |F-THEN | ine
nunber. Type TROFF to turn trace node off before continuing.

You do not have to trace an entire program You can place TRON within a
programas a line prior to the program section causing probl ens. Put the
word TROFF as a programline after the troubl esome section. \then you run
the program only the lines between TRON and TROFF will be bracketed in the
results.

5-13

W NDOW NG

Wndows are a specific area on the screen that you define as your work-
space. Everything you type (lines you type, listings of prograns, etc.)
after setting a window, appears within the wi ndow s bounderies, not affec-
ting the screen outside the window area. The Commodore 128 provides two
net hods of creating wi ndows: the WNDOWcommand and {esc} key functions.

Using the WNDOW Conmand to Create a W ndow

The Commodore 128 BASIC 7.0 | anguage features a command that allows you to

create and manipul ate wi ndows: the WNDOW command. The conmand format is:
WNDOW t op-1eft colum, top-left row, bottomright colum,
bottomright row [, clear option]

The first two nunbers after WNDOWspecify the colum and row number of
where you want the top left corner of the windowto be; the next two num
bers are the coordinates for the bottomright corner. Renenber that the
screen format (40- or 80-colums) dictates the acceptable range of these
coordinates. You can also include a clear option with this conmand. If you
add 1 onto the end of the command, the wi ndow screen area is cleared, as in
this exanpl e:

W NDOW 10, 10, 20, 20, 1

10 SCNCLR ' REM CLEAR SCREEN

20 WNDOW 0, 0, 39, 24 : REM SET W NDOW TO FULL SCREEN
30 COLOR 0, 13: COLCR 4, 13 * REM SET 40 SCREEN TO MED. GREY
40 A$="ABCDEFGH JKLMNOPQRST"

50 COLCR 5,5

60 FOR 1=1 TO 25

70 PRINT AS; A$: NEXT |

80 WNDOW1, 1,7, 20

90 COLCR 5,3

100 PRINT CHR$(18); AS;

110 W NDOW 15, 15, 39, 20, 1

120 COLOR 5, 7

130 FOR =1 TO 6:PRINT A$;: NEXT
140 WNDOW 30, 1, 39, 22, 1

150 COLOR 5, 8: LI ST

160 WNDOW 5, 5, 33, 18, 1

: REM SELECT PURPLE TEXT
*REM FI LL SCREEN W TH CHARACTERS

- REM DEFI NE W NDOW 1

: REM SELECT RED TEXT

:REM PRINT A$ | N REVERSE RED TEXT
- REM DEFI NE SECOND W NDOW

: REM SELECT BLUE TEXT

"REM FI LL WNDOW 2 W TH CHARACTERS
: REM DEFI NE TH RD W NDOW

"REM LI ST I'N YELLOW TEXT

- REM DEFI NE FOURTH W NDOW

170 COLCR 5,2 : REM SELECT WHI TE TEXT

180 PRINT A$:LIST :REM PRINT A$ AND LIST IN WH TE
TEXT

190 END

5-14

Here's a sanple programthat creates four windows on the screen, in either
40- or 80-colum format.

Using the ESC Key to Create a Wndow
To set a window with the {esc} (Escape) key, follow these steps:

1. Move the cursor to the screen position you want as the top left
corner of the w ndow.

2. Press the {esc} key and release it, and then press {t}.

3. Move the cursor to the position you want to be the bottomright
corner of the w ndow.

4. Press {esc} and release, then {b}. Your windowis now set.

You can mani pul ate the window and the text inside using the {esc} key.
Screen editing functions, such as inserting and deleting text, scrolling,
and changing the size of the window, can be performed by pressing {esc}
followed by another key. To use a specific function, press {esc} and re-
lease it. Then press any of the follow ng keys listed for the desired func-
tion:

@Erase everything fromcursor to end of screen w ndow.

A Automatic insert node.

B Set the bottomright corner of the screen window (at the current
cursor |ocation)

C Cancel automatic insert node.

D Delete current |ine.

E Set cursor to non-flashing node.

F Set cursor to flashing node.

G Enabl e bell (by {ctrl g}).

H Disabl e bell.

| Insert a line.

J Move to the beginning of the current line.

K Mve to the end of the current Iine.

L Turn on scrolling.

M Turn of f scrolling.

N Return to normal (non-reverse video) screen display (80-colum
only).

O Cancel insert and quote nodes.

P Erase everything fromthe beginning of the line to the cursor.

5-15

Q Erase everything fromthe cursor to the end of the Iine.

R Reverse screen display (80-colum only).

S Change to block cursor.

T Set the top left corner of the screen window (at the current cursor
[ocation).

U Change to underline cursor.

V Scrol | screen up one |ine.

WScrol | screen down one |ine.

X Toggl es between 40- and 80-col urms

Y Restore default TAB stops.

Z Cear all TAB stops.

Experiment with the {esc}ape key functions. You will probably find certain
functions nore useful than others. Note that you can use the usual
{inst/del} key to performtext editing inside a w ndow as well.

When a window is set up, all screen output is continued to the "box" you
have defined. If you want to clear the window area, press {shift} and
{clr/hone} together. To cancel the window, press the {clr/home} twce. The
window is then restored to its maximumsize and the cursor is placed in the
top left corner of the screen. If you subsequently want to clear the
screen,

press {shift} and {clr/hone} together. Wndows are particularly useful in
witing, listing and running progranms, because they allow you to work in
one area of the screen, while the rest of the screen stays as it is.

2 MHZ OPERATION

The FAST and SLOW Commands

The 2 Mz operation mode al l ows you to run non-graphic prograns in 80-
colum format at twice the normal speed. You can switch nornal and fast

operation by using the FAST and SLOW conmands.

The FAST command pl aces the Conmodore 128 in 2 Mz node. The format of this
conmand is:

FAST

The SLOW conmmand returns the Conmodore 128 to 1 Mz node. The format of
this command is:

SLOW

5-16

KEYS UNI QUE TO C128 MXDE
Function Keys

The four keys on the Conmodore 128 keyboard on the right side above the
nuneric keypad are special function keys that |let you save time by per-
formng repetitive tasks with the stroke of just one key. The first key
reads F1/F2, the second F3/F4, the third F5/ F6 and the |ast F7/F8. You can
use functions 1, 3, 5 and 7 by pressing the key itself. To use the func-
tions 2, 4, 6 and 8, press {shift} and the function key.

Here are the standard functions for each key:

F1 F2 F3 F4
GRAPHC DLOAD' DIRECTCRY SONCLR
F5 F6 F7 F8
DSAVE" RUN LI ST NONI TOR

Here is what each function involves:

KEY 1 enters one of the GRAPH Cs nodes when you supply the number of
the graphics area and press {return}. The GRAPH Cs conmand is
necessary for giving graphics commands such as Cl RCLE or PAINT.
For nore on graphics, see Section 6.

KEY 2 prints DLOAD" on the screen. All you do is enter the program
nane and hit {return} to load the programfrom disk, instead of
typi ng out DLOAD yourself.

KEY 3 lists a DIRECTORY of files on the disk in the disk drive.

KEY 4 clears the screen using the SCNCLR conmand.

KEY 5 prints DSAVE' on the screen. Al you do is enter the program
nane, and press {return} to save the current programon disk.

KEY 6 RUNs the current program

KEY 7 displays a LISTing of the current program

KEY 8 lets you enter the Machine Language Mbnitor.

Redefining Function Keys

You can redefine or programany of these keys to performa function that
suits your needs. Redefining is easy, using the KEY command. You can re-

5-17

define the keys fromBASIC programs, or change themat any tine in D RECT
nmode. A situtation where you might want to redefine a function key is when
you use a command frequently, and want to save tine instead of repeatedly
typing in the command. The new definitions are erased when you turn off the
conputer. You can redefine any of the function keys ans as many times as
you want .

[f you want to reprogramthe F7 function key to return you to text node
fromhigh resolution or multicolor graphics nodes, for exanple, you would
use the key command in this fashion:

KEY 7," GRAPH C 0" + CHR$(13)

CHR$(13) is the ASCII code character for {return}. So when you press the
{f7} key after redefining the key, what happens is the command "GRAPH C 0"
is automatically typed out and entered into the conputer with {return}.

Entire conmmands or series of commands may be assigned to a function key.

Ot her Keys Used in C128 Mbde Only
HELP

As noted previously, when you nake an error in a program your conputer

di splays an error nmessage to tell you what you did wong. These error nes-
sages are further explained in Appendix A of this manual. You can get nore
assistance with errors by using the {hel p} key. After an error nessage,
press the {help} key to locate the exact point where the error occurred.
When you press {help}, the line with the error is highlighted on the screen
inreverse video (in 40-colum) or underlined (in 80-colum).

For exanpl e:
?SYNTAX ERROR IN LINE 10 Your conputer displays this.
HELP You pressed the {help} key.
10 PRONT "COVMODORE COMPUTERS' The line with the mistake is high-

lighted in reverse if in 40-col um out-
put or underlined in 80-col um output.

5-18

NO SCROLL

Press this key down to stop the text fromscrolling when the cursor reaches
the bottom of the screen. This key turns off scrolling until you press a
key (any character key will do).

CAPS LOCK

This key lets you type in all capital letters without using the {shift}
key. The {caps |ock} key locks in when you press it, and nust be pressed
again to be released. {caps |ock} only effects the lettered keys

40/ 80 DI SPLAY

The 40/ 80 key selects the main (default) screen format: either 40- or 80-
colum. The selected screen displays all the messages and output at power-
up, or when the {reset} button, or the key conbination {run/stop restore}
is pressed. The 40/80 key may be used to set the display format only before
turning on or resetting the conputer. You cannot change nodes with this key
after the conputer is turned on, unless you use the {reset} button at the
right side of the conputer, or the key combination {run/stop restore}. Sec-
tion 8 provides an explanation of 40/80 col unmn nodes

ALT

The {alt} allows programs to assign a special nmeaning to a given key or set
of keys.

Unl ess the specific application programredefines it, holding down the
{alt} key and any other key has no effect.

TAB

This key works like the TAB key on a typewiter. It may be used to set or
clear tab stops on the screen and to nove the cursor to the col urms where
the tabs are set.

LINE FEED

Pressing this key advances the cursor to the next line, simlar to the
{crsr down} key.

5-19

EREE SRR SRR EREE R R SRR ERREEREERRERRERRRERRERRERRERRERRRERRERRERRERREEEREEREEEEE]

FOR MORE | NFORMATI ON
This section covers only sone of the concepts, keys and conmands that nake

the Cormodore 128 a special machine. You can find further explanation of
the BASIC | anguage in the BASIC 7.0 Encycl opaedia in Chapter V.

5-20

SECTI ON 6
Color, Animation and Sprite Graphics Statements Unique to the C128

GRAPHICS OVERVI EW . . . oo e

GaphiCs FEALUIES .. ot
CoMMBNG SUMTBIY .« .ttt ettt e e e e e e e e e

GRAPHI CS PROGRAMM NG ON THE COWIDORE 128

ChooSi NG 0l 0TS vttt
Types of Screen Display ... e
Selecting the Graphic Mode i
Di splaying Graphics on the SCreencciviiiiiiinnnnniinn.
Drawing a Grcle - The CRCLE Commandcovviiinnnnnnn..
Drawing a Box - The BOX Commandccovvivniiiiinnnnnn..
Drawi ng Lines, Points and O her Shapes - The DRAW Command
Painting Qutlined Areas - The PAINT Conmand
Di spl ayi ng Characters on a Bit-Mpped- Screen - The CHAR Command ..
Creating a Graphics Sample Program..............ccovivviiiinnn...
Changing the Size of Gaphics Images - The SCALE Command

SPRITES: PROGRAMVABLE, MOVABLE OBJECT BLOCKScvvviinnnn

Sprite Creation ... e
Using Sprite Statements ina Program...............cooviiiinnnnn...
Drawing the Sprite IMRge ... e
Storing the Sprite Data with SSHAPE,
Saving the Picture Data in a Sprite ...,
TUTNING 0N SPriteS ottt e
Moving Sprites with MWVSPR e
Creating a Sprite Program..........o.oueurieeniiiiii i,
Sprite Definition Mde - The SPRDEF Command
Sprite Creation Procedure in SPRite DEFinition Mde

6-1

AdjOI M NG SPriteS ottt 6- 28

Storing Sprite Data in Binary Filesccoiiiiiiiiio .. 6- 33
BSAVE . 6-35
BLOAD . . 6- 36

6-2

GRAPHI CS OVERVI EW

In C128 node, the Conmodore 128 BASIC 7.0 |anguage provides may new and
pover ful commands and statenents that meke graphics programm ng nuch
easier. Each of the two screen formats available in C128 node (40 col ums
and 80 colums) is controlled by a seperate mcroprocessor chip. The 40-
colum chip is called the Video Interface Controller, or VIC for short. The
80-colum chip is referred to as the 8563, or Video Display Controller
(VDQ). The VIC chip, which provides 16 colors, controls all the highly de-
tailed graphics called bit-mpped graphics. The 80-colum chip, which also
offers 16 colors, only displays characters and character graphics. Thus,
all detailed graphic prograns in Cl28 node nust be done in 40-col urm
format.

Graphi cs Features

As part of its inpressive Cl128 node graphics capabilities, the Conmodore
128 provi des:

* 13 specialized graphics commands

* 16 colors

* Six different display nodes

* FEight programmbl e novabl e objects called SPRITES
* Conbi ned graphics/text displays

All these formats can be integrated to provide a versatile, easy to use
graphi cs system

Conmand Surmary
Here is a brief explanation of each graphic conmand:

BOX - Draws rectangles on the bit map screen.

CHAR - Displays characters on the bit map screen.

CIRCLE - Draws circles, ellipses and other geonetric shapes on the
bit map screen.

COLOR - Selects colors for screen border, foreground, background and
characters.

6-3

DRAW - Draws lines and points on the bit map screen.

GRAPHI C - Selects a screen display (text, bit map or split screen bit
map) .

GSHAPE - Places the image stored into a text string variable on the
bit map screen.

PAINT - Fill areas on the bit map screen with color.

SCALE - Sets the relative size of the images on the bit map screen.

SPRDEF - Enters sprite definitions node to edit sprites.

SPRITE - Enables, colors, sets sprite screen priorities, and expands
a sprite.

SPRSAV - Stores a text string variable into a sprite storage area and
vice versa.

SSHAPE - Stores the image of a portion of the bit map screen into a
text string variable.

Mbst of these conmands are described in the exanples in this section. See
Chapter V, BASIC 7.0 Encycl opaedia for detailed format and information on
all graphic commands, and BASIC Functions for all graphic functions discus-
sed in this section.

GRAPHI CS PROGRAMM NG ON THE COMMODORE 128

This fol l owing section describes a step-by-step graphics programing
exanple. As you learn each graphics conmand, add it to a program you will
build as you read this section. Wen you are finished, you will have a com
pl ete graphics program

Choosing Colors

The first step in graphics programming is to choose colors for the screen
background, foreground and border. To select colors, type:

COLCR source, color
where source is the section of the screen you are col oring (background,
foreground, border, etc.) and color is the color code for the source.

See Figure 6-1 for source nunbers, Figure 6-2 for 40-col um-format col or
nunbers, and Figure 6-3 for 80-colum-format col or nunbers.

6-4

Number Sour ce

DO WN PO

40- col um background color (VI Q)
Foreground for the graphics screen (VIQ
Foreground color 1 for the nulticolor screen (VIQ
Foreground color 2 for the nulticolor screen (VIQ
40-colum (VIC) border (whether in text or graphics node)
Character color for 40- or 80-colum text screen

80- col um background col or (8563)

Figure 6-1. Source Numbers

Col or Code Col or

Bl ack
Wite
Red
Cyan
Purpl e
G een
Bl ue
Yel | ow

CO~NOoO OB WM

Figure 2. Color Nurmbers in 40-Col um Format

Col or Code Col or

Bl ack

Wite

Dark Red
Light Cyan
Light Purple
Dark Green
Dark Bl ue
Light Yellow

CO~NOoO O WN

Figure 3. Color Nurmbers in 80-Col um Format

Types of Screen Display

Your C128 has several different ways of displaying information on the
screen; the paraneter "source" in the COLOR conmand pertains to different
modes of screen display. The types of video display fall into three cate-

gories.

Col or Code Col or

9

10
11
12
13
14
15
16

Orange

Br own

Light Red
Dark Gray
Medi um G ay
Light Geen
Li ght Blue
Light Gay

Col or Code Col or

9
10
11

Dark Purple
Br own

Light Red
Dark Cyan
Medi um G ay
Light Geen
Li ght Blue
Light Gay

The first one is text display, which displays only characters, such as let-
ters, nunbers, special symbols and the graphics characters on the front
faces of nost C128 keys. The C128 can display text in both 40-col urm and
80-col um screen formts.

The second category of display node is used for highly detailed graphics,
such as pictures and intricate drawi ngs. This type of display node includes
standard bit map node and nulticolor bit map node. Bit map nodes al | ow you
to control each and every individual screen dot or pixel (picture element).
This all ows considerable detail in drawing pictures and other computer art.
The 80 colum display is intended to display text.

The difference between text and bit map lies in the way in which each
screen addresses and stores information. The text screen can only mani pu-
late entire characters, each of which covers an area of 8 by 8 pixels on
your screen. The nore powerful bit map node exercises control over each and
every pixel on your screen.

The third type of screen display, split screen, is a mxture of the first

two types. The split screen display outputs part of the screen as text and
part in bit map node (either standard or multicolor). The CL28 is capable

of this because it uses two seperate and different parts of the conputer's
menory to store the two screens: one part for the text, and the other for

the graphics screen.

Type the following short program
10 COLOR 0, 1: REM TEXT BACKGROUND COLOR = BLACK
20 COLCR 1, 3: REM FOREGROUND COLOR FOR BIT MAP SCREEN = RED
30 COLCR 4, 1: REM BORDER COLOR = BLACK
This exanpl e colors the background black, the foreground red and the border
bl ack.
Sel ecting the G aphic Mde

The next graphics programming step is to select the appropriate graphic
mode. This is done using the GRAPH C command, whose format is as fol | ows:

6-6

GRAPHI C <node[,c¢] [,s] / CLR>

where node is a digit between 0 and 5, c is either an 0 or 1 and s is a
val ue between 0 and 25. Figure 6-4 shows the values corresponding to the
graphi ¢ nodes.

Mbde Description

40-colum (VIC) standard text
Standard bit map

Standard bit map (split screen)
Ml ticolor bit map

Milticolor bit map (split screen)
80-col umn text

OB N ko

Figure 4. Gaphic Mdes.

The paraneter ¢ stands for CLEAR Figure 6-5 explains the val ues associ ated
with CLEAR

C Val ue Description
0 Do not clear the graphics screen
1 Clear the graphics screen

Figure 4. Gaphic Mdes.

When you first run your program you still want to clear the graphics
screen for the first time, so set ¢ equal to 1 in the GRAPH C conmand. |f
you run it a second tinme, you may want your picture on the screen, instead
of drawing it all over again. In this case, set ¢ equal to 0.

The s parameter specifies in split screen node at which Iine nunber the
text screen starts (line nunbers start counting at zero, so line 10 is the
eleventh line). If you omt the s paraneter and select a split screen
graphic node (2 or 4), the text screen portion is displayed in rows 19
through 24; the portion above is bit mapped. The s paraneter allows you to
change the starting line of the text screen to any line on the screen,
ranging from1 through 24. A zero as s paranmeter indicates the screenis
not split, and all is text.

The final GRAPH C command paraneter is CLR Wen you first issue a bit map
GRAPHI C command, the Conmodore 128 allocates a 9K area for your bit mapped

6-7

screen information. 8K is reserved for the data for your bit map and the
additional 1K is dedicated for the color data (video matrix). Since 9K is a
substantial block of menory, you may want to use it again for another pur-
pose later in your program This is the purpose of CLR It reorganizes the
Comrmodore 128 nenory and gives you back the 9K of nemory that was dedicated
to the bit map screen, so you can use it for other purposes.

The format for CLRis as follows:
GRAPH C CLR
When using this format, omt all other GRAPHI C conmand paraneters.

Add the foll owing conmand to your program It places the Cl128 in standard
bit map mode and al locates an 8K bit map screen (and 1K of color data) for
you to create graphics.

40 GRAPHIC 1,1

The second 1 in this command clears the bit map screen. If you do not want
to clear the screen, change to second 1 to O (or omit it conpletely).

NOTE: If you are in bit map node and are unable to return to the text
screen, press the {run/stop} and {restore} keys at the sanme tine, or
press the {esc} key followed by {x}, to return to the 80-col um
screen. Even though you can only display graphics with the VIC (40-
colum) chip, you can still wite graphic prograns in 80-col um
format. If you have the Comrmmodore 1901 and you want to view your
graphics programwhile it is running, you nust select the 40-col urm
output by switching the slide switch on the monitor to 40-col um

out put .

Di spl ayi ng Graphics on the Screen

So far, you have selected a graphics node and the col ors you want. Now you
can start displaying graphics on the screen. Start with a circle.

6-8

Drawing a Gircle - The C RCLE Command
To draw a circle, use the CIRCLE statenent as follows:
60 CIRCLE 1,160, 100, 40, 40

This displays a circle in the center of the screen. The CIRCLE statenment
has nine paraneters you can select to achieve various types of circles and
geonetric shapes. For exanple, by changing the nunbers in the CIRCLE state-
ment in line 60 you can obtain different size circles or variations in the
shape (e.g. an oval). The CIRCLE statenent adds power and versatility in
programmi ng Commodore 128 graphics in BASIC. The neaning of the nunbers in
the CIRCLE statement is explained under the CIRCLE listing in Chapter V,
BASIC 7.0 Encycl opaedi a.

On your Cormmmodore 128 screen, the point where x=0 and y=0 is at the top
left corner of the screen and is referred as the HOVE position. In stan-
dard geonetry however, the point where x and y equal 0 is in the bottom
left corner of a graph. Figure 6-6 shows the arrangement of x (horizontal)
and y (vertical) screen coordinates and the four points at the corners of
the C128 screen.

X Coor di nat e
0,0 Fr s + 319,0

|
|
|
|
Y Coordinate |
I
|

0,199 e + 319,199
Figure 6-6. Arrangement of x and y coordinates
Here's what the numbers nean:
* 1is the color source (in this case the foreground).
* 160 is the starting x (horizontal) coordinate.
*
*

100 is the starting y (vertical) coordinate.
40 is the radius.

6-9

Drawing a Box - The BOX Command
Now try a box. To draw a box, type:
80 BOX 1, 20, 60, 100, 140, 0, 1

This draws a solid box to the left of the circle. To find out what the
nunbers in the BOX statenent nmean, consult Commands and Statenents. The BOX
statenent has seven paranmeters you can select and nodify to produce dif-
ferent types of boxes. Change the foreground color an draw the outline of a
box to the right of the CCRCLE with these statenents:

90 COLCR 1, 9: REM CHANGE FOREGROUND COLCR
100 BOX 1, 220, 60, 300, 140, 0,0

Experiment with the BOX statement to produce different variations of rec-
tangl es and boxes.

Drawi ng Lines, Points and O her Shapes - The DRAW Cormand

You now know how to sel ect graphic nodes and colors and how to display cir-
cles and boxes on the screen. Another graphics statement, DRAW lets you
draw lines on the screen just as you would with a pencil and a piece of
paper. The following statement draws a |ine bel ow the boxes and circle.

120 DRAW 1, 20, 180 TO 300, 180

To erase a drawn |ine, change the source (1) in the DRAWstatenent to 0.
The line is drawn with the background col or which actually erases the line.
Try using different coordinates and other sources to becone accustoned to
the DRAW st atenent.

The DRAWSstatenent can take another formthat allows you to DRAWa line,
change direction and then DRAWanother line, so the lines are continuous.
For exanmple, try this statenment:

130 DRAW 1, 250,0 TO 30,0 TO 40,40 TO 250,0

This statement DRAW a triangle on the top of the screen. The four pairs of
nunber represent the x and y coordinates for the three points on the tri-
angle. Notice the first and |ast coordinates are the same, since you nust
finish drawing the triangle on the same point you started. This form of
DRAW st at ement gives you the power to DRAWal nost any geonetric shape, such
as trapezoids, parallellograns and pol ygons.

6-10

The DRAW st atement also has a third form

You can DRAWone point at a time by specifying the starting x and y val ues
as foll ows:

150 DRAW 1, 160, 160

As you can see, the DRAWstatenent has versatile features which give you
the capability to create shapes, lines, points and a virtually unlimted
nunber of conputer drawings on your screen.

Painting Qutlined Areas - The PAINT Command

The DRAWSstatenent allows you to outline areas on the screen. Wat if you
want to fill areas within your drawn |ines? That's where the PAINT state-
ment comes in. The PAINT statement does exactly what the nane inplies -
it fillsin, or PAINTs, outlined areas with color. Just as a painter
covers the canvas with paint, the PAINT statement covers the areas of the
screen with one of the 16 colors. For exanple, type:

160 PAINT 1,150, 97

Line 160 PAINTS the circle you have drawn in line 60. The PAINT statenent
fills a defined area until a specific boundery is detected according to
which color source is indicated. Wen the Commodore 128 finishes PAINTi ng,
it leaves the pixel cursor at the point where PAINTing began (in this case,
at point 150,97).

Here are two nore PAINT statenents:

180 PAINT 1,50, 25
200 PAINT 1,255,125

Line 180 PAINTs the triangle and line 200 PAINTs the enpty box.

* | MPORTANT PAINTING TIP: If you choose a starting point in you PAINT
statenent which is already col ored fromthe same col or source, Com
modore 128 will not PAINT the area. You must choose a starting point
which is entirely inside the boundery of the shape you want to PAINT.
The starting point cannot be on the boundery line of a pixel that is
colored fromthe same source. If you specify a PAINT coordinate that
is the same color you are PAINTing, nothing happens.

6-11

Di spl ayi ng Characters on a Bit-Mpped-Screen - The CHAR Conmand

So far, the exanple program has operated in standard bit map node. Bit map
mode uses a conpletely different area of menory to store the screen data
than text node (the mode in which you enter programs and text). If you
enter bit map node, and try to type characters onto the screen, nothing
happens. This is because the characters you are typing are being displayed
on the text screen and you are looking at the bit map screen. Sometines it
is necessary to display characters on the bit map screen, when you are
creating an plotting charts and graphs. The CHAR command is designed
especial ly for this purpose. To display standard characters on a bit map
screen, use the CHAR statenment as foll ows:

220 CHAR 1,11, 24, " GRAPH C EXAMPLE"
This displays the text "GRAPH C EXAMPLE" starting at |ine 25, colum 12.

The CHAR command can al so be used in text node, however it is primarily
designed for the bit map screen.

Creating a Graphics Sanple Program
So far, you have |earned several graphic statements. Now tie the program
together and see how the statenents work at the sane tinme. Here's how the

program | ooks now. The col or statenents in lines 70, 110, 140, 170, 190 and
210 are added to display each object in a different color.

6-12

Her e'

10
20
30
40
60
70
80
90
10
11
12
13
14
15
16
17
18
19
20
21
22
23

S

k% ok k% % % % ok

COLOR 0,1 : REM SELECT BACKGROUND COLCR
COLR 1,3 : REM SELECT FOREGROUND COLCR
COLCR 4,1 : REM SELECT BORDER COLCR
GRAPHIC 1,1 : REM SELECT BIT MAP MODE
CI RCLE 1, 160, 100, 40, 40 : REM DRAW A CI RCLE
COLOR 1,6 : REM CHANGE FOREGROUND COLCR
BOX 1, 20, 60, 100, 140, 0, 1 : REM DRAW A BLOCK
COLR 1,9 : REM CHANGE FOREGROUND COLCR
0 BOX 1,220, 62, 300, 140, 0,0 : REM DRAW A BOX
0 COLR 1,9 : REM CHANGE FOREGROUND COLCR
0 DRAW 1, 20, 180 TO 300, 180 - REM DRAW A LI NE
0 DRAW 1, 250,0 TO 30,0 TO 40,40 TO 250, 0: REM DRAW A TRI ANGLE
0 COLR 1,15 : REM CHANGE FOREGROUND COLCR
0 DRAW 1, 160, 160 : REM DRAW A PO NT
0 PAINT 1,150, 97 - REM PAINT IN CI RCLE
0 COLR 1,5 : REM CHANGE FOREGROUND COLCR
0 PAINT 1,50, 25 :REM PAINT IN TRI ANGLE
0 COLR 1,7 : REM CHANGE FOREGROUND COLCR
0 PAINT 1,225,125 :REM PAINT IN EMPTY BOX
0 COLR 1,11 : REM CHANGE FOREGROUND COLCR
0 CHAR 1,11, 24, " GRAPH C EXAMPLE" : REM DI SPLAY TEXT
0 FOR =1 TO 5000: NEXT: GRAPHIC 0, 1: COLCR 1, 2

what the program does:

Lines 10 through 30 select a COLOR for the background, foreground
and border, respectively.

Line 40 chooses a graphic node.

Line 60 displays a CIRCLE.

Line 80 draws a col ored-in BOX

Line 100 draws a outline of a BOX

Line 120 DRAV a straight line at the bottomof the screen.

Line 130 DRAV a triangle.

Line 150 DRAV a single point belowthe circle.

Line 160 PAINTs the circle.

Line 180 PAINTs the triangle.

Line 200 PAINTs the enpty box.

Line 220 prints the CHARacters "GRAPHI CS EXAMPLE" at the bottom of
the screen.

Line 230 delays the programso you can watch the graphics on the

screen, switches back to text node and colors the characters bl ack.

6-13

[f you want the graphics to remain on the screen, omt the GRAPH C state-
ment in line 230.

Changing the Size of Gaphics Images - The SCALE Conmand

The Commodore 128 has anot her graphics statement which offers additional
power to your graphics system The SCALE statenent offers the ability to
scal e down (reduce) the size of graphic inmages on your screen. The SCALE
statenent al so acconplishes another task, which can be explained as fol-
[ows.

In standard bit map node, the 40 col urm screen has 320 horizontal coordi-
nates and 200 vertical coordinates. In multicolor bit map node, the 40

col um screen has only half the horizontal resolution of standard bit map
nmode, which is 160 by 200. This reduction in resolution is conpensated for
by the additional capability of using two additional colors for a total of
four colors, within an 8 by 8 character matrix. Standard bit map node can
only display two colors within an 8 by 8 character matrix.

When you use the SCALE statenent, both standard bit map and nmulticol or bit
map nodes have coordinates which are proportional to another. The scale
ranges for O through a maxi numof 1023 horizontal coordinates. This is true
regardl ess of whether you are in standard bit map or multicol or node.
The SCALE your screen, use:

SCALE 1,x,y
and the screen coordinates range from 65535 whether you are in standard or
mul ticol or hires node.
To turn off SCALEi ng, type:

SCALE 0
and the coordinates return to their normal val ues.

To see the effect of SCALEing on your programadd in |ine 50:

50 SCALE 1,500, 500
and RUN to see the effect.

See Chapter V for nore details on the SCALE conmand.

6-14

NOTE: SCALE cones after GRAPHI C and does not affect CHAR

Here are sone additional exanple programs using the graphics statenments you
just |earned:

10 COLOR 0,1

20 COLCR 1, 8

30 COLCR 4,1

40 GRAPHIC 1,1

50 FOR =80 TO 240 STEP 10
60 CIRCLE 1,1, 100, 75, 75

70 NEXT |

80 COLAR 1,5

90 FOR =80 TO 250 STEP 10
100 CIRCLE 1,1, 100, 50, 50
110 NEXT |

120 COLOR 1,7

130 FOR 1=50 TO 280 STEP 10
140 CIRCLE 1,1, 100, 25, 25
150 NEXT |

160 FOR 1=1 TO 7500: NEXT |
170 GRAPH C 0, 1: COLCR 1, 2

10 GRAPHIC 1,1
20 COLAR 0,1

30 COLCR 4,1

40 FOR I=1 TO 50

120 NEXT |
130 SCNCLR
140 GOTO 40

6-15

10 COLOR 4,7:COLCR 0, 7: COLCR 1, 1
20 GRAPHIC 1,1

30 FOR 1=400 TO 1 STEP -5
40 DRAW 1,150,100 TO I, 1

50 NEXT |

60 FOR I=1 TO 400 STEP 5

70 DRAW 1, 150,100 TO 1,1

80 NEXT |

90 FOR =40 TO 320 STEP 5
100 DRAW 1, 150, 100 TO I, 320
110 NEXT |

120 FOR 1=320 TO 30 STEP -5
130 DRAW 1, 150, 100 TO 320, |
140 NEXT |

150 FOR 1=1 TO 7500: NEXT |
160 GRAPH C 0, 1: COLCR 1,1

Type the exanples into your conputer. RUN and SAVE themfor future refe-
rence. One of the best ways to learn programming is to study program exam
ples and see how the statements performtheir functions. You'll soon be
able to use graphics statenents to create inpressive graphics with your
Conmodore 128.

[f you need nore information on any BASIC statenent or command, consult
Chapter V, BASIC 7.0 Encycl opaedi a.

You now have a set of graphic commands that allows you to create an al nost
unlimted nunber of graphics displays. But Conmodore 128 graphics abilities
do not end here. The Conmodore 128 has another set of statements, known as
SPRITE graphics, which make the creation and control of graphic imges
fast, easy and sophisticated. These high-level statenents allow you to
create sprites - movable graphic objects - the C128 has its own built-in
SPRite DEFinition ability. These statenents represent the new technol ogy
for creating and controlling sprites. Read the next section and take you
first step in learning conputer animation.

SPRI TES: PROGRAMVABLE, MOVABLE OBJECT BLOCKS
You al ready have |earned about some of the Conmodore 128's exceptional

graphic capabilities. You've |learned howto use the first set of high-level
graphics statenents to draw circles, boxes, lines and dots. You have al so

6- 16

| earned how to color the screen, switch graphic nodes, paint objects on the
screen and scale them Now it's time to take the next step in graphics
progranming - sprite anination.

If you have worked with the Conmondore 64, you al ready know sonething about
sprites. For those of you who are not famliar with the subject, a sprite
is a nmovabl e object that you can forminto any shape or image. You can
color sprites in up to one of 16 colors. Sprites can even be multicolor.
The best part is that you can nove themon the screen. Sprites open the
door to conputer animation.

Here is the set of sprite statements you will learn about in this section:
MVSPR
SPRDEF
SPRI TE
SPRSAV
SSHAPE

Sprite Creation

The first step in programming sprites is designing the way the sprites

I ook. For exanple, suppose you want to design a rocket ship or a racing car
sprite. Before you can color or move the sprite, you nust first design the
image. In C128 node, you can create sprites in these three ways:

1. Using SPRITE statements within a program
2. Using SPRite DEFinition node (SPRDEF)
3. Using the sane nethod as the Conmodore 64

Using Sprite Statements in a Program

This nethod uses built-in statements so you don't have to use any aids out-
side your programto design your sprites as the other two nethods require.
This nethod uses sonme of the graphics statements you learned in the pre-
vious section. Here's the general procedure. The details will be added as
you progr ess.

1. Draw a picture with the graphics statements you learned in the |ast
section, such as DRAW CI RCLE, BOX and PAINT. Make the di nensions
of the picture 24 pixels wide by 21 pixels tall in standard bit map
mode or 12 pixels wide by 21 tall in nulticolor bit map node.

6-17

2. Use the SSHAPE statement to store the picture data into a string
vari abl e.

3. Tranfser the picture data fromthe string variable into a sprite
with the SPRSAV statenent.

4. Turn on the sprite, color it, select either standard or multicolor
mode and expand it, all with the SPRITE statenent.

5. Move the sprite with the MOVSPR statenent.

Drawing the Sprite Image

Here are the actual statements that performthe sprite operations. \hen you
are finished with this section, you will have witten your first sprite
program You'll be able to RUN the programas much as you like, and SAVE it
for future reference.

The first step is to draw a picture (24 by 21 pixels) on the screen using
DRAW CIRCLE, BOX or PAINT. This exanple is perforned in standard bit map
mode, using a black background. Here's the statenents that set the graphic
nmode and col or the screen background bl ack.

5 COLCR 0, 1: REM COLOR BACKGROUND BLACK
10 GRAPH C 1, 1: REM SET STND BI T MAP MCDE

The foll owing statements DRAWa picture of a racing car in the upperleft

corner of the screen. You already |earned these statements in the last sec-
tion.

6-18

5 COLCR 0,1: COLCR 4,1: COLCR 1,2
10 GRAPHIC 1,1

15 BOX 1, 2, 2, 45, 45

20 DRAW 1, 17,10 TO 28,10 TO 26, 30
22 DRAWO 19,30 TO 17,10

24 BOX 1,11, 10, 15, 18

26 BOX 1,30, 10, 34, 18

28 BOX 1,11, 20, 15, 28

30 BOX 1,30, 20, 34, 28

: REM SET COLCRS

: REM SET HI - RES GRAPHI C MODE
. REM PI CTURE FRAME

: REM CAR BODY

: REM CAR BODY

: REM UPPER LEFT WHEEL

. REM UPPER RI GHT WHEEL

: REM LOMER LEFT WHEEL

: REM LOMER RI GHT WHEEL

32 DRAW 1, 26,28 TO 19, 28 : REM GRILLE

34 BOX 1, 20, 14, 26, 18,90, 1 : REM CAR SEAT

36 BOX 1,150, 35, 195, 40, 90, 1 : REM WHI TE LI NES
38 BOX 1, 150, 135, 195, 140, 90, 1 : REM WHI TE LI NES
40 BOX 1, 150, 215, 195, 220, 90, 1 : REM WHI TE LI NES

42 BOX 1, 50, 180, 300, 195
44 CHAR 1,18,23,"FIN SH'

: REM FINI SH QUTLI NE
: REM DI SPLAY FI NI SH

RUN the program You have drawn a white racing car, enclosed in a box, in
the upperleft corner of the screen. You have also drawn a raceway with a
finish line at the bottomof the screen. At this point, the racing car is
still only a stationary picture. The care isn't a sprite yet, but you have
just conpleted the first step in sprite progranmming - creating the inage.

Storing the Sprite Data with SSHAPE

The next step is to save the picture into a text string. Here's the SSHAPE
statement that does it:

45 SSHAPE A$, 11, 10, 34, 30: REM SAVE THE PI CTURE IN A STRI NG

The SSHAPE conmand stores the screen image (bit pattern) into a string
variable for later processing, according to the specified screen coordi-
nat es.

The nunbers 11, 10, 34, 30 are the coordinates of the picture. You nust
position the coordinates in the correct place or the SSHAPE statenment can't
store your picture data correctly into the string variable A$. If you posi-
tion the SSHAPE statenment on an enpty screen location, the data stringis
enpty. When you later transfer it into a sprite, you'll realize there is no
data present.

6-19

Make sure you position the SSHAPE statement correctly on the correct coor-
dinates. Also be sure to create the picture with the dimensions 24 pixels
wide by 21 pixels tall, the size of a single sprite.

The SSHAPE statenent transforms the picture of the racing car into a data
string that the conputer interprets as picture data. The data string, A$,
stores a string of zeros and ones in the computer's nemory that make up the
picture on the screen.

As in all conputer graphics, the computer has a way it can represent visual
graphics with bits inits nenory. Each dot on the screen, called a pixel,
has a bit in the computer's memory that controls it. In standard bit map
mode, if the bit in menory in equal to an 1 (on), then the pixel on the
screen is turned on. If the controlling bit in menory is equal to 0 (off),
then the pixel is turned off.

Saving the Picture Data in a Sprite

Your picture is nowstored in a string. The next step is to transfer the
picture data fromthe data string (A$) into the sprite data area so you can
turn it on and animate it. The statement that does this is SPRSAV. Here are
the statenents:

50 SPRSAV A$, 1: REM STCRE DATA STRING IN SPRITE 1
55 SPRSAV A$, 2: REM STCRE DATA STRING IN SPRITE 2

Your picture is transferred into sprite 1 and sprite 2. Both sprites have
the sane data, so they |ook exactly the sane. You can't see the sprites
yet, because you have to turn themon.

Turning on Sprites

The SPRITE statenent turns on a specific sprite (nunbered 1 through 8),
colors it, specifies its screen priority, expands the sprite's size and
deternmines the type of sprite display. The screen priority refers to

whet her the sprite passes in front of or behind the objects on the screen.
Sprites can be expanded to twice their original size in either horizontal
or vertical directions. The type of sprite display determnes whether the
sprite is a standard bit mapped sprite or a multicolor bit nmapped sprite.
Here are the two statements that turn on sprites 1 and 2.

REM TURN ON SPR 1

60 SPRITE 1,1,7,0,0,0,
0,0,0,0: REM TURN ON SPR 2

1 0:
70 SPRITE 2,1,3,0,0,0,0:

6-20

Here's what each of the nunbers in the SPRITE statements nean:

SPRITE #,0,C P, X Y,M

- Sprite number (1 to 8)
O- Turn On (O=1) or Of (O=0)
C- Color (1-16)
P- Priority - if P=0, sprite is in front of objects on the screen
- if P=1, sprite is behind objects on the screen
X - if X=1, expands sprite in horizontal (X) direction
if X=0, sprite in normal horizontal size
Y - if Y=1, expands sprite in vertical (Y) direction

if Y=0, sprite in normal vertical size
M- if ML, sprite is nmulticolor
if MO, sprite is standard

As you can see, the SPRITE statement is powerful, giving you control over
many sprite qualities.

Mbving Sprites with MWVSPR

Now that your sprite is on the screen, all you have to do is nove it. The
MOVSPR statenent controls the motion of a sprite and allows you to ani mate
it on the screen. The MOVSPR statenent can be used in two ways. First, the
MOVSPR statenent can place a sprite at an absolute location on the screen,
using the vertical and horizontal coordinates. Add the follow ng state-
nents to your program

70 MOVSPR 1, 240, 70: REM PCSI TION SPRITE 1 - X=240, Y=70
80 MOVSPR 2,120, 70: REM PCSI TION SPRITE 2 - X=120, Y=70

Line 70 positions sprite 1 at sprite coordinates (240,70). Line 80 places

sprite 2 at sprite coordinates (120,70). You can also use the MWVSPR state-

ment to move sprites relative to their original locations. For exanple,

place sprites 1 and 2 at the coordinates as in lines 70 and 80. You want to

move themfromtheir original locations to another location on the screen.
Use the following statenents to nove the sprites along a specific route on
the screen:

85 MOVSPR 1, 180 #6: REM MOVE SPRITE 1 FROM THE TOP TO THE BOTTOM
87 MOVSPR 2,180 #7: REM MOVE SPRITE 2 FROM THE TOP TO THE BOTTOM

6-21

The first number in this statement is the sprite nunber. The second nunber
is the direction expressed as the nunber of degrees to nove in clockw se
direction, relative to the original position of the sprite. The hash sign
(#) signifies that the sprite is noved at the specific angle and speed
relative to a starting position, instead of an absolute location, as in
lines 70 and 80. The final nunmber specifies the speed in which the sprite
nmoves along its route on the screen, which ranges fromo0 through 15.

The MWVSPR conmand has two alternative forms. See Chapter V, BASIC 7.0
Encycl opaedia for these notations.

Sprites use an entirely different coordinate plane frombit map coordi-
nates. The bit map coordinates range frompoints (0,0) (the top left cor-
ner) to 319,199 (the bottomright corner). The visible sprite coordinates
start at point (50,24) and end at point (250,344). The rest of the sprite
coordinates are off the screen and are not visible, but the sprite still
nmoves according to them The OFF-screen |ocations allow sprites to nove
smoothly onto and off the screen. Figure 7 illustrates the sprite coordi-
nates and the visible sprite positions.

0 ($00) 24 ($18) 296 ($128

|
29 ($1D) | +--+
|

|
5O ($32) #--eemmmmme e e bt 50 ($32)
[L
oot -t | |
| VI SI BLE VI EW NG AREA |
| et
| 40 COLUMNS
| 25 ROS |
208 ($D0) +----+----+ |
| | | |
| | | +oote-+ 229 ($E5)
] N
250 ($FA) 4o hommm oo b+ 250 (SFA)
| | | |
| | | oot
et |
488 ($1E8)
| 320 ($140) 344 ($158)
24 ($18)

Figure 7. Visible Sprite coordinates
6-22

Now RUN the entire programwth all the steps included. You have just wit-
ten you first sprite program You have created a raceway with two racing
cars. Try adding nore cars and nore objects on the screen. Experinent by
drawi ng other sprites and include themin the raceway. You are now wel on
the way in sprite programming. Use your imagination and think of other
scenes and objects you can animate. Soon you can create all kinds of ani-
mated computer "novies".

Creating a Sprite Program

You now have a working sprite programexanple. Here's the conplete program

l'isting.

5 COLCR 0,1: COLCR 4,1: COLCR 1,2

10
15

GRAPHIC 1,1

BOX 1, 2,2,45,45

DRAW 1, 17,10 TO 28,10 TO 26, 30
DRAWIO 19,30 TO 17,10

BOX 1,11, 10, 15, 18

BOX 1, 30, 10, 34, 18

BOX 1,11, 20, 15, 28

BOX 1, 30, 20, 34, 28

DRAW 1, 26, 28 TO 19, 28

BOX 1, 20, 14, 26, 18, 90, 1

BOX 1, 150, 35, 195, 40, 90, 1
BOX 1, 150, 135, 195, 140, 90, 1

BOX 1, 150, 215, 195, 220, 90, 1
BOX 1, 50, 180, 300, 195

CHAR 1, 18, 23, "FINI SH'
SSHAPE A$, 11, 10, 34, 30
SPRSAV A$, 1

SPRSAV A$, 2

SPRITE 1,1,7,0,0,0,0
SPRITE 2,1,3,0,0,0,0
MVSPR 1, 240, 70

MVSPR 2, 120, 70

MOVSPR 1, 180 #6
MVSPR 2, 180 #7

FOR =1 TO 5000: NEXT |
GRAPHIC 0,1

6-23

: REM SET COLCRS

: REM SET HI - RES GRAPHI C MODE
. REM PI CTURE FRAME

: REM CAR BODY

: REM CAR BODY

© REM UPPER LEFT WHEEL

: REM UPPER RI GHT WHEEL

: REM LOMER LEFT WHEEL

: REM LOMER RI GHT WHEEL

: REM GRILLE

: REM CAR SEAT

: REM WHI TE LI NES

: REM WHI TE LI NES

: REM WHI TE LI NES

: REM FINI SH QUTLI NE

: REM DI SPLAY FI NI SH

: REM SAVE PI CTURE | NTO A$
: REM STORE A$ IN SPRITE 1

: REM STORE A$ IN SPRITE 2

: REMTURN ON SPRITE 1

: REMTURN ON SPRITE 2

: REM SPRITE 1 X=240, Y=70
: REM SPRITE 2 X=120, Y=70

: REM MV SPR 1 DOMN SCREEN
: REM MV SPR 2 DOMN SCREEN

Here's what the program does:

Line 5 COLORs the screen bl ack.

Line 10 sets standard high resolution GRAPH C node.

Line 15 draws a BOX in the top left corner of the screen.

Lines 20 to 32 draw the racing car.

Lines 35 to 44 draw the racing car lanes and a finish line.

Line 45 transfers the picture data fromthe racing car into a string

variable.

* Lines 50 and 55 transfer the contents of the string variable into
sprites 1 and 2.

* Lines 60 and 65 turn on sprites 1 and 2.

* Lines 70 and 80 positions the sprites at the top of the screen.

* Lines 85 and 87 animate the sprites as though the two cars are

racing each other across the finish line.

* Ok % % k%

In this section, you have |earned how to create sprites, using the built-in
C128 graphics statenents such as DRAWand BOX. You |earned how to control
the sprites, using the Cormodore 128 sprite statenments. The Conmodore has
two other ways of creating sprites. The first is the built-in SPRite
DEFinition ability, as described in the follow ng paragraphs. The ot her
method of creating sprites is simlar to that used for the Comrmodore 64;
see the C64 Programmer's Reference Guide for details on this sprite-
creation technique.

Sprite Definition Mde - The SPRDEF Conmand

The Commodore 128 has a built-in SPRite DEFinition node which enables you
to create sprites on your Conmodore 128. You may be fanmiliar with the
Conrmodore 64 nethod of creating sprites, in which you required to either
have an additional sprite editor, or design a sprite on a piece of graph
paper and then READ the coded sprite DATA and POKE it into an available
sprite block. Wth the new Conmodore sprite definition command SPRDEF, you
can construct and edit your own sprites in a special sprite work area.

To enter the SPRDEF mode, type:

SPRDEF

6-24

and press {return}. The Conmodore 128 displays a sprite grid on the 40
colum screen. In addition, the conputer displays the pronpt:

SPRI TE NUMBER ?

Enter a nunmber between 1 and 8. The conputer displays the corresponding
sprite in the upper right corner of the screen. Fromnow on, we will refer
to the sprite grid as the work area.

The work area has the dinmensions of 24 characters wide by 21 characters
tall. Each character position within the work area corresponds to 1 pixel
within the sprite, since a sprite is 24 pixels wide by 21 pixels tall.

Wiile within the work area in SPRDEF mode, you have several editing com
mands available to you. Here's a summary of the commands:

Sprite Defintion Mde Command Sunmmary

{clr} key - Erases the entire work area

{m key - Turns on/off multicolor sprite

{ctri} {1}-{8} - Selects sprite foreground color 1-8

{C} {1}-{8} - Selects sprite foreground col or 9-16

{1} key - Turns on pixels in background col or

{2} key - Turns on pixels in foreground col or

{3} key - Turns on areas in nmulticolor 1

{4} key - Turns on areas in nulticolor 2

{a} key - Turns on/off automatic cursor novenent

{crsr} keys - Moves the cursor (+) within the work area

{return} - noves cursor to the start of the next Iine

{home} key - Moves cursor to the top left corner of the work area

{x} key - Controls horizontal expansion

{y} key - Controls vertical expansion

{shift} {return} - Saves sprite fromwork area and returns to SPRITE
NUMBER pr onpt

{c} key - copies one sprite to another

{stop} key - Turns off displayed sprite and returns to SPRI TE NUMBER
pronpt without changing the sprite

{return} key - (at the SPRITE NUMBER pronpt) Exits SPRDEF node

6-25

Sprite Creation Procedure in SPRite DEFinition Mde
Here's the general procedure to create a sprite in SPRite DEFinition node

1. Cear the work area by pressing the {shift} and {clr/hone} keys at the
sane tine.

2. If you want a multicolor sprite, press the {n} key and an additiona
cursor appears next to the original one. Two cursors appear since
mul ticol or node actually turns on two pixels for every one in standard
sprite mode. This is why multicolor node is only half the horizonta
resol ution of standard hires nmode

3. Select a color for your sprite. For colors between {1} and {8}, hold
down the {ctrl} key and press a key between {1} and {8}. To select
color codes between 9 and 16, hold down the Commodore ({C=}) key and
press a key between {1} and {8}.

4. Now your are ready to start creating the shape of your sprite. The num
bered keys {1} through {4} fill in the sprite and give it shape. For a
single color sprite, use the {2} to fill a character position within
the work area. Press the {1} key to erase what you have drawn with the
{2} key. If you want to fill one character position at a time, press
the {a} key. Now you have to nove the cursor manually with the cursor
keys. If you want the cursor to nove automatically to the right while
you hold it down, do not press the {a} key since it is already set to
automatic cursor movement. As you fill in a character position within
the work area, you can see the corresponding pixel in the displayed
sprite turn on. Sprite editing occurs as soon as you edit the work
area

In multicolor mode, the {3} key fills two character positions within
the work area with the multicolor 1 color, the {4} key fills two
character positions with the mlticolor 2

You can turn off (color the pixel in the background color) filled areas
within the work area with the {1} key. In multicolor node, the {1} key
turns off two character positions at a tine

5. \While constructing your sprite, you can nove freely in the work area
without turning on or off any pixels using the {return}, {hone} and
cursor keys

6- 26

6. At any tinme, you may expand your sprite in both the vertical and hori-
zontal directions. To expand vertically, press the {y} key. To expand
horizontal Iy, press the {x} key. To return to the normal size sprite
di splay, press the {x} or {y} key again.

When a key turns on AND of f the same control, it is referred to as
toggling, so the {x} and {y} keys toggle the vertical and horizontal
expansion of the sprite.

7. \Wen you are finished creating your sprite and happy with the way it
| ooks, save it by holding down the {shift} key and pressing the
{return} key. The Commodore 128 SAVEs the sprite data in the appro-
priate sprite storage area. The displayed sprite in the upper right
corner of the screen is turned off and control is returned to the
SPRI TE NUMBER pronpt. If you want to display the original sprite in the
work area again, enter the original sprite number. If you want to exit
SPRite DEFinition mode, sinply press {return} at the SPRI TE NUVBER
pronpt .

