
~

~~. "

'~

BASIC 64
complete compiler

for the Commodore 64

By T. Helbig

25933

A Data Becker product

Published by:

Abacus III Software

COPYRIGHT NOTICE

Abacus Software makes this package available for use on a single computer
only. It is unlawful to copy any portion of this software package onto any
medium for any purpose other than backup. It is unlawful to give away or
resell copies of any part of this package. Any unauthorized distribution of
this product deprives the authors of their deserved royalties. For use on
multiple computers, please contact ABACUS Software to make such
arrangements.

WARRANTY

Abacus Software makes no warranties, expressed or implied as to the fitness
of this software product for any particular purpose. In no event will Abacus
Software be liable for consequential damages. Abacus Software will replace
any copy of the software which is unreadable if returned within 30 days of
purchase. Thereafter, there will be a non;linal charge for replacement

Third Printing, July 1985
Printed in U.S.A. Translated by Gene Traas, Heidi Sumner
Copyright (C)1984 Data Becker, GmbH

Merowingerstr. 30
4000 Dusseldorf, W.Germany

Copyright (C)1984 Abacus Software, Inc.
P.O. Box 7211
Grand Rapids, MI 49510

ISBN # 0·916439·17·8

r).
.'

o.
" 1.

-....) 2.

3.

4.

5.

6.

TABLE OF CONTENTS

IN1RODUCTION . . • . . • . . • . . • . • • . . • . . • . . • 1

GETTINGSTARTED .•..•.....•••.•••..•.. 3

THECOMPllEWOPTIMUER ..•..••••.••..•.. 7

ADVANCED DEVELOPMENT FEATURES. . • • • • . • • .11

THE OVERLAY FEATURE ..••.••....•..••.• 15

COMPll.ER DIRECTIVES. • . • . • . . • • . • • • . • • . . 17

HINTS FOR PROGRAMMING. • • . . •21

PROGRAMMER'S APPENDIX

COMPll.ER DET All..S. • . • . . • • • • • . • . . • • • . . 23

ARRAYS .•••.•••••.•.••••••••..••.• 25

INTEGER LOOPS. • . • . . . • . . • . . • . . • • . . • . .25

BASIC EXTENSIONS . . • . • . • . • . . • • • . • • . • • .26

SIMON'S BASIC. . . • • 28

BASIC 4.0. I • • • • • I • • • • • • • • • • 130

COMPILING BASIC EXTENSIONS. 30

OPERATION OF COMPllED EXTENSIONS.32

OTHER EXTENSIONS. • . • . • • • • • . • • . . • • . • 33

ERRORS .•.•..•.•..••..•..•...••.•. 34

CODE-START .•..•..•..•••••.•••••••. .35

MEMORYLAYOUT .••.••..•..•..••.•..• 35

MEMORY SWITCHING. • . . . • . • . . . • • . . • . . . 37

FLOATING-POINT FUNCTIONS ..•............ 38

RS-232 OPERATIONS •.•.•.•..•.•••...... 38

V TECHNICAL NOTES. • • • • • . • • • • • . • • . . • • . • .39

~.! .. '.: .. ;.:: ~".' \3.

BASIC·64 Complier ABACUS Software

O. INTRODUCTION

Congratulations on your purchase of BASIC-64, our highly versatile

compiler for the Commodore 64! BASIC-64 allows you to compile

programs in speedcode (pseudo-code), machine language, or a mix of both.

You can merge and compile a series of programs using the overlay feature.

You can change parameters using the advanced development features. You

can compile programs written using BASIC extensions. You can compile

programs that work in conjunction with AssemblerlMonitor-64 and much

more.

BASIC-64 is compatible with the BASIC interpreter, together they form a

program development system that lets you write fast, efficient programs in

BASIC.

1

~.! .. '.: .. ;.:: ~".' \3.

BASIC·64 Complier ABACUS Software

1. GETTING STARTED

SA VB your BASIC program onto a work diskette. Make sure that there is

'0 enough extra space on this diskette since larger compiled programs can

require up to to 300 blocks disk space. Remove the work diskette from the

drive. Now, carefully place the BASIC-64 distribution diskette in the disk

drive and type:

LOAD "BASIC 64",8 <RETURN>

After it has loaded, type:

RUN <RETURN>

'0 The drive will run for a short time and the MAIN MENU is displayed on the

screen which looks like this:

r

BASIC 64 COMPILER VI.03
(C)1984 DATA BECKER, T.HELBIG

I = COMPILER/OPTIMIZER I

2, = COMPILER/OPTIMIZER II

3 = ADVANCED DEVELOPMENT PACKAGE

4 =OVERLAY

3

BASIC·64 Compiler ABACUS Software

When the disk drive has stopped, remove the distribution diskette, and

reinsert the work diskette containing the program to be compiled.

Press 1 or <RETURN> (<RETURN> defaults the compiler to option 1),

which selects Compiler/Optimizer I.

Now enter the program name and press <RETURN>.

The compiler translates your program into a speedcode program. The line

number of the line being compiled is displayed on the screen. If errors are

detected, the compiler displays specific error messages.

Once the compiler is finished, it displays READY. At this point, pressing N

tells the compiler that no other programs are to be compiled; pressing any

other key restarts the compiler, returning you to the MAIN MENU.

If errors were detected, you should correct the original program, and reRUN

the compiler again to recompile. If no errors were detected, BASIC-64

saves the compiled program on the work diskette with a name P-progname.

