

OBLIGATORY STUFF

PRESIDENT Richard Maze
VICE-PRESIDENT Ed Dietrich
SECRETARY-TREASURE Gordon Glew
LIBRARIAN : Earl Brown
ASS'T LIBRARIAN " Randy Sloboda
EDITOR Ken Danylczuk
ASS'T EDITOR Greg Rezansoff
MEMBERS AT LARGE Steve Bogues
Harry Chong

THE MONITOR is published monthly by the COMMODORE
USERS' GROUP OF SASKATCHEWAN (CUGS), Regina, Sask.,
Canada. It is distributed at each monthly CUGS
meeting, held at 7 pm, the FIRST WEDNESDAY of every
month. Meetings are usually held in the North-West
Leisure Centre, at the corner of Rochdale Boulevard and
Arnason St., Regina.

Anyone interested in computing, especially on the C64,
128 or 64C, is welcome to attend any meeting. Out of
town members are welcome, but may be charged a smll
mailing fee for newsletters. Members are welcome to
submit public domain software for inclusion in the CUGS
DISK LIBRARY. Any member may purchase disks from the
club library for a nominal fee. The club library looks
for programs listed in such magazines as COMPUTE,
GAZETTE, RUN, AHOY, TPUG, COMMODORE COMPUTING, etc.
these programs are made available to members who
purchase the magazines.

IN THIS ISSUE:

MARCH MAZE - * W.0.W. from our prez!
MEETING PLACE - Date, Time, Place and Agenda
DE-BEGGING - Sharing the wealth

ZIPPERS - Quick tricks for programs.
RICHARD'S BASIC - Learning about inputs.
DISK-ETIQUETTE - Library comments by Earl.
SPEAKING IN TONGUES- Editorial on languages

ML ED-IFICATION - co-info. on Ed.'s ML offerings

(* = Words Of Wisdom)

_—

1)

EDITORIAL

For most of us (C.N.= computer nuts) learning to progrm
meant learning the BASIC language. Lately, magazines,
educational institutes and publications, even computer
salespeople suggest we might have seriously damaged our
entire computing life by not learning some OTHER
language as well as (or instead of) BASIC. Most
hobbyists, programming merrily in BASIC, when
approached by some swaggering hi-techie who asks what
our favourite programming language is, develop a
twitch, stutter, stammer and make incredible long
apologies for not yet mastering Pascal, LOGO, AP/L,
FORTRAN, FORTH, LISP, COBOL, COMAL, "C" or Assembler!
MOST would as soon be guillotined as admit to
programming in BASIC, and not even structured BASIC,
maybe even BASIC 2.0!!! (Shame - for shame [11)

What is it with all these languages, and should I (you)
really know more than one??

For an answer to that burning question read on! Learn
the complete, unadorned, unbiased, and slightly
over-simplified TRUTH about computer languages and
their impact on your computing life.

This issue, we'll establish exactly what is meant by
"computer language", because understanding what a
language IS, will help you decide your NEED TO KNOW'
one! (One comment for computing purists - what you're
about to read might make you shudder in its
over-simplicity - but, if it bothers you, I promise to
print each and every submitted criticism or comment!)

A computer doesn't understand ANY language but
electrical on and off switching, It is little more
than an intricate collection of on/off switches - some
pre-set (ROM), some setable by the user (RAM) - and
delicate electrical pathways along which travel from 8
to 32 BITS (on or offs) at a time. (APPLES, early
ATARIS, TI-99S, AND MOST COMMODORES send and receive 8
BITS at a time; ATARI ST, AMIGA, IBM and MACs send and
receive 16 BITS at a time.) This means we C64/C128
users use 8-bit machines - machines that "understand"
(receive and interpret) 8 electrical bits (called a
BYTE) at any given time. This is the machine's "native
tongge", its TRUE language. Anyone following Ed's ML
sessions has guessed that this language is difficult
and cumbersome for humans. MOST HUMANS NEED HELP TO
TALK EASILY WITH THEIR COMPUTERS!

