MEMOTRON

PRESENTS

E -/

MACRO
ASSEMBLER

© 1985 by MEMOTRON SOFTWARE

s VE .

V.

Table of Contents

Available Commands & Featuresocooiiiiiiiiiiiiincanaanannn 1
Lo Vo 0T O 3
EXTras 0t SUPPOIES ..ottt e e cee e ceaaeeaee maaeeann 4
E-Z SYMBOLIC DISASSEMBLER featuresciiiciiiiiimaamnnaannnnnn 4
Error Generation on SoU ASSEMBLER Lo e
Error Generation on 0BJ ASSEMBLER ..oooon i 5
Error Generation on SYMBOLIC DISASSEMBLER ...ceoiiiioiiaaa..s 6
Summary OF FeatUr @S coo it ettt e a e ieaaceaa s 6
INEroduCtiOn ..o 7
Why an Assembler 2 i i e 9
Label s oo e - 13
Why a Symbolic Disassembler 2 iioiiiiiiii i iaaaann 14
Getting Started ...ttt m e 15
General Rules ..o .. L. i e R 24
[T = - 24
Notes on the BIT Instructionc.ciiiioiniann.. R 28
650276510 MNEMONI CS Lottt e e e ea e aa e raaaeaaenans 29

TEST3 Sample LiSting ocuuooinnmi i ea i e e ea i eaaeaaaeean 32

E - Z ASSEMBLER VI.5 PAGE # 1

Memotron
E-2
Macro — Assembler
C—64 AND C—120
VERSIONS

Available commands and features

SOU ASSEMBLER Commands

Purpose

1). Append Ties 2 or more
programs together

2). Assenmble Start or continue
assembli ng

3). Clear Clears all memory off

4) . Commands A call to view all
commands available

5). Decimal of Returns Decimal of
4 digit Hex Number

6). Disk Allows you to send
commands to Disk
(Scratch, Read
Error Channel)

7) . DLoad Loads files previ-
ously DSaved on Disk

8). DSave Save files to disk

9) . Dump Prints to printer the

code as input

Format

Append File-
name

Assemble

Clear

Commands

Decimal of
$XXXX

Disk

(>prompts that
you are inside
the disk mode)

DLoad Filename

DSave Filename

Dump 20 30
Filename

(prints line 20
to 30 and
attach a file-
name)

10).

11).

12).

13) .

14) .

15) .
16) .
17) .

1B) .

19) .

Erase

Menu on disk

Object

Pseudo Ops

Revi se

Symbolic

ASSEMBLER VI1.5

Erases Lines

Exit back to Basic

Returns Hex of
decimal number

Display all Kernal
call outs and
corresponding
addresses

List Lines of Code

Displays files on
Disk

Loads 2nd part of
Macro Assembler

Display all
ops

pseudo-

Allows update or
modification of
code lines

Loads & Starts the

Symbolic Disassembler

PAGE

of Code

2

Erase 2

(erase line 2)
Erase 6 20
(erase fronm
line 6 to line
20)

Exit

Hex of #XXXXX

Kernal

List 10 30
(list from 1line
10 to 1line 30)
List 10

(list line 10)
List

(list all
lines)
List - 10

(list from line
1 to line 10)

List 10 -
(list from
line 10 to

last 1line)

Menu on Di5k

Object

Pseudo Ops

Revise 20
(update line
20)

Symbolic

E - Z ASSEMBLER VI.5 PAGE

20). Wedge Places Code Between
already written code

Pseudo Ops
Name Example

ASC "Message””
2). BYT BYT 3,20,*AA
3). DST Buffer DST 100
4). EQU Vector EQU *A000
5). ORG (Space)ORG *C000

#

3

Wedge 20 10
(wedge 10 lines
starting at
line 20)

Comment

Places message
on ASCII form
on memory

Places 3,20,$AA
on memory

It will create
a 100 byte
Table called
Buffer

It will give
the label
"Vector"” a
value of *A000

It tells assem-
bler where the
assembly is go-
ing to start
from, (code
start address)

E - 2 ASSEMBLER V1.5 PAGE * 4

Extras It Supports s

1). Addition = Numerical values can be added to code.
2). (#>) Gets Hi Byte of Address

3). <#<) Gets Lo Byte of Address

4). (#°A) Gets ASCII Number Df "A"™ or any character
5). () and <*) are used for comments

6). Supports either Hex or Decimal Numerical inputs

Plus s

E -2 SYMBOLIC DISASSEMBLER is also included

Features

1). Creates real Source Files from Object Files

2). Generates Equates for internal % external addresses

3). Disassembles any 6502-6510-B502 machine code progran
into clear, easy to read source code

4). 5 pass Symbolic Disassembler with automatic label
generati on

5). Outputs Source Code Files to disk, which are fully
compatible with the E - Z SOU.ASSEMBLER module

6). Outputs formatted listings to screen or printer

7). Disassembles programs regardless of load address, in
other words, it will handle "AUTOBOOT"™ programs

8). Recognizes instructions hidden under BIT instructions
9). Helps adapt existing programs to your specific needs

10). Gives you the option to Start and End disassembling
anywhere within the program to be disassembled

Error Generation on SOU ASSEMBLER

1).
2).
3).
4).
5).
6).

Error Generation on OBJ ASSEMBLER

1).
2).
3).
4).
5).
6).
7).
8).

9).

10).
11).
12).
13).

14).

E - Z ASSEMBLER VI-5 PAGE # 5

Command Not Available

Danger

All Lines Have Been Used

File Too Large

Wrong Parameters

Disk 1/0 Error

File To Be Appended

Illegal

Illegal

Opcode

(Supports All

Addressing Mode

Label Not Found

Too Long Conditional Branch

No Data On Pseudo Op

No Delimiter On ASC Pseudo Op

Illegal

Value Out Of Range

Table Length

Selected File Too Large

EDU Pseudo Op Error In Line

Error On Source Assembler

Please Scratch

Linking File

Disk

1/0 Error

= (FILENAME)

Is Too Large

(Supports All

C-64 Disk Errors)

Is Too Large

(65535 LIMIT)

XXXX

Line # XXXX

File From Disk

C-64 Disk Errors)

E - Z ASSEMBLER VI.5 PAGE # 6

Error Generation on SYMBOLIC DISASSEMBLER

1). Try again, Name for Object Fileis too long
2). Try again, Name for Source File istoo long
3). Error —oOut of Range Address

4). Disk 1/0 Error (Supports All C-64 Disk Errors)