If your program name is "TEST", then the compiled program is named "P

TEST".

To run the compiled program type:

LOAD "P-progname",8 <RETURN>

RUN <RETURN>

4

BASIC·64 Complier ABACUS Software

In a compiled program, errors may be detected during runtime. The same

error messages as in BASIC are output to the screen. However, the address

in memory at which the error occurred is displayed instead of a statement's

line number. Using the address listing, you can easily find the error in the

original program (see D in Advanced Development Features described

later).

Any of the other capabilities of BASIC-64 , covered later in this text, can be

used to decrease execution time.

5

~.! .. '.: .. ;.:: ~".' \3.

BASIC·64 Compiler ABACUS Software

2. THE COMPILERIOPTIMIZERS

The compiler defaults to Compiler/Optimizer I when you press either

<RETURN> or 1. You can also run Compiler/Optimizer II (by pressing 2

from the MAIN MENU). These two selections are different only in the

manner in which the program is optimized.

Optimizer I is totally compatible with the BASIC interpreter. Calculations

are performed as whole number operations, so long as the whole number

falls within the integer value range (-32768 to +32767). Otherwise, they are

automatically changed to floating point Since Optimizer I is completely

compatible with BASIC 2.0, the optimizing procedures do not affect

program behavior, and serve only to increase program speed. Optimizer I

uses integer calculations for speed, so it helps if you change all variables to

type integer (by adding a '%' to each variable name).

Optimizer II has functions different from Optimizer I and the BASIC

interpreter:

All variables are normally treated as integers (by default),

except for string variables, i.e. the compiler places a '%'

after each variable.

The division of two integers is performed in whole

number operations, unlike the normal floating point

division.

7

BASIC·64 Compiler ABACUS Software

Optimizer IT ignores decimal places and converts numbers

directly into integer data.

Optimizer II is best suited for programs which require mixed variables or

which normally do not allow the use of integer variables in BASIC 2.0.

A typical application for Optimizer II:

10 A=INT(RND(1)*1000)

Variable A is assigned a whole number, even though it is associated with a

floating point calculation (RND(I)*lOOO). Optimizer II will easily compile

this program.

Programs to be compiled by Optimizer II should use as few floating point

variables as possible. Since Optimizer IT doesn't normally handle floating

point variables, it is necessary to use the compiler directive REM @ R = so

that variables are correctly handled by the compiler. This is discussed later.

Optimizer II has no effect on arrays. Arrays should be treated as whole

numbers with a '%' suffix added. (N01E: this will save a good deal of

memory space.)

8

BASIC·64 ComplIer ABACUS Software

WARNING!

Use Optimizer II only with programs that you either have written yourself

or that you understand completely in terms of operation and logic. This

applies to all compiler features that don't rely on the BASIC interpreter (e.g.

compiler directives).

9

~.! .. '.: .. ;.:: ~".' \3.

BASIC·64 Compiler ABACUS Software

3. ADVANCED DEVELOPMENT FEATURES

V BASIC-64 offers special options for program development, which can be

reached by pressing 3 from the MAIN MENU. All choices appear on the

screen in alphabetical order:

A- Gives you the option of producing 650216510 machine

code, speedcode, or no code whatsoever. If you choose

machine language, compile the program using Optimizer

IT (the compiled program will have the prefix "M_

fIlename").

B- Allows you to input the name of a symbol table to be

loaded before c~mpi1ing. A symbol table retains all

variables and memory addresses. This is needed when

mUltiple program require the same variables (e.g. the

Overlay Feature).

C- Allows you to save a symbol table. You can list a symbol

table to the screen or printer with the program SYMBOL

which is found on the distribution diskette. You can also

create a symbol table which is compatible with our

Assembler/Monitor using SYMBOL.

11

BASIC-64 Complier ABACUS Software

D- Generates an address list. After compiling a program, an

optional address list is written to diskette. It can be

loaded by typing:

LOAD "Z-filename",8 <RETURN>

and listed with:

LIST

Memory addresses are listed on the left side of the screen

and the BASIC line numbers appears on the right (used

for fmding errors starting a program section with SYS).

E- Lets you change the end-of-memory address (normal end

address for the compiler is 65536, for BASIC = 40960).

F- Allows you to raise or lower the starting address of a

compiled program. The compiler gives you the option of

removing the runtime module (see below) and loading it

as a separate program. To start the program, you will

have to change the starting address and SYS to the

starting address (location 16384 is a good location).

12

-.n

BASIC·64 Complier ABACUS Software

G· Controls the connection of the runtime module to the

compiled program. Under some circumstances (for

instance, when merging a series of programs with the

Overlay Feature) a runtime module separate from the

main program(s) may be necessary, which can save disk

space and execution time.

H- Gives you the ability to compile programs written using

BASIC extensions. Options are SIMON'S BASIC,

VICTREE (EXBASIC II), BASIC 4.0 (as found in

MASTER-64) and OTHERS. When choosing OTHERS,

you will have to input the starting address, and a few

other items, check your manual for the extension. NOTE:

Toolkit commands are not compilable.

SUPERGRAPHICS extensions are not applicable.

1- Lets you input the number of bytes per extended BASIC

command (normally one byte, except SIMON'S BASIC).

J - Locates the ELSE command and adjusts the compiler

accordingly.

K - Gives you the option of switching runtime error handling

off or on (in other words, the compiler will not halt when

an error is encountered). Putting a line 0 in your BASIC

program means" error system on".

