BUDDY 64/128

ASSEMBLY DEVELOPMENT
- SYSTEM

©1990 by Chris Miller

Written by
Chris Miller

Distributed by
Click Here Software Co.
P.Q. Box 606
Charlotte M1 48813
(517) 543-5202

Minimum Systern Requirements

Commeoedore 64 or 128 w/Disk drive
TV or Monitor
Printer (optional)

Buddy 64/128 Assembly Development System

TABLE OF CONTENTS

Chapter Title Page
X Introduction 2
2 Policies 3
2 Specifications 4
4. Getting Started 9
B, s Expressions 15
6. Error Messages ‘- 1.7
T Pseudo Ops 21
8. Macro Ops 43
9. Temporary Labels 48
10. Label Gun 51
11, Instruction Sets & Addressing Modes 53
12. Two Environments 58
13. Buddy's Unassembler : 63
14. Buddy Assembly System Source Code 66
15. Z Buddy . 67
16. C Shell 73"
L7 Recommended Reading List 77
18. Index 78
19 Product Registration ¥ 99
20. Notes 80

\

Buddy 64/128 Assembly Development Svystem

1. INTRODUCTION

Buddy 64/128 Assembly Development System is a Machine
Language Development Package for the Commodore 64/128 which contains
a collection of very fast and versatile machine language development
programs designed specifically for the Commodore 128 microcomputer.
A rich body of commands and range of abilities set the standard for
convenience and flexibility in assembly language programming.

Buddy 64/128 Assembly Development System is written and
copyrighted by Chris Miller, and is manufactured and distributed by

Creative Micro Designs, Inc., P.O. Box 646, East Longmeadow MA
01028-0646.

Designed for use with the Commodore 64/128 computer and
up to four Commodore 1571, 1541 or other certified 100% Commodore
compatible disk drives. Buddy, Buddy 64 and Buddy 128 are trademarks
of Chris Miller. Commodore 64 and Commodore 128 are trademarks of
Commodore Business Machines, Inc.

The computer programs contained on the diskettes supplied
with your Buddy 64/128 Assembly Development System machine language
development package are the copyrighted Property of Chris Miller,
and must not be copied except for the purchaser's single allowed
archive copy. Your co-operation and support in preventing
unauthorized copies from getting out of your possession will help
assure that Creative Micro Designs will continue to provide quality
products to Commodore users in the future.

ACKNOWLEDGEMENTS
I would like to thank John Lam, Darren Spruyt, Brian

Hilchie and Steve Punter who have provided valuable ideas and

suggestions, and my wife Susan for her endurance, during the
development of this package.

Chris Miller

Buddy 64/128 Assembly Development Svstem

2. Policies

Your BUDDY disk has been fully tested before leaving our
premises. However, strange things sometimes happen to diskettes
during shipping, so there are some Creative Micro Designs, Inc.
policies that you should be made aware of.

The Buddy 64/128 Assembly Development System software is
sold on ‘an "as is" basis; however the media (disks) that the
software is stored on are warranted to be free of manufacturing
defects for a period of 90 days from the date of purchase. If
within the 90 warranty period the media becocmes defective, the
consumers sole remedy will be to return the defective disk(s) to
Creative Micro Designs for free replacement. If the disk(s) become
defective after the warranty period has expired, you can obtain a
new set of disks for the price of $10.00 per disk plus $3.00

shipping. This warranty becomes void if the media becomes damaged

due to misuse or circumstances outside of normal wear and tear.
Before returning any disks to Creative Micro Designs, Inc. you must
first contact our Technical Support department (413-525-0023) to
obtain a "Return Material Authorization Number". No merchandise
will be accepted unless this number is clearly visible .on the
outside of the package.

Creative Micro Designs, Inc. and Chris Miller shall not
be held liable for any 1loss or profits either direct or
indirect resulting from the use of this product or breach of
warranty. Creative Micro Designs, Inc. and Chris Miller reserve
the right to make any changes or modifications to better this
product as they see fit at any time in the future without notification.

Buddy 64/128 Assembly Development System

3. SPECIFICATIONS

PROGRAMS PROVIDED

Buddy 64/128 Development System actually encompasses
three stand-alone machine language development systems. There are
two for writing 8500 (the system microprocessor) code: One uses
the Basic editor (enhanced by string search and replace commands)
for writing its memory based source and the other its own
powerful ASCII editor. There is also a complete 2/80 (C/PM's
microprocessor) cross assembler which has all the powerful
commands and features of the other two. As a bonus there is also
an assembler completely compatible with Pro-Line's C-POWER shell,
editor, linker and ramdisk.

Here is a brief rundown of the programs you will find on your
- system disk: '

BUD is the boot for the Basic source compatible version
of the assembler.

EBUD is the boot for the ASCII editor and its version
of the assembler.)

ZBUD is the boot for the Z/80 cross-assembler.

BUDDY.ML is the body of the Basic source compatible
version of the assembler which is loaded into memory
when "BUD" is run.

BUDDYSYMS 1is the symbol table for "“BUDDY.ML" as
generated by its assembly. You can use it to explore
the code and to create your own commands.

CREATE-BOOT can be used to generate an autoboot for

"BUDDY.ML" that will not disturb source already in
memory.

ED-BUDDY.ML is the body of the ASCII editor compatible
version of the assembler. It is loaded into memory
along with "EDITOR.128" when "EBUD" is run.

ED-BUDDYSYMS is the symbol table for "ED-BUDDY.ML" as
generated by its assembly. You can use it to explore
the code and to create your own commands.

EDITOR.128 is a multi-featured ASCII text editor, one
that does not clash with the Basic operating system.

Buddy 64/128 Assembly Development System

MARE-ASCII can be used to convert Basic style source to
EDITOR.128 compatible ASCII source.

TEST.MNE is a complete source listing of all standard
and non-standard 8500 mnemonics. Use these to

familiarize yourself with 8500 command syntax and to
test the assembler.

ZBUDDY.ML is the body of the Z/80 cross assembler which
is installed when "ZBUD" is run.

TEST.ZMNE is a complete source 1listing of 2/80
instructions. Use it to test 2ZBUD as well as to
examine Z/80 assembly language syntax.

CALLZ80.BAS is a short example of a Basic program
calling Z/80 routines. :

CALLZ80.BUD is a BUD source program to generate the
8500 "pivot" code used by the above. These demonstrate
dual processing technique in the C-128 and will help
you make full use of the ZBUD Z/80 cross-assembler.

UNASM.BUD 1is the complete, documented source program
for our powerful unassembler that will convert raw code

to source that you can LIST, DSAVE, DLOAD and, best of
all, reassemble using BUD.

AS.SH is for those who own Brian Hilchie's excellent
C-Compiler published by Pro-Line. About the only thing
missing in this superb system is a compatible
assembler. AS.SH brings the power of Bud to C; use it
to write compilable C functions or stand-alone assembly
language programs from within the C-Compilers amazing
Shell operating system.

MACROS.SOURCE is the source for Bud's two built in

macros "move" and "fill", and is provided to help users
write and implement their own macros.

AID128.SOURCE 1is a public domain scroll utility
provided for use with Bud.

128 SYSTEM MEMORY MANAGEMENT

Each version of Buddy runs in bank 1 at $c000. Symbol
tables build down from here. Label "+" addresses build up from
$2000. Memory in the middle is used as an output buffer. Macro
modules as .DFNDFE defined append to the end of the

5

Buddy 64/128 Assembly Development System

assembler. All of bank 0 is free for Bud or Zbud source. Ebud's
editor runs at $e000 in bank 0:; the source limit is lowered to
$d4d000. Burst mode .FILE or -SEQ chaining results in files being
loaded into bank 0 memory directly above resident source. Memory
from $c00 to S$fff is used extensively during an assembly as is
memory from $200 to $240 and $140 to $1ff. Memory from $1300 to
$17ff is unused by Buddy or the 128 operating system and is
probably one of the best places to memory test small programs.

64 SYSTEM MEMORY MANAGEMENT

The 64 versions of Bud and Ebud are virtually identical
to their 128 counterparts, with the only exceptions being the
-BANK and .BURST commands which are not implemented. SYS 999 is

the 64 equivalent of the SYS 4000 call to the 128 Bud. The top of
Basic is lowered. o

The assemblers sit in high basic RAM and beneath Basic
ROM. Symbol tables build down from the beginning of assembler
code. Macro modules build up from the end of assembler code. The
"+" address stack builds up from the end of your source. The
first program in a .LINK....LOOP assembled chain should be the
largest if "+" labels are used. Buddy is compatible with FAST
1541 cartridges. GT64 by John Lam is especially good.

Labelgun 1is not implemented in the 64 assemblers;
however, excellent utilities such as POWER or SUPERMON can be

used with Buddy provided they are not loaded first. Memory from
$c000 to $cfff is free for program testing.

COMPATIBILITY

Bud is completely compatible with Basic 7.0, the
Commodore disk operating system and its source format. Assembly
language programs can be written on the much enhanced C-128
editor. In addition to using this new editor's ability to
renumber and auto-number lines, delete line ranges, pause scroll
and much more, with Bud in memory users will be able to execute
powerful string (label) search and replace commands. Pure ASCII
SEQ or PRG files can also be assembled from disk or memory,
allowing source to be written on virtually any text editor or
word processor. BUD's own EDITOR.128 provided supports 4-WAY,

bidirectional scrolling and paging as well as CUT & PASTE, SEARCH
& REPLACE and much more.

Buddy 64/128 Assembly Development System

SPEED

Source files can be linked or disk assembled using 1571
burst mode access through a quasi RAM DISK maintained by the
assembler for very fast chaining. A binary structured symbol
table and hash code access to multiple, very short mnemonic lists
insure near instantaneous memory based operations.

INPUT

Single, large source programs can be assembled directly
from memory, or many source files can be assembled as one, either
by load chaining or direct disk based assembly. Numerous
combinations of memory and disk based assembly are possible.

Multiple device handling, allows for the application of any
number of disk drives.

OUTPUT

Code can be directed to memory in any bank(s) allowing
for fast, in memory assembling and testing of very large
programs. Any number of BLOADable, machine language program
files, all sharing a common symbol table, can be created in a
single operation. Symbol tables can be automatically saved in
part or in full and used by other source programs. New modules
for very large ML programs can be designed, tested and retested
in memory without having to re-assemble the whole system each
time. Bud can be instructed to direct all output through custom
user routines located in any bank of memory for special handling.

DISPIAY

Show full assembly process including source lines,
object code and symbol table listings for all or any portion of
an assembly. Paginated output may also be directed to a printer.
Error checking is complete and error messages are full and
descriptive. Where many errors are anticipated a Display-Errors-
Only-To-Printer mode is supported.

LANGUAGE FEATURES

Fast assemble with the new 8500 micro-processor
operating screen blanked in its 2MHZ. mode. If/else conditional
assembly is supported. Temporarily offset program counter
assembling generates patches of code that will be relocated
before execution. Set up internal buffers as well as passive
external variable tables effortlessly. Automatically merge Basic

7

Buddy 64/128 Assembly Development System

and assembler source programs. Bud allows Basic to SYS, POKE, and
PEEK symbol table values by name. Work with non-standard opcode
using all of their unofficially yet generally agreed on mnemonic
forms. Macro-ops to move memory (up or down any distance) and
fill memory make short work of these common and often tedious
procedures. Users may easily write their own macro commands and
even create new versions of the assembler. Data can be in the
form of word tables, byte tables, ASCII text, even screen-code
text. Multiplication, division, addition and subtraction of any
combination of hex, binary, decimal, ascii, screen code or
symbolic values is supported. Symbols may be of any length and
temain unique. Temporary (reusable), character (+ - /) symbols
allow for easier coding of routine short branches and result in
smaller symbol tables and faster assemblies.

Buddy 64/128 Assembly Development System

4. GETTING STARTED

If you are like most people you will want to try
something right away just to feel the program out and get on the
right track. Type in the following: DLOAD"BUD <RETURN> RUN
<RETURN> This will cause the body of the proegram to be loaded
into memory and executed. Upon completion you should see a line
of copyright information along with a pair of meaningless (at
this time), hex range numbers. MEMORY USAGE After booting up

Buddy is tucked safely away from Basic, high in bank 1 ($c000)
awaiting your summons.

Memory from $c00 to $1000 in bank 0 is reserved for Bud
activities. If you interfere in this area you may have to re-boot
the program. If you need to press the reset button for other
reasons, Bud should not be affected. The entry routine sits at
4000. A SYS 4000 will probably, though not necessarily, be the
only Basic statement executed .before Bud takes over. In other
words, a SYS 4000 invokes the assembler. Bud will act on all
source following. Basic will interpret and try to execute
everything up to and including the SYS 4000 line.

Bud builds its symbol tables, output buffer and any
user defined macros in bank 1. All of bank 0 is free for Basic
style source. If you are using Bud's .BURST command to assemble
files from disk these will be temporarily appended to whatever
source already resides in memory. The best place to memory test
small programs is $1300-$17FF. The system tape buffer $BOO-S$Bff
is also free. Bank 0 memory $1CO0-$FFFF is free although
in-memory source will use scme. Unless a very, very large program

is being assembled, $3000-$8000 bank 1 should also be safe for
memory based activities.

RELAX If all the hex address stuff and assemblier jargon
has only served to confuse you don't worry about it. Someday soon
it will make perfect sense. The examples in this manual will
never have you overwrite sensitive areas with code generated.
Just try to remember: if you aren't sure where a good place in
memory to put your code is, use $1300 (eg. *=$1300:.MEM). By the

time you need more room for your programs you'll know what you're
doing.

Buddy 64/128 Assembly Development System

WARM-UP EXERCISE

Enter the following short program just as if you were
writing in Basic. The sequence of the line numbers is important
but the actual line numbers themselves are not. You don't have to
bother typing the comments. The colons are used to introduce
white space to the source in order to make it more readable. They
could be replaced with UP ARROWS or left out altogether.

1 SYS 4000:REM sys 999 for 64 version

2 .0RG 10000 ;put code at 10000
3 .MEM ;output to memory
10 PRINT =S$FFD2 skernal routine

20 LDX #0 ;initialize X

30 - LDA MESSAGE,X ,- ;get next character
40: JSR PRINT ;print it

50: INX : ;jincrement x

60: CPX #MESSAGELEN ;see if done

70: BNE - ;if not loop back
80 RTS relse return

100: 110 MESSAGE =*
120 .ASC "HELLO WORLD"
130 MESSAGELEN =*-MESSAGE

Look it over to see if you got it right, then RUN it.
If this was your first ever coding in assembler you undoubtedly
are facing a number of error messages. Examine lines with errors
Closely to see how they differ from the above source. When you
can assemble with no error messages try executing the code with a
SYS 10000. If all went well the words HELLO WORLD will be printed
on screen. If not, you should know that you are the first person
ever whose assembly language program failed to work perfectly the
first time (ha ha, only kidding). Try again.