8. You can copy one sprite into another with the {c} key.

9. If you do not want to SAVE your sprite, press the {stop} key. The Com
modore 128 turns of f the displayed sprite and returns to the SPRITE
NUMBER pronpt .

10. To EXIT SPRite DEFinition mode, press the {return} key while the SPRITE
NUMBER pronpt is displayed on the screen when no sprite nunber follows
it. You can exit under either of the follow ng conditions:

Imedi ately after you SAVE your sprite ({shift} {return}).
Imedi ately after you press the {stop} key.

Once you have created a sprite and have exited SPRite DEFinition mode, your
sprite data is stored in the appropriate sprite storage area in the Com
modore 128's nenory. Since you are now back in control of the BASIC |an-
guage, you have to turn on your sprite in order to see it on the screen. To
turn it on again, use the SPRITE command you | earned previously. For
exanple if you created sprite 1 in SPRDEF node. To turn it on in BASIC,
color it blue and expand it in both the X and Y directions enter this
conmand:

SPRITE 1,1,7,0,1,1,0

6- 27

Now use the MOVSPR conmmand to nove it as foll ows:
MWSPR 1, 45 # 5

Now you know al | about SPRDEF node. First, create the sprite, save the
sprite data and exit from SPRDEF mode to BASIC. Next turn on your sprite
with the SPRITE conmand. Move it with the MWSPR conmand. Wen you're
finished progranmmng, SAVE your sprite data in a binary file with the BSAVE
conmand as fol | ows:

BSAVE "filename", B0, P3584 TO P4096

When you want to use the sprite data again fromdisk, |oad the previously
BSAVEd binary file with the BLOAD conmand as fol | ows:

BLOAD "fil ename"[, BO, P3584]

The portion in brackets is optional. BLOAD |oads data into the address from
which it was saved if the optional portion is not specified.

Now you know the new nmethod for creating sprites. So you can use the fol -
lowing two nethods: 1) SSHAPE, SPRSAV, SPRITE, MWSPR 2) SPRDEF node.
Experiment with both nmethods and master sprite ani mation.

See "Storing Sprite Data in Binary Files" later in this section for nore
i nformation.

Adjoining Sprites

You have |earned how to create, color, turn on and animate a sprite. An oc-
casion may arise when you want to create a picture that is too detailed or
too large to fit into a single sprite. In this case, you can join tw or

nmore sprites so the picture is larger and nore detailed than with a single
sprite. By joining sprites, each one can nove independently of one another.
This gives you nuch nore control over animation than with a single sprite.

This section includes an exanpl e using adjoining sprites. Here's the gene-

ral procedure (algorithnm) for witing a programwth two or nore adj oi ni ng
sprites.

6-28

1. Draw a picture on the screen with Cormodore 128 graphics statenents,
such as DRAW BOX and PAINT, just as you did in the raceway programin
the last section. This time, nmake the picture twice as large as a
single sprite with the dinmensions 48 pixels wide by 21 pixels tall.

2. Use two SSHAPE statements to store the sprites into two separate data
strings. Position the first SSHAPE statenent coordinates over the 24 by
21 pixels area of the first half of the picture you drew. Then posi-
tion the second SSHAPE statenent coordinates over the second 24 by 21
pi xel area. Make sure you store each half of the picture data in a dif-
ferent string. For exanple, the first SSHAPE statenment stores the first
hal f of the picture into A$, and the second SSHAPE statenent stores the
second half of the picture into B$.

3. Transfer the picture data fromeach data string into a separate sprite
with the SPRSAV statenent.

4. Turn on each sprite with the SPRITE statenent.

5. Position the sprites so the beginning of one sprite starts at the pixel
next to where the first sprite ends. This is the step that actually
joins the sprites. For exanple, draw a picture 48 by 21 pixels. Posi-
tion the first sprite (1, for exanple) at location 10,10 with this
statenent:

100 MOVSPR 1, 10, 10
where the first nunber is the sprite nunber, the second nunmber is the
horizontal (X) coordinate and the third number is the vertical (V)
coordinate. Position the second sprite 24 pixels to the right of
sprite 1 with this statenent:

200 MVSPR 2, 34,10

At this point, the two sprites are displayed directly next to each other.
They | ook exactly like the picture you drewin the beginning of the pro-
gram using the DRAW BOX and PAINT statenents.

6. Now you can nove the sprites any way you like, again using the MWVSPR
statenent. You can nove them together along the sane path or in dif-
ferent directions. As you learned in the |ast section, the MWVSPR
statenent allows you to nove sprites to a specific location on the
screen, or to a location relative to the sprite's original position.

The following programis an exanpl e of adjoining sprites. The program
creates an outer space environnent. It draws stars, a planet and a space-
craft simlar to Apollo. The spacecraft is drawn, then stored into two data
strings, A$ and B$. The front of the spaceship, the capsule, is stored in
sprite 1. The back half of the spaceship, the retro rocket, is stored in
sprite 2. The spacecraft flies slowy across the screen. Since it is tra-
veling so slowy and is very far fromEarth, it needs to be launched earth-

6-29

ward with the retro rockets. After a while, the retro rockets fire and
propel the capsule safely to Earth.

Here's the programlisting:

: REM SELECT COLORS
: REM SET H RES MODE

5 COLOR 4, 1: COLOR 0, 1: COLQR 1,2
10 GRAPHIC 1,1

17 FOR =1 TO 40

18 X=INT (RND (1)*320)+1

19 Y=INT (RND (1)*200)+1

21 DRAW L, X, Y: NEXT |

22 BOX 0,0, 5,70, 40, , 1 ' REM CLEAR BOX

23 BOX 1,1, 5, 70, 40: COLORL, 8 : REM BOX- I N SPACESHI P

24 CIRCLEL 190, 90, 35, 25: PAINT1, 190,95 : REM DRAW AND PAI NT THE PLANET
25 FOR 1=90 TO 96 STEP 3: CIRCLE 1,190, 1, 65, 10: NEXT |

26 DRAW 1, 10, 17TOL6, 17TCB2, 10TCB3, 20TCB2, 30TOL6, 23TOLO, 23TOLO, 17

28 DRAW 1, 19, 24TCR0, 21TCR7, 25TCR6, 28 : REM BOTTOM W NDOW

35 DRAW 1, 20, 19TCR0, 17TCR9, 13TCBO, 18TCRS, 23TCR0, 19: REM TOP W NDOW
38 PAINT 1,13, 20 : REM PAI NT SPACESH P

40 DRAW 1, 34, 10TCB6, 20TCB4, 30TO45, 30TO46, 20TO45, 10TCB4, 10

42 DRAW 1, 45, 10TCB1, 12TCh7, 10TC7, 17TCB1, 15TO46, 17: REM ENGI NE 1

43 DRAW 1, 46, 22TCB1, 24TCB7, 22TCh7, 29TCB1, 27TO45, 29: REM ENGI NE 2

44 PAINTL, 40, 15: PAI NT1, 47, 12: PAI NT1, 47, 26: DRAWD, 45, 30TO46, 20T045, 10
45 DRAW 0, 34, 14TOM, 14: DRAW 0, 34, 21TO44, 21: DRAW 0, 34, 28TO44, 28

47 SSHAPE A$, 10, 10, 33, 32 ' REM SAVE SPRITE I N A$

48 SSHAPE BS, 34, 10, 57, 32 ' REM SAVE SPRI TE I N BS

50 SPRSAV AS$, 1 : REM SPRI TEL DATA

55 SPRSAV BS, 2 ' REM SPRI TE2 DATA

: REM DRAW STARS

60 SPRITE 1,1,3,0,0,0,0 : REM ENABLE SPRITE 1 IN RED
65 SPRITE 2,1,7,0,0,0,0 : REM ENABLE SPRITE 2 IN BLUE
82 MOVSPR 1, 150, 150 “REM PCSI TION SPRITE 1

83 MWVSPR 2,172, 150 : REM PCSI TION SPRI TE 2

85 MVSPR 1,270 # 5 : REM ANI MATE SPRITE 1

87 MVSPR 2,270 # 5 : REM ANI MATE SPRI TE 2

90 FOR =1 TO 5000: NEXT |
92 MSPR 1, 150, 150
93 MWVSPR 2, 174, 150
95 MVSPR 1,270 #10

: REM RETRO PCSI Tl ON

"REM SPLIT SPRITES 1 & 2

96 MOVSPR 2,90 #5 " REM

97 FOR =1 TO 1200: NEXT |

98 SPRITE 2,0 :REM TURN OFF SPRITE 2
99 FOR =1 TO 5000: NEXT |

100 GRAPHI C 0,1 : REM RETURN TO TEXT

6-30

Here's

R

E

an expl anation of the program

Line 5 COLORs the background black and the foreground white

Line 10 selects standard high resolution mde and clears the hires
screen

Line 23 BOXes in a display area for the picture of the spacecraft in
the top left corner of the screen

Lines 17 through 21 DRAWthe stars

Line 24 draws and PAINTS the planet.

Line 25 draws the CIRCLEs around the planet.

Line 26 DRAV the outline of the capsule portion of the spacecraft.
Line 28 DRAV the bottom wi ndow of the space capsul e

Line 35 DRAV$ the top window of the space capsul e

Line 38 PAINTs the space capsul e white

Line 40 DRAV$ the outline of the retro rocket portion of the space-
craft.

Lines 42 and 43 DRAWthe retro rocket engines on the back of the
spacecraft.

Line 44 PAINTs the retro rocket engines and DRAW an outline of the
back of the retro rocket in the background col or

Line 45 DRAV lines on the retro rocket portion of the spacecraft in
the background color. (At this point, you have displayed only pic-
tures on the screen. You have not used any sprite statenents, so
your rocketship is not yet a sprite.)

Line 47 positions the SSHAPE coordinates above the first half (24 by
21 pixels) - of the capsule - of the spacecraft and stores it in a
data string, A$

Line 48 positions the SSHAPE coordinates above the second hal f (24
by 21 pixels) of the spacecraft and stores it in a data string, B$
Line 50 transfers the data fromA$ into sprite 1

Line 55 transfers the data fromB$ into sprite 2

Line 60 turns on sprite 1 and colors it red.

Line 65 turns on sprite 2 and colors it blue.

Line 82 positions sprite 1 at coordinates (150, 150).

Line 83 positions sprite 2 24 pixels to the right of the starting
coordinate of sprite 1

Lines 82 and 83 actually join the two sprites

6-31

* Lines 85 and 87 nove the joined sprites across the screen

* Line 90 delays the program This tinme delay is necessary for the
sprites to conplete the two trips across the screen. If you leave
out the delay, the sprites do not have enough tine to nove across
the screen

* Lines 92 and 93 position the sprites in the center of the screen
and prepare the spacecraft to fire the retro rockets

* Line 95 propels sprite 1, the space capsule, forward. The nunber 10
inline 95 specifies the speed at which the sprite moves. The speed
ranges from1, which is stop, to 15, which is lightning fast.

* Line 96 noves the expired retro rocket portion of the spacecraft
backwards and of f the screen

* Line 97 is another time delay so the retro rocket, sprite 2, has
time to nove off the screen

* Line 98 turns off sprite 2, once it is off the screen

* Line 100 returns you to text node

Working with adjoining sprites can be nore interesting than working with a
single sprite. The main points to renenber are: (1) Make sure you position
the SSHAPE coordinates at the correct locations on the screen, so you save
the picture data properly; and (2) be certain to position the sprite coor-
dinates in the correct |ocation when you are joining themwth the MWVSPR
statenent. In this exanple you positioned sprite 2 at a location 24 pixels
to the right of sprite 1

Once you master the technique of joining two sprites, try nore than two.
The nore sprites you join, the better the detail and animation will be in
your progr ans.

The C128 has two additional sprite conmands, SPRCOLOR and COLLISION, which

are not covered in the section. To |earn about these commands, refer to
Chapter V, BASIC 7.0 Encycl opaedi a

6-32

Storing Sprite Data in Binary Files

NOTE: The fol | owi ng expl anation assunes some know edge of machine
| anguage, menory locations, binary files and object code files.

The Commodore 128 has two new commands BLOAD and BSAVE, which make handling
sprite data neat and easy. The "B" in BLOAD and BSAVE stands for BI NARY.
The BSAVE and BLOAD commands save and |oad binary files to and from disk.

A binary file consists of either a portion of machine |anguage program or
a collection of data within a specified address range.

You may be familiar with the SAVE conmand within the built-in machine

| anguage nonitor. when you use this SAVE command, the resulting file on
disk is considered a binary file. Abinary file is easier to work with than
an object code file since you can load a binary file without any further
preparation. An object code file nust be loaded with a |oader, as in the
Cormodor e 64 Assenbl er Devel opnent System then the SYSTEM command (SYS)
must be used to execute it.

When | oading binary files, remenber to load themin either of these two
ways:

LOAD "binary filename",8,1
or
BLOAD "binary filename", B0, PStart
where start is 3584 if you are loading sprite data files.

In the first method you nust specify the ,1 at the end or else the computer
treats it as a BASIC programfile and loads it at the beginning of BASIC
text. The ,1 tells the computer to load the binary file into the same place
fromwhich it was stored.

You' re probably wondering what this has to do with sprites. Here's the con-
nection. The Conmodore 128 has a dedicated portion of menory ranging from
the address 3584 ($0E00) throught 4095 ($OFFF), where sprite data is
stored. This portion of menory takes up 512 bytes. As you know, a sprite is
24 pixels wide and 21 pixels tall. Each pixel requires one bit of menory.
If the bit in a spriteis off (equal to 0), the corresponding pixel on the
screen is considered off and takes the color of the background. If a pixel
within a sprite is on (equal to 1), the corresponding pixel on the screen
is turned on in the foreground color. The conbination of zeroes and ones

6-33

produce the image you see on the screen.
Since a sprite is 24 by 21 pixels and each pixel requires a bit of storage

in menory, one sprite uses 63 bytes of memory. See Figure 8 to understand
the storage requirenents for a sprite's data.

12345678 12345678 12345678

Each Row = 24 bits = 3 bytes

Figure 8. Sprite Data Requirements
A sprite requires 63 bytes of data. Each sprite block is actually made up
of 64 bytes; the extra byte is not used. Since the Commodore 128 has ei ght

sprites and each one consists of an 64-byte sprite block, the computer
needs 512 (8 x 64) bytes to represent the data of all eight sprite inages.

6- 34

The entire area where all eight sprite blocks reside starts at memory |oca-
tion 3584 ($0E00) and ends at l|ocation 4095 ($0FFF). Figure 9 lists the
menory address ranges where each individual sprite stores its data

$OFFF (4095 deci mal)

]- Sprite 8
$0FC0

]- Sprite 7
$0F80

]- Sprite 6
$0F40

]- Sprite 5
$0F00

]- Sprite 4
$0ECO

]- Sprite 3
$0E80

]- Sprite 2
$0E40

]- Sprite 1
$0E00 (3584 Deci nal)

Figure 9. Menory Address Ranges for Sprite Storage
BSAVE

Once you exit fromthe SPRDEF node, you can save your sprite data in binary
sprite files. This way, you can load any collection of sprites back into
the Cormodore 128 neatly and easily. Use this conmand to save your sprite
data into a binary file:

BSAVE "filename", B0, P3584 TO P4096

The "B0" specifies that you are saving the sprite data frombank 0. The
par a-

meters P3584 TO P4096 signify you are saving the address range 3584 ($0E00)
through 4095 ($OFFF), which is the range where all the sprite data is
stored

You do not have to define all of the sprites when you BSAVE them The
sprites you do define are BSAVEd fromthe correct sprite block. The unde-
fined sprites are also BSAVEd in the binary file fromthe appropriate
sprite block, but they do not matter to the conputer. It is easier to BSAVE

6-35

the entire 512 bytes of all eight sprites, regardiess if all the sprites
are used, rather than BSAVE each sprite block individually

BLOAD

Later on, when you want to use the sprites again, just BLOAD the entire
512 bytes for all of the sprites into the range starting at 3584 ($0E00)
and ending at 4095 ($0FFF). Here's the command to acconplish this

BLOAD "filename"[, BO, P3584]

Use the sanme filename which you BSAVEd your original sprite data. The BO
stands for bank nunber 0 and the P3584 specifies the starting |ocation
where the binary sprite data is |oaded. The last two parameters are
optional

EREE SRR SRR EREE R R SRR EEREERREERRERRERRRERRERRERRERRERRRERRERRERREREEEREEREREEE]

In this section you have seen how nuch the new Cormodore 7.0 BASI C commands
can sinplify the usually conplex process of creating and ani mating graphic
i mages. The next section describes some other new BASIC 7.0 commands t hat
do the same for nusic and sound

6- 36

SECTION 7 | NTRODUCTI ON

Sound and Music in C128 Mde
The Commodore 128 has one of the most sophisticated built-in sound synthe-
sizers available in a mcroconputer. The synthesizer, called Sound Inter-
face Device (SID), is a chip capable of producing three independent voices

ENTRODUCTI ON e ettt e e e e e e e e e 7-3 (sounds) sinultaneously. Each of the voices can be played in one of four
types of sounds, called wavefornms. The SID chip al so has programmabl e
THE SOUND STATEMENT . .ottt ettt 7-4 Attack, Decay, Sustain and Rel ease (ADSR) parameters. These paraneters de-
fine the quality of a sound. In addition, the synthesizer has a filter you
Witing @ SOUND Programc.oouiiiinieeeiiiii s, 7-5 can use to choose certain sounds. In this section you will learn howto
Random SOUNASo 7-9 control these paraneters to produce al nost any kind of sound.
ADVANCED SOUND AND MUSIC IN C128 MIDEtieee e 7-11 To make it easy for you to select and manipul ate the many capabilities of
the SID chip, Cormodore has devel | oped new and powerful BASIC nusic state-
A brief background: The Characteristics of Sound 7-11 nents.
Making Miusic on the Commodore 128 ... 7-11
The ENVELOPE Statement ..o 7-13 Here are the new sound and nusic statements available on the Cormodore 128:
The TEMPO Stat €mBntt e 7-13
The PLAY Stat@ment ...t 7-15 SOUND
The SID Filter . 7-16 ENVELOPE
The FILTER Statementoeoitii e 7-20 VoL
Tying your Music Program Togetherciiiiiiiiiiinna... 7-23 TEMPO
Advanced Filteringo 7-24 PLAY
FILTER
CODING A SONG FROM SHEET MUSIC ..ottt 7-26

This section explains these sound statenents, one at a tinme, in the process
constructing a sanpl e musical program Wen you are finished with this sec-
tion, you will know the ingredients that go into a nusical program You'll
be able to expand on the exanple and wite prograns that play intricate
nusi cal conpositions. Eventually, you'll be able to programyour own nusi-
cal scores, make your own sound effects and play works of the great clas-
sical masters such as Beethoven and contenporary artists |ike the Beatles.
You can even add conputer-generated nusic to your graphics programs to
create your own "videos."

7-1 7-3

THE SOUND STATEMENT
The SOUND statenent is designed primarily for quick and easy sound effects
in your prograns. You will learn a nore intricate way of playing conplete
nusi cal arragenents with the other sound statenents later in this section.
The format for the SOUND statement is as follows:

SOUND ve, freq, dur [, dir [, min[, sv [, w [, pw]]]]
Here's what the paranmeters nean:

VC - Select voice 1, 2 or 3

FREQ - Set the frequency |evel of sound (0-65535)

DUR - Set duration of the sound (in sixtieths of a second)

DIR - Set the direction in which the sound is increnented/ decre-

nent ed:

0 = Increment the frequency upward

1 = Decrement the frequency downward

2 = Oscillate the frequency up and down

MN - Select the mninmum frequency (0-65535) if the sweep (DIR) is
specified

SV - Choose the step value for the sweep (0-65535)

W - Select the waveform (0-3):

0 = Triangle

1 = Sawtooth

2 = Variable Pul se (square)
3 = Wite Noise

PW - Set the pulse width, the width of the variable pul se waveform

Note that the DIR, MN, SV and PWparaneters are optional.

7-4

The first parameter (VC) in the SOUND statement selects which voice will be
played. The second paraneter (FREQ determines the frequency of the sound,
whi ch ranges from0 through 65535. The third setting (DUR) is neasured in
60ths of a second. If you want to play a sound for one second, set the
duration to 60, since 60 tinmes 1/60 equals 1. To play the sound for two
seconds, specify the duration to be 120. To play the sound ten seconds,
make the duration 600, and so on.

The fourth paraneter (DIR) selects the direction in which the frequency or
the sound is increnented or decrenented. This is referred to as the sweep.
The fifth setting (MN) sets the mninum frequency where the sweep begins.
The sixth paraneter (SV) is the step value of the sweep. It is simlar to
the step value in a FOR.. NEXT loop. If the DR, MN and SV val ues are
specified in the SOUND conmand, the sound is played first at the original
level specified by the freq parameter. Then the synthesizer sweeps through
and plays each level of the entire range of frequency values starting at
the mn frequency. The sweep is incremented or decrenented by the step
value (SV) and the frequency is played at the new |evel.

The seventh paraneter (W) in the SOUND conmand sel ects the waveform for
the sound. (Waveforns are explained in detail in paragraph titled, "Ad-

vanced Sound and Music in C128 Mde.")

The final setting in the SOUND command determines the width of the pul se
waveformif it is selected as the waveform paranmeter. (See the "Advanced
Sound" discussion for an illustration of the pul se waveform)

Witing a SOUND Program

Now it's time to wite your first SOUND program Here's an exanple of the
SOUND st at ement :

10 vOL 5
20 SOUND 1, 4096, 60

7-5

RUN this program The Conmodore 128 plays a short beep. You nust set the
vol ume before you can play the sound statenent, so line 10 sets the VOLune

of the sound chip. Line 20 plays voice 1 at a frequency of 4096 for a dura-
tion of 1 second (60 times 1/60). Change the frequency with this statenent:

30 SOUND 1, 8192, 60

Notice line 30 plays a higher tone than line 20. This shows the direct

rel ationship between the frequency setting and the actual frequency of the
sound. As you increase the frequency setting, the Commodore 128 increases
the pitch of the tone. Nowtry this statenent:

40 SOUND 1,0, 60

This shows that a FREQ value of 0 plays the |owest frequency (which is so
lowit is inaudible). A FREQ value of 65535 plays the highest possible
frequency.

Now try placing the sound statement within a FOR... NEXT loop. This allows
you to play the conplete range of frequencies within the loop. Add these
statenents to your program

50 FOR I=1 TO 65535 STEP 100
60 SOUND 1,1,1
70 NEXT

Thi s program segnent plays the variable pul se waveformin the range of

frequencies from1 to 65535, in increments of 100, fromthe |owest frequen-

cy to the highest. If you don't specify the waveform the conputer selects
the default value of waveform2, the variable pul se waveform

Now change the waveformwith the following programline (60) and try the
program agai n:

60 SOUND 1,1,1,0,0,0,0,0
Now the program plays voice 1, using the triangle waveform for the range
of frequency between 1 and 65535 in increnments of 100. This sounds like a
typical sound effect in popular arcade ganes. Try waveform1, the sawtooth
waveform and see how it sounds with this line:

60 SOUND 1,1,1,0,0,0,1,0

7-6

The sawt ooth waveform sounds simlar to the triangle waveformthough it has
less buzz. Finally, try the white noise waveform (3). Substitute Iine 60
for this line:

60 SOUND 1,1,1,0,0,0,3,0

Now the program | oop plays the white noise generator for the entire range
of frequencies. As the frequency increases in the |oop the pitch increases
and sounds |ike a rocket taking off.

Notice that so far we have not specified all of the paraneters in the SOUND
statenent. Take line 60 for exanple:

60 SOUND 1,1,1,0,0,0,3,0

The three zeros following 1,1,1 pertain to the sweep paranmeters within the
SOUND statement. Since none of the paraneters is specified, the SOUND does
not sweep. Add this line to your program

100 SCUND 1, 49152, 240,
N N N

Voice --------- + | |
Frequency ---------- + |
Duration -----------euum-- +
Sweep Direction -------------- +
M ni rum Sweep Frequency --------- +
Step Value for Sweep ---------------- +
VAVEf OF M == - = e e e e e e e
Pul se Wdth for variable width

WAVEF OF M == === e e e e e e

Line 100 starts the sweep frequency at 49152 and decrements the sweep by
100 in the downward direction, until it reaches the mini num sweep frequency
at 0. Voice 1, using the saw ooth waveform (#1), plays each SOUND for four
seconds (240 * 1/60 s). Line 100 sounds |ike a bonb dropping, as in may
"shoot 'emup" arcade ganes.

7-7

Now try changing some of the parameters in line 100. For instance, change
the direction of the sweep to 2 (oscilate); change the m ni mum frequency of
the sweep to 32768; and increase the step value to 3000. Your new SOUND
conmand | ooks |ike this:

110 SOUND 1, 49152, 240, 2, 32768, 3000, 1

Line 110 makes a siren sound as though the police were right on your tail.
For a nore pleasant sound, try this:

110 SOUND 1, 65535, 250, 0, 32768, 3000, 2, 2600

This should remind you of a popul ar space-age TV show, when the space crew
unl eashed their futuristic weapons on the unsuspecting aliens.

Until now, you have been progranmmng only one voice. You can produce inter-
esting sound effects with the SOUND statenment using up to three voices.
Experiment and create a programwhich utilizes all three voices.

Here's a sanple programthat will help you understand how to programthe
Commodor e 128 synthesizer chip. The program when RUN, asks for each para-
meter, and then plays the sound. Here's the programlisting. Type it into
your conputer and RUN it.

10 SCNCLR PRINT " SOUND PLAYER': PRI NT: PRI NT: PRI NT
20 PRINT " I NPUT SOUND PARAVETERS TO PLAY": PRI NT: PRI NT
30 INPUT "VOI CE (1-3)";V

40 | NPUT " FREQUENCY (0- 65535)"; F

50 I NPUT " DURATI ON (0-32767)": D

60 INPUT "DO YOU WANT TO SPECI FY OPTI ONAL PARAMETERS Y/ N'; BS: PRI NT
70 IF B$="N' THEN 130

80 I NPUT "SWEEP DI RECTI ON (0=UP, 1=DOK, 2=0SCI LL)": DIR

90 INPUT "M NI MM SWEEP FREQUENCY (0- 65535)"; M

100 | NPUT " SVEEEP STEP VALUE (0-32767)"; S

110 1 NPUT "WAVEFORM (0=TR!, 1=SAW 2=VAR PUL, 3=NOI SE)"; W

120 IF W2 THEN | NPUT "PULSE W DTH (0- 4096)"; P

130 SOUND V,F,D,DIR M S, WP

140 1 NPUT" DO YOU WANT TO HEAR THE SOUND AGAIN Y/N'; A$

150 | F A$="Y" THEN 130

160 RUN

7-8

Here's a quick explanation of the program Lines 10 and 20 PRINT the intro-
ductory nessages on the screen. Lines 30 through 50 I NPUT the voi ce,
frequency and duration paranmeters. Line 60 asks if you want to enter the
optional SOUND paraneters, such as the sweep settings and waveform If you
don't want to specify these parameters, press the {n} and then the {return}
key and the programjunps to line 130 and plays the sound. | you do want to
specify the optional SOUND settings, press the {y} and then the {return}
key and the programcontinues with line 80. Lines 80 through 110 specify
the sweep direction, mnimumsweep frequency, sweep step value and wave-
form Line 120 INPUTs the pul se width of the variable pul se waveformonly
if waveform2 (variable pulse) is selected. Line 130 plays the SOUND accor-
ding to the paraneters that you specified earlier in the program

Line 140 asks if you want to hear the SOUND again. If you do, press the {y}
and then the {return} key. If you did, programcontrol is returned to line
130 and the program plays the SOUND again. If you press any other key as
the {y} key, the programcontinues with line 160. Line 160 reruns the pro-
gram To stop the Sound Player program press the {run/stop} and {restore}
keys at the sane tine.

Random Sounds

The fol | owi ng program generates random sounds using the RND function. Each
SOUND parameter is calculated randomy. Type the programinto your conputer
and SAVE it and RUNit. This programillustrates how many thousands of
sounds you can produce by specifying various conbinations of the SOUND

par anet ers.

10 PRINT "VC FRQ DIR MN SV W PW":VQOL 5

20 PRINT "« -mmmmmmmmmm e e "

30 V=INT (RND (1)*3)+1 REM VOI CE

40 F=INT (R\D (1)*65536) REM FREQUENCY

50 D=INT (R\D (1)*240) : REM DURATI ON

60 DI R=INT (RND(1)*3) : REM STEP DI RECTI ON
70 MeINT (RND (1)*65536) : REM M NI MUM FREQUENCY
80 S=INT (R\D (1)*32678) ' REM STEP VALUE

90 VI NT (R\D (1)*4) : REM VAVEFORM

100 P=I NT (RND (1) *4096) : REM PULSE W DTH

110 PRINT V:F; DIR M S; WP: PRINT: PRINT : REM DI SPLAY VALUE
120 SOUND V,F,D,DIR M S, WP : REM PLAY SOUND

130 SLEEP 4 'REMWIT ABIT

140 SOUND V,0,0,DIR 0,0, WP : REM SW TCH SOUND OFF
150 GOTO 10

Lines 10 and 20 PRINT paraneter colum headings and the underline. Lines 30
through 100 cal cul ate each SOUND parameter within its specific range. For
exanple, line 30 cal culates the voice nunber as fol | ows:

30 V = I NT(RND(1)*3) +1

The notation RND(1) specifies the seed value of the random nunber. The seed
is the base nunber generated by the conputer. The 1 tells the computer to
generate a new seed each tine the command is encountered. Since the Conmo-
dore 128 has three voices, the notation * 3 tells the conputer to generate
a random number within the range 0 through 3. Notice however there is no
voice 0, so the + 1 tells the conputer to generate a random nunber such
that 1 <= Nunber < 4. The procedure for generating a random nunber in a
specific range is to multiply the given random nunber tinmes the maximm

val ue of the parameter (in this case, 3). If the mininumvalue of the para-
meter is greater than zero, add to the random nunber a value that will
specify the mininumval ue of the range of numbers you want to generate (in
this case, 1). For instance, line 40 generates a random number such that

0 <= Nunber < 65535. Since the mininmumvalue is zero in this case, you do
not need to add a value to the generated random nunber

Line 110 PRINTs the values of the paranmeters. Line 120 plays the SOUND
specified by the random nunbers generated in Iines 30 through 100. Line 130
del ays the programfor 4 seconds while the sound is playing. Line 140 turns
off the SOUND (after the 4 seconds delay). Al sounds generated by this
programare all turned off after 4 seconds with line 140. Finally, line 150
returns control to line 10, and the process is repeated until you press the
{run/stop} and {restore} keys at the sane tine.

So far you have experinented with sanple programs using only the SOUND
statenent. Although you can use the SOUND statenent to play nusical scores
it is best suited for quick and easy sound effects |ike the ones in the
dogfight program The Conmodore 128 has other statenments designed speci-
fically for song playing. The follow ng paragraphs describe the advanced
sound and nusic statements that enable you to play conplex nusical scores
and arrangements with your Conmodore 128 synthesi zer

7-10

ADVANCED SCUND AND MUSIC I N C128 MODE

A brief background: The Characteristics of Sound

Every sound you hear is actually a sound wave traveling through the air.
Like any wave, a sound (sine) wave can be represented graphically and
mat hematical |y (see Figure 7-1).

Figure 7-1. Sine Wave

The sound wave noves (oscillates) at a particular rate (frequency) which
determines the overall pitch (the highness or |owness of the sound).

The sound is al so made up of harmonics, which are accompanying multiples of
the the overall frequency of the sound or note. The conbination of these
har moni ¢ sound waves give the note its qualities, called tinbre. Figure 7-2
shows the relationship of basic sound frequencies and harnonics

[FIGURE IS M SSING

Figure 7-2. Frequencies and harmonics

The tinbre of a nusical tone (i.e. the way a tone sounds) is determined by
the tone's waveform The Cormodore 128 can generate four types of wave-
forms: triangle, sawooth, variable pulse and noise. See Figure 7-3 for a
graphic representation of these four waveforns.

7-11

TRI ANGLE

SAWTCOTH

VARI ABLE
PULSE

NO SE

R ST TR SN S

<-->
PULSE W DTH

Figure 7-3. Sound Waveform Types

7-12

Making Misic on the Conmodore 128

The ENVELOPE St at enent

The vol une of a sound changes throughout the duration of the note, from
when you first hear it until it is no longer audible. These volune quali-
ties are referred to as Attack, Decay, Sustain and Rel ease (ADSR). Attack
is the rate at which a nusical note reaches its peak volune. Decay is the
rate at which a nusical not decreases fromits peak volune to its mdranged
(sustain) level. Sustain is the level at which a nusical note is played at
its mdranged volume. Release is the rate at which a nusical note decreases
fromits sustain level to zero volume. The ENVELOPE generator controls the
ADSR paraneters of sound. See Figure 7-4 for a graphical representation of
ADSR. The Commodore 128 can change each ADSR paraneter to 16 different
rates. This gives you absolute flexibility over the envel ope generator and
the resulting properties of the volume when the sound is originated.

Figure 7-4. ADSR Phases

One of the most powerful Conmodore 128 sound statenents - the one that con-
trols the ADSR and waveform- is the ENVELOPE statement. The ENVELOPE
statenent sets the different controls in the synthesizer chip which makes
each sound unique. The ENVELOPE gives you the power to manipul ate the SID
synthesi zer. Wth ENVELOPE, you can select particular ADSR settings and
choose a waveformfor you own nusic and sound effects. The format for the
ENVELOPE statenment is as fol | ows:

ENVELOPE e[, a[, d[,s[,r[,w[,pw]1]]]]

7-13

Here's what the letters nean:

- envel ope nunber (0-9).

- attack rate (0-15)

- decay rate (0-15)

- sustain level (0-15)

r - release rate (0-15)

w - waveform- 0 = triangle

sawt oot h

pul se (square)
noi se

ring modul ation
pw - pul se width (0-4095)

w o v D
I

B owp e

Here are the definitions of the paraneters not previously defined:

Envel ope - The properties of a musical note specified by the waveform and
the attack, decay, sustain and release setting of the note. For exanple,
the envel ope for a guitar not has a different ADSR and waveformthan a
flute.

Waveform - The type of sound wave created by the conbination of accom
panyi ng musi cal harmonics of a tone. The acconpanying harnoni ¢ sound waves
are nultiples of, and are based on the overall frequency of the tone. The
qualities of the tone generated by each waveformare recognizably different
fromone another and are represented graphically in Figure 7-3.

Pulse width - The length of time between notes, generated by pul se
wavef orm

Now you can realize the power of the ENVELOPE statement. It controls nost
of the nusical qualities of the notes being played by the sound synthe-
sizer. The Conmodore 128 has 10 predefined envel opes for 10 different
nusi cal instrunents. In using the predefined envel opes you do not have to
specify the ADSR parameters, waveformand pul se width settings - thisis
al ready done for you. Al you have to do is specify the envel ope nunber.
The rest of the parameters are chose automatically by the Commodore 128.
Here are the preselected envel opes for different types of nusical instru-
nents:

7-14

Envel ope Wave-

Nunber Instrument Attack Decay Sustain Release form Wdth
0 Pi ano 0 9 0 0 2 1536
1 Accordion 12 0 12 0 1

2 Cal l'i ope 0 0 15 0 0

3 Drum 0 5 5 0 3

4 Flute 9 4 4 0 0

5 Cui tar 0 9 2 1 1

6 Harpsicord 0 9 0 0 2 512
7 Organ 0 9 9 0 2 2048
8 Tr unpet 8 9 4 1 2 512
9 Xyl ophone 0 9 0 0 0

Figure 7-5. Default Paraneters for ENVELOPE Statenment

Now that you have a little background on the ENVELOPE statenent, begin an-
ot her exanple by entering this statenent into your Commodore 128:

10 ENVELOPE 0, 5, 9, 2, 2, 2, 1700
Thi s ENVELOPE statenent redefines the default piano envelope (0) to the
following: Attack = 5, Decay = 9, Sustain=2, Release=2, waveform renains
the same (2) and pulse width of the variable pulse waveformis now 1700.
The piano envelope will not take on these properties until it is selected
by a PLAY statenent, which you will learn later in this section.

The next step in programming nusic is setting the volume of the sound chip
as foll ows:

20 vO. 8
The VOL statenment sets the volume of the sound chip between 0 and 15, where
15 is the mximumand 0 is off (no vol ume).
The TEMPO St at enment
The next step in Conmodore 128 nusic programming is controlling the tenpo,
or speed of your tune. The TEMPO statenent does this for you. Here's the

format:

TEMPO n

7-15

where n is a digit between 0 and 255 (and 255 is the fastest tenpo). If you
do not specify the TEMPO statenent in your program the Comrmodore 128 auto-
matically sets the tenpo to 8. Add this statement to your nusical exanple
program

30 TEWP 10

The PLAY Statenent

Now it's time to learn howto play the notes in your song. You al ready know
how the PRINT statement works. You play the notes in your tune the sane way
as PRINTing a text string to the screen, except you use the PLAY statenent
in place of PRINT. PRINT outputs text, PLAY outputs musical notes.

Here's the general format for the play statement:

PLAY "string of synthesizer control
characters and nusical notes"

The total number of characters (including the nusical notes and synthesizer
control characters) that can be put into a PLAY command is 255. However,
since this exceeds the maxi num number of characters (160) allowed for a
single programline in BASIC 7.0, you have to concatenate (that is, add to-
gether) at least two strings to reach this length. You can avoid the need
to concatenate strings by making sure your PLAY commands do not exceed 160
characters, i.e. one programline length. (This is equivalent with four
screen lines in 40-colum node, and two screen lines in 80-colum mode.) By
doing this, you will produce PLAY command strings that are easier to under-
stand and use.

To play nusical notes, enclose the letter of the note you want to play
within quote. For exanple, here's howto play the nusical scale (also known
as do-re-m-fa-sol-la-si):

40 PLAY " CDEFGAB"
This plays the notes C, D, E, F, G A and Bin the piano envel ope, which is
envel ope 0. After each time you RUN this exanple programyour are creating,

hol d down the {run/stop} key and press the {restore} key to reset the syn-
thesi zer chip.

7-16

You have the option of specifying the duration of the note by preceding it
in quotes with one of the follow ng notations:

W- Wole note
H- Half note
Q- Quarter note
| - Eighth note

S - Sixteenth note

The default setting, if the duration is not specified, is the Wole (W
not es.

You can PLAY a rest (no sound) by including the following in the PLAY
string:

R - Rest

You can instruct the conmputer to wait until all voices currently playing
reach the end of a measure by including the follow ng in quotes:

M- Wait for end of nmeasure

The Commodore 128 al so has synthesizer control characters you can include
ina PLAY string. This gives you absolute control over each note and all ows
you to change synthesizer controls within a string of notes. Follow the
control character with a nunber in the allowable range for that character.
The control characters and the range of numbers are shown in Figure 7-6.
The {n} following the control character refers to the nunber you sel ect
fromthe specified range.

Control Def aul t
Charact er Description Range Setting
Vn Voi ce 1-3 1
On Cctave 0-6 4
Tn Envel ope 0-9 0
Un Vol une 0-15 9
Xn Filter 0=of f 0
1=on

Figure 7-6. Sound Synthesizer Control Characters

Al though the SID chip can process these control characters in any order,
for best results, place the control characters in your string in the order
that they appear in Figure 7-6.

7-17

You don't absolutely have to specify any of the control characters, but you
shoul d to maximze the power fromyour synthesizer. The Cormodore 128 auto-
matically sets the synthesizer controls to the default settings in Figure
7-6. If you don't assign special control characters, the SID chip can PLAY
onl'y one envel ope, one voice and one octave without any FILTER ng. Specify
the control characters to exercise the nost control over the notes within
your PLAY string.

If you specify an ENVELOPE statenent and sel ect your own settings instead
of using the default paraneters fromFigure 7-5, the envel ope control
character number in your PLAY string nust match the number in your ENVELOPE
statenent in order to assune the paraneters you assigned. You don't have
the specify the ENVELOPE statenent at all if you just want to PLAY the
default settings fromFigure 7-6. In this case, sinply select an envel ope
nunber with the (T) control character in the PLAY statenent.

Here's an exanpl e of the PLAY statenent using the SID chip control charac-
ters within a string. Add this line to your programand notice the dif-
ference between this statement and the PLAY statenent in line 40.

50 PLAY "MV2 &6 T7 U5 X0O CDEF GA B

This statement PLAYs the sane notes as in line 40, but voice 2 is selected,
the notes are played one octave higher (5) than Iine 40, the volune set-
ting is turned down to 5 and the FILTER i s specified as off. For now, |eave
the filter off. Wen you learn about FILTERing in the next section, you can
come back and turn the filter on to see howit affects the notes being
played. Notice line 50 selects a new instrument, the organ envel ope, with
the T7 control character. Now your program PLAYs two different instruments
intw of the independent voices. Add this statement to PLAY the third

voi ce:

60 PLAY "MV3 06 U7 T6 X0 CDEF GA B

Here's how line 60 controls the synthesizer. The V3 selects the third

voi ce, 06 places voice 3 one octave higher (6) than voice two, T6 selects
the harpsichord envel ope, U7 sets the volume to 7 and X0 | eaves the filter
off for all three voices. Now your program plays three voices, each one oc-
tave higher thant the other, in three seperate instrunents, piano, organ
and har psi chord.

7-18

So far, your PLAY statements only played whole notes. Add notes of diffe-
rent duration by placing control characters in you PLAY string as foll ows:

70 PLAY "M/206TOU7XOHCDQEFI GASB"

Line 70 PLAYs voice 2 in octave 6 at volune level 7 with the redefined

pi ano envelope (0) on and filter turned off. This statenent PLAYs the note
Cand D as half notes, E and F as quarter notes, Gand A as eighth notes
and B as a sixteenth note. Notice the difference between the piano envel ope
inline 40 and the redefined piano envelope in line 70. Line 40 actually
sounds nore |ike a piano than line 70.

You can PLAY sharp, flat and dotted notes by preceding the notes within
quotes with the follow ng characters:

- Sharp (half a tone higher).
$ - Flat (half a tone |ower).
- Dotted (half a duration |onger).

A dotted note plays one-and-a-half times the duration of a note that is not
dot ted.

Now try adding sharp, flat and dotted notes with this statenent:
80 PLAY "M/104T4UBX0. HCDQHEFI $GA. S#B"

Line 80 PLAYs voice 1 in octave 4 at volume level 8 with the flute envel ope
turned on and the filter turned off. It also PLAYs C and D as dotted hal f
notes, E and F as sharp quarter notes, Gand A as flat eighth notes and B
as a sharp dotted sixteenth note. You can add rests (R) at any place within
your PLAY string.

Up until now your statenent exanples have left the filter off within the

sound synt hesizer and have not realized the true power behind it. Now that
you have digested nost of the sound and nusic statenents and the SID con-
trol characters, nove on to the next section to Iearn how to enhance your
nusical quality with the FILTER statenent.

7-19

The SID Filter

Once you have sel ected the ENVELOPE, ADSR, VOLunme and TEMPO, use the FILTER
to perfect your synthesized sounds. In your program the FILTER statenent
will precede the PLAY statement. First you shoul d becone confortable with
generating the sound and worry about FILTERi ng last. Since the SID chip has
only one filter, it applies to all three voices. Your conputerized tunes
will play without FILTERi ng, but to take full advantage of your nusic syn-
thesizer, use the FILTER statenent to increase the sharpness and quality of
the sound

In the first paragraph of this section (The Characteristics of Sound) we
defined a sound as a sound wave traveling (oscilating) through the air at a
particular rate. The rate at which a sound oscillates is called the wave's
frequency. Recall that a sound wave is made up of an overall frequency and
acconpanyi ng harnoni cs, which are nultiples of the overall frequency. See
Figure 7-2. The acconpanying harnonics give the sound its tinbre, the qua-
lities of the sound which are deternmined by the waveform The filter within
the SID chip gives you the ability to accent and elininate the harnonics of
a waveformand change its tinbre

The SID chip filters sounds in three ways: |ow pass, high-pass and band-
pass filtering. These filters are additive, nmeaning you can use more than
one filter at atime. This is discussed in the next section. Lowpass fil-
ters out frequencies above a certain level you specify, called the cutoff
frequency. The cutoff frequency is the dividing line that marks the boun-
dery of which frequency level will be played and which will not. In |ow
pass filtering, the SID chip plays all frequencies bel ow the cutoff
frequency and filters out the frequencies above it. As the name inplies
the low frequencies are allowed to pass through the filter and high ones
are not. The lowpass filter produces full, solid sounds. See Figure 7-7

7-20

Figure 7-7. Low pass Filter
Conversly, the high-pass filter allows all frequencies above the cutoff

frequency to pass through the chip. All the ones belowit are filtered out.
See Figure 7-8. The high-pass filter produces tinny, hollow sounds

Figure 7-8. High-pass Filter
The band-pass filter allows a range of frequencies partially above and
bel ow the cutoff frequency to pass through the SID chip. Al other frequen-

ci es above and bel ow the band surrounding the cutoff frequency are filtered
out. See Figure 7-9.

Figure 7-9. Band-pass Filter

7-21

The FILTER Statenent
The FILTER statenent specifies the cutoff frequency, the type of filter
being used and the resonance. The resonance is the peaking effect of the
sound wave frequency as it approaches the cutoff frequency. The resonance
deternines the sharpness and clearness of a sound: the higher the reso-
nance, the sharper the sound.
This is the format of the FILTER statenent:

FILTER cf, Ip, bp, hp, res

Here's what the paranmeters nean:

cf - Cutoff frequency (0 - 2047)
Ip - Lowpass filter (0=off, 1=on)
bp - Band-pass filter (0=off, 1=on)
hp - Hgh-pass filter (0=off, 1=on)
res - Resonance (0 - 15)

You can specify the cutoff frequency to be any val ue between 0 and 2047.
Turn on the lowpass filter by specifying a 1 as the second paraneter in
the FILTER statement. Turn on the band-pass filter by specifying a 1 as the
third paraneter and enable the high-pass filter with a 1 in the fourth
paraneter position. Turn off any of the three filters by placing a 0 in the
respective position of the filter you want to disable. You can enable or
disable one, two or all three of the filters at the same tine.

Now that you have some background on the FILTER statement, add this line to
your sound program but do not RUN the program yet:

45 FILTER 1200, 1, 0, 0, 10

Line 45 sets the cutoff frequency at 1200, turns on the |owpass filter,

di sabl es the high-pass and band-pass filters and assigns a 10 to the reso-
nance |evel. Now go back and turn the filter on in your PLAY statenents by
changing all the X0 control characters to Xl1. Reset the sound chip by pres-
sing the {run/stop} and {restore} keys and RUN your sound program agai n.
Notice the difference between the way the notes sound and how they sounded
without the filter. Change line 45 to:

45 FILTER 1200, 0, 1, 0, 10

7-22

The new line 45 turns off the lowpass filter and enabl es the band-pass
fil-

ter. Press {run/stop} and {restore} and RUN your sound program agai n.
Notice the difference between the I ow pass and band-pass filters. Change
line 45 again to:

45 FILTER 1200, 0, 0, 1, 10

Reset the sound chip and RUN your exanple program again. Notice the diffe-
rence between the high-pass filter and the | ow pass and band-pass filters.
Experiment with different cutoff frequencies, resonance levels and filters
to perfect the nusic and sound in you own prograns.

Tying your Muisic Program Toget her

Your first musical programis conmplete. Now you can program your favorite
songs. Let's tie all the conponents together. Here's the programlisting.
Don't be alarned, this is the same programyou built in this section except
the print statements are added so you know which programlines are being

pl ayed.

10 ENVELCPE 0,5, 9, 2,2, 2, 1700

15 vaL 8

20 TEMPO 10

25 PRINT "LINE 30"

30 PLAY " CDEFGAB"

35 FILTER 1200, 0,0, 1,10

40 PRINT "LINE 45 - FILTER OFF"

45 PLAY "V2 O T7 U5 X0 CDEFGAB

50 PRINT "SAME AS LINE 45 - FILTER ON'
55 PLAY "V2 G T7 U5 X0 CDEFGAB

60 PRINT "LINE 65 - FILTER OFF"

65 PLAY "V3 06 T6 U7 X0 CDEFGAB"

70 PRINT "SAME AS LINE 65 - FILTER ON'
75 PLAY "V3 06 T6 U7 X1 CDEFGAB"

80 PRINT "LINE 85 - FILTER OFF"

85 PLAY "V2 06 TO U7 X0 HCD QEF | GA SB"
90 PRINT "SAME AS LINE 85 - FILTER ON'
95 PLAY "V2 06 TO U7 X1 HCD QEF | GA SB"
100 PRINT "LINE 105 - FILTER OFF"

105 PLAY "V1 O4 T4 U3 X0 H. CD Q#EF | $CA S.B"
110 PRINT "SAME AS LINE 105 - FILTER ON'
115 PLAY "V1 O4 T4 U8 X1 H. CD Q#EF I $CA S.B"

7-23

Line 10, the ENVELOPE statenent, specifies the envel ope for the piano (0),
which sets the attack to 5, decay to 9, sustain to 2 and release to 2. It
al so selects the variable pul se waveform (2), with a pulse width of 1700.
Line 15 sets the VOLume to 8. Line 20 chooses the TEMPO to be 10.

Line 35 FILTERs the notes that are played in lines 30 to 115. It sets the
FILTER cutoff frequency to 1200. In addition, line 35 turns off the |ow
pass and band-pass filters with the two zeros followi ng the cutoff frequen-
cy (1200). The high-pass filter is turned on with the 1 follow ng the two
zeros. The resonace is set to 10 by the last paraneter in the FILTER

stat enent.

Line 30 PLAYs the notes C, D, E, F, G A Bin that order. Line 45 PLAYs
the same notes as line 30, but it specifies the SID control character U5 as
volune level 5, V2 as voice 2 and G as octave 5. Renember, the SID control
characters allow you to change the synthesizer controls within a string and
exercise the nost control over the synthesizer. The control character T7
sel ects the organ envel ope. Line 65 specifies the control characters U7 for
vol ume level 7, V3 for voice 3, O6 for octave 6, T6 for the harpsichord
envel ope and X0 to turn off the filter. Line 65 PLAYs the sane notes as
line 30 and 45, but in a different volune, voice, octave and instrument
envel ope.

Line 85 has the same vol une, voice, octave and envel ope as line 65, and it
specifies half notes for the notes C and D, quarter notes for the notes E
and F, eighth notes for the notes Gand A and a sixteenth note for the B
note. Line 105 sets the volune at 8, voice 1, octave 4, flute envel ope (4)
and turns off the filter. It also specifies the C and D notes as dotted
hal f notes, E and F as sharp quarter notes, Gand A as flat eighth notes
and B as a dotted sixteenth note. Line 115 is the sane as |ine 105, but
with the filter turned on.

Advanced Filtering

Each of the previous FILTERi ng exanples used only one filter at a tine.
You can cormbine the SID chip's three filters with each other to achieve
different filtering effects. For exanple, you can enable the | ow pass and
hi gh-pass filters at the same time to forma notch reject filter. A notch
reject filter allows the frequencies bel ow and above the cutoff to pass
through the SID chip, while frequencies close to the cutoff frequency are
filtered. See Figure 7-10 for a graphical representation of a notch reject
filter.

7-24

Figure 7-10. Notch Reject Filter

You can al so add either the | owpass or high-pass filter to the band-pass
filter to obtain interesting effects. By mixing the band-pass filter with
the lowpass filter, you can select the band of frequencies beneath the
cutof f frequency and below. The rest are filtered out.

By m xing the band-pass and the high-pass filters, you can select the band
of frequencies above the cutoff frequency and higher. Al frequencies bel ow
the cutoff frequency are filtered out.

Experiment with the different conbinations of filters to see all the dif-
ferent types of accents you can place on your musical notes and sound
effects. The filters are designed to perfect the sounds created by other
conponents of the SID chip. Once you have created the musical notes or
sound effects with the SID chip, go back and add FILTER ng to your prograns
to make themas crisp and clean as possible.

Now you have all the information you need to wite your own nusical pro-
grams in Commmodore 128 BASIC. Experinent with the different wavefornms, ADSR
settings, TEMPOs and FILTERi ng. Look in a book of sheet nusic and enter the
notes froma nusical scale in sequence within a play string. Accent the
notes in the string with the SID control characters. You can combine your
Commodore 128 Music Synthesizer with C128 node graphics to make your own
videos or "novies", conplete with sound tracks.