13

BASIC·64 Compiler ABACUS Software

L- Suppresses the Overlay Feature, which can disturb

character string constants.

M - Lets you send commands to the disk drive, such as

scratching a program that has already been compiled (i.e.

the original) to save disk space. After the drive performs

its task, disk status is displayed (press <RETURN> to

return to the menu).

N - Displays the directory of the disk on the screen.

14

~--- -

BASIC·64 Complier ABACUS Software

4. THE OVERLAY FEATURE

U The Overlay Feature is used to compile a number of successive programs

which can share the same set of variables.

Press 4 (Overlay Feature) from the MAIN MENU and then press 1 (Overlay

Pass 1). The compiler will return to the MAIN MENU. Now compile the

fIrst program with Optimizer I, the compiler is just setting up a symbol table

on these two passes, so it will not behave "normally". When it displays

"READY.", press <RETURN>. Press 4 and then 2 (Overlay Pass 2), and do

a "recompiling" of the same program. This second time around the program

is compiled and you are returned to the MAIN MENU. Repeat this process

with all remaining programs (the compiler will set up a separate variable

table called "S-OVERLA Y").

REMINDER:

- Since these programs are supposedly layered, be sure to

include internal LOAD commands with the proper code

prefix for the program name (e.g. 999 LOAD "P

NEXTPART",8).

- The first program must be longer than all subsequent

program in the overlay group (do NOT alter the start-of

BASIC by POKEing locations 4S and 46).

15

BASIC·64 Complier ABACUS Software

- Character strings (e.g. A$="DATA")arelost during setup of

an overlay.

16

u

BASIC·64 ComplIer ABACUS Software

5. COMPILER DIRECTIVES

It is often necessary to inform the compiler of changes during compilation.

To do this, you may use Compiler Directives. These directives are inserted

into a program as a extra program line as a REM statement, followed by an

@ symbol. Thus a compiler directive always being like this:

REM@ directive

TYPES OF DIRECTIVES:

- Arranging variable addresses:

REM@ A variable address

The variable is placed at the address given. For example, you can put an

integer variable into a sprite control register and the sprite can be quickly

and easily controlled. NOTE: Addresses below 768 are not permitted.

- Switching error handling:

REM@ E line number

17

BASIC·64 Complier ABACUS Software

This can be changed manually by pressing K in the submenu. The error

system defaults to 'ON' (placing a line 0 in your program also switches it

on). Some BASIC extensions offer this, as does BASIC-64. n

• Declaring integer variables:

REM@ I variable, variable, ...

This is the most frequently used directive.

All named floating point (or other) variables are changed into integers by

the compiler for faster execution. Additionally, integers can be used in

FOR- NEXT loops (something which the BASIC interpreter normally

doesn't allow). This command should only be used with Optimizer IT .

• Switching Machine Code Generator:

REM@ M

From this line onward, the compiler produces machine language. Also, this

instruction tells the program to switch to machine language during runtime.

18

BASIC·64 Compiler ABACUS Software

- Switching Speedcode Generator:

REM@P

From this line onward, the compiler producesspeedcode and makes the

proper runtime command. NOTE: @M and @P should be used carefully·

you can change between machine code and speedcode only if the individual

program sections do not have any GOTOs and GOSUBs to locations outside

of that section.

- Switching Optimizers:

REM@ 01

REM@ 02

(for Optimizer I)

(for Optimizer II)

This directive switches optimizers in mid-program, which affects only

variables not previously used before these directives.

- Declaring floating point variables:

REM@ R variable, variable, ...

All variables named are converted into floating point variables. NOTE: This

step can only be used by Optimizer II.

19

BASIC·64 Complier

EXAMPLE:

10 FOR 1=1 TO 1000

20 A = SQR(1) :PR1NT A;

30 NEXT

ABACUS Software

You would have to insert the following line to compile this program with

Optimizer II:

5 REM@ R=A

• Freeing cassette butTer memory:

REM@ S address

The compiler normally places all variables in the cassette buffer for easy

access. You can use this range for you own purposes by supplying an

address where you feel the buffer should end. For example:

REM@ S 1024

20

u

BASIC·64 Complier ABACUS Software

6. HINTS FOR PROGRAMMING

Here are a few items to help your programming before compiling:

- A GOTO/GOSUB executes slower than a RETURN.

- An IF-THEN executes slower than a FOR-NEXT loop.

- The speed of GOTO/GOSUB depends on the size of the jump.

- Spaces make the program easier to read, but take more time to execute.

- Structured BASIC programs execute more slowly than unstructured ones.

- When the limits of an array are unknown, such as:

10 INPUT X: DIM A(X)

the compiler displays the field name, a single parenthesis and a question

mark; you respond with the maximum value and <RETURN>. This will

occur only with unknown arrays.

- Try to dimension arrays in the frrst line whenever possible.

21

~.! .. '.: .. ;.:: ~".' \3.

BASIC·64 Complier ABACUS Software

Programmer's Appendix

Compiler Details

Pass 1: Interprets and optimizes the program, then produces the

corresponding code (SPEED-CODE or MIL). The computer displays the

current line number and every end-of-line character (colon). Compiler

instructions (REM8) will display an uR", commands not recognized by

Commodore Basic (Basic extensions) are displayed with an "E".

PASS2: Generates the code, the runtime module is merged and the DATA

inserted. The screen displays:

DATA - code start: The starting DATA line address in the compiled

V program.

