
C∗Base
v3.3

Programmer’s Reference Guide

Copyright c⃝2003–2013 David Weinehall

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU General Public License as published by the Free Software Foun-
dation; either version 2 of the License, or (at your option) any later version.

A copy of the license is included in the chapter “Licenses”, section “The GNU
General Public License” of the “C∗Base v3.3 User’s Guide”.

2

Contents
1 Introduction 2

2 BASIC Extensions 3

3 Memory Maps 4
3.1 Brief Outline . 5
3.2 Zero-page . 6
3.3 $0200-03FF . 9
3.4 Interface Areas . 20
3.5 KERNAL-Tables . 21
3.6 Other Tables . 21

4 Jump-Tables 22
4.1 Protocols (“P/”-files) . 22
4.2 “K/ML 2.O” . 22
4.3 “K/ML 3.O” . 25
4.4 “K/NMI.ML” and “K/SWIFT.Dx” 27

5 BASIC-routines 28

6 KERNAL-routines 29

A Special Algorithms Used 30
A.1 Sorting in Toplister . 30

A.1.1 The Sorting Algorithm 30
A.1.2 Efficiency of the Algorithm 30

1

1 Introduction
This is documentation is mainly meant for those about to mess around with my
code, but can also be interesting for those who are curious about the work I’ve
done to C∗Base since v3.2, and it should give a brief understanding of how this
program works. Most of the information provided here can also be applied to
C∗Base v3.2 and prior, but some of the information is C∗Base v3.3 specific.
Where there are differences compared to the older version, I have tried to state
so in the manual. Exceptions are the JUMP-tables, where I don’t bother to docu-
ment the old calls.

2

2 BASIC Extensions
To make the BASIC-code shorter and somewhat easier to understand, and to give
provision for using MCI-commands from BASIC, there are two extensions made,
compared to the normal BASIC v2.0. They are:

@ and <-

Both commands outputs text to both the modem and the screen, and both interprets
MCI-commands while doing so. The only difference between them is that @ adds
an carriage-return to the end, <- does not.

Note, that neither of these commands can handle anything else than strings. Thus,
if you want to output the content of a variable, you must do something like this:
str$(br) (this would turn the floating-point variable br into a string, and then
output it, without adding a carriage-return.)

One thing you should keep in mind is, that these commands do not ‘tokenize’
when compiling the code in (for instance) BLITZ, so the compiled program be-
comes larger.

3

3 Memory Maps
The addresses given here are inclusive; i.e., $0801-9DFF denotes the memory
from $0801 to, and including, $9DFF. The memory-areas denotes the memory
reserved, not the memory actually used.

4

3.1 Brief Outline
Memory Use

0801-9DFF BASIC-memory, used by the “C/”-files
9E00-9E27 Status-Window, Row 1
9E28-9E4F Status-Window, Row 2
9E50-9E77 AT Init-string for Modem
9E78-9E8A “K/ML_0.O” - Timing tables for the “K/NMI.ML”-files
9E8A-9F78 “K/ML_0.O” - Code
9F78-B7E7 “K/ML_1.O”
B7E8-B7FF Temporary Storage for Password
B800-B8FF Buffer for the Caller’s Log; flushed to disk when full
B900-BFF7 Protocol Overlay Area
BFF8-BFFF Protocol Interface Area; communication with the protocols is performed

via these registers
C000-C5FF Text-Prompt Memory part 21

C600-C6FF Character Conversion Table; used for ANSI/ASCII conversion
C700-C8FF “K/ML_2.O”
C900-C9FF “K/ML_3.O”
CA00-CAFF RS-232 input-buffer
CB00-CBFF Text-Prompt Memory part 3
CC00-CDFF NMI-handler Overlay Area
CE00-CEFF Text input-buffer
CF00-CFFF Text output-buffer
D000-D2FF Access-Group Data
D300-DDFF Text-Prompt Memory part 1
DE00-DEFF Hardware Interface Page part 12

DF00-DFFF Hardware Interface Page part 23

E000-FFFF Text-Memory used by the Message-maker

1If a REU is connected, $C500-C5FF is used as an Interface-page, and thus the memory
available for prompts will be shrunk with $100 bytes.

2Used by Hardware such as the Ramlink, the SwiftLink/Turbo232, REU:s or similar products
3Used by Hardware such as the Ramlink, the SwiftLink/Turbo232, REU:s or similar products

5

3.2 Zero-page

Since at least some of these addresses are accessed from BASIC as well, the dec-
imal form of the address has been included in this table.

