GEOPROGRAMMER®

ASSEMBLY LANGUAGE ENVIRONMENT FOR USE WITH GEOS™

[-;**** Super Draw ****¥
.Anclude macroFile

.Anclude constants

psect StartAc|
ProgStart: LoadW 10, Gra|

jsr Graphi |
LoadW 10, Mai

jsr DoMer

I'tS

RerunnchTnnne I

FOR THE COMMODORE 64, 64c AND 128 COMPUTERS.

geoProgrammer
User's Manual

Berkeley Softworks
2150 Shattuck Avenue
Berkeley, California 94704

LR

Update Policy

To participate in Berkeley Softworks' update service, fill out and return the
GEOS Registration Card found at the back of the manual. Registered users
will be sent notices outlining the procedure for obtaining updates and
revisions.

License and Limited Warranty

This manual and software are subject to all the terms of the accompanying
Software License Agreement. Except for the limited warranty on the
diskettes which is described in the Software License Agreement, THE
SOFTWARE AND ACCOMPANYING MATERIALS ARE
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR

. PURPOSE.

SOME STATES DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. THIS WARRANTY GIVES
YOU SPECIFIC LEGAL RIGHTS. YOU MAY ALSO HAVE
OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

IN NO EVENT WILL BERKELEY SOFTWORKS, INC. BE
LIABLE FOR ANY DAMAGES, INCLUDING LOSS OF
DATA, LOST PROFITS, COST OF COVER OR OTHER
SPECIAL, INCIDENTAL, CONSEQUENTIAL OR
INDIRECT DAMAGES ARISING FROM THE USE OF THE
SOFTWARE OR ACCOMPANYING MATERIALS,
HOWEVER CAUSED ON ANY THEORY OF LIABILITY.
THIS LIMITATION WILL APPLY EVEN IF BERKELEY
SOFTWORKS, INC. OR AN AUTHORIZED DEALER HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. YOU ACKNOWLEDGE THAT THE LICENSE
FEE REFLECTS THIS ALLOCATION OF RISK. SOME
STATES DO NOT ALLOW THE LIMITATION OR
EXCLUSION OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION MAY NOT APPLY TO YOU.

geoProgrammer, geoAssembler, geoLinker, geoDebugger, GEOS, GEOS
128, geoWrite, geoPaint, Icon Editor, DESKPACK1, Graphics Grabber,
Notepad, geoPrint Cable, and geoProgrammer User's Manual are ©
copyright Berkeley Softworks, 1985, 1986, 1987.

Commodore 64 is a fegistered trademark of Commodore Electronics Ltd.
Commodore 128 is a trademark of Commodore Electronics Ltd.

UNIX is a trademark of AT&T Bell Laboratories.

Manual written by Matthew G. Loveless

geoAssembler and geoLinker designed by Ted H. Kim

geoDebugger designed by Eric. E. Del Sesto

Project Manager: Eric E. Del Sesto

Printed 10/87

T

How to Get Help

We hope you will find geoProgrammer the ideal environment for -
developing GEOS applications and that this manual provides you with the
answers to any questions you may have about using geoAssembler,
geoLinker, or geoDebugger. However, if you do run across a problem that
is not answered by this manual, there are several ways to obtain additional
help. :

QuantumLink

The fastest and most recommended way to obtain information about GEOS
and GEOS applications such as geoProgrammer is through the
QuantumLink telecommmunications network. QuantumLink (Q-link) is an
online service network designed for Commodore users.

Berkeley Softworks provides Customer Service message boards along with
a Programming and Technical Information board in the Commodore
Software Showcase section of QuantumLink. Through these message
boards, GEOS users and developers can generally receive the most timely
help and information. In addition, you will have access to programs,
products, and example source code from Berkeley Softworks which are
offered through QuantumLink, many of them free of charge.

For more information on QuantumLink, call (800) 392-8200 from the
United States. From Canada, call (703) 883-0788.

Telephone Support

Berkeley Softworks provides customer service by telephone, but, as the
lines are often busy, it is recommended that you only call as a last resort.
Additionally, our Customer Service department is not trained in answering
detailed technical questions. Please submit such questions to our technical
support staff via QuantumLink or U.S. mail. The Berkeley Softworks
Customer Service telephone number is (415) 644-0890. Call between 9
a.m. and 5 p.m. Pacific Time.

Mail Support

If you mail your questions to the address printed in the back pages of this
manual, Berkeley Softworks will answer your correspondence promptly. If
you have a general question about GEOS or your geoProgrammer
applications, send it attention: Customer Support; if you have a technical
question about developing GEOS applications, send it attention: Technical
Support.

User's Groups

In addition to Berkeley Softworks' official support, some of the most useful
information comes from your local Commodore User's group. Often they
will offer classes on 6502 assembly language and sessions with experienced
GEOS programmers. ’

Table of Contents

Chapter 1
Introduction to geoProgrammer

1-1 geoAssembler

1-2 geoLinker

1-2 geoDebugger

1-3 Using geoProgrammer W1th Other GEOS Based Programs
1-3 How To Use This Manual

1-5 Conventions Used In This Manual

Chapter 2
Before You Begin

2-1 What You Need To Use geoProgrammer
2-3 The geoProgrammer Disk

24 Installing geoProgrammer

2-5 Making a Backup Copy of geoProgrammer
2-6 Making Work Disks

Chapter 3
Application Development

3-1 What Is Assembly Language

32 Developing With geoProgrammer
34 The Development Cycle

3-7 Application Types

3-8 GEOS File Headers

Chapter 4

geoAssembler & geoLinker Description and
Usage

4-2 How To Learn Assembly Language
4-2 6502 Source Code
4-9 Creating geoAssembler Source Code

(Chapter 4, cont.)

4-13 How the Assembler and Linker Relate
4-14 Running geoAssembler

- 4-17 Running geoLinker .
4-22 Creating a Sample Application

Chapter 5
geoAssembler Reference and Advanced
Topics

5-1 The Assembly Process

5-2 Assembler Input

53 Symbols

5-6 6502 Opcodes and Operands
5-7 Comments

5-7 Expressions .
5-19 Directives

5-21 Assembly Control Directives
5-30 Symbol Directives

5-33 Data Directives

5-36 Conditional Assembly

5-39 Macros

5-50 Header Definition

5-53 Internal Variables

Chapter 6
geoLinker Reference

6-1 The Link Process

6-2 Linker Overview

6-3 The Linker Command File
6-7 Cross-reference Resolution
6-8 Link Directive Reference

Chapter 7
geoDebugger Usage and Tutorial

7-1 What is a Debugger?

7-1 geoDebugger Features

7-3 Super-debugger and Mini-debugger
7-4 Running the Super-debugger

7-6 Running the Mini-debugger

7-8 Sample Super-debugger Session
7-16 Sample Mini-debugger Session

Chapter 8
Super-debugger Reference

8-1 Special Characters

8-2 Super-debugger Expressions
8-8 Basic Operation

8-9 - Super-debugger Command Summary
8-12 Syntax Notation

8-15 General Commands

8-19 Display Commands

8-29 Open Modes

8-42 Execution Commands

8-56 Stack Related Commands
8-62 Breakpoint Commands

8-70 Symbol Commands

8-78 Macro Commands

8-95 Memory Commands

8-100 Special Commands

8-103 Disk Commands

Chapter 9
Mini-debugger Reference

9-1 Memory Usage
9-1 Case Sensitivity
9-2 Expressions and Numeric Constants
9-2 Basic Operation
9-4 Mini-debugger Command Summary

(Chapter 9, cont.)

9-5
9-7
99
9-12
9-22
9-29
9-33
9-34

Appendices

A-1

A-11
A-13
A-17

A-18

Glossary

Index

Syntax Notation
General Commands

- Display Commands

Open Modes
Execution Commands
Breakpoint Commands
Special Commands
Disk Commands

A: Library Files and Sample Source

B: geoProgrammer File Formats

C: geoDebugger Technical Notes

D: Bibliography and Further Reference
E: Error Messages

Chapter 1: Introduction to
geoProgrammer

geoProgrammer is a sophisticated set of assembly language development
tools, designed specifically for building GEOS applications. -
geoProgrammer is a scaled-down version of the UNIX™ based development
environment Berkeley Softworks actually uses to develop GEOS programs.
In fact, nearly all the functionality of our microPORT system has been
preserved in the conversion to the Commodore environment,

The geoProgrammer development system consists of three major
components:

geoAssembler
geoAssembler, the workhorse of the system, takes 6502 assembly language
source code and creates linkable object files.

. Reads source text from geoWrite documents; automatically converts
graphic and icon images into binary data.

. Recognizes standard MOS Technology 6502 assembly language
mnemonics and addressing modes.

. Allows over 1,000 symbol, label, and equate definitions; each up to
20 characters long.

° Full 16-bit expression evaluator allows any combination of
arithmetic and logical operations.

° Supports local labels as targets for branch instructions.

° Extensive macro facility with nested invocation and multiple

arguments.

. Conditional assembly, memory segmentation, and space allocation
directives.

° Generates relocatable object files with external definitions,
encouraging modular programming. '

1-1 Intro

geoLinker

geoLinker takes object files created with geoAssembler and links them
together, resolving all cross-references and generating a runnable GEOS
application file.

° Accepts a link command file created with geoWrite.

° Creates all GEOS applications types (sequential, desk accessory, and
VLIR), allowing a customized header block and file icon.
geoLmker will also create standard Commodore appllcatlons which do
not require GEOS to run.

. Resolves external definitions and cross-references; supports complex
expression evaluation at link-time.

° Allows over 1,700 unique, externally referenced symbols.

° Supports VLIR overlay modules.

geoDebugger
geoDebugger allows you to interactively track-down and eliminate bugs and
errors in your GEOS applications.

° Resides with your application and maintains two independent -

displays: a graphics screen for your application and a text screen for
~ debugging.

o Automatically takes advantage of a RAM-expansxon unit, allowing
you to debug applications which use all of available program space.

° Complete set of memory examination and modification commands,

including memory dump, fill, move, compare, and find.

Symbolic assembly and disassembly.

Supports up to eight conditional breakpoints.

Single-step, subroutine step, loop, next, and execute commands.

key stops program execution and enters the debugger

at any time.

° Contains a full-featured macro programming language to automate
multiple keystrokes and customize the debugger command set.

Your geoProgrammer disk also has two sample applications which you can
use as models for your own programs. In fact, we encourage you to copy
the files and build upon them, using them as the basis for your
applications.

You can also use the library of GEOS equate and macro files on the disk,
making your source code easier to read and understand, as well as supporting
(and extending) the standard in The Official GEOS Programmer’s Reference
Guide.

Intro 12

Using geoProgrammer with Other
GEOS Based Programs

Since geoProgrammer is GEOS compatible, you can’us'e it with other
GEOS based programs.

geoWrite

Create geoAssembler source files and linker command files in your
geoWrite word processor; include graphic and icon images from geoPaint
and the Icon Editor directly into your source code; examine error files,
symbol lists. geoWrite is included with the GEOS operating system.

geoPaint

Develop graphic images and icons for your applications with your geoPaint
paint program. geoPaint is included with the GEOS operating system.

Icon Editor

Create and edit icon images for your applications with the GEOS Icon
Editor. The Icon Editor is included with DESKPACK1. The forthcoming
version 2.0 will allow photo scrap cut and paste operations.

How to Use This Manual

geoProgrammer was designed with the serious programmér in mind. It is
therefore a sophisticated product. This does not mean it is hard to use, only
that it must be approached in the proper way, with the proper prerequisites.

This manual will not show you how to use the GEOS deskTop; for that
you'll have to refer to your GEOS User's Guide. Nor will it teach you 6502
assembly language; for that you'll have to refer to a good book on the
subject. Finally, it will not show you how to program under the GEOS
environment; that is the job of The Official GEOS Programmer's Reference
Guide. However, this manual will attempt to bridge the gap between these
other resources, thereby flattening an otherwise steep learning curve.

But the experienced programmer will not feel encumbered by this — many

of the introductory chapters can be skimmed quickly before moving directly
into the reference sections.

1-3 Intro

The manual is organized as follows:

Chapter 1 and Chapter 2 contain important information and procedures you
should read and follow before you begin working with geoProgrammer.
Chapter 1 gives you a general overview of the geoProgrammer system and
this manual. Chapter 2 contains information on the equipment you need and
the installation procedures you must follow in order to begin working.

Chapter 3 overviews the geoProgrammer development environment. It
explains how geoAssembler, geoLinker, and geoDebugger interact, in
addition to describing 6502 assembly language, the GEOS environment,
and the application development cycle.

Chapter 4 explains the general use of geoAssembler and geoLinker. It
describes how to create geoAssembler source code, assemble it, and finally
link it into a runnable application. This chapter does not exhaustively cover
the assembler and linker.

Chapter 5 is a reference chapter, covering all aspects of geoAssembler, from
labels to expressions to macros. The chapter is designed to be both
informative and convenient — providing quick and easy access to a
breakdown of the assembler's features.

Chapter 6 is a reference chapter for geoLinker, covering all aspects of the
link command file, and linker directives.

Chapter 7 overviews geoDebugger by introducing its major features and
taking the reader through a brief tutorial session.

Chapter 8 is a complete reference for geoDebugger commands available in
the Super-debugger. This debugger requires a ram-expansion unit.

Chapter 9 is a complete reference for geoDebugger commands available in
the Mini-debugger.

Finally, the manual contains a number of appendices with useful
information, as well as a comphrensive index and glossary.

We hope this manual helps you get the most out of your geoProgrammer

development environment. We welcome comments and suggestions about
the manual. Please send them to:

Intro 1-4

L.

Berkeley Softworks
Attn: Documentation Department
2150 Shattuck Avenue
Berkeley, CA 94704

Conventions Used in This Manual

When important terms are first introduced, they are printed in italics to set
them apart from the regular text. Many of these terms are further defined in
the glossary at the end of this manual.

Paragraphs marked IMPORTANT, NOTE, and HINT appear throughout the
manual. IMPORTANT alerts you to potential problems and suggest ways
to avoid them. NOTE points out other information relevent to the topic at
hand. And, HINT offers useful hints and tips.

Letters or words enclosed in rectangular boxes represent keys on your
Commodore keyboard. Some functions require that you press and hold one
key (like) and then press a second key. In these cases, the keys
will be listed serially with a plus (+) sign between them.

Syntax Notation
The following conventions are used in the syntax descriptions in this
manual:

addrexp address expression — a valid expression which evaluates
to an address in the Commodore's memory space.

zp-address zero-page address — a valid expression which evalutes to
a zero-page address ($00-$ff). '

exp

expression a valid expression.

filename a valid GEOS file name which does not contain any
spaces, whether leading, trailing, or embedded.

string a string of ASCII characters enclosed in double-quotes.

1-5 Intro

symbol

[]

{)

Intro

a valid geoProgrammer symbol.

square brackets indicate an optional item Wthh may
appear zero Or one times.

curly braces indicate an optiOnal item which may appear
Zero or more times.

a vertical line indicates a choice and can be read as "or".

Chapter 2: Before You Begin

Before you can begin to use the geoProgrammer system, you must read and
follow the instructions in this chapter. This chapter will describe the
equipment you need and the proper system configuration, how to install
your geoProgrammer system, how to make a backup copy of your
geoProgrammer disk, and how to make work disks for use with
geoProgrammer.

What You Need to Use
geoProgrammer

geoProgrammer is a part of the GEOS family of products. GEOS (Graphic
Environment Operating System) is the official operating system for the
Commodore 64. As a part of the GEOS world, there are certain pieces of
equipment (hardware) and computer programs (software) which you need in
order to run geoProgrammer. Additional equipment such as a printer, a
second disk drive, a RAM-expansion unit (REU) are not required but will
improve the performance and utilty of geoProgrammer. The REU is
especially recommended for use with the geoProgrammer application due to
its ability to bring increased speed and memory capacity to the Commodore
64/128 computer system.