Notice the .ASC command. Commands with periods in front
of them are called pseudo-ops. They do not represent any
particular ML opcode. They are instructions to Bud. Familiarity
with them will allow you to take full advantage of Bud's many
abilities. Notice the use of "-" as a label. This is an example
of the use of a Bud temporary label. Some name like LOOP or BACK
or HOWDY could have been used place of the "-nw characters; but
why bother? The BNE - codes a conditional branch back to the line
last labeled with a "-" character. The "+" is used as a forward
referencing temporary symbol. These can be used again and again.
Only the closest one counts.

10

Gl G G I NS NG BN O O N E On R Gw G ay Uy o e

Buddy 64/128 Assembly Development System

Notice also how the statements are 1laid out. Each
statement consists of up to four distinct parts: A FLAG or LABEL
when used will come first. Bud will place it in the symbol table
(unless temporary) along with the address of the program counter
at the beginning of its line. Throughout your source you may
refer to that particular 1line (ie. address) using the symbol
name. Next comes the OPERATOR which is the instruction portion.
It will be a PSEUDO-OP or MACRO command to Buddy or a mnemonic
representing a specific opcode. Many operators will require an
OPERAND address or value to complete their instruction. The
OPERAND portion of the assembly language statement follows the
cperator. Last will be your comment. A semi-colon must precede
it. These are of no use to Buddy who knows exactly what is going

ocn all the time, but can be of tremendous benefit to you who may
someday forget.

SYMBOL OPERATOR , . OPERAND COMMENT
10 MEANINGFUL LDA " #0 ; EXPLAIN

There must be at least one space separating each of the
first three parts. Extra spaces will always be ignored.

SYMBOLS

Symbols may be of any length so you can and should use
very meaningful names. Bud's string handling utility, Labelgun,
can make playing around with names fun. The apostrophe has no
special meaning to Bud; multi word symbols should probably be
broken up with these for clarity. Notice how much more readable

WRITE'TO'TAPE is than WRITETOTAPE, or COLOUR'MEMORY 1is than
COLOURMEMORY .

Permanent symbol names may not begin with any of the following
characters:

032 $-4,56 1 88 4P B S 0w 5 pwbimip

or contain any the following arithmetic operators.

/*+—=

These would cause Bud to mistakenly assume that the
symbol was a numeric or character value, or an expression,
probably resulting in a delightful and poignant error message.
Symbols may not contain blanks. Again, use the apostrophe to
break them up. Also, a symbol may not be the same as one of the

standard mnemonics like LDA or DEX or BNE. Bud is great but it
can't read your mind.

11

Buddy 64/128 Assembly Development Syvstem

EQUAL, ASSIGNMENTS

In addition to flagging, symbols may be given wvalues
using an assignment statement. The equal sign is used just as in
Basic assignments. One space must follow the symbol name. Extra
spaces are optional. Here are some examples:

1 SCREEN'START = $400

2 SCREEN'END = SCREEN'MEMORY+999
3 MEMORY'CONFIG = $FF00

4 PROGRAM'COUNTER = *

SET ASSIGNMENTS

You cannot use the equal sign or flagging to reassign a
new value to an existing symbol. To reset a symbol value you
should use the LEFT ARROW in place of an equal sign. Symbols to
be reassigned should be'assigned values exclusively with the LEFT
ARROW assignment operator so that they maintain parallel values
on both passes of the assembly.

LEFT-ARROW, set re-assignments can lead to confusing
pregrams and hard-to diagnose errors. Bud's support of temporary
symbols, large symbol names and numerous program counter control
pseudo-ops reduce the possibility that symbol value
re-assignments will be necessary.

ASSIGNMENTS TO PROGRAM COUNTER

Symbols may be set to the value of the program counter
in two ways: (1) by assignment to the program counter "&%"
variable (see 1line 4 above) and (2) by flagging. Flagging
involves simply putting the name first on any line:

10 ANYNAME DEX idecrement x register
20 BNE ANYNAME 71loops until x = 0

The same program counter value can be assigned to a
number of symbols wvia the "% assignment. Only one flag may be
used per line. Tabled flag values are compared with the program

counter on pass two of the assembly in checking for a deadly
out-of-phase condition.

OPERATORS
The operator is also referred to as the instruction. In

its English or source form it is called a mnemonic. Once
converted into a machine language byte it is known as an opcode.

12

Buddy 64/128 Assembly Development Svystem

The operator is the command portion of the assembly
language statement. The commands which begin with a period are
called pseudo-ops. These are not converted into any specific
opcodes but tell Buddy to do something special.

Many, though not all operators, will require that some
information follow. This may be an address or numeric value or a
string of comma delimited values or even quoted text as in a
filename or .ASC string. Absence of this information will lead to
an OPERAND EXPECTED error message.

Buddy of course recognizes all of the standard
mnemonics used to represent machine language opcodes. These three
letter terms are converted by the assembler directly into the
appropriate one byte opcodes. You will be informed if a value was
expected but didn't follow an instruction, or if an unexpected

value or illegal value followed.

OPERANDS

These are the values which are required by many
operators to complete their instruction. If you start a line with
an STX instruction it is assumed that you wish to Store the
information in the X register somewhere. Therefore, following

this must be an OPERAND value relating to where in memory this
value is to be put.

An operand may be any elsewhere defined symbol; a
hexadecimal, binary or decimal value; or a screen code or ascii
character. Any combination of these may be used in an expression
to produce an operand value. Binary numbers must begin with a
percent sign (%11110000). Hexadecimal numbers must begin with a
dollar sign ($£f0). Decimal numbers are otherwise assumed (240) .

Values greater than S$ffff (65536 decimal) or values
less than 0 will lead to an error message.

10 LDX #END-START ;length of whatever
20 STA 12*4096 ;store at $c000

30 LDA POINTER+1 thigh byte of pointer
40 LDA #$100-15 ;is 241 (negative 15)
50 LDA #"&"+128 ;ascii for reversed &

Here is how an RTS jump might be coded using expressions as
operands:

10 LDA >PICTURESHOW-1:PHA
20 LDA <PICTURESHOW-1:PHA
30 RTS ;1s the same as jmp picture show

13

Buddy 64/128 Assembly Development System

Notice that two or more statements can be put con one
source line if they are separated by a colon. The colon always
signals a new line with two exceptions: (1) when the colon occurs
between quotes as in a filename, (2) when the colon occurs in a

comment ... that is after a semi-colon. A command cannot follow a
comment on the same line.

The "<" and ">" (low byte - high byte) operators are
always applied after the entire expression following has been
evaluated. They also indicate that the value represents a numeric
constant and not an address; in other words, an immediate value.

14

Buddy 64/128 Assembly Development System

5. EXPRESSIONS

Multiplication, division, addition and subtraction are
supported in expressions. Fractions are truncated in division.
The expression 8/3 would equal 2. Expressions are evaluated
strictly from left to right. Any combination of hexadecimal,
decimal, binary, ASCII, screen code, or symbolic integer wvalues
maybe involved. Parenthesis are not supported in Buddy
expressions. These signal indirect addressing mode only.

If ordering cannot be properly established in simple
left to right layout then an expression should be divided into
two or more parts. When the "*" is used as a variable in an
expression it always holds the value of the program counter. This
is the address at which the code for the "#*" line will originate
in memory. Here "*" is used to point to the address operand
portion of a self modifying JSR instruction.

10 LDA <DESTINATION

20 STA TARGET

30 LDA >DESTINATION

40 STA TARGET+1

50 JSR $0000: TARGET =#-2

When the "<" character precedes an expression it acts
on the entire value. That is, the expression is completely
evaluated first, and then the low byte only of this value is
returned. The ">" returns only the high byte.

10 LDA <3SABRCD ;jsame as lda #Scd
10 LDA >S$ABCD ;same as lda #Sab
10 LDA <$1100-1 ;same as lda #Sff
10 LDA >$1100-1 ;same as lda #$10

Notice again how the ">" and "<" always force immediate
mode. In other assemblers only the "#" can do this. Indeed you
could use LDA #<OPERAND with Bud, but the "#" would be

superfluous. The same is true when using screen code and ascii
values:

10 LDX "an ;same as 1ldx #"A" or 1ldx #65
20 LDY @"a" ;jscreen code ie. ldy #1

The immediate mode is automatic when using ascii codes,
screen codes, and low or high address bytes. A situation where
you would wish it otherwise is inconceivable. Using immediate
mode where its intention is obvious should help you avoid often

puzzling "#" omission errors where zero page addresses are
accessed instead of one byte immediate values.

15

Buddy 64/128 Assembly Development System

ADDRESSING MODES

Syntax for describing addressing modes is highly
standardized. Buddy adheres strongly to this standard. The value
0 is used in the following to represent any one byte operand. The
value 1000 is used where any two byte operand would do.

1 LDA #0 ;immediate value

2 IDA O ;zero page address

3 STH 0,¥ ;zero page y indexed

4 LDA 0,X jzero page x indexed

5 LDA 1000 ;absolute address

6 LDA 1000,X ;absolute x indexed

7 LDA 1000,Y ;jabsolute y indexed

8 LDA (0,X) - ;pre-indexed indirect x
9 LDA (0),Y ;indirect post-indexed y
10 BNE 1000 i ;relative branching

11 JMP (1000) ;indirect jump

12 LSR o jaccumulator implied

13 INX ;implied

Some assemblers allow or require that the accumulator
mode be expressed LSR A, ASL A, ROR A or ROL A. Bud, however,
would try to look the "A" up in the symbol table. So leave it

off.
Buddy will use zero page addressing whenever possible.
You may force absolute addressing with the "!" character.
1 LDA SFF,X ;codes b5 ff
2 IDA !SFF,X ;codes bd ff 00
16

)
-

Buddy 64/128 Assembly Development System

6. ERROR MESSAGES

Most of us never make mistakes and have no use for
error messages. Still, there are always a few who go and spoil it
for everyone else. So for those people we have included
comprehensive error handling and checking. The rest of us perfect
programmers can just skip over this section.

Seriously however, I use 'em myself ... a lot. Unless
an error is fatal Buddy will place NOPs into Your code where it
is encountered. The number of bytes which would ordinarily have
been generated by the instruction determines the number of NOPs
output. If you were to include the line 1000 YIPPIE DIPPIE in a

program you would get an error message but no bytes would be
output. Your code would not be affected.

If you had written 1000 BNE #*+500 you would get a
BRANCH OUT OF RANGE error and two NOPs would be output. You might
be able to do a certain amount of testing in spite of it. Other

errors, known affectionately as fatal errors, will terminate the
assembly after closing all files.

This is the case with phase errors, I/O errors or
symbol table overflow, If you press the RUN STOP key assembly is
stopped. Open files are always closed. If you are .FAST

assembling in the 2MHZ. mode with a blank screen an error will
turn it back on instantly.

The messages are fairly self-explanatory and, in most
situations, should make it easy to diagnose the problem. Error
messages are always listed above the offending source line which
is displayed following a >>>. Here is a rundown and brief
description of each of Bud's error messages:

QUOTE EXPECTED following .ASC or.SCR or there is more than
one character between quotes where only one is permitted.

UNKNOWN PSEUDO-OP means you've used the "." as the first
character of a symbol or misspelled a pseudo-op (.BITE).

TOO MANY STRINGS if more than three space separated "words"
appear in one statement outside quotes.

COMMAND EXPECTED means a mnemonic or pseudo-op was expected.

OPERAND EXPECTED means a value or parameter is needed to
complete some instruction.

17

Buddy 64/128 Assembly Development System

INVALID MODE OF OPERATION if you try to code some addressing
mode not allowed with the command.
RE-DEFINITION OF A SYMBOL if you try do redefine a macrao,
used the same flag twice or tried to reassign a value to a
symbol with an equal sign.

ONE BYTE VALUE EXPECTED if you try to use a two byte operand
where unacceptable.

IMMEDIATE VALUE INDEXING is a special case of the invalid

mode in which one tries to index a number instead of an
address ie. lda #100,x

KEYBOARD ERROR probably indicates a typo or perhaps some
illegal character making its way into a symbol.

VALUE TOO HIGH when a negative value or a value higher than
S$Efff is arrived at during’ certain expression evaluations.

NON-NUMERIC CHARACTER a symbol begins with a number 0-9, or
a non-digit has made its way into a number.

UNDEFINED SYMBOL means macro is undefined or a symbol was

not found (on pass two only) in the symbol table; perhaps
it's misspelled or a "$" has been left off a hex wvalue.

BRANCH OUT OF RANGE if you attempt to relative branch too
far ie. more than +127 or -128 from *+2.

UNEXPECTED OPERAND if some inherent command is followed by a
value.

IMPROPER USE OF A MACRO PARAMETER when some error occurs in
defining a macro. Perhaps a name does not out follow .DFN or
a number is out of sequence. This error will also occur if

an &argument is used which was not declared on the .DFN
line.

MACRO TOO LONG macros should not run over a page (256 bytes)
of code.

-DFE EXPECTED if you try to define a new macro without
ending the definition of a previous one with .DFE. It is
pointless to continue with the assembly. .DFN EXPECTED if
unexpected .DFE is encountered, ie. you are trying to end a
definition never begun; again a fatal error.

18

ST e s A o O ER Gy R G I G N SN Gnm ek am e

Buddy 64/128 Assembly Development System

SYMBOL TABLE OVERFLOW There is no longer room in bank 1 feor

your symbol tables. This is the only place you are ever
likely to see this message.

FILE NAME EXPECTED a special case of operand expected; a

file name is needed to complete one of the file handling
pseudo-ops.

PHASE ERROR For some reason the symbol table as created on
pass one is out of sync with the code on pass two; this
could be caused by a late zero bage symbol assignment or
leaving characters outside quotes in a .SCR or .ASC text
string. Bud checks for phase errors by loocking up all labels
on pass two to see if their wvalue in the symbol table
matches the program counter. If not something has gone very
wrong. You don't want to continue in this condition.

BUS CRASH!!! there's a problem on the serial bus: the disk
command channel is read for your enlightenment.