Enter the "languages". Ingenious man decided he could
use the machine to act as "interpreter" between what he
said and what the machine needed to hear. This -
“1nterpreter" spoke a "higher-level language" -

higher" = above and beyond the machine's "native"
tongue. Two types of "in-between" languages evolved -
compiled and interpretive. The first was called an
ASSEMBLER (ML compiler) which permitted the programmer
to use in MNEMONICS (see Ed's ML article in this
issue), which were then COMPILED into the machine's
native 8-bit language. Once compiled the compiled
program could be laad~2a -

The other type of language is rarer with one exception
- BASIC is an INTERPRETED language. This means that an
BASIC instruction given by a programmer is examined by
the BASIC INTERPRETER each time it is given, and
"translated" into appropriate 8-bit lingo for the
machine to act on! If this sounds slow - you're right!
EVERY LANGUAGE BEYOND TRUE MACHINE CODE INVOLVES SOME
LOSS OF CONVENIENCE OR SPEED (OR BOTH) as a sacrifice
for easier HUMAN use.

Of all the languages mentioned above, BASIC is the
slowest but easiest for the average user.. Why?

Because it was deliberately created for use by ANYONE!
The primary goal behind the development of BASIC was to
allow any person with a need to communicate easily with
the mighty computer!! The price paid was speed of
execution.

So what about all these other languages? Remember -
the underlying purpose to BASIC was ease of use by
ANYONE. Each of the languages listed above was created
to provide easier access to DIFFERENT machine functions
more for specific groups of users! Meaning what? If
you fit one of the "specialized" user categories,
you'll find the associated language DOES help you
program. If you're NOT a specialist user, and BASIC's
speed isn't a problem with you, then don't bother!
Consider EXTENSIONS to BASIC which make it even easier
to use, but, unless you're the kind who likes the idea
of learning to speak Bulgarian for fun, don't worry
about the other "tongues"!!

To summarize:

- computers "talk" in 8 to 32 bit electrical "words"

- on/off switches is their "native" tongue.

- any other language is structured for the sake of
HUMAN ease of use or understanding.

- languages mean more inconvenience or time delay
sacrificed for the sake of HUMAN ease of use.

- BASIC was deliberately created for use by
EVERYBODY.

- other languages serve the purposes of particular
"interest" groups in computer circles; if you fit
one of those groups, the associated language will
probably be an asset - otherwise, it's simply an
academic exercise.

NEXT ISSUE: So who needs what language (and why)?

KEEP KOMPUTING!

HARGEH =

MIRZERN

COMPUTERFEST 1 is over and I would like to take this
opportunity to thank club members who kindly gave their
time and energy to help make our club's presentation
successful. Our main objective in setting up a display
at COMPUTERFEST was to build awareness of CUGS.

Judging by the number of people we talked with- and
explained the operation of our club to, we easily met
this objective.

Special thanks to Ed and Ken for the programs which we
had running on the two 64's. These programs brought
many people over for a closer look and to talk with us.
Also, thank you, Steve, for the excellent CUGS banner
which marked our location clearly and attracted many
people to our display.

I would also like to thank the people who so gave of
their time to man the booth and answer visitors
questions. Special thanks to Ed, Gordon, Harry and Ken
who were present most of the day. Thank you, too, to
the many others who dropped by and helped out for a
period of time. I apologize for not mentioning each by
names, but trying that I might inadvertantly miss a
name. Thanks to all the club members who dropped by to
say hello. Your comments and support were appreciated.

I especially want to thank the members of the public
who dropped by and got information from us. Those who
have joined our club have special meaning to the rest
of us because you are the reason we set up our booth
to build interest in our computer club.

A final thanks to the Apple II user's group for .
sponsoring COMPUTERFEST and giving us the opportunity
to be a part of this great display. Judging by the
crowds, there's a definite need for such a show and it
was very well received.

