Commodore

for Commodore 64

English Edition

© Commodore Data A/S, Horsens, Denmark

Prepared by: Frank Bason & Leo Hejsholt-Poulsen
Consultants: UniComal ApS, Jels, Denmark
Editor: Jan Nymand, Commodore Data A/S

Cover and Illustrations: Fejltrek, Silkeborg
Layout: Silkeborg Soldata, Denmark

Printing: Tekst & tryk, Horsens, Denmark

A Danish Edition, copyright 1985
© Commodore Data A/S, Horsens, Denmark
is published simultaneously.

COMAL

for Commodore 64

RESPONSIBILITY

Neither Commodore Data A/S or any of this company's dealers
or distributors give any guarantee expressed or implied
concerning the COMAL computer language as described in this
manual and tutorial. The language and documentation are
sold "as is" with no claim being made as to its quality or
suitability for specific tasks. The risk concerning the
quality and performance of this product rests with the
buyer. Should this product prove defective after purchase,
it is the buyer (and neither the producer UniComal A/S,
Commodore Data A/S, nor any distributor or dealer) who must
take full responsibility for service, repair and any other
costs accrued due to errors or defects. This is true even
if the producer of the program has been given prior notice
of the possible existence of such errors or defects.

COPYRIGHT

The computer language COMAL for the Commodore 64 is covered
by the following copyright:

© Commodore Data A/S and UniComal ApS 1985

This manual is covered by copyright ©Commodore Data A/S,
Denmark, 1985. No part of the system, the program cartridge
or this manual may be reproduced, stored in a data retrieval
system or in any way be transmitted electronically or
mechanically, photocopied or be duplicated in any other way
without the prior written permission of the owner of the
copyright. Copying the COMAL cartridge ‘is forbidden;
however the Demonstration diskette or tape may be copied
freely.

ASSISTANCE

If you have any comments concering this COMAL manual or the
programming language itself, please pass them along to your
dealer. Commodore Data A/S has made every effort to assure
that the contents of this manual are correct and complete
and than the programming language itself functions as it
should. Every error discovered by users will be corrected
as soon as possible. Your help in this connection will be
sincerely appreciated, not least by other COMAL users.

TABLE OF CONTENTS

INTRODUCTION

What is COMAL?

The origins of COMAL
COMAL and Commadore

Using this Tutorial

Chapter 1: SETTING UP YOUR COMPUTER

Your Caomputer and Accessories
Installing your COMAL Cartridge
Connecting the TV or Monitor
The Commodore Keyboard
Running the Demonstration Program
Using the Datassette Unit
Using the Disk Drive
Freparing a Storage Diskette
Review

Chapter 23 LET'S BET STARTED!

Why learn to program?
Direct Execution of COMAL Orders
A Quick Look at Turtle Graphics
What is a program?
Repeating Instructions
COMAL Procedures
Saving Programs and Procedures
Using the Datassette
Using the Disk Drive
Review

Chapter 31 COMAL PROGRAMMING

Acquire good programming habits.
A First Calculation

The INPUT Statement

Circles

Procedures 1

COMAL and Text

Branching. Conditional Execution
The CASE Structure

Repetition and Loops

Arrays. Indexed Variables

Text Arrays

Procedures 11

Local and Global Names
Functions

String Functions

Closed Procedures

File Handling

Error Handling

25
27
29
32
35
37
40

42

CONTENTS -6 -

Chapter 4: COMAL OVERVIEW

Commands Used Before and During
Program Entry:
NEW - AUTO - RENUM
Commands which are Used for
Editing Programs:
EDIT - FIND - CHANGE - DEL - SCAN
Other commands:
SETEXEC
Commands Used to Check Available
Memory and Disk Storage:
SIZE - CAT - DIR
LIST - ENTER - MERGE - DISPLAY
SAVE - LOAD
RUN — CHAIN - CON
STATUS - STATUSS
VERIFY
COPY — DELETE - RENAME - PASS
SELECT INPUT - SELECT OUTPUT
Commands for System Start-up:
BASIC - SYS to COMAL
Commands and Statements Concerning
the Use of Machine Code Program Packages:
USE - LINK — DISCARD

Statements Used During Read-in and Printout:

INPUT - INPUT AT - KEY#$
PRINT — PRINT AT — PRINT USING -
TABR - ZONE
FAGE - CURSOR
READ — DATA — RESTORE - Label: - EOD
Statements for Communication with Files:
MOUNT - CREATE
OPEN FILE/OPEN - READ -
WRITE - APPEND - RANDOM
FRINT FILE - INPUT FILE
WRITE FILE - READ FILE
CLOSE FILE/CLOSE
UNIT - UNITS
Conditionals:
IF — THEN - ELIF - ELSE - ENDIF
CASE — OF — WHEN — OTHERWISE - ENDCASE
Loop statements:
REPEAT - UNTIL
WHILE - DO - ENDWHILE
FOR — TO - STEFP — DO - ENDFOR
LOOP — EXIT — EXIT WHEN - ENDLOOP
Error handling:
TRAP - HANDLER - ENDTRAP
ERR — ERRFILE - ERRTEXTS
REPORT
GOTO - Label:
Procedures:
FROC — ENDPROC
REF - CLOSED - IMPORT
EXTERNAL - MAIN
Functions:
FUNC - ENDFUNC - RETURN
Other defined functions:
ABS - INT - SGN - SRR - PI
COS - SIN - TAN - ATN

CONTENTS

93

93

94

96

105

106

107
109
110

112

112
113
114
116
116

117
119

119
120
121
122

122
122
123
124

125
127
128
129

131
132

CONTENTS -7-

LOG - EXP

CHR$ - STR$ - SPC¢
ORD - VAL - LEN
TRUE — FALSE

TIME

RANDOMIZE - RND
ESC - TRAP ESC

— Operators:

DIV - MOD

- Logical operators:

NOT — AND — AND THEN - OR - OR ELSE
IN
BITAND - BITOR - BITXOR

— Other orders:

/’/

TRACE

DIM

PEEK — POKE
sYs

NULL

STOP — END

Chapter S5: COMAL PACKAGES

What is a package?

The English Package

The Danish Package

Graphics with COMAL

Graphics Overview

In Depth Look at Graphics Orders
Sprites

The sprite is enlarged.

More Sprites

Two sprites collide.

Saving a Drawing to Disk
Sprites Used with Other Graphics
Sprite Cartoons

A Multi-colored Sprite

Sprite Overview

Special Rules for Multi-colored Sprites

Sound and Music
Sound Orders in Depth
Packages for Using the Control Ports
paddles
joysticks
lightpen
overview of the light pen package

- The System Package
- The Font Package

example of a character replacement
replacing an entire character set
font package orders in depth

Chapter &3 COMAL FILE HANDLING

What is a file?

Saving Programs and Procedures
Sequential Files - an Address List
Random files - an Inventory Program
Moving a Sequential File

File Types

CONTENTS

133
133
134
135
135
136
136

137

138
140
140

141
142
142
143
144
144
144

147

147
148
148
148
150
152
165
167
167
167
168
168
169
171
173
175
184
191
197
197
199
200
204
206
213
214
215
216

219

CONTENTS

-8 -

— Files and the Screen,
Keyboard and Disk Drive
— Using Your Datassette Unit
- Using the 1520 Printer-Plotter

- Review

Chapter 7: PERIPHERAL EQUIPMENT

— Introduction

- The RS-232C Interface

- IEEE Cartridges

— The Parallel Port

— File Transfer Between Computers
- The Control Ports

— Review

Chapter B8: COMAL AND MACHINE LANGUAGE

- What is machine language?

- Modules

— Packages

— Procedures and Functions

— How is memory organized?

- Memory Management

—~ Creating Modules

- FParameter Fassing

— Where can modules be placed?

~ Where can module variables be placed?
— Signal Routines

- Error Reporting

— Fackage Example

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix B:
Appendix H:

Index

ASCII Character Codes

Color Codes for Graphics
Calculations with COMAL

Keyboard and Screen Editor
Handling Text with COMAL

COMAL Error Numbers and Messages
User Comments and Corrections

Sample Programs and Procedures

CONTENTS

237

238
238

241

241
241

245
250
251
254

255

255
257
257
257
258
260
261
264
266
266
267
268
269

275

279

281

283

287

291

299

301

315

INTRODUCTION

WHAT IS COMAL?

Welcome to the world of COMAL programming! Many feel that
COMAL is close to being an ideal programming language for
microcomputers, incorporating as it does the best features
of both Basic, Logo and Fascal. You are about to learn a
programming language which offers, among other things, the
following features:

* COMAL (COMmon Algorithmic Language) extends Basic, giving
the language many of the powerful instructions of Fascal.

* COMAL retains the convenient operating environment of
Basic, and many COMAL statements will be familiar to
Rasic users.

COMAL for the Commodore &4 incorporates the easy to use
turtle graphics which has made Logo famous.

#* COMAL on the C—-44 offers useful guidance when errors
occur during program entryv. The language contains
structures for error handling during execution of
programs.

* The language encourages structured programming with
access to loop statements like:

REPEAT - UNTIL
WHILE - DO - ENDWHILE ’

flexible conditionals like

IF - THEN -~ ELIF - ELSE - ENDIF
CASE - OF - WHEN - OTHERWISE - ENDCASE .

and valuable building
blocks like procedures and
functions.

COMAL for the Commodore 64
gives the user full access
to the many special
facilities which have made
the Cé64 the most popular
microcomputer in its class:

high res color graphics
sprites

music

Joystick

paddl es

lightpen

and much more...

INTRODUCTION -10- COMAL FOR COMMODORE

THE ORIGINS OF COMAL

COMAL originated in response to the needs of computer users
in Denmark. Bsrge Christensen taught computer programming
in the early 1970°'s to students at a small college in
Tender, near the German-Danish border. He found that the
students often wrote terrible programs. They were hard to
read, hard to de-bug and hard to maintain. Dr. Christensen
consulted colleagues at the Institute of Computer Science at
the Danish University of Arhus. A researcher there by the
name of Benedict Lsfsted recommended that Christensen read
the book, Systematic Programming by Niklaus Wirth.

Many readers will recognize Niklaus Wirth (of the Swiss
Federal Institute of Technology in Zurich) as the father of
the Pascal programming language. Inspired by Wirth's clear
formulation of the principles of structured programming,
Christensen contacted Benedict Lsfsted. They agreed that
the Basic language offered the user a very convenient
operating environment. Basic was highly interactive. It
allowed direct execution of instructions from the keyvboard
and required neither prior definition of variables nor the
compilation process before a program could be run.

These features were ideal for a teaching environment. On
the other hand Basic lacked the ability to use long,
descriptive variable names and did not provide the elegant
syntax of Pascal. I+ Basic could be augmented with these
features, it would encourage the writing of clearer, better-
structured programs. These men went to work with their
colleagues to formulate requirements for the COMAL
programming language. The language was developed and
perfected during the 1970°s. COMAL grew to maturity
together with the personal microcomputer.

The current version of COMAL 80, which you now own, is
version 2.0. It is the product of standardization efforts
by an international committee composed of representatives
for users and industry. The COMAL kernel was agreed upon by
this group. It is composed of all COMAL instructions which
must be common to all versions of the COMAL language.
Special features, such as the use of graphics, music,
sprites and other special features of the Commodore &4, can
be added as special packages. More about that later!

COMAL AND COMMODORE

During the growth in popularity of the COMAL language, the
Danish distributors of Commodore computers have played a
leading role. With the advent of the inexpensive and
popular microcomputer, in particular the Commodore 64, a
group of young software enthusiasts, Jens Erik Jensen,
Mogens Kj®r, Helge Lassen and Lars Laursen formed a company,
UniComal ApS. In cooperation with the Danish distributor
and later with Commodore Data A/8, they developed COMAL

for the C-64.

When you have worked through the tutorial and written some
of your own programs, we hope you will agree that the

INTRDDUCTIDN -11- COMAL. FOR COMMODORE
efforts of these pioneers have not been in vain!

USING THIS TUTORIAL

If you examine the Table of Contents, you will see that this
manual begins with a chapter on setting up your computer and
plugging in your COMAL cartridge. Next comes an easy to
read, step-by-step introduction to COMAL programming. By
the time you get to Chapter I we will assume that you have
overcome the initial uncertainty (which everyone feels) when
beginning with a new computer language.

Chapter 3 presents a systematic description of the mast
commonly used COMAL instructions. Here vou will be
presented with features for serious programming and begin to
write your own COMAL programs.

Every programmer needs a good resource with information an
the precise meaning of the most important facilities which
are available in the language he uses. We have tried to
provide this essential information - with examples - in a
systematic form in Chapter 4, COMAL Overview. For those
readers who require even more complete information on the
definition of COMAL syntax, a comprehensive document is
available:

Len Lindsay, COMAL HANDBOOK, 1983.
Reston Fublishing, 11480 Sunset Hills Road
Reston, VA 22090 USA (70X) 437-8300

(also available from Prentice Hall in England or from
COMAL USERS GROUP, 5501 Groveland Terrace., Madison WI
53716 USA)

Note that the COMAL USERS GROUF also puts out a newsletter.
It contains many program examples and other useful
information and is highly recommended. It is always a big
advantage for the beginner to be in touch with more
experienced users.

The package concept is one of those features which make
COMAL for the Commodore 64 particularly powerful. wWhen a
special feature of your Commodore 64 (for example high
resolution graphics) is to be used in a program, a package
can be activated. When that feature is not needed, you

don ‘'t activate the package. (Your programs will run
slightly faster, because vou only add the extra orders vyou
need.) Turtle graphics is-available, if you want to use it.
Peripherals like joysticks, light pens, and paddles can be
accessed with special packages of orders which extend the
standard COMAL language. A complete description on the use
of these packages is presented in Chapter S.

Chapter 6 includes additional information on the handling of
files in COMAL. This information will be particularly
useful to those users who may wish to take advantage of
COMAL to write programs for record keeping and data handling
which require advanced facilities of the Commodare disk
drive.

INTRODUCTION -12- COMAL FOR COMMODORE

In Chapter 7 the use of peripheral equipment is covered.
This includes the control ports to which you can attach
joystick, paddles, or light pen, and the RS232 interface,
IEEE interface, parallel port and other cartridges. This
last item may be of particular interest to those users who
may want to develop their own turn—-key systems based on the
Commodore 64.

Those of you with 16 fingers may want to get inside COMAL,
learn about the use of Commodore memory and write your own
machine language programs. This is also possible using
COMAL. Read Chapter 8 to learn more about how this can be
done.

This Tutorial concludes with a collection of information
assembled in a series of Appendices. Here you will find the
Commodore ASCII character codes, color codes for graphics,
some tips on calculating with COMAL, use of the keyboard and
the COMAL screen editor, use of strings, error messages and
some useful programs and procedures. Finally there is an
Index to help you find information quickly when you need

it.

Throughout this tutorial you will encounter a number of
special symbols designed to emphasize important points or
warn you of special hazards:

‘ "Watch out! A mistake here could get
vou into trouble." Data can sometimes
/), = be lost, or you might ruin a program, if
/""“N you are not careful. If you're
é? connecting equipment, you will be warned

to turn off all power.

This symbol means, "Here is a good
idea which can save vou time and
effort!"

"Here is a useful procedure or
operation which should be followed to
make your programming easier.

"Here comes an experiment which will
be fun to try out!'™

INTRODUCTION -13- COMAL FOR COMMODORE

“This material could be a bit
difficult to master. FProcede
carefully'"

"Here is a summary which reviews
material previously covered in the
tutorial."

Work through the tutorial at your own pace. Be careful not
to jump too far ahead before you're ready. Later on you
should find this tutorial useful as a reference guide.

Happy programming!

Frank Bason & Leo Hsjsholt-FPoulsen
Silkeborg, Denmark
January 1985

-14-

Chapter 1 - -15- SETTING UP

CHAFTER 1 -

SETTING UF YOUR COMPUTER

YOUR COMPUTER AND ACCESSORIES

In order to use COMAL, vou will require the following
eguipment:

a Commodore 64 computer (or an SX-&4 transportable)
* the COMAL proagramming language cartridge
#*# a video monitor or a television (color or E/W)

It is possible to run COMAL programs without an external
storage medium — i.e. a disk drive or a tape unit. However,
as you will soon be writing programs which vou will want to
save, it will be essential to have one of the following:

a Datassette tape unit, or
* a Commodore 1541 disk drive.

Optional items of equipment for your Commodore 64 - nice to
have but not essential - include:

#* a Commodore 1526 printer or equivalent.
an extra Commodore 1541 disk drive

When you begin to write longer programs, a printer 1s very
useful to have. For serious programming you will need
listings of your programs and printouts of your data. An
extra disk drive is not an essential item. However, if you
use your computer a great deal, a second drive will make
copying programs and files a lot easier.

Figure 1.1 shows the jack connections on the rear and on the
right side of your Commodore 64. Refer to this diagram to
help connect the equipment you will be using.

Chapter 1 - -16- SETTING UP

:fi:
M@/ VAN

GAME POWER POWER CARTRIOGE CHANNEL TV AUDIONIDEO SERIAL CASSETTE USER
PORTS SWITCH SOCKET SLOT SELECTOR CONNECTOR CONNECTOR PORT INTERFACE PORT

Figure 1.1: Accessories and peripheral devices are attached .
to your Commodore via the connectors on the rear
and on the side of the computer.

Your COMAL cartridge may also be used with the Commodore
SX-64 portable version of the Commodore &4 computer. The
SX-64 is illustrated in Figure 1.2. This unit includes both
a caolor monitor and a disk drive unit. With a COMAL
cartridge and the SX-64 you can skip ahead to the section on
Installation of the COMAL Cartridge.

Figure 1.2: The Commodore SX-64 transportable computer is
completely compatible with the Commodore 64.
The SX-64 features a built-in color monitor and
disk drive.

If you have access to a 1541 disk drive, attach it to the
Commodore 64 via the 6—-pale jack on the back panel (the same
jack can be used for a printer).

Chapter 1 - -17- SETTING UP

If you have a printer as well as a disk drive, it can be
connected to the second jack at the rear of the drive. You
can use either one of the two connectors on the disk drive
for the computer and for the extension cable to the printer.

If you are using a Datassette tape unit, attach it to the
computer via the 12 pole edge connector (next to the User
Port). Note that an ordinary tape recorder cannot be used.

You will find detailed information on the use of these
accessories in your Commodore 64 manual, and in the disk
drive, Datassette and printer manuals.

A typical set-up will look like the illustration in Figure
1.3. The system shown includes a single disk drive, a
printer and a portable TV used as a display.

Figure 1.3: An ideal setup for learning and using the COMAL
programming language includes a Commodore 64
computer equipped with a printer, 1541 disk
drive and a color TV or monitor.

Don’t turn anything on yet. We will have to install the
COMAL cartridge before continuing!

INSTALLING YOUR COMAL CARTRIDGE

Your COMAL language cartridge is shown in Figure 1.4. It
must be installed in the cartridge slot at the rear of your
computer, if you use the Commodore &64. If you have an SX-
64, then the cartridge slot is on top of the machine on the
right hand side.

Chapter 1 - -18- SETTING UP

Figure 1.4: Your COMAL cartridge allows you to expand the
power of your Commodore 64 without using
additional memory. It fits into the cartridge
slot at the rear of the Commodore 64 (or the top
of an SX-64).

Take a closer look at your COMAL cartridge. Note that there
is a row of contacts on the edge of the printed circuit
board which protrudes from the cartridge. There is a square
label on the front of the cartridge. This must face upward
when you insert the COMAL cartridge horizontally into the
cartridge slot of the Commodore 64. (The label will be
towards the front, when you insert the cartridge into the
cartridge slot of an SX-64.)

WARNING: Never insert a cartridge into your

’,P Commodore &4 or SX-64 (and never remove it) with
/,/’;J the power turned on. The power to all peripherals
must be OFF when inserting or removing a

cartridge!

When you are sure that the cartridge edge connector is
properly aligned with the slot in the computer, push the
cartridge firmly into place using a gentle rocking motion.

Chapter 1 - -19- SETTING UP

CONNECTING THE TV OR MONITOR

4 M

UHF-
INPUT L

L

POWER SUPPLY

Figure 1.5: The C-64 can be connected to the UHF input of a
standard TV receiver.

Your Commodore 64 is supplied with the following display
outputs:

color monitor signals (audio, composite video and
luminance)

a modul ated standard (UHF channel 3I6) color TV signal
The output jacks for these signals are shown in Figure 1.1.

Because the SX-64 has its own color monitor. the following
discussion will only apply to the Commodore &4. If you will
be using the SX-64, you can proceed directly to the next
section on running the demonstration program.

A color monitor is the most desirable choice of display for
your Commodore 64, because it will give you the sharpest
image. I¥ you have a Commodore monitor, just attach one end
of the connector cable supplied with the monitor to the 8-
pole connector on the rear panel of the Commodore 64. Fluag
the connectors at the other end of the cable into the three
phono jacks on the rear panel of the monitor. If you will
be using a different type of monitor, your dealer will be
able to assist you to find the proper cable.

A TV connector cable is supplied with your Commodore 64 for
those users who will be using a color (or B/W) television
set for their display. If you will be using a television
set, insert the phono plug end of the cable into the phono
jack on the rear panel of your Commodore 64, and plug the
other end into the antenna input jack on your television
receiver.

You must also connect the Commodore transformer to your
computer. The cable from the power supply is inserted on
the right hand side of your computer (towards the rear,
right next to the power switch).

When all connections have been properly made and all

Chapter 1 - -20- SETTING UP

shipping protection has been removed from your disk drive
and printer, you are ready to turn on your equipment. Turn
peripherals on first, then turn on the Commodore 64. To do
this both the switch on the power supply as well as the
switch on the right side of the computer must be turned on.

Tune the UHF channel selector of your color TV to find the
signal. Adjust the TV receiver for the sharpest possible
picture. (There is also a fine-tuning screw next to the
antenna jack on the rear panel of the Commodore 64. If you
can adjust the TV for a good picture, then adjustment of
this screw will not be necessary.)

If all has gone well, the following message should be
present on your display screen: .

$$$ Commodore—&4 COMAL 80 rev 2.01 $$$
(C) 1984 by UniComal & Commodore
30714 bytes free.

and the blinking cursor will appear 3 lines below the
message. If the sound is turned up on your TV or monitor,
vyou will also hear a signal, indicating that COMAL is ready
to go.

Should any problem arise at this point, turn off your
equipment at once. Check the setup procedure once again.
Be sure that the COMAL cartridge is inserted correctly and
is firmly seated in its socket. Check all cables and be
sure that there is power at the electrical socket. Check
your Commodore &4 Instruction Manual. I¥f problems persist,
contact your Commodore dealer for help.

THE COMMODORE KEYBOARD

I¥f you are not familiar with the Commodore kevboard, then

type anvthing at all, just to get used to it. Try out the
<SHIFT> and <SHIFT LOCK> keys. If you should make a

typing error, be sure that the <SHIFT LOCK> key is

disengaged., then press the "insert or delete key" marked
<INBT/DEL> at the upper right hand side of the keyboard to ‘
delete the character just to the left of the cursor.

You can also move the cursor around the screen using the
cursor control keys (next to the right hand <SHIFT> key).
If the <BHIFT> key is depressed and you press <INST/DEL>
then extra spaces appear, allowing you to make insertions.
Try out the <CLR/HOME)> key with and without the <SHIFT>
key engaged to learn what it does.

If you have a black/white TV receiver or monitor, hold down
the <CTRL> key at the left of the keyboard. FPress the
letter W at the same time. Doing this will change the
screen and cursor colors, making the screen easier for you
to read. If you are using a color TV or monitor, try
<CTRL> V for a dark blue background and white text.

More on color changes later on!

You might try pressing the Commodore key <C=> (on the
left hand side of the keyboard) and the <SHIFT> key at

Chapter 1 - =21- SETTING UP

the same time. When you do this you will "toggle" the
display back and forth between capitals and small letters
and capitals and graphics. Be sure you have selected
capitals and small letters.

Check: Press the keys <A>» <8> <KD
The computer prints a s d

FPress the same keys
again while holding
down <SHIFT)>.

The computer prints A 8 D

For the time being, the features described here will be
adequate for proceeding with this tutorial. You will learn
about additional facilities, as we go along. A complete
description of the keyboard and the many features of the
COMAL screen editor . is available in Appendix D.

RUNNING THE DEMONSTRATION PROGRAM

If your Datassette tape storage unit or vour disk drive is
connected properly, you are ready to run programs. Flease
read the instructions which apply to vou:

Using the Datassette:

O

L A I¥ you are using a Datassette unit for program storage,

insert the COMAL Demonstration Tape and type:
load "cs:idemoprogram"
then press the key marked <RETURN»>.
Note that if you intend to use the Datassette from now
on, you can make it the default unit by typing in the

command:

unit "cs:" <RETURN>

Note that a word like RETURN printed within
brackets < > means to press the key with
that name instead of spelling out the entire
word on the keyboard.

The C-64 responds by printing press play on tape on
the screen. Be sure that the tape has been spooled
back to the beginning then start the tape by pressing
the PLAY button on the Datassette. The computer
responds:

ok
searching for demoprogram

The screen will go blank for a moment. When the program has
been located, the following message will be displayed:

Chapter 1 - -n- SETTING UP

found demoprogram

After a minute or so the cursor will begin blinking
again, indicating that the loading operation is
completed. (You can interrupt the read-in by pressing
the Commdore key <C=>.) You are now ready to run the
demonstration program.

If you have difficulty loading the demonstration
program, you can try the following:

* Turn off the power tao the computer and the
Datassette, and check again that the tape recorder
is connected correctly. Is the cable intact and
plugged all the way in?

Be sure you are using the correct tape and that it
has been spooled all the way back to the beginning
(all the tape should be on the left hand reel).

#* When vou have checked the above points, apply power
to start COMAL up again. Then repeat the read-in
procedure.

If you still have difficulty, contact you dealer for
assistance.

Using a Disk Drive:

I¥ you have a disk drive, insert the COMAL
Demonstration Diskette. The label should face upward
and be on the edge facing you when the diskette is
inserted (see Figure 1.6).

z
w
m
.l
=1
z
WRITE 3
PROTECT o
NOTCH 2
3 <
= m
[——1

WHEN COVERED, DISKETTE
CONTENTS CANNOT BE
AL TERED

Figure 1.6: Handle the diskette carefully. Open the
drive door, and insert the diskette into
the drive as shown. Slowly push the
diskette all the way into the slot. When
the diskette is in place, close the drive
door until you hear it click into place.

Now type:

Chapter 1 - -23- SETTING UP

load "demoprogram*

and press <RETURN>. This order will transfer a copy
of the program from the diskette to your computer’s
memory. The activity indicator on the drive should
light up, and the drive will operate for a few seconds.

Whichever means you have used to load the demonstration
program, you can now type run and press <RETURN>. Then
sit back, relax and enjoy the show! Be sure vour TV or
monitor sound volume is turned up slightly so music and
sound effects can be heard.

You can interrupt the program if you wish bv pressing the
<RUN/STOP> key.

;mb‘ Be sure to remove the demo diskette and store it
= ? r in a safe place before proceding with the next

section of this chapter.

. If you follow the tutorial i1in the coming chapters, you
will soon be able to adapt the powerful features of
yaur Commodore 64 with the COMAL programming language -—
high resolution color graphics, sprites, sound and more
— for use in your own programs.

PREPARING A STORABE DISKETTE

Before we proceed to the introductory tutorial in
Chapter 2, let’'s get a blank diskette ready for storing
your programs. This process is called formatting the
diskette. Datassette users won’'t need to format tapes
- that is not necessary. But tape users may want to
read this section anyway to learn more about diskettes
and how they are used.

You should interrupt the COMAL demo program so that vou
can enter commands from the keyboard. Press

Chapter 1 - -24- SETTING UP

<RUN/STOP>, if you haven't already done so.

Be sure that the demo—-diskette has been removed and
stored away.

* Take a diskette which is unused (or which can be
erased). Be sure that the write protection notch
1is uncovered (see Figure 1.6). Covering this notch
with a piece of tape prevents formatting or changing
the contents of the disk by saving new files.

Insert the diskette correctly into the disk drive,
and close the drive door, so it clicks into place.

Now type the following order:
pass "nOimy diskette,XX"

When you press <RETURN> the disk drive will begin to
operate and continue for about 2 minutes. The disk
activity light will go out, when the formatting process
is finished. You can now use this diskette for storing
your programs and files.

A few remarks about the command which you just
issued from the keyboard: pass indicates to
COMAL that the subsequent text should be passed to
the disk drive. The letter n is the code for
formatting a new diskette, and 0 means that it
should be done on the first of your drives (in
case you have more than one). You are free to
choose the <{diskette name> - up tec 16 char-
acters. This name (my diskette in this example)
will appear as a heading whenever you catalogue
your disk (more about this in Chapter 2). The
last entry XX may be any two characters. It
serves as a diskette identifier code.

REVIEW

Your equipment should now be set up and

ready to use. You have mounted the

COMAL cartridge, powered up, and

familiarized yourself with the keyboard.

You have also read in a demonstration

program and run it to check out your a
system.

The program has given you a preview of the impressive
potential of this programming language. Finally, if you
will be using a disk drive, you have formatted a diskette
which can be used for storage of programs as you work
through the tutorial chapters which follow.

-25-

CHAFPTER 2 —

LET '8 GET STARTED'!

WHY LEARN TO PROGRAM?

The computer is a tool for
handling information.

Properly programmed, your
Commodore 64 can do
calculations, manipulate text,
sort data, collect data,
control machines, create
images, make sound, and much
more. The heart of the
computer is the now well-known
component called the
microprocessor. If it is
connected to sufficient memory
and a means of getting data in
and reading data out, we have

a microcomputer.

The elementary operations which the microprocessor performs
on individial bytes of data are very simple. Just adding
two numbers like 2542 and 9320 together may require the
microcomputer to perform hundreds of simple operations. Yet
because each operation only takes a millionth of a second,
the job is done in a thousandth of a second!

When you program a computer, it is possible (but by no means
necessary!) to work with the fundamental binary numbers used
by the processor. Your Commodore 64 computer uses a

6510 chip. You can use assembler language if you want to
program it directly. More on this subject is available in
Chapter 8.

To make life easier for themselves, programmers have evolved
higher level languages which allow the use of very simple
orders to accomplish a large number of elementary processor
operations. A statement like:

print 2543 + 9320
is an example of a high level order.

This statement can be thought of as a procedure with two
inputs. The procedure causes the two numbers to be added
together and printed on an output device, say a display
screen.

An ideal computer language allows the programmer to group
sets of orders together to perform more complex tasks and to
give them a new name. For example, it would be nice to have
an order like

interest (12535,8)

Chapter 2 - -26- GETTING STARTED

which could compute the interest accumulated by an
investment of 12535 dollars (or pounds) during an eight year
period. While everyone using a computer language will want
to add numbers, not everyone will require this particular
procedure. So the ideal language will include a large
number of useful standard procedures and make it easy for
the programmer to construct his own special ones.

COMAL is such a language. It is a procedure oriented
language which includes many clear and useful elementary
orders for custom building your own procedures. Your
procedures may be so useful that they themselves can be used
again in other programs or in other procedures which handle
larger tasks. The COMAL operating enviroment makes this
easy and convenient to do. When you have learned the COMAL
language, you will have a very powerful tool indeed to help
you solve a wide range of problems.

Learning a powerful programming language is an adventure.
Adventures can be fun and exciting. But no adventure worthy
of the name is without challenges and pitfalls. The ability
to write your own programs will come only with practice,
persistence, curicusity and patience. You have begun an
adventure and must be prepared to go through periods of
trial and testing before you become a seasoned programmer.

Programming is not just for solving serious professional
problems. It can be fun, too! Just ask any programmer
after a late evening getting his own game program to work.
The thrill of bringing a program to life after carefully
building it up out of its component parts can be compared ta
other highly creative activities. (Don ‘'t ask the programmer
about this before he ar she has found the last bug and
gotten the program to run!) Programming can be used for so
many purposes that it is impossible to provide a complete
list. Here are just a few; you can probably think of many
more. Properly programmed, your computer can:

play a game with graphics to help children learn

help teach music by showing notes and playing sounds
prepare an expense summary and compare it with your budget
keep sales records for a small business

record and display weather records

make measurements in the lab or on a production line
prepare an income tax return and print it out

help plan and administer a construction project

compute the heat losses from a building

provide motivating teaching aids to help students learn

ok ok ok ok ok X K K *

A great deal of programming today has to do with games.
Since the earliest days of programming, programmers have
loved to use their machines for "play". (Rumor has it that
in the late 1960°'s Btar Trek was the most popular program
at many university computing centers.) When computer time
cost hundreds of dollars an hour, it was a luxury few could
enjoy. Today microcomputer time costs only a few cents per
day, so game programs have proliferated as never before. If
you want to play computer games or write some yourself, then
welcome to COMAL. It is a fast language with excellent
color graphics, sprites and sound effects. The
possibilities for game programs are endless.

Chapter 2 - -27- GETTING STARTED

0f the many program types, perhaps simulations are the

most fascinating. VYou can become the pilot of a World War I
fighter plane in hot pursuit of enemy planes. Change the
program parameters, and you are piloting a 747 jet to a
landing at Paris, London or New York. Or simulate Charles
Lindberg’s aircraft, the Spirit of Saint Louis on the first
non-stop New York to Paris flight. Even the flight of the
Space Shuttle or the Concorde can be effectively simulated
using a microcomputer. With color graphics and a joystick,
such simulations can be strikingly realistic.

But simulations can be much more than this. They can be
effective tools for learning - both for students and for
professionals. With simulation programs you can, among many
other possibilities, examine:

the finmancial decisions of a business

the operation of a solar heating system,

the operation of a nuclear reactor,

the motion of charged atomic particles in electric and
magnetic fields,

the orbiting of a satellite,

#* or the flight of a rocket.

* % % X

*

Again, for those who undertake the adventure of learning to
program the possibilities are almost unlimited. Limited in
fact only by your imagination and your ability to use the
tools which you now own: your Commodore 64 computer and the
COMAL programming language. Let’'s learn more about how to
use them!

DIRECT EXECUTION OF COMAL COMMANDS

Your computer should have the COMAL cartridge installed and
should be turned on. When you do this the following message
should appear on the screen:

$$% Commodore-64 COMAL 80 rev 2.01 $$$
(C) 1984 by UniComal & Commodore
30714 bytes free.

If this message is on your screen, then you are ready to
proceed...

For a starter, try pressing <CTRL>-V to change the screen
colors to a pleasing blue with a white cursor and text. If
you're using a B/W display, try <CTRL>-W for a gray
background and black text.

Chapter 2 - -28- GETTING STARTED

IF YOU MAKE A TYPING ERROR: You can delete the
character just to the left of the cursor by pressing
the <INST/DEL)> key at the upper right of your
keyboard. (The <SHIFT LOCK> key must not be
depressed when you do this!) For a complete
description of the use of the keyboard and a run-down
on the many editing facilities available with COMAL,
see Appendix D.

The simplest way to start using COMAL is to type some direct
orders from the keyboard. Try typing:

print "hello" .

When you press <RETURN> the word hello should be printed
on the next line on your display screen.

It is important to understand that the computer
first processes your direct orders when you have
pressed <RETURN>, giving in effect an order to
process the current command line.

Note that orders may be entered in either lower case or
upper case. (You toggle the display screen between upper
case/graphics and lower case/upper case by pressing the
<C=> and the <BHIFT> keys at the same time.)

We will assume in this tutorial, unless otherwise
stated, that the lower case/upper case mode has
been selected.

You can also do calculations
using direct orders. Try the
following order, being careful
NOT to press the <SHIFT> key
when typing the + sign:

print 217+3035

After pressing <RETURN> you
will see the computer print
the number 3522 on the next

line.

You can also mix text and
numbers in a PRINT order as in
the following example:

print "sum =" ,217+303%
After you have entered the

order by pressing <RETURN>
the computer will print:

sum =522

Chapter 2 - -29- GETTING STARTED

Notice that if you give no other instructions, the text and
the number will not be separated by any spaces when they are
printed. This can be changed by using a semicolon j.

If a semicolon 1s used as a separator, then a blank space
will be printed to the right of each text segment or number.

You can also arrange the placement of your text and numbers
on the screen using the ZONE order. Type:

zone 10

We want to repeat the same order used earlier. For a work-
saver try this little trick: Depress the <(SHIFT> key and
press the cursor up-down key (just below <RETURN>). Move
the cursor up the screen until it is blinking on the line:

print “sum =" ,217+3035

Release the <SHIFT> key and press <RETURN>. Your order
will be executed again. But this time there will be 10
spaces between the start of the text to the first digit of
the number. The ZONE order is used to specify the width of
the printing columns when text or numbers are separated by
commas. The default condition ZONE O is set when vou

start up your system.

You may want to do some experimenting with ZONE and FRINT

orders before moving on in this tutorial. This is easy to
do by using the cursor keys to move up and down on the
screen. Nctice that you needn't be at the end of a line on

the screen for the order to be executed. Notice aiso that
if extraneous text is on the same line, it will be
interpreted together with the order you want to execute, and
an error message will result. You can either delete the
extra text (KCTRL>-K will delete everything from the

cursor position to the end of the line), or vyou can write
your order on an empty line to avoid this error. You can
also completely erase the screen by executing the order PAGE
or by holding down the <SHIFT> key while pressing the
<CLEAR/HOME> key.

COMAL has many other facilities for handling text and
numbers. We'll be getting into these in much greater depth
later on. Before we proceed to write programs, let 's take a
quick look at how to use the high-resolution graphics
screen.

A QUICK LOOK AT TURTLE GRAPHICS

Your Commodore 64 is almost ready to do turtle graphics as
soon as you power up. Just press <£f3)> to enhance COMAL

with the orders in the turtle graphics package. When you
press <f3)> the words USBE turtle will appear on the

screen. Then the appearance of your screen will change. A
small arrowhead will appear in the middle of the screen, and
the words USE turtle will now be at the top of the screen
with the cursor blinking on the next line. You are now
looking at the split screen with four lines of text

visible at the top. FPressing <f1> will bring you back to

Chapter 2 - -30- GETTING STARTED

the text screen. If you depress <£3> you will be

looking at the graphics screen. The entire screen can be
used for graphics, but you will not be able to see your
orders as you type them in. Now press <f3)> again to get
back to the split screen.

Notice that by means of the USE order you have extended
the COMAL language with a set of extra orders, called a
package. As you will learn, many other packages are
available in your COMAL cartridge. Much more about
packages in Chapter 5!

If you should want to remove the COMAL extensions
invoked by the order USE, you can type:

discard <RETURN>

This will remove ALL packages from program memory.

{You cannot remove packages selectively.} Typing new
will delete your program and deactivate all packages as
well.

Let ‘s see how the turtle (also called the graphics

cursor or the pen) represented by the arrowhead can move
around the screen and draw. We 1l use direct commands now
but we will write a complete program later on in this
tutorial.

Turtle graphics orders are so straigtforward that you can
learn how they work just by trying them out. Try typing:

forward (50) <RETURN>
right (90) <RETURN>

Type the same orders again. You should have a sguare
halfway finished on your screen. Use these turtle graphics
commands again as needed to complete the square. The turtle
should end up pointing upwards again.

Now try the following orders (remembering to press
<RETURN> after each) and observe what effect they have on
the turtle and the drawing:

penup

back (50)
pendown
forward (50)

Notice that if yvour experimentation brings you too far in

any direction, the turtle will show up at the other side of
the screen.

Type home to bring the turtle back to the center again,
then type clearscreen to erase the screen. You can also
type homesjcs on one line to accomplish this.

Now try:

laft (90)

Chapter 2 - -31- BETTING STARTED

forward (S0}
setheading (45)
farward (70)

What does each order do? Do some experimenting yourself to
understand how to move the turtle and make 1t draw. You
might want to try the following sequence:

for side=1 to 4 do forward(50)jleft(90)
This example illustrates a unique feature of COMAL:

A sequence of instructions separated by a semicolon can be
executed directly from the keyboard!

To illustrate how COMAL actively assists you as
you type in instructions (if you haven 't already
noticed this), try making intentional errors while
typing in the previous command:

type: faor <RETURN>

Not the computer s response.

type: for = <RETURN>
Note the response.

type: for i = <RETURN>
Note response, etc.
Another aid provided by Commodore COMAL 1is that
the error messages are removed from the screen as

soon as you have corrected the error and pressed
<RETURN> or moved the cursor to another line.

Note what each of the following orders does:

hideturtle
showturtle

If you have a color display you can also experiment with

background (<number >)
pencolor (<number>)

where <number)> is a color code. See Appendix B for a
list of the graphics color codes.

The table which follows shows turtle graphics orders with a
short form for each and a brief description. When you give
the order use turtle from the keyboard or in a program,

all these orders as well as all the commands i1n the
graphics package become available for you to use.

Chapter 2 - -32- BETTING STARTED

TURTLE 8HORT DESCRIPTION

ORDER FORM

back (L) bk (L) move L units backwards
forward(L) f£d (L) move L units forward
background (C) bg (C) background color set ta C
clearscreen cs clears the graphics screen
home turtle to screen center
hideturtle ht conceals the drawing cursor
showturtle st shaws the drawing cursor
pencolor (C) pc(C) sets the drawing color to C
pendown pd cursor leaves a trace

penup pu cursor leaves no trace

left (D) 1t (D) cursor turns [degrees
right (D) rt (D) cursor turns D degrees right
setheading (H) seth (H) cursor points to heading H

H=0 is up, 90 is right,etc.

Make careful note of these orders. We will be using them
again in the program examples which follow.

WHAT I8 A PROBRAM?

In order for a machine or a computer to do a job, it has to
be "told" how to do it. In contrast to a human being who
can base his actions on skills and experience, the machine
must be given very precise instructions. Nothing must be
taken for granted. In practice this means writing down a
list of orders, each of which can be interpreted by the
computer, describing in detail the job to be performed.

This could be a very tedious task indeed, if we were obliged
to give details on how to, say, "add two numbers together"
each time it had to be done. This is of course not
necessary. When the computer has been instructed on how to
interpret the order PRINT x + y where x and y are any

pair of numbers, it can add any two numbers at all (within
certain very wide limits - see Appendix C). The same is
true of other operations we expect the computer to do. A
few of the most commonly used operations:

adding, subtracting, multiplying and dividing numbers
printing numbers and text

drawing a line from point to point

making a choice of two paths to follow

repeating operations a certain number of times,

selecting different tasks when certain conditions are met,

* ok ok K kK X

are defined in a computer language which is relatively

easy for human operators to use. COMAL is special, because
this language is regarded by many as a particularly clear,
powerful and flexible language.

Let’'s try writing a COMAL program to illustrate some of
these ideas.

Suppose we want to draw a square on the display screen of
the computer. Even with no prior knowledge of programming,

Chapter 2 - - 33 BETTING STARTED

we could write down a list of the tasks to be accomplished
using everyday Englishs:

* Get the computer ready to use the screen for graphics.

#* Describe how far to move and how much to turn to draw a
side of the square.

* Repeat the above step four times to complete the square.

Being a bit more specific, we could express this by writing
the following instructions. We intend to draw a square 75
"units" on a side starting at the center of the screen. We
want the sides of the square to be parallel with the edges
of the screen:

* Set the turtle graphics mode.

* Move the pen forward 75 units, and turn right 90 degrees.
* Move forward 75 units again, and turn right 90 degrees.

* Move forward 75, and turn right 90.

* Move forward 75: turn right 0.

When all this is accomplished, we should have a square on
the screen with the drawing cursor back in 1ts original
position. It i1s usually good programming practice to leave
the turtle at the end of an instruction sequence in the same
state as 1t was when the sequence began. This idea is
particularly important when you begin to write COMAL
procedures. It makes things easier when you want to build a
program up using “"modules" or “building blocks" which must
work together to do a job.

Let 's see how the actual COMAL program would look. Note
that it may not be clear at once why certain things are
done. As you progress with this tutorial you will be
presented with more thorough explanations to reveal most of
these mysteries!

First be sure you are using the text screen (press <f1)>

i+ you have been using graphics). Be sure that no other
COMAL program is in memory (type new <RETURN>). You will
probably want to clear the screen and move the cursor to the
top left side of the screen. Press the <(SHIFT> key and

the <CLR/HOME> key at the same time to do this.

If you have trouble getting your computer into
text mode with the screen cleared, there is one
sure—-fire way of getting things straightened out.
Depress the <RUN/STOP> key and hold it down

while pressing the (RESTORE> key. This action
will initiate things without losing your program.

Chapter 2 - 3= BETTING STARTED

0Of course you can always turn off the computer
power switch, wait a few seconds, and turn it on
again. You should be back in COMAL with the
greeting message on the screen, ready to go, but
this solution will erase your program.

When you prepare a program, the instructions you prepare are
not executed right away. They are stored in memory and only
executed when the program is run. You will find that line
numbers are not important in COMAL except as an aid when
entering and editing a program. In fact you will be able to
caompletely ignore line numbers when your program is
completed.

To make program entry easier, press <f4) to get automatic
line numbering. (You get this by pressing <SHIFT> and the
<¥3> key.) COMAL responds with AUTO. Press <RETURN)>,

and automatic line numbering will be engaged.

The computer should be ready to accept instruction number
0010. Note that i1t is usually wisest to number
instructions with intervals of 10, so that there will be
room to make insertions in case you discover later on that
an instruction has been left out.

To get rid of automatic line numbering or to
change it, just press <RUN STOP> instead of
entering a new line. If you then type auto or
press <f4)> again, you will be back to automatic
numbering at the line you left. You can add one
or two numbers to the AUTO command to change the
starting line and the line number interval. I+
you type auto,5 <RETURN> the line number

interval will be 5 (the line numbers will continue
from where you were). If you type auto 100,35,
then line numbering will start at line 100 with a
line number interval of 5.

Recalling our list of plain English tasks to be performed, ’
we can start with the COMAL orders which must be used to
prepare the screen for turtle graphics:

0010 use turtle

Fress <RETURN> after each order line (although multiple
orders on the same line separated by 3 are sometimes
allowed, usually only one order per line is recommended).

As you enter program lines, COMAL prints the next program
line number, ready for your next instruction. Type as
follows to continue with our sample program. Use the cursor
keys and the (INST/DEL)> key as needed to correct any

typing errars. Feel free to use the abbreviated orders if
you prefer.

Chapter 2 - -35- GETTING STARTED

0020 splitscreen

0030 forward(73)

0040 right(90)

00350 forward(73)

0060 right(90)

0070 forward(7%)

0080 right (90)

0090 forward(75)

0100 right(90)

0110 while key$=chr$(0) do null

After your experience with the turtle in the last section
these orders should be easy to understand except perhaps for
the order in line number 110. We want to keep the graphics
screen visible after drawing the square. When a COMAL
program ends while using graphics, control returns
automatically to the semi—graphics screen, so that you can
see your orders as you type. Line 110 makes the graphics
screen remain completely visible until you press any key.
When key$ no longer equals the default value chrs$(0),

the program will continue beyong line 110. When the program
proceeds beyond this line, there are no more instructions,
so the program will stop.

Try running the program. First press <RUN/STOP> to get
out of AUTO mode. Then type in run. When vou press
<RETURN>, your program will be carried out step by step.
This process 1s called executing a program.

You can save a little effort if you want by
pressing <f7» instead of typing in run.

Fress <(f1> to return to the text screen. Change the

program and run it again to see what happens. Try drfferent
lengths and different angles to make other figures. When
you have finished experimenting, we 11 go on to look at some
additional COMAL orders.

REPEATING INSTRUCTIONS

After working with the sample program to draw the square -
and perhaps after trying to draw pentagons and octagons -
you may wish it were possible to repeat a given set of
instructions which you want to use repeatedly. It is indeed
possible. This programming structure is called a

loop block and 1s one of the most i1mportant concepts in
programming.

There is an easier way to draw a square. Erase program
memory (using new <RETURN>) and try the following program:

0010 // program: SQUARE
0020 // by: <your name>
0030 use turtle

0040 splitscreen

0050 for sides:=1 to 4 do

Chapter 2 - -36- GETTING STARTED

0060 forward(73)

0070 right (90)

0080 endfor

0090 while key$=chr$(0) do null
0100 end // of program

Fress <RUN/STOP> to stop auto-numbering then write list
to do a listing of your program. It should look like this:

0010 // program: SQUARE

0020 // byt <your name>

0030 USE turtle

0040 splitscreen

0050 FOR sidess= 1 TD 4 DO

0060 forward (75)

0070 right (90) .
0080 ENDFOR sides

0090 WHILE KEY$=CHR$(O) DO NULL

0100 END // of program

As you can see,. it is possible to add titles, bylines and
other comments to your programs. Just precede them with a
//. Such statements are not executed, but they will

appear in your listings. They can also be added after COMAL
orders in a program line, as in line 100. Notice how COMAL
indents lines &60-70 in the listing to make the structure of
the program clearer. The FOR-ENDFOR construction (50-80)
causes lines &60-70 to be repeated four times.

kKeywords are capitalized in the second listing. Notice also
that in the second listing the variable sides is
automatically included after ENDFOR in line 80. This will
be done after the program has been RUN or SCANned. To SCAN
your program just press <f8> or issue the direct order
scan. (This process will also check through vour program
for errors in structure and define any procedures in the
program.)

You have seen how COMAL edits your programs to
provide a clearer listing. From now on in this
tutorial, we will show programs in their final,
edited form. It will, however, probably be
easiest for you to continue typing the programs in
lower case. Let COMAL do the extra work of
providing a nice listing for you!

Try running the program square. Fress any key to stop the
program, then press <f1> to return to the full text
screen. Now let’'s try some changes to see what happens.
Can you alter the program to cause it to draw a hexagon (6
sides) or an octagon (8 sides)? When orders are to be
repeated many times, the FOR-ENDFOR construction becomes
particularly useful. Can you adapt the program, so the
turtle draws a figure which is close to being a circle?

Chapter 2 - -37- BGETTING STARTED

’

You may have noticed that in order to compiete a
polygon and end up facing in the same direction as
when 1t started, the turtle must turn a total of
360 degrees. (Those of you who are familiar with
the computer language Logo, which also uses turtle
graphics, may recognize this principle as the
Total Turtle Trip Theorem.) So to draw a
regular polygon with number sides, the turtle
must turn 360/number degrees at each vertex.

It 1s of course possible to adapt this program so that it
will draw a polygon with any number ot sides we choose. To
do this we will have to indicate the number of sides desired
and the length of a side by means of INPUT statements.

Erase program memory (new <RETURN>), ana try entering the
following program:

0010 // program:s polygon

0020 // by: <your name>

0030 PAGE // clear the screen

0040 INPUT "How many sides? ": number
0050 INPUT "Length of each? “: length
0060 USE turtle

0070 splitscreen

0080 FOR sides:=1 TO number DO

0090 forward (length)

0100 right (360/number)

0110 ENDFOR sides

0120 WHILE KEY$=CHR$(0) DO NULL

0130 END // of program

Note that the program is shown here as it would be listed.
You can enter the program in lower case and without
indentation, 1f yvou wish. Run i1t to be sure it works as
expected.

COMAL. PROCEDURES

Frocedures are modules or building blocks which you can
create to make your programming easier. There 1s a line 1in
the program polygon which lends itself to being redone as

a procedure. You can make your program easier to read and
easi1er to understand by creating a procedure. This
technique becomes very 1mportant when you begin to write
longer programs'

Notice that the use of line numbers in COMAL is
quite different from their use in other line-
oriented languages such as BASIC. In this respect
COMAL is much maore akin to Pascal. Use the RENUM
order often to "clean up" your program. Because
no COMAL order ever retfers to a line number, you
can pay much less attention to them. In general
it is probably best to group your program
instructions into three sections:

Chapter 2 - -38- GETTING STARTED

beginning: program name, date, comments,
dimensioning of variables,
setup of packages, etc.

middle: the main program sequence
consisting mainly of
procedure calls

end: collection of your procedures
called by the main program

Take a look at your program. Consider statement number 120:
0120 WHILE KEY$=CHR$(0) DO NULL " .

used here as in the program square to keep the graphics
screen visible until any key is pressed. It could be made
1nto a procedure to keep it from cluttering up the main
program:

0140

0150 PROC wait'key

0160 WHILE KEY$=CHR$(0O) DO NULL
0170 ENDPROC wait 'kay

0180

Notice here that we have called the procedure wait key.
The apostrophe ° is needed to bind the two words
describing the procedure together into one continuous string

of characters with no blanks. If this is not done, COMAL ‘
"';. -
:

will only interpret the letters before the first blank as

the procedure name, and an error message will result when

COMAL tries to execute the procedure.

Add this procedure to your program, and replace line 120 by: ‘

0120 wait ' key

Now list the procedure (a little trick: use <f6> <RETURN>
to do this). Notice the following features of the COMAL
listing:

* The LIST order indents instructions in the procedure,
setting the procedure apart and making the program
listing easier to read.

* The procedure must be terminated by ENDFROC. If the
program has been SCANned or RUN, then COMAL includes the
name of the procedure in the ENDFROC instruction, if
you have not already done so.

* The empty statements in lines 140 and 180 are not
required. They are included to cause this procedure to
be separated more clearly from others when the program is
listed.

The program polygon could be improved further by creating
a procedure out of the statements which actually draw the

Chapter 2 - -39- GETTINB STARTED

polygon.
The polygon procedure might be typed i1n like this:

1200 pioc polygon (number,length)
1210 for sidest=i to number
1220 forward(length)

1230 right (360/number)

1240 endfor

1230 endproc

1260

When you SCAN and then LIST the procedure, 1t snould appear
as follows:

. 1200 PROC polygon(number,length)
1210 FOR sides:i=1 to number
1220 forward (length)
1230 right (360/number)

1240 ENDFOR sides
1250 ENDPROC polygon
1260

There are a few things you should notice about the listing:

The procedure name is foilowed by two variable names
(number ,l1ength), indicating that the procedure will
require values for the number of sides ana the length
of each side. A protedure need not have any variable
list after i1ts name (like the procedure wait 'key). It
can have one, two or more indicated. as shown here.

Again we must call the procedure before i1t can be
executed. The original program must be changed, so 1t looks
like this when RENUMbered and LISTed:

0010 // program: polygon
0020 // by: <your name>
0030 PAGE

0040 USE turtle

0050 splitscreen

0060 INPUT "How many sides? ": number
' 0065 INPUT “Length of each? ": length
0070

0080 // MAIN PROGRAM

0090 polygon (number,length)

0100 wait 'key

0110 END // of MAIN PROGRAM
0120

0130 PROC wait 'key

0140 WHILE KEY$=CHR$(0) DO NULL
0150 ENDPROC wait 'key

0160

0170 PROC polygon(number ,length)
0180 FOR sides:i=1 to number
0190 forward (length)

0200 right (360/number)

0210 ENDFOR sides

0220 ENDPROC polygon

0230

Chapter 2 - -40~ GETTING STARTED

As already mentioned, you can check your program before
RUNning or LISTing it by using the SCAN order. (Type scan
<RETURN> or just press <£f8>). When you do this, COMAL

will check the program structure and "learn" the procedures
you have defined. If you subsequently write a defined
procedure name as a direct order, it will be executed. This
allows you to check your procedures one by one. This is a
real advantage when "debugging" a program!

A few more remarks are in order: We have used the general
structure described earlier with a distinct beginning,
middle and end of the program. The input data is

defined in lines 60 and 65, the main program is just a few
lines long (80-110), and the procedures are placed at the
end of the program.

In line 920 the procedure polygon is called. The two
numbers in parentheses following the procedure name are the
two variables which the procedure needs to draw the polygon.
They need not have the same names as the variable names in
the procedure, although they happen to in this case. It is
important, however, that they are in the same order.

A remark is also in order about the line:

0190 END // of MAIN PROGRAM

This line is not necessary to stop the program. A COMAL
praogram will stop when there are no more lines to execute in
the main program sequence. It is included here to make the
structure of the main program sequence clearer. This is
largely a question of programming style. You will have
strong opinions about such matters as you gain programming
experience!

SAVING PROGBRAMS AND PROCEDURES

You may want to save your work now that we have begun to
write programs which could be used again later. Flease
follow the instructions which apply to you:

Using a Datasette Tape Unit:

o

/ \ To save your program polygon on tape, proceed as

follows:

Flace a cassette tape in your tape unit and be sure
it is rewound to the beginning.

‘_‘ CAUTION: If vour tape has a leader with
% no magnetic coating on the first few i1nches
) of the tape, advance the tape for a few
seconds. Otherwise you run the risk of not

recording the first part ot your program.

* Type the following direct order on your keyboard:

save “cstpolygon” <RETURN>

Chapter 2 - -4]- GETTING STARTED

* The message Press record & play on Tape will
appear on your screen.

Fress RECORD and PLAY on your Tape Un:it. Saving
a’'short program like polygon shoulo only take
about 15 seconds.

#* When your program i1s being saved, the screen will be
blank.

* When your program has been savea, the message:
program saved
should appear.

#* It 1s strongly recommendec that you repeat this
process, making a second backup copy. It will
probably be most convenient to dao this on the otner
side of your tape 1+ you use 10 or 15 minute data
cassettes. 1f you use ionger tapes, 1t will
probably be best to do it right after the first
recording, to avoid the time—-consuming rewinad.

Most experienced programmers save their
program file every 15 minutes or so while
working. It's a good 1dea to save vyour
program whenever you have completed more than
you would care to lose in case of a power
loss or other accident. It 1s wise to save 2
working copies: the current copy

and the previous copyv. With a tape

recorder you milight do this by reversing sides
of your short data tape every time you save
your program. That way, 14 something goes
wrong (a power down during the save coula be
bad news!), you can read i1n the previous
version to get things moving again.

When your program i1s completeg ana de-—
bugged, then you would want to make at least
two copies of the final working version: an

original working version and & backup.

* Now label your tape, so vou know what you have:
This takes a few seconds extra time now, but 1t
could save you a hassle later, looking for a
“missing program'.

Using a Disk Drive:

You will need to use the storage diskette which you
prepared earlier. If vyou didn’'t do this, follow the
directions for doing so i1n the last section of Chapter 1.
Then proceed as follows:

* Insert the storage diskette into the agisk draive.

Chapter 2 - -42- GETTING STARTED

#* Now type the following message on your keyboard:
save "polygon"

% The drive activity light will go on, and the drive
motor will be audible for a few seconds as a copy of
your program 1s saved to the diskette. You are free
to use whatever name you wish (up to 16 characters).
Of course it is wise to choose names which are
descriptive and make it easy for you to find your
programs again. Also, it’'s a good idea to include the
program file name as one of the first lines of your
program in a remark statement.

Tao be sure that your program file has been saved as ‘
planned, type dir (or cat) and press <RETURN>.
This will show you a directory (or catalogue) of
what ‘s stored on the diskette, how many blocks each
program takes up (1 block = 2356 bytes), and how many
blocks are unused (XXX blocks free.).

* An extra backup copy of all important programs
should always be made on another diskette... just in
case! And while you are developing a program, make a
copy of the most recent version every 15 minutes or so
to avoid loss of work in case of a power failure or
other unexpected event! It is best to have two recent
copies stored, just in case.

#* HBe careful to label your diskettes (do it at once!).
That way you have a better chance of finding your
programs again. Once you start writing lots of
programs, your diskettes will multiply like mice!