SUMMARY OF FEATURES

1). LOW COST / HIGH-PRICED FEATURES

2). A TRUE THREE PASS ASSEMBLER

3). FULL SCREEN EDITING OF SOURCE PROGRAM

4). SOURCE FILE CHAINING (APPENDING) CAPABILITIES
5). OBJECT FILE CHAINING (LINKING) CAPABILITIES

6). SUPPORTS SPECIAL PSEUDO OPS

7). OUTPUTS LABEL REFERENCE TABLES (BY ADDRESS)

8). A TRUE SYMBOLIC AND LABEL ASSEMBLER

9). FULLY MENU AND PROMPT DRIVEN

10). FAST AND EFFICIENT MACRO ASSEMBLER CAPABILITIES

11). ADVANCED 5 PASS SYMBOLIC DISASSEMBLER 1S INCLUDED

E - Z ASSEMBLER VI.5 PAGE # 7

INTRODUCTION

What BASIC is to BASIC programming, an ASSEMBLER is to

ML programming. The E-Z assembler is a complete language.
You write programs (source code) which the E-Z assembler
translates into the finished, executable ML (object code).
Unlike less advanced assemblers, however, symbolic
assemblers such as the E-Z assembler can be as easy to use
as higher level languages like BASIC. The source code is
very simple to modify. Variables and subroutines have
names. The program can be internally commented with REM-

like explanations.

This text will not teach you everything there is to know
about assembly language programming. It*s purpose is to
give you some of the vocabulary and general ideas which wil
help you on your way.

I"m certain that everyone has been introduced to the idea of

a bit. A bit has two states: on and off, typically
represented with the symbols 1" and "0". In this context,
DON®T think of 1 and 0 as numbers. They are merely

convenient shorthand labels for the state of a bit

The memory of your computer consists of a huge collection of
bits, each of which could be in either the 1 or O (on or
off) state.

At the heart of your computer is a microprocessor chip,
named the 6510 by MOS, who makes the chip. What this chip
can do is manipulate the bits which make up the memory. The
6510 likes to handle bits in chunks, and so we"ll introduce
a special name for the size of bit chunks the 6510 is most
happy with. A byte will refer to a collection of eight
bits.

A collection of bits holds a pattern, determined by the
state of it"s individual bits.

If you"ve had a course in probability, it"s quite easy to
work out that there are 256 possible patterns that a byte
could hold.

Without getting too far ahead of myself, 11l just casually
mention that there are about 56 fundamental operations that
the 6510 microprocessor chip can carry out.

E - 2 ASSEMBLER VI.5 PAGE # 8

The point of this discussion is that we can use bit patterns
to represent anything we want, and by manipulating the
patterns in different ways, we can produce results which
have significance in terms of what we"re <choosing to
represent.

As stated before, the 6510 chip inside your computer can
manipulate the bit patterns which make up the computer®s
memory . Some of the possible manipulations are copying
patterns from one place to another, turning on or turning
off certain bits, or interpreting the patterns as numbers

and performing arithmetic operations on them. To perform
any of these actions, the 6510 has to know what part of
memory is to be worked on. A specific location in memory is

identified by it"s address.

An address is a pointer into memory. Each address points to
the beginning of a byte long chunk of memory. The 6510 has
the capability to distinguish 65535 different bytes of
memory .

The contents of memory may be broken down into two broad
classes. The first is data, just raw patterns of bits for
the 6510 to work on. The significance of the patterns is
determined by what the computer is being used for at any
given time.

The second <class of memory contents are instructions. The
6510 can look at memory and interpret a pattern it sees
there as specifying one of the 50 some fundamental
operations it knows how to do. This mapping of patterns

onto operations is called the machine language of the 6510.
A machine language program consists of a series of patterns
located in consecutive memory locations, whose corresponding
operations perform some useful process.

Note that there is no way for the 6510 to know whether a
given pattern is meant to be an instruction, or a piece of
data to operate on. It 1is quite possible for the chip to
accidentally begin reading what was intended to be data, and
interpret it as a program. Some pretty bizarre things can
occur when this happens. In assembly language programming
circles, this is known as “crashing or locking up the
system™.

E - Z ASSEMBLER VI.5 PAGE # 9

WHY AN ASSEMBLER ?

Unless you happen to be a 6510 chip, the patterns which make
up a machine language <can be pretty incomprehensible. For
example, the pattern that tells the 6510 to load the
Accumulator with a value of zero is

A9 00

Which is not very informative. On the other hand, Assembly
Language represents each of the many operations that the
computer can do with a MNEMONIC, a short, easy to remember
series of letters. (3 letters) Using the prior example
Assembly Language will 1look like this

LDA #$00

Which is a lot English like and easy to understand.
Therefore, what is needed is a special program to run on the
6510 which converts the string "LDA #*00" into the pattern
"A9 00". This program is called an assembler. A good analogy
is that an assembler program is Jlike a meat grinder which
takes in assembly language and gives out machine language.

Typically, an Advanced assembler reads a file of assembly
language and translates it one line at a time, outputting a

file of machine language. 0Often times, the input file is
called the Source file and the output file 1is called the
Object file. The machine language patternsproduced are

called the Object code. The E-Z assembler is such an

assembler.

The source code that you build and save in the Sou Assembler
module will have a ".SC" tag attached to it"s filename. SC
stands for Source Code.

The object code that you build and save in the Obj Assembler
module will have a ".0C" tag attached to it"s filename. O0C
stands for Object Code.

Also produced during the assembly process is a listing,
which summarizes the results of the assembly process. The
listing shows each line from the source file. In the event
that the assembler was unable to wunderstand any of the
source lines, it inserts error messages in the listing,

pointing out the problem.

E - Z ASSEMBLER VI.5 PAGE # 10

The last part of an assembly language line is a comment.
The comment is totally ignored by the assembler, but is
vital for humans who are attempting to understand the
program. Assembly language programs tend to be very hard to
follow, and so it™ particularly important to put in lots of
comments so that you’'ll remember just what it was you were
trying to do with a given piece of code. Professional
assembly language programmers put a comment on every line of
code, explaining what it does, plus devoting many entire
lines for additional explanations.

Since the assembler ignores the comments, they cost you
nothing in terms of size or speed of execution in the
resulting machine language program. This is in sharp
contrast to BASIC, where each remark slows your program down
and eats up precious memory.

Generally, a character is set aside to indicate to the
assembler the beginning of a comment, so that it knows to
skip over. This assembler follows a common convention of
reserving the semi-colon (;) and also the asterisk <*) for
marking comments.

