
Commodore

COMAL
for Commodore 64

English Edition
o Commodore Data A/S, Horsens , Denmark
Prepared by: Frank Bason & Leo H0j sholt -Poulsen
Consultants : UniComal ApS , Jels , Denmark
Editor: Jan Nymand , Commodore Data A/S
Cover and Illustrations: Fejltrok , Silkeborg
Layout : Silkeborg Soldata, Denmark
Printing: Tekst & tryk , Horsens, Denmark

A Danish Edition , copyright 1985
o Commodore Data A/S, Horsens, Denmark
is published simultaneously_

COMAL
for Commodore 64

RESPONSIBILITY

Neither Commodore Data A/S or any of this company's dealers
or distributors give any guarantee expressed or implied
concerning the COMAL computer language as described in this
manual and tutorial. The language and documentation are
sold "as is" with no claim being made as to its quality or
suitability for specific tasks. The risk concerning the
quality and performance of this product rests with the
buyer. Should this product prove defective after purchase,
it is the buyer (and neither the producer UniComal A/S,
Commodore Data A/S, nor any distributor or dealer) who must
take full responsibility for service, repair and any other
costs accrued due to errors or defects. This is true even
if the producer of the program has been given prior notice
of the possible existence of such errors or defects.

COPYRIGHT

The computer language COMAL for the Commodore 64 is covered
by the following copyright:

o Commodore Data A/S and UniComal ApS 1985

This manual is covered by copyright 0Commodore Data A/S,
Denmark, 1985. No part of the system, the program cartridge
or this manual may be reproduced, stored in a data retrieval
system or in any way be transmitted electronically or
mechanically, photocopied or be duplicated in any other way
without the prior written permission of the owner of the
copyright. Copying the COMAL cartridge is forbidden;
however the Demonstration diskette or tape may be copied
freely.

ASSISTANCE

If you have any comments concering this COMAL manual or the
programm~ng language itself, please pass them along to your
dealer. Co~odore Data A/S has made every effort to assure
that the contents of this manual are correct and complete
and than the programming language itself functions as it
should. Every error discovered by users will be corrected
as soon as possible. Your help in this connection will be
sincerely appreciated, not least by other COMAL users.

•

-5-

TABLE OF CONTENTS

INTRODUCTION

What is COMAL?
- The origins of COMAL

COMAL and Commodore
- Using this Tutorial

Chapt.r 11 SETTING UP YOUR COMPUTER

- Your Computer and Accessories
- Installing your COMAL Cartridge

Connecting the TV or Monitor
- The Commodore Keyboard
- Running the Demonstration Program

Using the Datassette Unit
Using the Disk Drive

- Preparing a Storage Diskette
- Review

Chapt.r 21 LET'S BET STARTED!

- Why learn to program?
- Direct Execution of COMAL Orders
- A Quick Look at Turtle Graphics
- What is a program?
- Repeating Instructions
- COMAL Procedures
- Saving Programs and Procedures

Using the Datassette
Using the Disk Drive

- Review

Chapt.r 31 CDMAL PROGRAMMING

- Acquire good programming habits,
- A First Calculation
- The INPUT Statement
- Circles
- Procedures I
- COMAL and Text
- Branching. Conditional Execution
- The CASE Structure
- Repetition and Loops
- Arrays. Indexed Variables
- Text Arrays
- Procedures I I
- Local and Global Names

Functions
String Functions

- Closed Procedures
- File Handling
- Error Handling

9

9
10
10
11

15

15
17
19
20
21

23
42

25

25
27
29
32·
35
37
40

42

45

45
46
49
50
52
55
59
61
63
67
70
73
74
76
80
82
85
88

CONTENTS -6-

Chapt.r 41 COMAL OVERVIEW

- Commands Used Before and During
Program Entry:

NEW - AUTO - RENUM
- Commands which are Used for

Editing Programs:
EDIT - FIND - CHANGE - DEL - SCAN

Other commands:
SETEXEC

- Commands Used to Check Available
Memory and Disk Storage:

SIZE - CAT - DIR
LIST - ENTER - MERGE DISPLAY
SAVE - LOAD
RUN - CHAIN - CON
STATUS - STATUS$
VERIFY
COPY - DELETE - RENAME - PASS
SELECT INPUT - SELECT OUTPUT

- Commands for System Start-up:
BASIC - SYS to COMAL

- Commands and Statements Concerning
the Use of Machine Code Program Packages:

USE - LINK - DISCARD
- Statements Used During Read-in and Printout:

CONTENTS

93

93

94

96

97
98

100
101
102
102
102
104

105

105

INPUT - INPUT AT - KEY$ 106
PRINT - PRINT AT - PRINT USING -

TAB - ZONE 107
PAGE - CURSOR 109
READ - DATA - RESTORE - Label: - EOD 110

- Statements for Communication with Files:
MOUNT - CREATE 112
OPEN FILE/OPEN - READ -

WRITE - APPEND - RANDOM 112
PRINT FILE - INPUT FILE 113
WRITE FILE - READ FILE 114
CLOSE FILE/CLOSE 116
UNIT - UNIT$ 116

- Conditionals:
IF - THEN - ELIF - ELSE - ENDIF 117
CASE - OF - WHEN - OTHERWISE - ENDCASE 119

- Loop statements:
REPEAT - UNTIL 119
WHILE - DO - ENDWHILE 120
FOR - TO - STEP - DO - ENDFOR 121
LOOP - EXIT - EXIT WHEN - ENDLOOP 122

- Error handling:
TRAP - HANDLER - ENDTRAP 122
ERR - ERRFILE - ERRTEXT$ 122
REPORT 123

- GOTO - Label: 124
- Procedures:

PROC - ENDPROC 125
REF - CLOSED - IMPORT 127
EXTERNAL - MAIN 128

- Functions:
FUNC - ENDFUNC - RETURN 129

- Other defined functions:
ABS - INT - SGN - SQR - PI 131
COS - SIN - TAN - ATN 132

•

•

CONTENTS

LOG - EXP
CHR$ - STR$ - SPC$
ORD - VAL - LEN
TRUE - FALSE
TIME
RANDOMIZE - RND
ESC - TRAP ESC

Operators:
DIV - MOD

- Logical operators:

- 7-

NOT - AND - AND THEN - OR - OR ELSE
IN
BITAND - BITOR - BITXOR

Other orders:
II
TRACE
DIM
PEEK POKE
SYS
NULL
STOP - END

Chapt.r ~I COMAL PACKAGES

What is a package?
- The English Package
- The Danish Package
- Graphics with COMAL
- Graphics Overview
- In Depth Look at Graphics Orders
- Sprites

The sprite is enlarged.
- More Sprites
- Two sprites collide.
- Saving a Drawing to Disk
- Sprites Used with Other Graphics
- Sprite Cartoons
- A Multi-colored Sprite
- Sprite Overview
- Special Rules for Multi-colored Sprites

Sound and Music
- Sound Orders in Depth
- Packages for Using the Control Ports

paddles
joysticks
lightpen
overview of the light pen package

- The System Package
- The Font Package

example of a character replacement
replacing an entire character set
font package orders in depth

Chapt.r 6. COMAL FILE HANDLING

- What is a file?
- Saving Programs and Procedures

Sequential Files - an Address List
- Random files - an Inventory Program
- Moving a Sequential File
- File Types

CONTENTS

133
133
134
135
135
136
136

137

138
140
140

141
142
142
143
144
144
144

147

147
148
148
148
150
152
165
167
167
167
168
168
169
171
173
175
184
191
197
197
199
200
204
206
213
21.4
215
216

219

219
220
222
232
235
236

CONTENTS -8-

Files and the Screen,
Keyboard and Disk Drive

Using Your Datassette Unit
Using the 1520 Printer-Plotter
Review

Chapter 71 PERIPHERAL EQUIPMENT

Introduction
The RS-232C Interface
IEEE Cartridges
The Parallel Port
File Transfer Between Computers
The Control Ports
Review

Chapter 81 COMAL AND MACHINE LANGUAGE

What is machine language?
- Modules

Packages
Procedures and Functions
How is memory organized?
Memory Management
Creating Modules

- Parameter Passing
Where can modules be placed?
Where can module variables be placed?
Signal Routines

- Error Reporting
Package Example

Appendix A: ASCII Character Codes

Appendix B: Color Codes for Graphics

Appendix C: Calculations with COMAL

AppendiM D: Keyboard and Screen Editor

Appendix E: Handling Text with COMAL

Appendix F: COMAL Err-or Numbers and Messages

Appendix G: User Comments and Corrections

Appendix H: Sample Programs and Procedures

CONTENT8

237
238
238
238

241

241
241
245
245
250
251
254

255

255
257
257
257
258
260
261
264
266
266
267
268
269

275

279

281

283

287

291

299

301

315

-9-

I:NTRODUCTI:ON

WHAT IS COI'1AL?

Welcome to the world of CONAL programming! Manv feel that
COMAL is close to being an ideal programming language for
microcomputers, incorporating as it does the best features
of both BaSic, Logo and Pascal. You are about to learn a
programming language which offers, among other things, the
following features:

* COMAL (COMmon Algorithmic Language) extends Basic, gIVIng
the language many of the powerful instructions of Pascal.

* COMAL retains the convenient operating environment of
Basic, and many CONAL statements will be familiar to
Basic users.

* COMAL for the Commodore 64 incorporates the easy to use
turtle graphics which has made Logo famous.

* COMAL on the C-64 offers useful guidance when errors
occur during program entry. The language contains
structures for error handling during execution of
programs.

* The language encourages structured programming with
access to loop statements like:

REPEAT - UNTIL
WHILE - DO - ENDWHILE

flexible conditionals lIke

IF - THEN
CASE - OF

ELIF
WHEN

ELSE - ENDIF
OTHERWISE - ENDCASE

and valuable building
blocKs like procedures and
functions.

* COMAL for the Commodore 64
gives the user full access
to the many special
facilities which have made
the C64 the most popular
microcomputer in its class:

high r •• color graphics
.prit ••
mu .• ic
Joy.tick
paddl ••
lightp..,
and much more •••

INTRODUCTION -10- COMAL FDR COMMODORE

THE ORIGINS OF COMAL

COMAL originated in response to the needs of computer users
in Denmark. egrge Christensen taught computer programming
in the early 1970's to stud,ents at a small college in
Tgnder, near the German-Danish border. He found that the
students often wrote terrible programs. They were hard to
read, hard to de-bug and hard to maintain. Dr. Christensen
consulted colleagues at the Institute of Computer Science at
the Danish University of Arhus. A researcher there by the
name of Benedict Lgfsted recommended that Christensen read
the book, Syst.matic Pro;rammin; by Niklaus Wirth.

Many readers will recognize Niklaus Wirth (of the Swiss
Federal Institute of Technology in Zurich) as the father of
the Pascal programming language. Inspired by Wirth's clear
formulation of the principles of structured programming,
Christensen contacted Benedict L.fsted. They agreed that
the Basic language offered the user a very convenient
operating environment. Basic was highly interactive. It
allowed direct execution of instructions from the keyboard
and required neither prior definition of variables nor the
compilation process before a program could be run.

These features were ideal for a teaching environment. On
the other hand Basic lacked the ability to use long,
descriptive variable names and did not provide the elegant
syntax of Pascal. If Basic could be augmented with these
features, it would encourage the writing of clearer, better­
structured programs. These men went to work with their
colleagues to formulate requirements for the COMAL
programming language. The language was developed and
perfected during the 1970's. COMAL grew to maturity
together with the personal microcomputer.

The current version of COMAL 80, which you now own, is
version 2.0. It is the product of standardization efforts
by an international committee composed of representatives
for users and industry. The COMAL kernel was agreed upon by
thIS group. It is composed of all COMAL instructions which
must be common to all versions of the COHAL language.
Special features, such as the use of graphics, mUSIC, ~
sprites and other special features of the Commodore 64. can ~
be added as special packages. More about that later!

CO MAL AND COMMODORE

During the growth in popularity of the COHAL language, the
Danish distributors of Commodore computers have played a
leading role. With the advent of the inexpensive and
popular microcomputer, in particular the Commodore 64, a
group of young software Rnthusiasts, Jens Erik Jensen,
Hogens Kj~r, Helge Lassen and Lars Laursen formed a company,
UniComal ApS. In cooperation with the Danish distributor
and later with Commodor. Data AIS, they developed COMAL
for the C-64.

When you have worked through the tutorial and written some
of your own programs, we hope you will agree that the

INTRODUCTION -11- COMAL FOR COMMODORE

efforts of these pioneers have not been in vain!

USING THIS TUTORIAL

If you examine the Table of Contents, you will see that this
manual begins with a chapter on setting up your computer and
plugging in your COMAL cartridge. Next comes an easy to
read, step-by-step introduction to COMAL programming. By
the time you get to Chapter 3 we will assume that you have
overcome the initial uncertainty <which everyone feels) when
beginning with a new computer language.

Chapter 3 presents a systematic description of the most
commonly used COMAL instructions. Here YOU will be
presented with features for seriOUS programming and begin to
write your own COMAL programs.

Every programmer needs a good resource with information on
the precise meaning of the most important facilities which
are available in the language he uses. We have tried to
provide this essential information - with examples - in a
svstematic form in Chapter 4, COMAL Overview. For those
readers who require even more complete information on the
definition of COMAL syntax, a comprehensive document is
available:

Len Lindsay, COMAL HANDBOOK, 1983.
Reston Publishing, 11480 Sunset Hills Road
Reston, VA :22090 USA <70~.) 437-8900

<also available from Prentice Hall in England or from
COMAL USERS GROUP, 5501 Groveland Terrace. Madison WI
53716 USA)

Note that the COMAL USERS GROUP also Duts out a newsletter.
It conta1ns many program examples and other useful
information and is highly recommended. It is always a big
advantage for the beginner to be 1n touch with more
experienced users.

The package concept is one of those features which make
COMAL f or the Commodore 64 part i cuI a,-l y powe.- f ul . When a
special feature of your Commodore 64 <for example high
resolution graphics) is to be used in a program, a package
can be activated. When that feature is not need~d, you
don't activate the package. (Your prog.-ams will run
slightly faster, because you only add the extra orders you
need.) Turtle graphics is available, if you want to use it.
Peripherals like joysticks, light pens, and paddles can be
accessed with special packages of orders which extend the
standard CDMAL language. A complete description on the use
of these packages is presented in Chapter 5.

Chapter 6 includes additional information on the handling of
files in COMAL. This information will be particularly
useful to those users who may wish to take advantage of
COMAL to write programs for record keeping and data handling
which require advanced facilities of the Com~odore disk
drive.

INTRODUCTION -12- COMAL FOR COMMODORE

In Chapter 7 the use of peripheral equipment is covered.
This includes the control ports to which you can attach
joystick, paddles, or light pen, and the RS232 interface,
IEEE interface, parallel port and other cartridges. This
last item may be of particular interest to those users who
may want to develop thei r own t'urn-key systems based on the
Commodore 64.

Those of you with 16 fingers may want to get inside COMAL,
learn about the use of Commodore memory and write your own
machine language programs. This is also possible using
COMAL. Read Chapter 8 to learn more about how this can be
done.

This Tutorial concludes with a collection of information
assembled in a series of Appendlces. Here you will find the
Commodore ASCII character codes, color codes for graphics,
some tips on calculating with COMAL, use of the, keyboard and
the COMAL screen editor, use of strings, error messages and
some useful programs and procedures. Finally there is an
Ind.x to help you find information Quickly when you need
it.

Throughout this tutorial you will encounter a number of
special symbols designed to emphasize lmportant points or
warn you of special hazards:

"W.tch out! A mistake here could get
you into trouble." Data can sometimes
be lost, or you might ruin a program, if
you are not careful. If vou're
connecting equlpment, you will be warned
to turn off all power.

This symbol means, "Here lS a good
idea which can save vou time and
effort! "

"Here is a u •• ful proc.du,.. or
operation which should be followed to
make your programming easier.

"Here comes an .xp.,.illl.nt which will
be fun to tryout!"

•

INTRODUCTION -13- COHAL FOR COMMODORE

"This material could be a bit
difficult to master. Procede
carefully!"

"Here is a summary which r.vi.w.
mater1al prev10uslv covered 1n the
tutorial."

Work through the tutorial at your own pace. Be careful not
to jump too far ahead before you're ready. Later on you
should find this tutorial useful as a reference guide.

Happy programming!

Frank Bason & Leo Hsjsholt-Poulsen
Silkeborg, Denmark
January 1985

-14-

•

Ch~pt.r 1 - -15- SETTING UP

CHAPTER 1

SETTZNG UP YOUR COMPUTER

YOUR COMPUTER AND ACCESSORIES

In order to use COMAL, vou will reOU1re the following
equlpment:

* a Commodore 64 computer (or an SX-64 transportable)
* the COMAL programming language cartridge
* a video monltor or a televlsion (color or B/W)

It is possible to run CDMAL programs without an external
storage medium - i.e. a disk drive or a tape unit. However,
as you will soon be writing programs which you will want to
save, it will be essential to have one of the following:

* a Datassette tape unit. or
* a Commodore 1541 disk drive.

Optional items of equlpment for your Commodore 64 - nlce to
have but not essential - include:

* a Commodore 1526 printer or equivalent.
* an extra Commodore 1541 disk drive

When you begin to write longer programs, a printer 1S very
useful to have. For serious programmlng you will need
listings of your programs and printouts of your data. An
extra disk drive is not an essential item. However, if you
use your computer a great deal, a second drive will make
copying programs and files a lot easier.

Figure 1.1 shows the jack connections on the rear and on the
right side of your Commodore 64. Refer to this diagram to
help connect the equipment you will be using.

Chapter 1 -

CAME POWER POWER
PORTS SWITCH SOCK£!

-16- SETTING UP

CARTRIDGE CHANNEL T'/ AUOIOIVIOEO SERIAL CASSETU USER
SLOT SELECTOR CONNECTOR CONNECTOR PORT INTERFACE PORT

Figure 1.1: Accessories and peripheral devices are attached ~
to your Commodore via the connectors on the rear
and on the side of the computer.

Your COMAL cartridge may also be used with the Commodore
SX-64 portable version of the Commodore 64 computer. The
5X-64 is illustrated in Figure 1.2. This unit includes both
a color monitor and a disk drive unit. With a COMAL
cartridge and the SX-64 you can skip ahead to the section on
Installation of the COMAL Cartridge.

Figure 1.2: The Commodore SX-64 transportable computer is
completely compatible with the Commodore 64.
The SX-64 features a built-in color monitor and
disk drive.

If you have access to a 1541 disk drive, attach it to the
Commodore 64 via the 6-pole jack on the back panel (the same
jack can be used for a printer).

-17- SETTING UP

If you have a printer as well as a disk drive, it can be
connected to the second jack at the rear of the drive. You
can use either one of the two connectors on the disk drive
for the computer and for the extension cable to the printer.

If you are using a Datassette tape unit, attach it to the
computer via the 12 pole edge connector (next to the User
Port). Note that an ordinary tape recorder cannot be used.

You will find detailed information on the use of these
accessories in your Commodore 64 manual, and in the disk
drive, Datassette and printer manuals.

A typical set-up will look like the illustration in Figure
1.3. The system shown includes a single disk drive, a
printer and a portable TV used as a display.

,~ :.: l' ~ , " 01' " ..:

.. "" ... ~ '" ~ • ><")6 '" ... _
'<!" <> ".,., ~ , ~ .,. , " -

............ "''''''''''' y "'" ""'0-
~_"'''''''''-W __

Figure 1.3: An ideal setup for learning and using the CONAL
programming language includes a Commodore 64
computer equipped with a printer, 1541 disk
drive and a color TV or monitor.

Don"t turn anything on yet. We will have to install the
COMAL cartridge before continuing!

INSTALLING YOUR COMAL CARTRIDGE

Your COMAL language cartridge is shown in Figure 1.4. It
must be installed in the cartridge slot at the rear of your
computer, if you use the Commodore 64. If you have an SX-
64, then the cartridge slot i.s on top of the lII.chine on the
right hand side.

-18- SETTING UP

Figure 1.4: Your COMAL cartridge allows you to expand the
power of your Commodore 64 without using
additional memory. It fits into the cartridge
slot at the rear of the Commodore 64 (or the top
of an SX-64).

Take a closer look at your COMAL cartridge. Note that there
is a row of contacts on the edge of the printed circuit
board which protrudes from the cartridge. There is a square
label on the front of the cartridge. This must face upward
when you insert the COMAL cartridge horizontally into the
cartridge slot of the Commodore 64. (The label will be
towards the front, when you insert the cartridge into the
cartridge slot of an SX-64.)

WARNING: Never insert a cartridge into your
Commodore 64 or SX-64 (and never remove it) with
the power turned on. The power to all peripherals
must be OFF when inserting or removing a
cartridge'

When you are sure that the cartridge edge connector is
properly aligned with the slot in the computer. push the
cartridge firmly into place using a gentle rocking motion.

Chapt.,. 1 - -19- SETTING UP

CONNECTING THE TV OR MONITOR

~::;;;, no:[]
L \0-

I-,il\
POWER SUPPLY

Figure 1.5: The C-64 can be connected to the UHF input of a
standard TV receiver.

Your Commodore 64 is supplied with the following display
outputs:

* color monitor signals (audio. composite video and
luminance)

* a modulated standard (UHF channel 36) color TV signal

The output jacks for these signals are shown in Figure 1.1.

Because the SX-64 has its own color monitor. the following
discussion will only apply to the Commodore 64. If you will
be using the SX-64, you can proceed directly to the next
section on running the demonstratlon program.

A color monitor is the most desirable choice of display for
your Commodore 64, because it will give you the sharpest
image. If you have a Commodore monltor, just attach one end
of the connector cable supplied with the monltor to the 8-
pole connector on the rear panel of the Commodore 64. Plug
the connectors at the other end of the cable into the three
phono jacks on the rear panel of the monitor. If you will
be using a different type of monitor, your dealer will be
able to assist you to find the proper cable.

A TV connector cable is supplied with your Commodore 64 for
those users who will be using a color (or B/W) television
set for their display. If you will be using a television
set, insert the phono plug end of the cable into the phono
jack on the rear panel of your Commodore 64, and plug the
other end into the antenna input jack on your television
receiver.

You must also connect the Commodore transformer to your
computer. The cable from the power supply is inserted on
the right hand side of your computer (towards the rear,
right next to the power switch).

When all connections have been properly made and all

Chapter 1 - -20- SETTING UP

shipping p~otection has been ~emoved from your disk drive
and printer, you are ~eady to turn on your equipment. Tu~n
pe~ipherals on fi~st, then tu~n on the Commodo~e 64. To do
thi s both the swi tch on the powe~ suppl y as' well as the
switch on the right side of the compute~ must be turned on.

Tune the UHF channel selector of your color TV to find the
signal. Adjust the TV receiver for the sharpest possible
pictu~e. (The~e is also a fine-tuning sc~ew next to the
antenna jack on the rear panel of the Commodore 64. If you
can adjust the TV for a good picture, then adjustment of
this sc~ew will not be necessary.)

If all has gone well, the following message should be
p~esent on you~ display sc~een:

$$$ Commodore-64 COMAL 80 rev 2.01 $$$
(C) 1984 by UniComal ~ Commodore

30714 byte. free.

and the blinking cursor will appea~ 3 lines below the
message. If the sound is turned up on your TV o~ monito~,
you will also hea~ a signal, indicating that COMAL is ready
to go.

Should any p~oblem a~ise at this point, turn off your
eqUipment at once. Check the setup p~ocedu~e once again.
Be sure that the COMAL cart~idge is inse~ted co~~ectly and
is fi~mly seated in its socket. Check all cables and be
su~e that the~e 1S powe~ at the elect~ical socket. Check
your Commodo~e 64 Inst~uction Manual. If p~oblems pe~sist,
contact you~ Commodo~e dealer fo~ help.

THE COMMODORE KEYBOARD

If you a~e not familia~ with the Commodo~e keyboa~d, then
type anything at all, just to get used to it. Tryout the
(SHIFT> and <SHIFT LOCK> keys. If you should make a
typing error, be sure that the (SHIFT LOCK> key is
disengaged. then press the '"insert or delete key" marked
(INST/DEL> at the upper right hand side of the keyboard to
delete the character just to the left of the cu~sor.

You can also move the cursor a~ound the sc~een using the
cu~sor control keys (next to the right hand (SHIFT> key).
If the (SHIFT> key is dep~essed and you press <INST/DEL>
then ext~a spaces appear, allowing you to make inse~tions.
T~y out the (CLR/HOME> key with and without the (SHIFT>
key engaged to lea~n what it does.

If you have a black/white TV receiver o~ monito~, hold down~~
the <CTRL> key at the left of the keyboard. Press the
letter W at the same time. Doing this will change the
screen and curso~ colo~s, making the screen easier for you
to read. If you are using a colo~ TV or monitor, try
<CTRL> V for a dark blue background and white text.
More on color changes later on!

You might try pressing the Commodore Key <C-> (on the
left hand side of the keyboard) and the (SHIFT> key at

-21- SETTING UP

the same time. When you do this you will "toggle" the
display back and forth between capitals and small letters
and capitals and graphiCS. Be sure you have selected
capitals and small letters.

Check: Press the keys <A) <5> (0"

The computer prints • • d

Press the same keys
again while holding
down <SHIFT>.

The computer prints A S 0

For the time being. the features described here will be
adequate for proceeding with this tutorial. You will learn
about additional facllities, as we go along. A complete
description of the keyboard and the many features of the
COMAL screen editor is available in Appendlx O.

RUNNING THE DEMONSTRATION PROGRAM

If your Datassette tape storage unit or vour disk drive is
connected properly, you are ready to run programs. Please
read the instructions which apply to you:

Using the D.t •••• tt ••

If you are using a Datassette unit for program storage,
insert the COMAL Demonstration Tape and type:

lo.d "csld.moprogram"

then press the key marked <RETURN>.

Note that if you intend to use the Oatassette from now
on, you can make it the default unit by typing in the
command:

uni t "c •• " <RETURN>

Note that a word like RETURN printed within
brackets < > means to press the key with
that name instead of spelling out the entire
word on the keyboard.

The C-b4 responds by printing pr ••• pl.y on t.p. on
the screen. Be sure that the tape has been spooled
back to the beginning then start the tape by pressing
the PLAY button on the Oatassette. The computer
responds:

ok
••• rehin; for d.mopro;r.m

The screen will go blank for a moment. When the program has
been located, the following message will be displayed:

Chapt.r 1 - -22- SETTING UP

After a minute or so the cursor will begin blinking
again, indicating that "the loading operation is
completed. (You can interrupt the read-in by pressing
the Commdore key (C->.) You are now ready to run the
demonstration program.

If you have difficulty loading the demonstration
program, you can try the following:

* Turn off the power to the computer and the
Oatassette, and check again that the tape recorder
is connected correctly. Is the cable intact and
plugged all the way in?

* Be sure you are using the correct tape and that it
has been spooled all the way back to the beginning
(all the tape should be on the left hand reel).

* When you have checked the above points, apply power
to start CONAL up again. Then repeat the read-in
procedure.

* If you still have difficulty, contact you dealer for
assistance.

Using a Disk Driv ••

If you have a disk drive, insert the COMAL
Demonstration Diskette. The label should face upward
and be on the edge facing you when the diskette is
inserted (see Figure i.6).

WRITE
PROTECT
NOTCH

WHEN COVERED. DISKETTE
CONTENTS CANNOT BE
AL TERED

I •• II. Di
c:::J < = m =

Figure 1.6: Handle the diskette carefully. Open the
drive door, and insert the diskette into
the drive as shown. Slowly push the
diskette all the way into the slot. When
the diskette is in place, close the drive
door until you hear it click into place.

Now type:

-23- SETTING UP

load "d.moprogram"

and press <RETURN). This order will transfer a copy
of the program from the diskette to your computer's
memory. The activity indicator on the drive should
light up, and the drive will operate for a few seconds.

Whichever means you have used to load the demonstration
program, you can now type run and press <RETURN>. Then
sit back, relax and enjoy the show! Be sure your TV or
monitor sound volume is turned up slightly so music and
sound effects can be heard.

You can interrupt the program if you wish bv preSSing the
<RUN/STOP) key.

Be sure to remove the demo dlskette and store it
in a safe place before procedlng with the next
section of this chapter.

If you follow the tutorial 1n the coming chapters, you
will soon be able to adapt the powerful features of
your Commodore 64 with the COMAL programming language -
high resolution color graphics, sprites, sound and more
- for use in your own programs.

PREPARING A STORAGE DISKETTE

Before we proceed to the introductory tutorial in
Chapter 2, let·s get a blank diskette ready for storing
your programs. This process is called formatting the
diSkette. Datassette users won't need to format tapes
- that is not necessary. But tape users may want to
read this section anyway to learn more about diskettes
and how they are used.

You should interrupt the COMAL demo program so that you
can enter commands from the keyboard. Press

Chapter 1 - -24- SETTING UP

<RUN/STOP>, if you haven't already done so.

* Be sure that the demo-diskette has been removed and
stored away.

* Take a diskette which is ~nused (or which can be
erased). Be sure that the write protection notch
is uncovered (see Figure 1.6). Covering this notch
with a piece of tape prevents formatting or changing
the contents of the disk by saving new files.

* Insert the diskette correctly into the disk drive,
and close the drive door, so it clicks into place.

* Now type the following order:

When you press <RETURN> the disk drive will begin to
operate and continue for about 2 minutes. The disk
activity light will go out, when the formatting process
is finished. You can now use this diskette for storing
your programs and files.

A few remarks about the command which you just
issued from the keyboard: pa •• indicates to
COMAL that the subsequent text should be passed to
the disk drive. The letter" is the code for
formatting a new diskette, and 0 means that it
should be done on the first of your drives (in
case you have more than one). You are free to
choose the <di.k.tt. "am.> - up to 16 char­
acters. This name (my di.k.tt. in this example)
will appear as a heading whenever you catalogue
your disk (more about this in Chapter 2). The
last entry XX may be any two characters. It
serves as a diskette identifier code.

REVIEW

Your equipment should now be set up and
ready to use. You have mounted the
COMAL cartridge, powered up, and
familiarized yourself with the keyboard.
You have also read in a demonstration
program and run it to check out your
system.

The program has given you a previe"J of the impressive
potential of this programming language. Finally, if you
will be using a disk drive, you have formatted a diskette
which can be used for storage of programs as you work
through the tutorial chapters which follow.

-25-

CHAPTER 2

LET'S GET STARTED

WHY LEARN TO PROGRAM?

The computer is a tool for
handling information.
Properly programmed, your
Commodore 64 can do
calculations, manipulate text,
sort data, collect data,
control machines, create
images, make sound. and much
more. The heart of the
computer is the now well-known
component called the
microprocessor. If it is
connected to sufficient memory
and a means of getting data in
and reading data out, we have
a m1crocomputer.

The elementary operations which the microprocessor performs
on individial bytes of data are very simple. Just add1ng
two numbers like 2543 and 9320 together may require the
microcomputer to perform hundreds of simple operations. Yet
because each operation only takes a millionth of a second,
the job is done in a thousandth of a second!

When you program a computer, it is possible (but bv no means
necessary!) to work with the fundamental binary numbers used
by the processor. Your Commodore 64 computer uses a
6510 Chip. You can use assembler language if you want to
program it directly. More on this subject 1S available in
Chapter 8.

To make life easier for themselves, programmers have evolved
higher level languages which allow the use of very simple
orders to accomplish a large number of elementary processor
operations. A statement like:

print 2~43 + 9320

is an example of a high level order.

This statement can be thought of as a procedure with two
inputs. The procedure causes the two numbers to be added
together and printed on an output dev1ce. say a display
screen.

An ideal comput~r language allows the programmer to group
sets of orders together to perform more complex tasks and to
give them a new name. For example, it would be nice to have
an order like

-26- GETTING STARTED

which could compute the interest accumulated by an
investment of 12535 dollars (or pounds) during an eight year
period. While everyone using a computer language will want
to add numbers, not everyone will require this particular
procedure. So the ideal language will include a large
number of useful standard procedures and make it easy for
the programmer to construct his own special ones.

COMAL is such a language. It is a procedure oriented
language which includes many clear and useful elementary
orders for custom building your own procedures. Your
procedures may be so useful that they themselves can be used
again in other programs or in other procedures which handle
larger tasks. The COMAL operating enviroment makes this
easy and convenient to do. When you have learned the COMAL
language, you will have a very powerful tool indeed to help
you solve a wide range of problems.

Learning a powerful programming language is an adventure.
Adventures can be fun and exciting. But no adventure worthy
of the name is without challenges and pitfalls. The ability
to write your own programs will come only with practice,
persistence, curiousity and patience. You have begun an
adventure and must be prepared to go through periods of
trial and testing before you become a seasoned programmer.

Programming is not just for solving serious professional
problems. It can be fun, too! Just ask any programmer
after a late evening getting his own game program to work.
The thrill of bringing a program to life after carefully
building it up out of its component parts can be compared to
other highly creative activities. (Don't ask the programmer
about this before he or she has found the last bug and
gotten the program to run!) Programming can be used for so
many purposes that it is impossible to provide a complete
list. Here are just.a few; you can probably think of many
more. Properly programmed, your computer can:

* playa game with graphics to help children learn
* help teach mUSIC by showing notes and playing sounds
* prepare an expense summary and compare it with your budget
* keep sales records for a small business ~
* record and display weather records ~
* make measurements in the lab or on a production line
* prepare an income tax return and print it out
* help plan and administer a construction project
* compute the heat losses from a building
* provide motivating teaching aids to help students learn

A great deal of programming today has to do with games.
Since the earliest days of programming, programmers have
loved to use their machInes for "play". (Rumor has it that
in the late 1960's Star Tr.k was the most popular program
at many university computing centers.) When computer time
cost hundreds of dollars an hour, it was a luxury few could
enjoy. Today microcomputer time costs only a few cents per
day, so game programs have proliferated as never before. If
you want to play computer games or write some yourself, then
welcome to COMAL. It is a fast language with excellent
color graphics, sprites and sound effects. The
possibilities for game programs are endless.

-27- GETTING STARTED

Of the many program types, perhaps simulations are the
most fascinating. You can become the pilot of a World War
fighter plane in hot pursuit of enemy planes. Change the
program parameters, and you are piloting a 747 jet to a
landing at Paris, London or New York. Or simulate Charles
Lindberg's aircraft, the Spirit of Saint Louis on the first
non-stop New York to Paris flight. Even the flight of the
Space Shuttle or the Concorde can be effectively simulated
using a microcomputer. With color graphics and a joystick,
such simulations can be strikingly realistic.

But simulations can be much more than this. They can be
effective tools for learning - both for students and for
professionals. With simulation programs you can, among many
otner possibilities, examine:

* the financial decisions of a business
* the operation of a solar heating system,
* the operation of a nuclear reactor,
* the motion of charged atomic particles in electric and

magnetic fields,
* the orbiting of a satellite,
* or the flight of a rocket.

Again, for those who undertake the adventure of learning to
program the possibilities are almost unlimited. Limited ln
fact only by your imagination and your ability to use the
tools which you now own: your Commodore 64 computer and the
COMAL programming language. Let's learn more about how to
use them'

DIRECT EXECUTION OF COMAL COMMANDS

Your computer should have the COMAL cartridge installed and
should be turned on. When you do this the following message
should appear on the screen:

$.$ Commodore-64 COMAL 80 rev 2.01 .$$
(C) 1984 by UniCom.l & Commodore

30714 byt •• free.

If this message is on your screen, then you are ready to
proceed •.•

For a starter, try pressing <CTRL)-V to change the screen
colors to a pleasing blue with a white cursor and text. If
you're using a B/W display, try <CTRL)-W for a gray
background and black text.

-28- GETTING STARTED

IF YOU MAKE A TYPING ERROR: You can delete the
character just to the left of the cursor by press1ng ~o
the (INST/DEL) key at the upper right of your 0

keyboard. (The (SHIFT LOCK) key must not be
depressed when you do this!) For a complete
description of the use of the keyboard and a run-down
on the many editing facilities available with COMAL,
see Appendix D.

The simplest way to start using COMAL is to type some direct
orders from the keyboard. Try typing:

When you press (RETURN) the word h.llo should be printed
on the next line on your display screen.

It is important to understand that the computer
first processes your direct orders when you have
pressed (RETURN>, giving in effect an order to
process the current command line.

Note that orders may be entered in either lower case or
upper case. (You toggle the display screen between upper
case/graphics and lower case/upper case by pressing the
(CD) and the (SHIFT> keys at the same time.)

We will assume in this tutorial, unless otherwise
stated, that the lower case/upper case mode has
been selected.

You can also do calculat10ns
using direct orders. Try the
following order, being careful
NOT to press the <SHIFT> key
when typing the + s1gn:

print 217+30~

After pressing <RETURN> you
will see the computer print
the number ~22 on the next
line.

You can also mix text and
numbers in a PRINT order as in
the following example:

After you have entered the
order by pressing (RETURN>
the computer will print:

-29- GETTING STARTED

Notice that if you give no other instructions, the text and
the number will not be separated by any spaces when they are
printed. This can be changed by using a semicolon I.
If a semicolon IS used as a separator, then a blank space
wIll be printed to the right of each text segment or number.

You can also arrange the placement of your text and numbers
on the screen using the ZONE order. Type:

zan. 10

We want to repeat the same order used earlier. For a work­
saver try this little trick: Depress the (SHIFT> key and
press the cursor up-down key (just below <RETURN». Move
the cursor up the screen until it is blinking on the line:

print "sum ,217+30~

Release the <SHIFT) key and press (RETURN). Your order
will be executed again. But this time there will be 10
spaces between the start of the text to the first digit of
the number. The ZONE order is used to specify the WIdth of
the printIng columns when text or numbers are separated by
commas. The default condition ZONE 0 IS set when vou
start up your system.

You may want to do some experimenting with ZONE and PRINT
orders before moving on In this tutorial. This is easy to
do by using the cursor keys to move up and down on the
screen. Notice that you needn't be at the end of a line on
the screen for the order to be executed. Notice also that
if extraneous text is on the same lIne, It will be
Interpreted together with the order you want to execute, and
an error message will result. You can elther delete the
extra text «CTRL)-K will delete everything from the
cursor position to the end of the llne), or you can write
your order on an empty lIne to avoid thls error. You can
also completely erase the screen by executlng the order PAGE
or by holding down the (SHIFT) key whlle presslng the
(CLEAR/HOME) key.

COMAL has many other facilities for handling text and
numbers. We'll be getting into these in much greater depth
later on. Before we proceed to write programs, let's take a
quick look at how to use the high-resolution graphlcs
screen.

A QUICK LOOK AT TURTLE GRAPHICS

Your Commodore 64 is almost ready to do turtl. graphics as
soon as you power up. Just press (f3) to enhance COMAL
with the orders in the turtle graphics package. When you
press (f3) the words USE turtl. will appear on the
screen. Then the appearance of your screen will change. A
small arrowhead will appear in the middle of the screen, and
the words USE turtle will now be at the top of the screen
with the cursor blinking on the next line. You are now
looking at the split screen with four lines of text
visible at the top. Presslng efl) will bring you back to

Chaptar 2 - -~- GETTING STARTED

the text screen. If you depress <f~) you will be
looking at the graphics screen. The entire screen can be
used for graphics, but you will not be able to see your
orders as you type them in. Now press <f3) again to get
back to the split screen.

Notice that by means of the USE order you have extended
the COMAL language with a set of extra orders, called a
package. As you will learn, many other packages are
available in your COMAL cartridge. Much more about
packages in Chapter 5!

If you should want to remove the COMAL extensions
invoked by the order USE, you can type:

discard <RETURN)

This will remove ALL packages from program memory.
(You cannot remove packages selectively.) Typing naw
will delete your program and deactivate all packages
well.

Let's see how the turtle (also called the graphics
~ or the ~) represented by the arrowhead can move
around the screen and draw. We'll use direct commands now
but we will write a complete program later on in this
tutorial.

Turtle graphics orders are so straigtforward that YOU can
learn how they work just by trying them out. Try typlng:

forward(~O)
r1ght(90)

<RETURN)
<RETURN>

as

Type the same orders again. You should have a square
halfway finished on your screen. Use these turtle graphics
commands again as needed to complete the square. The turtle
should end up pointing upwards again.

Now try the following orders (remembering to press
<RETURN> after each) and observe what effect they have on ~
the turtle and the drawing: ,.,

panup
back(~O)

pan down
for"ard(~O)

Notice that if your experimentation brings you too far in
any direction, the turtle will show up at the other side of
the screen.

Type ha.a to bring the turtle back to the center again,
then type cl.arscraan to erase the screen. You can also
type hama,cs on one line to accomplish this.

Now try:

laft(90)

•

Chapter 2 -

forward (50)
setheadlng(45)
forward (70)

-TI- GETTING STARTED

What does each order do? Do some exoerimentlng yourself to
understand how to move the turtle and make It draw. You
might want to try the following sequence:

for side-l to 4 do farward(~O)lleft(90)

This example illustrates a unique feature of COMAL:
A sequence of instructions separated by a semicolon can be
executed dIrectly from the keyboard!

To illustrate how COMAL actively aSSIsts you as
you type in instructions (if you haven't already
noticed thIS), try makIng intentIonal errors while
typing in the prevlous command:

type: for <RETURN>

Not the computer's response.

type: for - <RETURN>

Note the response.

type: for i - <RETURN>

Note response, etc.

Another aId prOVIded by Commodore COMAL is that
the e~rar messages are removed from the screen as
soon as you have corrected the error and pressed
<RETURN) or moved the cursor to another llne.

Note what each of the follOWIng orders does:

hideturtle
shawturtle

If you have a color display you can also experlment with

background «number»
pencalar«number»

where <number> is a color code. See Appendlx B for a
list of the graphics color codes.

The table which follows shows turtle graphiCS orders WIth a
short form for each and a brief description. When you glve
the order use turtle from the keyboard or in a program,
all these orders as well as all the commands In the
graphiCS package become available for you to use.

Chapt.,. 2 - -32- GETTING STARTED

TURTLE
ORDER

back (U
forward(L)
background (C)

SHORT
FORM

bk(U
fd(U
bg(C)

DESCRIPTION

",ove L units backwards
move L units forward
background color set to C

clearscreen cs clears the graphics screen
home turtle to SCreen center
hideturtle ht conceals the drawing cursor
showturtle st shows the drawing cursor
pencolor(C) pc(C) sets the drawing color to C
pend own pd cursor leaves a trace
penup pu cursor leaves no trace
left (0) 1 t (0) cursor turns D degrees
right(O) rt (0) cursor turns D degrees right
setheading(H) seth(H) cursor points to heading H

H=O is up, 90 is right.etc.

Make careful note of these orders. We will be using them
again in the program examples which follow.

WHAT IS A PROGRAM?

In order for a machine or a computer to do a job, it has to
be "told" how to do it. In contrast to a human being who
can base his actions on skills and experience, the machine
must be given very precise instructions. Nothing must be
taken for granted. In practice this means writing down a
list of orders, each of WhICh can be interpreted by the
computer. describing in detail the job to be performed.

This could be a very tedious task indeed, if we were obliged
to give details on how to. say, "add two numbers together"
each time it had to be done. This is of course not
necessary. When the computer has been instructed on how to
interpret the order PRINT K + y where K and yare any
paIr of numbers, it can add any two numbers at all (withIn
certain very wide limits - see Appendix C). The same is
true of other operations we expect the computer to do. A ~

few of the most commonly used operations: ~

* addIng, subtracting, multiplying and diVIdIng numbers
* prInting numbers and text
* drawing a line from point to point
* making a chOIce of two paths to follow
* repeating operations a certain number of tImes.
* selecting different tasks when certain conditions are met,

are defined in a computer language which is relatively
easy for human operators to use. COMAL is special. because
this language is regarded by many as a particularly clear,
powerful and flexible language.

let's try writing a COMAL program to Illustrate some of
these ideas.

Suppose we want to draw a square on the display screen of
the computer. Even WIth no prIor knowledge of programming,

Chapt.,. 2 - -33- GETTING STARTED

we could write down a list of the tasks to be accomplished
using everyday English:

* Get the computer ready to use the screen for graphics.

* Describe how far to move and how much to turn to draw a
slde of the square.

* Repeat the above step four times to complete the square.

Being a b1t more specific, we could express thls by writlng
the following instructions. We intend to draw a square 75
"units" on a side starting at the center of the screen. We
want the sldes of the square to be parallel with the edges
of the screen:

* Set the turtle graphlcs mode.

* Move the pen forward 75 units, and turn nght 90 degrees.

* Move forward 75 units again, and turn rlght 90 degrees.

* Move forward 75, and turn rlght 9').

* Move forward 75: turn right 90.

When all this is accomplished, we should have a square on
the screen with the drawing cursor back in ltS orlginal
posltion. It is usually good programmlng practice to leave
the turtle at the end of an instruction sequence in the same
state as It was when the sequence began. This idea is
particularly lmportant when you begin to write COMAL
procedures. It makes thIngs easier when you want to bUlld a
program up uSing "modules" or "bullding blocks" WhlCh must
work together to do a Job.

Let's see how the actual COMAL program would look. Note
that it may not be clear at once why certain things are
done. As you progress with this tutorial you will be
presented wlth more thorough explanations to reveal most of
these mysterles!

~ First be sure you are using the text screen (press <f1>
if you have bean using graphics). Be sure that no other
COMAL program is in memory (type n.w <RETURN». You will
probably want to clear the screen and move the cursor to the
top left side of the screen. Press the <SHIFT> key and
the <CLR/HOME> key at the same time to do this.

If you have trouble getting your computer into
text mode with the screen cleared, there is one @
sure-fire way of getting things straightened out.
Depress the <RUN/STOP> key and hold it down
while pressing the (RESTORE> key. This action _
will initiate things without losing your program.

-~- GETTING STARTED

Of course you can always turn off the computer
power switch, wait a few seconds, and turn it on
again. You should be back in COMAL with the
greeting message on the screen, ready to go, but
this solution will erase your program.

When you prepare a program, the instruct10ns you prepare are
not executed right away. They are stored in memory and only
executed when the program is run. You will f1nd that line
numbers are not important in COMAL except as an aid when
entering and ed1t1ng a program. In fact you will be able to
completely ignore 11ne numbers when your program 1S
completed.

To make program entry easier, press <f4> to get automatlc
11ne numberlng. (You get thlS by pressing <SHIFT> and the
<f3> key.) COMAL responds with AUTO. Press <RETURN>,
and automatic llne number1ng will be engaged.

The computer should be ready to accept instruction number
0010. Note that it is usually wisest to number
instructions with intervals of 10, so that there will be
room to make insertions in case you discover later on that
an instruction has been left out.

To get r1d of automatic line number1ng or to
change it, just press <RUN STOP> instead of
enter1ng a new l1ne. If you then type auto or
press (f4> aga1n, you will be back to automatIc
number1ng at the 11ne you left. You can add one
or two numbers to the AUTO command to change the
startlng 11ne and the 11ne number 1nterval. If
you type .uto,~ <RETURN> the line number
interval will be 5 (the line numbers Will continue
from where you were). If you type auto 100,~,
then line numbering Will start at 11ne 100 With a
line number interval of 5.

Recalling our list of plain English tasks to be performed,
we can sta~t with the COMAL orders which must be used to
prepare the screen for turtle graphics:

0010 u •• turtl.

Press <RETURN> after each order line (although multiple
orders on the same line separated by I are sometimes
allowed, usually only one order per line is recommended).
As you enter program lines, COMAL prints the next program
line number, ready for your next instruction. Type as
follows to continue with our sample program. Use the cursor
keys and the <IN6T/DEL> key as needed to correct any
typing errors. Feel free to use the abbreviated orders if
you prefer.

Chapter 2 -

splitscreen
forward(7~)

right (90)
forward(7~)

right(90)
forward(7~)

right(90)
forward(7~)

right(90)

-35- GETTING STARTED

0020
0030
0040
OO~O

0060
0070
0080
0090
0100
0110 while k.y.-~hr$(O) do null

After your experience with the turtle in the last se~t1on
these orders should be easy to understand ex~ept perhaps for
the order in line number 110. We want to keep the graphics
s~reen visible after drawing the square. When a COMAL
program ends while using graphi~s, control returns
automatically to the semi-graphics screen, so that you can
see your orders as you type. Line 110 makes the graphics
screen rema1n completely viS1ble until you press any key.
When key. no longer equals the default value ~hr$(O),
the program will continue beyong line 110. When the program
proceeds beyond this llne, there are no more 1nstruct1onS,
so the program will stop.

Try running the program. First press <RUN/STOP> to get
out of AUTO mode. Then type 1n run. When you press
<RETURN>; your program will be carried out step by step.
This process 1S called execut1ng a program.

You can save a lIttle effort 1f you want by
pressing (f7> 1nsteao of typing 1n run.

Press <f1) to return to the text screen. Change the
program and run it aga1n to see what happens. Try d1fferent
lengths and different angles to make other f1gures. When
you have finished experimenting, we 11 go on to look at some
add1tional COMAL orders.

REPEATING INSTRUCTIONS

After working with the sample program to draw the square -
and perhaps after trYlng to draw pentagons and octagons -
you may wish it were posslble to repeat a given set of
instructlons which you want to use repeatedly. It lS lndeeo
possible. This programmlng structure is called a
loop block and lS one of the most lmportant concepts 1n
programmlng.

There is an easler way to draw a square. Erase program
memory (uslng new (RETURN» and try the followlng program:

0010 II program. SQUARE
0020 II by. <your name>
0030 use turtle
0040 splitscr •• n
OO~O for sides.-l to 4 do

Ch.pt.r 2 - -36- GETTING STARTED

0060 for rd(7:5)
0070 right(90)
OOSO .ndfor
0090 whil. k.y$-chr$(O) do null
0100 .nd II of progr.m

Press <RUN/STOP> to stop auto-numbering then write list
to do a list1ng of your program. It should look l1ke th1s:

0010
0020
0030
0040
00:50
0060
0070
0080
0090
0100

II progr.ml SQUARE
II bYI <your n.m.>
USE turtl.
splitscr •• n
FOR sid.s.- 1 TO 4 DO

forw.rd(7:5)
right(90)

ENDFOR .id ••
WHILE KEV$-CHR$(O) DO NULL
END II of progr.m

As you can see, it is possible to add titles, bylines and
other comments to your programs. Just precede them with a
II. Such statements are not executed, but they w111
appear in your list1ngs. They can also be added after COMAL
orders in a program 11ne, as in line 100. Notice how COMAL
indents lines 60-70 in the listing to make the structure of
the program clearer. The FOR-ENDFOR construction (50-80)
causes lines 60-70 to be repeated four times.

Keywords are cap1talized in the second listing. Notice also
that in the second 11stlng the varIable sid •• is
automatically included after ENDFOR In lIne BO. This will
be done after the program has been RUN or SCANned. To SCAN
your program Just press (fS) or issue the direct order
sc.n. (ThIS process will also check through your program
for errors In structure and defIne any procedures in the
program.)

~~!~~~~~~~;:~I~:~t~:~~~~~~~~~~:~~~~:~~:~~i-~~
lower case. Let CO MAL do the extra work of
prov1d1ng a nice listing for you!

Try runnIng the program squ.r.. Press any key to stop the
program, then press <fl) to return to the full text
screen. Now let's try some changes to see what happens.
Can you alter the program to cause it to draw a hexagon (6
Sides) or an octagon (B sides)? When orders are to be ~
repeated many tlm.es, the FOR-ENDFOR construction becomes :
particul arl y useful. Can you adapt the program, so the -\! -,
turtle draws a f1gure which is close to being a circle?

,

-37- GETTING STARTED

You may have noticed that in order to compiete a
polygon and end up facing in the same dIrection as
when it started, the turtle must turn a total of
360 degrees. (Those of you who are famil iar with

the computer Ian. gu. age Logo, WhICh also uses turtl@e...
graphics, may recognize thIS prIncIple as the I

Total Turtle TrIp Theorem.) So to draw a
regular polygon wIth numbar sides, the turtle.
must turn 360/numbar degrees at each vertex. .

It IS of course possIble to adapt thIS program so that it
WIll draw a polygon with any number of sides we choose. To
do this we will have to indicate the number of SIdes desired
and the length of a SIde by means of INPUT statements.
Erase program memory (naw <RETURN», and try enterIng the
follow1ng program:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130

II proQram. polYQon
II by. <your nama)
PAGE II claar tha screan
INPUT "How many sida.? "I numbar
INPUT "Length of each? "I langth
USE turtla
.plitscraan
FOR sidas.-l TO numbar DO

forward (lanQth)
riQht(360/numbar)

ENDFOR sida.
WHILE KEVS-CHRS(O) DO NULL
END II of program

Note that the program is shown here as it would be lIsted.
You can enter the program in lower case and WIthout
indentation, If you w1sh. Run it to be sure it works as
expected.

COMAL PROCEDURES

Procedures are modules or building blocks which you can
create to make your programming eaSIer. There IS a lIne In
the program polygon WhICh lends itself to beIng redone as
a procedure. You can make your program eaSIer to read and
eaSIer to understand by creatIng a procedure. This
technique becomes very Important when you begIn to wrIte
longer programs!

Notice that the use of line numbers in COMAL is
quite different from theIr use In other line­
oriented languages such as BASIC. In this respect
CO MAL IS much more akin to Pascal. Use the RENUM
order often to "clean up" your program. Because
no COMAL order ever refers to a line number, you
can pay much less attention to them. In general
It is probably best to group your program
instructIons into three sectIons:

-~- GETTING STARTED

program name, date, comments,
dimensioning of variables,
setup of packages, etc.

the main program sequence
consisting mainly of
procedure calls

collection of your procedures
called by the main program

Take a look at your program. Consider statement number 120:

0120 WHILE KEV$-CHR$(O) DO NULL

used here as in the program squAr. to keep the graphics
screen vlsible until any key is pressed. It could be made
lnto a procedure to keep it from cluttering up the main
program:

0140
0150
01bO
0170
0180

PROC wAit'k.y
WHILE KEV$-CHR$(O) DO NULL

ENDPROC wait'k.y

Notice here that we have called the procedure wait'k.y.
The apostrophe ' is needed to bind the two words
describlng the procedure together into one continuous strlng
of characters wlth no blanks. If this is not done, COMAL *
will only interpret the letters before the first blank as
the procedure name, and an error message wlil result when
COMAL tries to execute the procedure. ,~

~
Add this procedure to your program, and replace line 120 by:

Now list the procedure (a little trick: use <fb> <RETURN>
to do thlS). Notice the following features of the COMAL ~:
llsting:

* The LIST order indents instructions in the procedure,
setting the procedure apart and making the program
listlng easier to read.

* The procedure must be terminated by ENDPRDC. If the
program has been SCANned or RUN, then COMAL includes the
name of the procedure in the ENDPROC instruction, if
you have not already done so.

* The empty statements in lines 140 and 180 are not
reqUired. They are included to cause this procedure to
be separated more clearly from others when the program is
listed.

The program polygon could belmproved further by creating
a procedure out of the statements which actually draw the

Chapter- 2 - -39- GETTIN6 STARTED

polygon.

The polygon procedure m1ght be typed 1n 11~e this:

1200 PI'OC polygon (number, length)
1210 for .ide •• -l to number
1220 forward(length)
1230 r-ight(360/number-)
1240 endfor-
1230 endpr-oc
1260

When you SCAN and then LIST the procedure, 1t s~ould appear
as follows:

1200
1210
1220
1230
1240
1250
1260

PRoC polygon(number,length)
FOR .idesl=l to number

for-war-d (length)
r-ight(360/number-)

ENDFOR .ide.
ENDPRoC polygon

There are a few th1ngs you should notice about the 11sting:

* The procedure name 1S followed by two variable names@,
(number,length) , 1ndicatlng that the proceaure w1ll
require values for the number of sides ana the length ~
of each slde. A proceaure neea not have any variable
list after lts name (llke the procedure wait'key). It
can nave one, two or more 1ndlcated. as shown here.

Again we must call the procedure before It can De
e>:ecLlted. The orlg1nal program must be c~angea, so 1t looks
like this when RENUMbered and LISTed:

0010
0020
0030
0040
0030
0060
0065
0070
0080
0090
0100
0110
0120
0130
0140
0130
0160
0170
0180
0190
0200
0210
0220
0230

II pr-ogr-am: polygon
II by. (your name>
PAGE
USE turtle
.plit.cr-•• n
INPUT "How many sides? "I number
INPUT "Length of each? u: length

II MAIN PROGRAM
polygon (numb.r,length)
wait'k.y
END II of MAIN PR06RAM

PRoC wait'key
WHILE KEV$~CHR$(O) DO NULL

ENDPROC wait'k.y

PROC polygon(number-,length)
FOR .id •• I-l to number­

for-war-d <length)
r-ight(360/numb.r)

ENDFOR .ide.
ENDPROC polygon

-40- GETTING STARTED

As already mentioned, you can check your program before
RUNning or LISTing it by using the SCAN order. (Type scan
<RETURN) or just press <fa»). When you do this, COMAL
will check the program structure and "learn" the procedures
you have defined. If you subsequently write a defined
procedure name as a direct order, it will be executed. This
allows you to check your procedures one by one. This is a
real advantage when "debugging" a program!

A few more remarks are in order: We have used the general
structure described earlier with a distinct beginning,
middle and end of the program. The input data is
defined in lines 60 and 65, the main program is just a few
lines long (80-110), and the procedures are placed at the
end of the program.

In lIne 90 the procedure polygon is called. The two
numbers in parentheses following the procedure name are the
two varIables which the procedure needs to draw the polygon.
They need not have the same names as the variable names In
the procedure, although they happen to in this case. It is
important, however, that they are in the same order.

A remark is also in order about the line:

0190 END II of MAIN PROGRAM

This line is not necessary to stop the program. A COMAL
program WIll stop when there are no more lines to execute in
the maIn program sequence. It is Included here to make the
structure of the main program sequence clearer. This is
largely a question of programmIng style. You will have
strong opinions about such matters as you gain programmIng
e!{per- i ence ~

SAVING PROGRAMS AND PROCEDURES

You may want to save your work now that we have begun to
wrIte programs which could be used again later. Please
follow the instructions which apply to you:

To save your program polygon on tape, proceed as
follows:

* Place a cassette tape in your tape unit and be sure
It IS rewound to the beginning.

CAUTION: If your tape ha~ a leader WIth
no magnetlc coatlng on the first few lnches
of the tape, advance the tape for a few
seconds. Otherwise you run the risk of not
recordIng the fIrst part of your program.

* Type the follOWIng direct order on your keyboard:

.av. "cs.polygon" <RETURN)

Chapter 2 - -41- GETTING STARTED

* The message Pre •• record & play on Tape WIll
appear on your screen.

* Press RECORD and PLAY on your Tape UnIt. SavIng
a'short program l,Ke polygon shoulD only take
about 15 seconds.

* When your program is oelng saved, tne screen WIll be
blank.

* When your program has been saved, tne message:

snould appear.

* It IS strongly recommendeD that you repeat thIS
process, makIng a second baCKUp COpy. It WIll
probably be most convenIent to do thIS on thE O~her
side o~ your tape If you use 10 or 15 mInute data
cassettes. If you use longer tapes, It WIll
probably be best to do It rIght after the first
recordIng, to aVOId the tIme-consuming reWInd.

Most experIenced programmers save theIr
program file every 15 minutes or so while
working. It's a good Idea to save your
p,-ogram whenever you have compl eted more than
you would carE to lose In case of a power
loss or other aCCident. It IS wIse to save 2
workIng copIes: the current copv
and the prevIous copv. WIth a tape
recorder you mIght 00 thiS by reversIng SIDes
of your short oata tape every tIme you save
your program. That way, Ii sometnlng goes
wrong ,a power down durIng the save COUlD oe
bad news'), you can read In the prevIous
version to get things movIng again.
When your program IS completeD ana oe­
bugged, then you would want to make~least
two copIes of the ~Inal wor;ong version: an
orIgInal workIng yerSlon and a bacl,:up.

* Now label your tape, so you know what you nave:
ThiS takes a few seconds extra tIme now, but It
could save you a hassle later, lookIng for a
"mIssIng program".

Using a Di.k Drive:

You will need to use the storage diskette whIch you
prepared earlier. If you dIdn't do thIS, follow the
directions for dOIng so In the last sectIon of Chapter 1.
Then proceed as follows:

* Insert the storage diskette Into the DIsk drIve.

-42- GETTING STARTED

* Now type the following message on your keyboard:

* The drive activity light will go on, and the drIve
motor will be audible for a few seconds as a copy of
your program is saved to the diskette. You are free
to use whatever name you wish (up to 16 characters).
Of course it is wise to choose names which are
descrIptive and make it easy for you to find your
programs agaIn. Also, it's a good idea to include the
program f1le name as one of the first lines of your
program in a remark statement.

* To be sure that your program file has been saveo as
planned, type dir (or cat) and press <RETURN>.
This w1ll show you a directory (or catalogue) of
what's stored on the diskette, how many blocks eacn
program takes up (1 block = 256 bytes), and how many
blocks are unused (XXX blocks free.).

