C64List 4.xx User’s Guide

By Jeff Hoag

Contents

WHAE IS COALIST? ...ttt ettt ettt ettt e ettt e s e e s b e e s ab e e s bt e e eme e e s bt e e beeesabeesaseeesabeesaneeeanreesaneeesareanas 4
1) € V2PNt 4
NEW iN 4.00 NIGhIIGNES....cci i e et e e et e e e s ettt e e e ssataeeesstaeeesantaeeesantaeaesnns 4
HOW 1O USE COALIST.....uviiiiiiiiiiiiiiiii it bbb e e s sbb e e s ssba e e e sans 6
LG T 7= o 1= o TR PP 6
COALIST SYNTAX . teetiieieiiiteee e e e ettt et e e s ettt et e e e e e s e bbbttt e e e e e s aabbbeeeeeeaesans b b baeaeeesaaasnbetaeeeeesasassbeeaeeeeesannrraaes 7
o o R = 7N [PP P PP PP PP PP P PPPOPPPPPPPPPPPPPPPRY 7
Quick start: Converting a BASIC program to plain-text source formatcccccoeeiiiiieiecciiee e 8
Quick start: Converting plain-text code to a runnable BASIC program.......cccccceeeeecieeeeecieeeeecieeeeeciee e e 10
Converting to text: CUrsor CONrol CAraClerS........ccvii i e e e e e e are e e e 11
Converting to text: Upper and loWer Case OPLIONSccivciiieiiiiiieiiitie et sree ettt e s sire e e saae e e e e 11
SUPPOIEEd INPUL FIlE TYPES oottt et e s st e e e s ate e e e sbte e e e s sreeeesseeeeenanees 12
U] o] e To] a Yo I TULd o1V a1 TN A o =PRSS 13
(O 10y oYU o 11 LT 0 =1 0 211 o =PSRN 14
(001 o101 o o T olo] o [-Yo [T 14
(D1 T =l (oY a o = A U o] o Yo o F ST 15
COALIST DIFECLIVESeveeee ettt ettt et sttt e sttt e e st e s st e s s mbe e e s s nbe e e s enreeesenreeesanreeessnreeesannees 15
PrEPrOCESSOr DIFECLIVESuviiiiiiiiieiiiiiieeee ettt ettt e e e e e s sttt e e e e s s s s abbbaeeeeeeessanrbbaaeeessssssnraaaeeeeens 16
SEFING ENGINE DIFCTIVES eeeiiieiiiiiitiee ettt ettt et e e e s sttt e e e e e s s st tbeeeeeeessssnbbbaeeeessssssssssnaaaeesssnnanns 16
BasSiC TOKENIZEI DIFECLIVESeovieiieieie ettt st ettt b e s bt st st e et et e e sbeesaeesaeesanes 17
ASSEMDIET DIrECLIVES......ueieitieteeteet ettt ettt b e b e s bt e e at e et e et e e s bt e sbeesatesabe et e ebeeabeesbeesaeeennean 17
INCIUAING SOUICE COUR FIl@S...uuiiiieieee et e e e et te e e e e ate e e s eabaeeeenntaeesenrenas 17
ParSEI VAriablEs ...ttt ettt e s et et e st e s bt e e s be e e beeennreesbeeeaes 18
System-defined Parser Variables..........oi i e e e e e srreeeesanes 18
(0foT o [T g =1 I oloT 0] o 11112 -0 PRSPPIt 19

Lines 1onger than 80 CharaCLeISccccuviiieiiiee ettt ettt e et e e e e tee e e et e e e e e tteeeeeataeesesbeeeseareseeanteseeennsenas 19

“Crunched” Program filESuueiei it e e e e e e e e e e e e e et rre e e e e e e e e e brbraeaeeeeeeannrraaees 20

REIMAIK FEMOVAL .. eeiiiiieeiie ettt ettt ettt e st e st e e sat e e s b e e sab e e sabeeeameeesabeeessneesnbeesneeesareesanes 20
THCK COMIMIENTS ...ttt ettt s h e sttt st e b e b e s bt e sae e e at e et e et e e sbeesaeesanesanesabeeneenneennees 21
TN o T o] oY G LR YU T e '] oY [o= S 22
(600 017/ o i ol =T o 1= L OO TSP UPRUPRPRRRPPR 24
) LA (ol =1 o 1] OO P PSP PTUUPTOPRUPIO 26
ST oL RV T T 1 LTSRS PPR 26
Converting an existing .prg to Use SUPErVariablesocciiiiiiiiieiiiee e e 27
PrEface filES ... et b e sh e st st b e b e b sneesaees 28
CUSEOM TOKENS. ...ttt ettt ettt e s bt e s bt e sae e st e s b e e bt e bt e saeesae e eateeab e e bt e beesbeesanesanesareeane 29
(oL Te I To Lo [XY ST U O P PP UPTOPPOPPTR 31
Part 2: COALIST STrNG ENZINE .eoiiiiieeeieee ettt e e e e ettt e e e e e s e s b e e e e e e e s sessnraaeeeeeess 32
Y I CTe el s [Lot d=T g or- K =B U]] o Lo R 34
G =T o] a1 o= 1Y/ o] o TR 0T o o Yo o R USRS 37
CUSTOM GlYPH tOKEN NAMES.. .. e et e e e s te e e e e ate e e s eate e e e eateeeeestaeeeennees 37
Yl T XYY 0 0] o] LV oo Lo [T 38
COALISE NEX AUMP ULIILY ...veeeiiiiee et e e s be e e e s be e e s sate e e e sareeeesnreeeesnnens 38
COALISt diSASSEMDBIETttt ettt e st e et e st e e s bt e e sabe e s beeenateesabeeesnreesareaeas 39
(00 RS Y g g oY) [Tolr= 1 Y=Y a o] o] 1T PSPPSR 42
GENEIral @SSEMDBIEE TUIES ...ttt ettt ettt e b e e beesaeesaeesaneeareeaee 43
(0o Te [2T [V SRS 44
13T .8 o Yo L3 USRS 45
LaDBIS ettt et e bt e e h et e s b et e at e e s bt e e bee e s be e e hteeeabeeebeeenabeesbeeenee 45
Y8 oY I T2V PSPPSR 46
LOCAI LADIS ..ttt ettt e st e st e e h bt e st et e ab e e s bt e e be e e s be e e hteeeabeesbaeesabeeebeeenee 47
F AN ToT 0}V (o TN I =1 oY= SRR 48
3V 0] oYl e F=T 4o Yo} o o USRS 49
(070 T=Y - [0T L3P URRRN 49
(o] (I o W Az | LU F= 4o o NPT 50
Accessing SYMDBOIS FroOmM BASIC.......ooiiieiii ittt e e e e e e ecirree e e e e s e esatbteeeeeaeeesnststeeeeaeeeesssstssneeaseseannnes 52
(6o To L= [= PP P PP PTUURTOPRURI 53

LY <T0 o [o X o o L3S 53

Lo 7= a= Vo (o PRt 54

o [o [fol o TTol Q- To [o [PP U STV PTO PR 54
F [T I Vo Lo [R 11 b RSP 54
AFEA <SIZES[, KTUIS] et e e e e e et e e e e e eeseabbabesaeeeeeesnbraseeeeeeeennnnes 55
[}V R | LU RS V7 [T [TSP 55
oY (o ISV 1 (VT IRV LN T [| RPN 55
Lo Y R (LU [=o IR VZ 1 (V=5 R S 56
S o T 1 o =SSOSRt 56
NEX KVAIUES[KVAIUEST ...]] ceiiiieiie et e e e e et e e e e e eeesaabbaeeeeeeeseenasbasseeeeeseennnnns 57
YIRSV =] (V> IRz |1 1= O | USSR 57
DItS <KDIT CNAIACTEIS> .. ittt et e she e sat e st esr e s bt e b e beesneesnees 57
Part 4 REFEIENCE. ...ei ettt sttt e s bt e s bt e e st e e s bt e e s abeesabeeesareesabeeenteesareeeanee 59
Appendix: PreproCessor DIFECLIVESciiiiiiiie it ccitee s srtee sttt e e st e e sste e e e sssteeeesantaeeessntaeeesenseeessanseeessans 60
Appendix: STriNg ENGINE DIFECLIVESciiiiiieeeeciiee ettt e ettt e e s etee e e seate e e e seataeeesentaeeesentaeeesessaeeesansaeaesans 62
Appendix: BASIC TOKENIZEN DIFECHIVEScccveeeieciiee e ettt ettt e e ettt e e ettt e e e eetee e e senbaeeeseataeeeseataeeesentaeeesnnsanaesans 67
Appendix: ASSEMDIET DIFECLIVES ...ccccuiiiie ettt e e et e e e eete e e e eeateeeeseataeeeseataeeesastaeeesasreneesans 69

Appendix: C64List command liN€ PAramMELErScoiiiiiiiiicieee et ssrre e e s srae e e ssabaeeessabeeeesans 69

Cé64List 4.00 User’s Guide

What is C64List?

