


Fortran-64

Programming language
for the Commodore 64

(c) 1988 Bob Stover & Tim Adams

Published By:

Abac u siiiil



Copyright Notice

Abacus makes this package available for use on a single computer
only. It is unlawful to copy any portion of this software package
onto any medium for any purpose other than backup. It is
unlawful to give away or resell copies of this package. Any
unauthorized distribution of this product deprives the authors of
their deserved royalties. For use on single-site multiple
computers, please contact Abacus to make arrangements.

Warranty

Abacus makes no warranties, expressed or implied, as to the
fitness of this software package for any particular purpose. In no
event will Abacus be liable for consequential damages. Abacus
will replace any copy of this software which is unreadable, if
returned within 30 days of purchase. Thereafter, there will be a
nominal charge for replacement.

First Printing, November 1988

Printed in U.S.A.
Copyright © 1986 Bob Stover and Tim Adams
Copyright © 1988 Abacus

5370 52nd Street, S.E.
Grand Rapids, MI. 49508

ISBN 0-916439-91-7



TABLE OF CONTENTS

‘Writing a Fortran program
Compiling a program
The Program Format
Program Creation
TEST Program (Translatable)
Getting started
‘The main menu
Compiler mode
Back to BASIC
Linker mode
Help mode
Color mode
Translator mode
Directory
Creating a data disk
Statement descriptions
Arithmetic Expressions
CALL
CALL EXEC
CLOSE
COMMENTS
COMMON
CONTINUE
DATA
DIMENSION
DO
ELSE
END

S~ 0o ®NoUm AW



ENDCOMMON

ENDIF

FORMAT

FUNCTION

GOTO

IF

IF THEN

IMPLICIT

MEM

OPEN

PAUSE

PROGRAM

READ.

RETURN

STOP

SUBROUTINE

TYPE statements

WAIT

WRITE

Operators
Appendix A—Built-in functions
Appendix B—Format descriptor
Appendix C—Data types
Appendix D—Error descriptions




Abacus ‘Writing a Fortran program

WRITING A FORTRAN PROGRAM

Writing a Fortran file involves a number of different files. Before
starting your programming effort, you must create a data disk (see
Creating a Data Disk). There are a number of files on your disk that
are vital to the programming process. The steps needed to produce
an executable program follow (see page 5, Program Creation).

The first file you will create is the Fortran source file (the file that
holds your Fortran statements). The program must adhere to the
format described on pages 4-6, Program Format. If the program is
to be executed it must contain one main program unit and any
number of subroutine or function units. If the file does not contain a
‘main program it can still be compiled and later linked with a file that
does have a main program.

The source file can be created using two methods. The first is to use
any word processor which produces sequential ASCII output files.

The other alternative, is to create a file using the BASIC editor (see
Back to BASIC) and translate it into a sequential file using the
Translator (see Translator mode). The TEST program on page 8
gives an example of a Fortran program written in the BASIC editor,
before it is translated. Each line is entered as in BASIC, with the
following exception: A colon (:) must appear on the line between the
line number and the statement. After the program is written and all
editing is completed, it is simply saved to the disk using the BASIC
SAVE command.

Once a sequential file has been created with either method, enter the
Compiler mode to compile the source program into an object file.
The object file contains relocatable, binary machine code.

At this point object files can be combined by linking them together
and loading them into memory. This is done in the Linker mode.

After the linking process is completed, an executable program
resides in memory. If the BASIC LIST command is used, a REM
statement appears on the first line along with the name of your




‘Writing a Fortran program Fortran-64

Fortran program. A SYS statement also exists with the execution
address.

The rest of the program is in machine language. At this point the
program can be saved to disk or it can be executed using the BASIC
RUN command. This program can be put on any disk. It does not
have to reside on your data disk.




Abacus Compiling a program

COMPILING A PROGRAM

The Fortran-64 disk contains many example programs. The
following is an example of the complete compilation process:

1) Load Fortran-64 (see GETTING STARTED.)

2)  Press the F6 key for translator mode (see Translator mode.)

2) Enter DOC-READER.FOR as the filename then press Return.

3)  Enter DOC-READER.SEQ as the sequential filename then press
Return. The file will be converted to a sequential file. Press
Return when the translation process is finished.

4)  Press F1 to enter Compiler mode (see Compiler mode.) Enter
DOC-READER.SEQ as the source filename then press Return.

5) Enter DOC-READER.OBJ as the object filename then press
Return. Enter n for HARDCOPY. The file will be displayed on
the screen as it is compiled. Press the Return key when the
compilation process is finished.

6)  Press F3 to enter the Linker mode (see Linker mode). Press y
to confirm entering Linker mode. Enter DOC-READER.OBJ as
the object filename and press Return.

7) Enter n in response to the LIST MODULES questions.

8) Enter STRING.LIB in response to the UNDEF INED
EXTERNAL message.

9)  The program is ready to save and run. To save the program to
disk, enter SAVE "DOC-READER",8 and press Retumn .

10

Enter RUN and press Return to run the program. Enter O for no
printout. Next enter TOPICS.DOC. The TOPICS.DOC will be
displayed. Read each screen then press the Return key to move
to the next screen.



Compiling a program Fortran-64

THE PROGRAM FORMAT

name
declarations
label statements
END
*
* COMMENTS
*
SUBROUTINE name (arguments)
declarations

RETURN
END

FUNCTION name (arguments)
declarations

name %22

=D
Note: Source lines are entered in free field format. This means that
all spaces are ignored unless they appear between single quote

This allows indention of loops and decision blocks. Labels
can appear anywhere on the line if they are the first on the line.

Comment lines must start with *. Blank lines are ignored.

Any statement can be continued onto the next line by placing a # at
the end of a line. The following example would be considered one
line although it is typed in on two:

WRITE (4,*) I,J,A,B,C,D#,X,Y,Z



Abacus

Compiling a program

PROGRAM CREATION

CREATE SOURCE

CREATE SOURCE

CREATE SOURCE

FILE CONTAINING |FILE CONTAINING |FILE CONTAINING
MAIN AND MAIN AND/OR ONLY
SUBROUTINES SUBROUTINES SUBROUTINES
USING USING USING
WORD PROCESSOR BASICEDITOR WORD PROCESSOR
(SEQ. FILE) (PRG.FILE) (SEQ. FILE)

TRANSLATE

FROM

PRG-TYPE

FILE

TO

SEQ-TYPE

FILE

COMPILE

SOURCE FILE

LINK
AND

LOAD

OBJECT FILE

SAVE
AND/OR
RUN

PROGRAM




Compiling a program Fortran-64

TEST PROGRAM (TRANSLATABLE)

PROGRAM TEST

THIS PROGRAM WILL WRITE A
LIST OF THE ODD NUMBERS
FROM 1 TO 10 TO A PRINTER

INTEGER A,B

OPEN 4,4

DO 10 I =1, 10

WRITE (4, 100) I

10 CONTINUE

CLOSE 4

STOP
100  FORMAT(IS)

END

Note: Source lines are entered in free field format with a line
number and colon appearing first on the line. This means
that all spaces are ignored unless they appear between single
quote marks. This allows indention of loops and decision
blocks. Labels can appear anywhere on the line as long as
they are the first things on the line. The Translator mode is.
used to convert this program to a sequential file



Abacus Getting started

1)

25

3)

4)

5.)

GETTING STARTED

Turn on your computer and all attached disk drives and
printers.

Insert the Fortran-64 disk, label side up, in you 1541 or
compatible disk drive.