It is also possible to save your procedures i1ndividually.
This can be done using a form of the LIST order. It 1s
described in connection with the discussion of more advanced
file handling in Chapter 6.

REVIEW ‘

In this chapter you have been presented with information to
nelp you:

1ssue orders directly from the keyboard
correct typing errors

use the cursor control keys

use turtle graphics

write simple programs using procedures
use automatic line numbering

use a Datassette tape unit or a disk drive for storage

* ok ok K Kk % ¥

You should have made a special note of the following concepts:

6510 (6502) microprocessor code

high level language orders

direct execution vs. programmed (deferred) execution
the total turtle trip theorem

* kX X

Chapter 2 - -43- GETTING STARTED

printing of text and numbers on the text screen
calling of procedures

using procedures with variables

using a simple loop block

* % %k %

The following COMAL orders and kevwords have been presented 1in
this chapter:

FPRINT <text or numbers:>

ZONE <spacing>

forward({steps>)

back (<steps>)

right (<degrees>)

left ({degrees:)

penup

pendown

USE <package=>

clearscreen

home

splitscreen

showturtle

hideturtle

pencolor ({color >}

background ({color >}

setheading (<degrees>)

WHILE — DO 1loops

KEY$# — (checks the keyboard buffer)
chr$(0)

AUTO — (for automatic program numbering)
RUN - (to execute a program)

END - (to mark the end of a program)

// - {(to 1nsert remarks in your program}
FOR - DO - ENDFOR 1loops

INPUT “"<input prompt:>": <variable list:
NULL - an order which does nothing at all!

ok ok ok ok ok ok ok ok ok ok ok Kk ok ok %k ok ok k ok k ok %k K ok K X

I¥ you have worked through this chapter, vou should be
prepared for the more advanced description of COMAL
programming which follows 1n the coming chapter. It can be
helpful to keep in mind that programming can really be boiled
down to three fundamental elements:

Action blocks are groups of i1nstructions which input
data, perform calculations, draw a picture, output data or
carry out some other process in the program.

* Loop blocks are groups of i1nstructions which are repeated
a number of times. The FOR — DO - ENDFOR sequence and the
WHILE — DO construction are two of several types of loop
blocks available in COMAL.

Branch blocks are instruction sequences which include
decisions about which orders to carry out next. You will
learn more about this type of instruction in the next
chapter.

-4y~

-45-

Chapter X —

PROGRAMMING WITH COMAL

This chaoter is intended ta serve as an introduction to how
to use COMAL for writing programs. COMAL concepts are
introduced steo by step without treating each concept in
depth at this stage. Examples are orovided to illustrate
each new concept. We will carefully comment on selected
programs to explain how they operate.

We have attemped to select the examples so that thev not
only treat selected COMAL tooics but also iilustrate vyour
Commodore 64°'s many facilities. 5Some examples nave been
chosen to provide a more through treatment of earlier
mentioned COMAL statements. This chaoter oproaresses from
quite easy to more advanced proaramming technigues. The
concept of the algorithm is introduced late i1n the

chapter, and we have made a special etfort to iliustrate tne
power of COMAL 's structured programming aids.

It is not our intention that vou should be satisfied after
trving our program examples and exercises. They should be
considered to be auideposts to nelp you find vour wav as vou
begin to use COMAL. There is a areat deal to be explored.
Don’'t be afraid to strike out on your own to experiment with
YOUr oOwn programs. You can return to the tutorial and
follow it again after satisfving your curiousitv. Manv
other books about COMAL are becoming avaiiable. Try out
programs vou find there or in users group publications.

More and more articies on COMAL will appear in popular
computer magazines as news of this exciting lanauage
spreads. The best possible wav to become proficient at this
language will be to use it to write orograms which can heio
yau in your education, professionai work or for
entertainment.

ACQUIRE GOOD PROGRAMMING HABITS

Evervone who writes programs will sooner or later develop
his or her own programming ’‘stvle’. In the beginning.
however, it can be helpful to follow a few guidelines. You
mav want to keep the following points in mind when vou set
out to solve a new programming problem:

Type new to delete any earlier program from working
memary.

#+ Then tvpe auto 100 to engage automatic line
numbering.

% Go right ahead with the main program. Express the
problem to be solved as a list of ‘procedures’ to be
carried out. It may be a good idea to include them in
a LOOP...ENDLOOP structure, if thev are to be repeated
again and again. Don’'t worry too much about makina
errors. COMAL's flexible editing facilities will make

Chapter 3 - -4 - PROGRAMMING

it easy to straighten things out later.

When the structure of the main program sequence is
clear, procede to begin writing the individual
procedures. I+ a particular task is complex, break it
down into smaller procedures. This technique is called
"top—down ' design.

* LIST your program often to be sure that it looks like
vou expect it to. This will not always be the case!
Use renum to make room for extra instructions if
necessary. Don't worry about line numbers. Use
renum often to clean things up.

* As your program nears completion, or vou have completed
a large procedure, execute a scan of vour program to
check for correct structure.

* After listing and scanning correct possible errors
using the COMAL editing orders. Check Aopendix C for
further information on how this is done. Be careful to
make backup-copies of your program from time to times
this is quick and easy to do using COMAL.

#* When your program appears to be error—-free, try it out
by tvping the order run. Most often the proaram can
be stopped again bv simply pressing <RUN/STOF . I+
this doesn’'t work. trv pressing {RUN/STOF> and
“<RESTORE {(corresponding tao "reset").

#* When your program i1s completed and checked, save a copy
on vour diskette or tape for use later. The order
save “<programnavn>" can be used if you have a disk
drive, or use save "cs:<{programnavn>" for a
Datassette tape unit. (Don’'t forget to make a backup!)

Please note that in the following pages all
programs are shown as they will appear after a
scan has been issued. During program entry you
need not worry about upper/lower case (except of
course in text names). Nor do yvou need to include
extra blanks to emphasize program structure. The
COMAL system will take care of this for you when
vou scan the program.

A FIRST CALCULATION

The first example illustrates how the computer handles
numbers:

Program 13

new
auto 100

Chapter 3 - -47 - PROGRAMMING

0100 // compute an average

0110 numberaz=7

0120 numberb:=15

0130 average:=(numbera+numberb) /2

0140 PRINT "The average of the numbers”
0150 PRINT numb and" jnumberb

0160 PRINT "is";average

0170 END

After enterina the proaram check it using scan and list.
Correct any errors.

Type run then press the <RETURN>-key (or just press <{f7>).
Notes about Program 1:

The two // slashes in line 100 indicate. that the line is
a comment line which the system will not process.

Computers "remember" numbers and other guantities bv means
of variables: A variable is a name which can represent a
numerical value. Program 1 contains I variables:

numbera, numberb and average.

In line 110 the variable numbera is assiagned the value

7, and in line 120 the variable numberb is assianed the
value 15. Thus variables are given values by means of the
COMAL assignment operator :=. The svmbol := 1s aiso
called a dynamic equals siagn.

if you use an ordinary equality sign = when

typing in a proaram, the COMAL system will replace
it by the dynamic equals sign after a SCAN or RUN
order has been executed.

A variable name must always begin with a letter ana mav
consist of a maximum of B8O characters (i.e. letters, numbers
or special characters). If a name is terminated with #, %
or (), it has special meaning, as will be clarified later.
The symbols a, a#, a$ and a() are all considered to
represent the same name within a aiven context.

Chapter 3 - -48 - PROGRAMMING

In line 130 the expression (numbera+numberb)/2 (meaning
add numbera and numberb, and then divide the sum by 2)

is calculated. Then this value is assigned to the variable
average.

NB: The order of the variable and the expression is
important. The expression on the right hand side of the
assignment operator is computed first, then the variable
on the left is assigned this value.

Reversing the order of the variable name and the expression
will cause an error message to appear when the program line
is entered.

Lines 140 to 140 display the result using PRINT statements.
Notice how easy it is to combine numbers and text on the
screen.

In line 140 the text between the quotation marks is printed.

In line 150 the value of numbera is printed first. Then
comes the text and, and finally the value of numberb.
Notice the use of the semicolon (j3) between the numbers
and the text. The semicolon is not printed, but it is
needed as a separation mark between the different parts of
the line.

In line 160 the text is followed by the value of average
is printed. '

Note in connection with this example that:

The printout starts on a new line after each PRINT
statement.

It is not the name of a variable but its value

Chapter 3 - - 49 - PROGRAMMING

which is printed.

In line 170 the program is terminated by the statement END.

Exercises:

1. Modify the program, so that numbera is assigned the
value S.

2. Try other values for numbera and numberb.
3. Add a new line to the program:

105 PAGE

What effect does this order have?

4. Place a semicolon (3) at the end of each of the lines
140 - 160. RUN the program, and note that j yields
one space between items.

S. Trv to write a program which computes the averaae of
three numbers. Be sure that the printout is correct.

THE INPUT STATEMENT

In the previous example we saw & program in which the
computer did a numerical calculation and printed out the
result on the screen. In order to compute the average of
two numbers., it was necessary to change two lines in the
program when each new average was to be calculated

Now we will see how to change these lines once and for alil
so that the program can compute the average of any two
numbers we choose without changing the proaram every time.

Program 2:

Frogram 2 is available on the demo diskette. You can copy
it into working memory by using the order load "Program
2", or type it in as follows:

new
auto 100

0100 // computing an average

0110 INPUT "Enter the 1. number ": numbera
0120 INPUT "Enter the 2. number ": numberb
0130 average:=(numbera+numberb)/2

0140 PRINT "The average of the numbers"
0130 PRINT numbera;"and"jnumberb

0160 PRINT "is"javerage

0170 END “end'"

Check that the program is correct, then execute it using the
command RUN.

List the program and notice how using the INPUT statement
allows the program variables to be assigned a value while

Chapter 3 - -5 - PROGRAMMING

the program is being run.

Thus it is not only possible to print out variable values
from a program, but also to read values into a program.

Notes:

FProgram execution is stopped by an INPUT statement
until the user responds. In Program 2 it is necessary
to tvpe in a number in response to each INPUT statement
followed by a <RETURN>.

The text of the INPUT statement must be terminated by a
colon (3) before the variable. All other characters
will result in error messages.

Exercises:

1. Add a line with the order FAGE to the program, so the
screen is cleared at the beginning of a run.

Z. It is also possible to send the output to a printer, if
available.

Add the lines

135 SELECT OUTPUT “lps*
165 SELECT OUTPUT "ds:"

Run the program again and see what happens.

Line 135 directs the output to the printer, and line
165 brings output back to the display screen.

3. Write a program which computes the average of 3
numbers. The numbers should be read in using INFUT
statements.

CIRCLES

The output from a program can also be in the form of a
drawing. The next program draws circles.

Program 3:

new
auto 100

0100 // circles are drawn

0110 PAGE

0120 INPUT "Enter the 1. radius ": radiusa
0130 INPUT "Enter the 2. radius ": radiusb
0140 sumradiusis=radiusa+radiusb

01350

0160 USE graphics

0170 graphicscreen(1)

Chapter 3 - -5] - PROGRAMMING

0180 circle(160,100,radiusa)
0190 circle(160,100,radiusb)
0200 circle(160,100,sumradius)
0210

0220 WHILE KEY$=CHR$(0) DO NULL
0230 END

Check the program to be sure it is correct. then run it.

The program consists of an input section and a calculation
section which is separated from the printout section by the
empty line 150. Empty lines can be useful for separating
various parts of a program to make the proagram structure
clearer.

Lines 160 and 170 are necessary to prepare the computer for
doing graphics.

Lines 180-200 draw 3 circles all of which have their centers
at screen coordinates (160,100}, i.e. about in the middle of
the screen.

The radii of the three circles is apparent in lines 120-140.
If the radius exceeds 99 units, the circle will overlap the
edae of the screen.

The statement in line 220 is described in Chapter 2. Its
purpose is to keep the graphics screen viesible until the
user presses any key.

The function KEY$ is useful for reading in characters from
the keyboard while a program is runnina. We will treat this
function again later.

Note:

It may turn out that the "circles" look more like ega-shaped
curves than circles. This phenomenon is due to the
adjustment of the screen displays height/width ratio. If an
adiustment is available, you may wish to make use of it so
that circles appear correctly on the screen.

Exercises:

1. Correct the program so that the third circle is drawn
with a radius equal to the difference between the two
radii. VYou should also change the name of the variable
sumradius'

2., Experiment with the use of other arithmetic operations
in line 140.

3. Move the centers of the circles.

4. Add instructions so that more circles with other radii
and centra are drawn.

S. The center of the circles can also be read in as an
input statement.

For example add the line:

Chapter 3 — -52- PROGRAMMING

135 INPUT “Center: X,Y = "3 xc,yc
Correct lines 180-200 to:

180 circle(xc,yc,radiusa)

190 circle(xc,yc,radiusb)

200 circle(xc,yc,sumradius)

Run the program.

Note that it is necessary to respond with two values
separated by a comma (,) in the new INPUT statement.

The circles can be filled with colors. Use the order
fill(x,y) to do this, where (x,y) must be the
coordinates of a point inside the closed figure which
is to be colored in.

For example if Program 3 is extended with the lines:

202 pencolor (2)
204 £ill (1460,100)

the innermost circle will be colored red. Try it!

Trv to color other regions of screen by changinag the
coordinates in line 204.

For example change line 204 to:
204 fill1(0,0)
What happens?
Now try to color other areas on the screen. Change the

number in the pencolor order in line 202 to employ
other colors. See the color code table in Appendix B.

PROCEDURES I

When writing extensive COMAL programs, it is particularly
important to make use of procedures:

A procedure is a "subprogram" which can be called from the
main program or from another procedure. It can perhaps best
be illustrated by means of some examples. Program 4 is
available on the demo diskette (and tape), or it may be
typed in:

Program 43

naw
auto 100

Chapter 3

0100
0110
0120
0130
0140
01350
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
04560

Run the program:

- -53 -

//f¥illed circles and squares

start ‘graphics

draw square(10,10,300,180,

brown)

draw’'circle(160,100,70,yallow)
draw’ square(100,%50,50,50,purple)
draw'circle(125,75,20,0range)

WHILE KEY$="" DO NULL
END

PROC start 'graphics
USE graphics
graphicscreen(1)
brown: =8
yellows=7
purple: =4
oranges=10

ENDPROC start 'graphics

PROGRAMMING

PROC draw’'square(xmin,ymin,xside,yside,color)

pencolor (color)
moveto(xmin,ymin)
draw(xside,0)
draw(0,yside)
draw(-xside,O)
draw(0,-yside)
xpointi=xmin+.5%xside
ypointi=ymin+,S5#yside
paint (xpoint,ypoint)
ENDPROC draw’ square

PROC draw'circle(xcenter,ycenter,radius,color)

pencolor (color)

circle(xcenter,ycenter,radius)

ENDPROC draw’'circle

program works.

Program 4

consists of:

The main program {(lines
Three procedures:
start ‘graphics (lines
draw’ square (lines
draw ' circle (lines

Notice that a procedure is called by its name,

100-180)

210-280)
300-400)
420-460)

afterwards we’'ll take a look at how the

sometimes

followed by parentheses with a list of parameters to be
transferred to the procedure.

The procedure itself is built up as follows:

Chapter 3 - - 54- PROGRAMMING

PROC <name>(<a>,,<c>y...)
<statement 1>
<statement 2>

ENDPROC <name>

Recall that sharp brackets < > around a word

mean that the word and the brackets can be re-—
placed by names or statements of the users choice:
E.g. <name’> could be replaced by the name

start ‘graphics, printout or something else
describing the purpose of the procedure. The no-
tation <statement no> stands for a legal COMAL
statement.

The main program consists of a comment line followed by S
lines which all call procedures.

In line 110 the main program just calls the procedure with
the name start 'graphics, and the computer proceeds to
execute the statement in this procedure.

When the computer has carried out the statements in the
procedure, it returns to the main program and goes on to the
next line.

In line 120 the procedure with the name draw’'square is
called. In this case it is not only called by name but also
with a pair of parentheses containing some numbers. The
numbers are separated by commas (,).

There must be exactly just as many numbers in the call as
there are variables in the parentheses following the
procedure name.

draw square(10 ,10 ,300 ,180 ,brown)
PROC draw’ square(xmin,ymin,xside,yside,color)

Notes:

*# The variable brown has the value B. It received that
assignment during the execution of the procedure
start ‘graphics.

During the execution of draw’ square the procedure
will use these values:

xminy=10

ymint=10

xsider =300

ysidei1 =180
colors=brown (1=8)

Now the computer can carry out the instructions in the
procedure draw’ square, for the values of all
variables are now available.

Chapter 3 - ~-5- PROGRAMMING

* The procedures draw’'square and draw'circle consist
of a sequence of graphics orders. Use the index to find
detailed descriptions of these orders.

* Next the procedure draw'square computes the midpoint
of the square in lines 370 and 380.

When the computer has completed execution of the
procedure draw square, it returns to the next line in
the main program.

* In line 130 the procedure draw’'circle is called then
executed.

In lines 140 and 150 the procedures are called again,
but this time other parameter values are used.

#*# A procedure can hbhe called many times with various
parameter values if desired. This is one of the agreat
advantages of using a procedure.

Exercises:

1. Try to move the circles and squares around the screen
by changing the two first numbers in the procedure
calls. These numbers stand, respectively, for the
center of the circle and the lower left corner
coordinates of the square.

For example try moving the last square and circle into
the middle of the screen:

140 draw’ square(135,75,50,50,purple)
150 draw’'circle(160,100,20,brown)

2. The lengths of the sides of the squares can also be
changed. Change the circles’ radii.

3. Add other colors. See the color codes in Appendix B.

4. Other circles and squares can be drawn by adding new
program lines to the main program containing procedure
calls. Try it.

S. Try writing a procedure yourself which can draw a
triangle and fill it up with a color. Add a program
line which calls your procedure.

COMAL AND TEXT

The next example, Program S5, is also composed of a main
program which calls two procedures:

Main program (100 - 160)
Procedure read’in (190 - 260)
Procedure print ‘out (280 - 460)

Before we enter this program, try it out and study it, we
must be familiar with the concept of a string.

Chapter 3 - - 5- PROGRAMMING

A string constant is a text enclosed in quotation marks.
E.g. “John*, "billing code" and "he has 7 seals”.

So far all the variables we have worked with have been
number variables. It is also possible to define variables
which contain sequences of letters, special characters and
digits. Such variables are called string variables.

String variables can always be recognized because they end
with a dollar sign (¢$). Examples of string names are:

name$, city$, countrys$

When a string is to be assigned a value, a declaration
statement must occur early in the program to assure that
enough room is reserved in memory for the string. This is
also refered to as dimensioning the string variable.

Examples:
DIM names$ OF 20 (room for up to 20 characters)
DIM citys$ OF 25 (room for up to 25 characters)
DIM country$ OF 40 (room for up to 40 characters)

Now the string variables may be assigned text values (string
contants):

names$:="Jonathan Doe"
citys$:="London"
country$:="England"

Notes:

#* Text must always be enclosed between quotation marks
("),

The text need not be as long as the maximum space
specified in the declaration statement.

A text variable can contain both large and small
letters, spaces, digits and certain special characters
(4 /<7 '#$% ' +=3y=). On the Commodore 64 it can also
include the graphics symbols. When we refer to
characters we mean any of the above.

In Program S we will practice the use of procedures and
learn more about strings and string variables. In addition
we will also try using the semigraphics characters of the
computer. They can be seen on the front side of most keys.
See Appendix D for more about the use of the keyboard.

Pay particular attention to the procedure print’‘out if you
will be typing in the program instead of reading it from the
demo diskette or tape:

Line 310: 2 spaces and 36 <C= o> characters.

#* Line 320: 2 spaces, 1 <C= j>,
34 spaces and 1 <C= 1> character.

#* Line 400: 2 spaces and 36 <C= u)> characters.

Chapter 3 - -57 - PROGRAMMING

(NB: <C= @> means: hold down the Commodore key, while
pressing the o-key.)

Program Sz

new
auto 100

0100 // read’in and print ‘out of text

0110 DIM name$ OF 25

0120 DIM from$ OF 25

0130 DIM texts$ OF 30

0140 read’in

01350 print‘out

0160 END

0170

0180

0190 PROC read’in

0200 PAGE

0210 PRINT "Write a message:"

0220 INPUT "The letter is to "1 names

0230 INPUT "The letter is from ": froms$

0240 PRINT "The message can fill one line."

0250 INPUT "Start here:": texts

0260 ENDPROC read’in

0270

0280 PROC print’ out

0290 PAGE

0300 PRINT

0310 PRINT " "
0320 PRINT * "
0330 PRINT "
0340 PRINT * "
0350 PRINT * [
0360 PRINT * [
0370 PRINT * "
0380 PRINT " "
0390 PRINT * "
0400 PRINT * "
0410 PRINT AT 4,6: "To "jnames

0420 PRINT AT 6,61 texts

0430 PRINT AT 8,46t "Best regards"

0440 PRINT AT 9,61 froms$

0450 CURSOR 20,1

0460 ENDPROC print ‘out

In the main program the first statements declare the
variables name$, from$ and text$. Then the procedure
read’in is called. It allows for the input of values for
the text variables.

.When the read-in procedure is completed, the computer
returns to the main program. In the next line execution is
directed to the procedure print 'out, which prints out the
message inside a frame.

Notes:

A new version of the PRINT statement is used:

Chapter 3 - -58 - PROGRAMMING

PRINT AT <line>,<column>.

E.g. in line 440, where the from$ text is specified

to begin on line 9, in column 6. This syntax makes it
possible to place text or numbers anywhere on the
screen.

Line 450: CURSOR 20,1

CURSOR <line>,<column> places the cursor anywhere on
the screen, but no message is printed.

* See also INPUT AT, which is used in Program 10.

Exercises:

1.

2.

Run the program a few times with different messages to
get an idea of how the program operates.

If a printer is available, one can get a hard copy of
the text screen by pressing <CTRL P> :

When the program has finished running, and the text is
ready on the screen, press P while holding down the
<CTRL>—key.

Try revising the program so that text variables can be
read in and printed at various positions on the screen.

Here is a BRIEF REVIEW of the foregoing infor-—

mation on strings and text: P

1. A computer can work with numbers or with words.
This is done using number variables and text
variables. Text variables can be recognized
because they always end with $.

2. Variables can be given values:

* by assignment statements =
in parenteses in procedure calls .

3. Text can be written on the screen by means of
PRINT statements. (It can also be done in
other ways, e.g. in the text segment of an
INPUT statement, as we have seen.)

4. Drawings can be made on the screen using
graphics orders from the graphics packages
(use graphics or use turtle), or by means
of the semigraphics character set, which is
shown on the front of the keys.

S. If a program is more than a few lines long, it
should be composed using procedures. A
procedure is a ‘'sub-program’ which can be used
many times from the main program or from other
procedures. We’'ll be studying more on the use
of procedures later in this chapter.

Chapter 3 - -59 - PROGRAMMING

BRANCHING. CONDITIONAL EXECUTION

The computer can also distinguish between expressions, which

are true or false. Such expressions are called
logical expressions. Some examples:
7=2 is a logical expression, which both we and the

computer would consider false.

23<54 is a true logical expression.

Whether or not the logical expression number>i10 is
true or false can not be determined before we know

the value number.

COMAL contains the two logical constants TRUE and FALSE,
which have numerical values 1 and 0 respectively.

In the following examples we have illustrated how the
computer can be made to execute various statements according
to whether a logical expression is true or false.

Program 6t

new
auto 100

0100 // find the maximum

0110 PAGE

0120 PRINT "The maximum of two numbers:"
0130 PRINT

0140 INPUT "Write the 1. number ": a
0150 INPUT "Write the 2. number "3 b
0160

0170 maximum: =a

0180 IF maximum<b THEN maximum:=b
0190

0200 PRINT

0210 PRINT "Maximum is “jmaximum
0220 END

The new construction occurs in line 180: IF - THEN

It is an example of a branch, also called conditional
execution. In this case the construction means:

"IF the variable maximum is less than the variable b,
THEN maximum is set equal to b".

The computer evaluates the logical expression maximum<b.

IF it is true, the computer will execute the statement
following the order THEN. This is often described by
saying: the condition between IF and THEN must be
fulfilled.

I1f the condition is not fulfilled, the computer simply
proceeds on to the next program line.

Chapter 3 - - 60 - PROGRAMMING

It is often the case, however, that it is desirable to have
several statements executed when the condition is fulfilled,
while other statements should be executed if it isn't. This
situation is handled in COMAL by using a new structure:

IF - THEN - ELSE - ENDIF.

IF <condition> THEN
<statement 1>
{statement 2>

ELSE
<statement a>
<statement b>

ENDIF

Lines 170 — 180 in Program 6 could thus also be written as
tollows using this IF-construction:

170 IF a<b THEN
172 maximum:=b

174 ELSE
176 maximums=a
180 ENDIF
Program 73
new
auto 100

0100 // right or wrong

0110 DIM texts$ OF 10

0120 PAGE

0130 PRINT "Guess my numbers 1, 2 or 3"
0140 INPUT "Try your luck ":answer
0150

0160 RANDOMIZE

0170 my 'number:=RND(1,3)

0180

0190 IF answer=my’ 'number THEN

0200 text$s="CORRECT"

0210 ELSE

0220 texts$: ="WRONG"

0230 ENDIF

0240

0250 PRINT

0260 PRINT "My number was “jmy’'number
0270 PRINT "The guess was “janswer
0280 PRINT

0290 PRINT "So the guess was “jtexts$
0300 END

Notes on this program

Lines 190-230: Note the IF - THEN - ELSE - ENDIF
structure, described earlier.

Chapter 3 - -6l - PROGRAMMING

Lines 160-170: the computer is able to generate a
random number with the orders RANDOMIZE and RND:

RANDOMIZE causes the computer to position a pointer at
a "random" paosition in an array of random numbers.

In my numbari=RND(1,3) the variable my number is
set equal to a random (RaNDom) value 1, 2 or 3.

The range of numbers can be changed. E.g. RND(-10,10)
will randomly generate one of the numbers: -10,-9,-
Byeney04...,8,9,10.

Exercises:

1. Experiment using other number ranges in the RND
function.

2. Try removing the statement RANDOMIZE and run the
program several times. What happens?

THE CASE STRUCTURE

If one must distinguish among many conditions at the same
time, then the CASE structure is advantageous to use. It
is built up as follows:

WHEN <1.value’>
<statement 1ia-
<statement 1b>

WHEN <Z.value’
<statement Za’>
{statement 2b>

(additional WHEN-values)

OTHERWISE
<statement a>
<statement b>

ENDCASE

If e.g. <variable> equals <2.value>, theh execution proceeds
in the corresponding segment of instructions: <{statement 2a’
- <{statement 2b>, etc. Then execution continues in the line
after ENDCASE.

If <variable> does not equal any of the given WHEN values,
then execution continues with the statements in the
OTHERWISE segment. OTHERWISE and the statements in the
carrespanding segment are optional.

This structure is used in the following example, where one
can choose among several different exercises in computation.

Chapter 3 -

Each exercise is given in a procedure.

-62 -

PROGRAMMING

An answer to an

exercise is evaluated in the procedure result, which is

therefore called from each

exercise—procedure:

Main program — exercisel - result
exercise2 - result
exercisel - result
exercised4 - result

Program 83

new

auto 100

0100 // Computation exercises

0110 PAGE

0120 PRINT "Choose an exercise:"
0130 PRINT

0140 INPUT "Which number (1 - 4) "1 number
0150

0160 CASE number OF

0170 WHEN 1

0180 exercisel

0190 WHEN 2

0200 exercise2

0210 WHEN 3

0220 exercise3

0230 WHEN 4

0240 exercised

0250 OTHERWISE

0260 PRINT "You have chosen an incorrect number."
0270 ENDCASE

0280

0290 END

0300

0310

0320 PROC exercisel

0330 PRINT

0340 INPUT "INT(7.3+3.2 DIV 2) = "; answer
0350 correct:=INT(7.3+3.2 DIV 2)
0360 result (correct,answer)

0370 ENDPROC exercisel

0380

0390 PROC exercise?

0400 PRINT

0410 INPUT "3-30/2+12 = "; answer
0420 correcti=3-30/2+12

0430 result (correct ,answer)

0440 ENDPROC exercise2

0430

0460 PROC exercise3l

0470 PRINT

0480 INPUT "4.25+2.5/5%2 = "; answer
0490 correcti=4,25+2,5/5%2

Chapter 3 - - 63 -~ PROGRAMMING

0500 result (correct,answer)

0510 ENDPROC exercisel

0520

0530 PROC exercised

0540 PRINT

0550 INPUT "“34 MOD 10-2#5 = "; answer
0560 correctt=34 MOD 10-2#3

03570 result (correct,answer)

0580 ENDPROC exercise4d4

03590

0600 PROC result(correct,answer)

0610 PRINT

0620 PRINT "The answer is: “j;answer
0630 PRINT "The correct answer is: “jcorrect
0640 PRINT

0650 IF answer=correct THEN

0660 PRINT "You answer is right!'"

0670 ELSE

0680 PRINT "Wrong. Please try again..."

0690 PRINT “Check Appendix C: calculating with COMAL."
0700 ENDIF

0710

0720 ENDPROC result
Notes:

A procedure may be called from another procedure, as well as
from the main program. For example result is called from
the exercise procedures.

Exercises:
1. Trvy responding to some of the exercises in the program.
2. Create a new exercise G:

Write a procedure exerciseS.
Add the new WHEN value in the CASE structure.
Remember to change the INPUT statement.

3. Write a program which prints out different messages.
The messages should depend on the value of the variable
which is entered.

REPETITION AND LOOPS

Repetition is one of the fundamental building blocks of
programming. The computer is uniquely well-suited for
repeating operations over and over again. In COMAL there
are several different statements which can accomplish

repetition. These statement combinations are classified as

loop blocks or simply as loops.

The first example shows how the computer be made to repeat a
set of orders a certain number of times:

Repeat <{these statements> 100 times.

This is accomplished with a FOR - ENDFOR loop:

Chapter 3 - - b4 - PROGRAMMING

FOR <no>:=<start> TO <end> DO
<{statement a>
{statement b>

ENDFOR <no>

Statements a, b and so on are repeated ({end>—-<start>+1)
times:

the first time <no> equals <start>
the second time <no> equals <start>+1
the third time <no> equals <{start>+2

the last time <no> equals <end>»

Program 9i

new
auto 100

0100 // investigation of RND
0110 USE graphics

0120 graphicscreen (0)

0130 wrap

0140 window(0,1000,-10,10)

0150 moveto(1000,0); drawto(0,0)
0160

0170 FOR not=0 TO 1000 DO

0180 number : =RND (-10,10)

0190 moveto(no,0); draw(O,number)
0200 ENDFOR no

0210

0220 WHILE KEY$=CHR$(0) DO NULL
0230 END

The program illustrates graphically how "random" numbers
generated by the RND function can be distributed. Notice
the loop block:

line 170-200: the FOR - ENDFOR statement.
The loop is repeated 1001 times.

The statement can be extended using the STEF parameter:
FOR <no>:=<{start> TO <end> STEP <steps> DO

where STEP causes <no> to take on the values: <start.,

<start+steps>, <{start+2#steps> etc. The loop ends when

<no,; exceeds <end:r.

If the STEP parameter is left out (as we have done so far),
then STEP is automatically set equal to 1.

In addition to the graphics statements which we already have
become acauainted with, the program contains some new
statements. Their use is explained in detail in Chapter S

Chapter 3 - -65- PROGRAMMING

in the section on graphics.

Finally we can take a closer look at the statement in line
220. Here is also an example of repetition:

In the WHILE - DO statement, the computer checks the
keyboard again and again, until any key is activated.

The keyword KEY$ is a function which outputs the last
character which was sent from the keyboard. I¥ no key has
been pressed, then "" (ASCII code 0) is returned. KEY$%
will thus continue to return """ until any key is pressed.

while <no key is pressed> do <nothing:
WHILE KEY$=CHR$ (0) DO NULL

But the most common use of the WHILE statement is in a loop
block extending over several lines:

WHILE <condition> DO
<statement a-
<statement b>

ENDWHILE

I¥ the <condition?> between WHILE and DO is fulfilled, the
computer goes ahead with statements a, b, etc. These
statements are executed one after the other until something
occurs in the statements so that the condition is no ilonger
fulfilled. Then program execution jumps from the WHILE-DO
line to the line just after ENDWHILE.

See the word WHILE in the index to find a more detailed
description of how this construction can be used.

Another often encountered loop structure is the REFEAT -
UNTIL construction:

REPEAT
<statement a>
<{statement b>

UNTIL <condition>

The statement list is repeated until the <condition> is
fulfilled.

In the next example, Program 10, this type of loop
determines how long the user can continue to guess the
letters in a "secret" word. The example also illustrates
the use of strings in COMAL.

The program structure:

The main program ~ select ‘word
- neaw'letter

Chapter 3

- - 66 - PROGRAMMING

Program 103

new
auto

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200

0520

Lines 150-

100

// word guessing
PAGE

select ‘word
number : =0

REPEAT
number : =number+1
new’letter

UNTIL answer$=remember$

PRINT AT 20,5: "Now finished"
PRINT AT 21,5: number;"letters have been used."
END

PROC select “word
DIM name$ OF 20, letters$ OF 1
DIM used$ OF 200
INPUT "New word: ": name$
length:=LEN (names$)
DIM answer$ OF length, remembers$ OF length
answers$=" "
useds$zy=""
PABGE
PRINT "GUESS THIS"j3;length;“LETTER WORD"
PRINT AT 8,5: “Word: "janswers$
ENDPROC select ‘word

PROC new 'letter
INPUT AT 10,3,1t "New letter “: letters
used$i=used$+letters

position:=]letter$ IN name$

IF position>0 AND position<{=length THEN
answer$ (position)i=letters
name$ (position)t="#"

ENDIF

PRINT AT 10,17¢ " "
PRINT AT 8,5: "word: "janswers$
PRINT AT 12,1: used$

ENDPROC new letter

180: the REFEAT — UNTIL loop:

When the user has the answer which the computer remembers,
the program continues in line 190.

Notes:

Line

160: the variable number occurs on both sides of

the assignment operator 1=, This is legal {(and often
done). Remember how the assignment operator works:
First the expression on the right hand side of the sign
is computed. Then the variable on the left side is
assigned the value computed.

Chapter 3 - -6/ - PROGRAMMING

* Line 400: INPUT AT 10,5,1 means that the INPUT

statement must begin on line 10, column 3, and

there must be room for { character in the the answer
field. Try to write several answers to see how the
program works. Try changing 1 to e.g. 3, and run
the altered program.

The branch construction IF - ENDIF begins in line 440
and extends over several lines, ending in line 470.

Line 440: AND is an example of a logical operator.
It requires that both conditions in the IF - THEN
statement must be fulfilled.

Note particularly about strings:

#* Line 290: The LEN function indicates how many

characters are included in the word. This is how the
length of the word is determined.

Line 300: It is possible to use variables in DIM
statements.

Line 410: Words can be ’‘added together’ using the +
character. This process is called concatenation of
strings.

Example: “cat"+"fish" yields the word “catfish”.

Line 430: IN is a logical operator which acts on
strings. It indicates the first position of the first
character in the search string.

Examples: "ok" IN "cooking" vields the value 3.
"i" IN "cooking" gives the value S.

If the search string is not contained in the given text
string, then the value will equal 0 (zero).

Examples: “salt" IN "cooking" gives the value O.
"sing" IN "cooking” gives the value O.

Line 450-460: One can select particular substrings in a
text by using the position of the substring in the
text.

Example: LET texts$i="cooking"
texts$(3) is the letter "o".
text$(4:17) is the string "king".

In line 460 the letter found is replaced by a charactér
which never will occur in a word. This is done to
allow the same letter to occur more than once in a
word. In this case the character selected is #.

ARRAYS. INDEXED VARIABLES

When you have to work with lots of numbers, it can become
time consuming to read them all in and give them different

Chapter 3 - - b8 - PROGRAMMING

names. Sometimes at least 100 variable names may be needed
when solving one of the following problems, for example:

* Computing the average of 100 numbers
#+ Determining the maximum and minimum of 100 numbers
* Sorting 100 different numbers

Large collections of numbers can be handled in COMAL by
declaring an array using a dimension statement as for
example the following:

DIM x (50)
This statement reserves room for S5O numbers in the
computer ‘s memory. Each variable will have the same name ‘

x but a different number:
x(1), %(2), x(B) oo,y x(49), x(50)

Such variables are also termed indexed variables with the
number of each variable called an index.

It is possible (but not common practice) to each of the
indexed variables a value using an assignment statement:

1):1=23
x(2)31=71
x(3)1=-12.435

x (49) =6
x (50) :=0,852

In the next program example we will work with indexed
variables which are assigned values by means of an INFUT
statement.

The program draws line segments through the coordinates of a
number of points.

Program 11 consists of: ‘ ‘

a read-in section (lines 110-220)
a graphics section (lines 270-300)

Program 113

new
auto 100

0100 // line segments

0110 DIM x(50), y(30)

0120 PAGE

0130 PRINT "A line is drawn through the points.*
0140 PRINT

0150 REPEAT

01460 INPUT "Number of points: ": number

0170 UNTIL number>=2 AND number<{=350

Chapter 3 - -69 - PROGRAMMING

0180 PRINT

0190 FOR noit=1 TO number DO

0200 PRINT "Enter x(",no,"),y(",no,")t1"3
0210 INPUT ""3 x(no),y(no)

0220 ENDFOR no

0230 PRINT

0240 PRINT "Press any key to draw the figure."
0250 WHILE KEY$=CHR$(0) DO NULL

0260

0270 USE graphics

0280 graphicscreen(0)

0290 moveto(x (1) ,y (1))

0300 FOR no:1=2 TO number DO drawto(x (no),y(no))
0310 WHILE KEY$=CHR$(0) DO NULL

0320 END

Notes:

*

Line 110: Room is reserved for S50 pairs of x— and y-—
coordinates.

Line 160: The program inquires in an INFUT statement
how many sets of coordinates to be read in. The INFUT
statement is included in a REFPEAT - UNTIL loop which
also assures that at least 2 pairs are entered. (A
line can’'t be drawn if only one point has been
entered.)

Lines 190-220: the coordinate pairs x(1),y(1)
x(2) ,y(2)... X(number),y(number) are entered in a FOR
- ENDFOR loop.

* In line 270-300 the figure is drawn using graphics

statements.

Exercises:

1.

Use the program with a few points.

Add a line in the program which will place a small
circle around each point. For example try
circle(x(no),y(no) ,3).

Write a program which computes the average ot an
arbitrary number of values. The program should include
the following sections:

Enter the number of values.

Enter the values in the array of numbers.
Compute the sum of the numbers.

Average := the sum/number of values.

Those arrays which we have handled so far have been arrays
with one index. They are termed one-dimensional arrays.
In COMAL an array can have two or more dimensions. For
example:

DIM bookcase (3,4)

The variable bookcase is a two dimensional array.
One can imagine a bookcase with I shelves., each with

Chapter 3 - -70 - PROGRAMMING

room for 4 items.:
1) 17 -3 72
89 0.5 14 94
8 -6 78 66

For example with the above values for the elements of
the array:

bookcase(2,3)=14 and bookcase (3,1)=8
Try changing Program 11 so that the one-dimensional arrays
x() and y() are replaced by a two-dimensional array
point(,). You can begin by changing line 110 to DIM
point(50,2).

Make changes in lines 290-300 yourself.

TEXT ARRAYS

We are not restricted to the declaration of arrays of
numbers. We can also declare arrays which contain strings:

DIM messages$(8) OF 20

Room is made of B message$ s, each up to 20 characters in
length:

messages$ (1) :="Remember the sun."

messages (8) i1 ="Hurrah! Hurrah!'"

Just as number arrays, text arrays can have two or more
dimensions.

The next program illustrates the use of a 2-dimensional text
array.

The array is declared in line 130:
DIM person$(50,4) OF 30

It is to be used as an address list for up to SO persons,
with 4 items of information about each one:

persons(no,l)i1="<name>"
person$(no,2)1="<{street>"
persons$(no,3)1="<{town>"
person$(no,4):="<{telephone number>"

In this program we will also become acquainted with yet
another way to read in variable values: a DATA statement.

Information can be stored in DATA statements which can be
read using READ statements.

The following statements:

Chapter 3
read
data

replace fo
numbe
items$
Xt=—3

point

Notice her
same DATA

The follow

Lines
tines

Lines

- -71 - PROGRAMMING

number ,items$,x ,points
17,"doll" ,~344,10

ur separate assignment statements:

ri=i7
1="doll"
46
8:1=10

e that numbers and strinas can be mixed in the
and READ statements.

ing program consists of

120-250: dimensioning and assianments

270-350: printout of information which agrees
with the search code

ZB80-S00: DATA statements

Program 12:

new
auto

100

// address list
PAGE
number: =50; no:=0
DIM persons$ (number ,4) OF 30, texts OF 30
DIM found (number)
REPEAT
no:+1
FOR information:=1 TO 4 DO READ persons$(no,information)
UNTIL EOD
number: =no

INPUT "Search for: ": texts$
FOR not=1 TO number DO
information:=0
REPEAT
informations+1
found (no) 1=text$ IN persons$(no,information)
UNTIL found(no)>0 OR information=4

ENDFOR no

PRINT

PRINT “Persons whom the search key fits:"
PRINT

FOR not=1 TO number DO
IF found(no) >0 THEN
FOR informationi=1 TO 4 DO PRINT persons$(no,information)
PRINT
ENDIF
ENDFOR no
END

Chapter 3 - -72 - PROGRAMMING

0400

0410 DATA "Susan Hansen","Lindebakken 13"

0420 DATA "Silkeborg","06-841723"

0430 DATA "Commodore Data","Bjerrevej 67"

0440 DATA "8700 Horsens","03-641133"

0450 DATA "Jan Mogensen","Skovgade 4"

04460 DATA "1717 Copenhagen”,"01-456701"

0470 DATA "Knud Jensen","Sneglevej 12 D"

0480 DATA "2820 Gentofte","secret"

0490 DATA "Wesleyan University","Physics Department”
0500 DATA "Middletown CT 06457"," (203) 3I44-7930"

Notes:

#* The READ statements need not be placed together with

the DATA statements. The first READ order in the
program begins by reading in the first value in the
first DATA statement no matter where it occurs in the
program. (This can be altered. See the discussion in
Chapter 4 on READ and DATA.)

In line 180 the function EOD is used to terminate the
reading process. The value of EOD is 0 (i.e.

false), until the last data value is read in. Then
COMAL sets it egual to 1 (i.e. true). When the
UNTIL condition thus is fulfilled, the program
continues in line 120.

Exercises:

1.

Try out the program. Try to understand how it
operates. Trv responding to Search for: with just
<RETURN?. Add new DATA statements.

Replace the values in the DATA statements for others of
your own choosing. The program can of course also be
used to file any information yvou may choose. For
example you might exchange the variable person$ with

a new variable item$ which could represent items in

an inventorv. For example:

item$(no,1):="warehouse"

item$(no,2)i1="storage area"

item$(no,3)i="ghel £"

item$(no,4)1="item"

Add a line to the program which prints out the
classification number of the person or item along with
the other information.

Add further information about each person in the
address list:

DIM person$(number ,3)
where for example:

person$ (no,5) 1="<profession>"

Chapter 3 - - 73~ PROGRAMMING

PROCEDURES 11

In the section PROCEDURES I we became acquainted with two
different ways of using procedures:

WITHOUT transfer of parameters

//main program

<statements’

name

<statements.

END

/7

PROC name
<statements.

ENDPROC name

WITH transfer of parameters

//main program

<statements’

name(4,"Christina")
<statements’

END

/7

PROC name (number ,texts)
<statements.»

ENDPROC name

If there is a transfer of parameters in parenthesecs, then
the number and type must be 1n agreement:

name(4 ,“John",from,x() ,logos$)
PROC name (number ,text$,start,no() ,strings)

The number and type of the actual parameters in the
procedure call must correspond to the number and tvpe of the
formal parameters in the procedure’'s parentheses.

4,"John",from,x () ,logos$ are the actual parameters.
number ,text$,start,no() ,strings$ are the formal parameters.

If the parameters are in agreement with respect to number
and type, they need not have the same name.

We have emphasized that procedures should be used when
building up programs, because:

FProcedures can be used again and again i1n different
parts of the program.

The program will be clearer to read, more logical and

Chapter 3 - - 74- PROGRAMMING

easier to grasp if it has been broken down into
procedures with well-chosen names.

+ Procedures can be saved in a procedure library on disk
or cassette tape for use later in other programs.

There are many ways to use procedures. In the following
sections you will find an introduction to the extended use
of procedures and functions:

* In what ways are they similar?
* In what ways are they different?
* How can they be used.

LOCAL AND GLOBAL NAMES

In COMAL one must distinguish between global and local
names. A local variable name - in contrast to a global
name - is only defined and recognized in a limited segment
of the program. For example:

FOR no:=2 TO number DO
<statements>

ENDFOR no

The variable name no is local in the FOR - ENDFOR loop.
It is undefined outside this loop.

In connection with procedures one also refers to local
names, only recognized within the procedure, and global
names which are recognized throughout the program. In
general, parameters listed in parentheses after a procedure
name are local. In addition the procedure may contain other
global and local parameters.

The advantage of local names is that they do not interfere
with other parts of the program and vice versa.

Enter, run and examine the next example with global and
local variable names. Note the values of the quantities
which are printed out.

Program 13:

new
auto 100

0100 // local variables
0110 ar=13bi=1

0120 PRINT asb

0130 local ‘global (4)

0140 PRINT asb

0150 END

0160

0170 PROC local ‘global (a)
0180 PRINT asb

0190 ENDPROC local ‘global

In the parameter transfers examined so far we have seen a

Chapter 3 - -75 - PROGRAMMING

number of one-way transfers from the main program to a
procedure. In order to permit transfer of local parameters
from the procedure, the parameters must be declared using

a REF prefix. The procedure in the following example shows
how this can be done.

Program 14:

new
auto 100

0100 PROC minmax (a,b,REF min,REF max)
0110 // minimum and maximum are found
0120 IF a<b THEN

0130 min:=a; max:=b
0140 ELSE
0170 min:=b; max:=a

0180 ENDIF
0190 ENDPROC minmax

A main program which uses this procedure might look like
this:

0010 //main program

0020 t:=23

0030 s:=—41

0040 minmax (t-s,t+s,minimum,maximum)

0050 PAGE

0060 PRINT “"t-s =";t-s;"og"jt+s ="jt+s

0070 PRINT "Minimum, maximum:"gminimumsmaximum
0080 END

Exercises:

i. The names are unimportant. Exchange the variable names
minimum and maximum with a and b respectively.
Note that they have no effect on the results. (A change
like this is easiest to make using the command CHANGE:
change "minimum","a”, etc.)

2. After a procedure has been typed in and checked using
the SCAN command, it can be used as a direct order.

Type the following directiy from the keyboard:

scan
minmax (12/7,7/12,x,y)
print xjy

Try using other values, and try using other procedures
as direct orders.

3. Make the following changes and run the program:

100 PROC minmax (REF a,REF b)
185 ar=minybi=max
and
40 minmax(t,s)
70 is deleted

Note, that the variables t and s change their value

Chapter 3 - - 76- PROGRAMMING

in the procedure.

Now the procedure can no longer be used in the form
minmax (&7,78) with constants in the call. But it can
be used in the form minmax(x,y) if the variables x
and y have been given values in advance:

scan
x=1236) y=251
this=(x+y)/xgthat=(x-y)/y

minmax (this,that)

print "Minimum, maximum: "jthisithat

Experiment with the legal as well as the illegal
version.

A particularly elegant property of procedures is that they
can call one another. A procedure can even call itself.
Such a procedure is called a recursiv procedure.

The next program shows an example of such a procedure using
graphics.

Program 15:

new
auto 100

0100 // concentric filled circles
0110 USE graphics

0120 graphicscreen(l)

0130

0140 draw’'circle(160,100,100,2)

0150

0160 WHILE KEY$=CHR$(0) DO NULL
0170 END

0180

0190 PROC draw 'circle(xc,yc,r,color)
0200 pencolor(color)

0210 circle(xc,yc,r)

0220 paint(xc,yc)

0230

0240 IF r>10 THEN draw’'circle(xc,yc,r—10,color+1)
0250

0260 ENDPROC draw’'circle

In line 240 the procedure draw’'circle calls itself until

r gets too small.

FUNCTIONS

COMAL s built-in standard functions can be used in
computations. We have already used standard functions like
PI, RND, INT, LEN. See Chapter 4 for information on other

standard functions.

Just as it is possible to define procedures using the
construction:

PROC - ENDPROC

Chapter 3 - =77 - PROGRAMMING

you can define your own functions in COMAL using the
structure:

FUNC - ENDFUNC
Procedures and functions have many properties and uses in
common. The next program shows how functions can be defined
and used to find the roots of analytical functions. The

program also employs some standard functions.

Overvieaw:

main program (lines 100-350)
function round (lines 380-400)
function (lines 420-440)

where the functions are built up using the following
structure:

FUNC <name> (<{number >)
<statement a>

istatement b

RETURN <computed expression)>

ENDFUNC <name>

An understanding of the theory behind the method to be used
requires some knowledge of mathematics. However this 1s not
essential in order to use the program or to understand the
statements which compose it.

Within the discipline of "informatics" the word algorithm
is sometimes used toc describe a formula or a means of
computation. It is an i1important part of goooc programming
practice to provide a complete description of the algorithm
on which a program is based. The description can be given
in greater or lesser detail depending upon who will use the
program. A minimum requirement is of course that the
programmer must be able to understand it later on, if the
program must be corrected or revised.

There are in fact many tragic examples of substantial waste
of resources, both in government and in private industry,
due to poor documentation of programs.

Program description:

1. The program searches for roots using the
midpoint method.

2. The program is designed to find a solution to the
equation f(x)=0, where § is a function which is
continuous in the region of interest.

3. The user must be able to provide an initial guess of
two numbers a and b with the property that € (a)

and f(b) have opposite signs. See the figure which
follows. If this condition is not fulfilled, the

Chapter 3 - ~78 -~ PROGRAMMING

program wili request other numbers.

F(a ==~ -

e

> = ——

Fe)f-=—-—=-—=—- -

The midpoint between a and b is found, and the
value of the function in this point is determined.

If the value of the function is sufficiently close to
zero, then the program will conclude that the midpoint
is a root. This approximation to the root will be
printed, and the program will stop.

Otherwise the program will continue comparing the signs
of values of the function:

I¥ the value of the function in the midpoint has the
same sign as the value of the function in a, then the
root which is sought is assumed to lie between the
midpoint and b. Therefore the midpoint is set equal
to the new a value as the search proceeds.

If on the other hand the value of the function in a
and the value of the function in the midpoint nave
opposite signs, then there must be a root between a
and the midpoint. The midpoint therefore becomes the
new b endpoint.

The proaram then returns to step 4.

In this fashion the interval around the root is
narrowed down until the root has been found within the
required uncertainty, or the program is interrupted by
pressing <STOF>.

Program 16:

new
auto 100

0100 // solving the equation f(x)=0

0110 PAGE

0120 error:=i1e-04

0130 REPEAT

0140 INPUT "End point values A,B: "1 a,b
0130 UNTIL SGN(f (a))=-8BN(f (b))

0160

Chapter 3 -

0170 LOOP

-79 - PROGRAMMING

0180 sign’as=SGN(f(a))

0190 sign‘'bi=SGN(f (b))

0200 xmids=(a+b)/2

0210 ymids=f(xmid)

0220 IF ABS(ymid)<error THEN

0230 PRINT

0240 PRINT "A solution to the equation =“jround(xmid)
0250 STOP

0260 ELSE

0270 PRINT "."3

0280 IF 8GN(ymid)=gsign 'a THEN
0290 ar=xmid

0300 ELSE

0310 b:=xmid

0320 ENDIF

0330 ENDIF

0340 ENDLOOP

0350 END
0360
0370

0380 FUNC round (number)
0390 RETURN INT (number#10000+.5) /10000
0400 ENDFUNC round

0410

0420 FUNC f(x)
0430 RETURN 3I#x#x+2#x-5
0440 ENDFUNC €

The function f(x) itself is defined in the structure FUNC
f(x). It is defined here by means of the expression

I e +28x=5.
equation:

Thus the program must find soiutions to the

IR X +2%#x=5 = O

Experiment with other functions besides this one when trving
out the program.

Notes:s

A new COMAL loop structure: LOOP - ENDLOOP
(continuous repetition) is introduced.

#* Clarity is enhanced by the use of descriptive names.

The standard function SGN({expression>):

S6N (<expression>»)=1 , if <expression’> is greater than ¢
SGN(<{expression>)=0 , if <expression> equals 0
SGN (<expression>)=-1, if <expression> is less than ¢

* The standard function ABS(<expression>) returns the
numerical value of the expression. E.g. ABS(-2)

equals 2.

The function round rounds off the expression tor
number to 4 decimal places.

‘E.g.

round (3. 141593) equals 3.1416

Chapter 3 — - 80- PROGRAMMING

If 3 decimal places are required, then 10000 can be
replaced by 1000 in this procedure, etc.

There should be a correspondence between the required
accuracy of the calculation specified by the variable
error and the rounding accuracy specified in the
function round by choosing e.g. 10000. At the very
least no more decimal places than those represented by
the value of error should be returned.

Exercises:
1. Run the program with various functions f(x).

Test the program first using functions with well known
roots e.g. 2x—-6.

Use the program to solve equations which can not be
solved by means of ordinary analytical methods:

The equation EXP(x)=x+7 is an exampie of such a
problem. It is called a "transcendental" equation. It
can be solved using this program by defining the
function f to be EXP(x)—-x-7.

2. Functions can also be used as direct orders when thev
have been SCANed. Try for example:

scan
print round(2.71828183)

3. Create a numerical function FUNC average(a,b), which
returns the average of a and b. Try it as a direct
command.

4. Write a function FUNC vowels (text$), wnhich counts the
number of vowels in a given string. Try using it as a
direct order. Hint: take a look at Program 17 for
inspiration.

STRING FUNCTIONS

Functions can be used for other purposes than just
calculating matematical expressions (a job which they of
course do very well).

The functions which we have just worked with are numerical
functions. COMAL can also handle string functions. A
string function is a function which outputs a string instead
of a number. Just as the case of string variables, the name-
of string functions must end with the character s$.

KEY$ is an example of a built in standard string function
which is already available in COMAL. Others include

STR$ (327) which changes the numerical constant 327 to

the string constant "327".

The following program illustrates how you can create your
own string functions. It consistes of a brief main program
and the function separates$. This string function is

Chapter 3 - -8 - PROGRAMMING

designed to separate a strinag into vowels and consonants.

Program 17:

new
auto 100

0100 PRINT separates("COMAL string functions")
0110 END

0120

0130

0140 FUNC separates(as)

0150 // consonants or vowels

0160 long:=LEN(a$)

0170 FOR i:=1 TO long DO

0180 IF a$(i) IN "aeiouAEIOU" THEN
0190 as:=as$ (i) +as(11i—-1)+a$(i+lzlong)
0200 ENDIF

0210 ENDFOR i

0220 RETURN as$

0230 ENDFUNC separates

Try this example:

If as:="testing"” and i:=2: then line 190 will act as
follows: a$i1= "e" + "t" + "sting"

Notes:
* The vowels are placed in reverse order.

COMAL can interpret an expression such as a$(7:6).
This i1s used in line 1920 when i:=long. (But note that
as$(8:6) is undefined.)

Exercises:

1. Try out the program to see that 1t works as 1t should.
Choose other strinas to test the program. You might
want to experiment with special cases like "a",
"iiiiliieeeee", "qwrtp" and the empty strina.

2. Create a string function which reverses the order of
the letters in an arbitrary string. Try it out!

Z. After having been SCANed a string function can be used
as a direct command just as a numerical function. For
example:

scan
print separates$("sodapop and icecream")

4. Create a string function FUNC fillup$(number,letters)
which prints number of the same letters$. Try it
out as a direct command: print fillup$(30,"“#").

Chapter 3 - -82 - PROGRAMMING

CLOSED PROCEDURES

I¥f you want to be completely certain that any name conflicts
between variable names in procedures and the main program
will be avoided, then you can CLOSE your procedures or
functions. When you do so, you make all variable names in
the procedure or function local. Only those values which
are given in parentheses after the name of the procedure are
allowed in or out.

This is accomplished by using the order CLOSED. For
example:

PROC name (number ,text$) CLOSED

It can be very useful to be able to close a procedure. This
is particularly true when you want to save a very general
procedure in a procedure library and use it in many
different situations. It can be difficult to remember the
names of all the variables which were used. By closing the
procedure you can get around this problem.

The next program illustrates a general procedure which can
be used to sort any series of numbers. The numbers will be
sorted so that they are ordered by increasing value. For
example 4, 3, 7, -1 are sorted tc -1, 3, 4, 7.

The sorting method is called the bubble sort.

There are many algorithms available for sorting. For
example on the demonstration diskette and on the tape you
will find the program quick.sort. It is a fast and
efficient sorting program.

The bubble sort used in Program 18 in not the most
efficient method, but it is interesting and easy tao
understand:

Consider the numbers in pairs starting at the beginning of
the sequence. (You might find it useful to imagine small
bubbles surrounding these pairs.) If a larger number
precedes a smaller one, then they will be swapped. Now the
next pair (the second and third) is considered. These two
numbers are swapped, if the largest number comes first and
so on down the sequence. The procedure is repeated until no
more swaps occur. Here is a brief illustration of the
process:

1. run-through:

4 3 7 -1 1is changed to 3 4 7 -t
3 4 7 -1 no change
T 4 7 -1 1is changed to 3 4 -1 7
2. run—-through:
3 4 -1 7 no change
I 4 -1 7 is changed to 3 -1 4 7
3 -1 4 7 no change
3. run—through:
3 -1 4 7 1is changed to -1 3 4 7
-1 3 4 7 no change
-1 3 4 7 no change

Chapter 3 - - 83 - PROGRAMMING

On the next run-through there will be no more exchanges.

main program (lines 100-290)
procedure print out (lines 320-370)
procedure swap (lines I20-420)

procedure bubble’'sort (lines 440-610)

All the procedures are closed.

Program 18t

new
auto 100

0100 DATA 2,4,78,45,23,-2,56,45,199,43

0110 DATA 3,0,100,34,-19,34,467,88,4,10

0120

0130 // data read-in

0140 DIM position(100)

0150 no#: =0

0160 REPEAT

0170 no#:+1

0180 READ position(no#)

0190 UNTIL EOD

0200

0210 PAGE

0220 PRINT “Unsorted number:"

0230 print ‘out(no#,position())

0240 PRINT

0250 PRINT

0260 bubble 'sort (no#,position())

0270 PRINT "Sorted number 3"

0280 print ‘out (no#,position())

0290 END

0300

0310

0320 PROC print ‘out(total ,number ()) CLOSED
0330 // total number in sequence number () is printed out
0340 ZONE 8

0350 FOR no#:=1 TO total DO PRINT number (no#),
0360 ZONE O

0370 ENDPROC print out

0380

0390 PROC swap (REF a,REF b) CLOSED

0400 // a and b are swapped

0410 remember:=a; a:t=bj bi=remember

0420 ENDPROC swap

0430 .