Name Memory Description

MOCHRS $02 (2) CHR$() value for char to output
VALTYP $0D (13) Variable type: String or Numeric
INDEX $22-25 (34-37) Temporary workspace for the BASIC
FRETOP $33-34 (51-52) Top of Free BASIC-memory
VARTAB $2D-2E (45-46) Start of BASIC Variable memory
ARYTAB $2E-2F (47-48) Start of BASIC Array memory
FRETOP $33-34 (51-52) End of BASIC String memory
FRESPC $35-36 (53-54) Temporary pointer for strings
MEMSIZ $37-38 (55-56) End of the BASIC-memory
OLDLIN $3B-3C (59-60) Previous BASIC line-number
OLDTXT $3D-3E (61-62) Pointer to the current BASIC-statement
VARNAM $45-46 (69-70) Current BASIC Variable name
VARPNT $47-48 (71-72) Pointer to the current BASIC variable value
BASTMP10 $60 (96) BASIC Numeric work-area
FACSGN $66 (102) Floating Point Accumulator 1: Sign
CHRGET $73 (115) Subroutine that fetched the next BASIC-

character
TXTPTR $7A-7B (122-123) Pointer to the memory where CHRGET

should get the char
STATUS $90 (144) Status-register for Serial-communication
SVXT $92 (146) Unused
XSAV $97 (151) Temporary storage for the X-register
DFLTN $99 (153) Device-number for Input
DFLTO $9A (154) Device-number for output
OUTBLEN $9B (155) Length of string in output-buffer
INPLEN $9C (156) Length of string in input-buffer
MSGFLG $9D (157) Flag: Show Kernal error-messages
PTR1 $9E (158) Temporary variable used in the RS-232

handling routines
TIME $A0-A2 (160-162) Software Jiffy-clock
FREKZPA3 $A3-A4 (163-164) Temporary work-address used heavily by

the ML-files

6

Name Memory Description

G5ERROR $A5 (165) Return-code from Text-Input or the
Message-maker
0 - Normal execution
1 - Carrier lost
2 - Timeout
3 - User kicked off by Sysop
04-09 - N/A
0A - Read message
0B - Save message
0C - Edit line
0D - Delete lines; xx to yy
0E - Replace a word
0F - Read message, with line-numbers
10 - Message aborted
11 - View helptext
12 - Load text
13 - MCI-read
14 - Global replace
15 - Insert a line
16-27 - N/A
28 - [Ctrl + Z] (Delete line/undo in-
put)

BUFPNT $A6 (166) Unused
BITCI $A8 (168) RS-232 Input bit count
RIDATA $AA (170) RS-232 Start-bit check-flag
SAL $AC-AD (172-173) Pointer to First buffer used by protocols
EAL $AE-AF (174-175) Pointer to Second buffer used by protocols
PRMPTNR $B0 (176) number of prompt to output
LINENR $B0-B1 (176-177) Current Line-number in Message-maker
USERNR $B0-B1 (176-177) Number of user
MSGHIMEM $B2-B3 (178-179) Pointer used to address the Message-

memory
BITTS $B4 (180) RS-232 Output bit count
NXTBIT $B5 (181) RS-232 Next bit to send

7

Name Memory Description

RODATA $B6 (182) RS-232 Output byte buffer
FA $BA (186) Current Device-number
FREKZPC3 $C3-C4 (195-196) Temporary work-address used heavily by

the ML-files
LSTX $C5 (197) Matrix coordinate of latest keypress (64 =

None)
NDX $C6 (198) Number of characters in the keyboard-

buffer
RVS $C7 (199) Reverse (0 = No)
SFDX $CB (203) Matrix coordinate of current key pressed
PNTR $D3 (211) Cursor position on logical line (0-79)
QTSW $D4 (212) Editor in Quote mode (0 = No)
INSRT $D8 (216) Editor in Insert mode (0 = No)
RIBUF $F7-F8 (247-248) RS-232 Input-buffer pointer
ROBUF $F9-FA (249-250) RS-232 Output-buffer pointer
FREKZP $FB-FC (251-252) Temporary work-address used heavily by

the ML-files. This address, together with
FREKZP2, also serves as an information-
carrier between the BASIC-code and the
ML-code

FREKZP2 $FD-FE (253-254) This register roughly has the same uses as
FREKZP

BASZPT $FF (255) BASIC temporary-register

8

3.3 $0200-03FF

A lot of these addresses are accessed from BASIC as well, hence the decimal form
of the address has been included in this table.