* An e>:tra backup copy of all 1mportant programs
should always be made on another d1skette •.• just in
case! And while you are developing a program, make a
cOPY of the most recent version every 15 minutes or so
to aVOId loss of work in case of a power failure or
other unexpected event! It 1S best to have two recent
copies stored, just in case.

* Be careful to label your d1skettes (do it at once').
That way you have a better chance of find1ng YOLlr
programs again. Once you start writing lots of
programs, your dlskettes will multiply like mIce!

It is also posslble to save your
Th1S can be done using a form of
descrlbed in connection with the
fIle handlIng in Chapter 6.

procedures 1ndivldually.
the LIST order. it 1S
discussion of more advanced

REVIEW

In th1S chapter you have been presented w1th information to
nelp you:

* issue orders d1rectly from the keyboard
* correct tYPIng errors
* use the cursor control keys
* use turtle graphics
* write SImple programs USIng pro,edures
* use automatic line number1ng
* use a Datassette tape unit or a disk drive

.~
~
for storage

You should have made a special note of the following concepts:

* 6510 (6502) microprocessor code
* high level language orders
* d1rect execution vs. programmed (deferred) execution
* the total turtle trip theorem

•

-43- GETTING STARTED

... printing of text and numbers on the text screen

... calling of procedures

... using procedures with var1ables

... using a simple loop block

The followIng COMAL orders and keywords have been presented 1n
th1s chapter:

... PRINT <text or numbers>

... ZONE (spacing)

... forward«steps»

... back «steps»)

... rlght«degrees)

... leftl<degrees»

... penup

... pendown

... USE <package.>

... clearscreen

... home

... splitscreen

... showturtle

... hideturtle

... pencolorl<color»

... background«color»

... setheading«degrees»

... WHILE - DO loops

... KEY$ - (checks the keyboard buffer)

... chr$(O)

... AUTO - (for automatic program numberIng)

... RUN - Ito execute a program)

... END - (to mark the end of a program)

... II - (to Insert remarks in your program)

... FOR - DO - END FOR loops
* INPUT "<Input prompt>": <.varlable list..'
* NULL - an order which does nothing at all

If you have worked through th1s chapter, vou should De
prepared for the more advanced descriptIon of COMAL
programming which follows In tne comIng chapter. It can be
helpful to keep in mind that programmIng can really be boiled
down to three fundamental elements:

... Action blocks are groups of InstructIons WhIch input
data. perform calculations, draw a p1cture, output data or
carry out some other process 1n the program •

... Loop blocks are groups of 1nstructions WhICh are repeated
a number of tImes. The FOR - DO - ENDFOR sequence ana the
WHILE - DO constructIon are two of several types of loop
blocks avaIlable in CDMAL .

... Branch blocks are InstructIon sequences WhIch include
decisions about WhICh orders to carry out next. You w1l1
learn more about thIS type of instruction in the next
chapter.

-44-

-45-

PROGRAMMXNG WXTH COMAL

This chapter is intended to serve as an introduction to how
to use COMAL for writing programs. COHAL concepts are
introduced steo by step without treatIng eacn concept In
depth at this stage. Examples are provided ~o illustrate
each new concept. We will carefully commen~ on selected
programs to exolain how they operate.

We have attemped to select the examples so that they no~
only treat selected COMAL tooics but also illustrate your
Commodore 64's many facilities. Some examoles nave been
chosen to provide a more through treatment of earlier
mentioned COMAL statements. This chaoter progresses trom
quite easy to more advanced programming technloues. Tne
concept of the al~orithm is introduced late 1n the
chapter. and we have made a special effort to illustrate the
power of COMAL's structured programming alaS.

It is not our intention that you should be satisfied after
trYing our program examples and exerCIses. They should be
considered to be guideposts to help you find your waY as YOU
begin to use COMAL. There is a oreat deal to be explored.
Don't be afraid to strike out on your own to experiment with
your own programs. (ou can return to the tutorial and
fallow it agaIn after satisfvIng your curiousitv. Manv
other books about COMAL are becoming available. Tryout
programs YOU find there or in users group publications.
More and more articles on CDMAL will apoear in popular
computer magaZInes as news of th:s exciting lanouaoe
spreads. The best possible way tp become prof1cient at this
languaQe will be to use it to write programs which can helD
vou in your education, professional work or for
entertainment.

4It ACQUIRE GOOD PROGRAMMING HABITS

Everyone who writes programs will sooner or later develop
his or her own programming 'style'. In the beginning,
however, it can be helpful to follow a few guidelines. You
may want to keep the followinQ points in, mind when you set
out to solve a new programming problem:

* Type new to delete any earlier program from working
memory.

* Then type auto 100 to engage automatic line
number1ng.

* Go right ahead with the main program. Express the
problem to be solved as a list of 'procedures' to be
carried out. It may be a good idea to Include them in
a LOOP, •• ENDLOOP structure, if thev are to be repeated
again and again. Don't worry too much about making
errors. COMAL's flexible editing facilities will make

Chapter 3 - -46 - PROGRAMMING

it easy to straighten things out later.

* When the structure of the main program sequence is
clear, procede to begin writing the indivldual
procedures. If a particular task is complex, break it
down into smaller procedures. This technique is called
'top-down' design.

* LIST your program often to be sure that it looks like
you expect it to. This will not always be the case'
Use renum to make room for extra instructions if
necessarv. Don't worry about line numbers. Use
renum often to clean things up.

* As your program nears completion, or yOU have completed
a large procedure, execute a scan of vour program to
check for correct structure.

* After listing and scanning correct possible errors
using the CONAL editing orders. Check ADpendix C for
further information an how this is dane. Be careful to
make backup-coDies of your program from time to time;
this is quick and easy to do using CONAL.

* When your program appears to be error-free, try it out
by tvping the order run. Nost often the program can
be stopped again bv simply pressing <RUN/STOP>. If
this doesn't work. try pressing <RUN/STOP> and
<RESTORE) (corresponding to "reset").

* When your program is completed and checked, save a copy
on your diskette or tape for use later. The order
save "<programnavn)" can be used if you have a disk
drive. or use save "cs:<programnavn)" for a
Datassette tape unit. (Don't forget to make a backup!)

Please note that in the following pages all
programs are shawn as they will appear after a
scan has been issued. During program entry you
need not worry about uDper/lower case (except of
course in text names). Nor do you need to include
extra blanks to emphasize orogram structure. The
COMAL system will take care of this for you when
vou scan the program.

A FIRST CALCULATION

The first example illustrates how the computer handles
numbers:

Program 11

ne ...
auto 100

Chapt.,. 3 - -47 -

0100 II comput. an av.,.a;.
0110 numb.,.a.-7
0120 numb.,.b.-l~
0130 av.,.a; •• -Cnumb.,.a+numb.,.bl/2
0140 PRINT "Th. av.,.a;. of the numb.,.s"
01:50 PRINT numb.,.a,"and",numb.,.b
0160 PRINT "is";av.,.a;.
0170 END

PROGRAMMING

After entering the program check it using scan and li.t.
Correct any e,.ro,.s.

Type ,.un then press the (RETURN)-kev (or just press <f7».

Not •• about p,.o;,.am 1.

The two 1/ slashes in line 100 indicate. that the 11ne is
a comment line which the svstem will not process.

Computers "remember" numbers and other Quantities bv means
of variables: A variable is a name which can represent a
numerical value. p,.o;,.am 1 contains 3 variables:
numb.,.a, numb.,.b and av.,.a; ••

In line 110 the variable numbe,.& is assigned the value
7, and in line 120 the variable numb.,.b is assigned the
value 1:5. Thus variables are given values by means of the
COMAL assiQnment operator :-. The svmbol := 1S aiso
called a dynamic eauals sian.

If you use an orainary eaualitv sign - wnen
typing in a program, the COMAL system will replace
it by the dynamic equals sign after a SCAN or RUN
order has been executeo.

A variable name must always begin with a letter ana mav
consist of a maximum of 80 characters (i.e. letters, numbers
or special characters). If a name is terminated with ., •
or (l, it has special meaning, as will be clarified later.
The symbols a, a., a. and aC) are all considered to
represent the same name within a oiven context.

Chaptllr :5 - -48 - PROBRAHI1INB

In line 130 the expression (numbara+numbarb)/2 (meaning
add numbara and numbarb. and then divide the sum by 2)
is calculated. Then this value is assigned to the variable
avaralila.

NB: The order of the variable and the expression is
important. The expression on the right hand side of the
assignment operator is computed first. then the variable
on the left is assigned this value.

Reversing the order of the variable name and the expression
will cause an error message to appear when the program line
is entered.

Lines 140 to 160 display the result using PRINT statements.
Notice how easy it is to combine numbers and text on the
screen.

In line 140 the text between the quotation marks is printed.

In line 150 the valua of numbara is printed first. Then
comes the text and. and finally tha valua of numbarb.
Notice the use of the semicolon (I) between the numbers
and the text. The semicolon is not printed. but it is
needed as a separation mark between the different parts of
the line.

In line 160 the text ia followed by the valua of averalila
is printed.

Note in connection with this example that:

* The printout starts on a new line after each PRINT
statement.

* It is not the na .. of a variable but its valua

•

•

- 49- PROGRAMMING

which is printed.

In line 170 the program is terminated by the statement END.

1. Modify the program, 50 that numbara is assigned the
value :5.

2. Try other values for numb.ra and numbarb.

3. Add a new line to the program:

105 PAGE

What effect does this order have~

4. Place a semicolon (I) at the end of each of the lines
140 - 160. RUN the orogram. and note that; Ylelds
one space between items.

5. Trv to write a program which comoutes the average of
three numbers. Be sure that the printout 1S correct.

THE INPUT STATEMENT

In the orevious examole we saw a program in which the
computer did a numerical calculation and printed out tne
result on the screen. In order to compute the average of
two numbers. it was necessary to change two llnes in the
program when each new average was to be calculated

Now we will see how to change these Ilnes once and for all
so that the program can compute the average of anv two
numbers we choose w1thout chang1ng the program every t1me.

Program 21

Program 2 is ava1lable on the demo d1skette. You can copy
it into working memory by using the orDer load "ProQram
2", or type it in as follows:

n.w
auto 100

0100 II computinQ an avaraQa
0110 INPUT "Ent.r th. 1. numbar "I numbara
0120 INPUT "Ent.r th. 2. numb.r "I numb.rb
0130 av.rag.I-(numb.ra+numbarbI/2
0140 PRINT "Tha av.raQ. of th. numb.ra"
01:50 PRINT numb.ra,"and",numb.rb
0160 PRINT "ia"lav.raQa
0170 END ".nd!"

Check that the program is correct. then execute it using the
command RUN.

List the program and notice how using the INPUT statement
allows the program variables to be assigned a value while

Chapt.r 3 - -50- PROGRAMMING

the program is beIng run.

Thus it is not only possible to print out variable values
from a program. but also to read values into a program.

Not.sl

it Program execution is stopped by .n INPUT statement
until the user responds. In Program 2 it is necessary
to tvpe in a number in response to each INPUT statement
followed by a <RETURN>.

it The text of the INPUT statement must be terminated by a
colon \11 before the variable. All other characters
will result in error messages.

El<erc:i ••• :

1. Add a line with the order PAGE to the program. so the
sc:reen is cleared at the beginning of a run.

2. It is also possible to send the output to a printer. if
available.

Add the lines

13:5 SELECT OUTPUT "lpl"
16:5 SELECT OUTPUT "ds:"

Run the program again and see what happens.

Line 135 directs the output to the printer. and lIne
165 brings output back to the display screen.

3. Write a program which computes the average of 3
numbers. The numbers should be read in using INPUT
statements.

CIRCLES

The output from a program can also be in the form of a
drawing. The next program draws circles.

Program 31

new
auto 100

0100 II circl.s ar. drawn
0110 PAGE
0120 INPUT "Enter the 1. radius ". radiusa
0130 INPUT "Enter the 2. radius ". radiusb
0140 sumrad1u •• -radiu.a+radiu.b
01:50
0160 USE graphic.
0170 graphic.creen(l)

•

-51 -

0180 circl.(160,100,radiusa)
0190 circl.(160,100,radiusb)
0200 circl.(160,100,sumradius)
0210
0220 WHILE KEV$-CHR$(O) DO NULL
0230 END

PROGRAMMING

Check the program to be sure it is correct. then run it.

The program consists of an inout section and a calculation
section which is separated from the printout section by the
empty lin. 150. Empty lines can be useful for separatIng
various parts of a program to make the program structure
clearer.

Lines 160 and 170 are necessary to prepare the computer for
doing graohlcs.

Lines 180-200 draw 3 circles all of which have their centers
at screen coordinates (160,100). i.e. about in the middle of
the screen.

The radii of the three circles is apparent in lines 120-140.
If the radius exceeds 99 units. the circle will overlap the
edge of the screen.

The statement in line 220 is described in Chapter 2. Its
purpose is to keep the graphics screen visible until the
user presses any key.

The function KEYS is useful for reading in characters from
the keyboard whlle a program is running. We will treat thIS
function again later.

Note:

It may turn out that the "circles" look more like egq-shaped
curves than circles. This ohenomenon is due to the
adjustment of the screen displays height/width ratio. If an
adjustment is available, you may wish to make use of it so
that circles appear correctly on the screen.

1. Correct the program sO that the third circle is drawn
with a radius equal to the difference between the two
radii. You should also change the name of the variable
sumradius'

2. Experiment with the use of other arithmetic operations
in line 140.

3. Move the centers of the circles.

4. Add instructions so that more circles with other radii
and centra are drawn.

5. The center of the circles can also be read in as an
input statement.

For example add the line:

Chapter ::s - - 52-

1::S:S INPUT "C.nt.rl X,V - "I ICc,yc

Correct lines 180-200 to:

leo circle(xc,yc,radiu.a)
190 circle(lCc,yc,radiu.b)
200 circl.(xC,yc,.umradiu.)

Run the program.

PROGRAMMING

Note that it is necessary to respond with two values
separated by a comma <,) in the new INPUT statement.

6. The circles can be filled with colors. Use the order
fill(lC,y) to do this, where (IC,y) must be the
coordinates of a point Inside the closed figure which
is to be colored in.

For example if Pro;ram ::s is extended with the lines:

202 pencolor(2)
204 fill (160,100)

the innermost circle will be colored red. Try it!

7. Trv to color other regions of screen by changing the
coordinates in line 204.

For example change lIne 204 to:

204 fill(O,O)

What happens?

8. Now try to color other areas on the screen. Change the
number in the p.ncolor order in line 202 to employ
other colors. See the color code table in Appendix &.

PROCEDURES I

When writing extensive COI1AL programs, it is particularly
important to make use of orocedures:

A procedure is a "subprogram" which can be called from the
main program or from another procedure. It can perhaps best
be illustrated by means of some examples. Pro;rAm 4 is
available on the demo diskette (and tape), or it may be
typed in:

PrOQrAm 41

ne"
auto 100

Chapter 3 - -53-

Ilfilled circle. and .quare.
.tart'graphic.
draN'.quareC10,10,300,1BO,brown)
draN'circleC160,100.70,yellow)
draw'squareC100,~O,~0.~O,purple)

draw'circle(12~.7~.20,orange)

WHILE KEyS- DO NULL
END

PROC start'graphic.
USE graphics
graphic.creen(l)
brown.-B
yellow.-7
purple.-4
oranQe.-l0

ENDPROC start 'graphics

PROGRAl'lHING

0100
0110
0120
0130
0140
01~0
0160
0170
01BO
0190
0200
0210
0220
0230
0240
02~0

0260
0270
02BO
0290
0300
0310
0320
0330
0340
o:s~o

0360
0370
0380
0390
0400
0410
0420
0430
0440
0460

PROC draw'.quare(xmin,ymin.xside.yside,color)
pencolor(color)
moveto(xmin.ymin)
draw(xside,O)
draw(O.yside)
draN(-x.ide,O)
draw(O.-ysid.)
xpoint.·xmin+.~*xsid.
ypoint •• ymin+.~*yside
paint (xpoint.ypoint)

ENDPROC draw'square

PROC draw'circle(xcenter,ycenter.radius.color)
p.ncolor(color)
circle (xcenter,ycent.r.radius)

ENDPROC draw'circle

Run the program: afterwards we"ll take a look at how the
program works.

Program 4 consists of:

Th. main program
Three procedures:

start 'graphic.
draw'.quare
draN'circle

(1 i nes 100-180)

(l ines 210-280)
(1 i nes 300-400)
\lines 420-460)

Notice that a procedure is called by its name. sometlmes
followed by parentheses with a list of parameters to be
transferred to the procedure.

The procedure itself is built up as follows:

Chapt..r 3 - - 54- PROGRAMMING

PROC <name)«a>.<b).<c) ••••)
<statement 1)
<statement. 2)

ENDPROC <name>

Recall that sharp brackets < > around a word
mean t.hat the word and t.he brackets can be re­
placed by names or statements of the users choice:
E.g. <name) could be replaced by the name ~
start.';raphics. printout or something else
describing t.he purpose of the procedure. The no-
tatlon <statement no> stands for a legal COMAL
statement.

The main program consists of a comment line followed by 5
lines which all call procedures.

In line 110 the main program just calls the procedure with
the name st.art.';raphics, and the computer proceeds to
execute the statement in this procedure.

When the computer has carrled out the statement.s in the
procedure. 1t returns to the ma1n program and goes on to the
next line.

In line 120 the procedure with the name draw'square
called. In this case it is not only called by name
with a pair of parentheses containing some numbers.
numbers are separated by commas I,).

is
but also

The

There must be exactly just as many numbers in the call as
there are variables in the parentheses following the
procedure name.

draw'square(10 ,10 ,300 ,lBO ,brown)
PROe draw'square(xmin.ymin,xside,yside,color)

Not.es.

* The variable brown has the value B. It received that
assignment during the execution of the procedure
start.';raphics.

* During the execution of draw'squar. the procedure
will use t.hese values:

xmin.-l0
ymin.-l0
ICside.-300
ysid •• -1BO
color.-brawn

* Now t.he computer can carry out the instructions in the
procedure draw'squar., for the values of all
variables are now available.

•

-$- PROGRAMMING

• The procedures draw'aquar. and draw'circl. consist
of a sequence of graphics orders. Use the index to fInd
detailed descriptions of these orders.

• Next the procedure draw'aquar. computes the midpoint
of the square in lines 370 and 380.

* When the computer has completed execution of the
procedure draw'aquar., It returns to the next line in
the main program.

• In line 130 the procedure draw'circl. is called then
executed.

* In lines 140 and 150 the procedures are called again,
but this time other parameter values are used.

• A procedure can be called many times with various
parameter values if desired. This IS one of the great
advantages of using a procedure.

1. Try to move the circles and squares around the screen
by changing the two first numbers in the procedure
calls. These numbers stand, respectively, for the
center of the circle and the lower left corner
coordinates of the square.

For example try moving the last square and CIrcle Into
the middle of the screen:

140 draw'aquar.(13~.7~.~0.~O.purpl.)
150 draw'circl.(160,100.20.brown)

2. The lengths of the sides of the squares can also be
changed. Change the circles' radii.

3. Add other colors. See the color codes in Appendix B.

4. Other circles and squares can be drawn bv adding new
program lines to the main program containing procedure
calls. Try it.

5. Try writing a procedure yourself which can draw a
triangle and fill it up with a color. Add a program
line which calls your procedure.

COMAL AND TEXT

The next example. Program S. IS also composed of a main
program which calls two procedures:

Main program
Procedure r.ad'in
Procedure print 'out

(100 - 160)
(190 260)
(280 460)

Before we enter this program, try it out and study it, we
must be familiar with the concept of a string.

Ch.pt.r :s - - 56- PROGRAI'II'1IN6

A string constant is a text enclosed in quotation marks.
E.g. "John", "billinljl cod." and "h. h •• 7 ••• 1

So far all the variables we have worked with have been
number variables. It is also possible to define variables
which contain sequences of letters, special characters and
digits. Such variables are called string variables.

String variables can always be recognized because they end
with a dollar sign ($). Examples of string names are:

n.m.$, city$, country$

When a string is to be assigned a value, a declaration
statement must occur early in the program to assure that
enough room is reserved in memory for the string. This is
also refered to as dimensioning the string variable.

Ex.mpl •••

DIM n.m.$ OF 20
DIM city$ OF 2:5
DIM country. OF 40

(room for up to 20 characters)
(room for up to 25 characters)
(room for up to 40 characters)

Now the string variables may be assigned text values (string
contants) :

name$.-"Jon.th.n Do."
city$I""London"
country$.-"Engl.nd"

Not.sl

* Text must always be enclosed between Quotation marks
(..) .

* The text need not be as long as the maximum space
specified in the declaration statement.

* A text variable can contain both large and small
letters, spaces, digits and certain special characters
(,.I<>7! •• X'+-'I-). On the Commodore 64 it can also ~
include the graphics symbols. When we refer to ~
characters we mean any of the above.

In Proljlram ~ we will practice the use of procedures and
learn more about strings and string variables. In addition
we will also try using the semigraphics characters of the
computer. They can be seen on the front side of most keys.
See Appendix D for more about the use of the keyboard.

Pay particular attention to the procedure print'out if you
will be typing in the program instead of reading it from the
demo diskette Dr tape:

* Line 310: 2 spaces and 36 <C- a> characters.

* Line 320: 2 spaces, 1 <C- j>,
34 spaces and 1 <C- 1> character.

* Line 400: 2 spaces and 36 <C- u> characters.

•

Chapter 3 - - 57 - PROGRAMMING

(NB: <C- 0> means: hold down the Commodore key, while
pressing the o-key.)

Program :51

new
auto 100

0100
0110
0120
0130
0140
01:50
0160
0170
0180
0190
0200
0210
0220
0230
0240
02:50
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460

II read'in .nd print'out of text
DIM name$ OF 2:5
DIM from$ OF 2:5
DIM text$ OF 30
read'in
print 'out
END

PROC r •• d'in
PAGE
PRINT "Write a message:"
INPUT "The l.tter i. to ", nam.$
INPUT "The letter is from ": from$
PRINT "Th. m •••• g. can filion. lin •• "
INPUT "Start herel"l text$

ENDPROC read' in

PROC print 'out
PAGE
PRINT
PRINT "
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT AT 4,61 "To "In.m.$
PRINT AT 6,61 t.xt$
PRINT AT 8,61 "Be.t reCjlard."
PRINT AT 9,61 from$
CURSOR 20,1

ENDPROC print'out

In the main program the first statements declare the
variables name., from$ and text$. Then the procedure
read'in is called. It allows for the input of values for
the text variables.

When the read-in procedure is completed, the computer
returns to the main program. In the next line execution is
directed to the procedure print'out, which prints out the
message inside a frame.

Note. I

* A new version of the PRINT statement is used:

Chapter 3 - -~- PROGRAMMING

PRINT AT <line>,<column>.

E.g. in line 440, where the from$ text is specified
to begin on line 9, in column 6. This syntax makes it
possible to place text or numbers anywhere on the
screen.

* Line 450: CURSOR 20,1

CURSOR <line>,<column> places the cursor anywhere on
the screen, but no message is printed.

* See also INPUT AT, which is used in Progr.m 10.

1. Run the program a few times with different messages to
get an idea of how the program operates.

2. If a printer is available, one can get a hard copy of
the text screen by pressing <CTRL P>:

When the program has finished running, and the text is
ready on the screen, press P while holding down the
<CTRL)-key.

3. Try revising the program so that text variables can be
read in and printed at various positions on the screen.

Here is a BRIEF REVIEW of the foregoing infor-
mation on strings and text:

1. A computer can work with
This is done using number variables and text
variables. Text variables can be recognized
because they always end with $.

~
numbers or with words. ~

2. Variables can be given values:

* bv assignment statements 1-

* in p.r.nt •••• in procedure calls

3. Text can be written on the screen by means pf
PRINT statements. (It can also be done in
other ways, e.g. in the text segment of an
INPUT statement, as we have seen.>

4. Drawings can be made on the screen using
graphics orders from the graphics packages
(u •• Qraphics or u •• turtl.>, or by means
of the semi graphics character set, which is
shown on the front of the keys.

5. If a program is more than a few lines long, it
should be composed using procedures. A
procedure is a 'sub-program' which can be used
many times from the main program or from other
procedures. We'll be studying more on the use
of procedures later in this chapter.

•

Chapt.r 3 - - 59 - PROGRAMMING

BRANCHING. CONDITIONAL EXECUTION

The computer can also distinguish between express10ns, which
are true or fa1... Such expressions are called
logical expressions. Some examples:

7-2 1S a logical expression, which both we and the
computer would consider fa1 ••.

23<34 is a true logical expreSS10n.

Whether or not the logical expression numb.r>10 1S
true or fal •• can not be determined before we know
the value numb.r.

COMAL contains the two looical constants TRUE and FALSE.
which have numer1cal values 1 ana 0 respectively.

In the following examples we have illustrated how the
computer can be made to execute various statements according
to whether a 10g1cal expression is true or false.

Program 61

0100 II fi nd the maximum
0110 PAGE
0120 PRINT "Th. maximum of two numbersl"
0130 PRINT
0140 INPUT "Writ. the 1 • numb.r "I a
0130 INPUT "Writ. the 2. numb.r "I b
0160
0170 maximuml-a
0180 IF maximum<b THEN maximuml-b
0190
0200 PRINT
0210 PRINT "Maximum is " ,maximum
0220 END

The new construction occurs in line 180: IF - THEN

It is an example of a branch. also called condit10nal
execution. In this case the construction means:

"IF the variable maximum is less than the variable b.
THEN maximum is set equal to bU.

The computer evaluates the logical express10n maximum<b.

IF it is true, the computer will execute the statement
following the order THEN. This is often described by
saying: the condition between IF and THEN must be
fulfilled.

If the condition is not fulfilled, the computer simply
proceeds on to the next program line.

Chapter 3 .;. - 60- PROGRAMMING

It is often the case, however, that it is desirable to have
several statements executed when the condition is fulfilled,
while other statements should be executed if it isn't. This
situation is handled in COMAL by using a new structure:

IF THEN - ELSE - ENDIF.

IF <condition> THEN
<statement 1>
<statement 2>

ELSE
<statement a>
<statement b>

ENDIF

Lines 170 - 180 in Pro;ram 6 could thus also be written as
follows using this IF-construction:

170 IF a<b THEN
172 maximuml-b
174 ELSE
176 malCimuml-a
180 ENDIF

Proqram 71

new
auto 100

0100 II ri;ht or wron;
0110 DIM text$ OF 10
0120 PAGE
0130 PRINT "Bue •• my numberl 1, 2 or 3"
0140 INPUT "Try your luck "Ian.wer
OH50
0160 RANDOMIZE
0170 my'numberl-RND(1,3)
01BO
0190 IF an.wer-my'number THEN
0200 text$I-"CDRRECT"
0210 ELSE
0220 text$I-"WRONG"
0230 ENDIF
0240
02:50 PRINT
0260 PRINT "My number lola. ",my'number
0270 PRINT "The gue •• _. ",an.wer
02BO PRINT
0290 PRINT "Bo the ;ue •• lola. ",text$
0300 END

Note. on th1. program.

* Lines 190-230: Note the IF - THEN - ELSE - ENDIF
structure, described earlier.

- 61 - PROGRAMMING

* Lines 160-170: the computer is able to generate a
random number with the orders RANDOMIZE and RND:

RANDOMIZE causes the computer to position a pointer at
a "random" position in an array of random numbers.

In my'numb.rl-RND(1.3) the variable my'number is
set equal to a random (RaNDom) value 1, 2 or 3.

The range of numbers can be changed. E.g. RND(-10,10)
will randomly generate one of the numbers: -10,-9,-
8, ••• ,0, ••• ,8,9,10.

1. Experiment using other number ranges 1n the RND
function.

2. Try removing the statement RANDOMIZE and run the
program several times. What happens?

THE CASE STRUCTURE

If one must distinguish among many condit10ns at the same
time, then the CASE structure is advantageous to use. It
is built up as follows:

WHEN <i.value>
<statement 1a,>
<statement lb>

WHEN <2.valuej
<statement 2a>
<statement 2b>

(additional WHEN-values)

OTHERWISE
<statement a)
<statement b>

ENDCASE

If e.g. (yariable> equals <2.value). then execution proceeds
in the corresponding segment of instructions: <statement 2a>
- <statement 2b>, etc. Then execution continues in the line
after ENDCASE.

If <variable> does not equal any of the given WHEN values,
then execution continues with the statements in the
OTHERWISE segment. OTHERWISE and the state.ents in the
corresponding segment are optional.

This structure is used in the following example, where one
can choose among several different exercises 1n computation.

- 62- PROGRAMMING

Each exercise is given in a procedure. An answer to an
exercise is evaluated in the procedure r •• ult. which is
therefore called from each exercise-procedure:

M.in program - .x.rci •• 1
.x.rc1.e2
.K.rc1 •• 3
.x.rci •• 4

r •• ult
r •• ult
r •• ult
r •• ult

Progr.m 81

n
• uto 100

0100
0110
0120
0130
0140
01:50
0160
0170
0180
0190
0200
0210
0220
0230
0240
02:50
0260
0270
0280
0290
0300
0310
0320
0330
0340
03:50
0360
0370
0380
0390
0400
0410
0420
0430
0440
04:50
0460
0470
0480
0490

II Comput.tion .K.rci •••
PAGE
PRINT "Choo ••• n .x.rci ••• "
PRINT
INPUT "Which numb.r (1 - 4) ". numb.r

CASE numb.r OF
WHEN 1

.xerci •• l
WHEN 2

.K.rci •• 2
WHEN 3

.x.rci •• 3
WHEN 4

.K.rci •• 4
OTHERWISE

PRINT "You h.ve cho •• n .n incorr.ct numb.r."
ENDCASE

END

PROC .x.rci •• l
PRINT
INPUT "INT(7.3+3.2 DIV 2) - "I .n r
corr.ct.-INT(7.3+3.2 DIV 2)
r •• ult(corr.ct •• n r)

ENDPROC .x.rci •• 1

PRDC .x.rci •• 2
PRINT
INPUT "3-30/2+12 - " •• n r
corr.ct.-3-30/2+12
r •• ult(corr.ct •• n r)

ENDPRDC .x.rci •• 2

PROC .K.rci •• 3
PRINT
INPUT "4.2:5+2.:5/:5*2 " •• n r
corr.ct.-4.2:5+2.:5/:5*2

Ch.pter :5 - - 63-

r.sult(corr.ct,.nsw.r)
ENDPROC .x.rcis.:5

PROC ex.rcis.4
PRINT
INPUT "34 MOD 10-2*:5 - " •• nsw.r
corr.ct.-34 MOD 10-2*:5
r.sult(corr.ct,.nsw.r)

ENDPROC .x.rcis.4

PROC r.sult(corr.ct,.nsw.r)
PRINT
PRINT "The .nsw.r is. ";answer

PROGRAMI'IING

0:500
0:510
0:520
0:530
0:540
0:5:50
0:560
0:570
0:580
0:590
0600
0610
0620
0630
0640
06:50
0660
0670
0680
0690
0700
0710
0720

PRINT "Th. correct .nsw.r is. ".corr.ct
PRINT
IF .nsw.r-corr.ct THEN

PRINT "You answ.r is right! ..
ELSE

PRINT "Wrong. Plea.e try .g.in
PRINT "Ch.ck Appendix C. c.lcul.ting with COMAL."

ENDIF

ENDPROC r.sult

Not.s.

A procedure may be called from another procedure, as well as
from the main program. For example re.ult is called from
the .x.rci •• procedures.

Ex.rcis.s:

1. Try responding to some of the exercises in the program.

2. Create a new exercise 5:

Write a procedure .x.rcis.:5.
Add the new WHEN value in the CASE structure.
Remember to change the INPUT statement.

3. Write a program which prints out different messages.
The messages should depend on the value of the variable
which is entered.

REPETITION AND LOOPS @
Repetition is one of the fundamental building blocks of
programmi ng. The computer is uni quel y well-sui ted for -' .'
repeating operations over and over again. In COMAL there
are several different statements which can accomplish
repetition. These statement combinations are classified as
loop blocks or simply as loops.

The first example shows how the computer be made to repeat a
set of orders a certain number of times:

R.p.at <these statements> 100 tim.s.

This is accomplished with a FOR - ENDFOR loop:

-64-

FOR <no>:=<start> TO (end> DO
<statement a>
< statement b>

ENDFOR <no>

PROBRAI'II'1INB

Statements a, b and so on are repeated «.nd)-(.t.rt)+l)
times:

the first time <no> equals <start>
the second time <no> equals <start>+l
the third time <no> equals <start>+2

the last time <no> equals <end>

Progr.m 91

n
• uto 100

0100
0110
0120
0130
0140
01:50
0160
0170
0180
0190
0200
0210
0220
0230

II inv •• tiQ.tion of RND
USE tjlr.phic.
tjlr.phic.cr •• n(O)
... r.p
... indo ... CO, 1000.-10. 10)
mov.toCl000,0), dr to(O,O)

FOR nOI-O TO 1000 DO
numb.rl-RNDC-10, 10)
mov.toCno,O) , dr CO.numb.r)

ENDFOR no

WHILE KEV$-CHR$CO) DO NULL
END

The program illustrates graphically how "random" numbers
generated by the RND function can be distributed. NotIce
the loop block:

line 170-200: the FOR - ENDFOR statement.
The loop is repeated 1001 times.

The statement can be extended using the STEP parameter:

FOR <no>:=<start> TO <end> STEP <steps> DO

where STEP causes <no> to take on the values: <start>,
(start+steps>, <start+2*steps> etc. The loop ends when
<no> exceeds <end>.

If the STEP parameter is left out (as we have done so far),
then STEP is automatically set equal to 1.

In addition to the graphics statements which we already have
become acquainted with, the program contains some new
statements. Their use is explained in detail in Chapter 5

•

Chapter ;$ - - 65- PROGRAHI'IING

in the section on graphics.

Finally we can take a closer look at the statement in line
220. Here is also an example of repetition:

In the WHILE - DO statement. the computer checks the
keyboard again and again, until any key is activated.

The keyword KEV$ is a function which outputs the last
character which was sent from the keyboard. If no key has
been pressed. then (ASCII code 0) is returned. KEV$
will thus continue to return "" until any key is pressed.

while (no key is pressed) do (nothing>
WHILE KEV$-CHR$(O) DO NULL

But the most common use of the WHILE statement is in a loop
block extending over several lines:

WHILE <condition> DO
<statement a>
<statement b>

ENDWHILE

If the <condition) between WHILE and DO is fulfilled. the
computer goes ahead with statements a, b, etc. These
statements are executed one after the other until something
occurs in the statements so that the condition is no longer
fulfilled. Then program execution jumps from the WHILE-DO
line to the line just after ENOWHILE.

See the word WHILE in the index to find a more detailed
description of how this construction can be used.

Another often encountered loop structure is the REPEAT -
UNTIL construction:

REPEAT
<statement a>
<statement b)

UNTIL <condition>

The statement list is repeated until the' <condition> is
fulfi lled.

In the next example, Prooram
determines how long the user
letters in a "secret" word.
the use of strings in COMAL.

The prooram structure.

10, this type of loop
can continue to guess the
The example also illustrates

The main proGram .elect'word
new 'letter

-66- PROGRAMMING

Program 101

ne~

auto 100

0100
0110
0120
0130
0140
01:50
0160
0170
0180
0190
0200
0210
0220
0230
0240
02:50
0260
0270
0280
0290
0300
0310
0330
0::540
03:50
0::560
0370
0::580
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
OSlO
0520

II ward guessing
PAGE
select 'ward
numberl-O

REPEAT
numberl-number+1
ne~ 'letter

UNTIL answer$-remember$

PRINT AT 20,51 "Now finished"
PRINT AT 21,51 number I "letters have been used."
END

PROC select'word
DIM name$ OF 20, letter$ OF
DIM used$ OF 200
INPUT "New wordl "I name$
lenljlthl-LEN(name$)
DIM answer$ OF length, remember$ OF lenljlth .n r •• - 11 _______________________ ..

U •• d$l_ft.'
PAGE
PRINT "GUESS THIS",lengthl"LETTER WORD"
PRINT AT 8,51 "Wordl ",answer$

ENDPROC select'word

PROC new' lett.r
INPUT AT 10,5,11 "New letter "I letter$
u •• d$l-u.ed$+l.tter$

position:-Ietter$ IN name$
IF position>O AND position<-lenljlth THEN

answer$(position)l-letter$
name$(position) 1-"."

ENDIF

PRINT AT 10,171 II "

PRINT AT 8,51 "wordl ",answer$
PRINT AT 12,11 used$

ENDPROC new'letter

Lines 150-180: the REPEAT - UNTIL loop:

When the user has the answer which the computer remembers,
the program continues in line 190.

Notesl

* Line 160: the variable number occurs on bath sides of
the assignment operator 1-. This is legal (and often
done). Remember haw the assignment operator works:
First the expression an the right hand side of the sign
is computed. Then the variable on the left side is
assigned the value computed.

•

- 67- PROGRAf1/'IING

* Line 400: INPUT AT 10.~.1 means that the INPUT
statement must begin on line 10, column ~, and
there must be room for 1 character in the the answer
field. Try to write several answers to see how the
program works. Try changing 1 to e.g. 3, and run
the altered program.

* The branch construction IF - ENDIF begins in line 440
and extends over several lines, ending in line 470.

* Line 440: AND is an example of a logical operator.
It requires that both conditions in the IF - THEN
statement must be fulfilled.

Not. particularly about strings:

* Line 290: The LEN function indicates how many
characters are included in the word. This is how the
l.ngth of the word is determined.

* Line 300: It is possible to use variables in DIM
statements.

* Line 410: Words can be 'added together' using the +
character. This process is called concatenation of
strings.

Example: "cat"+"fish" yields the word "catfish".

* Line 430: IN is a logical operator which acts on
strings. It indicates the first position of the f1rst
character in the search string.

Examples: "ok" IN "cookinQ" yields the value 3.
Iii" IN "cooking" gives the value ~.

If the search string is not contained in the given text
string, then the value will equal 0 (zero).

Examples: "salt" IN "cooking" gives the value O.
"sing" IN "c:ookinQ" gives the value O.

* Line 450-460: One can select particular substrings in a
text by using the position of the substring in the
text.

Example: LET t.lCt:$ •• "cooking"
t.lCt:$(3) is the letter "0".
t.lCt:$(4.7) is the string "king".

* In line 460 the letter found is replaced by a character
which never will occur in a word. This is done to
allow the same letter to occur more than once in a
word. In this case the character selected is ••

ARRAYS. INDEXED VARIABLES

When you have to work with lots of numbers, it can become
time consuming to read them all in and give them diiierent

- 68 - PROGRAMMING

names. Sometimes at least 100 variable names may be needed
when solving one of the following problems, for example:

* Computing the average of 100 numbers
* Determining the maximum and minimum of 100 numbers
* Sorting 100 different numbers

Large collections of numbers can be handled in CO MAL by
declaring an array using a dImension statement as for
example the following:

DIM)((:50)

This statement reserves room for 50 numbers in the
computer's memorv. Each variable will have the same name
)I but a different number:

)1(11,)(2),)(3), •••• ,)(49),)(:50)

Such variables are also termed indexed variables with the
number of each variable called an index.

It is possible (but not common practice) to each of the
indexed variables a value uSIng an assignment statement:

1) 1"'23
)(2).-71
)(3)."'-12.45

)(49):=6
)(50):=0.8:52

In the next program example we wIll work wIth indexed
variables whIch are aSSIgned values by means of an INPUT
statement.

The program draws line segments through the coordinates of a
number of points.

ProQram 11 consists of:

a read-in .ection
a Qraphics s.ction

(line. 110-220)
(I i ne. 270-300)

Prooram 111

0100
0110
0120
0130
0140
01:50
0160
0170

II line seoments
DIM)(:50), y(50)
PAGE
PRINT "A line is draNn throuoh the points. M

PRINT
REPEAT

INPUT "Number of points. ". number
UNTIL number)-2 AND number(-50

Ch .. pt.r 3 - - 69 - PROGRAMMING

PRINT
FOR no.-1 TO numb.r DO

0180
0190
0200
0210
0220
0230
0240
02:50
0260
0270
0280
0290
0300
0310
0320

PRINT "Ent.r x(",no,"),y(",no,").",
INPUT , x(no),y(no)

Not •••

ENDFOR no
PRINT
PRINT "Pre ny k.y to draw the .figure."
WHILE KEY$-CHR$(O) DO NULL

USE Qr .. phic:.
Qr .. phic:.c:r •• n(O)
mov.to(x(l),y(l»
FOR no,-2 TO number DO drawto(x(no),y(no»
WHILE KEY$-CHR$(O) DO NULL
END

* Line 110: Room is reserved .for 50 pairs of x- and y­
coordinates.

* Line 160: The program inquires in an INPUT statement
how many sets of coordinates to be read in. The INPUT
statement is included in a REPEAT -- UNTIL loop which
also assures that at least 2 paIrs are entered. (A
line can't be drawn if only one point has been
entered. l

* Lines 190-220: the coordinate pairs x(ll,y(l)
x(2),y(2) ••• x(number),y(number) are entered In a FOR
- ENDFOR loop.

* In line 270-300 the figure is drawn using graphics
statements.

1. Use the program with a few points.

2. Add a line In the program WhICh WIll place a small
circle around each point. For example try
circle(x(no),y(no),3).

3. Write a program which computes the average of an
arbitrary number of values. The program should include
the following sections:

Enter the number of values.
Enter the values in the array of numbers.
Compute the sum of the numbers.
Average := the sum/number of values.

4. Those arrays which we have handled so far have been arrays
with one index. They are termed one-dimensional arrays.
In CO MAL an array can have two or more dImensions. For
example:

DIM bookc.... (3,4)

The variable bookc: is a two dImensional array.
One can imagine a bookcase with 3 shelves. each with

Ch.pter 3 - -70 - PROGRAMMING

room for 4 i terns. :

:56 17 -3 72
B9 0.:5 14 94

B -6 7B 66

For example with the above values for the elements of
the array:

bookc ••• (2,3)-14 and bookc ••• (3,1)-B

Try changing Pro;r.m 11 so that the one-dimensional arrays
M() and y() are replaced by a two-dimensional array
pointe,). You can begin by changing line 110 to DIM
pOint(:50,2).

Make changes in lines 290-300 yourself.

TEXT ARRAYS

We are not restricted to the declaration of arrays of
numbers. We can also declare arrays which contain strings:

DIM m •••• ;.$(B) OF 20

Room is made of B m •••• ;.$'s. each up to 20 characters in
length:

m ••• a;.$(l)I-"Remember the .un."

m.ssage$(8)1-"Hurr.h! Hurr.h!"

Just as numper arrays, text arrays can have two or more
dimensions.

The next program illustrates the use of a 2-dimens10nal text
array.

The array is declared in line 130:

DIM p.r.on$(50,4) OF 30

It is to be used as an address list for UP to 50 persons.
with 4 items of information about each one:

per.on. (no,l) I-"(n.m.>"
p.r.on$(no,2).-"(str •• t>"
per.on$(no,3).-"(town>"
p.r.on$(no,4).-"(tel.phon. numb.r>"

In this program we will also become acquainted with yet
another way to read in variable values: a DATA statement.

Information can be stored in DATA statements which can be
read using READ statements.

The following statements:

Chapter 3 - -71-

read number,item$,x,p01nts
data 17,"doll",-346,10

repla~e four separate assignment statements:

numberl-17
item$I-"doll"
xl--346
pointlu"'10

PROGRAMMING

Notice here that numbers and strings can be mixed in the
same DATA and READ statements.

The following program consists of,

Lines 120-250: dimensIoning and assIgnments
Lines 270-350: printout of information which agrees

with the search code
Lines 380-500: DATA statements

Program 121

new
auto 100

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
02:50
0260
0270
0280
0290
0300
0310
0320
0330
0340
03:50
0360
0370
0380
0390

II address list
PAGE
numberl-50; nOI-O
DIM person$(number,4) OF 30, text$ OF 30
DIM found(number)
REPEAT

nOI+1
FOR informationa-l TO 4 DO READ person$(no,information)

UNTIL EOD
numbera-no

INPUT "Search fori ": textS
FOR nOI-1 TO number DO

informationa-O
REPEAT

informationl+1
found(no)a-text$ IN person$(no,information)

UNTIL found(no»O OR information-4
END FOR no

PRINT
PRINT "Persons whom the search key fitsa"
PRINT
FOR noa-l TO number DO

IF found(no»O THEN
FOR informationa-l TO 4 DO PRINT person$(no,information)

PRINT
ENDIF

ENDFOR no
END

-72-

0400
0410 DATA "Su •• n H.n •• n"."Lind.b.kk.n 13"
0420 DATA "Silk.borv","06-841723"
0430 DATA "Commodor. D.t.","Bj.rr.v.j 67"
0440 DATA "8700 Hor •• n.","0:5-6411:5:5"
04:50 DATA "J.n Mog.n •• n","Skovg.d. 4"
0460 DATA "1717 Cop.nh.g.n","01-4:56701"
0470 DATA "Knud J.n •• n","Sn.vl.v.j 12 D"
0480 DATA "2820 G.ntoft."," •• c:r.t"

PROGRAMMING

0490 DATA "W •• I.y.n Univ.r.ity","Phy.ic:s D.p.rtm.nt"
0:500 DATA "Middl.town CT 064:51","(203) 344-7930"

Not.5'

* The READ statements need not be placed together with
the DATA statements. The first READ order in the
program begins by reading in the first value in the
first DATA statement no matter where it occurs in the
program. (This can be altered. See the discussion in
Chapter 4 on READ and DATA.)

* In line 180 the function EOO is used to terminate the
reading process. The value of EOO is 0 (i.e.
fals.), until the last data value is read in. Then
COMAL sets it eoual to 1 (i.e. tru.). When the
UNTIL condition thus is fulfilled, the program
continues in line 190.

EKarcis.s:

1. Tryout the program. Try tp understand how it
operates. Trv responding to S •• rch for' with just
<RETURN>. Add new DATA statements.

2. Replace the values in the DATA statements for others of
your own choosing. The program can of course also be
used to file any information vou may choose. For
example you might exchange the variable person$ with
a new variable it.m$ which could represent items in
an inventorv. For example:

it.m$(no,l).-"w.r.hou •• "
item$(no,2),-"stor.g •• r •• "
it.m$(no,3),-".h.lf"
it.m$(no,4),-"it.m"

3. Add a line to the program which prints out the
classification number of the person or item along with
the other information.

4. Add further information about each person in the
address list:

DIM p.r.on$(numb.r.:5)

where for example:

p.r.on$(no,:5).-"<prof ••• ion)"

Chapter :s - - 73- PROGRAMMING

PROCEDURES II

In the section PROCEDURES I we became acquaInted with two
differ-ent ways of using pr-o'cedur-es:

WITHOUT tr-ansfar- of par-amatar-s

Ilmain pr-ogr-am
,st.atements>

nama
<.stat.emenLS/

END
/i
PROC nama

<statemenLS;'

ENDPROC nama

WITH transfar of paramatars

Ilmain program
<statements>

nama(4,"Christina")
<statements>

END
/i
PROC nama(numbar,taKt$)

< .. statements>

ENDPROC nama

If ther-e is a tr-ansfer- of par-ameter-s 1n parenLneses. then
the numoer- and type must Oe 1n agr-eement.:

nama (4 ,"John", fr-om, K () ,logo$)
PROC nama(numbar,taKt$,start,no(),str-ing$)

The number- and type of the actual par-ameter-s 1n the
pr-ocedur-e call must correspond to the number and tvpe of the
formal par-ameters 1n the procedure's parentheses.

4,"John",fr-om,K() ,logos are the act.ual paramet:ers.
numbar,taKt$,start,no(),str-ing$ ar-e the formal par-ameters.

If the parameters ar-e in agr-eement with respect to numoer
and type, they need not have the same name.

We have emphasized that procedures should be used when
building up pr-ograms, because:

* Pr-ocedures can be used agaIn and agaIn 1n dIfferent
parts of the pr-ogram.

* The progr-am will be clear-er- to read, mor-e 10QIcal and

Chapter 3 - - 74- PROGRAMMING

easier to grasp if it has been broken down into
procedures with well-chosen names.

* Procedures can be saved in a procedure library on disk
or cassette tape for use later in other programs.

There are many ways to use pr·ocedu'res. In the following
sections you will find an introduction to the extended use
of procedures and functions:

* In what ways are they similar?
* In what ways are they different?
* How can they be used.

LOCAL AND GLOBAL NAMES

In COMAL one must distinguish between global and local
names. A local v.ariable name - in contrast to a global
name - is only defined and recognized in a limited segment
of the program. For example:

FOR nOI-2 TO numb.r DO
<statements>

ENDFOR no

The variable name no 1S local in the FOR - ENDFOR loop.
It is undefined outside this loop.

In connection with procedures one also refers to local
names. only recognized within the procedure. and global
names which are recognized throughout the program. In
general. parameters listed in parentheses after a procedure
name are local. In addition the procedure may contain other
global and local parameters.

The advantage of local names is that they do not interfere
with other parts of the program and vice versa.

Enter. run and examine the next example with global and
local variable names. Note the values of the quantities
which are printed out.

Program 131

new
auto 100

0100
0110
0120
0130
0140
01:50
0160
0170
0180
0190

II local variable.
a.-lrb.-l
PRINT arb
local'vlobal(4)
PRINT a,b
END

PROC local'vlobal(a)
PRINT alb

ENDPROC local 'global

In the parameter transfers examined so far we have seen a

•

-75 - PROGRAMMING

number of one-way transiers from the main program to a
procedure. In order to permit transfer of local parameters
from the procedure, the parameters must be declared using
a REF prefix. The procedure in the following example shows
how this can be done.

Program 141

new
auto 100

0100
0110
0120
0130
0140
0170
01BO
0190

PROC minmax(a,b,REF min,REF max)
II minimum and maximum are found
IF a<b THEN

min:=&; m&x:-b
ELSE

minl-b; m&xP'a
ENDIF

ENDPROC minmax

A main program which uses thIS procedure might loo~ lIke
thIS:

0010 Ilmain program
0020 tl"'23
0030 .:--41
0040 minmax(t-s,t+s,minimum,maximum)
0050 PAGE
0060 PRINT "t-. "";t-s;"og";t+. -";t+s
0070 PRINT "Minimum, maximuml"lminimum;m&ximum
OOBO END

Exerei •• s:

1. The names are unlmportant. Exchange the variable names
minimum and maximum With a and b respec~lvelv.
Note that thev have no effect on the results. (A change
like this is easIest to make using the command CHANGE:
change "minimum","a " , etc.)

_. After a procedure has been tvped In and checked using
the SCAN command, it can be usee as a dIrect order.

3.

Type the follOWIng dIrectly from the kevboard:

scan
minmax(12/7,7/12,x,y)
print XIY

Try using other values, and try uSIng other procedures
as direct orders.

Make the following changes and run the program:

100 PROC minmax(REF a,REF b)
IB5 a.-min,b.-max

and
40 minmax(t,.)
70 is deleted

Note, that the variables t and s change their value

Chapter 3 - - 76- PROGRAMMING

in the procedure.

Now the procedure can no longer be used in the form
minmax(67,78) with constants in the call. But it can
be used in the form minmax(x,y) if the variables x
and y have been given values in advance:

sc:an
x-1236Iy-2~1
this-(x+y)/xlthat-(x-y)/y
minmax(thls,that)
print "Minimum, maximum. ",this,that

Experiment with the legal as well as the illegal
version.

A particularly elegant property of procedures is that thev
can call one another. A procedure can even call itself.
Such a procedure is called a recursiv procedure.

The next program shows an example of such a procedure uSing
graphics.

new
auto 100

0100
0110
0120
0130
0140
01~0

0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260

II c:onc:entric: filled c:irc:les
USE graphic:s
graphic:sc:reen(l)

draw'C:irc:le(160,100,100,2)

WHILE KEY$~CHR$(O) DO NULL
END

PROC draw'c:irc:le(xc:,yc:,r,c:olor)
penc:olor(c:olor)
c:irc:le(xc:,yc:,r)
p&int(xc:,yc:)

IF r)10 THEN draw'C:irc:le(xc:,yc:,r-l0,c:olor+l)

ENDPROC draw'c:irc:le

In line 240 the procedure draw'c:irc:le calls itself until
r gets too small.

FUNCTIONS

COMAL's built-in standard functions can be used in
computations. We have already used standard functions like
PI, RND, INT, LEN. See Chapter 4 for information on other
standard functions.

Just as it is possible to define procedures using the
constructlon:

PROC - ENDPROC

-77 - PROGRAMMING

you can define yoU~ own functions in COMAL using the
structure:

FUNC - ENDFUNC

P~ocedures and functions have many properties and uses in
common. The next p~og~am shows how functions can be defined
and used to find the roots of analytical functions. The
p~og~am also employs some standard functions.

Ove~view:

main program
function round
function f

\lines 100-350)
(lines 380-400)
\lines 421J-440i

where the functions are built up USing the following
structure:

FUNC (name>«number»
<statement a>
<statement b>

RETURN (computed'expre •• ion>

ENDFUNC (name>

An understanding of the theory behind the method to be used
~equi~es some knowledge of mathematics. However thiS 1S not
essential in order to use the program or to understand the
statements which compose it.

Within the discipline of "informatics" the word algorithm
is sometimes used to describe a formula or a means of
computation. It is an 1mportant part of gOOd programming
practice to provide a complete description of the algorithm
on which a program is based. The description can be glven
in greater or lesser detail depending upon who will use the
program. A minimum reqUirement is of course that the
programmer must be able to understand it later an, if the
program must be corrected or reVised.

There are in fact many tragic examples of substantial waste
of resources, both in government and in private industry,
due to poor documentation of programs.

Program de.criptionl

1. The program searches for roots using the
midpoint method.

2. The program is designed to find a solution to the
equation f(x)-O, whe~e f is a function which is
continuous in the region of interest.

3. The user must be able to provide an Initial guess of
two numbers a and b with the property that f(a)
and f<b) have opposite signs. See the flgu~e which
follows. If this condition is not fulf1lled. the

ehapt..,- 3 - -78 - PROGRAMMING

program will request other numbers.

x

F(B)

4. The midpoint between a and b is found, and the
value of the function in this point is determined.

5. If the value of the function is sufficiently close to
zero, then the program will conclude that the midpoint
is a root. This approximation to the root will be
printed, and the program will stop.

6. Otherwise the program will continue comparing the signs
of values of the function:

If the value of the function in the midpoint has the
same sign as the value of the function in ., then the
root which is sought is assumed to lie between the
mldpoint and b. Therefore the midpoint is set equal
to the new a value as the search proceeds.

If on the other hand the value of the function 1n a
and the value of the function in the midpoint nave
opposite signs, then there must be a root between a
and the midpoint. The midpOint therefore becomes the
new b endpoint.

7. The program then returns to step 4.

8. In this fashion the interval around the root is
narrowed down until the root has been found within the
required uncertainty, or the program is interrupted by
pressi ng <STOP>.

P,-og,-am 161

n.w
aut.o 100

0100
0110
0120
0130
0140
01:50
0160

II .olvino t.h •• quat.ion f(x)-O
PAGE
.'-'-0,-,-1.-04
REPEAT

INPUT "End point. valu •• A,B. ", a,b
UNTIL SGN(f(a»--SGN(f(b»

Chapter 3 - -79 -

LOOP
.i;n'al-SGN(f(a»
.ign'bl-SGN(f(b»
ICmidl-(a+b) 12
ymidl-f(ICm1d)
IF ABS(ymid)(error THEN

PRINT

PROGRAMMING

0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440

PRINT "A solution to the equation =",round(lCmid)
STOP

ELSE
PRINT ,
IF SGN(ymid)-.i;n'a THEN
a:-ICmid

ELSE
b:-ICmid

ENDIF
ENDIF

END LOOP
END

FUNC round(number)
RETURN INT(number*10000+.S)/10000

ENDFUNC round

FUNC fIx)
RETURN 3*x*x+2*x-5

ENDFUNC f

The functIon fIx) itself is defined in the structure FUNC
fIx). It is defined here by means of the expreSSIon
3*x*x+2*x-5. Thus the program must fInd SoiuLlons to the
equatIon:

Experiment with other functions beSIdes this one when trving
out the program.

Notesl

* A new COMAL loop structure: LOOP - ENDLOOP
(cont,nuous repetitIon) is introduced.

* Clarity is enhanced by the use of descrIptive names.

* The standard function SGN«expr ••• ion»:

SGN«expression»=l , if ,expression) 1S greater than 0
SGN«expression»=O • if <expression) equals 0
SGN«expression»=-l, if ,expressionj IS less than 0

* The standard function ABS«.xpr ••• ion» returns the
numerical value of the expression. E.g. ABS(-2)
equals 2.

* The functIon round rounds off the expreSS10n for
number to 4 decimal places.

E.g. round (3. 141593) equals 3.1416

- 80- PROGRAMMING

If 3 decimal places are required, then 10000 can be
replaced by 1000 in this procedure, etc.

There should be a correspondence between the required
accuracy of the calculation specified by the variable
error and the rounding accuracy specified in the
function round by choosing e.g~ 10000. At the very
least no more decimal places than those represented by
the value of error should be returned.

Exercis.s.

1. Run the program with various functions f(x).

Test the program first using functions with well known ~
roots e.g. 2x-6. ~

Use the program to solve equations which can not be
solved by means of ordinary analytical methods:

The equation EXP(x)-x+7 is an example of such a
problem. It is called a "transcendental" equation. It
can be solved using this program by defining the
function f to be EXP(x)-x-7.

2. Functions can also be used as direct orders when thev
have been SCANed. Try for example:

scan
print round(2.71828183)

3. Create a numerical function FUNC average(a,b), which
returns the average of a and b. Try it as a direct
command.

4. Write a function FUNC vowels(text$), which counts the
number of vowels in a given string. Try using it as a
direct order. Hint: take a look at Program 17 for
inspiration.

STRING FUNCTIONS

Functions can be used for other purposes than just
calculating matematical expressions (a job which they of
course do very well).

The functions which we have just worked with are numerical
functions. COMAL can also handle string functions. A
string function is a function which outputs a string instead
of a number. Just as the case of string variables, the name­
of string functions must end with the character $.

KEV$ is an example of a built in standard string function
which is already available in COMAL. Others include
STR$(327) which changes the numerical constant 327 to
the string constant "327".

The following orogram illustrates how you can create your
own string functions. It consistes of a brief main program
and the function •• parate$. This string function is

- 81 - PROGRAMMING

designed to separate a string into vowels and consonants.

Program 17.

new
auto 100

0100
0110
0120
0130
0140
01:50
0160
0170
0190
0190
0200
0210
0220
0230

PRINT .eparat.$("COMAL string function.")
END

FUNC .eparate$(a$)
II con.onant. or vowels
10ng.-LEN(a$)
FOR 11-1 TO long DO

IF a$(1) IN "aeiouAEIOU" THEN
a$l-a$(i)+a$(1Ii-l)+a$(i+lI10ng)

ENDIF
ENDFOR i
RETURN .a$

ENDFUNC .eparate$

Try this example:

If a$I-"testing" and i:-2: then line 190 wlil act as
follows: a$.- "e" + "t" + ".tin;"

Note.,

* The vowels are placed in reverse order .

• COMAL can interpret an expresslon such as a$(7:61.
This is used in l.ne 190 when it-long. (But note that
a$(BI6) is undefined.)

EMerci ••• 1

1. Tryout the program to see that It works as It should.
Choose other strIngs to test the program. You mIght
wa.nt to experiment with special cases like "a ll ..

"iiiiiiieeeee", I'QwrtplL and the empty string.

2. Create a string function which reverses the order of
the letters in an arbltrarv strlng. Try It out'

~. After having been SCANed a string funct.on can be used
as a direct command just as ~ numerical functlon. For
example:

scan
print .eparate$("sodapop and ieecream")

4. Create a string function FUNC fillup$(number,letter$)
which prints number of the same letter$. Try it
out as a direct command: print fillup$(30,".").

-~- PROGRAMMING

CLOSED PROCEDURES

If you want to be completely certain that any name conflicts
between variable names in procedures and the main program
will be avoided, then you can CLOSE your procedures or
functions. When you do so, you make all variable names in
the procedure or function local. Only those values which
are given in parentheses after the name of the procedure are
allowed in or out.

This is accomplished by using the order CLOSED. For
example:

PROC nAme(number,text$) CLOSED

It can be very useful to be able to close a procedure. This
is particularly true when you want to save a very general
procedure in a procedure library and use it in many
different situations. It can be difficult to remember the
names of all the variables which were used.
procedure you can get around this problem.

By closing the

The next program illustrates a general procedure which can
be used to sort any series of numbers. The numbers will be
sorted so that they are ordered by increaSing value. For
example 4, 3, 7, -1 are sorted to -1, 3, 4, 7.