If you are assembling a very large, perhaps newly
converted, program for the first time and anticipate more errors
than will fit on the screen then you might want to direct
errors-only to your printer via the .DIS E command

COMMENTS ON STYLE

Bud allows you to use colons to link source statements

just as in Basic. Never abuse this! Your source may become
unreadable.

WHITE SPACE

Use a few blank lines to separate the various modules

and ideas of your program. Indent everything but your symbols a
few spaces to the right so they stand out.

There are two ways to do these things: Obviously you
can't just enter a blank line; Basic editor would ignore or erase
it. Put a colon, or better yet, an UP ARROW by itself on the
line. The UP ARROW is ignored by Bud as the first line character.
Use it to keep the BASIC editor from removing leading spaces.

co NTS AND MEANINGFUL S OLS

Use meaningful symbol names and comment liberally. I
have always been impressed by this in the source programs of
experts. Use the temporary symbols "-n, """, and "/" to code
short branches and avoid having to generate meaningless symbol

19

Buddy 64/128 Assembly Development System

names for them. This should free Up your imagination for those
names that do matter. It will also allow crucial, thoughtful
labels to better stand out. Use Buddy's built in string handling

editor, Labelgun, to keep your symbols meaningful and up-to-date
without extra typing or hunting around.

MAKE THE ASSEMBLER DO IT

A common mistake of beginners is to calculate by hand
the lengths of strings and tables in their programs. Use symbols

and expressions to do this: then, when you change the length, you
wont have to recalculate.

10 TABLEBEGIN =%*

20 .ASC "****x**PRINT MESSAGES"#*%%xx%"

30 .SCR "/////SCREENCODE VALUES/////"

40 .WOR 1000,2000,ADDRESS,256%12

50 +BYT 0,1,2,4,8,16,32,64,128

60 ior whatever else goes in tables
70 TABLEEND =*

80 TABLELENGTH = TABLEEND-TABLEBEGIN

In short, make the assembler do the work. Assembly
language, in addition to producing very fast and compact code can
be flexible, versatile and easy to modify and understand.

20

Buddy 64/128 Assembly Development System

7. PSEUDO OPS

Here are the pseudo-ops which Buddy recognizes. Where a
[word] operand is required any valid Buddy expression involving
any combination of $Hex, Decimal, $Binary, "ASCII", @"SCREENCODE"
or symbolic values can be used. If a [byte] is expected the
expression value cannot exceed 255.

.. Where quote enclosed names or text strings are expected
those provided are only examples. Make up your own, okay. Where
the operand is a pointer [...PTR] a one byte value is needed. IE
will represent a zero page address. The square brackets are not a
part of the command syntax. They do not go in your source.

PSEUDO-OPS **quick reference table**

*= (word] . ;set program counter
.ORG [word] ;set program counter
.BUF [word] icreate internal buffer
.OFF [word) ;offset code destination
.OFE iend of offset coding
.MEM ;joutput to memory
;BANK [1=15] iselect memory bank
.DIS ;display assembly (on/off)
«DIS P jdisplay assembly to printer
.DIS E ;display only errors to printer
.DIS "FILENAME" sdisplay output to sequential file
.OUT [word] ;joutput through user routine
.DVI (#)] ;define input device (default 8)
.DVO [#] ;define output device (default 8)
.OBJ “Mf—PROGRAH“ ;create object file
.BAS "COMBO-PRG" ;imerge basic with ML
.LINK "NEXT-SRC" ichain next source file
21

Buddy 64/128

Assembly Development System

. LOOP "BACK-FIRST"
.FILE "ANY-SOURCE"
.SEQ "ASCII-FILE"
.LST "SYMS-TO-USE"

. TOP

.SST "SYMBOL-TAB"
.DFN [NAME (1 ...8]
.DFE

.BYTE [byte, “text“;
.BYTS ([byte,...]
.BYT% [byte,...]
-WORD [word,...]
.WOR$ [word,...]
.WOR% ([word,...)]
-ASC (["text", byte,.
-.SCR ["text", byte,.
. PSU

. BURST

.FAS

.END

.IF [word]

.ELSE

.IFE

;end of chain

;assemble from disk

;assembles ascii format source file
;load symbol table

;top of .SST when not all symbols
;save symbol table

;define macro.begin

; end define macro

-«+] itable one byte value(s)

~ ;jnumeric values default to hex

‘numeric values default to binary
itable two byte value(s)

;numeric values default to hex
inumeric values default to binary
-.] isame as .byte

..] iscreen code text values

;for non-standard opcode mnemonics
iuse 1571 burst mode

;for 2MHZ. mode with screen off
iforce end of source

;if word <> 0 then continue
jotherwise skip to here then begin

iconditional assembly ends

22

Buddy 64/128 Assembly Development System

Any pseudo-op can be extended or truncated. If you
wculd rather use .WOR or .WO or even .W instead of .WORD, Bud

will =till accept idit. Conversely, .BUFFER .DISPLAY or . MEMORY
would work the same as BUF, .DIS or .MEM.

Programmers, being the lazy lot that we are, are more
apt to truncate than extend Bud's pseudo-ops. Don't get too
carried away with this. The command .0 $C000 might ORiGinate
program counter to $C000; it also might cause Bud to 18 OUP
through a user routine or do some OFFset coding, or even try to
open up an OBJect file.

Pseudo Ops, Definitions

-ORG [address]

The .ORG pseudo—opumust be followed by an address value.
This tells BUD where the machine language output will reside in
memory. If it is not used output will ORiGinate at $3000 hex.

10 .ORG $2000 ;code at $2000 hex
10 .ORG 50000 ;code at 50000 decimal
10 .ORG *+2 ;bump program counter by 2

-ORG *+2 above will not result in actual output. If you
had begun sending bytes to disk such a statement would lead to
trouble. When loaded into memory the code would be out of sync
with the symbol table used to create it. Instead, use .0ORG to set
up flexible variable tables before output has begun and
especially after output has ended.

10 .ORG $200 isystem input buffer variables
20 FLAGl .ORG *+1

30 FLAG2 .0ORG *+1
40 VECTOR1l .ORG *+2
50 VECTOR2 .ORG *+2 ;and so on...

-ORG can replace the #*= assignment found in this and
other assemblers. Again, do not use it to create space within
your code. To create internal buffers use the .BUF [#bytes] or *=
[new pc] command.

-BUF [# of zeros to send]
The value following .BUF determines the number of zeros

to be output. This can be used to create buffers for I/0 or space

for variables within your code. The command .BUF 6 would do the
same thing as .BYTE 0,0,0,0,0,0.

23

Buddy 64/128 Assembly Development System

Situations may arise where you do not know exactly how
many zeros you want to write, only the destination address to
which you wish to write them. The command -.BUF DESTINATION-*
would do the job as would *=DESTINATION. In either case the value

of DESTINATION must be previously defined or immediately
calculable.

Usually variable tables sit on top or lie at the bottom
of a program or are off somewhere else completely in memory and
do not contribute to the size of the object code. If for some
reason an internal variable table is needed, the .BUF or *=
commands should be used. Following they are used interchangeably

although you might not want to do so purely for aesthetic
reasons.

icode being sent to disk
;more code

10 JMP ENDOFTABLE ;Jump over internal table
20 STARTOFTABLE =%
50 VARl .BUF 1 rinternal vars

60 VAR2 ¥=%+]
70 FLG1 .BUF 1
80 FLG2 #*=%+1
90 PTR1 .BUF 2
100 PTR2 *=%+2

5 rete.

5 ;jetc.

400 ENDOFTABLE =+*

410 ;code continues

Note: any symbol used in an operand to either « BUF,
-ORG or *= must have already been defined. Forward references

will not work since the number of bytes generated must be
calculated on the first pass.

To recap: .ORG [EXPR] may be used to set any value to
the program counter "*" variable at anytime and will never result
in output. It is most useful in defining load (header) addresses
prior to the creating of .OBJect files and for creating
uninitialized variable tables at the end of object files.

-BUF [EXPR] will always result in the output of the
expressed number of zeros.

*= [EXPR] will generate zero filler bytes to the new
"*" value only after you have begqun sending bytes to an object
file; it may not then be used to reverse the program counter.

24

L
it

Buddy 64/128 Assembly Development Svystem

.OFF [address]

The .OFF command is used to write code destined to
execute at a different location than where it originates. The
cperand portion tells Bud where the code will finally execute.
This should prove invaluable in programming for more than one
micro-processor at a time or in situations where you are writing
code that will be moved before it is run. The .ORG command could
be used to do the same thing by resetting the program counter
after output had begun then back to the proper in-stream value
(by using some symbolic expression) after the offset coding had
finished. This is not as convenient as or as clear as using .OFF
DESTINATION to create another temporary program counter.

i .OFE

The .OFE command simply ends offset coding and resumes
with the original program counter at its new address. The
following program moves a short "POKEHELLO" routine into the
C-128 cassette buffer, calls it, then continues.

5 SCREEN =1024 ;in 40 column mode
10 .ORG $3000 ;Oor where ever

20 LDX #LENGTH'TO'MOVE-1
30 - LDA CODE'TO'MOVE, X
40 STA POKE'HELLO, X

50 DEX

60 BPL -

70 JSR POKE'HELLO

80 JMP CONTINUE

85¢:

90 CODE'TO'MOVE =*

100 .OFF $B0O ;cassette buffer
110 POKE'HELLO =%
120 LDX #0

130 - LDA MSG,X
140 STA SCREEN, X
150 INX

160 CPX #MSGLEN
170 BNE -

180 RTS

190 MSG .SCR "HELLO":MSGLEN =*-MSG

200 LENGTH'TO'MOVE = *-POKE'HELIO

210 .OFE sback to normal
2153

220 CONTINUE

;use of temporary sym "-"

;temp sym used again

I
*

rand on we go...

25

Buddy 64/128 Assembly Development System

Moves 1like the above are quite useful in programming
the C-123. Bud, for example, before assembling, moves '"relay"
code into Basic's input buffer ($200) where it can see and be
seen by all other banks. This allows Bud to access Kernal ROM,
registers and user defined routines and memory which would be
otherwise invisible. .OFF would also be useful in creating code
destined to execute in the disk drive after being loaded into the
C-128 as part of a larger program.

.MEM; output to memory

This command takes no operand. It simply instructs Bud
to output code directly into C-128 memory. The code will be
"poked" into memory at the .ORG address. The .BANK command can be
used to select a bank other than the default 15. Consider unused
"memory from $1300-$17ff'a safe testing ground. You may also use
$B00-$BFF freely. Any memory not taken up by your source
$1C01-$FF00 is safe.

.MEM 1is a toggle command. The first occurrence
initiates memory output, a second turns it off, a third back on
again, and so on. This allows selected portions of a program to
be output to memory. .BANK [0-15] This selects an output bank for
in memory operations. Bank 15 is the default. In bank 15 all
Basic and Kernal ROM is visible which means these routines can be
called directly and that special interrupt handling or squelching
will not be required. However, there is not all that much RAM.

Chances are that large ML programs will not finally
execute in bank 15. The .BANK command can be used in conjunction
with .MEM to direct object code to memory in any bank. When .OUT
[address] is employed to direct output through a special user
routine,the .BANK command should be used to point to the bank
containing this routine if it is not in bank 15.

.DIS

When this is used the complete assembly process will be
shown on screen. Included in this will be the following from left
to: rights

1. The Basic line number of the source line being assembled{ or
if it is an un-numbered ASCII file being assembled from disk,
then the sequence number of the source line in the file.

26

“ G ¢ G &N G S O h D G O g = & E O O e

Buddy 64/128 Assembly Development System

The current program counter value. When offset ccding the
estination program counter is shown. For assignment statements
ne assigned value is displayed.

r o

S

3. One, two or three hex values representing the object code, if
any 1is generated.

4. The actual source line.

Symbols will stick out to the left a few spaces even if
you did not include the white space in your source. Lines
extended by colons will be split up. .DIS is an on/off toggle
command. This allows for display of selected portions only of the
assembly. In the display mode, when assembly is finished, the
symbol names and values, as defined in the program, will be
listed. If this is not wanted then use .DIS to turn display off
at or near the end of your source. If only the symbol listing is

wanted then turn display 'mode on by using .DIS for the first time
as the last source command. i

.DIS P

This will direct full display to a printer as well as
to the screen. Use the .DIS P command to generate detailed

source/assembly listings. Paging is controlled by Buddy. Three
things are assumed.

1. The paper is positioned at the top of a page. Only four blank
lines are allowed for per page so don't start down too far or the
perforated edges will be printed over.

2. Paper is of the standard size (ie. 66 lines per page).

3. Continuous form feed is acceptable. It is doubtful that anyone
will want source listings on separate pieces of paper. Be sure
enough paper is at hand. Once printing has begun the only way to

stop is to either abort the assembly via RUN STOP or freeze with
the NO SCROLL key.

The symbol table will be displayed to the printer in
two column format. It is an easy matter to suppress Buddy's
paging if you would rather print over the perforations. Buddy's
FORM'FEED routine can be looked up in BUDDYSYMS. Putting an RTS
at the beginning of it will turn of paging for the duration of a

session. (see the sample program to do this in the MACROS section
of this manual.)

27

Buddy 64/128 Assembly Development System

.DIS E

The E option sends only error messages to the printer.
It is really like no display except that messages normally only
sent to the screen with display off are also sent to the printer.
These include (1) the names of any disk files accessed during the

assembly, (2) error messages and (3) the hex object range at the
end.

When disk assembling a large source file or a number or
them together there is an ever-so-remote possibility that more
errors will occur than can fit on the SCreen.

Rather than frantically scribbling down filenames and
line numbers as mistakes go whizzing by, use .DIS E to send
-everything to the printer and go have a coffee. Again, error
messages are sent to the screen even when no display mode is

used. The only way to avoid seeing them is to either not make
any, or to not locok at the monitor.

-OUT [operand]

If you are burning an EPROM, outputting to tape or
modem, or perhaps encrypting your code you might need to use the
.OUT command. Beginning on pass two, Bud JSRs to the address
following the .0OUT with each byte of code. This byte will be in
the accumulator. Do what you like with it then RTS back to Bud
and wait for the next. You should use the -BANK 3% command to tell
Bud which bank your routine is in if it is not in bank 15.