OBJECT - code start: The starting address of the program.

STRINGS: This is the area for STRING storage. All variables and arrays

are stored above the end of STRING range to the end of memory.

EXTENSIONS: If the program uses commands from a BASIC extension

the compiler displays the number used.

23

BASIC·64 Complier

ERRORS: Lists lines in which errors occurred.

Error Messages:

Normal BASIC errors are identical to interpreted BASIC

RUNTIME: Example is division by zero (NO)

SYSTEM ERROR: Example: Disk Drive not turned on.

THE ADDRESS LIST:

ABACUS Software

When RUNTIME errors occur, error messages are displayed. The number

presented is a memory location. The line in question can be determined by

using the address list generated by OPTION D in the DEVELOPMENT

PACKAGE.

To use the address list, note the memory address of the error, LOAD "Z

name" ,8, and LIST until you reach the proper location. The right side of the

list contains the line number which matches the memory address on the left

side. This line is normally the incorrect one, but in rare cases, the error

may be at the end of the preceding line.

24

,()

BASIC·64 Complier ABACUS Software

ARRAY Dimensioning:

Arrays must be explicitly dimensioned during compilation. Arrays can exist

U in memory from $AOOO-$FFFF. Arrays should be dimensioned in the first

program line when possible. Sometimes the limits of an array are not

known when compiling, in these cases the compiler displays the array name

and a question mark. Enter the maximum size of the array and press return.

Example: 10 INPUT x: DIMA(x)

INTEGER LOOPS:

Integer variables are normally not allowed in BASIC loops (eg. FOR 1%=1

U TO 10: NEXT 1%), it is possible to do so with the corresponding compiler

instruction. Integer loops are not only faster, they use fewer stack locations

and can be nested much deeper than in BASIC. There is a limitation in the

use of INTEGER loops. No STEP-value is stored for the sake of speed. The

increase is always by 1: STEP is not permitted in INTEGER loops. Faster

loops can be made to imitate STEP values, examples:

10 1%=1

20 REM LOOP INTERIOR

30 I%=I%+2:IF I%<=1000 THEN 20: REM STEP 2

25

BASIC·64 Complier

5 REM@ 1=1

10 FOR 1=1 TO 1000

20 REM LOOP INTERIOR

30 I=I+2:NEXT

BASIC EXTENSIONS:

ABACUS Software

BASIC 64 compiles most extensions using a common procedure. No

"standard" extension exists for the '64, and commands exist in some

extensions that can not be compiled. To compile most BASIC extensions

please observe the following rules. A compilable command has the

following format

COMMAND value, value, value

Each value can be a constant, variable or formula of any sort. Here are some

commands that comply:

PLOT 1,3*SIN(X) TO 4,A*B

GMODE 0,1

Many extensions have additional functions, which are used in the following

format:

VARIABLE FUNCTION(VALUE,VALUE, ...)

26

BASIC·64 Complier ABACUS Software

The parenthesis are left off if. no value is needed for the function. The

·compiler doesn't always understand the data resulting from a function. The

U best thing to do is pre-assign a variable to a function result, so that the data

type can be recorded. Example:

X=EVAL(AS)

AS = INSERT(B$,C$,2)

Some DIRECT MODE extension commands are not compilable.

Examples: RENUM, TRACE, etc.

Commands that direcdy change the execution of a program can't be

compiled. Examples include (CALL, EXEC, CGOTO,etc.) and program

U structures (REPEAT, UNTll.., etc.)

u

Commands that alter memory management can't be compiled. These

commands include GLOBAL, LOCAL, etc.

Commands which assign variables values can't be compiled. Examples:

INPUTLINE, etc.

Fortunately, most of these limitations are rare ones; useful commands, such

as graphic commands, are compilable. The compiler accepts most of the

popular BASIC extensions.

27

BASIC·64 Compiler ABACUS Software

SIMON'S BASIC

All of the important commands in Simon's BASIC are acceptable to the

compiler. This applies to the graphic commands and multiple functions. 0
The commands listed below do not meet the above requirements and can't

be compiled.

-Programmer's Aids (AUTO, RENUMBER, RESET, MERGE)

-INPUT Control (FETCH)

-Number Conversions (%=, $=)

-Design Commands and PRINT AT

-Program Structures (ELSE is acceptable)

-Error Handling (ON ERROR, NO ERROR, OUn

DESIGN:

There are several ways to replace this command; the simplest method is

shown below:

10 A=64*13: REM BASE ADDRESS

20 FOR I=A TO A+62 STEP3

30 READ A$; FOR J =0 TO 2

40 W=O: FOR K=l TO B

50 W=W*2: IF MID$ (A$, J*8+K, 1 () ="B" THEN W=W+1

60 NEXT: POKE I+J,W:NEXT:NEXT

28

BASIC·64 Complier ABACUS Software

Now you can construct SPRITES as if you had the DESIGN command

(NOTE: the parenthesis replace the command DATA)

U It is possible to use DESIGN as a SPRITE-EDITOR: after designing a sprite,

the SPRITE can be read from its memory location, saved on disk, and loaded

as needed. The advantage to this method is that a program using SPRITES

will not have to be recompiled to change the SPRITE.

PRINT AT:

To replace the PRINT AT (X, Y) ; Z command use:

POKE211,X: POKE214,Y:SYS 58732:PRINT Z

PROGRAM STRUCTURES:

The programming structures of Simon's BASIC are easily replaced with the

usual commands GOTO, GOSUB and IF.