7-25

CODI NG A SONG FROM SHEET MUSI C

This section provides a sanple piece of sheet nusic and illustrates hoe to
decode notes froma nusical staff and translate theminto a formthe Com
modore 128 can understand. This exercise is substantially faster and easier
if you know how to read nusic. However, you don't have to be a nusician to
be able to play the tune on your Conmodore 128. For those of you who cannot
read nusic, Figure 7-11 shows how a typical nusical staff is arranged and
how the notes on the staff are related to the keys on a piano.

Kok Kk _kk L kk _kk L L Xk Xk Kk _ oKk _Kk__ g KX _KX_KX__ g Kk _KX__ 4 k%
Kk Kk k% |**** |****** |M*** |****** |**** |**

k% kk k% | *k k% | k% kkx k% |i** * % | k% kkx k% | *k k% | * %

I O Y A Y A

I S A A A A A A A A A O O
|IGIA|B|C|D|E|F|G|A|B|C|D|E|F|G|A|B|C|D]|E]|F|
R S S

[e é) ------ +
[L0 |
[Q-----mmmman- +
[0 |
[[+
[0 |
[4G e (R R +
[] C0 |
[Q--=----ememmeeeeeeaeaeamaaaaas +
[Svoo0
[Do o-0-
[0
[4o Q--=----emmem-eieaiaiaeaeesessasasaeaeanaa- +
[0 |
[+F e - O e TP TP TP +
[Lo |
[4o [e +
[Lo |
[+---mmmmes [TS +
[o |
[Om +

M ddl e

C

Figure 7-11. Misical Staff

7-26

Figure 7-12 is an excerpt froma conposition titled Invention 13 (Inventio
13 in Italian), by Johann Sebastian Bach. Although this conposition was
witten a few hundred years ago, it can be played and enjoyed on nost no-
dern conputer synthesizers, such as the SID chip, in the Cormodore 128.
Here are the opening neasures of Invention 13.

[IMAGE 'S M SSING

Figure 7-12. Part of Bach's Invention 13

The best way to start coding a song into your Conmodore 128 is by breaking
down the notes down into internediate code. Wite down the upper staff
notes on a piece of paper. Now wite down the notes for the lower staff.
Precede the note values with a duration code. For instance, precede an
eighth note with an 8, precede a sixteenth note with a 16 and so on. Next,
separate the notes so the notes on the upper staff for one neasure are
propertional in time with the notes for one neasure on the |ower staff.

If the nusical conposition has a third staff, you would separate it so the
duration is proportional to the two other upper staffs. Once the notes for
all the staffs are separated into equal durations, a separate dedicated
voi ce woul d play each note for a particular staff. For exanple, voice 1
woul d play the upper staff, voice 2 will play the second staff and voice 3
woul d play the lowest staff if it existed.

Let's say the upper staff begins with a string of four eighth notes. In ad-
dition, say the |ower staff begins with a string of eight sixteenth notes.
Since a eighth note is proportional intime to two sixteenth notes, sepa-
rate the notes as shown in Figure 7-13.

V1 = 8A 8B 8C 8C

V2 16D 16E 16F 16G 16A 16B 16C 16D

Figure 7-13. Synchronizing Notes for Two Voices

7-27

Since the synchronization and timng in a nusical composition is critical, 190 REM **** TH RD MEASURE

you nust meke sure the notes in the upper staff for voice 1, for exanple, 200 DATA V2@BI C VIO4SRE V22l A V1IO4SCEM
are in time agreenent with the notes in the lower staff for voice 2. The 210 DATA V2@8I C VIGBSAAC V22l A VIO2SEGM
first note in the upper staff in Figure 7-12 is an A eighth note. The first 220 DATA V18I F V2CBSDQ2A V1C3I A V2Q2SFAM
two notes for voice 2 are D and E sixteenth notes. In this case, you nust 230 DATA V14 D V22SDF VIO F V20LSACRCM
enter the voice 1 eighth note in the PLAY string first, then follow the 240 REM **** FOURTH MEASURE
voice 2 sixteenth notes immediately after it. To continue the exanple, the 250 DATA V2011 B VIOASFD V2Q2I D V1(BSBOADM
second note in Figure 7-12 for voice 1 (the upper staff) is a B eighth 260 DATA V22! G VI(BSGB V2(2I B V10BSDFM
note. The B eighth note is equal intime to the two sixteenth notes, F and 270 DATA V18I E V22SGE V1Bl G V22 SEGM
G, which appear in the bottomstaff for voice 2. In order to coordinate the 280 DATA V104l C V22SCE VIOAI E V20LSGBM
timng, enter the B eighth note in the string for voice 1 and follow it 290 REM **** F| FTH MEASURE
with the two sixteenth notes F and G for voice 2. 300 DATA V20LI A VIASEC V22l C VIGBSAO4CM
310 DATA VI3l F V2Q2SDF V1041 D V201SBO2DM
As a rule, always start with the note with the longer duration. For 320 DATA V201l G V1(3SDB V20LI B V108SGBM
exanple, if a bar starts with a series of two sixteenth notes on the | ower 330 DATA VICBI E V22SCE V14l C V2OLSACRCM
staff for voice 2 and the upper staff starts with an eighth note for voice 340 REM **** S| XTH MEASURE
1, enter the eighth note in the string first since it nust play for the du- 350 DATA V20l F VIO4SCOBA V20LI D V1IGBSFAM
ration while the two sixteenth notes are being fetched by the Conrmodore 360 DATA V18I D V20LSGRG V13l B V2Q2SFGM
128. You nust give the conputer tine to play the longer note first, the 370 DATA V2011 A VIOASCOBA V22l #F V1O4SCEM
PLAY the notes of shorter duration, or else the conposition will not be 380 DATA V201l B VIO4SDCBB V2Q21 #G V1IOASDFM
synchroni zed. 390 REM **** SEVENTH MEASURE
400 DATA V2Q2I C VIOASEC V2Q21 A VIOASEGM
Here's the programthat plays Invention 13. Enter it into your Cl28, SAVE 410 DATA V2Q2I D VIOASFE V221 $B V1O4SDCM
it for future use and then RUNit. 420 DATA V2Q2I #G V1IBSBOC V221 F V104SDEM
430 DATA V2Q2I D VIOASFD V2011 B V1O4S#GEDM
10 REM I NVENTI ON 13 BY J.S. BACH 440 REM **** E| GHTH MEASURE
20 TEMPO 6 450 DATA V2Q2I #G VIOASBD V2Q21 A V1O4SCAM
30 A$="VIOAT7UBXD V2OAT7UBX0": REM V1=ORGAN, V2=PI ANO 460 DATA V2Q2I D VIOASFD V2Q21 E V1G3SBO4DM
40 DO 470 DATA V2Q2I F VIXBS#HEB V221 #D V1O4SCOBAM
50 PLAY A$ 480 DATA V2Q2I E VIQ3SEA V2Q21 E V1O3SB#GM
60 READ A% 490 REM **** NI NTH MEASURE
70 LOOP UNTIL A$="END OF MUSIC' 500 DATA V20LHA VIO3SAECEQ2QAM
80 END 510 REM **** END OF MJUSI C ****
90 REM **** F| RST MEASURE 520 DATA END OF MUSIC

100 DATA V201l A VIGBI E V2Q2QA V1OBSAO4CCBBEM
110 DATA V2Q2I #G V1BSBOADAI C V2O2SAEM

120 DATA V104 E V2(RSAMBC V18I #G V2O2SBEM You can use the technique described in this section to code your favorite

130 DATA V104 E V2Q2SBO3DM sheet nusic and play it on your Conmodore 128.

140 REM **** SECOND MEASURE

150 DATA V2(BI C Vl(BSAE VZ(I'A Vl(BSAval IR RS R RS R SRR SRR SRR R R SRR SRR SRR R R R R R R R R SRR R R R R R SRR SRR R R R R R R RERERRRRREREEEEEES]

160 DATA V2Q2I #G VICBSBE V2Q2I E V1IO3SBOADM

170 DATA V104 C V2Q2SAE V1CBI A V2Q2SACBCM You now have been introduced to most of the powerful new commands of the

180 DATA VIOAQR V2(2SBEBC3DM BASIC 7.0 language that you can use in Cl128 node. In the follow ng section
you will learn to use both 40- and 80-col um screen displays with the Com
nmodore 128.

7-28 7-29

SECTI ON 8
Usi ng 80- Col ums

8-1

| NTRODUCTI ON

In C128 and CP/ M nodes, you can choose between a 40- en 80-col um screen
di splay. You could even use both in a single program

Each screen size has special uses. The 40-colum screen is the sanme size
the Commodore 64 uses. Wth the 40-col um screen you can use the Commodore
128's full graphic capabilities. You can draw circles, graphs, sprite
characters, boxes and ot her shapes in high resolution or nmulticolor graphic
modes. You can al so use sprites

[f you are using 80-colums, you get twice the number of characters per
programline. In 80-colum node you can use the standard graphic characters
and col ors availabl e through the keyboard

You can also wite programs using two nonitors to take advantage of both
screen display formats with each monitor screen performing different as-
pects of the program For exanple, text output could be displayed on the
80-col umm moni tor while graphics output could be seen on the 40-col um
noni t or

THE 40/ 80 KEY

You can use the {40/80 display} key to set the screen width as either 40 or
80 colums. Pressing this key will only have an effect when one of the fol -
lowing actions is taken

1. The power is turned ON
2. The {reset} button is pressed
3. The {run/stop} and {restore} buttons are pressed simultaneously.

The {40/80 display} key acts like a {shift lock} key: it Iocks when you
press it, and does not release until you press it again. If this key is up
(not pressed) when one of the three conditions above occurs, the screen is
set to 40 colums. If you press the key down, causing it to lock, and one
of the three conditions |isted above then occurs, the screenis set to 80
colums. Once the conmputer is running in one screen format (40- or 80-
colums), you cannot switch to the other format using the {40/80 display}
key. In this case you nust press and rel ease the {esc} key and then press

the {X} key.

8-3

USI NG PREPACKAGED 80 COLUWN SOFTWARE

Mbst CP/ M prograns utilize an 80-colum screen, as do many of the other
busi ness application packages you can use in C128 node. Since the width of
a normal printed page is 80 colums, an 80-col um wordprocessor can display
information on the screen exactly as that information will appear on paper.
Spreadsheet programs often specify an 80-colum format, in order to provide
enough space for the necessary col ums and categories of information. Many
dat abase packages and tel ecommuni cations prograns al so require or can use
an 80-col um screen.

CREATI NG 80 COLUMN PROGRAMS

In addition to running prepackaged software, the 80-colum screen width can
be useful in designing you own prograns. You've probably noticed what hap-
pens when you type a line that is wider than 40 col ums on a 40-col um
screen. The lines "wap around", that is, the continue onto the next screen
line. This may cause confusion in reading the line, and can even lead to
progamming errors. An 80-col umm screen hel ps elininate these problenms. In
general, an 80-colum screen allows for a clearer screen and better organi-
zation.

USING 40 AND 80 COLUWNS TOGETHER

The main advantage of 40-colum conposite video is the availability of bit
mapped graphics, while 80-col utms gives you output for word processing and
ot her business applications. If you have two nonitors, you can wite pro-
grams that are "shared", using the text features 80-colums affords you and
the graphics of 40-colums. A special command (GRAPH C 1,1) can be used
within a programto transfer the execution of graphics commands to the 40-
colum display. If you have a dual nonitor (one that can display both 40-
and 80-colums format) you can place GRAPHIC 1,1 statements in your program
so that graphics will be output in 40-colum screen format. In order to
view the graphic output, however, you will need to change the video switch
on the monitor to 40-colums. If you wite a programlike this, it mght

be a good idea to include on-screen directions to the user to change the

vi deo switch.

8-4

For exanple, you might wite a program which asked the user to input data,
then create a bar graph based on the user's input. The nessage "CHANGE TO
40 COLUW TO VI EW GRAPH' woul d tell the user to switch nodes and see the
results.

As noted previously, you can switch between 80- and 40-colum formats after
pover-up, with the {esc x} sequence.

The foll owi ng exanpl e shows how dual screens can be used within a program

10 GRAPHI C 5, 1: SCNCLR
CLEAR IT
20 PRINT "START IN 40 COLUWN BY SELECTING THE COMPOSI TE VI DEC!
30 PRINT "INPUT OF YOUR DUAL MONI TCR."
40 PRINT
50 PRINT "PRESS THE RETURN KEY WHEN READY."
60 GETKEY AS$: | F A$ <> CHR$(13) THEN 60
70 GRAPH C 2,1 ' REM SELECT SPLI T SCREEN MODE
80 CHAR 1,8,18,"BI T MAP/ TEXT SPLIT SCREEN'
90 FOR | = 70 TO 220 STEP 20: CIRCLE 1,1, 50, 30, 30: NEXT |
100 PRI NT
110 PRINT " SWTCH TO 80 COLUWN BY SELECTING THE"
120 PRINT " RGBI VIDEO I NPUT CF YOUR DUAL MONI TCR "
130 PRINT " THEN PRESS THE RETURN KEY WHEN READY."
140 GETKEY A$:|F A$ <> CHR$(13) THEN 140
150 GRAPHIC 5, 1
COLUWN
160 FOR J = 1 TO 10
170 PRINT "YOU ARE NOW N 80 COLUWN TEXT MODE."
180 NEXT J: PRINT
190 PRINT " NOW SW TCH BACK TO 40 COLUWN QUTPUT. "
200 PRINT "PRESS THE RETURN KEY WHEN READY."
210 GETKEY A$: | F A$ <> CHR$(13) THEN 210
220 GRAPHIC 0, 1
COLUWN
230 PRINT
240 FOR J = 1 TO 10
250 PRINT " YOU ARE NOWIN 40 COLUWN TEXT OUTPUT."
260 NEXT J
270 END

*REM SWTCH TO 80 COLUW AND

: REM SWTCH QUTPUT TO THE 80

: REM SWTCH QUTPUT TO THE 40

8-5

Each screen display format offers certain advantages; yet the two types of
di splays can be conbined in a programto conpl enment each other. Using a 40-
col um screen, you can get the full power of advanced BASIC graphics. The

80-col um di splay gives you nore space for your own programs. In addition,
it lets you run the wide variety of software designed to run on an 80-

col um screen.

RS R R SRR SRR EEREEREE R RS RERRREERREERREERRERRRERRERRERRERRRERRERRERREREREREEEEEE]

This section of this chapter have introduced you to the many features and
capabilities provided by the Commodore 128 in C128 node. The fol | owi ng
chapter tells you how to use the Cormodore 128 in C64 node.

8-6

CHAPTER

USING C64 MCDE

SECTION 9
Using the Keyboard in C64 Mde

USING BASIC 2. 0 oot
KEYBOARD CHARACTER SETS ...t
USING THE TYPEWRI TER-STYLE KEYS ... e
USING THE COMVAND KEYS . ..ottt e
MVING THE CURSOR IN G864 MODE\ttt

PROGRAMM NG FUNCTI ON KEYS IN C64 MODEo

9-1

USING BASIC 2.0

The entire BASIC 2.0 |anguage built into the Cormodore 64 conputer has been
incorporated into the BASIC 7.0 | anguage of the Commodore 128. You can use
BASI C 2.0 commands in both C128 and C64 nodes. Refer to Sections 3 and 4 in
Chapter 2 for a description of these conmands.

KEYBCARD CHARACTER SETS

In the keyboard illustration in Section 3 the outlined key areas contain
the

keys that can be used in C64 Mde. The keyboard in C64 Mbde has the sane
two

character states as in Cl28 Mde:

- Upper case/ graphi ¢ character set
- Upper/lower case character set

When you enter C64 Mde, the keyboard is in the upper case/graphic charac-

ter set, so that everything you type is in capital letters. In C64 Mde you
can only use one character set at a tinme. To switch back and forth between

character sets, press the {shift} key and the {C=} key (the COWODCRE key)

at the same tine.

USI NG THE TYPEWRI TER- STYLE KEYS

As in C128 Mde, you can use the typewiter-style keys in C64 Mde to type
both upper case letters (capitals) and |ower case letters (small letters).
You can al so type the nunerals shown in the top row on the main keyboard.
In addition, you can type the graphic synbols on the front of the keys.

USI NG THE COMVAND KEYS

Mbst COWMAND keys (i.e. the keys that send messages to the conputer, like
{return}, {shift}, {ctrl}, etc.) work the same in C64 Mde as they do in
C128 Mode.

The only difference is that in C64 Mde, you can only nove the cursor by

using the two {crsr} keys at the bottomright corner of the main keyboard.
In C128 Mbde, you can also use the four arrow keys |ocated just above the
top right side of the main keyboard.

9-3

MVI NG THE CURSCR I N C64 MODE

In C64 Mbde, you use two {crsr} keys on the main keyboard and the {shift}
key to move the cursor, as described in Section 3.

PROGRAMM NG FUNCTI ON KEYS IN C64 MODE

The four keys to the right side of the keyboard, just above the numeric
keypad, are called function keys. The keys are marked F1, F3, F5 and F7 on
the tops and F2, F4, F6 and F8 on the fronts. These keys can be progranmed
- that is, they can be instructed to performa specific task or function.
For this reason these keys are often called programmable function keys.

You nust hold down the {shift} key to performthe functions associated with
the markings on the front of the keys - that is, F2, F4, F6 and F8. There-
fore, these keys are sonetinmes called the SH FTed progranmabl e function
keys.

The function keys in C64 Mbde do not have a printed character assigned to
them They do, however, have CHR$ codes assigned. In fact, each of them has
two CHR$ codes - one for when you press the key by itself, and one for when
you press the key while holding down the {shift} key. To get the even-
nunbered function keys, hold down the {shift} key while pressing the func-
tion key. For exanple, to get {f2}, hold down {shift} and press {f1}.

The CHR$ codes for the F1-F8 keys range from 133 to 140. However, the codes
are not assigned to the keys in numerical order. The keys and their corres-
poning CHR$ codes are as fol | ows:

{f1} CHRS(133)
{f2} CHR$(137)
{f3} CHRS(134)
{(f4) CHRS(138)
{f5) CHR$(135)
{f6}) CHRS(139)
{f7} CHRS(136)
{18} CHRS(140)

9-4

You can use the function keys in your programin several ways. To do this,
you need to use the GET statenent. (See Section 5 for a description of the
GET statement.) As an exanple, the program bel ow prepares the {f1} key to
print a message on the screen.

10 ?"PRESS F1 TO CONTI NUE"
20 GET A$:|F A$="" THEN 20
30 | F A$<>CHR$(133) THEN 20
40 ?"YOU HAVE PRESSED F1"

Lines 20 and 30 do most of the work in this program Line 20 makes the com
puter wait until a key is pressed before executing any nore of the program
Note that when the command immediately after THEN is a GOTO only the line
nunber is necessary. Also note that a GOTO conmand can GOTO the sane |ine
it is on. Line 30 tells the computer to go back and wait for another key to
be pressed unless the {f1} key has been pressed.

9-5

SECTI ON 10
Storing and Reusing Your Programs in C64 Mbde

FORMATTING A DISK IN C64 MODE 10-
THE SAVE COMMAND . ..ot et e et e e e e e e e e e e e e e 10-
SAVEI NG 0N DiSK ..ot e 10-
SAVEI NG 0N CaSSEEt @ ..\ttt e 10-
THE LCAD AND RUN COMMANDSottt ettt e 10-
LOADing and RUNning fromDisk 10-
LOADi ng and RUNning from Cassettecoiiiinnniiiiinnnn... 10-
OTHER DI SK- RELATED COMMANDSottt ettt 10-
Verifying a Programo 10-
Displaying Your Disk Directory......ccovvuuiiiineeeeiiiiinnnenn. 10-

Initializing @a Disk Drive ... 10-

10-1

Once you have edited a program you will probably want to store it
permanent |y so that you will be able to recall and use it at some later
time. To do this you need either a Cormodore disk drive or the Conmodore
Dat assette.
FORMATTING A DI SK I N C64 MODE
To store prograns on a new (or blank) disk, you nust first prepare the disk
to receive data. This is called formatting the disk. Make sure that you
turn on the disk drive before inserting any disk.
To format a blank disk, in C64 Mde, you type this command:

OPEN 15, 8, 15: PRI NT#15, "NO: NAME, | D' {return}
In place of NAME, type a disk nane of your choice; you can use up to 16
characters to identify the disk. In place of 1D, type a two character code

of your choice (such as W2 or 10).

The cursor disappears during the formatting process. Wen the cursor blinks
again, type the follow ng conmand:

CLOSE 15 {return}
NOTE: Once a disk is formatted in C64 or Cl128 node, that disk can be used
in either node.
THE SAVE COWAND

You can use the SAVE command to store your prograns on disk or tape.

SAVEi ng on Di sk

If you have a Commmdore single disk drive, you can store your program on
di sk by typing:

SAVE " PROGRAM NAME", 8 {return}
The {8} indicates to the conputer that your are using a disk drive to store

your program

10-3

The sane rul es apply for the PROGRAM NAME whet her you are using di sk or
tape. The PROGRAM NAME can be anything you want it to be. You can use let-
ters, nunbers and/or symbols - up to 16 characters in all. Note that you
must encl ose the PROGRAM NAME in quotation marks. The cursor on your com
puter disappears while the programis being SAVEd, but it returns when the
process is conpl et ed.
SAVEi ng on Cassette
If you are using a Datassette to store your program insert a blank tape in
the recorder, rewind the tape (if necessary) and type:

SAVE " PROGRAM NAME' {ret urn}
THE LOAD AND RUN COVMANDS
Once a program has been SAVEd, you can LOAD it back into the conputer's
menory and RUN it anytinme you wi sh.

LOAD ng and RUNni ng from Di sk

To load your programfroma disk, type:
LOAD "PROGRAM NAME", 8 {return}

Again, the {8} indicates to the conputer that you are working with a disk
drive.

To RUN the program type RUN and press {return}

LOADI ng and RUNning from Cassette

To LOAD your program from cassette tape, type:
LOAD "PROGRAM NAME" {return}

If you do not know the name of the program you can type:
LOAD {return}

and the next progamon the tape will be retrieved.

10- 4

You can use the counter on the Datassette to identify the starting position
of the programs. Then, when you want to retrieve a program sinply wind the
tape forward from000 to the programs start |ocation, and type:

LOAD {return}

In this case, you do not have to specify the PROGRAM NAME; your program
will load automatically because it is the next programon the tape.

NOTE: During the LOAD process, the program being LOADed is not erased
fromthe tape; it is sinply copied into the computer. However, LOAD ng
a program autonatical |y erases any BASIC programthat may have been in
the conputer's menory.

OTHER DI SK- RELATED COMVANDS

Verifying a Program

To verify that a program has been correctly saved or |oaded, type:

VERI FY " PROGRAM NAME', 8 {return}

[f the programin the conputer is identical to the one on the disk, the
screen display will respond with the letters {OK}.

The VERIFY conmand al so works for tape progranms. You type:
VERI FY " PROGRAM NAME" {ret urn}
Note that you do not enter the comma and the nunber 8, since 8 indicates
that you are working with a disk program
Di spl ayi ng Your Disk Directory
To see a list of the prograns on your disk, first type:
LOAD "$", 8 {return}
The cursor disappears during this process. Wen the cursor reappears, type:

LI ST {return}

10-5

Alist of the prograns on your disk then will be displayed. Note that when
you load the directory, any programthat was in menory is erased.

Initializing a Disk Drive

If the disk drive's ready light is blinking, it indicates a disk error. You
can restore the disk drive to the condition it was in before the error oc-
curred by using a procedure called INTITIALIZING To initialize a drive,

you type:
OPEN 1,8,15,"1": CLOSE 1 {return}

I[f the light is still blinking, remove the disk and turn the drive off,
then on.

For further information on SAVEing and LOADi ng your prograns, refer to your
di sk drive or Datassette manual. Al so consult the LOAD and SAVE command
descriptions in the Chapter V, BASIC 7.0 Encycl opaedi a.

10-6

CHAPTER

4

USI NG C/ PM MCODE

SECTION 11
Introduction to CP/M3.0

VHAT CPIM 3.0 1S o 11-3
VWHAT YOU NEED TORUN CPIM 3.0 ..ottt 11-3
WHAT IS ON YOUR CPIM 3.0 DISK ..ot 11-4
P M. QY S 11-4
0P, COM .ttt e e e 11-4
OO i L S o 11-6
QLher FileS o 11-6
GETTING STARTED WTH CPIM 3.0 ..ottt 11-6
Loading or Booting CPIM 3.0 ... 11-6
The Opening CP/M Screen Displaycovvviiiiiieniiiine.. 11-7
THE COMMAND LINE ..o e e 11-8
Types of COMMBNAS e 11-9
How CP/ M Reads Command Linesouirviniiininnnnnnennnn. 11-9
HONTO COPY YOUR CPIM 3.0 DISK ...\t 11-11
Formatting @ Disk ... e 11-11
Copying Fil @S ..o 11-11
LANGUAGES AND APPLI CATION SOFTWARE e 11-12
WAt TO BUY .o 11-12
How To Install It on Your CI28 oo 11-14

11-1

WHAT CPIM 3.0 IS

CP/Mis a product of Digital Research, Inc. The version of CP/Mused on the
Commodore 128 is CP/MPlus Version 3.0. In this chapter, CP/Mis generally
referred to as CP/M 3.0, or sinply CPA/M This chapter summarizes CP/M on
the Commodore 128. For detailed information on CP/M 3.0, followthe
instructions on the coupon enclosed in the box in which the Conmodore 128
is supplied.

CP/IM 3.0 is a popul ar operating systemfor mcroconputers. As an operating
system CP/M 3.0 manages and supervises your conputer's resources, inclu-
ding nenory and disk storage, the console (screen and keyboard), printer,
and conmuni cation devices. CP/M 3.0 al so manages information stored in disk
files. CPFM 3.0 can copy files froma disk to your conputer's nenory, or to
a peripheral device such as a printer. To do this, CP/M3.0 places various
programs in nenory and executes themin response to commands you enter at
your consol e. Once in nemory, a program executes a set of steps that
instruct your conputer to performa certain task.

You can use CP/Mto create your own prograns, or you can choose fromthe
wide variety of available CP/M 3.0 application prograns.

WHAT YOU NEED TO RUN CP/M 3.0

The general hardware requirenents for CP/M 3.0 are a computer containing a
Z80 microprocessor, a console consisting of a keyboard and a display
screen, and at |east one floppy disk drive. For CP/M 3.0 on the Conmodore
128 Personal Conputer, the Z80 microprocessor is built-in; the console
consists of the full Conmodore 128 keyboard, and an 80-col um nonitor; and
the disk drive is the new Conmodore 1571 fast disk drive. In addition,
there is either one or two CP/ M disks packed with the computer. If two CP/M
di sks are supplied, one contains the CP/M 3.0 systemand an extensive HELP
utility program and the other contains a nunber of other utility prograns.
If one CP/Mdisk is supplied, the systemand HELP utility are on one side
of that disk and the utility programs are on the other.

11-3

Note: Although CP/Mcan be used with a 40-colum nonitor, the display
is 80 colum but with only 40 colums displayed at one tine. To view
all 80 colums of the display, you nust scroll the screen

horizontal Iy by pressing the {ctrl} key and the appropriate cursor
key ({crsr left} or {crsr right}).

WHAT IS ON YOUR CP/M 3.0 DI SK
CP/ Mr. SYS

This is the min CP/MPlus systemfile. It contains all parts of the system
that remain permanently resident in menory: the Basic Input/Qutput System
(BI'CS) which loads into the top of nmenory, the Basic Disk Qperating System
(BDOS) which loads into nenory i mediately bel ow BIGS, and the System Para-
meters which load into the bottom page of menory.

CCP. COM

On booting CP/Mthe Consol e Command Processor (CCP) is |oaded into menory

i medi ately bel ow the BDOS. The rensining nenory, below CCP and above page
0, is known as the Transient Program Area (TPA) and is where applications
are loaded to. CCP is the program which processes any input (usually en-
tered fromthe keyboard) in response to the systempronpt (A>). It contains
6 built-in commands (listed in Table 14-1 on page 14-4), and al so supports
the 14 consol e editing commands (listed in Table 13-1).

Any word entered in response to the system pronmpt which is not one of the
built-in commands is treated by CCP as a transient command, so CCP attenpts
to find and execute a file named as that word with the .COMextension. |f
it does not find such a file on the currently |ogged disk, it displays the
word followed by a question mark then brings back the system pronpt.

[f more than one word is entered in response to the systempronpt, all
words after the first are treated as paraneters to be passed to the tran-
sient command.

A language or application programis |oaded and run by invoking it as if it
was a conmand. All CP/Mprograns include a .COMfile

11-4

WHAT I'S ON YOUR CP/M 3.0 DI SK

show b:
B: RW Space

Asdit [full]

Scanning Directory..
Sorting Directory..
Directory for Drive A User

Name Bytes

DR .COM 15k
HELP . Com 7k
KEYFIG .COM 10k
PI P . Com 9k

Total Bytes
Total 1k Bl ocks

Asdit b: [full]

336k

Rec

S

0
Attributes Name
Dr RW CPM+ . SYS
Dr RW FORMAT . COM
Dr RW HELP . HLP
Dr RW KEYFIG .HLP

165k Total Records =

Scanning Directory...

Sorting Directory..

Directory for Drive

GET .COM 14k
PATCH . COM 6k
PUT .COM 14k

SAVE . CoM 4k
SETDEF . COM 8k
SUBMT .COM 12k

Total Bytes =
Total 1k Blocks =

165 Used/Max Dir Entries For Drive A
B: User 0
Recs Attributes Nane Bytes
25 Dir RW DATEC .ASM 2k
3 Dir RW DEVICE .COM 16k
114 Dir RW DIRLBL .RSX 4k
8 Dir RW ED .COM 20k
29 Dir RW GENCOM . COM 30k
51 Dir RW INNTDIR . COM 64k
19 Dir RW PIP . Com 18k
55 Dir RW RENAMVE . COM 6k
14 Dir RW SET . Com 22k
32 Dir RW SHONW .COM 18k
42 Dir RW TYPE . Com 6k

314k Total Records =

314

Used/Max Dir Entries For Drive A

11-5

Byt es

Recs

1291 Files Found =

15/

Recs

1168 Files Found =

23/

Attrib.

Attrib.

22
64

22222222222

.COM Files
The other .COMfiles all contain transient commands (listed in table 14-2).

HELP. COM di spl ays messages, held in HELP. HLP (whose extension indicates it
is adata file, not a programfile), about the C128 CP/Msystemand its
conmands. |f you are not familiar with CP/Mand have no other manuals or
books about it, you may find it useful to print out any HELP you | ook at.
Pressing {ctrl} and {p} CAUSES any screen output also to go to the printer:
pressing {ctrl}{p} again turns off this facility.

Enter HELP for the Iist of subjects covered, or HELP C128_CP/Mfor informa-
tion specific to this inplenmentation. (The character in the nmiddle of

Cl28 CPIMis obtained by pressing the {left arrow; key at the top left of
the keyboard.) If you are printing and do not want pauses after each
screenful, then enter HELP C128_CP/ M [NOPAGE] .

CGther Files

.ASMindicates an Assenbl er source file.

.RSX indicates a Resident SystemeXtension, which is a file automatically
| oaded by a command file as and when it is needed.

GETTI NG STARTED WTH CP/M 3.0

The fol | owi ng paragraphs tell you howto start or "boot" CP/M 3.0, howto
enter and edit the command |ine, and how to make back-up copies of your
CP/M 3.0 disks.

Loadi ng or Booting CP/M 3.0

Loadi ng or "booting" CP/M 3.0 means reading a copy of the operating system
fromyour CP/M 3.0 SystemDisk into your conputer's nenory.

You can boot CP/M 3.0 in several ways. If your conputer is off, you can
boot CP/Mby first turning on your disk drive and inserting the CA/M3.0
system di sk, and then turning on the conputer. CP/M 3.0 then | oads autone-
tically. If you are already in C128 BASIC node, you can boot CP/M 3.0 by

11-6

inserting the CP/Msystemdisk into the drive, typing the BASIC command
BOOT and then pressing {return}. CP/M 3.0 then loads. In CL28 mode, you can
al so boot CP/Mby inserting the System Disk and pressing the {reset}
but t on.

If you are in C64 node, and you want to enter CP/Mnode, first turn off the
conputer. The insert the CP/M SystemDisk into the drive and turn on the
conputer.

Caution: Always nmake sure that the disk is fully inserted in the drive
before you close the drive door.

In CP/M3.0 on the Conmodore 128, the user has a 59K TPA (Transient Program
Area), which is, in effect, user RAM

The Opening CP/M Screen Di spl ay

After CP/Mis loaded into menory, a message simlar to the following is

di spl ayed on your screen:

CP/M 3.0 On the Conmodore 128 3 JUNE 85 |
80 col um di spl ay |

R A0L 10 |

11-7

An inportant part of the opening display is the follow ng two-character
nessage:

A

This is the CPIM 3.0 system pronpt. The systempronpt tells you that CP/M
is ready to read a command entered by you fromyour keyboard. The pronpt
also tells you that drive Ais your default drive. This neans that until
you tell CP/Mto do otherwise, it looks for programand data files on the
disk indrive A It also tells you that your are logged in as user 0, sim
ply by the absence of any user nunber other than 0.

Note: In CP/Ma single disk drive is identified as drive A This is equi-
valent to unit 8, drive 0 in C128 and (64 nodes. Usual ly, the maxi mum
number of drives in CPIMis four. Additional drives are identified as
drives B, C, etc.

THE COWAND LI NE

CP/M 3.0 perforns tasks according to specific conmands that your type at
your keyboard. These Commands appear on the screen in what is called a
command line. A CP/M3.0 conmand |ine is composed of a command keyword and
an optional command tail. The command keyword identifies a command (pro-
gram to be executed. The command tail can contain extra information for
the command, such as a filenane or paraneters. The follow ng exanpl e shows
a command |ine.

A>DIR MYFILE

In this exanple, DIRis the command keyword and MYFILE is the command tail.
To send the command line to CP/M 3.0 for processing, press the {return}
key.

As you type characters at the keyboard, the appear on your screen. The
cursor noves to the right as you type. If you make a typing error, press
either the {inst/del} key or CTRL-H to nove the cursor to the left and
correct the error. CTRL is the abbreviation for the {ctrl} key. To specify
a control character, hold down the {ctrl} key and press the appropriate
letter key. (A list of control characters and their uses is givenin
Section 13.)

11-8

You can type the keyword and command tail in any conbination of upper-case
and | ower-case letters. CPFM3.0 interprets all letters in the command |ine
as being upper case.

General ly, you nust type a conmand line directly after the system pronpt.
However, CP/M 3.0 does al |l ow spaces between the pronpt and the command
keywor d.

Types of Commands

CP/M 3.0 recognizes two different types of commands: built-in commands and
transient utility commands. Built-in commands execute progranms that reside
innmenory as a part of the CP/Moperating system Built-in commands can be
executed immediately. Transient utility commands are stored on disk as pro-
gramfiles. They nust be loaded fromdisk to performtheir task. You can
recogni ze transient utility programfiles when a directory is displayed on
the screen, because their filenames are followed by a period (full stop)
and COM (. COM. Section 14 presents lists of CP/Mbuilt-in and transient
utility commands.

For transient utilities, CP/M3.0 checks only the command keyword. Many
utilities require unique conmand tails. If you include a conmand tail, CP/IM
3.0 passes it to the utility without checking it. A command tail cannot
contain nore than 128 characters.

How CP/ M Reads Conmand Li nes

Use the DIR command to denonstrate how CP/Mreads command |ines. DIR which
is an abbreviation for directory, tells CP/Mto display a directory of disk
files on your screen. Type the DIR keyword after the system pronpt, and
press the {return} key:

ASDIR {return}

CP/ M responds to this command by displaying the nanes of all the files that
are stored on whatever disk is in drive A For exanple, if the CP/Msystem
disk isinthe disk drive A, alist of filenames like this appears on your
screen:

A PIP COM ED COM CCP COM HELP COM HELP HLP
A DIR COM CPM SYS

11-9

CP/ M recogni zes only correctly spelled conmand keywords. |f you make a
typing error and press {return} before correcting your mstake, CP/M3.0
repeats or "echoes" the command line followed by a question mark. For
exanpl e, suppose you mistype the DIR conmand, as in the follow ng exanple:

ASDIR {return}
CP/Mreplies with:

DIR?
This tells you the CP/Mcannot find a command keyword spelled DIJR To cor-
rect typing errors like this, you can use the {inst/del} key to delete the
incorrect letters. Another way to delete characters is to hold down the
{ctrl} key and press {h} to nove the cursor to the left. CP/Mprovides a
nunber of other control characters that help you edit command |ines.
Section 13 tells howto use the control characters to edit conmand |ines
and other information you enter at your console.
DIR accepts a filename as a command tail. You can use DIRwith a filenane
tosee if a specific fileis on the disk. For exanple, to check that the
file MFILE is on your disk, type:

ASDIR MYFILE {return}

CPIM 3.0 perforns this task by displaying either the name of the file you
specify, or the nmessage:

No File

Be sure you type at |east one space after DIR to separate the command
keyword fromthe command tail. If you do not, CP/M 3.0 responds as foll ows:

A>DI RWFI LE {return}
DI RWYFI LE?

11-10

HOW TO COPY YOUR CP/M 3.0 DI SK

Bef ore doing anything el se you shoul d back-up your CP/ M systemdisk. This
can be done using either one or two disk drives. If using two disk drives
these may be 1541s, 1571s, or one of each. The back-up disks can be new or
used. You can either format new disks, or reformat used disks. To nmake
back-ups use the FORMAT and PIP utility prograns found on you CP/ M system
di sk.

1) Format the diskette using the FORMAT program as either C128 single
sided (if using a 1541) or Cl128 double sided (if using a 1571). (The
C64 single sided option is for formatting disks conpatible with the
CP/'M 2.2 package once sold for the Conmodore 64.)

Enter the conmand FORMAT, select the required disk type with the

{crsr down} key, press {return}, and follow the onscreen instructions.
Press {y} (Yes) or {n} (No) in response to the 'Do you want to format
anot her disk' question.

2) Use the Peripheral Interchange Program (PIP) - on the second surface
of the original disk - to copy files. Enter PIP and the usual system
pronpt (A>) will be replaced by the PIP pronpt (*).

If you have a single disk drive use drive A as the source drive and drive E
as the destination drive. Drive Eis referred to as a virtual drive - that
is, it does not exist as an actual piece of hardware. Put the disk to be
copied fromin the drive and enter

E=A*.*

(You will be pronpted each time the source disk and the destination disk
have to be swopped.)

If you have two disk drives, put the source disk in drive A (whichis
device 8) and the newy formatted disk in drive B (device 9 - set by put-
ting the left DIP switches on the back of the 1571 down while the drive is
switched off) and enter

Bi=A*.*
to copy all the files.
Your original CP/Mdisk is aflippy - i.e. recorded as 2 single sides, so
it nust be taken out of the drive and turned over to get at the second
side. This is required for use in a 1541, which is a single sided drive. If

you have a 1541 you shoul d copy the 2 surfaces onto 2 separate disks. How

11-11

ever, if you have a 1571 you will find it convenient to copy both surface
onto a standard doubl e sided disk: after copying the first side, turn over
the original disk and copy the second side onto the same destination disk
by again entering the copy instruction in response to the PIP pronpt.

You may sometinmes want to nmake disks that just have the systemfiles on
them To do this use PIP to copy the files CPMr. SYS and CCP.COMto the
newy formatted disk.

Note: Only disks that you intend to use to boot CP/M need these 2
files on them- putting themon other disks wastes space.

Wth a single drive, enter
E: =A: CPMt. SYS

to copy the first file and then
E: =A: CCP. COM

to copy the second file.

When you have finished PIP, press {return} to return fromthe PIP pronmpt to
the system pronpt.

A full description of PIP can be obtained by entering HELP PIP, HELP
PIP_CPTIONS and HELP PI P_EXAMPLES.

LANGUAGES AND APPLI CATI ON SOFTWARE

CP/Mis just an operating system that is a means to an end - not an end in
itself. Onits own it does not do anything useful. If you want to wite
your own progranms you will need a |anguage, either assenbler or high level,
inwhichtowite them If you want to play ganes or do business work you
will need application prograns.

Wat To Buy

Because CP/M has been inplenented on al nost every computer ever designed
that used the Intel 8080 or the Zilog Z80 cpu, there is a very large
amount of software available for running on CP/Msystems. The nost conpre-
hensi ve catal ogue of commercial software is the ' CP/M Software Finder' pu-

11-12

blished for Digital Research by Que Corporation and available through good
software retailers (ISBN 0-88-022-021-X). Since it is not convenient for
the CP/M Users Goup to supply its library on Conmodore format disks, a
sel ection of public domain CP/Msoftware has been made availabl e through
the independent Conmodore Products Users Group (1 CPUG, for which member-
ship application forms can be obtained by sending an s.a.e. to Membership
Secretary, I1CPUG 30 Brancaster Rood, Newbury Park, Ilford, |& T7EP,

Engl and.

CP/M normal |y uses Mdified Frequency Mdul ation (MM ot record on disks.

Commodor e DOS normal |y uses Group Code Recording (GCR). The Commodore 1571

di sk drive can read both, but the ol der 1541 can only read GCR. Of-the-

shel f CP/ M software packages only come as MFM disks. Even with MFMthere

are many different formats: the 1571 can read disks formatted for:

Epson QX10 (512 byte sectors, double sided,

10 sectors per track)

IBM8 SS (CP/M86) (512 byte sectors, single sided,
8 sectors per track)

IBM8 DS (CP/M86) (512 byte sectors, double sided,
8 sectors per track)

IBM9 SS (CP/M86) (512 byte sectors, single sided,
9 sectors per track)

IBM9 DS (CP/M86) (512 byte sectors, double sided,
9 sectors per track)

KayPro |1 (512 byte sectors, single sided,
10 sectors per track)

KayPro 1V (512 byte sectors, double sided,
10 sectors per track)

Gsborne DD SS (1024 byte sectors, single sided,
5 sectors per track)

Gsborne DD DS (1024 byte sectors, single sided,

5 sectors per track)

Theref ore when buying CP/M software you nust buy it on a disk in one of the
above formats. Also, be aware that your C128 will run software witten to
run under either CP/M2.2 or CP/MPlus (which is the newer name for what
was originally known as version 3). However, CP/M86 is the version of CP/M
designed for use on 16-bit processors: CP/M86 software will not run on
your Cl128's 8-bit Z80 processor, although the 1571 drive will let you read
CP/M 86 data files.

11-13

[f you only have a 1541 disk drive you will have to get any software you
buy transferred from MM format to (Conmodore) GCR format. Some software
retailers may be willing to do this for you, but there will probably be a
copying charge. Alternatively, you may find that your local |CPUG group
provides facilities to do this at its meetings.

How To Install It on Your C128

Because there are so many different conputers using the CP/M operating sys-
tem many CP/M prograns have to be configured for the particular hardware
on which they are to be used. The process of installing a programon your
C128 involves setting paraneters within the software. The program manual
will describe howto install the programif this is required. Mst prograns
provide a list of common termnals which they support. If ADVB1 appears in
this list, select it. If not, your will have to do a custominstallation.

Listed below are the entries that should be made when running WNSTALL. COM
(the installation programthat is part of the Wrdstar package). These al so
provide the information that will be needed for installing other prograns,

although not all packages ask the same questions.

Terminal nanme Commodore 128
Screen size
Screen hei ght 24
Screen width 80
Cursor positioning
Function code sequence 1Bh 3Dh
Characters to be sent between |ine
nunber and col urm nunber none
Characters to be sent after line
nunber and col urm nunber none
I's the col um nunber sent before
the |ine number? NO
VWhat character is sent to the
termnal to signify line 1? 20h
VWhat character is sent to the
termnal to signify colum 1? 20h

What types of code are sent to

signify line and col um nunbers? Single byte BINARY val ue

11-14

Termnal start-up

Function code sequence 1Bh 59h 1Bh 1Bh 1Bh 60h
Termnal exit

Function code sequence none
Hi ghl i ght-on

Function code sequence 1Bh 1Bh 1Bh 52h
Hi ghl i ght - of f

Function code sequence 1Bh 1Bh 1Bh 51h
Erase to End of Line 1Bh 54h
Del ete Line 1Bh 52h
Insert Line 1Bh 45h
Does your terminal use last character

on screen as a scroll commnd? YES

Mbst Cormmodore printers require installation as a Standard Printer with NO
Communi cations Protocol and Primary list device as the Printer Driver.

Note: The h against the nunbers above indicate that they are hexadeci nal
nunbers (using base 16 instead of the decimal base 10).

11-15

SECTION 12
Files, Disks, and Drives in CP/M3.0

VHAT [S A FILE? 12-3
CREATING A FILE .o e 12-3
NAM NG A FLLE .. e 12-4
File Specification e 12-4
Drive SpeCifier ..o 12-4
Filename 12-4

Fi LB Y P oo 12-4
PSSO O . .t 12-5
Sanple File Specificationcooiiiiiiiiiniiinn... 12-5
User NUMDEr .o 12-5
Using Wldcard Characters to Access Mre Than One File 12-6
Reserved CharaCt ersoouiii e 12-7
Reserved Fil etypes ... 12-7

12-1

WHAT IS A FILE?

One of CP/Ms nost inportant tasks is to access and maintain files on your
disks. Files in CP/Mare fundanentally the same as in Cl128 or C64 nodes -
that is, they are collections of information. However, CP/Mhandles files
somewhat differently than do C128 and C64 nodes. This section defines the
two types of files used in CP/M tells howto create, name, and access a

file, and describes how files are stored on your CP/M disks.

As noted above, a CPPM 3.0 file is a collection of information. Every file
nust have a unique name by which CP/Midentifies the file. Adirectory is
al so stored on each disk. The directory contains a list of the filenanmes
stored on that disk and the |ocations of each file on the disk.

There are two kinds of CP/Mfiles: program (command) files, and data files.
A programfile contains a series of instructions that the conputer follows
step-by-step to achi eve sone desired result. A data file is usually a col -
lection of related information (e.g. a list of names and addresses, the
inventory of a store, the accounting records of a business, the the text

of a docunent).

CREATING A FILE

There are several ways to create a CP/Mfile. One way is to use a text edi-
tor. The CP/Mtext editor EDis used to create and nane a file. You can
also create a file by copying an existing file to a new location; you can
renane the file in the process. Under CP/Myou can use the PIP command to
copy and renane files. Finally, some programs (such as MAC, a CP/ M machine
| anguage program) create output files as they process input files.

The ED and PIP commands are summarized in Section 14, together with other
commonly used CP/ M commands. Details on these and all other CP/M 3.0 com
mands may be found in the CP/MPlus User's Guide, which you can obtain by
following the instructions on the coupon enclosed in the box in which the
C128 conputer is supplied.

12-3

NAM NG A FI LE
File Specification

CPIMidentifies every file by a unique file specification. Afile specifi-
cation can have four parts: a drive specifier, a filename, a filetype, and
a password. The only mandatory part is the filenane.

Drive Specifier

The drive specifier is asingle letter (AP) followed by a colon. Each disk
drive in your systemis assigned a letter. Wen you include a drive speci-
fier as part of the file specification, you are telling CP/Mto |ook for
the file on the disk currently in the specified drive. For exanple, if you
enter:

B: MYFI LE {return}

CP/Mlooks in drive B for the file MFILE. If you onit the drive specifier,
CPIM 3.0 looks for the file in the default drive (usually A).

Fi | enanme

A filenane can be fromone to eight characters long, such as:
MYFI LE

Afile specification can consist sinply of a filenane. Wen you meke up a
filenanme, try to let the name tell you sonething about what the file con-
tains. For exanple, if you have a list of customer names for your business,
you coul d name the file:

CUSTOVER

so that the name gives you sone idea of what is in the file.

Filetype

To help you identify files belonging to the same category, CP/Mallows you
to add an optional one- to three-character extension, called filetype, to

the filename. Wen you add a filetype to the filenane, separate the file-

type fromthe filenane with a period.

12-4

Try to use letters that tell sonething about the file's category. For
exanpl e, you could add the following filetype to the file that contains a
list of customer nanes:

CUSTOMVER. NAM

When CP/Mdisplays file specifications, it adds blanks to short filenanmes
so that you can conpare filetypes quickly. The programfiles that CP/M
loads into nmenory froma disk have the filetype COM DO NOT use this file-
type in your own file specifications.

Passwor d

In the Conmodore 128's CP/M 3.0 you can include a password as part of the
file specification. The password can be fromone to eight characters. If
you include a password, separate if fromthe filetype (or filenane, if no
filetype is included) with a senicolon, as follows:

CUSTOVER. NAM ACCOUNT
A password is optional. However, if a file has been protected with a pass-

word, you MUST enter the password as part of the file specification to
access the file.

Sanple File Specification

Afile specification containing all four possible elenents consists of a
drive specification, a prinmary filenane, a filetype, and a password, all
separated by the appropriate characters or synbols as in the follow ng
exanpl e:

A: DOCUMENT. LAW SUSAN {r et ur n}

User Nunber

CPIM 3.0 further identifies all files by assigning each one a user nunber
which ranges from0 to 15. CP/M 3.0 assigns the user nunber to a file when
the file is created. User nunbers allow you to separate your files into 16
file groups.

12-5

The user number always precedes the drive identifier except for user 0,
which is the default user nunber and is not displayed in the pronpt. Here
are sone exanples of user nunbers and their neanings.

4A> User nunber 4, drive A
A> User nunber 0, drive A
2B> User nunber 2, drive B

You can use the built-in conmand USER to change the current user number
like this:

ASUSER 3 {return}
3A>

You can change both the user number and the drive by entering the new user
nunber and drive specifier together at the system pronpt:

A>3B: {return}
3B>

Mbst commands can access only those files that have the current user num
ber. However, if a file resides in user 0 and is marked with a special file
attribute, the file can be accessed fromany user nunber.

Using Wldcard Characters to Access Mre Than One File

Certain CP/M3.0 built-in and transient commands can select and process
several files when special wildcard characters are included in the filenane
or filetype. A wildcard is a character that can be used in place of sone
other characters. CP/M 3.0 uses the asterisk (*) and the question mark (?)
as wildcards. For instance, if you use a {?} as the third character in a
filename, your are telling CP/Mto let the {?} stand for any character that
may be encountered in that position. Simlarly, an {*} tells CP/Mto fill
the filename with {?} question marks as indenticated.

Afile specification containing wildcards is called an anmbi guous filespec
and can refer to nore than one file, because it gives CP/M3.0 a pattern to
match. CP/M 3.0 searches the disk directory and selects any file whose
filename or filetype matches the pattern. For exanple, if you type:

12-6

then CP/M 3.0 selects all files whose filename ended in TAX and whose file-
type is LIB.
Reserved Characters
The characters in Table 12-1 have special meaning in CP/M3.0, so do not
use
these characters in file specifications except as indicated.
Table 12-1. CP/M Reserved Characters
Char act er
<$, ! | >[] filespecification delimters
{tab} {space} »
{carriage return} ,,
drive delimter in file specification

filetype delimter in file specification

; password deliniter in file specification

* 9 wi | dcard characters in an anbiguous file specification
<>&! |\ +- optionlist delimters

[] option list delinmiters for global and local options

() delinmters for nultiple nodifiers inside square brackets

for options that have nmodifiers
I'$ option delimters in a command line
; comment delimter at the beginning of a command |ine
Reserved Filetypes
CP/M 3.0 has already established several file groups. Table 12-2 lists sone

of their filetypes with a short description of each.

12-7

Table 12-2. CP/M 3.0 Reserved Fil etypes

Filetype Meaning

ASM
BAS
CoM
HEX
HLP
3
PRN
REL
SUB
SYM

SYS

Assenbl er source file

BASI C source program

8080, 8085, Z80 or equival ent machine |anguage program
Qutput file from MAC (used by HEXCOM

HELP nessage file

Tenporary file

Print file from MAC or RVAC

Qutput file from RVAC (used by LINK)

List of conmmands to be executed by SUBM T

Synbol file from MAC, RVAC or LINK

Systemfile

12-8

SECTI ON 13
Using the Consol e and Printer in CP/M3.0

CONTROLLING CONSCLE QUTPUT

CONTROLLING PRINTER QUTPUT

CONSCLE LINE EDITING ...

USI NG CONTROL CHARACTERS FCR LI NE EDI TI NG

13-1

This section describes how CP/M 3.0 communi cates with your consol e and
printer. It tells howto start and stop console and printer output, and
edit conmands you enter at your console.