1412 114

2N £

SETTING COLORS IN MULTIPLAN

Multiplan does not allow you to change colors in the
program. You can make a small modification to the
loader program to set the colors to what you want.
Following is the process to permanently set HesWare's
Multiplan to the colors you want. (I don't know if the
Epyx version loads the same or not - if it does, this
process will work for it as well.

Load and list the program "mp".

You will see the following two lines:
1 ifothensys114958
2 o=l:lcad"mp.",8,1

Move the cursor up to the 2 and enter: 3 and press
RETURN.
Enter the following line:

2 poke53280,bc:poke53281,sc:pokebsb,cc

NOTE: (bc is border color O - 15) I use 15
(sc is screen color O - 15) I use 15
(cc is cursor color 0 - 15) I use O

Now scratch "mp" from your disk and save the new
version of "mp" that you have just made.
OPEN15,8,15,"S0:MP"

CLOSE1S

SAVE"MP",8:VERIFY"*",8

Whenever you load Multiplan the colors will be set
automatically to those requested.

ish—ehnueiic
* K * * %

The CUGS Software Library is undergoing a face 1lift,
one we were hoping to do ages ago, but the task seemed
enormous. Fortunately, the job is being shared by the
club executive, and the first stage has been
undertaken. It may take 'til fall to complete the
transformation but most will welcome the "new look".
The only bad side effect I can imagine is the deletion
of magazine programs one is not entitled to.

Last month.we issued the Gazette program disk #21 and
the 1986 Income Tax program disk #99. The tax disk is
similar to last year's but with all the necessary
changes for this year. Two or three variables have
been given a new identity to allow the program to run
on Basic 2 as well as Basic 7; allowing the advantage
of the numeric keypad for Cl128 owners. A small
disadvantage exists to people without printers on the
General program. Both the T1C Sask. tax form and. the
Schedule 1 Fed. tax form are too long to list on one
monitor screen and scroll. If you must fill in your
return from the monitor screen it may mean pressing
your choice more than once, perhaps even using the
CONTROL KEY to slow things down. It takes a bit more
work to split the screen and I decided not to do it
this year because next year's return is supposed to
have some radical changes. Seems to me I've heard that
one before...Oh well!!!! GAZETTE DISK #21 has all the
programs from the Nov. and Dec.,1986 issues as well as
Jan., 1987. If the April issue reaches us in time,
disk #22 will be available with Feb, Mar, and Apr on
it, otherwise next month.

In Cl128 mode you can load and run a basic program by
typing:

RUN "PGM NAME"
On the 64 by typing:

LOAD"PGM NAME",8:[shifted run/stop]
You must have the screen clear below this entry,
however, and don't forget the [:] after ,8 and before

pressing run.

SEE YOU NEXT MONTH

LR R

MEETING PLAGE:

AGENDA:

First a word from our sponsor ... new Business from
Richard

Gordon Glew and the mighty INPUT statement
Ed ("Maddog") Dietrich and part III of ML programming
x%k% Coffee * Visits **%* Library Checking *¥*¥***

Major Presentation - Paperclip - a Professional
Word-processing program (by Richard Maze)

* * % k% %

kL ED-ucation

[Editor's foreword: Ed had intended for a short article
in the MONITOR to accompany each of his ML talks at our
meetings, but time got in the way. He's caught up on
himself now, and will be supplying a short article for
the MONITOR designed to help and enhance his meeting
presentations. In order to "catch up", we've printed
the first TWO installments in this issue.]

The programs that follow are to be entered with the
machine language monitor on the U3 disk used during the
ml demonstrations at the meeting. Use the simple
assembler (.A command) and follow the instruction sheet
that was handed out previously. If you require an
instruction sheet, see the Vice-president. I strongly
recommend reading the areas concerning the assembler,
disassembler and saving programs to disk.