The sorting method is called the bubble sort.

There are many algorithms available for sorting. For
example on the demonstration diskette and on the tape you
will find the program quick.sort. It is a fast and
efficient sortIng program.

The bubble sort used in ProgrAm 18 in not the most
efficient method, but it is interesting and easy to
understand:

Consider the numbers in pairs starting at the beginning of
the sequence. (You might find it useful to imagine small
bubbles surrounding these pairs.) If a larger number ~

precedes a smaller one, then they will be swapped. Now the ~
next pair (the second and third) is considered. These two
numbers are swapped, if the largest number comes first and
so on down the sequence. The procedure is repeated until no
more swaps occur. Here is a brief illustration of the
process:

1. run-through:
4 3 7 -1 is changed to 3 4 7 -1
3 4 7 -1 no change
3 4 7 -1 is changed to 3 4 -1 7

2. run-through:
3 4 -1 7 no change
3 4 -1 7 is changed to 3 -1 4 7
3 -1 4 7 no change

3. run-through:
3 -1 4 7 is changed to -1 3 4 7
-1 3 4 7 no change
-1 3 4 7 no change

Chapt.r 3 - - 83 - PROGRAMMING

On the next run-through there will be no more exchanges.

m ... in progr ... m (1 ines 100-290)
procedure print'out (1 ines 320-370)
procedure .w ... p (llnes 390-420)
procedure bubbl.'.ort (1 ines 440-610)

All the procedures are closed.

Progr ... m 18c

ne ...
... uto 100

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
03:50
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470

DATA 2,4,78,45,23,-2,56,45,199,43
DATA 3,0,100,34,-19,34,67,89,4,10

II d ... t ... r d-in
DIM po.ition(100)
no."-O
REPEAT

no." +1
READ po.ition(no.)

UNTIL EOD

PAGE
PRINT "Unsorted numberl"
print'out(no*,position(»
PRINT
PRINT
bubble'sort(no*,position(»
PRINT "Sorted numb.r ."
print'out(no*,po.ition(»
END

PROC print'out(tot ... l,number(» CLOSED
II tot ... l number in .equ.nc. numb.r() is printed out
ZONE B
FOR no •• -1 TO tot ... l DO PRINT numb.r(no*),
ZONE 0

ENDPROC print'out

PROC p(REF .,REF b) CLOSED
II nd b ... r •• w ... pp.d
r.m.mb.rc· ... ' b, b.-r.m.mb.r

ENDPROC .w ... p

PROC bubbl.'.ort (tot ... l ,REF numb.r(» CLOSED
II numb.r() i •• ort.d in incr ing num.ric ... l ord.r
IMPORT .w ... p

0480
0490
O~OO
0~10

0~20

0530
0540
O~~O
0~60
0570

- 84 -

REPEAT
no' pl-TRUE
FOR nO*I-1 TO tot.l-1 DO

IF numb.r(no*»numb.r(no*+l) THEN
no' pl-FALSE
..... p(numb.r(no*>,numb.r(no*+l»

ENDIF
ENDFOR no.

UNTIL no' p
ENDPROC bubbl.'.ort

PROGRAMMING

In line 460 of bubbl.'.ort the statement IMPORT is used.
It can be used to make variables or procedures accessible 1n
an otherwise closed procedure. In this case the procedure
name p is made available in the procedure
bubbll!'.ort.

In the main program in line 340 the order ZONE 8 is used
to space the printout 1n columns. Printout of a row of
numbers separated by a comma (,J in PRINT-statements will
be done 1n columns 8 spaces wide.

Notl!:

* The DATA statements are placed near the beginning of
the main program. They are easy to f1nd when changing
to new values.

Exerci.e.:

1. Tryout the program with the values provided. Then trv
WIth your own values. You should also try the program
with special cases like DATA 2 or DATA 3,3,3,3,3,3.

2. This exercise deals with external procedures:
If a disk drive is available. procedures can be saved
on diskette individually. Later on they can be brought
in to be used in other programs when needed. After use
they are removed from a program.

Such procedures are termed external when they are
available outside program memory. as on a d1skette.

There are two conditions which external procedures must
fulfill:

a. They must be CLOSED
b. They must not contain IMPORT statements.

Now remove all other program lines from progr.m 18
except for the procedure print 'out and save
print'out on diskette as a prQ file under the file
name .xt.print'out:

•• v. ".xt.print'out"

The prefix .xt. has been added to distingu1sh this
type of file from other information in the d1sk
directory.

Then delete the procedure print'out from progr.m

Chapt_,. 3 - - 85 - PROGRAMMING

18, and add a line with a declaration which indicates
that the program will use an external procedure:

300 PROC p,.int 'out (no,po.iUon (» EXTERNAL "_Nt.p,.int 'out"

Now run the program, and note that the external
procedure is fetched from the diskette twice during
program execution.

The use of external procedures saves room in memory.
On the other hand the disk operations take time, so the
method should only be used for larger programs or for
programs in which the delay time is not important.

3. Write a program which sorts words in alphabetIcal
order.

Only a few corrections of Program 18 are necessary to
accompl ish this tasf'::

First change the following lines:

140 DIM t$(100) OF 20
~10 IF t$(no.»t$(no.+1) THEN

Next use the CHANGE order:

CHANGE "po.ition","t$"
CHANGE "number","t$"

Supply all the variables in the procedure .wap WIth
$ signs, and change the contents of the DATA
statements to words or other text.

COMAL can still interpret the logical expreSSIon In
line 510, because a 'word' consists of a seouence of
characters each of which has an ASCII value. See
Appendix A for a list of ASCII codes.

The computer handles the letters in each word one after
the other when two words are compared. If the first
letters of both words are the same, then the next pair
is compared. and so on. This allows an evaluation of
which word is 'largest'. For example the word
"appl." is 'less than' "banana", because a comes
before b in the alphabet, and banana is less than
ba •• ball, because n comes before, S.

Be careful when comparing words containIng both upper
and lower case letters. Try some experiments'

FILE HANDLING

We have seen how it is possible to save a copy of a program
on diskette or on a cassette tape using the command SAVE. A
copy of the saved program can be fetched into the working
memory later using the order LOAD.

There are also other means of saving programs and program
segments. See Chapter 4 under the heading LIST - ENTER -

Chapt.r 3 - -86- PRD6RAI'U'IINB

MERGE for more information about this. In Chapter 6 you
Hill find a summary of these file operations.

The next program illustrates.one of the many Hays in Hhich
data can be saved. By 'data' He mean lists of numbers or
text or perhaps a mixture of numbers and text. Data can be
stored in a file. A more complete treatment of the use of
files in COMAL including numerous examples is found in
Chapter 6.

The introductory program Hhich He Hill consider here
consists of:

Th. main pro;ram
the procedures
fil.'number.«fil.no>,(fil.nam ••),numb.r() ,total)
f.tch'numb.rs«fl1eno>,(filenam ••),REF number(»

The tHO procedures take care of the jobs of saving numerical
data on disk or cassette and retrieVing the data again.

The main program is simply a test program Hhich saves some
numbers in a file, fetches them again and prints them on the
screen.

the

These procedures operate by opening a data stream to or
from a region on the diskette. The data stream is
characterized by the number <fileno>, and the region on
diskette is characterized by its <filename$). It is
thereafter possible to 'Hrite' to the data stream, if
been opened in the WRITE mode, or one can 'read' from
data stream, if it has been opened in the READ mode.
stream remains 'open' until it is 'closed'.

it has
the
A data

Saving data:

OPEN FILE <fileno>,<filename$>.WRITE

PRINT FILE <fileno): number

CLOSE FILE <fileno>

Fetchin; data:

OPEN FILE <fileno),<filenameS>,READ

INPUT FILE <fileno>: number

CLOSE FILE <fileno>

Program 19.

0100 PRDC fil.'numb.r.(fil.no,fil.nam •• ,numb.r() ,total)
0110 OPEN FILE fil.no,filenam •• ,WRITE

Chapter 3 - -87 - PROGRAI'1I'IING

0120
0130
0140
01~0
0160
0170
0190
0190
0200
0210
0220
0230
0240
0250
0260
0270
0290
0290
0300
0310
0320
0330
0340
0350
0360
0370
0390
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0:540
0550
0~60

FOR il-l TO total DO
PRINT FILE filenol number(i)

ENDFOR i
CLOSE FILE fileno

ENDPROC file'numbers

PROC fetch'numbers(fileno,filename$,REF number(»
OPEN FILE fileno,filename$,READ
i 1-0
REPEAT
il+l
INPUT FILE filenol number(i)
PRINT number (i) ,

UNTIL EOF(fileno)
CLOSE FILE fileno

ENDPROC fetch'numbers

II numbers are saved and read in from a file
DIM number(100)
PAGE
PRINT "Enter numbers, each followed by <RETURN>."
PRINT "Terminate by enterinQ 999991"
nOI-O
REPEAT

nOI+1
INPUT ""I number(no),

UNTIL number (no)-99999
nOI-1 II the last number is not saved
PAGE
FOR ilcl TO no DO PRINT number(i);
PRINT
PRINT "PRESS ANY KEY TO WRITE TO THE FILE"
WHILE KEY$=CHR$(O) DO NULL

file'numbers(2,".numberdata" ,number () ,no)

PAGE
PRINT "PRESS ANY KEY TO FETCH DATA AGAIN"
WHILE KEY$-CHR$(O) DO NULL
PAGE

fetch 'numbers (3, ".numberdata" ,number ())

END

* If the data are to be saved to a cassette ta~e. the
file name must be supplemented with the CSI unit
indicator: "cslnumberdata"

* Data must be fetched using the same file name as the
one under which they were saved. The stream number
need not be the same.

The advantage of saving data in files is that the data need
not be associated with a particular program as with DATA
statements. The same data can be used by many different
programs.

-88- PROGRAMMING

Notice especially about fil.'numb.rs: In the procedure
call it is essential to specify the (total) number of data
elements which are to be saved.

But note regarding the procedure f.tch'numb.rs that the
computer will simply stop reading in numbers from the file
when no data are left. To register this condition the
funct10n EOF«fl1.no» is very useful. It takes on the
value TRUE when the file contains no more data, thereby
fulfilling the UNTIL condition.

Data can be saved in ASCII-code format by means of the
PRINT FILE order. The INPUT FILE order must then be
used to enter the data. This combination can be used both
with a disk drive and with a Datassette unit. If vou are ~
using a disk drive it will usually be best to use the WRITE
FILE and the READ FILE orders instead. because data can
be saved more quickly and more compactly in binary form than
in ASCII form.

1. Tryout the program with arbitrary numbers. Change the
file names and stream numbers. Check for legal stream
numbers.

~. Use the program to create a set of data. Use these
numbers instead of the numbers in the DATA statements
in Program 18. You will have to delete lines 100-200
and rep I ace them bOy lines wh i ch read in the numbers
from one of the data files which we have just worked
with.

3. Write a program which saves strings in a file. Read
the information from the DATA statments in Program 12
into this file. Then use this file instead of the DATA
statements in Program 12.

ERROR HANDLl NG

It is 1mportant that programs are constructed so that they
do not ·crash". if the user does something unexpected.

One of the most common causes of undesired program
interruption is the entry of LETTERS 1n an INPUT statement
in which a NUMBER is expected.

In COMAL there is an error handling structure" which can take
this problem and many others into account. Note that the
use of this structure is treated more completely in the
reference section, Chapter 4. Her~ we will concentrate on
the one type of error mentioned above.

The structure is:

Chapter 3 - - 89 - PROGRAMMING

TRAP

(statements in which errors are expected)

HANDLER

(statements to be executed in case of an error)

END TRAP

If an error occurs in the statements between TRAP and
HANDLER, the computer will jump to the sta~ements between
HANDLER and ENDTRAF'. At the same ti me an ERR code wi 11 be
generated. The ERR code can be used to determine which of
the statements in the HANDLER-section should be executed.

In the next program example an error handling structure has
been placed in the LOOP - ENDLOOP loop which we used
earlier. This loop assures that the INPUT-statement wiil be
executed again if input errors are detected.

Note the following about the various COMAL ioop-structures:

• In the WHILE - ENDWHILE structure the condition IS placed
right after WHILE at the beginning of the loop.

* In the REPEAT - UNTIL loop the conDition is olaced at the
end, right after UNTIL .

• In the LOOP - ENDLOOP structure a condition can be placed
anywhere inside the loop using the EXIT WHEN command.
When the condition is fulfilled. execution oasses to the
first statement after ENDLOOF.

The LOOP - ENDLOOP structure:

LOOP

EXIT WHEN <condition) (or just EXIT w.th no condition)

ENDLOOP

The program consists of a general read-ln procedure w.th
error handling and a brlef maln program used to check out
the procedure.

Program 20.

ne",
auto 100

0100PROC number'input(line,pos,dpos,teKt$,REF number)
0110 II number-safe input

0120
0130
0140
OHIO
0160
0170
0180
0190
0200
0210
0220
0230
0240
02:50
0260
0270
0280
0290
0300
0310
0320
0330
0340
03:50
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0:500

Notes:

-~- PROGRAMMING

II only (STOP) interrupts program

LOOP

TRAP

PRINT AT line,pos. SPC.(LEN(text.)+dpos)," *"
INPUT AT line,pos,dpos. text •• number

EXIT II if the input is OK

HANDLER

CASE ERR OF
WHEN 2

PRINT AT 24,11 "The number was too big."
WHEN 206

PRINT AT 24,11 "A number is expected."
OTHERWISE

PRINT AT 24,11 "What happened'?"
ENDCASE
FOR pause.-l TO 1000 DO NULL

PRINT AT 24,11 SPC.(2:5)

END TRAP

ENDLOOP

ENDPROC number'input

II test of input errors
PAGE
REPEAT
number'input<10,3,10,"Type in a number: ",number)
PRINT AT 12,3: SPC.(lS)
PRINT AT 12,3: number

UNTIL FALSE
END

* The statement EXIT orders the computer to jump out of
the LOOP structure if the input is ok.

* The string function SPC.(number of spaces) can be
useful for clearing part of the screen.

* Line 180 clears the INPUT field and places a * two
blank spaces after the end of the field.

1. Tryout the program using both numbers and letters.
Try pressing <RETURN> with no input.

,. The LOOP structure can be replaced by a REPEAT loop.
The following lines can be used:

•

Chapter 3 -

no'errorl-FALSE
REPEAT
no'errarl-TRUE
UNTIL no'error

-ffi-

Where should these lines be inserted?

PROGRAMMING

3. Replace the CASE error texts the the system error
message ERRTEXT$: PRINT AT 24,11 ERRTEXT$.

4. Your final examination:

The character * 1n line 180 is a special detail.
What can happen, if th1s character is left out~
Experiment!

After working through this tutorial chapter you should be
well prepared to continue developing your skill with the
COMAL programming language. Of course there is still much
more to be learned, and you can run into situations which
have not been covered here.

In Chapter 4 you will find a complete reference section
treating all of the many commands and statements in COMAL.
In Chapter 4 you will find explanations of each order wlth
examples to illustrate its use •

-92-

•

-93-

COMAL OVERVXEW

COMMANDS USED BEFORE AND DURING
PROGRAM ENTRV.

NEW - AUTO - RENUM

NEW

1S a command WhICh causes the program and the data In
workin9 memorv to be deleted. Svstem varIables are set
to their initial values, and packages and assocIated
variables are also deleted.

AUTO

IS a command which sets UP automatic line numbering
durIng program entry. The range of legal line numbers
IS: 1 - 9999. During program entry each line should be
terminated bv pressing (RETURN>. The svstem will
automatically print the next line number on the screen.
AUTO can be disengaged by pressin9 <RUN/STOP>. If AUTO
is engaged again (or engaged after manual entrv of part
of a program), automatic line numbering will begIn with
the last line number in the program + 10.

EMampl •••

AUTO Gives line numbering: 10, 20, 30, ...

AUTO 1000 Gives line numbers: 1010, 1020 •...

AUTO 100,2 Gives line numbers: 100. 102. 104

Not •••

Line numbering with intervals of 10 is often
appropriate. for it allows the insertion of several
extra lines between existing line numbers.

If a line number alreadv exists. the number will appear
in reversed characters to warn the user against
unwanted overwriting of existing code.

RENUM

is a command which provides the program in working
memory with new line numbers. Renumbering can begIn
from any line in the program.

RENUM New numbering. 10. 20, 30 ••••

RENUM 2000,S New numbering: 2000. 2005,

Chapt.r- 4 -

RENUM 300,4000,10

-94 - CQMAL OVERV lEW

2010 ••••

Line numbers from and including
300 will be changed to: 4000,
4010, •••

COMMANDS WHICH ARE USED FOR
PROGRAM EDITING,

EDIT - FIND - CHANGE - DEL - SCAN

EDIT

is a command which causes program lines to be printed
one at a time without indentation. It is particularly
useful for correction of program lines which take up
more than one line on the screen. If the LIST order is
used. some lines made contain unwanted spaces after the
end of the first line. After editing, pressing
<RETURN> will cause the next program line to appear, if
more than one line edit has been reouested.

Exampl •••

EDIT

EDIT 130

EDIT 210-290

EDIT colorcod ••

Note:

allows editing of all lines, one
at a time.

allows line 130 to be edited.

oermits editing of lines 210 -
290.

lets the user edit the procedure
cpl or-cod •••

The EDIT command can only be used for printout to the
screen or to a printer.

FIND

is a command used during editing to find a name or text
segment in a program. When the text segment has been
found. the system prints out the program line with the
cursor placed on the first character of the text.
After possible corrections press <RETURN>. and the
system will search for the next occurence of the text.

FIND "John"

FIND 200-:500 "John"

The system will search the
entire program for·the word
John.

The system searches for the
word John in lines 200 -
SOO.

FIND colorcod •• "r.d"

-95- COt1AL OVERVIEW

The system searches for the
word r~ in the procedure
colorcod •••

CHANGE

DEL

1S a command which is used to search for and replace a
text segment. When the text segment to be changed has
been found, the system prints out the program line with
the text segment blinking like a cursor.

There are now three options:

1. You can make the change bv pressing <RETURN>.
2. You can edit the line without the automatic change:

Press the <C-> kev.
Change the line as desired.
Press <RETURN).
The search will be continued.

3. You can order the search to continue with no changes:
Press n or N.
The search will continue.

Press <STOP> to interrupt the CHANGE operation.

Exampl.s.

The search text red
is replaced bv the
replacement text yellow
evervwhere in the
program.

CHANGE :50-200 "Kl","xstart" The change is made in
lines 50 - 200.

CHANGE square .. up right .. The change is made in
the procedure square.

1S a command which is used to delete program lines.

EKampl •••

DEL 20
DEL 40.200-280
DEL printout

Line 20 is deleted.
Lines 40 and 200"- 280 are deleted.
The procedure printout is deleted.

SCAN

is a command which causes the svstem to run through the
program in the working memorv. This process is also
called making a prepass. The program structure is
checked for possible errors. and any error in structure
is reported. After a SCAN without any error messages,
approved procedures and functions can be executed
directly from the keyboard like commands.

Chapt.r 4 -

Program as entered:

0100 numb.r-O
0110 r.peat
0120 print number
0130 numb.rl+2

-95- COI'1AL OVERVIEW

0140 print "You saw .om •• v.n numb.rs."
01~0 .nd

SCAN

The system wi 11 report: at 1501 "UNTIL" mi •• in;

add the line: 13~ until numb.r>20

After a new SCAN the program should appear as follows:

0100 numberl-O
0110 REPEAT
0120 PRINT numb.r
0130 number: +2
0135 UNTIL numb.r>20
0140 PRINT "You .aw .ome even numb.r
01~0 END

OTHER COMMANDS.

SETEXEC

is a command which has two distinct formats: SETEXEC­
and SETEXEC+.

During the initiation of the system, a SETEXEC- is
executed. This causes the keyword EXEC to be omitted
from procedure calls.

After a SETEXEC+ command EXEC will be printed before
all procedure calls.

Program segment as it would be listed after system
start-up:

0100 PRINT "Number. ar. r.ad in and print.d out."
0110 read'in
0120 print'out
0130 END
0140
01~0 PROC r.ad'in
0160 INPUT "Writ. the numb.rl HI numb.r
0170 ENDPROC r.ad'in
0180 PROC print'out
0190 PRINT numb.r
0200 ENDPROC print'out

After SETEXEC+:

- 97 - COI'IAL OVERVIEW

0100 PRINT "Numbers ar. read in and printed out. M

0110 EXEC r •• d'in
0120 EXEC print'out
0130 END

COMMANDS USED TO CHECK AVAILABLE
MEMORV AND DISK STORAGE.

SIZE - CAT - DIR

SIZE

CAT

DIR

is a command which causes the p~esent usage of bytes of
wo~king memo~y to be ~epo~ted.

SIZE System ~esponse:
prog data free
13501 02466 14747

is a command which causes a catalogue of the contents
of the diskette to be p~intet. If seve~al disk d~ives
a~e connected. then the station numbe~ can be included
in the command.

Exampiesl

CAT

CAT IIt*1t

CAT "?est7?"

CAT "2:"

Not.1

All file names a~e listed.

The names of all files beginning
with t a~e listed.

The names of all files which a~e 6
cha~acte~s long and with cha~acte~s 2-4
equal to •• t a~e listed.

The contents of the diskette in the
second disk d~ive a~e listed. The
second d~ive must be set UP as "device
9". This can be done USIng a Jumpe~

inside the second d~ive o~ by means of
softwa~e. See YOu~ 1541 inst~uction
manual fo~ mo~e on how to do this.

P~essing the space ba~ will stop the p~intout of the
disk catalogue. P~essing it again will allow it to
continue. <STOP) will end it.

may be used as a command o~ as a statement. Like CAT
this orde~ causes the contents of the diskette in the
drive selected to be printed out. Unlike CAT, OIR can
be used as a statement in a program if desi~ed.

-~- COMAL OVERVIEW

LIST - ENTER - MERGE - DISPLAY

LIST

is a command which is used to print out all or part of
the program in working memory. It is also used to
store all or part of a program to diskette or to the
Datassette tape unit. When this is done, the program
is saved as a sequential file in ASCII-format. Copies
of the program which have been. saved using the LIST
command must be reentered using the ENTER or MERGE
commands. They can NOT be entered using LOAD.

Examples. ~

LIST All program lines are printed.

LIST 200-400 Program lines 200-400 are printed.

LIST 300- The program is printed from line 300 onward.

LIST demoproc The procedure with the name demoproc
is printed.

If the LIST order is followed by a name in quotation
marks, then the listing will be done to diskette or
cassette tape:

LIST "program name" The entire program is saved
under the file name proQram
name.

LIST demoproc "1st. demo" The procedure demoproc is
saved under the file name
1st. demo. The prefix 1st.
is not essential. It is
included to remind us that the
prooram has been saved by a
LIST command.

The printout of the listing to the screen will proceed
more slowly if the <CTRL) key is depressed during the
printout.

The printout can be stopped temporarily by pressing the
space bar once. Press it again to continue the
listing.

Pressing the <STOP) key interrupts the printout.

The printout can be directed to a printer, if
available, with the command li.t "Ips"

If a program line extends beyond a single line on the
screen, the LIST order will cause it to be split due to
indentation. Place the cursor on the line in question
and press <CTRL-A). The line will be pulled together
again with no indentation.

-93- COMAL OVERVIEW

ENTER

is a command which fetches a program which has
previously been saved to diskette or cassette tape
using the LIST command into working memory. NBI
ENTER acts differently than MERGE. If there is already
a program in working memory, ENTER will erase it.

ENTER "1st. name" The program 1st. name 1S

fetched from diskette.

ENTER "cs.lst.Program 3" The program L.Program 3 is
fetched from the Datassette
unit.

Notel

A program which has been save using the SAVE order can
NOT be read in again using ENTER.

MERGE

is a command which is used to fetch a program segment
from diskette or cassette and copy it into working
memory. The program segment must have been saved using
the LIST command.

Examples.

MERGE "1st. circumference" The program
lst.circum'ference 1S

fetched from diskette and
added to the existing
program with 11ne numbers
starting after the end of
the current program.

MERGE 1000,:5 "1st. start"

DISPLAY

The program (or segment)
1st. start is read in and
added to the current program
at lines 1000, 1005, 1010 •••

Be careful not to
unintentionally overwrite
existing program lines.

is a command which lists a program or a program segment
with NO LINE NUMBERS in the listing.

Example ••

DISPLAY

DISPLAY 20-90 "lp."

The entire program is
listed to the screen.

The program from line
20 to and including line

SAVE

-100-

DISPLAY so~t "dsp.sort"

Note.

COMAL OVERVIEW

90 is p~inted on the
linep~inte~ with no line
numbe~s.

The contents of the
p~ocedu~e sort is
,sto~ed on dlskette unde~
the name dsp.sort.

A p~og~am which has been saved on diskette (o~ tape)
with the DISPLAY commarld can not be fetched again using
ENTER o~ MERGE. However it can be read in as an
o~dinary sequential ASCII file using the o~der INPUT ~
FILE. _

LOAD

SAVE

1S a command which saves a copy of the program in
working memory to diskette or tape in compact binary
form. A SAVEd program can be fetched later using one
of the following: LOAD, RUN or CHAIN.

Exampl.s.

SAVE "program name" The program in working memory 1S
saved to disk under the file name
program name.

SAVE "cslracetrack" The program is saved to cassette
tape under the file name
racetrack.

Any program packages which are assoc1ated with the
COMAL program by means of the LINK order are saved
together with the CO MAL program as one file. When the
program is later entered into working memory, e.g. ~

using LOAD, both the COMAL program and the machine _
language package are read in together.

LOAD

is a command which transfers a copy of a program f~om
diskette or cassette tape into working memory. The
program must have been saved earlier by means of the
SAVE command. The LOAD command deletes any previously
existing program and all variables from working m~mory.

Examples.

LOAD "proCjlram na_" transfers a copy of the program
saved under the file name proQr ••
n ... from diskette into working
memory.

LOAD "cs." A copy of next program on the

-101- COI1AL OVERVIEW

tape is fetched into memory via the
Datassette.

RUN - CHAIN - CON

RUN

1S a command which causes the program 1n working memorv
to be executed. All variables are zeroed and the
computer begins by examining the program structure for
possible errors. A program can also be fetched from
diskette or tape and started automatically using the
RUN command.

RUN Program execution is started (the
program is 'run').

RUN "program name" The file program name is
fetched from diskette and execution
begins.

CHAIN

CON

can be used as a statement or as a command. It fetches
a copy of a program from diskette or from cassette tape
and starts it running. Any existing program in working
memory will be deleted first.

Used as a command CHAIN "<file name>" works like RUN
"(f i le name)u.

CHAIN is particularlv useful when used as a statement
in a program. It allows the user to break down a large
program into smaller independent units.

Examples:

CHAIN "cs:name" The program name 1S fetched
from cassette tape and started.

INPUT "Choose a program number. "Ino
CASE no OF
WHEN 1

CHAIN "program 1"
WHEN 2

CHAIN "program 2"
OTHERWISE

CHAIN "program 3"
ENDCASE

is a command which causes program execution to continue
in an interrupted program. The program may have been
interrupted by an error, by activation of the STOP key
or by a STOP statement in the program. While the
program is stopped, changing the contents of existing

Chapter 4 - -102- COMAL OVERVIEW

variables is permitted. However new variable names may
not be added, and the program may not be changed. No
line may be altered, and no new lines may be added to
the program while it is interrupted. If this is done,
execution cannot be continued using the CON command.

STATUS - STATUS$

STATUS is a command which causes the system to report
on the status of the disk operating system and zero the
error flag. STATUS$ is a string function which
contains the status report. STATUS performs the same
operation as PRINTSTATUS$.

Example:

Right after the system is turned on
STATUS
will caLIse the system to answer
73,cbm dos v2.6 1541,00,00

VERIFY

is a command which can be used to check that the
program on the diskette or cassette tape (saved using
the SAVE command) is identical to the program which is
currently in the working memory of the computer.

Warnings Take care not to change the program in
working memory before using VERIFY (spell correctly!).

Example:

VERIFY "test prog" The COMAL svstem reports verify
error, if the program saved under
the file name te.t prog and the
program in working memory are not
e,·;actly alike.

COpy - DELETE - RENAME - PASS

COpy

can be used as a command or a statement for copying
diskette files.

Examples:

COPY "old'file","new'fil."

COpy "Olprogram 3","1Iprogram 3"

The system makes a
copy of the program
old'file and saves
it on the ·same dISk
drive under the name
new'fi Ie.

The system copies
program 3 from
disk drive 01 and
saves it with the
same name on disk
drIve 11.

•

-103- COMAL OVERVIEW

DELETE

may be used as a command or a statement to delete files
on a diskette.

DELETE "t •• tdata"

DELETE "t •• t* ..

RENAME

The file t •• tdata is deleted.

All files which begin with te.t
are deleted.

is used as a command or a statement to change the name
of a fi Ie.

EKampl ••

RENAME .. old n "

PASS

The diskette file with the
name old is assigned the new
name new.

can be used as a command or a statement to send orders
to the disk operating system.

EKamples:

PASS "nO:procedurebib, .. l"

PASS "n2Idiskname.01".9

PASS "v"

Not ••

Formats a new
diskette on disk drIVE
0. This diskette gets
the name proc.durebib
and the identificatIon
number a1.

Formats a new diskette
on the extra disk drive
(no. 2) with unit
number 9.

Clean house (garbage
collection): The files on
the diskette are
collected and any open
files are closed. The
letter v represents the
word validat ••

There are additional orders which can be transferred to
the disk operating system using PASS. But there are
more suitable COMAL-instructions for accomplishing the
same functions.

-104- COMAL OVERVIEW

SELECT INPUT - SELECT OUTPUT

SELECT INPUT

may be used as a command or a statement. It causes
subsequent read-in, which normally would occur from the
keyboard, to come from the specified sequential ASCII
file. This read-in can be ,terminated by pressing the
(STOP) key, by an END-OF-FILE or by errors in the
program. At this point input will again be from the
keyboard.

INPUT statements, KEY$ and ink.y$ also receive their
input from the SELECT INPUT file. The COI'1AL system
interprets this input as if it came from the keyboard ~
and echoes it in the usual manner to the screen. ~

If SELECT INPUT is used as a command it can be used to
redefine the meanings of the function keys.

SELECT INPUT "kb:"

SELECT INPUT "ch.ckfil."

SELECT OUTPUT/SELECT

Keyboard input. As
with the start up or
restart of the COMAL
system.

checkfil. will be
read in as if it came
directly from the
keyboard.

can 'be used as a command or as a statement. It is used
to select the unit to which subsequent output will be
sent. If one simply writes SELECT, the system will
automatically add OUTPUT in the program listing after
the program has been scanned or run.

SELECT OUTPUT "ds:"

SELECT OUTPUT "lpl"

SELECT OUTPUT "Olnamefil."

Not •••

Printout is sent to the
screen, as when the
computer first is started
up. e
Printout is directed to
the printer.

A sequential file with
the name nam.fil. is
created on disk drive
0, and subsequent
printout is directed to
the file.

SELECT OUTPUT can be abbreviated to SELECT. The
system automatically adds OUTPUT after a scan or a
run.

Printout will automatically return to the screen after
the LIST command has been executed.

Chapt.r 4 - -105- COHAL OVERVIEW

Even if printout is directed away from the screen, e.g.
to a printer. text provided in INPUT statements will
still be directed to the screen.

COMMANDS FOR SVSTEM START-UP.

BASIC - SVS to COMAL

The BASIC command directs the computer to initiate
the Basic operating system. The computer can be
directed back to the CDMAL system with the order:

SVS 50000

Both orders caLIse all information in working memory to
be deleted.

COMMANDS AND STATEMENTS CONCERNING
THE USE OF MACHINE CODE PROGRAM PACKAGES

(See also Chapter 8 on CDMAL and programs in machine code.):

USE - LINK - DISCARD

USE

may be used as a command or a statement to append a
named machine code program package to the COMAL program
in working memory. The name of the package is hereby
made known to the COMAL lnterpreter.

The order is used for example to make the built-in
packages in the COMAL cartridge accessible in a pro­
gram. See more about how to use packages in Chapter 5.

Example~

USE graphics The package graphics 1S activated.

LINK

is a command which fetches a file with a machine code
package from diskette and transfers a COpy into working
memory. The name of the package can then be made known
to the program by means of the USE order.

Exampl ••

LINK "obj.driv.r"

USE driv.r

Not ••

The object code file with the
name obj.driv.r is fetched.

The above LINKed file contains
the package with the name driv.r.
which is hereby activated.

A machine code program which is associated with a COMAL

ChApter 4 - -106- COMAL OVERVIEW

program by means of the
together with the COMAL
SAVE command. A later
both the COMAL program

DISCARD

command LINK is saved
program as one file using the
LOAD will automatically fetch
and the machine code program.

is a command which removes all machine code program
packages from working memory.

The COMAL program is not lost, but the interpreters
name table is only intact again after a RUN or a SCAN
has been performed.

STATEMENTS USED DURING READ-IN AND PRINTOUT

INPUT - INPUT AT - KEY.

INPUT

is a statement which reads data into a program during
execution. After an INPUT statement the system stops
execution and waits for a user response. The cursor
flashes at the beginninq of the input field. All
responses must be terminated by a <RETURN).

Examples:

INPUT "Tot .. l ". number The system awaits
number as
response.

INPUT "What's your name? ", name. The system awaits
a string input.

INPUT "Position (X,Y) '" "I x,y Several numbers
can be entered In
the same INPUT
statement.

INPUT "Item number. "I no;

INPUT AT

A (I) or (,)
after the variable
name suppresses the
carriage return
after the answer.

acts like INPUT with the added possibility of placing
the input field anywhere on the 25 lines and 40 columns
of the screen.

EXAmplesl

INPUT AT 4,10. "Nullber - ". no The input message

•

starts on line 4, column
10.

INPUT AT 4,7,1:5. "NAme "I text. The input mes£age
starts on line 4, column

Chapter 4 - -107- COHAL OVERVIEW

7. The input field is
limited to the 15
following spaces which
are protected from other
uses.

A 0 given as line or column number means current
value.

EKample.

INPUT AT 0,0,10. "Town ".town$ The input message
starts at the
present line and
column, but the
response field is
limi ted to 10
characters.

See also INPUT FILE and SELECT INPUT.

KEV$

is a function which reads the keyboard input buffer to
determine the last character activated. If no
character has been sent, then the function returns the
value chr$(O) or ""0''''. Program executIon is not
stopped in contrast to the INPUT statement and the
function inkey$ (In the system package).

Examples of usel

WHILE KEV.-CHR$(O) DO NULL

DIM answe,.. OF 1
PRINT "Answer yes/no"
REPEAT

answer •• -KEY.
UNTIL answer. IN "yYnN"

PRINT - PRINT AT - PRINT USING

PRINT

The program
'hangs' in the same
line until the user
presses any key.

The system waits for
activation of
y, 'y' ,n or N.

TAB - ZONE

may be used as a command or a statement. It is used to
print data on the screen or send it to other output
devices. If the PRINT line contains several items, they
can be separated by a semicolon <". This will cause
a single space to be printed between each item. If a
comma (,) is used, the the number of spaces between
the beginning of each item is determined by the ZONE
order. During program coding PRINT can be abbreviated
to I.

Exampl •••

PRINT

PRINT AT

-108- CCJt1AL OVERVIEW

text and numbers
can be mixed in the
printout.

Prints out an empty line.

The carriage return is supressed
by ~erminating the PRINT line with
a <,> or a <,>.

can be used as a command or as a statement. It makes
it possible to print"numbers or text at any character a
position on the screen. Line numbers may range from 1 ~
- 25, and column numbers from 1 - 40.

Example.

PRINT AT 3,12. "Name i.", name$ The printout
begins in the 3.
I ine, column 12.

SpeCial ca •••

A ° as line or position number means pre.ent or
current.

Example.

PRINT AT 0,30. "CPI'1AL"

PRINT USING

Write on the present
line, column 30.

can be used as a command or a statement. It is used
for printing numbers in a well defined format.

Example ••

PRINT USING "Pricl! ". pric. The amount is
written in the
format determined by
the" signs and
the decimal point.
In this example
there is room for 3
digits before the
decimal point and 2
digits after it.

The various PRINT options can be combined:

PRINT AT 10,1:5. USING "Sp •• d - ••••• ". 1IP •• d

Ch.pt.... 4 - -109- COHAL OVERVIEW

If the numbe ... is too big to fit in the specified
fo ... mat, the p ... intout will consist of a ... ow of sta ... s:
••••••

TAB

is a system function which is used in connection with
the PRINT o ... der. TAB is an abbreviation for
TABulation.

Ex.mpl ••

PRINT II It.mnumb ",TAB(2:S),no After the text
It.mnumb has
been printed, the
system will move the
cursor to column 25
... here no ... ill be
printed.

See also PRINT FILE and SELECT OUTPUT.

ZONE

is a statement and a function ... hich is used in
connection with the comma <,). It is used to define
the interval bet ... een columns in PRINT printouts. When
COMAL is initiated and after the use of the command
NEW, ZONE is equal to O.

Ex.mpl.s.

After start-up:

PRINT 23,:S6,89

ZONE 5

PRINT 23,:S6,89

23 89

sp.cing.-ZONE

PAGE - CURSOR

PAGE

... 111 be printed out as

... ith no spaces between numbers,
because ZONE equals O.

The column interval is set to 5.

will no ... be printed out as

The first number will begin in
column 1, the next in column 6, the
next in 11, etc.

ZONE can be used as function for
example to assign a value to the
variable sp.cing which is given
the current ZONE value.

can be used as a command or a statement. It is used to
clear the screen. If a printer has been selected as
the output device, a form feed order ... ill be sent to

-llO- COMAL OVERVIEW

the printer.

CURSOR

can be used as a command or a statement. It can be
used to position the cursor on the screen. The
character position 1,1 is in the upper left-hand
corner, and 25,40 is in the lower right-hand corner.

Examplelil

CURSOR 1:5,30

CURSOR 0,10

Place the cursor on line 15.
column 30.

Move the cursor to the present
line, column 10. A ° means
pre.ent or current.

Note that the specification of the screen position
using CURSOR, INPUT AT and PRINT AT use the line and
column method in contrast to high resolution graphics.
In graphics the position is specified using a
conventional (X,Y) coordinate system.

READ - DATA - RESTORE - label. - EOD

READ

is a statement which is used to read values from a DATA
statement. If the READ statement contains several
variable names, then these are separated by commas
(,) .
Example:

READ name$,street$,no,postno,town$

DATA

is a statement which contains the values which the
variable names in a READ statement are assigned. DATA
statements are not executed. For this reason they can
be placed anywhere in a program. However DATA
statements are local within a procedure or a function.

Example ••

The DATA statement can contain both text and numbers.
Text must be enclosed within Quotation marks ":

DATA "John Smith","Eaaton","Pennaylvania"

DATA 230,.e6,Xlll00ll0 a DATA statement can
contain both decimal numbers,
hexadecimal numbers and binary
numbers.

•

Chapt.,. 4 - -111- COt1AL OVERVIEW

RESTORE

can be used as a command or as a statement. It sets
the DATA pOinter to point at the first DATA statement
in a program or to the first statement right after a
label.

label a

EOD

is a freely chosen name which is used to specify an
entry point at some line in the program. The label is
not eKecuted like an order. It can be used in
connection with RESTORE (and GOTO). See the summary
example after the definition of EOO.

is a boolean (logical) system function which is used
during a READ from DATA statements. EOD means End
Of Data. As long as DATA-values remain in the
list, EOD is FALSE. When the last DATA-value has been
read, then EOD is set to TRUE.

Summary example.

DATA ".cre_",112,"nail.",:50
toys:
DATA "car.",220,"dolls",::S:5
DATA "ball.",76,"jump rop ,24
DIM name$ of 20
RESTORE toys
WHILE NOT EOD

READ na_$,total
PRINT "Th.re are .. ;t.ot.al,name$,"left.."

ENDWHILE

Nate ••

It is usually convenient to place DATA statements near
the beginning of the program, so they are easy to find
and revise.

A label toys. has been placed just before the DATA
statements contai ni ng' t.he 1 i st of tOYs.

RESTORE toy. assures that READ begins in the
following line.

Read-in and printout of t.he toy inventory continues
untii EOD is set equal to TRUE. This happens when
there is no DATA left in the list.

Chapt.r 4 - -112- CoMAL OVERVIEW

INSTRUCTIONS FOR CDI'II'IUNICATIoN WITH FILES

MOUNT - CREATE

MOUNT

can be used as a command or as a statement. It sets up
a diskette which has just been placed in the disk
drive, getting the diskette ready for reading and
writing operations. Cassette tapes do not require
this, and diskettes will usually operate properly
without being MOUNTed. To be on the safe side it is
wise to MOUNT diskettes each time they are put into the
drive.

EK.mpl •••

MOUNT
MOUNT "1."

CREATE

disk drive 0 is initialized.
disk drive 1 is initialized.

can be used as a command or as a statement. It creates
a file on diskette. A file can also be created using
the OPEN order, but communication with the file can be
carried out about 10 times faster, when the file has
been CREATEd first.

EK.mplel

CREATE "t.Ktf1Ie",300,42 A file by the name of
t.Ktfil. with 300
records, each 42
characters (bytes) long.

OPEN FILE/OPEN - READ - WRITE - APPEND - RANDOM

OPEN FILE/OPEN

can be used as a command or as a statement. It is used
to open access to a file on a peripheral device, e.g.
diskette, cassette, printer etc. Several sequential
files can be open at the same time with different
stream numbers. The term stream number. refers to that
fact that a data channel is opened to or from the file.
It the word FILE is omitted during program coding. the
system will automatically add it to the listing after a
SCAN or RUN.

There are many ways to open files. See Chapter 6 for
further information. In the following only a few
examples of the use of READ, WRITE, APPEND and RANDOM
will be given.

EK.mpl •• 1

OPEN FILE 3,"d.t.fil.",WRITE The file with the name
dat.fil. and .tr •••
numb.r 3 is opened to
r.c.iv. data.
Hereafter in the program

Chapter 4 - -113-

OPEN FIL.E 7,"cslnames",READ

OPEN FIL.E lS,"data",APPEND

COMAL OVERVIEW

stream number 3 is
reserved for this file,
until the file is closed
by means of a CLOSE FIL.E
3 order.

The cassette file
names is opened to
return data to the
program. The file is
identified by stream
number 7.

An already existing
sequential disk file with
the name data is opened
for addit·ion of new
data following the
existing data on the
fi Ie. The fi Ie is
ldentified by the stream
number 15.

OPEN FIL.E 4,"names,usr",WRITE A sequential file is
opened with the
classification usr
instead of seq.

OPEN FIL.E S,"text",RANDOM 42 The file text is

OPEN FIL.E 4, "lpllist" ,WRITE

PRINT FIL.E - INPUT FIL.E

PRINT FIL.E

opened. RANDOM indlcates
that it is a random
access file. Each
record wlll have room for
42 characters (i.e.
bytes) on the diskette.
42 bytes will be taken up
on the dlskette even
though the indiVidual
records do not use all
this room. Access to the
records 1S speeded
however, because each
record has the same
length. The position of
each record can be
determined when the
record number is known.

A file ~ith the name
list is opened to the
printer.

can be used as a command or as a statement. It is used
for sending data in ASCII-format to a file on diskette,
cassette tape or other peripheral. The file must have
been previously opened by means of the OPEN order. The
file is identified by its stream number.

Chapter 4 - -114- COI1AL OVERVIEW

When PRINT FILE is used to send data to a file, the
individual data elements are separated by a carriage
return (CR>, i.e. ASCII-code 13.

A file which has been written to using PRINT FILE can
be read using the order INPUT FILE.

PRINT FILE 21 item$

PRINT FILE 4,7. name.,town$

INPUT FILE

The value of the
variable is written to
the sequential file with
stream number 2. The
printout is terminated by •
a <CR> after item$.
The file is opened uS1ng
OPEN 2, •• ,WRITE or
APPEND.

The values of the
variables are written to
the random access file
with .tream number 4,
record number 7 (opened
wi th RANDOM).

is a command or a statement used to read data from a
file which has been opened with OPEN no,name$,READ or
RANDOM. The file must contain data in ASCII format,
written with the PRINT FILE order.

Example ••

INPUT FILE 21 itemS

INPUT FILE 4,7: name.,town$

WRITE FILE - READ FILE

WRITE FILE

The value of the
variable is read in from
the sequent1al file with
stream number 2. The
file must have been
opened as a READ type.

The values of the
variables are read in
from file 4, record 7.
The file must have been
opened as a RANDOM type.

is a command or a statement which transfers data to a
file in compact binary form. The file is sequential,
if it is opened as a WRITE or APPEND type; and "it is
random access, if it has been opened using RANDOM.
WRITE FILE is preferable where possible instead of
PRINT FILE, because the binary form takes up less
space, and access is faster. It is not possible to use
WRITE FILE to store data on a cassette tape unit.

-115-

EKampl.s.

WRITE FILE 2. first$,last$,tel

WRITE FILE 3. tablevalues()

WRITE FILE 4,12: nOJteKt$;other$

READ FILE

COMAL OVERVIEW

The values of the
variables ar-e
written in binary
form to the
seQuent1al file wIth
stream number 2.
The file must have
been opened ear-l1er­
with the order- OPEN
2 ••••• WRITE or­
APPEND.

The entire set of
numbers represented
by tablRvalu.s()
1S wr-itten to file
3.

The values of the
var-iables are
written in binar-y
form to a random
access f1le. The
stream number- 1S 4,
and the recor-d
number- is 1=. The
iile must have been
opened earlIer- uSIng
OPEN 4, •••• RANDOM.

:.s a command or- a statement which 1S used to r-ead data
frdm a file Wh1Ch has prev10usly been opened using the
order OPEN no,name$,READ or- RANDOM. The file must
contain data In binary for-m, wr-ltten wIth the order
WRITE FILE.

EKamples.

READ FILE 21 first$,last$,tel

READ FILE 4,121 nOlteKt$Jother$

The data values
are read in from the
sequential file wIth
stream number- 2.
The f~le must have
been opened as a
READ type.

The data val ues
ar-e read in from
file no 4, record
12. The file is
r-andom access and
must have been
opened w1th RANDOM.

Chapter 4 - -116- COI'IAL OVERVIEW

CLOSE FILE/CLOSE

can be used as a command or as a statement. It closes
files which have been opened with the OPEN order.
Serious errors can ar~se if one attempts to copy or
rearrange open files. If the word FILE is omitted when
this order is used as a statement, it will be added
automatically by the system after a SCAN or RUN.

Example ••

CLOSE

CLOSE FILE 2

UNIT - UNIU

UNIT

All open files are closed.

The file with stream number 2
is closed.

can be used as a command or as a statement. It is used
to specify which unit is to be used for file operations
when the file name does not contain this information.
When COMAL is started, the disk drive number 0 is
automatically selected as the unit. See Chapter 7 on
Peripheral Equipment for further information.

The follow1ng uQits may be selected:

CS. cassette
O. disk drive no 0 (default)
1. disk drive no 1
2. extra disk drive (usual choice)

Note that if a second disk drive is connected via the
IEEE serial bus, it should be set up to act as 'device
9'. It w111 then repond to COMAL orders when
referenced as unit 2.

Example.

UNIT "cs." Cassette is the default unit.

UNIT$

is a system function which returns the name of the unit
to be used, if no other specification is given in the
file name.

Example.

PRINT UNIT. the system responds e.g. with O.

PROGRAMMING STRUCTURES

Conditionals
Loops

-117-

Error Handling
Procedures and functions

CONDITIONAL.S

IF - THEN - ELIF - ELSE - ENDIF

COMAL OVERVIEW

are statements which are used in IF-THEN structures.
An IF-THEN statement can be formulated in many
different ways. The fundament-al principle is. however.
quite clear: If a <logical .xpr.ssion> is tru.,
then the associated statements will be executed.
Another way of expressing the same thing is to say that
if a given <condition> is fulfilled. then the
associated statements will be executed.

IF <logical expression> THEN <statement>

is a single line version: If the <logical expression)
is truE'. then the <statement> after THEN is executed.
Otherwise the program just continues in the next line.

IF <logical expression> THEN Multiline version:
<statement> If the expression is true,
<statement> the statements between

THEN and ENDIF are
executed.

ENDIF

IF numb.r>-O THEN
squar. 'root.-SQR (numb.r)

Otherwise execution jumps
to the line after ENDIF.

PRINT "The square root of",numb.rl"is",.quar.'root
ENDIF

IF <logical expression> THEN

<statement>

EL.SE

< statement>

ENDIF

If the expression is true,
then the statements between
THEN and ELSE are executed.
Otherwise the statements
ELSE and ENDIF are executed.

Ch.pt.,. 4 - -118- COMAL OVERVIEW

IF .n ,.$ IN " •• lou" THEN
PRINT .n ,.$."i •• yo l."
PRINT "W.nt to t,.y .g.ln?"

ELSE
PRINT .n ,.$. Mi •. not • vo l."
PRINT "Th. l.tt.,..' ••• lou .,.. vo l.,"
PRINT ".11 oth.,. l.tt.,. •• ,.. u.ually con.on.nt

ENDIF

Ex.mpl. 4.

IF <condition!> THEN
<statement>

ELIF <condition2>
<statement>

<statement>

ENDIF

IF numb.,.-O THEN
add'dat.

ELIF numb.,.-1
d.l.t.'data

ELIF numb.,.-2
p,.int'data

ENDIF

IF <condition!> THEN
<statement>

ELIF <condition2>
<statement>

ELSE
<statement>

ENDIF

ELIF is short for ELSE IF
If <condition1> is fulfilled,
then the statements between ~

THEN and the first ELIF, ~
are carried out. Then program
execution continues after ENDIF.
If <condition1> is not fulfilled,
then <condition2> is checked. If
true, then the statements down to
the next ELIF are executed.
Next, control passes to the
line after ENDIF. Otherwise
<condition3> is checked, etc.

If no condition
is fulfilled, then the
statements between
ELSE and ENDIF are
executed.

IF a$-"mail" AND b$-"box" THEN
PRINT "V •• ind •• d!"
PRINT "Th o,.d should b •• a$+b$

ELIF .$-"box" AND b$-"mail"
PRINT "T,.y ,..v.,.sinQ the wo,.d

ELSE
PRINT "Th. wo,.d. don't .g,._."
PRINT "Look .t the d,..wing .g.ln,"
PRINT ".nd t,.y .gA1n!"

ENDIF

Chaptltr' 4 - -119- COMAL OVERVIEW

CASE - OF - WHEN - OTHERWISE - ENDCASE

are statements which are used in the CASE-structure
to direct program execution in a situation where a
number of choices are available.

Example:

CASE <expression> OF
WHEN <1. value>
<statement>

WHEN <2. value>
<statement>

WHEN <3. value>
<statement>

OTHERWISE (can be left out)
<statement>

END CASE

CASE answer OF
WHEN 1

PRINT .. Hm
WHEN 2

tegn'Unie
WHEN 3,4

tean'polyaon
OTHERWISE
. tean 'cirkel

ENDCASE

CASE TRUE OF

Depending on the value of
answer, one of the procedures
will be executed. If the answer
is 1,2,3 or 4, then the statements
under the corresponding WHEN are
executed. Otherwise the statements
following OTHERWISE are carried out.
The structure ends with ENDCASE.

WHEN denominator)O
PRINT "Positive denominator"

WHEN denominator-O
PRINT "Be careful!"
PRINT "o.nominator is zero."

WHEN denominator<O
PRINT "Neaative denominator"
PRINT "The sian is changed!"
denominatorl--denominator

ENDCASE

LOOP STATEMENTS

REPEAT - UNTIL

are statements which are used in the REPEAT­
structure. The statements within the REPEAT-UNTIL
loop are repeated until the logical (boolean)
expression in the UNTIL statement is true.

-120- COI'IAL OVERVIEW

REPEAT <statement> UNTIL (logical expression>

is a single line version:
<statement> is executed until <logical
expression> is true.

REPEAT r.ad 'fil. UNTIL t.xt$-"Susan" OR EOF(no)

Exampl. 2.

REPEAT
<statement>

The procedure r.ad'fil. will be
carried out until the logical expression
is true. Her is udtrykk.t, that the
variable't.xt$ is .qual to "J.ns", or
EOF(nr) is tru. (which will occur if
there is no more text in the file being
read).

Multi-line version:

UNTIL (logical expression>

The statements between REPEAT
and UNTIL run until the
logical expression is true.

REPEAT
INPUT "N numb.r "I a

UNTIL a<O

The INPUT statement will be
carried out until
the number read in is negative.

Note that the statements in the REPEAT structure are
always carried out at least once, because the logical
expression is at the end of the loop.

WHILE - DO - ENDWHILE

are statements which are used in the WHILE-structur ••
The statements within the WHILE-ENDWHILE loop are
repeated as long as the. logical expression in the WHILE
statement is true.

WHILE <logical expression) DO <statement>

Exampl. 2.

is a single line version:
As long as (logical expression> is true
(statement> is executed.

The call for the procedure Q.t'nam. is
repeated, as long as nam.$ is
different from "P.t.r",

WHILE <expression> DO
<statement>

As long as <expression>
is true, the statements
between DO and ENDWHILE
continue to be executed. ENDWHILE

b.-l
WHILE KEV$-""O"" DO As long as no key is pressed.

-121- COI'IAL OVERVIEW

b.-2*b
PRINT lib

ENDWHILE

new numbers in the series will
continue to be printed out.

Notice that the keyword ENDWHILE must not be used in
the single line version.

FOR - TO - STEP - DO - END FOR

are statements which are "used in the FOR - ENDFOR
structure. The statements wi"thin the FOR loop are
repeated a predetermined number of times, then program
execution continues with the line after ENDFOR. The
loop variable <counter> is local.

FOR <counter>.-<start> TO <end> DO <statement>

is a single line version:
The loop is repeated <end>-<start>+l
times with <counter> equal to
<st.rt>, <.t.rt>+1 ••.•• until <end>
is passed.

FOR n.-O TO 30 DO PRINT .(n),

FOR <counter>I-<start> TO <end> DO
<statement>

ENDFOR <counter>

FOR nOI-1 TO 10 DO
INPUT "N.me. "In.me.(no)
INPUT "textl "Itext.(no)

ENDFOR no

The FOR loop is repeated 10
times with the variable no
equal to 1. 2, ••• , 10.

Version with STEP p.r.meter:

FOR .n;le.-O TO 6.3 STEP 0.1 DO
PRINT COS(.n;le),SIN(.n;le)
PRINT COS(an;le)A2+SIN(.n;le)A2

ENDFOR an;le

FOR i •• -m.x TO min STEP -1 DO
moveto(O,O)
dr.wto(x(i.),V(i.»

ENDFOR i.

As indicated by
the STEP parameter,
.n;le will take on
the values:
0,0.1, ••• ,6.3

The integer variable i.
increases the speed.
The STEP parameter can
also be negative.

The keyword ENDFOR is not used in the single line
version.

The single line version can also be used as a command.

-122- COMAL OVERVIEW

LOOP - EXIT - EXIT WHEN - ENDLOOP

are statements which are used in the LOOP-ENDLOOP
.tructur.. The statements in, the 'LOOP-ENDLOOP segment
are repeated until an EXIT or EXIT WHEN statement is
executed. Next program execution is continued in the
line after ENDLOOP. There can be 0, 1 or more EXIT's
in a LOOP-ENDLOOP structure.

LOOP
<statement>

EXIT WHEN (logical expression>
<statement>

ENDLOOP

LOOP
INPUT "T.xt "I t.xt$
EXIT WHEN t.xt$-".nd"
WRITE FILE 31 t.xt$
do't •• t

Text is read in, written
to file 3 and examined in the
procedure do't •• t,
until the text ".nd"

ENDLOOP is read in.

ERROR HANDLING

TRAP - HANDLER - END TRAP

are statements which are used to control program
execution after errors are encountered. If errors
occur in the statements between TRAP and HANDLER
(called the TRAP part), then the statements between
HANDLER and ENDTRAP (the HANDLER part) are executed.
Otherwise the program continues with the line after
ENDTRAP. In this way one can avoid having the program
stop e.g. due to a user data-entry error.

TRAP
INPUT "No. "I no

HANDLER
ch.ck '.rror

END TRAP

ERR - ERRFILE ERRTEXT$

If errors occur during read-in,
the system will jump down to the
HANDLER part and carry out the
procedure ch.ck'.rror.

are system functions which are used in connection with
the HANDLER part of the TRAP structure to identify
errors. See Appendix F on error numbers and error
messages.

ERR contains the error number.

ERRFILE contains the number of a file, if one was in
use when a read or write error occurs.

ERRTEXT$ contains the text with the error message.

-123-

TRAP
INPUT "Expon.nt " •• xpon.nt
PRINT 10~.xpon.nt

HANDLER
PRINT ERRTEXT.
CASE ERR OF
WHEN 2

PRINT "Expon.nt too l .. r;."
WHEN 206

PRINT "EKpon.nt i ... numb.r"
OTHERWISE

PRINT .. Pl try .. ; .. in!"
ENDCASE

END TRAP

TRAP
INPUT "Fil.n .. m •• ".n.m.$
OPEN 2,n .. m •• ,READ
OPEN 3, v.fil ... ,WRITE
tr.nsfer (n .. me., v.fi 1.")

HANDLER
CLOSE
IF ERRFILE-2 THEN

PRINT "Error in re.d-in"
ELIF ERRFILE-3

PRINT "Error durin; print-out"
ELSE

PRINT "Not .. n input/output error"
ENDIF
PRINT ERR,ERRTEXT$

END TRAP

COI1AL OVERVIEW

is a command and statement which is used in connection
with the TRAP-structur.. REPORT can be used in
several ways to reveal an error and to direct
subsequent error handling. REPORT can be used with or
without an argument:

REPORT

REPORT .rrorno

Repeat earlier error.
(only as statement)

Report "an error with .rrorno.

The order has various effects according to where it
occurs in the structure.

REPORT out.id. the TRAP-ENDTRAP structure:
The error is reported to the system, which will then
react to the error.

REPORT in TRAP p.rt of the structure:
Program execution is directed to the HANDLER part,

Chapt.r 4 - -124- CoMAL. OVERVIEW

where the user program handles the error.

REPORT in HANDL.ER part of the structure:
Program execution is directed to an external HANDLER
structure, if found. Otherwise the error is reported
to the system with an error message on the screen.

ElCample.

TRAP
INPUT "Name, ",na_$
INPUT "AQe, u.ag~;

HANDLER

REPORT can sort out
errors:
If the response to AQe

IF ERR-2 DR ERR-206 THEN
a;e,-O

is not a number, or the
number is too large, then
age is set equal to O.

,LBE
REPORT

ENDIF
ENDTRAP

SoTo - <L.abel,)

GoTo

Otherwise the error is
reported to the system.

is a statement which causes program execution to
continue at a predetermined place. This place is given
by a <L.abel), i.e. a name followed by a colon (a).
It is not possible to jump out of a procedure or into a
closed program structure using GOTO.

Examplea

FOR no,-l TO 10 DO
READ FIL.E 2a number
IF number<le-37 THEN BoTo too'small
PRINT l/number

ENDFoR no
too 'small ,
PRINT "Divisor too small."

<L.abel')

is a name which is used to identify a program line.
The program line is not executed. Execution continues
in the line following <L.abel,). Labels are used in
connection with GO TO and RESTORE.

See GoTo example.

DATA 2,4,S,2,1
twodigit,
DATA 12,34,lB,S4,22
RESTORE twcdigit
WHIL.E NDT EoD

READ number (no) ,
ENDWHI L.E

Read-in of numbers from
the DATA statements starts with
the number 12 due to the
statement RESTORE twodigit.

•

-125- CDMAL OVERVIEW

PROCEDURES

PROC - ENDPROC

are statements which are used to form the PROC-ENDPROC
structur.. PROC-ENDPROC surround a number of
statements which toge~her form a proc.dur.. A
procedure is a program module, recognized by a name
stated in the procedure heading: PROC <nam.>. The
procedure is carried out only if it is called from
somewhere else in the program using the same name that
appears in the PROC heading.

CO MAL programs should be created using procedures. In
their simplest form, they can be used to break a larger
program down into smaller, easy to handle units. More
advanced uses with parameter transfer and use of the
options REF, CLOSED, IMPORT and EXTERNAL make
procedures a programming tool 'of substantial value.

II MAIN PROGRAM
<statement>

<nam.l>
<statement>

<nam.2>
<statement>

<nam.l>
<statement>

END II MAIN PROGRAM

PROC <nam.1>
<statement>

ENDPROC <nalll.1>

PROC <nam.2>
<statement>

ENDPROC <nam.2>

The statements of the procedure are enclosed in PROC
<nam.> and ENDPROC <nam.>. The procedure can be
called "by name" from various places in the main
program.

/I I'1AINPROGRAI'1
start 'up
r.ad'1n

The main program consists of
program lines, each of which
calls a procedure.