29

BASIC"" Complier ABACUS Software

BASIC 4.0 (MASTER-64)

Some BASIC extensions have syntax that can lead to errors after compiling:

COPY DO TO Dl

DO and Dl represent disk drives, the compiler will view these as variables

and attempt calculations in the program. A way to rework the syntax so the

compiler can use these commands is to put the variables into parenthesis.

Here is a BASIC 4.0 example:

10 INPUT "DRIVE 1 OR 0 Ii ; X

20 CATALOG D(X)

Some of the remaining commands in MASTER-64 are also compilable, as

long as variables, formulas are set in parenthesis. Many MASTER

commands interfere directly with memory management, and are not

compilable (such as those that defme screen-zones, data buffers, etc.)

COMPILING BASIC EXTENSIONS:

Remember, your program must not contain any non-compilable commands.

BASIC extensions are constantly being updated, so whether commands can

be compiled may depend on the version being used. When in doubt,

experiment!

30

u

BASIC·64 ComplIer ABACUS Software

To compile the program, remove the BASIC extension package from

memory (by removing the cartridge or resetting your '64) after saving your

program.

Start the compiler and choose Option 3 from the main menu. Next choose

the BASIC extension using option "H".

During PASS 1, when the compiler fmds an extension command it will

display an "E". The compiler does not recognize these extended commands

from the codes stored in the standard BASIC interpreter.

After PASS 2 is completed, the compiler displays the number of BASIC

extension commands used.

U Before running the compiled. program, load the BASIC extension (insert

cartridge or load the extensions from diskette). If the program has

uncompiled errors, either the extension will display an ERROR message or

the program will not run. If you follow the rules above, regarding command

compatibility, there should be no problems.

Memory locations 704 (sprite 11) to 767 should NOT be changed with

POKE commands, mainly because Simon's BASIC uses these registers for

purposes other than sprites.

31

BASIC·64 Complier ABACUS Software

OPERATION OF COMPILED COMMANDS FROM AN

EXTENSION

To execute a compiled extension command, the program gives the

command to the extended interpreter, which then executes the command.

Extended compiled commands do not execute any faster, only the standard

Commodore BASIC commands are speeded up. By using the rules below

you can-compile extensions and reach higher speeds.

Use as few extended commands as possible.

Use extended commands in program sections where time is not a critical

factor.

When employing graphics for calculation displays, use them after and not

during the calculations.

Use one complex command instead of several short ones.

When an extended command can be replaced by a standard BASIC

command, do so. This is especially valuable for character suing functions;

complex character suing formulas in BASIC work faster than corresponding

single extended commands.

32

BASIC·64 Complier ABACUS Software

Graphic commands should use only whole numbers for coordinates.

Calculating coordinates and other graphics should work best with integers

variables.

OTHER EXTENSIONS

BASIC extension not listed in option "H", can also be compiled if the meet

the criteria listed above. The best way to find out is to try and compile an

extended program using each "H" option. You must enter the values for

end- of-memory, number of bytes per command and the code for ELSE.

These must be determined before running the compiler. If they are not given

in the extension documentation use the following procedures.

END-OF-MEMORY: PRINT PEEK (55) +256 * PEEK (56)

BYTES PER TOKEN: TYPE NEW <RETURN> then enter 10

(EXTENSION COMMAND)<RETURN>

PRINT PEEK (2054) If this value is not 0 then enter 2 in BYTES PER

TOKEN

ELSE CODE: Enter NEW <RETURN> then enter 10 ELSE <RETURN>

PRINT PEEK(2053) This value gives the first byte of the command.

The second byte is only needed by extensions with two bytes per command

PRINT PEEK(2054)

33

BASIC·64 Complier ABACUS Software

Remember a colon (:) must proceed ELSE when using the

IF ••• THEN ••• ELSE command

ERRORS

The number of an error in a compiled programs is stored in location 700 and

can be read by PEEK(7oo). Below is the list of messages used to check for
,

certain errors (PEEK (700) = 5; Device not present--Le. Printer not turned

on)

1 too many files

2 ftleopen

3 ftle not open

4 ftle not found

5 device not present

6 not input file

7 not output file

8 missing ftlename

9 illegal device number

10 next without for

11 syntax

12 return without gosub

13 out of data

14 illegal quantity

15 overflow

34

16 out of memory

17 undef'd statement

18 bad subscript

19 redim'd array

20 division by zero

21 illegal direct

22 type mismatch

23 string too long

24 file data

25 formula too complex

26 can't continue

27 undef'd function

28 verify

29 load

BASIC-64 Compiler ABACUS Software

CODE-START: Option "F" allows you to raise the start of the program. If

the RUN-TIME module is loaded separately you must start the program

with a SYS address command. A good location to set this to is 16384, this

frees a graphic screen at 8192-16191 and 16192-16383 may be used for

sprites. Programs using the graphic screen are also affected by the

interpreter. You must enter POKE44,64:POKE 16384,0:NEW; now you can

develop and compile graphic programs.

STOP KEY: POKE 788,PEEK(788)+3 to disable the <STOP> key.

MEMORY LAYOUT

MEMORY MAP for compiled program:

0-1024

1024-2048

2048-code start

code start-start of strings

start of strings-end of strings

end of strings-top of memory

system memory

screen memory

Runtime module

Program code

Character strings

variables and arrays

35

BASIC·64 Complier ABACUS Software

Compiled program variables:

Integer: 2 bytes - low byte, high byte

Floating-point 5 bytes - exponent, 4-byte mantissa

String variables: 3 bytes - length, low byte, high byte

Strings: 2 bytes plus 1 byte per character

Variable addresses are found in the symbol table

produced in OPTION 3. The locations or length of the

strings can't be altered after compiling the program.