C64List is a Windows command-line based tool to aid in cross-platform development of Commodore 64
software.

C64List converts and detokenizes Commodore BASIC .prg files into readable text files so they can be
edited using your text editor of choice on a Windows machine. Once your text-formatted source code
has been modified, C64List also re-tokenizes it back into a .prg file that can be loaded directly into a C64
machine or simulator such as Vice. C64List is also a symbolic assembler for writing and assembling your
own 6510 machine language programs, as well as a 6510 code disassembler, and file dump-to-ASCII hex
utility.

C64List was designed and developed by Jeff Hoag <c64List@gmail.com>.

History

2008: Co4List version 1.00 released (original release)
2010: C6A4List version 2.00 released
2011: C6A4List version 3.00 released
2019: C6A4List version 4.00 released.

Starting around 2012 it became obvious that the assembler was lacking in some needed features. The
assembler feature was on top of, and intertwined with the BASIC tokenization/detokenization code
which made it extremely difficult to maintain. It also prevented C64List from reporting meaningful
errors, particularly while assembling assembly language code. So rather than add to the existing difficult-
to-maintain codebase, a new stand-alone assembler project called “casm” was developed as an
independent project and started from the ground up. Once casm became mature, it was a lengthy
project to cleanly re-integrate the BASIC handling code. C64List version 4.00 is the culmination of this
work. Version 3.xx users will find version 4.00 much more code-developer friendly.

New in 4.00 highlights

Version 4.00 is a completely new code base from previous revisions. The code was refactored into three
major, mostly independent modules:

1. Source loader/parser/preprocessor. Code being read from a file first passes through this module,
which handles loading both BASIC and assembly code, tracking source file line numbers and
error reporting.

2. Casm—6510 assembler

3. BASIC tokenizer/detokenizer.

This is an important concept to understand because some features and directives are specific to certain

modules and not applicable (or behave differently) in others.

Some C64List 4.00 improvements of note:

e Errors are now reported with a file name and line number in source code for easy identification
e Improved and expanded alpha conversion functions
e User configurable upper/lowercase options for .prg-to-BASIC conversion output.
e Line numbers for labeled lines are preserved by default when converting to .Ibl format
e New directives
e Hexadecimal and binary values can be inserted directly into code using directives
e Pre-processor source-loader phase
e More than one directive is allowed on a single line of code
e New command-line options
e Improved output-to-console options for text formatted file types
e Much improved assembler features, including
0 Assembler directives
New pseudo ops
Math and labels are allowed in all instruction and pseudo op operands
More flexible parameter options in pseudo ops such as byte and ascii
Local, general, and important symbols
Nameless local labels
Supports alpha conversion and C64List-style strings in assembly code
Numeric expressions are evaluated algebraically rather than left-to-right
Parentheses are accepted and evaluated algebraically in expressions
The asterisk (“*”) as an expression term identifies the current address being assembled

O O 0O 0O 0O 0O 0O OO O0oOOo

The question mark expression terms ?,??,???,???? introduce random 4,8,12,16-bit
values into expressions
0 Most error messages include reference to source file and line number

This documentation is specific to C64List 4.00 and incremental revisions. While versions 4.xx are mostly
compatible with the 3.xx line, some of the behaviors are slightly different. The main thing to watch out
for when moving your code from 3.xx to 4.xx is in the assembler: please ensure that all expressions
follow algebraic precedence rather than assuming left-to-right.

How to use C64List

For code that is to be ported from existing Commodore 64 projects, the first step to cross development
is to devise a way to move files from a 1541 disk into the Windows file system. There are numerous
ways of doing this including the using Vice64 emulator, the X1541 cable solution, or over the internet
using CommodoreServer.com using a Comet64 modem or similar device. Once your file is in .prg format
on the local machine, you can use C64List to convert it to a plain text-based file. C64List also supports
loading from and saving programs into .d64 files.

The development model that C64List advocates is to-text once, to-.prg many times. In other words,
make the to-text conversion only once--at the beginning of development. Once this is done, all further
development is made using the .bas code file, and conversions for the source file to an executable .prg
file can be made as many times as necessary. Of course, if you are starting a new project from scratch,
there will be no .prg file to convert--you can simply create a new plain-text .bas source code file.

This development model gives you a much a much richer set of features in the text version of the BASIC
program than can be supported directly in the binary (tokenized) model, including readable/editable
cursor control codes, automatic line number renumbering, and line number-less development utilizing a
label model.

Getting help
If you need help remembering what parameters are available for use, just type
Cé4List

With no parameters and C64List will print out a help screen. Specifying the help parameters —h or —
help or —? will do the same thing. The nice thing about using an explicit option is that the help
parameter takes precedence over all other parameters: if you are typing a long command line but need
help remembering some option name, you don’t have to erase everything you’ve already typed—just
add —h and C64List will give you the help and nothing else. Here’s an example of the help screen:

C64List 4.00 Beta A
Copyright (c) Jeff Hoag 2008-2019
Loads Commodore 64 BASIC programs and converts them between various formats.
Automatically determines the format to load by the file extension.
Loads these file types and switches to the appropriate mode:
txt]| bl |bas]|d64|prg Enters BASIC tokenizer/detokenizer mode
asm Enters CASM assembler mode

c64list <filename.ext> [-<options>]
Control parameters include:
-ovr overwrite existing files
-verbose[:list] output additional information during conversion

-def:<var[=val]>

-—-— Tokenizer mode ---—-
-crunch
-rem
-labels

--—- Detokenizer mode ---—-
—-autospace
-Ccrsr
-keycase
-varcase
-pref:name
-alpha:<mode>
-supervariables

-—-—- Assembler mode ----
-symlvl !]-]@]auto
-sym3

--—- Output formats ----
-txt[:name]
-Ibl[:name]
-prg[:name]
-hex[:name]
-bin[:name]
-Ist[:name]
-sym[:name]

(load from .d64):
(save to d64)

-—-—- Miscellaneous ---—-

-range:<start>[:<end>]

-notbasic

Contact: c64List@gmail_com

C64List syntax

C64List is invoked with one mandatory parameter, the input filename, followed by optional command

define one or more parser variables

remove unneeded spaces
remove all REM statements
dump a list of defined labels to screen

add spacing for readability
preserve binary cursor codes
output keywords in lowercase
output variables in lowercase
load a preface file
ascii|lazy|alt]upper]lower|poke
create and use Supervariables

filter .sym output important|general]|local
output symbol table for c64List3.x consumption

save untokenized BASIC in a text format

save untokenized BASIC in a labelized text format
save in .prg format

save prg in an ASCII hex dump format

save binary file with no load address

save in a memory-disassembled format

output a symbol table file

"d64file[.d64]::C64 FILE NAME"
-d64:d64file[-.d64]::C64 FILE NAME™

output address range for _hex/.lbl files
loaded .prg file does not contain BASIC

line parameters. See the section entitled C64List command line parameters for a list of all possible

parameters. There must be at least one output format specified, or C64List will complain.

Ce4dlist <input filename> [options]

The exception to this rule is to output the help screen. Entering C64List with no parameters will display
the help screen and exit. Alternately, entering C64List with one of the help parameters (-h, -help, or -?)

will also display the help screen and exit, while ignoring all other parameters.

Part 1: BASIC

The first part of this document focuses on C64List’s BASIC language features.

Quick start: Converting a BASIC program to plain-text source format

We will go over C64List’s full syntax later, but just to get things moving quickly, let’s start out with an
example. Let’s assume that you have an old BASIC program named Examplel that you wrote years ago
and now you want to add something to it. You successfully extracted it from the old floppy disk or tape,
and now it’s in a file on your PC called Examplel.prg. If you try to load this file into an editor as-is,
you would find that it is very garbled. That’s because the file contains tokenized C64 BASIC code and not
just plain text. Since the file is no longer on a real C64, you can’t simply LIST it. Windows needs it to be
converted to a plain-text format first. This is where C64List comes in. To do this, you would type the
following command:

Coé4List Examplel.prg -prg:NewFile -hex —txt —Ibl:Examplel._bas

Normally, you’d just save the output to a single file, but this example converts it to four different formats
to show the various options that Cé4List provides.

