128

'PROTECTION

HACKER GNOME answers some commonly asked
questions

GNOME SPEED COMPILES EVERY BASIC 7.0 COMMAND EXCEPT:

AUTO DSAVE HELP SAVE
BOOT DVERIFY LIST TRON
BSAVE FN MONITOR TROFF
CONT GO64 NEW VERIFY
DEF HEADER RUN

Most of these would not be found in a final program. And for those like
HEADER, that may be used, the BASIC 2.0 form of the command will compile.
Many other BASIC commands and functions have been enhanced.

WHY IS A RUN-TIME MODULE NECESSARY? This Run-time
program, which is easily copied onto your program disk, actually controls the
execution of the P-code. Without this module, straight machine-code, which
normally produces a very long program, would have to be generated.

WILL YOUR COMPILED PROGRAM BE SMALLER? Unless you write
very compact, undocumented BASIC programs, your compiled version will
be between 20 and 50 percent smaller. The actual reduction depends on the
original program.

WHY WILL YOUR PROGRAM RUN FASTER? With a normal BASIC
program, the BASIC interpreter reads every program line, each and every
time itis executed. With a compiled program, this step is virtually eliminated.
Also, searching for lines to GOTO or GOSUB, searching for variables and
handling mathematical expressions is very slow in BASIC. GNOME SPEED’S
P-code allows the run-time module to handle these tasks much more
efficiently.

LOOK FOR GNOME KIT!

HACKER GNOME has a new bag of tricks to help all you folks realize your
full programming potential. GNOME KIT is a collection of programming,
designing and debugging aids for writing both BASIC and ASSEMBLER
programs. Triple your productivity with this invaluable KIT.

SM COMPILER 128

USER*"S GUIDE

- e > - - - - -

A BASIC COMPILER FOR THE COMMODORE 128

COPYRIGHT 1985
SM SOFTWARE, INC.

All Rights Reserved

IaBl-E OF CONTENTS:S
INTRODUCTION
System Overview « « ¢ ¢ ¢ ¢ ¢ o o o o o
Hardware Requirements+ . .
Registration, Support and Updates

Backup of the Compiler « « « « &
Example Program « « « o« « o o o ¢ s o o«

aAasuur

USING THE COMPILER
Loading and Running « + ¢ ¢ « &« ¢ &+ « & &
Setting up Your BASIC Program " e e s .
Print Options . . ¢ ¢« ¢ ¢ s ¢ o ¢ o o o &«
Fast/Slow Mode . « ¢« o o ¢ ¢ o o o o o o

N

COMPATABILITY WITH THE BASIC INTERPRETER
Program Size Restrictions
Program Design Considerations
BASIC Commands That Will Not Compile . .
BASIC Command Restrictions/Enhancements .
Program Overlays .« o « o+ o o 2 s s o o &

-0 0 00o

-

ERROR MESSAGES
Errors in Your BASIC Program . .
Errors in the DOS and 0S
Errors Caused by Incompatibility
Errors in the Compiler

14
14
15

USING YOUR COMPILED BASIC PROGRAM
Preparing Your Program Disk .
Loading Your Program
Listing Your Program

« o o o
-
.
.
.
.
"
N

: Running Your Program T § -
APPENDICES
N) Appendix A: Optimizing Execution Speed . 19

Appendix B: Warranty Policies 22
Appendix C: Liability Disclaimer 23

SM SOFTWARE INC. BASIC COMPILER 128

INTRODUCTION

This guide is intended to help you learn how to use the
SM COMPILER 128. Even .i¥f you are an experienced
programmer. ,and are familar with other campilers, you
should review this guide thoroughly. And always use it as
a reference when writing a BASIC program that you intend
to compile.

Your 60mmodnre 128 computer is equ!pped “to use the
Pragramming language BASIC 7.8. An interprqter for this
BASIC version is in the ROM (road only memory) of your
C= 128. When you run a BASIC program, this
BASIC Interpreter has to read each line of your program,
and translate it into the internal machine format that
your C= 128 computer can ‘understand, before the C= 128
can ‘execute it. The interpreter has to do this each time
it executes a line of your program. This is often a slow
and:clumsy way of running a program!

M COMPILER 128 eliminates this interpreting step during
pragram. executiun, by translating your BASIC program into
machine code. and storing it. on your disk as a compiled
program. By converting your BASIC program into a machine
code, the compiler does all of the work that it possibly
can before the program is actually executed. This
includes . searching $or variables and line numbers,
checking for’ errors, etc. And ‘mathematical expressions
are converted into formats that will in:reaée the speed
of calculation. Unlike inierpretlve BASIC, when a
compiled program needs a variable, it knows its exact
location and does not have to per*orm the slow and
tedious task of searching for it. Similarly, branch
locations (1.'., GOTO xxx) are also known, rendering this
slow task .Gnneccessary during the execution af a compiled

program.