Type the following:
LOAD "0:*",8
then press Return.The computer should reply with:
SEARCHING FOR *
LOADING
READY
Now, type the following:
RUN
then press Return. After approximately 25 seconds, the
Abacus Software logo and title screen appears and the main
program begins to load.

After an additional delay of about 65 seconds, the Main Menu
displaying the Copyright message appears.



The Main Menu Fortran-64

THE MAIN MENU

The Main Menu lets you select the Compiler, Linker and other
features by pressing a function key. When depressed, the function
keys perform the following:

F1 Enter the Compiler mode

F2 Back to BASIC

F3 Enter the Linker mode

F4 Enter the Help mode

F5 Enter the Color mode

F6 Enter the Translator mode

F7 View the directory on disk drive #8
F8 View the directory on disk drive #9

FORTRAN-64
FORTRAN RESIDENT COMPILER VX.X
COPYRIGHT (C) 1986 BOB STOVER/TIM ADAMS
ALL RIGHTS RESERVED
MAIN MENU
P COMPILER
F2 BACK TO BASIC
F3 LINKER
F4 HELP
F5 COLOR
F6 TRANSLATOR
1 DIRECTORY 8
F8 DIRECTORY 9 ‘
Screen for Main Menu



Abacus Compiler mode

COMPILER MODE

If you press function key F1 you enter Compiler mode. You are
asked to type the name of your source file.

ENTER SOURCE F ILENAME :

Type the name of the source file to be compiled. You can specify a
separate disk drive by typing as follows:

To select drive #8:
filename or D8:filename

To select drive #9:

DY:filename

The filename typed is a string of 1 to 16 characters.

Note: Only drives #8 and #9 are supported in the Compiler mode.
However, the syntax for using these two drives permits
maximum flexibility, by allowing the user to enter the source
file from either drive and direct the object file to either drive.

Note: After entering the Compiler mode, function key F1 can be
used to return to the Main Menu, before the object filename
is specified.

After the source filename is entered, the compiler asks for the object
filename as follows:

ENTER OBJECT FILENAME :

The object filename can be entered using the same syntax as
described for entering the source filename.

Note: If the object filename already exists on the disk, an error
message appears. A new filename can then be entered or the
old file can be replaced using the following syntax:



Compiler mode Fortran-64

@0:filename or
D8:@0:filename or
D9:@0:filename

The compiler now asks if a printer listing of the source file during
compilation is desired as follows:

HARDCOPY? (Y/N CR-N)
If a Y is entered, the compiler asks for the device number as follows:
HARDCOPY DEVICE? (4/5 CR-4)

If a N or CR is entered, the compiler begins to compile the source file
entered and creates an object file on disk.

Any errors found during compilation are indicated either on the
screen or on the hardcopy device (if selected). See the Error
Description section of this manual for details on error determination.

Anytime during the compilation process, the compiler can be paused
or aborted with the following keystrokes:

Run/Stop key forces the compiler to pause.
space bar permits the compiler to continue after pause
Q aborts the compilation process

After compilation, the results of the process are indicated as follows:

b ERRORS DETECTED .
[ddddd SOURCE LINES READ.

where ****x js the number of errors detected and @R@QQ is the
number of source lines encountered.

A prompt then appears allowing the user to return to the Main Menu.



Abacus Back to BASIC

BACK TO BASIC

After function key F2 is depressed, the user is given the option to
return to BASIC (see Figure 2). This permits creation or editing of a
Fortran source file while in BASIC. However, the following prompt
allows the user to change his mind:

ARE YOU SURE? (Y/N CR-N)

Note: In order to allow creation or editing of your Fortran file with
the BASIC editor and allow re-entry into Fortran-64 without
reloading, a SYS 49152 must be performed immediately
after returning to BASIC. After saving the file, a second
SYS 49152 can be performed to return to the Main Menu.

BACK TO BASIC

Fkok KRR KKK KRR KA AR A KKK KKk Ak

ARE YOU SURE? (Y/N CR-N)

Screen for Back to BASIC



Linker mode Fortran-64

LINKER MODE

After function key F3 is depressed, the Linker mode is entered. (See
Figure 3)

Note: If linking is carried out, no further returns to the Main Menu
are possible. However, if linking is performed, additional
object files can be linked or relinked by typing SYS 49152,
followed by the Return key.

Note: Due to memory limitations, only drive #8 is supported in
inker m

The first question asked by the linker is as follows:
ARE YOU SURE (Y/N CR-N)

If an N is entered, a prompt appears allowing the user to return to the
Main Menu. If a ¥ or CR is entered, the linker first tries to load the
system table (SYTEM.TAB). If successful, the linker then asks for
the object filename as follows.

ENTER OBJECT FILENAME :

Note: The object filename is the name entered in the Compiler
mode.

After the object filename is entered, the linker asks if the user wants
a list of the modules loaded as follows:

LIST MODULES/ (Y/NCR-N)

If an N is entered, the linking process begins. If a Y or CR is
entered, the linker asks if a printer listing of the loaded modules is
desired as follows:

HARDCOPY? (Y/N CR-N)

Depending on the replay, all modules loaded during the linking
process are listed on the printer or the screen.



Abacus Linker mode

Note: Due to memory limitations, only print device #4 is supported
in Linker mode.

If an external subroutine is called in the main routine of a Fom'.m
program but the external
message is displayed as follows:

UNDEF INED EXTERNAL

NKI
ok ok kK kR KKk kKK Kk kR K

ARE YOU SURE? (Y/N CR-Y)
ENTER OBJECT FILENAME :
LIST MODULES? (Y/N CR-N)
HARDCOPY? (Y/N CR-N)

MODULES LOADED :

Screen for Linker Mode

The linker also displays the name of the subroutine and asks for the
filename of the library where the user may have included this
external subroutine as follows:

ENTER LIBRARY NAME :

After the filename is entered, the linking process continues. When
linking is completed, the following message appears:

RUNABLE CODE RESIDES
FROM $0850 TO $****

Where $**** js the ending address.

13



Linker mode Fortran-64

Note: If a library filename is entered that doesn't contain the
external subroutine requested or if any disk errors occur, an
error message is displayed on the screen and a retry message
appears. This can be helpful if libraries or modules are
located on separate disks. This message allows the user to
swap disks until the required file is located.

The final message to appear is the completed message as follows:
LINK COMPLETE

At this point, a runable/saveable version of the program is resident
in memory. USe the normal save command to save the program to.
diskette.



Abacus

Help mode

After function key F4 is depressed, the Help mode is entered. This

HELP MODE

mode describes the options available from the Main Menu.

A prompt appears allowing the user to return to the Main Menu.

F1

F2
F3

.LP

kK kKKK KKK kKK K K

SELECTS COMPILER

SYNTAX:

FOR SOURCE OR OBJECT FILENAME :
FILENAME OR D8 :FILENAME
ORD9:FILENAME:

RETURNS TO BASIC:

SELECTS LINKER:

IF SELECTED:

ALLOWS FOR SAVE AND/OR RUN :

F4 SELECTS THIS HELP FEATURE:
ES SELECTS COLOR CHANGE MENU :
F6 SELECTS TRANSLATOR:

F7 SELECTS DIRECTORY ON DRIVE 8:
F8 SELECTS DIRECTORY ON DRIVE 9:
PRESS RETURN WHEN READY :

Screen for Help Mode




"

Color mode

Fortran-64

After function key F5 is depressed, the Color mode is entered. Thit
mode allows the user to select the color you desire to work with.