Of course, C64List.exe is invoked in the command line first. After that, the first parameter is specified
without any leading “-“. This is the name of the file that you wish to convert. Here, we load
“Examplel.prg”. C64List uses the extension of the input file to determine what format to expect, so
in this example, it knows we are loading a tokenized, BASIC program file.

The remaining parameters tell C64List what formats to output. The name of the input file is propagated
to the target filename and appended with the specified extension. For example, —tXt tells C64List to
convert the loaded file into text format and save it as “Examplel . txt”.

If you accidentally forget to give the .prg file a different name, C64List will notify you that you are trying
to overwrite your input file (“Error: Output fille would overwrite input file”), and
then stop so your input file does not get overwritten.

In a single command line, C64List will output up to one of each file format that it supports. In our
example, we requested C64List to output four different files in four different formats:

e NewFile.prg (another tokenized BASIC file that should be identical to the original)
e Examplel.hex (a hex-dump format), and

e Examplel.txt (atext file)

o Examplel.bas (a specially-formatted text file, ideal for development)

Now that we’ve generated these files, let’s examine each of them in more detail.

NewFile.prg

Notice that we told C64List to name the output .prg file with a different name to avoid conflicting with
our original input file name. The new filename is specified by typing the new file after the output format
specifier, separated by a colon.

Why would we want to read a .prg file and output the same file contents to another file? Typically you
won’t need to do this, but it’s an interesting exercise. Behind the scenes, C64List actually internally
converts the file to text, then re-tokenizes it back into the C64 BASIC executable format. Since we didn’t
tell C64List to do anything exotic, NewFi le . prg will be identical to Examplel.prg. Some advanced
techniques, such as line number renumbering can be done in a single command line, in which the output
.prg file will be different from the input file. The content of this file is mostly unreadable by humans since
it is tokenized so we won’t actually look at it here. The .hex file (below) is much more readable so we’ll
look at that next.

Examplel._hex

0801: 33 08 64 00 8f 20 54 48 49 53 20 49 53 20 41 20|3.d.. THIS IS A

0811: 42 41 53 49 43 20 50 52 4f 47 52 41 4d 20 46 4F|BASIC PROGRAM FO
0821: 52 20 54 45 53 54 49 4e 47 20 43 36 34 4c 49 53|R TESTING C64LIS
0831: 54 00 51 08 6e 00 54 57 20 b2 20 31 30 20 3a 20|T-Q-n.TW . 10 :

0841: 48 49 24 20 b2 20 22 90 93 05 11 11 11 11 22 OO|HI$. "....... .
0851: 7e 08 78 00 99 20 48 49 24 20 22 54 48 49 53 20]|~-x-.. HI$ "THIS

0861: 49 53 20 41 4e 20 45 58 41 4d 50 4c 45 20 42 41]|1S AN EXAMPLE BA
0871: 53 49 43 20 50 52 4f 47 52 41 4d 22 00 92 08 82|SIC PROGRAM™. ...
0881: 00 99 20 22 46 4f 52 20 54 45 53 54 49 4e 47 22|.. "FOR TESTING"
0891: 00 ad 08 8c 00 99 20 22 1d 1d 1d 1d 1d 1d 1d 1d].-----.- M.
08al: 1d 1d 43 36 34 4c 49 53 54 21 22 00 bc 08 96 00| ..C64LISTI"™.
08bl1l: 54 57 20 b2 20 54 57 20 ab 31 00 d1 08 a0 00 8b|TW . TW .1......
08cl: 20 54 57 20 bl 20 30 20 a7 20 89 20 31 34 30 00O] TW . O . . 140.
08d1: d7 08 aa 00 80 00 00 00 | [

This lists the output .prg file in hexadecimal codes. This is what the file looks like when it is inside the
C64’s memory. You can read some of the strings, but there’s a lot of nonsense mixed in. That’s the
tokenized BASIC code we talked about earlier. Beginner-level BASIC programmers can ignore this format
if they wish, but this is a very useful output format for some advanced programming and debugging.

Examplel.txt
This should look pretty familiar. It’s what you would see if you LISTed the program on a C64.

100 REM THIS IS A BASIC PROGRAM FOR TESTING C64LIST
110 TW = 10 : HI$ = "{black}{clear}{white}{down:4}"
120 PRINT HI$ "THIS IS AN EXAMPLE BASIC PROGRAM™
130 PRINT "FOR TESTING™

140 PRINT "{right:10}C64LIST!"

150 TW = TW -1

160 IF TW > O THEN GOTO 140

170 END

Sharp-eyed readers will notice that the cursor control codes look very different from what you’d see on a
C64 listing. Instead of the familiar, but cryptic reverse-character control codes, here we have nice,
readable codes like {black} and {clear}. C64List does this for a few reasons. First, it’s far easier to read
than the C64-style codes. More importantly, most Windows editors are not able to display those special
characters, and even if they could be displayed, Windows keyboards don’t have those keystrokes. Finally,
C64List also compresses repetitive control characters, so instead of {down}{downH{down}{down}, it
outputs {down:4} which is much more readable and manageable.

If you wish, you can use the code in this file to begin your development. C64List is able to convert this
format right back into a .prg file that can be run on a C64. However, C64List has more nifty tricks up its
sleeve to make programming even easier. Check out the next output file for details.

Examplel_bas

REM THIS IS A BASIC PROGRAM FOR TESTING C64LIST
TW = 10 : HI$ = "{black}{clear}{white}{down:4}"
PRINT HI$ "THIS IS AN EXAMPLE BASIC PROGRAM™
PRINT "*FOR TESTING"

{:140}
PRINT "{right:10}C64LIST!"
™ = TW -1
IF TW > 0 THEN GOTO {:140}
END

This is the file output due to the —Ibl:Examplel.bas parameter. We renamed this file from the default .Ibl
extension to the .bas extension because we plan to use the source code in this file as the basis for our
new project.

The format is almost the same as the previously described .txt format, except what happened to all the
line numbers? If you have programmed BASIC code on a C64, you probably have discovered that line
numbers present difficulties, especially when you need to move parts of your code around, or add code
between line numbers. C64List lets you completely disregard all line numbers while you are developing
you program, and it will automatically add them into your code when you convert your program back to
a .prg for you. C64List advocates for all BASIC development to be done using this line-numberless format.
There is much more information about this feature in later sections.

Quick start: Converting plain-text code to a runnable BASIC program

Once you have completed modifying your text-based BASIC source code, it is time to convert it to the
.prg format so it can run on a C64. As it turns out, the C64List command line to do this is very similar to
the previous exercise. Simply tell C64List to read your text formatted source file and save it as a .prg file,
like this:

Cé4List Examplel.bas —prg

If you followed the previous example, you will run into an error here. Your original file, Examplel.prg
is still in the directory, so C64List warned that you told it to overwrite your original program (Error:
File already exists: Examplel.prg). The best practice is to create a work area in another
directory, away from your original file and move your new source file into the fresh work area and do all
new development there. This will ensure your original file is safe from being overwritten. Once you have
created your new work area and changed directories there, retry the command again. This time it should
successfully save a new file called Examplel.prg.

But what if run the program and find that you introduced bug? You will make some more changes, then
do another conversion to .prg, but you’d get another error because your old, buggy .prg file is still there.
You could delete the buggy Examplel.prg and then re-issue the C64List command again. Better, you
can just tell C64List to overwrite the buggy file. You can force C64List to overwrite the file by using

the -ovr parameter.

Cé4List Examplel_bas -prg -ovr

Now C64List will overwrite the buggy old Examplel.prg with the new version. Of course, you will need to
be judicious in your use of -ovr so you don’t overwrite something important. Putting -ovr on a command
line will cause C64List to overwrite all the output files you specified.

Converting to text: Cursor control characters

In the Quick Start section we saw how C64List converts the cursor control characters into handy, editable
strings. If, for some reason, you don’t want C64List to make that conversion, you can add -crsr to the
command line to preserve the cursor control characters.

Cé4List Examplel.prg -txt -crsr

100 REM THIS IS A BASIC PROGRAM FOR TESTING CG64LIST
110 TW = 10 : HI$ = "Ov"

120 PRINT HI$ "THIS IS AN EXAMPLE BASIC PROGRAM'
130 PRINT "FOR TESTING"

140 PRINT *C64LISTI!™

150 TW = TW -1

160 IF TW > O THEN GOTO 140

170 END

Although the graphics characters will appear as unintelligible ASCII characters when —-CrsSr is specified,
if left alone, will translate back correctly without issue when converting the file back to . prg format.
Don’t editing strings containing these characters; this will most likely destroy those characters. Unless
you have a good reason to preserve the control characters, C64List recommends not to use the -crsr
parameter.