Name Memory Description

BUF $0200 (512) The BASIC line editor input buffer
KEYD $0277-0280 (631-640) Keyboard buffer
MEMSIZ $0283-0284 (643-644) End of BASIC-memory
COLOR $0286 (646) Text-colour
SHFLAG $028D (653) Is [SHIFT]/[CTRL]/[C=] pressed?
M51CTR $0293 (659) Mock 6551 control register
RSSTAT $0297 (663) RS-232 Status register
BAUDOF $0299-029A (665-666) Prescaler values for Baud-rate timing
RIDBE $029B (667) RS-232 Pointer to end of receive-buffer
RIDBS $029C (668) RS-232 Pointer to start of receive-buffer
RODBS $029D (669) RS-232 Pointer to start of transmit-buffer
RODBE $029E (670) RS-232 Pointer to end of transmit-buffer
ENABL $02A1 (673) NMI-mask register
STORAGE $02A7-02BA (679-698) Device, Drive and DOS-command info for

Modules (N/A in the C∗Base v3.3)
RAINCNR $02BB (699) Counter for Rainbow-mode
SPRITEDEF $02C0-02FF (704-767) Cursor-sprite
IGONE $0308-0309 (776-777) Vector to the BASIC-token interpreter
CARRTYPE $0313 (787) Carrier-type:

0 - Normal
16 - Inverted

ICHKIN $031E-031F (798-799) Vector to CHKIN
IBASIN $0324-0325 (804-805) Vector to BASIC-interpreter
IBSOUT $0326-0327 (806-807) Vector to CHROUT
SYREBYTE $033C (828) Byte that tells whether the logon was per-

formed from the wait-screen or remotely,
and to tell whether remote-mode was en-
tered from wait-screen. Necessary for the
BBS to know where it should return:
0 - Remote call
1 - N/A
2 - N/A
3 - Sysop logon
4 - Remote called from Wait-screen

9

Name Memory Description

SYSOPIN $033D (829) Is the Sysop in:
0 - No
1 - Yes

STATB1 $033E (830) Configuration-byte; the different bits
mean:
0 - Allow 300 Baud users:

0 - No
1 - Yes

1 - Save Caller’s Log (C∗Base v3.3):
0 - Yes
1 - No

1 - Callback validation (C∗Base v3.2 and
earlier):

0 - Off
1 - On

2 - Auto-feedback after application:
0 - On
1 - Off

3 - Oneliners:
0 - On
1 - Off

4 - Feedback:
0 - To Disk
1 - To Printer

5 - Caller Log:
0 - To Disk
1 - To Printer

6 - Validate disk on logoff:
0 - No
1 - Yes

7 - View disk-status:
0 - No
1 - Yes

AXSGRP $033F (831) Access-Group that the user online belongs
to

BRBBS $0340-0341 (832-833) Maximum baudrate-setting for the BBS

10

Name Memory Description

TMCBYTE1 $0342 (834) C∗Base v3.3 Configuration-byte 1; the dif-
ferent bits mean:
0 - Phone# Completion:

0 - Off
1 - On

1 - Post Checking:
0 - No
1 - Yes

2 - Carrier-Drop Checking:
0 - No
1 - Yes

3 - Military Time Format:
0 - No
1 - Yes

DISKIN $0343 (835) Used to indicate whether the system-disk
was inserted or not in C∗Base v3.2 and
prior. In the C∗Base v3.3 it’s only used as
a file-counter when loading the Kernel-files
from “C/BOOT”

NRCALLST $0344 (836) Number of Calls today
NRFEEDBK $0345 (837) Number of Feedback unread
MODEMTYP $0346 (838) Modem-type used:

1 - Hayes 2400 Baud
2 - 1670 Regular
3 - Avatex Regular
4 - Avatex HC
5 - 1670 v2.0
6 - Hayes 1200 Baud
7 - No Modem/NULL-modem
8 - 9600 Baud/Turbo-Master Acceleration
9 - Swiftlink 2400 Baud
10 - Swiftlink 9600 Baud
11 - Swiftlink 19200 Baud
12 - Swiftlink NULL-modem

NRPOSTST $0347 $(839) Number of Posts today

11

Name Memory Description

ONLINE $0348 (840) User online:
0 - Yes
1 - No

GALLOWED $0349 (841) Allowed guest-access to the BBS:
0 - No
1 - Yes

KEYBLOCK $034A (842) Keyboard lockout-mode:
0 - Off
1 - On

AUTOPLNS $034B (843) # of lines before Auto-Pause (0 = Off)
POSTVAL $034C (844) # of credits a post is worth
NRAPPT $034D (845) Number of Applications today
COLBASNG $034E (846) Multi-colour Basing on (N/A in C∗Base

v3.3):
0 - No
1 - Yes

NROPEN $034F (847) Number of different open-screens used
(Default = 1)

GFXON $0350 (848) PET-Graphics:
0 - Off
1 - On

BOTEMP $0351 (849) Temporary variable used by BBSOUT
PAUSELIN $0352 (850) Auto-pause counter
FILESUPT $0353 (851) # of files uploaded today
FILESDT $0354 (852) # of files downloaded today
BLKSUPT $0355-0356 (853-854) Number of blocks uploaded today
MOCHRS $0357 (855) See $02 (2)
OUTBLEN $0358 (856) See $9B (155)
SCANFLG $0359 (857) Scanning for Post:

