

Fortran-64

Programming language
for the Commodore 64

(c) 1988 Bob Stover & Tim Adams

Published By:

Abacus litt

Copyright Notice

Abacus makes this package available for use on a single computer
only.It is unlawful to copy any portionof this software package
onto any medium for any purpose other than backup. It is
unlawful to give away or resell copies of this package. Any
unauthorized distribution of this product deprives the authors of
their deserved royalties. For use on single-site multiple
computers, please contact Abacus to make arrangements.

Warranty

Abacus makes no warranties, expressed or implied, as to the
fitness of this software package for any particular purpose. In no

event will Abacus be liable for consequential damages.Abacus
will replace any copy of this software which is unreadable, if
returned within 30 days of purchase. Thereafter, there will be a

nominal charge for replacement.

First Printing,November 1988
Printed in U.S.A.

Copyright © 1986 Bob Stover and Tim Adams

Copyright © 1988 Abacus
5370 52ndStreet, S.E.
Grand Rapids, MI. 49508

ISBN 0-916439-91-7

TABLE OF CONTENTS

Writing a Fortran program 1

Compiling a program 3

The Program Format 4

Program Creation 5:

TEST Program (Translatable) 6

Getting started 7

The main menu 8

Compiler mode 9

Back to BASIC 11

Linker mode 12

Help mode 15)

Color mode 16

Translator mode 17

Directory 18

Creating a data disk 19

Statement descriptions 21
Arithmetic Expressions ae
CALL 23
CALL EXEC 23
CLOSE 24
COMMENTS 24
COMMON 25
CONTINUE 25
DATA 26
DIMENSION 27
DO 27
ELSE 28
END 29

ENDCOMMON

ENDIF

FORMAT

FUNCTION

GOTO

IF

IF THEN

IMPLICIT

MEM

OPEN

PAUSE

PROGRAM

READ.

RETURN

STOP

SUBROUTINE

TYPE statements

WAIT

WRITE

Operators

Appendix A—Built-in functions

Appendix B—Format descriptor

Appendix C—Data types

Appendix D—Error descriptions

Abacus Writing a Fortran program

WRITING A FORTRAN PROGRAM

Writing a Fortran file involves a number of different files. Before

starting your programmingeffort, you must create a data disk (see
Creating a Data Disk). There are a number of files on your disk that
are vital to the programming process. The steps needed to produce
an executable program follow (see page 5, Program Creation).

Thefirst file you will create is the Fortran source file (thefile that
holds your Fortran statements). The program must adhere to the
format described on pages 4-6, Program Format. If the program is
to be executed it must contain one main program unit and any
number of subroutine or function units. If the file does not contain a

main program it can still be compiled and later linked with

a

file that
does have a main program.

Thesource file can be created using two methods. Thefirst is to use

any word processor which produces sequential ASCII output files.

Theother alternative, is to create a file using the BASIC editor (see
Back to BASIC) and translate it into a sequential file using the
Translator (see Translator mode). The TEST program on page 8

gives an example ofa Fortran program written in the BASIC editor,
before it is translated. Each line is entered as in BASIC, with the

following exception: A colon (:) must appear on the line between the
line number and the statement. After the program is written and all

editing is completed, it is simply saved to the disk using the BASIC
SAVE command.

Once a sequential file has been created with either method, enter the

Compiler mode to compile the source program into an objectfile.
The objectfile contains relocatable, binary machine code.

Atthis point objectfiles can be combined bylinking them together
and loading them into memory. This is done in the Linker mode.

After the linking process is completed, an executable program
resides in memory. If the BASIC LIST command is used, a REM
Statement appears on the first line along with the name of your

Writing a Fortran program Fortran-64

Fortran program. A SYSstatement also exists with the execution
address.

Therest of the program is in machine language. Atthis point the

program can be saved to disk or it can be executed using the BASIC
RUN command. This program can be put on any disk. It does not

haveto reside on your data disk.

Compiling a program

COMPILING A PROGRAM

The Fortran-64 disk contains many example programs. The

following is an example of the complete compilation process:

1) Load Fortran-64 (see GETTING STARTED.)
2) Press the F6 keyfor translator mode (see Translator mode.)

2) Enter DOC-READER.FOR as thefilename then press Return.

3) Enter DOC-READER.SEQ as the sequential filename then press
Return. The file will be converted to a sequentialfile. Press
Return when the translation process is finished.

4) Press F1 to enter Compiler mode (see Compiler mode.) Enter
DOC-READER.SEQ as the source filename then press Return.

5) Enter DOC-READER.OBJ as the object filename then press
Return. Enter n for HARDCOPY. The file will be displayed on

the screen as it is compiled. Press the Return key when the

compilation process is finished.

Press F3 to enter the Linker mode (see Linker mode). Press y
to confirm entering Linker mode. Enter DOC-READER.OBJ as

the objectfilename and press Return.

Enter n in response to the LIST MODULES questions.

Enter STRING.LIB in response to the UNDEFINED

EXTERNAL message.

Theprogram is ready to save and run. Tosave the program to

disk, enter SAVE "DOC-READER",8 and press Retum .

Enter RUNand press Return to run the program. Enter 0 for no

printout. Next enter TOPICS.DOC. The TOPICS.DOC will be

displayed. Read each screen then press the Return key to move

to the next screen.

Compiling a program Fortran-64

THE PROGRAM FORMAT

name

declarations

label statements

END

*

* COMMENTS

*

SUBROUTINE name (arguments)
declarations

RETURN

END

FUNCTION name (arguments)
declarations

name *2?

RETURN

END

Note: Source lines are entered in free field format. This means that
all spaces are ignored unless they appear between single quote

This allows indention of loops and decision blocks. Labels
can appear anywhereon the lineif they are thefirst on theline.

Comment lines must start with *. Blank lines are ignored.

Anystatement can be continued onto the next line by placing a # at

the end of a line. The following example would be considered one

line althoughit is typed in on two:

WRITE (4,*) 1,J,A,B,C,D#,X,Y,2

Abacus Compiling a program

PROGRAM CREATION

CREATE SOURCE CREATE SOURCE CREATE SOURCE

FILE CONTAINING |FILECONTAINING

|

FILE CONTAINING

MAIN AND MAIN AND/OR ONLY

SUBROUTINES SUBROUTINES SUBROUTINES

USING USING USING

WORD PROCESSOR BASIC EDITOR WORD PROCESSOR

(SEQ. FILE) (PRG. FILE) (SEQ, FILE)

TRANSLATE

FROM

PRG-TYPE

FILE

TO

SEQ-TYPE

FILE

COMPILE

SOURCE FILE

LINK

AND

LOAD

OBJECT FILE

SAVE

AND/OR
RUN

PROGRAM

Compiling a program Fortran-64

TEST PROGRAM (TRANSLATABLE)

PROGRAM TEST

THIS PROGRAM WILL WRITE A

LIST OF THE ODD NUMBERS

FROM 1 TO 10 TO A PRINTER

INTEGER A,B
OPEN 4,4
DO 10 1 = 1, 10

WRITE (4, 100)r
10 CONTINUE

CLOSE 4

STOP

100 FORMAT

END

Note: Source lines are entered in free field format with a line

number and colon appearing first on the line. This means

that all spaces are ignored unless they appear between single
quote marks. This allows indention of loops and decision

blocks. Labels can appear anywhere onthe line as long as

they are the first things on the line. The Translator mode is,

used to convert this program to a sequential file.

