Contents

Introduction

1—You and Your TV 1

How a Computer Displays a Picture 1
What Is Animation 2

2—A Language for Games 3

Assembly Language 4

Using an Assembler 4

What an Assembler Can Do for You 5
How to Choose an Assembler 6

3—Underlying Concepts 9

Bits and Bytes 9
The Hardware 10
6510 Architecture 11

4—The 6510 Assembly Language 13
Instruction Types 13
Addressing Modes 14

Immediate Mode Addressing—Zero Page Addressing—Zero Page Indexed Addressing—Absolute
Addressing Absolute Indexed Addressing—Indirect Addressing with Indexes—Implied Addressing—
Relative Addressing—Indirect Addressing

5—O0rganizing Your Program 17

6-Working with Interrupts

7-Technical Information

Commodore 64 Address Space 21
Memory Control and Mapping 22
Graphics Memory Locations 29
Standard Text Mode 24

Color Memory 27

Custom Character Sets 28
Multicolor Mode 28

Extended Background Color Mode 28

Bit Mapping 29
Multicolor Bitmapped Mode
Sprites 30
Sprite Pointers—Sprite Controls
Collision Detection 32
Blanking the Screen 33
The Raster Register 33
Video Interrupts 33
Scrolling 33
Joysticks 34

8-Sound Effects

Filtering 36
The Sound Generator Demo 41
The Sound Editor 41

9-Creating Graphics

Hand Coding Graphics 47
Using a Graphics Tablet 52
Using a Koalapad
Using the Sprite Maker 55
Using the Screen Maker Utility 56

10-Some Arcade Games

Pac-Man 57

Donkey-Kong 58

Centipede 58

Revenge of the Phoenix 59
Game Play—Scoring

11-Elements of Game Design

Visual Impact 62
Sound Effects 62
Difficulty Levels 62
Scoring 63

19

21

36

47

57

61

Virtually every home in the country has at least one
television set, and televisions, like many other
domestic appliances, tend to 'be taken for granted.
Most people do not have any idea of how they work.
Since you are interested in having the television
display your ideas and visions in the form of a video
game, you should have some idea of how an image
is generated on the television screen to best utilize
the capabilities of your computer.

HOW A COMPUTER DISPLAYS A PICTURE

The face of a video display is coated with special
phosphors. An electron beam strikes the face of the
tube causing the phosphors to glow. On a black and
white monitor, this process produces a dot. This
glowing dot is called a pixel A pixel is the smallest
area that a computer can control on the screen. A
color monitor uses three electron beams and three
different colored phosphors to create one pixel.

The electron beam scans from left to right
across the face of the monitor. By controlling the
intensity of the electron beam during its scan, dif-

Chapter 1

You and Your TV

ferent points on the screen receive different inten-
sities.

When the beam gets to the right edge of the
screen, a horizontal sync pulse causes the beam to
cut its intensity and return to the left side of the
screen on the next line down. This process is
repeated 262-1/2 times to form one display screen.
At the end of the screen, a vertical sync pulse is in-
itiated. During the vertical sync pulse, the beam
returns to the upper left side of the screen and the
whole process is ready to start again. On the Com-
modore 64, the computer's hardware automatically
inserts both the horizontal and vertical sync pulses,
so the programmer need not worry about generating
them.

When a Commodore 64 is driving the monitor,
200 scan lines are used to display text and graphics
with the other 62 lines being used for the border.
The display process is repeated 60 times per second,
providing a flicker free display.

There is a time correlation between the speed
of the microprocessor and the position of the beam

on the face of the screen. Some special effects can

be created by using this fact and changing the
display parameters on the fly. In the time it takes
for the microprocessor to go through one machine
cycle, the beam travels approximately 6 pixelson

the display screen.

WHAT IS ANIMATION

Asyou were reading the description of the
generation of aTV frame, you may have noticed that
the only thing that a monitor can display is a series
of still frames. Thus the question of how you can
get animation out of still pictures arises.

There isacharacteristic of the human eye call-
ed the flicker fusion frequency, which allows usto
view TV shows and movies without seeing that they
are made up of still frames. This frequency is 24
frames a second. Any time a series of picturesis
shown at arate faster than 24 hertz, the eye can no
longer distinguish the individual pictures. If the
computer makes small changesin its display faster
than 24 times per second, these changes will give
the appearance of being continuous.

It isimportant to understand that the programs

you will be writing create a series of still frames,
not continuous motion. Because the computer up-
dates the screen 60 times per second, thisisthe
fastest that any changes can occur on the screen.
If an object isin motion at the speed of one pixel
per screen change, it takes about 5.3 seconds for
the object to get from one side of the screen to the
other. If the object needs to go faster, it hasto move
more than one pixel per screen update. On the other
hand, if the object isto go slower, it has to stay still
during some screen updates.

Because the video monitor provides a known
minimum update time of 1/60 second, this tends to
become the time period by which most aspects of
the game are measured. This period of time (1/60
second) will be called a screen.

From what you have read, you might assume
that completely different displays could alternate 30
times per second, and the eye would fuse them. This
istrue; multiplexing is the term used to refer to this
technique. Some care must be taken when you at-
tempt to use this technique. The differences be-
tween the two screens should not be excessive, and
best results are achieved using small fast moving
objects.

Chapter 2

A Language for Games

The first question that arises when you are starting
work on a computer project is, "What language
should I program in?" Your first inclination might
be to use BASIC. However, if your program is us-
ing any type of continuous motion, BASIC would
most likely be too slow to be useful. If you try to
write anything more than the most simplistic game
in BASIC, you will find the motion of the objects
slow and erratic. There are limits to how quickly
sounds and colors can be changed.

All of these problems arise because the BASIC
interpreter controls the computer, not the program.
Every line in a BASIC program must be analyzed,
decoded, and translated into a seties of machine
language instructions EVERY time the line is en-
countered. BASIC is also a very general language
in that similar lines may have different functions.
By the time a line is analyzed, the resulting section
of machine code is not efficient. For all of these
reasons, a BASIC program will never run particulat-
ly fast.

To achieve smooth animation, the program must

be able to update the screen at least 30 times per
second. Because BASIC does not have an easy way
to talk to the hardware registers, (PEEK and POKE
commands must be used), calculating new positions
and updating the registers can easily take longer
than 1/30 second, causing erratic motion. This same
problem occurs when the sound registers must be
updated. There may not be enough time to make
a consistent sound.

Machine language, on the other hand, is the
most efficient form that a program may take. Each
instruction in the program is executed exactly as it
is entered. There is no interpretation done on the
code, so it runs at the highest possible speed. You
also know the status of the entire computer at every
step—which rarely happens in a BASIC program.

The major drawback to programming in
machine language is that it is a collection of hex-
adecimal codes. This is fine for the computer,
because the binary data that these codes represent
can be immediately executed, but it is cumbersome
for the programmer. Most programmers do not en-

joy memorizing all of the hex codes, and even fewer
enjoy reading such a program when it is finished.

ASSEMBLY LANGUAGE

The alternative to these two extremesisto pro-
gram in assembly language. Assembly language is
alanguage that uses an assembler that translates
the mneumonics (memory aids) for the CPU's in-
struction set into the binary data that the processor
can execute. Thistranglation takes place once before
the program is run, so the final program will be
machine code. Y ou end up with all of the speed ad-
vantages of a machine language program with none
of the headaches. A properly written assembly
language program isjust as efficient as its machine
language counterpart, so there is no reason to pro-
gram in machine language if you can gain access
to an assembler.

With an assembly language program, the pro-
grammer normally has morethan enough timeto
do all of the calculations and updatesto keep the
animation constant and smooth. The program can
also make use of all of the hardwar e features of the
computer to create effectsthat are not possible
through BASIC. When you ar e using assembly
language, the computer is completely under soft-
war e control, making it possible to deter mine what
the computer isdoing at all times. An assembly
language program executes faster than any other
type of program, which makes assembly language
the language of choice for programming games.

L earning to program in assembly language is
not as traumatic an experience as most program-
mers would have you believe. Unlike BASIC, the
machine will always be doing exactly what you tell
it to do. The main difference between BASIC and
assembly language is that in assembly language you
must keep track of where the dataisin memory and
where it must go. BASIC keeps track of variables
for you, but it won't tell you where they are. In
assembly language, you can define various memory
locations so that they have some meaning to you.

For instance, you could define $20 to be the
player horizontal position. ($ indicates a hexadecimal
number; $20 isequal to 32 in the decimal system.

4

See Chapter 3 for moreinformation.) Whenever you
need to find out what the horizontal positionis or
need to modify it, you would look into location $20.
Y ou can create your own variablesin BASIC using
the same technique. Y ou would POKE the valuein-
to $20 and PEEK it back out whenever you needed
it. Thisisaparticularly useful technique when you
mix BASIC and assembly language, because each
program will know where to find the data from the
other program.

USING AN ASSEMBLER

Therest of this book assumes that you will be
programming in assembly language, and most of the
examples are written in assembly language. If you
area BASIC programmer, you may be ableto use
some of these routinesto speed up parts of your
programs.

Each assembler has its own set of pseudo
opcodes—the instructionsthat tell the assembler to
do something other than create code. In order to en-
surethat you will be able to use these routines, the
following isalisting of the pseudo-opcodes used by
Commodore's Macro Assembler Development
System, which isthe assembler used in this book.
By modifying these instructions to match those of
your assembler, you should be able to run any of
the examplesin thisbook. Normally, you can type
in one of these instructions anywherethat it islegal
to typein one of the CPU's opcodes.

.BYTE Reserves one or more bytes of
data starting at the current lo-
cation counter value

Reserves 16 bit datain aLOW
byte-HIGH byte format
Reserves 16 bit datain a
HIGH byte-LOW byte format
Program location counter
Insert another disk file follow-
ing this command

End of file marker

Assigns

avalue

toa

symbol

WORD

.DBYTE

LIB

.END

Specifies the low order 8

bits of a 16 bit value
> Specifies the high order
8 bits of a 16 bit value
.MAC Starts amacro
.MND Ends a macro

All of the above may be preceded by alabel.

? Precedes a number that
specifies which parameter
to pass to the macro. It
can also be used as a
[abel.

These are al of the commands that may be dif-
ferent from those in your assembler. With thislist,
you should be able to read all of the program listings
and modify them to work with your assembler.
Many assemblers come with a program that will
trandate files with this syntax into their own syn-
tax. If your assembler has one of these programs,
you will not have to make many changes by hand
to assembl e the listings on the distribution disk.

WHAT AN ASSEMBLER CAN DO FOR YOU

An assembler relieves you from memorizing the
actual machine codes for each of the instructions.
It also calculates the distance from one instruction
to another for those times when a branch must be
taken from the main program. Thisis not a par-
ticularly big deal for a short program (under 50
lines), but as a program grows larger and more com-
plex, the task of repeatedly doing these calculations
by hand becomes unreasonable. (If you are the type
of person who finds great enjoyment in hand coding
machine language programs, let me apologize here
for suggesting there is a better way. Therest of us
will let the computer do the tedious jobs).

The most useful feature of an assembler isits
ability to let you assign names. A hame can be given
to amemory location, hardware registers, or aloca-
tion within the program. Once names have been
assigned, it is no longer necessary to remember long
lists of confusing addresses. Y ou only need to
remember the names you have assigned to the ad-
dresses. Since you will normally assign names that

carry some meaning (at least to you) to the memory
locations and program segments, the program
becomes infinitely more readable than if the ad-
dresses themselves had been used.

But wait, did that last sentence use "readable”
when referring to an assembly language program?
Yesit did. Assembly language programs becomeil-
legible to others because it israre to see afull listing
of the program with all of its definitions; and, often
adisassembly of aprogram is called the original pro-
gram. (A disassembly has no legitimate names, just
addresses.)

All good assemblers also have the ability to use
macro-instructions (macros). A macro is a shorthand
notation that represents a series of assembly
language commands. For example, a macro that in-
crements atwo byte value by a one byte value could
be coded asfollows:

.MAC DBINC ;REGISTER NAME, DATA

LDA 7?1 ;LOAD THE LOWER BYTE
CLC ;CLEAR THE CARRY BIT
ADC #72 ;ADD WITH CARRY THE DATA
STA 2?21 ;STORE THE LOWER BYTE
LDA ?1+1 ;LOAD THE UPPER BYTE

ADC #$00 ;ADD THE CARRY BIT
STA ?1+1 ;STORE THE UPPER BYTE
.MND ;END OF MACRO

This macro is used to increment any two con-
secutive bytes, such as a score. If the score needed
to be incremented by $20, you would type:

DBINC SCORE,$20
which would be expanded by the assembler to read:

LDA SCORE
CLC

ADC #$20

STA SCORE
LDA SCORE + 1
ADC #$00

STA SCORE +1

Thisiscertainly easier than typing the same

5

series of instructions every time that you need to
increment atwo byte value. A program that uses
macros will be easier to read as you work on it than
one written using individual instructions. Once you
have written and debugged a macro, it becomes a
tool that can be quickly used whenever necessary.
By building up alibrary of macros, you will be able
to program quite difficult functionsin a minimal
amount of time.

There are many casesin which it is a better idea
to use a subroutine instead of a macro. Each time
amacro name is entered into a program, the
assembler expands it into its individual instructions.
This means that each time the macro is called, it
istreated asif you have entered all of itsinstruc-
tions by hand, and uses the same amount of memory
asif you had.

For afunction that is repeatedly used and takes
alarge amount of code, it is better to use a
subroutine. A subroutine is called using the JSR in-
struction and is only stored once in the program.
If you write aroutine to display text on the screen
that many different parts of the program are going
to be calling on often, it is best treated as a
subroutine. You may build up alibrary of
subroutines in the same manner in which you build
up alibrary of macros.

Normally, in the course of working on agame
you will run into a situation that requires you to
write a specialized routine to perform a certain func-
tion. If you think that you will be able to use this
function at alater time, you should incorporate it
into either your subroutine or macro library. This
way, you will quickly have the magjor routines that
are common to most programs at your fingertips.

An assembler must also provide some means
of defining data areas and data. Tables of data can
be defined, given a name, and stored by the
assembler. A good assembler allows you to define
datain terms of mathematical expressions. It also
allows data to be defined as one or two byte values.
Thereis afurther option on two byte values asto
whether the high byte or the low byte will be stored
first. For many programs, text must be stored for
later printing. On some assemblers, you have the
option for text to be stored with the high bit on or

off. This can be useful for finding the end of a text
string.

Finally, an assembler must allow you to enter
assembly language commands. After all, that isthe
point of an assembler.

HOW TO CHOOSE AN ASSEMBLER

If you are to successfully create your own
machine language video games, you must become
familiar with your primary design aid, the assembler
program. Next to your computer, a good assembler
program is the most essential tool for the creation
of a machine language program.

There are three parts to a good assembler
package:

* A text editor
* Theassembler
* A machine language monitor

The text editor isthe part of the assembler that
you will spend the most time with. It allows you to
enter, modify, and update your program. Some
assemblers allow you to use aword processor to
enter your program. Whatever method you choose,
make sure that you are comfortable with the editing
commands that are available on your text editor.

It isagood ideato try out an editor before buy-
ing it. Some assemblers come with editors that are
very limiting in what they allow you to do. Limita-
tions in the editor take from your programming
time, so it pays to shop around for a good one.

Once the program has been entered into the
editor, it must be assembled before it can be used.
Some assembler packages force you to load the
assembler at this point, while others already have
it loaded. An assembler that hasal of the programs
you need loaded simultaneoudly is called a coresi-
dent assembler.