A prompt appears allowing the user to return to the Main Menu.
After the source filename is entered, the compiler asks for the objec

COLOR MODE

filename as follows:

COLOR

(S) CREEN COLOR CHANGE
(B) ORDER COLOR CHANGE
(C) HARACTER COLOR CHANGE

PRESS RETURN WHEN READY :

Screen for Color Mode




Abacus Translator mode

TRANSLATOR MODE
After function key F6 is depressed, the Translator mode is entered.

TRANSLATOR
R Rk
ENTER PROGRAM FILENAME :
ENTER SEQUENTTAL FILENAME :

Screen for Translator Mode

Note: Due to memory limitations, only drive #8 is supported in
‘Translator mode.

‘The Translator first asks for the program filename as follows:
ENTER PROGRAM FILENAME :

The program filename is the name of the file originally created using
the Commodore BASIC editor and saved on the disk.

‘The Translator then asks for the sequential filename as follows:
ENTER SEQUENTIAL FILENAME :

Note: The sequential filename is the name of the source file used as
input to the Compiler in Compiler mode.

After entering this name the Translator converts your program file to
a source file.

If a disk error is detected, it is displayed on the screen as follows:

DISK ERROR xx FOUND



Translator mode Fortran-64

where xx is the error number. (see your disk drive manual for errol
explanations)

However, if the sequential filename already exists, the Translatoi
displays an error, and also allows the user to enter a new filename a
follows:

FILE EXISTS.
REPLACE FILE? (Y/NCR-Y)

If an N is entered, the Translator allows a new sequential filename 1
be entered. If a Y is entered or the Return key is pressed, thi
Translator deletes the original sequential file and saves the file undej
the old name.

If a colon is not detected on a line, an error is also generated af
follows:

ERROR: COLON MISSING ON LINE xx
Note: The sequential file is still generated after detecting missin|

colons. However, the program file must be corrected ang
retranslated before proceeding to the Compiler mode.

After of the T ion process, a messag|
appears as follows:

TRANSLATION COMPLETE
A prompt then appears allowing the user to return to the Main Mem{
DIRECTORY

Function keys F7 and F8 allow the disk directory from drive #8 of
#9 respectively, to be viewed. Pressing the spacebar while viewin
the directory will pause the display. Depressing any key allows
continued viewing. If the Run/Stop key is pressed or when the en¢
of the directory is reached, a prompt appears allowing the user
return to the Main Menu.




Abacus Creating a Data disk

CREATING A DATA DISK
In order to link a compiled program in the shortest amount of time, it
is advisable to create a data or source disk. On this disk, the library
and runtime routines should appear first before any user created
source files. In order to achieve this, a program has been supplied to
copy the basic libraries and runtime routines to the data disk. The
following steps should be performed:
1.) Insert the Fortran-64 disk into drive #8.
2.) Type the following:
LOAD "CREATE",8
followed by a carriage return. The computer should replay
with:
SEARCHING FOR CREATE
LOADING
READY
4.) Now, type the following:
RUN
followed by a carriage return.
5.) The following prompt appears:

INSERT FORTRAN-64 DISK
AND PRESS RETURN

6.) Now press the Return key All library and runtime routines are
read from the disk. An asterisk appears to show you the
progress.

7.) When complete, a new prompt appears as follows:

INSERT DATA DISK
AND PRESS RETURN

19



Creating a Data disk Fortran-64

8.) Insert the new data disk and press the Return key. A new|
prompt appears as follows:

DO YOU WANT TO FORMAT? (Y/N CR-N)
If Y is entered this prompt appears:
ENTER DISK NAME :
Type a new disk name and press the Return key.
A second prompt then appears as follows:
ENTER DISK ID:

The new disk ID (not greater than 2 characters) can then bej
entered and a carriage return is depressed.

After formamng or if N or CR is depressed, all required
libraries and runtime routines are copied to your dit

9:

‘When complete a message is displayed as follows:

DATA DISK CREATED

10.) At this point, source programs can be stored on the data di:
along with any user-defined libraries. You can now st
Fortran-64.

Note: If any disk errors are detected during the create process, the
are displayed on the screen as follows:

DISK ERROR xx FOUND

where xx is the error number (see your disk drive manual fc
error explanations).

20



Abacus Statement descriptions

STATEMENT DESCRIPTIONS

In the ing pages are the ized by Fortran-64.
I'he descriptions consist of a short explanation of the statement,
u{;max for the statement, examples and notes for its use. The syntax
shows, in a condensed form, the structure of the statement. To
pxpand the syntax into a usable form the following rules must be
followed:

|. Capitalized words and punctuation should be used exactly as
shown.

2. Small lettered words represent place holders for user supplied
syntax.

3. All spaces, except spaces between quotes, are optional. For
example the following two statements are equivalent:

IF (1.EQ.J) GOTO 10
IF(I.EQ.J)GOTO10

4.  The following symbols have special meaning:

[l syntax contained within is optional.

{} syntax contained within can be
repeated.

| OR - one or the other symbol on
either side of the | can be used at this

position.
Examples:
Syntax Expansion:
CLOSE filenumber{ [,filenumber]} CLOSE 8
CLOSE 8,9,10
WRITE (filenumber,* | +) WRITE (4,%)
WRITE (6,+)

Variable names are up to 5 characters long. They must begin
with an alphabetical character (A-Z)

21



Statement descriptions Fortran-6

PURPOSE:

SYNTAX:

ARITHMETIC EXPRESSION

To allow the calculation of arithmetic equations usii
variables and constants.

varnam = varban|const|funcnan {[op€
varnam|const | funcnam] }

where: varban is a simple variable or array
element.
const is a constant of the same type as 14
variables being used.
funcnam is the name of a function being}
invoked.
oper is a mathematical operator.

EXAMPLES: X = 1.0

NOTES:

TY = (T Ha)iE S)i/retE A
A=SIN(X) +6.0

1) Mixed mode operations are not permitted (reals;
and integers mixed).

2) Variables must be explicitly converted using
IFIX or FLOAT.

3) For a list of operators see Appendix A.

4) All variables on the right side of the equal sign
‘must have been previously defined in the
program.

22




Abacus

Statement descriptions

PURPOSE:

SYNTAX:

EXAMPLES:

NOTES:

PURPOSE:

SYNTAX:

EXAMPLES:

CALL

To transfer program control to the specified
subroutine.

CALL subname {varnam|arithmetic
expression|constant { [,varnam|
arithmetic expression|constant]}}

where  varnamis a simple variable or array
element.
subname is the subroutine name up to 5
characters long.

CALL SUB1 (X,Y)
CALL TEXT (1,3,X,I)
CALL XXX (X,1,I+6)

1) Values in parameters can be passed to and from
the subroutine.

2) Entire arrays cannot be passed as parameters.
(See the COMMON statement)

CALL EXEC

To allow direct access to Kernal or user written
‘machine language subroutines.

CALL EXEC (ia,ix,iy,istat,iaddr)

where: ia,ix, iy, istat are integer variables
or constants with values 0 to 255.
iddr is an integer variable or constant with
avalue 0 to 65535.

CALL EXEC (IA,IX,IY,ISTAT,LDTIM)

CALL EXEC (6,3,8,1,64233)
CALL EXEC (0,0IVAL1,IVAL2,TADDR)

23



Statement descriptions Fortran-64

NOTES:

PURPOSE:
SYNTAX:

EXAMPLES:

NOTES:

PURPOSE:
SYNTAX:

EXAMPLES:

1) ia, ix, and iy represent the contents of the
i:anmmal 6510 registers A, X, and Y before the

istat represents the 6510 STATUS register. If]
variables are used instead of constants in these
positions, they will contain the new values of the|
AX,Y, and STATUS registers, after returning
from the subroutine.