You must have the following hardware and software in order to run and
work with geoProgrammer:

« A Commodore 64, 64c, or 128 computer. Your 128 must be running
in 64 emulation mode.

e One Commodore disk drive (1541 or 1571).

« GEOS (Graphic Environment Operating System) software version 1.2
or later, including geoWrite. You can upgrade to version 1.3 of GEOS
and geoWrite by sending $5 to Berkeley Softworks Customer Service
at the address printed in the back of this manual.

e An input device such as a joystick or a mouse.

« The geoProgrammer package, which includes the program diskette and
this manual.
2-1 Before You Begin

Several blank, formatted disks for backup and work disks.

The following optional equipment is recommended to take full advantage of
the power and versatility of geoProgrammer. This equipment is not
necessary to use geoProgrammer.

A RAM-Expansion unit (REU), such as the Commodore 1764 or

1750. With an REU, the operating speed of geoAssembler and
geoLinker (and other programs) is greatly increased. This speeds up the
turnaround time on the development cycle, thereby improving your
programming productivity. Also, geoDebugger is designed to take
advantage of the 64K system space in an REU, allowing you to debug
applications which use the entire available program space.

A GEOS supported printer that is properly connected to your computer.
This will allow you to print out your geoAssembler source code, your
geoLinker command files, and any error files. A list of GEOS
supported printers is included in your GEOS User's Guide.

An interface card or geoPrint Cable if you are planning on using a non-
Commodore compatible printer to print out your GEOS files. geoPrint
Cable is a parallel printing cable that makes printing your GEOS files
fast and easy. ‘

A second disk drive (1541 or 1571). With two disk drives you will be
able to copy files and disks more easily. You will also be able to
dedicate all of the disk space on one disk to your source code, while the
disk in the other drive contains the geoProgrammer system.

A proportional input device such as the Commodore 1351 mouse. A
proportional input device makes getting around in the GEOS world fast
and easy.

Several blank, formatted DS/DD (Double-Sided/Double-Density)
diskettes for making work disks. '

Before You Begin 2-2

The geoProgrammer Disk

Your geoProgrammer system is contained on two sides of a floppy disk.
Side A is the top, label side, and side B is the opposite side. To access the
files on side B, the disk must actually be removed, turned-over, and -
reinserted into the drive. When you make a backup copy of your
geoProgrammer disk, you will need to use two disks, copying side A to
one disk and side B to another.

Following are the contents of your geoPrograrhmer disk:

Side A

GEOASSEMBLER

GEOLINKER

GEODEBUGGER

geosSym

geosMac
SamSeq
SamSeqHdr
SamSeq.Ink
SamSeq.dbm

Side B
geosConstants
geosMemoryMap

geosRoutines
geosMacros
SamVlirRes
SamVlirEdit

SamVlirFile

SamVlirEquates
SamVlirZP
SamVlirHdr
SamVlir.Ink
SamDA -
SamDAHdr

The macro assembler.

The overlay linker.

The symbolic debugger.

complete GEOS symbols include file (no
comments).

GEOS macros include file (no comments).
Sample sequential application, main source code.
Sample sequential application header source code.
Sample sequential application link command file.

Sample sequential application debugger macro
file.

GEOS constants include file (with comments).
GEOS memory map include file (with
comments).

GEOS routines include file (with comments).
GEOS macro file (with comments).

Sample VLIR application resident code module.
Sample VLIR appliction Edit menu overlay
module.

Sample VLIR application File menu overlay
module.

Sample VLIR application internal equates.
Sample VLIR application zero page variables.
Sample VLIR application header source file.
Sample VLIR application link command file.
Sample desk accessory main source module.
Sample desk accessory header source file.

2-3 Before You Begin

SamDA.Ink Sample desk accessory link command file.
DISK COPY Disk backup utility for one-drive systems.

Installing geoProgrammer

Your geoProgrammer disk must first be installed into your GEOS system
before you use it. You only perform the installation procedure once, the first
time you use geoProgrammer.

IMPORTANT: Be sure to install geoProgrammer using your own GEOS
boot disk or the GEOS boot disk that will always be used with this
geoProgrammer disk. Any copies of geoProgrammer must also be used with
this same GEOS boot disk.

To install your geoProgrammer system, follow these steps:
1: Boot your copy of GEOS as described in your GEOS User's Manual.

2: Close your GEOS boot disk by clicking on the close icon in the upper-
right corner of the window.

3. Put the geoProgrammer disk (label side, side A, up) into the disk drive
and open it by clicking on the disk icon.

4: Open the file named geoAssembler by double-clicking on its icon or by
selecting the geoAssembler icon (single-clicking on it) and choosing
open from the file menu. The program will load and the following
dialog box will appear:

Before You Begin 2-4

5. Click on the OK icon to return to the deskTop.

6: Follow this same procedure (steps 4 and 5) for the geoLinker and
geoDebugger files.

Your geoProgrammer disk is now completely installed. When you now run
geoAssembler, geoLinker, or geoDebugger from the deskTop, rather than
the installation procedure, you will be executing the actual program.

Making a Backup Copy of
geoProgrammer

Before you actually start using geoProgrammer (but after you have
installed it), you should make backup copies of your disk. In fact, once
you have made a backup, you should store your original geoProgrammer
disk away in a safe place. You should never use your original
geoProgrammer disk for anything other than making backup copies.

With One Disk Drive

To make a backup copy of your geoProgrammer disk with only one disk

drive, follow these steps: '

1: Have two blank, formatted destination disks ready. Double-click on
the DISK COPY utility program icon (located on side B of your
geoProgrammer disk). The screen will turn blue. This is normal.

2: Follow the directions that appear on the screen to make a backup of
side A of your geoProgrammer disk. The source disk is the disk you
wish to copy from (your original geoProgrammer disk); the
destination disk is the disk you wish to copy fo (your blank backup
disk). If you ran DISK COPY from side B of your geoProgrammer
disk, you will need to turn it over to side A.

3: When the copy is finished, you will be asked if you wish to make -
another copy. Select yes and proceed with the copy, this time using
side B of your geoProgrammer disk and the second blank, formatted
destination disk.

2-5 Before You Begin

With Two Disk Drives
GEOS must be set up to work with two disk drives as described in your
GEOS User's Manual.

Follow these steps to make a backup copy of your geoProgrammer disk

with two disk drives:

1: Place your original geoProgrammer disk in drive A, side A up, and a
blank, formatted destination disk in drive B.

2: Select copy from the disk menu of the GEOS deskTop.

2: Follow the directions that appear on the screen to make a backup of
side A of your geoProgrammer disk. The source disk is the disk you
wish to copy from (your original geoProgrammer disk); the destination
disk is the disk you wish to copy fo (your blank backup disk).

3: When the copy is finished, you will be returned to the GEOS deskTop.
Turn the geoProgrammer disk to side B and insert the second blank,
formatted disk into the other drive. Now again select the copy from the
disk menu to copy side B to the second disk.

These are the oniy safe ways to make copies of your geoProgrammer systém
disk.

IMPORTANT: Do not use the BACKUP program supplied with your
GEOS disk. Only use the BACKUP program to make backup copies of your
GEOS boot disk.

Making Work Disks

Once you have made one or more backup copies of your geoProgrammer
disk, you will want to make work disks. A work disk is a disk you will use
in your everyday development with geoProgrammer; you can make as many
work disks as you like, and work disks can contain any combination of
geoAssembler, geoLinker, geoDebugger, desk accessories, and your work
files. In this way you can customize your work disks to suit your exact
needs. For example, you might want one work disk with just geoAssembler,
geoLinker, and your source files along with a second work disk with
geoDebugger, your runnable application along with its debugger symbol
file, and a file of debugger macros.

Before You Begin 2-6

o e

There are two ways to make a geoProgrammer work disk:

1: Use the DISK COPY program to make a work copy of Side A of
your geoProgrammer disk onto a blank, formatted disk. With this new
work disk, you can add or delete files as your needs demand.

2: Copy selected files individually from your geoProgrammer backup
disk (and any other disk) to a blank, formatted work disk.

A work disk containing a selection of GEOS files might include the
following:

geoAssembler

geoLinker

geoDebugger

geoWrite

roma (font for geoWrite)

deskTop 1.3 (or later version)

printer driver (the correct one for your printer)

geosSym
geosMac

This is a simple work disk configuration for geoProgrammer development.
Depending on your needs, you can add additional files from other GEOS
products and applications, such as: '

« geoPaint, Graphics Grabber, and the Icon Editor so that you can add
icons and images into your programs.

» desk accessories such as the Notepad, so that you can jot down
memos and notes to yourself while you are working with
geoProgrammer.

By having only the files that you need on your work disks, you allow for

plenty of disk space for your geoAssembler source code. Make several
customized work disks if you desire.

2-7 Before You Begin

Chapter 3: Application
Development

Chapter 3 overviews the geoProgrammer environment, beginning with a
short introduction to assembly language, leading into the major elements of
developing a GEOS application. Seasoned developers may want to merely
skim this chapter, moving quickly to the reference portions of the manual.

After reading this chapter you should know: |
e The difference between assembly language and machine language.

« The function of an assembler, linker, and debugger in the development
cycle.

o The basic theory and practice behind GEOS program development.

o The general differences between sequential, VLIR, and desk accessory
applications.

What is Assembly Language?

At the heart of every program you run — every paint program, word
processor, computer language — lies 6502 machine language. Whenever
your computer is on, the 6502! microprocessor inside is busy running
through long lists of binary instructions (binary is the base-two number
system most computers operate in; each digit is either 1 or 0, representing
on or off). These binary instructions are machine language, the native
language your 6502 understands. Machine language is the fastest, most
elemental way of instructing your computer, and everything reduces to it. If
you program in Commodore BASIC, for example, the BASIC interpreter
must translate every instruction into a machine language equivalent, which
may mean hundreds of binary instructions.

+ The Commodore 64 actually uses a 6510 microprocessor, and the
Commodore 128 uses an 8502 microprocessor. From a programming
standpoint, these are identical to the original 6502, upon which they are
based. In this manual, we will refer to this entire family of software-
compatible microprocessors with the general term 6502.

31 Application

But while machine language is well-suited for computers to understand,
most humans have trouble making sense out of a 11000101 or 00101100.
Only the most self-punishing programmer would program directly in
machine language. But that is why assemblers were developed. Assemblers -
allow programmers to design machine language applications using English
abbreviations called mnemonics. "Mnemonic" comes from a greek word
meaning memory and that is essentially what one is: a memory aid. Rather
than cryptic strings of 1's and 0's, we are able to program with sensical
words like JMP for jump and LDA for load accumulator. Assemblers will
then translate these mnemonics into machine language instructions. This
more-palatable way of programming is called assembly language.

Developing With geoProgrammer

Assembling, the process of converting assembly language source code into
machine language, is only one step of the development cycle and only one
third of your geoProgrammer development klt (geoProgrammer also
includes a linker and a debugger)

geoAssembler

geoAssembler is a subset of an extremely powerful cross-assembler
(microPORT), originally designed to run on larger, more sophisticated
computers than the Commodore 64/128. In the conversion to the
Commodore environment, most of the advanced functionality of
microPORT development system has been preserved.

geoAssembler supports macro programming, conditional assembly, nested
file inclusion, complex expression evaluation, and the standard 6502
mnemonic instruction set. In addition, your geoProgrammer disk contains a
variety of equate and macro files which define commonly used variables,
constants, and macros for the GEOS operating system. These files may be
included with your own assemblies.

Application 3-2

geoAssembler generates relocatable object code. This means that its output
is not directly runnable, but must be first passed through geoLinker and
resolved to an absolute address.

geoLinker

The most advanced aspect of the geoProgrammer system, and p0331b1y the
hardest to understand, is the linker. When you assemble a source file,
geoAssembler does not produce a runnable program file. Instead, the
assembler generates a .rel relocatable object file . This .rel file, as it stands,
is not 6502 machine language; rather, it is in an intermediate form. This
file must then be passed through the linker, which will generate a GEOS
compatible, runnable file with the proper file header and icon information.

geoLinker can combine one or more .rel object files into an executable
program. This allows you to split a large program across a number of

source files, assembling these files independently and then linking all the
resulting .rel files into one runnable program. Not only does this facilitate
modular programming, it can also cut down on development time: if you
make a change to an independent source code file, you need only reassemble
that file and then relink with the already existing .rel files. Linking is
appreciably faster than assembling. '

The linker also allows you to create libraries of commonly used routines.
Any time you need, say, string manipulations, you could link with a
string.rel file you might have created during an earlier project. Building
powerful libraries is one of the tricks to effective professional development
— once you've programmed and debugged a generalized routine, you need
never look at (or reassemble) it again.

geoDebugger

geoDebugger is the third leg of the geoProgrammer development system,
and, at times, it may be the most indispensible. geoDebugger is a small
program which co-resides with your GEOS application and facilitates the
debugging process, allowing you to disassemble, modify, and trace the
execution of your program. It is also a symbolic debugger, which means it
will use labels, symbols, and equates from within your source code when
displaying and operating on memory locations and program code.

33 Application

The Development Cycle

geoProgrammer is a sophisticated development environment for GEOS
applications — it encourages well-structrured programs, while lending
itself, specifically, to efficient development under the GEOS environment.
GEOS programs tend to be larger and more modular than traditional 6502
applications and demand the advanced features found in this package.

The Desngn Stage

The first step in any large project is to design the program. This usually
means drawing up specs for the user-interface as well as puzzling out the
organization, algorithms, and program structure. Under GEOS, it is
especially important to design the user-interface early because the
icon/windowing environment is so central to the development effort.

Event-driven Programs

GEOS applications are event-driven, which means that most of the time is
spent waiting for events. An event can be the press of a key, the click of
the mouse, or a timer going off. After your program initializes itself, it
passes control to GEOS. When an event occurs, such as the user clicking
on an icon, GEOS vectors transfer control to the appropriate routine in your
program to handle the event. When the event has been serviced, control is
again returned to GEOS to await the next event.

Coding

After the basic design, the program is developed in modules. This means
that individual pieces, subroutines — almost small programs in themselves
— are developed. The first to be written is usually the main module, the
initialization, which is run when the application is first executed; the
initialization code sets up the event vectors, initializes variables to their
defaults, and draws the initial display.

geoAssembler source code is created with geoWrite. Although geoWrite is a |

word processor, it is also a powerful and familiar editing tool, and it lends
itself well to this sort of application. As an added benefit: because geoWrite
is a graphic word processor, you may include icon images (from geoPaint)
directly into your source code; geoAssembler will convert the graphic
images into compressed image data during assembly.

NOTE: geoWrite and geoPaint are not included on your geoProgrammer
disk. They are included with the GEOS operating system.

Application 34

L~
;7

o~

Modules
Because geoProgrammer allows multiple .rel files to be linked into one
application, each event routine can be relegated to its own source file and be

- assembled separately. Additionally, the geoProgrammer disk contains macro

and equate files which may be included with your assembly. These files
define macros, variables, and constants for the GEOS operating system.
Using these files will make your programs easier to read as well as conform
to the standards established in The Official GEOS Programmer’s Reference
Guide.

Assembling

Once a routine or source file is written, it may be assembled. The assembly
process is simple: you merely invoke the assembler with the desired source
code file and it does the rest of the work. The assembler reads in the source
file and begins processing it. geoAssembler can create two types: a .rel
linkable object file and a .err error file. The .rel file is linkable object code,
and the error file is a geoWrite document which records any errors or
messages in the assembly.

If there are errors in the assembly, usually caused by typing mistakes or the
use of invalid instructions and addressing modes, they can be fixed at this
time and the file reassembled. When all your source code files assemble
without errors, you are ready to move on to the linking process.