The location or address of these programs will start at
$CO00 (hex) or 49152 (decimal). The first assembly
command typed into the machine language monitor should
then be .A CO0O 'INSTRUCTION'. The simple assembler
will then supply the next memory location
automatically.
Program 1

Program 2 Program 3

LDA #$07 LDX #$04 LDY #$02
STA $D021 STX $D020 STY $0286
RTS RTS RTS

After typing in the program, it should be checked for
errors. Use the disassembly command as follows.

.D CO00 €005

The program you just entered should be listed to the
screen. It can also be saved to disk with the following
command.

.S "O:NAME",08,C000,C006

Now comes the fun part. Exit the monitor by entering

'.X' and press return. You should now be back in basic.
To run the program type 'SYS 49152' and press return.
The results should be quick.

PROGRAM 1 loads the accumulator with the numeric value
seven, copies the contents of the accumulator into
location $D021 and ReTurns from the ml Subroutine (in
this case, back to basic).

PROGRAM 2 loads the X-register with the numeric value
four, copies the contents of the X-register into
location $D020 and ReTurns from the ml Subroutine

PROGRAM 3 loads the Y-register with the numeric value
three, copies the contents of the Y-register into
location $0286 and ReTurns from the ml Subroutine.

Program 4

LDA #$07

LDY #$04

LDX #$02

STA $D021
STX $D020
STY $0286
RTS

PROGRAM 4 can be disassembled with the command '.D C000
COOF' or saved with the command:

'.S "0:NAME",08,C000,C010"'.

If you have entered and run programs one through three,
you should be able to guess the results of program 4.
You have learned to access three 'control' locations in
ml using all three data handling registers on the 6510
microprocessor.

$D021 - 53281 background color
$D020 - 53280 border color
$0286 - 646 character color

If you have entered and run any of the above programs,
you have successfully taken direct command of your
computer and forced it to do your bidding without the
coddling safety net of the basic interpreter. Best of
all, it wasn't even that hard, was it? If however, you
are unable to enter the programs correctly or have any
other problems, do not hesitate to ask questlons.

SIE RicharirCs
I

A BASIC AUTOMATIC LOADER

It is sometimes necessary to have one program load and
run another program. One direct application is to
build a loader program which is used to select a
program from a menu. This loader program should be the
first one on a disk, and is loaded with: load "*",8 ,
and when run automatically loads and runs the program
selected.

The list can be obtained in many ways - from data
statements in the loader, or built into a sequential
file are two methods.

The routine involves printing the loading and starting
message on the screen and using dynamic keyboard
technique to press RETURN over each line.

To use this routine, two things must be known:

1) the name of the program;
2) the starting instruction (load or sysxxxxx).

I will assume the name of the program is stored in the
variable a$ and the starting instruction is in b$. The
routine is then:

300 c$=chr$(34):rem quote

310 print "<HOME><CD>CD>CD>load"cac$",8,1"
320 print "<KCD><CD><CD><CD>"b$" CHOME>"

330 poke631,13:poke632,13:pokel98,2:end

Line 310 positions the load message on the screen. Use
the <HOME> instead of clearing the screen and you can
print a load message on the screen as well. Line 320
displays the "run" or "sysxxxxx" message. Make sure
you have the proper number of cursor down's or the
RETURN will miss the message. The <(HOME> at the end of
this line puts the cursor back to the proper position
to allow the next line to execute the message. Line
330 puts 2 carriage returns [chr$(13)] in the keyboard
buffer. These RETURNs should fall on the line printed
on the screen and cause them to be executed.

The only thing you must be careful about is to make
sure that you do not have anything else printed on
these screen lines or a SYNTAX ERROR will occur and the
programs will not load properly. A good way to prevent
this from happening is to clear the screen and put a
"loading - please wait" message in the middle of the
screen (line 13) just before entering this routine.