Abacus Getting started

9)

2h

3.)

4.)

5.)

GETTING STARTED

Turn on your computer and all attached disk drives and

printers.

Insert the Fortran-64 disk, label side up, in you 1541 or

compatible disk drive.

Type the following:

LOAD "0:*",8

then press Return.The computer should reply with:

SEARCHING FOR*

LOADING
READY

Now, type the following:

RUN

then press Return. After approximately 25 seconds, the

Abacus Software logo and title screen appears and the main

program beginsto load.

After an additional delay of about 65 seconds, the Main Menu

displaying the Copyright message appears.

The Main Menu Fortran-64

THE MAIN MENU

The Main Menu lets youselect the Compiler, Linker and other

features by pressing a function key. When depressed, the function

keysperform the following:

F1 Enter the Compiler mode
F2 Back to BASIC
F3 Enter the Linker mode
F4 Enter the Help mode
F5 Enter the Color mode

F6 Enter the Translator mode

F7 View the directory on disk drive #8
F8 View the directory on disk drive #9

FORTRAN-64
FORTRAN RES IDENT COMPILER VX.X

COPYRIGHT (C) 1986 BOB STOVER/TIM ADAMS

ALL RIGHTS RESERVED

MAIN MENU

Fl COMPILER

F2 BACK TO BASIC

F3 LINKER

F4 HELP

F5 COLOR

F6 TRANSLATOR

F7 DIRECTORY 8

F8 DIRECTORY 9 |
Screen for Main Menu

Abacus Compiler mode

COMPILER MODE

If you press function key F1 you enter Compiler mode. You are

asked to type the name of your source file.

ENTER SOURCE FILENAME:

Type the name of the source file to be compiled. You can specify a

separate disk drive by typing as follows:

Toselect drive #8:

filename or D8: filename

Toselect drive #9:

D9:filename

Thefilename typed is a string of 1 to 16 characters.

Note: Only drives #8 and #9 are supportedin the Compiler mode.

However, the syntax for using these two drives permits
maximum flexibility, by allowing the user to enter the source

file from either drive and direct the objectfile to either drive.

Note: After entering the Compiler mode, function key F1 can be

used to return to the Main Menu, before the objectfilename

is specified.

After the source filename is entered, the compiler asks for the object
filename as follows:

ENTER OBJECT FILENAME:

The object filename can be entered using the same syntax as

described for entering the source filename.

Note: If the object filename already exists on the disk, an error

message appears. A new filename can then be entered or the

old file can be replaced using the following syntax:

Compiler mode Fortran-64

@0:filename or

D8:@0:filename or

D9:@0: filename

The compilernow asks if a printer listing of the source file during
compilation is desired as follows:

HARDCOPY? (Y¥/NCR-N)

If a Y is entered, the compiler asks for the device number as follows:

HARDCOPY DEVICE? (4/5 CR-4)

If aN or CRis entered, the compiler begins to compile the source file

entered and creates an objectfile on disk.

Any errors found during compilation are indicated either on the

screen or on the hardcopy device (if selected). See the Error

Description section of this manual fordetails on error determination.

Anytime during the compilation process, the compiler can be paused
or aborted with the following keystrokes:

Run/Stop key forces the compiler to pause.
space bar permits the compiler to continue after pause

Q aborts the compilation process

After compilation, the results of the process are indicated as follows:

See ERRORS DETECTED.

eeeee SOURCE LINES READ.

where ***** is the number of errors detected and @@@@@is the

number of source lines encountered.

A prompt then appears allowing the user to return to the Main Menu.

Abacus Back to BASIC

BACK TO BASIC

After function key F2 is depressed, the user is giventhe option to

return to BASIC (see Figure2). This permits creation or editing of a

Fortran source file while in BASIC. However, the following prompt
allows the user to change his mind:

ARE YOU SURE? (Y/N CR-N)

Note: In order to allow creation orediting of your Fortran file with
the BASIC editor and allow re-entry into Fortran-64 without

reloading, a SYS 49152 must be performed immediately
after returning to BASIC. After saving the file, a second
SYS 49152 can be performed to return to the Main Menu.

BACK TO BASIC
FEI III III III II IOI Ie

ARE YOU SURE? (Y/N CR-N)

Screen for Back to BASIC

Note: If linking is carried out, no further returns to the Main Menu

Linker mode Fortran-64

LINKER MODE

After function key F3 is depressed, the Linker mode is entered. (See

are possible. However, if linking is performed, additional

objectfiles can be linked or relinked by typing SYS 49152,

Figure 3)

followed by the Return key.

Note: Due to memory limitations, only drive #8 is supported in

© mi

Thefirst question asked by thelinker is as follows:

ARE YOU SURE (Y/N CR-N)

If an

N

is entered, a prompt appears allowing theuser to return to the

Main Menu. If a Y or CRis entered, thelinker first tries to load the

system table (SYTEM.TAB). If successful, the linker then asks for

the object filename as follows.

ENTER OBJECT FILENAME:

Note: The object filename is the name entered in the Compiler
mode.

After the object filename is entered, the linker asks if the user wants —

a list of the modules loaded as follows:

LIST MODULES/ (¥/NCR-N)

If an N is entered, the linking process begins. If a ¥ or CR is

entered, the linker asks if a printerlisting of the loaded modules is

desired as follows:

HARDCOPY? (Y/N CR-N)

Depending onthe replay, all modules loaded during the linking
process are listed on theprinter or the screen.

Abacus Linker mode

Note: Due to memory limitations, only print device #4 is supported
in

Linker mode.

If an external subroutine is called in the main routine of a Fortran

program but the external subroutine was compiled separately, a

message is displayed as follows:

UNDEFINED EXTERNAL

NK)
FOI III II III I III Ie

ARE YOU SURE? (Y/N CR-Y)
ENTER OBJECT FILENAME:

LIST MODULES? (Y/N CR-N)
HARDCOPY? (Y/N CR-N)

MODULES LOADED:

Screen for Linker Mode

Thelinker also displays the name of the subroutine and asks for the
filename of the library where the user may have included this

external subroutine as follows:

ENTER LIBRARY NAME:

After the filename is entered, the linking process continues. When

linking is completed, the following message appears:

RUNABLE CODE RESIDES

FROM $0850 TO $****

Where $**** is the ending address.

13

Linker mode Fortran-64

Note: If a library filename is entered that doesn't contain the
external subroutine requested or if any disk errors occur, an

error message is displayed on the screen and a retry message
appears. This can be helpful if libraries or modules are

located on separate disks. This message allows the user to

swap disks until the required file is located.

The final message to appear is the completed message as follows:

LINK COMPLETE

Atthis point, a runable/saveable version of the program is resident

in memory. USe the normal save command to save the program to.

diskette.

Abacus Help mode

HELP MODE

After function key F4 is depressed, the Help mode is entered. This
mode describes the optionsavailable from the Main Menu.

A prompt appears allowing the user to return to the Main Menu.