0440 PROC bubble’ 'sort (total ,REF number ()) CLOSED
0450 // number() is sorted in increasing numerical order
0460 IMPORT smwap

0470

Chapter 3 - - 84 - PROGRAMMING

0480 REPEAT
0490 no "‘swapi=TRUE
0300 FOR no#:=1 TO total-1 DO

0510 IF number (no#) >number (no#+1) THEN
0520 no’swapi =FALSE
0530 swap (number (no#) ,number (no#+1))

0540 ENDIF

05350 ENDFOR no#

0560 UNTIL no swap
0570 ENDPROC bubble’'sort

In line 460 of bubble’'sort the statement IMPORT is used.

It can be used to make variables or procedures accessible in
an otherwise closed procedure. In this case the procedure
name swap is made available in the procedure

bubble sort.

In the main program in line 340 the order ZIONE 8 is used
to space the printout in columns. Printout of a row of
numbers separated by a comma (,) in PRINT-statements will
be done in columns 8 spaces wide.

Note:

* The DATA statements are placed near the beginning of
the main program. They are easy to find when changing
to new values.

Exercises:

i. Try out the program with the values provided. ‘Then trv
with your own values. You should also try the program
with special cases like DATA 2 or DATA 3,3,3,3,3,3.

2. This exercise deals with external procedures:
I1f{ a disk drive is available, procedures can be saved
on diskette individually. Later on they can be brought
in to be used in other programs when needed. After use
they are removed from a program.

Such procedures are termed external when they are
available outside program memory, as on a diskette.

There are two conditions which external procedures must
fulfill:

a. They must be CLOSED
b. They must not contain IMPORT statements.

Now remove all other program lines from program 18
except for the procedure print‘out and save
print‘out on diskette as a prg file under the file
name ext.print ‘out:

save "ext.print ‘out"
The prefix ext. has been added to distinguish this
type of file from other information in the disk

directory.

Then delete the procedure print ‘out from program

Chapter 3 - -8 - PROBRAMMING

18, and add a line with a declaration which indicates
that the program will use an external procedure:

300 PROC print ‘out (no,position()) EXTERNAL "ext.print 'out"”

Now run the program, and note that the external
procedure is fetched from the diskette twice during
program execution.

The use of external procedures saves room in memorvy.

On the other hand the disk operations take time, so the
method should only be used for larger programs or for
programs in which the delay time is not important.

3. Write a program which sorts words in alphabetical
order.

Only a few corrections of Program 18 are necessary to
accomplish this task:

First change the following lines:

140 DIM t$(100) OF 20
510 IF t$(no#) >t$(no#+1) THEN

Next use the CHANGE order:

CHANGE "position","ts"
CHANGE "number","ts$"

Suppiy all the variables in the procedure swap with
$ signs, and change the contents ot the DATA
statements to words or other text.

COMAL can still interpret the logical expression in
line 510, because a ‘'word’ consists of a seguence of
characters each of which has an ASCII value. See
Appendix A for a list of ASCII codes.

The computer handles the letters in each word one after
the other when two wards are compared. If the first
letters of both words are the same, then the next pair
is compared, and so on. This allows an evaluation of
which word is 'largest’. For example the word

“apple" is ‘less than’' "“banana", because a comes
before b in the alphabet, and banana is less than
baseball, because n comes before s.

Be careful when comparing words containing both upper
and lower case letters. Try some experiments!

FILE HANDLING

We have seen how it is possible to save a copy of a program
on diskette or on a cassette tape using the command SAVE. A
copy of the saved program can be fetched into the working
memory later using the order LOAD.

There are also other means of saving programs and program
segments. See Chapter 4 under the heading LIST - ENTER -

Chapter 3 - -8 - PROGRAMMING

MERGE for more information about this. In Chapter 6 you
will find a summary of these file operations.

The next program illustrates one of the many ways in which
data can be saved. By ’‘data’ we mean lists of numbers or
text or perhaps a mixture of numbers and text. Data can be
stored in a file. A more complete treatment of the use of
files in COMAL including numerous examples is found in
Chapter 6.

The introductory program which we will consider here
consists of:

The main program

the procedures
file'numbers(<{fileno>,{filenames$>,number () ,total)
fetch 'numbers({fileno>,<{filename$>,REF number())

The two procedures take care of the jobs of saving numerical
data on disk or cassette and retrieving the data again.

The main program is simply a test program which saves some
numbers in a file, fetches them again and prints them on the
screen.

These procedures operate by opening a data stream to or

from a region on the diskette. The data stream is
characterized by the number <fileno’>, and the region on the
diskette is characterized by its <{filenames$>. It is
thereafter possible to ‘write’ to the data stream, if it has
been opened in the WRITE mode, or one can 'read’ from the
data stream, if it has been opened in the READ mode. A data
stream remains ‘open’ until it is ‘closed’.

Saving data:
OPEN FILE <fileno>,<filename#$:,WRITE

PRINT FILE <fileno>: number

CLOSE FILE <fileno>
Fetching data:
OPEN FILE <fileno>,<{filename%$>,READ

INPUT FILE <fileno>: number

CLOSE FILE <fileno>

Program 191

new
auto 100

0100 PROC file ' numbers(fileno,filenames$,number(),total)
0110 OPEN FILE fileno,filenames,WRITE

Chapter 3

0120
0130
0140
0150
0160
0170
0i80
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560

Notes:

- -8 - PROGRAMMING

FOR is=1 TO total DO
PRINT FILE fileno: number (i)
ENDFOR i

CLOSE FILE fileno

ENDPROC file ' numbers

PROC fetch ' numbers(fileno,filenames$,REF number ())
OPEN FILE fileno,filenames$,READ
it=0
REPEAT
it+1
INPUT FILE fileno: number (i)
PRINT number(i);
UNTIL EOF (fileno)
CLOSE FILE fileno
ENDPROC fetch ' numbers

// numbers are saved and read in from a file
DIM number (100)
PAGE

PRINT "Enter numbers, each followed by <RETURN>."
PRINT "Terminate by entering 99999:"
no: =0
REPEAT

no:+1

INPUT "": number (no)s
UNTIL number (no)=99999

not~1 // the last number is not saved
PAGE

FOR i:t=1 TO no DO PRINT number (i)

PRINT

PRINT “PRESS ANY KEY TO WRITE TO THE FILE"
WHILE KEY$=CHR$ (0) DO NULL

file'numblrs(z,"enumberdata“,numb-r(),no)
PAGE

PRINT "PRESS ANY KEY TO FETCH DATA AGAIN"
WHILE KEY$=CHR$ (0) DO NULL

PAGE

fetch 'numbers (3, "@umberdata" ,number ())

END

#* If the data are to be saved to a cassette tape. the

file

name must be supplemented with the css1 unit

indicator: "csinumberdata"

Data

must be fetched using the same file name as the

one under which they were saved. The stream number

need

not be the same.

The advantage of saving data in files is that the data need
not be associated with a particular program as with DATA
statements. The same data can be used by many different

programs.

Chapter 3 - -8 - PROGRAMMING

Notice especially about file'numbers: In the procedure
call it is essential to specify the (total) number of data
elements which are to be saved.

But note regarding the procedure fetch’'numbers that the
computer will simply stop reading in numbers from the file
when no data are left. To register this condition the
function EOF({fileno)>) is very useful. It takes on the
value TRUE when the file contains no more data, thereby
fulfilling the UNTIL condition.

Data can be saved in ASCII-code format by means of the

PRINT FILE order. The INPUT FILE order must then be

used to enter the data. This combination can be used both

with a disk drive and with a Datassette unit. If vou are ‘
using a disk drive it will usually be best to use the WRITE

FILE and the READ FILE orders instead., because data can

be saved more guickly and more compactly in binary form than

in ASCII form.

Exercises:

1. Try out the program with arbitrary numbers. Change the
file names and stream numbers. Check for legal stream
numbers.

2. Use the program to create a set of data. Use these
numbers instead of the numbers in the DATA statements
in Program 18. You will have to delete lines 100-200
and replace them by lines which read in the numbers
from one of the data files which we have just worked
with.

3. Write a program which saves strings in a file. Read
the information from the DATA statments in Program 12
into this file. Then use this file instead of the DATA
statements in Program 12.

ERROR HANDL ING

It is important that programs are constructed so that they ‘
do not ‘crash’, if the user does something unexpected.

One of the most common causes of undesired program
interruption is the entry of LETTERS in an INPUT statement
in which a NUMRER is expected.

In COMAL there is an error handling structure which can take
this problem and many others into account. Note that the
use of this structure is treated more completely in the
reference section, Chapter 4. Here we will concentrate on
the one type of error mentioned above.

The structure is:

Chapter 3 - -89 - PROGRAMMING

TRAP

(statements in which errors are expected)

HANDLER

(statements to be executed in case of an erraor)

ENDTRAP

If an error occurs in the statements between TRAF and
HANDLER, the computer will jump to the statements between
HANDLER and ENDTRAF. At the same time an ERR code will be
generated. The ERR code can be used to determine which of
the statements in the HANDLER-section should be executed.

In the next proagram example an error handling structure has
been placed in the LDOF - ENDLOOF loop which we used
earlier. This loop assures that the INPUT-statement will be
executed again if input errors are detected.

Note the following about the various COMAL loop-structures:

#* In the WHILE - ENDWHILE structure the condition is placea
right after WHILE at the beginning of the loop.

* In the REFEAT - UNTIL loop the condition is pblaced at the
end, right after UNTIL.

* In the LOOF - ENDLOOF structure a condition can be placed
anywhere inside the loop using the EXIT WHEN command.
When the condition is fulfilled, execution passes to the
first statement after ENDLOOF.

The LOOP - ENDLDOOF structure:

LOooP

EXIT WHEN :condition:> (or just EXIT with no condition)

ENDLOOP

The program consists of a general read—in procedure with
error handling and a brief main program used to check out
the procedure.

Program 201

new
auto 100

0100 PROC number ‘input(line,pos,dpos,text$,REF number)
0110 // number-safe input

Chapter 3

0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500

Notes:

- -90 - PROGRAMMING

// only <STOP> interrupts program
LaooP
TRAP

PRINT AT line,pos: SPC$(LEN(texts$)+dpos);" #*"
INPUT AT line,pos,dpos: text$: number

EXIT // if the input is OK
HANDLER

CASE ERR OF

WHEN 2

PRINT AT 24,1: "The number was too big."
WHEN 206

PRINT AT 24,1: "A number is expected."
OTHERWISE

PRINT AT 24,1: "What happened?"
ENDCASE
FOR pause:=1 TO 1000 DO NULL

PRINT AT 24,1: SPC$(2%)

ENDTRAP
ENDLOOP

ENDPROC number ‘input

// test of input errors

PAGE

REPEAT

number ‘input(10,3,10,"Type in a number: " ,number)
PRINT AT 12,3: SPC$(15)

PRINT AT 12,3: number

UNTIL FALSE

END

* The statement EXIT orders the computer to jump out of
the LOOP structure if the input is ok.

The string function SPC$(number of spaces) can be
useful for clearing part of the screen.

* Line

180 clears the INPUT field and places a % two

blank spaces after the end of the field.

Exercises:

1. Try out the program using both numbers and letters.
Try pressing <RETURN> with no input.

2. The LOOP structure can be replaced by a REFPEAT loop.
The following lines can be used:

Chapter 3 - -9 - PROGRAMMING

no ‘errori=FALSE
REPEAT
no'’'error:=TRUE
UNTIL no’‘error

Where should these lines be inserted?

3. Replace the CASE error texts the the system error
message ERRTEXT$#: PRINT AT 24,1t ERRTEXTS.

4. Your final examination:

The character # in line 180 is a special detail.
What can happen, if this character is left out?
Experiment!

After working through this tutorial chapter vou shouid be
well prepared to continue developing your skill with the
COMAL programming lanquage. Of course there is still much
more to be learned, and you can run into situations which
have not been covered here.

In Chapter 4 you will find a compiete refterence section
treating all of the many commands and statements in COMAL.
In Chapter 4 you will find explanations of each order with
examples to illustrate its use.

-93-

Chapter 4 —
COMAL OVERVIEW
COMMANDS USED BEFORE AND DURING
PROGRAM ENTRY3

NEW - AUTO - RENUM

NEW

‘ 1s a command which causes the pbroagram and the data 1in
workinag memory to be deleted. Svstem variables are set
to their initial values. and packaages and associated
variables are also deleted.

AUTO

1s a command which sets up automatic line numbering
during program entryv. The range of legal line numbers
is: 1 - 9999. During program entry each line should be
terminated by pbressing <RETURN.:. The svstem will
automatically print the next line number on the screen.
AUTO can be disengaged by pressina <RUN/STOP>. If AUTO
is engaged again (or engaged after manual entry of part
of a program), automatic line numbering will begin with
the last line number in the program + 10.

Examples:
AUTO Gives line numbering: 10, 20, 30,...
AUTO 1000 Gives line numbers: 1010, 1020,...
AUTO 100,2 Gives line numbers: 100, 102, 104,...
Notes:

‘ Line numbering with intervals of 10 is often

appropriate. for it allows the insertion of several
extra lines between existing line numbers.

If a line number already exists., the number will appear
in reversed characters to warn the user against
unwanted overwriting of existing code.

RENUM
is a command which provides the program in working
memory with new line numbers. Renumbering can begin
from any line in the program.
Exampless

RENUM New numberina: 10, 20, 30,...

RENUM 2000,5 New numbering: 2000, 2005,

Chapter 4 - -9y - COMAL OVERVIEW

2010,...
RENUM 30034000,10 Line numbers from and including

300 will be changed to: 4000,
4010,...

COMMANDS WHICH ARE USED FOR
PROGRAM EDITING:

EDIT —~ FIND - CHANGE - DEL - SCAN

EDIT
is a command which causes program lines to be printed
one at a time without indentation. It is particularly

useful for correction of program lines which take up
more than one line on the screen. If the LIST order is
used, some lines made contain unwanted spaces after the
end of the first line. After editing, pressing
<RETURN> will cause the next program line to appear, if
more than one line edit has been reguested.

Examples:

EDIT allows editing of all lines, one
at a time.

EDIT 130 allows line 130 to be edited.

EDIT 210-290 permits editing of lines 210 -
290.

EDIT colorcodes lets the user edit the procedure
colorcodes.

Note:

The EDIT command can only be used for orintout to the
screen or to a printer.

FIND .

is a command used during editing to find a name or text
segment in a program. When the text segment has been
found, the system prints out the program line with the
cursor placed on the first character of the text.

After possible corrections press <RETURN>», and the
system will search for the next occurence of the text.

Examples:

FIND “"John" The system will search the
entire program for the word
John.

FIND 200-3500 "John*" The system searches for the

word John in lines 200 -
500.

Chapter 4 - -9 - COMAL OVERVIEW

FIND colorcodes “red” The svstem searches for the
word red in the procedure
colorcodes.

CHANGE

DEL

is a command which is used to search for and replace a
text segment. When the text segment to be changed has
been found, the system prints out the program line with
the text segment blinking like a cursor.

There are now three options:

1. You can make the change by pressing <RETURN).

2. You can edit the line without the automatic change:
Press the <C=)> key.
Change the line as desired.
Press <RETURN>.
The search will be continued.

3. You can order the search to continue with no chanages:
Press n or N.
The search will continue.

Press <STOP)> to interrupt the CHANGE operation.

Examples:

CHANGE ‘“"red","vellow" The search text red
is replaced by the
replacement text yellow
everywhere in the

program.

CHANGE 50-200 "x1","xstart" The change is made in
lines S50 - 200.

CHANGE square "up",”"right” The change is made in
the procedure square.

is a command which is used to delete proaram lines.

Exampl es:

DEL 20 Line 20 is deleted.

DEL 40,200-280 Lines 40 and 200 — 280 are deleted.

DEL printout The procedure printout is deleted.
SCAN

is a command which causes the system to run through the
program in the working memory. This process is also
called making a prepass. The program structure is
checked for possible errors, and any error in structure
is reported. After a SCAN without any error messages,
approved procedures and functions can be executed
directly from the keyboard like commands.

Chapter 4 - -% - COMAL OVERVIEW

Examples:
Program as entered:

0100 number=0

0110 repeat

0120 print numbar

0130 number:+2

0140 print "You saw some even numbers."
0150 end

SCAN

The system will report: at 1501 "UNTIL" missing

add the line: 135 until number>20

After a new SCAN the program should appear as {follows:

0100 number:=0

0110 REPEAT

0120 PRINT number

0130 number: +2

0135 UNTIL number >20

0140 PRINT "You saw some even numbers."
0150 END

OTHER COMMANDS:
SETEXEC

is a command which has two distinct formats: SETEXEC-
and SETEXEC+.

During the initiation of the system, a SETEXEC- is
executed. This causes the kevword EXEC to be omitted
from procedure calls.

After a SETEXEC+ command EXEC will be printed before
all procedure calls.

Example:

Frogram segment as it would be listed after system
start-up:

0100 PRINT "Numbers are read in and printed out."”
0110 read’in

0120 print ‘out

0130 END

0140

0150 PROC read’in

0160 INPUT "Write the number: ": number
0170 ENDPROC read’in

0180 PROC print ‘out

0190 PRINT number

0200 ENDPROC print out

After SETEXEC+:

Chapter 4 - -97 - COMAL OVERVIEW

0100 PRINT "Numbers are read in and printed out."
0110 EXEC read’in

0120 EXEC print‘out

0130 END

COMMANDE USED TO CHECK AVAILABLE
MEMORY AND DISK STORAGE:

S8IZE - CAT - DIR

SIZE

is a command which causes the present usage of bytes of
working memory to be reported.

Exampl e:
SIZE System response:
prog data free
13501 02466 14747
CAT

is a command which causes a catalogue of the contents

of the diskette to be printet. If several disk drives
are connected. then the station number can be included
in the command.

Examples:

CAT All file names are listed.

CAT “ta" The names of all files beginning
with t are listed.

CAT "?7est??" The names of all files which are &
characters long and with characters 2-4
equal to est are listed.

CAT “2:" The contents of the diskette in the
second disk drive are listed. The
second drive must be set up as "device
?". This can be done using a jumper
inside the second drive or by means of
software. See your 1541 instruction
manual for more on how to do this.

Note:

FPressing the space bar will stop the printout of the
‘disk catalogue. Pressing it again will allow it to
continue. <STOP> will end it.

DIR

may be used as a command or as a statement. Like CAT
this order causes the contents of the diskette in the
drive selected to be printed out. Unlike CAT, DIR can
be used as a statement in a program if desired.

Chapter 4 - -R - COMAL OVERVIEW

LIST - ENTER - MERGE - DISPLAY

LIST

is a command which is used to print out all or part of
the program in working memory. It is also used to
store all or part of a program to diskette or to the
Datassette tape unit. When this is done, the program
is saved as a sequential file in ASCII-format. Copies
of the program which have been. saved using the LIST
command must be reentered using the ENTER or MERGE
commands. They can NDT be entered using LOAD.

Examples: .
LIST All program lines are printed.

LIST 200-400 Program lines 200-400 are printed.

LIST 300- The program is printed from line 300 onward.

LIST demoproc The procedure with the name demoproc
is printed.

If the LIST order is followed by a name in quotation
marks, then the listing will be done to diskette or
cassette tape:

LIST “program name" The entire program is saved
under the file name program
name.

LIST demoproc "lst.demo" The procedure demoproc is
saved under the file name
lst.demo. The prefix lst.
is not essential. It is
included to remind us that the
program has been saved by a
LIST command.

Notes: ‘

The printout of the listing to the screen will proceed
more slowly if the <CTRL>» kev is depressed during the
printout.

The printout can be stopped temporarily by pressing the
space bar once. Press it again to continue the
listing.

Fressing the <STOP> key interrupts the printout.

The printout can be directed to a printer, i+
available, with the command list “lps*

If a program line extends beyond a single line on the
screen, the LIST order will cause it to be split due to
indentation. Place the cursor on the line in question
and press <CTRL-A>. The line will be pulled together
again with no indentation.

Chapter 4 - -99 - COMAL OVERVIEW

ENTER

is a command which fetches a program which has
previously been saved to diskette or cassette tape
using the LIST command into working memory. NB3

ENTER acts differently than MERGE. If there is already
a program in working memory, ENTER will erase it.

Examples:

ENTER "lst.name" The program lst.name is
fetched from diskette.

ENTER "csi:lst.Program 3" The program L.Program 3 is
fetched from the Datassette
unit.

Note:

A program which has been save using the SAVE order can
NOT be read in again using ENTER.

MERGE

is a command which is used to fetch a program segment
from diskette or cassette and copy it into working
memory. The program segment must have been saved using
the LIST command.

Examples:

MERGE "lst.circumference" The program
lst.circum’'ference is
fetched from diskette and
added to the existina
program with line numbers
starting after the end of
the current program.

MERGE 1000,5 "lst.start” The program (or segment)
lst.start is read in and
added to the current program
at lines 1000, 1005, 1010...

Be careful not to

unintentionally overwrite
existing program lines.

DISPLAY

is a command which lists a program or a program segment
with NO LINE NUMBERS in the listing.

Examples:

DISPLAY The entire program is
listed to the screen.

DISPLAY. 20-90 "lp:" The program from line

20 to and including line

Chapter 4 - -106- COMAL OVERVIEW

Q0 is printed on the
lineprinter with no line
numbers.

DISPLAY sort “dsp.sort” The contents of the
procedure sort is
stored on diskette under
the name dsp.sort.

Note:

A program which has been saved on diskette (or tape)
with the DISPLAY command can not be fetched again using
ENTER or MERGE. However it can be read in as an
ordinary sequential ASCII file using the order INPUT
FILE.

SAVE - LOAD
SAVE

is a command which saves a copy of the program in
working memory to diskette or tape in compact binary
form. A SAVEd program can be fetched later using one
of the following: LOAD, RUN or CHAIN.

Examples:

SAVE "program name" The program in working memory is
saved to disk under the file name
program name.

SAVE “csiracetrack” The program is saved to cassette
tape under the file name
racetrack.

Note:

Any program packages which are associated with the
COMAL program by means of the LINE order are saved
together with the COMAL program as one file. When the
program is later entered into working memory, e.g.
using LOAD, both the COMAL program and the machine
.language package are read in together.

LOAD

is a command which transfers a copy of a program from
diskette or cassette tape into working memory. The
program must have been saved earlier by means of the
SAVE command. The LOAD command deletes any previously
existing program and all variables from working memory.

Exampl es:

LOAD "program name" transfers a copy of the program
saved under the file name program
name from diskette into working

memory.

LOAD “cs:*” A copy of next program on the

Chapter 4 - - 101- COMAL OVERVIEW

tape is fetched into memory via the
Datassette.

RUN_ - CHAIN - CON

RUN

1s a command which causes the program in working memory
to be executed. All variables are zeroed and the
computer begins by examining the program structure for
possible errors. A program can also be fetched from
diskette or tape and started automatically using the
RUN command.

Examples:

RUN frogram execution is started (the
program is ‘run’).

RUN “program name"” The file program name is
fetched from diskette and execution
begins.

CHAIN

can be used as a statement or as a command. It fetches
a copy of a program from diskette or from cassette tape
and starts it running. Any existing program in working
memory will be deleted first.

Used as a command CHAIN “<file name>*" works like RUN
"<file name>".

CHAIN is particularly useful when used as a statement
in a program. It allows the user to break down a large
program into smaller independent units.

Examples:

CHAIN "cs:name" The program name is fetched
from cassette tape and started.

Program example:

INPUT "Choose a program number: ":no
CASE no OF
WHEN 1
CHAIN "program 1"
WHEN 2
CHAIN “program 2"
OTHERWISE
CHAIN “program 3"
ENDCASE

CON

is a command which causes program execution to continue
in an interrupted program. The program may have been
interrupted by an error, by activation of the STOFP key
or by a STOP statement in the program. While the
program is stopped, changing the contents of existing

Chapter 4 - -102- COMAL OVERVIEW

variables is permitted. However new variable names may
not be added, and the program may not be changed. No
line may be altered, and no new lines may be added to
the program while it is interrupted. If this is done,
execution cannot be continued using the CON command.

STATUS - STATUSS

STATUS is a command which causes the system to report
on the status of the disk operating system and zero the
error flag. STATUSS$ is a string function which
contains the status report. S8TATUS performs the same
operation as PRINT STATUSS.

Example:

Right after the system is turned on
STATUS

will cause the system to answer
73,cbm dos v2.46 1541,00,00

VERIFY

is a command which can be used to check that the
program on the diskette or cassette tape (saved using
the SAVE command) is identical to the program which is
currently in the workina memory of the computer.

Warning: Take care not to change the program in
working memory before using VERIFY (spell correctiv!i.

Example:

VERIFY “"test prog" The COMAL svstem reports verify
error, if the program saved under
the file name test prog and the
-program 1in working memory are not
exactly alike.

COPY — DELETE - RENAME - PASS

COoPY

can be used as a command or a statement for copvying
diskette files.

Examples:

COPY "old 'file","new’'file" The system makes a
copy of the program
old’'file and saves
it on the same disk
drive under the name
new’'file.

COPY “Ostprogram 3","l:program 3" The system copies
program 3 from
disk drive 0s and
saves it with the
same name on disk
drive 1.

Chapter 4 - -103- COMAL OVERVIEW

DELETE

may be used as a command or a statement to delete files
on a diskette.

DELETE "testdata" The file testdata is deleted.

DELETE "test#" All files which begin with test
are deleted.

RENAME

is used as a command or a statement to change the name
of a file.

Example:

RENAME "old", "new" The diskette file with the
name old is assigned the new
name new.

PASS

can be used as a command or a statement to send orders
to the disk operating system.

Examples:

PASS "nO:procedurebib,al"” Formats a new
diskette on disk drive
0. This diskette gets
the name procedurebib
and the identification
number al.

PASS "n2:diskname,01",9 Formats a new diskette
on the extra disk drive
(no. 2) with unit
number 9.

PASS *v" Clean house ({(garbage
collection): The files on
the diskette are
collected and any open
files are closed. The
letter v represents the
word validate.

Note:

There are additional orders which can be transferred to
the disk operating system using PASS. But there are
more suitable COMAL-instructions for accomplishing the
same functions.

Chapter 4 - -104- COMAL OVERVIEW

SELECT INPUT - SELECT OUTPUT

SELECT INPUT

may be used as a command or a statement. It causes
subsequent read-in, which normally would occur from the
keyboard, to come from the specified sequential ASCII
file. This read-in can be terminated by pressing the
<STOP> key, by an END-OF-FILE or by errors in the
program. At this point input will again be from the
keyboard.

INPUT statements, KEY$ and inkey$ also receive their

input from the SELECT INFUT file. The COMAL system
interprets this input as if it came from the keyboard ‘
and echoes it in the usual manner to the screen.

If SELECT INPUT is used as a command it can be used to
redefine the meanings of the function keys.

SELECT INPUT "kb:" kKeyboard input. As
with the start up or
restart of the COMAL
system.

SELECT INPUT "checkfile" checkfile will be
read in as if it came
directly from the
keyboard.

SELECT OUTPUT/SELECT

can be used as a command or as a statement. It is used
to select the unit to which subsequent output will be
sent. If one simply writes SELECT, the system will
automatically add OUTPUT in the program listing after
the program has been scanned or run.

SELECT OUTPUT "ds:" Printout is sent to the
screen, as when the
computer first is started

°

SELECT OUTPUT "lps* Printout is directed to
the printer.

SELECT OUTPUT "O:namefile" A sequential file with
the name namefile is
created on disk drive
0, and subsequent
printout is directed to
the file.

Notes:
SELECT OUTPUT can be abbreviated to SELECT. The
system automatically adds QUTPUT after a scan or a

run.

Frintout will automatically return to the screen after
the LIST command has been executed.

Chapter 4 - -105- COMAL OVERVIEW

Even if printout is directed away from the screen, e.g.
to a printer, text provided in INPUT statements will
still be directed to the screen.

COMMANDS FOR SYSTEM START-UP:

BASIC - SYS to COMAL

The BASIC command directs the computer to initiate
the Basic operating system. The computer can be
directed back to the COMAL system with the order:
8Y§ 350000
Both orders cause all information in working memory to
be deleted.

COMMANDS AND STATEMENTS CONCERNING

THE USE OF MACHINE CODE PROGRAM PACKAGES

(See also Chapter 8 on COMAL and programs in machine code.):

USE ~ LINK - DISCARD

USE

may be used as a command or a statement to append a
named machine code program package to the COMAL program
in working memory. The name of the package is hereby
made known to the COMAL interpreter.

The order is used for example to make the built-in
packages in the COMAL cartridge accessible in a pro-

gram. See more about how to use packages in Chapter S.

Example:

USE graphics The package graphics 1s activated.
LINK

is a command which fetches a file with a machine code
package from diskette and transfers a copy into working
memory. The name of the package can then be made known
to the program by means of the USE order.

Examples

LINK "obj.driver" The object code file with the
name obj.driver is fetched.

USE driver The above LINKed file contains
the package with the name driver,
which is hereby activated.

Note:

A machine code program which is associated with a COMAL

Chapter 4 - -106- COMAL OVERVIEW

program by means of the command LINK is saved

together with the COMAL program as one file using the
SAVE command. A later LOAD will automatically fetch
both the COMAL program and the machine code program.

DISCARD

is a command which removes all machine code program
packages from working memory.

The COMAL program is not lost, but the interpreters
name table is only intact again after a RUN or a SCAN
has been performed.

STATEMENTS USED DURING READ-IN AND PRINTOUT .

INPUT - INPUT AT - KEYS$

INPUT

is a statement which reads data into a program during
execution. After an INPUT statement the system stops
execution and waits for a user response. The cursor
flashes at the beginning of the input field. All
responses must be terminated by a <RETURN>.

Examples:

INPUT "Total ": number The system awaits
number as
response.

INPUT "What's your name? ": name$ The system awaits
a string input.

INPUT "Position (X,Y) = "1 x,y Several numbers
can be entered in
the same INFUT
statement.

INPUT "Item number: ": noj A (3) or (,) ‘
after the variable
name suppresses the
carriage return
after the answer.

INPUT AT
acts like INPUT with the added possibility of placing

the input field anywhere on the 25 lines and 40 columns
of the screen. ’

Examples:

INPUT AT 4,103 "Number = "3 no The input message
starts on line 4, column
10.

INPUT AT 4,7,15: "Name “: texts The input message

starts on line 4, column

Chapter 4 - =107 - COMAL OVERVIEW

7. The input field is
limited to the 15
following spaces which
are protected from other
uses.

Special case:

A O given as line or column number means current
value.

Exampl e:

INPUT AT 0,0,10: “Town "“stowns The input message
starts at the
present line and
column, but the
response field is
limited to 10
characters.

See also INPUT FILE and SELECT INPUT.

KEY$

is a function which reads the keyboard input buffer to
determine the last character activated. If no
character has been sent, then the function returns the
value chr$(0) or "“0“", Frogram execution is not

stopped in contrast to the INFPUT statement and the
function inkey$ (in the system package).

Examples of use:

WHILE KEY$=CHR$(0) DO NULL The program
‘hangs’ in the same
line until the user
presses any key.

DIM answer$ OF 1
PRINT "Answer yes/no"

REPEAT The system waits for
answers$: =KEY$ activation of
UNTIL answer$ IN "yYnN" Y.Y,n or N.

PRINT - PRINT AT - PRINT USING - TAB - ZONE

PRINT

may be used as a command or a statement. It is used to
print data on the screen or send it to other output
devices. If the FRINT line contains several items, they
can be separated by a semicolon (g). This will cause

a single space to be printed between each item. If a
comma (,) is used, the the number of spaces between

the beginning of each item is determined by the ZONE
order. During program coding PRINT can be abbreviated
to g.

Chapter 4 - -108- COMAL OVERVIEW

Examplest
PRINT "Result: "jspeed;"m/s" text and numbers
can be mixed in the
printout.
PRINT Prints out an empty line.
PRINT texts$; The carriage return is supressed
by .terminating the PRINT line with
a (3) or a (,).
PRINT AT

can be used as a command or as a statement. It makes
it possible to print numbers or text at any character
position on the screen. Line numbers may range from 1

- 25, and column numbers from 1 - 40.
Example:
PRINT AT 3,12: "Name is"; name$ The printout

begins in the 3.
line, column 12.

Special case:

A O as line or position number means present or
current.

Example:

PRINT AT 0,30: "“COMAL" Write on the present
line, column 30.

PRINT USING

can be used as a command or a statement. It is used
for printing numbers in a well defined format.

Examples:

PRINT USING "Price ###.##": price The amount is
written in the
format determined by
the # signs and
the decimal point.
In this example
there is room for 3
digits before the
decimal point and 2
digits after it.

The various PRINT options can be combined:

PRINT AT 10,13: USING "Spead = ##.##": speed

Chapter 4 - -109- COMAL OVERVIEW

Note:

If the number is too big to fit in the specified
format, the printout will consist of a row of stars:
R,

TAB

is a system function which is used in connection with
the PRINT order. TAB is an abbreviation for
TABulation.

Example:

PRINT "Itemnumber: ",TAB(25) ,no After the text
Itemnumber: has
been printed, the
system will move the
cursor to column 25
where no will be
printed.

See also FPRINT FILE and SELECT OUTFRUT.

ZONE
is a statement and a function which is used in
connection with the comma (,). It is used to define
the interval between columns in PRINT printouts. When
COMAL is initiated and after the use of the command
NEW, ZONE is equal to O.
Examples:
After start—up:
PRINT 23,56,89 will be printed out as

235689 with no spaces between numbers,
because ZONE equals O.

ZONE S The column interval is set to S.
PRINT 23,56,89 will now be printed out as
23 356 89 The first number will begin in

column 1, the next in column &, the
next in 11, etc.

spacingi=2Z0ONE ZONE can be used as function for
example to assign a value to the
variable spacing which is given
the current ZONE value.

PAGE - CURSOR
PAGE
can be used as a command or a statement. It is used to

clear the screen. If a printer has been selected as
the output device, a form feed order will be sent to

Chapter 4 - -110- COMAL OVERVIEW

the printer.
CURSOR

can be used as a command or a statement. It can be
used to position the cursor on the screen. The
character position 1,1 is in the upper left-hand
corner, and 25,40 is in the lower right—-hand corner.

Examples:

CURSOR 15,30 Place the cursor on line 15,
column 30.

CURSOR 0,10 Mave the cursor to the present

line, column 10. A 0 means
present or current.

Note that the specification of the screen position
using CURSOR, INPUT AT and PRINT AT use the line and
column method in contrast to high resolution graphics.
In graphics the paosition is specified using a
conventional (X,Y) coordinate system.

READ - DATA - RESTORE - Label: - EOD

READ

is a statement which is used to read values from a DATA
statement. If the READ statement contains several
variable names, then these are separated by commas

(y).

Example:
READ name$,street$,no,postno,towns
DATA

is a statement which contains the values which the
variable names in a READ statement are assigned. DATA
statements are not executed. For this reason they can
be placed anywhere in a program. However DATA
statements are local within a procedure or a function.

Exampl es:

The DATA statement can contain both text and numbers.
Text must be enclosed within quotation marks “:

DATA "John Smith","Easton”,"Pennsylvania"

DATA 230,%$e6,%11100110 a DATA statement can
contain both decimal numbers,
hexadecimal numbers and binary
numbers.

Chapter 4 - -111- COMAL OVERVIEW

RESTORE

can be used as a command or as a statement. It sets
the DATA pointer to point at the first DATA statement
in a program or to the first statement right after a
label.

label:

is a freely chosen name which is used to specify an
entry point at some line in the program. The label is
not executed like an order. It can be used in
connection with RESTORE (and GOTO). See the summary
example after the definition of EOD.

®

is a boolean (logical) system function which is used
during a READ from DATA statements. EOD means End

0Of Data. As long as DATA-values remain in the

list, EOD is FALSE. When the last DATA-value has been
read, then EOD is set to TRUE.

Summary example:

DATA "screws",112,"nails",50
toys:
DATA "cars",220,"dolls",35
DATA "balls",746,"jump ropes" ,24
DIM name$ of 20
RESTORE toys
WHILE NOT EQD
READ names$,total
PRINT "There are "jtotaljnames;”left."
ENDWHILE

Notes:

It is usually convenient to place DATA statements near
the beginning of the proagram, so they are easy to find
and revise.

. A label toys: has been placed just before the DATA
statements containing the list of taoys.

RESTORE toys assures that READ begins in the
following line.

Read-in and printout of the toy inventory continues
until EOD is set equal to TRUE. This happens when
there is no DATA left in the list.

Chapter 4 - -112- COMAL OVERVIEW

INSTRUCTIONS FOR COMMUNICATION WITH FILES
MOUNT - CREATE
MOUNT

can be used as a command or as a statement. It sets up
a diskette which has just been placed in the disk
drive, getting the diskette ready for reading and
writing operations. Cassette tapes do not require
this, and diskettes will usually operate properly
without being MOUNTed. To be on the safe side it is
wise to MOUNT diskettes each time they are put into the

drive.

Examples:

MOUNT disk drive 0 is initialized.

MOUNT "1z disk drive 1 is initialized.
CREATE

can be used as a command or as a statement. It creates
a file on diskette. A file can also be created using
the OPEN order, but communication with the file can be
carried out about 10 times faster, when the file has
been CREATEd first.

Example:

CREATE "textfile" 300,42 A file by the name of
textfile with 300
records, each 42

characters (bytes’) long.

OPEN FILE/OPEN - READ — WRITE — APPEND - RANDOM

OPEN FILE/OPEN

can be used as a command or as a statement. It is used
to open access to a file on a peripheral device, e.g.
diskette, cassette, printer etc. Several sequential
files can be open at the same time with different
stream numbers. The term stream number refers to that
fact that a data channel is opened to or from the file.
It the word FILE is omitted during program coding, the
system will automatically add it to the listing after a
SCAN or RUN.

There are many ways to open files. See Chapter 6 for
further information. In the following only a few
examples of the use of READ, WRITE, APFEND and RANDOM
will be given.

Examples:

OPEN FILE 3,"datafile" ,WRITE The file with the name
datafile and stream
number 3 is opened to
receive data.

Hereafter in the program

Chapter 4 - -113-

OPEN FILE 7,"cs:names",READ

OPEN FILE 15,"data",APPEND

OPEN FILE 4,"names,usr",WRITE

OPEN FILE 5,"text",RANDOM 42

OPEN FILE 4,"1p:tlist”,WRITE

PRINT FILE - INPUT FILE

PRINT FILE

COMAL OVERVIEW

stream number 3 is
reserved for this file,
until the file is closed
by means of a CLOSE FILE
3 order.

The cassette file
names is opened to
return data to the
program. The file is
identified by stream
number 7.

An already existing
sequential disk file with
the name data is opened
for addition of new

data following the
existing data on the
file. The file i1s
identified by the stream
number 15.

A sequential file is
opened with the
classification usr
instead of seq.

The file text is

opened. RANDOM indicates
that it is a random
access file. Each

record will have room for
42 characters (i.e.
bytes) on the diskette.
42 bytes will be taken up
on the diskette even
though the individual
records do not use all
this room. Access to the
records 1s speeded
however, because each
record has the same
length. The position of
each record can be
determined when the
record number is known.

A file with the name
list is opened to the
printer.

can be used as a command or as a statement. It is used
for sending data in ASCII-format to a file on diskette,
cassette tape or other peripheral. The file must have
been previously opened by means of the OPEN order. The
file is identified by its stream number.

Chapter 4 — -114- COMAL OVERVIEW

When PRINT FILE is used to send data to a file, the
individual data elements are separated by a carriage
return <CR>, i.e. ASBCII-code 13.

A file which has been written to using PRINT FILE can
be read using the order INPUT FILE.

Exampl es:

PRINT FILE 2: item$ The value of the
variable is written to
the sequential file with
stream number 2. The
printout is terminated by
a <CR> after items$.
The file is opened using
OPEN 2,..,WRITE or
APPEND.

PRINT FILE 4,7: names$,town$ The values of the
variables are written to
the random access file
with stream number 4,
record number 7 (opened
with RANDOM) .

INPUT FILE

is a command or a statement used to read data from a

file which has been opened with OPEN no,name$,READ or
RANDOM. The file must contain data in ASCII format,

written with the PRINT FILE order.

Examples:

INPUT FILE 23 items$ The value of the
variable is read in from
the sequential file with
stream number 2. The
file must have been
opened as a READ type.

INPUT FILE 4,7: name$,towns$ The values of the
variables are read in
from file 4, record 7.
The file must have been
opened as a RANDOM type.

WRITE FILE - READ FILE

WRITE FILE

is a command or a statement which transfers data to a
file in compact binary form. The file is sequential,
if it is opened as a WRITE or APPEND type; and it is
random access, if it has been opened using RANDOM.
WRITE FILE is preferable where possible instead of
PRINT FILE, because the binary form takes up less
space, and access is faster. It is not possible to use
WRITE FILE to store data on a cassette tape unit.

Chapter 4 - -115-

Examples:

WRITE FILE 2: first$,last$,tel

WRITE FILE 3: tablevalues()

WRITE FILE 4,12: nojtexts$;others$

READ FILE

COMAL OVERVIEW

The values of the
variables are
written in binary
form to the
sequential file with
stream number 2.
The file must have
been opened earlier
with the order OPEN
2y...,WRITE or
AFFEND.

The entire set of
numbers epresented
by tablevalues()

is written to file

The values of the
variables are
written in binary
form to a random
access file. The
stream number is 4,
and the record
number is 1Z2. The
file must have been
opened earlier using
OPEN 4,... ,RANDOM.

s a command or a statement which i1s used to read data
from a file which has previously been opened using the

order OPEN no,name$,READ or RANDOM.

The file must

contain data in binary form, written with the order

WRITE FILE.
Examples:

READ FILE 21 firsts$,lasts$,tel

READ FILE 4,12t nojtext$jothers

The data values

are read in from the
sequential file with
stream number 2.

The file must have
been opened as a
READ type.

The data values
are read in from
file no 4, record
12. The file 1is
random access and
must have been
opened with RANDOM.

Chapter 4 - -116- COMAL OVERVIEW

CLOSE FILE/CLOSE

can be used as a command or as a statement. It closes
files which have been opened with the OPEN order.
Serious errors can arise if one attempts to copy or
rearrange open files. If the word FILE is omitted when
this order is used as a statement, it will be added
automatically by the system after a SCAN or RUN.

Examples:
CLOSE All open files are closed.

CLOSE FILE 2 The file with stream number 2
is closed.

UNIT - UNITs
UNIT

can be used as a command or as a statement. It is used
to specity which unit is to be used for file operations
when the file name does not contain this information.
When COMAL is started, the disk drive number O is
automatically selected as the unit. See Chapter 7 on
Per@pheral Equipment for further information.

The following units may be selected:

cst cassette

Ot disk drive no O (default)

1: disk drive no 1

23 extra disk drive (usual choice)

Note that if a second disk drive is connected via the
IEEE serial bus, it should be set up to act as ’‘device
9. It will then repond to COMAL orders when
referenced as unit 2.

Example:
UNIT "css" Cassette is the default unit.
UNITS

is a system function which returns the name of the unit
to be used, if no other specification is given in the
file name.

Example:

PRINT UNITS$ the system responds e.g. with O1

Chapter 4 - =117 - COMAL QVERVIEW

PROGRAMMING STRUCTURES

Conditionals

Loops

Error Handling
Procedures and functions

CONDITIONALS

IF -~ THEN - ELIF - ELSE - ENDIF

are statements which are used in IF-THEN structures.

An IF-THEN statement can be formulated in many
different ways. The fundamental principle is, however,
quite clear: If a {logical expression) is true,

then the associated statements will be executed.
Another way of expressing the same thing is to say that
if a given <{condition> is fulfilled, then the
associated statements will be executed.

Example 11t

IF <logical expression> THEN <statement:>

is a single line version: If the <logical expression>
is true, then the <statement> after THEN is executed.

Otherwise the program just continues in the next line.

IF answers$="yes" THEN print‘data

Example 2:

IF <logical expression> THEN Multiline version:
<statement> If the expression is true,
<statement> the statements between
«ne THEN and ENDIF are
“ee executed.

“ae Otherwise execution jumps

ENDIF to the line after ENDIF.

IF number>=0 THEN

square ‘root:=80R (number)

PRINT "The square root of"jnumber;"is"jsquares’root
ENDIF

Example 3

IF <logical expression> THEN
-me . 1f{ the expression is true,
{statement> then the statements between
e THEN and ELSE are executed.

Otherwise the statements

ELSE ELSE and ENDIF are executed.

{statement>

ENDIF

Chapter 4 - -118- COMAL OVERVIEW

IF answers$ IN "aeiou" THEN

PRINT answer$;"is a vowel.*
PRINT “Want to try again?"

ELSE

PRINT answer#$;“is not a vowel."
PRINT "The letters: aeiou are vowels,"
PRINT "all other letters are usually consonants."

ENDIF
Example 4:

IF <condition1> THEN
<statement>

ELIF <condition2>
{statement >
<statement>

ENDIF

IF number=0 THEN
add ‘data

ELIF number=1
delete ‘data

ELIF number=2
print ‘data

ENDIF

Example S:

IF <condition1> THEN
<{statement>

ELIF <condition2>
<statement>

ELSE

{statement>

ENDIF

ELIF is short for ELSE IF

If <conditionl> is fulfilled,
then the statements between

THEN and the first ELIF,

are carried out. Then program
execution continues after ENDIF.
If <conditionl> is not fulfilled,
then <condition2> is checked. If
true, then the statements down to
the next ELIF are executed.

Next, control passes to the

line after ENDIF. Otherwise
<condition3> is checked, etc.

If no condition

is fulfilled, then the
statements between
ELSE and ENDIF are
executed.

IF as="mail" AND b#$="box" THEN

PRINT "Yes indeed!'"

PRINT “The word should be j;a$+bs$
ELIF a$="box" AND b$="mail"
PRINT “Try reversing the words."

ELSE

PRINT "The words don‘t agree."

PRINT "Look at the drawing again,"
PRINT "and try again!'®
ENDIF

Chapter 4 -

-119- COMAL OVERVIEW

CASE - OF ~ WHEN —~ OTHERWISE - ENDCASE

are statements which are used in the CASE-structure
to direct program execution in a situation where a
number of choices are available.

Example:

CABE <expression> OF

WHEN <1. value>

<statement>

WHEN <2. value?>

<{statement>

WHEN <3. value>

<statement>

OTHERWISE (can be left out)

<statement>

ENDCASE

CASE answer OF
WHEN 1

PRINT "Hm.."
WHEN 2

tegn’linie
WHEN 3,4

tegn ‘polygon
OTHERWISE

tegn ‘cirkel
ENDCASE

Special example:s

CASE TRUE OF

Depending on the value of

answer, one of the procedures

will be executed. If the answer

is 1,2,3 or 4, then the statements
under the corresponding WHEN are
executed. Otherwise the statements
follawing OTHERWISE are carried out.
The structure ends with ENDCASE.

WHEN denominator >0

PRINT "Positive

denominator"”

WHEN denominator=0
PRINT "Be careful!'!"
PRINT "Denominator is zero."
WHEN denominator<0O
PRINT "Negative denominator"
PRINT "The sign is changed!'"
denominator: =-denominator

ENDCASE

LOOP STATEMENTS

REPEAT - UNTIL

are statements which are used in the REPEAT-
structure. The statements within the REPEAT-UNTIL
loop are repeated until the logical (boolean)
expression in the UNTIL statement is true.

Example 1:

Chapter 4 - -120- COMAL OVERVIEW

REPEAT <statement> UNTIL <logical expression>

is a single line version:
<{statement> is executed until <logical
expression> is true.

REPEAT read 'file UNTIL text$="Susan" OR EOF (no)

The procedure read’file will be

carried out until the logical expression
is true. Her is udtrykket, that the
variable text$ is equal to "Jens", or
EOF(nr) is true (which will occur if
there is no more text in the file being

read) .
Example 2
REPEAT Multi-line version:
<statement> The statements between REPEAT
ess and UNTIL run until the

UNTIL <logical expression?> 1logical expression is true.

REPEAT The INPUT statement will be
INPUT "New number ": a carried out until
UNTIL a<o the number read in is negative.

Note that the statements in the REPEAT structure are
always carried out at least once, because the logical
expression is at the end of the loop.

WHILE - DO - ENDWHILE

are statements which are used in the WHILE-structure.
The statements within the WHILE-ENDWHILE loop are
repeated as long as the logical expression in the WHILE
statement is true.

Example 1:

WHILE <logical expression> DO <statement>
is a single line version: .
As long as <logical expression> is true
<statement?> is executed.

WHILE name$<>"Peter" DO get name
The call for the procedure get 'name is

repeated, as long as names$ is
different from "Peter",

Example 21

WHILE <expression> DO As long as <expression>
{statement> is true, the statements
e between DO and ENDWHILE

ENDWHILE continue to be executed.

bi=1

WHILE KEY$=""0"" DO As long as no key is pressed,

Chapter 4 - -121- COMAL OVERVIEW

bs=2#b new numbers in the series will
PRINT 1/b continue to be printed out.
ENDWHILE

Notice that the keyword ENDWHILE must not be used in
the single line version.

FOR — TO - STEP - DO - ENDFOR

are statements which are used in the FOR - ENDFOR
structure. The statements within the FOR loop are
repeated a predetermined number of times, then program
execution continues with the line after ENDFOR. The
loop variable <counter> is local.

Example 13

FOR <counter>i=<{start> TO <end> DO <statement>
is a single line version:
The loop is repeated <end>-<start>+1
times with <counter> equal to
<{start>, <startd>+1,..., until <end>
is passed.

FOR n:=0 TO 30 DO PRINT at(n)j

Example 2:

FOR <counter »i=<start> TO <end> DO
<statement>

ENDFOR <counter>

FOR no:=1 TO 10 DO The FOR loop is repeated 10
INPUT "Name: ":name$(no) times with the variable no
INPUT "text: “":ttext$(no) equal to 1, 2,..., 10.

ENDFOR no

Example 31

Version with STEP parameter:

FOR angles=0 TO 6.3 STEP 0.1 DO As indicated by

PRINT COS(angle)j;SIN(angle) the STEF parameter,
PRINT COS(angle)~2+SIN(angle)”~2 angle will take on
ENDFOR angle the values:
0y Oulyene,y 6.3

FOR i#si=max TO min STEP -1 DO The integer variable i#
moveto(0,0) increases the speed.
drawto(x (i#) ,y(i#)) The STEP parameter can
ENDFOR i# also be negative.

Note:

The keyword ENDFOR is not used in the single line
version.

The single line version can also be used as a command.

Chapter 4 - ~122- COMAL OVERVIEW

LOOP - EXIT - EXIT WHEN - ENDLOOP

are statements which are used in the LOOP-ENDLOOP
structure. The statements in. the LOOP-ENDLOOP segment
are repeated until an EXIT or EXIT WHEN statement is
executed. Next program execution is continued in the
line after ENDLOOP. There can be 0, 1 or more EXIT's
in a LOOP-ENDLOOP structure.

Exampl e:

LOOP
<statement>

EXIT WHEN <logical expression> ‘
<statement>

ENDLOOP

LOOP
INPUT "Text ": texts$ Text is read in, written
EXIT WHEN text$="end" to file 3 and examined in the
WRITE FILE 3: texts procedure do’'test,
do 'test until the text "end"
ENDLOOP is read in.

ERROR HANDL ING

TRAP - HANDLER — ENDTRAP

are statements which are used to control program
execution after errors are encountered. If errors
occur in the statements between TRAP and HANDLER
(called the TRAP part), then the statements between
HANDLER and ENDTRAP (the HANDLER part) are executed.
Otherwise the program continues with the line after
ENDTRAF. In this way one can avoid having the program
stop e.g. due to a user data-entry error.

Example: ‘

TRAP If errors occur during read-in,
INPUT "No. "t no the system will jump down to the

HANDLER HANDLER part and carry out the
check ‘error procedure check ‘error.

ENDTRAP

ERR — ERRFILE - ERRTEXTS
are system functions which are used in connection with
the HANDLER part of the TRAP structure to identify

errors. See Appendix F on error numbers and error
messages.

ERR contains the error number.

ERRFILE contains the number of a file, if one was in
use when a read or write error occurs.

ERRTEXTS$ contains the text with the error message.

Chapter 4 - -123- COMAL OVERVIEW

Example 11

TRAP
INPUT "Exponent "“i1exponent
PRINT 10~exponent
HANDLER
PRINT ERRTEXTS
CASE ERR OF
WHEN 2
PRINT "Exponent too large"
WHEN 206
PRINT "Exponent is a number"
OTHERWISE
PRINT "Please try again!"
ENDCASE
ENDTRAP

Example 2

TRAP
INPUT "Filename: "iname$
OPEN 2,names$,READ
OPEN 3J,"savefile" ,WRITE
transfer (name#$, "savefile")
HANDLER
CLOSE
IF ERRFILE=2 THEN
PRINT "Error in read-in"
ELIF ERRFILE=3
PRINT "Error during print-out®

ELSE
PRINT "Not an input/output error"
ENDIF
PRINT ERR,ERRTEXTS
ENDTRAP

REPORT

is a command and statement which is used in connection
with the TRAP-structure. REFORT can be used in
several ways to reveal an error and to direct
subsequent error handling. REPORT can be used with or
without an argument:

REPORT Repeat earlier error.
(only as statement)

REPORT errorno Report ‘an error with errorno.
REPORT errorno,errortext$ Report errorno and errortexts.

The order has various effects according to where it
occurs in the structure.

REPORT outside the TRAP-ENDTRAP structure:
The error is reported to the system, which will then
react to the error.

REPORT in TRAP part of the structure:
Frogram execution is directed to the HANDLER part,

Chapter 4 - - 124- COMAL OVERVIEW

where the user program handles the error.

REPORT in HANDLER part of the structure:
Program execution is directed to an external HANDLER

structure, if found.

ODtherwise the error is reported

to the system with an error message on the screen.

Example:

TRAP
INPUT "Name: "inames$
INPUT "Aget "sage
HANDLER

REPORT can sort out
errors:

If the response to Age
is not a number, or the

IF ERR=2 OR ERR=206 THEN number is too large, then

age: =0
TLSE

REPORT
ENDIF
ENDTRAP

GOTO -~ <Label:s>

GOTO

age is set equal to O.

Otherwise the error is
reported to the system.

is a statement which causes program execution to
continue at a predetermined place. This place is given
by a <Label>, i.e. a name followed by a colon (3).

It is not possible to jump out of a procedure or into a
closed program stlhucture using GOTO.

Examplet

FOR not=1 TO 10 DO
READ FILE 2: number

IF number<ie-37 THEN GOTO too‘'small

PRINT 1/number
ENDFOR no
too 'smalls

PRINT "Divisor too small."

<l.abel: >

is a name which is used to identify a program line.
The program line is not executed. Execution continues
in the line following <Label:>. Labels are used in
connection with GOTO and RESTORE.

Examples:
See GOTO example.

DATA 2,4,5,2,1
twodigit:
DATA 12,34,18,54,22
RESTORE twodigit
WHILE NOT EOD

READ number (no?,
ENDWHILE

Read-in of numbers from

the DATA statements starts with
the number 12 due to the
statement RESTORE twodigit.

Chapter 4 - -125- COMAL OVERVIEW

PROCEDURES
PROC - ENDPROC

are statements which are used to form the PROC-ENDPROC
structure. PROC-ENDPROC surround a number of
statements which together form a procedure. A
procedure is a program module, recognized by a name
stated in the procedure heading: PROC <name)>. The
procedure is carried out only if it is called from
somewhere else in the program using the same name that
appears in the PROC heading.

COMAL programs should be created using procedures. In
their simplest form, they can be used to break a larger
program down into smaller, easy to handle units. More

advanced uses with parameter transfer and use of the
options REF, CLOSED, IMPORT and EXTERNAL make
procedures a programming tool of substantial value.

Example 1:

// MAIN PROGRAM
<{statement>
<namel)>
<{statement:>
<name2>
<{statement >
<namel)>
<statement>

END // MAIN PROGRAM

PROC <namel)>
<statement

ENDPROC <nameal)>

PROC <name2>
<statement>

ENDPROC <name2>

The statements of the procedure are enclosed in PROC
<name> and ENDPROC <name>. The procedure can be
called "by name" from various places in the main

program.
/7 MAIN PROGRAM The main program consists of
start ‘up program lines, each of which

read’in calls a procedure.

Chapter 4 - -126- COMAL OVERVIEW

PROC start ‘up
USE system
textcolors(0,2,1)
DIM number (10)
PAGE

ENDPROC start‘up

PROC read’in
FOR nos=1 TO 10 DO
PRINT "Read in age (",no,") ",
INPUT "": number (no):
ENDFOR no
ENDPROC read‘in

Example 2: .

<{statement>
print ‘out (member ,age,names$)
{statement>

PROC print‘out (no,years,texts)

PRINT

PRINT "Membership number:t ",no
PRINT “"Age 1 ",ysars
PRINT "Name 1 ",texts

ENDPROC print ‘out
Notes on example 2

In the main program the procedure print‘out is

called. Those values which are contained in the actual
parameters member, age and name$, are transferred

to the formal parameters no, years and texts,

which occur in the procedure heading.

The variable names of the formal parameters are local
within the procedure print‘out.

This form for value transfer is one-way: Values can be .
passed into the procedure but not from it.

Notes on procedures:

When a procedure has been RUN or SCANned, it can be
used as a command.

A procedure can call another procedure, or it can even
call itself.

A procedure can be placed within another procedure and
thereby be made local for just this procedure.
(Similarly, a function and a label will be local within
a procedure/function.)

The command SETEXEC will cause every procedure call
in the listing to begin with the word EXEC (for
"execute”"). See SETEXEC.

Chapter 4 - -127- COMAL OVERVIEW

REF - CLOSED - IMPORT

is a parameter type which is used in a procedure call.
A REF preceding a parameter in the procedure heading
indicates that the name will only be synonomous with
the corresponding name in the procedure call. It is
called by reference. No room is reserved in the
computer ‘s warking memory for a new name and value.
The value receives only a new, temporary name. Both
names refer to the same value. In this way room is
saved in storage, execution speed is increased, and
parameter values can be passed both ways: into and out
of the procedure.

Examples

<{statement >
read’‘in(class,names$())
<{statement>
PROC read’in(REF no,REF a$())
INPUT "Which class: ": no
PRINT "Write student names.”
i1=0
REPEAT
is+1
INPUT "Name: "1a$(i)
UNTIL a$(i)=""
ENDPROC read’in

While the procedure read’in is carried out, the names
class and no will refer to the same value because

of the REF in front of no. The same is true for the
names name$ and a$. Both refer to the string

values in a one—-dimensional array.

CLOSED

is an order which is used to declare all variable names
in a procedure as local. Thus the procedure is ‘closed
off’ from the rest of the program except for transfer
of parameter values in the parentheses of the procedure
heading. In this way mixing and name conflicts between
procedure names and variable names in the rest of the
program can be avoided. For example a name can be used
locally in the procedure without disturbing the value
of a variable with the same name outside the procedure.

