AR

P T P PP LA A gty [P Er A Aoyl st g, 1y ‘ PP R A, XTI I T I T PP N P
AT L e L e i A L L2, R A A A SR g A e T L e
D e A) - ‘ A r, ., Forrlel . .

Wi

o

‘s.~\"‘:'-‘\"-ﬁ'-"{’é“--“f-\"-5‘-.’¢‘-‘-
YTy

OBLIGATORY STUFF

PRESIDENT Richard Maze
VICE-PRESIDENT Barry Bircher
TREASURER Harry Chong
LIBRARIAN Earl Brown
ASS'T LIBRARIAN Steve Bogues
EDITOR Ken Danylczuk

Greg Rezansoff
Gord Williams

ASS'T EDITOR
MEMBER AT LARGE

THE MONITOR is published monthly by the COMMODORE USERS'
GROUP OF SASKATCHEWAN (CUGS), Regina, Sask., Canada.
CUGS meetings are held at 7 pm the first Wednesday of
every month (unless otherwise noted) in the North-West
Leisure Centre, corner of Rochdale Boulevard and Arnason

Street.

Anyone interested in computing, especially on the C64,
128 or 64C, is welcome to attend any meeting. Qut of
town members are also welcome, but may be charged a
small (S5.00) mailing fee for newsletters. Members are
encouraged to submit public domain software for
inclusion in the CUGS DISK LIBRARY. These programs are
made available to members. Any member 1is entitled to
purchase DISKS from our public domain library for a
nominal fee. Programs are 'freeware', from computer
magazines, or the public domain. Individual members are
responsible for deleting any program that he/she is not
entitled to by law (you must be the owner of the
magazine in which a particular program was printed). To
the best of our knowledge, all such programs are
identified in their basic listings. Please inform us
should you find otherwise.

CUGS is a non-profit organization comprised of C64, 64C,

128, and 128D users interested in sharing ideas,
programs, knowledge, problems and solutions with each
other. The more members participate, the better the
variety of benefits. Membership dues are pro-rated,
based on a January to December year.

S

IN THIS ISSUE

IN THIS ISSUE:

MARCH MEANDERINGS - 0'Maze's Irish wit!

MEETING PLACE - - Date, Time, Place, Agenda

EDITORIAL ' -~ Writers' cramp?

SIR RICHARD'S BASIC - Of disks and storage

SCRATCH 'N' SAVE - Earl's pot'o'gold!

REVIEWS - Music utility progs!

MEA CULPA!! - Like all great evangelists
- I have sinned!

128 WINDOW - Our demo program.

SOUND INVESTMENT - Name (and use) that tune!

AGENDA:

MIXING MUSIC with your OWN programs!
Ken Danylczuk

"~

ok A4 G5 R
coffee®*™*yisiting**¥*%disk-pickingi st

From the sublime to the insidious.
EARL VS. THE TAX MAN!
Tax-aid from Earl Brown.

Been using your computer lately?

I have ... to update my disk catalog, write several
documents (including this one), update my househola
inventory, prepare my 1987 tax return (thanks, Earl),

prepare a graphic/sound display for a presentation I'1l
be making next month, play a few games, update my budget
(home AND office), organize an equipment inventory for a
friend, and prepare AND translate a track' and field
program for school use! (puff, puff, puff whew!)

So, now that my HUMILITY index has been established,

what exactly IS my point?
"Well, Sonny", here the wizened old man, stocoped and
bent over his cane, rubbed his stubbled chin as he
reminisced, "I re-call how in them old days, when thar
warn't so much spectacler software, us users atchually
had to WRIT OUR OWN BY OUR OWNSELF!! .

"Gawsh!", breathed the young wide-eyed innocents
gathered at his feet, clutching their 64's and "SKATE OR
DIE" game disk to their bosoms, "You mean you REALLY
ACTUALLY writ ... uh, wrote programs that made the
computer WORK?!!"

The old fellow shifted his gaze down into their
innocent, wondering faces. "Yup, an' they even worked,
an' if they didn't work like we wanted WE CHANGED 'EM,
MADE 'EM WORK PROPER-LIKE!"

"WOW, no kiddin'?'", they murmured in awe as the camera
pans away from the scene to focus on the setting sun on
the horizon!

Ahem! Sorry, I got carried away. But it's true, there
was a time when WE (the users) CONTROLLED AND USED THE
COMPUTER. NOW, too often, we're simply CONSUMERS of
computer software. I often make comparisons to music,
because that's where my heart lies. I know so many
people who CONSUME musical products and I KNOW HOW MUCH
THEY 'RE MISSING BY NOT KNOWING how to create the music
themselves. I know that mass marketing 1is turning
everyone it can into computer product CONSUMERS, I'm one
myself - and it's a nice and comfortable thing to be -
no fuss, muss, or bother as long as you can find a
program that DOES what you want, or one which ALMOST
does what you want. (And that's NOT as easy as you
might believe.)