LP
FOI III ICIS II ICICI I ICICI IOI IK

Fl SELECTS COMPILER

SYNTAX:

FOR SOURCE OR OBJECT FILENAME :

FILENAME OR D8 : FILENAME

OR D9: FILENAME:

F2 RETURNS TO BASIC:

F3 SELECTS LINKER:

IF SELECTED:

ALLOWS FOR SAVE AND/OR RUN:

F4 SELECTS THIS HELP FEATURE:

ES) SELECTS COLOR CHANGE MENU:

F6 SELECTS TRANSLATOR:

FT SELECTS DIRECTORY ON DRIVE 8:

F8& SELECTS DIRECTORY ON DRIVE 9:

PRESS RETURN WHEN READY:

Screen for Help Mode

Color mode Fortran-64

COLOR MODE

After function key F5 is depressed, the Color mode is entered. Thi
mode allows the user to select the color you desire to work with.

A prompt appears allowing the user to return to the Main Menu.

After the source filename is entered, the compiler asks for the object
filename as follows:

COLOR
FOCI I III ICICI IA Ha:

(S) CREEN COLOR CHANGE

(B) ORDER COLOR CHANGE

(C) HARACTER COLOR CHANGE

PRESS RETURN WHEN READY:

Screen for Color Mode

Abacus. Translator mode

TRANSLATOR MODE

After function key F6 is depressed, the Translator mode is entered.

TRANSLATOR
JEG IOS IOI SI ISI III III III

ENTER PROGRAM FILENAME:

ENTER SEQUENTIAL FILENAME:

Screen for Translator Mode

Note: Due to memory limitations, only drive #8 is supported in

Translator mode.

‘The Translator first asks for the program filename as follows:

ENTER PROGRAM FILENAME :

‘The program filename is the name ofthe file originally created using
the Commodore BASIC editor and saved on the disk.

‘The Translator then asks for the sequential filename as follows:

ENTER SEQUENTIAL FILENAME:

Note: The sequential filename is the name ofthe source file used as

inputto the Compiler in Compiler mode.

After entering this name the Translator converts your program file to

a source file.

If a disk error is detected, it is displayed on the screen as follows:

DISK ERROR xx FOUND

Translator mode Fortran-64

where xx is the error number. (see your disk drive manual forerrot

explanations)

However, if the sequential filename already exists, the Translatoi

displaysan error, and also allows the user to enter a new filename ag

follows:

FILE EXISTS.

REPLACE FILE? (Y/N CR-Y)

If an Nis entered, the Translator allows a new sequential filename td

be entered. If a Y is entered or the Return keyis pressed, thi
Translator deletes the original sequential file and saves the file unde}
the old name.

Tf a colon is not detected on a line, an error is also generated af

follows:

ERROR: COLON MISSING ON LINE xx

Note: The sequential file is still generated after detecting missin
colons. However, the program file must be corrected ant

retranslated before proceeding to the Compiler mode.

After successful completion of the Translation process, a messagi

appears as follows:

TRANSLATION COMPLETE

A prompt then appears allowing the user to return to the Main Mend
DIRECTORY

Function keys F7 and F8 allow the disk directory from drive #8 o}

#9 respectively, to be viewed. Pressing the spacebar while viewing
the directorywill pause the display. Depressingany key allow}

continued viewing.If the Run/Stop key is pressed or when the eng

of the directory is reached, a prompt appears allowing the user t

return to the Main Menu.

Abacus Creating a Data disk

CREATING A DATA DISK

In order to link a compiled program in the shortest amount of time, it
is advisable to create a data or source disk. On this disk, the library
and runtime routines should appear first before any user created
source files. In order to achieve this, a program has been supplied to

copy the basic libraries and runtime routines to the data disk. The

following steps should be performed:

1.) Insert the Fortran-64 disk into drive #8.

2.) Type the following:

LOAD "CREATE",8

followed by a carriage return. The computer should replay
with:

SEARCHING FOR CREATE

LOADING

READY

4.) Now, type the following:

RUN

followed by a carriage return.

5.) The following prompt appears:

INSERT FORTRAN- 64 DISK

AND PRESS RETURN

6.) Nowpress the Return key All library and runtime routines are

read from the disk. An asterisk appears to show you the

progress.

7.) When complete, a new prompt appears as follows:

INSERT DATA DISK

AND PRESS RETURN

19

Creating a Data disk Fortran-64

8.)

a

10.)

Insert the new data disk and press the Return key. A new

prompt appears as follows:

DO YOU WANT TO FORMAT? (Y/N CR-N)

If Y is entered this prompt appears:

ENTER DISK NAME:

Type a new disk name and press the Return key.

A second prompt then appears as follows:

ENTER DISK ID:

The new disk ID (not greater than 2 characters) can then be;
entered and a carriage return is depressed.

After formattingor if N or CRis depressed, all required
libraries and runtime routines are copied to your di

When complete a message is displayed as follows:

DATA DISK CREATED

At this point, source programs can bestored on the data di

along with any user-defined libraries. You can now st
Fortran-64.

Note: If any disk errors are detected during the create process, the
are displayed on the screen as follows:

DISK ERROR xx FOUND

where xx is the error number (see your disk drive manual f¢
error explanations).

20

Abacus Statement descriptions

STATEMENT DESCRIPTIONS

in the following pages are the statements recognized by Fortran-64.
The descriptions consist of a short explanation of the statement,

poe
for the statement, examples and notes for its use. The syntax

shows, in a condensed form, the structure of the statement. To

expand the syntax into a usable form the following rules must be

followed:

1, Capitalized words and punctuation should be used exactly as

shown.

2. Small lettered words represent place holders for user supplied
syntax.

3, All spaces, except spaces between quotes, are optional. For

examplethe following twostatements are equivalent:

IF (1.EQ.J) GOTO 10

IF (I.EQ.J) GOTO10

4. Thefollowing symbols havespecial meaning:

syntax contained within is optional.
{} syntax contained within can be

repeated.
| OR- one or the other symbol on

either side of the | can be used at this

position.
Examples:

Syntax Expansion:
CLOSE filenumber{ [,filenumber]} CLOSE 8

CLOSE 8,9,10
WRITE (filenumber,*| +) WRITE (4,*)

WRITE (6,+)

5. Variable names are up to 5 characters long. They must begin
with an alphabetical character (A-Z)

21

Statement descriptions Fortran-6

ARITHMETIC EXPRESSION

PURPOSE: Toallow the calculation ofarithmetic equationsusi

variables and constants.

SYNTAX: varnam = varban|const|funcnan { [ope
varnam|const | funcnam] }

where: varban isa simple variable or array
element.

const is a constant of the same type as dl
variables being used.

funcnan is the name of a function being)
invoked.

oper is a mathematical operator.

EXAMPLES: xX = 1.0

TN mes (iets 2) 7 Or

A=SIN(X) + 6.0

NOTES: 1) Mixed mode operations are not permitted (reals:
and integers mixed).

2) Variables must be explicitly converted using
IFIX or FLOAT.

3) Fora list of operators see Appendix A.

4) All variables onthe rightside of the equal sign
must have been previously defined in the

program.

22

Abacus Statement descriptions

PURPOSE:

SYNTAX:

CALL

To transfer program control to the specified
subroutine.

CALL subname {varnam|arithmetic

expression|constant { [,varnam|
arithmetic expression|constant] }}

where varnamis a simple variable or array
element.

subname is the subroutine name up to 5
characters long.

CALL SUB1 (X,Y)
CALL TEXT (1,3,X,1)
CALL XXX (X,1,1+6)

1) Values in parameters can be passed to and from
the subroutine.

2) Entire arrays cannot be passed as parameters.
(See the COMMONstatement)

CALL EXEC

To allow direct access to Kernal or user written
machine language subroutines.