The E—Z assembler recognizes a series of pseudo—eperations
which are handled as embedded commands to the assembler
itself, not as an instruction in the machine language
program being built. Almost invariably, you"ll see the
phrase pseudo—eperation abbreviated down to pseudo—ep.
Sometimes you 71l see assembler directive, which means the
same thing, but just doesn ™ seem to roll off the tongue as
well as pseudo-op.

One very common pseudo-op recognized by the E-Z assembler is
the Equate, usually given mnemonic EQU. What this allows
you to do is assign a name to a frequently used constant.
Thereafter, anywhere you use that name, the assembler
automatically substitutes the equated constant. This
process makes your program easier to read, since in place of
the somewhat meaningless looking pattern, you see a name
which tells you what the pattern 1is for. It also makes your
program easier to modify, since if you decide to change the
constant, you only need to do it once, rather than all over
the progranm.

E - Z ASSEMBLER VI.5 PAGE #11

Examples of an Equate would be
1. START EQU *FFFF

2. VECTOR EQU $0314

3. IRQ EQU 370

Another pseudo-op supported by the E—Z assembler is the ASC
pseudo-op. This pseudo-op is a very handy utility which
saves you all the trouble of translating by hand each
character in a message that is desired to be stored in
memory -for a later use such as in a prompt or a message.
Examples of an ASC conversion will be :

1. PROMPT ASC ~THIS IS THE END~
2. MESSAGE ASC .THISIS THE START.
3. ALARM ASC CDANGER WOTENOUGH MEMORY =J

Notice that in the first example we used the 9 9 HYPHEN as
delimitors (A delimitor is a mark to define the start and

the end of an ASC conversion). In other words, the E—Z
assembler will take the very first character that it -finds

and use it as a start delimitor, then it will look -for a
similar character to use it as the ending delimitor, so
anything in between will be considered part of the ASC
conversion, this is useful since this way you can use the

9 9 HYPHEN inside a message as shown in example 3 of the
preceding examples. The only limitation on this pseudo-op,
is that you can not use comments on the same line thata ASC
conversion has been performed.

The third pseudo-op supported by the E—Z assembler is the
ORG pseudo-op, which is wused to indicate the desired

starting address on the machine language.
Examples of ORG usage would be

1. (space) ORG *C000

2. (space) ORG 0192

3. (space) ORG 40960

When entering the ORG pseudo-op, always leave an space

between it and the beginning of that line, and always place
ORG as the first line of the source code.

E - Z ASSEMBLER VI.5 PAGE #12

The fourth pseudo-op is called BYT and, it is used to enter
a list of numbers in a consecutive manner, such as vectors,
pointers, etc.
Examples of BYT usage would be
1. VECTOR BYT $14,%03,$14,%03
2. POINT BYT 99,00,76,55
3. LIST BYT 01,02,03,04,05,06,08,09
Notice that you can enter either hex or decimal numbers,
also that each number is separated by a comma, but be
careful because no commas are allowed at the end of a line,
and also like in the case of the ASC pseudo-op no comments
are allowed in a line that has had a BYT pseudo-op.
The last pseudo-op supported by the E-Z assembler is the DST
pseudo-op (DST = declare stable table). This pseudo-op
allows us to declare or reserve an area of memory that can
be used for storage area, for tables, or simply to hold
vectors and pointers.
Examples of DST usage would be
1. ENDPTR DST 2
2. STRPTR DST 2
3. SPEECH DST 2000
Notice how we are using the DST pseudo-op to open up tables
where we can store either pointers (as in # 1 2 example)
or to hold raw data (as in # 3 example).
The E-Z assembler also supports mini utilities such as
1). Addition

VECTOR EQU $0314

ADD LDA VECTOR+1
2). (#) gets hi-byte of label

2000 START LDA VECTOR

2003 NEW LDA #>START ;get the hi-byte address of the label
called START in this case 20 HEX.

E - 2 ASSEMBLER VI.5 PAGE ft 13

3). (#<) gets lo-byte of label
2000 START LDA VECTOR

2003 NEW1 LDA #<START ;get the lo-byte address of the
label called START in this case 00 HEX.

4). Cft'Z) gets ASCII number of "Z" or any character
2000 LOAD LDA # ~A

2002 STORE STA SECOND ;first load the accumulator with the
numerical value of the letter "A™ then store in the label
called second.

5). The asterisk <*) and the semi-colon (;) are use to
indicate that a comment is to follow.

2000 DEMO STA *BO ;THIS IS A COMMENT (USE ONLY SEMI-COLON
IN THIS TYPE OF COMMENT)

;THIS IS A COMMENT THAT USES THE WHOLE LINE

THIS 1S ANOTHER COMMENT THAT USES THE WHOLELINE

LABELS

Probably the most powerful feature of the E—Z assembler is
it"s capability of using labels. Labels are words or strings
of characters that refer to a certain value, memory location
or to a certain part of a program. For example a value of 32
can be assigned to a word called "SPACE" and then, from now
on we just refer to it as "SPACE" instead of having to
remenber that number 32 is equal to a "SPACE".

In practice , by using labels throughout your programs, you
have the capability of assembling programs that are fully
relocatable, and can operate in different memory locations.

E - Z ASSEMBLER VI.5 PAGE # 14

Also included in the E — Z ASSEMBLER PACKAGE is the E —Z
SYMBOLIC DISASSEMBLER.

Why a Symbolic Disassembler ?

The more you get involved in Assembly Language Programming,
the more likely that you will acquire machine language
object -files, -for which you don"t have any information for,

but that you would like to analyze, understand or modify.

Or perhaps you would like to relocate the ©program or
investigate a certain programmers® technique. In order to
do this, you"ll require a program called Disassembler. Now,

there are two kinds of disassemblers, Plain Disassemblers &
Symbolic Disassemblers.

Plain Disassemblers are utility programs that will scan a
given machine code program and will typically display on
Screen or on your printer a corresponding disassembled
machine language listing. Some disassemblers will go as far
as allowing you to modify the assembly as it isheing
displayed, but they are generally awkward to work with, and
very hard to follow if the program being examined is of any
reasonable length.

Symbolic Disassemblers like the E-Z Disassembler scan a
given machine code (object file) program and generate a
corresponding Assembly language Source File that in return
can be used by our E—Z SOU ASSEMBLER Module.

Also during Disassembly, our disassembler generates labels
to denote addresses (Locations) and values (expressions).
These labels are attached to instructions or expressions to
denote memory locations, and then all jumps X branches
within the code are created by referencing to these labels.
All these labels start with the (LB) characters. The main
benefit of using labels is that they make the code
automatically relocatable since all memory locations are
referenced as relative and defined by a [label. Also,
branching no longer involves complex hexadecimal
calculations.