Now, I'm no fool, and my ma didn't raise no dummy. I
don't believe that everyone can be a super-programmer.
Nor do I believe that everyone would ENJOY programming,
BUT the only way to really make full use of your machine
AND your software is to learn a bit about making the
machine YOUR tool following YOUR instructions. Knowing
how one goes about making your computer store and sort
information will help you select software to suit your
needs more effectively.

One more comment on programming. I know that the vast
majority of computer users (including our club members)
spend most of their time using OTHER people's software,
but that's no sin - like I said, I do it myself! But
sometimes we spend a lot for software, and invest a lot
of time LEARNING to use the software, when a simple,
self-made program would do what we want, could change to
suit our own changing circumstances, cast little
(especially if programmed in BASIC) and take ™ no time to
learn! A case in point: the extent of most people's
need for a home inventory program is so minimal that
writing your own (with the knowledge gained from reading
Richard's or other columns in this noble journal) or
altering a FREE public domain program to meet your needs
can be a doubly rewarding adventure.

.

So that's my soap-box for this month. I hope you'll
consider the beast you sit before so much each month.
Learn about it and 1its inner workings! You'll only
learn to love it more, 'specially if it's a 64! (Hey,

there's a poet inside me!)

See you LUSERS next month!

Maze omn ¢ March?

Computerfest is over and I would like to take this
opportunity to thank the club members who so kindly gave
of their time and energy to help make our club's
presentation so successful. Our main objective in
setting up a display at Computerfest was to build
awareness of CUGS and judging by the number of people we
talked with and explained the operation of our club to,
we easily met this objective. We sold four new
memberships at Computerfest and judging from the. number
of enquiries we had, I am sure we will have a number of
new members joining CUGS as a result of our display.

Special thanks to Earl and Ken for the disks they
prepared which we had running on a C64 and 128. These
programs brought many people over for a closer look and
to talk with us.

I also would like to thank all the club members who
so kindly gave of their time to man the booth and answer
the numerous questions we had. Thank you to all the
club members who dropped by to say hello. Your comments
and support were appreciated.

I would especially like to thank all the members of
the public who dropped by and got information from us.
Those of you who have joined our club have special
meaning to the rest of us because you are the reason we
set up our booth - to build interest in our computer
club.

A final thank you to the Apple II user's group for
sponsoring Computerfest and giving us the opportunity to
be a part of this great display. Judging by the crowds,
there was a definite need for such a show and it was
very well received.

The executive have tentatively planned some of the
activities and presentations for the upcoming meetings.
Our February meeting will be divided into two parts:
First, Ken will demonstrate 'two music programs -
"SIDPLAYER" and 'MASTER COMPOSER". In the second part,
Earl will demonstrate his "Income Tax'" calculator. For
the April meeting we are planning on examining database
programs. May has been scheduled as a "swap night" in
which members will get a chance to trade public domain
programs which they have written themselves or have
obtained from others and would like to share with other
members. June is our final meeting before we break for
the summer months. Part of the June meeting is planned
as a look at the 1581 disk drive. I hope there will be
something meaningful for everyone in each of these
meetings.

p J
‘ .

COMPUTER-TEAST!!

COMPUTERFEST, a project of the local Apple Users' Group,
was held early in February at the Vagabond Motor Inn.
The format was quite similar to last year, with most
computer user groups displaying their club's offerings
in the Spanish Ballroom and a section (a separate,
secured room this year!) for the computer ware '"flea
market'". Also, as was the case last year, the response
by both participants and public was phenomenal!

Virtually every computer club in the city was there to
hype their group and maybe gain a member or two -
Including a TI-99A group and an older version ATARI user
group. With the removal of the selling table in the
middle of the room, the room stayed more comfortable
this year. Several local commercial firms had
impressive and extensive displays, and did a 1little
Sunday sales business besides showing what they had to
offer for virtually every machine represented!

The flea market area was moved to a separate room, which
made more space all round. Security was much improved
(there was someone watching the single entrance door,
checking bags and loosely held computer goods. All
purchases were heat-seal bagged in order to pass the
door inspector. Unfortunately, although the sale was
operated most effectively and efficiently, the goods
offered were priced rather high for their condition or
usefulness. However, that's not to cast a shadow on the
sale itself - it's a great idea, and was well managed.
The prices were probably a reflection of the
inexperience of the persons putting the items up for
sale.

All in all, a great time! Well-attended. I hope all
the clubs who made the effort to be involved managed to
gain a few new members and enjoyed (as I did) browsing
the booths, seeing what other clubs had to offer. Hats
off and a pat on the back to all the APPLE USER GROUP
MEMBERS for a SECOND great event!! You've every right
to be proud. See you next year!

SCRATCH
SAVE

For those of you that picked up the CUGS Income Tax
Program last month, my humble apologies. " There were
about half a dozen errors in the two programs - two were
in the child exemptions, and one in the old-age
exemption. The others were line duplications which did
not affect the outcome of your tax calculation. Please

remember to have your copy exchanged.