CALL EXEC (ia,ix,iy,istat,iaddr)

where: ia, ix, iy, istat are integer variables
or constants with values 0 to 255.

iddr is an integer variable or constant with
a value 0 to 65535.

CALL EXEC (IA,IX,IY,ISTAT,LDTIM)
CALL EXEC (6,3,8,1,64233)
CALL EXEC (0,0IVAL1,IVAL2,IADDR)

23

Statement descriptions Fortran-64

NOTES:

PURPOSE:

SYNTAX:

EXAMPLES:

NOTES:

PURPOSE:

SYNTAX:

EXAMPLES:

1) ia, ix, and iy represent the contents of the

sperma6510 registers A, X, and Y before the

istat represents the 6510 STATUS register. If
variables are used instead of constants in these

positions, they will contain the new values of the}
A,X,Y, and STATUS registers, after returning
fromthe subroutine.

CLOSE

To close a file previously opened for communication:

CLOSE filenumber ([,filenumber])

where: f£ilenumber is a constant or variable.

CLOSE I,J
CLOSE 15

1) Performs the same function as in BASIC.

2) The filenumber must have been defined in an

OPENstatement.

COMMENTS

To allow embedded documentation in programs.

*
any characters

* This is a comment line
* comments make programs more readable

24

Abacus Statement descriptions

PURPOSE:

SYNTAX:

PURPOSE:

SYNTAX:

COMMON

Toallow arrays in different subprogram units to

share the same block of memory.

COMMON

: COMMON

INTEGER IAXX (25), C (10)
REAL XXXX (4)
CHARACTER NAME (15)
ENDCOMMON

The COMMONstatement signals the beginning of an

array blockthat can be shared by many subprogram
units. The ENDCOMMON statement ends the block of
common.

The COMMONblock can be used to equivalence two

different data types between two program units. An

example, an array of 5 integers in a subroutine can be
treated as an array of 10 characters in another
subroutine.

CONTINUE

Toallow block structuring of a program.

[label] CONTINUE

where: label is an unsigned integer constant.

25

Statement descriptions Fortran-64)

EXAMPLES:

NOTES: 1)

PURPOSE:

SYNTAX:

EXAMPLES:

NOTES: 1)

2)

100 CONTINUE

CONTINUE

pO101=1,10

10 CONTINUE

The CONTINUE statement can be used for clarity.
The CONTINUE statement should be used to end aj
DOblock.

DATA

To assign values to a variable.

DATA varnam/constant/|/'string'/
{[,varnam/constant/|/'string'/]}

where: varnam is a simple variable or array
element or array name.

constant isa value to be assigned to the

variable.

DATAA/1.26/,1/29/
DATA X/'test'/,J/6*327/
DATA I (6) /1,2,4,8/
DATA Z/.TRUE./,Y/.FALSE./

‘There are norestrictions on where a DATA statement

can appear in a program. In fact, to conserve

memory, it is suggested that a DATA statement be

used to replace a simple assignmentstatement.

The
ing

multiple
assi

is not
i

a,b,c/1.2,3.45,1.9
The * symbolcan be used as a repeat specifier to fill
an array more efficiently, as in the example above;

As shown, the six elements of J would contain 327.

26

Abacus Statement descriptions

PURPOSE:

SYNTAX:

EXAMPLES:

NOTES: 1)

EXAMPLES:

DIMENSION

Todefine the dimensions and bounds of arrays.

DIMENSION varnam (bounds)

{[,varnam (bounds)] }

where: varnamis an array variable.
bounds is the integer dimension.

DIMENSION J (2,6) ,A(6)
DIMENSION K (10)

1 or 2 dimensional arrays are

Anarray can also be usingthe type
statement.

DO

To allow a method of looping on a group of
‘Statements.

DO label varnam= is,if [,ic]

where: label is an unsigned integer.
varnam is a simple variable.

is is a signed integer constant or variable

(starting value).
if is a signed integer constant or variable

(final value).
icis a signed integer constant (increment)

DO 10 J=1,10
DO 200 K=I,J,2
DO 60 I=0,-5,-1

27

Statement descriptions Fortran-64

NOTES: 1) Theinteger specified as a label should correspond
a labeled continue statement used later in th

program.

2) DO loopscan be nested.

ELSE

PURPOSE: Toallow one of two blocks of statements to bé
executed depending on a conditional statement.

SYNTAX: IF (conditional) THEN

statement

statement

statement

ENDIF

EXAMPLES: IF (TIME .EQ. 0.0) THEN

WRITE (3,*) 'TIME IS UP."

TIME = 100.00

ELSE

WRITE (3,*) 'WAITING..."

TIME = TIME - 1.0

ENDIF

NOTES: 1) The ELSE block can contain IF statements to furth¢
the decision making process.

2) The ELSE must be used in conjunction with the I

THEN and ENDIF statements.

28

Abacus Statement descriptions

PURPOSE:

SYNTAX:

EXAMPLE:

NOTES: 1)

2)

PURPOSE:

SYNTAX:

EXAMPLES:

ENDIF

Toterminate the end of a block IF statement.

ENDIF

IF (X.EQ.1) THEN

WRITE (3,*) X

ENDIF

IF (X.EQ. 6) THEN

WRITE (3,*) X

ELSE

WRITE (3,*) '*!

ENDIF

ENDIF is required at the end of any compound IF

statement.

When nesting compound IF statements within

blocks each must have a corresponding ENDIF.

END

Toindicate the end of a program unit.

END

PROGRAM TEST

COMMON

INTEGER X (5) (20)
ENDCOMMON

READ (0,*)T
CALL SUB1 (I)
WRITE (3,*) X(1)
STOP

END

SUBROUTINE SUB1 (J)
COMMON

29

Statement descriptions Fortran-

NOTES:

PURPOSE:

SYNTAX:

NOTES:

PURPOSE:

SYNTAX:

EXAMPLES:

NOTES: »
2)

INTEGER I(10),A(15)
ENDCOMMON

I(1) =o

RETURN

END

END is required at the end of all program unit

(Program, Subroutine or Function)

ENDCOMMON

To signal the end of a common block of array

storage.

ENDCOMMON

COMMON

INTEGER XXX (10)
ENDCOMMON

See the COMMONstatement for general comments.

FUNCTION

To define the beginning of a function subprogram.

FUNCTION name (varnam| [,varnam]))

where: varnamis a variable or array element.

name is the function name up to 5

characters.

FUNCTION SUB1 (X,Y)

Expressionsare not allowed as arguments.
Entire arrays cannot be passed as parameters. (Si
the COMMONstatement)

30

Abacus Statement descriptions

3)

PURPOSE:

SYNTAX:

EXAMPLES:

NOTES:

ve

An argument is always required even if it's adummy
argument.
The FUNCTION is invoked by name in an expression
as follows:

x3 +sub1 (i,j)

The function name must occur onthe left side of an

assignmentstatement, somewhere within the subpro-
gram body.
The function only returns one value, all other argu-
ments remain unchanged.
See Appendix

B

for a list of build-in functions.

FORMAT

Tostructure input and output information

label FORMAT (desc{ [,desc] }}

where: desc is a format descriptor.
labe 1 is an unsigned integer.

100 FORMAT (13,5F12.3)
200 FORMAT (1X,' ANSWER = ',3 (2X,14,L2))

See Appendix C fora list of format descriptors.
Parenthesis can be used to nest format descriptions
as shown in the second example above.