The following pages give you a more detailed explanation of
all the features available in the E—Z ASSEMBLER, so read on.

E - Z ASSEMBLER VI.5 PAGE #1565

Getting Started

The write protect tab should be removed from disk for the
following procedures.

1). Loadthe program with a Load "MT",B,1 Awelcome screen
will greet you, then you are asked to press return. (This
will AutoLoad & AutoStart the SOU ASSEMBLER module)

2). You will have to wait about 60 seconds while the
program is being Loaded

3). You then will be presented with the copyright notice
and in the left lower corner with a blinking cursor besides
a PERIOD this indicates that you are inside the SOU
ASSEMBLER module.

4). Next, typeCOMMANDS and press return.

5). This will display all 20 commands available to you
while inside the Sou Assembler Module.

6). Now lets walk through some of them to familiarize you
with them.

7). TypeDECIMAL OF <2000 and hit return.

B). The display will show a decimal 8192 number.

Therefore, we use the command DECIMAL OF $XXXX to translate
from hexadecimal number to decimal numbers.

9). Next, type HEX OF #49152 and hit return.

10). The display will show a SC000 hexadecimal. Therefore,
we use the HEX OF #XXXXX to translate from decimal into hex
numbers.

11). Next, type KERNAL and hit return.

12). We then are presented with all possible Kernal calls
and their respective addresses.

13). Type PSEUDO—PPS and hit return.

14). You will be presented with the 5 pseudo-ops available
to you to make your Assembly language experience a bit
easier.

15). Type MENU ON DISK and hit return.

E - Z ASSEMBLER VI.5 PAGE #16

16). The contents of the disk that you have present on your
disk drive will be presented on your display without
affecting your computer memory at all. (Note you can freeze
this Menu listing by pressing the Run/Stop key, or terminate
the listing by pressing the Space Bar key).

17). Type DISK and hit return.

18). A ">M prompt will be present indicating that you are
inside the disk mode (to abort, just type"?" and hit
return). Now you can send Disk Commands to your disk such
as Scratch, Validate, New, etc. (Note: you do not need to
use "m Quotes anymore). Also, you can read the Disk Drive
Error channel by typing besidesthe > prompt the word ERROR
and then hitting return.

19). Type Exit and hit return.

20). Before the program will let you exit, it will ask you
whether or not you have DSaved your Source Code.

21). If you answer "Y", the program will let you back into
Basic and instruct you on how to get back in into the
Assembler.

22). If you answer “N", the program will terminate the Exit
Command and will send you back into the SDU ASSEMBLER.

23). Type OBJECT and hit return.

24). Before the program will let you go into the Object
Module (OBJ ASSEMBLER), it will ask you whether or not you
have DSaved”your Source Code.

25). If you answer "Y*, the program will ask you to press
return to confirm your action; and, it will automatically
Auto Load and Auto Start the OBJ ASSEMBLER Module.

26). If you answer “N", the program will terminate the
Object Command and will send you back into the SOU
ASSEMBLER.

27). Bring out the Menu on your Disk, by typing MENU ON
DISK and hitting return.

28). Type DLOAD TEST and hit return.

E - Z ASSEMBLER V1.5 PAGE #17

29). We just loaded the file called "Test.SC"™ into memory.
(Notice the .SCtag attached to the Filename. This is just
to keep all files separated. To DSave or DLoad, you don"t
need to attach this tag since the computer will do it for

you) .
30). Next, type LIST and hit return.

31). The Test file will be scrolling across your screen.
You can slow down the Listing by pressing the Control key or
freeze the Listing by pressing the Run/Stop key or just
terminate the Listing by pressing the Space Bar. (See all
format combinations available for the List Command by
looking them over on the Macro Assembler Features section of
this Manual).

32). Type WEDGE 1 2 and hit return.
33).A One will be present with a solid ~cursor at it"s
right. Then, press "*" twice and hit return. Then, a two
will be present. Press twice and hit return. (? can

also be used to abort).
34). Now, type LIST and hit return.

35). You will notice that Lines 1 and 2 have the asterisks
that you just wedged in. this is how you wuse the Wedge
Command to wedge or place code inside code that is already
present (Note, you can wedge in any Line of the code).

36). Type ERASE 1 2 and hit return.
37). Now, type LIST and hit return.
38). The listing will show you that we just erased Lines #1
and Lines #2 (Note: same syntax as with List can be used to

erase Lines).

39). Type REVISE 4 and hit return.

40) . This will present you with a copy of what you already
have on Line #4 but, you want to revise (? can also be used

to abort). Type t TESTING * and hit return.

41). Now, LIST and you will see that you have revised Line
#4 with the new message.

E - Z ASSEMBLER VI.5 PAGE #18

42). Type DUMP 1 10 TEST and hit return (Notes a printer
should be connected before attempting this).

43). A Listingfrom Line 1 to Line 10will be printed and
the filename “"Test" will be placed atthe very top of the
printed listing.

44) . Type APPEND TEST1 and hit return.

45). Now, LIST and you will see that the Source Code of
TEST1 has been added ("APPENDED") to the Source Code of TEST
(Note: you can append in any combination or on any sequence

as long as the total # of Lines appended together do not
exceed 1000 Lines and all EQU pseudo-codes are on the first
file).

46) . Type DSAVE TESTO+1 and hit return.
47) . You have just DSaved a Source file containing both
Source codes from TEST and TEST1 (Note: a tag ".SC" 1is

attached to the TESTO+1 filename on disk, but you don ™ need
to add this tag).

48). Type CLEAR and press return.

49) . Now LIST and you will find out thatnothing lists
since we just cleared all memory available.

50). The ASSEMBLE command will be discussed a bit later.
51). Now let me show you some samples of the pseudo-ops

available on the assembler.
52). Type DLOAD SAMPLE1l and press return.

53). LIST and see how both ASC and BYT pseudo-ops need to
be formatted.

54). Type DLOAD SAMPLE2 and press return.

55). LIST and see how the ORG, DST, and BYT pseudo-ops need
to be formatted.

56). Type DLOAD SAMPLES and press return.

57). LIST and See how the EQU Pseudo-op needs to be
formatted.

58). Type DLOAD SAMPLE4 and press return.

59). LIST and see samples of COMMENTS, #<, #>, +, and # 7,
and their formats.

E - Z ASSEMBLER VI.5 PAGE #19

60) . Before we go into the ASSEMBLE Mode, let me give you a
clue or two on the internal operations of the Assembler.