With our additional purchases of publi: domain or
freeware programs, we will be increasing the size of our
library by an estimated twenty-five disks in the next
couple of months. Seven of these disks are included in
this month's MONITOR. After inclusion, the club will be
printing a new CLUB DISK LIBRARY listing, which each
paid-up member will receive free copy. Additional
copies may be purchased for a buck.

One of the items that I picked up at COMPUTERFEST 1in
February was a good-looking cover for my EPSON printer;
or so I thought. Although it is identified as being
made for an FY80 or FX85, it is much too small. The
dimensions of the cover (my measurements) are 14 1/2
inches wide by 12 inches front to back. If you own a
printer with those dimensions, vou may purchase it from
me for five dollars.

One note 1in closing that I should have mentioned
earlier. When you purchase any club library disk and
find anv kind of problem with it, or with a program on
the disk, please let us know about it. We would like to
correct any problems as soon as possible so that others
don't run into problems.

IN 9 DARR,
DARRKR ROOM...

There ...
There on a disk ...
There on a disk, hidden way back

Way back on the back shelf, under the (legal) copy of
PAC-MAN,

was the PROGRAM!
What program?

The one you wrote back in '86 when you needed a quick
way to print a bunch of 3-line labels for your disks.
Or the one you wrote in '85 as a math drill for your
aspiring 3-year-old Einstein! Or the one you wrote to
keep track of your Zone Rec. Sports Team's progress that
year they sucked you into coaching!

So, what about these hidden treasures?

So, they are hidden treasures, and you can cash 'em
in!!! Any meeting members are welcome to submit public
domain software (theirs or others) to the club disk
librarian (Earl or assistant Steve) and have your effort
immortalized in our next catalogue!

Soon, (watch for it, now), VERY soon, that program in
your past could make you part of a very exciting event.
In a couple of month's time, we'll be holding our FIRST
ANNUAL SOFTWARE SWAP NIGHT. Anyone with public domain
ware willing to share can come and SWAP your goods for
theirs, as easy and often as you please!! The ONLY
restrictions are that the work be truly PD, FREE- or
SHARE-ware and that it is not (yet) part of our club
library. Your "admission" to the event will probably be
permitting the club to ADD your treasure to our library
for future members (and those to chicken to share in
person)!!

We hope to make it more than just a bunch of odd-looking
people sitting around staring at computer screens, sSo be
thinking about it, and start blowin' the dust of YOUR
software. Y'all come, y'hear!

MUSIC WITH YOUR BASIC

Our club disks (and many bulletin boards) offer
ready-made music to be played in MASTER COMPOSER or
SIDPLAYER format. MASTER COMPOSER is a copyright
program originally from ACCESS software which allows
easy music writing of files which CONTAIN THEIR OWN ML
ROUTINE FOR PLAYING as a part of the music file.
SIDPLAYER by Craig Chamberlain originally appeared as a
series of articles in COMPUTE! a couple of years ago.
It has since been upgraded, and now comes with 200+ page
instruction booklet and 128/64 variations on &
double-sided disk (available from COMPUTE! Publications
for $14.95 U.S.) Both give the user exceptional control
over the mighty SID chip. Both allow the creation of
files which may be loaded into the top end of a BASIC
or ML program and played in the INTERRUPT CYCLE of the
computer. This means that the music plays (apparently)
WHILE THE COMPUTER DOES OTHER THINGS (runs your own
BASIC or ML program).

As I said, music files in both formats are available
readily in the public domain (our library has 2 disks -
called JUKEBOX disks of MASTER COMPOSER files), and a
newly-submitted disk full (50 files) of SIDPLAYER
selections (many of which you heard at our display at
COMPUTERFEST). The following information is presented
to allow vou to load and play your a selection 1in one
format or the other and add its playing to your own
programming. (N.B. MASTER COMPOSER FILES always end
with '.C' and SIDPLAYER FILES [new version] end with
'LHUS'). :

To load (and use) a MASTER COMPOSER music file:

1. Move END OF BASIC (ro 28000).
2. LOAD the desired music file.
3. Use appropriate SYS or POKEs to play, etc.

SYS SA + 155 (to start playing)
POKE SA + 1079,4 (to stop playing)
POKE SA + 1079,<1 to 3> (stop 1 or more voices.

For UNALTERED MC pieces, SA=29965.
MC pieces may be loaded ELSEWHERE in memory,

and the SA value is simply changed to reflect
the new load address.

To load (and use) a SIDPLAYER music file:

1. The program "SID.OBJ.64" must be on the
disk with the selection(s) to be played.

2. Extra lines of code must be added to your
program which LOAD SID.OBJ.64 and the
actual selection to be played.

3. Use the lines below. The lines from 57000
on MUST NOT BE MOVED OR CHANGED!!

4. Substitute your music file name for the
"COMMODORE" in line 200.

S. TFach bit of variable SS turns on one of the

~ Cbd's 3 voices. Thus, POKE SS,1 turns on
VOICE 1; POKE SS,4 turns on VOICE 3, and
POKE SS,7 turns on all three!