The tape buffer ($b00-$bff) is not used by Bud. Free
memory from $1300 to $17ff in bank 0 is also unused by the
assembler. Zero page, however, is used extensively. If you must
use 2zero page in your routine You can use the c¢c-128's
re-locatable zero page feature to point to your own while
executing your code. Bud's zero page is actually situated at

$d00. Be sure to point back to it before returning. Here is how
it might be done:

10 .ORG $B0O ;tape buffer

20 .MEM ;output to memory

30 LDA #$13 iput zero page at $1300
40 STA $D507 i2 pg pointer register
50 +do your thing

A ;7in here

. ;using your z page

28

Buddy 64/128 Assembly Development System

100 LDA #$0D ;point z pg. to Buddy's
110 STA 5D507 ;at $0d400
1280 RIS

It 1is assumed that the above code executes in a BANK
where 1I/0 registers are visible. Bud will have already SEI
disabled interrupts. Do not return to the assembler with them CLI
enabled. Writing to $D509 will reposition page 1(the system

stack). If you make use of this, set it back to 1 when you are
done.

-OBJ "FILENAME"

Quotes are optional in enclosing any disk filenames
defined within Bud source unless a drive# is specified (ie. the
name contains a colon). They are used here for clarity only.

Use the .0OBJ command to "save" ML programs to disk.
Files are not opened until the second pass. If a fatal error
eccurs on pass one or execution is halted via RUN STOP there will
be no empty or unclosed file to have to deal with as is the case
with some assemblers. If execution is aborted during pass two
after output has begun, due to some fatal error or user
intervention, the file is always first closed.

The current program counter is sent as the file header:
therefore, an .ORG [address] command will usually directly
precede an .0OBJ "OBJECT-FILE" program maker. The header address
composes the first two bytes of the actual disk file and tells

the Basic operating system where to put the code when it is
BLOAD'ed into memory.

Any number of OBJect files may be created during a
single assembly. Each tinme Buddy encounters a new .OBJ
"MYPROGRAM" the last is closed before the new one is opened. It
must have a different name or a FILE EXISTS bus crash will
result.

If the output device is not to be device 8 then the
-DVO # command should be used to select the device number to use.

If the drive is not drive zero use the filename to set the drive
number.

10 .OBJ "Q:ZIPY ;jcreate on drive 0

500 .OBJ "1:ZANG" jcreate on drive 1

1000 .DVO 9: .OBJ "0:ZOWIE" ;use device 9, drive 0
29

Buddy 64/128 Assembly Development System

Again, multiple object files which will
BLOAD'ed all over memory, but assembled as one job and
ccmmon symbol table, are possible.

later be
sharing a

-BAS "Q:FILENAME"

This command allows for the auto
and assembler scurce. These brograms can b
RUN just like Basic ones.

matic merging of Basic
€ DLOAD'ed, DSAVE'd and

After the .BaAS command, write ordinary Basic program
source with one major enhancement. In this Basic the SYS, PEEK
and POKE commands will be able to refer to symbol table values,
as defined in the assembler portion which will follow, by name.

These symbol names must appear in quotes. The Basic part may be
quite short:

100 .BAS "0:YOU-NAME-IT"
110 SYS"MYCODE"

120 END 130 MYCODE =* 140 ;brilliant assembler source. ..

An END on a line by itself must follow the Basic,
telling Buddy that the source type has changed. The END line will
not appear as part of the final object program. If the above
source was assembled and the created program "MYCODE"

was
DLOAD'ed and listed, it would look like this:

120 S¥YS 2063 ; for the 64

r

110 SYS 7183 ; for the 128

And that is it! on top of this SYS 7183 invisible to
the listing, would be the MI, code. Trying to modify the above

program without re-assembling is not advisable. For instance,
adding a line:

100 PRINT "MY NAME IS FRED, I HAVE NO HEAD"

--. would list okay, but crash when run. The code which had been
at 7183 would now be further up. .BAS "NAME" is somewhat 1like

-OBJ "NAME" in that it causes a program file to be written to
disk. There are, however, two differences.

1. Do not use the .ORG command to initialize the program counter
for .BAS created files. Bud will automatically set it to $1cCO01
which is where Basic programs begin in the Cc-128.

2. Do not try to use .BAS more than once in your source. Only one
hybrid program can be created at a time.

30

Buddy 64/128 Assembly Development System

Here is another exceedingly simple example of an ML -
Basic source program. Notice how completely Basic is able to
access the ML symbol table.

10 SY¥YS 4000 ;calls buddy

20 .BAS "O:SIMPLE" ;jname of basic prg
30 POKE"CHARACTER",ASC("X")

40 SYS"PRINT'X'ROUTINE"

50 END

60 ;****now the assembler part**x*#*

70 CHARACTER =*: .ORG *+1

80 PRINT'X'ROUTINE LDA CHARACTER

90 JIJMP SFFD2

If you use Buddy to assemble this, then DLOAD "SIMPLE"

-and RUN it, you will see.an X printed on your screen (be still my

heart). Basic may even use the symbol table names in expressions.

Anywhere the actual value is needed the quoted symbol may be
used. Lines like;

100 FOR N=0 TO PEEK("TABLE'LENGTH")
110 POKE"TABLE"+N,PEEK("DATA"+N)
120 NEXT:REM MOVE DATA TO TABLE

... could be used. If any of the symbol names referenced were not

defined in the assembler source an UNDEFINED SYMBOL error would
ensue.

-LINK "0:NEXTSOURCEFILE"

This is a very fast way of chaining a number of source
files together. The .LINK command will appear at the end of each
but the last source file in the chain. It causes Buddy to DLOAD
the source file specified into memory before continuing with the
assembly. The last program in your chain will end with a .LOOP
"0:FIRSTSOURCEFILE" line. The names used will of course be the
names you have DSAVE'd your files to disk under.

-LOOP "0:FIRST-FILE"

This tells Bud that there are no more files in the
LINKed chain. The file name specified by .LOOP will be the first
file in the chain. On pass one this file will be loaded into
memory and pass two begun. On pass two the .LOOP command signals
the end. Any output files are closed and control is returned to
Basic. The source program ending with the .LOOP instruction will
be sitting in Basic's program buffer.

31

Buddy 64/128 Assembly Development System

-LINK...LOOP memory chaining is fast, although perhacs
nct the handiest way to combine source files. To add a new source
file to the chain or rearrange the order in which existing source
files are assembled it will be necessary to modify and resave two
or three of them; also, it is not easy to follow the chain except
by .DIS E display or loading in one file after another and
checking last lines. More of memory will be needed to hold the

source files and their potentially gigantic combined symbol
table. '

.FILE "0:SAVED-SOURCEFILE"

This is probably a more convenient way of chaining
source files together than with .LINKing and .LOOPing. The .FILE
command tells Bud to assemble the specified source file directly
from disk then to return to the next line of the in memory source
and continue. A very short program containing nothing but .FILE
commands can be used to assemble multiple giant source programs
as one. It might look like this:

SYS 4000 icall Buddy
10 «FILE "0:INITIALIZE®

20 .FILE "O:PROCESS"

30 .FILE "0:THESEROUTINES"

40 .FILE "O0:THOSEROUTINES"

50 .FILE "O0:MOREROUTINES"

60 .FILE "0:MESSAGES"

With this type of setup the assembly process and file
chain can be very easily modified. To add a source file called
"PROTECTION" to the chain would be as simple as adding a line 70
-FILE "O:PROTECTION" to the rest before running (assembling).
Changing the order in which the files are assembled would involve
merely switching a few line numbers. To save the symbol table
part way through would entail only inserting the 1line 15 ".ssT
"0:INIT-SYMS" for example. Altering display options, I/O device
numbers and assembly modes (eg. .FAS or .MEM) would also not
involve loading, modifying and resaving large source files.

It is not even necessary to save the changes made to
the short file chaining program before assembly. It will still be
there afterwards. The amount of memory available for .MEM output

and symbol tables is maximized by this method of source file
chaining.

32

Buddy 64/128 Assemblvy Development Systen

Large source files and even .LINKed source files may
centain .FILE statements. Control will always return to the next
line after the specified source has been assembled in from disk.
-FILE assembled source, however, may not contain its own .FILE or

.LINK commands. This type of nesting would lead to great
unhappiness.

.SEQ "0:ASCIISRCFILE"

This works exactly like .FILE except that the source is
expected in ASCII format, not Basic. This makes Buddy highly
compatible with almost any type of source you might have kicking
around from your C-64 days. If you have Brian Hilchie's excellent

EDitor, or a favorite word processor (most support ASCII output

to disk) or even decide to write your own someday, you will
always be able to assemble it. Of course you can combine types to
produce a single, ML object program using (1) in-memory Basic
type source created on the C-128 Basic editor, (2) .FILE'ing in
DSAVE'd source programs and (3) .SEQ'ing in source created on the
ascii editor of your choice. Files specified in the .SEQ
instruction must have the following attributes:

1. They will be in pure ASCII form. No screen code and no
tokenization.

2. Lines will not be numbered. Buddy will attach a sequence
number to each line in a file for display purposes.

3. A carriage return, ie. CHR$(13), will be the last character of

each line, and at least two of these will be at the end of each
source file.

4. Colons may still be used to link statements on a line, but no
line should be longer than 255 characters.

A large source program in this format might possibly
assemble slightly faster than if it were in Basic source format.
It would not be necessary for Bud to un-crunch tokens or to read
in the four bytes of overhead associated with link and 1line
number. On the other hand, this might be offset by the fact that
lack of tokenization would make the file larger.

33

Buddy 64/128 Assembly Development System

-DFN COMMANDNAME 1 2 . . . ;define a user macro

-DFN is used to write your own macro commands. It takes
a name (the name you will use to implement your command) followed
by up to 8 numbers as arguments. Each number will be preceded by
either an UP ARROW or an EXCLAMATION MARK designating the
parameter as either a byte or word value. Following lines may use

these numbers preceded by the "&" character as variable addresses
or immediate values.

No output occurs during .DFN mode and the program
counter is temporarily set to page 1 while the module is built.
These modules should not self-modify or employ absolute internal
references like JMP ELSEWHERE'IN'MACRO.

Do not wuse multiplication, division or the < >
operators on the & parameter when in .DFN mode. Do not use the &
variable in .BYT or .WOR data. Do not try to write macros to
replace long, complex pieces of coding. Macros serve best for
those repetitive 1little operations usually associated with
pointer manipulations or faked long branches. They can reduce the
size while improving the look of your programs and actually
result in fewer of those silly little coding errors that machine
language programmers have all come to love so well. Here are just
a few simple examples:

10 .DFN ADDVAL 1 2 ;add immediate value (1) o pointer {(2)
20 LDA &1

30 CILC

40 ADC &2

50 STA &2

60 BCC SKIP

60 INC &2+1

70 SKIP .DFE ;end of definition

To use this command to add the number 2 to your

SCREENPTR in one of your programs you could then code the
following line:

&ADDVAL 2 SCRPTR

You could use this same macro to add the value 1 to a different
pointer:

&ADDVAL 1 MEMPTR

This next common sample macro would code a JMP on Z set.

34

Buddy 64/128 Assembly Development System

10 .DFN JMPEQ !1
20 BNE SKIP

30 JMP &1

40 SXIP .DFE

‘one address arqument

NOw you've got another command:

&JIMPEQ $C0QO0 ;for example

Now you try to make &JSRSC
set .DFE ends the macro definition
resume. When writing a number of macros, one after another, it
may be safest not to use "4n forward referencing in any of them
because of the numerous reversals of the program counter.

icall subroutine if carry
mode. Normal assembly may

INSTALLING YOUR OWN MACROS

&MOVE and &FILL. On the
If you load and 1ist
Memory you will see definitions for a

.DFNDFE syntax. It

g the definitions. As

» these can be the ones supplied in MACROS.DFN or your own,

or both.

2. Next DLOAD in the BUDMACS. INS pr
using the EBUD version of the asse
Yyou have assembled your new macro de

ogram and RUN it. TIf you are
mbler use EBUDMACS.INS after
finitions.

3. An expanded version o

mémory. It will have your
ot 1k,

f the assembler will pe copied from
new command modules appended to the end

Again, you must assemble
run BUDMACS.INS. It is not nhecessa

Ty or any device. Permanently
; indeed if an attempt

nd that is permanently saved or
already defined in your program, a REDEFINITION OF A SYMBOL error

will result. Uninstalled -.DFN....DFE macro definitions will be
initialized away with each new assembly.

35

Buddy 64/128 Assembly Develogment System

r

Programing every other w

penchant for empty files one should not
immediately following .TOP, Here is Probably t
application of .TOP:

ay, will not pe saved

100 .LsT "0:HUGE-SYMTAR™

120 .Top Will not affect coding

130 ‘NOW a whole bunch

% ' ;0f neat stuff using the

. ; iloaded symbol table

500 .ssT "0:NEW-SYMs" iSaves only the newly defined
;Symbols

Numerous, Completely exclu
Saved from within on j

€rous separate Object
files can be created. With ,ToOp it is possi

to access each other's symbol tables without re-definition
problems or phase errors Caused by late zer

O Page assignments. if
-TOP is not useq then every Symbol defined Prior to the .SST
command will be saved.

-.SS8T “O:SYHBOL—TABLE-NAHE"; Save symbol table

file under the name You used.
Use .SST to Create a file of kernal routines, important register
addresses ang memory locations for use in all your Programs.
There are clear advantages to this.

1. You don't have to type then all dn every time you start
Something new.

2. Your source files will be shorter without the numerocus
assignment statements.

3. Certain consi

Programs. The names of key Symbols will not change from one
Project to the next.

36

r’.
£
(0]
o
H
(o]
Vo]
H
u
=
)] * .
- . ..
a - N EE I o
- N N B N e =
- O EE .

Buddy 64/128 Assembly Development System

-SST and .LST provide an excellent way of modifying
large ML programs without having to re-assemble the entire system
each time changes are to be tested. Imagine that you have
developed a sophisticated word Processor or game or assembler or
something and you now wish to add to it a fancy new feature. You
know perfectly well you're not going to get it right the first,
second, third or maybe even the twentieth time. We're talking
tricky here.

The thought of re-assembling the fifteen or so chained
files involved with each new try is not the most fun thing you

cculd possibly ever imagine. You'd probably spend more time
waiting then working. Try this:

1. Put a call to the new routine in the main source and also
assign therein an address to it. This will not be the final
destination, just a free, safe place to work on it. So somewhere

in the main source will be a lihe like 5000 JSR NEW'FEATURE, and
a line like 50 NEW'FEATURE = $3000.