CLOSE
To close a file previ opened for

CLOSE filenumber ([,filenumber])
where:  filenumber is a constant or variable.

CLOSE I,J
CLOSE 15

1) Performs the same function as in BASIC.
2) The filenumber must have been defined in an
OPEN statement.
COMMENTS

To allow ion in

* any characters

*This is a comment line
* comments make programs more readable:

24




Abacus

Statement descriptions

PURPOSE:

SYNTAX:

PURPOSE:
SYNTAX:

COMMON

To allow arrays in different subprogram units to
share the same block of memory.

COMMON

: COMMON

INTEGER IAXX (25), C (10)

REAL XXXX(4)

CHARACTER NAME (15)

ENDCOMMON

‘The COMMON statement signals the beginning of an
array block that can be shared by many subprogram
units. The ENDCOMMON statement ends the block of
common.

The COMMON block can be used to equivalence two
different data types between two program units. An
example, an array of 5 integers in a subroutine can be

treated as an array of 10 characters in another
subroutine.

CONTINUE
To allow block structuring of a program.
[label] CONTINUE

where: 1label is an unsigned integer constant.

25



Statement descriptions Fortran-64/

EXAMPLES:

NOTES: 1)

PURPOSE:
SYNTAX:

EXAMPLES:

NOTES: 1)

2

100 CONTINUE
CONTINUE
DO10I=1,10

10 CONTINUE

The CONTINUE statement can be used for clarity.
The CONTINUE statement should be used to end a
DO block.

DATA
To assign values to a variable.

DATA varnam/constant/|/'string'/
{[,varnam/constant/|/'string'/]}

where: varnam is a simple variable or array
element or array name.
constant is a value to be assigned to the.
variable.

DATAA/1.26/,1/29/
DATA X/'test'/,J/6*327/
DATA I(6)/1,2,4,8/
DATA Z/.TRUE./,Y/.FALSE./

There are no restrictions on where a DATA statement
can appear in a program. In fact, to conserve
memory, it is suggested that a DATA statement be
used to replace a simple assignment statement.
The ing multiple assi is not i
a,b,c/1.2,3.45,1.9

The * symbol can be used as a repeat specifier to fill
an array more efficiently, as in the example above:
As shown, the six elements of J would contain 327.

26




Abacus

Statement descriptions

PURPOSE:
SYNTAX:

EXAMPLES:

NOTES: 1)

EXAMPLES:

DIMENSION
To define the dimensions and bounds of arrays.

DIMENSION varnam (bounds)
{ [,varnam (bounds) ] }

where: varnam is an array variable.
bounds is the integer dimension.

DIMENSION J(2,6),A(6)
DIMENSION K (10)

1 or 2 dimensional arrays are
An array can also be dlmensloned usmg the type
statement.

DO

To allow a method of looping on a group of
statements.

DO label varnam=is,if [,ic]

where: label is an unsigned integer.
varnam is a simple variable.
is is a signed integer constant or variable
(starting value).
if is a signed integer constant or variable
(final value).
icis a signed integer constant (increment)
DO 10 J=1,10
DO 200 K=1,J,2
DO 60 I=0,-5,-1

27



Statement descriptions Fortran-64

NOTES: 1) The integer specified as a label should correspond
a labeled continue statement used later in th

program.
2) DO loops can be nested.
ELSE
PURPOSE: To allow one of two blocks of statements to be
executed d: ding on a iti

SYNTAX: IF (conditional) THEN
statement

statement

statement
ENDIF

EXAMPLES: IF (TIME .EQ. 0.0) THEN
WRITE (3,*%) 'TIME IS UP.'
TIME = 100.00
ELSE
WRITE (3,*) 'WAITING...'
TIME = TIME - 1.0
ENDIF

NOTES: 1) The ELSE block can contain IF statements to furthg
the decision making process.
2) The ELSE must be used in conjunction with the I
THEN and ENDIF statements.

28




Abacus

Statement descriptions

PURPOSE:
SYNTAX:
EXAMPLE:

NOTES: 1)
2

PURPOSE:
SYNTAX:
EXAMPLES:

ENDIF
To terminate the end of a block IF statement.
ENDIF

IF (X .EQ.1) THEN
WRITE (3,%) X
ENDIF
IF (X .EQ. 6) THEN
WRITE (3,%) X
ELSE
WRITE (3,%) '*'
ENDIF

ENDIF is required at the end of any compound IF
statement.

‘When nesting compound IF statements within
blocks each must have a corresponding ENDIF.

END
To indicate the end of a program unit.
END

PROGRAM TEST
COMMON

INTEGER X (5),J (20)
ENDCOMMON

READ (0,*) T

CALL SUB1 (I)
WRITE (3,*) X (1)
STOP

END

SUBROUTINE SUB1 (J)
COMMON

29



Statement descriptions Fortran-

NOTES: 1)

PURPOSE:

SYNTAX:

NOTES: 1)

PURPOSE:
SYNTAX:

EXAMPLES:

NOTES: 1)
2)

INTEGER I (10),A(15)
ENDCOMMON

I(1)=J

RETURN

END

END is required at the end of all program unit;
(Program, Subroutine or Function)
ENDCOMMON

To signal the end of a common block of arraj
storage.

ENDCOMMON

: COMMON

INTEGER XXX (10)
ENDCOMMON

See the COMMON statement for general comments.

FUNCTION
To define the beginning of a function subprogram.
FUNCTION name (varnam| [,varnam]))
where: varnamis a variable or array element.
name is the function name up to 5
characters.
FUNCTION SUBL (X,Y)
Expressions are not allowed as arguments.

Entire arrays cannot be passed as parameters. (St
the COMMON statement)

30



Abacus

Statement descriptions

3)

PURPOSE:

SYNTAX:

EXAMPLES:

NOTES:

s

An argument is always required even if it's a dummy
argument.

The FUNCTION is invoked by name in an expression
as follows:

x 3 + subl (i,3)

The function name must occur on the left side of an
assignment statement, somewhere within the subpro-

gram body.

The function only returns one value, all other argu-

ments remain unchanged.

See Appendix B for a list of build-in functions.
FORMAT

To structure input and output information

label FORMAT (desc{ [,desc] }}

where:  desc is a format descriptor.
label is an unsigned integer.

100 FORMAT (I3,5F12.3)
200 FORMAT (1X,' ANSWER = ',3 (2X,14,L2))

See Appendix C for a list of format descriptors.

Parenthesis can be used to nest format descriptions
as shown in the second example above.

31



Statement descriptions Fortran-64]

computed GOTO

PURPOSE:  To allow ing to a labeled
on the result of an integer expression.

SYNTAX: GOTO (label{[,label]}} I

where: 1abel is an unsigned integer.
I is an integer expression.

EXAMPLES: GOTO (10,20,30) J
GOTO (10,20) (I+3)/6

NOTES: 1) In the first example, if J=1 then branch is made to|

10, of J=2 then a branch is made to 20, etc.
2) If the expression is less than 1, a branch is made to’
the first label. If it is greater than or equal to the:
number of labels, a branch is made to the last label.
unconditional GOTO

PURPOSE:  To allow branching to a labeled statement.

SYNTAX: GOTO label
where: label is an unsigned integer.