128 DN=8:SA=780:5SX=781:SY=782:SP=783

130 PRINT " TUNING INSTRUMENTS...":PRINT:GOSUB 578
@@ :REM LOAD SIDPLAYER ML

200 F$="COMMODORE":LA=PEEK(49)+256*PEEK(50)+10008:G
OSUB 57500 :REM LOAD SONG

2)8 SYS HK:REM HOOK (INSTALL)

220 POKE SX,LO:POKE SY,HI:SYS PL:REM SET FOR PLAYI
NG

230 K=PEEK(SX)+256*PEEK(SY):REM GET ADDRESS OF TEX
T LINES

240 IF PEEK(K) THEN PRINT CHRS(PEEK(K));:K=K+1:GOT
O 248:REM PRINT UNTIL CHRS$(9)

25@ POKE SS,7:REM START PLAYING MUSIC

260 IF PEEK(SS)AND7 GOTO 268:REM STILL PLAYING

27@ SYS HU:REM HUSH

280 SYS DP:REM DROP (REMOVE)

298 END

57000 POKE SA,l:POKE SX,DN:POKE SY,1:SYS 65466:F$=
“SID.OBJ.64":GOSUB 59000

57918 POKE SA,@:SYS 65493:IF PEEK(SP)AND]. GOTO 591

20

578280 SS=49152:FL=49153 :HK=49615:PL=49664 :HU=49897
:DP=49935: RETURN

57508 POKE SA,l:POKE SX,DN:POKE SY,8:SYS 65466:FS$=.
F$+".MUS":GOSUB 59000 :

5751¢ HI=INT(LA/256):LO=LA-256*HI

57520 POKE SA,@:POKE SX,LO:POKE SY,HI:SYS 65493:IF
PEEK(SP)AND!. GOTO 59100

57539 LA=PEEK(SX)+256*PEEK(SY):RETURN

59¢0@¢ FOR K=1 TO LEN(FS):POKE 584+K,ASC(MIDS(FS$,K)
) :NEXT

590918 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 654
69 : RETURN

59188 P=PEEK(SA):PRINT " ERROR: ";:IF P=4 THEN PRI
NT "FILE NOT FOUND":END
59119 IF P=5 THEN PRINT “DEVICE NOT PRESENT":END

59128 PRINT ST:END

UPCOMING CUGS MEETINGS FOR 1988
Wed. Apr. 6
Wed. May 4
Wed. June 1

Write these on your calendar.

All meetings start at 7:00 pm

Meetings at the Northwest
Leisure Centre
Room 2

COMMUNICATIONSS XE

CUGS LOADER
CUGS DATA

CUGS DISK LIBRARY ADDITIONS - MARCH

CREATE BBS V6.7
D/L DIR CREATE
EDITOR V6.7

GRAPHIC 8 G8

CUGS LOADER

BBS DOWN V6.7 ’

MULTI TERM 4.8 gfséggg V6.7 oues mama
MULTI4.8-1 AA CGRES V6.7 SNAPSHOT
MULTI4.8-2 USERTDS SNAPSHOT . 49444

MULTITERM4 . SDOC BULLETINS SNAPSHOT DEMO

BOOT AAPARAM6A PRINT MAKER
3§gggnocs PRINT.49152X

COORDINATOR.LDR
TITLE SOUND 7 SC CBJECT MAKER
QiIV CUGS LOADER A COORD.OBJ
MENﬁ DOV CUGS DATA B COORD.OBJ
e e COORD DEMOS
SYS0P SINE IN.C COORD LOAD & DIS
MAINI RANDOM MUSIC.C MOVIEMAGIC V3.3
RR. INST M/L MUSIC.C SUPERBOY MOVIE
1200FIX. 51976 PLAY.D COMMODORE MOVIE
SEQ.ML ENTER.D AUDREYII
SCBES ML INVEN8.D SPRING BREAK
DOV, SECT GUITAR TUNER PIRATE SHIP II
SCBES CULTURE CLUB.C SHIP DESTROYED

ORI Ty CHAMELEON.D CAPTURED

ST TERY 5.2 FUNK ROCK.C BRITISH FLAG
OIS 21 SOUND SUB.C2 PIECE OF MIND
\ITTTo. 22 NAME THAT NOTE ACES HIGH

. MUSﬁgckEgsow.c SOMEWHERE IN TIM
AMERICA. TRON WHAT!
COMMUNICATIONS6 XF ﬁEQSUE¥EFE'C TRON MAIDEN LOGO
2 MINS TO MIDNIG
nggSLg:?ER NETWORK XXIII CYBORG
________________ Qﬁgchwavu POWERSLAVE II
- ! MED VAN HALEN

E;g%NgEIYST E/PCLD MAXELL MINT

i g e E/F HOLY FAM MAXELL 5 INCH

ks 4TH COM TWISTED SISTER

o E/F 4TH SM NIGHT PROWLER

s E/F PN SM LETTERMAKER V

MLS . 64 PUER NOBIS TRAP
ACS O SACRED HEAD IRIDIS ALPHA
64 M OSH PLAY ARCANA
22 ggi%lc A “ON SECOURS PARALLAX
L 4EME COM DRACULA

MIN: .V MUSIQUE-MENU NUCLEAR E.