Another advantage of compiling your program is the
elimination of most if not all of yodr program coding
errors. Syntactically erroneous code cannot be compiled
and therefore the compiler will tell you where your
errors are. You must correct them and compile again. In
interpretive BASIC, your syntax is not- checked until the
program statment is executed. And in a program with many

SM SOFTWARE INC. -1- SM COMPILER 128

branches, some of which are rarely used, you may not find
these bugs during your testing.

SM COMPILER 128 will compile most BASIC programs . written
for the C(Commodore 128 computer. It is almost totally
compatible with the BASIC interpreter, so that nearly all
of the BASIC 7.4 and BASIC 2.9 commands/functions will
compile. Thid4 includes both the GRAPHIC and SOUND
cammands, sc that game programs should compile easily. It
will compile progrdms upto 1999 lines in length. It will
compile programs usirg uplu 800 distinct variables names
{an array is counted as one variable name). It is easy to
use ‘and compiles your prbgram reélatively quickly. In
short; it produces a reliable, ' executable, faster
compiled program.

It is.a three pass compiler; meaning that goes thru your
pragram three tines before it produces the final compiled
version! C

PASS 1: During this piss, the compileér translates
each BASIC instruction into a P-code. Since the
compiler does not know the length of the program and
the addressed of the .line numbers at this time,
substitute parameters are located in the corres-
ponding positions of the P-cade. An address file is
also created, which lists the locatipns of the
substitute parameters of the P-code, that are to be
replaced by their true value during Pass 2. It also
sets up a list of the program line addressed and a
‘Label list. (of variable names). In addition, the
length of any DATA text is calculated. :

PASS 2: During this pass, the compiler uses the
lists it created in the first pass. It checks to
makes sure ‘that all your GOTO’s and GOSUB's, etc.
reference valid line numbers. It also checks to make
sure all your variables are setup and dimensioned
properly. Invalid line numbers references and
undimensioned arrays will be caught during this
pass.

-The machine &ode is then created on the basis of the
P-caode file, the address +ile, the 1list of line
addresses and the Label list. . '

§M SOFTWARE 1INC. -2 - SM COMPILER 128

B e e e

PASS 3: In the third pass, any DATA text will be
chained’'to the converted program.

At the end of these three passes, assuming no errors were
found, you will have a successfully compiled program
called C/program name.

Now, there are some things that SM COMPILER 128 can’t do.
Certain BASIC commands and functions cause it problems.
But most of these aren’t normally used in a program. And
sometimes, even though the BASIC 7.9 command doesn’t
compile, the BASIC 2.9 version of the command will
compile. These incompatabilities and restrictions are
discussed in the next chapter. However, with a little
forethought and creative design, you will be able to
compile almost any program.

HARDWARE REGUIREMENTS
The SM COMPILER 128 requires:

- Commodore 128 computer

- Any 49 or 89 column monitor

- Commadore 1541 or 1571 disk drive

- Any suitably interfaced printer (optional)

REGISTRATION, SUPPORT AND UPDATES

Writing a compiler is tricky business. And although we
have done our best to offer you the finest compiler we
can, we are sure that there are things that you would
like to see incorporated into or changed in the compiler
program. We’d also like to know how SM COMPILER 128 is
being used, so that we can improve and enhance the
program. Therefore, we strongly urge you to fill in and
return the enclosed registration card.

Completing the registration card will benefit both you
and aurselves. We will learn who is using our compiler
and why. In turn, you will get unlimited support from us.
Just call or write us {f you have any questions,
suggestions, complaints or problems:

SM SOFTWARE INC. -3 - SM COMPILER 128

e Baw =

SM SOFTWARE, INC. (215) 682-49206
P.0. BOX 27
MERTZTOWN, PA 19539-80627

We will try to help you out in any way that we can. As a
registered user, we will keep you informed of any updates
and enhancements. When new versions are released, and
the be ou e offered the ne ver

just $19.89 (to cover postage and handling).

We really believe that two-way communication is important
with this type of product. So let us know what 1is going
on. And don't hesitate to call us with any praoblems or
concerns. We will be glad to help out.

BACK P

We struggled with the option of copy-protecting or not
copy-protecting our compiler and probably much to the
dissatisfaction of some of you, we decided to
copy-protect. But to keep peace with at least most of
you, we are offering a backup copy to registered users
for a nominal fee.

We know that this copy-protection isn't going to keep all
of you from making backups faor your own or others' use,
but we +felt it could at least prevent some of the
unauthorized copying. And maybe the rest of you will have
a little compassion and understand that it took alot of
work and sweat to produce this product. Well enough of
the pep talk!

I+ you want a backup copy of SM COMPILER 128, just send
us a check for %5.99 along with your registration card
(or i¥ you have already registered, then send us your
registration number, as stamped on the program diskette)
and we will send you a new program disk pronto.