31

Statement descriptions Fortran-64)

computed GOTO

PURPOSE: Toallow branching to a labeled statement depending|
on theresult of an integer expression.

SYNTAX: GOTO (label{[,label]}} I

where: abe] is an unsigned integer.
I is an integer expression.

EXAMPLES: GOTO (10,20,30) J

GOTO (10,20) (I+3)/6

NOTES: 1) In thefirst example, if J=1 then branch is made to)

10, of J=2 then a branch is made to 20, etc.

2) If the expression is less than 1, a branch is made to)

the first label. If it is greater than or equal to the!

number oflabels, a branch is made to thelast label.

unconditional GOTO

PURPOSE: Toallow branching to a labeled statement.

SYNTAX: GOTO label

where: label is an unsigned integer.

EXAMPLES: GOTO 10

GOTO 999

NOTES: 1) The statement immediately after the GOTO statement

must have a label to allow access to thatstatement.

32

Abacus Statement descriptions

arithmetic IF

PURPOSE: Toallow control to pass to one of three different
labeled statements depending on the evaluation of an

it

tic expression.

SYNTAX: IF (express) label, label [,label]

where: express is an arithmetic expression.
labe] is an unsigned integer.

EXAMPLES: IF (I) 10,20,30
IF (X-3) 10,20
IF ((SIN(X) +2) / 3) 30,25,100

NOTES: 1) Transfer to first label if expression.is <0.

2) Transfer to second label if expressionis = 0.

3) Transfer to third label if expression is > 0.

4) When the last label is omitted, transfer goes to the

label when the expression is >= 0:

The following two examples are equivalent:

IF (I) 10,20
IF (I) 10,20,20

logical IF

PURPOSE: Toallow action to be taken depending on a condi-

tional expression within the IF.

SYNTAX: IF (logical expression) statement

where: logical expression - RE.LO.RE

RE = arithmetic expression
RO.=arithmetic expression
RO

=

relational operator
relational operators are:

eS.

Statement descriptions Fortran-64

EXAMPLES:

NOTES: 1)

PURPOSE:

SYNTAX:

EXAMPLES:

-EQ. - equal
NE. - not equal
- LT. - less than

.GT. - greater than

. GE. - greater than or equal
LO = logical operator
logical operators are:

-OR. - or

AND. - and

«NOT. - not

IF (X.EQ.0) GOTO 10

IF (I.LT. J+2) WRITE (4,*) T

IF ((I.EQ.1) .AND. (J EQ. 2)) READ (0,10)

A,B

The following statements can only be used with IF)

THEN and cannot be part of logical IF;

a) DO

b) CONTINUE

IF THEN

To allow conditional execution of a group o!

statements.

IF (logical expression) THEN

statement

ENDIF

IF (I .EQ. 0) THEN

READ (0,*) NAME

WRITE (3,*) 'name is', NAME

I=I+1

ENDIF

34

Abacus Statement descriptions

NOTES: 1) The ENDIF statement terminates the end of the block
statements,

IMPLICIT

PURPOSE:

_

Tooverride or confirm the type associated with the

SYNTAX:

first letter of a variable name.

IMPLICIT typnam (char|char_range)
{[,typnam(char|char_range) }]

where: typnam is any standard data type.
char is any letter of the alphabet.
char_range is a character range.

EXAMPLES: IMPLICIT REAL (A,B), INTEGER (C-R),

NOTES:

2

LOGICAL (E)

1) The IMPLICIT statement can only be used once in

any program module.

The type declaration can still override the type
implicitly specified by the starting letter of a variable

name.

MEM

PURPOSE: To examine or alter individual memory locations.

MEM (varnam|constant)-integer
expression
varnam = MEM (varnam |constant)

where: the argument between the () is an address

between 1 and 65535

varnan is an integer variable.

35

Statement descriptions —
EXAMPLES: MEM (16763) =I +6

I =MEM (0)
MEM (IADD) =4

J=MEM (IADD) + 6-3 * (J+2) / MEM(J)

NOTES: 1) Using MEM onthe left side of an equationis equiv.

2

PURPOSE:

SYNTAX:

lent to the poke in BASIC. Using MEM onthe rig]
side of an equation is equivalent to the peek

i

BASIC.

Memory locations can only hold values between

and 255. Only the low order byte of the integer
transferred to memory. Getting a value from mem«

stores a 0 in the upper byte ofthe integer variable.

OPEN

Toestablish a connection between

a

file and a devi

OPEN filenumber,devicenumber

{,secondary address

{,'filename' |name}]

where: filenumber, devicenumber and

secondary address are constants or

variables.

‘filename’ is the actual filename in

quotes.
name is the filename stored in an array of

type CHARACTER.

EXAMPLES: OPEN I,J,K,L

NOTES:

OPEN I,J
OPEN 1,J,K
OPEN I,J,K,’ test file’

1) Performs the same function as BASIC.

Abacus Statement descriptions

PURPOSE:

SYNTAX:

2) Refer to a particular device manual for more informa-

tion on the syntax of the OPEN statement for the
device.

PAUSE

To allow program execution to stop until a key on the

keyboard is depressed.

PAUSE constant

EXAMPLES: PAUSE 148

NOTES:

PURPOSE:

SYNTAX:

1) Refer to the Commodore keyboardcodes to deter-
mine the value of the constant in the above syntax.

PROGRAM

To name a program. After linking the program must

be manually saved.

PROGRAM name

EXAMPLE: PROGRAM TEST

PURPOSE:

SYNTAX:

READ. (free-format)

Toacquire data from the keyboard or from

a

file or

vice.

READ (filenum,*|#) ['string',]
varnam{ [,varnam] }

where: £ilnumis an unsigned integerrepre-

senting the file-number used in the OPEN

statement.

37

Statement descriptions Fortran-64

PURPOSE:

SYNTAX:

varnam is a simple variable, array element

or array name of type CHARACTER.

; READ (10,*) A,B,IX
READ (0,*0 "Enter a value: ',IY
READ (0,#) "Enter Password' ,PASWD

A string to be used as a prompt can only appear as

the first thing after the right parenthesis.
Filenumber

0

is reserved for the keyboard.
If a pound sign (#) is used in pinesof the asterisk

(*), ano-echo read is performed.
Only arrays of type CHARACTER can be read in

directly.
Logical values are read in as ‘T' or 'F'.

A READ statement without variables skips a record.

A

space is used as a delimiter between values of type
INTEGER, REAL and LOGICAL.

READ (formatted)

To acquire data from the keyboard or from

a

file or

device according to a specified format.

READ (filenum,label) varnam{ [,varnam] }

where: f£ilenumis an unsigned integer
representingfile-number used in the OPEN

statement.

varnanm is a simple variable, array element

or array name of type CHARACTER.

labe1 is an unsigned integer constant.

; READ (10,100) A,B,IX
100 FORMAT (2F8.2,16)

Filenumber

0

is reserved for the keyboard.

38

Abacus. Statement descriptions

PURPOSE:

EXAMPLES:

NOTES: 1)

PURPOSE:

EXAMPLES:

RETURN

Totransfer control from a subprogram backto the

calling program unit.

RETURN

RETURN

IF (x .LT. 0.0) RETURN

Subprogram units must have at least one RETURN

statement.

STOP

Toallow program flow to cease and execution retum

to BASIC.