The E-12Z Macro Assembler consist of 3 modules

Module 1). SOU ASSEMBLER .- Load"MTH,B, 1

This is the module that behaves like a Mini-Word processor,
and allows you to input, edit, append, save, etc your
Assembly Language Source Code. Also this module can
transport you into the O0BJ ASSEMBLER assembler module by
calling the OBJECT mode and then answering the questions
given by such a call-out.

Module 2). O0BJ ASSEMBLER .- Load"AE",8,1

This module ~can be accessed by loading "AE®%8,1 (This will
Auto Load & Auto Start the 0BJ ASSEMBLER module), or while
in the SOU ASSEMBLER module by calling on the O0BJECT mode
and then answering the questions given by the computer.

This module ~converts the Assembly Language Source Code
created by you in the SOU ASSEMBLER module into, a runnable
machine language program.

61). Now, lets go back to our discussion, type ASSEMBLE and
hit return.(a ? can be used to abort)

62). A number 1 and a solid cursor should be present. Now,
let me explain to you the format of a Source Code line.

1 2 3 4 5
LINE#(space)LABEL(space)OPCODE(space)OPERAND(space)COMMENT

Number 1 is the LINE number field and it is automatically
increased for you by the conputer.

Number 2 is the LABEL field, you can type-in labels with as
many as six characters in them.

Number 3 is the OPCODE field, this is the three character
wide field wused to type-in the 6502/6510 opcodes and the
special pseudo-ops.

Number 4 is the OPERAND field, this is a ten character
wide field wused to type-in the operands (numerals or
labels).

E - Z ASSEMBLER VI.5 PAGE # 20

Number 5 is the COMMENT field, this is the space allocated
for you to type REM LIKE comments (always start this field
with the character ";").

63). By looking at the Source Code line, you will notice
that all 5 fields are separated by a space. This fact is
very important, since we use spaces to define the beginning
and the ending of each field. There is no need to enter all
five fields in a Source line, but the field positions should
be defined by their preceding spaces. For Example

A) To enter an opcode and it"s operand type
(space)LDA(space)#$00 then hit return.

B) To enter an opcode without an operand type
(space)INC then hit return.

C) To enter an opcode without an operand, but with a comment
type

(space)INC(space)(space);ANY KIND OF REM-LIKE COMMENT then
hit return.

D) To enter a label, an opcode, it"s operand and no comment
type
LABEL(space)LDA(space)$FFFF then hit return.

E) To enter a starting address wusing the ORG pseudo-op
type s

(space)ORG(space)$C000(space);THIS COULD BE A REMARK then
hit return.

VERY IMPORTANT s

The ORG Pseudo op can only be used once in a Source Code
program and preferably on the first line of code or it can
be completely omitted, since the OBJ ASSEMBLER module will
ask you for a start address when it doesn*t find a ORG
Opcode in your Source Code.

E - Z ASSEMBLER VI.5 PAGE # 21

F). To wuse the ASC Pseudo-Dp and a label with it type:
(Note: No comments are allowed in the same line that an ASC
or a BYT Pseudo-Op have been used).

LABEL(space)ASC(space) Message”” then hit return.

Notice that in front of the "M" on message, we typed a
APOSTROPHE mark. In addition, we put the APOSTROPHE mark at
the end of the message. These two APOSTROPHES are being used
to mark the beginning and the end of a word that is to be
converted to ASCII (The 9 9 APOSTROPHES are being used as
Delimitors). Since sometimes people would like to use 9 9
APOSTROPHES inside a message or prompt, we have made this
Assembler to be able to recognize other delimitors besides
the APOSTROPHES for Example:

LABEL (space)ASC(space)?Message? then hit return,
or
(space)ASC(space).Message. then hit return.

This would be okay as long as you start andend a word or
phrase with the same delimitor.

G) . To use the BYT Pseudo-0Op type:

LABEL(space)BYT(space)20,49,$FF,$09 then hit return,
or
(space)BYT(space)40,$00,7,8 then hit return.

Notice that you can input either hex or decimal numbers,
also that each number is separated by a COMMA (No commas are
allowed at the end of a line and no COMMENTS are allowed in
a line that has had an ASC or BYT Pseudo-0p).

H) . To use the EQU Pseudo-0Op type:
VARIABLE or LABEL(space)EQU(space)*FF08
or

VARIABLE or LABEL(space)EQU (space)l0

Equates (EQU) should be placed at the beginning of the
program with the ORG Pseudo-0Op Line being the only line of

code that can be ahead of them. This is especially critical
when you want to append or link several programs. In this
case, put all the Equates in the very beginning of the very
first program. Do not place Equates in any other one of the

program that are to be appended or linked.

E - Z ASSEMBLER V1.5 PAGE ft 22

1>. To enter a line with the DST Pseudo-op types

LABEL or VARIABLE(space)DST(space)200 then hit return,
or
LABEL(space)DST(space)2 then hit return.

J). Also, we can use the characters (;) and <*) to help us
comment and beautify our program. For Examples

Type at the beginning of a Source Line the character (*) and
then type after itany kind of comment that youwould like
to have, then hitreturn. (The (5) character can be used
the same way).

64). Now let"s get acquainted with the assembler by
examining a program. Type DLOAD TEST3 and hit return. Now
list the program and examine it"s contents. Take special
care on observing how the ORG,EQU,COMMENTS,LABELS, the ft>,
the #<, and ft* were used to form this little program.
(Note: Test3 is the same sample listing included within
this manual at page # 32).

65) . Nowlet®"s enter the 0BJ ASSEMBLER Module:

Step 1. Type OBJECT and hit return; then, answer the
question by pressing "Y", wait for the prompt and press
return.

Step 2. 60 seconds later, you should be presented with

another copyright screen and a prompt inquiring about the
SOURCE FILENAME desired to be converted into an Object Code.
At this point, answer by typing TEST and pressing return.
(Typing EXIT and hitting return will abort the program).
The computer will then display the prompt 0BJECT
FILENAME:TEST, with the cursor blinking on top of the letter
T. At this point, you have the option of changing the name
of the Output File, or the option of leaving the Output File
name the same as the Input filename. For now, just press
return.

Step 3. Aprompt will ask you if everything was correct.
Type "N" if there is something to be <corrected. |If not,
simply press return when the blinking "Y" 1is present.

Step 4. The program called TEST.SC will be loaded in
memory. The computer will then ask you whether or not you-"d
like tolink any other program to the TEST program. Press
"Y" (press "N" if only one program is to be assembled).