Example:

{statement>

minmax (10 ,number () ,min,max)
PRINT minjmax

<{statement>

Chapter 4 - -128 - COMAL OVERVIEW

PROC minmax(n,a() ,REF b,REF c) CLOSED
bi=a(1)jci=a(2)
FOR i#:1=2 TO n DO
IF a(i#)<b THEN bi=a(i#)
IF a(i#)>c THEN ci=a(i#)
ENDFOR i#
ENDPROC minmax

The procedure minmax is CLOSED so that it can be used
without worrying about the names of the variables in
the procedure.

IMPORT

is a statement which is used in closed procedures to
bring in variables, procedures and functions from

outside the procedure. In this way they can be made
accessible for use in an otherwise closed procedure.

Example:

<statement>
print ‘out (points())
<statement>
PROC print ’‘out (number ()) CLOSED
IMPORT total, t(, sort
DIM prod(total)
FOR no#:=1 TO total DO
prod (no#) s =number (no#) #t (no#)
PRINT no#;proc (no#)
ENDFOR no#
sort (number () ,total)
sort(t() ,total)
FOR no#:=1 TO total DO
PRINT no#jnumber (no#) #t (no#)
ENDFOR
ENDPROC print ‘out

Even though the procedure print‘out is closed, the
variable total, the table t() and the procedure
sort are made accessible by means of the IMPORT
statement.

EXTERNAL — MAIN

EXTERNAL

is a keyword which is used to indicate that a given
procedure is an external procedure which must be
fetched from the diskette when it is to be used in the
program. When creating a procedure for use as an
EXTERNAL procedure, it must be closed using the CLOSED
order and saved using the command SAVE. The SAVEd
procedure can be fetched from the diskette later for
use in another program, provided it is declared to be
EXTERNAL in this program. In this way it is possible
to build up a library of procedures. The procedures
can then be fetched into the working memory as need for
use in programs.

Chapter 4 - -129~ COMAL OVERVIEW

Example:
Let

PROC test(a,b$,REF check) CLOSED
IF a=0 AND b$ IN "abecd" THEN check:=TRUE
ENDPROC test

The procedure test is CLOSED and SAVEd on diskette
with the command SAVE test ‘"ext.test".

It can be used later in another program.

// Program start

<statement >

test (no,text$,error)

<statement?>

PROC test(no,text$,REF error) EXTERNAL "ext.test"
// FProgram end

This program will fetch the procedure test from
diskette, use it and "forget" it again.

The line with the EXTERNAL declaration can be placed
anywhere in the program.

MAIN

is a command which is used to bring the system back to
the main program, if it should stop during the
execution of an EXTERNAL procedure. I¥ execution is
stopped in an external procedure, LIST and other
editing orders will work only on the external
procedure, until MAIN removes it and brings back the
main program.

FUNCTIONS

FUNC - ENDFUNC - RETURN

are statements which are used in the FUNC-ENDFUNC
structure. This structure consists of a number of
statements which together compose a user-definad
function. Functions must be introduced with FUNC
<name> and terminated by ENDFUNC <name>. The value
which the function returns must be given in a
RETURN-statement.

Functions can be real functions, integer functions or
string functions. A function is computed only if it is
called somewhere in the program by the same name which
is indicated in the function heading (FUNC <name>).

Functions can be associated with the same properties
which were available for procedures: REF, CLOSED,
IMPORT and ({parameter list)>). See also under these
keywords in Chapter 4. In addition you will find that

Chapter 4 - -130- COMAL OVERVIEW

functions are used in Chapter 3 and in Appendices C and
E.

In particular, all functions (after structure check
caused by SCAN or RUN) can be called as direct
commands.

Example 13

// Main program
// real function
{statements>
PRINT average(a,b)
{statements>

FUNC average(x,y)
RETURN (x+y)/2
ENDFUNC average

Example 23

// Main program
// integer function
<statements>
first#r=vowels# ("COMAL")
second#:=vowels#("and functions")
<{statements>

FUNC vowels#(texts) CLOSED
FOR i#:=1 TO LEN(texts$) DO
IF text$(i#:i#) IN "aeiouAEIOU" THEN number#:+1
ENDFOR i#
RETURN number#
ENDFUNC vowels

Example 3:

// Main program

// string function
{statements>

PRINT mystical$("secret")
{statements>

FUNC mysticals$(as)
doublei= 2#LEN (a$)
DIM b$ OF 1, c$ OF double
c¥i=as$
FOR is=1 TO LENCas$) STEP 2 DO
b$1=CHRS$ (RND (6%5,93))
c$i=c$(1i)+bs+cs$(i+11)
ENDFOR i
RETURN cs$
ENDFUNC mysticals$

Example 41

PRINT grab$(0,"Once upon a time")

Chapter 4 - -131- COMAL OVERVIEW

FUNC grabs$(first,has)
lengthi=LEN(a$)
IF length>1 THEN
IF first THEN
RETURN as$(21)
ELSE
RETURN a$(:length-1)
ENDIF
ELSE
RETURN ""
ENDIF
ENDFUNC grabs

OTHER FUNCTIONS
' ABS — INT - SGN - SGR - PI

ABS

is a function which calculates the absolute value of an
expression. It is sometimes called the numerical
value. If the numerical value of the expression is
negative, the sign is changed to positive. A positive
value remains unchanged.

Examples:

ABS (3. 25) equals .25

ABS(-7.46) equals 7.46

ABS (x-7) the result depends on the value of x.
INT

is a function which calculates the integer part of the

value of an expression, i.e. the largest integer (whole
number) which is less than or equal to the value of the
given expression.

Exampless
INT(3.25) equals 2
. INT(-7.46) equals -8
INT(1/2) equals O
86N

is a function which assumes the.value +1, 0 or -1, when
the value of a given expression is positive, zero or
negative respectively.

Examples:

8GN (327.54) equals +1
86BN (-43.7) equals -{
86N (0) equals 0
8BN(x/7~y) the result depends on x and y.

Chapter 4 - -132- COMAL OVERVIEW

SQR

PI

is a function which returns the square root. The
argument must be non negative (i.e. positive or zero).

Examples:

8AR(16) equals 4
SQR (4. 9@+09) equals 70000
SAR (x*2+y~2) the result depends on x and y.

is a system constant which is assigned the value
3.14159266. PI is particularly useful in connection
with the use of angles in radian measure, where PI
radians corresponds to 180 degrees.

CO8 - SIN - TAN - ATN

cos

is a function which calculates the cosine of a number.
This number must be expressed in radians.

x#¥PI/180 radians
x#180/F1 degrees

x degrees
x radians

Exampl es:
COS(PI/2) equals O
€0s(2.5) equals -0.8011434616

COS(v#P1/180) the result depends on the value of v.

SIN

Exampl es:

SIN(PI/6) equals 0.5

S8IN(angle) the result depends on the value of angle.
TAN

is a function which calculates the sine of a number.
This number must be expressed in radians. See under
COoS.

is a function which calculates the tangent of a number.
This number must be expressed in radians. See under
Ccos.

Examples:

TAN(-PI/4) equals -1
TAN(1.8) equals -4.286246168

Chapter 4 - -133- COMAL OVERVIEW

ATN

is a function which calculates the arc-tangent
(inverse tangent) of a number. The result is a number,
expressed in radians.

Exampl es:
ATN(1) equals ©0.785398163 (PI/4)
ATN(-200) equals -1.56579637
LOG - EXP
LOG
. is a function which calculates the natural logarithm of

a positive number. LOG represents logarithms to the
base @, where @ is equal to 2.71828183. (06 is the
inverse function of EXP.

Exampl es:
LOG(1) equals O
LOG(10) equals . 30258509
LOG(-2) is not defined
LOG(EXP (x)) equals x
EXP
represents the exponential function. EXF(x) = e raised

to the x "th power, where @ is the base of the natural
logarithms. EXP is the inverse function to LOG.

e = 2,71828183 to good approximation.

Examples:

EXP(1) equals 2.71828183 (= e)

EXP (3) equals e cubed = 20.0855369
EXP(t—a*.2) the result depends on t and a.
EXP(LOG(x)) equals x

. CHR$ - STR$ - SPC$

CHRs$
is a string function which equals the character which
corresponds to the ASCII code of the argument. The
opposite operation is performed with the function ORD.

See Appendix A for Commodore ASCII codes.

Examples:
CHR$ (&3) equals the character a
CHR$(147) equals the code for clear screen

CHRS$ ({value)>) the result depends on value
CHR$ (ORD("B")) equals the character B

Chapter 4 - -134- COMAL OVERVIEW

STR$

is a string function which converts a numerical
expression to a string. The reverse operation is
performed by the function VAL.

Exampl es:
STR$ (1.34) equals the string “1.34"
8TRS (2-5) equals the string "-3*"

S8TR$ (VAL ("7")) equals the string "7°"

SPCs

is a string function which returns the specified number
of spaces ("blanks").

Exampless:

PRINT "1",SPC$(10),"2"

text$:i= "a"+SPC$(8)+" jk"

blanks$:=SPC$ (LEN (name$))

10 spaces are printed
between 1 and 2.

text$ is set equal to
l'. Jkll

blanks$ is a string

with the same number of
spaces as there are
letters in names.

ORD - VAL - LEN

ORD

is a function. The value of ORD is the ASCII value of
det first charcter in the string argument. The
“reverse" operation can be carried out by the function
CHRs.

See Appendix A for Commodore ASCII codes.

Examples:

ORD("F") equals 198

ORD("doors") equals 68

ORD (by$) the result depends on by$

ORD (CHR#$(8)) equals 8

VAL

is a function which transforms a legal string argument
to its corresponding numerical value. To be legal the
string must be composed of the digits 0,..,9, the signs
+-, decimal point . or e used to specify
exponential notation. The reverse operation is carried
out with the function STRS.

Hexadecimal and binart notation is permitted.

Chapter 4 - =135~ COMAL OVERVIEW

Examples:
VAL ("123") equals the number 123
VAL ("2"+"3") equals the number 23
VAL ("4@12") equals the number 4e+12
VAL ("abe") illegal
VAL (8TR$(2)) equals the number 2
VAL ("$fa") equals the number 254

LEN
is a function, whose value is the length of the string
argument.
Exampl ess
LEN("abecd") equals the number 4
LEN(nama$) the result depends ‘'on name#
LEN("") equals the number O

LEN("a ki") equals the number S
TRUE - FALSE
TRUE
is a system constant which always equals 1.
FALSE
is a system constant which always equals O.
TIME

is a command, statement and function used with the
system’'s built-in real-time clock.

The clock measures time in jiffies.

1 second = 60 jiffies.
1 day = 5184000 jiffies
(The clock is reset to zero.)

TIME can be used to set the clock or to read the time
since the previous zeroing.

Exampl es:
TIME O The clock is zeroed.
TIME 3600 The clock is set to 3600 jiffies,

i.e. 1 minute.

seci=INT(TIME/&0) sec is set equal to the number
of seconds since the last zeroing.

Chapter 4 - -1%- COMAL OVERVIEW

RANDOMIZE - RND

RANDOMIZE

is a command and statement which is used to place the
random number generator at an arbitrary point in the
random number series. The random numbers are created
with the function RND.

Examples:

RANDOMIZE The initial placement in the number
series is determined by the time
interval since the last TIME aperation.
Since the number of jiffies (1/40 sec) ‘
will generally be quite random, a really
random sequence can be assured.

RANDOMIZE & If RANDOMIZE is followed by a
number, this number will indicate the
starting position in the random sequence
each time random numbers are generated.
This will cause the same sequence to be
generated when RND is used.

RND

is a function which selects a random real number from a
random number sequence of evenly distributed ‘random’
numbers.

RANDOMIZE is used to position the random number
generator at an arbitrary position (based on the clock)
in this series.

Exampl es:
number : =RND An arbitrary real number between

O and 1 is chosen: O0<=RND<1.
not=RND(-10,30) A random number chosen among —-10,-9,

.. 429,30 is selected. ‘

PRINT RND(min,max) A random integer between min
and max (inclusive) is printed
out.

ESC - TRAP ESC

are keywords which control the action of the <STOP>
key.

E8C is a system function. Its value depends on
whether the statement TRAP ESC+ or the statement
TRAP ESC~ has been executed:

If TRAP_ESC+ has been executed (it is the default
condition), then pressing the <STOP> key will interrupt
program execution. The ESC function has no meaning.

If TRAP ESC- has been executed, then pressing <STOP>

Chapter 4 - - 137- COMAL OVERVIEW

will NOT interrupt the program. ESC will have the
value FALSE, until <STOP> is pressed. Then it will
remain TRUE until the value of ESC is read in the
program.

Sample sequences

TRAP ESC- The <STOP> key will now not stop
the program and ESC is assigned the
value FALSE.

<STOP> is pressed ESC is set equal to TRUE.

dummy =ESC ESC is reset to FALSE.

TRAP ESC+ The <STOP> key regains its usual

function.
. OPERATORS

See Appendix C for a more detailed treatment of
operators.

DIV - MOD
DIV
is an operator which yields the value of the whole

number part of the quotient after division. x DIV vy
is the same as INT(x/y).

Examples:

S DIV 2 equals 2

74 DIV 10 equals 7

(x+3) DIV vy the result depends on x and y.
MOD

is an operator which computes the remainder after
division. x MOD y is the same as x—INT(x/y)#y.

Exampl es:
S MOD 2 equals 1
74 MOD 10 equals 4

8.23 MOD 2.1 equals 1.95
(4—-x) MOD z the result depends on x and z.

Chapter 4 - -138- COMAL OVERVIEW

LOGICAL OPERATORS

NOT - AND - AND THEN - OR - OR ELSE

NOT

is a logical operator which changes the truth value of
an expression.

Truth tables

TRUE FALSE
FALSE TRUE

Exampl es:

WHILE NOT EOF(2) DO
READ FILE 2: number
PRINT numbers

ENDWHILE

The loop continues until there is no more data in the
file with stream number 2.

IF NOT ok THEN read’'status(ok)

The procedure read’'status is executed until the
variable ok becomes TRUE (<>0).

AND
is a logical operator which determines the truth value
of a combined expression, a AND b. The combined
expression is only TRUE, if both a and b are true.

Truth table:

a b ! a AND b

TRUE TRUE ! TRUE

TRUE FALSE ! FALSE
FALSE TRUE ! FALSE
FALSE FALSE ! FALSE

Examples:

7=2 AND 3I=3 gives the value FALSE

WHILE expressionil AND expression2 DO make‘'drawing
If both expressioni and expression2 are TRUE, then

the procedure make 'drawing is executed. Otherwise it
is not.

Chapter 4 - -139- COMAL OVERVIEW

AND THEN

OR

OR

is. a logical operator which is an extension of the
operator AND: a AND THEN b. The same rules apply to
AND THEN as for AND; but if the first expression a is
false, the expression b is not computed, for it is
certain that the entire expression will be FALSE.

Example:

ati="test"ji=1
lengths=LEN(a$)
WHILE i<=length AND THEN a$(i)<>"." DO is+1

Far i:=5 an error will occur in the logical expression
as$(i)<H> . ", if this case is not eliminated by the
first condition.

is a logical operator which determines the truth value
of a combined expression, a OR b. The combined
expression is true, if just one of the expressions a
or b is TRUE.

Truth table:

a b !'aOR Db

TRUE TRUE !

TRUE FALSE ! TRUE
]
1

FALSE TRUE TRUE
FALSE FALSE FALSE
Examples:
7=2 OR 3I=3 gives the value TRUE.
REPEAT The statements in the REPEAT-
<{statement> loop are repeated until
[no>4 or ans$ is
UNTIL nao>4 OR ans$ IN "yY" ayoral.
ELSE

is a logical operator which is an extension of the
operator OR: a OR ELSE b. The same rules apply for
OR ELSE as for OR; but if the first expression a is
true, then the expression b is not calculated, since
the combined expression must be TRUE.

Examplaes

IF a#=0 OR ELSE b/a#>100 THEN new’'problem

If a# equals O, then the first logical expression is
true. In this case an evaluation of the last

expression (involving an illegal division) is
superfluous.

Chapter 4 - - 140~ COMAL OVERVIEW

IN

is a operator which returns the position of a search
string in a given text: string IN text.

The value is the number in the text of the first
character in the search string. If the search string
is not found, then the value O is returned.

IN can therefore be used for example to determine if

a response is contained in a string containing

acceptable answers.

Exampl es:

xi1="gram" IN “programing" x gets the value 4.

PRINT "mel” IN "Comal program" 0 is printed.

IF answers$ IN "nN" THEN STOP If answer$ consists
of the letter n or

N, the expression is
TRUE, and the program

stops.
Special example:
If the search string is empty, i.e. equal to """, then
IN returns the text length + 1.
lengths="" IN "Comal for CBM" length = 14.

BITAND - BITOR —~ BITXOR

BITAND

is a logical (boolean) operator which executes an AND
on each bit in the binary representation of two
numbers: a BITAND b.

All numbers which are to be compared with the
operators BITAND, BITOR or BITXOR must be integers
in the interval 0-65535, i.e. binary numbers
between Z0000000000000000 and “1111111111111111.

Rules:
BITAND a 'b 00 01 10 11 E.g- %4 1 0 (o}
AND AND AND
00 ! 00 00 00 00 %Z 1 1 (o}
o1 ! 0001 0O0OL = mm——m—————
10! 00 00 10 10 Z 1 [o] (o]
11 ! 00 O1 10 11

Chapter 4 - -14]1- COMAL OVERVIEW

Exampl ess

%0011 BITAND %0101 gives %0001 (decimal 1)
17 BITAND 18 gives 16
$fe BITAND S gives 4

IF PEEK(userport) BITAND %1100 THEN register
If the contents of memory address userport has the

bit pattern %Z00001100, then the procedure register
will be executed.

BITOR

is a logical (boolean) operator which executes an OR on
each bit of the binary representation of two numbers:
a BITOR b.

Rules:

RITOR a 'b 00 01 10 11 E.g. 4 1 (o] 1

- - OR OR OR
o0 ! 00 01 10 11 1 (o] (o]
01 ! o1 01t 11 1% —m———————
10 ! 10 11 10 11 1 o] 1
11 ! 11 11 11 11

Examples:

%1010 BITOR %0110 gives %1110 (decimal 14)
23 BITOR s$1b gives 31

BITXOR

is a logical (boolean) operator which executes an XOR
(i.e. an "exclusive OR") on each bit in the binary
representation of two numbers: a BITOR b.

Rules:
BITXOR a 'b 00 01 10 11 E.g. Z 1 (o) 1
XOR XOR XOR

00 ! 00 01 10 11 1 (o] (o]
o1 ! 01 00 11 10 e
10 ! 10 11 00 01 [e] (o] 1
11 ! 11 10 01 00

Exampl est

%0011 BITXOR %1010 gives 71001 (decimal %)
17 BITXOR 8 gives 25

OTHER ORDERS

is a statement which allows the inclusion of comments
in a program. The comment statement is not executed,
but is used in the program to clarify its function.
Comments make it easier for other programmers (or

Chapter 4 - -142- COMAL OVERVIEW

yourself) who examine the program later to understand
how it works.

The comment lines take up room in the working memory
but do not increase a program’'s execution time.

Examples:

// graphics window cleared

asi1=b$(1)+b$(LEN(b$)) // a$=b$‘'s first and last character
TRACE

is a command which is used to trace active procedure or ‘
function calls. TRACE can be used to help find the
cause of an error in a program.

Exampl et

A program might be stopped in a procedure in line 740
due to an error:

TRACE

the program stopped in

0740 a$i=character#(1:3)

inside

0700 PROC print ‘out(no,character$)
which was called in

0030 print ‘out(2,"k")

IM
is a command and statement which is used to reserve
room in working memory for arrays containing numbers
or text.

As a statement it will usually occur in the beginning
of a program to dimension global indexed variables, but
it .can also be used locally within a closed procedure.

Arrays with numbers: ‘
DIM tabel (50) The array can contain real

numbers with indices 1,

2,..,30.
DIM x (20),y(20) A DIM-statement can contain

several arrays, separated by
commas (,).

DIM point(-103120) Array with index -10,-9,
e y0y..,20

DIM space(10,40,40) Three dimensional array

DIM price(01100,3:10) Two—-dimensional array with

indices 0,..,100 and S5,..,10

Chapter 4 - - 143~ COMAL OVERVIEW

Note:

If the array specification in the DIM statement does
not include a lower index limit, it is automatically
set equal to 1. :

When created by a DIM statement, all array values are
set equal to O.

String arrays:

DIM name$ OF 30 Room is reserved for 30
characters in the string
name$.

DIM item$(10) OF 20 Room for up to 10

item$-names. Each name may
contain up to 20 characters.

DIM text$(0:10,2:15) OF 80 text$ is a two-
dimensional array of words
of maximum 80 characters.

Note:

The first time a string is assigned a value, room is
reserved in memory for 40 characters, if not previously
declared by a DIM statement.

One dimensioned a string is set equal to the empty
string, "".

PEEK - POKE
PEEK

is a function which fetches the contents of a given
storage address. The result is an integer between ©
and 255. A "map" with an overview of the use and
availability of Commodore &4 memory addresses can be
seen in Chapter 8 on Machine Language.

Examples:

line:1 =PEEK(214) The line number on which the
cursor is currently located is
fetched from memory location 214
and the variable line is assigned
this value.

PRINT PEEK ($dd00) Prints the contents of the
parallel port.

POKE

is a command and a statement which is used to place a
number directly into a storage address:
POKE address,number.

You must be careful when using POKE, since sending
wrong numbers to random addresses can do strange things

Chapter 4 - ~144- COMAL OVERVIEW

sYs

NULL

sTOP

to your program. If worst comes to worst, it may be
necessary to power—down and power-up again to continue
programming!

Examples:

POKE 198,0 The counter of the keyboard
buffer is zeroed. I.e. the
buffer is emptied.

POKE $dd03,%11110000 The direction register of

the parallel port has the
hexadecimal address $ddO3.
This address will contain the
binary number %11110000 which
sets bit 0-3 to inputs and
bits 4-7 to outputs.

is a command and statement which directs program
execution to a machinge code subroutine starting at the
address specified.

Example:

8YS 4000 execute the machine cnde routine
starting at (decimal) address 4000.

8Y8 50000 The system carries out a COMAL
start-up (this can also be done directly
from Basic to start COMAL).

is a command or statement which is used to do

nothing! In fact it is quite useful when creating
pauses and other situations, where it is desired that
the program be delayed until some event (say pressing a
key) causes execution to proceed.

Exampl es:
FOR pause:=1 TO 1000 DO NULL
WHILE KEY$=CHR$(0) DO NULL

~ END

8TOP

is a statement which is used to stop the execution of a
program.

8TOP can be placed anywhere in a program, and there
can be several STOP-statements in a program. After the
program has been stopped, the values of any variables
can be examined and/or changed. Using the command

CON the program can be caused to continue at the line
following the STOP statement. However no changes in
program syntax may be made.

Chapter 4 - =145~ COMAL OVERVIEW

Examples:

8TOP The program stops with the
message: STOP at xxxx

S8TOP “printout finished” The program stops with the
message: printout finished.

END

is a statement which completely terminates program
execution and marks the conclusion of a program. END
can be placed anywhere in a program. In contrast to
STOP, the program can’'t be continued with the CON
command.

Examples:

END The program is terminated with
the message: END at xxxx

END "All finished!” The program is terminated with
ghe message: All finished!

-146-

-147-

Chapter S —
COoOMAL FPACKAGES
WHAT .18 A PACKAGE?

In vour COMAL cartridge there are 11 program packages with
useful procedures. The packages are written in machine code
for speed and compactness. They can help you to take full
advantage of the many resources available in COMAL and the
Commodore é64.

A package and its built-in procedures and functions is made
accessible with the command or statement:

USE <package name>
where package name is one of the 11 names which follow:

When a package has been activated, 1ts procedures and
functions are called by name just as the ordinary COMAL
procedures and functions which the user can create. All
package procedures can be used as commands as well as pro-
gram statements. More than one package can be activated at
a time.

Overview of packages:

1. english English error messages

Y
2. dansk s Danish error messages
3. graphics + procedures for X-Y graphics
4. turtle s procedures for turtle (Logo) graphics
S. sprites s procedures for handling sprites
6. sound s+ Procedures for controling the SID sound chip
7. system s+ procedures for altering system configuration
8. font s procedures for defining new character sets
9. paddles + & procedure for reading the paddle inputs
10. joysticks . a procedure for reading joystick inputs
11. lightpen s Procedures for control of a light pen

Chapter S5 - - 148~ COMAL PACKAGES

THE ENGLISH PACKAGE

USE english activates then package. When activated, all
COMAL error messages will be in English. When COMAL is
started up, the command USE english is executed
automatically. This package contains no procedures.

THE DANISH PACKAGE

USE dansk activates the package. All COMAL error messages
will then be issued in Danish. The package contains no
procedures.

GRAPHICS WITH COMAL

With the Commmodore 64 you can work with two different
display screens: A text screen and a graphics screen.

To work with these screen you can imagine that the computer

has two internal “maps’ which show the current state of each

of these graphics screens. 0Only one of these maps can be
shown on the display screen at a time.

Normally you will be

looking at the text

screen. It consists of

25 lines, each with room

for 40 characters. Fosi-

tion 1,1 is in the upper

left-hand corner, and

position 25,40 is at the

lower right on your dis-—

play screen. Thus the

text screen has a total

of 25 x 40 = 1000 dif-

ferent character loca—

tions. In each position

a letter, number or
graphics character can be
placed.

The graphics screen con-

sists of 3I20x200 = 64000 F°'*°°’
dots: 320 horizontally
and 200 vertically. The
points are identified in
a coordinate system by
means of a pair of num—
bers (X,Y). The point
(0,0) on the display is
located in the lower
left-hand corner, and the
point with coordinates
(319,199) is in the upper
right-hand corner. Each (0,0)

{319,199)>

(319,8)

of these dots is some-—
times referred to as a
pixel (picture
element).

Chapter S - - 149- COMAL PACKAGES

The procedures and functions which are used to draw on the
graphics screen are made accessible when you use the order:

USE graphics or USE turtle.

When using the high resolulion graphics screen, two further
options are available:

graphicscreen (0) y high resolution graphics
graphicscreen(i) y multicolor graphics

Both orders make the graphics screen visible on the display
and the text screen is hidden from view but available for
later use. The difference between the two types of graphics
display has to do with the number of possible color
combinations which can be displayed. See the more detailed
discussion of the graphicscreen order for further
information about this.

Use high resolution if you want to make drawings with lots
of detail using just one color besides the background color.

If the use of several colors is more important than details,
then the multicolor graphics option is the one to use.

A program which draws a yellaw border around the display
screen might look like this:

USE graphics
graphicscreen(1)
pencolor (7)

drawto(319,0)
drawto(319,199)
drawto(0,199)

drawto(0,0)

WHILE KEY$=CHR$(0) DO NULL

The last line of the program keeps the graphics screen
visible until any key is pressed. When a key pressed, the
condition KEY$ = CHR#(0) will no longer be fulfilled, and
the program will end. The computer then displays the text
screen, hiding the graphics screen.

After the order USE graphics has been executed, you can
use the function keys <f1> and <f5> to choose which of
the graphics screens you wish to view:

<fi1> , displays the text screen
<¥fS5> , shows the graphics screen

The function key <£3)> can still be used to issue the
command USE turtle, causing a split screen to be
-displ ayed:

<f3>» , split screen: graphics screen with 4 lines
scrolling text at the top

While using COMAL graphics you are not limited to the use of
coordinates in the range from (0,0) to (319,199). You can
superimpose your own coordinate system onto the graphics

Chapter 5 - -150- COMAL PACKAGES

screen by using the order window. All graphics orders
except for the aorder viewport and the sprite orders will
then be referred to your coordinate system.

Program example:

USE graphics
Qraphicscreen(1)

window(=-2,2,~1,1) B NG ®
moveto (0,0) \\
drawto(2,-1) .
WHILE KEY$=CHR$(0) DO NULL =1

The order window(-2,2,-1,1) superimposes a
coordinatesystem onto the display screen. The point (-2,-1) .
is now at the lower left—-hand side aof the screen, and (2,1)

is at the upper right-hand corner.

When high resolution graphics is started up using the order
USE graphics, the coordinate system selected corresponds
to the order window(0,319,0,199), in accord with the
standard screen coordinates. The order USE turtle
performs an automatic window(-160,159,-100,99), so that

the origin (0,0) is at the center of the display screen.

If you want to write text on the graphics screen, you can
use the special writing order plottext.

Example:

USE graphics

graphicscreen(l)

plottext (0,100,"COMAL graphics")
WHILE KEY$=CHR$(0) DO NULL

In Chapter I there are further examples of the use of
graphics procedures. In addition you will find many
examples of the use of graphics on the demanstration
diskette (or cassette tape) which accompanied your COMAL
cartridge.

GRAPHICS OVERVIEW ’

The packages graphics and turtle contain the following
orders:

Definition of working area:s
viewport - window
Choice of graphics screen and color graphics states
graphicscreen
Choice of graphics screen:
textscreen — fullscreen — splitscreen
Clearing of graphics screens:
clearscreen - clear
Color choice:s
textcolor - textbackground - textborder
pencolor - background - border
getcolor

Chapter S5 - -151- COMAL PACKAGES

(X,Y) graphicss
plot
drawto - moveto
draw - move
setxy
circle - arc
xcor - ycor
Intelligent color fill:
fill - paint
Relative graphics:
showturtle - hideturtle
turtlesize
home
setheading - heading
penup — psndown
left - right
forward - back
arcl - arcr
Text on the graphics screen:
textstyle - plottext
Information on graphics modes:

inq

Storage and printing of the graphics image:
savescreen - loadscreen
printscreen

In addition it is possible to use the following procedure
names when the turtle package is activated:

bk = back

bg = background
cs = clearscreen
fd = forward

ht = hideturtle
1t = left

pc = pencolor

pd = pendown

pu = penup

rt = right

seth = setheading
st = showturtle
textbg = textbackground

Chapter 5 - -152~ COMAL PACKAGES

IN DEPTH LOOK AT GRAPHICS ORDERS:

viewport (<vxmin>,<{vxmax>,<{vymin>,<{vymax>) Szman

L
N4
(1]

is a procedure which limits the are of wasenm s
the display screen in which one can
define a coordinate system and draw.

S)

The parameters <vxmin>, <vxmax3, <vymin2>

and <vymax> always refer to the physical
display screen itself with (0,0) in the
lower, left-hand corner and (319,199) in
the upper, right—-hand corner. Note that
this procedure is independent of any
other coordinate system which may have

been chosen using the window
procedure.

Example:

viewport (0,159,0,99) It is not possible to draw
outside the lower left
quadrant of the display
screen.

window (<wxmin>,{wxmax>,<wymin>,{wymax>)

is a procedure which defines the <coordinate system in
the given viewport. The pixel in the lower, left-hand
corner of the viewport is assigned the coordinates
(<wxmin>,{wymin>). The pixel in the upper, right-hand
corner is assigned the coordinates (<wxmax>,<wymax>).
All subsequent graphics orders (except viewport and

the sprite commands) will be refered to this coordinate
system until a new one is defined.

On start-up with USE graphics the viewport is the
entire display screen and the coordinate system is
defined by window(0,319,0,199)

On start-up with USE turtle the viewport is the
entire display screen and the coordinate system is
defined by window(-160,159,-100,99). Thus the point
(0,0) is in the middle of the display screen.

Example:
window(-1000,2000,-100,200)
graphicscreen (<{mode>)

is a procedure which makes the graphics screen appear
on the display screen and makes the the text screen
invisible.

The graphics screen can be made accessible in two
different modes:

graphicscreen (0) , high resolution graphics
graphicscreen(1) sy multi-color graphics

Chapter 5 - -153- COMAL PACKAGES

The difference between the two modes lies in the manner
in which color is handled. The pixels aof the display
screen are not independent when using color:

In mode O (high-resolution graphics) the points of

the display are assaociated in blocks of 64 pixels: (8
on each side). Within each block there may only be two
different colors, one of which is the background color.
If one attempts to give a pixel in the block a third
color, then the entire block will get this color.

In mode 1 (multi-color graphics) resolution in the
horizontal direction is not as good, for the pixels are
associated in pairs. This means that each block
consists of 4 x 8 pairs. Each of these pairs can be
assigned a color. If one of the elements of the pair is
assigned a color, the other dot will automatically
acquire the same color. Within each block four
different colors can be displayed at the same time.

One of them is the background color. If one attempts
to introduce a fifth color, the fourth color will also
be given the new color.

textscreen

is a procedure which makes the text screen appear on
the display screen. The graphics screen is not visible
but still available in computer memorvy.

It can be necessary in a program to switch back and
forth between the text screen and the graphics screen.
This would be the case if the program contains INFUT
statements and must also be used for drawing. This may
appear to be inconvenient. On the other hand it
assures that a drawing will not be disturbed by
unwanted text.

fullscreen

is a procedure which causes the entire display screen
to be filled by the giraphics screen. The instruction
would be used when working with turtle graphics to
switch from the split screen (splitscreen) to the
full graphics screen.

splitscreen

is a procedure which shows the graphics screen and a
scrolling copy of the text screen with four lines of
text and the cursor at the top of the display.

When used as a command, USE turtle does an automatic
splitscreen, but not when it is used as a program
statement.

clearscreen

is a procedure which deletes the entire graphics image
na matter what the active (viewport) may be. To
delete means to change all pixels to the background
color.

Chapter 5 - -154- COMAL PACKAGES

clear

is a procedure which only deletes the graphics image
within the drawing viewpart.

Examples
viewport (0,100,0,100) Only the 101 x 101 pixels
clear in the lower, left-hand

corner of display screen
are cleared.

COLORS: In the following procedures with color
specifications, the variable <color> must be an
integer from -1 to 15. (Note: -1 means the
background color.) See also Appendix B on colors
and color codes.

textcolor (<color>)

is a procedure which defines the color af the
characters on the text screen.

Example:
textcolor (0) Black text is selected.
textbackground (<color>)

is a procedure which defines the background color of
the text screen.

textborder (<color>)

is a procedure which defines the color of the text
screen border.

pencolor (<color>)

is a procedure which defines the color of the pen.

Examples:

pencolor(7) Yellow is selected as the
drawing color.

pencolor (-1) The background color is the

drawing calor.
background ({color>)

is a procedure which defines the graphics screen
background color.

border (<color>)

is a procedure which defines the graphics screen border
color.

Chapter 5 - -155- COMAL PACKAGES

getcolor (<x>,<y>)

is a function. Its value equals the color code of the
pixel at location (<Kx>,<y>).

If (K<x>,<y>) is outside the drawing area determined by
the procedure viewport, then getcolor (<{x>,<y>)
returns the value -1.

The function getcolor does not change the current pen
pasition.

Examples:

PRINT getcolor(1,2)
IF getcolor (0,0)<0 THEN move ‘center

plot ({x0>,<y0>)

is a procedure which places a dot at pen position
({x0>,<y0>).

Example:

plot (4.3,36)

drawto (<x>,<y>)

is a procedure which draws a line from the current pen
position to the point ({x>,<y>), which becomes the
new pen position.

Examples:

drawto (100,200)
drawto (-20,4000)

moveto (<{x>,<y>)

is a procedure which moves the pen to the point
(Kx>4<y>).

Example:

moveto (200,-25)

draw(<dx >,<dy>)

is a procedure which draws a line from the current pen
position ({x0>,<y0>) to the point with coordinates
(KXO0>+<dx >,<y0>+<{dy>) and changes the pen position to
the endpoint.

Examples:

draw(0,100) vertical line 101 units long
draw(-1.5,0.4)

Chapter 5 - -156- COMAL PACKAGES

move (<dx > ,<dy?>)

is a procedure which moves the pen without drawing from
its current position ({x0>,<{y0>) to the point with
coordinates (<{x0>+<{dx>,{y0>+<{dy>).

Examples:

move (-3,20)
move (-2000,0)

setxy (<x>,{y>)

is a procedure which positions the pen at the point
with coordinates ({x>,<y>). If the pen is down, this
procedure draws a line just as drawto(<x>,<y>). If
the pen is up, it is moved just as with

moveto (Kx>,<{y>).

circle(<x0>,<y0>,<r>)

is a procedure which draws a circle with the center in
({x0>,<y0>) and radius <{r>.

Whether the circle appears circular or elliptical
depends upon your choice of the drawing region on the
screen, the coordinate system and the adjustment of the
vertical linearity of the TV or monitor screen. If the
coordinate system has been selected in the drawing area
so that the condition

<wxmax > — <wxminp> {vymax> — <vymin>

{wymax > — <wymin?> <vxmax > — <vxmin?>
is fulfilled, then the circle should appear to be
perfectly round on the screen. If not, try adjusting
the vertical linearity of the TV or monitor.

Example 1:

When USE graphics is called, it carries out the
following procedures automatically:

viewport (0,319,0,199)
window(0,319,0,199)

The height/width ratio is equal to 1, and
circle(160,100,99)
will draw a round circle on the middle of the screen.
Example 21
viewport (200,300,80,180)
window(-1,1,-1,1)
circle(0,0,1)

vields a round circle on the upper right-—-hand side of
the screen.

Chapter 5 - -157- COMAL PACKAGES

arc({x0>,<y0>,<r>,<ad>,<da>)
is a procedure which draws an arc with the center at
({x0>,<y0>) and radius of curvature <r>. The starting
angle is <a0> degrees and the arc will subtend <da>x
degrees.

Examples:

arc(100,100,50,45,90)
arc(-20,25,30,15,~-60)

xcor and ycor

' are functions. They equal, respectively, the current x
and y coordinates of the pen.

Examples:

PRINT xcorj;ycor
plottext (xcor,ycor,"Figure 1")

fill (<x>,<y>)
is a procedure which uses pencolor to fill a region of
the screen with color. The region to be filled in must
contain the point ({x>,<y>). It must be bordered by a
line or area of a different color or by an edge of
the viewport.
fill does not alter the pen position.
See the summary example under the procedure paint(<{x>,<y>).
Example:
il11¢10,56)

paint (<x>,<y>)

. is a procedure which fills in a region of the screen
with the drawing color. The region which is to be
filled in must contain the point (<x>,<y>»), and it must
be bordered by a line or area with the same color or
by an edge of the drawing area.
paint does not alter the current pen position.
Examples:

paint (-10,4)

pencolor (-1)
paint (100,20) A region is ‘erased’.

The collection of examples below illustrates the
differences between fill and paint:

Chapter S5 - -158- COMAL PACKAGES

USE graphics
graphicscreen(l)
pencolor (7)

drawto(319,199)

£i11(10,100) /7 if paint(10,100), no difference
pencolor (1)

circle(100,100,70)

£111(100,100) // if paint(100,100), a difference!

WHILE KEY$=CHR$(0) DO NULL
showturtle

is a procedure which causes the turtle to be displayed
on the graphics screen. The word ‘turtle’ is based on

the use of relative graphics in the computer language .
Logo. o
USE turtle automatically causes the turtle to be
shown.

hideturtle

is a procedure which causes the turtle on the graphics
screen to become invisible.

turtlesize(<size>)

is a procedure which defines size of the drawing
arrowhead (the turtle).

The parameter <size> must be a number between 0 and 10.
When graphics is started up, this parameter is
automatically set equal to 10.

home

is a procedure which places the turtle at coordinates
(0,0) pointed upwards on the screen.

setheading (<heading>)

is a procedure which sets the direction in which the ‘
turtle points. If the turtle is visible, it will turn
to face this direction.

<heading> is given in degrees:

O corresponds to upwards.

90 is towards the right side of the screen.
—-90 is towards the left.

USE turtle automatically sets the heading to O.

heading
is a function which returns the value of den current
heading. The heading is given in degrees with O towards

the top of the screen, and 90 degrees towards the
right.

Chapter S5 - -159-

penup

COMAL PACKAGES

is a procedure which lifts the pen.

pendown

is a procedure which lowers the pen. It causes the

turtle to draw as it moves.

When graphics is started up, the system automatically

executes a pendown.

left (<angle>)

is a procedure which turrs the turtle <angle)> degrees
to the left in relation to the current heading.

right (<angle>)

is a procedure which turns the turtle <angle)> degrees
to the right in relation to the current heading.

forward (<distance>)

is a procedure which moves the
units forward with the current
down, a line is drawn.

back(<distance>)
is a procedure which moves the
units backwards in relation to
The turtle "backs up." If the

drawn.

Summary example:

turtle <{distance>
heading. If the pen is

turtle <{distance>
the current heading.
pen is down, a line is

Press the <f3> function key {(corresponding to the
USE turtle command). Write directly on the four text

lines which are visible at the

left (90)
forward (70)
right (130)
forward (80)
laft (40)
back (100)
hideturtle

top of the screen:

The turtle has now drawn a number 4.

arcl (<r>,<{da>)

is a procedure which draws a left—hand arc with a
radius of curvature <r> and subtending an angle of
<da> degrees. The starting point is the current
turtle position, and the starting direction is the

current heading.

Chapter 5 - -160- COMAL PACKAGES

Exampl est
forward (20) After having drawn a straight line,
arcl (50,30) The line curves towards the

left, turning 30 degrees.
Procedure example:

PROC soft ‘frame(xmin,ymin,width,height)
IF width>20 AND height>20 THEN
width=width-20
height=height-20
moveto(xmin+10,ymin)
setheading (90)
forward(width)
arcl (10,90) ‘
forward (height)
arcl (10,90)
forward(width)
arcl (10,90)
forward (height)
arcl (10,90)
ENDIF
ENDPROC soft "frame

arcr (<r>,<da>)

is a procedure which draws a curve to the right with
radius of curvature <r> and turning angle <da>.

The starting point is the current position of the pen,
and the initial heading is the current heading.

arcr ({r>,<{da>) corresponds to arcl (-<r>,-<da>).
Example:

arcr (3.45,50)

wrap

is a procedure which allows lines
drawn on the graphics screen to b
continue beyond the edge of the

screen, reappearing on the opposite
side. For example, if the pen
disappears at the top of the screen
with x-coordinate 110 and heading /ﬂ
45, it will reappear at the bottom
with the same x—coordinate and the
same heading.

When USE turtle is engaged, the procedure wrap is
carried out automatically. This is however NOT the
case when USE graphics is started.

nowr ap

is a procedure which terminates ‘wraparound’. It can
be restored with the procedure wrap.

Chapter S - -161- COMAL PACKAGES

textstyle(<width>,<{height>,<heading>,<{mode))

is a procedure which is used to define how text
printout will appear on the graphics screen. The
actual printing of text is performed with the procedure
plottext.

The parameters <width>, <height>, <heading> and <mode>
must all be integers.

<width> = letter width (1 corresponds to normal text.)
<height> = letter height (1 corresponds to normal text.)
<heading> = O , text is rotated O degrees.

1 , text is rotated 90 degrees.

2 , text is rotated 180 degrees.

3 4 text is rotated 270 degrees.
<{mode’ = 0 , both the text and its background color is

drawn. This means that the text area is
cleared before new text is printed.

1 , only the characters of the text are printed.
This means that a letter a placed on top of a
letter b will not deleté the entire letter
b. Some of the remnants of the b will
still be visible.

If a parameter is set equal to -1, then the current value is
used.

On startup the computer automatically chooses
textstyle(1,1,0,0), corresponding to normal text size (as on
the text screen) written horizontally, and both text and its
background color is printed.

Example:

textstyle(2,1,2,0) All subsequent text will be written
upside down with characters of double
width.

textstyle(3,2,-1,-1) Only the text size is changed.

plottext ({x>,{y>,{texts$>)

is a procedure which prints out the given text starting at the
point ({x>,{y>).

The size of the letters, the orientation and writing mode are
specified by the procedure textstyle.

plottext does not change the position of the pen.
Examples:

plottext (100,150, "COMAL")

text$i="What ‘s my name?"®

textstyle(1,3,1,0)
plottext (200,10,texts)

Chapter 5 -

ing(<no>)

is a function which is used to obtain information concerning th

-162-

COMAL PACKAGES

state of the various graphics variables.

The parameter <no> must be an integer between 0 and 33.

<no> Information

graf.
graf.

QONDPUDWUN=O

19 wvxmin
2 vxmax
21 wvymin
22 wvymax
22 wxmin
24 wxmax
25 wymin
26 wymax

27 COStheading)
28 SIN(heading)
29 turtle size

A x—aspect ratio
31 y-aspect ratio
32 x—text end

33 y-—-text end

savescreen ({filenames$>)

display

text border
text backgnd.
text color

pen color
gr.text width
gr.text height
gr.text dirn.
10 gr.text state
11 turtle visible
12 inside window
13 txt scrm seen
14 splt scrn seen
15 wraparound

16 pen down

17 x - position
18 vy - position

state

CO=mmrOOOO00Q0
|
-
4]

or 1
TRUE,FALSE
TRUE ,FALSE
TRUE ,FALSE
TRUE ,FALSE
TRUE,FALSE
TRUE ,FALSE
integer
integer
integer
integer
integer
integer
real number
real number
real number
real number

-1.0 - 1.0
-1.0 - 1.0
0.0 - 10.0

real number
real number
integer
integer

affected by

graphicscreen

setcolors, border
setcolors, textbackground
setcolors, textcolor

border
background
pencolor
textstyle
textstyle
textstyle
textstyle

showturtle, hideturtle
most drawing procedures

... SCcreen

... SCreen
wrap, nowrap
penup, pendown

most drawing procedures
most dir-awing procedures

viewport
viewport
viewport
viewport
window
window
window
window

1

seth,left,right,home,arcl,arcr
seth,left,right,home,arcl,arcr

turtlesize

=(wWwxmax-wxmin) / (vxmax—vxmin)
={wymax—wymin) / (vymax—vymin)

plottext
plottext

is a procedure which saves a copy of the current

graphics screen on diskette or tape.

under the name <filenames$)>.

The contents of the file are:

High resolution image (take up 36 blocks

o)

background color
border color

1000 bytes for colors O and 1
8000 bytes for the bit pattern

The file is saved

of 256 bytes):

Chapter 5 - -163- COMAL PACKAGES

Multi-color image (takes up 40 blocks of 256 bytes):
1
background color
border color
1000 bytes for colors 1 and 2
1000 bytes for color 3
8000 bytes for the bitpattern

Examples:
savescreen("grO.drawing"”) saves a high res image.

savescreen(''grli.circles”) saves a multi-color image.

loadscreen ({filenames$)>)

is a procedure which fetches an image which previously
had been saved on diskette or on tape. See
savescreen.

Examples:

loadscreen("grO.drawing")

loadscreen("gri.circles")

printscreen(<{filenames$>,<position>)

is a procedure which saves the contents of the current
viewport to the file named <filename$>.

The parameter <position’ is an integer from O to 479.
It specifies the horizontal placement of the image on
the MPS801 printer. Six <position’ units correspond to
one character from the edge of the paper.

The procedure is intended for getting a hard copy of a
graphics image on the printer. But it can also be
used, among other things, for saving a picture on
diskette or on tape for later use.

Note that hard copy to a printer can only be done if
the printer is compatible with the Commodore MFS 801.

High resolution graphics:

Printing Color
intensity
0/4 background color

4/4 all other colors

Chapter 5 - - 164~ COMAL PACKAGES

Multi-color graphics:

Colors are printed according to a grey scale:

Printing Color
intensity
0/4 1: white
174 3: cyan, 7: yellow, 13: light green,
15: light grey
2/4 4: purple, 5: green, B: orange,
10: pink, 12: grey, 14: light blue
I/4 2: red, 6: blue, ?: brown, 11: dark grey
4/4 0: black
Examples: ‘
printscreen("lp:",79) The graphics screen is

dumped to a MPS B0l printer.
The image begins right after
the 13th character position.

printscreen("head",19) The contents of the graphics
screen are saved on diskette
under the name head.

The file can not be fetched again using the procedure
loadscreen, but must be entered instead as an

ordinary sequential file. The following program
segment fetches the saved file and prints it out on the
printer:

OPEN FILE 2,"head",READ

SELECT OUTPUT "1lp:z"

WHILE NOT EOF (2) PRINT GET$(2,5000)
CLOSE FILE 2

SELECT OQUTPUT “ds:*

Chapter 5 - -165- COMAL PACKAGES

SPRITES

With your Commodore 64 it is possible to define a small
graphics image which can be moved about on the graphics
screen. Such an image is called a sprite.

Up to 8 sprites can be on the screen at one time. This
makes it possible to create vivid graphics images with
moving figures. For each sprite can be assigned its own
color and be moved around independently of the others and
the rest of the program. It is also possible to allow the
sprites to interact with one another.

A number of procedures and functions are available for
controling sprites using the COMAL package sprites.

The package is made accessible by issuing the order:
USE sprites

You can imagine that you are working with sprites as
follows:

You have a stage (the display screen)

with a backdrop. (the graphics background)
On the screen there are actors (sprites)

which can move around (using movesprite)

while performing an action. (using animate)

The actors can move on and off

the stage. The actors can move

in front of and behind one an-

other, and they can move in

front of and behind the praops (graphics drawings)
You can direct the actors

using sprite commands.

Chapter 5 - - 166~ COMAL PACKAGES

Let's begin by making a sprite and moving it around the
screen. This brief program shows how it can be done (it is
called Sprite 1 on the demo diskette/tape):

0100 DATA %00000000,%00000000,%00000000
0110 DATA %00000000,%00000000,%00000000
0120 DATA %00000000,%00000000, 400000000
0130 DATA %00001110,%00001110,%00000000
0140 DATA %00001111,%00011110,%Z00000000
0150 DATA %00000111,%00111100,%00000000
0160 DATA %00000011,%00110000,%00000000
0170 DATA %Z00000001,%11100000,%00000000
0180 DATA %00000011,%11100000,%00000000
0190 DATA %400000111,%11110000,%00000000
0200 DATA %00000011,%11100000,%Z00000000
0210 DATA %00110001,%11000000,%00000000
0220 DATA %00111111,%11100000,%00000000
0230 DATA %00001111,%11110000,%Z00000000
0235 DATA %00000111,%11110000,%00000000
0240 DATA %00000111,%11100000,%00000000
0250 DATA %00000111,%11100000,7%00000000
0260 DATA %00011111,%11111000,%00000000
0270 DATA %00111110,%Z01111100,%00000000
0280 DATA %00000000,%00000000,%00000000
0300 DATA %00000000,%00000000,%00000000
0310

0320 USE graphics

0330 graphicscreen(0)

0340 USE sprites

0350 DIM drawing$ OF 64

0360 FOR i:=1 TO &3 DO

0370 READ byte

0380 drawing$:+CHR$(byte)

0390 ENDFOR i

0400 colori=1

0410 drawingno:=1

0420 spritenos=1

0430 define(drawingno,drawings$+""0"")
0440 identify(spriteno,drawingno)

0450 spritecolor (spriteno,color)

04460 spritepos (spriteno,50,100)

0470 showsprite(spriteno)

0480

0490 WHILE KEY$=CHR$(0) DO NULL

0500

0510 movesprite(spriteno,250,150,200,0)
0520

0530 WHILE KEY$=CHR$(0) DO NULL

The DATA statements in lines 100-300 contain the definition
of the figure.

These numbers (which can be written directly in binary in
COMAL simply by prefixing binary numbers with the % sign)
are read in ASCII format in the FOR-ENDFOR loop (360-390).
The text string drawing$ contains the bit pattern infor-
mation which will form the sprite.

In line 430 this drawing is given the number 1. The extra
""ou% is included to specify that the drawing is a re-
presentation in high resolution graphics (as opposed to

Chapter S - -167- COMAL PACKABES

multi-color graphics).

In line 440 sprite 1 is identified to correspond to drawing
no 1. In line 450 the color of the sprite with number 1 is
specified (color:=1, i.e. white).

In line 440 sprite no 1 is placed on the screen so that the
upper left hand corner of the figure is at (x,y) coordinates
(50,100). Line 470 makes the sprite appear on the screen.

When you have had enough of the rabbit, press any key.

Line 510 causes the sprite to move over to the point with
coordinates (250,150). The move is made in 200 steps. We
will get back to the last O in the movesprite procedure
call later.

When you again press any key, the program ends.

That was your first program using sprites. Now try giving
the rabbit another color. Try moving it around to other
points on the screen.

THE SPRITE IS ENLARGED
Try adding the program line:
4465 spritesize(spriteno,TRUE,TRUE)

Run the program again. The sprite has become twice as high
and twice as wide!

MORE SPRITES
Add the program lines

472 identify(2,drawingno)
474 spritecolor(2,0)

476 spritepos(2,80,100)
478 showsprite(2)

Try out the program. Can you make the new sprite move? See
if you can make the two sprites start at either side of the
screen. Make them move towards one another so that they
exchange places.

You probably noticed that sprite no 1 passed in front of
sprite no 2. The sprite with the lowest spriteno will

always have first priority, so that the sprite with the
lowest number will appear to pass in front of the other.

TWO SPRITES COLLIDE

The last number in the movesprite call determines how the
sprite will move in relation to the other sprites and other
graphics drawings on the screen. In the examples we have
seen so far, it has been equal to O.

Chapter S - -168- COMAL PACKABES

If the number is changed to 1 i line 510, the sprite will be
instructed to detect a collision with the cther sprite.
Both sprites will stop. Try it!

SAVING A DRAWING ON DISKETTE

You can save a drawing using the order

saveshape ({drawingno>,<filenames$>)

Drawings can be saved either on diskette or on cassette
tape. (NB: Use cs1 in the file name to save on tape.)
The drawing can be fetched for use in another program with

the order ‘

loadshape ({drawingno>,<{filenames$>)

This can obviate the need for including all the DATA
statements in programs using the same sprite image.

The following program (Sprite 2) defines the drawing of

the rabbit and saves this drawing on diskette under the name
spO.rabbit. If you run this program, you will e.g. be

able to replace lines 100-310, 360-400 and 430 in other
programs using the drawing with a single line:

430 loadshape{(drawingno,"spO.rabbit")
First the drawing must be saved using:

0100 til 0300: DATA statements with sprite image
content (See previous program.)

0310

0320 USE sprites

0330 DIM drawing$ OF 64

0340 FOR it=1 TO 63 DO

0350 READ byte

0360 drawing#$: +CHR$ (byte)

0370 ENDFOR i

0380 drawingnoi=1

0390 define(drawingno,drawing$+""0o"")

0400 saveshape(drawingno,"spO.rabbit")

SPRITES USED WITH OTHER GRAPHICS

The following program shows how a sprite can be prepared to
detect a collision with a graphics drawing and wait for the
collision to happen. After the collision, the sprite can
continue in a different direction.

Chapter S - -169- COMAL PACKAGES

0100 til 0300: DATA statements with sprite image
content (See previous program.)

0310

0320 USE graphics

0330 graphicscresn(0)

0340 USE sprites

0350 colori=i

0360 DIM drawings$ OF 64

0370 FOR i:=1 TD &3 DO

0380 READ byte

0390 drawing$:+CHRS$ (byte)

0400 ENDFOR i

0410 drawingno:=1

0420 spritenor=2

0430 define(drawingno,drawing$+"“"o"")

0440 identify(spriteno,drawingno)

0450 spritecolor (spriteno,color)

04460 spritepos(spriteno,50,100)

0470 showsprite(spriteno)

0480 .

0490 WHILE KEY$=CHR$(0) DO NULL

0500

0510 make ‘box

0520 movesprite(spriteno,250,150,200,4)

0530 WHILE NOT datacollision(spriteno,TRUE) DO NULL

0340 priority(spriteno,TRUE)

0550 movesprite(spriteno,130,180,50,0)

0560

0570 WHILE KEY$=CHR$(0) DO NULL

0580

0590 PROC make 'box

0600 pencalor (8)

0610 moveto(100,10); draw(50,0)

0620 draw(0,150)3 draw(-50,0)3 draw(0,-150)

0630 £i11 (105,15)

0640 ENDPROC make’'box

In line 520 the last number in the movesprite call is a 4.
This causes the sprite to recognize collisions with graphics
drawings. If 4 is changed 0, the rabbit will move past the
box without noticing it.

In line S30 there is a delay until a sprite—graphics
collision occurs

In line 540 it is determined that the sprite will be seen
behind the graphics ddrawing. Try changing TRUE to FALSE
and re—-run the program.

SPRITE CARTOONS

By switching two or more drawings quickly in succession, one
can cause the rabbit to appear to perform actions while it
moves.

We begin by making a few small changes in the drawing of the
rabbit which we already have used. (This is easiest to do
by listing the DATA statements and changing them directly.)

Next the aorder of the actions must be specified. This is

Chapter 5 - -170- COMAL PACKAGES

done by means of the order animate(<spriteno)>,<actions$>).
The completed program (Sprite 4) might appear as follows:

0100 DATA %Z00000000,%00000000, 400000000
0110 DATA %00000000,7%00000000,%00000000
0120 DATA %Z0O0000000,%00000000, 400000000
0130 DATA %00001110,%Z00000000,%00000000
0140 DATA 7%00001111,%00011110,%400000000
0150 DATA %00000111,%00111111,%00000000
0160 DATA %Z00000011,%00110111,%Z00000000
0170 DATA %00000001,%11100000,%00000000
0180 DATA %00000011,%11100000,7%00000000
0190 DATA %00000111,%11110000,%00000000
0200 DATA %00000011,%11100000,Z00000000
0210 DATA %00000001,%11000000, 400000000
0220 DATA 7%00000011,%11100000,%00000000
0230 DATA %00111111,%11110000,%00000000
0240 DATA 7%00111111,%11110000,%00000000
0250 DATA 7.00000111,%11100000, 400000000
0260 DATA 7%00000111,%11100000,%400000000
0270 DATA 7%00011111,%11111000,%Z00000000
0280 DATA 7%00111110,%01111100,%00000000
0290 DATA %00000000 , 400000000 ,%400000000
0300 DATA %Z00000000, 700000000, Z00000000
0310

0320 DATA %00000000,7%00000000,7%00000000
0330 DATA 700000000 ,7%00000000,Z00000000
0340 DATA %00000000,%00000000,%400000000
0350 DATA %00001110,%00001110,%Z00000000
03460 DATA 7.00001111,700011110,%Z00000000
0370 DATA %00000111,%00111100,700000000
0380 DATA %Z00000011,7%00110000,%400000000
0390 DATA 700000001 ,%11100000,7Z00000000
0400 DATA %00000011,7%11100000,%Z00000000
0410 DATA %00000111,%11110000, 700000000
0420 DATA %00000011,7%11100000,%Z00000000
0430 DATA %00110001,%11000000,7%00000000
0440 DATA 7%00111111,%11100000,%00000000
0450 DATA %00001111,%Z11110000,7%00000000
0460 DATA %00000111,7%11110000,400000000
0470 DATA %Z00000111,%11100000,%00000000
0480 DATA %Z00000111,%11100000,%00000000
0490 DATA %Z00011111,%11111000,%00000000
0500 DATA %00111110,%Z01111100,%Z00000000
0510 DATA 700000000 ,%Z00000000 , 400000000
0520 DATA 7%00000000,%00000000,%00000000
0530

03540 USE graphics

0550 graphicscreen(1)

0360 USE sprites

0570 color:=1

Chapter S - -171- COMAL PACKABES

0580 spritenoisi

0590 DIM drawing$ OF 64, action$ OF 64
0600 FOR drawingno:=1 TO 2 DO

0610 drawing$s=""

0620 FOR i:=1 TO 63 DO

0630 READ byte

0640 drawing#: +CHR$ (byte)

0650 ENDFOR 1

0660 define (drawingno,drawings$+""0"")
0670 ENDFOR drawingno

0680

0690 identify(spriteno,l)

0700 spritecolor (spriteno,color)

0710 spritepos(spriteno,50,100)

0720 showsprite(spriteno)

0730 .ction‘l -Il L] 1 " ll+ll II4II Il*_ll II2II Il+ll ll5ll "
0740 animate(spriteno,actions$)

0750 movesprite(spriteno,350,150,300,0)
0760 -

0770 WHILE KEY$=CHR$(O) DO NULL

We hope that this brief program example will inspire you to
attempt your own complex dramatizations or games!