EXAMPLES: GOTO 10
GOTO 999

NOTES: 1) The statement immediately after the GOTO statement]
must have a label to allow access to that statement.

32




Abacus Statement descriptions

arithmetic IF

PURPOSE: To allow control to pass to one of three different
on the of an

amhmcnc expression.
SYNTAX: IF (express) label, label [,label]

where: D isan
label isan uns)gned integer.

EXAMPLES: IF (I) 10,20,30
IF (X-3) 10,20
IF ((SIN(X) +2) /3) 30,25,100

NOTES: 1) Transfer to first label if expressmn is <0.
2) Transfer to second label if expression is = 0.
3) Transfer to third label if expression is > 0.
4) When the last label is omitted, transfer goes to the
label when the expression is >= 0:
The ing two les are

IF (I) 10,20
IF (I) 10,20,20

logical IF
PURPOSE: To allow action to be taken depending on a condi-
tional expression within the IF.
SYNTAX: IF (logical expression) statement
where: logical expression - RE.LO.RE
RE = arithmetic expression
RO.= arithmetic expression

RO = relational operator
relational operators are:

)



J

Statement descriptions Fortran-64

EXAMPLES:

NOTES: 1)

PURPOSE:

SYNTAX:

EXAMPLES:

-EQ. -equal

.NE. - not equal

.LT. - less than

.GT. - greater than

.GE. - greater than or equal
LO = logical operator
logical operators are:

.OR. —or

AND. - and

.NOT. - not

IF (X.EQ.0) GOTO 10

IF (I.LT.J+2) WRITE (4,*) I

IF ((I.EQ.1) .AND. (J.EQ.2)) READ (0,10)
AB

The following statements can only be used with IF|
‘THEN and cannot be part of logical IF;
a) DO

b) CONTINUE

IF THEN

To allow conditional execution of a group of
statements.

IF (logical expression) THEN
statement

ENDIF

IF (I.EQ.0) THEN
READ (0,*) NAME
WRITE (3,*%) 'name is', NAME
I=I+1

ENDIF

34




Abacus

Statement descriptions

NOTES:

1) The ENDIF statement terminates the end of the block
statements.

IMPLICIT

PURPOSE: To override or confirm the type associated with the

SYNTAX:

first letter of a variable name.

IMPLICIT typnam (char |char_range)
{ [,typnam(char |char_range) }]

where: typnam is any standard data type.
char is any letter of the alphabet.
char_range is a character range.

EXAMPLES: IMPLICIT REAL (A,B), INTEGER (C-R),

NOTES:

&

LOGICAL (E)

1) The IMPLICIT statement can only be used once in
any program module.

The type declaration can still override the type
implicitly specified by the starting letter of a variable
name.

MEM

PURPOSE: To examine or alter individual memory locations.

MEM (varnam|constant)-integer
expression
varnam = MEM (varnal!\ |constant)
where: the argument between the () is an address
between 1 and 65535
varnanm is an integer variable.

35



Statement descriptions Fom'an-4

EXAMPLES: MEM (16763) =I+6

I=MEM (0)
MEM (IADD) =4
J=MEM (IADD) + 6 — 3 * (J+2) / MEM(J)

NOTES: 1) Using MEM on the left side of an equation is equiv:

PURPOSE:
SYNTAX:

lent to the poke in BASIC. Using MEM on the rigl
side of an equation is equivalent to the peek i
BASIC.

Memory locations can only hold values between
and 255. Only the low order byte of the integer
transferred to memory. Getting a value from mem
stores a 0 in the upper byte of the integer variable.

OPEN
To establish a connection between a file and a devi

OPEN filenumber,devicenumber
[,secondary address
{,"filename’ |name}]

where: filenumber, devicenumber and
secondary address are constants or
variables.
! filename' is the actual filename in
quotes.
name is the filename stored in an array of
type CHARACTER.

EXAMPLES: OPEN I,J,K,L

NOTES:

OPEN IL,J
OPEN I,J,K
OPEN I,J,K,” test file'

1) Performs the same function as BASIC.



Abacus

Statement descriptions

2)

PURPOSE:

SYNTAX:
EXAMPLES:
NOTES: 1)

PURPOSE:

SYNTAX:
EXAMPLE:

PURPOSE:

SYNTAX:

Refer to a particular device manual for more informa-
tion on the syntax of the OPEN statement for the
device.

PAUSE

To allow program execution to stop until a key on the
keyboard is depressed.

PAUSE constant

PAUSE 148

Refer to the Commodore keyboard codes to deter-

mine the value of the constant in the above syntax.
PROGRAM

To name a program. After linking the program must
be manually saved.

PROGRAM name

PROGRAM TEST

READ. (free-format)

To acquire data from the keyboard or from a file or
vice.

READ (filenum,* |#) ['string',]
varnam{ [,varnam] }

where:  £ilnumis an unsigned integer repre-

senting the file-number used in the OPEN
statement.

37



Statement descriptions Fortran-64

EXAMPLES:
NOTES: 1)
2)
3)
4
5)
6)
7
PURPOSE:
SYNTAX:
EXAMPLES:
NOTES: 1)

varnam is a simple variable, array element
or array name of type CHARACTER.

READ (10,*) A,B,IX
READ (0,0 'Enter a value: ',IY
READ (0,#) 'Enter Password',PASWD

A string to be used as a prompt can only appear as
the first thing after the right parenthesis.
Filenumber 0 is reserved for the keyboard.
If a pound sign (#) is used in place of the asterisk
(*), a no-echo read is performed.
Only arrays of type CHARACTER can be read in
directly.

Logical values are read in as 'T" or 'F'.

A READ statement without variables skips a record.
A space is used as a delimiter between values of type
INTEGER, REAL and LOGICAL.

READ (formatted)

To acquire data from the keyboard or from a file or.
device according to a specified format.

READ (filenum,label) varnam{ [,varnam] }

where:  f£ilenumis an unsigned integer
representing file-number used in the OPEN
statement.
varnam is a simple variable, array element
or array name of type CHARACTER.
label is an unsigned integer constant.

READ (10,100) A,B,IX
100 FORMAT (2F8.2,16)

Filenumber 0 is reserved for the keyboard.

38



Abacus

Statement descriptions

PURPOSE:

EXAMPLES:

NOTES: 1)

PURPOSE:

EXAMPLES:

RETURN

To transfer control from a subprogram back to the
calling program unit.

RETURN

RETURN
IF (x.LT.0.0) RETURN

Subprogram units must have at least one RETURN
statement.
STOP

To allow program flow to cease and execution return
to BASIC.

STOP

STOP
IF (ix.LT.0) STOP

STOP should only be executed within a main
program unit.

SUBROUTINE
To define the beginning of subroutine subprogram.
SUBROUTINE subnam (varnam{ [,varnam] }}
where:  varnamis a variable.

subnam is the subroutine name up to 5
characters.

SUBROUTINE SUB1 (x)

39




Statement descriptions Fortran-64

NOTES:

PURPOSE:

SYNTAX:

EXAMPLES: INTEGER STATE, COUNT, ZIP

NOTES:

1) The argument list determines two things about

passing values:
type of argument - determined by 1st character off
varnam f »

of = ol

parameters in a CALL statement.

2) Anargument is always required even if it's a dumm;
argument.

3) A subroutine is invoked by the CALL statement.

TYPE STATEMENTS
To specify the type of variables listed in the state:
ment.

type varnam{ [,varnam] }

where: type is the variable type such a
INTEGER, REAL, CHARACTER of
LOGICAL.
varnam is a variable definition.