Linking

Unlike the assembler, the linker uses a command file. The command file

contains important information which tells the linker, among other things,

the type of executable file to generate (sequential, VLIR, or Commodore),

the file header to use, the proper load address, and the .rel files to include in

the link. The linker reads in the .rel files, resolves all external references,
and, if there are no errors, generates a runnable object file.

Debuggmg :

Once you have gotten successfully through the assembly and hnk phases,
you are ready to test the program. It is rare indeed when a program works
correctly the first time; sometimes the icons aren't centered correctly, the
menu items are misspelled, the screen erases itself, or perhaps the program
halts entirely, locked forever in some endless loop. The process of tracking
down and eliminating these "bugs" is called debugging, and debugging is
one of the most frustrating (and rewarding) aspects of program development.
Fortunately, the power of the geoDebugger makes the debugging process as
painless as possible.

3-5 Application

When you have discovered a bug, it's back to step one: you modify the
source code to fix the problem, then reassemble, relink, and rerun. This

whole circular process of program development is affectlonately called the
assemble-link-crash-debug cycle.

Application 3-6

Application Types

GEOS supports three basic application types, all of which can be created
with geoProgrammer:

e Sequential
e VLIR (Variable Length Indexed Record)
o Desk accessories

Sequential applications are the simplest and most straightforward type.
Sequential files get their name from the way GEOS stores and accesses
them on the disk: they appear as a contiguous block of data. When a
sequential file application is executed, the entire program loads into
memory. For most small and medium sized applications, those which can
operate entirely in the free program area, a sequential format is sufficient.
Only when programs get larger must you worry about other file formats.

VLIR applications are more sophisticated. Although the phrase "Variable
Length Indexed Record" is a bit obscure, it is easy to understand the general
concept. A VLIR application is never entirely in memory. Rather, only the
necessary portions of the program, the parts which are in use, are loaded at
any one time. When another part of the application is needed, it is simply
loaded into a shared area of memory, overlaying routines or data which are
no longer necessary. These portions of swappable code are called overlay
modules. Using overlay modules, an extremely complex program, one with
more machine code than could possibly fit in your Commodore computer,
can be executed by loading in routines as they are needed. Designing a
VLIR file application takes more forethought and effort than a sequential
file application, but since the linker automates much of the drudgery, the
process is certainly worth the effort for a more complex program.

Desk accessories are stored as sequential files and so are really not all that
unique of an application type. The only difference in the file format is a
special flag in the file's header and directory entry. You assemble and link
desk accessories in the same way you would a sequential file, only setting
the desk accessory flag in the header. Note, however, that desk accessories
are designed differently than normal applications — they have special
coding requirements and restrictions which are described in The Official
GEOS Programmer's Reference Guide. geoProgrammer can also generate
standard Commodore (non-GEOS) applications.

3-7 Application

GEOS File Headers

Every GEOS file — whether a geoWrite document, a geoPaint picture, or
an application you've created — has a corresponding 256-byte header block
which is also stored on the disk. This header contains the icon image which
appears on the deskTop, along with data describing the type of file, the
starting address, and the loading address, among other information. When
you design an application, you must also build a file header block. The file
header block is a geoAssembler source file which generates the appropriate
data; it is attached to your applications by geoLinker. For more information
on building GEOS file headers, see .header in Chapter 5.

Application 3-8

TN

Chapter 4:
geoAssembler & geoLinker
Description and Usage

Chapter 4 describes the basic usage of the geoAssembler and geoLinker
programs. It describes the syntax and format of geoAssembler source code,
outlines the major features of the assembler, and demonstrates how to
actually assemble a source code file. It also describes the general purpose of
the linker and explains how to link files to produce a runnable program.
This chapter does not cover aspects of the assembler and the linker in
exhaustive detail (refer to Chapter 5 and Chapter 6 for more complete
breakdowns). Rather, it serves to introduce you to the assembly-link
process. If you are trying to learn assembly language, you should read this
chapter along with the introductory chapters of a good 6502 assembly
language book — many concepts which are only briefly touched upon here
are covered in more detail by such books.

After reading this chapter you should know:

o The general format of geoAssembler source code, including line syntax
and case-dependency.

o The following terms: mnemonic, opcode, operand, expression,
directive, pseudo-op, label, equate, and macro.

< How to use geoWrite to create geoAssembler source files.

» The interaction of the assembler and the linker -- how they
complement each other.

« How to run the assembler to generate relocatable object files. Also:
you should understand the various files (.rel, .err) that the assembler
generates.

e How geoLinker resolves cross-references and combines relocatable
object files into a runnable program file.

e The purpose and function of the linker eommand file.

e How to operate the linker to generate a runnable program file. The
various files generated by the linker (.err, .sym, .dbg, and the program

file) will also be discussed. 4-1 geoAssembler/geoLinker

How to Learn Assembly Language

We sometimes think of assembly language gurus as magical wizards who
huddle around dusty old books and practice their arcane art with pentagrams
and dragon's blood. But assembly language is not nearly as difficult or
complex as its reputation might lead you to believe; in fact, it may be the
very simplicity of assembly language which is hardest for most people to
comprehend. Simple? Yes. Computers, at their most basic level, are very
simple beasts — they are methodical, straightforward, and painfully
simpleminded. Every task must be laid out explicitly and meticulously.

This relentless demand for detail can stifle even the most intrepid learner.

In assembly language, for example, if you want to multiply five by six,

you don't just say (as you might in BASIC) 5*6. The 6502 has no

multiply instruction. Instead, you must multiply five by six by adding five
to itself six times! In this same way, if you want to search a string, open a
disk file, or draw a line, you must use a routine which breaks the task down
to a similar level of detail.

But because assembly language is the most basic form of programming, it
is also the fastest, most flexible, and most compact. You can relish in the
fact that your applications will be the best they possibly can.

As with most new skills, there are really just three essentials to learning
(and eventually mastering) 6502 assembly language: patience, practice, and
persistence. In addition, you should read a good book on 6502 assembly
language (refer to Appendix D for reading recommendations).

6502 Source Code

MOS Technology developed the 6502 microprocessor in the mid-1970's
- and, along with it, a standard format for 6502 assembly language source
code, including the popular three-letter mnemonics and addressing mode
notation. All but the oldest books and magazine articles will assume this
standard. geoAssembler implements a superset of the MOS Technology
model; this means that geoAssembler will assemble most generic 6502
source code with very few changes.

geoAssembler/geoLinker 4-2

p——
,

e

The following is a small 6502 subroutine which will assemble with
geoAssembler:

sthis line is a comment

Jpsect _ ~ sassembler directive
start: Ida #init_val slabel defined
asl a ;a-mode addressing
sta 3*buffer+2 ;expression
cmp #'c¢' ;ASCII character
MoveW source,dest smacro with parameters
rts simplied addressing
Delay = 20 ’ sequate
word $50, delay, start ;data definition

NOTE: The above code is designed to illustrate as many of the aspects of
geoAssembler as possible. It is not intended to produce any useful
results, nor to illustrate good coding practices.

General Syntax and Format

“ Assembly language source code follows a fairly simple set of rules. Source

code is built up by lines and each source line (if it is not blank) is in the
following general format:

[label:] [(6502 instruct.) or (directive)] [;comment]

label field code field comment field

Each field is optional, although when more than one is used, they must
appear in the above order. In most cases, you will want to separate the
fields with tabs, thereby making your source code neater and easier to read.

The label field may contain a label, which is an alphanumeric symbol or
name of your choosing. It allows you to give meaningful names to your
routines and variables. Although a label definition will usually begin at the
left margin, you may insert as much whitespace (spaces or tabs) as you
desire hefore defining a label. Labels must always end with a colon (:).

4-3 geoAssembler/geoLinker

The code field may contain a 6502 instruction (mnemonic opcode and
operand), an assembler directive (pseudo-op), or a macro invocation. The
code field is usually indented one or two tab stops, but it may be surrounded
by as much whitespace as desired. The code field is often subdivided into
two separate fields: the opcode field and the operand field. The opcode field
contains the instruction, macro, or directive and the operand field contains
any necessary parameters, options, or 6502 operands. There must be at least
one space or tab between the opcode field and the operand field.

The last field is the comment field. Comments are explanatory text or notes
for describing your source code, analogous to the BASIC REM statement.
A comment may appear anywhere on a line and must be preceded by a
semicolon (3). All text following the semicolon is ignored by the
assembler.

Case Dependency

geoAssembler takes advantage of both upper- and lower-case characters; it is
a case-dependent or case-significant assembler. As a general rule,
mnemonics, directives, and hexadecimal numbers may be typed in upper- or
lower-case, or some mixture thereof, and geoAssembler will interpret them
correctly: 1da #$Ab is the same as LDa #$aB. However, with labels,
equates, and macro names, the case is significant. That is: label is not the
same as LaBEL or Label. Each unique occurrence of an upper- and lower-
case combination is considered an entirely different symbol. For this reason

Loop: inx
Ida temp,x
bne Loop scorrect
will assemble correctly. Whereas

bne loop sincorrrect!

(without the initial letter in the label capitalized), will generate an undefined
label error.

Labels and Equates

Labels and equates allow you to use symbolic names within your assembly
language source code. They make your programs easier to read, understand,
and change, as well as automating much of the internal address calculations.

geoAssembler/geoLinker 4-4

Labels and equates are similar in design and usage. They are both considered
symbols and may be used in similar contexts. Symbols may be any
combination of alphanumeric characters (remember: case is significant), but
the first character must be a letter. You may also include the underline
character () within a symbol name. Symbols can be as large as 20
characters, but the assembler will only consider the first eight; this means
that program_start and program_end will appear the same to the
assembler because the first eight characters (program_) are identical.

A label is a symbol which refers to a location within your actual program.
This location can be either program code, initialized data, or variable space.
A label is defined within the label field of a line and it is always followed
by a colon. However, the colon is not considered part of the label name; the
colon is the character which indicates to the assembler that it is a label
definition. The absolute value (the actual memory location) of a label is
resolved at link-time and this value is passed to the debugger in the symbol
table.

An equate refers to an explicit definition of a symbol. You use the = or ==
directives to assign a value to the symbol. Equates can be addresses or
constants. -

Local Labels

Assemblers which do not implement local labels require the programmer to
dream up sometimes hundreds of unique label names for even the most
unimportant sections of code. The source code becomes cluttered with the
likes of loopl, loop2, loopxx4, Ip, and 1p002 which are not only
confusing but unsightly. geoAssembler, fortunately, supports local labels.
Local labels allow you to create labels which are local to a given routine or
segment of code.

The scope of a local label, the range within which the label can be
referenced, is limited to the area between any two regular (global) labels. A
local label is a one to four digit number followed by a dollar-sign ($). Local
labels do not need a trailing colon (:) — the dollar-sign is sufficient — but
you may include one if you like. The following code segment illustrates the
use of local labels.

4-5 geoAssembler/geoLinker

gtk ook

;¥¥* MOVE 256 BYTES ***
;*********************** o
Move_256: _ sthis is a global label
Idy #3$00
1234%: sthis is a local label
lda (source),y
sta (dest),y
iny
bne 1234%
rts

[4

’
;******************************

s#** SET 256 BYTES TO NULL ***
;******************************
Kill_256: sthis is another global label
Idy #$00
tya
1234%: ;this is a new local label
sta (source),y '
iny
bne 1234%
rts

Notice that although there are two occurances of the local label 12349, the
scope of the first is limited to the area between Move_256 and

Kill_256. The scope of the second is limited to the area between

Kill_256 and the next (not shown) regular label. Note that the choice of
12348 was arbitrary; it could just as easily have been 03$ or 771$. Local
labels can only be used as the destination of a branch instruction. They
cannot, for example, be used in a mathematical expression or as the
destination of a jmp instruction. :

NOTE: At Berkeley Softworks, rather than use a jmp instruction, which
won't work with local labels, we sometimes generate an
unconditional branch — a branch which is always taken — with a
bra (branch always) macro. The macro expands to a clv followed
by a bvc. This way, local labels can still be used as the
destination. This macro is included in the sample macro file on
your geoProgrammer disk.

geoAssembler/geoLinker 4-6

.,

Mnemonics, Opcodes, and Operands
6502 instructions consist of two distinct parts: the opcode and the operand.

lda (addr),y

opCode operand

The opcode is the actual 6502 instruction. In this case it is an lda, which
stands for "load accumulator." This three-letter abbreviation for the opcode
is called a mnemonic. The difference between the mnemonic and the opcode
is subtle: the mnemonic refers to the abbreviation for the instruction (e.g.,
lda), whereas the opcode is the actual instruction. The operand follows the
opcode and is the address or value with which the opcode will "operate”; in
the above example, the operand is the 6502's indirect indexed addressing
mode.

Directives and Pseudo-ops

Directives are similar to 6502 instructions because they appear within the
code field of a source line. However, directives (or pseudo-ops as they are
often called) are not 6502 instructions. Rather, they instruct geoAssembler
to perform some action. There are directives for assigning values to
symbols (= and ==), incorporating other files into your source code
(.include), macro definition (.macro, .endm), and conditional assembly
(.if, .else, .endif), among others. Directives usually begin with a period

to distinguish themselves from mnemonics and macros.

Comments

Comments add explanation to your source code. You should use them
creatively and liberally wherever your program's actions are not immediately
discernable. Comments begin with a semicolon (;) and extend to the end of
a line. You may place a comment on a line all by itself, or you may place
one at the end of any source code line.

e~

4.7 geoAssembler/geoLinker

Macros

A macro is the facility of geoAssembler which allows you, in essence, to
create your own instructions and directives. You develop a group of source
lines called the macro definition and give them a name. Whenever this
macro name is subsequently used in your source code (within the code
field), the assembler will replace it with the preassigned source lines,
thereby expanding the macro. Macro expansion is not just trivial text
replacement: macros expand dynamically at assembly time — you can pass
up to six parameters to the macro at each invocation (use) and the macro
can utilize those parameters in expressions, in conditional assembly, and
even within additional macro calls.

Macros are extremely powerful and useful. For example, the 6502 has no
move instruction. That is, it does not have the ability to move a byte or a
word (two bytes) from one location to another with only one instruction.
With the 6502, it takes two instructions: bytes must first be loaded into a
register from the source address and then stored from the register to the
destination address. This is a good candidate for a macro because it is a
common operation. You might define a couple of macros: one called
MoveB for move byte and one called MoveW for move word:

sMOVE BYTE MACRO

Jnacro MoveB source, dest ;macro definition
Ida source
sta dest

.endm

sMOVE WORD MACRO
Jnacro MoveW source, dest

lda source
sta dest

Ida source+1
sta dest+1

.endm

geoAssembler/geoLinker 4-8

If you then wanted to move something from address1 to address2, you
would need only say:

MoveB addressl, address2 smove a byte
or
MoveW address1, address2 ;smove a word

where addressl and address2 are parametefs which are passed to the
macro.

Macros can be used for everthing from creating high-level control structures
(like do...while, if...then, etc.) to abbreviating frequently used instruction
sequences. Your geoProgrammer disk contains macro files for use with
GEOS (refer to Appendix A for the more information on the included files).

Expressions

geoAssembler includes a comprehensive integer math package and
expression evaluator. This means you may include mathematical and logical
expressions in your source code which will be evaluated when the program
is assembled. This makes it simple to create complex data tables and
programs which dynamically adapt themselves based on a few initial
equates. For example, you could do the following:

Ida #buf _size*10
sta mem_rsrv + (module*4) + (fifo_siz/2)

Creating geoAssembler Source Code

You create geoAssembler source code with the geoWrite word processor
included with your basic GEOS system. For instructions on operating
geoWrite, consult the manual which came with the program. Because
geoWrite was originally designed as a document processor and not a
program text editor, there are a few things additional things to be aware of.