EXAMPLE PROGRAM

There are three example programs included on the praogram
diskette. After reviewing this manual, it is suggested
that you review these programs. They should help you
understand the compiler more thoroughly.

SM SOFTWARE INC. -4 - SM COMPILER 128

EXAMPLE: This is the BASIC source code. The program
evaluates mathematical expressions. Numerical
expressions, the operators +, -, *, /., and
parenthesis are allowed as input.

C/EXAMPLE: This is the compiled version of the
program above.

RUNEXAMPLE: This program first BLOADS the RUNTIME
module, that is needed to execute a compiled
program, and then DLOADS the compiled program
C/EXAMPLE. This program is an example of the loader
program, that is discussed in USING YOUR COMPILED
PROGRAM section of this guide.

SM SOFTWARE INC. -5 - SM COMPILER 128

(W] T C [=

Since the compiler really does all the work, there is not
much for you to do as far as actually using the compiler.

LOADING AND RUNNING

There are basically two ways to start the compiler. The
first way is tq-first insert the diskette into your drive
(be sure it is.-on). Then, if your computer is off turn it
on,, or if it is already 'on, then press the reset button
‘{the square button on the right side ‘of the computer,
next to the on/off switch). The compiler will load and
start automatically. .

The second way is to power up,’ insert the diskette into
the drive and press the <shift> and <run/stop)> keys
simultaneously. The compiler will load and start
automatically.

SETTING UP_ YOUR BASIC PROGRAM °
After the copyright notice has been displayed, you will

be asked for the FILE NAME?. Insert the diskette
containing your BASIC source program and respond to to
the prompt with programname <{return)>. The compiler will
then start waorking. Please be sure ser r
diskette first. If you forget, then start the loading and
running process from the beginning.

PLEASE NOTE: The compiler needs diskette space of about 2
1/2 times your program length. So if your program is &9
blocks 1long, then you need about 150 free blocks on your
diskette, before you can compile. (This space is only
needed during the compilation process. Your resulting
program will normally be smaller then the uncompiled
version.)

PRINT OPTIONS
Next you will be asked PRINTER (1) ON (@) OFF?. If you

select &, then error messages will only be displayed on
your monitor. 1If you select 1, then error messages will
also be liste¢ on your printer,

SM SOFTWARE INC. -6 - SM COMPILER 128

}

Your Commodore 128 computer operates in two modes, one
with a 1 mHz clock and the other with a 2 mHz clock
(twice as fast). It is possible, during the compiling of
your program, to swith the C= 128 into the fast mode by

hed . Please note that the 49
column screen will be turned off while in the fast mode.
To switch to the slow mode, press the cursor-left key.
The mode change will go into effect when the compiler
starts working on the next BASIC 1line. Either set of
cursor keys will work. Since it makes sense to try to
compile in the fast mode, the following rules will help
you out:

- If you have an 89 column monitor always switch into the
fast mode by pressing the cursor right key at the
beginning of the compiling process.

- If you have a 40 column monitor and a printer then
always opt to have the printer on (1) and switch into the
fast mode at the beginning of the compiling process. This
way you will see your error messages on the printer.
However, periodically, switch back into the slow mode, to
see what the screen has to say, and how far along you
are. When the compiler is done, also switch back into the
slow mode.

- If you have a 49 column monitor and do not have a
printer you can still use the fast mode. However, since
the 4% column screen is lost during the fast mode, you
need to switch into the slow mode periodically to see
your error messages. Then switch back into the fast mode.
Sounds complicated, huh? Just try out - the mode
switching, and you’ll get the hang of it.

SM SOFTWARE INC. -7 - SM COMPILER 128

c A X I
BASIC INTERPRETER

SM COMPILER 128 will compile most BASIC programs.
However, there are some design considerations and
restrictions which need to be discussed. I+ you
thoroughly familiarize yourself with this chapter, then
you should not have any problems during the compiling
process.

PROGRAM_SIZE RESTRICTIONS
Programs upto 1999 BASIC lines in length and upto 599

different variable names (an array is counted as one
variable name) will generally compile. However, programs
which approach the maximum lines restriction, that have
very long lines, may exceed the capacity of the compiler.
This size restriction generally will not cause you any
problems. (If you do run into a problem, and your program
is extremely long, then please let us know.)

PROGRAM DESIGN CONQIDERQTIONS

Even though the compiler has to check your program for
coding errors, before it can compile it, this does not
mean that you should write sloppy, untested code. Unlike
the interpreter, where detected errors can be corrected
immediately and the program re-executed, correcting a
compiled program is more complicated. You have to correct
the source code (your BASIC program) and then recompile
the entire program. Therefore, it pays to write a
well-structured, tested program.