STOP

STOP

IF (ix .LT. 0) STOP

STOP should only be executed within a main

program unit.

SUBROUTINE

To define the beginning of subroutine subprogram.

SUBROUTINE subnam (varnam{ [,varnam] }}

where: varnamis a variable.

subnam is the subroutine name up.to 5

characters.

SUBROUTINE SUB1 (x)

39

Statement descriptions Fortran-64

NOTES:

PURPOSE:

SYNTAX:

EXAMPLES: INTEGER STATE, COUNT, ZIP

NOTES:

1) The argument list determines two things about

passing values:

type of argument - determined by 1st character off
varnam

placement of argument - determines placement of

rameters in a CALL statement.

2) An argument is always required even ifit's a

=3) A subroutineis invoked by the CALL statement.

TYPE STATEMENTS

Tospecify the type of variables listed in the state:

ment.

type varnam{ [,varnam] }

where: type is the variable type such a

INTEGER, REAL, CHARACTER Ol

LOGICAL.

varnam is a variable definition.

REAL COST, VALUE

LOGICAL FLAG

CHARACTER CH

INTEGER K (10)

1) This declaration overrides the type implicitly speci
fied by the IMPLICIT statement.

2) Anarray can be dimensioned with a type statement.

3) This declaration assigns an explicit type to symbol
names that would otherwise have their type implicit
determined bythe first letter of their names.

4) See Appendix C for data types.

Abacus. Statement descriptions

PURPOSE:

SYNTAX:

NOTES:

PURPOSE:

SYNTAX:

EXAMPLE:

3)

WAIT

To allow program execution to be suspended for a

specified time period.

WAITn

where:

n

is an integer constant.

WAIT 2

Resolution is in seconds.

WRITE (free-format)

Totransfer data from memory to thescreen, printer
or file.

WRITE (filenum,*|+) {['string’ |varnam|

/decimal number,}]

where: filenum is an unsigned integer repre-

senting the filenumber used in the OPEN

Statement.

varnam is a simple variable or array ele-

ment or array name of type CHARACTER.

/decimal number sends the single byte
equivalentof the decimal number.

WRITE (10,*) "The answers are: ',A,B,IX
WRITE (3,*) /147,1X,' is the value.'

WRITE (3,+) 'ENTER YOUR PASSWORD: '

Filenumber 3 is reserved for the screen and need not

be opened previously.
Only arrays of type CHARACTER can be written out

Ly.

Logical values are written out as T or F.

41

Statement descriptions Fortran-

4)
5)

6)

PURPOSE:

SYNTAX:

EXAMPLES:

NOTES: 1)

2)
3)

4)

A WRITE statement without variables isn't permitted:
Thefollowing field lengths are used on outputs:
REAL 12 Columns

INTEGER 6 Columns
LOGICAL 1 Column

CHARACTER 1 Column

CHARACTER array number

=

size of array

Tf the '+' symbolis used instead of the **' symbol,
noreturn WRITE is performed.

WRITE (formatted)

Totransfer data from memory to the screen, print
orfile according to a specified format.

WRITE (filenum,label) variable

{ Lvariable]}

where: filenum is an unsigned integer repré
senting the filenumber used in the OPE!

Statement.

variable is a simple variable or arraj

element or array table.
label is an unsigned integer constant.

WRITE (10,100) A,B,IX
100 FORMAT (2F8.2,16)

Filenumber 3 is reserved for the screen and need né
be OPENed first.
Filenumber 4 and 5 are reserved forthe printer.

8,9,10,11 and 15 is reserved forthe dis
ive.

Only arrays of type CHARACTER can be writte

directly.

42

Statement descriptions

5) A WRITE statement without a label referencing a

format skips a record or line.

OPERATORS

Addition

Subtraction

Multiplication
Division

Integer Exponentiation
(see built in functions for real

exponentiation)

Appendix A—Built-in functions

APPENDIX A

BUILT-IN FUNCTIONS

Trigonometric (trig.1lib)

POW (x,y)

FLOAT (i)
IFIX (x)
MOD (4,4)

AMOD (x,y)

Calculates e to the x power
Calculates natural log of x

Calculates log to base 10 of x

Calculates REAL absolute value of x

Calculates INTEGER absolute value

of x

Calculates x to the y power, where x

and y are REAL

INTEGER to REAL conversion

REAL to INTEGER conversion

MODULO; Calculates INTEGER

remainder

Calculates REAL remainder

Appendix B—Format descriptor

APPENDIX B

FORMAT DESCRIPTOR

wis an

dis an integer specifying the number of

to the right of the decimal point.

Appendix C—Data types Fortran-64

APPENDIX C

DATA TYPES

MAGNITUDE

INTEGER TOMES eI og 8

“SIGN

MANTISSA

REAL 32 bits 1 di Baa tL

“SIGN EXPONENT*

SIGN*~

UNDEFINED

LOGICAL 16 bits 1 7 8

“SIGN

CHARACTER 8 bits

46

8

ASCII VALUE

Abacus Appendix D—Error descriptions

APPENDIX D

ERROR DESCRIPTIONS

error message format: *****ERROR xxx yyy*****

where: xxx = error number from list below

yyy = character position in line that caused
the error (not including spaces)

Examples: IF (x.LT. 1.0 GOTO 10

*****ERROR 008 012**#**

Error number

|

Description

0 illegal alphanumeric
i slash missing
2 constant missing
3 illegal type
4 quantity of elements exceeds size of|

array
5 array too large
6 array not dimensioned/variable has

noinitial value
le element subscript outside boundary

of dimensioned array
8

poet missing
9 repeat specifier
10 maereal number
11 sign missing
12 exponent too I:

13) exponent missing
14 number or label too large
15 comma missing
16 value not eee to identifier

17 filename too large

47

Appendix D—Error descriptions

Ppescripton1S invalic sriptor in format

only 2 dimension array permitted
first statementor END missing

uote missing
symboltable overflow
invalid identifier name

identifier already defined

implicit statement used more than
once

format not found

format too long
data memory requirements too large
objectfile too big
nocorresponding label for DO loop
undefined
label not found

constant must be integer
‘s' expected
identifier not found
increment cannot be zero

DO's nested too deep
type mismatch
invalid operator
parameter expected
‘if nested too deep
<cr> <Return> expected
corresponding 'IF not expected
SUBROUTINE

comma expected
integervariable expected

48

Fortran-64

Abacus Index

INDEX

Built in functions 44 IMPLICIT 35

CALL 23 Linker mode 12

CALL EXEC 23

CLOSE 24 MEM 35

Color mode 16

COMMENTS 24 Ona x
COMMON
Compiler mode 9

PAUSE 37
CONTINUE 25

PROGRAM 37

DATTA 26 Program format 4

Da # READ. 37, 38

Dect, 18
RETURN 39

DO 27 STOP 39

aes 28
SUBROUTINE 39

END 29 Translator mode 17

ENDCOMMON 30 Type statements 40

ENDIF 29

Error descriptions 47 WAIT 41

WRITE 41,42
FORMAT 31
Format descriptor 47

FUNCTION 30

GOTO 32

Help mode 15

IF 33,730
IF THEN 34

49

Selected Abacusilfiiil Products for Commodore computers

BASIC
Complete BASIC

compliersand development sy
for the C-64or C2128

“The packageis easy 10 we and the manual wellwrtien.

mad

Eadie eh edie

lake your BASIC programs

\Convert them io high-speed
machine language

‘Commodore Microcomputers

BASIC 64 and BASIC 128 ae

completedevelopmentsystems. th le standard Commodece BASIC

Programs it eter

sopertst
mache

code«‘compact speedeode. In fact, the user can mix d

ary sg DASIC94 aed

speed up BASIC proprams from 5.40

3S

times

faster.