No Spaces in Filenames

The geoAssembler and geoLinker parser will not correctly interpret file
names which contain spaces. To avoid any complications, do not place
spaces (whether leading, trailing, or embedded) within the file names of
your geoAssembler source code.

4-9 geoAssembler/geoLinker

geoWrite Page Breaks

geoWrite is a page-oriented word processor. That is: it automatically divides
your text into pages. At first this may seem odd, to break assembly source
code into pages, but you will soon realize that it encourages good
programming practices. A commonly accepted rule-of-thumb in
programming is to have no routine that is longer than one page — the
reasoning is based on the idea that any routine larger than a single page is
needlessly complicated and should be broken into several smaller routines.
With geoWrite breaking your source file into pages, you can better follow
this rule. However, for the irreverent at heart, geoAssembler does not care
about page breaks. If a routine crosses a page boundary, the assembler will
treat it as a contiguous block of code.

Special Keystrokes
Many characters, such as the underscore and the tab, are common in
geoAssembler source files. They are created in geoWrite as follows:

Tab +[1]
Underline _ &+
V-bar I G+
Circumflex A Y

Tilde ~ ¢+ [

Tabs vs. Spaces

Get in the habit of using tabs ([CONTROL]|[T]) to align your source code.
Assembly language text lends itself nicely to vertical alignment, with
opcodes, operands, and comments separated into columns. You can always
use space characters instead of tabs (geoAssembler doesn't care), but it isn't
recommended; space characters take up more space in memory and on disk,
and they don't always line-up properly when using proportional text fonts.

Text Effects

You may include special font and type effects, such as italics, directly into
your geoAssembler source code. geoAssembler will ignore the special
codes, converting all text into normal characters while assembling. This
allows you to empahsize and highlight sections of your source code.

geoAssembler/geoLinker 4-10

Including Icons (graphics) in Your Source File

One of the benefits of using a graphic word processor is that you are able to
include blocks of bit-mapped graphics for icons and other images directly
into your source code. geoAssembler will automatically convert these
pictures into compacted bitmap data at assembly time. (For more -
information on GEOS compacted bitmap format, refer to The GEOS

Programmer’s Reference Guide.)

To insert a graphic image into your source code, place the geoWrite text
cursor on a completely blank line in your source file and then paste the
image as you would if you were including graphics in a regular document.

IMPORTANT: You rmust paste the graphic image into your source file
with the text cursor on a completely blank line. If you do not,
geoAssembler will ignore the data without reporting an error, even though
it will appear correctly within the document.

geos { file { edit | options { page { font i style | 3 f

2
LEFT® CENTERD RIGHTD FULLE) ¢ JUSTIFICATION

byt 60
byt ICON_|_WIDTH
.byte ICON_1_HEIGHT
.wond Dolconl

cond Picture;

ICON_1_WIDTH =picW
CON_1 _HEIGHT = picH

INE SPACING 1M X0 20
;¥ position in scanlines
Jwidth of icon in bytes
height of icon in scanlin
;pointer to handler routin

;a3sembler will place co '
here for this picture] <¢=——WIONZ:

;3tore bitmap size values
;table on pass 2. (picW a
;e assembler.)

qeos ; file { edit { options | page i font § style | 3 £

byt 60
Jbyte ICON_|_WIDTH
.byte ICON_1_HEIGHT
.wond Dolconl

cond Picture:

— | [
correct. ICON_|_WIDTH = picW

ICON_1 _HEIGHT = picH

2 2 ‘
LEFTH r:ﬁmu unsn?g FULLO ¢ JUSTIFICATION ©

INE SPACING- 18 10 20
;y position in scanlines
;width of icon in bytes
;height of icon in scanlin
;pointer to handler routin

;assembler will place co
;here for this picture:

;3tore bitmap size valugs
;table on pass 2. (picWa
;the assembler.)

4-11 geoAssembler/geoLinker

It is also a good idea to place an extra blank line at the end of each graphic

image. You can do this by pressing immediately after pasting
the image.

HINT: When cutting graphic images from geoPaint for inclusion in your
source code, it is best to first turn color off, then move the image
to the upper-left corner of the paint screen. This will ensure that
the leftmost pixels are aligned on a card boundary (byte
boundary). Any unused pixels (bits) on the right edge, up to the
next byte, will be padded with zeros. You can also create icon
images with version 2.0 of the Icon Editor.

PicH and PicW

For your convenience, geoAssembler maintains two internal variables
which hold the size of the most recently defined graphic image: picH and
picW. picH is the graphic image height in scanlines and picW is its

width in bytes. These variables are redefined after each graphic image, so if
you need the values, it is best to immediately assign them to a permanent
equate. Here is an example:

geos i fle | edit | options { page | font i style | 3 SamSeq
z 2 4 5
rim CERTERD PIGHTD FULLD ¢ JUSTIFICATICN "VINE SPACING 1M 1¥D 20

| LEF

Iconl Pictuxe: ;assembler will place co
;here for this picture;

Icon

'ICON_I _WIDTH =pictW ;3tore bitmap size values
ICON_I| _HEIGHT = picH Jlable on pass 2. (picW a
;the assembler.)

Form more information on picH and picW, refer to "Internal Variables"
in Chapter 5.

geoAssembler/geoLinker 4-12

How the Assembler and
Linker Relate

Most 6502 source code must be assembled to operate at at particular,
absolute memory adddress. That is, if you assemble your source code to

- run at address $400, you cannot load it at $800 and expect it to run ,
correctly. Most assemblers require that you explicitly declare the assembly
address at the beginning of your source code in order to generate absolute
code. geoAssembler, however, always generates relocatable object code-all
labels and addresses are resolved at link-time relative to the other linked
files. This allows you to assemble multiple source files without worrying
about where each will begin and end; the address housekeeping is handled
automatically by the linker.

NOTE: There is some confusion over the precise meaning of the terms
relocatable and absolute. geoAssembler generates relocatable
object code. This is code which is assembled at no specific
address; at link time, the linker will determine the actual absolute
address relative to a address given to the linker. Depending on the
number and size of the .rel files, the*absolute address will vary.
Don't confuse relocatable with position-independent, which is
something entirely different.

A typical, medium sixed application might have five separate source files
which are eventually linked together to form the executable program file.
Each of these source files shares a common ser of include files (files which
are inserted in the assembly with the .include directive), and all are
assembled into relocatable object files, designed to be asssigned an absolute
address at the link stage.

Assembling

These source files must each, in turn, be assembled into .rel relocatable
object files. One of the five source files is special. It is the header file,
which contains the file icon image and other identifying data. All programs
which run under GEOS must have a header. When you develop your own
applications, you must create this header manually unless the default header
serves your purposes well. The header is comprised primarily of .byte data
statements and must be assembled just like the other source files.

An asssembly will generate either one or two files, both with the basic
name of the source file but with a .rel or .err extender attached. The .rel file
is the relocatable object code and the .err is the error file.

4-13 geoAssembler/geoLinker

Linking

Once all the constituent .rel files have been created, they are ready for

linking. You run the linker with a linker command file. The linker

command file specifies the output file name, the header file name, the : ST
- absolute addresses for program code and unitialized data segements, and the

necessary .rel files to link. The linker will then run through the .rel files,

resolving cross-references and relocatable addresses,and generate an
executable program file.

Running geoAssembler

geoAssembler must be run from the GEOS deskTop. Please refer to your
GEOS User's Manual if you have any questions relating to the operations

of the deskTop.
To assemble a source file, follow these steps:

1: With your geoProgrammer work disk in the drive, double-click on the
GEOASSEMBLER icon to run the assembler.

M -

GEORSSEMELER

After the assembler loads and initializes, you should see the following

dialog box:
: 1 name.
. . ::22::'::; oy ssemble the selected file.
Darectory wmdow geosConst .
geosMac p hange drive.
Scroll arrows

bort and return to the deskTop. \)

N

- geofissembler -

Copyright 1987 Berkeley Softworks

geoAssembler/geoLinker

PP AL IR M A A T, A SR P S T

The contents of the current drive (the drive from which you ran
geoAssembler) will appear in the directory window. If more items
exist than can fit in the window, click on the scroll arrows to move
through the directory.

IMPORTANT: Do not remove your geoAssembler work disk from
the current drive until you return to the deskTop.

If you decide you do not want to do an assembly at this time, click on
the Quit icon to abort and return to the deskTop.

Select the file you want to assemble by clicking on the file name.
Then click on the Open icon to initiate the assembly.

To assemble a file from a different drive (for example, a RAM
Expansion Unit or a second floppy drive), click on the Drive icon;
the directory of the other drive will be displayed in the directory
window and a new icon labeled Disk will appear:

- geofissembler -

Copyright 1987 Berkeley Softworks

The Disk icon allows you to view the contents of a different disk.
The Disk icon was absent from the original dialog box because you
are not allowed to remove the disk which contains geoAssembler. To
view the contents of a different disk, insert a new disk into the current
drive and click on the Disk icon. The directory will be updated to
show the contents of the new disk. The Disk icon will have no effect
with a Ram Expansion Unit.

4-15 geoAssembler/geoLinker

2: Once you have selected and opened a file you wish to assemble, you
will see the following dialog box:

Please Select Output Drive:
[] Devel tools
B Assembler

Return to file-selection dialog box.

- geofissembler -

Copyright 1987 Berkeley Softworks

This dialog allows you to select the destination drive, the drive to
which geoAssembler will write the output files (.rel and .err). It will
default to the same drive as the source file. To select a different output
drive, click on the box icon next to the disk's name. The icon will
highlight. Click on the OK icon to proceed with the assembly, or
click on the Cancel icon to return to the file-selection dialog box.

3. The screen will clear and geoAssembler will print a status
message,indicating the progress of the assembly:

Assembling 0

geoAssembler prints a period after every ten lines of source code. The
number (which is zero when you begin) is a running error count and
will increment after each error. This allows you to abort the assembly
when you see a large number of errors. If the error count exceeds 99,
geoAssembler will automatically abort the assembly.

The status message is printed at the bottom of the screen because

geoAssembler temporarily uses the remainder of the screen memory
area for the symbol and macro tables.

NOTE: You can abort an assembly by pressing the key
on the Commodore keyboard.

geoAssembler/geoLinker 4-16

A b vaL @ A g w0

4. When the assembly is done, a dialog box describing the result of
the assembly will appear:

VleW error file in geownte There were” 2 errors:

) the ercor file
Assemble another file & to the Assembler

to the desklop
Exit to the deskTop .

Running geoLinker

Once you have assembled one or more .rel files from your assembly source
code, you can use geoLinker to produce a runnable program file. geoLinker
requires a linker command file such as the following:

output myprog
Jeader myhead.rel

-seq
init.rel ;initialization code
main.rel ;main program code

This linker command file (created with geoWrite) will generate a runnable
sequential program file called myprog with a header from myhead.rel

and relocatable object code from init.rel and main.rel. The three .rel files
were assembled previously. This is a very simple linker command file.
More complex applications might require a full page of linker directives and
object file names.

The Linker Command File (brief overview)

Linker command files are normal geoWrite text files except they follow a
strict format and should have a .Ink file name extender. It consists mainly

of linker directives and link file names. Comments may be added as they are
in geoAssembler — on a line, anything following a semicolon (5) is

ignored.

(For a complete breakdown of linker command files, refer to Chapter 6.)

4-17 geoAssembler/geoLinker

Linking With geoLinker

geoLinker, like geoAssembler, must be run from the GEOS deskTop.
Please refer to your GEOS User's manual if you have any quest10ns relating
to the operation of the deskTop

To create a runnable program file, you must first have created a 'linkef
command file and the proper, previously assembled, .rel files.

To actually perform a link, follow these steps:
1: With your geoLinker work disk in the drive, double-click on the
GEOLINKER icon to run the linker.

GEOLINKER

After the linker loads and initializes, you should see the following
dialog box:

Disk name. o .
 Link using the selected command file.

Change drive.

Scroll arrows

Abort and return to the deskTop.

- geolinker -

Copyright 1987 Berkeley Softworks

The contents of the current drive (the drive from which you ran
geoLinker) will appear in the directory window. If more items exist
than can fit in the window, click on the scroll arrows to move through
the directory.

IMPORTANT: Do not remove your geoLinker work disk from the ‘
current drive until you return to the deskTop. .

geoAssembler/geoLinker ~ 4-18

If you decide you do not want to do a link at this time, click on the
Quit icon to abort and return to the deskTop.

Select the command file you want to link with by clicking on the file
name. Then click on the Open icon to initiate the assembly.

To use a command file on a different drive (for example, a RAM
Expansion Unit or a second floppy drive), click on the Drive icon;
the directory of the other drive will be displayed in the directory
window and a new icon labeled Disk will appear: -

SamSeqHdr
SamSeq.Ink « Change disk in drive.

geosConst
geosMac

- geolinker -

Copyright 1387 Berkeley Softworks

The Disk icon allows you to view the contents of a different disk.

The Disk icon was absent from the original dialog box because you are
not allowed to remove the disk which contains geoLinker. To view the
contents of a different disk, insert a new disk into the current drive and
click on the Disk icon. The directory will be updated to show the
contents of the new disk. The Disk icon will have no effect with a
Ram Expansion Unit.

Once you have selected and opened linker command file, you will see
the following dialog box:

Please Select Output Drive: _
[Devel toals .
Bl Assembler
Viewable Symbol File?
[yes [oK
iy no Cancel

Proceed with link.

: Return to file-selection dialog box

- geolinker - o

1 Copyright 1987 Berkeley Softworks |y

4-19 geoAssembler/geoLinker

This dialog allows you to select the destination drive, the drive to
which geoLinker will write the output files. It will default to the same
drive as the source file. To select a different output drive, click on the
box icon next to the disk's name. The icon will highlight.

At this point you can also select whether you want to generate a
viewable symbol table. A viewable symbol table is a geoWrite file
which contains a list of all the symbols which will be sent to the
debugger. The viewable symbol table has a .sym extender, whereas the
symbol table the debugger uses has a .dbg extender.

Click on the OK icon to proceed with the link, or click on the
Cancel icon to return to the file-selection dialog box.

3: The screen will clear and geoLinker will print a status message,
indicating the progress of the link:

Linking 0
The number (which is zero when you begin) is a running error count
and will increment after each error. The counter will stop after 99
errors, although any additional errors will still be written to the error
file. You can abort the link when you see a large number of errors.

geoLinker also prints the file names of the .rel files as it processes
them. When sorting the symbol table, geoLinker prints "sorting."

geoAssembler/geoLinker 4-20

The status message is printed at the bottom of the screen because
geoLinker temporarily uses the remainder of the screen memory area
for the symbol tables.

NOTE: You can abort a link by pressing the [RUN/STOP | key on
the Commodore keyboard.

4: When the linking is done, a dialog box describing the result of the link
will appear:

) . b i There were 2 errofs:
View error file in geoWrite the error file

Link another application ;7 {_0K | to the Linker
Exit to the deskTop to the desklop

Zero errors means a successful link. Anything else means the link was
unsuccessful. At this point you can go directly to geoWrite and view
the error file by selecting the Open icon; you can rerun the linker to
link another file by selecting the Ok icon; or, you can return to the
deskTop by selecting the Quit icon.

Successful Link

If geoLinker terminates without any errors, you will have a runnable
program file on the selected destination drive. You may now test the
program by running it from the deskTop or from within geoDebugger.

4-21 geoAssembler/geoLinker

Unsuccessful Link

In the event of errors in a link, geoLinker will still generate an application
file, and the associated .dbg debugger symbol file. At this point you will
probably want to examine the .err file with geoWrite, fix the link errors,
and relink, although you can choose to ignore the errors and attempt to run
the file anyway. (For more information on the contents of the .err file, refer
to Appendix E.) : . '

Creating a Sample Application

Included on your geoProgrammer disk is a sample sequential application
illustrating GEOS menus and icons. Everything you need to assemble and
link the application is included on the disk.