CONTROLLI NG CONSCLE QUTPUT

Sonetimes CP/M 3.0 displays information on your screen too quickly for you
toread it. To ask the systemto wait while you read the display, hold down
the {ctrl} key and press {s}. A CTRL-S keystroke sequence causes the dis-
play to pause. When you are ready, press CTRL-Q to resune the display.

Pressing the {no scroll} key will also pause the systemand place a pause
window on the status line at the bottomof the screen (line 25). To resune
the display, press {no scroll} again. If you press any key besides CTRL-Q
or {no scroll} during a display pause, CP/M 3.0 sounds the console bell.

Sone CP/M3.0 utilities (like DIR and TYPE) support automatic paging at the
console. This neans that if the progranis output is longer than the screen
can display at one time, the display automatically halts when the screen is
filled. When this occurs, CP/M 3.0 pronpts you to press {return} to con-
tinue. This option can be turned on or off using the SETDEF conmand.

CONTROLLI NG PRI NTER QUTPUT

You can al so use a control command to echo (that is, display) console out-
put to the printer. To start printer echo, press CTRL-P. A beep occurs to
tell you that echo is on. To stop, press CTRL-P again. (There is no beep at
this point.) Wile echois in effect, any characters that appear on your
screen are listed at your printer.

You can use printer echo with a DIR conmand to make a |ist of files stored
on a floppy disk. You can also use CTRL-P with CRTL-S and CTRL-Q to nmake a
hard copy of part of a file. Use a TYPE command to start a display of the
file at the console. When the display reaches the part you need to print,
press CTRL-S to stop the display, CTRL-P to enable printer echo, and then
CTRL-Q to resune the display and start printing. You can use anot her
CTRL-S, CTRL-P, CTRL-Q sequence to terminate printer echo.

13-3

CONSCLE LINE EDI TI NG

As noted previously, you can correct sinple typing errors by using the
{inst/del} key or CTRL-H. CP/M 3.0 also supports additional line editing
functions that you performwith control characters. You can use the con-
trol characters to edit command lines or input lines to most prograns.

USI NG CONTROL CHARACTERS FCR LI NE EDI TI NG

Using the line editing control characters listed in Table 13-1, you can
move the cursor left and right to insert and del ete characters in the md-
dle of a command line. In this way you do not have to retype everything to
the right of your correction.

In the following exanple, the user mistypes PIP, and CP/M 3.0 returns an
error nmessage. The user recalls the erroneous conmand |ine by pressing

CTRL-Wand corrects the error.

ASPCP A:=B:*.* (PIP mistyped)
PoP?

ASPCP A:=B:*.* (CTRL-Wrecalls the Iine)

A>PCP A:=B:*.* (CTRL-B moves the cursor to beginning of |ine)

A>PCP A =B:*.* (CTRL-F noves cursor to right)

ASPP A =B:*.* (CTRL-G del etes error)

ASPIP A =B:*.* (type | corrects the command name)
After the command line is corrected, the user can press {return} even
though the cursor is in the mddle of the line. A{return} keystroke, (or
one of the equivalent control characters) not only executes the conmand,

but also stores the command in a buffer so that you can press CTRL-Wto
recall it for editing or re-execution.

13-4

When you insert a character in the mddle of aline, characters to the

right of the cursor nove to the right. If the line becones |onger than your

screen is wide, characters disappear off the right side of the screen.

These characters are not lost. They reappear if you delete characters from

the line or if you press CTRL-E when the cursor is in the mddle of the
line. CTRL-E noves all characters to the right of the cursor to the next
line on the screen.

Table 13-1 gives a conplete list of line editing control characters for the

CP/M 3.0 systemon the Cormodore 128.

Table 13-1. Banked CP/M 3.0 Line Editing Control Characters

Char act er

CTRL-A

CTRL-B

CTRL-E

CTRL-F

CTRL-G

CTRL-H

Meani ng
Moves the cursor one character to the left.

Moves the cursor to the beginning of the command |ine without
having any effect on the contents of the line. If the cursor is
at the beginning, CTRL-B noves it to the end of the Iine.

Forces a physical carriage return but does not send the command
line to CPIM3.0.

Moves the cursor to the beginning of the next line without era-
sing the previous input.

Mbves the cursor one character to the right.

Del etes the character above the cursor. The cursor does not
move. Characters to the right of the cursor nove left one

posi tion.

Del etes the character to the left of the cursor and noves the
cursor left one character position. Characters to the right of
the cursor nove left one position.

Mbves the cursor to the next tab stop. Tab stops are automati-

cally set at each eighth colum. Has the same effect as pressing

the {tab} key.

13-5

Table 13-1. Banked CP/M 3.0 Line Editing Control Characters

CTRL-J

CTRL-K

CTRL-M

CTRL-U

CTRL-W

CTRL- X

Sends the command line to CP/M 3.0 and returns the cursor to the
begi nning of a newline. Has the sane effect as a {return} or a
CTRL- M keyst r oke.

Del etes fromthe cursor to the end of the line.

Sends the command line to CP/M 3.0 and returns the cursor to the
beginning of a newline. Has the sane effect as a {return} or a
CTRL-J keystroke.

Retypes the command line. Place a # character at the current
cursor location, moves the cursor to the next line, and retypes
any partial command you typed so far.

Discards all the characters in the command line, places a {#}
character at the current cursor position, and noves the cursor
to the next line. However, you can use CTRL-Wto recall any
characters that were to the left of the cursor when you pressed
CTRL- U.

Recal I s and displays previously entered command |ine both at the
operating systemlevel and within executing prograns, if the
CTRL-Wis the first character entered after the pronpt. CTRL-J,
CTRL-M CTRL-U, and {return} define the command line you can
recall. If the command |ine contains characters, CTRL-W noves
the cursor to the end of the conmand line. If you press
{return}, CP/M3.0 executes the recalled conmand.

Discards all the characters to the left of the cursor and noves

the cursor to the beginning of the current line. CTRL-X saves
any characters to the right of the cursor.

13-6

SECTION 14
Sunmary of Major CP/M 3.0 Commands

THE TWO TYPES OF CP/M 3.0 COMMANDS ...\ttt 14-3
BUILT-TN COMVANDS ...ttt e 14-3
TRANSIENT UTILITY COMMANDS . ..ot 14-4
REDI RECTING INPUT AND QUTPUT ...t 14-6
ASSIGNING LOG CAL DEVICES ...ttt e 14-7
FINDING PROGRAM FILES 14-7
EXECUTING MULTIPLE COMMANDS et 14-8
TERM NATING PROGRAMD . et e e 14-8
GETTING HELP .. e 14-8
14-1

As noted in section 11, a CP/M 3.0 conmand |ine consists of a command key-
word, an optional command tail and a {return} keystroke. This section
describes the two kinds of commands the command keyword can identify, and
sunmmari zes individual commands and their functions. The section also gives
exanpl es of the use of sone of the nore commonly used commands. In
addition, the section explains the concept of logical and physical devices
under CP/M3.0. This section then tells how CP/M 3.0 searches for a program
file on a disk, tells howto execute multiple commands, and how to reset
the disk system Finally, the section explains howto use the HELP command
to get information on various CP/Mtopics including conmand formats and
usage, right at the keyboard.

THE TWO TYPES OF CP/M 3.0 COWANDS
There are two types of commands on CP/M 3.0:

* Built-in commands - which identify programs in nenory
* Transient utility commands - which identify programfiles on a disk

CP/M 3.0 has six built-in commands and over 20 transient utility commands.
You can add utilities to your system by purchasing various CP/M 3.0-
conpatibl e application programs. If you are an experienced programer, you
can also wite your own utilities that operate with CP/M3.0.

BUI LT-1 N COMVANDS

Built-in commands are part of CP/M 3.0 that are always available for your
use, regardless of which disk your have in which drive. Built-in commands
are entered in the computer's nemory when CP/M 3.0 is |oaded, and are,
therefore, executed nore quickly than the transient utilities. Table 14-1
lists the Commdore 128 CP/M 3.0 built-in commands.

Sonme built-in conmands have options that require support froma related

transient utility. The related transient utility conmand has the same nane
as the built-in command and has a filetype of COM

14-3

Table 14-1. Built-in Commands DUMP Displays a file in ASCI1 and hexadeci mal format.
Conmmand Function ED Creates and alters ASCII files.

DR Displays filenames of all files in the directory except those ERASE Used for wildcard erase.
marked with the SYS attribute.
FORMAT Formats a CP/Mdisk. Clears data from previous used disks.
DIRSYS Displays filenanes of file marked with the SYS (system attribute

inthe directory. GENCOM Creates a special COMfile with attached RSX file.
ERASE Erases a filename fromthe disk directory and rel eases the storage GET Tenporarily gets console input froma disk file rather than the
space occupied by the file. keyboard.
RENAME Renanes a disk file. HELP Di spl ays information on how to use CP/M 3.0 conmands.
TYPE Di spl ays contents of an ASCI| (TEXT) file at your screen. INNTDIR Initializes a disk directory to allowtime and date stanping.
USER Changes to a different user nunber. KEYFIG Allows alteration of the definition of the keyboard keys.

PATCH Di splays or installs patches to the CP/ M system
TRANSI ENT UTI LI TY COMVANDS

PI P Copies files and conbines files.
The CP/M 3.0 transient utilities are listed in Table 14-2. \When you enter a
conmand keyword that identifies a transient utility, CP/M3.0 |oads the pUT Tenporarily directs printer or console output to a disk file.
programfile fromthe disk and passes to that file any filenames, data, or
paraneters you entered in the command tail. RENAME ~ Changes the nane of a file, or a group of files using wldcard

characters.
DIR, RENAME and TYPE are built-in commands which have optional transient

ext ensi ons. SAVE Copi es the contents of nmenory to a file.
SET Sets file options including disk |abels, file attributes, type of
Table 14-2. Transient Uility Commands. time and date stanping and password protection.

DATE Sets or displays the date and tinme. SETDEF Sets systemoptions including the drive search chain.
DEVICE Assigns |ogical CP/Mdevices to one or nore physical devices, SHOW Di spl ays disk and drive statistics.

changes device driver protocol and baud rates, or sets consol e

screen size. SUBMT Automatically executes multiple commands.
DR Displays directory with files and their characteristics. TYPE Di spl ays contents of text file (or group of files, if wildcard

characters are used) on screen (and printer if desired).

14-4 14-5

REDI RECTI NG | NPUT AND QUTPUT

CP/M 3.0"s PUT Command al lows you to redirect console or printer output to
a disk file. You can use a GET conmand to make CP/M 3.0 or a utility pro-
gram take console input froma disk file. The follow ng exanples illustrate
sonme of the capabilities offered by GET and PUT.

You can use a PUT command to direct console output to a disk file as well
as to the console. Wth PUT, you can create a disk file containing a
directory of all files on that disk, as shown in Figure 14-1.

A>PUT CONSCLE QUTPUT TO FILE DIR PRN
PUTTI NG CONSCLE QUTPUT TO FILE: DIR PRN

ASDIR

A FILENAME TEX : FRONT TEX : FRONT BAK : ONE BAK : THREE TEX
A FOR TEX :© ONE TEX : LINEDIT TEX: EXAMPL TXT : TWO BAK
A TWO TEX : THREE BAK : EXAMP2 TXT

A>TYPE DI R PRN

A FILENAME TEX : FRONT TEX : FRONT BAK : ONE BAK : THREE TEX
A FOR TEX :© ONE TEX: LINEDIT TEX: EXAMPL TXT : TWO BAK
A TWO TEX : THREE BAK : EXAMP2 TXT

Figure 14-1. PUT Command Exanpl e

A GET conmand can direct CP/M3.0 or a programto read console input froma
disk file instead of fromthe keyboard. If the file is to be read by CP/M
3.0, it nust contain standard CP/M 3.0 command lines. If the file is to be
read by a utility program it must contain input appropriate for that pro-
gram A file can contain both CP/M 3.0 command |ines and programinput if
it also includes a conmand to start a program

14-6

ASSI GNING LOG CAL DEVI CES

The ninimal Commodore 128 CP/M 3.0 hardware includes a consol e consisting
of a keyboard and screen display and a 1571 disk drive. You may want to add
anot her device to your system such as a printer or a modem To help keep
track of these physical different input and output devices, table 14-3
gives the names of CP/M 3.0 |ogical devices. It also shows the physical
devi ces assigned to these logical devices in the Commodore 128 CP/M 3.0
system

Table 14-3. CP/M 3.0 Logical Devices

Log? cal . Phy;ical Devi ce
Devi ce Name Devi ce Type Assi gment

CONI N: Consol e input Keyboar d

CONQUT: Consol e out put 80-col um Screen
AUXIN: Auxi liary input Nul |

AUXQUT: Auxi liary output Nul |

LST: Li st out put PTRL or PTR2

You can change these assignents with a DEVICE conmand. For exanple, you
can, assign AUXIN and AUXQUT to a nodem so that your computer can use tele-
phone lines to communicate with other computer users, with information ser-
vice like Conpunet and View Data Systens.

FI'NDI NG PROGRAM FI LES

[f a command keyword identifies a utility, CP/M 3.0 looks for that program
file on the default or specified drive. It |ooks under the current user
nunber, and then under user number 0 for the sane file marked with the SYS
attribute. At any point in the search process, CP/M 3.0 stops the search if
it finds the programfile. CP/M3.0 then loads the programinto nenory and
executes it. Wen the programtermnates, CP/M3.0 displays the system
pronpt and waits for your next command. However, if CP/M 3.0 does not find
the command file, it repeats the command line followed by a question mark,
and waits for your next conmand.

14-7

EXECUTI NG MULTI PLE COMVANDS

In the exanples so far, CP/M3.0 executed only one conmand at a time. CP/M
3.0 can al so execute a sequence of conmands. You can enter a sequence of
conmands at the systempronpt, or you can put a frequently needed sequence
of commands in a disk file, using the filetype of SUB. Once you have stored
the sequence in a disk file, you can execute the sequence whenever you need
to with a SUBMT conmand.

TERM NATI NG PROGRAMS
You can use the two keystroke command CTRL-C to term nate program execution
or reset the disk system To enter a CTRL-C command, hold down the {ctrl}
key and press {c}.
Mbst application prograns that run under CP/Mand most CP/Mtransient uti-
lities can be termnated by a CTRL-C. However, if you try to termnate a
programwhile it is sending a display to the screen, you may need to press
a CTRL-S to halt the display before you enter CTRL-C.
GETTI NG HELP
CP/IM 3.0 includes a transient utility command cal | ed HELP that displays a
summary of the format and use for the nost common CP/M commands. To access
HELP, sinply enter the conmand:

ASHELP {return}

You can press the {help} key instead of typing the word HELP and pressing
the {return} key.

The list of available topics is then displayed, like this:
Topi cs avai | abl e:

COMMANDS CNTRLCHARS DATE DEVI CE DR

DUMVP ED ERASE FI LESPEC GENCOM GET
HELP HEXCOM INTDIR LIB LINK MAC
PATCH PIP (COPY) PUT RENAVE RVAC SAVE
SET SETDEF SHOW SID SUBMT TYPE
USER XREF

14-8

Suppose you type:
HELP>PI P {return}

CP/M then displays the follow ng infornation:
PI P (COPY)

Synt ax:
DESTI NATI ON' SOURCE

PIP d: Gn filespec [Gn] =filespec [0],... d: [0]

Expl anati on:

The file copy program PIP copies files, conbines files, and transfers files
between disks, printers, consoles, or other devices attatched to your
conputer. The first filespec is the destination. The second filespec is the
source. Use two or nore source filespecs separated by conmas to combine two
or nore source files into one file. [o] is any conbination of available
options. The [Gn] option in the destination filespec tells PIP to copy your
file to that user nunber.

PIP with no conmand tail displays an * pronpt and awaits your series of
conmands, entered and processed one line at a tinme. The source or
destination can be any CP/M 3.0 | ogical device.

The HELP facility provides information like this on all CPFM3.0 built-in
and transient utility commands. If you want information on a specific area,
you can type HELP subject after the system pronpt, where the subject is a
command tail describing the subject you are interested in. For exanple:

ASHELP PIP
ASHELP DI RSYS

You can refer to HELP any tinme you need information on a specific conmnd.
O you can just browse through HELP to broaden your know edge of CP/M 3.0.

14-9

SECTI ON 15
Conmodor e Enhancene

nts to CPFIM3.0

KEYBOARD ENHANCEMENTS

Defining a Key .
Defining a String
Using ALT Met hod

SCREEN ENHANCEMENTS

15-1

KEYBCARD ENHANCEMENTS

Commodor e has added a nunber of enhancenents to CP/M 3.0. These enhance-
ments tailor the capabilities of the Commdore 128 to those of CP/M3.0
This section describes these enhancenents

Any key on the keyboard can be defined to generate a code or function
except the followi ng keys

{left shift} key
{right shift} key
{C} key

{ctrl} key
{restore} key
{40/ 80 display} key
{caps lock} key

In defining a key, the keyboard recogni zes the followi ng special functions
To indicate these functions, hold down the {ctrl} key and the {right shift}
key and press the desired function key sinultaneously.
Key Function
{crsr left} key Defines key

{crsr right} key Defines string (points to function keys)
{alt} key Toggl es key filter

15-3

Defining a Key

A user can define the code that a key can produce. Each key has four pos-
sible definitions: Normal, Alpha Shift, Shift and Control. The Al pha Shift
is toggle on/off by pressing the {C=} key. After entering this mde a small
box appears on the bottom of the screen. The first key that is pressed is
the key to be defined. The current HEX (hexadecimal) val ue assigned to this
key is displayed and the user can then type the new HEX code for the key,
or abort by typing a non-HEX key. The following is a definition of the
codes that can be assigned to a key. (In ALT node, codes are returned to
the application; see ALT node bel ow.)

Code Function

00h Nul | (same as not pressing a key)
01h to 7Fh Normal ASCI| codes

80h to 9Fh String assigned

AOh to AFh 80 colum character col or

BOh to BFh 80 col utm background col or

Q0h to CFh 40 col umn character color

Doh to DFh 40 col um background col or

EOh to EFh 40 col utm border col or

FOh Toggl e disk status on/of f
F1lh Syst em Pause

F2h (undefi ned)

F3h 40 col um screen window ri ght
F4h 40 col unmm screen wi ndow | eft

F5h to FFh (undefined)

Defining a String

This function allows the user to assign nore than one key code to a single
key. Any key that is typed in this node is placed in the string. The user
can see the result of typing in a long box at the bottomof the screen.

Note: Some keys may not display what they are. To provide the user with
control over the process of entering data, the follow ng five special key
functions are available. To access these functions, press the {ctrl} and
{right shift} keys and the desired function keys.

15-4

Key Function

{return} Conpl ete string definition
{+} (on main keyboard) Insert space into string
{-} (on main keyboard) Delete cursor character
{left arrow Cursor left

{right arrow Cursor right

Using ALT Met hod

ALT node is a toggle function (that is, it can be switched between ON and
OFF). The default value is OFF. This function allows the user to send 8-bit
codes to an application.

SCREEN ENHANCEMENTS

The screen in CP/M 3.0 enul ates an ADMBL terminal. The followi ng screen
functions enul ate ADM 3A operation, which is a subset of ADMB1 operation.

CTRL-G Sound Bel |

CTRL-H Cursor left

CTRL-J Cursor down

CTRL-K Cursor up

CTRL- L Cursor right

CTRL-M Move cursor to start of current line (CR)

CTRL-Z Home and clear screen

ESC = RC Cursor position where Ris the row location
(with values fromspace to 8) and Cis the colum |ocation
(next val ues fromspace to 0), referenced to the status
l'ine.

Additional functions in ADMB1 node incl ude:

ESC T}

ESC t} Clear to end of line

ESC Y}

ESC y} Clear to end of screen

ESC :}

ESC *} Hone and clear screen (including the status line)
ESC Q Insert character

ESC W Del ete character

ESC E Insert |ine

ESC R Delete line

15-5

* {esc} {esc} {esc} [color#] sets a screen color froma table of 16 pos-
sible color entries. The [color#] is set as follows:

20h to 2Fh character col or
30h to 3Fh background col or
40h to 4Fh border color (40 colum only)

The visual effects associated with followi ng functions are visible only in
80-col um screen format:

ESC > Hal f intensity

ESC < Ful'l intensity

ESC &4 Reverse video ON

* ESC G Turn underline ON

ESC @ Blink ON

* ESC GL Select the alternate character set
ESC @ Al ESC G attributes OFF

* Note: This is NOT a normal ADMB1 sequence.

* k k %k ok kx %k k* *k k *x *k k %k * *x %k Kk %k % * % k *x * k¥ % * *x * k %k * *x * k¥ *x *

The sections in this chapter provide a summary of the structure and wide-
ranging capabilities of CP/M3.0. Detailed information on any facet of CP/M
is giveninthe Digital Research, Inc. book, CP/MPlus User's Guide. To ob-
tain a copy of this, refer to the coupon enclosed in the box in which the
Cormodore 128 is supplied.

15-6

CHAPTER
5

BASIC 7.0
ENCYCLOPAEDI A

SECTI ON 16
I ntroduction

ORGANI ZATI ON OF ENCYCLOPAEDI A

COMVAND AND STATEMENT FORMAT

GRAPHI C AND SOUND COMMAND FORMAT ...ttt e

DI SK COWAND FORMAT

16-1

ORGANI ZATI ON OF ENCYCLOPAEDI A

This chapter lists BASIC 7.0 | anguage el enents and describe how to use
those elenents. It gives a conplete list of the rules (syntax) of Conmodore
128 BASIC 7.0, along with a concise description of each.

Basic 7.0 includes all the elements of BASIC 2.0. The new commands, state-
ments, functions and operators provided in Basic 7.0 are underlined and
commands whi ch have been nodified are printed in plain and underlined text.

The different types of BASIC operations are listed in individual sections,
as foll ows:

1. COWANDS AND STATEMENTS: the commands used to edit, store and erase
progranms; and the BASIC program statenents used in the nunbered
lines of a program

2. FUNCTIONS: the string, numeric and print functions.

3. VARI ABLES AND OPERATCRS: the different types of variables, |egal
nanes, arithnetic operators and |ogical operators.

4. RESERVED WORDS, SYMBOLS AND ABBREVI ATI ONS: the words, synbols and

abbreviations reserved for use in the BASIC 7.0 | anguage, and which
cannot be used for any other purpose.

16-3

COMVAND AND STATEMENT FORMAT

command name -> AUTO |

brief description -> Enable/disable automatic |ine nunbering |
command formt -> AUTO [i ne#]
|

This command turns on the automatic |ine-number-
ing feature. This eases the job of entering pro-
grams, by automatically typing the Iine nunbers

for the user. As each programline is entered by
pressing {return}, the next |ine nunber is prin-
ted on the screen, and the cursor is positioned

|

|

|

|

|

o

| Discussion of
|

|

|

|

| . .
| two spaces to the right of the line nunber. The
|

|

|

|

|

|

|

|

|

|

|

|

format and use ->

l'ine number argunent refers to the desired incre-
ment between |ine nunbers. AUTO without an argu-
ment turns off the auto line numbering, as does
RUN. This statenment can be used only indirect
mode (outside of a progran).
|
EXAMPLES: |
AUTO 10 Automatically nunmbers programlines |
inincrements of 10. |
Exanpl e(s) -> AUTO 50 Automatically nunbers lines in |
I
I

increnents of 50.
AUTO Turns off automatic |ine nunbering.
e +

The bol dface l'ine that defines the format consists of the follow ng
el enents:

DLOAD "program name" [DO, Ug]
N N AN

| | | additional arguments
keywor d ar gunent +-- (possibly optional)

The parts of the conmand or statement that must be typed exactly are shown
incapital letters. Wrds the user supplies, such as the nane of a program
are not capitalized.

When quote marks (" ") appear (usually around a programnanme or file nane),

the user should include themin the appropriate place, according to the
format exanple.

16- 4

KEYWORDS, al so call ed reserved words, appear in upper case letters. Key-
words may be typed using the full word or the approved abbreviation (a full
list is given in Appendix K). The keyword or abbreviation nust be entered
correctly or an error will result. The BASIC and DOS error nessages are
defined in Appendices A and B, respectively.

Keywords are words that are part of the BASIC | anguage. The are the central
part of a command or statement, and the tell the conputer what kind of
action to take. These words cannot be used as variabl e names. A conplete
list of reserved words is given in Section 20.

ARGUMENTS, al so cal l ed paraneters, appear in |lower case letters. Arguments
conpl enent keywords by providing specific information to the conmand or
statenent. For exanple, the keyword LOAD tells the conputer to load a pro-
gramwhile the argunent tells the conputer which specific programto |oad.
A second argument specifies fromwhich drive to load the program Arguments
include filenanes, variables, |ine nunbers, etc.

SQUARE BRACKETS [] show optional argunents. The user selects any or none
of the arguments |isted, depending on requirements. The user shoul d not
type the SQUARE BRACKETS, which are only there to describe the format.

ANGLE BRACKETS < > indicate the user MIST choose one of the argunents Iis-
ted. The user should not type the ANGLE BRACKETS, which are only there to
describe the format.

A VERTICAL BAR | seperates itens in a list of arguments when the choices
are limted to those argunents |isted. When the vertical bar appears in a
l'ist enclosed by SQUARE BRACKETS, the choices are limted to the itens in
the list, but the user still has the option not to use any argunents.

ELIPSIS ... a sequence of three dots means an option or argunent can be
repeated nore than once. The user should not type the ELIPSIS, which is
only there to describe the format.

QUOTATI ON MARKS " " encl ose character strings, filenames and ot her expres-
sions. When argunents are enclosed in quotation nmarks, the quotation marks
nmust be included in the conmand or statement. Quotations marks are not con-
ventions used to describe formats; they are required parts of a conmand or
stat enent.

PARENTHESES () When argunents are encl osed in parentheses, they nust be
included in the command or statement. Parentheses are not conventions used
to describe formats; they are required parts of a command or statenment.

16-5

VARI ABLE refers to any valid BASIC variable name, such as X, A$, T% etc.

EXPRESSION refers to any valid BASIC expression, such as A+B+2, 5*(X+3),
etc.

COMMAS (,) COLONS (:) and SEM COLONS (;) These MJST be included, they are
required parts of the command or statenent.
GRAPH C AND SCUND COMMAND FORMAT

Optional paraneters in Gaphics and Sound commands are represented |ike
this:

[, paraneter]
When paraneters are omtted the comma MUST be included, this is because the
paraneters are position dependent. You nust not, however, include commas
after the last specified paraneter.
EXAVPLE:

ENVELOPE n [,atk] [,dec] [,sus] [.rel] [, W] [,pW
To alter just the rel paraneter, use:

ENVELCPE n, , , , rel

The first three commas mark the positions of atk, dec, sus and the fourth
is the comma for rel. The commas for wf and pw nust not be entered.

In the GRAPH CS commands whenever there is a coordinate specified by (XY)
it is possible to replace this with a vector (X;Y). In this case:

X'is the distance (scaled)
Y is the angle in degrees (0 = up; 90 = right etc.)

For exanpl e:

LOCATE 160, 100
DRAW TO 40; 45

will drawa line at 45 degrees of length 40.

16-6

DI SK COWAND FORMAT
Optional paranmeters in disk conmands are shown thus:
[, paraneter]
The comma is not required if the paraneter is the first after the command
itself. If other parameters which require commas are onmitted the conmas
shoul d be onmitted too.
EXAMPLE:
DI RECTORY [Ddrive][<ON | ,>Udevice nunber] [, wildcard]
would in full produce:
DI RECTORY DO ON U8, " AB*"
To specify only the wild card, no conma is required, i.e.

DI RECTORY " AB*"

Whenever variables are used in disk conmands the MUST be enclosed in paren-
theses (). For exanple:

DI RECTCRY D(DV), (AS$)

16-7

SECTION 17
Basi ¢ Commands and
Statenents

17-1

Append new data to the end of a sequential file.

APPEND #l ogi cal file number, "filename" [, Ddrive nunber]
[<ON| ,> Udevice]

This command opens the file having the specified filename, and positions
the pointer at the end of the file. Subsequent PRINT# (wite) statenents
will cause data to be appended to the end of this file. Default values for
drive nunber and device nunber are 0 and 8 respectively.

Variabl es or Expressions used as filenanes nust be enclosed within paren-
t heses.

EXAVPLES:
APPEND#8, " MYFI LE"

OPEN logical file 8 called "MYFILE" for appending with subsequent PRI NT#
statenents.

APPENDH7, (AS), DO, U9

OPEN I ogical file named by the variable A$ on drive 0, device number 9 and
prepare to APPEND.

AUTO

Enabl e/ di sabl e automatic |ine nunbering.
AUTO [i ne#]

This command turns on the automatic line-numbering feature. This eases the
job of entering prograns, by automatically typing the line numbers for the
user. As each programline is entered by pressing {return}, the next line
nunber is printed on the screen, and the cursor is positioned on the second
space to the right of the line number. The Iine nunber argunent refers to
the desired increment between |ine nunbers. AUTO without an argument turns
off the auto l'ine nunbering, as does RUN. This statement can be used only
indirect node (outside of a progran.

17-3

EXAVPLES:

AUTO 10 Autommtical ly numbers programlines in increnments of 10.
AUTO 50 Autommtical ly numbers lines in increments of 50.
AUTO Turns off automatic |ine nunbering.

Copy the entire contents fromone disk to another on a dual disk drive.

BACKUP source Ddrive number TO destination Ddrive number
[<ON | ,>Udevice]

Thi's command copies all the data fromthe source diskette onto the desti-
nation diskette using a dual diskdrive. Wth the BACKUP command, a new di s-
kette can be used without first formatting it. This is because the BACKUP
command copies all the information on the diskette, including the formt.
Because of this, the BACKUP command destroys any information already on the
destination disk. Therefore, when backing up onto a previously used disket-
te, make sure it contains no programs you nean to keep. As a precaution the
conputer asks "ARE YOU SURE?" before it starts the operation. Press the {y}
key to performthe BACKUP, or any other key to stop it. You should al ways
create a backup of all your disks, in case the original diskette is lost or
damaged. Al so see the COPY conmand. The default device nunber is unit 8.

NOTE: This conmand can be used only with a dual-disk drive. It will not
allow you to make copies of protected disks (nost prepackaged software).

EXAVPLES:
BACKUP DO TO D1

Copies all data fromthe disk in drive 0 to the disk in drive 1, in dual
disk drive unit 8.

17-4

BACKUP DO TO D1 ON W9

Copies all data fromdrive 0 to drive 1, in disk drive unit 9.
BANK

Sel ect one of the 16 banks, nunbered 0-15.

BANK bank nunber

This statement specifies the bank nunber and correspondi ng nenory configu-
ration for the Commodore 128 menory. The default bank is 15. Here is a

tabl e of available BANK configurations in the Cormodore 128 nenory:

BANK CONFI GURATI ON

0 RAM0) only
1 RAM 1) only
2 RAM 2) onl y*
3 RAM 3) onl y*
4 Internal ROM RAMO), I/0
5 Internal ROM RAM 1), I/0
6 Internal ROM RAM2), I/ C*
7 Internal ROM RAM3), I/ O
8 External ROM RAMO), I/0
9 External ROM RAM 1), I/0
10 External ROM RAM2), I/ O
11 External ROM RAM3), I/ O

12 Kernal and Internal ROMLOW, RAMO), I/0
13 Kernal and External ROMLOW, RAMO), I/0
14 Kernal and BASIC ROM RAM0), Character ROM
15 Kernal and BASIC ROM RAMO0), 1/0

* For use on extended C128s with a larger internal nenory eg: 256K. In un-
expanded machines there is no RAMin these BANKs and 2 echoes 0 and 3
echoes 1.

To access a particular bank, type BANK n (n=0-15) and then use PEEK/ POKE or

SYS. Fromwithin the monitor, precede the four-digit hexadeci mal nunber of
the address range you are viewing with a hexadecimal digit (0-F).

17-5

BEG N BEND

A structure used with IF... THEN ELSE so that you can include several pro-
gramlines between the start (BEGN) and end (BEND) of the structure. Here
is the formt:

|F Condition THEN BEG N : statenent
st at enent

statenment BEND : ELSE BEG N

st at ement

statenent BEND

EXAVPLE:
10 IF X=1 THEN BEGN. PRINT "X=1 is True"
20 PRINT "So this part of the statement is perforned"
30 PRINT "Wen X equals 1"
40 BEND: PRINT "End of BEG N BEND structure": GOTO 60
50 PRINT "X does not equal 1":PRINT "The statenments between
BEG N BEND are ski pped”
60 PRINT "Rest of Progrant

If the Conditional (IF... THEN) statement in line 10 is true, the state-
ments between the keywords BEG N and BEND are performed, including all the
statenents on the same line as BEND. If the (IF... THEN) conditional state-
ment inline 10 is False, all statenents between the BEG N and BEND, inclu-
ding the ones on the same programline as BEND are skipped, and the program
resunes with the first programline imediately followng the Iine con-
taining BEND. The BEG N BEND essentially treats line 10 through 40 as one
long line.

The sane rules are true if the ELSE:BEGA N clause is specified. If the con-
ditionis true all statements between ELSE: BEG N and BEND are perforned,

including all statements on the sane line as BEND. If False, the program
resunes with the line inmediately follow ng the line containing BEND.

Load a binary file starting at the specified nenory |ocation.

BLOAD "filenane" [,Ddrive number] [<ON | ,>Udevice nunber]
[, Bbank nunber] [,Pstart address]

17-6

where:
* filename is the name of your file
* bank nunber lets you select one of the 16 banks
* start address is the menmory |ocation where |oading begins
Abinary file is a file, whether a programor data, that has been SAVEd
either within the machine I'anguage nonitor or by the BSAVE command. The
BLOAD command | oads the binary file into the location specified by the
start address.
EXANPLES:
BLOAD "SPRI TES', B0, P3584
LOADs the binary file "SPRITES' starting in location 3584 in BANK 0.
BLOAD "DATA1", DO, U8, Bl, P4096

LOADs the binary file "DATAL" into location 4096 (BANK 1) fromDrive 0,
unit 8.

If start address is not specified the file will load at the same address

it was saved from

BOOT

Load and execute a program whi ch has been saved as a binary file.
BOOT ["filename"] [,Ddrive number] [<ON | ,>Udevice]

The conmand | oads an executabl e binary file and begins execution at the
predefined starting address. The default device nunber is 8 drive 0.

EXAVPLES:
BOOT

BOOT an executabl e program (CP/MPlus for exanple). This is a special case
and requires setting up a specific sector on the disk.

BOOT" GRAPHI CS 1", DO, W9

17-7

BOOTs the program "GRAPHICS 1" fromunit 9, drive 0 and executes it. Execu-
tion begins at the start address of the program (i.e. where it starts
| oadi ng) .

BOX

Draw a box at specific position on screen.
BOX [color source], x1, y1 [, x2, y2] [,angle] [,paint]
where:
color source 0=Background col or
1=For eground col or

2=Multicolor 1}
3=Multicolor 2} Only in Gaphics nodes 3 and 4

x1, yl Top left corner coordinate (scaled).
X2, y2 Bottomright corner opposite x1, yl (scaled); default is the
PC | ocati on.
angl e Rotation in clockw se degrees; default is zero degrees.
pai nt Pai nt shape with color
0=Do not paint
1=Pai nt
(default 0)

This statement allows the user to draw a rectangle of any size on the
screen. Rotation is based on the centre of the rectangle. The pixel cursor
(PO is located at x2, y2 after the BOX statenent is executed. The col or
source nunber nust be zero (0) or one (1) if in standard bit map or a 2 or
3if innmulticolor bit mp node.

Also see the GRAPH C command for selecting the appropriate graphic node to
be used with the BOX col or source nunber.

Also see the LOCATE conmand for information on the pixel cursor.

EXAVPLES:
BOX 1, 10, 10, 60, 60

17-8

Draws the outline of a rectangle.
BOX 1, 10, 10, 60, 45, 1
Draws a painted, rotated box (a dianond).
DRAW, 30, 90, , 45, 1
Draws a filled, rotated polygon (see note).
BOX 1, 20, 20, , ,1
Draws a filled rectangle from20, 20 to the current pixel cursor.

Any paraneter can be onmitted but you nust include a conma in its place, as
inthe last two exanples.

NOTE: x2, y2 count as one parameter so only one extra conma is required.
Wapping occurs if the degree is greater than 360, i.e. 360=0 (450=90).

Save a binary file fromthe specified nenory |ocations.

BSAVE “filename" [,Ddrive number] [<ON | ,>Udevice number] [, Bbank nunber],
Pstart address TO Pend address+1

where:

* filenane is the name you give the file

* drive nunber is either 0 or 1 on a dual drive (0 is the default)

* device nunber is the number of disk drive unit (default is 8)

* bank nunber is the number of the bank you specify (0-15)

* start address is the starting address where the programis SAVEd from

end address+l is the end address of the programplus one, i.e. the end
address you specify in BSAVE is one byte higher than the end address of
the menory range

This is the same as the SAVE command in the machine | anguage nonitor.

EXAVPLES:
BSAVE "SPRI TE DATA", B0, P3584 TO P4096

17-9

Saves the binary file naned "SPRI TE DATA" starting at |ocation 3584 through
4095 (BANK 0).

BSAVE "PROGRAM SCR', DO, U9, BO, P3182 TO P8000

Saves the binary file named "PROGRAM SCR' in the nemory address range 3182
through 7999 (BANK 0) on drive 0, unit 9.

Di spl ays the disk directory.
CATALQG [Ddrive nunber] [<ON | , >Udevice nunber] [,wildcard string]
The CATALOG conmand displays the directory on the specified drive just as
the directory command. See this command for nore exanpl es (DI RECTORY and
CATALQG are conpl etely interchangeable).
EXAVPLE:
CATALCG
Di splays the disk directory on drive 0 of unit 8.
CHAR

Di spl ays characters at the specific position on the screen.
CHAR [col or source], x, y [,string] [,rvs]

This is primarily designed to display characters on a bit nmapped screen,
but it can also be used on a text screen. Here is what the parameters nean:

color source 0=Background col or
1=For eground col or

2=Multicolor 1
3=Milticolor 2

X Character colum (0-79) (waps around to the next line in
40- col umm rnode)

y Character row (0-24)

string String to print

RVS Reverse field flag (0=off, 1=on, default=0)

17-10

Text (al phanuneric strings) can be displayed on any screen at a given loca-
tion by the CHAR statement. Character data is read from Cormodore 128
character ROM area. The user supplies the x and y coordinates of the star-
ting position and the text string to be displayed. Color source and reverse
i maging are optional.

The string is continued on the next line if it attenpts to print past the
right hand edge of the screen. Wen used in text node, the string printed
by the CHAR command works just Iike a PRINT string, including cursor and
color control. These control functions inside the string do not work when
the CHAR conmand is used to display text in bit map node. Upper/Lower case
controls (CHR$(142) or CHR$(14)) also operate in bit map node.

Ml ticolor characters are handled differently fromstandard characters. The
following table shows how to generate the possible conbinations.

o e e +
| Reverse Flag |
| e |
| O(CFF) LY |
e Feoe e +
Text	1 1
Color source 0	
Background	2 3
e e Feee e +	
Text	1 0
Color source 1	
Background	0 1
e e Feee e +	
Text	2 0
Color source 2	
Background	0 2
e Feee e +	
Text	3 0
Color source 3	
Background	0 3
e Feee e +

EXAVPLE:

10 COLOR 2,3: REM nul ticol or 1=Red
20 COLOR 3,7: REM nulticol or 2=Bl ue
30 RAPHIC 3,1

40 CHAR 0, 10, 10, "TEXT", 0

50 CHAR 0, 10, 11, "TEXT", 1

17-11

Draws circles, ellipses, arcs, etc. at specific positions on the screen.

CIRCLE [color source],x,y,xr [,yr] [,sa] [,ea] [,angle] [,inc]

wher e:

color source 0=Background col or

Xy
Xr

yr

sa

ea
angle
inc

1=For eground col or

2=Multicolor 1}

3=Multicolor 2} Only in Gaphics nodes 3 and 4
Centre coordinates of the CRCLE.

X radius (scaled).

Y radius (scaled).

Starting arc angle (default O degrees).

Ending arc angle (default 360 degrees).

Rotation in clockw se degrees (default is O degrees).
Degrees between segments (default is 2 degrees).

++H+ +++ sa
+ o+ +

+ + + +

+ Xy Xr+ + Xy +

+ -4 + o+ 4

+ + + +

+ |yr+ + +
+] + + 0\
++H+ +++ ea

Wth the CIRCLE statenent, the user can draw a circle, ellipse, arc, tri-
angle, octagon, or other polygon. The final pixel cursor (PC) is left at
the circunference of the circle at the ending arc angle. Any rotation is
relative to the centre. Arcs are drawn fromthe starting angle clockw se to
the ending angle. The increment controls the snoothness of the shape; using
| ower values results in nore nearly circular shapes. Specifying the inc
greater than 2 creates a rough-edged boxed-in shape.

Also see the LOCATE conmand for information on the pixel cursor.

17-12

EXANMPLES:
CI RCLE 1, 160, 100, 65, 10 Draws an ellipse
ClI RCLE 1, 160, 100, 65 Draws a circle

Cl RCLE 1, 60, 40, 20, 18, ,,,45 Draws an octagon
ClI RCLE 1, 260, 40, 20, 30,,,,90 Draws a di anond
CIRCLE 1, 60, 140, 20, 18,,,,120 Draws a triangle
You may omit a paraneter, but you nmust still place a comma in the appro-
priate position. Onitting parameters take on the default val ues.
CLCSE
Close logical file.

CLOSE file nunmber

This statement closes any files used by DOPEN or OPEN statenents. The num
ber following the word CLOSE is the file nunber to be closed.

EXAVPLE:

CLOSE 2 Logical file 2 is closed.
CLR
Clear programvariabl es.
CLR
This statement erases any variables in nenory, but |eaves the programin-
tact. This statement is automatically executed when a RUN or NEW cormmand
is given.
O\
Redirect screen output.
C\VD logical file nunber [,wite |ist]
This conmmand sends the output, which normally goes to the screen (i.e.
PRINT statenents, LIST, but not POKES into the screen) to another device,
such as a disk data file or printer. This device or file nust be OPENed

first. The CMD command nust be fol | owed by a number or numeric variable
17-13

referring to the file or device. The wite list can be any al phanuneric
string or variable. This conmand is useful for printing at the top of
program | istings.

EXANPLES:
OPEN 1,4 OPENs device #4, which is the printer.
C\WD 1 Al normal output now goes to the printer.
LI ST The LISTing goes to the printer, not the screen - even the

word READY.
PRI NT#1 Sends out put back to the screen.
CLCSE 1 Cose the file.

Free inaccessibl e disk space.

COLLECT [Ddrive nunber] [<ON | ,>Udevice]

Use this command to make available any disk space that has been allocated
to inproperly closed (splat) files, and to delete references to these files
fromthe directory. Splat files are files that appear on the directory with
an asterisk next to them Defaults to device nunber 8.

EXAVPLE:
COLLECT DO

Free all available space which has been incorrectly allocated to inproperly
closed files.

NOTE: It will also free space allocated for direct access and any boot
sector. See your disk drive manual for nore information.

COLLI SION

Define handling for sprite collision interrupt.

COLLISION type [, statement]

type Type of interrupt as follows:
1 = Sprite-to-sprite collision
2 = Sprite-to-display collision
3 = Light pen

17-14

st at enent BASI C l'ine nunber of a subroutine

When the specified situation occurs, BASIC will finish processing the cur-
rent executing instruction and performa GOSUB to the line number given.
When the subroutine termnates (it must end with a RETURN), BASICwill re-
sume processing where it left off. Interrupt action continues until a
COLLI SION of the same type without a line number is specified. Mre than
one type of interrupt may be enabled at the same tinme, but only one inter-
rupt can be handled at a time (i.e. there can be no recursion and no nes-
ting of interrupts). The cause of an interrupt may continue causing
interrupts for some tinme unless the situation is altered or the interrupt
is disabled.

To deternmine which sprites have collided since the last check, use the BUWP
function.

EXAVPLES:

COLLISION 1, 5000 Detects a sprite-to-sprite collision and program

control sent to subroutine at Iine 5000.

Stops interrupt action which was initiated in

above exanple.

COLLI SION 2, 1000 Detect sprite-to-display collision and program
control directed to subroutine in Iine 1000.

COLLISION 1

NOTE: Sprites can still collide even if they are set off the screen, but
not if they are swtched off.

Define colors for each screen area.

COLCR source nunber, col or number

This statement assigns a color to one of the seven col or areas:
Source Nunbers

Area Sour ce

0 40-col um (VIC) background
1 40-colum (VIC) foreground
2 mul ticolor 1

17-15

mul ticolor 2

40-colum (VIC) border

character color (40- or 80-col urm screen)
80-col um (VDC) background col or

[o2 3042 NN JV)

Colors that are usable are in the range 1-16:

Col or Code Color Col or Code Col or

1 Bl ack 9 Orange

2 Wite 10 Brown

3 Red 11 Li ght Red
4 Cyan 12 Dark Gay
5 Purpl e 13 Medi um G ay
6 Geen 14 Light Geen
7 Bl ue 15 Li ght Blue
8 Yel | ow 16 Light Gay

Col or Nunbers in 40-Col um For mat

1 Bl ack 9 Dark Purple
2 Wite 10 Brown
3 Dark Red 11 Li ght Red
4 Light Cyan 12 Light Purple
5 Dark Cyan 13 Medi um G ay
6 Dark Green 14 Light Geen
7 Dark Bl ue 15 Li ght Blue
8 Li ght Yellow 16 Light Gay
Col or Nunbers in 80-Col urm For mat
EXANPLES:
COLOR 0,1 Change background col or of 40-colum screen to black.
COLOR 5,8 Change character color to yellow
CONCAT

Concat enates two data files.

17-16

CONCAT "file 2" [,Ddrive nunber] TO "file 1" [,Ddrive nunber]
[<ON | ,>Udevice]

The CONCAT command attaches file 2 to the end of file 1 and retains the
name of file 1. The device number defaults to 8 and the drive nunmber
defaults to 0.

EXAVPLES:

CONCAT "FILE B" TO"FILE A" FILEB is attached to FILE A and the
conbined file is designated FILE A

CONCAT (A$) TO (B$), DL, U9 The file named by B$ becomes a new file
of the same nane, with the file named by
A$ attached to the end of B$ - this is
performed on Unit 9, Drive 1 (a dual
di sk drive).

Whenever a variable is used as a filename as in the last exanple, the file-
nane variable nust be surrounded by parentheses.

NOTE: Keep the filenames short (10 characters) because the conmand buffer
islimted in sone disk drives.

CONT
Conti nue program execution.
CONT

This command is used to restart a programthat has been stopped by either
using the {stop} key, a STOP statenent, or an END statenent. The program
resunes execution where it left off. CONT will not resume with the program
if lines have been changed or added to the programor if any editing of the
programis performed on the screen. If the program stopped due to an error,
or if you have caused an error before trying to restart the program CONT
will not work. The error message in this case is CAN T CONTI NUE ERROR

17-17

CcoPY

Copy files fromone drive to another in a dual disk drive or within a
single drive.

COPY <["source filename"] [,Ddrive nunber]> TO <["destination filenane"]
[,Ddrive number]> [<ON | ,>Udevi ce]

Thi's command copies files fromone disk (the source file) to another (the
destination file) on a dual-disk drive. It can also create a copy of a file
on the same disk within a single drive, but the filename nust be different.
When copying fromone drive to another, the filename may be the sane.

The COPY conmmand can al so COPY all files fromone drive to another on a
dual disk drive. In this case the drive numbers are specified and the
source and destination filenanmes are omtted.

The default paraneters for the COPY conmand are device nunber 8, drive 0.

NOTE: Copying between two single or double drive units cannot be done. See
BACKUP.

EXAVPLES:

COPY "TEST", D0 TO "TEST PROG', DL Copies "TEST" fromdrive 0 to drive 1,
renamng it "TEST PROG' on drive 1.

COPY "STUFF", D0 TO "STUFF", D1 Copi es "STUFF" fromdrive 0 to drive

COPY DO TO D1 Copies all files fromdrive 0 to drive

1.

COPY "WORK. PROG' TO " BACKUP" Copies "WORK. PRG' as a file called

"BACKUP" on the same disk (drive 0).

17-18

DATA

Define data to be used by a program

DATA list of constants

This statement is followed by a list of data itens to be input into the
conputer's menory by READ statenents. The items may be numeric or string
and are seperated by commas. String data need not be inside quote marks,
unl ess they contain any of the follow ng characters: {space}, {colon}, or
{comm}. If two conmas have nothing between them the value is READ as a
zero if numeric or as an enpty string. Also see the RESTORE statenent,
which allows the Conmodore 128 to reREAD data.

EXAVPLE:
DATA 100,200, FRED, "HELLO MM, , 3, 14, ABCl23

DCLEAR [Ddrive number] [<ON | ,>Udevi ce]

This statement closes and clears all open channels on the specified device
nunber. Default is U3. This conmand is anal ogous to OPEN 0, 8, 15,"10":
CLCSE 0.

Clear all open channels on disk drive.

EXANMPLES:
DCLEAR DO Clears all open channels on drive 0, device nunber 8.

DCLEAR D1, U9 Clears all open channels on drive 1, device nunber 9.

NOTE: Files will be aborted, data may not be recoverable fromfiles which
were being witten to. See CLOSE/ DCLCSE.

Cose disk file.
DCLOSE [#l ogical file number] [<ON | ,>Udevice]

17-19

This statement closes a single file or all the files currently open on a EXAVPLE:
disk unit. If no logical file number is specified, all currently open files

are closed. The default device number is 8. Note the follow ng exanples: 10 DEF FNEG LO) =I NT((V1*LO'2)*100)/ 100
LOis local to this line
EXANPLES: 20 LC=15
A normal programvariabl e
DCLOSE Closes all files currently open on unit 8. 30 V1=3.14159
Approxi mation of {pi}
DCLOSE #2 Closes the file associated with the logical file nunber 2. 40 PRINT FNEG5)
Assign 5 to the local value LOin the function.
DCLOSE ON 9 Coses all files curently open on unit 9. 50 PRINT FNEG1)

Use 1 in the function instead of LO
60 PRINT | NT(V1*LOM2)*100)/ 100

DEF FN Variable LO used
70 PRINT LO
Define a user-defined function. Renai ns unchanged

DEF FN name(variable) = expression

DELETE
This statement allows definition of a conplex calculation as a function. In ------
the case of a long fornula that is used several tines within a program
this keyword can save val uabl e program space. The nane given to the func- Delete lines of a BASIC programin the specified range.
tion begins with the letters FN, followed by any Iegal numeric variable
nane (not integer or array). First, define the function by using the state- DELETE <start line | start line - | start line - end line | - end line>
ment DEF, followed by the name given to the function. Follow ng the nane is
a set of parentheses () with a local variable nane enclosed. This variable This command can be executed only in direct node.
only has a value if it appears in the expression on the right of the equal
sign. The same variable nane can be used el sewhere in a programbut it will EXAMPLES:
be conpletely seperate fromits use in the function. Cther variables and/or
functions can be used in the expression and these are eval uated as their DELETE 75 Del etes line 75.
value at the time the function is called. Next is an equal sign, followed
by the formula to be defined. The function can be perforned by sustituting DELETE 10-50 Deletes lines 10 through 50, inclusive.
any nunber for variable, using the format shown in lines 40 and 50 of the
exanpl e bel ow. DELETE- 50 Deletes all lines fromthe beginning of the programup to

and including line 50.

DELETE 75- Deletes all lines from75 to the end of the program
i ncl usi ve.

17-20 17-21

DM
Decl are nunber of elenments in an array.
DI M vari abl e(subscripts) [, variable(subscripts)] [...]

Before arrays of variables can be used, the programnust first execute a
DIMstatement to establish DI Mensions of the array (unless there are 11 or
fewer elenments in each DI Mension of the array). The DIMstatenent is fol-
[owed by the name of the array, which may be any |egal variable name. Then,
enclosed in parantheses, the nunber (or nuneric variable) of elenents in
each dinension. An array with nore than one dinension is called a matrix.
Any nunber of dinensions may be used, but keep in mind the whole list of
variabl es being created takes up space in nenory, and it is easy to run out
of menory if too many are used. Here's how to calculate the amount of neno-
ry used by an array:

5 bytes for the array nane

2 bytes for each dinension

2 bytes/element for integer variables

5 bytes/element for normal nuneric variables

3 bytes/element for string variables

1 byte for each character in each string el ement

Integer arrays take up two-fifths the space of floating point arrays (e.g.
DI M A% 100) requires 209 bytes; DIMA(100) requires 512 bytes).