The order of the action is specified in line 730. Trans-
lating this line we find the following instructions:
Display drawing 1 for 4 units of time, show drawing 2 for
units of time. Continue to repeat this action until the
sprite stops.

(4]

See the overview under animate for further information on
order of action sequences.

A MULTI-COLORED SPRITE

So far we have only used drawings in high-resolution
graphics (specified by a ""0"" in the
define(<drawingno>,<{drawing$>+""0"")) procedure. The
drawing is in only one color; it can readily be used either
on a high-graphics screen (graphicscreen(0)) or on a
multi-color screen (graphicscreen(1)).

A sprite drawing can de created using several colors, but it
is a little more complicated to create unless you can use
the program "Spriteeditor" on the demo diskette or tape
which accompanied your COMAL cartridge. See additional
information on this program in Appendix H.

When a sprite image is defined using several colors, it is
important to keep in mind that the horizontal neighboring
pixels are associated in pairs when using multi-color
graphics. In connection with the used of sprites in multi-
color graphics, the following pairs of numbers determine the
color of the sprite:

00 Transparent

01 Color 2

10 Foreground color 1
11 Color 3

Chapter 5 - -172- COMAL PACKABES

Thus a sprite can be composed of 4 different colors, one of
which is "transparent"”. The foreground color is determined
by the spritecolor procedure. Colors 2 and 3 are
determined by the spriteback procedure.

Just as with drawings in high-res graphics, it is a good
idea to start by making a plan on graph paper. Pair the
horizontal pixels when choosing the four possible "colors".
Then prepare the drawing in the form of DATA statements as
before. But now you must be more careful when assigning the
correct number combinations to the pixel pairs.

Here is a program. (Sprite 5) which uses sprites with
several colors:

0010 DATA %Z00000000,%400000000 ,%00000000
0020 DATA %00001010,%00000000, 00000000
0030 DATA %00001010,%400000000,%400000000
0040 DATA %Z00000101,%Z01010101,7%01010000
0050 DATA %Z00000101,%01010101,%X01010000
0060 DATA %00000101,%01010101,7%01010000
0070 DATA %00001010,%10101010,%Z10100000
0080 DATA %00001010,%10101011,%11100000
0090 DATA %00001000,%00101011,%11100000
0100 DATA %00001000,%00101011,%11100000
0110 DATA %00001000,%00101011,%11100000
0120 DATA %00001000,%00101011,%11100000
0130 DATA %00001000,%00101001,%11100000
0140 DATA 7.00001010,7%10101011,7%11100000
0150 DATA %00001010,%10101011,%11100000
0160 DATA 700001010,7%10101011,%11100000
0170 DATA %00001010,%10101011,%11100000
0180 DATA %00001010,7%10101011,%11100000
0190 DATA 7%11111111,%Z11111101,%Z01111111
0200 DATA %11111111,711111101,%Z01111111
0210 DATA #%11111111,%11111101,%Z01111111
0220

0230 USE graphics

0240 graphicscreen(l)

0250 USE sprites

0260 DIM drawing$ OF 64

0270 FOR i:=1 TO 63 DO

0280 READ byte

0290 drawing$: +CHR$ (byte)

0300 ENDFOR i

0310

0320 drawingnos=1

0330 define(drawingno,drawings$+""1"")
0340 background(0)

Chapter § - -173- COMAL PACKAGES

0350 spriteback(2,12)

0360 RANDOMIZE

0370 FOR spritenoi=0 TO 7 DO

0380 spritecolor (spriteno,RND(3,10))
0390 spritepos (spriteno,spriteno*40,50)
0400 identify(spriteno,drawingno)

0410 showsprite(spriteno)

0420 spritesize(spriteno,1,1)

0430 ENDFOR spriteno

0440 FOR i1=1 TO 100 DO plot (RND(0,319) ,RND(50,199))
0450 WHILE KEY$=CHR$(0) DO NULL

In line 240 multi-color graphics is selected. In line 330
the drawing is defined as a multi-color image by means of
the ""i{"" in the procedure call.

In line 340 the graphics screen background color is
selected. In line Z50 the 2nd and 3rd colors for the sprites
are chosen.

In line IBO a random foreground color is chosen for each
sprite. In line 420 all sprites are set double size. In
line 440 stars are placed in the sky.

SPRITE OVERVIEW
The package sprites contains 23 procedures and functions.

Definition of drawings and sprites:
define(<drawingno>,<drawings$>)
identify (<{spriteno>,<drawingno>)
Sprite color(s):
spritecolor (<spriteno>,<color>)
spriteback(<{color2>,<{color3>)
Sprite size:
spritesize(<{spriteno’>,{xdouble>,<{ydouble>)
Sprite position and motions
spritepos (<spriteno’>,<{x>,<y>)
movesprite (<spriteno>,{x>,<{y>,<{step’>,<moded>)
startsprites
stopsprite (<spriteno>)
moving (<spriteno’>)
spritnx(<spr1t¢no>)’
spritey(<{spriteno>)
animate (<spriteno>,<action$>)
Visibility:
showsprite (<spriteno>)
hidesprite(<spriteno>) .
priority(<spriteno>,<graphics’in’front>)
collisionscheck:
spritecollision(<{spriteno>,{yes/no>)
datacollision(<spriteno>,{yes/no>)
Information about sprites:
spriteinq(<spriteno>,{property>)
A sprite is transformed into a graphics drawing:
stampsprite(<spriteno>)

Chapter S5 - -174- COMAL PACKAGES

Eprite images and storaget
saveshape ({drawingno>,<filenames>)
loadshape ({drawingno>,<filenames$>)
linkshape (<drawingno’)
(Use cm1 in file name for Datassette file.)

define({drawingno’>,<{drawing$>)

is a procedure which defines a new drawing. The
variable <drawing$> is a string with a length of 64
characters. It contains the information which
specifies the sprite image. (See the examples at the
beginning of this section.) The image defined is
assigned the number given by the parameter

<drawingno>. ‘

There can be up to 32 images defined at one time. The
parameter <{drawingno> must be an integer between ©

and 31. The same image may be used to identify several
different sprites.

Example:

define (23,houses) The contents of the string house$
defines drawing number 23.

identify(<{spriteno),<{drawingno>)

is a procedure which specifies that the sprite with the
number <spriteno)> is to be displayed using the image
with the number <{drawingno>. There can be up to 8
different sprites on the screen at once. The parameter
<spriteno> must be an integer from O to 7. The same
drawing can form the basis for several sprites.

The sprite with the lowest <(spriteno)> has the highest
priority and is therefore displayed in front of others
with which it overlaps on the screen.

If the graphics turtle is displayed on the screen, it
always has sprite number 7.

Example: .

identify(0,23) Sprite number O is displayed as
image no 23.

spritecolor (<spriteno>,<color>)

is a procedure which assigns the sprite with the number
<spriteno)> the color specified. The parameter
<spriteno> is an integer from O to 7, and <color>

is an integer from O to 15. In high-resolution
graphics the sprite will have this color. In multi-
color graphics it is colorl.

Example:

spritecolor (0,8) Sprite number O is given color number 8.

Chapter S - -175- COMAL PACKAGES

spriteback(<color2>,<{color3>)

is a procedure which specifies the colors in multi-
color graphics. A multi-color sprite can have up to
four colors:

transparent (but does not cover other colors)

foreground color set with pencolor (=colorl)

additional colors set with spriteback (=color2 and
color3)

Example:

spriteback(2,7) additional colors are red and yellow.

Special rules for Multi-colored Sprites:

In a multi-color drawing pixels are associated in
horizontal pairs. Each color (background-, foreground-
and additional) is indicated by bit patterns as
follows:

Bit Color shown Is set by

pair

00 transparent graphics orders
o1 color 2 spriteback

10 color 1 spritecolor

11 color 3 spriteback

If graphics has priority over sprites (e.g.
priority(<spriteno>,TRUE)), then color2 with bit
pattern 01 will also be the background color.

The parameter color2 gives no report about collision
with another sprite (spritecollision) or with
graphics drawings (datacollision).

spritesize(<{spriteno>,<{xdouble)>,<{ydouble)>)

is a procedure which determines whether the sprite
numbered <{spriteno> will be displayed in double size
format. Normally a sprite occupies 24 pixels in the
x—direction and 21 pixels in the y-direction. If
<{xdouble> is set equal to a number not equal to 0
(=TRUE), then the sprite will be shown in double
width. Similarly for <ydouble)>.

Examples:
spritesize(35,0,1) Sprite S5 double height

spritesize(2,TRUE,TRUE) Sprite 2 double size

spritepos(<spriteno>,<{x>,<y>)

is a procedure which places the upper left-hand corner
of the sprite at the point with screen coordinates
(X,y).

Sprite positions are always specified in the screen

Chapter 5 - -176- COMAL PACKAGES

coordinate system independent of any other coordinate
system which may have been defined by the graphics
order window. Sprite coordinates are in fact
specified in the coordinate system (-32768..32767, -
32768..32767). Only the points (0..319,0..199) are
visible on the screen.

Example:

spritepos(0,25,50) Sprite O is placed at screen
position (25,50).

movesprite(<spriteno’>,{x>,{y>,<{step>,<{mode>)

is a procedure which moves the sprite numbered
<spriteno> from the current position to the point
(x,y). The motion is performed in <{step)> small

steps. Each step takes 1/50 of a second on computers
using the European PAL standard. On computers using
the American NTSC standard, each step takes 1/60 of a
second. The time in each case corresponds to the time
it takes to update the screen image.

The parameter <{step> expresses how many time
intervals (screen updates) the movement will take. The
fewer the number of steps, the faster the motion.

The parameter <step)> determines the speed of the
sprite as follows:

1. If <step> is held constant, then the speed
will always be proportional to the distance
between the two endpoints of the motion.

2. The speed will be independent of the distance
between the endpoints if <{step> e.g. is
defined by:

FUNC step(spriteno,x,y)
speed: =10
dxi=x—-spritex (spriteno) .
dy:=y—-spritey(spriteno)
dist:=S0R (dx#dx+dy#*dy)
RETURN speed#dist
ENDFUNC step

If this function is used to determine the
parameter step, the speed will always be
constant. In this case about 1 screen time
unit.

3. The speed can made indcependent of the x-
distance (similarly for the y-distance), so
that the sprite will appear to move with
constant speed in one dimension.

This can be assured if <step)> is determined
by the following function.

Chapter 5 - -177- COMAL PACKAGES

FUNC step(spriteno,x)
spead:1 =10
dist:=ABS (x—spritex (spriteno))
RETURN spesed#dist

ENDFUNC step

I¥f in particular step equals O, the sprite will be
moved immediately (next screen update) to the position
({x>4<y>) regardless of the value of <{mode>. The
sprite will not move again, but it can be caused to
perform an action by using the procedure animate.

The parameter <{mode> affects the moment when the
movement begins, and determines whether or not
collision with other sprites and graphics drawings will
be taken into account. The parameter {mode> is an
integer from O to 7:

<mode> effect

(o] Start now, no collision check
1 Await start signal, no collision check
2 Start now, check sprite/sprite caollision
Z Await start signal, check sprite/sprite collision
4 Start naow, check sprite/graphics collision
5 Await start signal, check sprite/graphics collision
) Start now, check for any collision
7 Await start signal, check for any collision

Note:

The procedure movesprite starts the motion. The

COMAL system does not wait for the motion to stop but
continues with the next line in the program. This
makes it possible to start other sprites in motion,
print messages, etc. Many things can be going on at
the same time. If you do not want program execution to
continue while the motion is carried out, you can add a
‘wait’ line. For example:

WHILE moving(<spriteno>) DO NULL
WHILE NOT datacollision(<{spriteno>,TRUE) DD NULL
Examples:

movesprite(2,200,130,100,0) Move sprite no 2 to the
point (200,130) in 100
screen updates. Start now
with no collision check.

movesprite (0,250,~10,300,6) Move sprite no O to the
point (250,-10) in 300
steps. Start now, check-
ing for sprite collisions
and collisions with
graphics drawings.

Chapter 5 - -178- COMAL PACKAGES

startsprites
is a procedure which initiates the motion of those
sprites which are waiting for the start signal. See
the movesprite procedure.

stopsprite(<spriteno>)

is a procedure which stops the motion of the sprite
with the number specified.

moving (<spriteno>)

is a function which takes on the value TRUE (=1) if the

sprite specified moves. O0Otherwise the value of
function is FALSE (=0). '
Example:

IF NOT moving(2) THEN movesprite(2,0,190,50,0)

If sprite 2 isn't moving, then it should be moved at
once to screen coordinates (0,190).

spritex ({spriteno>) and spritey(<spriteno>)

are functions which have the current x- and y—-positons
respectively as values.

Examples:

x‘differencer=x—-spritex(4)
y'difference:=y—-spritey(4)

IF spritey(3)>200 THEN movesprite(3,spritex(3),20,200,0)

I¥ sprite no = collides with the upper edge of the
screen, then it ‘falls’ to the lower edge.

animate(<spriteno’>,<action#$>)
is a procedure which causes the sprite specified to

automatically perform a given action. The action
desired must be defined in the string <actions$)>.

The number of characters in the order of action
specification must be an even number (maximum 64).
Thus a maximum of 32 actions can be requested in each
<action$> string.

Possible actions:

CHR$ (<drawingno>)+CHR$ ({(time>) the drawing with the
number indicated should
be displayed for the
time specified.

Note that 0<= <{drawingno> <=31 and 0<= <time> <{=255
units of time (screen updates). See the procedure
movesprite for more about timing.

Chapter S5 - -179- COMAL PACKAGES

If <time> is equal to O, the sprite will enter a
wait state which can only be interrupted by the order
startsprites or by a "g"-action.

"p"+CHR$ ({time>) Pause for the given time
interval.

"g"+CHRS® ({spriteno>) Restart the given sprite,
if it is waiting.

"g"+CHRS$ (<spriteno>) The specified sprite is
shown.

"h"+CHRS (<spriteno>) The specified sprite is
hidden.

"x "+CHR$ ({xdoubl @>) If <{xdouble> is TRUE

(i.e. < > 0) the width of
the sprite is doubled. If
<{xdouble> is FALSE (i.e.

= 0), the sprite is 24
pixels wide.

"y"+CHRS$ ({ydouble>) Analogous to
"x"+CHRS$ ({xdouble>).

"c"+CHRS$ ({color>) The sprite acquires the color
indicated, where 0<= <{color>
<{=185.

The action must be started by the procedure

movesprite. The actions specified by the string are
carried out from left to right unless the sprite is in
a wait state. When the last action has been completed,
the sequence is repeated until the sprite is no longer
in motion: either the movesprite motion is finished,

or an animate(<spriteno>,"") order is executed.

Just as with the movesprite procedure the COMAL

system does not wait for the action sequence to be
completed but procedes directly to the next line in the
program.

Note that CHR$(<{value)>) has the same meaning as
""dvalue>"", so

action$:="g"+CHR$ (1) +"p"+CHR$ (10)+"h"+CHR$ (1) +"p"+CHR$ (10)
is identical to

actionsi="g"1 llpll 10"h"1 "D" {onn

Examples:

animate(1,"s"1"p"10"h"1"p"10"") Sprite no 1 moves at
movesprite(1,100,100,0,0) once to the screen
WHILE KEY$=CHR$ (0) DO NULL position (100,100) and
animate¢i,"") flashes for 10 time

units, until any key
is pressed.

Chapter 5 - -180- COMAL. PACKAGES

.n‘m.t.(s' lllllllll‘ll ll2llll4llu3ll II4II II)
movesprite(3,300,180,500,0)

While sprite no 3 moves to screen position (300,180},
it is first shown for 4 units of time as drawing no 1.
Next it is displayed for 4 time units as drawing no 2,
followed by drawing no 3. The sequence is then
repeated again. Animation!

showsprite(<{spriteno>)

is a procedure which makes the specified sprite visible
(if it is on the screen).

hidesprite(<spriteno>)

is a procedure which conceals the sprite.
priority(<spriteno>,<{graphics’in’front>)

is a procedure which determines the priority of the
specified sprite in relation to the graphics drawings
on the screen. If <{graphics’in‘front> has the value
TRUE (=1), the graphics will be displayed in front of
the sprite when they overlap. If the value is FALSE
(=0), the sprite will appear in front of the graphics.
When USE sprites is first used, the value is
automatically set to FALSE.

Example:

priority(é,1) Sprite no 6 will be displayed behind
graphics.

spritecollision(<{spriteno>,<{yes’'no>)

is a function which is used to specify when the given
sprite collides with another sprite, or determine if it
collided with one earlier.

If <yes’'no>=TRUE, then spritecollision is FALSE,
until a collision occurs.

If <{yes’'no>=FALSE, then spritecollision is TRUE, if
a collision has already occured.

Collisions occur when colors different from the
background color overlap. See in particular the remark
under the spriteback procedure concerning multi-color
graphics.

Examples:
WHILE NOT spritecollision(2,TRUE) DO NULL

Do nothing before sprite no 2 collides with another
sprite.

IF spritecollision(4,0) THEN spritecolor (4,2)

If sprite no 4 has previously collided with another
sprite, then it should be colored red.

Chapter 5 - -181 -

datacollision(<{spriteno’>,<{yes’'no)>)

COMAL PACKAGES

is a function which is used to determine when the
specified sprite collides with graphics drawings, or if
it previously has collided with graphics drawings.

If <yes’'no>=TRUE, then datacollision is FALSE until

the collision occurs.

If <{yas‘'no)>=FALSE, then datacollision will be TRUE
if a previous collision has occured.

A collision takes place when colors different from the

background color overlap.

spriteinq(<spriteno>,<{property>)

(See spritecollision.)

is a function which is used to obtain information

concerning the sprite specified.

The value of the

parameter <property?> determines which characteristic

is to indicated.

<prop- The function
erty>

o visible

1 Multi—-color2 (01)

2 Multi-colort (10)

3 Multi-color3 (11)

4 double width

S double height

[Multi-color

7 gra./sprite priority
8 drawing number

9 time remaining

10 sprite/sprite collision
11 sprite/s/gra. collision
12 mode of motion

13 number of actions

14 no. of next action

Range

TRUE/FALSE
0..15
0..15
0..15
TRUE/FALSE
TRUE/FALSE
TRUE/FALSE
TRUE/FALSE
0..31
0..215
TRUE/FALSE
TRUE/FALSE
0..7

0..32
0..32

Is set with

hide/showsprite
spriteback
spritecolor
spriteback
spritesize
spritesize
define,identify
priority
identify
movesprite
movesprite
movesprite
movesprite
animate

animate

Note that TRUE and FALSE have the numerical values 1 and

0.

Example:

FOR noi=1 TO 14 DO PRINT spriteinqg(no)

stampsprite(<spriteno>)

is a procedure which is used to change the sprite into

a graphics image.
graphics screen image.

The sprite is "stamped" onto the

Normally a sprite is not part of a graphics illustra-
tion and will therefore not be printed out with the
rest of the graphics when the procedures printscreen
and savescreen are used. The procedure stampsprite
makes a copy of the sprite part of the graphics screen

image.

This procedure can be employed e.g.

if you wish

Chapter 3 - -182- COMAL PACKAGES

to incorporate the graphics turtle as part of a drawing
which is to be saved or printed.

Example:
FOR spriteno:=7 TO O STEP ~-1 DO stampsprite(spriteno)

Copies of all visible sprites' are made on the graphics
screen.

saveshape ({drawingne>,<file names$>)

is a procedure which saves a copy of the sprite image

on diskette or tape (remember csi in the file name)

under the name <filename$>. The drawing itself must .
be represented by a string 64 characters in length.

Example:

define(2,drawing$) The figure contained in the
saveshape (2,"sp0O.flower") string drawing$, is saved
under the name "spO.flower".
The 0 is included in the name
to indicate that the drawing is
intended for use in high-
resolution graphics.

loadshape ({drawingno>,<filenames$>)

is a procedure which fetches a copy of the file named
<filenames$)> from diskette or cassette tape. The file
must have been saved previously using the procedure
saveshape. The file <filename$> must contain a
string with the definition of a sprite image. This
drawing will be given the number <{drawingno>.

Example:

loadshape (1, “spO.flower") The file spO.flower
contains a string with an
image which will be
recognized as number 1 ‘
in the program.

linkshape ({drawingna>)

is a procedure which associates a copy of the drawing
indicated with the COMAL program. When the program is
saved using the order SAVE, the drawing will be saved
with it. It can be read in later together with the
program with the order LOAD.

If desired, the drawing can be disassociated from the
COMAL program by using the order DISCARD.

The drawing must have been fetched earlier using the
procedure loadshape. This drawing is assigned the
number <{drawingnod.

Chapter 5 - - 183- COMAL PACKAGES

Example:

linkshape(7) The drawing with the number 7 is
associated with the COMAL program in
working memory.

Chapter S - -184- COMAL PACKAGES

SOUND AND MUSIC

Those of you who are familiar with the sound capabilities of
the Commodore 64 will be pleased to know that your COMAL
cartridge offers you full and easy access to the Commodore
6581 sound synthesizer (SID) chip. This chip allows you
to use up to three musical voices at the same time. In
addition you have considerable freedom to decide how the
individual notes will sound. You can cantrol frequency,
sound level, sound type, modulation and filtering. This
section must be considered to be only an introduction to a
very exciting subject. An entire book could be devoted to
the study of music synthesis using the Commodore 64.

Using the COMAL order
USE sound,

you make a number of additional procedures and functions
available. Use these procedures and COMAL programming to
create your own "orchestra".

Individual notes are denoted by strings. For example,
"middle C" on the musical scale is denoted by the string
variable "c4".

The other notes in this octave are denoted:
"c4","caH","d4","da#", etc. Notes in the next highest
octave are denoted by "c5","c5#" and so on. The notation
for the next lowest octave is "c3","c3#",.... Notice that
sharp notes are denoted "f4#" for "f-sharp" in the fourth
octave, etc.

Although this tutorial is not intended to be a music course,
here are .a few facts which may be helpful when transfering a
musical score to your Commodore &64. You will have to
identify the notes and their durations. The following
figure shows the ordering of some of the notes which can be
played and the standard musical symbols for note duration:

£5
P i o =1

{ o d = 1/2
e J = 1/t

JJ i $ = 1/8
s B d = 1/16

L) o & - 1/32

B 3

The full range of notes starts with "c0O" and extends up to
and includes "a7#" on computers with European PAL
standard, and "b7" on computer with the American NTSC
standard.

Chapter S

In this s
which you
You will
Appendi x
contents

Music Dem
this
COMA
less
see

Music 1:
play

Music 2:
poss
your
real

Music 3:
own
the
writ

Music 4:
numb
voic
(att

Music 5:
sync

After try
LOAD, RUN
Notice th
befare th
listing ¥
150-320:

0150
0160
0170
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320

The first
voice numl
or a’7#) a

- - 185~ COMAL PACKABES

ection we will comment briefly on six programs,
will find on the demonstration diskette or tape.
find complete printouts of these programs in

H. They are titled as follows and have the
indicated below:

0: You will probably want to start by running

program to get an idea of the capabilities of your
L. sound package. After examining the programs of
ons 1-5, you can return to study this program to
how all three voices can be used together.

This program illustrates how individual notes are
ed.

Up to three musical voices are available. It is
ible to use up to three notes at the same time in
programs, giving your compositions a rich and
istic dimension.

Here you can hear a demonstration or make your
composition using just one voice. Again, listing
program will be helpful to help you learn how to
e your own music programs.

This demonstration program allows you to change a
er of parameters which affect the sound of each
e: volume, soundtype and the adsr
ack—decay-sustain-release) waveform envelope.

Here is a complete composition illustrating
hronized music with several voices.

ing out the Music Demo, you will probably want to
and LIST each of the five “"Music" programs.

at the order USE sound must appear in a program,
e sound control orders will be active. In the

or Music 1 pay particular attention to lines

INPUT AT 8,11 "voicesr "1 voice
INPUT AT 9,11 “note-code: "icode$
play(voice,code$)

PROC play(voice,code$)
IF code$<>"z" THEN
note(voice,codes$)
gate(voice,1l) // attack & decay
ENDIF
delay(2) // sustain
gate(voice,0) // relesase
ENDPROC play

PROC delay(sec’'32)

TIME

WHILE TIME<1.875*sec’'32 DO NULL
ENDPROC delay

thing that happens are the INPUT statements. The
bar (1, 2 or 3) and the note code (cO,cO#,...
re to be entered here. In line 170 the sound

Chapter 5 - ~186- COMAL PACKAGES

procedure play is called with these two variables as
inputs. .

If the note code variable code$ is a “z2", no new note

will be played. Use "z2" when you want a pause to occur in
your music. It must be followed by a duration code, just
like a note. If code$ is a legal note code, then the note
will be played.

This is accomplished as follows. The procedure

note(voice,codes$) sets up the voice and the note, getting

it ready to be played. The prccedure gate(voice,1)

initiates the playing of the note; the attack and decay

portions of the adsr envelope are executed at once. The

procedure delay (which must be provided by the user)

determines the length of time the note is sustained. .
Finally, the order gate(voice,0) terminates the sustain

phase and the note procedes to decay, as specified by the

adsr procedure. -More on adsr later! '

The user supplied delay procedure can be any routine which
can use up a well-defined time interval. In this program we
have done this by means of a WHILE...DO loop which does
nothing (NULL). The procedure call pause(14) in line 250
causes a delay of 16/32 = 1/2 second.

To make two notes play simultaneously, instructions like the
following must be added:

225 note(2,"c5")
235 gate(2,1)
265 gate(2,0)

Try LOADing, RUNning and LISTing Music 2. You will find
the procedures play and delay used again. In addition
you will find the following instructions:

0130 FOR voice:=1 TO 3 DO

0140 soundtype(voice,3)

0150 ENDFOR voice

0160 .]
0170 INPUT AT 7,1t "note-code: ": code$
0180

0190 FOR voices=1 TO 3 DO

0200 PRINT AT 10,1: "voice "jvoice
0210 play(voice,code$)

0220 play(voice,"z")

0230 ENDFOR voice

Lines 130-150 are used to set up the soundtype of each of
the three voices. This is a sound package order with two
input variables. The first variable is the voice number

(1,2 or 3), and the second one is the soundtype (0,1,2,3

or 4). These numbers specify soundtypes as follows:

soundtype 0: silence
soundtype 1: triangular wave
soundtype 21 sawtooth wave
soundtype 31 square wave
soundtype 43 white noise

Chapter S5 -

It will require some

-187- COMAL PACKAGES

experience before you become skillful

at selecting the best soundtype to achieve the effects you

want. Lines 130-150

in this example set all three voices to

the square wave soundtype.

Line 170 inputs a note code. Lines 190-230 allow the note
to be played using all three voices, so that you can
experience the differences among them. Notice that the
procedure play(voice,code$) is used just as it was used
earlier. Notice also that we have used "z" as an input to
play to achieve a pause between the playing of each note.
Try removing line 220 and listen to what happens when the

program is run.

Now LOAD and RUN the
particular attention

program Music 3. LIST it, and pay
to lines 330-500:

0330 PROC play ‘'melody // Row, Row, Row Your Boat

0340
0350 melodys

0360 DATA “c4" .B. ngu '2' negn 'e. ngn '2' negn 'B, nggqn .4
0370 DATA “e4",8,"z",8,"e4",8,"d4",4,"es",0

0380 DATA "f£4",4,"g4",16,"z",8,"c5",4

0390 DATA "c5",4,"c5",4,"g4",4,"ga",4

0400 DATA “g4",4,"=4",4,"ed",4,"es",4

0410 DATA “c4",4,"c4",4,"c4",4,"z",8,"g4",8

0420 DATA "£4",4,"w=4",8,"d4",4,"c4",8

0430

0440 RESTORE melody

0450 WHILE NOT EOD DO
0460 READ code$,sek 32
0470 play(voice,code$)

0480 ENDWHILE
0510

0520 ENDPROC play 'melody

This praocedure plays
Boat):

a simple tune (Row, Row, Row your

S/ NS SN R S S D
1 T =
da— — 1T K11 -~
Tt hi g e e Fee4,,
o & ‘. [2 g Seb——

The procedure starts
melody), so the DATA
each time the melody
pairs of information
take a quick look at

by zeroing the DATA pointer (RESTORE
statements are read from the beginning
is played. The lines of DATA contain
(note codes and their durations). Lets
the data to see how it relates to the

simple piece of music in this illustration.

Look at the music.

The first note is "middle C" with the

Chapter S - -188- COMAL PACKAGES

note code c4. It is a quarter note. If we decide to give
a whole note a duration of 32, then the quarter note must
be given a duration of 8. The first two data elements are
"c4",8. Notice that the first element is a string

variable, while the second element is an integer. After

the first note we want a brief pause, so the notes don‘t all
run together. We enter "2",2 to accomplish this. The

next two notes are also middle C, so they are entered in the
same way. The vertical line in the musical score indicates
a brief pause, so we have entered a "2",8 for this

purpose. Notice that it is not always necessary to enter a
pause between notes. You must experiment until you
understand how to achieve the effect you want.

There are many ways of handling the music data. You could
enter lines of music as long strings of data and design a
procedure to "pick out" the note codes and delays one at a
time. You might choose to make the duration codes integer
variables to save memory when composing a lengthy piece. If
sections of the music are repeated, then it will be a
distinct advantage for you to design each unique section of
the music as an independent procedure. A "master procedure"
can then be written to play the piece, executing each
section in turn.

The actual playing of the notes is accomplished in lines
450-480. Data is entered a pair at a time (note code and
duration). The note is played by play(voice,codes). And
this. process continues until there is no more data (EOD is
TRUE) .

Turn now to Music4. This program will help you to
experiment with a few more orders from the sound package.
The following lines are of particular interest:

0180 INPUT AT 11,1: "VOICE (1/2/3)7?7 ": voice

0190 INPUT AT 13,1: "VOLUME (0-15)? ": vol

0200 INPUT AT 15,1: "SOUNDTYPE (1/2/3/4)7 ":1 type
0210 soundtype(voice,type)

0220 volume(vol)

0420 INPUT AT 21,1: "A,D,5,R? ": a,d,s,r
0430 adsr (voice,a,d,s,r)

0440

0450 play 'melody

Lines 180-200 input the voice number, music volume and
the soundtype for the voice selected. The package
procedure volume(vol) can be used to regulate the volume
from silence (0) to the maximum value (15).

In line 430 the user can select the waveform parameters.
These determine the shape of the sound intensity pattern
which forms the note. The actual sound consists of waves as
specified by the soundtype procedure. The adsr

procedure allows the user to control the shape of the
"envelope” governing how the note rises in intensity
(attack), decays, is sustained at a certain level then

dies away (release). Notice that the duration of the
sustain phase of the note is regulated by means of the user
procedure delay. The shape of the envelope is specificed

Chapter S - -189- COMAL PACKAGES

by the following numbers, each of which can be chosen freely
in the range from 0-15:

attack specifies the rate at which the waveform
envelope rises. This rate should be high (i.e.
the attack parameter small) to achieve a "piano“,
"banjo" or "harpsicord" sound. The sound of
plucked stringed instruments is charaterized by a
very audible attack phase when the note is struck.

decay determines how fast the note dies down to the
sustain level. Varying this number will vary the
type of stringed instrument, you want to emulate.

sustain defines the intensity level at which the note
will be played for the delay period specified by
the user ‘s delay procedure.

rel ease regulates how fast the note "dies away" at the
end of the sustain period.

(‘T"r N Decay Sustain

it

—
—/
J
—~

ik ({

The last program, Music S5, illustrates how several voices
can be played at once using the procedure playscore. In
this example only one vaoice is used (voice 1). We will see
later how this can be changed by adding a few more lines.

The notes should first be read in and transformed to
frequency values by means of the function frequency. All
these numbers are then stored in a table of integers
tone#() along with the associated duration data: an

ads ‘pause for the attack-decay-sustain phase and an
r'pause for the release phase (including the delay between
notes). The numbers are brought into the voice 1 register
by means of the procedure setscore. Then the playing is
initiated by the procedure playscore.

While the melody is played, the following COMAL program
prints out some numbers. This is done here simply to
illustrate that while the SID chip is at work playing music,
the processor can proceed with other tasks. When the
background music is finished, the function waitscore takes

Chapter 5 - -190 - COMAL PACKABES

on the value TRUE (=1). Thus the printing of numbers in the
WHILE-ENDWHILE loop will stop when the music stops.

0090 no1=0

0100 WHILE NOT EOD DO

0110 not+1

0120 READ code$,tim

0130 tone# (no) 1 =frequency (code$)

0140 ads ‘pause# (no) 1 =timn2

0150 r‘pause# (no) 1 =tim»2

0160 ENDWHILE

0170

0180 tone#(nr+1):1=0

0190 setscore(l,tone#(),ads pause#(),r ‘pause#())
0200 playscore(1,0,0) .
0210

0220 number : =0

0230 WHILE NOT waitscore(1,0,0) DO

0240 numbers+1

0250 PRINT number;

0260 ENDWHILE

Add the lines:

192 setscore(2,tone#() ,ads’ 'pause#() ,r ‘pause())
194 setscore(3,tone# () ,ads pause#(),r ‘pause#())

and change lines 200 and 230 to:

0200 playscore(1,1,1)
0230 waitscore(1,1,1)

The three voices will play the melody simultaneously (syn-
chronized). The program ends, when all three voices have
finished.

‘Can you write a "round" with a delay between the different
voices?

Notice that when the package if first brought into
play with the order USE sound, the following
default values are selected:

adsr(1,0,4,12,10)

adsr (2,10,8,10,9)

adsr (3,0,9,0,9)

FOR voice:=1 TO 3 DO
pulse voice,2048
setfrequency(voice,0)

ENDFOR voice

volume (15)

soundtype(i,1) // piano

soundtype(2,2) // violin
soundtype(3,3) // cymbal

The intention of the five introductory music programs
has been to acquaint you with how to control the sounds
created by the sound package. At first you may feel
that there is a great deal to learn before you can

Chapter 5 - -191- COMAL PACKAGES

compose music. This is true. But as with many other
situations, a skill worth learning does take time and
effort. Be patient, experiment and be curious. As you
solve each problem which arises, you will learn
something new!

We conclude this section with a summary of the orders
made available when you invoke the sound package:

volume ({level >)

note({voice>,<codes$>)

gate(<voice>,<{start ‘stop>)

soundtype ({voice>,<{soundtype>)

adsr ({voice>,<attack>,<{decay>,<sustain>’>,<{released)
setscore({voice),{frequency()>,<{pausel()>,{pause2()>
playscore(<{voicel),<voice2>,<{voice3>)
stopplay({voicel),<{voice2>,{voice3>)
waitscore(<{voicel>,{voice2>,<{voice3>)

frequency ({code$)>)

setfrequency ({voice>,{frequency’'value>)
sync({voice’ 'combination>,<yes 'no>)
filterfreq(<{frequency’value>)

filter (<voicel>,<voice2>,{voice3)>,<external))
filtertype(<low>,<band>,<high>,<3-interrupt>)
pulse(<{voice>,{pulse 'width>)
ringmod(<voice’'combination>,<{yes ‘'no>)
resonance({degree>)

env3

osc3

SOUND ORDERS IN DEPTH

volume(<{level >)
is a procedure which controls the common sound level
for all three voices. The parameter <level)> is an
integer from O to 15.
Examples
volume(135) maximum sound level

note(<voice>,<codes$>)
is a procedure which is used to indicate the tone
<code$> which the voice with the number <voice>

will play. The parameter <voice)> can be 1, 2 or 3;
<code$> is a string with possible values: "cO",

"cOo#","d0",...,"a7#" on machines using the European FAL
standard. On machines using the American NTSC standard

tones up to "b7" can be played. The letters in each
note code indicate the note, and the number indicates
the octave. The character # indicates half notes
(sharp notes).

Example:

note (2,"d5") voice 2 will play the note dS

Chapter S — -192- COMAL PACKAGES

gate(<{voice>,(start ‘stop>)

is a procedure which either starts or stops the playing
of voice number <voice>. If the parameter

<start ‘stop> equals 1, the note starts. If
<start’‘stop> equals 0, it stops.

Example:

gate(3,1) Voice 3 starts playing.
soundtype({voice),<soundtype))

is a procedure which is used to indicate which

<{soundtype> <voice> is to be. The parameter

<soundtype> is the periodic base signal which will be

used to create the notes. It can be any of the
following:

<soundtype> 0: silence
1: triangle waveform
2: sawtooth wave
3: square wave
4: white noise

Example: .
soundtype(1,3) voice 1 formed with square waves
adsr ({voice>,<attack>,<{decay>,<sustain>,<release’>)
is a procedure which determines the shape of the
waveform envelaope. See the program, Music 4. Note
especially that <sustain)> indicates a sound level
from O to the maximum sound level (determined by
volume), while <attack>, <decay> and <release’>

control the time dependence.

Value <attack> <decay> and <release’>:

O: 2 msec & msec
1: 8 - 24 -
2: 16 - 48 -
3: 24 -~ 72 -
4: 38 - 114 -
S: 56 - 168 -
bt 68 - 204 -
7: 80 - 240 ~
8: 100 - 300 -
Q: 250 - 750 -
10: 500 - 1.5 sec
11: 800 - 2.4 -
12: 1 sec 3 -
13: 3 - 9 -
14: S - 15 -
15: 8 - 24 -

<sustain> can equal O, 1,..., 15

Chapter S - -193- COMAL PACKAGES

Example:s

adsr(1,13,13,8,13) voice | envelope is specified
playscore(<{voicel)>,{voice2>,<{voice3)>)

is a procedure which is used to synchronize the start

of the voices. A 1 in the variable position
corresponding to <{voiceX> starts the voice playing:

Example:

playscore(1,1,0) voice 1 and 2 are started
stopplay (Kvoicel)>,<{voice2>,{voice3>)

is a procedure which stops the playing of the voices

indicated. If <voiceX> is TRUE (=1), then voice X

stops playing.

Example:

stopplay(0,1,1) voice 2 and 3 are stopped

waitscore(<{voicel)>,{voice2>,{voice3>)

is a function which returns the value TRUE (=1) i+ ghe
playing of the indicated voice combination has
finished.

Example:

WHILE NOT waitscore(1,1,0) DO NULL do nothing before
voice 1 and 2
have finished

playing.

frequency ({code$>)

is a function which returns the integer value which the

SID chip must receive to play the note. It is mostly
used to compute table values for the procedure
setscore. The integer value lies between —-32768 and
32767 inclusive. It is NOT possble to transform notes
between octaves directly by dividing these numbers by
2. The parameter <code$> must contain a string with
a valid note code (i.e. one of the codes "cO",osv.}.

Example:

frequency(“c4") the note "c4" is transformed
to a number

setfrequency({voice>,{frequency’valued>)

is a procedure which is used to define the frequency of

each <voice)>. The number <{frequency’value> must be
in the range 0 - 635535. These numbers do not
correspond directly to the SID chip frequency codes.

Chapter 5 - -194- COMAL PACKAGES

Example:
setfrequency(2,2000)
sync({voice 'combination>,<{yes’'no>)
is a procedure which takes care of synchronization with
respect to the <voice’'combination) indicated if

<{yes ‘no> equals 1. Otherwize the voice combination
is not synchronized.

Note: voice’'combination corresponds to sync
number: between voices:
1 1 and 3
2 1 and 2
3 2 and 3
Example:
sync(1,1) voice 1 and 3 are synchronized

filterfreq(<frequency’ 'value))

is a procedure which is used to determine the cutoff
frequency for the filter. The parameter
<{frequency’'value)> must be in the range 0 to 2047
inclusive, corresponding to frequencies between about
FO and 12000 Hz.

Example:
filterfreq(1500)
filter ({voicel)>,{voice2>,{voice3>,<{external>)
is a procdure which is used to select which voices are
to be filtered, i.e. damped. A 1 in a <voiceX>

position means that voice X is to be filtered.

Example:

filter(0,1,1,1) voice 1 should NOT be filtered
filtertype(<low>,<band>,<high>,<3°’interrupt>)

is a procedure which is used to select the filter type.

If <low> equals 1, then a ‘low-pass’ filter is

used, damping tones in the treble range. All

frequencies above the filter frequency (set by

filterfreq) are damped 12 dB per octave.

If <band> equals 1, then damping occurs on both
sides of the filter frequency; & dB per octave.

I¥ <high> equals 1, then the low frequencies are
damped by 12 dB per octave.

If <3’interrupt> equals 1, then voice 3 will not be
audible. It can be used to code information about

Chapter 5 - -19%5- COMAL PACKAGES

synchronization and ringmodulation.
Several filters can be selected at the same time.
Examplet

filtertype(1,0,1,0) creates a "notch filter™
which has the opposite effect
of a "band-pass filter":
damping occurs around the
filter frequency.

pulse(<{voice>,<{pulse’'width’>)

is a procedure which is used to indicate the ratio
between the time during which a square wave is high and
the time during which it is low (the "“duty-cycle").

The more this ratio deviates from 1:1, the more "nasal"
and "sharp”" the sound will be. The parameter
<pulse’width> is a number from 0 to 4096 inclusive.
When selected as 2048 the ratio is 1:1.

Example:

pulse(1,2048) The ratio high/low equals 1.

ringmod ({voice’ 'combination>,<{yes 'no)

is a procedure which is used to determine whether ring
modulation is to be in effect. The parameter
{voice’'combination)> selects which voices are affected
(see sync). If <yes’'no> is TRUE (=1) modulation

will occur; it will not if <{yes’'no> equals FALSE

(=0).

When ring modulation is in effect, then two new voices
with frequencies equal to the sum and the difference
between the original voices are generated.

resonance ({degree))

is a procedure which is used to indicate to what degree
certain frequencies will be emphasized. The greater
the value of the parameter degree, the greater the
emphasis on the frequencies selected by the procedure
setfrequency will be. This will give the sound a
synthetic quality. The parameter <{(degree> must be an
integer from O to 15.

env3

is a function with no parameters. It returns the
amplitude of the intensity envelope for voice number 3.
The values of the function lies in the interval O -
255.

Displaying the intensity envelope:

USE sound
USE graphics

Chapter 5 - ~-19%- COMAL PACKAGES

graphicscreen(0)

volume (10)

soundtype(3,1)

note(3,"as4")

adsr (3,13,13,8,13)

gate(3,0)

WHILE env3<>0 DO NULL,

TIME O

gate(3,1)

WHILE TIME<&4O#10 DO
drawto(TIME/S,env3/256#199)

ENDWHILE

gate(3,0)

WHILE TIME/S<320 DO
drawto(TIME/S,env3/256#199)

ENDWHILE

WHILE KEY$=CHR$(0) DO NULL

osc3
is a function with no parameters. It returns a value
from O to 255. The number indicates the excursion of
the current sound type of voice 2. In the case of a

triangle the numbers vary from O to 255 and back to O
again. For the sawtooth wave, values increase from O
to 255 then fall rapidly back to 0. The square wave
pulse varies between 0 and 255. White noise yields
random numbers from O to 25S5.

Note that the sound continues playing after a
COMAL program stops. The sound stops only if a
melody is finished, if the COMAL program produces
an error message or if it communicates with the
disk drive. These orders all use the

interrupt, also used by the sound chip.

Chapter 5 - -197- COMAL PACKAGES

PACKABES FOR USING THE CONTROL PORTS

The COMAL cartridge contains 3 packages which can be used
with the two input ports (game ports) on the right hand side
of your Commodore 64 (on the back of the SX-64). These two
inputs will be refered to as control port 1

and control port 2.

The control ports can be used to attach accessories like
joysticks or paddles. Signals from these devices can be
interpreted and assigned numbers by the the computer. The
Commodore 64 can be used with a range of different acces-—
sories — both commercially available and those you can build
yourself. (See Chapter 7 on Peripheral Equipment.)

In this section we will deal specifically with:

paddles
joystick
light pen

These accessories can be
purchased from your
Commodore dealer.

Some of the COMAL pack-
ages contain procedures
which make it easier to
use these accessories.

PADDLES
The package paddles is made available by the order:
USE paddles

A pair of paddles should be attached to a control port. The
paddles will be refered to as paddle a and paddle b.

Each paddle has a knob, which is used to change the

position of a variable resistor, and a push-button, which
shorts a port input to ground when activated.

Chapter 5 - -198- COMAL PACKABES

The package contains a single procedure:

paddle(<portno)>,<a‘paddle>,<b 'paddle>,<a’button>,<b’button>)

which transforms information, K from the control port to
numbers. ’

The parameter <portno> must contain the number of
the control port to which the paddle pair is
attached: 1 or 2.

* The variables <|'piddll> and <b ‘paddle> contain
the numerical value corresponding to the knob
position of paddle a and paddle b respectively:

0<= <a’'paddle> <=255 and 0 <= <b’paddle)> <=255
The variable <a’button)> equals 1 if the a-

pushbutton is depressed; otherwise <a’'button>
equals 0. Similarly for <b‘button>.

Example:

USE paddles

paddle(2,a‘'paddle,b 'paddle,a’‘button,b ‘button)

PRINT a‘’paddle;b’paddleja’buttonib ‘button

The signal values are fetched from control port 2 and
printed out in the next line.

The following program example, Paddle Game, is available
on the demo diskette (tape):

0010
0020
0030
0040
0030
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220

0230
0240
0230
0260

USE paddles

DIM format$ OF 40
format$:r=" ### * L2 1] *"

PAGE
INPUT AT 2,13 "control port no > ": portno

DIM winners$ OF 1

winner$i="c"

PRINT AT 9,21 "Who can adjust the paddle and press "
PRINT AT 10,2: “"the fire button the fastest?"

PRINT AT 13,2: "Press a key to start.”

RANDOMI ZE

WHILE KEY$=CHR$(0) DO NULL

number : =RND (0, 25%5)

PRINT AT 15,2: "The number ist: " ,number

REPEAT

paddle(portno,a’paddle,b’paddle,a‘button,b ‘button)

PRINT AT S,1: " a‘paddle a‘button b 'paddle b‘button®
PRINT AT 6,13 USING format$: a’paddle,a’button,
b’paddle,b 'button

IF number=a ‘paddle AND a‘button THEN winners$i=“a"
IF number=b ‘paddle AND b ‘button THEN winners$:="p"
UNTIL winner$ IN "ab"

Chapter S5 - -199- COMAL. PACKABES

0270
0280 PRINT AT 17,2: winners$+" was fastest!"
JOYSTICKS

The package joysticks becomes accessible when you use the
order:

USE joysticks
Attach a joystick to one of the control ports. A joystick

is a peripheral device which can be centered or moved by the
user into any of 8 different positions:

Direction COMAL. — number
up 1
up-left up-right 8 2
left neutral right 7 0 3
down-left down-right [4
down S

In addition there is a push-button on the joystick (the fire
button) which sends a signal to the computer when pressed.

The package contains a single procedure:

Joystick (<portno>,<direction>,<button>)

which translates the signals from the joystick to
numerical values for use in praograms.

#* <portno> must contain the number of the port to
which the Jjoystick is attached: 1 or 2.

* {direction) is a variable which equals a number in
the range 0 - 8. These values indicate the
position of the joystick. See above.

<button> is a variable with the wvalue 1 when the
fire button is pushed, otherwize <button> equals

0.
Examples
USE joysticks The signal values are fetched
joystick(2,retning,button) from control port 2 and printed
PRINT directionjbutton in the next line.

The program example shows how a joystick can be used to draw:

Chapter 5 - - 200~ COMAL PACKAGES

0100 PAGE

0110 PRINT "JOYSTICK FOR DRAWING"

0120 PRINT

0130 PRINT "The joystick determines drawing direction.*
0140 PRINT "The fire button switches colors."
0150 PRINT

0160 PRINT "Press <STOP)> to stop the program."”
0170 PRINT "Press <35> to see the drawing again,*
0180 PRINT "and <f1> to get back to the text."
0190 PRINT

0200 INPUT "Joystick in port nos (1 or 2) 1"1 portno
0210 IF portno<i OR portno>2 THEN portnoi=2

0220

0230 USE turtle

0240 USE joysticks

0250 graphicscreen(l1)

0260 background(1)

0270 pencolor (35)

0280

0290 LOOP

0300 joystick (portno,direction,button)

0310 IF direction THEN

0320 setheading ((direction—1)#45)

0330 forward(1)

0340 ENDIF

0350 IF button THEN // change color

0360 pencolor((inq(é)+1) MOD 16)

0370 ENDIF

0380 ENDLOOP

LIGHT PEN

In order to understand how a light pen works, you have to
know something about how the picture on your TV or monitor
screen is formed. The picture is created by an electron
beam which scans back and forth across the face of the
screen at high speed. As it scans, the intensity of the
beam changes. FPhosphors on the inside surface of the screen
react to the electron beam by emitting light, thus creating
a visible image. The picture on the screen is updated 50 or
60 times each second, so the eye doesn’'t notice this
process. A light pen contains a photodiode in its tip. It
can detect variations in the light level striking it.

When the electron beam passes the point on the screen where
the iight pen is positioned, it can be illuminated. If it
is illuminated and a signal is sent to the computer, the
instant when the signal arrives corresponds to a particular
position on the screen.

The light pen should always be conrected to control port 1.
Next make the package lightpen accessible with the order:

USE lightpen

The light pen works best when the screen border is dark and
the background is light.

I+ the program segment listed below does not work right
away, then try adjusting the contrast and intensity

Chapter S - -201- COMAL PACKAGES

adjustments on your display.

Using this program you can experiment with the operation of
the light pen. Type in the program and try it:

0010 PAGE

0020 USE lightpen

0030 USE system

0040 textcolors(0,14,6)

0050

00560 offset (0,0)

0070 REPEAT readpen(x,y,ok) UNTIL ok
0080

0090 PRINT x3y

The program contains 2 procedures from the light pen
package: Line 60 specifies that the light pen’s measurement
of the coordinates of a point should not yet be offset.

Line 70 detects where on the screen the light pen is
pointed.

Move the pen slowly from the dark edge in the lower left and
corner into the light area. The program will then print out
the light pen’'s measurement of the coordinates of this
point. Try a few times until the coordinates have heen
determined with reasonable accuracy. These coordinates are
referred to as the light pen’'s offset from (0,0). We will
term this coordinate pair ((Kxoff>,{yoff:). The coordinates
(Kxoff>,<yoff>») can vary from displey to display due to
delays in the electonic detection process.

In line &0 of the program the offset was set equal to
(0,0). Now change this to the values of (<xoff>,<yoff>)
which you have just found..

When you run the altered program and move the light pen in
and out of the corner, i1t should now register the
coordinates (0,0). I+ it does not, you have an idea of the
uncertainty with which the light pen can determine screen
coordinates. Try refining your calibration.

Now examine the coordinate range which the light pen can
measure. It should extend from (0,0) to about (319,199).
After this initial adjustment, we are ready to tackle some
more challenging tasks.

The first example takes advantage of the fact that the
computer automatically sets some important initial parameter
values whenever the order USE lightpen is invoked. This

is true, for example, of the time for which the pen must be
held at the same spot on the screen before its position will
be registered (the procedure delay). This is also the

case for the time which must pass from the moment when ocne
set of coordinates has been found to the time when a new
determination will begin (the procedure timeon). A

program which is to be used toc make drawings on the screen
must be able to determine the coordinates of points very
quickly, so delay and timeon should be set to small

values. If accuracy is more important than speed, then
larger values should be used.

Chapter 5 = -202- COMAL PACKABES

The program might look like this:

0010 PAGE

0020 USE lightpen

0030 USE graphics

0040 graphicscreen(0)

0050 border (0)

0060 background(14)

0070 pencolor (6)

0080

0090 xoffi1=52; yoffi=-51 // use your own values
0100 offset (xoff,yoff)

o110

0120 delay(1)

0130 timeon(1)

0140

0150 REPEAT readpen(x,y,ok) UNTIL ok
0160 moveto(x,y)

0170 LOOP

0190 REPEAT readpen(x,y,ok) UNTIL ok
0230 drawto(x,y)

0250 ENDLOOP

Try changing the values in lines 120 and 130. What effect
does this have?

Note that all lines are connected. What should be done so
that the pen can be lifted and lines not connected?

If one wishes to determine the location of the pen on the
text screen, the pen’'s-:coordinates must be transformed to a
character position ({line?>,<column>). The text screen has
25 lines each with 40 columns.

In the following example two user—-defined COMAL-functions
(FUNC line(y) and FUNC column(x)) are used to make the
conversion. In order for the functions to operate properly,
the light pen coordinates must have been corrected using the
offset procedure described earlier, so that the lower left
corner corresponds to (0,0).

The program illustrates how a light pen can be used to make
selections from a menu containing charcters, words or other
choices. In this case the problem is to select words from
the list at the end of the program and make them into a
sentence with a maximum of 40 characters:

0010 PAGE

0020 DIM text$(25,4) OF 10

0030 DIM name$ OF 10, all$ OF 40
0040 ZONE 10

0050 1:=8

0070 USE system
0080 textcolors(0,14,4)

0100 arrange'words

0120 USE lightpen

Chapter S5 - =203~ COMAL PACKABES

0130 delay (&0)

0140 timeon (60)

0150 accuracy(10,2)

0160 xoffi1=52; yoffi=-51 // use your own values
0170 offset (xoff ,yoff)

0180

0190 choose ’words

0200

0210

0220 PROC arrange words

0230 CURSOR 1,1

0240 FOR i:=1 TO S DO

0250 FOR j:=1 TO 3 DO

0260 READ text$(i,j)

0270 PRINT texts$(i,j),

0280 ENDFOR j

0290 PRINT

0300 ENDFOR i

0310 texts$(6,1):="@nd"

0320 PRINT texts$(é6,1)

0330 PRINT AT 6,1: "Point to words with the light pen."”
0340 ENDPROC arrange words

0350

0360 PROC choose’words

0370 REPEAT

0380 REPEAT readpen(x,y,ok) UNTIL ok
0390 IF y<199-(1-1)%8 THEN // from line 1
0400 names$:i=text$(line(y)—1+1,column(x) DIV 10+1)
0410 IF name$<>"end” THEN all$:+" “+names$
0420 PRINT AT 2,1: alls

0430 ENDIF

0440 WHILE penon DO NULL

0450 UNTIL names$="end"

0460 CURSOR 20,1

0470 ENDPROC choose ‘words

0480

0490 FUNC line(y)

0500 RETURN (200~y) DIV 8+1

0510 ENDFUNC line

0520

0530 FUNC column(x)

0540 RETURN x DIV B8+1

05350 ENDFUNC column

0560

0570 DATA "Peter","takes","enough”

0580 DATA "the cat","eats",”"from"

0590 DATA "the food","rains","always"

0600 DATA "everything","remembers”,"never"
0610 DATA "the book","forgets","soon"

In line 150 the procedure accuracy from the light pen
package is used. The procedure accuracy(<dx>,<dy>)
determines the resolution in the x— and y-directions.

Add some additional DATA statements yourself.

Chapter & - -204~- COMAL PACKAGES

OVERVIEW OF THE LIBHT PEN PACKAGE

The package contains S5 procedures and a function:

of fset (<xoff>,<yoffd)
penon

readpen (<{x>,{y>,<0ok>)
timeon(<time>)

delay (<time>)
accuracy (<dx>,<dy>)

of fset (<xoff>,{yoffd>)

is a procedure which is used to offset the light pen
coordinate pair so that it agrees with the corrdinates
of the graphics screen. This offset can vary from
display to display. Try starting with values such as:
<xoff> = 75 and <yoff> =-45.

Example:
offset (52,-51) Light pen coordinates are offset
so (0,0) is in the lower left-hand
corner.
penon

is a function which has the value TRUE (=1) if the
pen is touching the screen. Otherwise penon equals
FALSE (=0).

readpen ({x>,<{y>,<ok>)

is a procedure which reads the coordinates of the
screen position and delivers them in the variables
<x> and <y>. The variable <ok> has the value

TRUE if the pen is touching the screen (just as the
function penon).

Example:
REPEAT readpen(x,y,ok) UNTIL ok Read the screen .
coordinates when the
PRINT x,y light pen is touch-—-
ing the screen.
Print the coordinates
on the next line.
delay({time>)

is a procedure which is used to specify the time for
which the light pen must be held still on the screen
before the light pen reading will be recorded. The
light pen must be held still within the limits
specified in the procedure accuracy.

The parameter <{time> is given in 1/60 of a second.
Starting value: <time>=10 (i.e. 10/60 = 1/6 second)

Chapter 5 - -205- COMAL PACKABES

timeon (<time))

is a procedure which is used to specify the time
which must pass from one screen reading until the next
is possible.

<time> is given in 1/60 of a second. Starting value:
<time>=30 (i.e. 30/60 = 1/2 second)

accuracy (<dx>,<dy>)

is a procedure which is used to indicate the size of
the region on the screen within which the light pen
must remain to be considered to be ‘at rest’. The
smaller these values, the more precisely the light pen
must be positioned to obtain a reading.

Initial values: <dx>=4 and <dy>=2
Example:
accuracy(10,8) The pen is considered to be at

rest if it is held within a 10x8
pixel region.

Chapter 5 — -206- COMAL PACKAGES

THE SYSTEM PACKAGE
USE system

This package contains, among other things, procedures which
can be used to specify how the screen display, keyboard and
printer interfaces should operate. In addtion the package
contains functions which provide infaormation about your
system, the display and the keyboard:

textcolors ({border>,<{background>,<text>)
keywords ‘in‘upper ‘case (TRUE or FALSE) ‘
names ‘'in’‘upper ‘case (TRUE or FALSE)

quote ‘mode (TRUE or FALSE)

inkey$

settime (<{time 'of ‘day$>)

gettimes$

getscreen ({screens$>)

setscreen ({screens>)

hardcopy (<unit$>)

currow and curcol

bell (<duration>)

free

defkey(<no>,<texts$>)

showkeys

serial (TRUE or FALSE)

setprinter ({attributes$>)

setrecorddelay ({duration>)

setpage ({integer>)

textcolors ({(border >,<background>,Ktext>)

is a procedure which is used to define the color

combination of the border, background and text. On
start-up textcolors(14,6,14) is executed
automatically on a Commodore &464. 0On an S5X-64

textcolors(3,1,6) is the default value.

Examples:

textecolors(0,2,1) black border, red background
and subsegquent white text

textcolors(12,11,1%5) grey tones

textcolors(-1,5,-1) Only the background is
changed (in this case to
green).

keywords ‘in ‘upper ‘case (TRUE or FALSE)

is a procedure which determines whether keywords are to
be written in upper case (TRUE) or lower case (FALSE).
The default is TRUE.

Chapter S - -207- COMAL PACKAGES

Example:

keywords ‘in ‘upper ‘case (FALSE) Keywords are
displayed in a
listing with small
letters.

names ‘in‘upper ‘case(TRUE or FALSE)
is a procedure which determines whether names are to be

written in upper case (TRUE) or not (FALSE). The
default is FALSE.