A coresident assembler can save you quite a bit
of timeif you like to write a small section of code
and immediately try to assemble it to check for er-
rors. If you have a coresident package, remember
always to save your source code before attempting
to run your program. Y ou can lose all of your latest
work if your new program locks up the computer,

forcing you to turn it off. In fact, no matter what
type of assembler you are using, you should save
your source code often as you are writing it.

Another aspect to examine while you are choos-
ing an assembler is the speed with which it can
assemble your source code and generate the
necessary files on disk. Unfortunately, you can't ex-
pect the assembler to work faster than the disk can
move the data.

You also should be sure that any printouts
generated by the assembler contain all of the infor-
mation that you would like. The following are some
of the items that differ between assemblers:

* Sorted symbol table with absolute addresses
* Macro expansion

* Data expansion

Absolute addresses for all code

Absolute addresses for RAM registers

Depending on how you approach debugging your
program, these different functions will have dif-
ferent levels of importance to you.

A symbol table is generated by all assemblers
at some point. It isa list of the names used in the
program and the addresses that correspond to the
names. A printout of the table can help you verity
the assembler is working propetly and gives you a
quick guide to any location used by the program.
For this reason it helps if the machine sorts the table
alphabetically before printing. On the other hand,
if the assembler only prints out the symbol names
and its internal representation of the addresses
(usually filled in later by the assembler), the
printout is useless for most purposes.

If you atre going to use macros in your program,
it is useful to have an assembler that lets you specify
whether or not it should expand the macro before
it is printed. When a macro is expanded for print,
the macro name is expanded for print, the macro
name is printed followed by the code it generates
with all of the substitutions shown. On the printout,
all of the instructions of the expanded macro are
generally preceded by a + symbol. Without a macro
expansion on the printout, you must constantly refer
back and forth between a listing of your macro

library and the section of code where the macro was
called. This can be quite time consuming and
prone to etror as you expand the macro by hand for
debugging purposes. But once all of your macros
have been debugged and you are familiar with them,
you rarely need to see them expanded on your
printouts.

Since most assemblers allow you to use expres-
sions in data statements, you should be able to get
a printout of the calculated data. With such a listing,
you can verify that the assembler generated the ex-
pected data. Again, once you are familiar with the
operation of your assembler and your data has been
debugged you rarely need to see this patt of the
printout.

Beware of an assembler that won't tell you
where it has put your code or data. Your assembler
should have in its printout absolute addresses for
every instruction, data statement, and hardware or
RAM register that has been used. If your assembler
does not provide this information, you will find your
program extremely difficult to debug.

The output of most assemblers is an in-
termediate file that contains all of the information
needed about your program. This file is usually one
form of a hex file. Hex files store the information
about the program in a hexadecimal format that can
be easily transmitted or loaded into the computer.
(Binary data is more difficult to transfer from one
machine to another.) You will use a program called
a loader to translate the hex file into a binary file
and place the data in the proper place in the
computer.

One potentially useful option on most loaders
is the ability to relocate the loading address of a pro-
gram. For example, if you write a program to be
placed on a cartridge, it needs to run from a different
place in memory than if it is to be stored in RAM.
The ability to relocate a program allows you to test
it in one location although it is intended to run at
another.

The last piece of an assembly language develop-
ment system is a monitor. This is a program that
allows you to examine the computer's memory and
change or move the contents. It also must allow you
to load and save areas of memory from the disk

drive. A good monitor has a small disassembler that
allows you to view memory as assembly language
commands.

A word of caution: it is not a good idea to get
a monitor in a cartridge. A monitor on a cartridge
resides in a permanently fixed place in memory. If
yout program needs to use this area, you can't use
the monitot. In fact, if the monitor must reside in

only one predefined place in the computer, it can
be useless. Either the monitor should be relocatable,
ot you should be given two or more different ver-
sions of the monitor. If you have a version of the
monitor that resides in high RAM and another ver-
sion that stays in low RAM, usually you will be able
to use one of them.

Chapter 3

Underlying Concepts

At this point, some of the essentials that you need
to know in order to understand the rest of this book
will be presented. The terms and names that will
be used will be defined. The hardware of the Com-
modore 64, and in particular, a programming model
of the 6510 microprocessor will be discussed. Also,
the hexadecimal numbering system (base 16), which
is used throughout this book, will be described. This
numbering system makes the most sense when
dealing with computers. Since an understanding of
the hexadecimal numbering system and its relation-
ship to bits and bytes will make the hardware
descriptions easier to understand, it will be
presented first.

BITS AND BYTES

A bit is the smallest meaningful piece of infor-
mation that can be stored. It can have only two
values, 1 or 0. Other terms for these values are
shown below:

1 0

ON OFF
SET CLEAR
HIGH LOW

All of the signals inside of the computer can on-
ly be in one of these two possible states. So how does
the computer perform so many functions if it only
has two states to work with?

By grouping a collection of bits together, the
group of bits together can have a value that is equal
to 2 raised to the power of the number of bits in the
group. If we grouped 4 bits together, the group could
have 16 possible values according to the equation
2/~N where N is the number of bits in the group:

2AN N=4
274
2*2%2%2=16

A grouping of 4 bits is called a nibble. Each of the

9

four bitsis given a value depending on its position
in the group. Spreading the bits out horizontally, the
bit on theright is called the least significant bit
(LSB). The bit on the left is called the most signifi-
cant bit (MSB). The location of each bit in the byte
isgiven avalue of 2N, where N is the number of
bits from the L SB that the location in question is.
For instance the LSB islocated on itself so its
distance (N) would be O. Therefore, the LSB can
have avalue of 0 or 1 depending on the state of its
bit. The next bit on the left would have a value of
27,

The group of four bits could have sixteen values,
0 through 15, as you have seen. As discussed earlier,
the value of the bit depends on itslocation in the
group and its state. To compute the value of the
group of bits, you simply add together the value of
each location in the group whose corresponding bit
is ON. By summing the total of all of the positions
in agroup, the maximum value of a group can be
determined. In the case of anibble, the maximum
value would be 15.

If 8 bits were grouped together, the equation
would be:

2°N N=8
2°8
2#29242%2+ 2222 =256

So agroup of 8 bits can have 256 different values.

This grouping isreferred to as a byte. Since 0 is the
first of the possible values of a byte, the range of
valuesisfrom 0 to 255. Inside the Commodore 64,
all of the datais represented and transferred as
bytes. Thisiswhat is meant when the C-64 isre-
ferred to as an 8 hit machine. A byte isthe standard
unit of storage in the Commodore 64.

It was mentioned earlier that hexadecimal
would be the standard notation to be used in this
book. Thisis because one hexadecimal (hex) digit
can represent 16 values or one nibbleif itis
representing a group of 4 bits. Thusit requires 2
hex digits to represent any 8 bit value or any byte.
The correlation between the 4 bits of anibble, its
decimal value, and its hex valueis shown in Table
3L

10

Table 3-1. The Relationship Between the
Binary, Hex, and Decimal Number Systems.

2* 2" 2' 2° | DEC | HEX
0 00O 0 0
0 0 01 1 1
0 01 0 2 2
0 011 3 3
0100 4 4
010 1 5 5
0110 6 6
011 1 7 7
1 000 8 8
1 0 0 1 9 9
1 010 10 | A
1 01 1 11 | B
1100 12 | C
1101 13 | D
1110 14 | E
111 1 15 | F

Y ou may notice that until the tenth value, (the
number 9) the same numbers are used in both hex
and decimal numbering systems. In hex however,
the next 6 numbers are represented by the first 6
letters in the al phabet.

From this point forward, all hex numbers will
be preceded by adollar sign ($) to differentiate a
hex number from a decimal number. Thisisthe
standard notation used by virtually all assemblers
that assemble code for the 6500 series of
microprocessors. If thereisno $ preceding a
number, it is assumed to be a decimal number,
unlessit contains any of the letters A-F, in which
case you can assume that a mistake has been made.

THE HARDWARE

Like al computers, the Commodore 64 is made
of anumber of complex integrated circuit chips. Y ou
can conceptualize the internal workings of the com-
puter as being broken down into 5 different sections:

Central processing unit
Memory

Video generation
Sound

Input and Output

In the Commodore 64, the central processing
unit (CPU) is a 6510 microprocessor chip. It ex-
ecutes the same instruction set as a 6502
microprocessor as used in Apple and ATARI com-
puters. It runs with a clock frequency of 1.0225
MHz. For all practical purposes, this can be con-
sidered to be a 1 MHz clock. The 6510 has an ad-
dressing range of 65536 bytes (64K).

There are two different types of memory in the
Commodore 64. It has 64K of dynamic RAM, which
can be banked into the address space of the other
chips as necessary. There is also 20K of ROM in
the system. In this ROM are the BASIC program-
ming language and the operating system of the
Commodore 64. The operating system is responsi-
ble for reading the keyboard, updating the real-time
clock, and transferring data in and out of the system,
among other things. Since the CPU can only address
64K of memory, all of the RAM cannot be access-
ed simultaneously with all of the ROM. To overcome
this problem, the technique of bank switching is
used. For instance, if you are not using BASIC,
there is no need for the BASIC ROM to be accessi-
ble. In this case, it can be replaced with RAM. The
CPU cannot tell the difference, so it can be "trick-
ed" into addressing more then 64K of memory.

Video generation is a task that is taken care of
by a 6567 Video Interface chip (VIC I1). All of the
various graphic modes of the Commodore 64 are
generated by this chip. In the process of generating
the video signal, the VIC-II chip refreshes the
dynamic ram chips used in the system. The VIC-II
chip also generates the system clock from the 8.18
MHz dot clock.

Sound is generated by a 6591 Sound Interface
Device chip (SID). This chip can generate 3 indepen-
dent voices each in a frequency range of 0 to 4 kHz.
This corresponds to a range of about 9 octaves. Each
voice has an independent volume envelope and a
choice of waveforms. The SID chip can also provide

a number of filtering options for use with its own
signals or an externally supplied signal.

Input and output functions are handles primari-
ly by a pair of 6526 Complex Interface Adapter chips.
Serial communication functions as well as the
parallel port are maintained by these chips. They
also handle input from the joysticks and the real
time clock. These chips each provide a pair of in-
dependent 16-bit timers.

If you understand how these four devices work,
you can make the computer do anything it is capable
of. Your program will be primarily concerned with
the VIC-II chip and the SID chip. The CPU is the
chip that the program is written for, and it is
directed to modify the registers in the other chips
at the appropriate time for the intended function.
Writing almost any type of program eventually
comes down to controlling just a few chips. Once
you control the major chips the rest of the program
should be easy.

6510 ARCHITECTURE

In order to program in assembly language, you
must understand the internal functions of the
microprocessor. Figure 3-1 is a block diagram of the
6510. The value of the program counter is output on
the addresslines of the microprocessor whenever a
data access is to be performed on the systems
memory. In the Commodore 64, all of the hardware
registers appear to be memory locations to the
microprocessor, so accesses to hardware registers
and memory appear identical.

The accumulator is the most important register
in the computer. Almost all of the data that passes
through the system goes through the accumulator.
Every arithmetic function, other than incrementing
and decrementing, is performed in the accumulator.
Data can be read into the accumulator from memory,
modified, and stored back into memory.

The X and Y registers are very similar. They
move data in a manner similar to the accumulator.
They can also be used as an index to an array of
data. It should be noted that while these two
registers are similar, their functions are not iden-
tical. Some instructions require the use of the X
register while others use the Y register.

11

MSB 1LSB
7 0
{ ACCUNULATOR |

7

0
| X REGISTER |

7 _HIG

(4 0
Y REGISTER

BYTE 0 7 1OW BYIE 0
-PROGRAM| COUNTER]

a7

0

[1]STACK POINTER|

7 0
IN[V] [BID[1]Z]C] STATUS REGISTER

CARRY
ZERO

IRQ DISABLE
DECIMAL MODE
BRK COMMAND

.....b
S
.
—'
——
>

-

OVERFLOW

NEGATIVE

Fig. 3-1. Block diagram of the 6510 microprocessor.,

Each of the bits in the Status register correspond
to one of the conditions in the microprocessor. Some
of these bits can be changed under software control.

In the Commodore 64, the stack (a temporary
data storage area between $0100 to $01FF) is con-
trolled by the stack pointer. This register contains
the address of the next empty space on the stack.

12

At the start of a program the stack pointer is usually
initialized to $FF, which corresponds to the top of
the stack. The microprocessor defines the stack to
start at $0100. The stack pointer is used as an in-
dex from the bottom of the stack.

With these concepts in mind, it is time to look
at the language.

Chapter 4

The 6510 Assembly Language

In Appendix A are a series of charts that describe
all of theinstructions available in the 6510 as well
as their addressing mode options. Y ou may wish to
refer to these charts as you are reading the follow-
ing sections on instruction types and addressing
modes. As you begin to program in assembly
language, you will find yourself constantly refer-
ring to these charts.

All of the instruction lines used in assembly
language take the following format:

LABEL OPCODE OPERAND ;comment

The opcode is the instruction that you want ex-
ecuted. The operand is the data, label, or memory
address that will be operated on.

Comments are particularly useful in document-
ing your program and should be used often. A prop-
erly documented program is much easier to read
and understand. A comment can either follow an
instruction or be on aline by itself. A comment must
be preceded by a semicolon.

Labels prevent assembly language from becom-
ing unmanageable. A label must start in column 1
of the program line. A label can be assigned avalue
or can take on the value of the program counter dur-
ing assembly. When used as the operand in abranch
instruction, the assembler determines the length of
abranch, which is much easier than calculating the
branch distance by hand. Also, if achange is made
in the program, the assembler can compensate for
any changes in the branch. If the calculations are
done by hand, they have to be redone every time
there is a change.

INSTRUCTION TYPES

There are 4 classes of instructions in the 6510.
These are:

Data movement
Arithmetic
Testing

Flow of control

13

Lata movement instructions are instructions that
cruse a value to be loaded from memory, stored
into memory, or transferred from one register to
another. There are a number of options asto how
the address of the byte to be loaded will be deter-
mined. In the load accumulator instruction, LDA,
there are eight different addressing modes that can
be used to determine which byte to load. The dif-
ferent addressing modes are explained in the follow-
ing section.

Arithmetic instructions are used to modify data
in some way. This class of instruction includes
logical operations, such asthe AND and ORA in-
structions. There are instructions that allow a byte
to be rotated as well as addition and subtraction
commands. As with the data movement instruc-
tions, most of the available addressing modes can
be used by the arithmetic instructions.

fisting instructions allow a nondestructive test
of datain the microprocessor. For instance, when
aCMP instruction is used to check avaluein
the ACCUMULATOR, the datain the
ACCUMULATOR will not be changed in any way.
The bitsin the STATUS register will be changed
in the same way asif the data to be compared was
subtracted from the ACCUMULATOR. These in-
structions are generally used to modify the STATUS
register prior to executing a branch instruction.

Flow of control instructions are the branching
and jump instructions. These are used to change the
order in which different sections of code are ex-
ecuted. The branch instructions are all conditional
branching instructions. That is, each instruction
checks one of the bitsin the status register and,
depending on its value, will either branch to thein-
struction pointed to in the operand or execute the
next instruction in line.

Jump and jump to subroutine instructions also
fall into the flow of control category. These are
known as absolute commands because they do not
check any conditions before performing ajump.