To create the sample sequential application, follow these steps:

1: Copy the following files from your geoProgrammer backup disk to a
disk which contains the deskTop and geoWrite, but is otherwise
empty:

geoAssembler
geoLinker
geosSym
geosMac
SamSeq
SamSeqHdr
SamSeq.Ink

This will be your geoProgrammer work disk for the samplé
application.

2: Put your geoProgrammer backup disk away and open the work disk
you just created. Run geoAssembler and assemble the following files:

SamSeq
SamSeqHdr

Two .rel relocatable object files will be created on the disk:

SamSeq.rel
SamSeqHdr.rel

geoAssembler/geoLinker 4-22

e amB—— g e T e
‘.

U TITRTIYIRIISTS v gt

3: Run geoLinker and select the SamSeq.Ink linker command file.
geoLinker will relocate the SamSeq.rel file to an absolute address
and attach the SamSeqHdr header to create the runnable application

~ SampleSeq and a debugger symbol file SampleSeq.dbg. You can
now run SampleSeq from the deskTop '

Later, in the geoDebugger chapter, we will use the SampleSeq
application in a tutorial session with the debugger.

4-23 geoAssembler/geoLinker

~

Chapter S: geoAssembler Reference
and Advanced Topics

Chapter 5 acts as a complete reference for geoAssembler source code format,
including line syntax, assembly control, expressions, labels, directives, and
macros. Although this is primarily a reference chapter, it would be a good
idea to read it through completely at least once. For information on using
geoAssembler from the GEOS deskTop, refer to "Running geoAssembler"

in Chapter 4.

The Assembly Process

geoAssembler is a two-pass assembler. That means it processes the source
code file twice in order to correctly resolve both forward and backward
references. During both passes, geoAssembler maintains three independent
counters which determine the placement of your object code: a zsect
counter, a psect counter, and a ramsect counter. These counters refer to three
distinct sections within the eventual application: zero-page, program code, -
and unitialized dataspace.

Zero Page (zsect)

The 6502 supports a special form of addressing called zero-page addressing.
Zero-page (or page 0) refers to the first 256 bytes ($00-$ff) of memory;
Instructions which use zero-page locations take up less space and operate
significantly faster than their counterparts which use the remainder of the
addressing space. Because geoAssembler takes special actions when it
encounters zero-page variables on the first pass, zero-page variables must be
defined before they are used, and they must be defined within a special
section of your source code using the .zsect directive.

Program Code (psect)

Program code and initialized data are stored in the psect section. Program
code refers to 6502 instructions and initialized data refers to icon images and
data created with the .byte and .word directives. The absolute location of
the psect section is determined at link time and is usually specified in the
linker command file. You begin a psect section in your source code with

the .psect directive.

5-1 geo Assembler Ref.

Unitialized Data areas (ramsect)

The ramsect section maintains unitialized data areas of your program.
Unitialized data definitions within your source code allow you to reserve
memory space for your program's use with the .block directive. Ramsect
areas take up no room in the program file generated by the linker; the space
is established when the program is executed. geoAssembler allows you to
specify an absolute starting address for the ramsect section at assembly-
time, but if you supply no parameter in the .ramsect directive, the

absolute address will be established at link-time.

Pass One and Pass Two

On the first pass through the source file, geoAssembler increments the three
section counters and determines the values of all the symbols which are
defined or equated in the source file. On the second pass local labels and
forward references are resolved and any .rel or .err output files are generated.

Assembler Input

Lexical Analysis
geoAssembler evaluates the source file a line at a time. Each source line is
in the following general format:

LABEL: OPCODE: OPERAND: COMMENT:

Start: lda #HSfF ;load immediate addressing
sta table,y ;store indexed with y
iny

reset2: Ida (z_temp),y ;load indirect indexed

77%: rol a saccumulator addressing

. gcoAssembler ignores blank lines and geoWrite text formatting codes.
However, it will convert image data within your source files into compacted
bitmap data at assembly-time.

For a more basic breakdown of geoAssembler source code format, refer to
"General Syntax and Format" in Chapter 4.

geoAssembler Ref. 5-2

Symbols

A symbol is a global label or an equate. A symbol must begin with an
alpha character (A-Z or a-z), but the remaining characters can be numbers
(0-9) or underline symbols (_). Case is significant within a symbol
name. Symbols may contain as many as 20 characters, but geoAssembler
only stores the first eight.

geoAssembler reserves some symbols for its own internal use. These
include the upper- and lower-case a, x, and y, which are used for register
mode addressing, the special graphic symbols picH and picW, and the
Passl flag. Also, although it is possible, it is not a good idea to use
mnemonic names (such as lda or rol) as symbols.

HINT: Use descriptive names for variables, routines, and constants; avoid
symbol names which could easily be confused, such as pos1 and posl (the
numeric "1" and the lower-case "1"); distinguish two related labels by their
initial character rather than a trailing one — e.g., geoAssembler would
interpret position_X and position_Y as the same symbol (because the
first eight characters are identical), but not X_position and Y_position.

Equates
'An equate is a symbol which is given an explicit value with elther the =or .

= assembler directive. The only difference between the = directive and the
== directive is that equates made with the double equal-sign are sent to the
debugger, whereas those made with a single equal-sign are not. This allows
you to avoid cluttering geoDebugger's symbol table with unneeded equates.
Both types of equates, however, are still passed to the linker unless they are
preceded by a .noeqin directive, which will limit their scope to the current
assembly file.

Examples:
bitmask == %01001110 swill be sent to debugger
null = 0 ' ;will not go to debugger
S_flag = - (%0100 & bitmask) ;will not go, either

IMPORTANT: All equates must be resolvable on the first pass of the
assembly. This means you cannot use any forward, relocatable, or external
references in the definition of an equate; all symbols which are used in an
equate definition must already be defined with an absolute address.

5-3 geo Assembler Ref.

Labels

Labels are symbols which take the value of the current section counter. In a

psect section for example, a label will be assigned the current value of the

psect counter. Likewise, labels in the zsect section will take the current

value of the zsect counter, and labels in the ramsect section will take the _
current value of the ramsect counter. All psect labels and most ramsect ' |
labels are relocatable — they are not given an absolute address until link-

time.

Labels are defined by placing a symbol within the label field of a source
line and following it with a colon (:). Note, however, that the colon is not
actually part of the symbol's name — subsequent uses of the label must

omit the colon.
Examples:
.zsect $20 ;set initial zsect counter value
templ: Jblock 1 stempl will equal $20
temp2: .block 1 stemp2 will equal $21
pointer: Jblock 2 spointer will equal $22
Mem_free: .block 4 sMem_free will equal $24
.psect slinker will calc abs location ' (-
Start: |
Idy temp2
lda X table, y
sta templ
Jsr set_mouse
drop: lda (pointer), y
sta X_mouse
iny
Ida (pointer), y
sta Y_mouse
rts |

X_table: .byte mousel, mouse2, mouse3, mouse4
.byte mouse5, mouse6, mouse7, mouse8

Jamsect slet linker calc. abs location

X mouse: .block 1 (
Y_mouse: .block 1 i

geoAssembler Ref. 5-4 |

Note that these labels are global labels — they can be accessed from
anywhere within the current assembly file and cross-referenced from other
relocatable object files if they are passed to the linker. Labels which follow
a .noglbl directive are not passed to the linker. This means that such

labels are hidden from other modules at link-time; the scope of .noglbl

- labels is limited to the current assembly. The default is to send all global
labels to the linker

Local Labels :

Local labels consist of one to four numeric digits followed by a dollar-sign
($) in the form nnnn$, where nnnn is a one to four digit number. Local
labels are only visible to code within the current local region. Local regions
are delimited by successive global labels. When defining a local label, the
colon (:) after the label is optional.

NOTE: Although local labels are made up of numeric characters, they are
not in fact numbers — the one to four digits are treated as a text
string. For this reason, 00718, 0718, and 71$ are all different
local labels.

You can only use a local label as the destination of a branch instruction
from within the same local region. Local labels are not passed to the linker
and are not included in the symbol table. They are resolved on the second
pass of the assembly.

Example:
routine: lda #$00 ;start of a local region
1dy #count
1$: sta bitmap, y ;local label defined
lda Xmap, x
cmp #abort _
beq 863% sbranch to local Ibl (forwards)
inx
dey
bne 1$ sbranch to local 1bl (backwards)
869%: rts ‘ sanother local label defined
routine2: lda #fF snext global; delimits local

region

5-5 geo Assembler Ref.

IMPORTANT: Avoid using large-value local labels such as 9999$ and
9988$ because the macro processor generates local labels counting
backwards from 9999$. You should have no problems with local labels
less than 9000$. For more information, refer to .macro later in this
- chapter. ’ '

6502 Opcodes and Operands

Opcodes

geoAssembler recognizes the full set of MOS Technology 6502
mnemonics. There are 56 in all, and they can be found in books describing
6502 assembly language.

Some 6502 assemblers support alternate mnemonics for various
instructions, such as bge (branch on greater than or equal) for the standard
bes. It is a fairly simple procedure to define a set of macros to support-such
options. For example:

Alternate mnemonic macro
bge: branch on greater than or equal to
(unsigned comparisons)

we Ve wo wo

Jmacro bge branch_dest
bce branch_dest
.endm
Operands

Many of these 6502 instructions support a variety of addressing modes,
pushing the total number of operations (combinations of instructions and
operands) up to 115. The following addressing modes are recognized by
geoAssembler: ’

MODE OPERAND FORMAT
implied (blank)

relative addrexp

accumulator a

absolute zp-address

geoAssembler Ref. 5-6

U AT B SO B ot

absolute indexed X zp-address.x; addrexp,x

absolute indexed Y zp-address.y; addrexp,y
indexed indirect (zp-address.x)

indirect indexed (zp-address),y

For more information about 6502 instructions and Opefaﬂds, conshlt a book
describing 6502 assembly language. Refer to Appendix D for a list of such
books.

Comments

You can place a comment almost anywhere in your source code. It can share
a line with other items such as labels and instructions, but it must always
follow those items. A comment begins with a semicolon and extends to the
end of a source line; geoAssembler ignores everything on the line after the
semicolon. The only time a semicolon does not introduce a comment is
when it appears within quotations, in which case it is considered ASCII
string data.

;this line is a comment
Ida #55 ;this, too, is a comment
Jbyte "these; are; not; comments;" ;but this is!

Expressions

Numeric Constants

geoAssembler will work with decimal (base 10), hexadecimal (base 16),
octal (base 8), and binary (base 2) numbers in addition to character data. All
numbers are considered to be 16-bit (two bytes) values for expression
evaluation. »

Decimal: A string of decimal digits (0-9).
Example: 1234

Hexadecimal: A dollar sign ($) followed by a string of hexadecimal

digits 09, a-D).
Example: $4f9c

5-7 geo Assembler Ref.

Octal: A question mark (?) followed by a string of octal digits
©-7).
Example: 207117

Binary: A percent sign (%) followed by a‘string of binary digits
O,1). '
Example: %11001010

Character: A single ASCII character enclosed in single-quotes (*).
The character is converted to a 16-bit value with the high-
byte set to zero.

Example: 'A'

Notice that in an expression, the following would all be equivalent:

24930 (decimal)
$6162 (hex)
260542 (octal)
%0110000101100010 (binary)
("a'*$100+'b") (character)

Expression Evaluation

geoAssembler sports a full logical and arithmetic expression evaluator used
to resolve operands and equates encountered in the source file. The
expression evaluator is a standard algebraic parser which allows a wide
variety of operators and nested parenthesization. It is much like the
expression evaluator built into a standard C compiler or a BASIC
interpreter.

An expression is any valid combination of symbols, numeric constants, and
operators which geoAssembler can evaluate. geoLinker also supports this
expression evaluator. This allows you to use complex expressions which
contain external symbols (and, hence, cannot be evaluated at assembly-time)
within your source code; geoLinker will evaluate them properly at link-
time.

Arithmetic Operations

The expression evaluator uses 16-bit values for all its calculations. As an
added benefit, it partially supports the two's-complement numbering
system. Two's complement math allows positive and negative numbers but
isn't true signed arithmetic; it's actually an artifact of binary math which
allows addition and subtraction operations to "automatically" handle signed

geoAssembler Ref. 5-8

S~

and unsigned numbers because they are stored in the same 16-bit format.
For example, a $fffe can represent 65534 or -2, depending on whether the
number is considered to be signed or unsigned. For the majority of the
cases, it won't matter whether you are dealing with signed values or
unsigned values — The result will be correct. For example, the following
two expressions will evaluate identically, even though one is 31gned
arithmetic and the other is unsigned:

(-1) -) -I equals $ffff 65535 - 2 65535 equals $ffff
2 equals $0002 2 equals $0002
$(F - $0002 = $fffd ST - $0002 = $fffd
$ffd = -3 $ffd = 65533

However, there is a fly in the ointment. In cases of overflow (signed or
unsigned) the result is truncated to 16-bits and no error is flagged. In short:
if an unsigned value exceeds the range

0 <= number <= 65535

the value 'will truncate to 16 bits without flagging an unsigned overflow; if
a signed value exceeds the range

-32768 <= number <= 32767
the value will truncate to 16 bits without flagging a signed overflow.

The expected result of adding $ffff to $fff might be $1fffe if the arithmetic
is considered unsigned, but this value cannot be contained in 16-bits, so the
result is trunctated to $fffe, which just happens to be the correct signed
result of (-1) + (-1), or -2, but an incorrect (truncated) unsigned result.

Also, when you are expecting a signed result and working with very large
positive numbers or very small negative numbers, there is a possiblity that
there will be a carry into the sign bit, resulting in what could be interpreted
as a numeric overflow (example: -32768-5).

It is beyond the scope of this manual to document all the intricacies of
two's-complement arithmetic. However, most assembly language books
cover this topic in sufficient detail. Refer to Appendix D for reading
recommendations.

Logical Operations
In addition to arithemtic operations, the expression evaluator can also

59 geo Assembler Ref.

handle logical, or Boolean, operations. A logical expression is very much
like an arithmetic expression, except that it has only two possible values:

true or false. The result of a logical expression is called the truth value of
the expression. Logical expressions are espemally useful with condmonal
assembly directives such as .if. :

Although logical and an'thmetic operations are conceptually very different,
the expression evaluator treats them similarly. The truth value of a logical
expression is actually a numeric value. If the expression is true, it evaluates
to an arithmetic one ($0001), and if the expression is false, it evaluates to
an arithmetic zero ($0000). Conversely, if an arithmetic expression
evaluates to non-zero, it is considered a logical true, and if it evaluates to
zero, it is considered a logical false. This allows you to intermix logical and
arithmetic operations within the same expression.

geoAssembler Ref. 5-10

Operators

The following table shows all the valid operators and their precedence:

OPERATOR
0
!

[or<

PRECEDENCE

OWoooIIIJaoaouwmumbhbhbuwbddbbdDDNO =

grouping parentheses (sub-expression)
unary negation

logical not

bitwise one's complement
low-byte

high-byte

exponentiation
multiplication

division

modulus

addition

subtraction

logical shift right

logical shift left

logical greater than

logical greater than or equal to
logical less than L
logical less than or equal to
logical equal

logical not equal

bitwise and

bitwise exclusive-or (xor)
bitwise inclusive-or (ora)
logical and

logical exclusive-or

logical inclusive-or

(For information on typing-in certain operator symbols, refer to "Special
Keystrokes" in Chapter 4.)

IMPORTANT: A common error is to use the BASIC logical not-equal
operator (<>) instead of the geoAssembler !=. For example, if you used

JAf (version<>c64)

instead of

5-11 geo Assembler Ref.