2. Now assemble the whole thing. Be sure to create an object file

via an .OBJ "GREAT-BIG-ML-PRG" and to save its symbols at the end
via .SST "ITS-SYMBOLS"

3. You should have then a BLOAD'able version of your program and
a copy of its symbol table, ie. the addresses and values of all
of the routines, and variables contained in or used by it.

4. Write the new routine. You don't have to get it perfect right
off. It should .ORG originate at the address you told the main
program it would. The first thing this source will do is load in
the symbol table of the main program with a .LST "ITS-SYMBOLS"
line. .LST "0:ITS-SYMBOLS" This will load in the specified symbol
table for use by your program. ... carrying on with our example.

5. BLOAD the main program in then assemble the new module
(routine) right into memory using .MEM. This new module will have
as complete access to the main one as if they had been assembled
together. Any routines in the large one will be call-able by name
from the new one. Any flags, registers or variables in the main
one are also at the disposal of the new part.

6. So try the whole thing out. Run it. Crash-boom, or yuk, or
whatever. It didn't work but that's okay because you planned it
that way. At worst you'll have to re-boot Bud, BLOAD your ML code
and then DLOAD the source for your test program before you can

try again. At best you wont have to do any of that before you
begin making corrections.

37

Buddy 64/128 Assembly Development System

Sooner or later you'll get it perfect. Believe. Now remove the
line from the main source which assigned the test address to the
routine and either .FILE or .LINK assemble them together the way

¥ou would have liked to do in the first place if life wasn't so
full of mistakes.

If you .LST symbols in before you define any of your
own (ie. first), redefinitions will trigger error messages when
they occur. Duplicates loaded in will not be used. In the case of
labels this 1is probably convenient since it is the latest
occurrence of a label that you are probably interested in anyway.

-BYTE [onebytevalues,...,...]

This is used to place one byte value(s) into your code.
-Here are a few examples of .BYTE:

10 .BYTE 0; 2, 4, 8: 16, 32, 64, 128 ;powers of 2

20 .BYTE <1000 2000 3000 ilow bytes only

30 .BYTE >SUB1, SUB2, SUB3 shigh bytes only

40 .BYTE "hello world", 13, 0 44 jascii values :

50 .BYTS 001 2 3 48 & 7248 © A BCDETF 44 ;hex numbers
60 .B¥T% 1111 1010 1111 1101 sbinary values

The .BYT$ and .BYT% commands take numbers only as
parameters. These numbers default to either Shex or %¥binary. This
will save typing the "gm or ngw over and over when entering
numeric data in these bases. Notice that commas may or may not be
used to separate the operands. Also notice how the < and > work:
they affect the entire string of values. These may be repeated in
order to reset the default for following values. This will make
setting up high and low byte address tables more convenient.

Notice also that text strings and numeric values can be
included on the same 1line using .byte. . WORD

[twobytevalues,...,...] Use .WORD to set up address tables. All

values following will be treated as two byte values. This means
that:

10 .WORD S$FF,SFF

- . .would have the same effect as:
10 .BYTE 0,S$FF,0,S$FF.

Here are some examples of .WORD:

38

Buddy 64/128 Assembly Development System

10 .WORD DESTINATION-1

20 .WORD 12%4056,Sc0OQ0+0OFFSET iexpressions

30 .WORS ff, ee, dd, cc, bb, aa ;hex numbers

40 .WOR% 11110000 10101010 11100011 11001100 ;binary data

.WORD data can be told to expect hex or binary numbers
using .WOR$ and .WOR%. It would be pointless to use > or < in

conjunction with a word table since the resulting wvalues would
never exceed one byte.

.ASC "***ASCII TEXTh%%xn"

-ASC behaves exactly the same as .BYTE. Indeed these
two commands can be used completely interchangeably. .ASC is
included only to provide compatibility with PAL syntax. The C-128
has a new kernal routine to print out strings of text. This text
cannot be longer than 255 characters and must be terminated by a

null (zero). Here 1is an example of this routine used in
conjunction with the .ASC pseudo-op:

50 SYS 4000 jagain

70 .ORG $BOO isys 2816 after

80 .MEM

90 FOREVER =%

100 JSR SFF7D ;kernal primm routine
120 .ASC "HI MOM" 13,0

130 - JSR S$FFE4 ikernal get keystroke
140 BEQ - iloop if no key

150 JSR SFF7D iprimm routine again

160 .ASC "BYE MOM" 13,0
170 JMP FOREVER

Note: don't try JMPing to S$FF7D.

-SCR "***SCREEN CODE VALUES*%#%n

-.SCReen works the same as .ASC except that any
following text is converted to its screen code equivalent. That
is the value you would use to poke the character directly to the
screen. The line 100 .SCR "A" would code the value 1 whereas the
line 100 .ASC "A" would code the value 65, This should make life
a little easier for programmers who maintain menu lines and
displays by "poking" character values directly to the screen.

39

Buddy 64/128 Assembly Development System

.FAS

-FASt switches the micro processor into the 2Mhz. mode
and turns cff video. This should at least double the in-memory
assembly speed. There is no danger of missing any important
messages by doing this. If any errors are encountered the screen
is turned back on for you. It would be pointless, and a waste of
time to use .FASt and .DISplay together.

- BURST

The .BURST command is for disk based (ie. .SEQ and
-FILE) assembly using the 1571. When .BURST is used source files,
instead of being read via kernal routines a line at a time from
disk, will be burst loaded into memory atop resident source. From
here they will be accessed RAM DISK fashion by the assembler.
This more than doubles the speed of disk based operation. If you
are using the .FILE or .SEQ commands, have a 1571 and can spare
memory above your source in bank 0 during assembly then .BURST is
highly recommended. It need only be used once at the beginning of

your program. If you are using more than one drive and only one
is a 1571 the others will not be affected.

-.PSU

.PSeUdo allows for the use of mnemonics like LAX, DCM,
INS, SKB, AXS, .etc to code non-standard opcode. The reliability
of some of these are somewhat moot. I would suggest you execute
them with interrupts disabled. Some very widely distributed
commercial programs make extensive use of non-standard opcode
both to conserve space and to confuse disassembly.

Using .PSU will slow down assembly very slightly since
a larger table of mnemonics must be examined. Like most inherent
(operand-less) pseudos it is a toggle command. Using it for a
second time will turn the feature off. You will probably want it
on only for those portions of code which make use of non-standard
opcode. As with standard mnemonics like LDA and INX you will have

to also avoid giving symbols in your program the same names as
non-standard mnemonics when .PSU is enabled.

See the table appended to this manual for a full

listing and brief descriptions of the pseudo mnemonics which
Buddy recognizes.

40

Buddy 64/128 Assembly Development System

.IF [operand]; conditional assembly

When the expression following an .IF is not equal to
zero then assembly will proceed until an .ELSE is encountered,

then skip to an .IFE line marking the end of conditional assembly
or another.

.ELSE

When the value following .IF equals zero then Bud will
ignore everything until an .ELSE or an .IFE is found. Assembly
will resume there. .ELSE This is where assembly will pick up when
the value following the previous .IF was zero. If a second

(third, fourth...) .ELSE follows, assembly will alternate between
them.

1l

20 .IF FLAG

30 : LDA "A":JSR S$FFD2 - ikernal print
40 .ELSE

50 : LDA "1":JSR SFFD2

60 .ELSE

70 : LDA YBRY:JISR SFFD2

80 .ELSE

90 : LDA "2":JSR SFFD2

100 .ELSE

110 : LDA "C":JSR S$FFD2

120 .ELSE

130 : LDA "3":JSR SFFD2

140 .IFE ;end of conditional assembly
150 : LDA "I":JMP SFFD2

If flag = 0 in the above then the assembled code would
print "123!", otherwise the code would print "ABC!" Another more
useful application of .IFE .ELSE conditional assembly would be to
protect your indirect jumps from accidentally falling on page
boundaries.

10 JMP (INDIRECT) ;to destination

500 .IF <*+1 ;check for page boundary
510 INDIRECT =* ;not page boundary

520 .WORD DESTINATION

530 .ELSE

540 NOP ipass page boundary

550 INDIRECT =%
560 .WORD DESTINATION
570 .IFE ;end of conditional assembly

41

Buddy 64/128 Assembly Development System

No re-definition of a symbol error would occur during the
above assembly. Only the .IF or .ELSE portion of the actual
source would be assembled. This would depend on whether or not
<*+1 (the low byte of the program counter + l) was zero. If you
are using a number of .ELSEs you might want to take advantage of
the fact that pseudo-ops can be extended and tack some

alternating character on telling you which condition each else
belongs to, ie.

.ELSE1,...ELSEO,...ELSEl,...ELSE0, etc.

42

Buddy 64/128 Assembly Development System

8. MACRO OPS

BUDDY MACROS

Two of the most common activities in machine language
involve (1) comparing pointers and (2) filling, ie. erasing,
ranges of memory. Bud has provided macro-ops to make short work
of these traditionals while enhancing the readability and
reducing the size of your source.

Each requires operands which are expected to be in the
form of zero page pointers. While this may seem a trifle
inconvenient to some at first glance, it makes the resultant code
much more flexible.

For instance, you do not have to use the &MOVE macro
every time you want to rélocate some range of memory. It would be
much more efficient to use it once as a subroutine (ie. preceded
by a label and followed by an RTS) and to JSR to it with its
three pointers set to your specific needs on each particular
occasion. This would not of course be possible if this macro-op
took constants as operands.

Another advantage to taking pointers is that you can
choose precisely what addresses will be used by generated code.
Only the pointers you specify and the processor's registers are
manipulated. Bask in the joyous awareness that your data and
variables will always be safe when macro coding; trip on the

absolute power you exercise over memory usage when employing
Bud's macros.

I have come into contact with a number of very
proficient, professional assembly language programmers over the
last several years and not one has confessed to having ever used
macros. I believe this is because by their very nature ML
programmers enjoy the exquisite control they have over their
machines and do not wish to relingquish this to sonmething
"standard." Perfection is the order. Custom subroutines seem to
hold more appeal than built-in, space-wasting, other-people's
macros.

However, the two that have been selected for Buddy are
universally applicable. To overcome your apprehensions about
using them I would suggest that you use the C-128 Machine
Language Monitor to disassemble the code generated by each. You
will find it totally re-locatable and non-self-modifying as well
as fast, efficient and correct.

43

Buddy 64/128 Assembly Development Svstem

You can easily define and install your own macros as a
permanent part of the assembler. (See the pseude-op commands .DFN
and .DFE) On your system disk there is a small Bud source file,
MACROS.BUD, which consists of nothing but macro definitions. You
may or may not choose to assemble and install these permanently
using BUDMACS.INS. Nonetheless, the MACROS.BUD definitions may
provide you with ideas for your own commands as well as
demonstrating macro construction and implementation syntax.

&FILL BEGINPTR, ENDPTR

This fills the contents of the accumulator to a range
of memory. It might be used quite effectively to clear buffers or
hi-res screen areas. The first pointer must designate the first
address to be filled and the second pointer the last. Make sure
that they are properly set and that the A register has been

-loaded with the desired value before you use (or call the
subroutine using) the .DUMP cdmmand. In the following exciting
demonstration of it the 40 column screen is filled with URMe

10 SYS 4000

20 .ORG S$B0OO:.MEM

30 SCREEN =1024 ;in 40-col mode
35 TOPPTR =251:BOTPTR =253

40 LDA <SCREEN:STA TOPPTR

50 LDA >SCREEN:STA TOPPTR+1

60 LDA <SCREEN+999:STA BOTPTR

70 LDA >SCREEN+999:STA BOTPTR+1

80 LDA "B" 26 ;screen code for "B"
90 &FILL TOPPTR, BOTPTR

100 RTS

&MOVE BEGINPTR, ENDPTR, DESTINATIONPTR

This will generate the code to move the range of memory
specified by the first two pointers to begin at the address
pointed to by the third pointer. The range can be moved in either
direction any distance without overwriting itself. In other
words, it does not matter whether the destination is above or
below the beginning of the range to be moved or if the distance
is very small. Memory will still be moved intact. This macro is
used in Labelgun to shift ranges of source up or down when
replacing strings with others that are longer or shorter. Of

course the memory being moved (your source) cannot be corrupted
in any way.

Write the following short program to locate in the
cassette buffer.

44

Buddy 64/128 Assemblv Development System

10 SYS 4000

20 .ORG $B00:.MEM

30 FROMPTR 12 =251 isafe basic zero page
40 TOPTR 12 =253

50 DESTPTR 12 =65

60 &MOVE FROMPTR, TOPTR, DESTPTR

. Now use the C-128 built in monitor to disassemble and
examine it. Notice that only the pointers you defined and the
micro-processor's registers are used. Try moving some memory
around. Convince yourself that &MOVE works and is safe. Almost
every ML program ever written uses memory moves. Getting
comfortable with this Buddy macro can save you time and trouble.

WRITING YOUR OWN COMMANDS

Writing commands (ie.’ new pseudo-ops) is not the same
as using .DFN. . .DFE to define macros. There is space in BUD's
pseudo-op stack for up to five new commands. Each one takes five
bytes of memory. The first three, which are currently spaces will
be replaced by your own three-letter command which you will make
up all by yourself; the next two will be the address-1 of the

routine you want to execute when the assembler comes across this
command.

A symbol table for each version of your assembler is on
the system disk. To display one use the following technique:

10 SYS 4000

20 .DIS 7to display to screen
30 .LST BUDDYSYMS

The symbol you will use to get your commands into the
code is called PUT'YOUR'CMDS'HERE"; and nothing could be easier
than putting your commands there. Let us create a new feature for
BUD called "fun"; every time the pseudo-op .FUN is encountered in

your source Bud will inform you that fun is being had; what could
be nicer?

10 SYS 4000

20 .LST BUDDYSYMS ;S0 you can use them

30 .ORG PUT'YOUR'CMDS 'HERE

40 .MEM ;inow we put "fun" on the stack

50 .ASC "FUN" ino periocd here

60 .WOR FUNROUTINE-1 1address of new useful
;routine-1

70 .ORG $B0O ;we'll put it in the cassette
buffer

45

Buddy 64/128 Assembly Development Svstem

80 FUNROUTINE =* ipowerful new command

9C JSR MESSAGE ibud's print messages
subroutine

100 .ASC "WHEEEE! THIS IS FUN."

110 .BYT 13,0 ;must end with zero

120 JMP NEWLINE ;bud takes over

After running this, run the following:

10 SYS 4000
20 .FUN

Your "fun" message should have been printed twice: once
on each pass. If it wasn't then it's your fault. Fix whatever you
did wrong, try again, and be more careful this time, eh.
Seriously, intimate tinkering with other peoples code is tricky
even for experienced programmers.