ALL AMERICAN BBS FR/PUER NOBIS FRANK BRUNO

START HERE F/PCLD COMMANDO

AA SETUP V6.7

CLAVIER

ihooops!

Whoops!

I knew it would happen - as soon as
ours,

adding listings to a mag such as

eyesight begins to fail and some silly typos
I hope noone's ready to
below.

vitriolic criticism from
perfect paper (please attach proof).

picture.
small errors

In the 128 WINDOW program to display

Remember,
anyone

graphic

you start
the editor's
enter the

kill over the two
I'11 happily
who's ever

accept
edited a

pictures,

line #60 of the MULTICOLOR BIT MAP LOADER should have

read...

60 BLOAD'<COLORMEMORY MAP>'",B15,P55296

N.E. STORY
KAISER
RAMBO
HACKER

DOC & DEMO

GENERAL 11 MK

CUGS LOADER

CUGS DATA"
LIFESCORE.Z
RANDOM LOTTO.C
DEFINITION.C

THE GREAT FRED.C
MATH ATTACK
WEATHER PROPHET
ROBOT MATH
LEARNIN TO COUNT
FLAGS.C

BASIC KEYWORDS.C
BIORYTHM COMPAT
BIBLEQUIZ

GRAPHIC GAMES12 AL

CUGS LOADER
CUGS DATA
BOWLING.C2
FORBIDDEN CRYPT
EAGLES & GATORS
POWERBALL
POWERBALL.49152
GOING UP
S & E CUSTOM LDR
S & E CUSTOMIZER
SAM & ED
SQUEEZE
SQUEEZE. 50542
SALOON SHOOTOUT
SALOON. 10240
QUEEN'S QUARREL
CHOPPER 1
SLOTS
BUMP'N RUN
BUMP'N RUN.49152

MATCH BLOX
Q-BIRD
DECIPEDE
DEC.ML
ARCADE BASEBALL
PREDICTOR
PREDICTOR.49152
SNO-CAT
SUPER CONNECT 4
SPACE ARENA
ARENA.49152
FACE-OFF
KICKER
KICKER.OBJ

LEXITRON

SHIFTER
SURVIVOR"
SURVIVOR.OBJ
DUNK
DUNK. 49152
LAWN
SNOOPY RUN.2

DISK UTILITIES7 DG

CUGS LOADER

CUGS DATA
CODING COMMENTS
QUICKFIND
TAPEMAKER 64
CATSTRAPOLATOR
UNIV DISK RTNS
FORMAT EASY/SCPT

FILE.READER.OBJ2
MANAGER DOC.C
MANAGER 64.C
ML SAVE TO DISK
MENU SYSTEM
NOTEMAKER
CHRONO-WEDGE

CHRONO. 49152
FAILSAFE

SEQ FILE EDITOR
ADDRESS CATALOG

TURBODISK 64.30C
TURBODISK 64
TURBO BOOTMAKER
TURBODISK REL
LINE EXTENDER
TURBO FORMAT
DIRECTORY.C
LIST-ME QUIZ.L
qQuIiz.C
PRINT QUIZ.C
PGM SELECTOR #3
RELATIVE FILES
LIBRARY INDEX.C
JISK HOUSE.C
DISK-0-64.B0OT
DISK-0-64
MAINT.ONE
NO-SYS BOOT
NO-SYS LOADER
DIRECTORY FILER+
DISK VACUUM
FASTLOAD
FASTFORMAT
DISK RESTORE.C
RESTORE. DOC
DISK DISASSEMBLEF
DISK EDITOR
DISK ED.12000
SPRINT IV

128 Window:

Just a short column this week - the 128 version of the

SIDPLAYER article for the C64. Next

week,

I'11 print

the listing of the DEMO program used at COMPUTERFEST!

120 DN=8

138 PRINT " TUMNING INSTRUMENTS...

80 :REM LOAD SIDPLAYER ML
208 F$="COMMODORE":LA=PEEK(5))+256*PEEK(52)+1000:G
OSUB S5750@:REM LOAD SONG
210 SYS HK:REM HOOK (INSTALL)

220 sYs PL,Q,LO,HI:REM SET FOR PLAYING

“:PRINT:GOSUB 578

238 RREG ,SX,SY:K=SX+256*SY:REM GET ADDRESS OF TEX

T LINES
235 BANK 1

248 IF PEEK(K) THEN PRINT CHR$(PEEK(K));:K=K+1:GOT

(It appears I gave the 128 an extra memory bank (B16) in
last month's article.

In the 64 version of the same program, my printer
happily omitted a couple of Commodore graphics and
replaced them with some unexpected linefeeds erasing
line numbers in the process. The lines following line
#58 should read ...