0 - No
1 - Yes

NETHRS $035A (858) # of hours to wait for Network (N/A in
C∗Base v3.3)

DATECFLG $035B (859) Change Date:
0 - Yes
1 - No

12

Name Memory Description

WINCVAR $035C (860) Value in Status-Window to change:
0 - None
1 - SL (Security Level)
2 - TL (Time Limit)
4 - BU (Blocks Uploaded)
8 - BD (Blocks Downloaded)

TIMOB $035D (861) This adress is used to check for Time-Out
SCANB $035D-035E (861-862) Used when scanning for a Post
RES4 $035F (863) Reserved
TEMPV1 $0360 (864) Temporary variable #1
TEMPV2 $0361 (865) Temporary variable #2
BLKSDT $0362-0363 (866-867) Blocks Downloaded today
TEMPI1 $0364 (868) Temporary IRQ-variable #1
TEMPI2 $0365 (869) Temporary IRQ-variable #2
PRIMEB $0366 (870) Beginning of Primetime (24h format) (N/A

in C∗Base v3.3)
PRIMEHR $0367 (871) # of Prime hours (N/A in C∗Base v3.3)
KOTEMP $0368 (872) Temporary storage used by the kernel-

output routine
WABORT $0369 (873) Allow welcome message to be aborted:

0 - Yes
1 - No

RAINBM $036A (874) Rainbow-mode:
0 - Normal
1 - Char
2 - Line
3 - Word
4 - Punctuation

RAINBC1 $036B (875) Rainbow-Colour #1, Punct. Mode Char
colour

RAINBC2 $036C (876) Rainbow-Colour #2, Punct. Mode Punctu-
ation colour

RAINBC3 $036D (877) Rainbow-Colour #3, Punct. Mode Capital
colour

RAINBC4 $036E (878) Rainbow-Colour #4
RAINBC5 $036F (879) Rainbow-Colour #5
MODTL $0370-0371 (880-881) Module storage for Time-limit (N/A in

C∗Base v3.3)

13

Name Memory Description

D9060 $0372 (882) D9060-HardDrive provision activated:
0 - No
8 - Yes

UDLUNIT $0373 (883) Logical Device for the U/D-directory files
BOUTFL $0374 (884) Flag used by the BBS-OUT-routine
INPLEN $0375 (885) See $9C (156)
LOGBLEN $0376 (886) Length of Caller’s log buffer
CHATFLAG $0377 (887) Chat-mode:

0 - Off
1 - On

BAUDRATE $0378-0379 (888-889) Temporary storage for the Baud-rate
RES5 $037A (890) Reserved
RES6 $037B (891) Reserved
NRPOSTSC $037C (892) # of posts done this call
SMAILF $037D (893) Create a new file for every mail:

0 - No
1 - Yes

RMBYTE $037E (894) Storage for the RM%-byte
BUSPLIT $037F-0381 (895-897) Total amount of blocks uploaded (H/L/M)
BDSPLIT $0382-0384 (898-900) Total amount of blocks downloaded

(H/L/M)
RES7 $0385 (901) Reserved
SEPASCON $0386 (902) Use separate ASCII-screens:

0 - No
1 - Yes

MODSUBS $0387 (903) Use modular Subs (N/A in C∗Base v3.3)
MODUD $0388 (904) Use modular U/D-area (N/A in C∗Base

v3.3)
MODREM $0389 (905) Use modular Remote-area (N/A in C∗Base

v3.3)
MDSTATUS $038A (906) Module-status:

0 - Running Main-BBS
1 - Running a Module (N/A in C∗Base
v3.3)
2 - Exiting an module with error
3 - Running in the Application Module

14

Name Memory Description

MODTERMD $038B (907) Device# for the modular Term-Prog (N/A
in C∗Base v3.3)

MODDEV $038C (908) Device# for modules (N/A in C∗Base v3.3)
LINENUM $038D (909) Current line#
LCOL $038E (910) Bright colour [F1]
MCOL $038F (911) Medium colour [F3]
DCOL $0390 (912) Dark colour [F5]
LIBDIM $0391 (913) # of Libraries to dimension (N/A in

C∗Base v3.3)
UDDIM $0392 (914) # of U/D-directories to dimension
SUBDIM $0393 (915) # of Subs to dimension
ARSDIM $0394 (916) Size of the Work-array AR$() used by the

user-edit; should be twice as big as the
number of questions (the other half is used
for the answers)

NETSTART $0395 (917) Hour to start networking (N/A in C∗Base
v3.3)

PBEFUD $0396 (918) # of posts needed before U/D-access
PBEFMOD $0397 (919) # of posts needed before Module-access

(N/A in C∗Base v3.3)
UDTITLES $0398 (920) Use U/D title-screen:

0 - No
1 - Yes

NREND $0399 (921) Number of end-screens (Default = 1)
MDMHOOK $039A (922) Put modem on hook during local mode:

0 - No
101 - Yes

SLOWSPD $039B (923) Slow-mode:
0 - Off
$01-$0F - On (greater number = slower)

NRONELIN $039C (924) Number of one-liners
RES9 $039D (925) Reserved
NRDLC $039E (926) # of downloads this call
MAXDLC $039F (927) Max # of downloads/call
SYSSTORE $03A0-03B1 (928-945) Device #, Drive # and DOS-command for

System-disk

15

Name Memory Description

SSYSACT $03B2 (946) Store the sysop’s actions in the Caller log:
0 - No
1 - Yes

APPDEV $03B3 (947) Device# for “C/APP_MOD”
MAINDEV $03B4 (948) Device# for “C/BBS”
UDDEV $03B5 (949) Device# for the Protocols
LTKDEV $03B6 (950) LT Kernal Device# (Default = 0)
TISTEMP $03B7-03BD (951-957) ti$ temporary storage during Module-

switch
CURCOL $03BE (958) Cursor-colour
NPTEMP $03BF-03C0 (959-960) np% temporary storage
RCHRIN $03C1-03C2 (961-962) Redirection of CHRIN
RCHROUT $03C3-03C4 (963-964) Redirection of CHROUT
RCHKIN $03C5-03C6 (965-966) Redirection of CHKIN
RNMI $03C7-03C8 (967-968) Redirection of the NMI
TOPTHRES $03C9 (969) Threshold value for the Toplister file
DATEMP $03CA-03D3 (970-979) da$ temporary storage during Module-

switch
QUIETM $03D4 (980) Quiet-mode:

0 - Off
1 - On

MSGNET $03D5 (981) Message Networking (N/A in C∗Base
v3.3):
0 - No
1 - Yes

ANSIFLG $03D6 (982) ANSI-mode:
0 - Off
1 - On

WWCLMNS $03D7 (983) # of columns for Word-Wrap
SYSOPKEY $03D8 (984) CHR$() of key pressed by Sysop
RPFLAG $03D9 (985) G5-inputmode:

0 - Input a string, with echo
1 - Input a char, with echo
2 - Input a char, without echo
4 - Password (Text is substituted with *)

PREVINPL $03DA (986) Length of previous string; used by the un-
erase feature

DOTMODE $03DB (987) In “Dot-mode”:
0 - No
1 - Yes

16

Name Memory Description

MSGMAKON $03DC (988) Message-maker:
0 - Off
1 - On

MSGHIMEM $03DD-03DE (989-990) See $B2-B3 (178-179)
CURMODE $03E0 (992) Cursor-mode On/Off:

0 - Off
1 - On

CASEFLG $03E1 (993) UPPER/lower case flag in Message-maker:
0 - lowercase
1 - UPPERCASE

WORDWRAP $03E2 (994) Word-Wrap:
0 - Off
1 - On

ABONOFF $03E3 (995) Allow messages to be aborted:
0 - No
1 - Yes

G5ERROR $03E4 (996) See $A5 (165)
PRMPTNR $03E5 (997) See $B0 (176)
LINENR $03E5-0358 (997-998) See $B0-B1 (176-177)
LINENR $03E5-0358 (997-998) See $B0-B1 (176-177)
USERNR $03E5-0358 (997-998) See $B0-B1 (176-177)
TIMEUNIT $03E7 (999) Time before answering the phone
TEMPAG $03E8-03FC

(1000-1020)
Temporary storage for user-group access

17

Name Memory Description

AGBITS $03E8 (1000) Access-bits:
0 - Library Access (N/A in C∗Base v3.3):

0 - No
1 - Yes

1 - Mail Access:
0 - No
1 - Yes

2 - Prime-time Access (N/A in C∗Base
v3.3):

0 - No
1 - Yes

3 - Module-Access (N/A in C∗Base v3.3):
0 - No
1 - Yes

4 - Subs-Access:
0 - No
1 - Yes

5 - Caller Log-Access:
0 - No
1 - Yes

6 - BBS list-Access:
0 - No
1 - Yes

7 - Back to Back calls:
0 - No
1 - Yes

AGRES1 $03E9 (1001) Reserved
AGRES2 $03EA (1002) Reserved
AGRES3 $03EB (1003) Reserved
AGRES4 $03EC (1004) Reserved

18

Name Memory Description

AGBITS2 $03ED (1005) Access-bits:
0 - 300 Baud Access to U/D-areas:

0 - No
1 - Yes

1 - 1200 Baud Access to U/D-areas:
0 - No
1 - Yes

2 - 2400 (and above) Baud Access to U/D-
areas:

0 - No
1 - Yes

3 - Reserved
4 - Reserved
5 - Reserved
6 - Reserved
7 - Reserved

OMNIAXS $03EE (1006) Access to write OMNI-messages:
0 - No
1 - Yes

ONELNAXS $03EF (1007) Access to write One-liners:
0 - No
1 - Yes

MCIAXS $03F0 (1008) Access to MCI-commands:
0 - No
1 - Yes

CALLSDAY $03F1 (1009) Calls allowed/Day (0 = Unlimited)
AMTIMLIM $03F2 (1010) AM Time Limit (0 = Unlimited)
PMTIMLIM $03F3 (1011) PM Time Limit (0 = Unlimited)
POSTNEED $03F4 (1012) Must follow minimum post-limit:

0 - Yes
1 - No

MODCREDS $03F5 (1013) Credits/module (N/A in C∗Base v3.3)
UDRATIO $03F6 (1014) Upload/Download ratio (0 = Unlimited

Credits)
AGRES5 $03F7 (1015) Reserved
AGRES6 $03F8 (1016) Reserved
AGRES7 $03F9 (1017) Reserved
AGRES8 $03FA (1018) Reserved
AGRES9 $03FB (1019) Reserved
AGRES10 $03FC (1020) Reserved

19

3.4 Interface Areas

These memory-locations are meant for communication between the BASIC-files,
and between the BASIC and the ML-files.

Name Memory Description

XTRNPAGE $07E8-07F7
(2024-2039)

Interface area for communication with
other files

NUTMP $07E8-07E9
(2024-2025)

Temporary storage used to transfer the
nu%-variable to “C/TOPLISTER”

MIDBLNK $07EA (2026) Flag to tell “C/TOPLISTER” whether it
was called manually or not:
0 - Manually
1 - From the Midnight Routine

$07EB-07F7
(2027-2039)

Reserved

PROTPAGE $BFF8-BFFF
(49144-49151)

Protocol interface area

PNTBLKS2 $BFF8 (49144) Block-size of Punter blocks
PROTFLG1 $BFF9 (49145) Not sure; some kind of flag ???
PROTRES0 $BFFA (49146) Reserved
FILETYPE $BFFB (49147) File-type:

1 - PRG
2 - SEQ

PROTRES1 $BFFC (49148) Reserved
PROTRES2 $BFFD (49149) Reserved
PROTRES3 $BFFE (49150) Reserved
PROTID $BFFF (49151) Reserved

20

3.5 KERNAL-Tables

These are tables within the KERNAL-memory that the BBS makes use of. An
“@”-sign denotes that a non-standard name is used.

Name Memory Description

PETCOLS $E8DA (59610) @; Conversion table for all the PET-
colours to/from numerical value from/to
PET-ASCII value

KDECODE $EB81 (60289) @; Keyboard decode table

3.6 Other Tables

These are tables within the “K/”-files that the BBS makes use of.

Name Memory Description

TIMTAB1 $9E78 (40568) Timing-Data used by the “K/NMI.ML”-
files4

TIMTAB2 $9E8A (40578) Timing-Data used by the “K/NMI.ML”-
files5

4This table was in the “ML_2.O”-file in C∗Base v3.2 and prior
5This table was in the “ML_2.O”-file in C∗Base v3.2 and prior

21

4 Jump-Tables
Various calls into the assembler-code.

4.1 Protocols (“P/”-files)

Name Memory Description

RECEIVE $B900 (47360) Receive a file
SEND $B903 (47363) Send a file
INITRECV $B906 (47366) Initialise Receive
INITSEND $B909 (47369) Initialise Send
PROTINIT $B90C (47372) Initialise Protocol
SETPRID $B90F (47375) Set Protocol Identification Byte

4.2 “K/ML 2.O”
Name Memory Description

READ2SCR $C700 (50944) Output a seq-file opened as channel #8. No
modem-output and no MCI-interpreting

CARRCHK $C708 (50952) Jump to the routine that checks for carrier
loss. FREKZP > 0 means that the carrier
is lost

CLRCHN2 $C710 (50960) Clear all channels
ACTTERM $C718 (50968) Activate the Mini-Term
READWLEN $C720 (50976) Read a line with the exact length avail-

able in BASZPT from the seq-file opened
as channel #8. The string is put into the
output-buffer

GETLMEM $C728 (50984) Call with a line# in FREKZP (W). This
routine will return a memory-pointer to that
line in FREKZP (W)

ACTRDISK $C730 (50992) Activate the Ram-disk used to store
“STATS” temporarily while in the
“C/APP_MOD”