BASIC lets the user compile a series of programs using

the ovetlay features, and even allows the use of many of

the language extensions found in Simons Basi, Video

Basic, Vicuee oc BASIC 4,

4 and BASIC-128 compile to either ulra-fast

8510 tie ode,vey comer pod, or

combination ofboth

Thee
a

oni
mizationice the lvesuedto

needs, BASIC-128
toyfe

ad ae
thon mathfncion. Ic wies Integer.and formals

Seine snd i

ih Commodore BASIC 2.07.0.

The 80-page programmers guide explains the compilers
it alo covers

the user can understand every feature of his quality

product

ascrafted in West Germany by one of the

fon fo, a procts programs
From umancdttingor akeradon

‘Suggestedretail price:
C-64 version $39.95
C128 version $59.95

BASIC Advanced Development Packs

Hardware requicements:

BASIC-6t:

Commodore 6$ with 1541 or 1571 disk drive

BASIC-128:
Commodi

|

"as
wi

15001Sai
ne

(supports 40-0

Printer optional

‘Abacus Inc.
5370 52nd. Street E

Grand Rapids, Ml 49508

Phone (616) 698-0330

BeckerBASIC for GEOS
Now you can write BASICapplications to work with GECS,

Your proprarming sasier,

FosTRACE,RENUMBER, DUM

Packed with over 50 conan‘oreasy
disk access. Load

memory or selected lines of uae
You can even PEEK and POKEinto your

ickly it flashes. Position it at any

location on the screen.

20 commands are available for all your

For credit card orders call 1-616-698-0390

todaymal hecouponfou
84 an 0. Or aa for tho locaton ol the dealer

marianExproasMasioy Maso

‘ormplied coupon, Desir

5370 52nd Street SE
Grand rapids, Mi 49508
Toles 709-101 FAX 616/609-0325

‘phone. using. your VISA,
dea

ahd al yourinquties welcome—over

hires programming needs.
Crest boxes, plot

icated to

‘Set ring modulation, change
thetor,aterthe waveform and set the

‘Over 38commands let you create and

animate sprites with ease. Load and save

sprites directly. Alter their size, change their

pesttong and
check

fr calfsions, Use the

sprite editor to create sprites and icons.

Uso the Pulldown Menu Construction Set
ind DialogBox Construction Set to aid in

the creation of you own applications
joyalty-free distribution of your

BeckerBASIC applications.
Now anyone cancreate

appleations
in

BASICto run with GEOS. ‘Only$49.95

se aoe sine ees BS

Selected Abacus Products for Commodore compute

Cadpak Enhanced and 1351 Mouse Versions!

Computer-Aided Design package
for the C-64 or C-128

Capa
is» spe a foe comptes ign ad

for

the

novice, yet incorporate the

Pinout capable.of 8

tly “lesionCAD

‘system. Is simplicity, accuracy and speed make Cadpak aN
Tighipen oF optional mouse

screen nd

rete
a tic ee a

render ae that sets Cadpak apart fms‘its Exclusive Dimensioning feature assuresBessa Bay ol

Stowe cigs mon pm scaledoutput of designs,

wih Chips Aca ner panne. |. ce leet ma mi ine
rein

ut perenneCaps nen pions mute w ue fe |, Teheran pen
Cadpak ao. boss mary sopbisicacd |! rap sng ter te hghway

(Sons xe nrc wa Uieo (pina nex MOUSE venice
you can Sw nc, one tie, sir || eae Pea Se

Sin wold

cloee

ow Irie reat at
the soca Te te cn soom in 0 | and en ke

design

on

a small sec the screen. Cadpak's

|«

Library contains pre-defined objects, symbols,
bject editor les the user define and save

|

fonis—create and add custom symbolfon |

fun machina. eine | esha
fe sce eso pm Fees fr 1 Nill mesg tc

Covet |

Sans ya
ce es

has two screens with 320 x 200 resolution.

Cadpai28
ba fin sren mci of 640 «360

‘second screen resolution of 320 x 200. Printers:

Commotoe1525,1596

ellipses, acs

Fonts oc graphic symbols

Hardware requirements: (Lightpen and mouse optional)
Cadpak 64 “eet"FX,Homewiter 10

and

compatibles
‘Commodore 64 (Star Gemini $G-10, 10x, 10C, 15x, Panasonic KXP
SAI disk drive (or MSD disk dive)

Cadpak 128: MPS801, 802, 803, 1000

STIS disk dive (or MSD disk drive) wli i

1351 Mouse version now available! 1000, + Siemens PTBS89

Sener on$39.9! Grand Rapide, ti 49500
C-128 version aioe venia nly _ $59.95 Powe (ete)690-0900.

Reece il merce accu

Chartpak
Professional charting & graphing

package for the C-64 or C-128

ra tnd why we he mos five
mataofrepresenting Stata data rom busines ad

npn ey Ss
ama ha icyad

at informatio.

hak 18
a sor tm eve ee

high

‘option

is

menu

‘he required data, choose the char format and then watch

the chat

CChartpakquicklydraws any one of 8 different formats of

ince Charipak is an 1

tool, changing. a feature ia the

petiThee
bar 8 aC any time. Chartpakalso

has

built i

in fears. er sie ea ea Pca Maneater oa el es

regressi tial smoothing, and can

ie
+ Saini

cet,
standard deviation,

|
least ional “data, exponential

‘The 40-page manual contains several tutorials to wall
+ Easy 1 operationsthe user through

thp

easy process of building charts and

co ne Be ree coere
|S op1 four at Sets talig 200 poin (ae

creen menus are identified and cross.
WML veeiog

= He en ee eetcre aay

|

SiNeS data andlor chart speciiations separately

Se eee 45 Complete manual with Chartpak daia_redvction

tout in two differen sizes

+Chava18 fas3 the ein of to 6 ven

J)
Wen he wes ented carto graph sist,they can get a hardcopy of it with most populardot

printers in tie of two izes, Many Charfpak
users have reproduced these charts and graphs for reports

ae

ester Commas 64

‘The C-128 version that takes advantage of the added
1541 disk drive (or MSD disk drive).

fa le

onSoe ena ee ote ar,
Bd 128with 40: of

ae oe
Sra ak ae (oe MSD dk ho)

nT rs
a ee ct BODE

er
reviewed onthe screen, or canbe scold o show

ices
Commodore 192 526, MPS 801, Epson,

eee Star Gemini, Okidata, Okimate, Siemens, others.

‘Suggested retail price ‘Abacus Ine.

Sora $39.95
Fae een aGrand Rapids,

| C-128 version $39.95 Phone (616) 698-0331

ed Abacusiliill Products for Commodore computers

COBOL
for the C-64 orthe C-128

COBOL is the most widely wsed commer

programming language in wie today. The COBOL-6$

sod COBOL-128 pecags Jt wen

eam
Se

COBOLJanguige wing

compat The COBOL wes Enh
Tike seateones.

This

makes it an easy 10

3

tt
i common to. many

computers, every aspect of COBOL leamed on

‘the ‘64 and "128 is vali fo larger system versions.