100 PRINT"PRESS 'D' TO SEE DRAWING"
110 PRINT"PRESS 'N' TO RETURN TO NORMAL SCREEN"
120 PRINT"PRESS 'Q' TO QUIT"

Sorry for the goofs. Wwe'll keep trring to get better.

O 24@:REM PRINT UNTIL CHRS(9)
245 BANK 15
250 POKE SS,7:REM START PLAYING MUSIC
260 IF PEEK(SS)AND7 GOTO 26@:REM STILL PLAYING
278 SYS HU:REM HUSH
280 SYS DP:REM DROP (REMOVE)

290 END

57000 BLOAD "SID.OBJ.lZB",U(DN),BB:BANK @:SYS 1961
8:BANK 15

S7010 SS=4864 :FL=4865:HK=5327:PL=5395:HU=5644:DP=5
682 : RETURN .

57580 BLOAD (FS+".MUS"),U(DN),BY,P(LA)
57518 HI=INT(LA/256):LO=LA-256*HI:LA=PEEK(174)+256
*PEEK(175) :RETURN

1

~

SIR XIGYaRy' S
RS

In the last two articles, I examined scquential data
files. In this article I will turn to rclative data
files. A relative file is one which allows data to be
accessed in random order either for READ or WRITE
purposes. This is definitly different from sequential
files which must be read from and written to starting at
the first character in the file. To obtain this random
accessing of data some special programming sequences are
involved in preparing the file structure. (Note:
although relative files could be referred to by the name
"random access file", this term is more correctly used
to refer to another type of file - user files. You
should be careful not to confuse the two as they involve
completely different programming techniques.)

Before examining the details of relative data files, the
differences between sequential files and relative files
should be noted. The main difference between te two 1is
in how data in the file is accessed. Sequential files
must have data accessed sequentially, from the start to
the data you want. Relative files can have data
accessed in any order wanted. Sequential files can have
data of variable length while relative files require
that all data items must be of the same length. As a
result of the two above mentioned differences, relative
files usually require much more disk space than
sequential files but data can be accessed much faster
than sequential files. Relative files require two disk
buffers for operation of the file while sequential files
only require one buffer. As a result, more sequential
files can be accessed simultaneously than relative
files. It should also be noted that relative files can
not be used on a cassette which must access data
sequentially.

In this article I will use BASIC 2 when looking at
relative files. If vou have a 128, BASIC 7.0 contains a
number of commands (DOPEN#, RECORD#, DCLOSE) which make
working with relative data files much simpler than the
BASIC 2 version. BASIC 2 commands will work however on
any upgraded version of BASIC.

The preparation and use of relative data files usually
involves THREE distinct steps. (and usually a minimum of
TWO different programs.) These steps are:

1) Reserve space on the diskette for the file.

2) Fill up the space with some character.
padding the file.)

3) Use the file by writing data to it,
from it, or changing data values.

(Called

reading data

The first two steps are often done in one program
which has the function of initializing the file. A
separate program is usually then used to access the data
from the file.

Reserving space on the diskette for the file.

Before looking at the process of preparing the
diskette to store a relative file, the structure of a
diskette should be reviewed. Data is stored on the
diskette in BLOCKS. Since a block contains 256 bytes of
storage and 2 bytes are required to link to the next
block, the maximum length of an individual unit of data
is 254 bytes. Each individual unit of data is called a
RECORD.

To create a relative file there are two values that
must be determined before the program to create the file
can be written. The first value is the number of
records. The number of records is the number of units
of data that are to be stored. The number of records
can be set larger than actually needed and the maximum
is only limited by the space available on the diskette.

A second value needed is the total of the lengths
of all the FIELDS within the record. A field is an
individual unit of data. Fields of data are best
written using carriage returns (ASCII code 13) to
separate each field. Doing this makes it much easier to
access individual fields later. The total length 1is
determined by adding the lengths of each field plus 1
for a carriage return for each field. This total length

, CANNOT EXCEED 254.

2

~

3)

Padding the file.

This process involves putting some initial data in
the space that has been reserved so that the main

program has something to read from the disk. The
padding of the file can be done with any character but
be careful that the character chosen doesn't make it
hard to work with data later.

Main program.

This program is the one that actually uses the
relative file. It is used to enter, change, or delete
any data on the relative file.

CREATING A RELATIVE DATA FILE

As mentioned above, this usually involves two
steps. The first step is to initialize the file - set
up on the diskette the space to store the data. The
second step is to fill the file with some character -
called padding the file. Although this second step is

not strictly required, it is good programming to include
it and it also gives a quick check for errors in the
file formation. These two steps are usually included in
one program whose only function is to create the file.
This program is completely separate from another program
which uses the file to actually store data.

Before creating a relative data file, two pieces of
information must be determined. These are: 1) record
lergth - total of the lengths of all fields plus 1 for
the carriage return for each field; and 2) number of
records - how many records are to be stored, this should
be slightly larger than the suspected number needed. A
great deal of thought should be put into the
determination of these because once the file has been
created, it cannot be changed without losing any data
that has been entered.