Locations 144-828 are used by the operating system.

REM@ S 1024 will free the cassette buffer.

The range from $2CO to $2FF is reserved for BASIC extensions; usually this

memory is free.

To free the memory above $COOO, the top of memory must be set at 49152

in OPTION 3, selection "E" .

LOAD "NAME",8,128 will LOAD data into the locations from which it

was saved. Unlike the LOAD "NAME",8,1 the program will continue

onward. This is useful for graphics and assembler routines.

36

u

BASIC·64 Complier

MEMORY SWITCHING:

POKE 1,52: allows access to $AOOO-$FFFF

POKE 1,51: character generator in $DOOO-$DFFF.

POKE 1,55: normal

ABACUS Software

Compiled programs can run without the BASIC ROM's but there are some

limitations.

The interrupt must be switched off when changing location 1.

Use:

POKE 56334, PEEK (56334) AND 254 to switch off the interrupt.

Use:

POKE 566334,PEEK(56334) OR ltoturnontheinterrupt.

When the interrupt is off input/output commands and floating point

operations should not be attempted

37

BASIC·64 Complier ABACUS Software

FLOATING-POINT FUNCTIONS:

Complex floating-point functions (SIN, COS, TAN, wa, etc.) work very n
slowly. Although these functions are accurate to 9 decimal places after

compiling the program will run much faster if simpler equations are used.

Below are a few examples:

SIN (X) = X-X*X*X16

COS (X) = l-X*X12

TAN (X) = X+X*X*X13

(for: -pi/2 < x < pi/2)

A small increase is possible by switching off the video processor with:

POKE 53265,PEEK(53265) AND 239: REM SCREEN OFF

POKE 53265,PEEK(53265) OR 16: REM SCREEN ON

RS-232 OPERATIONS

To use the RS-232 port on the Commodore 64 you must remember to lower

memory to protect the RS-232 buffer area Use Option 3 item E and lower

to 39936. The cassette buffer can not be used for storage when using the

RS-232 port with the compiler. You must remember to lower memory to

protect the buffer area

38

u

u

BASIC-64 Compiler ABACUS Software

TECHNICAL NOTES

There are actually four different options:

1. Optimizer 1 - P code

2. Optimizer 1 - Machine code

3. Optimizer 2 - P code

4. Optimizer 2 - Machine code

The code output (p code or Machine code) is selected from the Advanced

Development menu, item A.

The difference between the two optimizers is primarily that optimizer 1

assumes the ordinary variables (floating point) are to be handled as floating

point variables and are allocated five bytes each. Optimizer 2 assumes that

these variables should be treated as integer variables and the only way you

can have a floating point variable in optimizer 2 is by telling the compiler

about it through use of the REM@ statements.

39

BASIC·64 Complier ABACUS Software

To view it another way, suppose you have a program with both nonna!

floating point variables (such as A) and integer variables (A%). In optimizer

1, A will be assigned as a floating point (five bytes internally) and treated as n
a floating point variable, and A% will be treated as an integer variable (two

byte assignment). Note that this is better than the five bytes allocated in

nonna! basic for a fixed point variable.

In optimizer 2, both will be treated as integer variables. The only way you

can have A treated as a floating point is by doing a REM@ R=A.

The compiler starts assigning space to variables in the cassette buffer and

then assigns them down from your top of memory address. You can change

the start point in cassette buffer memory by a REM@ S command and give

the starting address (838-1023). If the address is 1024 or above, the n
compiler assumes that you do not want any variables in buffer memory and

therefore will only assign them down from the top of memory.

Note that some programs and extensions to BASIC use the cassette buffer

memory as work space and therefore, with these programs, you will want to

make sure that you use a REM@ S=I024, or your variables will be assigned

in the work space with disastrous results.

40

BASIC·64 Complier ABACUS Software

You can see the assignment of variables in memory by using the symbol

table output option. You do this by selecting option 3 from the Advanced

Development feature. Then select option C. It will ask for a me name

where you want the symbol table. This me name will be prefixed with an

"S-", and stored on the disk during the compile process. When the compile

process is completed, you must reset the 64 and then load the program

"SYMBOL" form the BASIC 64 disk. You will be asked for the ftle name

(do not key the S-), just the name you entered under option C). Then select

option 2 for a listing to device 4 (the printer). The listing will show string

variables and functions frrst, then arrays, then ordinary variables. They are

sorted with the major sort on the second letter (blank in the case of single

letter variables) and then the frrst letter. Each is followed by the decimal

address of its assignment If you want to see how the compiler assigns

them, you must remember that addresses are generally assigned in encounter

sequence (the sequence in which they are frrst used in your program). If

you hunt for the first variable in the list you will see that it is either in the

cassette buffer or starting down from the top of memory you allocated, then

the next one down, and so forth.

You will notice that all strings are assigned a 3 byte space allocation. This is

sufficient space for a pointer to the beginning of the string in the strings

work area (2 bytes) and 1 byte for the length of the string. At the end of the

compile, it prints out the amount of space allocated for strings. This is a

string storage pool where all string variables are stored. Since all numeric

variables are pre-assigned, the FREO command only shows the amount of

space remaining in this string storage pool.