‘Our COBOL software includes a syntax checking editor,
‘a compile, an interpreter and symbolic debupzing ads.

yo to waite and test your COBOL

Programs very quickly

COBOL-128 is more than a conversion

ofour

popular

the12%,
COBOL rns mach fir thanbe C64

Tesla nara a ceting COBOLsure+ Fast compile/interpreter to wansfocm source

cexcuable progra

Rees
ies Heo

+ SappSuse of ANSI COBOL 74

a crunch function to reduce dhe sie

of your programs
+ Tncldes sample programs demoasrating file banding
+

Compete150-pgemania

Hardware requirements:
conoL.64:

with 1541 oc 1571 disk drive

‘conot

128wih 154
or 17ik

ve

(Guppors 40-0 80-column

‘Werks with mos popular dot-matrix printers (optional)

smd Features:

Supposeoa price:

C64 $39.95
6-128 version $39.95

Inc.

5370,Sand‘Street
SE

Grand Rapids, MI 4950

Prome(e10)” 658-0930

PowerPlan-64

for the C-64

"PowerPlan is one of the best programs ever writen for
‘he Commodore 64, giving Lotus 1-2-3 a run for the

pleasure

10

work

in using programe for busines”

Ever since VisiCale and Lows 123 stormed the

‘personalcomputer market, the computer has become an

iso
Heme

eae
is Pee

perform hundreds of

to whiC quy ad ely,
1 meaningfelinformation.reduce reams of data in

smax charts

Tove
ce met hwy i

aise ws.
Al

of

cy splayed on

te

seen for the user to choose

niin olne HELPsees we eal

analysis needs

Convenient builtin notepad documents user's

“Table pv ces ©
|

uick competatio

seaase
ith A ut, apse

epee $f

coolness ele
‘wo

|‘speaking tutorial that gently introduces

the

user tage ice ‘summarize eds of data

|
Draws pi, bar, 3D bar, line and are chars |

Hardware requicements sulomatially (8 char ypes)

| Mane windows emphasize the ans

re ot

1541 disk ive (or MSDdisk drive)
an-64 works with the following printer:

Prioter optional
Commodore 1525, 1526

‘Epson MX, FX, Homewriter 10 and compatibles

|1,10s, 10C, 15x, Panasonic

ior
Self-running demo available» MPS 801,02

‘Abacus i

Suggestedretallprice: 5310Sane
snd. Se

CoN a2
Phone (ero).690.0590.

FSETroi clo Si

PPM

Personal
Portfolio

b
Manager

for the C-64 or C-128

{The rowan can be sumed wp in

fomword¢

‘An account executive can keep_aseparate portfolio for

‘of selected securities. Portfolios can te kept foe special

incest(6. ah ech, Tow coms junkBonds

by
PPM elqve report

cosa letsthe eet rode a

pti or sock,

the User can automatically ypdate your

wnputer System. PPM logs

jaosactions ona single diskette

Hardwarerequirements:
M64

Com
Tstter 171 dk dive

PPM-128

Commodore 1

1541of 1571 disk dive

Modes

eu olin
dat ate

2G
sm, 160, 1650, 1660

Tekin (ad compat)

Suggested retail price:
-64 version $39.95

$59.C-128 version

ny Kid ofreport

Products for Commodore computers

PIM Peau
50 your

Toe tir own vse

“Managessocks, options, bonds, mata fds,

Tb er eyOber bye ota or loge

caso

mae
be

PPM-128 in 80-column runs up 10 twice dhe sped of

the C-64 version

+ New TRANSFER program aansfers quotes
PPM-128

New CONVERT program wansfer: data wy |

PPM-128 dita disk

Recor
table of son-aiale dens ad ine

+ Recoil each brokerage account cash alae wih

wansoetion file

od gee
ted

aruly
o atoatcaly

farner ComputeeServ
el Up) 100) open on sng
diskette (buys ox shorsels)
Produces cu reports 10 suit your specific
portfolio req
‘Aatorun farare ses time for PPM tp Tengon, update

pote fg off a generate peer eos

Printers:

‘Commodore 1525 and 1526, MPS 801, Epson, Sir

Gemini, Okara, Okimate, Siemans, others.

Grand Rapides i 49500
Phone (616) 698-0330

Products foreCCommodo! computers

SpeedTerm
Terminal Software

for both the C-128 and C-64

‘ommers are one of the largest

er dola any ote

8

Sem
wm isa completlyConant

to lear and use, yet provides great

sca though Spederm is simple in die. packsnuns

Fees
at at fund

packages. Fe tet Kiem and

Sient reco ota lg es can Be

vploaded it eror. In ation to

Sopot feater crs Spt inchesppanial DEC VTS2 termin

standard

manages a large 45K capture buffer and permits user

‘efi fonction keys more than

30 commands.

SpeetTermis compawth
mst fh

‘and C-128, and. if proper

which can be usedto both send and receive

files, or 1 record an ein session.

Thecompete SpdedTerm packageices
470 pope

manual with easy 0 understand ct

Modems:
+ Commodore 1600, 1650, 1660
+ Hayes and Hayes-comtpatibles

i

both ‘64 and 128 versions $39.95

SpeedTerm Features:
Root id Prt prance fe

Herter
|

‘Sopportspari VTS2 terminal rol

+ Manages large cing necapene bole

sessions (C128 version has a 45K buffer, C64 |

‘versionhas 24K)
Use copy sett fle

om ik dik,

|

|

si tie
eonso

SeatDieta
1 SEs eames 1sSoe i a Brox
+ His poet ommd

ane wih oe 30 comments
|

; ee eed
Kone |

+ Works wih, most |

1 ets wid ir 8Dclon
Opps ual wt yt idea

Mme eet
ree

cay

“Binatone

syst

+ oF 1571 disk ive
+ 40 of 80-columa monitor

‘Abacus Inc.
5370 52nd ‘Street SE
Grand Rapids, MI 49508
Phone (616) 698-0330

Selected Abacus Products for Commodore computers

C languagedevelopment package :

for the C-64 or C-128

er ores eevee
ae

very fae C language 13 the

Solara cpacagOs taConeseane
price

is

righ
Walt Lounsherry

Commodore Microcompeters

CC language is oe of the most popular in ose

today—it's an excellent development tool, produces fast

‘6510 machine language code and is very easy 10

Seat
iancoe

ee ee
cs © development
servo RegionRichieC

santa (excep coe
bitfield), making them very compl

A
1

Sone
Cs powell screen do eis be mee creme

| column monitor. Thg C-128 version supports 40- or 80-

monitors.

‘Thefast compiler (maximumof 53K object code) cre
[ie whch te Kner tes na aaron

program. Super C'slinker combines up to

seven separately compiled modules into one executable

rogram.

‘The VO library inchiidesmany of the standard functions,

Super € 64:

+ Built-in etor with search, replace, block commands,

|

Hardware requirements:
much

rmoxone 64 with 1541 oF 1571disk drive

‘SuperC Features: |
sports recursive programming techniques Super

€

128: |bes

very

cmp nh fc a

|

Commodi 128
ih 154

15
ik ive

«soe andad 1

sd
ft pris He (suppons 40

128 version high-speed RAM dik support

Suggested retail price: AbacusIno. se| $59.95

|

GrandRapics,Mt 43508

version $59.95 Phone (616)698-0330,

Printer optional,