To make it easier to follow, I will use an example
of an address book in working with relative data files.
My address book will contain the following fields
(length of each in parentheses): last name (15), first
name (12), street (25), city (15), province (4), postal
code (7). The total record length is 83
(15+141241+25+1+15+1+4+147=83). I am going to make my
file hold 200 records. The explanation of the process
follows. You may want to follow the sample program at
the end as you read through the remainder of this
article.

There are THREE steps involved in creating a

relative data file with BASIC 2.

BHho..

A) OPEN A LINE OF COMMUNICATION.

In actual fact opening a line of communication
involves two parts. First a line of communication must
be set up to the disk command channel (secondary address
15). Second, a file must be opened over regular
channels to pass the data.

OPEN 15,8,15
OPEN 1fn,8,sa,'"file name,L," + CHRS$(rl)

The first statement opens the line of communication
to the disk command channel.
The second statement opens the relative file.
1fn - logical file number used in opening the file.
(I will use 2)
sa - secondary address (2 - 14). (1
here also)

will use 2

L - length (note comma before and after)
rl - length of each record in file (0< rl <255)
(ours = 83).

B) MARK THE LAST RECORD IN THE FILE.
This is done with one statement.

PRINT#15, "P"+CHRS (sa+96)+CHRS(1b)+CHRS(hb)+CHRS(pl)

"P" - position or pointer - this tells the disk
drive to look for a certain record.

sa - secondary address used in opening the file.
This must be added to 96.

1b - low byte of record number

hb - high byte of record number

pl - place in record. This usually is 1 (one) to

indicate the start of the record.

To calculate the low and high bytes of a record use the
following formula. The high byte is the integer of the

record number / 256. The low byte is found by taking
the record number - hb*256. If rn = record number; 1b =
low byte; and hb = high byte; then hb = int(rn/256)
and 1b = rn - (hb*256). This calculation 1is a real

pain so the easiest way to use it is to put it in a
subroutine and let the computer calculate it for you.
All you have to do is to send the record number to the
subroutine. See lines 10000 - 10050 in the sample
program.

Note that you position to a record through the
COMMAND CHANNEL (sa = 15). In a program use a statement
like: RN= 200:GOSUB 10020 to position to the last
record. Now something (like 'end') should be printed on
this record which will cause all other records to be
created. This is done by using PRINT#2,"END".

C) CLOSE THE FILES.

statement
channel
disk

To close the files, simply use the close
for all opened files. If you close the command
at this time, you will get a flashing light on the
drive which indicates an error.
the "record not present error" which is not
error as the record wasn't present but you just
it.

This error, however, is
really an
created

CLOSE 1fn

A)

&)

CHECKING FOR ERRORS

checked for
checking

At every step the disk should be
errors. This is done using the normal error
routine except one additional error must be 'trapped".
This error is number 50 - record not present error.
This error condition will exist until after the file has
been created. To check for errors and also trap error
#5350 set a flag to O (FL=0) and then gosub to an error
subroutine (see lines 10100 - 10160 in the sample
program).

PADDING THE FILE

Once the file has been created, it should be padded
(filled with characters) to make it easier to put data
into the file and to distinguish a filled record from an
empty one. The character(s) selected for padding must
be chosen with great care as improperly chosen
characters could later affect the flexibility of using
the data.

The easiest method to pad the file is to
string which consists of all the padded fields
together with a chr$(13) between each. The
padding process consists of FOUR steps:

create a
added

actual

CREATING THE PADDING STRING.

Creating the padding string involves making a
string of characters which can be stored in each record
on the diskette. This is done so that a character will
appear to mark the fields to make data entry simpler.
The choice of a character (or characters) to pad the
file is very important. You must pick a character that
will not interfere with data entry. For example - a
letter of the alphabet, while easy to use, could cause
interference with searches through actual data later.

Pick the longest
field and
function,

The procedure is very simple.
field and create a string the length of this
assign it to a variable. By using the leftS(
parts of this string are added together to create one
string for the record. After each field (except the
last) add a chr$(13) as a field separator. For my
example I am going to use a plus sign (+) followed by
blanks as my padding string. Let p$ = "+ "
('+' then 24 spaces). Build the padding string by: pdS$
= left$(pS,15) + chr$(13). This covers the first field.
To add the second field use: pdS = pd$ + leftS(pd$,12) +
chr$(13). Continue to add the third field: pd$=pdS + pS
+ chr$(13) and the fourth field: pdS = pd$

left3(pdS$,15) + chr$(13). Continue in the same manner
to add the fifth and sixth fields. pd3 will now have a
length of 83 bytes. Do not put a carriage return after

the last field - one is put automatically when the file
is printed to the diskette. VERY IMPORTANT: THE LENGTH
OF THE PADDING STRING MUST EQUAL THE RECORD LENGTH
SPECIFIED WHEN THE FILE WAS OPENED.