Now, you will be asked to enter the name of the new file to
be linked; so, type TEST1 and hit return. You are asked

again if everything is correct. Hit return again.

E - Z ASSEMBLER VI.5 PAGE # 23

Step 5. After TEST1.SC is loaded on memory, the computer
will ask you again if you like to link another program. For
now, type "N (there is only one limitation when using the
linker feature, and it is that the total sum of all lines
from all programs to be linked <can not be more than 1000
lines).

Step 6. The computer will prompt you, that it is looking
for the starting address or origin. If it doesn"t find an
origin, it will ask you to enter one at this time. Even if
it finds one, it will still gives you a chance to change
your mind. Type "Y", and then return if you want to change
the start address or press return when the blinking "N" 1is
present. Now it will ask you to press return to start

executing pass 1 and pass 2. Also, it gives you time to
change disksif you want to assemble to adifferent disk.

Step 7. If you are ready, press return. Now it will prompt
you while itis doing pass 1 and pass 2. Then, it will ask

you whether to assemble to screen or to the printer

(regardless of your choice, it will save the assembled

program to disk).

Step 8. For our purposes, press return when the "S" is
present. Now, you will see the assembly scrolling across
your eyes. These programs: the TEST and TEST1 are supplied
for demonstration purposes only, and they are not runnable
programs (TEST3 is runnable. For a demonstration, run TEST3
program thru the O0OBJ.ASSEMBLER and reset the computer by
turning it off and on, then LOAD"TEST3.DC",8,1. Dnce it is

loaded, type NEW and Hit return, nowtype SYS49152 and press

return. Load any long basic program,then list that progranm,
and while it is listing, press the "2" key. It should freeze

the listing. Pressing the "3"™ again should continue the

listing).

At the ending of the assembly, a prompt with the number of
errors is generated. |If errors were present, a list of these
errors and their addresses will be displayed. Also, a
message asking you to scratch that file will be generated.

If no errors were encountered, a reference label table will
be generated, letting you know that the assembly was
successful.

Now before we examine the SYMBOLIC mode, we like to give you
the E-Z ASSEMBLER Rules of Thumb.

E - 2 ASSEMBLER VI-5 PAGE # 24

General Rules s

1). ORG — Only one ORG is allowed and always at the
beginning of a progran (But as we talk before it can be
omi tted) .

2). ASC & BYT » A comment is not allowed in a line that
has had either of these Pseudo-0ps.

3). EQU = Place all Equates at the very beginning of
program. When appending or linking several programs,

REMENBER to place all Equates at the very beginning of the
very first program.

4). DST = Use DST (Declare Stable Tables) to form tables or
buffers.

5). Spaces = Remember to wuse proper spacing syntax when
entering code.
6). Appending & Linking = Do not append or link programs
whose total line sum will be more than 1000 lines.
7). BYT is equal to BYTE to avoid confusion.

LABELS

The most useful part of this Assembler is it"s capability of
using labels.

Labels are words or names that vrefer to a certain value,
memory location or to a certain part of a program.

In practice, by using labels throughout your programs, you
would have the capability of assembling programs that can
readily be relocated in different parts of your available
memory . This is accomplished by simply telling the 0BJ
ASSEMBLER module to start assembling your program 1in a
different starting address.

E - Z ASSEMBLER VI-5 PAGE # 25

EXAMPLES OF LABELS s

START LDA #%*00
TYA

LOOP BNE START
STA RESET
LDA $00
BEQ END

JUMP JMP START

END RTS

Notice that this labels are referring to each other by their
name and not by their physical address location. Therefore
the program has the freedom to be relocated into any space

of memory that one desires to assemble to, by simply
changing the starting address on the program.

We recommend the following reading material to enhance your
knowledge on assembly language.

1). 6502 Software Design; Leo Scanlon.

2). Advanced 6502 Interfacing; Leo Scanlon.

3). Programming The 6502, Osborne.

4). C-64 Programmers Reference Guide
Howard W. Sams & co., Inc.

5). MOS Microcomputers Software Manual
Commodore Business Machines.

6). Machine Language for Beginners; Richard Mansfield.

7). What"s really inside the Commodore 64
Milton Bathurst.

8). The Anatomy of the Commodore 64, Abacus Software.

9). Machine Language on the Commodore 64, Abacus Software.
10). Advanced Machine Language on C-64, Abacus Software.

The following pages will show you how to become familiar

with our E —Z Symbolic Disassembler which is also included
in the E - Z Assembler package.

E - Z ASSEMBLER VI.5 PAGE # 26

Module 3). SYMBOLIC DISASSEMBLER .- Load"UT",8,1

This module <can be accessed by Loading”"UT",8,1 (This wil
Auto-Load & Auto-Start the SYMBOLIC DISASSEMBLER Module), or

while in the SOU ASSEMBLER module, by calling on the
SYMBOLIC Mode Command and then answering the questions given
by the computer. This module scans a given machine code

program (object -file) and generates a correspondi ng Assembly
LanguageSource file, that in return can be DLoaded by our
E—2Z SoU ASSEMBLER module in order to be examined or
modi fied.

Now let™ get acquainted with the SYMBOLIC DISASSEMBLER.

Step 1. Type Load "UT",8,1 and press return

or
While in the SOU ASSEMBLER Module, type SYMBOLIC and hit
return; then, answer the questions by pressing "Y"f wait for
the prompt and press return.

Step 2. Sixty seconds later, you should be presented with
another copyright screen and a prompt inquiring about the
OBJECT FILENAME desired to be converted into a Source Code
(Disassembled).

At this point, answer by typing "TEST3.0C"™ and pressing
return (typing EXIT and hitting return will abort the
program). The computer will then display the prompt SOURCE
FILENAME:TEST3.0C, with the cursor blinking on top of the
letter "T".

Now, you have the option of changing the name of the Output
File, or the option of leaving the Output Filename the same

as the Input Filename. For now, just press return.

Step 3. A prompt will ask you if everything was correct.
Type “N" if there is something to be corrected. If not,
simply press return when the blinking ~”Y" is present. The

computer will then open up the object file (Disk Drive red
light comes on) and will set some pointers up

Step 4.At this point you will be asked if you would like
to have theBit operations converted to Byte operations
(Read page # 28 for explanation of this feature), Hit return
when the blinking "N" is present.

Pass #1 shows you that program is searching for origin of
object code file. Then, it will give you the origin and end
address and also the total length of the file to be
di sassembled.