22

Name Memory Description

ACTPROT $C738 (51000) Initialise the loaded Protocol
PROT1 $C740 (51008) Initialise Receive
PROT2 $C748 (51016) Receive File
PROT3 $C750 (51024) Initialise Send
PROT4 $C758 (51032) Send File
SETPRID $C760 (51040) Set Protocol Identification Byte
PRMPTOUT $C768 (51048) Output a prompt corresponding to the value

in PRMPTNR
BLINPRT $C770 (51056) Redirected jump to LINPRT
FREESTR $C778 (51064) Redirected jump to FRESTR
FOUT2 $C780 (51072) Redirected jump to FOUT
MOVFM2 $C788 (51080) Redirected jump to MOVFM
BGIVAYF $C790 (51088) Redirected jump to GIVAYF
GETABYTE $C798 (51096) Get a byte. The more correct call is

READLB
CREATEIS $C7A0 (51104) Create a BASIC-string from the text-line in

the output-buffer, and assign it the string-
handle i$

GETNRLIN $C7A8 (51112) After a call, LINENR (W) will contain the
number of lines in the message

NEWDAY $C7B0 (51120) Routine called every new day; resets daily
values

DIRQSOFF $C7B8 (51128) Turn off the Window-IRQ
DIRQSON $C7BB (51131) Turn on the Window-IRQ
DASC2PET $C7BE (51134) Convert the content of the input-buffer

from ASCII to PETSCII
CHKCARR $C7C1 (51137) Check for Carrier loss
INIT1ST $C7C4 (51140) Initialise some values before running the

different “C/”-files
SCR2WIN $C7CC (51148) Move User-data from BASIC to the infor-

mation Window. The information is taken
from the first row of the screen, and con-
tains the user’s handle with the colours
stripped. This is a crude solution, but it
works, and takes far less memory than any
other. Still, I hope to come up with some-
thing better in a later version. . .

23

Name Memory Description

MCION $C7D4 (51156) Turn MCI-commands ON
MCIOFF $C7D7 (51159) Turn MCI-commands OFF
ATBAS $C7DD (51165) Routine for the BASIC-extensions; @ and

<-
RIGONE $C7F2 (51186) Redirection of IGONE
BLANK2MH $C864 (51300) Blank the Screen; if a C= 128 is used and

no SuperCPU is present, turn on 2 MHz
mode

BLANK $C873 (51315) Blank the screen
SLOWMODE $C87C (51324) Turn off 2 MHz mode and turn the screen

back on. SuperCPU’s are NOT affected
NO2MHZ $C884 (51332) Turn off 2 MHz mode
SCPUON $C88D (51341) Detect the CMD SuperCPU and, if present,

activate it
FORMEVL $C881 (51361) Redirected jump to FRMEVL
SCPUOFF $C8A9 (51369) Detect the CMD SuperCPU and, if present,

deactivate it

24

4.3 “K/ML 3.O”
Name Memory Description

ATPRINT $C900 (51456) Print the char available in MOCHRS
(CHR$()-value) to the screen and modem
using the @ MCI-command

SETCUR $C908 (51464) Position the Sprite-cursor where the char-
cursor is

IRQSOFF $C910 (51472) Jump to IRQSOFF2
IRQSON $C918 (51480) Jump to IRQSON2
READLB $C920 (51488) Read one byte from channel# stored in

FREKZP + 1. This byte is stored in
FREKZP

ASC2PET $C928 (51496) Convert the CHR$() of FREKZP to a
PETSCII-value, given that the value in
FREKZP was an ASCII/ANSI-value

READLN $C930 (51504) Read a line from channel #8. This will
read until a Carriage Return (#$0D), or 255
bytes been read. The line is stored in the
output-buffer

KL2OUTB $C938 (51512) Copy a string from the memory below
the kernal to the output-buffer. Memory-
address is decided by the content of
FREKZPC3 (W)

25

Name Memory Description

MAKEIS $C940 (51520) Create i$ from the text found in the input-
buffer

SETVAR $C948 (51528) Jump to SETUPVAR
G5INP $C950 (51536) General input-routine; inputs a char, a line

or an entire text
GETSPACE $C958 (51544) Jump to GETSPAR
CHRIN2 $C960 (51552) Jump to CHRIN
BUFSWAP $C968 (51560) Swap the contents of the input-buffer and

the output-buffer with each other
BOING $C970 (51568) Sound a nice little “boing”
WIRQON $C978 (51576) Turn on the IRQ for the information-

window
RSTIRQ $C980 (51584) Reset the IRQ-jump to point to the normal

IRQ
MOVMEM $C988 (51592) FREKZPC3 (W) = beginning of mem-

ory area to move, FREKZP (W) = end of
memory area to move. The difference be-
tween INPLEN and OUTBLEN will de-
cide how many bytes to move up or down
in memory (0-255)

SEARCH $C990 (51600) Search the message-memory for the speci-
fied string. The string to search for should
be in the input-buffer and the length of the
string in OUTBLEN

RDIRL $C998 (51608) Read a line from the directory to the
output-buffer, and splits it up to its differ-
ent parts; name, type and blksize

SETBASP $C9A0 (51616) Set the pointer to the search-string; use this
before calling SEARCH. The pointer is
taken from FREKZPC3 (W)