Chapter 4 -

PROC start"up
USE system
teKtcalarsCO,2,1)
DIM number ClO)
PAGE

ENDPROC start"up

PROC read"in
FOR na.-1 TO 10 DO

-126-

PRINT "Read in age (",na,") II

I NPUT II II , number (na).'
ENDFOR na

ENDPROC re.d"in

<statement>

print "aut (member,age,name.'
<statement>

PROC print"aut(na,years,teKt.)
PRINT
PRINT
PRINT
PRINT

EIliDPROC

"Membership
·jAge
UNa ••
print"out

number, ",no
, ",years
I ",text$

COMAL OVERVIEW

In the main program the procedure print"aut is
called. Those values which are contained in the actual
parameters member, age an.d name$, are transferred
to the formal parameters na, years and teKt$,
which occur in the procedure heading.

The variable names of the formal parameters are local
within the procedure print "out.

•

This form for value transfer is one-way: Values can be ~
passed into the procedure but not from it. ,.,

When a procedure has been RUN or SCANned, it can be
used as a command.

A procedure can call another procedure, or it can even
call itself.

A procedure can be placed within another procedure and
thereby be made local for just this procedure.
(Similarly, a function and a label will be local within
a procedure/function.)

The command SETEXEC will cause every procedure call
in the listing to begin with the word EXEC (for
"execute"). See SETEXEC.

•

-127- COI'IAL OVERVIEW

REF - CLOSED - IMPORT

REF

is a parameter type which is used in a procedure call.
A REF preceding a parameter in the procedure heading
indicates that the name will only be synonomous with
the corresponding name in the procedure call. It is
called by reference. No room is reserved in the
computer's working memory for a new name and value.
The value receives only a new, temporary name. Both
names r.fer to the same value. In this way room is
saved in storage, execution speed is increased, and
parameter values can be passed both ways: into and out
of the procedure.

EM.mph ..

<statement>

r •• d'in(cl ••• ,n.m.$(»
<statement)

PROC r •• d'in(REF no,REF .$(»
INPUT "Which cl •• sl ": no
PRINT "Writ •• tud.nt n.me
i .-0
REPEAT

i .+1
INPUT "N.me. " •• $ (i)

UNTIL .$ (i)

ENDPROC re.d'in

While the procedure read'in is carried out, the names
cia •• and no will refer to the same value because
of the REF in front of no. The same is true for the
names name$ and a$. Both refer to the string
values in a one-dimensional array.

CLOSED

is an order which is used to declare all variable names
in a procedure as local. Thus the procedure is 'closed
off' from the rest of the program except for transfer
of parameter values in the parentheses of the procedure
heading. In this way mixing and name conflicts between
procedure names and variable names in the rest of the
program can be avoided. For ex.ample a name can be used
locally in the procedure without disturbing the value
of a variable with the same name outside the procedure.

EMampl ••

<statement>

minmaK(10,numb.r(),min,m.lC)
PRINT minlmaM
<statement)

-128 -

PROC minmaK(n,a() ,REF b,REF c) CLOSED
b.-a (1) ,c.-a (2)
FOR 1 •• -2 TO n DO

IF a(1.)(b THEN b.-a(i.)
IF a(1.»c THEN c.-a(1.)

ENDFOR i.
ENDPROC minmaK

COMAL OVERVIEW

The procedure minmaK is CLOSED so that it can be used
without worrying about the names of the variables in
the procedure.

IMPORT

is a statement which is used in closed procedures to
bring in variables, procedures and functions from
outside the procedure. In this way they can be made
accessible for use in an otherwise closed procedure.

EKample.

<statement>

print'out(points(»
<statement>

PROC print'out(number(» CLOSED
IMPORT total, t(), sort
DIM prod(total)
FOR no •• -1 TO total DO

prod(no.).-number(no.)*t(no.)
PRINT nO.lproc(no.)

ENDFOR no.
sort (number () ,total)
sort(t() ,total)
FOR no •• -1 TO total DO

PRINT no.,number(no.)*t(no.)
ENDFOR

ENDPROC print'out

Even though the procedure print'out is closed, the
variable total, the table t() and the procedure
sort are made accessible by means of the IMPORT
statement.

EXTERNAL - MAIN

EXTERNAL

is a keyword which is used to indicate that a given
procedure is an eKternal procedure which must be
fetched from the diskette when it is to be used in the
program. When creating a procedure for use as an
EXTERNAL procedure, it must be closed using the CLOSED
order and saved using the command SAVE. The SAVEd
procedure can be fetched from the diskette later for
use in another program, provided it is declared to be
EXTERNAL in this program. In this way it is possible
to build up a library of procedures. The procedures
can then be fetched into the working memory as need for
use in programs.

•

-129- COI1AL OVERVIEW

Let

PROC t •• t(A,b$,REF ch.ck) CLOSED
IF A-O AND b$ IN "Abed" THEN ch.ck.-TRUE

ENDPROC t.st

The procedure t.st is CLOSED and SAVEd on diskette
with the command SAVE t •• t "elet.t •• t".

It can be used later in another program.

II Program start
<statement>

t •• t(no,t.xt$,.rror)
<statement>

PROC t •• t(no,t.xt$,REF error) EXTERNAL ".let.t •• t"
II Program end

This program will fetch the procedure t.st from
diskette, use it and "forget" it again.

The line with the EXTERNAL declaration can be placed
anywhere in the program.

MAIN

is a command which is used to bring the system back to
the main program, if it should stop during the
execution of an EXTERNAL procedure. If execution is
stopped in an external procedure, LIST and other
editing orders will work only on the external
procedure, until MAIN removes it and brings back the
main program.

FUNCTIONS

FUNC - ENDFUNC - RETURN

are statements which are used in the FUNC-ENDFUNC
.tructur.. This structure consists of a number of
statements which together compose a u •• t·-d.fin.d
function. Functions must be introduced with FUNC
<nAm.> and terminated by ENDFUNC <nAm.>. The value
which the function returns must be given in a
RETURN-statement.

Functions can be real functions, integer functions or
string functions. A function is computed only if it is
called somewhere in the program by the same name which
is indicated in the function heading (FUNC (name».

Functions can be associated with the same properties
which were available for procedures: REF, CLOSED,
IMPORT and «pArAm.t.r li.t». See also under these
keywords in Chapter 4. In addition you will find that

Chapt.,. 4 - -130- COMAL OVERVIEW

functions are used in Chapter 3 and in Appendices C and
E.

In particular, all functions Cafter structure check
caused by SCAN or RUN) can be called as direct
commands.

II M.in progr.m
II r.al function
<statements>

PRINT .v.r.g.C •• b)
<statements>

FUNC .v.r.g.(x.y)
RETURN (x+y) 12

ENDFUNC .v.r.g.

II M.in progr.m
II int.g.r function
<statements>

f i r.tth .vo l •• ("COMAL")
•• cond ••• vo l •• (... nd function.")
<statements>

FUNC vo I •• Ct.xt.) CLOSED
FOR i •• -1 TO LEN(t.xt.) DO

IF t.xt.H •• i.) IN iouAEIOU" THEN numb.r •• +1
ENDFOR i.
RETURN numb.r.

ENDFUNC vo l.

II M.in progr.m
II .tring function
<statements>

PRINT my.tical. (.... cr.t")
<statements>

FUNC my.tic.l.(••)
doubl •• • 2*LEN(••)
DIM b. OF 1. c. OF double
c •• • ••
FOR i.-1 TO LEN(••) STEP 2 DO

b •• -CHR.(RND(6~.q3»
c •• ·c.(.i'+b.+c.(i+1.)

ENDFOR i
RETURN c.

ENDFUNC my.tic.l.

PRINT gr.b.(O,"Onc. upon. tim.")

•

FUNC Qrab$(first,a$)
1.nQth.-LEN(a$)
IF 1.nQth>1 THEN

IF firwt THEN
RETURN a$ (2.)

ELSE

-131-

RETURN a$(ll.nQth-1)
ENDIF

ELSE
RETURN 1111

ENDIF
ENDFUNC Qrab$

COI'IAL OVERVIEW

OTHER FUNCTIONS

ABS - INT - SGN - SQR - PI

ABS

INT

SGN

is a function which calculates the absolute value of an
expression. It is sometimes called the numerical
value. If the numerical value of the expression is
negative, the sign is changed to positive. A positive
value remains unchanged.

Exampl.sl

ABS(3.2:5)
ABS(-7.46)
ABS(x-7)

equals 3.25
equals 7.46
the result depends on the value of x.

is a function which calculates the integer part of the
value of an expression, i.e. the largest integer (whole
number) which is less than or equal to the value of the
given expression.

Exampl.s.

INT(3.2:5)
INT(-7.46)
INT(1/2)

equals 3
equals -8
equals 0

is a function which assumes the-value +1, 0 or -1, when
the value of a given expression is positive, zero or
negative respectively.

Exampl.w.

SGN(327.:54)
SGN(-4:5.7)
SGN(O)
SGN(x/7-y)

equals +1
equals -1
equals 0
the result depends on x ~nd y.

Chapt.,. 4 - -132- CDMAL DVERV lEW

SQR

is a function which returns the square root. The
argument must be non negati ve ('i. e. posi ti ve or zero).

Exampl •••

PI

SQR(16)
SQR (4. 9.+09)
SQR(x 2+y 2)

equals 4
equals 70000
the result depends on x and y.

is a system constant which is assigned the value
3.14159266. PI is particularly useful in connection
with the use of angles in radian measure, where PI
radians corresponds to 180 degrees.

CDS SIN - TAN - ATN

CDS

SIN

TAN

is a function which calculates the cosine of a number.
This number must be expressed in radians.

x degrees
x radians

Exampl •••

CDS(PI/2)
CDS(2.:5)
CDS (v*PI/1S0)

x*PI/180 radians
x*180/PI degrees

equals 0
equals -0.801143616
the result depends on the value of v.

is a function which calculates the sine of a number.
This number must be expressed in radians. See under
COS.

Exampl •••

SIN(PI/6)
BIN(angl.)

equals 0.5
the result depends on the value of angl ••

is a function which calculates the tangent of a number.
This number must be expressed in radians. See under
COS.

Exampl •••

TAN (-PII4)
TANCl.S)

equals
equals

-1
-4.28626168

-133- COMAL OVERVIEW

ATN

is a function which calculates the arc-tangent
(inverse tangent) of a number. The result is a number,
expressed in radians.

Exampl.s.

ATNCI)
ATNC-200)

equals
equals

0.785398163
-1.56579637

(PI/4)

LOG EXP

LOG

EXP

CHR$

is a function which calculates the natural logarithm of
a positive number. LOG represents logarithms to the
base e, where e is equal to 2.71828183. LOG is the
inverse function of EXP.

LOG(1)
LOG (10)
LOGC-2)
LOG(EXPCx»

equals
equals
is not
equals

o
2.30258509

defined
x

represents the exponential function. EXP(x) ~ e raised
to the x'th power, where e i~ the base of the natural
logarithms. EXP i~ the inverse function to LOG .

• - 2.71828183 to good approximation.

Exampiesl

EXP(l)
EXP (3)
EXP(t-a*.2)
EXP(LOGCx»

STR$ - SPC$

equals 2.71828183 (- e)
equals e cubed = 20.0855369
the result depends on t and a.
equals x

CHR$

is a string function which equals the character which
corresponds to the ASCII code o~ the argument. The
opposite operation is performed with the function ORD.

See Appendix A for Commodore ASCII codes.

Exalllpl.s.

CHR$(6:5)
CHR$(147)
CHR$«valu.»
CHR$(QRDC"B"))

equals the character a
equals the code for cl.ar scr •• n
the result depends on value
equals the character B

Chapt.r 4 - -134- COI'IAL OVERVIEW

STR$

is a string function which converts a numerical
expression to a string. The reverse operation is
performed by the function VAL.

STR$C1.34) equals the string "1.34"
STR$C2-:n equals the string "-3"
STR$CVALC"7"» equals the string "7"

SPC$

is a string function which returns the specified number ~
of spaces ("blanks"). ..

PRINT "1",SPC.(10),"2"

text$.- "a"+SPC$(8)+"Jk"

blank.$.-SPC$(LENCnam.$»

ORO - VAL - LEN

ORO

10 spac •• are printed
between 1 and 2.

text. is set equal to
"a Jk"

blank •• is a string
with the same number of
spaces as ~here are
letters in nameS.

is a function. The value of ORD is the ASCII value of
det first charcter in the string argument. The
"reverse" operation can be carried out by the function
CHR$.

VAL

See Appendix A for Commodore ASCII codes.

Exampl •••

ORO ("F")
ORO C "doar.")
ORD(by.)
ORD (CHR$ (8))

equals 199
equals 69
the result depends on by$
equals 8

is a function which transforms a legal string argument
to its corresponding numerical value. To be legal the
string must be composed of the digits 0, •• ,9, the signs
+-, decimal point or e used to specify
exponential notation. The reverse operation is carried
out with the function STR$.

Hexadecimal and binart notation is permitted.

•

Chapt.,. 4 - -135- COMAL. OVERVIEW

Exampl •••

VALC"123") equals the number 123
VAL C "2"+"3") equals the number 23
VALC"4.12") equals the number 4e+12
VAL. ("ab.") illegal
VAL.(BTR.(2» equals the number 2
VAL. (".f.") equals the number 254

L.EN

TRUE

is a function, whose value is the length of the string
argument.

Exallpl •••

LEN ("abcd")
L.EN(nam ••)
LEN (....)
L.ENC"a ki")

FAL.SE

equals the number 4
the result depends 'an nameS
equals the number 0
equals the number 5

TRUE

is a system constant which always equals 1.

FALSE

is a system constant which always equals O.

is a command, statement and function used with the
system"s built-in real-time clack.

The clock measures time in Jiffies.

sec:ond
1 day

60 jiffies.
= 5184000 jiffies

(The clack is reset to zero.)

TIME can be used to set the clock or to read the time
sinc:e the previous zeroing.

Exampl •••

TIME 0

TIME 3600

•• c.-INTCTlME/60)

The clock is zeroed.

The clock is set to 3600 jiffies,
i.e. 1 minute •

•• c is set equal to the number
of seconds since the last zeroing.

Ch.pt.... 4 - -136- COMAL OVERVIEW

RANDOMIZE - RND

RANDOMIZE

is a command and statement which is used to place the
random number generator at an arbitrary point in the
random number series. The random numbers are created
with the function RND.

Ex.mpl •••

RANDOMIZE

RANDOMIZE 6

RND

The initial placement in the number
series is determined by the time
interval since the last TIME operation.
Since the number of jiffies (1/60 sec) ~
will generally be quite random, a really ~
random sequence can be assured.

If RANDOMIZE is followed by a
number, this number will indicate the
starting position in the random sequence
each time random numbers are generated.
This will cause the same sequence to be
generated when RND is used.

is a function which selects a random real number ~rom a
random number sequence of evenly distributed 'random'
numbers.

RANDOMIZE is used to position the random number
generator at an arbitrary position (based on the clock)
in this series.

Exampl •••

numb -RND

no.-RND(-10,30)

An arbitrary real number between
o and 1 is chosen: O(=RND(l.

A random number chosen among -10,-9,
•• ,29,30 is selected. ~

PRINT RND(min,m.x) A random integer between min
and max (inclusive) is printed
out.

ESC - TRAP ESC

are keywords which control the action of the <STOP>
key.

ESC is a system function. Its value depends on
whether the statement TRAP ESC+ or the stat.ment
TRAP EBC- has been executed.

If TRAP ESC+ has been executed (it is the default
condition), then pressing the (STOP) key will interrupt
program execution. The ESC function has no meaning.

If TRAP ESC- has been executed, then pressing <STOP)

-137- COI'IAL OVERVIEW

will NOT interrupt the program. ESC will have the
value FALSE, until (STOP> is pressed. Then it will
remain TRUE until the value of ESC is read in the
program.

TRAP ESC-

<STOP) i. pr •••• d
dummy.-ESC
TRAP ESC+

The (STOP> key will now not stop
the program and ESC is assigned the
value FALSE.
ESC is set equal to TRUE.
ESC is reset to FALSE.
The (STOP> key regains its usual
function.

~ OPERATORS

See Appendix C for a more detailed treatment of
operators.

DIV MOD

DIV

MOD

is an operator which yields the value of the whole
number part of the quotient after division. x DIV y
is the same as INT(x/yl.

Exampl •••

:5 DIV 2
74 DIV 10
hc+3lDIV y

equals 2
equals 7
the result depends on x and y.

is an operator which computes the r.maind.r after
division. x MOD y is the same as x-INT(x/yl*y.

Exampl •••

:5 MOD 2
74 MOD 10
8.25 MOD 2.1
(4-xl MOD z

equals 1
equals 4
equals 1.95
the result depends on x and z.

Ch.pt.... 4 - -138- CoMAL OVERVIEW

LOGICAL OPERATORS

NOT - AND - AND THEN - DR - DR ELSE

NOT

is a logical operator which changes the truth value of
an expression.

T ... uth t.bl ••

a NOT a

TRUE
FALSE

FALSE
TRUE

Ex.mpl •••

WHILE NOT EoF(2) DO
READ FILE 2. numb
PRINT numb

ENDWHILE

The loop continues until there is no more data in the
file with stream number 2.

IF NOT ok THEN d·.t.tu.(ok)

The procedure d·.t.tu. is executed until the
variable ok becomes TRUE «>0).

AND

is a logical operator which determines the truth value
of a combined expression, a AND b. The combined
expression is only TRUE, if both. and b are true.

T ... uth t.bl ••

a

TRUE
TRUE
FALSE
FALSE

b

TRUE
FALSE
TRUE
FALSE

EIC.mpl •••

~ a AND b

TRUE
FALSE
FALSE
FALSE

gives the value FALSE

WHILE .lCp ionl AND .lCp ion2 DO mak.·d win;

If both ~p ionl and .lCp ion2 are TRUE, then
the procedure mak.·d win; is execut.d. Otherwise it
is not.

-139- COMAL OVERVIEW

AND THEN

OR

is.a logical operator which is an extension of the
operator AND: a AND THEN b. The same rules apply to
AND THEN as for AND; but if the first expression a is
false, the expression b is not computed, for it is
certain that the entire expression will be FALSE.

a$.-"t •• t",i.-l
length.-LENCa.)
WHILE i<-l.ngth AND THEN .$Ci)<>"." DO i.+l

For i:=S an error will occur in the logical expression
.$CO<>".", if this case is not eliminated by the
first condition.

is a logical operator which determines the truth value
of a combined expression, • OR b. The combined
expression is true, if just one of the expressions.
or b is TRUE.

Truth table.

a

TRUE
TRUE
FALSE
FALSE

b

TRUE
FALSE
TRUE
FALSE

REPEAT
<statement>

! a OR b

TRUE
TRUE
TRUE

, FALSE

gives the value TRUE.

The statements in the REPEAT­
loop are repeated until
no>4 or .na. is

UNTIL no>4 OR .n.. IN "yY" a y or a Y.

DR ELSE

is a logical operator which is an extension of the
operator OR: a OR ELSE b. The same ru1es apply for
OR ELSE as for OR; but if the first expression a is
true, then the expression b is not calculated, since
the combined expression must be TRUE.

If a' equals 0, then the first logical expression is
true. In this case an evaluation of the last
expression Cinvolving an illegal division) is
superfluous.

Chapt... 4 - -140- COI1AL. OVERVIEW

IN

is a operator which returns the position of a search
strlng in a given text: string IN text.

The value is the number in the text of the first
character in the search 'string. If the search string
is not found, then the value 0 is returned.

IN can therefore be used for example to determine if
a response is contained in a string containing
acceptable answers.

Examples.

x •• "gram" IN "programing"

PRINT "mel" IN "Comal program"

IF answer. IN "nN" THEN STOP

x gets the value 4.

o is printed.

If answer. consists
of the letter n or
N, the expression is
TRUE, and the program
stops.

If the search string is empty, i.e. equal to
IN returns the text lenqth + 1.

then

l.ngthl-.... IN "Comal for CBI'!" length 14.

BITAND - BITOR - BITXOR

BITAND

is a logical (boolean) operator which executes an AND
on each bit in the binary representation of two
numbers: a BITAND b.

All numbers which are to be compared with the ~
operators BITAND, BITOR or BITXOR must be integers ~
in the interval 0-65535, i.e. binary numbers
between 700000000000000000 and 701111111111111111.

BITAND a !b 00 01 10 11 E.g. Yo 1 0 0
AND AND AND

00 00 00 00 00 Yo 1 1 0
01 00 01 00 01 ----------
10 00 00 10 10 X 1 0 0
11 00 01 10 11

Ch.pt.... 4 - -141- COMAL OVERVIEW

Ex.mpl •••

XOOll BITAND X0101
17 BITAND 18
$f. BITAND l5

gives %0001
gives 16
gives 4

(decimal 1)

IF PEEK(u •• rpo ... t) BIT.~ND Xll00 THEN r.gi.t

If the contents of memory address u •• rport has the
bit pattern X00001100, then the procedure r.gi.t.r
will be executed.

BITaR

is a logical (boolean) operator which executes an OR on
each bit of the binary representation of two numbers:
a BITaR b.

Rul •••

BITOR a !b 00 01 10 11 E.g. % 1 0 1
----------------------- OR OR OR

00 00 01
01 01 01
10 10 11
11 11 11

X1010 BITOR %0110
23 BITOR $1b

10
11
10
11

11 1 0 0
11 ----------
11 0 1
11

gives %1110 (decimal 14)
gives 31

BITXOR

is a logical (boolean) ·operator which executes an XOR
<i.e. an "exclusive OR") on each bit in the binary
representation of two numbers: a BITOR b.

Rul •• :

BITXOR a !b 00 01 10 11 E.g. % 1 0 1
XOR XOR XOR

00 00 01 10 11 1 0 0
01 01 00 11 10 ----------
10 10 11 00 01 0 0
11 11 10 01 00

Exampl •••

X0011 BITXOR X1010 gives %1001 (decimal 9)
17 BITXOR e gives 25

OTHER ORDERS

II

is a statement which allows the inclusion of comments
in a program. The comment statement is not executed,
but is used in the program to clarify its function.
Comments make it easier for other programmers (or

Chapt.,. 4 - -142- COI'IAL OVERVIEW

you,.self) who examine the program later to understand
how it works.

The comment lines take up room in the working memory
but do not increase a program's execution time.

EK amp 1 •• ,

a$,-b$(l)+b$(LEN(b$» II a$-b$'. fi,..t and la.t cha,.act.,.

is a command which is used to trace active procedure or
function calls. TRACE can be used to help find the
cause of an error in a program.

EKampl.,

A program might be stopped in a procedure in line 740
due to an error:

TRACE

the p,.o;,.am .tapp.d in
0740 a$,-cha,.act.r$(1,3)
in.id.
0700 PROC p,.lnt'out(no,cha,.act.,..)
which wa. call.d in
0030 print'out(2,"k")

is a command and statement which is used to r ••• ,.v.
room in working memory for array. containing numbers
or text.

As a statement it will usually occur in the beginning
of a program to dimension global indexed variables, but
it.can also be used locally within a closed procedure.

Ar,.ay. with numb.,..,

DIM tab.l(SO)

DIM K (20) ,y(20)

DIM pOint(-10,20)

DIM .pac.(lO,40,40)

DIM pr-ic.(OllOO,S,lO)

The array can contain real
numbers with indices 1,
2, •• ,50.

A DIM-statement can contain
several arrays, separated by
commas (,).

Array with indeK -10,-9,
•• ,0, •• ,20

Three dimensional array

Two-dimensional array with
indices 0, •• ,100 and 5, •• ,10

•

Ch.pt.... 4 - -143- COI1AL OVERVIEW

PEEK

If the array specification in the DIM statement does
not include a lower index limit, it is automatically
set equal to 1.

When created by a DIM statement, all array values are
set equal to O.

String .rr.y ••

DIM n.m.$ OF 30 Room is reserved for 30
characters in the string
n.m.$.

DIM it.m$(lO) OF 20 Room for up to 10
it.m$-names. Each name may
contain up to 20 characters.

DIM t.Mt$(0.10.2.~) OF SO t.xt$ is a two­
dimensional array of words
of maximum 80 characters.

Not ••

The first time a string is assigned a value, room is
reserved in memory for 40 characters, if not previously
declared by a DIM statement.

One dimensioned a string is set equal to the empty
string,

POKE

PEEK

is a function which fetches the contents of a given
storage address. The result is an integer between 0
and 255. A "map" with an overview of the use and
availability of Commodore 64 memory addresses can be
seen in Chapter 8 on Machine Language.

Ex.mpl •••

11 n •• -PEEK (214)

PRINT PEEK($ddOO)

POKE

The line number on which the
cursor is currently located is
fetched from memory location 214
and the variable lin. is assigned
this value.

Prints the contents of the
parallel port.

is a command and a statement which is used to pl.ce a
number directly into a storage address:
POKE .ddr •••• numb

You must be careful when using POKE, since sending
wrong numbers to random addresses can do strange things

Chapt.r 4 - -144- COI'IAL OVERVIEW

aya

to your program. If worst comes to worst, it may be
necessary to power-down and power-up again to continue
programming!

Exampl •••

POKE 198,0 The counter of the keyboard
buffer is zeroed. I.e. the
buffer is emptied.

POKE $dd03,Xl1110000 The direction register of
the parallel port has the
hexadecimal address $dd03.
This address will contain the
binary number 7.11110000 which
sets bit 0-3 to inputs and
bits 4-7 to outputs.

is a command and statement which directs program
execution to a machinge code subroutine starting at the
address specified.

EKample.

SYS 4000

aya :50000

execute the machine c~de routine
starting at (decimal) address 4000.

The system carries out a COMAL
start-up (this can also be done directly
from Basic to start COMAL).

is a command or statement which is used to do
nothing! In fact it is quite useful when creating
pauses and other situations, where it is desired that
the program be delayed until some event (say pressing a
key) causes execution to proceed.

EKampl •••

FOR pau ••• -1 TO 1000 DO NULL

WHILE KEY$-CHR$(O) DO NULL

STOP END

STOP

is a statement which is used to stop the execution of a
program.

STOP can be placed anywhere in a program, and there
can be several STOP-statements in a program. After the
program has be.n stopped, the values of any variables
can be axamined and lor changed. Using the command
CON the program can be caused to continue at the line
following the STOP statement. However no changes in
program syntax may ba made.

Chapt.r 4 - -145- COI1AL OVERVIEW

END

EKampl.a.

STOP The program stops with the
message: STOP at KKKK

STOP ·printout finiah~N The program stops with the
message: printout finiahed.

is a statement which completely terminates program
execution and marks the conclusion of a program. END
can be placed anywhere in a program. In contrast to
STOP, the program can't be continued with the CON
command.

EKampl.a.

END The program is terminated with
the message: END at KKKK

END "All finiah.d!" The program is terminated with
~he message: All finiahed!

-146-

•

•

-147-

COMAL PACKAGES

WHAT IS A PACKAGE?

In vour COMAL cartridge there are 11 program packages with
useful procedures. The packages are written in machlne code
for speed and compactness. They can help you to take full
advantage of the many resources available in COMAL and the
Commodore 64.

A package and its built-in procedures and functions is made
accessible with the command or statement:

USE <package name>

where package name is one of the 11 names whlch follow:

When a package has been activated, lts procedures and
functions are called by name just as the ordinary COMAL
procedures and functions which the user can create. All
package procedures can be used as commands as well as pro­
gram statements. More than one package can be actlvated at
a time.

Overview of packagesl

l- engl i sh , English error messages
2. dansk , Danlsh er-ror messages
3. graphics · procedures for x-v graphics
4. turtle · procedures for turtle (Logo) graphics
5. sprites • procedures for handllng sprites
6. sound • procedures for controling the SID sound chip
7. system · procedures for alterlng system configuration
8. font · procedures for deflning new character sets
9. paddles · a procedure for reading the paddle inputs

10. joysticks · a procedure for readlng joystick inputs
1t. lightpen · procedures for control of a 1 ight pen

Chapter ~ - -148- CDMAL PACKAGES

THE ENGLISH PACKAGE

USE english activates then package. When activated, all
COMAL error messages will be in English. When COMAL is
started up, the command USE english is executed
automatically. This package co~tains no procedures.

THE DANISH PACKAGE

USE dansk activates the package. All COMAL error messages
will then be issued in Danish. The package contains no
procedures.

GRAPHICS WITH COMAL

With the Commmodore 64 you can work with two different
display screens: A ·text screen and a graphics screen.

To work with these screen you can imagine that the computer
has two internal 'maps' which show the current state of each
of these graphics screens. Only one of these maps can be
shown on the display screen at a time.

Normally you will be
looking at the text
screen. It consists of
25 lines, each with room
for 40 characters. Posi­
tion 1,1 is in the upper
left-hand corner, and
position 25,40 is at the
lower right on your dis­
play screen. Thus the
text screen has a total
of 25 x 40 = 1000 dif­
ferent character loca­
tions. In each position
a letter, number or
graphics character can be
pI aced.

The graphics screen con­
sists of 320x200 = 64000
dots: 320 horizontally
and 200 vertically. The
points are identified in
a coordinate system by
means of a pair of num­
bers (X,Y). The point
(0,0) on the display is
located in the lower
left-hand corner, and the
point with coordinates
(319,199) is in the upper
right-hand corner. Each
of these dots is some­
times referred to as a
pi xel (pi cture
element).

rD.ft) (3 1 9 0)

•

-149- COf'IAL PACKAGES

The procedures and functions which are used to draw on the
graphics screen are made accessible when you use the order:

USE oraphics or USE turtl •.

When using the high resolu~ion graphics screen, two further
options are available:

Qraphic.cr.en(O)
graphic.creen(l)

, high resolution graphics
, multI color graphics

Both orders make the graphics screen visible on the display
and the text screen is hidden from view but available for
later use. The difference between the two tvpes of graphics
display has to do with the number of possible color
combinations which can be displayed. See the more detailed
discussion of the graphicscr •• n order for further
information about this.

Use high resolution if you want to make drawings with lots
of detail using just one color besides the background color.

If the use of several colors is more important than details,
then the multicolor graphics option is the one to use.

A program which draws a yellow border around the display
screen might look like this:

USE graphics
graphic.craan(l)
pencolor (7)
drawto(319,O)
drawto(319,199)
drawto(O,199)
drawto(O,O)
WHILE KEV$mCHR$(O) DO NULL

The last line of the program keeps the graphics screen
visible until any key is pressed. When a key pressed, the
condition KEV$ = CHR$(O) will no longer be fulfilled, and
the program will end. The computer then displays the text
screen, hiding the graphics screen.

After the order USE graphics has been executed, you can
use the function keys (fl> and (f~> to choose which of
the graphics screens you wish to view:

(f1>
(f~)

, displays the text screen
, shows the graphics screen

The function key <f3) can still be used to issue the
command USE turtl., causing a split screen to be

-displayed:

(f3) ,split screen: graphics screen with 4 lines
scrolling text at the top

While using CONAL graphics you are not limited to the use of
coordinates in the range from (0,0) to (319.199). You can
superimpose your own coordinate system onto the graphics

-150- COI'1AL PACKAGES

screen by using the order window. All graphics orders
except for the order viewport and the sprite orders will
then be referred to your coordinate system.

USE graphics
graphicscreen(l)
window(-2,2,-l,l)
moveto(O,O)
drawto(2,-1)
WHILE KEY$-CHR$(O) DO NULL

The order window(-2,2,-l,l) superimposes a ~

coordinatesystem onto the display screen. The point (-2,-1) ~
is now at the lower left-hand side of the screen, and (2,1)
is at the upper right-hand corner.

When high resolution graphics is started up using the order
USE graphics, the coordinate system selected corresponds
to the order window(O,319,O,199) , in accord with the
standard screen coordinates. The order USE turtle
performs an automatic window(-160,l~9,-100,99). so that
the origin (0,0) is at the center of the display screen.

If you want to write text on the graphics screen, you can
use the special writing order plottext.

USE graphics
graphicscr •• n(l)
plott.xt(O,100,"C0I'1AL graphics")
WHILE KEY$-CHR$(O) DO NULL

In Chapter 3 there are further examples of the use of
graphics procedures. In addition you will find many
examples of the use of graphics on the demonstration
diskette (or cassette tape) which accompanied your COMAL
cartridge.

GRAPHICS OVERVIEW

The packages graphics and turtle contain the following
orders:

D.finition of working area.
vi.wport - window

Choic. of graphics scr •• n and color graphics stat ••
graphicscr •• n

Choic. of graphiCS scre.n.
textscreen - fullscreen splitscreen

Clearing of graphics acreena.
clearscreen - cl.ar

Color choic ••
textcolor - t.xtbackground - textbord.r
p.ncolor - background - border
g.tcolor

(X ,V) graphics.
plat
drawto - mov.to
draw - move
s.txy
circl. - arc
xcor - ycor

Int.llig.nt calor fill.
fill - paint

-151-

R.lativ. graphics.
showturtl. - hid.turtl.
turtl.siz.
ham.
s.th.ading - h.ading
p.nup - p.ndoNn
l.ft - right
forward - back
arcl - arcr

T.xt an the graphics scre.nl
t.xtstyl. - plott.xt

Information on graphics mod.s.
inq

Storag. and printing of the graphics imag ••
sav.scr •• n - loadscre.n
printscr •• n

COI'IAL PACKA6ES

In addition it is possible to use the following procedure
names when the turtle package is activated:

bk
bg
cs
fd
ht
It
pc
pd
pu
rt
s.th
st
t.xtbg

back
background
cl.ar.cr •• n
forward
hid.turtle
left
p.ncolor
p.ndown
p.nup
right
•• th.ading
showturtl.
t.xtbackground

Chaptar :5 - -152- COI'IAL PACKAGES

IN DEPTH LOOK AT GRAPHICS ORDERS.

viawportC(vxm1n>,(vxmax>,(vymin>,(vymax»

is a procedure which limits the are of
the display screen in which one can
define a coordinate system and draw.

The parameters <vxmin>, <vxmax>, <vymin>
and <vymax> always refer to the physical
display screen itself with (0,0) in the
lower, left-hand corner and (319,199) in
the upper, right-hand corner. Note that
this procedure is independent of any
other coordinate system which may have
been chosen using the window
procedure.

Examplll:

..... _-... -... _-- -...... - ... -...... --- -

·d'"TJi CO-....... _

CJ·~·-·-x
; !

- I -...... _.n

viewport CO, 1:59,0,99) It is not possible to draw
outside the lower left
quadrant of the display
screen.

windowC(wxmin>,<wxmax>,(wym1n>,<wymax»

is a procedure which defines the ~oordinate system in
the given viewport. The pixel in the lower, left-hand
corner of the viewport is assigned the coordinates
«wxmin>,<wymin». The pixel in the upper, rlght-hand
corner is assigned the coordinates «wxmax>,<wymax».
All subsequent graphics orders (except viewport and
the sprite commands) will be refered to this coordinate
system until a new one is defined.

On start-up with USE graphics the viewport is the
entire display screen and the coordinate system is
defined by windowCO,319,0,199)

On start-up with USE turtle the viewport is the
entire display screen and the coordinate system is
defined by windowC-160,1:59,-100,99). Thus the point
(0,0) is in the middle of the display screen.

Exampla.

w1ndow<-1000,2000,-100,200)

graphicscreen«mode»

is a procedure which makes the graphics screen appear
on the display screen and makes the the text screen
invisible.

The graphics screen can be made accessible in two
different modes:

graphicscraanCO)
graphic:sc:raanCl)

, high resolution graphics
, multi-color graphics

•

-153- COt1AI. PACKAGES

The diffe~ence between the two modes lies in the manne~
in which colo~ is handled. The pixels of the display
sc~een a~e not independent when using colo~:

In mode 0 (high-~esolution g~aphics) the points of
the display a~e associated in blocks of 64 pixels: (8
on each side). Within each block the~e may only be two
diffe~ent colo~s, one of which is the backg~ound colo~.
If one attempts to give a pixel in the block a thi~d
colo~, then the enti~e block will get this colo~.

In mode 1 (multi-colo~ g~aphics) ~esolution in the
ho~izontal di~ection is not as good, fo~ the pixels a~e
associated in pai~s. This means that each block
consists of 4 x 8 pai~s. Each of these pai~s can be
assigned a colo~. If one of the elements of the pai~ is
assigned a colo~, the othe~ dot will automatically
acqui~e the same colo~. WithIn each block fou~
diffe~ent colo~s can be displayed at the same time.
One of them is the backg~ound colo~. If one attempts
to int~oduce a fifth colo~, the fou~th colo~ will also
be given the new colo~.

texttic~een

is a p~ocedu~e which makes the text sc~een appea~ on
the display sc~een. The g~aphics sc~een is not visible
but still available in compute~ memo~y.

It can be necessa~y in a p~og~am to switch back and
fo~th between the text sc~een and the g~aphics sc~een.
This would be the case if the p~og~am contains INPUT
statements and must also be used fo~ d~awing. This may
appea~ to be inconvenient. On the other hand it
assu~es that a d~awing will not be distu~bed by
unwanted text.

full.c~e.n

is a p~ocedu~e which causes the enti~e display sc~een
to be filled by the g,-aphics sc~een. The inst~uct10n
would be used when wo~king with tu~tle g~aphics to
switch f~om the split sc~een (splitsc~ .. n) to the
full g~aphics sc~een.

splitscre.n

is a p~ocedu~e which shows the g~aphics screen and a
sc~olling copy of the text sc~een with fou~ lines of
text and the curso~ at the top of 'the display.

When used as a command, USE turtle does an automatic
split.creen, but not when it is used as a p~og~am
statement.

clear.creen

is a p~ocedu~e which deletes the enti~e g~aphics image
no matter what the active (viewport) may be. To
delete means to change all pixels to the backg~ound
color.

Chapt.r 5 - -154- COMAL PACKAGES

is a procedure which only deletes the graphics image
within the drawing viewport.

Exampl ••

vi.wport(O,100,O,100)
cl.ar

Only the 101 x 101 pixels
in the lower, left-hand
corner of display screen
are cleared.

COLORS: In the following procedures with color
speCifications, the variable {color> must be an
integer from -1 to 15. (Note; -1 means the
background color.) See also Appendix B on colors
and color codes.

t.xtcolor({color»

is a procedure which defines the color of the
characters on the text screen.

Exampl ••

Black text is selected.

textbackground<{color»

is a procedure which defines the background color of
the text screen.

t.xtbord.r({color»

1S a procedure which defines the color of the text
screen border.

p.ncolor({color»

is a procedure which defines the color of the pen.

Exampl.sl

p.ncolor (7)

p.ncolor (-1)

background «color»

Yellow is selected as the
dr awi ng color.
The background color is the
drawing color.

is a procedure which defines the graphics screen
background color.

bord.r «color»

is a procedure which defines the graphics screen border
color.

•

Chapt.... !5 - -155- COl'IAl PACKAGES

g.tcolo ... «x >,(y»

is a function. Its value equals the color code of the
pixel at location «x),(y».

If «x),<y» is outside the drawing area determined by
the procedure viewport, then getcolo ... «x>,<y»
returns the value -1.

The function getcolor does not change the current pen
position.

Examples.

PRINT getcolo ... (1,2)
IF g.tcolo ... (O,O)(O THEN move'center

plot «xO>,(yO»

is a procedure which places a dot at pen position
«xO>,(yO» •

Ex.mpl ••

plot(4.3,:56)

d wto «x),<y>l

is a procedure which draws a line from the current pen
position to the point «x>,(y», which becomes the
new pen position.

Examples.

dr.wto(lOO,200)
d wto(-20,4000)

moveto «x >,(y»

is a procedure which moves the pen to the point
«x>,<y>l •

moveto(200,-2:5)

d w«dx >,<dy>l

is a procedure which draws a line from the current pen
position «xO>,<yO» to the point with coordinates
«xO)+<dx>,<yO>+<dy» and changes the pen position to
the endpoint.

Ex.mpl.s.

d w(O,lOO) vertical line 101 units long
d w(-1.!5,O.4)

-156- COMAL PACKABES

is a procedure which moves the pen without drawing from
its current position «xO>,<yO» to the point with
coordinates «xO>+<dx>,<yO>+<dy».

move (-3,20)
meve(-2000,O)

is a procedure which positions the pen at the point
with coordinates «x>,<y». If the pen is down, this ~

procedure draws a line just as drawte«x>,<y». If ..,
the pen is up, it is moved just as with
mevete «K >,<y» •

is a procedure which draws a circle with the center in
«xO>,<yO» and radius <r).

Whether the circle appears circular or elliptical
depends upon your choice of the drawing region on the
screen, the coordinate system and the adjustment of the
vertical linearity of the TV or monitor screen. If the
coordinate system has been selected in the drawing area
so that the condition

<wxmax> - <wxmin> <vymax> - <vymin>
----------------- * -----------------
<wymax> - <wymin) <vxmax> - <vxmin)

is fulfilled, then the circle should appear to be
perfectly round on the screen. If not, try adjusting
the vertical linearity of the TV or monitor.

Example 11

When USE graphics is called, it carries out the
following procedures automatically:

viRwport(O,319,O,199)
window(O,319,O,199)

The height/width ratio is equal to 1, and

will draw a round circle on the middle of the screen.

vi.wpert(200,300,BO,1BO)
NindeN(-l,l,-l,l)
circl.(O,O,U

yields a round circle on the upper right-hand side of
the screen.

•

Chaptllr ~ - -157- COMAL PACKAGES

arc «xO>,<yO>, <r > ,<aO), <da»

is a procedure which draws an arc with the center at
«xO>,(yO» and radius of curvature <r>. The starting
angle is (010) degrees and the arc will subtend <dOl>
degrees.

Example ••

arc(100,100,~0,45,90)

arc (-20,25,30, 15,-00)

xear and year

are functions. They equal, respectively, the current x
and y coordinates of the pen.

Example ••

PRINT xcor;ycer
plottext(xcar,ycar,"Figure 1")

fill «x>,<y»

is a procedure which uses pencolor to fill a region of
the screen with color. The region to be filled in must
contain the point «x),<y)l. It must be bordered by a
line or area of a different color or by an edge of
the viewport.

fill does not alter the pen posit1on.

See the summary example under the procedure paint«x>,<y».

Example.

fill (10,56)

paint «x),<y»

is a procedure which fills in a region of the screen
with the drawing color. The reg10n Wh1Ch 1S to be
filled in must contain the point C<x>.<y». and it must
be bordered by a line or area with the same color or
by an edge of the drawing area.

paint does not alter the current pen posit1on.

Example ••

paintC-10,4)

pencolor (-1)
paint C 100,20) A region is 'erased'.

The collection of examples below illustrates the
differences between fill and paint:

Chapt.er ~ - -158- CDI'IAL PACKAGES

USE graphic.
graphic.creen(l)
pencolor(7)
drawt.o(:519,199)
fill (10,100)
pencolor(l)
circle(100,100,70)
fill <100,100)
WHILE KEV$-CHR$(O)

II if pa1nt.(10,lOO) , no difference

II if paint. (100,100) , a difference!
DO NULL

.howturtle

is a procedure which causes the turtle to be displayed
on the graphics screen. The word 'turtle' is based on
the use of relative graphics in the computer language ~
Logo. •

USE turtle automatically causes the turtle to be
shown.

hid.turtle

is a procedure which causes the turtle on the graphics
screen to become invisible.

t.urtl •• iz.«.iz.»

is a procedure which defines size of the drawing
arrowhead (the turtle).

The parameter <size> must be a number between 0 and 10.
When graphics is started up, this parameter is
automatically set equal to 10.

home

is a procedure which places the turtle at coordinates
(0,0) pointed upwards on the screen •

•• t.h.ading«h.ading»

is a procedure which sets the direction in which the ~
turtle points. If the turtle is viSible, it will turn
to face this direction.

<heading> is given in degrees:
o corresponds to upwards.

90 is towards the right side of the screen.
-90 is towards the left.

USE turtle automatically sets the heading to O.

h •• ding

is a function which returns the value of den current
heading. The heading is given in degrees with 0 towards
the top of the screen, and 90 degrees towards the
right.

•

Chapter :5 - -159-

penup

is a procedure which lifts the pen.

pendown

is a procedure which lowers the pen.
turtle to draw as it moves.

COt1AL PACKAGES

It causes the

When graphics is started up, the system automatically
executes a pendown.

left «angle»

is a procedure which turns the turtle <angle> degrees
to the left in relation to the current heading.

right «angle»

is a procedure which turns the turtle <angle> degrees
to the right in relation to the current heading.

forward «distance»

is a procedure which moves the turtle <distance>
units forward with the current heading. If the pen is
down, a line is drawn.

back «distance»

is a procedure which moves the turtle <distance>
units backwards in relation to the current heading.
The turtle "backs up." If the pen is down, a line is
drawn.

Press the <f3> function key (corresponding to the
USE turtle command). Write directly on the four text
lines which are visible at the top of the screen:

left (90)
forward (70)
right(130)
forward (SO)
left(40)
back (100)
hideturtle

The turtle has now drawn a number 4.

arcl «r>,<da»

is a procedure which draws a left-hand arc with a
radius of curvature <r> and subtending an angle of
<da> degrees. The starting point is the current
turtle position. and the starting direction is the
current heading.

Ch.pt.... !5 - -160- CDI'IAL PACKAGES

Ex.mpl •••

fa ... "' d(20)
.... cl(:50,30)

After having drawn a straight line,
The line curves towards the
left, turning 30 degrees.

PRDC soft·fr.m.(xmin,ymln,,,,idth,h.ight)
IF width)20 AND h.ight>20 THEN

wi dth-",1dth-20
h.ight-h.ight-20
mav.to(xmin+l0,ymin)
•• th •• ding(90)
fa ... "' d("'idth)
.... cl <10.90)
fa ... "' d(h.ight)
.... cl (10,90)
fa ... "' d(width)
.... cl <10.90)
far"' d(h.ight)
.... cl <10.90)

ENDIF
ENDPROC ·.aft·f me

.... cr «r >, <d.»

is a procedure which draws a curve to the right with
radius of curvature < ... > and turning angle <d.>.
The starting point is the current position of the pen,
and the initial heading is the current heading .

• rcr«r>,<d.» corresponds to .rcl(-<r>,-(d.».

Ex.mpl ••

.... cr(3.4!5.!50)

w p

is a procedure which allows lines
drawn on the graphics screen to
continue beyond the edge of the
screen, reappearing on the opposite
side. For example, if the pen
disappears at the top of the screen
with x-coordinate 110 and heading
45, it will reappear at the bottom
with the same x-coordinate and the
same heading.

When USE turtle is engaged, the procedure wr.p is
carried out automatically. This is however NOT the
case when USE g phlc. is started.

na",r.p

is a procedure which terminates ·wraparound·.
be restored with the procedure wrAp.

It can

•

Chapter :5 - -161- COI'IAL. PACKAGES

is a procedure which is used to define how text
printout will appear on the graphics screen. The
actual printing of text is performed with the procedure
plottext.

The parameters <width>, <height>, <heading> and <mode>
must all be integers.

(width>
<height>
<heading>

<mode>

letter width (1 corresponds to normal text.)
letter height (1 corresponds to normal text.)

0
1 ,
2
3

o

text is rotated o degrees.
text is rotated 90 degrees.
text is rotated 180 degrees.
text is rotated 270 degrees.

both the text and its background color is
drawn. This means that the text area is
cleared before new text is printed.

1 , only the characters of the text are printed.
This means that a letter _ placed on top of a
letter b will not delete the entire letter
b. Some of the remnants of the b will
still be visible.

If a parameter is set equal to -1, then the current value is
used.

On startup the computer automatically chooses
textstyle(l,l,O,O), corresponding to normal text Slze (as on
the text screen) written horizontally, and both text and its
background color is printed.

Example.

textstyle(2,1,2,0)

textstyle(3,2,-1,-1)

plottext«x),(y),(text$»

All subsequent text will be written
upside down wlth characters of double
width •

Only the text size is changed.

is a procedure which prints out the given text starting at the
point «x>,<y>l.

The size of the letters, the orientation and writing mode are
specified by the procedure textstyle.

plottext does not change the position of the pen.

Examples.

plottext (100,1:50, "COt1AL")

text$.·"Wh_t·s my n __ 7"
textstyle(1,3,1,0)
plottext(200,10,text$)

-162- COI'IAL PACKAGES

inq«no»

is a function which is used to obtain information concerning th
state of the various graphics variables.

The parameter <no> must be an integer between 0 and 33.

<no> Information

o display
1 text border
2 text backgnd.
3 text color
4 graf. border
5 graf. backgnd.
6 pen color
7 gr. text width
8 gr.text height
9 gr.te>:t dirn.

10 gr.te:<t state
11 turtle visible
12 inside window
13 txt scrm seen
14 spIt scrn seen
15 wraparound
16 pen down
17 x - position
18 y - position
19 vxmin
20 vxmax
21 vymin
22 vymax
23 wxmin
24 wxmax
25 wymin
26 wymax
27 COS(headingl
28 SIN(headingl
29 turtle size
30 x-aspect ratio
31 v-aspect ratio
32 x-text end
33 v-text end

o or 1
o - 15
o 15
o 15
o 15
o 15
o 15
1 254

254
o 3
o or 1
TRUE ,FALSE
TRUE,FALSE
TRUE ,FALSE
TRUE,FALSE
TRUE ,FALSE
TRUE ,FALSE
integer
integer
integer
integer
integer
integer
real number
real number
real number
real number
-1.0 - 1.0
-1.0 - 1.0
0.0 - 10.0
real number
real number
integer
integer

graphicscreen
setcolors, border
setcolors, textbackground
setcolors, textcolor
border
background
pencolor
textstyle
textstyle
textstyle
textstyle
showturtle,
most drawing
••• screen
••• screen
wrap, nowrap

hideturtle
procedures

penup, pendown
most drawing procedures
most drawing procedures
viewport
viewport
viewport
viewport
window
window
window
window
seth,left,right,home,arcl,arcr
seth,left,right,home,arcl,arcr
turtlesize
=(wxmax-wxminl/(vxmax-vxmin)
=(wymax-wym1n)/(vymax-vymin)
plottext ~
plottext .,

is a procedure which saves a copy of the current
graphics screen on diskette or tape. The file is saved
under the name <filename_>.

The contents of the file are:

High resolution image (take up 36 blocks of 256 bytes):
o
background color
border color
1000 bytes for colors 0 and 1
8000 bytes for the bit pattern

•

Chapter :i - -163- COI'IAL PACKAGES

Multi-color image (takes up 40 blocks of 256 bytes):
1
background color
border color
1000 bytes for colors 1 and 2
1000 bytes for color 3
8000 bytes for the bitpattern

Example ••

savescreen("grO.drawing U) saves a high res image •

• ave.creenC"grl.circles") saves a multi-color image.

loadscreenC<filenameS»

is a procedure which fetches an image which previously
had been saved on diskette or on tape. See
savescreen.

Examples:

loadscreenC"grO.drawing")

loadscreen("grl.circles U)

printscr.en«filenameS>,<position»

is a procedLlre which saves the contents of the current
viewport to the file named <filename$).

The parameter <position> is an integer from 0 to 479.
It specifies the horizontal placement of the image on
the MPS801 printer. Six <position) unIts correspond to
one character from the edge of the paper.

The procedure is intended for getting a hard copy of a
graphics image on the prInter. But it can also be
used, among other things, for savlng a picture on
diskette or on tape for later use.

Note that hard copy to a printer can only be done if
the printer is compatible with the Commodore MPS 801.

High resolution graphics:

Printing
intensity

0/4
4/4

Color

background color
all other colors

-164- COMAL PACKAGES

Multi-color graphics:

Colors are printed according to a grey scale:

Printing
intensity

0/4
1/4

2/4

3/4
4/4

1 :
3:

15:
4:

10:
2:
0:

Color

white
cyan, 7: yellow, 13: light green,
light grey
purple, 5: green, 8: orange,
pink, 12: grey, 14: light blue
red, 6: blue, 9: brown, 11: dark grey
black

printscreen ("lp. ",79) The graphics screen is
dumped to aMPS 801 printer.
The image begins right after
the 13th character position.

pri ntscr •• n ("h •• d", 19) The contents of the graphics
screen are saved on diskette
under the name head.

The file can not be fetched again using the procedure
loadscr •• n, but must be entered instead as an
ordinary sequential file. The following program
segment fetches the saved file and prints it out on the
printer:

OPEN FILE 2,"he.d",READ
SELECT OUTPUT "lpl"
WHILE NOT EOF(2) PRINT GET$(2.~OOO)
CLOSE FILE 2
SELECT OUTPUT "ds."

Chapter ~ - -~- COMAL PACKAGES

SPRITES

With your Commodore 64 it is possible to define a small
graphics image which can be moved about on the graphics
screen. Such an image is called a sprite.

Up to 8 sprites can be on the screen at one time. This
makes it possible to create vivid graphics images with
moving figures. For each sprite can be assigned its own
color and be moved around independently of the others and
the rest of the program. It is also possible to allow the
sprites to interact with one another.

A number of procedures and functions are available for
controling sprites using the CCiMAL package sprites.

The package is made accessible by issuing the order:

USE sprites

You can imagine that you are working with sprites as
follows:

You have a stage
with a backdrop.
On the screen there are actors
which can move around
while performing an action.
The actors can move on and off
the stage. The actors can move
in front of and behind one an­
other, and they can move in
front of and behind the props
You can direct the actors
using sprite commands.

(the display screen)
(the graphics background)
(sprites)
(using mevesprite)
(using animate)

(graphics drawings)

-166- COMAL PACKAGES

Let"s begin by making a sprite and moving it around the
screen. This brief program shows how it can be done Cit is
called Spr1t. 1 on the demo diskette/tape):

0100
0110
0120
0130
0140
01:10
0160
0170
0180
0190
0200
0210
0220
0230
023:1
0240
02:10
0260
0270
0280
0300
0310
0320
0330
0340
03:10
0360
0370
0380
0390
0400
0410
0420
0430
0440
04:10
0460
0470
0480
0490
0:100
0:110
0:120
0:130

DATA 1.00000000,1.00000000,1.00000000
DATA 1.00000000,1.00000000,1.00000000
DATA 1.00000000,1.00000000,1.00000000
DATA 1.00001110,1.00001110,1.00000000
DATA 1.00001111,1.00011110,1.00000000
DATA 1.00000111,1.00111100,1.00000000
DATA 1.00000011,1.00110000,1.00000000
DATA 1.00000001,1.11100000,1.00000000
DATA 1.00000011,1.11100000,1.00000000
DATA 1.00000111,1.11110000,1.00000000
DATA 1.00000011,1.11100000,1.00000000
DATA 1.00110001,1.11000000,1.00000000
DATA 1.00111111,1.11100000,1.00000000
DATA 1.00001111,1.11110000,1.00000000
DATA 1.00000111,1.11110000,1.00000000
DATA 1.00000111,1.11100000,1.00000000
DATA 1.00000111,1.11100000,1.00000000
DATA 1.00011111,1.11111000,1.00000000
DATA 1.00111110,1.01111100,1.00000000
DATA 1.00000000,1.00000000,1.00000000
DATA 1.00000000,1.00000000,1.00000000

USE graphic.
graphic.cr •• n(O)
USE sprit ••
DIM dr.wing$ OF 64
FOR ia-1 TO 63 DO

READ byt.
dr.wing$a+CHR$(byt.)

ENDFOR i
colora-1
dr.wingno:-1
sprit.noa-1
d.fin.(dr.wingno,dr.winQ$+ .. "O)
id.ntify(sprit.no,dr.wingno)
sprit.color(sprit.no,color)
sprit.pos(sprit.no,:l0,100)
showsprit.(sprit.no)

WHILE KEV$-CHR$(O) DO NULL

WHILE KEV$-CHR$(O) DO NULL

The DATA statements in lines 100-300 contain the definition
of the figure.

These numbers (which can be written directly in binary in
COMAL simply by prefixing binary numbers with the % sign)
are read in ASCII format in the FOR-ENDFOR loop (360-390).
The text string drawing$ contains the bit pattern infor­
mation which will form the sprite.

In line 430 this drawing is given the number 1. The extra
""OHM is included to specify that the drawing is a re­
presentation in high resolution graphics (as opposed to

Ch.pt.... s - -167- COt1AL PACKAGES

multi-color graphics).

In line 440 sprite 1 is identified to correspond to drawing
no 1. In line 450 the color of the sprite with number 1 is
specified (color:=l, i.e. white).

In line 460 sprite no 1 is placed on the screen 50 that the
upper left hand corner of the figure is at (x,y) coordinates
(50,100). Line 470 makes the sprite appear on the screen.

When you have had enough of the rabbit, press any key.

Line 510 causes the sprite to move over to the point with
coordinates (250,150). The move is made in 200 steps. We
will get back to the last 0 in the mov.sprit. procedure
call later.

When you again press any key, the program ends.

That was your first program using sprites. Now try giving
the rabbit another color. Try moving it around to other
points on the screen.

THE SPRITE IS ENLARGED

Try adding the program line:

Run the program again. The sprite has become twice as high
and twice as wide~

MORE SPRITES

Add the program lines

472 id.ntify(2.drawingno)
474 sprit.color(2,O)
476 sprit.pos(2,80,100)
478 showsprit.(2)

Tryout the program. Can you make the new sprite move? See
if you can make the two sprites start at either side of the
screen. Make them move towards one another 50 that the,y
exchange places.

You probably noticed that sprite no 1 passed in front of
sprite no 2. The sprite with the lowest aprit.no will
always have first priority. 50 that the sprite with the
lowest number will appear to pass in front of the other.

TWO SPRITES COLLIDE

The last number in the mav.sprit. call determines how the
sprite will move in relation to the other sprites and other
graphics drawings on the screen. In the examples we have
seen 50 far, it has been equal to O.

Ch.pt.... s - -168- COMAL PACKAGES

If the number is changed to 1 i line 510. the sprite will be
instructed to detect a collision with the ether sprite.
80th sprites will stop. Try it!

SAVING A DRAWING ON DISKETTE

You can save a drawing using the order

Drawings can be saved either on diskette or on cassette
tape. (NB: Use c •• in the file name to save on tape.)
The drawing can be fetched for use in another program with
the order

This can obviate the need for including all the DATA
statements in programs using the same sprite image.

The following program (Sp ... it. 2) defines the drawing of
the rabbit and saves this drawing on diskette under the name
.pO bbit. If you run this program, you will e.g. be
able to replace lines 100-310, 360-400 and 430 in other
programs using the drawing with a single line:

430 10.d.h.p.Cdr.winlilno.".pO bbit")

First the drawing must be saved using:

0100 til 0300: DATA statements with sprite image
content (See previous program.)

0310
0320 USE .p ... it ••
0330 DIM d winlil$ OF 64
0340 FOR il-1 TO 63 DO
0350 READ byt.
0360 d Ninlil$I+CHR$(byt.)
0370 ENDFDR i
0380 d Ningnol.1
0390 d.fin.(d Ningno.d wing$+ .. "O" ..)
0400 •• v •• h.p.(dr.wingno pO.r.bbit ..)

SPRITES USED WITH OTHER GRAPHICS

The following program shows how a sprite can be prepared to
detect a collision with a graphics drawing and wait for the
collision to happen. After the collision, the sprite can
continue in a different direction.

Chapt.r ei - -169- COI'IAL PACKAGES

0100 til 0300: DATA statements with sprite image
content (See previous program.)

0310
0320 USE ~raphics
0330 ~raphicacr •• n(O)
0340 USE aprit.a
03eiO colorl-l
0360 DIM drawin~$ OF 64
0370 FOR il-l TO 63 DO
0380 READ byte
0390 drawln~$I+CHR$(byte)

0400 ENDFOR i
0410 drawin~nol-l
0420 aprltenol-2
0430 defineCdrawin~no,drawing$+""O"")
0440 identifyCaprlteno,drawingno)
04eiO apritecolor(apriteno,color)
0460 apritepoa(spriteno,eiO,100)
0470 showsprite(spriteno)
0480
0490 WHILE KEV$-CHR$(O) DO NULL
OeiOO
0~10
0~20
0~30

Oei40
0550
0~60

make 'box
movesprite(spriteno,250, 150,200,4)
WHILE NOT datacollision(spriteno,TRUE)
priority (spriteno,TRUE)
mov.aprite(spriteno,130,180,~0,0)

0~70 WHILE KEV$-CHR$(O) DO NULL

PROC make'box
p.ncolor (a)

DO NULL

0~80
0~90

0600
0610
0620
0630
0640

moveto(100,10). draw(~O,O)
drawCO,150), drawC-50,O). drawCO,-150)
fill (10~,1~)

ENDPROC make'box

In line 520 the last number in the mov.sprite call is a 4.
This causes the sprite to recognize collisions with graphics
drawings. If 4 is changed 0, the rabbit will move past the
box without noticing it.

In line 530 there is a delay until a sprite-graphics
collision occurs

In line 540 it is determined that the sprite will be seen
behind the graphics ddrawing. Try changing TRUE to FALSE
and re-run the program.