Example:

names ‘in ‘upper ‘case (TRUE) Names will be displayed
with large letters.

quote ‘mode (TRUE or FALSE)
is a procedure which determines whether control codes
and other invisible ASCII characters in string
constants are to be displayed in reverse text (TRUE) or

with their ASCII values enclosed in quctes (FALSE).
After start—up the default is FALSE.

Examples:

FRINT statement after quote’'mode (TRUE):
PRINT 'BHello!'"

after quote ‘mode(FALSE):
PRINT ""2"Hello!"

inkeys$
is a function which reads in characters from the
keyboard. The function inkey$ works like KEYS.
However inkey$ awaits a character with the cursor
flashing at its current position.
Examples:
answers$:=inkey$
PRINT inkeys$

settime(<{time’'of ‘days$>)
is a procedure which is used to set the clock in the
computer (CIA#1 real time clock). On start-up the
clock is zeroed by settime("00100100.0").

The format of the time’of ‘day$ string is:

Chapter & - -208- COMAL PACKAGES

hhimmiss.t hh is the hour (0 - 24)

or mm is the minute (0 - 39)

hhimm: ss ss is the second (0 - S9)

or t 1is tenths of a second (0O — 9)
hhtmm

or if a number field is left out,
hh it will be assigned the value 0.
Examples:

settime("07:30s15")

settime("10:20")

settime("0") The clock is reset to O.
gettimes

is a function which returns the time’'of ‘day in the
format hh:mm:ss.t

Examples:s
PRINT gettimes$ answer e.g.: 9:32:56.4
digital clock:
PAGE
USE system
L.OOP
PRINT AT 1,30: gettimes$,
ENDLOOCP
getscreen ({screens$>)
is a procedure which takes a copy of the current text
screen, and saves it as the string screen$. The
string screens$ takes up 1505 characters. This is

reserved by using the order DIM screens$ OF 1505.

The content of the string screen$(1:1505):

screen$¥ (1) border color

2 baggr. color

3 cursor color

4 cursor: line — 1

S cursor: column - 1

305 text and color
information

Text and color information consists of S00 sequences of

-

3 bytes each:

character 1 For every two characters
character 2 their color is stored.
2. i. Each color takes 4 bhits
color making a byte.

See the program examples following setscreen(<{screens$)>).

Chapter 5 - - 209~ COMAL PACKAGES

setscreen ({screens$>)

is a procedure which creates a picture on the text
screen. Picture informationen is contained in the
string screen$. The string must contain at least
1505 characters. See getscreen({screens$)>).

Program example 1:

DIM a$ of 1505, b$ of 1505
USE system

getscreen (as$)
getscreen (bs)
as:=a$(1:725)+b$ (726: 1505)

setscreen (as)
Note:

At two selected times during the execution of the
program, the contents of the text screens are saved in
the strings a% and b$ respectively. Later a string

is created by combining the first 725 characters of

a%$ (i.e. color and cursor infarmation, and the first
12 lines of the a$ screen image) and of b$'s last

780 characters (i.e. the b$ screen’s lower 13 lines).
The combined image is finally presented on the screen.

Program example 2:

PROC help CLOSED

DIM si$ OF 1505,s2% OF 1505

USE system

getscreen(sis$) // save screen image

OPEN FILE 10, "skm.help",READ

READ FILE 10:s2%

CLOSE FILE 10

setscreen (s2%) // shows a user help screen

WHILE KEY$=CHR$(0) DO NULL

setscreen(sls$) // the old image back again
ENDPROC help

hardcopy ({units$>)

is a procedure which prints out the contents of the
text screen to the unit which 'is given in the string
unit$. The printout begins with a carriage return.

Example:s

hardcopy("1p1") The contents of the text screen
is printed on a lineprinter. The
order has the same effect as
<CTRL-P>.

Chapter 5 — -210- COMAL PACKAGES

currow and curcol

are two functions which return the current row and the
current column respectively.

Examples:
rowt=currowi column:=curcol
PRINT AT O,curcol-5: name$

bell (<duration>)
is a function which activates COMAL's "bell". The
parameter duration must be an integer in the range 1
to 255. The value 1 corresponds to a real-time

duration of about 0.15 seconds. On start-up an
automatic bell (3) is executed.

Example:
bell (10) Sound for 1.5 sec.

free

is a function which returns the number of free bytes in
working memory. A more complete overview of the use of
working memory is obtainable using the command SIZE.
But because SIZE is a command, it cannot be used from a
running program.

Exampl et
PRINT free
defkey(<no>,<{text$>)

is a procedure which is used to redefine the meaning of

the function keys. The keys are numbered 1,..,8,11,..18.

The numbers 1 - 8 are normally active for indication of

the usual function keys <f1> — <f8:. But during
program'execution, the function keys will correspond to ‘
numbers 11 - 18. The string text$ may consist of a

maximum of 32 characters.

The procedure showkeys will print out a list of the
current definitions of the function keys.

Examples:
On start-up the following is performed:

defkey (&6,"LIST ") Activating <f6> prints LIST
on the screen.

The <f3> and <f4> can e.g. after redefinition be used
to assist with the writing of procedures:

defkey (3,"AUTO"13""13"PROC *)
defkey (4, "ENDPROC"13""141"SCAN"13"")

Chapter 5 - -211- COMAL PACKAGES

<f3> will cause: AUTO
0010
0020 PROC

<f4> will cause: XXXX ENDFROC
(Interrupt AUTO-numbering.)
SCAN
(Which checks the structure of the
procedure and allows use of the
procedure as a command.)

Program example:

USE system

defkey(15,"COMAL for everyone!"13"")
INPUT "What did you say? ": texts
PRINT texts$

If the <{f5> key is activated in response to the INFUT
statement, the system will react as if the message came
from the keyboard and print it out.

showkeys

is a procedure which prints out a list of the meanings
of the function keys.

serial (TRUE or FALSE)

is a procedure which controls whether communication is
sent to the serial port or to the IEEE-488 maodule (if
available).

Examples:
serial (TRUE) Send to the serial port.
serial (FALSE) Send to the IEEE-488 module.

setprinter (<attributess$>)

is a procedure which is used to select the unit number
and attributes of the peripheral printer. Printout to
the lineprinter (1p:) will thereafter be performed
according to the rules given by the attributes. These
are given in a string during procedure calls.

Possible printer attributes:

/a- do not translate from Cé64 ASCII to standard ASCII
/a+ convert from C64 ASCII to standard ASCII

/1- suppress line feed after carriage return
/1+ execute line feed after each carriage return

/t-. ignore ‘time out’ signal and continue printout
/t+ interrupt with error message if time runs out

Chapter 5 - -212- COMAL PACKAGES

Secondary adresses for the Commodore MFS 801 (partly
also MPS 802) printer: (See instruction manuals for
other printers.)

/8- no secondary address used

/80 write data as received

/81 write data in previously defined format

/82 save format information

/83 number of lines per page

/84 allow explanatory error messages

/85 define a programmable character

/86 number of blank lines between each printed line
/87 print with lower case

Upon start-up in COMAL "lp:1" is defined as the unit
with the attributes u4:/a-/1-/t+/s87.

The MPS 801 printer can be set to act as unit 4 or unit
5 by means of a switch on the back panel.

Examples:

setprinter ("uS:1s0") "lp:" means hereafter
unit 5; printout with
upper case.

setprinter("lp:/a+/1-") Convert to ASCII, send

no line feed.

A procedure to define the number of lines per page on
the MFS B802 printer:

PROC page '802(lines’'pr ‘page) CLOSED
OPEN FILE 1,"1p:/s3",WRITE
OPEN FILE 2,"1p1",WRITE
PRINT FILE 1: CHR$(lines pr ‘'page),
PRINT FILE 2: CHR$(147),
CLOSE

ENDPROC page 802

setrecorddel ay (<duration>)’

is a procedure which causes COMAL to pause under writes '
to a random file. The parameter <duration> is given in
milliseconds. The disk operating system needs time to
write a block to the diskette before the COMAL system
can send a new positioning order. It is rarely

. necessary to use the procedure. When COMAL is
initiated, an automatic setrecorddelay(50) is carried
out, unless the IEEE module is connected with the COMAL
cartridge. In that case a setrecorddelay(0) will be
executed.

setpage (<{integer>)

is a procedure which determines to which overlay the
orders PEEK and POKE will refer. See Chapter 8 for
more information on this. The utilities program
showlibs on the demo diskette (or tape) uses this
procedure.

Chapter S - -213- COMAL PACKAGES

THE FONT PACKAGE

The package font contains 6 procedures which are used to
define new screen characters. It is possible to change an
entire character set or just an individual character.

The package is activated with the order

USE font

The package affects the 4 character sets numbered:

0: User—defined read/write
1: User—defined read/write
2: Upper case/graphics set read only
3: Upper/lower case letters read only
The Commodore &4 uses a double character set. Normally

COMAL uses character set 3. By activating <SHIFT C=> you
can switch back and forth between character sets 2 and 2.
These two character sets are permanently available in the
working memory of the computer, so they cannot be changed.

With the font-package it is possible to add a new double
character set numbered 0 and 1. This character set is
stored in a protected area of the working memory of the
computer.

There are now several options:

1. You can move a copy of the normal character set of the
computer into the area reserved for the user character
set and change some of the characters.

2. You can fetch a completly new character set from
diskette or tape and store it as the user—-defined
rrharacter set. It will go into effect at once. O+
course it is essential to have such a character set
prepared and available on diskette or tape. A
character set is available on your demo diskette or
tape. But it is also possible to create your own and
to store it for later use.

Remarks:

* The character set used corresponds to screen
characters. Their character code are not in accord
with the standard ASCII values. See Appendix A for
standard screen character codes and ASCII codes.

The following command will print out all the standard
screen characters. Issue the order with default screen
and cursor colors. (The screen image starts at memory
address 1024.):

for i=0 to 207 poke 1024+i,i

The user—defined character set is also used by the
procedure plottext from the graphics-—package.

Chapter S5 - -214- COMAL PACKAGES

Because a printer uses its own character set, font
will have no effect on PRINT and LIST orders directed
to the printer. On the other hand <CTRL-D>
(printscreen) will cause an' exact copy of the
graphics screen image to be printed out on a MPS 801
compatible printer.

Example of character replacement:

First we fetch a character from the standard character set
to see how it is stored in an 8x8 raster pattern of pixels.
The following program can be used for this purpose.

The character is fetched by means of the procedure
getcharacter. The rest of the program has been added to
provide a nice printout of the character in an 8x8 matrix.
We let the string function bin$ convert the individual
characters in the fetched raster pattern to binary numbers.
These numbers are then printed under one another to create
the bit pattern of the character:

0010 // save "@Fetch Character"

0020 USE font

0030 DIM rasters OF 8

0040 PAGE

0050 INPUT "Character set : ": choice#
0060 INPUT “Character no. : ": character#
0070 PRINT

0080 getcharacter (choice#,character#,rasters)
0090 FOR i:=1 TO 8 DO

0100 PRINT TAB(12) ,bin$(DRD(rasters$(i)))
0110 ENDFOR i

0120

0130 FUNC bin$(number) CLOSED

0140 DIM binnumber$ OF 8

0150 binnumber$:="00000000"

0160 bit:=1

0170 FOR i#:=8 TO 1 STEP -1 DO

0180 IF number BITAND bit THEN binnumber$(i#):="1"
0190 bit:+bit

0200 ENDFOR i#

0210 RETURN binnumber$

0220 ENDFUNC bins

Try out the program. Choose a character from the double
standard character set: 2 or 3. Since we have not yet
prepared any user—defined characters, any attempt to fetch a
character from sets O or 1 will result in an error message.
The character a has the number 1 in character set number

3.

Next we will prepare a user—defined character by simply
moving a copy of the standard character set up to the user-
defined area. Since no user—defined character set has yet
been created, the order linkfont has this effect. Write
therefore:

use font
linkfont

Chapter 5 - -215- COMAL PACKAGES

This way a user—defined charater set (0 og 1) is created for
immediate use. In addition the old screen image is hidden,
and a new picture is created for using the new character
set. It is always possible to return to the standard
character set by using the order DISCARD (which preserves
any program in working memory) or NEW (which does not).

It is now paossible to change the characters in the double
character set O — 1. The brief program which follows reads
in individual charcters by means of DATA statements and
makes them part of the new character set with the order
putcharacter.

The DATA in the program for a letter s (the Greek letter
‘phi). This character can replace any charcter in set ¢ or
1. If you wish to have this Greek letter available instead
ot the "pound" sign, you can assign it character number 28
in character set number 1. Then when you press the

"pound” key, a & will appear on the screen.

Try replacing some other characters. Notice that there is
an immediate effect on the display screen.

0010 // save "Save Character"

0020 USE font

0030 DIM rasters OF 8

0040 FOR i:=1 TO 8 DO

0050 READ byte

0060 rasters(i:i):=CHR$ (byte)

0070 ENDFOR i

0080 PAGE

0090 INPUT "Character set : ": choice#
0100 INPUT "Character no. : ": no#
0110 putcharacter (choice#,character#,rasters)

0130 DATA %00000000
0140 DATA 7Z00000000
0150 DATA %00111110
0160 DATA 701101110
0170 DATA 701111110
0180 DATA %01110110
0190 DATA %01111100
0200 DATA %Z0O0O000000

(NBE: Remember to execute use font and linkfont
before running this program.)

On the demonstration diskette you will find the program

fonteditor which can be used to aid in the definition of
new characters.

Replacing an entire character set

If a double character set is available on diskette, it can
be fetched into working memory by using the orders:

discard (to erase earlier linkfont)
use font
loadfont ("<filenames$>")

Chapter S5 - -216- COMAL PACKAGES

where <{filename$> is the name of the diskette- or tape
file. Thereafter the new character set and screen image can
be used.

The package font contains the procedures:

linkfont

loadfont (<filenames$)>)

savefont ({filenames$)>)

keepfont

getcharacter ({character set)>,{character’>,<rasters$>)
putcharacter (<character set),{character)>,<{rasters$>)

FONT PACKAGE PROCEDURES IN DEPTH:

linkfont

is a procedure which is used to define a new double
character set number O and 1. The procedure should
only be used as a direct command, for a program cannot
continue atter a linkfont statement.

* Room is reserved in working memory for the new
character set and for the screen image (4000 bytes
for the character set and 1000 bytes for the screen
image).

* The extra screen becomes the current screen and is
cleared.

% Because the variable table in the working memory is
overwritten by the new character set, all COMAL and
package names will be undeclared.

* If linkfont has not been called earlier, either
directly or indirectly through loadfont, then the
standard character set (2-2) will be copied over as
the new character set (0-1).

If linkfont has been called previously, nothing ‘
happens. It is thus not possible to overwrite an ‘
existing user—defined character set with a new
linkfont—-command. The user—defined character set
must be removed first by using the order DISCARD or
NEW. Individual characters on the other hand can be
replaced using the order putcharacter.

* The double character set is treated as a part of
your COMAL program. When the program is stored
using the SAVE command, the user character set is
saved along with it as a single file. When the
program is loaded again later using the LOAD order,
the character set is also loaded and ready to go
(even before the praogram is run!).

loadfont ({filenames$>)
is a procedure which reads in a character set with the

name <filename$)> from diskette or cassette tape.
First loadfont executes an automatic linkfont,

Chapter S - =-217- COMAL PACKAGES

reserving room in working memory for the fetched
character set and the extra screen image.

The procedure loadfont replaces any existing user
character set with the one which has been read in. The
new character set and screen image can then be used as
the current character set and screen.

savefont (<filenames$>)

is a procedure which copies the user-defined double
character set into the working memory and saves it on
diskette or tape under the name <filename$>.

keepfont

is a procedure which is used to "freeze" a user—-defined
character set, so that it cannaot be deleted using
DISCARD or NEW. Tt is hecessary to turn off the
computer to return to the standard character set.

#* loadfont still works. A newly read—-in character
set will alsoc be "frozen'.

* After keepfont, characters will NOT be saved
together with a COMAL program by the command SAVE.

getcharacter ({character set)>,<{character>,<rasters$>)

is a procedure which fetches a raster image of the
character with the screen code <{character> from
<character ‘set>. The image is fetched in the form of
a string variable <raster$> which is 8 characters
long.

Fermitted values:

[}

{character sets>: 0, 1, 2 og

<characters> : O, {,..., 288

Examples:

getcharacter (3,1, ,rasters) The character a is
fetched from character
set 3.

DIM a% OF 8 The code character D’'s raster
image

USE font is fetched and displayed.

getcharacter (2,4,a$)

PRINT a$%

Printout: XLFFFLX

putcharacter ({character set>,{character’>,{rasters$>)

is a procedure which prints out the character with the
screen code <{character> in <{character ‘set)> with the
raster pattern in the string <{raster>.

Chapter 5 - -218~ COMAL. PACKABGES

Al lowed values:

<character ‘set>: 0, 1
<character> : 0y 1,..., 285

Examples:
putcharacter (1,5,""O""0"<FFFL"0O"")

In the extra character set |1 the character a is
assigned screen character number §.

-219-

Chapter & —

COMAL. Files

WHAT 18 A FILE?

As vyou begin to use your
computer to do more and more
jobs for you, it will be very
convenient to be able to create
files for storing information.
You may wish to save business
transactions, financial records,
address lists, the results of
calculations, measurements or
other data for later use. Of
course it is possible to
purchase commercially produced
"database" software to help you
do this. Nevertheless many
computer owners elect to write
their own programs, so that they
can tailor them preciselv to
their particular needs.

A file is a collection of data, organized for storage and
retrieval. The storage medium can be a Datassette tape
or a diskette. Because serious file handling usually
requires the use ot a disk drive, this chapter will
concentrate mostly on file storage with a disk drive.

There are several ways in which files can be organized.
Sometimes it is convenient to save a set of information one
item after the other in a sequential file. Sequential
f{iles are easy to use and do not require a great deal of
prior planning with respect to the number of storage units
each item will require. On the other hand when sequential
files are used it is necessary to read the entire file into
the computer ‘s memory. And you must re-save the entire file
again each time you have finished working with it. Storing
data as sequential files is useful as long as the file does
not get too large.

There is a way to get around the problem of having to handle
the entire file all at once. Random—access files can be
created, so you only need to read in a small portion of the
file when you want to change it or refer to it. In this case
you must plan ahead carefully, allotting an appropriate
amount of space for each "set" of data (i.e. each record).
If we know how much room each record takes up, it is pos-
sible to fetch or save a single record at a time. Thus the
use of random—access files can speed up access to some types
of information on a diskette (they cannot be used with a
Datassette tape unit). Random—access files are appropriate
to use for handling large collections of systematic data.

In this chapter we intend to cover several important uses
for COMAL files:

Chapter & - -220- COMAL FILES

saving and loading programs and procedures
an address list filing program using sequential files

a random-access inventory file program
moving files between diskettes

* % ok X

The demonstration programs described in this chapter are
found on the demo diskette (or tape) distributed with the
COMAL cartridge. In addition, complete program listings are
available in Appendix H.

SAVING PROGRAMS AND PROCEDURES

As you proceed to write more programs, you will find that
they become larger. But you will also find that many of the ‘
operations to be carried out are the same: saving data,

fetching data, printing tables, printing a title screen,

entering a user response from the keyboard, etc. It will

become very natural for you to do these iobs and others

which may be required again by using COMAL procedures.

Later on the same procedures can be used with little or no

changes.

There are a number of COMAL disk drive operations which make
the building of new programs from available procedures
particularly easy and convenient to do. An overview of
these operations is shown in the table which follows.

COMFPLETE PROGRAMS PROGRAM SEGMENTS
SAVE "{file name>" LIST<segment>"<file name>"
LIST "<file name>"
STORAGE :
SAVE "testfile" LIST 1000-1095 “printout”
LIST "testfile" LIST printout "printout.1"
LOAD "<file name>" MERGE<line>"<file name>"
ENTER "<file name>" ENTER "<file name>"
RETRIEVAL:
LDAD “testfile" MERGE "printout"
ENTER "testfile" MERGE 1100 "printout"

MERGE 1100,5 "printout"
ENTER "printout”

It should also be mentioned here that the DISPLAY
command can be used to save entire programs,
individual procedures or sequences of line numbers
to diskette (or tape). The order DISPLAY 10-100
‘sample" saves program lines 10-100 with no line
numbers as an ordinary sequential file. The file
can (only) be retrieved using an INPUT FILE order
or the GET$ order. Other formats, analogous to
the formats of the LIST command, are also
permitted. The DISPLAY command can be used to
create a sequential file from a COMAL program.
The file might then be loaded into a text editor
(e.a. EASYSCRIPT).

Chapter 6 - =221~ COMAL FILES

Let ‘s quickly review the storage and retrieval of COMPLETE
PROGRAMS. Consider the lefthand column of the table.

The commands SAVE and LOAD are already familiar to vou. You
can use SAVE to transfer a copy of your COMAL program file
currently in memory to diskette. The syntax is SAVE "<file
name>", where the item <file name> is a program name (up

to 16 characters) of your choice. Beginning a file name
with @ has a special meaning: The file will be deleted if
it exists, and the new file will be saved in its place under
the same file name.

The order LOAD is the reverse operation of SAVE. The LOAD
order has the format LOAD "<file name>" and causes the
program file <file name)> to be copied from the diskette to
the COMAL program storage memory of vour Commodore &4. When
yvyou LOAD a program file, the previous contents of the COMAL
program area will be erased. Note that only a program file
(denoted by prg in the directory) can be LOADed. A

complete program can also be LISTed to a diskette where it
will be stored as a sequential file. It must then be
ENTERed or MERGEd to be retrieved later

The commands RUN and CHAIN can also be used to bring program
files into memory from the disk drive. GSee the more
detailed description af these orders in Chapter 4. In
addition a closed procedure, saved using SAVE, can be
fetched as an external procedure during program execution
(see the descriptions of EXTERNAL and PROC in Chapter 4.

Now let's take a look at the column titled FROGRAM SEGMENTS.
This information can be a real time-saver, so study it
carefully!

Suppose that you have developed an ingenious procedure
called quick ‘save for gquickly storing a list of items and
prices on diskette. The procedure 1s so general, that it
could be useful in many other programs. If it is more than
a few lines in length, it will not be convenient to type it
in each time it is to be used. It should be LISTed to
diskette by using the order LIST quick’'save

“prc.quick’ ' save". I¥f you do this and type dir. you will
observe that the file prc.quick 'save is stored as a
sequential (not a program) file on the diskette. Note that
it cannot be LOADed like a program file; to get it into
program memory you must use either MERGE or ENTER. These
orders will be described shortly.

You are also permitted to save your procedure by
referencing the line numbers for the procedure.
For example you could store quick 'save by
writing: list 1000-1090 "prc.quick ' 'save".
Typing dir will verify that the procedure has
been saved as a sequential file. The procedure
can now be brought into another program using the
MERGE or ENTER orders.

Chapter & - =222~ coMaL FILES

Now comes the good part. When you want to use the procedure
again, you have the following alternatives:

* Write merge "prc.quick'save". Your procedure will be
copied from the disk drive and appended to the program in
memory. It will appear with line numbers starting 10
beyond the last line number in the program, even though
the original file was LISTed with line numbering 1000-
1090

* You may instead choose to write merge 1100
“prc.quick ‘save". In this case the procedure will
appear in your current program from lines 1100 and beyond
with a line number interval of 10 (the default value).
I¥ you want the procedure to start at line 1100 with an
interval of 5 between lines, just write merge 1100,5 '
"prc.quick 'save".

WARNING: Be careful when merging a procedure in

the middle of a program. You must be sure that

there is room enough for the procedure with the .
line number interval selected. Otherwise the F N
procedure will get mixed up with other N
instructions or erase them if line numbers

coincide.

* In case you have LISTed an entire program to
diskette, you may want to use the order ENTER. I+
vou write enter "printout" for example, the
sequential file printout will be read into the
active program area. (NOTE: Any other praogram in
memory will be deleted.)

I¥ you have worked with other programming languages and

operating systems, you will appreciate how convenient
these facilities can be while developing programs.

SEQUENTIAL FILES - AN ADDRESS LIST

In Chapter 3, program 19, we saw a simple example .
illustrating how to save numbers on a seguential file. You

may recall that a sequential file must be opened before data

is saved or fetched. After use the file must be closed.

The formal structures for these operations are as follows:

Open a file, save data, close the file.

OPEN FILE <fileno>,<{filename$>,WRITE

FRINT FILE <fileno>: <{data element>

CLOSE FILE <fileno>

Open a file, fetch data, close the file.

Chapter & - -223- COMAL FILES

OPEN FILE <fileno>,<filename$>,READ

INPUT FILE <fileno>: <variable name’>

CLOSE FILE <fileno>

We will now turn our attention to a practical problem.
Suppose you want to create a program to save names,
addresses and telephone numbers. The following example
illustrates the kind of data we want to save and variable
names which we will use:

example string variable
John Smith names$ ()

1200 Wilson Drive streets$()
Anytown, PA 19380 towns$ ()

(212) 123-4567 phone$ ()

Notice that all four string variables are to be defined as
arrays. We intend to design the program to handle up to 100C
names with addresses and phone numbers. We will refer to
the collection of information illustrated above a data
record and each of the individual variables which consti-
tute the record as a data element. In this example each
data record will consist of four elements.

Note that all four string wvariables must be declared as one
dimensional arrays. We plan to permit our proagram to handle
up to 100 records. Consider some of the tasks which this
program will have to handle:

LOAD all the records in the data file intc memoryv
CREATE a data record with name, address and phone number
LIST all records in the file

BEARCH through tte file to find certain records

SORT the file alphabetically bv name

CHANGE a record

DELETE a record

SAVE the file on diskette

' EEEEEEE.

0Of course there are other operations one might want to
perform on a file, but we will limit this example to the
above operations in the interest of simplicity. When you
have understood the procedures described in this section,
you will be able to extend or revise this program so that it
best suits your needs. Those of you who received this book
with the COMAL cartridge will find this program on the demo
diskette or tape under the file name Addr List Demo. The
program listing is also given in Appendix H.

We intend to take a careful look at this program. Flease
note that it has not been "optimized". It has been written
as simply and clearly as possible to make it easy to
understand. As you learn more and more about sequential
files, feel free to make modifications and improvements!

The program starts out with a line indicating the name of
the file:

Chapter 6 — ~224- COMAL FILES

0010 // SAVE "@Addr List Demo

Notice that we have used a remark statement (//) and
included SAVE " ahead of the file name. This little trick
makes it easier for you to save modifications of your
program as you develop it and revise it. Just move the
cursor to this line, remove the first part of the line by
typing blanks (or use <INST/DEL>). When you press <RETURNX>,
the new version will be saved. The @ symbol included as
the first character of the file name causes the existing
program file to be deleted before the new file is saved.

WARNING: Be careful when using this method; you
could lose a program file. Be sure you have a
backup copy of your program and update it {from
time to time. Do not make revisions using the

demonstration diskette or tape. Load the program,
then save later revisions to another storage disk
or tape.

The next lines in the program listing take care of
DIMensioning of arrays and string variables used in the
program:

0020 DIM replys$ OF 1, name$(100) OF 40

0030 DIM street$(100) OF 40, city$(100) OF 40
0040 DIM phone$(100) OF 20, flag$ OF 40

0050 DIM searchkey$ OF 40, string$ OF 150
0060 number:=0 // number of records

Notice here that we have made provision for the storage of

100 data records each consisting of four elements: a name,

street, town and phone number. Each of these elements may

be up to 40 characters long. This choice means that the

sequential file can take up to 4x40x100 or about 16

kilobytes in memory. Since a total of about 30 KE is

available, and the program only takes up about 4 KB, more

room is available. You can change these numbers, if you .
wish.

Next comes an introductory screen describing the program:

0070 PAGE

0080 PRINT "This program illustrates the use of"
0090 PRINT "SEQUENTIAL FILES. It can be used to"
0100 PRINT "create a list of names, addresses"
0110 PRINT “and telephonenumbers.")
0120 PRINT "Each record will have the format:"
0130 PRINT

0140 PRINT " name”

0150 PRINT " street"

Chapter 6 - -225- COMAL FILES

0160 PRINT * city"

0170 PRINT * phonenumber"

0180 PRINT

0190 PRINT

0200 PRINT “Press any key to continue..."
0210

0220 wait‘for keystroke

0230

The statement PAGE clears the screen and the following lines
simply print information on the screeen. Notice the
procedure wait ' 'for ‘keystroke. This is a procedure which

you might find convenient to use in your own programs:

2240 PROC wait ' for ' keystroke
2250 PRINT

2260 PRINT "< >..."3

2270 REPEAT .

2280 reply$:=KEY$

2290 UNTIL reply$<>CHRS$(0)
2300 PRINT AT 0,2: replys$
2310 ENDPROC wait ' for 'keystroke

You may or may not want < >... to be printed on the screen
whenever the computer is awaiting an operator response.
Change it or delete it as you wish. The REPEAT...UNTIL loop
will be executed continuously as long as no key is
depressed, since the value of the COMAL function KEY$# remain
egqual tao CHR#(0). When a key 1s pressed, KEY$# takes on the
value of the character sent from the keyboard, and replys$
will no longer be equal to CHR$(0). The REFEAT...UNTIL loop
will be terminated, and execution proceeds to the next line.
The PRINT AT 0,2: reply$ statement causes the character
which was sent from the keyboard to appear inside the
brackets in the < >... symbol.

Now take a look at the main program loop:

0240 LOOP

0250 show 'menu

0260 flag$i=""

0270 wait’ ' for ‘keystroke
0280 CASE replys$ OF
0290 WHEN "1"

0300 load 'file
0310 WHEN "2"

0320 create ' record
0330 WHEN "3

0340 list'file
0350 WHEN “4"

0360 search'file

0370 WHEN *3*

Chapter & — -226- COMAL FILES

0380 sort 'file

0390 WHEN "6&"

0400 change ‘record

0410 WHEN "7"

0420 delete’'record

0430 WHEN "8"

0440 save ‘file

0450 OTHERWISE

0460 PRINT “Illegal reply.."
0470 wait ‘for 'keystroke

0480 ENDCASE
0490 ENDLOOP

This is really the heart of the program. The first
subprocedure encountered displays the program menu:

0500

0510 PROC show’'menu

0520 PAGE

0530 PRINT “————m ma==== MAIN MENU =====———— "
0540 PRINT

0550 PRINT

0560 PRINT " <1> LOAD the file"

0570 PRINT " <2> CREATE a record"

0580 PRINT <3> LIST the file"

0590 PRINT " <4> SEARCH the file"

0600 PRINT " <S> SORT alphabetically"”
0610 PRINT * <é6> CHANGE a record"

0620 PRINT * <7> DELETE a record"

0630 PRINT " <8> SAVE revised file"

0640 PRINT

0650 PRINT

0660 PRINT "Records: "j3number

0670 IF number=0 THEN flag$:="Please load or create file..."
0680 PRINT

0690 PRINT flags

0700 ENDPROC show menu

The procedure clears the screen, indicates the user choices
available, and shows the number of records in the file. The

string variable flag$, which is used in the program to

inform the user about variocus conditions, will be set equal

to Please load or create file... if there are no records .
in memory. This message will be printed below the menu to

guide the user.

Considering again the main program loop, we see that the
variable flag$ is again set equal (in line 260) to the
empty string, so it can be used later for other purposes.

In the next line the procedure wait 'for ‘keystroke is
executed. When a valid user choice has been entered (a
digit from 1 to 8), the program will branch as appropriate .
I¥ the choice is not a valid one, the program simply prints.
out the message Illegal reply.. and waits for you to press
any key.

We will now consider each of the eight available file
handling functions. The first user choice, activated by
selecting 1 from the menu, is LOAD the file:

Chapter & - =227 - COMAL FILES

0710

0720 PROC load’'file

0730 OPEN FILE 1,"Addresses" ,READ
0740 INPUT FILE 1: number

0750 FOR no:=1 TO number DO

0760 INPUT FILE 1: name$(no)
0770 INPUT FILE 1: street$(no)
0780 INPUT FILE 11 city$(no)
0790 INPUT FILE 1: phone$(no)

0800 ENDFOR no

o810 CLOSE FILE 1
0820 ENDPROC load’'file
0830

0Of course this procedure can only be used after a file has
been created and is available on the diskette in the disk
drive. Usually this will be first choice a user makes after
starting the program. It is important to understand the
procedure load ‘file, for it shows you how to read a
sequential file from a diskette into program memory. The
first thing done in this procedure is to OFEN FILE number
1 as a READ file called Addresses. Should vou want to
call the file some other name, you can simply alter this
file name to one of your choice, here and elsewhere in the
program. The easiest way to do this is by means of the
CHANGE order (change "Addresses","your choice").

We have decided to let the first element in the file be

called number corresponding to the number of records in

the file. This variable was the first one to be saved, and
it is the first one to be read in now. Now that the number
of records in the file is known, the file itself can be read
in using a simple FOR...ENDFOR loop. (In Chapter I we used
the logical function EOF ({fileno») to announce End Of File).

Notice the use of the INFUT FILE statement to define the
elements in the arrays name$(), street$(), towns$() and
phone$(). Finally, notice that file 1 must be CLOSEd
after the data input is completed.

The following procedure, activated by user choice 2, can
be used to create new records for the file:

0840 PROC create record

0850 PAGE

0860 PRINT "sssss CREATE A NEW RECORD ssist"
0870 PRINT

0880 PRINT D a
0890 IF number=100 THEN flag$:="No more room for data!'!"
0900 IF flag$="" THEN

0910 numberi+1 RTINS
0920 INPUT “Name "t name$(number)
0930 INPUT "Street ": streets$(number)
0940 INPUT "City "3 city$(number)
0950 INPUT "Phone ": phone$ (number)

0960 ENDIF
0970 ENDPROC create 'record
0980

The procedure begins by clearing the screen and indicating to the
user what is happening. If there is no more room for data

Chapter &6 - -7278—~ COMAL FILES

(because number = 100), then the message variable flag$ is

set to No more room for data!, and the next lines will not be
executed (the condition flag#$="" will not be fulfilled). If
there are fewer than 100 records, then the number af records
counter number will be updated (numbers:+1l in line 910), and

the user can input the four data elements. Execution returns to
the main program loop.

User choice I allows entire contents of the file to be listed:

0990 PROC list 'file

1000 PAGE

1010 PRINT "sssz:: LISTING THE FILE szszs"
1020 PRINT

1030 IF number=0 THEN

1040 flag$t1="No files in memory'" '
1050 PRINT

1060 ELSE

1070 FOR no:=1 TO number DO print ‘record(no)

1080 ENDIF \

1090 ENDPROC list 'file

1100

The screen is cleared and a user message is displayed. If there
is no file in memory (number=0), then a message is sent back to
the menu display by means of flags$. If there is a file in
memory, then it is listed by the FOR...ENDFOR loop. Notice that
a wait occurs as each record is displavyed. Simply holding down
any key will make the records scroll up the screen.

The search option is activated by user choice 4 from the
main menu. When a file is available in memory, it can be
searched find a name, street, town or other information:

1110 PROC search’'file

1120 PAGE .

1130 PRINT "gz2::: FILE SEARCH sts3::"
1140 PRINT

1150 PRINT

1160 flag$:="1 am searching..."

1170 INPUT "Search key: ": searchkeys$

1180 FOR not=1 TO number DO
1190 strings:=name$ (no)+streets(no)+city$(no)+phones(n
1200 IF searchkey$ IN string$ THEN print ‘record(no)

1210 ENDFOR no

1220 flag$i=""

1230 ENDPROC search’'file
1240

After clearing the screen and informing the user, this
procedure allows a search key to be entered. This can be
any string of characters at all, however capitalization must
be the same as in the record element which is to be searched
for. The COMAL statement IF <condition> THEN <procedure>

is mast useful here. Each record is checked by means of the
FOR...ENDFOR loop. If any record contains the search key,
then the entire record will be printed by the subprocedure
print ‘record(nr):

Chapter & - -229- COMAL FILES

1250 PROC print ‘record(no)

1260 PRINT

1270 PRINT AT 0,10: * ("yno,")"

1280 PRINT AT 0,10: name$ (no)

1290 PRINT AT 0,10: street$(no)

1300 PRINT AT 0,10: city$(no)

1310 PRINT AT 0,103 phone$(no)

1320 PRINT

1330 IF flag$="] am searching..."” THEN wait 'for ‘keystroke
1340 ENDPROC print ‘record

Notice the use of the variable flag$ here. It is set
equal to "I am searching...” (in line 1160). This signals
the subprocedure (in line 1330) that a wait should occur
after each record is displayed. The variable flag$ is
reset to the empty string at the end of the search
procedure.

Now we will examine one of the more challenging procedures
in this program. The entire file can be sorted
alphabetically by name. This option is activated by user
choice 5§ from the menu. Note that a prerequisite for
proper use of this function is of course that names must be
entered correctly, last name first, as the first element of
each record. 0Of course a sort could be carried out
according to any other element you may choose by simply
modifying the procedure which follows as appropriate.

1360 PROC sort 'file

1370 PAGE

1380 PRINT “:3::: SORT BY NAME ALPHABETICALLY :s:zzz:"
1390 PRINT

1400 PRINT

1410

1420 PROC swap (REF a$,REF b$) CLOSED
1430 csr=as$; asr=b¥; b$:i=c$

1440 ENDPROC swap

1450

1460 REPEAT

1470 no ‘swap: =TRUE

1480 FOR no:=1{ TO number—-1 DO

1490 PRINT AT 10,1: "Sorting... ",no
1500 IF name$(no+1)<names$(no) THEN
1510 swap (name$ (no) ,names$ (no+1))
1520 swap (street$(no) ,streets$(no+1))
1530 swap (city$(no) ,city$(no+1))
1540 swap (phone$ (no) ,phone$ (no+1))
1550 no ‘swap : =FALSE

1560 ENDIF

1570 ENDFOR no

1580 UNTIL no’'swap
1590 ENDPROC sort file
1600

As in Chapter 3 Program 19, the sorting algorithm used
here is the simple bubble sort. Compared to what we did in
Chapter 3, we have placed the swap procedure inside the
sort ‘file procedure. This is done to show an example of a
local procedure inside another procedure.

Chapter & - -230- COMAL FILES

The FOR...ENDFOR loop is carried out for each pair of names
in the list. If the names are not in alphabetical order the
names are swapped. The variable no'swap will now be equal
to FALSE, if a swap has occured. The REPEAT...UNTIL

no ‘swap=TRUE loop is repeated until no two names are

swapped on a pass through the list. . The bubble sort is not
the most efficient sorting technique, but it is perhaps the
easiest to understand. On the demo diskette you will find a
quick ‘sort procedure which is much more efficient but

harder to understand.

It will sometimes be necessary to change the contents of a
record in the file. This choice is activated by selecting
6 from the menu. The procedure change 'record is shown

below: .

1610 PROC change record

1620 PAGE

1630 PRINT "311313 CHANGE A RECORD s1:1s31"
1640 PRINT

14650 PRINT

1660 INPUT "Which record number? "t no
1670 IF no<=number THEN

1680 print ‘record (no)

1690 INPUT AT 14,11 "Right record ? (y/n)? ": replys$
1700 PRINT

1710 PRINT

1720 IF reply$ IN "yY" THEN

1730 INPUT "Name t ": name$(no)

1740 INPUT "Street : ": street$(no)

1750 INPUT “City t "3 city$(no)

1760 INPUT “Phone : ": phone$(no)

1770 ENDIF

1780 ELSE

1790 flag$:="There are only "+STR$(number)+" records"

1800 ENDIF
1810 ENDPROC change 'record

The procedure should be easy to follow. It involves simply
requesting the user to indicate which item is to be changed
then allowing the change to be entered. Notice again the ‘
use of the variable flag$ to transmit an error message to

the menu.

Selecting user option 7 from the menu allows a record to
be deleted. A procedure which can accomplish this
function is as follows:

1830 PROC delete’'record

1840 PAGE

18350 PRINT "s:333 DELETE A RECORD 3113 "
1860 PRINT

1870 PRINT

1880 INPUT "Which record number? ": record
1890 IF record>number THEN

1900 flag$i="Use a smaller record number'"

Chapter &6 -~ =231~ COMAL FILES

1910 ELSE

1920 print ‘record(record)

1930 PRINT

1940 INPUT "Is this the right record (y/n)? ": reply$
1950 PRINT

1960 IF reply$ IN "yY" THEN

1970 FOR nost=record TO number—1 DO
1980 name# (no) t=name$ (no+1)

1990 street$(no):=street$(no+l)
2000 city$(no)i=city$(no+l)

2010 phone# (no) : =phona$ (no+1)
2020 ENDFOR no

2030 number:-1

2040 ENDIF

2050 ENDIF
2060 ENDPROC delete 'record
2070

After a file has been entered, sorted or modified, it will
usually be desirable to save it for later use. Choose user
option 8 from the menu to activate the following

procedure:

2080 PROC save’'file

2090 PAGE

2100 PRINT "::1::: SAVING FILE TO DISK sssz:"
2110 OPEN FILE 1,"@Addresses" ,WRITE

2120 PRINT FILE 1: STR$ (number)

2130 PRINT

2140 PRINT

2150 FOR no:=1 TO number DO

2160 PRINT FILE 1: name$(no)
2170 PRINT FILE 1: street${(no)
2180 PRINT FILE 1: citys$(no)
2190 PRINT FILE 1: phone$(no)

2200 ENDFOR no

2210 CLOSE FILE 1
2220 ENDPROC save 'file
2230

To save the file, the file must first be opened, indicating
the number of the file, 1 in this case, the file name, in
this case simply Addresses, and the fact that the file is
opened as a WRITE file. 0f course you can alter this
procedure to make it possible to make the file name user
selectable. Just insert an input statement like INPUT
"File name? "sfilename$ early in this procedure. You will
also have to change the procedure load‘file to allow user
choices there too.

The procedure save’'file continues by first saving the
number of records in the file (PRINT FILE 13

STR$(numbar)). This information is the first thing to be
read in when the file is loaded again. The PRINT FILE
statements are used to transmit the contents of each record
to the sequential file. Finally the file must be CLOSEd.

Chapter & - - 232~ COMAL FILES

RANDOM FILES -~ AN INVENTORY PROGRAM

To illustrate the use of random files (also called

direct files), we will describe a simple inventory
program. The program Random File Demo can be found on the
demo diskette. You may wish to try LOADing, RUNning and
LISTing the program before continuing.

The first few lines of the program identify it (and
facilitate saving) and DIMension the string variables to be
used:

0010 // save "@Random File Demo"

0020 DIM codes$ OF 30, part$ OF 30
0030 DIM quantity$ OF 30, prices$ OF 30
0040 maxquantity:=23

Next comes a brief description of the program, displayed as
soon as the program is RUN:

0050 PAGE

0060 PRINT "::: RANDOM FILE DEMONSTRATION 1::"
0070 PRINT

0080 PRINT

0090 PRINT "This program illustrates as simply as”
0100 PRINT "possible how you can store and retrieve"
0110 PRINT "information from a ‘direct’ or"

0120 PRINT " ‘random—access’ file."

0130 PRINT

0140 PRINT "This example serves to save and retrieve"
0150 PRINT "“information about a parts inventory"”
0160 PRINT

0170 PRINT "The informationen is arranged: "

0180 PRINT

0190 PRINT AT 0,5t "code number"

0200 PRINT AT 0,5: "part name"

0210 PRINT AT 0,5: "quantity"

0220 PRINT AT 0,5: “price"

0230 PRINT

0240 PRINT "Press any key < >..."

0250 wait ‘for ‘'keystroke

0260

After this introduction the program will proceed to the main
program loop as soon as the user presses a key. We have
used the same wait 'for 'keystroke procedure as in the
previous program.

0270 REPEAT

0280 show 'menu

0290 IF reply$="1" THEN create‘record
0300 IF reply$="2" THEN fetch’'record
0310 UNTIL reply$="3I"

0320

The main loop displays a menu then diverts execution to
create’'record or to fetch'record in response to a valid
user response to the menu:

Chapter & - -233- COMAL FILES

0330 PROC show menu

0340 PAGE

03350 PRINT "ss:133 RANDOM FILE DEMO — MENU z2::::"
0360 PRINT

0370 PRINT

0380 PRINT AT 0,5: "<1> CREATE a record"
0390 PRINT AT 0,5: "<2> FETCH a record"”
0400 PRINT AT 0,31 "<3> terminate"

0410 PRINT

0420 PRINT

0430 wait ‘for 'keystroke

0440 ENDPROC show menu

0430
If response 1 is chosen, the program allows the user to
‘ create a record for the inventory file:

0460 PROC create’'record

0470 PAGE

0480 PRINT "3:::: CREATE A RECORD :s:::"
0490 PRINT

0500 PRINT

0510 INPUT "Which record number: ": no
0520 PRINT

0530 PRINT

0540 IF no>0 AND no<=maxquantity THEN

05350 INPUT "code number: ": code$

0560 INPUT "part name : ": parts$

0570 INPUT "quantity t ": quantitys

0580 INPUT "price t "3 prices$

0590 OPEN FILE 1,"0O:inventory”,RANDOM 128

0600 WRITE FILE 1,no: codes$,part$,quantitys$,prices$
0610 CLOSE

0620 ENDIF
0630 ENDPROC create 'record

The first part of this procedure is just housekeeping. The
user must enter the reference number (1 to 25) of the record
to be created. If it is valid, the IF...ENDIF loop is
executed. Notice how the random file is OPENed. The first
characters in quotes: 0t indicate that the primary disk

. drive, drive 0, is to be used. If a second drive were
available and properly connected to the Commodore 64, it
could be referenced as drive 2. (This has to do with
Commodore compatibility with the 4000 and 8000 series
computers which can have two built—-in drives.) The WRITE
FILE statement in line 600 transfers the four data elements
in the record to the file inventory.

A few general remarks on random access files are
appropriate here. Data is stored in random files

in binary form:

The order WRITE FILE causes the data in the
record to be saved in binary form on the
diskette, where numbers and text take up a
certain number of bytes:

integers take up 2 bytes

Chapter & - -234- COMAL FILES

real numbers take up S5 bytes
strings use up 2 bytes + the string length

The 2 extra bytes for strings are added by the COMAL
system for to keep track of things.

The Commodore disk drives 1541 and 2031 only allow
one RANDOM file to be open at a time.

In the catalogue of diskette contents, a random
access file is classified as a relative file and
denoted by rel.

When we wish to retrieve information which has been stored
in the direct file inventory the following procedure,
activated by user choice 2 from the menu, can be used:

0630 PROC fetch 'record

0660 PAGE

0670 PRINT "gss33: FETCH A RECORD FROM FILE ssssc"
0680 PRINT

0690 PRINT

0700 INPUT "Which record number:s ": no

0710 PRINT

0720 IF no>0 AND no<maxquantity THEN

0730 OPEN FILE 1,"O:inventory" ,RANDOM 128
0740 READ FILE 1,nos codes$,part$,quantity$,prices$
0730 CLOSE

0760 PRINT

0770 PRINT

0780 PRINT "Inventory item"jnoj"is:"

0790 PRINT

0800 PRINT "code number: "jcode$

0810 PRINT "part name : "jparts

0820 PRINT "quantity t "squantitys$

0830 PRINT "price t "sprices

0840 wait ‘for ‘keystroke .

0850 ENDIF
0860 ENDPROC fetch ‘record
0870

This procedure requests the user to enter a record number.
Then, if a valid record number has been selected, the file
is OPENed, and the four data elements of the record are read
using the READ FILE statement and printed out.

SUGGESTED IMPROVEMENTS:

This simple program could be improved by adding
a counter to keep track of the total number of
records in the file. It should be READ as soon
as the program is started and updated each time
a new record is added or an old one deleted.

Before the program is used for the first time
the file inventory should be created in its
maximum size. To do this write:

CREATE "inventory",25,128

Chapter & - -235- COMAL FILES

This way you can be sure that there is enough
room on the diskette for the complete file.
Furthermore, access to the diskette will be
substantially faster, because the system need
not expand the file as it is used.

#* All the posts can be zeroed with known data.
This can eliminate the possibility of reading
undefined records. It also allows the issuing
of a warning if useful information is about to
be overwritten. One possibility is as follows:

OPEN FILE 1: "inventory",RANDOM 128
FOR nri:=1 TO 25 DO WRITE FILE 1:spc$(126)
CLOSE

(The inventory is hereby zeroed using blanks.
O0f course you must be sure there is nothing of
value in the file before doing this!)

MOVING A SEQUENTIAL FILE

The last program in this chapter is intended to illustrate
how a sequential file can be transferred from one diskette
to another. Files written in machine code are binary files,
and moving them can be a problem. The program name is Move
Sequential, and it is available on your demo diskette or
tape.

The key to this program is the statement
GET$(<{fileno>,<bytes>). By using this statement

every ‘thing on a diskette, including separators not read in
by the INPUT FILE statement, can be read.

The program opens a user selectable sequential file, reads
the entire contents into the variable number$ (however

max. 5000 characters), requests the user to switch diskettes
and then writes the contents of number$ to a file with the
same name on the new diskette:

0010 PAGE

0020 DIM names$ OF 40

0030 INPUT "Enter file name: ":name$
0040 OPEN FILE 2,names$,READ

0050 DIM numbers$ OF 3000

0060 WHILE NOT EOF(2) DO

0070 numbers$: +GET$ (2,1000)

0080 ENDWHILE

0090 CLOSE FILE 2

0100 PRINT numbers

0110 PRINT "Switch diskettes and press any key..."
0120 dummys$=KEY$

0130 WHILE KEY$=CHR$(0) DO NULL

0140 OPEN FILE 3,"@0:"+names$,WRITE
0150 PRINT FILE 3: numbers$

01460 CLOSE FILE 3

Chapter &6 - - 236~ COMAL FILES

FILE TYPES

You have noticed that when you view the contents of the
diskette using the dir order that different types of files
are stored. At the right next to the file name you will see
a three-letter abbreviation describing the file type:

prg program file

seq sequential file

rel relative file

usr user sequential file

This classification limits the way in which these files can
be used. For example if you try to LOAD a relative file as
a program, COMAL will generate an error message.

You will probably find it useful as you use files more and
more to indicate what the various files within a certain
category are used for. You will be working with fonts,
shape tables for sprite images, listed sequential files
containing programs, procedures or functions, external
procedures, display files, textfiles or data files.

To distinguish these files from one another, and to make it
possible to show all files of a certain type using the dir
order, it is useful to characterize each file with a file
type code. You might use a four letter code ahead of or

at the end of your file. For example you could indicate
that a sequential file consists of a LISTed program as
follows:

your program.lst lst.your program
A text file from an editor program might be distinguished by
using .txt at the end of the file name or placing txt.
at the beginning or .txt at the end:

letter.txt txt.letter

Prefixes or suffixes indicating file types could be as
follows:

.1st 1st. for LISTed files
 edsp dsp. for DISPLAYed files

.0bj obj. for object code files

. 8rc src. for source code files

.axt ext. for EXTERNAL procedures

.bas bas. for Basic programs

«txt txt. for text files

.gro gro. for graphics screen files

.gri gri.

.sp0 spO. for sprite files

.spl spl.

prec prc. for procedure files

. fnt fnt. for fonts

The actual choice is of course up to you, but it can ease
communication among COMAL users if the same attribute
notation is used. In this connection we recommend using the
prefix, because this will allow you to catalogue all files
of the same time using the DIR order.

Chapter 6 - =237 - COMAL FILES

For example, be sure you have a few text files denoted by
the prefix txt., then try the following order:

dir "txt.s

Only files beginning with txt. will be shown.

If the suffix convention is used, then an order such as:
dir "7??27?77.sp?"

will only list sprite files with five character file names.

FILES AND THE SCREEN, KEYBOARD AND DISK DRIVE

One of the powerful features of the COMAL language file
handling system is the ability communicate with the various
input/output devices of your computer. Up to this point we
have illustrated communication with the disk drive, but
communication with screen, and keyboard is also possible.

In order to direct file operations to a particular device,
vyau should use the unit specifier unit. The unit spec-—
ifier should be followed by one of the following string
expressions:

kb keyboard

ds: display screen

lp: line printer

spt serial poart

cst cassette recorder

u<device>: device (such as Printer-Flotter)
<drive>: disk drive number (default 0)

Note that <device> must be a number in the range 0-31, and
<drive> is a number in the range 0-15. For example:

unit "ds:*
will direct COMAL to treat the display as the output device.

It is also possible to reveal the current unit assignment
using the special string variable unit$. For example:

print units
if unit$<>"1pt1" then
unit "css"

The first instruction simply prints the current unit. The
second sequence wWill set the default unit to the tape unit,
unless the current unit is the line printer.

A special feature of the file handling system is the symbol
@ which may be the first character of a file name. If it
is, then the file will be averwritten if it already exists
on the diskette.

Chapter & - -738- COMAL FILES

USING YOUR DATASSETTE UNIT

Although serious file handling really requires the use of a
disk drive, Datassette users will be pleased to find that
many file operations can be done with a tape unit. Opera-
tions with sequential files will, however, be considerably
slower than with a disk drive. Random access files cannot
be used with a tape unit.

USING THE 13520 PRINTER-PLOTTER

One of the many useful peripheral devices which you can

attach to your Commodore 64 is the 1520 Frinter-Flotter. It

can be used both for listing programs and results and for .
drawing graphics images of high quality in up to four

colors.

It is quite easy to activate your fFrinter—Flotter from
COMAL.. If the Printer-Plotter is properly attached to your
serial bus (or to the extra serial bus connection at the
rear of the disk drive), you can try the following
demonstration. BRe sure that the 1520 is turned on. Enter a
brief program, then type:

list "ué:
Your program should be listed on the Frinter—Flotter.
Other operations with the Printer-Plotter are handled in a
similar fashion. Just remember to use the device
specification "ués.
You will find a demonstration program 1520 Plotter Dem on
the demo diskette and listed in Appendix H. Try out this

program and study the listing to see how to use your 1520
with COMAL.

REVIEW

In this chapter several important topics ‘
pertaining to the use of COMAL files have been
covered:

file operations on programs and procedures
using sequential files for numbers and strings
using random files

file types

using files with input/output devices

using the 1520 Printer-Flotter

* %k &k k %k %

You should be familiar with the following concepts after
working through this chapter:

Chapter & - -239- COMAL FILES

file

storage medium

sequential file
random—access (direct) file
record

data element

bubble sort

file types

device specifications

The following COMAL instructions have been discussed:

SAVE - LOAD

LIST - ENTER - MERGE
OPEN FILE - CLOSE FILE
PRINT FILE - INPUT FILE
WRITE FILE - READ FILE
RANDOM

CREATE

GET#

In addition to the examples of the use of files shown in
this chapter, you may find it helpful to study details on
the formal syntax of these orders in Chapter 4.

The following programs have been discussed in this
chapter. They are also to be found on the demo diskette:

Addr List Demo
Random File Demo
Move Sequential
1520 Plotter Dem

The best way to learn about files is to use them to make
them work for you. You can use the programs in this chapter
as a starting point. Change them and extend them. You will
find that mastery of the art of file handling is one of the
most valuable skills that you will learn while using your
Commodore 64 computer and the COMAL cartridge.

-240-

-241-

Chapter 7 —

FERIFPHERAL DEVICES

INTRODUCTION

Your Commodore 64 computer is provided with several
different means for attaching it to other devices. Compared
with other computers in its class there is a generous
allocation of input/output connectors included in the base
price of the computer:

IEFEE serial bus - for connecting the Cé4 to disk drive,
printers or other devices,

Datassette tape unit interface,
#* Parallel input/output port,

Cartridge port for connecting games, applications
programs or language cartidges like COMAL,

#* Control ports (2) for connecting joystick, paddles,
etc.

As you can see from Chapter S
on COMAL Fackages it is quite
easy to integrate the use of
joysticks, paddles or a light-
pen into your programs. The
use of the IEEE serial bus for
communicating with disk drives
or printers has been covered
in Chapter 6 on COMAL Files.
Those who have a Datassette
unit are also familiar with
its use for saving and re-
trieving programs and files.

In this chapter we intend to di-
rect our attention to the use of
the RS-232C interface,
IEEE cartridges, and par-

ticularly to the parallel port.

THE RE-232C INTERFACE

RS—232C is an industry standard which defines a particular
type of serial communication. Data is transmitted as a
series of pulses one after the other along a single wire.
Figure 7.1 illustrates the transmission pattern which
corresponds to the serial ASCII-code for the single letter
C. This letter has the ASCII decimal code 67,
corresponding to the binary number 01000011.

Chapter 7 - -2U42- PERIPHERALS

start parity stop
bit bit bit
l LsB MSB
1 I <
) >t

. r ——
O T 2T 31T 4T 5T 6T 77T 8T 9T 107
k B |

1100001

Figure 7.1: The letter C is transmitted in serial form
according to the R5-232C standard. Note that
only 7 bits are sent, least significant bit
first!

The data can be sent in asynchronous form. The time
period for the transmission of a complete character can be
divided into 10 equal time intervals. Twd well-defined
voltage levels determine whether the signal in a given
interval is to be interpreted as high or low. In this
discussion we will refer to logic levels, but keep in mind
that in practice these levels will appear as voltage
variations in the RS-232C connector cable.

Every character signal begins with a start bit. It is

logic O in the example shown in Figure 7.1. The start bit
is used to synchronize the receiver with the transmitter.
When detected, the start bit starts a clock with period T
which then coordinates the reading of the serial line. The
receiver can take periodic samples to determine whether each
bit is a logic 1 or a logic 0. After seven samples the
binary code of the character is available in the receiver's
storage register.

The next bit is the parity bit which indicates to the

receiver whether an even or odd number of 1°'s (or 0°'s)

is transmitted in a given character code. For systems with

even parity the parity bit will be high (logic 1) if an

even number of high bits are transmitted and low (0) ’
if an odd number are sent. This can be checked by the

receiver to ascertain whether or not transmission errors

have occured. Finally, a stop bit is sent to indicate the

end of the character transmission.

The RS-232C standard also specifies a protocol which is
designed to facilitate communication. For example CTS
(Clear To Send) and RTS (Request To Send) signals are
defined. Furthermore, the voltage levels for logic 1 and
logic O are specified as —-12 and +12 volts respectively.
The caomplete specification can be found in textbooks on
electrical engineering. The information which follows
should be adequate to allow you to begin using the RS-232C
interface with COMAL.

The electrical connections to an R5-232C port are
standardized using the DB-25 connector:

Chapter 7 - - 243~ PERIPHERALS

pin signal code
1 protective ground GND (:T;—?:\
2 transmitted data souT o5 2°¢
3 received data SIN e16 3¢
4 request to send RTS 017 4o
5 clear to send CTS e18 5°
& data set ready DSR e19 6e
7 signal ground GND 20 7°
8 carrier detect DCD e21 8e
9-17 ... not used ... 022 90
18 ring indicator R1 023 100
19 ... not used ... 024 11e
20 data terminal ready DTR &:iij§EJ
21-25 ««.. not used ...

Figure 7.2: The standard pin connections for the RS-232C
interface and the pin arrangement for the DB-25
connector are shown.

All available RS-232C control signals are rarely used in
actual communications setups. It is often adequate to use
only the two data channels SIN and SOUT. An interface of
this type is sometimes called a three line interface since
it consists only of an input, output and ground.