Converting to text: Upper and lower case options

As you can see from the examples, when converting to the text format, C64List outputs BASIC keywords
and variable names in uppercase. This preserves some of the nostalgic feel of programming directly on a
C64. However, some people may find it easier to program on modern equipment using lowercase.
C64List gives the option to output keywords and variable names in lowercase if desired. Adding -keycase
to the command line will output all the BASIC keywords in lowercase. Likewise, adding -varcase to the

command line will output all the BASIC variable names in lowercase.

Cé4List Examplel._prg -Ibl —keycase -varcase

rem THIS IS A BASIC PROGRAM FOR TESTING C64LIST
tw = 10 : hi$ = "{black}{clear}{white}{down:4}"
print hi$ "THIS IS AN EXAMPLE BASIC PROGRAM"
print "FOR TESTING"

{:140}
print “{right:10}C64LIST!"
tw = tw -1
if tw > 0 then goto {:140}
end

When converting back to .prg format, Cé4List will automatically convert all keywords and variable to
uppercase as appropriate.

It is also possible to change the case of quoted strings using the -alpha:lower command line option. See
the section entitled Mixed Character Case Support for more information on alpha modes.

Supported input file types

The first command line parameter on the C64List command line tells what C64List what file to read, and
what file format to expect. Since the extension of the input file determines the file type, the file’s
extension must correctly identify in which format the file is stored. C64List can read the following file
types:

Extension | File type

.prg A tokenized BASIC, or machine language program.
.de4 A program file located inside a .d64 file

txt Plain-text code

.bas Plain-text BASIC code

bl Plain-text BASIC code, but without line numbers
.asm Plain-text assembly code

.sym Plain-text assembly code, used for symbol definitions

When reading a .prg or .d64 file, C64List automatically understands that it needs to detokenize the BASIC
code into plain text. Typically, this operation won’t be done very often—you’ll do this once to get your
code into editable format, then mostly convert the other direction.

The .txt, .bas, or .lbl file extensions signal that C64List expects plain-text source code files. These file
types are interchangeable when reading—As input, C64List treats them in the same manner, and they
may contain a mix of labeled or line-numbered code. They may contain BASIC code and directives, as
well as assembly code enclosed in {asm} and {endasm} directives. Once the source code has been read,
C64 can tokenize and/or assemble it into a .prg file that can be executed on a C64.

New behavior for C64List 4.00: C64List recognizes .asm files as assembly code. If you specify an .asm file

as your input on the command line, C64List 4.00 will enter casm (standalone C64List assembler) mode.
This mode is specially designed for assembly-only source code, where no BASIC code is allowed. The
casm tool is now integrated directly into C64List, so if you have used the casm tool in the past, this is
new the way to invoke it. Please see the casm user’s manual for more information on this mode. Further,
C64List 4.00 automatically switches into casm mode when an .asm file is included or used from BASIC
code; {asm} and {endasm} directives are not required around or inside .asm files.

If the file to be input has no extension, or if the extension is not what C64List expects, the -loadext:<ext>

command line parameter overrides the file’s extension so you don’t have to rename the file. For
example, the following command will load the file “Examplel” (with no extension) as a .prg file.

Cé4List Examplel —loadext:prg -1bl

Supported output file types

C64List can write one or more of the output file formats it supports in a single run. Simply add the
desired option to the command line and C64List will output a file of that type. C64List will write the
following file types:

Parameter | Action

-prg A tokenized BASIC or machine language program.

-bin Same as prg, except the output file will not have a load address

-hex An 8-bit hex dump of the program, as if it were loaded into C64 memory.
-txt A detokenized, text version of a BASIC program, with various options.
-Ibl Same as txt, except with line numbers removed (see explanation below).
-Ist Machine language disassembly

-sym Assembly language symbol table file

The .prg format is an exact binary image of a Commodore 64 file as stored on a 1541 disk. It contains a
load address followed by consecutive bytes of data that are to be stored at and following the load
address. If the file is BASIC, the data is encoded in C64 tokenized form, and is, for practical intents, not
human readable. If the file is machine language, the data simply contains the machine codes as it was
programmed, and is completely not human readable. This file format is supported by many PC-based
C64 emulators, including VICE, and by CommodoreServer.com, and is the preferred binary format for
C64List.

The .bin format is identical to the .prg format, except that the load address is omitted. This is useful if
you wish to generate a file containing only data, such as character definition data, for example.

The .hex format is a text file that shows a formatted hex-dump of memory starting at the load address
and continuing for the length of the file. It is intended to show what the program would look like if it
were loaded into the Commodore 64’s memory and a hex dump were done with a monitor-type
program on the C64 itself. C64List will write this format, but does not support loading files in this
format.

As an output format, .txt files are plain-text, untokenized, line-numbered BASIC code. Note that the .bas
format is not an output file type, since it is identical to .txt.

The .Ibl format is similar to the .txt format, but uses labels instead of line numbers. See the following
sections for more information on how to use this format. For loading purposes, this format is treated
exactly the same as .txt files. When loading any of the .txt, .bas, or .Ibl file formats, C64List will
automatically identify numbered or numberless formatted code (or even a mix of both), and assign line
numbers where needed. When outputting via the -Ibl option, all line numbers are removed from the
output and labels are inserted where necessary.

The .Ist format outputs memory as a disassembled machine language program, by default, starting at the
load address. Use the -range:S<startaddr>-<endaddr> option to limit output to a specific memory range.
Note that any disassembler, including C64List, easily gets confused by inline data, and disassembly listing
may become garbled. Attempting to disassemble BASIC code will also produce meaningless output.

Output file naming

C64List can write one or more of the output file formats it supports in a single run. Simply add the
desired option to the command line and C64List will output a file of that type. If only the option is
specified, the output file will take the name of the input file, and only the extension will be different.
Optionally, the output file may be explicitly named. Here are some examples:

Cé4list oldname.txt -prg the output file will be named oldname . prg
Cé4list oldname.txt -prg:newname the output file will be named newname . prg
Cé4list oldname.txt -prg:newname.bro the output file will be named newname.bro
Cé4list oldname.txt -prg:newname. the output file will be named newname
Cé4list oldname.txt -prg:. the output file will be named oldname

Output to console

The text-based output formats .txt, .lbl, .Ist, and .hex may also be output to the screen instead of a file by
specifying “con” as the filename. For example:

Coé4list basicfile.prg -hex:con output is directed to the screen

D64 file format support

C64List supports reading and writing program files directly from and to .d64 files. Loading and saving
files from .d64 is accomplished with very similar syntax as loading and saving in the Windows file system.
The load filename and —prg:filename syntax has been expanded to allow for specifying a program file
inside a .d64 file. The following example loads the file called COMMODOREG4F ILE from inside the D64
file called D64Fi1 le .d64 in the Windows filesystem, detokenizes it, re-tokenizes it, and then stores the
resulting program in a file named C64File._prg.

Cé4List D64File.d64: :COMMODOREGAFILE —prg:C64File

Specifying the .d64 extension is optional. The double colon separates the D64 filename from the .prg file
within the D64 file. It is important to note that while the D64 file’s name is case insensitive, the prg file
within the D64 is strictly case sensitive. Additionally, if spaces appear in the prg filename, you must
enclose the filename in quotes.

Similarly, program files may also be written into to a D64 file using the same syntax:
C64List program.txt -d64:D64File::7C64 FILE”

In this example, a text-based source file is tokenized and then saved to a file called “C64 FILE” inside the
D64 file called D64Fi le .d64. For the output to go to a D64 file, you must use the -d64 command line
parameter, followed by the D64::PRG formatted filename. This command line is an example of omitting
the .d64 extension. Once again, the .prg filename is case sensitive and must be enclosed in quotes since
there is a space in the filename. When saving to a D64 file, if the specified D64 file does not already
exist, a new one will automatically be created for you. Otherwise, the file will be saved in the existing
specified D64 file.

Adding add the -ovr command line parameter will overwrite the entire .d64 file, so take care with this
parameter!