Lines that contain only REMark statements are bypassed by
the compiler, and are not compiled. Therefore, you cannot
GOT or GOSUB _a i ha con [:3

statement. I+ the program does branch to a REM line, then
you will get an UNDEF’D STATEMENT error, during Pass 2 of
the compiling process.

All arrays, even those contain 1 or ess elements
MUST be explicitl DIMensioned. I not DIM’d, then you
will get an UNDEF’D ARRAY error in Pass 2.

And tricks of the trade, such as starting a remark
statement with an apostophe or making remarks, without

SM SOFTWARE INC. -8 - SM COMPILER 128

REM, after a GOSUB, - GOTO or RETURN will cause you
problems. These types of tricks cannot be compiled by
the compiler, so you will get an SYNTAX error message.

BASIC COMMA UNCTIONS THA LL_NQ ODMPILE .
The following, lists BASIC commands or functions that
SM COMPILER 128 will not compile. If found during the
compiling process, you generally will get a SYNTAX ERROR.
However, some of the commands/functions such as FN will
cause the compiler to bail out. Most of these are not
normally included in a program anyway. And for some of
the disk handling commands, even though the BASIC 7.8
form will not work, the BASIC 2.0 command may. If any o+
these restrictions really cause you a heartache, let us
know. We will try to help you out.

AUTO

BOOT

BSAVE

CONT

DEF . will be included in the next version
DSAVE

DVERIFY .

FN will be included in the next version
GO 44 '
HEADER use OPEN1,8,15:PRINT#15, "Ng:disk,id”
HELP

LIST

MONITOR

NEW

RUN

SAVE

TRON

TROFF

VERIFY

SM SOFTWARE INC. -9 - SM COMPILER 128

MMA| ON N
The following, lists BASIC commands or functions that may
behave differently after they are compiled. Although,
they can be compiled, you should become thoroughly
familar with the way they will execute in their new,
compiled form.

BOX Input of polar coordinates and relative coord-
inates is also allowed.

CIRCLE See BOX.

CLR Arrays are erased, but can be redimensioneds
single precision variables (i.e. A, B$, Z%)
are reduced; strings have a null values
numeric variables have a value of zero (9).

DIM Arrays must be explicitly dimensioned. After

a CLR, if variables are re-dimensioned, they
must have the same dimensions,

DLOAD Variables are erased and cannot be passed
between programs.

DRAW See BOX.

ELSE See IF.

END Variables are erased and there is no access to
them from the direct mode of the interpreter.

GET Only one variable is possible. Not
GET#1,A%,B%} only GET#1,A$:GET#1,Bs%.

GSHAPE See BOX.

IF THEN Will work correctly even outside of a

ELSE BEGIN-BEND. - - ence s

ompi m 3 wa e

wit the ece IF. (In the BASIC

Interpreter, if an IF expression is not true,
the interpreter searches for the next ELSE
clause in the current line and executes the
statement accordingly, without regard to
possible IF statements on the THEN branch.)

EXAMPLE
199 IF A=B THEN IF A=C THEN PRINT "B=C":
ELSE PRINT "A<>C*

The interpreter returns "A<>C", if A is not
equal to Bor i+ A is not equal to C. A
compiled program returns "A<>C" only if A is
equal to B and at the same time A is not equal
to-C.

SM SOFTWARE INC. - 19 - SM COMPILER 128

—

Clear as mud, huh? We suggest you play. around
with the example above, in both the
interpretive and compiled modes, until you get
the hang of the difference.

. INPUT # - INPUTHX,TI$ is not allowed.
INPUT INPUT TI% is not allowed..]
. INSTR The optional starting position parameter is
required.
" LOCATE See BOX.
LOAD See DLOAD.
OPEN In the case of OPEN using a cassette, the
secondary address must be given.
MOVSPR MOVSPR x,distance,angle is also possible.
PAINT See BOX.
SOUND Cannot specify waveform or pulse width, Will
be in next version.
SSHAPE See BOX.
STOP A compiled program does not return a BREAK

IN xxx (as is the case with the interpreter).
It causes a BREAK ERROR IN xxx and execution
of the program cannot be resumed with a CONT.

SsYS Input of parameters is possible. For ~example,
SYS adr,AC,XR, YR,SR.
USR - Due to a somewhat different numeric repre-

sentation . than with the interpreter, this
function should be used with caution.

PROGRAM _QVERLAYS

In a program overlay, using LOAD or DLOAD, the current
variables will be erased and not passed on to the
follow-up .program. Since the follow-up program has no
information as to the address of the variables in the
preceeding program, it .cannot access them. If the

follow-up program is NOT compjled, then it is neccessary
e CL n he be nin e anm.

This is neccessary because when ‘the variables of a
compiled program are erased, the storage space for single
precsion variables is not cleared. This may cause the
interpreter to produce nonsense variable values.

The passing ,of variable values from one progrém to the

next, must be done with the use of PEEK and POKE. If you
are not certain how to do this, then give us a call.