ADDRESSING MODES

In the 6510 microprocessor, there are 11 types
of addressing modes. They are:

14

Immediate (Indirect,X)
Zero page (Indirect),Y
Zero page, X Implied
Absolute Relative
Absolute, X Indirect
Absolute

Many of the addressing modes can be used by the
LDA, or load accumulator, instruction. Thisinstruc-
tion causes a byte to be loaded into the accumulator.

Immediate Mode Addressing

In the immediate mode, the data that follows
the # character will be loaded into the accumulator.
Instead of entering data to be loaded, you could
enter alabel that has previously been equated to
avalue. For example, if you had defined the label
BLACK to equal O, the following statements would
be identical:

LDA #$00
LDA #BLACK

In either case, a0 isloaded into the accumulator.
In all of the other modes, data is loaded from a
memory location as indicated by the operand.

Zero Page Addressing

The zero page of memory, the memory locations
in the range $00 to $FF, has a special meaning to
the 6510. A location in this range can be accessed
faster than anywhere else in memory. This results
from the fact that the upper byte of the address will
always be $00, so it need not be read from the
operand during program execution. This also means
that a program will be shorter because the upper
byte of the addressis not part of the code. Exclusive
use of zero page memory can cut the program size
and execution time by athird.

Zero page addressing modes take a one byte
value as an operand to select the memory location.
For example, if you want to load the contents of
memory location $23 into the accumulator, you
could enter the following:

LDA $23

Zero Page Indexed Addressing

Zero page indexed addressing uses the contents
of the X register to determine the memory address
to be accessed. Using the load accumulator instruc-
tion as an example, the memory address to be load-
ed is generated in the following way:

1. A memory address is specified in the in-
struction.

2. The value of the X register is added to this
address.

3. The data from this generated address is load-
ed into the accumulator.

Zero page indexed addressing can only be used with
the X register. Since the X register can contain an
8 bit value, an offset of up to $FF from the address
specified in the instruction can be generated. In-
dexed addressing is used extensively when you are
looking up a value in a table of data. A value cor-
responding to the distance into the lookup table
would be loaded into the X register, then the in-
dexed load instruction would be issued.

Absolute Addressing

Absolute addressing uses a two byte value in
the operand to generate a 16 bit memory address.
Due to this, the 6510 can address any byte in the
range of $0000 to $FFFF. Normally, the assembler
will select the most efficient version of this instruc-
tion. If it is possible to use zero page addressing in-
stead of absolute addressing, the assembler will
generate this form of the instruction.

Absolute indexed Addressing

Absolute Indexed addressing works in the same
way as zero page indexed addressing except that a
two byte address is specified in the operand. Also,
the Y register can be used as the index register in
absolute indexed addressing. Using a load ac-
cumulator instruction, the following steps are taken
to load a byte:

1. A memory address is specified in the in-
struction.

2. The value of the index register is added to this
address.

3. The data from this generated address is load-
ed into the accumulator.

Indirect Addressing with indexes

So far, all of the addressing modes have as-
sumed that you knew where the data you were in-
terested in was ahead of time. Since this is not
always the case, there needs to be a way for the com-
puter to determine an address during program
execution.

Indirect addressing means that you are not tell-
ing the microprocessor where the data that you want
to use is, but rather you are telling the
microprocessor where it can find the address of the
data that you want. The indirect address will always
be stored in zero page memory in two consecutive
memory locations. The lower order byte of the ad-
dress is stored in the first memory location, and the
high order byte of the address is stored in the next
location. This gives a 16 bit address, so that the data
can be anywhere in the microprocessor's normal ad-
dress space.

When you give an indirect addressing com-
mand, the operand will be the address in zero page
that contains the first byte of the address of the pair
of memory locations where the appropriate address
is stored. It is important to reserve enough space

in zero page RAM to hold all of the indirect ad-
dresses that you may be generating.

At this point, indirect addressing should seem
pretty easy to use, but there is a catch. The 6510
does not have true indirect addressing abilities for
data movement or arithmetic instructions. Instead
there are two subclasses of indirect addressing
available. These are:

¢ Indexed Indirect X
¢ Indirect Indexed Y

We will look at the second one first because it
is the most often used. As is implied by the name
indirect indexed Y, this command is a combination
of indirect addressing and indexed addressing. As

15

was mentioned earlier, the command will have the
address of where the address may be found. After
the microprocessor generates an address from the
two zero page memory locations, the contents of the
Y register is added to the address to form the final
address. The data at this final address can then be
accessed. If the value of the Y register is O, the com-
mand will act like a true indirect addressing com-
mand. You must be sure that the Y register is set
to the desired value before executing this command,
or you will never be sure of where the data is com-
ing from (or going to).

In indexed indirect X addressing, the value of
the X register is added to the zero page address of
where the indirect address can be found. This new
zero page address is then used to generate the final
address of where the data can be located. If the X
register is set to zero, this command will act like
a normal indirect addressing command. The nor-
mal use for this command is to use the X register
as an index into a table of addresses located in zero
page RAM.

Implied Addressing

Instructions that use implied addressing are on-
ly one byte long. Instead of having to give an ad-
dress in the instruction, the microprocessor decides
on which one of its internal registers to use based
on the instruction. For instance, the TAX instruc-
tion will transfer the contents of the accumulator

16

to the X register. This is known to the
microprocessor without the need for any other ad-
dresses. Because the microprocessor doesn't need
to calculate or load an address when using implied
addressing, these instructions execute faster than
any other type of instruction.

Relative Addressing

All of the branching instructions in the 6510 use
the relative addressing mode. In this mode, instead
of specifying an address for the destination of the
branch, an offset from the current instruction to the
destination of the branch it specifies in the operand.
The offset is a one byte value. This gives a branch
instruction the ability to branch over a range of
+127 bytes to —127 bytes. Normally, you will use
a label as the destination of the branch when writing
your program, and the assembler will calculate the
offset.

Indirect Addressing

There is only one instruction that uses indirect
addressing in the 6510; it is an indirect jump. An
indirect jump uses the principles of indirect address-
ing that were discussed earlier. The main difference
between the indirect jump and the other indirect in-
structions is that a 2 byte value (16 bit) can be given
as the address where the indirect data can be found.
When using an indirect jump, the X and Y registers
play no part in the address generation procedure.

Chapter 5

Organizing Your Program

Now that you have some understanding of what an
assembler does and of the 6510 assembly language,
you can begin to think about how to organize your
program. All programs can be broken down as
follows:

Macro library
System definitions
RAM definitions
Data definitions
Main program
Subroutines

Although it may not be obvious at this point, this
isavery logical outline. The macro library must be
assembled first. Quite often there will be macros
that define data areas. A macro must be defined
prior toitsfirst use. Thereis no penalty in terms
of storage space for a macro that is not used. The
source code for a complete macro library is given
inthe file MACLIB, Listing C-1 in Appendix C. All
of the macrosin the file are described in detail in
Appendix B. Asthey are given in thefile, the

macros will work with the Commodore Macro
Assembler program. If you are using another
assembler, you may have to modify them slightly
before they can be used.

Once the macros are in the system, the
machine's hardware registers should be defined.
Thisisthe starting point when you try to learn how
anew computer works, asit forces you to become
familiar with the hardware. A full set of system
definitions can be found in the file SY SDEF, Listing
C-2in Appendix C. The names that are assigned
to the various hardware registers by thisfile are
used throughout the book, so it would be a good idea
to refer to the listing at some point. Most of the
registers will be described in detail in alater chapter.

The RAM that isto be used as variables for the
program needs to be defined next. Y ou will usually
find that programming is easier if you define your
variables before you start to write your program.
These definitions do not have to be completed dur-
ing the first sitting. As you progress in your pro-
gram, you will find that you have not defined al of
the RAM that you would like to use. Additionsto

17

the RAM definitions tend to continue until the pro-
gram is shipped or scrapped, whichever comes first.

After all the hardware registers and RAM that
you are planning to use have been defined, you are
ready to start entering data. Where you put the data
is amatter of available space and personal
preference. If you are going to put dataimmediate-
ly preceding the code, it would be a wise move to
put a jump to the first instruction of your program
before you define your first byte of data. In thisway,
you will always know what the starting address of
your program is, no matter how the size of the data
section may change. The data section will contain
al the data that is not code.

This may seem like quite a few preliminaries
to the actual program, but all of the steps do need
to be taken. The actual source code that you will
be creating will be making constant referencesto
all of the names and definitions that have been de-
fined previously.

When you are starting any program, especial-
ly onein assembly language, it isimportant to break
the program into a number of smaller routines.
Quite often, the small routines can be individually
tested and later merged to form a complete program.
Also, small segments can be saved for use later in
other similar programs so that you won't have to
start from scratch every time. Unless you write
perfect programs every time, small program
segments will be much easier to debug. If you write
an entire program and then try to make it run, it
can become quite difficult to determine where in the
program the problem is. On the other hand, if you
had tested all the small program segments before
merging them into a complete program, the only
problems that you might encounter should be in the
interconnections between the program segments.
Since you already know that all of the pieces of the
program work, you should not have any difficulty
finding the bugs.

18

Asyou are writing your program, do not be
alarmed if you realize that you have not defined
something you need to use. Simply write what you
have forgotten on paper and use it in the code as
if it had been defined. Then, when you feel like tak-
ing a break from the creative process, go back and
insert your addition into the proper definition file.
Until you try to assemble your program, the com-
puter does not know or care what has or has not
been defined.

Y ou may have been wondering why the
subroutines should be placed at the end of your pro-
gram. Unlike the macro library, any subroutinein
your program will use a certain amount of memory,
whether it is used or not. Because of this, any
subroutine that is not used should be deleted so as
not to waste memory space or the time that it takes
the assembler to assembl e the subroutine.

By following this genera outline, you will have
amanageable and modular way with which to ap-
proach the design of your program. Most
assemblers have a command that allows you to chain
together different parts of your program. If your
assembler has the ability, you may find it desirable
to write all of the different modules of your program
as separate files, and then let the assembler link
them together as it assembles the program. This
has some advantages over creating one massive file.
For instance, if you need to add a definition to your
RAM definitions, you only need to load the file with
your other definitions. If your disk driveis par-
ticularly slow (as all Commodore 64 drives are), you
will find a partitioning of your program quite atime
saver. Asyour program progresses, the definitions
and data areas will rarely need modifying. Keep-
ing all of the parts of the program separate allows
you to edit or print the part of the program that you
are currently working on without having to deal
with those parts of the program that have been
tested and debugged.

Chapter 6

Working with Interrupts

In the Commodore 64 interrupts serve as a major
source of timing and program control. The inter-
rupts are normally used to maintain the real time
clocks and the type ahead keyboard buffer. Inter-
rupts can also be used to signal sprite collisions and
inform the program when a specific scan line has
been reached.

To best understand what an interrupt is, con-
sider anormal program. The microprocessor reads
itsinstructions one at atime and executes them in
order. Whatever it istold to do first, is done first.
If there is a certain condition that makes it necessary
to perform a certain operation immediately, this con-
dition must be repeatedly checked throughout the
program to ensure it is taken care of promptly. For
example, a collision between a bullet and a player
sprite should immediately initiate an explosion se-
quence. In anormal program, you have to monitor
the collision status register constantly and take ap-
propriate action.

The aternative isto let the hardware check for
the collision. When a collision occurs, the VIC ||
chip can send an interrupt request to the

microprocessor. If interrupts are enabled, the pro-
cessor will execute an indirect jump through loca-
tion $FFFE when it finishes executing its current
instruction. Location $FFFE usually pointsto a
point in ROM that has an indirect jump instruction
for apoint in RAM. In the Commodore 64, the
RAM location that ultimately will direct the jump
is $0314. If the address of your routine to initiate
the explosion sequence is placed in locations $0314
and $0315, this sequence will only be called on
when acollision is detected.

Using an interrupt for this purpose relieves the
main program of scanning the collision register con-
stantly. Because of this, less of a burden is placed
on the microprocessor during the main program.

Interrupts should be used for the part of your
program that needs the highest priority in terms of
microprocessor time. For instance, if you want to
change the background color at a certain point on
the screen, you need to use an interrupt. The VIC
Il chip can generate an interrupt on any scan line
that you specify. Thistype of interrupt iscalled a
raster interrupt. By using raster interrupts, your in-

19

terrupt routine can gain access to the processor at
a specific (relatively) point on the screen.

Interrupts are useful when the main program
involves lengthy calculations or is going to be busy
for quite some time. If you are trying to maintain
animation while the main program is running, you
need to use some form of interrupt to take control
at least once every other screen. Otherwise, the
animation will appear jerky.

Before enabling your interrupt routine and
thereby disabling the Commodore 64's operating
system, you should disable all other sources of in-
terrupts in the machine. Once this is done, you can
always find the cause of the interrupt easily. Most
of the functions performed by Commodore's
operating system either are unnecessary in a game
or can be done in a different manner.

The KILL macro essentially shuts down all of
the devices in the system capable of generating in-
terrupts. Once the interrupts from these chips have
been disabled, you can safely change the interrupt
vectors to point at your interrupt routine.

After the KILL macro is called, there are no in-
terrupts generated in the system. This is a good
time to change the addresses stored in the interrupt
vectors. The nonmaskable interrupt vector
(NMINYV) should be changed to point at a return
from interrupt (RTT) instruction. Nonmaskable in-
terrupts are rarely, if ever, used in a game program.
The maskable interrupt vector (CINV) should be
changed to point at the first instruction of your in-
terrupt routine.

Listing C-3 in Appendix C is the source code
for a program that uses a RASTER interrupt to
change the background color of the screen in the
middle of the screen. This is also a good time to en-
sure that you are using your assembler properly. If
you can successfully enter and run this short pro-
gram, you should have no problem getting some of
the longer programs to run later. The macro library
and the system definitions that were defined eatlier
(Listings C-1 and C-2) are inserted into the program
by the .LIB directive of the assembler. An ex-
ecutable version of this program is shown in Listing
C-4.

To run the executable form of this program

20

enter the following commands:

LOAD "DEMO0.0",8,1
SYS 4096

After setting up the system, the main program
just loops through itself. The only way that any
changes can occur is through interrupts. The first
interrupt is generated at the mid point in the screen,
as specified by the first RAST macro. After chang-
ing the screen color to blue, this interrupt uses the
RAST command to set an interrupt to occur at the
bottom of the screen. Next, the address of the
second interrupt is placed in the interrupt vector.
The second interrupt (INT1) works in the same
manner as the first, only it points to the first inter-
rupt when it is done. By using two interrupt set-
vice routines in this manner, different things can be
done on each half of the screen.

You may have noticed that you can see the point
on the screen where the colors change, and it seems
to be moving. This occurs because the
microprocessor must finish the instruction it is cut-
rently working on before it can process the inter-
rupt. Since an instruction may take from two to six
machine cycles to execute, and the electron beam
travels about three pixels per instruction cycle, the
color can change in an 18 pixel area. This assumes
that the VIC II chip is consistent about when it
notifies the processor about the interrupt. Any tim-
ing inconsistencies in the VIC II chip enlarges the
area where the color changes.

By adding a delay in the interrupt service
routine before changing the background color, you
can force the color change area to be in the border
where it won't show.

After running this program, you can not reset
the Commodore 64. By disabling the operating
system, you have disabled the keyboard scan
routines, effectively making the computer deaf to
outside stimuli. When you have finished watching
your new program and want to reset the machine,
turn it off and back on again.