JAf (version != c64)

the expression evaluator would not recognize <> as a valld operator and
would parse the expression as:

Af ((version) < (>c64))
or "if version is less than the high-byte of c64."

Evaluation

Expressions are evaluated based on operator precedence. Operators with
lower precedence numbers are evaluated first, and operators with equal
precedence are evaluated left to right. You can override operator precedence
by grouping subexpressions within parentheses.

geoAssembler will ignore any whitespace between arguments and operators.
Proper spacing can make complex expressions easier to read and understand.

Example expressions:

loopl

screen + $400 + %00001001

ram_start + buf_size-1

(mask1 | 1)<<4

((($8000<=0ffset1)& & (mask1<<12)) || ((Jtable&mask2)>40))
(('p'_lA') + 2)

Operator: ()

Parentheses are used for grouping subexpressions in order to clarify or
change the order of an expression's evaluation. For example, say we wanted
to find which memory page (256-byte boundary) the address bitmap +
evaluates to, we might try writing it as ' $3fff

bitmap + $3fff / 256
This would first divide $3fff by 256 (the number of bytes in a page) and add
the result to bitmap because division (/) has a higher precedence than

addition (+) — perfectly legal, but not what we wanted. We need to divide
the entire expression by 256, not just the $3fff argument. We can use

geoAssembler Ref. 5-12

parentheses to override the operator precedence.
(bitmap + $3fff)/256

Now $3fff is first added to bitmap and the result is then divided by 256 =
which provides us with the correct page number..

IMPORTANT: The standard round parentheses do double-duty in
geoAssembler — they are used for both expression grouping and 6502
indirect addressing modes. This can pose a problem for the parser when it is
unclear from context whether the parentheses are supposed to indicate
grouping or indirection. For example, an ambiguous expression such as

lda (label*5),y

could be interpreted as

lda expressiony sabsolute indexed
oras - ’

lda (expression),y sindirect indexed

In such cases, geoAssembler gives precedence to the addressing mode,
which it establishes prior to sending the expression to the expression
evaluator. If you do not want indirection, leave off the outer parentheses.

In order to speed assembly, geoAssembler establishes the addressing mode
prior to parsing the expression. When looking for indirect addressing,
geoAssembler does not actually go through and pair up matching
parentheses (the job of the expression evaluator); rather, it merely looks for
two outermost opening and closing parentheses in the operand. In most
cases, these outermost parentheses do in fact indicate indirect addressing.
However, this method is not foolproof — in some special cases, such as

lda (addr+2)*(addr+3),y sindirect indexed

the parser sees the left- and rightmost parentheses and assumes indirect

5-13 geo Assembler Ref.

addressing, even though, in the expression, these do not pair up. If you
must include this type of expression in the operand, and you do not want
indirect addressing, simply attach a monadic plus sign to the leftmost
expression:

lda +(addr+2)*(addr+3),y s;absolute indexed

This way, the parser never encounters the leftmost parenthesis (it sees the +
instead) and will therefore use absolute addressing, while the plus-sign has
no effect on the eventual evaluation of the expression.

Operator: - (unary)

The unary minus sign simply negates the 16-bit sign of the number (two's
complement negation). The expression -10 is equivalent to 0-10; it's as if
the number were subtracted from zero.

Example:
-16 is equivalent to $fffQ

Operator: ~ (unary)

This unary operator yields the bitwise one's complement of a number by
reversing all 16 bits. All 1 bits become 0 and all O bits become 1. It is
equivalent to exclusive-or'ing a value with $ffff (-1).

Example:
~%0000111101010011 ($0£53)
yields
%1111000010101100 ($f0ac)

Operators:], [, <, > (unary)
These operators extract the high- or low-byte from a two-byte number.]
and > extract the high-byte; [and < extract the low-byte.

Examples:
1$fe34 yields $fe
[$fe34 yields $34

>$783e yields $78
<$783e yields $3e

These operators are especially useful for dealing with two-byte addresses as
in:

geoAssembler Ref. 5-14

;store address of ISR routine into a jump vector

sei ;stop all interrupts

lda #isr ;get low byte

sta isr_vec ;set into vector in low/high order
Ida #lisr ;get high byte

sta isr_vec+1

cli sreenable interrupts

Operator: **

The exponentiation operator allows you to raise a number to an integer
power. The exponentiation, as with other operations, is restricted to the
range of a 16-bit signed integer.

Example:
2%+ s equivalent to raising two to the eighth power (28 = $100).

Operator: //

The modulus operator provides the remainder of integer division. For
example, 21 modulo 5 results in the remainder of 21 divided by 5; since 5
divides into 21 four times with a remainder of one, 21 modulo 5 is 1.

Example:
35//$a is equivalent to the remainder of 35 divided by 11, or 2.

Operators: *, /, +, -

These standard arithmetic operators (multiplication, division, addition, and
subtraction) all operate on 16-bit numbers. Addition and subtraction will
take advantage of the two's complement numbering system, allowing
positive and negative numbers and will, therefore, not generate overflow
errors. Multiplication and division are unsigned. Multiplication overflow
will generate an error. The division operator is purely integral, thereby

- discarding any remainder or fractional portion of the result.

Operators: >>, <<

These operators shift the argument on the left of the operator the number of
times determined by the argument on the right of the operator. << is a left
shift and >> is a right shift. The shifts are not arithmetic, so there is no
sign-extension. Bits shifted out of the 16-bit integer are lost. Zeros are
shifted in.

Examples:

5-15 geo Assembler Ref.

%0001<<3 shifts %0001 left 3 times, resulting in %1000
$ffce>>4 shifts $ffce right 4 times, resulting in $0ffc

(high_byte<<8) & ‘(low_byte)v

Operators: &, |, *

These bit operators perform and, or, and exclusive-or operations
(respectively) on the binary values of two arguments. They are analagous to
the 6502 and, ora, and eor instructions. & (and) yields a one-bit in the
result wherever there is a one-bit in both arguments; | (or) yields a one-bit
in the result wherever there is a one-bit in either arguemnt; * (exclusive-or)
yields a one-bit in the result wherever there is a one-bit in either argument
but not in both.

Examples: ,
%1100 & %1010 yields %1000
%1100 | %1010 yields %1110
%1100 A %1010 yields %0110

(digitl & $000f) | (digit2<<d & $00f0)

Operator: !

Pronounced "not," this unary logical operator negates the truth-value of an
expression. If the expression is true (non-zero) it evaluates to false (zero); if
the expression is false (zero) it evaluates to true (one).

Examples:
False =0 sequate to false
True = !False ;set to opposite truth value
Af !debug_mode ;if not in debug mode...

geoAssembler Ref. 5-16

Pean

Operators: >, >=, <, <=, ==, =, !=

These standard comparison operators compare two 16-bit unsigned integer
expressions and evaluate to either logical true (one) or logical false (zero).
They are most often used in conditional assembly, but can appear in the
context of any expression. The single and double equal sign are
interchangeable as comparison operators

Examples:

10> 6 evaluates to true (10 greater than 6)
%110 >= $22 evaluates to false (greater than, equal to)
$fe < 100 evaluates to false (less than)

260542 <= $6162 evaluates to true (less than, equal to)

$fc == 252 evaluates to true (equal to)

$ffff = -4 evaluates to false (equal to)

12 !=12 evaluates to false (not equal to)

Jif (disk_buf > (10 * $400)) ;if greater than 10K...

NOTE: The > and < logical symbols operate with pairs of eXpressions;
they act quite differently in a unary context (high- and low-byte
operators). '

Operators: &&, ||, A?

These logical operators perform and, or, and exclusive-or operations
(respectively) on the truth-value of two expressions. && (and) evaluates
true if both expressions are true; || (or) evaluates true if either expression is

true; A4 (exclusive-or) evaluates true if one expression is true and the other
is false.

Examples:

Jdf (buffer_size >= 100) && (buffer_size <1000)
If the buffer size is greater than or equal to 100 and it's also less than
one thousand, then...

Jif (data > 1000) || (buf flag) || (free_space < (20 * $400))

If the data size is greater than 100 or the buffer flag is set to true or
there is less than 20 Kilobytes of free space, then...

5-17 geoAssembler Ref.

Jif (debug AA test)
If the debug flag is set or the test flag is set (but not both), then...

Mixing Logical and Arithmetic Expressions

Logical and arithmetic expressions may be intermixed. Log1ca1 expressmns
evaluate to either an arithmetic one (1) if the expression is true, or an
arithmetic zero (0) if the expression is false. Conversely, if an arithmetic
expression evaluates to non-zero, it is considered a logical true, and if it
evaluates to zero, it is considered a logical false. Arithmetic and logical
operators can even be used within the same expression. As an example,
consider the following:

buf space = drives*(cache_siz+((disk>K_thresh)*big_buf))

Notice the logical subexpression (disk>K_thresh) buried within the
expression. If disk is greater than K_thresh, then the subexpression will
evaluate to true, and its arithmetic value of one will be used as a
multiplicand to include the value of big_buf. However, if disk is less
than or equal to K_thresh, then the subexpression will evaluate to false,
yielding an arithmetic value of zero, and preventing the value big_buf
from being added into the expression.

NOTE: relying on the arithmetic value of a logical expression (as in the
above example) is sometimes considered bad programming
practice. The same result can always be realized with multiple
expressions and conditional assembly.

geoAssembler Ref. 5-18

Directives

Directives, often called pseudo-ops, instruct geoAssembler to perform some
action, such as include another source file, begin a macro definition, or
define an equate. Other than .byte and .word, directives do not generate
any object code. Most directives are preceded by a period (.) to distinguish
them from macro names and 6502 mnemonics.

Summary of Directives
The following directives are recognized by geoAssembler.

Assembly Control

JAnclude Include another source code file into the assembly.
.zsect Begin zero-page section.

Jramsect ‘Begin unitialized data section.

.psect Begin program section (default).

.echo Echo text to the error file.

.end End assembly (optional at end of source file).
Symbols

= define equate; do not send symbol to debugger.
== define equate; send symbol to debugger.

.qin Begin sending equates to the linker (default).
.Jnoeqin Stop sending equates to the linker.

.glbl Begin sending global labels to the linker (default).
noglbl Stop sending global labels to the linker.

Data

Jbyte Include byte-sized data and strings into psect section.
-word Include word-sized data into psect section.

Jblock Reserve space. ‘

Conditional Assembly

if
else
elif
.endif

Start conditional; assemble if expression is true. -
Assemble if expression was false.

Start new conditional if expression was false.
End conditional.

5-19 geoAssembler Ref.

Macro Definition

.macro Begin macro definition.
.endm End macro definition.
Header Definition

Jheader Begin header definition.
.endh End header definition.

geoAssembler Ref. 5-20

Assembly Control Directives

Directive: .include

Purpose: . Includes source code from another file directly in-line with the
current assembly.

Usage: .include filename

Note: The filename must be a valid geoWrite source file. If you have
two drives (one can be a RAMdisk), geoAssembler will
automatically search both for the desired file, starting with the
same disk as the current assembly file.

When geoAssembler encounters a .include directive, it suspends assembly
of the current file and begins reading source lines from the specified include
file just as if they were part of the original assembly file. When
geoAssembler encounters the end of the include file or a .end directive, it
returns to the previous assembly level and continues with the line

following the .include.

Include files may themselves have .include directives. However this file

nesting may only extend to a depth of three. That is: you may only have |
three levels of files (counting the main assembly file) which include other |
files. Any including beyond this limit will generate an error. |

Example: |
Jdnclude macros ” |
.Anclude zpage

.nclude equates

.Anclude maincode

JAnclude subroutines

(Note: this is not an example of nesting)

5-21 geoAssembler Ref.

Directive: .zsect

Purpose: Begins zero-page definitions section.

Usage: .zsect [zp-address]

Note: zp-address is an optional zero-page absolute address ($00-$ff); If
the address is omitted, geoAssembler will use the current value
of the zsect location counter. At the start of an assembly, the
zsect location counter is initialized to $00.

A zsect section is essentially a zero-page version of ramsect section;
geoAssembler maintains a separate section for zero-page variables because
zero-page references must be resolved during the first pass of the assembler.
For this reason, the zsect section, unlike the ramsect section, cannot be
relocated and must be given an absolute address at assembly-time; there is
no .zsect linker command.

Because of the way zero-page references are handled, they must be defined
before they are actually used; they are evaluated during the first pass of the
assembler and cannot be left to the linker for resolution, nor can they be
forward-referenced. This poses a problem for multiple source files which
access the same zero-page variables because you cannot rely on linker
resolution as you can with non-zero-page addresses. The best way to handle
this is to .include a zero-page definition file into the assembly of each
source module, treating zero-page variables as if they were equates.

.zsect begins a zsect section and it extends until the next .ramsect or
Jpsect directive. Source code in a zsect section cannot generate any object
code. This means that 6502 opcodes, .byte, and .word will all generate
errors within a zsect section.

.zsect is used in combination with the .block directive, allowing the
zsect location counter to be incremented and variable space to be reserved.

NOTE: It is not necessary to include zero-page equates (as opposed to
labels) within a zsect section. geoAssembler is smart enough to
use zero-page addressing when an equated constant is less than
$100 is used as an address.

geoAssembler Ref. 5-22

Ly ey ———

e mentres o e

Example:

.zsect $70 ;begin zp variable space
3 ZERO PAGE VARIABLES)
L counter: .block 2 = =

pointer: .block 2

templ: .block 1

temp?2: .block 1

temp3: .block 1

X_coords: .block 4

Y_coords: .block 4

Jpsect send zsect section and begin psect

5-23 geoAssembler Ref.

Directive: .ramsect

Purpose: Begins unitialized data (non-zero-page) section.
Usage: .ramsect [addrexp]

Note: addrexp is an optional absolute address within the 6502's
addressing space ($0000-$ffff). If the address is an expression, it
must evaluate on the first pass of the assembler — the
expression may not contain any external symbols, nor any
relocatable, external, or unresolved labels. If an address is not
specified, it will be left to the linker to relocate the data area; If
an address is specified, the current and all subsequent ramsect
definitions will be assigned absolute addresses at assembly-time
— previous ramsects (without addresses) will be unaffected and
will still be relocated by the linker.

A ramsect directive begins a ramsect section, which extends until the
next .psect or .zsect directive. Source code in a ramsect section cannot
generate any object code. This means that 6502 opcodes, .byte, and word
will all generate errors within a ramsect section.

All labels within a ramsect section are assigned the current value of the
ramsect counter. In most cases, you will want the absolute value of these
data areas to be determined by the linker, which it will do automatically if
no absolute address is specified. However, sometimes it is desirable to
assign an absolute value to the ramsect counter during assembly. In these
cases, simply follow the .ramsect with a valid absolute address — all
subsequent labels in .ramsect sections will be assigned values based on
this address. In either case, ramsect sections take up no space in the
eventual application file; they are merely placeholders during the assembly-
link process.

Like the zsect section, the .block directive is used to increment the object
code counter and reserve data space.

IMPORTANT: When your program is executed, the values in ramsect
data areas are unknown and should not be used without first initializing
them. An ideal way to initialize .ramsect variables is with the GEOS
InitRam routine.

o geoAssembler Ref. 5-24

Example:
Jamsect sbegin variable/data space -- let linker

resolve
H VARIABLES
timer: .block 3

X _pos: Jblock 2
Y_pos: Jblock 2
Coldstart: .block 1
H DATA BUFFERS
disk_buf: .block $100
scrn_buf: .block $1000
scratch: .block 16
Jramsect scrn_RAM sstart new ramsect
(absolute)
Foreground: . .block $1000
Background: .block $1000
Jpsect send of data space, start of program area

5-25 geoAssembler Ref.

Directive: .psect
Purpose: Begins program code and initialized data section.
Usage: .psect

Note: Unlike .zsect and .ramsect, Jpsect will not accept an
absolute address. Psect sections are always relocated to an
absolute address by the linker.