SM SOFTWARE INC. - 11 - SM COMPILER 128

ERROR MESSOGES

As previously discussed, the compiler cannot compile
statements containing program coding errors. This is the
most common type o+ error message you will run into.
However there a a couple of bugs in Commodore’s DOS and
0S that need to be discussed. And although we have tried
to make the compiler as complete as possible, we will
also discuss what to do if it bails out.

I+ these discussions on errors do not solve your problem,
please do not hesitate to contact us (215) 682-4920.
We’ll try to help you. All we ask is that you have sent
in your registration card, have tried to solve the
prablem yourself, have the exact wording of the error
messages that were displayed and that you have a 1listing
of your BASIC program source code.

ERRORS IN YOUR BASIC PROGRAM
Although the compiler will infarm you of any coding

errors in your BASIC program , this does not mean that
you should write an untested, sloppy program. Unlike
interpretive BASIC, where an error can be corrected
immediately and the program run again, caorrecting a
. compiled program is more time-consuming. First, the
" compiler will display the erraor(s) on the screen, then
continue compiling the rest of the program, displaying
more error messages, if any. Next you have to load your
uncompiled program and correct the errors. Then you have
to compile the corrected praogram again. Please note that
the second time thru the compiling process, the compiler
may +ind other coding errors. This is caused by the fact
that the original errors may have prevented the compiler
from checking the syntax of some related instruction.

Also, the compiler cannot check laogic errors. You may
have intended the program to do one thing, but
erroneously coded it to do another. As long as the code
is syntactically correct, the compiler cannot and will
not pick up the erroneous logic. Please note that this is
true whether or not your program is compiled. An error in
your logic will not be picked up by the BASIC interpreter
either.

SM SOFTWARE INC. - 12 - SM COMPILER 128

So it pays you to write clean, organized code and test
your program before you compile it. However, none of us
are perfect so you're bound to get a couple of error
messages displayed during compilation. These messages
are the same as those that are displayed by the BASIC
"interpreter and are listed in APPENDIX A of your
Commodore 128 System Guide.

. The error will be displayed on your monitor screen and
listed to your printer. When the compiler is finished,
simply load your BASIC program and make the corrections.
Then try to compile your program again. Usually by the
gsecond or third try, your program should compile cleanly
and you will be all set.

PLEASE NOTE: As listed in the COMPATIBILITY WITH THE
BASIC INTERPRETER section of this guide, a few of the
BASIC commands cannot be compiled or have certain
restrictions. If the compiler encounters one of these
commands it will normally display the SYNTAX error
message. In some instances (i.e. FN) the compiler will
bail out. I+ you get a SYNTAX ERROR, then check your
BASIC line as indicated in the error message. I+ the
compiler dies, then check both the last and previous to
the last lines that were compiled. You will either need
to eliminate the command or follow the restrictions as
noted.

IMPORTANT! IMPORTANT!: If the compiler bails out it may
be either graceful or not so graceful. If you get a

message on the top of your screen like ILLEGAL _STRUCTURE
OR___(S9353) Can’ o ling, the compiler

terminated gracefully. (Note that the line number in
parentheses is in the compiler, and not in your program).
I+ the compiler just bails out with no warning, then it
didn’t properly close the disk files it was working with.
Therefore, files may be left open on your disk. 1f this

is_the case then enter DCLOSE <return) before you do
anything, This will close the files. If you forget to do

. this, then load the diskette directory (DIRECTORY) and i+
any of the program files are open you will see an
asterisk next to the file type. You need to collect
(COLLECT) the diskette before you run the compiler again.
If you are unsure of what we are talking about review the
VALIDATE command (BASIC 2.9) or the COLLECT command
(BASIC 7.0) in your Commodore Disk Drive User’'s Guide.

SM SOFTWARE INC. - 13 - SM COMPILER 128

ERROR N E_DOS_AN .
As we said nobody is perfect, and well that includes
Commodore. The DOS (Disk Operating System) and the O0S
(Operating System) are the programs that run your
computer and disk drive. They are transparent to the
normal user and will normally not cause you any problems.
But they do have a couple bugs in them, that will
intrequently cause problems to the compiler. We know of
two that have shown their ugly faces and if you happen
across any more let us know.

BREAK IN nnnn or WARNING THERE IS A BUG IN DOS: One
of these type of errors will occur when your pragram
is an exact multiple of 254 bytes long, such as 254
or S8 or 2549. The easiest way to fix this problem,
if it oceurs, - is to pad your program with a dummy
statement so that it is not an exact multiple of
-254. For example make the last line of your program
read 63999 GOTO 63999. Do not use a REMark
statement, because these are not compiled.