SPRITE CARTOONS

By switching two or more drawings quickly in succession. one
can cause the rabbit to appear to perform actions while it
moves.

We begin by making a few small changes in the drawing of the
rabbit which we already have used. (This is easiest to do
by listing the DATA statements and changing them directly.)

Next the order of the actions must be specified. This is

-170- COMAL PACKAGES

done by means of the order animat.«sprit.no),<action$»).

The completed program (Sprit. 4) miQht app.ar as follows.

0100
0110
0120
0130
0140
01:50
0160
0170
0180
0190
0200
0210
0220
0230
0240
02:50
0260
0270
0280
0290
0300
0310

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0320 DATA
0330 DATA
0340 DATA
03:50 DATA
0360 DATA
0370 DATA
0380 DATA
0390 DATA
0400 DATA
0410 DATA
0420 DATA
0430 DATA
0440 DATA
0450 DATA
0460 DATA
0470 DATA
0480 DATA
0490 DATA
0:500 DATA
0:510 DATA
0:520 DATA
0:530

7000000000,7000000000,7000000000
7000000000,7000000000,7000000000
7000000000,7000000000,7000000000
7000001110,7000000000,7000000000
7000001111,7000011110,7000000000
7000000111,7000111111,7000000000
7000000011,7000110111,7000000000
7000000001,7011100000,7000000000
7000000011,7011100000,7000000000
7000000111,7011110000,7000000000
7000000011,7011100000,7000000000
7000000001,7011000000,7000000000
7000000011,7011100000,7000000000
7000111111,7011110000,7000000000
1.00111111,7011110000,7000000000
7000000111,7011100000,7000000000
7000000111,7011100000,7000000000
7000011111,7011111000,7000000000
1.00111110,7001111100,7000000000
7000000000,1.00000000,7000000000
1.00000000,7000000000,7000000000

1.00000000,7000000000,7000000000
7000000000,1.00000000,7000000000
7000000000,7000000000,7000000000
7000001110,7000001110,7000000000
7000001111,7000011110,1.00000000
7000000111,7.00111100,7000000000
7000000011,7000110000,1.00000000
7000000001,1.11100000,7000000000
7000000011,7011100000,7000000000
7000000111,7011110000,1.00000000
7000000011,7011100000,1.00000000
7000110001,7011000000,7000000000
7000111111,1.11100000,7000000000
1.00001111,7011110000,7000000000
7000000111,7011110000,1.00000000
7000000111,7011100000,7000000000
7000000111,1.11100000,7000000000
7000011111,7011111000,7000000000
7000111110,7001111100,7000000000
7000000000,7000000000,7000000000
7000000000,7000000000,7000000000

0:540
0:5:50
0:560
0:570

USE graphics
Qraphicscr •• n(l)
USE sprit.s
color.-1

•

Ch.pter :5 - -171-

.prit.nal-l
DIM dr.wing$ OF 64, .ctian$ OF 64
FOR dr.wingnal-l TO 2 DO

dr.wing$I-"H
FOR 1.-1 TO 63 DO

READ byte
dr.wing$I+CHR$Cbyt.)

ENDFOR i

COI'IAL. PACKAGES

0580
0590
0600
0610
0620
0630
0640
06:50
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770

d.fin. Cdr.winljjna,dr.wi nljj$+" "0"")
ENDFOR dr.winljjna

id.ntifyC.pr1t.na,1)
.prit.colarCsprit.na,calar)
sprit.pasC.prit.na,:50,100)
.hawsprit.Csprit.na)
Actian$I-"Ulllll+""4""+'t"2""+"I'5'1"
.nim.t.Csprit.na,.ctian$)
mov •• prit.C.priteno,3:50,150,300,0)

WHIL.E KEY$-CHR$CO) DO NULL

We hope that this brief program example will inspire you to
attempt your own complex dramatizations or games~

The order of the action is specified in line 730. Trans­
lating this line we find the following instructions:
Display drawing 1 for 4 units of time, show drawing 2 for 5
units of time. Continue to repeat this action until the
sprite stops.

See the overview under .nim.t. for further information on
order of action sequences.

A MULTI-COL.ORED SPRITE

So far we have only used drawings in high-resolution
graphics (specified by a ""0"" in the
d.fin.«dr.winljjno>,<dr.winljj$)+""O· .. ·» procedure. The
drawing is in only one color; it can readily be used either
on a high-graphics screen (gr.phic.cr •• n(O» or on a

~ multi-color screen (grAphic.cr •• n(l».

A sprite drawing can de created using several colors, but it
is a little more complicated to create unless you can use
the program "Sprit •• ditar" on the demo diskette or tape
which accompanied your COMAL cartridge. See additional
information on this program in Appendix H.

When a sprite image is defined using several colors, it is
important to keep in mind that the horizontal neighboring
pixels are associated in pairs when using multi-color
graphics. In connection with the used of sprites in multi­
color graphics, the following pairs of numbers determine the
color of the sprite:

00 Transparent
01 Color 2
10 Foreground color 1
11 Color 3

Chapt.... S - -172- COI'IAL. PACKAGES

Thus a sprite can be composed of 4 different colors, one of
which is "transparent". The foreground color is determined
by the .prit.~olor procedure. Colors 2 and 3 are
determined by the .prit.ba~k procedure.

Just as with drawings in high-res graphics, it is a good
idea to start by making a plan on graph paper. Pair the
horizontal pixels when choosing the four possible "colors".
Then prepare the drawing in the form of DATA statements as
before. But now you must be more careful when assigning the
correct number combinations to the pixel pairs.

Here is a program <Sprit. S) which uses sprites with
several colors:

0010 DATA
0020 DATA
0030 DATA
0040 DATA
00:50 DATA
0060 DATA
0070 DATA
0080 DATA
0090 DATA
0100 DATA
0110 DATA
0120 DATA
0130 DATA
0140 DATA
01S0 DATA
0160 DATA
0170 DATA
0180 DATA
0190 DATA
0200 DATA
0210 DATA
0220

YoOOOOOOOO,XOOOOOOOO, XOOOOOOOO
XOOOOI0I0,XOOOOOOOO,XOOOOOOOO
XOOOOI0I0,XOOOOOOOO,XOOOOOOOO
XOOOOOI01,XOI010101,XOI010000
Yo00000101,XOI010101,XOI0I0000
X00000101,XOI010101,XOI010000
XOOOOI010,X10101010,XI0100000
X00001010,XI0101011,XI1100000
X00001000,XOOI01011,XII100000
XOOOOI000,X00101011,XI1100000
X00001000,XOOI01011,XI1100000
XOOOOI000,XOOI0I011,Xll100000
XOOOOI000,X00101001,X11100000
XOOOOI0I0,XI0101011,XI1100000
YoOOOOI010,XI0101011,XIII00000
XOOOOI010,X10101011,XI1100000
X00001010,X10101011,XI1100000
XOOOOI010,XI0101011,XI1100000
Xl1111111,X11111101,XOllll111
Xllllllll,X11111101,XOlll1111
Xll111111,Xl1111101,X01111111

0230
0240
02S0
0260
0270
0280
0290
0300
0310

USE g ... aphi~.

0320
0330
0340

g ... aphi~.~r •• nCl)
USE sprit ••
DIM drAwing$ OF 64
FOR il-1 TO 63 DO

READ byt.
drawing$I+CHR$Cbyt.)

ENDFOR i

drawingnol-l
d.fin.<d ... awingno,drawing$+""l"")
background CO)

spriteback(2,12)
RANDOMIZE

-173- COI'IAL. PACKAGES

03:50
0360
0370
0380
0390
0400
0410
0420
0430
0440
04:50

FOR spritene.-O TO 7 DO
spriteceler(spritene,RND(3,10»
spritepesCspritene,spritene*40,:!O)
identifyCspritene,drawingne)
shewspriteCspritene)
spritesizeCspritene,l,l)

ENDFOR spritene
FOR i.-l TO 100 DO pletCRND(0,319),RNDC:50,199»
WHIL.E KEY$-CHR$CO) DO NUL.L.

In line 240 multi-color graphics is selected. In line 330
the drawing is defined as a multi-color image by means of
the ""1"" in the procedure call.

In line 340 the graphics screen background color is
selected. In line 350 the 2nd and 3rd colors for the sprites
are chosen.

In line 380 a random foreground color is chosen for each
sprite. In line 420 all sprites are set double size. In
line 440 stars are placed in the sky.

SPRITE OVERVIEW

The package sprites contains 23 procedures and functions.

Definitien of drawings and sprites.
defineC<drawingno),<drawing$»
identifyC<spriteno),<drawingno»

Sprite colorCs):
spritecolor«spriteno),<color»
spritebackC<color2),<color3»

Sprite size.
spritesize«spriteno),<xdouble),<ydouble»

Sprite position and motion.
spriteposC<spriteno),<x),<y»
movespriteC<Rpriteno),<x),<y),<step),<mode»
startsprites
stopspriteC<spriteno»
movlngC(spriteno»
spri tex «spri teno» .. $

spriteyC<spriteno»
animateC(spriteno),<action$»

Visibility.
showspriteC(spriteno»
hidesprite«spriteno» .
priority«spriteno),(graphics'in'front»

collisienscheck,
spritecollisionC(spriteno),(yes/no»
datacollision«spriteno),(yes/no»

Information about sprites.
spriteinqC(spriteno),(propertv»

A sprite is transformed into a graphics drawing.
stampspriteC(spriteno»

Chapter ~ - -174-

Sprite images and storage.
saveshape«drawingno),<filename$»
loadshapeC<drawingno),<filename$»
linkshapeC<drawingno»

COMAL PACKAGES

(Use cs. in file name for Datassette file.>

defineC<drawingno),<drawing$»

is a procedure which defines a new drawing. The
variable <drawing$) is a string with a length of 64
characters. It contains the information which
specifies the sprite image. (See the examples at the
beginning of this section.> The image defined is
assigned the number given by the parameter
<drawingno).

There can be up to 32 images defined at one time. The
parameter <drawingno) must be an integer between 0
and 31. The same image may be used to identify several
different sprites.

Example.

defineC23,house$) The contents of the string house$
defines drawing number 23.

idantify«spriteno),<drawingno»

is a procedure which specifies that the sprite with the
number <spritano) is to be displayed using the image
with the number <drawingno). There can be up to 8
different sprites on the screen at once. The parameter
<spritano) must be an integer from 0 to 7. The same
drawing can form the basis for several sprites.

The sprite with the lowest <spriteno) has the highest
priority and is therefore displayed in front of others
with which it overlaps on the screen.

If the graphics turtle is displayed on the screen, it
always has sprite number 7.

Example.

idantifyCO,23) Sprite number 0 is displayed as
image no 23.

spritecolor«spriteno),<color»

is a procedure which assigns the sprite with the number
<spritano) the color specified. The parameter
<spritano) is an integer from 0 to 7, and <color)
is an integer from 0 to 15. In high-resolution
graphics the sprite will have this color. In multi­
color graphics it is colorl.

Example.

•

spritecolorCO,S) Sprite number 0 is given color number 8.

•

Chaptar ~ - -175- COI1AL PACKAGES

spritaback«color2),<color3»

is a procedure which specifies the colors in multi­
color graphics. A multi-color sprite can have up to
four colors:

transparent
foreground color
additional colors

(but does not cover other colors)
set with pancolor (=colorl)
set with spriteback C=color2 and
color3)

Exampla.

additional colors are red and yellow.

Special rules for Multi-colored Sprites.

In a multi-color drawing pixels are associated in
horizontal pairs. Each color (background-, foreground­
and additional) is indicated by bit patterns as
follows:

Bit
pair

00
01
10
11

Color shown

transparent
color 2
color
color ,;,

Is set by

graphics orders
spriteback
spritecolor
spriteback

If graphics has priority over sprites (e.g.
priorityC(spriteno),TRUE», then color2 with bit
pattern 01 will also be the background color.

The parameter color2 gives no report about collision
with another sprite (spritecollision) or with
graphics drawings <datacollision).

spritasizeC(spriteno>,(xdouble>,<ydouble»

is a procedure which determines whether the sprite
numbered <spriteno> will be displayed in double size
format. Normally a sprite occupies 24 pixels in the
x-direction and 21 pixels in the y-direction. If
(xdoubla) is set equal to a number not equal to 0
(=TRUE), then the sprite will be shown in double
width. Similarly for <ydouble>.

Examples.

spritesizeC~,O,l) Sprite 5 double height

spritasizaC2,TRUE,TRUE) Sprite 2 double size

spritaposC(spritano),(x),(y»

is a procedure which places the upper left-hand corner
of the sprite at the point with screen coordinates
(x, y) •

Sprite positions are always specified in the screen

Chapter S - -176- COMAL PACKAGES

coordinate system independent of any other coordinate
system which may have been defined by the graphics
order window. Sprite coordinates are in fact
specified in the coordinate system (-32768 .• 32767,
32768 •• 32767). Only the points (0 •• 319,0 •• 199) are
visible on the screen.

Example,

spriteposCO,2S,SO) Sprite ° is placed at screen
position (25,50).

is a procedure which moves the sprite numbered
<spriteno> from the current position to the point
(x,y). The motion is performed in <step> small
steps. Each step takes 1150 of a second on computers

. using the European PAL standard. On computers using
the American NTSC standard, each step takes 1160 of a
second. The time in each case corresponds to the time
it takes to update the screen image.

The parameter <step> expresses how many time
intervals (screen updates) the movement will take. The
fewer the number of steps, the faster the motion.

The parameter <step> determines the speed of the
sprite as follows:

1. If <step> is held co",stant, then the speed
will always be proportional to the distance
between the two endpoints of the motion.

2. The speed will be independent of the distance
between the endpoints if <step> e.g. is
defined by:

FUNC step(spriteno,lC,y)
speed,-10
dIC,-x-spritexCspriteno)
dy,-y-spritey(spriteno)
distl-SQR(dK*dK+dy*dy)
RETURN speed*dist

ENDFUNC step

If this function is used to determine the
parameter step, the speed will always be
constant. In this case about 1 screen time
unit.

3. The speed can made independent of the x­
distance (similarly for the y-distance) , so
that the sprite will appear to move with
constant speed in one dimension.

This can be assured if <step) is determined
by the following function.

-177- COMAL. PACKAGES

FUNC step(spriteno,x)
speed.-10
dist.-ABS(x-spritex(spriteno»
RETURN speed*dist

ENDFUNC step

If in particular step equals 0, the sprite will be
moved immediately (next screen update) to the position
«x>,<y» regardless of the value of <mode>. The
sprite will not move again, but it can be caused to
perform an action by using the procedure animate.

The parameter <mode> affects the moment when the
movement begins, and determines whether or not
collision with other sprites and graphics drawings will
be taken into account. The parameter <mode> is an
integer from ° to 7:

<made)

° Start
1 Await
2 Start
3 Await
4 Start
5 Await
6 Start
7 Await

Note.

now,
start
now,
start
no ,
start
now,
start

effect

signal,

Signal,

signal,

Signal,

no collision check
no collision check
check sprite/sprite collision
check sprite/sprite collision
check sprite/graphics collision
check sprite/graphics collision
check for any collision
check for any collision

The procedure mavesprite starts the motion. The
COMAL system does not wait for the motion to stop but
continues with the next line in the program. This
makes it possible to start other sprites in motion,
print messages, etc. Many things can be going on at
the same time. If you do not want program execution to
continue while the motion is carried out, you can add a
"wait" line. For example:

WHIL.E moving«spriteno» DO NULL
or

WHIL.E NOT datacollision«spriteno>,TRUE) DO NUL.L.

Examples.

Move sprite no 2 to the
point (200,130) in 100
screen updates. Start now
with no collision check.

Move sprite no 0 to the
point (250,-10) in 300
steps. Start now, check­
ing for sprite collisions
and collisions with
graphics drawings.

Chapter ~ - -178- COMAL PACKAGES

startsprites

is a procedure which initiates the motion of those
sprites which are waiting for the start signal. See
the movesprite procedure.

stopsprite«spriteno»

is a procedure which stops the, moti'on of the sprite
with the number specified.

movinQ«spriteno»

is a function which takes on the value TRUE (=1) if the
sprite specified moves. Otherwise the value of
function is FALSE (=0).

Examplel

IF NOT mcvinQ(2) THEN move5prite(2,O,190,~O,O)

If sprite 2 isn't moving, then it should be moved at
once to screen coordinates (0,190).

spritex«spriteno» and spritey«spriteno»

are functions which have the current x- and y-positons
respectively as values.

Examplesl

x 'difference.-x-spritex (4)
y'difference. c y-spritey(4)

IF spritey(3»200 THEN move.prite(3,spritex(3) ,20,200,0)

If sprite no 3 collides with the upper edge of the
screen, then it 'falls' to the lower edge.

animate «spriteno),<action$»

is a procedure which causes the sprite specified to
automatically perform a given action. The action
desired must be defined in the string <action$).

The number of characters in the order of action
specification must be an even number (maximum 64).
Thus a maximum of 32 actions can be requested in each
<action$) string.

Possible actions:

CHR$«drawinQnc»+CHR$«time» the drawing with the
number indicated should
be displayed for the
time specified.

Note that 0<= <drawinQno) <=31 and 0<= <time) <=255
units of time (screen updates). See the procedure
movesprite for more about timing.

•

-179- COMAL PACKAGES

If (ti.-> is equal to 0, the sprite will enter a
wait state which can only be interrupted by the order
.t.rt.prit •• or by a "g"-action.

"g"+CHR$ «.pri t.no»

"."+CHR$ «.pri t.no»

"h"+CHR$ «.prit.no»

"y"+CHR$ «ydoubl.»

"c"+CHR$ «coler»

Pause for the given time
interval.

Restart the given sprite,
if it is waiting.

The specified sprite is
shown.

The specified sprite is
hidden.

If (xdeubl.> is TRUE
(i.e. <) 0) the width of
the sprite is doubled. If
(xdcubl.> is FALSE (i.e.
= 0), the sprite is 24
pixels wide.

Analogous to
"x"+CHR$«xdoubl.».

The sprite acquires the color
indicated, where 0(= (color>
<=15.

The action must be started by the procedure
mov •• prite. The actions specified by the string are
carried out from left to right unless the sprite is in
a wait state. When the last action has been completed,
the sequence is repeated until the sprite is no longer
in motion: either the mev.sprit. motion is finished,
or an .nim.t.«sprit.no>,"") order is executed.

Just as with the mov •• prit. procedure the COMAL
system does not wait for the action sequence to be
completed but procedes directly to the next line in the
program.

Note that CHR$«v.lu.» has the same meaning as
""<valu_>"", so

.ction$I-"."+CHR$(l)+"p"+CHR$(lO)+"h"+CHR$(l)+"p"+CHR$(10)

is identical to

.ction$.-"."1"p"10"h"1"p"10""

Ex.mpl_ •

• nill.t. (I, l .. p" 10"h"1 "p"lO"")
lIov •• prit.(l,100,100,O,O)
WHILE KEV$-CHR$(O) DO NULL
anim.t.'l,)

Sprite no 1 moves at
once te the screen
position (100,100) and
flashes for 10 time
units, until any key
is pre1ised.

-180-

ani mat. (3, ""1" "4""2""4" "3""4"")
mav •• prit.(3,300,lBO,~O,O)

COI'IAL. PACKAGES

While sprite no 3 moves to screen position (300,180),
it is first shown for 4 units of time as drawing no 1.
Next it is displayed for 4 time units as drawing no 2,
followed by drawing no 3. The sequence is then
repeated again. Animation!

is a procedure which makes the specified sprite visible
(if it is on the screen).

is a procedure which conceals the sprite.

pr1arity«.prit.na),<graphic.'in'frant»

is a procedure which determines the priority of the
specified sprite in relation to the graphics drawings
on the screen. If <graphic.'1n'frant) has the value
TRUE <=1), the graphics will be displayed in front of
the·sprite when they overlap. If the value is FAL.SE
<=0), the sprit~ will appear in front of the graphics.
When USE .prit •• is first used, the value is
automatically set to FAL.SE.

priarity(6,1) Sprite no 6 will be displayed behind
graphics.

is a function which is used to specify when the given
sprite collides with another sprite, or determine if it
collided with one earlier.

If <y •• 'na)=TRUE, then .pritecolli.ian is FALSE,
until a collision occurs.
If (y •• 'no)=FALSE, then .prit.calli.ian is TRUE, if
a collision has already occured.

Collisions occur when colors different from the
background color overlap. See in particular the remark
under the .pr1t.bac:k procedure concerning multi-color
graphics.

Exampl •••

WHIL.E NDT .pr1t.cal11.1an(2,TRUE) DO NULL.

Do nothing before sprite no 2 collides with another
sprite.

IF .pr1t.c:alli.ian(4,O) THEN .prit.c:alar(4,2)

If sprite no 4 has previously collided with another
sprite, then it should be colored red.

-181- COt1AL PACKAGES

is a function which is used to dete~mine when the
specified sp~ite collides with g~aphics d~awings, o~ if
it p~eviously has collided with g~aphics d~awings.

If (y.s'no)=TRUE, then datacollision is FALSE until
the collision occu~s.

If (y.s'no)=FALSE, then datacollision will be TRUE
if a p~evious collision has occu~ed.

A collision takes place when colo~s diffe~ent f~om the
backg~ound colo~ ove~lap. (See spr1t.collision.)

is a function which is used to obtain info~mation
conce~ning the sp~ite specified. The value of the
pa~amete~ (prop.rty) dete~mines which cha~acte~istic
is to indicated.

(prop- Th. function
arty)

0 visible
1 Multi-colo~2 (01)
2 Multi-colo~1 (10)
3 Multi-colo~3 (11)
4 double width
5 double height
6 Multi-colo~

7 g~a./sp~ite p~iority

8 d~awing numbe~

9 time ~emaining
10 sp~ite/sp~ite collision
11 sprite/g~a. collision
12 mode of motion
13 numbe~ of actions
14 no. of next action

Is s.t with

TRUE/FALSE hide/showsp~ite

0 •• 15 spriteback
0 •• 15 sp~itecolo~

0 •• 15 spriteback
TRUE/FALSE spr-itesize
TRUE/FALSE sp~itesize

TRUE/FALSE define,identify
TRUE/FALSE p~io~ity

O •• 31 identify
0 •• 215 movesp~ite

TRUE/FALSE movesp~ite

TRUE/FALSE movesprite
0 •• 7 movespr-ite
0 •• 32 animate
0 •. 32 animate

Note that TRUE and FALSE have the nume~ical values 1 and
o.

FOR nOI-1 TO 14 DO PRINT spr1t.inq(no)

is a p~ocedu~e which is used to change the sp~ite into
a graphics image. The sprite is "stamped" onto the
graphics screen image.

Normally a sprite is not part of a graphics illustra­
tion and will therefore not be printed out with the
rest of the graphics when the procedures printscr..n
and •• v •• cr •• n ar-e used. The procedu~e st.mpspr1t.
makes a copy of the sprite pa~t of the g~aphics screen
image. This procedure can be employed e.g. if you wish

Chapter :5 - -182- Cot1AL PACKAGES

to incorporate the graphics turtle as part of a drawing
which is to be saved or printed.

FOR spriteno,-7 TO 0 STEP -1 DO stampsprite<spriteno)

Copies of all visible sprites'are made on the graphics
screen.

saveshape«drawingno),(file nameS»

is a procedure which saves a copy of the sprite image
on diskette or tape <remember cs. in the file name)
under the name (filenameS). The drawing itself must
be represented by a string 64 characters in length.

Example,

define<2,drawingS)
saveshape<2,l spO.flower")

The figure contained in the
string drawingS, is saved
under the name "spO.flower".
The 0 is included in the name
to indicate that the drawing is
intended for use in high­
resolution graphics.

loadshape«drawingno),(filenama$»

is a procedure which fetches a copy of the file named
(filename$) from diskette or cassette tape. The file
must have been saved previously using the procedure
.aveshap.. The file (filename$) must contain a
string with the definition of a sprite image. This
drawing will be given the number (drawingno).

Example.

I oadshap. < 1, "SpO. f lower ")

linkshap.«drawingno»

The file spO.flower
contains a string with an
image which will be
recognized as number 1
in the program.

is a procedure which associates a copy of the drawing
indicated with the COMAL program. When the program is
saved using the order SAVE, the drawing will be saved
with it. It can be read in later together with the
program with the order LOAD.

If desired, the drawing can be disassociated from the
COMAL program by using the order DISCARD.

The drawing must have been fetched earlier using the
procedure loadshape. This drawing is assigned the
number (drawingno).

ChApter :s -

EKAmplel

-183- COI'IAL PACKAGES

The drawing with the number 7 is
associated with the COMAL program in
working memory.

Chapt.,.. 5 - -184- COMAL PACKAGES

SOUND AND MUSIC

Those of you who are familiar with the sound capabilities of
the Commodore 64 will be pleased to know that your COMAL
cartridge offers you full and easy access to the Commodore
6581 sound synth.siz.,.. (SID) ~hip. This chip allows you
to use up to three musical voices at the same time. In
addition you have considerable freedom to decide how the
individual notes will sound. You can control frequency,
sound level, sound type, modulation and filtering. This
section must be considered to be only an introduction to a
very exciting subject. An entire book could be devoted to
the study of music synthesis using the Commodore 64.

Using the COMAL order

USE sound,

you make a number of additional procedures and functions
available. Use these procedures and COMAL programming to
create your ow':l "orchestral!.

Individual notes are denot'i!d by strings. For e:<ample,
"middl~ C" on the musical scale is denoted by the string
variable" II c 4 11 •

The other notes in this octave are denoted:
"c4","c4*","d4·,·d4*", etc. Notes in the next highest
octave are denoted by ·c:5·, ·c:5*· and so on. Tt-,e notati on
for the next lowest octave is "c3".·c3.·, •••. Notice that
sharp notes are denoted "f4#" for "f-sharp" in the fourth
octave, etc.

Although this tutorial is not intended to be a music course,
here are a few facts which may be helpful when transfering a
musical score to your Commodore 64. You will have to
identify the notes and their durations. The following
figure shows the ordering of some of the notes which can be
played and the standard musical symbols for note duration:

rI 00 G.,--A5- B5

-'I
0 I

I J 1/2

" ~ 1/4
tJ~ jl I /8

n B3 -(4-

~ 1/ 16
1_"\.

1/32 ',.
J

~

The full range of notes starts with ·cO" and extends up to
and includes ·.7*· on computers with European PAL
standard, and "b7" on computer with the American NTSC
standard.

Ch.pt.,. 3 - -185- COMAL PACKAGES

In this section we will comment briefly on six programs.
which you will find on the demonstration diskette or tape.
Vou will find complete printouts of these programs in
Appendix H. They are titled as follows and have the
contents indicated below:

Mu.ic D.mo: You will probably want to start by running
this program to get an idea of the capabilities of your
COMAL .ound p.ck.g.. After examining the programs of
lessons 1-5. you can return to study this program to
see how all three voices can be used together.

Mu.ic 1: This program illustrates how individual notes are
played.

'Mu.ic 2: Up to three musical voices are available. It is
possible to use up to three rates at the same time in
your programs, giving your compositions a rich and
realistic dimension.

Mu.ic 3: Here you can hear a demonstration or make your
own composition using just one voice. Again. listing
the program will be helpful to help you learn how to
write your own music programs.

Mu.ic 4: This demonst,.ation program allows YOLl to change a
numbe,. of parameters which affect the sound of each
voice: volume, .oundtype and the ad.r
(attack-decay-sustain-releasel w.yeform eny.lope.

Music 3: Here is a complete composition illustrating
synchronized music with several voices.

After trying out the MUsic D.mo, you will probably want to
LOAD, RUN and LIST each of the five "Music" programs.
Notice that the order USE .ound must appear in a program,
before the sound control orders will be active. In the
listing for Mu.ic 1 pay particular attention to lines
150-320:

0130
0160
0170
0190
0200
0210
0220
0230
0240
0230
0260
0270
02BO
0290
0300
0310
0320

INPUT AT e,lI "Yoic •• ". yoic.
INPUT AT 9,11 "not.-cod.. ". cod.$
p1.y(voic.,cod.$)

PROC p1.y(voic.,cod.$)
IF cod.$<>"z" THEN

not. (Ycic.,cod ••)
g.t.(yoic.,l) II attack ~ d.c.y

ENDIF
d.l.y(2l II su.t.in
g.t.(ycic.,O) II ,..1 ••••

ENDPROC pl.y

PRDC d.lay(•• c'32)
TIME
WHILE TIME<1.B73* •• c'32 DO NULL

ENDPRDC d.l.y

The first thing that happens are the INPUT statements. The
voic. numb.,. (1, 2 or 3) and the not. cod. (cO,cO •••••
or a7#) are to be entered here. In line 170 the .ound

Chapt.... :5 - -186- COI"IAL PACKAGES

procedure pl.y is called with these two variables as
inputs.

If the note code variable cad •• is a HZ", no new note
will be played. Use "z" when you want a pause to occur in
your music. It must be followed by a 'duration code, just
like a note. If cod •• is a legal note code, then the note
will be played.

This is accomplished as follows. The procedure
not.evoice,cod ••) sets up the voice and the note, getting
it ready to be played. The procedure ljI.t.evoic.,I)
initiates the playing of the note; the attack and decay
portions of the adsr envelope are executed at once. The
procedure d.l.y (which must be provided by the user)
determines the length of time the note is sustained.
Finally, the order ljIat.evoic.,O) terminates the sustain
phase and the note procedes to decay, as specified by the
.d procedure. More on .d later!

The user supplied d.lay procedure can be any routine which
can use up a well-defined time interval. In this program we
have done this by means of a WHILE ••• DO loop which does
nothing (NULU. The procedure call p.u •• e 16) in 1 ine 250
causes a delay of 16/32 = 1/2 second.

To make two notes play simultaneously, instructions like the
following must be added:

22~ not.e2,"c5")
235 ~at. e2, 1)
265 g.tee2,0)

Try LOADing, RUNning and LISTing l"Iu.ic 2. You will find
the procedures play and delay used again. In addition
you will find the following instr.uctions:

0130
0140
01:50
0160
0170
01BO
0190
0200
.0210
0220 .
0230

FOR voic •• -l TO 3 00
.oundtyp.evoic.,3)

ENDFOR voice

INPUT AT 7,1. "not.-cod •• ". cod ••

FOR voic •• -l TO 3 DO
PRINT AT 10,11 "voic. "Ivoic.
playevoice,cod ••)
pl.yevoic.,"z")

ENDFOR voic.

Lines 130-150 are used to set up the soundtyp. of each of
the three voices. This is a .ound package order with two
input variables. The first variable is the voic. number
el,2 or 3), and the second one is the .oundtyp. eO,1,2,3
or 4). These numbers specify .oundtyp •• as follows:

soundtyp. 0:
soundtyp. I •
• oundtyp. 21
soundtyp. 31
.oundtyp. 41

silence
triangular wave
sawtooth wave
square wave
white noise

•

Chapt.,. :5 - -187- COMAL PACKAGES

It will require some experience before you become skillful
at selecting the best soundtype to achieve the effects you
want. Lines 130-150 in this example set all three voices to
the aquar. wave soundtype.

Line 170 inputs a note code. Lines 190-230 allow the note
to be played using all three voices, so that you can
experience the differences among them. Notice that the
procedure play(voice,cod.$) is used just as it was used
earlier. Notice also that we have used "z" as an input to
play to achieve a pause between the playing of each note.
Try removing line 220 and listen to what happens when the
program is run.

Now LOAD and RUN the program Muaic 3. LIST it, and pay
particular attention to lines 330-500:

PROC play'm.lody II Row, Row, Row Your Boat

melody.

0330
0340
03:50
0360
0370
0380
0390
0400
0410
0420
0430
0440
04:50
0460
0470
0480
0:510
0:520

DATA "c4" ,8, liZ If ,2, "c4" ,B, liZ ",2, uc4 11 ,B, ud4 u ,4
DATA ".4",e,"z",e,".4",e,"d4",4,".4",8
DATA "f4",4,"g4",16,"z",e,"c:5",4
DATA "c:5",4,"c:5",4,"g4",4,"g4",4
DATA "g4",4,".4",4,".4",4,".4",4
DATA "c4",4,"c4",4,"c4",4,"z",8,"g4",e
DATA "f4",4,".4",e,"d4",4,"c4",e

RESTORE melody
WHILE NOT EOD DO

READ cod.$,sek'32
play(voice,cod.$)

ENDWHILE

ENDPROC play'melody

This procedure plays a simple tune (Row, Row, Row your
BOAt) :

fJ 1 ~ ~ ,..-::--, 5 ~ ~ ~ 'T'
~

~

t~ .1 Ia!. ~~;J- .-~ --- w"'J
I. ,.,.---

1 3 rs 5 3

The procedure starts by zeroing the DATA pointer (RESTORE
m.lody), so the DATA statements are read from the beginning
each time the melody is played. The lines of DATA contain
pairs of information (note codes and their durations). Lets
take a quick look at the data to see how it relates to the
simple piece of music in this illustration.

Look at the music. The first note is "middle C" with the

-188- CDMAL PACKAGES

note code c4. It is a quarter note. If we decide to give
a whole note a duration of 32, then the quarter note must
be given a duration of B. The first two data elements are
"c4",B. Notice that the first element is a string
variable, while the second element is an int-uer. After
the first note we want a brief pause, so the notes don't all
run together. We enter "z",2 to accomplish this. The
next two notes are al'so middle C, so they are entered in the
same way. The vertical line in the musical score indicates
a brief pause, so we have entered a "z",B for this
purpose. Notice that it is not always necessary to enter a
pause between notes. You must experiment until you
understand how to ~,ch i eve the ef f ect you want.

There are many ways of handling the music data. You could
enter lines of music as long strings of data and design a
procedure to "pick out" the note codes and delays one at a
time. You might choose to make the duration codes integer
variables to save memory when composing a lengthy' piece. If
sections of the music are repeated, then it will 'be a
distinct advantage for you to design each unique section of
the music as an independent procedure. A "master procedure"
can then be written to play the piece, executing each
section in turn.

The actual playing of the notes is accomplished in lines
450-480. Data is entered a pair at a time (note code and
duration). The note is played by play(voice,code$). And
this process continues until there is no more data (EOD is
TRUE) •

Turn now to Mu.ic4. This program will help you to
experiment with a few more orders from the sound package.
The following lines are of particular interest:

0180 INPUT AT 11,11 "VOICE (1/2/3)7 ", voice
0190 INPUT AT 13,1, "VOLUME (O-l~n 7 ", vol
0200 INPUT AT 1:5,11 "SDUNDTYPE (1/2/3/4)? ". type
0210 .oundtype(voice,type)
0220 volume(vol)

0420 INPUT AT 21,11 "A,D,S,R? ". a,d,.,r
0430 adsr(voice,a,d,s,r)
0440
04:50 play'melody

Lines 180-200 input the voice number, music volume and
the .oundtype for the voice selected. The package
procedure volume(vol) Can be used to regUlate the volume
from silence (0) to the maximum value (15)~

In line 430 the user can select the waveform parameters.
These determine the shape of the sound intensity pattern
which forms the note. The actual sound consists of waves as
specified by the .oundtype procedure. The adsr
procedure allows the user to control the shape of the
"envelope" governing how the note rises in intensity
(attack), decays, is sustained at a certain level then
dies away (release). Notice that the duration of the
sustain phase of the note is regulated by means of the user
procedure delay. The shape of the envelope is specificed

Chapte,. ~ - -189- COMAL PACKAGES

by the following numbers, each of which can be chosen freely
in the range from 0-15:

attack

sustain

release

specifies the rate at which the waveform
envelope rises. This rate should be high (i.e.
the attack parameter small) to achieve a "piano",
"banjo" or "harpsicord" sound. The sound of
plucked stringed instruments is charaterized by a
very audible attack phase when the note is struck.

determines how fast the note dies down to the
sustain level. Varying this number will vary the
type of stringed instrument, you want to emulate.

defines the intensity level at which the note
will be played for the delay period specified by
the user's delay procedure.

regulates how fast the note "dies away" at the
end of the sustain period.

1!lfl II i

I I Role ...
Ilil

I'll
1: 1

~
II

~ 1IIIil
\!,..'!I,I

\ III I

{:: :
'!.!

The last program, Music ~, illustrates how several voices
can be played at once using the procedure play.co,... In
this example only one voice is used (voice 1). We will see
later how this can be changed by adding a few more lines.

The notes should first be read in and transformed to
frequency values by means of the functi.on frequency. All
these numbers are then stored in a table of integers
ton •• () along with the associated duration data: an
ads'paus. for the attack-decay-sustain phase and an
,.'paus. for the release phase (including the delay between
notes). The numbers are brought into the voice 1 register
by means of the procedure s.tsco,... Then the playing is
initiated by the procedure playsco,. ••

While the melody is played, the following COMAL program
prints out some numbers. This is done here simply to
illustrate that while the SID chip is at work playing music,
the processor can proceed with other tasks. When the
background music is finished, the function waitscore takes

-l~- COMAL PACKAGES

on the value TRUE (=1). Thus the printing of numbers in the
WHILE-ENDWHILE loop will stop when the music stops.

0090
0100
0110
0120
0130
0140
01:50
0160
0170
0180
0190
0200
0210
0220
0230
0240
02:50
0260

no.-O
WHILE NOT EOD DO,

no.+1
READ cod •• ,Um
ton •• (no).-fr.qu.ncy(cod ••)
ads'paus •• (no).-tim*2
r'pause.(no).-tim*2

ENDWHILE

ton •• (nr+1).-0
s.tscor.(l,ton •• () ,ads'paus •• () ,r'pau ••• (»
playscor.(1,0,0)

numberz-O
WHILE NOT waitscor.(l,O,O) DO

number. +1
PRINT number;

ENDWHILE

Add the lines:

192 •• tscore(2,ton •• (),ads'pau ••• (),r'paus.(»
194 s.tscor.(3,tone.() ,ads'paus •• () ,r'paus •• (»

and change lines 200 and 230 to:

0200 play.cor.(l,l,1)
0230 wai tscore (1" l, l)

The three voil7es will play the me'lody simultaneously (syn­
chroni zed) • Th,e program ends. when all three voi ces have
finished.

Can you write a "round" with a delay between the different
voices?

Notice that when the package if first brought into
play with the order USE sound, the following
default values are selected:

adsr(l,0,4,12,lO)
adsr(2,10,8,10,9)
adsr(3,0,9,0,9)
FOR voic •• -1 TO 3 DO

puis. voice,2048
s.tfr.quency(voic.,O)

ENDFOR voic.
volume (1:5)
soundtyp. <1,1) II pi ano
soundtyp.(2,2) II violin
soundtyp.(3,3) II cymbal

The intention of the five introductory music programs
has been to acquaint you with how to control the sounds
created by the sound package. At first you may feel
that there is a great deal to learn before you can

•

Chapte,. !5 - -191- COMAL PACKAGES

compose music. This is true. But as with many other
situations, a skill worth learning does take time and
effort. Be patient, experiment and be curious. As you
solve each problem which arises, you will learn
something new!

We conclude this section with a summary of the orders
made available when you invoke the sound package:

volume «level »
noteC<voice>,<code$»
gateC<voice),<start'stop»
soundtype«voice),<soundtype»
adsrC<voice>,<attack),<decay>,<sustain),<,.elea.e»
.etsco,.eC<voice),<frequencyC»,<pauselC»,<pause2(»
playscoreC<voicel>,<voice2>,<voice3»
.topplay«voicel>,<voice2>,<voice3»
waitscoreC<voicel>,<voice2),<voice3)1
frequencyC<codeS»
.etf,.equency«voice>,(f,.equency'value»
sync«voice·combination>,(ye.'no»
filte,.f,.eq«f,.equency·value»
filte,. «voicel>,(voice2>,<voice3>,<ext.,.nal »
filte,.typeC(low>,<band>,<high>,<3-interrupt»
pul.eC(voice>,<pulse·width»
ringmodC(voice'combination),(yes'no»
re.onanceC(deg,.e.»
env3
o.c3

SOUND ORDERS IN DEPTH

vol ume « level »

is a procedure which controls the common sound level
for all three voices. The parameter <level> is an
integer from 0 to 15.

Example •

volumeU!5) max i mum SOLlnd level

note «voice>,(code.»

is a procedure which is used to indicate the tone
(code$> which the voice with the number (voice>
will play. The parameter <voice> can be 1. 2 Dr 3;
(code$> is a string with possible values: "cO" •
.. cO# ... "dO "a7# .. on machines using the European PAL
standard. On machines using the American NTSC standard
tones up to "b7" can be played. The letters in each
note code indicate the note, and the number indicates
the octave. The character I indicates half notes
(sharp notes).

EKample.

noteC2,"d!5") voice 2 will play the note d!5

-192- CDI'IAL PACKAGES

is a procedure which either starts or stops the playing
of voice number <voice>. If the parameter
<start'stop> equals 1, the note starts. If
<start'stop> equals 0, it stops.

Voice 3 starts playing.

is a procedure which is used to indicate which
<soundtype> <voice> is to be. The parameter
<soundtype> is the periodic base signal which will be
used to create the notes. It can be any of the
following:

< soundtype > 01 silence
11 triangle waveform
21 sawtooth .. ave
31 square wave
41 white noise

soundt ype (1 ,:S) voice 1 formed with square waves

adsr«voice>,<attac~>,<d.cay>.<sustain>,<rel.ase»

is a procedure which determines the shape of the
waveform envelope. See the program, Music 4. Note
especially that <sustain> indicates a sound level
from 0 to the maximum sound level (determined by
volume). while <attack>, <decay> and <rel.ase>
control the time dependence.

Value <attack> <decay> and <rel.a.e>:

0: 2 msec 6 msec:
1: 8 24
2: 16 48
3: 24 72
4: 38 114
5: 56 168
6: 68 204
7: 80 240
8: 100 300
9: 250 750

10: 500 1.5 sec
11 : 800 2.4
12: 1 sec 3
13: 3 9
14: 5 15
15: 8 24

<sustain> can equal 0, 1 ••••• 15

-193- COMAL PACKAGES

Example.

adsr(1,13,13,B,13) voice 1 envelope is specified

is a procedure which is used to synchronize the start
of the voices. A 1 in the variable position
corresponding to <voiceX> starts the voice playing:

pI ay.c:ore (1,1,0) voice 1 and 2 are started

stopplay«voice1>,<voic:e2>,<voic:e3»

is a procedure which stops the playing of the voices
indicated. If <voic:eX> is TRUE (=1), then voice X
stops playing.

Example.

stopplay(O,1,1) voice 2 and 3 are stopped

waitscore«voice1>,<voice2>,<voice3»

is a function which returns the value TRUE (:1) if the
playing of the indicated voice combination has
finished.

E)(ample.

WHILE NOT waitsc:ore(1,1,O) DO NULL do nothing before
voice 1 and 2
have finished
playing.

frequency «c:ode.»

is a function which returns the integer value which the
SID chip must receive to play the note. It is mostly
used to compute table values for the procedure
setscore. The integer value lies between -32768 and
32767 inclusive. It is NOT possble to transform notes
between octaves directly by dividing these numbers by
2. The parameter (c:ode.> must contain a string with
a valid note code (i.e. one of the codes "cO",osv.).

Example.

frequenc:y ("c4") the note "c:4" is transformed
to a number

setfrequenc:yC(voice>,(frequency'value»

is a procedure which is used to define the frequency of
each (voice). The number <frequency'value> must be
in the range 0 - 65535. These numbers do not
c:orrespond directly to the SID chip frequency codes.

-194- COMAL PACKAGES

.ync«voice'combination>,<ye.'no»

is a procedure which takes care of synchronization with
respect to the <voice'combination> indicated if
<y •• 'no> equals 1. Otherwize the voice combination
is not synchronized.

Example •

voice 'combination
number.

1
2
3

corre.pond. to .ync
between voice ••

1 and 3
1 and 2
2 and 3

• ync<l,l> voice 1 and 3 are synchronized

filterfreq«frequency'value»

is a procedure which is used to determine the cutoff
frequency for the filter. The parameter
<frequency'value> must be in the range 0 to 2047
inclusive, corresponding to frequencies between about
30 and 12000 Hz.

Example.

is a procdure which is used to select which voices are
to be filtered, i.e. damped. A 1 in a <voiceX>
position means that voice X is to be filtered.

Example.

filter<O,l,l,l> voice 1 should NOT be filtered

filtertype«low>,<band>,<high>,<3'interrupt»

is a procedure which is used to select the filter type.

If <low> equals I, then a 'low-pass' filter is
used, da'mping tones in the treble range. All
frequencies above the filter frequency (set by
filterfreq> are damped 12 dB per octave.

If <band> equals 1, then damping occurs on both
sides of the filter frequency; 6 dB per octave.

If <high> equals 1, then the low frequencies are
damped by 12 dB per octave.

If <3'interrupt> equals 1, then voice 3 will not be
audible. It can be used to code information about

•

Chapt.r :5 - -195- COMAL PACKAGES

synchronization and ringmodulation.

Several filters can be selected at the same time.

El<ampl ••

filt.rtyp.(l,O,l,O) creates a "notch filter"
which has the opposite effect
of a "band-pass filter":
damping occurs around the
filter frequency.

puls.«voic.>,<puls.'width»

is a procedure which is used to indicate the ratio
between the time during which a square wave is high and
the time during which it is low (the "duty-cycle").
The more this ratio deviates ~rom 1:1, the more "nasal"
and "sharp" the sound will be. The parameter
<puls.'width> is a number from 0 to 4096 inclusive.
When selected as 2048 the ratio is 1:1.

El<ampl ••

pul.e(l,204S) The ratio high/low equals I,

ringmod«voice'combination>,<yes'no»

is a procedure which is used to determine whether r1ng
modulation is to be in effect. The parameter
<voic.'combination> selects which voices are affected
(see sync). If <yes'no> is TRUE (=1) modulation
will occur; it will not if <y •• 'no> equals FALSE
(=0) •

When ring modulation is in effect. then two new voices
with frequencies equal to the sum and the difference
between the original voices are generated.

r •• onanc.«degre.»

is a procedure which is used to indicate to what degree
certain frequencies will be emphasized. The greater
the value of the parameter d.gr ••• the greater the
emphasis on the frequencies selected by the procedure
•• tfr.Qu.ncy will be. This will give the sound a
synthetic quality. The parameter <degre.> must be an
integer from 0 to 15 .

• nv3

is a function with no parameters. It returns the
amplitude of the intensity envelope for voice number 3.
The values of the function lies in the interval 0 -
255.

Displaying the int.nsity .nv.lop ••

USE sound
USE graphiCS

osc3

-196-

graphicscr •• n(O)
volum.(10)
soundtyp. (3, 1)
not. (3, "A4 U)

Adsr(3,13,13,S,13)
gat.(3,O)
WHILE .nv3<>O DO NUL~
TIME 0
gat. (3, 1)
WHILE TIME<bO*10 DO

drAwto (TIME/5 ,env3/25b*199)
ENDWHILE
gAte(3,O)
WHILE TIME/5<320 DO

drAwto (TIME/5 ,env3/25b*199)
ENDWHILE
WHILE KEY$-CHR$(O) DO NULL

COMAL PACKAGES

is a function with no parameters. It returns a value
from 0 to 255. The number indicates the excursion of
the current sound type of voice 3. In the case of a
triangle the numbers vary from 0 to 255 and back to 0
again. For the sawtooth wave, values increase from 0
to 255 then fall rapidly back toO. The sqUAre WAve
pulse varies between 0 and 255. White noise yields
random numbers from 0 to 255.

Note that the sound continues playing after a
COMAL program stops. The sound stops only if a
melody is finished, if the COMAL program produces
an error message or if it communicates with the
disk drive. These orders all use the
interrupt, also used by the sound chip.

Chapter ~ - COMAL PACKAGES

PACKAGES FOR USING THE CONTROL PORTS

The COMAL cartridge contains 3 packages which can be used
with the two input ports (game ports) on the right hand side
of your Commodore 64 (on the back of the SX-64). These two
inputs will be refered to as control port 1
and control port 2.

The control ports can be used to attach accessories like
joysticks or paddles. Signals from these devices can be
interpreted and assigned numbers by the the computer. The
Commodore 64 can be used with a range of different acces­
sories - both commercially available and those you can build
yourself. (See Chapter 7 on Peripheral Equipment.)

In this section we will deal specifically with:

paddles
joystick
light pen

These accessories can be
purchased from your
Commodore dealer.

Some of the COMAL pack­
ages contain procedures
which make it easier to
use these accessories.

PADDLES

The package paddle. is made avail·able by the order:

USE paddle.

A pair of p~ddles should be attached to a control port. The
paddles will be refered to as paddle a and paddle b.
Each paddle has a knob, which is used to change the
position of a vari~ble resistor, and a push-button, which
shorts a port input to ground when activated.

-198- COHAL PACKAGES

The package contains a single procedure:

p.ddl.«portno>,<.·p.ddl.>,<b·p.ddl.>,<.·buttan>,<b·button»

which transforms information,from the control port to
numbers.

* The parameter <portno> must contain the number of
the control port to which the paddle pair is
attached: 1 or 2.

* The variables <.·p.ddl.> and <b·p.ddl.> contain
the numerical value corresponding to the knob
position of paddle a and paddle b respectively:

0(= <a'paddle> <=255 and o <= <b·paddl.> (=255

* The variable <a'button> equals if the a­
pushbutton is depressed; otherwise <.'button>
equals O. Similarly for <b·button).

USE p.ddle.
p.ddle(2,.·p.ddl.,b·paddle,.'button,b·button)
PRINT .·p.ddl.,b·p.ddle,a·button,b·button

The signal values are fetched from control port 2 and
printed out in th'e next line.

The following program example, Paddle G.me, is available
on the demo diskette (tape):

0010
0020
0030
0040
00:50
0060
0070
0080
0090
0100
0110
0120
0130
0140
01:50
0160
0170
0180
0190
0200
0210
0220

0230
0240
02:50
0260

USE paddles

DIM form.t$ OF 40
form.t$.",," 4t4t4t

PAGE

4t4t4t 4t"

INPUT AT 2,11 "control port no > ". portno

DIM winn.r$ OF 1
winn.r$I-"c"
PRINT AT 9,21 "Who c.n .dju.t the p.ddl •• nd pre •• "
PRINT AT 10.21 "the fire button the f •• te.t?"
PRINT AT 13.21 "Pre ••• k.y to .t.rt."
RANDOI'1IiE
WHILE KEY$-CHR$(O) DO NULL
number.-RND(0,2:5:5)
PRINT AT 1:5,2. "The numb.r i.1 ".numb.r

REPEAT
p.ddl.(portno,.·p.ddl •• b·p.ddl ••• ·button,b·button)
PRINT AT :5,11 ".·p.ddl •• ·button b·p.ddl. b'buttan"
PRINT AT 6,1. USING form.t$1 .·paddl.,a·button.
b·paddl.,b·button

IF numb.r-.·p.ddle AND .·button THEN "'inn.r$I-· ...
IF numb.r-b·p.ddle AND b'button THEN winner$I-"b"

UNTIL winn.r$ IN ".b"

Ch.pt.,. :5 - -199- COI'IAL PACKAGES

0270
0280 PRINT AT 17,2 inner$+" f •• test!"

JOYSTICKS

The package joy.tick. becomes accessible when you use the
order:

USE joystick.

Attach a joystick to one of the control ports. A joystick
is a peripheral device which ca~ be centered Dr moved by the
user into any of 8 different positions:

Direction COI'IAL - number

up

up-left up-right 8 2

left neutral ri;ht 7 o

do ... n-left down-right 4

down

In addition there is a push-button on the joystick (the fire
button) which sends a signal to the computer when pressed.

The p.ckage contains. single procedure.

joystick «portno>,<direction>,<button»

which translates the signals from the joystick to
numerical values for use in programs.

* <portno> must contain the number of the port to
which the joystick is attached: 1 or 2.

* <direction) is a variable which equals a number in
the range 0 - B. These values indicate the
position of the joystick. See above.

* (button) is a variable with the value 1 when the
fire button is pushed, otherwize <button) equals
O.

Example.

USE joy.ticks The signal values are fetched
joystick (2,retning.button) from control port 2 and printed
PRINT direction,button in the next line.

The program example shows how a joystick can be used to draw:

Chapter :5 - -200- COMAL PACKAGES

0100
0110
0120
0130
0140
01:50
0160
0170
01BO
0190
0200
0210
0220
0230
0240
02:50
0260
0270
02BO
0290
0300
0310
0320
0330
0340
0350
0360
0370
03BO

LIGHT PEN

PAGE
PRINT "JOYSTICK FOR DRAWING"
PRINT
PRINT "Th. joy.tick d.termin •• drawinlil dir.ction.­
PRINT "Th. fir. button itch •• color
PRINT
PRINT "Pr ••• <STOP) to .top the prolilr "
PRINT "Pr ••• <f5) to ••• the dr.wing alil.in,­
PRINT ".nd <fl) to g.t b~ck to the t.xt."
PRINT
INPUT "Joy.tick in port no. (lor 2) .", portno
IF portno<1 OR portno)2 THEN portnol-2

USE turtle
USE joysticks
IjIr.phic.cr •• n(l)
background (1)
p.ncolor (5)

LOOP
joy.tick(portno,direction,button)
IF direction THEN

.eth •• ding«direction-l)*45)
forward (1)

ENDIF
IF button THEN II ch.ng. color

p.ncolor«inq(6)+1) MOD 16)
ENDIF

ENDLOOP

In order to understand how a light pen works, you have to
know something about how the picture on your TV or monitor
screen is formed. The picture is created by an electron
beam which scans back and forth across the face of the
screen at high speed. As it scans, the intensity of the
beam changes. Phosphors on the inside surface of the screen
react to the electron beam by emitting light, thus creating
a visible image. The picture on the screen is updated 50 or ..
60 times each second, so the eye doesn't notice this ~

process. A light pen contains a photodiode in its tip. It
can detect variations in the light level striking it.

When the electron beam passes the point on the screen where
the light pen is positioned, it can be illuminated. If it
is illuminated and a signal is sent to the computer, the
instant when the signal arrives corresponds to a particular
position on the screen.

The light pen should always be con~ect.d to control port 1.
Next make the package lililhtpen accessible with the order:

USE lightpen

The light pen works best when the screen border is dark and
the background is light.

If the program segment listed below does not work right
away, then try adjusting the contrast and intenSity

•

Chaptltr :5 - -201- COI'1AL PACKAGES

adjustments on your dlsplay.

Using this program you can experiment with the operation of
the light pen. Type in the program and try it:

0010 PAGE
0020 USE lightpen
0030 USE .y.tem
0040 textcolor.(0,14,6)
00:50
0060 off •• t(O,O)
0070 REPEAT readpen(x,y,ok) UNTIL ok
0080
0090 PRINT XlY

The program contains 2 procedure~ from the light pen
package: Line 60 specifles that the light pen's measurement
of the coordinates of a point should not yet be offset.
Line 70 detects where on the screen the light pen is
pointed.

Move the pen slowly from the dark edge in the lower left and
corner into the light area. The program will then print out
the light pen's measurement of the coordinates of this
point. Try a few times until the coordinates have been
determined with reasonable accuracy. These coordinates are
referred to as the light pen's offset from (0,0). We will
term this coordinate pair «xoff>,<yoff>l. The coordinates
«:;off>,<yoff» can vary from display to display due to
delays in the electonic detection process.

In line 60 of the program the offset was set equal to
(0,0). Now change thls to the values of «xoff>,<yoff»

,which you have just found ..

When you run the altered program and move the llght pen In
and out of the corner, It should now reglster the
coordinates (0,0). If it does not, you have an idea of the
uncertainty with which the light pen can determine screen
coordinates. Try refining your calIbration.

Now examine the coordinate range which the llght pen can
measure. It should extend from (0,0) to about (319,199).
After this initial adjustment, we are ready to tackle some
more challenging tasks.

The first example takes advantage of the fact that the
computer automatically sets some important initial parameter
values whenever the order USE lightpen is invoked. This
is true, for example, of the time for which the pen must be
held at the same spot on the screen before its position will
be registered (the procedure d.lay). This is also the
case for the time which must pass from the moment when one
set of coordinates has been found to the time when a new
determination will begin (the procedure timeon). A
program which is to be used to make drawings on the screen
must be able to determine the coordinates of points very
quickly, so delay and tim.on should be set to small
values. If accuracy is more important than speed, then
larger values should be used.

Chapter S - -202-

The program might look like thi ••

0010 PAGE
0020 USE li;htpen
0030 USE ;raphic.
0040 ;raphic.creenCO)
OOSO border CO)
0060 back;round(14)
0070 pencolor(6)
0080

CDI'tAL PACKABES

0090 xoff.-S2, yoff.--S1 II u.e your own value.
0100 off.etCxoff,yoff)
0110
0120 delay (1)
0130 timeon (1)

0140
01S0 REPEAT readpen(x,y,ok) UNTIL ok
0160 movetoCx,y)
0170 LOOP
0190 REPEAT readpenCx,y,ok) UNTIL ok
0230 drawtoCx,y)
02S0 ENDLDOP

Try changing the values in lines 120 and 130. What effect
does this have?

Note that all lines are connected. What should be done so
that the pen can be lifted and lines not connected?

If one wishes to determine the location of the pen on the
text screen, the pen's 'coordinates must be transformed to a
char~cter position «line),<column». The text screen has
25 lines each with 40 columns.

In the following example two user-defined COMAL-functions
(FUNC line(y) and FUNC column(x» are used to make the
conversion. In order for the functions to operate properly,
the light pen coordinates must have been corrected using the
off.et procedure described earlier, so that the lower left
corner corresponds to (0,0).

The program illustrates how a light pen can be used to make
selections from a menu containing charcters, words or other
choices. In this case the problem is to select words from
the list at the end of the program and make them into a
sentence with a maximum of 40 characters:

0010 PAGE
0020 DIM text.(2S,4) OF 10
0030 DIM name. OF 10, all. OF 40
0040 ZONE 10
OOSO 11-8
0060
0070 USE .y.t_
0080 textcolor.CO,14,6)
0090
0100 arran;e'word.
0110
0120 USE li;htpen

•

Ch.pt.r :5 - -203- COt1AL PACKAGES

0130
0140
01:50
0160
0170
0180
0190
0200
0210
0220
0230
0240
02:50
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
Q430
0440
0450
b460
0470
0480
0490
0500
0:510
0520
0530
0540
0:550
0:560
0570
0580
0:590
0600
0610

d.l.y(60)
tilll.on(60)
.ccur.cy (10,2)
xoffl-:52, yoffl--51 II u •• your own v.lu ••
off •• t(xoff,yoff)

choo •• 'word.

PROC .rr.nQe'word.
CURSOR 1,1
FOR ii-I TO 5 DO

FOR jl-l TO 3 DO
READ t.xt$ (1, j)
PRINT t.xt$(i,j),

ENDFOR J
PRINT

ENDFOR i
text$(6,1)1-".nd"
PRINT t.xt$(6,1)
PRINT AT 6,11 "Point to words with the light pen."

ENDPROC .rr.nge'word.

PROC choo •• 'word.
REPEAT

REPEAT r •• dp.n(x,y,ok) UNTIL ok
IF y<199-(1-1)*8 THEN II from lin. I
nam.$I-text$(lin.(y)-l+1 ,col ullin (x) DIV 10+1)
IF n.m.$<>".nd" THEN .11$1+" "+n.m ••
PRINT AT 2,11 .11$

ENDIF
WHILE penon DO NULL

UNTIL n.m •• -".nd"
CURSOR 20,1

ENDPROC choo.e'word.

FUNC line (y)

RETURN (200-y) DIV 8+1
ENDFUNC line

FUNC column(x)
RETURN x DIV 8+1

ENDFUNC column

DATA "Pet.r". "t.k_", ".nouQh"
DATA "the c.t", t ... , .. from ..
DATA "the food","r.in.",".lw.y."
DATA ".v.rything", "rememb.r.", "never"
DATA , .. th. book","forQ.t.",".oon"

In line 150 the procedure .ccur.cy from the light pen
package is used. The procedure .ccur.cy«dx>,(dy»
determines the resolution in the x- and v-directions.

Add 50me additional DATA statements yourself.

-~- COMAL PACKAGES

OVERVIEW OF THE LIGHT PEN PACKAGE

off •• t«xoff),<yoff»
p.non
r.adp.nC<x),<y),<ok»
tim.onC<tim.»
d.layC<tim.»
accuracyC<dx),<dy»

off •• tC<xoff),<yoff»

is a procedure which is
coordinate pair so that
of the Qraphics screen.
display to display. Try
<Hoff) ~ 75 and <yoff)

Exampl.1

used to offset the light pen
it agrees with the corrdinates
This offset can vary from
starting with values such as:
~-45.

off •• t(52,-51) Light pen coordinates are offset
so (0,0) is in the lower left-hand
corner.

p.non

is a function which has the value TRUE (-1) if the
pen is touching the screen. Otherwise p.non equals
FALSE (-0).

is a procedure which reads the coordinates of the
screen position and delivers them in the variables
<H) and <y). The variable <ok) has the value
TRUE if the pen is touching the screen (just as the
function penon).