When geoAssembler starts processing a file, it defaults to the psect section.
The psect section contains all opcodes and initialized data — essentially
anything which will generate object code (6502 source code, .byte, .word,
etc.).

When geoAssembler begins, the psect location counter is set to zero. As it
passes through the source code, it increments this counter to accomodate the
object code generated. All labels within the psect section are assigned the
current value of the psect counter. At link-time, these relocatable values are
changed to absolute values in the relocation process.

NOTE: The .block directive éan be used within a psect section; it will
generate a block of zeros ($00) in the object code.

geoAssembler Ref. 5-26

TP AR T U R SN X 1

Example:

-psect
Initbufr: 1dx
1% lda
sta
inx
cpx
bne
rts

H

initdata: .byte
.byte

idata_end:

idata_size =

.

H

;start program section

#300 .)
initdata,x sinitialize the data buffer -
buffer,x ' ' ’

#idata_size ;only copy proper # of bytes
1$:

$34y $54, $10’ $f5’ ff $ao, $a3
$90, $0d, $f1
splaceholder for end of data
idata_end - initdata

Jramsect ;start ramsect section for buffer space
buffer: Jblock idata_size
H .

Jpsect send ramsect and return to psect

5-27 geoAssembler Ref.

Directive: .echo

Purpose: Sends user-defined text to the error file.

Usage: .echo fext |

Note: text is up to éAfull line of ASCII text. No quotes are required.

The .echo directive sends a line of text to the .err file generated by
geoAssembler.

This allows you to generate your own messages, warnings, and errors
which will be written to the error file. This won't actually create assembly
errors, however — the error count doesn't actually change — only the text
is sent to the file.

Example:

if debug
Anclude dbgcode
.else

.echo Warning: debugging code not installed
endif

geoAssembler Ref, 5-28

-
T ey,

T

Directive: .end

Purpose: Ends the current level of assembly — if in an include file,
geoAssembler resumes processing of the parent file; if in a main
assembly file, geoAssembler ends the assembly.

Usage: .end

The .end directive is entirely optional because the normal end-of-file

marker in geoWrite files will alert geoAssembler to end the current level of
assembly. It is included here mainly for historical purposes.

5-29 geoAssembler Ref.

Symbol Directives

Directive: =, ==
Purpose: To ecjuate a value 1o a symbol.
Usage: symbol = exp

symbol == exp

Note: symbol is a valid symbol name followed by a colon (:) and exp
is an expression which evaluates to an absolute value at
assembly time. An equate may be either an address or a constant.

The = and == directives assign absolute, constant values to symbols which

may later be used within expressions. Equates make your source code easier

to read and understand, as well as maintain. They allow you to use

descriptive names for constant values (e.g., NULL for $00 or FF for an

ASCII form-feed) and addresses. Additionally, if you use the equate

consistently, you need only change the symbol definition to affect a change
- throughout the entire program.

The == directive will cause the symbol to be included in the symbol table
used by the debugger; the = will cause the symbol to be excluded from the
symbol table used by the debugger.

IMPORTANT: Equates must be resolvable on the first pass of the
assembly. This means you cannot use any forward or external references in
an equate's definition; the expression cannot contain any symbols which
have not yet been defined, regardless of whether they are defined later in the
current file or during the link-stage.

NOTE: Whether or not equated symbols are sent to the linker can be
controlled with the .eqin and .noeqin directives. If the
Jnoeqin option is in effect, even symbols equated with the ==
directive will not make it beyond the assembly-stage.

geoAssembler Ref. 5-30

Directive: .eqin, .noeqin
Purpose: To allow or suppress equate passing to the linker.
Usage: .eqin
noeqin
Note: No parameters.
geoAssembler, by default, passes all equates to the linker. At times it is
desirable to prevent this from happening to certain symbols, to limit the
scope of these equates to the current assembly file.
.Jnoeqin instructs geoAssembiler to stop sending equates to the linker. All
subsequent equates, up to a following .eqin directive, will not be sent to .
the linker. They can only be accessed from within the current assembly file.
They will be invisible to any other .rel files which are later linked.
.eqin instructs geoAssembler to once again send equates to the linker.
NOTE: Because equates suppressed with the .noeqin directive will not
be sent to the linker, they will also never get sent to the

debugger regardless of whether the = or the == directive is used.

Example:

; --- sent to linker and debugger ---

sector: = $01

track : == $5¢

buf addr: == $3000

b

; --- sent to linker but not debugger ---
EOF: = -1

EOL: = $4c

9

; --- not sent to linker nor to debugger ---
Joeqin

start cnt: = $ff

retries: = $0a

home: == track*2

.eqin '

geoAssembler Ref. 5-31

Directive: .glbl, .noglbl
Purpose: To allow or suppress global labels passing to the linker.
Usage: .glbl
Jnoglbl
Note: No parameters

By default, geoAssembler passes all labels to the linker. At times it is
desirable to prevent this from happening to certain symbols, to limit the
scope of these labels to the current assembly file.

Joglbl instructs geoAssembler to stop sending labels to the linker. All
subsequent labels, up to a following .gIbl directive, will not be sent to the
linker.

.glbl instructs geoAssembler to once again send labels to the linker. They
can only be accessed from within the current assembly file. They will be
invisible to any other .rel files which are later linked.

- NOTE: Because labels suppressed with the .noglbl directive will not
be sent to the linker, they will also never get passed to the
debugger.

Example:

;--- send these labels to linker ---

.glbl

Start:
.nclude maincode

H

jump_tbl:
-word Draw_box, Move_icon, Call_extern
-word Copy_buf, Read_mouse, Pterm

o we

;--- suppress sending these to linker ---
-Jnoglbl
local_jumps:
word box_remove, mouse_reset, abort
warmstart:
Jnclude main2
.glbl

5-32 geoAssembler Ref.

Data Directives

Directive: .byte
Purpose: Deposits byte-sized data Vdjréctly into the object code.
Usage: .byte exp|string{,exp|string}

Note: explstring refers to either a valid expression or an ASCII string
enclosed in double-quotes.

The .byte directive inserts data bytes directly into the object code and
increments the psect counter appropriately. .byte can only be used within a
psect section. With expressions that exceed the capacity of one byte (>$ff),
only the low-byte of the value will be used, and a warning will be
generated. To explicity extract the low-byte, use the < or [operator; to
extract the high-byte, use the] or > operator.

String data enclosed in double-quotes will generate the ASCII equivalent for
each character in the string, one byte per character.

Examples
stringl: .byte "This is a sample string", CR, LF, NULL
datal: Jbyte $ff, %0101111, "hello", $56, $34+'@"

Hi_jmp: Jbyte Jaddrl, Jaddr2, Jaddr3, Jaddr4
Lo_jmp: .byte [addrl, [addr2, [addr3, [addrd

geoAssembler Ref. 5-33

Directive: .word

Purpose: Deposits word-sized data (two bytes) directly into the object-code
in 6502 low-byte, high-byte order.

Usage: .word exp{,exp}

Note: exp refers to a valid expression. Strings are not used.

The .word directive inserts data words directly into the object code and
increments the psect counter appropriately. A word is two consecutive

bytes, and, on the 6502, the low-byte is stored first. .word is usually used
to store address data for jump tables.

Note that

-word $12fe slow followed by high
is equivalent to

Jbyte [$12fe,]$12fe - s;low followed by high

Byte-sized daté stored with the .word directive will have the high-byte set
to $00.

Examples:
word jumpl, jump2, jump3, jump4, jump5, $00
word addrl, addr2, addr3, ($5000+addr4)/2+1

5-34 geoAssembler Ref.

vy T g s e 5t st te e e e e e
.

e

Directive: .block

Purpose: Reserves unitialized data space in zsect and ramsect sections.
Can also be used to generate blocks $00 bytes in a psect section.

Usage: .block exp

Note: exp refers to a valid expression which determines the number of
bytes to actually reserve. The expression must be resolvable
when it is encountered on the first pass and cannot contain
external or relocatable symbols.

.block is used within zsect and ramsect sections to reserve byte-sized space
without actually generating any object code data. It merely increments the
appropriate zsect or ramsect counter by the specified number of bytes.

NOTE: .block will generate a block of zeros ($00) when used within a
Jpsect section.

Example:

zsect $30
critic: Jblock 1
on_flag: Jblock 1
timer_3: .block TIMER_size*2
date: Jblock 4
-ramsect
temp1: Jblock 2
temp2: .block 2
U_right: Jblock 2
L _left: Jblock 2
buffer: Jblock 3000+(disk_K*$100)
buf flag: .block 1 : '
screen: Jblock $8000
Jpsect

geoAssembler Ref. 5-35

Conditional Assembly

Conditional assembly allows you to have specific sections of source code
automatically included in or removed from the assembly based on the truth-
value of an expression. This allows you to use the same source code files to
assemble different versions of the same application. For example, during
program development, you might build diagnostic code into the application,
code which will display the program's status and other debugging
information. This code is unnecessary in the final version, though. One
elegant way of handling this is to surround your debugging code with
conditionals. During development, you set an equate in the main assembly
file which causes these conditionals to evaluate to true, thereby including
the diagnostic routines. In the final version, you need merely change the
value of the equate so that the conditionals don't succeed and the code is not
assembled.

Directive: .if, .else, .elif, .endif

Purpose: Conditional assembly directives; Instruct geoAssember to either
include or ignore specific lines of assembly code based on the
truth-value of an expression.

Usage: .if exp
[.else|.elif exp]
endif

Note: exp is a valid expression, usually a logical expression.

The .if directive begins a conditional section. If the expression evaluates to
false, assembly is suppressed until geoAssembler encounters an .else,

«elif, or .endif. At that time, assembly is resumed or not depending on

the directive encountered. If the expression is true, geoAssembler continues
assembling. You can think of a conditional like this: "If the expression is
true, then the following source lines will be assembled..."

geoAssembler determines the truth-value of the expression using the

standard logical expression evaluator. A zero value is considered to be false;
a non-zero value is considered to be true.

5-36 geoAssembler Ref.

The simplest use of a conditional consists of an .if followed by some
source lines which end with an .endif. If the .if expression is false, the
code between the two directives will be left out of the assembly; if it is
true, they will be included. ' ' '

Example:

Aif (buffer>=$3000) sconditional

;*** this code is only assembled if buffer>=$3000
lda #M_on
sta semaphore
jsr xtra_buf
Jjsr Malloc

endif send of conditional

s*** assembly is now back to normal...

The .else directive allows you to set up two mutually-exclusive sections
of code, one (and only one) of which will be included in the assembly.
Think of the .else directive as: "If the expression is true, assemble this
chunk of code... else, it must be false, so assemble this..."

Example:
JAf (diagnosis == ON) ;if the diagnosis code is
desired...
.nclude WhatsUp sthen...
lda #flag_ ON ; assemble
sta fallout H this
sta crash ; stuff...
jsr breakpts
.else ;otherwise, use this code
instead... :
lda #flag OFF ;- this gets assembled only if
sta fallout H (diagnosis != ON)
sta crash
.endif send of conditional

geoAssembler Ref. 5-37

The .elif directive is merely a combination of the .else and the .if
conditionals. It allows an .else to trigger another conditional. In this case,
the additional .if implicit in the .elif requires its own corresponding
.endif and may, 1tself use additional .elif's.

JAf debug ;if using debugging code...
Ida #flag ON sthen...
sta dbug_flag - ,
Jif (dbug_level == 1) sthen, if level 1...
Jdnclude dlevell
.elif (dbug_level > 10) selse if level >10...
Jdnclude breakcode
.else selse tied to the if in elseif
lda #flag_ OFF
sta brk_flag
endif : send of elseif
endif send inner if
endif . send outermost if

This tortuous example shows some of the complexity you can achieve by
nesting conditionals. Note, however, conditionals can only be nested to a
level of ten deep. Sometimes it helps document what you're doing if you

indent the levels of nesting (as above) to illustrate the hierarchy.

5-38 geoAssembler Ref.

Macros

Be forewarned: macro programming is an advanced topic, especially for
somebody new to 6502 assembly language. If macros seem confusing, don't
worry. Master assembly language first, then come back and study macros. -
They can save time and make your source code more maintainable and
compact.

What is a Macro?

At their simplest level, macros are merely an advanced form of text
substitution, and they are purely a function of the assembler. If you have a
common or complex chunk of code, you can assign it a name or
abbreviation. This is called defining the macro or macro definition. Now,
each time you want to use this code, rather than type in the actual source
lines, you simply use this abbreviation. geoAssembler will recognize the
abbreviation as a macro use, or invocation, and will replace it with the
previously defined source code, thereby expanding the macro name to its
full definition. Once you have defined a set of useful, general purpose
macros (as we have in the sample macro file), you may include them as
library files in all your assemblies.

And What's This About Parameters?

One of the features that makes macros so powerful is that you can pass
parameters to them. That is, when you invoke the macro, you can pass it
label names, variables, constants, flags, addressing modes, and the like;
geoAssembler will take these parameters and insert them into the actual
macro-expanded code as determined in the macro definition. You might call
a macro like this:

SuBW subtrahend, minuend ssubtract word

At assembly-time geoAssembler will expand the macro (defined earher in
the source code) to produce something like this: :

lda minuend ;get byte value

sec

sbc subtrahend ;subtract low byte

sta minuend soverwrite minuend with result

lda minuend+1 shigh-byte with carry
sbc subtrahend+1
sta minuend+1

geoAssembler Ref. 5-39

All this is done automatically! You will not actually see this expansion.
However, this is how it will look to the assembler.

5-40 geoAssembler Ref.

Directive: .macro, .endm
Purpose: For defining macros.

Usage: .macro name (parameter{,parameter}]
macro definition
endm

Note: name is the macro name — you will use this for all invocations
of the macro — it can be any valid symbol; parameter is an
optional parameter declaration. If you expect parameters, you
must delcare them.

Important: The following directives are invalid within a macro definition:
Jmacro, .endm, .include, or .end. They will generate
errors.

The .macro directive tells geoAssembler that all code up to the next
.endm (end macro) directive is part of the macro definition. The .macro is
followed by the name of the macro (the abbreviation which you later use to
invoke it). After the macro name you may declare from zero to six
parameters, separated by commas. '

The body of the macro consists of normal geoAssembler source code. You
may use mnemonics, most directives, even previously defined macros,
within the macro definition. You can use the parameter names anywhere in
the this source code — wherever you would like the parameter name
replaced with the actual parameter passed to the macro upon invocation.
geoAssembler does absolutely no syntax checking prior to parameter
substitution, so there is little you are unable to pass it: strings, labels,
characters, equates, and expressions are all fair game.

Follow the body of the macro with an .endm directive to indicate the end
of the macro definition. '

Once a macro has been defined, it may be invoked in your source code by
placing the macro name in the opcode field of the source line and any
parameters in the operand field, separated by commas. geoAssembler -
recognizes the macro name as a macro invocation and expands it

appropriately.

geoAssembler Ref. 5-41

First, geoAssembler takes any parameters in the invocation and inserts
them in the appropriate places in the macro body. The macro body, with the
parameters in their proper places, is fed directly into the assembler's input
stream exactly as if the macro body was part of the source code. .
geoAssembler will then attempt to assemble on a line-by-line basis,
flagging errors as normal. When the end of the macro body is reached,
geoAssembler again resumes assembling with the next line in the source
code. In this way, much like an .include, one macro line can be expanded
to almost any number of actual source lines. Keep this in mind when using
large macros — if you use them often enough, they may warrant an actual
subroutine to save memory space.

As an example, we will define and then invoke a macro from the sample
macro file. The following is the macro definition for the AddVW macro. It
adds a one or two byte constant value (immediate value) to a word (two
bytes) in memory. The word in memory is stored in 6502 low, high order.
The macro uses conditional assembly to handle one and two byte constants
differently, generating the most efficient code for each case.