DEVICE NOT PRESENT ERROR: We’re not sure where this
bug .is but we think it is somewhere in the DOS or
0S. Unfortunately, since we do not know where it is
we cannot tell you how to +$ix {it. However, it
occurs very infrequently and intermittently.
Somehow, the computer loses communication with the
disk drive. I+ this error occurs while you are
compiling a program, don’t get discouraged. Just.try
the process again, because it not triggered by the
program itself, and is not likely to occur again.

PLEASE NOTE: These errors normally cause an abnormal
termination to the SM COMPILER 128 pragram. Therefore,
files may be left open on your disk. See IMPORTANT!
IMPORTANT! above to fix this situation.

SE IN
There are some cases where the compiler will just not be
able to compile a portion of your code, and it will bail
oit. These types of error messages include ILLEGAL
STRUCTURE DETECTED or OVERFLOW ERROR. Possible causes of
such errors could be statements that are too complicated,
nuneric values that lie outside the legal range of the
interpreter, improperly constructed loops or incompleted

SM SOFTWARE INC. - 14 - SM COMPILER 128

IF-THEN-ELSE clauses. In such cases the cause of the
error will be found in the last or next to last BASIC
program line number, that is displayed on the screen.
Review your program code and correct the problem.

PLEASE NOTE: These errors normally cause an abnormal
termination to the SM COMPILER 128 program. Therefore,
files may be left open on your disk. See IMPORTANT!

. IMPORTANT! above to fix this situation.

Well, last but not least is ourselves. We’ve tried to
make the compiler error-free, but there is a possibility
that we goofed. I+ this is the case we will try to +ix
the problem pronto, but you have to let us know. Usually,
i¥ there is an error in the compiler a message such as
SYNTAX ERROR (59055) Can’t continue compiling will be
displayed on the top of the screen. READY and the cursor
will also appear. Your BASIC program has triggered an
error in our compiler that we did not find during
testing. Since the compiler displays the line numbers as
it compiles, you will know about where the error was
triggered. You could fool around with your code a bit and
see whether you can get around the error. If you can you
are in luck.

PLEASE NOTE: These errors normally cause an abnormal
termination to the SM COMPILER 128 program. Therefore,
files may be left open on your disk. See IMPORTANT!
IMPORTANT! above to fix this situation.

SM SOFTWARE INC. - 15 - SM COMPILER 128

USING YOUR COMPILED PROGRAO&M

Once you have compiled your BASIC program successfully,
you will have a runtime program called C/program name.
Your source code (uncompiled version) has remained
untouched and will also be on the program disk. It .is
strangly recommended that you copy both versions to a
backup disk and put it in safe-keeping. Now you are
ready to use your new pragram,

REPA RAM

When you have successfully compiled your program, your
diskette will contain not only your original BASIC
program, but also the compiled version and two other work
files. - FOR EXAMPLE:

BILLYGOAT ‘Your BASIC program
A/BILLYGOAT Work file

P/BILLYGOAT Work file

C/BILLYGOAT The compiled BASIC program

The only program you need is C/BILLYGOAT. However,
RILLYGOAT is your source code, and you will need it i+

‘vou want to make any changes to the program. So back it

up and put it in safekeeping. A/BILLYGOAT and
P/BILLYGCGAT are no longer of any use, sao they may be
scratched offt of your diskette. If you are planning on
reselling the program and you want to protect your source
code then also scratch BILLYGOAT off of the
disk.BUT REMEMBER . . . copy it to a backup diskette
first!! ’

You also need to copy a compiler runtime module (included
on the SM COMPILER 128 program diskette to your program,
as this runtime module is neccessary to run your compiled
program. This runtime module is called RUNTIME....SBHiM.
The #asiest way to copy it onto your pragram diskette is
with the COPY wutility supplied on your disk drive’s
TEST/DEMO diskette. This runtime module must be loaded
inta the compu rio n ou co

program,

The command for loading this runtime module is?
POKE 4627,298:BLOAD"RUNTIME....5BH1M",P33248, B9

SM SOFTWARE INC. - 16 - SM COMPILER 128

P

Now this could be kind of bothersome to do, .everytime you
want to run your program, especially if others are going
to be using i{t. So we suggest you'set'up a3 loader
program, that will load both the runtime module and ~ your
compiled program.

.FOR EXAMPLE let’s use the BILLYGOAT program above. You
could write the following prngram.

19 REM BILLYGOAT LOADER PROGRAM

290 REM PROGRAM NAME RUNBILLYGOAT -

39 POKE 4627,208:BLOAD"RUNTIME....S5BH1M",P53248, B9
49 DLOAD'C/BILLYGUAT'

50 END ’

Save this short program on your program diskette. Then
whenever you want to run your program simply type in:

DLOAD"RUNBILLYGOAT",D0 <return)
RUN <return>

The EXAMPLE program, included on the SM COMPILER 128
diskette, is setup like this. Take a look at these
programs, to get a better idea of how to do this.

LOADING YOUR PROGRAM

Your compiled program will load in the same manner
as the uncompiled version. Just type *"DLOAD
C/program name® <return’.