If you want to get fancy, change the cursor color to
the color of the screen (in the string in line 310) and

the loader will work without the commands being
visible.

WANTED-HELP!

Anyone with knowledge

of PASCAL compilers

available for the C64.

Please contact:

Richard Maze 586-3291

THE STATUS REGISTER

This register is the heart of the decision-making
process in all BASIC or machine language programs.
Many of the instruction set commands 'condition'
certain bits of this register leaving a trace of what
data has been most recently processed. Using the
'compare' and 'branch' set of instructions to test the
individual bits of the status register will enable the
program to make decisions.

The individual bits of the status register are commonly
known as flags. These flags are:

BIT# 76543210

o
FLAG NV-BDIZC
e e renea
g T ectrr
a f aieor
t 1 kmr y
io0 ar
v ow lu
e P
t

BIT 7 N (Negative)- This comes from the fact that the
6502/6510 considers any number greater than 127
as NEGATIVE. If the data in the active register
has the high bit set ($80 or 128), the data is
greater than 127 and the N flag will be set to 1.
If the data in the active register does not have
the high bit set (less than 128 or $80), the N
flag will be cleared (0). Two common commands
which check this flag are BPL (Branch if PLus)
and BMI (Branch if MInus). This flag is set/reset
by any instruction which affects any memory’
register (including the accumulator and index
registers).

BIT 6 V (oVerflow)- This is short for Signed Arithmetic
Overflow. This flag is rarely used by machine
language programmers since it is only conditioned
by addition and subtraction commands and is
meaningful only if the numbers concerned are
'signed' (carrying a positive or negative sign).
Look it up yourself. Also look up 'two's
complement' form of numbering. This-will give an
explanation of 'negative' numbers. The V flag can
also be set by hardware thus programmers can
check the input/output ports of interface adapter
chips. The flag may be cleared with the
instruction CLV (CLear oVerflow). The commands
checking this flag are BVS (Branch if oVerflow
Set) or BVC (Branch if oVerflow Clear).

BIT 5 - unused

BIT 4 B (Break)- Break Indicator. This flag is set by
the BRK (break) instruction. This informs the
microprocessor of the type of interrupt
occurring.

BIT 3 D (Decimal)- Decimal mode indicator. Instructions
are SED (SEt Decimal mode) and CLD (CLear Decimal
mode). Setting this flag causes the
microprocessor to add and subtract in 'Binary
Coded Decimal' mode. I am told that this makes
the 6510 a very powerful chip but as this mode is
neither true binary or true decimal these
commands are noted only by their absence in my
programs.

BIT 2 I (Interrupt)- Interrupt disable. This flag may
be set with the instruction SEI (SEt Interrupt)
and cleared with CLI (CLear Interrupt). Setting
this flag inhibits further interrupts of the
microprocessor (key-scan, timer update, etc.).

BIT 1 Z (Zero)- Any of the instructions that affect the
accumulator or index registers will affect this
flag. Like all increment and decrement
instructions affecting any memory location. If
the memory register affected contains the value
zero the Z flag will be set (1), if the data is
non-zero the flag will be cleared (0). This flag
is also conditioned by the CMP,CPY,CPX (CoMPare)
instructions. If the compare instruction succeeds
(is equal) the Z flag is set (1). [e.g. - CPX
#$08, if the X-register contains the numeric
value 8, the Z flag will be set (1), if the
X-register contains any other value the Z flag
will be cleared (0).] The commands testing the Z
flag are BEQ (Branch if EQual), BNE (Branch if
Not Equal).

BIT 0 C (Carry)- This flag is set (1) by the SEC (SEt
Carry) command and cleared (0) with the CLC
(CLear Carry) command. It is also used as a
'carry' when using the addition and subtraction
commands. It is a very useful flag when using the
compare commands (CMP,CPX,CPY). [e.g. - CPY #$08
- if the Y register contains a number equal to or’
greater than 8, the carry flag will be set (1).
If the Y-register contains a number less than 8,
the carry flag will be cleared (0).] The
commands testing the C flag are BCC (Branch if
Carry Clear) and BCS (Branch if Carry Set.