NOTE: Elements are nunbered from0, e.g. DIMA(100) gives 101 el ements.
More than one array can be dimensioned in a DIMstatement by seperating the
array variable names by commas. |f the programexecutes a DI M statement for
any array more than once, the message RE DIM ARRAY ERROR i s posted. It is
good programming practice to place DIMstatements near the beginning of the
program
EXAVPLE:

10 DI M A$(40), B7(15), CCY 4, 4, 4)

41 elements, 16 elenents, 125 el enents.

17-22

DI RECTORY

Di spl ays the contents of the disk directory on the screen.
DI RECTORY [Ddrive nunber] [<ON | ,>Udevice] [, wildcard]

The {f3} function key in C128 node displays the DI RECTORY for device nunber
8, drive 0. Use CONTROL S or NOSCROLL to pause the display.

The DI RECTORY conmand shoul d not be used to print a hard copy, because sone
printers interfere with the data conming fromthe disk drive. The disk
directory should be |oaded (LOAD "$",8) destroying the current programin
menory in order to print a hard copy.

The default device number is 8, and the default drive nunber is O.
EXANMPLES:
Dl RECTORY Lists all files on the disks in unit 8.

DI RECTORY D1, U9, "WORK" Lists the file nanmed "WORK" on drive 1 of
unit 9.

DI RECTORY " AB*" Lists all files starting with the letters

"AB" |ike ABOVE, ABOARD, etc. on all drives

of unit 8. The asterisk specifies a wild

card, where all files starting with "AB" are

di spl ayed.

DI RECTORY D0, "FILE ?.BAK" The ? is awld card that matches a single
character in that position. For exanple:
FILE 1.BAK, FILE 2.BAK, FILE 3.BAK all mat-
ching the string.

Lists the filename stored in the variable
A$, on device nunber 9, drive 1. Renenber
whenever a variable is used as a fil ename,
surround the variable in parentheses.

DI RECTCRY DL, U9, (A$)

17-23

NOTE: To print the DIRECTORY of the disk in drive 0, unit 8, use the fol-
| owi ng exanpl e:

LOAD" $0", 8

OPEM, 4: CVD4: LI ST
PRI NT#4: CLOSE4

Load a BASI C program from di sk.
DLOAD "filenane" [,Ddrive nunber] [< ON| ,>Udevice nunber]

This command | oads a BASIC program fromdisk into current nenory. (Use
LOAD to load programs fromtape.) The program nust be specified by a file-
nane of up to 16 characters. DLOAD assunes device number 8, drive 0.

EXAVPLES:

DLOAD "BANKRECS" Searches the disk for the program "BANKRECS' and LOADs
it.

DLOAD (A3) LOADs a program from di sk whose name is stored in the
variable A$. An error nessage is givenif A$ is enpty.
Renenmber, when a variable is used as a filenane, it
nmust be enclosed in parentheses.

The DLOAD conmand can be used within a BASIC programto find another pro-

gramon disk. This is called chaining.

DO LOOP/ WHI LE/ UNTI L/ EXI T

Define and control progam | oop.

DO [UNTIL condition | WHILE condition] statement [EXIT]
LOOP [UNTIL condition | WHILE condition]

17-24

This loop structure perforns the statenents between the DO statenent and
the LOOP statement. If no UNTIL or WH LE statements nodifies either the DO
or the LOOP statement, execution of the statenents in between continues
indefinitely. If an EXIT statement is encountered in the body of a DO | oop,
execution is transferred to the first statement follow ng the LOOP state-
ment. DO | oops may be nested, following the rules defined by the FOR ..
NEXT structure. If the UNTIL paraneter is specified, the program continues
I ooping until the condition is satisfied (becones true). The WH LE para-
meter is basically the oposite of the UNTIL paraneter: the program conti-
nues | ooping as long as the condition is true. As soon as the condition is
no |onger true, programcontrol resumes with the statement inmediately fol-
lowing the LOOP statement. An exanple of a condition (bool ean operation)
is A=1, or G>65.

EXAVPLES:

10 X=25

20 DO UNTIL X=0

30 X=X-1

40 PRINT "X="; X

50 LOCP

60 PRINT "END OF LOOP"

This exanple perforns the statement X=X-1 and PRINTs "X="; X until X=0. \hen
X=0 the programresumes with the statenent follow ng LOOP,
PRINT "END OF LOOP"

10 DO WHILE A$="": GET A$:LCOP
20 PRINT "THE "; A$;" KEY HAS BEEN PRESSED'

A$ remains null as long as no key is pressed. As soon as a key is pressed
program control passes to the statenent immediately follow ng LOOP,

PRINT "THE "; A$;" KEY HAS BEEN PRESSED'. The exanple perfornms a GET A$ as
long as A$ is a null character. This loop constantly checks to see if a key
on the keyboard is being pressed. Note that the statement GETKEY A$ has the
sane effect as line 10.

10 OPEN #8, " SEQFI LE"
20 DO

30 CET #8, A$

40 PRINT AS$;

50 LOOP UNTIL ST

60 DCLOSE #8

17-25

This programopens the file "SEQFILE" and gets data until the ST system
variable indicates all data is input. A value of 0 indicates a FALSE con-
dition, nonzero is true. STis normally O.

Open a disk file for a read and/or wite operation.

DOPEN #l ogi cal file nunber,"filenane[,<S | P>]" [,Lrecord |ength]
[,Ddrive nunber] [<ON | ,>Udevice nunber] [,wW

where:

S = Sequential file type.

P = Programfile type.

L = Record length = the length of records in arelative file only.
w = Wite operation (if not specified a read operation occurs).

This statement opens a sequential, programor relative file for a read or
wite operation. The record length (L) pertains to a relative file, which
can be as long as 254. The w parameter is specified only during a wite
(PRINT#) operation in a sequential file. If not specified, the disk drive
assunes the disk operation to be a read operation. Relative file are open
for both read and write operations at the sane tine.

The logical file nunber associates a nunber to a file for future disk
operations such as a read (INPUT# or GET#) or wite (PRINT#) operation. The
logical file nunber can range from1 to 255. Logical file nunbers greater
than 128 automatical ly send a carriage return and linefeed with each PRI NT#
command. Logical file nunber less than 128 send only a carriage return,

whi ch can be suppressed with a semicolon at the end of the PRINT# command.
The default device number is 8, and the default drive is 0.

EXAVPLES:

DOPEN#1, " ADDRESS", W Open the sequential file nunber 1 (ADDRESS) for

a wite operation.

17-26

DOPEN#2, "RECI PES", D1, 9 (pen the sequential file number 2 (RECIPES) for
a read operation on device nunber 9, drive 1.

DOPEN#3, "BOOKS", L128 Open the relative file nunber 3 (BOXKS) for
read and wite on unit 8 drive 0. Record length

is 128 characters.

DRAW

Draw dots, lines and shapes at specified positions on screen.
DRAW [col or source], x1,yl [TOx2,y2] ...

This statement draws individual dots, lines, and shapes. Here are the para-
met er val ues:

color source= 0 Background col or

1 Foreground col or

2 Multicolor 1}

3 Miulticolor 2} Only in Gaphics nodes 3 and 4
x1, y1 Starting coordinate, scaled
X2, y2 Endi ng coordinate, scaled

Also see the LOCATE conmand for information on the pixel cursor.

EXANMPLES:
DRAW 1, 100, 50 Draw a dot
DRAW, 10, 10 TO 100, 60 Draw a line

DRAW, 10, 10 TO 10,60 TO 100,60 TO 10,10 Draw a triangle

You may omit a paraneter but you still nust include the comma that would
have followed the unspecified paraneter.

Save a BASIC programfile to disk.
DSAVE "filenane" [,Ddrive number] [<ON | ,>Udevice nunber]

17-27

This command stores (SAVEs) a BASIC programon disk. (See SAVE to store
programs on tape.) A filename up to 16 characters |ong nust be supplied.
The default device number is 8, while the default drive nunber is 0.

EXANPLES:
DSAVE " BANKRECS' SAVEs the program "BANKRECS' to disk.
DSAVE (A$) SAVEs the disk programnamed in the variable AS$.

DSAVE "PROG 3",D1,U9 SAVEs the program "PROG 3" to disk on unit 9,
drive 1 (on a dual drive unit).

Verify the programin nemory against the one on disk.
DVERIFY "filename" [,Ddrive number] [<ON | ,>Udevice nunber]

Thi s command causes the Conmodore 128 to check the programon the specified
drive against the programin nenory. The default drive nunber is 0 and the
defaul't device nunber is 8.

NOTE: |f graphic area is allocated or deallocated after a SAVE, an error
occurs. Technically this is correct. Because BASIC text is noved fromits
original (SAVEd) |ocation when a bit napped graphics area is allocated or
deal l ocated, the original location where the C128 verified the SAVEd pro-
gram changes. Hence, VERIFY, which perforns byte-to-byte conparisons,
fails, even though the programis valid.

To verify binary data, see VERIFY "filenane",8,1 format, under VERIFY
command descri pti on.

17-28

EXAVPLES:

DVERI FY "C128" Verifies program"Cl28" on drive 0, unit 8.

DVERIFY "SPRITES', D0, 9 Verifies program"SPRI TES' on drive 0,
device 9.
END
Define the end of program execution.
END
When the programencounters the END statenent, it stops RUNning inmediate-

l'y. The CONT conmand can be used to restart the programat the next state-
ment (if any) follow ng the END statenent.

Define a nusical instrunent envel ope.

ENVELOPE n [,atk] [,dec] [,sus] [.rel] [, W] [,pW

where:
n Envel ope nunber (0-9)
atk Attack rate (0-15)
dec Decay rate (0-15)
sus Sustain |evel (0-15)
rel Rel ease rate (0-15)
w Waveform 0 = triangle
1 = sawtooth
2 = variable pul se (square)
3 = noise
4 = ring nodul ation
pw Pul se wi dth (0-4095)

A paraneter that is not specified will retain its predefined or currently
redefined value. Pulse width applies to the width of the variable pulse
waveform (wf=2) only and is determned by the formula: pwout = pw 40.95, so
that pw=2048 produces a square wave and values 0 and 4095 produce constant
DC output. The Commodore 128 has initialized the follow ng 10 envel opes:

17-29

n, A D S R w, pw i nstrunent
ENVELCPE O, 0, 9, 0, 0, 2, 1536 pi ano
ENVELOPE 1, 12, 0, 12, 0, 1 accordion
ENVELOPE 2, 0, 0, 15, 0, O cal l'i ope
ENVELOPE 3, 0, 5 5 0, 3 drum
ENVELCPE 4, 9, 4, 4, 0, O flute
ENVELOPE 5, 0, 9, 2, 1, 1 guitar
ENVELOPE 6, 0, 9, 0, 0, 2, 512 har psi cord
ENVELCPE 7, 0, 9, 9, 0, 2, 2048 organ
ENVELOPE 8, 8, 9, 4, 1, 2, 512 trunpet
ENVELOPE 9, 0, 9, 0, 0, O xyl ophone

To play predefined nusical instrument envel opes, you sinmply specify the
envel ope number in the PLAY conmand (see PLAY). You do not need to use the
ENVELCPE command. The ENVELCOPE command is used only when you need to change
the envel ope.

FAST

Put machine in 2 Mz node of operation.

FAST

This command initiates 2 Mz node, causing VIC s 40 col um screen to be
turned off. All operartions (except 1/0 are speeded up considerably.

Graphics may be used, but will not be visible until a SLONconmand is
i ssued.

Get data from expansi on (RAM nodul) nenory.
FETCH #bytes, intsa, expsa, expb

where #bytes nunber of bytes to get from expansion nemory (0-65535)

intsa = starting address of host RAM (0-65535)
expsa = starting address of expansion RAM (0-65535)
expb = 64K expansi on RAM bank nunber (0-15)

17-30

FILTER

Define sound (SID chip) filter paraneters.

FILTER [freq] [,Ip] [.bp] [,hp] [.res]

where:
freq Filter cut-off frequency (0-2047).
Ip Lowpass filter on (1), off (0).
bp Band- pass filter on (1), off (0).
hp Hi gh-pass filter on (1), off (0).
res Resonance (0-15).

Unspeci fied paraneters result in no change to the current val ue.

You can use nore than one type of filter at a tine. For exanple, both |ow
pass and high-pass filters can be used together to produce a notch (or
band-

reject) filter response. For the filter to have an audible effect, at |east
one type of filter nust be selected and at |east one voice nust be routed
through the filter.

EXANPLES:
FILTER 1024,0,1,0, 2 Set the cutoff frequency at 1024, select the band
pass filter and a resonance |evel of 2.
FILTER 2000,1,0,1,10 Set the cutoff frequency at 2000, select both the
| ow pass and high pass filters (to forma notch-
reject) and set the resonance |level at 10.

FOR/ TQl STEP/ NEXT

Define a repetitive programloop structure.

FOR variable = start value TO end val ue [STEP increnment]

NEXT [vari abl €]

The FOR statement works with the NEXT statement to set up a section of the
programthat repeats for a set nunber of times (i.e. a loop). This is use-

ful when sonething needs to be counted or sonething nust be done a certain
nunber of times (such as printing).

17-31

This statement executes all the commands encl osed between the FOR and NEXT
statenents repetitively, according to the start and end values. The start
val ue and end val ue are the beginning and ending counts for the |oop
variable. The loop variable is added to or subtracted fromduring the
FOR... NEXT | oop.

The logic of the FOR .. NEXT statement is as follows. First, the Ioop
variable is set to the start value. Wen the programreaches a programline
containing the NEXT statenent, it adds the STEP increment (default = 1) to
the value of the loop variable and checks to see if it is higher than the
end value of the loop. If the loop variable is less than or equal to the
end value, the loop is executed again, starting with the statement inme-
diately following the FOR statement. If the loop variable is greater than
the end val ue, the loop termnates and the programresunes i nmmediately fol-
lowing the NEXT statement. The opposite is true if the step size is nega-
tive.

EXAMPLE A EXAVPLE B
10 FOR L=1 TO 10 10 FOR L=10 TO 1 STEP-1
20 PRINT L 20 PRINT L
30 NEXT L 30 NEXT L

40 PRINT "I'MDONE! L =";L 40 PRINT "I"'MDONE! L =";L
Program A prints the nunber fromone to 10, followed by the message
['"MDONE! L = 11. ProgramB prints the nunbers down to one and them|'M
DONE! L = 0.

The end val ue of the loop may be followed by the word STEP and another num
ber or variable. In this case, the value followng the word STEP i s added
each tinme, instead of the default value one. This allows counting back-
wards, by fractions, or increnents other than one.

The user can set up loops inside one another. These are known as nested
I oops. Care nust be taken when nesting |oops so, that the last loop to
start is the first one to end.

EXAVPLE:
10 FR L
20 FOR A
30 NEXT A
40 NEXT L

1 TO 100
5 TO 11 STEP .5

17-32

The FOR... NEXT loop in lines 20 and 30 are nested inside the one in line
10 and 40. The STEP increnent of .5 is used to illustrate the fact that
floating point indices are valid. See also the NEXT statenent.

GET

Receive input data fromthe keyboard, one character at a time without
waiting for a key to be pressed.

GET variable |ist

The GET statenment reads each key typed by the user. As the user types, the
characters are stored in the conputer's nmemory (in an area called the key-
board buffer). Up to 10 characters can be stored herel, any characters

typed after the 10th character are lost. The GET statenent reads the first
character fromthe buffer and noves the rest up, allow ng roomfor nore. If
there are no characters in the buffer a null (enpty) character is returned.
The word GET is followed by a variable nane, either numeric or string. GET
will not pause the programif no characters are in the buffer (see GETKEY).

If the C128 intends to GET a nuneric key and a key other than a nunber is
pressed, the programstops and a TYPE M SMATCH error nmessage is displayed.
The GET statement may al so be put into a loop, checking for an enpty
result. The GETKEY statement could al so be used in this case. See GETKEY
for nore information. The GET and GETKEY statements can be executed only
within a program

EXAVPLES:

10 DO GET A$:LOOP UNTIL A$="A" This line waits for the A key to be
pressed to continue.

20 GET B, C, D Get nuneric variables B, C and D from
the keyboard without waiting for a key

to be pressed.

17-33

Recei ve input data fromthe keyboard, one character at a tinme and wait for
a key to be pressed.

GETKEY variable |ist

The GETKEY statenent is very simlar to the GET statement. Unlike the GET
statenent, GETKEY, if there is no character in the keyboard buffer, will
wait for the user to type a character on the keyboard. This lets the com
puter wait for a single character to be typed. This statenent can be exe-
cuted only within a program

EXAVPLES:

10 GETKEY A$ This line waits for a key to be pressed. Typing any

key continues the program
10 GETKEY A$,B$,C$ This line waits for three al phanunmeric characters
to be entered fromthe keyboard. GETKEY can al so be
used to READ nuneric keys.
NOTE: GETKEY cannot return a null (enpty) character.
GET#
Receive input data froma tape, disk or RS232.
CET#file nunber, variable |ist
This statement inputs one character at a time froma previously opened
file. Otherwise, it works like the GET statenent. This statement can be
executed only within a program
EXAVPLE:
GET#1,A$ This exanple receives one character, which is stored in the
variable A$, fromfile number 1. This exanple assunes that

file 1 was previously opened. See the OPEN and DOPEN st at e-
nents.

17- 34

G64

Switch to C64 node.
G064

This statement switches from C128 node to C64 node. The question "Are You
Sure?" is displayed in response to the G064 statenent. If {y} is typed,
then

the currently loaded programis lost and control is given to the C64 node;
otherwise, if any other key is pressed, the conputer remains in Cl28 node.
This statement can be used in direct node or within a program The pronpt
is not displayed in program node.

GOSuUB
Call a subroutine fromthe specified line nunber.
GOSUB |'i ne nunber

This statement is simlar to the GOTO statement, except the Conmodore 128
returns fromwhere it came when the subroutine is finished. Wen a line
with a RETURN statenent is encountered, the program junps back to the
statenent immediately follow ng the GOSUB statenent.

The target of a GOSUB statenent is called a subroutine. A subroutine is
useful if a task is repeated several times within a program Instead of
duplicating the section of programover and over, set up a subroutine, and
GOSUB to it at the appropriate time in the program See also the RETURN
stat enent.
EXAVPLE:

20 GOSUB 800

799 END

800 PRINT "H THERE": RETURN

This exanple calls the subroutine beginning at line 800 and executes it.
Al subroutines terminate with a RETURN statenent.

Line 799 stops the program accidentally falling into the subroutine.

17-35

GOTa' &0 TO
Transfer program execution to the specified |ine nunber.
GOTO |'i ne nunber

After a QOTO statenent is encountered in a program the conputer executes
the statenment specified by the line nunber in the GOTO statement. When used
in direct node, GOTO executes (RUNs) the programstarting at the specified
l'ine number, without clearing the variables. This is the same as the RUN
command except it does not clear variable val ues.

EXAVPLES:

10 PRI NT" COMMODORE"
20 GOTO 10

The GOTOin Iine 20 makes line 10 repeat continuously until {run/stop} is
pressed.

GOTO 100
Starts (RUNs) the programstarting at line 100, without clearing the
variabl e storage area.
GRAPHI C
Sel ect a graphi ¢ node.
GRAPHI C node [, clear] [,s]
GRAPH C CLR
This statement puts the Conmodore 128 in one of the six graphic nodes:
Mbde Description
40-colum (VIC) standard text
Standard bit map
Standard bit map (split screen)
Ml ticolor bit map

Milticolor bit map (split screen)
80-col umn text

g WP O

17-36

The clear paraneter specifies whether the bit mapped screen is cleared
(equal to 1) upon running the program or left intact (equal to 0). The s
paraneter indicates the starting line number of the split screen when in
graphic node 2 or 4 (standard or multicolor bit map split screen modes).
The default starting line nunber of the split screen is 19.

When executed, GRAPHIC 1-4 allocated a 9K bit mapped area. The start of
BASIC text area is moved above the bit map area, and any BASIC programis
automatically relocated. This area remmins allocated even if the user
returns to TEXT node (GRAPHIC 0). If the clear option is specified as 1,
the screen is cleared. The GRAPH C CLR command deal | ocates the 9K bit
mapped area, meking it available again for BASIC text. Any BASIC program
is relocated.

EXANPLES:
GRAPHIC 1,1 Sel ect standard bit map node and clear the bit map.

GRAPHIC 4,0,10 Select split screen nulticolor bit map node, do not
clear the bit map and start the split screen at line

10.

GRAPHIC 0 Sel ect 40 colum text.

GRAPHIC 5 Sel ect 80 colum text.

GRAPHI C CLR Clear and deallocate the bit map screen.
HEADER

Formats a diskette.

HEADER di skname [, i.d.] [,Ddrive nunber] [<ON | ,>Udevice nunber]

17-37

where:
di sknane - Any nanme up to 16 characters.

i.d. - Any two al phanuneric characters. You nust use two - you may not
| eave a space.

Before a new disk can be used for the first tine, it nust be formatted with
the HEADER command. The HEADER conmand can al so be used to erase a pre-
viously formatted disk, which can then be reused.

When you enter a HEADER conmand in direct node, the pronpt ARE YOU SURE?
appears. In program mode, the pronpt does not appear.

The command divides the disk into sections called blocks. It creates a
table of contents of files, called a directory. Gve each disk a unique
i.d. number. Be careful when using the HEADER conmand because it erases
all stored data.

You can HEADER a diskette nore quickly if it was already formatted (by a
HEADER conmand), by omitting the new disk i.d. The old i.d. is used in-
stead. The quick HEADER can be used only if the disk was previously fornat-
ted, since it clears out the directory rather than formatting the disk. The
defaul't device nunber is 8 and the default drive is 0.

As a precaution, the systemasks ARE YOU SURE? before the Conmodore 128
conpl etes the operation. Press the {y} key to performthe HEADER, or press
any other key to cancel it.

The HEADER conmand reads the di sk conmand error channel, and if any error
is encountered, the error message ?BAD DI SK i s displayed.

The HEADER conmand is anal ogous to the BASIC 2.0 conmand:
OPEN 1, 8, 15, "NO: di sknane,i.d." : CLCSE 1
EXANPLES:

HEADER "MYDI SK", 151,00 This HEADERs "MDI SK" using i.d. 51 on drive
0, (default) device number 8.

17-38

HEADER " RECS", | 45, D1 ON W9 Thi s HEADERs "RECS' using i.d. 45, on Drive
1, device nunber 9.

HEADER " C128 PROGRAMS', DO This is a quick HEADER on drive 0, device
nunber 8, assuming the disk in the drive was

already formatted. The old i.d. is used.

HELP

Highlight the line where the error occurred.
HELP

The HELP command is used after an error has been reported in a program
When HELP is typed in 40-colum format, the line where the error occurs is
listed, with the portion containing the error displayed in reverse field.
In 80-colum format, the portion of the line where the error occurs is
underlined. Pressing the {help} key types HELP{return} automatically.

| F/ THEN ELSE

Eval uate a conditional expression and execute portions of a program depen-
ding on the outcone of the expression.

| F expression THEN statenents
I F expression THEN statenents [: ELSE el se-cl ause]

(BASI C 2.0)
(BASIC 7.0)

The IF... THEN statement eval uates a BASIC expression and takes one or two
possi bl e courses of action depending upon the outcome of the expression. If
the expression is true, the statement(s) following THEN i s executed. This
may be any BASIC statenent. |f the expression if false, the program resumes
with the programline immediately followng the programline containing the
| F statenment, unless an ELSE clause is present. The entire IF... THEN
statenent nmust be contained within 160 characters (80 in C64 node). Also
see BEG N BEND.

17-39

The ELSE clause, if present, nust be on the same line as the IF... THEN

portion of the statement, and separated fromthe THEN clause by a col on

{:}. Wen an ELSE clause is present, it is executed only when the expres-
sion if false. The expression being eval uated my be a variable or a for-
mula, in which case it is considered true if nonzero, and false if zero.

In nost cases, there is an expression involving relational operators (=,

< >, >3,).

The IF... THEN statement can take two alternate forns:

| F expression THEN |ine number
or
I F expression THEN GOTO |ine nunber

These forms transfer program execution to the specific Iine nunber if the
expression is true. Qherwise, the programresunmes with the programline
nunber imediately following the line containing the |F statenment.

EXAMPLES:

50 IF X>0 THEN PRINT "OK": ELSE END
This line checks the value of X If Xis greater than 0, the statement im
mediately following the keyword THEN (PRINT"OK") is executed and the ELSE
clause is ignored. If Xis less than or equal to 0, the ELSE clause is exe-

cuted and the statement immediately following THEN i s ignored.

10 1F X=10 THEN 100
20 PRINT"X does not equal 10"

99 STCP

100 PRINT "X equal s 10"
This exanpl e eval uates the value of X If X equals 10, the program control
is transferred to line 100 and the nessage "X EQUALS 10" is printed. If X
does not equal 10, the programresumes with line 20, the C128 prints the
pronpt "X DOES NOT EQUAL 10" and the program stops.

NOTE: The ELSE extension cannot be used in C64 node.

17-40

[NPUT

Receive a data string or a number fromthe keyboard and wait for the user
to press {return}.

INPUT ["pronpt string";] variable list

The INPUT statenent asks for data fromthe user while the programis

RUNni ng and places the data into a variable or variables. The program
stops, prints a question mark (?) on the screen, and waits for the user to
type the answer and hit the {return} key. The word INPUT is followed by a
pronpt string and a variable name or |ist of variable nanes separated by
conmas. The message in the pronpt string inside quotes suggests (pronpts)
the information the user should enter. If this message is present, there
nmust be a semicolon (;) after the closing quote of the pronpt.

When nore than one variable is INPUT, seperate them by comms. The conpu-
ter asks for the remaining values by typing two question marks (??). If the
{return} key is pressed without INPUTting a value, the INPUT variable
retains its previous value. The INPUT statenment can be executed only with-
ina program

EXAVPLE:

10 INPUT "PLEASE TYPE TWO NUMBER'; A B

20 INPUT "AND YOUR NAME"; A$

30 PRINT A$;", YQU TYPED THE NUMBER'A; "AND'; B
| NPUT#
Inputs data froma file into the conputer's nenory.
I NPUT#fi | e number, variable Iist
This statement works |ike input, but takes the data froma previously
OPENed file usually on a disk or tape instead of the keyboard. No pronpt
string is used. This statenent can be used only within a program
EXAVPLE:

10 OPEN 2, 8, 2, " DATAFI LE, S, R'

20 INPUT#2, A$, C, DS

30 CLCSE 2

17-41

Inline 20 data is INPUT fromthe file "DATAFILE" and stores it in varia-
bles A$, C and D§.

KEY

Define or list function key assignnents.
KEY [key nunber, string]

There are eight function keys (F1 - F8) available to the user on the Conmo-
dore 128: four unshifted and four shifted. The Conmodore 128 allows you to
performa function or operation for each tinme the specified function key is
pressed. The definition assigned to a key can consist of data, or a command
or series of conmands. KEY with no paraneters specified returns a listing
displaying all current KEY assignments. If data is assigned to a function
key, that data is displayed on the screen when that function key is pres-
sed. The maxi mum length of all the definitions together is 246 characters.

EXAMPLES:
KEY 7,"GRAPH Q0" + CHR$(13) + "LIST" + CHRS(13)

This tells the conputer to select the (VIC) 40-column text screen and |ist
the program whenever the {f7} key is pressed (in direct mode). CHR$(13) is
the ASCI| character for {return} and performs the sane action as pressing
the {return} key. Use CHR$(27) for the {esc} key. Use CHR$(34) to incor-
porate the doubl e quote character into a KEY string. The keys may be rede-
fined in a program For exanple:

10 KEY 2,"PRINT DS$" + CHR$(13)

This tells the conputer to check and display the disk drive error channel
variabl e (PRINT DS$) each tine the {f2} key is pressed.

To restore all function keys to their BASIC default val ues, reset the Com
nmodore 128 by pressing the {reset} button (or switch off and then on).

LET
Assigns a value to a variable.

[LET] variable = expression

17-42

The word LET is rarely used in prograns, since it is not necessary. \When-
ever a variable is defined or given a value, LET is always inplied. The
variabl e name that receives the result of a calculation is on the left side
of the equal sign. The nunber, string or formula is on the right side. You
can only assign one value with each (inplied) LET statement. For exanple,
LET A=B=2 is not (normally) legal.

EXANPLES:
LETA=5 Assign the value 5 to numeric variable A
B=6 Assign the value 6 to numeric variable B.

C=A* B+ 3 Assignthe nuneric variable C, the value resulting from
5 tinmes 6 plus 3.

D$ = "HELLO' Assign the string "HELLO' to string variable DS.

LI ST
List the BASIC programcurrently in nenory.
LIST [line | first- | first-last | -last]

The LI ST command di splays a BASIC programlisting that has been typed or
LOADed into the Commodore 128's nmenory so you can read and edit it. \Wen
LIST is used al one (without numbers following it), the Commodore 128 gives
a conplete LISTing of the programon the screen. The listing process may be
sl owed down by hol ding the {C=} key, paused by {ctrl s} or {noscroll} key
(and resumed by pressing any key), or stopped by hitting the {run/stop}
key. If the word LIST is followed by a |ine nunber, the Commodore 128 shows
only that line nunber. If LIST is typed with two |ine nunbers seperated by
a dash all lines fromthe first to the second nunber are displayed. If LIST
is typed followed by a nunber and just a dash, the Conmodore 128 shows al |
line fromthat number to the end of the program And if LIST is typed with

17-43

a dash, then a nunber, all lines fromthe beginning of the programto that
l'ine number are LISTed. By using these variations, any portion of a program
can be examned or brought to the screen for nodification. In Conmodore 128
mode, LIST can be used in a program

EXANPLES:
LI ST Shows entire program
LI ST 100- Shows fromline 100 until the end of the program
LIST 10 Shows only Iine 10.
LI ST -100 Shows all lines fromthe beginning to line 100 inclusive.

LI ST 10-200 Shows lines from 10 to 200, inclusive.

LOAD

Load a program froma peripheral device such as the disk drive or Datas-
sette.

LOAD ["filenane"] [,device number] [,relocate flag]

This is the command used to recall a programstored on disk or cassette
tape. Here, the filename is a programnane up to 16 characters long, in
quotes. The name nust be followed by a conma (outside the quotes) and a
nunber which acts as a device nunber to determne where the programis
stored (disk or tape). If no number is supplied, the Conmodore 128 assunes
device nunber 1 (the Datassette tape recorder).

17-44

The relocate flag is a nunber (0 or 1) that determines where a programis
loaded in menory. A relocate flag of 0 tells the Cormodore 128 to load the
programat the start of the BASIC programarea. A flag of 1 tells the com
puter to LOAD fromthe point where it was SAVEd. The default value of the
relocate flag is 0. The relocate paraneter of 1 is generally used when

| oadi ng machi ne | anguage prograns.

The device most commonly used with the LOAD command is the disk drive. This
is device nunber 8, though the DLOAD command is nore convenient to use when
working with disk.

[f LOAD is typed with no arguments, followed by {return}, the Cl28 assumes
you are loading fromtape and you are pronpted to "PRESS PLAY ON TAPE".
When you press PLAY, the Conmodore 128 starts |ooking for a program op
tape. \hen the programis found, the Conmodore 128 prints FOUND "filenane",
where the filename is the nane of the first file which the datassette finds
on the tape. Press the {C=} key to LOAD the found filename, or press the
{spacebar} to keep searching on the tape. Once the programis LOADed, it
can be RUN, LISTed or nodified.

NOTE: Pressing the {spacebar} does not cause the next file to be searched
for in C64 node.

EXANPLES:

LOAD Reads in the next program from tape.

LOAD "HELLO' Searches tape for a programcalled "HELLO', and
LOADs it if found.

LOAD A$, 8 LOADs the program from di sk whose nane is stored in
the variable A$. (This is the equivalent to
DLOAD(AS) .)

17-45

LOAD'HELLO', 8 Looks for the programcalled "HELLO' on disk drive
nunber 8, drive 0. (This is equivalent to DLOAD

"HELLO'.)

LOAD'MACHLANG', 8,1 LOADs the machi ne | anguage program cal | ed
"MACHLANG' into the location fromwhich it was
saved.

The LOAD command can be used within a BASIC programto find and RUN the
next programon a tape or disk. This is called chaining.

Position the bit map pixel cursor on the screen.
LOCATE X,y

The LOCATE statenent places the pixel cursor (PC) at any specified pixel
coordinate on the screen.

The pixel cursor (PC) is the coordinate on the bit map screen where drawi ng
of circles, boxes, lines and points and where PAINTing begins. The PC
ranges fromx,y coordinates 0,0 throught 319,199 (scaled) in hi-res and
159,199 (scaled) in nmulticolor bit map. The PCis not visible like the text
cursor, but it can be controlled through the graphics statenents (BOX,
CIRCLE, DRAW etc.). The default location of the pixel cursor is the coor-
dinate specified by the x and y portions in each particular graphics com
mand. So the LOCATE conmand does not have to be specified.

EXAVPLE:

LOCATE 160,100 Position the PCin the centre of the standard bit map
screen. Nothing will be seen until sonething is drawn.

The PC can be found by using RDOT(0) function to get the x-coordinate and

RDOT(1) to get the y-coordinate. The color source of the dot at the PC can
be found by PRINTing RDOT(2).

17- 46

Enter the Conmodore 128 nachine | anguage monitor.
MONI TOR

See Appendix J for details on the Commodore 128 Machi ne Language Monitor.

Position or nove sprite on the screen.

MOVSPR nunber, x1,y1 Place the specified sprite at absolute
coordinate x,y (scaled).

MVSPR nunber, +/- x, +/ -y Move sprite relative to its current posi-
tion.

MOVSPR nunber, X; Y Move sprite distance X at angle Y relative

toits current position.

MOVSPR nunber, x angl e #y speed Mbve sprite at an angle relative to its
original coordinates, in the specified
cl ockwi se direction and speed.

where:

nunber s sprite's nunber (1 through 8)

<, X,y> is the coordinate of the sprite location (scaled)

angle is the angle (0-360) of motion in the clockwise direction relative
to the sprite's original coordinates

speed is a speed (0-15) at which the sprite noves
This statement locates a sprite at a specific location on the screen accor-
ding to the SPRITE coordinate plane (not the bit map plane) or initiates

sprite motion at a specific rate. See MWSPR in Section 6 for a diagram of
the sprite coordinate system

17-47

EXAVPLES:

MOVSPR 1,150,150 Position sprite 1 near the centre ot the screen, x,y
coordi nate 150, 150.

MVSPR 1,+20,-30 Move sprite 1 to the right 20 coordinates and up 30
coor di nat es.

MOVSPR 4, -50,+100 Move sprite 4 to the left 50 coordinates and down
100.

MOVSPR 5, 45 #15 Move sprite 5 at an 45 degree angle in the clockw se

direction, relative to its original x and y coor-
dinate. The sprite noves at the fastest rate (15).

NOTE: Once you specify an angle and a speed in the fourth formof the

MOVSPR st atenent, you nust set a speed of zero to stop the sprite noving.

NEW

Clear (erase) programand variabl e storage.

NEW

This command erases the entire programin nemory and clears any variables

that may have been used. Unless the programwas stored on disk or tape, it

is lost. Be careful with the use of this command. The NEWconmand al so can

be used as a statement in a BASIC program However, when the Conmodore 128

gets to this line, the programis erased and everything stops.

N

Condi tional branch to a specified programline nunber according to the re-
sults of the specified expression.

ON expression <GOTO | GOSUB> line #1 [,line #2, ...]

17-48

This statement can make the GOTO and GOSUB statenents operate |ike special
versions of the (conditional) IF statement. The word ONis followed by an
expression, then either of the keywords GOTO or GOSUB and a list of line
nunbers separated by conmas. If the result of the expressionis 1, the
first line number in the list is executed. If the result is 2, the second
l'ine number is executed on so on. If the result is 0, or larger than the
nunber of line nunbers in the list, the programresumes with the statenent
imedi ately following the ON statenent. If the nunber is negative, an

| LLEGAL QUANTITY error results.

EXAVPLE:

10 INPUT X I F X<0 THEN 10

20 ON X GOSUB 30, 40, 50, 60

25 @OT0 10

30 PRINT "X=1": RETURN

40 PRINT "X=2": RETURN

50 PRINT "X=3": RETURN

60 PRINT "X=4": RETURN
When X=1, ON sends control to the first line number in the Iist (30). Wen
X=2, ON sends control to the second line (40), etc.

OPEN
Open files for input or output.

OPEN | ogi cal file nunber, device nunber [,secundary address]
[<,"filenanme, filetype, node" | cnd string>]

The OPEN statement allows the Conmodore 128 to access files within devices
such as a disk drive, a Datassette cassette recorder, a printer or even the
screen of the Conmodore 128.

The word OPEN is followed by a logical file nunber, which is the nunber to
which all other BASIC input/output statenents will refer, such as PRI NT#
(wite), INPUT# (read), etc. This nunber is from1l to 255.

The second nunber, called the device nunber follows the logical file num
ber. Device nunber 0 is the Cormodore 128 keyboard; 1 is the cassette
recorder; 3 is the Cormodore 128 screen; 4-7 are normally the printer(s);
8-11 are reserved for disk drives. It is often a good idea to use the sane
file nunber as the device nunber, because it makes it easy to renenber
which is which.

17-49

Fol | owi ng the device nunber may be a third paraneter called the secundary
address. In the case of the cassette, this can be 0 for read, 1 for wite
and 2 for wite with END-OF-TAPE marker at the end. In case of the disk,
the nunber refers to the channel number. See you disk drive manual for nore
information on channel s and channel nunbers. For the printer, the secundary
addresses are used to select certain programmng functions.

There may also be a filenane specified for disk or tape OR a string fol-
I owing the secundary address, which could be a conmand to the disk/tape

drive or the nane of the file on tape or disk. If the filenane is speci-
fied, the type and node refer to disk files only. File types are PROGRAM
SEQUENTI AL, RELATIVE and USER; nodes are READ and WRITE.

EXANMPLES:
10 OPEN 3,3 CPENs the screen as file nunber 3.
20 OPEN 1,0 OPENs the keyboard as file nunber 1.

30 OPEN 1,1, 0,"DOT" OPENs the cassette for reading, as file nunber 1,
using "DOT" as the filenane.

COPEN 4, 4 OPENs the printer as file nunber 4.

OPEN 15, 8, 15 OPENs the command channel on the disk as file 15,
with secundary address 15. (Secundary address 15
is reserved for the disk drive error command

channel .)
5 OPEN 8, 8, 12, OPENs a sequential disk file for witing called

"TESTFILE, SEQ WRI TE' "TESTFILE" as file number 8, with secundary
address 12.

17-50

See al so: CLOSE, CWMD, GET#, INPUT#, and PRINT# statenents and systemvaria-
bles ST, DS and DS$.

PAINT

Fill area with color.

PAINT [color source], x, y [, nmode]
where:

col or source 0 Background col or
1 Foreground col or

2 Milticolor 1
3 Milticolor 2

X,y Starting coordinates, scaled (default at pixel cursor
(PO).

node 0 = Paint an area defined by the color source selected
(default).
1 = paint an area defined by any non-background source.

The PAINT conmand fills an area with color, the area is defined by a fully
encl osed shape around, but not including the x,y coordinates specified.
Points where the color source is the same as the source of the pixel are
not PAINTed. (See exanple 3.)

If mode=0 the area filled must be bounded by the color source, any other
color sources which lie within this boundery are overPAINTed. (See exanple
L)

[f mode=1 the boundery of the area is any col or source (except 0). No color

sources will be overPAINTed; i.e. only non-PAINTed areas can be filled when
nmode=1. (See exanple 2.)

17-51

EXAMVPLE 1

10 COLCR 0, 1: COLCR
COLCR 2,5: COLCR
20 GRAPHIC 3,1

1,2

3,7
mul ticol or graphics

30 CIRCLE 1, 80, 100, 30 draw circle in color source 1

40 CI RCLE 3, 80, 100, 35 draw circle in color source 3

50 BOX 2, 80, 100, 90, 110,45,1 draw filled box in color source 2

60 PAINT 3,70,100,0 paint inner circle in color source 3 bounded

onl'y by color source 3
EXAVPLE 2

As exanple 1, but change line 60 to

60 PAINT 3,70,100,1 paint inner circle bounded by non-background
col or source

EXAWVPLE 3

As exanple 2, but add lines 70 and 80

70 COLOR 2, 8 change col or source to yellow

80 PAINT 2,90, 110,1 attenpt to repaint the box fails, because
color source in PAINT and at (90,100) are the
sane (2).

PLAY

Define and play nusical notes and el enents
PLAY "[Vn] [On] [Tn] [Un] [Xn] [elements] [...]"
where: Vn

(04]
Tn

Voi ce (n=1-3)
Cctave (n=0-6)
Tune Envel ope (n=0-9)
0 = piano
accordion For
cal l'i ope defaul t envel ope
drum settings
flute (see ENVELOPE
guitar comand)
har psi chord
organ
t runpet
xyl ophone

OO ~No o wN -
LI T T A O O N O |

7-52

Un = Volume (n=0-9) (0=off; 9=full (VOL 15))
Xn = Filter on (n=1), off (n=0)
El enent s:
NOTES: A B C D E F G
Shar p*
Fl at *
Whol e note
Hal f note
Quarter note
Ei ghth note
Si xteenth note
Dot t ed*
Rest
VWait for all voices currently playing
to end current neasure

WO IseHE

Z 0

The PLAY statenent gives you the power to select voice, octave and tune
envel ope (including ten predefined nusical instrument envel opes), the
vol ume and the notes you want to PLAY. All these controls are enclosed in
quot es
All elenents except R and Mprecede the nusical notes in a PLAY string.
NOTE: * These nust precede each nusical note
EXAMPLES:

PLAY "V104TOUSXOCDEFGAB'
Play the notes C, D, E, F, G A and Bin voice 1, octave 4, tune enve-
lope 0 (piano - assuming you have not altered it with ENVELOPE), at vol ume
5 wth the filter off.

PLAY "V30bT6U7X1#B$AW CHDCQE! F"

Play the notes B-sharp, A-flat, a whole dotted-C note, a half D-note, a
quarter E-note and an eighth F-note

NOTE: You will need to set up a filter before you can hear anything with
this exanple - try FILTER 1024, 1

17-53

POKE
Change the contents of a RAM nenory |ocati on.
POKE address, val ue

The POKE statenent allows changing of any value in the Cormbdore 128 RAM
and al | ows modification of many of the Conmodore 128 Input/Qut put
registers. The keyword POKE is always followed by two paraneters. The first
is alocation inside the Conmodore 128 nemory, this can be a value fromO0
to 65535. The second parameter is a value from0 to 255, which is placed in
the location, replacing any value that was there previously. The val ue of
the menory location determines the bit pattern of the memory location. In
C128 node the POKE occurs into the current selected RAM bank. The POKE
address depends on the BANK nunber. See BANK in this Encyclopaedia for the
appropriate BANK configurations.

EXAVPLE:

10 POKE 53280, 1
Changes VI C border color (BANK 15 in C128 node).

NOTE: PEEK, a function related to POKE, which returns the contents of the
specified memory location is |isted under BASIC Functions.

PRI NT

Qutput to text screen

PRINT print list

The PRINT statenent is the mgjor output statement in BASIC. While the PRINT
statenent is the first BASIC statement nost people learn to use, there are
many variations of this statement. The word PRINT can be foll owed by any of

the fol I ow ng:

Characters inside of quotes ("text" lines)

Vari abl e names (A B, A%, X9)
Functi ons (SIN(23), ABS(33))
Punct uati on marks ;)

17-54

The characters inside quotes are often called literals because they are
printed literally, exactly as they appear. Variable names have the val ue
they contain (either a number or a string) printed. Functions also have
their nunber val ues printed.

Punctuation nmarks are used to help format the data neatly on the screen.
The comma tabs to the nearest tenth colum, while the semcolon prints
items next to each other. Either punctuation mark can be used as the |ast
synbol in the statement. This results in the next PRINT statenent acting as
if it is continuing the previous PRINT statement. PRINT on its own noves to
the start of the next line - leaving a blank Iine.

EXANPLES: RESULTS

10 PRINT "HELLO' HELLO

20 A$=" THERE":PRINT "HELLO'; A$ HELLO THERE
30 A=4:B=2: PRINT A+B 6

40 J=41:PRINT J;:PRINT J-1 41 40

50 PRINT A: B;: D=A+B: PRI NTD; A-B 4 2 6 2

See al so PGS, SPC and TAB Functions.

PRI NT#

Qutput data to files.

PRINT# file nunber, print list

There are a few differences between this statement and the PRINT. Mst im
portantly, the word PRINT# is followed by a nunber, which refers to the
data file previously OPENed. The nunber is followed by a comma and a i st
of items to be output to the file. The semicolon acts in the same manner
for spacing in printers as it does in the PRINT statenent, commas output 10
spaces. Some devices may not work with TAB and SPC.

EXANPLES:

10 OPEN 4,4
20 PRI NT#4, "HELLO THERE! ", A$, B$

17-55

Qutputs the data "HELLO THERE' and the variables A$ and B$ to the printer.

10 OPEN 2, 8, 2, " DATAFI LES, S, W

20 PRINT#2,A B$,C D
This exanpl e outputs the data variables A, B, Cand Dto the disk file
nunber 2.

NOTE: The PRINT# command is used by itself to clear the channel to a device
after outputting via CMD and before closing the file as foll ows:

OPEN 4, 4

C\D 4

LI ST

PRI NT#4

CLCSE 4

See al so the CVMD conmand.

PRI NT USI NG

Qut put using format
PRI NT[#fi | enunber,] USING "format list"; print list

This statement defines the format of string and nuneric itens for printing
to the text screen, printer or other device. The format is put in quotes.

This is the format list. Then add a semicolon and a list of what is to be
printed in the format for the print list. The list can be variables or the
actual values to be printed, separated by commas.

FORMAT STRING USED W TH

CHARACTER NUMERI C STRI NG
Hash sign (#) X

Plus sign (+)

M nus sign (-)
Decimal point (.)
Comma ()

Dol lar sign ($)
Four Carets ("""
Equal sign (=) X
Greater than sign (>) X

XX X X X X X

17-56

The hash sign {#} reserves roomfor a single character in the output field.
Wth Nuneric Data if the data item contains nore characters than there are
signs in the format field, the entire field is filled with asterisks {*};
no characters are printed.

EXAVPLE:

10 PRINT USI NG "####"; X
For these values of X, this format displays:
X =12.34 12

X = 567.89 568 Note that the number is rounded up.

X = 123456 FREE

For a STRINGitem the string data is truncated at the bounds of the field.
Only as many characters are printed as there are hash signs in the formt
item Truncation occurs on the right.

The plus (+) and minus (-) signs can be used in either the first or the
last position of the format field, but not both. The plus sign is printed
if the nunmber is positive. The minus sign is printed if the number is nega-
tive.

If a mnus signis used and the nunber is positive, a blank is printed in
the character position indicated by the mnus sign.

[f neither a plus nor a minus signis used inthe format field for a nume-
ric data item a mnus signis printed before the first digit or dollar
synbol if the nunber is negative. No signis printed if the nunber is posi-
tive. This neans that one additional character, the minus sign, is printed
if the nunmber is negative. If there are too many characters to fit into the
field specified by the hash signs and plus/mnus sign, then an overflow oc-
curs and the fieldis filled with asterisks {*}.

17-57

A decimal point {.} synbol designates the position of the decimal point in
the nunber. There can be only one decimal point in any format field. If a
decimal point is not specified in the format field, the value is rounded to
the nearest integer and printed wthout decimal places

When a decimal point is specified, the nunber of digits preceding the deci-
mal point (including the mnus sign, if the value is negative) nust not

exceed the nunber of hash signs before the decimal point. If there are too
many digits, an overflow occurs and the field is filled with asterisks {*}

A comma {,} allows placing of commas in nuneric fields. The position of the
comma in the format |ist indicates where the commas appear in a printed
nunber. Only commas within a number are printed. Unused conmas to the left
of the first digit appear as filler character. At |east one hash sign nust
precede the first comm in the field

If commas are specified in a field and the nunber is negative, then a minus
signis printed as the first character, even if the character positionis
specified as a coma

A dollar sign ($) symbol shows that a dollar sign will be printed in the
nunber. If the dollar signis to float (always be placed before the num
ber), at least one hash sign nust be specified before the dollar sign. If a
dollar sign is specified without a |eading hash sign, the dollar signis
printed in the position shown in the format field. If a plus or mnus sign
are specified ina formt field with a dollar sign, the programprints the
sign before the dollar sign

17-58

EXAMPLES

Field Expression Result Conment

#H4 -1 -0.1 Leading zero added

#H# 1 1.0 Trailing zero added

#H## -100.5 -101 Rounded to no decimal places

#H## - 1000 **%x Qverflow because four digits and a mnus sign

cannot fit in field

#. 10 10. Deci mal point added

#eHt 1 $1 Leadi ng dol lar sign

The up arrows or caret synbols {""""} are used to specify that the nunber
istobe printed inthe E format (scientific notation). A hash sign nust be
used in addition to the four carets to specify the field width. The carets
must appear after the hash sign in the format field. Four carets nust be
specified when a nunber is to be printed in E format. If fewer than four
carets are specified, a syntax error results. If nore than four carets are
specified, only the first four are used. The fifth and subsequent carets
are interpreted as text synbols. You can specify a {+} or {-} sign after
the carets if you require a trailing sign. An equal {=} signis used to
centre a string in afield The field width is specified by the number of
characters (the hash signs and an equal sign) in the format field. If the
string contains fewer characters than the field width, the string is cen-
tered in the field. If the string contains nore characters than can be
fitted into the field, then the rightmost characters are truncated and the
string fills the entire field. A greater than {>} sign is used to right
justify a string in a field. Cther characters can be included in a format
string, these are treated as literals. This allows you to build up tables
and charts. See line 30 in the program bel ow for a specific exanple of
this.

EXAMPLE:

5 X=32: Y=100.23: A$="CAT": B$="COWPUTER'
6 FS=* #=f###uinii * #S44 ## *+CHRE(13)
10 PRINT USING "$##. ##";13.25, X, Y
20 PRINT USING "###>#";" CBM', A$
30 PRINT USING F$; A3, X, B, Y
(CHR$(13) is {return})
17-59

When this programis RUN, line 10 prints:
$13.25 $32.00 $***** Five asterisks {*****} are printed instead of a Y
val ue, because Y has five digits which does not con-
formto the format list (as explained above).
Line 20 prints this:
CBM CAT

Leaves two spaces before printing the string, as defined in the formt
list.

Line 30 prints this:

* CAT ¥ $23.00 *

* COWPUTER * $100.23 *

PUDEF

Redefine synbols in PRINT USING statenents.

PUDEF " nnnn"

Where "nnnn" is any conbination of characters, up to four in all, PUDEF
allows you to redefine any of the followi ng four synbols in the PRINT USING
statenent: blanks, commas, decimal points and dollar signs. These four sym
bol's can be changed into sone other character by placing the new character

in the correct position in the PUDEF control string.

Position 1 is the filler character. The default is a blank. Place a new
character here for another character to appear in place of blanks.

Position 2 is the comm character. Default is a comm.
Position 3 is the decimal point. Default is a decimal point.

Position 4 is the dollar sign. Default is a dollar sign.

EXAVPLE:
10 PUDEF"*" PRINTs * in the place of blanks.
20 PUDEF" <" PRINTs < in the place of commas.

17-60

NOTE: Al positions up to the one(s) to be changed must be specified.

For exanple PUDEF " $" would print the $ in place of the dollar sign, but
the decimal point, comma and filler character would all be set to space.

PUDEF only affects nunmeric formats i.e. PUDEF "0" will change filler spaces
in nunbers to leading Os, but will not affect filler spaces in strings.

The character to replace the $ has no effect unless the $ in the format
string of PRINT USINGis preceded by a # (i.e. is floating).

READ

Read data from DATA statenments and input it into the conputer's nmenory
(while the programis RUNni ng)

READ variable |ist

This statement takes information from DATA statenents and stores themin
variabl es, where the data can be used by the RUNning program The READ
statenent variable list may contain both strings and numbers. Be careful to
avoi d reading strings where the READ statement expects a nunber, this pro-
duces a TYPE M SMATCH ERROR nessage.