If you want to save-with-replace within the D64 file, use the C64 save-with-replace syntax:

C64List program.txt -d64:D64File::”@C64 FILE”

Coe4List Directives

C64List Directives are instructions to C64List to handle certain tasks or modify how some tasks are
undertaken. To provide the most natural results, different classes of source code directives are defined,
recognized and processed by four different layers of C64List, and handled during different phases of

C64List’s work. Usually you won’t need to think much about the differences, but understanding this
concept gives some insight into the nuances of some of the directives. We’ll discuss each type of
directives in more detail.

e Preprocessor Directives: These directives control the loading and pre-parsing the source code,
and are agnostic to whether the code is BASIC or assembly.
e String Engine Directives: These directives are only present within quoted strings, and add rich

string-handling features to C64List. These directives work in both BASIC and assembly code
strings.

e Basic Tokenizer Directives: These directives control and modify how BASIC code is processed;
attempting to use these in assembly code will produce an error.

e Assembler Directives: These directives control how assembly code is handled; attempting to use
these in BASIC code will produce an error.

Directives are not nestable; they are treated individually as they are encountered.

Preprocessor Directives

The first level of directives are handled by the preprocessor, which means that these directives apply
equally to BASIC and assembly language source code. (note: This is different from C64List 3.xx, where
directives were only allowed in BASIC.) A preprocessor directive resolves by being replaced by something
in the source code at the time it is processed (some resolve to empty). This means that the directives
themselves are never seen by either the BASIC tokenizer or assembler; the replaced text is what is
passed on. If the preprocessor does not recognize a directive as its own, the directive get passed to the
next level of processing (String Engine, BASIC, or Assembler). See Appendix: Preprocessor Directives for

the full list of preprocessor directives.

String Engine Directives

C64List contains a module known as the C64List String Engine. This allows Windows to display coded
C64-style strings (for example, C64 cursor code characters such as “{reverse:on}{red}{down:4}’) as
human readable codes. We already saw an example of this in the section Converting to text: Cursor

control characters, above. Please see the section Part 2: C64List String Engine for more information on
the String Engine itself, and Appendix: String Engine Directives for the full list of String Engine directives.

Basic Tokenizer Directives

The BASIC tokenizer directives, as their name suggests, are specific to BASIC code. A number of these
directives are dedicated to labels and managing line numbers (e.g. {renumber}), while others are used to
format source code (e.g. {keycase}) or control the output (e.g. {remremoval}). There are others as well.
The BASIC directives are handed in various stages of the tokenization process: some apply to the entire
BASIC code (for example, {loadaddr}), while others apply to specific areas of the code (e.g.
{remremoval:on}/{remremoval:off}). The {alpha} directive appears in both the BASIC tokenizer and
assembler. For the full list of this type of directives, see Appendix: BASIC Tokenizer Directives.

Assembler Directives

There are fewer assembler-specific directives, since most assembler controls are made through pseudo
ops rather than directives. However there are a few. The {alpha} directive appears in both the assembler
and BASIC Tokenizer. For the full list of Assembler directives see Appendix: Assembler Directives.

Including source code files

If you would like to split your source code into multiple files, C64List has two ways of supporting this.

The {include:<filename>} directive inserts the specified file at the location in the code where the
directive exists. 50 levels of inclusion are allowed. You must avoid circular includes, otherwise C64List
will complain. For example, if a.txt includes b.txt, and b.txt includes a.txt, this will cause an error.

Alternately, the {uses:<filename>} directive is very similar to {include}, but it is smarter about things.
When C64List encounters a {uses} directive, it first checks to see if the specified file has already been
included. If not, it parses the specified file; if however, it sees that the file has already been parsed, it
will silently ignore the request to use the file. This is superior to {include} for a few reasons:

1) It automatically prevents circular inclusion

2) It allows multiple files to include the same other file without complaining about it

3) Since multiple files can uses the same third file, it eliminates a lot of file order dependencies

{uses} and {include} directives may provide a full path to the file. In this case, C64List will automatically
add the location of the file to its search path list. You may also use the {addsearchpath: pathl[, pathn]}
directive to add paths to the search path list. For {uses} and {include} that do not provide a full path,
C64List searches for matching filenames in paths from the search path list.

Parser variables

Parser variables (aka preprocessor variables) can be defined to customize the C64List build process; for
example, parser variables are used in conditional compiling (see the section on Conditional compiling
for more information), or as a very simple text-replacement macro. Parser variables are not related in
any way to BASIC variables or assembler symbols. They are only used by the source loader and
preprocessor and are handled before any BASIC is tokenized or assembly code is assembled. These
variables may be defined with the {def:<variable name>} directive. For example:

{def:compilethis}

Defining a parser variable automatically assigns a value of “” to the variable. You may specify your own
string value to a parser variable using the following syntax:
{def:<variable name>=<value>}

Parser variables may also be defined from the C64List command line, using the —def:<variable name>
command line parameter. Any number of —def parameters are allowed on the command line. For

example:
Cé4List program.bas -prg -def:compilethis -def:skipthis

If desired, the value of the variable may be inserted into the source code using the {usedef:<variable
name>} directive. The directive itself is replaced by the value of the variable in the source code prior to
tokenizing or assembling. This type of text replacement is similar to a primitive form of macro.

Finally, a parser variable may be undefined with the {undef:<variable name>} directive. Undefining a
variable completely removes it from the list of variables. For example:
{undef:skipthis}

System-defined parser variables

C64List automatically defines parser variables depending on how C64List is started:
e _ Casm becomes defined when C64List is started in casm mode (standalone assembler mode)
e _ C64lList becomes defined when C64List is started in C64List mode (BASIC code)

__BuildRev becomes defined when the {buildrev:} directive is used. The value is numeric and is

incremented by 1 each time the project is built successfully.

e _ BuildDate is set to the date C64List is run, in the form “YYYY-MMM-DD”, enclosed in quotes.

e _ BuildTime is set to the time C64List is run, in the form “HH:MM:SS”, enclosed in quotes.

e _ BuildRid64 is set to a 64-bit random ID each time C64List is run. It is rendered as a string of 16
hexadecimal digits enclosed in quotes.

e _ BuildRid32 is set to the lower 32 bits of __ BuildRid64. It is rendered as a string of 8
hexadecimal digits enclosed in quotes.

These parser variables may be useful to add to source files that might be used by both BASIC code and
stand-alone assembler.

Conditional compiling

C64List provides a means of conditional compiling through the use of parser variables and the following

directives:

{ifdef:<variable name>}
{ifndef:<variable name>}

{else}
{endif}

These directives allow blocks of code to be ignored by C64List under various conditions. You can define
(or undefine) a parser variable, and then use an {ifdef} ... {endif} pair (or other various forms) to
delineate the conditional code.

Only one conditional block can be in effect at any given time in the code. In other words, nesting of
{ifdef} is not allowed.

In C64List 3.xx, these directives were only allowed in BASIC. In C64List 4.xx, they are now allowed
anywhere in the code, BASIC or assembly. Additionally, as of version 4.00, multiple directives may be
present on the same line of code, as well as mixed with BASIC or assembly code.

A conditionally excluded block of code must end with {endif}; C64List will inform you if you forgot to
insert one.

Lines longer than 80 characters

Traditionally, Commodore 64 BASIC programs were limited to 80 characters. This is a limitation of the
C64’s BASIC editor, not the language or parser itself, so a .prg file containing lines with more than 80
characters will run fine. The caveat is that these long lines can’t be modified on a real Commodore 64 or
emulator. Attempts to modify such a line will result in the end of the line (beyond the 80" character) will
be truncated.

C64List does not have a line length limit. You may enter and edit extremely long program lines if desired.
Just remember you will not be able to edit your program using the C64’s built-in editor. On the other
hand, if you are certain that all your modifications will be made using C64List, then go ahead and make
lines as long as you wish—programs will take up less memory that way!

“Crunched” program files

Since the RAM in a Commodore 64 computer is rather limited, at times you may need to employ some
tricks to save memory. When you type a BASIC program into the C64, it stores all the spaces you type,
along with your code. These spaces make your code more readable, but every space stored in memory
chews up one byte. This can add up quickly. If your program is too big to fit into memory, one thing you
can do is to remove all the unnecessary space characters in your program. C64List will do this for you if
you specify the -crunch parameter on the command line. When crunching is enabled, C64List will
automatically remove all unnecessary spaces in your program before storing it in the destination file.
Spaces inside quotes are left alone, since they are necessary to make your program output look right.