This article, while thoroughly confusing, is by no
means exhaustive. There are many commands I have not
mentioned which condition or test these flags. The
flags tested or conditioned by each command are shown
in the instruction set in machine language manuals.

In an aside for the intimidated, I should mention that
I was programming for some time, setting and testing
two flags in my programs before I discovered what a
Status Register was and that there were four more flags
available for my use.

Here then is my humble if ignorant opinion of the
usefulness of the various flags of the status register:

N - used often, usually for loops

V - used rarely, only by those involved in 1120 digit
precision or by those modifying DOS (e.g. fast loaders,
fast format)

B - used by the computer, not the programmer

D - A very powerful flag I never use. Having grown up
with decimal, being brainburnt by binary and mentally
skewed by hexadecimal, I drew the line at Binary Coded
Decimal.

I - rarely used, but essential in certain situations.
7 - used very often, usually for loops

C - used most often, primarily for program testing and
branching, also for addition and subtraction.

- Qnigingl Offen

BASIC BEGGING!

Being editor of a prestigeous monthly like the MONITOR
is a lot like driving a car with a leaky gas tank! As
you stand in the middle of the Lewvan Express(?)way
trying desparately to flag down a friendly driver, you
think how sure you were that the tank wasn't that low
when you left home.

That's a long-winded way of starting my usual monthly
"beg" for MONITOR material! Although I have a couple
of regular monthly contributors, I KNOW MORE OF YOU ARE
USING YOUR COMPUTERS! We need: a variety of product
reviews of new (and not so new) software and hardware,
someone to do an article or five on beginning
communication (modem hows and why's), MANY more
ZIPPERS, jokes, cartoons, artwork, programs, comments,
criticisms, bouquets, ... you name it! I OFFER YOU THE
OPPORTUNITY to try your stuff out on a local club
before you try to sell it to COMPUTE! or AHOY!
Offerings in English or French, on disk or written on
paper with a supermarket pencil are ALL accepted!

CUGS JUKEBOX #1 #90

JUKEBOX 20
BRK MY STRIDE 27
KARMA CHAMELEON 36
MANIAC 32
RUNNIN' 39
TELEPHONE 23
UPTOWN GIRL 34
THE THUNDERER 38
MINUTE WALTZ 34
THOSE/DAYS 21
BILL BAILEY 20
MAPLELEAF RAG 21
FUR ELISE 22
SHE WORKS HARD 20
ENTERTAINER 19
MUSKRAT RAMBLE 21
CALIF. GIRLS 18
STAR WARS 32
MR. ROBOTO 40
THE GODFATHER 19
STAR TREK THEME 20
SURFING USA ° 21
MEMORIES 39
SUPERMAN 1 44

CUGS JUKEBOX#2 #91

JUKEBOX 20
HAPPY SONGS 31
E.T. THEME 27
HARVEST HOME 15
11 RHAP. IN BLUE 39
BEAT IT 39
BILLIE JEAN 43
BRANDENBURG1 38
3RANDENBURG2 21
JOPLIN RAG 37
GHOSTBUSTERS 21
HILL ST. BLUES 23
WILLIAM TELL 34