Warning: Always be sure that you have saved your
program and source code before trying to run a new
program!

Chapter 7

Technical Information

Up until now, this book has dealt with concepts and
generalities when referring to the hardware in the
Commodore 64. This was important to get you
used to the capabilities of the hardware without bog-
ging you down with details. This chapter will gointo
the details of getting the computer to generate the
effects you are after. This chapter will probably be
the chapter to which you will refer most often when
writing a game program. All of the information that
you will need in order to program the VIC Il chips
and the SID chip will be explained in this chapter.
After you have become familiar with the hardware
in the Commaodore 64, you will not need the full ex-
planation of the hardware registers. When you are
up to such alevel, you will find it easier to use the
listing of the SY SDEF filein Appendix C as a quick
reference guide to the registers.

Unless otherwise noted, all referencesto ad-
dresses in this chapter use hexadecimal notation.
The names that have been assigned to the registers
are the standard names that have been defined in
the hardware definition listing, SY SDEF (Listing
C-2in Appendix C). By using this naming conven-

tion for the registers, you will begin to gain familiari-
ty with the register names as they are used in the
assembler. All of the names are made up of 6
characters or less, so no matter what type of
assembler you are using, the same names will be
acceptable.

Macros that supply many of the functions
described below have been provided. Descriptions
of al of the macros can be found in Appendix B,
and Listing C-1 in Appendix C provides the source
code. The macros may use afew more instructions
to perform the function than would be required if
you were to provide the data yourself. They do have
advantages, however. Y our program will be easier
to understand if you use the macros, as there will
be a recognizable name given to the macro as op-
posed to a sequence of assembly language in-
structions.

COMMODORE 64 ADDRESS SPACE

Asyou know, inside the Commodore 64 is a
6510 microprocessor, which controls the machine.

21

It uses a 16 bit address bus allowing it to access
2 46 or 65536 bytes of memory. This is all the
memory that can be accessed at one time. For-
tunately, as mentioned briefly before, through a
technique called bank switching, different types of
memory can be switched into or out of this address
space. Through the use of bank switching, the 8K
BASIC ROM can be accessed instead of 8K of
RAM. The Commodore 64 switches other sections
of RAM with ROM, and also switches an area of
RAM with some hardware registers, such as the
VIC II chip.

When choosing the appropriate memory map
for your program, you must decide which of the
functions provided by the Commodore 64 you will
be using. For instance, if you do not need BASIC,
you can switch the BASIC ROM out of the memory
space. Doing so will give you 8K of RAM that you
would not otherwise be able to use.

Some of the memory maps available to you will
allow you to switch the 4K I/O space at $D000 with
4K of RAM. What this means is that you will no
longer have access to the hardware registers at these
locations. When it becomes necessary to change any
of the values in one of these registers, you will need
to switch the I/O space back into the RAM space.
This is generally more trouble than it is worth,
unless you desperately need the extra memory.

You also have the option of switching out the
8K KERNAL ROM. In most cases, you will not be
using any of the KERNAL routines. If this is the
case, there is no reason to keep it in memory. 8K
of RAM can be switched into the space where the
KERNAL ROM was.

Caution: All interrupts in the system should be
shut down before the KERNAL ROM is switched
out of memory. The six bytes of memory from
$FFFA to $FFFF in the KERNAL contain the vec-
tors for the interrupts. After the KERNAL has been
switched out, new interrupt vectors need to be
stored in RAM.

MEMORY CONTROL AND MAPPING

switching of the different memory areas. Three of
these lines are controlled by the microprocessor us-
ing its internal I/O port.

The three internal control lines are the least
significant three bits at address $0001. This is the
hardware I/O port of the 6510 processor. Data can
be written to this port just as it can be written to
any other memory location. Bits 0 and 1 are used
to select from the four primary memory maps that
are available. Bit 2 selects whether the [/O devices
or the character generator ROM will be addressable
by the microprocessor in the range of addresses
from $D000 to $DFFF. Bit 2 has no effect on the
system when the memory map with 64K of RAM
accessible is selected. The remaining two control
lines are internally pulled high when there is no car-
tridge plugged into the computer and can be ignored
for a disk based program.

Figure 7-1 shows all of the memory mapping
possibilities.

FFPF
8K KERNAL ROM
or
£000 RAM
D000 4K 1/0 or RAM or ROM
cooo 4K RAN
8K BASIC ROM
or RAN or
1000 ROM PLUG—IN
8K RAM
or
BODO ROM PLUG—IN
32K RAM
0000

There are five control lines that control the bank Fig. 7-1. Memory mapping options chart.

22

The memory maps in Figs 7-2, 7-3, 7-4, and 7-5 can

be selected through software.

GRAPHICS MEMORY LOCATIONS

Although the Commodore 64 has 64K of
memory, the VIC chip can only reference 16K of
memory at any one time. Fortunately, you can
change which of the four 16K blocks of memory in

the computer the VIC chip will be able to use. When
the Commodore 64 is powered up, bank 0 of
memory ($0000-$3FFF) is selected. If you wish to
change the bank of memory that the VIC chip will
use, you must set the least significant two bits of
$DD00 to the value that represents the desired
bank. Before doing so, you must set bits 0 and 1
of $DD02 to 1. This will select the control bits that

FFFF
JIORAM = 0O
HIRAM = 0
16K RAM
C000 *
16K RAM
8000
32K RAM
0000

Fia. 7-2. 64K RAM memorv mab.

23

FFFF
8K KERNAL ROM N =9

£000
5000 4K 1/0
C000 4K RAM

16K RAM
8000

32K RAM
0000

Fig. 7-3. 52K RAM memory map.

control-memory select to outputs. The BANK
macro will select the proper bank for you. If you
want to change the bank yourself, use the informa-
tion in Table 7-1 for the appropriate values:

Table 7-1. The Values to Use When Selecting
the Bank of Memory the VIC Chip Will Use.

VALUE BANK # MEMORY RANGE ADDRESSED

3 0 $0000-$3FFF
2 1 $4000-$7FFF
1 2 $8000-$BFFF
o 3 $CO00-$FFFF

24

STANDARD TEXT MODE

When the Commodore 64 is first turned on, it
powers up in its standard text mode. When in this
mode, the screen is arranged as 40 characters by
25 lines. This gives a total of 1000 characters that
can be displayed on the screen at any one time. The
character to display in each position can be found
in the 1000 bytes of RAM starting at $0400. If you
want, you can instruct the VIC chip to use a dif-
ferent area of memory to find the text to be
displayed. The upper four bits of the VIDBAS
register (§D018) control where the VIC chip will

find the text. Text memory will always be found on
$0400 boundaties.

Each byte in the text memory area is used as
an index into a character generator section of
memory. Since a byte can have 256 values, each
position on the screen can display one of 256 pat-
terns. When the Commodore 64 is powered up, the
graphics information that the text memory

references is in the character generator ROM. The
VIC chip can be instructed to use a different area
of memory as the character generator by changing
the lower four bits of the VIDBAS register ($D018).
This section of memory will be referred to as
graphics memory, as the information can be of any
type of graphics, not necessarily text.

The Commodore 64 has a built-in character

FFFF
RAM LORAM = 1
8K HIRAM = 0
E000
D000 4K 1/0
€000 4K RAM
16K RAM
8000
32K RAM
0000

Fig. 7-4. 60K RAM memory map with no KERNAL ROM.

25

FFFF
LORAM = 1
8K KERNAL ROM i
E000
DOO0O 4K 1/0
000 4K RAM
8K BASIC ROM
A000
8K RAM
8000
32K RAM
0000

Fig. 7-5. The default memory map with 42K RAM.

generator ROM, which is physically at
SD000-$DFFF. You may have noticed that this is the
same address range where the hardware registers
in the Commodore 64 are. This is possible only
because the hardware registers are not available to
the microprocessor at the same time as the
character generate ROM is. Bit 2 of the I/O port at
$01 controls whether the ROM or hardware

registers will be available to the microprocessor.
When this bit is set to a 1, the hardware registers
will be available. When this bit is set to 0, the
character generator ROM can be read by the
microprocessor. The VIC chip does not see the
character generator at this address, however. The
VIC chip has been tricked into seeing the character
generator from $1000-$1FFF. The VIC chip also

sees an image of the character generator ROM from
$9000-$SAFFF. Notice that the VIC chip can only
see an image of the character generator when in
banks 0 and 2 of memory. The microprocessor does
not see the character generator in the same place
that the VIC chip does, so there is no conflict with
the microprocessor when using one of the areasin
memory to store data that the VIC chip thinksis
the character generator. Y ou will normally choose
either bank 1 or 3 for your graphics, so that the im-
age of the character generator does not get in your
way. |f you do need to use text in your program, you
can either copy data out of the character generator
or create your own character set.

The TXBAS macro can be used to change the
base address where the text will be located. Similar-
ly, the GRABAS macro can be used to change the
base address of graphics memory. It isimportant
to remember that the text and graphics base ad-
dresses must be added to the bank that is current-
ly selected in order to find the absolute address in
memory where the data will be found. For exam-
ple, if you had selected bank 1 of memory
($4000-$7FFF) and the text base address was
80400, the text data would be found at $4400. If you
want to change the base address of the registers
yourself, the values to use can be found in Table 7-2.
When changing a value for the TEXT mode, only
the upper bits should be changed in the VIDBAS
register. Similarly, when changing a graphics base
address, only the lower bits should be changed. A
dash indicates a don't care condition. Y ou must
remember to add the BASE address register to the
addresses to find the real address.

COLOR MEMORY

As discussed earlier, when in the text mode, the
screen is arranged as 25 lines of 40 characters. Each
of the characters can be one of 256 different pat-
terns. In addition to being able to select the
character to be displayed at each position on the
screen, you can also select the color that you would
like each character to be. The Commodore 64 pro-
vides 16 colors that can be used. Thereisan area
in memory that is reserved to hold the color infor-
mation. This section of memory is called the color

Table 7-2. The Values To Use To
Change the Base Address for Text or Graphics.

VIDBAS VALUE TEXT BASE ADDRESS
Upper Bits
$0- $0000
$1- $0400
$2- $0800
$3- $0C00
$4- $1000
$5- $1400
$6- $1800
$7- $1C00
$8— $2000
$9- $2400
$A- $2800
$B8- $2C00
$C - $3000
$D- $3400
$E- $3800
$F- $3C00
YVIDBAS VALUE GRAPHICS BASE ADDRESS
Lower Bits

$-0 $0000
$-2 $0800
$-4 $1000 ~
$-6 $1800 *
$-8 $2000
$-A $2800
$-C $3000
$-E $3800

3

* In BANK 0 and 2, ROM images will appear here.

RAM. Color RAM starts at $D800 and continues
to $DBE7. Unlike the normal RAM used in the
Commodore 64, color RAM is made up of nibbles
rather than bytes. When you read a value out of col-
or ram, only the least significant four bits are valid.
Y ou will read an eight bit value, but the datain the
upper four bitsis not predictable. Quite often, you
must mask the upper four bits before using data
from the color RAM.

Color memory does not move, and the VIC chip
cannot use a different section of memory for the col-
or information. The MV COL macro will fill color

27

RAM with a single color. For instance, if you wanted
all of the text tobe white, you would enter "MVCOL
WHITE." The text memory and color RAM are
treated differently by the different graphics modes.
If your picture doesn't look like you expect, check
to be sure that the proper graphics mode has been
selected.

CUSTOM CHARACTER SETS

Although the Commodore 64 has a built in
character set, you will probably find that set limiting
in what it allows you to do. The text mode can be
used for quite a few different types of games if you
redefine the character set. You can build up figures
that are larger than one character size by placing
the different pieces of the figure in adjacent loca-
tions. This gives you quite a bit of flexibility in us-
ing graphics as long as you define your own
character set.

Each character is defined in memory as an ar-
ray of 8 by 8 bits. This is stored as eight sequential
bytes. Each byte has eight bits, and each bit
represents one pixel on the screen. If a bit is on,
the corresponding pixel on the screen will be turn-
ed on in the character color. If the bit is off, the
background color is used for that pixel. The value
in the text RAM is used as a lookup into the
graphics RAM to choose which set of eight bytes
will represent a character. If you decide to make
your own character set, you will have to define any
text characters that you may need as well as your
graphics figures. Once you instruct the VIC chip to
get its graphics data from RAM, it will no longer
be able to use the character generator ROM.

Using a machine language monitor, you can
enter the data for your character set into RAM.
When you are finished, you should save your new
set to the disk for later use. The first 8 bytes in your
character set will be displayed if you place a 0 into
a text memory location (assuming that you had
previously instructed the VIC chip to get its
graphics information from the place in memory
where your new character set was placed). Your
character set must begin on a multiple of $0800 in
the current bank. The character set may not be

28

placed in one of the locations where the VIC chip
can see the character generator ROM.

MULTICOLOR MODE

To this point, all of the graphics in the text mode
have been able to use only two colors for each
character position on the screen. Normally a video
game will use many more than two colors. To allow
more colors to be displayed in a given area on the
screen, the Commodore 64 has a multicolor mode
that can be selected. In this mode, the character can
use the character color and the colors in BCOLO
($D021—the background color), BCOL1 ($D022), or
BCOL2 ($D023). Using this mode, each pixel in a
character location can be one of 4 colors. Unfor-
tunately, you have to sacrifice 1/2 of the horizontal
resolution to use this mode. This is usually a
reasonable sacrifice considering how much more
color can be used.

In order to turn on the multicolor mode, you
must set bit 4 of the XSCRL® ($DO12) or use the
MULTON macro. To turn off the multicolor mode,
you must clear bit 4 of the XSCRL register or use
the MULTOF macro. In the text mode, the
multicolor mode is selected individually for each
character position on the screen. If the color in col-
or RAM for a given character position is less than
8, that character position will be in the standard text
mode. If the color in color RAM is 8 or greater, that
character position will be in the multicolor mode.
This allows you to mix standard and multicolor
modes on the same screen.

As stated eatlier, you sacrifice 1/2 of the
horizontal resolution of the normal text mode when
you select the multicolor mode. This means that
each character will be made up of an array of 4 by
8 pixels. It still takes 8 bytes to define a character,
but instead of each bit corresponding to a pixel on
the screen, each PAIR of bits represents one of 4
registers to use to find the color for the bit pair. The
following chart shows the correlation between bit
pairs and registers.

Bit Pair Register

00 BCOI.0
01 BCOL1

Bit Pair Register

10 BCOL3
11 Lower 3 bits
of COLOR RAM

EXTENDED BACKGROUND COLOR MODE

In certain applications where you do not need
a very large character set (less than 65 characters),
you can use mote colors than the standard text mode
will allow by using the extended background color
mode. In this mode, you do not sacrifice any resolu-
tion to gain extra colors; you only sacrifice the
number of characters available from your character
set. You can control both the foreground color (us-
ing the color RAM) and the background color of
each character. The two most significant bits of the
character code are used to select a background col-
or from one of four registers, BCOLO to BCOL3.
Because of this, only the first 64 characters from
your character set can be used.

The extended background color mode is ena-
bled by setting bit 6 of the YSCRL ($§D011) register.
This mode can be turned off by clearing bit 6 of the
YSCRL register. The following chart shows the rela-
tionship between the most significant two bits of the
character code and the background color:

Bit Pair Register

00 BCOLO
01 BCOL1
10 BCOL2
11 BCOL3

BIT MAPPING

Even though the various text modes available
to you in the Commodore 64 provide many different
options for displaying graphics, they still restrict you
to using predefined shapes. For the majority of
video game applications, you will be unable to use
a text mode. The Commodore 64 has a high resolu-
tion bit mapped graphics mode that allows you to
control each pixel on the screen individually. The
display has a resolution of 320 pixels horizontally
by 200 pixels vertically. This gives a total of 64000

pixels that can be controlled on the screen. Since
each pixel is represented by a bit in graphics
memory, 8000 bytes of graphics memory are re-
quired to represent the display.