Cé4list Examplel._prg -txt -crunch

100 REM THIS 1S A BASIC PROGRAM FOR TESTING C64LIST
110 TW=10:HI$="{black}{clear}{white}{down:4}"

120 PRINTHIS$"THIS 1S AN EXAMPLE BASIC PROGRAM™

130 PRINT"FOR TESTING"

140 PRINT"{right:10}C64LIST!"

150 TW=Tw-1

160 IFTW>0THENGOTO140

170 END

Here we can see that all the unnecessary spaces have been removed. You may notice that it is somewhat
difficult to read. C64List can make your life much easier with its Autospace function when you are
converting a tokenized file to text format. Autospace strategically inserts spaces into the output file to
make it much more readable. Specifying the -autospace option when converting from a binary format
file to a text format file (detokenizing) will activate autospace mode.

Here is the same example above, using the -autospace option:
Cé4list Examplel.prg -txt -autospace

Notice how C64List added some spacing into the listing so it is much easier to read.

100 REM THIS IS A BASIC PROGRAM FOR TESTING C64LIST
110 TW=10 :HI$="{black}{clear}{white}{down:4}"

120 PRINT HI$"THIS IS AN EXAMPLE BASIC PROGRAM™"

130 PRINT "FOR TESTING™

140 PRINT "{right:10}C64LIST!"

150 TW=Tw-1

160 IF TW>0 THEN GOTO 140

170 END

REMark removal

Good programmers use lots of comment in their code. However, due to the limited amount of memory
space in the C64, you may need to remove all your nice REMs in order to squeeze your program into
available memory. C64List will do this for you as well. When -rem is specified on the command line
during a conversion to a binary format, C64List will remove all REM statements and the following
remarks before storing the file. C64List also checks to see if the REM is on a line with other code. If so, it

will also strip the colon before the REM statement. And if the only thing on a line was a REM statement,
Cé64List will completely remove the line from the program. Once nice thing about using C64List to
develop your programs is that you can put all the comments you want into the text file, and C64List will
handily remove them when converting your program to .prg format, but the comments will remain safely
in your original text file.

Specifying -rem when converting from a binary to text format has no effect.

Normally, it would be dangerous to simply strip all REM statements from a BASIC program; if a GOTO or
GOSUB targets a line that contains nothing but a REMark statement, the line is completely removed.
This means that an ?UNDEF>D STATEMENT error would occur when you attempt to run the program
later. However, C64List is smart enough to automatically change any GOTO or GOSUB statements that
point to a removed line, so that it targets the next line that actually contains BASIC code after the point
where the line was removed.

If either the REMark removal or crunch options is used, the re-tokenized binary file is no longer
guaranteed to be identical to the original binary file, even if no editing was done to the intermediate text
version. This is because these options cause C64List to automatically edit the file for you. However, the
modified code will behave the same when run.

Tick comments

C64List also supports a special type of comment that is not native to the C64. When you are developing
a program using the text format, you may put as many of these comments as you wish, and C64List will
strip them out automatically for you. A single quote mark (") begins one of these comments, and it
continues to the end of the line. These comments may be placed at the end of a line of code, or stand-
alone on their own line as shown in the following example:

"this comment will be completely removed

REM THIS IS A NORMAL REMARK THAT CAN REMAIN IN THE PROGRAM
110 GOSUB 10000 “this comment will also be removed

120 PRINT “THIS HERE * IS NOT A COMMENT”

130 DATA THIS * 1S NOT A COMMENT EITHER

140 REM NOR 1S THIS * ONE

150 DATA BUT THIS ONE : * 1S

Tick comments cannot be placed inside quotes (since tick is a legal character to print), nor on a line after
a DATA statement or REM statement (since a tick is both a valid DATA and REM character).

Tick comments are only valid in BASIC code; do not attempt to use this type of comment in assembly
code.

Tick comments also don’t apply to preprocessor directives—these directives are handled before BASIC
ever sees the source code.

Line number re-numbering

C64List allows you to completely re-number a BASIC program. To do this, you must first convert the
program to text format. Once in text format, edit the file and add renumbering directives into the text,
and then convert it back to tokenized BASIC. The renumbering options are quite flexible, and allow you
to number different parts of the program differently. All GOSUB/GOTO targets are automatically
updated to point to the new line numbers. The re-tokenized file will be different from the original binary
file (and it may even be a different length) due to the line number changes, but the resulting program
will execute in the same manner as the original.

To renumber a program, the only thing necessary is to add the directive {renumber} at the top of the
file. This will cause the whole file to be renumbered from the beginning, starting with line number 0 and
incrementing by one for each line.

However, if finer control over the resulting line numbers is desired, other directives may be added at any
point in the program. It is advisable, but not imperative, to place these directives on lines that do not
contain BASIC code. The renumbering directives are described below:

{renumber} Request that the following BASIC program be renumbered.

Restriction: must be placed before any BASIC code in the file.

{number:<line number>} Causes the next line of BASIC code to have the specified line number.
Restrictions:

. The requested line number must be greater than any line number
encountered so far in the file; if this requirement is not met, the directive
will be ignored.

. The specified value must be a valid line number for the C64 (0-
63999)

{step:<value>} Causes the line numbering to increment by the specified value. Activates
on the second line of BASIC code after the directive.

Restrictions:

. Must be positive
. Must be small enough to allow all lines in the program to be
assigned valid line numbers

{nice:<value>} Causes the next line number to be “niced” to a multiple of the given

value. Typically, the specified value should be some factor of ten. For
example, if the next line number to be assigned would naturally be 437,
specifying {nice:100} will instead cause the next line number to be 500.

Restriction: Must cause the next line number to be within the valid range.

{:<line number>} This is actually a label. However, numeric labels also serve as renumbering
hints to the renumber function. C64List will attempt to re-assign the value
of the numeric label as the line number. This is similar to the
{number:<line number>} directive and is especially useful when converting
from .prg to .lbl and then back to .prg.

The following example shows how to renumber a BASIC program. Once the program has been converted
to text, add the lines with the renumbering directives as shown:

{renumber}

27 X=99

28 GOTO 39
{nice:100}{step:100}

29 X=100

39 PRINT"{down:2}THIS IS LINE 39"
42 PRINT"THIS IS LINE 42"
48 GOSUB 93

67 IF X=99 THEN GOTO 29
68 END

{nice:1000}

{step:10}

93 FOR D=0 TO 1000

94 NEXT

95 RETURN

Next time you convert this file, it will magically be renumbered as you requested!
C64List renumO.txt —txt:renuml

Gives us the following listing:

0 X=99

1 GOTO 200

100 X=100

200 PRINT"{down:2}THIS IS LINE 39"
300 PRINT"THIS 1S LINE 42"
400 GOSUB 1000

500 IF X=99 THEN GOTO 100
600 END

1000 FOR D=0 TO 1000

1010 NEXT

1020 RETURN

Notice how lines 27 and 28 were renumbered to 0 and 1, since the only directive received to this point
was a renumber. After we gave the {nice:100} and {step:100} directives, the numbering started at 100
and increased by 100 thereafter, until we got to the {nice:1000} and {step:10} directives. Then the
numbering started at 1000 and incremented by 10.

C64List will also accept source files where some line numbers are missing. The missing line numbers will
be filled in automatically, if possible.

Convert to labels

Anyone who has ever programmed in Commodore BASIC has undoubtedly run into issues with line
numbering. For example: you didn’t leave enough space between line numbers, or decided to move a
block of code earlier or later in the program. Although the renumber function described above will help
fix these issues, a more convenient method is to eschew line numbers entirely. C64List allows you to do
this. Of course, the Commodore would not be happy with a BASIC program that did not have line
numbers, so line numbers need to be added back in at some point. C64List takes care of this for you
automatically. In the meantime, while working with the numberless code, one needs to be able to
define GOTO and GOSUB target points in the code. C64List allows the developer to identify such points
using labels, and reference them in the control transfer statements. Like all other C64List directives,
labels appear within curly braces. They are identified as labels by a colon immediately following the
opening brace. No spaces are allowed between the opening brace and the colon.