WALTZ-BEETHOVEN 24
ISLES IN STREAM 26
HUNGARIAN RHAP. 20

CUGS GAZETTE #21

1526 UNDERLINER
SPEEDSCRIPT 3.2
TURBO FORMAT
BUMP 'N RUN
BUMP'N RUN.49152
EXAMINER.BOOT
BASIC EXAMINER
POLAR ART

POLAR ART/128
BACH MINUET/128
MULTITASKER.BOOT
MULTITASKER
DRAW/128
OBSTACLE/128
MATCH BLOX

MATCH BLOX/4/16
FILL.BOOT
FILL-64
FILL/DEMO
FILL/PLAYER 2
KEYWORDS/128 9
R o > 1
MOON RESCUE/128 1z
SPRITE LOCATER 8
SPRITE GRAPH 4
PEGS/PEGS-VIC 9
Q-BIRD 18
ANIMAL SHOW/128 74
QUICKSORT/128
QUICKSORT DEMO/128.
BAR CHARTER .
FAST DUMR/128/64
VIDEO SETUP 1
MIS-MATCHER
MIS-MATCHER/4/16
CUSTOM ENV/128

VF XvVI/128

AUTO RACE/128
CARSHAPE

TILES/128

5.4=>

MEDIUM RES.BOOT
MEDIUM RES

MEDIUM RES DEMO

~N

——
CENVOOON NN NULUL -

R e
N

ROCKY 3 THEME 24 VIDEO SETUP/128 15
STAIRWAY 44 FUNCTION KEYS 2
THIS IS IT! 23 FKEYS.49152 2
BORN TO RUN 24 CONNECT 'EM 21
TWIST OF FATE 34 CONNECT 'EM/128 19
FLASHDANCE 28 INFO GEN 8
BETH 20 INFO PLEASE 2
INFO0.49152 2
ICON CHANGER 13
CUGS SASK. TAX #99 KEYWORD CONSTRUCT 7
DATA-AID 2
-programs for prepar- SAINTS/128 7
ing and printing the Joy/128 21
1986 income tax for DECIPEDE 8
Sask. Residents, by PROOFREADER 6
our own librarian and MLX 18
tax guru EARL BROWN.
Will install T
RESE!
£ sieh
on C84 - $10
3 -
program
ol Bepry Bvdi@e
(359-1925)

VNHHEAEFEWOUMOVOHONWWL

EBiS

b it

TPUG C64 MARCH #M1
LIST-ME 11
MASH.C 31
ELEC SRVC CALC.C 33
MAG INDEX.C 34
DONKEY DONG.C 67
CLUB MAIL LIST.C 40
MOMO BOOT.C 2
MOMO PICTURE.D 33
MOMO SET.D 7
MOMO PRINT.D 11
MATH.C 18
BOOT VALLEY V2.C 1
CHARSET VALLEY.D 9
VALLEY BASIC.D 72
BRADLEY 1
SHEVLIN 1
DOW 1
KARNAK 1
IDEAL MASS.Z 34
STARS BAS PR.Z 38
FRENCH VERBS.Z 97
BASIC AID INST.C 47
BASIC AID.C 21
FILE COPY.C 19
SD COPY/ALL.C 14

D
D

¥

s

DDDDDDDDDDDDDDDDDDDDDDDDDY

D
D
>

[

J

PP

PRPPPPPPPPY
Meeting: March 4,

N.W. Leisure Centre
Aok ok dokok ok ok

Wieeaig:
Wed. April 1, 1087

N.W. Leisure Centre

Serdg: 7 B

YaVaYalalalaleyayay o ot ate

I

=1yl

TPUG MORE MARCH #M2

LIST-ME 11
BASEBALL INST.C 12
BASEBALL.C b4
BASEBALL DATA.D 4
DISK DOCTOR.C 24
PIC LOADER.C 8
COLOURS.D 28
TITLE.D 32
MARS.D 32
BIPLANE.D 32
SHIP.D 32
LANDSCAPE.D 32
AUTO.D 32
GIRL.D 32
LIST-ME INVADE.L 4
INVADERS.C 25
HORSE RACING.C 32
DODGE CARS.C 28
SHOOTOUT RULES.C 7
SHOOTOUT.C 22
R2DIVISION 101
COUNT 1-8.C 32
C64 DT.C 10
DISKALC.C 27

D

D-DDDDDDDDDDDDDDDDD

D

DDDDDDDD

A N

L)