41

BASIC·64 Complier ABACUS Software

Although this compiler works with almost any type of BASIC program a

rule which will result in more free space is that all DIM statements should

appear at the beginning of your program. This is because the compiler

allocates space as it encounters variables. The first time it sees an array

variable, it will allocate (just like BASIC) room for eleven entries (0-10). If

later in your program you have a DIM statement for 21 entries (DIM(20»,

the compiler will then allocate space for 21 entries of the variable. It will

change the address pointer to this new 21 element space, but the 11 entry

space previously allocated will be unused and wasted Therefore all DIM

statements should be moved up to the beginning of your program (it is not

sufficient to have them as the first executed statements, even though they

may be at the back of the program and executed with a GOTO).

The compiler stores the runtime routines starting at address 1025 (just like

BASIC). There is no way to relocate this loader, it must always be at 1025.

The stack used for FORINEXT and GOSUBIRETURN is quite different

from BASIC. First, it is larger, you can do about 70 GOSUBS without

RETURNs before the stack will overflow. The system does not use the 6502

stack. Instead, it uses its own stack with the pointer located at address 64

(decimal). If you need to do the equivalent of a "pop" command to clear the

stack, you simply poke the value 206 in location 64 [pOKE 64,206]. This

resets the stack pointer. This is useful in programs where you exit from

GOSUB routines by the GOTO command, and this can be issued back at the

main menu to clean up the stack.

42

u

BASIC·64 Complier ABACUS Software

If the program uses RS-232 operations, you must allocate 512 bytes at the

top of memory for RS-232 buffer space. If the normal starting point was

40959 as the top of memory, and you are using RS-232, simply specify the

top of memory as 40447 (40959-512) from the Advanced Development

menu.

You can use BASIC extensions (such as VIDEO BASIC) with BASIC 64.

Simply change any "pop" commands as mentioned above, and compile the

program. As the ~ystem encounters VIDEO BASIC tokens, it will show you

this with an E. It appears to operate all of these well except for the ones

which require seeking a line number (such as sprite defmitions and tone

command setups). You have to change these by pre-compiling the sprites

and loading them into memory yourself, since line numbers don't exist after

the compilation is finished.

There is a difference in the way the compiler handles a "FOR/NEXT" loop

which should not be executed at all. For example, for a factorial routine,

you would normally do "FOR 1=1 to Ff: V=V*I:NEXT". This is fme as

long as Ff is 1 or greater. If you go in with FT = 0, it results in a FOR 1= 1

to O. In standard interpreted BASIC, the expression will be executed once

and then at the NEXT command it will fmish. In BASIC 64, it does not

execute at all.

Note that the top of memory means top of available memory, not top of

memory plus 1 as we are used to specifying with BASIC program loading

and saving.

43

BASIC-64 Complier ABACUS Software

A REM statement takes no space at all in the compiled version. Therefore,

you can make your programs much clearer by including REMs in the source n
code. The runtime routines take about 3K of memory, so you can have

about about 3K of REMs in your program, and still compile it and it should

fit into memory.

44

~_~ __ ~~_ Powerful spread·

w ... ; ~ ;:;~ ::; ~~:;~itsJ~S d~~~II~~
a::E i ::: I~:: your important data

!~ i It:g :tr: ~~~~~rC~fy.W~'o~·11
:::: : 10.10 I!:!: learn fast with the
'.00 s 9.20 11.60 90+ HELP screens.

MIIII_ 1.90 uo Advanced users
!':'~.. ,!.:~ I~'~! can use the short-

cut commands. For complex spreadsheets,
you can use POWER PLAN's impressive
features: cell formatting, text formatting, cell
protection, windowing, math functions, row
and column sort, more. Then quickly display
your results in graphics fonnat in a variety of
20 and 3D charts. Includes system diskette
and use(s handbook. $49.95

CADPAK IPlIS1!'is~©l 'IIlSwsllOn
CADPAK is a
superb design and
drawing tool. You
can draw directly on
the screen fro m
keyboard or using
optional lightpen.
POINTs, LINEs,
BOXes, CIRCLEs,
and ELLIPSEs; fill

with solids or patterns; free· hand DRAW;
ZOOM·in for intricate design of small section.
Mesuring and scaling aids. Exact positioning
using our AccuPoint cursor positioning.
Using the powerful OBJECT EDITOR
you can define new fonts, furniture, circuitry,
etc. Hardcopy to most printers. , $39.95
McPen lightpen, optional $49.95

CHARTPAK
Make professional
quality charts from
your data in
minutes. Quickly
enter, edit, save
and recall your data.
Then interactively
build pie, bar, line or
scatter graph. You
can specify scaling,

labeling and positioning and watch
CHARTPAK instantly draw the chart in any
of 8 different formats. Change the format
Immediately and draw another chart.
Incudes statistical routines for average,
deviation, least squares and forecasting.
Hardcopy to most printers. $39.95
CHARTPLOT·64 for 1520 plotter $39.95

XPER - expert system
XPER is the first

SpaI" F.... expert system - a
new breed of
intelligent software
for the C·64 & C·
128. While ordinary
data base systems
are good at repro·
ducing facts, XPER
can help you make

decisions. Using its simple entry editor, you
build the information into a knowledge base.
XPER's very efficient searching techniques
then guide you through even the most
complex decision making criteria. Full
reporting and data editing. Currently used
by doctors, scientists and research
professionals. $59.95