Now, I am sure that you are anxious to see what this
program looks like, so type in LIST <returnd.
Presto! Only one line that looks something like:

1985 BANK £:SYS 53248:MH-COMP 1.0

Since all of your program is in machine code, there
is not much to list. This line simply tells the
computer where to go to start the compiled program.
This is why it is important to keep your source
code. You can’t change anything in this compiled
version. If need be, you have to change the source
code and compile again.

SM SOFTWARE INC. -17 - SM COMPILER 128

~e . o ar e A L i e L eae s e m e R P TS R PR SRR

RUNNING YOUR PROGRAM

Just like loading your program, your compiled
version will run in the same manner. Simply type in
RUN <return). (Make sure you have bloaded the
runtime module firat, as described above.) i
You’ve taken care of all the logic errors and the
compiler has taken care of all the syntax errors, so
you shouldn't have any problems . . .RIGHT? Well
almost: right. There are cases where you will run
into errors, usually when working with variables and
parameters. These errors will include such problems
as ILLEGAL QUANTITY, BAD SUBSCRIPT, STRING TOO LONG
or DIVISION BY ZERO, FILE NOT OPEN. What has
happened is that you have manipulated a variable to
a value that, when used within the context of your
pragram, causes an error.

FOR EXAMPLE:
Your program includes a line .59353 B = A/C).
Somewhere in the praogram C is set to zero (9).
You will get a DIVISION BY ZERO IN 35933 error.
You will have to review your source code, to

determine where the erroneous logic is, correct the
soaurce code (uncompiled version) and compile again.

SM SOFTWARE INC. - 18 - €M COMPILER 128

’..

APPENDIX A
: .

One of the more common reasons for compiling a program,

‘{8 to increase the speed of execution. Speed is

especially important when working with calculations. The
runtime module, which is used to execute your compiled

.program, differentiates between +loating point numbers

and integers, not only in variables, but also in
halcq}htions. (The A BASIC interpreter gendrally only
carries out its calculations with numbers' in floating
point form.) In order to optimize the speed of your
compiled program, the +following factors should be
considered.

PLEASE NOTE:It is not necessary to understand or use the
information in this chapter in order to use the compiler.
Simply compiling your program will make it run faster and
smoother. You may not be concerned with the extra speed
you would gain by implementing the following rules.
However, if you are writing a program, and want to
optimize the compiler’s capabilities, then you should
thoroughly review this chapter.

In a program compiled by SM COMPILER 128, the addition,
subtraction and wmultiplication operations are performed
in INTEGER form, if both operands are in integer form.
The result of the operation also will be in integer form,
unless outside of the legal range (-453535 to +65539),
where the result will then be transformed into
floating point form. If at least one of the operands is
in Floating point form, then the other will be converted
into floating point form before the operation is
performéa. The result also will be in floating point
form. S -) o

Two $loating point numbers are neccessary for division.
Therefore speed will be optimized if both the dividend

‘and the divisor are also in floating point form.

Functions such as CHR% or MID$, require their parameters
to be in integer form. If a floating point form is given,
then it must be first converted into integer form by the
Runtime Module, before the function is performed.

SM SOFTWARE INC. - 19 - SM COMPILER 128

In general, numbers will be converted in to the form that

is needed to perform the operation or function. However, '

this conversion is only neccessary when the number is not
in the form that is needed. And this conversion process
wastes time in a compiled program! Therefore, it is
important, when writing a BASIC program, to make certain
that the values are in their proper form. The following,
lists operations and functions with the optimal input
types and the resulting output types. PLEASE NOTE: These
forms need not neccessarily exist before the operation is
carried outj the RUN-TIME module will transform the value
into the proper form that is needed at any specific
moment. .However, as noted above, this transformation
requires time.) .

(I = INTEGER, F = FLOATING POINT, & = STRING)

QPERATION/FUNCTION RESULT
¢ 7 F)

¢/ F)

(/ F)

o T TIT =T =T -
0o~ %k %k

-t 72 F)

POS(I or
PEEK(I)
LENC(8)
STR&(F)
VAL(S)
ASC(S)
CHR®(I)
LEFT$(S , I)

RIGHTS$(S, I)

MIDS(§ , T , ¢ , I))
SINC F)

LOG(F)

MAODD RN TNOHHHHMHHHHRET AT =T

SM SOFTWARE INC. - 20 &M COMPILER 128

The following, lists operations and functions that,
generally result in values of integer form

= PEEK
<> , LEN

< ASC

vy Joy

(= >= RDOT

AND POT

.OR , BUMP .
NOT PEN .
SGN 4 RSPPOS
FRE ’ RSPRITE
POS RSPCOLOR
RWINDOW RSPCOLOR
POINTER

Similarly, BASIC commands require certain types of gnput
values. FOR EXAMPLE: OPEN Integer, Integer, Integer,
String. It is therfore possible to optimize BASIC
commands, by inputting the proper variable types.