There are two different types of bit mapped
modes available on the Commodore 64. They are:

* Standard bitmapped mode: 32011 by 200V, two
colors per 8 by 8 group of pixels.

* Multicolor bitmapped mode: 160H by 200V, four
colors per 8 by 8 group of pixels.

To turn on the standard bitmapped mode, you
must set bit 5 of the YSCRL register. The GRAPH
macro will perform this function for you. To turn
off the bitmapped mode, you must clear bit 5 of the
YSCRL register. You can use the TEXT macro to
perform this function.

In the standard bitmapped mode, the colors for
each 8 by 8 group of pixels are stored in text
memory. The high 4 bits control the color of a pix-
el if its associated memory bit is on, while the lower
4 bits specify the color of a pixel if its bit is off. Color
RAM is not used in the standard bitmapped mode.
Table 7-3 shows how the bytes of graphics memory
are organized with regard to the screen. This se-
quence is repeated for all 25 rows.

Table 7-3. The Bytes of Graphics
Memory as Organized with Regard to the Screen.

ROWO O $8 $10 $18......... $138
1 $9 $11 $139
2 $A $12 $13A
3 3B $13 $13B
4 $C $14 $13C
5 $D $15 $13D
6 $E $16 $13E
7 $F $17 $13F
ROW 1 $140 $148 $150 $158........ $278
$141 %149 $151 . $279
$142 $14A 3152 $27A
$143 $14B $153 $278
$144 $14C 3154 $27C
$145 $14D $155 $27D
$146 $14E §156 $27E
$147 $14F $157 $27F

29

Multicolor Bitmapped Mode

To turn on the multicolor bit mapped mode, you
must first turn on the bit mapped graphics mode
as shown above. Then you must set bit 5 of the
YSCRL register. You can turn off the multicolor
mode by clearing bit 5 of the YSCRL register. The
macros MULTON and MULTOF can be used to
turn on and off the multicolor modes.

In the multicolor mode, four colors can be
displayed in each 4 by 8 group of pixels. Each byte
in graphics memory is broken down into 4 bit paits.
Each bit pair specifies where the color information
will be found for each pixel. In addition to the two
colors that are defined in text memory, the color
RAM is used in this mode to hold one more colot.
The fourth color is the background color that is
stored in BCOLO ($D021). The correspondence be-
tween the bit pairs in graphics RAM and where the
color is found is shown in the following chart:

Bit Pair Color

00 BCOLO

01 UPPER NIBBLE OF
CHARACTER RAM

10 LOWER NIBBLE OF
CHARACTER RAM

11 COLOR RAM

SPRITES

A sprite is a small moveable object block that
can move independently of the background
graphics. The VIC chip can display eight sprites on
the screen at any one time. Sprites can be displayed
on any one of the display modes, and they will look
the same in all of them. You can have up to 256 dif-
ferent sprites defined at any one time, but only eight
can be displayed at the same time. The sprite to be
displayed can be changed by changing a one byte
pointer, so animation can be easily performed by
quickly switching through a few different sprite pat-
terns. Sprites can be moved very smoothly by simply
giving the VIC chip the X and Y coordinates of the
upper left corner of the sprite.

Sprites have different display priorities. That
means that the sprite with a higher priority will ap-

30

pear to move in front of a sprite with a lower priori-
ty. This can be used to give the illusion of three
dimensional movement. The priotity of a sptite to
the background graphics is individually selected for
each sprite. If the background is given priority, the
sprite will appear to move behind the background
graphics. For instance, if a tree was being displayed
in the bit mapped graphics mode, and a sprite in
the shape of a dog was to move past the tree, the
dog would appear to be moving behind the tree.

Each sprite is a block 24 pixels horizontally by
21 pixels vertically. The pixels that are set to one
use 1 of the 16 available colors. The pixels that are
set to zero allow the background color to show
through (are transparent). Like the other graphics
modes, a sprite can be selected to be in the
multicolor mode, giving it a resolution of 12 by 21
in three colors plus transparent. Wherever a sprite
is transparent, whatever is behind the sprite will
show through.

For those times when a larger sprite is
necessary, the VIC chip has the option of doubling
the hotizontal size, the vertical size, ot both. You
will not increase the detail available in your sprite
by using one of the multiply options, only the size.
When a sprite is expanded, each of the pixels is
twice the size of the pixels in a normal sprite.

Sprite Pointers

Once a sprite has been defined, the VIC chip
needs to be told where to find the pattern. The sprite
definition must be in the currently selected bank
of memoty for it to be displayed. Since each sprite
definition takes up 64 bytes, a sprite definition will
always start on a $0040 boundary in memory.

A 16K bank of memory can hold 256 sprite
definitions, so it will only require one byte to tell
the VIC chip which sprite to display. The sprite
pointer is a number which, when multiplied by 64,
will give the starting address of the sprite defini-
tion. Sprite definitions may not be placed in a sec-
tion of memory where the VIC chip sees an image
of the character generator ROM.

The VIC chip will read the eight sprite pointers
from the last eight bytes of the 1K of text memory,

an offset of $03F8 from the text base address. Since
only 1000 out of 1024 bytes of text memory are
used to display characters on the screen, the sprite
pointers will not interfere with screen graphics. For
example, since the default setting of the text
memory is at $0400, the first sprite pointer will be
$07F8.

Sprite Controls

For most of the sprite control registers, each bit
in the register corresponds to one of the sprites. For
example, bit O represents sprite O, bit 1 represents
sprite 1, and so on. The rest of the sprite controls
require a value (such as a vertical location), so there
is one register for each sprite.

Enabling a sprite. Before a sprite can be
seen, it must be enabled. The register SPREN
($D015), has an enable bit for each sprite. If the bit
is set, the sprite will be enabled. The sprite will only
be seen if the X and Y positions are set to the visi-
ble portion of the screen. A sprite can be disabled
by clearing the appropriate bit.

Setting the sprite color. There are eight
registers that are used to hold color information, one
for each sprite. Any of the 16 available colors may
be selected for each sprite. Each bit that is set in
the sprite definition will cause a pixel to be displayed
in the sprite color. If the bit is clear, the pixel will
be transparent. The sprite color registers are:

Name Address
SPRCLO $D027
SPRCL1 $D028
SPRCL2 $D029
SPRCL3 $D02A
SPRCL4 $D02B
SPRCL5 $D02C
SPRCL6 $D02D
SPRCL7 $DO2E

Setting the multicolor mode. The
multicolor mode can be individually selected for
each ($D01C)/sprite by setting the appropriate bit
in the MLTSP ($D01C) register. Setting a bit will
enable the multicolor mode, clearing the bit will

disable the multicolor mode. When the multicolor
mode is enabled, the horizontal resolution drops
from 24 pixels across to 12 pixels. Each pair of bits
in the sprite definition is treated as a bit pair, whose
value determines which of the four colors will be
selected for the pixel. Table 7-4 shows the relation-
ship between the bit pairs and the color registers.

Tabie 7-4. The Relationship Between the Bit
Pairs and the Color Registers In the Multicolor Mode.

Bit Pair Description

00 TRANSPARENT, SCREEN COLOR
01 SPRITE MULTICOLOR REGISTER #0
($D025)
10 SPRITE COLOR REGISTER
11 SPRITE MULTICOLOR REGISTER #1
. ($D026)

Using the sprite multipliers. Each of the
sprites can be expanded in either the X or Y direc-
tion. When a sprite is expanded, each pixel is
displayed as twice the normal size in the direction
of the expansion. The resolution of the sprite does
not increase, only the size.

To expand a sprite in the X direction, the ap-
propriate bit must be set in the SPRXSZ ($D01D)
register. To return the sprite to its normal size, clear
and bit.

The expansion of a sprite in the Y direction is
done in the same way as the X expansion. You must
set the appropriate bit in the SPRYSZ ($D017)
register to expand the sprite. The sprite can be
returned to its normal size by clearing its bit in the
SPRYSZ register. The sprite can also be expanded
in both the X and Y directions by setting its bit in
both registers.

Positioning sprites. Each sprite can be posi-
tioned independently anywhere on the visible
screen and off the visible screen in any direction.
Since the screen is 320 pixels wide, it takes more
than one byte to specify a horizontal position. Each
sprite has its own X position register and Y posi-
tion register, and a bit in an extra most significant
bit register. These registers are shown in Table 7-5.

31

The location specified by the registers is the posi-
tion where the upper left corner of the sprite will

appeat.

Table 7-5. The Position Registers for the Sprites.

Address Name Description
$Do00 SPROX SPRITE ¢ HORIZONTAL
$Do0O1 SPROY SPRITE ¢ VERTICAL
$Do02 SPR1X SPRITE 1 HORIZONTAL
$D003 SPRIY SPRITE 1 VERTICAL
$D004 SPR2X SPRITE 2 HORIZONTAL
$D005 SPRZY SPRITE 2 VERTICAL
$D00S SPR3X SPRITE 3 HORIZONTAL
$DOG7 SPR3Y SPRITE 3 VERTICAL
$D008 SPR4X SPRITE 4 HORIZONTAL
$D009 SPRaY SPRITE 4 VERTICAL
$D00A. SPR5X SPRITE 5 HORIZONTAL
$Do0oB SPR5Y SPRITE § VERTICAL
$D00C SPREX SPRITE 68 HORIZONTAL
$D00D SPReY SPRITE 8 VERTICAL
$DO0OE SPR7X SPRITE 7 HORIZONTAL
$DOOF SPRA7Y SPRITE 7 VERTICAL
$DO10 XMSB MOST SIGNIFICANT BIT
REGISTER

The value placed in the Y position register will
specify the vertical position of the sprite on the
screen. This value may be up to 255. For an unex-
panded sprite to be completely visible, the Y value
must be between $32 and $E9. Any other values
will place the sprite partially off the screen.

Whatever value is placed in the X position
register is the least significant 8 bits of a 9 bit value.
Each sprite has a ninth bit in the XMSB ($D010)
register. An unexpanded sprite will be completely
visible if the 9 bit X value is greater than $18 and
less than $140. The HINC and HDEC macros can
be used to perform 9 bit increments and decrements
of the X position.

Table 7-6 shows the screen coordinates for ex-
panded and unexpanded sprites to be fully visible
on the screen. Any sprite positions outside of
these limits will be partially or fully off of the
screen. This provides an easy way to reveal a
sprite gradually.

Assigning sprite priorities. As mentioned
before, each sprite has a display priority with

32

Table 7-6. The Screen Coordinates at which
Normal and Expanded Sprites Will Be Fully Visible.

FOSITION X Y XEXP Y EXP
UPPER LEFT $18 $32 $18 $32
UPPER RIGHT $340 $32 $128 $az
LOWER LEFT $8 $ES %18 $Do
LOWER RIGHT $140 $E5 $128 $Do

respect to the other sprites and to the background
You can create a three dimensional effect by allow
ing different sprites to pass in front of each other
The priority of one sprite to another is predeter-
mined by the VIC chip. Sprite 0 has the highest
priority, meaning that it will appear to be in front
of all other sprites. Sprite 7 has the lowest priority
of all the sprites.

Each sprite can be individually selected to either
have a higher priority than the background or a
lower priority. If the sprite's bit in the |
($D01B) register is clear, the sprite will appear tc
pass in front of the background. When the bit for
the sprite is set in the BPRIOR register, the sprite
will appear to move behind the background image
and in front of the background color. Because sprites
can have transparent as one of their colors, any
sprite that passes behind a higher priority sprite
with transparent in it will show through in the
transparent areas.

COLLISION DETECTION

The VIC chip can detect collisions between
sprites and also between a sprite and the
background. The VIC chip will defect collisions be-
tween the nontransparent portions of sprites.

When a collision between two sprites occurs,
their bits are set in the SSCOL (§DO01E) register.
The data in the SSCOL register will stay valid un-
til the byte is read. After the register is read, the
data will be cleared, so it is important to store the
data somewhere before analyzing it. The VIC chip
will detect a collision even if the sprites are off the
screen. One thing that should be noted is that the
SSCOL register will only tell you which sprites are

:involved in collisions, not which sprite hit which
sprite. If you are multiplexing sprites, the datain
the SSCOL register may be useless.

Sprite to background collisions are handled in
almost the same way. The SBCOL ($DO1F) register
will detect a collision between the nontransparent
portion of a sprite and the background. In a
multicolor screen mode, the bit pair 01 is considered

transparent for collision detection. Like the SSCOL
register, the datais cleared after reading it.

BLANKING THE SCREEN

The entire screen can be blanked to the border
color by clearing hit 4 of the Y SCRL register. The
screen can be turned back on by setting bit 4 of the

YSCRL register. Blanking the screen does not
disrupt any data on the screen. When the screenis
blanked, your program will run slightly faster
because the VIC chip doesn't need to fetch any data
from memory.

THE RASTER REGISTER

The VIC chip keeps track of which scan line the
electron beam is currently on. Since there are more
than 255 scan linesin one TV frame, thiswill be
a9 hit value. The least significant 8 bits of the cur-
rent scan line can be read by reading the RASTER
1$D012) register. The ninth bit can found in bit 7
of the YSCRL register.

Y ou can write a9 bit value to the RASTER
register and bit 7 of the Y SCRL register. When the
scan line reaches the value that you stored, bit 0 of
the VIRQ ($D019) register will be set. If bit O of
the VIRQM ($D01A) register is set, an interrupt will
be sent to the microprocessor. Y ou must remember
to store a ninth bit when storing a RASTER
number, or the comparison will not take place. The
RAST macro will set the 9 bit raster number for
you.

VIDEO INTERRUPTS

Different conditions within the VIC chip can
generate interrupts. The interrupt status can be read
by reading the video interrupts register, VIRQ
($D019). The bits have the following meanings:

Bit Type of Interrupt

0 RASTER
1 SPRITE TO BACKGROUND
COLLISION

2 SPRITE TO SPRITE COLLISION

3 LIGHT PEN

7 SET ON ANY ENABLED
INTERRUPT

Once an interrupt bit has been set, a1 must be
written to that bit position in order to clear it. This
allows you to process interrupts one at atime,
without having to store the data elsewhere.

Interrupts will only be sent to the
microprocessor if the corresponding bit in the video
interrupt mask register, VIRQM ($D01A), is set. You
will still be able to read the interrupts from the
VIRQ register, but if the appropriate bit in the
VIRQM register is not set, no interrupts will be
generated. See the section on using interrupts for
more information on using interrupts properly.

SCROLLING

One of the most advanced features of the VIC
chip isits ability to smoothly scroll the screen in
either the X or Y direction. The VIC chip can scroll
the screen using hardware, freeing the
microprocessor from the task of finely scrolling the
screen. When the screen needs to be scrolled, the
VIC chip can beinstructed to scroll the screen
within arange of 8 pixelsinthe X direction, the Y
direction, or both.