B) OPENING THE LINE OF COMMUNICATION.

A relative file is simultaneously opened for both
reading and writing.

OPEN 1fn,8,sa, "file name"

PRINTING THE PADDING STRING TO THE RECORDS.

There are two steps involved in printing the
padding string. First, the read/write head must be
positioned to the record and then second, the padding

steps

string can be written to the disk. Both of these
record

are usually repeated within a loop so that every
in the file will be padded. BASIC 2 has a problem with
the positioning to a record - the read/write head
sometimes gets lost. To prevent this from happening you
must reposition the pointer arter each record is
printed.

conbtd

D) CLOSE THE FILE.

Once all work 1is completed, the files must be
closed.
CLOSE 1fn : CLOSE 15
In the next article I will examine writing a

program to write data to the file and access the data

from the file.

100 REM RELATIVE FILE ** ADDRESS **

110

120 REM RECORD LENGTH = 83 // # RECORDS = 2
130 :

200 REM CREATE RELATIVE FILE

210 :

220 : PRINT "CREATING FILE ** ADDRESS **"

230 : OPEN 15,8,15

240 : OPEN 2,8,2,"ADDRESS,L," + CHRS(83)

250 : FL=0:REM RECORD NOT PRESENT FLAG

260 : GOSUB 10120:REM ERROR?

270 : . RN = 200:GOSUB 10020:REM POSITION TO LAST RECORD
280 :. PRINT#2,"END":REM CREATE FILE

290 : GOSUB lOlZO:REM ERROR?

300 : CLOSE 2:REM FILE NOW CREATED

310 :

400 REM PAD FILE

410 : /ﬁﬁj:
420 : REM CREATE PADDING STRING _
430

440 PS=""+ ":REM '+' AND 24
SP\CES

450 PDS=LEFTS(PS, 15)+ClRS(13): REM LAST NAME

460 PDS=PDS+LEFTS(PS, 12)+CHRS(13) :REM FIRST NAME
470 ¢ PD$=PDS+PS+CHRS(13) : REM STREET

480 : PDS=PDS+LEFTS(PS, 15)+ClURS(13):REM CITY

490 1 PDS=PDS+LEFTS(PS,4)+CHRS(13) 1 REM PROV —
500 : PDS=PDNS+LEFTS(PS,7) :REM POSTAL CODE ;7,/;;
510 : IF LEN(PDS)<MS3 THEN PRINT"FERROR':STOP .
9520 =

530 : REM WRITE PADDING STRING TO RECORDS

540 :

550 : OPEN 2,8,2,"ADDRESS":REM OPEN FILE

560 : FL=1:REM RECORD NOT PRESENT - NOW AN ERROR
570 : GOSUB 10120:REM ERROR CHECK

580 : FOR RN = 1 TO 200:REM PADDING LOOP

590 : GOSUB 10020:REM POSITON TO RECORD

600 PRINT#2,PDS:REM PRINT PADDING STRING TO
RECORD

610 : GOSUB 10120:REM ERROR CHECK

620 : PRINT"home PADDING RECORD'";RN:REM
MESSAGE

630 : GOSUB 10020:REM REPOSITION TO RECORD

640 : NEXT RN

630 : CLOSE 2:CLOSE 15:REM DONE - CLOSE FILES

660 END

670

18808 REM SUBROUTINE TO POSITION TO RECORD

1001

10020 : HB = RN/256:LB = RN - (HB*256)

10030

PRINTZ 15 "P"+CHRS(98)+CHRS(LB)+CHRS(HB)+CHRS(1)
10040
10050 RETURN

10060 :

10100 REM ERROR CHECK

10110 :

10120 : INPUT#15,ER,ES,T,S

10130 : IF ER < 20 THEN RETURN:REM NO ERROR

10140 : IF ER = 50 AND FL=0 THEN RETURN:REM TRAP ERROR
10150 : ? ER,ES

10160 : CLOSE 2:CLOSE 15:END

AR

Don't Miss Qut!

PRIZE DRAW - CUGS 1988

At each CUGS meeting during 1988 there will be a
computer generated draw for a winner of a prize.

RULES:
Paid up members for 1988 only will be eligible.

Draw will be made at the end of each meeting.

The winner must be present at the meeting to claim the

prize. If the drawn member is not present, further
draws will be made until the prize is distributed.
is - no substitutions

All prizes must be accepted as
permitted.

The membership list will be updated at break during each
meeting so that new members will be included in the
draw.

[
Prize for March draw - disk box

February winner was - Steve Bogues

; <7
£ 72
AL -
i FeResl

N

B R R R R E E E EEEEES

NEXT (I)G(G("GII)G

Wednesday
fipril 6, 7 pm

Aocthwest Leisure Contre

Databases in Detaill
A careful look at several

currently available for
the CG64/128.

TV YT PY 'V YV VY Y YY YY YR VY VY PY YT YR Y VY PV PV YY VT vV vy vy vy

YTV Y YT ey vy