The data in the DATA statenents are READ in sequential order. Each READ
statenent can read one or nore data itens. Every variable in the READ
statenent requires a DATA item If one is not supplied, an QUT OF DATA
ERRCR occurs.

In a program you can READ the data and the reREAD by issuing the RESTORE
statenent. The RESTORE statenent sets the sequential data pointer back to
the beginning, where the data can be READ again. See the RESTORE statenent.
EXANPLES:

10 READ A, B, C

20 DATA 3, 4, 5

READ 3 data itenms (which nust be nuneric or an error will occur) into
variables A, B and C

17-61

10 READ A3, B3, C3
20 DATA JOHN, PAUL, GECRGE

READ three strings from DATA statenents.

10 READ A, B3, C
20 DATA 1200, NANCY, 345

READ a nuneric value, a string, and another nuneric val ue.

Position relative file pointers.
RECORD#| ogi cal file nunber, record nunber [,byte]

This statement positions a relative file pointer to select any byte
(character) of any record in the relative file. The logical file nunber can
be in the range between 1 and 255. The record nunber can be in the range 1
through 65535. Byte nunber is in the range 1 through 254. See your disk
drive manual for details about relative files.

When the record nunber value is set higher than the last record nunber in
the file, the follow ng occurs:

For a wite (PRINT#) operation, additional records are created to expand
the file to the desired record nunber.

For a read (INPUT# or GET#) operation, a null record is returned and a
RECORD NOT PRESENT error occurs.

EXAVPLE:

10 DOPEN #2, " CUSTOVER'
20 RECORD#2, 10,1

30 PRINT#2, A$

40 DCLOSE #2

This exanpl e opens an existing relative file called "CUSTOMER' as file
nunber 2 in line 10. Line 20 positions the relative file pointer at the
first byte in record number 10. Line 30 actually wites the data, A$, to
the file.

17- 62

The RECORD conmand accepts variables for its paraneters. It is often con-
venient to place the RECORD conmand within a FOR .. NEXT or DO | oop. Also
see DOPEN.

REM
Corment or remark about the operation of a programline.
REM [message]

The REMark statenent is a note to whoever is reading a listing of the pro-
gram REM may explain a section of the program give information about the
author, etc. REM statements do not affect the operation of the program
except to add length to it (and therefore use nore nemory). Nothing to the
right of the keyword REMis interpreted by the conputer as an executable
instruction. Therefore, no other executable statement can follow a REM on
the same |ine.

EXAVPLE:

1010 NEXT X: REM END OF MAIN PROGRAM LOCP

Change the name of a file on disk.

RENAME [Ddrive number,] "old filenane" TO "new fil enane"
[<ON | ,>Udevice number]

This command is used to rename a file on disk, fromthe old filename to the
new filenane. The diskdrive does not RENAME a file if it is OPEN.

EXAMPLES:

RENAME DO, "TEST" TO "FINAL TEST" Change the name of the file "TEST" to
"FI NAL TEST".
Change the filenane specified in A$
to the filename specified in B$ on
drive 0, device number 9. Renenber,
whenever a variable nane is used as a
filenane, it must be enclosed in
par ent heses.

RENAME [0, (A$) TO (BS$), W9

17-63

RENUMBER

Renunber |ines of a BASIC program

RENUMBER [new starting line number] [,increment]
[,old starting |ine nunber]

The new starting line is the nunber of the first line in the programafter
renunbering; the default is 10. The increment is the interval between line
nunbers (i.e. 10, 20, 30, etc.); the increment default value is also 10.
The ol d starting line nunber is the first |ine nunber before you renunber
the program The default in this case is the first line of the program
This command can only be executed from direct node.

An UNRESOLVED REFERENCE error occurs if any reference to nunber that does
not exist is encountered. An QUT OF MEMORY occurs if RENUMBERI ng expands
the programbeyond its limts. A LINE NUMBER TOO LARGE error occurs if
RENUMBER generates a |ine nunber of 64000 or higher. These errors |eave the
progr am unhar ned.

EXAVPLES:

RENUMBER Renunbers the programstarting at 10, and increnents
each additional line by 10.

RENUMBER 20, 20,15 Starting at line 15, renunbers the program Line 15
becomes 20, and other lines are nunbered in incre-
ments of 20.

RENUMBER, , 65 Starting at line 65, renunbers in increnents of 10.

Line 65 becones 10. If you omit a paraneter, you nust

still enter a conma as a placehol der. There nust be

no line between 10 and 64 incl usive.

ALWAYS SAVE YOUR PROGRAM BEFORE RENUMBERI NG, because very |ong programs can
cause a SYSTEM crash when RENUMBERed with |arger |ine nunbers.

17- 64

Also note that |ong programs shoul d be RENUMBERed in FAST node as they will
take a long time to renunber (up to 30 minutes for a 55K programin FAST).

[f you only have a 40 col urm display use FAST: RENUMBER. .. {return}. Then
type SLON{return}. While RENUMBERI ng i s taking place you will not see any-
thing happeni ng. \Wen RENUMBERi ng has finished, you display will return.

If you have an 80 colum display or 40/80 col um display select the 80
col um screen before typing FAST.

RESTORE/ RESTORE

Reset READ pointer to DATA statement so the DATA can be reREAD.
RESTORE (C64 node)
RESTORE [line #] (Cl128 node)

When executed in a program the pointer to the itemin a DATA statenment
that is to be READ next is reset to the first itemin the DATA statenent.
This provides the capability to reREAD the data. If a line nunber follows
the RESTORE statenent the READ pointer is set to the first data itemafter
the specified programline. Ctherwi se the pointer is reset to the beginning
of the BASIC program In C64 node there is no option to specify the Iine
nunber, i.e. you can only RESTORE to the beginning of the program

EXAVPLES:

10 FOR1=1 TO 3
20 READ X

0 T=X+T

40 NEXT

45 PRINT T

50 RESTCRE

69 GOrO 10

70 DATA 10, 20, 30

This exanple READs the data in line 70 and stores it in nuneric variable X

It adds the total (T) of all the nuneric data items. Once all the data has
been READ, three cycles through the | oop, the READ pointer is RESTOREd to

17-65

the beginning of the programand it returns to line 10 and perforns repeti-
tively.

10 READ A B, C

20 DATA 100, 500, 750

30 READ X, Y, Z

40 DATA 36, 24, 38

50 RESTORE 40

60 READ S, P, Q

70 PRINT A B, C

80 PRINT X, Y, Z

90 PRINT S, P, Q
Thi s exanpl e RESTOREs the DATA pointer to the first data itemin line 40.
VWen line 60 is executed, it will READ the DATA 36,24,38 fromline 40,
since you don't need to READ line 20's DATA again.

NOTE: If a line number is specified the line nust exist! A variable can be
used e.g. RESTORE LR

Define where the programw |l continue (RESUME) after an error has been
trapped.

RESUNE [line # | NEXT]

This statement is used to restart program execution after TRAPping an
error. Wth no paraneters, RESUME attenpts to re-execute the line in which
the error occurred. RESUME NEXT resumes execution at the statement im
nediately following the one containing the error; RESUME fol l owed by a line
nunber will GOTO the specific line and resumes execution fromthat line
nunber. RESUME can only be used in program node.

EXAVPLE:
10 TRAP 100
20 INPUT "ENTER A NUMBER'; A
30 B=100/ A
40 PRI NT"THE RESULT=", B: PRI NT" THE END"
50 PRINT"DO YOU WANT TO RUN I T AGAIN(Y/N)": GETKEYZ$: | F Z$="Y"THEN 20
60 STOP
100 | NPUT"ENTER ANOTHER NUMBER (NOT ZERO)"; A
110 RESUME

17- 66

This exanple traps a division by zero error inline 30 if 0 is entered in
line 20. If zero is entered, the programgoes to line 100, where you are
asked to input another nunber besides 0. Line 110 returns to line 30 to
conplete the calculation. Line 50 asks if you want to repeat the program
again. If you do, press the {y} key.

RREG

Read the contents of the accumulator AC, X register XR Y register YR and
Status register SR

RREG [varl] [, [var2] [, [var3] [, [vard4] 1]]

After a SYS command is issued, the contents of the CPU registers AC, XR
YR and SR are stored in nmenory before the C128 returns to BASIC. The nenory
| ocations of these stores are:

AC -> 6

XR->7

YR -> 8

SR->5

Wth the RREG conmand the values in these nenory stores are |oaded into the
specified variables. The val ues range between zero and 255 (inclusive).

Not all variables have to be specified. For instance, it is possible to
only read the contents of YR

RREG, ,YR: PRINT YR

EXAVPLE:
100 FOR 1=4864 TO 4870
110 READD : PCXKE I,D
120 NEXT |
130 DATA 169, 6, 162, 7, 160, 8, 96
131 REM M. PRG
132 REM
133 REM 01300 LDA #6 ; LOAD AC WTH VALUE 6
134 REM 01302 LDX #7 ; LOAD XR WTH VALUE 7
135 REM 01304 LDY #8 ; LOAD YR WTH VALUE 8
136 REM 01306 RTS ; END M. SUBROUTI NE
140 SYS 4864

17- 66a

150 RREG AC, XR YR

160 PRINT "AC=";AC, "XR=";XR "YR=":YR

170 M6 = PEEK(6) : REM MEMORY LOCATI ON 6

180 M7 = PEEK(7) : REM MEMORY LOCATI ON 7

190 MB = PEEK(8) : REM MEMORY LOCATI ON 8

200 PRINT "MEMORY LOCATIONS 6, 7 AND 8:"; NB;","M:","MB

Line 160 prints this:
AC= 6 XR= 7 YR= 8
Line 200 prints this:

MEMORY LOCATIONS 6, 7 AND 8: 6, 7, 8

RETURN
Return from subroutine.
RETURN

This statement is always paired with the GOSUB statement. \hen a program
encounters a RETURN statenment, it goes to the statement immediately fol-
lowing the last GOSUB conmand executed. |If no GOSUB was previously issued,
the a RETURN W THOUT GOSUB error nessage i s displayed and the program
stops. All subroutines end with a RETURN statenent.

EXAVPLE:
10 PRINT "ENTER SUBROUTI NE"

20 GOSUB 100
30 PRINT "END OF SUBROUTI NE"

90 STOP
100 PRINT " SUBROUTI NE 1"
110 RETURN

This exanple calls the subroutine at line 100 which prints the message
"SUBROUTINE 1" and RETURNs to line 30, the rest of the program

17- 67

RUN RUN

Execut e BASI C program

RUN [line #]
RUN "filenane" [,Ddrive nunber] [<ON | ,>Udevice number] (BASIC 7.0 only)

Once a program has been typed into menory or LOADed, the RUN command exe-

cutes it. RUNclears all variables in the program before starting program

execution. If there is a nunber follow ng the RUN conmand, execution starts

at that line nunber. If there is a filenane follow ng the RUN command, the

naned file is loaded fromthe disk drive and RUN, with no further action

required by the user. RUN may be used within a program The default drive

nunber is 0 and default device nunber is 8.

EXANPLES:

RUN

Starts execution fromthe beginning of the programcurrently in nenory.
RUN 100 Starts program execution at |ine 100.

RUN'PRGL" DLOADs "PRGL" fromdisk drive 8, and runs it fromthe first
l'ine.

RUN(A$) DLOADs the programnaned in the variable A$ and runs it from
the first line.

SAVE

Store the programin menmory to disk or tape.

SAVE ["filenanme"] [,device nunber] [,EQT flag]

This command stores the programcurrently in menory onto cassette tape or
disk for later retrieval. If SAVE is typed alone an unnamed file will be

saved to tape. Tape is a sequential systemand, therefore, it is up to the
user to ensure that there is nothing inportant on the tape before SAVE ng

17- 68

(see VERIFY). To give your programa name sinply enclose the chosen nane in
quotes (or use a string variable) imediately after typing SAVE. A filenane
can be up to 16 characters.

NOTE: Wen SAVE ng to disk you nust specify a filename or you will get a
M SSI NG FI LE NAME ERRCR.

To specify the device nunber (e.g. 1 for tape) place a conma fol | oned by
the device number after the closing quote follow ng the filenane.

The final parameter (EOT) follows the device nunber and i s again seperated
by a comma. It has no significance when used with disk and can have one of
four values when used with tape. These options are:

0 Default - no action.

1 SAVE so that the relocate function of LOAD does not work, i.e. the
file will always |oad back at the address fromwhich it was SAVEd.

2 Wite an END OF TAPE marker at the end of the file - attenpts to LOAD
beyond the end of a file saved this way will generate a FILE NOT FOUND
ERROR.

3 SAVEs in non-rel ocatable format (1) and wites the EOT (2).
NOTE: |f you specify the device nunber or ECT paraneter the filenane

(and device nunber) nust be included. For tape this may be a null
(""). See the fol lowing exanples.

EXANPLES:
SAVE "HELLO' Stores a programon tape, under the name HELLO
SAVE A$, 8 Stores on disk, with the name stored in variable
AS.
SAVE "HELLO', 8 Stores on disk, with the nane HELLO (equival ent to

DSAVE "HELLO'").

17-69

SAVE "HELLO', 1, 2 Stores on tape, with the nane HELLO, and places an
END- OF- TAPE narker after the program

SAVE "", 1,3 Stores on tape, with no nane, places an EOT marker
after the program does not allow the programto be
rel ocated on | oading.

SCALE

Alter scaling in graphics node.
SCALE n [, xmax, ymax]
where:

n= 1 (on) or 0 (off)

Xxmex is in the range 320-32767,
default 1023 (hi-res)
default 2047 (multicolor)

ymax is in the range 200- 32767,
default 1023

Changes the scaling of the bit map display coordinates in both multicol or
and high resol ution nodes. Coordinates for the MWVSPR conmand are al so
scal ed. Maps many | ogical points to one physical point.

This is hel pful when you need to plot data over a wide range of values - it
will not help if you have a large cluster of data with only high val ues.

Because mul ticol or uses 2 physical pixels on the x-axis per dot, its normal
display is:

X=0 to 159 ; Y=0 to 199
as opposed to

X=0 to 319 ; y=0 to 199

[f you wish to use the same coordinates for multicolor and hi-res use SCALE
1,640,200 after setting up a multicolor screen and use the default SCALE
val ues for both types of screen.

NOTE: The GRAPHI C conmand turns scaling off, i.e. using GRAPH C (sonet hi ng)
is equivalent to GRAPHIC...: SCALE 0.

17-70

EXAVPLE:

10 GRAPH C 1. GOSUB 100

20 SCALE 1: GOSUB 100

30 SCALE 1, 5000, 5000: GOSUB 100
40 END

100 CIRCLE 1, 160, 100, 60: RETURN

Cl ear screen.
SCNCLR [mode nunber]

Mode Nunmber Mbde
0 40 colum (VIC) text.
bit map*.
split screen bit map*.
mul ticolor bit map*.
split screen nmulticolor bit map*.
80 colum (VDC 8563) text.

gl W -

This statement with no argunents clears the graphics screen, if it is pre-
sent, otherwise the current text screen is cleared**.

EXANPLES:

SCNCLR 5 O ears 80 colunmm text screen.

SCNCLR'1 Cears the (MIQ bit map screen.

SCNCLR 4 COears the (VIQ nulticolor bit map split screen.
NOTE *: The bit map area is the sane for both hi-res and nulticolor, the
different mode nunbers select other paraneters to clear e.g. 40 colum text
(2 and 4) and col or RAM (3 and 4).
NOTE **: |f a graphics screen has been created but is not selected
(GRAPHI C=0) it will not be cleared. If you are using 2 screens (80 col um
for text and 40 colum for graphics) SCNCLR will clear both text and

graphics screens if called fromthe 80 col um screen.

17-71

Delete a file fromthe disk directory.

SCRATCH "filenane" [,Ddrive nunber] [<ON | ,>Udevice number]

This command deletes a file formthe disk directory. As a precaution, the
system asks "Are you sure?" (in direct node only) before the Conmodore 128
starts the operation. Type a {y} to performthe SCRATCH or press any ot her
key to cancel the operation.

Use this command to erase unwanted files, and to create nore space on the
disk. The filenane may contain tenmplate, or wildcards (?,*). The default
drive nunber is 0 and default device nunber is 8.

EXAVPLE:

SCRATCH "MY BACK",D0 This erases the file "My BACK' fromthe disk in
drive 0 of unit 8.

Del ay program for a specific period of tine.

SLEEP n

where n is seconds (0 < n < 65536)

If you select a delay which is too long for your programand you want to
halt it, the {stop} key can be used to break into a delay.

SLOW

Return the Conmodore 128 to 1 Mhz operation.
SLow

The Commodore 128 is capable of running the 8502 microprocessor at a speed
of 1 or 2 Megahertz (Mz).

17-72

The SLOW command sl ows down the microprocessor to 1 Megahertz from2 Mega-
hertz. The FAST command sets the Conmodore 128 at 2 Mhz. The Conmodore 128
can process commands substantially faster at 2 Mhz than at 1 Mz. Note,
however, that the 40 colum screen cannot be used at 2 Mhz.

SQUND

Qut puts sound effects and nusical notes.

SOND v, f, d [, dir] [, M [, s] [, W [, p]

where: v = voice 1, 2 or 3
f = frequency val ue (0-65535)
d= duration (0-32767)
dir = step direction (0 = up, 1 = down, 2 = oscillate), default=0
m = m ni mum frequency (0-65535) if the sweep i s used, default=0
s = step val ue for sweep (0-65535), default=0
w = waveform (0 = triangle, 1 = sawtooth, 2 = pulse, 3 =
noi se), defaul t=2
p = pul se width (0-4095), default=2048

The SOUND conmand is a fast and easy way to create sound effects and nusi-
cal tones. The three required paranmeters v, f and d select the voice, fre-
quency and duration of the sound. The duration is in units called jiffies.
Sixty jiffies equals 1 second.

The SOUND conmand can sweep through a series of frequencies which allows
sound effects to pass through a range of notes. Specify the direction of
the sweep with the dir parameter. Set the m nimum frequency of the sweep
with mand the step value of the sweep with s. Select the appropriate wave-
formwith wand specify p as the width of the variable pul se waveformif
selected in w

EXAVPLES:

SOUND 1, 40960, 60 Play a SOUND at frequency 40960 in voice 1

for 1 second.

SCUND 2, 2000, 5, 0, 2000, 100 Qutput a sound by sweeping through the fre-
quencies starting at 2000 and incrementing

upward in units of 100.

17-73

SOUND 3, 5000, 1, 2, 3000,500,1 This exanpl e outputs a range of sounds
starting at a mininumfrequency of 3000,
through 5000, in increments of 500. The di-
rection of the sweep is back and forth
(oscillating). The selected waveformis
saw

tooth and the voice selected is 3.

Set multicolor 1 and/or multicolor 2 colors for all sprites.

SPRCOLCR [smerl] [, smcr2]

where:
smcrl = nulticolor 1 for all sprites.
smcr2 = nulticolor 2 for all sprites.

These parameters may be any color from1 through 16.
EXAMPLES:
SPRCOLCR 3,7 Sets sprite multicolor 1 to red and multicolor 2 to blue.
SPRCOLOR 1,2 Sets sprite multicolor 1 to black and multicolor 2 to
whi te.
SPRDEF

Enter the SPRite DEFinition node to create and edit sprite images (40
col um display only).

SPRDEF

The SPRDEF conmand defines sprites interactively.

Entering the SPRDEF conmand, displays a sprite work area on the screen
which is 24 characters wide by 21 characters tall. Each character position
inthe grid corresponds to a sprite pixel in the sprite displayed to the

right of the work area. Here is a summary of the SPRite DEFinition node
operations and the keys that performthem

17-74

At the SPRITE NUMBER? pronpt Paranet er Description

user i nput description
nunber Sprite number (1-8).
{return} Exits SPRite DEFinition node at the SPRITE NUMBER? pronpt only. on/ of f Turns sprite on (1) or off (0).
{1} - {8} Selects a sprite nunber and enters sprite edit node. fgnd Sprite foreground color (1-16).
priority Priority is O if sprites appear in front of object on the screen;
In the sprite edit node priority is 1if sprites appear behind objects on the screen.
user i nput description X- exp Horizontal EXPansion on (1) or off (0).
y- exp Vertical EXPansion on (1) or off (0).
{a} Turns on and of f Automatic cursor novenent. node Sel ect standard sprite (0) or multicolor sprite (1). (See
{crsr} Mbves cursor. SPRCOLCR)
keys
{return} Mbves cursor to start of next Iine. Unspeci fied paraneters in subsequent sprite statements take on the charac-
{hone} Mbves cursor to top left corner of sprite work area. teristics of the previous SPRITE statement. You can check the characteris-
{clr} Erases entire grid. tics of a SPRITE with the RSPRITE function.
{1}-{4} Sel ects col or source:
1 = clear EXAMPLES:
2 = foreground
3=mlticolor 1 SPRITE 1,1,3 Turn on SPRITE nunber 1 and color it red.
4 = multicolor 2
{ctrl 1} - Selects sprite foreground color (1-8). SPRITE 2,1,7,1,1,1 Turn on SPRITE nunber 2, color it blue, make it
{ctrl 8} pass behind objects on the screen and expand it
{C=1} Sel ects sprite foreground col or (9-16). in horizontal and vertical directions.
- {C 8
{stop} Cancel s changes and returns to the READY pronpt. SPRITE 6,1,1,0,0,1,1 Turn on SPRITE nunmber 6, color it black. The
{shift Saves sprite in nenory and returns to the SPRITE NUVBER? first appearing 0 tells the conputer display the
return} pronpt. sprites are in front of objects on the screen.
{x} Expands sprite in X (horizontal) direction - Toggl e. The second 0 and the following 1 tell the Cl128 to
{y} Expands sprite in Y (vertical) direction - Toggle. expand the sprite vertically only. The last 1
{n Standard sprite / Milticolor sprite - Toggle. specifies the sprite to be displayed in nultico-
{c} Copies sprite data fromone sprite to another. lor mode. Use the SPRCOLOR command to select the

sprite's multicolor.
NOTE: Using SPRDEF will clear the bit map screen.
SPRITE 7,,,,1 Set the horizontal expansion of SPRITE nunber 7 -
all other options retain their previous settings.
SPRI TE
Turn on or off, color, expand and set screen priorities for a sprite.
SPRITE <nunber> [,on/of f] [,fgnd] [,priority] [,x-exp] [,y-exp] [,node]

The SPRITE statenent controls nost of the characteristics of a sprite.

17-75 17-76

Store a sprite data froma text string variable into a sprite storage area
or vice versa.

SPRSAV ori gin, destination

This command transfers a sprite imge froma string variable to a sprite
storage area. It can also tranfer data fromthe sprite storage area into a
string variable. Either the origin or the destination can be a sprite num
ber or a string variable but they both cannot be string variables (they
both CAN be sprite nunbers, however). If you are noving a string into a
sprite, only the first 63 bytes of data are used. The rest are ignored,
since a sprite can only hold 63 data bytes.

NOTE: SPRSAV sprite, string produces a string in the same format as SSHAPE
so that it can be used with GSHAPE to 'fix' a sprite onto hi-res screen.
The string will be 67 characters |ong.

EXANPLES:

SPRSAV 1,A$ Transfers the image pattern fromsprite 1 to the string
named AS.

SPRSAV B$,2 Transfers the data fromthe string variable B$ into sprite
2.

SPRSAV 2, 3 Transfers the data fromsprite 2 to sprite 3.

SSHAPE/ GSHAPE

Save/retrieve shapes to/fromstring variables.

SSHAPE and GSHAPE are used to save and | oad rectangul ar areas of nulticolor
or standard bit mapped screen to/from BASIC string variables. The command
to save an area of the screen into a string variable is:

SSHAPE string variable, x1, yl1 [, x2, y2]

17-77

wher e:

string variable String nane to save data in
x1, y1 Corner coordinates (0,0 through 319,199) (scaled).
X2, y2 Corner coordinates opposite (x1,yl) (default is the PC)

Because BASIC linmits strings to 255 characters, the size of the area that
can be saved is limted. The string size required can be cal cul ated using
one of the follow ng (unscaled) fornulas:

L(hi-res) = INT((ABS(x1-x2) + 1) / 8 +.99) * (ABS(yl-y2) + 1) + 4
L(multicolor) = INT((ABS(x1-x2) + 1) / 4 + .99) * (ABS(yl-y2) + 1) + 4
NOTE: The upper limts of the coordinates (319,199 for standard and 159, 199
for multicolor bit nmapped graphics) apply to the unSCALEd coordinate
system Wen SCALE is turned on, the limt are set by the SCALE conmand.

The command to retrieve (load) the data froma string variable and display
it on specified screen coordinates is:

GSHAPE string variable, [x,y] [, nmode]

where:

string Contains shape to be drawn.

X,y Top left coordinates (0,0 through 319,199) telling where
to draw the shape (scaled), default is the pixel cursor.

node Repl acement node:

0: place shape as is (default).
invert (reverse) shape.

OR shape with area.

AND shape with area.

XOR shape with area.

The repl acement node allows you to change the data in the string variable
so that you can invert it, performa logical OR exclusive OR or AND
operation on the inmage.

Also see the LOCATE conmand for information on the pixel cursor.

17-78

EXAMPLES:
SSHAPE A$, 10, 10 Saves a rectangul ar area fromthe coordinates
(10,10) to the location of the pixel cursor, into
string variable AS$.

SSHAPE B$, 20, 30, 47,51 Saves a rectangul ar area fromtop left coordinates
(20, 30) throught bottom coordinates (47,51) into
string variable BS.

GSHAPE A3, 120, 20 Retrieves shaped contained in string variable A$ and

displays it at top left corner at coordinates (120,
20).

GSHAPE BS$, 30, 30, 1 Retrieves shape contained in string B$ and displays

it at top left coordinates (30,30). The shape is
inverted due to the replacenent node being sel ected
by the 1.

NOTE: Beware using modes 1-4 with nulticolor shapes. You may obtain unpre-
dictable results.

Mbve contents of host menory to expansi on RAM
STASH #bytes, intsa, expsa, expb

Refer to FETCH conmand for description of paraneters.

STOP
Hal t program execution.
STOP

This statement halts the program A nessage, BREAK IN LINE xxx occurs (in
program mode), where xxx is the line number containing the STOP conmand.

The programcan be restarted at the statement following STOP if the CONT
command is used immediately, without any editing occuring in the |isting.
The STOP statenent is often used while debugging a program

17-79

SWAP

Swap contents of host RAMwith contents of expansion RAM
SWAP #bytes, intsa, expsa, expb

Refer to FETCH conmand for description of paraneters.

SYS/ SYS

Cal | and execute a machine |anguage subroutine at the specified address.

SYS addr ess
SYS address [, [a] [, [x] [, [yl [[s]I111]

(C64 node)
(C128 node)

This statement performs a call to a machine code subroutine at the given
address in a nmenory configuration set up according to the BANK command.
Optionally, argunents a, x, y and s are loaded into the accumulator, x, y
and status registers respectively, before the subroutine is called.

The address range is 0 to 65535 (both inclusive). The program begins exe-
cuting the machine |anguage programstarting at that memory |ocation. Also
see the BANK command.

EXANPLES:

SYS 40960 Calls and executes the machine |anguage routine at |ocation
40960.

SYS 8192,0 Calls and executes the machine | anguage routine at |ocation
8192 and | oads zero into the accunul ator.

Define the speed of the song being played.
TEMPO n

where n is a relative duration between 1 and 255 (inclusive).

17-80

The actual duration for a whole note is determined by using the formula
gi ven bel ow.

whol e note duration = 23.06/n seconds

The default value of nis 8 and note duration decreases with n.
EXANPLES:

TEMPO 16 Defines the TEMPO at 16.

TEMPO 1 Defines the TEMPO at the sl owest speed.

TEMPO 250 Defines the TEMPO at 250.

TRAP

Detect and handl e programerrors while a BASIC programis RUNning.
TRAP [i ne#]

When turned on, TRAP intercepts all error conditions (excluding DCS error
messages, but including the {stop} key). In the event of any execution er-
ror, the error flag is set and execution is transferred to the Iine nunber
specified in the TRAP statenent.

The line number in which the error occurred can be found by using the
systemvariable EL. The specific error condition is contained in system
variable ER The string function ERR$(ER) gives the error nessage corres-
ponding to the error condition.

The RESUME statenent can be used to resunme program execution. TRAP with no
l'ine number turns off error trapping. An error in a TRAP routine cannot be
trapped, unless it contains a TRAP statenent of its own.

EXAMPLE:

100 TRAP 1000 [f an error occurs, go to Iine 1000.

1000 ?ERR$(ER); EL Print the error nessage, and the error |ine nunber.
1010 RESUME Resune program execution.

17-81

Turn OFF error TRaci ng node.
TROFF

This statenent turns off trace node.

TRON

Turn ON error TRacing node.
TRON

TRON is used in program debuggi ng. This statement begins trace node. \When
you RUN the program the |ine nunbers of the program appear in brackets be-
fore any action for that |ine occurs.

If you have multistatenent |ines, the line nunber will be printed before
each statement is processed.

VERI FY
Verify programin nenory against one saved to disk or to tape.
VERIFY ["filename"] [,device nunber] [,relocate flag]

This command causes the Conmodore 128 to check the programon tape or disk
against the one in nenory, to determine if the programis really SAVEd.
This command is also very useful for positioning a tape so that the Conmo-
dore 128 wites after the last programon tape.

VERIFY, with no argunents after the command, causes the Commodore 128 to
check the next programon tape, regardless of its name, against the program
now in menmory. VERIFY, followed by a programnane in quotes or a string
variable, searches the tape for that program and when found checks it
against the programin nenory. VERIFY, followed by a name, a comm and a

17-82

nunber, checks the programon the device with that number (1 for tape, 8
for disk). The relocate flag is the same as in the LOAD conmand. It veri-
fies the programfromthe menory location fromwhich it was SAVEd. (See
al so

DVER FY.)

EXAVPLES:

VERI FY "HELLO' Searches for HELLO on tape, checks it against nenory.

VERIFY "HELLO',8,1 Searches for HELLO on disk, then checks it against
nenory.

VERI FY "LASTFI LE" Searches tape for LASTFILE, checks it, reports an
error if there is no match. You can then save you new
programafter it, wthout erasing previous prograns.

NOTE: |f graphic area is allocated or deallocated after a SAVE, VER FY and
DVERIFY will report an error. Technically this is correct. BASIC text in
this case has moved fromits original (SAVEd) location to another address

range. Hence, VERIFY, which perforns byte-to-byte conparisons, wll fail,
even though the programis valid.

VoL

Define output |evel of sound.

VOL vol une | evel

This statenent sets the volume for SOCUND and PLAY statements. VOLUME |evel
can be set from0 to 15, where 15 is the maxi numvolune, and 0 is off. VOL

affects all voices.

EXAVPLES:

VOL 0 Turns vol une off.

17-83

VoL 1 Sets volune to its |owest audible |evel.

VOL 15 Sets volune for SOUND and PLAY statements to its highest |evel.

WAIT
Pause program execution until a data condition is satisfied.
VWAIT ocation, maskl [, mask2]

The WAIT statenent causes program execution to be suspended until a given
menory address recognizes a specific bit pattern or value. In other words,
WAIT can be used to halt the programuntil some external event has occur-
red. This is done by nonitoring the status of bits in the Input/Qutput re-
gisters. The data items used with the WAIT can be any val ues. For most pro-
grammers, this statement should never be used. It causes the programto be
halt until a specific menory location's bits change in a specific way.

This is used for certain I/O operations and al nost nothing el se. The WAIT
statenent takes the value in the menory location and perforns a |ogical AND
operation with the value in maskl. If mask2 is specified, the result of the
first operation is exclusively ORed with mask2. In other words, maskl
"filters out" any bits not to be tested. Were the bit is 0 in maskl, the
corresponding bit in the result will always be 0 . The mask2 value flips
any bits, so that an off condition can be tested as well as an on condi-
tion. Any bits being tested for a 0 should have a 1 in the corresponding
bit position in mask2. If corresponding bits of the maskl and mask2
operands differ, the exclusive-OR operation gives a bit result of 1. If the
corresponding bits get the same the bhit is 0. It is possible to enter an
infinite pause with the WAIT statenent, in which case the {run/stop} and
{restore} keys can be used to recover. WAIT may require a bank command if
the menory you wish to access is not in the currently selected BANK

The foll owing exanpl es are for the C128 node only. The first example WAITs
until a key is pressed on the tape unit to continue with the program The
second example will WAIT until the {shift} key is pressed and then

rel eased. The third exanple will WAIT until either bit 7 (128) is on or
bit 4 (16) if off.

17- 84

EXAVPLES:

WAIT 1,32, 32

WAIT 211, WAL T 211, 1,1
WAI'T 36868, 144, 16

(144 and 16 are binary masks. 144=9%40010000 in binary and 16 = 940000 in
binary.)

Set the width of drawn Iines.

WDTH n

This command sets the width of lines drawn using BASIC s graphic commands
to either single or double width. Gving n a value of 1 defines a single
width line; a value of 2 defines a double width line.

EXAVPLES:

WDTH 1 Set width for graphic conmands.
WDTH 2 Set double width for drawn |ines.

Defines a screen w ndow.

WNDOWtop left col, top left row, bot right col, bot right row [, clear]

This command defines a | ogical wndow within the 40 or 80 col um text

screen. The coordinates nust be in the range 0-39/79 for colum val ues and

0-24 for row values. The clear flag, if provided (1), causes a screen-clear

to be performed (but only within the limts of the newy described w ndow).

EXAMPLES:

WNDOW5,5,35,20 Defines a windoww th top left corner coordinates

(5,5) and bottomright corner coordinates (35,20).

17-85

WNDOW 10, 2, 33,34,1 Defines a window with upper left corner coordinates
(10,2) and lower right coordinates (33,24). Also
clears the portion of the screen within the w ndow as
specified by the 1.

NOTE: |f you specify a colum greater than 39 on a 40-col um display you
will get an "ILLEGAL QUANTITY ERRCR'.

17-86

SECTI ON 18 BASI C FUNCTI ONS
Basi ¢ Functions
The format of the function description is:
FUNCTI ON(ar gunent)
where the argument can be a nuneric value, variable or string. Each func-
tion description is follow ng by an exanple.

ABS

Return absol ute val ue.
ABS(x)

The absol ute value function returns the positive value of the argument.
EXAVPLE:
PRINT ABS(7*(-5))
35

ASC

Return CBM ASCI | code for character.
ASC(x$)

This function returns the ASCII code for the first character of x$. In C128
nmode you no |onger have to append CHR$(0) to a null string; |LLEGAL
QUANTITY ERRCR is no | onger issued.

EXAVPLE:

X$="C128" : PRI NTASC(X$)

67
ATN

Return angl e whose tangent is X radians.
ATN(X)

18-1 18-3

This function returns the angl e whose tangent is x, measured in radians.
EXAVPLE:

PRINT ATN(3)
1. 24904577

BUWP

Return sprite collision information.
BUVP(n)

To deternine which sprites have collided since the last check, use the BUWP
function. BUWP(1) records which sprites have collided with each other and
BUMP(2) records which sprites have collided with other objects on the
screen. COLLI SION need not be active to use BUVP. The bit positions (0-7)
in the BUWP val ue correspond to sprites 1 through 8 respectively. BUMP(n)
is reset to zero after each call.

The val ue returned by BUWP is the result of two raised to the power of the
bit position. Remember bit position range fromzero to seven, so a bit po-
sition corresponds to the sprite nunber - 1. For exanple, if BUWP returned
a value of 16, sprite 5 was involved since 2 raised to the power (5 minus
1) equal s 16.

EXAMPLES:

PRINT BUMP(1) Indicates that sprites 3 and 4 have collided.

12

PRINT BUMP(2) Indicates that sprite 6 has collided with an object on
the screen.

32

CHR$

Return ASCI1 character for specified CBM ASCI | code.
CHR$(x)

This is the opposite of ASC and returns the string character whose CBM
ASCI | code is x. Refer to Appendix E for a table of CHR$ codes.

18-4

EXANPLES:

PRINT CHR$(65) Prints the a character
A

PRINT CHR$(147) Cears the text screen.

Cos

Return cosine of angle of x radians.
COS(x)

This function returns the value of the cosine of x, where x is an angle
measured in radians.

EXANPLE:
PRINT COS({pi })
-1

DEC

Return decimal val ue of hexadeci mal number string.
DEC(hexadeci nal - string)

This function returns the decimal value of hexadeci mal -string.

EXAMPLES

PRINT DEC(" D020")
53280

F$="F": PRINT DEC(F$)
15

ERR$

Return the string describing an error condition.

ERR$(n)

This function returns a string describing an error condition. A so see
systemvariables EL and ER and Appendix A for a list of BASIC error nes-

sages.

18-5

EXAMPLE:

PRINT ERR$(10)

NEXT W THOUT FOR
EXP

Return val ue of an approximation of e (2.7182813) raised to the power x.
EXP(x)

This function returns a value of e (2.7182813) raised to the power x.
EXAVPLE:
PRINT EXP(1)
2.7182813

FNxx

Return val ue fromuser defined function.
FNxx(x)

This function returns the value fromthe user-defined function xx created
by a DEF FNxx statement.

EXAVPLE:

10 DEF FNAA(X)=(X-32)*5/9

20 INPUT X

30 PRINT FNAA(X)

RUN

? 40 (? is input pronpt)
4. 44444445

FRE

Return nunmber of available bytes in nenory.
FRE(X)

Wiere x is the bank nunmber. x=0 BASIC program storage, and x=1 to check
for available BASIC variabl e storage.

18-6

EXAVPLES:

PRINT FRE(0) Returns the number of free bytes for BASIC prograns.
48893

PRINT FRE(1) Returns the number of free bytes for BASIC variable
64256 st or age.

HEX$

Return hexadeci mal nunber string from deci mal nunber.
HEX$(x)

This function returns a four-character string containing the hexadeci nal
representation of value x (0 <= x < 65536). The deci mal counterpart of this
function is DEC

EXAVPLE:

PRINT HEX$(53280)
D020
NOTE: HEX$(0) is "0000".

Return position of string 1 in string 2.
INSTR(string 1, string 2 [, starting position])

The INSTR function searches for the first occurrance of string 2 within
string 1, and returns the position within string 1 where the match is
found. The optional parameter for starting position establishes the posi-
tionin string 1 where the search begins. The starting position nust be in
the range of 1 through 255. If no match is found or, if starting position
is greater than the length of string 1 or if string 1 is null, INSTR re-
turns the value 0. If string 2 is null, INSTR returns 0.

EXAVPLE:

PRINT | NSTR(" COWODORE 128", "128")
11

18-7

I NT

Return integer form (whole number part) of a floating point val ue.
[NT(x)

This function returns the integer value of the expression. If the expres-
sion is positive, the fractional part is left out. If the expressionis
negative, any fraction causes the next |ower integer to be returned.

EXAVPLES:

PRINT | NT(3. 14)
3

PRINT | NT(-3. 14)
-4

JOY

Return position of joystick and the status of the fire button.
JOY(n)
where n equal s:
1 JOY returns position of joystick 1
2 JOY returns position of joystick 2

Any value of 128 or nore means that the fire button is also pressed. To
find the JOY value, add the direction value of the joystick plus 128, if
the JOY fire button is pressed. The direction is indicated as foll ows:

1
)
7 0 3
6 4
5
EXAVPLES
JOV(2) is 135

When joystick 2 fires and goes to the left.

IF (JOY(1) AND 128) = 128 THEN PRINT "FIRE"
Det ermines whether the fire button of joystick 1 is pressed.

18-8

LEFT$

Return the leftnost characters of string.
LEFT$(string, |ength)

This function returns a string conprised of the nunber of leftnost charac-
ters of the string determined by the Iength argument. The Iength argunent
nust be an integer in the range of 0 to 255. If this integer value is
greater than the length of the string, the entire string is returned. If
the value is equal to zero, then a null string (of zero length) is retur-
ned.

EXAMPLE
PRINT LEFT$(" COWODCRE" , 5)
COWD

LEN

Return the length of a string.
LEN(string)

This function returns the nunber of characters in the string expression.
Non-printable characters and bl anks are included.

EXAVPLE:
PRINT LEN(" COVMODORE128")
12
LOG

Return natural log of x.

L0 x)

This function returns the natural log of x. The natural log is log to the
base e (see EXP(x)). To convert to |og base 10, divide by LOF10).

EXAMPLE
PRINT LOG37 / 5)
2.00148

18-9

M D§

Return a substring froma larger string or overlay a substring into a
larger string
M D$(string, starting position [, length])

This function returns a substring specified by the length, starting at the
character specified by the starting position. The starting position of the
substring defines the first character where the substring begins. The
length of the substring is specified by the Iength argument. Both of the
nuneric argunents can have val ues ranging from0 to 255. If the starting
position value is greater than the length of the string, or if the length
of the string is zero, then MD§ returns a null string value (of I|ength
zero). If the length argunment is left out, all characters to the right of
the starting position are returned (which is equivalent with R GHT$).

EXAVPLE:
PRINT M D$(" COWWODORE 128", 3, 5)
MVODO

EXAVPLE usi ng overl ay:
A$="123456": M D(A$, 3, 2) =" ABCDE": PRI NT A$
12AB56

NOTE: Overlay cannot be used to expand the size of a string, thus in the
exanpl e above M DB(AS$, 3,5) is not possible

PEEK

Return contents of a specific menory |ocation
PEEK(X)

This function returns the contents of nemory location x, where x is
located in the range 0 through 65535, returning a result between 0 and 255
(inclusive). This is the counterpart of the POKE statenment. The data will
be returned fromthe bank selected by the nost recent BANK command. See
the bank command

EXAMPLE:
10 BANK 15: VI C=DEC(" D000")
20 FOR =1 TO 47
30 PRINT PEEK(VI C+)
40 NEXT

18-10

Thi s exanpl e displays the contents of the registers of the VIC chip.

PEN

Return x and y coordinates of the light pen

PEN(n)

where:

n=0 PEN returns the x coordinate of the light pen position.

n=1 PEN returns the y coordinate of the light pen position.

n=2 PEN returns the x coordinate of the Iight pen position of the
80 col um di spl ay.

n=3 PEN returns the y coordinate of the Iight pen position of the
80 col um di spl ay.

n=4 PEN returns the light pen trigger value

Note that, like sprite coordinates, the PEN value is not scal ed and uses
real coordinates, not graphic bit map coordinates. The x position is given
as a nunber, ranging from approxi mtely 60 to 320, while the y position
can be any nunber from50 to 250. These are the visible screen coordinate
ranges, where all other values are not visible on the screen. A value of
zero for either position neans the light pen is off screen and has not
triggered an interrupt since the last read. Note that COLLISION need not
be active to use PEN. A white background is usually required to stinulate
the Iight pen. PEN val ues vary fromsystemto system

Unlike the 40 colum (VIQ, the 80 colum (VDC 8563) coordinates are
character row and col um positions and not pixel coordinates, like the VIC
screen

Both the 40 and 80 col um screen coordinate val ues are approxi mte and
vary, due to the nature of light pens. The read values are not valid unti
PEN(4) is true

EXAMPLES:
10 PRINT PEN(0); PEN(1)

Display the x and y coordinates of the
light pen

10 DO UNTIL PEN(4):LOOP Ensure the read val ues are valid
20 X=PEN(2)
30 X=PEN(3)
40 REM REST OF PROGRAM
18-11

{pi} when:
n=1, POT returns the position of paddle #1.
Return the value of pi (3.14159265). n=2, POT returns the position of paddle #2.
{pi} n=3, POT returns the position of paddle #3.
n=4, POT returns the position of paddle #4.
EXAMPLE: The val ues for POT range from0 to 255. Any value of 256 or nore means
PRINT {pi} that the fire button is also depressed.
3. 14159265
EXAVPLE:
PO NTER 10 PRINT POT(1)

------- 20 IF POT(1) >=256 THEN PRI NT"FI RE"
Thi s exanpl e displays the value of the game paddle 1.
Return the address of a variable nane.
PO NTER(vari abl e name) Note: A value of 255 is returned if no paddles are connected.

EXAVPLE:
PRI NT POl NTER(2) RCLR
This exanple returns the address of variable Z

Return col or of color source.

POS RCLR(n)
Return the current cursor colum position within the current screen w ndow. This function returns the color (1 to 16) assigned to the color source n
POS(x) (0 <= n <= 6), where the following n values apply:
0 = RCLR returns the 40-col um background col or.
The POS function indicates where the cursor is within the defined screen 1 = RCLR returns the bhit map foreground col or.
window. X is a dummy argument, which nmust be specified, but the value is 2 = RCLR returns multicolor 1.
i gnor ed. 3 = RCLR returns multicolor 2.
4 = RCLR returns the 40-colum border col or.
EXAVPLE: 5 = RCLR returns the 40- or 80-col um character color.
6 = RCLR returns the 80-col um background col or.
PRINT "0123456789" PCS(1)
0123456789 10 The counterpart to the RCLR function is the COLOR command.
This displays the current cursor position within the defined text
wi ndow, in this case 10. EXAVPLE:
10 FOR 1=0 TO 6
POT 20 PRINT "SOURCE";!;"I'S COLOR CCDE"; RCLR(1)
30 NEXT

This exanple prints the color codes for all seven color sources.
Return the value of the gane-paddl e potentioneter.
POT(n)

18-12 18-13

Return current position or color of pixel cursor.

RDOT(n)
where:
n=0 returns the x coordinate of the pixel cursor.
n=1 returns the y coordinate of the pixel cursor.
n=2 returns the color source of the pixel cursor.

This function returns the location of the current position of the pixel
cursor (PC) or the current color source ot the pixel cursor.

RR

EXAMPLES:

PRINT RDOT(0) Returns x position of PC

PRINT RDOT(1) Returns y position of PC

PRINT RDOT(2) Returns color source of PC (0 to 3).

Return current graphic node.

RR(x)

This function returns the current graphic node. x is a dummy argunent,
whi ch nust be specified. The counterpart of the RGR function is the
GRAPHI C command. The val ue returned by RGR(x) pertains to the follow ng
nodes:

VALUE GRAPH C MODE
0 40 colum (VIC) text.

1 Standard bit map.

2 Split screen bit map.

3 Ml ticolor bit map.

4 Split screen nmulticolor bit map.
5 80 colum (VDC 8563) text.

EXAMPLE:

PRINT RGR(0)

1

This displays the current graphic mode, in this case, standard bit
map node.

18- 14

Rl GHT$

Return substring fromrightnost end of string.
RI GHT$(<string> , <length>)

This function returns a substring taken fromthe rightmost characters of
the string argument. The length of the substring is defined by the length
argunent, which can be any integer in the range of 0 to 255. If the value
of length is zero, then a null string ("") is returned. If the value given
inthe length argument is greater than the length of the string, the
entire string is returned. Also see LEFT$ and M D$ functions.

EXAVPLE:
PRINT RI GHT$(" BASEBALL", 5)
EBALL

RN\D

Return a random nunber.

RND(x)

This function returns a random nunber, which value lies between 0 (inclu-
sive) and 1 (exclusive). This is usefull in ganes, to sinulate dice roll
and other elements of chance. It is also used in sone statistical appli-
cations.

If x =0 RND returns a random nunber based on the hardware clock.
If x>0 RND generates a reproducabl e pseudo-random nunber based
on the seed value (see below - "If x < 0").

[f x <0 Produces a random nunber which is used as a base called

a seed.

To sinulate the rolling of a dice, use the formula INT(RND(1) * 6 + 1).
First the random number is multiplied by 6, which expands the range to
0-6 (actually, less than six). Then 1 is added, naking the range from1 to
less than 7. The INT function truncates all the deci mal places, |eaving
the result as a digit from1l to 6.

18-15

EXANPLES:
PRI NT RN 0) Thi s displays a random nunber.
. 507824123
PRINT INT(RND(1)*100 + 1) This displays a random positive nunber
89 I ess than 100.
RSPCOLOR

Return sprite multicolor val ues.
RSPCOLOR(n)

Wen:
n=1 RSPCOLCR returns the sprite multicolor 1.
n=2 RSPCOLCR returns the sprite multicolor 2.

The returned color value is a value between 1 and 16 (inclusive). The
counterpart of the RSPCOLOR function is the SPRCOLOR conmand. Al so see the
SPRCOLOR conmand.

EXAVPLE:
10 SPRITE 1,1,2,0,1,1,1
20 SPRCOLCR 5,7
30 PRINT"SPRITE MULTICOLOR 1 |S"; RSPCOLOR(1)
40 PRINT"SPRI TE MULTI COLOR 2 | S"; RSPCOLOR(2)
RUN

SPRITE MULTICOLOR 1 IS 5

SPRITE MULTICOLOR 2 IS 7

In this exanple line 10 turns on sprite 1, colors it white, expands it in
both the x and y directions and displays it in multicolor node. Line 20
selects sprite nmulticolors 1 and 2. Lines 30 and 40 print the RSPCOLOR
values for multicolor 1 and 2.

Return the speed and position values of a sprite.
RSPPCS(sprite nunber, n)

where sprite nunmber identifies which sprite is being checked and n
specifies x and y coordinates or the sprite's speed.

18- 16

When n equal s:
0 RSPPCS returns the current x position of the specified sprite.
1 RSPPCS returns the current y position of the specified sprite.
2 RSPPCS returns the speed (0-15) of the specified sprite.

EXAVPLE:

10 SPRITE 1,1,2

20 MOVSPR 1, 45#13

30 PRINT RSPPOS(1, 0); RSPPOS(1, 1) : RSPPOS(1, 2)

This exanple returns the current x and y sprite coordinates and the
speed (13), all of sprite 1.

RSPRI TE

Return sprite characteristics.
RSPRI TE(sprite number, characteristic)

RSPRITE returns sprite characteristics that were specified in the SPRITE
command. Sprite nunber specifies the sprite you are checking and the
argunent characteristics specifies the sprite's display qualities as

fol | ows:

Characteristic RSPRITE returns these val ues:

0 Enabl ed (1) / Disabled (0).
1 Sprite color (0-16).
2 Sprites are displayed in front of (0) or behind (1).
3 Expand in x direction, yes=1, no=0.
4 Expand in y direction, yes=1, no=0.
5 Mil ti col or, yes=1, no=0.
EXAVPLE:
10 FOR1=0 TO 5 This exanple prints all 6 characteristics of
20 PRINT RSPRITE(1,1) sprite 1.
30 NEXT

18-17

Return the size of the current w ndow.

RW NDOW(n)

Wien n equal s:
0 RWNDOWreturns the nunber of lines in the current w ndow.
1 RWNDOWreturns the nunber of rows in the current w ndow.
2 RWNDOWreturns either of the values 40 or 80, depending on the
current screen output format you are using.

The counterpart of the RAWNDOWfunction is the W NDOW conmand.

EXAVPLE:

10 WNDOW 1, 1, 10, 10

20 PRINT RW NDOW 0) ; RW NDOW(1) ; RW NDOW(2) ;

RUN

9 9 40
This exanple returns the nunber of lines (9) and colums (9) in the current
wi ndow. The exanpl e assumes you are displaying the windowin 40 col urm
format.

SN

Return sign of argument x.
SG\(x)

This function returns the sign (positive, negative or zero) of x. The
result is +1if x>0, 0if x=0, and -1 if x < 0.

EXAVPLE:

PRINT SGN(4.5); SGN(0) : SG\(- 2. 3)
10-1

18-18

SIN

Return sine of argument x.
SIN(x)

This is the trigononetric sine function. The result is the sine of x, where
x is an angle nmeasured in radians.

EXAVPLE:

PRINT SIN({pi}/3)
. 866025404

SPC

Skip spaces on the screen.

SPC(x)

This function is used in PRINT or PRINT# commands to control the formatting
of data, as either output to the screen or output to a logical file. The
nunber of SPaCes specified by the x parameter determnes the number of
characters to fill with spaces across the screen or in a file. For screen
or tape files, the value of the argunent is in the range 0 to 255, and for
disk files the maximumis 254. For printer files, an automatic carriage-
return and line-feed will be performed by the printer if a SPaCe is printed
inthe last character position of a line; no SPaCes are printed on the fol -
[owing Iine.

EXAVPLE:

PRINT " COMMODORE" ; SPC(3) ; " 128"
COWODORE 128

SR

Return square root of argument.

SR(x)
This function returns the value of the SQuare Root of x, where x is a posi-

tive nunber or 0. The value of the argunent nust not be negative, or the
BASI C error nessage ?I LLEGAL QUANTITY ERROR is displ ayed.