The least significant three bits of the Y SCRL
($DO011) register control the amount of vertical
scrolling. Since thisregister isalso used for a
number of control functions, the register should be
read beforeiit is changed. The XSCRL ($D016)
register works in the same way as the Y SCRL
register except that the XSCRL register controls the
amount of horizontal scrolling. When changing
either of these registers, the lower 3 bits should be
masked to 0, and the number of pixelsto be
scrolled should be OR'd to the new value. The result
of this procedure can then be stored back into the
register.

33

The following is a routine that can be used to
change the value of the YSCRL or XSCRL register.
This example shows how to set the YSCRL register
to a scroll value of 7 without disturbing the value
of the upper bits of the register.

LDA YSCRL ;LOAD THE DATA

AND #$F8 ;MASK THE LOWER 3 BITS
ORA #%$07 ;SCROLL 7 PIXELS

STA YSCRL ;STORE THE NEW VALUE

As the scrolling value goes from 0 to 7 in the
YSCRL register, the screen will scroll down. As the
value in the XSCRL register goes from 0 to 7, the
screen will scroll to the right.

When scrolling the screen, you will usually want
to expand the border area of the screen. This will
give you an area to place the new graphics to be
scrolled onto the screen where they will not be seen.
The VIC chip has two controls that will expand the
border. The first of these is a 38 column mode. This
mode can be selected by clearing bit 3 of the
XSCRL register. The VIC chip can be returned to
the 40 column mode by setting bit 3 of the XSCRL
register. In the 38 column mode, one column on the
right side of the screen and one column from the
left side of the screen are covered by the border col-
or. This will give you a buffer area where changes
to the screen will not be seen.

The other border expansion option is useful for
vertical scrolling. By clearing bit 3 of the YSCRL
register, when the vertical scroll is set to 3, half of
the top row and half of the bottom row will be
covered by the border. The VIC chip can be re-
turned to the normal 25 row mode by setting bit 3
of the YSCR L register. When the vertical scroll is
set to O, the top line will be entirely covered by the
border. When the vertical scroll is set to 7, the bot-
tom line of the screen will be entirely covered by
the border.

Once you have reached a maximum scroll value
in the X or Y direction, you will have to shift each
character on the screen in the direction of the scroll
in order to continue scrolling. After moving all of
the characters on the screen, you can reset the fine

34

scrolling registers to their minimum value and con-
tinue to use the hardware registers to scroll the
screen.

There are a number of things that must be
taken into account when writing a scrolling program.
In order for the screen to appear to be in continuous
smooth motion, the routine that will shift each
character must be extremely fast. Also, if you are
using a number of different colors in color RAM,
each character in color RAM must be moved in the
direction of the scroll at the same time as the
characters in screen memory. If you do not need to
scroll the entire screen, your program can be much
shorter and will run faster. If your program does not
run fast enough, you will see breaks in your graphics
where the characters that have been scrolled are ad-
jacent to characters that have not yet been scrolled.

If possible, your routine should be fast enough
to reposition the entire screen in one screen update
time (1/60 of a second). You can get by with a slower
routine if you scroll your screen memory into a dif-
ferent area of memory than the one that is current-
ly being displayed. This must be completed before
the fine scrolling register reaches its limit, so when
the entire screen needs to be repositioned, it will
be ready. Instead of repositioning the entire screen
at that point, which would have to be done within
1/60 of a second, all you need to do is to use the
TXBAS or GRABAS macro to instruct the VIC chic
to get the data from the area that has already been
repositioned. The macro that you will use depend:
on the graphics mode that the screen is in.

JOYSTICKS

At some point, you will want to allow the player
to have control over his character in the game. Th(
most common form of input to a video game is
joystick. The Commodore 64 has two input port;
that can be used for joysticks. By setting both
DDRA ($DC02) and DDRB ($DC03) to $00, the two
ports will be configured as inputs. Once the port;
have been configured, the data from the joystick
can be read from JOY1 ($DC00) or JOY2 ($DCO1)
Bit 4 of a joystick port represents the fire button
on that joystick. If that bit is clear, the fire button

depressed. The lower five bits of a joystick port
represent the direction of the joystick as shown
below:

Bit Direction
UP
DOWN
LEFT
RIGHT

FIRE BUTTON

S~ Lo N — O

When a contact on the joystick is pressed, its
corresponding bit in the joystick register is clear.
When two out of the lower four bits are clear, the
joystick is on an angle. If you find it more conve

nient or manageable to have a bit set representing
a closed switch, the NOT macro can be used to in-
vert the data. Before using the joystick data as any
type of an index into a table of data, you must mask
the unused bits in the register. You will normally
want to mask the entire upper nibble and treat the
fire button separately. The following routine will in-
vert the joystick data from port O and mask the
unused bits as well as the fire bit. The result will
be a four bit value that represents the joystick
direction.

LDA JOY1 ;READ THE JOYSTICK PORT

NOT jCOMPLEMENT THE
7ACCUMULATOR

AND #$OF iMASK THE UPPER BITS TO 0

35

Chapter 8
Sound Effects

One of the most advanced features of the Com-
modore 64 is its ability to generate sounds. Built
into the Commodore 64 is a highly advanced sound
generator, the sound interface device or SID chip.
This chip has the capability of generating three in-
dependent tones over a range of more than six oc-
taves. It has controls in each channel to control the
attack, decay, and release times, and a sustain level
for the volume of each channel. In fact, most of the
features found in a musical synthesizer can be found
in the SID chip.

Figures 8-1, 8-2, 8-3, and 8-4 show some of the
different waveforms that the SID chip can generate.
Figure 8-1 shows a triangular waveform, which will
produce the cleanest tone, as it is a fairly close ap-
proximation of a pure sine wave. Figure 8-2 shows
a sawtooth waveform. You will notice that it has
sharper edges to it than the triangular waveform.
Sharp edges on a waveform tend to generate vatious
harmonics of the tone, so in general, the sharper the
edges in a waveform, the more harmonics will be
generated. The differences in the harmonic content
can be heard as a difference in harshness of the tone.

36

A triangular waveform will produce a very smooth,
soft tone, while the square waveform, as shown in
Fig. 8-3, produces a very sharp biting tone. When
you select the square waveform in the SID chip, you
have extra control over the tone of the sound. You
can program in a pulsewidth for the wave, which
varies the symmetry of the square wave. Depending
on the settings that you use, the waveform will be
more rectangular than square, as shown in Fig. 8-4.

The SID chip can also generate a noise
waveform. This is a random signal that changes at
the oscillator frequency. Many games will use this
waveform to generate explosions, wind storms, ot
any type of sound that is not a specific tone. In ad-
dition, if channel 3 is set to generate noise, the
amplitude of the waveform can be read by the
microprocessor at any time. Because this is a con-
stantly changing value, the number read will be a
random number.

FILTERING

After you have created a sound, you can change

© 3. 81. Triangular waveform.

° g B-2. Sawtooth waveform.

37

Fig. 8+, Square waveform.

Fig. 8-4. Rectangular waveform.

38

it drastically by having the sound pass through one
or more types of filters. An audio filter changes the
sound by cutting down the volume of certain fre-
quencies. Different types of filters will modify a
sound in different ways. Each channel can be in-
dividually selected as to whether or not it will be
passed through the filter.

The ability to route the audio outputs through
one or more filters is a very powerful feature of the
Commodore 64. Unlike most computers, which
allow you to generate only simple tones, the filter-
ing modes of the SID chip allow you to generate
complex tones by modifying the harmonic content
of the tones. The filters accomplish this task through
a technique known as subtractive synthesis. By us-
ing an input source that is high in harmonics, the
filter can selectively eliminate specific frequencies.
Depending on the filtering mode, the same initial
tone can be used to create many different sounds.
In addition to using the filtering modes in a static
fashion (setting them and leaving them), you can
control the filter settings in real time. By doing so,
you will be able to create sounds such as wind

storms and jet engines. These are sounds that can-
not normally be generated well by a home computer.

There are three types of filters in the SID chip,
a low pass filter, a band pass filter, and a high pass
filter. More than one type of filter can be selected
at one time. When multiple filters are selected, the
effects are additive. A notch filter can be created
by selecting both the low pass and high pass filters.
The filters will affect the sound in the following
ways.

Low pass filter. When the low pass filter is
selected, all frequencies above the cutoff frequen-
cy are attenuated at the rate of 12 dB/Octave. This
filtering mode will generate a full sound.

Band pass filter. The bandpass filter will at-
tenuate all of the frequencies above and below the
cutoff frequency at the rate of 6 dB/Octave. A band-
pass filter produces thin sounds.

High pass filter. All of the frequencies below
the cutoff frequency will be attenuated at the rate
of 12 dB/Octave when the highpass filter is selected.
Tinny sounds can be generated when using this
mode. Figures 8-5 through 8-7 show graphics fre-

o3c —0<<

Frequency

Fig. 8-5. The effects of changing the filter cutoff frequency for a lo-pass filter (continued on p. 40).

39

C3JCc —0<

o3Ic -0

Frequency

Frequency

40

uency amplitude as the cutoff frequency of the
.iters are changed.

THE SOUND GENERATOR DEMO

Included in Appendix C is a program that shows
many of the abilities of the SID chip. Listing C-5
the source code; listing C-6 is the assembled code.
This program loads three machine language files
(
and DATA in Listing C-9. By listening to this demo,
ou will begin to hear some of the possible sounds
hat can be created on the Commaodore 64. As the
:demo is running, it will show you on the screen what
i
longer attack and decay times will take awhile to
+demonstrate, so please be patient. To run the demo,
}-pe in the following after checking to make sure
-he volume on your monitor is turned up:

LOAD"SOUND DEMO",8,1
SYS 4096

Me sounds and effects in the program are by no

means all of the sound effects that can be created
by the SID chip. Depending on how sophisticated
you care to become, you will be able to get many
effects that are not directly obvious. For instance,
if you write a program that changes the volume of
one of the channelsin real time, you will have full
control over generating different types of tremelo
effects.

There are program segments in the demo that
can be used directly or expanded to help generate
almost any type of sound or tune. The routine that
generates the short tune that is played to show the
effects of different waveforms simply reads alist of
notes and note times. If the value of anote is $00,
then the routine will quit. By changing the note
valuesin the note table and the time valuesin the
time table, this routine will play any type of tune.

THE SOUND EDITOR

In order to aid you in choosing values for the
different registers, in the SID chip, a sound editing
program has been included in Appendix C. Listing

o33 c —0<

Frequency

:g 8-6. The effects of changing the filter cutoff frequency for a hi-pass filter (continued on p. 42).

41

o3Ic—o0<

O3 Cc—0 <

Frequency

Frequency

42

o3Ic— O

Frequency

®3c— O <

Frequency

Fig 8-7. The effects of changing the filter cutoff for a band- pass filter (continued on p. 44).

43

Oo3c—0 <

Frequency

C-10 is the source coed; Listing C-11 is the assem-
bled code. The Sound Editor shows all the SID
chips' registers on the Screen using the naming con-
ventions discussed in Chapter 3. A cursor can be
moved around the screen, allowing you to change
the values that will be loaded into any of the SID
registers. All of the numbers are typed onto the
screen in hexadecimal notation, so the data that you
create can be easily entered into your assembler.
After all of the data fields that you care to change
have been updated, you can instruct the Sound
Editor to transfer the data to the SID chip. If you
have enabled one of the channels, this should pro-
duce a sound. To run the Sound Editor, type:

LOAD"SOUND EDIT", 8, 1
SYS 4096

The controls for the Sound Editor are shown in
Table 8-1.

44

Table 8-1. The Controls for the Sound Editor Program.
CURSOR DOWN Moves the cursor down one field
CURSOR UP
CURSOR RIGHT Moves the cursor one field to the

Moves the cursor up one field

right

CURSOR LEFT Moves the cursor one field to the
left

0-9 Allowable numbers for the data
fields

A-F Allowable letters for the data fields

Fl Transfers the data from the screen
to the SID chip and the software
timer.

A brief description of the registers used by the
Sound Editor follows. For a more detailed descrip-
tion of each register, refer to the section on the SID
chip. A listing of hexadecimal values for 6+ octaves

worth of notes is provided in the COMMON file, tion, wherever all three voices have identical
.fisting C-7 in Appendix C. In the following desctip- registers, voice #1 is used as an example.

VIATDC
V1SURL
V1 FRLO
V1FRHI
V1PWLO
Vv 1PWHI

VICORG 7~

The high nibble controls the attack time for this channel; the low nibble controls the
decay time.

The high nibble controls the sustain level for the channel; the low nibble controls the
release time.

This is the low order 8 bits of a 16 bit value that specifies a frequency for the channel.
This is the high order 8 bits of a 16 bit value that specifies a frequency for the channel.
This is the low order 8 bits of a 12 bit value that specifies the pulse width of the chan-
nel when you are generating a square wave.

The lower nibble of this register contains the high order 4 bits of a 12 bit value that
specifies a pulse width of the channel when generating a square wave.

This register is the control register for the sound channel. It controls the type of
waveform as well as the synchronization mode. The enable bit for the channel is in
this register.

The following registers affect all three voice channels.

FLCNLO

FLCNHI

MODVOL

RESFLT

The least significant 3 bits of this register are the low order 3 bits of an 11 bit value
that controls the filter frequency.

This register contains the high order 8 bits of an 11 bit value that determines the filter
frequency.

The filtering mode and the maximum volume for all three voice channels is controlled
by this register.

This register contains the resonance value and the filter enables for all three channels

The last two registers used by the Sound Editor ~ of a second. When the 16 bit value has been
are not SID registers but RAM locations. These = decremented to $0000, the release sequence is in-
-egisters are treated as a 16 bit value that is used itiated for all three channels.
as a time counter. They are decremented every 1/60

SNDTM1

SNDTM1+1

This is the low order 8 bits of a 16 bit value that determines the time in 1/60
second intervals before the release sequence is initiated.

This is the high order 8 bits of a 16 bit value that determines the time in 1/60
second intervals before the release sequence is initiated.

45

By experimenting with different values in the
registers, you will very quickly get a feel for what
effect different values have on the sound. Being able
to specify the amount of time to play the sound can

46

greatly speed up the time it takes to polish a game,
as the values for the sounds can be determined
separately from the main program.

Chapter 9

Creating Graphics

Up until now,this book has been primarily con-
cerned with background information necessary for
creating the program that will ultimately become
agame. Thisis certainly an important part of learn-
ing to program a game, but by no means all of it.
Because avideo gameis an audio-visual experience,
it will be necessary to create the graphics data that
will be operated on by the program.

There are a number of methods that can be
used to create and enter graphics information into
the computer. The method that you choose is pure-
ly a matter of personal preference. This chapter will
discuss afew of the options available to you when
it istime to create graphics data. Also, instructions
for using the graphics utility programsin Appen-
dix C are given in this chapter.

HAND CODING GRAPHICS

At some point, you will probably be entering
graphics data into your machine by hand. Asthis
can be a very time consuming process, this section
will show you some techniques that may make your
job alittle easier.

Before you sit down to enter graphics data, you
should have a good idea of what you want the final
object to look like. Y ou will need to know the
graphics mode that you will be working in. Also,
you must decide what colors you are going to use.
For instance, if you are using multicolored sprites,
each sprite can have one color of its own and can
use 2 colors that are common to all the other sprites.
To ensure that you will have the proper colors
available to you, it would wise to have decided
how all of the characters should look before you
start.

Once you have chosen a graphics mode to work
in, you will be able to start drawing your characters.
In Figs. 9-1 through 9-7 you will find some sample
graphics layout sheets. These sheets have afine grid
that is proportional to the dimensions of a pixel on
the TV screen. The heavy grid is proportional to
one character cell on the screen. There are 25 lines
of 40 characters each on the Commodore 64.