REAL COST, VALUE
LOGICAL FLAG
CHARACTER CH
INTEGER K(10)

1) This declaration overrides the type implicitly speci
fied by the IMPLICIT statement.

2) Anarray can be di witha ty,

3) This declaration assigns an explicit type to symboli
names that would otherwise have their type implicitly
determined by the first letter of their names.

4) See Appendix C for data types.




Abacus

Statement descriptions

PURPOSE:

SYNTAX:

NOTES:

PURPOSE:

SYNTAX:

EXAMPLE:

3

WAIT
To allow program execution to be suspended for a
specified time period.
WAITn
where: n is an integer constant.
WAIT 2

Resolution is in seconds.

WRITE (free-format)

To transfer data from memory to the screen, printer
or file.

WRITE (filenum,* |+) { ['string'|varnam|
/decimal number,} ]

where: filenum is an unsigned integer repre-
senting the filenumber used in the OPEN
statement.
varnam is a simple variable or array ele-
ment or array name of type CHARACTER.
/decimal number sends the single byte
equivalent of the decimal number.

WRITE (10,*) 'The answers are: ',A,B,IX
WRITE (3,%) /147,IX,' is the value.'
WRITE (3,+) 'ENTER YOUR PASSWORD: '
Filenumber 3 is reserved for the screen and need not
be opened previously.

Only arrays of type CHARACTER can be written out

y.
Logical values are written out as T or F.

41




Statement descriptions Fortran-

4) A WRITE statement without variables isn't permitted;
5) The following field lengths are used on outputs:

REAL 12 Columns
INTEGER 6 Columns
LOGICAL 1 Column
CHARACTER 1 Column

CHARACTER array number = size of array

6) If the '+' symbol is used instead of the "' symbol,
no return WRITE is performed.

WRITE (formatted)

PURPOSE: To transfer data from memory to the screen, printe
or file according to a specified format.

SYNTAX: WRITE (filenum,label) variable
([,variable]}

where: filenum is an unsigned integer repre
senting the filenumber used in the OPE|
statement.
variable is a simple variable or arra)
element or array table.
label is an unsigned integer constant.

EXAMPLES: WRITE (10,100) A,B,IX
100 FORMAT (2F8.2,16)

NOTES: 1) Filenumber 3 is reserved for the screen and need nd
be OPENed first.
2) Filenumber 4 and 5 are reserved for the printer.
3) ﬂenumber 8,9,10,11 and 15 is reserved for the dis
ve.
4) Only arrays of type CHARACTER can be writte
directly.

42



Abacus Statement descriptions

5) A WRITE statement without a label referencing a
format skips a record or line.

OPERATORS
Addition
Subtraction
Multiplication
Division
Integer Exponentiation
(see built in functions for real
exponentiation)

SNk 1+

43



Appendix A—Built-in functions Fortran-64

APPENDIX A
BUILT-IN FUNCTIONS

Trigonometric functio) (trig.1lib)

SIN (x) of an angle given
COS (x) Co
TAN (x) Tangent of an angle

Arithmetic functions: (func.1ib)

EXP (x) Calculates e to the x power

ALN (x) Calculates natural log of x

LOG (x) Calculates log to base 10 of x

ABS (x) Calculates REAL absolute value of x

IABS (x) Calculates INTEGER absolute value
of x

POW (x,y) | Calculates x to the y power, where x

y are REAL

FLOAT (i) | INTEGER to REAL conversion
IFIX (x) | REAL to INTEGER conversion
MOD (4i,j) | MODULO; Calculates INTEGER
remainder

AMOD (x,y)| Calculates REAL remainder




B A R,

Abacus Appendix B—Format descriptor

APPENDIX B

FORMAT DESCRIPTOR
Aw CHARACTER type

Lw LOGICAL type

Iw INTEGER

Fw.d REAL type (positional without an
exponent)

Ew.d REAL with an exponent)

nX Skip n positions

/ Skip lines or records

Y literal characters (ignored in the formatted:
read)

where: [ wis an integer specifying field widths.
d is an integer specifying the number of
digits to the right of the decimal point.
n is an integer.

45



Appendix C—Data types Fortran-64

APPENDIX C
DATA TYPES
MAGNITUDE
INTEGER 16" bitatir 0 8
ASIGN
MANTISSA
REAL 32 bits: J1ield 8 Bale 1
~SIGN EXPONENT*
SIGN™
UNDEF INED
LOGICAL 16 bits 1 7 8
~SIGN

CHARACTER 8 bits 8
ASCII VALUE

46




Abacus

Appendix D—Error descriptions

APPENDIX D

ERROR DESCRIPTIONS

error message format: *****ERROR XXX yyy*****

where:  xxx = error number from list below
yyy = character position in line that caused
the error (not including spaces)
Examples: IF (x.LT.1.0 GOTO 10
*%% X *ERROR 008 012%****
Error number | Description

0 illegal alphanumeric

it slash missing

2 constant missing

3 illegal type

4 quantity of elements exceeds size of]|
array

5 array too large

6 array not dimensioned/variable has
no initial value

7/ element subscript outside boundary
of dimensioned array

8 pamnthes:s missing

9 repeat specifier

10 mva!.ld real number

11 sign missing

12 exponent 100 I

13 exponent missing

14 number or label too large

15 comma missing

16 value not assngned to identifier

17 filename too large

47



Appendix D—Error descriptions

Desanuon
i3 1nvalig riptor in format

only 2 dimension array permitted

first statement or END missing
uote missing

symbol table overflow

invalid identifier name

identifier already defined

implicit statement used more than

once

format not found

format too long

data memory requirements too large
object file too big

no corresponding label for DO loop
undefined

label not found

constant must be integer

'=' expected

identifier not found

increment cannot be zero

DO's nested too deep

type mismatch

invalid operator

parameter expected

'if nested too deep

<cr> <Return> expected
corresponding 'IF not expected
SUBROUTINE expecled
comma expected

integer variable expected

48

Fortran-64




Abacus Index

INDEX

Built in functions 44 IMPLICIT 35
CALL 23 Linker mode 12
CALL EXEC 23
CLOSE 24 MEM 35
Color mode 16
COMMENTS 24 g‘::;mm 3?
COMMON
Compiler mode 9 PAUSE 37
CONTINUE 25 PROGRAM 37
SeR 2% Program format 4
E;:E‘YNP“SION ;2 READ. 37,38
D 18 RETURN 39
DO 27 STOP 39
Sa i 28 SUBROUTINE 39
END 29 Translator mode 17
ENDCOMMON 30 Type statements 40
ENDIF 29
Error descriptions 47 WAIT 41

WRITE 41,42
FORMAT 31
Format descriptor 47
FUNCTION 30
GOTO 32
Help mode 15
IF 33,35
IF THEN 34

49



GEOS INFO

e b B Inside and Out

A dotted ot it o e v 1 o0 0

o
P
for Gosring o pane of iy Secrorle dagrame. Eaey s cndamuand

e oo ssartly s SABIS
o e n
w_.u-n.-mm..é,(m.wmv._nm
o e o ke e
“rining ey 303 1 v i e

o spccaion, S GES osd s vt vty Yo oo yom vy $1ASE

= GEos Tricks & mu
Contining h vradicn exmbishd b oo s € 64 whearce ey, GEOS
ks & e ek o hohd ey o v i s 08 i
o Commese s o e