Exampl.1

REPEAT r.adp.nCx,y,ok) UNTIL ok

PRINT x,y

d.layC<tim.»

Read the screen
coordinates when the
light pRO is touch­
ing the screen;
Print the coordInates
on the next line.

is a procedure which i. used to specify the tim. for
which the light pen must be held still on the screen
before the light pen reading will be r.corded. The
light pen must be held still within the limits
specified in the procedure accuracy.

The parameter <tim.) is gIven in 1/bO of a second.
Starting value: <tim.)=10 (i.e. 10lbO = l/b second)

•

•

Chapte,. :s - -205- CDI'IAL PACKAGES

ti mean « t1 me »

is a procedure which is used to specify the t1 ..
which must pass from one screen reading until the next
is possible.

<time> is given in 1/60 of a second. Starting value:
(time>=30 (i.e. 30/60 1/2 second)

accu,.acy«dM>,<dy»

is a procedure which is used to indicate the size of
the region on the screen within which the light pen
must remain to be considered to be 'at rest'. The
smaller these values, the more precisely the light pen
must be positioned to obtain a reading.

Initial values: (dM)=4 and (dy>=2

Example.

accuracy (10,S) The pen is considered to be at
rest if it is held WIthin a lOxB
pixel region.

Chapter :5 - -205- COMAL PACKAGES

THE SYSTEM PACKAGE

This package contains, among other things, procedures which
can be used to specify how the screen display, keyboard and
printer interfaces should operate. In addtion the package
contains functions which provide information about your
system, the display and the keyboard:

teKtcolor.«border),(background),(teKt»
keyword.'in'upper'ca.e(TRUE or FALSE)
name.'in'upper'ca.e(TRUE or FALSE)
quote'mode(TRUE or FALSE)
inkey$
settime«time'of'day$»
gettime$
getscreen«screen$»
setscreen«scr.en$»
hardcopy«unit$»
currow and curcol
bell «duration»
free
defkey«no),(teKt$»
shawk.y •
• erial(TRUE or FALSE)
setprint.r«attributes~»

setrecorddaiay«duration»
.etpage«integer»

teKtcolors«border),(background),<teKt»

is a procedure which is used to define the color
combination of the border, background and text. On
start-up teKtcolor. (14,6,14) is executed
automatically on a Commodore 64. On an SX-64
teKtcolors(3,1,6) is the default value.

EKamples.

teKtcQlors(12,ll,15)

black border, red background
and subsequent white text

grey tones

Only the background is
changed (in this case to
green) •

keywords'in'upper'ca.e(TRUE or FALSE)

is a procedure which determines whether keywords are to
be written in upper case (TRUE) or lower case (FALSE).
The default is TRUE.

•

ChApt.,. ~ - -207-

nAm •• 'in'upp.,.'c& •• (TRUE or FALSE)

COMAL PACKA6ES

Keywords are
displayed in a
listing with small
letters.

is a procedure which determines whether names are to be
written in upper case (TRUE) or not (FALSE). The
default is FALSE.

EK&mpl.:

n&m •• 'in'upp.r'c ••• (TRUE)

quot.'mod.(TRUE or FALSE)

Names will be displayed
with large letters.

is a procedure which determines whether control codes
and other invisible ASCII characters in string
constants are to be displayed in reverse te"t (TRUE) Dr
with their ASCII values enclosed in quotes (FALSE).
After start-up the default is FALSE.

EK&mplellil

PRINT statement afte,- quote 'mode <TRUE):
PRINT 'GHello!"

after quot.'mod.(FALSE):
PRINT 2 .. H.llo! ..

ink.y*'

is a function which reads in characters from the
keyboard. The function ink.y*' works 1 i ~,e KEV*,.
However ink.y*' awaits a character with the cursor
flashing at Its current position .

EKampl •• :

PRINT ink.y*'

•• ttim.«tim.'of'd&y$»

is.a procedure which is used to set the clock in the
computer (CIA#l real time clock). On start-up the
clock is zeroed by •• ttim.("OO.OO.Oo.o"),

The format of the tim.'of'day$ string is:

-208- COMAL PACKAGES

hhlmml ••• t
or
hhlmml ••
or
hhlmm

hh
mm
ss
t

is
is
is
is

the hour (0 24)
the minute (0 59)
the second <0 59)
tenths of a second <0 9)

or
hh

if a number field is left out,
it will be assigned the value O.

•• ttim.("0713011S")

•• tti me ("10.20")

•• ttim.("O") The clock is reset to o.

Qettime.

is a function which returns the time'of'day in the
format hh:mm:ss.t

E><&mpl •• 1

PR I NT Qet ti m ••

digital clock:

PAGE
USE .yst.m
LOOP

answer e.g.: 9:32:50.4

PRINT AT 1,30: Qettime$,
ENDLOOP

QRt.cre.n«screen$»

is a procedure which takes a copy of the current te>:t
screen, and saves lt as the string screen$. The
string .cr •• n$ takes up 1505 characters. This is
reserved by using the order DIM screen$ elF IS0S.

The content of the string screen$(1:150S):

screen$(1) border color
2 baggr. color
3 cursor color
4 cursor: line
5 cursor: column - 1

6: 1505 text and color
information

Text and color information consists of 500 sequences of
3 bytes each:

character 1
character 2
2. 1.
color

For every two characters
their color is stored.
Each color takes 4 bits
making a byte.

See the program examples following s.t.cr.en«.cr •• n$».

•

Chapt.r S - -209-

is a procedure which creates a picture on the text
screen. Picture informationen is contained in the
string .cr •• n$. The string must contain at least
1505 characters. See g.t.cr •• n«.cr •• n$».

DIM .$ of lS0S, b$ of lS0~

USE .y.t.m

fiI.t.cr •• n(b$)
.$1-.$ <1:72S) +b$ (726: lS0S)'

•• t.cr •• n(.$)

Not ••

At two selected times during the execution of the
program, the contents of the text screens are saved in
the strings .$ and b$ respectively. Later a string
is created by combining the first 725 characters of
.$ (i.e. color and cursor information, and the first
12 lines of the .$ screen image) and of b$'s last
780 characters (i.e. the b$ scree~'s lower 13 lines).
The combined image is finally presented on the screen.

Profilr.m .K.mpl. 2:

PROC h.lp CLOSED
DIM .1$ OF lS0S,B2$ OF lS0S
USE syst.m
fiI.t.cr •• n(.l$) II •• VR .cr •• n im.fiI.
OPEN FILE 10, ".km.h.lp",READ
READ FILE 10:.2$
CLOSE FILE 10
•• t.cr •• n(.2$) II show. a u •• r h.lp .cr •• n
WHILE KEY$-CHR$(O) DO NULL
•• t.cr •• n(.l$) II the old im.g. b.ck .fiI.in

ENDPROC h.lp

h.rdcopy«unit$»

is a procedure which prints out the contents of the
teKt screen to the unit which 'is given in the string
unitS. The printout begins with a carriage return.

hardcopy ("lp. ") The contents of the teKt screen
is printed on a lineprinter. The
order has the same effect as
(CTRL-P).

-210- CCMAL. PACKAGES

currow and curcol

are two functions which return the current row and the
current column respectively.

Examples.

PRINT AT O,curco!-S. nam ••

is a function which activates COMAL"s "bell". The
parameter duration must be an integer in the range
to 255. The value 1 corresponds to a real-time
duration of about 0.15 seconds. On start-up an
automatic bell (3) is executed.

Examplel

ball (10) Sound for 1.5 sec.

free

is a function which returns the number of free bytes in
working memory. A more complete overview of the use of
working memory is obtainable using the command SIZE.
But because SIZE is a command, it cannot be used from a
running program.

E;:xampla.

PRINT free

defkey«no),(text.»

is a procedure which is used to redefine the meaning of
the functIon keys. The keys are numbered 1, •• ,8,11, •. 18.
The numbers 1 - 8 are normally active for indication of
the usual function keys (fl) - (f8). But during
program·execution, the function keys will correspond to
numbers 11 - 18. The string text. may consist of a
maximum of 32 characters.

The procedure showk.y. will print out a list of the
current definitions of the function keys.

On start-up the following is performed:

defkey(6,"L.IST ") Activating (f6) prints LIST
on the screen.

The <f3> and <f4> can e.g. after redefinition be used
to assist with the writing of procedures:

defkey(3,"AUTO"13""13"PROC ")
dafkay(4,"ENDPRCC"13""141"SCAN"13"")

Chapter :5 - -211-

<f3) will cause: AUTO
0010
0020 PROC

<f4) will cause: XXXX ENDPROC

COI'IAL PACKAGES

(Interrupt AUTO-numbering.)
SCAN

Program example.

USE .y.tem

(Which checks the structure of the
procedure and allows use of the
procedure as a command.)

defkey (1:5, "COI'IAL for everyone!" 13"")
INPUT "What did you .ay? ": text$
PRINT text$

If the <f5) key is act.ivated in response to the INPUT
statement, the system will· react as if the message came
from the keyboard and print it out.

sho",key.

is a procedure which prints out a list of the meanings
of the function keys •

• erial(TRUE or FALSE)

is a procedure whi ch control s whether communi cati or. 1 s
sent to the serial port or to the IEEE-488 module <if
available) •

Example ••

• erial(TRUE) Send to the serial port •

•• rial(FALSE) Send to the IEEE-488 module •

• etprinter«attribute.$»

is a procedure which is used to select the unit number
and attributes of the peripheral printer. Printout to
the lineprinter (lpl) will thereafter be performed
according to the rules given by the attributes. These
are given in a string during procedure calls.

Po •• ible printer attribute.:

la- do not translate from C64 ASCII to standard ASCII
la+ convert from C64 ASCII to standard ASCII

11- suppress line feed after carriage return
11+ execute line feed after each carriage return

It-. ignore 'time out' signal and continue printout
It+ interrupt with error message if time runs out

Chapt.r :5 - -212- COMAL PACKAGES

Secondary adresses for the Commodore MPS 801 (partly
also MPS 802) printer: (See instruction manuals for
other printers.)

1.- no secondary address used
1.0 write data as received
lsi write data in previously defined format
la2 save format information
la3 number of lines per page
la4 allow explanatory error messages
laS define a programmable character
la6 number of blank lines between each printed line
Is7 print with lower case

Upon start-up in COMAL Nl pc " is defined as the unit
with the attributes u41/a-/I-/t+/a7.

The MPS 801 printer can be set to act as unit 4 or unit
5 by means of a switch on the back panel.

Examples:

a.tprinter("u5caO")

• etprinter("lpc/a+/I-")

Hlp:" means hereafter
unit 5; printout with
upper case .

Convert to ASCII, send
no line feed.

A procedure to define the number of lines per page on
the MPS 802 printer:

PROC page'S02(lines'pr'page) CLOSED
OPEN FILE l,"lpl/s3",WRITE
OPEN FILE 2,"lpc",WRITE
PRINT FILE 1: CHR$(lines·pr·page).
PRINT FILE 2: CHR$(147),
CLOSE

.ENDPRDC pag.·S02

•• tr.cordd.lay«duration»

is a procedure which causes COMAL to pause under writes
to a random file. The parameter <duration> is given in
milliseconds. The disk operating system needs time to
write a block to the diskette before the COMAL system
can send a new positioning order. It is rarely
necessary to use the procedure. When COMAL is
initiated, an.automatic •• tr.cordd.l ay (:50) is carried
out, unless the IEEE module is connected with the COMAL
cartridge. In that case a •• tr.cordd.lay(Ol will be
executed •

•• tpag.«int.g.r»

is a procedure which determines to which overlay the
orders PEEK and POKE will refer. See Chapter 8 for
more information on this. The utilities program
.howliba on the demo diskette (or tape) uses this
procedure.

Ch .. pt.... ~ - -213- COI'IAL PACKAGES

THE FONT PACKAGE

The package font contains 6" procedures which are used to
deTine new screen characters. It is possible to change an
entire character set or just an individual character.

The package is activated with the order

USE Tont

The package afTects the 4 character sets numbered:

0: User-deTined
1: User-deTined
2: Upper case/graphics set
31 Upper/lower case letters

read/write
read/write
read only
read only

The Commodore 64 uses a double character set. Normally
COMAL uses character set 3. By activating <SHIFT C=> you
can switch back and Torth between character sets 2 and 3.
These two character sets are permanently available in the
world ng memory of the computer. so they cannot be changed.

With the Tont-package it is possible to add a new double
character set numbered 0 and 1. This character set is
stored in a protected area OT the working memory OT the
computer.

There are now several options:

1. You can move a copy of the normal character set of the
computer into the area reserved for the user character
set and change some of the characters.

2. You can Tetch a completly new character set Tram
dis"kette or tape and store it as the user-defined
~haracter set. It will go into eTTect at once. Of
cDurse it is essential to have such a character set
prepared and available on diskette or tape. A
character set is available on your demo diskette or
tape. But it is also possible to create your own and
to store it Tor later use.

R.m k.1

* The character set used corresponds to screen
characters. Their character code are not in accord
with the standard ASCII values. See Appendix A for
standard screen character codes and ASCII codes.

The Tollowing command will print out all the standard
screen characters. Issue the order with deTault screen
and cursor colors.
address 1024".):

(The screen image starts at memory

fo ... 1-0 to 2~~ pok. 1024+1,1

* The user-deTined character set is also used by the
procedure plott.xt Tram the graphics-package.

-214- COMAL PACKAGES

* Because a printer uses its own character set, font
will have no effect on PRINT and LIST orders directed
to the printer. On the other hand <CTRL-D>
(print.craan) will cause an' exact copy of the
graphics screen image to be printed out on aMPS 801
compatible printer.

First we fetch a character from the standard character set
to see how it is stored in an 8x8 raster pattern of pixels.
The following program can be used for this purpose.

The character is fetched by means of the procedure
gatcharacter. The rest of the program has been added to
provide a nice printout of the character in an 8x8 matrix.
We let the string function bin$ convert the individual
characters in the fetched raster pattern to binary numbers.
These numbers are then printed under one another to create
the bit pattern of the character:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220

II .ave "tFetch Character"
USE font
DIM ra.ter$ OF 8
'PAGE
INPUT "Char-.cter .et ": choice.
INPUT "Character no. ": character"
PRINT
getcharacter(choice.,character.,ra.ter$)
FOR il=l TO 8 DO

PRINT TAB(12),bin$(ORD(ra.ter$(i»)
ENDFOR i

FUNC bin$(numb.r) CLOSED
DIM binnumber$ OF 8
binnumber$:="OOOOOOOO"
bit:"l
FOR i.I~8 TO 1 STEP -1 DO

IF numbar BITAND bit THEN binnumber$U.):="l"
bit:+bit

ENDFOR i.
RETURN binnumber$

ENDFUNC bin$

Tryout the program. Choose a character from the double
standard character set: 2 or 3. Since we have not yet
prepared any user-defined characters, any attempt to fetch a
character from sets 0 or 1 will result in an error message.
The character a has the number 1 in character set number
3.

Next we will prepare a user-defined character by simply
moving a copy of the standard character set up to the user­
defined area. Since no user-defined character set has yet
been created, the order linkfont has this effect. Write
therefore:

u •• font
linkfont

•

-215- COMAL PACKAGES

This way a user-defined charater set (0 og 1) is created for
immediate use. In addition the old screen image is hidden,
and a new picture is created for using the new character
set. It is always possible to return to the standard
character set by using the order DISCARD (which preserves
any program in working memory) or NEW (which does not).

It is now possible to change the characters in the double
character set 0 - 1. The brief program which follows reads
in individual charcters by means of DATA statements and
makes them part of the new character set· with the order
putcharacter.

The DATA in the program for a letter. (the Greek letter
'phi '). This character can replace any charcter in set 0 or
1. If you wish to have this Greek letter available instead
of the "pound" sign, you can assign it character number 28
in character set number 1. Then when you press the
"pound" key, a • will appear on the screen.

Try replaCing some other characters. Notice that there is
an immediate effect on the display screen.

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200

II save "Save Character"
USE font
DIM rasterS OF 8
FOR i:"1 TO 8 DO

READ byte
raster$(i:i)lcCHRS(byte)

END FOR i
PAGE
INPUT "Character set I "I choice"
INPUT "Character no. :": no"
putcharacter(choice",character",raster$)

DATA %00000000
DATA %00000000
DATA %00111110
DATA %01101110
DATA %01111110
DATA %01110110
DATA %01111100
DATA %00000000

eNB: Remember to execute use font and linkfont
before running this program.)

On the demonstration diskette you will find the program
fonteditor which can be used to aid in the definit10n of
new characters.

If a double character set is available on diskette, it can
be fetched into working memory by using the orders:

discard (to erase earlier linkfont)
use font
1 oadfont ("(fi lenameS)")

-216- COMAL PACKAGES

where <fil.nam.S) is the name of the diskette- or tape
file. Thereafter the new character set and screen image can
be used.

linkfant
laadfant«fil.nam.S»
.av.fant«fil.nam.S»
k.epfant
Qetcharact.r«charact.r •• t),<charact.r),<ra.ter$»
putcharact.r«charact.r •• t),<charact.r),<ra.t.rS»

FONT PACKAGE PROCEDURES IN DEPTH.

I inkfont

is a procedure which is used to define a new double
character set number 0 and 1. The procedure should
only be used as. a direct command, for a program cannot
continue after a linkfant statement.

* Room is reserved in working memory for the new
character set and for the screen image (4000 bytes
for the character set and 1000 bytes for the screen
image) •

* The extra screen becomes the current screen and is
cleared.

* Because the variable table in the working memory is
overwritten by the new character set, all CO MAL and
package names will be undeclared.

* If linkfont has not been called earlier, either
directly or indirectly through loadfont, then the
standard character set (2-3) will be copied over as
the new character set (0-1).

* If linkfont has been called previously, nothing
happens. It is thus not possible to overwrite an
existing user-defined character set with a new
linkfant-command. The user-defined character set
must be removed first by using the order DISCARD or
NEW. Individual characters on the other hand can be
replaced using the order putcharact.r.

* The double character set is treated as a part of
your COMAL program. When the program is stored
using the SAVE command, the user character set is
saved along with it as a single file. When the
program is loaded again later using the LOAD order,
the character set is also loaded and ready to go
(even before the program is run!).

is a procedure which reads in a character set with the
name <filenam.$) from diskette or cassette tape.
First loadfant executes an automatic linkfant,

Chapter :5 - -217- COI'1AL PACKAGES

reserving room in working memory for the fetched
character set and the extra screen image.

The procedure loadfont replaces any existing user
character set with the one which has been read in. The
new character set and screen image can then be used as
the current character set and screen •

• avefont«filenam.$»

is a procedure which copies the user-defined double
character set into the working memory and saves it on
diskette or tape under the name <filename$).

keepfont

is a procedure which is used to "freeze" a user-defined
character set, so that it cannot be deleted using
DISCARD or NEW. It is nece~sary to turn off the
computer to return to the standard ~haracter set.

* loadfont still works. A newly read-in character
set will also be "frozen".

* After k.epfont, characters will NOT be saved
together with a COMAL program by the command SAVE.

gatcharacter«character .et>,<character>,<raster$»

is a procedure which fetches a raster image of the
character with the screen code <character> from
<character 'set>. The image is fetched in the form of
a string variable <raster$) which is 8 characters
long.

Permitted values:

<character .et.>: O. 1, 2 og 3
<characters> : 0, 1 •... , 255

Example.1

getcharacter (3, l,raster$)

DIM a$ OF B

USE font
getcharacter(2,4,a$)
PRINT a$

Printout: XLFFFLX

The character a is
fetched from character
set 3.

The code character D's raster
image
is fetched and displayed.

putcharact.r«charact.r set),<character),<raster$»

is a procedure which prints out the character with the
screen code <character) in <character'.et) with the
raster pattern in the string <ra.ter).

-218-

Allowed values:

<chArActer·.et>: O. 1
<chArActer> : O. 1 ••••• 255

EXAmple ••

putchArActer (1.:5," "0" "O"<FFF< "0"")

CDI'IAL PACKAGES

In the extra character set 1 the character 0 is
assigned screen character number 5.

•

•

-219-

CMAPt._.- 6

COMAL. F:i.l. __

WHAT IS A FILE?

As you begin to use your
computer to do more and more
jobs for you, it will be very
convenient to be able to create
files for storing information.
You may wish to save business
transactions, financial records,
address lists, the results of
calculations, measurements or
other data for later use. Of
course it is possible to
purchase commercially produced
"database" software to help you
do this. Nevertheless many
computer owners elect to write
their own programs, so that they
can tailor the," precisely to
their particular needs.

A file is a collection of data, organized for storage and
retrieval. The storage medium can be a Datassette tape
or a diskette. Because serious file handling usually
requires the use of a disk drive, thiS chapter will
concentrate mostly on file storage with a dlSk drive.

There are several ways in which files can be organized.
Somet~mes it is convenlent to save a set of information one
item a~ter the other in a sequentlal file. Sequential
files are easy to use and do not requIre a great deal of
prior planning with respect to the number of storage units
each item will require. On the other hand when sequential
files are used it is necessary to read the entire file into
the computer's memory. And you must re-save the entire file
again each time you have finished working with it. Storing
data as sequential files is useful as long as the file does
not get too large.

There is a way to get around the problem of having to handle
the entire file all at once. Random-access files can be
created. so you only need to read in a small portion of the
file when you want to change it or refer to it. In this case
you must plan ahead carefully, allotting an appropriate
amount of space for each "set" of data (i.e. each record).
If we know how much room each record takes uP. it is pos­
sible to fetch or save a single record at a time. Thus the
use of random-access files can speed up access to some types
of information on a diskette (they cannot be used with a
Datassette tape unit). Random-access files are appropriate
to use for handling large collectlons of systematic data.

In this chapter we intend to cover several important uses
for COMAL files:

Chapt.,. 6 - -220- COMAL. FIL.ES

* saving and loading programs and procedures
* an address list filing program using sequential files
* a random-access inventory file program
* moving files between diskettes

The demonstration programs describ~d in this chapter are
found on the demo diskette (or tape) distributed with the
COMAL cartridge. In addition, complete program listings are
available in Appendix H.

SAVING PROGRAMS AND PROCEDURES

As you proceed to write more programs, you will find that
they become larger. But you will also find that many of the
operations to be carried out are the same: saving data,
fetching data, printing tables, printing a title screen,
entering a user response from the keyboard, etc. It will
become very natural for you to do these jobs and others
whlch may be required again by using COMAL procedures.
Later on the same procedures can be used with llttle or no
changes.

There are a number of COMAL disk drive operations which make
the building of new programs from available procedures
particularly easy and convenient to do. An overview of
these operations is shown in the table which follows.

COMPLETE PROGRAMS PROGRAM SEGMENTS

SAVE n-(file name>" LIST(segment)"<file name>"
LIST H<file name>"

STORAGE:
SAVE "testfile fl LIST 1000-1095 IIprintout"
LIST "testfile" LIST printout "printout. 1"

LOAD "(f i Ie name>" MERGE(line)"(file name)1I
ENTER "< f i 1 e name>" ENTER "<file name)"

RETRIEVAL:
LOAD "testfile" MERGE "printout ll

ENTER "testfile" MERGE 1100 "printoutll
MERGE 1100.5 "printout lJ

ENTER "printoutll

It should also be mentioned here that the DISPLAY
command can be used to save entire programs,
individual procedures or sequences of line numbers
to diskette (or tape). The order DISPL.AY 10-100
".ampl." saves program lines 10-100 with no lin.
numb.,.. as an ordinary sequential file. The file
can (only) be retrieved using an INPUT FILE orde,.
or the GET$ order. Other formats, analogous to
the formats of the LIST command, are also
permitted. The DISPLAY command can be used to
create a sequential file from a COMAL program.
The fIle might then be loaded into a text editor
(e.g. EASYSCRIPT).

•

-221- COMAL FILES

Let's Quickly review the storage and retrieval of COMPLETE
PROGRAMS. Consider the lefthand column of the table.

The commands SAVE and LOAD are already familiar to vou. You
can use SAVE to transfer a copy of your COMAL program file
currently in memory to diskette. The syntax is SAVE "(file
nam.>", where the item (fil. nam.> is a program name (up
to 16 characters) of your choice. Beginning a file name
with. has a special meaning: The file will be deleted if
it exists, and the new file will be saved in ltS place under
the same file name.

The order LOAD is the reverse operation of SAVE. The LOAD
order has the format LOAD "(fil. name>" and causes the
program file (file name> to be copied from the diskette to
the COMAL program storage memory of your Commodore 64. When
you LOAD a program file, the previous contents of the COMAL
program area will be erased. Note that onlv a program file
(denoted by prg in the directory) can be LOADed. A
complete program can also be LISTed to a diskette where it
will be stored as a sequential file. It must then be
ENTERed or MERGEd to be retrieved later

The commands RUN and CHAIN can also be used to bring program
files into memory from the disk drive. See the more
detailed description of these orders 1n Chapter 4. In
addition a closed procedure, saved using SAVE. can be
fetched as an external procedure durlng program execution
(see the descriptions of EXTERNAL and PROC 10 Chapter 41.

Now let' .. take a look at the column titled PROGRAM SEGMENTS.
This information can be a real time-saver, so studv it
caref'ull y!

Suppose that vou have developed an ingenious procedure
called Quick"save for quickly storing a 11St of items and
prices on diskette. The procedure lS so general, that it
could be useful in many other programs. If it is more than
a few lines in length, it will not be convenient to type lt
in each time it is to be used. It should be LISTed to
diskette by using the order LIST quick"save
"prc.quick"save". If vou do this and type dir. you wlll
observe that the file prc.quick'.av. is stored as a
sequential (not a program) file on the dlskette. Nate that
it cannot be LOADed like a program file; to get it into
program memory you must use either MERGE or ENTER. These
orders will be described shortly.

You are also permitted to save your procedure by

refer,encing t,he line, numbers for the procedure. *0
For example you could store qUick ".av. by 0

wri t lng: 1 i.t 1000-1090 "prc. quick" .av.".
Typing dir wl11 verlfy that the procedure has .
been saved as a sequential file. The procedure
can now be brought into another program using the
MERGE or ENTER orders.

Ch ... pt.r 6 - -222- COI1AL FILES

Now comes the good part. When you want to use the procedure
again, you have the following alternatives:

* Write m.r;. "prc.qu1ck· v.". Your procedure will be
copied from the disk drive and appended to the program in
memory. It will appear with line numbers starting 10
beyond the last line number in the program, even though
the original file was LISTed with line numbering 1000-
1090

* You may instead choose to write mer;e 1100
"prc.quick·save·. In this case the procedure will
appear in your current program from lines 1100 and beyond
with a line number interval of 10 (the default value).
If you want the procedure to start at line 1100 with an
interval of 5 between lines, just write merge 1100,5
"prc.quick·s ... ve".

WARNING: Be careful when merging a procedure ln
the middle of a program. You must be sure that
there is room enough for the procedure with the
line number interval selected. Otherwise the
procedure will get mixed up with other
instructions or erase them if line numbers
coincide.

@
--

* In case you have LISTed an entire program to
diskette. you may want to use the order ENTER. If
you write enter "printout" for example, the
sequential file printout will be read into the
active program area. (NOTE: Any other program in
memory wlll be deleted.)

If you have worked with other programmlng languages and
operatlng systems, you will appreciate how convenlent
these facllitles can be whlle developing programs.

SEQUENTIAL FILES - AN ADDRESS LIST

In Chapter 3, progr ... m 19, we saw a simple example
illustrating how to save numbers on a sequential file. You
may recall that a sequential file must be opened before data
is saved or fetched. After use the file must be closed.

The formal structures for these operations are as follows:

Open a file, save data, close the file.

OPEN FILE <fileno>,<filename$>,WRITE

PRINT FILE <fileno>: <data element>

CLOSE FILE <fileno>

Open a file, fetch data, close the file.

•

Chapter 6 - -223- COMAL FILES

OPEN FILE <fileno>,<filename$>,READ

INPUT FILE <fileno>: <variable name)

CLOSE FILE <fileno>

We will now turn our attention to a practical problem.
Suppose you want to create a program to save names,
addresses and telephone numbers. The following example
illustrates the kind of data we want to save and variable
names which we will use:

Rxample

John Smith
1200 Wilson Driva
Any town , PA 19380
(212) 123-4567

string variable

name$ ()
street$ ()
town$ ()
phone$ ()

Notice that all four string variables are to be defined as
arrays. We intend to design the program to handle up to 100
names with addresses and phone numbers. We will refer to
the collection of information lilustrated above a data
rRcord and each of the indlvidual varlables which constl­
tute the record as a data element. In this example each
data record will conslst of ~our elements.

Note that all four strlng varlables must be declared as one
dimensional arrays. We plan to permlt our program to handle
up to 100 records. Conslder some of tne tasks Wh1Ch this
program w111 have to handle:

* LOAD all the records In the data f11e 1nto memorv
* CREATE a data record with name, aadress and pnone number
* LIST all records in the file
* SEARCH through the file to flnd certain records
* SORT the file alphabetically bv name
* CHANGE a record
* DELETE a record
* SAVE the file on diskette

Of course there are other ooeratlons one might want to
perform on a file. but we will 1,m1t thls example to the
above operations in the interest of slmplicity. When you
have understood the procedures described in this section,
you Will be able to extend or reVlse thiS program so that It
best suits your needs. Those of you who received thiS book
with the COMAL cartridge will find this program on the demo
diskette or tape under the file name Addr List Demo. The
program listlng is also given in Appendix H.

We intend to take a careful look at thlS program. Please
note that it has not been "optimized". It has been written
as simply and clearly as possible to make it easy to
understand. As you learn more and more about sequential
files, feel free to make modifications and improvements!

The program starts out with a line Indicating the name of
the file:

-224- COMAL FILES

0010 II SAVE ".Addr Li.t D.mo

Notice that we have used a remark statement (II) and
included SAvE " ahead of the file name. This little trick
makes it easier for you to save modifications of your
program as you develop it' and revise it. Just move the
cursor to this line, remove the fIrst part of the line by
typing blanks (or use <INST/DEL». When you press <RETURN>,
the new version will be saved. The • symbol included as
the first ch~racter of the file name causes the existing
program file to be deleted before the new file IS saved.

WARNING: Be careful when uSIng thIS method: you ~

could lose a program file. Be sure you have a @f~
backup copy of your program and update It from
time to time. Do not make revisions using the
demonstration diskette or tape. Load the program, ,,",, /
then save later revi Sl ons to another storage dl sk '"
or tape.

The next lines in the program listing take care of
DIMensioning of arrays and string variables used in the
program:

0020 DIM reply$ OF 1, name$(100) OF 40
0030 DIM street$(100) OF 40, city$(100) OF 40
0040 DIM phone$(100) OF 20, flag$ OF 40
0050 DIM .earchkey$ OF 40, string$ OF 150
0060 numberl=O II numb.r of records

Notice here that we have made provision for the storage of
100 data records each consisting of four elements: a name,
street, town and phone number. Each of these elements may
be up to 40 characters long. This choice means that the
sequential file can take up to 4x40x100 or about 16
kilobytes in memory. Since a total of about 30 KB is
available, and the program only takes up about 4 KB, more
room is available. You can change these numbers, if you
wish.

Next comes an introductory .cr •• n describing the program:

0070
0080
0090
0100
0110
0120
0130
0140
0150

PAGE
PRINT "Thi. program illu.trat •• the u •• of"
PRINT "SEQUENTIAL FILES. It can b. u •• d to"
PRINT
PRINT
PRINT
PRINT
PRINT "
PRINT "

"cr.at. a li.t of nam •• , addr ••••• "
"and t.l.phon.numb.r •• "
"Each r.cord will have the format~"

•

0160 PRINT "
0170 PRINT"
0180 PRINT
0190 PRINT

-225-

city"
phonenumb.r"

0200 PRINT "Pr ••• any k.y to continu •••• "
0210
0220 wait'for'key.trok.
0230

COMAL FILES

The statement PAGE clears the screen and the following lines
simply print information on the screeen. Notice the
procedure wait'for'keystroke. This is a procedure which
you might find convenient to use in your own programs:

2240
2250
2260
2270
2280
2290
2300
2310

PROC wait 'for 'keystroke
PRINT
PRINT "< > ••• " I
REPEAT

reply$:zKEY$
UNTIL r.ply$<>CHR$(O)
PRINT AT 0,21 r.ply$

ENDPROC wait'for'keystroke

You mayor may not want < > ••• to be printed on the screen
whenever the computer is awaiting an operator response.
Change it or delete it as you wish. The REPEAT ..• UNTIL loop
will be executed continuously as long as no key is
depressed, since the value of the CDMAL function KEY:f rema.In
equal to CHR:f(O). When a key is pressed, KEY$ takes on the
value of the character sent from the keyboard, and reply$
will no longer be equal to CHR$(O). The REPEAT ••• UNTIL loop
will be terminated, and execution proceeds to the next lIne,
The PRINT AT 0,2: reply$ statement causes the character
which was sent from the keyboard to appear Inside the
brackets in the < > ••• symbol,

Now take a look at the main program loop:

0240 LOOP
0230 show'm.nu
0260 flag$I-""
0270 wait'for'k.ystroke
0280 CASE r.ply. OF
0290 WHEN "1"
0300 load 'file
0310 WHEN 11211
0320 cr.ate'record
0330 WHEN 113 11

0340 li.t 'file
0330 WHEN 114 1•

0360 .earch'file
0370 WHEN .. ~ ..

03S0
0390
0400
0410
0420
0430
0440
04~0

0460
0470
04S0
0490

-226-

.ort'fil.
WHEN "6"

ch.ng.'r.cord
WHEN "7"

d.l.t.'r.cord
WHEN "s"

•• v.'fil.
OTHERWISE

PRINT "Ill.g.l r.ply
w.it'for'k.y.trok.

ENDCASE
ENDLOOP

COMAL FILES

This is really the heart of the program. The first
subprocedure encountered displays the program menu:

0500
0~10

0520
0530
0540
O~~O
0560
0570
0~80

0~90

0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700

PAGE
PRINT .. ------=-== MAIN MENU -=="' .. ----- ..
PRINT
PRINT
PRINT "
PRINT "
PRINT "
PRINT "
PRINT "
PRINT ..
PRINT ..
PRINT ..
PRINT
PRINT

<1> LOAD
<2> CREATE
<3> LIST
<4> SEARCH
<~> SORT
<6> CHANGE
<7> DELETE
<8> SAVE

the fil."
• r.cord"
the fil."
the fil."
.lph.b.tic.lly"
• r.cord"
• record"
r.vi •• d fil."

PRINT "R.cord.: "Inumb.r
IF numb.r-O THEN fl.g$;·"Pl •• s. lo.d or cr •• te fil
PRINT
PRINT fl.g.

ENDPROC .how'm.nu

The procedure clears the screen, indicates the user choices
available, and shows the number of records in the file. The
string variable fl.g$, which is used in the program to
inform the user about various conditions, will be set equal
to Pl •••• lo.d or cr •• t. fil •••• if there are no records
in memory. This message will be printed below the menu to
guide the user.

ConSidering again the m.in progr.m loop, we see that the
variable fl.g$ 1S again set equal (in line 260) to the
empty string, so it can be used later for other purposes.
In the next line the procedure w.it'for'k.y.trok. is
executed. When a valid user choice has been entered (a
digit from 1 to 8), the program will branch as appropriate
If the choice is not a valid one, the program simply prints.
out the message Ill.g.l r.ply •• and waits for you to press
any key.

We will now consider each of the eight available file
handling functions. The first user choice, act1vated by
selecting 1 from the menu, is LOAD the file;

0710
0720
0730
0740
07!50
0760
0770
0780
0790
0800
0810
0820
0830

-227 -

PROC load 'file
OPEN FILE 1, .. Addr ,READ
INPUT FILE 11 numb.r
FOR nOI-l TO numb.r DO

INPUT FILE 11 nam.$(no)
INPUT FILE 11 .tr •• t$(no)
INPUT FILE 11 city$(no)
INPUT FILE 11 phon.$(no)

ENDFOR no
CLOSE FILE 1

ENDPROC load'fil.

COMAL FILES

Of course this procedure can only be used after a file has
been created and is available on the diskette in the disk
drive. Usually this will be first choice a user makes after
starting the program. It is important to understand the
procedure load'fil., for it shows you how to read a
sequential file from a diskette into program memory. The
first thing done in this procedure is to OPEN FILE number
1 as a READ file called Addr.s.es. Should you want to
call the file some other name, you can simply alter th1s
file name to one of your choice, here and elsewhere in the
program. The easiest way to do this is by means of the
CHANGE order (chang ... Addr.sses your choice").

We have decided to let the first element in the file be
called number corresponding to the number of records 1n
the file. This variable was the first one to be saved, and
it 1S the first one to be read in now. Now that the number
of records in the file is known, the file itself can be read
in using a simple FOR .•• ENDFOR loop. (In Chapter 3 we used
the logical function EOF«fileno» to announce End Of File).

Notice the use of the INPUT FILE statement to define the
elements in the arrays name$(), .tr.etS(). townS() and
phon.S(). Finally. notice that file 1 must be CLOSEd
after the data input 1S completed.

The following procedure, activated by user choice 2. can
be used to create new records for the file:

0840 PROC create'record
08!50 PAGE
0860 PRINT "11111 CREATE A NEW RECORD 11111"
0870 PRINT

~
0880 PRINT ,c.

room f or data!" .:l 0890 IF numb.r-l00 THEN flag$I-"No more
0900 IF flag$,,!,": THEN
0910 numb.r,+1 If.' , ,. ;. ~

0920 INPUT "Nam. ", nam.$(numb.r)
0930 INPUT "Str •• t ", .tr •• t$(numb.r)
0940 INPUT "City ", c:ity$(numb.r)
09!50 INPUT "Phon. "I phon.$(nulllb.r)
0960 ENDIF
0970 ENDPROC c:r.at.'r.c:ord
0980

The procedure begins by clear1ng the screen and indicating to the
user what is happening. If there is no more room for data

-228- COHAL FILES

(because numb.r a 100), then the message variable fl.;$ is
set to No mor. room for d.t.!, and the next lines will not be
executed (the condition fla;$a'"' will not be fulfilled). If
there are fewer than 100 records, then the number of records
counter numb.r will be updated (numb.rl+l in line 910), and
the user can input the four data elements. Execution returns to
the main program loop.

User choice 3 allows entire contents of the file to be listed:

0990
1000
1010
1020
1030
1040
10:50
1060
1070
1080
1090
1100

PROC li.t·fi 1.
PAGE
PRINT "11111 LISTING THE FILE 11111"
PRINT
IF numb.r-O THEN

fl.;$la"No fil •• in m.mory!"
PRINT

ELSE
FOR nOI-l TO numb.r DO print'r.cord(no)

ENDIF
ENDPROC li.t"fil.

The screen is cleared and a user message is displayed. If there
is no file in memory (numb.r-O), then a message is sent back to
the menu display by means of fla;$. If there is a file in
memory, then it is listed by the FOR ••• ENDFOR loop. Notice that
a waxt occurs as each record in displayed. Simply holding down
any key will make the records scroll up the screen.

The ••• rch option is activated by user choice 4 from the
main menu. When a file is available in memory, it can be
searched find a name, street, town or other information:

1110
1120
1130
1140
11:50
1160
1170
1180
1190
1200
1210
1220
1230
1240

PROC ••• rch"fil.
PAGE
PRINT "11111 FILE SEARCH 11111"

PRINT
PRINT
fl.g$I-"I am •• arching ••• "
INPUT "S •• rch k.YI "I ••• rchk.y$
FOR nOI-1 TO numb.r DO ~

.trin;$lanam.$Cno)+.tr •• t$Cno)+city$Cno)+phon.$(n~
IF ••• rchk.y$ IN .trin;$ THEN print"r.cordCno)

ENDFOR no
fl.;$I-

ENDPROC ••• rch"fil.

After clearing the screen and informing the user, this
procedure allows a search key to be entered. This can be
any string of characters at all, however capitalization must
be the same as in the record element which is to be searched
for. The COMAL statement IF (condition> THEN (proc.dur.>
is most useful here. Each record is checked by means of the
FOR ••• ENDFOR loop. If any record contains the search key,
then the entire record will be printed by the subprocedure
print"r.cordCnr):

Ch.pt.,. 6 - -229- COMAL FILES

12:50
1260
1270
12BO
1290
1300
1310
1320
1330
1340
13:50

PROC print·r.cordCno)
PRINT
PRINT AT 0.101 "---------------CM.no.")"
PRINT AT-0,101 n.m.$Cno)
PRINT AT 0.101 .tr •• t$Cno)
PRINT AT 0,101 city$Cno)
PRINT AT 0,101 phon.$Cno)
PRINT
IF fl.;$-"I .m ••• rchin; ••• " THEN ",.it·for·k.y.trok.

ENDPROC print·r.cord

Notice the use of the variable fl.;$ here. It is set
equal to "I .m ••• rchin; ••• " <in line 1160). This signals
the subprocedure (in line 1330) that a wait should occur
after each record is displayed. The variable fl.;$ is
reset to the empty string at the end of the search
procedure.

Now we will examine one of the more challenging procedures
in this program. The entire file can be sorted
alphabetically by name. This option is activated by user
choice :5 from the menu. Note that a prerequisite for
proper use of this function is of course that names must be
entered correctly, last name first, as the first element of
each record. Of course a sort could be carried out
according to any other element you may choose by simply
modifying the procedure which follows as appropriate.

1360
1370
13BO
1390
1400
1410
1420
1430
1440
14:50
1460
1470
14BO
1490
1:500
1510
1:520
1:530
1:540
1:5:50
1:560
1:570
l:5BO
1:590
1600

PROC .ort· fi 1.
PAGE
PRINT "11111 SORT BY NAME ALPHABETICALLY II:::"
PRINT
PRINT

PROC .",.pCREF .$,REF b$) CLOSED
C$I-.$, .$I-b$, b$l-c$

ENDPROC p

REPEAT
no· pl-TRUE
FOR nOI-l TO numb.r-l DO

PRINT AT 10.11 "Sortin; ••• ",na
IF n.m.$Cno+l)(n.m.$Cno) THEN

..... pCn.m.$Cno),n.m.$Cna+l»

..... pC.tr •• t$Cno) •• tr •• t$Cno+l»

..... pCcity$Cna) .city$Cna+!»

..... pCphon.$(no).phon.$Cna+l»
no· pl-FALSE

ENDIF
ENDFOR no

UNTIL no· p
ENDPROC .ort·fil.

As in Chapter 3 Pro;r.m 19, the sorting algorithm used
here is the simple bubble .ort. Compared to ... hat we did in
Chapter 3, ... e have placed the .wAP procedure inside the
.ort·fil. procedure. This is done to show an example of a
local procedure inside another procedure.

-230- COMAL FILES

The FOR ••• ENDFOR loop is carried out for each pair of names
in the list. If the names are not in alphabetical order the
names are swapped. The variable no'swap will now be equal
to FALSE, if a swap has occured. The REPEAT ••• UNTIL
no'swap-TRUE loop is repeated until no two names are
swapped on a pass through the list •. The bubble sort is not
the most efficient sorting technique, but it is perhaps the
easiest to understand. On the demo diskette you will find a
quick'sort procedure which is much more efficient but
harder to understand.

It will sometimes be necessary to change the contents of a
record in the file. This choice is activated by selecting
6 from the menu. The procedure chanQe'record is shown
below:

1610
1620
1630
1640
16:50
1660
1670
1680
1690
1700
1710
1720
1730
1740
17:50
1760
1770
1780
1790
1800
1810
1820

PROC chanQe'record
PAGE
PRINT "1'1 I I I CHANGE A RECORD I I I I I "
PRINT
PRINT
INPUT "Which record number? "I no
IF no(-number THEN

print 'record (no)
INPUT AT 14,11 "RiQht record? (yIn)? "I reply$
PRINT
PRINT

THEN IF reply$ IN "yV"
INPUT "Name I "I

INPUT "Street
INPUT "City

name$(no)
" •• treet$(no)
"I city$(no)
". phone$(no) INPUT "Phone

ENDIF
ELSE

flaQ$I-"There are only "+STR$(number)+" records"
ENDIF

ENDPROC chanQe'record

The procedure should be easy to follow. It involves simply
requesting the user to indicate which item is to be changed
then allowing the change to be entered. Notice again the
use of the variable flaQ$ to transmit an error message to
the menu.

Selecting user option 7 from the menu allows a record to
be deleted. A procedure which can accomplish this
function is as follows:

1830
1840
18:50
1860
1870
1880
1890
1900

PROC delete'record
PAGE
PRINT "11111 DELETE A RECORD 11111"
PRINT
PRINT
INPUT "Which record number? "I record
IF reccrd>number THEN

flaQ$I-"Use a smaller record number!"

•

1910
1920
1930
1940
19:50
1960
1970
1980
1990
2000
2010
2020
2030
2040
20:50
2060
2070

-231-

ELSE
print'r.cord(r.cord)
PRINT

COMAL FILES

INPUT "I. thi. the riQht r.cord (yIn)? "I r.ply$
PRINT
IF r.ply$ IN "yY" THEN

FOR nOI-r.cord TO numb.r-l DO
nam.$(no)l-nam.$(no+l)
.tr •• t$(no):-.tr •• t$(no+l)
city$(no)l-city$(no+l)
phon.$(no)l-phon.$(no+l)

ENDFOR no
numb.rl-l

ENDIF
ENDIF

ENDPROC d.l.t.'r.cord

After a file has been entered. sorted or modified. it will
usually be desirable to save it for later use. Choose user
option 8 from the menu to activate the following
procedure:

2080
2090
2100
2110
2120
2130
2140
21:50
2160
2170
2190
2190
2200
2210
2220
2230

PROC .av. 'file
PAGE
PRINT "11111 SAVING FILE TO DISK
OPEN FILE 1 Addr ,WRITE
PRINT FILE 11 STR$(numb.r)
PRINT
PRINT
FOR nOl m 1 TO numb.r DO

PRINT FILE 11 nam.$(no)
PRINT FILE 11 .tr •• t$(no)
PRINT FILE 11 city$(no)
PRINT FILE 11 phon.$(no)

ENDFOR no
CLOSE FILE 1

ENDPROC .ave'file

To save the file. the file must first be opened. indicating
the number of the file, 1 in this case. the file name. in
this case simply Addr •••••• and the fact that the file is
opened as a WRITE file. Of course you can alter this
procedure to make it possible to make the file name user
selectable. Just insert an input statement like INPUT
"Fil. nam.? "Ifil.nam •• early in this procedure. You will
also have to change the procedure load'fil. to allow user
choices there too.

The procedure .av.'fil. continue2 by first saving the
number of records in the file (PRINT FILE 11
STR$(numb.r». This information is the first thing to be
read in when the file is loaded again. The PRINT FILE
statements are used to transmit the contents of each record
to the sequential file. Finally the file must be CLOSEd.

Ch.pt.r 6 - -232- COHAL FILES

RANDOH FILES - AN INVENTORY PROGRAM

To illustrate the use of random files (also called
direct files), we will describe a simple inventory

program. The program R.nda. Fil. D.m6 can be found on the
demo diskette. You may wish to try LOADing, RUNning and
LISTing the program before continuing.

The first few lines of the program identify it (and
facilitate saving) and DIMension the string variables to be
used:

0010 II •• v. ".R.ndom Fil. D.mo"
0020 DIM cod.$ OF 30, p.rt$ OF 30
0030 DIM qu.ntity$ OF 30, pric •• OF 30
0040 m.xqu.ntitYI-2~

Next comes a brief description of the program, displayed as
soon as the program is RUN:

oo~o PAGE
0060 PRINT "III RANDOH FILE DEHONSTRATION III"
0070 PRINT
0090 PRINT
0090 PRINT
0100 PRINT
0110 PRINT

"Thi. proQr.m illu.tr.t •• •• • imply •• "
"po •• ibl. how you c.n .tor •• nd r.tri.v."
"inform.tion from. ·dir.c:t· or"

0120 PRINT .. ·r.ndom-.cc ••• • fil •• "
0130 PRINT
0140 PRINT "Thi •• x.mpl ••• rv •• to •• v •• nd r.tri.v."
01~0 PRINT "inform.tion .bout • p.rt. inv.ntory"
0160 PRINT
0170 PRINT "Th. information.n i •• rr.nQ.dl ..
0190 PRINT
0190 PRINT AT
0200 PRINT AT
0210 PRINT AT
0220 PRINT AT
0230 PRINT

O,SI
O,SI
O,S.
O,S.

"cod. numb.r"
"p.rt n.m."
"qu.ntity"
"pric."

0240 PRINT "Pr •• s .ny k.y < > ••• "
02~0 w.it·for·k.y.trok.
0260

After this introduction the program will proceed to the main
program loop as soon as the user presses a key. We have
used the same w.it'for'k.y.trok. procedure as in the
previous program.

0270
0290
0290
0300
0310
0320

REPEAT
.how· ... nu
IF r.ply.-"l" THEN cr •• t.·r.cord
IF r.ply$-"2" THEN f.tc:h·r.c:ord

UNTIL r.ply.-"3"

The main loop displays a menu then diverts execution to
c:r •• t.'r.cord or to f.tch·r.c:ard in response to a valid
user response to the menu:

0330 PROC show'menu
0340 PAGE

-233- COI1AL FILES

03~0 PRINT "11111 RANDOI1 FILE DEI10 - I1ENU 11111"
0360 PRINT
0370 PRINT
0380 PRINT AT O.~I "<1> cREATE a record"
0390 PRINT AT O,~I "<2> FETCH a record"
0400 PRINT AT O,~I "<3> terminate"
0410 PRINT
0420 PRINT
0430 wait'for'keystroke
0440 ENDPROC show'menu
04~0

If response 1 is chosen, the program allows the user to
create a record for the inventory file:

0460
0470
0480
0490
O~OO

0:510
0~20
0~30
0:540
0:5:50
0:560
0:570
0:580
0:590
0600
0610
0620
0630
0640

PROC create'record
PAGE
PRINT "1:111 CREATE A RECORD :::11"
PRINT
PRINT
INPUT "Which record numberl "I no
PRINT
PRINT
IF no>O AND no<-maxquantity THEN

INPUT "code numberl "I code$
INPUT "part name "I part$
INPUT "quantity": quantity$
INPUT "price I "I priceS
OPEN FILE l,"Olinventory",RANDOM 128
WRITE FILE l,nol code$,part$,quantity$,price$
CLOSE

ENDIF
ENDPROC create'record

The first part of this procedure is just housekeeping. The
user must enter the reference number (1 to 25) of the record
to be created. If it is valid, the IF ••• ENDIF loop is
executed. Notice how the random file is OPENed. The first
characters in quotes: 01 indicate that the primary disk
drive, drive 0, is to be used. If a second drive were
available and properly connected to the Commodore 64, it
could be referenced as drive 2. (This has to do with
Commodore compatibility with the 4000 and 8000 series
computers which can have two built-in drives.) The WRITE
FILE statement in line 600 transfers the four data elements
in the record to the file inventory.

A few general remarks on random access files are
appropriate here. Data is stored'in random files
in binary form:

* The order WRITE FILE causes the data in the
record to be saved in binary form on the
diskette, where numbers and text take up a
certain number of bytes:

take up 2 bytes

-234- COMAL FILES

real numbers take up 5 bytes
strings use up 2 bytes + the string length

The 2 eKtra bytes for strings are added by the COMAL
system for to keep track of things.

* The Commodore disk drives 1541 and 2031 only allow
one RANDOM file to be open at a· time.

* In the catalogue of diskette contents, a random
access file is classified as a relative file and
denoted by rei.

When we wish to retrieve information which has been stored
in the direct file inventory the following procedure,
activated by user choice 2 from the menu, can be used:

0650
0660
0670
06BO
0690
0700
0710
0720
0730
0740
0750
0760
0770
07BO
0790
OBOO
OB10
OB20
0830
OB40
OB50
0860
OB70

PROC fetch'record
PAGE
PRINT "1111: FETCH A RECORD FROM FILE 11111"
PRINT
PRINT
INPUT "Which record numberl "I no
PRINT
IF no)O AND

OPEN FILE
READ FILE
CLOSE
PRINT
PRINT

no(maKquantity THEN
l,"O:inventory",RANDOM 12B
l,nol code.,part.,quantity.,price.

PRINT "Inventory item"lno,"ilil"
PRINT
PRINT "code number I
PRINT "part name
PRINT "quantity
PRINT "price I

wait 'for 'keystroke
ENDIF

ENDPROC fetch'record

",code.
",part.
";quantity.
"Iprice.

This procedure requests the user to enter a record number.
Then, if a valid record number has been selected, the file
is OPENed, and the four data elements of the record are read
using the READ FILE statement and printed out.

SUGGESTED IMPROVEMENTS:

* This simple program could be improved by adding
a counter to keep track of the total number of
records in the file. It should be READ as soon
as the program is started and updated each time
a new record is added or an old one deleted.

* Before the program is used for the first time
the file inventory should be created in its
maKimum size. To do this write:

CREATE "1nventory",25,12B

-235- COMAL FILES

This way you can be sure that there is enough
room on the diskette for the complete file.
Furthermore, access to the diskette will be
substantially faster, because the system need
not expand the file as it is used.

* All the posts can be zeroed with known data.
This can eliminate the possibility of reading
undefined records. It also allows the issuing
of a warning if useful information is about to
be overwritten. One possibility is as follows:

OPEN FILE 11 "inventory" ,RANDOM 128
FOR nrl-l TO 25 DO WRITE FILE 1.spc$(126)
CLOSE

(The inventory is hereby zeroed using blanks.
Of course you must be sure there is nothing of
value in the file before doing this!)

MOVING A SEQUENTIAL FILE

The last program in thIS chapter is intended to illustrate
how a sequential file can be transferred from one diskette
to another. Files written in machine code are binary files,
and moving them can be a problem. The program name is Move
Sequential, and it is available on your demo diskette or
tape.

The key to this program is the statement
GET$«fileno),<bytes». By using this statement
every'thing on a diskette, including separators not read in
by the INPUT FILE statement, can be read.

The program opens a user selectable sequential file, reads
the entire contents Into the variable numberS (however
max. 5000 characters), requests the user to switch diskettes
and then writes the contents of numberS to a file with the
same name on the new diskette:

0010 PAGE
0020 DIM name$ OF 40
0030 INPUT "Enter file namel ":name$
0040 OPEN FILE 2,name$,READ
OOSO DIM numberS OF SOOO
0060 WHILE NOT EOF(2) 00
0070 number$I+GET$(2,1000)
0080 ENDWHIL.E
0090 CLOSE FILE 2
0100 PRINT numberS
0110 PRINT "Switch di.k.ttes and pr ••• any k.y
0120 dummy$-KEY$
0130 WHILE KEV$-CHR$(O) 00 NULL
0140 OPEN FILE 3,".01 "+nam.$,WRITE
01S0 PRINT FILE 31 numberS
0160 CLOSE FILE 3

Chapter b - -236- COMAL FILES

FILE TYPES

You have noticed that when you view the contents of the
diskette using the dir order that different types of files
are stored. At the right next to the file name you will see
a three-letter abbreviation describing the file type:

prg
seq
reI
usr

program file
sequential file
relative file
user sequential file

This classification limits the way in which these files can
be used. For example if you try to LOAD a relative file as
a program, COMAL will generate an error message.

You will probably find it useful as you use files more and
more to indicate what the various files within a certain
category are used for. You will be working with fonts,
shape tables for sprite images, listed sequential files
containing programs, procedures or functions, external
procedures, display files, textfiles or data files.

To distinguish these files from one another, and to make it
possible to show all files of a certain type using the dir
order, it is useful to characterize each file with a file
type code. You might use a four letter code ahead of-O;­
at the end of your file. For example you could indicate
that a sequential file consists of a LISTed program as
follows:

your program. 1st 1st. your program

A text file from an editor program might be distinguished by
using .txt at the end of the file name or placing txt.
at the beginning or .txt at the end:

letter. txt txt. letter

Prefixes or suffixes indicating file types could be as
follows:

.lst 1st. for LISTed files

.dsp dsp. for DISPLAYed files

.obj obj. for object code files

.src src. for source code files
• ext ext. for EXTERNAL procedures
.bas bas. for Basic programs
.txt txt. for text files
.grO grO. for graphics screen files
• grl gr!.
.spO spO. for sprite fi les
• spl spl •
• prc prc • for procedure fi les
.fnt fnt. for fonts

The actual choice is of course up to you, but it can ease
communication among COMAL users if the same attribute
notation is used. In this connection we recommend using the
prefix, because this will allow you to catalogue all files
of the same time using the DIR order.

-237 - CO MAL FILES

For example, be sure you have a few text files denoted by
the prefix txt., then try the following order:

dir- "txt.*

Only files beginning with txt. will be shown.

If the suffix convention is used, then an order such as:

dir U?????sp?"

will only list sprite files with five character f1le names.

FILES AND THE SCREEN, KEYBOARD AND DISK DRIVE

One of the powerful features of the COMAL language file
handling system is the ability communicate with the various
input/output devices of your computer. Up to this point we
have illustrated communication with the disk drive, but
communication with screen, and keyboard is also possible.

In order to direct file operations to a particular device,
you should use the unit specifier unit. The unit spec­
ifier should be followed by one of the following string
expressions:

kbl
dSI

lpi
sp,
cs,
u<d.vic.>1
<drive>.

keyboard
display screen
line printer
serial port
cassette recorder
device <such as Printer-Plotter)
disk drive number <default 0)

Note that <d.vice> must be a number 1n the range 0-31, and
<driv.> is a number in the range 0-15. For example:

unit lids,"

will direct CDMAL to treat the display as the output device.

It is also possible to reveal the current unit assignment
using the spe.cial string variable unit$. For example:

print unit$
if unitS<>"lpl" th.n
unit "ce. t •

The first instruction simply prints the current unit. The
second sequence will set the default unit to the tape unit,
unless the current unit is the line printer.

A special feature of the file handling system is the symbol
• which may be the first character of a file name. If it
is, then the file will be overwritten if it already exists
on the diskette.

-238- COMAL FILES

USING YOUR DATASSETTE UNIT

Although serious file handling really requires the use of a
disk drive, Datassette users will be pleased to find that
many file operations can be done with a tape unit. Opera­
tions with sequential files will, however, be considerably
slower than with a disk drive. Random access files cannot
be used with a tape unit.

USING THE 1~20 PRINTER-PLOTTER

One of the many useful peripheral devices which you can
attach to your Commodore b4 is the 1520 Printer-Plotter. It •
can be used both for listing programs and results and for
drawing graphics images of high quality in up to four
colors.

It is quite easy to activate your Printer-Plotter from
CoMAL. If the Printer-Plotter is properly attached to your
serial bus (or to the extra serial bus connection at the
rear of the disk drivel, you can try the following
demonstration. Be sure that the 1520 is turned on. Enter a
brief program, then type:

list "ubi

Your program should be listed on the F'rinter-Plotter.

Other operations with the Printer-Plotter are handled in a
similar fashion. Just remember to use the device
specification "ubI.

You will find a demonstration program 1520 Plotter Dem on
the demo diskette and listed in Appendix H. Tryout this
program and study the listing to see how to use your 1520
with COMAL.

REVIEW

In this chapter several important topics
pertaining to the use of CO MAL files have been
covered:

* file operations on programs and procedures
* uSing sequential files for numbers and strings
* using random files
* file types
* using files with input/output devices
* using the 1520 Printer-Plotter

You should be familiar with the following concepts after
working through this chapter:

•

Chapter 6 - -239-

file
stora;e _dium
sequenti al f He
random-access (direct) file
record
data element
bubble sort
file types
device specifications

COI'IAL FILES

The followin; CO MAL instructions have been discussedl

SAVE - LOAD
LIST - ENTER - MERGE
OPEN FILE - CLOSE FILE
PRINT FILE INPUT FILE
WRITE FILE - READ FILE
RANDOM
CREATE
GETS

In addition to the examples of the use of files shown in
this chapter, you may find it helpful to study details on
the formal syntax of these orders in Chapter 4.

The following programs have been discussed in this
chapter. They are also to be found on the demo diskette:

Addr List Demo
Random File Demo
Move Sequential
1:520 Plotter Dem

The best way to learn about files is to use them to make
them work for you. You can use the programs in this chapter
as a starting point. Change them and extend them. You will
find that mastery of the art of file handling is one of the
most valuable skills that you will learn while using your
Commodore 64 computer and the COMAL cartridge •

-240-

•

-241-

PERXPHERAL DEVXCES

I NTRODUCTI ON

Your Commodore 64 computer is provided with several
different means for attaching it to other devices. Compared
with other computers in its class there is a generous
allocation of input/output connectors included in the base
price of the computer:

* IEEE serial bus - for connecting the C64 to dISk drive,
printers or other devices,

* Datassette tape unit interface,

* Parallel input/output port,

* Cartridge port for connecting games, applications
programs or language cartidges like COMAL,

* Control ports (2) for connecting joystick, paddles,
etc.