OAT AMAT - data management

Dlllmpioa __ _

"Best data base
manager under $50"

RUN Magazine

Easy·to·use, yet
versatile and power·
ful features. Clear
menus guide you

from function to function. Free·form design
of data base with up to 50 fields and 2000
records per diskette (space dependent).
Simple data base design. Convenient and
quick data entry. Full data editing
capabilities. Complete reporting: sort on
multiple fields and select records for printing
in your specific fonnat. $39.95

TAS - technical analysis
Technical analysis
charting package to
help the serious
investor. Enter your
data at keyboard or
capture it through
DJN/RS or Warner
Services. Track
high, low, close,
volu me, bid and

ask. Place up to 300 periods of information
for 10 different stocks on each data diskette.
Build a variety of charts on the split screen
combining information from 7 types of
moving averages, 3 types of OSCillators,
trading bands, least squares, 5 different
volume indicators, relative charts, much
more. Hardcopy to most printers. $84.95

~.! .. '.: .. ;.:: ~".' \3.

u

The most advanced
C development
package available
for the C-64 or C-
128 with very com
plete source editor;
full K&R compiler
(w/o bit fields);
linker (binds up to
7 separate mod-

ules); and set of disk utilities. Very complete
editor handles search/replace, 80 column
display with horizontal scrolling and 41 K
source files. The I/O library supports
standard functions like printl and fprintl. Free
runtime package Included. For C-64/C-128
with 1541/1571 drive. Includes system
diskette and use(s handbook. $79.95

BASIC-64
fuJI compiler

Nrf .. _ o""l.OnCII~ ,&C:Do:01 ,.·_-.;p 'OA' ,_con
• ·t.\IU tMUi' orr
C· fl .. "IOL·fMIoC. orr o • u ___ ·tML&. orr

1-_','''', UJIf
,._-..... " 'UI o . _tu-_o..... o.
M_un •• ICllh .PIOII'IIIoUIC
l_tOR_lnu, I
3 • ~1,$~eOO~1 100 11

~: =~~~.~' 0

The most advanced
BAStC compiler
available for the C-
64. Our bestselling
software product.
Compiles to super
fast 6510 machine
code or very
compact speed
code. You can even

mix the two in one program. Compiles the
complete BASIC language. Flexible memory
management and overlay options make it
perfect for all program development needs.
BASIC 64 increases the speed of your
programs from 3 to 20 times. Free runtime
package. Includes system diskette and
use(s handbook. $39.95

FORTH
Language Our FORTH lang-

~"!"'::' _____ -; ~;ge ~SO~~Sed ~~

~ ~ ~:::C: ... -=::==O I standard, but also
) r :O!:~:~::i!-:t r~~X) includes much of
• • ""~. ,_~ "'00' ·the 83 level to give
1J ::u- ,'.=,UUI you 3 times vocabu-
" !:~..::: ~OI lary of fig-Forth.
~: : n.!:11W. Wtl~ -, Includes full-screen
" , editor, complete

Forth-style assembler, set of programming
tools and numerous sample programs to get
you deeply involved in the FOR T H
language. Our enhanced vocabulary
supports both hires and lores graphics and
the sound synthesizer. Includes system
diskette with sample programs and use(s
handbook. $39.95

Not just a compiler,
but a complete
development sys
tem. Rivals Turbo
Pascal© in both
speed and features.
Produces fast 6510
machine code.
Includes advanced
source file editor;

full Jensen & Wirth compiler with system
programming extensions, new high speed
DOS (3 times faster); builtin assembler for
specialized requirements. Overlays, 11-digit
arithmetic, debugging tools, graphics
routines, much more. Free runtime
package. Includes system diskette and
complete user's handbook. $59.95

VIDEO BASIC
development The most advanced

,...----:.---....,graphics develop-

rw~
ment package avail-
able for the C-64 .
Adds dozens of
powerful commands
to standard BASIC
so that you can
use the hidden
graphics and sound

capabilities. Commands for hires, muhicolor,
sprite and turtle graphics, simple and
complex music and sound, hardcopy to most
printers, memory management, more. Used
by professional programmers for commerical
software development. Free runtime
package. Includes system diskette and
use(s handbook. $39.95

Other software atso available!
Call now for free catalog and the name of your

nearest dealer. Phone: 616/241-5510.

Abacus Software
P.O. Box 7211 Grand Rapids, MI49510 6161241-5510 -For fast service call 6161241-5510. For postage

and handling, inctude $4.00 per order. Foreign
orders include $8.00 per item. Money orders and

checks in U.S. dollars only. Mastercard, Visa and
Amex accepted.

Dealer tnqulries Wetcome
More than 1200 dealers nationwide

~.! .. '.: .. ;.:: ~".' \3.

275 pages, $19.95 250 pages, $19.95

215 pages, $14.95 210 pages, $14.95

225 pages, $14.95 220 pages, $12.95

For fast service call 616/241-5510. For postage
and handling, include $4.00 per order. Foreign

orders include $8.00 per item. Money orders and
checks in U.S. dollars only. Mastercard, Visa and

Amex accepted.

200 pages, $14.95 340 pages, $19.95

210 pages, $14.95 330 pages, $19.95

250 pages, $19.95 250 pages, $19.95

Abacus. Software
P.O. Box 7211 GrandRapids.Ml49510 6161241-5510

Other software also available!
Call now for free catalog and the name of your

nearest dealer. Phone: 616/241-5510.