E - Z ASSEMBLER VI.5 PAGE # 27

Step 5. The program will ask you to input the starting and
ending address of the part of <code that you would like to
have disassembled. The prompt START ADDRESS: contains the
defaultvalueof TEST3.QC which is 49152. When the blinking
cursor is on top of "4" on 49152, hit return. (You can
change this number to a higher number to disassemble a
specific area smaller than the complete file that is being
di sassembled.)

Step 6. The computer will present you with the prompt END
ADDRESS: 49183 (this number can also be changed, but to a
smaller number). Hit Return again.

Step 7. The Pass #2 prompt will be displayed indicating
that the disassembler is <creating a Label Table (the red
light on the Disk Drive comes on). In a few seconds, you
will have two more prompts present. The first one will
inform you of the number of labels that are located within
the Source File. The second one will inform you of the

number of labels that are located outside the Source File
(generally, these will be kernal calls).

Step 8. Now, the computer will ask you where would you like
to have the disassembly sent to, the Printer or the Screen.
Simply Press Return to select screen for now.

Step 9. The Pass #3 prompt will be displayed and a few
seconds later, the source listing of the TEST3-0C file will
be scrolled across your screen. After the scrolling is
completed, Pass #4 & #5 are executed. A prompt indicating
that the source file is being saved to disk appears, and a
few seconds later (depending on the length of the file), the
name of the file as it was saved will appear in reverse
character format. Then, prompts appear letting you know
that no errors were present, and that the Source File is
ready to be used by the E-Z SOU.ASSEMBLER Module. Also, Re-
Entry To Program Instructions appear

E - Z ASSEMBLER VI.5 PAGE # 2B

Notes on the BIT Instruction

The technique explained in the following lines is supplied
to you in case you come across it in someone else ™ progranm,
since it™ a fairly widely used and accepted 6502 — 6510
programing practice. Generally though, programmers who use
tricks like this enjoy writing obscure code to save a byte
or two of memory, and don®t care if anyone else can look at
the program and understand it. Many programs, including
those printed in computer magazines, are designed to be
easily read by people, not computers, and should keep away
from such brain-twisting exercises. But giving such advice
to a hacker is about as effective as advising a kid not to
step in puddles on his way home from school

If you have ever looked through someone ™ machine language
program and come across a seemingly useless BIT instruction
(for example BIT *FFA9), or an inexplicable. BYTE $2C, there
is a explanation to this madness.

The BIT instruction sets the Zero, Minus, and Overflow flags
based on the contents of the given memory location. |In some
instances, BIT is used almost like a NOP, but with one major
difference: the two operand bytes used to specify the memory
location are part of the instruction, and so are not

executed as instructions if the BIT is executed. If the
first byte of the instruction (<2C) is skipped however, you
can execute a 2-byte instruction. For example, consider the

following assembler code:

START1 BYT S2C
START2 LDA #*FF

If a program were to execute the code starting at START1,
the CPU would see a s2c which is a BIT instruction, and
interpret the next two bytes (LDA #3$FF) as the argument for
the BIT - in this case, the CPU would see: BIT *FFA9.

If the *2C was skipped over and instructions were executed
from START2, the CPU sees the bytes <A9, SFF and interprets
the LDA #*FF instruction normally.

Using the above technique allows you to enter a routine with
the "A" ACCUMULATOR intact, and later enter the routine one
byte past the start and have the register changed to
something else before the routine does its thing. Of course,
any register may be used instead, or any 1 or 2 byte op code
can be executed after the *2C.

Take some time and, study carefully all the instructions in
this manual, happy computing, and luck on your Assembly
Language endeavor.

E - Z ASSEMBLER VI.5

BRK

ORA (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ORA Zero Page
ASL Zero Page
Future Expansion
PHP

ORA Immediate
ASL Accumulator
Future Expansion
Future Expansion
ORA Immediate
ASL Absolute
Future Expansion
BPL

ORA (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ORA Zero Page,X
ASL Zero Page,X
Future Expansion
cLC

ORA Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ORA Absolute,X
ASL Absolute,X
Future Expansion

6502/6510 MNEMONICS

JSR

AND (Indirect,X)
Future Expansion
Future Expansion
BIT Zero Page
AND Zero Page
ROL Zero Page
Future Expansion
PLP

AND Immediate
ROL Accumulator
Future Expansion
BIT Absolute

AND Absolute

ROL Absolute
Future Expansion
BMI

AND (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
AND Zero Page,X
ROL Zero Page,X
Future Expansion
SEC

AND Absolute,Y
Future Expansion
Future Expansion
Future Expansion
AND Absolute, X
ROL Absolute,X
Future Expansion

PAGE # 29

RTI

EOR (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR Zero Page
LSR Zero Page
Future Expansion
PHA

EOR Immediate
LSR Accumulator
Future Expansion
JMP Absolute

EOR Absolute

LSR Absolute
Future Expansion
BVC

EOR (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EOR Zero Page,X
LSR Zero Page,X
Future Expansion
cL1

EOR Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR Absolute,X
LSR Absolute,X
Future Expansion

E - Z ASSEMBLER VI-5

RTS

ADC (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC Zero Page
ROR Zero Page
Future Expansion
PLA

ADC Immediate
ROR Accumulator
Future Expansion
JMP Indirect

ADC Absolute

ROR Absolute
Future Expansion
BVS

ADC (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ADC Zero Page,bX
ROR Zero Page,X
Future Expansion
SEI

ADC Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC Absolute,X
ROR Absolute,X
Future Expansion

Future Expansion
STA (Indirect,X)
Future Expansion
Future Expansion
STY Zero Page
STA Zero Page
STX Zero Page
Future Expansion
DEY

Future Expansion
TXA

Future Expansion
STY Absolute

STA Absolute

STX Absolute
Future Expansion
BCC

STA (Indirect),Y
Future Expansion
Future Expansion
STY Zero Fage,X
STA Zero Page,X
STX Zero Page,Y
Future Expansion
TYA

STA Absolute,Y
TXS

Future Expansion
Future Expansion
STA Absolute,X
Future Expansion
Future Expansion

PAGE

« 30

LDY Immedi ate
LDA (Indirect,X)
LDX Immedi ate
Future Expansion
LDY Zero Page
LDA Zero Page
LDX Zero Page
Future Expansion
TAY
LDA
TAX
Future Expansion
LDY Absolute

LDA Absolute

LDX Absolute
Future Expansion
BCS

LDA (Indirect),Y
Future Expansion
Future Expansion
LDY Zero Page,X
LDA Zero Page,X
LDX Zero Page,Y
Future Expansion
cLv