5370 52nd Street SE
Grand Rapids, MI 49508
Phone (616) 638-0330




Selected Abacusll Products for Commodore computers

BASIC
Complete BASIC tnmpxlcrs
and developmen
Tor e Coédor CL128

“The packase s cary 1o e and the maral well-wrisien

1 showld rake only a few minuies o create code i

scraich. assuming the BASIC souwce code.alre
exits... I summary, BASIC exhances the peformance
o i (8 BASIC. 1t provie & ood
introducion 1o hose programeners who inend (o §0 on
cines andober Nl angtcges 1

lake your BASIC programs

[Convert them {o high-speed
machine language

Commodore Microcomputers

BASIC 64 and BASIC 128 e comples dvcopment
systems hat_compile standard Commodore BASIC
prorams o e swerast macios code u
Compact speedcode. I fct, the v can mix 6
s e oot DASIC.63 A DASICA2
speed up BASIC programs from 103 i fasier

BASIC les the user comple  seies of progranms usiog

s of many of
Tound in Simon's B, Video
4

(C-128 compile 1o eitber ulea-fst

510 macive :ulc. v, comp peode, o 3

conbination e

rinizzion wn o e e e el o
s, BASICAS bt g

on mah fncions. 1 i negr . formula
()mmmlw ebeie o complonty compaibl
Commodore BASIC 2070,

The 80.page programner's guide explainsthe comilers
simple operston. For more in-depth use, i lso covers

e uier can understand every (catue of tis qualty
product.

BASIC.128 s cofid in Wt Germany by ne of e
most sccesslol subor and compie wriers i
Thomss Melig. Owr BASICO! and DA

BASIC Advanced Development Pack

Hardware requicemets:

BASICt:
Comemodore 6 with 1541 or 1571 dik drve

BASIC-12:
Commotors 12 i 1501 151 i v
(supperts 40-o

ackages v e tols s ood 0
programs ru lghiing as, a0 poict eir POETS  prier ool

Trom amwamid g o rsion

S H price: “Abacus inc.

Suggested retail price: Abscus e
C-64 version $3995 Grand Rapids, MI 45508
C-128 version $59.95 Phone (616) 698-0330




BeckerBASIC for GEOS

Now you can write BASIC applications to work with GEOS

yourprgraming gesler For oxarmpe,
THAGE, RENUMBER, DUNI

Packed with over 50 mmmzr\ds (ov easy
disk access. Load and
memory or selected lines of o
You can even PEEK and POKE into your
dik drive's memory

iands can be used for eas! s

hires programming needs. Creat boxes, plot
points, and draw lines.

icated to

ating sdund. Set ring modulation, change

o e, ke o avalorm erd s

envelo

Over 35 commands lt you create and

animate sprites with ease. Load and save

change their
the.

Box Construction Set to aid in
the creation of you own appli

a
ot how quickly i flashes. Position e
location on the screer
20 commands are available for all your

For credit card orders call 1-616-698-0330

today o mai he coupon

e ot s 929

B3 and 328, Or sk fo i location of the Gea
" Nou aan order ot

aran, Exents o i

ometed cavpon Dadir

prte

5370 52nd Street SE
Grand rapids, MI 49508
Telox 700101 - FAX 16/658.0325

1m0 cataiog cover
ot Coamirs

Dhone. using your VISA.
o S 3 mak vt
Taurios wlcone—over

BockerBASIC application:
Now anyone can create nppumans in
BASIC to run with GEOS. Only $49.95

R
o perbibboe el e B



Selected Abacus i Products for Commodore compute

Cadpak Enhanced and 1351 Mouse Versions!

Computer-Aided Design package
for the C-64 or C-128
Cadpak is 2 superb tool for computer aided desig 3 N '
rwing for the Commodore 64 3nd 1255 ben cut
tcln ot g oty 1
Trs Commodese user e

o the novice, yet incorporate the design fnei
piniou cpabiis of & ity tsons CAD
ity accuacy and speed make Cadpak (

- m o Exclusive Dimensioning feature assures
exact scaled output of designs
from e ["Copuk Featare
‘e opons snddew o he sren t  exactocaion | r 1
with Cadpak' exclusive AceuPolnd cunor Psiiniog. 1 recson caled vttt ot i peiners |
£l el bt i s ke

Cadpak's mens options make it exy 0 we for |, 7y
beoces, Cadpak sk bosss many sopbisicied | | Drvuing i il e Melont M sy
fexures for he advanced wier. Using, the two graphi (opional) o new MOUSE version
5 you can draw lines, bones, crcles, llipss; il | (0piee Seatble Apa
wih 500l pateens; draw 1o + P defined o v delined il pacerns
e screen, The wier can so0m in 0 0 | SAVERECALL g ot 1o dikese
-2 % :

51
improved object edic les the uier define and save | | fots—creste s a Cosom symbolsons |
Miner, i

= e e rsikon yrhi: Pt o et simg e cses

ks o e Commot .61, 640 C 1 3 St rnts ncdo o e, s
iy

Cadpae 8 s v srens with 20 x 20 cescltion. | . Chbn st ot o rphi symbls

Colpell8 b » s sren rcocn of 640 x 30
Second screen resolution of 320 x 200. Printers:

+ Commodore 1525, 1526
Hardware requirements: (Lightpen and mouse optional). Compex
Cadpak 65 - Epmitx X, Homewiter 10 and comptibies
‘Commodore 64 (Sar Gemmini SG-10, 10x, 10C, 15x, Panasonic KXP
1541 disk deive (or MSD disk deive).

Cadpak 128:

ISTI/ISA1 disk driv (o MSD disk drve)

MPS 801,802, 503, 1000

?
i
¢

Prowrier BS10A, 8105C color
1351 Mouse version now available!  Simens PT8885
Suggested retail price: ‘Abscus Inc.

C-64 version $39.95 e e S0c08
C-128 Version géese vk iy o Prane (10) 6ha-03%0




Selected Abacus|fffffii Products for Commodore computers

Chartpak

Professional charting & graphing
package for the C-64 or C-128

s s g e e st efctie method o
representing staistical dac rom business and sc

2 comprehensible eas 1o digest format hat
accurately cooveys mumerical informacin.

Chuek 6. 128 e Ko b 7 e
bigh-

option s menn
h required dat,choose the chart ormat nd then waich
e chart

& i
e bl ad et g, S Charipak s
ol i

e o bl oyl mised . ik b

nial smoodhing. and can S
2 s.ms:mm.mmw sandard
[EeEr dona dan expoosnal

“The 140 page manual contains several worials o walk
the user through the.easy process o buiding chats and
0l g i g e i ces.

+ Easy o opertions
| riic p 1o fout gt e aing 200 pins (v

with C-128 verson
reen menus ae idenified and cross
v(cmM! 10 the use' goide fo aded convenience and | | S dald st chat speciications sepurscly
' P el nd || ot mamal iy Clartpak Gas. i
worls

s G
ooy pit g oh

o i o s ity Dy
o e e e G st s

- Chartpak 128 has 3X the resoluion of the 6 venic. |

esentations. gk

[Fsa et 64

The C-128 vu nn mn takes. adn-mu of i iy, 1541 S i o WS ik e

by o S T oy

oot ;m W’;;"‘:;j’eg’;',",;“jm;j: e 13 wih 40 or 8 ooy moncn

RIS R e G

e e sk ot B e
evived m i s e e o s T
i Com 5 amd 1526, MPS 801, Epon,
B Star Gemini, Okidata, Okimate, Siemens, others.