As you can see from Chapter 5
on COMAL Packages it is quite
easy to integrate the use of
joysticks, paddles or a light­
pen into your programs. The
use of the IEEE serial bus for
communicating with disk drives
or printers has been covered
in Chapter 6 on COMAL Files.
Those who have a Datassette
unit are also familiar with
its use for saving and re­
trieving programs and files .

In this chapter we intend to di­
rect our attention to the use of
the RS-232C interface,
IEEE cartridges, and par­
ticularly to the parallel port.

THE RS-232C INTERFACE

RS-232C is an industry standard which defines a particular
type of serial communication. Data is transmitted as a
series of pulses one after the other along a single wire.
Figure 7.1 illustrates the transmission pattern which
corresponds to the serial ASCII-code for the single letter
C. This letter has the ASCII decimal code 67,
corresponding to the binary number 01000011.

-242- PERIPHERALS

start
bit

1 lSB

:~ I
o T iT

~

1

I
3T

1 o o o

,
6T

parity
bit
MSB \

I ~
7T 8T

i

o 1

stop
bit

1
i ,

9T lOT
. ,

Figure 7.1: The letter C is transmitted in serial form
according to the RS-232C standard. Note that
only 7 bits are sent, least significant bit
first'

The data can be sent in asynchronous form. The time
period for the transmission of a complete character can be
divided into 10 equal time intervals. Two well-defined
voltage levels determine whether the signal in a given
interval is to be interpreted as high or low. In this
discussion we will refer to logic levels, but keep in mind
that in practice these levels will appear as voltage
variations in the RS-232C connector cable.

Every character signal begins with a start bit. It is
logic 0 in the example shown in Figure 7.1. The start bit
is used to synchronize the receiver with the transmitter.
When detected, the start bit starts a clock with period T
which then coordinates the reading of the serial line. The
receiver can take periodic samples to determine whether each
bit is a logic 1 or a logic O. After seven samples the
binary code of the character is available in the receiver's
storage register.

The next bit is the parity bit which indicates to the
receiver whether an even or odd number of l's (or O's)
is transmitted in a given character code. For systems with
even parity the parity bit will be high (logic 1) if an
even number of high bits are transmitted and low (0)
if an odd number are sent. This can be checked by the
receiver-to ascertain whether or not transmission errors
have occured. Finally, a stop bit is sent to indicate the
end of the character transmission.

The RS-232C standard also specifies a protocol which is
designed to facilitate communication. For example eTS
(Clear To Send) and RTS (Request To Send) signals are
defined. Furthermore, the voltage levels for logic 1 and
logic 0 are specified as -12 and +12 volts respectively~
The complete specification can be found in textbooks on
electrical engineering. The information which follows
should be adequate to allow you to begin using the R5-232C
interface with COMAL.

The electrical connections to an RS-232C port are
standardized using the 08-25 connector:

Ch .. pt 7 - -243- PERIPHERALS

pin sign .. l cod.

1 protective ground GND _14 ,.
2 transmitted data SOUT -15 2_

3 received data SIN _16 3_

4 request to send RTS -17 4_

5 clear to send CTS -18 5_

6 data set ready DSR e19 6_

7 signal ground GND e20 7-
8 carrier detect OCD e21 8-

9-17 not used -22 S-·
18 ring indicator RI -23 10_
19 · .. not used . .. e24 1,.
20 data terminal ready DTR -25 12-
21-25 not used

13_ ·

Figure 7.2: The standard pin connections for the RS-232C
interface and the pin arrangement for the 08-25
connector are shown.

All available RS-232C control signals are rarely used in
actual communications setups. It is often adequate to use
only the two data channels SIN and SOUTo An interface of
this type is sometimes called a three line interface since
it consists only of an input, output and ground.

Your Commodore 64 can handle the three line interface as
well as the complete RS-232C interface with all control
signals. However the Commodore interface deviates from the
RS-232C standard with respect to voltage levels. The
Commodore 64 uses 0 volts for logic 1 and +5 volts for
logic O. The RS-232C signals are available on the
Commodore user port as indicated in Figure 7.3:

Commodo RS-232C .ignal Signal DB-25 .tanda ... d
u po ... t d •• c ... iption di ction connections

A GNO
B SIN input ~

.j

C SIN input 3
0 RTC output 4
E OTR output 20
F RI input 18
G DCO input 8
K CTS input 5
L DSR input 6
M SOUT output ~

L

N GND 7

(NB: Band C should be connected together)

Chapter 7 - - 244- PERIPHERALS

23456 8 9 10 11 12

:::::::::::::
ABC 0 e F H J K L M N

Commodore 64 user port pin connections.

Figure 7.3: The Commodore RS-232C connections are available
on the user port on the rear left-hand side of
the computer.

It is very important that the voltage levels of the
Commodore 64 RS-232C interface are adapted to the +/- 12
volts present on other equipment. A standard adapter which
accomplishes this is available from your Commodore dealer.
Diagrams for such devices can also be found in the hobby
literature, so that you could build such an interface
yourself.

WARNING: Incorrect connectIon of the RS-232C @
interface to other equipment using +/- 12 volts
can cause permanent damage to your Commodore 64
computer. -~ a
--

Using COMAL you can select a number of parameters to
accommodate the requirements of the communications equipment
to which your Commodore is connected. The following COMAL
program illustrates how to receive data using the RS-232C
interface:

OPEN FILE 1,"splb1200dSs1p.",READ

REPEAT
a$I-GET$ (1,1)
PRINT a$,

0010
0020
0030
0040
0045
0050
0060
0070
0080
0090

UNTIL a$-CHR$(255) OR KEY$<>CHR$(O)

CLOSE FILE 1

END "End"

Line 10 opens a logical file numbered 1 and specifies the
following information: the file opened is to be a file which
READs the serial port with a baud rate of 1200 <b1200), 8
data bits <d8), 1 stop bit <al) and even parity <pe).
In general the following coding can be used to specify the
parameters of the RS-232C interface:

para_ter ayntalC range default

baud rate b<baud> 50-2400 b300
data bits d<num> 5-8 d7
stop bits s<num> 0-2 s2
parity p<type> n=none pn

e=even
o=odd

-245 - PERIPHERALS

"sp:" 300 baud, 7 data bits, 2 stop bits, no parity bit
"sp:b600" 600 baud
"sp:b1200dBslpe" 1200 baud, B data bits, 1 stop bit, even parity

Notice that the serial channel will remain open and the
program continues to execute the REPEAT-UNTIL loop in lines
30-50 until a transmitted character code corresponds to
decimal 255 or any key is pressed.

Data transmission files are opened in the same way, using
WRITE instead of READ. Notice also that an RS-232C inter­
face file which has been OPENed must of course be CLOSEd
again as soon as possible. It is not possible to use the
tape recorder or the IEEE serial bus (i.e. the disk drive)
while the RS-232C interface is in operation. Thus data
which is received must be stored in program memory as it
enters the RS-232C port and then saved to disk later.
Similary, you must prepare a data file in working memory,
OPEN the RS-232C file, send the data, then CLOSE it before
using the disk drive.

IEEE CARTRIDGES

It is possible to purchase a variety of IEEE interface
modules which attach to the Commodore 64 cartridge port.
Such devices are available from your Commodore dealer (ask
for the IEEE 4BB cartridge) as well as from other sup­
pliers. One of these is called the Bus Card II and is
available from the company Batteries Included. These
cartridges can be used with your COMAL language cartridge,
for the cartridge bus is accessible in these products. The
IEEE cartridge is inserted in the cartridge port, then your
COMAL cartridge can then be inserted in a slot in the IEEE
cartridge.

The main advantage of the extra IEEE cartridge is that you
can then use your Commodore to communicate with high
capacity, high speed disk drive units like the Commodore CBM
B050 and B250 devices.

If you have access to other cartridges such as game
cartridges, spreadsheets and the like, you must remove your
COMAL cartridge in order to use them. In that case be
careful to TURN OFF THE POWER to all units in' your system
before switching cartridges.

THE PARALLEL PORT

One of the most useful features of your Commodore 64 is the
parallel inputloutput port, the 110 port for short. The
110 port can be used to communicate with the outside world.
You can use the port as an output for control purposes (to
run a machine, switch lights on and off, automate an elec­
tric train, etc.). The port can also be used as an
input to gather information (measure voltages,
temperatures, and other quantities). In this section we
will describe a simple application to illustrate how the

-246- PERIPHERALS

port can be used.

This section is not intended to be a complete description of
the 110 port. The best place to find details about the
parallel port is in the Commodore 64 Programmer'. Reference
Guide available from your Commodore dealer. In the fol­
lowing only as much information as necessary for you to
understand the examples will-be presented.

The physical location of the port is the edge connector at
the far right side of your Commodore 64 when viewed from the
rear. The location of the port slot is shown in Figure 1.1
in Chapter 1. Electrical pin connections for the parallel
port are shown in Figure 7.3 earlier in the present chapter. ~

To make an electrical hook-up to the port, you will need a ~
24-pin edge connector plug, available from your dealer or
from most electronics supply houses. Note that the
connections we will use are as follows:

connection .ignal

pin 1 (or Al ground
pin 2 +5 vdc (max 100 mAl
pin C port B bit 0
pin 0 port B bit 1
pin E -port B bit 2
pin F port B bit 3
pin H port B bit 4
pin J port B bit 5
pin K port B bit 6
pin L port B bit 7

One convenient way to attach your Commodore 64 to external
equipment is by means of a meter long piece of 10 conductor
ribbon cable. Solder the 10 leads to the pins of the 24-pin
edge connector as indicated above. Solder the other end to
a standard OB-25 miniature 25 pin connector. The pin
assignments for the OB-25 connector are shown in Figure 7.2.
These connectors are quite readily available and inexpensive
as they have been adopted as a standard for the RS-232C
interface. Label the connectors carefully. If you make a ~

mistake applying voltages to these connectors, you could ~

damage your computer.

The 25-pin connector is recommended because you may decide
to add more connections for advanced projects later on. Use
pin 1 on the OB-25 for ground, pin 2 for +5 volts and pins
18-25 for port B bits 0-7.

--~.
WARNING: 00 not carry out these projects without
some prior experience working with electrical
connections. Never make connections to the ~

computer unless all power has been turned off. '~
Although the projects are not difficult, incorrect
connections to your Commodore 64 could damage the
computer. If you are not sure how to proceed,
have an electronically inclined friend give you a
hand, or ask your dealer for advice.

Chapter 7 - -~- PERIPHERALS

To illustrate connection of an external device to the I/O
port, we have chosen a simple control project. Once you
have understood this example, you should be prepared to
tackle more ambitious tasks.

Suppose that we have a closed loop of track, one electric
train and a station. We want the computer to allow the
train to run around the loop until it approaches the
station. It must stop at the station, wait for a predefIned
period, then run around the loop again.

In order to accomplish this control process, two items of
hardware are required:

* A transistor and relay must be available to switch
the power to the train tracks on and off. This is easily
accomplished using a few parts readily avaIlable from an
electronics hobby store.

* A sensor must detect the passage of the train just
before the station. This can be done using a Darlington
fototransistor and a small light source beamed across the
track to strike the sensitive area of the fototransistor.
The collector should be connected to the port bit as
described below, and the emitter should be connected to
ground.

Note that in order to control the train, we will need to use
two bits of the parallel port. We are free to choose.
Let's use bit 0 for the light detector and bit 1 for
starting and stopping the train.

Each bit of the parallel port B can serve as an input or an
output. This is indicated by storing the appropriate number
in the data direction register for the port, in this case
port B. The addresses for the data direction register and
for port B are as follows:

port B Address
data direction register

decimAl

56577
56579

heXAdecimAl

$DD01
$DD03

The number stored in the data direction register (often
abbreviated ddr) determines whether the individual bits of
port B will act as inputs or outputs. It is easiest to
understand the situation using binary numbers. A 0 bit in
the ddr means the corresponding bit of port B will act as an
input. A 1 bit in the ddr sets the corresponding bit of
port B to an output. For example, binary 00000010
(decimal 2) stored in the ddr will make port B bit 0 an
input and bit 1 an output. This is just what we need to
control the train.

Because COMAL will accept binary numbers directly, it is not
necessary for the programmer to translate the binary number
to its decimal equivalent. The programmer must simply
remember to preceed binary numbers by the symbol X.

The program Train Demo is available on your COMAL demo
diskette or tape. It is also listed completely in Appendix

-248- PERIPHERALS

H.

Line 10 indicates the name of the file. In line 30 the
screen is cleared by PAGE. Lines 40-90 print the following
message on the screen:

ELECTRIC TRAIN DEMO

Your tr.in .hould .t.rt .t the station
with the p •••• ;. d.tector just behind
the l •• t c.r. St.rt the tr.in .nd then
pre.s .ny key to tUrn control over
to your computer •••

Notice line 100:

0100 WHILE KEY$cCHR$(O) DO NULL

These instructions keep the program in a loop until any key
is pressed. The system variable KEY$ will then be different
from the null string CHR$(O) , and the program will continue.

The main program starts in line 200. The procedure
defina'v.riable. in line 220 defines the addresses of port
B and its ddr, and the initial value of the variable
position is set to 1. Note that COMAL allows the
programmer to indicate the port Band ddr addresses directly
in.hexadecimal form. Hexadecimal numbers are preceeded by
$. Note also the convenient variable names:

0680
0690
0700
0710
0720
0730

PROC define'variables
port'bl-$ddOl
port'b'ddr:c$dd03
positionl-1

ENDPROC define'v.ri.ble.

The apostrophes ' are necessary to bind the individual
words together, so that CC:IMAL wi 11 interpret them as a
single variable name, just as with procedure names. The
variable position will be used to control a pointer on the
screen display, indicating the action of the program.

The procedure in line 230 sets port b. This is done as
follows:

0740
07~0

0760
0770
0780

PROC set'port'S
POKE port'b'ddr,2
POKE port'b,2

ENDPROC set'port'S

The decimal value 2 corresponds to the binary number
00000010 and makes bi t 0 an input and bi t 1 an outp·ut.
Bits 2-7 are not used in this case, so it doesn't matter how
these bits in the ddr are set.

The train is started by the procedure st.rt'train:

0480
0490
0:500
OSlO
OS20

-249-

PROC start'train
POKE port'b,PEEK(port'b)
advenc:e 'poi nter

ENDPROC start'train

PERIPHERALS

BITOR 2

The POKE order places the number PEEK(port'bl BITOR 2 in
the port B address. The BITOR operation is described in
detail in Chapter 4. It assures that bit 1 is high. This
signal is amplified by the transistor and activates the
relay, starting the train, The procedure advance'pointer
moves an arrow on the screen to the next item of the screen
list, jumping back to the start of the list at the beginning
of each loop,

0790
0800
0810
0820
0830
0840
08S0
0860
0870
0880

PROC advance'pointer
PRINT AT 10+position,21
IF position(4 THEN

positionlcposition+l
ELSE

positionl-2
ENDIF
PRINT AT 10+position,21

ENDPROC advance'pointer
II)"

The next procedure encountered is the print'list
procedure. It simply makes a list of items on the computer
display:

> train running
train passes light
train waiting at station

Pressing any key will stop the train
next time it stops at the station •••

The pointer shows the state of the program.

Now the program enters the main loop:

0270
0280
0290
0300
0310
0320
0330
0340
03:50

REPEAT
check 'light
delay(l.Sl
atop 'train
delay(lOl
start 'train

UNTIL KEY$(>CHR$(Ol
stop 'train
PAGE

0360 END "Au revoir!"

This loop will continue to run until any key is pressed. If
KEY$ is anything but the null string CHR$(O) , the program
ends.

The procedure check'light examines the state of the bit 0
of port B. This is done as follows:

0:530
0~40
0:5:50
0:560
0:570

-250-

PROC check'light
WHILE PEEK(part'b)
advanc.'painter

ENDPROC check'light

PERIPHERALS

BITAND 1 <> 1 DO NULL

The precise operation of the BITAND operator is described in
Chapter 4. In this case the condition PEEK(pcrt'b) BITAND
1 <> 1 will be FALSE terminating the loop when bit 0
becomes high. This will happen if the light shining on the
fototransistor is interrupted. With the collector attached
to port B bit 0, the emitter grounded (the base is not used)
and the transistor illuminated, the collector-emitter
resistance is low (about 100 ohms), pulling bit 0 to low. •
If the transistor is not illuminated, the resistance becomes
high (typically 1 Mohm) , and bit 0 returns to the high
state.

Before stopping the train, the program executes the
procedure delay(1.5):

0:580
0:590
0600
0610
0620

PROC d.lay(sac:)
TIME 0
WHILE TIME(sec:*60

ENDPROC delay
DO NULL

Note that the variable .ac: is passed to this procedure.
It corresponds to the delay time in seconds. TIME resets
the internal clock. The loop in line 600 continues until
the number of timing units (jiffies = 1/60 sec.) exceeds
•• c*60. Note of course that the parameter value 1.5 can
be changed in a particular situation to assure that the
train stops as desired at the station.

The train is stopped by the procedure stap'train which
simply changes bit 1 to the low state. Note that a more
refined way to stap (or start) the train would be to rapidly
turn the bit off and on, altering the duty-cycle (the
proportion of the time the bit is on) gradually from 1 to 0
(or 0 to 1) over a time interval. This will cause the train
to gradually slow down (or speed up) in a more realistic
fashion. If you decide to do this, replace the relay with a
power transistor circuit to control current flow to the
track.

FILE TRANSFER BETWEEN COMPUTERS

It is possible to transfer sequential files between your
Commodore 64 and other computers. The most common two way
communications channel is via the RS-232C connector using
the RS-232C standard described earlier in this chapter. To
achieve this it is essential that the computer with which
you want to communicate also has an RS-232C input and output
connection. Furthermore, because the C-64 RS-232C interface
uses TTL-logic levels, you will require a converter module
to change 0/5 volt signals to the RS-232C standard levels of
-12/+12 volt. It is also possible to transfer files via the
parallel input/output port (the user port).

-251- PERIPHERALS

THE CONTROL PORTS

In addition to the many communications possibilities already
described, your Commodore 64 computer also has two
control ports (sometimes called game ports). The use of
these ports from COMAL has already been described in the
section in Chapter 5 on COMAL packages.

In addition to 2 x 5 switch inputs (JOYAO-3, JOYBO-3, BUTTON
A and BUTTON B) available at the two control ports, a total
of 4 different analogue inputs are also available via the
game ports. These inputs are POTAX, POTAY, POTBX and POTBY.
(Internally the SID has just 2 AOC's and an analogue
switch.) Pinouts and connections are as follows:

pin QAme port A Qame port B

1 JOYAO JOYBO
2 JOYAl JOYBl 1 3 • 5
3 JOYA2 JOYB2 0 0 0 0 0

4 JOYA3 JOYB3
5 POTAY POTBY 0 0 0 0

6 BUTTON A BUTTON B 6 7 8 9

7 + 5V + 5V
8 GROUND GROUND
9 POTAX POTBX

NB: Maximum load on the + 5V supply is 50 mAo

Note that you will need a standard OB-9 female connector
to attach experiments to the game ports.

The switch inputs can indicate to a program whether a given
switch is on or off. Examples of how to use these
signals are available in Chapter S.

The analogue inputs go to AID converters which are used to
digitize the positions of potentiometers on paddles. The
conversion process is based on the time constant of a
capacitor tied from the POT pin to ground, charged via a
potentiometer tied from the POT pin to +5 volts. The
component values may be estimated from the relation: RC
4.7E-4. In this equation R is the maximum resistance of
the potentiometer and C is the capacitance. The larger
the capacitor, the lower the uncertainty in the POT value.
The recommended values for Rand Care 470 kilocihm and
1000 pF. Note that a separate potentiometer and capacitor
are required for each POT pin.

Although the POT inputs in the game ports were designed to
measure the rotational position of a potentiometer, any
variable ~esistance can be used. For example to measure
temperature simply replace the potentiometer with a therm­
istor in the proper resistance range. Other resistive
sensing devices can of course be used to allow automated
recording of pressure, liquid level, illumination or other
physical quantities. For example the following program
illustrates how you might construct a simple digital
thermometer using the game port inputs:

Chapter 7 - -252 - PERIPHERALS

0010
0020
0030
0040
00:50
0060
0070
OOBO
0090
0100
0110
0120
0130
0140
01:50
0160
0170
01BO
0190
0200
0210
0220
0230
0240
0250
0260
0270
02BO
0290
0300
0310
0320
0330
0340
0350
0360
0370
03BO

II save ".Thermometer"
USE paddle.
II capacitor: 1000 pF
II thermistor: 100 K at 20 degree.
al-1, bl-O
PAGE
PRINT "DIGITAL THERMOMETER"
PRINT AT :5,11 "Thermistor and capaCitor must be con-"
PRINT "nected to control port 1 ••• "

II Main program
LOOP

check 'paddle (1)

convert (average)
print 'temperature
EXIT WHEN KEV$<>''''

ENDLOOP
END II hovedprogram

PROC check'paddle(port)
totall-O
FOR il-l TO :50 DO

paddle(port,a'paddle,b'paddle,a'button,b'button)
total Imtotal+a 'paddle

END FOR i
average:-total/:50

ENDPROC check'paddle

PROC convert(average)
templ-a*average+b

ENDPROC convert

PROC print'temperature
templ-INT(temp*10)/10
PRINT AT 10,101 "T - 0"

PRINT AT 10,141 temp
ENDPROC print'temperature

The first part of the program (lines 10-100) are just
introductory information, a display message and definition
of the constants a and b. Notice that these are set
equal to 1 and 0 respectively in line 50. This causes
the program to just printout ADC values (0-255) with no
conversion to temperature. These values can first be found
after you have constructed a test circuit and calibrated
the sensor which you plan to use.

Notice the structure of the rest of the program. The main
program is from line 110 through line 170. It consists of a
REPEAT-UNTIL loop which will be terminated if any key is
pressed. In the loop information is fetched from -the paddle
port by the procedure check'paddle(l). Then this quantity
is converted to a temperature value using the procedure
convert (average). Finally the procedure
print 'temperature displays the computed temperature on the
display screen.

Make a trial setup using a 1000 pF capacitor and a
thermistor (NTC or PTC resistor) with a room temperature
value of about 100 kohm. Connect your test circuit to the

-253- PERIPHERALS

control port as shown in the following figure:

(7) +5 VOLT

R

(9) POTAX
C (CA. 1000 pF)

(8) GND
Figure 7.4: Many different sensor types can be attached to

the control ports. Vou can make use of up to 4
analogue inputs to the two control ports.

If the program is now run, the measured ADC values will be
shown on the screen. Draw a graph displaying the
temperature in degrees as a function of the ADC values. If
the graph is approximately linear in the region of
interest, you can compute the constants a and b as
follows:

Read two coordinate pairs from your graph (Xl.V1) and
(X2,V2). (Xl and X2 correspond to ADC values, and Vl and V2
correspond to temperatures.) The constant a can now be
found using the formula:

a • (V2 - Vl)/(X2 - Xl)

This is the slope of the line you drew on your graph. We
found the following values in our test setup which used an
NTC resistor: (183,25) and (215,20) - temperatures are in
degrees centigrade. I.e. the program showed 183 as ADC
value when the sensor temperature was 25 degrees C, and 215
when the temperature was 20 degrees. Thus a equals -0.178
in this case. To find b you can now used the equation:
temp. a.average + b (used in the procedure convert).
Inserting average - 183 and temp c 25 into this equation
yields a value for b of 57.6. If you change line 50 to
reflect the new values you have found for a and b, the
program should print out the temperature when you run it
again.

If you want to calibrate a sensor over a wider range of
temperature, you can use e.g. an exponential function to
achieve a better calibration than the linear approximation
we have used in the illustratlon above In this case you
must revise program line 300.

REVIEW

-254- PERIPHERALS

In this chapter 'we have considered a
range of possibilities for the use of
the wealth of interfacing facilities
available with your Commodore 64
computer. You are encouraged to
experiment with the RS-232C interface,
the parallel port and the game ports to
learn more about them.

You will find more information about these ports in the
Commodore 64 Programmer". Reference Guide. A great deal
additional information is also available from the popular
literature about microcomputers. •

•

- FF-

COMAL AND MACHINE LANGUAGE

WHAT IS MACHINE LANGUAGE?

The "brain" in every microcomputer is a central
microprocessor. Your Commodore 64 is no exception. There
are a number of different tvpes of microprocessors avail­
able. each with its own set of instructions. The Commodore
64 uses a more advanced version of the 6502. the 6510. It
uses the same instruction set as the popular 6502 but has
additional built-in 1/0 facilities. The onlv language a
microprocessor can interpret directly is machine language.
Any higher level language must ultimately communicate w1th
the m1croprocessor uS1ng its native language.

Inside your COMAL cartridge are a large number of machine
code routines termed collectively the COMAL svstem. When
the computer is turned on, the COMAL system automatically
takes charge of the Commodore 64. Another important machine
code program in your computer is the operatino system
which takes care of communication with the kevDoaro, screen
editing and other housekeeping chores. When a COMAL program
is "run", appropriate machine code routines are brought into
play to achieve the actions which your CO MAL statements
reqUIrE.

It should be made clear at the outset. that this chaoter 1S
not intended to serve as a tutorial 1n mach1ne language
programm1ng. We assume here prior knowledge of 6502 machine
language programming. The material presented here 1S
substantially more difficult than the material in orevious
chapters. If you want to learn more about 6502 mach1ne
language, a number of excellent books are available. You
might want to begin with Ian Sinclair s Introducing
Commodore 64 Machine Code iGranada Publishing. London.
1984). The Programmer'. Reference Guide ava1lable from
your Commodore dealer is also a valuable resource .

Machine language will probably be easier to learn if you can
share the learning experlence with others who have slmilar
interests. In this connection the many Commodore 64 and
Commodore COMAL users groups can provide useful
opportunities of exchange of information. Here are some
addresses which may be helpful:

In the USA: CO MAL USERS' GROUP, 5501 Groveland Terrace,
Madison WI 53716

In Canada: TPUG Inc •• COMAL USERS' GROUP, 1912-A Avenue
Rd .• Ste.#l Toronto, ONT M5M 4Al, CANADA

In England: TCPUG, ATT: Brian Grainger, 73 Mine Head Way,
Steven Age, Hirts 5G1 2HZ, ENGLAND

In this chapter yOU will find an overview of the use of
computer memory by the COMAL svstem. Next comes step by

-256- MACHINE LANGUAGE

step instructions showing how you can incorporate your own
machine code routines as a package in a COMAL program.

Machine language is much easier to work with, if you have
access to a 6502 assembler program. Such a program allows
you to prepare a program using symbolic machine code using
mnemonic codes instead of programming directly in
hexadecimal notation. A disk drive wili also make working
with machine language easier. On the demo diskette (or
cassette) you will find a textfile with the name C64SYMB.
It contains a list of all instructions which are relevant
when doing machine language programming with your Commodore
64 and COMAL. This textfile should be included in the
assembler source code with COMAL packages.

It is also possible to prepare a machine language program
directly in memory from a COMAL program by using POKE
orders. In this way a machine code program can be stored in
an available area of computer memory then started from a
COMAL program by usingSYS <start address>. The last
instruction in the machine code routine should be an RTS.
which causes program execution to return to COMAL. It is,
however, not possible using this method to prepare machine
code program packages which can be LINK'ed to COMAL
programs. In this chapter we will only treat the
preparation of machine code programs which can be LINfCed to
a COMAL program.

The use of machine code routines is an integral part of the
COMAL svstem. When designing machine code facilities. three
primary goals have been strived for:

* Machine code routines should be easy to use - aiso for
users without knowledge of machine code.

* Access to machine code rout1nes should be by name.
thereby eliminating confusing details like memory
addresses.

* Machine code routines should be affected by commands
like NEW and RUN. In this way packages behave as if
they are an integral part of the COMAL system.

There are three commandslstatements in COMAL which are used
in connection with the definition, use and removal of
machine coded routines:

LINK <filename>
USE <package>
DISCARD

II Enter a module file
II Define procedures
II Remove all modules

These commands (USE can also be used as a program statement)
will be explained in detail. Machine code routines use the"
procedure and function mechanism in COMAL and allow
therefore all parameter types.

•

-257- MACHINE LANGUAGE

MODULES

The LINK command fetches a machine language module (object
file) from the library which has been prepared by the
assembler. This module contains information which specifies
where the machine code is to be located in memory. CO MAL
can control up to 10 such modules at anyone time. At least
2 modules, containing the following, are always defined:

(Module 1) (Module 2)

english gr .. phics sound
d .. nsk turtle joysticks
system sprite. p .. ddl ••

font lightpen

These modules need not be LINK'ed. for they are already
available in the COMAL cartridge. Modules can be removed
again using the DISCARD command. However the above
mentioned standard modules can NOT be removed. Because the
modules are not named. all other modules will always be
deleted by DISCARD. Modules can be made permanent (be
ROM'ed), whereby they can not be DISCARD'ed. Non-permanent
modules are treated as if they were part of the program in
working memory. A SAVE order will store all non-permanent
modules with the COMAL program in the same prg file. When
LOAD. RUN or CHAIN is used, they will be read in again (be
LINf<ed) .

PACKAGES

A module can contain 0, 1 or more packages.

PROCEDURES AND FUNCTIONS

A package can contain O. 1 or more procedures or functions.
Two main elements constitute each procedure or functlon:

* A procedure header, which speclfies how many ano what
type of parameters are to be passed to the procedure.

* The procedure body, l.e. the machine code which is to
be executed when the procedure is caliec.

This drawing illustrates the hierarchal structure:

module 1 - I - module 2

package 1 - I - package 2

- proc 1 -

header 1
body 1

I
- proc 2 -

header 2
body 2

I - modui e :. - I module n

I - proc 3 -

header 3
body 3

package m -

•• proc p ..

header p
body p

-258- MACHINE LANGUAGE

The USE statement performs the following actions: Each
module, starting with the last one to be read in, is checked
to see if the name following USE is to be found in the list
of package names in this module. If the name is found, then
the procedures and functions found in this package are
defined. The locations of, the 'procedure headers are noted.

SIGNALS

When COMAL carries out an operation which can affect modules
or packages, a signal is issued regarding the operation in
question. The module or package mayor may not react to the
signal. There are two types of signals:

* A signal is sent to a package when a USE statement is
encountered which activates the package. The signal is
in effect a call to a routine which is local for the
package. As an example of what such routines mav do,
the TURTLE package selects the SPLITSCREEN displav,
when the command USE turtle is given. The main purpose
of the routine is to initialize the variables in the
package.

* On system start or when LINK, LOAD. DISCARD, NEW. RUN,
CHAIN are issued (and in certain other special
situations), signals are sent to all modules. The
signal causes a call to a routine in the module (and
thus common to all packages in the module). The
purpose of the signal call is to integrate all packages
in the module into the COMAL svstem (after start-up,
LINK, LOAD), or to return the COMAL svstem to its
original state (after DISCARD, NEW). If a package is
to use interrupt (IRQ), then the module can link the
interrupt routine using LINK and disconnect it again
with DISCARD.

HOW IS MEMORY ORGANIZED?

The following diagram illustrates the entire memory of your
Commodore 64 (the first 3 columns), the memory in the COMAL
cartridge (the next 4 columns), and finally the user­
programmable EPROM expansion (the last 2 columns). The
expansion option consists of an empty EPROM socket in the
COMAL cartridge. This cartridge can hold an BKB-, 16KB-, or
32KB-EPROM.

Chapter 8 -

641(

561(

C64
RAM

GRAPH-
ICS

C64 C64
Ports ROM

KERNEL

-259- MACHINE LANGUAGE

Cartr. Cartr. Cartr. Cartr. Cartr. Cartr.
ROM ROM ROM ROM EPROM EPROM

COMAL 1/0 CHAR
521<

COMAL
481(

Free BASIC'
for usr

Expan- Expan­
COMAL COMAL COMAL COMAL sion sion
~pagel page2 page3 page4 page5 page6 401(pack-

ages
321(

Working
memory

01(

RAM is partitioned a. follows.

0- 1KB

1- 2KB
2-32KB

32-48KB

48-52KB

52-56KB

56-64K8

System variables for KERNEL, COMAL, processor
stack.
Screen memory.
Storage for COMAL program, name table and stack.
Here is also room for packages, which take up user
memory. The character set, if used, is at 27-
32KB.
Is unused. Packages can be placed here without
reducing available program working memory.
COMAL system variables, variables for standard
packages.
Variables for function keys, moving sprites,
sprite drawings and color information for
graphics.
Graphics bit map.

The 1/0 area contains the input/output ports. All
communication with the surrounding world is carried out via
these ports. The color memory for the text screen is also
located here. This color memory is (unfortunately) shared
with multi-color graphics.

The following ROM areas are located in the C-64.

40-48KB
S2-S6K8
56-64KB

BASIC interpreter
Standard double character set (font)
KERNEL. This is the Commodore 64's operating
system. It contains among other things routines
for communication with the screen, cassette tape,
disk drives and the R5232 interface.

The CONAL cartrid;e is partitioned into four pages, each
containing 16KB. They are all located in the address range
32-48KB. In this way the 64KB COMAL interpreter only takes

Chapter B - -260- MACHINE LANGUAGE

up 16KB in your Commodore 64.

The contents of the cartridge ROM's are as follows:

Page 1

Page 2

Page 3
Page 4

CONAL starts here when the machine is turned on.
It contains the math,routines, commands and the
packages ENGLISH, DANSK and SYSTEM.
The COMAL editor, syntax analysis and code
generation, prepass (SCAN), recreator (LIST)
commands.
Runtime-module.
The packages GRAPHICS, TURTLE, SPRITES, FONT,
SOUND, JOYSTICKS, PADDLES and LIGHTPEN are located
here.

EPROM expansion in the cartridge is interpreted as follows,
depending on EPROM type.

BKB Page 5, address area $BOOO-$9fff.

161<8

32KB

Page 5. address area $BOOO-$bfff.

Page 5, address area $8000-$bfff,
Page 6. address area $8000-$bfff.

Upon start-up COMAL examines every 4 KB in pages 5 and 6 to
find certain bytes which determine if package modules are
present. Next, signals are sent to the modules, indicating
that the machine has been turned on.

MEMORY MANAGEMENT

The 6510/6502-microprocessor which is used by the Commodore
64 is not designed to address more than 64 KB. When the
COMAL cartridge is active, the. processor can address up to
152 KB' A spec'ial trick has to be used to achieve this.
The trick is to determine just what the 6510 should be able
to "see" in its address space. Memory is partitioned into
banks (also called pages or overlays). The different banks
become active as required. The method is termed "bank­
switching" or "memory management". For example there are
three banks in the address space 52-56KB: RAM, 110 and
character set ROM (see memory manager organization). In the
region 40-48KB there are actually 8 different banks which
can be used!

Banks are selected by writing a bit pattern into certain
control ports. Two such control ports are available:

R6510

OVRLAY

Control s the C-64 memory map. Located in ,the
Commodore, address $0001. Can be written to
or read.

Control of cartridge banks. Located in the
COMAL cartridge at address $deOO in bank 1/0.
I.e. the port must be accessible when it is
to be changed. It can only be written to.

COMAL has system routines, which manipulate these ports. By
using these routines, one can specify the memory map by

-261- MACHINE LANGUAGE

simply altering a single byte. The following figure
specifies several interesting memory maps (i=1,2, •• ,6);

RAM RAMCHR RAMIO DEFPAG CBASIC CART i
641<

RAM RAM RAM KERNEL KERNEL KERNEL

56K
RAM CHAR 110 110 110 110

52K
RAM RAM RAM RAM RAM RAM

48K
BASIC

RAM RAM RAM RAM COMAL
40K pagei

RAM
321'

RAM RAM RAM RAM RAM RAM

OK -

CREATING MODULES

In order for LINK. USE and DISCARD to work, the placement of
code and the format for packaoe names. procedures and
procedure headers must be specified.

If a module is to be placed in RAM. then it must have the
following format:

.lib c64symb
*-<.tart addrass>
.byta <map>
.word and
."ord <.ililnal>
<packalila tabla>
<machina coda>

and .and

If the module is to be placed in EPROM, then lt must be
formatted as follows:

.lib c64aymb
*-<.tart addra •• >
• "ord' cold
.MOrd "arm
.byta 'CBMBOcomal'
.byta >*
.byta <map>+rommad
."ord and
.MOrd <aililnal>
<packaga tabla>
<machina coda>

and • and

Chapt.,.. e - -262- MACHINE LANGUAGE

.lib c64.ymb makes all KERNEL- and COMAL variables known
to the module.

<.ta,..t add,.. ••• > is the starting address for the module in

<map>
memory.
indicates into which memory map the module
is to be placed by LINK. T~is memory map is
automatically activated by calling a
procedure, function or signal handler in the
module.

romm.d indicates that the module cannot be
DISCARD'ed.

.nd is the end address of the module + 1.
<.19nal> is the signal handler for the module,

located in <machine code>.
<packag. tabl.> is a list of package names.
<machin. cad.> is all other code in the module.

A <packag. tabl.> has the following format:

11

.byt. ll,'packag.l'

.word proctl,initl

.byt.12,'packag.2·

.word proct2,init2

.byt. 0 ;End of the table

is the number of characters in the i'th
package name.
is the name of the i "th package (in
quotation marks).

procti is the address of the i'th table of
procedure names.

initi is the address of the initialization
routine for the i'th package.

A tabla of procedure nam •• must have the fullowing
format:

p,..octi .byte ll,'procl'
.word proehl
.byt. 12, 'proc2'
.word proch2

.byt. 0 ;End of the tabl~

practi
IJ
'praeJ'
prachJ

-263- MACHINE LANGUAGE

is the address of the i'th table of procedure names.
is the number of characters in the j'th procedure name.
is the name of the j'th procedure (in quotation marks).
is the address of the j'th procedure header.

prachJ .byte proc,(cadeh,>cadeh,n
• byte (parameter 1 >
.byte (parameter2>

.byte (parametern>

.byte endprc

A function header has this format:

type
cod.h

funchJ .byte func+type,(codeh,>codeh,n
.byte (parameter 1 >
• byte (parameter2>

.byte (parametern>

.byte endfnc

is the function type (real, int or str).

n
(paramRterk>

is the address of the assembler code routine.
is the number of formal parameters.
is the spec1fication of the k'th parameter.

A parameter specification is one of the following:

type
dim

real
int
str

.byte

.byte

.byte

.byte

value+type
value+array+type,dim
ref+type
ref+array+type,dim

;S1mple value parameter
:Array value parameter
,Simple reference parameter
IArray reference parameter

1S the parameter type (real, Int or str).
1S the dimenSIon of an array parameter.

means the type IS REAL.
means integer type (INTeger).
means the str1ng type (STRing).

An example of how a procedure header IS coded:

FUNC pip(x,yl,REF z$(,)) can be coded "as

.byte

.byte

.byte

.byte

.byte

func+real,(pip,>pip,3
value+real
value+int
ref+array+str,2

endfnc

Real func. with 3 paramo
x
y*
REF z$ (,)
No more parameters

ChApt.r a - -264- MACHINE LANGUAGE

PARAMETER PASSING

When the COMAL interpreter passes control to an assembler
coded routine, all actual parameters (if any) are computed.
At the same time parameter types are checked for agreement
Nith the procedure header specification. The number of
parameters in the procedure call must also be correct.

It is not possible to know in advance where the parameter
value or the variable (when using REF) are located in
storage. Therefore it is necessary to call a system routine
FNDPAR (FiND PARameter) to obtain information about the
storage address of a parameter. Then the parameter can be
handled.

FNDPAR: When called: .A is the number of the parameter. ~
On return: COPY1 contains parameter address.

All registers are changed.

NB: In the CO MAL system the following conventions apply:
integers and real numbers are stored in high/low format,
while addresses are saved in low/high format. This is true
of actual parameters, also for parameters of system
routines.

In the following the format for each parameter type is
described:

VALUE+REAL And REF+REAL

(COPY1) +0:
+1 :
+2:
+3:
+4:

VALUE+INT And REF+INT

(COpy 1) +0:
+1 :

VALUE+STR And REF+STR

5 bytes
floating
point

2 bytes
integer

Exponent+128
Mantissa(1)
Mantissa(2)
Mantissa(3)
Mantissa(4)

High byte
Low byte

m: Maximum string length (dimensioned length).
n: Actual length (If VALUE+STR, then m=n.)

e

Chapt.,.. B - -265- I'tACHINE LANGUAGE

(COPY1) +0: m High byte
Low byte

+2: n High byte
Low byte

+4: s$ (1: 1)
s$(2:2)

m s$(3:3)
bytes s$(4:4)

+4+n-l: s$(n:n) <last

+4+m-l: s$(m:m)

VALUE+ARRAY+REAL,VALUE+ARRAY+INT, VALUE+ARRAY+STR,
REF+ARRAY+REAL, REF+ARRAY+INT, REF+ARRAY+STR

Every array has an information block:

n Number of indices.
addr: Address of first element in the table.

(COPY1) +0: addr Low byte
High byte

char.)

+2: n Number of indices

+3:

+5:

+7:

+9:

+3+(n-l)*4+2:

Lower 1 imi t
for 1. index

Upper 1 imi t
for 1. index

Lower limit
for 2. index

Upper limit
for n'te indo

High byte
Low byte

High byte
Low byte

High byte
Low byte

High byte
Low byte

Chapt.,. 8 - -266- MACHINE LANGUAGE

If an array A is declared as:

DIM a(1I3,618)

it is placed in memory as follows:

addr+O : a<1,6)
+1 a (1,7)
+2*1: aU,8)
+3*1: a(2,6)
+4*1: a(2,7)
+5*1: a(2,8)
+6*1: a(3,6)
+7*1: a(3,7)
+8*1: a(3,8)

where 1 is the size (in bytes) of each array element.

Each element is organized just as a simple parameter.

WHERE CAN MODULES BE PLACED?

Modules can be placed in RAM from $0900-$7fff and from
$8009-$bff f •

In addition packages can be placed in an EPROM in the
cartridge from S8000-Sbfff, however the start address must
be a multiple of $1000.

WHERE CAN THE MODULE VARIABLES BE PLACED?

Variables which much survive from call to call must be
placed in the module itself (for RAM-modules).

EPROM-module variables can be stored from Sc855-$c87a.

Should more storage be required, and if the RS232 will not
be used, then the RS232 buffer RSOBUF (256 bytes) can be
used. If cassette tape will not be used, then the tape
buffer TBUFFR (192 bytes) can be used. In addition zero­
page locations $4c, $56 and $fb-$ff can be used freely.

Routines which use variables local to the individual call
can use these local variables:

Nam.

INFl
INF2
INF3
Q1
Q2
Q3
Q4
Q5
COPYl
COPY2

Add,. •••

S0038
$0039
S003a
$003b-$003c
$003d-S003e
$003f-$0040
$0041-S0042
$0043-$0044
$0045-$0046
$0047-$0048

Also used by FNDPAR

COPY3
ACt
AC2
MOVEAD
TXTLO
TXTHI
RANGES
TXT

$0049-$0050
$0061-$0066
$0069-$006f
$007a-$007b
$007c
$007d
S02eO-$02ff
Sc760-$c7af

-267- MACHINE LANGUAGE

Also used by FP-routines
Also used by FP-routines

SIGNAL ROUTINES

A signal routine is a subroutine which is terminated by an
RTS instruction. It is permissible for a signal routine to
do anything which a procedure or a function may do. If a
signal routine is not required, then a system routine named
DUMMY can be used. This routine consists of only an RTS
instruction and does nothing.

A USE-si;nal-routine has no parameters. Each time a USE
<packa;_> statement is encountered 1n a CONAL program, this
routine is called. If it is not desired that the package be
initialized every time, then a variable should be used to
indicate that a package has previously been activated by
means of USE.

A module-si;nal-routine has one parameter. ~or the .y­
register will contain a value when the call 1S e>:ecuted,
indicating which type signal is to be transm1tted. The
parameter can be one of the follow1ng:

POWERl

POWER2

LINK

DSCRD

NEW

CLRTAB

Is issued at start-up to all ROM'ed modules.
The signal must be used to initialize the
module.

Is issued at start-up after POWER1 has been
issued. Ordinarily this signal is ignored.
but it can be used to allow a module to take
complete control before COMAL starts.

Is issued to a just LINK'ed package or to
those packages which are read 1n with LOAD,
RUN <filename>, or CHAIN. With this signal
the module can change vectors in COMAL and
the operating system.

Is issued to all modules before DISCARD or
the NEW command. On this signal the module
can change vectors back to what they were
before LINK.

Is issued with a NEW command.

Is issued when all names in a program are
undeclared. This signal is given with the
RUN and CHAIN commands and in certain other
cases. When the names are undeclared, then
it is not possible to call any procedure or
function in any package.

RUN

WARNl

CON

ERROR

STOP!

BASIC

-268- MACHINE LANGUAGE

Is issued with the RUN or CHAIN command.

Is issued during "warm start", i.e. when the
(STOP-RESTORE> combination is activated from
the keyboard.

Is issue~ with the CON command.

Is issued after the program has stopped with
an error message.

Is issued after a program has stopped due to
a STOP or END.

Is issued before CONAL is exited.

In general a module-signal-routine follows this outline:

signal cpy tHink ,LINK-command?
beq slink ,Jump if so
cpy 4tdscrd ,DISCARD?
beq sdscrd ,Jump if so
rt. ;Ionore all other .ion&ls.;

slink ,LINK-handler
rts ,Back to COMAL

adscrd ,DISCARD-handler
rt.a ;Back to COMAL

ERROR REPORTING

It is good programming practice to check whether parameters
to a procedure or function are legal. It they are not, then
an error message should be issued. If it is desired that
COMAL's own error messages be used, this can be done as
follows:

ldx *:5 ,Give error number 5
jmp runerr ,i .e. "value out of ranoe"

With this method one can give standard error messages
numbered 0 to 255. See Appendix F for these error messages.
RUNERR corresponds closely to the COMAL statement REPORT
<error> and can be captured in a TRAP structure, if this is
desirable.

A more general error reporting method is available. If
one wants to give the following values to the system or to
an error handler,

ERR
ERRFILE
ERRTEXT$

300
o

"illegal parameter value"

it can be done with the following routine:

•

Ch.pt.,- a - -269- MACHINE LANGUAGE

t.Kt
t.Ktl

.byte 'illeg.l p.r.m.t.r v.lu.'
-*-t.Kt

I
err300

• rrorp

ldx
.tK
ld •
.t.
d.K
bne

ld.
.t.
ld •
st.
ld •
st.

ldv
IdK
ld.

.t.Ktl
ertl.n
teKt-l,K
ert.Kt-l,K

.rrorp

.$oe:
ql+O
• <tr.pve:
ql+l
• >tr.pve:
ql+2

10
1<300
1)300

,Length of t.Kt
,Length of .,-ror m •••• g.
,Mov. the t.Kt to ERTEXT

,Copy jmp (tr.pve:) to Ql

IERRFILE - 0
IERR .. 300

j_r goto ,Ex.e:ut. jmp (tr.pve:) in PAGES
.byt. p.geb,<q1,>ql

PACKAGE EXAMPLE

The following example shows how a e:omplete module e:ontaining
one package named TEST e:an be e:reated. The purpose of
this example is to illustrate how one e:reates a proe:edure,
a r •• l fune:tion and a string fune:tion. The package is
plae:ed from address $a009 in RAM in the memory map DEFPAG
(see the table of useful memory maps shown earlier).

The package is available on the demo diskette.

test. lire:
t.st.obj

contains the soure:e code (src=soure:e).
contains the objee:t e:ode (obj=objee:t).

In order to get the module with the pae:kage t •• t Into the
mae:hine, type:

LINK "t •• t.obj"

Next type in:

AUTO
0010 USE t •• t II m.k •• hi, .dd and string known II
0020 hi
0030 PRINT add(23,4~)
0040 PRINT string$("a ",10)
OOSO (Press the <STOP) key.)

RUN whie:h gives this result:

h.llo!
OS

••••••••••
• nd .t 0040

-270- MACHINE LANGUAGE

Switch to your own diskette then type:

SAVE "t •• t" save the COMAL program and the package test.

DISCARD delete the LINK'ed module.

run the program again without the package

The system will respond with an error message:

.t 0010. t.st, unknown p.ck.O.

RUN "t •• t"
t •• t.

fetch and run the program with the package

New printout:

hello!
6S
••••••••••
end .t 0040

Here is the content of the source code of test. arc:

---=== package test===---

make all symbols known:

.lib c64symb
• opt 1 i st

*=$8009

.byte defpag

.word end

.word dummy

package tabl e:

.byte 4, 'test'

.word testp

.word dummy

.byte 0

procedure table:

estp .byte 2,'hi'
.word phi
.byte 3, 'add'
.word padd
.byte 6, 'string'
.word pstrin
.byte 0

proc hi

:list this module

:start address

;52KB RAM memory map
;the module ends with end
:no signal handler

;the package is called test
;procedure table
;no initialization
;no more packages

;the procedure hi
:procedure header for hi
;the function add

;function string

;no more procedures

hi .byte proc,<hi,>hi,O ;no parameters
;begins in hi

.byte endprc

•

•

Chapter B - -271- MACHINE LANGUAGE

func add(a#,b#)
;
padd .byte func+real,(add,>add,2 ;two parameters

;begins in add
.byte value+int ;a# is integer value parameter
.byte value+int ;b# is integer value parameter
.byte endfnc

func string$(character$,number#)

pstrin .byte func+str,(string,>string,2 ;two parameters
;begins in string

.byte value+str ;character$ is string value parameter

.byte value+int ;number# is integer value parameter

.byte endfnc

proc hi
print "hello'"

endproc hi

text .byte 'hello" .13
textl =*-text
;
hi
hilp

ldy
Ida
jsr
iny
cpy
bne
rts

4.0
text,y
cwrt

#textl
hilp

func add(a#.b#)
return a#+b#

endfunc add

add Ida #1
jsr fndpar
ldx copy1
Ida copyl+1
stx copy2
sta copy2+1

Ida #2
jsr fndpar

;text to be printed
; length of text

;begin with 1. character
;fetch character
:print character on screen
; next character
;finished?
;jump if not finished
;return to COMAL

;get address of 1. oarameter
;copyl = address
;move address to copy2

;get address of 2. parameter

copyl points now to b# and copy2 points now to a#

ldy #1 ;NB: integers are in high/low format
clc ;no carry
Ida (copy2) ,y ; low byte of a#
adc (copyl) ,y ;plus low byte of b#
tax ;.a is moved over to .X

dey ; • yz =0
Ida (copy2) IY ;high byte of _#
adc (copy1) ,y ;pIus high byte of b# plus carry
bvs ovrflw ; jump if arithmetic overflow

.X = low byte of a#+b#

Chapt.,. B - -272- MACHINE LANGUAGE

.a = high byte of a#+b#

convert from integer to real number;
then put result on COMAL's stack.

jsr pshint ; convert and push.
rts ; return to COMAL with

ovrflw ldx #2 ; "overflow"
jmp runerr ; report 2

func string$(character$,length#) closed

the result

if length#(O then report 1 II argument error II
if len(character$)<>l then report 1 II argument error II •
dim r$ of length# II room for result II

;

for i#=l to length# do II generate result II
r$:+character$

endfor i#
return r$ II return result II

endfunc string

num =copy2 ;use copy2 as num

string Ida
jsr
ldy
lda
bmi
sta
lny
lda
sta

#2
fndpar
#0
(copyl> ,v
argerr
num+l

(copyll ,y
nurn

;get address of 2. parameter

:test sign

; jump, if <0
:high byte of num
:.y:=l

; low byte of num

generate the result directly on COMAL's evaluation stack.

stos points to the next free byte on the stack
the stack is llmited upwards by sfree
test if there is room for the result

clc
adc stos
tax
Ida num+l
adc stos+l
bcs sterr

tay
txa
adc #<2
tax
tya
adc #>2
bcs sterr

cpx sfree
sbc sfree+l
bcs sterr

check character$.

;clear the carry
:num+stos
;.x:=low byte of num+stos

;.a:=high byte of num+stos
;jump, if overflow

;num+stos+2
;the carry is known to be 0

;jump, if overflow

if num+stos+2>=sfree,
then stack-overflow
jump, if stack-overflow

•

Ida ~t1

jsr fndpar
Idy *2
Ida (c:opyU,y
bne argerr
iny
Ida (c:opy 1) ,y
cmp *1
bne argerr

fetch character$(l:l)

iny
Ida (c:opyl> ,y

write c:haracterS(l:l)

ldy *0
sty ql
sty ql+l

strIp ldx num+l
cpx ql+1
bne strl
ldx num
c:px ql
beq strok

strl sta (stos),y

inc stos
bne str2
1 nc: stos+l

str2 lnc: ql
bne strlp
1 nc: ql+l
jmp strIp

set the length of the

• strok Ida num+l
sta (stos) ,y
iny
Ida num
sta (stes) .y

clc:
lda stos
adc *<2
sta stes
Ida stos+l
adc 4t>2
sta stos+l
rts

;
argerr ldx *1

jmp run err

sterr ldx *50
jmp run err

-273- MACHINE LANGUAGE

;get the address of c:harac:ter$

;c:urrent length must = 1
;high byte must = 0

; • y: =3
;low byte must

; • y: =4
;.a:=c:harac:ter$(l:l)

num times on the stac:k.

;ql:=O // loop varlable

; whi Ie q 1< >num do

r$(ql:ql):=c:harac:ter$(l:l)

tos:+l

ql:+l

;endwhlle

string to num .

; save hlgh byte of the length

; • y: =1
: save low byte of the length

;stos:+2 /1 room for the length

; return to COI1AL with the result

;"argutnent error II

; "out of memory"

/1

-274- MACHINE LANGUABE

end .end ;end of sou~ce text

•

-275-

App_ndiM A

COMMODORE 64- Ch c:t_..- C~d __

ASCII CHARACTERS SCREEN CHARACTERS
mod. mod.

CODE t.Kt grAphics t.lCt grAphics

0 e e
I a A
e b B
3 <STOP) c C
4 d 0
:5 whi1:. e E
6 f F
7 9 G

8 (SHIFT - c=) disable h H

9 <SHIFT - c=) enable
10 j J

II cl.ar to end of line II. "-
12 form feed (pr ir,ter) L
13 (RETURN) IT, M

14 swi1:ch 1:0 lower ca.se r. N

1:5 " Q

16 p P
17 cursor down ~ Q

18 reverse "n R

19 cursor horne S
20 (DEL) t T
21 u U
22 v V

23 w W
24 .< X

2:5 y Y
26 z Z
27 a f!:
28 red .. €I

29 cur~or rillht a A

30 green f

31 blue
32 space
33
34
3:5 • '* '* ..
36 • • • $

37 Yo X X X
38 & 6. 6. &

39
40 (

41)

42 • " • ,
43 + + + +
44
415
46
47 / / / /

-276-
App.ndilc A - CHARACTER CODES

ASCII CHARACTERS SCREEN CHARACTERS
mod. mod.

CODE t.lCt graphics t.lCt graphics

48 0 0 0 0

49 1
~o 2 2 2 2

~l 3 3 3 3

~2 4 4 4 4

:53 ~ :5 ~
~
w

54 6 6 6 E;

55 7 7 7 7

56 8 8 8 Z e ~7 9 9 9 9
58
59
60
61
62
63 ?

., ., ?

64 III II!

6~ .. f! A •
66 b B B I

67 c C C

68 d 0 0
69 e E E

70 f F F
71 51 G G I
72 h H H I
73 i I I "'
74 j J J

,
7:5 k K K

.J

76 I L L L
77 m M N "-
78 n N N /

79 0 0 0 r
80 p P P

.,
81 q Q Q •
82 r R R

83 ~ S S •
84 't T T
8~ u U U
86 v V V X

87 w W W 0

88 lC X X +
89 Y Y Y I
90 z Z Z •
91 • Ii 1£ +
92 .. ID '" 93 j. A A
94 t t ~ *
95 ~ ...
96
97 A • I I

98 B I - -
99 C

100 D

-277-

ASCII CHARACTERS
lIact.

graphic.

101 E
102 F
103 G
104 H
10~ 1
106 J
107 K
108 L
109 M
110 N
111 0
112 P
113 Q

114 R
11~ S
116 T
117 U
118 V
119 W
120 X
121 Y
122 Z
123 j(

124 III
12~ A
126 •
127 Sf
128
129 orange
130
131 <RUN>
132
133 f 1
134 f3
13~ f~

136 f7
137 f2
138 f4
139 f6
140 f8
141 (SHIFT-RETURN)

I
I

J

L

"­
/
r .,
•
•
I

x
o

•
I

• + • I

"

142 switch to upper C.HL

143
144 black
14S cursor up
146 reverse off
147 as <CLR> (cle.r screen)
148 as·(JNST) (insert>
148 brown
ISO lillht red
lSI dark lire,.
IS2 lire,.
IS3 lillht IIreen

CHARACTER CODES

SCREEN 04ARACTERS
1Iad.

I

• I ..

•
L

,

r ...
~

I
I
I

• •
.J

• ..

graphic.

I

• I
,..
I
~

•
L

,

r ...
'T

~

I
I
I

...J

•
.J

• ...
Codes 128-2~~ are
reversed images oi
codes 0-127

AppendiK A - -278- CHARACTER CODES

ASCII CHARACTERS ASCII CHARACTERS
mode mode

CODE teKt graphics CODE teKt graphic.

154 light blue 206 N /
155 light grey 207 0 r
156 purple 208 P -,
157 curs.or I~ft 209 0 •
158 yellow 210 R

159 cyan 211 S •
160 space 212 T I
161 213 U

162 - - 214 'J X
163 215 ~J 0

164 216 X ..
165 I I 217 Y I
166 • 1'1 213 Z •
167 I 219 Ii +
168 - 220 01' I
169 ~ ~ 221 A I
170 I I 222 ~ 4

171 ~ 223 ~ ...
172 224
173 225 I
174 226
175 227
176 228
177 .J. .J. 229 I
178 230 II • 179 -I -I 231 I I
180 I I 232
181 I I 233 ~ ,.
182 I I 234 I I
183 235
184 236
185 237
186 y .' 238 ,
187 • 239
188 240
189 .J .J 241 .J. .J.

190 • 242
191 243 -I -I
192 244 I I
193 A • 245 I I
194 B I 246 I I
195 C 247
196 0 248
197 E 249
198 F 250 y .J
199 G I 25. •
200 H I 252 •
201 I ... 253 .J .J

202 J , 254
203 K .I 255 ~ " 204 L. L
205 M "

-279-

App_ndi.K B

COLOR CODES

Color Color Gr.y ASCII Keyboard
cod. • c.l. v.lu •

0 black 4/4 144 (CTRL-1)
1 white 0/4 5 (CTRL-2>
2 red 3/4 28 (CTRL-3>
3 cyan 114 159 <CTRL-4>
4 purple 2/4 156 (CTRL-5>
5 green 2/4 30 <CTRL-6)
6 blue 3/4 31 (CTRL-7)
7 yellow 1/4 158 <CTRL-8>
8 orange 2/4 129 (C= 1
9 brown 3/4 149 (C= 2

10 pink 2/4 150 <C= ~

'" 11 dark grey 3/4 151 <C= 4
12 grey 2/4 152 (c= 5
13 light green 1/4 153 (c= 6
14 light blue 2/4 154 (c= 7
15 light grey 114 155 <c= 8

COLOR COMBINATIONS ON THE TV/MONITOR,

(from the Commodor. 64-Progr.mm.r·. R.f.r.nc. Guid.)

How do the colors go together?

+ very well
o = well

poorly

.cr •• n
color
cod. 0

0
1 +
2
3 +
4 +
5 +
6 0
7 +
B 0

9
10 0

11 +
12 +
13 +
14 +
15 +

1

+

+

0

0

+

+
+
0

+
+

+
+

2 3 4 :5 6

+ + 0

+ + + +
0

0 +

0

+
+ 0

+

+
0

0 0

+ 0

+ +
+ 0 0 +

t.xt color cod.

7 8 9 10 11 12 13 14 15

+ + + + + + + +
0 + 0 + + + +

+ + + 0

0 0

0

0 + 0

0 + +
0 + 0 + +

+ + 0

+ + + +
0 + 0

+ + + 0 +
0 + +

+
0 0

0 0 + + 0

-280-

•

-281-

CALCULATIONS WITH COMAL

The COMAL operating system can handle 4 types of numerical
constants and variables:

E.g. 3.232 , 4.6e-12 , PI, a , sum
71 , -3067, nr# , item#

real numbers
integers
hexadecimal numbers
binary numbers

$1a , $d7 , $acOO , no , position
X1011 , Xl0011010 , byte, id

NUMBER RANGES.

2. 93873588e-39 <= real number <= 1.70141183e+38
-32768 <= integer <= 32767
0 $00 <= hexadecimal <= $ffff = 65535
0 = %0 (= binary number <= Xl111111111111111 65535

CALCULATIONS ARE CARRIED OUT ACCORDING TO THE FOLLOWING RULES.