Your Commodore 64 can handle the three line interface as
well as the complete RS-232C interface with all control
signals. However the Commodore interface deviates from the
RS-232C standard with respect to voltage levels. The
Commodore 64 uses O volts for logic 1 and +5 volts for
logic 0. The RS-232C signals are available on the
Commodore user port as indicated in Figure 7.3:

Commodore RS-232C signal Signal DB-25 standard
user port description direction connections

A GND - 1

B SIN input 3

c SIN input 3

D RTC output 4

E DTR output 20

F RI input 18

[c] DCD input 8

K CTS input S

L DSR input 6

M SOuUT output 2

N GND - 7

(NB: B and C should be connected together)

Chapter 7 - - 244~ PERIPHERALS

1 2 3 4 5§ 6 7 8 9 1011 12

N A —_

A B C D E F H J K L MN

Commodore &4 user port pin connections.

Figure 7.3: The Commodore RS-232C connections are available
on the user port on the rear left-hand side of
the computer.

It is very important that the voltage levels of the
Commodore 64 RS-232C interface are adapted to the +/- 12 .
valts present on other equipment. A standard adapter which
accomplishes this is available from your Commodore dealer.

Diagrams for such devices can also be found in the hobby

literature, so that you could build such an interface

yoursel f.

WARNING: Incorrect connection of the RS-232C »
interface to other equipment using +/- 12 volts /’"/»-‘4
can cause permanent damage to your Commodore &4 f?

computer.

Using COMAL you can select a number of parameters to
accommodate the requirements of the communications equipment
to which your Commodore is connected. The following COMAL
program illustrates how to receive data using the RS-232C
interface:

0010 OPEN FILE 1,"sp:b1200dBsipe",READ
0020

0030 REPEAT

0040 a$:1=GET$(1,1)

0045 PRINT as$,

0050 UNTIL a$=CHR$(255) OR KEY$<>CHR$(0)

0060 ‘
0070 CLOSE FILE 1

0080
0090 END "End"

Line 10 opens a logical file numbered 1 and specifies the
following information: the file opened is to be a file which
READs the serial port with a baud rate of 1200 (b1200), 8
data bits (dB), 1 stop bit (s1) and even parity (pe).

In general the following coding can be used to specify the
parameters of the RS-232C interface:

parameter syntax range default

baud rate b<baud> 50-2400 b300

data bits d<num> 5-8 d7

stop bits s<num> 0-2 s2

parity p<type> n=none pn
e=even

o=odd

Chapter 7 - =245 - PERIPHERALS

Examples:
“sp:z " 300 baud, 7 data bits, 2 stop bits, no parity bit
"sp:bb0OO" 600 baud

"sp:b1200dB8sipe" 1200 baud, 8 data bits, 1 stop bit, even parity

Notice that the serial channel will remain open and the
program continues to execute the REPEAT-UNTIL loop in lines
30-30 until a transmitted character code corresponds to
decimal 255 or any key is pressed.

Data transmission files are opened in the same way, using
WRITE instead of READ. Notice also that an RS-232C inter—
face file which has been OPENed must of course be CLOSEd
again as soon as possible. It is not possible to use the
tape recorder or the IEEE serial bus (i.e. the disk drive)
while the RS-232C interface is in operation. Thus data
which is received must be stored in program memory as it
enters the RS5-232C port and then saved to disk later.
Similary, you must prepare a data file in working memory,
OPEN the RS-232C file, send the data, then CLOSE it before
using the disk drive.

IEEE CARTRIDGES

It is possible to purchase a variety of IEEE interface
modules which attach to the Commodore 64 cartridge port.
Such devices are available from your Commodore dealer (ask
for the IEEE 488 cartridge) as well as from other sup-
pliers. One of these is called the Bus Card II and is
available from the company Batteries Included. These
cartridges can be used with your COMAL language cartridge,
for the cartridge bus is accessible in these products. The
IEEE cartridge is inserted in the cartridge port, then your
COMAL cartridge can then be inserted in a slot in the IEEE
cartridge.

The main advantage of the extra IEEE cartridge is that you
can then use your Commodore to communicate with high
capacity, high speed disk drive units like the Commodore CBM
8050 and 8250 devices.

If you have access to other cartridges such as game
cartridges, spreadsheets and the like, you must remove your
COMAL cartridge in order to use them. In that case be
careful to TURN OFF THE POWER to all units in your system
before switching cartridges.

THE PARALLEL PORT.

One of the most useful features of your Commodore 64 is the
parallel input/output port, the I/0 port for short. The
170 port can be used to communicate with the outside world.
You can use the port as an output for control purposes (to
run a machine, switch lights on and off, automate an elec-
tric train, etc.). The port can also be used as an

input to gather information (measure voltages,
temperatures, and other quantities). In this section we
will describe a simple application to illustrate how the

Chapter 7 - - 2Up- PERIPHERALS

port can be used.

This section is not intended to be a complete description of
the I/0 port. The best place to find details about the
parallel port is in the Commodore 64 Programmer ‘s Reference
Guide available from your Commodore dealer. In the fol-
lowing only as much information as necessary for you to
understand the examples will be pfesented.

The physical location of the port is the edge connector at

the far right side of your Commodore 64 when viewed from the

rear. The location of the port slot is shown in Figure 1.1

in Chapter 1. Electrical pin connections for the parallel

port are shown in Figure 7.3 earlier in the present chapter.

To make an electrical hook—-up to the port, you will need a ‘
24-pin edge connector plug, available from your dealer or

from most electronics supply houses. Note that the

connections we will use are as follows:

connection - signal

pin 1 (or A) ground

pin 2 +5 vde (max 100 mA)
pin C port B bit O
pin D port B bit 1
pin E .port B bit 2
pin F port B bit 3
pin H port B bit 4
pin J port B bit S
pin K port B bit &
pin L port B bit 7

One convenient way to attach your Commodore 64 to external
equipment is by means of a meter long piece of 10 conductor
ribbon cable. Solder the 10 leads to the pins of the 24-pin
edge connector as indicated above. Solder the other end to
a standard DB-25 miniature 25 pin connector. The pin
assignments for the DE~-25 connector are shown in Figure 7.2.
These connectors are quite readily available and inexpensive
as they have been adopted as a standard for the RS-232C
interface. Label the connectors carefully. If you make a
mistake applying voltages to these connectors, you could
damage your computer.

The 25-pin connector is recommended because you may decide
to add more connections for advanced projects later on. Use
pin 1 on the DB-25 for ground, pin 2 for +5 volts and pins
18-25 for port B bits 0-7.

WARNING: Do not carry out these projects without e‘

some prior experience working with electrical 2o,
connections. Never make connections to the 2
computer unless all power has been turned of+f. “f?’

Although the projects are not difficult, incorrect
connections to your Commodore 64 could damage the
computer. If you are not sure how to proceed,
have an electronically inclined friend give you a
hand, or ask your dealer for advice.

Chapter 7 - -7~ PERIPHERALS

To illustrate connection of an external device to the I/0
port, we have chosen a simple control praoject. Once you
have understood this example, you should be prepared to
tackle more ambitious tasks.

Suppose that we have a closed loop of track, one electric
train and a station. We want the computer to allow the
train to run around the loop until it approaches the
station. It must stop at the station, wait for a predefined
period, then run around the loop again.

In order to accomplish this control process, two items of
hardware are required:

A transistor and relay must be available to switch
the power to the train tracks on and off. This is easily
accomplished using a few parts readily available from an
electronics hobby store.

* A sensor must detect the passage of the train just
before the station. This can be done using a Darlington
fototransistor and a small light source beamed across the
track to strike the sensitive area of the fototransistor.
The collector should be connected to the port bit as
described below, and the emitter should be connected to
ground.

Note that in order to control the train, we will need to use
two bits of the parallel port. We are free to choose.

Let's use bit 0 for the light detector and bit 1 for
starting and stopping the train.

Each bit of the parallel port B can serve as an input or an
output. This is indicated by storing the appropriate number
in the data direction register for the port, in this case
port B. The addresses for the data direction register and
for port B are as follows:

decimal hexadecimal
port B address 56577 $DDO1
data direction register 56579 $DDO3

The number stored in the data direction register (often
abbreviated ddr) determines whether the individual bits of
port B will act as inputs or outputs.. It is easiest to
understand the situation using binary numbers. A O bit in
the ddr means the corresponding bit of port B will act as an
input. A 1 bit in the ddr sets the corresponding bit of
port B to an output. For example, binary 00000010

(decimal 2) stored in the ddr will make port B bit 0 an
input and bit 1 an output. This is just what we need to
control the train.

Because COMAL will accept binary numbers directly, it is not
necessary for the programmer to translate the binary number
to its decimal equivalent. The programmer must simply
remember to preceed binary numbers by the symbol %.

The program Train Demo is available on your COMAL demo
diskette or tape. It is also listed completely in Appendix

Chapter 7 - - 48— PERIPHERALS

H.

Line 10 indicates the name of the file. In line 30 the
screen is cleared by PAGE. Lines 40-90 print the following
message on the screen:

ELECTRIC TRAIN DEMO

Your train should start at the station
with the passage detector just behind
the last car. Start the train and then
press any key to turn control over

to your computer...

Notice line 100:
0100 WHILE KEY$=CHR$ (0) DO NULL

These instructions keep the program in a loop until any key
is pressed. The system variable KEY# will then be different
from the null string CHR$(0), and the program will continue.

The main program starts in line 200. The procedure
define’'variables in line 220 defines the addresses of port

B and its ddr, and the initial value of the variable
position is set to 1. Note that COMAL allows the

programmer to indicate the port B and ddr addresses directly
in _hexadecimal form. Hexadecimal numbers are preceeded by
$. Note also the convenient variable names:

0680 PROC define’'variables
0690 port ‘bi1=$ddoO1

0700 port ‘b ‘ddr:=$dd03
0710 position:i=1

0720 ENDPROC define 'variables
0730

The apostrophes ° are necessary to bind the indiwvidual
words together, so that COMAL will interpret them as a
single variable name, just as with procedure names. The
variable position will be used to control a pointer on the
screen display, indicating the action of the program.

The procedure in line 230 sets port b. This is done as
follows:

0740 PROC set ‘port’B
0750 POKE port‘b’ddr,2
0760 POKE port‘'b,2
0770 ENDPROC set ‘port‘B
0780

The decimal value 2 corresponds to the binary number
00000010 and makes bit O an input and bit 1 an output.

Bits 2-7 are not used in this case, so it doesn’‘t matter how
these bits in the ddr are set.

The train is started by the procedure start 'train:

Chapter 7 - - Ug- PERIPHERALS

0480 PROC start’ 'train

0490 POKE port‘b,PEEK(port‘b) BITOR 2
0300 advance ‘pointer

0510 ENDPROC start train

0520

The POKE order places the number PEEK(port‘b) BITOR 2 in

the port B address. The BITOR operation is described in
detail in Chapter 4. It assures that bit 1 is high. This
signal is amplified by the transistor and activates the
relay, starting the train. The procedure advance’'pointer
moves an arrow on the screen to the next item of the screen
list, jumping back to the start of the list at the beginning
ot each loop.

. 0790 PROC advance’pointer
0800 PRINT AT 10+position,2: " "
0810 IF position<4 THEN

0820 positiont=position+1
0830 ELSE
0840 position: =2

0850 ENDIF

0860 PRINT AT 10+position,2: ">*“
0870 ENDPROC advance 'pointer

0880

The next procedure encountered is the print‘list
procedure. It simply makes a list of items on the computer
display:

> train running
train passes light
train waiting at station

Pressing any key will stop the train
next time it stops at the station...

The pointer shows the state of the program.

Now the program enters the main loop:

‘ 0270 REPEAT

0280 check ‘light

0290 delay(1.95)

0300 stop‘train

0310 delay(10)

0320 start ‘train

0330 UNTIL KEY$<>CHR$(0O)
0340 stop ‘train

0350 PAGE

0360 END "Au revoir!'"

This loop will continue to run until any key is pressed. I+
KEY$ is anything but the null string CHR$(0), the program
ends.

The procedure check’light examines the state of the bit O
of port B. This is done as follows:

Chapter 7 - =250~ PERIPHERALS

0530 PROC check’light

0540 WHILE PEEK(port‘'b) BITAND 1 <> 1 DO NULL
0550 advance’'pointer

0560 ENDPROC check’light

0570

The precise operation of the BITAND operator is described in

Chapter 4. In this case the condition PEEK(port‘b) BITAND

1 <> 1 will be FALSE terminating the loop when bit O

becomes high. This will happen if the light shining on the
fototransistor is interrupted. With the collector attached

to port B bit 0, the emitter grounded (the base is not used)

and the transistor illuminated, the collector-emitter

resistance is low (about 100 ohms), pulling bit O to low. .

If the transistor is not illuminated, the resistance becomes
high (typically 1 Mohm), and bit O returns to the high
state.

Before stopping the train, the program executes the
procedure delay(1.5):

03580 PROC delay(sec)

0590 TIME O

0600 WHILE TIME<sec®*&60 DO NULL
0610 ENDPROC delay

0620

Note that the variable sec is passed to this procedure.
It corresponds to the delay time in seconds. TIME resets
the internal clock. The loop in line 600 continues until
the number of timing units (jiffies = 1/60 sec.) exceeds
sec*#b60. Note of course that the parameter value 1.5 can
be changed in a particular situation to assure that the
train stops as desired at the station.

The train is stopped by the procedure stop’ 'train which
simply changes bit 1 to the low state. Note that a more
refined way to stop (or start) the train would be to rapidly
turn the bit off and on, altering the duty-cycle (the
proportion of the time the bit is on) gradually from 1 to ©
(or O to 1) over a time interval. This will cause the train
to gradually slow down (or speed up) in a more realistic
fashion. I¥f you decide to do this, replace the relay with a
power transistor circuit to control current flow to the
track.

FILE TRANSFER BETWEEN COMPUTERS

It is possible to transfer sequential files between your
Commodore 64 and other computers. The most common two way
communications channel is via the R5-232C connector using
the RS-232C standard described earlier in this chapter. To
achieve this it is essential that the computer with which
you want to communicate also has an RS-232C input and output
connection. Furthermore, because the C-64 RS5-232C interface
uses TTL-logic levels, you will require a converter module
to change 0/5 volt signals to the RS5-232C standard levels of
-12/+12 volt. It is also possihble to transfer files via the
parallel input/output port (the user port).

Chapter 7 - -251- PERIPHERALS

THE CONTROL PORTS

In addition to the many communications possibilities already
described, your Commodore 64 computer alsoc has two

control ports (sometimes called game ports). The use of
these ports from COMAL has already been described in the
section in Chapter S5 on COMAL packages.

In addition to 2 x S switch inputs (JOYAO-3, JOYBO-3, BUTTON
A and BUTTON B) available at the two control ports, a total
of 4 different analogue inputs are also available via the
game ports. These inputs are POTAX, POTAY, FPOTBX and POTBY.
(Internally the SID has just 2 ADC's and an analogue
switch.) Pinouts and connections are as follows:

pin game port A game port B
1 JOYAO JOYBO

2 JOYA1 JOYB1

3 JAOYAZ2 JOYB2

4 JOYA3Z JOYBZ

S POTAY POTBY

b6 BUTTON A BUTTON B

7 + S5V + 5V

8 GROUND GROUND

9 POTAX PAOTBX
NB: Maximum load on the + SV supply is SO mA.

Note that you will need a standard DE-9 female connector
to attach experiments to the game ports.

The switch inputs can indicate to a program whether a given
switch is on or off. Examples of how to use these
signals are available in Chapter 5.

The analogue inputs go to A/D converters which are used to
digitize the positions of potentiometers on paddles. The
conversion process is based on the time constant of a
capacitor tied from the POT pin to ground, charged via a
potentiometer tied from the POT pin to +5 volts. The
component values may be estimated from the relation: RC =
4.7E-4. In this equation R is the maximum resistance of
the potentiometer and C is the capacitance. The larger
the capacitor, the lower the uncertainty in the POT value.
The recommended values for. R and C are 470 kiloohm and
1000 pF. Note that a separate potentiometer and capacitor
are required for each POT pin. ’

Although the POT inputs in the game ports were designed to
measure the rotational position of a potentiometer, any
variable resistance can be used. For example to measure
temperature simply replace the potentiometer with a therm-
istor in the proper resistance range. Other resistive
sensing devices can of course be used to allow automated
recaording of pressure, liquid level, illumination or other
physical quantities. For example the following program
illustrates how you might construct a simple digital
thermometer using the game port inputs:

Chapter 7 - -752 - PERIPHERALS

0010 // save "@Thermometer"

0020 USE paddles

0030 // capacitor: 1000 pF

0040 // thermistor: 100 K at 20 degrees

0050 az=13 bi=0

0060 PAGE

0070 PRINT "DIGITAL THERMOMETER"

0080 PRINT AT S,1: "Thermistor and capacitor must be con-"
0090 PRINT "nected to controlport 1..."

0110 // Main program
0120 LOOP

0130 check ‘paddle(l)
0140 convert (average)
0150 print ‘temperature
0160 EXIT WHEN KEY$<>""
0170 ENDLOOP

0180 END // hovedprogram

0200 PROC check ‘paddle(port)

0210 total:=0

0220 FOR is=1 TO S50 DO

0230 paddle(port,a’‘paddle,b 'paddle,a’'button,b ‘button)
0240 total:=total+a 'paddle

0250 ENDFOR i

0260 average:=total /50

0270 ENDPROC check’paddle

0290 PROC convert(average)
0300 temp: =a*average+b
0310 ENDPROC convert

0330 PROC print’'temperature

0340 temp:=INT (temp#*10)/10

0350 PRINT AT 10,101 "T = o"
0360 PRINT AT 10,141 temp

0370 ENDPROC print temperature

The first part of the program (lines 10-100) are just
introductory information, a display message and definition
of the constants a and b. Notice that these are set

equal to 1 and O respectively in line 30. This causes

the program to just printout ADC values (0-2535) with no
conversion to temperature. These values can first be found
after you have constructed a test circuit and calibrated
the sensor which you plan to use.

Notice the structure of the rest of the program. The main
program is from line 110 through line 170. It consists of a
REPEAT-UNTIL loop which will be terminated if any key is
pressed. In the loop information is fetched from the paddle
port by the procedure check’'paddle(1). Then this quantity
is converted to a temperature value using the procedure
convert (average). Finally the procedure

print ‘temperature displays the computed temperature on the
display screen.

Make a trial setup using a 1000 pF capacitor and a
thermistor (NTC or PTC resistor) with a room temperature
value of about 100 kohm. Connect your test circuit to the

Chapter 7 - =253~ PERIPHERALS

control port as shown in the following figure:

(7) +5 voLT
R
(9) POTAX —]
—0 C (ca. 1000 PF)
(8) GND
Figure 7.4: Many different sensor types can be attached to
the control ports. You can make use of up to 4

analogue inputs to the two control ports.

If the program is now run, the measured ADC values will be
shown on the screen. Draw a graph displaying the
temperature in degrees as a function of the ADC values. If
the graph is approximately linear in the region of
interest, you can compute the constants a and b as

follows:

Read two coordinate pairs from your graph (X1,Y1) and
(X2,Y2). (X1 and X2 correspond to ADC values, and Y1 and Y2
correspond to temperatures.) The constant a can now be
found using the formula:

a = (Y2 - Y1)/(X2 - X1)

This is the slope of the line you drew on your graph. We
found the following values in our test setup which used an
NTC resistor: (183,25) and (215,20) - temperatures are in
degrees centigrade. I.e. the program showed 183 as ADC
value when the sensor temperature was 25 degrees C, and 215
when the temperature was 20 degrees. Thus a equals -0.178
in this case. To find b you can now used the equation:
temp = a®average + b (used in the procedure convert).
Inserting average = 183 and temp = 25 into this equation
vields a value for b of 57.6. If you change line 50 to
reflect the new values you have found for a and b, the
program should print out the temperature when you run it
again.

If you want to calibrate a sensor over a wider range of
temperature, you can use e.g. an exponential function to
achieve a better calibration than the linear approximation
we have used in the illustration above In this case you
must revise program line 300.

Chapter 7 - -254- PERIPHERALS

REVIEW

In this chapter ‘we have considered a
range of possibilities for the use of
the wealth of interfacing facilities

L / available with your Commodore &4
computer. You are encouraged to
experiment with the RS-232C interface,
the parallel port and the game ports to
learn more about them.

You will find more information about these ports in the
Commodore &4 Programmer ‘s Reference Guide. A great deal
additional information is also available from the popular
literature about microcomputers.

- FF-~

Chapter 8 —

COMAL AND MACHINE LANGUAGE

WHAT IS MACHINE LANGUAGE?

The "brain® in every microcomputer is a central
microprocessor. Your Commodore 64 is no exception. There
are a number of different tvpes of microprocessors avail-
able, each with its own set of instructions. The Commodore
64 uses a more advanced version of the 6502, the &5i0. It
uses the same instruction set as the popular 4502 but has
additional built-in I/0 facilities. The onlv language a
microprocessor can interpret directlvy is machine ianguaage.
Any higher level language must ultimately communicate with
the microprocessor using its native language.

Inside your COMAL cartridge are a large number of machine
code routines termed collectively the COMAL svstem. When
the computer is turned on, the COMAL system automatically
takes charge of the Commodore 64. Another important machine
code program in your computer is the operating svstem

which takes care of communication with the kevboara, screen
editing and other housekeeping chores. When a COMAL program
is "run", appropriate machine code routines are brought intoc
plav to achieve the actions which your COMAL statements
regquire.

It should be made clear at the outset, that this chaoter is
not intended to serve as a tutorial i1n machine 1language
programming. We assume here prior knowledge of &502 machine
language programming. The material presented here is
substantially more difficult than the material in previous
chapters. I{f vou want to learn more about 63502 machine
language, & number of excellent books are available. You
might want to begin with Ian Sinclair s Introducing
Commodore &4 Machine Code (Granada Fublishing. London.
1984). The Programmer s Reference Guide available from
your Commodore dealer is also a valuable resource.

Machine language will probably be easier to learn i+ you can
share the learning experience with others who have similar
interests. In this connection the many Commodore 64 and
Commodore COMAL users groups-can provide useful
opportunities of exchange of information. Here are some
addresses which may be helpful:

In the UBA: COMAL USERS ® GROUF, 5501 Groveland Terrace,
Madison WI 53716

In Canada: TPUG Inc.., COMAL USERS® GROUP, 1912-A Avenue
Rd., Ste.#1 Toronto, ONT MSM 4A1, CANADA

In England: TCPUG, ATT: Brian BGrainger, 73 Mine Head Wav,
Steven Age, Hirts SG1 2HZ, ENGLAND

In this chapter you will find an overview of the use of
computer memory by the COMAL svstem. Next comes step by

Chapter 8 - ~-256- MACHINE LANGUAGE

step instructions showing how you can incorporate your own
machine code routines as a package in a COMAL program.

Machine language is much easier to work with, if you have
access to a 6502 assembler program. Such a program allows
you to prepare a program using symbolic machine code using
mnemonic codes instead of programming directly in
hexadecimal notation. A disk drive will also make working
with machine language easier. 0On the demo diskette (or
cassette) you will find a textfile with the name C&64SYMB.
It contains a list of all instructions which are relevant
when doing machine language programming with your Commodore
64 and COMAL. This textfile should be included in the
assembler source code with COMAL packages.

It is also possible to prepare a machine language program
directly in memory from a COMAL program by using POKE
orders. In this way a machine code program can be stored in
an available area of computer memory then started from a
COMAL program by using SYS <start address>. The last
instruction in the machine code routine should be an RTS,
which causes program execution to return to COMAL. It is,
hawever, not possible using this method to prepare machine
code program packages which can be LINK'ed to COMAL
programs. In this chapter we will only treat the
preparation of machine code programs which can be LINK'ed to
a COMAL program.

The use of machine code routines is an integral part of the
COMAL svstem. When designing machine code facilities. three
primary goals have been strived for:

#* Machine code routines should be easy to use - aiso for
users without knowledge of machine code.

* Access to machine code routines should be by name,
thereby eliminating confusing details like memory
addresses.

Machine code routines should be affected by commands
like NEW and RUN. In this way packages behave as if
they are an integral part of the COMAL system.

There are three commands/statements in COMAL which are used
in connection with the definition, use and removal of
machine coded routines:

LINK <filename> // Enter a module file
USE <package> // Define procedures
DISCARD // Remove all modules

These commands (USE can also be used as a program statement)
will be explained in detail. Machine code routines use the’
procedure and function mechanism in COMAL and allow
therefore all parameter types.

Chapter 8 - - 257 - MACHINE LANGUAGE

MODULES

The LINK command fetches a machine lanauage module (object
file) from the library which has been prepared by the
assembler. This module contains information which specifies
where the machine code is to be located in memory. COMAL
can control up to 10 such modules at any one time. At least
2 modules, containing the following, are alwavs defined:

(Module 1) (Module 2)

english graphics sound

dansk turtle joysticks

system sprites paddl es
font lightpen

These modules need not be LINK 'ed. for thev are aiready
available in the COMAL cartridge. Modules can be removed
again using the DISCARD command. However the above
mentioned standard modules can NOT be removed. Because the
modules are not named. all other modules will alwave be
deleted by DISCARD. Modules can be made permanent (be

ROM ‘ed) , whereby they can not be DISCARD ed. Non—-permanent
modules are treated as if they were part of the program in
working memorvy. A SAVE order will store all non-permanent
modules with the COMAL program in the same prg file. When
LOAD, RUN or CHAIN is used, thev will be read in again (be
LINKed) .

PACKAGES

A module can contain O, 1 or more packages.

PROCEDURES AND FUNCTIONS

A package can contain 0. 1 or more procedures or functions.
Two main elements constitute each procedure or function:

A procedure header, which specifies how many ana what
type of parameters are to be passed to the procedure.

* The procedure bodv, i.e. the machine code which 1s to
be executed when the procedure is caliea.

This drawing illustrates the hierarchal structure:

- module 1 - ! - module 2 - ! - module Z - ! -... module n
1) 1 |
- package 1 - ! - package Z - ! -- package m - ...
! !
- proc I - ! - proc 2 - ! —proc 3 - ! ..proc p..
) 1 i L}
header 1 header 2 header = header p

bodyv 1 body 2 body 3 body p

Chapter 8 -~ - 258~ MACHINE LANGUAGE

The USE statement performs the following actions: Each
module, starting with the last one to be read in, is checked
to see if the name following USE is to be found in the list
of package names in this module. If the name is found, then
the procedures and functions found in this package are
defined. The locations of. the procedure headers are noted.

SIGNALS

When COMAL carries out an operation which can affect modules
or packages, a signal is issued regarding the operation in
question. The module or package may or may not react to the
signal. There are two types of signals:

A signal is sent to a package when a USE statement is
encountered which activates the package. The signal is
in effect a call to a routine which is local for the
package. As an example of what such routines may do,
the TURTLE package selects the SPLITSCREEN displavy,
when the command USE turtle is given. The main purpose
of the routine is to initialize the variables in the
package.

* On system start or when LINK, LOAD, DISCARD, NEW. RUN,
CHAIN are issued (and in certain other special
situations), signals are sent to all modules. The
signal causes a call to a routine in the module (and
thus common to all packages in the module). The
purpose of the signal call is to integrate all packages
in the module into the COMAL system (after start-up,
LINE, LOAD), or to return the COMAL system to its
original state (after DISCARD, NEW). If a package is
to use interrupt (IRR), then the module can link the
interrupt routine using LINK and disconnect it again
with DISCARD.

HOW IS MEMORY ORGANIZED?

The following diagram illustrates the entire memorv of your
Commodore 64 (the first 3 columns), the memory in the COMAL
cartridge (the next 4 columns), and finally the user-
programmable EPROM expansion (the last 2 columns). The
expansion option consists of an empty EPROM socket in the
COMAL cartridge. This cartridge can hold an 8KB-, 16KB-, or
32KB—EFPROM.

Chapter 8 - -259- MACHINE LANGUAGE

Cé64 Cé64 Cé64 Cartr. Cartr. Cartr. Cartr. Cartr.
RAM Ports ROM ROM ROM ROM ROM EPROM
b4k

GRAPH- KERNEL
ICS
S6kK

COMAL I/0 CHAR

S2K
COMAL

Cartr.
EFPROM

48K
Free BASIC! Expan-—
for usr COMAL |COMAL |COMAL |COMAL |sion

40K pack— pagel |page2 |page3 |page4 |pageS
ages

Expan-
sion
pageébé

Working
memory

RAM is partitioned as follows:

O- 1KB System variables for KERNEL, COMAL, processor
stack.

1- 2KB Screen memorv.

2-32KB Storage for COMAL program, name table and stack.
Here is also room for packages, which take up user

memory. The character set, if used, is at 27-
32KB.
32-48KB Is unused. FPackages can be placed here without

reducing available program working memory.
48-52KB COMAL system variables, variables for standard
packages.

S2-56KB Variables for function keys, moving sprites,
sprite drawings and color infarmation for
graphics.

S56—-64KB Graphics bit map.

The I/0 area contains the input/output ports. All
communication with the surrounding world is carried out via
these ports. The color memory for the text screen is also
located here. This color memory is (unfortunately) shared
with multi—-color graphics.

The following ROM areas are located in the C-é4:

40-48KB BASIC interpreter

52-56KB Standard double character set (font)

S6-64KB KERNEL. This is the Commodore &4 's operating
system. It contains among other things routines
for communication with the screen, cassette tape,
disk drives and the RS232 interface.

The COMAL cartridge is partitioned into four pages, each
containing 16KB. They are all located in the address range
32-48KB. In this way the 64KB COMAL interpreter only takes

Chapter 8 - -260- MACHINE LANGUAGE

up 16KB in your Commodore 64.
The contents of the cartridge ROM’'s are as follows:
Fage 1 COMAL starts here when the machine is turned on.

It contains the math routines, commands and the
packages ENGLISH, DANSK and SYSTEM.

Page 2 The COMAL editor, syntax analysis and code
generation, prepass (SCAN), recreator (LIST)
commands.

Fage 3 Runtime-module.

Page 4 The packages GRAPHICS, TURTLE, SPRITES, FONT,
SOUND, JOYSTICKS, PADDLES and LIGHTPEN are located
here.

EPROM expansion in the cartridge is interpreted as follows,
depending on EPROM type:

8KB FPage S, address area $B000-$9ff+f.
16KB FPage 5, address area $8000-$bfff.
I2KB Page S, address area $8000-$bfff,

FPage 6., address area $8000-$bfff.

Upon start—up COMAL examines every 4 KB in pages S and é to
find certain bytes which determine if package modules are
present. Next, signals are sent to the modules, indicating
that the machine has been turned on.

MEMORY MANAGEMENT

The 6510/6502-microprocessor which is used by the Commodore
64 is not designed to address more than 64 KB. When the
COMAL cartridge is active, the processor can address up to
152 KB! A special trick has to be used to achieve this.
The trick is to determine just what the &510 should be able
to "see" in its address space. Memory is partitioned into
banks (also called pages or overlays). The different banks
become active as required. The method is termed "“bank-
switching"” or "memory management". For example there are
three banks in the address space S2-56KB: RAM, 1/0 and
character set ROM (see memory manager organization). In the
region 40-48KB there are actually 8 different banks which
can be used!

Banks are selected by writing a bit pattern into certain
control ports. Two such control ports are available:

R&510 Controls the C-64 memory map. Located in the
Commodore, address $0001. Can be written to
or read.

OVRLAY Control of cartridge banks. Located in the

COMAL cartridge at address $de0O in bank 1/0.
I.e. the port must be accessible when it is
to be changed. It can only be written to.

COMAL has system routines, which manipulate these ports. By
using these routines, one can specify the memory map by

Chapter 8 - -261- MACHINE LANGUAGE

simply altering a single byte. The following figure
specifies several interesting memory maps (i=1,2,..,6):

RAM RAMCHR RAMIO DEFPAG CBASIC CART i
&4,
RAM RAM RAM KERNEL KERNEL KERNEL
S6K
RAM CHAR 1/0 I1/0 1/0 1/0
S2K
RAM RAM RAM RAM RAM RAM
48K
BASIC
RAM RAM RAM RAM COMAL
40k, pagei
RAM
32k,
RAM RAM RAM RAM RAM RAM
OK

CREATING MODULES

In order for LINK. USE and DISCARD to work, the placement of
code and the format for package names. procedures and
procedure headers must be specified.

I¥f a module is to be placed in RAM, then it must have the
following format:

.lib cé4symb

#={gtart address>

.byte <map>

.word end

.word <signal>

<package table>

<machine code>
end . end

I¥ the module is to be placed in EFROM, ther it must be
formatted as follows:

.lib cé4symb

#={gtart address>

.word cold

word warm

.byte 'CBMBOcomal ’

byte >«

.byte <map>+rommed

.ward end

.word <signal>

<package table>

<machine code>
end . end

Chapter 8 - -262- MACHINE LANGUAGE

«11b cé4symb makes all KERNEL- and COMAL variables known
to the module.

<{start address> is the starting address for the module in
memory.

<map> indicates into which memory map the module
is to be placed by LINK. This memory map is
automatically activated by calling a
procedure, function or signal handler in the

module.
rommed indicates that the module cannot be
DISCARD ‘ed.
end is the end address of the module + 1.
<signal> is the signal handler for the module,

located in <machine code>.
<package table> is a list of package names.
<machine code> is all other code in the module.

A <package table> has the following format:

.byte 11, ‘packagel’
.word procti,initi
.byte 12, ‘package2’
.word proct2,init2

.byte O sEnd of the table

11 is the number of characters in the i "th
package name.

‘packagei ’ is the name of the i th package (in
guotation marks).

procti is the address of the i 'th table of
procedure names.

initi is the address of the initialization

routine for the i 'th package.

A table of procedure names must have the following
tormat:

procti .byte 11, ‘proci’
.word prochi
.byte 12, ‘proc2’
.word proch2

.byte O sEnd of the table

Chapter 8 -

procti is the
13 is the
‘proci”’ is the
prochj is the

A procedure heade

~263- MACHINE LANGUAGE

address of the i "th table of procedure names.
number of characters in the j 'th procedure name.
name of the j 'th procedure (in quotation marks).
address of the j th procedure header.

r has this format:

prochj .byte
.byte
.byte
.byte
.byte

A function header

funchj .byte

.byte
.byte
.byte
.byte
type is
codeh is
n is
<parameterk> is

proc,<codeh, >codeh,n
<{parameteri)
<{parameter2)>

{parametern>
endprc

has this format:

func+type,<codeh, >codeh,n
<parameteri>
<parameter2)

<{parametern)>
endfnc

the function tyvpe (real, int or str).

the address of the assembler code routine.
the number of ftormal parameters.

the specaification of the k’'th parameter.

A parameter specification is one of the following:

.bvte value+type :Simple value parameter
.byte value+array+type,dim 3Array value parameter
.byte ref+type 1Simple reference parameter

.byte ref+array+type,dim jArray reference parameter

type is the parameter type (real, int or str).
dim 15 the dimension of an array parameter.
real means the type 1s REAL.

int means integer type (INTeger).

str means the string type (STRing).

An example of how

a procedure header i1s coded:

FUNC pip(x,y#,REF 2%(,)) can be coded as
.byte func+real,<pip,>pip,3 :Real func. with 3 param.
.byte value+real X
.byte value+int %]
.byte ref+array+str,2 sREF z$(,)

~byte endfnc

sNo more parameters

Chapter 8 - - 264~ MACHINE LANGUAGE

PARAMETER PASSING

wWhen the COMAL interpreter passes control to an assembler
coded routine, all actual parameters (if any) are computed.
At the same time parameter types are checked for agreement
with the procedure header specification. The number of
parameters in the procedure call must also be correct.

It is not paossible to know in advance where the parameter
value or the variable (when using REF) are located in
storage. Therefore it is necessary to call a system routine
FNDPAR (FiND FARameter) to obtain information about the
storage address of a parameter. Then the parameter can be
handled.

FNDFAR: When called: .A is the number of the parameter.
On return: COFPY1 contains parameter address.
All registers are changed.

NB: In the COMAL system the following conventions apply:
integers and real numbers are stored in high/low format,
while addresses are saved in low/high format. This is true
of actual parameters, also for parameters of system
routines.

In the following the format for each parameter type is
described:

VALUE+REAL and REF+REAL

(COPY1)+0: Exponent+128
+1: S bvtes Mantissa(1)
+2: floating Mantissa(2)
+3: point Mantissa(3)
+43 Mantissa(4)

VALUE+INT and REF+INT

(COPY1)+0: 2 bytes High byte
+1: integer Low byte

VALUE+STR and REF+STR

m: Maximum string length (dimensioned length).
n: Actual length (If VALUE+STR, then m=n.)

Chapter 8 - -265- MACHINE LANGUABE

(COPY1)+0: m High byte

Low byte

+2: n High byte

Low byte
+4: s$¥(1:1)
s$(2:2)
m s$(3:3)
bvtes s$(4:4)

+4+n—1: s$(n:n) (last char.)

+4+m—1: s$ (m:m)

VALUE+ARRAY+REAL , VALUE+ARRAY+INT, VALUE+ARRAY+STR,
REF+ARRAY+REAL , REF+ARRAY+INT, REF+ARRAY+STR

Every array has an information block:

n : Number of indices.
addr: Address of first element in the table.

(COFY1)+0:

+3+(n-1) #4+2:

+3+n#d:

addr

n

Lower limit
for 1. index

Upper limit
tor 1. index

Lower limit
for 2. index

Upper limit
for n'te ind.

Low bvte
High byte

Number of indices

High byte
Low byte

High byte
Low byte

High bvte
Low byte

High bvte
Low byte

Chapter 8 - - 266~ MACHINE LANGUAGE

If an array A is declared as:
DIM a(1:13,6:8)
it is placed in memory as follows:

addr+0 a(l,6)
+1 a(l1,7)
+2#1: a(1,8)
+3%l: a(2,6)
+4%l: a(2,7)
+5*1: a(2,8)
+6%1: a(3,6)
+7%1: a(3,7)
+8%1: a(3,8)

where 1 is the size (in bytes) of each array element.

Each element is organized just as a simple parameter.

WHERE CAN MODULES BE PLACED?

Modules can be placed in RAM from $0900-$7fff and from
$8009-sbfff.

In addition packages can be placed in an EFROM in the
cartridge from $8000-$bfff, however the start address must
be a multiple af #%1000.

WHERE CAN THE MODULE VARIABLES BE PLACED?

Variables which much survive from call to call must be
placed in the module itself (for RAM-modules).

EPROM-module variables can be stared from #c855-%cB87a.

Should more storage be required, and if the RS232 will not
be used, then the RS5232 buffer RSOBUF (256 bytes) can be
used. If cassette tape will not be used, then the tape
buffer TBUFFR (192 bytes) can be used. In addition zero-
page locations $4c, $56 and $fb-$ff can be used freely.

Raoutines which use variables local to the individual call
can use these local variables:

Name Address

INF1 $0038

INF2 $0039

INF3 $003a

21 $003h-$003c

Q2 $00ZTd-$003e

a3 $003€-%$0040

Q4 $0041-$0042

Qs $0043-$0044

COPY1 $0045-%0046 Also used by FNDPAR

CoPYZ2 $0047-$0048

Chapter 8 - -267- MACHINE LANGUAGE

COoPY3 $0049-%0050

AC1 $0061-%$0066 Also used by FP-routines
AC2 $0069-%006F Also used by FP-routines
MOVEAD $007a-%$007b

TXTLO $007c

TXTHI $007d

RANGES $02e0-$02f f

TXT $c760-%c7af

SIGNAL ROUTINES

A signal routine is a subroutine which is terminated by an
RTS instruction. It is permissible for a signal routine to
do anything which a procedure or a function may do. I¥ a
signal routine is not required, then a system routine named
DUMMY can be used. This routine consists of only an RTS
instruction and does nothing.

A USE-signal-routine has no parameters. Each time a USE
{package> statement is encountered in a COMAL program, this
routine is called. If it is not desired that the package be
initialized every time, then a variable should be used to
indicate that a package has previously been activated by
means of USE.

A module-signal-routine has one parameter, for the .y-—
register will contain a value when the call is executed,
indicating which type signal is to be transmitted. The
parameter can be one of the following:

POWER1 Is issued at start-up tc all ROM 'ed modules.
The signal must be used to initialize the
module.

FOWERZ2 Is issued at start-up after FOWER1 has been

issued. Ordinarily this signal is ignored,
but it can be used to allow a module to take
camplete control before COMAL starts.

LINK Is issued to a just LINK 'ed package or to
those packages which are read in with LOAD,
RUN <filename>, or CHAIN. With this signal
the module can change vectors in COMAL and
the operating system.

DSCRD Is issued to all modules before DISCARD or
the NEW command. On this signal the module
can change vectors back to what they were
before LINK.

NEW Is issued with a NEW command.

CLRTAB Is issued when all names in a program are
undeclared. This signal is given with the
RUN and CHAIN commands and in certain other
cases. When the names are undeclared, then
it is not possible to call any procedure or
function in any package.

Chapter 8 - - 268~ MACHINE LANGUAGE

RUN Is issued with the RUN or CHAIN command.

WARM1 Is issued during "warm start", i.e. when the
{STOP-RESTORE> combination is activated from
the keyboard.

CON Is issued with the CON command.

ERROR Is issued after the program has stopped with
an error message.

STOF1 Is issued after a program has stopped due to
a STOP or END.

BASIC Is issued before COMAL is exited.

In general a module-signal-routine follows this outline:

signal cpy #link j LINK—-command?

beq slink sJump if smo

cpy #dscrd 3 DISCARD?

beq sdscrd gJump if so

rts ;Ignore all other signals.
slink .. tLINK—-handl er

rts s Back to COMAL
sdscrd .. 1 DISCARD-handl ar

rts s Back to COMAL

ERROR REPORTING

It is good programming practice to check whether parameters
to a procedure or function are legal. It they are not, then
an error message should be issued. I+ it is desired that
COMAL ‘s own error messages be used, this can be done as
follows:

ldx #5 jGive error number S
imp runerr ji.@. "value out of range"

With this method one can give standard error messages
numbered O to 2355. Gee Appendix F for these error messages.
RUNERR corresponds closely to the COMAL statement REFORT
error> and can be captured in a TRAP structure, if this is
desirable.

A more general error reporting method is available. I
one wants to give the following values to the system or to
an error handler,

ERR = 300
ERRFILE = (o)
ERRTEXT$ = “illegal parameter value”

it can be done with the following routine:

Chapter 8 - - 269- MACHINE LANGUAGE

text .byte ‘illegal parameter value’
textl =#—-text

H
err300 ldx #textl jLength of text
stx ertlen jLength of error message
errorp lda text-i,x jMove the text to ERTEXT
sta ertext-1,x
dex

bne errorp

lda #$6c sCopy jmp (trapvc) to Q1
sta qi1+0

lda #<trapvc

sta qi+1

lda #>trapvc

sta qi+2

ldy #0 tERRFILE = O

ldx #<300 $ERR = 300

lda #>300

jsr goto jExecute jmp (trapvec) in PAGEB
.byte pageb,<ql,>qi

PACKAGE EXAMPLE

The following example shows how a complete module containing
one package named TEST can be created. The purpose of

this example is to illustrate how one creates a procedure,

a real function and a string function. The package is
placed from address $8009 in RAM in the memory map DEFFAG
(see the table of useful memory maps shown earlier).

The package is available on the demo diskette.

test.src contains the source code (src=source).
test.obj contains the object code (obj=object).

In order to get the module with the package test into the
machine, type:

LINK "test.obj"
Next type in:

AUTO

0010 USE test // makes hi, add and string known //
0020 hi

0030 PRINT add(23,4%5)

0040 PRINT strings("a",10)

0030 (Press the <STOP> key.)
RUN which gives this result:

hello!

68

FYTYYYYYYYY

end at 0040

Chapter 8 — -270- MACHINE LANBUAGE

Switch to your own diskette then type:

SAVE "test” save the COMAL program and the package test.
DISCARD delete the LINK 'ed module.

RUN run the program again without the package
test.

The system will respond with an error message:
at 0010: test: unknown package

RUN "test" fetch and run the program with the package
test.

New printout:

hello!

68

a383aaaaaa

end at 0040
Here is the content of the source code of test.src:
-——=== package test===———

make all symbols known:

a1 can ae ap

.1ib cé4symb

.opt list t1list this module

' #=$8009 istart address
.byte defpag s 52KB RAM memory map
.word end ithe module ends with end
.word dummy :no signal handler

package table:

e av e

.byte 4, test’ sthe package is called test
-word testp sprocedure table
«word dummy sno initialization
.byte O $NO more packages
f procedure table:
H
testp .byte 2,°'hi’ sthe procedure hi
.word phi sprocedure header for hi
.byte 3, add”’ sthe function add
.word padd
.byte &6, 'string” jsfunction string
.word pstrin
.byte 0O 3NO more procedures
5 proc hi
H
phi .byte proc,<hi,>hi 0 sno parameters

sbegins in hi
.byte endprc

Chapter 8 - -271- MACHINE LANBUAGE
s func add(a#,b#)

H

padd .byte func+real,<add, >add,2 ;two parameters

sbegins in add
sa¥# is integer value parameter
sb# is integer value parameter

.byte value+int
.byte value+int
.byte endfnc

func string¥(character$,number#)

L < JETIRTTREN

strin .byte func+str,<string,’string,2 ;two parameters
tbegins in string
scharactert is string value parameter

snumber# is integer value parameter

value+str
value+int
endfnc

.byte
.byte
.byte

proc hi
print "hello!'"
endproc hi

text .byte ‘hello! ,13 stext to be printed
textl =%—-text s:length of text
’
hi 1dy #0O :begin with 1. character
hilp lda text,y s fetch character
isr cwrt sprint character on screen
iny snext character
cpy #textl sfinished?
bne hilp sjump if not finished
rts sreturn to COMAL

-endfunc

L ar se an s are en

dd lda
jsr
ldx
lda
stx

sta

lda
isr

e ae s

func add(a#,b#)
return a#+b#

add

#1
fndpar
copyil
copyl+1
copy2
copy2+1

#2
fndpar

copyl points now to b#

sget address of 1. parameter
scopyl = address

smove address to copy2

;get address of 2. parameter

and copy2 points now to a#

1dy #1 sNB: integers are in high/low format
clc 3NoO carry
lda (copy2),y ;low byte of a#
adc (copyl),y s;plus low byte of b#%
tax ;-a is moved over to .x
dey $.y:1=0
lda (copy2),y shigh byte of a#
adc (copyl),y ;plus high byte of b# plus carry
bvs ovrflw sjump if arithmetic overflow
5 -%x = low byte of a#+b#

Chapter 8 - -272- MACHINE LANGUABE

.a = high byte of a#+b#

convert from integer to real number;
then put result on COMAL ‘s stack.

we ws ws we ws

jsr pshint sconvert and push.

rts sreturn to COMAL with the result
ovrflw ldx #2 s "overflow"

Jmp runerr ireport 2

func string$(character#,length#) closed
if length#<0 then report 1 // argument error //
if len(character#%)<>1 then report 1 // argument error //
dim r¥ of length# // room for result //
for i#=1 to length# do // generate result //
r¥:+characters
endfor i#
return r$ // return result //
endfunc string

3 as ar ee an s cae er we as ws ws e

um =copy2 juse copy2 as num
string lda #2 sget address of 2. parameter
jsr {fndpar
ldy #0 itest sign
lda (copvil),v
bmi argerr s Jump, if <O
sta num+1l shigh byte aof num
iny s.y:=1
lda (copyl),y
sta num slow byte of num

generate the result directly on COMAL ‘s evaluation stack.

stos points to the next free byte on the stack
the stack is limited upwards by sfree
test if there is room for the result

we cav cas cae ae ae e

clec tclear the carry

adc staos snum+stos

tax ;i.X:=low byte of num+stos
lda num+1

adc stos+1 s-a:=high byte of num+stos
bcs sterr sjump, if overflow

tay

txa snum+stos+2

adc #<2 sthe carry is known to be = 0
tax

tya

adc #>2

bcs sterr s jump, if overflow

cpx sfree sif num+stos+2>=sfree,

sbc sfree+i sthen stack-overflow

bcs sterr sJjump, if stack-over+flow

check characters$.

Chapter 8 -

a0 cas cas

ae as as

.

.
argerr

.
sterr

lda
jsr
l1dy
lda
bne
iny
lda
cmp
bne

iny
lda

ldy
sty
sty

ldx
cpx
bne
ldx
cpx
beg

sta

inc
bne
inc

inc
bne
inc
Jmp

the

lda
sta
iny
lda
sta

clc
lda
adc
sta
lda

adc

sta
rts
1dx
Jmp
ldx
Jmp

#1

fndpar

#2
(copyl),y
argerr

(copyl),y
#1

argerr

fetch characters(1:1)

(copyl),y

write character$(i:1)

#0
ql
gqli+1

num+1
ql+1
stri
num
ql
strok

(stos) .,y

stos
str2
stos+1

ql
strlp
ql+1
strilp

length of the

num+1
(stos),y

num
(stos) ,y

stos
#<2
stos
stos+1
#>2
stos+1

#1
runerr

#56
runerr

-273- MACHINE LANGUAGE

sget the address of character#

scurrent length must = 1
shigh byte must = O

s5.y:=3

slow byte must = 1
s.y:=4
s.ar=characters$(1:1)

num times on the stack.
3ql:=0 // loop variable

swhile qgli<>num do

3§ r3(gl:qgl):=character$(1:1)

H tos:+1

H ql:+1

sendwhile

string to num.

;save high byte of the length
3.y:=1

;save low byte of the length

;stos:+2 // room for the length //

sreturn to COMAL with the result

s "argument error"”

3 "out of memorvy"

Chapter 8 - =274~ MACHINE LANGUAGE

end .end send of source text

-275-

Appendix A —
COMMODORE &9 Character Codes

ASCII CHARACTERS SCREEN CHARACTERS
mode mode
CODE text graphics text graphics
0 © e
1 a A
2 b 153
3 <STOP> c C
4q d D
S wuwhite] E
-8 £ F
? g G
8 <(SHIFT - C=> disatle h H
9 <SHIFT - C=> enable i 1
10 ... J J
11 clear to end of line K K
12 form feed (printer) 1 L
13 <RETURN> m M
14 switch to lower case n N
13 [o]
16 [[
1?7 cursor doun EY o}
18 reverse con r R
18 cursor home s S
20 1t T
21 u U
22 v v
23 " W
24 P b
=3+ v Y
26 z 4
27 & 3
28 red e 14
29 cursor right a A
30 green T t
31 blue « «
32 space
33 ! ! ' !
34 - L] ™ L
35 # # "]
36§ * s S
37 “ % % V4
38 & & & &
38 ' ' !
40 < ¢ ¢ <
41 > > >)
42 = x * *
43 + + + +
44 ’ 4 ’
43 - -
468 . ; .
47 7 s s 7

Appendix A ~

CODE

-276-

ASCII CHARACTERS

text

mode

graphics

CHARACTER CODES

SCREEN CHARACTERS
mode
text graphics

P APONNNYXXECEC AP I NHNVOSI =~ XewITOHAMNANTIRIVIAS=ODODNODARDLWN-O

oow>

WO~NDODADWN-O

2 A DPEARANLKXECCAVVNOUVOZICXTG=IOTMOODDIR I v I A e o

I =% |

DONOARDWN~-O
WM NOWMSL W -0

Qv AN

Qv A e
I = |

® _IAIN/ ¢« Y

'//‘“DG%N-\'XE<C—0077JD'OOZZI'X(-H:[0'"HDOUJD|
— e

Ads -4+ 6_%0X-

Appendix A -

CODE

-277-

ASCII CHARACTERS
mode

teaxt graphics

CHARACTER CODES

SCREEN CHARACTERS
mode

text graphics

101

102
103
104
103
106
107
108
109
110
111
112
113
114
115
116
117
118
118
120
121

122
123
124

126
127
128
129
130
131
132
133
134
135
136
137
138
1338
140
1491
142
143
144
143
146
147
148
148
130
151
1352
183

123

o _ 1N/ ¢ 7

BDPOEANLAXECCAHANIODTVOZIC X L=IOTM
ik B

Ads —" 4+ 0 __w0X-

orange
<RUN>

f1

£3

S

£7

f2

£4

£6

£8

<SHIFT-RETURN>
suwitch to upper ca:ze

black

cursor up

reverse off

as <CLR> (clear screen)
as CINST> Cinsert)
broun

l1ight red

dark grey

srey

l1ight green

N
re T= N3 _ N7

rFe T o

-T2t d ka4

la™=2d4 kol 4

N
(o |

L.
L SR

Codes 128-255 are
reverced images of
codes 0-127

Appendix A -

-278-

ASCII CHARACTERS

CHARACTER CODES

ASCII CHARACTERS

mode mode

CODE text graphics CODE text graphics
154 1light blue 20€ N /
155 1light grey 207 O r
156 purple 202 F e |
157 cursor left 208 Q [
158 yellow 210 R —
159 cyan 211 € L4
160 space 212 T |
161 1 1 213 U I3
162 = - 214 v X
163 ~— - 215 U o
164 _ - 21€ X L)
165 | | 217 Y 1
166 W -4 212 2 *
167 | | 212 A +
168 wm e 220 @ 1
168 % %, 221 A |
170 [} i 222 R «
171 F + 223 N A |
172 . . 224
173 L L 225 1 1
174 4 - 226 -
175 o - 227 -
176 r I3 228 _ _
1?7 1 + 229 | 1
178 - - 230 ®m »
179 4 4 231 | [
180 | 1 232 -
181 1§ [] 223 % | 4
182 | 1 234 | |
183 = - 22% + 3
184 = - 236 . -
185 - - 227 ot L
186 v v 238 o -
187 o a 238 -
188 * . 240 r
189 4 4 241 4 4
1s0 * . 242 < -
181 &% by 243 4 4
182 -~ - 244 |]
183 A * 245 1|]
184 B | 246] 1
185 C = 247 =
186 D - 248 = -
187 E - 249 - -
188 F - 250 v |
188 G | 251 -
200 H | 252 ® L]
201 1 N 253 4 4
202 J L 254
203 K 2 255 R ']
204 L L
203 M AN

Appendix B

COLOR CODES

Color Color
code
(o] black
1 white
2 red
3z cyan
4 purple
S green
6 blue
7 yellow
8 orange
Q brown
10 pink
11 dark grey
12 grey
13 light green
14 light blue
15 light grey

-279-

Grey
scale

474
0/4
374
1/4
2/4
2/4
I/4
174
2/4
3/4
2/4
/4
274
1/4
2/4
1/4

ASCII
value

144

28
159
156

Z0

31
158

150

155

COLOR COMBINATIONS ON THE TV/MONITOR:

Keyboar

<CTRL-1>
<CTRL-2>
<CTRL-3>
<CTRL-4:
<CTRL-5>
<CTRL-6>
<CTRL-7>
<CTRL-8>
<C= 1>
<C= 2>
<C= Z>
<C= 4>
<C= 5>
«C= &=

(from the Commodore &44-Programmer ‘s Reference Guide)

How

+
o

i

do the colors go together?

very well

d

well
poorly
L]
screen text color code
color
code; 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 + + + o + o+ + + o+ o+ o+
1 + + + + o+ 0O + 0 + + + o+
2 + o + o+ + o
3 + o + o o
4 + o o
5 + o0 o o + o
[y o + + o + +
7 + + o 0O + 0 + +
8 o + + + + o
9 + + o+ + +
10 0o o + o + o
11 + + o + + + o +
12 + + o0 o o + +
13 + + o +
14 + o+ + + o o
15 + + o+ o o + 0O 0 + + o

-280-

-281-

Appendix C —

CALCULATIONS WITH COMAL

The COMAL operating system can handle 4 types of numerical
constants and variables:

real numbers E.g. 3.232 , 4.6e-12 , FI, a , sum
integers 71 , 3067, nr# , item#
hexadecimal numbers $1a , $d7 , $ac00 , no , position
binary numbers %101t , %10011010 , byte , id

NUMBER RANGES:

2.93873588e-37 <= real number <= 1.7014118%e+38

-32768 <= integer <= 32767

0 = $00 <= hexadecimal <= $f+Ff = 65535

0 = %0 <= binary number <= %1111111111111111 = &55335

CALCULATIONS ARE CARRIED OUT ACCORDING TO THE FOLLOWING RULES:

An expression to be evaluated may contain a mix of all
number types and number variables. It may contain a mix of
arithmetic operators, relational operators and boolean
operators. Standard COMAL functions and user defined
functions can also be included:

#* an expression is evaluated from left to right,
#*# however, various operators have different priority.
The calculations are carried out according to the

following priority, highest priority first:

PRIORITY:
(in order of highest priority)

1. () parenteses

Arithmetic operators:

2. ~ exponentiation 2-Z equals 8

T. ® multiplication 2#3% equals &6

3. 7/ division 7/2 equals 3.5

3. DIV integer division) 54 DIV 8 equals 6
3. MOD remainder after division .22 MOD 7 equals 2
4, + addition 243 equals S

4, - subtraction 4-3 equals 1

4, - monadic subtraction -5+2 equals -3

Logical operators for bitwise comparisons:
(See further explanations in the reference section,
Chapter 4.):

S. BITAND bitwise logical ‘and’
S. BITOR bitwise logical ‘or’
S. BITXOR bitwise logical ‘exclusive or’

AppenDIX C - -282- CALCULATIONS

Relational operators:

(Comparisons occur in logical expressions, which can be
TRUE (=1), if the comparison is true. Otherwise the
logical expression has the value FALSE (=0)).

6. < less than 3I#2<9 equals TRUE
6. <= less than or equal to 4x3<{=10 equals FALSE
&. = equal to 1=2 equals FALSE
6. >»>= greater than or equal to 17>3 equals TRUE
&. > greater than 7>7 equals FALSE
6. <> not equal to I#2{>6.01 equals TRUE

Boolean (logical) operators:
(See further explanation of the individual words in

Chapter 4.): .

7. NOT logical negation
8. AND logical "and”’

8. AND THEN as AND

9. DR logical ‘or-”

7. DR ELSE as OR

STANDARD FUNCTIONSs

INT (x) Integer part of x INT(3.2) equals 3

ABS () Numerical value of x ABS(-2.5) equals 2.5
SGN (%) Sign of x SGN(-3) equals -1
SIN(x) Sine of x SIN(PI/&) equals 0.5
COS (x) Cosine of x COS(F1) equals -1
TAN(x) Tangent of x TAN(PI/4) equals 1
ATN(x) Inverse tangent of x ATN(1) equals FI/4
LOG (%) Natural logarithm LOG(10) equals 2.3026
EXF(x) Exponential function EXF(Z) equals 7.389
SOR (x) Square root of x SAR(9) equals 3

EXAMPLES OF USER DEFINED FUNCTIONS:

FUNC asin(x)
IF ABS(X)=1 THEN
RETURN X*FPI1/2
ELSE
RETURN ATN(x/SQR{1-x%*x))
ENDIF
ENDFUNC asin

FUNC logl10O(x)
RETURN LOG(x)/LDG(10)
ENDFUNC 1oglQ

-283-

Appendix D —
KEYBOARD AND SCREEN EDITOR

THE ACTION OF SPECIAL KEYS IN COMAL3

<>
Underlining

<CTRL>
has special meaning when used with other keys. See the
following.