One thing that you should keep in mind when
you are creating graphics for use on the Commodore
64 isthat it is often necessary to use more than one

47

Fig. 9-1. A grid showing character spaces and individual pixels.

48

Fig. 9-2. A grid showing character spaces and double-wide dots for multicolor modes.

49

Fig. 9-3. A grid showing character spé-ées.

50

pixel of a color on a line to guarantee that the pixel
can be seen on the television. Television sets were
not designed to be able to display drastic color
changes on adjacent pixels. Depending on your color
choices, a single pixel in an area of the screen may
not be seen. This is due to the time that it takes
the TV to turn on and off the appropriate electron
guns that brighten a pixel. If the TV does not have
enough time to adjust the guns, the pixel will have
just started to light when the beams are changed
for the next pixel. On the other hand, if you have
2 or more adjacent pixels on a line of the same col-
ot, there will be enough time for the beams to be
readjusted and the pixels displayed.

The form in Fig. 9-1 is the form to use if you
are going to be using the standard bitmapped
graphics mode. You will notice t each pixel is rec-
tangular in shape, rather then sq re as might have
been expected. Thus, care must taken when at-
tempting to draw geometric patterns on the screen.
Since the pixels are rectangular, the normal equa-
tions for generating geometric shapes do not hold
true. However, if you take into account the 4/3
aspect ratio of the pixels, any shape can be drawn
propetly.

The form in Fig. 9-2 is to be used if you are go-
ing to be using one of the multicolor modes for your
graphics. You will notice that each pixel on this form
is twice as wide as the pixels on the form 9-1.This
1s because it takes two bits to represent the four col-
ors available to each block in the multicolor mode,
as opposed to the one bit that is needed to detet-
mine whether the foreground or background color
will be used in the standard color mode. Once again,
the pixels are not square, and care must be taken
when you are creating shapes.

The form in Fig. 9-3 is generally used to repre-
sent the screen in the character graphics mode. It
also can be used as an overlay to represent one of
the color memory ateas in the bitmapped graphics
mode.

The forms in Fig. 9-4 through 9-7 can be used
as design aids when you are creating sprites. There
are four different sizes available. The different sizes
correspond to the sprite X and Y multiplier options.
If you decide to use one of the e~panded sprites,

Fig. 9-4. A grid for an unexpanded sprite.

be sure to modify your program to change the
SPRXSZ and SPRYSZ registers to the size option
that you desire. The size of the grid on the sprite
form is identical to the grid on the other graphics
forms. This allows the sprites that you create to be
placed on top of your background graphics forms
to see how the entire screen will look.

Once you have translated your drawing into a
series of bytes, you have a couple of options as to
what to do with the data. If you have a machine
language monitor, you may choose to use the
Memory Display option to display the range of
memory where you would like your graphics data
to go. At this point, your monitor should allow you
to change the data on the screen. By using the data
from your drawings to modify the data on the
screen, you will create a section of memory that
represents your graphics. After you have finished
entering the data into the monitor, be sure to save
the range of memory that you have just modified
to the disk. The next step is to enter the address
of your graphics into your program so that it can
find the graphics later.

Your other option is to enter the data into your
assembler using the .BYTE directive. You can then
assign names to all of the different areas of your
graphics. The assembler can be directed to store the
graphics data anywhere in memory. The main disad-
vantage of entering the data into the assembler is
that the data will be reassembled each time a

51

Fig. 8-5. A grid for a horizontally expanded sprite.

change is made in your program. Depending on the
amount of graphics data that you have, thiscanal
substantially to the time that it will take to assem-
ble the file. Another option would be to assemble
the graphics data separately from the main pro-
gram. If you do this, you must give the main pro-
gram the addresses of where the graphics data will
be located. In this case, the graphics data need be
assembled only once. (Or, at least only as often as
is needed to get the data correct.)

USING A GRAPHICS TABLET

A more popular way in which to enter graphics
data into the Commaodore 64 for use within the pro-
gram isto use commercially available graphics
packages to generate pictures. One of the most
popular and useful of these isthe Koala Pad. This
package comes with a touch pad and software that
allows you to easily generate background screens.
Almost any type of graphics package will help speed
up the process of generating graphics.

A word of caution: before selecting a graphics
package to aid with your drawings, it would be wise
to be sure that it will fullfill your needs. There are
two major pieces of information that you will need
about the package:

» What graphics mode does it use?
» How can the picture be retrieved for m the disk?

Different types of games will benefit from the

52

use of one graphics mode over another. If your ap-
plication requires the use of a certain graphics mode,
the graphics package that you choose must use the

Fig. 9-6. A grid for a vertically expanded sprite.

Fig. 9-7. A grid for a sprite that has been expanded both horizontallv and verticallv.

same mode. Otherwise, the data created will not be
useful for your program. This sounds like good ad-
vice in theory; however, you will probably find that
most of the available packages will use the
multicolor bitmapped mode. On the other hand,
even if the program can not be used to generate
data, it may be useful for testing color choices and
to see how things will look.

It is quite possible that you will find a graphics
package that will seem to do everything that you
would like it to, only to find later on that you can't
get your picture back off the disk. It wouldn't seem
to be very useful to create a picture if you can't use
it. Some graphics packages use what appear to be
protected file names to prevent you from retrieving
your picture without using the software that created
it. You should contact the manufacturer of the
graphics package if there is no documentation on
how to load the picture wit out their software. If

you can get no satisfactory information from the
manufacturer, or they claim that you have no right
to know, you should not buy their software package.

When shopping for a graphics package, one
especially useful feature is a zoom mode. Using a
zoom mode, you will normally be able to change in-
dividual pixels on the screen with a minimum of ef-
fort. This will allow you, among other things, to
clean up a drawing that was made free-hand or
create a shape pixel-by-pixel, which is too intricate
to create in any other way.

Be wary of a piece of software that will not
allow you to use all 16 of the colors that the Com-
modore 64 can display or does not use the full
resolution of the screen. After all, there is no reason
to sacrifice any of the abilities of your machine
because of some other programmer's shortcomings.
In fact, most good graphics programs will give you
a pallette of more than 16 colors by giving you mix-

53

tures of the different colors in different patterns.
This can give you a choice of many colors and
shades of colors that you may not have been aware
were possible.

Another feature that you will learn to appreciate
greatly is an OOPS command. This usually allows
you to erase the last changes that you have made
to your drawing. This is a very useful function when
you wish to experiment with color changes and
other types of changes or additions that you might
not be sure you like. If you don't like your change,
you simply give the OOPS command and your draw-
ing is returned to the state it was in before the
change.

The following section will give some informa-
tion about the Koala Pad from Koala Technologies.
Some of the information has come from the
manufacturer and is not in the documentation that
comes with the package. This is not by any means
the only software package that will aid in game
design; it is only being used as an example. A
number of manufacturers have recently released
light pens with graphics software, which may be
useful. There are also digitizing tablets, joystick
controlled graphics software, and keyboard con-
trolled graphics software, which might be suitable.
To attempt to evaluate all of the different packages
is beyond the scope of this book. The preceding in-
formation should aid in your evaluation of a product
in the stores, and the following information on the
Koala Pad should show you what type of informa-
tion you will need to properly use the package of
your choice.

Using a Koala Pad

The Koala Pad is a touch sensitive tablet with
an active area of 4" by 4" and a resolution of 256
by 256 points. The pad plugs into one of the joystick
ports on the Commodore 64 and is treated as a pair
of game paddles by the software.

File format. Before you try to use the data
created on the Koala Pad, you will want to convert
the name of the file to something more usable.
When the software saves a screen to the disk, it
precedes your file name with a single byte whose
value is $81. This character prints on the screen as

54

an inverted spade and is inaccessible from the
keyboard. Koala uses this character as a flag to iden-
tify files that it has saved on the disk. This character
is followed by the character string PIC, which is
followed by a picture letter and a space.

A pair of utility programs that will convert file
names to and from the Koala Pad format are in Ap-
pendix C. These are:

Listing C-12 KO-COM Changes the name from
Koala format to
Commodore format.

Listing C-13 COM-KO Changes the name from
Commodore format to
Koala format.

These are BASIC programs that will prompt
you for the current filename and the name that you
would like the file to be called. When using COM-
KO, the program will insert the special character
at the beginning of the name for you.

After you have changed the name of the file in-
to something that can be loaded, you will be able
to use your machine language monitor to examine
and reconfigure the data. The data is stored on disk
in the following format:

Koala Memory Map

$6000 - $7F3F Graphics image
$7F40 - $8327 Color memory image
$8328 - $870F Color RAM image
$8710 Background color

Note: If you are using a cartridge based machine
language monitor, you may not be able to read the
file as the cartridge replaces the RAM where the
data will be loaded.

After you have loaded the file, you can relocate
the graphics data and the color data to anywhere
that is convenient to your program. You should then
save your newly created file back to the disk. You
will probably want to move the data since the Koala
software is more interested in reducing the size of
the disk file than in placing the data in a useful loca-
tion. It would be a good idea to move the color

memory areas to the beginning of a page boundary.
This will make it easier and faster to manipulate
the data later. The background color may be stored
wherever is convenient.

The data was created using the multicolored bit-
mapped mode, so be sure to set the multicolor mode
bit in the VIC chip before displaying the picture.
Also, note that the border color is not stored in the
file. You must set the border color to the appropriate
value before displaying the picture.

DISPLAY PIC, Listing C-14 in Appendix C, will
display a Koala Pad picture on the screen. It will
load the machine language routine MVIT in Listing
C-15. This program follows the steps above to
display the picture. It will also set the border color
to black. It will display the picture until the shift
key is pressed on the keyboard. This program will
not display a picture if you change the location of
the data in the file. To run this program enter:

LOAD"DISPLAY PIC",8<RETURN>
RUN

Enter the name of the picture to be displayed when
prompted. The file name must have been previously
changed using the KO-COM utility. A picture in the
Koala Pad format is in Listing C-16 in Appendix C
under the name PIC A CASTLE. This picture can
be viewed using the DISPLAY PIC program. This
drawing could make a nice background for a game,
if you were so inclined.

USING THE SPRITE MAKER

Listing C-17 in Appendix C is a sprite making
utility in BASIC. It loads two machine language
routines, SLIB.O in Listing C-18 and CLSP2 in
Listing C-19. Using this program, you will be able
to quickly create a sprite in either the one color or
multicolor mode. You will be able to change any of
the colors in the sprite or the background color.
After you have finished designing a sprite, you will
be able to save it to the disk for use in a program
later. As you are drawing your sprite on the screen,
you will be plotting squares on a 24 by 21 array of
squares on the left side of the screen. In the upper
right section of the screen, the sprite is shown in

its true size and color, so you will be able to see ex-
actly what the finished sprite will look like. in the
upper left corner of the screen, there will be a white
box if you are in the plot mode; otherwise you will
be in the unplot mode and the corner will be blank.

To run the Sprite Maker program, you must
type the following:

LOAD"SPRITE MAKER", 8
RUN

Enter the name to be used when saving or
loading from disk.

The SPRITE MAKER uses a combination of
joystick and keyboard controls. All of the control
options are shown below.

JOYSTICK Moves the cursor around
the zoomed sprite
FIRE BUTTON Plots or unplots a point

Fl Toggles the plotting mode

F3 Enables the multicolor mode

F4 Disables the multicolor mode

F5 Changes the sprite color

F6 Changes the background color

F7 Changes the multicolor 1
register

F8 Changes the multicolor 0
register

S Saves the sprite to the disk

L Loads the sprite from the disk

The joystick will move the cursor around the
screen. When the fire button is pressed, a square
will either be plotted or unplotted, depending on the
plot mode at the time. Pressing the F1 key toggles
the plotting mode. The mode is set to OFF when
the program is first run. The F3 key will enable the
multicolor mode. Pressing the F4 key disables the
multicolor mode. The multicolor mode is off when
the program is first run. Pressing F5 will increment
the sprite color register. The F6 key increments the
background color. Pressing F7 will increment the
sprite multicolor 1 register. This will only show an
effect when the multicolor mode has been selected.
Pressing F8 will increment the sprite multicolor O

55

register. This will only show an effect when the
multicolor mode has been selected. Pressing the S
button will save the sprite to the disk using the name
that you had entered eatlier. Pressing the L button
will load a sprite pattern from the disk with the
name that you entered earlier.

After you have finished editing a sprite, the
sprite data will be at $4000. By using a machine
language monitor, you will be able to save the binary
sprite data from $4000 to $403F. If you will be us-
ing multiple sprites, you may wish to move the data
to a safe area in memory so that you can merge your
new sprites with the old ones.

USING THE SCREEN MAKER UTILITY

If you are going to use a character graphics
mode, you will need some way to specify the place-
ment of the character graphics on the screen. The
SCREEN MAKER Listing C-20 in Appendix C will
aid you in defining a screen of graphics.This pro-
gram will load three machine language routines,
CLBACKT1 in Listing C-21, CLSP1 in Listing C-22,
and SLIB.O in Listing C-18. This program will allow
you to select any of the characters out of your
character set, and place it in any position on the
screen. This will allow you to see quickly how your
screen will look. When you are finished, you will
be able to save the screen to the disk. To run the
program, type:

LOAD"SCREEN-MAKE",8
RUN

Enter the filename to be used when loading or sav-
ing a file to the disk when prompted. The follow-
ing controls are used in this program:

JOYSTICK

Moves the cursor around the
screen

56

FIRE BUTTON Plots the selected character
on the screen

F1 Increments the current
character number
F3 Decrements the current
character number
F5 Increments the character color
F7 Increments the background color
L Loads a file from the disk
S Saves a file to the disk

After you run the program, the screen will clear
and the first character in the character set will be
displayed in the upper left hand corner of the screen.
The next character in the upper left hand corner
of the screen shows the current character color. If
this color is the same as the background color, the
space will appear blank.

Pressing the F1 key will select the next
character from the character set. You will see the
character in the upper left corner of the screen. By
repeatedly pressing the Fl button, you can scan
through your entire character set. Button F3 will
select the previous character from the character set.
By using these two buttons, you will be able to move
forward or backward through the character set.

The F5 key will increment the character color.
This is the color that will be placed into the color
RAM when the character number is placed in the
screen RAM. Pressing the F7 key will increment
the background color. This is useful when you wish
to see what the screen would look like with different
background colors.

You may load a screen to be edited using the
L command. When you are finished making
changes, you should use the S command to save the
screen back to the disk. When a screen is saved to
the disk, the color information is saved to the disk
along with the character placement information.

Chapter 10

Some Arcade Games

Before attempting to design your own video game,
it would probably be helpful to understand how
some other games are designed. In this chapter, you
will be shown some of the ways in which some
popular arcade video games could be programmed
into the Commodore 64. In fact, the description of
how to program these games may be quite accurate
in terms of how the original was done. Bear in mind,
however, that arcade machines tend to have some
specialized hardware for graphics creation.

PAC-MAN

The most popular arcade game in recent times
isPAC-MAN. Thisisamaze type game in which
the player controls PAC-MAN in his journey around
the maze while being chased by computer con-
trolled ghosts. If PAC-MAN is hit by one of the
ghosts, he loses a life. On the other hand, if PAC-
MAN manages to eat one of the power pellets on
the playfield, for a short amount of time the ghosts
will turn blue. During this period of time, PAC-
MAN may eat his enemies for agreater score.