LDA Absolute,Y
TSX

Future Expansion
LDY Absolute,X
LDA Absolute, X
LDX Absolute,Y
Future Expansion

Immedi ate

E - Z ASSEMBLER VI.5

CPY Immediate
CMP (Indirect,X)
Future Expansion
Future Expansion
CPY Zero Page
CMP Zero Page
DEC Zero Page
Future Expansion
INY
CMP
DEX
Future Expansion
CPY Absolute

CMP Absolute

DEC Absolute
Future Expansion
BNE

CMP (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
CMP Zero Page,X
DEC Zero Page,X
Future Expansion
CLD

CMP

Future Expansion
Future Expansion
Future Expansion
CMP Absolute,X
DEC Absolute,X
Future Expansion

Immediate

PAGE =

CPX Immediate
SBC (Indirect,X)
Future Expansion
Future Expansion
CPX Zero Page
SBC Zero Page
INC Zero Page
Future Expansion
INX
SBC
NOP
Future Expansion
CPX Absolute

SBC Absolute

INC Absolute
Future Expansion
BEQ

SBC (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
SBC Zero Page,X
INC Zero Page,X
Future Expansion
SED

SBC Absolute,Y
Future Expansion
Future Expansion
Future Expansion
SBC Absolute,X
INC Absolute,X
Future Expansion

Immediate

31

E - Z ASSEMBLER VI.5 PAGE # 32

MEMOTRON MACRO - ASSEMBLER REVISION VI.5

FILENAME: TEST3.0C

2 INE LOC. CODE LABEL OP. OPERAND COMMENTS
000l €000 orc 4C000 :THIS IS THE STARTING ADDRESS
0002 CO00 *

0003 CO00 *

0004 CO00 *

ooos CO00 GETCHR EQU <FFE4 ;KERNAL CALL

0006 CO00 IRQVEC EQU $0314 :1RQ VECTOR POINTER

ooo7 CO00 *

0oos CO00 *

0009 COOO Kok kK ok kK kK kK kK ok ok ok ok ok

oo10 COO0 * INTERRUPT TEST *

001 1 COOO hhkhkhkhhkhhhkokkhkkkkokhokhok

oo12 CO00 *

0013 CO00 *

0014 COOO |

0015 CO00 78 CHANGE SEI ;DISABLE IRQ

0016 CO01 A9 0D LDA #<NEWIRQ :GET LOW-BYTE OF NEW LOOP
0017 €003 8D 14 03 STA IRQVEC ;AND PLACE IT ON IRQ VECTOR
0018 C006 A9 CO LDA #>NEWIRQ+1 ;DO HI-BYTE NOW

0019 C008 8D 15 03 STA IRQVEC+1

0020 COOB 58 cL1 JENABLE IRQ

0021 COOC 60 RTS ;BACK TO BASIC

0022 COOD 5

0023 COOD 20 E4 FF NEWIRQ JSR GETCHR :SCAN KEYBOARD

0024 C010 C9 40 CMP # B ;FOR 7a*

0025 C012 DO 07 BNE EXIT SIF NOT EXIT

0026 0014 20 E4 FF WAIT JSR GETCHR :IF HERE WE ARE FREEZED WAITING FOR AN
OTHER ST

0027 CO17 C9 40 cMp #S> ;SCAN IF

0028 C019 DO F9 BNE WAIT ;LOOP AND LOOP

0029 CO1B 4C 31 EA EXIT JMP $EA31 ;60 BACK TO REGULAR IRQ ROUTINE.
0030 COIE *

0031 COIE *

0032 COIE Kok ok ok ok ok ok ok ok

0033 CO1E * TEST3 *

0034 00 IE xR

0035 COLE *

0036 COIE *

0037 COIE *

OBJECT ASSEMBLY COMPLETED.

vmm ERRORS

REFERENCE LABEL TABLE: (BY ADDRESS)

GETCHR-*FFE4 IRQVEC-S0314 CHANGE-SC000 NEWIRQ-*C0OO0OD WAIT----*C014
EXIT----*C018B

BACK-UP / REPLACEMENT DISKETTES

Orders for replacement diskettes must be accompanied by the
defective diskette. The prices and terms quoted below are
subject to change without notice. Contact MEMOTRON for
current prices and terms.

Orders for a back-up or replacement diskette must be prepaid
or may be charged to your credit card. Purchase orders will
not be accepted. Kansas residents must add sales tax or
include a sales tax exemption form.

Proof of purchase is necessary on all transaction.

Please send the order form to s

MEMOTRON SOFTWARE
806 NORTH WHEELER
McPherson, Kansas. 67460

ORDER FORM

You may use this form (or copy of this form) to order BACK-
UP / REPLACEMENT E - Z Assembler program diskettes.

Check one s

() I am enclosing a check or money order for $10.00 to
cover the purchase of a BACK-UP diskette of the E —Z
Assembler program.

() I am enclosing a defective E - Z Assembler diskette
for exchange under warranty. It has been 30 or fewer days
since 1 purchased E - Z Assembler.

() I need a replacement for my program diskette, but the
warranty has expired. 1 am enclosing a defective E —Z
Assembler diskette and a check or money order for $7.50

() Instead of check or money order, please charge my
() MASTERCARD
() VISA

Account Name

Card Number

Valid Date

Expiration Date

Date Purchased
Name
Company _
Address

City

State Zip

Telephone

PROPRIETARY NOTICE

The information and product design as disclosed in this
manual (as they pertain to the E — Z ASSEMBLER) were
originated by and are the property of MEMOTRON SOFTWARE.

Specifications and information herein are subject to change
to allow the introduction of design improvements.

The contents of this manual have been reviewed for accuracy;
however, no responsability is assumed should any portion not
be accurate. Inevitably, some typographical or other errors
will be found. The author will be grateful for any comment
by alert readers so that future editions may benefit from
their experience. Any other suggestions for improvements of
the manual will be appreciated.

COPYRIGHT NOTICE

MEMOTRON SOFTWARE makes this package available for use on a
single computer only. It is unlawful to copy any portion of
this software package onto any medium for any purpose other
than backup. It is unlawful to give away or resell copies of
any part of this package. Any unauthorised distribution of
this product deprives the authors of their deserved
royalties. For use on multiple computers, please contact
MEMOTRON SOFTWARE to make such arrangements.

WARRANTY

MEMOTRON SOFTWARE makes no warranties, expressed or implied
as to the fitness of this software product for any
particular purpose. In no event will MEMOTRON SOFTWARE be
liable for consequential damages. MEMOTRON SOFTWARE wil
replace any copy of the software which is unreedable if
returned within 30 days of purchase. Thereafter, there will
be a nominal charge for replacement.