IMPORTANT ROUTINES AND LOCATIONS

Buddy detokenizes every source 1line into - memory
beginning at the address of the BUFFER symbol. A zero byte marks
the end of that line. If you generate output you should call
Buddy's NEWPC routine. First set BYTES to the appropriate value,
not greater than three. Put code generated at OUTPUT, OUTPUT+1
and OUTPUT+2 as necessary. You may call NEWPC more than once (ie.

in a loop). When you are done, a JMP NEWLINE; passes control back
to Buddy.

If your command takes an operand you can immediately
JSR the EVALOPERAND routine. Any valid BUD expression will be
evaluated and the value returned in SUM and SUM+1.

PASSNUM will be 0 on pass 1 and 255 on pass 2. Try
changing the previous .FUN command SO you can use .FUN 100 to
print the "fun" message 100 times, but only on pass 1. Some
programmers will not like all of Bud's features. Most can be

disabled easily. For instance, one could easily suppress
paginated display listings:

10 SYS 4000

20 .LST BUDDYSYMS
30 .ORG FORM'FEED
40 .BANK 0:.MEM

50 RTS ino more formfeeds

46

Buddy 64/128 Assembly Devel opment System

You can use BUDMACS.INS (or EBUDMACS . INS)
assembler out of memory even if no new macro defin
been assembled. Any changes or new pseudo-ops will
permanent. Of course there are many, many more routines and flags
and variables that you will want to become familiar with if you
plan to really get intimate with the inner workings of your

assembler. You have symbol tables. You have a powerful
unassembler. You have fun.

to copy the
itions have
then become

47

Buddy 64/128 Assembly Development System

9. TEMPORARY LABELS: - VR

The multiplication, division, addition and subtraction
characters each have two possible uses. In expressions, if "x" jg
an arithmetic operator then values on either side are multiplied

(ég. 12*4096); whereas, if it is used as a symbol it will
represent the program counter (eg. LABEL =* or *=*+4)., This is
standard use of "*" and is mentioned only to illustrate

traditional dual functioning of one special character.

In Buddy source the Wb W and "/" also serve two
purposes. In addition to their standard application in
arithmetic, they may be used as temporary labels. Many ML
programmers don't 1like having to think up symbol names for
numerous, routine, short branches. This is especially so in very
long programs after all variations of the labels SKIP and LOOP
and BACK and AHEAD and 'OVER and so on... and so on... have been

exhausted. Objections to using these often random symbols are
based on the following:

1. Time and effort are wasted in deciding on their names and
typing them in, each at least twice. 3

2. They have a tendency to camouflage more meaningful symbols,
making it harder to visualize what is happening.

3. Symbel tables become unnecessarily large, wasting memory and

slowing things down. Judicious use of Buddy's three temporary
flags smartly overcome all of these difficulties.

TEMPORARY BACKWARD REFERENCING

When the "-" is used as a symbolic operand, the last
occurrence of it as a label is referred to. The command BNE -
will code a conditional branch back to the last line flagged with

a "-" character. Here is how it might be used in a simple time
delay routine:

100 WAIT ==* ;name of subroutine
110 LDX #0 ;initialize x and y
120 LDY #0
130 - DEX
140 BNE - iloop back until x=0
150 DEY 160 BNE - isame for y
170 RTS

48

Buddy 64/128 Assembly Development Svystem

Up to three minus signs may be used tocgether as a
symbol (eg BCC ---) to refer back as far as the third last "-»
flagged line; only the last three are remembered. The minus sign
may be used as a label again and again in your source without
re-definition errors. You must be careful that when you use "-"
characters symbolically that the line on which the referenced one
has occurred as a label is the one you want to access (.eg branch

to). Any "-" markers prior to the third 1last one

are
inaccessible.

TEMPORARY FORWARD REFERENCING

The plus sign, as you may have guessed already, works
in just the opposite way. That is, BNE + would code a conditiocnal
branch to the very next occurrence of "+n as a flag. Here is how
one might use it to increment a pointer.

Fl

10 INC PTR ' ;the low byte
20 BNE +
30 INC PTR+1 ;the high byte
40 + RTS

A symbol could have been used instead of "+", but what
a bother, a mess and a waste of space. There is no 1limit to how
far forward the next "+n flags may be or how far back the last
"-" flagged lines may be. JMP -- or JMP ++ are valid too. Within
their scope of three, these temporary flags may be dealt with
just like any other symbol. Still, all subroutines and data

should be given meaningful labels even if you could get away with
a H+Il or n_n temp-

The next three "+ flagged lines may be referenced at
any point by using 1 to 3 "4nig (eg. BEQ +, BEQ ++ or BEQ +++) as
a symbol just as any of the last three "-n flagged lines may be
accessed using 1 to 3 "=-"'g, pon't let temporary labels permit

you to become too un-imaginative. Restrict their use to short,
redundant branches.

FORWARD OR BACKWARD

When the "/" character is used as a label it serv as
both "+" and "-", either of which can be used to reference it. In
effect it is as though the "/» flagged line had both "+" and "-u
as a label on it. The JMP - statement would actually code a jump
back to either the very last "-" or "/" flagged line. A JMP +
would code a jump forward to the very next "/% or "+%]label

position. In the next example both conditional branches target
the RTS in the middle.

49

Buddy 64/128 Assembly Development System

10 BEQ + 20 LDA #0 ;or whatever

30 / RTS ;rdestination of both branches
40 DEX ;or whatever

50 BEQ -

TEMPORARY SYMBOL MANAGEMENT

The backward referenced "-" 1label is handled only on
pass two. Only three addresses need ever be "remembered" by the
assembler with regard to it. The forward referenced "+" can not
be dealt with so easily. A table of all of its occurrences as a
flag is created on pass one which is then accessed on pass two.
This table is separate from the normal symbol table and contains
only addresses. It builds up from $2000 in bank 1. If you are
using .ORG or *= to reverse the program counter or are defining a
‘number of macros you might want to avoid "+" forward referencing.
BRANCH OUT OF RANGE errors, or éven faulty code could result.

50

Buddy 64/128 Assembly Development System

10.0 LABELGUN

The C-128 screen editor is an excellent one. With it
you can redefine keys, freeze scrolling, delete ranges, renumber,
auto line number and much more. About the only thing missing when
it comes to developing a large program is sophisticated string
handling. To be able to seek out occurrences of and possibly
modify a given symbol (.eg string of characters) instantly

throughout an entire source program is so useful as to be almost
essential.

With Buddy installed you have this ability. So never
strain your eyes scrolling through screen after screen of source

looking for that elusive BUG subroutine. Just -enter the following
command: '

L, BUG

Every line in your program with the word BUG on it

will be listed for you. Change every occurrences of BUG to
CRITTER like this:

C,BUG,CRITTER

In the above case words like DEBUG, BUGEYES and BUGGY
would also be changed. This may or may not be what you had in

mind. To have only whole words considered you would use a period
in place of the first comma.

C.X,EXITROUTINE

This would not ruin all your words containing X's. Only
if X occurred as a whole symbol would it be changed to

EXITROUTINE. All those LDX, INX, STX and TXA commands would go
un-mclested.

Sometimes the string you seek will contain a Basic
keyword but not have been tokenized by the basic editor. This may
be due to its following a DATA or REM string on a line or because
it exists between quotes. In this situation it is possible that
the string you target, even though it looks the same as in your
program, will not be found by Labelgun. If you have your doubts
or if you are after a string you know is in quotes, do this:

L"ENDING
or
C"STOPTHIS, STOPTHAT

51

Buddy 64/128 Assembly Development System

You may put a period at the end of any Labelgun command
To add extra spaces to the end of a string

-
r

L,MODULE .

; would find any subroutines whose names ended in
MODULE, but probably not calls to them.

You will find these string handling commands virtually
indispensable. Use them to update label names that have changed
their meaning. Quickly locate routines by name. If you have
source for the C-64 around that you would like to convert to the
C-128, Labelgun can help.

Source written,on the C-64 editor can be assembled by
Buddy, but source written on the c-128 might not work with a c-64
basic environment assembler bectause of the much larger set of
tokens used on the C-128.

52

Buddy 64/128 Assembly Development System

11.0 INSTRUCTION SETS & ADDRESSING MODES

Standard Instruction Set

ADC #byte byte byte,x word word,x word,y (byte,x) (byte) ,y
add memory to accumulator with carry.

AND #byte byte byte,x word

logical AND memory with accumul

word,x word,y (byte,x) (byte),y

ator.

ASL implied byte byte,x word word, x

shift left one bit.

BCC word
branch on carry clear.

BCS word i
branch on carry set.

BEQ word
branch on zero.

BIT byte word
test bits.

BMI word
branch on negative (128-255).

BNE word
branch on not zero.

BPL word

branch on positive (0-127).
BRK implied

break execution.

BVC word

branch on overflow clear (bit
set.

CLC implied
clear carry flag.

CLD implied
clear decimal mode.

CLI implied
clear for interrupts.

6). BVS word branch on overflow

53

Buddy 64/128 Assembly Development System

CLV implied
clear overflow flag.

CMP 3byte byte byte,x word word,x word,y
compare with accumulator.

CPX #byte byte word
compare with x index.

CPY #byte byte word
compare with y index.

DEC byte byte,x word word, x
decrement memory by one.

DEX implied
decrement x index by one.

DEY implied
decrement y index by one.

EOR #byte byte byte,x word word,x word,y
exclusive OR with accumulator.

INC byte byte,x word word, x
increment memory by one.

INX implied
increment x index by one.

INY implied
increment y index by one.

JMP word (word)
jump to new location

JSR word
Jump to new location, save return address.

(byte,x) (byte),y

(byte,x) (byte),y

LDA #byte byte byte,x word word,x word,y (byte,x) (byte) ,y

load accumulator.

LDX #byte byte byte,y word word,y
load x index.

- LDY #byte byte byte,x word word, x
load y index.

54

Buddy 64/128 Assembly Development Svstem

LSR implied byte byte,x word word,x
shaft Zight dns 'bit.

NOP implied
no operation.

ORA #byte byte byte,x word word,x word,y (byte,x)
logical OR with accumulator.

PHA implied
push accumulator on stack.

PHP implied
push processor status (flags) on stack.

PLA implied p
pull accumulator from stack.

PLP implied
pull processor status (flags) from stack.

ROL implied byte byte,x word word,x
rotate left one bit with carry.

ROR implied byte byte,x word word,x
rotate right one bit with carry.

RTI implied return from interrupt.
RTS implied return from subroutine.

SBC #byte byte byte,x word word,x word,y (byte, x)
subtract memory from accumulator with borrow.

SEC implied
set carry flag.

SED implied
set decimal mode.

SEI implied
disable interrupts.

STA byte byte,x word word,x word,y (byte,x) (byte) ,y
store the accumulator in memory.

STX byte byte,y word
store x index register in memory.

55

(byte) ,y

(byte) ,y

Buddy 64/128 Assembly Development System

STY byte byte,y word
Store y index register in memory.

TAX implied
transfer accumulator to x index register.

TAY implied
transfer accumulator to Yy index register.

TSX implied
transfer stack pointer to x index register.

TXA implied

transfer x index register to accumulator.
TXS implied

transfer x index register to stack pointer.

- TYA implied .
transfer y index register to accumulator.

Non Standard 6510 (.PSU) Instructions

ASO #byte byte byte,x word word,x word,y (byte,x) (byte),vy
ASL then ORA result with accumulator.

RLA #byte byte byte,x word word,x word,y (byte,x) (byte) ,y
ROL then AND result with accumulator.

LSE #byte byte byte,x word word,x word,y (byte,x) (byte),y
LSR then EOR result with accumulator.

RRA #byte byte byte,x word word,x word,y (byte,x) (byte),y
ROR then ADC result to accumulator.

AXS byte byte,x byte,y (byte, x)
store result of a AND x.

LAX byte byte,x word word,y (byte,x) (byte) ,y
LDA and LDX with same memory.

DCM byte byte,x word word,x word,y (byte,x) (byte),y
DEC memory then CMP.

INS byte byte,x word word,x word,y (byte,x) (byte) ,y
INC memory then SBC.

ALR #byte
AND with value then LSR result.

56

Buddy 64/128 Assembly Development Svystem

ARR #byte
AND with value then ROR result.

XAA #byte
AND with x then store in a.

OAL #byte
ORA with #$EE then AND with data then TAX.

SAX #byte 3
SBC data from a AND x then TAX SKB byte skip byte.

SKW word
skip word.

57

Buddy 64/128 Assembly Development System

12. TWO ENVIRONMENTS

Buddy 64/128 Assembly Development System actually
encompasses two machine language development environments. It is
the Buddy half which has been discussed so far. Although Buddy is
able to assemble ASCII files from disk such as can be written on

EDITOR.128 or most word processors, its memory based source must
be in Basic format.

Basic source, unlike pure ASCII text, is actually a
linked 1list: each line starts with a two byte pointer to the
next. Following this pointer are two more bytes representing the
line number. Next comes the actual text with all Basic keywords
tokenized (ie. crunched). At the end of each line is a zero byte.

While this format does very well for Basic it may not be the most
efficient for assembly language.

However, many programmers are comfortable with the
Basic editor and source format and have no desire to switch to a

different system. If you are one of these people then stay with
BUD; it was made for you.

LOADING EBUD

On disk is another version of the assembler which can
be invoked by entering RUN "EBUD". This will result in the editor
compatible version of your assembler, ED-BUDDY.ML, and the ASCIT
editor itself, EDITOR.128, being loaded into memory. You will not
return immediately to Basic as is the case when booting with BUD.
EDITOR.128 Printed at the top of your screen will be COLUMN:1
LINE:1. A solid cursor will be in the upper left corner of the

now clear text area. Welcome to our editor! Screen and text
colors remain as set.

In Basic you can use the <CTRL> or <LOGO> 1-8 keys to
change the text color and the new COLOR command (eg. COILOR 6,7 to
set the 80 column background to blue) before running EBUD.

REPLACES BASIC EDITOR

EDITOR.128 effectively replaces the Basic editor
insofar as the EBUD version of your assembler is concerned. Basic
is still completely at your disposal, but you will not be using
its 1line number oriented editor to write your source on or
assemble your source from. EDITOR.128 is short, as editors go,

and easy to 1learn to use. Nonetheless, a number of useful
features have been built into it.