Difficulty levels are created by changing the
speed of all of the characters and changing the
amount of time that PAC-MAN hasin which to eat
the ghosts. PAC-MAN must eat all of the pellets on
the playfield in order to advance to the next difficul-
ty level. 'Nice during each level of play abonus
character appears on the screen for a short period
of time. If PAC-MAN can eat the bonus character,
he gets bonus points. The bonus character is worth
more points on the higher levels.

If you were to program PAC-MAN on the Com-
maodore 64, you would probably use the multicolor
character graphics mode for the maze and the
pellets. PAC-MAN and the four ghosts would be
sprites. The bonus character could also be a sprite.
At this point, you would have two spritesto spare
because the Commodore 64 allows eight sprites, and
only six have been allocated. These remaining two
sprites could be used as the four power pallets by
repositioning the sprites after the top 2 pellets have
been displayed. This technique will be discussed in
more detail in alater chapter.

57

Since the Commodore 64 maintains collision
registers to determine collisions between sprites and
between sprites and background, determining when
PAC-MAN hits a ghost or power pellet should be
no problem. The only part of the program that may
be difficult is the part where it is determined which
of the normal pellets PAC-MAN has eaten. For the
most part, putting PAC-MAN on the Commodore
04 would be a very direct translation. On the arcade
game, the video monitor is rotated 90 degrees,
which makes the maze taller than it is wide. This
would be the only major discrepency between the
arcade machine and a Commodore 64 translation.

DONKEY-KONG

In DONKEY-KONG, the player controls Mario,
who is trying to rescue a girl from the clutches of
DONKEY-KONG, a large ape. To do this, Matio
must climb the various structures that DON j E'S-
KONG sits on. To make Mario's life more difficult,
DONKEY-KONG keeps throwing barrels and ham-
mers down at Mario. On some screens, there are
fireballs that he must dodge. As Mario climbs
toward DONKEY-KONG,; he can pick up articles of
the gitl's clothing that she has dropped on her way
up. Mario can also pick up a hammer and proceed
to beat up the barrels and fireballs for a short
amount of time. Mario can jump over the barrels
and fireballs, for which he gains points. If Mario can
get up to the level where DONKEY-KONG is stan-
ding, he either rescues the girl, or depending on the
level, DONKEY-KONG carties the gitl higher up on
the structure. Mario is then presented with the next
level of play. The arcade version of the game has
four different types of structures that must be
climbed.

Translating DONKEY-KONG to the Com-
modore 64 is very similar to translating PAC-MAN.
The background structures, DONKEY-KONG, and
the girl can all be made up of character graphics.
The articles of clothing that the girl has dropped
can also be made up of character graphics. This
leaves all of the sprites free for Mario, the barrels
and the fireballs.

If you watch an arcade version of DONKEY-

58

KONG very carefully, you may see how its designers
avoided the problem of needing a large number of
sprites. When a barrel rolls past Mario and heads
for the next lower level, it will normally roll off the
edge of the screen rather than descending to the
next level. Because the player's eyes are normally
focused on Mario and the portions of the screen
above him, he will not normally notice the disap-
pearing barrels. Because the machine does this, it
never needs more than five sprites to display all of
the barrels. This same technique will work for a
translation of DONKEY-KONG for the Commodore
04. If five sprites were reserved for fireballs and bar-
rels and one for Matio, there would still be two left
over for hammers. In fact, you would have even
more flexibility in the use of sprites. For the most
part there are only 3 or 4 sprites displayed on any
given line. Using the technique of repositioning
sprites, you could reposition the sprites on different
lines.

Like PAC-MAN, in the arcade, DONKEY
KONG's screen is rotated 90 degrees from a not-
mal television. For this reason, any translation of
DONKEY-KONG to the Commodore 64 will be
wider and shorter than the original.

CENTIPEDE

In CENTIPEDE, a nasty centipede is running
loose in a field of mushrooms. It starts at the top
of the screen and winds its way down the screen
until it gets to the bottom, where the player's gun
is. The players must shoot the centipede without
getting hit by it. The centipede has 11 body
segments. If the head is hit, the next body segment
becomes the new head. If a body segment is hit,
the centipede breaks into two patts, each of which
has its own head. Whenever a segment of the cen-
tipede hits a mushroom, it drops down to the next
line and turns around.

In addition to the centipede, the player must
also avoid the spiders and fleas. Fleas add to the
mushroom field, while spiders destroy mushrooms.
Scorpions poison the mushrooms that they touch.
A poisoned mushroom causes the centipede to de-
scend straight down the screen.

This game could be a bit of a problem to
translate because of the large number of moving ob-
jects. The mushrooms can be made using multicolor
programmable characters. Since the Commodore 64
has only eight sprites to work with, there would ap-
pear to be a shortage of sprites to use in the transla-
tion. However, by using the technique of sprite
multiplexing, you can trick the computer into work-
ing as if it had 16 sprites. This technique is dis-
cussed further in a later chapter; if used propetly,
it would allow the game to be translated for the
Commodore 64. Eleven sprites are used for the cen-
tipede's segments, 1 sprite for the player, 1 sprite
for the shot, 1 for the flea, 1 for the spider, and 1
for the scorpion. This totals 16 sprites, or the
number of sprites that multiplexing would provide.

THE REVENGE OF THE PHOENIX

To help illustrate how some of the different
techniques describe in this book translate into a
game, an arcade style game, Revenge of the
Phoenix, has been included in Listing C-23 in Ap-
pendix C. This game uses almost all of the techni-
ques that have been covered earlier. It is included
to help illustrate the capabilities of the Commodore
64. To play the game, type the following:

LOAD "PHOENIX V1.4N", 8,1
SYS 32768

At this point, the program will go into its introduc-
tion mode. If left alone, it will demonstrate how the
game plays and eventually return to the introduc-
tion. You may interrupt this process at any time by
pressing one of the fire buttons. The game can be
played by either one or two players. You can choose
which mode you want to play by moving the arrow
with the joystick on the title page. By pointing at
the character that represents the mode that you
would like to play and pressing the fire button, you
will initiate game play in that mode. Since the two
players (high wizard and low wizard) do not have
exactly the same capabilities, you may choose which
of the two players you would like to control.

Game Play
In Return of the Phoenix, you will be playing

the character of a wizard protecting a castle from
the magical phoenix. You are able to stun the
phoenix with spells shot from your staff. The goal
is to prevent the phoenix from building a bridge in
the sky. They will try to get to the bottom of the
screen, pick up an energy spell, and bring it to the
top of the screen, where a section will be added to
the bridge. Game play will continue until the three
tier bridge is completed. At this point, both you and
the phoenix will have a score. If your score is higher
than theirs, you win.

One of the wizards can fly around the screen
and go virtually anywhere that a phoenix can. The
other wizard must stay near the bottom of the
screen. This gives each of the wizards unique play-
ing characteristics. Which one that you care to play
is very much a matter of personal preference.

There are nine levels of difficulty in Return of
the Phoenix. The skill level that you are currently
playing is shown at the top of the screen in the
center. As you are playing, the program constantly
monitors your playing ability and modifies the skill
level accordingly. If the program feels that you are
playing very well, it will increase the level of dif-
ficulty. On the other hand, if you are playing poot-
ly, the skill level will be decreased. The skill level
can only be decreased if you are above level 4.
Starting at level 2, the phoenix will start dropping
sleep spells on the wizards. If you are hit, you will
be unable to move for about three seconds. At the
higher levels, the phoenix will shoot more often and
move faster and at some levels, the wizards will
move faster also.

Scoring

In this game, you are competing against the
phoenix for the high score. The phoenix are con-
trolled by the computer, and they have a different
method of scoring then do the wizards. The number
of points that the phoenix gets depends on how long
you can prevent them from getting energy bricks
to the bridge. After every four seconds, the value
of the bricks to the phoenix decreases. The bricks
can be worth from 5 to 98 points depending on how
long you can keep the phoenix from getting a brick
to the bridge. All of the rest of the scoring is more

59

standard and shown in Table 10-1.

When the two player mode is selected, both
players are working for one score. The players' score
is in the upper left corner of the screen. Unlike most
video games, in which the two players are com-
peting, both players are working together for a com-
mon goal. The phoenix score is in the upper right

corner of the screen. This is just as valid a score
as the players' score, in that they are working toward
their own objectives. If the wizards beat the phoenix
score, the bridge will flash and fall down at the end
of the game. Similarly, if the phoenix beat the
wizards score, they will display their message at the
end of the game.

Table 10-1. The Scoring System for the Revenge of the Phoenix Game.

Wizard shooting phoenix with energy brick
Wizard shooting phoenix without brick
Wizard shooting all 4 phoenix
Phoenix putting a wizard to sleep

... 98 points
.. 26 points
... 1000 points
... 325 points

Chapter 11

Elements of Game Design

Much of this book has been dedicated to the tech-
niques of programming a video game on the Com-
modore 64. In this chapter, some of the concepts
that need to be used during the design of the game
will be discussed.

Be fun

Have an interesting plot

Be visually stimulating

Have sound effects and music
Have varying difficulty levels
Keep score

When you are designing a game, you are
writing a program that is intended to be used for
the amusement of others. Trying to make the game
fun to play should be your primary consideration.
There are some problems in trying to design an en-
joyable game, however. For instance, when you
come up with a game concept, you may think your
game will be the best game ever written, only to
find, after you have written the program, that it is

boring. This can be caused by a number of factors.
More often than not, the game idea was good, but
the computer lacked the ability to display a game
as complex as you wanted.

One thing to beware of when designing a game,
is the tendency to have the game play in exactly the
same way each time it is played. If there are no ran-
dom elements in the game, each move by the player
will cause a specific move by the computer. This
may be challenging at first, but will quickly become
boring once it is mastered. The PAC-MAN arcade
machine had this problem and it didn't take long
before patterns that showed how to beat the
machine every time were published. All it takes is
an occasional random move for the play to be
unpredictable—which will add to the challenge of
the game.

After you have spent some time programming
the Commodore 64, you will have a good idea of
what it is capable of doing. If you take into account
the capabilities of the computer during the design
phase of your program, you will have a much easier

61

time writing the program. Many of the routines ex-
plained in this book will enable you to write more
complex games than you may have thought possi-
ble. Techniques such as sprite multiplexing make
it easy to display more sprites in the same area of
the screen than is otherwise possible. This will give
you more flexibility in the design of your game,
which will make it more fun.

Your game can usually be made more in-
teresting if you discuss some of your ideas with
others before you start programming. Because
everybody sees things differently, you may be given
some ideas that will greatly enhance the play of the
game. Many of the large game corporations put a
number of game designers in a room and have them
toss ideas back and forth. A bull session such as this
can be the fastest way to get creative input into the
design of a video game.

VISUAL IMPACT

The visual impact of the game is the first thing
anyone playing your game will notice. If the anima-
tion is interesting, it will quickly attract attention.
The proper use of color is important. When you are
using a normal television as a monitor, certain col-
ors interact with each other better than others.
Black characters on a white background will give
quite a bit of contrast. The characters will be very
clear and sharp. On the other hand, red characters
on a blue background will appear fuzzy and in-
distinct.

Varying the animation sequences that are used
to make up a moving figure can add to the attrac-
tion of the game, if they are changed at the ap-
propriate time. A game in which a character
explodes and fades out after it is shot will be a more
interesting game than one in which the character
simply disappears. Similarly, figures can be
changed to indicate that something is being catried,
or that the player is at a different level. At times,
simply flashing the colors of a character will add
to the visual effect of the game.

SOUND EFFECTS

Sound effects and music can add greatly to the

62

appeal of a game. If nothing else, music played
while the title page is displayed will hold a playet's
attention as they are reading the credits, rules, or
whatever else you may choose to put on a title page.
In some cases, background music may be ap-
propriate to a game. When this is done, it should
be played at a relatively low volume with respect
to the rest of the sound effects. Loud background
music can be quite a distraction and a nuisance
when it drowns out the sound effects. You may want
to consider creating an option that will allow the
game to be played without any background music.
Many games provide a brief break as the player
moves from one level of play to another. Quite often,
during this pause, a short piece of animation is
shown on the screen along with some music. If a
game takes a long time to play, these breaks give
the player a time to relax and catch his breath.

DIFFICULTY LEVELS

Virtually every game has different difficulty
levels. The variations can range from simply in-
creasing he speed of some of the characters at dif-
ferent sco es to starting a completely different
portion of t e game after a task is completed. For
the most part, a game will be the same each time
that it is played. Changing the level of difficulty
based on the skill of the player will keep the player
interested in playing the game even after he has
mastered the beginning levels. Presenting him with
a new challenge as a reward for gaining skill in the
game will help to keep the player interested. You
can make the game more fun to play by increasing
the speed of the characters at higher levels and in-
creasing the amount of shooting that the player is
allowed to do. Some games will introduce a new
character at each new difficulty level, so the player
will keep playing in order to see all of the different
characters.

In the game Return of the Phoenix, Listing C-23
in Appendix C, each new level of difficulty has a
new speed for the characters and a different rate
of fire. The level of difficulty is decided by the
players' skill. If he is playing well, the level of play
will increase. When the player starts doing pootly,

the level of play will be reduced. This self adjusting
difficulty (SAD) system keeps the game interesting
by constantly adjusting the level of game play to the

player.

SCORING

A player can tell how well heis doing by look-
ing at the score. Almost all games should have a
score of one sort or another. A player should be
awarded points for actions that help him toward the
goal of the game. The number of points awarded
can vary greatly for different types of actions and
can even be based on the current level of difficulty.
In most cases, you will want to display the score con-
stantly so that the player can tell how heis doing.
Usually, when an action resultsin points being
added to the score, some appropriate sound effect
is generated. This sound servesto inform the player
that he has done something good without forcing
him to look at the score. Under some circumstances,
abonus should be awarded for completing a specific
task. Bonuses are often used to tempt a player into
acourse of action, for some immediate points, which
is not necessarily beneficial in the long run.
Deciding on the number of points to award for
the various actionsis very subjective. You want a
normal score to be high enough to make the player
feel that he has accomplished something, but not
so high asto be incomprehensible. Y ou will probably
not decide on your final scoring method on your first
try, but will refine it during the testing process.
Note: When you first decide on a scoring
method, be sure to reserve enough bytes for the
score to accommodate an extremely high scoring

player. Thiswill avoid the rollover when the score
changes from all 9sto all Os. Never assume that just
because you can't get over a certain score that no
one can.

As an added feature, you may wish to include
afeature that allows the highest scoring playersto
place their names on a scoreboard. Although not
necessary, this feature can add to the competition
between a number of players.

The next chapter describesin detail the opera-
tion of the BOGHOP game, which isin Appendix
C. This game has been designed to demonstrate vir-
tually all the programming techniques described in
this book.

If you have never programmed in assembly
language, you may wish to try assembling the pro-
gram as an exercise. Before doing so, you should
make a copy of the source code disk and only work
with the copy. The program has been structured in
such away that small changes can completely
change game play. By reading the commentsin the
program listing, you will be able to see where you
can make changes. This provides you with an easy
way to start experimenting with an assembly
language program.

This concludes the introduction to arcade game
programming on the Commodore 64. Just as in any
other field, the best way to learn is by doing. In this
book, you have been given a strong foundation on
which to build your program. By using the various
definition files and libraries from Appendix C, you
can spend more time writing your game program
and less time coding the groundwork. | hope that
you find agreat dea of enjoyment in writing games
and sharing them with others, as we have.

63

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65