<RUN/STOP>
interrupts program execution.
Action is affected by the COMAL statement ESC. See Chapter 4.

<SHIFT/LOCK>
locks <SHIFT: in upper case mode.
Release by pressing the key again.

<SHIFT>

As on a typewriter. If this key is held down while another
key is pressed, an upper case character is produced. Letters
appear as upper case. In the semigraphics mode the symbols
on the right front side of the keys are produced. <SHIFT>
pressed together with other special keys has other functions
as described with these keys.

<C=> THE COMMODORE KEY3

<C= SHIFT>
Each activation toggles the screen display between lower and
upper case.

<{C= number>
Pressing the C= key with a number 1-8 switches to colors
with color codes 8-185.

{C= graphics symbol>
Pressing a key with graphics symbols equals the symbol shown
on the front left of the key.

<CLR/HOME>
moves the cursor to the upper left corner of the screen.

<SHIFT-CLR/HOME>
clears the screen.

<INST/DEL>

is the delete key. It deletes the character immediately to
the left of the cursor, and the remainder of the line moves
one space to fill in the gap.

<SHIFT-INST/DEL>
is the insert key. It pushes the character under the cursor
and the rest of the line one space to the right.

Appenpix D - -284~ KEYBOARD AND SCREEN

<STOP-RESTORE >

If the <STOP> and <RESTORE> keys are pressed at the same
time, the computer is ‘reset’. The program in working
memory is not lost.

<RETURN>
Indicates that all information on the current line should be
interpreted and processed.

<CRSR>

There are two keys which are used to move the cursor around
the screen. The arrows indicate directions. Each key has
two functions. The function changes when the <SHIFT> key is
depressed.

THE FUNCTION KEYS (<f1> - <f8>)

The function keys can be programmed by the user to perform
various functions. (See further details in Chapter S in the
section dealing with the procedure defkey in the COMAL
package system.)

When COMAL is started up, these keys have the following
functions:

<f1> RENUM + <RETURNZ>
<f2> MOUNT + <RETURNX
<¥3> USE turtle + <RETURN>

<f4> AUTO
<£5> EDIT
<f6> LIST

<£7> RUN + <RETURN> + CHR#(11) + <{RETURNZX

Note on <f7>1 In addition to ordinary running of
a program, this key can be used to start & program
directly from the disk catalogue. RUN, RETURN
would have the effect of running the program with
the name which follows on the same line. However
the text prg also appears after the program name
when the catalogue is displayed, so the system
reacts with an error message, placing the cursor
just ahead of the ‘error’ prg. Then ASCII-code
11 deletes the rest of the line. Now the line is
correct, and the program can be run when the last
RETURN is activated.

<¥8> SCAN + <{RETURN>

During program execution the function keys have other
values: ASCII values 133 - 140.

After execution of one of the orders USE graphics or USE
turtle the function keys <f1>, <f3> and <35> have the
following meaning:

<f1> textscreen (show the text screen)
<f3> splitscreen (show graphics screen with 4 lines of text)
<¥5> graphicscreen (show the graphics screen)

AppenDIX D - -285- KEYBOARD AND SCREEN

THE CONTROL KEY <CTRL>:

<CTRL-number >

<CTRL> together with a number 1 - 8 causes subsequent text
to be written with the color indicated on the front of the
number key. <CTRL> together with 2 or 0 toggles inverse
text.

See also Appendix B on colors and Chapter S on the procedure
quote ‘mode in the COMAL package system.

DURING EDITING OF COMAL PROGRAMS THE FOLLOWING CTRL-
FUNCTIONS ARE USEFUL:

<CTRL> + <letter>

<CTRL-A>t Is used during the correction of a program line
which extends over more than one line on the
screen. If the first 1 to 4 characters in the
linie in which the cursor is located is a line
number, then the line number will be rewritten
with no gaps. <CTRL-A> can also be used as an
0O0FS!'—key: If a correction has been made, and
<RETURN> has not yet been pressed, then pressing
<CTRL-A> will cause the line to be printed again
in its original form.

<CTRL-B>: moves the cursor back one waord.

<CTRL-C>: corresponds to <STOF>.

<CTRL-D>: dumps the graphics page to the printer. The
printout begins 13 characters from the edge of the
paper. This order can only be used with Commodore
MFSBU1 compatible matrix printers.

<CTRL~E>: changes the cursor color to white.

<CTRL-F>1 moves the cursor forward one word.

<CTRL-K>: deletes all characters from the cursor position
to the end of the line.

<CTRL-L>1 moves the cursor to just after the last non-
blank character on the line.

<CTRL-M>1 corresponds to <RETURN>.
<CTRL-P>t Executes a hardcopy("lpt"). I.e. prints out

the text screen to the printer. The printout
begins with a carriage return.

<CTRL-8>3 corresponds to <CLR/HOME>.
<CTRL-U>: removes the graphics mode functions for <f1>,
<f3> og <¥5>. Gee also the description of the

function kevys.

<CTRL-V>: sets up the color choice textcolors(&,6,1).

AePenDIX D -

<CTRL-W>:

<CTRL-X>1

<CTRL-Y>:

<CTRL-Z>:

-286- KEYBOARD AND SCREEN

This corresponds to a blue edge, blue background
and subsequent white text. This is a good choice
for a color display. Note that the current text
screen is cleared by this order.

sets up the color choice as

textcolors(11,15,0). This corresponds to a dark
grey border, light grey background and subsequent
black text. This order clears the text screen.
It is a good choice when using a black/white
display.

changes the border color... It is followed by a
color choice: <CTRL number> or <C= number>.

changes the background color... It is followed
by a color chaice: <CTRL number:> or <C= number>.

The selected combination of border, screen and
text colors are stored and will be reset when
<STOP-RESTORE> is executed.

-287-

Appendix E —

HANDL ING TEXT WITH COMAL

Text variables (also called ‘strings’ or ‘string

variables’') are specified in COMAL by means of a sequence of
up to B0 characters followed by a $ sign. The first
character must always be a letter, and certain special
characters may not be included in the name.

Examples: name$, text#$, from¢, long names$.

Before a text variable can be used, it must be declared
(dimensioned). The system must be provided with information
on the maximum number of characters the text variable will
contain, so that room can be reserved in memory. This is
done using the DIM statement:

Examples: DIM texts OF 80
DIM name$ OF 20
DIM answer$ OF 1

A text variable can contain any character sequence up to the
dimensioned length. (Exception: the character " may not be
used alone. If this character is to be included, you must
use "" to indicate it. If a number is enclosed within the
"", then the corresponding ASCII code will be part of the
text variable assignment.)

If a text variable is not dimensioned, then the first
assignment instruction will automatically execute: DIM
name$ OF 40. If a variable name is not dimensioned, and

the name is used before an assignment has been made, then an
error message will be generated.

EXAMPLES OF TEXT VARIABLE USAGE:

Make the assignments: slogan$:="comal is ok"
text$i="a flower is beautiful".

The text can be analyzed with the aid of standard functions
and operators.

length:=LEN(slogan$) length is assigned the value
11, for slogan$ consists of 11
characters. See a detailed
description of the function LEN in
Chapter 4.

positioni="mal" IN slogan$ position is assigned the
value 3, since the text
"mal" is contained in
slogans$, and the first
character in "mal" is the 3.
character in slogan$. See
the more detailed description
of the operator IN in Chapter
4,

ArPENDIX E - -288- HANDLING TEXT

asciit=0ORD(texts) ascili is assigned the Commodore
ASCI1 value for the letter a (= 65).
See the ASCII values for all characters
in Appendix A.

text$<{(slogans$ the logical expression will be true

(TRUE = 1), because a precedes c in
the alphabet.

SELECTION OF STRING SEGMENTS:

lettersi=texts$(8) letters$ is assigned the string "r*,

or which is the 8. character in texts

lettersi=text$(B8:18)

first$i1=slogans$(15) firsts$ is assigned the string
"comal”, i.e. the 5 first characters in
slogans.

last$i=text$(13:) last$ is assigned the text

or "beautiful”, i.e. the last

last$i1=text$(LEN(text$)-B3) nine characters in texts$.

t$1=glogans (31 8) t$ is assigned the string

"mal is".
t$1="programs" (517) is assigned the string ram.
t$1=5TR$(1789) (21 3) t$ is assigned the string "78".
te1=(text$(419)) (2:4) t$ is assigned the string

"owe", which is part of
a part of a string.

text$(3:8)1="bee" text$ will equal
a bee is beautiful after
this instruction has been
executed.

SELECTION OF TEXT SEGMENTE FROM INDEXED STRING VARIABLES:

DIM name$(3) OF 20
name$(1):="Adam Smith"
name$ (2):="Eva Smith"
name$ (3) :="Krystle Smith"

t$i1=names(2) (115) t$ is assigned the string "Eva S".

DIM items$(3,2) OF 10
item$(1,1):="book"
‘magazine"”
Icarll
‘train"
item$(3,1)z="0il"
item$ (3,2):="gas"

select$i=items$(2,1) (2:13) select$ is assigned the string "ar".

ApPenDIX E - -289- HANDL ING TEXT

CONCATENATION OF STRINGS:

place$i="Yankee"+" stadium" strings can be linked
together using the
character +.

messages$:=slogan$+" and easy"” message$ is assigned the
string "comal is ok and easy".

hello$:i=names$ (2) (:3)+text$(F3)+" and "+slogans$(10:11)
hello$ is assigned the string "Eva is beautiful and ok".
t$i1=("we and "+slogans$(1:5)) (4:8) t$ is assigned the
string "and c".
STRING FUNCTIONS:

The user can define string functions at will to produce string
segments:

0010 FUNC uppers$(lowers)
0020 FOR i#1=1 TO LEN(lowers$) DO

0030 at=0RD(lowers$ (i#))
0040 IF a>64 AND a<94 THEN
00350 ai1+128

0060 lower$ (i#) 1 =CHRS$ (a)
0070 ENDIF

0080 ENDFOR i#

0090 RETURN lowers$

0100 ENDFUNC upper$

Examples of the use of the function uppers$:

PRINT uppers$("merry christmas") yields the printout:
MERRY CHRISTMAS

PRINT uppers$(“headline:") (4:8) gives the printout:
DLINE

Using COMAL it is easy to define the Basic-function mids$:

0010 FUNC mid$(as$,start,number)

0020 RETURN as$(start:istart+number-1)

0030 ENDFUNC mids

This function can be used in lieu of mid$, if you wish to use
parts of existing Basic programs.

-290-

-291-

Appendix F —

COMAL. ERROR NUMBERS AND MESSAGES

The standard version of Commodore 64 COMAL contains error

messages in two languages. When the computer is turned on

with the COMAL cartridge in place, English error messages

will be in effect. If desired Danish error messages can be
selected by means of the order:

USE dansk
To get back to English, execute:
USE english

After issuing one of these orders, all subsequent error
messages will be printed in the language you have chosen.
However , error messages for the disk operating system will
always be in English.

It is of course possible to incorporate error messages in
other languages into a COMAL cartridge. Contact your
Commodore national distribution center for further
information.

The COMAL system can give error messages in the following
situations:

* When typing in an instruction line
* When examining program structure (using scan)
During a run (run—-time errors)

The remainder of this Appendix includes a list of all error
messages and their corresponding numerical code. Note that
the list is given both in English and in Danish for those of
you who may be curious about the strange language which
COMAL can use:

DYNAMIC SYNTAX ERROR MESSAGES:

<{language element> ikke forventet
<language element’> not expectet

<language element’> mangler
<language element> missing

<language element 1> forventet, ikke <language element 2>
<language element 1> expected, not <language element 2>

DYNAMIC STRUCTURE ERROR MESSAGES (PREPASS):

<{statement 1> uden <statement 2>
<statement 1> without <statement 2>

<statement> mangler
<istatement> missing

AppEnDIX F - -292- ERROR MESSAGES

<{statement 1> forventet, ikke <{statement 2>
<statement 1> expected, not <{statement 2>

<{statement> ikke tilladt i styrestrukturer
{statement> not allowed in control structures

import kun tilladt i lukket proc/func
import allowed in closed proc/func only

forkert slags <{statement>
wrong type of <statement>

forkert navn i <{statement>
wrong name in <{statement>

>:1 navn allerede defineret
>: name already defined

<name>: ukendt etikette
<name>: unknown 1label

ulovlig goto
illegal goto

DYNAMIC RUN TIME ERROR MESSAGES:

<name>: ukendt statement eller procedure
<name’>: unknown statement or procedure

<name>: ikke en procedure
<name>: not a procedure

<name>: ukendt variabel
<nameX: unknown variable

e>: forkert type
<namei: wrong type

<name>: forkert funktionstype
<name>: wrong function type

<{name>: hverken tabel eller funktion
<name>: not an array nor a function

<{name>: ikke en simpel variabel
<name>: not a simpel variable

<name>: ukendt tabel eller funktion
<name>: unknown array or function

<name>: forkert tabe\type
<name>: wrong array type

<name>: import fejl
<name>: import error

<name>: ukendt pakke
<name>: unknown package

<name>: navn redefineret

AppenDix F - -293-

<name>: array redefined

<name>: navn allerede defineret
<name>: name already defined

<name>: tekstvariabel ikke defineret
<name>: string not dimensioned

<{name>: ikke en pakke
<name>: not a package

RUN

[¢]

w

10

11

13

14

15

16

17

TIME ERROR, WHICH CAN BE TRAP‘PED:

report fejl
report error

argument fejl
argument error

overloeb
overflow

division med nul
division by zero

delstrengsfejl
substring error

uden for vaerdiomraade
value out of range

0
O

step
step

won

ulovlige graenser
illegal bound

fejl i print using
error in print using
ulovlig indexvaerdi

index out of range

ulovligt filnavn
invalid file name

verify fejl
verify error

pragram for stort
program too big

daarlig comal kode
bad comal code

ikke comalprogramfil
not comal program file

program lavet til anden comalversion
program made for other comal version

ERROR MESSAGES

ApPENDIX F - -294-

30

37

S8

59

60

61

62

ulovlig farve
illegal color

ulovlig graense
illegal boundary

ulovlig tegning-nummer
illegal shape number

tegningens laengde skal vaere 44
shape length must be 64

ulovlig sprite—nummer
illegal sprite number

ulovlig stemme
illegal voice

ulovlig node
illegal note
TIME ERROR, WHICH CANNOT BE TRAP ‘PED:

system fejl
system error

for lidt hukommelse
out of memory

forkert dimension i parameter
wrong dimension in parameter

parameter skal vaere en tabel
parameter must be an array

for faa indices
too few indices

strengtildelingstejl
string assignment error

ikke implementeret
not implemented

con ikke mulig
con not possible

programmet er blevet modificeret
program has been modified

for mange indices
too many indices

funktionsvaerdi ikke returneret
function value not returned

ikke en variabel
not a variable

ERROR MESSAGES

ApPeEnDIX F - -295- ERROR MESSAGES

67 parameterlister afviger eller ikke lukket
parameter lists differ or not closed

68 ingen lukket proc/func i fil
no closed proc/func in file

6% for faa parametre
too few parameters

70 forkert indextype
wrong index type

71 parameter skal vaere en variabel
parameter must be a variable

72 forkert parametertype
wrong parameter type

73 ikke-ram indlaesning
non-ram load

74 checksumfeijl i objektfil
checksum error in object file

75 hukommel sesomraade beskyttet
memory area is protected

76 for mange biblioteker
too many libraries

77 ikke en abjektfil
not an object file

78 ingen passende when
no matching when

79 for mange parametre
too many parameters
SYNTAX ERROR:

101 syntaksfejl
syntax error

102 forkert type
wrong type

103 saetning for lang eller for kompliceret
statement too long or too complicated

104 kun som saetning, ikke som kommando
statement only, not command

106 linienumre er fra 1 til 9999
line number range: 1 to 9999

108 procedure/funktion findes ikke
procedure/function does not exist

109 struktureret saetning ikke tilladt her

ApPENDIX F - -29%- ERROR MESSAGES

structured statement not allowed here

110 ikke en saetning
not a statement

111 linienumre vil overskride 9999
line numbers will exceed 9999

112 kilde beskyttet!!!
source protected!!!

113 ulovligt tegn
illegal character

114 fejl i konstant
error in constant

115 fejl i eksponent
error in exponent

INPUT/0UTPUT- ERROR MESSAGES, WHICH CAN ALL BE TRAP ‘PED:

200 ikke flere datalinier
end of data

201 slut paa fil
end of file

202 fil allerede aaben
file already open

203 fil ikke aaben
file not open

204 ikke en inputfil
not input file

205 ikke en outputfil
not output file

206 numerisk konstant forventet
numeric constant expected

207 ikke en random access fil ‘
not random access file

208 enhed ikke tilstede
device not present

209 for mange filer aabne
too many files open

210 laesefejl
read error

211 skrivefejl
write error

212 kort blok paa baand
short block on tape

ApPENDIX F -

-297- ERROR MESSAGES

213 lang blok paa baand
long block on tape

214

215

216

217

218

219

checksumfejl paa baand
checksum error on tape

slut paa baand

end of

tape

fil ikke fundet
file not found

ukendt

enhed

unknown device

ulovlig operation
illegal operation

i/0 afbrydelse
i1/0 break

MESSAGES FROM THE DISK OPERATING SYSTEM (ONLY IN ENGLISH):

220

221

223

224

225

231

232

233

234

239

250

251

252

read error

read error

read error

read error

read error

write error

(Block header not found)
(Synchronization mark missing)
(The data block is not present.)
(Checksum error in the data block)
(Error in byte decoding)

(Write/read error)

write protect on (The diskette is write protected.)

read error

write error

(Checksum error in the header)

(Long data block)

disk id mismatch (UnMOUNTED or nonmatching diskette)

syntax
syntax
syntax
syntax
syntax
syntax

record

error

error

error

error

error

error

(Ordinary syntax error)
(Incorrect DOS-command)
(Line too long)
(Incorrect file name)
(No file was indicated)

(Incorrect pass-command)

not present (Reading beyond the last record)

overflow in record (Record length overrun)

file too large (No room for the random file)

ApPenDIX F - -298- ERROR MESSAGES

260

261

262

263

267

270

271

write file open (An already opened file opened again)
file not open (Tried to access an unopened file)

file not found (The file does not exist in the disk drive)
file exists (The file is already present on the disk.)
file type mismatch (Operation on files of different type)
no block (The block is reserved.)

illegal track and sector (Track/sector does not exist.)
illegal system t or s (Illegal system track or sector)

no channel (There is no available channel.)

dir error (Directory error)

disk full (The diskette is filled up.)

cbm dos vx.x yyyy (Diskette status)

drive not ready (No diskette)

Appendix G —

USER COMMENTS AND CORRECTIONS

These pages are intended to be used for your comments and
corrections. When sufficient experience with the use of
this handboock has been acquired, it will be reprinted. It
will be advantageous to all users that errors are corrected
and improvements are made for the next edition. Send your
comments to:

COMMODORE DATA A/S

ATT: Jan Nymand
Bjerrevej 67

DK-8700 Horsens, DENMARK

Thanks for your help!

Appendix 6 - - 300~ USER COMMENTS

-301-

Appendix H —
SAMFPLE COMAL. FPROGRAMS

0010 // save "@Music 1"

0020 DIM code$ OF 3

0030 USE sound

0040

0050 LOOP

0060 PAGE

0070 PRINT "Choose voice (1,2 or 3)"

0080 PRINT “Choose note (a2,c4,b3,...)"

0090 PRINT “The numbers = octave:"

0100 PRINT “‘c4° is middle C (4. octave - 440 Hz)"
0110 PRINT "““fS#° is 'f sharp’ in the octave above"

0120 PRINT AT 22,1: "LESSON 1: We play a single note...

0130 PRINT AT 20,1: "(Press <RUN/STOF> to end ...)"
0140 PRINT

0150 INPUT AT 8,1: "voice: ": voice

0160 INPUT AT 9,1: "note-code: ": code#

0170 play(1,code%)

0180 ENDLOOP

200 PROC play(voice,code%)

0210 IF code#$<>"z" THEN

0220 note(voice,code%$)

0230 gate(voice,1) // attack and decay
0240 ENDIF

0250 pause(16) // sustain

0260 gate(voice,0) // release

0270 ENDPROC play

0290 PROC pause (sec’'32)

0300 TIME O

0310 WHILE TIME<1.875S#sec 32 DO NULL
0320 ENDPROC pause

0010 // save "@Music 2"
0020 DIM code$ OF 3
0030 USE sound

0050 LOOP

0060 PAGE

0070 PRINT "Type in a note (a2,b5,c4,...)"

0080 PRINT "The 3 voices are played in succession."”

00?0 PRINT AT 22,1: "LESSON 2: 3 voices are played..."

0100 PRINT AT 20,1: "Press <RUN/STOP> to end..."
0110 PRINT

0120

0130 FOR voice:=1 TO 3 DO
0140 soundtype(voice,3)
0150 ENDFOR voice

0160

0170 INPUT AT 7,1: "note-code: ": code$

0190 FOR voice:=1 TO 3 DO
0200 PRINT AT 10,1: "voice "j;voice

Appendix H - - 302 - SAMPLE PROGRAMS

0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380

0390

Q010
0020
0030
0040
0050
0040
0070
0080
Q0?0
0100
0110
0120
01=0
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0F10
0320
0320
0340
0350
0360
0370
0380
0390
0400

play (voice,code$)
play(voice,"z")
ENDFOR voice

ENDLOOP

PROC play(voice,code$)
IF code$<>"z" THEN
note (voice,code$)
gate(voice,1l) // attach and decay
ENDIF
pause(8) // sustain
gate(voice,0) // release
ENDPROC play

PROC pause(sec ’'32)

TIME O

WHILE TIME<1.875%sec 32 DO NULL
ENDFROC pause

// save "@Music 3"
DIM code¥ OF 2, answer$ OF S

USE sound
LOOF
PAGE
PRINT "Let’'s play some notes together"
FPRINT "and create a simple melody..."
PRINT AT 22,1: "LESSON 3: We play a melody..."
FOR voice:=1 7O Z DO
soundtype (voice,3)
ENDFOR voice
INPUT AT 4,1: "continue or end (c/e)? ": answer#
IF answer$="e" THEN STOF
INFUT AT 6,1: "voice (1/2/%)7? ": voice
play ‘melody

ENDL OOF .

PROC play(voice,code$)
IF code#<>"z" THEN
note (voice,codes$)
gate(voice,1) // attack and decay
ENDIF
pause(tid) // sustain
gate(voice,0) // release
ENDFROC play

FROC play ‘melody // Row, Row, Row Your Boat

melody:
DATA "c4",8,%z2",2,"c4",8,"z",2,"c4",8,"d4",4
DATA "e4",8,"2z",8,"e4",8,"d4",4,"e4",8
DATA "f4",4,"g4",16,"2",8,"c5",4
DATA "c5",4,"c5",4,"g4",4,"g4",4
DATA "g4",4,"e4",4,"e4",4,"e4" ,4

Appendix H - - 303 - SAMPLE PROGRAMS

0410 DATA "c4",4,"c4",4,"c4",4,"z",8,"g4",8
0420 DATA “£4",4,"e4",8,"d4",4,"c4",8

0430

0440 RESTORE melody

0450 WHILE NOT EOD DO

0460 READ codes,tid
0470 play(voice,code#)
0480 ENDWHILE

0490

0500 ENDPROC play melody
0510

0520 FROC pause (sec '32)

0530 TIME O

0540 WHILE TIME<1.875%sec 32 DO NULL
0550 ENDPROC pause

0010 // save "@Music 4"

0020 DIM code# OF 2

0030 USE sound

0040

0050 LOOFP

Q040

0070 FAGE

0080 PRINT AT 22,1: "LESSON 4: Sound level, type and ADSR..."
0090 FRINT AT 1,1: "Sound level and sound type can be"
0100 FRINT "selected for each voice."

o110 PRINT

0120 PRINT "Choose the parameters in SOUNDTYPE,"

0120 FRINT "and choose the ADSR values..."

0140 FRINT

0150 PRINT "Your choices will remain valid until”
0160 FRINT "the parameters are redefined."”

0170

0180 INFUT AT 11,1: "VOICE (1/2/3)7 ": voice
0190 INFUT AT 13,1: "VOLUME (0-15)7 *: vol
0200 INPUT AT 15,1: "SOUNDTYPE (1/2/3/4)7 ": type
0210 soundtype (voice, type)

0220 volume (vol)

0230 FPAGE

0240 FRINT “Voice:";voice;" -~ Sound type:":type

0250 PRINT "The sound level is"jvol:;"."

0260 PRINT

0270 PRINT * - ———————— "
0280 FRINT "ADSR parameters: attack, decay,"
0290 PRINT "sustain and release are chosen...
0300 PRINT

0310 PRINT

0320 PRINT " L

0330 PRINT * * * Each parameter can"
0340 PRINT " » L2228 2] vary from O to 15."
0350 PRINT " » L

0360 PRINT "% *

0370 PRINT * A D S§ R "
0380 PRINT

0390 PRINT "A: attack time D: decay time"

0400 PRINT "S: sustain level R: release time"
2310 PRINT * v
0420 INPUT AT 21,1: "A,D,S,R? ": a,d,s,r

0430 adsr (voice,a,d,s,r)
0440

Appendix H - - 304 - SAMPLE PROGRAMS

04350 play ‘melody

0460

0470 ENDLQOP

0480

0490 PROC play(voice,code$)

0500 IF code$<>"z" THEN

0510 note{(voice,code%$)

0520 gate(voice,1) // attack and decay
0530 ENDIF

0540 pause(tid) // sustain

0550 gate(voice,Q) // release

05460 ENDFPROC play

0570

0580 PROC play 'melody // Row, Row, Row Your Boat
0590 melody:

0600 DATA "c4",8,"z",2,"c4",8,"z",2,"c4",8,"d4",4
0610 DATA "e4",8,"2",8,"e4",8,"d4",4,"e4",8
0620 DATA "f4",4,"g4",16,"2",8,"c5",4

0630 DATA “c5",4,"c5",4,"g4",4,"g4",4

0640 DATA "g4",4,"e4",4,"e4" ,4,"e4",4

0650 DATA "c4",4,"c4",4,"c4",4,"z",8,"g4",8
0660 DATA "f4",4,"e4",8,"d4",4,"c4",B

0670

0680 RESTORE mel ody

0690 WHILE NOT EOD DO

0700 READ code#,tid
0710 play(voice,code#)
0720 ENDWHILE

0730

0740 ENDFROC play melody
0750

0760 FROC pause (sec '32)

0770 TIME O

0780 WHILE TIME<1.87S#sec'32 DO NULL
0790 ENDPROC pause

0010 // save "@Music 3"

0020 DIM code% OF 3

0030 DIM tone#(50), ads’'pause#(50), r pause#(50)
0040 USE sound

0050 volume(13)

0060 soundtype(l,2) .
0070 adsr(1,6,6,8,6)

0080

0090 no:=0

0100 WHILE NOT EGD DO

0110 no:+1

0120 READ code$,tim

0130 tone# (no) : =frequency (code%$)
0140 ads ‘pause# (no) :=tim*2

0150 r ‘pause# (no):=tim»2
0160 ENDWHILE
0170

0180 tone#(no+1):=0

0190 setscore(l,tone#() ,ads pause#(),r pause#())
0200 playscore(1,0,0)

0210

0220 number:=0

0230 WHILE NOT waitscore(1,0,0) DO

0240 number: +1

Appendix H -

0250
0260
0270
0280
0290

- 305 -

PRINT number;
ENDWHILE
END

PROC pause(sec 32)

0300 TIME O

0310 WHILE TIME{1.B7S*sec’32 DO NULL
0320 ENDFROC pause

0330

0340 DATA "c4",8,"c4",8,"c4",B8,"d4",4
0350 DATA “e4",8,"e4",8,"d4",4,"e4",8
0360 DATA "f4",4,"g4", 16,"cS",4

0370 DATA "c5",4,"cS5",4,"g4",4,"gs",4
0380 DATA "g4",4,"ed",4,"e4",4,"ed",4
0390 DATA "c4",4,"c4",4,"cA" 4, "g4",8
0400 DATA "f4",4, "e4",B8,"d4",4,"c4" .8
SPRITEEDITOR

SAMPLE PROGRAMS

The program SPRITEEDITOR is on the COMAL demonstration

diskette (and tape).

This program can
A drawing which has be

be used to create
en prepared and saved

sprite images.
using this program can later be loaded into another program
using the order:

loadshape ({drawingno>,<filenames$>

)

The sprite editor program starts by displaying the
following:

(31X 111 I 1T TIYTY I YT Y I T Y)

. 00088 ®® MULTICOLOR: ©
. JI11 11 coLos *: .
e 000808 EXPANDX: B
e aessss [XPANDY: @6
. 00088 BACKGROUND: e
. esseee® COLOR 2: e
- sesees COLOR 3: e
) oseeSe

] (I 17171

[} o0008s

] (TIT 17T

[] seesed

e seess

. senes

] sese

o sanes

[] o08e PRESS: H

e 888 FOR HELP

. ens

e ase

Each of the dots corresponds to a dot on the screen.

Movement of the drawing cursor from dot to dot is achieved

using the cursor keys. The dots can be marked to indicate

that they are to have a color different from the background
color.

Appendix H - - 306 - SAMPLE PROGRAMS

Choices are available from a menu shown on the right-hand
side of the screen. If HELP is required, press H. A
screen with user information will then appear.

0010 // save "@Addr List Demo"

0020 DIM reply¥ OF 1, name$(100) OF 40

0030 DIM street$(100) OF 40, city$(100) OF 40
0040 DIM phone$(100) OF 20, flag$ OF 40 -

0050 DIM searchkey$ OF 40, string$ OF 150

0060 number:=0 // number of recards

0070 PAGE

Q080 PRINT "This program illustrates the use of"
0090 FPRINT "SERUENTIAL FILES. It can be used to"
0100 PRINT "“create a list of names, addresses"
0110 PRINT "and telephone numbers."

0120 PRINT "“Each recard will have the format:"
0130 PRINT

0140 PRINT *“ name"

0150 PRINT * street"

0160 FRINT " city"

0170 PRINT * phonenumber"

0180 PRINT

0190 PRINT

0200 FRINT "Press any key to continue..."”
0210

0220 wait "for "keystroke
0230

0240 LOOF

0250 show 'menu

0260 flag$:=""

0270 wait “for 'keystroke
0280 CASE reply$ OF
0290 WHEN "1"

0300 load 'file

0310 WHEN "2"

03220 create 'record

0320 WHEN "3"

0340 list 'file

0350 WHEN "4

0360 search 'file

0370 WHEN "35"

0380 sort ‘file

0290 WHEN "6"

0400 change ‘record

0410 WHEN "7*"

0420 delete ‘record

0430 WHEN "8"

0440 save ‘file

0450 OTHERWISE

0460 FRINT "Illegal reply.."
0470 wait ‘for ‘keystroke

0480 ENDCASE

0490 ENDLOOP

0500

0510 PROC show ' menu

0520 PAGE

0530 PRINT "~————===== MAIN MENU =====————- "
0540 PRINT

0550 PRINT

Appendix H - - 307 - SAMPLE PROGRAMS

0560 PRINT * <1> LOAD the file"

0570 PRINT * <2> CREATE a record"

0580 PRINT * <3> LIST the file"

0570 PRINT * <4> SEARCH the file"

0600 PRINT <S> SORT alphabetically"
0610 PRINT * <6> CHANGE a record"”

0420 PRINT " <7> DELETE a record"”

0630 PRINT " <{8> SAVE revised file"

0640 PRINT

04650 FPRINT

0660 FRINT "Records: "jinumber
0670 IF number=0 THEN flag#:="Flease load or create a file..."
0680 PRINT

0690 PRINT flag#

0700 ENDFROC show menu

0710

0720 PROC load file

0730 OPEN FILE 1,"Addresses",READ
0740 INPUT FILE 1: number

0730 FOR no:=1 TO number DO

0760 INFUT FILE 1: name#(no)
0770 INFUT FILE 1: street$(no)
o780 INPUT FILE 1: city$(no)
0790 INPUT FILE 1: phone#(no)

0800 ENDFOR no

0810 CLOSE FILE 1

0820 ENDFROC load file

0830

0840 PROC create record

0850 FAGE

0B&O PRINT "::::: CREATE A NEW RECORD :::::"

0870 PRINT

0880 PRINT

0890 IF number=100 THEN flag#:="No more room for data!"

0900 IF flag#="" THEN

0910 number:+1

0920 INPUT "Name “: name# (number)
0930 INPUT "Street ": street#(number)
0940 INFUT "City ": city# (number)
0950 INPUT "Fhone “: phone$(number)

0960 ENDIF

0970 ENDPROC create 'record

0980

09920 PROC list file

1000 PAGE

1010 PRINT ":zzz2:: LISTING THE FILE z:zz::"
1020 PRINT

1030 IF number=0 THEN

1040 flag#$:="No files in memory!"

1050 FRINT

1060 ELSE

1070 FOR no:=1 TO number DO print record(no)

1080 ENDIF

1090 ENDPROC list - ‘file

1100

1110 PROC search 'file

1120 PAGE

1130 PRINTY ":z:::: FILE SEARCH s::z::"
1140 PRINT

1150 PRINT

1160 flag$:="1 am searching..."

Appendix H - - 308 - S6AMPLE PROGRAMS

1170 INPUT "Search key: ": searchkey$

1180 FOR no:=1 TO number DO

1190 string$: =name$ (no)+streetf(no)+city$ (no)+phone* (no)
1200 IF searchkey$ IN string$ THEN print ‘record(no)

1210 ENDFOR no

1220 flag$:=""

1230 ENDPROC search’file

1240

1250 PROC print ‘record (no)

1260 PRINT

1270 PRINT AT 0,10z " (",no,")"
1280 PRINT AT 0,10: name# (no)

1290 PRINT AT 0,10: street#(no)

1300 PRINT AT 0,10: city#(no)

1310 PRINT AT 0,10: phone#(no)

1320 PRINT

1330 wait ‘for 'keystroke

1340 ENDPROC print ‘record

1250

1360 FROC sort file

1370 PAGE

1380 PRINT "::::: SORT BY NAME ALFHABETICALLY :=z::::"
1390 PRINT

1400 PRINT

1410

1420 FROC swap (REF at$,REF b$) CLOSED
1470 c¥:=a%$; as$:=b¥%; bF:=c#

1440 ENDFROC swap

1450

1460 REPEAT

1470 no “swap: =TRUE

1480 FOR no:=1 TO number-1 DO

1490 PRINT AT 10,1: "Sorting... ",no
1500 IF name# (no+1)<name$ (no) THEN
1510 swap (name# (no) ,name$ (no+1))
1520 swap (street$(no) ,street¢(no+1))
1530 swap (city$(no) ,city$(no+l))
1540 swap (phone# (no) ,phone$ (no+1))
1550 no ‘swap:=FALSE

1560 ENDIF

1570 ENDFOR no

1580 UNTIL no swap

1590 ENDPROC sort file

1600

1610 PROC change 'record

1620 PAGE

1630 PRINT "::::: CHANGE A RECORD ::z::"
1640 PRINT

1650 PRINT

1660 INPUT “Which record number? ": no
1670 IF no<=number THEN

1680 print ‘record(no)

1690 INPUT AT 14,1: "Is this the right record ? (y/n)? ": replys
1700 PRINT

1710 PRINT

1720 IF reply$ IN "yY" THEN

1730 INPUT "Name : ": name# (no)

1740 INPUT "Street : ": street$(na)

1750 INPUT "City : ": city$(no)

1760 INPUT "Phone : ": phone$(no)

1770 ENDIF

Appendix H - - 309 -

1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
21320
2146
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310

0010
0050
0060
0097
0100

ELSE

SAMPLE PROGRAMS

flag¢:="There are only "+STR¢(number)+" records"

ENDIF
ENDPROC change ‘record

FROC delete 'record

PAGE
PRINT "::::: DELETE A RECORD ::z:::"
PRINT
PRINT
INPUT "Which record number? ": record
IF record>number THEN
flag$:="Use a smaller record number!'"
ELSE
print ‘record(record)
PRINT
INPUT "Is this the right record (y/n)?
PRINT

IF reply# IN "yY" THEN
FOR na:=record TO number-1 DO
name# (no) : =name*$ (no+1)
street$(no) :=street$(no+1)
city$#(no):=city$(no+1)
phone# (no) :=phone% (no+1)

ENDFOR no
number: -1
ENDIF
ENDIF

ENDFROC delete 'record

PROC save’'file
PAGE
PRINT "::::: SAVING FILE TO DISK z2::::"
OPEN FILE 1,"@Addresses" ,WRITE
FRINT FILE 1: STR# (number)
FRINT
PRINT
FOR no:=1 TO number DO
FPRINT FILE 1: name#(no)
FRINT FILE 1: street#(no)
PRINT FILE 1: city#(no)
FRINT FILE 1: phone#(no)
ENDFOR no
CLOSE FILE 1
ENDPROC save 'file

PROC wait ‘for ‘keystroke
PRINT
FRINT "< >...";
REPEAT
reply$:=KEY#$
UNTIL reply$<>CHR$(0)
PRINT AT 0,2: replys$
ENDPROC wait for 'keystroke

// save "@1520 Plotter Demo"
setup ‘plotter

DIM sc#% OF 1

/7

// MAIN FROGRAM

replys$

Appendix H - - 310 - SAMPLE PROGRAMS

G103 //

0110 demo’'size

0120 demo color

0130 demo ’'case

0140 demo ‘rotation
0150 //

0160 square(100)
0165 blank ‘line(2)
0170 dotlines(195)
0175 blank’'line(8)
0180 circle(240,240,200)
0185 blank’'line(14)
0187 spinsquares(150)

0120 //

0192 setup ‘plotter

0195 plotter ‘off ‘
0197 //

0200 END // MAIN FROGRAM

0297 //

04?7 //

0500 FROC demo 'size
0510 FOR i:=0 TO 3 DO

0515 select ‘size(i)
0520 print ‘hello
0525 blank ‘line(1)

0530 ENDFOR i
0545 ENDFROC demo ‘size

0547 //

0550 PROC demo 'color
0555 select ‘size(2)
0560 FOR i:=0 TO 3 DO
0565 switch ‘color (i)
0570 print ‘hello

05735 ENDFOR i

0595 ENDFROC demo 'color
0597 //

0600 PROC demo 'case
0605 blank ‘'line(1)

0610 select ‘'case(0) // upper case
0615 print ‘hello
0620 select ‘case(1) // lower case

0625 print ‘hello
0645 ENDFROC demo’case
0647 //

0650 PROC demo 'rotation
0655 blank‘line(2)
0660 rot ‘char (1)

06635 print ‘hello

0670 rot ‘char (0)

0675 print ‘hello

0695 ENDPROC demo ‘rotation
0697 //

0700 PROC dotlines(n)
0703 zero 'pen("h")
0710 FOR i:=0 TO n DO

0715 plot ("m*,0,-i*20)
0720 dot ‘line(i)
0725 plot ("d",400,—i*20)

0730 ENDFOR i
0735 blank‘line(4)
0740 dot "'line(0)

Appendix H - - 311 - SAMPLE PROGRAMS

0745 ENDPROC dotlines

0747 //

0750 PROC circle(x0,y0,radius)
0752 plot("m" ,x0,y0)

0754 zero’'pen("i")

0736 plot("r*,radius,0)

0758 FOR v:=0 TO 360 STEFP S DO

0760 t:=PIxv/180
0762 x:=radius*C0OS(t)
0764 y:=radius*SIN(t)
0766 plot ("j",x,y)

07468 ENDFOR v

0785 blank 'line(4)
0795 ENDPROC circle
o797 1/

0800 FPROC square (side)
0805 blank 'line(3)
0810 plot("j",0,side)
0820 plot("j",side,side)
0830 plot("j",side,0)
0840 plat("j",0,0)
0845 ENDPROC square
0847 //

0830 PROC spinsquares(s)
0852 plot ("m" ,240,240)

0854 zero’'pen("i")

0856 FOR v:=0 TO 360 STEFP 20 DO
0858 t:=FIxv/180

0860 draw’'box (s,t)

0862 ENDFOR v

0864 blank 'line(4)

0865 ENDFROC spinsquares

08&7 //

0870 FROC draw 'box(s,t)

0875 plat (" 3" ,s*C0OS(t) ,s*SIN(t))
0880 plot (" ;" ,s#SQR(2) #*COS(t+FI1/4) ,s*#SQR(2) *SIN(t+F1/4))
0883 plot(”i",s#COS(t+FI1/2) ,s*SIN(t+FI1/2))
0890 plot("3",0,0)

0895 ENDFPROC draw box

o897 //

0200 PROC blank 'line(bl)

0910 platter "on

0715 FOR i:=1 TO bl DO

0920 PRINT FILE 6:

0925 ENDFOR i

0230 plotter "of+f

0245 ENDPROC blank 'line

0?47 //

0930 PROC print‘hello

0960 plotter ‘on

0970 PRINT FILE 6: "HELLO!"
0990 plotter ‘off

0995 ENDPROC print hello

0997 //

1990 //

1995 // PLOTTER PROCEDURES
1997 7/

2000 PROC plotter ‘on

2010 OPEN FILE 6,"u6: " ,WRITE
2045 ENDFROC plotter on

2047 //

Appendix H - - 312~ SAMPLE PROGRAMS

2050 FPROC plotter ‘off

2060 CLOSE FILE 6

2095 ENDPROC plotter ‘off

2097 //

2100 PROC switch 'color (pen)

2110 OPEN FILE 2,"ub:/s2",WRITE
2120 PRINT FILE 2: pen

2130 CLOSE FILE 2

2145 ENDPROC switch’'color

2147 //

2150 PROC select ‘size(size)

2160 OPEN FILE 3,"ub:/s3",WRITE
2170 PRINT FILE 3: size

2180 CLOSE FILE 3

2195 ENDPROC select ‘size

2197 //

2200 PROC select ascii

2210 OFEN FILE 4,"ub:/s0",WRITE
2220 FPRINT FILE 4:

2230 CLOSE FILE 4

2245 ENDPROC select ‘ascii

2247 //

2250 PROC plot(sc¥,x,y)

2255 OPEN FILE 1,"u6:/s1",WRITE
2260 PRINT FILE 1: sc$3x3y

2263 CLOSE FILE 1

2270 ENDFPROC plot

2272 /7

2275 PROC zero’'pen(zp$)

2277 // zp¥% = h/i for abs/relative
2280 OFEN FILE 1,"ub:/s1" ,WRITE
2285 PRINT FILE 1: zp#%

2290 CLDOSE FILE 1

2295 ENDFPROC zero’ pen

2297 //

2300 PROC rot char (rot)

2305 // rot=0/1 for hor/rot 90 deg CW
2310 OPEN FILE 44,"ub:/s4",WRITE
2320 PRINT FILE 44: rot

2330 CLOSE FILE 44

2345 ENDFROC rot ‘char

2347 //

2350 PROC dot ‘line(dash)

2355 //dash=0 to 15, O = unbroken
2360 OPEN FILE S5,"ub:/sS5",WRITE
2370 PRINT FILE S: dash

2380 CLOSE FILE 5

2395 ENDPROC dot ‘line

2397 1/

2400 PROC select case(nr)

2403 // nr=0/1 for upper/lower case
2410 OPEN FILE 6,"ub:/sb6" ,WRITE
2420 PRINT FILE 6: nr

2430 CLOSE FILE 6

2445 ENDPROC select ‘case

2447 //

2450 PROC reset ‘plotter

2460 OPEN FILE 7,"ub:/s7" ,WRITE
2470 FRINT FILE 7:

2495 ENDPROC reset ‘plotter

2497 1/

Appendix H - - 313 - SAMPLE PROGRAMS

2500 PROC setup ‘plotter

2505 select ‘case(1) // lower case
2510 switch 'color(i) // blue

2515 rot ‘char (0) // horizontal
2520 dot “1ine(0) // unbroken

2525 select ‘size(1) // normal
2530 SELECT OQUTPUT "“uéb:"

2545 ENDPROC setup ‘plotter

2547 //

0010 // save "@Train Demo"”
0020
0030 PAGE

0040 PRINT AT 2,2: "ELECTRIC TRAIN DEMO"

0050 PRINT AT 4,2: “Your train should start at the station®
0060 PRINT AT 5,2: "with the passage detector just behind"
0070 PRINT AT 6,2: "“the last car. Start the train and then”
0080 PRINT AT 7,2: "press any key to turn control over"

0090 PRINT AT 8,2: "to your computer..."

0100 WHILE KEY$=CHR$ (0) DO NULL

0110 PAGE

0120 PRINT AT 2,2: "ELECTRIC TRAIN DEMO"

0130

0140 // Fort B bit O can be connected to the collector of a
Darlington

0150 // Phototransistor. The emitter is connected to ground.
0160 // Bit O will be low when the fototransistor is illuminated.
0170 // Port B bit 1 should be connected to a transistor and relay
0180 // so that bit 1 high starts the train.

0190

0200 // MAIN FROGRAM

0210

0220 define’'variables

0230 set’‘port’b

0240 start 'train

0250 print’'list

0260

0270 REPEAT

0280 check ‘light

0290 delay(1.5)

0300 stop "train

0310 delay (10)

0320 start train

0330 UNTIL KEY$<>""

0340 stop‘train

0350 PAGE

0360 END "Au revoir!'"

0370

0380 // ALL FROCEDURES FOLLOW BELOW
0390

0400 PROC print-’list

0410 PRINT AT 12,4: "train running"

0420 PRINT AT 13,4: "train passes light"

0430 PRINT AT 14,4: "train waiting at station"

0440 PRINT AT 18,4: "Pressing any key will stop the train”
0450 PRINT AT 19,4: "next time it stops at the station..."
0460 ENDPROC print-list

0470

0480 PROC start train

0490 POKE port ‘b,PEEK (port ‘b) BITOR 2

Appendix H - - 314~ SAMPLE PROGRAMS

0500 advance ‘pointer

0510 ENDPROC start train

0520

0530 PROC check‘light

0540 WHILE PEEK(port‘b) BITAND 1<>1 DO NULL
0550 advance ‘pointer

05460 ENDPROC check "light

0570

0580 PROC delay(sec)

0590 TIME O

0600 WHILE TIME<sec#*460 DO NULL
0610 ENDFROC delay

0620

0630 PROC stop ‘train

0640 POKE port 'b,PEEK(port 'b) BITAND 253
0650 advance ‘pointer

0660 ENDPROC stop ‘train

0670

0680 PROC define 'variables

04690 port ‘b:=%dd01

0700 port ‘b ‘ddr:=$dd03

0710 position:=1

0720 ENDPROC define’ 'variables
0730

0740 PROC set’port’b

0750 POKE port b ddr,2

0760 POKE port‘'b,2

0770 ENDFPROC set ‘port’b

0780

0790 FPROC advance 'pointer

0800 PRINT AT 10+position,2: " "
0810 IF position<4 THEN

0820 position:=position+1
0830 ELSE
0840 position:=2

0850 ENDIF
0860 FRINT AT 10+position,2: ">"
0870 ENDFROC advance pointer

INDEX - 315 -

A

@ 221,224,237

A/D converters 251

ABS 79, 131

accessories 15

accuracy 205

action blocks 43

actual parameters 73

Addr List Demo 223,306

address list 222

ADSR 185,192

ADSR envelope 186

algorithm 77

AND 138

AND THEN 139

animate 178

apostrophe 38

AFPEND, file 113

arc 157

arcl 159

arcr 160

arithmetic operators 281

arrays 67

arrays, one—-dimensional &9

arrays, text 70

ASCII1 characters 275

ASCII—format 113

assembler language 25

assignment operator 47

asynchronous data
transmission 242

at symbol (@) 221,224,237

ATN 1332

attack 189

AUTO 24,93

back 159

background 154

backup copy 41,42,46
bank switching 261
Basic 9,10,37

Rasic fra COMAL 105
Batteries Included 245
bell 210

Bendict Lsfsted 10
binary form 233

BITOR 141

BITXOR 141

Boolean operators 282
border 154

branch blocks 43
branching 59

bubble sort 82,229
Bus Card II 245

byte 25

INDEX

[

calculations 281

call procedure 39

capital letters 21

cartoons 169

cartridge, installation 17

CASE structure 61

CASE-OF —WHEN-OTHERWISE—
ENDCASE 119

CAT 97

CBM B050 & 82350 disk
drives 245

CHAIN 101,221

CHANGE 95,227

character codes 275

character deletion 28

character replacement 214

character sets (font) 212

character set, replacement 215
character set, user—-defined 215

chip, 6510 25

CHR$ 133

CHR#¥(0) 35

Christensen, Bsrge 10
circle 156

circles 50

clear 154

clear/home 29
clearscreen 30
clearscreen 1353

CLOSE 116

CLOSE FILE 116

CLOSED 127

closed procedures 82,221
collision, sprite 148
color codes 31,279
color combinations 279
color TV 17

color, foreground 172
colors, screen 27

COMAL cartridge 258
COMAL files 219

COMAL system 255
comments (//) 141
commercial-a (@) 221,224,237
Commodore Data 10
Commodore key 20,57,283
computer language 32
CON 101

condition 59
conditional executiion 59
conditionals 117
control key 2835

control ports 197
control ports 251

COPY 102

corrections 299

cos 132

INDEX - 316-

crash 88
CREATE 112
cs: 237
curcol 210
currow 210
cursor 110

Danish 148

dansk 148

DATA 110,223

data direction register 247

data element 223

data statement 72

data stream B6

datacollision 181

Datassette 15,17,21,40,238

DB—-25 connector 246

ddr 247

decay 189

declaration statement 56

define (drawing) 174

defkey 210

DEL 95

delay 204

delete 103

delete character 27

delete key 20

Demo Diskette 23

Demo Program 21

demonstation program 21

digital thermometer 251

DIM 142

dimensioning string
variables 56

DIR 97

direct execution 27

direct files 232

discard 30,106

disk drive 15,22,237

disk drives, CBM 245

disk operating system
errors 297

diskette files 219

display 99,220

DIV 137

DOS error messages 297

draw 1535

drawing, save 148

drawto 1355

ds: 237

dynamic equals sign 47

E

Easyscript 220
EDIT 94 .
empty statements 38

INDEX

END 133

ENDTRAP 89

english 148

ENTER 99,220,221

env3d 1935

EOD 111

EPROM expansion 258
EPROM module 266
equality sign 47
equation, solving 77
ERR-ERRFILE-ERRTEXT$ 122
error handling 88,122
error messages 291
error numbers 291
error reporting 268
ESC 136

even parity 242

EXIT WHEN 89

EXP 133

expression 48
EXTERNAL 128

external procedure 84,221

FALSE 135

file 86,219

file handling 85

file transfer between
computers 250

file type code 236

file types 236

fill 52,157

filter 194

filterfreq 194

filtertype 194

FIND 94

fine-tuning of TV 20

font package 213

font procedures in depth 216

FOR-ENDFOR 36
FOR-TO-STEP-DO-ENDFOR 121
foreground color 172
formal parameters 73
formatting 23

forward 159

free 210

frequency 193

fullscreen 153
FUNC-RETURN—-ENDFUNC 77,129
function header 263
function keys 284
function, string 80
functions 9,76,129,257

G

game ports 251
games 26

INDEX - 317~ INDEX

gate 192 interrupt 196

GET# 220

getcharacter 217

getcolor 155 J
getscreen 208 '

gettime$ 208 Jack connections 15
global names 74 Jensen, Jens Erik 10
6070 124 joysticks 199

graphics 29
graphics cursor 30

graphics overview 150 K
graphics package 31

graphics screen 30,148 kb: 237

graphics symbols 21 keepfont 217
graphics, use 149 kernel, COMAL 2359
graphicscreen 152 KEY$ 35,65,107
greeting message 20 keyboard 20,237,283

keywords 36
keywords ‘in ‘upper ‘case 206

H Kj®r, Mogens 10
HANDLER 89
hard copy, text screen S8 L
hardcopy 209
heading 158 label 111
hidesprite 180 Lassen, Helge 10
hideturtle 158 Laursen, Lars 10
high—graphics screen 171 left 159
high—-level language 25 LEN 135
high-resolution light pen 199

graphics 29,149,153,163 light pen overview 204

high (voltage level) 242 Lindsay, Len 11
home 30,158 line numbers 34

link 105,257
linkfont 214,216

1 linkshape 182
LIST 98,220,221

1/0 port 245 LOAD 100,220
identify (sprite) 174 ioadfont 216
IEEE cartridge 245 loadscreen 163
IF-THEN-ELIF-ELSE-ENDIF 117 loadshape 182
IMPORT 84,128 local names 73
IN 140 LOG 133
indentation 38 logical (bit) operators 281
index 68 logical constants 59
indexed variables 67 logical expressions 59
initializing diskette 23 Logo 9,37
inkey$ 207 LOOP - ENDLOOP 79,89
INPUT 106 loop block 35,43,63
INPUT AT 106 loop statements 119
INPUT FILE 88,114,220 LOOP-EXIT-EXIT WHEN-ENDLOOP 12
input port 245 loops 63
INPUT statement 49 low (voltage level) 242
inputs 25 lower case 28
ing 162 lp: 237

insert key 20

INST/DEL key 20

instruction sequence 31

INT 131

integers 233,264

intensity envelope (sound) 195

INDEX

M

machine language 255

MAIN 129

memory management 260

memory organization 258

MERGE 99,220,221

merging a procedure 222

microcomputer 25

microprocessor 295

midpoint method 77

MOD 137

module signal routine 268

modules 257

modules, creating 262

monitor 17

MOUNT 112

move 156

movesprite 176

moveto 155

moving (sprite) 178

multi-color graphics
149,153,164

multi—-color screen 171

Music 1 184,301

Music 2 TO1

Music 3 302

Music 4 303

Music S5 304

N

names ‘in ‘upper ‘case 207
NEW 93

Niklaus Wirth 10

NOT 138

note 191

nowrap 160

NTSC TV standard 184
NULL 144

u]

odd parity 242

offset 201,204
one-dimensional arrays &9
OPEN 112

OPEN FILE 112

operating environment 26
operating system 2335

OR 139

OR ELSE 139

ORD 134

order line 34

osc3 195

OTHERWISE 61

output device 25

output port 245

- 318~

INDEX

P

package 30,147,257
package concept 11
package example 269
packages, overview 147
paddle game 198
paddles 197

page 29,49,109

paint 157

FAL TV standard 184
parallel port 245
parameter passing 263
parameter specification 263
parentheses 58

parity bit 242

Pascal 9,10,37

PASS 24,103

PEEK 143

pen 30

pencolor 154

pendown 159

penon 204

penup 159

PI 132

pixel 148,171
playscore 193

plot 155

Flotter Demo 238
plottext 161

POKE 143

power supply 19

prg 236

PRINT 28,107

PRINT AT 108

PRINT FILE 88,113
PRINT USING 108
printer 15

printer attributes 211
Printer—-Plotter 238
printscreen 163
priority (operations) 281 .
priority (sprite) 180
PROC—-ENDFROC 125
procedure 9,25,52,58,73,125,257
procedure call 39
procedure, closed 82
procedure, external 84
procedure header 263
procedure name 39
procedure oriented 26
procedures, recursive 76
procedures, saving 220
program 32

programming 26
programming style 40
programming habits 45
programs, saving 220
programs, samples 301
protocol, RS-232C 242

INDEX - 319-

pulse 195
putcharacter 217

aQ

quote ‘mode 207

R

Random File Demo 232
random files 113,232
random access files 219
RANDOMIZE 1364

READ 110

READ FILE 88,113,115
READ statement 72
readpen 204

real numbers 234,264
record 219,223

recursion 76

REF 127

rel 236

relational operators 282
release 189

RENAME 103

RENUM 37,93

REPEAT-UNTIL 65,119
repeating instructions 35
repetition &3

REPORT 123

resonance 195

RESTORE 111

RETURN key 28

RETURN, from function call 129
right 159

ringmod 195

RND 136

roots, finding 78
RS—-232C interface 241,250
RUN 34,101,121

]

sample programs 301
SAVE 100,220

savefont 217
savescreen 162
saveshape 182

saving programs 40
sawtooth wave (sound) 195
SCAN 36,446,955

screen 237

screen characters 275
screen colors 27
screen editor 283
search key 228

SELECT INPUT 104
SELECT OUTPUT 50,104

INDEX

semicolon 31

seq 236

sequential file 219,222
sequential file, moving 235
serial 211

serial communication 241
setexec %96

setfrequency 193
setheading 1358

setpage 212

setprinter 211
setrecorddelay 212
setscreen 209

settime 207

setxy 156

SGN 79,131

shift 20

shift lock 20

showkeys 211

showsprite 180
showturtle 158

SID chip 184

signal routines 267
signals 257

simulations 27

SIN 132

SIZE 97

sorting, bubble 82
sound 184

sound default values 190
sound orders in depth 191
sound package 184

sound synthesizer 184
soundtype 183,192

sp: 2T7

SPC#%

split screen 29
splitscreen 1532

sprite drawing, save 168
sprite orders 150
sprite overview 173
sprite package 165
sprite, multi-colored 175
spriteback 175
spritecollision 180
spritecolor 174
spriteeditor 305
spriteing 181

spritepos 175

sprites 165

sprites, enlarged 167
sprites, multi-colored 171
spritesize 1735

spritex 178

spritey 178

SRR 132

square, drawing 33
square wave (sound) 196
stampsprite 181

Star Trek 26
startsprites 178

INDEX - 320~

state 33

statement 54

STATUS 102

STATUS$ 102

STOP 144

stop bit 242

stopplay 193
stopsprite 178
storage diskette 23,41
storage medium 219
STR® 134

string 55,264

string constant S5é
string functions 80,289
string segments 288
string variable 56
strings 234

structure, program 40
structured programming 9
style, programming 40
sustain 189

SX-64 16

symbals 12

sync 194

SYS 144

SYS to COMAL 105
system package 206

TAB 109

TAN 132

tape files 219
temperature 252

text 5SS

text arrays 70

text editor 220

text handling 287

text screen 30,148
textbackground 154
textborder 154

textcolor 154

textcolors 206
textscreen 153
textstyle 161
thermometer, digital 251
three line interface 243
TIME 135

timeon 205

Total Turtle Trip Theorem 37
TRACE 142

train demo 247

train demo 313

TRAP 89

TRAP ESC 136
TRAP-HANDLER-ENDTRAP 122
triangle wave (sound) 195
TRUE 135

turtle 30,33

turtle graphics 9,29

INDEX

turtle package orders 151
turtle, use 149
turtlesize 158
TV signal, fine tuning 20

u

us<device> 237

UHF signal 19
UniComal ApS 10

UNIT 116,237

UNITS$ 116

upper case 28

USE 105

user comments 299
users’ groups 11,255
USR 236

VAL 134
variable names 39

‘variables 47

variables, indexed 67,68

VERIFY 102

version 2.0 10

viewport 150,152

voices (music) 184

voltage levels, serial
interface 242

volume 185,191

)

waitscaore 193

waveform envelope 185
waveform parameters 188
WHILE-DO-ENDWHILE 120
white noise (sound) 196
window 150,152

wrap 160

WRITE FILE 88,113,114,233
write protection 22

XYZA

xcor 157

ycor 157

ZONE 29,109

Arhus University 10

Commodore
Made in Denmark

Commodore

KAMPER BOGTRYK/OFFSE]