BUF2MEM $C9A8 (51624) Copy the output-buffer to the address spec-
ified at FREKZPC3 (W)

DELCOPY $C9B0 (51632) Delete a message/post or copy a file
SAVEMSG $C9B8 (51640) Save a message written in the message-

maker, starting at the address in
FREKZPC3 (W) and ending at the
address in FREKZP (W)

26

Name Memory Description

BUFOUT $C9C0 (51648) Output the contents of the output-buffer to
screen and Modem, with MCI-translation

DSK2SM $C9C8 (51656) Read a file from channel #8 to screen + mo-
dem

MSG2SM $C9D0 (51664) Read a post from channel #8 to screen +
modem. If you press A to abort or S to skip,
it scans to the next #$FF (message separa-
tor)

FFSCAN $C9D8 (51672) Scan for a message separator (#$FF)
DELBCHR $C9E0 (51680) Delete a char in the input-buffer
GETNROLN $C9E8 (51688) Multi-use routine, used by the message-

maker. This routine can do the following
things:
• Count number of lines in message
• Show the message
• Show the message with MCI-
interpretation
• Show the message with line-numbers
• Prepare for editing the last line in the
message

RAMDISK $C9F0 (51696) Jump to the RAMDISK
RESETIO $C9F8 (51704) Reset the IO-vectors

4.4 “K/NMI.ML” and “K/SWIFT.Dx”
Name Memory Description

NMION $CC00 (52224) Turn on the NMI used to communicate
with the modem

CHKCARR $CC03 (52227) Check for carrier-loss
DTROFF $CC06 (52230) Turn DTR off
DTRON $CC09 (52233) Turn DTR on
GOTO232 $CC0C (52236) ???
STOP232 $CC0F (52239) Turn off the NMI used to communicate

with the modem BASIC-routines

27

5 BASIC-routines
An @-sign denotes that a non-standard name and/or entry-point is used.

Name Memory Description

NEWSTT3 $A7BE (42942) @; Skips STOPCHK and a NOP, thus a lit-
tle faster than NEWSTT. Set up next state-
ment for execution

GONE2 $A7EF (42991) @; Faster than GONE. Read and execute
next statement.

FRMEVL $AD9E (44446) Evaluate expression
SETUPVAR $B0E7 (45287) @; no check for existence, faster than

PTRGET. Set up a Variable
GIVAYF $B391 (45969) Convert 16-bit signed integer to floating

point
GETSPA $B4F4 (46324) Allocate space in memory for string
GARBAG $B526 (46374) Collect garbage; remove unused string-

data
FRESTR $B6A3 (46755) Discard a temporary string
MOVFM $BBA2 (48034) Move a floating point# from memory to

FAC2
LINPRT $BDCD (48589) Output a number in ASCII-decimal form

Input high-byte in A and low-byte in X
FOUT $BDDD (48605) Convert FAC1 to an ASCII-string A is set

to the high-byte, and X as the low-byte
pointing at the string

28

6 KERNAL-routines
An @-sign denotes that a non-standard name and/or entry-point is used.

Name Memory Description

CHROUT2 $E716 (59158) @; output a char to the opened channel
GETIN2 $F142 (61762) @; input a char from the opened channel
READST $FFB7 (65463) Read I/O status
CLOSE $FFC3 (65475) Close file
CHKIN $FFC6 (65478) Change standard input-channel
CHKOUT $FFC9 (65481) Change standard output-channel
CLRCHN $FFCC (65484) Clear channel
CHRIN $FFCF (65487) Input a char from the opened channel
CHROUT $FFD2 (65490) Output a char to the opened channel
GETIN $FFE4 (65493) Input a char from the keyboard
PLOT $FFF0 (65520) Read or change cursor-position

29

A Special Algorithms Used

A.1 Sorting in Toplister

The sorting done in “C/TOPLISTER” is performed with an improved bubble-
sort algorithm. The difference from normal bubble-sort is that using this algo-
rithm you only have to move the smallest element once every iteration, and each
iteration means one less element to compare with.

A.1.1 The Sorting Algorithm

1 Let A0 · · ·An be the numbers to sort

2 Let B0 · · ·Bn be the numbers 0 · · ·n

3 Let C = 0

4 let D = C, E = C

5 Let D = D + 1

6 If element AD < AC let E = D

7 Repeat from 5 until D = n

8 Swap(AC , AE)

9 Swap(BC , BE)

10 C = C + 1

11 Repeat from 4 until C = n− 1

A0 · · ·An will now contain all the numbers in sorted order, and B0 · · ·Bn will be
a cross-reference list that can be used to get the original position of the value.

A.1.2 Efficiency of the Algorithm

The efficiency of this algorithm is O(n2) compares + O(n) swaps.

30