58

Buddy 64/128 Assembly Development System

TWO-WINDQOWS

If you are in 80 column mode then two vertical, 40
column windows will be set up. When you enter the editor the
window on the left will be positioned to the start of your
source, and the window on the right will be positioned to the end

of your source. You may switch between windows by pressing either
the ESC key or <shift> RETURN.

4-WAY SCROLLING and PAGING

Begin typing. When you come to the right of the screen
window, instead of wrapping to the next 1line as you would in
Basic the screen window scrolls with you to the right. Lines may
be up to 250 characters long. with text in memory you can scroll
up, down, left and right by using the cursor keys. You may also
Page up and down with thé f3/f4 key and page left and right with
the f5/f6 key. This allows you to flip through long programs very
quickly. The CLR HOME key can be used to position you immediately
to the top or bottom of your source.

SIMPLE INSERT and DELETE

The INST DEL key works pretty much the way it does in
basic to add or remove text one character at a time. the f1l/f2
key can be used to delete the remainder of a line or to insert a
new line. This key can also be used to split and join lines.

CUT and PASTE

To delete an entire range of text position the cursor
at one end of the text you wish to remove, then press <LOGO> S to
Set Range. You will see [RNG] appear at the left of your status
line next to COLUMN: (Pressing <LOGO> S a second time cancels the
Set Range mode.) Now move to the other end of the range of text
to cut. It does not matter how far or near this is. Press <LOGO>
D and this text will all disappear. Once you've cut a range of
text you may paste (insert) it back in anywhere, as often as you
like until you range-delete another.

To insert the range simply position the cursor to where
you would 1like it to begin and press <LOGO> T for Text and
presto--there it is again. You may go back and forth from Basic,
clear (NEW) source and load files without disturbing cut text so
that routines can easily be moved from one file to another.

59

(This Page Left Intentionally Blank)

60

Buddy 64/128 Assembly Development System

SEQUENTIAL FILES

To save and load sequential files it is not necessary
to use Basic. To save a file as a SEQ file begin by pressing
<LOGO> P. Then, following the "PUT:" prompt enter the name you
would like to give your source on disk. To load a SEQ file press
<LOGO> G and following the "GET:" prompt type in the name and
press RETURN. The file will be 1loaded in beginning at the
position of the cursor. This can be used to join two files.

ASSEMBLING

To assemble your source first press RUN STOP to return to
Basic. Then enter the AS command. The source in the editor will
be assembled directly from memory. It is not necessary to save it

- first (unless you plan to kill the machine). If you used .MEM to

output to memory you may then test the code and (hopefully)
afterward return to your source via the ED command. Complete
memory based operation is supported. With EBUD you can also disk
assemble, file chain, load and save symbol tables, create object
files, and indeed do all of the things Buddy does with the Basic
editor.

EDITOR COMMAND SUMMARY

ESC switch windows (80 col. mode only)
fi delete rest of line

f2 insert new line

f3 page up

f4 page down

f5 page right

f6 page left

£7 find/replace next occurance
f8 replace all occurances
CLR top of text

HOME bottom of text

<LOGO> § start set range

<LOGO> D delete range

<LOGO> T insert range

<LOGO> F set string to find

<LOGO> R set string to replace
<LOGO> P put (save) seq file
<LOGO> G get (load) seq file
<LOGO> L 1list to printer

RUN STOP go to Basic

ED go to editor

AS assemble source in editor

61

Buddy 64/128 Assembly Development System

CONVERTING SQURCE TO ASCIT

On disk is a program called MAKE-ASCII that will create
an ASCII file completely compatible with the EBUD system from any
Basic format source file.

DIOAD and RUN "MAKE-ASCII"

Enter the name of the Basic file followed by the name
of the ASCII file you would like to make. It will be done. You
will be able to 1load the ASCII SEQ file generated in to
EDITOR.128 using <LOGO> G(et). MAKE-ASCII will also convert C-64
Basic source. You will probably see that the new ASCII file
consumes less memory than Basics's version did.

62

Buddy 64/128 Assembly Development System

13. BUDDY'S UNASSEMBLER

On the program disk is an ASCII source file called
UNASM.BUD. If you are using the Basic format compatible BUD then

running the following short program will assemble the necessary
code to memory.

10 S5Y¥S 4000

20 .BURST iif you have a 1571
30 .SEQ "UNASM-SOURCE" '

You may create a BLOAD'able object file from UNASM.BUD.
To do this:

18 DLOAD and RUN "EBUD"

2% press <LOGO> G to GET:UNASM.BUD

- add an .OBJ "NAME" line directly following the .ORG 20000
line if you want the code saved as a BLOAD'able program

4. press RUN STOP to enter Basic

1 enter the AS command to assemble everything.

If you decide to change the bank 1 load address of the
unassembler you should keep the following in mind: Buddy's symbol
table builds down from $C000 in bank 1. The I/O buffer and "+"
address stack build up from $2000 in bank 1. In any case you have
a powerful memory based unassembler at your disposal; one that
will convert raw code to LOAD'able, LIST'able, SAVE'able source
that you can attack with LABLEGUN, modify and reassemble using

BUD, or convert using MAKE-ASCII to source that can be worked on
in EBUD's editor.

HOW TO USE UNASM

After assembling UNASM-SOURCE to memory it must be
enabled via BANK 1:SYS 20000 (unless you've changed the origin).
This will set some pointers and print a header. Be sure to reset
BANK 15 after. To use UNASM enter the UN command from Basic. Your
"UN" will be extended to prompt:

UNASSEMBLE FROM

Enter a start address in hexadecimal. The C-128's ML
monitor can be used to convert decimal to hex (eg. +49152). You
will then be prompted TO $ Another hex value must be entered
representing the address of the last byte of code to unassemble.

63

Buddy 64/128 Assembly Development System

SELECT BANK

Next you will be asked to select the bank of memory
which the code you want to unassemble is in. As in the C-128
monitor you will use O-F to designate banks zero through fifteen.

SELECT FORMAT

Finally you will be asked if you want standard format.
You probably do not, so press N. Standard format cannot be
reassembled; it is for looking at. The line number represents the
decimal address of each instruction. Following this will be the
same value in hex. Last will be the instruction. Except for the
decimal line numbers this resembles the format produced by ML
monitors. Again, standard format is for examination purposes, not
reassembling.

Non-standard format produces actual Buddy source that,
with a little work, you can make as good as the original. Line
numbers will represent the address of the unassembled code.
Labels will be generated and used if and only if possible and
necessary. . :

Depending on the amount of code being unassembled you
will have to wait from no time at all to about 10 seconds for the
job to be done. When Basic is again "ready" enter LIST ...there
is your source.

RANGE LIMITS

UNASM can take on more than 4K of code at a crack. It
is sensitive to the top-of-basic pointer ($1212) so that
utilities such as your assemblers and editor which use this
pointer to protect themselves will never be overwritten by UNASM
generated source. If you enter a range too large to fit in the
Basic buffer no harm will come of it. UNASM will do as much as it
can before stopping.

PROBLEMS

Many programs have a certain amount of ASCII and other
data embedded in the code. Where UNASM encounters a non-opcode it
will generate the appropriate .BYTE instruction to handle it;
however, some rather awful (ie. meaningless) instruction
sequences will also be generated by this data. It is up to you to
create the appropriate .ASC, .BYTE or .WORD lines to give clarity

to these garbled statements. UNASM may also produce source lines
like this:

64

Buddy 64/128 Assembly Development System

49152 ZCO00 ASL 50020

Absolute addressing has been used on a zero page
address. Whether this was intended or the result of embedded data
the assembler will assume you mean ASL $20 and code zero page
addressing. The $00 byte is lost and the code is shortened.

SOLUTIONS

You can correct unintended zero page addressing by
changing such unassembled source lines to 49152 ZC000 ASL 1§20,
forcing absolute. The source should then reassemble properly to
its intended destinatiop, but may not look pretty or be truly

‘useful yet.

You can use Buddy's .OFF and .MEM pseudo-ops to
assemble the code to memory somewhere safe, then compare it byte
for byte with the original. You will be able to spot, then list,
lines which didn't reassemble properly.

UNASM also cannot possibly know when the low and high
byte immediate values of internal addresses are being used in
order to set up RTS jumps, intercept vectors, or self-modify. You
will have to study the source to see where this is being done and
create the correct symbolic expressions for these statements
before it will be truly reworkable and relocatable.

Having a symbol table for the unassembled code (as you
have for the assemblers) can make analyzing it and even
reconstructing meaningful source much less work. ILABLEGUN
commands can be used to attach meaningful names to the hex
oriented symbols generated by UNASM. MAKE-ASCII can be used to
convert the Basic format, unassembled source to stuff you can

work on in the ASCII editor (you'll 1lose the 1line number
references).

Insufficient disk space makes it impossible to provide
complete source 1listings for your assemblers as part of the
system package. However, you should find UNASM-SOURCE and the SYM
files an interesting and useful compromise.

65

Buddy 64/128 Assembly Development System

14. Buddy Source Code

Scme of you may have purchased the Buddy 64/128
Assembly Development System along with it's source code. This
will enable you to modify the Assembler to suit your needs as you
see fit. You will find the source codes on 3 separate disks in
the package. We recommend that before you make any modifications
to the program that you make a backup or. working copy of the
disks and do ALL mecdifications to these copies. Never modify your
original disks.

Each source code is broken up into it's own subfiles,
these subfiles are commented to help you understand what Buddy
64/128 is doing at every point. With things being done this way
we are sure that you will be able to get the most from the Buddy
64/128 source code.

We will also have a section devoted to the Buddy 64,128
Assembly Development Package on our YodaHead Software Support
Bulletin Board which can be reached at (609) 596-4835. This
section will include a Message Base, General Files and Transfer
Section for use by the owners of this package. For information on
how to access this section simply log onto the Bulletin Board and
ask the Sysop for assistance.

We realize that there may come the time that you might
have a specific question about why and how the assembler is doing
something. For this reason you will see the address of Chris
Miller listed below. You may contact him directly or write to us

at YodaHead Software and we will gladly forward your inquiry to
him.

Chris Miller

2 Hilda Place
Kitchener, Ontario
Canada N2G 1K3

Chris will also accept phone calls from owners of the
Buddy 64/128 Assembly Development System at (518) 743-0578.
Collect calls will not be accepted. Please try to be considerate
in your calling times and remember that Chris lives in the
Eastern Standard Time Zone. Chris will usually answer by the 3rd
ring, if he doesn't his answering machine will pick the phone up.

66

Buddy 64/128 Assembly Development System

15. Z BUDDY

The following is intended to assist the more advanced
ML programmer in making use of the C-128's 2/80 microprocessor
via the very powerful cross assembler, ZBUDDY. ZBUDDY lets you
use standard Z/80 mnemonics (see "TEST.ZMNE" program on disk) and
BUDDY's expression syntax and rich body of pseudo-ops (see those
sections of this manual) to create ML code for the 128's "other"
microprocessor. Symbol tables for these assemblers are fully
compatible (ie. symbols can be .SST saved on one and .LST loaded

by another) so that complex programs involving both the Z/80 and
the 8500 can be written.

PROGRAMMING THE Z/80

The C-128 is a two processor system. Inside are an 8500
and a 72/80. The Z/80 is one of the most advanced 8 bit processors
alive. It, unlike the 8500 which is memory based, is a register
based microprocessor. It has two sets of general purpose
registers. Each of these sets contains an accumulator, a status
register and six, 8 bit, general purpose registers. The second
set can be used for the interrupt flip-flop (IFF) or by the
exchange (EXX) command to remember and restore register contents.
Data registers can also be paired for 16 bit addressing and
arithmetic. In addition to these there are four other 16 bit
registers: the PC (program counter), the SP (stack pointer) and
the (IX) and (IY) (index) registers.

8 BIT INTERNAL REGISTERS

Al accumulator

B? general purpose
C!

Dl

EI

Hl

LI

F' flag (status)

MO ITEHOOO P

16 BIT REGISTER PAIRS
BC B=hi byte C=low byte

DE D=hi byte E=low byte
HL H=hi byte lL=low byte

67

Buddy 64/128 Assembly Development System

TRUE 16 BIT REGISTERS

IX index

LY index

Sp stack pointer
PC program counter

COMMANDS

The Z/80 recognizes several times as many instructions
as the 8500; some therefore require more than one byte of opcode.
These commands can be functionally divided into 13 groups.

1. THE EIGHT BIT LOAD GROUP

The Z/80 assembler }oad instruction, LD, might more
aptly be named MOVE. There is no store instruction. Every LD will
be followed by two operands delimited by commas. The first
operand represents the destination and the second the source, so
that the instruction LD ($C000),A means store the contents of A
at $C000 whereas LD A, ($C000) would mean load A from $C000. In
Z2/80 mnemonics, parenthesis define a memory location; otherwise
an immediate value is assumed.

2. THE SIXTEEN BIT LOAD GROUP

This includes all the commands which move two byte
values either between registers or between registers and
addresses. Included here are the PUSH and POP instructions which
is handy since addresses are what stacks are mainly for.

3. THE EXCHANGE GROUP

Register contents can be swapped with the secondary set

or within the primary set. There's nothing like this on the 8500
although we often wish there was.

4. THE BLOCK TRANSFER GROUP

Set a few register pairs and use one of these to move
or fill memory a byte at a time or in a Z/80 controlled loop. The
short Z/80 routine which we will later call from Basic to copy
its ROM into 8500 visible RAM uses an LDIR loop.

68

Buddy 64/128 Assembly Development System

>. TEHE BLOCK SEARCH GROUP

As above, the Z/80 can automatically control looping by
counting down the value contained in the BC pair and incrementing
the address pointed to by DE. Ranges of memory are compared with

the A register until a match is found or the BC pair decrements
to zero.

6. THE 8 BIT ARITHMETIC AND LOGICAL GROUP

These allow for manipulation of one byte values in
pretty much the same way 6510 programmers are used to. Addition
and subtraction are possible with or without carry. '

7. THE 16 BIT ARITHMETIC AND LOGICAL GROUP

Same as above but with two byte values being

manipulated. The logical AND, OR and XOR are not found in this
group.

8. THE CPU CONTROL GROUP

Processor and interrﬁpt modes and status flags are
handled.

S. THE ROTATE AND SHIFT GROUP

Many different types of shifts accessing both one and
two byte values via a variety of addressing modes are available.