An expression to be evaluated may contain a miX of all
number types and number variables. It may contain a mix of
arithmetic operators, relational operators and boolean
operators. Standard CO MAL functions and user defined
functions can also be included:

* an expreSSion is evaluated from left to right,

* however, various operators have different priority.
The calculations are carried out according to the
following priority, highest priority first:

PRIORITYI
(in order of highest priority)

1. () parenteses

2. exponentiation 2~'3 equals 8
3. * multiplication 2*3 equals 6
3. 1 division 7/2 equals 3.5
~ DIV integer division -'. 54 DIV 8 equals
3. MOD remainder after division .23 MOD 7 equals
4. + addition 2+3 equals 5
4. subtraction 4-3 equals 1
4. monadic subtraction -5+2 equals -3

Logical op.rators for bitwi •• comparisons.

6
2

(See further explanations in the reference section,
Chapter 4.):

5. BITAND
5. BITOR
5. BITXOR

bitwise logical 'and'
bitwise logical 'Dr'
bitwise logical 'exclusive Dr

ApPENDIX C - -282- CALCULAT I ONS

R.lational op.rators.
(Comparisons occur in logical expressions, which can be
TRUE (~1), if the comparison is true. Otherwise the
logical expression has the value FALSE (~O».

6. < less than 3*2<9 equals TRUE
6. <~ less than or equal to 4*3<=10 equals FALSE
6. equal to 1=2 equals FALSE
6.)= greater than or equal to 17)3 equals TRUE
6. > greater than 7>7 equals FALSE
6. <> not equal to 3*2<>6.01 equals

Bool.an (logical) op.rators.
(See further explanation of the individual words in
Chapter 4.):

7. NOT logical negation
8. AND logical "and"
8. AND THEN as AND
9. OR logical 'or'
9. OR ELSE as OR

STANDARD FUNCTIONS.

INT(3.2) equals 3 INT(x)
ABS(x)
SGN(x)
SIN(x)
COS (x)
TAN (x)
ATN(x)
LOG (x)
EXP(x)
SQR(x)

Integer part of x
Numerical value of
Sign of x
Sine of x
Cosine of x
Tangent of x

x ABS(-2.5) equals 2.5
SGN(-3) equals -1
SIN(PI/6) equals 0.5
COS (PI) equals -1

Inverse tangent of x
Natural logarithm
Exponential function
Square root of x

TAN(PI/4) equals 1
ATN(I) equals Pl/4
LOG(lO) equals 2.3026
EXP(2) equals 7.389
SQR(9) equals 3

EXAMPLES OF USER DEFINED FUNCTIONS:

FUNC asin(x)
IF ABS(X)=l THEN

RETURN X*PI/2
ELSE

RETURN ATNex/SQR(l-x*x»
ENDIF

ENDFUNC asin

FUNC 10glO(x)
RETURN LOGex)/LOG(10)

ENDFUNC 10g10

TRUE

•

-283-

KEVBOARD AND SCREEN EDITOR

THE ACTION OF SPECIAL KEYS IN COMALI

<->
Underlining

<CTRL>
has special meaning when used wIth other keys. See the
following.

<RUN/STOP>
interrupts program execution.
Action is affected by the COMAL statement ESC. See Chapter 4.

<SHIFT/LOCK>
locks <SHIFT) in upper case mode.
Release by preSSIng the key again.

<SHIFT)
As on a typewriter. If this key is held down while another
key is pressed, an upper case character is produced. Letters
appear as upper case. In the semigraphics mode the symbols
on the right front side of the keys are produced. <SHIFT)
pressed together with other special keys has other functions
as described with these keys.

<C-> THE COMMODORE KEYI

<c- SHIFT>
Each activation toggles the screen display between lower and
upper case.

<C- numb.r>
Pressing the C= key with a number 1-8 switches to colors
with color codes 8-15 •

<C- Qraphics symbol>
Pressing a key with graphics symbols equals the symbol shown
on the front left of the key.

<CLR/HOME>
moves the cursor to the upper left corner of the screen.

<SHIFT-CLR/HOME>
clears the screen.

<INST/DEL>
is the delete key. It deletes the character immediately to
the left of the cursor, and the remainder of the line moves
one space to fill in the gap.

<SHIFT-INST/DEL>
is the insert key. It pushes the character under the cursor
and the rest of the line one space to the right.

ApPENDIX D - -284- KEYBOARD AND SCREEN

(STOP-RESTORE)
If the (STOP> and <RESTORE) keys are pressed at the same
time, the computer is 'reset'. The program in working
memory is not lost.

(RETURN)
Indicates that all information on the current line should be
interpreted and processed.

(CRSR)
There are two keys which are used to move the cursor around
the screen. The arrows indicate directions. Each key has
two functions. The function changes when the <SHIFT> key is
depressed.

THE FUNCTION KEYS «f1) - (f8»

The function keys can be programmed by the user to perform
various functions. (See further details in Chapter 5 ln the
section dealing with the procedure defkey in the COMAL
package 5Y5tem.)

When COMAL is started up, these keys have the following
functions:

(f 1>
<f2)
<f3)
<f4)
(f5)
(f6)

(f7)

RENUM + <RETURN>
MOUNT + <RETURN>
USE turtle + <RETURN>
AUTO
EDIT
LIST
RUN + <RETURN> + CHRS(II) + <RETURN>

Note on (f7)1 In addition to ordinary running of
a program, this key can be used to start a program
directly from the disk catalogue. RUN, RETURN
would have the effect of running the program with
the name which follows on the same line. However
the text prg also appears after the program name
when the catalogue is displayed, so the system
reacts with an error message, placing the cursor
just ahead of the 'error' prg. Then ASCII-code
11 deletes the rest of the line. Now the line is
correct, and the program can be run when the last
RETURN is act,vated.

<f8) SCAN + <RETURN)

During program execution the function keys have other
values: ASCII values 133 - 140.

After execution of one of the orders USE graphics or USE
turtle the function keys (f1), (f3) and (f~) have the
following meaning:

(f1>
(f3)
(f:5)

text.cr •• n (show the text screen)
split.cr •• n (show graphics screen with 4 lines of text)
graphic.cr •• n (show the graphics screen)

•

•

ApPENDrx D - -285- KEYBOARD AND SCREEN

THE CONTROL KEY <CTRL>.

<CTRL-numb.r)
(CTRL) together with a number 1 - 8 causes subsequent text
to be written with the color indicated on the front of the
number key. <CTRL) together with 9 or 0 toggles inverse
text.

See also Appendix B on colors and Chapter 5 on the procedure
quote'mod. in the COMAL package syst.m.

DURING EDITING OF COMAL PROGRAMS THE FOLLOWING CTRL­
FUNCTIONS ARE USEFUL.

<CTRL> + <letter>

<CTRL-A>. Is used during the correction of a program line
which extends over more than one lIne on the
screen. If the first 1 to 4 characters in the
linie in which the cursor IS located is a l,ne
number, then the line number will be rewritten
with no gaps. <CTRL-A) can also be used as an
OOPS'-key: If a correction has been made, and
<RETURN) has not yet been pressed, then pressing
(CTRL-A) will cause the line to be printed again
in its original form.

<CTRL-B): moves the cursor back one word.

<CTRL-C): corresponds to (STOP).

<CTRL-D)I dumps the graphics page to the prInter. The
printout begins 13 characters from the edge of the
paper. This order can only be used wIth Commodore
MPS801 compatible matrix prInters.

<CTRL-E>I changes the cursor color to white.

<CTRL-F>. moves the cursor forward one word •

<CTRL-K>c deletes all characters from the cursor positlon
to the end of the lIne.

<CTRL-L). moves the cursor to just after the last non­
blank character on the line.

<CTRL-M)I corresponds to (RETURN).

<CTRL-P>. Executes a hardc:opyC"lp."). I.e. prints out
the text screen to the printer. The printout
begins with a carriage return.

<CTRL-S). corresponds to (CLR/HOME).

<CTRL-U>. removes the graphics mode ~unctions for <f1>,
(f3> og (f5). See also the description of the
function keys.

<CTRL-V)I sets up the color choice t.xtc:olors(6,6,1).

ApPENDIX D - -286- KEYBOARD AND SCREEN

This corresponds to a blue edge, blue background
and subsequent white text. This is a good choice
for a color display. Note that ttle current text
screen is cleared by this order.

(CTRL-W). sets up the color choice as
t.xtcolor.(ll,l~,O). This corresponds to a dark
grey border, 1 ight grey bac'kground and subsequent
black text. This order clears the text screen.
It is a good choice when using a black/white
display.

(CTRL-X). changes the border color ••. It is followed by a
color choice: <CTRL number> or <C= number>.

(CTRL-Y)I changes the background color •.• It is followed
by a color choice: <CTRL number> or <C= number>.

(CTRL-Z)I The selected combination of border, screen and
text colors are stored and will be reset when
<STOP-RESTORE> is executed.

•

-287-

HANDLXN9 TEXT WXTH COMAL

Text va~iables (also called 'st~ings' o~ 'st~ing

va~iables') a~e specified in COMAL by means of a sequence of
up to 80 cha~acte~s followed by a $ sign. The fi~st
cha~acte~ must always be a lette~, and ce~tain special
cha~acte~s may not be included in the name.

Examples: name$, text$, f~om$, long'name$.

Befo~e a text va~iable can be used, it must be decla~ed
(dimensioned). The system must be p~ovided with info~mation
on the maximum numbe~ of cha~acte~s the text va~iable will
contain, so that ~oom can be ~ese~ved in memo~y.
done using the DIM statement:

This is

Examples: DIM text$ OF 80
DIM name$ OF 20
DIM answe~$ OF 1

A text va~iable can contain any cha~acte~ sequence up to the
dimensioned length. (Exception: the cha~acte~ " may not be
used alone. If this cha~acte~ is to be included, you must
use "" to indicate it. If a numbe~ is enclosed within the
"", then the co~~esponding ASCII code will be pa~t of the
text va~iable assignment.)

If a text variable is not dimensioned, then the first
assignment instruction will automatically execute: DIM
nam.$ OF 40. If a variable name is not dimensioned, and
the name is used befo~e an assignment has been made, then an
erro~ message will be gene~ated.

EXAMPLES OF TEXT VARIABLE USAGEs

Make the assignments: slogan$s-"comal is ok"
t.xt$s-"a flow.r is b.autiful" .

The text can be analyzed with the aid of standard functions
and ope~ators.

l.ngths-LEN(slogan$) l.ngth is assigned the value
11, fo~ slogan$ consists of 11
characte~s. See a detailed
description of the function LEN in
Chapter 4.

positions-"mal" IN slogan$ position is assigned the
value 3, since the text
"mal" is contained in
slogan., and the first
cha~acter in "mal" is the 3.
cha~acter in slogan •. See
the mo~e detailed description
of the ope~ato~ IN in Chapter
4.

APPENDIX E - -288- HANDlI NG TEXT

a.cii is assigned the Commodore
ASCII value for the letter a (= 65).
See the ASCII values for all characters
in Appendix A.

the logical expression will be true
(TRUE = 1), because a precedes c in
the alphabet.

SELECTION OF STRING SEGMENTS I

l.tt.r$l-t.Mt$(8)
or
l.tt.r$l-t.Mt$(818)

last$l-t.Mt$(131)

l.tt.r$ is assigned the string "r",
which is the 8. character in t.xt$

fir.t$ is assigned the string
"comal", i.e. the 5 first characters in
.logan$.

or
la.t$l-t.xt$(LEN(t.Mt$)-81)

la.t$ is assigned the text
"b.autiful", i.e. the last
nine characters in t.xt$.

t$l-slogan$(318)

t$I-"program."(~17)

t$I-STR$ (1789) (213)

t$ is assigned the string
"mal is".

is assigned the string ram.

t$ is assigned the string "78".

t$ is assigned the string
"ow.", which is part of
a part of a string.

t.Mt$ will equal
a b.. i. b.autiful after
this instruction has been
executed.

SELECTION OF TEXT SEGMENTS FROM INDEXED STRING VARIABLESI

DIM name$(3) OF 20
name$(l):="Adam Smith"
name$(2):="Eva Smith"
name$(3):="Krystle Smith"

DIM item$(3,2) OF 10
item$(l,l):="book"

t$ is assigned the string "Eva S".

i tem$ (1,2) : ="magaz ine"
item$(2,1):=" car 'f

item$(2,2):="train"
item$(3,l):="oil"
item$(3,2):="gas"

•• 1.ct$l-it.m$(2,1) (213) •• l.ct$ is assigned the string bar".

•

•

APPENDIX E - -289- HANDL I NG TEXT

CONCATENATION OF STRINGS.

strings can be linked
together using the
character +.

m •••• Q.$ is assigned the
string "com.l i. ok and ••• y".

h.llo$ is assigned the string "Ev. iii beautiful and ok".

t$.-("w. and "+.loQan$(1.~il) (418) t$ is assigned the
string "and c".

STRING FUNCTIONS.

The user can define string functions at will to produce string
segments:

0010
0020
0030
0040
00:50
0060
0070
0080
0090
0100

FUNC upp.r$(low.r$)
FOR i •• -1 TO LEN(lower$)

a.-ORD(low.r$(i.»
IF .>64 AND a<94 THEN

•• +128
low.r$(i.).-CHR$(.)

ENDIF
ENDFOR i.
RETURN low.r$

ENDFUNC upp.r$

DO

Examples of the use of the function upper$,

PRINT upper$("m.rry chri.tma.") yields the printout:

MERRV CHRISTMAS

PRINT upp.r$("h.adlin •• ") (4.8) gives the prIntout:

DLINE

Using COMAL it is easy to define the Basic-function mid$:

0010 FUNC mid$(.$,.tart,number)
0020 RETURN a$(.tart •• tart+numb.r-1)
0030 ENDFUNC mid$

This function can be used in lieu of mid$, if you wish to use
parts of existing Basic programs.

-290-

•

-291-

COMAL ERROR NUMBERS AND MESSAGES

The standard version of Commodore 64 COMAL contains error
messages in two languages. When the computer is turned on
with the COMAL cartridge in place, English error messages
will be in effect. If desired Danish error messages can be
selected by means of the order:

USE dansk

To get back to English, execute:

After issuing one of these orders, all subsequent error
messages will be printed in the language you have chosen.
However, error messages for the d1Sk operat1ng system will
always be in English.

It is of course possible to 1ncorporate error messages in
other languages 1nto a COMAL cartr1dge. Contact your
Commodore national distribution center for further
informat1on.

The COMAL system can give error messages 1n the following
situations:

* When typing in an instruction Ilne
* When exam1nIng program structure (usIng scan)
* During a run (run-t1me errors)

The remainder of this Appendix 1ncludes a IlSt of all error
messages and their corresponding numerical code. Note that
the list is given both in English and 1n DanIsh for those of
you who may be curious about the strange language which
COMAL can use:

DYNAMIC SYNTAX ERROR MESSAGES.

<language element> ikke forventet
<language element> not expectet

<language element) mangler
<language element> missing

<language element 1> forventet, ikke <language element 2)
<language element I) expected, not <language element 2>

DYNAMIC STRUCTURE ERROR MESSAGES (PREPABSI.

<statement 1> uden <statement 2>
<statement 1> without <statement 2>

<statement> mangler
<statement> miSSIng

ApPENDIX F - -292-

<statement 1> forventet, ikke <statement 2>
<statement 1> expected, not <statement 2)

ERROR flESSAGES

<statement> ikke tilladt i styrestrukturer
<statement> not allowed in control structures

import kun tilladt i lukket proc/func
import allowed in closed proc/func only

forkert slags <statement>
wrong type of <statement>

forkert navn i <statement>
wrong name in <statement)

<name>: navn allerede defineret
<name): name already defined

<name>: ukendt etikette
<name): unknown label

ulovlig goto
ill egal goto

DYNAMIC RUN TIME ERROR MESSAGES.

<name>: ukendt statement eller procedure
<name>: unknown statement Dr procedure

<name): ikke en procedure
<name>: not a procedure

<name>: ukendt variabel
<name>: unknown variable

<name>: forkert type
<name>: wrong type

<name>: forkert funktionstype
<name>: wrong function type

<name): hverken tabel eller funktion
(name>: not an array nor a function

(name): ikke en simpel variabel
<name>: not a simpel variable

<name>: ukendt tabel eller funktion
(name): unknown array Dr function

<name>: forkert tabe\type
<name): wrong array type

<name): import fejl
<name>: import error

<name): ukendt pakke
(name): unknown package

<name>: navn redefineret

ApPENDIX F - -293-

<name>: array redefined

<name>: navn allerede defineret
<name>: name already defined

<name>: tekstvariabel ikke defineret
<name>: string not dimensioned

<name>: ikke en pakke
<name>: not a package

RUN TIME ERROR, WHICH CAN BE TRAP'PEDI

o report fejl
report error

argument fejl
argument error

2 overloeb
overflow

3 division med nul
division by zero

4 delstrengsfejl
substring error

5 uden for vaerdiomraade
value out of range

6 step 0
step 0

7 ulovlige graenser
illegal bound

S fejl i print using
error in print using

10 ulovlig indexvaerdi
index out of range

11 ulovligt filnavn
invalid file name

13 verify fejl
verify error

14 program for stort
program too big

15 daarlig comalkode
bad comal code

16 ikke comalprogramfil
not carnal program file

17 program lavet til anden carnal version
program made for other comal version

ERROR MESSAGES

APPEND!X F - -294-

30 ulovlig farve
illegal color

31 ulovlig graense
illegal boundary

32 ulovlig tegning-nummer
illegal shape number

33 tegningens laengde skal vaere 64
shape length must be 64

34 ulovlig sprite-nummer
illegal sprite number

35 ulovlig stemme
ill egal voice

36 ulovlig node
illegal note

RUN TIME ERROR, WHICH CANNOT BE TRAP'PEDI

51 system fejl
system error

52 for lidt hukommelse
out of memory

53 for-kert dimension i parameter
wrong dimension in parameter

54 parameter skal vaere en tabel
parameter must be an array

55 for faa indices
too few indices

56 strengtildelingsfejl
string assignment error

57 ikke implementeret
not implemented

58 con ikke mulig
can not possible

59 programmet er blevet modificeret
program has been modified

60 for mange indices
too many indices

61 funktionsvaerdi ikke returneret
function value not returned

62 ikke en variabel
not a variable

ERROR MESSAGES

•

ApPENDIX F - -295-

67 parameterlister afviger eller ikke lukket
parameter lists differ or not closed

68 ingen lukket proc/func i fil
no closed proc/func in file

69 for faa parametre
too few parameters

70 forkert indextype
wrong index type

71 parameter skal vaere en variabel
parameter must be a variable

72 forkert parametertype
wrong parameter type

73 ikke-ram indlaesning
non-ram load

74 checksumfejl i objektfil
checksum error in object file

75 hukommelsesomraade beskyttet
memory area is protected

76 for mange biblioteker
too many libraries

77 jkke en objektfil
not an object file

78 ingen passende when
no matching when

79 for mange parametre
too many parameters

SYNTAX ERROR.

101 syntaksfejl
syntax error

102 forkert type
wrong type

103 saetning for lang eller for kompliceret
statement too long or too complicated

104 kun som saetning, ikke som kommando
statement only, not command

106 linienumre er fra 1 til 9999
line number range: 1 to 9999

108 procedure/funktion findes ikke
procedure/function does not exist

109 struktureret saetning ikke tilladt her

ERROR MESSAGES

ApPENDIX F - -2%-

structured statement not allowed here

110 ikke en saetning
not a statement

111 linienumre viI overskride 9999
line numbers will exceed 9999

112 kilde beskyttet!!!
source protected!!!

113 ulovligt tegn
illegal character

114 fejl i konstant
error in constant

115 fejl i eksponent
error in exponent

ERROR MESSAGES

INPUT/OUTPUT- ERROR MESSAGES, WHICH CAN ALL BE TRAP·PED.

200 ikke flere datalinier
end of data

201 slut paa fil
end of file

202 fil allerede aaben
file already open

203 fil ikke aaben
file not open

204 ikke en inputfil
not input file

205 ikke en outputfil
not output file

206 numerisk konstant forventet
numeric constant expected

207 ikke en random access fil
not random access file

208 enhed ikke tilstede
device not present

209 for mange filer aabne
too many files open

210 laesefejl
read error

211 skrivefejl
write error

212 kart blok paa baand
short block on tape

APPENDIX F -

213 lang blok paa baand
long block on tape

214 checksumfejl paa baand
checksum error on tape

215 slut paa baand
end of tape

216 fil ikke fundet
file not found

217 ukendt enhed
unknown device

218 ulovlig operation
illegal operation

219 i/o afbrydelse
i/o break

-297- ERROR MESSAGES

MESSAGES FROM THE DISK OPERATING SYSTEM (ONLY IN ENGLISH) I

220 read error (Block header not found)

221 read error (Synchronization mark missing)

222 read error (The data block is not present.)

223 read error (Checksum error in the data block)

224 read error (Error in byte decoding)

225 write error <Write/read error)

226 write protect on (The diskette is wrlte protected.)

227 read error (Checksum error in the header)

228 write error (Long data block)

229 disk id mismatch (UnMOUNTED or nonmatching diskette)

230 syntax error (Ordinary syntax error)

231 syntax error (Incorrect DOS-command)

232 syntax error (Line too long)

233 syntax error (Incorrect file name)

234 syntax error (No file was indicated)

239 syntax error (Incorrect pass-command)

250 record not present (Reading beyond the last record)

251 overflow in record (Record length overrun)

252 file too large (No room for the random file)

ApPENDIX F - -298- ERROR MESSAGES

260 write file open (An already opened file opened again)

261 file not open (Tried to access an unopened file)

262 file not found (The file does not exist in the disk drive)

263 file exists '(The file is already present on the disk.)

264 file type mismatch (Operation on files of different type)

265 no block (The block is reserved.)

266 illegal track and sector (Track/sector does not exist.)

267 illegal system t or s (Illegal system track or sector)

270 no channel (There is no available channel.)

271 dir error (Directory error)

272 disk full (The diskette is filled up.)

273 cbm dos vx.x yyyy (Diskette status)

274 drive not ready (No diskette)

•

-299-

USER COMMENTS AND CORRECTXONS

These pages are intended to be used for your comments and
corrections. When sufficient experience with the use of
this handbook has been acquired, it will be reprinted. It
will be advantageous to all users that errors are corrected
and improvements are made for the next edition. Send your
comments to:

COMMODORE DATA AIS
ATT: Jan Nymand
Bjerrevej 67
DK-8700 Hor •• ns, DENMARK

Thanks for your help!

-300- USER CDl9lENTS

•

-301-

SAMPLE COMAL PROGRAMS

0010 II save "@Music 1"
0020 DIM code$ OF 3
0030 USE sound
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190

LOOP
PAGE
PRINT "Choose voice (1,2 or 3)"
PRINT "Choose note (a2,c4,b3, •••)"
PRINT "The numbers = octave:"
PRINT "'c4' is middle C (4. octave - 440 Hz)"
PRINT '''f5tt' is 'f sharp' in the octave above"
PRINT AT 22,1: "LESSON 1: We playa single note ... "
PRINT AT 20.1: "(Press <RUN/STOP> to end ••.)"
PRINT
INPUT AT 8,1: "voice: ": voice
INPUT AT 9,1: "note-code: ": code$
play(l,code$)

ENDLOOP

0200 PROC play(voice,code$)
0210 IF code$<>"z" THEN
0220 note(voice,code$)
0230 gate(voice,l) II attack and decay
0240 ENDIF
0250 pause(16l II sustain
0260 gate(voice.Ol II release
0270 ENDPROC play
0280
0290 PROC pause(sec'32)
0300 TIME 0
0310 WHILE TIME<1.875*sec'32 DO NULL
0320 ENDPROC pause

0010 II save "@Music 2"
0020 DIM code$ OF 3
0030 USE sound
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200

LOOP
PAGE
PRINT "Type in a note (a2.b5.c4 •••• l ..
PRINT "The 3 voices are played in succession."
PRINT AT 22.1: "LESSON 2: 3 voices are played ..• "
PRINT AT 20,1: "Press <RUN/STOP> to end
PRINT

FOR voice:=1 TO 3 00
soundtype(voice.3)

ENOFOR voice

INPUT AT 7,1: "note-code: ": code$

FOR voice:=1 TO 3 DO
PRINT AT 10,1: "voice ";voice

AppendiK H -

0210
0220
0230
0240
0250
0260

play(voice,codeS)
play(voice,"z")

ENDFOR voice

END LOOP

- 302-

0270 PROC play(voice,codeS)
0280 IF codeS<>"z" THEN
0290 note(voice,codeS)
0300 gate(voice,l) II attach and decay
0310 ENDIF
0320 pause(8) II sustain
0330 gate(voice,O) II release
0340 ENDPROC play
0350
0360 PROC pause(sec'32)
0370 TIME 0
0380 WHILE TIME<1.875*sec'32 DO NULL
0390 ENDPROC pause

0010 II save "@Music 3"
0020 DIM codeS OF 2, answerS OF 5
0030 USE sound
0040
0050 LOOP
0060 PAGE

SAMPLE PROGRAMS

0070 PRINT "Let"s play some notes together"
0080 PRINT "and create a simple melody
0090 PRINT AT 22.1: "LESSON 3: We playa melody
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200

FOR voice:=l TO 3 DO
soundtype(voice.3)

ENDFOR voice

INPUT AT 4.1: "continue or end (c/e)? ": answer$
IF answer$="e" THEN STOP
INPUT AT 6,1: "voice (1/2/3)? ": voice

play"melody

0210 ENDLOOP
0220
0230
0240
0250
0260
0270

PROC play(voice,codeS)
IF codeS<>"z" THEN
not~(voice,codeS)

gate(voice,l) II attack and decay
ENDIF

0280 pause(tid) II sustain
0290 gate(voice,O) II release
0300 ENDPROC play
0310
0320
0330 PROC play'melody II Row, Row, Row Your Boat
0340
0350 melody:
0360 DATA
0370 DATA
0380
0390
0400

DATA
DATA
DATA

"c4",B,"z",2,"c4",B," Z ",2,"c4",8,"d4",4
"e41',B,"z",8,"e4",B,"d411,4,"e4I',8
"f4 11 ,4,"g4",16,"z",B,"c5",4
"c 5",4,"cS",4,"g4",4,"g4",4
"g4",4," e 4",4,"e4 1',4," e 4",4

•

•

0410
0420
0430
0440
0450
0460
0470
0480
0490

- 303- SAMPLE PROGRAMS

DATA "C4·'.4,"c411,4,"c41I,4,'·Z",B,"g4t',8
DATA "f4 u ,4, u e 4 u ,8, ud4" ,4, "c4" ,8

RESTORE melody
WHILE NOT EOD DO

READ code$,tid
play(voice,code$)

ENDWHILE

0500 ENDPROC play'melody
0510
0520 PROC pause(sec'32)
0530 TIME 0
0540 WHILE TIME<I.875*sec'32 DO NULL
0550 ENDPROC pause

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
.!410
0420
0430
0440

II save "@Music 4"
DIM codeS OF 2
USE sound

LOOP

PAGE
PRINT AT 22,1: "LESSON 4: Sound level, type and ADSR ... "
PRINT AT 1,1: "Sound level and sound type can be"
PRINT "selected for each voice."
PRINT
PRINT "Choose the parameters in SOUNDTYPE,"
PRINT "and choose the ADSR values ... "
PRINT
PRINT "Your choices will remaln valid until"
PRINT "the parameters are redefined."

INPUT AT 11,1: "VOICE (1/2/3)?": voice
INPUT AT 13,1: "VOLUME (o-15)? ": vol
INPUT AT 15,1: "SOUNDTYPE (1/2/3/4)? ": type
soundtype(voice,type)
volume(vol)
PAGE
PRINT "Voice: ";voice;" - Sound type:";type
PRINT "The sound level is";vol;"."
PRINT
PRINT "---------------------------------------"
PRINT "ADSR parameters: attack, decay,"
PRINT "sustain and release ar~ chosen ... "
PRINT
PRINT
PRINT "
PRINT "
PRINT "
PRINT "
PRINT "*
PRINT "
PRINT

•
*

*

A

." *

0 S

Each parameter can"
vary from 0 to 15. " ." *"

R "

PRINT "A: attack time D: decay time"
PRINT uS: sustain level R: release time"
PRINT "---------------------------------------,,
INPUT AT 21,1: "A,D,S,R? ": a,d,s,r
adsr(voice,a,d,s,r)

0450 play'melody
0460
0470 ENDLOOP
0480

- 304-

0490 PROC playCvoice,code$)
0500 IF code$<>"z" THEN
0510 noteCvoice,code$)
0520 gate(voice,l) II attack and decay
0530 ENDIF
0540 pauseCtid) II sustain
0550 gateCvoice,O) II release
0560 ENDPROC play
0570

SAMPLE PROGRAMS

0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730

PROC play'melody
melody:

II Row, Row, Row Your Boat

DATA 'IC4",8,"Z",2~"C411,8,"Z",2,"C411,8.'ld411,4

DATA "e4",8,"z",8,"e411,8,"d411,4,"e41',8
DATA 1144" .4, "g4"" 16, liZ II ,8, "c5 11 ,4
DATA "CS",4,"c511,4,"g411,4,"g411,4
DATA
DATA
DATA

IIg411 ,4, "e4",4, "e411 .,4, "e411,4
"c411" 4, "c4 11 "4,, "c4" ,,4, liZ 11,8, "g411 ,8
l'f4",4,·'e411,8,"d411,4,"c4I',8

RESTORE melody
WHILE NOT EOD DO

READ code$,tid
play(voice,code$)

ENDWHILE

0740 ENDPROC play'melody
0750
0760
0770
0780
0790

PROC pauseCsec'32)
TIME 0
WHILE TIME<1.875*sec'32 DO NULL

ENDPROC pause

0010 II save "@Music 5"
0020 DIM code$ OF 3
0030 DIM tone#(50), ads 'pause# (50) , r'pause#(50)
0040 USE sound
0050 vol ume C 15)
0060 soundtype(1,2)
0070 adsrCl,6,6,8,6)
0080
0090
0100
0110
0120
0130
0140

no:=O
WHILE NOT EOD DO

no:+l
READ code$,tim
tone#(no):=frequencyCcode$)
ads'pause#Cno):=tim*2

0150 r'pause#Cno):=tim*2
0160 ENDWHILE
0170
0180 tone#(no+l):=O
0190 setscoreCl,tone#() ,ads'pause#() ,r'pause#(»
0200 playscore(l,O,O)
0210
0220 number:=O
0230 WHILE NOT waitscoreCl,O,O) DO
0240 number:+l

•

- 305 -

0250
0260
0270
0280
0290
0300
0310
0320
0330

PRINT number;
ENDWHILE
END

PROC pause(sec'32)
TIME 0
WHILE TIME<1.875*sec'32

ENDPROC pause
DO NULL

0340 DATA "c4",8,"c4",8,"c4 " ,8,"d4",4
0350 DATA lI e 4" ,8, lIe4u,8, l'd4", 4, "e4" ,8
0360 DATA "f4",4,"g4",16,"c5",4
0370 DATA " c 5",4,"c5",4,"g4",4,"g4",4
0380 DATA "g4 " ,4," e 4",4," e 4",4,"e4",4
0390 DATA "c4" ,4, "c4" ,4, "c4" ,4, "g4" ,8
0400 DATA Iff411,4,"e4",8,"d41J,4,"c4",8

SPR !TEED !TOR

SAMPLE PROGRAMS

The program SPRITEEDITOR is on the COMAL demonstration
diskette <and tape). ThlS program can be used to create
sprite images. A drawing which has been prepared and saved
using this program can later be loaded into another program
using the order:

The sprite editor program starts by displaying the
following:

•••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• • ••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• ••••••••••••••••••••••••

MULTICOLOR: 8

r~~~~D~~ I
EXPANDY: 8
BACKGROUND: •
COLOR 2: •
COLOR 3: •

PRESS: H
FOR HELP

Each of the dots corresponds to a dot on the screen.
Movement of the drawing cursor from dot to dot is achieved
using the cursor keys. The dots can be marked to indicate
that they are to have a color different from the background
color.

- 3(x)- SAMPLE PROGRAMS

Choices are available from a menu shown on the right-hand
side of the screen. If HELP is required, press H. A
screen with user information will then appear.

0010 II save "@Addr List Demo"
0020 DIM reply$ OF 1, name$(100) OF 40
0030 DIM street$(100) OF 40, city$(100) OF 40
0040 DIM phone$(100) OF 20, flag$ OF 40
0050 DIM searchkey$ OF 40, string$ OF 150
0060 number:=O II number of records
0070 PAGE
0080 PRINT "This program illustrates the use of"
0090 PRINT "SEQUENTIAL FILES. It can be used to"
0100 PRINT "create a list of names, addresses"
0110 PRINT "and telephone numbers."
0120 PRINT "Each record will have the format:"
0130 PRINT
0140 PRINT " name"
0150 PRINT "
0160 PRINT "
0170 PRINT"
0180 PRINT
0190 PRINT

street"
city"
phonenumber"

0200 PRINT "Press any key to continue
0210
0220 wait 'for 'keystroke
0230
0240 LOOP
0250 show 'menu
0260 flag$:=
0270 wait 'for 'keystroke
0280 CASE reply$ OF
0290 WHEN "1"
0300 load'file
0310 WHEN "211
0320 create 'record
0330 WHEN "3"
0340 list'file
0350 WHEN "4"
0360 search'file
0370 WHEN "5"
0380 sort'file
0390
0400
0410
0420
0430
0440
0450

WHEN "6"
change 'record

WHEN "7"
delete 'record

WHEN "8"
save'file

OTHERWISE
0460 PRINT "Illegal reply •• "
0470 wait 'for 'keystroke
0480 ENDCASE
0490 ENDLOOP
0500
0510
0520
0530
0540
0550

PROC show'menu
PAGE
PRINT .. -----=====
PRINT
PRINT

MAIN MENU =====----- ..

•

- 307- SAMPLE PROGRAMS

PRINT " (1) LOAD the file"
PRINT " (2) CREATE a record"
PRINT " (3) LIST the file"
PRINT " (4) SEARCH the file"

0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
06BO
0690
0700
0710

PRINT " (5) SORT alphabetically"
PRINT " (6) CHANGE a record"
PRINT " (7) DELETE a record"
PRINT " <8) SAVE revised file"
PRINT
PRINT
PRINT "Records: ";number
IF number=O THEN flag$:="Please
PRINT
PRINT flag$

ENDPROC show'menu

0720 PROC load'file
0730 OPEN FILE l,"Addresses",READ
0740 INPUT FILE 1: number
0750 FOR no:=l TO number DO
0760 INPUT FILE 1: name$(no)
0770 INPUT FILE 1: street$(no)
0780 INPUT FILE 1: city$(no)
0790 INPUT FILE 1: phone$(no)
0800 ENDFOR no
0810 CLOSE FILE 1
0820 ENDPROC load'file

PROC create'record
PAGE

load or create a file .•. "

0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

PRINT "::::: CREATE A NEW RECORD :::::"
PRINT
PRINT
IF number=100 THEN
IF flag$="" THEN

number: +1

flag$:="No more room for data'"

INPUT "Name ": name$(number)
INPUT "Street ": street$(number)
INPUT "City": city$(number)
INPUT "Phone ": phone$(number)

ENDIF
ENDPROC create'record

PROC list'file
PAGE
PRINT "::::: LISTING THE FILE :::::"
PRINT
IF number=O THEN

flag$:="No files in memory!"
PRINT

ELSE
FOR no:=l TO number DO print'record(no)

ENDIF
ENDPROC list'file

PROC search'file
PAGE
PRINT "::::: FILE SEARCH :::::"
PRINT
PRINT
flagS:="I am searching ... "

- 308- SAMPLE PROGRAMS

INPUT "Search key: ": search keyS 1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320

FOR no:=l TO number DO
stringS:=nameS(no)+streetS(no)+cityS(no)+phoneS(no)
IF search keyS IN stringS THEN print 'record (no)

ENDFOR no
flagS:=""

ENDPROC search 'file

PROC print'record(no)
PRINT
PRINT AT
PRINT AT
PRINT
PRINT
PRINT
PRINT

AT
AT
AT

0,10:
0,10:
0,10:
0,10:
0,10:

11 _______________ (II,no,I')II

nameS (no)
streetS (no)
ci ty$ (no) .
phoneS(no)

1330 wait 'for 'keystroke
1340 ENDPROC print'record
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560

PROC sort'file
PAGE
PRINT no:::: SORT BY NAME ALPHABETICALLY
PRINT
PRINT

PROC swap(REF as,REF b$) CLOSED
c$:=a$; a$:=b$; b$:=c$

ENDPROC swap

REPEAT
no'swap:=TRUE
FOR no:=l TO number-l DO

PRINT AT 10,1: "Sorting ••• ",no
IF name$(no+1)<name$(no) THEN

swap(name$(no),nameS(no+l»
swap(street$(no),street$(no+1»
swap(city$(no),city$(no+1»
swap(phone$(no),phoneS(no+1»
no 'swap: =FALSE

ENDIF
1570 ENDFOR no
1580 UNTIL no'swap
1590 ENDPROC sort'file
1600

PROC change'record
PAGE
PRINT no:::: CHANGE A RECORD :::::"
PRINT
PRINT
INPUT "Which record number? ": no
IF no<=number THEN

print 'record (no)

:::::11

1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770

INPUT AT 14,1: "Is this the right record? (yin)? ":
PRINT
PRINT
IF replyS IN "yV"

INPUT "Name
INPUT "Street
INPUT "City
INPUT "Phone

ENDIF

THEN
": name$(no)
II: streetS (no)
": cityS(no)
": phoneS (no)

reply$

Appendilc H - - 309- SAMPLE PROGRAMS

ELSE 1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060

flag$:="There are only "+STR$(number)+" records"
ENDIF

2070

ENDPROC change'record

PROC delete'record
PAGE
PRINT "::::: DELETE A RECORD :::::"
PRINT
PRINT
INPUT "Which record number? ": record
IF record>number THEN

flag$:="Use a smaller record number'"
ELSE

print 'record (record)
PRINT
INPUT "Is this the right record (yIn)? ": reply$
PRINT
IF reply$ IN "yY" THEN

FOR no:=record TO number-1 DO
name$(no):=name$(no+l)
street$(no):=street$(no+1)
city$(no):=city$(no+l)
phone$(no):=phone$(no+l)

ENDFOR no
number:-1

ENDIF
ENDIF

ENDPROC delete'record

2080 PROC save'file
2090 PAGE
2100 PRINT "::::: SAVING FILE TO DISK :::::"
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310

OPEN FILE 1,"@Addresses",WRITE
PRINT FILE 1: STR$(number)
PRINT
PRINT
FOR no:=1 TO number DO

PRINT FILE 1: name$(no)
PRINT FILE 1: streetS (no)
PRINT FILE 1: city.(no)
PRINT FILE 1: phone$(no)

ENDFOR no
CLOSE FILE 1

ENDPROC save'file

PROC wait 'for 'keystroke
PRINT
PRINT "< > •.• ";
REPEAT

reply$:=KEY$
UNTIL reply$<>CHR$(O)
PRINT AT 0,2: reply$

ENDPROC wait'for'keystroke

0010 II save "@1520 Plotter Demo"
0050 setup'plotter
0060 DIM scS OF 1
0097 II
0100 II MAIN PROGRAM

0105 II
0110 demo'size
0120 demo'c:olor
0130 demo'c:ase
0140 demo'rotation
0150 II
0160 square(100)
0165 blank'line(2)
0170 dotlines(15)
0175 blank'line(8)
0180 C:irc:le(240,240,200)
0185 blank'line(14)
0187 spinsquares(150)
0190 /I
0192 setup'plotter
0195 plotter'off
0197 /I
0200 END II MAIN PROGRAM
0297 II
0497 II
0500 PROC demo'size
0510 FOR i:=O TO 3 DO
0515 selec:t'size(i)
0520 print'hello
0525 blank'line(l)
0530 END FOR i
0545 ENDPROC demo'size
0547 /I
0550 PROC demo'c:olor
0555 selec:t'size(2)
0560 FOR i:=O TO 3 DO
0565 switc:h'c:olor(i)
0570 print'hello
0575 ENDFOR i
0595 ENDPROC demo'c:olor
0597 II
0600 PROC demo'c:ase
0605 blank'line(l)

- 310-

0610 selec:t'c:ase(O) II upper c:ase
0615 print'hello
0620 selec:t'c:ase(l) II lower c:ase
0625 print'hello
0645 ENDPROC demo'c:ase
0647 II
0650
0655
0660
0665
0670
0675
0695
0697
0700
0705
0710
0715
0720
0725
0730
0735
0740

PROC demo'rotation
bl ank 'li ne (2)
rot' c:har (1)
print'hello
rot'c:har(O)
print 'hello

ENDPROC demo'rotation
/I
PROC dotlines(n)

zero 'pen ("h")
FOR i:=O TO n DO

plot("m",0,-i*20)
dot 'I i ne (i)
plot ("d" ,400, -i *20)

ENDFOR i
blank'line(4)
dot 'I ine<O)

SAMPLE PROGRAI'IS

Appandilc H -

0745 ENDPROC dotlines
0747 II

- 311 -

0750 PROC circle(xO,yO,radius)
0752 plotC"m",xO,yO)
0754 zero'pen("i")
0756 plot("r",radius,O)
0758 FOR v:=O TO 360 STEP 5 DO
0760 t:=PI*v/180
0762 x:=radius*COS(t)
0764 y:=radius*SIN(t)
0766 plotCUj",x,y)
0768 ENDFOR v
0785 blank'line(4)
0795 ENDPROC circle
0797 II
0800 PROC squareCside)
0805 blank'line(3)
0810 plotC"j",O,side)
0820 plot("j",side,side)
0830 plot("j",side,O)
0840 plotCUjU,O,O)
0845 ENDPROC square
0847 II
0850 PROC spinsquaresCs)
0852 plot("m",240,240)
0854 zero'pen(Ui")
0856 FOR v:=O TO 360 STEP 20 DO
0858 t:=PI*v/180
0860 draw'boxCs,t)
0862 ENDFOR v
0864 blank'line(4)
0865 ENDPROC spinsquares
0867 II

PROC draw'box(s,t)

SAI'IPLE PROGRAMS

0870
0875
0880
0885
0890
0895
0897
0900
0910
0915
0920
0925
0930
0945
0947
0950
0960
0970
0990
0995
0997
1990
1995
1997 II
2000
2010
2045
2047

plot("j",s*COSCt),s*SINCt»
plotC"j",s*SQR(2)*COSCt+PI/4) ,s*SQR(2)*SIN(t+PI/4»
plot("j",s*COSCt+PI/2),s*SINCt+PI/Z»
plot (U j U ,0,0)

ENDPROC draw'box
II
PROC blank'line(bl)

plotter 'on
FOR i:=1 TO bl DO

PRINT FILE 6:
ENDFOR i
plotter'off

ENDPROC blank'line
II
PROC print'hello

plotter'on
PRINT FILE 6: "HELLO!"
plotter'off

ENDPROC print'hello
II
II
II PLOTTER PROCEDURES

PROC plotter'on
OPEN FILE 6,"u6:",WRITE

ENDPROC plotter'on
II

2050 PROC plotter'off
2060 CLOSE FILE 6

ENDPROC plotter'off
II

- 312-

PROC switch'color(pen)

2095
2097
2100
2110
2120
2130
2145
2147 II
2150

OPEN FILE 2,"u6:/s2",WRITE
PRINT FILE 2: pen
CLOSE FILE 2

ENDPROC switch'color

PROC select'size(size)
2160
2170
2180

OPEN FILE 3,"u6:/s3",WRITE
PRINT FILE 3: size
CLOSE FILE 3

ENDPROC select'size 2195
2197 II
2200
2210
2220
2230
2245

PROC select'ascii
OPEN FILE 4,"u6:/sO",WRITE
PRINT FILE 4:
CLOSE FILE 4

ENDPROC select'ascii
2247 II
2250 PROC plot(sc$,x,y)
2255 OPEN FILE 1,"u6:/sl",WRITE
2260 PRINT FILE 1: sc$;x;y
2265 CLOSE FILE 1
2270 ENDPROC plot
2272 II
2275 PROC zero'pen(zp$)
2277 II zp$ = h/i for abs/relative
2280 OPEN FILE 1,"u6:/s1",WRITE
2285 PRINT FILE 1: zp$
2290 CLOSE FILE 1
2295 ENDPROC zero'pen
2297 II
2300 PROC rot'char(rot)
2305 II rot=0/1 for horlrot 90 deg CW
2310 OPEN FILE 44,"u6:/s4",WRITE
2320 PRINT FILE 44: rot
2330 CLOSE FILE 44
2345 ENDPROC rot'char
2347 II
2350 PROC dot'line(dash)
2355 Ildash=O to 15, 0 = unbroken
2360 OPEN FILE 5,"u6:/s5",WRITE
2370 PRINT FILE 5: dash
2380 CLOSE FILE 5
2395 ENDPROC dot'line
2397 II
2400 PROC select'case(nr)
2405 II nr=0/1 for upper/lower case
2410 OPEN FILE 6, "u6:/s6",WRITE
2420 PRINT FILE 6: nr
2430 CLOSE FILE 6
2445 ENDPROC select'case
2447 II
2450 PROC reset 'plotter
2460 OPEN FILE 7,"u6:/s7",WRITE
2470 PRINT FILE 7:
2495 ENDPROC reset'plotter
2497 II

SAMPLE PROGRAMS

•

- 313- SAMPLE PROGRAMS

2500 PROC setup'plotter
2505 sel ect 'case (1) 111 ower case
2510 switch'color(l) II blue
2515
2520
2525
2530
2545
2547

rot 'char (0) II horizontal
dot'line(O) II unbroken
select'size(l) II normal
SELECT OUTPUT "u6:"

ENDPROC setup'plotter
II

0010 II save "@Train Demo"
0020

PAGE
PRINT AT 2,2: "ELECTRIC TRAIN DEMO"

0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130

PRINT AT 4,2: "Your train should start at the
PRINT AT 5,2: IIwith the passage detector just
PRINT AT 6,2: lithe last car. Start the train
PRINT AT 7,2: "press any key to turn control
PRINT AT 8,2: lito your computer ••• "
WHILE KEY$=CHR$ (0) DO NULL
PAGE
PRINT AT 2,2: "ELECTRIC TRAIN DEMO"

station ll

behind"
and then"

over II

0140 II Port B bit 0 can be connected to the collector of a
Darlington
0150 II Phototransistor. The emitter is connected to ground.
0160 II Bit 0 will be low when the fototransistor is illuminated.
0170 II Port B bit 1 should be connected to a transistor and relay
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490

II so that bit 1 high starts the train.

II MAIN PROGRAM

define'variables
set'port'b
start'train
print'list

REPEAT
check'light
delay(1.5)
stop'train
delayOO)
start'train

UNTIL KEY$<>""
stop 'train
PAGE
END "Au revoir!"

II ALL PROCEDURES FOLLOW BELOW

PROC print'list
PRINT AT 12,4: "train running"
PRINT AT 13,4: "train passes light"
PRINT AT 14,4: "train waiting at staticn"
PRINT AT 18,4: -"PreSSing any key will stop the train"
PRINT AT 19,4: "next time it stops at the station

ENDPROC print'list

PROC start'train
POKE port'b,PEEK(port'b) BITOR 2

0500 advance 'pointer
0510 ENDPROC start'train
0520
0530 PROC check'light

- 314- SAMPLE PROGRAMS

0540 WHILE PEEK(port'b) BITAND 1<>1 DO NULL
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870

advance 'pointer
ENDPROC check'light

PROC delay(sec)
TIME 0
WHILE TIME<sec*60 DO NULL

ENDPROC delay

PROC stop'train
POKE port'b,PEEK(port'b) BITAND 253
advance 'pointer

ENDPROC stop'train

PROC define'variables
port'b:=$ddOl
port'b'ddr~=$dd03

position:=l
ENDPROC define'variables

PROC set'port'b
POKE port'b'ddr,2
POKE port'b,2

ENDPROC set'port'b

PROC advance'pointer
PRINT AT 10+position,2:
IF position<4 THEN

position:=position+l
ELSE

position:=2
ENDIF
PRINT AT 10+position,2:

ENDPROC advance'pointer
II)11

•

•

INDEX - 315 - INDEX

---------- A ----------

@ 221,224,237
AID converters 251
ABS 79, 131
accessories 15
accuracy 205
action blocks 43
actual parameters 73
Addr List Demo 223,306
address list 222
ADSR 185,192
ADSR envelope 186
algorithm 77
AND 138
AND THEN 139
animate 178
apostrophe 38
APPEND, file 113
arc 157
arcl 159
arcr 160
arithmetic operators 281
arrays 67
arrays, one-dimensional 69
arrays, text 70
ASCII characters 275
ASCII-format 113
assembler language 25
assignment operator 47
asynchronous data

transmission 242
at symbol (@) 221,224,237
ATN 133
attack 189
AUTO ~-4,93

---------- B ----------

back 159
background 154
backup copy 41,42,46
bank switching 261
Basic 9,10,37
Basic fra COMAL 105
Batteries Included 245
bell 210
Bendict L.fsted 10
binary form 233
BITOR 141
BITXOR 141
Boolean operators 282
border 154
branch blocks 43
branching 59
bubble sort 82,229
Bus Card II 245
byte 25

---------- C ----------

calculations 281
call procedure 39
capital letters 21
cartoons 169
cartridge, installation 17
CASE structure 61
CASE-OF-WHEN-OTHERWISE-

ENDCASE 119
CAT 97
CBM 8050 & 8250 disk

drives 245
CHAIN 101,221
CHANGE 95,227
character codes 275
character deletion 28
character replacement 214
character sets (font) 213
character set, replacement 215
character set, user-defined 215
chip, 6510 25
CHR$ 133
CHR$(O) 35
Christensen, B.rge 10
circle 156
circles 50
clear 154
clear/home 29
clearscreen 30
clearscreen 153
CLOSE 116
CLOSE FILE 116
CLOSED 127
closed procedures 82,221
collision, sprite 168
color codes 31,279
color combinations 279
color TV 17
color, foreground 172
colors, screen 27
CO MAL cartridge 258
COMAL files 219
CONAL system 255
comments (II) 141
commercial-a (@) 221,224,237
Commodore Data 10
Commodore key 20,57,283
computer language 32
CON 101
condition 59
conditional Rxecutiion 59
condItionals 117
control key 285
control ports 197
control ports 251
COpy 102
corrections 299
COS 132

INDEX

crash 88
CREATE 112
cs; 237
cur col 210
currow 210
cursor 110

---------- D ----------

Danish 148
dansk 148
DATA 110,223

- 316-

data direction register 247
data element 223
data statement 72
data stream 86
datacollision 181
Datassette 15,17,21,40,238
DB-25 connector 246
ddr 247
decay 189
declaration statement 56
define (drawing) 174
defkey 210
DEL 95
delay 204
delete 103
delete character 27
delete key 20
Demo Diskette 23
Demo Program 21
demonstation program 21
digital thermometer 251
DIM 142
dimensioning string

variables 56
DIR 97
direct execution 27
direct files 232
discard 30,106
disk drive 15,22,237
disk drives, CBM 245
disk operating system

errors 297
diskette files 219
display 99,220
DIV 137
DOS error messages 297
draw 155
drawing, save 168
drawto 155
ds: 237
dynamic equals sign 47

---------- E ----------

Easyscript 220
EDIT 94
empty statements 38

END 145
END TRAP 89
english 148
ENTER 99,220,221
env3 195
EOD 111

INDEX

EPROM expansion 258
EPROM module 266
equali ty sign 47
equation, solving 77
ERR-ERRFILE-ERRTEXT$ 122
error handling 88,122
error messages 291
error numbers 291
error reporting 268
ESC 136
even parity 242
EXIT WHEN 89
EXP 133
expression 48
EXTERNAL 128
external procedure 84,221

---------- F ----------

FALSE 135
file 86,219
file handling 85
file transfer between

computers 250
file type code 236
fi I e types 236
fi 11 52,157
-filter 194
fi I terfreq 194
-f il tert ype 194
FIND 94
fine-tuning o-f TV 20
font package 213
font procedures in depth
FOR-ENDFOR 36
FOR-TO-STEP-DO-ENDFOR 121
foreground color 172
formal parameters 73
formatting 23
forward 159
free 210
frequency 193

216

77,129
fullscreen 153
FUNC-RETURN-ENDFUNC
function header 263
function keys 284
function, string 80
functions 9,76,129,257

---------- G ----------

game ports 251
games 26

INDEX

gate 192
GET$ 220
getcharacter 217
getcolor 155
get screen 208
gettime$ 208
global names 74
GOTO 124
graphics 29
graphics cursor 30
graphics overview 150
graphics package 31
graphics screen 30,148
graphics symbols 21
graphics, use 149
graphicscreen 152
greeting message 20

---------- H ----------

HANDLER 89
hard copy, text screen 58
hardcopy 209
heading 158
hidesprite 180
hideturtle 158
high-graphics screen 171
high-level language 25
high-resolution

graphics 29,149,153,163
high (voltage level) 242
home 30,158

---------- I ----------

liD port 245
identify (sprite) 174

- 317-

IEEE cartridge 245
IF-THEN-ELIF-ELSE-ENDIF 117
IMPORT 84,128
IN 140
indentation 38
index 68
indexed variables 67
initializing diskette 23
inkey$ 207
INPUT 106
INPUT AT 106
INPUT FILE 88,114,220
input port 245
INPUT statement 49
inputs 25
inq 162
insert key 20
INST/DEL key 20
instruction sequence 31
INT 131
integers 233,264
intensity envelope (soundl 195

INDEX

interrupt 196

---------- J ----------

jack connections 15
Jensen, Jens Erik 10
joysticks 199

---------- K ----------

kb: 237
keepfont 217
kernel, COMAL 259
KEY:$: 35,65,107
keyboard 20,237,283
keywords 36
keywords'in'upper'case 206
Kja.r, Mogens 10

---------- L ----------

I abel 111
Lassen, Helge 10
Laursen, Lars 10
left 159
LEN 135
light pen 199
light pen overview 204
Lindsay, Len 11
line numbers 34
link 105,257
linkfont 214,216
linkshape 182
LIST 98,220,221
LOAD 100,220
loadfont 216
loadscreen 163
loadshape 182
local names 73
LOG 133
logical (bit) operators 281
logical const~nts 59
logical expressions 59
Logo 9,37
LOOP - ENDLOOP 79,89
loop block 35,43,63
loop st~tements 119
LOOP-EXIT-EXIT WHEN-ENDLOOP 12:
loops 63
low <voltage level I 242
lower case 28
lp: 237

INDEX

---------- M ----------

machine language 255
MAIN 129
memory management 260
memory organization 258
MERGE 99,220,221
merging a procedure 222
microcomputer 25
microprocessor 25
midpoint method 77
MOD 137
module signal routine 268
modules 257
modules, creating 262
monitor 17
MOUNT 112
move 156
movesprite 176
moveto 155
moving (sprite) 178
multi-color graphics

149,153,164
multi-color screen 171
Music 1 184,301
Music 2 301
Music ..;:. 302
Music 4 303
Music 5 304

---------- N ----------

names'in'upper'case 207
NEW 93
Niklaus Wirth 10
NOT 138
note 191
nowrap 160
NTSC TV standard 184
NULL 144

---------- a ----------

odd parity 242
offset 201,204
one-dimensional arrays 69
OPEN 112
OPEN FILE 112
operating environment 26
operating system 255
OR 139
OR ELSE 139
ORO 134
order line 34
osc3 195
OTHERWISE 61
output device 25
output port 245

- 318- INDEX

---------- P ----------

package 30,147,257
package concept 11
package example 269
packages, overview 147
paddle game 198
paddles 197
page 29,49',109
paint 157
PAL TV standard 184
parallel port 245
parameter passing 263
parameter specification
parentheses 58
parity bit 242
Pascal 9,10,37
PASS 24,103
PEEK 143
pen 30
pencolor 154
pendown 159
penon 204
penup 159
PI 132
pixel 148,171
playscore 193
plot 155
Plotter Demo 238
plottext 161
POKE 143
power supply 19
prg 236
PRINT 28,107
PRINT AT 108
PRINT FILE 88,113
PRINT USING 108
printer 15
printer attributes 211
Printer-Plotter 238
printscreen 163

263 •

priority (operations) 281 ~
priority (sprite) 180 ~
PROC-ENDPROC 125
procedure 9,25,52,58,73,125,257
procedure call 39
procedure, closed 82
procedure, external 84
procedure header 263
procedure name 39
procedure oriented 26
procedures, recursive 76
procedures, saving 220
program 32
programming 26
programming style 40
programming habits 45
programs, saving 220
programs, samples 301
protocol, RS-232C 242

•

•

INDEX

pulse 195
put character 217

---------- Q ----------

quote'mode 207

---------- R ----------

Random File Demo 232
random files 113,232
random access files 219
RANDOMIZE 136
READ 110
READ FILE 88,113,115
READ statement 72
readpen 204
real numbers 234,264
record 219,223
recursion 76
REF 127
reI 236
relational operators 282
release 189
RENAME 103
RENUM 37,93
REPEAT-UNTIL 65,119
repeating instructions 35
repetition 63
REPORT 123
resonance 195
RESTORE 111
RETURN key 28

- 319-

RETURN, from function call 129
right 159
ringmod 195
RND 136
roots, finding 78
RS-232C interface 241,250
RUN 34,101,121

---------- S ----------

sample programs 301
SAVE 100,220
savefont 217
savescreen 162
saveshape 182
saving programs 40
sawtooth wave (sound) 195
SCAN 36,46,95
screen 237
screen characters 27~
screen colors 27
screan editor 283
search key 228
SELECT INPUT 104
SELECT OUTPUT 50,104

semicolon 31
seq 236

INDEX

sequential file 219,222
sequential file, moving 235
serial 211
serial communication 241
setexec 96
setfrequency 193
setheading 158
setpage 212
setprinter 211
setrecorddelay 212
set screen 209
settime 207
setxy 156
SGN 79,131
shift 20
shift lock 20
showkeys 211
showsprite 180
showturtle 158
SID chip 184
slgnal routines 267
signals 257
simulations 27
SIN 132
SIZE 97
sortlng, bubble 82
sound 184
sound default values 190
sound orders in depth 191
sound package 184
sound synthesizer 184
soundtype 185,192
sp: 237
SPC$
split screen 29
splitscreen 153
sprite drawing, save 168
sprite orders 150
sprite overview 173
sprite package 165
sprite, multi-colored 175
spriteback 175
spritecollision 180
spritecolor 174
spriteeditor 305
spriteinq 181
spritepos 175
sprites 165
sprites, enlarged 167
sprites, multi-colored 171
spritesize 175
spritex 178
spritey 178
SQR 132
square, drawing 33
square wave (sound) 196
stampsprite 181
Star Trek 26
startsprites 178

INDEX

state 33
statement 54
STATUS 102
STATUS$ 102
STOP 144
stop bit 242
stopplay 193
stopsprite 178
storage diskette 23,41
storage medium 219
STR$ 134
string 55,264
string constant 56
string functions 80,289
string segments 288
string variable 56
strings 234
structure, program 40
structured programming 9
style, programming 40
sustain 189
SX-64 16
symbols 12
sync 194
SYS 144
SYS to COMAL 105
system package 206

---------- T ----------

TAB 109
TAN 132
tape files 219
temperature 252
text 55
text arrays 70
text editor 220
text handling 287
text screen 30,148
textbackground 154
textborder 154
textcolor 154
textcolors 206
textscreen 153
textstyle 161
thermometer, digital 251
three line interface 243
TIME 135
timeon 205

- 320-

Total Turtle Trip Theorem 37
TRACE 142
train demo 247
train demo 313
TRAP 89
TRAP ESC 136
TRAP-HANDLER-ENDTRAP 122
triangle wave (sound) 195
TRUE 135
turtle 30,33
turtle graphics 9,29

INDEX

turtle package orders 151
turtle, use 149
turtlesize 158
TV signal, fine tuning 20

---------- U ----------

u:(device> 237
UHF signal 19
UniComal ApS 10
UNIT 116,237
UNIT$ 116
upper case 28
USE 105
user comments 299
users' groups 11,255
USR 236

---------- V ----------

VAL 134
variable names 39
·variables 47
variables, indexed 67,68
VERIFY 102
version 2.0 10
viewport 150,152
voices (music) 184
voltage levels, serial

interface 242
volume 185,191

---------- W ----------

waitscore 193
waveform envelope 185
waveform parameters 188
WHILE-DO-ENDWHILE 120
white noise (sound) 196
window 150,152
wrap 160
WRITE FILE 88,113,114,233
write protection 22

--------- XYZA --------

xcor 157
ycor 157
ZONE 29,109
Arhus UniverSity 10

•

Commodore
Made in Denmark

Commodore