If you have an existing BASIC program and would like to convert it to use labels instead of line numbers,
C64List will easily convert it for you. Just specify the output file using the —Ibl command line parameter.
This will output a text file just like normal, except that all line numbers are removed. In their place,
where necessary, labels are inserted. Only lines that are targets of a GOTO, or GOSUB, etc. will contain a
label, and all references to these labels will be converted to the name of the given label. Labels are
automatically assigned by creating a label that is derived from the original line number of the target line.
For example, take the following nonsense program:

10 PRINT"THIS IS THE FIRST LINE OF THE PROGRAM'

11 REM REM-ONLY LINE WITHOUT ANY REFERENCES

20 REM REM-ONLY LINE WITH A REFERENCE

30 GOTO 50

40 THIS LINE WILL CAUSE A SYNTAX ERROR IF EXECUTED
50 PRINT"MADE 1T SUCCESSFULLY PAST THE ERROR™

60 END

70 GOTO 20:REM JUMPING TO A REM STATEMENT

Run it through this C64List command line:
Coé4List labeltest.txt -1bl

And it will be converted to this:

PRINT"THIS IS THE FIRST LINE OF THE PROGRAM

REM REM-ONLY LINE WITHOUT ANY REFERENCES
{:20}

REM REM-ONLY LINE WITH A REFERENCE

GOTO {:50}

THIS LINE WILL CAUSE A SYNTAX ERROR IF EXECUTED
{:50}

PRINT"'MADE IT SUCCESSFULLY PAST THE ERROR™

END

GOTO {:20}:REM JUMPING TO A REM STATEMENT

Notice that there are no line numbers, and that two labels have been inserted that look surprisingly like
line numbers that used to be in the program. C64List found that these two lines of BASIC code were
targets of a GOTO or GOSUB, so it automatically inserted the labels, and changed the GOTO statements
to specify the labels rather than the line numbers. Most likely you will want to use your text editor to

search-and-replace all instances of each label with a more meaningful word, such as {:Loop}. Perhaps in
another 30 years C64List will be smart enough to insert meaningful labels for you using its super-
artificial-intelligence code understanding engine, but for now it leaves that task to you. Regardless of the
actual labels (C64List-generated, or text selected by you), C64 will be able to convert the program back
into line-numbered code.

New in C64List 4.00:

1. numbered labels of the form {:<numeric value>} are called keeper labels and are used as hints
when adding line numbers back into the .prg file. C64List will assign the line number inside the
label to the next line of code, if possible.

2. When no renumbering is in effect, C64List will automatically attempt to fill in missing line
numbers.

Earlier we talked about how removing all REM statements could be dangerous due to the fact that some
GOTOs or GOSUBS might call a line that only contains a REM statement. C64List is just as smart about
removing REM statements in the labeled format as it is the line-numbered format and using the -rem
option is completely safe. If a control transfer statement’s target is a line that was completely
obliterated due to only containing a REM statement, the label will be preserved and any control transfers
to the line will be saved. Adding a —rem to our above example

Coe4List labeltest.txt —Ibl -rem

Will convert it to this:

PRINT"THIS 1S THE FIRST LINE OF THE PROGRAM"

{:20}

GOTO {:50}

THIS LINE WILL CAUSE A SYNTAX ERROR IF EXECUTED
{:50}

PRINT"'MADE IT SUCCESSFULLY PAST THE ERROR™

END

GOTO {:20}

Now there are no REM statements at all. Yet now, the GOTO 20—which used to point to a line with only
a REM statement—now has a label for a target, and so is still valid. Creating a .txt file (as opposed to a
.Ibl file) with the —rem option on this program without using renumbering options would have created a
faulty program.

Now that we have a nice, line-numberless, labelized BASIC program, we can edit it and change the labels
to something meaningful. Also, don’t forget to set the renumbering options if you wish. Here we have
manually edited our example to use labels that actually mean something:

{renumber}

PRINT"THIS IS THE FIRST LINE OF THE PROGRAM
{:FormerRemOnlyLine}

GOTO {:SkipErrorLine}

THIS LINE WILL CAUSE A SYNTAX ERROR IF EXECUTED
{:SKkipErrorLine}

PRINT"'MADE IT SUCCESSFULLY PAST THE ERROR™

END

GOTO {:FormerRemOnlyLine}

Now when we convert it back to .txt format, we get a BASIC program that has been renumbered as per
our instructions, even though there were no line numbers at all specified in the source file! We could
have been more specific with our line numbering instructions, but in this case we didn’t care.

C64List editedtest.txt —txt

PRINT"THIS 1S THE FIRST LINE OF THE PROGRAM"
GOTO 3

THIS LINE WILL CAUSE A SYNTAX ERROR IF EXECUTED
PRINT"'MADE IT SUCCESSFULLY PAST THE ERROR™

END

GOTO 1

AR WNEFLO

Static labels

If you want to excise a block of BASIC code, but you want C64List to act like it is still there, you can use
the {assign} directive. This is useful for some programming models where there is a resident set of BASIC
code at a certain range of line numbers, and dynamic blocks of BASIC code that can be swapped in and
out at will.

For example, if you have some resident BASIC code that is numbered from line numbers 0 to 999, and
then your dynamic code blocks start after that, you can write each dynamic code block independently
from the resident part.

The {assign:<label>=<line number>} tells C64List that whenever it finds a reference to <label>, to treat it
as if line number </ine number> exists, even though it doesn’t. Here is an example:

{assign:DrawGrid=100}
{assign:ClearGrid=120}

GOSUB{:ClearGrid}
GOSUB{ :DrawGrid}
END

C64List can create a valid BASIC program from this code. Of course it will not run properly without a
system to link in the resident code.

The {assign} directive does not reserve any line numbers, or modify renumbering in any way. Therefore it
is up to the user to prevent these line numbers from being assigned during renumbering.

You can also use this feature during development if you want to suppress errors due to missing lines

before you are done with the development.

Supervariables

C64 BASIC limits variable names to 2 characters. This can make BASIC source code cryptic and difficult to
read. C64List has a feature called Supervariables to address this limitation and support long variable
names.

A C6A4List supervariable is defined like this:
{var:LongVariableName=sh}

This tells C64List that the two-character BASIC variable SH is equivalent to the much more readable
supervariable named LongVariableName. Using the newly defined LongVariableName in your code looks
like these examples:

{var:LongVariableName} = 942
print {var:LongVariableName}

Here are some other working examples of Supervariables:

{var:superduperlongvariable=s0}
{var :SuperDuperLongString$=s1$}
{var :superduper%=s9%}

{var:superduperlongvariable} = 942
{var:SuperDuperLongString$} = "hello there!"
{var:superduper%} = -23280

print {var:superduperlongvariable}, {var:SuperDuperLongString$}, {var:superduper%}

When you run C64List on code containing Supervariables, C64List will output a summary of all the
Supervariable assignments it found.

—————————— Supervariable assignments-------—-—————————-
{VAR: SUPERDUPER%=S9%}

{VAR: SUPERDUPERLONGSTRING$=S1$}

{VAR: SUPERDUPERLONGVARIABLE=S0}

3 Supervariable assignments found.

If you load the .prg file and LIST it on a C64, you will see that the above code compiled to this:

0 SO = 942

1 S1$ = "HELLO THERE!™
2 S9% = -23280

3 PRINT SO, S1$, S9%

Converting an existing .prg to use Supervariables

C64List has a function for automatically converting an existing .prg file to Supervariable format. Use
the -supervariables command line option to automatically detect variable names in your code, and
automatically create long variable names for them. For example, we can convert the
supervariable.prg file we just created back into a labelized listing as follows:

Cé4List supervariables.prg —Ibl —supervariables

Opening the file, we see that C64List identified all 3 of the BASIC variables used in the program, assigned
long Supervariable names for them, and then used them in the code as well:

{var:SuperVariable0000=S0}

{var:SuperVariable0001=S1$}

{var:SuperVariable0002=S9%}

{var:SuperVariable0000}= 942

{var:SuperVariable0001}= "HELLO THERE!"

{var:SuperVariable0002}= -23280

PRINT {var:SuperVariable0000}, {var:SuperVariable0001}, {var:SuperVariable0002}

Now that long variable names have been assigned, you can use your text editor’s and search-and-replace
function to replace the autogenerated names with something more meaningful.

Also note that this example shows that the variable type identifiers (S and % for string and integer types)
are optional in the Supervariable long names. For clarity, you may wish to include these symbols during
your search-and-replace. The variable type identifiers are still required in the short names as usual.

Preface files

When converting from .prg format to text, there is no input source for adding directives, since directives
go into text-formatted files, and not .prg files. C64List’s preface file feature solves this by allowing a text-
formatted preface file to be loaded immediately prior to the .prg file. In this way a user may add
directives as if they were at the beginning of the .prg file.

Some usage examples for preface files is are:

. When the .prg file contains assembly code, the preface file can contain symbol assignments;
symbol names will be inserted into the code where possible.

. Add {alpha}, {keycase}, {varcase} or other directives that customize the resulting outputted text.
. Define parser variables with {def} directives

. Define tokens when the .prg contains Custom Tokens to allow the resulting outputted text to

contain the correct custom keywords

A preface file has exactly the same format as any other text-formatted C64List source file. There are
some restrictions on preface files, however: The preface file cannot insert any bytes into memory. In
other words, preface files, and any files they may include must not contain any BASIC code, assembly
code, data, or line numbers.