A et

;***

Add Value to Word: =~ AddVW value, dest

Args: value: consfant to add to dest _
dest: address of word to add to

Action: dest = dest + value

We We Wo Ve We WO We Ve Ve

shesfe fe e e shesheshe e e ke shesheske s okeke shesheske sheskeske sesfeske sfeseste sheskeshe sk ek shesteste shesfeske sheskeske sheskeskeskeoke

Jmacro AddVW value,dest

cle smust add with carry

lda #[(value) ;add low byte first

adc dest+0

sta dest+0 ;and replace with low of result

;If the value to add is only one byte, then special-case the carry

Jf (value >= 0) && (value <= 255)
bcc nolnc ;if low-byte generated a carry...
inc dest+1 ; then, increment high-byte
nolnc:
.else svalue larger than one byte, so do full word add
Ida #](value) ;get high byte
adc dest+1 ;add high byte in with carry
sta dest+1 s;and replace with high of result
endif
.endm

After we have defined this macro, we can then invoke it from within our

source code:
AddVW $20, Suml ;add $20 to Suml
AddVW 3000, Sum2 ;add 3000 to Sum2

During assembly, when geoAssembler encounters these invocations, the
macro will be expanded and the parameters will be substituted. :
geoAssembler would expand the first usage (AddVW $20, Suml) like
this:

geoAssembler Ref. 5-43

clc
1da #{($20)

adc Suml1+0
sta Sum1+0
bce 9999%

inc Suml+1

9999%:

First, notice that the constant ($20) and the variable (Sum1) were
substituted into the macro definition for value and dest, respectively. Also
notice that because the constant ($20) was a one-byte expression, the
conditional in the macro evaluated to true and generated the code between
the .if and the .else. Finally, notice the macro label noInc was replaced
with the local label 99998$; this will be explained later.

The second invocation would be expanded like this:
cle

Ida #[(3000)
adc Sum2+0

sta Sum2+0
lda #1(3000)
adc Sum2+1
sta Sum2+1

In this case, because the constant (3000) was a two-byte value, the
conditional evaluated to false, and the code between the .else and the
.endif was included instead of the code between the .if and the .else.

Macro Names

Each macro name must be unique and it must conform to the geoAssembler
symbol notation. A macro name may be up to 20 characters long, of which
only the first eight are significant. It must begin with an alpha character,
but the remaining characters can consist of numbers and the underscore ()
symbol. Case is significant. Although it is not a good idea, you can have a
label and a macro of the same name; geoAssembler can distinguish the two
from context.

Parameters and Parameter Names
A macro can accept from zero to six parameters which must be declared in
the macro definition. Parameter names can be up to ten characters long, all

5-44 geoAssembler Ref.

of which are significant. As in symbols and macro names, case is also
significant. Parameter names may begin with the underscore symbol (),
which allows you to prevent accidental conflicts with labels, equates, or
macros within the macro definition. If two names do comc1de macro
subsmutwn w111 take precedence.

Parameter Substitution

When a macro is invoked, the parameters passed to the macro (unique for
each invocation) are substituted into the body of the macro according to the
parameter names (which are in the definition). In the macro invocation,
parameters follow the macro name and are separated by commas.
geoAssembler does a straight text substitution, so internal spaces and other
characters are maintained throughout the substitution. This lets you pass
entire expressions like

(value * 35 + (%1010<<2)) + $33
or even entire opcodes and operands like:

adc #$2e

The only complication occurs when you need to pass a parameter which
contains a comma, such as an indexed addressing operand:

addr,y
geoAssembler will interpret this as two separate parameters: addr as the
first paramter and y as the second. You can get around this problem by

enclosing the entire parameter in double-quotes:

" addr,y"

geoAssembler will strip the quotes and substitute the entire string. Notice
that this also allows you to send string data (for .byte statements) by
enclosing the string in two sets of quotes:

""this string will be substituted""

The outside set of quotes will be stripped in the macro invocation, but the
inside set will be substituted along with the rest of the string. This allows
you to do something like

.byte parameter

geoAssembler Ref. 5-45

in a macro and pass it either a string or a value in the invocation.

Parameter substitution will occur anywhere geoAssembler finds the
parameter name in the macro body, except when the name is within quotes,
in which case geoAssembler assumes it is part of a string, or in the opcode
 field of a source line.

Too Few or Too Many Parameters

When a macro is invoked, any extra parameters will be ignored in the
expansion. That is: if you pass more parameters than were declared in the
macro definition, the extra parameters will be discarded. If you pass less
parameters than were declared in the macro definition, the undefined
parameters will be set to a logical false (zero). This allows you to send a

variable number of parameters and generate the appropriate code with
conditional assembly.

Labels Within Macros

geoAssembler has a unique way of handling labels within a macro body.
When the macro is expanded, geoAssembler tries to convert any labels
within the macro to local labels. There is a macro local label counter which
begins at 99998$ and decrements for each label that is used within a macro
(at each invocation). That label, and all uses of that label within the macro,
are replaced with the value of this counter, thereby converting them to local
labels. These labels will be treated exactly like normal local labels when
you invoke the macro within your source code. Each label in each macro
expansion will have a unique local label value, so there won't be any
conflicts between macros. However, there is one potential source of
conflict: if you use large-value local labels in your normal source code (like
998489), it might conflict with a nearby macro expansion, thereby producing
a duplicate local label error. To prevent this from happening, avoid using
large-value local labels — if you stay away from four-digit numbers
beginning with "9", there should not be any problems.

There is one special-case where a label in a macro is not automatically
transformed into a local label: when the label is actually a parameter slated
for substitution. If, for example, you have a macro like:

.nacro Double_lp label_1, label_2, yvalue, xvalue
Ildy #yvalue

5-46 geoAssembler Ref.

label_2:

ldx #xvalue
label_1:
endm

where the label label_1 and label_2 are actually parameters, label 1
and label_2 will not be converted to local labels. Instead, the macro will
expect valid symbols or local labels to be passed to it as the first two
parameters. For example

Double_Ip inner_loop, outer_loop, $35, $ff

would expand as

Idy #$35
outer_loop:
ldx #S$ff

inner_loop:

and this would allow you to use the label name globally later in the
program as in .

Double_Ip inner_loop, outer_loop, $4e, $54
sta tablex

dex

bne inner_loop

inc table+1

dey

bne outer_loop

Note that you just as easily could have passed local labels instead of global
labels as in

Double Ip 108, 118, $54, $ff

where the first two parameters (10$ and 11$) are local labels. The macro

geoAssembler Ref. 5-47

would expand to:

Idy #3$54
11$:

ldx #$ff
10%:

Immediate Mode and Constant Values '

The expression evaluator will ignore any # signs within expressions. This
allows immediate mode addressing and constant parameters to be handled
flexibly within a-macro expansion. For example, with the following macro

o feskesfe et sfeshestesie sk s sfe sk sheokesfe s sfe s she ke e s e e e e oese st e e she ke e sk sfe e she ke e
Add Value to Byte: AddVB value, dest

Args: value: byte constant to add to dest
dest: address of byte to add to

Action: dest = dest + value

We. We We We wWe wWe Ve we »

o3feske sk she sfe ke sheskeste she sfeske shesfeske sfeske sk sfeske sk sheske sk sk shese s ke she ke sk ke she ke she ke sk sk ke sk she e ke sheoke e sk
Jmacro AddVB value, dest

-

Ida dest
clc

adc #value
sta dest

.endm
We can invoke this macro with either of the following:

AddVB #$f1, total
AddVB $ff, total

In the first case, the parameter substitution will generate an extra # sign,

5-48 geoAssembler Ref.

resulting in the line
adc HHSFE

The expression evaluator will drop the unneeded # sign. In tﬁe second case,
there will only be one # sign, so the interpretation is trivial. This way, if
we call AddVB with a constant value like

AddVB #constant, total

It will be clear that the constant will be used in an immediate-mode context.

Macro Nesting

Macros can invoke other macros. In fact, they can even (recursively) invoke
themselves. However, this macro nesting is limited to three levels. You
cannot define a macro inside another macro.

Macro Overflows

geoAssembler maintains a number of tables for macros, all of which are of
limited size, but large enough to handle the majority of cases. You will
probably never encounter a macro overflow error unless you are nesting
groups of macros with a large number of parameters and internal labels. For
more information on macro errors, refer to Appendix E.

geoAssembler Ref. 5.49

Header Definition

Directive:

‘Purpose:

Usage:

Jheader, .endh

These special directives allow you to create a GEOS file header
data structure for your GEOS application.

Jheader .
word $00 ;last block -- always 0
Jbyte 3 sicon width -- always 3
.byte 21 ; icon height -- always 21
sicon information follows

Seq
.byte Cé64type susually $83
.byte GEOtype ;GEOS file type
.byte GEOstruct ;GEOS structure type
word FileStart ;load address
word FileEnd send of app. address
word InitProg ;init. address
.byte filename smust be 20 bytes
[.byte | soptional fields

.endh

The .header and .endh directives invoke an additional level of error-
checking for creating a GEOS file header. The header involves a very rigid
syntax and critical byte counts which are checked automatically by
geoAssembler.

The header directives don't actually create a header on the disk. Rather, they
build a 256-byte data structure into a normal .rel file. This structure can
then be used by geoLinker to create the header for your application file. In
this case, the header should be the only item in the source file. All other
data will be ignored by the linker.

5-50 geoAssembler Ref.

HINT: when you are first building an application, use the default header
by omitting the .header directive from the link command file; in the final
stages of development, you can then build your customized header.

The header directives can also be used to create prototype headers for use
“inside your applications. Simply include the header directives in a .psect

section where you would like data to be generated. A 256-byte block will be
created.

The area between the .header and .endh follows a strict syntax. 6502
mnemonics, .psect, .ramsect, .zsect, .include, .macro, .endm,

.end, or .header are invalid within the header definition. And any data-
creation directives (.word, .byte) must be in the order and format as
described.

Header Syntax
The syntax checker for header definitions is primarily a byte counter. It has
a table of .byte and .word definitions which it checks against and will
generate an error if it doesn't find what it expects. You may, however,

» include most types of directives, lablels, and equate definitions, even macro
invocations, within the source code, as long as the actual data which is
generated matches the internal table.

We will cover the basics of header definition here. For more information on
GEOS headers, refer to The Official GEOS Programmer’s Reference Guide.

Most headers you create will begin with the following:

word 0
.byte 3
Jbyte 21

These are standard values for the next block, icon width, and icon height,
respectively.

Following these lines is the icon image. This must be bitmapped image
data. The icon image is the picture which will appear in the deskTop
directory window. If the icon image is more than 64 bytes, the remainder
will be ignored; if the image is less than 64 bytes, it will be padded with
Zeros.

geoAssembler Ref. 5-51

C64type is a Commodore file type. For GEOS applications, this will be
$83.

GEOuype is the GEOS file type. If you .include the constants file, you _
can use the equated names, such as APPLICATION or DESK_ACC. ST

GEOstruct is the GEOS file structure type, meaning VLIR (0) or
SEQUENTIAL (1).

FileStart is the program absolute load address. When your application is
opened, GEOS will load it at this address. This should be the same value
used in the linker's .psect directive. If you use a zero in this field,
geoAssembler will use a default value of $400.

FileEnd is the program absolute end address. This value is only necessary
for desk accessories, so GEOS can determine how much memory to save
before overlaying the accessory code. This number should be $3ff for
applications. If you use a zero in this field, geoAssembler will use a default
value of $3ff.

InitProg is the address GEOS jumps to to begin execution of your
application. If you use a zero in this field, geoAssembler will use a default Lo
value of $400. L

filename is the ASCII name of the file (a string in double-quotes). If it is
less than 20 characters, it must be padded with zeros (outside of the string)
so that the total byte count is 20. The zero padding must occur within the
same .byte statement.

File header blocks are exactly 256 bytes in length, but geoAssembler only

requires that you give it the-first-97-bytes;-up-through-the-file-namer a-fhorvare (24 hjhes)
However, you may manually code the remaining fields with additional data, alse rev: red
up to the full 256 bytes. geoAssembler will do no syntax checking beyond ‘
the 97th byte, though. If you submit less than 97 bytes, geoAssembler will

generate an error; if you submit more than 97, but less than 256,

geoAssembler will pad the remainder (up to 256) with zeros; if you submit

more than 256 bytes, geoAssembler will generate an error.

5-52 geoAssembler Ref.

The additional (optional) fields are are described fully in The Official GEOS
Programmer’s Reference Guide.

Example:

P

.header - start of header section
word 0 ;first two bytes are always zero
.byte 3 ;width in bytes
.byte 21 ;and height in scanlines of:
Jbyte $801USR ;Commodore file type, with bit 7 set.
.byte APPLICATION ;Geos file type
.byte SEQUENTIAL ;Geos file structure type
.word ProgStart ;start address of program (where to load to)
word $3ff ;usually end address, but only needed for
;desk accessories.
.word ProgStart ;init address of program (where to JMP to)
.byte "SampleSeq V1.0",0,0,0,$00
;permanent filename: 12 characters,
’ ;followed by 4 character version number,
;followed by 3 zeroes, _
. ;followed by 40/80 column flag.
byte "Eric E. Del Sesto ",0 '
;twenty character author name
('me Yodive wall
;end of header section which is checked for accuracy
Jblock 160-117 ;skip 43 bytes...
.byte "This is the GeoProgrammer sample "
.byte "sequential GEOS application.”,0
.endh

5-53 geoAssembler Ref.,

Internal Variables

geoAssembler maintains three internal variables which you can use in your
assembly source code: - ,

picH most recent icon's height
picW most recent icon's width
Passl assembly on pass one or pass two

picH & picW

When geoAssembler encounters a graphic image in your source code, it will
converts it into compacted bitmap data data and inserts directly into the
object code, as if it was generated with .byte data directives. At this time,

it also sets two internal variables: picH and picW. picH is the graphic
image height in scanlines and picW is its width in bytes. Although the
width and height of the most recent image remain in effect until a
subsequent image definition, it is best to assign them to permanent equates
immediately after the image:

Icont Picture; ;8ssembler will place co
;here for this picture:
Icon
ICON_1_WIDTH =picW ;store bitmap size values
ICON_1_HEIGHT = pitH Jable onpass 2. (picWa
;the assembler.)

For more information on pasting images into your geoWrite source filés,
refer to "Including Icons (Graphics) in Your Source File" in Chapter 4.

geoAssembler Ref. 5-54

Passl
geoAssembler is a two-pass assembler. On the first pass it establishes
values for labels and equates, increments section counters, and defines

e macros; on the second pass it resolves forward and backward references.

L Because no new information is presented in equates and macro definitions
on the second pass, significant disk and file processing time can be saved by
eliminating this redundancy. For this purpose, geoAssembler maintains an
internal variable called Passl1. At the beginning of the first pass, Passl is
set to a logical true; at the beginning of the second pass, Passl is set to a
logical false. You can use the Pass1 variable in a conditional assembly
expression to exclude equates and macros from the assembly on the second
pass. This can usually realize a 10% to 20% improvement on assembly
time.

Example:

if Passl ;only include equ's and macros on 1st pass
Anclude myEquates
Anclude myMacros
dinclude geosSym

endif

IMPORTANT: Only use the Pass1 variable to exclude equates and

macro definitions from your assemblies. Using Passl in any other context
can cause symbols to evaluate differently on each pass. geoAssembler has
no facility to detect these "phase" errors, and the results are unpredictable.
Also: it is best to only use the Pass1 facility when you are sure there are
no errors in your include files. If there are errors in your include file and the
files are not processed during the second pass, you will get a "hidden error"
error message. If you should get a hidden error, remove the Pass1
conditional and reassemble. The offending line(s) will then be flagged
correctly in the error file. Once you have corrected the error, you can again
use th