18-19

EXAMPLE:

PRINT SQR(25)
5

STR$

Return string representation of nunber.
STR$(X)

This function returns the STRing representation of the numeric value of the
argument x. When the STR$ value is converted, any nunber displayed is pre-
ceded and followed by a space except for negative nunbers, which are
preceded by a mnus sign. The counterpart of the STR$ function is the VAL
function.

EXAVPLES
PRINT STRS(123. 45)
123.45

PRINT STRS(-89. 03)
-89.03

PRI NT STR$(1E20)
1E+20

TAB

Mbves cursor to tab position in present statenent.
TAB(x)

This function noves the cursor forward if possible to a relative position
on the text screen given by the argunent x, starting with the |eftnost
position of the current line. The value of the argument can range fromO0 to
255. If the current print position is already beyond position x, the TAB
function is ignored. The TAB function should only be used with the PRINT
statenent, since it has varied effects if used with the PRINT# to a | ogical
file, depending on the device being used.

EXAVPLE:
10 PRI NT" COMMODORE" TAB(25) " 128"
COMMODORE 128

18-20

TAN

Return tangent of argument.
TAN(x)

This function returns the tangent of x, where x is an angle neasured in
radi ans.

EXAVPLE:

PRINT TAN(. 785398163)
1

USR

Cal | user-defined subfunction
USR(x)

When this function is used, the programjunps to a nachine | anguage program
whose starting point is contained in menory |ocations (low order byte
first, high order byte last):

4633 ($1219) and 4634 ($121A) ... C128 node

785 ($0311) and 786 ($0312) ... C64 node

The paraneter x is passed to the machine |anguage programin the floating
point accurmulator. A value is returned to the BASIC program through the
calling variable. You must redirect the value into a variable in your
programin order to receive the value back fromthe floating point accumu-
lator.

An | LLEGAL QUANTITY ERROR results if you don't specify this variable. This
allows the user to exchange a variable between machi ne code and BASIC.

EXANPLE (128 Only):

10 POKE 4633, 0
20 POKE 4634, 192
30 A = USR(X)

40 PRINT A

NOTE: Default Commpdore 128 bank is 15.

Place starting location ($0000=49152: $00=0: $C0=192) of machine | anguage
routine in location 4633 and 4634. Line 30 stores the returning value from
the floating point accumul ator.

18-21

VAL

Return the nuneric value of a nunber string.
VAL(nuneric string)

This function converts the nuneric string argument into a nunber. It is the
inverse operation of STR$. The string is examned fromthe |eftnost
character to the right, for as many characters as are in recogni zabl e num
ber format. If the Conmodore 128 finds illegal characters, only the portion
of the string up to that point is converted. If no numeric characters are
present VAL returns a 0.

EXAVPLE:

10 A$ = "120"

20 B$ = "365"

30 PRINT VAL(A$) + VAL(BS)

485

XOR

Returns exclusive OR
XOR(n1, n2)

This function provides the exclusive OR of the argunment values nl and n2.
X = XOR(n1, n2)

where nl, n2 are 2 unsigned val ues (0-65535).
EXAVPLE:

PRINT XOR(128, 64)
192

NOTE: nl and n2 need not be whol e numbers.

18- 22

SECTION 19

Variabl es and Operators

VARl ABLES

OPERATCRS

19-1

VARl ABLES

The Commodore 128 uses three types of variables in BASIC. These are: nornal
nuneric, integer numeric, string (alfanumeric).

Normal NUMERI C VARI ABLES, also called floating point variables, can have
any exponent value from-10 to +10, with up to nine digits of accuracy.
When a nunber becones larger than nine digits can show, the conputer dis-
plays it in scientific notation form wth the nunber nornalized to one
digit and eight decimal places, followed by the letter E and the power of
10 by which the number is multiplied. For exanple, the nunber 12345678901
is displayed as 1.23456789E+10.

I NTEGER VARI ABLES can be used when the nunber is from +32767 to -32768
(inclusive), and with no fractional portion. An integer variable is a num
ber like 5 10 or -100. Integers take up |ess space than floating point
variables, particularly when used in an array (see bel ow).

STRING VARI ABLES are those used for character data, which may contain num
bers, letters and any other characters the Conmodore 128 can display. An
exanple of a string variable is "COMMODORE 128".

VARI ABLE NAMES may consist of a single letter, a letter followed by a num
ber, or two letters. Variable names may be longer than two characters, but
only the first two are significant. An integer is specified by using the
percent sign (% after the variable nanme. String variables have a dollar
sign ($) after their nanes.

EXAVPLES:

Nuneric Variable Names: A A5, BZ
Integer Variable Names: A% A5% BZ%
String Variable Names: A$, A5$, BZ$

ARRAYS are lists of variables with the sane name, using an extra nunber (or
nunbers) to specify an element of the array. Arrays are defined using the
DM statement and may be floating point, integer or string variable arrays.
The array variable name is followed by a set of parentheses () enclosing
the number of the variable in the list.

19-3

EXAMPLE:
A7), BZ% 11) , A$(87)

Arrays can have nore than one dinension. A two-dimensional array may be
viewed as having rows and colums, with the first nunber identifying the
row and the second nunber identifying the colum (as specifying a certain
grid on the map).

EXAVPLE:
A7,2), BZ%2,3,4), Z8(3,2)

RESERVED VARI ABLE NAMES are names reserved for use by the Conmodore 128
and may not be used for any other purpose. These are the variables: DS
DS$, ER, EL, ST, Tl and TI$.

KEYWORDS such as TO and |F or any other nanme that contain keywords, such as
RUN, NEWor LOAD cannot be used as vari abl e nanes

ST is a status variable for input and output (except normal screen/keyboard
operations). The value of ST depends on the result of the last 1/0 opera-
tion. In general, if the value of ST is 0, then the operation was success-
ful.

Tl and TI$ are variables that relate to the real time clock built into the
Commodore 128. The systemclock is updated every 1/60th of a second. It
starts at 0 when the Conmodore 128 is turned on, and is reset only by
changing the value of TI$. The variable Tl gives the current value of the
clock in 1/60th of a second. TI$ is a string that reads the value of the
real time clock as an 24-hour clock. The first two characters of TI'$ con-
tain the hour, the third and fourth characters are minutes and the fifth
and sixth characters are seconds. This variable can be set to any value (so
long as all characters are numbers) and will be updated automatically as a
24-hour clock

EXAMPLE:
TI $="101530" sets the clock to 10:15 and 30 seconds (AM.

The val ue of the clock is |ost when the Commpdore 128 is turned off. It

starts at zero when the Commodore 128 is turned on, and is reset to zero
when the value of the clock exceeds 235959 (23 hours, 59 minutes and 59

seconds).

19-4

The variable DS reads the disk drive conmmand channel and returns the cur-
rent status of the drive. To get this information in words, PRINT DS$

These status variables can be used after a disk operation, |ike DLOAD and
DSAVE, to find out why the red error light on the disk drive is blinking

ER and EL are variables used in error trapping routines. They are usually
only useful within a program ER returns the last error encountered since
the programwas RUN. EL is the line where the error occurred. ERR$ is a

function that allows the programto print one of the BASIC error nessages
PRINT ERR$(ER) prints out the proper error nessage

Qperators

The BASI C OPERATORS include: ARI THVETI C OPERATORS, RELATI ONAL OPERATCRS and
LOG CAL OPERATORS. The ARI THVETI C OPERATORS incl ude the fol | owi ng signs

+ addition

subtraction

* multiplication
[division
N raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in which
operations always occur. If several operators are used together, the conpu-
ter assigns priorities as follows: First exponentiation, then multiplica-
tion and division, and last, addition and subtraction. If two operators
have the same priority, then calculations are performed in order fromleft
toright. If these operations are to occur in a different order, Conmodore
128 BASIC al l ows giving a cal culation higher priority by placing parenthe-
ses around it. Operations enclosed with parentheses will be cal culated be-
fore any other operation. Make sure the equations have the sane number of
left and right parentheses, or a SYNTAX ERROR nessage is displayed when the
programis run

19-5

There are al so operators for equalities and inequalities, called RELATI ONAL
OPERATORS. Arithnetic operators always take priority over relational opera-
tors.

= is equal to
< is less than
> is greater than

<= or =< is less than or equal to
>z or => is greater than or equal to
<> or > is not equal to

Finally, there are three LOG CAL OPERATORS, with |ower priority than both
arithnetic and relational operators:

AND

R

NOT
These are most often used to join nmultiple formulas in IF... THEN state-
ments. Wen they are used with arithnetic operators, they are eval uated
last (i.e. after + and -). If the relationship stated in the expression is

true, the result is assigned an integer value of -1. If false, a value of 0
(zero) is assigned.

EXAMPLES:

| F A=B AND C=D THEN 100 Requires both A=B and C=D to be true

| F A=B OR C=D THEN 100 Allows either A=B, C=D, or both, to
be true.

A=5: B=4: PRINT A-=B Di spl ays a val ue of zero.

A=5: B=4: PRINT A>3 Di spl ays a value of -1.

PRINT 123 AND 15:PRINT 5 OR 7 Di splays 11 and 7.

19-6

SECTI ON 20 Reserved System Wrds (Keywords)

Reserved Wrds and Symbol s This section lists the words and synbols used to meke up the BASIC 7.0
| anguage. These words and symbol s cannot be used within a programas other
than a conponent of the BASIC | anguage. The only exception is that they may
be used within quotes in a PRINT or LET statenent.

Reserved SystemWords (Keywords)coieiiiniiiiiinnnaiinn. 20-3
ABS DM HEX$ PRI NT SPRI TE

Reserved System Symbols i 20-4 AND DI RECTORY IF PRI NT# SPRSAV
APPEND DLOAD [NPUT PUDEF SR
ASC DO | NPUT# QU T** SSHAPE
ATN DOPEN I NSTR RCLR ST
AUTO DRAW I NT RDOT STASH
BACKUP DS Joy READ STEP
BANK DSAVE KEY RECORD STOP
BEG N DS$ LEFTS REM STR$
BEND DVERI FY LEN RENAMVE SWAP
BLOAD EL LET* RENUMBER SYS
BOOT ELSE LI ST RESTORE TAB(
BOX END LOAD RESUME TAN
BSAVE ENVELOPE LOCATE RETURN TEMPO
BUWP ER LOG RGR THEN
CATALOG ERR LooP Rl GHT$ Tl
CHAR EXIT M D$ RND TS
CHR$ EXP MONI TOR RREG TO
Cl RCLE FAST MOVSPR RSPCOLOR TRAP
CLCSE FETCH NEW RSPPCS TROFF
CLR FILTER NEXT RSPRI TE TRON
C\D FN NOT RUN UNTI L
COLLECT FOR OFF** RW NDOW USI NG
COLLI SI ON FRE N SAVE USR
COLR GET OPEN SCALE VAL
CONCAT GETKEY R SCNCLR VERI FY
CONT GET# PAINT SCRATCH VaL
CoPY G064 PEEK SGN WAI'T
(603 GOSuB PEN SIN VWHI LE
DATA GoTO {pi} SLEEP W DTH
DCLEAR &0 TO PLAY SLOW W NDOW
DCLOSE GRAPH C PO NTER SOUND XOR
DEC GSHAPE POKE SPQ(
DEF HEADER PCS SPRCOLCOR
DELETE HELP POT SPRDEF

* LET may be left out of the statement, so LET A=10 may be witten as A=10
** OFF and QU T are uninpl enent ed.
20-1 20-3

Reserved System Symbol s

The foll owing characters are reserved system synbol s.

Synbol

Pl us sign

M nus sign

Asteri sk

Sl ash

Up arrow

Bl ank space
Equal sign
Less than
Geater than

Comma

Peri od
Seni col on

Col on

Quotation mark

Use(s)

Arithnetic addition; string concatenation; rela-
tive sprite movenent; declare deci mal nunber in %
machi ne | anguage monitor.

Arithnetic subtraction; negative nunber; unary #
mnus; relative sprite novenent.

Arithmetic nultiplication. $
Arithmetic division.

Arithmetic exponentiation. ¢
Separate keywords and variabl e names. {pi}

Val ue assignment; relationship testing.

Rel ati onship testing.

Rel ati onship testing.

Format output in variable lists; separate mul-
tiple function paraneters in conmands or state-
nents.

Decimal point in floating constants.

Format output in variable lists.

Separate multiple BASIC statenents on a program
line; logical end of line in machine |anguage

moni tor.

Encl ose string constants

20-4

Question mark

Left parenthesis

Ri ght parenthesis

Per cent

Hash

Dol | ar sign

And sign

Pi

Abbreviation for the keyword PRINT; |ogical end
of line in machine |anguage nonitor.

Expression eval uation and functions.
Expression eval uation and functions.

Declare a variable name as integer; declare
bi nary nunmber in machine | anguage nonitor.

Precede the logical file nunber in input/output
statenents.

Declare a variable nane as a string; declare
hexadeci mal nunber in machi ne | anguage monitor.

Declare octal nunber in machine | anguage
noni tor.

Declare the nuneric constant - approxi mtely
3. 14159265

20-5

APPENDI CES

APPENDI X A - BASI C LANGUAGE ERRCOR MESSAGES
APPENDI X B - DOS ERROR MESSAGES

APPENDI X C - CONNECTORS/ PORTS FOR PERI PHERAL EQUI PMVENT
APPENDI X D - SCREEN DI SPLAY CCDES

APPENDI X E - ASCI1 AND CHR$ CODES

APPENDI X F - SCREEN AND COLOR MEMORY MAPS
APPENDI X G - DERI VED MATHEMATI CAL FUNCTI ONS
APPENDI X H - MEMORY MAP

APPENDI X | - CONTROL AND ESCAPE CODES
APPENDI X J - MACH NE LANGUAGE MONI TOR
APPENDI X K - BASIC 7.0 ABBREVI ATI ONS
APPENDI X L - DI SK COWAND SUMVARY

APPENDI X A

BASI C LANGUAGE ERROR MESSAGES

The foll owing error messages are displayed by BASIC. Error nessages can
al so be displayed with the use of the ERR$() function. The error nunbers
bel ow refer only to the nunber assigned to the error for use with the

ERR$() function.

ERROR# ERROR NAME

1 TOO MANY FI LES

2 FI LE OPEN

3 FI'LE NOT OPEN

4 FI'LE NOT FOUND

5 DEVI CE NOT PRESENT
6 NOT I NPUT FILE

DESCRI PTI ON

There is alimt of 10 files OPEN at one
tine.

An attenpt was made to open a file using
the nunber of an already open file.

The file number specified in an /0 state-
ment nust be opened before use.

Either no file with that name exists (disk)
or an end-of-tape marker was read (tape).

The required 1/0 device is not available or
buffers deal l ocated (cassette).

Check to make sure the device is connected
and turned on.

An attenpt was made to GET or |NPUT data
froma file that was specified as output
only.

10

11

12

13

15

16

NOT QUTPUT FI LE

M SSING FI LE NAMVE

| LLEGAL DEVI CE
NUMBER

NEXT W THOUT FCR

SYNTAX

RETURN W THOUT
GOSUB

OUT OF DATA

| LLEGAL QUANTITY

OVERFLOW

QuT OF MEMORY

An attenpt was made to send data to a file
that was specified as input only.

File name missing in conmand.

An attenpt was made to use a device im
properly (SAVE to the screen, etc.).

Either |oops are nested incorrectly, or
there is a variable name in a NEXT state-
ment that doesn't correspond with one in
FOR

A statenent not recogni zed by BASIC. This
coul d be because of a missing or extra
parenthesi s, nisspelled key word, etc.

A RETURN statenent was encountered when no
GOSUB st atenent was active.

A READ statement was encountered w t hout
data | eft unREAD.

A nunber used as the argument of a function
or statement is outside the allowable
range.

The result of a conputation is larger than
the largest number allowed
(1.701411833E+38).

Either there is no more roomfor program
code and/or programvariables, or there are

17

18

19

20

21

22

23

24

25

26

UNDEF' D STATEMENT

BAD SUBSCRI PT

REDI M D ARRAY

DI VI SION BY ZERO

| LLEGAL DI RECT

TYPE M SMATCH

STRING TOO LONG
FI'LE DATA
FORMULA TQO
COVPLEX

CAN T CONTI NUE

too many nested DO, FOR or GOSUB statements
in effect.

A l'ine nunber referenced doesn't exist in
the program

The programtried to reference an el enent
of an array out of the range specified by
the DIM statenent.

An array can only be DI Mensioned once.

Division by zero is not allowed.

I NPUT or GET, or INPUT# or CGET# statenents
are only allowed within a program

This occurs when a nuneric value is used in
place of a string or vice versa.

A string can contain up to 255 characters.
Bad data read froma tape or disk file.
The conputer was unable to understand this
expression. Sinplify the expression (break
into two parts or use fewer parentheses).
The CONT command does not work if the pro-

gramwas not RUN, there was an error, or a
|ine had been edited.

27

28

29

30

31

32

33

34

35

36

UNDEFI NED FUNCTI ON

VERI FY

LOAD

BREAK

CAN T RESUME

LOOP NOT FOUND

LOOP W THOUT DO

DI RECT MODE ONLY

NO GRAPHI CS AREA

BAD DI SK

A user-defined function was referenced that
was never defined.

The programon tape or di sk does not match
the programin menory.

There was a problem|oading. Try again.

The stop key was hit to halt program exe-
cution.

A RESUME statenent was encountered wthout
a TRAP statement in effect.

The program has encountered a DO stat enent
and cannot find the corresponding LOOP.

LOCP was encountered without a DO statenent
active.

This command is allowed only in direct
nmode, not froma program

A command (DRAW BOX, etc.) to create
graphi cs was encountered before the GRAPHIC
conmand was execut ed.

An attenpt failed to HEADER a diskette,
because the quick header nethod (no ID) was
attenpted on a unformatted diskette or the
di skette is bad.

37

38

39

40

41

BEND NOT FOUND

LINE # TOO LARGE

UNRESCLVED
REFERENCE

UNI MPLEMENTED
COMVAND

FI'LE READ

The program encountered an "IF... THEN
BEGN' or "IF... THEN... ELSE BEG N' con-
struct, and could not find a BEND keyword
to match the BEG N.

An error has occurred in renunbering a
BASI C program The given parameters result
inaline nunber > 63999 bei ng generat ed;
therefore, the renunbering was not per-
forned.

An error has occurred in renunbering a
BASI C program A line nunber referred to by
a conmand (e.g., GOTO 999) does not exist.
Therefore the renunbering was not per-
forned.

A command not supported by BASIC 7.0 was
encount er ed.

An error condition was encountered while
loading or reading a programor file from
the disk drive (e.g., opening the disk
drive door while a programwas | oading).

APPENDI X B

DOS ERRCR MESSAGES

The foll owing error nmessages are returned through the DS and DS$
variables. The DS variable contains just the error nunber and the DS$
variable contains the error nunber, the error messages and any correspon-
ding track and sector nunber.

Not e:

ERRCR

Error message nunbers less than 20 should be ignored with the excep-
tion of 01, which gives information about the number of files
scratched with the SCRATCH conmand.

ERRCOR MESSAGE AND

NUMBER DESCRI PTI ON

20:

21:

22:

23:

READ ERROR (bl ock header not found)

The disk controller is unable to locate the header of the requested
data block. Caused by an illegal sector nunber, or the header has
been destroyed.

READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the desired
track. Caused by misalignment of the read/wite head, no diskette
is present, or unformatted or inproperly seated diskette. Can also
indicate a hardware failure.

READ ERROR (data bl ock not present)

The disk controller has been requested to read or verify a data

bl ock that was not properly witten. This error occurs in conjunc-
tion with the BLOCK conmands and indicates an illegal track and/ or
sector request.

READ ERROR (checksumerror in data bl ock)

This error message indicates there is an error in one or nore of
the data bytes. The data has been read into the DOS nenory, but the
checksum over the data is in error. This message may al so indicate
har dwar e groundi ng probl ens.

24:

25:

26:

27:

28:

29:

30:

31:

READ ERROR (byte decoding error)

The data or header has been read into the DOS nenory but a hardware
error has been created due to an invalid bit pattern in the data
byte. This nessage may al so indicate grounding problens.

WRI TE ERROR (write-verify error)
This nessage is generated if the controller detects a mismatch be-
tween the witten data and the data in DOS nenory.

WRI TE PROTECT ON

This nessage i s generated when the controller has been requested to
wite a data block while the wite protect switch is depressed.
This is caused by using a diskette with a wite protect tab over
the notch.

READ ERROR (checksumerror in header)

This nessage i s generated when a checksumerror had been detected
in the header of the requested data bl ock. The bl ock has not been
read into DOS nenory.

WRI TE ERROR (1 ong data bl ock)
This error message is generated when a data block is too Iong and
overwites the sync mark of the next header.

DI SK 1D M SMATCH

This nessage i s generated when the controller has been requested to
access a diskette which has not been initialized. The message can
also occur if a diskette has a bad header.

SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the conmand channel .
Typically, this is caused by an illegal nunber of file nanmes, or
patterns are illegally used. For exanple, file names appear on the
left side of the COPY command.

SYNTAX ERROR (invalid comand)
The DOS does not recogni ze the command. The conmand nust start in
the first position.

32:

33:

34:

39:

50:

51:

52:

60:

SYNTAX ERROR (long Iine)
The conmand sent is longer than 58 characters. Use abbreviated disk
conmands.

SYNTAX ERROR (invalid file nane)
Pattern matching is invalidly used in the OPEN or SAVE conmand.
Spell out the file name.

SYNTAX ERROR (no file given)

The file name was left out of the command or the DOS does not
recogni ze it as such. Typically, a colon {:} has been left out of
the comand.

SYNTAX ERROR (invalid command)
This error may result if the conmand sent to the command channel
(secondary address 15) is unrecognized by the DCS.

RECORD NOT PRESENT

Resul t of disk reading past the last record through I NPUT# or GET#
commands. This nessage will also occur after positioning to a
record beyond the end-of-file in a relative file. If the intent is
to expand the file by adding the new record (with a PRINT# com
mand), the error message may be ignored. |NPUT# or GET# shoul d not
be attenpted after this error is detected without first reposi-
tioning.

OVERFLOW I N RECORD

PRI NT# statenent exceeds record boundery. Information is truncated.
Since the carriage return which is sent as a record termnator is
counted in the record size, this message will occur if the total of
characters in the record (including the final carriage return)
exceeds the defined size of the record.

FI LE TOO LARGE
Record position within a relative file indicates that disk overflow
will result.

VWRI TE FILE OPEN
This nessage is generated when a wite file that has not been
closed is being opened for reading.

61:

62:

63:

64:

65:

66:

67:

70:

FI'LE NOT OPEN

This nessage is generated when a file is being accessed that has
not been opened in the DOS. Sometines, in this case, a nessage is
not generated; the request is sinply ignored.

FI'LE NOT FOUND
The requested file does not exist on the indicated drive.

FILE EXI STS
The file name of the file being created already exists on the dis-
kette.

FILE TYPE M SMATCH
The requested file access is not possible using files of the type
naned. Reread the chapter covering that file type.

NO BLOCK

Ceccurs in conjunction with Block Allocation. The sector you tried
to allocated is already allocated. The track and sector numbers re-
turned are the next higher track and sector available. If the track
nunber returned zero (0), all remaining sectors are full. If the
diskette is not full yet, try a lower track and sector.

| LLEGAL TRACK AND SECTOR

The DOS has attenpted to access a track or block which does not
exist in the format being used. This may indicate a problem reading
the pointer of the next block.

| LLEGAL SYSTEMT QR S
This special error nessage indicates an illegal systemtrack or
sector.

NO CHANNEL (avai | abl e)

The requested channel is not available, or all channels are in use.
A maxi mum of five buffers are available for use. A sequential file
requires two buffers; arelative file requires three buffers; and
the error/command channel requires one buffer. You may use any com
bi nation of those as long as the conbination does not exceed five
buffers.

71:

72:

73:

74:

DI RECTORY ERRCR
The BAM (Bl ock Availability Map) on the diskette does not match the
copy on disk menory. To correct, initialize the diskette.

DI SK FULL

Either the blocks on the diskette are used or the directory is at
its entry limt. DISK FULL is sent when two blocks are still
availabl e on the diskette, in order to allowthe current file to be
cl osed.

DOS M SMATCH (VERSI ON NUMBER)

DOS 1 and 2 are read conpatible but not wite conpatible. Disks my
be interchangeably read with either DOS, but a disk formatted on
one version cannot be witten upon with the other version, because
the format is different. This error is displayed whenever an
attenpt is made to wite upon a di sk which has been formatted in a
non-conpatible format. This message will also appear after power up
and is not an error in this case.

DRI'VE NOT READY
An attenpt has been made to access the disk drive without any in-
serted diskette; or the drive lever or door is open.

APPENDI X C

CONNECTORS/ PORTS FOR PERI PHERAL EQUI PMVENT

[PI CTURES ARE M SSI NG

Si de Panel Connections Rear Connections

1. Power Socket - The five pin square plug fromthe power supply is con- 5. Expansion Port - This rectangular slot is a parallel port that accepts
nected here. programs or gane cartridges as well as special interfaces.
2. Pover Switch - Turns on power fromthe power supply. Cartridge Expansion Sl ot
3. Reset Button - Resets conputer (warmstart). AR EREE LT ot b b +
| Pin| Type || Pin| Type | [Pin| Type | | Pin| Type |
4. Controller Ports - There are two Controller ports, nunbered 1 and 2. R LT F ot b ot ot +
Each Control ler port can accept a joystick or game controller paddle. | 1] G\D | | 12| BA | | A|] GD | | NJ| A9 |
The light pen can be plugged only into port 1, the port closest to the | 2| +5V | | 13| /DVA | | B| /ROWH | | P| A8 |
front of the conputer. Use the ports as instructed with the software. | 3| +5V | | 14| D7 | | C| /RESET | | R| A7 |
| 41 /IRQ || 15| D6 | 1 DI /N | | S| A I
Control Port 1 | 5| RW | | 16 | D5 | | E] 02 || T] A5 |
Heo-- Heeiiaee e + | 6| Dot Clock| | 17 | D4 | | F| AL5 || U] M |
| Pin| Type | Note | Fee e + | 71 1A | | 18| D3 | | H| Al4 |] V]| A3 | | |
| 1 | JOYAO | | /1 2 3 4 5\ | 8| /GAWVE | | 19| D2 | | J| AL3 | | W] A2 |
| 2 | JOYAL | | + O O O O O + | 9] /EXROM | | 20| DL | | K| Al2 | | X] AL |
| 3 | JOYA2 | | \ / | 10| I/ | | 21| DO | | L| ALl |] Y] A0 |
| 4 | JOYA3 | | + 0 0O 0 0 + | 11| /ROVL | | 22| G\D | | M| ALO | | Z| GD |
| 5 | POT AY | | \' 6 7 8 9 / R G T Fode e Fode e e ST +
| 6 | BUTTON A/LP | | Feemeee s + 2221111111111
| 7 | +5V | MAX. 50mA | 2109876543210987654321
I 8 I G\D I I |+---@@@@@@@@@@@@@@@@@@@@@@ |+
9 POT AX
R 4o + +--60EEEEEEEEEEEEEEEEEEEA -+
ZYXWVUTSRPNMLKJHFEDCBA
Control Port 2
Hoen-- Fememmeeeeaas Fememmaaann +
| Pin| Type | Note |
| 1 | JOYBO | |
| 2 | JOYBL | |
| 3 | JOYB2 | |
| 4 | JOYB3 | |
| 5 | POT BY | |
| 6 | BUTTONB | |
| 7 +5V | MAX. 50mA |
| 8 | GD | |
| 9 | POTBX | |
Hoenn- Fememmeeeeaas Fememmanaan +

G2 G3

6. Cassette Port - A 1530 Datassette recorder can be attached here to 8. 40 Colum Video Connector - This DIN connector provides audio and com

store progranms and information. posite video signals which can be directly connected to suitable audio
and nonitor equipnent. These signals can be connected to the Commodore
Cassette monitor or used with separate conponents.
R e +
| Pin | Type | Audi o/ Vi deo
Heomeoan e + Heomeoan e +
| A1 | GID | 123456 | Pin Type | o+t
| B2 | 45V | - + o R LR + [8+-+7\
| C3 | CASSETTE MOTCR | | | | 1 | LUM NANCE SYNC | 10 6]
| D4 | CASSETTE READ | +o- @ -+ | 2 | QD | | 6 |
| E-5 | CASSETTE WRTE | ABCDEF | 3 | AuIOOUT | |30 0 Q1
| F-6 | CASSETTE SENSE | | 4 | VIDEO QUT | | |
AEEEEERE For e + | 5 | AUDIOIN | + 0 O +
| 6 | CHROM NANCE | \5 0 4/
| 7 | NC | \ 2
7. Serial Port - A Commmodore Serial printer or disk drive can be attached | 8 | NC | Ho-nt
directly to the Commodore 128 through this port. Foeean- R R E TR +
Serial 1/0 9. RF Connector - This connector supplies both picture and sound to your
television set. (A television can display only a 40 colum picture.)
R e +
| Pin | Type | ++ o+ 10. 80 Colum RGBI Connector - This 9-pin connector supplies an RGBI (Red/
AEEEEERE LR R + [4+ 0\ Green/Blue/Intensity) signal.
| 1 | /SERIAL SRQIN | /5 1
| 2 | GO | + 0 O + Foee e +
| 3 | SERIAL ATN OQUT | | 6 | | Pin| Signal | LR C T +
| 4 | SERAL QLK INOUT | | 0 | e + /1 2 3 4 5\
| 5 | SERIAL DATA INOUT | | | | 1 | Gound | + 0 0O 0O O O +
| 6 | [/RESET | + 0 0 + | 2 | Gound | \ /
AEEEEERE LR R + \4 0 2 | 3 | Red | + 0 0O O O +
\ 3/ | 4 | Geen | \ 6 7 8 9/
+o-ot | 5 | Blue | AR R +
| 6 | Intensity |
Note: The Conmodore Serial Port is not RS-232 conpatible. TTL RS-232 |evels | 7 | Monochrome |
can be obtained fromthe User Port. | 8 | Horizontal Sync |
| 9 | Vertical Sync |
e e +

C4 G5

11. User Port - Various interface devices can be attached here

User /0

- o o O o o +
| Pin| Type | Note | | Pin| Type | Not e
- o o R o oo +
| 1] G | | | A | GD | | | |
| 2] +5V IMX. 100 | | B | /FLA® | |
| 3| [/RESET | | | C | PBO | |
| 4| ONTL | | | D | PBL | |
| 5| SPL | | | E | PB2 | |
| 6| ONT2 | | | F | PB3 | |
| 7] SP2 | | | H | PB4 | |
| 8| /PR | | | | | PBS | |
| 9| SER ATN OUT | | | K | PB6 | |
| 10| 9 VAC [MAX. 100 M| | L | PB7 | |
| 11| 9 VAC IMAX. 100 | | M | PA2 | |
| 12] G\ | | | N | GD | |
- o o - o oo +

C6

APPENDI X D

SCREEN DI SPLAY CODES - 40 Col urms

The following chart lists all of the characters built into the Commodore
screen character sets. It shows which nunbers should be POKED into screen
menory (locations 1024-2023) to get a desired character on the 40-col um
screen (Remenber, to set color memory, use |ocations 55296 to 56295). Also
shown is which character corresponds to a number PEEKed fromthe screen

Two character sets are available. Both are available sinultaneously in 80-
colum node, but only is available at a time on the 40-col um screen. The
sets are switched by holding down the {shift} and {C=} (Commodore) keys

si mul t aneousl y.

From BASIC, PRINT CHR$(142) will switch to upper case/graphics mode and
PRINT CHR$(14) will switch to upper/lower case node

Any nunber on the chart may al so be displayed in REVERSE. The reverse
character code may be obtained by adding 128 to the val ues shown

SET 1 SET 2 PKE

| |
______________________ Femmmmmeeeieeemeccccecee et e emeemmmemma—————a
| |
@ 0 | C c 3 F f 6
A a 1 | D d 4 | G g 7
B b 2 E e 5 H h 8

D1

SET 1 SET 2 POKE SET 1 SET 2 PKE SET1 SET2 POKE | SET1 SET2 POKE | SET1 SET2 PXE

I i 9 | % 37 | A 65 | |
J i 0 | & 38 | B 66 93 | 105 | 117
K k 11 | ' 39 | C 67 94 | 106 | 118
L | 2 | | 40 | D 68 95 | 107 | 119
M m 13 |) 41 | E 69 SPACE 9% | 108 | 120
N n N 42 | F 70 97 | 109 | 121
0 0 15 | + 43 | G 71 98 | 110 | 122
2 P % | 44 | H 72 99 | 11| 123
Q q 17 | 45 | | 73 100 | 112 | 124
R r 8 | . 46 | J 74 101 | 13 | 125
S s 19 | 47 | K 75 102 | 114 | 126
T t 20 | 0 48 | L 76 103 | 115 | 127
U u 21 | 1 49 | M 77 104 | 116 |
v v 22 | 2 50 | N 78
w w 23 | 3 51 | 0 79
X X 24 | 4 52 | P 80 Codes from 128-255 are reversed i mges of codes 0-127
Y y 25 | 5 53 | Q 81
VA z 26| 6 54 | R 82
[271 | 7 55 | S 83

pound 28 | 8 56 | T 84
] 29 | 9 57 | U 85
A 30 | : 58 | % 86
< 3| 59 | W 87

SPACE 32 | < 60 | X 88
! 33 | = 61 | Y 89
" 34 | > 62 | z 90
35| ? 63 | 91
$ 36 | 64 | 92

D2 D3

APPENDI X E e LT R e LT e LT +
| PRINTS CHR$ | PRINTS CHRS | PRINTS CHRS | PRINTS CHR$

ASCI1 AND CHR$ CODES R LA R TR R ECLELLEE TR R LR R TR R ELECEEL TR +
| D 68 | 97 | 126 | {grey 3} 155
| E 69 | 98 | 127 | {purple} 156

This appendi x shows you what characters will appear if you PRINT CHR$(X), | F 70 | 929 | 128 | {left} 157

for all possible values of X It will also show the values obtained by | G 71| 100 | {orange} 129 | {yellow} 158

typing PRINT ASC("x"), where x is any character that can be displayed. This | H 72 | 101 | 130 | {cyan} 159

is useful in evaluating the character received in a GET statement, conver- | I 73 | 102 | 131 | SPACE 160

ting upper to lower case, and printing character based commands (like | J 74 | 103 | 132 | 161

switch to upper/lower case) that could not be enclosed in quotes. | K 75| 104 | f1 133 | 162
| L 76 | 105 | f3 134 | 163
| M 77| 106 | f5 135 | 164
| N 78 | 107 | f7 136 | 165
| 0 79 | 108 | f2 137 | 166
| P 80 | 109 | f4 138 | 167
| Q 81 | 110 | 6 139 | 168
| R 82 | 11 | f8 140 | 169
| S 83 | 112 |shift+ret. 141 | 170
| T 84 | 113 | upper case 142 | 171
| U 85 | 114 | 143 | 172
| \% 86 | 115 | {black} 144 | 173
| w 87 | 116 | {up} 145 | 174

T R LT R LR E LR + | X 88 | 117 | {rvs off} 146 | 175

| PRINTS CHR$ | PRINTS CHRS | PRINTS CHRS | PRINTS COHR$ | | Y 89 | 118 | {clear} 147 | 176

T R LT R LR E LR + | Z 90 | 119 | {inst} 148 | 177

| 0 | {down} 17 | 34 | 3 51 | | [91 | 120 | {brown} 149 | 178

| 1 | {rvson} 18 | # 35 | 4 52 | | pound 922 | 121 | {It. red} 150 | 179

| 2 | {hone} 19 | $ 36 | 5 53 | |] 93 | 122 | {grey 1} 151 | 180

| 3 | {del} 20 | % 37 | 6 54 | | A 94 | 123 | {grey 2} 152 | 181

| 4 | 21| & 38 | 7 55 | |{arrow left}95 | 124 | {It.green}153 | 182

| {white} 5 22 | ' 39 | 8 56 | | 9% | 125 | {It.blue} 154 | 183

| 6 | 23 | (40 | 9 57 |

| 7 24 |) 41 | : 58

| disSHFT+C= 8 | 25 | 42 | 59 |

| enaSHFT+C=9 | 26| + 43 | < 60

| 10 | 271 | , 44 | = 61 |

| 11 | {red} 28 | 45 | > 62

| 12 | {right} 29 | : 46 | ? 63 |

| return 13 | {green} 30 | / a7 | @ 64 |

| lower case 14 | {blue} 31| 0 48 | A 65

| 15 | SPACE 32 | 1 49 | B 66 |

| 16 | ! 33 | 2 50 | C 67 |

E-1 E-2

o o
| PRINTS COHRS | PRINTS CHRS
o o
| 184 | 186

| 185 | 187
o o

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

Note: The above codes are for C64 node. See Appendix | for special codes in

C128 node.

E-3

_________________ +
PRINTS CHR$
_________________ +

190 |
191 |
_________________ +

APPENDI X F

SCREEN AND COLOR MEMORY MAPS - C128 Mbde, 40 Col um and C64 Mbde

The fol l owi ng maps display the memory |ocations used in 40-col um node
(C128 and C64) for identifying the characters on the screen as well as
their color. Each map is separately controlled and consists of 1,000 posi-
tions.

The character displayed on the maps can be controlled directly with the
PCKE conmmand.

SCREEN MEMORY MAP

COLUWN 1063
0 10 20 30 39/

1024 | |
1064 | |
1104 | |
1144 | |
1184 | |
1224 | |
1264 | |
1304 | |
1344 | |
1384 | |
1424 | |
1464 | |
1504 | | ROW
1544 | |
1584 | |
1624 | |
1664 | |
1704 | |
1744 | |
1784 | |
1824 | |
1864 | |
1904 | |
1944 | |
1984 | |

The Screen Map is POKEd with a Screen Display Code val ue (see Appendix D). Col or Codes - 40 Col urms
For exanpl e:

POKE 1024, 13
will display the letter {M in the upper-left corner of the screen.

Bl ack 8 Orange
Wite 9 Brown

Red 10 Light Red
Cyan 11 Dark Gay
Purpl e 12 Medi um G ay
Geen 13 Light Geen
Bl ue 14 Light Blue
Yel | ow 15 Light Gay

COLOR MEMORY MAP

COLUWN 55335
0 10 20 30 39/

~No O~ WN PO

55296
55336
55376
55416
55456)
55496
55536
55576
55616
55656]
55696
55736

|
| Border Control Menmory 53280
|

|

|

|

|

|

|

|

|

55776| | ROW

I

|

|

|

|

|

|

|

|

|

|

Background Control Menory 53281

55816
55856
55896
55936
55976
56016
56056
56096
56136|
56176|
56216
56256

If the color map is POKEd with a col or value, this changes the character
color. For exanple:

POKE 55296, 1
will change the letter {M inserted above fromlight green to white.

F-2

APPENDI X G

DERI VED TRI GONOVETRI C FUNCTI ONS

COTANGENT

I NVERSE SI NE

I NVERSE COSI NE

| NVERSE SECANT

| NVERSE COSECANT
| NVERSE COTANGENT
HYPERBQLI C SI NE
HYPERBOLI C COSI NE

HYPERBOLI C SECANT

HYPERBOLI C COSECANT
HYPERBOLI C COTANGENT

I NVERSE HYPERBCLI C SI NE

I NVERSE HYPERBOLI C COSI NE

I NVERSE HYPERBOLI C TANGENT

I NVERSE HYPERBOLI C SECANT

I NVERSE HYPERBOLI C COSECANT
| NVERSE HYPERBOLI C COTANGENT

|
|
|
|
|
|
|
|
|
| HYPERBOLI C TANGENT
|
|
|
|
|
|
|
|
|

SEQ(X) =1/ C08(X)
CSO(X) =1/ SIN(X)
0OT(X) =1/ TAN(X)
ARCSI N(X) =ATN(X/ SQR(- X* X+1))

G1

APPENDI X H
MEMCRY MAP

SYSTEM MEMORY MAP

The Commodore 128 BASIC nenory map is shown bel ow

COMVODORE 128 MODE

MEMORY MAP
C128 RAM C128 ROM
FFFFte - oommmmmeee + FFFF4e oo +
FFFA/NM RST IRQ | | |
| CP/ M RAM Code| | |
FFDO| | FFAD#----emmmmennn +- - Kernal Junp Table - -
| krnl RAM Code| | | & Hardware Vectors
FFO5+- - - - - v veemm-- + FFO5+-----cveen-- +- - Kernal interrupt
| MU | | | Di spat ch Code
| Confi guration| | |
| Regi ster | | |
FFOO+-------cn---- + FFOO|///111111111]]- - MW Configuration
| | | | Regi sters
| | FC80| - - - - - - |- - ROM Reserved for
| | | | Forei gn Lang.
| | | | Ver si ons
| | FAOO| - - - - - - |- - Editor Tables
| | | |
| | EO0O| - - - - - - |- - Kernal ROM Code
| | [LETTTITTTNTT
| | DOOO|////11IITIITI|- - 1]/0 Space
| | | |
| | 00 - - - - - - |- - Editor ROM Code - - -
| | | |
| | BOOO| - - - - - - |- - Monitor ROM Code
| | | |
| | 8000 [
4000+------------- + 4000+ ------------ +- - Basic ROM Code

|H GH
|/ ROM

MEMCRY MAP MEMCRY MAP
C128 RAM C128 RAM
A000+- - - - wmmm e +
| VI C BI T-MAP Screen | 0400+ - - - - mrem s +
2000 - - - - - - - s e e e e e | | Basi ¢ RAM Code |
| VICBIT-MP Color (W#2) | 0380+ = = = = = = = - e oo +
1000+ - - - s memm e + | Kernal Tables |
| Reserved for | 033CH - - - = = = - - - e e e +
| Function Key Software | | Indirects |
1800+ - - - -mmm e + 02FCH - - - - = = = - - o e +
| Reserved for | | Kernal RAM Code |
| Forei gn Lang. Syst ens | 02A2+ - - - - - - - - - - - - e - +
1400+ - - e + | Basic & Mnitor Input Buffer |
| | 0200+ - - - - - - - - - - - - - - - +
1300+ - - - s + | System Stack |
| Basi ¢ Absol ute Vari abl es | 0149+ - - - - - - - - - - - - - - +
12004 - - - s e + | Basi ¢ DOS Using |
| Basi ¢ DOS/ VSP Vari abl es | 0110+ - - - - - = - - - - - - - - - - +
1208+ - - m e + | F Buffer |
| CP/ M Reset Code | 0100+ - - - - - - - - - - - - - - - +
12004+ ---mmmm e + | Kernal Z.P |
| Function Key Buffer | 0090+ - - - - - - - - - - - - - - - +
1000+-- - - - - oo + | Basic Z. P |
| Sprite Definition Area | 0002+ - - - - - - - - - - - - - - +
OBO0+- - - mmmme e + 0000+ === == m e +
| RS/ 232 Qut put Buffer |
ODO0+- == wwmm e +
| RS/ 232 Input Buffer |
0C00+- - - wmmm e +
| (Di sk Boot Page) |
0BCO| - - - - = - = - - e e |
| Cassette Buffer |
0BO0+- - - wmmm e +
| Monitor & Kernal Absolute Val ues |
OAOD+- - - - wm e +
| Basi ¢ Run-Tine Stack |
0800+ - - - m o m e +
| VIC Text Screen (VM #1) |
0400+ - - wmm e +

H 2 H 2a

APPENDI X | Effective

Key in Mde:
CONTROL AND ESCAPE CODES CHR$ Sequence Function 64 Cl28
CHR$(19) HOME or Move the cursor to the hone
CTRL S position (top left) of the
di splay (the current w ndow) * *
CHRS$(20) DEL or Delete last character typed and
CIRL T move all characters to the right
one space to the left * *
CONTROL CODES CHR$(24) CTRL X Tab set/cl ear *
CHR$(27) ESC or CTRL [Send an ESC charact er *
CHRS$(28) CTRL 3 or Send character color to red
Effective CTRL / (40) and (80) * *
Key in Mde: CHR$(29) CRSR RIGHT or Move cursor one colum to the
CHRS$ Sequence Function C64 Cl128 CTRL] right * *
--- CHR$(30) CTRL 6 or Set character color to green
CHR$(2) CTRL B Underline (80) * CTRL 7 (40) and (80) * *
CHRS(5) CTRL 2 or Set character color to white CHR$(34) " Print a double quote on screen
CTRL E (40) and (80) * * and place editor in quote node * *
CHR$(7) CTRL G Produce bel | tone * CHRS$(129) c1 Set character color to orange
CHRS$(8) CTRL H Di sabl e character set change * (40); dark purple (80) * *
CHR$(9) CTRL | Enabl e character set change * CHR$(130) Underline off (80) *
Move cursor to next tab CHR$(131) Run a program This CHR$ code
posi tion * does not work in PRINT CHR$(131),
CHR$(10) CTRL J Send a carriage return with but works from keyboard buffer *
line feed * CHR$(133) F1 Reserved CHR$ code for F1 key *
Send a line feed * CHR$(134) F3 Reserved CHR$ code for F3 key *
CHR$(11) CTRL K Di sabl e character set change * CHRS$(135) F5 Reserved CHR$ code for F5 key *
CHR$(12) CTRL L Enabl e character set change * CHRS$(136) F7 Reserved CHR$ code for F7 key *
CHR$(13) CTRL M Send a carriage return and line
feed to the conmputer and enter
a line of BASIC * *
CHR$(14) CTRL N Set character set to | ower/upper
case set * *
CHR$(15) CTRL O Turn flash on (80) *
CHR$(17) CRSR DOM or Move the cursor down one row * *
CTRL Q
CHRS$(18) CTRL 9 characters to be printed in
reverse field * *

CHRS(148)
CHRS(149)
CHRS(150)
CHRS(151)
CHRS(152)
CHRS(153)
CHRS(154)
CHRS(155)

CHR$(156)

Key
Sequence

F2
F4
F6

F8
SH FT RETURN

CTRL 1
CRSR UP

CTRL 0

g

@

@

@

@

@

@

@

9
~

Function

Reserved CHR$ code for F2 key
Reserved CHR$ code for F4 key
Reserved CHR$ code for F6 key
Reserved CHR$ code for F8 key
Send a carriage return and line
feed without entering a BASIC
line

Set the character set to upper
case/ graphi cs

Turn flash of f (80)

Set character color to black
(40) and (80)

Mbve cursor or printing position
up one row

Term nate reverse field display
Cear the window screen and nove
the cursor to the top left

posi tion

Move character from cursor
position right one colum

Set character color to brown
(40); dark yell ow (80)

Set character color to light red
(40) and (80)

Set character color to dark gray
(40); dark cyan (80)

Set character color to medium
gray (40) and (80)

Set character color to light
green (40) and (80)

Set character color to light
bl ue (40) and (80)

Set character color to light
gray (40) and (80)

Set character color to purple
(40) and (80)

Effective
in Mde
C64 Cl128

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

Key
CHR$ Sequence
CHR$(157) CRSR LEFT
CHR$(158) CTRL 8
CHR$(159) CTRL 4
Note: (40) ... 40 colum screen
ESCAPE CODES

Fol l owi ng are key sequences for
Cormodore 128. ESCape sequences

Effective

in Mde
Function C64 Cl128
Move cursor left one colum * *
Set character color to yellow
(40) and (80) * *
Set character color to cyan
(40); light cyan (80) * *

only; (80) ... 80 colum screen only

the ESCape functions available on the
are entered by pressing and rel easing the

{ESC} key, following by pressing the key listed bel ow.

ESCAPE FUNCTI ON

Cancel quote and insert node

Erase to end of current line
Erase to start of current line
Erase to end of screen

Move to start of current line
Move to end of current |ine

Enabl e auto-insert node
Di sabl e auto-insert node

Del ete current |ine
Insert line

Set default tab stops (8 spaces)
Clear all tab stops

Enabl e scrolling
Di sabl e scrolling

ESCAPE KEY

Scrol |l up ESC V

Scrol | down ESC W
Enabl e bell (by CTRL G ESC G
Di sabl e bell ESC H
Set cursor to non-flashing node ESC E
Set cursor to flashing node ESC F
Set bottom of screen window at cursor position ESC B
Set top of screen window at cursor position ESC T
Swap 40/80 col um display output device ESC X

The fol | owi ng ESCape sequences are valid on an 80-col urm screen only. (See
Section 8 for information on using an 80-col um screen.)

Change to underlined cursor ESC U
Change to block cursor ESC S
Set screen to reverse video ESC R
Set screen to normal (non reverse video) state ESC N

APPENDI X J

MACHI NE LANGUAGE MONI TOR

I ntroduction

Commodore 128 has a built-in machine |anguage nonitor which lets the user
wite and exam ne nmachine | anguage prograns easily. Conmodore 128 MONI TOR
includes a machi ne | anguage monitor, a mni-assenbler and a di sassenbl er.
The built-in nonitor works only in C128 node; either 40 col um or 80

col um.

Machi ne | anguage prograns written using Cormodore 128 MONI TOR can run by
themsel ves or be used as very fast subroutines for BASIC prograns since the
Commodore 128 MONI TOR has the ability to coexist peaceful Iy with BASIC.

Care nust be taken to position the assenbly |anguage prograns in menory so
the BASI C program does not overwrite them

To enter the nmonitor fromBASIC, type:

MONI TOR {ret urn}

Summary of Conmodore 128 Monitor Commands
ASSEMBLE Assenbl es a line of 8502 code.
COVPARE Conpares two sections of menory and reports differences.

Dl SASSEMBLE Di sassenbl es a |ine of 8502 code.

FILL Fills a range of memory with the specified byte.
@0 Starts execution at the specified address.
HUNT Hunts through menory within a specified range for all occur-

rances of a set of bytes.

JUWP Junps to the subroutine.

J-1

LOAD Loads a file fromtape or disk.

MEMORY Di spl ays the hexadeci mal val ues of nenory |ocations.
REG STERS Di spl ays the 8502 registers.

SAVE Saves to tape or disk.

TRANSFER Transfers code fromone section of nenory to anot her.
VERI FY Conpares nemory with tape or disk.

EXIT Exits Cormodore 128 MONI TOR

(period) Assenbles a line of 8502 code (same as Assenble).

(greater than) Mdifies nenory.

(semi col on) Mbdi fies 8502 register displays.

@ (at sign) Di spl ays disk status, sends di sk conmand, displays direc-
tory.

The Commodore 128 displays 5-digit hexadeci mal addresses within the machine
I anguage nmonitor. Normally, a hexadeci mal nunber is only four digits,
representing the allowabl e address range. The extra left-nost (high order)
digit specifies the BANK configuration (at the tine the given conmand is
executed) according to the follow ng nenory configuration table:

- RAMO only - EXT ROM RAMO, I/0
- RAM 1 only - EXTROM RAM1, I/0
- RAM 2 only - EXTROM RAM 2, |/0
- RAM 3 only - EXTROM RAM 3, 1/0

- INT ROM RAMO, I/0
- INT ROM RAM1, I/0
- INT ROM RAM 2, 1/0
- INT ROM RAM 3, 1/0

- KERNAL + INT (l0), RAMO, 1/0
- KERNAL + EXT (l0), RAMO, 1/0
- KERNAL + BASIC, RAM 0, CHARROM
- KERNAL + BASIC, RAM O, 1/0

~No g~ WN RO
TMOO @>X> ©om

Sunmary for Monitor Field Descriptors

The foll owing designators precede nmonitor data fields (e.g. nenory dunps).
When encountered as a command, these designators instruct the nonitor to
alter menory or register contents using the given data.

J-2

{period} precedes |ines of disassenbled code
> {right angle} precedes lines of nenory dunp
; {semicol on} precedes |ine of a register dunmp

The fol | owi ng designators precede nunber fields (e.g. addresses) and spe-
cify the radix (nunber base) of the value. Entered as commands, these
designators instruct the nonitor sinply to display the given value in each
of the four radices.

{nul'l} (default) precedes hexadeci mal val ues.
$ {dollar} precedes hexadeci mal (base-16) val ues
+ {plus} precedes decimal (base-10) val ues

& {anpersand} precedes octal (base-8) values
% {percent} precedes binary (base-2) val ues

The foll owing characters are used by the nonitor as field delimters or
line termnators (unless encountered within an ASCII string).

{space} delimter seperates two fields
, {comm} delimter seperates two fields
{col on} termnator |ogical end of Iine

? {question} termnator |ogical end of Iine

Conmand descri ptions

Note: < > enclose required parameters
[] enclose optional paraneters

Pl ease note that any nunber field (e.g. addresses, device nunber, and data
bytes) may be specified as a based nunber. This affects the operand field
of the ASSEMBLE command as well. Also note the addition of the directory
syntax to the disk command.