To make C64List load a preface file, add the command line parater -pref:<pref_file>.

Custom tokens

The BASIC keyword list that C64List recognizes can be expanded for the case when you are developing
BASIC software using a BASIC extension package. These packages often add new BASIC keywords that
are not part of the regular C64 BASIC language. C64List allows you to develop software for these
extensions by changing its Tokenizer engine.

The most common usage for this feature is to convert an extended BASIC program in text format to the
tokenized format. To use this feature in this manner, add the {tokenizer} directive to the top of your
BASIC-formatted text file. The syntax of the Tokenizer engine settings is

<token value>="<keyword>".

You may add any number of token replacements, separated by commas or semicolons. The token values
must be between $80 and $FF, and may be specified in either decimal, or hexadecimal using the
standard Commodore style $ prefix. Spaces are allowed, but not required, between definitions. Here is
a nonsense Tokenizer modification with the proper syntax:

{tokenizer:$cc="newtokenl",$cd=""newtoken2"; 206=""newtoken3"}

It is possible to add token numbers that are not defined in C64 BASIC, and also to replace token numbers
that are already defined in C64 BASIC, although the latter is not recommended. C64 BASIC uses all the
tokens in the range $80 through $CB, and also SFF. This leaves SCC through SFE as undefined.

Please note that C64List can do very little checking on Tokenizer modifications, and it is quite possible to
confuse the Tokenizer if you set this up incorrectly. For best results:

. Closely check your spelling and token numbers

) Place the {tokenizer} directive before any BASIC code
. List tokens in numerical order

. Avoid replacing existing tokens, if possible

Token ordering: Newly defined tokens are stored in the tokenizer in the same order they are defined,
except for tokens that replace other tokens, which are stored in the former token's location. Correct
tokenization depends on the order of the tokens in the tokenizer, due to the way C64BASIC ROMs work.
For example, the keyword INPUT can be found in the keyword INPUT#. The C64 can correctly tokenize
each of these keywords, however, because the keyword INPUT# is checked before the keyword INPUT. If
the order were incorrect, INPUT# might be interpreted as the keyword INPUT, followed by a token for
the number sign. This would, of course cause a syntax error, and the program would not operate as one
would expect. Your customized tokens must follow the same strategy, and take into account the already-
defined tokens as well. Also, C64List supports only single-byte tokens.

New tokens may be specified in either upper or lower case; they are treated just like C64List treats any
other BASIC keyword.

C64List will report each keyword addition or replacement it finds as it is loading the text-formatted BASIC
file.

You may also use custom tokens when converting from .prg format to text. To do this, use a preface file.
This will cause C64List to load your custom tokens before the .prg file is loaded so it will know how to de-
tokenize the code. If you attempt to convert a .prg file that has tokens that C64List does not understand,

and you have not provided a preface file to help out, C64List will simply output the hexadecimal value of
the token enclosed within curly braces. C64List can also tokenize this format back into a .prg file. Here is
an example that shows how C64List deals with custom tokens and unknown tokens.

Given the following program CustomTokensTest.bas:

{tokenizer:$e0=""GRAB" ,$el1=""EAT" ,$e2=""DROP""}
{tokenizer:$e3=""SLEEP"}

10 for i1=0 to 100

20 grab "A BURGER AND A COKE

30 eat "BURGER":drop "COKE™

40 sleep:next

50 end

We'll convert it to a .prg file that some hypothetical weird extension of C64 BASIC would be able to run:
Cé4List CustomTokensTest._bas -prg

We see that C64List tokenizes the program without any complaints, even though it has weird,
nonstandard BASIC keywords in it. If you attempt to load this .prg file into a C64 without the associated
BASIC extension, you will see that it doesn’t make much sense, and it won’t run. Now let’s take this .prg
file and convert it back to a text file:

Cé4List CustomTokensTest.prg —txt:BadTokens

We'll get a file named BadTokens . txt that looks like this:

10 FOR 1=0 TO 100

20 {$e0} "A BURGER AND A COKE"
30 {$el} "BURGER":{$e2} "COKE"
40 {$e3}:NEXT

50 END

You can see here, that as C64List was detokenizing the .prg file, it ran into the nonstandard tokens and
realized they were garbage, so it simply output the bad tokens in a raw token numerical form. C64List
can’t know what these nonstandard tokens mean when converting from the .prg format, since there is
no way for the file to indicate what the tokens mean—it is simply a normal C64 formatted program file
and does not have the tokenizer data like our original text file has. Incidentally, if you attempt to convert
this text file back to a .prg file, C64List will happily do just that, and you will get an exact replica of the
original CustomTokensTest.prg. You may also insert tokens by hand in this format if you have the
need to. C64List finds the numerical token, converts it to an actual token of the same value, and inserts
it into the program. Note that you may use either {Sxx} hexadecimal or {nnn} decimal notation if you do
this by hand. C64List will always output the hexadecimal format.

Since we need to tell C64List how to interpret these tokens, we’ll create a preface file, as described in
Preface files. The preface file is formatted exactly the same as the first few lines of our original text-
formatted BASIC file. We'll call it CustomTokens.bas:

{tokenizer:$e0=""GRAB", $el1=""EAT" ,$e2=""DROP'"}
{tokenizer:$e3=""SLEEP'"}

Now we will attempt to convert our .prg file to text again, but this time we can use our new file to tell
C64List what our strange tokens mean. We'll also add the —verbose parameter so we can see what
C64List is doing:

C64List CustomTokensTest.prg -pref:CustomTokens.bas -txt:GoodTokens -verbose

Now when we run, we get the following output in the file GoodTokens.txt:

Cé64List 4.00
Copyright (c) Jeff Hoag 2008-2019
Starting C64List on CustomTokensTest.prg
Defining Parser Variable _ C64List
Loading C:\proj\proj\c64listRework\TestFiles\CustomTokens.bas
[C:\TestFiles\CustomTokens.bas (1)] Modifying BASIC tokenizer

[C:\TestFiles\CustomTokens.bas (1)] Replacing token $e0 = GRAB
[C:\TestFiles\CustomTokens.bas (1)] Replacing token $el = EAT
[C:\TestFiles\CustomTokens.bas (1)] Replacing token $e2 = DROP

[C:\TestFiles\CustomTokens.bas (2)] Modifying BASIC tokenizer
[C:\TestFiles\CustomTokens.bas (2)] Replacing token $e3 = SLEEP

0 Errors; 0 Warnings

Cé4List finished

Here, we can see that Cé4List found our preface file and loaded the custom tokens, and then it went on
to load the .prg file. When we open GoodTokens. txt, we see that the nonstandard tokens were
converted back to text correctly this time:

10 FOR 1=0 TO 100

20 GRAB A BURGER AND A COKE'
30 EAT "BURGER™:DROP '"COKE™
40 SLEEP:NEXT

50 END

Finally, you may also undefine existing tokens. In the {tokenizer} directive, simply specify the token you
wish to undefined, and set it to a blank string:

{tokenizer:$80="""}

Normally, you won’t want to remove tokens from the tokenizer, since it defeats the purpose of C64List’s
tokenizing feature! It may occasionally come in handy for some custom token schemes, however.

Load address

If, for some reason, your program needs to load to an address other than the default address 2049
(50801), you can tell C64List to put the code wherever you want in memory. Add the
{loadaddr:<address>} directive to the top of your text-formatted BASIC program, and when C64List
converts it to a tokenized program file, it will store it at the address you requested. For example:

10 PRINT "HELLO C64 USERS!"
20 END

Converting to .hex format will give us the following:

C64List addrtest.txt —hex:con

0801: 1a 08 Oa 00 99 20 22 48 45 4c 4c 4f 20 43 36 34]..... "HELLO C64
0811: 20 55 53 45 52 53 21 22 00 20 08 14 00 80 00 OO] USERS!I*™.
0821: 00 |-

As you can see from the address given on the first line of the .hex file, the program is located at the
standard C64 BASIC load address, S0801. However, if we add the following directive to the top of our
program, we can see how the address changes.

{loadaddr:20481}
10 PRINT "“HELLO C64 USERS!™
20 END

Co64List addrtest.txt —hex

5001: 1a 50 Oa 00 99 20 22 48 45 4c 4c 4F 20 43 36 34].P... "HELLO C64
5011: 20 55 53 45 52 53 21 22 00 20 50 14 00 80 00 00| US