10. THE BIT SET RESET AND TEST GROUP

These commands provide for complete bit addressing.
Each takes two parameters. The first will specify which bit (0-7)
is to be set, reset, or tested; the second will designate the
register or memory location to be manipulated. For example SET
3,(IX+0) would set bit 3 in the address pointed to by the IX
register (ie OR it with the number 8).

11. THE JUMP GROUP

Conditional and unconditional, jumps (direct) and
branches (relative) are supported. Anyone who has ever had to
fake a conditional jump in 6510 via BNE *+5:JMP FAR or an
unconditional branch via SEC:BCS NEAR will appreciate the
versatility of this Z/80 group. '

69

Buddy 64/128 Assembly Development System

12. THE CALL AND RETURN GROUP

Subroutines may also be called and returned from
conditionally or unconditionally.

13. INPUT OUTPUT GROUP
These are specialized load and store instructions. In

the C-128, when accessing I/O memory (DOOO-DFFF), IN and OUT
commands should be used instead of I1D.

PROGRAMMING THE Z/80 IN 128 MODE

The 2Z/80 brings a convenience and conciseness to ML
programming that is sure to please and impress 6510 assembly
language programmers. I hope the above has whetted your appetite
for doing a little exploring. It will inspire you to know that
this microprocessor can be used in conjunction with (not at the
same time as) the 8500 in the C-128, even from Basic: switching
between them is not much more difficult than switching between
memory banks once you know how. -

SWITCHING PROCESSORS

Bit 0 at $D505 (54533) controls the microprocessor
mode. If it is turned on then the 8500 becomes active; if it is
off then the Z7/80 takes over. You can't just poke it off. A
little housekeeping is first in order: Disable 8500 interrupts
via SEI because you are going to switch to a memory configuration
in which Kernal ROM is not visible.

To do this, store a $3E (62) at $FFO0O (the
configuration register). This leaves I/O RAM intact but switches
everything else to RAM 0.

MANAGING TWO PROGRAM COUNTERS

You're still not quite ready. The 2Z/80 PC register
holds $FFED after 128 initialization. There is a NOP ($00) there.
The first actual Z/80 command goes at $FFEE. If you look through
the monitor you will see a $CF there. This is an RST 8 opcode
byte which will cause the Z/80 to jump (ReSTart) to its own ROM
routine at 0008. You do not want this. After moving some 8500
code into place at $3000, the Z/80 would return control to the
8500. The 8500 wakes up exactly where it left off after you
switched to the 2/80. If you followed this switch with a NOP
(lets not wake it up to fast) and then a JMP $3000 (like the

70

Buddy 64/128 Assembly Development System

operating system does) you would go into the 123's boot CP/M
routine. This is pretty useless from a Programming standpoint, so
don't bother. Instead, put your own 2/80 code at SFFEE.

THE Z2/80 STACK

Before you do any Z2/80 subroutine calls you should set
its stack pointer register (SP) to point to some area that will

not interfere with your code or Basic. The last thing the 2z/80
will have to do is to turn the 8500 back on. There are two ways
te. do this:

LD A,$B1
LD ($D505),A

This is inferior. There is a bleed t
the 2Z/80 mode using this type of store.
written to underlying RAM.
this feature especially both

hrough condition in
A $Bl will also be
(which is where 2ZBUDDY sits, making
eérsome.) Here is the proper way

LD BC,$D505
LD A,$Bl OUT (C),A

Bleed through will not occur using OUT storage and all
1/0 memory between $D000 and SDFFF can be written to. In our

Basic coding sample the background ($D021) and border ($D020) are
poked via the 2/30 oUT instruction.

might not necessarily take off at $FFEE the ne
activated it. It, like the 8500, wakes up where it went to sleep.
The best procedure for switching back and forth is to try to
always put the microprocessors to sleep in the same spots. These
switches could be followed with jump commands. Before invoking
them you could set the Jjump address for the other microprocessor
to anywhere you like. Z2/80 ROM puts a RET ($C9) command after the
8500 switch allowing the Z/80 to
return when the 8500 switches back. You can also put an RTS ($60)
after the 2/80 switch so that the 8500 can JSR the 2/80.

TWO RAM ROUTINES FOR SWITCHING

Now it just so happens that there are two routines high
in RAM 0 through which the two microprocessors can ‘invoke each

other. The 8500 invokes the Z2/80 at $FFDO. When the 2/80 returns

71

Buddy 64/128 Assembly Development System

control, the 8500 picks up at $FFDB. Leave the NOP ($EA). You can
take over at S$FFDC (65500). The Z/80 invokes the 8500 at SFFEO.
When the 8500 returns control, the 2/80 picks up again at
SFFEE--and so on and so on.

SWITCHER

- On your disk is a small Buddy source program called
"SWITCHER-SOURCE" which handles the 2Z/80 stack, the user . 5 1) 8
and controls the "sleepy time" program counters for the two
microprocessors while making use of the RAM routines at $FFEO and
SFFDO. SWITCHER thus allows you to easily execute hybrid programs

and, as our "INVOKE-Z80.BAS" example shows, even call the 2/80
from Basic.

SWITCHER code 'sits at 3000, high in the 128's tape
buffer. The address of the Z/80- code to be executed should be in
the 8500's X (=low byte) and A (=high byte) registers. These can
be passed directly from ML or even Basic via the 128's new
improved SYS command, which is exactly what INVOKE-280.BAS does.
The program pokes some 2/80 code in at $6000, then after having
SWITCHER get the Z/80 to execute it, continues in Basic. The Z/80
code copies its ROM into RAM at $8000. Notice how easy it is to
code this move (4 instructions, 11 bytes). The Z/80 then pokes
the screen colors just to show off.

The SWITCHER code isn't long at all, and should pave
the way for some serious exploration of the Z/80 language and
environment in the 128 by true Commodore 0/S hackers. You can use
Buddy to relocate the SWITCHER code and ZBUD to write much more

interesting dual processing applications than provided in our
little Basic demo.

72

Buddy €4/128 Assembly Development System

16. C Shell

NEW COMMAND FOR C POWER 128

Buddy-System.128's AS.SH is the only assembler which is
100 percent compatible with the C-POWER linker, and SHELL
operating system. Pro-Line's C compiler, C-POWER 128, by Brian
Hilche of Waterloo, Ontario has been widely distributed and
received excellent reviews. It's Shell operating system and text
editor are truly superb. If you own this system you'll Kknow
exactly what I mean. If you are thinking of purchasing a C
compiler then give Brian's C-Power strong consideration.

On your Buddy-System.128 disk is a version of the Buddy
assembler which is completely compatible with the C-Shell
operating system including its ram disk and linker. With it you
will be able to write your own C functions as well as pure
assembly language programs by way of linkable object modules. If
you have no interest in C or acquiring C Power 128 then skip this
section of the manual; put AS.SH aside until such time as you
change your mind; you have no need of or use for it yet.

LINKABLE MODULES

So, you have or are considering getting C POWER, or you
are just curious. True linking is unlike scurce file chaining or
disk assembling. Imagine that you have a very large program
consisting of perhaps many dozens of small source files. Making
changes to one of these would not require reassembling the rest
of the files, only the one in which alterations were made.
Assembling a source file does not result in an immediately
executable piece of machine language but generates a linkable
module. A linker will convert it, along with any others
specified, into an executable, BLOAD'able piece of ML code.

Linking is faster than assembling; most of the work is
already done. Again, intermediate object modules are used only by
the linker. They are assembled as though they were to run at $00.
A considerable amount of relocation information is appended to
the end of each. These files must always end with .OBJ or the
linker will not touch them. Their format is complicated and
exacting and attempting to link "any old file" would invariably
bring the system down. You, of course, do not have to worry about
any of this. Just assemble your source and let ASM.SH build the

correct module and even tack on the ",0BJ" to the output module
filename.

73

Buddy 64/128 Assembly Development System

THE AS COMMAND

The manual included with C-Power will detail the syntax
and usefulness of its many Shell commands including LINK, ED,
RDON etc. This information will not be duplicated here. An ASM
command does not, however, appear in the C-Power manual. This
system does not have its own assembler (but now you have). You
will probably want to write your source using the Shell EDitor.

Once you have put a source program to disk (or ram
disk) quit the editor and enter the following command: $ AS
MY-FUNCT MY-FUNCT. The source file named "“MY-FUNCT" will be
assembled and a file named "MY-FUNCT.OBJ" generated. Any names
can be used and the second (the object module to generate) need
not be the same as the first (the source file to assemble). If a

second name is not specified then no output will be generated -
just a test assembly. '

DIFFERENCES

There are a number of differences between AS.SH and the
other assemblers on your disk beside the fact that AS.SH runs
only under the C Power Shell: Only the .OFF command will be used
to directly assign values to the program counter. Code between
.OFF and .OFE is assumed not to be relocatable. You will use .OFF
only if you want to set up your own variable tables or to
generate patches of code to be moved prior to execution. The
-FILE, .SEQ, .LINK and .LOOP commands have been done away with in
this version, all being handled by the Shell LINK utility.
Output to banked memory is also disabled (except wvia Shell RAM
DISK) since module code is not executable. .BAS and .0BJ are
also not needed in this version.

NEW PSEUDO-QOPS

-EXT ROUTINES,SYMBOLS,... ;define externals

Any source symbol you wish to be made available to
other source programs must be passed to the linker via the .EXT
pseudo-op somewhere in the program that it is defined. Although
there are in most situations no assembly time UNDEFINED SYMBOL
errors, if you neglect to .EXT define a symbol which you refer to
in another source module, it will show up as an UNRESOLVED
EXTERNAL REFERENCE when you attempt to 1link their assembled
object modules together. '

74

Buddy 64/128 Assembly Development Svystem

A waord of caution: Passing zero page values wvia .EXT
could lead to error messages or undesired addressing modes. The
assembler, when in doubt, will assume absolute addressing is
required. You may correct this in two ways.

(1) The up-arrow works (in the opposite way of the exclamation
mark) to force =zero page addressing whenever possible. An
up-arrow in front of an operand tells the assembler that a zero
page value is going to be filled in by the linker.

(2) Symbol tables may still be saved and locaded via .SST and .LST
so that any zero page assignments can be passed from one module
to another without problems associated with late definitions or
having toc remember to type in up-arrows. '

Although the assembler works with symbols of any length
and does acknowledge redefinition errors, the C POWER linker at
present does not. If two .EXTernally declared symbols are the
same to 12 characters the second one declared will be lost by the
linker and all references to it will be directed to the first.

-DATA VARIABLENAME, §BYTES ; establish variable tables

The C POWER linker can be instructed to allocate space
for variables and other data. These will sit on top of ML
programs produced. Such definitions are automatically external
and thus available to other related source modules. The .DATA
pseudo-op instructs the assembler to put the necessary
information into the 1linkable object module generated. For
example the line .DATA COUNTER,2 would make available to your
source a two byte variable called (yes, you guessed it) COUNTER.

C SYMBOLS

In order to write your own C functions, which you can
invoke by name and pass parameters through from C programs, you

will have to be aware of the following library routine and data
buffer.

CSFUNCT INIT

This routine (the name contains an underscore
character, not a blank) should be called first. It will be 1linked
in as part of the C library. Make the first command of your

75

Buddy 64/128 Assembly Development System

assembly language € function JSR CSFUNCT INIT. As you may have
guessed, it will initialize your routine for use by the compiler.

BUFFER

The parameter buffer for C functions is located
$400-$4ff (Bank 1). Any values passed to a function will arrive
in this buffer indexed by the .X register. To return a value
simply place it back in the buffer indexed by the same .X value.
Ordinarily you will not have to worry about the bank
configuration unless you want to override the compiler and
(carefully) store your own (temporary) values at $ff00.

To call your function from C you will use the name of
the linkable object module(less the .obj) that you created when
you assembled. Be sure to link this module in with the C program
after compiling it. Before you‘attempt to write C functions you
should probably try assembling and linking a few small ML test
programs just to be sure you have the knack. Link these to run
independently of the Shell but not as Basic-like programs (see
the C manual for details). .

76

Buddy 64/128 Assembly Development System

17. RECOMMENDED READING LIST

REFERENCE

MACHINE LANGUAGE FOR THE COMMODORE

64 AND OTHER COMMODORE COMPUTERS

ASSEMBLY LANGUAGE FOR THE
COMMODORE 64

INNER SPACE ANTHOLOGY 2ND EDITION

ADVANCED MACHINE LANGUAGE

MACHINE LANGUAGE FOR BEGINNERS

SECOND BOOK OF MACHINE LANGUAGE

77

AUTHOR

Butterfield

Sanders

Karl Hildon
Data-Becker
Mansfield

Mansfield

PUBLISHER

Brady

Microcomscribe

Transactor
Abacus
Compute!

Compute!

Buddy 64/128 Assembly Development System I
18. INDEX l
Addressing Mcdes 15:53.56
Assignments, Equal il l
Assignments, Set 12
Assignments, to Program Counter 12
Backward Referencing 48,49
Comments on Style 19 l
Comments, Meaningful Symbols _ 19
Compatibility i 6
Display 7 l
Equal Assignments 12
Error Messages 17
Expressions 18
Features 7 '
Forward or Backward Referencing 49
Forward Referencing' 49
Getting Started . 9 l
Input - 7
Instruction Set 53
Labelgun 51 I
Liability Disclaimer 3
Macro Ops 34,43
Meaningful Symbols 11,18
Memory Usage 5,9 I
Non-Standard Addressing Mode 56
Non-Standard Instruction Set 56
Operands 13 l
Operators 12
Output 7
Pseudo Ops 21
Pseudo Ops, Definitions 22 l
Pseudo Ops, Quick Reference 21
Recommended Reading List 72
Set Assignments 12 I
Standard Addressing Modes 16,53
Standard Instruction Set 53
Style, Comments 19 I
Symbol Management 11,50
Symbols 351
Temporary Symbols 8
Temporary Forward Referencing 49 I
Temporary Labels 48
Temporary Symbol Management 50
Warm-up Exercise 10 '
Warranty Policy 3
White Space 19
78 I

Buddy 64/128 Assembly Development System

19. Product Registration

We would appreciate it if you would take the time to
fill out the short registration form below. This will enable us
to notify you of updates and new product releases. It will also
give you a chance to add your comments on this software package
and other packages that you might like to see.

Name:

Address:

City, State, Zip Code:

Phone Number:

-

Preduct (Please Check One):
Buddy 64/128 Assembly Development System

Buddy 64/128 Assembly Development System w/ Source Code

Comments:

79

Buddy 64/128 Assembly Development System I
20. Notes l
80 l