As a further aid to programers, the Kernel error nessage facility has been
automatical ly enabled while in the Mnitor. This neans the Kernel will

di splay "I/O ERROR#" and the error code, should there be any
failed /O attenpt fromthe MONITOR The nessage facility is turned of f
when exiting the MONI TOR

J-3

COMWAND: A
PURPCSE: Enter a line of assembly code
SYNTAX: A <address> <opcode mmenoni ¢c> <oper and>

<address> A hexadeci mal nunber indicating the location in
menory to place the opcode

<opcode
menoni ¢> A standard MOS technol ogy assenbly |anguage mme-
monic, e.g. LDA, STX, RR

<operand> The operand, when required, can be any of the |egal
addressi ng modes

A {return} is used to indicate the end of the assenbly line. If there are
any errors on the line, a question mark is displayed to indicate an error
and the cursor noves to the next line. The screen editor can be used to
correct the error(s) on that line.

EXAMPLE: A01200 LDX #$00
A 1202

NOTE: A period (.) is equal to the ASSEMBLE conmand
EXAVMPLE: . 02000 LDA #3$23

COWAND: C

PURPCSE: Conpare two areas of memory

SYNTAX: C <addressl> <address 2> <address 3>

<address 1> A nunber indicating the start address of the area of
nenmory to conpare against.

<address 2> A nunber indicating the end address of the area of
nemory to conpare against.

<address 3> A nunber indicating the start address of the other
area of memory to compare with.

Addresses that do not agree are printed on the screen

J-4

COWAND: D

PURPCSE: Di sassenbl e machi ne code into assenbly |anguage menonics and
oper ands

SYNTAX: D [<address 1>] [<address 2>]

<address 1> A nunber setting the address to start the dis-
assenbl y

<address 2> An optional ending address of code to be dis-
assenbl ed

The format of the disassenbly differs slightly fromthe input format of an
assenbly. The difference is that the first character of a disassenbly is a
period rather than an A (for readability), and the hexadecimal code is
listed as well.

A disassenbly listing can be nodified using the screen editor. Make any
changes to the menonic or operand on the screen, then hit the carriage
return. This enters the line and calls the assenbler for further nodifi-
cations

A disassenbly can be paged. Typing a D{return} causes the next page of
di sassenbly to be displayed

EXAVMPLE: D 3000 3003

. 03000 A9 00 LDA #$00
.03002 FF 77?
.03003 DO 2B BNE $3030

COWAND: F

PURPCSE: Fill a range of locations with a specified byte

SYNTAX: F <address 1> <address 2> <byte>
<address 1> The first location to fill with the <byte>
<address 2> The last location to fill with the <byte>

<byt e> Nunber to be witten.

This command is useful for initializing data structures or any other RAM
area

J-5

EXAVPLE: F 0400 0518 EA
Fill menory locations from $0400 to $0518 with $EA (a NOP

instruction).

COWAND: G
PURPCSE: Begi n execution of a programat a specified address.
SYNTAX: G [<addr ess>]
<address> An address where execution is to start. When address
is left out, execution begins at the current PC.
(The current PC can be viewed using the R command.)
The GO command restores all registers (displayable by using the R command)
and begins execution at the specified starting address. Caution is recom
mended in using the GO command. To return to Commodore 128 MONI TOR node
after executing a machine | anguage program use the BRK instruction at the
end of the program
EXAMPLE: G 140C
Execution begins at |ocation $140C.
COWAND: H
PURPCSE: Hunt through menory within a specified range for all occurrences
of a set of bytes.
SYNTAX: H <address 1> <address 2> <data>
<address 1> Beginning address of hunt procedure.
<address 2> Ending address of hunt procedure.

<dat a> Data set to search for data may be nunbers or an
ASCI| string.

EXAMPLES: H A000 A101 A9 FF 4C
Search for data $A9, $FF, $4C, from $A000 to $A101.
H 2000 9800 ' CASH
Search for the al pha string "CASH&".

J-6

COWAND: J
PURPCSE: Begi n execution of a programat a specified address.
SYNTAX: J [<address>]

<address> An address where execution is to start. When address
is left out, execution begins at the current PC.
(The current PC can be viewed using the R command.)

The JUWP command restores all registers (displayable by using the R com
mand) and begins execution at the specified starting address. Caution is
recommended in using the JUW command. To return to Conmodore 128 MONI TOR
nmode after executing a machi ne | anguage program use the RTS instruction at
the end of the program

EXAMPLE: J 1300

Execution begins at |ocation $1300.
COWAND: L
PURPOSE: Load a file fromcassette or disk.

SYNTAX: L <"file name"> [,<device> [,alt |oad address]]

<'file name"> Any | egal Commodore 128 file nane.

<devi ce> A hexadeci mal nunber indicating the device
toload from 1 is cassette, 8 is disk (or
9, A etc.).

[alt load address] Option to load a file to a specific address
(4-digit nunber), or a bank configuration
and address (5-digit nunber).

J-6a

The LOAD command causes a file to be |oaded into nenory. If the alternate
| oad address is not used, the file will be loaded to the address in bank 0
that is specified in the cassette header, or the first two bytes of a disk
file. The alternate |oad address is used to specify a different start
address, which may range from $00000 to $FFFFF.

EXAMPLE: L "PROGRAM', $12000

Loads the file named PROGRAM in fromthe disk in to bank 1,
starting at $2000.

COWAND: M

PURPCSE: To display menory as a hexadeci mal and ASCI1 dunp within the
specified address range.

SYNTAX: M [<address 1> [<address 2>]]

<address 1> First address of memory dunp. Optional. If omitted,
one page is displayed. The first byte is the bank
nunber to be displayed, the next four bytes are the
first address to be displayed.

<address 2> Last address of memory dunp. Optional. If omitted,
one page is displayed. The first byte is the bank
nunber to be displayed, the next four bytes are the
ending address to be displayed.
Menory is displayed in the following format:

>03000 45 58 2E 56 41 4C 55 45: EX. VALUE

J-7

Menory content may be edited using the screen editor. Mve the cursor to
the data to be nodified, type the desired correction and hit {return}. If
there is a bad RAM | ocation or an attenpt to modify ROM has occurred, an
error flag (?) is displayed.

An ASCI 1 dunp of the data is displayed in REVERSE (to contrast with other
data displayed on the screen) to the right of the hex data. When a charac-
ter is not printable, it is displayed as a reverse period (.).

As with the disassenbly conmand, pagi ng down is acconplished by typing M
and {return}.

EXAWPLE: M F4151 F4201

>F41F1 20 43 4F 4D 4D 4F 44 4F. COMMODO
>F41F9 52 45 20 45 4C 45 43 54: RE ELECT
>F4201 52 4F 4E 49 43 53 2C 20: TRONI CS,

NOTE: The above display is produced by the 40-col um editor.

COWAND: R

PURPCSE: Show i nportant 8502 registers. The program status register, the
program counter, the accumulator, the X and Y index registers and
the stack pointer are displayed.

SYNTAX: R

The values of PC, SR AC, XR YR and SP are transfered to the 8502 before
the Go or Junp command is execut ed.

EXAVPLE: R
PC SR AC XR YR SP
;01002 01 02 03 04 F6

NOTE: ; {semicolon} can be used to nodify register displays in

the sane fashion as > (greater than) can be used to nodify
nenory registers.

J-8

COWAND: S
PURPCSE: Save an area of menory onto tape or disk.
SYNTAX: S <"file name">, <device> <address 1> <address 2>

<"file name"> Any |egal Conmodore 128 file name. To save the
data the name nust be enclosed in double quotes.
Single quotes cannot be used.

<devi ce> A hexadeci mal nunber indicating on which device
the file is to be placed. Cassette is 1; disk is
8, 9, etc.

<address 1> Starting address of nenory to be saved.

<address 2> Ending address of menory to be saved + 1. All data
up to, but not including the byte of data at this
address, is saved.

The file may be recalled, using the L command. \When saving to cassette only
bank 0 can be saved from

EXAWPLE: S "GAME", 8, 0400, 0C00

Saves menory from $0400 to $0C00 onto di sk.

COWAND: T
PURPCSE: Transfer segnments of menory fromone nenory area to another.
SYNTAX: T <address 1> <address 2> <address 3>

<address 1> Starting address of data to be noved.
<address 2> Ending address of data to be noved.

<address 3> Starting address of of new |ocation where data will
be rmoved.

Data can be noved fromlow nemory to high menory and vice versa. Additional
menory segnments of any length can be noved forward or backward. An auto-
matic "conpare" is performed as each byte is transferred, and any differen-
ces are listed by address.

J-9

EXAWPLE: T 1400 1600 1401

Shifts data from $1400 up to and including $1600 one byte higher
in nenory.

COWAND: 'V
PURPCSE: Verify a file on cassette or disk with the memory contents.
SYNTAX: L <"file name"> [,<device> [,alt start address]]

<"file name"> Any |egal Commodore 128 file nane.

<devi ce> A hexadeci mal nunber indicating the device to |oad
from 1 is cassette, disk is 8, 9, etc.).

[alt start

address] Option to start verification at this address (4-
digit nunber), or a bank configuration and address
(5-digit nunber).

The Verify command conpares a file to nenory contents. The Conmodore 128
responds with VERIFYING If an error is found the word ERROR i s added; if
the file is successfully verified the cursor reappears.

EXAWPLE: V "WORKLOAD', 8

COMMAND: X
PURPOSE: Exit to BASIC.
SYNTAX: X

COMMAND: . {point}
PURPCSE: Can be used to enter a line of assenbly code.
SYNTAX: see the A command.

COVMAND: > (greater than)
PURPCSE: Can be used to set up to 8 or 16 nmenory |ocations.
SYNTAX: > <address> [<data byte 1... 8/16>]

J-10

<address> First nmenory address to set.

<data byte 1... 8/16>
Data to be placed in succesive menory |ocations
following the address, with a space preceding each
data byte.

The maxi num nunber of bytes that can be entered is 8 (in 40 col um node) or
16 (in 80 colum node). When the {return} key is pressed the contents of
the 8/16 locations after the address are displayed in hexadeci mal val ue and
as ASCl| character.

EXAMPLES: >2000
Di splays Iine of bytes follow ng $2000.

>2000 31 32 38
Enters values at $2000 and displays line of bytes follow ng
$2000.

COMMAND: ; {semicol on}
PURPCSE: Can be used to nodify the display of inportant 8502 registers.
SYNTAX: ; [<PC [<SR> [<AC [<XR> [<YR> [<SP>]]]]]1]

<PC A 5 digit hexadecimal number, consisting of the
(leading) 1-digit bank configuration nunber and
4-digit value of the 8502 Program Counter.

<SR> A 2-digit hexadecinal number, indicating the value
of the 8502 Status Register.

<AC A 2-digit hexadecinal number, indicating the value
of the 8502 Accunul ator.

<XR> A 2-digit hexadecimal number, indicating the value
of the 8502 X index Register.

<YR> A 2-digit hexadecimal number, indicating the value
of the 8502 Y index Register.

<SP> A 2-digit hexadecimal number, indicating the value
of the 8502 Stack Pointer.

J-10a

It is easier to use the R conmand, because the register labels are |isted

above the line containing the register val ues.

The values of PC, SR AC, XR YR and SP are transfered to the 8502 before

the Go or Junp command is execut ed.

COMMAND: @{at sign}
PURPCSE: Can be used to display the disk status.

SYNTAX: @[<unit#>], <disk cnd string>

<uni t #> Devi ce unit nunber (optional).

<di sk cnd string>

String command to disk.

NOTE: @al one gives the status of the disk drive.
EXAMPLES: @

00, O, 00, 00

Checks disk status.

@l

Initializes drive 8.

@$

Di spl ays directory of drive 8.

J-11

APPENDI X K

BASIC 7.0 ABBREVI ATI ONS

Note: The abbreviations bel ow operate in uppercasel/ graphic node. Press the
letter key(s) indicated, then hold down the {shift} key and press
the letter key following the word SH FT.

KEYWORD

ABS
AND
APPEND
ASC
ATN
AUTO
BACKUP
BANK
BEG N
BEND
BLOAD
BOOT
BOX
BSAVE
BUWP
CATALOG
CHAR
CHR$

CI RCLE
CLOSE
CLR
CVD
COLLECT
COLINT
COLLI SION
COLAR
CONCAT
CONT
CcopY
Ccos
DATA

ABBREVI ATI ON

A SHFT
A SHFT
A SHFT
A SHFT
A SHFT
A SHFT
BA SHIFT
B SHIFT
B SHIFT
BE SHIFT
B SHIFT
B SHIFT
none
B SHFT S
B SHFT U
CSHFT A
CH SHFT A
CSHFTH
CSHFT I
CL SHFT O
C SHFT
C SHFT
COLL SHIFT
none
COL SHIFT L
COL SHFT O
CSHFT O
none
COSHFT P
none
D SHFT A

orzmr»rOcCc—-HmnToU=2w

m=r

K-1

KEYWORD
DEC

DCLOSE
DEF FN
DELETE
DM

DI RECTORY
DLOAD

DOPEN
DRAW

DSAVE
DVERI FY
EL

ELSE
END
ENVELOPE
ER

ERRS
EXIT
EXP
FAST
FETCH
FILTER
FN

FOR

FRE

GET
GETKEY
GET#
G064
GOSUB
GOTO
GRAPHI C
GSHAPE
HEADER
HELP
HEX$

IF

ABBREVI ATI ON

none
DCL SHFT E
DSHFT C
none
DE SHI FT
D SHFT
DI SHFT
D SHFT
none
D SHFT O
DSHFT R
none
none
D SHFT S
DSHFT V
none
ESHFT L
none
E SHFT N
none
E SHFT R
EX SHFT |
E SHFT X
none
F SHFT
F SHFT
none
F SHFT
F SHFT
G SHFT
GETK SHIFT
none
none
GO SHFT S
GSHFT O
GSHFT R
GSHFT S
HE SHFT A
HE SHIFT L
HSHFT E
none

2o —r—

- m

mm 2o O

K-2

KEYWORD

[NPUT
| NPUT#
I NSTR

PRI NT#

PRI NT USI NG
PUDEF

RCLR

RDOT

READ

RECCRD

REM

ABBREVI ATI ON

none
| SHFT N
INSHFT S
none
J SHFT O
K SHFT E
LE SHFT F
none
L SHFT E
L SHFT I
L SHFT O
LOSHFT C
none
LOSHFT O
M SHIFT |
MO SH FT N
none
none
N SHFT E
N SHFT O
none
OSHFT P
none
P SHFT A
PE SHFT E
P SHFT E
none
P SHFT L
PO SHFT |
PO SH FT K
none
P SHFT O
?
P SHFT R
?US SHIFT |
P SHFT U
RSHFT C
R SHFT D
RE SHFT A
R SHFT E
none

K-3

KEYWORD

RENANE
RENUVBER
KEYWORD
RESTORE
RESUVE
RETURN
RGR

R GHT$
R\D
RREG
RSPCOLOR
RSPPOS
RSPRI TE
RUN

RW NDOW
SAVE
SCALE
SONCLR
SCRATCH
SaN

SIN
SLEEP
sLow
SOUND
SPC(
SPRCOLOR
SPRDEF
SPRITE
SPRSAV
SR
SSHAPE
STASH
ST

STEP
STOP
STRS
SVAP
SYsS

TAB(

TAN
TEMPO
THEN

ABBREVI ATI ON

RE SHFT N
REN SH FT U
ABBREVI ATI ON
RE SHFT S
RES SHFT U
RE SHFT T
R SHFT G
R SHFT I
R SHFT N
R SHFT R
RSP SHFT C
R SHFT S
RSP SHFT R
R SHFT U
R SHFT W
S SHFT A
SC SHFT A
SSHFT C
SC SHFT R
SSHFT G
S SHFT I
SSHFT L
none
SSHFT O
none
SPR SHIFT C
SPR SHIFT D
SSHFT P
SPR SHIFT S
SSHFT Q
SSHFT S
SSHFT T
none
ST SHFT E
ST SHFT O
ST SHFT R
S SHFT W
none
T SHFT A
none
TSHFTE
TSHFTH

K-4

KEYWORD ABBREVI ATI ON APPENDI X L

Tl none DI SK COWAND SUMVARY
TS none
TO none
TRAP TSHFTR Thi s appendix lists the conmands used for disk operation in C128 and C64
TROFF TRO SHFT F nmodes on the Commodore 128. For detailed information on any of these com
TRON TR SHFT O mands, see Chapter V, BASIC 7.0 Encycl opaedia. Your disk drive manual al so
USR USHFT S has information on di sk commands
VAL none
VERI FY V SHFT E The new BASIC 7.0 commands can be used only in C128 node. All BASIC 2.0
VoL V SHFT O conmands can be used in both C128 and C64 nodes
WAI'T WSHI FT A
VH LE VWH SHIFT |
WDTH WSHIFT |
XOR X SHFT O Conmand Use Basic 2.0 Basic 7.0
APPEND Append data to file * X
BLOAD Load a binary file starting at
the specified menory |ocation X
BOOT Load and execute program X
BSAVE Save a binary file fromthe
specified menory |ocation X
CATALOG Display directory contents of disk
on screen * X
CLOSE Close logical disk file X X
C\VD Redirect screen output to disk file X X
COLLECT Free inaccessibl e disk space * X
CONCAT Concatenates two data files * X
CopPY Copy files between drives * X

* Although there is no single equivalent conmand in BASIC 2.0, there is an
equival ent multi-command instruction. See your drive manual for these
BASI C 2.0 conventions

K-5 L-1

Conmand

DCLEAR

DCLOSE

DI RECTORY

DLOAD

DOPEN

DSAVE

DVERI FY

GET#

HEADER

LOAD

OPEN

PRI NT#

RECORD

RENAVE

RUN fil enane

SAVE

VERI FY

Use

Resets and initializes disk
drives *

Close logical disk files *

Display directory of contents of
di sk on screen *

Load a BASIC program from disk *

Open a disk file for a read and/or
wite operation *

Save a BASIC programto disk *

Verify programin nenory against
program on disk *

Recei ve input fromopen disk file
Format a disk *

Load a file fromdisk

Open a file for input or output
Qutput data to file

Position relative file pointers *
Change nane of a file on disk *
Execut e BASI C program from di sk
Store programin nenory to disk

Verify programin nenory against
program on di sk

Basic 2.0

X

Basic 7.0

X

* Although there is no single equivalent command in BASIC 2.0, there is
equival ent multi-command instruction. See your drive manual for these
BASI C 2.0 conventi ons

L-2

an

GLOSSARY

This glossary provides brief definitions of frequently used conputing
terms.

Acoustic Coupler or Acoustic Mddem A device that converts digital signals
to audible tones for transmssion over tel ephone lines. Speed is
limted to about 1,200 baud, or bits per second (bps). Conpare direct-
connect nodem

Address: The | abel or number identifying the register or menory |ocation
where a unit of information is stored

Al phanuneric: Letters, numbers and special symbols found on the keyboard
excluding graphic characters

ALU: Arithnetic Logic Unit. The part of a Central Processing Unit (CPU)
where binary data is acted upon

Ani mation: The use of computer instructions to sinulate notion of an object
on the screen through gradual, progressive mvenents

Array: A data-storage structure in which a series of related constants or
variables are stored in consecutive menory |ocations. Each constant or
variable contained in an array is referred to as an elenent. An ele-
ment is accessed using a subscript. See subscript.

ASCI1: Acronymfor Anerican Standard Code for Information Interchange. A
seven-bit code used to represent al phanuneric characters. It is usefu
for such things as sending information froma keyboard to the com
puter, and fromone conputer to another. See Character String Code

Assenbler: A programthat translates assenbly-1anguage instructions into
machi ne- | anguage instructions

Assenbly Language: A machine-orientated |anguage in which mmenonics are

used to represent each machi ne-1anguage instruction. Each CPU has its
own specific assenbly |anguage. See CPU and machi ne | anguage

G-1

Asynchronous Transmission: A scheme in which data characters are sent at
randomtinme intervals. Linmts phone-line transnission to about 2,400
baud (bps). See Synchronous Transmi ssion.

Attack: The rate at which the volune of a nusical note rises fromzero to
peak vol une.

Background Col or: The color of the portion of the screen that the charac-
ters are placed upon.

BASI C. Acronym for Beginner's Al l-purpose Synbolic Instruction Code.

Baud: Serial-data transmission speed. Originally a telegraph term 300 baud
is approximtely equal to a transmission speed of 30 characters per
second.

Bi nary: A base-2 number system All nunbers are represented as a sequence
of zeros and ones.

Bit: The abbreviation for Binary diglT. Abit is the smallest unit in a
conputer. Each binary digit can have one of two val ues, zero or one.
Abit isreferred to as enabled or "on" if it equals one. Abit is
disabled or "of f" if it equals zero.

Bit Control: A means of transmitting serial data in which each bit has a
significant meaning and a single character is surrounded with start
and stop hits.

Bit Map Mbde: An advanced graphic node in the Commodore 128 in which you
can control every dot on the screen.

Border Color: The color of the edges around the screen.

Branch: To junp to a section of a programand execute it. GOTO and GOSUB
are exanpl es of BASIC branch instructions.

Bubbl e Mermory: A relatively new type of computer nenmory; it uses tiny
magnetic "pockets" or "bubbles" to store data.

Burst Mde: A special high speed node of communication between a disk drive
and a conputer, in which information is transmtted at many tines
normal speed.

Bus: Parallel or serial lines used to transfer signals between devices.
Conputers are often described by their bus structure (i.e. S-100-bus
conputers, etc.).

Bus Network: A systemin which all stations or conputer devices comunicate
by using a common distribution channel or bus.

Byte: A group of eight bits that make up the smallest unit of addressable
storage in a conputer. Each nenory location in the Conmodore 128 con-
tains one byte of information. One byte is the unit of storage needed
to represent one character in nenory. See Bit.

Carrier Frequency: A constant signal transmitted between conmunicating
devices that is nodul ated to encode binary infornation.

Character: Any synbol on the computer keyboard that is printed on the
screen. Characters include nunbers, letters, punctuation and graphic
synbol s.

Character Menory: The area in Commodore 128's nenory which stores the en-
coded character patterns that are displayed on the screen.

Character Set: A group of related characters. The Commodore 128 character
set consists of: upper-case letters, |ower-case letters and graphic
characters.

Character String Code: The nuneric val ue assigned to represent a Conmodore
128 character in the conputer's nenory.

Chip: Anminiature electronic circuit that perfornms a computer operation
such as graphics, sound and input/output.

Clock: The timing circuit for a mcroprocessor.

Clocking: A technique used to synchronize a sending and a receiving data-
communi cations device that is nodulated to encode binary information.

Col l'ision Detection: The recognition of the collision of sprites with other
sprites or display data.

Color Menory: The area in the Comrmodore 128's menory that controls the
color of each location in screen menory.

Conmand: A BASIC instruction used in direct mode to performan action. See
Direct Mde.

Conpiler: A programthat translates a high-1evel |anguage, such as BASIC,
into machine |anguage.

Conposite Mnitor: A device used to provide a 40-col um video display.

Conputer: An electronic, digital device that stores and processes infor-
mation.

Condi tion: Expression(s) between the words |F and THEN, eval uated as either
true or false in an IF...THEN statement. The condition in the
IF...THEN statement gives the conputer the ability to make decissions.

Coordinate: A single point on a grid having vertical (Y) and horizontal (X)
val ues.

Counter: A variable used to keep track of the nunber of tines an event has
occurred in a program

CPU. Acronymfor Central Processing Unit. The part of the conputer con-
taining the circuits that control and performthe execution of com
puter instructions.

Crunch: To minimze the anount of conputer memory used to store a program
Cursor: The flashing square that marks the current location on the screen.

Data: Numbers, letters or synbols that are input into the conputer to be
processed.

Data Base: A large amount of data stored in a well-organized manner. A
dat abase managenent systemis a programthat allows access to the
i nformation.

Data Link Layer: A logical portion of data communication control that
mai nly ensures that communication between adjacent devices is error
free.

Data Packet: A neans of transmitting serial data in an efficient package
that includes an error-checking sequence.

Data Rate or Data Transfer Rate: The speed at which data is sent to a
recei ving conputer - given in baud, or bits per second (bps).

Datassette: A device used to store programs and data files sequentially on
t ape.

Debug: To correct errors in a program

Decay: The rate at which the volunme of a musical note decreases fromits
peak value to a md-range volume called the sustain level. See
Sust ai n.

Decrenent: To decrease an index variable or counter by a specific val ue.

Dedi cated Line or Leased Line: A special telephone |ine arrangement sup-
plied by the tel ephone conpany, and required by certain conputers or
termnals, whereby the connection is always established (an excl usive,
rented line).

Del ay Loop: An enpty FOR ..NEXT loop that slows the execution of a program

Dial-Up Line: The normal switched tel ephone line that can be used as a
transm ssion medi um for data conmunications.

Digital: O or relating to the technol ogy of conputers and data conmuni ca-
tions where all information is encoded as bits of 1s and Os that re-
present on or off states.

Di nensi on: The property of an array that specifies the direction along an
axis in which the array elenents are stored. For exanple, a two-
di mensi onal array has an X-axis for colums and a Y-axis for rows. See
Array.

Direct Mde: The node of operation that executes BASIC conmands i nmedi ately
after the {return} key is pressed. Also called Imediate Mbde. See
Conmand.

Direct Connect Mbdem A digital non-acoustic nodem

Disable: To turn off a bit, byte or specific operation of the computer.

Disk Drive: A random access, mass-storage devices that saves and | oads
files to and froma floppy diskette.

Di sk Operating System Programused to transfer information to and froma
disk. Often referred to as DCS.

Duration: The length of time a nusical note is played.

Electronic Mail or E-Mail: A communications service for conputer users
where textual messages are sent to a central computer, or electronic
"mail box", and later retreive by the addressee.

Enabl e: To turn on a hit, byte or specific operation of the computer.

Envel ope Generator: Portion of the Commodore 128 that produces specific

envel opes (attack, decay, sustain, release) for nusical notes. See
VWavef orm

EPROM A PROM that can be erased by the user, usually by exposing it to
ultraviolet light. See PROM

Error Checking or Error Detection: Software routines that identify, and
often correct, erroneous data.

Execute: To performthe specified instructions in a command or program
stat enent.

Expression: A conbination of constants, variables or array el enents acted
upon by logical, mathematical or relational operators that return a
nuneric val ue.

File: A programor collection of data treated as a unit and stored on disk
or tape.

Fi rmnare: Conputer instructions stored in ROM as in a gane cartridge.

Frequency: The nunber of sound waves per second of a tone. The frequency
corresponds to the pitch of the audible tone.

Ful | - Dupl ex Mode: Allows two conputers on the same line to transmt and
receive data at the same tine.

Function: A predefined operation that returns a single val ue.

Function Keys: The four keys on the far right of the Conmodore 128 key-
board. Each key can be programmed to execute a series of instructions.
Since the keys can be SH FTed, you can create eight different sets of
instructions.

Graphics: Visual screen inmmges representing conputer data in nmenory (i.e.
characters, synmbols and pictures).

Graphi ¢ Characters: Non-al phanumeric characters on the conputer's keyboard.

Gid: A two-dinensional matrix divided into rows and colums. Gids are
used to design sprites and progranmabl e characters.

Hal f- Dupl ex Mbde: Allows transmission in only one direction at a tinge; if
one device is sending, the other must sinply receive data until it's
time for it to transmit.

Har dwar e: Physical conponents in a conputer systemsuch as keyboard, disk
drive and printer.

Hexadeci mal : Refers to the base-16 nunber system Machine |anguage prograns
are often witten in hexadeci ml notation.

Hone: The upper-left corner of the screen.

IC. Integrated Circuit. Asilicon chip containing an electic circuit made
up of components such as transistors, diodes, resistors and capaci-
tors. Integrated circuits are smaller, faster and nore efficient that
the individual circuits used in ol der conputers.

Increment: To increase an index variable or counter with a specified val ue.

I ndex: The variable counter within a FOR ..NEXT | oop.

Input: Data fed into the computer to be processed. Input sources include
the keyboard, disk drive, Datassette or nodem

Integer: A whole nunber (i.e. a nunber containing no fractional part), such
as 0, 1, 2, etc.

Interface: The point of neeting between a conputer and an external entity,
whet her an operator, a peripheral device or a communications nedi um
An interface may be physical, involving a connector, or logical, in-
vol ving sof tware.

[/Q Input/Qutput. Refers to the process ot entering data into the com
puter, or transferring data fromthe computer to a disk drive, printer
or storage medi um

Keyboard: Input component of a conputer system

Kilobyte (K): 1,024 bytes.

Local Network: One of several short-distance data communications schenes
typified by common use of a transmission nedium by nmany devices and
hi gh-data speeds. Also called a Local Area Network, or LAN.

Loop: A program segment executed repitively a specified nunber of tines.

Machi ne Language: The |owest |evel |anguage the conputer understands. The
conputer converts all high-level |anguages, such as BASIC, into
machi ne | anguage before executing any statements. Machine |anguage is
witten in binary formthat a conputer can execute directly. Also
cal l ed machine code or object code.

Matrix: A two-dinensional rectangle with row and col um val ues.

Menory: Storage |ocations inside the computer. ROM and RAM are two dif-
ferent types of nenory.

Menory |ocation: A specific storage address in the conputer. There are
131,072 menory | ocations in the Commodore 128.

M croprocessor: A CPU that is contained on a single integrated circuit
(1Q. Mcroprocessors used in Cormodore personal conmputers include the
6510, the 8502 and the Z80.

Mbde: A state of operation.

Mbdem Acronym for MODul at or/ DEMbdul at or. A device that transforns digital
signals fromthe conputer into electrical inmpulses for transnission
over tel ephone lines, and does the reverse in reception.

Monitor: A display device resembling a television set but with a higher-
resol ution (sharper) inmage on the video screen.

Mot herboard: In a bus-oriented system the board that contains the bus
lines and edge connectors to accormodate the other boards in the
system

Mul ti-Color Character Mbde: A graphic node that allows you to display four
different colors within an 8 X 8 character grid.

Milti-Color Bit Map Mbde: A graphic node that allows you to display one of
four colors for each pixel within an 8 X 8 character grid. See Pixel.

Ml ti-Access Network: A flexible systemby which every station can have
access to the network at all times; provisions are made for tines when
two conputers decide to transnmit at the sane tine.

Null String: An enpty character (""). A character that is not yet assigned
a character string code.

Cctave: One full series of eight notes on the nusical scale.

Operating System A built-in programthat controls everything your conputer
does.

Operator: A synbol that tells the conputer to performa mathematical,
logical or relational operation on the specified variables, constants
or array elements in the expression. The mathematical operators are
+, -, * [and . The relational operators are <, =, > <=, >= and <>.
The logical operators are AND, OR, NOT, and XOR

Order of Qperations: Sequence in which conputations are performed in a

mat hemati cal expression. Also called Herarchy of Operations.

Parallel Port: A port used for sinultaneous transmssion of data, one byte
at atime over multiple wires, one hit per wre.

Parity Bit: A1 or 0 added to a group of bits that identifies the sum of
the bits as odd or even.

Peripheral : Any accessory device attached to the computer such as a disk
drive, printer, nodem or joystick.

Pitch: The pitch of a note is determined by the frequency of the sound

wave. The higher the frequency of a note, the higher its pitch. See
Frequency.

G-10

Pi xel : Conputer termfor picture element. Each dot on the screen that makes
up an image is called a pixel. Each character on the screen is dis-
played within a 8 X 8 grid of pixels. The entire screen is conposed of
a 320 X 200 pixel grid. In bit-map node, each pixel corresponds to one
bit in the conputer's nenory.

Pol ling: A communications control nethod used by some conputer/termnal
systens whereby a "master"” station asks many devices attached to a
comon transm ssion medium in turn, whether they have information to
send.

Pointer: Aregister used to indicate the address of a location in nenory.

Port: A channel through which data is transferred to and fromthe CPU. An
8-bit CPU can address 256 ports.

Printer: Peripheral device that outputs onto a sheet of paper. This paper
isreferred to as a hard copy.

Program A series of instructions that direct the computer to performa
specific task. Programs can be stored on diskette or cassette, reside
in the conputer's menmory, or be listed on a printer.

Programmabl e: Capabl e of being processed with conputer instructions.

Program Line: A statement or series of statements preceded by a |ine nunber
ina program The maxi mumlength of a programline on the Commodore
128 is 160 characters.

PROM Acronym for Progranmabl e Read Only Menory. A semconductor nmenory
whose contents can only be witten to once, after which the contents
is permanent. See al so EPROM and Read Only Menory (ROM).

Protocol : The rul es under which conputers exchange information, including
the organization of the units of data to be transferred.

Random Access Menory (RAM: The programmabl e area of the conputer's nenory
that can be read fromand witten to (changed). Al RAMIocations are
equal Iy accessible at any time in any order. The conponents of RAMare
erased when the conputer is turned off.

G-11

Random Nunber: A nine-digit decimal nunber from 0.000000001 to 0.999999999
generated by the RaNDom (RND) function.

Read Only Menory (ROM: The permanent portion of the conputer's menory. The
contents of ROM|ocations can be read, but not changed. The ROMin the
Cormodore 128 contains the BASIC | anguage interpreter, character-imge
patterns and portions of the operating system

Register: Any menory location in RAM Each register stores one byte. A
register can store any value between 0 and 255 in bhinary form

Rel ease: The rate at which the volume of a musical note decreases fromthe
sustain level to zero.

Renmark: Conment used to document a program Renmarks are not executed by the
conputer, but are displayed in the programlisting.

Resol ution: The density of pixels on the screen that deternines the fine-
ness of detail of a displayed imge.

RGBI Monitor: Red/ Green/Blue/lntensity. A high-resolution display device
necessary to produce an 80-col um screen format.

Ri bbon Cable: A group of attached parallel wires. Also called flat cable.

Ring Network: A systemin which all stations are linked to forma conti-
nuous | oop or circle.

RS-232: A recommended standard for electronic and mechanical specifications
or serial transmission ports. The Conmodore 128 parallel user port can
be treated as a serial port if accessed through software, sometines
with the addition of an interface device.

G-12

Screen: Video display unit which can be either a television or video
noni tor.

Screen code: The nunber assigned to represent a character in screen nenory.
When you type a key on the keyboard, the screen code for that charac-
ter is entered into screen menory automatically. You can also display
a character by storing its screen code directly into screen nenory
with the POKE command.

Screen Menory: The area of the Commmbdore 128's nenory that contains the
information displayed on the video screen.

Serial Port: A port used for serial transmission of data;, bits are trans-
mtted one bit after the other over a single wre.

Serial Transmission: The sending of sequentially ordered data bits.
Sof tware: Conputer prograns (sets of instructions) stored on disk, tape or
cartridge that can be loaded into random access nenory (RAM). Soft-

ware, in essence, tells the conputer what to do.

Sound Interface Device (SID): The MOS 6581 sound synthesizer chip respon-
sible for all the audio features of the Commdore 128.

Source Code: A non-executable programwitten in a high-level |anguage. A
conpi l er or assenbl er nmust translate the source code into an object
code (machine language) that the conputer can understand.

Sprite: A progranmebl e, novable, high-resolution graphic imge. A so
called a Mvable oject Block (MB).

Standard Character Mbde: The node the Conmodore 128 operates in when you
turn it on and when you wite prograns.

Start Bit: Abit or group of bits that identifies the beginning of a data
wor d.

Statenent: A BASICinstruction contained in a programline.

G-13

Stop Bit: Abit or group of bits that identifies the end of a data word and
defines the space between data words.

String: An al phanumeric character or series of characters surrounded by
quotation marks.

Subroutine: An independent program segnent separate fromthe main program
that performs a specific task. Subroutines are called fromthe nmain
programwith the GOSUB statement and nust end with a RETURN statenent.

Subscript: A variable or constant that refers to a specific element in an
array by its position within the array.

Sustain: The nidranged volune of a nusical note.

Synchronous Transmi ssion: Data communi cations using a synchronizing, or
clocking, signal between sending and receiving devices.

Syntax: The grammatical rules of a programming |anguage.
Tone: An audi bl e sound of specific pitch and waveform

Transparent: Describes a conputer operation that does not require user
intervention, i.e. the user is unaware that it is taking place.

Variable: Aunit of storage respresenting a character string or nuneric
val ue. Variable nanes can be any length, but only the first two
characters are stored by the Commodore 128. The first character nust
be a letter.

Video Interface Controller (VIC): The MOS 6566 chip responsible for the
40- col um graphic features of the Cormodore 128.

Voi ce: A sound- produci ng conponent inside the SID chip. There are three
voices within the SID chip, so the Conmodore 128 can produce three
di fferent sounds simultaneously. Each voice consists of a tone oscil-
| at or/ wavef orm generator, an envel ope generator and an anplitude
nodul at or.

G-14

Waveform A graphic representation of the shape of a sound wave. The wave-
form determ nes sone of the physical characteristics of the sound.

Word: Nunber of bits treated as a single unit by the CPU. In an eight-bit

machine, the word length is eight bits; in a 16-bit machine, the word
length is 16 bits.

G-15

[NDEX

A

Abbreviations - BASIC, 3-12, 3-17
ABS function, 4-23, 18-3
Addition, 3-20

ADM 15-5

ADSR, 7-3, 7-13

At key, 5-19

At node, 15-5

Ani mation, 6-16, 6-31

APPEND, 17-3

Arrays, 4-13, 4-14, 19-3

ASC function, 4-22, 18-3

ASCI| character codes, 4-22, E-1
ASM 12-8

Asterisk key {*}, 3-20

Attack, 7-13

ATN function, 18-3

AUTO, 5-9, 17-3

AUXIN, 14-7

AUXQUT, 14-7

B

Bach, 7-26

BACKUP, 17-4

Bandpass, 7-21

BANK, 17-15

Bank table, 17-6

BAS, 12-8

BASI C

abbrevi ations, 3-12
commands, 17-3
functions, 4-20, 18-3
mat hematics, 3-20
operators, 3-20
statenents, 17-3
variables, 19-3
BASIC 2.0, 2-3, 1
BASIC 7.0, 2-3, 1
BEG N BEND, 17-6
Binary files, 6-33

6-3
6-3

Bit Map mode, 6-5

BLOAD, 6-28, 6-36, 17-6
BOOT, 17-7

Booting, 11-6

BOX, 6-3, 6-10, 17-8

BSAVE, 6-28, 6-33, 6-35, 17-9
BUWP, 18-4

C

C128 Mode, 2-3

C64 Mode, 2-3

Caps Lock key, 5-19

Cartridge Port, C3

Cassette Port, G4

CATALQG, 17-10

CHAR, 6-3, 6-12, 17-10

Character sets, 3-5

Character string code, 4-22

CHR$ codes, 9-4, E-1, I-1

CHR$ function, 4-22, 18-4

CIRCLE, 6-3, 6-9, 17-12

O ock, 19-4

CLCSE, 10-3, 17-13

CLR, 3-25, 6-7, 17-13

CLR/ HOMVE key, 3-9

CVMD, 3-25, 6-7, 17-13

COLLECT, 17-14

COLLISION, 17-14

Colon {:}, 4-4

COLOR, 6-3, 6-4, 17-15

Col or

code display chart, 3-14, 6-5,
17-16, 17-17

control, 3-9, 3-18, 15-6
CHR$ codes, E-1

keys, 3-14

menory map, F-1

screen and border, 6-6
source code, 6-5

coM 11-9, 12-8

Comma {,}, 3-12

Command, 3-3

Command keys, 3-5

Command keyword, 11-8
Command |ine, 11-8

Command tail, 11-8
Commodor e key, 3-9, 3-10
Conposite monitor, 8-4
CONCAT, 17-16

CONIN, 14-7

Connections, CG1

CONQUT, 14-7

Constants, 3-22

CONTi nue command, 4-22, 17-17
Control characters table, 7-17
Control key, 3-9, 11-4
Coordinate grid, 6-9

CoPY, 17-18

Copying nusic, 7-26

Copyi ng prograns, 11-11

COSi ne function, 18-5

CP/ M characters, 12-7
CP/ M node, 11-3

CP/MPlus User's Guide, 15-6
CP/IMPlus 3.0, 2-3, 11-3
CTRL-, 11-8, 13-4

CuRSoR keys, 3-7, 9-5
Cursor, 3-6

Cutof f frequency, 7-20

D

Dat assette, 3-26
DATA, 4-11, 7-19
Data file, 12-3
DATE, 14-4
DCLEAR, 17-19
DCLOSE, 17-19
Debug, 4-24, 5-13
DEC, 18-5

Decay, 7-3, 7-13
DEF FN, 7-20

Del ay |oops, 4-6
DELETE, 5-10, 17-21
DELete key, 3-7

DEVI CE, 14-4

Dice, 4-21

Dl Mension statement, 4-14, 7-22
DR command, 11-8, 14-4

Direct mode, 3-3

DI RECTORY, 3-31, 17-23

DI RSYS, 14-4

Di sk commands, 3-26, 10-5, L-1
Disk directory, 3-31, 10-5

Di sk Paraneters, 3-26, 11-8
Division, 3-20

DLOAD', 3-3, 3-29, 17-24

Dol lar sign {$}, 3-24, 7-19, 10-5
DO LOCP, 17-24

DOPEN, 17-26

DRAW 6-4, 6-10, 17-27
Drive Specifier, 12-4
DS/ DS$ variables, 19-4
DSAVE", 3-3, 3-28, 17-27
Dual screens, 8-4

DUWP, 14-5

Duration, 7-4, 7-17
DVERI FY", 3-31, 17-28

E
Echo, 13-3
ED, 12-3, 14-5

Editing, 3-19, 13-4

EL variable, 19-4

ELSE cl ause, 5-5, 17-39
END statenment, 4-3, 17-29
Envel ope generator, 7-13
ENVELOPE, 7-13, 17-29
Equal s {=}, 3-23, 4-4
ERASE, 14-4 14-5

ER/ ERR$ variabl es, 5-13, 18-5,
19-4

Error functions, 5-13
Error nessages, A-1, B-1
Escape codes, I-1

ESCape key, 6-8, 15-5
EXIT, 5-5, 17-24
Exponenti ation, 3-21
EXPonent function, 18-6

F

40/ 80 Display key, 5-19, 8-3
FAST command, 5-16, 17-30

FETCH, 17-30

File, 12-3

Fil enane, 12-4

File specifications, 12-4

File type, 12-4

FI LE NOT FOUND, 3-30

FILTER, 7-22, 17-31

Filter - SID, 7-20

Flat {$}, 7-19

FN function, 18-6

FOR .. NEXT statenent, 4-5, 17-31
FORMAT, 14-5

Formatting disks, 3-27, 10-3
FRE function, 18-6

Frequency, 7-4, 7-11

Function, 3-3

Function keys, 3-3, 3-10, 5-17, 9-4

G

Ganme control and ports, C1
GENCOM 14-5

CGET, 4-9, 14-5, 14-6, 17-33
CGETKEY, 5-8, 17-34

CET# statenent, 17-34

064, 17-35

@suB, 4-17, 17-35

QOro, 3-17, 17-36

GRAPHIC, 6-4, 6-6, 17-36
Gaphic characters, 3-10

G aphi ¢ nodes, 5-16, 6-6
GSHAPE, 17-77

H

Har moni cs, 7-11

Hash mark {#}, 5-6, 6-21, 17-19
HEADER, 3-27, 17-37

HELP key, 5-11, 5-18

HEX, 12-8

HEX$, 18-7

HLP, 12-7

HOMVE key, 3-9

Hyperbolic functions, G1

I

| F...THEN statenment, 4-3, 17-39
INTDIR 14-5

Initializing, 10-6

INPUT, 4-7, 17-41

| NPUT#, 17-41

I nput Pronpt, 4-8

INSerT key, 3-7

INSTR, 18-7

I NTeger function, 4-20, 18-8

J
JOv, 18-8
Joystick ports, G2

K

KEY command, 5-18, 17-42
KEYFI G 14-5

Keyboard, 3-4

Key assignment - CP/M 15-4

L

LEFT$ function, 18-9

LENgth function, 18-9

LET statenment, 17-42

Line Feed key, 5-19

Li ne nunbers, 3-15

LOAD command, 3-29, 10-4, 17-44
LOADI ng cassette software, 10-4
LOADi ng CP/M software, 11-6
LOADI ng di sk software, 10-4

LOCATE, 17-46

LOGarithm function, 18-9
Loops, 4-5

LST, 14-7

M

Machi ne | anguage, J-1

Mat hematics, 3-20, G1
Memory maps, F-1, H1

M D$ function, 18-10

Mbde switching chart, 2-5
MONI TOR, 17-47

Monitor - dual, 8-4

Monitor - machine |anguage, 5-17
J-1

Monitor switching, 6-8, 8-4
MOVSPR, 6-21, 17-47

Mil ticolor bit nmode, 6-6
Ml tiplication, 3-20

Misi ¢ prograns, 7-23, 7-26
Misi ¢ videos, 7-25

Misi cal notes, 7-16

Misi cal instrunments, 7-15
Misi cal staff, 7-26

N

Nested | oops, 4-6

NEW 3-18

NEXT statenment, 4-5, 17-49
Noi se, 7-12

No Scroll key, 5-19, 13-3
Notch Reject Filter, 7-25
Notes, 7-16

Nuneric functions, 4-20

0

Obj ect code file, 6-33

ON GOTQ GOSUB, 4-17

OPEN statenent, 10-3, 17-49
Qperating System 11-3

Qperators

arithnetic, 3-20, 19-5
| ogical, 19-5

order of, 3-21
relational, 4-5, 19-5

P

PAINT, 6-4, 6-11, 17-51
Parent heses, 3-21, 12-7
Password, 12-5

PATCH, 14-5

PEEK function, 4-19, 18-10
PEN, 18-11

Period {.}, 7-19

Pl, 18-12

PIP, 11-3, 11-11, 14-5
Pi xel, 6-5, 6-19

PLAY, 7-16, 17-52

PO NTER, 18-12

POKE, 4-19, 17-54

PCS function, 18-12
pOT, 18-12

PRINT, 3-12, 17-54

PRI NT#, 10-3, 17-55
PRINT USING 5-6, 17-56

Printer control - CPIM 13-3

PRN, 12-5
Programfile, 11-3
Program mode, 3-3

Programmbl e keys, 5-17, 9-4

Programming aids, 5-9
PUDEF, 5-7, 17-60
Pul se width, 7-7, 7-14
PUT, 14-5

Q

Question mark {?}, 3-13, 12-6

Quotation marks {"}, 3-13
Quote node, 3-15

R

RAM 4-18, 11-5

Random sounds, 7-9

RCLR, 18-13

RDOT, 18-14

READ, 4-11, 17-61

RECORD, 17-62

Rel ati onal operators, 4-5
REL, 12-8

Rel ease, 7-3, 7-13

REMark statenment, 3-11, 17-63
RENAMVE, 14-4, 14-5, 17-63
RENUMBER, 5-10, 17-64

Reset button, 8-3

Reserved variables, 19-4
Rest, 7-17

Restore key, 3-9

RESTORE statenent, 4-12, 17-65
RESUME conmand, 5-12, 17-66
Return key, 3-5

RETURN statement, 4-17, 17-67
RGR, 18-14

RIGHT$ function, 4-21, 7-9, 18-15

RREG, 17-66a

RSPCOLOR, 18-16

RSPRI TE, 18-17

RUN command, 3-16, 17-68
RUN/ STCP key, 3-9, 6-8, 7-9,
7-16, 8-3

RW NDOW 18- 18

S

SAVE command, 3-28, 10-3, 14-5,
17-68

Saving prograns on tape, 3-29,
10-4

Saving progans on disk, 3-28,
10-3

Sawt oot h waveform 7-12
SCALE, 6-4, 6-14, 17-70
SCNCLR command, 17-71

SCRATCH conmmand, 17-72

Screen display codes, D1
Screen display, 6-5, 8-3

Screen menory map, F-1
Scrol ling, 5-15

Sector, 3-27

Semcolon {;}, 3-12
Serial port, C4

SET, 14-5

SETDEF, 13-3

SON function, 18-18
Sharp {#}, 7-19

Sheet music, 7-26

Shift key, 3-6

SHOW 14-5

SID chip, 7-3

SINe function, 18-19
Slash key {/}, 3-21
SLEEP, 5-6, 17-22

SLOW command, 5-16, 17-72
Software - 80 colum, 8-4
SOUND, 7-4, 17-73

Sound Interface Device, 7-3
Sound Player Program 7-8
Sound reset, 7-9, 7-16
SPC function, 18-19
Split screen display, 6-5
SPRCOLOR, 17-74

SPRDEF, 6-4, 6-24, 17-74
SPRITE, 6-4, 6-20, 17-75
Sprite Conmbinations, 6-28
Sprite Control, 6-20
Sprite Editor, 6-26
Sprite Programming, 6-16, 6-23
Sprite nmenory map, 6-35
Sprite nmovement, 6-21
Sprite view ng area, 6-22
Sprites, 6-16

SPRSAV, 6-4, 6-20, 17-77
SQR function, 4-20, 4-23, 18-19
SSHAPE, 6-4, 6-19, 17-77
ST variable, 19-4

STASH, 17-79

Statenent, 3-3, 3-15
STEP, 4-6, 17-31

STOP, 4-23, 17-79

STCP key, 3-9

Storing programs, 3-26, 10-3
String functions, 4-22

Strings, 3-13, 3-24
STR$ function, 4-23, 18-20
SUB, 12-8

SUBM T, 14-5
Subroutine, 14-7
Subscripts, 4-13
Subtraction, 3-20
Sustain, 7-3, 7-17
SWAP, 17-80

Sweep, 7-5

Syntax, 3-3

Syntax error, 3-6
Synt hesi zer, 7-3, 7-17
SYM 12-8

SYS, 12-8, 17-80
System pronpt, 11-8

T
Tab key, 5-9

TAB function, 18-20
TANgent function, 18-21
TEMPO, 7-15, 17-80
Termnating CP/M 14-8
THEN, 4-3, 17-39
Tinbre, 7-11

Tinme del ay, 4-6

TI/TI$ variables, 19-4
T0, 6-10, 17-31

Track, 3-27

Transient Uility conmands, 11-9

14-3, 14-5

TRAP, 5-11, 17-81

Triangle waveform 12-12
Triogononetric functions G1
TRON TROFF, 5-13, 17-82
TYPE, 14-4, 14-5

Typing rules, 3-11

U
UNTIL statenent, 5-3, 17-24
Up arrow key {"}, 3-21

Upper case/ graphics set, 3-5, 9-3

Upper/ Lower case set, 3-5, 9-3
USER, 12-5, 14-4

User Number, 12-5

User port, C6

USR function, 18-21

V
VALue function, 4-23, 18-22
Variabl es, 3-23, 4-13, 19-3

VERI FY command, 3-31, 10-5, 17-82

VIC chip, 6-3

Video ports, C5

Voi ce, 7-3

VQLune, 7-5, 7-13, 17-83

w

WAIT command, 17-84
Vveform 7-3, 7-12, 7-14
WH LE statenent, 5-4, 17-24
WDTH, 17-85

Wl dcard, 12-6

W NDOW command, 5-14, 17-85
W ndowi ng, 5-14

X
XOR, 18-22

z
Z80 M croprocessor, 11-3

Commodor e

Busi ness Machi nes (UK)

Ltd.

1, Hunters Road
el don, Cor by
Nor t hanpt onshire,
NN 17 10X

Geat Britain

Conmmodor e AG
Aeschenvor st adt 57
4010 Basel

Switzerl and

Commodor e Conput ers
Norge A/'S
Brobekkvei en 38
0509 Gslo 5

Nor way

Commodor e Conput er
NV- SA

Leuvensest eenweg 43
1940 St. Stevens-
Wl use

Bel gi um

Commodor e Bur omaschi nen

GrbH

Lyoner Str. 38

6000 Frankfurt/Min 71
Viést Ger many

Conmmodore France S.R L.
8 Rue Copernic

75116 Paris

France

Conmodor e Data AS
Bjerrevej 67
8700 Horsens
Denmar k

Commodor e Conputer BV
Kabel weg 88

1014 Ansterdam BC

Net her | ands

Conmodor e Bur omaschi nen
GrbH

Ki nskygasse 40-44

1232 Vienna

Austria

Commodore Italiana S.R L.
Via Fratelli Gracchi 48
20092 Cinisello Bal sam
Italy

COE Conputer Products AB
Fagerstagatan 9

163 53 Spanga

Sweden

Conmodor e Busi ness
Machi nes (Pty.) Ltd.
5, Mars Road

Lane Cove

N.S.W 2066
Australia