I suggested retait price: ‘Abacus Inc.
| S84 yersion $995 Srond Aaglas, w9508

C-128 version $39.95 Phone  (516)" 698-0330




COBOL
for the C-64 or the C-128
COBOL s the most widely used commer

programming. larguage in wse oday. The COBOL-64
24 COBOL128 piape It s oun e COBCL.

COBOL lngusge s commen o many

the 64 nd 128 is.

Our COBOL softwareincludes a syntax checking citr,
2 compiler, an inerpeter and symbolic deboging aids
S0 youTl be able (o write and test your COBOL
rograms very quickly.

COBOL-128 is more than 3 converson of o popular

e 28, COBOL-128 s much s an e C-64

[T CoBOL64 04 COBOL-128 Featores:

Dl eerd s o ceing COBOL source
* Fast complefinierpeee 0 tramfocm source

excuable pogram
(Rt brolf st el Bt e

- S e o ANSI COBOLTH

+ Inclodes acrunch funcionto educe the mercey sioe
of your programs

* Inclodes sample programs demasrting (e banling

- Comple 190 page manual

Hardware reqirement:

CoBOL64:
Commodore 64 with 1541 ox 1571 disk dive

coBOL
Commodre 128 vith 1541 o o 1371 dak v
(s0ppocs 40-oc 80-column

Woeks with most popula dot matix peniers optonaD.

Suggesied retail price:
C-64 version $39.95
o128 version $39.95

bacus inc.
5370 sand Street SE
Grand Rapids, MI_4350
Phone (616)" 6860930




PowerPlan-64

for the C-64

ot e e o s g i
the Commodore 64, giving Lotus 123 a run for the
“work with his

Unerseied i using tpreadshees program for buiness”

Ever since VisiCale and Lows 123 siomed the

personal compater market, he computer has become an

s R 2

perform_hundreds_of

s 2 e s oy o sl
educe reams of da into meaningfl infcemation.

jou can select bar chats, curve graphs, point chars,
pie chars, ictions.

PowerPlan-64 menus make it ey 1 wse foc the i
speeadsheet uter. Al of PowerPlan4' selecions

e o el e
Conveniend builtinnotepad dacaments user§

from. In addition, onlne HEL

he tuch of a key.

peseletd
Pomeilopirs fuch i, copy s e

speaking. tioeial that genlly ingoduces. the ser 10
Sprexdshests,

Hardware requicements

e 61
1541 dis deve (or MSD disk drive)

Printer optional

Inegrted graphics summarize hudeds o doa
D pi, bar, 3D bar, i and area churs
avtorically (8 chrt ypes)

~Mulipe windows emphasize the lyscs

Printe

64 works with the followig priners:

Commodare 1525, 1526,

“Egoon MX, FX, Homewier 10 and conpaibles

(St Gemini SG-10, 105, 10C, 155, Panasonic
1080)

KoP
n Self-running demo available P 801,302
‘Abacus I
Suggested etll price: 5370 s:m St S
C6iv $3995 Gra

rand R
Phome (816" 698:0530




Selected Abacus

PPM

Personal Portfolio Manager
for the C-64 or C-128

he program can be sumre

T 4o in o fonwors: o
customised daiabase wit rions

Personal Portotio s the st comprebensive
ol magemen sy it vt
modore 6 sd 128, s o b vesc
i e i ok pontol
minute quots a form :ele:ud nulynx
e e, PN o e e
nsgs s, bond, mmital. ot bk, eord
asable or poniatabie dividends and inicrest income.
pecform.

i up - mine ques 1 v, ad
Selcted snalys

i Products for Commodore computers

cus

50 your

T e, Mg e o o ok e

pique re
any kind of report 10

the wser can sotomaically spdate your

|7m Mns
Jeciod securites. Ponfolos can be kep foe special | * Manges siocks, geion, bands, o
e

* PEML38 i B0 colun e p 1 e e of

al funds,
Tobills o any oer type of short of long-em

e Corpi S T L |+ e GO pogan e 1 k|

o ogs off s e oo PPALIZA da ik
e e A T o R Tan |+ R e ol ridends s e
uansactions on a wg\e dulnk il 4 l-:nmla each kumu ‘account cash balance with

et ancon

ardware reqirements il g, med il ¢ skmand
ey
Commodore 64 .
158 e 1571 diskdive
Prseizs

i -+ Rutorun feore s ime for PPA i Jorg on, st
1597 or 1571 dik drve quokes, g of and enere it reports
N i el s e
Gt Vi, 10 16,1660

Comre 1525 3 1926, MPS 801, e, S
g (md compic) ‘Gemi, Obida, Okimae, Semans, oier.
Suggested retail price: ‘Abacus
5370 S2nd

C-64 version $39.95 Grand H-p!d'. M\ usul
C-128 version $59.95 Phone  (516)" 698-0330




Products forsCommodo

SpeedTerm
‘Terminal Software
for both the C-128 and C-64

owners we cne of the largest

Pl iR
SpeedTerm Features.
an e

computers

‘Sapports parial VTS2 ermioal emlation
- M

standard
manzges a Targe 45K capture bufler and permis user

sesions (C1128 version s 8 45K buffer, C-64
verson has 24K)
L gt e 0

30 powetul commands.

SeTerm i conpiblc v oo e e
and C:128, and if_proper

‘which can be used o both send nd recive

e, or 0 ecocd an o sessio.

The complee SpéedTerm package nclodes a 70 page

|t dikcommands o1 xmxnimmmms

R 4 54 s 0 st e
Tl oo e ih o 30 ot

Pemis e vndd‘w frciners

Tl with sy s it

Modems:
‘Commedore 1600, 1650, 1660
*+ Hayes and Hayes-conpaibles

Hardware requirements:
Term-64

+ Commodore 64

~ 1SHUMSD or 1571 dick drive

SpeedTerm-128
+ Commadore 126

~ 1S4UMSD or 1571 disk deive
- 40-or 80-column monitor

Sueessted réall prie:
Program disk contains

both 64 and 128 versions $39.95

‘Abacus Inc.
5370 52nd Strest SE

Grand Rapids, MI 43508
Phone (616) 6380330




Selected Abacus i Produ

Super C

C language development package
or the C-64 or C-128.

T Siper € Complr roviesa el »

avery C language. it i the

Sfunc
o S i O Come
price i right”

—Walt Lounsbenry
Commodore Microcomputers

coe of e mest populsr i s

oo e Reghan & R © sond (xce o
bificki), making them very compl

Sope s powerolflcren i e ceme
lengih (rger on C-128).

| column monitor. The C-128 version supports 40- oc 80-
celur moitons.

“The fast compiler (maximum of 3K abjct code) cre
Tk whl v s e g machine
language program. Super Cs.lisker combines vp o
seven separately compiled modales ito one execuible
program.

‘The /O library inclides many of the standard functions,

Supee C Features:

for Commodore compu

e

 Buiin e vithsech,eplac,bock comounds, | Nardvare requirements:
andmch Soper €6
+ Suppors wangs ormodne 4 with 151 o 157 ik die
¥ |hmk=ub;=umuvns!
Suppor v pograming i Super C 128;
. Inodes veycompcte o mcors s vy | Commokore 128 wilh 1541 o 1571 ik v
£ 138 vendon s igh posd RAM ik svport
| mm—wmum Printer optional.
ety |
e ‘Abscus nc.

‘ ‘Suggested retail price: R e s
C o $59.95 Grand Rapids, Wi 49508

|| C-128 version $59.95 Phane  (16)" 636-0330