When assigning values that exist internally in integer
form to variables of the +#loating point type, a
conversion to the floating point type is not performed.
These variables can also store integer type values, so
that when used later, they will appear as integer types.

For numeric constants, the rule is that if the constant
is written with a decimal point or with exponential
notation, the number will be of floating point type.
Otherwise, the number will be of integer type. FOR
EXAMPLE: 26 1is Integer type, 26. is floating point and
26.99 is floating point.

To sum it up, -if you want to optimize your BASIC program,
then make sure that the numbers or variables are in the
form that is needed, prior to the operation, function or
statement. This will save time, by eliminating the need
for the RUNTIME Module to do the conversion itsel#f.

SM SOFTWARE INC. - 21 - SM COMPILER 128

APPENDIX B
WARRANTY POLICIES

A BACK UP copy of the SM COMPILER 128 is available to the
registered owner for $5.00. When requesting a backup,
please include the registration number, that is stamped
on your original diskette’s label..

Any NEW OR UPDATED VERSION of SM COMPILER 128 (should one
be released) is available to the registered owner for
+106.98. When requesting an updated version, please
include the registration number that is stamped on your
current version diskette’'s label. .

Please include your registration number and a check for
the proper amount and mail your request to:
SM SOFTWARE, INC.

P.O. BOX 27 °
MERTZTOWN, PA 19339-90827

SM SOFTWARE INC. - 22 - SM COMPILER 128

APPENDIX C
WLEABILITY DISCLAOIMER
This manual and the software describaed in this manual are
: s0ld on an "as is" basis without warranty as to their
performance. M SOFTWARE, INC. does not warrant this
program for any purpose nor does SM SOFTWARE, INC.

., warrant the accuracy, quality or freedom from errors of
this manual and the software described in this manual.

SM SOFTWARE, INC., ‘their distributors, agents and
retailers can assume no responsibility for any
consequential, incidental or other liability arising from
the use, the inability to use or the attempted use of
this program nor for any loss of anticipated profits or

benefits inccured.

Some states do not allow the exclusion or limitation of
incidental or consequential damages, so the above
limitation may not apply to you.

~COPYRIGHT 1985 SM SOFTWARE, INC.

The user of this product shall be entitled to use this
product for his or her own use, but shall not be entitled
to sell or transfer reproductions of the software or

manual to other parties in any way.

SM SOFTWARE INC. -23 - SM COMPILER 128

s SRS e S

| R e 7 R

s S0 gl

WHY COMPILE? i

For those of you related to the HACKER GNOME, you may already know the 423

answer to this question. But, if you aren’t even his second cousin, twice g

removed, you may be wondering what GNOME SPEED can do! This superb

compiler will transform your BASIC program into a P-code that is as (

sophisticated as any program written in machine code. However, unlike

machine code, your program will be compacted up to 50 percent. And since '

GNOME SPEED proof-reads your program and notifies you of coding errors, . (

your compiled program will be error-free. Imagine! Programs thatrunupto

10 times faster, are up to 50 percent shorter and are error-free! - - i ! n
HOW DOES GNOME SPEED WORK? . - 1

Simply load GNOME SPEED and specify your BASIC program name. Thep__ai_’-:;;— T

the compiler takes over . .. converting your BASIC program into a super-fast, ° —
super-compact P-code. During this compiling process, GNOME SPEEDdoes 1
as much as possible to eliminate the tedious and time-consuming steps that Fy L
are normally performed by the BASIC interpreter during program execution.” I
This includes eliminating such tasks as searching for line numbers and 74 l
variables, and converting mathematical formulas into more efficient formats.

You can also include special directives in your BASIC program that will direct L]
GNOME SPEED to produce various testing and referencing aids such as :
variable lists, cross-reference tables, BASIC line references and special error [I
checking. With these directives, you can produce both testing and final
versions of your program. Your compiled program can be loaded, run, copied,
renamed, etc., just like any BASIC program. And if you are sales-minded, all
your efforts and techniques can remain yours, since only the compiled
version, not your original BASIC source code, need be on the disk.

MAJOR FEATURES OF GNOME SPEED: i
— Reduces program size by up to 50% and increases execution speed up
to 10 times
— Programs can be as large as 1999 lines, 8000 jumps and 500 distinct
variable names
— Compiles virtually all BASIC 7.0 / 2.0 commands/functions
— Proof-reads your program for coding errors, with option to list to the printer
— Special directives to produce various testing and referencing aids

REQUIRED HARDWARE

— Commodore 128 computer

— 40 or 80 column monitor

— Commodore 1541 or 1571 disk drive

SM SOFTWARE, INC.
lll P.O. Box 27
Mertztown, Pa. 19539-0027

(215) 682-4920

